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Abstract 

In this thesis we study the coherent vortices of a two-dimensional incompressible 

ideal fluid (the Euler equations) which is important to many physical systems, includ­

ing the atmosphere of outer planets, two-dimensional turbulence, and pure electron 

plasma experiments. Using the statistical equilibrium theory derived recently which 

respects all the infinite conservation laws of the ideal fluid, we solve the coherent 

vortex solutions in a disk and an annulus. In addition to finding the solutions, we 

develop the formulation and numerical scheme for a bifurcation and a thermodynamic 

stability analysis. Numerical simulations of the Euler equations are also performed 

to study dynamical relaxation from an initial flow to final steady states. 

In these studies we pay attention to the problem of the lack of ergodicity which 

results from incomplete flow mixing. Ergodicity is assumed in the statistical theory 

but has not been justified. Our general conclusion concerning ergodicity is as follows: 

Mixing processes during the dynamics have strong effects on the final steady states. 

Mixing may not be complete as required for ergodicity, but can happen in particular 

regions or periods, or even in some special flow modes. When strong mixing does 

occur, the flow structure follows very closely the prediction of statistical mechanics. 

Specifically our statistical calculations are on the following questions: (a) single co­

herent vortices and their bifurcation behavior in a disk, and comparison with the final 

states in an electron plasma experiment, (b) the stable state of two identical vortices 

and the prediction, which agrees well with many experimental and simulation results, 

of the critical separation for merging, (c) the proposal of "vorticity localization" which 

is used to explain the recently observed states with regular multiple-vortex patterns, 

(d) work towards explaining the formation of stable vortices on the surfaces of outer 

planets under the influence of deeper shear flows. Finally using numerical simulations 

we study vorticity mixing during the relaxation of a vortex ring and its effect on the 

final states. 
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Chapter 1 Introduction 

In this thesis we study the solutions of the statistical equilibrium theory [1 , 2, 3] of 

a two-dimensional incompressible ideal fluid (the Euler equations). Since the statisti­

cal theory is developed assuming ergodicity of the flow , i.e, that the dynamics samples 

all the phase space consistent with the conservation laws, its usefulness depends on 

the validity of ergodicity. Our main goals are to demonstrate that the results from 

statistical mechanics agree with real physical systems at least in some cases we have 

considered , and make predictions about some phenomena not yet observed. For the 

systems we have considered, a disk and an annulus, there are many relevant physical 

systems, including the coherent vortices in planetary atmospheres with the Great Red 

Spot of Jupiter as the best example, the emergence of coherent structures from two­

dimensional turbulence, and a pure electron plasma in a strong magnetic field. This 

statistical approach holds the promise of understanding equilibrium states without 

the numerically expensive process of solving the long time evolution of the dynamical 

equations. 

The Great Red Spot of Jupiter is a remarkable phenomenon which has excited 

astronomers and physicists since its first observation. We can now say that this 

structure has remained stable for over three hundred years, a very long time compared 

to the time scale of the small features of the flow in the turbulent background that 

usually last for a few hours or a day. Most current models [4, 5, 6, 7, 8, 9, 10, 11] for 

the Great Red Spot assume a two-layer model where a thin upper layer containing the 

vortices is evolving on a deeper steady stratified zonal flow. From observational data 

of the surface flow, papers [4, 6, 7, 10] using different assumptions to derive Jupiter's 

deeper atmosphere, which can not be observed directly, have shown numerically that 

stable coherent vortices on the upper layer similar to the Great Red Spot can exist. 

Furthermore simulations done by Dowling and Ingersoll [10] demonstrate the genesis 

of a GRS-like vortex from an initial zonal upper layer in a time scale about 2000 
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days. This single large vortex is formed through the coalescence of small eddies from 

the initial instability of the zonal flow, and persists indefinitely against dissipation 

by absorbing a constant supply of smaller eddies. On the other hand the numerical 

simulations done by Marcus [9, 11] and experiments by Sommeria et al. [12] of a two­

dimensional fluid in an annulus have tried to understand the influence of a simple 

shearing zonal flow on the formation of coherent vortices. The simulations show a 

generic requirement of a background shearing flow for the production of a single large 

vortex. Although dissipation and driving by the absorption of small scale vorticity 

must clearly be involved in a complete theory of the Great Red Spot, the tendency 

of an inviscid two-dimensional fluid to form coherent vortices may explain the basic 

mechanism of this phenomenon and an equilibrium description may be used. The 

background shearing flow can be included as an external field in the equilibrium 

theory and comparison with the dynamical studies can be made. 

Two-dimensional turbulence has been the subject of extensive study recently. In 

a numerical simulation [13] of two-dimensional large-Reynolds-number turbulence, 

McWilliams showed that the flow has its vorticity concentrated in a small fraction of 

the spatial region. The traditional cascade picture with the transfer of vorticity to 

smaller scales and transfer of energy to larger scales is suppressed when the vorticity 

concentrations on intermediate scales are a dominant component of the total vorticity 

field. These coherent vortices have lifetimes long compared with the typical eddy 

turnover time for the turbulence. Many simulations and experiments [14, 15, 16, 17, 

18, 19, 20] have confirmed this picture and the general idea now is that a featureless 

turbulent flow with only initial small scale motions will first relax to many isolated 

vortices in the characteristic time scale of nonlinear interactions in a turbulent flow. 

These vortices will then be advected by their mutual interactions with merging events 

from time to time when two vortices happen to come too close. Eventually a stable 

state is reached with very few large coherent vortices. For example, one positive and 

one negative coherent vortex are formed at opposite locations in the final equilibrium 

of the simulation by Matthaeus et al. [18]. These final states will then gradually 

dissipate in the viscous time scale. A turbulence decay model using this idea of 
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successive vortex mergings proposed by Carnevale et al. [21] agrees better with the 

numerical simulations than the selective decay hypothesis [22] does. With these 

studies showing a final equilibrium state only decaying in a viscous time scale, the 

statistical equilibrium of a two-dimensional ideal fluid becomes a natural method to 

describe these states. 

It is difficult to perform experiments on a fluid to study the dynamics of the two­

dimensional Euler flow due to the relatively large viscous effects in the real fluid. 

A shallow water system needed to approximate a two-dimensional situation also in­

troduces a viscous boundary layer near the bottom plate [19, 20, 23]. Perhaps the 

best experimental system to model a two-dimensional ideal fluid is a pure electron 

plasma in a magnetic field. Under suitable conditions the dynamics of the electrons 

is two-dimensional and follows the guiding center motion. The governing equations 

can then be shown to be the same as the Euler equations: the integrated electron 

density along the direction of the magnetic field corresponds to the vorticity field and 

the electric field plays the role of the fluid stream function. Many experiments on 

the electron system have been done to study the dynamics and equilibrium states. 

These experiments include studies of the detailed properties of a single vortex [24], 

two-vortex equilibria and vortex merging [25, 26], relaxation and decay of the m = 2 

diocotron mode [27], relaxation of a hollow distribution [28], different m mode insta­

bilities of a ring distribution [29], persistent vorticity holes [30], and the formation 

of coherent vortices from initial small scale motion [ 31]. The loss of elections will be 

minimal as long as electrons are far away from the apparatus walls. Experimental 

conditions can be reasonably well controlled and thus the experiments provide a large 

amount of information which can be compared with theoretical predictions and nu­

merical simulations. In this thesis we will use many of these experimental results to 

compare with our mean field calculations. 

The equilibrium description of two-dimensional inviscid fluid flow was first sug­

gested by Onsager [32]. He used a system of identical point vortices to model the 

ideal fluid and applied statistical mechanics to the system using the Hamiltonian, 

H = - Li,tj wiw{I>(ri, rj), first written down by Kirchoff [33], with <I> the Green's 
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function for the Laplacian. Onsager argued that in a bounded system negative tem­

peratures will be found at high enough system energy due to the finite volume of the 

phase space, which here is the same as the system volume. 

The statistical equilibrium equation for a point vortex system is the sinh-Poisson 

equation [34]. Calculations of the equilibrium states have been done under various 

conditions [34, 35, 36, 37, 38, 39] and negative temperatures appear in many of these 

solutions, with the appearance of coherent vortices. However, in the point vortex 

model , where the vorticity distribution is assumed to be a sum of many singular delta 

functions, the infinite number of conserved quantities in the two-dimensional Euler 

flow , fo drwn(r) with n any integer and D the total volume, are not defined. 

The complete statistical mechanics treatment of the two-dimensional Euler flow 

respecting all the infinite conserved quantities was developed independently by two 

groups [1 , 40, 3]. The mean field equations are integral-differential equations of the 

vorticity distribution n0 (r, a) , with r the position vector and a the vorticity level. 

These equations give the asymptotic long-time equilibrium from a given initial con­

dition. In the limit of a point vortex model , the sinh-Poisson equation is recovered. 

The biggest question about the statistical theory is that ergodicity, the assump­

tion that flow will explore all the phase space, has not yet been justified, and perhaps 

will not be done in the near future. Some recent experiments [28, 23] have strongly 

suggested that complete vorticity mixing and ergodicity are not achieved in almost 

all the studied initial distributions. Thus ergodicity is probably not valid in general 

but there is still the possibility that it can be true in some cases. Furthermore we 

believe ergodicity and vorticity mixing can be considered in some restricted sense and 

the statistical theory is still very useful in this situation. For example when consider­

ing two-vortex merging in Section 4.3, we deduce from the comparison between our 

calculations and experimental data that some flow modes are essentially nonmixing. 

Therefore we can study approach to thermal equilibirum only in a subspace of the 

whole phase space, and then we are able to obtain predictions about the vortex merg­

ing which agree quantitatively with experimental and simulation results. Another 

example is that at Section 4.4 we propose the idea of "vorticity localization" where 
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in some special configurations the flow will only explore some restricted regions and 

reach local thermal equilibrium. With this idea the mean field solutions can explain 

recently observed states with regular multiple-vortex patterns. Finally in Chapter 6 

numerical simulations of the Euler equations will show that strong vorticity mixing 

happens in some particular regions and particular time periods . When this happens 

the vorticity field does follow closely the mean field equations. 

This thesis is organized as follows: In Chapter 2 we briefly review the equations 

for a two-dimensional incompressible ideal fluid and the mean field statistical theory. 

The formulation of a nonlinear bifurcation analysis and the calculation of thermody­

namic stability are also developed. Different numerical methods used in this thesis 

for the calculations are also described. We start with the discussion of single-vortex 

solutions in Chapter 3. First, single-vortex solutions are calculated and compared 

with the results of experiments on equilibrium electron columns. Then the nonlinear 

bifurcation and thermodynamic stability analysis are used to investigate the inter­

esting bifurcation behavior depending on system parameters. In Chapter 4 two and 

multiple vortex solutions are studied. After finding two-vortex solutions, we show 

that thermodynamic stability calculations correctly predict the dynamical stability 

and also the critical separations for the merging of two-vortex states. From the dif­

ficulty of a two-vortex mean field solution in a large system, "vorticity localization" 

about local equilibrium is proposed and applied to find multiple-vortex solutions. In 

Chapter 5 we first study the symmetric solutions in an annulus and also their bifurca­

tions to coherent vortex states, then two-dimensional single-vortex solutions similar 

to the planetary vortices are calculated. The effect of a background shear strength 

on the formation of these states is extensively investigated. In Chapter 6, we use 

numerical simulations of the Euler equations to study the different mode instabilities 

and dynamical relaxations of a vortex ring in a disk. We carefully study the vortic­

ity mixing and nonmixing during the dynamics, and their implications for the final 

steady states. Finally, in the last chapter we summarize and conclude. 
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Chapter 2 Theory and Numerical Method 

2.1 Overview 

In this chapter we first review the governing equations of a two-dimensional in­

compressible ideal fluid (the Euler equations). The correspondence between the drift 

dynamics of a pure electron plasma and the Euler flow is next discussed. After point­

ing out the conservation laws of the system we review the results of the mean field 

statistical theory developed previously [1 , 2, 3]. Also the numerical method used to 

find mean field solutions will be described. Two further developments beyond solving 

the mean field equations provide more insight into the system: the first is a nonlinear 

bifurcation analysis investigating the bifurcation between symmetric and asymmetric 

solutions; the other is a thermodynamic stability analysis enabling the calculation of 

the stability of a particular solution. In the last section we describe the numerical 

simulation of the Euler equations used in Chapter 6. 

2.2 Two-Dimensional Ideal Fluid 

For a two-dimensional incompressible ideal fluid the mass conservation equation 

IS 

\7. u = 0. 

Here u is the two-dimensional velocity field. This equation can be satisfied automat­

ically by in trod ucting the stream function 'ljJ ( r) defined by 

u ( r) = \7 '1/J x z = ( fJ'ljJ I fJy, - fJ'ljJ I fJx). 
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The equation of motion of the flow is 

ou at+ (u · V)u = -\lp, 

where p is the fluid pressure. Taking the curl of the equation of motion we can 

eliminate the pressure term and have the equation of motion for the vorticity field 

w(r)z \7 x u(r) : 
ow 
Bt+(u·V)w=O. 

The stream function and vorticity field are related by the Poisson 's equation: 

2.3 Drift Dynamics of an Electron Column 

(2.1) 

The dynamics of a pure electron column in an axial magnetic field is known to 

be well approximated by the two-dimensional guiding center theory [41 , 42]. The 

fast bouncing time scale of an electron along the magnetic field makes the dynamics 

two-dimensional. Also the gyroradius of an electron is much smaller than the length 

scale of interest, validating the guiding center approximation. The cross-field drift 

motion of electrons is then given by 

v(r) = -c\7¢ x zjB. 

Here ¢ is the electric potential given by the electron density n(r) via the Poisson's 

equation 

and B is the magnetic field along the z axis. The conservation of the number of 

electrons requires that 
on ot + v . \7 n = 0. 
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These equations of electron drift dynamics are isomorphic to the two-dimensional 

Euler equations, with the following correspondence: 

w f------+ -47recn/ B 

'ljJ f------+ c¢ / B 

u f------+ v . 

Many electron plasma experiments have been done conforming to the above conditions 

and provided valuable information about the two-dimensional ideal fluid. Electron 

experiments have the advantage over a real fluid system that the viscosity is much 

smaller, e.g., experiments with minimal viscous effects over a time period about 103 
rv 

104 characteristic time scales of the inviscid dynamics have been achieved (see , e.g. , 

reference [25]). The only restriction is that electrons must be far from the apparatus 

walls to prevent the loss of electrons. Also diagnosis and imaging are more difficult in 

an electron system although great improvements have been made recently [31 , 30]. In 

this thesis we will make many comparisons between our calculations and the results 

from this kind of experiment. 

2.4 Conservation Laws 

Before discussing the statistical equilibrum theory of a two-dimensional ideal fluid , 

the conserved quantities of the system must be identified. First is the Hamiltonian 

(kinetic energy) of the two-dimensional Euler flow: 

H ~ j drlu(r)l 2 

~ j dr'l/J(r)w(r) + ~ 1 '¢('\7 x '¢) · dl 
!boundary 

~ j dr j dr'w(r)<I>(r, r')w(r) + ~ 1 '¢ ('\7 x '¢) · dl. 
!boundary 

Here the Green's function <I>(r , r') satisfies V 2 <I>(r, r') = -o(r-r') and in each variable 

satisfies the same boundary conditions that '1/J (r) does. 
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The two-dimensional Euler flow also has an infinite number of conservation laws 

of vorticity integrals. For any closed path 07J(i) moving with the fluid , the quantity 

f17(t) f(w(r))dr, with fan arbitrary function , is conserved by the flow: 

d
d r drf(w(r)) = r drj'(w(r)) [~w + u. v w] = 0. 
t J17 (t) } 17(t) ut 

(2.2) 

A convenient way to write these conserved quantities is to use the conserved function 

G(a) defined as the fractional area in the system covered by vorticity equal or smaller 

than CJ: 

G (a) = j {) (a - w ( r)) dr. 

Here rJ(x) is the step function defined by: rJ(x) = 1 for x 2: 0 and rJ(x) = 0 for x < 0. 

The derivative g(a) of G(a) , 

dG J g(a) = - = 5(a- w(r))dr 
da 

is then the fractional area covered by vorticity equal to a. Preserving the conservation 

of G(a) (or g(a)) in statistical mechanics is what makes this theory more desirable 

than the point vortex model , which models the vorticity field by a collection of point 

vortices. 

If the system has a rotational symmetry, e.g ., a disk or an annulus , the angular 

momentum, 

L j r x u(r)dr = -~ j r2w(r)dr + ~ 1 r2u(r) · dl 
! boundary 

is also conserved. Since the second term is conserved for a rotationally symmetric 

system (the integral is just the circulation around the boundary), usually only the 

first term is used for the angular momentum. 
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2.5 Mean Field Statistical Equilibrium 

Using the above conserved quantities, statistical mechanics predicts that the 

asymptotic large time equilibrium is given by [3] 

exp{ -,6[0"(~0 (r)- h(r))- p,(Cl)]} 
no(r, O") = f~oo dO"' exp{ -,B[O"'(~o(r)- h(r))- p,(Cl')]} · 

(2.3) 

Here the coarse-grained equilibrium stream function ~0 and vorticity field w0 are 

determined self-consistently from n0 , 

- V2~o(r) = wo(r) = i: dO"O"no(r, 0"). (2.4) 

n0 (r, O") may be considered as the local density of vorticity with strength O" . The 

function p,(O") is the Lagrange multiplier of the g(Cl) constraint , to be determined by: 

g(O") = j drn0 (r, O"), 

and the inverse temperature ,B is determined by fixing the energy. The function h(r) 

may be used to account for external fields and other conserved quantities in geometries 

of special symmetry, and is otherwise absent . 

In this thesis we will solve the above mean field equations in a unit disk or an 

annulus. We also choose for simplicity the g(O") corresponding to an initial vorticity 

distribution with only two vorticity levels , 0 and q, 

g(Cl) = (1- a)6(0") + a6(0" - q) 0 :::; a :::; V, 

with V the area of the system. Here a is the area cover by the uniform vorticity q. 

In an equilibrium state the coarse-grained vorticity field w0 (r) will typically take on 

a continuum of values, always bounded by the value q. The energy of the system is 

given by 

E = ~ j '1/Jowodr + ~ j '1/Jo \l x ~o · dl. 
!boundary 
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The entropy is calculated by 

(2 .5) 

Finally because of the rotational symmetry of the disk and annulus, h(r) includes 

a Lagrange multiplier term Dr2 to impose the conservation of angular momentum. 

With all these considerations, the mean field equations become [3] 

-\12 ?/Jo(r) = wo(r) = q . 
1 + exp[,B(q?j;0 (r) + Dr2 - p,)] 

(2.6) 

Here D and p, are constants to be determined by the conservation of total vorticity Q 

and angular momentum M, 

Q = aq = j w0dr, 

In our calculations we will always use q = 1. 

The mean field equations, Equation (2 .3) and (2.4) , are complicated differential­

integral equations. It seems unrealistic to expect analytical solutions. Even for the 

simplest case of a two-level initial vorticity where the equations become just differ­

ential equations , Equation (2 .6), the hope of an analytical solution is still very slim 

because of the nonlinearity. 

This leaves a numerical calculation the only practical way to solve the mean field 

equations. There are two points which complicate the numerical calculation. First 

is that the Lagrange multipliers ,8, D, and p,(C5) are unknown beforehand and only 

determined by matching solutions with prescribed conserved quantities E , M, and 

g(C5). Next is that with a set of values of (E , M, g(C5)) , there can be multiple solutions 

which can make it difficult to find a particular solution in some situations . 

In this thesis we solve Equation (2.6) in a unit disk and an annulus with inner 

and outer radii one and two. Because of the rotational symmetry of the system, 

the simplest solutions from the viewpoint of numerical calculations are axisymmetric 

solutions with only radial dependence. Without azimuthal dependence Equation (2.6) 
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becomes 

-~!£ (r d'l/Jo(r)) = wo(r) = q 
r dr dr 1 + exp[,6 (q'ljJ0 (r) + f2r2- M)] · (

2
·
7
) 

This ordinary differential equation can be numerically integrated by standard meth­

ods. To find the values of (J1 , D, ,8) for required values of (Q0 , M0 ,E0 ), a trust-region 

method with a Broyden update1 is used to find the roots of the nonlinear equations 

Q[wo(r; J.l , n, ,8)] - Qo 0 

M[w0 (r; f.l, D, ,8)]- 1VI0 0 

E[w0 (r; f.l, D, ,8) , 1/Jo(r; f.l, D, ,8)]- E0 0. 

Because Un = 0 at boundaries with n denoting the direction normal to the bound­

ary, the stream function is a constant on each separated boundary. Therefore we can 

use 

d'l/Jo(r) I = 1/Jo(r = 1) = 0 
dr r=O 

as the boundary conditions in a unit disk. For an annulus the stream function on the 

inner and outer boundaries will be different in general. Without losing generality we 

can set 1/Jo = 0 on the outer boundary. For the inner boundary we first note that, 

from Equation (2.2), the circulation defined as 

21rc = r u. dl 
Ja boundary 

is conserved dynamically. Thus in an annulus the circulation on the inner wall C 

should be specified initially along with the other conserved quantities, i.e., ( Q, Jvf, E). 

On the other hand the circulation on the outer wall C' is taken care of automatically 

because of the identity: Q = 21r( C + C'). Since u · dl equals to ( 81/Jo/ or )dB on the 

inner wall of the annulus, the specification of C for a symmetric solution sets the 

radial derivative of 1/Jo at r = 1. 

lThe actual routine used is DNQSOL in the MATH77 library developed by JPL. 
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The calculation becomes more involved when solving Equation (2.6) for general 

two-dimensional solutions. We use an iterative scheme to find these solutions. First , 

the domain of the system is discretized into a grid depending on whether a Fourier­

finite difference or Fourier-Chebyshev expansion is used. The iteration starts with a 

guessed vorticity distribution wt(r) . Naturally a distribution with (Q, M) approxi­

mately equal to the prescribed values and having the same character as the expected 

solution is used. With this wt(r) we solve the Poisson's equation \72'1/Jt = - wt. Next 

this calculated '1/Jt is substituted back into the right-hand side of Equation (2.6) and 

we see that for each set of (J-L,r2,(3) a new Wt can be calculated. Again the root-seeking 

algorithm is used here to find the set of (J-L,f2,(3) giving an Wt wit h required Q, M, 

and E. Now the iteration can be repeated until a converged wt(r) is reached. Also 

for the annulus there is the extra quantity C which is to be satisfied by finding the 

correct value of '1/Jt (r) on the inner boundary. We find that this method is robust 

and usually Wt converges quickly. There are some variations of this method , e.g., (3 

could be choosen initially and (J-L,f2) are found for prescribed (Q,M) , or S instead of 

E could be one of the required quantites . 

In Chapter 3 solut ions in a disk with high symmetry, e.g., two, three, or four fold 

symmetry, are discussed. In finding these solutions it helps the iteration to explicitly 

enforce the symmetry at each iteration step . 

2.6 Nonlinear Bifurcation Analysis 

In Chapter 3 and 5 we will discuss symmetric and asymmetric single-vortex solu­

tions in a disk and an annulus. In addition to finding these solutions, a bifurcation 

analysis can be performed on the symmetric solutions to understand the bifurcation 

from symmetric to asymmetric solutions better. Again the mean field equation is 

w(r) = -\72 '1/J( r) qj [1 + e/3(q'l/>+llr2 -J.L)] 

h('l/J (r) , {3, n, J-L). (2.8) 
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(Note that we drop the 0-subscript here for 'ljJ and w from Equation (2.6).) Near the 

bifurcation point, we write an asymmetric solution as primarily an m = 1 perturba­

tion: 

'1/J (r) 'l/J0 (r) + 6'1/J (r) = 'l/Jo(r) + E'l/J1(r)cose 

+ E2('l/J2 ,o(r) + 'l/J2,2(r)cos2e) + 0(E3
), 

w(r) w0 (r) + 6w(r) = w0 (r) + Ew1(r)cose 

+ E2(w2,o(r) + w2,2(r)cos2e) + 0(E3
), 

f3 f3o + 6 f3 = f3o + E/31 + E2 /32 + 0 ( E3
), 

n no+ 6n =no + En1 + E2n2 + 0(E3
) , 

f.-L f-Lo+ 6f.-L =f-Lo+ Ef.-Ll + E2f.-L2 + 0(E3
). 

We use t he 0-subsrcipt here to indicate the symmetric state and Eisa small parameter. 

The sine term at order E is not included because it is degenerate with the cos e term 

due to the rotational symmetry. Substituting these expressions into Equation (2.8) 

we get 

Here Acl< runs through '1/J, {3, n, and f-L· Boundary conditions are as following: 

'l/J1(r =b)= (8'l/J2,o/8r)r=a 

'l/J2 ,o(r =b)= 'l/J2 ,2(r =a)= 'l/J2,2(r =b) = 0. 

Here a equals zero for the disk and one for the annulus. The parameter b is the radius 

of the outer boundary. Now we collect terms with the same power of E and angular 

mode, and set them equal to zero separately. It also becomes apparent here that only 
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7/J2,o and 7f;2,2 (not 7f;2,I) are needed for the E2 term. 

Here 

f. cos e: (''Vi - f3oDI)7j;l ( r) = 0 

E
2 cos 2e : (\7~- f3o DI) 7/J2,2(r) = -t f35 D27/J? 

(\76- f3o D1) 7/J2,o(r) = tf35D27/J? 

Bo 

G 

+ Dl(Bo/32 + f3or 2D2- f3o J-L2)/q 

(Vi- /3oD1)7/J3,l(r) = G(r;/32,D2,f-L2) · 

1 d d m 2 

--(r-) --
r dr dr r2 ' 

q7/Jo + Dor2 -f-Lo , 

wo(q- wo), 

wo(q- wa)(q - 2wo), 

wo(q - wa)(q2 - 6woq + 6w~) , 

- f35D27j;l(7/J2,o + ~ 7/J2,2 ) + D1/327/J1 + ~f33D37/Jr 

-f3oD27j;l (Bof32 + f3or 2D2- f3oJ-L2)/q . 

(2.9) 

(2.10) 

(2.11) 

(2.12) 

The first equation just gives /31 = D1 = p,1 = 0. The second one, Equation (2.9), is 

an eigenvalue equation for 7j;1 ( r). The solution will only exist for a particular value 

of /30 and thus defines the bifurcation point from the symmetric states. After the 

bifurcation point /30 and 7j;1(r) are obtained, 7f;2,2(r) can be calculated from Equa­

tion (2.10). To solve for 7f;2,0(r), we need three constraints to determine /32, 0 2, and 

p,2 in Equation (2.11). Two of them are by requiring 7f;2,0(r) to give no change in 

the total vorticity and angular momentum. The third one comes from the solvability 

condition of the third-order equation, Equation (2.12). Comparing Equation (2.12) 



16 

with (2.9), we see that 

Combining these three constraints and Equation (2. 11 ) we can calculate 'l/J2 ,0 (r) , (32 , 

S12 , and J-L2 . The properties of the asymmetric branch near the bifurcation can then 

be easily computed from these functions. 

2. 7 Thermodynamic Instability 

The mean field equations are obtained by requiring a vorticity distribution to 

be an entropy extremum. It remains to be shown whether a particular solution is 

a maximum, minimum, or saddle point . From thermodynamics we know that the 

condition for an equilibrium state to be stable is that the entropy is a maximum. 

Considering the stability will also help us to understand the bifurcation. To determine 

the thermodynamic stability we add a small variation 6n(r, a) to a solution n0 (r , a) 

and examine how the system changes. For a closed system with a fixed energy, we 

will examine the entropy change under the constraints of constant total vorticity, 

angular momentum, and energy. On the other hand for a system equilibrating with 

a heat bath at a constant temperature, free energy will be studied with fixed Q, M, 

and (3. Besides these thermodynamic constraints, all the infinite conservation laws of 

vorticity integrals should also be respected by the 6n. Since the state is already in 

equilibrium, the entropy or free energy will be evaluated to the second order of 6n. 

In our case of a two-level initial vorticity field , the perturbation is just a small 6w(r) 

and the conservation of the vorticity integrals is always satisfied. The changes in the 

total vorticity, angular momentum, and energy are 

6Q j 6wdr, 6M = j r 26wdr , 

6E j ('1/Jobw + ~6'1j;6w) dr = 6E(l) + 6E(2
). (2.13) 
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The entropy change, up to the second order, is 

5S=f3j'l/Jo5wdr-j (
5
w)2 dr=:5S(1)+5S(2), 

2wo(q- wo) 
(2.14) 

and the free energy change: 5F = 5S- {35E = 5S(2
) - {35E(2 ) . For convenience our 

F differs from the usual free energy by a factor of - {3. Note that in 5F the linear 

terms from 5S and 5E cancel and we have a quadratic form left. For a closed system, 

because 5E is required to be zero we can also use 5S - {35E instead of 5S. So for 

both cases we will investigate 5S(2 ) - {35E(2 ) but with the constraint 5E = 0 required 

for a closed system in addition to 5Q = 5M = 0. In practice only 5E(l) = 0 is needed 

because 5S is only evaluated to second order. 

To proceed we expand 5w(r) in a complete set of orthonormal functions cPi(r): 

5w(r) = L i aic/Ji(r). Then 5Q, 5M, 5E(l), and 5S(2
)- {35E(2

) can be expressed as 

5Q = L Qiai, 5M = L Miai, 5E(l) = L Eiai, 

55(2
)- {35E(2) = L sijaiaj. 

ij 
(2.15) 

Here Qi, Mi, and Ei are vectors and Sij is a matrix depending only on w0 (r) and 

'lj;0 (r) . Now we make an arbitrary linear transformation from ai to bi but requiring 

b3 L Eiai (in the case of a closed system.) 

The constraints can now be satisfied with b1 = b2 = 0 (or b1 = b2 = h = 0 for 

a closed system.) In this new representation, Sij changes to another matrix Tij 

and 5S(2
) - {35E(2

) becomes L:ij>2(or 3) Tijbib1. By removing the first two (or three) 

rows and columns from Ti1, we can perform the analysis without worrying about the 

constraints. If all eigenvalues of the new Tij are negative, the state (wo, 'l/Jo) will be a 

free energy (or entropy) maximum. When the largest eigenvalue reaches zero as the 

system parameters change, the state becomes a saddle point. 
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2.8 Numerical Simulation 

In Chapter 6 we will study the dynamical relaxations of a two-dimensional ideal 

fluid by using the numerical simulation of the Euler equations with a small viscosity 

term in a disk , 

We discretize the disk in the polar coordinate. The Poisson's equation for the stream 

function 'ljJ is then solved by the Fourier expansion in the azimuthal direction and 

the fourth-order finite difference in the radial direction. All the spatial derivatives 

are calculated with the fourth-order finite difference and the time marching scheme is 

the second-order Adam-Bashford method. The common difficulty of the coordinate 

singularity due to the diminishing grid spacing near the origin in the polar coordinate 

is alleviated by using a large enough viscosity constant. A constantly changing ro­

tating frame may also be used to reduce average flow velocity and hence the effective 

Courant number. 

All the results in Chapter 6 are done at a resolution 128 x 128. The Reynolds 

number of the flow is about 105 
"' 106 from typical flow velocity, system size, and 

viscosity. In the time period of interest , the changes in the total vorticity, angular 

momentum, and energy are less than a few percent. Higher Reynolds numbers and 

slower rates of change for these three quantities can be achieved by using a higher res­

olution and smaller viscosity, but we find that the conclusions in Chapter 6 remain the 

same. The other conserved quantities of higher-moment vorticity integrals , e.g., the 

enstropy defined as J w2dr, change significantly. This is because during the dynamics 

the viscosity and finite grid size introduce a local averaging on the flow. However 

we think this is not a serious problem because we are mainly interested in the final 

large scale smooth vorticity distribution, and this is supported by results from dif­

ferent viscosity constants and resolutions. Note that the coarse-grained equilibrium 

distributions from the statistical theory also do not conserve these higher-moment 

vorticity integrals. 
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Chapter 3 Single Vortices in a Disk 

3.1 Overview 

We start our discussion with single-vortex solutions in a unit disk. These single 

vortices are the first step to understand the generic formation of coherent vortices in a 

two-dimensional ideal fluid. More specifically an electron plasma experiment [24] has 

been done in a cylinder to study these vortices. Theoretical single-vortex solutions 

in a disk have been investigated in reference [39, 43] using the point vortex model or 

the mean field theory. In these two papers symmetric single-vortex solutions at the 

disk center are calculated and a bifurcation to off-center single vortices is found by a 

linear bifurcation analysis on symmetric solutions. In this section we solve the two­

dimensional mean field equations for both symmetric and asymmetric solutions to 

get a complete picture on the problem. We compare their thermodynamic quantities 

directly and show explicitly that there is a critical energy beyond which off-center 

vortices are thermodynamically more probable states. The shapes of the off-center 

vortices are also compared with the results of the electron plasma experiment [24] . 

We then do a second-order bifurcation analysis at the bifurcation point . By ex­

tending the analysis to second order we can quickly identify the bifurcation type 

and understand the behavior of off-center vortices near it . Although we could also 

get this information by computing all two-dimensional off-center asymmetric solu­

tions, this analysis is faster and free of the numerical error from discretizing the disk. 

Combining weakly nonlinear analytic results with numerical solutions, we will show 

that the bifurcation is always supercritical (second-order transition) when the system 

energy is varied. However if the system temperature is used as the control parame­

ter, a subcritical bifurcation (first-order transition) can happen for some parameters. 

An interesting aspect of this first-order transition is that, because of the long range 

vortex-vortex interaction, the system will not be in a mixture of two stable states as 
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Figure 3.1: Mean field solutions for Q = 0.2 and M = 0.04. Solid line:symmetric 
solutions; dashed line:off-center vortices; cross: bifurcation point. 

occurs in a system with short range interactions (e.g., water). Instead the system 

stays at an "unstable" state with fixed energy. Finally we use a stability analysis to 

calculate explicitly the thermodynamic stability properties of a solution, i.e., whether 

it is a local entropy maximum. It will be shown that the stability confirms both 

bifurcation behaviors. 

3.2 Single-Vortex Solutions 

Figure 3.1 shows the entropy as a function of energy for the symmetric and off­

center vortices with Q = 0.2 and M = 0.04. The numerical method used was discussed 

in Section 2.5. Different values of Q and M yield similar results. The energy or 
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temperature can be considered as an indicator of how closely the vorticity is packed. 

At the minimum energy limit , corresponding to f3 -+ oo, the symmetric solution has 

a distribution of w0 (r) which is a circular uniform-vorticity patch (Figure 3.2a), with 

its size p and vorticity level a uniquely determined by Q and M: 

It is interesting to note that p and a are independent of the g (a) constraint, i.e. , the 

value of q in the two-level vorticity special case. As the energy increases the vorticity 

level at the center rises. The entropy also increases but decreases again after passing 

the point f3 = dS /dE = 0 and reaches zero at the high energy limit when f3 -+ -oo. 

This rise and fall of the entropy is reasonable from the fact that the entropy density, 

wo ( Wo ) ( wo ) ( wo) -q ln q - 1 - q ln 1 - q , 0 < wo < q, 

has a single peak occurring at w0 = ~q. At the high energy limit the vorticity 

distribution saturates at level q and forms a circular vortex at the center and a vortex 

ring at the disk boundary, as shown in Figure 3.2b. The amount of vorticity in each 

region is determined by the angular momentum M. From this vorticity distribution 

we immediately see that the formation of an off-center vortex is likely to be favored 

at large energy: all vorticity can then stay in one region with the angular momentum 

constraint satisfied by adjusting the displacement from the center. When f3 -+ -oo 

we again have S -+ 0 for off-center vortices (the dashed line) only here the energy is 

greater than that of symmetric vortices. 

The distribution of the off-center branch at the maximum energy limit is an 

elliptical-like vortex with uniform vorticity q at a certain displacement D from the 

center. As the energy decreases, the entropy increases and the vortex moves toward 

the disk center. At a critical energy Ec , D becomes zero and two branches of solu­

tions join together at the bifurcation point. At a fixed energy E > Ec the off-center 

vortex always has a larger entropy than the symmetric one, i.e., it is a more probable 



22 

1.0 1.0 

a b 

~ 

~ 0.5 0 .5 ' 0 ' > \ 

\ 
\ 

\ 

0.0 

'~ 
0.0 \ ): 

0.0 0.5 1.0 0.0 0.5 1.0 
Radius Radius 

c d 

0 0 0 • 
-1 L_~~~~~~~~~~ -1 L_~~~~~~~~~~ 

-1 0 -1 0 

Figure 3.2: Vorticity distributions for Q = 0.2 and M = 0.04 at various conditions . 
(a)Symmetric solutions at {3 = 1 (dashed line) and {3 = 800 (solid line). (b)Symmetric 
solutions at {3 = -200 (dashed line) and {3 = -1000 (solid line). (c)Vorticity contours 
for the symmetric solution at E = 0.003 . The contour levels start from 0.1 and 
increase by an interval of 0.1 toward the center. (d)Vorticity contours for the off­
center vortex also at E= 0.003 , with the same contour levels as (c). 

state. Contour plots of a symmetric and off-center vortices at the same energy are 

plotted in Figure 3.2c and 3.2d, showing the off-center vortex is more diffusive than 

the symmetric one, yielding a higher entropy. 

Fine et al. [24] have measured the electron density, equivalent to the vorticity 

distribution, for single equilibrium electron columns. They study how the quadrupole 

moment q2 and rotating frequency f of off-center vortices depend on vortex sizes and 

distances to the disk center. Here q2 is defined as (Pxx - Pvv)/(Pxx + Pyy), with 

Pxx = J x2w(r)dr and similarly for Pyy, to measure distortion of a vortex from a 
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circular shape. The position (x , y) is measured from the center of the vortex along 

the major and minor axes (defined as for an ellipse.) Although we use values of E at 

fixed Q and M in Figure 3.1 to describe the solutions, to compare our calculations 

with the experimental results, it is better to use different M at fixed Q and fJ . At a 

fixed fJ, different M will give vortices at different D with roughly the same internal 

distribution, similar to the vortices produced in the experiment. 

For three different total vorticities measured in the experiment, we plot q2 versus 

D for fJ equal to -1000 (solid lines) and -200 (dashed lines) in Figure 3.3. The 

vortices are very close to uniform patches for the first fJ and have some smooth 

distribution for the second. First we see that in all three cases both values of fJ give 

rather close values of q2 . The likely physical reason is that distortion comes mainly 

from the effect of the boundary (or in terms of the position of the image charge), and 

is mostly determined by the position of a vortex, not its detailed distribution. The 

measured q2 from the experiment, shown as symbols in Figure 3.3, are consistent with 

our calculations. Although the electron columns have internal distributions closer to 

those of fJ = - 200 than fJ = -1000, experimental errors make it difficult to tell which 

line is closer to the experiment. This may also explain why an elliptical constant 

vorticity patch approximation [44] shown as the dotted lines also gives consistent q2 

values. At small D the results are almost identical to the mean field solutions with the 

larger negative fJ but deviate from the experimental results when vortices come close 

to the boundary. On the other hand the mean field calculations describe correctly 

the trend of the experimental data at large D. 

3.3 Bifurcation Analysis 

From the viewpoint of symmetric solutions, a bifurcation to off-center vortices 

occurs at the critical energy. In principle we can understand the nature of the bifur­

cation and behavior near it by computing all the solutions on the off-center branch. 

However this is very time-consuming and there is always the uncertainty whether the 

solutions are close enough to the bifurcation. Using the second-order bifurcation anal-
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ysis described in Section 2.6, we can not only quickly find the bifurcation point (from 

the first-order calculation) but also the bifurcation behavior (from the second-order 

results). 

Properties of asymmetric vortices can be quickly calculated from the functions 

w1 (r) , w2,0 (r) , w2,2(r) of the bifurcation analysis. For example , 

D m j w1r 2dr /Q, 

(E2
7r j w2,2r3dr- QD2)/(M- QD2), 

E
2

27r j 'l/Jow2,ordr + E2 ~ j 'l/J1w1rdr, 



+ 
~ 0.005 

0 .000 
0.0025 

E 
0.5 

0.4 

0 .3 

0 
0.2 

0.1 

0.0 
0 .002 0.003 

E 

25 

+ + 

0 0.1 

0.0030 

xx 

:::;_ 
0 
I 
'+­......... 

0 

0.004 

0 .0 
0.002 

0.5 

0.4 

0 .3 

0.2 

0.1 

0.0 
-260 

0.003 0.004 
E 

X X X 
X 

X 
X 

- 240 - 220 - 200 -180 

beta 

Figure 3.4: Off-center vortex solutions for Q = 0.2 and M = 0.04. Solid 
lines: bifurcation analysis calculations; cross:off-center vortex numerical solutions. 

and the rotational frequency shift !:::.f = (f- fo)/ fo = E
2D2/Do, with fo f(D---+ 0). 

The bifurcation point calculated from Eq. (2 .9) is plotted as a cross in Figure 3.1. 

We see that it agrees perfectly with the start of the off-center branch. In Figure 3.4 

we plot D, q2 , and !:::.f as functions of E or f3 for Q = 0.2 and M = 0.04. The 

solid lines are results from bifurcation calculations and we find that the numerical 

solutions of off-center vortices, shown as crosses, agree well with the lines near the 

critical energy. If the displacement D is taken as the order parameter of an off-center 

state, its behavior clearly indicates a supercritical bifurcation. Thermodynamically 

we have a second-order (continuous) phase transition at Ec. 

Interestingly for a larger value of M the situation changes. The bifurcation and 
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numerical results are shown in Figure 3.5 for Q = 0.2 and M = 0.06 (larger M yielding 

a larger vortex). The D versus E curve is similar to the previous case, but now 

f3- f3c near the bifurcation (which is just t.2{32 from Eq. (2.11)) is positive. Figure 3.5 

indicates that we have a subcritical bifurcation when using the inverse temperature 

as the control parameter. Thermodynamically when the system is equilibrated with 

a heat bath at a fixed temperature, the transition to off-center vortices will be first­

order. The transition point {31 can be identified from the crossing of the solid and 

dashed lines in the free energy-inverse temperature plot. Although it may be difficult 

to see from the plot, in the small segment of the off-center branch near the bifurcation 
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point (the portion with dD/ d/3 > 0) , d2 F / d/32 is negative. This leads to a negative 

specific heat and indicates the state is thermodynamically unstable. 

The behavior becomes clearer when we plot the inverse temperature versus energy 

m Figure 3.6. Considering the solid line in the blow-up, we have the curve of a 

typical equation of state with a first-order transit ion. The dashed line marks the 

temperature where the transition will occur. However in the vortex system the usual 

interpretation of a system at the transition temperature as a mixture of two phases 

no longer applies due to the long range interaction between vortices. When a system 

at point A is fed energy by a heat bath at the same temperature, the system will 

not be in an equilibrium state until it gains enough energy to reach point B. If the 

contact with the heat bath is cut before reaching EB, for example, at Ec, the system 

will relax to the equilibrium state C which is stable in an isolated environment. So 

if the system energy is controlled continuously we can have a continuous transition 

from symmetric to off-center states. 

3.4 Thermodynamic Instability 

As discussed in Section 2.7, it remains to be shown whether a particular mean 

field solution is an entropy maximum. From previous sections, some of the mean 

field solutions are expected to be unstable, e.g., the symmetric solutions with energy 

higher than Ec, or the off-center solutions near a subcritical bifurcation point at a 

fixed temperature. It is our purpose in this section to investigate this property using 

the thermodynamic instability. 

In the unit disk we expand ow(r), discussed in Section 2.7, in Fourier modes in 

the azimuthal direction and in Chebyshev polynomials in the radial direction: 

00 00 

ow(r) = I: L amn Tn(r)eimO. (3.1) 
m=-oo n=O 

m+n=even 

Here m + n even is required to give the correct parity for each m mode. When 

the calculation is applied to a symmetric distribution, the components for different 
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m separate and each eigenvector has a definite value of m. The calculation is then 

faster because each m can be done separately. This is no longer true for an off-center 

vortex where all m modes are coupled together. Both fixed energy and fixed temper­

ature calculations discussed in Section 2.7 are done as Figure 3.5 shows that different 

behaviors happen depending on whether the energy or temperature is controlled. 

The largest eigenvalues for m :::; 3 modes about the symmetric solutions are shown 

in Figure 3.7 for a closed system with Q = 0.2 and M = 0.04. For a fixed temperature 

calculation the m = 0 eigenvalues will be different but the results are similar. All 
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eigenvalues are negative except for m = 1 at energies larger than the critical energy 

from the bifurcation analysis. This agrees with our previous results by predicting 

that symmetric states are stable below Ec. Above Ec the solution is no longer a 

local entropy maximum and the unstable eigenvector having m = 1 confirms that a 

bifurcation to an off-center vortex occurs. The m = 1 eigenvector at the bifurcation 

point plotted in Figure 3.8 shows a complete agreement with w1(r) and 'lh(r) from 

the bifurcation analysis. 

Next we examine the stability of off-center vortices. For the case in Figure 3.4 with 

a supercritical bifurcation, it is natural to expect that these single vortices are stable. 

This is exactly the case as shown in the upper part of Figure 3.9 that all eigenvalues 



0.6 

0.5 

0.4 

0.3 

0.2 

0.1 

0.0 

-0.1 
0.0 0.2 

30 

del(psi) (x50) 

del(w) 

0.4 0.6 0.8 1.0 
Radius 

Figure 3.8: m = 1 eigenvector (thin solid lines) and bifurcation analysis results (thick 
dashed lines) at the bifurcation point with Q = 0.2 and M = 0.04. 

are negative and approach zero at Ec for both fixed energy and temperature cases . 

There is actually a zero eigenvalue not shown in the figure because of the rotational 

degeneracy. However for M = .06 at a fixed temperature, we have shown that the 

bifurcation is a subcritical and, from the behavior of thermodynamic quantities, the 

first portion of the off-center branch is unstable (e.g. , a negative specific heat.) The 

solid line in the lower graph of Figure 3.9 with a positive eigenvalue in this region 

explicitly shows that the states are not free energy maxima. On the other hand when 

we consider a closed system we have all negative eigenvalues and this again agrees 

with the bifurcation analysis. 
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Figure 3.9: Largest eigenvalues for off-center vortex solutions with Q = 0.2. M equals 
to 0.04 and 0.06 for the upper and lower graph respectively. In both graphes, solid 
lines correspond to fixed {3, dashed line fixed E. The vertical solid lines indicate 
the bifurcation points; the vertical dashed line marks the beginning of the unstable 
segment calculated from the off-center solutions. 
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Chapter 4 Double and Multiple Vortex States 

4.1 Overview 

Many numerical simulations [13, 14, 15, 16, 17, 18] of two-dimensional high­

Reynolds-number fluids with random initial conditions have shown that beyond an 

early stage during which many coherent vortices are formed , the evolution is dom­

inated by merging of like-sign vortices. Similar relaxation processes have also been 

observed in an experiment on an electron plasma [31]. A turbulence model has been 

proposed based on a description of vortex merging [21]. Hence many studies have been 

done on the merging of two identical vortices, as possibly a first step to understanding 

the evolution of turbulence. In numerical simulations different methods have been 

used to study the dynamics of two-vortex initial distributions [45, 46, 47, 48, 49, 50]. 

A pure electron plasma experimental investigation of symmetric vortex merging has 

also been done [25]. These dynamical studies find that two vortices will remain sep­

arated if their initial separation is greater than a critical value and below it they 

will quickly merge together. Equilibrium calculations for a pair of uniform elliptical 

vortices [51, 52] are consistent with this picture because no steady-state solutions are 

found for small vortex separations. 

In this chapter we look at the vortex merging problem using the equilibrium theory. 

Here we want to solve for two-vortex solutions and determine their thermodynamic 

stability properties. A recent work investigated some two-vortex solutions in a disk 

[53] but the stability, which is crucial for explaining these states and the mergers 

observed in experiments and simulations, were not tested. We will separate the 

stability eigenvectors of a two-vortex solution into those that might be expected to 

be strongly mixing, and those that are not. In terms of ergodicity this assumes that 

the phase space is separated into two distinct parts , one being explored by the flow 

and the other not explored. The justification of this separation comes from the fact 
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that the nonmixing eigenvectors correspond to collective symmetry motions of the 

vortex pair (translations and rotation) in the infinite system limit. In a disk we will 

show that the assumption about their nonmixing nature leads to a prediction of the 

stability of equilibrium positions at large separations, and this prediction agrees very 

well with an experimental observation. We then identify the passage of the eigenvalue 

of a "mixing" eigenvector through zero as indicating vortex merging in the dynamics. 

Finally we propose the idea of "vorticity localization" for the statistical theory to 

solve the difficulty that two-vortex solutions cannot exist in a large system. The basic 

idea is that for some special configurations, global ergodicity of the whole system will 

not be achieved and thermal equilibrium is reached in a local region. Observations 

of stable two-vortex states in experiments and simulations provide evidence for its 

validity. Vorticity localization will then be generalized to explain stable multiple­

vortex states, which are observed recently in an electron plasma experiment [31 J. 

4.2 Mean Field Two-Vortex Solutions in a Disk 

Using the iteration method for solving Equation 2.6 in a disk as described in Sec­

tion 2.5, we can find two-vortex solutions by starting the iteration with an initial 

distribution with two identical vortices sitting at () = 0 and () = 1r of the polar coor­

dinates. The size and separation of the vortices are choosen to be roughly consistent 

with the required Q and M. Explicitly enforcing the symmetry about the x and y 

axes at each iteration is also used to avoid converging to an off-center single vortex 

due to numerical round-off error. 

In Section 3.2 we study the single-vortex states by varying the system energy 

with fixed total vorticity and angular momentum. Here we use a different approach 

motivated by past experiments and simulations. In these papers most attention is 

concentrated on how the dynamics of two similar vortices depends on their initial 

~eparation. To put our work in the same context, first we choose a total vorticity 

Q, which sets the size of vortices, and an entropy S, which roughly sets the vorticity 

distribution inside the vortices. Then two-vortex mean field solutions with different 
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Figure 4.1: Vorticity distributions for Q = 0.2 and S = 0.25. On the left graph, 
j\1 = 0.05; on the right, M = 0.0373. Contour levels are 0.9, 0.347, 0.134, 0.0518, 
0.02. (A logarithmic scale.) Arcs indicate the disk boundaries. 

separations are calculated by varying the angular momentum M. 

Two typical two-vortex solutions are plotted in Figure 4.1 with Q = 0.2 and 

S = 0.25. Indeed they have very similar vortex sizes and internal distributions. On 

the left the angular momentum equals to 0.05 and the two vortices are well separated. 

The ratio between vortex separation and average vortex diameter is about 2.24. The 

vortex radius is defined as, 

Rv = ~ j rw0 (r)dr / j w0 (r)dr, 

with the origin at the center of the vortex and integration over the range of the vortex. 

For a uniform circular vortex, Rv will equal the radius. In the dynamics the vortices 

will rotate around the disk center by a rigid body motion with an angular frequency 
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Figure 4.2: Angular frequency for two-vortex solutions with Q = 0.2 and S = 0.25 
(the squares) and two point vortices each with strength r = 0.1 (the solid line) . 

2D. This can be seen considering the equili bri urn vorticity as a function of 'ljJ ( r) + r2r 2
: 

w(r) = f( 'ljJ (r) + Dr2
) . Substitute the expression into the Euler equations, 

ow 
ot ( ) ( 

0'1/J ) 1 1 0'1/J 1 - v · \7 w = -Vr - + 2Dr j - Vg- - f or roe 
O'l/J I OW 

- 2D oe f = - 2n oe . (4.1) 

In Figure 4.2 we compare with the rotational frequency of two point vortices, which 

is 

r ( 2 2 ) 
47r D2 1 - 1 + R2 I D2 - 1 - R2 I D2 ) 

here r the strength of the point vortices, D the distance of the vortices to the disk 
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center, and R the radius of the disk. In the middle range of the vortex position where 

the vortices are well separated and far from the disk boundary, the frequency from the 

point vortices gives a good approximation. Large deviations appear when the vortices 

start to have large distortion from their mutual interaction at small separations and 

from boundary effects at large separations. 

For the right-hand solution in Figure 4.1 the angular momentum is 0.0373 and 

the separation/ diameter ratio is smaller at 1. 73. The most significant difference from 

the larger M case on the left is that higher levels of vorticity contour lines from the 

two vortices join together to circulate both vortices. (These contours are too low to 

be shown on the left.) This means that more vorticity is in the exchange band which 

encompasses the two vortices together. Because the constant contours of '1/J(r) + r2r2 

coincide with those of w ( r), in the dynamics the vorticity will move back and forth 

between the two vortices while the whole distribution is rotating. This structure is 

observed in the simulations by Melander et al. [50] who find that for two vortices 

with a small initial separation near the merging critical value, an exchange band will 

develop in the final two-vortex steady state distribution. 

The aspect ratio for each individual vortex (measured analogously to the aspect 

ratio of an ellipse) increases when the vortices get closer as we can see in Figure 4.1. 

This is reasonable due to the stronger vortex interaction. A similar situation is ob­

served in the calculation of equilibrium elliptical two-vortex patches done by Saffman 

and Szeto [52]. 

When the angular momentum is further decreased, two-vortex solutions can no 

longer be found. More specifically we use a two-vortex solution as the initial guess in 

the iteration scheme described in Section 2.5 but decrease M by a small amount to 

find another solution with a smaller separation. In this way we can find a series of 

two-vortex solutions with smaller and smaller separations. But after a critical angular 

momentum (and hence a critical separation), the iteration suddenly converges to a 

symmetric single-vortex state, even if a very small decrease is taken in the angular 

momentum. This situation strongly suggests the existence of a critical separation 

such that there are no two-vortex mean field solutions below it. For the case in 
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Figure 4.3: Entropies for states with Q = 0.2. Solid:two-vortex reference states. 
Dashed (symmetric vortex) and dotted (off-center vortex) lines have the same E(M) 
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Figure 4.1 with Q = 0.2 and S = 0.25, the critical ratio is about 1.73 which is 

consistent with the values obtain by many dynamical studies of experiments and 

simulations [45, 46, 47, 48, 49, 50, 25, 51, 52]. Of course it is also possible that two­

vortex solutions still exist below the critical ratio but the iteration method fails to 

find them. This question can be resolved by examining the thermodynamic stability 

which will be described in the next section. 

In Figure 4.3 we compare the entropy of the two-vortex states with those of the 

symmetric and off-center vortices. Two-vortex states with fixed Q and S (varying 

M) are plotted as the solid line. For each of these solutions, the corresponding 

symmetric and off-center single-vortex states at the same energy are plotted as the 
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dashed and dotted lines respectively. The solid line starts from the minimum angular 

momentum mentioned above and ends on the right due to the finite size of the disk. 

Compared with symmetric vortices, two-vortex states have higher entropy at large 

Jl;f, but the entropy becomes lower as M decreases , i.e., the symmetric vortex is 

the thermodynamically more probable state at a small angular momentum. This is 

reasonable because at a large M, a symmetric solution will have a large amount of 

vorticity spreading over a large area near the boundary. At a small M, most vorticity 

of the symmetric vortex can stay together at the center as opposed to two separated 

regions in the two-vortex solutions. On the other hand off-center vortices always 

have the largest entropy when they exist. We suspect that they are absolute entropy 

maxima for this system. 

4.3 Thermodynamic Stability 

4.3.1 Separation of Eigenmodes 

As discussed in the previous section, we cannot find two-vortex solutions for small 

values of angular momentum. The way to distinguish whether this is a true physical 

phenomenon or just a breakdown of the solution finding algorithm is to look at 

the thermodynamic stability of these solutions. Another question that may also 

be answered is why two-vortex states are observed to be stable above the critical 

separation even when single-vortex states have a larger entropy. 

We apply the constant energy method described in Section 2.7 to the two-vortex 

solutions. Again the Fourier-Chebyshev expansion in Equation 3.1 is used. Because 

in the solutions the two vortices are identical and sit ate= 0 and e = 7f (i.e., w0 (r) 

is symmetric to both x and y axes), the expansion coefficients of w0(r) and 7/Jo(r) 

are nonzero only for even m modes and are all real. When these w0 ( r) and 7/Jo ( r) 

are put into Equation 2.14 to calculate the entropy matrix Sij in Equation 2.15, 

the matrix elements are divided into four decoupled subspaces: even-real(cosine) , 

even-imaginary(sine) , odd-real(cosine) , and odd-imaginary(sine) modes. These four 
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subspaces will have their own eigenvalues and eigenvectors. This also greatly reduces 

the computation time and demand on computer memory due to a factor of four 

reduction on the linear size of the matrix. 

4.3.2 Nonmixing Eigenmodes 

For the series of two-vortex solutions shown as the solid line in Figure 4.3, the 

largest eigenvalue of each of the four subspaces are plotted in Figure 4.4. Of these four 

separate modes we will show that three of them (even-imaginary, odd-real, and odd­

imaginary) are essentially nonmixing modes. The even-imaginary mode is straight­

forward because the mode just produces a rotation about the center of the disk. Due 
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Figure 4.5: (a)Vorticity distribution for Q = 0.2, S = 0.25, and M = 0.0373. 
(b)Eigenvector for the even-real mode. (c)Eigenvector for the even-imaginary mode. 
For (a) the nine contours start from 0.1 to 0.9 with 0.1 increment. For (b) and (c) 
the ten contour levels are equally spaced with dotted lines for negative values. (The 
absolute amplitude is arbitrary.) 

to the rotational symmetry, the eigenvalues should always be zero. The diamonds in 

Figure 4.4 are indeed all zero and the eigenvector shown in Figure 4.5c does represent 

a small angle rotation. We will now show that, under the assumption of nonmixing, 

the prediction from the odd modes regarding the dynamics of two vortices at a large 

separation agrees well with the dynamics observed in an experiment [26]. Thus we 

can assume that the odd modes are nonmixing or at most weakly mixing. This leaves 

the even-real mode as the only strongly mixing mode and the only mode related to 

the merging of two vortices at a small separation where vorticity mixing is essential. 

The odd-real and odd-imaginary modes correspond to collective translational mo­

tions of the two vortices, along and perpendicular to the line joining the vortices 

(referred as the x axis hereafter) respectively, a first hint of their nonmixing nature. 
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In an infinite space their eigenvalues will be zero. In a finite disk, the odd-imaginary 

mode moves the vortices closer by reducing their azimuthal separation with the cor­

responding eigenvalues (the triangles in Figure 4.4) always positive. This is not 

surprising since this motion is in the direction to form a single off-center vortex which 

has a larger entropy (see Figure 4.3). The odd-real modes (the squares) have weakly 

positive eigenvalues at small M, and as M increasing the eigenvalues decrease and 

then become negative. This can be understood because the vortices then sit closer to 

the boundary and feel its repulsive influence more. 

The odd-real and odd-imaginary modes are closely related to the stability of two­

vortex states at a large separation in a disk. This stability has been studied ex­

perimentally in a pure electron plasma in a clyinder by Mitchel et al. [26]. Their 

observation shows that two identical vortices in a disk are stable below a separation 

D / R = 0.46, (D gives the positions of the vortices and R the size of the disk) but 

larger than the merging critical separation which depends on the vortex size, and un­

stable above it. If the vortices are displaced from their equilibrium positions, they will 

rotate around the equilibrium points in the stable case or the displacement will ex­

ponentially grow in the unstable case. Also their observation gives a good agreement 

with the analytic prediction from two point vortices. 

Now if we suppose the dynamics is nonmixing, the entropy will be a constant. 

Since the odd-real mode gives a displacement in x axis and the odd-imaginary mode 

in y axis, using the eigenvalues calculated in Figure 4.4, the constant entropy paths 

on the x - y plane can be plotted, as shown in Figure 4.6. At the smaller vortex 

separation, both eigenvalues are positive and the constant entropy contours are closed 

ellipses. For the larger separation, the odd-real eigenvalue becomes negative and the 

fixed entropy lines become hyperbolic. Thus the eigenmodes predict the nonmixing 

dynamics as 

elliptical: 

hyperbolic: 

Acos(>.t)(odd-real) + Bsin(>.t)(odd-imaginary) 

Ae>-t(odd-real) + Be.At(odd-imaginary), 
(4.2) 



42 

>- 0.0 

-0. 1 '-----'------'----'-----'--'---'---'-----'--L--l 

-0.1 0.0 0.1 -0.1 
X 

0.0 
X 

0.1 

Figure 4.6: Constant entropy contours for odd modes with Q = 0.2, S = 0.25. M = 
0.04 (D = 0.421) at left and M = 0.06 (D = 0.530) at right. x andy axes measure the 
displacement of the vortex from their equilibrium positions in the direction parallel 
and perpendicular to the line connecting the two vortices respectively. The entropy 
equals the equilibrium value at the origin and the contour interval is 0.001. Solid 
lines have higher entropy and dotted lines lower. 

with A/ B determined by the eigenvalues. Now compared with the results of the elec­

tron plasma experiment, Equations 4.2 give correctly the oscillatory and divergent 

motions observed in the experiment. The switching from elliptical to hyperbolic at 

D / R = 0.47 (the point with zero odd-real eigenvalue) agrees well with the observed 

switching from stable to unstable at D / R = 0.46. From this agreement we can con­

clude that the odd modes are nonmixing. The ratio between maximum displacements 

in y and x axes can also be calculated and are shown in Figures 4.7. These ratios 

shown as circles agree with the solid line from the analytic results of two point vor­

tices, with which the experimental results are consistent. Unfortunately there are no 

good measurements of these data in the experiment. 

4.3.3 Mixing Eigenmode and Merging Critical Ratio 

The last eigenmode is the even-real mode which is the mode relevant to the vortex 

merging at small separations. The eigenvalues, shown in Figure 4.4 as the circles, are 
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all negative indicating that the two-vortex solutions we found are all local maxima 

on the entropy surface restricted to the mixing even-real modes. Thus although the 

single-vortex states have higher entropy than the two-vortex states (see Figure 4.3) , 

these states are local maxima in this subspace and we expect that they are stable as 

observed in experiments and simulations. The even-real eigenvector of the left-most 

point in Figure 4.4 is plotted in Figure 4.5b which shows a symmetric deformation of 

t he two vortices in the direction producing a vortex merger. We estimate the critical 

merging separation by extrapolating the circles in Figure 4.4 to zero. This is the point 

where the two-vortex solut ions switch from a local maximum to a saddle point and 

become thermodynamically unstable . In the particular case of Figure 4.4 the critical 

ratio (separation divided by average vortex diameter) is about 1.7, which lies in the 

range of values obtained by previous dynamical studies [45, 46, 47, 48, 49, 50, 50, 25, 
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51 , 52]. 

This result also partly explains why we cannot find two-vortex solutions below 

the critical separation. For some reason , the iteration scheme in Section 2.5 seems to 

converge to a thermodynamically stable state, although it has no clear connection to 

the dynamics. 

The critical separation for the merging scales linearly with vortex size (manifested 

as a constant critical ratio). This is observed in experiments and simulations and 

1s a consequence of the scaling of the Euler equations which leaves the dynamics 

unchanged: 

r ----+ Ar 

w(r) ----+ w( Ar) 

7/J (r) ----+ A27j;( Ar) , 

with A an arbitrary positive constant. This scaling also applies to the mean field 

equations, Equation 2.6, with the following additional relations: 

q ----+ q 

Q ----+ A2Q 

M ----+ A4M 

(3 ----+ (1/ A2)(3 

n ----+ n 

J.L ----+ A 2 p,. 

So the critical separation should also scale linearly with vortex size for mean field 

solutions. 

One problem is that this scaling also requires that the system boundary scales 

with A or that the system is infinite. This is usually not the case in experiments and 

simulations where a fixed system size is used for various vortex sizes. The fact that 
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the critical ratio is roughly a constant in these studies suggests that the boundary 

plays a minimal role in the vortex merging process. At a first glance the roughly 

10% variation for different vortex sizes in our calculation of the critical ratio from 

the thermodynamic instability is also consistent with these results. However to get 

a complete picture , the concept of "vorticity localization" must be used; this will be 

discussed next. 

4.4 Vorticity Localization 

4.4.1 Two-Vortex State in a Large System 

To illustrate vorticity localization we consider the simplest case, namely a two­

vortex distribution in free space. To simulate the situation we construct a vorticity 

distribution by putting two circular vortices in a large disk with a separation larger 

than the merging critical value. The effect of the boundary on the vortices should 

be negligible if the ratio R/ D is large enough, here again R is the disk radius and 

D the vortex distance to the center. The two vortices will rotate around the disk 

center with an angular frequency 2D which is well approximated by the frequency 

computed from two point vortices. (See Section 4.2.) Of course the vortex shape 

of a two-vortex equilibrium will not be circular but the distortion will not affect the 

following discussion. With this vorticity distribution , w(r), the stream function '1/J (r) 

can quickly be calculated. Because the vortices are rotating with an angular frequency 

2D, we will look at the corotating stream function defined as '1/J( r) + Dr2
, which is the 

stream function in the rotating frame with frequency 2D. 

In Figure 4.8 contours of w(r) and '1/J (r) + Dr2 are plotted with R/ D about 5. 

The first thing to notice is that the contours of 'ljJ ( r) + Dr2 near the positions of the 

vortices are not exact circles due to the vortex interaction. In the final equilibrium, 

the vortex shapes will deform such that contours from w(r) and '1/J(r) + Dr2 coincide, 

but we expect that the overall structure of w(r) and '1/J (r) + Dr2 will be unchanged. 

Next we see that each vortex is completely enclosed by separated, closed, corotating 
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Figure 4.8: Contours of the vorticity (thick lines) and corotating stream function 
(thin lines) for two circular vortices in a unit disk. The vortex size and distance from 
the center are 0.1 and 0.2 respectively. 

stream lines. Since in the dynamics the vorticity is following corotating stream lines, 

a two-vortex final state is expected. Finally in the region outside about three times 

D , contours of '!jJ ( r) + Or2 are nearly concentric circles with values increase toward 

boundary, due to the Or2 term. If the boundary is enlarged, more nearly circular 

contours will be added but the structure of 1/J(r) + Or2 in the center region will 

remain the same. 

Now the key observation is that although a dynamically stable two-vortex state is 

expected in Figure 4.8, this kind of structure cannot be a mean field solution, because 
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Figure 4.9: Corotating stream function and vorticity field of Figure 4.8. The solid 
lines are the corotating stream funct ion. Upper and lower lines are along x and y 
axes respectively. The dotted line is the vorticity field along the x axis. 

then w ( r) must always be a function of 'ljJ ( r) + Dr2
. In a large disk w ( r) will increase 

with 'lj;(r) + Dr2 toward the disk boundary as we have sketched with the dotted line 

in the Figure 4.9. Because of the mean field relation, Equation 2.6, between w(r) and 

'ljJ ( r) + Dr2
, the vorticity drops to almost zero around the minimum of 'ljJ ( r) + Dr2 (at 

about r = 0.45) , but will increase again afterward. Hence a ring of vorticity appears 

at the disk boundary and gets larger with larger disk size. Of course, if the vorticity 

ring gets too large the structure of the corotating stream function will be completely 

different. This means that to get a two-vortex solution to the mean fie ld equations, 

the disk boundary must be somewhere near the minimum of '1/J(r) + Dr2 to yield a 

negligible vorticity ring. This is exactly the situation employed in previous sections. 
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4.4.2 Vorticity Localization in Mean Field Solution 

In the previous section we found that two-vortex mean field solutions only exist 

for not too large disks. However in a real physical system there seems to be no 

such restriction as evident in many experiments and simulations. We believe the 

explanation comes from the property of an ideal fluid that dynamically vorticity can 

only flow from one place to another but cannot suddenly appear at an isolated region. 

In Figure 4.8 vorticity is completely enclosed by local corotating stream lines and the 

minimum of '1/J(r) + r2r 2 forms a barrier around each vortex which prevents vorticity 

from moving across. In terms of statistical mechanics, it is unfavorable entropically 

for vorticity to move through the minimum region, and the vorticity only explores 

its own neighborhood. In other words the barrier prevents global ergodicity but local 

ergodicity allows thermal equilibria to be reached in separated regions. In the final 

state w ( r) and 'ljJ ( r) + r2r 2 will follow the mean field relation only inside the minimum 

and w(r) will be zero outside. 

One requirement for this localization of vorticity to be a good approximation is 

that the minimum value of '1/J(r) + r2r2 should give a very small value of w in the 

mean field equations. In our examples of two-vortex solutions in the two-level initial 

vorticity case, this value was less than 10-3 . The value will never be exactly zero but 

a small value is good enough in practice due to, e.g., the presence of the viscosity in 

the real physical systems or the consideration of time scales. 

Therefore we propose that in this kind of situation vorticity will be localized and 

statistical equilibrium is only achieved locally. We may call this a "local" mean field 

solution. One of the immediate consequences of this contruction is that the size of the 

boundary only has minimal effect on the two-vortex mean field states, as observed 

in experments and simulations. Another interesting consequence is that the two 

vortices need not to be identical, since the two vortices may "live" in separate regions 

following their own mean field relations. For example the inverse temperatures of the 

vortices can be different yielding different internal vorticity distributions, or the total 

vorticity of each vortex can be different yielding an equilibrium state with uneven 
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vortex sizes. In Figure 4.10 we plot two examples of these particular situations. It 

will be interesting to see the observation of these states in future experiments or 

simulations. 

We also note here that so far two-vortex solutions are always found in a disk. 

Actually a disk is necessary because other boundaries are not consistent with the r2r2 

term. This of course is due to the fact that angular momentum is only conserved in 

a disk (or an annulus). However by using vorticity localization, two-vortex rotating 

solutions (i.e., with the r2r2 term) can be found in any sufficient large asymmetric 

system. Of course the asymmetry of the boundary will make the distribution vary 

at different two-vortex orientations. Nevertheless vorticity localization ensures that 

this variation is minimal in a large system and we can have nearly steady rotating 

two-vortex states. One example in this situation is the numerical simulation done in 

a square with periodic boundary conditions [50]. 

4.4.3 Multiple-Vortex Solution 

The concept of vorticity localization can be used for distributions with more than 

two vortices. Two examples of "local" multiple-vortex solutions with three or four 

vortices are shown in Figure 4.11. Again we see that the corotating stream func­

tion (the dotted lines) is closed around every vortex, the requirment for vorticity 

localization and a local thermal equilibrium. 

We note here how these solutions with vorticity localization are calculated numer­

ically. Basically we still follow the iterative scheme described in Section 2.5, but with 

two modifications. The first is that at each iteration step when wt(r) is calculated 

from '1/Jt(r), wt(r) at locations outside the minimum of the corotating stream function 

are set to zero. The second is that each vortex region has its own parameters ((3, D, f.L) 

to satisfy its own conserved quantities (Q, M, E). However the angular momenta are 

not all arbitrary. They must give a single n for every vortex in order to have a steady 

rotating state. 

Fine et al. [31] have done an electron plasma experiment studying final equilib-
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Figure 4.10: Examples of asymmetric "local" two-vortex solutions. On the left:two 
vortices with the same Q but different (3. On the right:two vortices with different 
Q but the same /3 . Solid lines show the vorticity field and dotted lines show the 
corotating stream function. The levels for both contour lines are equally spaced 
between the maximum and minimum values. 

rium states from an initial distribution with unstable vortex filaments. They observe 

the formation of different stable multiple-vortex final states under some conditions. 

Figure 6 in the paper shows some regular vortex patterns with vortex numbers rang­

ing between three and nine. Although the transition from the inital distributions to 

the multiple-vortex states is still not well understood (e.g., the interaction between 

the coherent vortices and the small background vorticity field may play some role), 

we believe these final states can be explained by the "local" mean field solutions with 

vorticity localization. For example, we put six or seven circular vortices in a disk, 

arranged similarly to the vortex patterns of the third and fifth graphs in Figure 6 of 

the paper, and calculate their corotating stream functions. The results are plotted in 

Figure 4.12. We see that all the circular vortices are again encircled by the corotating 

stream lines as in Figure 4.11 , therefore by using vorticity localization, similar "local" 

mean field solutions will be found. 
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Figure 4.11: Examples of "local" mean field solutions with three and four identical 
vortices. Solid lines: the vorticity field, and dotted lines: the corotating stream 
function. The levels for both contour lines are equally spaced between the maximum 
and minimum values. 

Figure 4.12: The corotating stream lines (dotted line) of six or seven circular vortex 
(solid line) patterns. The contour levels of dotted lines are equally spaced between 
the maximum and minimum values. 
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Chapter 5 Vortex Formation in an Annulus 

5.1 Overview 

In this chapter we investigate mean field solutions in an annulus, concentrating 

especially on symmetric vortex layer and single coherent vortex solutions. This ge­

ometry is relevant to the upper layer of planetary atmospheres. On an outer planet 

this surface layer usually has a shear band structure and there are stable vortices at 

particular locations in this stratified zonal flow, with the Jupiter's Great Red Spot 

as the best known example. As discussed in Chapter 1, many models of Jupiter 's 

atmosphere have shown that the deeper, steady shear flow below will induce and 

support stable vortices on the upper layer. Numerical simulations [9, 11] done by 

Marcus in an annulus show that the shear applied by a background steady flow is the 

dominant factor in the formation of single coherent vortices. Thus, using the mean 

field solutions in an annulus, we want to study the relation between the symmetric 

and single-vortex states, and the effect of a background shear. 

In the following sections, we first discuss the conserved inner circulation which 

plays the important role of providing a background shear. We begin with a discussion 

of the axisymmetric solutions and their dependence on system parameters. Next, the 

bifurcation analysis described in Section 2.6 is used to find the bifurcation to single­

vortex solutions. The effect of the inner circulation, and hence the background shear, 

on the bifurcation is investigated. Finally, two-dimensional single-vortex solutions 

are found and with them we not only confirm the results of the bifurcation analysis 

but also identify the discontinuous transitions from the symmetric to single-vortex 

states when no bifurcations are present. With these calculations a complete picture 

in the parameter space, especially the inner circulation, concerning the formation of 

coherent vortices will be established. 
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5.2 Inner Circulation and Background Shear 

Before discussing the mean field solutions in an annulus, we need first to consider 

the special property of an annulus coming from the fact that it is not a simply 

connected region. From the conservation law, Equation 2.2, the circulation Con any 

boundary, defined as 

1 u. dl 21rC 
!boundary 

is conserved dynamically. For a system with a single boundary, e.g., a disk, conser­

vation of the circulation is trivial because it always equals Q/(27r). However for an 

annulus the circulations C and C' on the inner and outer walls are conserved sepa­

rately. The inner circulation C, which can also be seen as an effective vortex at the 

center, becomes an additional conserved quantity to be specified by initial conditions 

and C' = Q/(27r)- Cis set automatically (or vice versa). This new conserved quan­

tity C does not change the mean field equations but sets a constraint on the boundary 

conditions. If the stream function '1/J(r) on the outer wall is choosen to be zero, '1/J (r) 

on the inner wall will change continuously during the dynamics depending on the 

vorticity distribution to give a constant value of C. Numerically, when solving for 

'1/J(r) from Poisson's equation with a given w(r), we first solve it with the boundary 

conditions '1/J(r =a)= '1/J(r =b)= 0. Then Aln(rjb) is added to the solution '1/J(r) to 

obtain the correct C by adjusting A. 

The important consequence of a nonzero value of C is that a backgroud shear is 

produced in the system. To see this, consider an annulus (assuming boundary radii 

1 and 2) with zero vorticity but a nonzero C, the stream function and azimuthal 

velocity become 

'1/J(r) = Cln(r/2), u0 = -Cjr. 

So there is a background shear in the system, 

d (uo) 2C 
CY r- - = -. 

dr r r2 

In the numerical simulations [11] the fluid evolves under the influence of a background 
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shear flow and the final equilibria are found to be strongly dependent on the back­

ground shear strength. In our mean field calculations we will study the influence of 

C, and hence the shear, on the vortex formation and compare with the results from 

the simulations. 

5.3 Axisymmetric Solutions 

First we want to consider axisymmetric solutions. We choose the inner and outer 

radii to be one and two: results are qualitativly similiar for different system sizes. 

The equation for symmetric solutions is Equation 2. 7 and the numerical method is 

discussed in Section 2.5. 

Results for Q = 2, M = 4, and different C are shown in Figure 5.1. The first 

two rows of Figure 5.1 show the states of the system characterized by the energy, 

entropy and inverse temperature (3 . The energies are bounded both above and below. 

The two limiting energy states correspond to (3 going to ±oo, clearly seen in the 

second row of Figure 5.1. The solutions have a maximum entropy when (3 is zero, 

consistent with the thermodynamic relation f3 = 8Sj8E. The entropy usually goes to 

zero when f3 goes to ±oo, or equivalently when the temperature goes to zero, except 

when f3 ---+ oo for C = 0. This is because in these low and high energy limits the 

vorticity will saturate at the value q in a finite region of space and then Equation 2.5 

will give zero entropy. The vorticity distributions in these limits are shown in the 

bottom row of Figure 5.1. The distributions can be understood as follows: In (b) 

and (c) the dominant forces are the interactions between the effective vortex at the 

center and the vorticity distribution in the annulus. With negative values of {3, the 

interaction is repulsive in (b) and attractive in (c), and the vorticity distributions 

(dashed lines) become a top hat distribution centred away from the walls in (b) 

and two distinct regions on the walls in (c). The reason for the two regions in (c) 

is that the circulation inside attracts vorticity to the inner wall, with the rest sent 

to the outer wall to conserve angular momentum. With positive values of {3, the 

effects of the interactions change sign and the distributions (solid lines) just reverse 
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Figure 5.1 : Axisymmetric solutions in the annulus with total vorticity Q = 2, angular 
momentum M = 4, and initial vorticity level q = 1. The three columns are with 
circulation C equal to 0, 1, and -1 respectively. On the bottom row showing the 
vorticity distributions, solid lines are for the large positive inverse temperature (3; 
dashed lines for large negative (3. The solid circles are the bifurcation points. 
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the situation for the dashed lines. In (a) with zero circulation inside, there is only 

the self-interaction between vorticity. The dashed line distribution comes from the 

self-attraction of the vorticity at {3 -+ -oo. However at the minimum energy limit 

({3 -+ oo), the interesting interplay between conservation of angular momentum and 

vorticity self-repulsion leads to the particular distribution plotted as the solid line in 

(a). 

5.4 Bifurcation to Coherent Vortex 

At high energy (large negative {3) the vortex system is likely to form a single 

coherent vortex instead of a symmetric vortex layer. This has been suggested by a 

Monte Carlo simulation [3] of the mean field equations. Qualitatively speaking at 

large negative {3 the effect of the self-attraction between vorticity is stronger. This 

self-attraction will eventually break the axisymmetric distribution and a bifurcation 

will occur. Before solving the single-vortex two-dimensional solutions, we first use the 

bifurcation analysis described in Section 2.6 to see when it will occur. In particular 

we want to investigate the effect of the inner circulation C. 

For the solutions in Figure 5.1, the bifurcations are plotted as the solid circles. 

As expected all the bifurcations happen at negative inverse temperatures. Also the 

bifurcation only occurs when the inner circulation C is one or zero, not minus one. 

Since C is directly related to the background shear in the system, this suggests a 

critical shear with a negative value for the bifurcation to a single-vortex state. The 

complete dependence of the bifurcation point on C is plotted in Figure 5.2. The 

dotted line marks the maximum possible energy Emax - Emin for the axisymmetric 

solution. The bifurcation exists for C between two critical values c~ower = -0.2741 

and C~pper = 2.521. In this region the symmetrical distribution will be unstable 

to a nonaxisymmetric perturbation if the system energy is larger than that of the 

bifurcation point. A second bifurcation point also occurs for the C near c~ower and 

C~pper. These lines divide the E - C parameter space into two regions. In the upper 

regwn, we have unstable symmetrical solutions and presumably an asymmetrical 
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Figure 5.2: Phase diagram for asymmetric solutions. The solid line is the bifurcation 
line form= 1 mode in the annulus with Q = 2, M = 4. The dotted and dashed lines 
are the maximum energy for the axisymmetric and asymmetric solutions respectively. 
The dot-dashed line is the first order transition point when a bifurcation is not present. 

coherent vortex will be the long time state. Qualitatively similar diagrams are found 

when different values of Q and M are used. 

The vorticity distributions at the bifurcation energy for different values of C are 

plotted in Figure 5.3. The figure shows that for a positive C the symmetric vorticity 

distribution at the bifurcation is strongly peaked with a peak value growing with C 

and with a position mostly determined by M. The driving force in the bifurcation 

may be ascribed to the increased vorticity interaction due to its larger peak value 

in the asymmetric coherent vortex. As C increases however , the vorticity in the 
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Figure 5.3: Axisymmetric vorticity distributions at the bifurcation for different values 
of Cat Q = 2 and M = 4. 

symmetric ring approaches saturation, so that a maximum value C~pper for which the 

bifurcation occurs is to be expected. 

5.5 Single-Vortex Solution 

We have found that situations exist where a vortex layer will bifurcate to an asym­

metric solution. In this section we solve the two-dimensional mean field equation to 

find these single-vortex solutions and compare with the symmetric solutions and re­

sults from the bifurcation analysis. Moreover it is also possible that single-vortex 
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Figure 5.4: Entropy of symmetric (dotted line) and single-vortex (solid line) solutions 
for C = 1, Q = 2 and M = 4. Cross is the bifurcation point. 

solutions exist even when symmetric ones lack bifurcations. In this case a discontinu­

ous transition will occur, a situation somewhat similar to the merging of two vortices 

discussed in Chapter 4. 

Figure 5.2 predicts single-vortex states at high energy for C between C~pper and 

c~ower. These states are indeed found and are plotted in Figure 5.4 showing the 

entropy-energy relation for C = 1. A number of points are worth noticing. Firstly 

we see that the single-vortex states join perfectly with the symmetric branch at the 

bifurcation point calculated in previous section. Secondly, this state always has a 

higher entropy compared to the symmetric state at the same energy. This indicates 



60 

Figure 5.5: Vorticity contours for C = 1, Q = 2 and M = 4. Upper-left:axisymmetric 
solution at {3 = -50. Upper-right:aysmmetric solution at {3 = -55. Lower-left:{J = 
-70. Lower-right:{J = -150. 

that single vortices are thermodynamically more probable states. 

Following the solutions from an axisymmetric state through the bifurcation point 

onto the asymmetric branch we would expect to see an axisymmetric vortex layer 

gradually breaking up and finally reaching a single-vortex state. This transition is 

clearly shown in Figure 5.5 with contour plots of the vorticity distributions for C = 1. 

The final maximum energy ({3 ~ oo) state will be a uniform vorticity patch with its 

shape strongly depending on the inner circulation C: as the circulation, and hence 

the positive background shear, increases, the shape becomes more elongated in the 

azimuthal direction and thinner in the radial dirction. This is similiar to the increase 
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of the aspect ratio of an elliptical vortex with increasing shear flow found in analytic 

solutions [54]. 

To quantify the asymmetric states we define the average azimuthal angle spanned 

by a single vortex, s, as 

for a distribution centered at e = 0. The difference s between 2n and s can then be 

treated as the order parameter of the transition and it is zero for a symmetric vortex 

layer. If the bifurcation is a forward pitchfork bifurcation, s will scale as the square 

root of E- Ebif, with Ebif the bifurcation energy. For C = 1, s plotted as a function 

of energy in Figure 5.6 clearly shows this scaling behavior. Actually if the bifurcation 

analysis is expanded to second order as described in Section 2.6, the scaling becomes 

apparent because s is proportional to w1 ( r) and E - Ebif to w1 ( r )2 and w2 ,0 ( r) as, 

~I w1(r)rdr 

2n I 'l/Jo(r)w2,o(r)rdr +~I 'lj;1 (r)w1 (r)rdr. 

The results calculated from the above equations are shown as the solid lines in 

Figure 5.6. For C = 1 the solid line agrees perfectly with the single-vortex states (the 

crosses) at smalls and the agreement remains quite good even when s approaches n. 

The positive value of E- Ebif found in the bifurcation analysis for C = 1 indicates a 

forward pitchfork bifurcation. However as C is lowered, E- Ebif becomes negative at 

a particular C, signaling a backward pitchfork bifurcation. Particular examples are 

shown in Figure 5.6 for C equal to -0.249 and -0.27. In these situations the traces 

from the bifurcation calculated at second-order point to the left, and single-vortex 

states also extend all the way below the bifurcation energy. Presumably the solid 

line should turn over at a certain energy and connect back to the asymmetric branch. 

However because we calculate the solutions using a fixed energy scheme, this missing 

portion of unstable solutions will not be found, since the iteration procedure always 
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solid lines are the prediction from the second-order bifurcation analysis. The dashed 
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favors the stable solution at the same energy. 

Thus we find that there exists a particular value of C above which there is a 

continuous transition from a symmetric vortex layer to a single coherent vortex. Below 

this value the transition will be discontinuous. For Q = 2 and M = 4, this value of 

C is about -0.2. Actually the discontinuous transition can still exist even without 

a bifurcation point present for the symmetric solutions, as shown in Figure 5.6 for 

C = -0.3. We estimate the discontinuous transition energy as the minimum energy 

where single-vortex solutions can be found, i.e., the leftmost point in Figure 5.6 for 
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C = -0.3. This energy is plotted as the dot-dashed line in Figure 5.2 for different 

values of C. 

As C is further decreased, eventually a point will be reached where a coherent 

single vortex is no longer a thermodynamically more probable state than a symmetric 

solution. What happens is that the asymmetric branch falls below the symmetric 

branch in the entropy-energy graph. One way to quickly estimate the point is to 

compare the maximum energy of these two states, shown as the dashed and dotted 

lines in Figure 5.2. They cross at the point marked as P in Figure 5.2 at about 

C = -0.55. Below it a single vortex will yield a smaller entropy compared with the 

symmetric state at the same energy. In other words the mean field theory predicts 

the formation of coherent single vortices for a ratio between background shear and 

vorticity larger than a negative value which is about -0.5 in this particular case. 

This result is consistent with the numerical simulations done by Marcus [11]. In 

the simulations a background velocity distribution, e.g., ve = (3r 2 I3+C lr, is assumed 

unchanged with the extra vorticity evolving on top of it. (His C is equal to our -C. 

The (3 term corresponds to a gradient in the Coriolis force which we have not included, 

although this could easily be done by adding to the Hamiltonian an external potential 

- (3r 3 .) The background velocity acts as a shear on the evolving vorticity. One of the 

main results of the simulations is that for a range of background shear a single vortex 

is stable for (a) I (w) greater than a critical value ranging from -0.1 to -0.2, with (w) 

the average vorticity of the vortex and (a) the average value of shear at the vortex. 

This result holds for different values of C and (3, including the case (3 = 0. We believe 

that our calculations explain the basic mechanism of this simulation result. The 

difference between our numerical value of (a) I (w) ~ -0.5 and the simulation result 

is likely to be due to the different conditions used in the calculation and simulation. 

As a final result we calculate the single-vortex solution with total vorticity, angular 

momentum, and background shear very similiar to the simulation shown in Figure 8 

in Marcus' paper [11], where a final coherent vortex is formed from an initial vortex 

layer. The vorticity contour plot shown in Figure 5.7 is in a good agreement with the 

final state of the simulation. 
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Figure 5.7: Vorticity contour plot for Q = 3.14, M = 19.67, C = 0.875, and j3 = 
-12.8. Contour levels are equally spaced. 



65 

Chapter 6 Dynamical Relaxation 

6.1 Overview 

In this chapter we use numerical simulations of the Euler equations to study the 

dynamical relaxation of a two-dimensional ideal fluid. The motivation is to check the 

validity of the ergodic assumption for the two-dimensional ideal flow in some well­

controlled dynamical examples and to draw some general conclusions. We wish to 

study the following questions: 1 )how does an initial vorticity distribution reach the 

final steady state? 2)what final states are reached and how do they compare with 

the statistical equilibria? In particular the vorticity mixing during the dynamics, 

which is needed for the ergodicity assumption to be valid, is closely monitored. Two 

recent experiments on the electron plasma [28] and fluid flow [23] have been carried 

out to study the final relaxation states. In the plasma experiment a hollow initial 

distribution is observed not to decay to a statistical equilibrium but to a state close 

to one having a minimum enstropy, defined as J w2dr . The fluid experiment studies 

the final states from initial vortex arrays consisting of different numbers of vortices, 

and both states similar and different to thermal equilibria are observed. Here using 

numerical simulations we can precisely control the initial conditions and observe the 

dynamics very carefully, something that cannot be easily done in experiments. By 

carefully studying a few examples, we hope to shed some light on the general principle 

of the dynamics and the question of vorticity mixing in two-dimensional ideal fluids. 

Particular examples investigated in this chapter are different instabilities and the 

subsequent relaxation of a vortex ring. 

It is well-known that a fluid shear layer may be susceptible to the Kelvin-Helmholtz 

instability and the instability will lead to vortex formation. For a vortex ring in a 

disk the unstable modes depend on the ratio between the ring radius and thickness. 

A larger ratio results a higher marginal mode number between unstable and stable 
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modes. By adding different m mode perturbations, we can study the dynamics and 

final equilibria of the vortex ring with different instability modes and hence different 

dynamical paths. Because the perturbations are small, the initial states are virtually 

identical and a unique thermal equilibrium is predicted from statistical mechanics. 

The final steady states and the "degree" of vorticity mixing during the dynamics 

resulting from the different dynamical paths can then be studied and compared to 

the thermal equilibrium. 

The mean field equations describe a relation between the vorticity field w(r) and 

the stream function 1/J ( r), or the corotating stream function 1/J ( r) + r2r2 in a rotational 

symmetric system, for an ergodic flow, i.e., the vorticity being completely mixing and 

exploring all the possible states. For this reason this relation provides a precise test 

of the "degree" of mixing leading to a final steady state. Furthermore this relation 

can tell us how much mixing happens in different spatial regions. If in a region the 

vorticity experiences strong mixing, we expect w(r) and 1/J(r) + r2r2 to follow the 

mean field relation in this particular region although the whole vorticity distribution 

may not be a mean field state. In practice, every grid point in the system will yield 

a point in the plot of 1/J ( r) + r2r2 versus w ( r). In a steady state all the points will 

fall on a smooth curve and the curve can be compared with the mean field solution 

calculated from the same initial condition. More interesting and useful is that if the 

initial distribution is close enough to uniform such that the two-level initial vorticity 

is a good approximation, the mean field relation becomes 

ln[q/w(r)- 1] = ,8['1/J(r) + r2r 2
] - fJJ.L , 

i.e., ln[q/w(r) -1] is a linear function of 1/J(r) +r2r2
. For a steady state tracing a curve 

on the ln[q/w(r) - 1] versus 1/J(r) + r2r2 plot, a linear segment will indicate a region 

with strong vorticity mixing. Actually this is even better than the direct comparison 

with the mean field solution because the presence of weakly-mixing regions will surely 

keep the parameters (e.g., ,Band J.L) of the strongly-mixing region different from the 

global mean field solution. 
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One last note is how to find D which is needed to plot the curve and in principle 

is only known from the mean field solution. Fortunately we can use the physical 

correspondence between 2D and the rotational frequency of a distribution that is not 

exactly axisymmetric. This usually applies to a final steady state where either a 

small displacement from the disk center or an elliptical distortion could be present. 

A calculation of the vortex position or orientation quickly yields D. 

6.2 Relaxation of the m==2 Instability 

As discussed in the previous section, we induce different m mode instabilities in 

a vortex ring by adding different perturbations. Snapshots of the dynamics with an 

m = 2 instability are shown in Figure 6.1. At first them= 2 perturbation grows and 

leads to formation of two large vortices accompanied by two small ones. The large 

vortices quickly start a merging process by converging to the center and expelling 

filaments outside. The small vortices also converge and eventually are absorbed by 

the large ones during the merging. As the core regions of the large vortices move to 

the center they becomes adjacent to each other, separated only by a thin stretching 

region with low vorticity. The completion of the merger is signified by the vanishing 

of this thin stretching region and the formation of a single core. One conclusion 

immediately implied by this picture is that there is not much mixing happening for 

the vorticity in the core regions of the large vortices, while at the same time the small 

vortices are strongly mixed with the outer portions of the large vortices by being 

totally stretched into filaments during the absorption. 

A long stretch of thin filament from each vortex extends to the outside region when 

the four vortices converge to the center. This filament formation may be considered 

as required by the conservation of angular momentum. With signs of secondary 

instability (see Figure 6.1 at t = 100), these filaments dissolve into a diffuse halo. 

Initially the halo is scattered with many vorticity holes which will gradually disappear 

on a time scale larger than the secondary instability time scale. Interestingly the holes 

possess some characteristics of coherent vortices, e.g., the merging of two holes is 
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Figure 6.1: (a) t = 0 (b) t = 65 

Figure 6.1: (c) t = 100 (d) t = 200 
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Figure 6.1: (e) t = 300 (f) t = 400 

Figure 6.1: (g) t = 500 (h) t = 600 
Dynamical relaxation of a vortex ring in a disk with the m = 2 instability. Voticity 
level is 0 to 1 from black to white. 
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observed. The evolution of this halo is also strongly influenced by the shear produced 

by the center vortex. 

To compare with the mean field theory and study the vorticity mixing, we plot 

1/J(r) + S1r2 versus w(r) in Figure 6.2, with n from the symmetric mean field solution. 

At t = 300 there is still a fairly large scattering of these points but with a converging 

trend. At t = 500 all the points already fall very close to a single curve except 

those points with a very low vorticity representing the small outmost filaments. After 

this time the curve basically remains the same except for the gradual decrease of 

the maximum vorticity and the further convergence to a single smooth curve. The 

slow decrease of the maximum vorticity comes from the small viscosity term in the 

simulation. 

For times larger than 500 the vorticity between about 0.1 and 0.3 forms a nice 

straight line in Figure 6.2, indicating a complete mixing region. Examining the dy­

namical pictures in Figure 6.1, we find that this range of vorticity comes mostly from 

the filaments expelled by the converging vortices. The secondary instability of the 

filaments starts the mixing, and we believe the shear applied by the center vortex 

induces a strong mixing in this region. The gradual disappearance of the initially 

abundant vorticity holes, in which the effect of the shear is easily seen, is another ev­

idence for the strong mixing process. Compared with the mean field solution, which 

assumes a total global mixing, plotted as the solid line, this straight segment is shifted 

slightly. This shift is expected in light of the large nonmixing vortex core at the cen­

ter. However this does demonstrate that complete vorticity mixing can happen in a 

real flow and will yield the mean field relation, even if in only part of the system. 

The vorticity between 0.3 and 0.7 deviates from a straight line but still stays near 

the solid line. Dynamically vorticity here comes mostly from the outer parts of the 

two large vortices. They also blend with some vorticity from the two small vortices 

when the two cores merge into a single one. Some mixing happens during the process 

but the curve in Figure 6.2 shows that the mixing is not strong enough to reach 

the mean field relation. Finally the core region with vorticity higher than 0.7 lies 

completely away from a straight line and the mean field solution, and is essentially 
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Figure 6.2 : '1/J (r) + Dr2 versus ln[q/w(r) - 1] plots for the m = 2 instability at four 
different times. The solid line is the calculated symmetric mean fie ld solution. Note 
that the numbers on x axis are the vorticity levels. 

nonmixing. This confirms our previous prediction about the nonmixing nature of the 

core region merger. 

In summary, the m = 2 instability first induces the formation of two large and 

two small vortices. These vortices quickly undergo a merging process in which the 

cores of the two large vortices do not mix with the low vorticity, and the vorticity 

at the outer part of the vortices experiences some degree of mixing. Also filaments 

extending to the outside region from the vortices during the merging eventually form 

a low vorticity halo around the center vortex. The shear effect of the center vortex 

induces complete mixing in the halo and the vorticity follows closely the mean field 
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relation. 

6.3 Relaxation of the m==3 Instability 

For the particular vortex ring discussed in the previous section, the unstable modes 

are m = 2, 3, and 4. When the m = 3 instability is induced to grow, three vortices 

quickly form. The dynamical sequence is shown in Figure 6.3. After their formation 

the three vortices immediately start converging to the center while expelling vortex 

filaments to the outside, similar to them = 2 instability. However, instead of merging 

into a single vortex, the three vortices converge near the center forming a ring-like 

structure with a deep vorticity hole in the center. In the process of forming this 

structure, there is strong vorticity mixing going on, as is evident from the quick 

decrease of both the maximum vorticity and the area with high vorticity from t = 100 

tot= 400. 

In the meantime the filaments also quickly decay to a diffusive halo similar to the 

case of m = 2. However there are two or three major vorticity holes embedded in the 

halo. The number depends on the shape of the inner ring-like structure: three holes 

with a triangular shape earlier and two with an elliptical shape later. This formation 

of holes is understood from the distribution of the corotating stream function which 

exactly gives minimum regions at the positions of the holes. This is similar to the 

simulation of an ellipse done by Melander et al. [55] 

Around t = 400 the vorticity distribution becomes an ellipse with a hole at its 

center and a low vorticity halo following the corotating stream function which has 

two minimum regions on the opposite sides of the ellipse. The dynamics after this 

point is the gradual outward drifting of the center hole. The drifting has a very slow 

time scale and the depth of the hole also gradually decreases. This motion of the hole 

still induces mixing as signalled by the further decrease of the maximum vorticity. It 

takes until very late, about t = 1300, for the hole to disappear at a vorticity level of 

about 0.6 and the vorticity distribution reaches a steady elliptical shape. 

Again the mixing behavior of the dynamics will be seen more clearly in Figure 6.4 
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Figure 6.3: (a) t = 0 (b) t = 30 

Figure 6.3: (c) t = 100 (d) t = 200 



74 

Figure 6.3: (e) t = 400 (f) t = 800 

Figure 6.3: (g) t = 1200 (f) t = 1500 
Dynamical relaxation of a vortex ring in a disk with the m = 3 instability. Voticity 
level is 0 to 1 from black to white. 
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as a plot between the corotating stream function and the vorticity field. At t = 200 

the points are scattered over a large area indicating a still evolving state, but the 

upper horizontal branch representing the center vortex hole is already there. At 

t = 400 the dynamical snapshot in Figure 6.3 shows that the vorticity has relaxed 

to an overall smooth distribution with a center hole . The corresponding graph in 

Figure 6.4 reflects this situation with the points staying reasonably close to a single 

curve except for some regions of small vorticity. More significant is that the portion 

with vorticity between 0.2 to 0.8 (excluding the hole) lies close to a straight line. 

A close examination of Figure 6.3 reveals that this portion corresponds to the ring­

like structure formed from the converging of the three original vortices. As noted in 

the previous paragraph, the dynamical images (not included in Figure 6.3) indicates 

strong mixing happening during this process. Again this demonstrates that a strong 

mixing between the vorticity leads to the mean field relation. 

The center hole starts the slow outward drift at about t = 400 and vanishes at 

about t = 1300 at a location with a vorticity level 0.6. The plots for t = 800 and 

t = 1000 in Figure 6.4 show that the region with vorticity larger than 0.5 is being 

stirred around by the hole. The gradual decrease in the depth of the hole during 

the drifting, we believe, is an indication that the hole is mixing with the surrounding 

vorticity. The vanishing of the hole at the location with vorticity level 0.6 suggests 

that a mixing process involving the hole and vorticity larger than 0.6 is completed. 

As shown in the t = 1500 graph in Figure 6.4, this mixing achieves a straight line, i.e., 

statistical equilibrium, in this inner region. The complete curve in the graph is now 

mainly composed of two straight segments. The system consists of two separated 

regions following their own mean field relations and they come from two distinct 

mixing processes at different times during the dynamical relaxation. 

Comparing the final states of the m = 2 and m = 3 instability, we see that 

two different states are reached by an initial condition via different dynamical paths, 

a symmetric circular vortex and an elliptical vortex. Although they are both not 

the completely mixing statistical equilibra, the vorticity mixing and the mean field 

relation do play important roles in their final states. 
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6.4 Higher Mode Instability 

For the m = 4 perturbation, four vortices form from the initial instability. They 

also quickly converge to the center and start the vortex merging. In most aspects the 

dynamics is very similar to that of the m = 2 instability with two exceptions. First, 

since the four vortices are all about the same size, the merging is a more complicated 

four-vortex process instead of the mostly two-vortex merging in the m = 2 case. 

Nevertheless the key nonmixing property remains the same, namely that only the 

vorticity from outer parts of the vortices takes part in the mixing and the core regions 

remain unmixed, resulting in a nonmixing core in the final state. Second the final 

state is not a circular vortex but an elliptical vortex similar to the final state of 

the m = 3 case, but as mentioned with a significant nonmixing core. The relation 

between the vorticity field and corotating stream function for the final state is plotted 

in Figure 6.5a. It has a larger strong mixing region following the mean field relation 

than them = 2 instability (Figure 6.2) does. This is reasonable due to the four-vortex 

merging. The curved upper portion indicates again the nonmixing center core. 

We have also done an m = 5 simulation for a thinner vortex ring because the 

vortex ring in Figure 6.1 is stable against a m = 5 perturbation. First five vortices 

are formed. However in this case they are smaller and further apart, and initially 

they do not converge to the center. Instead, after a short period of time, two-vortex 

mergings between adjacent vortices begin, although the other vortices still have some 

influence. Filaments are also produced during the merging processes. In the end an 

elliptical vortex similar to the state in them = 4 case is formed and Figure 6.5b again 

shows a nonmixing core and a strong mixing middle ground. 

6.5 Conclusion 

In this chapter we have studied the dynamical relaxation of a vortex ring to final 

steady states through different dynamical paths. The m = 2 to 5 cases of instability 

we studied all lack the total mixing ( ergodici ty) assumed in the statistical theory and 
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do not reach a unique final state. However these dynamics also show that for each 

case strong vorticity mixing does happen in particular regions and at particular times. 

Whenever this is true, the vorticity and stream function follow the relation predicted 

by statistical mechanics. The most interesting example is them = 3 instability where 

two mixing processes at different times and locations lead to two thermal equilibrium 

regions. We believe this demonstrates that the concept of thermal equilibrium for the 

turbulent mixing is valid and this is the most important conclusion from this chapter. 

A complete understanding of ergodicity and the implication for real physical systems 

remains to be answered by future work. 
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Chapter 7 Summary and Conclusion 

We have studied in this thesis the coherent vortex states in two-dimensional ideal 

fluids using the statistical theory respecting all the infinite conservation laws of the 

flow and dynamic numerical simulations. The biggest question in the statistical the­

ory is of ergodicity, i.e., whether the flow will explore all the phase space consistent 

with the conservation laws which results from complete flow mixing. Our general 

conclusion concerning ergodicity from our numerical simulations and the comparison 

between our statistical calculations and dynamical observations of past experiments 

and simulations is the following: Mixing processes during the dynamics have strong 

effects on the final steady states. Mixing may not be complete as required for ergod­

icity, but it can happen in particular regions or time periods, or even in some special 

flow modes. When strong mixing does occur, the flow structure follows very closely 

to the prediction of statistical mechanics. 

Specifically, we have calculated the single-vortex solutions in a disk and studied 

the interesting bifurcation behavior between the symmetric and off-center vortices. 

Good agreement is found between the off-center vortices and the observed equilibrium 

states in an electron plasma experiment. Two-vortex mean field solutions are next 

calculated. By the comparison between the statistical calculations and experimental 

data, we are able to separate the mixing and nonmixing flow modes. We can then use 

the mixing mode to predict a merging critical separation which is in a good agreement 

with many simulation and experimental data. The experimental observations of two­

vortex states in a large system also prompt us to propose "vorticity localization" which 

states that in special configurations the flow is confined in some small domains , and 

ergodicity and thermal equilibirum are reached locally. Vorticity localization is then 

used to explain the recent experimentally observed regular multiple-vortex patterns. 

We also use the mean field solutions to study the coherent vortex formation in an 

annulus under the influence of a background shear. The results are consistent with the 
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numerical simulation modeling the stable vortices in planetary atmospheres. Finally 

numerical simulations are used to investigate the different dynamical relaxations of 

a vortex ring. By carefully studying the dynamics and final states, we are able to 

demonstrate the relation between flow mixing and the statisical theory, and their 

implications for the final flow structure. 
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