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Stumble and learn; 

Compare and learn; 

Live and learn. 

------ Inspired by three Chinese proverbs. 
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ABSTRACT 

The nicotinic acetylcholine receptor (AChR) is a complex protein, which 

functions as a ligand-gated ion channel on the postsynaptic membrane at the 

ne~romuscular junction and mediates signal transmission from neuron to muscle. 

Research on the AChR has had a long history and has benefited from the 

endeavors of scientists from many disciplines. The intensive, multidisciplinary 

studies have yielded valuable knowledge about this molecule, which serves as a 

model for the understanding of many fundamental questions in biological 

sciences. Chapter l presents a review of the AChR. 

As a tissue-specific and developmental stage-specific molecule, AChR is 

under temporal and spatial control for its synthesis. Chapter 2 reports a 

qualitative and quantitative study of AChR gene activity during muscle cell 

differentiation, using a cDNA clone isolated from a murine muscle cell line, which 

codes for the y subunit of the mouse AChR. The results indicate that the 

regulation of mRNA accumulation levels is a major mechanism in the differential 

synthesis of the AChR. 

The marriage between AChR and molecular biology resulted in many cDNA 

clones which, after being introduced to African frogs, produced the next 

generation---- Xenopus oocytes with exotic AChRs on them. Chapter 3 describes 

the attempt to localize "determinants" that specify species subunit identity in the 

AChR by constructing chimeric cDNA clones composed of fragments from 

different origins, taking advantage of the Xenopus oocyte expression system. The 

results from surface toxin-binding assay and two-electrode voltage-clamp 

recording suggested that while the species specificity can be dictated by certain 

subunits, the determination of subunit identity does not reside at a defined locus 

in the fragments tested. 
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Does the complex composition of multisubunits in the AChR bear any 

functional significance? Chapter 4 addresses this question through the study of 

mouse-Torpedo AChR hybrids. The complete substitution of AChR subunits 

between mouse and Torpedo receptors generated all 16 combinations, and a 

systematic analysis of these hybrids revealed an interesting pattern with respect 

to the voltage sensitivity in the ACh-induced response: The identity of the B 

subunit determines, while the interaction between the B and o subunits modulates, 

the AChR voltage sensitivity. The results, therefore, suggest that different 

subunits of AChR may play a central role in different functional properties. 

Patch-clamp technique has offered an opportunity for analyzing 

transmembrane current flow with the high resolution of single-channel recording. 

Chapter 5 describes such a study on homologous and hybrid AChRs. Voltage 

influence on the three parameters were evaluated, and the results indicate that 

the single channel conductance is independent of membrane potential and that the 

channel closing and opening rates together constitute the basis for the voltage 

sensitivity in whole-cell recording with the closing rate making the major 

contribution. Also investigated were the subunit roles in species specificity of 

channel-open duration and voltage dependence. The results are in agreement with 

those reported on channel duration and support the conclusions of our previous 

work on the subunit involvement in determining the voltage sensitivity of the 

AChR response. 
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INTRODUCTION 

As I am writing down these very words, the pen in my hand is moved across 

the paper at my will, via the exquisitely coordinated movements of the skeletal 

muscles on my hand and arm. The muscle movements, in turn, are controlled by 

the motor neurons, and central to the signal delivery from neuron to muscle is the 

chemical synaptic transmission process ---- the interaction of acetylcholine (ACh) 

and its receptor (AChR). Upon binding of ACh released from the nerve terminal, 

the AChR acts as a pore to allow a transient ion flow across the cell membrane, 

which gives rise to muscle contraction. Such is the mechanism for nerve-muscle 

communication in me, a (-) typical human being, and it is also the mechanism in 

other vertebrates. 

The study of the AChR has gone a long way. At present, the AChR is the 

most thoroughly studied membrane receptor involved in cell-cell communication 

(reviewed by Fambrough, 1979; Karlin, 1980; Conti-Tronconi and Raftery, 1982; 

Anderson, 1983; Popot and Changeux, 1984; Stroud and Finer-Moore, 1985; 

McCarthy et al., 1986). This intensive research on the AChR is due to four 

factors. 

The first and foremost is the attractiveness of the AChR as a model system 

for many fundamental questions in biology: gene structure and evolution, 

regulation of gene activity during animal development, coordination of the 

synthesis of complex protein components, protein modification during and after 

polypeptide translation, multisubunit protein assembly, membrane protein 

transport and localization, metabolic modulation of protein lifetime in the 

membrane, cell-cell signaling via transmitter-receptor interaction, biophysical 

properties of the membrane channel such as ion selectivity and channel 

conductivity, and the structural basis for these properties. 
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The second factor is the rich sources of the AChR in the electric organs of 

certain fish, Torpedo califomica and Torpedo marmorato (marine elesmobranch 

fish) and Electrophorus electricus (fresh-water electric eel). The AChR protein 

can be readily extracted for biochemical study and protein sequencing, which 

provided crucial information leading to the eventual isolation of the AChR genes 

and their transcription products. 

The third factor for the prosperity in the AChR study is the existence of 

neurotoxins obtained from the venom of poisonous snakes, for example, the elapid 

Bungarus multicinctus. These toxins bind to the AChR with high specificity, and 

can be used for assaying receptor distribution, for affinity purification of the 

AChR, and for the quantitation of the receptor molecules. 

The fourth factor that has contributed to the understanding of the AChR is 

the high receptor density at the endplate of the neuromuscular junction in many 

amphibian and mammalian muscles. Historically, in fact, this was the prime 

reason that attracted intensive investigations of the AChR physiological 

properties since the study by Fatt and Katz (1951). Because of the accessibility of 

muscles, the high density made possible detailed electrophysiological studies of 

AChR. 

In the following sections, a review is presented of the major properties of 

the AChR. 
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STRUCTURE 

Biochemical characterization 

Molecular characterization of the AChR was initiated by receptor 

purification through biochemical fractionation of the electric tissues from a 

variety of fish (reviewed by Heidmann and Changeux, 1978). Gram quantities of 

AChR protein could be so obtained in high purity (specific activity greater than 4µ 

moles a-bungarotoxin sites/gram protein, Claudio and Raftery, 1977; Sobel et al., 

1977). This purification made possible the detailed biochemical 

characterization. SDS-polyacrylamide gel electrophoresis of the pur ified receptor 

showed that it consisted of four components, a, s, y, and 8 subunits, with 

estimated molecular weights of 40, 50, 60, and 65 kd, respectively (Claudio and 

Raftery, 1977). Reynolds and Karlin (i 978) and Lindstrom et al. ( 1979) deduced 

the subunit stoichiometry as a 2Syc, and this was verified by quantitative 

sequencing of the affinity-purified AChR protein (Raftery et al., 1980). The 

AChR pentamer is often copurified with a protein fraction of 43kd molecular 

weight (sometimes called " proteins), which can be dissociated from the AChR at 

high pH (Neubig et al., 1979). These 43kd proteins may be involved in AChR­

cytoskeleton anchoring rather than being an active component of the receptor, 

since oocyte-expressed AChRs were functional without them (Mishina et al., 1984; 

White et al., 1985). 

Molecular cloning 

Our understanding of the primary structures of the AChR polypeptides has 

been greatly advanced in the past few years by the cloning of genomic and cDNA 

sequences coding for the AChR subunits from various species. The initial isolation 

of complete or partial subunit-coding cDNAs were from Torpedo calif omica. Two 
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approaches were employed either by oligonucleotide hybridization based on the 

partial amino acid sequence data (Noda et al., 1982, l 983a, b) or by differential 

hybridization with electric organ RNA (Ballivet et al., 1982; Claudio et al., 1983; 

Hershey et al., 1983). Using these sequences as hybridization probes, many more 

AChR clones were isolated from a variety of species (tabulated by Stroud and 

Finer-Moore, 1985; and Kubo et al., 1985; Takai et al., 1985; Boulter et al., 1985, 

1986; Isenberg et al., 1986; Buonanno et al., 1986; Beeson et al., 1986; Hermans­

Borgmeyer et al., 1986; Yu et al., 1986, and this thesis). A comparison of the 

sequences unveiled an interesting pattern: While all the AChR subunits share some 

homology with one another, a given subunit more resembles its equivalent from 

another species than a different subunit of the same species (Stroud and Finer­

Moore, 1985). This suggests that the heterologous composition of the AChR 

evolved prior to the divergence of these species and that the subunit identities 

have been preserved through evolutionary history, presumably because they carry 

distinct functional roles (Conti-Tronconi et al., 1982). This view is supported by 

the finding from subunit substitution studies that the homologous from different 

species could replace each other to give highly functional receptors, whereas 

different subunits from the same species could not (White et al., 1985; Sakmann 

et al., 1985). 

Structural features 

The structure of the AChR complex has been extensively studied by a 

variety of methods, including electron microscopy, small angle X-ray diffraction, 

neutron scattering, circular dichroism, r.esonance Raman spectroscopy, 

immunoelectronmicroscopy, chemical modification, and proteolytic cleavage 

analysis (reviewed by Stroud and Finer-Moore, 1985; McCarthy et al., 1986). The 

overall picture generated from these studies is that the subunits are aligned next 
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to each other in the plasma membrane to form a funnel-shaped cylinder, with the 

long axis of the receptor perpendicular to the plane of the membrane. This 

"funnel" has a quasi-fivefold symmetry and protrudes from the lipid bilayer on 

both sides of the membrane. The inside wall of the subunits forms a central hole, 

which presumably constitutes the ion channel. The arrangement of the individual 

subunits in the receptor is still an unsettled question; what is known is that the 

two a subunits are separated by one other subunit, which is not o (Holtzman et al., 

1982), leaving two possible ways of arrangement---- ayaBo (Wise et al., 1981) or 

aBayo (Kistler et al., 1982; Zingsheim et al., 1982). 

It has been established that the a subunits carry the binding sites for 

agonists and antagonists, although the precise locations within the subunit are not 

identified (reviewed by Heidmann and Changeux, 1978). Normal opening of the ion 

channel requires the binding of at least two agonists, since at low concentrations 

the magnitude of the transmembrane current varies with the square of the agonist 

concentration (Lester et al., 1975; Adams, 1975; Dionne et al., 1978; Neubig and 

Cohen, 1980; Sheridan and Lester, 1982). It has been suggested, however, that the 

binding of a single ligand molecule may induce brief openings of the channel 

(Colquhoun and Sakmann, 1981). 

The ion channel of the AChR is highly asymmetric with respect to the 

cytoplasmic-extracellular orientation. The funnel-shaped channel has a 40A 

diameter opening toward the extracellular matrix and it narrows down to about 7A 

in diameter at the membrane surface level (Klymkowsky and Stroud, 1979). The 

transmembrane section of the channel is likely to have the same diameter of 7 A, 

as suggested by quantitative densitometry measurements of negatively stained 

electron micrographs (Kistler et al., 1982) and electrophysiological determination 

of conductivity with variously sized organic molecules (Furukawa and Furukawa, 

1959; Maeno et al., 1977; Huang et al., 1978; Dwyer et al., 1980). The asymmetry 
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of the ion channel is also reflected by the asymmetry of ligand binding: While the 

application of agonist or antagonist from the extracellular side can activate or 

inactivate the AChR, the presence of intracellular agonist/antagonist does not 

seem to have an effect (Del Castillo and Katz, 1955; personal observation on· 

inside-out patches). 

Models for AChR topology 

Several models have been proposed for the polypeptide orientation in the 

native plasma membrane and for the subunit involvement in the ion channel gating 

(Finer-Moore and Stroud, 1984; Guy, 1984; Criado et al., 1985; Hucho et al., 

1986). These models all agree that the N-termini of the AChR subunits are 

located extracellularly and the C-termini intracellularly with the polypeptide 

chain tranversing the plasma membrane at least five times, but they di ff er from 

one another with respect to the assignments of the transmembrane segments and 

of the functional amino acid residues participating in the ion channel. Studies 

aimed at testing the validity of these models have been carried out (reviewed by 

Mayne, 1986), using immunochemical techniques (Lindstrom et al., 1984; Young 

et al., 1985; Ratnam et al., 1986) and site-specific mutagenesis (Mishina et al., 

1985). The data available so far, however, are not sufficient for choosing a 

particular model over the others. 
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PHYSIOLOGICAL PROPERTIES 

The physiological properties of the AChR are well documented, largely by 

the electrophysiological studies of the receptor in its native muscle cell 

membrane, in reconstituted artificial lipid bilayer membranes, and in the plasma 

membrane of the Xenopus oocytes injected with AChR mRNAs. 

Early electrophysiological studies 

Early studies on the endplate at the neuromuscular junction established 

that the effect of acetylcholine binding to its receptor is to change the electrical 

potential across the cell membrane by allowing certain ions to flow down their 

electrochemical gradients, presumably through a pore in the receptor (Fatt and 

Katz, 1951). The associated voltage change across the postsynaptic membrane at 

the neuromuscular junction serves to trigger muscle contraction. The ionic basis 

for the current is a conductance increase to small cations Na+ and K+ (Takeuchi 

and Takeuchi, 1960) and Ca++ (Jenkinson and Nicholls, 1961). When compared to 

nerve action potentials that also result from a conductance increase to Na+ and 

K+ (Hodgkin and Huxley, 1952), synaptic potentials show a similar relaxation time 

course of a few milliseconds but a very different profile for their generation and 

propagation: They are graded; i. e., the summation is additive, rather than the all­

or-none generation pattern of action potentials; and they propagate passively 

along the muscle fibers with a space constant of a few millimeters rather than the 

regenerative action potentials that can rapidly and actively propagate over long 

distances without attenuation (see Kuffler et al., 1984; Kandel and Schwartz, 

1985). These features of the ACh-induced synaptic potential render it attractive 

for quantitative studies. 
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Kinetic modeling 

Based on the analysis of the voltage and temperature dependence of the 

ACh-induced currents at the frog neuromuscular junction by voltage-clamping the 

endplate, a kinetic model was proposed to account for the AChR activation 

(Magleby and Stevens, l 972a, b): 

(l) 

where T is transmitter and R is its receptor, T n-R is the complex with the channel 

* closed, and Tn-R represents the channel in the open state. k1 and k2 are the rate 

constants for agonist binding and dissociation, and B and a are the rate constants 

for channel opening and closing. The declining phase of the observed ACh-induced 

currents with an exponential time course could be explained by the first-order 

kinetics predicted in the model, suggesting a simultaneous activation of many 

channels with variable duration. This view was supported by later high-resolution 

electrophysiological measurements (reviewed by Auerbach and Sachs, l 984a). 

Because the synaptic potential is the summed effect of individual AChR 

channel openings, an understanding of individual channel activity was needed. The 

technique of noise analysis was introduced (Katz and Miledi, 1970) to distinguish 

the conductance of individual receptors from the mean duration of channel 

opening, so as to obtain a quantitative estimate of these parameters (Anderson 

and Stevens, 1973). The results from noise analysis indicated that the single 

channel conductance was relatively constant, but the mean channel duration 

varied with membrane potential and temperature. Because these values were 

inf erred from macroscopic measurements and the actual shape of the single 
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channel response was not known, two mutually exclusive models were proposed. 

One envisioned an exponential time course for the single channel current similar 

to that of the macroscopic current (Katz and Miledi, 1972) and the other assumed 

a simple square pulse (Anderson and Stevens, 1973). 

High resolution measurements by patch clamp recording 

A breakthrough was brought about by the advent of the high- resolution 

patch clamp recording technique (Neher and Sakmann, l 976b; Hamill et al., 

1981). A great advantage of single channel recording is that the current traces of 

individual molecules, and thus the kinetic characteristics such as open time and 

conductance, can be visualized from the data rather than inferred as in noise 

analysis of macroscopic data. 

The first single channel recordings from the AChR in denervated frog 

skeletal muscle (Neher and Sakmann, l 976b) immediately settled the dispute over 

the shape of the elementary current: It was more like a rectangular pulse, rather 

than the exponential decay proposed by Katz and Miledi (1972), with a fast 

transition from the closed to the open state and vice versa, and a flat plateau 

while open. In noise analysis of the macroscopic current, the calculated channel 

conductance was an averaged value. It did not tell us whether the single channel 

conductance was composed of a continuous spectrum of values or of discrete 

states. In single channel recording where the current trace can be seen, the 

channel conductance can be unambiguously determined by dividing the measured 

magnitude of the single channel currents with the corresponding membrane 

voltage. The analysis of the initial single channel data (Neher and Sakmann, 

l 976b) showed that the channel had only a single conductance value, indicating a 

single open conductance. Later studies revealed that there could be more than 

one channel conductance (Hamill and Sakmann, 1981; Trautman, 1982; Auerbach 
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and Sachs, l 984b; Leonard et al., 1984; Leonard, 1985; Auerbach and Lingle, 

1986). Because these studies were carried out with embryonic muscle cells where 

the existence of different types of AChR channels have been documented in later 

studies (Mishina et al., 1986), it is not clear whether or not a single AChR channel 

can adopt more than one open state. 

Single channel kinetics 

Open time is another parameter for characterizing single channel 

kinetics. In the simple activation model for the AChR proposed by Magleby and 

Stevens ( l 972a, b), the open time of AChR channels is a one-step random process 

and follows an exponential distribution according to the mass law of chemical 

reaction. Then, the mean channel open duration can be defined as the average 

amount of time channels remain open after entering the open state and should be 

the reciprocal of the channel closing rate constant a (see Equation 1). Early 

analysis of single channel data (Neher and Sakmann, l 976b) showed that the open 

times of single channels did follow the expected exponential distribution and had 

values similar to the ones predicted from noise analysis of macroscopic data 

(Neher and Sakmann, l 976a). Later studies revealed that the distribution of AChR 

open duration times actually had two exponential components, a slow one 

representing the majority of events and a very brief one ten times or more shorter 

(Colquhoun and Sakmann, 1981). The nature of the brief component is not clear at 

present. The initial suggestion that it corresponds to the open channels with a 

single agonist bound instead of the usual two (Colquhoun and Sakmann, 1981) 

predicts that the short openings should become less frequent with increasing 

agonist concentrations. While some studies supported this hypothesis (Takeda and 

Trautmann, 1984; Colquhoun and Sakmann, 1985), others contradicted it (Sine and 

Steinbach, 1984, l 986a). 
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The time between successive channel openings is another parameter to be 

considered for the AChR channel kinetics. The closed time distribution in single 

channel records typically displays at least two exponential. components (Horn and 

Lange, 1983; Sine and Steinbach, l 986a, b). The major component with the long 

time constant corresponds to the AChR with no agonist bound, whereas the brief 

component(s) seem to reflect the closed configurations of the agonist-receptor 

complex. Sine and Steinbach ( l 986b) reported the existence of two types of brief 

closures in addition to the long one and suggested that one type represents the 

AChR reopening from the closed state because its kinetic properties are agonist­

dependent and that the other type of brief closure reflects an additional closed 

state, leading away from the pathway producing the open state because its 

kinetics are the same regardless of the type of agonist used. 

Channel blockade 

The ion channel of AChR can be blocked by its agonists as well as its 

antagonists, and the blockade can be viewed as another closed state. The blockers 

include agonists ACh, carbamylcholine (CCh), and suberyldicholine (SubCh), 

antagonist d-tubocurarine, and charged and uncharged local anesthetics (Sine and 

Steinbach, 1984; Colquhoun et al., 1979; Neher and Steinbach, 1978; Ogden et al., 

1981). The kinetics of channel blockade vary widely. For example, the blocked 

time by tubocurarine is very long, while that by SubCh or QX-222 is short enough 

to appear as a brief interruption in the single channel current. For ACh and CCh, 

the blockade is too short to be resolved, resulting in a decreased amplitude and an 

increased open channel noise as the agonist concentration goes up. The modeling 

of blockade kinetics is becoming complicated. Early models for channel blockade 

postulate an ordered sequence with blocked state(s) leading away from the open 

channel state. A prediction from such a model is that the total time spent in the 
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open state is independent of the blocker concentration, since a blocked channel 

can only lose a ligand by passing through the open state. · A study using QX-222 

showed that at concentrations of QX-222>201-1M, the total time spent in the open 

state went down (Neher, 1983). This implies that a channel can enter directly 

from the blocked state to some nonconducting, nonligand-bound state. The 

mechanism of blockade is also unclear. It has been suggested that the blockers 

exert their effects by competing for the same binding sites in the channel that 

ions interact with (Horn and Patlak, 1980). The channel blockers may also 

physically plug up the passage to the ions (Neher and Steinbach, 1978). 

Desensitization 

The phenomenon of desensitization (Katz and Thesleff, 1957) represents yet 

another closed state that the AChR can enter (Sakmann et al., 1980), with the 

rate of desensitization dependent on the agonist concentration (Nastuk and 

Parsons, 1970). In fact, multiple rates of desensitization have been observed, 

suggesting that the phenomenon may involve more than one state (Adams, 1981). 

Desensitization is not caused by direct blockage of the ion channel by the agonist 

(Sakmann et al., 1980) and may involve binding sites for agonist distinct from the 

ones for the channel activation by the agonist. Many compounds can enhance 

desensitization (Peper et al., 1982) and the recovery rates seem to be compound­

independent, suggesting that the AChR undergoes a slow isomerization process to 

the normal resting state after the dissociation of the compound (Magazanik and 

Vyskocil, 1973). These compounds include amine local anesthetics, nonionic 

detergents, aliphatic alcohols, the psychoactive tranquilizer phencyclidine, the 

antipsychotic chlorpromazine, and histrionicotoxin form the poison-dart frog of 

South America (Spivak and Albuquerque, 1982). These compounds can modulate 

(block) the agonist-induced AChR current but do not bind at the ACh site; 
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therefore, they are called noncompetitive blockers. It is unlikely that these 

diverse compounds all act upon the same site(s) on the AChR, but it is clear that 

they all enhance desensitization by stabilizing the AChR in one or more 

desensitized states (Heidmann and Changeux, 1979; Boyd and Cohen, l 984). 

Although the physiological and clinical significance is apparent, the molecular 

mechanism for this drug-enhanced desensitization is not known. An interesting 

piece of information regarding desensitization is that phosphorylation of the y and 

6 subunits by a cAMP-dependent protein kinase can increase the rate of 

desensitization (Huganir et al., 1986). 

Attempts have been made to identify the local anesthetic binding sites on 

the AChR using photolabeling techniques (Lester et al., l 980; Oswald and 

Changeux, 1981; Lester et al., 1985; Hucho et al., 1986) and alkalating derivatives 

(Kaldany and Karlin, l 983). These studies labeled various sites on different 

subunits a, s, and o, and suggest that distinct binding sites may exist for different 

noncompetitive blockers. 
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REGULATION OF AChR BIOGENESIS 

As a molecule with well-defined physiological functions, the AChR is under 

spatial and temporal control for its biogenesis (Fambrough, 1979; Pumplin and 

Fambrough, 1982; Merlie, 1984). For a complex membrane protein, the control 

can be exerted at any one or several of the steps leading to the ultimate 

appearance of functional receptor on the membrane: transcription of the AChR 

genes, maturation and stability of the mRNAs, translation of these mRNAs, co­

and post-translational modifications of the polypeptide chains, protein insertion 

into the membrane, assembly of the protein complex, and maintenance/degra­

dation of functional receptors. Although our understanding of this whole series of 

processes is far from complete, the available information seems to indicate that 

regulatory mechanisms for the AChR biogenesis do exist in most, if not all, of 

these processes. 

Transcriptional regulation 

One criterion for myogenesis at the molecular level is the appearance of 

muscle-specific proteins, including acetylcholine receptors (Merlie et al., 1977). 

Early studies indicated that the large amounts of AChR molecules appearing on 

the muscle cell surface are synthesized de novo (Merlie et al., 197 5; Devreotes et 

al., 1977), just like other plasma membrane proteins appearing at the onset of 

muscle differentiation (Prives and Patterson, 1974; Merlie and Gros, 1976). 

Recent studies using the cDNA clones coding for the AChR subunits have shown 

that the regulation of AChR gene expression plays a major role in the drastic 

increase of AChR synthesis during myogenesis (Yu et al., 1986, and this thesis; 

Buonanno and Merlie, 1986). Upon induction of differentiation in cultured murine 

muscle cells, the mRNA levels for the a,y, and 6 subunits increased 30- to 50-
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fold, accounting for l 0- to 100-fold increase of the surface AChRs as measured by 

the a-BTX binding assay (Inestrosa et al., 1983). It has also been reported that the 

DNA sequence 5' to the transcription initiation site of the AChR a subunit gene 

from chicken, when analyzed in CAT constructions (chloramphenicol acety l 

transferase), provides tissue and developmental specificity of the AChR (Klarsfeld 

et al., 1987). 

The AChR subunits are synthesized and inserted into the membrane as 

individual polypeptide chains before the assembly of the protein complex 

(Anderson and Blobel, 1981). Is there a coordination for their synthesis? It seems 

that the mRNA level for the a subunit does not change significantly after muscle 

cell differentiation from a surprisingly high basal level before differentiation 

(Olson et al., 1983). There is also a suggestion that the B subunit may have a 

similar pattern of overproduction to that of the a subunit (Merlie, 1984). It has 

been reported that the genes for the a and B subunits are located on different 

chromosomes in the mouse genome, while the genes for the y and a subunits 

belong to the same linkage group (Heidmann et al., 1986). In fact, the y and a 

genes have been found to be in close proximity in all the species examined, 

including chicken (Nef et al., 1984), human (Shibahara et al., 1985), mouse 

(Crowder and Mer lie, 1986), and rat (N. D. Hershey, personal communication). It 

has been suggested that the two genes are coregulated for their activities during 

development, based on the differentiation-specific pattern of DNaseI-hypersen­

sitive sites surrounding the two genes (Crowder and Merlie, 1986). More direct 

and detailed studies need to be performed in order to have a better understanding 

of the coregulation process (or the lack of it) for the subunit genes. 
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Post-transcriptional modulation 

Although it is known that the changes can occur in the lifetimes of the 

primary transcription products (nRNAs) and in the efficiency of the maturation 

process (defined as the nRNA/mRNA ratio of a particular gene (Davidson, 1986)), 

there is no direct evidence as to whether and to what extent these post­

transcriptional steps are regulated for the AChR genes. It has been reported that 

the AChR mRNAs are more abundant in synaptic regions of differentiated skeletal 

muscle fibers, even when the muscle nuclei (hence the AChR genes) are quite 

evenly distributed along the entire length of the muscle fibers (Merlie and Sanes, 

1985). An increased stability of AChR messages near synapses is one of the 

possible mechanisms suggested for this phenomenon. 

Translational regulation and cotranslational modification 

The translation of the four AChR subunits is carried out independently on 

membrane-bound polysomes concurrently with cotranslational insertion into the 

membrane (Anderson and Blobel, 1981). These polysomes loaded with AChR 

mRNAs are anchored on membranes of the rough endoplasmic reticulum (rough 

ER), and the signal recognition particle (SRP) is required for the recognition, 

complete translation, and membrane-insertion of the nascent polypeptide chain as 

well as the subsequent removal of the N-terminal signal peptide (Anderson et al., 

1982). Also occurring cotranslationally is the glycosylation of all four subunits 

(Anderson and Blobel, 1981 ). 

Post-translational modification and receptor assembly 

Another type of covalent modification is phosphorylation by protein kinases 

(Levitan, 1985). The nascent polypeptide chains undergo a process of 

conformational maturation in the first 30 min after their synthesis, acquiring the 
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ability to bind a-BTX and antibodies specific for the native conformations of the 

AChR a subunit (Merlie and Lindstrom, 1983). The 8 subunit is also subjected to 

such a conformational maturation process (Merlie, 1984). 

The assembly of functional AChR is another possible step for differential 

regulation. While actively growing myogenic cells do not possess cell surface 

AChRs, growth-arrested cells undergo differentiation and exhibit a 100-fold 

increase of surface receptors (Olson et al., 1984). This dramatic increase of 

surface receptors does not seem to be the result of an overall increase in AChR 

synthesis: Only a 4-fold increase is observed in the a subunit mRNA abundance 

accompanied by an even less noticeable change in the rate of a subunit synthesis. 

The authors suggested that the assembly rate might be regulated in this case. 

Receptor localization during synapse formation 

During development, the distribution of AChRs on a muscle cell surface 

undergoes a profound change (reviewed by Fambrough, 1979; Froehner, 1986). In 

uninnervated embryonic muscles, the newly synthesized and assembled AChRs are 

transported from the Golgi apparatus to the cell s1:.1rface by a system of coated 

vesicles (Bursztajn and Fischbach, 1984) and inserted into the plasma membrane 

uniformly. But soon after a cholinergic growth cone makes contact with a muscle 

cell, AChRs start to accumulate at the contact site to form a synapse (Anderson 

et al., 1977; Frank and Fischbach, 1979; Chow and Cohen, 1983). 

The synapse formation has a high degree of specificity: While spinal cord 

motoneurons readily trigger AChR accumulation, spinal cord interneurons do not 

elicit the process (Role et al., 1985). The AChR clustering is contributed in large 

part by new receptor synthesis and to a minor extent by redistribution of pre­

existing receptors (Anderson and Cohen, 1977; Ziskind-Conhaim et al., 1984; Role 

et al., 1985). Since myotubes are multinucleated, the new receptors can either be 
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preferentially synthesized (transcription/translation) near the synapse or 

selectively inserted at the postsynaptic region. The recent report that the 

mRNAs for a and o subunits are concentrated in the synaptic region of adult 

muscle fibers (Merlie and Sanes, 1985) indicates that at least the translation of 

receptor proteins is synapse-oriented. It is a tantalizing hypothesis that the 

mRNA accumulation near the synapse is the result of region-specific transcription 

of the AChR genes in the nuclei near the synapse. Merlie and Sanes (1985) 

observed that a group of nuclei, albeit a small percentage, are regularly found 

directly beneath the postsynaptic membrane. 

There is another interesting phenomenon along this line: AChR molecules 

aggregate to form small patches on the membrane of cultured myotubes, and this 

aggregation coincides with nuclear clustering (Bruner and Bursztajn, 1986; 

Englander and Rubin, 1987). During rat myotube development, the change in the 

size and number of the nuclear clusters parallel that of the AChR aggregates, 

suggesting a causal relationship (Bruner and Bursztajn, 1986). Moreover, when the 

AChR aggregates formed on chick and rat skeletal muscle cells by the treatment 

of an extracellular matrix factor from Torpedo electric organ, the nuclei that 

migrated underneath these aggregates became immobilized, while the nuclei away 

from the AChR aggregates could translocate freely throughout the myotube 

(Englander and Rubin, 1987). After the AChR patches dispersed, the trapped 

nuclei resumed moving. 

Denervation supersensitivity 

The phenomenon of denervation supersensitivity .(Axelsson and Thesleff, 

1959; Miledi, 1960) contrasts with that of the synaptic accumulation of AChRs 

during normal development. In adult skeletal muscle, the majority of the AChRs 

is located in the neuromuscular junction area. After denervation by either 
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crushing the nerve tract or blocking the nerve activity with toxin, AChRs appear 

over the entire muscle fiber surface (reviewed by Fambrough, 1979). This renders 

the muscle fiber superresponsive to ACh stimulation, hence the term denervation 

supersensi ti vi ty. 

Studies have shown that the increased AChRs are synthesized de novo 

rather than redistributed from the existing synaptic receptors (Grampp et al., 

1972; Brockes and Hall, 1975; Devreotes and Fambrough, 1976). The newly 

synthesized extrajunctional receptors are 5- to 50-fold more in number than the 

junctional ones, and they have a shorter half-life (24 hr compared to over a week 

for junctional ones). 

The effect of supersensitivity to ACh can be reversed or prevented in 

muscle either by chronic stimulation of the remaining nerve tract beyond the site 

of crushing or toxin blockade, or by direct electrical stimulation of the muscle 

(Lomo and Rosenthal, 1972). It has been demonstrated that the effect of this 

electrical stimulation is to reduce the rate of receptor synthesis with continued 

degradation at the normal rate (Reiness and Hall, 1977; Card, 1977; Linden and 

Fambrough, 1979). This effect on the synthesis rate is selective: Overall protein 

synthesis is not suppressed by the electrical stimulation, and the proteins 

synthesized in stimulated and unstimulated muscles seem to exhibit identical 

patterns on two-dimensional gel (Reiness and Hall, 1977; Smith and Appel, 1977). 

Regulation of receptor degradation 

One important step in the metabolic control of AChR is degradation. While 

extrajunctional receptors on embryonic muscles are short-lived 'w'(ith a half-life of 

24 hr, junctional receptors at the endplate region on adult muscles degrade at a 

much slower rate with a half life of 8-10 days (Salpeter and Loring, 1985). 

Denervation accelerates the degradation of junctional receptors (Loring and 
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Salpeter, 1980; Bevan and Steinbach, 1983), and this effect can be reversed by 

reinnervation (Salpeter et al., 1986). Using a myogenic cell line, which can be 

manipulated to switch between di.fferentiated and undifferentiated states, it has 

been shown that while differentiation induces a high level of surface AChRs, de­

differentiation causes a marked shortening of the surface receptor lifespan with a 

half-life of 8.6 hr (Olson et al., 1983). The degradation of AChR follows first­

order kinetics and is carried out via proteolysis in lysosomes containing 

internalized receptors (Kaplan and Blau, 1986). 

CONCLUDING REMARKS 

The studies of AChRs have provided insightful results that are pertinent to 

many areas of scientific interests. Already, AChR has been a leading model in 

biological fields as diverse as genetic regulation in development and 

differentiation, molecular basis for cell-cell communication, physiological 

mechanism of transmembrane signaling, and relationship between protein 

structure and function, to list a few. Moreover, the endeavors on AChR have 

directly and indirectly resulted in several major advancements in research 

technology, including the single channel recording technique and the functional 

analysis of membrane ion channels using cloned cDNAs and the in vivo expression 

systems. But more importantly, the studies on AChR have forced investigators 

with different trainings to interact with each other and learn from each other, 

asking questions in the process, which often provide brand-new perspectives at the 

seemingly old problems. It is these kinds of new ideas that forms the foundation 

upon which mankind builds his pyramid of science and technology. 
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ABSTRACT 
Clones coding for the mouse nicotrnic acety lcholine receptor (AChR) y subunit 

precursor have been selected from a cDNA library derived from a mouse myogenic cell 
line and sequenced. The deduced protein sequence consists of a signal peptide of 22 
amino acid residues and a mature y subunit of 497 am ino acid residues. There is a high 
degree of sequence conservation between this mouse sequence and published human and 
calf AChR y subunits and, after allowing for funct ional amino acid substitutions, also to 
the more distantl y related chicken and Torpedo AChR y subun i ts. The degree of 
sequence conservation is especially high in the four putative hydrophobic membrane 
spanning regions, supporting the ass ignment of these domains. RNA blot hybridization 
showed that the mR NA level of the y subunit increases by 30 fold or more upon 
differentiation of the two mouse myogenic cell lines, BC3H-l and c 2c 12, suggesting 
that the primary controls for changes in gene expression during differentiation are at 
the level of transcription. One cD NA clone was found to correspond to a partially 
processed nuclear transcr ipt containing two as yet unspliced intervening sequences. 

INTRODUCTION 

The nicotinic acetylcholine receptor (AChR) on the postsynaptic membrane is an 

integral membrane protein complex composed of four subunits, Cl, s, y, and o. It 

functions as an agonist gated ion channe l in the Torpedo electric organ and at the 

neuromuscular junction of striated muscle in other vertebrates. At present AChR is the 

best studied and most fully characterized ion channel. Related receptors are also 

present in the nervous system. The receptor is very abundant in the electr ic organ of 

the electric ray Torpedo and it has been extensively characterized at the biochemical, 

functional, and sequence levels 0-3). The amino acid sequences of the four Torpedo 

AChR subunits have been deduced from the nucleotide sequences of full-length cDNA 

clones (4-9). In vertebrate striated muscle and various muscle-like cell systems in 

culture, nicotinic AChR molecules are present in lower overall abundances. Vertebrate 

systems are of greater interest than Torpedo for most electrophysiological studies and 

for cell biological studies of assembly (10). The subunits of the vertebrate AChR are 

similar in general properties to those of Torpedo, but they are clearly somewhat 

divergent at the amino acid sequence level (l J). The mouse myogenic cell line BC3H-I 

(12) is one of the more abundant sources of mammalian AChRs and their mRNAs. Our 
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laboratory and others have described the isolation of cDNAs for several of the mouse 

AChR subunits from this source (13-15). 

!n particular, our laboratory has previously reported on the preparation of a cDNA 

library from membrane bound polysomal poly(A)+ RNA of induced BC3H-l cells (l4). 

When this cDNA library was screened by low stringency hybridization with a Torpedo 

AChR y chain probe, two groups of non-overlapping clones were isolated. A full 

sequence determination ( 14) and expression studies in Xenopus oocytes ( 16) Jed to the 

surprising conclusion that one of these groups of clones, selected by hybridization with 

a Torpedo y probe, actually coded for a 6 subunit. !n the present paper, we report the 

sequence determination of the clones from the other group and show that this group 

does in fact code for the mouse AChR y subunit. Also reported here are some features 

of y subunit gene expression at the mRNA level. 

MATERIALS AND METHODS 

Chemicals and Reagents 

Restriction endonucleases and other enzymes including T4 DNA ligase, Kienow 

fragment of E. coli DNA polymerase, SP6 and T7 RNA polymerases, exonuclease [[] and 

~I nuclease were purchased from Bethesda Research Laboratories, Boehringer 

Mannheim Biochemicals, New England Biolabs, Promega Biotec, and Sigma. 

Cloning of Mouse AChR y cDNA and DNA Sequence Determination 

A cDNA library was prepared in the vector \gt I 0 using membrane-associated 

polysomal polyadenylated RNA from differentiated BC3H-l cells and screened with a 

Torpedo AChR y cDNA probe as previously described ( 14). The screening v.as carried 

out at 42°C for 48 hours in the hybridization solution containing 33% (v/v) formamide, 

0.9M NaCl, 50mM sodium phosphate, 5mM EDTA, pH 7.4, 0.1% Fico!!, 0.1% 

polyvinylpyrolidone, 0.1 % bovine serum albumin, 0.1 % sarcosine, 0.1 mg/ml denatured 

salmon sperm DNA, and 2µg/ml each of poly(rA), poly(rC), and poly(rG). Filters were 

washed in 30mM NaCl, 3mM sodium citrate, and 0.05% sarcosine at 50°C. c:DNA 

inserts from plaques that gave positive signals were separated from the >-gtlO arms by 

EcoRI restriction digestion and recloned either into the plasmid vector pUC 19 (17) for 

restriction mapping, or ·into an M 13 vector ( 18) for exonuclease [[] deletion (19) and 

subsequent sequence determination, or into the expression vector p!BI76 (international 

Biotechnology Inc.) for SP6 and/or T7 in vitro transcription. 

For transformation of JM109 cells (17) with Ml3 RF DNA, Hanahan's protocol (20) 

was used with the following transformation buffer: 30mM NaAc, 30mM CaC12, lOOmM 

KC!, 70mM MnC1 2, adjusted to pH5.6 with O.lM acetic acid, and filter sterilized. 

For sequence determination, full length cDNA clones or ExoIII-generated deletion 

clones were analyzed by the method of dideoxy nucleotide chain termination (21) with a 

few modifications (22). 
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Cell Culture 

Cells were grown and fed every other day iri DME (Dulbecco modif ied Eagle 

med ium) supplemented with 2096 fetal calf serum and Pen-Strep (100 un its penicillin 

G/ml and JOO mcg streptomysin/ml) for BC3H-l cells and 2096 fetal calf serum and 

0.596 chick embryo extract for c 2c 12 cells. They were plated at a density of 2-2.5x 104 

cells/ml and propagated in a humidified 37°C incubator with 596 C02/95% air. Cells 

reached 40-6096 confluence 2 days after plating and were harvested as undifferent iated 

cells. To induce dif ferentiation, BC3H-I cells were grown to confluence without 

feeding and harvested 6 days after plating. Similarly, c 2c 12 cells were grown to 

confluence (4 days after plating), switched to DME med ium supplemented with 2% horse 

serum, fed with this medium ever y da y, and harvested 7 days after plating. 

Generation of 32P-labeled RNA Probes by in vitro Transcription 

Double-stranded plasmid DNA bearing the desired insert was linear ized wi th 

appropriate restriction enz ymes, extracted with phenol-chloroform, precipitated with 

ethanol, and used as template in in vitro transcription. For SP6 or T7 transcript ion, 

0.5ug of linear DNA was suspended in 20 ul transcr iption solut ion (40mM Tr is, pH7.9, 

6mM MgCl 2, 2mM spermidine, IOmM OTT, 0.5mM each of ATP, GTP and l!TP, IOOu Ci 

[32P-a)CTP with a specific activity of 41 OCi/mM, and 20 units of RNasin). 0.5 ul of SP6 

or T7 RNA polymerase was added, and the reaction carried out at 37°C ior 60 

minutes. I 01Jl of I mg/ml yeast tRNA and I 1Jl of I mg/ml RNase-free DNase was added, 

and the mixture incubated at 37°C for another 15 minutes. The mixture was then 

passed over a Sephadex G-50-80 column to remove the unincorporated nucleot ide 

precursors. The radioactive RNA solution from the column was used in hybridization 

without further treatment. 

RNA Purification, Fractionation, Blott ing, and Hybridizat ion· 

Cultured cells were lysed by 6M guanidine solution (6M guanidine-HCI, 0.2M 

NaAc, O.lM s-mercaptoethanol, pH4.6). The lysate was homogenized manually in a 

glass homogenizer to reduce viscosity, and the RNA precipitated with 0.5 volumes of 

pure ethanol. The pellet was dissolved in 7 .5M guanidine solution (7 .5M guanidine-HCl, 

25mM sodium citrate, 50mM s-mercaptoethanol, pH6.4), and the RNA precipitated with 

0.025 volumes of lM acetic acid and 0.5 volumes of pure ethanol. This pellet was 

dissolved in 0.196 SOS solution and extracted twice with equal volume of phenol­

chloroform and twice with chloroform; the aqueous solution was transferred to a glass 

tube containing 0.1 volumes of 3M NaAc (pH4.8) and 2.5 volumes of pure ethanol; and 

the RNA was precipitated. The RNA pellet was dissolved in 0.0596 SOS solution and 

precipitated again with 0.1 volumes of 3M NaAc and 2.5 volumes of pure ethanol. 

Finally the RNA was resuspended in 0.0596 SOS solution and stored at -80°C. 

For gel blots, RNA was fractionated on a glyoxal gel (23), blotted to Hybond-N 
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membrane (Amersham) in 20XSSC (3M NaCl, 0.3M Na-citrate) by capillary action for 18 

hours, and crosslinked to the membrane by irradiation with a standard UY 

transilluminator for 5 minutes. 

RNA blots were prehybridized for 4 hours at 60°C in hybridization solution (0.1 M 

Na 2HP04/NaH 2Po4, pH6.5, 5XSSC, 2.5X Denhardts, 50% formamide, 0.1 % SOS, 

J.25mM EDTA, 0.1 mg/ml denatured calf thymus DNA, 0.1 mg/ml yeast tRNA), 32P­

labeled RNA probe was added to 106cpm/ml, and the hybridization was carried out at 

60°C for 16 hours. The blots were washed at 65°C three times in 2XSSC, 0.1 %SOS and 

three times in 0.2XSSC, 0.1 %SOS, wrapped in plastic sheets, and exposed to X-ray films 

(Kodak XAR-5). 

RES UL TS AND DISCUSSION 

The Mouse cDNA Clones 

As previously reported ( 14), a cDNA library was constructed in the vector •gt I 0 

using membrane-bound polysomal polyadenylated RNA prepared from differentiated 

BC3H-1 cells, a relatively rich source of AChR. By screening the library at low 

stringency with a full length cDNA clone for the AChR y subunit of the electric ray 

Torpedo califomica, two groups of non-overlapping clones were isolated. Surprisingly, 

one group .of clones, selected with the Torpedo y probe, turned out to code for the 

mouse 6 subunit, even though there was no detectable hybridization in screening the 

library with a Torpedo 6 probe (14). In the work reported here, we have studied the 

other group of clones selected by hybridization with the Torpedo y probe. Restriction 

endonuclease mapping analysis of these inserts revealed that they formed a group of 

(Eco RI l Hind m Eco R1l 

I I I 

IOObp 
~ 

Pst I 

I 
Ava I Bgl I (Eco RI l 

I I I 

Figure I. Restriction map of clone Ml69 and the exonuclease lll-generated deletion 
clones. The restriction map of clone Ml69 is shown on top. The EcoRl sites flanking the 
clone were added during the cDNA library construction. The exonuclease Ill-generated 
deletion clones are aligned below and the regions sequenced are indicated by the arrowed 
bars. 
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overlapping clones (data not shown). 

Nucleotide Sequence Determination and Ass ignment of the Protein Sequence 

One of the longest cDNA clones, Ml69, was selected for sequence anal ysis. The 

insert was recloned into the EcoRI site of the Ml3mpl8 vector and transformed into the 

E.coli host JMI09. Clones containing the insert in both orientations were selected and 

treated with exonuclease III to generate controlled deletions ( 19). The restriction map 

of clone Ml69 is shown in Figure 1 and the Exolll-generated deletion clones for 

sequencing are aligned below it. Sequence analysis was carried out by the dideoxy 
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Figure 2. Nucleotide and deduced amino acid sequence of the mouse AChR y subun it 
precursor. Nucleotide no. I indicates the first nucleotide of the initiation codon in the 
protein coding region, and the nucleotides 5' to the initiation codon are indicated by 
negative numbers. The sequence shown is followed on its 3' side by a stretch of adenosine 
residues (not shown). The putative polyadenylation signal sequence AAT AAA is 
underlined. The deduced amino acid sequence is displayed above the corresponding 
nucleotide sequence with standard one-letter amino acid code. Amino acid no. 1 is assigned 
to the first amino acid residue of the mature y subunit and marked with a *. The am ino 
acid residues in the signal peptide are indicated by negative numbers. The four hydrophobic 
membrane-spanning regions are marked as M l-M4. The potential sites· for asparagine N­
glycosylat ion are indicated by vertical arrows. 
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nucleotide . chain termination method (see Materials and Methods). 

The complete nucleotide sequence of clone Ml69 is shown in Figure 2. It has an 

open reading frame of 1,557 bases flanked by 11 bases on the 5' side and 148 bases on 

the 3' side. The 3' untranslated region is followed by a stretch of adenosine residues 

(not shown in Figure 2), presumably copied from the mRNA polyadenosine tail during 

reverse transcription. Beginning 18 bases 5' to the polyadenosine stretch, there is a 

consensus polyadenylation signal AATAAA (24,25). Thus the insert appears to contain 

the complete 3' untranslated region of the mRNA. 

The open reading frame of clone Ml69 has a methionine codon ATG at the third 

codon position following an in-frame termination codon TGA (Figure 2). If this 

methionine codon is used as the initiation codon, the translated polypeptide chain would 

consist of 519 amino acid residues. When this putative polypeptide was compared wit h 

the published AChR y subunit sequences from other species, a high degree of homology 

was revealed (see below). On this basis, we assign the protein coded by c lone M 169 to 

be the mouse muscle AChR y subunit. Using the Xenopus oocyte assa y system ( 16), the 

RNA transcribed from clone Ml69 in an SP6 vector by in vitro transcr iption showed 

functional substitution for the Torpedo y subunit, thus confirming the assignment 

(unpublished results, K. M. Mayne, K. Yoshii, L. Yu, and N. Davidson). 

Structural Analysis of the Mouse Muscle AChR y Subunit 

The deduced amino acid sequence for the mouse muscle AChR y subunit is 

displayed above the corresponding nucleotide sequence in Figure 2. The first 22 amino 

acid residues have the characteristic features of a signal peptide common to 

membrane-associated and secretory proteins (26-28). These features are a st retch of 

highly hydrophobic amino acid residues followed by a hydrophilic residue (glutamine), 

and a residue with a short side chain located at the putative cleavage site (serine). 

Comparison with AChR y sequences from other species (see below) supports the 

interpretation that the arginine assigned as amino acid no. 1 in Figure 2 is indeed the 

first amino acid residue of the mature y subunit of the mouse AChR and that the 

oligopeptide preceding it is the signal peptide. This signal peptide is presumably 

involved in the translocation of the newly synthesized protein across the rough 

endoplasmic reticulum membrane. Based on the above assignment, the molecular 

weights of the precursor and the mature y subunit were calculated to be 58,752 and 

56,493, respectively. 

The mouse AChR y subunit has structural features common to all the AChR 

subunits from mouse and other species (2, 11,29). It has four highly hydrophobic 

segments characteristic of transmembrane domains. They are designated Ml-M4, and 

their amino acid positions are Ml, 219-245; M2, 252-270; M3, 286-307; and M4, 455-473 

(Figure 2). 
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The possible existence of a fifth membrane-spanning region, the amphipathic a­

helix domain (30,31), was examined . .A.s shown in Fig. 3, the region between amino acid 

residues no. 380 and no. 47 5 was analysed by plotting the amino acid residue numbers 

against their hydropathy index values (32). Positive values indicate hydrophobicity and 

negative ones hydrophilicity. The region between residues no. 41 l and no. 43 l shows a 

remarkable regularity of highly hydrophilic residues at the average distance of 3.5 

amino acid residues while the rest of this region is largely hydrophobic, a salient 

feature of a membrane-spanning amphipathic a-helix. The cytoplasmic and 

extracellular regions on both sides of the amphipathic domain are overall hydrophilic 

and the membrane-spanning region M4 is highly hydrophobic (Figure 3). The hydrophilic 

amino acid groups in the amphipathic domain are at positions 412, 416, 419, 423, 426, 

and 430 with an average hydropathy index value of -3.42. The rest of this region has an 

average hydropathy index value of 1.8 l, characteristic of a hydrophobic transmembrane 

region. Therefore, it seems probable that this region forms an amphipathic 

transmembrane segment with the hydrophilic side of the a-helix contributing to the 

charged lining proposed for the .A.ChR ion channel (30,31 ). 

Many proteins, including membrane proteins, enzymes, secretory proteins without 

enzymatic functions, and immunoglobulins, undergo post-translational modifications to 

become glycoproteins by the enzymatic addition of carbohydrate chains to L-asparagine 

residues in the polypeptide chain (33). .A.nalysis of many such modified proteins has 

revealed a consensus sequence asparagine-X-serine (threonine) where X can be an y 

amino acid residue with the possible exception of aspartic acid (33,34). This consensus 

sequence is a necessary, but not a sufficient, condition for carbohydrate chain 

addition. There are four such potential N-glycosylation sites in the mouse .A.ChR y 

sequence (Figure 2), at positions 30, 141, 306, and 354. If the y subunit has membrane 

domains as proposed, only Asn30 and Asn 141 will be exposed from the membrane and 

thus accessible for carbohydrate attachment (35). In this interpretation, Asn306 is in 

the membrane-spanning region M3 and Asn354 is on the cytoplasmic side of the 

membrane. 

Sequence Comparison of AChR y Subunit from Different Species 

cDNA and genomic clones coding for the y subunit of the nicotinic AChR have 

been isolated from a number of species. To study the relatedness of the AChR y 

subunit, the deduced amino acid sequence of the mouse AChR y subunit was compared 

with those of human (36), calf (37), chicken (38), and Torpedo (4,8). As shown in Figure 

4, the mouse sequence exhibits high degrees of homology with those of human and calf 

and somewhat lower degrees of homology with those of chicken and electric ray, 

indicating the close evolutionary relationship among mammals. 

We have also searched for regions where, in spite of amino acid sequence 
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Figure 4. Comparison of the amino acid sequences for the nicotinic AChR y subunit 
precursors of mouse, human, calf, chicken and electric ray Torpedo califomica. The protein 
sequences are aligned with respect to the first amino acid residues in the mature proteins 
(ma·rked by a *), and the amino acid residues in the signal peptides are given nega ti ve 
numbers. A dot indicates identity with the mouse sequence at that posit ion . Gaps inserted 
to allow ma xi mal homology are represented as dashes. The hydrophobic membrane-spann ing 
regions are marked M l-M4. 

divergence, functional features are conserved. For this purpose, amino acid 

substitutions by their functional equivalents were scored as homologous in the 

analysis. These functionall y equivalent groups are: acidic, D and E; basic, H, K, and R; 

non-polar, A, F, !, L, M, P, Q, V, and W; and polar, C, G, N, S, T, and Y. Homology by 

these criteria may identify regions of conserved structure, presumably important for 

the assembly and function of the AChR. lt is of course a mathematical necessity that 

the homology value between two sequences will be enhanced after the functiona l 

substitution. Nevertheless, the degree of sequence homology between the 

evolutionarily more distant sequences from this comparison is quite striking. As shown 

in Table 1, the 6796 overall homology between the actual sequences of mouse and 

chicken AChR y subunits is increased to 8396 and the 56% between mouse and Torpedo 

to 7796 a fter the functional group subst itution. A still more striking conservation was 

revealed when the membrane-spanning regions were analyzed. The homology values 

between the actual sequences are significantly higher for the transmembrane regions 

than those for the entire y subunits and, with allowance for functional substitution, 

these membrane segments all showed over 9096 homology with each other. Both the 

divergence and the conservation of transmembrane regions have been reported before 
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Homology 
over entire 
precursor 

Homology* 
for Ml-M4 

TABLE l 
Amino acid sequence homology of AChR y subunit 

between mouse and human, calf, chicken, and Torpedo 

Human Calf Chicken 

Actual sequence 90% 90% 67% 

After functional 93% 95% 83% 
substitution 

Actual sequence 95% 95% 80% 

After functional 97% 98% 97% 
substitution 

* The sum of MI, M2, M3, and M4 as aligned in Figure 4. 

Torpedo 

56% 

77% 

68% 

92% 

(39,40). When the protein sequences were compared for class I and class II antigens of 

the major histocompatibility complex, it was found that the transmembrane regions are 

, more divergent than the rest of the proteins for class I antigens (39) while they are 

more homologous for class II antigens (40). Since class I antigens are monomeric 

protein molecules and class II antigens are dimers, it may be considered that the high 

degree of homology for the class II antigen transmembrane domain is necessary for the 

interaction between the heavy and light chains to form a functional class II molecule 

and that there is no such evolutionary pressure for class I antigens. Our result also 

supprts this line of thinking and suggests that these putative membrane-spanning 

regions have been correctly identified and play an important role in the assembly and 

function of the AChR. The conservation of the membrane-spanning regions in AChR a 

subunits across species has been noticed before (15). 

A novel y-Jike subunit of AChR, the E subunit, has been identified from a cDNA 

sequence from calf muscle (41 ). When it was compared with the mouse y subunit, a 

homology of 5396 was obtained. Clearly the mouse y subunit is more homologous to the 

calf muscle y subunit (90% homology). 

The mouse AChR y subunit contains two cysteine residues at positions 128 and 142 

that are also conserved in the y subunit from other species (Figure 4) as well as in all 

the other known subunits ( 11 ). These cysteine residues may be involved in the 

formation of a disulfide bridge (4). 

Previously, our laboratory reported the isolation of a mouse cDNA clone by the 

hybridization to a Torpedo y subunit cDNA probe. Sequence analysis showed that the 

protein coded by this clone exhibits a slightly higher degree of homology with the 

Torpedo o subunit than with y and thus it was tentatively assigned as a mouse AChR o 
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Figure 5. Mouse AChR y subunit intervening sequences. Clone Ml60 is aligned with respect 
to the mature message clone Ml69 in the top panel. The open boxes represent protein 
coding regions, and the closed boxes in Ml69 indicate the 5' and 3' untranslated regions. 
The wavy lines in Ml60 represent intron sequences. The numbers at the coding region 
boundaries below Ml60 denote the amino acid positions as defined in Figure 2. DNA 
sequence of M 160 and the translation of exons are shown in the bottom panel. Nucleotide 
no. 1 corresponds to nucleotide no. 55 of the M 169 sequence in Figure 2. Amino ac id 
sequences of the protein coding sections are displayed above the DNA sequence and are 
numbered according to Figure 2. 

subunit cDNA (14). Subsequent functional analysis indicated that the RNA made from 

this clone could replace the RNA of the Torpedo 6 subunit to produce a highly 

functional AChR hybrid protein and that it could not substitute for the Torpedo y 

subunit RNA (16). The isolation of the mouse AChR y subunit cDNA has further 

confirmed our previous identification of the mouse AChR 6 subunit cDNA clone. When 

the mouse y and 6 subunits were compared, they showed overall homologies of 5&96 at 

the DNA sequence level and 5096 at the protein sequence level (data not shown). 
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Figure 6. Genomic DNA blot analysis. 
101Jg of BC3H-l DNA was digested either 
with EcoRI or BamHI, size fractionated 
by agarose gel electrophoresis, blotted, 
and hybridized with nick-translated full­
length Ml69 DNA. The sizes of the 
hybridizing bands are given in kilobases. 

Partially Processed RNA Molecules 

There are two clones that were selected from the original cDNA library by 

screening with the Torpedo y probe that showed homology with clone MJ69 over some 

portion but not over others. One of these clones, Ml60, was analyzed by sequence 

determination. The arguments presented below lead to the conclusions that the 

sections in Ml60 nonhomologous to Ml69 are intron sequences and that we have isolated 

a clone derived from a partially processed nuclear RNA. The published genomic 

sequences for the AChR y gene of human (36) and chicken (38) both have intrans 

disrupting a codon for glutamine at position 147 and disrupting a codon for glutamic 

acid at position 180. When the sequences of Ml60 and Ml69 were compared, it became 

obvious that Ml60 codes for part of the AChR y subunit with the codons for Gln 147 and 

Glu 180 interrupted by two non-coding sequences (Figure 5A). These sequences have 

nonsense codons in all three reading frames and are flanked by dinucleotides GT on the 

5' side and AG on the 3' side (Figure 5B), the two major characteristics of intervening 

sequences (42,43). Therefore, we conclude that these two non-coding sequences are 

indeed intron sequences. The human and chicken AChR y genes have a total of 11 

intrans interrupting their coding regions at identical positions. Because the two intrans 

in Ml60 are present at the same positions as in the human and chicken genes, it is 

reasonable to believe that the same overall exon-intron structure exists for the mouse 

3550 



52 

Nucleic Acids Research 

M U D U D U D u D 

5.3 kb 

3 .5kb ....... - · - 3.3kb 2.85 kb -
II • _,.2.1 kb 

- 1 .95 kb 

1.4 kb - --

Probed with Y Probed with 8 
Figure 7. RNA blot hybridization. 101Jg of total cellular RNA fro:f2 appropriate cells were 
fractionated in each lane, blotted, and hybridized with P-RNA probes. U, 
undifferentiated cells; D, differentiated cells. M, RNA markers made by in vitro SP6 
transcription of mouse y cDNA clone. Kb, kilobases. 

gene. However, the protein coding region in Ml60 between codon -4 and codon 147 is 

continuous, lacking the three introns that are present in both human and chicken genes 

(Figure 5). Therefore, we propose that clone Ml60 was der ived from a partially 

processed nuclear RNA molecule coding for the mouse AChR y subunit. Intron­

containing cDNA clones have been reported before for the calf AChR y subunit (37). 

The Gene Coding for the AChR y Subunit 

The AChR y subunit is encoded by a unique gene in the chicken genome (38) and 

perhaps also a single gene in the human genome (36). For calf and Torpedo y subunit, 

there is no available information regarding the gene number. To estimate the number 

of gene(s) coding for the mouse AChR y subunit, genomic DNA blot analysis was 

performed using the full-length Ml69 DNA as the hybridization probe. As shown in 

Figure 6, EcoRI and BamHI digested DNA each gives a single hybridizing fragment. 

This simple pattern of hybridization suggests that the mouse SChR y subunit is probably 

encoded by a single gene. 

y Gene Expression in Murine Myogenic Cell Lines 

The activity of the majority of eukaryotic genes is regulated both temporally and 
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spatially, making possible the various types of cells and · tissues necessary for a 

multicellular organism. One of the characteristics of mammalian skeletal muscle is the 

high abundance of AChR molecules on the cell surface. Using the mouse y subunit 

cDNA clones, we studied the y gene expression pattern in two mouse myogenic cell 

lines, BC3H-l (12) and c2c 12 (41). These cells grow and proliferate in rich medium 

under tissue culture condition. When proliferation is restricted by confluence and/or 

exposure to a less rich medium, the cells stop dividing and undergo differentia t ion, 

producing large amounts of muscle-specific proteins in the process (44,45). To study 

the AChR y gene expression during differentiation, total cellular RNA samples were 

isolated from undifferentiated and differentiated cells, fractionated by gel 

electrophoresis, transferred to nylon membranes, and hybridized with rad ioactively 

labeled RNA probes (see Materials and Methods). As shown in Figure 7, the y subun it 

probe hybridizes strongly to a 2 kb band. On a briefly exposed autoradiograph (not 

shown here), this band can be resolved into two RNA species with estimated molecular 

lengths of J.95kb and 2.lkb, respectively. These RNA species are present at low levels 

in undifferentiated cells and become relatively abundant when the cells differentiate. 

There is a 3.3kb RNA species that hybridizes to the y probe (Figure 7). This 

appears to be due to crosshybridization between the y probe and the message for the 

AChR o subunit, as indicated by the strong hybridization at the same position to the 

mouse o probe (14) in Figure 7. Theo probe also cross-hybridizes weakly with the two 

y messages. 

The absolute abundance of the y messages in total cellular RNA was estimated by 

comparison of the signal intensity on RNA blots between the band of a I .4kb RNA 

standard and the y mRNA bands (Figure 7). The standard was generated by Bgll 

restriction digestion of they cDNA sequence Ml69 subcloned into the expression vector 

p!BI76 and subsequent in vitro transcription with SP6 RNA polymerase (see Materials 

and Methods). The radioactive precursor [32P-a]CTP was used as a tracer ( l :3.5x 104 

dilution with non-radioactive CTP). The purit y of the transcription product was 

ascertained by running an aliquot of the RNA in a gel and exposing the gel to an X-ray 

film. The in vitro transcription efficiency was calculated and the RNA concentration 

derived. !Opg of this in vitro-generated y subunit RNA were mixed with other RNA 

size markers, subjected to gel electrophoresis· side-by-side with !Oug of total cellular 

RNA samples from undifferentiated and differentiated cells, blotted to nylon 

membranes, and hybridized to the antisense y probe (Figure 7). Thus, the J.4kb RNA 

serves not only as an RNA size marker, but also as a mass standard for the AChR y 

messages. The intensities of the RNA bands were measured by densitometry tracing, 

the area under each peak integrated by c;i graphic digitizer, and the values normalized to 

the standard. The results are shown in Table 2. The mRNA abundance for the AChR y 
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TABLE 2 
Quantitation of the mouse AChR y mRNA 

BC3H-l cells c2c 12 cells 

Source of RNA SP6 RNA 
Undifferen- Differen- Undifferen- Differen-

tiated tiated tiated tiated 

Quantity of RNA lOpg lOug IOug 10\Jg lOug 
-

Signal intensity 
(normalized 100% 49% 1380% 72% 3570% 
to SP6 RNA) -

Message ratio 1 : 28 I : 50 

Message abundance 0.49 13.8 0.72 35.7 
(pg/ug cellular RNA) 

subunit is very low before differentiation and is dramatically increased when the cells 

are differentiated, reaching I 3.8pg per Ilg total cellular RNA in BC3H-l and 35.7pg in 

c2c 12 cells. The induction ratio is approximately 28-foid for BC3H-l and 50-fold for 

c2c 12. This up-regulation of AChR y messages upon differentiation correlates well 

with the observation that the large amounts of AChR molecules appearing on the 

muscle surface during differentiation were synthesized de novo rather than being stored 

in the cytoplasm before differentiation (45-47) and suggests that the control of 

expression is mainly at the transcriptional level. 
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SUMMARY 

In this study, in vitro synthesized mRNA encoding mouse and Torpedo 

nicotinic acetylcholine receptor subunits was injected into Xenopus oocytes, 

followed by assays for assembly onto the oocyte surface (using a.-bungarotoxin 

binding) and for acetylcholine-induced conductances (using voltage clamp). We 

constructed hybrid acetylcholine receptors in Xenopus oocytes by injecting all 

eight possible combinations of four subunit-specific mRNAs in which a single 

subunit is derived from the other species. For each hybrid combination, there are 

detectable assembly and conductance. We also constructed cDNA clones that 

encode chimeric acetylcholine receptor subunits in which part of the y subunit 

from Torpedo was replaced by the homologous region of the o subunit from 

mouse. None of the chimeric subunits was able to replace the Torpedo y, mouse 

o, or Torpedo o subunit with regard to assembly or function. We therefore 

conclude that widely spaced (and unknown) parts of the protein chain are required 

for the intersubunit interactions that eventually lead to functional assembly of the 

receptor. 
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INTRODUCTION 

The nicotinic acetylcholine receptor (AChR) is a protein complex composed 

of four homologous transmembrane subunits in the stoichiometry a. 2syo. AChRs 

are very abundant in the electric organs of Torpedo where they have been 

characterized at the structural, biochemical, and sequence levels (reviewed in 

4,7,18,23). Considerable sequence homology is demonstrated by the cONA clones 

for many AChR subunits isolated recently for Torpedo, calf, human, mouse and 

chick (reviewed in 23). 

Xenopus oocytes are an efficient system for expressing AChRs from the 

Torpedo electric organ RNA ( 1,24). RN As, transcribed in vitro from subunit 

specific cONA clones by the phage SP6 transcription system, are mixed and 

injected into the oocyte cytoplasm where they are translated ( 13,25). The 

polypeptide products are processed and inserted into the oocyte membrane where 

they can be assayed electrophysiologically. Voltage-clamp studies show that the 

surface receptors resulting from injection of all four Torpedo inRNAs are AChRs 

by the criteria of ACh responsiveness with a Hill coefficient of 2.0, atropine 

insensitivity, and d-tubocurarine sensitivity (12,25). 

Previous studies have shown that injection of transcripts for all four 

Torpedo subunits are needed for effective expression of functional receptors 

(12,13,25). For the combination a.TSTyTwithout oT, the agonist-induced 

conductance is about 3% of that observed with all four; all other combinations of 

only three subunits gave no detectable conductance. When a mouse cONA for one 

subunit was cloned and sequenced in our laboratory (8) the translated amino acid 

sequence was found to have ca. 60% amino acid homology with or and 48% 

homology with Yr· This result obviously suggested but did not prove the subunit 

identity of the mouse clone. The definitive demonstration that it was in fact a 
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mouse iS subunit was the observation that injection into oocytes of its RNA 

transcript in a mixture with exp ST and YT gave a high yield of functional 

receptors whereas injection of a mixture with aT, ST and. iST gave a very small 

signal (25). 

We were thus confronted with the problem that, in spite of only 60% amino 

acid sequence homology, there was excellent functional homology of iS M with iST; 

and in spite of 48% amino acid sequence homology with Yp there was no 

functional homology. In the present study, we have asked whether it is possible to 

identify a particular segment of the y and iS sequences that define their functional 

subunit character, or whether this property is distributed over the entire chain. 

We have accordingly made several chimeric or fusion genes between the iS and y 

subunits. For example, a iSMyT construct contains an amino terminal segment of 

the iSM chain attached, at a homologous point, to the carboxy terminal fragment 

of the YT chain. The reciprocal chimera yTiSM would have the amino terminus of 

the y chain fused to the carboxy terminal segment of the iS chain with the same 

crossover point. By varying the position of the crossover point, chimeric chains 

were prepared with more or less of the amino terminal segment of one subunit and 

less or more, respectively, of carboxy terminal segment of the other subunit. 

In the course of this work, we have also studied the rules for the formation 

of functional hybrid receptor complexes, that is, complexes containing three 

subunits from one species (Torpedo or mouse) with the other from another species 

(mouse, Torpedo, or chicken). 
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MATERIALS AND METHODS 

Plasmids 

The mouse cell line BC3H-l y subunit was isolated in this laboratory (27) 

and transferred into pSP65 (11). The chick muscle a cDNA clone (2) was provided 

by Drs. J. Jackson and E. Barnard of Imperial College and MRC Molecular 

Neurobiology Unit and was subcloned into pSP64 (11). The mouse a and B subunits 

from BC3H-l cells were provided by J. P. Merlie of Washington University, St. 

Louis and recloned into pGEM l and pGEM2, respectively (Pro mega Biotec). 

Construction of cDNA chimera plasmids 

The chimeras that have been made are shown in Fig. l. The general 

principles of the construction procedures are explained in the first section of 

Results. In each case, two or more partially complementary synthetic 

oligonucleotides with appropriate protruding ends were used to ligate the 5' 

segment of one cDNA that had been cut at a suitable restriction site to the 3' 

segment of the other cDNA, also cut at a suitable enzyme site. 

The phosphorylated oligonucleotide pairs were heated to 50°C in 100 mM 

NaCl and allowed to cool to 40°C over l h. Other components and the two 

restricted cDNAs were added to give a final reaction containing 50 mM Tris 

(pH 7.6), 50 mM NaCl, 10 mM MgC12, 10 mM dithiothreitol, l mM spermidine, and 

l mM ATP in a total of 20 µl. The mixture was held at 40°C for 5 min before 

chilling to 15°C. 400 units of T4 DNA ligase (Boehringer Mannheim) were added 

and the reaction was incubated at 15°C overnight. Each ligation contained 

approximately l µg of vector DNA, 0.5-0.2 µg of each cDNA fragment, and l 0 ng 

of each oligonucleotide, each of which was previously gel-isolated. The ligations · 

were extracted with phenol and passed through a l ml spun column of Sephadex G-



62 

50 (9, 17). An aliquot was used to transform HB l 0 l competent cells (Bethesda 

Research Laboratories). Ampicillin-resistant transformants were replica-plated 

and screened with three 32P-labeled probes: each nick-translated cDNA fragment 

and one of the oligonucleotides. The structure of the selected clones was 

confirmed by DNA sequencing (10). 

The oligonucleotides (5' to 3') and restriction sites they spanned for each 

ligation are given below. In the ligation leading to chimera oM-yT-l (see Fig. l), 

oligonucleotides KM3, 5'gatcAACCTAGTCTTCTACCTGCCAGGCGACTGTGGG3', 

and its partial complement KM4, 

3'TTGGA TCAGAAGA TGGACGGTCCGCTGACACCCccg5' (lower-case letters 

indicate protruding single strand ends, upper-case letters indicate complementary 

parts of the oligonucleotides) span the gap between the Bell site in oM and the 

Sau96I site in oT. In yT-oM-2 the space between the Sau96I site in YT and the 

Nae! site in oM is spanned by four oligonucleotides: KM5, 

5~gcGAGAAGACCTCCGTGGCCATCTCAGTGCTCCTGGCCC3~KM6 

5'AATCTGTCTTCCTGCTGCTTATCTCCAAGAGGCTGCC3'; KM? 

3'CTCTTCTGGAGGCACCGGT AGAGTCACGAG5' and KM8, 

3'GACCGGGTTAGACAGAAGGACGACGAAT AGAGGTTCTCCGACGG5'. 

Oligonucleotides KM9, 5'cgCCTCACCACAGCCCGCAGGCCTCCAGCAAGCG3', 

and KMlO, 3'GGAGTGGTGTCGGGCGTCCGGAGGTCGTTCGCagct5', span the gap 

between the Nar I site of oM and the Sall site of YT in chimera oM-yT3. The 

aT-oT chimera was formed by a direct ligation event fusing the aT Bst NI site to 

the or cutting site for FokI. This results in a net six amino acid deletion in the 

subunit encoded by this clone. The oligonucleotides intended to span this gap were 

not correctly ligated in any transformants from multiple attempts. 
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In vitro transcription 

Plasmid DNAs were linearized by restriction endonuclease digestion at 

sites within the plasmid vectors. In order to prevent artifactual transcripts 

arising from initiation at the 3' protruding ends produced by AatII and Pvul, the 

protruding ends of the template DNA were removed by treatment with the Kienow 

fragment of DNA polymerase I (22). Templates were purified and transcribed 

essentially as described in White et al. (25), except that the SP6 polymerase was 

present at a concentration of 300 units/ml. These transcripts were capped at the 

5' end by including diguanosine triphosphate, a cap analogue, in the transcription 

reaction, as described by White et al. (25). The reaction was incubated at 37°C 

for 2 h, followed by a 10 min incubation with 2 units/ml RNase-free DNase. 

Unincorporated nucleotides were then removed by spun column ( 17). 

Preparation of oocytes, RN A injection, and electrophysiology 

To obtain oocytes free from adhering cell layers, excised ovarian tissue was 

incubated in ND-96 solution containing collagenase (type lA, Sigma) at 2 mg/ml 

for 3 hat room temperature. 

RNA was dissolved in distilled water at 1 mg/ml, and 50 nl was injected 

into the cytoplasm. The oocytes were incubated in ND-96 solution (96 mM NaCl, 

2 mM KCl, 1.8 mM CaC12, 1 mM MgC12, 5 mM HEPES/NaOH, pH 7 .6) 

supplemented with 100 uni ts of penicillin and 100 Jlg of streptomycin per ml, 0 .5 

mM theophylline, 2.5 mM pyruvic acid, and incubated at room temperature for 48-

72 h. Surface binding of a-bungarotoxin (a-B TX) was measured in 5 nM [ 125I]-a­

BTX in ND-96 solution with 1 mg/ml bovine serum albumin and 0.1 mg/ml 

cytochrome C for l hat room temperature. 
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Voltage-clamp experiments were performed as described by White et al. 

( 1985). Agonist-induced currents were measured at a membrane potential of -60 

mV. Agonist-induced conductances were calculated from these currents and from 

the reversal potentials, which ranged from 0 to -10 m V. 

RESULTS 

Construction of chimeras 

In the ligation reactions used to generate each of the chimeras, a double­

stranded oligonucleotide "adaptor" was used to ligate the 5' end of one cDNA 

restriction fragment onto the 3' end of another restriction fragmentation from a 

different subunit. The oligonucleotide portions were each designed to bring the 

two halves of the protein sequence together in-frame, as well as to encode 6-25 

amino acids. The specific overhanging ends of the oligonucleotides were 

complementary to the protruding ends left by the restriction enzymes used to 

generate the cDNA fragments. The protruding ends of the vector, cDNA, and 

oligonucleotide components specify one theoretically possible ligation event in 

each ligation reaction, as discussed in Methods. This recombinant cDNA was then 

ligated into the vector in proper orientation with respect to the SP6 promotor. 

The alignment and numbering of the amino acid sequences of the AChR 

subunits follow that of Stroud and Finer-Moore (23). Chimeric cDNAs were 

constructed that encode intersubunit fusion proteins as shown schematically in 

Fig. l. In Fig. l the membrane spanning helices (M 1, M2, M3, MA, and M4) as 

proposed by Guy (6) and Finer-Moore and Stroud (5) are included as landmarks for 

the locations of the breakpoints (transition points in the amino acid sequence) in 

the amino acid sequence. The alignment of the whole subunits is retained across 

these transitions so that no putative functional regions are deleted. 
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Fig. 1. Schematic representation of chimeric subunit constructions. The amino 

acid sequences extend from the amino terminus on the left to the carboxy 

terminus on the right. The breakpoint for each chimera is indicated by the slanted 

vertical pair of lines. - - - - , c M sequences;···- ..• - , YT sequences; - . - • - • , 
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We created three chimeras between the oM and YT subunits, as well as one 

chimera between the a.T and or subunits. oM-yTl was constructed as the exact 

reciprocal of yT-oM2; each has gly-258 from YT as the first residue from the YT 

half of the chimera. As indicated by the name, oM-yTl derives its N-terminal 

portions from oM and its C-terminal residues from YT' and yT-oM2 has the 

reciprocal arrangement. The breakpoints for this pair of chimeras lie between Ml 

and M2, which is roughly in the middle of the protein sequences. The chimera 

oM-yT3 consists of the N-terminal 412 amino acids from oM and the remaining 

100 amino acids from the C-terminus of yT' This breakpoint falls just before the 

suggested MA helix (5). The breakpoint in the a.T-oT chimera lies on the N­

terminal side of M 1; in the model of Finer-Moore and Stroud (5), all the membrane 

spanning helices of this chimera are derived from or· That is, in this construction 

, leucine 216 of a. is joined to isoleucine 222 of oT. As stated in Methods, for 

reasons unknown, the oligonucleotide adaptors were not incorporated into aT-oT' 

resulting in a deletion of six amino acids in the chimeric subunit encoded by this 

clone. 

In vitro transcription and expression in Xenopus oocytes 

Linearized plasmid DNAs were used as templates for in vitro transcription 

of RNA by phage SP6 polymerase. Equal amounts of the in vitro synthesized 

mRNAs were mixed together in several combinations and injected into Xenopus 

oocytes. The ACh-induced conductance displayed a sigmoidal dependence on the 

amount of RNA injected. The minimum readily detectable ACh response for the 

all Torpedo AChR was measured in oocytes injected with 1.5 ng of RNA, and the 

response approached saturation for 100 ng of injected RNA (data not shown). For 

the results reported here, oocytes were injected with 50 or 75 ng of RNA. 
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For any one mixture of RNAs, the agonist-induced conductance of an 

oocyte is proportional to: a) the number of complexes that are produced by 

translation and assembled on the surface of the oocyte, and b) the average 

conductance per AChR on the surface. For each mixture, we measured the 

number of complexes on the surface by measuring the binding of 1 2 sr-a­

bungarotoxin (a-BTX). From the measured agonist-induced conductance, we then 

calculated the conductance per unit-amount of a-BTX binding. 

Chimeras 

In one set of experiments, we tested the ability of the several chimeras to 

replace or or oM by coinjecting the chimera RNA with RNAs for aT, Br and Yr­

These data (Table 1) show that the oMyTl construct and its reciprocal yToM2, as 

well as oMyT3, all give a moderate level of increase of 125 I-a-BTX binding per 

oocyte compared to arBroT, alone (76%, 57%, and 109%, respectively, as 

compared to 476% for aTSTyToT and 338% for aTBTyToM). However, the 

agonist-induced ion conductance per mole of surface binding is not significantly 

increased over aTBTYT alone. That is, the chimeric units can promote assembly of 

complexes on the surface to a modest extent, but these complexes function about 

as ·well as the receptors without chimeric subunits. 

When the same chimeric RNAs were tested for their ability to function as y 

subunits, both binding and conductance were so small that they were near the 

lower limit of our resolution (Table 2). In only one case, when chimera oM-yT 

(# 1) was included in place of y, a-BTX binding was significantly increased, but the 

ACh response was still low (-6 µs/fmole at 20 µM). The other oM-yT or yT-oM 

chimeras (2 and 3) do not substitute effectively for y. Their presence has no 

effect on the a-BTX binding detected with a, s, <SM alone, and ACh-induced 

conductance is actually reduced. The ar-oT D chimera also has no effect on 

A Ch-induced conductance or a-B TX binding when compared to controls. 
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TABLE I 

Tests of chimeric subunits as replacements for a 

a-RNA 

T 

M 

none 

l 

2 

3 

D 

Cl-BTX 

bound, fmol 

8.29 ± 0.8 (9) 

4.86 ± l.2 (7) 

l.44 ± 0.1 (9) 

2.53 ± 0.2 (13) 

2.25 ± 0.2 (16) 

3.0 l ± 0.5 (7) 

l.29 ± 0.2 (9) 

Response at 

[ACh] = l µM 

µS 

10.2 ± 0.9 (3) 

61.8 ± 17 .6 (3) 

0.29 ± 0.14 (9) 

0.65 ± 0.31 (5) 

0.48 ± 0.20 (3) 

0.68 ± 0.09 (3) 

0.22 ± 0.07 (3) 

Response at 

[ACh] = l µM 

µS/fmol 

l.23 

12.70 

0.20 

0.26 

0.21 

0.23 

0.17 

In each case, the Torpedo Cl, B, and y subunit RNAs were injected along with the 

indicated candidate for a. 

T = Torpedo a; M = mouse a. 

Binding and conductance data are given as mean ± S. E. M. (number of oocytes). 
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TABLE II 

Tests of chimeric subunits as replacements for y 

y-RNA 

none 

1 

2 

3 

a-BTX 

bound, fmol 

0.07 ± 0.02 (7) 

0.52 ± 0.08 (9) 

0.05 ± 0.01 (8) 

0.05 ± 0.01 (9) 

Response at 

20 lJM ACh 

].15 

4.25, 2.38 

1.7 ± 0.7 (3) 

0.7 ± 0.3 (3) 

0.03 ± 0.03 (3) 

In each case, the Torpedo a and sand the mouse o subunit of RNAs were injected 

along with indicated candidate for y. Binding and conductance data are given as 

the mean± S. E. M. (number of oocytes). Oocytes were injected and assayed 

during the same experiment as for Table 1. 
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We tested the aTcST chimeras for a subunit character by coinjection with 

STYT and cSM. The results (data not shown) were negative. 

Hybrids 

The experiments reported in Table 3 address the ability of the Torpedo 

subunits to form functional AChRs in combination with mouse and chick 

subunits. All mouse subunits and the ac subunit were each tested individually as 

replacements of the analogous Torpedo subunit. The simple replacement of cSM 

for or has been discussed previously (25). We find that each substitution gives 

detectable a-BTX binding and detectable ACh-induced conductance, although the 

level of binding varies by more than 10-fold and the response per receptor varies 

by nearly 1000 fold. In particular, SM with aTyTcST gives very low levels of 

assembly and of ACh-induced conductance. The combination aTSTYM cST gives a 

detectable, albeit low, level of toxin binding, but very low ACh-induced 

conductance. 

DISCUSSION 

.There is a considerable degree of amino acid homology among all of the 

subunits of the AChR from all of the vertebrate studies (23). Generally speaking, 

there is a greater degree of homology among the same subunits from different 

species, than among subunits of any one species. For example, there is ca. 60% 

homology between oM and cST. Each of these subunits functions very well in 

conjunction with aTSTYT (25 and Table 3a,b). The same is true for the cS subunit 

of calf with aTSTYT (21). 

The y and cS subunits are more closely related to each other than either is 

to a and s. For example, there is ca. 45% homology between YT and cSM, and 57% 

homology between YT and cST (15,16). Yet, cSM and cST can substitute for each 
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TABLE III 

Properties of mouse-chick-Torpedo receptor hybrids 

RN As 

a a y 6 

TTTT 

TTTM 

TT MT 

T MT T 

MTTT 

MMMM 

MMMT 

MMTM 

MTMM 

TMMM 

CTTT 

CTTM 

a-BTX 

bound, fmol 

3.48 ± 0.3 (11) 

5.45 ± 0.64 (5) 

1.36 ± 0.39 (5) 

0.65 ± 0.33 (5) 

2.53 ± 0.38 (5) 

6.49 ± 0.68 (5) 

0.49 ± 0.24 (5) 

8.06 ± 0.15 (5) 

1.01 ± 0.30 (5) 

0.91 ± 0.33 

n.m. 

n.m. 

Response at 

[ACh] = 1 µM 

µS 

3.8 ± 0.1 (11) 

55 ± 7 (5) 

0.35 ± .6 (5) 

0.03 ± 0.15 (3) 

110 ± 7 (5) 

95 ± 11 (5) 

1.1 ± 0.2 (5) 

265 ± 77 (5) 

39 ± 3.8 (5) 

0.62 ± .04 (5) 

2.16 ± 0.44 (3) 

2.52 ± 0.20 (3) 

Response at 

[ACh] = 1 µM 

µS/fmol 

1.09 

10.09 

0.26 

0.05 

43.48 

14.64 

2.24 

32.88 

38.61 

0.68 

n.m. = not measured. Binding and conductance data are given as mean± S.E.M. 

(number of oocytes) 
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other, but neither can substitute for a y subunit or vice versa. In our initial 

studies with the yo and ao chimeras, we have attempted to determine whether 

the "o" character of the subunit can be localized to any major segment of the 

polypeptide chain. We find that a reciprocal exchange between YT and oM more 

or less in the middle of each chain (oMyTl and yToM2, Fig. 2) gives polypeptides 

that can function neither as y or o. A long amino terminal segment of oM fused 

to a short car boxy terminal of YT in the region around amino acid 412 of o M 

(oMyT3) is also nonfunctional. This exchange takes place just upstream of the 

putative MA helix of the models of Finer-Moore and Stroud (5) and of Guy (6). In 

the model of Ratnam et al. (l 9,20), the exchange is entirely within the final 

cytoplasmic region of the peptides. The final chimera we have tested, aToT 

(Fig. l), contains only extracellular regions of the a chain and all of the membrane 

spanning regions of o in the models of Finer-Moore and Stroud (5) and of Guy (6), 

but does not include the upstream M6 and M7 membrane-spanning regions of o 

proposed by the Ratnam et al. ( 19,20) models. This chimera is nonfunctional as 

either o or a. 

Further studies with more chimeras would probably identify some short 

regions of the o chain that are not essential for its "o" identity. Nevertheless, 

the straightforward interpretation of the present results is that the sequences 

necessary for a o subunit to interact with the a, s, and y subunits are distributed 

over most of the chain for efficient assembly into a receptor complex in the 

plasma membrane and to respond to agonists by gating an ion channel. 

Our subunit substitution experiments (Table 3) demonstrate that many 

combinations of mouse and Torpedo subunits can form functional acetylcholine 

receptors in the oocyte expression assay, as long as each of the a, s, y and o 

subunits is represented. (The same is true for the chick a subunit; other chick 

subunits have not been tested.) The quantitative variability between the various 
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combinations in both the assembly and the response per assembled complex 

emphasizes that while there are essential common features in the conformation 

and packing of the same subunit from different species, there are also important 

differences. 

Detailed dose-response studies are under way for the hybrid receptors 

described here (26). At low agonist concentrations, the agonist-induced 

conductance increases more than linearly with the ACh concentration. On double­

logarithmic coordinates, the slope of the dose-response relation approaches two 

for all of the hybrids. This finding suggests that the hybrid receptors have been 

assembled so that they function normally: The open state of the receptor channel 

is more likely to be associated with the presence of two bound agonist molecules 

than with a single such molecule. These results thus generalize the findings of 

White et al. (25), who showed that the mouse iS subunit could substitute for the 

Torpedo iS; and of Sakmann et al. (21), who showed that the calf a and iS, and 

perhaps the B and y subunits, could substitute for the analogous Torpedo subunit. 

Another subunit analogous to y, termed e:, can also substitute for y (14). 

Most available studies also demonstrate that omission of the iS subunit 

gives a small fraction (<10%) of the response of the all-Torpedo receptor; Hill 

coefficients have not been reported. The results in Table 1 confirm this finding 

but show that, when normalized to conductance per receptor so that the 

probability of opening can be assessed, the receptors without a iS subunit suffer 

only a modest decrement: they function roughly one-fifth as well as the complete 

Torpedo receptor. 
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ABSTRACT 

This study utilized messenger RNA encoding each subunit (a., s, y, and o) of 

the nicotinic acetylcholine (ACh) receptor from mouse BC3H-l cells and from 

Torpedo electric organ. The mRNA was synthesized in vitro by transcription with 

SP6 polymerase from cDNA clones. All 16 possible combinations that include one 

mRNA species for each of a., s, y, and 6 were injected into oocytes. After 

allowing 2-3 d for translation and assembly, we assayed each oocyte for (1) 

receptor assembly, measured by the binding of [ 125r]a-bungarotoxin (a.-B TX) to the 

oocyte surface, and (2) ACh-induced conductance, measured under voltage clamp 

at various membrane potentials. All combinations yielded detectable assembly 

(30-fold range among different combinations) and ACh-induced conductances(> 

1000-fold range at 1 µM). On double-logarithmic coordinates, the dose-response 

relations all had a slope near two for low [ACh]. Data were corrected for 

variations in efficiency of translation among identically injected oocytes by 

expressing ACh-induced conductance per fmol of a.-bungarotoxin binding sites. 

Five combinations were tested for d-tubocurarine inhibition by the dose-ratio 

method; the apparent dissociation constant ranged from 0.08 to 0.27 µM. Matched 

responses and geometric means are used for describing the effects of changing a 

particular subunit (mouse vs Torpedo) while maintaining the identity of the other 

subunits. The most dramatic subunit-specific effect is that of the s subunit on 

voltage sensitivity of the response: gACh(-90 mV)/gACh(+30 mV) is always at least 

1, but this ratio increases by an average of 3.5-fold if SM replaces ST' Also, 

combinations including Yy or cSM usually produce greater receptor assembly than 

combinations including the homologous subunit from the other species. Finally, 

EA Ch is defined as the A Ch concentration inducing 1 µS/fmol at -60 m V; EA Ch is 

lowest for a.Mand for sr We conclude that receptor assembly, voltage 

sensitivity, and EA Ch are governed by different properties. 
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INTRODUCTION 

All four subunits of the nicotinic acetylcholine receptor have been isolated 

and sequenced as cONA clones from muscle and electric organ for several 

species. This accomplishment has encouraged several theoretical and 

experimental studies dealing with the relationship between structure and function 

of this membrane protein (Stroud & Finer-Moore, 1985). Important unanswered 

questions concern the nature of the coupling between agonist binding and channel 

activation, structure and selectivity properties of the channel itself, and details of 

open-channel and closed-channel blockade. 

One way to test such theories exploits the fact that the cDNA clones 

themselves can be combined and mutated in various ways to encode novel 

receptors. At present, it appears that the most appropriate functional assay for 

such manipulations consists of in vitro RNA synthesis, using a viral RNA 

polymerase system (Melton et al., 1984; Krieg & Melton, 1984; Mishina et al., 

1985; White et al., 1985), followed by injection into Xenopus oocytes and by 

electrophysiological measurements on the newly expressed receptors (Gurdon 

et al., 1971; Sumikawa et al., 1981; Barnard et al., 1982a; Mishina et al., 1984, 

1985; White et al., 1985; Sakmann et al., 1985; Methfessel et al., 1986). The more 

recent work shows an excellent quantitative correspondence between the 

characteristics of the receptors expressed in oocytes and those in the native 

tissue; this correspondence extends to functional stoichiometry, desensitization, 

single-channel conductance and lifetime, and voltage sensitivity (White et al., 

1985; Sakmann et al., 1985; Methfessel et al., 1986). The faithful translation and 

assembly suggest that useful insights will indeed be obtained from the study of 

modified receptors expressed in Xenopus oocytes. Our study therefore extends 

that of White et al. (1985) and of Sakmann et al. ( 1985) on interspecies hybrid 

receptors. We have studied all 16 possible combinations of mouse and Torpedo a, 

s, y, and 6 subunits. 
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This report concerns the equilibrium properties of these hybrid receptors-­

Hill coefficient, steady-state activation, voltage sensitivity, and blockade by 

d-tubocurarine. Because we wanted to concentrate on tf!e details of receptor 

function rather than on the biosynthesis, assembly, and membrane insertion, a­

bungarotoxin (a-BTX) binding has been measured on the same oocytes, and most of 

results are expressed on a "per receptor" basis. A preliminary analysis of some of 

the data has been submitted for publication (Mayne et al., 1987) and also published 

in abstract form (Y oshii et al., 198 7). 
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METHODS 

Plasmids 

A cDNA clone for the mouse AChR a subunit precursor was generously 

provided by Dr. J.P. Merlie (Isenberg et al., 1986) and was transferred to the 

vector pGEMl (Promega Biotec) containing the SP6 promoter. Two sequenced 

cDNA clones covering the 5' and 3' portions of the mouse AChR B subunit were 

also provided by Dr. Merlie in the vector Ml3mpl8. A composite cDNA sequence 

coding for the entire B subunit precursor was constructed from restriction 

fragments. Both plasmids were digested with SacII, which has a unique 

recognition site in the B sequence, as well as with Pvul, which cuts once in the 

vector but not in the B sequence. The desired DNA fragments were isolated by 

agarose gel electrophoresis and treated with T4 DNA ligase. The sequence was 

confirmed by the dideoxy nucleotide technique (Sanger et al., 1977). The 

complete protein:-coding cDNA sequence was then recloned into the vector pGEM2 

(Promega Biotec) containing the SP6 promoter. 

The cDNA clones for the mouse AChR y and a subunits were isolated at 

Caltech (Yu et al., 1986; LaPolla et al., 1985) and recloned into the vectors pSP65 

(Melton et al., 1984) and pSP64T (Krieg & Melton, 1984) respectively. The clones 

for the Torpedo AChR subunits were as described by White et al. (1985). 

In vitro transcription 

The protocol of White et al. ( 1985) was used for in vitro transcription of 

AChR mRNAs with the following modifications. The linearized DNA templates 

were present at a concentration of 30 µg/ml and the SP6 RNA polymerase at 300 

units/ml. The reaction was carried out for 2 hat 37°C, followed by 10 min 

incubation with 2 units/ml ribonuclease-free DNAase. Unincorporated nucleotide 

precursors were removed by spun column (Penefsky, 1977). The RNA was 
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extracted once with phenol-chloroform and twice with chloroform, precipitated 

twice with ethanol, and redissolved in distilled water (1 mg/ml) for microinjection 

into oocytes. 

Preparation of oocytes and RN A injection 

Mature Xenopus females were obtained from commercial sources. They 

were anesthetized by immersion in water containing 0.17% tricaine (3-

aminobenzoic acid ethyl ester). An incision was made in the abdomen and a 

portion of the ovary was removed and placed in 82.5 mM NaCl/2 mM KCl/ 1 mM 

MgC12 /5 mM HEPES-NaOH, pH 7.5. Follicle cells were removed by incubating 

the tissue in this solution containing collagenase (Type IA, Sigma), 2 mg/ml for 

2-3 hat room temperature. 

50 nl of the mRNA solution was injected into the ooplasm of stage V and VI 

oocytes (Dumont, 1972) with a microdispenser (Drummond Scientific Co., 

Broomall, PA) through a needle with the tip diameter of -20 µm. The oocytes were 

then transferred to Barth's medium supplemented with penicillin ( 100 unit/ml) and 

streptomycin (100 µg/ml). Oocytes were incubated at room temperature for 48-

72 h. 

Electro physiology 

Individual oocytes were transferred to a recording chamber (volume, 0.3 

ml) continually perfused, by a system of valves and stopcocks, at a rate of 3.5 

ml/min. The Ringer solution contained 96 mM NaCl/2 mM KCl/ 1 mM MgC12/0.3 

µM atropine sulfate/5 mM HEPES-NaOH, pH 7.5, plus ACh as indicated. 

We employed a two-microelectrode voltage-clamp circuit (Axoclamp-2A, 

Axon Instruments, Burlingame CA 94010). Electrodes were filled with 3 M KCl 

and had tip resistances of 0.5-1 Mn. Oocytes were continually clamped to a 
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membrane potential of -60 m V and l 00-ms steps were generated to various test 

potentials using standard instrumentation (Sheridan & Lester, 1977; Kegel et al., 

1985). Oocytes were typically exposed to each test solution for -30 s. For the . 

conditions of these experiments, holding currents reached a plateau in -10 s and 

showed little or no desensitization. Marked desensitization occurs in the presence 

of higher ACh concentrations or with ACh receptors containing chick a subunits 

(K. Yoshii, K. M. Mayne, unpublished data). ACh-induced currents were measured 

by subtracting voltage-clamp currents in the absence and presence of ACh. All 

experiments were conducted at room temperature. 

Toxin-binding assay 

Oocytes were prewashed for 5 min in 96 mM NaCl/ 2 mM KCl/ 

1 mM MgC12/ 5 mM HEPES, pH 7 .6/ l mg/ml BSA. They were then transferred to 

the same solution containing 125r-a-bungarotoxin (New England Nuclear) and 

incubated for 1 h. Oocytes were then washed 4 times and counted individually in a 

y counter. All incubations were at room temperature. 
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RESULTS 

All Combinations Produce Detectable Assembly and Function 

Conductance per a-bungarotoxin binding site: a measure that minimizes variations 

Among oocytes from the same ovary receiving identical injections, there 

was a> 10-fold range in the conductance generated from a given concentration of 

ACh. This variation among oocytes is a general phenomenon in our laboratory and 

in many others that study channels and receptors generated from foreign RNA; it 

is seen, for instance, with Ca and Na channels from rat RNA (Dascal et al., l 986a; 

Goldin et al., 1986; Leonard et al., 1987). In the present study, we attempted to 

draw functional conclusions despite the presence of these large variations. For 

this purpose, we subjected individual oocytes to two experimental manipulations: 

we measured both ACh-induced conductance and surface a-bungarotoxin binding. 

The large variations in ACh-induced conductance were indeed accompanied by 

large variations in the a-bungarotoxin binding; and there was a good correlation 

between the two parameters with each of the combinations studied. An example 

is given in Fig. l for the case of all-Torpedo receptors. We therefore express 

most of the conductance data with a normalization to the number of a­

bungarotoxin binding sites. This ratio, µS/fmol, has a coefficient of variation of 

roughly 30% for all cells injected with a given combination of subunits. 

We also found that the average µS/fmol values varied little when among 

oocytes from different frogs, typically by only 30%. Nonetheless, the data 

presented in this paper were all gathered from a single frog's oocytes, tested over 

a period of one week. 

Range of the data 

Assembly. Table l summarizes several aspects of the measurements on 

each combination. The assembly of receptors is simply expressed as the number 



88 

Fig. 1. Binding and conductance compared for 11 individual oocytes from the 

same ovary that received identical injections with (aSyo)T RNA. ACh-induced 

conductance was measured at -60 mV. The line is a lea~t-squares fit to the data, 

constrained to pass through the origin, and has a slope of 1.07 µS/fmol. 
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Table 1. Summary of Some Parameters for Each of the 16 Combinations. 

RN As a-bungarotoxin EA Ch g[-90) Hill KdTC 
per oocyte at -60 mV ---- coefficient 

·7.r;3 f6 
g[+30] 

fmol µM µM 

MMMM 6 . 49 ± 0.67 0.20 ± 0 . 006 4.3 ± 0.2 2 ± 0.1 0 . 27 
(n = 5 ) (n = 5 ) (n =4 ) (n =4 ) 

MMMT 0.49 ± 0 . 04 0 . 61 ± 0 . 018 16. ± 2 . 2 1. 8 ± 0.1 
(n = 5 ) (n = 5 ) (n =4 ) (n =4 ) 

MMTM 8.06 ± 0.05 0 . 16 ± 0 . 002 6.6 ± 1. 1 1. 9 ± 0 . 1 
(n = 5 ) (n = 8 ) (n =4 ) (n =4 ) 

MTMM 1. 01 ± 0.08 0.09 ± 0 .0 04 2.8 ± 0 . 2 2 ± 0.2 
(n = 5 ) (n = 8 ) (n =4 ) (n =4 ) 

TMMM 0.91 ± 0. 14 1. 67 ± 0.089 6 . 1 ± 0 . 6 1. 5 ± 0.1 
(n = 5 ) (n = 8 ) (n =4 ) (n =4 ) 

MMTT 0.76 ± 0.12 0.45 ± 0.075 11. ± 0.9 1. 5 ± 0.3 
(n = 5 ) (n = 8 ) (n =4 ) (n =4 ) 

MTTM 2.02 ± 0.17 0 . 16 ± 0.009 3.7 ± 0.3 1. 9 ± 0. 1 
(n = 5 ) (n = 8 ) (n =4 ) (n =4 ) 

MTMT 0.67 ± 0.05 0.29 ± 0.023 1. 3 ± 0.1 1.6 ± 0.1 
(n = 5 ) (n = 8 ) (n =4 ) (n =4 ) 

TMMT 0 . 39 ± 0 .0 4 2.75 ± 0.14 7 . 1 ± 1. 1 1. 8 ± 0.2 
(n = 5 ) (n = 4 ) ( n =4 ) (n =4 ) 

TMTM 11. 4 ± 1. 48 0.76 ± 0 . 066 4 . 1 ± 0 . 3 2.1 ± 0.1 
(n = 5 ) (n = 8 ) (n =4 ) (n =4 ) 

TTMM 0.53 ± 0 .0 8 2.20 ± 0 . 13 2.8 ± 0 . 3 1. 8 ± 0 . 1 
(n = 5 ) (n = 8 ) (n =4 ) (n =4 ) 

MTTT 2.53 ± 0.37 0 . 20 ± 0.016 1. 7 ± 0.1 2.3 ± 0 . 3 0.08 
(n = 5 ) (n = 4 ) (n =4 ) (n =4 ) 

TMTT 0 . 65 ± 0 . 18 13.5 ± 0 .7 1 8.9 ± 2.5 1. 5 ± 
(n = 5 ) (n = 8 ) (n =4 ) (n =1 ) 

TTMT 1. 36 ± 0 . 21 1. 33 ± 0.099 1 ± 0.1 1. 5 ± 0 . 1 0.19 
(n = 5 ) (n = 8 ) (n =4 ) (n =4 ) 

TTTM 5 . 45 ± 0.64 0.29 ± 0.02 3 ± 0.1 1. 9 ± 0.1 0 . 19 
(n = 5 ) (n = 8 ) (n =4 ) (n =4 ) 

TTTT 3.48 ± 0.27 0.96 ± 0.044 1. 6 ± 0 .2 1 . 8 ± 0.2 0.16 
(n = 11 ) (n = 11 ) (n =4 ) (n =4 ) 
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of binding sites for a-bungarotoxin per oocyte. There is a > 30-fold variation in 

the average number of a-bungarotoxin binding sites/oocyte for the various 

combinations, ranging from 0.39 fmol for the aTSM YM oT hybrid to 11.5 fmol for 

the aTSMyToM hybrid. 

Functional efficiency. There was an even larger range in the average ACh-

induced conductance. At 1 µM ACh and -60 mV, some combinations--for instance, 

(aSyo)M--yielded signals too large for reliable clamping ( > 5-10 µA); others, such 

as aTSMyToT, yielded signals too small for accurate measurement ( < 5 nA). This 

range of > 103 is due to three factors. (1) There are real differences in the 

fractional receptor activation produced by a given [ACh]. (2) If these differences 

arise primarily from the agonist-receptor interaction, they are amplified by the 

necessity for activation by two bound agonist molecules and the resultant 

parabolic dose-response relation. (3) Finally, there are differences in the 

assembly for each combination. As explained above, we account for factor (3) by 

referring to response per fmol of bound a-bungarotoxin (Fig. 2). We propose to 

account for point (2) by using a form of "response matching" similar to the 

principle of the dose-ratio method for studying antagonist dissociation constants. 

We therefore define EACh as the equipotent concentration of ACh that induces 

the response of 1 µS/fmol. Differences in EACh can eventually be compared with 

differences in the binding of competitive antagonists and open-channel blockers. 

EACh ranged over 100-fold among the combinations tested. 

Voltage sensitivity is always in the same direction. Many combinations 

showed nonlinear current-voltage relations for the ACh-induced conductance (Fig. 

3). Voltage sensitivity is expressed as the ratio of two slope conductances: 

g(-90 mV)/g(+30 mV). This parameter ranged from unity to about 16. The voltage 

sensitivity does not vary detectably with [ACh] in the concentration range tested; 

the constancy shown in Fig. 4 is typical of all the combinations. 
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Fig. 2. Dose-response relations for representative oocytes injected with each of 

the 16 combinations. In this and subsequent Figures, the source of each subunit 

RNA is represented by the pattern of the symbol. Each quadrant is either empty 

(mouse) or filled (Torpedo). Clockwise from upper right, the quadrants denote a, 

s, y, and a. The form of the symbols bears no intended relation to the molecular 

structure of the receptor. A, combinations containing mostly or all mouse 

subunits. B, combinations containing 2 mouse and 2 Torpedo subunits. C, 

combinations containing mostly or all Torpedo subunits. 
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Fig. 3. Current-voltage relation for representative responses from all 16 

combinations. For clarity, each combination is identified only at the extrema of 

the plot; for key to the combinations, see Fig. 2. A, combinations containing 

mostly or all mouse subunits. B and C, combinations containing 2 mouse and 2 

Torpedo subunits. D, combinations containing mostly or all Torpedo subunits. 
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Fig. 4. Voltage sensitivity vs [ACh] for 5 oocytes injected with the et.rf~TYM cM 

combination. Each oocyte was tested at several ACh concentrations. 
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There is little correlation among function, assembly, and voltage sensitivity 

Figs. 5, 6, and 7 present scatter plots comparing these parameters for the 

sixteen combinations. It is evident that these three parameters have little or no 

correlation with each other. 

Features Common to All Combinations 

Functional stoichiometry of the response to ACh is near two 

We have abstracted the functional stoichiometry as the slope of the dose­

response relation at low [ACh] on double-logarithmic coordinates. This slope is 

near two for all of the hybrids (Table 1), suggesting that, as usually found for ACh 

receptors, the open state of the receptor channel is more likely to be associated 

with the presence of two bound agonist molecules than with a single one. The 

slope decreased slightly for those combinations yielding the smallest conductance 

per oocyte (Fig. 8). The least-squares linear fit to the data in Fig. 8 has a 

correlation coefficient of only 0.37; if one omits the combination a.TBM YM 6T 

(which gave the lowest conductances), the correlation coefficient is 0.54. We 

doubt that this trend represents a real change in functional stoichiometry; it 

seems more likely that at the higher ACh concentrations necessary to test these 

combinations, the dose-response relation was distorted by desensitization, open­

channel blockade, or partial saturation. 

Reversal Potential 

The reversal potential for the agonist-induced currents ranged between -2 

mV and -9 mV for all the combinations tested. There was little or no significant 

difference among the combinations. 
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Fig. 5. Scatter plot, assembly vs EACh for all 16 combinations. For meaning of 

symbols, see Fig. 2. In this and subsequent figures, S. E. M. is shown where it 

exceeds the size of the symbol. 
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Fig. 6. Scatter plot, voltage sensitivity vs. assembly. For the meaning of 

symbols, see Fig. 2. 
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Fig. 7. Scatter plot, voltage sensitivity vs. EAch· For the meaning of symbols, 

see Fig. 2. 
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Fig. 8. Scatter plot of Hill coefficient vs Ach concentration inducing l µS. Note 

that the abscissa refers to the conductance per oocyte, rather than per fmol as in 

previous figures. For meaning of the symbols, see Fig. 2. 
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Effects of Individual Subunits: Quantitative Measures 

A major purpose of this study is to decide whether the identity of any 

particular subunit (Torpedo vs. mouse) determines a property of the AChR 

complex. To address this question in a quantifiable way, we introduce several 

simple measures. The first, the subunit specific T /M ratio, compares two hybrids 

that differ by only one subunit. This quantity is simply the ratio between the 

values for Torpedo and mouse. To provide an unbiased measure over the entire 

dynamic range, we will actually be dealing with logarithms of this ratio and 

abbreviate it qS. 

Assembly efficiency 

From the data in Table l, qS values can be readily calculated. For 

example, qS for assembly associated with the aT8TyToT /M pair is -.195. The qS 

values for assembly in this study range from -1.25, for the aTsM yToT /M pair, to 

1.1, for the aTSMYT/MoM pair, and include several values close to 0, e.g. the 

aT /M 8MyToT pair which differ by less than 20%. We generalize this measure by 

averaging over the 8 qS values for each subunit; the resulting parameter is the 

subunit average qS(subunit). This measure (Table 2) shows that the identity of the 

a subunit had no consistent effect upon assembly: qS(a) = -.03. The same lack of 

effect was noted for s, because qS(s) = -.005. In both cases, there were equal 

numbers of positive and negative values. The Torpedo y subunit appeared to give 

better assembly, however; qS(y) = 0.45 and all 8 values were greater than zero. 

Finally, the mouse o subunit seems to produce better assemb~y (qS(o) = -0.45, 

with 6 of 8 values negative). The final measure, the global average qS(aSyo), 

includes all 32 pairs. For the a-bungarotoxin binding measurements, qS(aSyo) is 

very close to 0, showing no preferential incorporation of Torpedo or mouse 

proteins. 
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a M consistently gives higher responses 

Fig. 2 presents dose-response relations for some of the combinations. 

Clearly, aM produces receptors that function with a higher degree of response 

than aT. It also appears that oM > oT and BT > BM (Table 3). 

BM consistently gives the highest voltage sensitivity 

As noted above, most of the combinations display a voltage-sensitive 

response (Fig. 3): for only one case, aTBTyMoT, the ratio g(-90 mY)/g(+30 mY) 

does not differ significantly from unity. Table 4 presents the qS ratios for voltage 

sensitivity and also arranges the various combinations in order of decreasing 

voltage sensitivity. Clearly, the most consistent correlation is with the B subunit: 

the 8 highest voltage sensitivities are all associated with BM· Also, for a given B 

subunit, combinations with a heterogenous o subunit were more voltage-sensitive 

than those with a homogeneous 0 subunit. 

All Four Subunit RN As are Required for Substantial Responses 

In actuality, there are not just 16 possible combinations, but 80, because 

each subunit could be selected from mouse (M) or Torpedo (T), or omitted entirely 

(0). We have not tested all 64 additional combinations involving 1, 2 or 3 omitted 

subunits, or even all 32 combinations involving only l omitted subunit. The 

available data suggest, however, that omission of even a single subunit RNA leads 

to rather inefficient assembly, so that the data reported with a complete set of 

subunits in this paper would not be distorted by such incomplete complexes. 

Omission of o. White et al. (1985) found that the combination arBTyToo 

produced roughly 3% the agonist-induced conductance of aTBTyToT and an even 

smaller percentage of aTBTyToM. Therefore, any o0 complexes would have 
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Table 2. Subunit effects on assembly. 

Measure: surface [ 125IJa-bungarotoxin binding, T /M 

Subunit average qS 

(of 8) 

a -0.03 

B -0.005 

y 0.49 

0 -0.45 

Global average qS(aSyo) 

-0.001 

See text for definition of qS. 

qS number> 0 

4 

4 

8 

2 

qS number> 0 

18 



Table 3. Subunit effects on EA Ch' 

Measure : EA Ch' T /M 

Subunit 

a 

8 

y 

0 

Global 

average qS 

(of 8) 

0.84 

-0.35 

-0.11 

0.41 

average qS(aSyo) 

0.020 

qS 

110 

number> 0 

8 

2 

7 

qS number> 0 

17 
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Table 4. Subunit effects on voltage sensitivity 

Measure: g[-90]/g[ + 30], T /M 

A. Subunit average qS 

Subunit 

a 

s 

y 

0 

average qS 

(of 8) 

-0.10 

-0.55 

0.05 

-0.02 

Global average qS(aSyo) 

-0. 15 12 of 32 

8. Rank order 

qS number > 0 

0 

6 

4 

DECREASING SENSITIVITY ---> 

a M M T T M T M T M T M T M T M T 

s M M M M M M M M T T T T T T T T 

y M T T M T M M T T T M M T T M M 

o T T T T M M M M M M M M T T T T 
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contributed an insignificant amount of conductance to the macroscopic 

measurements reported here. However, Mayne et al. ( 1987) reported that 

aTSTyToO assembles much less efficiently than combinations including a o 

subunit, so that the ACh-induced conductance per a-bungarotoxin site is roughly 

20% that of aTSTyToT. 

Omission of s or y. In the present study, the rather low agonist-induced 

conductances for some combinations (such as aTSMyToT) and the rather low 

assembly for some combinations (such as aTSM YM oT) lead to the question, can 

function or assembly be detected in the absence of s or y subunits? In one 

experiment, we tested the combinations aTSTYM oM, aTSMYM oM, and 

aTSOyMoM. For the former two combinations, ACh (10 µM) induced conductances 

of 3 to 4 µS/fmol; however, the latter combination yielded no detectable assembly 

( < 0.05 f mol) and no detectable A Ch-induced conductances ( < 0.1 µS). 

We also compared the combinations aTSMyToT and aTSMyOoT" The 

a-bungarotoxin binding was 1.80 + l.l and 0.15 + 0.06 fmol respectively (mean + 

S. E. M., 5 oocytes). Conductances induced by ACh (20 µM) were 25.8 and 1.5 pS, 

respectively. Furthermore, the voltage-dependence values were l 0.2 and 1.3, 

respectively. Thus, there seems to be little contribution by YQ combinations to 

the macroscopic conductances. Nonetheless, it must be pointed out that the 

functional efficiency, µS/fmol, seems to be little decreased for those few 

receptors that are correctly assembled in the absence of the y subunit. 

Omission of a. Mayne et al. ( 1987) reported no detectable binding or 

function when the a subunit was omitted. 

a alone. We tested oocytes injected with ap aM, or aChick RNA without 

other subunit RNAs. In some cases, ACh concentrations of -500 µM induced 

detectable conductances (L. Yu, unpublished data). However, no responses were 

detected at [ACh] < 50 µM as employed in the present study. 
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Dissociation Constant for d-Tubocurarine 

For five of the combinations, we used the dose-ratio method to measure 

the apparent dissociation constant for the competitive inhibition by 

d-tubocurarine (Fig. 9). This method involves assessing the parallel shift in dose­

response relations at various inhibitor concentrations; its use for the nicotinic 

acetylcholine receptor has been frequently discussed (Jenkinson, 1960; Armstrong 

& Lester, 1979; Krouse et al., 1985). Combinations including oM showed a small 

(30%) decrease in the dose-ratio slope at -100 m V, probably because of open­

channel block by d-tubocurarine; therefore, Table 1 presents the values for 

potentials between -60 m V and +40 m V. The differences in Ki cover a fold of 3.5-

fold; this is substantially less than the differences in criterion concentration for 

the same combinations. The dissociation constant for agonists often depends on 

voltage, but at +40 mV the criterion concentrations still cover a range of 9.5 fold. 
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Fig. 9. Dose-ratio analysis of inhibition by d-tubocurarine. A, parallel shift of 

dose-response curves. B, dose-ratio plots at several voltages. 
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DISCUSSION 

In this study, we surveyed the properties of all 16 possible hybrid 

acetylcholine receptors involving a complete set of a, s, y, and o subunits from 

two species. A major c?nclusion is that the identities of particular subunits 

determine different receptor properties. Thus, YT always gives better receptor 

assembly, aM always gives higher receptor function, and BM always gives higher 

voltage sensitivity. It must therefore be concluded that receptor assembly, 

function, and voltage sensitivity are governed by different subunits. 

Receptor Function Appears Normal 

E ACh is roughly as expected 

We adapted the somewhat arbitrary response of l µS/fmol for comparing 

equipotent ACh concentrations among the hybrid combinations. Because the dose-

response relations are nearly parallel in the range studied here, this choice for 

EA Ch does not strongly influence the conclusions concerning relative functional 

efficiencies. It should be pointed out that 1 µS/fmol equals 8.3 x 10-4 pS per ACh 

receptor (assuming 2 a-bungarotoxin binding sites per receptor). Assuming an 

open-channel conductance of 40 pS, this in turn corresponds to an average 

activation of 2 x io-5• We note that this value is roughly in agreement with 

expectations from physiological measurements of dose-response relations for 

mouse and Torpedo receptors. For a Hill coefficient of 2, a fractional activation 

of 2.1 x 10-.5 corresponds to an agonist concentration of 4.6 x 10-3 times the half-

maximal concentration. The lowest concentrations giving this value are in the 

range 0.1 to 1 µM (see Table 1). Taking the value of 0.5 µMas an average, this 

would suggest that half-maximal activation would occur at roughly 100 µM A Ch. 
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This value is in good agreement with actual measurements on BC3H-l cells (Brett 

et al., 1986; Sine & Taylor, 1980) and on Torpedo membrane fragments (Neubig & 

Cohen, 1980; Heidmann et al., 1983), although it should be pointed out that the 

half-maximal concentration is liable to be voltage-sensitive in the case where the 

response is voltage-sensitive (as observed here for nearly all combinations). 

Blockade by tubocurarine is roughly as expected 

There have been no previous quantitative electrophysiological studies of 

d-tubocurarine blockade at Torpedo acetylcholine receptors. The values we found 

(0.08 to 0.27 µM for all five mouse-Torpedo combinations tested) are close to the 

ranges usually found for mouse muscle (0.04-0.15 µM, Pennefather & Quastel, 

1981), frog muscle (0.39-0.43 µM, Jenkinson, 1960; Adams, 1975), and 

Electrophorus electroplaques (0.2 µM, Lester et al., 197 5). It is unclear how the 

present values should be interpreted in terms of the existing binding studies on 

Torpedo electric organ (Neubig & Cohen, 1979) and BC3H-l cells, the source of 

the mouse clones used here (Sine & Taylor, 1981), both suggesting that the 

receptor has two distinguishable sites for competitive antagonist binding (see 

discussions by Pennefather & Quastel, 1981; Krouse et al., 1985). 

Regardless of the detailed binding mechanism, however, we find only a 

modest range in the apparent dissociation constant for dTC, whereas the criterion 

concentration for agonists varies by more than l 00 fold. If the range of inhibitory 

constants remains small for the other 11 combinations to be tested, this would 

presumably agree with present concepts of receptor function: antagonists interact 

in a relatively simple and constant fashion with the receptor binding site; the 

subsequent conformational steps that open the channel are more complex and 

more greatly affected by subunit substitutions. 
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Voltage Sensitivity 

The s subunit and voltage sensitivity 

Another clear result of this study is that the voltage sensitivity ratio is at 

least unity; where present, voltage sensitivity is always in the same direction. 

Furthermore, the voltage sensitivity depends on the identity of the s subunit. The 

subunit qS was greater than zero for all aST/Myo pairs, yielding a subunit average 

qS of 0.55. Furthermore, all 8 combinations containing SM are more voltage­

sensitive than all 8 combinations involving sr On the average, the mouse s 

subunit renders a combination 3.55 times more voltage-sensitive than does the 

Torpedo s subunit. 

According to present concepts, a voltage-sensitive ACh-induced 

conductance could arise from voltage sensitivity in at least one of three separate 

parameters: (1) the single-channel conductance, (2) the rate constant for channel 

closing, or (3) the rate constant for opening. The first two of these parameters, 

and probably the third as well, can be assessed with single-channel recordings; and 

these are now under way in our laboratory. One hopes for a decisive assignment 

of the voltage sensitivity to one of the three parameters. 

In a study of some calf-Torpedo ACh receptor hybrids, Sakmann et al. 

(1985) found no evidence that the single-channel conductance is voltage-

sensitive. The combination (aSy)Tocalf' but not acalf(Syo)T combination, showed 

the same channel duration (including voltage sensitivity) as the (aSyo)calf 

combination. Quantitative data were not reported for other combinations. On the 

basis of these data, it was suggested that the iS subunit governs the voltage 

sensitivity of the closing rate constant. Our data are not strictly comparable to 

the study cited, because (a) we studied Torpedo-mouse rather than Torpedo-calf 

hybrids; and (b) as noted above, our data do not address the channel duration 

alone. We do find a more subtle effect of the iS subunit on the equilibrium voltage 
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sensitivity of the ACh-induced conductance. The subunit average qS (.s) for 

g(-90)/g(+30) is nearly zero, with 4 positive and 4 negative values; but the 4 most 

voltage-sensitive combinations involving cM also involve BM, and the 4 least 

voltage-sensitive combinations involving cM also involve Br· 

A final difference between the two studies is that we used roughly 10-fold 

more RNA per oocyte. We have found (unpublished results) that the combinations 

differ widely with respect to the amount of RNA injected that yields half­

maximal assembly and response. Thus, we may have been able to detect responses 

from some combinations that might give undetectable responses with the smaller 

injections used by Sakmann et al. (1985). Yet, we have presented evidence that 

even the "worst" combinations were not substantially aided by endogenous subunits 

or by incomplete complexes: all four subunit RNAs were required for substantial 

responses. 

Origin of voltage sensitivity 

Voltage-sensitive responses presumably have their origin in Coulombic 

interactions. Several specific types of interaction can be envisioned. Among 

these are interactions between the dipole moment of the channel and the 

membrane field, between permeant ions and a barrier or binding site in the 

channel, or between ions bathing the membrane and the binding sites on the 

receptor. At present there is no strong basis for choosing among these 

possibilities. However, because the voltage sensitivity is also in the same 

direction, one might tentatively conclude that the Coulombic interaction energy 

has the same sign for all of the 16 combinations (except for the single combination 

etTBTYM cp for which the energy is presumably zero). A dipole moment (Magleby 

& Stevens, l 972a,b) could presumably have either sign, in disagreement with this 

idea. However, if the Coulombic interaction involves an ion in the solution and a 



120 

binding site on the receptor (Armstrong & Matteson, 1986), the energy would 

always have the same sign. 

The most voltage-sensitive combination showed a ratio of 16 over a voltage 

range of 120 mV. This would correspond to an e-fold change per 43 mV. ·such a 

variation could be caused by the motion of a single charge halfway through the 

membrane. The binding site might be either weaker or nearer the membrane 

surface for the more weakly voltage-dependent combinations. 

Regardless of the detailed mechanism, it seems difficult to escape the 

conclusion that the difference of the voltage sensitivity between the mouse and 

Torpedo S subunits arises because of a difference in the charges on their amino­

acid residues. One possibility is that the mouse and Torpedo subunits fold in 

exactly the same way, so that there are one or two regions with charge 

differences. Fig. l 0 presents a simple superposition of the charge distributions. 

There are several regions of substantial difference; the range of residues 210 to 

220 is especially interesting because it lies between the region homologous to the 

binding site on the a subunit and the highly conserved M2-M3 region thought to be 

involved in permeation (Hucho et al., 1986; Giraudat et al., 1986; Imoto et al., 

1986). 

A more subtle possibility is that the mouse and Torpedo s subunits fold 

differently because of differences in nonpolar interactions, again resulting in 

three-dimensional structures with different charge distributions. This possibility 

would be more difficult to analyze from primary sequence data alone. The 

problem calls for further analysis using chimeric and mutant subunits (Imoto 

et al., 1986). 
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Fig. 10. Charge distributions on mature mouse and Torpedo 8 subunits. The plot 

was generated by assigning a value of + l to l ys and arg, -1 to glu and asp, and 0 to 

other residues. The data were then subjected to a running average of 10 residues; 

gaps were then introduced to provide a good homology. The bars give positions of 

the disulfide bond in the putative extracellular region (S-S), putative a-helices 

Ml-M4, and the putative amphipathic helix MA (Stroud & Finer-Moore, 1985). 
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Acetylcholine receptor ion channel properties: 

A study of elementary currents 
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SUMMARY 

The single channel properties of nicotinic acetylcholine receptors (AChRs) 

have been studied by patch clamp recording. We have examined homogeneous and 

hybrid receptors expressed on the membrane of Xenopus oocytes microinjected 

with the desired combinations of in vitro transcribed mRNAs coding for the mouse 

and Torpedo AChRs. 

In order to understand the mechanism underlying the phenomenon of 

voltage sensitivity previously observed at the level of whole cell electrophysio­

logical recording, three parameters of the mouse AChR ion channel were 

examined for their relationship with the membrane electrical potential: a 

conductive parameter, the single-channel conductance, and two kinetic 

parameters, the channel-opening rate and the channel-closing rate. It was found 

that the single-channel conductance is independent of the membrane potential and 

that both the opening rate and the closing rate of the ion channel are influenced 

by the voltage. The relative extent of the voltage dependence for both rates was 

evaluated. It appears that while both the opening and closing rates form the basis 

for the voltage sensitivity of the whole-cell response to the agonist, the channel­

closing rate makes the major contribution. 

The subunit involvement in the determination of the gating properties 

between Torpedo and mouse AChRs was also studied. It was found that the o 

subunit dictates the species specificity of mean open duration time, in agreement 

with an independent study using AChRs from calf and Torpedo (Sakmann et al., 

1985). Our results also demonstrated the roles of the s and the o subunits in 

determining voltage sensitivity, supporting the findings of our previous work by 

whole-cell recording and thus extending its conclusions to the level of single ion 

channels. 
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INTRODUCTION 

Ion channels in cell membranes are generally classified into two groups 

according to their stimuli. Voltage-gated channels are activated by changes in 

membrane potential, are selective in their permeability to ions, and are named for 

their ion selectivity, such as sodium channel, potassium channel, and chloride 

channel. Ligand-gated channels, on the other hand, are activated by the binding 

of certain organic molecules, are often not selective in their permeability to ions 

beyond cation/anion specific, and are called receptors for their chemical 

"activators," such as acetylcholine receptor (AChR), serotonin receptor, and 

GABA receptor. These receptors are often referred to as "electrically inexcitable 

channels" (Hille, 1984), meaning the onset of their activity is not responsive to 

changes in membrane potential. In studies of the AChR, however, it became clear 

that once the channel is activated by ligand binding, its behavior is influenced by 

the membrane potential (Takeuchi and Takeuchi, 1959; Kordas, 1969; Magleby and 

Stevens, J 972a,b). This effect, known as the voltage sensitivity of AChR, has 

been studied extensively with the use of whole cell voltage clamp technique. 

The advent of the patch-clamp technique (Neher and Sakmann, 1976) 

provided the high resolution in electrophysiological recording necessary to detect 

currents through single ion channels. The methodology has been improved 

significantly since its inception and is described in great detail in a book edited by 

Sakmann and Neher ( 1983). The principle of the technique is illustrated 

schematically in Figure l. A glass microelectrode is moved toward the cell till its 

fine tip touches the cell membrane. Under favorable conditions, the heat-polished 

rim of the electrode tip and the membrane forms a tight seal with an electrical 

resistance of the order of giga-ohms. The high resistance isolates the membrane 

patch electrically and ensures that all the currents flowing through this membrane 
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Fig. 1. Patch-clamp technique. 

The schematic representation shows the various ways to obtain a membrane 

patch for single channel recording. A by-product enroute to obtain an excised 

"outside-out" patch is a "tight-seal" for whole-cell recording. 
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area also flow through the recording circuit. Since the microelectrode has a very 

small opening (a few square microns), the recording is restricted to only a few 

channels at a time. This technique thus enables one to resolve elementary 

currents as small as l pA, i. e., the flow of -6000 monovalent ions per 

millisecond. There are several variations for the membrane patch configuration. 

After a giga-ohm seal is formed, the membrane patch underneath the electrode 

can be voltage-clamped for membrane current recording while the cell is still 

attached to the electrode ("cell-attached" mode). Alternatively, the membrane 

patch can be ripped off from the cell by pulling away the microelectrode to form 

an "excised" patch, leaving the cytoplasmic side of the membrane facing the bath 

solution and the extracellular side in contact with the electrolyte inside of the 

electrode ("inside-out" mode). If, on the other hand, the membrane underneath 

the microelectrode is ruptured before excision by a negative pressure (the 

traditional method) or a positive pressure (our recent variation), a conductive 

pathway is established between the electrode lumen and the cell interior. The 

entire cell can be voltage-clamped at this point ("tight-seal" whole cell recording, 

appropriate for small cells). If the electrode is gently pulled away from the cell, 

the membrane will be stretched until it breaks. With a certain percentage 

(inversely proportional to the operator's blood pressure), the membrane snaps back 

to seal the electrode tip. The patch formed this way has the exterior side facing 

the bath solution ("outside-out" mode) and can be voltage-clamped. Using the 

patch-clamp technique, the properties of AChRs have been studied extensively in 

cultured cells and animal tissues (Auerbach and Sachs, 1984). One drawback of 

these studies is the uncertainty of the homogeneity of the AChR channels under 

investigation, since it is known that vertebrate muscles express different types of 

AChRs with different kinetic and conductive properties (Katz and Miledi, 1972; 

Neher and Sakmann, 1976; Auerbach and Lingle, 1986). One way to overcome this 
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uncertainty is to generate a homogeneous population of AChRs. The molecular 

cloning of the cDNA sequences coding for all four AChR subunits from several 

species (see Chapter 1 for references) has provided such an opportunity. Using the 

AChR cDNA clones to produce in vitro transcribed mRNAs, Mishina et al. ( 1986) 

studied the fetal and adult forms of bovine AChR and confirmed that the 

heterogeneity of the AChR channel properties in animal tissue is indeed due to 

differences in AChR amino acid sequences. 

Oocytes from the African frog Xenopus have provided an adequate system 

for the expression of foreign mRNAs and subsequent electrophysiologiCal analysis 

of membrane ion channels (Miledi and Sumikawa, 1982; Miledi et al., 1982; 

Barnard et al., 1982; White et al., 1985; Mishina et al., 1986; Oascal et al., 1986). 

Using the oocyte expression system and the cDNA clones from mouse and 

Torpedo, we have investigated the AChR ion channel properties at the level of 

whole-cell recording (Mayne et al., 1987, and this thesis; Yoshii et al., 1987, and 

this thesis). In the present study, we used the patch-clamp technique to study the 

single-channel properties of AChRs expressed in oocytes following injection of 

RNAs encoding the AChR subunits from mouse and Torpedo. We also studied 

hybrid AChRs constructed by mixing subunit RNAs from both mouse and Torpedo 

AChR. Our results confirm the conclusions from the whole-cell voltage clamp 

study reported earlier (Yoshii et al., 1987, and this thesis). Our results further 

indicate that the influence of membrane potential on the channel opening rate is 

small and that the voltage dependence of the channel closing rate is the main 

source of the voltage sensitivity in the whole-cell response to stimulation by 

agonist. 
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MATERIALS AND METHODS 

AChR cDNAs and mRNAs 

The source of cDNA clones for the AChR subunits was as described by 

Yoshii et al. (1987, and this thesis) for the mouse receptor and by White et al. 

(1985) for the Torpedo receptor. 

The synthesis of AChR mRNAs by in vitro transcription followed the 

protocol of White et al. (1985) with some modifications (Mayne et al., 1987, and 

this thesis). 

Preparation and maintenance of oocytes and RN A injection 

The procedures were as described (Yoshii et al., 1987, and this thesis) with 

the following modifications. The concentration of mRNA for microinjection 

varied from 0.1 to lmg/ml, in order to obtain a receptor density on the oocyte 

surface which was optimal for patch-clamp recording. A new injection needle was 

used every time the RNA solution was changed in order to prevent cross­

contamina tion between different combinations of AChR mRNAs. Oocytes were 

incubated at 20°c in a humidified incubator and the bath solution was changed 

every day. After 48-60 h incubation, oocytes were transferred to 4°C for storage 

for up to 10 days. 

Electro physiology 

The whole-cell response to ACh was recorded with the technique of the two 

intracellular microelectrode voltage clamp as described (Yoshii et al. , 1987, and 

this thesis) with the following modifications. The temperature of the oocyte was 

lowered during recording to improve the resolution of kinetic measurements. A 

Plexiglas recording chamber with a volume of 170µ1 was attached to a metal 
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thermotransfer platform. A layer of heat-transferring silicone compound (Type 

Z9, GC Electronics, Rockford, Illinois) was sandwiched between the chamber and 

the platform to ensure efficient heat transfer. The chamber was continuously 

perfused during voltage-clamp experiments at a rate of 5ml/min. The superfusion 

solution was temperature-controlled via a Gizmo (Model A, Lester Instruments 

Inc., Pasadena, California), using the double-circulation cooling method (Lester, 

1970). The temperature in all the experiments was held at l 2+0.5°C using a 

Lauda/Brinkmann circulator (Model K-2/R, Brinkmann Instruments Inc., Westbury, 

New York) connected to the chamber-cooling- and superfusion-cooling devices. 

The superfusion solution contained lOOmM KCl, lmM MgC12, lOmM EGTA, 0.3µM 

atropine sulfate, and lOmM HEPES, pH7.2, 240m0sm. ACh was added to the 

solution when desired. Generation of command voltages, recording of response 

currents, and data analysis were aided with the computer programs 

CLAMPEX/CLAMPAN (Kegel et al., 1985, commercially available with pCLAMP, 

Axon Instruments, Burlingame, California). 

For single-channel recording, individual oocytes were transferred to 

hypertonic Barth's medium containing lOOmM NaCl for 2-5min, washed in Barth's 

medium, and then transferred to the recording chamber for the removal of 

vitelline membrane. The removal was performed manually with forceps. The 

oocyte was transferred back to Barth's medium after an excised patch was 

obtained and before the superfusion of ACh-containing solution to prevent 

desensitization of the oocyte. This procedure allowed us to obtain multiple 

patches from the same oocyte. 

Patch pipettes were fabricated from hard glass capillaries (KG-33, Garner 

Glass Company, Claremont, California) by a two-step pulling procedure (Hamill et 

al., 1981) with a vertical pipette puller (Newport Research Corp., Fountain Valley, 

California), heat-polished on a micro forge (Sensaur, France), and filled with 
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superf us ion solution before use. Pipettes typically had a resistance of 10-40Mn. 

A Dagan 8900 patch clamp amplifier (Dagan Corp., Minneapolis, Minnesota) was 

used with a lOGn feedback resistor. The patch-clamp probe was controlled 

mechanically with an oil drive (Narishige Scientific Instrument Lab., Tokyo, 

Japan). Command voltages were generated by a voltage calibrator (Model 200 l, 

World Precision Instrument Inc., New Haven, Connecticut). 

The single-channel currents were monitored simultaneously on an 

oscilloscope and a chart recorder. During the experiments, the single-channel 

currents and holding potential were filtered to 5kHz with an 8-pole low-pass 

Bessel filter (Model 902LPF, Frequency Devices Inc., Haverhill, Massachusetts), 

digitized with a modified Nakamichi digital mastering processor (Model DMP-100 

with a PS-10 power supply, Nakamichi Corp., Japan), and recorded with a Betamax 

stereo videocassette recorder (Model SL-2700, Sony Corp., Japan) on magnetic 

videotapes. 

Single channel data acquisition and analysis 

Data acquisition and subsequent analysis were aided with a set of computer 

programs FETCHEX/FETCHAN/PSTAT (Kegel et al., 1985). New features were 

added to these programs as the need developed (Floyd Shon, personal 

communication). 

The digitized single channel currents stored on videotape were converted 

back to analog signals via the Nakamichi processor, filtered at 2kHz with the 8-

pole Bessel filter (except 3kHz for Torpedo AChR), and fed into a window 

discriminator. Current signals triggered by AChR channel openings were led to an 

analog-to-digital converter (Lab master, Scientific Solutions, Ohio) and stored by a 

microcomputer (IBM PC-AT, IBM Corp., Armonk, New York). The signals were 

sampled with FETCHEX at lOkHz and the digitized data were written to a "data 
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file" on a 30 megabyte hard disk. Each data file contained openings from a single 

patch at a particular holding potential. 

The data analysis of single channel currents consisted of two discrete steps: 

construction of idealized records and statistical analysis of the idealized records 

(see Results and Discussion). The construction of idealized records was performed 

either in manual or in automatic mode with FETCHAN. The program compiled 

channel openings as a list of "events." For each event, the following information 

was recorded, the time since the end of the last opening, the duration of the 

present opening, the· amplitude and its standard deviation, and the cumulative 

time since the beginning of the data file. The event file, which amounted to an 

idealized record of the original data, constituted the permanent record of the 

experiment and was saved on diskette. Statistical analyses of the idealized 

records were performed with PSTAT, which employs a BASIC program (Schreiner 

et al., 1985) for curve fitting using the Marquardt algorithm for least-squares 

estimation (Marquardt, 1963). 
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RESULTS AND DISCUSSION 

Voltage Sensitivity of the Acetylcholine Receptor 

A description of the phenomenon 

When a cell with AChR molecules on its surface is stimulated by agonist, a 

transmembrane current flow can be recorded with voltage clamp techniques. It 

has been found that the amount of current is not linearly related to the electric 

driving force across the membrane: it becomes less as the membrane potential 

becomes more positive, thus the term "voltage sensitivity" (Kordas, 1969; Magleby 

and Stevens, l 972a,b). This effect is illustrated by the experiment shown in 

Figure 2. Xenopus oocytes injected with mouse AChR mRNAs (see Materials and 

Methods) were held in the voltage-clamp mode with two intracellular 

microelectrodes. A series of voltage steps (Figure 2A) was applied to the cell 

with a 20-mV increment. The response of the cell was measured as the amount of 

the current, supplied by the feedback circuit of the electronic instruments, 

necessary to hold the cell at the desired membrane potential. When the cell was 

not perturbed by the ligand, its response was linearly related to the voltage 

command, as reflected by the equal space between current traces in Figure 2B. 

After acetylcholine was applied to the bath solution to activate the receptors, the 

response of the cell to command voltage was increased (Figure 2C). However, this 

increase was not linear over the voltage range: As the potential became more 

positive, the increase in the response became less. This nonlinearity was more 

evident when the net ACh-induced current obtained by subtraction of the control 

current trace from the ACh-induced current trace was plotted, as shown in Figure 

20. This phenomenon is referred to as the voltage sensitivity of the AChR 

(Magleby and Stevens, l 972a,b). 
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Fig. 2. AChR voltage sensitivity. 

The effect of membrane potential on the whole cell response to the agonist 

ACh is illustrated. The data shown are from an oocyte with the mouse AChR. 

A. Command voltages. The holding potential for the whole-cell voltage clamp is 

-60mV. A set of 10 command voltages is applied to the cell, starting at -lOOmV 

and increasing with a 20mV step. 

B. Response of the cell in the absence of ACh. The transmembrane currents of 

the cell in response to the command voltages are shown. The initial peak is due to 

the transient capacitative current. 

C. Response in the presence of ACh. 

D. Net current induced by ACh. The currents shown in B are subtracted from 

those in C to give the net ACh-induced currents. 
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Not all the AChRs from different species are influenced by voltage to the 

same extent. Figure 3 shows the current-voltage plots of the AChRs from 

Torpedo (Figure 3A) and from mouse (Figure 3B). It is apparent that while the I-V 

curves for both receptors are nonlinear, the voltage influence is stronger for the 

mouse AChR than for the Torpedo AChR. The slope between any two points in 

the I-V plots, i. e., the difference in net current between these two points divided 

by the difference in corresponding potentials, gives the whole-cell slope 

conductance g in that potential range. The voltage sensitivity can therefore be 

described as a decrease in whole-cell conductance as the membrane potential 

becomes more positive. The extent of this voltage sensitivity can be quantitated 

by the ratio of any two whole-cell conductance values, for example, the ratio of 

g_90 (slope between -lOOmV and -80mV) and g+30 (slope between +20mV and 

+40mv) in our previous study (Yoshii et al., 1987, and this thesis). 

A consideration of kinetics 

Such is the phenomenon of AChR voltage sensitivity. What is the 

underlying mechanism? 

In a simple scheme for the AChR activation: 

~ --:a. * 2A + R~A2R_.--A2R 

kz a 

two acetylcholine molecules (A) bind to one receptor (R). The complex (A 2R) 

* assumes the open-channel state (A2R ) with a finite probability, determined by 

(1) 

the opening rate constant s. The open channel returns to the closed state with a 

closing rate constant a. In a voltage clamp experiment such as the one shown in 
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Fig. 3. Whole-cell I-V relationship. 

The ACh-induced whole-cell currents are plotted against the corresponding 

membrane potentials. Each plot shows the typical results from a single oocyte. 

A. I-V relationship of the Torpedo AChR. 

B. I-V relationship of the mouse AChR. 
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Figure 2 where the agonist concentration and the number of the receptors on the 

cell surface do not change, the whole-cell current in response to acetylcholine 

stimulation is determined by three factors: how often the channel opens, how 

much current passes through the channel in unit time, and how long the channel 

stays open. 8 and a reflect the channel opening and closing probabilities, and the 

conductance is expressed as the single-channel conductance (the slope of a single­

channel I-V cur:ve). Voltage dependence of any of these three parameters can 

contribute to the voltage sensitivity in whole-cell response to ACh. 

Single-channel recording 

To study the single-channel properties of the mouse AChR, we chose to use 

the method of excised outside-out patch recording (see Figure 1). This mode of 

recording offers several advantages over the other alternatives, namely, the cell­

attached mode and the excised inside-out mode. 

Because of the high sensitivity of the electronic circuits for single-channel 

recording, the flow of bath solution during superfusion, which causes slight 

movements of the cell, increases the background noise in the cell-attached 

mode. Cell movements also increase the opening frequency of membrane stretch 

channels in Xenopus oocytes (Methfessel et al., 1986), making the data analysis 

more difficult. The excised inside-out method does not have these problems, but 

it has a disadvantage that also exists in the cell-attached mode: Because the 

extracellular side of the membrane is now facing the inside of the microelectrode, 

the agonist ACh has to be in the pipette in order to induce the AChR channel 

opening. This not only eliminates the option of varying agonist concentration to 

obtain a favorable channel-opening frequency, but also renders it difficult to 

prove that the channel openings are indeed ACh-induced rather than being 

triggered by some other stimuli. With the excised outside-out configuration, the 
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extracellular side of the membrane faces the bath solution, and the superfusion 

can be switched among solutions of desired composition. The authenticity of the 

A Ch-induced channels can be easily verified by changing the superfusion from 

agonist-free to agonist-containing solution, and an optimal frequency of channel 

opening can be obtained to minimize the effect of agonist-induced desensitization 

while maintaining a reasonable opening frequency. 

Using the excised outside-out patch recording technique, we studied the 

single channel properties of the mouse AChR. Figure 4 shows examples of the 

single-channel current traces. Certain features are apparent from these traces. 

First of all, to the extent of recording resolution, the channel opening 

approximates an all-or-none event: The transitions between closed and open states 

are fast, and the amplitude of the single-channel current reaches a steady value 

once the channel is open. This makes it desirable and convenient to represent the 

single-channel currents as square waves. The last row in Figure 4 shows such a 

representation--- an idealized record. As can be seen, the idealized record is a 

fairly good approximation of the original current trace above it. Analysis of 

idealized records is, however, much easier than that of the real current traces, 

and is therefore a standard practice in single-channel studies (Sakmann and Neher, 

1983). 

Another feature of the single-channel currents is the variability of both the 

open and the closed duration from event to event. This is the case because the 

open and closed states of an ion channel are actually different conformations a 

receptor-agonist complex can assume. The movements of the a toms in the 

complex are the underlying cause for the transition between the two states, and 

the stochastic nature of the thermodynamic movements results in the randomness 

of individual transitions. However, the probabilities for the transitions are not 

random --- they are governed by the law of mass action. As can be shown from 
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Fig. 4. AChR single-channel current. 

Examples of the ACh-induced single-channel currents from the mouse AChR 

are shown. The holding potential was -1 OOm V. Inward current is downward. The 

bottom row shows the idealized records of the openings above it. 
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the kinetic equation (Equation 1), the times for individual events are 

stochastically distributed in accordance with these probabilities, like any 

statistical processes (Davidson, 1962). To obtain a good estimate of the 

probability of a stochastic process, a large number of events must be sampled. 

Therefore, statistical analysis is in order. 

Analysis of single channel currents 

As can be seen in Figure 4, the amplitude of single-channel currents at a 

given membrane potential appears to fluctuate around a constant value. This is 

confirmed by the scatter-plot analysis shown in Figure 5A. The amplitude values 

of all the openings from a patch held at -lOOmV were plotted against their channel 

open times. The plot appears as a single cloud of points, showing that the 

openings of various duration times all have the same unit conductance. 

Since the amplitude values all center around a steady value, their 

distribution can be approximated by a Gaussian (normal) function. To obtain the 

mean amplitudes, the single channel currents were measured at various membrane 

potentials. The amplitude values from each potential were pooled together to 

construct a histogram for distribution curve fitting. Figure 5B is an example of 

the amplitude histogram histogram for the mouse AChR at the membrane 

potential of -lOOmV, containing the same data used in Figure 5A. The vertical 

steps represent the number of channel openings for the amplitude values in the 

corresponding amplitude range. The histogram was fitted to the normal 

distribution function: 

1 
Y=--e (2) 

J2;a 
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where :\. is the offset on the abscissa (therefore, the mean amplitude) and a is the 

standard deviation, reflected graphically as the broadness of the data 

distribution. The fitting was aided by a subroutine in the computer program 

PST AT (see Materials and Methods) using the Marquardt algorithm for least­

squares fitting of nonlinear parameters (Marquardt, 1963). The smooth curve in 

Figure 5B shows the result of fitting. [It should be pointed out that because of the 

nature of normal distribution, a fairly good estimate can be made by simply 

calculating the numerical mean of the amplitude values. Function fitting 

improves the estimation to a certain extent, but more importantly, it serves to 

satisfy the drive for nonessential accuracy possessed by many scientists (N. 

Davidson, personal communication)]. 

Because the single channel conductance is defined as the slope of the 

current-voltage relationship (g=i/V), the mean amplitude values at different 

membrane potentials were plotted against the respective voltages to construct an 

I-V plot. As shown in Figure 5C, the data points from fitted Gaussian distribution 

are marked by the square symbols, and the straight line represents the result of 

linear regression of the data. It is clear that the amplitude is linearly related to 

the membrane potential. In other words, the single-channel conductance (the 

slope of the line) does not change with membrane potential. 

Voltage effect on the duration of channel openings 

Since the duration of channel opening is of a stochastic nature, a 

meaningful estimate can be obtained only with a large number of events, usually 

several hundred to a few thousand channel openings (Colquhoun and Sigworth, 

1983). For a kinetic process such as the AChR channel opening postulated in 

Equation (1), once the channel is open, its duration is governed only by the closing 
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Fig. 5. Single-channel I-V relationship. 

A. An example of scatter plot. The amplitude values of the single-channel 

currents at -lOOmV from a patch containing the mouse AChR are plotted against 

the corresponding duration times of these openings on a semilogarithmic scale. 

B. An example of amplitude histogram. The data are from the same patch as 

those in A. Each vertical step represents the number of channel-opening events 

for the amplitude values on the horizontal axis. The smooth curve is the fitted 

Gaussian distribution. 

C. I-V plot of the single-channel currents from the mouse AChR. Squares 

represent the mean amplitude values obtained from the Gaussian distributions 

fitted to the histograms at different voltages. The line represents the result of 

linear regression of the data. 
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probability that follows an exponential distribution. Using the data from the 

excised outside-out patch recording, the open durations of all the channel openings 

at a given membrane potential were measured, and histograms were constructed 

for each membrane potential. Figures 6A and 6B are examples of open-duration 

histograms at the membrane potentials of -60mV and +60mV, respectively. Each 

histogram was fitted to a double exponential function: 

t t 

where c0 is the offset on ordinate, A 1 and A2 are the values at t=O for the two 

exponential components, and ' 1 ' 2 are the time constants for the components. 

(3) 

The two exponential components are a brief one and a long one, with the long one 

predominating. The brief component has been reported for AChRs from most 

preparations, but its significance is not clear, although it has been suggested to 

represent the monoliganded channel opening (see Chapter 1). The major 

exponential component with the long time constant contributes the most of the 

time-averaged current, and the standard practice is to base the interpretations on 

this component. We have followed this practice in the present study. The smooth 

curves in the histograms in Figures 6A and 6B are the fitted exponential functions, 

and the time constants of these exponentials give the mean duration of 

elementary currents with 'values of 8.65ms at -60mV and 3.2lms at +60mV. 

Evidently, the channel duration is strongly influenced by the membrane voltage. 

In order to estimate the degree of the voltage effect on channel duration, the ' 

values at various membrane potentials were calculated and plotted against the 

corresponding voltages on semilogarithmic coordinates, as shown in Figure 6C. 
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Fig. 6. Voltage effect on channel-closing rate. 

The open durations of AChR ion channels at different voltages were analyzed 

to evaluate the voltage effect on the channel-closing rate of the mouse AChR. 

A. Open duration histogram for the mouse AChR ion channels at -60mV. Each bar 

represents the number of events in that time range. The smooth curve represents 

the fitted exponential function for the distribution. The time constant is 8.65ms. 

B. Open duration histogram for the mouse AChR ion channels at +60m V. The time 

constant is 3.21 ms. 

C. Relationship between the membrane voltage and the AChR open-channel 

duration. The time constants for the durations are plotted against the 

corresponding voltages. The line represents the result of linear regression of the 

data. 
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The line represents the linear regression fit of the data points, and the slope has 

an absolute value of 3.86xl0-3ms/mV. The mean open duration T increases e-fold 

per l 13mV of hyperpolarization, indicating a strong correlation with the 

membrane potential. It is generally believed that the processes with rate 

constants B and a in Equation 1 are rate-limiting (Magleby and Stevens, l 972b; 

Adams, 1981; Auerbach and Sachs, 1984). Under these circumstances, the time 

constant for channel closing is equal to l/a.. The result then suggests that a. is 

markedly voltage-dependent. 

Voltage effect on the rate of channel openings 

The effect of voltage on the channel-opening rate was also examined. 

Because the exact number of receptor molecules may vary from patch to patch 

during recording, only the data from the same patch at various holding potentials 

can be compared with one another .• For the following analyses, we selected one 

patch that yielded the most unitary currents during recording and showed the least 

desensitization effect. Three different methods were employed to evaluate the 

voltage influence on the channel opening rate, as described below. 

The first method concerns the channel-opening frequency, which is 

expressed as the number of channel-opening events in a given time at a given 

voltage. The values of such frequency were calculated and the results were 

plotted against the membrane potentials, as shown in Figure 7. While the actual 

values of opening frequency are dependent on the time unit used in calculation, 

their distribution with respect to the membrane potentials is not, thus allowing 

the evaluation of voltage influence on the AChR channel-opening rate. The line in 

Figure 7 represents the linear regression of the data, and the slope has an absolute 

value of l.llxl0-3ms- 1mv- 1. From this, an e-fold change in voltage was 
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Fig. 7. Voltage effect on channel-opening frequency . 

The channel-opening frequencies , defined as the number of openings per 

second, are plotted against the membrane potentials. The line represents the 

result of linear regression of the data. 
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calculated to be 395mV. This represents a threefold lower voltage influence as 

compared with the e-fold potential shift of l 13m V for the mean open duration. 

Another way to evaluate the relationship between the channel-opening rate 

and the membrane potential is to study the time interval between the onset of 

successive openings. Figure 8 illustrates the analysis by this method. The interval 

time between openings was measured at -50m V and + 50m V, and the histograms 

were constructed, as shown in Figures 8A and 8B. Like the channel open duration, 

the interval time also displays an exponential distribution and can be fitted in 

similar fashion. The smooth lines in Figures 8A and 8B are the fitted 

exponentials, their time constants being 607ms and 654ms for the membrane 

potentials at -50mV and +50mV, respectively. As in the channel-opening 

frequency analysis, the -r values here are meaningful only when they are compared 

with those from the same patch, because the actual value is influenced by factors 

such as the number of receptors in the patch, the agonist concentration, and the 

temperature in the experiment, in addition to the voltage effect we wanted to 

study. When the -r values are plotted against the membrane potentials, however, 

their relationship can be examined. Figure 8C shows the time interval vs. the 

membrane potential plot and the linear regression fit, which gives a slope of 

0.83xl0-3ms/mV and an e-fold potential shift of 523mV. This outcome is in 

general agreement with the conclusion obtained by the channel-opening frequency 

method that the channel-opening rate is affected by the membrane potential, but 

to a lesser degree than that on the channel-closing rate. On the other hand, this 

method of analysis does give a smaller linear regression slope value and a larger 

membrane potential change to reach an e-fold shift than those derived from the 

opening-frequency analysis, implying a smaller degree of voltage dependence of 

the channel opening rate. 
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Fig. 8. Voltage effect on channel closed interval. 

A. Closed interval histogram for the mouse AChR ion channels at -50mV. The 

interval is the time between the beginning of an opening and the beginning of the 

next one. The smooth curve represents the fitted exponential function. The time 

constant is 607ms. 

B. Closed interval histogram for the mouse AChR ion channels at +50mv. The 

time constant is 654ms. 

C. Closed interval vs. voltage plot. Symbols represent the time constants from 

the histogram curve fitting. The line represents the result of linear regression of 

the data. 
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The third method of analysis calculates the total time the receptors spend 

in the open state and derives the ratio of this "sum" open time vs. the whole 

record duration at a given potential. Because the total time in the open state is 

controlled by both the channel-opening rate and the channel-closing rate, the 

results have to be compared with those from the mean open-duration analysis in 

order to estimate the relative contributions from each component. Figure 9 shows 

the results of this analysis. The ratios of summed open time to the total record 

duration are plotted against the membrane potentials in semilogarithmic 

coordinates. The linear regression fitting is represented by the straight line in the 

-3 -1 plot, and the slope has an absolute value of 4.59xl0 mV with an e-fold 

potential shift of 9 5m V. This strong dependence on the membrane potential is the 

combined effect of the voltage on the channel-opening and channel-closing rates. 

When the contribution of the channel-closing rate is subtracted, using the data 

from the analysis on the mean channel duration, a slope value of 0.73xl0-3 and an 

e-fold change in membrane potential of 59 5m V are obtained. This again agrees 

with the results from the other two methods: The AChR channel-opening rate is 

influenced by the membrane potential, and its contribution to the whole-cell 

voltage sensitivity is smaller than that from the channel-closing rate. 

Of the three methods we used, the third one --- calculating the ef feet of 

voltage on the opening rate by subtracting the voltage dependence of the closing 

rate from the combined effects on both the opening and closing rates --- seems to 

be more reliable for the following reasons. The method of channel-opening 

frequency analysis theoretically reflects the channel-opening rate, if all the 

openings are captured during patch-clamp recording. From the study on the 

channel-closing rates it is apparent that this latter parameter is heavily dependent 

on the membrane potential; specifically, the average channel duration becomes 

shorter as the voltage becomes more positive. Because the patch-clamp technique 
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Fig. 9. Voltage effect on percentage of channel open time. 

Percentage of open time is defined as the total time channels are in the open 

state divided by the time of the entire record. The percentage values are plotted 

against the corresponding membrane potentials. The line represents the result of 

linear regression of the data. 
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has a finite time resolution, the number of openings of very brief duration that go 

undetected will increase with more positive holding potentials. Since the analysis 

relies on the number of recorded events within a time period, the outcome is 

bound to give a higher degree of voltage dependence of the channel-opening rate 

than actually exists. The second method analyzes the distribution of the time 

intervals between the neighboring events. While this method suffers from the 

same type of limitation as the first one, the extent of bias is presumably smaller, 

because the nature of the exponential distribution curve fitting is weighted more 

toward the majority of data points and therefore the outcome is affected less by 

the relative small percentage of the long intervals resulting from the missed brief 

events. Our results support this interpretation, as the second method suggested a 

smaller effect of voltage on the opening rate. The third method of analysis 

tabulates the total time the receptors spend in the open state and does not rely on 

the number of events recorded. While the missed brief openings still make the 

measurements underestimated, the effect is much less severe. This is because the 

missed events amount to an insignificant portion of the total open time, because 

of the very nature of their brevity which causes them to go undetected. This 

explanation is substantiated by our results that the third method gives the 

smallest value of voltage dependence of the open rate, suggesting that the voltage 

effect is the least overestimated by this method. 

Conclusions 

Our analysis of the single-channel data obtained by the technique of 

excised outside-out patch-clamp recording indicates that the voltage sensitivity 

observed at whole-cell level is not due to the voltage dependence of the single 

channel conductance: The current-voltage relationship is linear in the membrane 

potential range we examined. On the other hand, both the rate of channel opening 
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and the rate of channel closing are affected by the membrane potential. As the 

voltage becomes more positive, the opening rate B decreases and the closing rate 

ex increases. These two parameters work in coordination to form the basis for the 

voltage sensitivity of the whole-cell response to agonist. Their contributions, 

however, are quite different. The three methods we used in estimating the 

relative contributions gave the contribution of 78%, 82%, and 84% for the 

channel-closing rate ex. We believed that even the highest value is an 

underestimation. While more accurate measurements will make the issue more 

clear, it is reasonable to conclude that the ratio of relative contributions of the­

channel-closing rate vs. the channel-opening rate is higher than 3: l for the AChR 

from mouse. 

Subunit Role in Channel Properties 

The rationale 

Acetylcholine receptor (AChR) in vertebrate is a multisubunit protein, 

composed of ex, s, y, and o subunits. These subunits share homology at both 

sequence and structural levels (Stroud and Finer-Moore, 1985). Why 

multisubunits? One explanation is that, for a multifunctional membrane 

receptor/ion channel such as AChR, different subunits may be responsible for 

different protein properties, therefore reducing the selec:tive pressure on keeping 

the existing functions while developing new ones during evolution. This view is 

well exemplified by the fact that the ex subunits carry the agonist and antagonist 

binding sites (Heidmann and Changeux, 1978; McCarthy et al., 1986). The 

availability of the AChR cDNA clones from several species made it possible to 

construct hybrid receptors by substituting a subunit with its counterpart from 

another species and to build chimera receptors by shuffling certain fragments 
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between subunits. These experiments led to the discovery that the AChR from 

Torpedo has a quite different response profile from its counterparts in mammals 

and other vertebrates (White et al., 1985; Sakmann et al., 1985; Mayne et al., 

1987, and this thesis). Further studies by Sakmann, Numa, and colleagues on 

single-channel behavior revealed the importance of the o subunit in determining 

the mean channel open duration (Sakmann et al., 1985) and the single-channel 

conductance (Imoto et al., 1986). Our earlier work on the whole-cell response to 

acetylcholine suggested that the B subunit plays an essential role in determining 

the receptor voltage sensitivity, while the o subunit interacts with the B subunit 

in an additive and modulatory fashion (Yoshii et al., 1987, and this volume). We 

wanted to study the receptor behavior at the single-channel level. Comparison of 

the single-channel data with that from the whole-cell recording may provide 

further clues to the subunit involvement in receptor functions. 

Mean channel opening time 

The AChRs from Torpedo and from mouse exhibit very different profiles of 

channel opening. As shown in Figures lOA and lOB, the Torpedo channels have 

predominantly brief openings, while the mouse receptors often open for a long 

time. The channel duration histograms for the Torpedo and mouse AChRs are 

shown in Figures 1 OC and 1 OD. The exponential curve fitting of the channel 

opening histograms gave the time constant T values of 0.34ms for the Torpedo 

receptor and 8.65ms for the mouse receptor. 

Two hybrid receptors, aMBM yToM and aTBTyToM, were studied for their 

channel-gating behavior. Figures l .lA and l lB show typical current traces of the 

two hybrid channels. It is apparent that both hybrid channels resemble their 

mouse parental receptor in that they both open for a long time. Statistical 
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Fig. 10. Open-channel duration of the Torpedo and mouse AChRs. 

A. Examples of the AChR-induced single-c.hannel currents at -60mV from the 

mouse AChR. 

B. Examples of the AChR-induced single-channel currents at -60mV from the 

Torpedo AChR. 

C. Open duration histogram for the Torpedo channels at -60mV. The fitted 

exponential has a time constant of 0.34ms. 

D. Open duration histogram for the mouse channels at -60mV. The fitted 

exponential has a time constant of 8.65ms. 
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A. Examples of th.e AChR-induced single-channel currents at -60mV from the 

aTSTYT 0M" 

B. Examples of the AChR-induced single-channel currents at -60mV from the 

aM 6MYT 6M· 

C. Open duration histogram for the hybrid aTSTyToM channels at -60mV. The 

fitted exponential has a time constant of 5.11 ms. 

D. Open duration histogram for the hybrid aMSMyT6M channels at -60mV. The 

fitted exponential has a time constant of 4.29ms. 
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analysis confirmed this observation. Figures l lC and 110 show the corresponding 

histograms with fitted exponential curves. The time constant T values are 4.29ms 

for the hybrid receptor aMSMyT<SM and 5.1 lms for the hybrid receptor 

aTBTYT 0M· 

These results indicate that the open-channel durations of both hybrid 

receptors are similar to that of their mouse "parent." An inspection of the 

receptor compositions readily points out the existence of the o M subunit in all 

three long opening receptors. This is in agreement with the report by Sakmann 

et az:(l985), using the Torpedo and calf AChRs, that the mean open duration is 

short for the Torpedo receptors and long for the calf receptors and that the calf o 

subunit confers the long channel open time. 

Voltage sensitivity 

Our previous work on the whole-cell response to agonist from mouse­

Torpedo hybrid AChRs suggested the primary and secondary roles that s and o 

subunits play in determining the degree of voltage sensitivity (Yoshii et al., 1987, 

and this thesis). To confirm the results from whole-cell recording, a study was 

done with the homogeneous receptors aMBMYM oM and aTSTyToT and with the 

hybrid receptors aMSMyToM and aTSTyToM. Since the voltage sensitivity in the 

receptor is mainly determined by the open-channel duration (Figure 6C), the 

distributions of the open-channel duration from these receptors were analyzed. 

Openings with equal driving potentials but opposite directions (-60mV and +60mV) 

were measured, open duration histograms were constructed, and the time constant 

T values were obtained from fitted exponential curves. The results are shown in 

Table l. The ratio of the T values at these potentials serves as an index to the 

extent of voltage dependence. 
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TABLE 1 

Subunit role in voltage sensitivity 
exhibited by the ratio of mean channel open times 

AChR 't-60mV 't+60mV 
composition 

0.36+0.04ms 0.23+0.04ms 

5.35+0.16ms 2.19+0.29ms 

8.08+0.20ms 2.96+0.13ms 

3. 72+0.09ms 1.19+0.16ms 

* Voltage 

dependence 

1.56 

2.44 

2.73 

3.13 

* Voltage dependence is defined here as the ratio of the mean channel open times 

at -60m V and +60m V. 
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The homogeneous Torpedo receptor displays a weak, nonetheless 

detectable, voltage dependence. The receptors containing the B subunit from 

mouse (aMBMyMoM and aMBMyToM) show strong voltage dependence, and the 

hybrid receptor with Torpedo B subunit and mouse o subunit (aTBTyToM) displays 

intermediate dependence on voltage. These results are in good agreement with 

our results from the study on the whole-cell response to agonist and its sensitivity 

t? membrane potential (Yoshii et al., 1987, and this thesis), thus supporting our 

conclusions from that study that the B subunit plays an important role in 

determining the voltage sensitivity (a BM yo>aBTyo) and that the interaction 

between the Band the o subunit has a modulatory effect (a BM yoT 

>aBMyoM>aBTyoM >aBTyoT). More hybrids should be tested to futher 

substantiate these conclusions. 
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