I. IR Photodissociation Spectroscopy of Large van der Waals Clusters II. UV Laser-induced Photochemistry of Fe(CO)₅ on Single Crystal Surfaces

> Thesis by Francis Gabriel Celii

In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy

California Institute of Technology Pasadena, California 1986 (Submitted August 16, 1985)

C 1986
Francis Gabriel Celii
All Rights Reserved

Acknowledgments

A number of people have helped make my stay at Caltech scientifically rewarding and personally enriching, and it is a sincere pleasure to acknowledge them.

First is my advisor, Ken Janda, whose guidance and patience have nurtured my growth as a researcher. I hope some of his abilities of defining important questions and generating ideas for novel experiments have rubbed off on me. My previous mentors, Doug Ridge, Denis Bogan and Bert Strieb, also deserve thanks for their roles in my formative years.

Two coworkers have contributed much to the following pages, and I owe them special thanks. Paul Whitmore shared the joys of building the UHV chamber with me and added to my vocabulary words such as wavevector and CMA-port. Michael Casassa got me started on the van der Waals molecule project, and introduced me to Bill's Chicken and fake garlic toast. Others that have contributed to the construction of the surface apparatus and to whom I am grateful are Paul Beeken, Steve Kong, Shouleh Nikzad, and especially Eric Sinn, for sprucing up the lab with his racing stripes and fuse sublimator. Dan Auerbach and Malina Hills have also lent time and expertise which I have appreciated.

My officemates for the last 6 years have provided a good mix of diversion and scientific interest. Barry Swartz, Dave Brinza, Fritz Thommen and Colin Western were always willing help program, eat raclette or windsurf. The same is true of the present gang, Dwight Evard, Joe Cline, Sally Hair, Mike O'Loughlin and Brian Reid, who also deserve a special tip-of-the-hat for help rendered during that special time of thesis writing such as proofreading and refraining from playing football in the office.

The staff have been an invaluable resource, providing much knowledgeable and friendly assistance. I thank everyone, especially Tom Dunn, Bill Schuelke, Tony Stark, Guy Duremberg, Jim Olson, Sig Jenner and Valerie Purvis. Besides their prompt and excellent work, I appreciate their willingness to take the time to share the knowledge of their crafts with me.

My life outside the lab has has been much fun and for that I have many people to thank. Miles Collins, Concetto Geremia, Mike Pettersen have been special friends, along with the the rest of the Caltech Men's Glee Club have provided plenty of entertaining times, to say the least. Charlie Koerting, Jerry Winniczek, Dave Moll and Don Berry trekked through the high country or sailed the seas with me. The Beauchamp group, Bop and Susie Cave, Tom and Margaret Dunn and Liz Thomas were also important people in helping me stay sane.

The support of my family through this time is implicit and was always appreciated. Special thanks go also to my thesis tag-team of Miles Collins and Lelia Hanratty, for their time and energy.

Financial support for this work which was provided by the Department of Energy, the Office of Naval Research and the Atlantic Richfield Corporation are all gratefully acknowledged.

Finally but most importantly, I thank my wife, Maureen, for her love and support.

ABSTRACT

Chapter 2 is a summary of vibrational predissociation spectra of weakly bound clusters containing either CF₃I or CF₃Br. Spectra indicative of ArCF₃I, KrCF₃I, $(CF_3I)_2$, ArCF₃Br and $(CF_3Br)_2$ clusters are presented with comparison to the matrix-isolation spectra of CF₃I and CF₃Br.

The infrared photodissociation technique can be applied to the study of weakly bonded clusters which do not absorb in the infrared by attaching an IR chromophore; this work is presented in Chapter 3. Vibrational predissociation spectra of large clusters of Ar, Kr, N₂ and CH₄ containing a single CH₃F or C_2H_4 chromophore are obtained as a function of cluster size. The IR spectra distinguish three regimes of cluster size in the CH₃F case. The dissociation profiles yield information on the chromophore environment and the lifetime of the excited vibration. The clusters are gas-phase anologies to the matrix-isolation technique, although differences between the two are consistent with the presumed icosahedral cluster geometry, and "matrix" and "surface" sites are distinguishable.

Chapter 4 presents the application of a simple two-level-with-decay model to the photodesorption of weakly bound adsorbates on crystal surfaces. Feasibility estimates are reported and establish that vibrational predissociation of the excited adsorbes can be induced in the infrared, where energy quenching mechanisms on surfaces can be quite fast. The effect of these quenching mechanisms on the lineshapes present the opportunity to probe the processes with the use of the photodesorption technique. Extraction of the phenomenological rate constants is described. Also reported are attempts to observe photodesorption induced by lowpower lasers.

The photodecomposition of $Fe(CO)_5$ on three single crystal surfaces, sapphire (Al_2O_3) , Si(100) and Ag(110), using UV irradiation is described in Chapter 5. The quenching of excited electronic states of adsorbates is expected to be quite different on the surfaces, yet dissociation of the $Fe(CO)_5$ is observed in all cases. The results allow determination of the dissociation mechanism and also imply that the $Fe(CO)_5$ dissociation rate is ultra-fast (< 10^{-13}). Extensions of this initial investigation are discussed.

Table of Contents

Dedication	•••	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	. i	ii
Acknowledg	ments				•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	. ii	ii
Abstract .		•		•	•	•		•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	v
List of Figu	res .	•		•	•			•	•	•		•	•	•	•	•	•		•		•	•	•	•	•	•	vi	ii
List of Tabl	es	•	• •		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	. >	ci
Chapter 1 Introduc	 tion	•	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	1
Refer	rences	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	7
Chapter 2 IR Phot CF ₃ I or	 odisso CF ₃ B	ciai r	tior	. Sj	pec	tr	080	or	• y	of	Va	m	de	er	· Wa	aal	Is (Ch	ust	ter	s (Co	nt	air	1ir	Ig		9
Refer	rences	•	•			•	•	•	•	•	•	•	•	•	•	•	•	•	•	۰.	•	•	•	•	•		. 3	5
Chapter 3 Infrared Spectra	Spect of Ga	tros s-P]	cor has	, . oy (e N	of 1 /[o]	Laı leci	rge ule	• V: •8	an	d	er	W	'aa	ls	Cl	lus	te	rs:	N	Iat	t ri	x]	Iso	olar	tio	n	. 3	9
Refe	rences	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	11	9
Chapter 4 Photode	 sorpti	on i	Lin	.esh	Iap	es	of	' W	/ea	ıkl	y]	Bo	ur	1d	M	Iolo	eci	ıle	8	•	•	•	•	•	•	•	12	7
Refe	rences	•	•		•	•		•	•	•	•	•	•	•	•		•	•	•	•	•	•		•	•	•	17	4
Chapter 5 UV Lase	er-Ind	uce	d D)iss	oci	lat	ior	1 0	f E	?e(C(0)	5 (on	Si	ing	le	C 1	ry:	sta	1 S	Տա	rfa	ce	s	•	18	1
Refe	rences	•	•	•••		•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	22	3
Appendix 1 Vibratio	nal P	redi	isso	 ocia	tio	n	Sр	eci	tru	1111	. 0	f (C 1	Нз	F)	2	•	•	•	•	•	•	•	•	•	•	23	7
Appendix 2 Bakeout	 Cont	roll	er i	 Sys	tei	n.	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	24	0

List of Figures

Chapter 2 Infrared Photodissociation Spectra of CF_3I and CF_3Br Clusters.
Figure 1. CF ₃ I, CF ₃ Br absorption spectra in Ar matrices
Figure 2. Dissociation spectra of $Ar_n CF_3 Br$ clusters
Figure 3. $(CF_3Br)_n$ dissociation profiles
Figure 4. Dissociation spectra of $Ar_n CF_3I$ and $Kr_n CF_3I$ clusters 28
Figure 5. Dissociation profiles of clusters containing $(CF_3I)_2$ 29
Chapter 3 IR Photodissociation Spectra of Large van der Waals Clusters.
Figure 1. Experimental schematic: molecular beam spectrometer 49
Figure 2a. Mass spectrum of a highly-clustered molecular beam 53
Figure 2b. Schematic of electron-impact cluster fragmentation 54
Figure 3. Small-cluster limit ν_3 dissociation spectra of CH ₃ F clusters . 61
Figure 4. Pressure dependence of CH_3F^+ dissociation profile in Ar 66
Figure 5. Dissociation profiles of $Ar_nCH_3F^+$ ion masses 69
Figure 6. Dissociation spectra of CH_3F -containing Kr clusters
Figure 7. IR spectra of $(N_2)_n CH_3 F$ clusters
Figure 8. Dissociation profiles of Ar clusters containing C_2H_4 81
Figure 9. IR photodissociation spectra of $(CH_4)_n C_2 H_4$ clusters 83
Figure 10. Dissociation spectra of N2 clusters containing C_2H_4
Figure 11. "Characteristic cluster size," $(N/Z)^*$, vs. pressure 93
Figure 12. Mass spectral pressure dependences of Ar_n^+ cluster ions 95
Figure 13. Schematic of $A_{12}X$ cluster models $\ldots \ldots \ldots$
Chapter 4 Photodesorption of Weakly Bound Molecules
Figure 1. Schematic of two-level-plus-decay model

Figure 2. Lineshape expression applied to $(C_2H_4)_3$ spectrum . . . 142 Figure 3. Photodesorption probability $(1-F_m)$ vs. (ω_R) 154 Chapter 4 (cont.)

Figure 4.	$1-\mathbf{F}_m$, varying quenching rate (γ_q) and irradiation time (t)	156
Figure 5.	$1-F_m$, varying desorption (γ_D) and quenching (γ_Q) rates .	157
Figure 6.	$1-\mathbf{F}_m, \gamma_q \text{ and } \gamma_p \text{ varied } \ldots \ldots \ldots \ldots \ldots \ldots$	159
Figure 7.	Logrithmic plot $(\ln(1-F_m))$ and FWHM vs. ω_R	162
Figure 8.	$Ln(1-F_m)$ and FWHM, varying t and γ_q	164
Figure 9.	$Ln(1-F_m)$ and FWHM, γ_D varied for a given γ_Q	166
Figure 10.	$Ln(1-F_m)$ and FWHM, with fast quenching rate	168
Chapter 5 UV	Laser-induced Photochemistry of $Fe(CO)_5$ on Single Crystal Surfaces.	
Figure 1.	$Fe(CO)_x$ energy levels with $Fe(CO)_5$ absorption spectrum .	184
Figure 2.	Diagram of the ultra-high vacuum chamber	188
Figure 3a.	Diagram of the crystal manipulator	191
Figure 3b.	Detail of the refrigerator coupling to the crystal holder	192
Figure 4.	Auger electron (AES) spectrum, Ag(110)	196
Figure 5.	LEED pattern, clean Ag(110)	197
Figure 6.	Observed cracking pattern of $Fe(CO)_5$	198
Figure 7.	Schematic of the surface photochemistry experiment	200
Figure 8.	Thermal desorption spectra, $Fe(CO)_5/Al_2O_3$	203
Figure 9.	Schematic, observed photochemistry signals vs. time	206
Figure 10.	Annealing phenomenon, $Fe(CO)_5$ on $Si(100)$	207
Figure 11.	Photochemical, thermal desorption yields, $Fe(CO)_5/Al_2O_3$.	2 10
Figure 12.	Power dependence of dissociation yield, $Fe(CO)_5$ on Al_2O_3	212
Figure 13.	Schematic of $Fe(CO)_5$ dissociation mechanisms	218
Figure 14.	Model for energy transfer considerations	223
Appendix 1 Vi	brational Predissociation of the Methyl Fluoride Dimer.	
Figure 1.	Predissociation spectrum of $(CH_3F)_2$	240

Appendix 2 Bakeout Controller

Figure	1.	Schematic of the bakeout controller system	•	•	•	•	•	244
Figure	2.	Diagram of the bakeout controller	•		•			246
Figure	3.	Diagram of the refrigerator pulser	•	•	•	•	•	247
Figure	4.	Diagram of the oven interlock	•	•	•	•	•	248
Figure	5.	Ion gauge trace during bakeout of UHV chamber						250

List of Tables

Chapter 2 Infrared Photodissociation Spectra of CF_3I and CF_3Br Clusters.

Table 1.	Gas-phase absorption frequencies of $\rm CF_3I$ and $\rm CF_3Br$ $~$ 14								
Table 2a.	CF_3Br frequencies in matrices and dissociation spectra 18								
Table 2b.	CF_3I frequencies in matrices and dissociation spectra \ldots 19								
Chapter 3 IF	Photodissociation Spectra of Large van der Waals Clusters.								
Table 1.	CH_3F small cluster (A _x CH ₃ F) spectral parameters 63								
Table 2.	${ m CH}_3{ m F}(u_3)$ frequencies in matrices and large clusters $\ .\ .\ .\ 105$								
Table 3.	$C_2H_4(\nu_7)$ frequencies in matrices and large clusters 107								
Chapter 4 Photodesorption of Weakly Bound Molecules.									
Table 1.	IR Reflection-Absorption Spectra on Surfaces								
Chapter 5 UV Photochemistry of $Fe(CO)_5$ on Single Crystal Surfaces.									
Table 1.	Surface heating parameters and calculations								
Table 2.	Calculated energy transfer rates								

CHAPTER 1

INTRODUCTION

.

The advent of the supersonic expansion technique¹ revolutionized many chemical fields of study. The spectroscopy of gas-phase species experienced a renaissance, moving from room-temperature gas bulbs to the beam environment in which the internal degrees of freedom of a molecule can often be cooled to within a few degrees of absolute zero.² The simplification of spectral interpretation resulting from this cooling effect is widely documented in small molecules (e.g., NO₂³) as well as large (e.g., pentacene⁴ - $C_{22}H_{14}$). The study of chemical reaction dynamics has progressed from determination of thermally and spatially averaged rate constants to differential scattering cross sections, which can yield direct information on intermolecular potentials,⁵ and state-to-state reaction cross sections at specific translational and internal energy.⁶ The supersonic beam technique has affected in a most dramatic way the study of "esoteric" species, those which are normally stable only at low temperature. It is the potential of the beam environment as a synthetic tool, the ability to stabilize species bound only by the van der Waals interaction, that is exploited in the experiments reported in the first part of this thesis.

Dispersion forces between atoms and molecules are the basis of van der Waals bonding, and the characterization of these forces is nearly a century-old topic, beginning with consideration of transport phenomena in bulk liquids and gases.⁵ Before the wide usage of supersonic expansions, a small number of van der Waals complexes were spectroscopically identified in high pressure gas mixtures.⁷ With the use of expansion techniques in conjunction with electric resonance, microwave and laser-based (IR and visible/UV) detection techniques, rapid progress has been made in the characterization of a wide variety of van der Waals molecules,⁸ such as hydrogen bonded complexes.⁹

An intriguing use of the van der Waals bond has been in the formation of weakly bound molecules that are used as model compounds for the study of intramolecular energy transfer in isolated molecules. A wide range of "energy randomization rates" (determined mainly from linewidth studies) have been reported, even within series of complexes containing the same initially excited molety.^{10,11} It appears that the specifics of the van der Waals potential surface between a probed molecule and its inert partner may dominate the dynamics of the relaxation, as opposed to characteristics of the isolated probe molecule;¹¹ even so, the description of the dynamics of van der Waals molecules has become a challenging topic in its own right. We have employed the infrared photodissociation technique in the study of these weakly bound complexes. Chapter 2 is a report of the infrared spectra of van der Waals clusters containing CF_3I and CF_3Br . A brief report of the infrared photodissociation spectrum of the CH_3F dimer is included as appendix 1.

The study summarized in chapter 3 is a novel application of the IR photodissociation technique: the use of an IR chromophore to probe large clusters, or microcrystallites, of rare gases or inert molecules. Condensation of these agglomerates is made feasible by the high collision rate and low local temperature in the expansion region. There is currently a great deal of effort to generate and characterize these gas-phase versions of condensed matter, ranging from rare gases crystals¹² to "catalystic" metal¹³ clusters. Interest in the energetics and structure of rare gas clusters grew out of consideration of homogeneous nucleation phenomena.¹⁴

Simple theories show the observed nucleation rate can be calculated using the cluster distribution which, in turn, is reflective of the free energy of the individual clusters. Hence, determination of the stability of various cluster geometries became an active theoretical field. Questions of this nature can now be addressed in the experimental arena: it is possible to observe in the cluster distribution relatively stable, or "magic number," cluster sizes. Surprisingly, even small clusters show crystallographic structure similar to the bulk solid. Presented in Chapter 3 is a study of large rare gas clusters by the vibrational predissociation technique, employing two infrared chromophores (CH_3F and C_2H_4) to couple laser excitation into the clusters. An extensive review is presented of cluster properties and the extent to which they can be expected to influence the dissociation lineshapes.

The second part of this thesis (Chapters 4 and 5) deals with experiments from a vastly different realm: laser-surface interactions. The conceptual relation between our efforts in the two diverse areas, molecular beam spectroscopy and laser-surface chemistry, is divulged in Chapter 4. A simple model used to describe predissociation spectra of van der Waals molecules can be applied to IR-induced desorption of weakly bound adsorbates. Phenomenological rate constants for desorption, surface quenching and dephasing mechanisms can be extracted from the desorption lineshapes. Very little experimental work demonstrating single-photon desorption presently exists,¹⁵ and our own attempts to observe this effect were not successful. Feasibility estimates for the process are generated and example cases are evaluated in light of the sensitivity demonstrated in our experiments.

The gas-solid interface is an area of long-standing practical interest. The

understanding of empirically optimized catalysts for industrial chemical processes has been the stimulus of metal-gas surface chemistry. In an analogous manner, the rapidly expanding electronics industry is mandating semiconductor interfaces as the area of highest priority and is consequently redirecting efforts in the field of surface science efforts toward an understanding of these non-metallic systems.¹⁶ The drive in this direction has had an obvious impact on the young field of laser interactions with surfaces. The resolution capabilities of lasers (especially in the UV) for producing circuit patterns of sub-micron size provides an obvious choice for device fabrication by "direct writing" - without the use of masks.¹⁷ There is clearly an intense effort to explore practical aspects of laser-induced processes in the areas of etching, deposition and annealing of materials related to semiconductor processing.¹⁸ The need for basic experiments under more controlled conditions is an obvious and necessary extension. The ultra-high vacuum (UHV) environment is ideal for the study of reaction mechanisms that occur on clean substrate surfaces without competing gas phase chemistry. While this analysis can not be utilitzed under processing conditions, the growing use of high pressure reactors interfaced to UHV analysis stations¹⁹ will assuredly be important tools for the study of semiconductor processing chemistry.

Chapter 5 describes basic experiments that we have performed which are directed toward exploring surface photochemical reactions under UHV conditions. Dissociation mechanisms are restricted to those that occur at the gas-solid interface. Energy transfer from the excited surface species to the bulk solid, an area of basic research interest,²⁰ is in this case an important consideration for practical reasons: if the rate of energy transfer to the solid is fast, the reaction will be quenched. Specifically, we have examined the ultra-fast UV-induced dissociation of $Fe(CO)_5$ on three surfaces: single-crystal Al_2O_3 , Si(100) and Ag(110). The progression from insulator through semiconductor to metal was examined in anticipation of progressively faster rates of energy transfer from an excited adsorbate to the solid bulk; in fact, the reaction occurs so rapidly that there is no discernable difference in the dissociation yield between the different surfaces. Future work to complement these preliminary findings is also discussed.

References

- A. Kantrowitz and J. Grey, Rev. Sci. Instrum. 22 (1951) 328;
 J.B. Anderson and J.B. Fenn, Phys. Fluids 8 (1965) 780.
- D.H. Levy, Ann. Rev. Phys. Chem. 31 (1980) 197;
 R.E. Smalley, L. Wharton and D.H. Levy, Acc. Chem. Res. xx (1977) 139.
- R.E. Smalley, B.L. Ramakrishna, D.H. Levy and L. Wharton, J. Chem. Phys.
 61 (1974) 4363.
- 4. A. Amirav, U. Even and J. Jortner, Chem. Phys. 51 (1980) 31.
- 5. G.C. Maitland, M. Rigby, E.B. Smith and W.A. Wakeham, Intermolecular Forces, (Clarendon, Oxford, 1981).
- 6. R.D. Levine and R.B. Bernstein, Molecular Reaction Dynamics, (Clarendon, Oxford, 1974).
- 7. G. Ewing, Can. J. Phys. 54 (1976) 487.
- 8. See, for example, Faraday Disc. Chem. Soc., 1973 (1982).
- 9. B.J. Howard, T.R. Dyke and W. Klemperer, J. Chem. Phys. 81 (1984) 5417.
 A.S. Pine and W.J. Lafferty, J. Chem. Phys. 78 (1983) 2154;
 A.C. Legon, J. Phys. Chem. 87 (1983) 2084.
- K.C. Janda, Adv. Chem. Phys. 60 (1985) 201;
 M.P. Casassa, C.M. Western and K.C. Janda, Resonances in Electron-Molecule Scattering, van der Waals Molecules and Reactive Chemical Dynamics, ed., D.G. Truhlar (American Chemical Society, Washington, D.C., 1984).
- G.T. Fraser, D.D. Nelson, Jr., A. Charo and W. Klemperer, J. Chem. Phys. 82 (1985) 2535.

- 12. See the review in Chapter 3.
- R.L. Whetten, D.M. Cox, D.J. Trevor and A. Kaldor, J. Phys. Chem. 89 (1985)
 566;
 M.E. Geusic, M.D. Morse and R.E. Smalley, J. Chem. Phys. 82 (1985) 590.
- D.L. Freeman and J.D. Doll, J. Chem. Phys. 82 (1985) 462;
 F.F. Abraham, Homogeneous Nucleation Theory Supplement I, Advances in Theoretical Chem. (Academic, New York, 1974).
- 15. T.J. Chuang and I. Hussla, Phys. Rev. Lett. 52 (1984) 2045.
- 16. J. Dieleman, Thin Solid Films 86 (1981) 147.
- R.M. Osgood, Jr., Ann. Rev. Phys. Chem. 34 (1983) 77.
 I.P. Herman, in Laser Processing and Diagnostics, ed. D. Bäuerle (Springer-Verlag, Berlin, 1984).
- Laser Processing and Diagnostics, ed. D. Bäuerle (Springer-Verlag, Berlin, 1984).
- C.T. Campbell and M.T. Paffett, Surf. Sci. 143 (1984) 517.
 S.A. Joyce, B. Roop, J.C. Schultz, K. Suzuki, J. Thoman and J.I. Steinfeld, in Laser Processing and Diagnostics, ed. D. Bäuerle (Springer-Verlag, Berlin, 1984).
- A.P. Alivisatos, D.H. Waldeck and C.B. Harris, J. Chem. Phys. 82 (1985) 541.
 Ph. Avouris and B.N.J. Persson, J. Phys. Chem. 88 (1984) 837.

CHAPTER 2

IR PHOTODISSOCIATION SPECTROSCOPY OF

VAN DER WAALS CLUSTERS CONTAINING CF3I OR CF3Br

1. Introduction

The growing list of infrared photodissociation spectra of polyatomic van der Waals complexes is responsible for the significant growth and progress exhibited by the field.¹ Of special interest have been a variety of complexes containing the C_2H_4 molecule which exhibit a wide range of homogeneous linewidths suggesting that the dissociation rate is sensitive to both the molecular structure of the complex and angular momentum constraints in the decomposition.^{1,2} It is desirable to extend these efforts to other molecular systems which could probe the variation of other parameters that may affect the dissociation rate, such as the presence of lower-lying vibrational states, or the excitation of levels nearly degenerate in energy but of different class or symmetry.^{3,4} The recent use of rotational state-selection techniques in conjunction with infrared excitation⁵ allows unequivocal identification of the species excited, but the experiment requires molecules which have permanent dipoles. In this chapter I report the extension of infrared dissociation techniques employed in the initial C_2H_4 -complex study to clusters containing CF_3I and CF_3Br .

The large excitation cross sections exhibited by vibrations in fluorinated species combined with the availability of high-power IR sources (i.e., CO₂ lasers) that overlap the transitions have made these compounds natural choices for studies of IR multiphoton excitation and dissociation. Of the small molecules whose spectroscopy is relatively uncongested, the CF₃X series (X = Cl, Br, I) is noteworthy, possessing a weak C-X bond which can be ruptured after sequential absorption of IR photons.⁶⁻¹³ The dissociation was shown to be rapid in a collisionless environment ($\tau < 1$ nsec¹¹), and the IR-induced decomposition of these species has been studied for potential application in iostope separation schemes.^{9,10} Dissociation spectra of the ionic species CF_3I^+ have also been reported.^{12,13} The large transition moment dipole also makes this an attractive system for a vibrational predissociation study of the van der Waals complexes.

A preliminary survey of the IR predissociation spectra of van der Waals clusters containing CF₃I and CF₃Br is presented here. Specifically, the dissociation profiles as a function of wavelength are obtained for the complexes Ar·CF₃I, Kr·CF₃I, (CF₃I)₂, Ar·CF₃Br and (CF₃Br)₂ throughout the frequency range of a line-tunable CO₂ laser, although contributions from higher clusters interfere. The intense ν_1 vibration can be excited in both molecules, while the $\nu_2 + \nu_3$ combination band as well as the first overtone of the ν_5 mode (which is in Fermi resonance with the ν_1 mode) can also be excited in CF₃I. Broad bands are observed in the dissociation spectra, which are compared to known gas-phase and matrix-isolation spectra. The rich spectral features evident at the present level of study suggest that further refinement of the spectra may be warranted.

A report of the $(CF_3Br)_2$ spectrum has been published by Geraedts *et al.*¹⁵ The spectra of $(CF_3Br)_n$ presented here are in agreement with the profile observed in that study but the interpretation of the spectral features is slightly different. Our interpretation, based upon the CF₃I cluster results and comparison to CF₃Br and CF₃I matrix studies, as well as previously reported spectra of large clusters containing CH₃F¹⁴ is that the profiles contain significant contributions from clusters larger than the dimer. Also, a feature assigned as due to $2\nu_5$ is most likely a higher cluster feature. We feel additional studies must be conducted in order to isolate the spectra of these van der Waals molecules.

2. Experimental

The apparatus used in this study will be described in detail in the next chapter (see Chapter 3, or Ref. [2b]). A continuous supersonic expansion of gas into a high-pressure $(10^{-3}-10^{-2} \text{ Torr})$ source region and is skimmed to produce a molecular beam of gas mixtures containing CF_3Br (Matheson, >99.0%) or CF_3I (PCR Reseach Chemicals, Inc. 99.4%) in Ar/He or Kr/He mixtures. The mixtures are pressurized up to 150 psig and expanded through a room temperature, 25 μm nozzle. These conditions easily produce clusters in the beam, including $(CF_3X)_2$ and $ArCF_3X$. The molecular beam is irradiated uniformly over a 60 cm flight path by an unfocused, low power (~10-15 W/cm²) line-tunable cw CO₂ laser which is directed anti-parallel to the molecular beam. The long flight path insures dissociation of a significant fraction of the clusters, even with the low power laser. The clusters are detected by an off-axis quadrupole mass spectrometer with electron-impact ionization source. Irradiation of the molecular beam with mechanically chopped laser light produces a modulated ion signal due to loss of dissociated clusters from the beam. The amplified and digitized ion signal is computer averaged with background subtraction and laser power measurement on each datum. Wavelength spectra are obtained by manually tuning the laser grating, and repeating the measurement. The power transmitted through the beam apertures to the in vacuo calorimeter is kept constant during a wavelength scan so that only minimal power scaling is necessary.

Spectra are obtained by monitoring an appropriate ion mass, and scanning the

laser wavelength. Many different clusters present in the beam can give ion intensity at a single ion mass as a result of fragmentation upon electron impact. Thus, dissociation spectra are convolutions of the individual cluster spectra weighted by the quantity present in the distribution and the fragmentation efficiency to the monitored ion mass. Expansion conditions can be varied to obtain a single dominant dimeric species, and the resultant IR spectrum is truly that of the van der Waals complex.^{2,14} It cannot be stated that the spectra recorded were obtained under these stringent conditions, only that they are at the sensitivity limit for the present spectrometer and reported gas mixtures, and thus serve only as an initial foray into the study of CF₃I and CF₃Br complexes.

3. Results and discussion

The vibrational modes of the CF₃I and CF₃Br molecules are given in Table 1, along with the integrated absorption intensities for each mode.¹⁶ The ν_1 and ν_4 vibrations are the symmetric and anti-symmetric C-F stretch modes, respectively, and are understandably quite intense. The ν_3 vibration is the C-X stretch, while ν_2 , ν_5 and ν_6 are bends.¹⁷ The primary mode accessible to the CO₂ laser in both species is the strongly absorbing ν_1 C-F symmetric stretch. In addition, the ν_5 overtone lies close in energy to ν_1 (~4 cm⁻¹ for CF₃I, ~10 cm⁻¹ in CF₃Br), and derives its absorption intensity through Fermi resonance. The $\nu_2+\nu_3$ combination band can also be excited in the CF₃I molecule, but lies outside of the laser tuning range in CF₃Br. Unlike the C₂H₄² and CH₃F¹⁴ cluster systems in which the excited mode was the lowest energy vibrational mode in the monomer, CF₃I and CF₃Br exhibit low energy vibrations which could accept excess energy from a dissociation

	CF ₃	I	CF ₃ Br					
Mode	$ u \ ({ m cm}^{-1}) $	A (km/mol)	$\nu ~({ m cm}^{-1})$	A (km/mol)				
$ u_1 $	1075.2	573.3	1084.6	463.6				
$ u_2 $	743.1	43.0	762.1	29.4				
$ u_3$	286.2	0.15	351.4	<0.2				
$ u_4$	1187.2	445.2	1208.8	464.8				
$ u_5$	539.0	2.1	574.8	23.9				
$ u_6$	261.0	0.04	302.7	<0.2				

Table 1 CF_3I and CF_3Br Normal Modes[†]

[†] from Person et al. [16]

event, thus providing a fast relaxation channel.

The absorption spectra of CF_3I and CF_3Br isolated in argon matrices are presented in Figure 1. The spectra, obtained from Dr. M.E. Jacox¹⁸ of NBS, are of samples relatively rich in CF_3I or CF_3Br (CF_3X : Ar of 1: 400), and allow for deposition of these molecules in adjacent sites to form dimeric (or higher) species. The absorption frequencies from these spectra, those of a similar study of CF₃Br in Ne matrices¹⁹ and results of the dissociation study presented here are collected in Tables 2a and 2b. The ν_1 mode in both species (as well as the similarly intense ν_4 mode) is shifted to the red of the gas phase value by a large amount ($\Delta \omega \sim 10 \text{ cm}^{-1}$) compared to other vibrations in the molecules such as ν_5 and ν_2 ($\Delta \omega = 1 - 2 \text{ cm}^{-1}$). The frequency shift is caused by the dipole-induced dipole coupling of the vibrating dipole with the matrix environment. The large shift for ν_1 is consistent with its large transition moment. Also from the matrix spectra, one sees the $2\nu_5$ absorption is nearly equal in intensity to the ν_1 absorption in the CF₃I case, but down in intensity by at least a factor of ten for CF_3Br . The polymeric species (i.e., $(CF_3I)_n$ and $(CF_3Br)_n$ are observed to absorb at higher frequencies than the isolated monomer in the matrix. The unassigned peak (f) in the CF_3Br/Ar spectrum appears shifted by too great an amount to be considered a dimer absorption.

The wavelength dependences of dissociation for the CF_3I and CF_3Br van der Waals clusters are reported below. The observed beam attenuation is presented with curves that highlight qualitative features of the spectra. The deconvolution consists of exponentiated Lorentzian lineshapes, from the two-level-plus-decay model lineshape expression derived elsewhere (see Ref. [20] or the summary given

Figure 1. Absorption spectra of (a) CF_3I and (b) CF_3Br isolated in Ar matrices, from Jacox.¹⁸ The gas conditions are rich in CF_3I and CF_3Br ($CF_3X:Ar :: 1:400$), which allows production of large $(CF_3I)_n$ or $(CF_3Br)_n$ clusters. The absorption peaks are collected in Table 1 and assigned as follows:

Ar/CF₃I: (a) ν_1 ; (b) $2\nu_5$; (c),(d) (CF₃I)₂; (e) $\nu_2 + \nu_3$.

Ar/CF₃Br: (a) ν_1 ; (b),(c) (CF₃Br)₂; (d) $2\nu_5$; (e) $\nu_2 + \nu_3$; (f) unassigned.

.

Mode	Dissoc. ^a	gas-phase ^b	CF ₃ I/Ar ^c	
$ u_5$		543.1	542.	
$ u_2$		743.1	742.5	
$ u_2 + u_3$	1027.3	1028.0	1027.5	
$ u_1$	1074.6	1075.0	1065.0	
$2 u_5$	1080.5	1080.8	106 9.2	
dimer (ν_1)	$1076, 1081^d$		1074.	
	1069, ?°			
trimer (ν_1)			1083.5	
$ u_4$	—	1187.2	1077.	

Table 2a CF_3I Absorption Frequencies[†]

[†] All values in cm^{-1} .

^a Vibrational predissociation spectrum (this work).

^b from Fuss [20].

^c M.E. Jacox, unpublished results [18].

^d "Free" CF₃I moeity.

 e "Bound" CF₃I moeity; second feature undetermined due to lack of CO₂ laser lines in this region.

Mode	Dissoc. ^a	Gas-phase ^b	CF ₃ Br/Ar ^c	CF ₃ Br/Ne ^b	
$ u_5 $		547.8	545.8	546.4	
$ u_2 $		761.9	761.8	759.9	
$ u_1 $	1085.2	1084.6	1076.	1081.4	
$2 u_5$	$>1092.5^{d}$	1095.6	1092.5	1094.1	
n-mer (ν_1)	1078.6		1095.	<u> </u>	
n-mer (ν_1)	1086.2	_	1099.	_	
$\nu_2 + \nu_3$		1112.	1116.8	1119.1	
$ u_4$		1208.8	1200.	1203.5	

Table 2b CF_3Br Absorption Frequencies[†]

[†] All values in cm^{-1} .

^a Vibrational predissociation spectrum (this work).

^b from Bürger et al. [19].

^c M.E. Jacox, unpublished results [18].

^d from J. Geraedts et al. [15].

in Chapter 5). Results of the derivation yield the expression:

$$F_{p}(\omega,t) = \frac{I}{I_{0}} = exp\left[-\omega_{R}^{2}\gamma_{D}^{-1}t \cdot \frac{\gamma_{D}^{2}}{4(\omega-\omega_{0})^{2}+\gamma_{D}^{2}}\right],$$
(1)

where F_p is the fraction of van der Waals species remaining after irradiation of duration t, ω_R is the Rabi frequency of the transition and ω_0 is the frequency of maximum dissociation intensity. The first-order (dissociation) rate constant, γ_D , derived from the linewidth is

$$\gamma_{\rm p} = \tau^{-1} = 2\pi c \cdot FWHM, \tag{2}$$

where FWHM is the full width at half maximum of the Lorentzian factor in (1), or the width of the logarithm of the profile. In the case of a homogeneous spectrum of a specific cluster, γ_D represents the rate of decay out of the initially prepared state. This is often thought to be the rate of dissociation of the complex, but other mechanisms could be responsible for the observed linewidth. All clusters which contain the same single chromophore (e.g., CF₃I or CF₃Br) should exhibit the same integrated intensity: $\langle \mu \rangle^2$, which is proportional to the Rabi frequency (ω_R) which appears in the Lorentzian prefactor $\omega_R^2 t \gamma_D^{-1}$.

The simplest of the observed cluster wavelength profiles are those exhibited by the Ar/CF_3Br system, shown in Figure 2. The absolute percentage of the clusters dissociated by the CO₂ laser is plotted as a function of laser wavelength. The lower set of spectra (Figure 2(a)) are obtained by monitoring m/e 69 (CF₃⁺), while the upper set (Figure 2(b)) is accumulated by detection at m/e 119 (ArBr⁺). Note the different intensity scales which are indicative, not of the cluster dissociation

Figure 2. Dissociation spectra of $Ar_n CF_3 Br$ clusters. The data points are fractional attenuation in the intensity of the monitored mass due to irradiation with a CO₂ laser. (a) Detection of dissociation at CF_3^+ (m/e 69), which shows two absorption features due to $Ar_n CF_3 Br$ clusters with different values of n, under various expansion conditions. (b) Detection at the cluster mass $ArBr^+$ (m/e 119), which exhibits only a single resolvable feature. The solid and dashed curves are generated using Eq. 1. The mixtures were expanded through a 25 μ m room temperature pinhole at the backing pressure conditions indicated. The high frequency component of the CF_3^+ profile is the best approximation to the spectrum of the Ar·CF₃Br van der Waals molecule.

efficiency, but of the fact that both dissociating (CF₃Br-containing clusters) and non-dissociating (CF₃Br) parent molecules fragment to give mass intensity at CF₃⁺, while only van der Waals clusters $(Ar_n(CF_3Br)_m)$ contribute to the m/e 119 ion intensity. This type of behavior is also seen in the CH₃F cluster system, in which the profiles obtained at monomer fragment masses (e.g., CH₃F⁺) displayed spectra which were indicative of smaller clusters than those obtained at nominal cluster ion masses under similar expansion conditions.

Spectra taken at the CF₃⁺ mass are composed of (at least) 2 components, one nearly coincident with the gas-phase absorption frequency (1085.2, $\Delta(\omega_0 - \omega_{gas}) =$ +0.2cm⁻¹), and a red-shifted absorbtion (~1082.5 cm⁻¹, $\Delta(\omega_0 - \omega_{gas}) =$ -2.5 cm⁻¹), at approximately the same frequency as the profiles determined using the ArBr⁺ mass (1082.5-1083.5 cm⁻¹, $\Delta(\omega_0 - \omega_{gas}) = -(2.5-1.5)$ cm⁻¹). Similarly, it was found in the Ar_nC₂H₄ system that the van der Waals complex Ar₁C₂H₄ exhibited a slight *blue* shift,^{2b} while large Ar_nC₂H₄ clusters were *red-shifted* towards the matrix value.¹⁴ The fact that the CF₃⁺ profiles show two distinct features indicates the frequency shift per additional Ar atom is on the order of 2.5 cm⁻¹. We thus attribute the high frequency component as due to Ar_xCF₃Br ($x \leq 2$) clusters, containing one less Ar atom than the clusters represented by the low frequency feature or the ArBr⁺ profiles. Accurate determination of x, the number of Ar atoms complexed with the CF₃Br chromophore, is not possible without further work using CF₃Br/Ar mixtures of higher dilution.

Figure 3 shows the dissociation spectra of clusters containing $(CF_3Br)_2$, along with an inset of the spectra of Geraedts *et al.*¹⁵ While the overall width of the

Figure 3. $(CF_3Br)_n$ dissociation profiles. (b), (c) The spectra obtained at $(CF_3)_2Br^+$ (m/e 217) and (d) $(CF_3Br)_2^+$ (m/e 256) under the displayed conditions arise from clusters of the form $(CF_3Br)_n$. (a) For comparison purposes, the Ar_nCF_3Br profile obtained at $ArBr^+$ (Figure 3b), and (e) the published $(CF_3Br)_2$ spectra of Geraedts *et al.*¹⁵ are included.

dissociation profile is much broader (> 10 cm⁻¹) than the $Ar_n CF_3 Br$ spectra of Figure 2, the structure of the profile indicates that inhomogeneous contributions account for much of the width: three maxima at ~ 1080 , 1083 and 1086 cm⁻¹ are present throughout the various conditions represented in Figure 3(b)-(d). By comparison with the $Ar_n CF_3 Br$ profile (Figure 3(a)), and the $(CF_3 Br)_2$ spectra of Gereadts et al.¹⁵ (obtained with mixtures that do not contain He), we assign the 1083 cm⁻¹ feature as due to $(CF_3Br)_n$ species which are additionally perturbed by an Ar atom, i.e., $Ar(CF_3Br)_n$. The two remaining features, assumed to arise from the dimer (n = 2), appear due to ν_1 vibrations from inequivalent CF₃Br molecules, a "free" and "bound" type, analogous to the distinct hydrogen stretches observed in $(HF)_2$.²² This interpretation is more consistent with the observed CF_3 I-containing cluster dissociation spectra and matrix-isolation absorption spectra (see below), rather than the dipole-induced splitting of equivalent ν_1 vibrations.^{15,23} Also in the lower spectrum of the Figure 3 inset, the intensity of the blue peak is nearly twice that of the peak to the red, while the two features are of comparable intensity in Figures 3(b)-(d) indicating saturation effects may be present at these fluence levels (~10 mJ·cm⁻²). The intense peaks evident to the blue of the inset spectrum have been assigned as the $2\nu_5$ mode, but may be due to larger $(CF_3Br)_n$ clusters by comparison to the matrix-isolation spectrum which exhibits a number of features in this region.

Dissociation profiles of CF₃I clusters contain more structure than those of CF₃Br-containing clusters due to the presence of the strong $2\nu_5$ absorption in close proximity to the ν_1 feature. Dissociation spectra of Ar_nCF₃I and Kr_nCF₃I clusters

are presented in Figure 4. Two resolved features in $Ar_x CF_3 I$ cluster spectra are apparent and assigned to the ν_1 (1074.6 cm⁻¹) and $2\nu_5$ (1080.5 cm⁻¹) vibrations. An additional feature is observed to the red of the ν_1 absorption, at ~1070.5 cm^{-1} , which is attributed to larger $Ar_n CF_3I$ clusters, since it increases in percent dissociation intensity with a higher order pressure dependence than the ν_1 and $2\nu_5$ peaks. Also, dissociation intensity to the red of the $2\nu_5$ peak (i.e., in the valley between the ν_1 and $2\nu_5$ features) likewise increases under conditions of higher clustering, consistent with assignment as a companion peak to the $2\nu_5$ feature. It seems incongruous with both the strong static and dynamic dipoles of CF_3I that small frequency shifts ($\Delta \omega < 1 \text{ cm}^{-1}$) from the gas-phase value should be observed. An explanation is that, analogous to spectra of CF_3Br -containing clusters, the spectrum of $Ar_x CF_3I$ is *blue-shifted* with respect to the gas-phase absorption while larger $Ar_n CF_3I$ clusters exhibit a spectral red-shift, toward the value observed in matrices.¹⁸ Some of the $Ar_n CF_3 Br$ spectra were in fact obtained at higher dilution than the CF₃I mixtures, and are thus more indicative of the Ar·CF₃X van der Waals complex. This explains why the blue shift was observed in the CF_3Br cluster spectra and not in the CF_3I system.

The dissociation spectra of $(CF_3I)_n$ clusters are collected in Figure 5. In addition to features in the 1070-1080 cm⁻¹ region similar to those observed for Ar_nCF_3I clusters (Figure 4 and Figure 5a), an intense dissociation feature is observed, to the red of the ν_1 and $2\nu_5$ peaks which extends through the missing Q-branch region of the CO_2 laser emission spectrum. In the dimer, it appears that the C-F stretches can be distinguished, one being very similar to that in small

Figure 4. The dissociation spectra of $\operatorname{Ar}_n \operatorname{CF}_3 I$ and $\operatorname{Kr}_n \operatorname{CF}_3 I$ clusters. (b)-(d) Two features in the $\operatorname{Ar}_n \operatorname{CF}_3 I$ cluster spectra, assigned to the ν_1 (1074.6 cm⁻¹) and $2\nu_5$ (1080.5 cm⁻¹) vibrations of the CF₃I monomer, are resolved. The additional feature to the red of the ν_1 band (\downarrow) is attributed to larger $\operatorname{Ar}_n \operatorname{CF}_3 I$ clusters. (a) The profile of $\operatorname{Kr}_n \operatorname{CF}_3 I$ clusters is red-shifted 0.5-1.0 cm⁻¹ from the $\operatorname{Ar}_n \operatorname{CF}_3 I$ cluster profile.

Figure 5. Dissociation profiles for clusters containing $(CF_3I)_2$. (b),(c) Spectral features of the $(CF_3I)_n$ cluster spectra in the 1070-1080 cm⁻¹ region are similar to those obtained for (a) $\operatorname{Ar}_n CF_3I$ clusters (see also Figure 4), but an additional intense dissociation feature (1) is observed to the red (~1065 cm⁻¹). Assignment based on a dimer containing inequivalent units ("free" and "bonded" CF_3I molecules) is proposed. The inset shows the $\nu_2 + \nu_3$ region (~1030 cm⁻¹) for both (d) $\operatorname{Ar}_n CF_3I$ and (e) $\operatorname{Ar}_n (CF_3I)_m$, $m \geq 2$ clusters.

Ar_nCF₃I clusters (from a "free" CF₃ group), and the second (due to the "bonded" CF₃ group) significantly perturbed, at least 6 cm⁻¹ to the red of the ν_1 absorption. Unfortunately, the lack of laser lines in the 1065 cm⁻¹ region prevents determination of whether two peaks (ν_1 and $2\nu_5$) exist in the dissociation spectrum which could tie down the assignment to the "bonded" dimer. The matrixisolation spectrum (Figure 1a) shows 3 features to the red of the ν_1 absorption, but assignment of these peaks requires additional spectra at various CF₃I:Ar concentration ratios to determine monomer and dimer features from those of larger polymers. The inset of Figure 5 displays the $\nu_2 + \nu_3$ region for CF₃I complexes, with dissociation arising from (d) Ar_nCF₃I and (e) Ar_n(CF₃I)_m clusters. Finally, note that the relative intensities of the ν_1 and $2\nu_5$ peaks is similar to that observed in the gas and matrix spectra. No change of the peak intensities caused by perturbation of the Fermi resonance is observed, while a perturbation effect has been proposed by Geraedts *et al.*¹⁵ to explain the apparently intense $2\nu_5$ feature in the (CF₃Br)₂ spectrum.

Both static and dynamical information can theoretically be derived from the observed wavelength and laser power dependences of the dissociation intensity. As discussed previously,^{2,14} the dissociation lineshapes are sensitive to the bonding environment (as measured by the frequency shift of the profile), the lifetime of the excited chromophore (linewidth), as well as the absorption intensity and dissociation efficiency (integrated intensity). The dissociation profiles observed under conditions employed in this study are probably convolutions of individual cluster spectra, but the trends exhibited by the profiles can be deduced. The information extracted

from each lineshape parameter is discussed in turn.

The frequency shifts exhibited by the complexes are particularly informative, especially when viewed in conjunction with the observed matrix-isolation spectra and gas-phase values. Spectra of C_2H_4 -containing van der Waals dimers excited in the ν_7 (out-of-plane bend) region are blue-shifted, consistent with repulsive interaction between the C_2H_4 partner and the vibrating H atoms,² while the redshifted ν_3 (C-F stretch) absorptions of CH_3F complexes are consistent with a structure which locates the rare gas partner above the molecular figure axis.¹⁴ The present work indicates the Ar_xCF_3X absorptions are first blue-shifted and then shift to lower frequency toward the matrix absorption value as z increases. The blue-shift indicates the rare gas atom interacts repulsively with the stretching C-F motion, suggesting the structure of the van der Waals complex may have the rare gas atom located close to a fluorine atom, perhaps along the figure axis. Additional complexation with rare gas atoms introduces a red-shift as the atoms condense around the CF_3I or CF_3Br molecule and stabilize the excited vibrational level by dipole-induced dipole interactions.

The frequency shift of the CF_3X dimer spectra, particularly that of $(CF_3I)_2$, are consistent with a tandem chain geometry, rather than an anti-parallel staggered geometry. A dimer with the former structure would possess both a CF_3 group which is only slightly perturbed by the bonding interaction and absorbs near the gas-phase absorption frequency of free CF_3I , and another CF_3 moeity which interacts strongly (but not repulsively) with the F atom of the first CF_3I monomer. A structure with the molecules aligned head-to-tail and with the two figure axes parallel is conjectured. The $(CF_3Br)_2$ case would conceivably be similar, but is not wellresolved due to the broader bands observed in the CF_3Br clusters. An interesting feature of both systems is that the gas-phase $(CF_3I)_n$ and $(CF_3Br)_n$ cluster spectra are red-shifted while the matrix polymeric peaks are blue-shifted. This indicates significant repulsive interaction between the excited vibration and the matrix cage is present.

Dynamical information about the timescale for decay out of the prepared vibrationally excited van der Waals complex can be extracted from the homogeneous width of the dissociation profiles.² Inhomogeneous contributions to the width under beam conditions are mainly due to rotational congestion, spectral congestion (overlapping lines from individual cluster types, or different modes within a specific cluster), or dephasing of the vibration. CF₃I and CF₃Br cluster spectra, certainly exhibit both types of spectral congestion. However, rotational congestion (simulated using various reasonable dimer structures²⁴ and known constants of the monomers^{25,26}) is expected to account for $\leq 1 \text{ cm}^{-1}$ of the profile widths for the dimers, with slightly higher widths for the $Ar \cdot CF_3 X$ complexes with high (10 K) rotational temperatures. The similarity between the widths of the various complexes suggests a substantial degree of homogeneous broadening is likely present in the profiles, in which case the vibrational lifetime approaches the limit determined by the width of the profile. Without less congested spectra or a continuous profile (the discrete CO_2 laser transitions are spaced every 1 cm⁻¹, so very narrow linewidths due to longer-lived vibrational states are not resolvable) we can at present only place bounds on the excited state vibrational lifetime. As an upper bound to the dissociation lifetime, the complexes must decompose in less than ~0.5 msec, the irradiation flight time of clusters from nozzle to detector. Assuming the entire width is homogeneously broadened yields a lower bound for the lifetime of the excited vibration: for the CF₃I and CF₃Br clusters, the observed widths on the order of 2-5 cm⁻¹ which indicates that the vibrational lifetime, τ , must be longer that 1-3 psec.

The dissociation intensity of a specific van der Waals cluster should correlate, at low laser fluence, to the integrated absorption coefficient for the excited vibration of the monomer (neglecting contribution from polarization of the partner of the chromophore). While this was borne out in other studies,^{2,14} it is not the case with the clusters studied here: the dissociation intensity is a factor of 2-4 times *smaller* than expected from consideration of the integrated absorption intensity of the ν_1 vibration of the CF₃I and CF₃Br monomers. Causes that may be responsible for this are: (1) a substantial fraction of the absorption intensity is not accounted for due to narrow absorption features which are not detected with the present grid of laser lines; (2) saturation effects or sample inhomogeneity reduce the fraction of molecules which may be dissociated at a given laser frequency,^{2d} resulting in a lower apparent dissociation intensity.

4. Conclusions

The dissociation spectra of van der Waals clusters containing CF₃I and CF₃Br are complex in nature due to inhomogeneous contributions to the lineshapes. CF₃I-containing clusters exhibit a strong Fermi resonance between ν_1 and $2\nu_5$, as observed in both the gas phase and matrix isolation absorption spectra of the monomer. $(CF_3I)_n$ clusters exhibit a structured spectrum which has been interpreted in terms of distinct ("free" and "bound") ν_1 vibrational modes in the dimer. The observed frequency shifts of the cluster vibrations indicate strong repulsive interaction between a rare gas atom and the the ν_1 (CF₃I and CF₃Br) and $2\nu_5$ (CF₃I) vibrations, and a stabilizing effect in the case of dimers of CF₃I or CF₃Br.

Acknowledgements

This work was supported by the Division of Chemical Sciences, Office of Basic Energy Science, U.S. Department of Energy. We thank Prof. J.L. Beauchamp for the loan of the CO_2 laser.

References

- 1. K.C. Janda, Adv. Chem. Phys. 66 (1985) 201.
- (a) M.P. Casassa, D.S. Bomse and K.C. Janda, J. Chem. Phys. 74 (1981) 5044;
 (b) M.P. Casassa, C.M. Western, F.G. Celii, D.E. Brinza and K.C. Janda, J. Chem. Phys. 79 (1983) 3227;
 (c) C.M. Western, M.P. Casassa and K.C. Janda, J. Chem. Phys. 80 (1984) 4781;
 (d) M.P. Casassa, C.M. Western and K.C. Janda, J. Chem. Phys. 81 (1984) 4950.
- 3. G. Fischer, R.E. Miller, and R.O. Watts, Chem. Phys. 80 (1983) 147.
- 4. W.-L. Liu, K. Kolenbrander and J.M. Lisy, Chem. Phys. Lett. 112 (1984) 585.
- G.T. Fraser, D.D. Nelson, Jr., A. Charo and W. Klemperer, J. Chem. Phys. 82 (1985) 2535.
- 6. M. Quack and G. Seyfang, J. Chem. Phys. 76 (1982) 955.
- M.J. Rossi, J.R. Barker and D.M. Golden, Chem. Phys. Lett. 65 (1979) 523.
 M.J. Rossi, J.R. Barker and D.M. Golden, J. Chem. Phys. 76 (1982) 406.
- D. Borsella, R. Fantoni, A. Ferretti, A. Giardini-Guidoni, M. Dilonardo and J. Reuss, Chem. Phys. 94 (1985) 309.
 E. Borsella, R. Fantoni, A. Giardini-Guidoni, D. Masci, A. Palucci and J. Reuss, Chem. Phys. Lett. 93 (1982) 523.
- M. Drouin, M. Gauthier, R. Pilon, P.A. Hackett and C. Willis, Chem. Phys. Lett. 60 (1978) 16.
 M. Gauthier, P.A. Hackett and C. Willis, Chem. Phys. 45 (1980) 39.
- 10. M. Nève de Mévergnies and P. del Marmol, J. Chem. Phys. 73 (1980) 3011.

- Aa.S. Sudbø, P.A. Schulz, E.R. Grant, Y.R. Shen and Y.T. Lee, J. Chem. Phys. 70 (1979) 912.
- (a) L.R. Thorne and J.L. Beauchamp, J. Chem. Phys. 74 (1981) 5100.
 (b) M.F. Jarrold, A.J. Illies, N.J. Kirchner, W. Wagner-Redeker, M.J. Bowers, M.L. Mandich, and J.L. Beauchamp, J. Phys. Chem. 87 (1983) 2213.
- 13. M.J. Coggiola, P.C. Cosby and J.R. Peterson, J. Chem. Phys. 72 (1980) 6507.
- 14. F.G. Celii and K.C. Janda, to be published.
- J. Geraedts, M.N.N. Snels, S. Stolte and J. Reuss, Chem. Phys. Lett. 106 (1984) 377.
- W.B. Person, S.K. Rudys and J.H. Newton, J. Phys. Chem. 79 (1975) 2525.
 W.B. Person and S.R. Polo, Spectrochim. Acta 17 (1961) 101.
- G. Herzberg, in Molecular Spectra and Molecular Structure, vol. 2, (van Nostrand Reinhold, New York, 1945), pp. 312-314 (for CH₃Cl).
- 18. M.E. Jacox, private communication.
- H. Bürger, K. Burczyk, D. Bielefeldt, H. Willner, A. Ruoff and K. Molt, Spectrochim. Acta 35A (1979) 875.
- 20. W. Fuss, Spectrochim. Acta 38A (1982) 829.
- 21. M.P. Casassa, F.G. Celii and K.C. Janda, J. Chem. Phys. 76 (1982) 5295.
- 22. A.S. Pine and W.J. Lafferty, J. Chem. Phys. 78 (1983) 2154.
- 23. J. Geraedts, S. Stolte and J. Reuss, Z. Phys. A 304 (1982) 167;
 J. Geraedts, M. Waayer, S. Stolte and J. Reuss, Faraday Disc. Chem. Soc. 73 (1982) 375;

J. Geraedts, S. Setiadi, S. Stolte and J. Reuss, Chem. Phys. Lett. 78 (1981) 277.

- 24. R.L. DeLeon and J.S. Muenter, J. Chem. Phys. 75 (1981) 1113.
- 25. J. Sheridan and W. Gordy, J. Chem. Phys. 20 (1952) 591.
- K. Burczyk, H. Bürger, A. Ruoff and P. Pinson, J. Mol. Spectrosc. 77 (1979) 109.

CHAPTER 3

INFRARED PHOTODISSOCIATION SPECTRA

OF

LARGE VAN DER WAALS CLUSTERS

INFRARED PHOTODISSOCIATION SPECTRA OF LARGE VAN DER WAALS CLUSTERS: THE MATRIX ISOLATION SPECTROSCOPY OF GAS-PHASE MOLECULES*

Francis G. Celii,[†] and Kenneth C. Janda[‡]

Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, California 91125, USA

ABSTRACT

We report the infrared photodissociation spectra of clusters of Ar, Kr, N₂ and CH₄ containing a single CH₃F or C₂H₄ chromophore. The clusters are vibrationally excited by a line-tunable CO₂ laser in the ν_3 (CH₃F) or ν_7 (C₂H₄) region and dissociate as the energy delocalizes within the cluster. The dissociation is detected as intensity loss of mass peaks monitored by an off-axis electron-impact ionization quadrupole mass spectrometer. From the infrared dissociation spectra, there are three regimes of cluster size distinguished for CH₃F-containing clusters. The center absorption frequencies of small A_nCH₃F clusters (A = Ar, Kr, N₂, n < 12) shift to lower frequency and toward the matrix value with increasing cluster size and the widths are fairly constant. The dissociation profiles exhibit a high degree of inhomogeneity in the moderate cluster regime corresponding to clusters with a partially filled second solvation shell. The linewidths of the transitions narrow in this cluster regime, quite dramatically for the Ar/CH₃F system. Dissociation is attenuated in all large clusters A_nCH₃F and A_nC₂H₄, n > 50. The A_nC₂H₄ clusters

^{*} Contribution No. 7235

[†] Atlantic Richfield Foundation Fellow

[‡] Camille and Henry Dreyfus Foundation Fellow

 $(A = Ar, N_2, CH_4)$ shift only a slight degree and show no signs of inhomogeneity in these profiles.

Two chromophore sites, the "matrix" and "surface" sites, are observed in the cluster dissociation spectra. The shift of the center absorption frequency for A_nCH_3F clusters is further red-shifted from the gas phase CH_3F value than that of matrix-isolated CH₃F, consistent with a reduced lattice spacing of the presumed icosahedral geometry. No spectral inhomogeneity indicative of a matrix cluster absorption site is observed for various C₂H₄-containing clusters despite the reduced spacing between laser lines in this wavelength region as compared to the CH₃F ν_3 -absorption region. We interpret these results in terms of a strong dipole-induced dipole force in the case of CH₃F-containing clusters which favors formation of solvated ("matrix") absorption sites. Finally, the dissociation spectra of ion clusters of similar mass can be radically different: e.g., the profile obtained by monitoring $Ar_9CH_3F^+$ exhibits ~50% dissociation on the P(30) laser line, while this feature is totally absent in the Ar₁₃CH₃F⁺ spectrum under identical conditions. The large variation in spectral profiles may indicate selective ionization fragmentation even in cluster beams with a broad neutral cluster distribution. Additional experiments which would complement the present data are discussed.

1. Introduction

Intramolecular vibrational energy transfer and randomization in isolated molecules is the focus of much chemical physics research today. Two techniques that have been employed in the study of this area are the photodissociation of van der Waals molecules¹⁻¹⁰ and matrix isolation spectroscopy.¹¹⁻¹⁷ In the first technique, a supersonic expansion both internally cools the molecule of interest, **X** (e.g., $X = C_2H_4$,^{1,2a,3a,4,5} CO₂,^{2b} SF₆,^{3b} I₂,⁷ or Cl₂⁸), and provides the environment necessary for formation of a weak bond to an inert partner **A** (e.g., A = Ar, Ne, N₂ or **X**). Vibrational energy in either the ground or excited electronic manifold, may cause dissociation of the A-X complex by coupling to the low energy van der Waals bond. To the degree that A is a minor perturbation on the electronic properties of X, one can consider the X-subunit isolated; in this case, the rate of the dissociation indicates the time scale of energy delocalization into the van der Waals modes. When inhomogeneity, pure dephasing and instrumental broadening are not significant¹⁸ or can be taken into account,^{1d} the dissociation rate can be extracted from the width of the profile.

In the second technique, matrix isolation spectroscopy, a cold structure of rare gas atoms is used to trap, isolate and internally cool the species X. The interaction between the molecule of interest and the surrounding cage atoms determines the degree to which the energy transfer properties observed for X are unperturbed. While vibrational lifetimes of matrix isolated molecules have been observed to be in the range of microseconds or longer,¹¹⁻¹³ lifetimes of vibrationally excited van der Waals molecules inferred from linewidths have in general been much shorter, ranging from sub-picosecond¹⁻⁴ to tens of $psecs^{19}$ in dissociation studies to <10 nsec from absorption spectra.²⁰

In this paper, we report attempts to bridge the gap between these two techniques and their distinct range of lifetimes by obtaining the infrared dissociation profiles of CH₃F and C₂H₄ molecules imbedded in in large van der Waals clusters, or gas-phase "matrices". The specific information we obtain is derived from the dissociation lineshapes: the fractional attenuation, vibrational linewidth and frequency shift as a function of expansion backing pressure are obtained for the excited ν_3 vibration in CH₃F and the ν_7 vibration of C₂H₄ in various inert clusters. The appearance of narrow spectral features in some clustering regimes serves to indicate that the lifetime of the excited vibration has increased, but the quantitative lifetime information is limited due to the discrete natrue of the probing CO_2 laser. The dissociation intensity gives a measure of the homogeneity of the profiles. the frequency shift of the cluster absorption is a sensitive measure of the environment around the chromophore and is compared to the extensive matrix data which is available. We correlate these results with the cluster size and properties that we expect at the given expansion pressure. By correlating mass-specific spectra with estimates of cluster distributions, we observe that fairly small clusters (≤ 1 complete shell) shift the CH₃F ν_3 absorption to near the values observed in matrices. A structural ordering of rare gas atoms around a central CH₃F molecule is indicated from comparison with spectra of C₂H₄-containing clusters.

2. Background

Of the many studies of relaxation processes in matrix isolated species,¹¹ a small

number involve polyatomic molecules vibrationally excited in their ground electronic state, most of which have involved an isotopic form of methyl fluoride.¹²⁻¹⁷ Only recently, however, has even this system approached being well understood. The decay of IR fluorescence from $2\nu_3$ was observed by Apkarian and Weitz¹² and attributed to the ladder-climbing relaxation $2 \cdot CH_3F(\nu_3) \rightarrow CH_3F(2\nu_3) + CH_3F(0)$, but this relaxation pathway will not occur in the gas-phase clusters which contain a single CH₃F molecule. An IR pump-probe technique was used by Abouaf-Marguin et al.¹³ to monitor the population loss induced by by rare gas and N_2 matrices from the $\nu_3 = 1$ level of ${}^{12}\text{CH}_3\text{F}$ and the $\nu_6 = 1$ level of ${}^{12}\text{CD}_3\text{F}$ and ${}^{13}\text{CH}_3\text{F}$. The ν_3 excited CD₃F is observed to relax ($au < 1~\mu sec$) much faster than u_3 -excited CH₃F $(\tau \sim 10 \ \mu sec)$ presumably because the ν_6 level lies below ν_3 in the deuterated species and provides a fast intramolecular $V \rightarrow V$ energy transfer pathway, independent of the matrix. Young and Moore¹⁴ obtained IR emission lifetimes for both ν_3 and $2\nu_3$ levels of CH₃F which were populated by fast intramolecular relaxation of levels excited at 3.0 μ m. The non-radiative rates determined by the two lifetime measurement techniques are in good agreement: $k(\nu_3) = 3.2 \times 10^5$ and 8.8×10^4 s⁻¹ in Ar and Kr matrices, respectively.¹⁴ The matrix environment induces nonradiative relaxtion at rates over 500 times faster than the isolated molecule radiative rate of 15 s⁻¹.

A physical picture for the CH_3F isolated in matrices which provides insight into the relaxation mechanism can be obtained from IR absorption studies,¹⁴⁻¹⁷ but there has been some disagreement in interpretation. Weak blue-shifted satellite peaks of ν_3 observed in concentrated CH_3F/Kr matrices¹⁵ were interpreted to

be indicative of CH₃F librations which would substantiate a V \rightarrow R relaxation mechanism for $CH_3F(\nu_3)$ in matrices with CH_3F rotation as the energy accepting mode.¹³ It is now believed¹⁶ that these peaks are due to CH_3F aggregates in the concentrated matrices, although the failure to see phonon wings or a librational satellite in the studies using more dilute matrices¹⁶ may be consistent with estimates of their low intensity due to a broadened profile.¹⁷ Apkarian and Weitz¹⁷ have modelled CH_3F in Kr as a free spinner about the figure axis while the tumbling motion perpendicular to the figure axis is hindered. The end-over-end motion would produce rotational lines spaced ~ 1.7 cm⁻¹ from the main ν_3 (Q-branch) absorption, but these are not observed.¹⁴ If relaxation occured through the free spinner rotation with phonons as the acceptor of the energy mismatch, the rate would exhibit a strong termperature dependence which is not observed. Collisional relaxation between CH_3F and the matrix cage has been suggested as the dominant mechanism of de-excitation. Lastly, vibrational dephasing of the vibration may contribute inhomogeneous width to the linewidths, 16 since the CH₃F ν_3 absorption line is narrower in Ar than in Kr, which is the reverse of the behavior expected from the direct lifetime measurements.^{12,13}

At present, there is a great deal of effort to characterize the solvation of gasphase molecules by sequentially adding weak binding partners (A) to a prototypical molecule (X), usually one that can be probed by fluorescence²¹⁻²⁴ or MPI.²⁵ The electronic origins of individual X_n -A species are often well separated, for $n \leq 6$, so structural information about individual neutral clusters can be obtained from the incremental shift of the 0-0 transition with additional solvent species. In addition, the fluorescence lifetimes of the transitions yield the rate of non-radiative decay, and this can be obtained as a function of cluster size for small clusters. Saturation of the frequency shift, however, eliminates the possibility of studying *specific* large clusters. Studies of complexes between large aromatics (e.g., X = anthracene) and rare gases (e.g. A = Ar), which include time and energy resolved fluorescence excitation and emission spectra, have been reported. In the large cluster regime (i.e., for pressures at which individual A_nX features cannot be distinguished) the fluorescence excitation spectra exhibit additional red-shifting as the pressure, and thus complexation, is increased. The fluorescence lifetime, however, saturates with respect to change in pressure. The lifetime of large A_nX clusters is only 2-3 times smaller than the bare X molecule (7-9 *vs.* 24 nsec for uncomplexed anthracene). The lifetime of gas-phase anthracene isolated in large Ar clusters is the same as its lifetime in a methylmethacrylate glass,²³ but is much longer than its lifetime in an Ar matrix (10 psec²⁶).

Vibrational spectroscopy of molecules embedded in clusters²⁷⁻²⁹ is hampered by the reduced frequency shift per atom compared to that observed in electronic excitation spectra, which makes even the assignment of infrared spectra of small clusters difficult. Gough *et al.*²⁹ have obtained the 10 μ m dissociation spectrum of Ar_nCH₃F and Ar_nSF₆ clusters using a bolometer for detection of dissociation, finding correspondence between the reported matrix absorption peaks and limiting frequency shifts in the cluster dissociation profiles. The saturation of the frequency shift at that of the matrix value was found to occur after the filling of the "first shell" of Ar atoms around SF₆. Also by comparison to the matrix absorption spectra in which spectral features arising from normal and dislocation/surface sites are observed, the Ar_nCH_3F spectra were interpreted as consisting of contributions from clusters in either "matrix" or "surface" sites. The surface peak dominates in the cluster spectra, whereas one would expect the polar CH_3F to be located at the center of an Ar cluster (the "matrix" site) with greater probability than in the case of the SF_6 clusters. A recently reported technique^{29b} has provided identification of an absorption feature attributed to SF_6 on an Ar cluster surface site in the dissociation spectra of Ar_nSF_6 clusters. Application of this technique to CH_3F clusters may similarly provide positive identification of surface site and matrix absorption features.

While the bolometer has proven to be a rather sensitive tool for monitoring dissociation of van der Waals molecules, it is not mass selective. The detected signal (heat loss at the bolometer) results from all species which are dissociated by the laser and scattered out of the molecular beam. One advantage of this technique for a study of highly clustered beams is that contributions from the entire cluster distribution can be detected at once. The spectra reported in this work are likewise sums of spectra of various cluster sizes, due to electron-impact fragmentation, but the summation includes only clusters whose mass is greater than or equal to the mass being monitored. This mass filtering, not available in the bolometer study,²⁹ enables us to uncover interesting features in the cluster dissociation spectra. For instance, under some conditions in the Ar/CH_3F cluster system, very dissimilar dissociation spectra can be obtained by monitoring ions of similar mass. We can also probe the entire cluster distribution in a way analogous to the bolometer detection

technique²⁹ by monitoring the attenuation of the CH_3F^+ or $C_2H_4^+$ parent ion peaks which convolute contributions from all clusters (although still depending on fragmentation efficiencies). In addition, our apparatus allows determination of the fractional dissociation at a given cluster mass so the absolute dissociation intensity of the clusters is obtained.

3. Experimental

The apparatus used in this study has been described previously,¹ and is shown schematically in Figure 1. Van der Waals clusters containing CH₃F are formed by supersonic expansion of pre-mixed gases through Ni pinholes $(12-25\mu m)$ and into a high-pressure (10^{-3} - 10^{-2} Torr) source region. Experiments with C₂H₄-containing clusters were performed using a modified source chamber pumped by a 10" diffusion pump. The jet is skimmed well after condensation to form clusters is complete and travels 60 cm through two regions of differential pumping, then through the electronimpact ionization region of an off-axis quadrupole mass spectrometer. Irradiation occurs over the entire flight path and thus allows significant fractions of clusters to be dissociated with an unfocused, low power ($\sim 10-15 \text{ W/cm}^2$) line-tunable cw CO_2 laser. After being modulated with a mechanical chopper, the laser light is directed colinearly along the molecular beam - through a ZnSe entrance window, the ionization region of the mass spectrometer and the collimators that define the position of the molecular beam. Uniform irradiance is ensured as all apertures are smaller than the laser beam waist (~ 6 mm). Alignment is facilitated by replacing the nozzle assembly with a BaF_2 window so that the laser power can be transmitted and maximized over the path length through the entire apparatus (>1 m).

Figure 1. Schematic diagram of the molecular beam apparatus including the electron-impact ionization quadrupole mass spectrometer, data collection electronics with computer and CO_2 laser used in these experiments.

The data collection system consists of single-ion counting of current pulses from an amplifier/discriminator following a channeltron electron multiplier. The count total is relayed to a minicomputer (ISC 8001) via a homebuilt interface. The computer starts the photon counter on both on and off phases of the chopped laser light, takes the difference of the two count totals and repeats the cycle to generate a datum. Background subtraction is performed automatically on each point. Data averaging times of a few minutes (1000-3000 cycles) usually provide adequate S/N in the dissociation intensity.

An important component of the spectrometer is a calibrated Scientech calorimeter located inside the vacuum chamber. By translating a small mirror, the laser power propagating down the molecular beam axis is *directly* measured before and after each datum. This allows accurate determination of power irradiating the clusters, independent of laser mode quality outside the chamber. In addition, dissociation spectra at constant power can be obtained directly, with a minimum of power scaling for fluctuations between data points.

Gas mixtures consisted of CH_3F (Matheson, >99.0%) and C_2H_4 (Scientific Gas Products, >99.95%), used without further purification, seeded either in pure Ar or N₂, or ternary mixtures with the Ar, Kr, Ne, N₂ or CH_4 diluted in He. CH_3F and C_2H_4 were typically $\leq 0.1\%$ of the mixture, while the rare gas concentration in He was varied from 10-100%. Each prepared mixture was equilibrated for at least 6 hours prior to experiments.

4. Results

4.1 Mass spectrometry

A portion of the mass spectrum typical of those obtained in this study is reproduced in Figure 2(a). The molecular beam characterized by this mass spectrum was produced by expansion of a 0.5:1010 mixture of $CH_3F: Ar$ at 400 psig backing pressure through a room temperature 25 μ m pinhole. The series of Ar_n^+ ions is dominant with less intense series of $Ar_nCH_3F^+$, $Ar_nCH_2F^+$, $Ar_nCH_3^+$ and Ar_nF^+ cluster ions also observed. The assignment of the Ar_nF^+ cluster series is based upon the fact that the IR dissociation spectra obtained at m/e 59 (ArF⁺) are identical to Ar_nCH_3F spectra which are obtained from other masses (e.g., $Ar_nCH_3F^+$ or CH_3F^+). Using mixtures of CH_3F seeded in pure Ar and stagnation pressures up to 700 psig, CH_3F -containing Ar clusters as large as $Ar_{19}CH_3F^+$ (m/e 794) could be detected although larger Ar clusters can be safely assumed to be present (vide *infra*). Dilute mixtures (<.05% CH_3F , <20% Ar in He) and low backing pressures were used to obtain spectra of small clusters, such as CH_3F solvated with 1 or 2 Ar atoms, designated as Ar_xCH_3F .

Formation of $(CH_3F)_n$ or rare gas clusters containing $(CH_3F)_n$, $n \ge 2$, while certainly facile, was not of direct interest in this work, and thus was inhibited by maintaining the CH_3F concentration below 0.1%. This concentration seems high compared to those usually necessary for well-isolated matrix spectra ($\le 0.01\%$), but is suitable here because of the mass selection capability. Clusters of the form $(CH_3F)_n^+$ and $(CH_3F)_nH^+$, $n \ge 2$, are both observed. $(CH_3F)_2$ is expected to undergo an internal ion-molecule reaction after ionization to give predominantly

Figure 2a. Mass spectrum of a richly-clustered molecular beam. A mixture consisting of 0.5:1014 CH₃F: Ar was expanded at 400 psig through a 25 μ m room temperature pinhole. Ar_n⁺ and Ar_nCH₃F⁺ cluster series are indicated. The observed mass spectral intensities decrease rapidly with increasing cluster size under these conditions, although a neutral cluster distribution peaked at Ar₁₀₀ is calculated (see the discussion of Figure 11). The ionization electron energy was 65 eV.

Figure 2b. Schematic drawing depicting fragmentation of clusters upon electronimpact ionization, and the partial mass filtering that results. Clusters of size larger than and equal to a specific mass contribute ion intensity to the detected mass peak. Neutral cluster dissociation upon absorption of infrared radiation is monitored by decrease in the intensity of an ion mass, so contribution from higher mass fragments must be taken into account.

 $(CH_3F)H^+$.³⁰ The IR dissociation spectrum attributed to $(CH_3F)_2$ was obtained at this mass (see Appendix 1). The observation of $(CH_3F)_nH^+$ clusters suggests the $(CH_3F)H^+$ traps the positive charge on the cluster,³¹ leaving a cluster which can be described as $(CH_3F)_{n-2}$ · $(CH_3F)H^+$. A full characterization of this behavior was not pursued.

The fragmentation of the $Ar_nCH_3F^+$ cluster series deserves special note. The $Ar_nCH_3F^+$ and $Ar_nCH_2F^+$ ions are of comparable intensity, while the $Ar_nCH_3^+$ clusters are \sim 7 times less intense than either of these two. The 70 eV electronimpact mass spectrum³² shows nearly identical intensities for CH₃F⁺, CH₂F⁺ and ${
m CH_3}^+,$ and similar intensities are likewise observed in our apparatus for these masses (m/e 15, 33 and 34). Production of CH_3^+ results from ionization into the first excited (\tilde{A}) state of CH₃F⁺ and is accompanied by significant release of kinetic energy in the fragments (up to 2 eV in CH_3^+).^{32,33} Recent fragmentation studies of Ar clusters containing an organic molecule are interpreted in terms of initial ionization of the Ar followed by charge transfer to the lower IP guest species.³⁴ In the case of CH₃F, the appearance potential of the \tilde{A} electronic state (15.8-16.0 eV^{32}) is at or just above the IP of Ar (15.76 eV) and well above the IP of Ar_n (14.25 eV³⁵). Charge transfer from Ar^+ to Ar_2^+ would compete with transfer to CH_3F^+ (\tilde{A}), and initial formation of Ar_2^+ from Ar^+ would preclude this possibility entirely. We do not expect a high probability for charge transfer excitation to the (\tilde{A}) CH₃F⁺ state. Furthermore, population of the \tilde{A} state would result in the immeadiate release of 2 eV of kinetic energy into the cluster, which would result in significant evaporation of the cluster (see Section 5.1.1). This may produce different

fragmentation compared to the case where the energy is retained initially in the CH_3F^+ ion.^{34a} Finally, we also observe the unexpected series Ar_nF^+ in the mass spectrum. As noted previously, the IR dissociation of m/e 59 (ArF⁺) indicates these ions are fragments of Ar clusters containing CH_3F . Formation of an Ar-F⁺ dimer species (isoelectronic with Cl-F) may be responsible for these clusters. Prior to this observation, ion fragments which are not formed in ionization of a molecule (e.g., F^+ from CH_3F) had not been observed in clusters (e.g., Ar_nF^+ from Ar_nCH_3F).

The effect of electron-impact ionization and fragmentation of the clusters on the infrared dissociation spectra must be considered.³⁶ Fragmentation patterns of a few specific clusters have only recently been determined,³⁷ and expansions can contain a complex variety of clusters. As illustrated schematically in Figure 2(b), the mass spectral intensity at a given mass and pressure contains contributions from larger clusters. For example, the infrared dissociation spectrum obtained by monitoring m/e 154 (nominally $Ar_3CH_3F^+$, or $(3,1)^+$), would contain the spectra of all species that contribute intensity at that mass, weighted by their abundance and their efficiency to fragment to m/e 154. For neutral species of the type $Ar_3(CH_3F)_n$, $n \geq 2$, fragmentation to m/e 154 can be distinguished in the IR spectrum due to the larger frequency shift associated with clusters containing more than a single CH₃F molecule, so these absorptions can be subtracted out of a spectrum. The shifts due to the clustering rare gas atoms (as well as complexes containing $(C_2H_4)_n$, $n \ge 2$, in the C_2H_4 -containing cluster system) are generally small compared to the width of the profiles, so fragmentation contributions from Ar_nCH_3F , n > 3, to m/e 154 are not easily separable by cluster size.

There is growing evidence that ions produced from electron-impact ionization of weakly bound clusters are *much smaller* than the neutrals from which they derive.³⁷ While fragmentation makes the identification of corresponding neutral clusters quite difficult, it has proven useful for providing a probe of the *entire cluster distribution:* such a large percentage of the seed molecule becomes complexed in the high-pressure expansions that virtually all mass intensity detected at the CH₃F or C_2H_4 parent ion peak results from fragmentation of clusters containing the seed molecule. Thus monitoring the dissociation profile of CH₃F⁺ or $C_2H_4^+$ samples the individual spectra of the many cluster sizes present in the beam, in a way similar to optothermal detection (also see the discussion of Figure 4). This is in contrast to the small cluster limit^{1,38} in which infrared spectra obtained at the parent ion or fragment mass of the van der Waals molecule correspond directly to the spectra of single neutral clusters.

We postpone for the moment a full discussion of the cluster size distributions of the molecular beams. As a guide, we note here that the pressure dependence of the infrared spectra suggest demarcation of three cluster regimes which we designate as "small, "moderate" and "large." From evidence to be presented later, we associate the "small" cluster regime with cluster sizes with less than one rare gas or molecular shell; e.g., $\operatorname{Ar}_n \operatorname{CH}_3 F$, with n < 12. The "moderate" cluster regime denotes clusters with a partially filled second solvation shell, 12 < n < 54, while "large" clusters are indicative of microcrystallites (n > 50). The three cluster regimes are delineated to various degrees in each of the $\operatorname{CH}_3 F$ systems we have studied. The cluster range serve only to correlate regimes of IR spectral behavior with a physical model, and there is no means at present with which to determine the exact ranges of n within this model. Given our limited mass range (< 1000 amu), we have adopted the results of other studies to gauge clustering conditions. The results of these estimates (see Section 5.1.3 for details) are included along with the dissociation spectra in the figures below, to be used as rough guides of the maximum of the neutral cluster distribution.

4.2 Lineshape Analysis

Both simple¹⁸ and more extensive^{1d} models have been presented to extract information from the dissociation profiles of van der Waals molecules. Because of electron-impact fragmentation, the profiles observed in the experiments reported here are convolutions of individual cluster spectra. The use of the simple twolevel-with-decay model lineshape¹⁸ to fit the observed dissociation profiles can still, however, provide insight into the trends of cluster properties with increasing size, such as solvation shifts and vibrational lifetimes. In effect, we are considering how well a range of cluster sizes or types can be represented by a single dissociation profile.

The observed dissociation wavelength dependences are presented with fits to the pure case two-level-with-decay model lineshape formula:¹⁸

$$F_p(\omega,t) = \frac{I}{I_0} = exp\left[-\omega_R^2 \gamma_D^{-1} t \cdot \frac{\gamma_D^2}{4(\omega-\omega_0)^2 + \gamma_D^2}\right],\tag{1}$$

where F_p is the fraction of van der Waals species remaining after irradiation of duration t, ω_R is the Rabi frequency of the transition and ω_0 is the frequency of maximum dissociation intensity. The lineshape is the exponential of a scaled Lorentzian. The first-order dissociation rate constant, γ_{D} , is derived from the linewidth:

$$\gamma_{D} = \tau^{-1} = 2\pi c \cdot FWHM, \tag{2}$$

where FWHM is the full width at half maximum of the Lorentzian factor in (1), or the width of the logarithm of the profile. In the case of a homogeneous spectrum of a specific cluster, γ_{D} represents the rate of dissociation of the complex.

The intensity of the dissociation profile is determined by the Lorentzian prefactor, $\omega_R^2 \gamma_D^{-1} t$. The Rabi frequency, ω_R , is defined as:

$$\omega_{R} = (\vec{\mu} \cdot \vec{\mathbf{E}})/\hbar, \tag{3}$$

where $\vec{\mu}$ is the dipole moment of the absorption (proportional to the integrated absorption intensity) and \vec{E} is the electric field vector (proportional to the laser power). All clusters containing one particular chromophore (e.g., CH₃F) have the same absorption strength. Integrating Eq. 1, we have:

$$\int_{-\infty}^{+\infty} F_p(t,\omega) \, d\omega = (\pi/4) \cdot \omega_R^2 t, \qquad (4)$$

or, in the absence of additional quenching factors (treated in eq. 5), the integrated dissociation intensity is independent of the dissociation rate and thus the same for any cluster containing only a single CH_3F molecule (neglecting contributions from polarizable partners^{1b}). The summation of the spectra of various clusters by electron-impact fragmentation yields a dissociation profile at a given cluster

ion mass whose integrated profile should reproduce the transition dipole moment for absorption by the free chromophore. This is a valuable constraint on the intensity of the profiles. Additional consideration must be given to profiles obtained at the parent ion mass of CH_3F^+ (m/e 34) or $C_2H_4^+$ (m/e 28): with mild expansion conditions (producing small clusters), the ion signal is due primarily to the uncomplexed seed molecule, so the total fraction dissociated will be quite small. Under conditions where practically the entire quantity of seed molecule is clustered, the integrated dissociation intensity at CH_3F^+ or $C_2H_4^+$ will approach that of the absorption strength of the free molecule.

4.3 Small cluster limit spectra

The simplest point from which to embark on a study of the dissociation spectra of $A_x CH_3 F$ clusters is the small-cluster (x = 1) limit: the van der Waals complexes between single rare gas atoms or N₂ molecule and CH₃F. Unfortunately, the isolation of these complexes without the presence of larger clusters is a nontrivial task – the strong dipole moment of CH₃F (1.86 D³⁹) makes it an efficient clusterer – and was not the focus of the present study. The spectra we report, collected in Figure 3 and summarized in Table 1, are the low-clustering limit of CH₃Fcontaining clusters and are best described as $A_x CH_3F$, with $x \leq 2$ (see below). The dissociation spectra which exhibit the smallest frequency shifts away from the gasphase value are considered the low-clustering limit listed in Table 1. All of the main absorptions are red-shifted, indicating that long-range attractive (dispersion) forces dominate over short-range repulsive interactions.^{1b} The magnitude of the shift of the CH₃F ν_3 vibration correlates with the polarizability of the partner, except for

Figure 3. Small-cluster limit dissociation spectrum in the CH₃F ν_3 region. The spectra represent the absorption spectra of A_x CH₃F neutral clusters, where A = (a) Ne; (b) Ar; (c) Kr; (d) N₂, and $x \leq 2$. The gas-phase ν_3 absorption of free CH₃F occurs at 1048.6 cm⁻¹ while the absorption of CH₃F in these clusters is red-shifted. Note the scale changes between spectra which are indicative of the percentage of cluster fragmentation to the monitored ion mass. The solid line is a least-squares best fit to at most 2 exponentiated Lorentzians. Fit parameters are included in Table I. The indicated gas mixtures were expanded through a 25 μ m room temperature nozzle.

	$\mathbf{A} = \mathbf{N}\mathbf{e}$	Ar	Kr	\mathbf{N}_2	
$\overline{\omega_0 (\nu_3)}$	1047.6	1044.7	1044.1	1044.3	
$\omega_g^* - \omega_0$	1.0	2.9	3.5	3.3	
γ (FWHM')	2.0	5.7	5.7	5.5	
$\omega_i (\nu_3 + \nu_i)$	1054.6	1056.3			
$\omega_0 - \omega_i$	7.0	11.6			
γ (FWHM')	4.7	2.3			
α^{\dagger}	0.395	1.64	2.48	1.76 [‡]	

	Table 1	
CH ₃ F Small-cluster	$(A_x CH_3 F)$) Spectral Parameters ^a

^{*a*} All numbers (except α) in cm⁻¹

* Gas-phase value, $\omega_g = 1048.6 \text{ cm}^{-1}$, from Refs. [40,41]

[†] Polarizability α in cm³, from Refs. [42,43].

 $a_{perp} = 1.45 \text{ cm}^3; \alpha_{parl} = 2.38 \text{ cm}^3$

that of Kr_nCH_3F (in which clusters larger than Kr_2CH_3F likely contribute to the observed spectrum at the expansion conditions given, and thus distort the simple shift/polarizability comparison). Parameters used to generate the fitted curves in Figure 3 are also collected in Table 1. Spectra of van der Waals molecules containing C_2H_4 is the subject of other work^{1-6,44} so we report only spectra of large clusters containing C_2H_4 .

The less intense features evident to the blue of the main dissociation peaks (as well as to the blue of the gas-phase absorption) in Figures 3(a) and (b) are reminiscent of early spectra^{1a} of rare gas·C₂H₄ complexes (see also Figure 8) which were later refined to yield structure indicative of a hindered internal rotor.^{1c} This is the reason we do not specify our observed small-cluster limiting spectra as corresponding to those of the van der Waals dimers. We believe the refined spectra of van der Waals complexes between CH₃F and rare gas atoms and N₂ will likely contain additional structure which would permit the assignment of a combination band or hindered rotor transitions. At the present level, we observe features shifted 7.0 and 11.6 cm⁻¹ from the major Ne_xCH₃F and Ar_xCH₃F absorptions, respectively. Further refinement of these spectra will be fruitful once continuously tunable sources are developed in this spectral region. In spite of the dilute mixtures used here, the difficulty involved in establishing conditions which isolate the spectrum of these van der Waals dimers indicates that other IR studies, especially those involving a polar constituent, should be treated with caution.

4.4 Large clusters containing CH_3F

There are three regimes of clustering that we can distinguish in the infrared

dissociation spectra of the CH_3F -containing clusters studied which are best illustrated in the Ar/CH₃F cluster system. The salient features associated with the cluster spectra as the transition is made from small through moderate to large cluster sizes are reflected in the dissociation profiles shown in Figure 4, obtained by monitoring the CH_3F^+ mass (m/e 34). In the "small" cluster regime, the spectra are seen to shift further to the red of the low-cluster Ar_xCH_3F absorption as the average cluster size increases (Figure 4, P=40 and 80 psig). The width of the profile remains essentially constant (4-6 $\rm cm^{-1}$) until the appearance of an extremely narrow component of the spectra occurring at the P(30) emission line $(1037.43 \text{ cm}^{-1})$ in the $(00^{0}1)-(02^{0}1) \text{ CO}_{2}$ laser band. This feature dominates the dissociation profile in the "moderate" cluster size regime, becoming more intense at higher backing pressures (P=100, 200 psig). Note the low fractional dissociation on the low frequency side of the enhanced P(30) feature, when compared to the Lorentzian fit. This indicates very narrow dissociation profiles (FWHM $\leq 0.5 \text{ cm}^{-1}$) are dominant in the 1037-1038 cm^{-1} region. At still higher pressures (P=300 to 500 psig), when "large" clusters begin to dominate the neutral cluster distribution, the fractional attenuation at P(30) decreases dramatically, leaving the broad (3.7 cm^{-1}) absorption centered at $\sim 1040 \text{ cm}^{-1}$. The curves drawn with the data, gualitative fits to Eq. (1), serve both to: (a) highlight the dramatic increase, then decrease, in dissociation intensity at P(30), and; (b) emphasize the dissociation intensity needed in the 1032-1037 cm^{-1} region to fit the data points with a single Lorentzian.

The profile obtained at P=200 psig (Figure 4) is similar to that reported by Gough *et al.* (Figure 3 of Ref. [29]), but here with negligible contribution from

Figure 4. Pressure dependence of the dissociation profile of Ar_nCH_3F clusters detected at m/e 34 (CH₃F⁺). The curves are offset arbitrarily in the vertical coordinate for clarity, and 1 σ error in the dissociation is indicated when larger than the heighth of the circles. At low backing pressures the profiles are broad and fairly symmetric. Between 100 and 300 psig, the fraction dissociated with the P(30) laser line (1037.4 cm⁻¹) increases dramatically. At higher pressures this feature disappears, leaving a broad feature with low fractional dissociation intensity. Matrix isolation absorption peaks are indicated (\uparrow) along the abscissa. The "characteristic cluster size,"⁴⁶ (N/Z)[•], is the mean of the neutral Ar cluster distribution calculated from Figure 11 under the given conditions.

 ω (cm⁻¹)

 $Ar_n(CH_3F)_2$ clusters. The pressure dependence we obtain highlights the dramatic rise and fall of the dissociation feature near the P(30) laser line. The ν_3 absorption spectrum for CH₃F in an Ar matrix exhibits two discernible features (indicated along the abscissa of Figure 4):¹⁴⁻¹⁶ a strong, narrow (< 0.2 cm⁻¹) absorption at 1040 cm⁻¹ attributed to the normal matrix site and a less intense, broad (~1 cm⁻¹) feature centered at ~1039 cm⁻¹ associated with surface of dislocation sites in the matrix. Note the intense P(30) feature is shifted ~2.5 cm⁻¹ beyond where one would expect CH₃F in a matrix site to absorb. As indicated by the (N/Z)* values listed in Figure 4 (vide infra), the narrow P(30) feature appears to correspond to the cluster range in which a second solvation shell of Ar atoms is being filled.

Dissociation spectra obtained at various cluster ion masses for the Ar/CH_3F system are gathered in Figure 5. In general, the spectra show features similar to the CH_3F^+ dissociation profiles: a frequency shift to the red with increasing cluster size, the narrow dissociation feature at P(30), and a broad component that persists in the highest cluster range. Note, however, that while the beam attenuation at P(30) is the *dominant* feature in the $Ar_9CH_3F^+$, or $(9,1)^+$, spectrum (Figure 5(b), P=200), it is *absent* in the $(13,1)^+$ profile (Figure 5(c)) at the same expansion conditions. Also, the spectrum of the neutral clusters which at relatively low backing pressure contribute to the mass $(5,1)^+$ (Figure 5(a), 160 psig) shows no indication of enhanced absorption on the P(30) line. With these spectra we can set specific bounds on the range of cluster size whose spectrum is best represented by the narrow component at 1037.4 cm⁻¹. The $(5,1)^+$ profile sets a strict lower

Figure 5. Infrared dissociation detected at specific cluster ion masses. (a) The dissociation spectrum of the $Ar_5CH_3F^+$ cluster ion (m/e 234) detected with 160 psig backing pressure appears with a symmetric profile, whereas at higher pressures enhanced dissociation on the P(30) line is observed. (b) At 200 psig in an Ar expansion, 50% of all neutral clusters contributing to $Ar_9CH_3F^+$ cluster ion (m/e 394) dissociate at P(30), while with identical expansion conditions there is no evidence for this feature in (c), the $Ar_{13}CH_3F^+$ (m/e 554) profile. It is possible to place limits on the cluster sizes responsible for this enhanced absorption feature. Also in (b), the P(30) feature disappears at higher backing pressures while the broad profile to the blue likewise decreases in percent dissociated.

bound as the Ar_5CH_3F cluster. For the upper bound (and a better lower bound), we must estimate the neutral clusters the contribute to the observed spectra due to fragmentation. For example, if we assume the ion masses correspond directly to neutrals for backing pressure at the sensitivity limit of detection for the particular ion, then clusters of the form Ar_nCH_3F , 5 < n < 13, produce the observed narrow component in the infrared dissociation profile at 1037.4 cm⁻¹. However, this is probably not a realistic estimate because fragmentation of the large weakly bound clusters is extensive. Recent determination of Ar_n fragmentation ratios^{37c} would suggest both upper and lower limits are likely significantly higher, while the presence of a dipole such as CH_3F would tend to reduce fragmentation.⁴⁵

Whatever the range of neutral clusters that contribute to the observed ion masses, we believe it is important to take note of the great difference in spectra of two ion masses, those of $(9,1)^+$ and $(13,1)^+$, separated by only 4 Ar atoms. This indicates either that the dissociation spectra recorded at individual cluster ion masses are sensitive to only a small range of cluster sizes, or (more likely) that specific ion clusters are formed preferentially from a range of ionized neutral clusters. These points are discussed further in section 5.2.

Figure 6 is a presentation of spectra obtained for Kr_n clusters containing CH_3F . The red shift progression with increasing backing pressure of the CH_3F^+ profile (Figure 6(a)) is observed but is seen to develop more slowly than in the Ar cluster case (Figure 4), as the Kr mixture is more dilute (10% Kr in He compared with 100% Ar). The profile likewise converges on the P(30) line as a limit for the frequency shift, at which point attenuation of the dissociation intensity commences. The

Figure 6. (a) Dissociation spectra of CH_3F -containing Kr clusters, detected at CH_3F^+ . Although inhomogeneity is present, the profiles do not show the dramatic dissociation intensity on a single CO_2 laser line as in the Ar/CH_3F system. (b) *Negative* dissociation features give evidence for larger Kr clusters absorbing further to the red, close to the matrix absorption peaks near 1037 cm⁻¹, indicated (\uparrow) along the abscissa.

presence of narrow components in the lineshape is apparent, both in the profiles shown in Figure 6(a) and in individual mass dissociation spectra of $Kr_nCH_3F^+$, $n \leq$ 6, which are not pictured. The maximum in the fraction dissociated profile occurs at P(30) while there is a sharp dropoff in dissocation intensity on the adjacent P(32) line. In none of the profiles, over a range of backing pressure, is there observed the intense single-line dissociation peak seen in the Ar cluster case. With mass spectral intensity spread over the Kr isotopes, we could obtain dissociation spectra only up to m/e 621 (Kr₇CH₂F⁺), using a 20% Kr in He mixture expanded at 400 psig. We judge that the spectra sample the moderate cluster regime, where we might expect to observe the enhanced absorption feature similar to that seen for Ar_nCH₃F, because of the loss of fractional dissociation intensity at the Kr₇CH₂F⁺ ion mass compared to that observed for smaller clusters and lower backing pressures. There is some indication of a narrow absorption present in the Kr_nCH₃F spectrum near 1037.4 cm⁻¹ which may be shifted into the gap between CO₂ laser lines.

An interesting feature in the Kr/CH₃F system occurs at higher pressure where a negative fractional dissociation is observed; that is, the mass spectral intensity at a given mass peak *increases* in intensity upon laser irradiation. Figure 6(b) shows individual mass dissociation spectra taken at two different expansion conditions. Negative dissociation is observed at P(34) (1033.49 cm⁻¹) in both cases, and also at P(32) (1035.47 cm⁻¹) under conditions favoring slightly smaller clusters. The main feature of the ν_3 absorption of CH₃F in a Kr matrix,^{15,17} marked with an arrow along the abscissa of Figure 6, occurs at 1035.8 cm⁻¹, 2 cm⁻¹ to the blue of the P(34) negative dissociation features and similar to the shift between the matrix value and enhanced P(30) feature in the Ar_nCH_3F cluster spectra. There is thus evidence for matrix-like Kr_nCH_3F clusters analogous to the case of CH_3F in large Ar clusters. Negative dissociation features may be present in other cluster spectra from beams with a similar degree of clustering, and in fact may be the reason for the sharp drop in dissociation intensity in the 1037-1038 cm⁻¹ region, to the red of the enhanced P(30) peak in the Ar/CH_3F system, (see, for example, Figure 5(a), P = 160-225).

We discuss two explanations for the negative dissociation feature. First. the fragmentation of large clusters (Kr_nCH_3F , n > 7) could increase with the addition of vibrational energy and result in an increase of mass spectral intensity at the detected ion mass. Second, clusters may "dissociate," but without leaving the molecular beam. For the second case, consider a set of large Kr clusters $(A_M CH_3 F)$ which do not contribute intensity to the detected ion mass $A_n CH_3 F^+$ (from $A_N CH_3 F$ neutral clusters), and which can boil off the 1000 cm⁻¹ of energy deposited by the laser with little gain in transverse momentum, thus remaining in the molecular beam; the resultant cluster of reduced size $(A_m CH_3 F)$ is then ionized, fragments and yields intensity at the detected ion mass. An increase would be observed in the situation where there is a greater population of the large $A_M CH_3 F$ clusters which dissociate to contribute to the detected ion mass than there are $A_N CH_3 F$ clusters which contribute before laser irradiation but are lost upon dissociation. Such an effect is plausible given the fact that in the mass-selected Ar_nCH_3F spectra, we observe significantly different dissociation spectra for similar ion masses. Further discussion of this effect can be found in Section 5.1.1.

Dissociation spectra of the N_2/CH_3F cluster system are shown in Figure 7. The progressive red shift in the small cluster regime is much larger than with Kr or Ar. For small $(N_2)_x CH_3 F$ clusters, the shift of the CH_3F^+ profile per additional N_2 is on the order of the linewidths and distinct shoulders are apparent. Deconvolution of these spectra suggest the following shifts from the uncomplexed value for each additional N₂ molecule: $\Delta \omega_x =$ 4.3, 4.3, 2.0, 4.0 and 4.6, starting from the smallcluster limiting spectrum (x = 1 or 2) which peaks at 1044.3 cm⁻¹. At moderate clustering conditions (Figure 7(a), P=500, 700 psig), an intense dissociation feature grows into prominence on lines P(40) and P(42). Although reminiscent of the profiles obtained for Ar_nCH_3F , there are now two adjacent laser lines on which intense dissociation is observed. Furthermore, at the harder expansion conditions in Figure 7(c), the transition to the large cluster regime can be seen as the absorption peak continues to broaden and smoothly shift with pressure to lower frequency in contrast to the simple disappearance of the single-line P(30) feature in the Ar_nCH₃F large-cluster case. A slight shift of the narrow peak in the Ar/CH_3F case is thus proposed to account for the loss of dissociation intensity.

The ν_3 absorption of CH₃F in a N₂ matrix¹⁵ at 7 K, indicated in Figure 7, occurs at 1033.1 cm⁻¹, whereas CH₃F in large N₂ clusters are shifted past this value, exhibiting a maximum peak shift to 1023.0 cm⁻¹in our spectra. The spectrum of N₂-solvated CH₃F dimer, in Figure 7(b), exhibits an additional 4.4 cm⁻¹ shift ($\omega_0 = 1018.6 \text{ cm}^{-1}$) from the large cluster (N₂)_nCH₃F spectrum. Analogous to the monomer case, the dimer isolated in the gas-phase cluster absorbs at lower

Figure 7. (a) N₂ molecules shift the CH₃F ν_3 absorption frequency enough that separate shoulders for different size clusters are observed under small cluster conditions. In the moderate cluster regime, the infrared spectra exhibit *two* points having enhanced dissociation. (c) In the large cluster regime, the absorption peak broadens and shifts to higher frequency, analogous to the temperature-dependent behavoir of the ν_3 absorption line of CH₃F in a N₂ matrix. The profiles are shifted *beyond* the matrix absorption (indicated, \uparrow). (b) The dissociation spectrum of (N₂)₅CH₃F⁺ is included to illustrate the additional 4.4 cm⁻¹ shift due to the presence of (CH₃F)₂.

frequency than $(CH_3F)_2$ in a N₂ matrix:¹⁵ $\omega_0 = 1023.7 \text{ cm}^{-1}$ at 7 K, with only a small red-shift at increasing matrix temperature.

The dissociation intensities of $(N_2)_n CH_3F$ clusters, obtained by fitting a Lorentzian to the observed dissociation spectrum, appear anomalously high (by roughly a factor of 2) compared to the absorption intensity of uncomplexed CH₃F as well as the dissociation intensity of the other cluster systems. A simple explanation is that the clusters contain more than one CH₃F molecule in the clusters, but we do not believe this to be the case at these dilutions. The intense features could be indicative of very narrow absorption features, as invoked in explanation of features in the Ar/CH_3F and Kr/CH_3F cluster systems, but the peak is observed to smoothly shift to the red as the backing pressure is increased indicating the lines have width on the order of the line spacing. Also, the large fraction of clusters dissociated with the low laser fluence indicates a substantial degree of homogeneity is present in the profiles. Another possibility for the enhanced absorption strength in the N_2/CH_3F cluster spectra is enhancement of the CH₃F dipole moment by the polarization of the N_2 environment.^{1b} Such a large effect may be consistent given the large frequency shift that is observed for the $(N_2)_n CH_3 F$ clusters. As a final note, the spectra of cluster ions up to $(N_2)_9CH_3F^+$ (obtained at P=600 psig) exhibit similar profiles to the displayed $(N_2)_5 CH_3 F^+$ spectra.

We attempted to observe the spectra of large Ne_nCH_3F clusters but did not observe parent ions above $Ne_1CH_3F^+$ using a room temperature nozzle. Dissociation profiles detected at m/e 34 (CH_3F^+) were similar to that reported in Figure 3, with the peak of the (asymmetrical) dissociation feature shifting to the P(20) CO₂ laser line (1047.46 cm⁻¹) at the highest clustering conditions. The peak of the cluster absorption is only 1.8 cm⁻¹ red-shifted from the gas phase absorption and 0.8 cm⁻¹ shifted from the low-cluster limit spectrum. The ν_3 absorption of CH₃F in a Ne matrix is observed 5-7 cm⁻¹ to the red of the gas-phase value, observed at 1041.5 and 1043.5 cm⁻¹ depending on the crystal structure of the Ne matrix (fcc and hcp, respectively).¹⁵

4.5 Clusters containing C_2H_4

The 2 cm⁻¹ gap between CO₂ laser lines in the CH₃F ν_3 absorption region prevents resolution of the narrow absorption features observed in the moderate cluster regime of CH₃F-containing clusters. The availability of additional N₂O laser lines (spacing ~0.8 cm⁻¹) in the spectral region of the C₂H₄ ν_7 vibration (~950 cm⁻¹) makes it attractive to attempt an analogous study of large clusters containing C₂H₄. In this section we present dissociation spectra of C₂H₄ isolated in clusters of Ar, CH₄ and N₂. Even with the higher laser resolution, no evidence for narrow dissociation profiles on the order of the laser spacing is observed in these systems.

Dissociation profiles for C_2H_4 -containing Ar clusters are shown in Figure 8. The small-cluster spectra (Figure 8(a), $ArC_2H_4^+$) exhibit the rotationallystructured profile attributed to hindered internal rotation of the $Ar \cdot C_2H_4$ van der Waals complex^{1c} (see also Section 3.3). With increasing pressure, the spectra become dominated by a broad absorption centered at 949.5-951.5 cm⁻¹ as the $Ar_nC_2H_4$ clusters grow in size (Figure 8(a)). Initially the maxima are blueshifted with respect to the gas phase value (949 cm⁻¹),^{1b} but are *red-shifted* at

Figure 8. Dissociation profiles for large Ar clusters containing C_2H_4 . The same Ar clustering regime characterized by the profiles in Figures 4 and 5 were explored with C_2H_4 as the chromophore. Smaller frequency shifts and no evidence for cluster-dependant inhomogeneity in the profiles are observed in (a) small and (b) large cluster ions. (c) Even though additional N₂O laser lines in this spectral region give increased resolution near the absorption peak, no enhanced dissociation features are observed.

the larger cluster conditions. The spectrum obtained at the ion mass corresponding to $Ar_2C_2H_4^+$ is shifted 0.8 cm⁻¹ to the red of the gas-phase value, and 3.2 cm⁻¹ to the red of the small cluster spectra. The profile is also considerably narrower compared to the small clusters, 3.1 vs. 9.5 cm⁻¹ for the (small cluster) $Ar_xC_2H_4$ cluster absorption. At higher backing pressures, in the regime where the dissociation profiles are attenuated from their maximum values, the spectrum taken at ion mass $Ar_7C_2H_4^+$ (Figure 8(b)) is slightly broader (~4 cm⁻¹), but shows no enhanced dissociation feature akin to that seen in the spectra of Ar_nCH_3F complexes. A closer look at the peak region using N₂O laser lines (Figure 8(c)) shows only a smoothly varying lineshape in beams of both low and moderate cluster sizes. Dissociation profiles of larger cluster ions at high pressure, for example, $(10,1)^+$ and $(14,1)^+$ (not shown), likewise exhibit smooth profiles fit well by a single Lorentzian.

Spectra of $(CH_4)_n C_2H_4$ clusters (Figure 9) show only slight shifts in frequency: the maximum separation between spectra of clusters prepared over a wide range of clustering conditions is 0.8 cm^{-1} , from 950.3 to 951.1 cm⁻¹ in going from small to large cluster conditions. Both the presence of large cluster ions in the mass spectrum and the depletion in the intensity of the IR dissociation spectra (Figure 9(a) and 9(b)) indicate expansion conditions are indeed accessing the moderate and large cluster regimes similar to those explored in the Ar_nCH_3F system. There is, however, no profile narrowing or indication of sub-structure, even with the increased resolution provided by the additional N₂O laser lines (Figure 9(c)). All dissociation profiles exhibit widths (FWHM') of 8-9 cm⁻¹.

Photodissociation profiles of N_2 clusters containing C_2H_4 are compiled

Figure 9. IR photodissociation spectra of (a) small and (b) large CH_4 clusters containing C_2H_4 . (c) At higher wavelength resolution (i.e., with additional laser lines) in the peak region, no inhomogeneity is detected.

in Figure 10. Because of the mass degeneracy between N₂ and C₂H₄, care was taken to insure that the spectra are representative of clusters containing a single C₂H₄group. The concentrations of C₂H₄ used were lower than in mixtures containing CH₃F. The infrared dissociation spectra are themselves distinct enough to provide differentiation, by both frequency shift and linewidth. Clusters with more than one C₂H₄ unit would also be expected to show enhanced dissociation intensity; however, $(N_2)_n \cdot C_2 H_4$ clusters are mass-degenerate with $(N_2)_n$ clusters as well, so there are non-dissociating fractions which reduce the apparent intensity of the cluster ion dissociation profiles. To avoid this problem, some spectra were obtained at the C₂H₄ fragment ion mass C₂H₃⁺ (m/e 27) where N₂ does not contribute mass intensity.

The N₂ molecule blue-shifts the C₂H₄ ν_7 absorption further than either Ar or CH₄ (consistent with the CH₃F results), and also further than additional C₂H₄ units. The dashed line in Figure 10 at 952.4 cm⁻¹ references the center of the observed (C₂H₄)₁₀⁺ profile, which is practically the same for the van der Waals dimer,^{1a} (C₂H₄)₂, as for (C₂H₄)_n, with n very large (Figure 10(c)). The center frequency of the small-cluster N₂C₂H₄⁺ absorption (Figure 10(a)) is similar to that of (C₂H₄)_n but at moderate cluster size ((N₂)₇·C₂H₄⁺, Figure 10(b)), the profile is blue-shifted at least 5.5 cm⁻¹ from the (C₂H₄)_n and ~8 cm⁻¹ from the gas-phase value. Further tracking of the shift is not possible due to the lack of transitions in the missing Q-branch region of the CO₂ laser spectrum. The widths of the dissociation profiles in the small cluster regime (Figure 10(a), monitored on the C₂H₃⁺ ion) are also distinctively narrower than the (C₂H₄)_n spectra,

Figure 10. N₂ clusters containing C_2H_4 , analogous to the $(N_2)_nCH_3F$ clusters exhibit large frequency shifts, seen in both (a) small and (b) large cluster ions. No evident structure was observed in any case. (c) The IR dissociation spectrum of large $(C_2H_4)_n$ clusters distinguishes these type of clusters from the mass-degenerate N₂-containing clusters by both linewidth and absorption frequency. For reference, the peak of the large C_2H_4 cluster profile is drawn through the panels.

6-8 cm⁻¹ vs. 17.6 cm⁻¹, respectively, aiding in the assignment of these spectra as representative of $(N_2)_n C_2 H_4$ clusters. In no case, including spectra obtained at higher pressures than those shown, is a narrowed or enhanced absorption feature detected.

5. Discussion

The vibrational predissociation profiles of neutral rare gas and N_2 clusters containing CH₃F or C₂H₄ have been obtained as a function of backing pressure of the supersonic expansion. The lineshapes of the transition will be sensitive to changes in the solvation environment (frequency shift of the profile) and lifetime of the excited chromophore (linewidth), as well as the dissociation efficiency (intensity). The cluster distribution changes drastically over the range of expansion conditions employed in this study, containing monomers and dimers at the lower pressures, with clusters of over 200 atoms at the higher pressure conditions. Other characteristics of the clusters are expected to change as well and may be reflected in the dissociation spectra. For instance, temperature effects may be observed since small clusters are efficiently cooled, while large clusters are expected to be very near their boiling points. The structure of the cluster will be dependent on the temperature and may affect the lifetime or frequency shift of the excited chromophore.

In order to consider these points, the discussion section is somewhat lengthy. In the first two sub-sections, 5.1 & 5.2, we summarize relevant literature regarding cluster distributions in supersonic expansions, then the structure and properties of these clusters, respectively. Models are formulated which are consistent with both the prior work and the IR dissociation spectra reported here. We then explore the variation of each lineshape parameter (5.3 to 5.5) and the information each yields about the cluster systems studied.

5.1 Cluster size and distribution

A central issue in the analysis of the reported results is the nature of the neutral cluster distribution probed by the observed dissociation profiles: in particular, what are the neutral species that contribute to the dissociation at a given ion mass? While significant advances are presently being made in this field of research, the current level of understanding of cluster beams and electron-impact induced fragmentation does not allow unequivocal assignment of the major neutral species that correspond to a specific mass peak. There is a sufficient body of literature, though, from which one can make reasonable estimates of the range of cluster sizes that are important in these experiments.

5.1.1 Cluster characterization

The extensive study⁴⁶⁻⁵⁰ of rare gas dimers and kinetics of their formation has provided characterization of the initial stages of cluster formation. Preparation of a useful concentration of dimers, such as Ar_2 ,⁴⁶⁻⁵⁰ $\operatorname{Ar} \cdot \operatorname{C}_2 \operatorname{H}_4^{1d}$ or $(\operatorname{CH}_3 \operatorname{F})_2$,³⁸ is both feasible and practical; larger clusters of specific size are another matter. Although it is not known whether the mechanism for initial formation of dimers is a one-step termolecular or two-step process involving stabilization of a bimolecular collision complex, it is generally agreed that larger cluster formation is a two-body process (see, however, ref. 22). Once the simple world of dimer kinetics is left behind, the evolution of specific cluster sizes is not easily followed. Only those detection schemes

capable of resolving differences between successive neutral clusters can be used to follow their growth, and most properties, such as ionization potential.³⁵ change very little. Laser-induced fluorescence is capable of resolving spectral features of chromophores in specific size clusters, but even then only for clusters of less than about 6-10 rare gas atoms.²¹⁻²⁵ Due to the generally broad linewidths observed, the infrared photodissociation spectroscopy employed here is hindered in resolving spectral features of individual clusters, except in the case of clusters containing molecules with large static dipoles^{1b,38} (and hence large frequency shifts). IR photodissociation spectra^{1b} as well as other techniques^{35,44} give evidence that the onset for formation of larger clusters occurs within a narrow range of backing pressure (for a given nozzle diameter and temperature), and usually at lower pressures than cluster ion mass peak pressure dependences would indicate. With a population of dimers established,⁵¹ bimolecular substitution reactions facilitate rapid higher cluster formation. It is thus not feasible to obtain a single predominant cluster size in this manner. A beam containing Ar₅CH₃F, for example, must also contain similar quantities of Ar₆CH₃F and larger clusters, unless a particularly stable molecular cluster is formed. New techniques for producing ion clusters⁵² may soon be adapted to allow study of neutral clusters of a specific size.

Mass spectrometry is a natural choice for cluster beam analysis but the problems associated with analyzing the composition of a molecular beam containing van der Waals clusters using electron-impact ionization are well-known.³⁶ Fragmentation of larger clusters contributes to the intensity of lower mass peaks, as well as decreasing the apparent intensity of larger clusters. A graphic illustration of problems associated with analyzing a neutral cluster beam with electron-impact ionization is given by the observation that the peak in the apparent distribution of $(N_2O)_n$ clusters decreases from n = 1000 to 400 when the electron ionization energy is increased from 35 to 300 eV, respectively.⁵³

The problem of cluster fragmentation is receiving theoretical attention as a result of controversy over the observation of "magic numbers" in rare gas cluster distributions (see Section 5.2). Ionization of homogeneous neutral clusters (e.g., Ar_n) is proposed to proceed by formation of a vibrationally-excited dimer ion $(Ar_{n-2} \cdot Ar_2^{+*})$ which relaxes by evaporation.⁵⁴ Photodestruction of CO_2^+ can be understood in terms of absorption by a dimer ion withing the cluster; i.e., the cluster can be described as $(CO_2)_{n-2} \cdot (CO_2)_2^+$. Also, as discussed in Section 3.1, $(CH_3F)_n$ clusters which form $(CH_3F)_{n-2} \cdot (CH_3F)H^+$ upon ionization are consistent with this model. Molecular dynamics simulations find that within 200 psec of ionization, an Ar_{13} cluster will evaporate to form Ar_5^+ , and an Ar_7 cluster reduces to Ar_2^+ .^{37c} It thus seems surprising that we have observed a significant differnce between the dissociation spectra from nearly equal cluster ion masses (Figure 5). The explanation for this effect may have to do with the stabilization of the cluster by the CH_3F dipole (vide infra).

Consideration of cluster evaporation and the dimer ion formation model may account for the observation of "negative" dissociation peaks only in the Kr/CH₃F system (fig 6). The Ar₂⁺ ion is 1.5 eV more stable than a single ionized Ar⁺ ion, so formation of the dimer within the cluster after initial Ar atom ionization can release enough energy to boil off ~22 atoms. The heat of vaporization (ΔH_{v}) for Kr is higher ($\Delta H_v = 2.16$ (Kr) vs. 1.55 kcal/mole (Ar)⁵⁵) and the difference in IP between Kr and Kr₂ is smaller (1.13 eV³⁵) so only half as many atoms (~11) need to be lost from the cluster upon ionization, so ionization is "gentler" in the case of the Kr clusters. More importantly, ΔH_v is just less than the photon energy, meaning that at most two Kr atoms must be lost from the large Kr_nCH₃F clusters so the Kr clusters will have a higher probability to remain in the molecular beam following vibrational excitation.

There has only recently been work to quantify the branching ratios of cluster ions produced from electron bombardment of large neutral clusters.^{37,45} Using a crossed molecular beam scattering apparatus and 100 eV ionization electron energy, Buck and Meyer³⁷ found that 70% of Ar₂ fragmented to Ar⁺, while Ar₃ fragmented 38% to Ar_2^+ and 62% to Ar^+ . No Ar_3^+ was produced directly from ionization of Ar₃. Contributions to the observed Ar_3^+ signal are from clusters Ar_5 and higher. with the maximum near Ar_{10} .^{37c} These results are at least qualitatively modelled by the ionization dynamics model discussed above.³⁷ In addition, there was little change in fragmentation branching over the 30 - 100 eV electron energy range. Using the same beam scattering techniques, Worsnop et al.⁴⁵ likewise explored the fragmentation properties of large rare gas clusters, finding that fragmentation of heterogeneous species was less severe than for the homogeneous Ar_n cluster. For example, the intensity of $Ar_{n-1}HI^+$ or $Ar_{n-1}Xe^+$ clusters is 10^2 times smaller than that of $ArXe^+$ or $ArHI^+$, respectively, while the Ar_7^+ intensity is 10⁵ times smaller than Ar_2^+ , for the same expansion conditions. The Ar clusters containing a more polarizable moeity fragment to a lesser extent than pure Ar clusters. In

our cluster beams, we observe intensity ratios between Ar_n^+ and $Ar_{n-1}CH_3F^+$ cluster masses of ~10 : 1, while the Ar : CH_3F concentration in the mixture is 1000 : 1. Assuming similar ionization cross sections, this observation is consistent with Ar clusters containing CH_3F undergoing substantially less fragmentation than Ar_n clusters. We presume this effect will similarly be operative in the other cluster systems studied.

5.1.2 Mean Cluster Size and Distribution

Insight into cluster size distributions present in this study is provided by the extensive work of Hagena *et al.*,^{56,57} who mapped out equivalent clustering conditions for various nozzle types and expansion conditions, as well as demonstrating the principle of corresponding jets for beams of different gases. Using expansions which generate clusters whose mean size is in the range 10^2 to 10^4 atoms, the source pressure and temperature, nozzle shape and diameter, seed gas and concentration were all systematically varied and a set of scaling laws relating the parameters was determined. Analysis of the pulsed beams was carried out by means of electron-impact ionization and a retarding-field analyzer. The relationship between the beams was gauged by a single parameter, the "characteristic cluster size," (N/Z)*, the mean of the ionized cluster beam distribution.^{56,57} Limited but useful information regarding the relationship between (N/Z)* and \overline{N} , the mean of the *neutral* cluster distribution was obtained by monitoring the change of (N/Z)* with ionization electron energy.⁵⁶

The shape of the distribution for neither the neutral nor the ion cluster beams was elucidated in the Hagena study;^{56,57} however, Soler *et al.*⁵⁸ recently obtained

the distribution of a highly-clustered CO₂ expansion at 35 eV ionization energy. With increasing stagnation pressure, the distribution exhibited the transition from the low-pressure region of successive monomer addition, which exhibits an exponentially decreasing cluster distribution, to that of coagulation of large clusters, which shows a log-normal distribution (i.e., the intensity vs. the logrithm of the cluster size is Gaussian). The mean of the cluster distribution agrees qualitatively with the $(N/Z)^*$ value measured previously,⁵⁷ which suggests that for suitably large values of $(N/Z)^*$ ($(N/Z)^* > 10$), the cluster distribution is lognormal peaked roughly at $(N/Z)^*$. The difference between $(N/Z)^*$ and \overline{N} depends upon fragmentation and ionization efficiency of the cluster sizes. Both works^{56,58} observed very little shift of the cluster distribution for electron energies below 40 eV. Mindful of the distribution results and using Hagena's parametrization of molecular beam clustering, we can scale our expansion conditions to obtain a measure of the neutral clustering present in the beams employed in our IR photodissociation experiments.

5.1.3 Extrapolation of mean cluster size data, $(N/Z)^*$

In Figure 11, we present the data from Figure 2, Ref. [57a], for room temperature expansions of pure Ar and pure N_2 scaled to the nozzle conditions used in our experiments and extrapolated to the pressure range in which infrared spectra were taken. In addition, estimates for clustering of the Ne and Kr mixtures used in this study are plotted (see the Appendix for details of the scaling and estimates). The electron ionization energy was 65 eV in our work, compared to ~125 eV for the data from Ref. [57].⁵⁹ Our expansion conditions result in beams

Figure 11. Extrapolation of the "characteristic cluster size" data of Hagena⁵⁷ to expansion conditions used in this study (along the abscissa). $(N/Z)^*$ is roughly the mean of the cluster ion distribution found under the expansion conditions given in the figure (p_H^i) and in Ref. [57] for: (a) pure Ar and ; (b) pure N₂ beams. $(N/Z)^*$ estimates for the (c) Kr and (d) Ne mixtures used in this work are also given. (The appendix contains details of the scaling.) The electron energy is ~125-150 eV.

with clusters substantially smaller than in Hagena's work⁵⁷ – the expansions that produce the largest clusters in our work $((N/Z)^* \sim 200)$ overlap the most gentle conditions in Refs. [56,57]. The extrapolation will become invalid at small values of $(N/Z)^*$. Due to the dilution in our expansions ($\chi_{solute} \sim .005$), we have ignored any perturbation of the CH₃F or C₂H₄ on the clustering, but dimer depletion effects have been observed for seed gas concentrations on the order of a few percent.⁶⁰

The cluster distributions we observe appear quite different from those predicted by the extrapolation in Figure 11. In Figure 3, for example, the intensity of mass peaks falls sharply with increasing mass whereas a distribution peaked at Ar_{70}^+ is predicted. Figure 12 shows the observed pressure dependence for a pure Ar beam expanded through a 25 μm room temperature nozzle. The intensity of small cluster ion masses (Ar₂⁺, Ar₄⁺ and Ar₆⁺ in Figure 12) "turns over," or begins to *decrease* with increasing backing pressure, indicating a substantial fraction of the total mass is being directed into moderate size clusters. This observation is in agreement with the $(N/Z)^*$ extrapolation which predicts mean cluster sizes of 8-15 over the 100-140 psig pressure range. (Note that this is the same pressure range in which the enhanced IR dissociation feature observed for Ar clusters containing CH₃F is first observed.) Moderate size cluster ions (e.g., Ar_{13}^+ , Figure 12) are seen to increase in intensity in this pressure region before they, too, show the intensity turnover at slightly higher backing pressure. The relative intensities still show, however, a rapid decrease from dimer to higher clusters - Ar_{13}^+ , for instance, is always an order of magnitude less intense than Ar_2^+ over the observed pressure range. This discrepancy can be understood partly by simple mass considerations (i.e., 6

Figure 12. Pressure dependence of mass spectral intensities of cluster ions from a pure Ar expansion. Small cluster ions decrease in intensity as mass is shifted to larger clusters, such as Ar_{13}^+ . Mass weighting and discrimination against large clusters must be invoked to account for the apparently low intensity of these larger cluster ion peaks when compared with the predicted distributions. See the text for further discussion.

Ar₂ dimers are consumed to make a single Ar_{12} cluster), and by the fact that the quadrupole mass filter and the particle detector both discriminate against higher masses. The result is that for a broad distribution which is basically flat over the small mass range accessible with the quadrupole filter, the intensity will appear to exponentially decrease. We conclude that, at least for the Ar case, the $(N/Z)^*$ extrapolation is in qualitative agreement with the cluster ion intensities observed in this study.

5.1.4 Cluster size estimates and IR dissociation spectra

The $(N/Z)^*$ values from the extrapolations in Figure 11 are included in Figures 4, 6 and 7 to indicate the predicted neutral cluster distributions probed by the infrared photodissociation spectra of CH_3F^+ . For the Ar cluster spectra, the enhanced feature at P(30) is present over the pressure range expected to produce neutral cluster distributions peaked at 7 to 44 atoms (Figure 4, P=100-300 psig), which roughly corresponds to the addition of a second shell of Ar atoms. While the same domain of clustering is also accessed by the Kr, Ne and N₂ expansions according to the data of Figure 11, only the Kr and N₂ cluster spectra exhibit obvious inhomogeneity analogous to that seen in the Ar cluster spectra, and, even then, over different extrapolated ranges of $(N/Z)^*$ than in the Ar case. Narrow features in Kr cluster spectra (Figure 6) occur for $(N/Z)^* > 40$, but the similarity of conditions for the ν_3 frequency progression for CH_3F in Ar and Kr clusters indicates that the $(N/Z)^*$ estimates for Kr_n clusters are too high. The particularly narrow CH_3F^+ profiles observed in N₂ cluster expansions occur at pressures where $(N/Z)^*$ is relatively low $((N/Z)^* \sim 5)$. Again, the extrapolation may be in error in this cluster regime due to the severity of the logarithmic $(N/Z)^{\circ}$ plot: if the two low-cluster data points^{56a} are omitted, a line similar to Figure 11(c) can fit the data and raise the estimate to $(N/Z)^{\circ} \sim 20$, more in agreement with the cluster distribution estimate which corresponds to the narrow spectral feature in the Ar cluster case. For Ne cluster beams, the transition through the second shell regime is estimated to occur between 200 and 500 psig, yet the spectra show little change from the low-cluster spectrum shown in Figure 3(a), and the absorption frequency is far removed from the matrix limit. For the Ar, Kr and N₂/CH₃F systems, we observe correlation between the cluster size regime at which the second solvation shell is filling and the narrow features observed in the dissociation spectra.

If the dissociation spectra probe mainly details of the rare gas or N₂ clusters, then spectra obtained with C_2H_4 as the infrared-absorbing chromophore should exhibit features similar to the CH_3F -containing cluster spectra. For Ar, CH_4 and N₂ clusters containing C_2H_4 , no enhanced dissociation or narrow features are observed (Figures 8-10), even though similar $(N/Z)^*$ regimes are accessed. Assuming the solute concentrations used in this study do not drastically alter the neutral cluster distributions,⁶⁰ these results suggest that the cluster dissociation spectra are sensitive to properties or dynamics, other than cluster size, which are quite different in the CH_3F - and C_2H_4 -containing clusters.

5.2 Cluster Properties: Structure and Temperature

At the higher end of the cluster-size spectrum lies the study of homogeneous nucleation phenomenon⁶¹ where coagulation, condensation and evaporation are more descriptively correct in summarizing growth kinetics. Between this higher
cluster limit and dimer formation lie interesting questions concerning the structure, temperature and subsequent growth of these microcrystallites. The stable packing configuration of small clusters does not transform into the bulk crystal structure, so the transition between these two regimes may be observed. The temperature of the clusters will naturally play a vital role in this transition, and the nature of the growth will, to a large degree, determine the temperature of the clusters. The properties of large clusters is certainly a wide-ranging topic with many active experimental and theoretical areas of study.

Experimentally observed maxima in cluster distributions of rare gases^{45,53,62,63} as well as SF₆ and C₂F₄Cl₂ clusters^{62b} have been interpreted as verification of "magic numbers" of crystal packing – the closed Mackay icosahedral shells.⁶⁴ In the Mackay single-icosahedral packing scheme, the n^{th} shell contains $(10n^2+2)$ spherical atoms or molecules (e.g., Ar or CH₄). The first three shells contain, respectively, 12, 42 and 92 spheres around a central sphere, totaling 13, 55 and 147 spheres. These structures are theoretically expected to be the low-energy configurations for the moderate size clusters,^{65,66} but transition to a crystallographic structure must take place as bulk properties are approached. Recent experimental^{67,68} and theoretical⁵⁴ studies show that the maxima in the observed cluster distributions are indicative of the stability of particular *ion* clusters, due to evaporation of the excited ionized cluster, and not neutral clusters as was originally believed.^{62,63} The secondary evaporation causes the neutral distribution to evolve into one exhibiting "magic number" peaks indicative of stable ion clusters, as is demonstrated by a recent study of (H₂O)_n+ cluster distributions.⁶⁷ There is, however, evidence that structure exists even in the small *neutral* clusters. Electron diffraction studies of neutral Ar cluster beams^{69a} show the presence of crystalline structure in large clusters ($\overline{N} > 800$), as would be expected, but also in *smaller clusters*, diffraction rings are observed which are consistent with polyicosahedral ($\overline{N} < 20$) and multilayer icosahedral ($20 < \overline{N}$ < 800) models. While the matter of magic numbers in *neutral* rare gas cluster distributions is lacking proof, there is good evidence for structural stability induced by attractive sites (neutral⁴⁵ or ionic⁶⁰) within the cluster.

Evidence for solid structure in large clusters is seen in the $(N_2O)_n$ cluster dissociation work of Miller *et al.*⁷⁰ Using bolometer detection of the molecular beam, dissociation occurs after absorption of IR light near the $(\nu_1 + \nu_3)$ combination band of N₂O. The frequency shift of the dissociation spectra for the cluster distribution approaches that of the solid crystal. Semiclassical calculations reproduce features of the spectra, including the observation that moderate-size clusters (55 molecules in the calculation) exhibit solid-like absorptions.

Supersonic expansions provide a unique way to reduce the relative translational and internal temperatures of molecules to < 10 K as well as to provide an isolated environment which can support formation of weak van der Waals bonds. Cooling occurs by relaxation of internal and transverse translational modes by collisions with the carrier gas. Massive clustering will provide large amounts of energy to the clusters from the heat of condensation. Collisions occur more frequently between clusters in this expansion regime, and there are few collisions between clusters and monomers to carry off excess energy and provide cooling. After passage through the Mach disk, evaporation of atoms is the only mechanism for clusters to release energy and stabilize.⁷¹ Thus, while van der Waals molecules and small clusters are characterized by low internal temperatures, the temperature of larger clusters should rise to near the sublimation or boiling point of the cluster. Consistent with these expectations, large Ar clusters are found to have a constant internal temperature $(38 \pm 4 \text{ K})^{69}$, virtually identical to calculated melting transition temperatures.^{71b,72,73} The translational temperature of small $(H_2O)_n$ clusters increases throughout the range $5 \le n \le 25$, while large clusters (n > 25) are isothermal.^{71a,73} Other fragmentation reactions have also been interpreted as indicative of differences in cluster temperature.^{34a,74}

5.3 Cluster model

The presence of inhomogeneity in the dissociation profiles of clusters in the second-shell regime suggests a model for structure and ionization dynamics. First, the presence of substantial inhomogeneity in the profiles of CH₃F-containing species is absent in spectra of C₂H₄-containing clusters; second, the profiles of specific ion mass clusters in the Ar/CH₃F system are in some cases substantially different. From the first point, consider the two cluster structures in Figure 13 which can be distinguished for A_nX (X = CH₃F or C₂H₄) with $n \ge 12$. The first structure has the probe molecule X central in the cluster (Figure 13(a)) while the probe occupies a surface site in the second (Figure 13(b)). For otherwise indistinguishable atoms, the surface-site cluster (b) is favored by probability when the cluster is small (less than ~300 atoms). Since CH₃F-containing clusters exhibit distinct dissociation features which seem indicative of clusters specifically in the second-shell regime while clusters of similar size with C₂H₄ as the probe molecule do not, this suggests that CH₃F,

Figure 13. Schematic drawings of structural isomers of $A_n X$ clusters, with $n \ge 12$. These depict: (a) the cluster with solvated probe molecule, X (hatched circle), and

(b) the surface-site probe cluster.

which has a strong permanent dipole while C_2H_4 does not, tends to form a much higher percentage of solvated probe clusters. It may be correct to think of CH_3F as a nucleation site since the concentrations employed in this study should not perturb the clustering.⁶⁰ The two cluster isomers should thus be distinguishable in both the IR frequency shift and dissociation linewidth (see Sections 5.4 and 5.6). The data are consistent with, although not conclusive of, the proposed model.

While the Ar/CH_3F profiles in Figure 4 together with the $(N/Z)^*$ extrapolation from Figure 11 indicate a separate, narrow absorption is associated with the second shell region of cluster formation, the mass-specific spectra presented in Figure 5 suggest that a much smaller range of cluster size may be responsible for the narrow feature. There is a substantial difference in the dissociation profiles taken at the $Ar_9CH_3F^+$ and $Ar_{13}CH_3F^+$ ion masses: the enhanced P(30) feature is present in the smaller cluster ion spectrum, but absent in the spectrum for the larger one. The neutral cluster distribution is expected to be fairly broad in this regime. The ionization considerations discussed in Section 5.1.1 suggest the neutral clusters that fragment to these ions may be ≤ 20 atoms larger than the observed ion mass. The rare gas atom shells close to the solvated dipole would be more strongly bound, and rare gas clusters containing a polarizable moiety exhibit less of a tendency to fragment upon ionization.⁴⁵ Cluster ions smaller than the closed shell $Ar_{12}CH_3F^+$ cluster may thus be the termination point for the cascade of evaporative relaxation from a large number of ionized second-shell clusters, and thus exhibit the strong P(30) absorption feature (e.g., as does $Ar_9CH_3F^+$) while larger clusters (e.g., those that fragment to yield $Ar_{13}CH_3F^+$ – perhaps in the third shell regime) do not. It is

still quite intriguing that the fragmentation should be so specific that the enhanced P(30) feature should be totally absent from the $Ar_{13}CH_3F^+$ spectrum.

The $\operatorname{Ar_nCH_3F^+}$, $n \geq 12$, profiles appear indicative of a class of larger clusters which only show the broad surface-type IR dissociation profile. The loss of P(30) intensity could be due to frequency shifts or because of additional narrowing to where it does not efficiently interact with the laser (see section 5.3 and 5.5 for further discussion of this point). The specific cluster ion effect suggests another possibility: the matrix-site cluster fragments to a lesser degree to masses than can be detected within our range, leaving only contribution from the clusters with surface-site probe. Since we observe a fractional attenuation, an increase in intensity of the surface-site should be observed in this scenario unless a "quenching" effect, such as accommodation of the vibrational energy by a bulk crystal or liquid.

5.4 Frequency shifts

The non-degenerate ν_3 vibration of CH₃F, the lowest energy normal mode of the molecule, is primarily a C-F stretch occuring at 1048.6 cm⁻¹ in the gas phase.^{16,40} Complexation with rare gas atoms or N₂ molecules results in a red-shift of the center absorption frequency, ω_0 . In the small cluster limit, this is consistent with a structure for the CH₃F-containing van der Waals molecules analogous to that of the determined structure of the Ar·CH₃Cl molecule, in which case the Ar atom is located 3.8 Å above the C-Cl bond axis.⁷⁵ The frequency shift of ν_3 for A·CH₃F (A = Ne, Ar, Kr, N₂) complexes with A located above the C-F axis would be expected to exhibit a red-shift due to the dispersive interaction between the CH₃F and the polarizable A moeity. This is in contrast to the blue shift of the ν_7 vibration in C_2H_4 -containing complexes which is due to repulsive interaction between the C_2H_4 partner (e.g., A = Ar, HF, HCl), located above the C_2H_4 plane, and the out-of-plane ν_7 motion of the H atoms.^{1b} The magnitude of the $CH_3F \nu_3$ frequency shift due to nearby N₂ molecules seems quite large considering the polarizability, and may be an interesting area for further experimental and theoretical studies.

The absorption maxima of matrix isolated CH₃F and large clusters containing CH_3F are presented in Table 2. The ν_3 red-shift for CH_3F -containing clusters $(A_n CH_3 F)$ increases as the number of inert partners increases, reaching the matrix limit and even *exceeding* it in the case of N_2 complexes. The Ar/CH₃F system shows the best correspondence to the matrix isolation spectra. At 9 K, the ν_3 absorption spectra of CH_3F in an Ar matrix shows two features: the primary absorption is an intense and narrow ($\sim 0.2 \text{ cm}^{-1}$) peak at 1040.0 cm⁻¹ and a secondary broad $(\sim 1.0 \text{ cm}^{-1})$ feature at ~ 1038.5 is assigned to CH₃F trapped at a surface or defect site.¹⁴⁻¹⁶ In the gas phase, the dissociative ν_3 -absorption of Ar_nCH₃F clusters approaches 1039.9 cm^{-1} as a limit, even after presumably only a single shell of Ar atoms surrounds the CH_3F molecule. With larger clusters (second shell regime) the intense absorption at 1037.4 cm⁻¹ best represents CH_3F totally encapsulated by Ar atoms while the broader absorption to the blue must be indicative of clusters containing CH_3F at a surface site. The solvated cluster absorption frequency, being further red-shifted than in the matrix, indicates the Ar atoms have not assumed a solid lattice structure (see below). In larger clusters, the intense dissociation peak disappears, which we believe is due to either further frequency shifting or formation of large clusters that are stable to IR dissociation.

Table 2

(a) Ongr by Absorption Frequency in Matrices					
	Ne	Ar	Kr	N_2	
matrix abs.	1041.5^\dagger	1040.1	1035.8	1033.2	
	1043.5 [‡]	1039.9*	1035.6*		
surface abs.		1035-1039	1033-1036		
(b)	$CH_3F \nu_3 Diss$	ociation Frequenc	y in Large Clust	ers ^d	
solvated CH ₃ F	(1047)	1037.4	1033.5-1035.5	1025-1027	
surface CH ₃ F		1039.5-1040.3	1037-1041	1023-1025	

(a) $CH_3F \nu_3$ Absorption Frequency in Matrices^{*a,b,c*}

^a All frequencies in cm^{-1} .

 $^b~$ Gas-phase value $\omega_g=1048.6~{\rm cm}^{-1},$ from Refs. [40,41].

^c Data from Refs. [14-17].

^d This work.

[†] fcc lattice.

 \ddagger hcp lattice.

* unstable monomer site.

For the Kr/CH₃F system, the cluster dissociation profiles observed at the CH₃F⁺ ion mass shift only to approximately the same limit as in the Ar/CH₃F system (1040 cm⁻¹). The "negative" dissociation features, however, are additionally shifted and close to the Kr matrix-isolated ν_3 absorption. (N₂)_nCH₃F clusters, similar to the Ar cluster case, exhibit intense and narrow dissociation features but the frequency of the N₂-solvated CH₃F absorption is shifted *well beyond* the matrix value, 10 cm⁻¹, at the largest cluster size. This behavior parallels the trend of the matrix-isolated absorption peak with increasing temperature – the peak reversibly decreases in intensity and shifts to lower frequency – but the magnitude of the gas phase shift is much larger, 10 cm⁻¹ as compared to 1.5 cm⁻¹ in the matrix.¹⁵

Absorption maxima for matrix isolated C_2H_4 and large C_2H_4 -containing clusters is presented in Table 2. The C_2H_4 -containing clusters studied are interesting in that the ν_7 vibration in the van der Waals complexes is blue-shifted from the gas phase absorption, while C_2H_4 isolated in a matrix is red-shifted. Although an extensive high-resolution study akin to those performed on CH_3F^{12-17} has not been done with C_2H_4 , the data available show a red shift of 1.6 cm⁻¹ in Ar and 2.2 cm⁻¹ in N₂.⁷⁶ The Ar_nC₂H₄ clusters are blue-shifted ~1.5 cm⁻¹ at low *n*, then red-shift toward the matrix value as the cluster size increases, achieving only half of the full matrix red-shift (-1.6 cm⁻¹) in the spectra of the largest clusters. On the other hand, $(N_2)_nC_2H_4$ clusters exhibit a blue-shift which increases as the cluster size is increased. The largest N₂ clusters have shifted the C_2H_4 ν_7 vibration at least +8 cm⁻¹ for the gas-phase and +10 cm⁻¹ from the matrix value. CH₄ clusters similarly induce an increasing blue-shift over the observed range of

Table 3

 $C_2H_4 \nu_7$ Absorption Frequency in Matrices and Large Clusters^{a,b,c}

	Ar	N_2	CH ₄	
matrix abs.	947.4	946.8		
cluster abs.	948.2	~957	951.1	

^a All frequencies in cm^{-1} .

- ^b Matrix data from Ref. [76]; cluster data from this work.
- ^c Gas-phase value $\omega_g = 949 \text{ cm}^{-1}$, from Ref. [1].

cluster size (from 1.3 cm⁻¹, for small n, to 2.1 cm⁻¹ for large n).

The frequency shift observed for the CH_3F and C_2H_4 chromophores between the van der Waals cluster and the gas phase values increases as the cluster size increases, for all cases studied except Ar/C2H4. This indicates the interaction between the excited vibration and the inert partner (rare gas, N_2 or CH_4) which dominates at the small cluster limit continues to dominate through the large cluster regime. This point is obviated by the absorption maximum shift in the $(N_2)_n C_2 H_4$ case, in which the direction of the shift (blue) is contrary to that in the matrix (red); by comparison, the shift of the $(N_2)_n CH_3F$ clusters past the matrix limit can be understood to be a consequence of the matrix and van der Waals shift being in the same direction. Reversal of the frequency shift with large clusters is required for both C_2H_4 and CH_3F in larger N_2 clusters, and suggests that a plausible theory for the disappearance of the narrow P(30) absorption in the Ar/CH₃F system is a frequency shift back toward the matrix value, and between adjacent laser lines. Also, the frequency shifts for the CH₃F systems show a much closer correspondance to the matrix values, corroborating our view of CH₃F as a nucleation site in these clusters. The large magnitude of the frequency shifts in the case of N_2 is paralleled in the matrix,^{76,77} and is thought to be due to interactions of higher order than dipole-induced dipole which are active in a distorted matrix. The large shifts in the N_2 cluster cases may then be an indication that a solid lattice has not been achieved in these clusters, while the similarity in shifts between the matrix values and C_2H_4 and CH_3F -containing Ar clusters suggests an ordered solid may be formed in these cases.

5.5 Dissociation Intensities

As seen from the two-level-with-decay lineshape equation, Eq. (1), the integrated dissociation intensity is determined by the prefactor $\omega_R^2 t \tau$. The absorption strength of the complex, $\langle \mu \rangle^2$, due basically to the CH₃F or C₂H₄ moiety, is proportional to the Rabi frequency, ω_R . From Eq. (3),

$$\omega_{R}^{2}t = \frac{(\vec{\mu} \cdot \vec{\mathbf{E}})^{2}t}{\hbar^{2}} = \frac{8\pi < \mu >^{2} (S \cdot t)}{3\hbar^{2}c},$$
(5)

where $(S \cdot t)$ is the laser fluence. As was shown in Eq. (4), the dissociation intensity for all complexes of the form A_nCH_3F , at constant irradiation time, will be the same (or, likewise, all $A_nC_2H_4$ clusters), since they contain only a single chromophore. This will be true for dissociation profiles taken at $Ar_nCH_3F^+$ parent peaks (at all pressures) as well as for CH_3F^+ profiles at high pressure conditions under which all observed ion signal results from cluster fragmentation. When large fractions of the observed CH_3F^+ or $C_2H_4^+$ intensity are attenuated by the CO_2 laser at high backing pressure, virtually all the mass spectral intensity at that mass must be a result of fragmented clusters. At mild expansion conditions, the absorption intensity information from the CH_3F^+ or $C_2H_4^+$ peaks is lost, as the dissociation intensity is also a function of the clustering and fragmentation percentages. The presence of unresolved inhomogeneity at higher backing pressures prevents quantitative analysis of the lineshape progression using the dissociation intensity.

In the Ar/CH_3F system, dissociation intensity of van der Waals molecules in the small cluster regime is consistent with the absorption strength of free CH_3F .⁴¹ The appearance of the strong P(30) absorption at higher pressures, when clusters filling the second solvation shell are produced, does not initially appear to carry significant absorption intensity: due to the increased percentage of clustered m/e 34, both the P(30) feature and the broad surface-cluster absorption increase in intensity (Figure 4, P=100 psig). At still higher pressure (P=200 psig), the P(30)feature appears to grow at the expense of the broad feature, before both eventually diminish in intensity (P=300 psig). That both the CH_3F^+ profile and those of specific ion cluster masses decrease in apparent integrated intensity indicates a change in fragmentation efficiency is *not* responsible for the observed loss in the m/e 34 dissociation profile. Mechanisms that would result in such an intensity loss are now examined, but because it is possible to "hide" all the dissociation intensity in a narrow absorption between laser lines, it is not possible to unequivocably distinguish between these possibilities from the intensity information alone.

At very large cluster size, the ν_3 vibrational excitation might remain localized in the CH₃F moiety, being decoupled from the matrix environment; this lifetime lengthening is manifested as a narrower absorption line which might then fall between the CO₂ laser line grid, resulting in an apparent loss of dissociation intensity. A significant fraction or all of the absorption intensity may be shifted into the inaccessible frequency gap between CO₂ laser lines, becoming "lost" as far as the observed profile is concerned. This possibility is consistent with the frequency shift behavior discussed in section 5.4. A narrow absorption line could account for all integrated absorption intensity without being fluence broadened^{1b} to where the profile would be wider than adjacent CO₂ laser lines. An alternate and intuitive situation is the onset of a quenching mechanism, such as loss of vibrational energy to create vibrations (phonons) in the cluster (solid) which would decrease the dissociation probability. This can be seen from the mixed case two-level-plus-decay lineshape formula,¹⁸

$$F_m(\omega,t) = exp\left[-\omega_R^2 \gamma_T^{-1} t \cdot \frac{\gamma_T^2}{4(\omega-\omega_0)^2 + \gamma_T^2} \cdot \frac{\gamma_D}{\gamma_Q + \gamma_D}\right],\tag{6}$$

which is derived from a two-level-with-decay model that also includes phenomenological quenching and dephasing mechanisms which have rates γ_q and $\gamma_{_{PD}}$, respectively. The intensity of the dissociation is attenuated by the factor $\gamma_{_D}/(\gamma_{_Q}+\gamma_{_D})$, and the sum of all rate constants, $\gamma_{_T}=\gamma_{_D}+\gamma_{_Q}+2\gamma_{_{PD}}$, determines the width. An intensity decrease in the Ar/CH₃F cluster system profiles following the appearance of the second-shell peak may indicate that two complete shells of Ar atoms approximates a matrix in so far as inhibiting dissociation of the large clusters by providing a bath for the vibrational energy of the excited CH₃F. Note, however, that Eq. 6 also dictates additional line broadening would result from a quenching mechanism which becomes competitive with a fixed dissociation rate. Since the lines in general are observed to narrow, and from the frequency shift information already discussed, we believe the P(30) absorption feature lies between the available laser lines. Certainly as the cluster becomes large enough to accommodate 1000 cm^{-1} of energy by increasing its internal temperature without boiling off atoms, the dissociation would be quenched. The fluorescence lifetime of anthracene in Ar clusters decreases as the cluster size increases, indicative of a non-radiative pathway

 $(k_{nr} \sim 10^8 \text{ s}^{-1})$ which quenches the fluorescence.^{22,23} A scenario which provides an increase in the quenching rate requires a concomitant decrease in the predissociative rate to account for the lineshape narrowing observed in the CH₃F and C₂H₄ cluster spectra. A study using a continuously tunable source in this spectral region would verify this hypothesis.

In the Kr/CH_3F system, loss of intensity in the main absorption band is accompanied by appearance of the "negative" dissociation features further to the red. This is an *instrumental* loss of dissociation intensity, as the spectrometer can not detect dissociation from fragments which scatter with small kinetic energy such that they remain within the solid angle of the molecular beam. This highlights the fact that the experiments reported here are dissociation spectra, and that other absorptions may be present that do not lead to observable dissociation. That attenuation of dissociation intensity is common to all cluster systems studied, but no additional broadening indicative of a quenching mechanism is observed, may indicate this instrumental effect may be responsible.

5.6 Linewidths and vibrational lifetimes

Dynamical information on the decay process out of the vibrationally excited van der Waals molecules can be extracted from the *homogeneous* width of the dissociation profiles.^{1c,18} For instance, the lineshape of ethylene dimer is virtually homogeneous with a width that corresponds to a vibrational predissociation lifetime of 0.33 psec.^{1a} In the case of C_2H_4 -complexes with HF and HCl, the linewidth contained significant inhomogeneous broadening due to rotational structure.^{1c}

In the ethylene experiments, as well as the small cluster limit spectra reported

here, the large fraction of clusters dissociated and the correlation of dissociation intensity with integrated absorption coefficients for the vibration is consistent with the lineshapes being predominantly homogeneously broadened. Inhomogeneous contributions to the width under these conditions are mainly due to rotational congestion, spectral congestion (different lineshapes for individual cluster sizes or isomers), and dephasing of the vibration. When inhomogeneously broadened, the linewidth yields a lower bound for the lifetime of the excited vibration. Given the discrete nature of the CO_2 laser transitions, very narrow linewidths will not be resolvable. A strict upper bound of 0.5 msec is set by the cluster flight time from nozzle to detector.

The initial purpose of this set of experiments was to observe the transition from generally short vibrational lifetimes, psec to nsec, for small van der Waals dimers, to longer-lived excitations, μ sec to msec, for matrix-isolated species. One then expects a trend of decreasing homogeneous linewidth as a function of cluster size, and to the degree the CO₂ laser line spacing allows, this trend is indeed observed.

For small $\operatorname{Ar}_n \operatorname{CH}_3 \operatorname{F}$ clusters, the linewidths are fairly constant with increasing cluster size, 4-6 cm⁻¹, which nominally correspond to vibrational lifetimes, τ , of 0.7-1.0 psec. Although strictly only a lower limit, the rotational contribution for small $\operatorname{Ar}_n \operatorname{CH}_3 \operatorname{F}$ (n < 8-10) clusters will be quite small since the moments of inertia rapidly increase as the cluster size increases. While the profile for the van der Waals dimer is likely to be rotationally structured (see the discussion of Figure 3), the fact that the spectra of the small clusters all exhibit a similar width also suggests that lifetime broadening is a major contributor to the linewidth. Large clusters, on the other hand, may attain internal temperatures near their boiling points, so even though the rotational spacing is small, the rotational profiles can still be appreciable $(\sim 1 \text{ cm}^{-1})$ due to the population of many initial states.

For the Ar_nCH_3F solvated-probe feature, the enhanced absorption at laser line P(30), the lower limit on the lifetime of the excited ν_3 vibration is $\tau_{lower} = 3$ psec (from the spacing between the two adjacent laser lines, 3.9 cm^{-1}), a factor of three longer than in the smaller clusters or for CH₃F in a surface-site. For the largest Ar_nCH_3F clusters in which the narrow absorption is thought to be between laser lines, the limit increases to $\tau_{lower} > 6$ psec. A reasonable upper limit is derived from the assumption that because of the large fraction of clusters dissociated, the absorption linewidth must be at least on the order of the laser bandwidth, 150 MHz, which determines τ_{upper} is ~1 nsec. The calculated rovibrational spectrum of hindered CH_3F in an octahedral environment exhibits a relatively broad linewidth $(\leq 0.25 \text{ cm}^{-1})$.¹⁷ Arguments similar to those made for the Ar case can be applied to the Kr and N_2/CH_3F systems, where small A_nCH_3F clusters show widths similar to the Ar/CH₃F analog. Vibrational lifetimes increase in the moderate cluster regime since both systems exhibit inhomogeneous structure made up of narrower spectra components. Dephasing might be expected to become important as the temperature of the cluster increases, but only in one case (the N_2/CH_3F system) is a slight broadening with increasing cluster size observed.

The spectra of C_2H_4 -containing clusters exhibit profile narrowing only in the Ar case. As noted previously, C_2H_4 may not function as a nucleation center so, at the cluster size distributions studied, C_2H_4 occupies shorter-lived surface or

partially-solvated sites by probability. C_2H_4 -containing clusters with > 300 atoms would be expected to exhibit narrowing and inhomogenity similar to that observed in the CH₃F-probed systems as internal sites become more favored.

6. Conclusions

The dissociation spectra of large clusters of rare gas, N₂ and CH₄ clusters containing either CH_3F or C_2H_4 have been reported. The spectra are sensitive to cluster size and the environment of the chromophore. Some aspects of the rare gas clusters (i.e., the frequency shift of the CH₃F vibration) appear matrix-like after only a single shell of atoms surrounds the CH₃F but further shifting of the profile as the clusters grow in size suggest a liquid-like environment may be more appropriate to describe the state of the clusters. The relaxation rate of ν_3 CH₃Fis within a factor of two of the valuein a matrix.⁷⁸ The intense, narrow absorption feature is identified as due to CH₃F solvated in an Ar cluster with size in the second-shell regime, $12 \leq n \leq 50$ and evidence for similar features in the Kr and N_2/CH_3F systems are observed. Vibrational excitation of the CH_3F upon ionization may result in the observed qualitative difference between spectra taken at slightly different cluster ion masses. The C₂H₄ moiety does not exhibit the same propensity for attaining the solvated configuration, as judged by the lack of inhomogeneous structure in the dissociation profiles. The cluster-induced shifts of the C_2H_4 ν_7 vibration indicate small cluster-type interactions continue to be of importance in the clusters of moderate size (1-2 solvation shells).

Extension of these experiments to other spectral regions where continuouslytunable laser sources are available (e.g., 3.0-4.5 μ m) would verify the models proposed in this paper and enable direct measurement of a wider range of vibrational lifetimes. The use of optothermal detection (i.e., bolometers^{2,29,70}) would allow the identification of absorption features which do not lead to dissociation and which may account for the decrease in spectral intensities observed in our studies. Also, the recent technique of Gough *et al.*^{29b} for preparing clusters with surface-site chromophores may further clarify the matter of surface *vs.* matrix sites, if indeed polar molecules such as CH_3F will not cause substantial rearrangement of the cluster. Information regarding specific cluster sizes may be possible with the development of neutralization of selected ion clusters.⁵² The infrared technique applied here shows promise as a useful probe to characterize these clusters.

Acknowledgements

The authors would like to thank M.P. Casassa and C.M. Western for assistance with initial experiments, and Profi J.L. Beauchamp for helpful discussion and use of the CO_2 laser. This work was supported by the Division of Chemical Sciences, Office of Basic Energy Science, U.S. Department of Energy.

Appendix

The details of the scaling used to generate the plots of Figure 11 are the following:

(a) Pure vapor

- (i) Ar: Considering our nozzle to be of the sonic type, the 490 μm nozzle used to obtain the data in Figure 2d [46a] was scaled to 25 μm using pd^q = constant,
 q = 0.8 for Ar [46a,b], resulting in p_o = 10.8 · p_H^{Ar}.
- (ii) N₂: The 140 μm conical nozzle used in obtaining the data in Figure 2b [46a] was calculated to be equivalent to a 1.39 mm sonic nozzle with the use of eq.
 (15) [46c] with α = 5° and K₁₅ = 0.866. Scaling to the 25 μm nozzle used in our experiments was accomplished using pd^q = constant, q = 0.68; q is determined using eq. (8) [46b] and r = 2.99 determined from p_o ∝ T_o^r and the data of Figure 3 [46a]. The resultant expression is p_o = 15.4 · p_H^{N₂}.

(b) Mixtures

Both Ne and Kr mixtures were scaled using the law of corresponding jets [46a], taking the isentrope, eq. (5) [46a], with reduced variables, eq. (15) [46a] to give:

$$\left(\frac{P_{Ar}}{P_i}\right) \cdot \left[\frac{(\epsilon/\sigma^3)_i}{(\epsilon/\sigma^3)_{Ar}}\right] = \left(\frac{T_{Ar}}{T_i}\right)^{2.5} \left(\frac{\epsilon_i}{\epsilon_{Ar}}\right)^{2.5} \tag{A1}$$

For all expansions at room temperature, $T_{Ar} = T_i$ and ϵ and σ are taken from [72]. Finally, scaling by $p_i = P_i(\sigma_i/\sigma_{Ar})^{0.8}$ gives $p_{N_*} = 8.51 \cdot p_{Ar}$ and $p_{Kr} = 0.54 \cdot p_{Ar}$. Further scaling of the mixtures involves considering the reduced mole fraction (0.9 for Ne/He and 0.2 for Kr/He) and the effective diameter, $d^* = d/\sigma_{eff}$, of the mixture:

- (iii) 90/10 Ne/He: The estimation of the 90/10 Ne/He curve took into account only the mole fraction of Ne in the mixture, resulting in $p_{Ne} = 9.5 \cdot p_{Ar}$.
- (iv) 20/80 Kr/He: Note from Figure 5 [46c] that seeding a vapor in a gas reduces the mole fraction necessary to achieve the same degree of clustering as in the pure vapor. We thus (arbitrarily) choose a factor of 2 in the Kr case so that our estimate for a 10/90 Kr/He mixture is simply that calculated by assuming the mole fraction of a 20/80 Kr/He mixture. The final expression is: $p_{Kr} = 2.7 \cdot p_{Ar}$

References

- (a) M.P. Casassa, D.S. Bomse and K.C. Janda, J. Chem. Phys. 74 (1981) 5044;
 (b) M.P. Casassa, C.M. Western, F.G. Celii, D.E. Brinza and K.C. Janda, J. Chem. Phys. 79 (1983) 3227;
 (c) C.M. Western, M.P. Casassa and K.C. Janda, J. Chem. Phys. 80 (1984) 4781;
 (d) M.P. Casassa, C.M. Western and K.C. Janda, J. Chem. Phys. 81 (1984) 4950.
- (a) G. Fischer, R.E. Miller, and R.O. Watts, Chem. Phys. 80 (1983) 147;
 (b) T.E. Gough, R.E. Miller and G. Scoles, J. Phys. Chem. 85 (1981) 4041;
 (c) T.E. Gough, R.E. Miller and G. Scoles, J. Chem. Phys. 69 (1978) 1588.
- 3. (a) M. Snels, J. Geraedts, S. Stolte and J. Reuss, Chem. Phys. 94 (1985) 1;
 (b) J. Geraedts, S. Setiadi, S. Stolte and J. Reuss, Chem. Phys. Lett. 78 (1981) 277;

(c) J. Geraedts, M. Waayer, S. Stolte and J. Reuss, Faraday Disc. Chem. Soc.
73 (1982) 375.

- 4. (a) M.A. Hoffbauer, K. Liu, C.F. Giese and W.R. Gentry, J. Chem. Phys. 78 (1983) 5567, and references therein;
 (b) M.A. Hoffbauer, C.F. Giese and W.R. Gentry, J. Chem. Phys. 79 (1983) 192.
- 5. W.-L. Liu, K. Kolenbrander and J.M. Lisy, Chem. Phys. Lett. 112 (1984) 585.
- 6. D.S. Bomse, J.B. Cross and J.J. Valentini, J. Chem. Phys. 78 (1983) 7175.
- 7. D.H. Levy, Ann. Rev. Phys. Chem. 31 (1980) 197, and references therein.
- D.E. Brinza, B.A. Swartz, C.M. Western and K.C. Janda, J. Chem. Phys. 79 (1983) 1541.

- M.F. Vernon, D.J. Krajinovich, H.S. Kwok, J.M. Lisy, Y.R. Shen and Y.T. Lee, J. Chem. Phys. 77 (1982) 47;
 M.F. Vernon, J.M. Lisy, H.S. Kwok, D.J. Krajinovich, A. Tramer, Y.R. Shen and Y.T. Lee, J. Phys. Chem. 85 (1981) 3327;
 J.M. Lisy, A. Tramer, M.F. Vernon and Y.T. Lee, J. Chem. Phys. 75 (1981) 4733.
- N. Halberstadt and B. Soep, Chem. Phys. Lett. 87 (1982) 109;
 C. Jouvet and B. Soep, J. Chem. Phys. 75 (1981) 1661.
- For reviews, see: H. Dubost, Ber. Bunsenges. Phys. Chem. 82 (1978) 112;
 J. T. Yardley, in Introduction to Molecular Energy Transfer, (Academic Press, New York, 1980).
 V.E. Bondybey and L.E. Brus, Adv. Chem. Phys. 41 (1980) 269.
- V.A. Apkarian and E. Weitz, Chem. Phys. Lett. 76 (1980) 68;
 W. Franisch, V.A. Apkarian and E. Weitz, Chem. Phys. Lett. 85 (1982) 505.
- (a) L. Abouaf-Marguin and B. Gauthier-Roy, Chem. Phys. 51 (1980) 213;
 (b) B. Gauthier-Roy, L. Abouaf-Marguin and F. Legay, Chem. Phys. 46 (1980) 31;
 (c) L. Abouaf-Marguin, B. Gauthier-Roy and F. Legay, Chem. Phys. 23 (1977) 443.
- 14. L. Young and C.B. Moore, J. Chem. Phys. 76 (1982) 5869.
- B. Gauthier-Roy, C. Almichel, A. Lecuyer and L. Abouaf-Marguin, J. Mol. Spectrosc. 88 (1981) 72.
- 16. L.H. Jones and B.I. Swanson, J. Chem. Phys. 76 (1982) 1634.
- 17. V.A. Apkarian and E. Weitz, J. Chem. Phys. 76 (1982) 5796.

- 18. M.P. Casassa, F.G. Celii and K.C. Janda, J. Chem. Phys. 76 (1982) 5295.
- G.T. Fraser, D.D. Nelson, Jr., A. Charo and W. Klemperer, J. Chem. Phys.
 82 (1985) 2535.
- 20. A.S. Pine and W.J. Lafferty, J. Chem. Phys. 78 (1983) 2154.
 G.D. Hayman, J. Hodge, B.J. Howard, J.S. Muenter and T.R. Dyke, Chem. Phys. Lett. submitted for publication.
- 21. S. Leutwyler, J. Chem. Phys. 81 (1984) 5480.
- (a) A. Amirav, U. Even and J. Jortner, J. Phys. Chem. 86 (1982) 3345;
 (b) A. Amirav, U. Even and J. Jortner, J. Chem. Phys. 75 (1981) 2489;
 (c) A. Amirav, U. Even and J. Jortner, Chem. Phys. Lett. 72 (1980) 16;
 (d) A. Amirav and J. Jortner, Chem. Phys. 85 (1984) 19.
- T.R. Hayes, W.E. Henke, H.L. Selzle and E.W. Schlag, Chem. Phys. Lett. 77 (1981) 19;
 W.E. Henke, W. Yu, H.L. Selzle E.W. Schlag, D. Wutz and S.H. Lin, Chem. Phys. 92 (1985) 187.
- 24. P.M. Felker and A.H. Zewail, Chem. Phys. Lett. 94 (1983) 454.
- P.D. Dao, S. Morgan and A.W. Castleman, Jr., Chem. Phys. Lett. 111 (1984)
 38;
 P.D. Dao, S. Morgan and A.W. Castleman, Jr., Chem. Phys. Lett. 113 (1985)
 219.
- 26. K. Rebane and P. Saari, J. Lumin. 12/13 (1976) 23.
- 27. F. König, P. Oesterlin and R.L. Byer, Chem. Phys. Lett. 88 (1982) 477.
- 28. J.O. Geraedts, Ph.D. Thesis, University of Nijmegen, 1983;

P. Melinon, J.-M. Zellweger, J.-M. Philippoz, R. Monot and H. van der Bergh in 9th Symposium on Molecular Beams, Freiburg (June, 1983), p.8.

- 29. T.E. Gough, D.G. Knight and G. Scoles, Chem. Phys. Lett. 97 (1983) 155;
 (b) T.E. Gough, M. Mengel, P.A. Rowntree, G. Scoles, preprint.
- R.J. Blint, T.B. McMahon and J.L. Beauchamp, J. Am. Chem. Soc. 96 (1974) 1269.
- 31. A.J. Stace, Chem. Phys. Lett. 113 (1985) 355.
- J.H.D. Eland, R. Frey, A. Kuestler, H. Schulte and R. Brehm, Int. J. Mass Spectr. Ion Phys. 22 (1976) 155.
- 33. C.R. Brundle, M.R. Robin and H. Basch, J. Chem. Phys. 53 (1970) 2196.
- 34. (a) A.J. Stace, Chem. Phys. Lett. 99 (1983) 470;
 (b) A.J. Stace, J. Phys. Chem. 87 (1983) 2286;
 (c) A.J. Stace, J. Am. Chem. Soc. 107 (1985) 755;
 (d) A.J. Stace, preprint.
- 35. P.M. Dehmer and S.T. Pratt, J. Chem. Phys. 76 (1982) 843.
- 36. (a) T.E. Gough and R.E. Miller, Chem. Phys. Lett. 87 (1982) 280;
 (b) W.R. Gentry, Rev. Sci. Instrum. 53 (1982) 1492;
 (c) H.L. Tien, S.B. Ryali, P.J. Gak and J.B. Fenn, Chem. Phys. Lett. 93 (1982) 213;
 - (d) N. Lee and J.B. Fenn, Rev. Sci. Instrum. 49 (1978) 1269.
- 37. (a) U. Buck and H. Meyer, in 9th Symposium on Molecular Beams, Freiburg (June, 1983), p.113;
 (b) U. Buck and H. Meyer, Phys. Rev. Lett. 52 (1984) 109.
 (c) U. Buck, personal communication.

- 38. F.G. Celii and K.C. Janda, to be published.
- 39. M.D. Marshall and J.S. Muenter, J. Mol. Spectrosc. 83 (1980) 279.
- 40. G. Herzberg, in Infrared and Raman Spectroscopy, (Van Nostrand Reinhold Co., New York, 1945);
 W.L. Smith and I.M. Mills, J. Mol. Spectrosc. 11 (1963) 11.
- 41. S. Kondo and S. Saëki, J. Chem. Phys. 76 (1982) 809.
- 42. J.O. Hirschfelder, C.F. Curtiss and R.B. Bird, in Molecular Theory of Gases and Liquids, (Wiley, New York, 1954).
- 43. A. Dalgarno and A.E. Kingston, Proc. Phys. Soc. London 78 (1961) 607.
- 44. S.J. Hair and K.C. Janda, unpublished results.
- D.R. Worsnop, S.J. Buelow and D.R. Herschbach, J. Phys. Chem. 88 (1984)
 4506.
- T.A. Milne and F.T. Greene, J. Chem. Phys. 47 (1967) 4095;
 T.A. Milne A.E. Vandergrift and F.T. Greene, J. Chem. Phys. 52 (1970) 1552.
- 47. D. Golomb, R.E. Good and R.F. Brown, J. Chem. Phys. 52 (1970) 1545;
 D. Golomb, R.E. Good, A.B. Bailey, M.R. Busby and R. Dawborn, J. Chem. Phys. 57 (1972) 3845.
- A. van Deursen, A. van Lumig and J. Reuss, Int. J. Mass Spectr. Ion Phys. 18 (1975) 129;
 A. van Deursen and J. Reuss, Int. J. Mass Spectr. Ion Phys. 23 (1977) 109;
 A. van Deursen and J. Reuss, Int. J. Mass Spectr. Ion Phys. 24 (1977) 199.
- 49. E.L. Knuth, J. Chem. Phys. 66 (1977) 843.
- 50. H.F. Godfried and I.F. Silvera, Phys. Rev. B27 (1983) 3008, 3019.

- J.J. Breen, K. Kilgore, K. Stephan, R. Hoffmann-Sievert, B.D. Kay, R.G. Keesee, T.D. Märk and A.W. Castleman, Jr., Chem. Phys. 91 (1984) 305.
- 52. M.A. Johnson, M.L. Alexander and W.C. Lineburger, Chem. Phys. Lett. 112 (1984) 285.
- 53. K. Sattler, in 9th Symposium on Molecular Beams, Freiburg (June, 1983), p.21.
- 54. J.M. Soler, J.J. Sáenz, N. García and O. Echt, Chem. Phys. Lett. 109 (1984)
 71;
 J.J. Sáenz, J.M. Soler and N. García, Chem. Phys. Lett. 114 (1985) 15.
- H. Falter, O.F. Hagena, W. Henkes and H.V. Wedel, Int. J. Mass Spectr. Ion Phys. 4 (1975) 145.
- 57. (a) O.F. Hagena and W. Obert, J. Chem. Phys. 56 (1972) 1793;
 (b) O.F. Hagena, Phys. Fluids 17 (1974) 894;
 (c) O.F. Hagena, Surf. Sci. 101 (1981) 106.
- J.M. Soler, N. García, O. Echt, K. Sattler and E. Recknagel, *Phys. Rev. Lett.* 49 (1982) 1857.
- 59. Estimated from the $(N/Z)^*$ plot, fig. 2 of ref. 46(a), and the electron energy dependance in fig. 7 of ref. 45.
- M. Yamashita, T. Sano, S. Kotake and J.B. Fenn, J. Chem. Phys. 75 (1981) 5355.
- 61. F.F. Abraham, in *Homogeneous Nucleation Theory*, Supplement I, Advances in Theoretical Chem. (Academic, New York, 1974).
- 62. (a) O. Echt, K. Sattler and E. Recknagel, Phys. Rev. Lett. 47 (1981) 1121;
 (b) O. Echt, A. Reyes Flotte, M. Knapp, K. Sattler and E. Recknagel, Ber. Bunsenges. Phys. Chem. 86 (1982) 860;

- 63. A. Ding and J. Hesslich, Chem. Phys. Lett. 94 (1983) 54.
- 64. A.L. Mackay, Acta Cryst. 15 (1962) 916.
- E. Polymeropoulos and J. Brickman, Chem. Phys. Lett. 96 (1983) 273;
 I. Oksuz, Surf. Sci. 122 (1982) L585;
 T. Halicioglu and P.J. White, Surf. Sci. 106 (1983) 45.
- M.R. Hoare, P. Pal and P.P. Wegener, J. Colloid Interface Sci. 75 (1980) 126;
 M.R. Hoare, Adv. Chem. Phys. 40 (1979) 49;
 G.L. Griffin and R.P. Andres, J. Chem. Phys. 71 (1979) 2552.
- 67. I.A. Harris, R.S. Kidwell and J.A. Northly, Phys. Rev. Lett. 53 (1984) 2390.
- O. Echt, D. Kreisle, M. Knapp and and E. Recknagel, Chem. Phys. Lett. 108 (1984) 401.
- J. Farges, M.F. De Feraudy, B. Raoult and G. Torchet, Surf. Sci. 106 (1981)
 95.
- 70. R.E. Miller, R.O. Watts and A. Ding, Chem. Phys. 83 (1984) 155.
- (a) J.M. Soler and N. García, Phys. Rev.A 27 (1983) 3300;
 (b) J.M. Soler and N. García, Phys. Rev.A 27 (1983) 3307.
- 72. C.L. Briant and J.J. Burton, J. Chem. Phys. 60 (1975) 2045;
 J. Ross and R.P. Andres, Surf. Sci. 106 (1981) 11.
- 73. D. Dreyfuss and H.Y. Wachman, J. Chem. Phys. 76 (1982) 2031.
- 74. K. Stephan and T.D. Märk, Chem. Phys. Lett. 90 (1982) 51.
- 75. R.L. DeLeon and J.S. Muenter, J. Chem. Phys. 75 (1981) 1113.
- 76. L. Andrews, G.L. Johnson and B.J. Kendall, J. Chem. Phys. 76 (1982) 5767.

- 77. S. Schlick and O. Schnepp, J. Chem. Phys. 41 (1964) 463.
- S.R.J. Brueck, T.F. Deutsch and R.M. Osgood, Jr., Chem. Phys. Lett. 51 (1977) 339.

CHAPTER 4

PHOTODESORPTION LINESHAPES

OF

.

WEAKLY BOUND MOLECULES

PHOTODESORPTION OF WEAKLY BOUND MOLECULES*

Francis G. Celii, Michael P. Casassa† and Kenneth C. Janda‡

Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, California 91125, USA

Received 21 March 1983; accepted for publication 12 December 1983 Published: Surf. Sci., 141 (1984) 169-190.

ABSTRACT

A recently reported lineshape function which specifically applies to the problem of one-photon photodesorption is used to perform model calculations. The expected efficiency and timescale for such a process is obtained. Molecules physisorbed on solid surfaces may desorb when vibrational energy from laser excitation leaks into the surface-adsorbate bond. Using phenomenological rate constants for desorption, quenching and dephasing mechanisms, a simple expression for surface coverage as a function of laser and molecular parameters is obtained. Analogy is drawn to the vibrational predissociation of van der Waals molecules, to which this model has been previously applied. Sample experimental systems are examined and calculations are made to explore the feasibility and range of the photodesorption technique. Observable effects are calculated, even for low-power laser parameters and fast quenching rates. Conversely, the lineshape formula provides a method for extracting desorption and quenching rates from experimental data. Calculations are also presented for mass spectrometric desorbate detection. The dynamic range

^{*} Contribution No. 6814

[†] National Science Foundation Predoctoral Fellow.

[‡] Alfred P. Sloan Foundation Fellow

of the mass spectrometer allows for a larger variation in molecular parameters which generate observable signal. The results of experimental attempts to observe onephoton photodesorption are summarized. Extension of the model to other systems is discussed.

.

1. Introduction

The investigation of photon-induced processes at solid surfaces has been conducted for many years. The development of laser technology has sparked new interest in utilizing this type of interaction in practical schemes such as chemical etching,^{1,2} deposition of conducting films,^{3,4} and stimulation of catalytic reactions.^{5,6} Indeed, there are many demonstrations of reaction processes that have been initiated^{5,7-14,69} or altered^{6,15,16} using laser irradiation upon or near solid surfaces.

Another light-stimulated surface process which is the specific topic of this paper is photodesorption. We present a phenomenological model to describe the process of desorption induced by laser irradiation of adsorbate vibrations. The lineshape formula which solves the model problem that is presented contains parameters which are systematically varied to investigate the feasibility of photodesorption. Our conclusion is that photodesorption should be observable under fairly mild conditions (i.e., with low-power cw lasers), when the adsorbate bondstrength is less than the energy of the absorbed photon. Although little detail about the specific mechanisms are directly obtained, the wavelength dependence of the desorption carries information about the rate of dynamic processes occurring at the surface. The rates can be extracted by applying the phenomenological model.

2. Overview

The term photodesorption has appeared in the literature for over 20 years but it has been used to describe a variety of phenomena. We are interested in the specific case of a weakly bound (physisorbed) adsorbate which is vibrationally excited by a photon source, and which then desorbs as a result of the excitation energy coupling to break the bond to the surface. (To eliminate confusion, this will be our definition of photodesorption throughout the paper.) Other processes, which have also been termed photodesorption but occur by mechanisms of a different nature are: laser desorption by thermal heating of the substrate¹⁷⁻²²; desorption stimulated by electron-hole pairs produced as a result of bandgap irradiation of semiconductor surfaces or metal oxide layers²³⁻²⁶; or photon-stimulated desorption (PSD)²⁷⁻²⁹ of ions from metal surfaces caused by an Auger process initiated by incident high energy irradiation. An extensive survey of laser-surface interactions has recently been published by Chuang.³⁰

Since the direct photodesorption process involves adsorbate vibrations, isotope effects may be observed and this technique has thus been discussed in terms of isotope separation schemes.^{31,32} Karlov *et al.*³³ observed selective evaporation of ¹¹BCl₃ from a solid isotope mixture using a single CO₂ laser wavelength operated at low power (1 W/cm²). Suslick³⁴ has reported isotopic enrichment of deuterium by irradiation of the H₂ vibration in condensed H₂/HD/D₂ mixtures, but an attempt to reproduce the results was unsuccessful – McConnell³⁵ indeed observed desorption of H₂ and HD upon infrared irradiation, but found no evidence for isotopic selectivity. That desorption was also observed *off* resonance with the HD vibration indicates a heating effect may be responsible for some of the results.

Recently, Heidberg *et al.*³⁶ demonstrated resonant laser-induced desorption from surfaces for the first time. Using a high-power CO₂ laser ($\leq 1 \text{ MW/cm}^2$ peak power), the desorption flux of CH₃F from NaCl surfaces was measured as a function

of laser frequency and intensity. The wavelength dependence indicates a desorption process which is resonant with the CH₃F adsorbate vibration at low laser fluence ($\sim 0.02 \text{ J/cm}^2$). The desorption yield increases non-linearly with laser intensity above an onset value, indicating a multiphoton process (n \geq 2). The wavelength dependence is a function of coverage and temperature, probably indicating the presence of different adsorbed phases, while the desorption yield also decreases at lower coverage. Similar observations were made by $Chuang^{30}$ for C_5H_5N on various (KCl,^{37a,b,c} Ni,^{37b} Ag^{37c}) substrates. A single broad (5-8 cm⁻¹) feature resonant with the ν_8 vibration of C_5H_5N was observed at low laser fluence, while non-resonant laser heating was demonstrated at higher fluence (> 0.1 J/cm^2). In addition, no desorption could be detected from surfaces with pyridine coverage of less than 2 layers. Coadsorption experiments were then performed in which a nonabsorbing molecule was deposited along with the laser absorbing species (C_2H_6) with CH_3F^{38} and C_5D_5N with $C_5H_5N^{39}$). No desorption of C_2H_6 was observed concurrently with desorbed CH₃F, which was interpreted as indicating highly localized desorption dynamics; however, both isotopic pyridine species desorbed when either species was initially irradiated.³⁹ Thermal desorption studies would help to resolve the apparent discrepancy between the two systems.

While the Heidberg^{36,38} and Chuang^{37,39} experiments deal with systems which require multiphoton vibrational excitation, Chuang and Hussla⁷⁰ recently reported both single and multiple photon desorption of NH_3 over Cu(100). At low coverages, the non-linear laser intensity dependance signals a multiphoton process which is consistent with the bond strength estimates of NH_3 adsorbed on the Cu(100) surface. At higher coverages, multilayer NH_3 can be desorbed with the energy from one photon, as both the intensity dependance and enhanced yield indicate. Thermal effects appear negligible as no desorption is observed with the laser off resonance. This case is the first well-characterized demonstration of single-photon photodesorption.

In other experiments, resonant photodesorption was observed for 3 μ m excitation of cyclopropane (C₃H₆) on Ag,⁴⁰ but a low power cw CO laser (5 μ m excitation) could effect only thermal desorption of CO on Pd,⁴¹ presumably because the adsorbate-substrate bond strength is greater than the photon energy. Our experimental efforts in this area are described in Section 6.

Theoretical treatments have examined the range of mechanisms available for coupling light to the adsorbate-substrate systems. Wautelet⁴² suggested that electronic excitations in the solid due to irradiation would enhance the desorption process. Modelling of desorption driven by multiphoton excitation of the *adsorbatesurface vibration* has yielded very high ($\sim 10^7 \text{ W/cm}^2$) estimates for necessary laser intensity,^{43,44} while much lower laser power (50 mW/cm²) is necessary for calculated *direct* bound-continuum transitions in the adsorbate-surface well.⁷¹

A number of groups have modelled the photodesorption process we consider here. George *et al.*⁴⁵ used a quantum-stochastic method to determine the vibrational population distributions of excited adsorbates. Multiphoton absorption, and hence stimulated desorption, was calculated for light with an average laser intensity of 10 W/cm² (more aptly described as 100 nsec pulses of 100 MW/cm² intensity). Kruezer and Lowy⁴⁶ calculated the rate of desorption for vibrationally
excited CO molecules adsorbed on Cu and W with phonon-mediated coupling to desorbed states. They found the laser-induced rate could be faster than the thermal rate of desorption, assuming the laser has populated the vibrational level $(n \ge 2)$ of the adsorbate isoenergetic with continuum states above the surface-adsorbate potential well. Gortel et al.47 have recently developed methods to calculate all transition rates (laser-induced vibrational, and phonon-mediated bound-bound and bound-continuum) quantum statistically, and have applied this treatment to the reported CH₃F/NaCl experiments. While qualitative aspects were reproduced by the treatment, more experimental input is needed to bring the theory and experiment into quantitative agreement. A similar approach by Fain and Lin⁷² has reproduced the desorption coverage dependence observed by Chuang.³⁷ The specific case of one-photon photodesorption has also been addressed by Lucas and Ewing,⁴⁸ who calculated the tunneling rate for transferring population from the vibrationally-excited bound adsorbate potential energy surface to the vibrationally relaxed desorbate surface. The overlap of the wavefunctions on the two potential surfaces governs the rate, and the momentum gap, which parametrizes the overlap, depends on the final state of the desorbed species: the desorption rate increases as the molecule retains more internal energy. The wide range of resultant desorption rates highlighted the qualitative impact of parameter variation.

The phenomenological model presented here takes the same philosophical approach as Lucas and Ewing – we apply to this problem a treatment which has been successfully employed to extract dynamics from gas-phase vibrational predissociation of van der Waals molecules.⁴⁹ Moreover, energy transfer dynamics between the adsorbate and substrate will be probed by photodesorption studies, in a manner analogous to the gas phase experiments. We digress here and describe the gas-phase van der Waals molecule photodissociation experiments, as they will be used to illustrate application of the lineshape formula.

A weakly-bound complex which contains at least one species that absorbs infrared radiation is synthesized, cooled and isolated in a molecular beam.^{50,51} The complex is irradiated by a suitable laser and dissociates after absorption of a single photon. The van der Waals complex is weakly bound – generally 0.5 to 10 kcal/mole (200-2000 cm⁻¹) – and it has proven feasible to view the excitation as being localized in the absorbing substituent alone. Within this description, decomposition occurs when energy from the vibrationally excited component "leaks" into the van der Waals bond. If homogeneous, the dissociation spectrum of the complex (i.e., the loss of mass spectral intensity of the van der Waals molecule as a function of wavelength) and, in particular, the width of the profile indicate the timescale of the process which relaxes the vibrationally excited state. The rates have been extracted using a two-level-with-decay model.⁵²

By analogy to the gas-phase experiments, a solid surface plays the role of non-absorbing and weakly-binding partner in the photodesorption process. The vibrationally excited adsorbate may break the weak bond to the surface and desorb, being detected directly (e.g., by a mass spectrometer) or as loss of surface coverage. Being somewhat more complex in nature than a rare gas atom, the solid surface has additional mechanisms which may quench the excited vibration. These "dark" energy transfer channels would compete with the desorption channel, and hence be indirectly probed by the photodesorption.

In the following section we present the photodissociation/photo- desorption model and outline the derivation of lineshape formulae for both pure and mixed cases. The qualitative features of the results are discussed. In section 4 we discuss the range of parameter values used in the photodesorption calculations of section 5. After discussion of these results, we present our experimental observations in an effort to detect photodesorption (section 6), then summarize in section 7.

3. Model and Formulation

The model is based on an ensemble of two-level systems shown schematically in Figure 1. We use a perturbation Hamiltonian approach in which the two levels, representing the ground (v = 0) and first (v =1) vibrational levels of the laser-excited species (either the infrared-absorbing partner in a van der Waals complex, or the adspecie of a surface-adsorbate system), are solutions of the unperturbed molecular Hamiltonian. The dissociation or desorption channel is modelled by an exponential depletion of upper state population with rate constant γ_D . We differentiate between the **pure** case, in which the two levels are coupled solely by the laser radiation field, and the **mixed** case, in which an additional decay channel is considered which is non-dissociative and serves only to relax excited state population to the ground state.⁵² The pure case is appropriate for the photodissociation of simple van der Waals clusters, while the mixed case will be used to treat the photodesorption process. Note that the characteristic rate of the exponential quenching decay, γ_q , represents the *total* contribution of all relaxation mechanisms, such as phonon and electron-hole pair excitation in solids.

Figure 1. Schematic of two-level-plus-decay model: (a) pure case – the ground and first vibrational level are coupled by the radiation field of the laser while species in the excited state dissociate to products with an exponential rate; (b) mixed case – an incoherent quenching mechanism, which relaxes excited state species back to the ground state, plus a dephasing mechanism are added to the pure case model. The pure case is appropriate for the analysis of van der Waals molecule photodissociation spectra, while the mixed case is used to model photodesorption dynamics.

MODEL

The model in its present form treats the two vibrational states in resonance with the laser as the only explicit population reservoirs. Transitions to and from other excited (vibrational or vibronic) states would involve additional feeding and depletion mechanisms.⁵³ Rotational levels are not treated directly. The energy of the first vibrational level is assumed to be greater than the energy needed to break the weak bond to either the van der Waals partner (pure case) or the surface (mixed case). Dependence of the photodesorption probability on the excess energy, ΔE (where $\Delta E = E_{h\nu} - E_{bond}$) is hidden in the desorption rate, γ_p , which is treated phenomenologically. The only quenching mechanisms considered here ultimately repopulate the ground state with relaxed upper state population. In addition, the local heating effect resulting from quenching by the phonon bath is treated only insofar as the desorption rate (which is not directly calculated) would change. The qualitative ideas that result from such a simple model, however, are valuable and help to indicate which approximations might be important in other systems.

Derivation of the lineshape expression for both cases was the subject of a previous paper,⁵² and for completeness we outline the procedure and summarize the resultant expressions here. For both the pure and mixed case, the wavefunction for the ensemble is written as the linear combination of stationary-state wavefunctions with time-dependent coefficients:

$$|\Psi(\mathbf{r},t)\rangle = c_0(t)|0\rangle + c_1(t)|1\rangle, \qquad (1)$$

where $|0\rangle \equiv |\phi_0(\mathbf{r})\rangle$ and $|1\rangle \equiv |\phi_1(\mathbf{r})\rangle$ are the lower and upper state wavefunctions, respectively, for the unperturbed molecular Hamiltonian. The experimentally observed lineshape is the change in total (upper plus lower state) population after a fixed irradiation time. The approach toward deriving a suitable expression of the lineshape is then to solve the differential equations of motion for c_0 and c_1 which are coupled by the laser-molecule interaction:

$$V = -\frac{1}{2}\vec{\mu} \cdot \vec{\mathbf{E}}_0 e^{-i\omega t},\tag{2}$$

where ω is the angular frequency and $\vec{\mathbf{E}}_0$ the magnitude of the electric field of the incident radiation, and $\vec{\mu}$ is the transition dipole moment of the absorption. In the mixed case, there is additional incoherent population exchange that suggests use of the density matrix formalism, which deals directly with population instead of wavefunction coefficients. The use of interaction picture probability amplitudes, C_i , is suitable for the pure case, where

$$c_i(t) = C_i(t)e^{-i\omega t},\tag{3}$$

and $\omega_i = E_i/h$. The initial condition for species in a supersonic expansion or on a cold surface is that the entire population is in the ground vibrational level. Given this starting point, exact (and intractable) lineshape formulae can be derived.⁵² Simplification results from considering the situation $\omega_R < \gamma_D$ (pure case) or $\omega_R < \gamma_T$ (mixed case); that is to say, the decay rates are faster than the laser-induced cycling rate (ω_R). The resultant expressions for I/I_0 , or the fraction of molecules remaining undissociated ($F_p(\omega, t)$), are then:

$$F_{p}(\omega,t) = exp\left[-\omega_{R}^{2}\gamma_{D}^{-1}t \times \frac{\gamma_{D}^{2}}{4(\omega-\omega_{0})^{2}+\gamma_{D}^{2}}\right],$$
(4a)

$$F_{m}(\omega,t) = exp\left[-\omega_{R}^{2}\gamma_{T}^{-1}t \times \frac{\gamma_{D}}{\gamma_{Q}+\gamma_{D}} \times \frac{\gamma_{T}^{2}}{4(\omega-\omega_{0})^{2}+\gamma_{T}^{2}}\right], \quad (4b)$$

The Rabi frequency, ω_R , is defined as $\omega_R = (\mu \cdot \mathbf{E})/h$ and the rates of decay processes are: γ_D for desorption (mixed case) or dissociation (pure case), γ_q for quenching and γ_{PD} for pure dephasing, with γ_T defined as $\gamma_q + \gamma_D + 2\gamma_{PD}$. Since F_m or F_p is the fraction of species *remaining* after the irradiation time, F varies from 1 (no desorption) to 0 (entire population desorbed).

For both the pure and mixed cases, the lineshape is the exponential of a Lorentzian scaled by a prefactor. The prefactor determines the intensity of the spectrum (i.e., the extent or completeness of the dissociation). In the pure case, the prefactor $\omega_R^2 \gamma_D^{-1} t$ is composed of excitation parameters (the laser power and the molecular transition dipole moment are contained within ω_R , as well as the irradiation time, t) and the rate of dissociation. For the mixed case, the sum of rate processes defined by γ_T appears in the prefactor in place of γ_D . In addition, the Lorentzian is attenuated by a second factor ϵ , where $\epsilon = \gamma_D / (\gamma_D + \gamma_Q)$. The factor ϵ makes the extent of dissociation sensitive to the relative sizes of γ_D and γ_Q ; increasing γ_Q for a fixed γ_D forces the exponential term to zero, $F_m \to 1$, and the desorption is quenched.

The width of the Lorentzian in the lineshape expression contains the rate information. For the pure case, the full width at half maximum (FWHM) of the Lorentzian term yields directly the dissociation rate:

$$\gamma_{\rm p} = 2\pi c \cdot FWHM. \tag{5}$$

For the mixed case lineshape (eq.(4b)), eq. (5) provides γ_r , the sum of all rate processes. Thus, in situations where the mixed case expression is appropriate, it becomes important to obtain (for example) the fractional desorption so that one can unravel the contributions of the decay rates to the total width, as well as to obtain the true total rate, γ_{T} . The desorption profile in arbitrary units yields only the (exponentiated) Lorentzian term without the prefactor. The width of the profile is the full width at half *minimum* (FWHM') of eq. (4b), which is:

$$FWHM' = \gamma_{T} \times \left[\frac{\omega_{R}^{2} \gamma_{T}^{-1} t \cdot \epsilon}{ln2 - ln[1 + exp(-\omega_{R}^{2} \gamma_{T}^{-1} t \cdot \epsilon]} \right]^{\frac{1}{2}}, \tag{6}$$

In the event that the prefactor, $\omega_R^2 \gamma_T^{-1} t \cdot \epsilon$, is small (i.e., the desorption is not near saturation, or fluence broadened⁵²), the bracketed term of eq. (6) goes to 1, and γ_T can be recovered in the same manner as from eq. (5). The expression for FWHM' in the pure case can be obtained from eq. (6) by letting $\gamma_T \to \gamma_D$ and $\epsilon \to 1$ (since $\gamma_D \gg \gamma_Q$), as expected.

Before calculating specific examples of the photodesorption lineshape, we assert the validity of the model by examining results of van der Waals molecule photodissociation experiments to which the two level model has been applied.⁵² Figure 2 displays the infrared photodissociation spectrum of the van der Waals complex ethylene trimer, $(C_2H_4)_3$. The decay rate, γ_D , could be determined using the pure-case version of eq. (6) but, since the absolute fraction of complexes dissociated is measured, a simpler way is to obtain the width of a Lorentzian fit to the logarithm of the fraction dissociated (ln F). The rate calculated in this manner $(\gamma_D = 2.0 \times 10^{12} \text{ s}^{-1})$ is smaller than that obtined by a direct Lorentzian fit to the spectrum (1-F), $\gamma_D = 2.5 \times 10^{12} \text{ s}^{-1}$. Consider, however, a case where saturation is attainable; that is, when close to 100% of the molecules of interest can be dissociated over some range of frequency. This could be accomplished by using higher laser

Figure 2. Application of the model lineshape expression to the IR photodissociation spectrum of the van der Waals molecule $(C_2H_4)_3$. The experimental profile (circles) is fit by a Lorentzian (solid line) and eq. (4a) (broken line). The full widths at half maximum for each on their respective scales are indicated.

fluence (in a pulsed system, for example), a longer irradiation time, or a molecular system with stronger absorption such that the pure case prefactor, $\omega_R^2 \gamma_D^{-1} t$, becomes large, comparable to 1 (see the discussion of eq. (6)). A Lorentzian could not be fit to the plateau in the spectrum, whereas the model lineshape expression, F_p , could be employed to fit the spectrum and extract a meaningful dissociation rate from the fluence-broadened profile (early dissociation spectra of $(C_2H_4)_2$ exhibited this behavior⁵²). We note that this is an appropriate and valuable limit of the lineshape expressions, as the usual perturbation approximation, that the initial state population ($|c_a(t)|^2$) remains unchanged, was not imposed.

In gas phase van der Waals molecule photodissociation experiments, the total number of complexes is monitored as a function of irradiation time, laser frequency and power. In a photodesorption experiment, utilization of a surface-sensitive technique (e.g., UPS or XPS) to monitor the adsorbate coverage as a function of irradiation time would yield information exactly equivalent to the gas-phase example; in particular, the fractional desorption. Eq. (4b) would gives the fraction of initial coverage remaining after desorption: $F_m = 1 - \theta^*/\theta_0$, where θ^* and θ_0 are the desorbed and initial coverages, respectively. By measuring θ^* and θ_0 , or F_m directly, as a function of laser frequency (ω), power density (S) and irradiation time (t), one can determine the total decay rate, γ_T , and the absorption cross section. Additional information can be obtained due to the orientational nature or ω_R^2 . Determination of the photodesorption intensity as a function of the angle between the light field polarization and the surface normal might allow determination of adsorbate orientation, as well as the adsorbate vibrational absorption intensity. In experiments performed to date^{36-39,70} (see also Section 6) mass spectrometry was used to detect the flux of desorbed species. This detection method provides greater sensitivity than UPS when the fractional loss of coverage (θ^*/θ_0) is small. Although the prefactor was not directly determined, the width of a Lorentzian fit to the observed NH₃ photodesorption profile⁷⁰ allows an upper limit on the total decay rate, γ_r , to be set at 1-2 ×10¹³ s⁻¹.

4. Details of Calculations

Since there are few cases of desorption induced by resonant absorption, and with only one documented case involving a single photon process, a valuable application of the mixed case model lineshape equation is to determine the range of feasibility of vibrational desorption processes on surfaces. Within estimates of molecular rate parameters (γ_{p} , γ_{q} and γ_{PD}), experimental conditions necessary for the observation of photodesorption of an adsorbed species can be calculated. In general, we expect estimates for desorption probability to be most realistic for molecules physisorbed on cold (< 100 K) surfaces. The surface-adsorbate bond energy for weak-binding surfaces may then be less than the photon energy (3-12 kcal/mole), and the population of molecular vibrations will be concentrated Thermal desorption will also be attenuated at lower in the ground state. temperatures making it easier to distinguish the laser-assisted desorption. For the photodesorption technique to specifically probe surface dynamics, adsorbateadsorbate interactions should be negligible (low-coverage regime). With these stipulations, the analogy to the gas-phase experiments is also valid.

To study the effect of various parameters in the lineshape expression on the

probability for desorption, it is simplest to examine the intensity of the spectrum at the wavelength of maximum desorption. Information regarding the width of the profile can be set aside temporarily, as this is an important feature in terms of photodesorption feasibility only when the rate of desorption is very fast (see the discussion following Figure 5). The width is, however, crucial to the determination of rate constants, and is included with Figures 7-10.

Eq. (4b) with $\omega = \omega_0$ reduces to

$$F_m(\omega_0, t) = exp(-\omega_R^2 \gamma_r^{-1} t).$$
⁽⁷⁾

The peak intensity of the photodesorption spectrum is a function of ω_R , t and γ_r . The irradiation time, t, and the Rabi frequency, ω_R (which depends on the laser power and polarization), can be controlled and measured experimentally. The decay rates, γ_D , γ_q and γ_{PD} , are properties of each surface-adsorbate system, and may take on a wide range of values. We perform two types of calculations. First, the quenching rate constant γ_q is fixed to a rather high value and ω_R is varied to see how the peak desorption intensity depends on accessible experimental variables. Then, with a conservative value or ω_R and t, the decay rates are varied. These calculations illustrate the range of system variables which yield feasible estimates of photodesorption, and thus the magnitude of rates which can be probed by this technique. The calculations are performed with both surface-sensitive (Figures 3-6) and desorbate-sensitive (Figures 7-10) detection techniques in mind. Before the calculations are presented, we discuss the possible variance of each parameter.

4.1 Excitation parameters

4.1.1 Laser power density

The first experimental system we consider uses a cw CO₂ laser (for discussion of pulsed systems, see section 4.1.3) which is discretely tunable over the region 900-1100 cm⁻¹ and outputs typically 1-20 W over a 6 mm beam waist. The high power is advantageous for maximizing ω_R (hence, making desorption more facile), but may be problematic due to background desorption caused by heating of the substrate. Molecular absorption strengths of vibrations in the 10 μ m spectral region tend to be high (another advantage), but the energy of the photon is low (1000 cm⁻¹ = 2.9 kcal/mol), restricting the choice of adsorbate-substrate system to cases where the physisorbtion bond energy is less than 3 kcal/mole. Direct surface photodesorption in the 10 μ m region should be possible with non-polar molecules condensed on inert semiconductor and insulator surfaces.

The second experimental case examined would be one in which photons of higher energy are used. Specifically, we consider a cw F-center laser which is continuously tunable between 3050 and 4500 cm⁻¹ with lower output powers compared to the CO₂ laser (1-30 mW range, 2 mm beam diameter). The photon energy is 3-4 times that of the CO₂ laser which would allow the study of, e.g., weakly bound adsorbates on noble metals, but the power density can be 1-3 orders of magnitude lower. Also, absorption intensities of the fundamental vibrations in this region (mostly hydrogen stretches) can be quite low, while overtones and combination bands are even weaker absorbers.

A factor which affects the power density at the surface is the angle of incidence

of the radiation. To optimally interact with a dipole oriented perpendicular to a metal surface, infrared radiation must strike the surface at a glancing incidence^{54,55} ($\theta = 88^{\circ}$, measured from the surface normal); for a semiconductor surface such as GaAs, $\theta \sim 75^{\circ}$. Choosing the more severe geometrical configuration ($\theta = 88^{\circ}$) and typical laser powers we find that the 10 W CO₂ laser beam would produce a power density, S, of 2.4 W/cm² at the surface, while the 10 mW F-center beam generates $S = 2.2 \times 10^{-2}$ W/cm².

4.1.2 Absorption strength

Integrated absorption intensities, A_{ω} , can be used to approximate the transition dipole moment, μ :

$$\mu = \left(\frac{A_{\omega}}{2.504\,\omega\,g_i}\right)^{1/2},\tag{8}$$

where A_{ω} is expressed in km mol⁻¹, the absorption center, ω , is in cm⁻¹ and g_i is the degeneracy of the initial state. The values of A_{ω} vary between 10^{-2} and 10^2 km mol⁻¹ for vibrational transitions in the gas phase which translate to transition dipole moments on the order of 10^{-3} to 10^{-1} D. We adopt the gas-phase values as rough extimates of adsorbate transition moments, given that the values for CO on Pt⁵⁷ and Cu⁵⁸ ($\mu = 0.1$ D) are close to the gas-phase value, and that calculations⁵⁹ suggest an *enhancement* of intensity may occur when the overall transition moment is parallel to the surface normal.⁵⁴⁻⁵⁶

With values for the laser power density and adsorbate absorption strength, ω_R can be determined. The Rabi frequency is written as:

$$\omega_{R} = \frac{\mu}{\hbar} \left(\frac{8\pi S}{c}\right)^{\frac{1}{2}} f(\theta), \qquad (9a)$$

which reduces to:

$$\omega_{\rm P} = 8.659 \times 10^7 \,\mu S^{\frac{1}{2}} f(\theta), \tag{9b}$$

and gives ω_R in s⁻¹ with the transition moment, μ , in Debye (D) and the laser intensity, S, in W/cm². The orientational parameter $f(\theta) = \langle \cos\theta \rangle$, is 1 for molecules aligned with the laser polarization and $1/\sqrt{3}$ for molecules with random orientation.^{50b} For the above estimates of S and μ , ω_R will vary between 10⁴ and 10^6 s^{-1} for a typical F-center laser experiment, and would be an order of magnitude higher in an experiment using a cw CO₂ laser. For the calculations with constant ω_R we fix $\omega_R = 1.5 \times 10^5 \text{ s}^{-1}$ which corresponds to a 10 mW beam at glancing incidence interacting with an adsorbate whose transition dipole moment is 0.01 D. (Note that for decay rates γ_q , γ_p and $\gamma_{PD} > 10^7 \text{ s}^{-1}$, the simplifying approximation $\omega_R < \gamma_T$, used to arrive at eq. (4), is valid over the estimated range of ω_R , from 10^4 to 10^7 s^{-1} .)

4.1.3 Irradiation time, t

A distinct advantage in cw-laser photodesorption experiments over the analogous gas-phase photodissociation experiments is that irradiation can occur for much longer periods of time – minutes rather than milliseconds – so that desorption probability can be high even with low irradiation powers. For pulsed laser experiments, t is only the pulse length, but continual irradiation of a fixed coverage may result in an appreciable overlayer depletion. The upper limit of t (t_{max}) is determined by the vacuum conditions as well as effects of laser heating of the substrate. For UHV systems, t_{max} greater than 10^3 s (20 min) but less than 10^4 s (2-3/4 h) is a reasonable estimate. For experiments utilizing desorbate

detection, t_{max} is just the sampling time of the detector. With mass spectrometry, t_{max} is the inverse of the pumping time constant, ~1 msec. This can be increased using integrating techniques (see Chapter 5) to ~10 msec. The high sensitivity of the mass spectrometer is compromised in photodesorption experiments by the shorter irradiaiton times possible. There is, however, the added advantage of signalaveraging capabilities not often possible with surface-sensitive techniques.

A prominent problem in photodesorption experiments is the thermal heating effects due to the incident radiation. This effect will be magnified with physisorbed systems. What temperature rise is expected for the irradiance used in the ω_R estimates? The solution for the temperature rise induced by irradiation of an infinite solid has been presented.⁶⁵ For the case of a 10 W CO₂ laser at glancing incidence on a 77 K Cu substrate, the temperature rise calculated is 0.014 K after 1 s, with a $t^{1/2}$ dependence. For the same laser power density but at normal incidence, ΔT is 0.2 K after 1 s. Thus the temperature rise for the glancing incidence case is negligible, while heating would become significant for a normal incidence laser with t greater than 100 s. The irradiance in the second (F-center laser) example case is decreased by a factor of 100, so no significant thermal heating is expected. For transparent substrates, the temperature rise with the example irradiances will be negligible.

It is appropriate here to discuss pulsed systems. From eqs. (4) and (9), it can be seen that the Lorentzian prefactor $\omega_R^2 \gamma_T^{-1} t$ scales with $S \cdot t$, or the total energy delivered over the irradiation time. In the experiments of Heidberg and co-workers³⁶⁻³⁸ and Chuang and co-workers,³⁷⁻³⁹ the average power density, S, was 10 mW/cm² to 1W/cm² (the same range considered in these calculations) but the high peak power, 10 mJ/cm² to 1.0 J/cm² in ~100 ns pulses, was necessary to stimulate the multiphoton desorption process. Only ~1 mJ/cm² is necessary for the onset of single-photon multilayer NH₃ desorption.⁷⁰ A transient thermal pulse can also be induced at the surface with high power laser pulses before equilibrium with the substrate is achieved. For single photon photodesorption, the same average power, and thus desorption probability, can be delivered by cw lasers without the complication of non-resonant thermal desorption.

4.2 Decay (γ_q , γ_D and γ_{PD}) and thermal desorption rates

4.2.1 Yo

The main source of experimental data on the quenching rate of adsorbate vibrations is infrared reflection-absorption spectra (see table 1). Spectral linewidths cannot be accounted for, in many cases, by the instrumental resolution or inhomogeneous broadening. Vibrational lifetimes to be inferred from these widths are lower limits and are in the 0.1 to 1.0 psec range. The mechanism for the quenching is thought to be charge oscillations^{58,61,62} in the metal-adsorbate system (electron-hole pair excitation), as opposed to energy loss to the phonon bath.⁶³ An excellent summary of considerations for vibrational lineshapes of adsorbates has recently appeared.⁷³ For calculations with γ_q held constant, we use 10^{13} s⁻¹ to represent fast quenching by a metal substrate. This choice most likely overestimates the rate for semiconductors and insulators, unless an energy match exists between the adsorbate vibration and a specific surface mode.⁶⁴

Adsorbate	Substrate	Resolution (cm ⁻¹)	FWHM (cm ⁻¹)	τ ^{α)} (ps)	Ref.
СО	Cu(100)	4	10	0.53	[60a]
	Cu(100)	2	4-6 ^{b)}	1.3-0.88	[60b]
	Cu(110)	2	8	0.66	[60c]
	Cu(111)	4	12	0.44	[60d.e]
	Cu(211)	4	8	0.66	[60e]
	Cu(311)	4	8	0.66	t1
	Cu(755)	4	11	0.48	
	Pt(100)	5	12	0.44	[60f]
	Pt(111) ^{c)}	5	7-10	0.76-0.53	[60f.g]
	Pt(111)	5	13	0.41	[60h]
	Pt(111)	5	50 ^d)	0.11	
	Pd(100)	2	>10	<0.53	[60i]
	Pd(111)	5	27	0.20	[60i]
	Pd(210)	5	17	0.31	[+-5]
	Ru(001)	3.5	8-15 ^{b)}	0.66-0.35	[60k]
N ₂	Pt(111) ^{c)}		7-10 ^{b)}	0.76-0.59	[60]]
H ₂ O	Ru(001)	10	2 50°)		[60m]
CH ₃ O	Cu(100)	4	14 ^f)	0.38	[60m]
			189)	0.29	[002]
CD ₃ O	Cu(100)	4	8 ^f)	0.66	[600]
			10 ^{g)}	0.53	

Table 1

IR Reflection-Absorption Spectra on Single Crystal Surfaces

^{a)} From eq. (5).

_ · ·

^{b)} Coverage dependent.

c) Recrystallized ribbon.

d) Low-frequency (~1870 cm⁻¹) mode; all other spectra refer to the CO band in the 2100 cm⁻¹ region.

e) Broad due to hydrogen bonding.

f) CH/CD symmetric stretch.

9) CH/CD asymmetric stretch.

4.2.2 $\gamma_{\rm p}$ and thermal desorption

The calculaiton of a realistic estimate of γ_{D} , the rate of desorption of the vibrationally excited adsorbate, was the subject of the work of Lucas and Ewing⁴⁸ and Kreuzer *et al.*^{46,47} Using sample cases, Lucas and Ewing exemplified the wide range γ_{D} could achieve $(10^{11} \text{ to } 10^{-5} \text{ s}^{-1})$ as a result of the variety of pathways for the excess vibrational energy to be partitioned. The dissociation rate for vibrationally excited van der Waals molecules, as inferred from linewidth measurements, also span a wide range: sub-psec⁵⁰ to nsec⁷² to <100 μ sec⁶⁵. In fact, NeCl₂ with Cl₂ in the 1st excited vibrational state is detected⁶⁶ 10⁻⁵ s after formation. We use 10^{12} s^{-1} for calculations with fixed γ_{D} , on the faster side of the observed photodissociation rates.

For weakly bound systems, thermal desorption will be competitive with laser desorption unless the surface temperature is low. Frenkel's estimate for the thermal desorption rate,

$$\nu_D = \nu_o e^{-E_D/kT} \tag{10}$$

using a pre-exponential factor, ν_o , of $10^{14} \text{ s}^{-1} (10^{12} \text{ s}^{-1})$ yields a desorption rate of 2.4 x $10^{10} \text{ s}^{-1} (2.4 \text{ x } 10^8 \text{ s}^{-1})$ for a 1 kcal/mol bond to the surface at 60 K, but only 5.8 x $10^6 \text{ s}^{-1} (5.8 \text{ x } 10^4 \text{ s}^{-1})$ at 30 K. For twice this bond strength (still below the energy of a CO₂ laser photon) the same rate will be observed at double the temperature. Thus, with a 60 K surface, the photodesorption of weakly bound (< 2 kcal/mol) adsorbates will dominate thermal desorption if the laser-assisted rate is $\gamma_D > 10^9 \text{ s}^{-1}$; the restriction on γ_D is further lowered for a colder surface or a stronger bond energy. Our empirical estimate of the photodesorption rate $(10^{10}-10^{12}s^{-1})$ meets this criterion.

For the purposes of this paper we consider γ_{PD} small compared to γ_D and γ_q . Dephasing caused by interaction with the lattice should be small since the substrate is assumed to be at low temperature, and fluctuations are damped.⁶⁷ For photodesorption to probe dynamics of energy transfer between an excited adsorbate and the surface, one desires experimental conditions (i.e., low coverage) such that interadsorbate interactions, which would provide a dephasing channel, are negligible. Furthermore, inclusion of appreciable γ_{PD} rates leads to results similar to situations with fast γ_D rates: the lineshape is broadened with concommitant loss of peak desorption intensity. Comments below about broadening due to large values of γ_D apply equally well to the dephasing rate γ_{PD} . This fact implies that determination of γ_{PD} from experiments of this nature alone may be quite difficult. Further lineshape considerations⁷³ (shape, temperature dependance) may be necessary to sort out the values as well as the microscopic source of the rates.

5. Results and Discussion

The effect of the experimental variables ω_R , the Rabi frequency, and t, the irradiation time, can be seen in Figures 3 and 4, respectively. Increasing either the irradiation time or ω_R (e.g., by raising the laser power density or rotating the light polarization toward μ) increases the limiting value of the quenching rate, γ_q , at which observable attunuation of the overlayer can occur. In Figure 3, ω_R is varied, the desorption rate is set at 10^{12} s⁻¹ and the irradiation time is 1000 s. The two values of ω_R calculated in section 4.1.1 are indicated. Assuming a conservative estimate of 10% desorbed as a detection limit (F < 0.9), photodesorption is seen to

Figure 3. Calculation of photodesorption probability versus the Rabi frequency (ω_R) . The fraction of adspecies remaining on the surface after irradiation is plotted against ω_R , a measure of the laser-adsorbate interaction strength. The values of ω_R for two example cases in the text are indicated: a 10 W CO₂ laser (CO₂) and a 10 mW F-center laser (FCL). The quenching rates (γ_Q) are: (a) 10¹⁰, (b) 10¹², (c) 10¹³ and (d) 10¹⁴ s⁻¹.

be feasible for quenching rates less than $10^{13} \text{ s}^{-1} (\omega_R = 1.5 \times 10^5 \text{ s}^{-1})$. For higher laser powers and/or molecular absorption strengths ($\omega_R = 10^6 \text{ s}^{-1}$) the upper limit on γ_q for observable photodesorption is in the 10^{14} s^{-1} range. This limit is, of course, different for other values of γ_R .

Figure 4 illustrates the effect of irradiation time on the desorption probability, as a function of the quenching rate. As qualitatively expected, longer irradiation times yield a higher desorption probability for a given quenching rate. Quantitatively, the combination of long irradiation times (t on the order of seconds) and a single photon process ($\omega_R \propto S$) results in the feasibility of a low-power laser successfully competing with moderately fast (10^{12} s⁻¹) quenching rates to induce resonant desorption. The rate of photodesorption is again chosen as 10^{12} s⁻¹ while ω_R calculated for the second experimental case (FCL) is used.

In Figure 5 we examine the interplay between the relative size of the system rates, γ_q and γ_D , and the excitation term $\omega_R^2 t$ (which also has the unit of a rate, s^{-1}). A given quenching rate specifies a range of γ_D for which photodesorption is observable. For example, curve (a) is calculated using a quenching rate of 10^{10} s^{-1} and shows complete desorption of an irradiated coverage if the rate of photodesorption is anywhere between 10^7 s^{-1} and 10^{13} s^{-1} . As the rate of quenching increases (curves (b) to (d)), the range of feasible photodesorption rates becomes more restricted. The shapes of the curves are a result of two effects. The minima occur at $\gamma_q = \gamma_D$ and fall along the line defined by:

$$F_m^{\min}(\omega_0, t) = \exp(-\omega_R^2 t/4\gamma_D). \tag{11}$$

To the left of the dotted line the solid curves show increased desorption probability

Figure 4. Fraction of adspecies remaining for a range of quenching rates. The effect of varying irradiation time is illustrated, with t equal to: (a) 10, (b) 10^2 , (c) 10^3 and (d) 10^4 s.

Figure 5. Photodesorption probability for various vibrationally excited desorption rates. Both ω_R and t are fixed at the indicated values. The quenching rates (γ_Q) are: (a) 10^{10} , (b) 10^{12} , (c) 10^{13} and (d) 10^{14} s⁻¹.

(smaller F_m) for increasing γ_D as the photodesorption rate becomes commensurate with the quenching rate in the attenuation factor, $\epsilon = \gamma_D / (\gamma_D + \gamma_q)$. The overall rate, γ_T , also increases in the $\omega_R^2 \gamma_T^{-1} t$ Lorentzian prefactor, acting to increase the percent desorbed. To the right of the dotted line, desorption probability decreases with increasing photodesorption rate due to a lifetime broadening effect: the peak intensity decreases as the profile broadens with larger values of γ_D . The same effect would occur if the dephasing rate were appreciable. Since γ_{PD} appears only in the width term, γ_T , and not in ϵ , a dephasing mechanism would serve to distribute the total intensity in the photodesorption spectrum over a broader profile.

It is apparent that increasing either of the experimental variables ω_R or t increases the fraction of adsorbates desorbed for given values of γ_D and γ_Q . In terms of the variables in Figure 5, the curves (c) and (d) would deepen, while curves (a) and (b) would broaden further; this behavoir is shown in Figure 6. Using the conservative estimate for ω_R and a fast quenching rate, the desorption percentage is plotted versus the photodesorption rate for different irradiation times. For t = 1000 s (curve (b)), the photodesorption rate must fall within the range 10^{12} s⁻¹ to 10^{14} s⁻¹ for a 10% desorption to occur at a wavelength of maximum absorption. Longer irradiation time (or, similarly, a larger value of ω_R) increases this range (curve(c)).

In figures 7-10 we present calculations of photodesorption probability with parameters appropriate to mass spectrometric detection. The logarithm of the photodesorption probability is plotted because of the greater dynamic range of detection of desorbed molecules compared to the determination of fractional surface coverage. The sensitivity in our system is $\sim 10^{-7}$ monolayer (see Section 6). The

Figure 6. Fraction of adspecies remaining over a range of photodesorption rates with a fast (10^{13} s^{-1}) quenching rate to the surface. The experimental parameter ω_R has the same value as in the previous figure. The irradiation times are: (a) 10^2 , (b) 10^3 and (c) 10^4 s.

parameters used to generate Figures 7-10 match those of Figures 3-6, respectively, except for the irradiation time: t_{max} can be no greater than the pumping time constant in the region of the mass spectrometer (~1-10 msec). With such short irradiation times compared to those used in the previous calculations, the percentage of molecules that are desorbed is much lower (i.e., the curves are shifted up, to lower photodesorption yield), but the particle detection limit with the mass spectrometer is much lower than the assumed detection limit (10% of a monolayer) in the plots of Figures 3-6. Also shown are the linewidths (FWHM') of the profiles. The widths are complex functions of the various rate parameters, and the plots in Figures 7-10 highlight the fact that a variety of rates and experimental conditions give rise to the same FWHM. As should be expected, to characterize both the laser-induced desorption rate and the quenching rate, both the linewidth and fractional desorption must be determined.

In terms of feasibility, the desorption probability plots as shown in Figures 7-10 exhibit a wider range of parameters for which photodesorption can be observed than in the case of long irradiations and coverage-sensitive detection. Perhaps a more interesting feature that is indicated is the possibility of deconvoluting the width and desorption intensity information to extract the rate constants. Regions of the curves in Figures 3-6 that are flat (i.e., various parameter values give rise to the same percentage of molecules remaining on the surface) can now be resolved into different fractional desorption signal intensities. The width plots graphically point out the variety of rate conditions which result in similar profile widths. It is important to obtain the absolute desorption percentage to extract the contribution of quenching and desorption rates.

Shown in Figure 7 is the photodesorption probability calculated as a function of the Rabi frequency (ω_R) , analogous to Figure 3. With shorter irradiation time, the detected fractional desorption is smaller than in Figure 3, but the lower detection limit of the mass spectrometer enables photodesorption to be detected over a comparable range of the rate constants. For $\omega_R > 10^4$, the widths attain the limiting value of $\gamma_T = \gamma_Q + \gamma_D$.

Figure 8 is a plot of percent desorbed for different irradiation times vs. versus the surface quenching rate, γ_q , as in Figure 4. With the sensitivity of the mass spectrometer detector, photodesorption will be observable with the short irradiation time. The predissociative rate (γ_p) dominates the width at small values of γ_q . The quenching rate dominates the width at higher γ_q , until the desorption is completely quenched.

Figure 9 is a plot analogous to Figure 5 wih irradiation times representative of a mass spectrometer with an integrating cone which is sampling desorption induced in a laser-molecule system characterized by $\omega_R = 1.5 \times 10^5 \text{ s}^{-1}$. If the sampling time could be further increased to $t \sim 0.1$ s, the curves would shift down to regions of higher percent desorbed (curve (e)), indicative of higher sensitivity.

In Figure 10, as in Figure 7, the quenching rate constant (γ_q) is fixed to a high value, 10^{13} s⁻¹, characteristic of an energy transfer rate to a metal surface. The percent desorbed is calculated as a function of the desorption rate (γ_p) . Curve (e) contrasts the enhanced range of desorption rates for which photodesorption

Figure 7. The calculated percent desorbed is plotted on a logarithmic scale vs. the Rabi frequency (ω_R) , similar to Figure 3. The irradiation time is 10^{-2} s with a laser-induced desorption rate (γ_D) of 10^{12} s⁻¹ and a quenching rate (γ_Q) of: (a) 10^{10} , (b) 10^{12} and (c) 10^{13} s⁻¹. Curve (d) is for γ_Q of 10^{13} s⁻¹ and 10^{-1} s irradiation time. The widths of the wavelength profiles (FWHM') approach limiting values determined by γ_T .

Figure 8. Variation of photodesorption feasibility and width with the irradiation time (t) and quenching rate (γ_Q) , as in Figure 4. The range of irradiation time is much shorter than in Figure 4: (a) 1, (b) 10^{-1} , (c) 10^{-2} and (d) 10^{-3} s, for γ_D set at 10^{12} s⁻¹, and (e) $t = 10^{-2}$ s for $\gamma_D = 10^{10}$ s⁻¹.

·

Figure 9. Range of detectable photodesorption rates (γ_D) with irradiation time of 10^{-2} s for a given quenching rate (γ_Q) : (a) 10^{10} , (b) 10^{12} and (c) 10^{13} . Curve (d) is calculated for $t = 10^{-1}$ s and $\gamma_Q = 10^{13}$ s⁻¹.

.

•

Figure 10. The percent desorption and linewidth calculated vs. the desorption rate (γ_D) for a fast quenching rate $(\gamma_Q = 10^{13} \text{ s}^{-1})$. The irradiation times are: (a) 1, (b) 10^{-1} , (c) 10^{-2} and (d) 10^{-3} s. Also shown is the curve (e) for a much slower quenching rate, $\gamma_Q = 10^{10}$, with $t = 10^{-2}$ s.

is feasible for a slower rate of quenching characteristic of a typical semiconductor. The plot of the linewidths shows that with γ_D small compared to γ_q , the quenching process limits the lifetime of the excited vibrational state and determines the width. The onset behavior at lower values of γ_D is due to small photodesorption probability in that region.

We summarize our findings in a more qualitative fashion by outlining what experimental parameters would be necessary to stimulate photodesorption when one confronts an adsorbate-substrate system which has fixed values of the rate parameters γ_p and γ_q .

(a) $\gamma_D \ll \gamma_q$: Photodesorption is unlikely because the fast quenching mechanism relaxes vibrationally excited species before desorption can occur. Desorption may be induced by using very high laser power densities, very long irradiation times, or both, but there are practical limits due to desorption induced by laser heating and the finite time constant for adsorption of background gases. At this point, choosing (carefully) a different adsorbate may be an attractive option for two reasons: (1) a molecule with higher oscillator strength, or absorption intensity, would increase the photodesorption probability in the same manner as increased laser power density or irradiation time, and (2) if the quenching mechanism is fast due to a close resonance with the molecular vibration, an adsorbate with different vibrational frequency would create a mismatch, slow the quenching rate and possibly open the desorption channel.

(b) $\gamma_{D} \gg \gamma_{q}$: Photodesorption dominates the quenching rate, but consideration must be given to the size of γ_{D} as compared to the adsorbate absorption strength and the laser tuning range and linewidth, since the width of the desorption profile is directly proportional to γ_D . For the cw CO₂ laser which has lines spaced every 1 cm⁻¹, the photodesorption rate must be greater than 10¹¹ s⁻¹ for the lineshape to be resolved. The F-center laser is continuously tunable with a 1-10 MHz linewidth, so photodesorption rates as slow as 10⁷ s⁻¹ could be observed if the themal desorption rate is not competitive. The width of the desorption spectrum gives the sum of photodesorption and dephasing rates.

(c) $\gamma_D \sim \gamma_q$: Photodesorption is probable, assuming the value of γ_D results in a profile which overlaps the range of the excitation laser (see above), but the linewidth contains contributions from all rates. The ratio between γ_D and γ_q in the attenuation factor can be obtained from the absolute photodesorbed fraction if the adsorbate absorption strength can be independently determined, from a similar photodesorption spectrum in which the quenching rate is negligible or from reflection-absorption data.

6. Photodesorption Experiments

We have attempted to observe the single-photon photodesorption which we have shown to be theoretically feasible and undertook experiments to measure the rate of molecular desorption induced by infrared radiation. The apparatus constructed for this purpose is described in Chapter 5, and consists of a UHV chamber for the attainment of clean surfaces, sample cooling to condense weakly bound adsorbates on the surfaces, and a mass spectrometer for detection of the desorbed molecules. The experiments which were performed were the IR irradiation of various small molecules which have absorptions in the range of the CO_2 (CH₃F, C_2H_4 , C_3H_6) and F-center (C_2H_2 , CO_2 , CH_3OH) lasers which were employed, condensed on GaAs(110). In no case was resonant single-photon photodesorption observed. Desorption signals were observed upon irradiation but these did not exhibit reproducible wavelength dependence and are thought to be due to heating of the substrate, which also exhibited weak absorption in this wavelength region. The failure to observe photodesorption is thought to be due to either the surfaceadsorbate bonds being stronger than the photon energy, in the case of the CO_2 laser experiments, or low laser intensity coupled with ill-determined absorption frequencies and possibly broad lineshapes of adsorbates in the F-center laser case. The sensitivity of the detection is $\sim 1 \times 10^{-7}$ monolayers desorbed in a 15 msec chopping cycle; this estimate derives from a signal-to-noise ratio of unity for a steady state flux of 7×10^7 molecules/sec and an experimental geometry with 20% collection efficiency of 10^{14} molecules/cm² which are desorbed in a cosine distribution.

7. Conclusions

We have presented a simple model which has been successfully employed to treat the vibrational predissociation of van der Waals molecules and applied it to the analogous case of vibrational photodesorption of weakly bound adsorbates. Numerical calculations using estimates of relevant parameters show that singlephoton experiments of his nature are quite feasible over a wide range or rate conditions, including fast (> 10^{13} s⁻¹quenching rates). In fact, due to the potentially long irradiation times, fluence broadening of lineshapes could very possibly obscure rate information. The photodesorption technique should be a valuable method to probe quenching and dephasing mechanisms, as well as the photodesorption rate itself, at the solid surface.

While explicitly dealing with desorption as the dissociative decay channel, other processes may be observable and competitve. Stimulation of chemisorptive bonding from a physisorbed precursor or initiation of dissociative reactions are possibilities which may also be treated within the model presented here. Pumping of high overtone states to desorb adsorbates using larger amounts of vibrational energy should also be possible if the small absorption cross-sections can be surmounted. The qualitative trends outlined in this paper will be valid in these cases.

Experiments performed in our lab were not successful in demonstrating resonant single-photon photodesorption. We believe this to be due either to the surface-adsorbate bonds being stronger than the photon energy in the case of CO_2 laser experiments or to broad multilayer absorption linewidths in the case of F-center laser experiments. The use of substrates with lower binding energy (e.g., rare gas crystals) at lower temperatures would alleviate the former problem. Using high-intensity pulsed sources (e.g., as in the experiments of Chuang and Hussla⁷⁰) to roughly determine the absorption region would enable the use of low-intensity high-resolution sources such as an F-center laser over a narrow search range.

Acknowledgements

The authors would like to thank Dr. Paul Whitmore and Professor H. J. Kreuzer for stimulating discussions, and the referees of this paper for their constructive comments. This work was supported by the Office of Naval Research under Contract Number N00014-82-K-0506.

References

- D.J. Ehrlich, R.M. Osgood, Jr. and T.F. Deutsch, *IEEE J. Quantum Electron*. QE-16 (1980) 1233, and references therein.
- F.A. Houle and T.J. Chuang, J. Vac. Sci. Tech. 20 (1982) 790;
 F.A. Houle, Chem. Phys. Lett. 95 (1983) 5.
- 3. R.D. Coombe and F.J. Wodarczyk, Appl. Phys. Lett. 37 (1980) 846.
- D.J. Ehrlich, R.M. Osgood, Jr. and T.F. Deutsch, Appl. Phys. Lett. 39 (1981) 957;
 D.J. Ehrlich, R.M. Osgood, Jr. and T.F. Deutsch, J. Vac. Sci. Tech. 20 (1982) 738.
- 5. J.C. Hemminger, R. Carr and G.A. Somorjai, Chem. Phys. Lett. 57 (1978) 100.
- 6. M.E. Umstead and M.C. Lin, J. Phys. Chem. 82 (1978) 2047.
- M.R. Baklanov, I.M. Beterov, S.M. Repinskii, A.V. Rzhanov, V.P. Chebotaev and N.I. Yurshina, Dokl. Akad. Nauk SSSR 216 (1974) 524 [Soviet Phys.-Dokl. 19 (1974) 312.]
- M.S. Djidjoev, R.V. Khokhlov, A.V. Kiselev, V.I. Lygin, V.A. Namiot, A.I. Osipov, V.I. Panchencko and B.I. Provotorov in *Tunable Lasers and Applications*, Ed. H.A. Mooradian (Springer, Berlin 1976).
- 9. Z. Karny and R.N. Zare, Chem. Phys. 23 (1977) 321.
- A.V. Khmelev, V.V. Apollonov, V.C. Borman, B.I. Nikolaev, A.A. Sazykin,
 V.I. Troyan, K.N. Firsov and B.A. Frolov, Kvantovaya Elektron. (Moscow) 4 (1977) 2271 [Soviet J. Quantum Electron. 7 (1977) 1302].

- 11. C.T. Lin and T.D.Z. Atvars, J. Chem. Phys. 68 (1978) 4233.
- 12. D.R. Betteridge and J.T. Yardley, Chem. Phys. Lett. 62 (1979) 570.
- 13. T. Kawai and T. Sakata, Chem. Phys. Lett. 69 (1980) 33.
- T.J. Chuang, J. Chem. Phys. 74 (1981) 1453;
 T.J. Chuang, J. Vac. Sci. Tech. 18 (1981) 638.
- M.E. Umstead, L.D. Talley, D.E. Tevault and M.C. Lin, Opt. Eng. 19 (1980)
 94.
- 16. T.J. Chuang, J. Chem. Phys. 74 (1981) 1461.
- 17. J.P. Cowin, D.J. Auerbach, C. Becker and L. Wharton, Surf. Sci. 78 (1978) 545;
 G. Wedler and H. Ruhmann, *ibid.* 121 (1982) 464.
- 18. G.L. Kellogg, J. Chem. Phys. 74 (1981) 1479.
- D. Zakett, A.E. Schoen, R.G. Cooks and P.H. Hemberger, J. Am. Chem. Soc. 103 (1981) 1295;
 K.L. Busch, S.E. Unger, A. Vincze, R.G. Cooks and T. Keough, *ibid.* 104 (1982) 1507.
- R. Viswanathan, D.R. Burgess, Jr., P.C. Stair and E. Weitz, J. Vac. Sci. Tech.
 20 (1982) 605.
- 21. S.D. Allen, J.O. Porteus and W.N. Faith, Appl. Phys. Lett. 41 (1982) 416.
- 22. J.W. McAllister and J. M. White, J. Chem. Phys. 58 (1973) 1496.
- For an excellent review, see: D. Lichtman and Y. Shapira, CRC Critical Rev. Solid State Mater. Sci. 8 (1978) 93.
- 24. W.J. Lange and H. Reimersma, Trans. AVS Vacuum Symp. 8 (1961) 167.

W.J. Lange, J. Vac. Sci. Tech. 2 (1965) 74.

- 25. R. Gauthier, M. Babout and C. Guittard, Phys. Status Solidi (a) 48 (1978) 459.
- 26. G.W. Fabel, S.M. Cox and D. Lichtman, Surf. Sci. 40 (1973) 571;
 Y. Shapira, S.M. Cox and D. Lichtman, Surf. Sci. 50 (1975) 503;
 N. Van Hieu and D. Lichtman, Surf. Sci. 103 (1981) 535.
- T.E. Madey, R. Stockbauer, J.F. van der Veen and D.E. Eastman, Phys. Rev. Lett. 45 (1980) 187;
 D.P. Woodruff, M.M. Traum, H.H. Farrell, N.V. Smith, P.D. Johnson, D.A. King, R.L. Benbow and Z. Hurych, Phys. Rev. B21 (1980) 6531;
 B.E. Koel, G.M. Loubriel, M.L. Knotek, R.H. Stulen, R.A. Rosenberg and C.C. Parks, Phys. Rev. B25 (1982) 5551.
- P.J. Feibelman and M.L. Knotek, Phys. Rev. B18 (1978) 6531;
 P.R. Antoniewicz, Phys. Rev. B21 (1980) 3811.
- 29. D. Menzel, J. Vac. Sci. Tech. 20 (1982) 538.
- 30. T.J. Chuang, Surf. Sci. Rep. 3 (1983) 1.
- K.S. Kockelashvili, N.V. Karlov, A.N. Orlov, R.P. Petrov, Yu. N. Petrov and A.M. Prokhorov, *Pis'ma Zh. Eksperim. Teor. Fiz.* 21 (1975) 640. [JETP Letters 21 (1975) 302].
- T.Gangwer and M.K. Goldstein, SPIE 86 (1976) 154;
 T.E. Gangwer, Opt. Laser Technol. 10 (1978) 81.
- N.V. Karlov, R.P. Petrov, Yu.N. Petrov and A.M. Prokhorov, Pis'ma Zh. Eksperim. Teor. Fiz. 24 (1976) 289. [JETP Letters 24 (1976) 258].
- 34. K.S. Suslick, U.S. Patent 4,010,100 (1977).

- 35. D.B. McConnell, Ontario Hydro Research Div. Report, No. 76-516-K (1976).
- J. Heidberg, H. Stein, E. Riehl and A. Nestmann, Z. Physik. Chem. (NF) 121 (1980) 145;
 J. Heidberg, H. Stein and E. Riehl in Vibrations at Surfaces, Ed. R. Caudano, J.-M. Gilles and A.A. Lucas (Plenum, New York, 1980);
 J. Heidberg, H. Stein and E. Riehl, Phys. Rev. Lett. 49 (1982) 666;
 J. Heidberg, H. Stein and E. Riehl, Surf. Sci. 126 (1983) 183.
- 37. (a) T.J. Chuang, J. Chem. Phys. 76 (1982) 3828;
 - (b) T.J. Chuang and F.A. Houle, J. Vac. Sci. Tech. 20 (1982) 603;
 - (c) T.J. Chuang and H. Seki, Phys. Rev. Lett. 49 (1982) 382;
 - (d) H. Seki and T.J. Chuang, Sol. State Comm. 44 (1982) 473.
- J. Heidberg and I. Hussla, J. Electron Spectrosc. Related Phenomena 29 (1983) 105.
- 39. T.J. Chuang, J. Electron Spectrosc. Related Phenomena 29 (1982) 125.
- 40. R.B. Hall, personal communication.
- 41. Reference [22] and p. 76 of ref. [30].
- 42. M. Wautelet, Surf. Sci. 95 (1980) 299.
- M.S. Slutsky and T.F. George, J. Chem. Phys. 70 (1979) 1231;
 W.C. Murphy and T.F. George, Surf. Sci. 102 (1981) L46;
 J.-T. Lin and T.F. George, Surf. Sci. 107 (1981) 417.
- 44. C. Jedrzejek, K.F. Freed, S. Efrima and H. Metiu, Surf. Sci. 109 (1981) 191;
 G. Korzeniewski, E. Hood and H. Metiu, J. Vac. Sci. Tech. 2 (1982) 594.
- 45. J.-T. Lin and T.F. George, J. Chem. Phys. 72 (1980) 2554;

T.F. George, J.-T. Lin, K.-S. Lam and C.-H. Chang, Opt. Eng. 19 (1980) 100.

- 46. H.J. Kreuzer and D.N. Lowy Chem. Phys. Lett. 78 (1981) 50.
- 47. (a) Z.W. Gortel, H.J. Kreuzer, P. Piercy and R. Teshima, *Phys. Rev.* B27 (1983) 5066;
 (b) Z.W. Gortel, H.J. Kreuzer, P. Piercy and R. Teshima, *Phys. Rev.* B28 (1983) 2119.
- 48. D. Lucas and G.E. Ewing, Chem. Phys. 58 (1981) 385.
- 49. K.C. Janda, Advan. Chem. Phys. 00 (1984) 000.
 K.E. Johnson, W. Sharfin and D.H. Levy, J. Chem. Phys. 74 (1981) 163, and references therein.
- 50. (a) M.P. Casassa, D.S. Bomse and K.C. Janda, J. Chem. Phys. 74 (1981)
 5044;
 (b) M.P. Casassa, C.M. Western, F.G. Celii, D.E. Brinza and K.C. Janda, J. Chem. Phys. 79 (1983) 3227.
- 51. Visible and UV excitation may also be used to prepare van der Waals complexes in vibrationally excited states. These are also reviewed in ref. [49]. The experiments reported in ref. [50] concern only ground electronic state vibrational excitation.
- 52. M.P. Casassa, F.G. Celii and K.C. Janda, J. Chem. Phys. 76 (1982) 5295.
- 53. W.G. Breiland, M.D. Fayer and C.B. Harris, Phys. Rev. A13 (1976) 383.
- 54. R.G. Greenler, J. Chem. Phys. 44 (1966) 310.
- 55. J.F. Blanke, S.E. Vincent and J. Overend, Spectrochim. Acta 32A (1976) 163.

- 56. H.A. Pearce and N. Sheppard, Surf. Sci. 59 (1976) 205.
- 57. H. Ibach, Surf. Sci. 66 (1977) 56.
- 58. B.N.J. Persson and M. Persson, Sol. State Comm. 36 (1980) 175.
- 59. S. Efrima, Surf. Sci. 110 (1981) 56.
- 60. (a) K. Horn and J. Pritchard, Surf. Sci. 55 (1976) 701.
 - (b) R. Ryberg, Surf. Sci. 114 (1982) 627.
 - (c) D.P. Woodruff, B.E. Hayden, K. Prince and A.M. Bradshaw, Surf. Sci.
 123 (1982) 397.
 - (d) P. Hollins and J. Pritchard, Surf. Sci. 89 (1970) 486.
 - (e) J. Pritchard, T. Catterick and R.K. Gupta, Surf. Sci. 53 (1975) 1.
 - (f) A. Crossley and D.A. King, Surf. Sci. 95 (1980) 131.
 - (g) R.A. Shigeishi and D.A. King, Surf. Sci. 58 (1976) 379.
 - (h) H.-J. Krebs and H. Lüth, Appl. Phys. 14 (1977) 337.
 - (i) A. Ortega, F. M. Hoffmann and A.M. Bradshaw, Surf. Sci. 119 (1982) 79.
 - (j) A.M. Bradshaw and F.M. Hoffmann, Surf. Sci. 72 (1978) 513.
 - (k) H. Pfnür D. Menzel, F.M. Hoffmann, A. Ortega and A.M. Bradshaw, Surf.
 Sci. 93 (1980) 431.
 - (1) R.A. Shigeishi and D.A. King, Surf. Sci. 62 (1977) 379.
 - (m) K. Kretschmar, J.K. Sass, A.M. Bradshaw and S. Holloway, Surf. Sci.
 115 (1982) 183.
 - (n) R. Ryberg, Chem. Phys. Lett. 83 (1981) 423.
 - (o) B.N.J. Persson and R. Ryberg, Phys. Rev. Lett. 48 (1982) 549.
- 61. B.N.J. Persson and M. Persson, Surf. Sci. 97 (1980) 609.
- 62. J.W. Gadzuk, Phys. Rev. B24 (1981) 1651.
- 63. H. Metiu and W.E. Palke, J. Chem. Phys. 69 (1978) 2574.

- 64. L.E. Brus, J. Chem. Phys. 74 (1981) 737.
- 65. A.S. Pine and W.J. Lafferty, J. Chem. Phys. 78 (1983) 1541.
- D.E. Brinza, B.A. Swartz, C.M. Western and K.C. Janda, J. Chem. Phys. 79 (1983) 1541.
- 67. J.H. Bechtel, J. Appl. Phys. 46 (1975) 1585;
 H.S. Carslaw and J.C. Jaeger, in Conduction of Heat in Solids, 2nd ed. (Oxford Univ. Press, London, 1959).
- 68. R.J. Abbott and D.W. Oxtoby, J. Chem. Phys. 70 (1979) 4703.
- 69. J.Y. Tsao and D.J. Ehrlich, J. Chem. Phys. 81 (1984) 4620;
 C.J. Chen and R.M. Osgood, Appl. Phys. A 31 (1983) 171;
 C. Fiori, Phys. Rev. Lett. 52 (1984) 2077.
- 70. T.J. Chuang and I. Hussla, Phys. Rev. Lett. 52 (1984) 2045.
- 71. K.A. Peralstine and G.M. McClelland, Surf. Sci. 134 (1983) 389.
- 72. B. Fain and S.H. Lin, Chem. Phys. Lett. 114 (1985) 497.
- 73. J.W. Gadzuk and A.C. Luntz, Surf. Sci. 144 (1984) 429;
 D.C. Langreth, Phys. Rev. Lett. 54 (1985) 126.

CHAPTER 5

UV LASER-INDUCED PHOTOCHEMISTRY OF

$Fe(CO)_5$ ON SINGLE CRYSTAL SURFACES

.

1. Introduction

The photochemical modification of solid surfaces is a topic of much current and practical interest.¹⁻⁶ The use of lasers in this application brings the inherent submicron resolution to bear on the challenge of producing even smaller semiconducting devices. One particular area which has met with much success is the lightinduced deposition of conducting metallic structures using volatile organometallic precursors.³⁻⁶ There is a growing need, however, to examine these reactions under conditions that allow one to sort out contributions from various mechansims such as photolysis, pyrolysis, electron-induced processes and ablation.

The metal carbonyls are of tremendous practical importance for deposition, being volatile sources of metal species which readily undergo photochemistry. The deposition of metallic films from the corresponding carbonyl has been reported.^{5,6} The photochemistry of metal carbonyls is an extensive topic which spans both spectroscopic and dynamical characterization of the excited states and the synthetic generation of novel compounds.⁷⁻⁹ Highly-reactive metal clusters have been generated in the gas phase by irradiation of the corresponding carbonyl aggregates.^{10,11} Photocatalytic activity to isomerization has been demonstrated using a variety of metal carbonyls,^{12,13} including $Fe(CO)_5$.¹³ The high photochemical activity exhibited by these compounds at easily accessible wavelengths is illustrated by attempts at multi-photon ionization¹⁴ which succeed mostly in generating ionized metal atoms!

A potential problem for the stimulation of photochemical reactions at an interface is the ability of the solid to quench the photoexcited intermediate.

bulk solid of semiconductors and metals, in particular, possesses a variety of modes, active in the IR through the UV, for accommodating excess energy.¹⁵ For instance, the excessively broadened electron-energy loss (EELS) lineshapes of excited electronic states of chemisorbed species are thought to be indicative of rapidly quenched excited states whose spectra are lifetime broadened by decay rates on the order of $>10^{13}$ s⁻¹.¹⁶ Rates of chemical reactions may be orders of magnitude too slow to effectively compete with quenching mechanisms near surfaces which deplete excited state population on this timescale.

We have investigated the extent of the effect of molecule-solid energy transfer on a fast photochemical reaction, the ultraviolet photodissociation of $Fe(CO)_5$. Three surfaces, sapphire (Al₂O₃), silicon, and silver, were chosen for study, representing a wide range of energy transfer behavior: from very slow (an insulator, sapphire) to very fast (a nearly free electron metal, silver). There is extensive literature concerning the photochemistry of $Fe(CO)_5$ from which to draw, including reactions above other surfaces. The results we obtain are discussed in terms of the photochemistry observed in other systems as well as energy transfer considerations for the reaction.

2. Spectroscopy and Photochemistry of $Fe(CO)_5$

The gas-phase absorption spectrum of $Fe(CO)_5$ and the relevant energetics are shown in Figure 1. The maximum at 280 nm ($\epsilon_{abs} = 3900 \text{ M}^{-1}\text{cm}^{-1}$) is assigned to a metal-ligand charge transfer band (MLCT), while the weaker absorption to the red near 330 nm ($\epsilon_{abs} \sim 500 \text{ M}^{-1}\text{cm}^{-1}$) is thought to be a ligand field transition.^{17,7} The N₂ laser excitation (337 nm) used in the reported experiments is thus expected

Figure 1. Absorption spectrum of $Fe(CO)_5$ with energetics of $Fe(CO)_x$ species (from Ref. [22a]).¹⁹ Solid lines are for an average Fe–CO bond dissociation energy; the dashed lines are from Engleking and Lineberger.²⁰

to excite the ligand field transition. These bands are broad and unresolved, indicating states are likely to be mixed in this region. Electron-impact spectra give some indication for triplet state character in analogous bands in $Cr(CO)_6$; preliminary spectra for $Fe(CO)_5$ were not conclusive about this point.¹⁸ Not shown in Figure 1, an intense charge transfer band ($\epsilon_{abs} = 15700 \text{ M}^{-1} \text{ cm}^{-1}$) is observed further in the UV with a maximum near 200 nm. The region of weak molecular absorption which is excited in our experiment serves to indicate the experimental sensitivity that is available.

Estimates for energy levels of the $Fe(CO)_x$ species are also included in Figure 1. Note that upon absorption of light at 337 nm, the $Fe(CO)_5$ molecule contains enough energy to lose at least 2 CO molecules.¹⁹ Trapping experiments using PF_3 have determined that excitation with light in the 352-192 nm range produces all possible fragments – $Fe(CO)_x$, x = 2, 3, 4 – with branching ratios that suggest non-statistical distribution of internal energy in the $Fe(CO)_4$ fragment following initial prompt loss of $CO.^{22}$ The extent of decomposition has been verified by a gas-phase study in which $Fe(CO)_x$, x = 2, 3, 4 species have been identified by IR absorption.²³ However, the presence of PF_3 in the trapping experiments may influence the branching ratios since PF_3 and CO have similar bond strengths to Fe, and the hot $Fe(CO)_4$ species might readily exchange the two ligands.

Of central importance in this study is the timescale of the initial photochemical decarbonylation step. The rate of energy transfer from an excited adsorbate to a substrate, especially with metals, is expected to be fast so photodissociation at the surface must be competitive. This criterion is fulfilled for $Fe(CO)_5$, in which

the initial decarbonylation step is indeed rapid: from a multi-photon ionization study of the $Fe(CO)_5$ molecule, Whetten *et al.*²⁴ determined upper limits for the excited state lifetime and estimated that loss of CO occurs within 2.0 psec following excitation in the 300-310 nm region, and in less than 0.6 psec after irradiation in the 275-280 nm region. These values are derived from estimates of the up-pumping rate for second (ionization) photon absorption using the laser fluence and absorption intensity, and established the extremely fast (picosecond) nature of the dissociation timescale.

Extensive study of the UV and IR photochemistry of metal carbonyls in inert matrices has been conducted.^{8,9,25,27,31} Unlike the gas phase behavior, Fe(CO)₅ irradiated in a matrix loses one CO molecule per UV photon, yielding either Fe(CO)₄ or a stable Fe(CO)₄-X coordination complex with a matrix atom or molecule, **X** (e.g., **X** = Ar, N₂ or CH₄^{8,9,25a,25b}) filling the coordination sphere. Further irradiation in matrices with high Fe(CO)₅ concentration (1000:1) yields the Fe₂(CO)₉ and Fe₃(CO)₁₂ condensation species,^{25a} as identified by separate IR characterization of the stable dimeric and trimeric species.^{25c,e} In separate experiments, Fe₂(CO)₉ was also observed to photodissociate to yield Fe₂(CO)₈.^{25d} Additional photochemistry on the Fe₃(CO)₁₂ species has not been reported, as it seems the compound is not very photoactive,¹² in spite of intense bands which are present in the visible and UV.²⁶ Similar photochemical behavior has been exhibited by Cr(CO)₆ in the gas phase;^{9,27} a fast initial decarbonylation step (< 100 nsec) is followed by production of Cr(CO)₄ from hot Cr(CO)₅.²⁸ Formation of complexes of the highly-reactive Cr(CO)₅ species with inert ligands in the gas,²⁹ liguid³⁰ and matrix-isolated phase³¹ have been identified using detection of transients in the visible region. Similar characterization of visible and UV absorption of $Fe(CO)_4$ and its adducts has not been reported.

3. Experimental

3.1 UHV chamber

An ultra-high vacuum (UHV) chamber was constructed for this study and is depicted in Figure 2. The chamber consists of two sections, a main chamber mounted on a pumping stack, both constructed by MDC of Mountain View, CA. The primary system pump was an Edwards E04 4" diffusion pump backed by a 2-stage direct-drive rotary pump (Alcatel Z-2008-A). The diffusion pump system is extensively interlocked to prevent pump fluids from reaching the main chamber, especially the rotary pump which can be automatically isolated by a pneumatic valve with position indicator (MDC AV-103-P). Above the diffusion pump is a right-angle Vacuum Generators liquid nitrogen cold trap (CCT-100V), which also includes an integral gate valve to isolate the pump and trap, or throttle the pumping speed for sputtering or dosing applications. The trap has a 16 hour hold time and, more importantly, all surfaces exposed to the vacuum chamber remain cold until the trap becomes completely empty. The pump-trap combination has a quoted pumping speed of 200 $1 \cdot s^{-1}$. Rough pumping is accomplished using a pair of cryosorption pumps isolated by a bakeable metal seal valve (Granville-Phillips Mdl. 204). The cryopumps evacuate the chamber to $\sim 10^{-4}$ Torr at which point the diffusion pump can be used to bring the pressure into the 10^{-7} - 10^{-8} Torr range. After bakeout to 200° C the pressure drops into the 10^{-9} Torr range at which point a titanium

Figure 2. Diagram of the UHV apparatus.

sublimation getter pump works very effectively to achieve the base pressure of 1-2 $\times 10^{-10}$ Torr. At this pressure H₂O, CO, H₂ and CO₂ are the main species present. In addition, the helium closed-cycle refrigerator (see below) acts as a cryopump for condensibles during operation.

The main chamber is a variation of the standard Varian-type design (12" diameter), to which were added optical access ports, plus a second level to accomodate the helium refrigerator. The analytical tools in the chamber are: LEED/Auger screens (Varian), residual gas analyzer (VG SX-200 mass spectrometer), Ar⁺-ion sputter gun (Perkin Elmer), and nude ionization gauge (Granville Phillips Mdl. 271). Two gas inlets are available, one for dosing from background, the other for directed doses through a multichannel array. For laser-surface interaction, entrance and exit ports at optimal angles for both metal ($\theta = 88^{\circ}$ in the IR, 65° in the UV) and semiconductor ($\theta = 75^{\circ}$) surfaces are provided. Differentially-pumped uncoated BaF₂ flats (6 mm thickness) mounted on the 75° ports were used as laser entrance and exit windows throughout the course of the work reported here.

The low-energy electron diffraction (LEED) screens and electron gun are used for observation of surface order. The same apparatus is employed for Auger electron spectroscopy (AES) to monitor surface cleanliness. Home-built electronics for the electron pass energy ramp, amplifier and screen modulation voltage, plus a highvoltage supply (Kepco OPS-2000B) augment the Varian LEED screen and electron gun control modules. The mass spectrometer acts as a residual gas analyzer (to monitor chamber cleanliness), thermal desorption spectrometer, and product detector for both the IR photodesorption experiments (see Chapter 4) and the UV photochemistry experiments summarized here. A channeltron electron multiplier provides high gain to amplify the ion current generated by an electron-impact ionization source. A Faraday cup is also available for gain calibration. A glass integrating nosecone³² was fit around the ionization region to restrict the pumping speed, increase the dwell time of product molecules, and thus increase the sensitivity of the mass spectrometer at the expense of time resolution. The mass range of the quadrupole (0-200 amu) is sufficient to resolve the parent and fragment peaks of Fe(CO)₅ (196 amu), but not great enough to observe larger Fe_x(CO)_y ($x \ge 2, y \ge 4$) cluster products that may be formed.

For cryogenic cooling of the crystal sample, a helium closed-cycle refrigerator was employed. The refrigerator provides two cold stations of $\sim 15^{\circ}$ K (2 W of power for sample cooling) and $\sim 77^{\circ}$ K (25 W for heat shrouds and crystal support precooling). The refrigerator was retro-fitted onto a Conflat flange by Cryosystems, Inc., for UHV compatibility. A bakeout control system was constructed to allow unattended baking of the UHV chamber to 200° C without adverse effects to the refrigerator cold head. The controller is described in detail in thesis appendix 2.

The manipulator assembly for crystal samples is shown in Figure 3a. The mount was appended to a standard manipulator (Huntington PM-600-XYZ-RC), and configured for a 2.5" sample offset from the rotation axis. The coaxial motion provided by the manufacturer is levered to allow tilt of the sample, in addition to the x, y, z and rotary motions. The "high temperature" mount depicted in Figure 3(a) was designed to afford adequate cooling within the demands of heating the sapphire

Figure 3a. Diagram of the crystal holder and manipulator.

Figure 3b. Detail of the coupling between the helium closed-cycle refrigerator and the crystal support rods. Polished sapphire flats provide both electrical isolation and good thermal contact at low temperature.

and silicon crystals to $\geq 1000^{\circ}$ C; since this is above the melting point of copper, direct thermal contact with the copper braid assembly to the refrigerator (as was the case with a "low temperature" mount used for IR photodesorption experiments) was not possible. Sapphire spacers are employed in the cooling path to both provide electrical isolation and act as a thermal switch- good thermal conductivity at low temperature for sample cooling, poor thermal conductivity above room termperature to isolate the copper braid during sample heating. Figure 3(b) shows the refrigerator connection in detail. All copper is OFHC, except the flexible braids to the two refrigerator stages which are 99.999% (5N) pure.³³ The tungsten support rods and large diameter copper electrical leads are pre-cooled to ~ 200 K using the first stage of the refrigerator.

The crystal is mounted using a sheet of 0.001" Ta foil which provides resistive heating of the samples for cleaning and thermal desorption measurements. The foil is sandwiched between the crystal sample and a sapphire flat, and this assembly is banded together using Ta foil strips spot-welded to the main heater foil. Thermocouple pairs (Ch-Al) for temperature measurement are spot-welded under the Ta strips. Temperatures of 120-140 K were obtained with this configuration. The time for the crystal to cool to this temperature was 1-1/2 hours from the start of the refrigerator and 10-20 minutes after a flash to high temperature.

Two sample inlets were used throughout the course of this study. During initial experiments, vapor was dosed from background through a leak valve (VG MD-7R) and 1/8-inch stainless tube; however, this method admitted a large load of gases such as Fe(CO)₅ into the chamber. Later studies utilized a calibrated dosing line

which was equipped with a multichannel array doser to direct a significant fraction (0.1 - 0.3) of the gas sample onto the crystal face.³⁴ An 80 μ m diameter capillary tube limited the flow from a calibrated volume, so the flux of molecules emitting from the multichannel array could be determined by monitoring the pressure drop in the volume. With a pressure of 1.0 Torr in the calibrated volume, 1.1×10^{14} molecules/sec are emitted from the doser.

3.2 Sample Preparation

A silver single crystal boule was obtained courtesy of the W.H. Weinberg group.³⁵ Since enhanced photochemistry can be effected by a roughened metal surface, effort was expended to polish, clean and characterize the silver crystal to eliminate the effects of surface roughness. A 2 mm thick disk of 1/2'' diameter was spark cut and mechanically polished down to 0.25 μ m using a series of abrasive papers and diamond paste. The orientation was within $1/2^{\circ}$ as determined by Laue X-ray backscattering. The surface that resulted was visibly scratched, presumably on the 1.0 - 0.25 μ m scale. Chemical polishing (100 ml saturated K₂Cr₂O₇, 2 ml saturated NaCl, 10 ml H₂SO₄ diluted to twice the volume³⁶) gave a highly reflective surface and removed some of the mechanical damage, as could be seen by eye and in the clarity of the Laue spots. Electrochemical polishing as implemented here (12 g KCN, 12 g Na₂CO₃ in 200 ml H_2O^{36}) tended to gave a matted, milky appearance to the surface and was not used in the final polish sequence. The crystal was rinsed with ethanol after mounting and just prior to admission into the chamber. Cleaning in vacuum was accomplished using standard procedures.³⁷⁻³⁹ Combinations of mild heating (220° C) in 10^{-6} Torr O₂ to remove surface carbon,³⁸ room temperature

dosing with CO to "clean off" atomic oxygen,³⁹ and cycles of Ar⁺-ion sputtering followed by annealing at 300° C, resulted in a clean silver surface as determined by Auger spectroscopy (Figure 4). The resolution was high enough to differentiate between the silver Auger transition at 262 eV and the carbon peak at 272 eV. The ratio of the three Ag peaks was ~7:2:1. The LEED pattern obtained from the clean and annealed crystal (Figure 5) indicates the presence of (110) ordering on the 50-100 Å dimension.⁴⁰ No evidence of facetting was detected.⁴¹ However, the HeNe alignment laser reflected from the surface was not sharp, indicating roughness on the 0.6 μ m scale.

The sapphire and silicon crystal samples were obtained as polished wafers and were not polished further. They were cleaned by heating in vacuum: Al_2O_3 (obtained from Union Carbide cut ~30° to the *c* axis) to ~1050° C;⁴² Si(100) (pdoped, from California Technical Services) to 900° C.⁴³ The cleanliness of the Si surface was verified by AES, but only faint LEED spots were observed. Charging effects caused difficulties in obtaining LEED and Auger spectra of Al_2O_3 .

 $Fe(CO)_5$, obtained from Alfa Chemical (99.5 %), was used without further purification except for freeze-pump-thaw cycles to remove excess CO before each filling of the dosing volume. The observed cracking pattern of $Fe(CO)_5$ during a dose is shown in Figure 6, and is in reasonable agreement with published mass spectra.⁴⁴ The purity of the $Fe(CO)_5$ delivered to the chamber was constantly monitored by observing the intensity ratio between m/e 28 (CO⁺) and m/e 56 (Fe⁺) peaks and experiments were conducted with doses that exhibited approximately a 5:1 ratio of CO⁺ : Fe⁺ ratio which was the lowest value observed. Doses were

Figure 4. Auger electron spectrum of the (a) clean and (b) dirty Ag(110) surface. The C,O-contaminated surface was observed initially after chamber bakeout, the clean surface after extensive cleaning (see text). The three Ag features occur at 365, 302 and 263 eV, carbon and oxygen at 273 and 510 eV, respectively.

Figure 5. Sketch of LEED pattern obtained with Ag(110). The square array of spots is indicative of the (110) orientation. The interior (dashed) spots are extrapolations, being occluded by the crystal holder.

•

Figure 6. Mass spectrum of $Fe(CO)_5$ during gas dose. ${}^{54}Fe(CO)_x$ features can be seen to lower mass from the main ${}^{56}Fe(CO)_x$ peaks.

administered to the crystal face with no line-of-sight between the crystal face and hot filaments The filaments were switched off during longer (> 1 min) doses.

3.3 Thermal Desorption Experimental

Thermal desorption spectra of $Fe(CO)_5$ were obtained on the Al_2O_3 and silicon crystal samples. A particular ion mass signal detected at the mass spectrometer is monitored as the temperature of the crystal is ramped. Because the entire crystal mount in the vicinity of the crystal and heater are at the same low temperature during a dose, adsorption by other surfaces may interfere with the thermal desorption spectrum. However, desorption from the crystal sample can be isolated by using a glass integrating nosecone¹⁷ to monitor desoprtion. The sample was moved directly in front of the nosecone aperture, within 1 mm. Because of the lower local pumping speed due to the nosecone, a slow heating rate (2 K/sec) is employed, compared to a more common rate of 10 K/sec without nosecone. The crystal temperature ramp was manually controlled.

3.4 Photochemistry Experimental

A schematic of the photochemistry experiment is depicted in Figure 7. A Molectron UV-400 N₂ laser outputs 400 kW of 337.1 nm light in a 10 nsec pulse, but the output spot size is too large for irradiation of the crystal samples. Care was taken to reduce and shape the spot size with iris diaphragms and apertures so that only the crystal surface was irradiated. The resultant spot is approximately 1×3 mm entering the chamber and spreads to 4×3 mm across the crystal face due to the angle of incidence (75°), and provides 70 μ J·cm⁻² of energy density at the crystal face. The use of a 30 cm f.l. lens (the crystal was *not* at the focal point)

t

was estimated to increase the energy density by a factor between 10 and 100, the uncertainty arising from inability to accurately measure the spot size. Background laser-induced signals of m/e 28 (CO⁺) and m/e 44 (CO₂⁺) were observed upon laser irradiation, probably from stray UV which induces photodesorption from metal surfaces in the chamber.⁴⁵ The background CO⁺ intensity was never more than 5% of the photolysis signal. A He/Ne laser is used for initial alignment of the laser, then for reproducible placement of the crystal sample back to the irradiation position in front of the mass spectrometer. A calibrated pyroelectric joulemeter (Cooper Lasersonics J3) with quartz condenser lens and in combination with a boxcar integrator (Stanford Research Systems SR250) monitors the laser pulse energy. A set of quartz neutral density filters is used to variably attenuate the laser power.

The pulse of mass intensity generated by the laser was observed as a current pulse from the channeltron multiplier which was in most cases amplified by a current \rightarrow voltage converter (Keithley Mdl. 427, 10⁴-10¹⁰ volts/amp, 0.01-300 msec risetime). The output of the amplifier was fed into a chart recorder for yield measurements, or a transient digitizer (Biomation Mdl. 805) for waveform recording. The digitizer was interfaced to an IBM-PC through a TecMar Industries Labmaster board and a home-built interface. A fast amplifier (100 MHz, LeCroy TTB1000) was obtained for time-of-flight curve measurements.

4. Results

4.1 Thermal Desorption

An example of thermal desorption traces obtained during this study are shown

in Figure 8, for the case of $Fe(CO)_5$ on sapphire. The m/e 56 signal is displayed as a function of the crystal temperature which is monitored by an attached Ch-Al thermocouple. The slow heating rate necessary for use with the glass nosecone configuration was controlled manually and causes some variation in the peak shapes and position (e.g., Figure 8, between 1.1 and 2.3 L, and the slightly odd multilayer peak shape of the 140 L profile). Thermal desorption was thus employed as a qualitative gauge of dosages and for observing the onset of multilayer adsorption. Doses are reported in units of Langmuirs (1 L = 10^{-6} Torr·sec), as determined using the uncorrected ion gauge pressure for background doses and extrapolation of these values using the area of the thermal desorption curves for coverages from the multichannel array doser.

The desorption profiles of Figure 8 indicate the presence of two binding states for $Fe(CO)_5$ over sapphire, a low coverage state which is seen to desorb at about 260-280 K, and a second state which exists at higher coverage and desorbs at lower temperature, ~225 K. From the photochemical behavior (*vide infra*) we designate the two states as being due to species bound directly to the surface layer (first monolayer) and subsequent $Fe(CO)_5$ layers condensed on top of the initial layer. The two states yield equal thermal desorption intensity at a dose of 21 L, indicating 10 L is roughly equivalent to a monolayer (which matches estimates of coverage from the laser experiments). This correlates to dosing the crystal face with ~30% of the flux from the array doser and assuming unit sticking probability. At crystal temperatures near 140 K large multilayers were not stable to desorption on the time scale of the laser experiment causing a varying background in some cases.

Figure 8. Thermal desorption spectra of $Fe(CO)_5$ on Al_2O_3 . The different binding energies of surface adsorbates and multilayer species can be distinguished from the shift in the temperature of maximum desorption rate.

The energy of desorption can be estimated using the first-order Redhead analysis which yields,⁴⁶

$$E/RT_p = ln\frac{\nu_1 T_p}{\beta} - 3.64,\tag{1}$$

where E is the energy of desorption, T_p is the peak of the thermal desorption profile, β is the heating rate in K/sec, and ν_1 is the frequency factor, usually assumed to be 10^{13} s⁻¹. A first-order desorption rate is assumed for the surface and adsorbates used in these experiments. For a temperature of maximum desorption of 250 K, heating rate of 2 K/sec and frequency factor of 10^{13} , the energy of desorption is 16 kcal/mole. This estimate gives a value that appears to be too large, considering that Al_2O_3 is expected to exhibit only weak chemisorption to non-ionic species.^{47,48} The heat of vaporization of $Fe(CO)_5$ (8.7 kcal/mole) and CH_3OH (8.4 kcal/mole) are quite similar,⁴⁹ and multilayers of CH_3OH are observed to desorb at ~140 K. This value is more consistent for the temperature of maximum desorption than what we observe as the peak value of the thermal desorption profiles given our observation that the multilayers slowly desorb when the crystal temperature is near 130 K. The temperature of maximum desorption for $Fe(CO)_5$ on silicon has been determined by other workers to be 170 K,⁵¹ and multilayers will certainly desorb at lower temperature. Finally, the other analytical techniques available, LEED and Auger, did not detect the presence of adsorbed $Fe(CO)_5$. This is consistent with a previous study⁵² which found $Fe(CO)_5$ to be molecularly desorbed by the flux from the electron gun.

4.2 UV photochemistry on surfaces

The results of a typical photochemistry experiment, obtained for $Fe(CO)_5$ on

Si(100), are depicted in Figure 9. Figure 9(a) shows an XY-recorder trace of the m/e 28 pressure as the laser shutter is toggled open and closed. The N₂ laser pulses at 10 Hz, and the current pulses are averaged by the 300 msec time constant of the current-voltage converter (see Figure 3), giving the signal that appears continuous in time. When focussing lens is not used, the fraction of adsorbates that is photolyzed per pulse is small and the CO flux into the mass spectrometer remains constant. With this configuration, fluence dependences (vide infra) could be obtained using a single dose of Fe(CO)₅.

The bottom two traces (Figure 9, (b) and (c)) are typical of the response to a single laser pulse as observed using the transient recorder. The time constant of the current-voltage converter is lowered (~ 15μ sec) and the waveform is averaged with the computer (1000 shots for those displayed in Figure 9). With the nosecone in place (Figure 9(b)), the time response of the signal is dominated by the pumping time constant within the nosecone volume, ~10 msec. In the absence of the nosecone, the desorption signal becomes a measure of the flight time of product species between the crystal and mass spectrometer. It was determined, however, that even under our conditions a significant fraction of the time-of-flight curve was due to molecules which reach the mass spectrometer indirectly. Thus, translational energy distributions could not be obtained for the product CO molecules.

4.2.1 Si(100)

Our initial results, summarized in Figure 10, were obtained for $Fe(CO)_5$ dissociation on the Si(100) surface. Experiments were employed with the lens in place. Under these irradiation conditions, the observed m/e 28 signal

Figure 9. UV photochemistry signals, $Fe(CO)_5$ on Si(100). (a) The top trace is an XY recorder trace of the CO pressure (300 msec time constant). The bottom waveforms are pressure bursts from individual laser shots, (b) with and (c) without the glass nosecone enclosing the mass spectrometer.

Figure 10. Observation of an annealing phenomenon $Fe(CO)_5$ on Si(100). At low coverage (a) a burst of Fe-containing molecules occurs upon the first few laser shots, while (b) the CO flux is fairly constant in time. With coverage greater than one monolayer (c) a steady Fe⁺ signal is observed in addition to the initial pulse while (d) the CO flux is greater due to the higher coverage.

(Figure 10(b),(d)) decreases exponentially with time as the surface adlayer is depleted with the high laser fluence ($\geq 700 \ \mu J \cdot cm^{-2}$). The observed signal does not return to the baseline, however, indicating a secondary process which exhibits an effective cross-section at least 10 times smaller than the primary dissociation process. Estimation of the dissociation cross section can be made using:

$$I/I_0 = exp(-\Phi \,\sigma \,t) \tag{2a}$$

where σ is the dissociation cross-section (which equals that of the absorber for unity quantum yield), t is the time and Φ is the photon flux. A plot of the logarithm of the observed CO⁺ yield vs. time should give a stright line with slope $-\Phi\sigma$ for a process characterized by a single cross section. What is observed for the dissociation yield of CO⁺ from Fe(CO)₅ on Si(100) is a curve whose slope decreases at longer times $(t \ge 60 \text{ sec})$. Fits to the yield of various experiments at short times yield slopes of -(0.02 - 0.04). Since the photon flux of the focussed laser is not well determined, we assume the Fe(CO)₅ gas phase absorption cross section of $(1 - 2 \times 10^{-18} \text{ cm}^{-221,54})$ and from the slope determine a range for the photon flux of $\sim 1 - 4 \times 10^{15}$ photons cm⁻² sec⁻¹; this is a factor of 10 - 40 greater than the non-focussed laser case, and is within our estimate of the photon flux for the focussed beam at the crystal face. Thus, the gas-phase absorption strength is consistent with the observed CO⁺ yield. Similar curves were also obtained in the case of Fe(CO)₅ dissociation on Al₂O₃ with the focussed laser.

Figures 10(a) and 10(c) document the observation of iron-containing species which are desorbed by UV radiation. At low coverages (less than a monolayer; Figure 10(a)), an Fe⁺ signal is only observed during the initial few laser pulses. At higher coverages (2 or more monolayers; Figure 10(c))) laser irradiation causes a constant flux of Fe-containing compounds to be desorbed in addition to the large initial burst. Attempts to observe condensation photoproducts – that is, compounds containing Fe_x, x = 2,3 – were not successful. The mass coincidence between Fe (m/e 56) and 2*CO₂ (m/e 28) precludes detection at the ⁵⁶Fe₂⁺ ion mass and we did not observe mass intensity of desorbing products at isotopic Fe₂⁺ masses due in part to the low intensity of the secondary isotopes (e.g., I(⁵⁴Fe⁵⁶Fe) ~ 0.06 I(⁵⁶Fe₂)).

4.2.2 Al₂O₃

Results obtained on the Al₂O₃ surface using the unfocussed shaped output of the N₂ laser are shown in Figures 11 and 12. The power dependence of the CO^+ yield (Figure 11) obtained by inserting neutral density filters in the laser beam is normalized to the CO⁺ yield at 70 μ J·cm⁻² fluence. A straight line is obtained at all coverages, some of which are plotted in Figure 11. This indicates that the dissociation is a one-photon process, and that the Fe(CO)₅ layer is optically thin: for negligible fraction dissociated, the observed CO⁺ signal is the limit of the exponential of Eq. 3:

$$I_{obs} \sim -\Phi \,\sigma \,t \tag{2b}$$

The evaluation of Eq. 4 for the unfocussed laser fluence and the molecular absorption of gas-phase $Fe(CO)_5$ gives a value of 2.3×10^{-4} as the fraction of the initial coverage that is dissociated per pulse. This value is consistent with estimates for a monolayer surface coverage (1.2×10^{14} molecules/cm²), the flux of CO molecules into the nosecone (2×10^{10} molecules/sec) and the efficiency of the collection

Figure 11. The dependence of the CO⁺ yield on laser fluence. The fluence is normalized to 70 μ J·cm⁻² and the CO⁺ yield is normalized to the signal produced by 70 μ J·cm⁻² at the various coverages. Neutral density filters are used to attenuate the laser power. The straight line (slope = 1.00) is a fit to data from all coverages shown in Figure 12, only some of which are indicated in this plot. The linear dependence indicates the dissociation is a one-photon process and that the Fe(CO)₅ layer is optically thin.

geometry (~15 %), but predicts depletion of the surface overlayer to 1/2 of the initial coverage in ~200 sec, whereas the yield is constant over this time span. This estimate is based on the production of 1 CO molecule per Fe(CO)₅. After removal from the vacuum chamber no metallic deposits on the Al₂O₃ crystal could be detected by eye.

The dissociation and thermal desorption yields as a function of dosing coverage are shown in Figure 12. The laser-induced signal shows a saturation effect while the integral of the thermal desorption peaks continues to increase indicating that the number of adsorbates is increasing with increasing dosage, albeit at a reduced uptake rate. Both the dissociation and thermal desorption yield curves exhibit a knee in the 5 - 10 L dose region. The onset of Fe⁺ laser-induced desorption is observed in the same region, which we interpret as indicative of second layer coverage. Saturation of the laser-induced CO⁺ dissociation yield occurs in the 2 -3 layer regime.

4.2.3 Ag(110)

Preliminary positive results have been obtined for the UV-induced $Fe(CO)_5$ photoreaction on Ag(110). This is the first observation of a photochemical reaction occuring above a clean, smooth metal surface in the ultra-high vacuum environment. The observed CO⁺ signal from $Fe(CO)_5$ dissociation on silver surface is similar (within a factor of 2) to the $Fe(CO)_5$ dissociation on Al₂O₃ at low (3 L) and high (20 L) coverages. If one can extrapolate these two data points, they indicate a saturation of the CO⁺ yield similar to that observed in the $Fe(CO)_5/Al_2O_3$ system (Figure 12). Comparison of the yield for the reaction on the Ag(110) and Al₂O₃

Figure 12. Comparison of the dosage dependence of the laser-induced CO⁺ yield and the Fe(CO)₅ coverage, as determined by the area under the Fe⁺ thermal desorption peaks for the Al₂O₃ surface. The knee in the thermal desorption coverage curve plus the onset of laser-induced desorption of Fe-containing species (I_{Fe^+}) suggest population of the second overlayer. The dissociation yield levels off for coverages of $\geq 2-3$ monolayers, while the thermal desorption areas indicate that the coverage continues to increase for longer gas doses.

surfaces with that of silicon may not be consistent due to the replacement of the channeltron after the silicon experiments.

4.2.4 Summary

Our observations of the photodissociation of $Fe(CO)_5$ on the single crystal surfaces of Al_2O_3 , Si(100) and Ag(110) are summarized as follows:

- (1) UV irradiation of $Fe(CO)_5$ on all the studied surfaces yields an increase in the CO^+ mass signal which is attributed to the dissociation of $Fe(CO)_5$ by the 337 nm radiation. At low $Fe(CO)_5$ coverages, no Fe-containing species (e.g., $Fe(CO)_5$, $Fe_3(CO)_{12}$) are observed with a sensitivity at least a factor of 10 greater than would yield Fe^+ from cracking of $Fe(CO)_5$. This indicates the observed CO^+ signal is not due to pyrolytic desorption of $Fe(CO)_5$ from the surfaces. Calculations suggest that thermal heating of the substrate is not important with the unfocussed N₂ laser (vide infra).
- (2) Irradiation of either the Si(100) or Al₂O₃ surface with mildly focussed 337 nm light produces an exponentially decreasing CO⁺ flux at short times (~200-500 shots), while a nearly constant flux is observed at long times. This "constant" dissociation may be due to either diffusion of Fe(CO)₅ into the irradiated area or evidence of dissociation products on the surface, either from dissociative adsorption or the photochemical reaction, which have lower dissociation cross sections. No other evidence for non-volatile reaction products were observed.
- (3) A pulse of Fe-containing molecules is observed upon initial irradiation of a freshly dosed sample. This effect was observed on both silicon and sapphire surfaces, with either focussed or unfocussed light, suggesting the energy

absorption is through the $Fe(CO)_5$ molecules. Similar effects were noted in IR photodesorption experiments of various organics (see Chapter 4). The initial pulse of $Fe(CO)_5$ is believed to be due to either an annealing effect, in which the annealing energy causes desorption, or the result of molecules in thermodynamically unstable sites desorbed by energy deposited in the layer. In addition, at higher (>monolayer) coverages, a constant flux of Fe-containing species is observed. These are most likely $Fe(CO)_5$ molecules desorbed thermally by dissipation of energy in the $Fe(CO)_5$ layer (although not surface heating). Other possibilities are: (a) the formation of condensation products ($Fe_2(CO)_9$ or $Fe_3(CO)_{12}$); these should also be observed at lower coverage but are not; (b) other photofragments ($Fe(CO)_x$); the formation of surface-bonded species which is possible at low coverage may be blocked at higher coverage, enabling $Fe(CO)_x$ species to be desorbed.

(4.) Observation of Fe(CO)₅ dissociation on Ag(110) indicates the energy transfer rate, which will be faster on silver than silicon or Al₂O₃, occurs on a timescale slower than the Fe(CO)₅ dissociation. Estimates for the energy transfer rate are given in section 5.

4.3 Surface heating

The temperature rise at a solid surface due to incident pulsed radiation is considered. We are interested in the predicted heating effect for the laser conditions we have employed, particularly on the absorbing Si and Ag substrates. The solution to this problem is given by Bechtel:⁵³

$$\Delta T = \frac{I_m (1-R)\tau^{1/2}}{(\pi K \rho c)^{1/2}} \cdot \Theta_s(\theta, \mu, \varsigma, \lambda) = F \cdot \Theta_s$$
(3)

where the temperature rise at the surface, ΔT , is a function of the laser and bulk solid parameters (grouped together as F), and a function Θ_s which gives the time response of the surface as a function of various reduced parameters. The function Θ_s , plotted in Ref. [53], has a maximum value of 2 which we use to calculate the maximum temperature rise. The appropriate constants for the substrates silicon and silver (R, the reflectivity, K, the thermal conductivity, ρ , the density and c, the heat capacity) are summarized in Table 1. The laser parameters are the pulse width, $\tau = 10$ nsec, and the irradiance, I_m , which is approximated as 50 μ J·cm⁻² for the unfocussed laser (temperature rise = ΔT_u) and a factor of 100 higher for the focussed laser to give an upper bound on the temperature rise (ΔT_f). The values calculated (Table 1) show that similar temperature rises can be expected on both Si and Ag in the region of N₂ laser excitation. Surface heating is not important for the unfocussed laser case, but may cause a significant rise if the irradiance is increased by a factor of 100. Thermal effects due to surface heating have not been observed in the reported experiments with either focussed or unfocussed light.

5. Discussion

5.1 Surface Photochemistry

The question of the identity and whereabouts of Fe-containing photoproducts which are the non-volatile by-products of the UV-initiated reaction needs to be resolved. As summarized previously, photolysis of $Fe(CO)_5$ under low temperature conditions results in the generation of $Fe(CO)_4$. Further decarbonylation, which has been inferred to yield $Fe(CO)_2$ species in the gas phase, is halted by quenching of the hot $Fe(CO)_4$ intermediate in the matrix. However, this reactive species can

	·····		<u></u>
	Si	Ag	
$K \; (W/cm \cdot K)$	14.	4.8	
$c \; (cal/mole \cdot K)$	2.3	5.1	
$ ho~({ m g/cm^3})$	2.40	10.5	
. <i>R</i>	0.5	0.3	
<i>F</i> (K)	0.044	0.063	
ΔT_u (K)	0.09	0.13	
ΔT_f (K)	8.8	13.	

Table 1Parameters[†] and Results for Surface Heating Calculation

† Optical constants for R from Refs. [54,55]; all others from Ref. [49].

proceed to form $\operatorname{Fe}_2(\operatorname{CO})_9$ and $\operatorname{Fe}_3(\operatorname{CO})_{12}$ even in the low-temperature environment. Irradiation of silica-adsorbed $\operatorname{Fe}(\operatorname{CO})_5$ likewise results in formation of $\operatorname{Fe}_3(\operatorname{CO})_{12}$ (without $\operatorname{Fe}_2(\operatorname{CO})_9$, due to the instability of this species on the silica). Although $\operatorname{Fe}_3(\operatorname{CO})_{12}$ has a large absorbtion cross-section in the near UV, the compound does not appear to be photoactive. It is thus plausible that $\operatorname{Fe}_3(\operatorname{CO})_{12}$ would be the final product of UV irradiation, and may exhibit a reduced CO yield. The role of subcarbonyl species ($\operatorname{Fe}(\operatorname{CO})_x$) bonded to the surface also needs to be addressed. No evidence for the identity of the photoproduct has been obtained in this study.

Deposition of iron films through the use of UV irradiaion and pyrolytic decomposition of $Fe(CO)_5$ have been previously reported.^{6,53,56,58} Iron films on a single crystal Si(100) sample were induced using both UV irradiation of adsorbed $Fe(CO)_5$ and dosing of a heated surface (~300° C).⁵² Irradiation of adsorbed layers with a *high* energy electron beam mainly stimulated desorption of molecular $Fe(CO)_5$, with the deposited film which was produced being more highly contaminated with carbon and oxygen than from the other two techniques. No mechanistic information was obtained in this study. Decomposition of $Fe(CO)_5$ over soda-lime glass and silver foil was attributed to initiation by low-energy electrons which are generated in the near-surface region by the UV light.^{6,58}

The possible reaction mechanims to be considered for the UV photodissociation of $Fe(CO)_5$ on surfaces are shown schematically in Figure 13. Gas-phase absorption and decomposition is negligible at these pressures (10^{-10} Torr total pressure, with a much lower partial pressure of $Fe(CO)_5$). The photoelectric mechanisms can be discounted as the primary mechanism for $Fe(CO)_5$ decomposition in the Fe(CO)5 DISSOCIATION ON SURFACES

Mechanisms For CO Production

THERMAL

CO Fe(CO)

ADSORBATE ABSORPTION

CO Fe (CO)_x

GAS-PHASE DECOMPOSITION

CO Fe (CO)

ELECTRON TRANSFER

CO Fe(CO)₄

ELECTRON CAPTURE

Figure 13. Mechanisms considered in the UV dissociation of $Fe(CO)_5$ over solid surfaces (after George⁵⁸). The dominant mechanism in our experiment is the direct excitation of adsorbed $Fe(CO)_5$.

reported experiments: the photon energy is below any interband transitions in sapphire and silver. Irradiation of semiconductors with energy above the bandgap energy can induce photodesorption and stimulate reactions at surfaces, and might be expected to be important in the $Fe(CO)_5$ reaction on Si(100). However, the similarity in reaction yield between the Si, Al_2O_3 and silver indicates the electron-induced decomposition mechanism is not of major importance under these conditions. Heating of the substrate is calculated to be negligible for the unfocussed laser conditions. Laser-induced thermal desorption is not observed even with the laser mildly focussed, so thermal decomposition, which would require much higher temperatures (400 - 600 K⁵²), is not a plausible mechanism. We conclude that absorption of the UV light by adsorbed $Fe(CO)_5$ followed by fast dissociation is the only mechanism consistent with our observations.

The results of a dynamical study of UV photodissociation of an adsorbed molecule were recently reported by Bourdon *et al.*⁶⁰ Submonolyer coverages of CH₃Br on an insulator, LiF(001), were irradiated with 222 and 308 nm light, and the time-of-flight of the desorbed species was recorded. Two effects are stimulated by the radiation: a direct photodissociation of the adsorbed CH₃Br, analogous to the dissociation of Fe(CO)₅ reported here, and photodesorption of molecular CH₃Br due to absorption of radiation by the crystal. The photolysis of the CH₃I in the gas phase occurs through excitation to a repulsive state and is ultra-fast (0.6×10^{-13} s), and the same mechanism is postulated for CH₃Br dissociated in the gas phase and on the LiF surface.⁶⁰ Excitation of adsorbed CH₃Br at 222 nm produces CH₃ fragments with 2.2 eV of translational energy, out of 2.6 eV available to products

(from the photon energy minus the energy of the CH_3 -Br bond) - the CH_3 group appears to simply recoil from the surface. The photolytic yield resulting from the estimated coverage agrees with the gas-phase absorption cross section of CH_3Br . The failure to observe products upon 308 nm radiation is also consistent with the low gas-phase absorption in this region. The eventual buildup of a carbon film did not affect the results.

5.2 Energy Transfer Theory

Interest in the phenomenon of energy transfer to surfaces was initially stimulated by observations that the lifetime of fluorescing molecules was modulated by a reflecting metal surface.^{61,62} A layer of rhodamine 6G dye molecules was located at varying distances from a silver metal film, using fatty acid layers, and excited in the visible region. The fluorescence lifetime oscillates with frequency of the order of the wavelength of the emitted light. The interference effects due to the reflection of the field of the oscillating dipole from a mirror accounts well for the data at long distances (d > 1000 Å), but additional and drastic quenching not reproduced by this treatment occurs if the molecule is located close to the surface. More recent experiments that preferentially probe the behavoir of the emitter lifetime in the near-surface region quantify this result. $^{63-67}$ An approach that quantitatively treated the early results and that remains fairly successful even in light of recent experiments is the classical approach of Chance, Prock and Silbey.⁶⁸ Considering a point dipole at a given distance above an infinite and smooth surface, the lifetime of the dipole can be predicted using only the measured dielectric constant of the solid, $\epsilon(\omega)$. The reflection of the surface modifies the radiative lifetime at long distances

while non-radiative energy transfer to the solid dominates the short distance regime, and both can be deduced from this treatment.

Of particular interest here is the nonradiative decay rate and mechanism at short molecule-surface separation, d. The classical theory⁶⁸ predicts a shortdistance energy transfer rate that varies as $1/d^3$, which can be understood on very physical grounds.^{66,67} The well-known Förster dipole-dipole energy transfer rate between two molecules exhibits an $1/d^6$ dependence, from the same considerations that derive the van der Waals induced dipole interaction $\frac{1}{r^6}$ distance dependence. A point dipole above a surface interacts with a three dimensional array of dipoles; integration over this volume leads to a $1/d^3$ dependence of the lifetime. Similarly, a $1/d^4$ dependence might be expected in the case of quenching of the emitter by a two-dimensional (surface) dipole phenomenon.⁶⁶ The results of the Chance, Prock and Silbey model⁶⁸ are summarized here. Consider the classical harmonic, damped oscillator (point dipole) driven by its own electromagnetic field reflected from the surface:

$$\ddot{\mu}+\omega^2\mu=\frac{e^2}{m}E_R-b_0\dot{\mu}, \qquad (4)$$

where ω is the free molecule oscillation frequency, E_R is the reflected field at the dipole position and the damping constant, b_0 , is the inverse lifetime in the absence of the mirror – just the emission lifetime. The decay rate in the presence of the mirror, b, normalized to the free molecule rate is (Eq. 2.7 of Ref. [68]):

$$\hat{b} = b/b_0 = 1 + \frac{3 q n_1^2}{2 \mu_0 k_1^3} Im(E_0), \qquad (5)$$

where n_1 and k_1 are the index of refraction and propagation constant, respectively,

of the medium containing the dipole, μ_0 is the transition dipole moment of the transition and E_0 is the radiated electric field. Determination of the electric field is accomplished using Fourier analysis of the dipole field. The result of this treatment for the normalized decay rate is:^{67,68}

$$\hat{b} = 1 + A \cdot q \times Im \int_{0}^{+\infty} [B \cdot R^{p} + C \cdot R^{s}] e^{-2l_{1}\hat{d}_{1}} \frac{u^{3}}{l_{1}} du, \qquad (6)$$

where u is the wavevector normalized to the photon wavevector, $\mathbb{R}^{p,s}$ are the complex Fresnel reflection coefficients for incident light p- or s-polarized (parallel or perpendicular) to the plane of incidence, \hat{d} is the normalized dipole-surface distance, $l_1 = -i(1 - u^2)^{1/2}$, and A, B and C are factors that depend on the orientation of the dipole (also functions of u). The second term expresses the modification of the fluorescence yield as an integral over all wavevectors which are the Fourier components of the dipole field. The important point here is that the integration can be broken down into regions associated with physical mechanisms: for 0 < u < 1, or wavelengths longer than the radiating field, the decay process is radiative due to emission of a photon; for $1 < u < \infty$, non-radiative processes account for the decay. Near u = 1 resonant decay pathways exist in which the light wavevector nearly matches that of the surface mode - e.g., in the visible region, surface plasmons on silver or polaritons in semiconductors can quench the field of the dipole. The rest of the high wavevector contributions to the decay rate represent all other possibilities for energy loss to the solid, which within the classical model are electron scattering mechanisms. These contributions become more important to the integral at smaller distances to the surface, where the high wavevector components dominate.

Figure 14 depicts the $Fe(CO)_5$ dissociation experiment described within the

 $\mathbf{k}_D \gg \mathbf{k}_F$

Figure 14. Schematic of (a) excited gas-phase $Fe(CO)_5$ which relaxes by fluorescence (with rate k_F) and dissociation (k_D) . For $Fe(CO)_5$, $k_D \gg k_F$ - that is, no fluorescence is observed from any excited state of $Fe(CO)_5$. The fluorescence rate of $Fe(CO)_5$ is an important quantity only for calculation of the quenching rate constant (see text). (b) The addition of a quenching mechanism (k_Q) representative of energy transfer into the solid. With excitation at 337 nm, we find $k_D > k_Q$ for $Fe(CO)_5$ on the Ag(110), Si(100) and Al₂O₃ surfaces.

- 223 -

classical model. The free molecule case is shown in Figure 14(a), with the dissociation rate dominating the relaxation. In Figure 14(b) the energy transfer rate from the excited state to the solid competes with the decarbonylation rate. This modelling also assumes an intermediate state with a finite lifetime, consistent with a recent theoretical study of the $Fe(CO)_5$ decomposition⁶⁹ which suggests absorption occurs into the first singlet state and crosses into the triplet manifold. The initial excitation should be better classified as occurring into a state of mixed singlet-triplet character (see Section 2), so it appears reasonable to assume an intermediate state.

To calculate the rate of non-radiative energy transfer to the surface we need the free molecule relaxation rate – that is, the radiative decay rate predicted for $Fe(CO)_5$ in the absence of dissociation – which can be derived from the oscillator strength of the transition and the Einstein relations. The oscillator strength is⁷⁰

$$f = 4.32 \times 10 - 9 \int \epsilon_{abs}(\omega) d\omega \tag{7}$$

where the integral over the absorption strength can be approximated by the maximum ϵ_{abs} times the halfwidth. For the Fe(CO)₅ absorption at 337 nm we estimate $\epsilon_{abs} \sim 400 M^{-1} cm^{-1}$ and an upper limit for $\delta \omega_{1/2}$ is 60 nm. This yields an emission lifetime of 2 μ sec. The energy transfer rate in the limit of short distance becomes:⁶⁸

$$b_{ET} = b_0 \frac{3(\lambda/2\pi)^3 n_2 k_2}{2d^3 n_1 |\epsilon_1 + \epsilon_2|^2} = b_0 \frac{\beta}{d^3},\tag{8}$$

where the dielectric constants for silver $(337 \text{ nm})^{55}$ and silicon $(350 \text{ nm})^{54}$ are -0.907+0.081 i and 14.7+29.3 i, respectively. The calculated excited state lifetimes at various distances are collected in Table 2. We have assumed a 337 nm emission

Table 2Results of Energy Transfer Calculations

$\beta(\mathrm{cm}^{-3})$	$d(\text{\AA})$	eta/d^3	$ au(au_0=2\mu { m sec})$	$ au(au_0=10\mu\mathrm{sec})$
6.16×10^{-16}	1.0	$6.2 imes 10^8$	$3.2 imes 10^{-15}$	1.6×10^{-14}
	2.0	$7.7 imes10^7$	$2.6 imes10^{-14}$	$1.3 imes 10^{-13}$
Ag	4.5	$6.8 imes10^6$	$2.9 imes 10^{-13}$	$1.4 imes 10^{-12}$
	10.	$6.2 imes 10^5$	$3.2 imes 10^{-12}$	1.6×10^{-11}
$3.10 imes 10^{-18}$	1.0	$3.1 imes10^6$	$6.5 imes 10^{-13}$	$3.2 imes 10^{-12}$
	2.0	$3.9 imes 10^5$	$5.1 imes10^{-12}$	$2.6 imes 10^{-11}$
Si	4.5	$3.4 imes10^4$	$5.9 imes10^{-11}$	$2.9 imes 10^{-10}$
	10.	3 .1 × 10 ³	$6.5 imes 10^{-10}$	$3.2 imes 10^{-9}$

wavelength, since we have no estimate for the energy of the triplet state. For an excited Fe(CO)₅ molecule described as a dipole with $\tau_0 = 2 \ \mu \text{sec}$ at the van der Waals radii of $Fe(CO)_5$ (~ 4.5Å) from the silver surface, the calculated energy transfer rate is $\sim 10^7$ faster than the emission lifetime, and an order of magnitude faster than the 2 psec dissociation rate estimate. The dissociation and quenching rates are equal for $\tau_0 = 10 \ \mu \text{sec}$ (from using a smaller estimate of the width of the absorption feature¹⁷). Because of the d^3 dependence, the quenching rate drops by an order of magnitude if the dipole is spaced an additional 5 Å from the surface. The quenching rate on silicon is smaller by a factor of 200. These calculations show the qualitative behavior one would expect for the quenching rate of the two surfaces as a function of distance, but quantitatively predict severe attenuation of the $Fe(CO)_5$ dissociation should be observed on the silver surface. Since no significant quenching of the decarbonylation yield is observed over silver, the quenching rate must in fact be at least two orders of magnitude slower than the dissociation rate. Refinements to the simple classical theory (vide infra) will increase the calculated rate. The possible enhancement of the photochemical rate by surface roughness is discussed in Section 5.3, but we note here that roughness is also expected to enhance the quenching rate⁸⁴. Thus, the dissociation rate of Fe(CO)₅ appears to be an order of magnitude faster than the present upper limit of 2 psec.²⁴

The assumptions in the theory of Chance *et al.* need to be modified as the dipole-surface distance become small. In the classical model, the decay mechanisms are only those which are probed by the optically-measured dielectric constant, $\epsilon(\omega)$, i.e., only local effects that do not depend on electron correlation. Non-local effects

have been theoretically taken into $\operatorname{account}^{71,72}$ with the use of a modified form of the dielectric constant, $\epsilon(\omega, k)$. The result is the inclusion of the electron-hole generation mechanism which, because of its contribution at high wavevector, will be an important damping mechanism for dipoles at short distance from the solid. In addition, due to momentum constraints, the unphysical singularity in the classical result at high wavevector (i.e., the energy transfer rate goes to infinity at d = 0) is removed. A d^{-4} distance dependence, important at short distances – d < 30Å in the visible and longer distances, d < 100 Å, in the infrared – is predicted in the Persson theory,⁷² and has been observed in the visible region on silver.⁶⁶ The use of non-local optical theory has accounted for the ultra-fast (> 10¹⁴ s⁻¹) decay rates implied by linewidth measurements on Al^{16a} and Ag.⁷³

Another difficulty with the classical model is the sharp boundary at the interface. Metiu⁷⁴ first used a jellium model of the surface and obtained a smoothly varying dielectric function across the solid surface. The results of his calculations predict that the classical theory will successfully model the energy transfer rate down to ~6 Å! The improved modelling of the surface potential has also been employed in recent work by Persson.⁷⁵ Specific cases of the energy transfer rate in chemisorbed states which involves electron overlap at these short distances have also been modelled,⁷⁶ but these are not expected to be of importance in the case of weakly bound $Fe(CO)_5$.

5.3 Surface-enhanced effects

The observation of the surface-enhanced Raman (SERS) effect generated considerable excitement.⁷⁷ It is now known that the primary component of the

enhancement is due to plasma resonances in surface structures present on a rough surface.⁷⁸⁻⁸⁰ Particularly noteworthy are the experiments of Campion, *et al.*,⁷⁹ in which no Raman enhancement on smooth single-crystal silver surfaces was observed, and that of Chen and Osgood,⁸⁰ which demonstrated the enhanced fields surrounding elliptical silver particles irradiated near the plasma resonance. Theoretical treatments⁷⁸ have come to similar conclusions about the source of the Raman enhancement, and predictions of enhanced photochemistry have been advanced,⁸¹ and since then been demonstrated.^{80,82,83} The yield of two-photon generated surface carbon production from irradiation of aromatics over a roughened silver surface was seen to maximize at ~ 20 Å,⁸³ perhaps indicative of a competition between the enhanced photochemistry effect and the shorter-range energy transfer process.⁸¹ Surface roughness is also theoretically expected to *increase* the energy transfer rate beyond the classical model, even for long distances ($d \sim 50$ Å).⁸⁴

Since silver is an excellent substrate on which to obtain enhancement effects, the characterization of the surface morphology is an important consideration. As recounted in the experimental section, care was taken to polish and anneal the crystal, but imperfections and corrugation were still present. Although at the present time we believe these effects to be minimal, enhancement effects due to rough surfaces are known to diminish or disappear as the crystal surface smooths over the period of days to weeks (unfortunately for those trying to generate such effects!),³⁶ so the long-time reproducibility of the photochemical behavior will indicate the importance of roughness features. Short-term tests which will provide an assessment of the magnitude of this possible effect given the available equipment include: the intentional roughening of the surface; the spacing the reactant $Fe(CO)_5$ molecule off of the surface to search for a maxima in the yield a short distance away from the surface – the yield near the smooth surface should maximize at long distances, if indeed there is some change in the yield of dissociation.

6. Conclusions

We report the observation of laser-induced dissociation of $Fe(CO)_5$ on three surfaces, Al_2O_3 , Si(100) and Ag(110), demonstrating the fast dissociation successfully competes with mechanisms of energy transfer into the solid. Photolytic effects are observed without competing processes such as pyrolytic or electroninduced dissociation. The dissociation yield, as monitored by CO production, is similar on the three surfaces, suggesting the reaction mechanism does not directly involve the substrate. Dissociation via direct absorption of 337 nm light by the metal carbonyl has been postulated. The inferred Fe-containing photoproducts of the dissociation have not been identified.

7. Future Work

The present report is a preliminary study, and there are many continuations that would both better characterize the studied system and provide extensions to other systems. Of primary importance is identification of photoproducts and characterization of the surface species. The use of tunable UV radiation would provide clues to the nature of the absorbing species. Other organometallics with large absorption cross-sections in this wavelength region such as $Cr(CO)_6$ or $Mn_2(CO)_{10}$ have parent ions that are too massive to observe with the present mass spectrometer, but would also be interesting to study. More importantly, surface spectroscopies such as EELS would be quite valuable to identify surface species.

It would be interesting to observe whether the ultra-fast $Fe(CO)_5$ reaction would occur on a free-electron metal, such as Al, where quenching of electronic energy appears to be extremely efficient.¹⁶ The use of other small molecular systems with slower dissociation rates would be advantageous for many reasons. The smaller molecule would enable the "classical dipole" to approach closer to the surface and assuming attenuation of the dissociation rate can be observed, information would be gained from a distance dependence of the reaction rate. Simplification of the reaction possibilities and the capability to observed reaction products in the mass spectrometer would be quite advantageous. A possible systems for study would be H_2CO , which exhibits a much slower dissociation rate (~10⁷ s⁻¹) and has been well-studied on a number of surfaces.

Differential pumping of the mass spectrometer in the present system is needed to obtain the important TOF measurements to differentiate between surface mechanisms. The distribution of translational energy would indicate whether the photolytically generated CO is equilibrated at the surface temperature or a direct product of the dissociation event. The availability of state-specific detection techniques will provide further characterization of the photoproducts.

Acknowlgements

I would like to thank Prof. A. Kuppermann for the generous loan of the N_2 laser, Roya Maboudian for the sapphire crystal and Malina Hills for assistance and guidance in polishing the silver crystal. I also appreciate the critical reading of this chapter by Malina Hills and Paul Whitmore. This work was supported by the Office of Naval Research, contract no. N00014-82-K-0506.

References

- 1. T.F. Deutsch, in Laser Processing and Diagnostics, ed. D. Bäuerle (Springer-Verlag, Berlin, 1984).
- 2. R.M. Osgood, Jr., Ann. Rev. Phys. Chem. 34 (1983) 77.
- 3. D. Bäuerle, in Laser Processing and Diagnostics, ed. D. Bäuerle (Springer-Verlag, Berlin, 1984).
- D.J. Ehrlich, R.M. Osgood, Jr. and T.F. Deutsch, J. Vac. Sci. Tech. 20 (1982) 738.
- R. Solanki, P.K. Boyer, J.E. Mahan and G.J. Collins, *Appl. Phys. Lett.* 38 (1981) 572.
- 6. P.M. George and J.L. Beauchamp, Thin Solid Films 67 (1980) L25.
- G.L. Geoffroy and M. Wrighton, Organometallic Photochemistry (Academic, New York, 1979);
 M. Wrighton, Chem. Rev. 74 (1974) 401.
- 8. J.K. Burdett, Coord. Chem. Rev. 27 (1978) 1.
- 9. M. Poliakoff, Chem. Soc. Rev. (1978) 527.
- M.A. Duncan, T.G. Dietz and R.E. Smalley, J. Am. Chem. Soc. 103 (1981) 5245.
- M.A. Hanratty, C.A. Wight and J.L. Beauchamp, to be published;
 M.A. Hanratty, Ph.D. Thesis, California Institute of Technology, 1985.
- 12. J.L. Graff, R.D. Sanner and M.S. Wrighton, J. Am. Chem. Soc. 101 (1979) 273;

D.J. Perettie, M.S. Paguette, R.L. Yates and H.D. Gafney, in Laser Applications in Chemistry, eds., K.L. Kompa and J. Wanner (Springer-Verlag, Berlin, 1982).

- R.L. Whetten, K.-J. Fu and E.R. Grant, J. Am. Chem. Soc. 104 (1982) 4270;
 P.A. Teng, F.D. Lewis and E. Weitz, J. Phys. Chem. 88 (1984) 4895.
- M.A. Duncan, T.G. Dietz and R.E. Smalley, Chem. Phys. Lett. 44 (1979) 415;
 D.P. Gerrity, L.J. Rothberg and V. Vaida, Chem. Phys. Lett. 74 (1980) 1;
 G.J. Fisanick, A. Gedanken, T.S. Eichelberger IV, N.A. Kuebler and M.R. Robin, J. Chem. Phys. 75 (1981) 5215.
- 15. O. Madelung, Introduction to Solid State Theory, (Springer-Verlag, Berlin, 1978).
 C. Kittel, Introduction to Solid State Physics, (Wiley, New York, 1976).
- (a) Ph. Avouris, D. Schmeisser and J.E. Demuth, J. Chem. Phys. 79 (1983) 488;
 (b) J.E. Demuth and Ph. Avouris, Phys. Rev. Lett. 47 (1981) 61.
- M. Dartiguenave, Y. Dartiguenave and H.B. Gray, Bull. Soc. Chim. Fr. 12 (1969) 4223.
- C.F. Koerting, K.N. Walzl and A. Kuppermann, to be published;
 C.F. Koerting, Ph.D. Thesis, California Institute of Technology, 1985.
- 19. The levels with solid lines are derived from assuming identical Fe-CO bond dissociation energy (28 kcal/mole). The dashed lines from are an experimental determination which indicates the initial Fe(CO)₄-CO dissociation is much higher in energy than subsequent ones;²⁰ Another more recent experiment²¹ has found the first dissociation energy to be close to the average Fe-CO bond value.

- 20. P.C. Engleking and W.C. Lineberger, J. Am. Chem. Soc. 101 (1979) 5569.
- 21. K.E. Lewis, D.M. Golden and G.P. Smith, J. Am. Chem. Soc. 106 (1984) 3905.
- (a) G. Nathanson, B. Gitlin, A.M. Rosan and J.T. Yardley, J. Chem. Phys. 74 (1981) 361;
 (b) J.T. Yardley, B. Gitlin, G. Nathanson, and A.M. Rosan J. Chem. Phys. 74 (1981) 370.
- A.J. Oudekirk and E. Weitz, J. Chem. Phys. 79 (1983) 1089.
 A.J. Oudekirk, P. Wermer, N.L. Schultz and E. Weitz, J. Am. Chem. Soc. 105 (1983) 3354.
- 24. R.L. Whetten, K.-J. Fu and E.R. Grant, J. Chem. Phys. 79 (1983) 4899.
- (a) M. Poliakoff and J.J. Turner, J. Chem. Soc. Dalton (1974) 210.
 (b) M. Poliakoff and J.J. Turner, J. Chem. Soc. Dalton (1974) 2276.
 (c) M. Poliakoff and J.J. Turner, J. Chem. Soc. Dalton (1973) 1351.
 (d) M. Poliakoff and J.J. Turner, J. Chem. Soc. A. (1971) 2403.
 (e) M. Poliakoff and J.J. Turner, J. Chem. Soc. A. (1971) 654.
- D.R. Tyler, R.A. Levenson and H.B. Gray, J. Am. Chem. Soc. 100 (1978) 7888.
- J.J. Turner, J.K. Burdett and M. Poliakoff, Pure and Appl. Chem. 49 (1977) 491.
- 28. T.R. Fletcher and R.N. Rosenfeld, J. Am. Chem. Soc. 105 (1983) 6358.
- 29. W.H. Breckenridge and N. Sinai, J. Phys. Chem. 85 (1981) 3557.
- R. Bonneau and J.M. Kelly, J. Am. Chem. Soc. 102 (1980) 1220;
 J.A. Welch, K.S. Peters and V. Vaida, J. Phys. Chem. 86 (1982) 1941;
 J.D. Simon and K.S. Peters, Chem. Phys. Lett. 98 (1983) 53.

- 31. R.N. Pruetz and J.J. Turner, J. Am. Chem. Soc. 97 (1975) 4791.
- 32. P. Feulner and D. Menzel, J. Vac. Sci. Tech. 17 (1980) 662.
- 33. S. Samson, E. Goldish and C.J. Dick, J. Appl. Cryst. 13 (1980) 425.
- 34. C.T. Campbell and S.M. Valone, J. Vac. Sci. Tech. A3 (1985) 408.
- T.E. Felter, W.H. Weinberg, P.A. Zhdan and G.K. Boreskov, Surf. Sci. 97 (1980) L313.
- 36. P.M. Whitmore, personal communication.
- 37. C.T. Campbell and M.T. Paffett, Surf. Sci. 143 (1984) 517.
 H.A. Engelhardt and D. Menzel, Surf. Sci. 57 (1976) 591.
 A.M. Bradshaw, A. Engelhardt and D. Menzel, Ber. Bunsenges. Physik. Chem.
 76 (1972) 500.
- 38. J.C. Hemminger, personal communication.
- 39. M. Bowker, M.A. Barteau and R.J. Madix, Surf. Sci. 92 (1980) 528.
 H. Albers, W.J.J. van der Wal, O.L.J. Gijzeman and G.A. Bootsma, Surf. Sci. 77 (1978) 1.
- 40. G. Ertl and J. Küppers, Low Energy Electrons and Surface Chemistry, (Verlag Chemie, Weinheim, 1974).
- R.F. Steiger, J.M. Morabito, Jr., G.A. Somorjai and R. H. Muller, Surf. Sci. 14 (1969) 279.
- W.J. Gignac, R.S. Williams and S.P. Kovalczyk, preprint;
 R.S. Williams, personal communication;
 P.S.P. Wei and A.W. Smith, J. Vac. Sci. Tech. 9 (1972) 1209.
- 43. Y.W. Chung, W. Siekhaus and G.A. Somorjai, Surf. Sci. 58 (1976) 341;

F. Meyer and G.A. Bootsma, Surf. Sci. 16 (1969) 221.

- R.E. Winters and R.W. Kiser, Inorg. Chem. 3 (1964) 699;
 M.S. Foster and J.L. Beauchamp, J. Am. Chem. Soc. 97 (1975) 4808.
- J.W. McAllister and J. M. White, J. Chem. Phys. 58 (1973) 1496.
 D. Lichtman and Y. Shapira, CRC Critical Rev. Solid State Mater. Sci. 8 (1978) 93.
- 46. P.A. Redhead, Vacuum (1962) 203.
- 47. J. King, Jr. and S.W. Benson, J. Chem. Phys. 44 (1966) 1007;
 W.H. Wade and N. Hackerman, J. Phys. Chem. 64 (1960) 1196.
- Very little study of adsorption on Al₂O₃ surfaces has been reported; see: V.F. Kiselev and O.V. Krylov, Adsorption Processes on Semiconductors and Dielectri Surfaces I (Springer-Verlag, Berlin, 1978).
- 49. AIP Handbook of Physics, ed., D.E. Gray (Addison-Wesley, New York, 1970).
- 50. B. Sexton, Surf. Sci. 102 (1981) 271;
 M. Bowker and R.J. Madix, Surf. Sci. 95 (1980) 190.
- 51. W. Ho, AVS Symposium abstract, 1984.
- 52. J.S. Foord and R.B. Jackman, Chem. Phys. Lett. 112 (1984) 190.
- 53. J.H. Bechtel, J. Appl. Phys. 46 (1975) 1585.
- 54. D.E. Aspnes and A.A. Studna, Phys. Rev. B 27 (1983) 985;
 H.R. Philipp and H. Ehrenreich, Phys. Rev. 129 (1963) 1550.
- 55. P.M. Whitmore, unpublished data.
- 56. N. Bottka, P.J. Walsh and R.Z. Dalbey, J. Appl. Phys. 54 (1983) 1104.

- 57. R.L. Jackson and M.R. Trusheim, J. Am. Chem. Soc. 104 (1982) 6590.
- 58. P.M. George, Ph.D. Thesis, California Institute of Technology, 1980.
- J.C. Hemminger, R. Carr and G.A. Somorjai, *Chem. Phys. Lett.* 57 (1978) 100.
- 60. E.B.D. Bourdon, J.P. Cowin, I. Harrison, J.C. Polanyi, J. Segner, C.D. Stanners and P.A. Young, J. Phys. Chem. 88 (1984) 6100.
- 61. H. Kuhn, J. Chem. Phys. 53 (1970) 101.
- 62. K.H. Drexhage, J. Luminescence 1/2 (1970) 693.
- R. Rossetti and L.E. Brus, J. Chem. Phys. 76 (1982) 1146;
 R. Rossetti and L.E. Brus, J. Chem. Phys. 73 (1980) 572.
- 64. P.M. Whitmore, H.J. Robota and C.B. Harris, J. Chem. Phys. 77 (1982) 1560;
 P.M. Whitmore, H.J. Robota and C.B. Harris, J. Chem. Phys. 76 (1982) 740;
 A. Campion, A.R. Gallo, C.B. Harris, H.J. Robota and P.M. Whitmore, Chem. Phys. Lett. 73 (1980) 447.
- P.M. Whitmore, A.P. Alivisatos and C.B. Harris, *Phys. Rev. Lett.* 50 (1983) 1092.
- 66. A.P. Alivisatos, D.H. Waldeck and C.B. Harris, J. Chem. Phys. 82 (1985) 541.
- 67. P.M. Whitmore, Ph.D. Thesis, U.C. Berkeley, 1982.
- 68. R.R. Chance, A. Prock and R. Silbey, Adv. Chem. Phys. 47 (1978) 1.
- C. Daniel, M. Bénard, A. Dedieu, R. Wiest and A. Veillard, J. Phys. Chem.
 88 (1984) 4805.
- 70. W. Guillory, Molecular Spectroscopy, (Academic, New York, 1900).

- G.W. Ford and W.H. Weber, Surf. Sci. 109 (1981) 451.
 W.H. Weber and G.W. Ford, Phys. Rev. Lett. 44 (1980) 1774.
- 72. B.N.J. Persson, J. Phys. C 11 (1978) 4251.
- 73. Ph. Avouris and J.E. Demuth, J. Chem. Phys. 75 (1981) 4783.
- 74. G.E. Korzeniewski, T. Maniv and H. Metiu, J. Chem. Phys. 76 (1982) 1564.
- B.N.J. Persson and N.D. Lang, Phys. Rev. B 26 (1982) 5409;
 Ph. Avouris and B.N.J.Persson, J. Phys. Chem. 88 (1984) 837.
- 76. B.N.J.Persson and Ph. Avouris, J. Chem. Phys. 79 (1983) 5156.
- R.P. van Duyne, in Chemical and Biochemical Applications of Lasers, vol. 4, ed. C.B. Moore (Academic, New York, 1979).
- 78. J. Gersten and A. Nitzan, J. Chem. Phys. 75 (1981) 1139, and references therein.
- 79. C.J. Chen and R.M. Osgood, Phys. Rev. Lett. 50 (1983) 1705.
- 80. A. Campion and D.R. mullins, Chem. Phys. Lett. 94 (1983) 576.
- A. Nitzan and L.E. Brus, J. Chem. Phys. 74 (1981) 5321;
 A. Nitzan and L.E. Brus, J. Chem. Phys. 75 (1981) 2205.
- 82. S. Garoff, D.A. Weitz and M.S. Alverez, Chem. Phys. Lett. 93 (1982) 283.
- 83. G.M. Goncher, C.A. Parsons and C.B. Harris, J. Phys. Chem. 88 (1984) 4200.
- 84. J. Arias, P.K. Aravind and H. Metiu, Chem. Phys. Lett. 85 (1982) 404.

APPENDIX 1

VIBRATIONAL PREDISSOCIATION SPECTRUM

OF METHYL FLUORIDE DIMER

In work prior to the study described in Chapter 3, we attempted to obtain the vibrational predissociation spectrum of isolated van der Waals complexes of CH_3F . The dimers proved to be quite difficult to isolate, due to the large dipole of CH_3F . Recently, we managed to obtain the dissociation spectrum of methyl fluoride dimer, $(CH_3F)_2$, presented in Figure 1. The lowest profile most clearly presents the structure that is obvious in the spectra obtained over a variety of conditions. There is no additional narrowing of the profile down to 660 Torr backing pressure but a loss of peak intensity which is observed; this could be due to either a higher rotational temperature at the lower pressure or loss of $He \cdot (CH_3F)_2$ complexes, if they contribute to the observed spectrum. The profile is very broad (~20 cm⁻¹) and exhibits structure which is partially resolved by the CO_2 laser. The extreme broadness suggests a substantially lifetime broadened spectrum, on the order of that observed for $(C_2H_4)_2$. The structured contour should make it possible to model the dimer structure.

Figure 1. Vibrational predissociation spectrum of $(CH_3F)_2$.

APPENDIX 2

BAKEOUT CONTROLLER SYSTEM

•

.
BAKEOUT CONTROLLER FOR THE USE OF HELUIM CLOSED-CYCLE REFRIGERATORS IN UHV APPLICATIONS*

Francis G. Celii, † Paul M. Whitmore and Kenneth C. Janda‡

Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, California 91125, USA

ABSTRACT

Simple control electronics are described which provide automated bakeout of an UHV chamber equipped with a helium closed-cycle refrigerator. By preventing the refrigerator from reaching elevated temperatures (T \leq 50° C) during bakeout, these devices can be utilized in the ultra-high vacuum environment.

^{*} Contribution No. 7236

[†] Atlantic Richfield Foundation Fellow

[‡] Camille and Henry Dreyfus Foundation Fellow

1. Introduction

The helium closed-cycle refrigerator provides a convenient way to achieve ultra-low temperature without the daily consumption of cryogenic liquids. Matrix isolation spectroscopists today utilize these as cryostats almost exclusively,¹ and they are widely used as the heart of cryopumps.² There have been a number of recent crystal manipulator designs based on the use of flowing cryogens.³⁻⁷ Devices such as the CTI Model 350 refrigerator,⁸ would be useful as an alternative to cooling crystal samples for surface science applications – the 350 provides 2 W of cooling power at 15 K (second stage) with 20 W of heat load at 77 K (first stage) – but they are not UHV compatible. Joints that are normally soft-soldered can be replaced with silver-soldered joints,⁹ but lead shot in the displacer as well as the piston assembly in the head which is not rated above 150° F preclude the necessary practice of a 150-200° C bakeout. We have found, however, that with careful control of the refrigerator temperature during bakeout, these devices can be utilized in the UHV environment. This note describes the temperature sensing and control electronics we have employed for this purpose.

2. Bakeout Control System

As implemented in our system, the bakeout control system is configured in 3 sub-units, as illustrated in Figure 1:

a.) The bakeout controller houses the thermocouple amplifier, which senses the temperature of the refrigerator's second cold stage. An additional amplifier stage provides a convenient monitor voltage, and comparators establish underand over-temperature set points.

Figure 1. Schematic of the bakeout controller system.

- 244 -

- b.) The refrigerator pulser responds at the first (lower) set point of the bakeout controller to activate a cooling cycle of the refrigerator.
- c.) The oven interlock severs power to the bakeout ovens in the event of an overtemperature condition (second set point).

The heart of the bakeout controller (Figure 2) is the AD595, a thermocouple amplifier with internal ice-point reference.¹⁰ A particularly convenient feature of this amplifier is that the sensing thermocouple junction can be grounded — in the case of a differential amplifier, one would need to electrically isolate the junction while maintaining good thermal contact. The standard 10 mV/° C output of the AD595 is additionally amplified by a second stage (×10), providing a monitor output as well as input to the comparators. The comparators (LM321) provide the levels to open or close relays in the refrigerator pulser and oven interlock.

The refrigerator pulser (Figure 3) provides automated control of both the refrigerator compressor unit and the cold head piston. A pair of 3-conductor 14-gauge cables are interposed behind the two switches on the front panel of the compressor unit. This is the only modification made to the original compressor unit and is accomplished so that the cover can still be conveniently removed. The signal from the bakeout controller, through a low-current relay, initiates a Cycl-Flex $0\rightarrow 10$ minute timer¹¹ which in turn activates the compressor. A time-delay relay allows the compressor to stabilize (~10 sec) before providing power to the cold head piston. A manual override provides constant operation for crystal cooling purposes.

The oven interlock (Figure 4) provides power to the bakeout ovens through a

Figure 2. Diagram of the bakeout controller.

Figure 3. Diagram of the refrigerator pulser.

Figure 4. Diagram of the oven interlock. The segment in parentheses can be implemented if the oven temperature can reach over 200°C.

latched relay. Should the refrigerator not remain sufficiently cool, the bakeout would be stopped. Provision could be made here for maintaining the bakeout temperature below a maximum value, but this is not a problem in our system.

3. Operation

A sample ion-gauge trace during a bakeout using this controller system is shown in Figure 5. The gradual decrease in chamber pressure is modulated by the refrigerator cooling cycles. Gases desorb as the refrigerator surface warms to $35 \,^{\circ}$ C, the first set point. Chamber pressures in the low 10^{-7} Torr range are achieved during bakeout, and titanium pumping after cooldown routinely results in pressures of $1 - 2 \times 10^{-10}$ Torr. Refrigerator pulses of 5 - 7 minutes are required every 20 - 30 minutes during the 200° C bakeouts. The piston assembly in the cold head is located outside the ovens, and remains relatively cool with the use of a fan.

Using the 2-stage cooling provided by the CTI 350, we have achieved crystal temperatures as low as ~35 K (using a calibrated chromel vs. gold-5% iron thermocouple pair) with heat conduction through a high-grade (99.999%, or 5N grade) flexible Cu braid,¹² to allow crystal rotation on a manipulator with $2\frac{1}{2}$ -inch offset, and without extensive crystal shielding. Presumably the design of this low-temperature sample mount could be improved. We have also used a high-temperature mount, which is equipped to heat samples to 1500 K, and with this configuration the crystal cools to 120 K. In addition to providing the two cold stations, the refrigerator acts as in integral cryopump during operation. A multichannel array gas doser is therefore desirable so that samples may be preferentially adsorbed on the crystal sample rather than the refrigerator. The

Figure 5. Ion gauge trace obtained during bakeout of UHV chamber. The chamber pressure is modulated by on-off cycles of the refrigerator.

.

refrigerator being pulsed on-off during bakeout prevents H_2O and other condensibles from freezing onto the cold refrigerator surfaces and remaining in the chamber.

Acknowledgement

We are grateful to Professor Sten Samson for advice on low-temperature techniques, as well as for the thermocouple wire and the loan of a Si diode system, for temperature calibration.

,

References

- A.J. Barnes and H.E. Hallam, in Vibrational Spectroscopy Modern Trends, A.J. Barnes and W.J. Orville-Thomas, eds. (Elsevier, New York, 1977).
- M. Michaud and L. Sanche, J. Vac. Sci. Tech. 17 (1980) 274;
 R.A.A. Kubiak, W.Y. Leong, R.M. King and E.H.C. Parker, J. Vac. Sci. Tech.
 A1 (1983) 1872.
- 3. J.A. Stroscio and W. Ho, Rev. Sci. Instrum. 55 (1984) 1672.
- 4. P.A. Thiel and J.W. Anderegg, Rev. Sci. Instrum. 55 (1984) 1669.
- N.J. DiNardo, J.E. Demuth, W.A. Thompson and P.G. Ledermann, Rev. Sci. Instrum. 55 (1984) 1492.
- 6. E.E. Chaban and Y.J. Chabal, Rev. Sci. Instrum. 54 (1983) 1031.
- 7. I. Arakawa and Y. Tuzi, Rev. Sci. Instrum. 55 (1984) 617.
- CTI Cryogenics, Kelvin Park, Waltham, MA 02154; the same model refrigerator can be purchased mounted on a conflat flange from: Cryosystems, Inc., 190 Heatherdown Dr., Westerville, OH 43081.
- 9. G.L. Fowler and J.A. Panitz, Rev. Sci. Instrum. 51 (1980) 1730.
- 10. Analog Devices AD595 (pre-trimmed for chromel-alumel) or AD594 (ironconstatan).
- 11. Cycl-Flex HP54, Eagle Signal, 736 Federal St., Davenport, IA 52803.
- 12. S. Samson, E. Goldish and C.J. Dick, J. Appl. Cryst. 13 (1980) 425.