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ABS-TRAC-T .

In Fart I of this thesis, the electrochemical properties of 

cobalt(p-2,2'-bipyridine and coba!t(I)-6,6'-dimethyl-2,2'-bipyridine 

complexes were investigated, including their reactions with reducible 

substrates and their adsorption on mercury electrodes.

Electron transfer rate constants measured for cyclooctatetraene 

and cis-[(C5H5)Fe(CO)P(C6H5)2]2> molecules which undergo large intra­

molecular rearrangements upon electron transfer, in non-aqueous 

solvents with various tetr∑ukyammonium salts as supporting electro­

lytes are presented in Part ∏. The electrode kinetics were measured 

by cyclic voltammetry, chronocoulometry and AC impedance techniques. 

Values of the rate constants found were as large as 0.30 cm/sec.

Synthesis and adsorption behavior of several novel substituted 

ruthenium ammine complexes, are discussed in Part III. The adsorption 

on mercury was used to distinguish between the two thiocyanate linkage 
isomers, Ru(NH3)5NCS2+ and Ru(NH3)5SCN2+. The coordination proper­

ties of ruthenium(n) were used to prepare trans-Ru(NH3)4(NCS))4-vinyl- 

pyridine)Ru(EDTA), a binuclear ruthenium species.
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Part I

Electrochemistry and Adsorption of Bis 2,2'-Bipyridinecobalt(I) and 

Bis 6,6' -Dim ethy 1-2,2' -Bipyridinecobalt(I) in Acetonitrile
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INTRODUCTION

1 2 'Several recent reports by Anson and coworkers » have investi­

gated the electrochemical and catalytic behavior of cobalt-2,2'-bipyri­
dine complexes in acetonitrile. In the first of these, * the previously 

claimed catalytic reduction of acrylonitrile by a low-valent cobalt
3

tris-bipyridme species was shown not to involve reduction of the 

acrylonitrile by Co(I) but instead there was formation of an adduct 

between the Co (I)-bipyridine material and acrylonitrile. This adduct 

showed a new wave for reduction of Co(I) to Co(-I) which was at a 

potential positive of that for the Co(I) to Co(-I) wave in the absence of 

acrylonitrile, and had been mistakenly taken for a catalytic reduction 

^ve. Formation of adducts with the Co(I)-bipyridine complex was 

also found to occur for other vinyl monomers. An important result 
from this work* was that the half-wave potential for reduction of the 

Co(∏) tris-bipyridine species to the Co(I) complex was independent of 

added ’’free” 2,2' -bipyridine concentration, thus implying no loss of 

coordinated bipyridine ligand from the Co(I) compound during its 

electrolytic formation. Production of Co(bipy)^ (bipy = 2,2'-bipyridine)

by electroreduction of the tris-bipyridine cobalt(II) is in agreement
4 5 6-9with that reported earlier ’ but contrary to investigations.

The Co(bipy)^ is a characteristic dark blue with a λιnax at 601 nm 

(c ~ 5,200), * which has been assigned to a metal-to-ligand charge 

transfer. In the absence of any sub∣strates, the cobalt tris-bipyridine 

complexes show well-behaved, reversible behavior for the Co(III) to 

Co(II) to Co(I) waves on both mercury and platinum electrodes.
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o
A later study investigated the electrocatalytic reduction of allyl 

chloride by the Co(I)-bipyridine complex in an inner-sphere electron 

transfer process to form 1,5-hexadiene and oligomers. Even greater 

catalytic rates were found for allyl chloride when cobalt(II) bis-bipyri­

dine was electroreduced, however, even the Co(bipy)^ was ineffective in 

catalyzing the reduction of allyl alcohol or acrylonitrile. One of the 

primary objectives of this study was to investigate further the electro­

chemistry and catalytic utility of the bis-bipyridine cobalt complex in 

acetonitrile solutions.

Chemical reductions of Co(bipy)3 with NaBH4 or Na/Hg amalgam

to form Co(bipy)^ have shown that the Co(I) species may react with
N2O, ** aromatic nitro compounds® acetylene1^ and even ethyl 

12bromide but these reactions were always carried out with an excess 

of reducing agent present and the exact stoichiometry of the reactions 

was not determined. The catalytic reduction of nitrous oxide by the 

Co(I) was singled out for more detailed investigation in this study 

because the N2O could possibly bind to the inner-sphere of the cobalt­

bipyridine species and provide a simple model for oxygen reduction in 

cobatt-porphyrin complexes. However, as discussed in Part I, the 

reaction of NO and Co(bipy)* (where n = 2 or 3) was not as uncom­

plicated as was first thought.

In addition to discussing the bis-bipyridine cobalt electro­

chemistry and catalytic properties, Part I also reports the preparation 

and characterization of a highly hindered bis-6,6'-dimethyl-2,2'-bipyridine

cobalt(II) whose electrochemistry more closely parallels the redox 
2+13 2+

behavior of Co(terp)2 than that of Co(bipy)2 . These results, along
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with the adsorption behavior of the bis-bipyridine (substituted and

unsubstituted) cobalt(I) on mercury electrodes in acetonitrile, have 
14been published.

EXPERIMENTAL-.

Materials. "Sjærtrograde" acetonitrile (Aldrich) was distilled first 

from CaH2 and again from BaO just prior to use. (Burdick-Jackson) 

”UV quality" acetonitrile was used as received. "Polarographic grade' 

tetraethyammonium perchlorate and tetra-n-butykimmonium per­

chlorate Analytical Company) were vacuum dried and

used as supporting electrolytes without further purification. Tetra-n- 

butylammonium iΓifluoromeitane sulfonate was prepared as described 

by Brandstrom. Sodium perchlorate (G. F. Smith) was recrystallized

twice from water and dried at 110*C. Nitrous oxide (Matheson) and 

n-butyl bromide (Matheson, Coleman, and Bell) were used as received. 

Allyl chloride (Eastman) was distilled prior to use. Co(bipy)3(C1θ4)2,

Co(bipy53(C1O45i * 3H2O and Co(tetp52(C1O4)2 were synthesized according 
13 16to standard procedures. , All these salts gave satisfactory

elemental analyses as did 6,6'-dimethyl-2,2'-bipyridine, dmbp, syn- 
17thesized according to a published procedure. Elementary analysis

of dmbp: C, 78.23% H, 6.57%; N, 15.21%. Calculated: C, 78.45%;
H, 6.82%; N, 15.41%. Solutions of Co(bipy)2+ and Co(dmbp)2+ were 

prepared by adding aliquots of a standard solution of Co(CKO4)2 * 2⅜O 

in acetonitrile to stoichiometric quantities of the ligands in the 

supporting electrolyte solution just prior to use.
1 fl[Co(terp)(bipy)(H2O)][PFβ]2 was prepared according to Martel.
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Apparatus. Cyclic voltammograms were obtained with a Princeton 

Applied Research (PAR) Model 173 potentiostat driven by a PAR Model 

175 universal programmer. Working electrodes were a commercial 

hanging mercury drop electrode (Metrohm), a static mercury drop 

electrode (PAR Model 303), a planar platinum button electrode or a 

pyrolytic graphite disk electrode mounted in glass with heat-shrinkable 

tubing.

Chronocoulometry experiments were accomplished by means of 
1 qa computer-based apparatus similar to that described previously. 

Conrolled-potential electrolyses were conducted with the PAR Model 

173 potentiostat equipped with a PAR Model 179 digital coulometer.

The ■ electrolysis cell employed was modeled after the design described 

by Moore and Peters. Solutions were usually deoxygenated by

bubbling with argon that had been passed through hot copper turnings. 

When more complete exclusion of oxygen was desired, the experiments 

were connected inside a controlled atmosphere box (Vacuum Atmos­

pheres Company).

Rotating ring-disk measurements were performed according to 
21conventional practice inside the controlled atmosphere box. The

Pt-ring, Pt-disk electrode, electrode rotator, and the bipotentiostat 

were from Pine Instrument Co. (Grove City, Pa.). An x-y-y* 

recorder (Hewlett Packard Model 7046) was used to record disk and 

ring current-potential curves simultaneously. A dual compartment 

cell was employed with a platinum wire auxiliary electrode and the 

reference electrode separated from the main cell compartment by a 

sintered glass frit.
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The radius of the disk electrode was 0.301 cm (A = 0.285 cm2).

The inner and outer radii were 0.314 and 0.332 cm, respectively. The
21 2+collection efficiency (measured by reducing Co(bipy)3 at the disk and

oxidizing the resulting Co(bipy)^" at the ring in the absence of any sub­

strates) was 0.19 in relatively good agreement with the value (0.18) 

calculated from the electrode geometry. This electrode was cleaned

by polishing with 0.3 μ^m alumina on a polishing cloth before use and on 

a kimwipe before each scan.

UV-VIS spectra were recorded with a Cary Model 219 Spectro­

meter or a Hewlett-Packard Model 8450A Spectrometer. Potentials 

were measured and are reported with respect to an aqueous Ag/AgCl 

reference electrode which has a potential ca. 45 mV more negative 

than a saturated calomel electrode. Experiments were conducted at 

the laboratory temperature, 22 ± 3*C. * 10

Co(bipy)3 + and Co(bipy)*+

The cyclic voltammetry of solutions containing cobaltOI) and 

bipyridine is particularly simple when the molar ratio of metal to 

ligand is one to three. As shown in Figure 1A, three waves appear at 

ca. +0.4, -0.9 and -1.5 volts corresponding to the Co(m)∕Co(II), 
Co(Π)∕Co(I) and Co(I)∕(-I) couples, respectively.*^ The first two 

couples appear completely reversible at scan rates from 0.02 to

10 volt s"1 (with a plot of peak current versus the square root of scan 

rate that is linear) while the last couple yields cathodic peak currents 

that are larger than their anodic counierparts at scan rates below
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ca. 1 volt s”1. The responses obtained are essentially identical at 

both mercury and platinum electrodes. The polarographic half-wave 

potential for the Co(^I)∕(I) couple is unaffected by the addition of as 
much as 0.1 M excess 2,2'-bipyridine* showing that no bipyridine 

molecules leave the inner coordination sphere of cobalt(II) during the 

reduction to cobalt(I).
23Double potential step chtonocoulometrt with solutions of 

2+
Co(bipy)3 indicates little or no adsorption on mercury or platinum of 

the tris-bipyridine complexes of cobalt(ΠI), (II) or (I). During con­

trolled-potential reduction of Co(bipy)3 , the current decreases expo­

nentially with time and 1.0 faraday per mole of cobalt(∏) is consumed. 

The resulting solution of Co(bipy)^ are dark blue and appear stable for 

weeks when stored in an oxygen-free atmosphere.

There are significant changes in this simple pattern when the

initial solution contains only two moles of 2,2'-bipyridine per mole of

cobalt(II). Figures IB .and 1C show cyclic voltammograms for 
2+

Co(bipy)2 at mercury and platinum electrodes. At mercury, a small 

wave appears ahead of the main Co(II) reduction peak and the corre­

sponding anodic response includes a narrow, sharp wave typical of 

adsorbed species. In addition, a small,irrevetsible oxidation peak is 

observed at +0.14 V on mercury (its magnitude depends on the scan 

rate and the concentration of the complex) just prior to the small, 

reversible response corresponding to the Co(II)∕(IΠ) couple. The 

magnitude of this Co(II)∕(ΠI) response increases if the ligand-to-cobalt 

ratio is increased above 2 to 1 and decreases to zero when the ratio is 

reduced below ca. 1.8 to 1. At any fixed ratio, the response gives an
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Figure 1. Cyclic voltammograms of Co(bipy)3+ and Co(bipy)2+ in

acetonitrile.
.2+

A. 1.0 mM Co(bipy)3 ; mercury electrode (0.0255 cm );

scan rate = 200 mV s"l.
2+

B. 1.8 mM Co(bipy)2 ; mercury electrode; scan rate =

100 mV s -1

k2+C. 0.5 mM Co(bipy)2 ; platinum electrode (0.20 cmj; 
scan rate = 200 mV s’1.

Supporting electrolyte: A,B - 0.1 M tetraethy⅛mmonium 

perchlorate; C - 0.1 tetrabutylammonium trifluoro­

methane sulfonate.
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indication of the amount of Co(bipy)3 formed by ligand exchange 

reactions between species with fewer than three coordinated ligands. 

The irreversible wave at +0.14 V arises from the oxidation of cobalt 

metal as demonstrated by cyclic voltammetry on Hg with solutions of 

Co(OO4)2 ∙ 2H20 in acetonitrile i∏ the absence of bipyridine.

At platinum electrodes, no pre-wave or anodic spike appears at

the potentials where the cobalt(∏)∕(I) couple is active (Figure 1C)

suggesting that there is much weaker interaction between cobaltæ and

the platinum surface. At both electrodes, the peak current for 
2*1“

reduction of Co(bipy)2 exceeds the value for the same concentration
2-f-

of Co(bipy)3 and the ratio of cathodic to anodic peak current is well 

above unity. The peak current ratio depends upon the concentration of 

the complex and the scan rate, approaching unity at sufficiently high 

scan rates. (A plot of peak current versus square root of scan rate is 

non-linear. )
2+

The course of controlled-potential reductions of Co(bipy)2 also 

differs markedly from that of Co(bipy)3+: With the latter complex, 

plots of the logarithm of the current vs. time are linear and 1.0 faraday 

is consumed per mole of cobaltCn). The former complex yields non­

linear plots and consumes 1.3 to 1.4 faradays per mole. Changes in 

the color of the electrolysis solution also differ from those observed

during the reduction of Co(bipy)3 : The initially pale yellow solution

develops a violet color during the first few minutes of the electrolysis

before it acquires the deep blue color characteristic of Co(bipy)*. No

intermediate violet color precedes the appearance of the blue color 
2+when Co(bipy)3 is reduced.
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Figure 2. UV-visible spectra of A, Co(bipy)^ and B, Co(bipy)*

in acetonitrile. Spectrum A, obtained from a partially 
2a*reduced solution of Co(bipy)2 , was scaled to correspond 

to 0.23 mM C^bipy)^. Spectrum B is for a 0.23 mM 

solution of Co(bipy)3 that was fully reduced to Co(bipy)3"
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Interruption of an electrolysis of Co(bipy)2 at an early stage 

when the solution is violet results in a fading of the violet color in a 

matter of minutes and restoration of the initial pale yellow color.
(Both Co(bipy)2+ and Co(bipy)3+ are yellow). Curve. A of Figure 2 is a 

spectrum of the violet solution. The spectrum was recorded as rapidly 

as possible after the electrolysis was interrupted. The spectrum of the 

stable, blue Co(bipy)^ ion is shown for comparison in curve B.

Although the precise composition of the violet solution is uncertain, 

the spectrum shown is believed to be dominated by Co(bipy)^".

(Co(bipy)2 and Co(bipy)3 absorb negligibly at wavelengths greater 

than 450 nm; the only likely interfering contaminant is Co(bipy)i^ and 

none was detected in the spectrum obtained after the violet color had 

disappeared).

Solutions of Co(bipy)2+ that have been exhaustively electrolyzed 

at -1.2 volts have spectra that are identical to that of Co(bipy)*, but 

only two-thirds of the initial cobalt is accounted for by the intensity of 

the absorption. Cyclic voltammograms show a reversible response at 
the potential corresponding to the Co(bipy)3+∕Co(bipy)* couple with peak 

currents corresponding to two-thirds of the cobalt initially present.

The missing cobalt cannot be recovered by the addition of more bipyri­

dine. It is believed to be in the form of cobalt metal that results from 

the decomposition of cobalt(I) complexes containing fewer than two bi­

pyridine ligands as outlined in Scheme I.
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SCHEME 1

Co(bipy)2+ + e — Co(bipy)J (1)

2Co(bipy)^ ** Co(bipy)J + Co(bipy)+ (2)

2Co(bipy)+ -* Co + Co(bipy)2+ ( 3)

Co(bipy)2+ + e — Co(bipy)^ (1)

etc.

According to this scheme the net result of the electrolysis of a solution 
2+

of Co(bipy)2 will be given by reaction 4:

Co(bipy)2+ + 4/3e“ — 1/3 Co + 2/3 Co(bipy))^. ( 4 )

This accounts for both the observed disappearance of one-third of the 

cobalt and the consumption of 1.3 to 1.4 faradays per mole of cobalt 

during the electrolysis.

Scheme 1 also accounts for the observation that the cathodic peak 
2+currents in cyclic voltammograms of 1 mM solutions of Co(bipy)2

exceed the anodic peak currents except at scan rates above ca. 2 V s"1.

Additional support for Scheme 1 comes from the observation that

voltammograms obtained in solutions prepared by adding equimolar 
2"⅛*quantities of Co and bipyridine to acetonitrile show new peaks that 

correspond to the deposition of cobalt metal as well as smaller peaks 

for the generation of Co(bipy)^.

An alternative scheme can be written for the loss of Co(bipy)^ 

involving its disproportionation to Co(bipy)2 and Co(bipy)2+. However,
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24Groshen et al. have examined the electrochemistry of chemically
synthesized Co(bipy)° and shown that it is thermodynamically unstable 

with respect to disproportionation to Co(bipy)^ and Co(bipy)j (as is 

consistent with the absence of a wave for the reduction of Co(bipy)^ to 
Cofcipy)! in the cyclic voltammetry of Co(bipy)2+). Thus, if Co(bipy)^ 

were to disproportionate it would have to proceed according to 

reaction 5:

3Co(bipy)^ — 2Co(bipy)2+ + Co(bipy)" (5)

and the equilibrium constant for this reaction can be calculated from 

the relevant voltammetric peak potentials to be ca. 10 . This is

one reason that the observed decomposition of Co(bipy)^ was ascribed 

to reactions such as those given in Scheme 1 instead of to direct dis­

proportionation as depicted in reaction 5.

Co(bipy)^ generated by the disproportionation of Co(bipy)° should 
24also decompose via reactions 2 and 3 of Scheme 1. Groshens et al. 

did not consider this possibility but the cyclic voltammograms they 

report for solutions prepared from Co(bipy® contain prominent peaks 

at the priential of the Co(III)∕Co(II) couple that were found in this study 

to appear only when tris bipyridine complexes are present (Figure 1).

In addition, the peak current densities of the voltammograms shown in 

references 24 are about half as great as those of Figure 1 and of 

Groshens et al. (cf. Figure 2A of reference 24) under the same con­

ditions when the solution is prepared from Co(bipy)2 . The conductance
24

of solutions prepared from Co(bipy)j is also much smaller than 

would be expected if all of the cobalt added were present as Co(bipy)^
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and Co(bipy)2. Thus, we conclude that the disproportionation of 

Co(bipy)® in acetonitrile to yield Co(bipy)^ and Co(bipy)2 as described 

in reference 24 was accompanied by significant decomposition of the 

Co(bipy)^ so that Co and Co(bipy)^ were also produced by reactions 2 

and 3 of Scheme 1.

Reactions of Co(bipy)* with Reducible Substrates

One objective in studying the electrochemical reduction of

Co(bipy)2 was the possibility that Co(bipy)J, with an open coordination

site, would prove to be a better catalyst than Co(bipy)^ for reductions

of substrates that are difficult to reduce directly but might be activated

by coordination to the Co(I) centers. Nitrous oxide was examined as a

possible substrate because its reduction by borohydride in homogeneous
solution is known to be catalyzed by col⅛tHt-bipyridine complexes** and

the direct electrochemical reduction of N20 at mercury occurs at poten- 
2+ ORtials much moire negative than ■ those where Co(bipy)a is reduced.

2 + 2+
Cyclic voltammograms for the Co(bipy)3 and Co(bipy)2 in the

absence and presence of ⅜0 are compared in Figure 3. The addition

of N0 produces very little change in the peak currents for the reduction

of either complex. However, the anodic peak currents are decreased

significantly and the bigger effect is shown by Co(bipy)2 . The addition

of N20 also eliminates the adsorption pre- and post-waves exhibited by 
2+

Co(bipy)2 at mercury electrodes. Chronocoulometric tests showed 

that the adsorption of the reduced complex is essentially eliminated by 

the addition of N0.

The lack of significant increases in the cathodic peak currents in 

Figure 3 in the presence of N2O shows that the rate of its reduction by
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Co(bipy)* or Co(bipy)^ is not large under these conditions. However,

the decrease in anodic current suggests that ¾O does react with

Co(bipy)^ (but not Co(bipy)^) either to form a moderately stable adduct

that is not oxidizable at potentials where Co(bipy)^ is oxidized or to
produce oxide (or hydroxide) ion that attacks the Co(bipy)^ complex'®

thus decreasing the anodic peak current. The reaction also reduces

the adsorption of Co(bipy)^ suggesting that, if an adduct is formed, the

coordination site at Co(I) that is occupied by the NO is essential for

the formation of the adsorption bond to the mercury surface.

Repeated cycling of the mercury electrode in solutions of 
2+

Co(bipy)2 and N2O causes the voltammogram to collapse until amost 

no current flows. The response returns immediately at a fresh elec­

trode. At a platinum electrode the voltammogram collapses almost 

immediately indicating a strong passivation of the electrode surface. 

Similar behavior results during controlled potential reductions of 

Co(bipy)2 at -1.2 volt in the presence of excess NO. The electro­

lysis current does not attain a steady level as would be expected if a 

catalytic reduction of the N2O were proceeding. Instead the current 

decays (plots of log (current) vs. time are non-linear) reaching zero 

after ca. 1.7 faradays per mole of cobalt are passed through the 

solution. The resulting brownish-yellow solution contains a small 

quantity of a dark precipitate and exhibits no electrochemical responses

at a fresh mercury drop electrode except for an anodic wave attributable 
27to the presence of free bipyridine. It seems likely that the oxide ion 

(or hydroxide ion) generated by the slow reduction of N2O to N2 attacks 

the cobalt-bipyridine complexes present, removing the cobalt from
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Figure 3. Effect of N20 on cyclic voltammograms of Co(bipy)2 and 
Co(bipy)3.

2+
A. 1.9 mM CoC-ipy^ ; platinum electrode;

initial potential -0.6 volt.
2+

B. 2.0 mM Cb(-lpy)2 ; mercury electrode; 

initial potential -0.4 volt.

S^]pj^<^irting' electrolyte: 0.1 M tetraethy ammonium 

perchlorate.

Scan rate = 200 mV s"i.
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solution and thereby halting the electrolysis. The substance produced 

by the reaction with the strong base is believed to form stable, 

passivating coatings on the surfaces of mercury and platinum elec­

trodes that are responsible for the rapid decay in the current. The 

electrolysis could be prolonged a little by addition of proton donors, 

such as diethyl malonate, but no conditions were found where the 

Co(bipy)2-facUitated reduction of NO could be sustained.

With substrates whose reduction does not liberate a strong base,

e.g., alkyl halides, Co(bipy)^ could conceivably serve as an effective

reduction catalyst. However, the catalytic reaction would have to

proceed relatively rapidly in order to avoid the loss of catalyst

according to Scheme 1 with precipitation of cobalt metal. Rapid 
2

reduction is the case with allyl chloride but with non-activated halides, 

e.g., n-butylbromide, the reaction with Co(bipy)^ was too slow to be 

practical for electrosynthetic exploitation. ■

Catalysis of the reduction of allyl chloride by Co(bipy)^ or

Co(bipy)* was further studied by fast scan ■ cyclic voltammetry and
' 2 rotating ring-disk voltammetry. As anticipated from earlier work, 

the rate of reduction of allyl chloride is faster when Co(bipy)^ is the 

catalyst instead of Co(bipy)*. Actually, with a 5-fold excess of allyl 

chloride present, scan rates greater than 2 V/sec show only a small 

amount of reaction between Co(bipy)^ and the allyl chloride while scan 

rates greater than 500 V/sec are needed to obtain comparable 

responses with Co(bipy)^ In addition, ring-disk experiments were 

performed with a 10-fold excess of the allyl chloride present (pseudo 

first-order conditions) to examine the kinetics of the catalytic reaction.
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Qualitatively, the catalytic disk currents for Co(bipy)^ are 3/2 to 3 

times larger than those for Co(bipy)^ and the corresponding anodic 

ring currents are smaller. In addition, it appears that the catalytic 

current for the reaction of the tris-bipyridine cobaltn) species with 

allyl chloride is essentially independent of rotation rates above 400 rpm 

(see Figure 4).

Bis 6,6'-dimethyl-2,2*-bipyridine cobatt(∏)
2+A cyclic voltammogram for Co(dmbp)2 recorded at a pyrolytic 

graphite electrode is shown in Figure 5A while 5B shows the response 

obtained at a mercury electrode. The reversible couples at -0.63 volt 

and -1.20 volt both correspond to one-electron processes, i.e.,

Co(∏) «=£ Co(I) and Co(I) Co(0). The anodic wave at +0.32 volt is

observed only at mercury and is therefore not attributable to the oxi­

dation of Co(II) to Co(m). Instead, the wave is believed to arise from
2+ 2+

the oxidation of mercury to form HgCdmbp^ and Co . The same wave

appears in solutions containing only the uncoordinated ligand but its

peak potential appears at a less positive value (+0.26 V), as expected.
2+No corresponding anodic wave is present in solutions of Co(bipy)2 (or 

Co(bipy)3 ) probably because of the much greater stability (and/or 

smaller lability) of this complex.

No wave for the oxidation of Co(II) to Co(I∏) was found under any

conditions at graphite or platinum electrodes, even in the presence of

10 mM uncoordinated ligand at potentials as positive as +1.5 volt. The

two methyl substituents apparently produce sufficient steric crowding 
28to prevent the formation of the tris complex that would be required 

for the oxidation of Co(II) to Co(III) to proceed at accessible potentials.
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Figure 4. Rotating disk currents in acetonitrile solutions at a 
2+∕+

platinum electrode for ∙ 1.8 mM Co(bipy)2 ,
2+∕+O catalytic reduction current from 1.8 mM Co(bipy)2

in the presence of 18 mM allyl chloride, ■ 1.8 mM 
2+∕af

Co(bipy)3 , □ catalytic reduction current from 

1.8 mM Co(bipy)3 in the presence of 18 mM allyl 
chloride, A 1.8 mM Co(bipy))^-
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Figure 5. Cyclic voltammogram of 1.8 mM C0(dmbp)2 in 

acetonitrile. A. Pyrolytic graphite electrode.

B. Mercury electrode. Scan rate: 100 mV s"1. 

S^^]^<^arting electrolyte: 0.1 M tetraethylammonium 

perchlorate.
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The ratio of anodic to cathodic peak currents for the Co(II)∕(I)

and Co(I)∕(O) waves in Figure 5A are close to 1.0 at all scan rates

indicating that both of the reduced forms of the complex are much more

stable than is Co(bipy)^. This was confirmed by contro∏ed-pαtential 
2+

reduction of a solution of Co(dmbp)2 at -0.9 volt. Linear log (current) 

vs. time curves resulted and 1.05 faradays were consumed per mole 

of complex. The resulting purple solution (χmay at 577 nm (e ~ 5,600)) 

showed no evidence of decomposition by pathways similar to those in 

Scheme 1. It was stable for days in the absence of oxygen. A spectrum 

of a solution of Co(dmbp)^ is given in Figure 6, curve A.

Further reduction of Co(dmbp)^ at -1.5 volt consumed an addi­

tional 1.07 faradays per mole of complex and produced a dark blue­

black solution whose spectrum is shown in Figure 6, curve B. This 

reduced solution appeared stable for several hours in the absence of 

oxygen but cobalt metal precipitated from the solution if it was allowed 

to stand overnight.

Reduction of Co(dmbp)2 via two ^electron steps and at more

positive potentials than for Co(bipy)3 reduction is very similar to the 
2+

electrochemical behavior of Co(terp)2 (see Figure 7), and, as discussed 

in the next section, their reactivities toward reducible substrates are 

also comparable.

Exposure of Co(dmbp)0 to Reducible Substrates
2+ fp

The formal potential of the Co(dmbp)2 couple is about 400 mV 
more positive than that of the Co(bipy)2+^+ couple. Co(dmbp)^ is thus 

a much weaker reductant than Co(bipy)^ and this is reflected in its 

inertness towards potentially reducible subirtrates. Addition of nitrous
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Figure 6. UV-visible spectra of 0.23 mM solutions of

(A) Co(dmpb)+ and (B) Co(dmbp)2 in acetonitrile.
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Figure 7. 1.8 mM Co(terp)2(C1O4)2 in CH3CN containing 0.1M

tetraethylammonium perchlorate on (BPG) carbon at 

a scan rate of 50 mV/sec.
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oxide to solutions of Co(dmbp)2 produced no detectable changes in the 
2÷∕+

cyclic voltammogram for the Co(dmbp)2 couple. In particular, and
2+∕+

in contrast with the Co(bipy)2 couple, the anodic peak current was 

undiminished and the anodic peak potential did not shift in the presence 

of N20. This indicates that ⅛0 does not coordinate with Co(dmbp)^ 

(and it is certainly not reduced at an appreciable rate). Supporting this 

interpretation was the failure of N0 to affect the adsorption (vide infra) 

in the way that it did for Co(bipy)^. Even the further reduction of the 

Co(dmbp)^ to Co(dmbp)2 was largely unaffected by the addition of 

nitrous oxide (less than a 10% decrease in the anodic peak current). 

Similar results were obtained with allyl chloride or acrylonitrile as 

the substrate, or when Co(terp)^ and Co(terp)2 were used as possible 

catalysts.

An alternate starting point for the preparation of a reactive Co(I) 
2+

species which has an open coordination site was the Co(terp)(bipy)(aq) 

complex; however, in non-aqueous media, this compound undergoes 

rapid ligand reorganization to form Co(terp)2+ and Co(bipy)2+. Only 

when excess chloride ions are present could a single reduction wave 

for the Co(terp)(bipy)(Cl)+ be observed with a half-wave potential 

exactly between the half-wave potentials for the bis-terpyridine and 

bis-bipyridine cobalt(II) species. Because of the necessity of chloride 

ion in the 6th coordination site, no further studies were carried out on 

this complex.

Adsorption of Co(bipy)* on Mercury

23Chronocoulometry showed no detectable adsorption 
(<10"11 moles cm"2) of Co(bipy)2+ on mercury or platinum electrodes.
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However, there was clear evidence for strong adsorption when mercury

(but not platinum) electrodes were exposed to Co(bipy)^. Because of

the relatively rapid decomposition of Co(bipy)^ (Scheme 1), it was not

possible to prepare stable solutions in which the adsorption could be 
2+

measured. Instead, solutions of Co(bipy)2 were employed and

Co(bipy)^ was generated at the electrode surface by adjusting its

potential to -1.2 volt where the diffusion-limited reduction of Co(bipy)2

proceeded. At the end of the generation period (45 seconds was typical),

the electrode potential was stepped to -0.4 volt where the diffusion-

limited oxidation of Co(bipy)^ proceeded. The resulting charge-time 
123

data were linearized by plotting charge vs. (time)2 and the quantity

of Co(bipy)^ adsorbed was estimated from the difference between the

charge axis intercept and the corresponding value measured in a blank

run in the pure supporting electrolyte. The slopes of the chrαnαcαulα-

metric plots of charge vs. (time)2 were typically about half as large as

those obtained in corresponding experiments in which the stable

Co(bipy)3 complex was generated at the electrode and then reoxidized
to Co(bipy)3+. (A diffusion coefficient of 1.7 0 10"5 cm2∕sec was 

2+calculated from the chrαnαcαulometric slopes for the Co(bipy)3 . )

The smaller slopes almost certainly result from the partial decom­

position of Co(bipy)^ during the period that it is generated. This means 

that the actual interfacial concentrations of Co(bipy)‡ that give rise to

the adsorption cannot be measured precisely. The adsorption data are 
2+

therefore presented by specifying the concentrations of the Co(bipy)2 

solutions in which the Co(bipy)^ was generated with the understanding 

that this provides only a qualitative measure of the effect of concen-



33

tration changes on the adsorption. .

Table I summarizes the adsorption data at several concentrations 
2+

of Co(bipy)2 . The adsorption is clearly quite extensive, even from 

0.1 mM solutions. The apparent maximum in the adsorption at a 

concentration of 0.45 mM may be the result of competition between the 

adsorbate and the increasing quantities of cobalt metal that are deposited 

on the mercury surface via reactions 2 and 3 as the concentration of 

Co(bipy)^ increases.

Chronocoulometric charge-time transients for the reduction of

Co(bipy)2 are strongly influenced by the fact that the Co(bipy)2 formed

at the electrode is adsorbed. Figure 8 shows that the slope of the 
a

charge-(time)2 plot at times before the adsorption has attained its final 
2 + 2+

value is larger for the reduction of Co(bipy)2 than of Co(bipy)3 where

there is little or no adsorption of the reaction product. Chronocoulo- 
A

metric charge-(time)2 transients for electrode processes in which an 

unadsorbed reactant is converted to an adsorbed product are usually no 

different from those obtained without product adsorption unless the 

adsorption results in large changes in the electric charge density on the 

electrode surface. The differential capacitance of toe mercur y elec­

trodes at -1.2 volt shhoed nn ιsmjor increase in the pee sene e of
2+

Co(bipy)2 so that the higher slope of curve B in Figure 8 cannot be

attributed to changes in the surface charge density of the electrode.

Instead, we believe the higher initial slope results from the further

reduction of Co(bipy)2 by one electron as it is adsorbed. Thus, the 
2*⅜ *

Co(bipy)2 that is reduced to adsorbed product consumes two electrons 
2+

while only one electron is consumed in reducing unadsorbed Co(bipy)2
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TABLE I

Adsorption on Mercury of the Product of the Reduction 
of Co(bipy)2+ in Acetonitrilea» ^

2+
Concentration of Co(bipy)2 , mM nΓT,, pCc

0.11 12

0.14 16

0.23 42

0.45 100

0.9 78

1.8 78

3.6 88

a. Supporting Electrolyte: 0.1 M tetrabutyammonium trifluoro­

methane sulfonate.

b. The electrode potential was held for 45 seconds at -1.2 volts and

then stepped to -0. ∙ 4 volt for 100 msec.
.2

c. To convert these values into mole cm , n = 2 should be used 

(see text).
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Figure 8. Chronocoulometric charge-(time)2 transients for the 
2+ 2+reduction of (A) Co(bipy)3 and (B) Co(bipy)2 at mercury 

electrodes. The potential was stepped from -0.4 to -1.2 

volts. (C) Response obtained in the pure surporting 

electrolyte. Supporting electrolyte as in Figure IB.
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to un^idsor!^ Co(bipy)i^. The higher slope decreases toward the value

expected for a one-electron reduction once the electrode surface is

fully covered with the adsorbed product because continued reduction of 
2+

Co(bipy)2 requires only one electron. Supporting this interpretation

are the data in Table II which show that the ratio of the initial slopes of 
2-> 2+

chronocoulo metric plots for the reduction of Co(bipy)2 and Co(bipy)3 

depends on the reactant concentration. The ratio approaches unity as 

the concentration increases because a smaller and smaller fraction of 

the Co(bipy)^ generated at the electrode surface is adsorbed.

According to this interpretation, the species adsorbed is a

complex of Co(0). The fact that the adsorption occurs on mercury but

not on platinum or graphite electrodes indicates that the adsorption

requires strong interaction with the mercury atoms on the electrode

surface. A stabilizing interaction with the surface would also be

required to overcome the intrinsic instability of Co(bipy)2 demon- 
24strated by Goshens et al.. Increasing the d electron density on the

cobalt by reduction to cobalt(O) would be expected to favor the formation

of a metal-metal bond with mercury. Similar surface coordination

chemistry leading to adsorption on mercury was encountered in
29 30

previous studies with low-valent complexes of cobalt and rhodium.

If two electrons are involved in the oxidation of the adsorbed 

cobalt complex, the molar quantities adsorbed are only half as great 

as might have been anticipated from the data of Table I. Nevertheless, 

the maximum quantities adsorbed represent more of the complex than 

could be accommodated in a close-packed mont^ll^^^r with the ^pyridine 

rings positioned parallel to the surface (ca. 1.5 x lO"1° moles cm"2 for
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TABLE H

A ' 2+Ratio of Slopes of Charge-(T1me)2 Plots for the Reductions of Co(bipy)3
and Co(bipy)a+ at Mercury Electrodes in Acetonitrilea

Concentration of complex, mM
l4

Slope ratio nFT/Ot,/

0.11 1.32 0.30

0.14 1.28 0.26

0.23 1.28 0.27

0.45 1.20 0.28

0.90 1.21 0.26

1.8 1.12 0.17

3.6 1.07 0.12

a. The potential was stepped from -0.4 to -1.2 volt for 100 msec. 

The slopes were obtained from a least-squares fit of the charge­

time data. Supporting electrolyte as in Table I.

b. Slope for Co(bipy)2 
Slope for Co(bipy)3+

c. nFΓ is ' the quantity of cobalt complex adsorbed at the end of

100 msec. It was estimated from the faradaic charge consumed in 

the first 0.2 msec after the potential was stepped from -1.2 volt 

back to -0.4 volt; is the total faradaic charge passed during

the recording of the charge-time transient.
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a molecular diameter of 14 A. Adsorption with the bipyridine rings

perpendicular to the electrode surface is conceivable, especially if the 

resulting "stack" of bipyridine ligands could interact cooperatively with 

one another because the very strong dependence of the adsorption on 

concentration (Table 1) points to attractive rather than repulsive inter­

actions between the adsorbing molecules.

The potential dependence of the adsorption was not clearly 

established because measurements were restricted to a narrow range 

of potentials by the proximity of the wave corresponding to the further 

reduction of Co(bipy)^. A weak trend toward increased adsorption at 

more negative potentials appeared to be present. This might reflect 

the fact that the adsorption of Co(bipy)^ is accompanied by its reduction; 

a step that proceeds only at more negative potentials in the absence of 

adsorption.
2+

Addition of nitrous oxide or acrylonitrile to solutions of Co(bipy)2 

greatly diminished the adsorption of subsequently generated Co(bipy)j^.

Both of these molecules are likely to coordinate to the Co(bipy)^ com­
2

plex, where they may block the position needed for the formation of 

the mercury-cobalt bond believed to be responsible for the adsorption.

The interpretation offered here for the pattern of adsorption 

exhibited by Co(bipy)^ is supported by the adsorption behavior of the 

analogous cobalt complex of 6,6'-dimethyl-2,2'-bipyridine as discussed 

in the following section.

Adsorption of Co(dmbp)* on Mercury
2+

Although the cyclic voltammograms for Co(dmbp)2 (Figure 5B) 

contain none of the hallmarks of adsorption evident in the voltammograms
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2+
of Co(bipy)2 (Figure IB), chronocoulometric measurements revealed

extensive adsorption of Co(dmbp)^ The greater stability of Co(dmbp)^

(compared with Co(bipy)^) simplified the measurement of its adsorption

on mercury. The complex was generated at the electrode surface in 
2-f

solutions of Co(dmbp)2 by adjusting the electrode potential to values
between the Co(dmbp)2+z^+ and Co^mbp^^ waves for 45 seconds before 

2+
stepping to -0.1 volt where the complex was reoxidized to Co(dmbp)2

i
at a diffusion controlled rate. The plots of anodic charge vs. (time)2

had slopes that matched those for the corresponding steps for the

reduction of Co(dmbp)2 showing that Co(dmbp)2 was not disprαpαrtio-

nating. (A diffusion coefficient of 1.4 * 10"5 cm2∕sec was calculated

from the chrαnαcαulometric slope.) In addition, the plots for the

reduction of Co(dmbp)2 did not show the higher slopes exhibited in the 
2+analogous experiments with Co(bipy)2 . This indicates that the reduc­

tion of Co(dmbp)2 to both adsorbed and unadsorbed Co(dmbp)2 consumes

only one electron and serves to support the previous interpretation of 
— 2+

the higher slopes of the charge-(time)2 plots for Co(bipy)2 . The extent

of adsorption of Co(dmbp)^ determined from the intercepts of charge­
i

(time)2 plots for the step to -0.1 volt, is shown in Figure 9A as a 

function of the potential where the Co(dmbp)^ was generated. The 

adsorption was measured over a sufficiently wide range of potentials 

to establish clearly that the adsorption increases at more negative 

potentials. Since no further reduction accompanies the adsorption of 

Co(dmbp)^, the potential dependence must have a different origin than 

that suggested earlier for the case of Co(bipy)^. The adsorbing 

species is cationic but the dependence seems too strong to be attributed
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to simple electrostatic factors. Studies of metal-metal bonding in the 

adsorption of low-valent, transition-metal complexes are still too sparse 

to provide a basis for understanding the effect of electrode potential on 

the extent of adsorption. At the highest concentrations and most nega­

tive potentials, the adsorption reaches values almost as large as those 

obtained with Co(bipy)^ and it clearly exceeds the value corresponding 

to a monolayer of complexes lying flatly on the electrode.

The adsorption of Co(dmbp)2 was also measured chronocoulo-

metrically by generating this complex at the electrode surface in 
2<*solutions of Co(dmbp)2 . The results, displayed in Figure 9B, show an

even stronger potential dependence of the adsorption that passes through

a rather sharp maximum. The decrease in adsorption at the most

negative potentials could arise from preferential adsorption of the

supporting electrolyte cations (although no adsorption of the tetraalkyl- 
32

ammonium ions on mercury was indicated in the work by Fawcett ) 

but the factors underlying the large increase in adsorption at potentials 

positive of the maximum are not evident.
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Figure 9. Potential dependence of the adsorption of (A) Co(dmbp)^ 

and (B) Co(dmbp)2 at mercury electrodes. The electrode 

was held for 45 sec. at the indicated potential in a solution 

of Co(dmbp)2 and then stepped to -0.1 volt for 100 msec. 
Concertration of Co(dmbp)2+, mM: ∙ - 0.11; 0-0.23;

■ - 0.45; □ -0.90.

Supporting electrolyte: 0.1 M tetrabutyamm onium 

tr ifluorrmethaneeulfreate.
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CONCLUSIONS

This study has pointed to the intrinsic reactivity of Co(bipy)^ that 

originates in its coordinative unsaturation and is expressed by its 

search for an additional ligand (Scheme 1) and by its strong interactions 

with the surface of mercury electrodes. Although highly reactive 

toward coordination reactions the bis-bipyridine cobalt (I) species was 

not sufficiently reactive as a reductant to be exploited as a catalyst for 

the reduction of N2O or alkyl halide reduction. Only allyl chloride 
proved suitable as a substrate. The related complex, Co(dmbp)^ is 

much more stable than Co(bipy)^ is also strongly adsorbed on mercury 

and is even less reactive toward reducible substrates. Adsorption of 

both complexes is proposed to depend upon the formation of cobalt- 

mercury bonds and in the case of Co(bipy)^, further reduction is 

believed to accompany adsorption so that the species adsorbed is a 

complex of Co(0).
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Part Π

Electrode Kinetics for Electron Transfer to Cyclooctatetraene 

and cis-[(C5H5)Fe(CO) P(CβHs)a] 2
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Determination of heterogeneous electron transfer rates to

molecules which undergo large intramolecular rearrangements upon
1-7oxidation or reduction are of great current interest because

researchers are looking for experimental verification of electron

transfer theories, such as the one proposed by Marcus, w which

attempts to account for the physical factors which influence the
rate. *» 11~14 Several of the major factors proposed to affect the

rates of electron transfer include intramolecular rearrangements,

solvent reorganization and the work terms associated with bringing 
8-10the reactants and products together from the bulk. A number of

organic molecules have been studied in this context because of their 

large intramolecular rearrangements upon electron transfer.
Examples include cyclooctatetraene, ®» 15"1T derivatives^» ^ and

4
hindered stilbenes. In addition, inorganic complexes such as 
Co(NH3)B+∕2+, Ru(NH3)g+∕2+ and several metal aquo species^» ®» 1®» 1® 

have been investigated to determine the extent of the influence of intra­

molecular changes on the experimentally measured rates of electron 

transfer, both in solution and at electrodes.

The rate of electro-reduction of cyclooctatetraene has received
much attention®’ *5"17,20-22 ^Cause 0f fte large mtramotecular

rearrangements that accompany reduction of the preferred, tub-shaped 
23-25conformation of the neutral molecule to the basically planar

26—28radical anion. The reduction of cyclooctatetraene to its radical

anion is governed by a small electron transfer rate, kg, while
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relatively fast electrode kinetics are observed for further reduction of

the radical anion to the dianion. The latter process requires very

little internal structural changes since the dianion is also flat. *υ"jυ

These early studies were conducted in non-aqueous solvents containing 
6 16 17tetra-n-butykimmonium salts * » (or tetrapropyOmmonium per­

chlorate*,) as supporting electrolytes. Recent work has shown, both

20 22 31qualitatively » and quantitatively, that the rate of electron transfer

to such molecules is drastically affected by the size of the tetraalkyl­

ammonium cation used as supporting electrolytes: The smaller the 

cation size, the larger the rate constants.

In the present study, the first, one-electron reduction of cyclo- 

ocfcatetraene was reinvestigated in non-aqueous solvents containing 

tetraalkylammonium perchlorates of various sizes. The effect of the 

supporting electrolyte cation was found to dominate the factors that 

influence the heterogeneous rate constant, with the ks for the first 

electron transfer becoming as large as that for the second electron 

transfer when tetramethylammonium perchlorate is the supporting 

electrolyte, despite the extent of the intramolecular rearrangements 

involved in the reduction.

In the past few years, several papers ',a*u*' have been published 

in which EXAFS (Extended X-Ray Absorption Fine Structure) 

Spectroscopy was used to obtain structural data for a series of 

diπuclear metal complexes and their ions in both the solid state and 

in solution. For many of these compounds, oxidation or reduction 

entails the making or breaking of a mefcal-metal bond which causes 

these molecules to enlarge or contract. Sometimes the distance



51

betweea the two metal ceaters chaages by as much as 0.5 A. Oae such 

system for which the EXAFS data exist for the aeutral, moao- aad 

nicatioπic species aad for which fairly large lateral rβarIt∏lgements 

occur upoa oxid^tioa is [(C5H5)Fe(CO)P(CβH5)2]2. The reductioa of this 

complex causes the distale betweea the two iroa atoms to decrease 

from 3.498Â ia the aeutral molecule to 3.14 A ia the moaocatioa to 

2.764 A ia the mcat^a as aa iroa-iroa boad is formed. At the same 

time other structural chaages also occur. This compouad has beea

subjected to oaly a cursory examinatioπ electrochemically, so it was

decided to mvestigate its electrochemical behavior more exteasively 

ia acetoaitrile with tetraatk^ammomum salts as supportmg electro­

lytes, the results of which are reported here.
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experimenta-l

Materials. (Burdick-Jackson) "UV-quality" acetonitrile and dimethyl 

formamide were used as received except in those situations where 

very dry solvent was needed, in which case the solvent/supporting 

electrolyte solution was first dried with Linde sieves (3 A for aceto­

nitrile, 4 A for dimethyIformamide) and then by several grams of 

activated alumina (Woelm neidral alumina heated at 300* C under 

vacuum overnight) per 25 ml. "Polarographic grade" tetraethyl- 

ammonium perchlorate, tetra-n-butyammonium perchlorate (South­

western Analytical Co. ) and tetramethylammonium perchlorate 

(G. F. Smith) were vacuum dried and used as supporting electrolytes

without further purification. Tetra-n-butyammonium trifluoro- 
36methane sulfonate was prepared as described by Brandstrom. 

Cyclooctatetraene (Aldrich) was distilled under vacuum prior to use 

and kept under argon at 0*C. Ferrocene (ROC/RIC) and bis(penta- 

methylcyclopentadienyl) iron (Strem) were used as received, as was 

diphenylanthracene (Aldrich). cis-[(C5H5)Fe(CO)P(CeH5)2]2 was 

prepared according to the method of Hayter and purified by column

chromatography using neutral alumina and eluting with heptane con­

taining increasing amounts of benzene. Fraction #5 (eluted with 60% 

benzene and 40% heptane) was collected and upon evaporation yielded 

fine, dark brown crystals of the desired product. Elemental analysis 

of cis-[C5H5)Fe(CO)P(CβH5)2^ C, 63.4% and H, 4.5%. Calculated:

C, 64.7% and H, 4.5%. Assignment of this fraction to the cis-isomer 
37was based upon earlier work that showed the trans-isomer eluting 

prior to the cis conformer (Fraction #3 in this study gave essentially
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the ideatical electrochemistry as Fractioa #5 but was aot studied

because it was oaly produced ia small qualities) aad because of its 
37meltiag poiat above 285 *C (the reported mp for the cis-isomer is 

302 *C while for the traas it is 215*C).

Apparatus. Cyclic voltammograms at scaa rates less thaa 1 V/sec

were obtamed with a Priacetoa Applied Research Model 173 poteatio-

stat drivea by a PAR Model 175 uaiversal programmer aad recorded

oa a Houstoa Model 2000 recorder. For scaa rates greater thaa

1 V/sec, the PAR Model 175 was used to drive a home-built poteatio- 
38stat equipped with direct iR feedback capabilities (the iR feedback

was set for each scaa rate to a poiat just prior to oscillatioa of the

system) aad the resuttmg curreat-potβπtial curve recorded oa a

Textroaik Model 5000 Digital Scope aad thea traasferred to a Houstoa

recorder. Chroaocoulometric measuremeats were accomplished by 
39meaas of a computer-based apparatus.

AC Impedaace measuremeats were performed with a home-built

potentiostat (used ia the three-electrode co^igurati^^^) ia cGajuactioa 

with the Ithaco Model 391A Lock-Ia Amplifier aad a Fluke voltmeter. 

Workmg electrodes were a static mercury drop electrode (PAR Model 
303) whose bevelled capillary had beea mod^ed^® to reduce the 

iateraal resistaace to ca. 1 £2 or a plaaar platiaum wire sealed ia 

glass (area = 0.009 cm2), surrouaded by a large platiaum gauze elec­

trode as the auxiliary electrode aad with a silver wire as the pseudo- 

refereace electrode. All electrodes were ia the same solu^a to 

preveat phase shifts aad ao IR compensatioa was used. This system 

was tested with a mock cell coasistiag of preciskm resistors aad
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capacitors with values similar to those measured in real experiments 

at frequencies of 100 to 6000 Hz. First the in- and out-of-phase AC 

currents with a 5.00 mV AC signal applied to a circuit corresponding 

to a background solution (shown below) were measured. The best

----- ΛW√M---- 1 |-----
151 a 0.1 fF

results (i.e., the measured resistance and capacitance matched the 

known values within 1%) were obtained at frequencies greater than 

3000 Hz. Then a mock cell chosen to mimic the presence of slow 
electron transfer (drawn below) was examined. Analytical subtraction41

WΛV∖∕√-
151Ω

0.1 μ,F 

Z,

2QÇÎ l.OμF

of the results obtained with the circuit corresponding to a background 

solution from those of the mock cell show that the precision of deter­

mining Z∣ (the faradaic impedance due to electrode kinetics) by this 

method was better than 5%. For real chemical systems, best results 

were obtained with the potentiostat used in a 3-electrode configuration 

and with no iR compensation applied at frequencies between 150 to 

800 Hz.
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Controlled potential electrolyses were conducted with the PAR 

Model 173 potentiostat equipped with a PAR Model 179 Digital 

Coulometer. The electrolysis cell employed was modeled after the 

design of Moore and Peters. Solutions were deoxygenated with

argon but when moire complete exclusion of oxygen was desired, the 

experiments were connected inside a controlled-atmosphere box 

(Vacuum Atmosphere Co.). UV-Visible spectra were recorded with 

a Hewlett Packard Model 8450A Spectrometer. Potentials were 

measured and are reported with respect to an aqueous Ag/AgCl 

reference electrode except in those cases where a silver wire pseudo 

reference electrode was used to reduce phase shifts. The Ag/AgCl 

electrode has a potential ca. 45 mV more negative than a saturated 

calomel electrode. Experiments were conducted at ambient tempera­

ture, 22*±2*C.
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RESULTSANDoDiSCUSSiON

Electrcm Traasfer Rates to cis-^[(C5HCFe(CO)P(CBî⅜)2(a

Cyclic voltammograms for 1 mM solution of cis-

[(C5H5)Fe(CO)P(CβH5)2]2 (J) ia acetomtrile show two reversible, oae- 
35electroa steps similar to those described by Dessy. These waves,

at -0.045 V aad +0.29 V, (Figure 1) correspcrnd to oxid^tioa of the

aeutral pareat molecule (Fe—Fe separate = 3.498 4) to the radical

catioa (Fe—Fe separatioa = 3.14 A) to the mcat^a (Fe—Fe

separate = 2. 764 a). The large chaaiges iπ the Fe-Fe separatioa is 
34due to formatioa of a metal-metal boad betweea the iroa centers.

These GacinatiGns were exammed by cyclic voltammetry oπ both 

mercury aad platmum electrodes. ChronGCGulGmetry aad voltammetry 

at high scaa rates showed that there is some adso^^a of the radical 

catioa of J.oπ mercury so that rate measuremerts were performed 

maialy oπ platmum electrodes. Some kmetic data were o^tamed oπ 

mercury by chroaocoulometry oaly whea startag with a solutioa of the 

aeutral pareat molecule.

Loag term stability of the radical catioa aad mcat^a m aceto- 

mtrile was determmed by bulk electrolyses coa^^ed ia a controlled- 

atmosphere box. Oxidate of cis-[(C5Hs)Fe(CO)P(CβH5)2]2 

(e442 ~ 3200 M’1 cm’1) at +0.1V matil the curreat decayed to zero 

iavolved the loss of oae electroa per molecule aad produced a blue 

(e5β5 ~ 4500 M"1 cm’1 aad e4ββ ~ 1600 cm^) solutioa of the radical

catioa which was stable for weeks. Further oxi^tioa at +0.5 V 

yielded the nicatiGn (ca. 1.1 electroas per molecule were transferred)
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Figure 1. Cyclic voltammogram of 1.0 mM cis-[(C5H5)Fe(CO)P(CβH5)2]2 

in acetonitrile containing 0.1 M tetraeüiyammonium per­

chlorate at a scan rate of 100 mV∕sec.
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which was bright yellow (c^o ~ 8000 M"1cm"1), not blue as reported by 
35Dessy. Decomposition of the dication discouraged attempts to

measure the rate constant for the oxidation of the radical cation to the 

dication.

Heterogeneous electron transfer rate constants for the one- 

electron oxidation of I, ferrocene and bis(pentamethylcyclopentadienyl) 

iron are reported in Table I. Ferrocene and the pentamethyl-ferrocene 

derivative were used as reference complexes because they undergo 

almost no inner-sphere reorganization upon oxidation. * Their

half-wave potentials (+0.40V for ferrocene and -0.11 V for bis(penta- 

methytcyctopβntadiβnyl)irαn) are also similar to that for I and their
45-47heterogeneous electron transfer rates have been measured previously.

Rates of electron transfer were measured by cyclic voltammetry 

using the potential separation between the anodic and cathodic peak 

currents to calculate the rate constant according to the method of 
Nicholson and Shain*8 (see Appendix II). Measurements were made at 

scan rates from 100 mV/sec to 100 V∕sec. Compensation of the ohmic 

potential drop was adjusted at each scan rate to reduce or eliminate 

this effect on the peak splitting. Calculations based on the peak current 

obtained at a scan rate of 100 V/sec and the solution resistance 

measured in separate AC impedance experiments showed that the con­

tribution of the ohmic drop to the .peak splitting without any added com­

pensation would have amounted to about 20 mV at this scan rate (an 

error in the measured kg of less than a factor of two for this case).

Values of the measured rate constants for each complex in this study 

were essentially scan rate independent. The similarity of the kg
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TABLE I (continued)

a. All solutions were 0.3 to 1.0 mM in substrate.

b. TEAP = tetraethylammonium perchlorate; TBAP = tetra-n-butyl- 

ammonium perchlorate; TBA-TFMS = tβtlat-n-butyam:ïmonium 

trifluoromethane sulfonate.

c. Chrono = ChrαnαcoulometΓy; Cyclic = Cyclic Voltamm<ery.

d. Diffusion coefficients were calculated from the chronαcoulometric
50slopes when stepping onto the diffusion-limited plateau or from 

the peak current in cyclics.

e. No IR compensation was used.

f. Formation of cis-[(C5H5)Fe(CO)P(CeH5)2]  ̂was accomplished by 

bulk electrolysis at +0.1 V of the neutral parent.
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values for ferroceae fouad ia the preseat work with that of previous 
46 47

workers’ ' would tead to support the reliability of the cyclic voltam- 

metric techmque as applied here.

Applica^a of ^^aocon^!^!^ to the measuremeat of hetero-

geaeous electroa traasfer rates ia this study was accomplished 
49accordiag to a procedure o^liaed by Christie et al. (see Appendix II).

Substrate concentration were limited to 1 mM or less because of 

solubility aad adsorptioa problems. Electroaic feedback was employed 

to reduce the uacompeasated resistaace. The electrode was stepped 

from poteatials where ao faradaic reactioa occurs to poteiatials withia 

± 20 mV of the half-wave poteιιtial for the complex uader study. 

Sufficieatly loag data acquisitioa times were used to iasure that a plot
i

of charge versus (time)2 became liaear for at least 50% of the total 

time. Thea extrapolatioa of the lmear portioa to time = 0. aad sub-
49tractioa of the double layer charge measured ia a backgrouad solutioa

allowed calculatioa of the mtercept oa the (time)* axis. The rate

coastaat was determiaed from the maximum value of the iatercept oa 
α

the (time)2 axis, which occurs at the haf-wave poteatial for the sub­

strate whea the traasfer coefficieat is 0.5, aad a niffusiGa coef^^^:

measured from a poteatial step to the diffusion-limited plateau of the
49wave.

The rate coastaats listed m Table I for cis-f^^FeiCO^Ca^^h, 

ferroceae aad pentamethyl-UeΓrocβaβ are quite similar despite the fact 

that large iatramolecular chaages accompaay the oxidatioa of £ but aot 

for the other two reactaats. The rate coastals are aot corrected for 
double layer effects®* but the correctes would be similar for all three
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molecules because their half-wave potentials are not very different.

The possibility that the oxidation of J1 proceeds through a high energy

Intermediate which has only minimal intramolecular rearraιgements

before it relaxes into the conformation observed in the solid state was

checked by starting an experiment with an electrogenerated solution of

the radical cation and measuring the k_ for reduction back to the 0
neutral parent. The rate constant was found to be independent of which 

half of the redox couple was studied. However, it should be pointed 

out that this experiment does not exclude the possibility that there may 

be molecular-distance differences between the molecules in the solid 

state and in solution, although this is considered unlikely.

Thus, it appears that the heterogeneous rate constant for J is quite

large in spite of the large changes in the Fe-Fe distance and the other 
34rearrangements which accompany electron transfer. This is contrary

to what might have been expected (a priori) on the basis of Marcus’
8-10theory. However, due to the complexity of the overall rearrange­

ments and the lack of physical data, it was not possible to calculate how 

large the inner-sphere energy should be; thus only qualitative arguments 

are possible. The similarity in rate constants for^, ferrocene and

pentamethyl-ferrocene (the latter two undergo only very little intra- 
43 44molecular changes upon oxidation ’ ) seems to indicate that the

electron transfer rate for all three reactants is basically controlled by 

the outer-sphere solvent reorganization energy. The lack of an effect 

from the large Fe-Fe distance changes on the rate of oxidation of j[may 

be due to compensatory changes in other parts of the molecule or these 

intramolecular changes represent only a small fraction of the total
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energy for activation for electron transfer to £ because of the bond 

energies involved.

Several other trends in Table I deserve comment: The oxidation

of £ is slower on mercury than on platinum electrodes; changes in the

nature of the supporting electrolyte (i.e., the sizes of the anion or

cation) produced only small changes in the rates; the rate constant for

the pentamethyl-ferrocene derivative is larger than that for ferrocene

which is consistent with the relative homogeneous self-exchange rate 
52constants for these compounds. The effect of the electrode material

on the rate of electron transfer to I could reflect a real difference 

between the energy of activation for electron transfer on the two elec­

trodes (although none is predicted by Marcus theory for simple

outer-sphere reactions). However, it could also be the result of 

adsorption of the radical cation of £ on mercury since there is no 

difference in the rate constant for ferrocene on the same two electrodes. 

The insensitivity of the rate constants to the size of the cation or anion

of the supporting electrolyte is notable because several examples of 
20 22 31systems showing contrary behavior have been reported. "v> v One

of these is discussed in the next section.

Electron Transfer Rates to Cyclooctatetraene

An organic compound whose rate of reduction has been widely

studied and found to be rather low is cyclooctatetraene (COT). The low

value of ks for the first electron transfer to this molecule has been
attributed to large intramolecular rearrangements, θ, 15-17 upon 

23-25reduction by one electron, COT rearranges from tub-shaped to a
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26-28plaaar (or aearly pla^r) radical aaioa. The radical aaioa caa be
26 30further reduced to a plaaar niaaio∏) Iπ most of the previous

6 16studies, , tetιaι-n-butyaιmmoaium perchlorate was used as the

supportiag electrolyte aad the rate coastal for the first reductioa step

is reported as 0.002 cm/sec while that for the secoad is 0.15 cm/sec.

A somewhat higher rate coastal for the first step (ks = 0.008 cm/sec)

was reported whea tetra.-n-poopyaimmoaium perchlorate was the 
15 31supporting electrolyte. Receatly Evaas et al. have showa that the

aature of the supportiag electrolyte catioa caa produce very large

effects oa hβterGseaeous electroa traasfer rate constats. For example,

the rate of reductioa of t-aitrobutaae ia acetonitrile iacreased by over a

factor of 10 whea the support^ electrolyte catioa was chaaged from 
31tetra-n-pentyaιmmonium to hβxanβctltrimβthtlammoaium) Quali­

tatively similar results for the reductioa of COT iπ dimethylformamide
20 22have beea reported by Fry et al. aad by Parker et al.

To extead these studies oπ the rate of reduc^a of COT as a

fuactioa of the size of the support^ electrolyte catioa, AC impedaace 
53measuremeats were performed oπ solutioas of COT ia acetoaitrile or

dimethylformamide. Supportiag electrolytes tested were tetra-n-butyl-

ammomum, tetratethylammoaium aad tetramethylammomum perchlorates.

The resultmg rate constaats aloag with those for dipheaylanthraceae aad

peryleae, which were employed as model compounds, are listed ia

Table II. The values of kg were calculated from the iatercepts (Rq^)
_i ai 53

of plots of the m-phase impeanaπce (R_) versus (2v frequeacy) 2 

(see Appeadix II). Data were G-taiaβn from measuremeats of the ia- 

phase aad out-of-phase AC curreats at the DC potertial of maximum
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in-phase current for each substrate at each frequency with a 5.00 mV

AC potential applied. Corrections for the solution resistance and
double layer capacitance were applied by analytical subtraction^ of

values of these parameters obtained in a background solution at the

same potential as that used when the substrate was present. Examples

of such plots for COT and the model complexes are presented in

Figures 2-6. In evaluating the values of k_ it was assumed that the

transfer coefficient, a, was 0.5 and that the diffusion coefficients for

the oxidized and reduced species were equal. No attempt was made to 
51correct for double layer effects because the necessary data do not yet 

exist.

The values for the rate constants measured in this study for the 

first reduction of COT, of diphenylanthracene and of perylene in aceto­

nitrile solutions are very similar to those found earlier (Table II). As
20 31anticipated from the investigations of Fry et al. and Evans et al., 

the rate constant for COT in tβtramethylammαnlum/dimβthylfαrmamide 

solutions is approximately 50 times larger than the rate measured with 

tetra-nbbutykimn'ionium perchlorate as the supporting electrolyte. In 

fact, the rate constant in the former electrolyte is within a factor of 

two of that for the reduction of COT ' . ° The larger rates in sup­

porting electrolytes containing the smaller cations has been ascribed
31in part to a difference in the location of the Outer Helmholtz Plane or

possibly to discreteness-of-charge effects. However, the observed

variation in rates is too large to be totally accounted for by these 
31factors. Another possible source of the effect is ior pairing between

the tetraaιUcylammonIum cation and the radical anion of COT, although
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Figure 2. Impedaace vs. (2π frequeacy)“* plots for 0.47 mM peryleae

ia acetoaitrile coataiπias 0.35 M tetramethyammoaium

perchlorate oa mercury. ∙ Ia-phase impenaace (Rs);

■ Out-of-phase impedaace ( ——-— -------—- ).
* * 2ιr frequeacy Cs
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Figure 3. Impedaace vs. (2π frequeacy) "ς plots for 0.6 mM niphenyl-

aathraceae ia acetoiaitrile coatammg 0.3 M tetra-n-butyl-

ammoaium perchlorate oa mercury. ∙ Ia-phase impedaace
(Rβ) ; ■ Out-of-phase impedaace ( ——:— ------- —).

s 2n frequeaey Cg
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Figure 4. Impe^ace vs. (2tr frequeacy)“2 plots for 1.0 mM cycloo^a

tetraeae iπ acetoaitrile cGataiaiag 0.2 M tetra-n-butyl-

ammoaium perchlorate oa mercury. ∙ In-phase impemaace

(Rs); ■ Out-of-phase impedaace (-_—_---- ---------s 2π frequency Cs
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Figure 5. Impedance vs. (2ir frequency)“^ plots for 1.0 mM cycloocta-

tetraene in acetonitrile containing 0.3 M tetraethylammonium

perchlorate on mercury. ∙ In-phase impedance (Rs);
■ Out-of-phase impedance (---------- ∩-------------).

2jt frequency Cs
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Figure 6. Impedance vs. (2ir frequency)“* plots for 1.0 mM cyc^octe-

tetraene in dimethylformamide containing 0.15 M tetramethyl

ammonium perchlorate on mercury. ∙ In-phase impβnaace
(R_); ■ Out-of-phase impedance ( ——------ -------- — ).

s,, * * v 2tγ frequency Cs
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E5R of homogeneous solutions of COΓ~ in the presence of various 
cations showed no evidence of such ion pairing. 5‰58

AU of the factors responsible for the effect of the nature of 

the supporting electrolyte on the rate constant have not yet been eluci­

dated but the fact remains that k_ for the first reduction of COΓ can beg
as large as 0.2b cm∕sec, despite the major structural changes that

result from the reduction. Γhe large magnitude of the k_ values for

both COΓ and £ are in the range where the outer-sphere, rather than

the inner-sphere, reorganization energy dominates the factors that 
7 10control the electrode reaction rate. * Thus it appears that much

care must be taken in predicting how large an effect the inner-sphere

structural changes will have on the rate constant for electron transfer,

especially when it is not possible to calculate the latter from bond 
8-10length changes and bond strengths using Marcus theory. It would

be very interesting to know if the homogeneous self-exchange rates for 

these species followed - the behavior of their heterogeneous rates and if 

similar increases in the rates of electron transfer could be observed 

for other complexes with large intramolecular structural changes when 

changing the supporting electrolyte cation from tetra-n-butyaammonium 

to tetramethylammonium. Unfortunately, such data are not yet 

available.
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CONCLUSIONS

Two complexes, cis-[(C5H5)Fe(CO)P(CeH5)2]2 and cycloocta- 

tetraene, which are known to have large intramolecular structural 

rearrangements upon oxidation and reduction, respectively, have been 

studied via cyclic voltammetry, chronocoulometry and AC impedance 

techniques. Heterogeneous electron transfer rate constants were 

measured for these species in non-aqueous solvents and were as high 

as 0.25 cm∕sec, a rate usually associated with electron transfer 

limited only by the outer-sphere reor∣oιnZational energy. Although the 

reasons behind such large rates for these species have not been fully 

elucidated, it seems possible that compensatory structural changes in 

other parts of the molecule may lower the barrier to electron transfer. 

In any case, this study has clearly shown that it is not justified to 

associate large structural changes with slow electron transfers in 

general. '
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PART m

Synthesis and Properties of Several Novel Ruthenium Ammine 

Complexes. Some Applications of Electrochemistry to the 

Study of Reaction Rates, Formal Potentials and Adsorption.
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INTRODUCTION·

In the past ten years the chemical, spectral and electrochemical

behavior of ruthenium ammine species has received considerable

attention, both for a variety of ruthenium^) pentaammine and
5

tetraamine complexes and also for some ruthenium^I) ammine

compounds. ° The effects of various ligands on the formal potential

for the Ru (∏I∕∏) couple and on the position of the metal -tr-l⅛ann

charge transfer (MLCT) band have been investigated. Basically,

the results from these studies show that the greater the t -accepting

ability of the ligand, the more positive is the formal potential for the

ruthenium (ΙΙ/ΙΠ) couple. This trend is due to stabilization of the

ruthenium(∏) oxidation state relative to the ruthenium(IΠ). Low spin

Ru(II) is dβ and a good Tr-back-donor while d5 Ru(ni) is a n -acceptor.

For ligands which are not Ir-braniag, greater stability of the Ru(in)

oxidation state relative to the Ru(n) is found for those ligands with the

larger ligand field strength, with a subsequent negative shift in the 
6 ’formal potential. In some cases, there exists a correlation between 

the formal Ru(ll∕l∏) potential for the substituted ruthenium pβataa∏∏Iae 

complex and the position of the visible absorption (MLCT) band of the 

ruthenium(II) species.

The large differences in the chemical and coordinati-ve properties 

of Ru(ni) versus Ru(Il) peataa∏∏iaβ species have been used to prepare 

complexes which are coordinately stable in one oxidation state but, upon 

electron transfer, rapidly rearrange to accommodate an entirely new 

ligand environment. Although it has been possible to measure the rates



87

of coordination and aquation of various ligands in the substituted
a c o

ruthenium ammines spectrally, , ' cyclic voltammetry has proven to 

be particularly useful in examining the kinetics of ligand substitutions
3 4 Uwhen the reaction rates fall within the time domain of the cyclic scan. ' ’ 

The results of investigations into the aquation and coordination rates 

for a wide variety of ligands and substituted ruthenium(II) ammine com­

plexes appear to show that both these processes occur via a dissociative
2 9mechanism. * In addition, studies with cis- and traL∏s-ruthenium(I]) 

o etetraammines have indicated that there is a traas-labilizing effect » in 

these species, although those factors which govern this effect are not 

fully understood. In the present investigation, cyclic voltammetry has 

been employed to monitor both aquation and coordination rates for 

several novel ruthenium(II) ammine complexes.

Aa interesting compound that has been prepared is the ruthenium-
(III) pentaammine isothiocyanate ,4 in which the NCS" ligand is believed

to be N-bound to the ruthenium atom. However, recent work of Taube^

and Isied** have provided a synthetic route to the corresponding S-

bonded isomer, Ru(NH3)5SCN2+. To distinguish between other similar 
12-14NCS linkage isomers, infrared spectroscopy has been applied.

The feature best used to differentiate the two isomers was found to be

the intensities (and to a lesser extent the position) of the C-N stretching

mode at approximately 2050 The N-bound species has a greater
4

intensity than free thiocyanate while the S-bonded complex has lower 

intensity, although great care must be taken to com^re only measure­

ments in identical media. In the present investigation it was found that 

cyclic voltammetry, visible absorption spectroscopy and the extent of
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adsorption on mercury could also be used to distinguish the two linkage 

isomers of thiocyanate-substituted ruthenium pentaammine complexes.

Preliminary investigations into the adsorption behavior of 

Ru(NH3)5NCg+ on mercury electrodes have shown that this complex
15displays moderate adsorption, probably via the isothiocyanate ligand.

This fact, coupled with a convenient synthesis of a compound that can be

used as the starting point for formation of trans-substituted ruthenium 
5 8tetraammines, ’ has been exploited to prepare complexes which can

both coordinate other redox molecules and adsorb on mercury electrodes.

Formation of such molecular anchors is exciting because they could be

used to hold various redox couples at a known distance from mercury

electrodes and allow measurement of electron transfer rates to the

attached redox center. The effects of attaching redox catalysts at a

known distance from the electrode on the electrode kinetics for these

species are important parameters to understand in the field of attached 
16redox catalysts, and for which very little data are currently

17available. In the present report, the preparation, characterization

and electrochemistry of several molecuhar anchor-redox couple 

assemblies will be further explored.
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EXPERIMENTAL.

Materials. [Ru(NH3)5C1] Clg was prepared from Ru(NH3)βCl3 (Matthey 
18Bishop, Inc. ) as described in the literature by dissolving 7.0 g of 

Ru(NH3)βClg in 150 ml of 6N HC1 and refluxing for four hours. Upon 

cooling the solution, a yellow precipitate is formed and collected by 

filtration. After washing this solid with cold 20 ml-portions of 6 N HC1, 

CH3OH and acetone, it was ^dissolved in 0.1 N HC1 by heating, then 

filtered hot and allowed to slowly cool to room temperature. After 

several days the bright yellow crystals (5 g) were collected and washed 

with CH3OH

trans-Ru(NH3)4(H9O3)2 was synthesized according to a method out­
lined by Vogt et al.18 2.0 g of [Ru(NH3)5C1] Cl2 was dissolved in 80 ml 

of distilled water containing 2.83 g of NaHSC^. While slowly bubbling 

SO2 through this solution it was heated to a temperature between 75-80βC 

for one hour. Then the solution was cooled down to 0*0, with continued 

bubbling of SO2 through solution, to precipitate out the white solid. The 

product (1.8 g) was then washed with cold water and ethanol.

trans-[Ru(NH3)4(SO2)Cl]Cl was used as the starting point for syn­

thesis of other trans-substituted ruthenium tetraammine complexes.
18It was prepared from trans-Ru(NH3)4(HSO3)2 by dissolving 1.35 g of 

this compound in 150 ml of boiling 6 N HC1; it dissolves only slowly 

turning the color of the solution red. This solution was filtered hot to 

remove a black side-product and reheated to dissolve any crystals that 

may have precipitated. Finally the solution was cooled down in a 

refrigerator overnight to precipitate orange-brown, needle-shaped 

crystals (0.5 g) of the desired product which were washed with cold
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10-ml portions of 6 N Hh1 and hH3OH.

[Ru(NH3 )sNhg] (C1O4)a was prepared from [Ru(NH3 )5Cl]Cl2 by 
4

electrochemical reduction of a 10 mM solution at -0.6 V to form 

Ru(NH3)5(H20)2+ followed by addition of excess NaghN, air oxidation 

until a dark-red colored solution is formed and precipitation of the 

purple perchlorate salt with excess Nah1O4.

[Ru(NH3)5ghN] (PFβ)2, the g-bound thiocyanate isomer, was syn­
thesized by dissolving 25 mg of (NH3 )5Ru-g-S-Ru(NH3)5+^^* ** (kindly 

donated by gtephen Isied) in 2 ml of deoxygenated water which contained 

10 mg of NaHCO^ Then 100 mg of NaCN were added and the solution 

was stirred in air for 30 minutes in a well-ventilated hood. After 

addition of several drops of trCfluoaxacetic acid to acidify the solution 

and further stirring in air, this solution was chromatographed on an 

ion-exchange resin (gephadex gP-C50-120) eluting first with water, then 

0.02 M trCfi-sxaxtcetic acid (TFA) and finally with 0.2 M TFA to remove 

a purple band . which contained the desired complex. After concentration 

of the purple solution, the PFj salt was precipitated by the addition of 

excess NH4PFβ.

trans-Ru(NH3 )4 (Nhg)(gO4) was obtained from tranS[-Ru(NH))4- 

(gO2)C1]h1 via the following reaction sequence. To 5 ml of deoxygenated 

water containing 0.25 g of NaHhO3 were added 0,2 g of trans- 

[Ru(NH3)4(gO2)C1] Cl and excess NaghN (0.2 g). The solution was 

stirred until all the solid material had dissolved. Then 0.5 ml of 12 N 

Hh1 was added as quickly as possible (gas and heat were evolved), 

followed by 0.5 ml of 30% ¾02 within five seconds. If hydrogen 

peroxide is added much after five seconds, even just a few seconds,
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the yield of the desired product decreases considerably. The addition 

of H202 produces a dark-red solution from which aa orange-red solid 

can be precipitated by the addition of 50 ml of a 30% ethaaol∕7(% ether 

mixture. This solid was redissolved ia a minimal amount of water and 

chromatographed oa a Sephadex G-10 column with distilled water as the 

elutaat. Only the dark-orange band was collected and concentrated by 

rotary evaporation. Finally, the solid was dried at room temperature 

under vacuum.

trans-Ru(NH3 )4 (NCS),^ was generated by electrochemical^ reducing 

0.1 g of trans-Ru(NH3 )4 (NCS)(S04) ia 0.2 M CF3COOH at -0.6 V to pro­

duce t1an1s-Ru(NH3)4(NCS)(H20)+, followed by addition of excess NaSCN 

(0.2 g) and air-oxidation. The resulting solution was concentrated by 

rotary evaporation and chromatographed on the Sephadex SP-C50-120 

column. Unfortunately it was not possible to precipitate the PFj salt, 

even after the addition of a large excess of NH4PFβ, so only qualitative 

spectral and electrochemical measurements w^τre feasible.

EthyIeneniaminetetraacβtatoruthenium(ΠI), Ru(EDTA)(H20)", was 
19prepared and donated by Roger Baar.

20Ruthenium analyses were performed on all solid samples 

studied by cyclic voltammetry and visible absorption spectroscopy in 

this study. This procedure was accomplished by dissolving several mg 

of the desired ruthenium complex in 5 ml of 2 M KOH, which also con­

tained 100 mg of K2S2Oθ . Then the solution was heated for 30 minutes 

at or near the boiling point to concentrate the solution down to 1 ml.

After the solution was allowed to cool, it was diluted to 10 or 25 ml with 

2 M KOH. Measurement of the absorbance at 415 am for the sample
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,and using the known extinction coefficient of 1049 M“l cm”1, ^θ it was 

possible to determine the ruthenium concentration and hence the mole­

cular weight of the species. Reasonable results were obtained for 

Ru(EDTA)(H20)", [Ru(NH3)5Nhg](h1θ4)2 and trans-Ru(NH3)4<NCg)(g0<)

(when it was vacuum dried because this species was very hydroscopic).

In the case of [Ru(NH3 )5 ghN] (PFβ)2, the initial analysis of freshly prepared 

material was slightly lower than the predicted value (although no contami­

nation could be detected by cyclic voltammetry or spectrally) and with 

time the complex (even in the solid state) seemed to decompose.

However, all experiments with the g-bound ruthenium pentaammine 

thiocyanate were performed within 48 hours of its preparation and no 

further characterization of the decomposition was carried out.

In all the cases of trans-isι-stituted ruthenium tetraammines 

reported in this study, the trans-configuration was proposed because . no 

cis-trans rearrangements have been observed during the preparation of 

similar trans-RuCn) complexes * from the known trans-conformation 

of tranS[[Ru(NH3 )4 (g02 )hl]hl. Formation of N-bound isothiocyanate

ligands in trans-Ru(NH3)4 (Nhg)(SO4) and trans-Ru(NH3 )4 (Nhg)^ was 

postulated because of the similarity between the coordination reaction 

conditions for attachment of Nhg~ to these complexes and the coordination 

reaction conditions used for the preparation of the known N-bonded 
Ru(NH3)5Nhg2+.* These syntheses for Ru(NH3)5Nhsf+ involve coordi­

nation of Nhg" to the r,uthenium(∏) centers which is very different from 

the reaction sequence used to obtain the g-bonded thiocyanate ruthenium- 
(III) pentaammine. 1 θ,11
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Apparatus. Cyclic vrltam∏r∣gra∏s were obtained with a Princeton

Applied Research Model 173 potentiostat driven by a PAR Model 175

universal programmer and recorded on a Houston Model 2000 recorder.

For scan rates greater than 1 V∕sec. the transient current-potential

curves were first recorded on a Textronik Model 5000 Digital Scope

before being transferred to the Houston recorder. Controlled-potential

electrolyses were conducted with the PAR Model 173 potentiostat

equipped with a PAR Model 179 digital coulometer and using a cell 
22modeled after the design of Moore and Peters. Chroarcoulometry

experiments were accomplished by means of a computer-based data 
23acquisition system with the working electrode consisting of the 

modified (reference 40 in Part n of this thesis) PAR Model 303 static 

mercury drop electrode surrounded by a platinum gauze electrode as 

the auxiliary and a Ag/AgCl reference electrode.

The amount of adsorption was determined by subtracting the 

intercept on the charge axis found in the substrate solution from the 

double layer charge obtained in a background experiment. This was

necessary because both oxidation states were adsorbed and it was not 

possible to use double-step ^^^πίοι^ί^ to measure the double 

layer charge, thus the quantities of adsorbed material reported here were 

only approximate quantities. UV-visible spectra were obtained with a 

Hewlett-Packard Model 8450A
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Spectral properties and formal potentials for several of the com­

plexes examined in this study are listed in Table I. Formal potentials 

were evaluated from cyclic voltammetric curves, which in the case of 

trans-Ru(NH3)4(NCS)(SO4) required potential sweep rates high enough 

(lOV/sec or higher) to avoid the loss of SO® from the ianer-cGGrniπatioπ 

sphere of the electrGseπβraten Ruin). The loss of SO® from Ru(II) 

species has been previously reported to occur with a half-life of 0. 3 sec 
for trans-(HO2CC5H4N)Ru(NH3)4(SO^. ^ In the present investigation, 

the rate of loss of SO® from trans-Ru(NH3 )4 (NCSHSO4)“ was conveniently 

monitored by cyclic voltammetry (see Figure 1) both by the appearance 
of a new reversible couple at -0.24 V for trans-Ru(NH3 )4 (NCS)(H20)2+∕+ 

and by the loss of ^oxidation current for trans-Ru(NH3 )4 (NCS)(SO4)∖

Using the theory of Nicholson for a charge transfer process followed by 
28aa irreversible chemical reaction, the rate constant for the loss of

SO® from trans-Ru(NH 3 )4 (NCSXSO4)“ ia 0.2 M CF3COOH was found to be 

4.6 sec"1 (see Table II). This value for the loss of SO® from the Ru(ll) 

coordination sphere is slightly lower than that reported for trans- 

(HO2CC5H4N)Ru(NH3)4(SO4) but ia the same range for other aquation
2-8reaction rates of various substituted ruthenium^]) ammine complexes. 

N-Bound vs. S-Bound Thiocyanate

When the [Ru(NH3)5NCS] (dO4)2 prepared in this study is dissolved

in 0.2 M CF3COOH, a deep red-purple color results which is presumed

to be the N-bound thiocyanate isomer. Its spectral and voltammetric

responses are essentially identical to those of a complex prepared ia a 
4 4similar electrochemical fashion. In this previous report, infrared
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TABLE I

Electronic gpertra and Formal Reduction Potentials of 

geveral Ruthenium(III) Ammine Complexes

Ru(III) Complex λmax-, nm(e nnM~ 1 crn"1)a Ef, in voltsb

Ru(NH3 )5 NhS*+ 494(2175), 335 (sm), 270(sm) - 0.21
Ru(NH3 )5 NhS*+ 494( — ), 335 (sm) -0.23
Ru(NH3 )5 ghN*+ 492(2150), 335 (sm), 270 (sm) - 0.20
Ru(NH3 )5 ghN2+ 486( — ), 335 (sm) - 0.20

t -Ru(NH3)4(NCS) (so4) 468(3475), 308(1675) -0.36

t-Ru(NH 3 )4 (Nhg)2+ 746 (sm), 525( —), 290 (sh) -0.24

a. sm = small peak; sh = shoulder.

b. Measured by cyclic voltammetry with a Ag/Aghl reference

electrode,

c. Measured in 0.3 M Nahl solution.
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TABLE II

Determination of the Aquation Rate Constant for

trans -Ru(NHs )4 (NCS) (SO4)

Scan Rate (V∕sec)a V⅛cb r(sec)c k^sec ~1)d

0.5 0.35 0.38 5.9

1.0 0.51 0.19 5.3

2.0 0.69 0.085 4.7

3.0 0.78 0.063 3.2

4.0 0.80 × 0.048 4.0

5.0 0.85 0.038 4.2

av.-4.6

a. For a switching potential of -0.55 V. Ej for the Ru(IΠ∕tl) couple 

of trans-Ru(NH3)4(NCS)(SO4) is -0.36 V.

b. The ratio of anodic (ip ) to cathodic (ip ) peak currents calculated 

using Nicholson's method to correct for baseline drift.

c. r is the time between E£ and the switching potential.

d. kf found from Figure 12 ' in reference 28a.
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Figure 1. Cyclic voltammogram for 1.5 mM trans-Ru(NH3)4(NCS)(SO4) 

on (BPG) carbon ia 0.2 M CF3 COOH.

A. Scan rate = 50 mV/sec.

B. Scan rate = 1 V∕sec.

C. Scan rate = 10 V∕sec.
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absorption bands corresponding to the h-N stretching mode of the Nhg 

ligand in [Ru(NH3)sNhg] (h1θ4)2 were measured in the solid state, com­

pared to free thiocyanate and found to yield an integrated intensity five 

times larger than the uncoordinated thiocyanate. The relative ordering 

of intensities was used to support the assumption that the Nhg ligand in 
[Ru(NH3)5NhSl(h1O4), is N-bonded to the ruthenium.>12-14 Comparison 

of the proposed N-bound ruthenium pentaammine isothiocyanate to the 
species prepared in such a way as to form the g-bonded isomer 1θΙ1 

shows that these two complexes are not identical. Although the 

differences in the formal reduction potentials and visible spectral 

properties between the two ruthenium^) linkage isomers are small 

(Table I), they are reproducible. In 0,3 M chloride ion media, there 

is an 8 nm shift toward higher energy for the ligand-to-metal charge 

transfer (LMhT) band and a30mV positive shift in the formal reduction 
potential for Ru(NH3)5gCNz+ over that found for Ru(NH3)5Nhg2+.

However, in 0.2 M hF^hOOH solutions, the spectral and potential 

differences between the two linkage isomers is only 2 nm and 10 mV, 

with the g-bound complex still at the higher energies and more positive 

potentials relative to the N-bonded ruthenium pentaammine isothio­

cyanate. The shift in the position of the visible absorption band to 
higher energies for Ru(NH3 )5ghN2+ in the presence of chloride ions may 

be due to an ion pairing effect, similar behavior has been observed for 

Ru(NH3 )5(pyridine) in non-aqueous solvents with sodium chloride.

Isomerization of the g-bonded ruthenium^) pentaammine thio­

cyanate does not appear to occur on a cyclic voltammetric time scale
2+

(20 seconds or less) but if a solution of Ru(NH3)5ghN is allowed to sit



100

at room temperature, it converts into the N-bound isomer within

several days. Similar results for the S-bound to N-bound conversion
for solutions of Ru(NH)5SCN2+ were reported by Taube et al. In

addition, there was no indication of aquation of either Ru(NΗ3)5NCS+ or

Ru(NH3)5SCN+ at the slowest scan rates employed (50 mV∕sec), con­
. 4

trary to the implied aquation rate for the Ru(NH3)5NCS complex.
The reaction of Ru(NH3 )5NCsf+ with Hg2+ ions4 has been cited as

evidence in support of the proposed N-bound conformation, but in the

present investigation, Hg2+ was found to react similarly with either

ruthenium pβataam∏iae thiocyanate isomer. Addition of Hg(C1O4)2 to

red-purple solutions containing either S-bound or N-bound ruthenium(ΠI)

pβataa∏∏iae thiocyanate immediately produces a yellow solution 
4 29because of the following reactions: »

Ru(NH3)5NCS2+ + Hg2+ j----» Ru(NH3)5(NCS)Hg4+

Ru^^SCN* + Hg2+ Ru(NH3)5(SCN)Hg4+.

The ruthenium^I) peataam∏Ine thiocyanate mercury^) adduct shows 

a small absorption band at 399 nm while the isothiocyanate derivative 

has an absorption maximum at 400 nm. Addition of chloride ions to 

either solution returns the respective spectrums to 92% of their original 

intensities with no apparent isomerization of the S-bonded rut^h^n^^n(Ι^Π) 

peataammIae thiocyanate into the N-bound ruthenium^i) pentaa^^ 

isothiocyanate. Reaction of both ruthenium pentaammine thiocyanate 

linkage isomers with Hg may be explained by proposing that the sulfur 

atom can coordinate both ruthenium and mercury simultaneously.
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Thus, the reaction of Hg2+ with Ru(NH3)sSCNi+ aad Ru(NH3)5NCS^ can

not be used to distinguish between the two isomers as previously 
4

proposed.

As already discussed, the spectral and formal potential behavior 

for the two linkage isomers of the ruthenium pentaammine thiocyanate 

species are very similar although not identical, but in their adsorption 

properties oa mercury electrodes there are large differences. 

Summarized ia Figure 2 are the results of chronocGulometΓic adsorption 

measurements for the Ru(∏) and Ru(m) pentaammine thiocyanate aad 

isothiocyanate complexes as a function of potential aad substrate con­

centration on mercury electrodes in 0.2 M trifluoroaeβtie acid. There 

appear to be only minor differences ia the adsorption properties of the 

two Ru(n) species, with slightly larger quantities adsorbed and a greater 

potential dependence for the Ru(NH3)5SCN+, but for the ruthenium^I) 

pentaammine thiocyanate and isothiocyanate complexes the adsorption 

profiles are quite distinctive. While Ru(NH3)5NCS is adsorbed almost 
as strongly as Ru(NH3)5NCs2+, the S-bound isomer, Ru(NH3)5SCn2+, is 

essentially not adsorbed at all. In addition, the potential for mercury 

oxidation in the presence of the N-bonded thiocya^te isomer was 

approximately 100 mV more negative than that for the S-bound ruthenium 

pentaammine thiocyanate. These two features, the difference ia 

mercury oxidation potential in the presence of S-bound vs. N-bouad 

thiocyanate ruthenium^) pentaammine and only a little adsorption (less 
than 3 μcoul∕cm2) of the Ru(NH3)5SCN2+, more than any other were 

indicative of which linkage isomer of ruthenium pentaammine thio­

cyanate was present in solution.
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Figure 2. Potential dependence of the adsorption of (A) Ruthenium

pentaammine isothiocyanate and (B) Ruthenium pentaammine 

thiocyanate at mercury electrodes. The electrode was 

held for 30 sec. at the indicated potential in a solution of 

(A) Ru(NH3 )5Nhg)2+ or (B) Ru(NH3 )5ghN2+ then stepped

to -0.6 V for Ru(m) reduction or +0.1 V for Ru(II) oxidation. 

hxncertratix∏ of substrate, mM: ∙ - 0.2; ■ -0.5; O - 1.0; 

▲ - 2.0. gupporting electrolyte: 0.2 M hF3hOOH; pH = 1.4.
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The adsorption properties of the N-bound ruthenium^) and

ruthenium^]) pβntaam∏iae isothiocyanate complexes have also been
studied in 0.2 M CF3COONa (at pH = 6.5), in 1 M NH4F15 and in 0.32M 

15Na,S04 solutions with analogous results to those reported in Figure 2.
AA

Based upon a molecular radius of 3.3 A, υ a concentration of 2 mM 

Hu(NH3)sNCS+ shows about } of a monolayer of adsorption, with repul­

sive rather than attractive interactions among the adsorbing molecules
15indicated from a plot of the values of the quantities adsorbed in

Figure 2 in Frumkin coordinates. Also, the observed potential

dependences follows the trend toward greater adsorption at the more

positive potentials found for several other metal isothiocyanate com- 
32plexes. This probably reflects the increased interaction of the sulfur

atom (in the NCS ligand) with the more positively charged mercury

surface, similar to the affinity of several metal thiocyanate species
(including Ru(NH3)5NCS>2+) with Hg2+. It has been suggested that

the greater the value of the ligand field stabilization energy, the greater 
32 33the extent of adsorption. ' The ruthenium pβntaa∏mIae isothio­

cyanate species also appear to fit this correlation.

Formation of a Mol^(^ι^l^^r Anchor-Redox Couple Complex

It has been proposed to exploit the moderate adsorption of

ruthenium^) ammine isothiocyanate complexes to prepare a molecule 

which could be used for attaching redox couples at a known distance 

from the mercury electrode. The properties that such a molecule 

must have include strong adsorption on mercury in a known geometric 

conformation, electroinactive in the potential region where the redox 

couple is electroactive, possible coordination of a variety of redox
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couples and convenient monitoring of the coordination of the redox 

couple to the molecular anchor either spectrally or voltammetrically. 

One possible candidate for such a complex that fulfills many of the 

above requirements is ' trans-Ru(NH3)4(NCS))4-vinytpyrini∏ß)+)

Formation of trans-Ru(NH 3 )4 (NCS))4-vinylpyridine)+was accom­

plished by electrochemical reduction of 2 mM solutions of either 
Ru(NH3)5NCS2+ or trans-Ru(NH3)4(NCS)(SO4) at -0.6 V in 0.2 M 

CFgCOOH (pH = 1.4) containing approximately 40 mM 4-vinylpyridine 

(pKa 5.2-5.4 ). The reducing potential of -0.6 V was maintained for 

7 to 12 hours in the absence of oxygen and resulted ia the complete 

coordination of the vinyl group to the ruthenium^) atom. This coor­

dination reaction is easily monitored by cyclic voltammetry (see 

Figure 3) because coordination of the olefin to the Ru(II) center shifts

the formal potential of the Ru(Π∕IΠ) couple over one volt more positive, 
35similar to that observed for other rutheaium^IJ-olefin species.

After the coordination reaction was complete, the pH of the solution 

was raised to 6.5 to deprotorate the pyridine nitrogen and the aqueous 

solution was extracted with three 20-ml portions of diethyl ether to 

remove excess 4^9^^^^. Then the resulting aqueous solution 

was exposed to reduced pressure to remove any remaining dissolved 

ether, the pH was readjusted to 6.0 and the ehro∏Gcoulometrie 

adsorption measurement made. At pH values above 5.0, the solution 

of trans-Ru(NH3 )4(NCS) (vinylpyridiae)+ was somewhat light sensitive, 

decomposing iπ only three to four hours, so this solution of traas- 

Ru(NH3 )4 (NCS) (vinylpyridiae)+ was used immediately after preparation 

for adsorption measurements. AUer the etrG∏Geoulometric
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Figure 3. A. Cyclic voltammogram of the solution produced by 

reducing 2 mM [Ru(NH3)5hl] Cl2 at -0.6 V in the 

presence of 40 mM b-vl∏ylpyrldl∏ism for three hours.

B. Cyclic voltammogram of the solution generated by 
reducing 2 mM Ru(NH3 ) 5Nhg2+ at -0.6 V in the presence 

of 40 mM 4-vinylpyridinium for eight hours. Carbon 

(BPG) electrode. gupporting electrolyte: 0.2 M hF4hOOH; 

pH = 1.4. gcan rate = 100 mV∕sec.
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determination of the double layer charge on mercury for each potential 

step in the 2 mM trans-Ru(NH3 )4 (NCg) (vinylpyridine)+ solution (trans- 

Ru(NH3)4(NCg) (vinylpyridine)+ is electroinactive in the entire potential 

region accessible on mercury), a redox couple which coordinates the 

pyridine nitrogen was added and adsorption data were acquired as a 

function of applied potential and redox couple concentration.

Ru(EDTA)(H20)" was used as the redox couple because with its

ruthenium atom in either oxidation state, Ru(n) or Ru(∏i), it binds 
36 37strongly and quickly to the pyridine nitrogen ' and the formal

potential for Ru(EDTA) (pyridine)" reduction is observable on mercury

electrodes. In addition, coordination of the pyridine nitrogen to the

inner-coordination sphere of Ru(EDTA) is easily monitored by cyclic

voltammetry because of the +100 mV shift in the formal potential for

Ru(EDTA) (pyridine)" vs. Ru(EDTA)(H∣O)" reduction (see Figure 4).

Visible spectroscopy also could be used to follow the coordination of

Ru(EDTA) to the pyridine nitrogen in trans-Ru(NH3 )4 (NCS))vinytpyridme)+,

however this method was not as convenient as cyclic voltammetry 
34because the spectral changes were relatively minor. Under the

experimental conditions used here, 2 mM trans-Ru(NH3)4(NCS)(vinyl- 

pyridine^ at pH =6.0 with increasing concentrations of Rs(EDΓA)(H20)~ 

added (from 0.2 to 1.5 mM), complete coordination of the rutheniumC 

EDTA complex to the pyridine nitrogen of the molecular anchor, trans- 

Ru(NH3)4(NCS))vinylpyridine)+, was found. There was no indication in 

cyclic voltammograms of these solutions of Ru(EDTA)" in the presence 

of trans-Ru(NH 3 )4 (NCS))viny ypy ridine)+ that any Ru(EDTA)(H20)" 

remained uncomplexed.
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Figure 4. A. Cyclic vrltam∏ogra∏ of 1 mM Ru(EDTA)(H20)^.

B. Cyclic voltam∏ogra∏ of 1 mM Ru(EDTA) in the 

presence of 2 , mM 4-vInylpyridiaβ)

Carbon (BPG) electrode. Supporting electrolyte: 0.2 M 

CF3COONa; pH = 5,6. Scan rate = 100 mV∕sec.
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Adsorption measurements on mercury electrodes for solutions of 

trans-Ru(NH3)4(NCS))vinylpyrinine)Ru(EDTA) as a function of potential 

and concentration are shown iπ Figure 5. Although these solutions 

show some adsorption, the quantities involved (7-12 μcorl/cm2) are 

small, especially if the adsorbing molecules are perpendicular to the 

surface via adsorption through the thiocyanate ligand as anticipated. 

However, the potential dependence of the adsorption of trans-Ru(NH3)4- 

(NCS)(vinylpyriniπβ)Ru(EDTA) species, more adsorption at more 

negative potentials, is in the opposite direction to that found for 
Ru(NH3 )5NCSf+ or Ru(NH3 )sNCS+ ia the same media (Compare Figure 5 

to Figure 2A). In fact, adsorption measurements performed on mM 

solutions of Ru(NH3)s(vinylptridine)Rn(EDTA)+, which has no thio­

cyanate ligand to help induce adsorption, exhibits the same potertial 

dependence and extent of adsorption as trans-Ru(NH3 )4 (NCS)(vinyl- 

ptridine)Ru(EDTA)) This may imply that it is the size and solubility 

of the entire ruthenium ammine vinylptriniπβ ruthenium EDTA 

assembly which dictates its adsorption on mercury and that perhaps 

adsorption occurs with the molecule lying flat on the electrode surface. 

The possibility that the thiocyanate ligand is lost during the formation 

of . trans-Ru(NH 3 )4 (NCS))vinylpyrininium) was ruled out from a com­

parison of the Ru(∏) oxidation potential (E» ) for the product formed“a t 2+
from electro-reductions of either Ru(NH3)5NCS or trans-Ru(NH3)4- 

(NCS)(S04) ia the presence of 4-vintlptriniae (E« ~ + 0.75 V) to that 

for Ru(NH3)5(vinylpyrininirm)3+(Ep ~ + 0.95 V). Thus it appears that 

the ruthenium ammine isGthioetnate complex is not suitable as a 

molecular anchor for attachment of redox couples to the mercury
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Figure 5. Potential dependence of the adsorption at mercury

electrodes of: □ - 2 mM Ru(NH3)5 (4-viaylpyridiaβ) in 

the presence of 1 mM Ru(EDTA) ; ■ 2 mM trans- 

Ru(NH3)4(NCS)(4-vinylpyrIniaβ) in the presecce of 

0.5 mM Ru(EDTA); ∙ - 2 mM trans-Ru(NH3)4(NCS)- 

(4-viaylpyridiae) in the presence of 1 mM Ru(EDTA); 

▲ 2 mM tI^^r^iS-[Uu^^Π3)4 (NCSS(4-vinylpyrIdiae) in the 

presence of 2 mM Ru(EDTA). Complete coordination 

of Ru(EDTA) to the pyridine nitrogen was observed. 

The electrode was held for 30 sec at the indicated 

potential and stepped to -0.6 V for Ru(∏[) reduction or 

+ 0.1 V for Ru(II) oxidation. Supporting electrolyte: 

0.2 M CF3COONa; pH = 6. 0.
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electrode only because its adsorption was not strong enough.

Attempts to modify the adsorption behavior of the ruthenium

ammine viaylpyΓidiae ruthenium EDTA species by using SeCN to help 

induce adsorption on mercury proved unsuccessful because of diffi­

culties in preparing a complex with N-bound selenocyanate coordinated 

to the ruthenium ammine center. No further efforts were expended on 

this synthesis although it is still believed that the general approach of 

substituted ruthenium ammine complexes may yet prove fruitful in the 

preparation of a molecule which is adsorbed and can coordinate various 

redox couples so that their electrode kinetic parameters could be 

measured.
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CONhiUgîOSg

Com^rison of the spectral and electrochemical properties of 

N-bound ruthenium pentaammine isothiocyanate versus g-bonded 

ruthenium pentaammine thiocyanate has shown that there are minor 

differences in their formal potentials and the position of their visible 

absorption bands. In particular, the adsorption behavior on mercury 

electrodes is very indicative of which linkage isomer is present. The 

lability of several substituted ruthenium^I) ammine complexes was 

exploited to prepare trans-Ru(NH3)4(NCS))4bviiiylpyridine)+. This 

molecule was used to both coordinate Ru(EDTA)" and to adsorb the 

resulting species on mercury. Unfortunately, the adsorption was not 

strong enough to allow measurement of the electrode kinetics to the 

adsorbed assembly.
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dissolved ether and the pH readjusted to 6.0. Ru(NHa)s(vinyl-

pyridine)Ru(EDTA)+ was prepared by addition of Ru(EDTA)(H20) 
2+

to the Ru(NH3)5 (vinylpyridine) solution.
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APPENDIX I

Simple Electron Transfer Reactions: Comparison of 

Experimental Results to Theoretical Predictions
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The following compilation of published rate constants for hetero­

geneous and homogeneous electron exchange reactions grew out of a 

search for complexes iπ which large intramolecular rearrangements

accompany electron transfer (see Part II). It was intended to use such 
1-7complexes iπ testing of several of the predictions of Marcus' theory. 

With few exceptions, only experimentally measured rate constants as 

reported ia the original publications are included iπ Table I. Electrode 

processes were restricted to those iπ which both reactant aad product 

are soluble iπ the solute. (For a more extensive compilation of elec-
Q

trode reactions, including amalgam formation, see Tanaka. ) All 

values are uacorrected (i.e., the heterogeneous rate constants are aot 

corrected for the effects of the electrical double layer and the homo­

geneous rate constants are not corrected for ionic strength effects) 

because suitable corrected values are rarely available. This table has 

proven useful to numerous members of the Aasoπ group and is being 

included here iπ the hope that it may be helpful to future group members.

There are several well kaowπ theories of electron transfer,
1-7 Q-ll 12including those by Marcus, ' Hush, and Dogonadze, but the

theory proposed by Marcus for simple, ouer-sphere electron transfer 

is particularly well-suited to providing theoretical equations with 

physical significance concerning the factors which influence the rate. 

Although there are several good references » ,∙ιa>** which discuss 

Marcus theory and its application to electron transfer reactions, I will 

attempt to summarize some of the basic equations so that a discussion 

of several of the predictions of Marcus theory may be examined ia light 

of this compilation.
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TABLE I

Compilation of Heterogeneous Electron Transfer and 

Self-Exchange Rate Constants for Redox Reactions
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M-ET⅞QD.A-B-Bg-E-yjA.T-IQ-N-S-

ACV = AC Voltammetry

ACI = AC Impendence

CV = Cyclic Voltammetry

CH = ChΓoaocrulometΓy

Cl = Current Impulse

ES = Exchange and Serration

ESR = Electron Spin Resonance

FR = Faradaic Rectification

G = Galvonastatic

GDP = Galvanostatic Double Pulse

HTE = Hydrodynamic Tubular Electrode

HV = Hydrodynamic Voltammetry

IR = Infrared Spectroscopy

IT = Isotopic Tracer

IV = Current-Voltage Curves

LOA = Loss of Optical Activity

NMR = Magnetic Resonance

NPS = Normalized Potential Sweep

P = Potentiostatic

PG = Polarography

RD = Rotating Disk Voltammetry

RFPG = Radio Frequency Polarography

SV = Staircase Vottammetry

TD = Transfer Diffusion
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CH^M!CALAND,EλECT^3DLMATE5IAkABB5EVIATIONS

aq = Hy<drated

bipy = 2,2 '-bipyridine

C s Carbon (graphite) Electrode

Cp = cyc lopentadieny 1

CP = Carbon Paste Electrode

DMF = dimethylformamide

DMSO = dimethyl sulfoxide

DME = dimethoxyethane

en = ethylenediamine

EDTA = ethylenediammetetraacetate

GC = Glassy Carbon Electrode

HMPA = hexamethyl phosphoramide

NB = nitrobenzene

Ox = oxalate

phen = 1,10-phenanthroline

TCNQ = 7,7% 8,8 '-tetracyanoquinodim ethane

TCNE = tetracjomoethylene

THF = tetrahydrofuran

TBAF = tetra-n-butyOιmmonium hexafluorophosphate

TPAP = tetrapropyUmmonium perchlorate

TEAP = tetraethylammonium perchlorate

THAP = tetra-n-he3Qlaimmonium perchlorate

TEAB = tetraethyammonium bromide

TBAI = tetra-n-butykιmmonium iodide

TBAP = tetra-n-butyL·ιmmo-ium perchlorate
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Marcus applies transition state theory to describe the inter­

section of the two energy curves for electron transfer (reactants and 

products) and from this analysis he finds that the rate constant, k, 

measured for the electron transfer process is related to the free energy 

of activation, ∆G , for this reaction via

k = Kp Zexp(-∆G*∕RT), (1)

where κ is the transmission coefficient (usually assumed to be one for

adiabatic reactions), i.e., the probability that the activated complex

for the system will transfer from the energy surface of the reactants to 
e δthat of the products; p , is a ratio,’ usually assumed to be unity; Z is a 

factor that measures the collision frequency of the redox molecules in 

solution with other redox molecules in solution or with the electrode, 

Zeχ and Zej, respectively:

z — r2 ( θ^κτ ∖ g Zex-R <Tto''el = (J3-)i ⅛m (2)

where m = the molecular weight and R = collision diameter (usually taken 

as two times the molecular radius); and ∆G* is the free energy of 

activation, assuming that the Franck-Condon principle holds (which 

states that intemuclear distances and nuclear velocities do not change 

during an electronic transition).

The factors which influence the free energy of activation (∆G*) 

can be expressed by the following equation:

. ∆G* =
w + 

r p
2

(δg* + wp-wγ)2

4x
(3)
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where wr Wp represent the work needed to bring the reactant and the 

product to the reaction site from the bulk, ∆G* is the standard free 

energy of reaction at the reaction site (∆G* = -RTlnK, K being the 

equilibrium constant for the electron transfer reaction) and x is the 

reorganization energy which can be tubnivinen into Xj, the inner-sphere 

reorganization energy, and λo > the outer-sphere reorganization energy. 

The inner-sphere reorganization energy (treating the molecular changes 

as harmonic oscillators) is given by:

1i = i tjSi (4)

(where S^ are the reduced force constants and Aq^ ∆q^ are differences 

in equilibrium bond lengths and angles between the oxidized and reduced 

forms.) The outer-sphere reorganization energy (based upon a 

dielectric continuum for the solvent) for homogeneous (self-exchange) 

reactions is given by

(Xo)ex = (<>β)2⅛ + ⅛ - ⅛,t⅛p ■ ⅛ ’ (5a)

and for heterogeneous electron transfers (including the image potential) 

by

(λo) »
(ne)i®L / J____L)( -L-t~ X R' «D (Sb)

(where a1, a2 are radii of the fons, R' is twice the distance from the 

center of ion 1 to the electrode surface (usually taken as 2a1), D0p is the 

optical dielectric constant of the medium and Ds is the static dielectric



(6)
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constant of the medium).

,13 ,l4
In calculating the work terms, wr and w , an approximation 

13 14normally applied, * is given in equation 6

<lι¾≈
Ds(d))l +0d√^Γ)

where q1, q2 are the charges on the ions, d is the distance from the 

center of ion 1 to ion 2, μ is the ionic strength of the medium and β is 

defined as

, εNe2 a ,
$ =( 1000DsRt)2 * (7

where N is Av<ogab,o's number and R, in this instance, is the molar 

gas constant. In circumstances where the work terms and ∆G* are
* xi + *osmall, then AG reduces to —∣—.

Probably the most frequently cited and experimentally tested

relationship that can be derived from Marcus' treatment is

(8 )

where ku and k2a are the rate constants for the two homonuclear self­

exchange reactions, k12 and K12 are ' the rate and equilibrium constant, 

respectively, for the cross reaction and fκ, defined as:

ex

is close to one except for reactions with large values of K^. This

2

(9)
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equation Cos been used to predict botC cross reaction rates and self* 
18-19excConge rates for o wide ooriety of reoceirat. a

J second result derivable from tCe Marcus treatment is:

⅛∙⅛) or ∆G*1 = ∆G*χ∕2 . (10 )

TCe rate dato in Toble I and tCe corresponding free energies in Toble II 

are useful for testing tCese predicted relotirasCips.

Jn alternate relatioasCip between tCe aetiootioa energies for 

Cetet,rgeaeout and hrmrgeaerut electron transfer Cos been proposed 
(oltCougC not derived) by Hush®

δ⅛ - ≤ ∙ (n )

Equation 11 is based upon tCe attertioa tCot tCe image potential con be 

ignored for Ceterogeaerus electron transfers. In Table in and in 

Figure 1 some results derived from tCe first two tables are sCown. 

Nine systems seem to follow tCe Marcus prediction (when R = 2o), and 

tCirteen tCe HusC prediction. Jbout fifteen to twenty complexes do not 

appear to fit eitCer expression and about tCree fall in between tCe two. 

Closer inspection reveals tCat tCe Marcus equation adequately predicts 

tCe re]atirasCip between Ceterrgeaerut and ^mogen^^ electron 

transfer rates for complexes witC k__. between 10~* and 104 M“1 s^∖ 

while tCe HusC equation works better for systems witC k __ in tCe 10’ to
6λ

10β M*1 s"1 ronge. However, for many of tCe redox couples witC kθχ 

greater tCon ltf M^1s"1 (i.e., near tCe diffusion-limited rate) neitCer
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Figure L· Comparisoo oS the Eoergies oS Activatim Sor Heterogeoeous

Electroo TraotsSer (AG*) versus Homogeneous (SelS-E×chaoge) 

Electroo TraosSer (AG^^) Rea^oos, Values plotted are 

Srom those listed io Table ∏.
Marcus Predictim (Sor R = 2a): AG* = AG*×∕2.

Hush Prediction AG* = AG^



156



157

equatioo works welL (Both equatioos predict kg values much larger 

thao the e×perimeotally measured values. ) Both equatioos also Sail Sor 

oumerous cobalt ((Π/o) complexes^

Failure oS the Marcus theory (wheo R = 2a) adequately to predict

the relatimhip betweeo the heterogeoeous aod homogeoeous rates may

be due to the fact that most heterogeoeous electroo traosSer reaction 
20occur with the comple× at the Outer Helmholtz Plaoe oS the electrode

(which is usually 3-5 A Srom the electrode) so that R b 2a^ Wheo R is

allowed to be larger thao or equal to 2a, the Marcus predictim becomes

closer to the Hush predictioo (especially wheo the outer-sphere reorga-

oizatisn eoergy dominates the ∆G* Sor electrm traosSer) aod almost

halS oS the systems measured to date cao be predicted by the Marcus

equatio^ Fioally, some oS the lack oS agreemeot betweeo theory aod

e×perimeot cao be e×plarned by the Sact that ooly uocorrected rate

crnsta^s were compared because oS the paucity oS corrected rate

crnsta^s, aod uocertaintiei about the theory applied to obtaio the 
21corrected rate coostant's·

With the data compiled io Table I aod values oS λ∣ aod χ, takeo 
13 22-24Srom reSereoces, 1 it was possible to test two empirical equa^TOs

ΛC AP»

that have beeo proposed io the literature ’ relatiog kθχ aod kg

These equatioos are:

25

(12)

where r = (λ0 ∕>peχ25 aod Srom reSereoce 26:

logkθχ = (2± 0.5) log kg + (4± 1). (13)
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Neither of these equations adequately describes the correlation between 

homogeneous and heterogeneous electron transfer rates, although 

equation 13 does seem to hold for those systems for which the Marcus 

prediction (when R = 2a) also is valid.
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APPENDIX Π

Several Techoiques Used Sor the Measuremeot 

oS Electrode Emetic Parameters
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Ito Part π oS this thesis, the techniques oS cyclic voltammetry, 

chronocoulrmetry aod AC impedance were applied to the measurement 

oS the heterogeneous electroo transSer rate constants Sor several 

species. Although a brieS discussion oS each technique was presented, 

the major emphasis oS the research was on the values oS the rate coo- 

stants, not so much oo how they were acquired aod calculated. Io this 

appendi×, I will e×paod on the e×perimeotal aod theoretical considera­

tions used Sor the measurement oS the electrode kinetics by these 

techoiques.

Cyclic Voltammetry

E×perimentally, cyclic voltammetry is me oS the easiest methods 

to apply to measurement oS electrode rate cmsιtan^s (ks), because oS 

the simplicity oS the initrumeotatioo used aod the ease oS calculation 

Srom the measured parameters oS interest. Esseotially all me needs 

is a triangular waveSorm generator (Sor e×ample the PAR Model 175 

universal programmer) which is used to drive a po^entiostat that is 

connected to the electrochemical cell. The electrochemical cell coo- 

sists oS the substrate solution, the working electrode, auxiliary elec­

trode aod a reSerence electrode. To obtaio the electrode kinetics, the 

scan rate is varied aod the resulting current-voltage curves are 

mmitored with an ×-y recorder or a storage oscilloscope. From the 

potential diSSerence between the anodic aod cathodic peak currents, it is 

possible to calculate the value oS the rate constant. The major e×peri- 

mental diSSiculty is io eliminating the eSSect oS ohmic potential (iR) drop, 

which occurs because current is Slowing in a solution with Sinite 

resistance. Ohmic resistance aSSects the parameters used to measure
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the electrode kinetics in cyclic voltammetry in a very similar way to 

that of the kinetics themselves and In many cases It is hard to distin­

guish between the two. Even in situations where positive-feedback
circuitry* has been employed to reduce IR, care must be taken In 

2
setting the value of feedback. Usually must researchers Increase the 

amount of feedback until . a point just before oscillation of the entire 

system, however, this value depends on many variables and will vary 

from one set-up to another.

There are several other methods that experimentally can be used 

to reduce the effects of ohmic potential loss. These include using low 

concentrations of substrate and small electrode areas to minimize the 

current, decreasing the resistance of the solution by increasing the 

supporting electrolyte concentration and eliminating physical barriers 

such as glass frits between the electrodes, and by arranging the elec-
3

trodes as close together as possible. It has also been proposed to use 

a model substrate which has a measured rate constant greater than 

1.0 cm/sec to' calibrate the IR feedback setting. Many of the afore­

mentioned precautions to measure the rate constants were used for the 

values reported In Part ∏.
To reiterate, the experimenter varies the scan rate for a potential 

scan from where no faradaic reaction occurs to potentials 113/n mV 

past the half-wave potential (E£) for the substrate where the scan is 

reversed back to the Initial potential and monitors the resulting current- 

voltage curves. The potential difference between the anodic and cathodic
4

peak currents (AE^) Is then used to calculate the rate constant. The 
theoretical work of Nicholson* has shown that ∆Em is a function of the
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TABLE I

Variation of the Peak Potential Separation (∆E ) With 
4 p

the Kinetic Parameter ψ.

,3.
. ψ *Ep

20 61

7 63

6 64

5 65

4 66

3 68

2 72

1 84

0.75 92

0.50 105

0.35 121

. 0.2S5 141

0.10 212

a. For a scan reversal potential 113/n mV past the Ej 
and ψ defined in equation 1.

b. The potential separation between the anodic and 
cathodic peak currents for n = 1.
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scan rate (μ), the rate constant for electron transfer (kg), the transfer 

coefficient (a) and the potential at which the scan is reversed. However, 

for a reversal potential of 113 mV (for π = 1) past the Ej for the sub­

strate and for a between 0. 3 and 0. 7, the AE_ Is nearly Independent of 

these parameters and is related to a dimensionless parameter, J, via 
Table ■ .4

Once AEp Is known as a function of scan rate, ψ as a function of 

scan rate can be determined and the rate constant is calculated by
4

equation 1 :

where Dθχ, D^ are the respective diffusion coefficients of the 

oxidized and reduced forms of the redox couple (usually assumed to be 

equal), a is assumed to be 0.5 (as a first approximation) and ~ is 

38.92 V“l (at 25* C and n = 1). IΠ general, only values of if/ between 

0.1 and 7.0 are useful for determ iniπg the apparent kg values at each 

scan rate, from which the heterogeneous electron transfer rate con­

stant Is calculated by averaging the apparent kg values over the entire 

scan rate range.
5

AC Impedance

The basic operational procedure involves applying an AC voltage 

of known frequency and amplitude (usually 5.0 -10.0 mV) to an electro­

chemical cell and measuring the in-phase and out-of-phase components
g

of the resulting current. This is easily accomplished with a lock-in
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amplifier. The amplifier is used to generate the AC signal and to 

measure the in- and out-of-phase components of the current with 

respect to the AC voltage. The amplifier also converts the AC voltages 

to DC levels which are read off a voltmeter. These values are then 

used to calculate impedances from which the electrode kinetics can be 

extracted after corrections for solution resistance and double layer 
capacity. ®

The equipment needed to perform an AC impedance experiment

are a lock-in amplifier, a fast potentiostat (i.e. , a potentiostat with

no capacitors on the current output), a frequency counter and several

voltmeters. Everything should be turned on and allowed to warm up

for at least 15 minutes. Each instrument should be plugged into the

same power outlet (separate plugs though). For measurements on

mercury the PAR Model 303 Automatic Electrode (very high precision

area reproducibility) can be used as the working electrode, a Pt gauze

electrode around the mercury drop for the auxiliary electrode and either

a silver wire or SCE as reference electrodes (although no glass frits

should be used to separate the reference electrode as this causes phase

shifts and the SCE or Ag/AgCl reference electrodes do leak a little).

The potentiostat can be used in a 3-electrode configuration (normal) or

in a 2-electrode set-up where the reference and auxiliary electrodes 
n

are tied together and the DC potential is measured by a voltmeter.

If the potentiostat has iR compensation capabilities, it should be 

applied before the AC voltage is set and should totally compensate the 

solution resistance (otherwise an unknown amount of uncompensated 

solution resistance remains and makes the calculations of the kinetics



167

unreliable by that amount). However, in many cases it is better not to 

apply PR Seedback aod to use substrate concentrations oS 1 mM or less 

so that the AC currents are small (< 10^5 Ampere) which minimizes any 

potential drop due to resistance. This technique works well unless the 

solution resistance is much greater than about 300 £2 or iS the double 

layer capacity is larger than 0.2 μF.

Calculation oS the kinetic parameters assume that the cell can be 

represented by an equivalent circuit as shown in Figure 1A. This can 

be Surther reduced to an equivalent RC series circuit as shown in 

Figure IB, Srom which the electrode kinetics may be extracted aSter 

corrections Sor the solution resistance (R^) and the double layer 

capacitance (C<^).

Operationally then one Sirst measures the in- and out-oS-phase 

AC currents (as voltages Srom the lock-io ampliSier, appropriately 

scaled) Sor a solution containing the compound oS interest at several 

diSSerent DC potentials at and near the E£ Sor the comple× and at 

several diSSerent Srequeocies (Sreq.). Theo the io- and out-oS-phase
i

AC currents are calculated by

i lout (2)

where V£n and Vqu are the in- and out-oS-phase voltages Srom the 

lock-in ampliSier and Rm is the measuring resistor on the potentiostat. 

The admittances are then calculated via:

Y. =*rn y, in and
RMS oot

*out
vrms

i
(3)
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Figure 1. A. Equivalent circuit for an electrochemical cell 

with electrode kinetics.

B. An RC series circuit.
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,Wιere Vjy^g is the applied AC voltage. The admittances are converted 

to impedances by:

zin = in
(Yin) ÷ <Y,→)out*

J _ _____ 1out
-out ’ +

out'
(4)

from which the in-phase component gives Rg directly (in ohms) and the 

out-of-phase component gives Cg (in farads) by:

Cb =≈ ---------- i--------- . (5)
b 2* (freq. )Zσut

Next a background solution is run, ' which in this case gives R∩ and 

Cf∩ directly from the Rg and Cg calculated for this solution. Once R^ 

and Ct∩ are known, the parameters rb and Cg measured at each 

potential and frequency in the complex solution can be converted into 

impedances R_ and C_ (the kinetically useful parameters) via the
S 9

g
following equations:

rb = ⅞ * ro

r .r, Γ1 + [¾ffreq.)⅝⅞]2Ι 

p B [_ [2f<freq. )R,bCb]* J 

Cg
C ≈ -----------------s-------------

P 1 + [2ff(freq.)RgCgl2

(6)

(7)

(8)

(9)
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R«ι = _________ P
s 1 + [2π(Sreq.)RpC⅛]2

c,. ri÷[2ff(freg.)Rp⅞r1 

s BL [2s(freq. J'

(10)

(Π)

And once Cg and Rs have been calculated at each Srequeocy and at each 

DC potential, a plot oS cotd vs. DC potential is made (as io Figure 2A) 

and the potentials) oS ma×imum cot0 at each Srequeocy are Sound.

cote =
2jr(fSeq.)Cg

(12 )

IS one is ludk enough to lwtve a =0.5 and D^χ = Dfed, then the 

cote ma×imum at each Srequeocy should occur sit the E∣ S<^ιr the complex 

and the kinetics are simply calculated from the slope oS a plot oS 

(c°t0)mæcvs. [2ff(fSeq.)]2 as shown io Figure 2B. However, in the 

cases where a does not equal 0. 5, more complicated e×prfisioπs Sor 

the slope have to be applied or as a drst appro^imation the simpler 

expression can be used. In this method one does not need to know the 

concentration oS the comple× or the area oS the electrode, although Dθχ 

or Drθd must have been independently determined.

An alternate (and perhaps a more diagnostically usedl) route to

acquire the kinetics are to plot the impedances Rg and frSfr.q )C~
at E∣ (assuming a = 0.5) at each Srequency versus S

--------- ----- j- as io Figure 2C. One should obtained straight lines with
[ SSfreq.)]*
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Figure 2. A. Cot 9 versus DC potential at each frequency.
1.

B. (Cot 0)maχ versus (2t frequency)*.

C. to-plιase (Rs) and out-°f-phase ( 

impedances versus (2n frequency)"*.
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equal slopes, o:

a — ^ RT , 1
^ nF F √2fD⅛CbA (1 3)

where the units are: = 0.02569 V, F = 96500 AmP".seC a = cm2,
*∙ ’ mole-e“ , *

cb = mole 
cms ,

1
D2 =

F 
cm

sec 2

positive intercept for R_ vs,o

if you do not obtain equal slopes or a

1

and a zero intercept for

2fcτ(freq.)]⅛ 
1 vs.

plots on the impedance axis

1
'8 [2ff(fr^c^. )]*

plots, there
2π(freq. )Cf

are problems either with the electronics, such as the iR compensation 

circuit, or with the chemical system (such as chemical kinetics or 

adsorption). Electronic problems can be tested by running a dummy 

cell composed of resistors and capacitors arranged as the equivalent 

circuit cell in Figure 1A. For systems with equal slopes and a positive 

intercept, the electrode kinetics are extracted from the intercept (Rcp) 

of (the in-phase component) Rs. This is because Rc^, is related to the

5nFAksC,RT o 1exchange current (i0) by Rct = ~j- where i„ = ------ g-----  (if at E£).

All values of the rate constants measured in Fart ∏ by this technique

were calculated using plots of Rg and (2jt frequency Cg)"1 versus

(^ frequency)"* although essentially identical values were obtained 
1

from the (cot0)maχ versus (2tr frequency)2 plots.

Chronocoulometry

Chronocoulometric experiments to determined the kinetic param­

eters involve stepping from a potential where no faradaic reaction 

occurs to potentials up the risng portion of the wave for the substrate
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of interest, and measuring the charge as a function of time. In the
O

present investigation a computer-based,data-acquisition system with 

iR compensation was used to acquire, calculate and display the charge
X

versus (time)2 behavior. Under conditions when the potential step is 

not onto the diffusion-limited plateau, the charge for the initial time 

after the potential step is controlled by a mixture of kinetic and 

diffusive elements. Eventually though, the charge becomes linear with 

(time)2 (this occurs at times where y » 5, y defined as in reference 9).
X

Extrapolation of the linear portion of the charge versus (time)2 curve 
back to time = 0 (after subtraction of the double layer charge®) will 

intercept the charge axis at zero if there

However, if the electrode kinetics control a significant portion of the

initial current after the potential step, then the extrapolated line will

intercept the charge axis at negative values (see Figure 3). From the 
x

slope of the charge versus (time)2 plot and the negative intercept on the 
x x

charge axis, the positive intercept on the (time)2 axis (defined as t? )

for the charge = 0, can be calculated.

Operationally, the experimenter varies the potential steps and 
x

determines the t? values for these potential steps. Then using the 

relationship given in equation 14, X is found:

x
X = -K . (14)

2t ?l
x

The minimum value of x occurs when t? is at a maximum, which occurs 

at the potential defined by:
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Figure 3. A plot oS charge versus (time)* Sor a potential step onto the 

rising portion oS the Saradaic wave Sot the redox couple 

(after subtraction oS the double layer charge).
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Eλ 1 - a
) (15)
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= Ε* + — Xn( 
min nF

For a = 0.5 and equal diffusion coefficients for the oxidized and 

reduced species, the xmin *s found at E⅛ and the heterogeneous electron
Q

transfer rate constant is calculated from:

λmm (16)

where the diffusion coefficient (D) is calculated from the chronocoulo- 

metric slope for a step to a potential on the diffusion-limited plateau 
via equation 17:®’**

chronocoulometric slope =
2nFAD⅛b

it2 ( 17)

When the minimum value of x does not occur at Ej, more complicated
a

expressions have to be used to extract the electrode kinetic information

however a discussion of these equations is beyond the scope of this 
9 12appendix and the reader is referred to the original references. *

io
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PROPOSITION 1

Abstract^

[2. 2.1 ] and [2. 2.2 ] propelp,nes may be trapped in sita via a. 

Diels-Alder reagent which has a specific stereochemistry such that 

the formation of other intermediates, instead of the highly strained, 

small-ring propellane, is excluded.
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Most of the research on the preparation, identification and

reactions of propellanes tricyclic hydrocarbons) has

occurred in the last 20 years. Of special interest is the formation

of small-ring propellanes, which have been proposed as intermediates 
e ∣∕⅝

in a number of studies, °υ although the [2. 2. 1 ] propellane and [2.2.2] 

propellane, 2 and 3 respectively, have never been isolated. Production
f O

of these highly-strained compounds was attempted via chemical and
5 9electrochemical reduction * of the corresponding bridgehead- 

bridgehead dihalo bicyclic hydrocarbons. Due to the apparently
7 8transient existence of these species, various trapping agents like B½ ∙ ’

6 9and Clg * were used in an attempt to isolate products which could be 

ascribed to the propellanes. (These halogenation products were found 

in low yields of 10-25%.) In addition, the intermediacy of propellanes

were based upon the final products when no trapping agents were
5 7added. * However, none of these reports necessarily excludes the

possibility of the formation of the products from non-propellane inter­

mediates such as free radicals, anions or organolithium compounds.

Recently there has appeared a report on the matrix isolation of 
[2. 2. 1 ] propellane at 22,K1θ formed by ggs-phase dehalogenation of 

the diaslide precursor with metal atoms. Formation of the propel^ne 

was postulated based upon the IR absorption spectrum obtained and via 

trapping with Bγ2, although attempts to isolate the propelUm product 

were unsuccessful.

Therefore, to try to unequivocally show the presence of the small­

ring prrrellanes under the conditions employed for chemical or electro­

chemical reduction of the dihato species, it is proposed to attempt to
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trap the propellanes with a Diels-Alder reagent that has a specific

stereochemistry. The Diels-Alder reaction has been previously used 
11-13before to trap ether propellanes, although no direct stereo­

chemical evidence was obtained. Since the Diels-Alder reaction 

(1,4—addition) is a concerted process, if one allowed (E,E)-dideutero- 

1,2-dimethylene cyclopentane (1) to react with either the [2. 2. 1 ] 

propellane (2) or [2.2.2] propellane (3) the expected Diels-Alder 

products [(4) and (5) respectively] would be isomers with both deuterium 

atoms on the same side of the molecular plane (cis-like).

14However, if adducts with (1) are formed from radical or anionic 

species, it may be possible to see products where the two deuterium 

atoms are on opposite sides of the molecular plane (trans-like). (6) and 
(7), or derived from ^-attack,14 15 (8) and (9), on the Diels-Alder 

reagent.
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Isolation of reasaonable yields of product derived from 1,2-attack 

or with the trans-like configuration of the deuterium atoms would pre­

clude the [2.2.1 ] propellane (or the [2.2.2] propellane) as a major 

intermediate. If, however, only the product with the cis-like con­

figuration of the deuterium atoms is found, this only strongly suggests 

that the propellane was formed, it is not proof-positive. An advantage

of the Diels-Alder reagent over previous traps is that it is electro- 
16inactive and should be stable towards organolithium compounds; thus 

it can be added in a 10-fold excess (versus starting dihalo bicyclic 

material) to the solutions used previously , ' to generate the propellane 

intermediates, thereby increasing the possibility of reaction to form 

adducts.
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Synthesis of (E,E)-dideιrtero-l, 2-dimethylene cyclopentme (1)

may be accomplished by first preparing (E, E)-6, 7-dichloro-l, 2­
17 18dimethylene cyclopentme via the following procedure: *

+ isomers

The (E,E)-dichloro isomer is easily separated from the other dichloro
∣Q OO

isomers by preparative-scale vapor phase chromatographyσ α and 
24low-temperature crystallization. Then using a Zn-Cu catalyst, the

chloride atoms on the vinyl groups can ste^ospe^^^ be converted 
OR

to deuterium atoms by addition of D^. Identification of 1 and the 

relevant adduct products would be possible using mass spectrometry

and nuclear magnetic resonance techniques. * * ° In particular,
13 27-RQNMR using Lanthanide shift reagents or double resonance NMR

(taking advantage of the Nuclear Overhauser effect*®) should distinguish 

between the deuterium atoms on the same side or opposite sides of the 

molecular plane. However, it may also be necessary to perform NMR 

on model compounds such as (cis and trans)^. 6-dideutero-1.4-cyclo- 

hexadiene (10) or (cis and trans)-5.8-dideirtero-l. 3,6-cvclooctatriene (11)
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to help identify the conformations of the products.

(d)h D(H)

1110
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PROPOSITION 2

A^stjasc^

Synthesis of a 4-substituted-2,2'^pyridine ligand in which a 

fluorescent side group has been attached at the 4-rositira is proposed 

for the preparation of cobalt and ruthenium bis(2,2'-^pyridine) 

(4-subistituted-2,2'-bipyrieine) complexes. When the emission of the 

fluorescent unit depends upon the polarity of the environment around it, 

it can be used to monitor the interior of polymer films which incor­

porate the modified bipyridine metal complexes. The combination of 

the ∙ electroactive redox group which contains a ligand with a fluorescent 

tag would enable the correlation between electrochemistry and polarity 

inside polymer-modified electrodes, in particular for Nafion (a 

sulfonic acid polymer).
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Polymer-modfied electrodes have become an area of increasing
activity in the past five years, * especially in the field of electro- 

2
catalysis. Many different redox couples have been incorporated into a

variety of polymer films via covalent and electrostatic ’ binding and
then used to mediate electron trauffer® and/or catalyze chemical 

2
reactions of solution-phase complexes. One of the primary concerns 

in these polymer modified electrodes which contain inorganic redox 

couples is how charge transport occurs through the film from the 

electrode surface to the solution-phase and which process is rate 

(current) limiting. Several rate limiting steps can be envisaged °*o 

including: (1 ) electron transfer from the electrode to the redox couple 

inside the film; (2) diffusion of the redox couple through the polymer 

layer to the electrode; (3) diffusion of counterions in or out of the 

polymer region to keep electroneutrality within the film; (4) electron 

hopping (via self-exchange) from one redox couple to another within the 

polymer layer, or (5) any combination of the above.
■ R

In many of the cases studied to date, diffusion of the redox
7 7couple through the polymer region or the electron hopping pathway 

was found to be the rate determining step limiting the maximum current 

flow possible. Recently, electrochemical investigations into the 

mechanism of charge transport through nafion polymer films (adsorbed

on carbon electrodes) containing electrostatically bound Ru(2,2'-bi-
2+ 2 +, 3 7

pyridine)3 , Co(2,2'-bipyridine)3 or Ru(NH3)6 were completed. 

Measurement of the apparent diffusion coefficients as a function of the

concentration of incorporated reactant was used to comment on the 
5 7rate limiting processes in these systems. * It was postulated that
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inside the polymer there exist two different areas where the redox 

couple resides, one a polar (similar to a bulk solution phase) region 

and the other a arn-rrlίlr phase (the fluorocarbon backbone of the 

polymer), each having different electron transfer properties.

However, no further characterization of these two regions was 

attempted.

The microenvironments of several polymer films have been
O

investigated by NMR techniques, elncirrcaemicslly-gnaerstne chemi-
9 10luminescence and nrn-nlnctrraciive fluorescent complexes. For

the method of fluorescence, there are many compounds which have 
been used to probe the local environments of biomo^eoules, ** several 

of which have absorption and emission spectra that depend very strongly

on the polarity of the environment they are in. For these types of 
12complexes, examples of which are dansyl chloride, substituted

aaphthalennnS^ and 7-(r-mnthrxybenzylaminof-4-aitrrbnnzoxseiazrle,  

their emission spectra are shifted to lower energies (with very low 

quantum yields) ' in polar solvents like water, while in less polar 

solvents such as benzene or 1 -octanot the emission maxima are at 

higher energies (a shift of 30-100 nm from the polar maximum) and the 

quantum efficiencies are near 0.5. Excited state lifetimes and pr]llri- 

zaUm data also yield information on the local environment "snasnd" 

by the fluorescent molecule.

It is proposed that the coupling of an redox couple

which contains a fluorescent tag would be used to provide insights into 

the microenvironments inside polymer-modified electrodes through a 

comparison of the electrochemical and fluorescent properties observed.
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The specific examples recommended are the ruthenium and cobalt 

bis(2,2'-bipyridine)(4-fluorescentside chain 2,2'-bipyridine) com­

plexes incorporated into nafion films adsorbed on. graphite. The 

4-fluorescent side chain 2,2'-bipyridine ligand would be prepared 
from 4-amino-2,2'bipyridine(I)1^ and 7-chloro-4-nitrobenzoxodiazole(Π)l  ̂

as shown in reaction

2

Synthesis of the mono- or tris-(4-fluorescent side chain 2,2'-bipyridine) 
17metal species would be accomplished following standard procedures. 

After incorporation of the redox couple-fluorescent tag molecule into 

the nafion film, measurements of the electrochemical and fluorescent 

properties would be carried out. To determine the polarity inside the 

polymer film, fluorescent experiments with the redox couple-fluorescent 

tag complex in solvents of varying polarity and compositions (similar 

structures to the fluorocarbon backbone and bulk aqueous phase) would 

be necessary. It is hoped that this technique would provide information 

not only on the kinds of environments inside the polymer but also 

perhaps how the incorporated ions are partitioned among the various 

regions.
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However, several caveats must be kept in mind when interpreting

the fluorescent results. These include: <1) rigidity of the solvent

around the fluorescent probe, such that solvent reorientation during the

the excited state liftime is inhibited, can make a polar region appear
non-polar;® <2) pH effects on the fluorescencee^ <3) metal ions and 

20supporting electrolyte ions may alter the fluorescent properties;

<4) because of the size of the fluorescent probe-redox couple; the 

microenvirOnment "seated', by one may not be identical to that "sensed" 

by the other; <5) quenching of the excited state by the redox couple

<this could be minimized by elongating the side chain that attaches the 

fluorescent tag to the ^pyridine ligand although this would increase the 

possibility of <4), and <6) because of the size of the redox couple- 

fluorescent probe <it is larger than just the redox couple), this molecule 

may reside in different region s than it would have if the fluorescent 

side chain was not present. Despite the above restrictions, it is 

believed that this coupling of electrochemistry and fluorescence will 

yield new and useful data on polymer-modified electrodes.
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PROPOSITION 3

Abstro^

Adsorption of aromatic molecules on carbon electrodes in aqueous 

media may be utilized to prepare an adsorbed aromatic-susbtOituOed 

ferricrnium layer on rotating graphite disk electrodes. Under conditions 

when: <1 ) moire than or equal to a monolayer of adsorbed complex is 

present which completely blocks the electrode surface from sclutica- 

phase material; <2) the formal potential for the adsorbed species is 

essentially the same as for the same solution complex; <3) the cross 

reaction between adsorbed substitutbd-fbrricmium and solution-phase 

substituted-ferrocene is the rate determining step in electron transfer 

from the electrode to solution material, then the cross reaction rate 

constant measured from the limiting currents in rotating disk experi­

ments is bascially identical to the homogeneous ^111-1x0:110^1) 

electron transfer rate constant for the aromatic-substituted ferrocene/ 

ferricrnium redox couple.
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There are several examples of aromatic molecules which have

been found to adsorb quite strongly <a full monolayer) on graphite 
1 2electrodes in aqueous ' media. ; Usually those complexes which are

less soluble in water and with the greater number of aromatic ring

systems tend to adsorb stronger and with greater stability on the 
2

surface. Adsorption can occur spontaneously just be dipping the

graphite electrode in an aqueous solution containing the aromatic 
2

compound or by coating the species on the surface by first dissolving 

the complex in a aca-aqubout solvent, syringing several pL of solution
3

onto the electrode and then allowing the nonaqueous solvent to evaporate. 

In some cases, the adsorbed material is stable on the electrode for 

many hours, even sitting in only pure supporting electrolyte. Alter­

natively, an adsorbed layer may be formed by electrochemica^y 

generating the species in situ which spontaneously adsorbs on the
4

graphite surface.

The amount adsorbed in a given system can be determined from
12 12 cyclic voltammetry, * differential pulse voltammetry * or chrono-

g
coulometry. w Usually these techniques are applied after the electrode

has been coated with the adsorbed material and then transferred to a

pure supporting electrolyte solution, however, it is sometimes possible

to perform these experiments with solution-phase complex present as

long as the solution-phase concentration is low.

Recently, there has appeared a study in which the apparent
3*" /2*homogeneous electron transfer rate constant for IrCl.v ex'app *β

was measured by rotating disk voltammetry. This was accomplished
S*

by electrostatically binding IrCle into a pclyelectrclytb polymer film
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(profanated polyvinylpyridine) which irreversibly adsorbs on the

rotating disk, graphite electrode and then varying the rotation rate of

the electrode (which is coated with the polymer-IrC^ matrix) in

solutions of di—erent concentrations of IrCl) . Measurements of the

limiting current as a function of rotation rate and then analyzing the 
r

resulting data by means of Kouteekn-Levieh reciprocal plots (as shown 

below) was used to calculate the apparent helf-eeeheagn rate constant 

(kgx)app from the finite intercepte on the (current)'1 axis.

0.2

0.5

1.0

2.0

4.0

mM

mM

mM

mM

mM



201

The slopes of the straight lines were inversely proportional to the bulk 
2 -

concentration of IrClβ in solution and the intercepts were inversely 
6

proportional to k by equation 1 :
CA

where F is the faraday constant; (k__)___ is thn apparent electron 

transfer rath constant (ia M~1 cm3 s”1) between the adsorbed, polymer­

bend species and thn srlutira-rassn complex (which is thn other half 

of the redox couple); is the total amount of adsorbed material

(IrClg" ia this case) or in some casns it is just the calculated mono­

layer coverage of thn adsorbed rndox couple (in mol cm ); C is thn
2 -

solution-phase concentration for thn redox partner (IrClβ ) of the 

complex ia the film (in mol cm”3).

All of thn above discussion dépends upon the following conditions

being mnt: (1 ) thn adsorbed layer prevents solution material from

reaching the electrode; (2) thn formal potential for thn adsorbed couple

is essentially thn same as for the solution couple; (3) the rate limiting

step ia electron transfer from the electrode to solution-phasi complex

is thn cross reaction bitwina thn adsorbed and solution materials,

which implies (4) that electron transfer from the electrode to thn

adsorbed layer and also electron transfer through the adsorbed layer

arn not rath limiting. This was thn case for thia polymer-IrCl^ films

and mM concentrations of IrClβ ia solution and also ia the investigation 
2+∕+

of the self-exchaagn rate constant for Cu(l, ^-phenanthroline)2 ia
4

aqueous media measured by thn rotating disk method.

The firrocnne/ferricinium rndox couple has bien extensively 
8-11studied ia arn-squhrus and aqueous media. Both homogeneous
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8*11 12-14(self-exchange) and heterogeneous electron transfer

rate constants have been measured. Ferrocene undergoes only very 
15little intramolecular changes upon oxidation so that the rate of 

electron transfer is basically governed by the outer-sphere morgani- 

zatioaal energy. In asa-aqunsus media, the self-exchange rate for 
(C5H5)2Fe0/* is approximately 107 M'1 s^1 θ,^ while it may be as high 

as 1 (f M^1 s-1 in aqueous media. In order to probe further the

application of rotating disk voltammetry to the measurement of self­

exchange rate constants and to study in greater detail the ferrocene/ 

ferricinium redox couple it is proposed to: (1 ) prepare several 

aromatic-substituted ferrocenes which should adsorb on either basal 

or edge plane graphite electrodes in either the Fe(II) or Fe^n) oxidation

state; (2) measure the amount of adsorbed material via chrono- 
5 2coulometry or eyelie voltammetry and determine if it blocks the 

electrode from solution material; (3) measure the formal potential for 

the solution couple and also for the adsorbed couple; (4) perform 

rotating disk experiments with the coated electrodes at different 

rotation rates and in solutions of differing concentrations of the redox 

partner; (5) make Kotfecky-Levich plots of the resulting limiting 

currents as a function of rotation rate and bulk solution concentration 

of the reck« partner; (6) calculate the apparent self-exchange rate 

constant from the intercepts (if there are any; will not have any inter­

cepts if the cross reaction rate is too high) on the (current)~1 axis 

using equation 1 if the plots are linear; (7) make sure that electron 

transfer from the electrode to the adsorbed layer and also electron 

transfer through the adsorbed layer are not rate limiting by examining
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the adsorbed layer in the absence of any solution redox complex by 
16rotating disk and coulostatic experiments.

Candidates for aromatic-substituted ferrocenes include helical 

ferrocene(I), a synthesis of which has just appeared, , the substituted 

ferrocene(∏) which could be prepared from commercially available 

2,3-dibenzofluorene and FeCl^ according to standard procedures or

possibly even bis(l, 2,3,4-tetraphenylcyclopentadienyl)iron, (Dp, 

synthesized in a similar manner from the commercial ligand (Aldrich). 

The latter complex, although not having all its phenyl rings planar, 

may be better suited to intercalation of the rings into edge plane graphite. 

It is believed that for all of the above complexes, a full monolayer or 

more of adsorbed material would be found.

Values of the self-exchange rate constant for the substituted 

ferrocene redox couples measured by the rotating disk technique can 

be compared to those previously measured for the unsubstituted 

ferrocene or NMR experiments , on the freshly prepared aromatic­

substituted ferrocenes would also be performed.

I ∏
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PROPOSITION 4

Abstract

Preparation of the ruthnaium(∏) and (HI) analogs of the caged metal 
ion [(1,3,6,8,10,13,16,19-setaa.zabicyclo[6.6.6] nieshαae)cobalt:(ΠI)]s+, 

which has been given the trivial name of Co(snpulehrαtn)3+, via eoadna- 

hαtisa of the trh3(ettlylenediaminn)rutheaium(a∏[) ion with formaldehyde 

and ammonia is proposed. Formation of the chiral A-Ru(hnpulehretn)3+ 

and Λ-Ru(snpulchretn)e+ complexes could then be used to determine the 

homogeneous (hnl--tecchaagn) electron transfer rate constant for the 
Ru^p^ch^te)3*^* rnnse couple, which would be compared to the 

previously measured value for Ru(nthnlnanniemian)h+/t+)
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Ligands which encapsulate metal ions, such as cryptates* and 
o

crown ethers, have been an area of much current research due to their 

unusual chemical specificity and stability. Very recently there has 

appeared a synthesis of an encapsulating ligand-metal ion complex 
[(1,3,6,8,10,13,16,19-octaazabicyclo[6.6.6]eicosane)coteιlt(IΠ)]3+. 

Co(sepulchrate)s+ for short, which was formed when Co(ethylene-
3**

diamine)3 was condensed with NH3 and CH20 in basic media in greater 
8

than 95% yield. The sepulchrate ligand endows the cobalt-sepulchrate

species with unusual stability, in both the Co(∏) and Co(IΠ) oxidation
3 4 3 4states, , and reactivity (for example with oxygen ’ ). Several other

5
metal-sepulchrate complexes have been prepared, including those 

with Pt(IV), Rh(m) and Cr(ΠI), although their chemical properties and 

the synthetic procedures involved in their preparation have not yet been 

published.

One of the unique features· of the sepulchrate-metal ion complex

is that if the synthesis is performed with chiral Coiethylenediamine)3 ,
3 4A or A, only the one chiral isomer (A or A respectively) is formed ' 

because of the inflexibility of the imine backbone produced upon intra­

molecular condensation. This property has been exploited to prepare 
chiral Δ-Co (sepulchrate)3+ and Λ-Co(sepulchrate)a+. When equal 

concentrations of the two chiral species are mixed together, it was 

possible to determine the homogeneous electron transfer rate constant 

from the rate of racemization, defined by the change in optical rotation 

at 500 nm. At 25*C and j = 0.2 (NaCl, HC1), a homogeneous electron
1 8transfer rate constant (kθχ) of 5.1 M"1 s“ was found. ° This value for 

the self-exchange rate constant of Co(sepulchrate)3+z^2+ is approximately
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5 3+∕t+
10 times larger than that measured for Co(ethnleandiαmian)3 
(kvA of 5 x 10-5 M"1 s’! by the same method® or isotopic exchangee* 

under similar conditions.

It is very difficult to explain this dramatic niffereace in the self­

exchange rate constants for these very similar cobalt-imine complexes 

especially considering that the electronic states (determined from the 

ligand field spectra and the paramagnetism found for the high spin

cobalt) species ’ ) and intramolecular bond distance changes are 
3+∕2+

essentially identical for the Co(ethyleandiemiae)3 and
Co(sepulchrate)3+i2+ couples. At present, there is no explanation for 

the dissimilarity in the homogeneous electron transfer rate constants 
of Co^p^Gl^ate)3*^* and Co(ethyleandiamian)3+i2+, therefore it is

proposed to see if a rate differeaen is also observed for the ruthenium
3^b^^2*4 8 "4∕2+

analogs, Ru^p^ch^te) and Ru(nthyleanniemian)3 .

3+Preparation of the two chiral forms of Ru(sepulchrate) would be

attempted in a similar manner to that performed for the chiral 
3+ 3 4Co(sepulchrate) isomers ' via condensation of the appropriate chiral 

sHtRu(ethylnaediamiae)3 with ammonia and formaldehyde in basic solutions. 

Once both A- and A-Ruisepulchrate) isomers have been synthesized 

and characterized, spectrally and physically (crystal structure), in 

both the Ru(Π) and Ru(ΠI) oxidation states then mixing of equal concen­
trations of A^u^pi^^^te^* and A-Ruisepulchrate)2* should allow

the determination of the homogeneous electron transfer rate constant for 
3

this redox couple. This value, once measured, can then be compared 

to the previously measured self-exchange rate constants for Ru(nthyleae- 
nIemIae)3+/i2+ (kgχ is approximately 200 M"1 s"^® and Ru(NH3)3+^2
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(k is 1000 M '1 s ^1).8

Under identical experimental conditions (i. i., same temperature 

and ionic streigth) thi homogeneous electron transfer rati constants 

for Ru(sipulchrate) and Ru(ethyllnieisminl)3 might (a priori)

bi expected to bi comparable since both complexes should have similar 

inner- and σuter-spheΓl riariaigemints and ligand environments.

If indeed this is the cash, then this suggests that there is something 
peculiar about thi Cr(sipulchrate)s+//t+ and Οο(ί1:Ηγ1βηβ1^ιιη1ηβ)1+/2+

4
comparison, perhaps dui to nm-adiabatic effects or ligand dissocaüon 
in thi Cr(ethylenhdiamine)l+/2+ couple. However, on thi other hand, 

if thin is a large increase in thi homogeneous electron transfer rati 
constant for Ru(slpulchrate)l+/t+ over that found for Ru(ethylene- 

diamine)g+∕2+j thin oni would bi tempted to say that there is somithing 

very special about thi sipulchrati ligand. Thi possibilities that taire 

may bi electronic interactions through thi loni pairs on thi capping

nitrogens or intercalation of oni molecule into another have biin ruled
4 S+∕2+

nut in thi cobalt derivatives. Finally, if thi Ru(sipulchrati)

self-exchangi rate is really 10s times larger than that observed for 
Ru(1thyllnieiaminl)3+z^1+, -⅛ wσuld bi in tai same range (approximately 

107 to 10* M^1 s”1) as that found for Ru(2,2' ^pyridine)^/,*. ® This 

value is not outside thi realm of possibility although it would not bi 
predicted by Marcus theory. 1θ

In addition to thi comparison of setf-exchangi rati constants, it 

may also bi possible to compare heterogeneous electron transfer rati 

constants measured for thi ruthenium imini complexes and to usi the 

Ru(sιpulchrate)3+ as a simple, ruter-sraeri, one-ilictron transfer agent
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PROPOSITION 5

Ah^teetL

A synthetic route to 5- and β-membered nImetαUseneles con­

taining metals other than cobalt is proposed via reaction of the stable 

radical anions of several metal species with various nIbrsms-

alkyls. Decomposition of these nimntal-earbsa ring systems, where 

the dimetal fragment is either Fe-Fe or Ni-Ni, may occur through other 

pathways than those observed for the diesbalt rüg complexes. In 

addition, reaction of the radical anion of [(C5H5)Co(CO)2]a with 1,1'- 

methyl bromide ferrocene would allow formation of a previously 

unknown trüuelnar mntellseyeln containing two different metals.
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MetaUsusclgs have been identified as intermediates in a variety 
of organic transformations catalyzed by metal complexes, * and many 

different ring sizes and different metals have been prepared. 

Diπetallscycles, in which there are two metals in the ring, are also 

proving to have quite interesting chemistry and many kinetica^ stable

3-membered di∏gtallocsulgs have been synthesized. However, there 

have not been many examples of larger ring ni∏gtallscyclee, especially 

when four or six , v atoms are in the ring. The larger niπetslls- 

usclge are of interest because they may be models for alkene and diene 

oligomerization, as well as possibilities for CO insertion reactions into 

the ring.

Recently, a study has appeared dealing with the preparation and 

chemistry of a di∏gtallsuyclohexe∏g species containing a cobalt-cobalt
a

metal bond. Synthesis of the d^eta^cy^ was accomplished via 

reaction of the radical anion, derived from [(C5Hs)Co(hO)a^2 and Na, 

of the dicobalt . compound with a, a'-d&romo-o-xylene. Attempts to 

prepare the saturated version proved unsuccessful due to facile
7

/S-hydrogen elimination reactions, although this was not a problem in
Q

the 5-meπberen dicobalt analogue. The dicobalt metallocyclshgχe∏g 

was stable below room temperature but in solution above 22 *C, it was 

found to undergo decomposition into a previously unknown mononuclear 

o-xy^^ne species, which, when heated to 70*C in the presence of CO, 
inserted to carbon monoxide to form 2-i∏dano∏e) ® Decomposition of 

the dicobalt πetallocyclseexe∏g also occurred upon addition of various
A

phosphines.

To investigate the general utility of the synthetic procedure used
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to prepare thi larger ring dimltsllrcyclls (i.e., by reaction of dimetal 

radical anions with eiyrrmralkyls) and to sie how thi identity of the 

metals in thi ring effect any decomposition, it is proposed to react the 
stable radical anions of [Ni(CO)2 P(CiHδ)2]29 and [F1(NO)2 P(CiH5)29 with 

a,a,-eiyromσ-r-xylinl. If formation of the unssturaied dimetallo- 

cyclohexians is successful, thin further experiments to try and prepare 

thi fully saturated version, by reaction of the dimetal radical anion 

with 1,4-diyΓomryutane, would bi attempted since the /-hydrogen 

elimination may bn sensitive to thi identity of the metals prisent in the 

ring.

Any thermal or ligand-induced encσmprsitirn réactions would
also be characterized (by NMR and IR techniques9»9) to determine

any similarities of the Fe-Fe and Ni-Ni eimeiallocyclrhexlnes with the

dicobali analogue. Preparation and characterization of products would

all be performed in an inert atmosphere box using techaiques similar 
R fito that already described. ’

Finally it is proposed to further exploit the reaction of dimetal 

radical anions with dibromo complexes in the synthesis of a unique 

trimetallocycle containing a ferrocene subunit. This could be accom­

plished (see reaction 1 ) by reactim of the radical anion of 

[(Cg^C^CO^^ with 1,1' -meihylyrσmiee ferrocene (prepared from 
commercially available 1,1 '-formaldehyde ferrocene*9)·

Reaction 1.

Na . +
>
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This triπuelneΓ mntellseneln does not have the same decomposition 

pathways available to it that the bnazeanulaten derivative has and thera- 

fom may be morn thermally stable. However, any decomposition that 

may occur will probably generate new and reactive intermediates not 

previously observed. It is also hoped that the presence of the third 

metal might allow insertion of small molecules into the trΠuelner 

complex and provide interesting rnnoe behavior.
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