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Abstract 

This thesis presents an approach for performing second moment analyses of nonlinear 

dynamic systems with parameter uncertainty. The uncertain parameters are modeled 

as time-independent random variables. The set of orthogonal polynomials associated 

with the probability density function is used as the solution basis. When a determin­

istic excitation source is considered, the response variables are expanded in terms of a 

finite sum of these polynomials with time-dependent coefficients. The weighted resid­

ual method is employed to derive a set of deterministic nonlinear differential equations 

that can be solved numerically for evaluations of response statistics. 

This solution approach is further extended to nonlinear continuous systems m­

volving inhomogeneous random media. A discrete representation is obtained via a 

spatial discretization procedure for the continuous response variables as well as the 

random continuum. Thus, the continuous random system can then be treated as in 

the case of the discrete random systems. The solution approach is applied to a study 

of a nonlinear random shear-beam model subjected to a near-field earthquake ground 

motion. 

The response uncertainty for nonlinear uncertain systems subjected to external 

stochastic excitation is also investigated. A general solution procedure based on equi­

valent linearization is presented. In this solution methodology, the instantaneous equi­

valent stiffness and damping matrices are approximated as quadratic random func­

tions. The resulting Liapunov system with explicit random coefficients can then be 

solved using the newly developed solution approach. Applications to single-degree-of­

freedom uncertain systems are given and the accuracy of the results is validated. 
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Chapter 1 

Introduction 

The treatment of systems with parameter uncertainties has become an increasingly 

important problem in many areas of dynamic analysis. Mathematical models for 

dynamical systems, as well as solution techniques, have become increasingly refined 

and more precise. Therefore, the most important factor controlling the uncertainty 

of the solution is usually the uncertainty of the system and excitation parameters. 

For example, it is now possible to perform very detailed analyses of the response 

of buildings to earthquakes including modeling of the fault rupture process, wave 

propagation path effects, and local site effects, as well as a full nonlinear structural 

analysis including soil-structure interaction. However, the precision with which these 

analyses can be performed masks the fact that the results are only as meaningful as 

the model parameters assumed. Often, the model parameters are only poorly known, 

and the uncertainty in these parameters may have a large effect on the reliability of 

any conclusions based on deterministic analyses. 

There is a need for more efficient and accurate analysis techniques that allow 

the effects of parameter uncertainty to be included in the analysis of both linear 

and nonlinear dynamical systems. Previous studies have focused primarily on linear 

systems. However, many dynamical systems of importance are inherently nonlinear. 

The development of solution techniques that are applicable to nonlinear systems has 

proven to be a formidable challenge. 

The studies of uncertain linear systems with deterministic dynamic loads may 

be classified into statistical frequency-domain analyses [1 , 2] and statistical transient 
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time-domain analyses [3, 4, 5, 6, 7, 8, 9]. The property that a harmonic time function is 

preserved under linear transformations makes the response amplitude statistics a well­

defined measure of the response variability of linear systems. However, the amplitude 

statistics may not be appropriate in the presence of nonlinearity, since multiple steady­

state solutions may exist. Therefore, the analysis of nonlinear systems is generally not 

practical using frequency-domain analysis techniques. 

Existing solution methods for statistical nonlinear transient time-domain analyses 

are mostly based on simulation [10, 11] and the perturbation approach [3, 4, 5]. The 

simulation method is applicable to both linear and nonlinear problems. A major 

disadvantage of this approach is that it requires considerable computational efforts 

for accurate results. Liu, Belytschko and Mani [3] have formulated a perturbation 

approach for calculating the first and the second-order response sensitivity vectors. 

This method is used to study short duration transient excitation of yielding multi­

degree-of-freedom structures with random stiffnesses. This technique has also been 

implemented for nonlinear continuous systems involving inhomogeneous random me­

dia [4]. However, in [5], it is concluded that the accuracy of the perturbation-based 

solutions deteriorates for large time due to secular terms, and therefore removal of the 

secularity is required for consistent results. 

As previously mentioned, the excitation uncertainty represents another major 

source of uncertainty, particularly for systems under random dynamical loadings. The 

analyses of stochastically excited uncertain systems are primarily performed on the 

basis of the random vibration theory with an additional consideration of parameter 

uncertainty. In the past decades, exact linear solutions for most stationary and non­

stationary problems were obtained in closed forms [12] . The effect of parameter uncer­

tainty can then be assessed directly, and the task is technically straightforward. Al­

though exact analyses are currently possible for a few nonlinear problems [13, 14, 15], 

great difficulties generally exist, especially when the nonstationarity is considered or 
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multi-degree-of-freedom systems are attempted. Consequently, appropriate approxim­

ation techniques become particularly useful when time-costly Monte-Carlo simulation 

is to be avoided. 

The method of equivalent linearization has become a standard technique for ob­

taining approximated solutions of nonlinear random vibration problems. This method 

originated from the work by Caughey [16], generalized by Iwan [17, 18], Iwan and 

Yang [19], Spanos [20] and Atalik [21] for multi-degree-of-freedom systems, and by 

Mason and Iwan [22] for nonstationary problems. This technique has also been imple­

mented by Wen [23], and I wan and Asano [24] for solving nonlinear systems exhibiting 

hysteretic behavior. 

Previous research studies of uncertain nonlinear systems subjected to stochastic 

excitation are mostly based on the equivalent linearization method combined with 

other techniques for treating the additional randomness due to uncertain paramet­

ers. Cherng and Wen [25] apply a second-order perturbation technique for analyzing 

uncertain nonlinear hysteretic structures. A similar perturbation technique is ad­

opted by Chang and Yang [26] for treating uncertain flexible beams with geometric 

nonlinearity. Klosner, Haber and Voltz [27] apply a numerical integration technique 

combined with a linearized Fokker-Plank equation to investigate uncertain two-degree­

of-freedom systems. Despite the fact that the nonlinear physical models differ in the 

above mentioned studies, equivalent linearization was reported as a suitable analysis 

means for nonlinear analyses of uncertain systems. Unfortunately, the implementa­

tion of equivalent linearization is confined within the scope of stationary response, and 

nonstationary applications have not been fully explored. 

It is the objective of this thesis to develop an alternative solution method for 

analyzing nonlinear uncertain dynamical systems subjected to deterministic as well 

as stochastic excitation sources. Emphasis is given to the second-moment analysis 

of transient response when a deterministic excitation source is considered, and of 
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nonstationary response when a stochastic excitation source is considered. The organ­

ization of this thesis is briefly described below. 

In Chapter 2, a solution method is proposed for analyzing discrete nonlinear dy­

namical systems with parameter uncertainty. The uncertain parameters are idealized 

as time-independent random variables. The response variables are expanded in terms 

of a set of orthogonal polynomials and then the method of weighted residues is used to 

derived a coupled deterministic nonlinear equation set. Applications of the proposed 

solution method are also given. 

Chapter 3 considers continuous dynamical problems exhibiting uncertain material 

properties idealized as a Gaussian random field. The random field is represented 

in terms of a finite sum of independent random variables via a discretization of the 

covariance function. The solution method developed in Chapter 2 can then be applied 

to an equation of motion resulting from a generalized spatial discretization of the 

random continuum. A concrete application is given in Chapter 4 where a nonlinear 

shear-beam model subjected to a near-field base earthquake is studied. 

Chapter 5 presents a solution framework for nonlinear random vibration problems 

with parameter uncertainty. The method of equivalent linearization is adopted in this 

solution framework for obtaining an equivalent random linear system. To allow an 

efficient treatment, the random equivalent stiffness and damping are approximated 

as quadratic random functions. The resulting random Liapunov system can then 

be converted into a deterministic Liapunov system to be evaluated numerically. In 

Chapter 6, the proposed solution framework is used to obtain nonstationary response 

for several uncertain single-degree-of-freedom systems. Other solution techniques are 

also provided for comparative studies. 

A summary and conclusions together with recommendations for future research 

are given in Chapter 7. 
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Chapter 2 

Nonlinear Discrete Systems with Uncertain 

Parameters 

2.1 Introduction 

This chapter is aimed at providing a solution method to evaluate the response variab­

ility of discrete nonlinear systems subjected to deterministic dynamic loadings. The 

proposed method is based on an orthogonal polynomial expansion in conjunction with 

a variational method in the sense of Galerkin. Comparative studies of different solu­

tion methods are also presented in order to investigate their transient behavior under 

the effect of parameter uncertainties. 

2. 2 Formulation 

The transient analysis of nonlinear structural systems with parameter uncertainty 

requires the solution to an equation of motion of the form 

Mx(t) + Cx(t) + Kx(t) + g(x(t), x(t), 1) = f(t) (2.1) 

where x(t) is the generalized displacement vector, and the matrices M, C and K rep­

resent the deterministic components of the mass, damping and stiffness, respectively. 

The vector/= { ')'1 , ')'2 , · · ·, ')'N }T represents N time-independent uncertain paramet-
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ers, g( ·, ·, ·) is a vector of linear and/ or nonlinear functions of their arguments, and 

f(t) is a vector of external forcing functions that are assumed to be deterministic. 

For a mathematically concise representation, the uncertain parameters are idealized 

as random variables with a prescribed probabilistic distribution. Consider the case 

where the set of uncertain parameters I are modeled as correlated random variables 

and their second moment representations are given by E[T] = i and Gov[/ , 1] = 

r. Then, these correlated random variables can be transformed into uncorrelated 

variables using a matrix decomposition of the covariance matrix r. Let 

(2.2) 

where A is a diagonal matrix containing the eigenvalues of the covariance matrix, and 

<I> is the eigenvector matrix. Let the eigenvectors be normalized such that 

(2.3) 

where I is the identity matrix. 

Define a new set of random variables, b = {b1 , b2 , · · ·, bN }r, through the trans­

formation 

(2.4) 

Then, the transformed random variables satisfy E[b] = 0 and Cov[b, b] =I. These 

newly defined random variables are related to the correlated variables by the relation­

ship 

I= i + <I>A1;2b (2.5) 

Substituting Eqn. (2.5) into Eqn. (2.1) and suppressing the deterministic argu-
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ments for simplicity yields 

Mx(t, b) + Cx(t, b) + Kx(t, b) + g(x(t, b),x(t, b), b) = f(t) (2.6) 

The solution of random differential equation of type of Eqn. (2.6) poses many math-

ematical challenges. Various techniques developed for uncertain linear analysis are 

not applicable in this case since the inverse of a nonlinear random differential oper-

ator is not defined. This inherent difficulty limits the available solution methods to a 

very small number. One method that can be used is the perturbation method which 

is discussed in the next section. 

2.3 Perturbation Method 

The perturbation method is based on the assumption that the parameter uncertainties 

are small. Since the solution variables depend continuously on the random parameters, 

the solutions can be perturbed about the mean values of the uncertain parameters 

using the Taylor series expansion [3 , 4, 28]. For notational simplicity, let s(t, b) be a 

vector of time-varying random functions and denote the nth-order Taylor coefficient 

of s(t, b) by st~j(t). Then, st~j(t) is given by 

(2.7) 

The perturbation for the displacement variable x(t , b) becomes 

x(t,b) 

(2.8) 
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Similarly, the nonlinear random function g(x, x, b) can also be expanded as 

g(x,x,b) 
N 1 N N 

g[0l(t) + Lg~1l(t)bi + 21 LLg~~I](t)bibj + 
i=l . i=l j=l 

1 N N N 

31 2:2: 2: g;gin(t)bibjbk + · · · 
. i=l j=l k=l 

(2.9) 

where g~~~j ( t) are obtained through the chain rule of partial differentiation with respect 

to the dependent variables x(t, b) and x(t, b). 

Substituting Eqn. (2.8) and Eqn. (2.9) into Eqn. (2.6) and collecting terms of the 

same order in bi will yield an infinite set of deterministic equations. These determ-

inistic equations can be arranged in a hierarchical order. Truncating the equations 

at different hierarchical levels will correspond to different orders of approximation. 

Given an order of approximation, the resulting equation set contains only the Taylor 

coefficients less than or equal to the given order. Hence, it can be solved directly 

without recourse to particular closure techniques. 

For a linear problem, this equation set has identical homogeneous parts subjec-

ted to different forcing terms. Great efficiency can be achieved by solving this set 

sequentially. In the nonlinear case, this advantage is generally lost due to the res-

ulting coupling of nonlinear terms. Therefore, this set of equations must be solved 

simultaneously. 

The response statistics can be evaluated using the numerical results of the time-

domain solution of the resulting deterministic equations. When a second-order scheme 

is adopted, the mean response is given by 

1 N 
E[x(t, b)] = x[0l(t) + 2 l:xif1l(t) 

i=l 

(2.10) 
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The covariance matrix is given by 

C av [ x ( t, b), x ( t, b)] 
N T 1 N N T 
L:xi1l(t)xi1l (t) - 4 L:xWl(t) L:x1~J] (t) + 
i=l i=l j=l 

lNNNN T 

4 LL LL E[bibjbkbtJxWl(t)x~1l (t) (2.11) 
i=l j=l k=l [=:l 

When a third-order scheme is used, the mean response is also given by Eqn. (2.10). 

However, the expression for the covariance matrix involves higher order terms, and is 

given by 

N 1 N N 

Cov[x(t, b),x(t, b)] = L:xil](t)xil]T(t) - 4 L:xWl(t) L:x1~I]T(t) 
i=l i=l j=l 

NNNN 1 T 1 1 
+"" "" E[b b·b bl (- [JJ](t) [II] (t) + - [J](t) [III]T(t) + - [III](t) [J]T(t)) L.., L.., L.., L.., i J k t 4 XiJ xkl 

6 
xi xJkl 

6 
xJkl xi 

i=l j=l k=l l=l 

(2.12) 

Certain problems exist when performing an analysis of uncertain systems based 

on the perturbation method. For both the second-order and third-order schemes, the 

expression for the mean response makes no distinction as to the type of probability 

distribution associated with the uncertain parameters. Accordingly, this method is 

insensitive to the dependence of response statistics on the probability distribution of 

the uncertain parameters. In addition, the accuracy of the results depends highly 

on the order of approximation within the effective range of the uncertain parameters. 

However, the degree of response fluctuation within this range is generally not known 

in advance, especially when external force, system nonlinearity and time factors take 

effect. Thus, conclusions based on the perturbation approach may be misleading. 
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2.4 Proposed Method 

In viewing the problems related to the use of the perturbation method, an altern-

ative approach is proposed. This approach may be considered as an extension of 

the method suggested by Jensen and Iwan [29]. In the proposed method, a set of 

multi-dimensional orthogonal polynomials is used as a solution basis. The response 

variables are expanded in terms of a finite sum of the orthogonal polynomials with 

time-dependent coefficients. A set of deterministic nonlinear differential equation is 

derived using the weighted residual method. The formulation of the proposed method 

may be cast in a general format as indicated in the following sections. 

2.4.1 Solution Basis 

The solution basis adopted in the proposed method is the set of orthogonal polynomials 

with respect to the probability density function. Consider a zero mean, unit variance 

random variable b, with probability density function P(b), and the range of probability 

nb. The set of orthogonal polynomials that will be employed is the set of polynomials 

{H1 (b)}~0 satisfying the orthogonality relationship, 

(2.13) 

where 518 is the Kronecker delta. This orthogonal polynomial set can be generalized 

to a multi-dimensional setting as follows. 

Consider the set of N random variables b given previously. An N-dimensional 

orthogonal polynomial is constructed as 

N 

HlilrlN (b) = II Hln (bn) (2.14) 
n=l 

The set of N-dimensional orthogonal polynomials is denoted as { H1i1r1N (b)} ITT=o, 
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where Ill represents the associated norm. The norm of the a multi-dimensional poly-

nomial provides a measure of the order of the polynomial. It can be taken as 

N 

111 = 2= zn 
n=l 

The orthogonality condition for this case is given by 

N 

E[H1iz2 ... zN(b)Hs1s2 ... sN(b)] = II bznsn 
n=l 

(2.15) 

(2.16) 

To satisfy this orthogonality condition, the selection of the orthogonal polynomial 

sets must be according to the type of the probability distribution. For example, 

Hermite polynomials are used for the case of normally distributed random variables. 

Similarly, Legendre polynomials correspond to a uniform distribution [30]. In ad­

dition to these two widely used distributions, a family of distribution, namely the 

Ultraspherical distribution with index M, is considered herein in modeling the un-

certain parameters. When M = 1, this corresponds to the Tchebycheff polynomial 

of the second kind. This family set is capable of generating bounded probability 

distributions with various degrees of "tightness". The nature of the Ultraspherical 

distribution is shown in Figs. 2.1 and 2.2 where the uniform and normal distributions 

are also plotted for comparison. In the case of Hermite polynomials, this polynomial 

set is identical to that developed by Ghanem and Spanos [31 , 32, 33] except for the 

normalizing constants. 

2.4.2 Deterministic Equations 

As a means of obtaining an approximate solution of Eqn. (2.6), the solution variable 

x(t, b) is first expanded as a finite sum of deterministic time variables multiplied by 
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the orthogonal polynomials. The expansion to order NP is given by 

NP 

x(t, b) = L X1iz 2 ... zN (t)H1iz 2 ... zN (b) 
[1[=0 

(2.17) 

The method of weighted residuals is used to minimize the equation residual resulting 

from this approximation. The weighting function chosen is based on the Galerkin 

approach in a statistical sense. 

Substituting Eqn. (2.17) into Eqn. (2.6), multiplying by the members of the 

series of orthogonal polynomials, performing the expectation operation, and using 

orthogonality leads to 

N 

E[g(:R, X, b )H1 1z2 ... zN (b )] = f(t) IT 6oln, Ill = 0, ···,NP (2.18) 
n=l 

Eqn. (2.18) is a set of deterministic equations with uncoupled linear parts and 

fully coupled nonlinear parts. A similar expansion method has been implemented by 

Ghanem and Spanos [34] in studying the nonlinear random vibration of deterministic 

systems subjected to non-white random excitation. This technique is also implemented 

by Dham and Ghanem [35] and Ghanem et al. [36] in solving transient random 

linear/nonlinear systems in engineering applications other than structural dynamics. 

To evaluate Eqn. (2.18) numerically requires an explicit deterministic expres-

sion for the nonlinear terms under the expectation operator. These terms correspond 

to multi-dimensional probabilistic integrals which are difficult to solve in general. 

However, explicit expressions exist for those cases where the nonlinear terms are ex-

pressible as polynomials and the uncertain parameters appear as coefficients. Hence, 

the proposed solution method is particularly suitable for a problem of this type. The 

coupling effect may lead to computational difficulties, particularly when higher order 
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solutions are sought or a large number of random variables are present. Fortunately, 

the nonlinearities encountered in many engineering problems can be modeled as a 

power series in the state variables and the response uncertainty is usually domin-

ated by only a few uncertain parameters. Hence, the proposed method is potentially 

applicable to a fairly wide class of nonlinear problems. 

For those cases where the expressions of the probabilistic integrals are not dir-

ectly available, approximation techniques such as series expansion methods can be 

employed to obtain approximate numerical values. However, this process may lead 

to mathematical complication, especially when a higher-order approximation is to be 

used. Hence, this technique can only reliably be applied to the problems where a low-

order approximation scheme is appropriate. Applications for problems of this type 

are given in Chapter 5 and Chapter 6, where a low-order series expansion is used 

to approximate moment equations resulting from the analysis of nonlinear random 

vibration problems with parameter uncertainties. 

The discrete time solution of Eqn. (2.18) can be evaluated numerically in time 

using a step-by-step solution procedure. The response statistics are then calculated 

us mg 

and 

Cov[x(t, b ), x(t, b )] 

E[x(t, b)] 

NP NP 

NP 

L X11l2···lN (t)E[HlilrlN (b )] 
ll\=0 

Xoo ... o(t) (2.19) 

L L X1i12 .. ·lN (t)X.~ 1m2 . .. mN (t)E[H11lrlN (b )Hm1mrmN (b )] 
lll=l lml=l 
NP 

L:: X.1i12··· lN (t)x[12··· lN (t) 
lll=l 

(2.20) 

The application of the proposed method is demonstrated through the analysis of 
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structural systems possessing hardening or softening uncertain stiffness. These are 

two important cases of nonlinearity in the context of structural dynamics. Individual 

formulations and numerical results are given in Section 2.5 and Section 2.6. 

2.5 Application to Uncertain Hardening Systems 

Consider a single-degree-of-freedom hardening system modeled as a Duffing oscillator. 

The response process x(t) is governed by the differential equation 

x(t) + 2(wnx(t) + w~[x(t) + t:x3 (t)] = a(t) (2.21) 

where ( and Wn denote the damping ratio and the undamped natural frequency of 

the associated linear system, respectively, a(t) is the external excitation and c is a 

positive parameter representing a measure of the degree of nonlinearity. The degree 

of nonlinearity depends on both the amplitude of the response and the magnitude of 

the parameter c. Let the peak response of the linear system be denoted by Xm· Also 

let u(t) = x(t)/ xm and h(t) = a(t)/xm. Then, the differential equation can be written 

as 

u(t) + 2(wnu(t) + w~[u(t) + "fU
3 (t)] = h(t) (2.22) 

where the dimensionless nonlinear parameter, "(, is defined as 'Y = ex~. The nor­

malized restoring force versus normalized displacement for the hardening system is 

shown in Fig. 2.3 for various values of 'Y· The source of uncertainty is assumed to arise 

from the restoring force due to variations of the nonlinear parameter. This results in 

nearly deterministic stiffness for small amplitudes of response with increasing degree 

of uncertainty as the amplitude of response increases. 



- 15 -

Let the uncertain parameter be modeled as 

"( = 1 + >.b (2.23) 

where the overbar denotes the mean value, >. is the standard deviation, and b is a 

random variable with zero mean and unit variance. Since only one random variable 

is present in this analysis, the solution variable is expanded as 

NP 

u(t, b) = L t;,i(t)Hi(b) (2.24) 
i=O 

Following the procedure of the previous section, the final deterministic equation set 

for the t;,i is 

NP NP NP 

w~ LL L(1Rijkl + >.Sijk1)E;,j(t)t;,k(t)E;,1(t) = h(t)6oi, i = 0, ···,NP (2.25) 
j=O k=O l=O 

where Rijkl and Sijkl are constants given by 

(2.26) 

and 

(2.27) 

The constants ~jkl and Sijkl can be evaluated efficiently using the power relations for 

the orthogonal polynomials. The major computational demand in obtaining the time­

domain solution of Eqn. (2.25) lies in the evaluation of the triple-summed coupled 

nonlinear terms. Since the number of operations increases dramatically as higher 

order approximations are considered , it is necessary to avoid redundant computations 

by making use of the symmetry property of the constant coefficients and the cubic­

product of the solution variables. Eqn. (2.25) can be rearranged accordingly to 
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facilitate numerical computation. 

2.5.1 Numerical Examples 

A hardening structural system subjected to earthquake base excitation is considered 

herein as a numerical illustration of the method. The input excitation chosen is the 

NOOE component of 1940 El Centro earthquake record. The acceleration time history 

of the input excitation is shown in Fig. 2.4. 

The response statistics are evaluated using three different methods: the proposed 

method, perturbation method (PM) and simulation method (SM). Both the proposed 

method and the PM use a fourth-order Runge-Kutta explicit time-integration scheme. 

In the SM, 100 equally-spaced samples over the random space are generated. In each 

sample, the displacement solution is evaluated through Newmark's average acceler­

ation method. The mean and standard deviation of the displacement are calculated 

using Simpson's rule of integration. By varying the sample size, it has been veri­

fied that the combination of the integration rule and the sample size selected for the 

examples is capable of providing accurate results. Hence, these SM solutions are 

considered as "exact solutions" and are used to verify the accuracy of solutions ob­

tained by the proposed method and PM. The comparison of the response statistics is 

presented for two special cases. 

case (I) 

The first case considered is a 53 damped structure with linearized natural frequency 

fn = wn/27r = 1 Hz. The nonlinear parameter"/ is uniformly distributed with i = 0.5 

and ).. = 0.25. The proposed method and the PM are first executed using a second­

order scheme. The mean and standard deviation of the normalized displacement re­

sponse given by the proposed method and SM are plotted in Fig. 2.5. Likewise, a 

comparison of solutions given by the PM and SM is given in Fig. 2.6. In the standard 
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deviation response plot of Fig. 2.6 , the solution obtained by the PM deviates signific­

antly from that of the SM after a time of approximately 5 seconds and yields about 

70% peak overshoot thereafter. On the other hand, the proposed method provides a 

good estimate of both response statistics. 

Both approximation methods are further examined using a third-order scheme. A 

comparison of the response statistics is given in Fig. 2.7 and Fig. 2.8. In Fig. 2.7, the 

mean response given by the proposed third-order scheme almost coincides with the 

SM solution for all time. Excellent performance of the standard deviation response 

result is also demonstrated. By contrast , the third-order perturbation scheme still 

yields unsatisfactory results, although the response prediction is slightly improved as 

the order of approximation increases. 

To better understand the differences in the response predictions of the three meth­

ods, the displacement solutions are plotted as a function of 'Y /1 for a fixed time in 

Fig. 2.9. The comparison of second-order solutions is given for t = 6.66 sec. in Fig. 

2.9(a). It is seen that the PM provides an exact curvature at 'Y = 1, but results in 

a large overall error away from this point. The proposed method seeks a best quad­

ratic curve fit equally weighted over the range of 'Y / 1, which is a direct consequence 

of the uniform distribution assumed for the uncertain parameter 'Y· Similarly, the 

third-order solutions are plotted fort= 8.80 sec. in Fig. 2.9(b) and distinct solution 

characteristics for these two approximation methods are also observed. The solution 

of the proposed method and PM respectively represent a cubic curve best-fitted in 

a global and local sense. These examples reveal the very different nature of the two 

approximation methods. 

case (II) 

The second case considered is a lightly damped system with the same properties as the 

first example, except that ( = 1 % and >. = 0.05. The numerical results are presented 
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in Figs. 2.10 and 2.11. Note that the standard deviation of the nonlinear parameter 

is substantially smaller in this case than in case (I). However, the maximum standard 

deviation of the solution increases from about 0.4 to 0.7. This example demonstrates 

that small parameter uncertainty can result in very pronounced response uncertainty. 

Recall that larger response implies larger degree of randomness in the assumed model 

of uncertainty. The factors involved in large responses include the small damping 

coefficient and the interaction between the instantaneous effective stiffness and the 

external excitation. It follows that, the response uncertainty is greatly influenced by 

the response history in addition to the time-independent uncertain parameters. 

For the case of Fig. 2.10, both response statistics of the second-order PM go off 

scale for large time. A comparison with the results in case (I) shows that the large time 

behavior of the perturbation approach is sensitive to the amount of damping in the 

system and gives unreliable results for the lightly damped case. The results of Fig. 

2.11 demonstrate that much better performance is again achieved by the proposed 

method. 

The convergence of the proposed method is demonstrated through the response 

statistics plot given in Fig. 2.12 where the results of a third-order and fourth-order 

approximation are given. The trend in approaching the SM solutions as the order 

of approximation increases is clearly demonstrated for both the response mean and 

standard deviation. 

2.6 Application to Uncertain Softening Systems 

The applicability of the proposed method to softening system is also examined. A 

direct implementation is possible by changing the sign of the cubic coefficient in the 

Duffing system. However, despite the simplicity of this approach, negative stiffness 

could occur for large displacements and therefore a better representation of the soften-
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ing nonlinearity is needed. 

Consider the system 

u(t) + 2(wnu(t) + w~z(t) = h(t) (2.28) 

where u(t) and h(t) are both normalized variables as defined previously, and z(t) is 

given by 

i(t) = u(t) (1 - (zh) r) (2.29) 

A similar form was proposed by Jennings [37) to model the skeleton curves of hysteretic 

systems. This formulation provides a smooth restoring force with an asymptotic value 

approaching a "yield" level /3. The parameter n must be an even integer in order to 

maintain the symmetry of the restoring force . When n = 2, the restoring force curve 

is identical to the hyperbolic tangent function. This case will be employed in the 

present formulation. 

The stiffness characteristics of this model are shown in Fig. 2 .3 where the nonlinear 

parameter '"'! is defined as '"'! -1/ /32
. As in the case of hardening example, the 

uncertainty will be associated with the variation of the parameter '"'! · In addition, 

uncertain damping is incorporated into the analysis. It is assumed that the damping 

coefficient and the nonlinear parameter are independent random variables given by 

(2.30) 

and 

(2.31) 

Then, the equation of motion is written as 
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z(t, b1, b2) - u(t, b1, b2) [1 + (1 + >..2b2)z2(t, b1, b2)) = o (2.32) 

The solution of Eqn. (2.32) is expanded in terms of two-dimensional orthogonal 

polynomials as 
NP 

u(t,b1,b2) = L f.i1i2(t)Hi1i2(b1,b2) 
lil=O 

NP 

z(t, b1, b2) = L 'Tli1i2(t)Hi1i2(b1, b2) 
lil=O 

The final deterministic equation set to be evaluated numerically then becomes 

NP NP NP 

(2.33) 

(2.34) 

TJi1i2 (t) - ~i1i2 (t) - L L L (1Ri2j2k2l2 + >..Si2]2k2L2)Riij1k1li ~jij2 (t)TJk1k2 (t)TJL1h (t) = 0 
Ul=O lkl=O lll=O 

Iii= O,···,NP (2.35) 

where ~jkl and sijkl are defined previously and ~j is given by 

(2.36) 

2.6.1 Numerical Examples 

The following numerical examples use the same earthquake base excitation employed 

previously. The damping coefficient and the nonlinear parameter are both assumed 

to be distributed according to the Ultraspherical distribution, M = 2, with a 10% 

coefficient of variation. All the example results given by the proposed method are 

based on a third-order approximation. 
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case (I) 

It is well known that for a lightly damped linear oscillator, uncertainty in damping and 

stiffness mainly introduce randomness in the amplitude and phase respectively. Thus, 

for a moderate-size uncertainty, the response variability due to damping is generally 

less significant than that due to stiffness. It is of interest to investigate the damping 

induced response variability under the influence of a nonlinear stiffness. 

To provide a primitive comparison in this regard, a linear structure and two non­

linear structures with different levels of softening nonlinearity are selected. These 

structures are assumed to have the same levels of damping uncertainties given by 

( = 2% and >. 1 = 0.002. The results are compared in Fig. 2.13. The long dash lines 

represent the response statistics of the softening structure with deterministic stiffness 

characterized by fn = 1Hz,1' = -1 and >.2 = 0. The short dash lines are the response 

statistics of the structure with a higher level of nonlinearity characterized by fn = 1 

Hz, 1' = -2 and >.2 = 0. The solid lines correspond to the associated linear structure. 

As expected , the response standard deviation of the linear structure is confined 

within a low level. By contrast, the peak value of the standard deviation is nearly 

four times larger in the nonlinear case ')' = -1 and is nearly eight times larger in 

the stronger nonlinear case ')' = -2. For both nonlinear cases, the envelopes of the 

standard deviation response increase monotonically in time for a period of roughly 

10 seconds. The rate of increase is seen to be approximately proportional to the 

amplitude of the mean response. One possible explanation of this is that the stiffness 

nonlinearity results in stronger correlation between the amplitude and the phase of 

the response. The higher the degree of nonlinearity, the stronger the amplitude-phase 

correlation. Thus, the accumulation of random phase shift in time makes the effect of 

uncertain damping substantially larger. 
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case (II) 

In this case study, consideration is given to the cases with uncertain nonlinear para­

meter only and uncertainty in both damping and nonlinear stiffness. The latter case is 

also validated by the simulation method, where a total 900 samples runs are performed 

( 30 equally-spaced samples in each uncertain parameter) and the response statist­

ics are evaluated by a two-dimensional numerical integration scheme. The response 

statistics of the these cases of uncertainty are compared in Fig. 2.14. 

The mean responses are qualitatively similar. Furthermore, the cases of uncertain 

nonlinear parameter and uncertain damping have approximately the same influence on 

the response standard deviation. When both uncertainties are present simultaneously, 

an additional 20% increase in the response standard deviation is observed. 

A comparison with the simulation method is presented in Fig. 2.15. The proposed 

method solution is in good agreement with the simulation results except for a slight 

underestimation of the response standard deviation for large time. 

2. 7 Summary and Conclusions 

The dynamic response of structural systems with uncertain parameters is investigated 

in this chapter. An expansion method based on orthogonal polynomials is proposed 

for analyzing the response statistics. The superiority of this approach to the perturba­

tion approach is demonstrated through several examples. From the example problems 

presented, it is observed that response uncertainty depends both on uncertain para­

meters and the response time history. This dependency reveals the complicated nature 

of nonlinear problems with parameter uncertainties. The effect of uncertain damping 

can become substantial when nonlinear stiffness is present. 
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Figure 2.15: Comparison of mean and standard deviation of normalized displacement 
response for softening nonlinear oscillator with both uncertain damping and nonlinear 
parameter, fn = 1 Hz, ( = 2%, 1' = -1, ,\1 = 0.002, A2 = 0.1. 
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Chapter 3 

Nonlinear Continuous Systems with Uncertain 

Parameters 

3.1 Introduction 

The dynamic response of continuous systems may be greatly affected by spatial vari­

ations of material properties and boundary conditions, as well as the system nonlin­

earities. The effect of any variation in the above mentioned properties and conditions 

becomes an important consideration in performing a dynamic analysis for such sys­

tems. Due to the fact that most physical properties can not be precisely prescribed, 

a plausible analysis approach is to introduce a statistical description in an assumed 

analytical model. A second-moment analysis can then be performed to assess the 

response variability. Such an analysis approach leads to a dynamic problem defined 

over a nonlinear random medium, which is potentially challenging to both analytical 

and numerical solution methods. 

In this chapter, a solution method is provided for analyzing the response uncer­

tainty of uncertain nonlinear continuous systems subjected to deterministic dynamic 

loadings. As an extension of the solution scheme presented in the previous chapter, 

this method employs the discrete Karhunen-Loeve decomposition and a generalized 

spatial discretization to approximate the nonlinear random continuum by a discrete 

system with a set of independent random variables. The solution technique developed 

previously is then applied to the resulting random equations for numerical evaluation 
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of response statistics. The solution method is illustrated through the formulation of a 

one-dimensional wave equation with uncertain stiffness parameter fields in the sequel. 

3.2 Problem Formulation 

Consider a one-dimensional scalar wave equation described by the partial differential 

equation (PDE) 

f) 
ax (T(k(x), w)) - q(c(x), w) = m(x)w + p(x, t) in D(x) (3.1) 

where w = w(t, x) is the dependent variable representing a scalar "displacement" 

field, m(·) is the "mass" distribution of the system, q(·, ·) is the linear "damping" 

operator, T(·, ·)is the "stress" operator, k(·) and c(·) are the "stiffness" and "damping" 

parameter fields, and p(x, t) is the external dynamic loading. The symbol D(x) denotes 

the domain in which the PDE is defined. Since the problem is one-dimensional, D(x) 

represents a line segment in the x-axis. The PDE is assumed to have zero initial 

conditions and the following boundary conditions 

B9(w) = 0 on fJD(x) (3.2) 

Bn(w) = 0 on fJD(x) (3.3) 

where B9 and En are the geometric and natural boundary conditions respectively. 

Eqn. (3.1) together with the initial and boundary conditions form a one-dimensional 

initial-boundary value problem. This problem arises, for examples, in the studies of 

the torsional vibration of a shaft, the axial vibration of a rod, the vibration of a string, 

or the wave propagation in a shear beam. 

In many engineering applications, the system is approximately linear for a small 

amplitude of response. However, the nonlinear effect usually becomes important when 
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the system undergoes large response. To account for the nonlinear effect, the stress 

operator T is assumed to be a nonlinear operator expressible in terms of a sum of a 

linear stress operator TL and a nonlinear stress operator TN as 

(3.4) 

where kL ( x) and kN ( x) are respectively the linear and nonlinear "stiffness" parameter 

fields associated with TL and TN. This expression accommodates problems with non­

linear stress-strain characteristics and problems with nonlinear strain-displacement 

relationships. 

In the current formulation, the source of uncertainty is assumed to be due to the 

spatial variations of the linear and/or nonlinear stiffness parameter fields. The man­

ner in which these uncertain parameter fields are introduced determines the model 

of uncertainty for the system, and consequently implies the pattern of response un­

certainty. To illustrate this, consider the case where the nonlinear stiffness parameter 

field is the only source of uncertainty. Then, the system is deterministic if the response 

is confined within a linear range, and the uncertainty occurs for a nonlinear response. 

On the other hand, when both stiffness parameter fields are assumed to be uncertain , 

response uncertainty is present for all levels of response. The randomness properties 

of these parameter fields can be appropriately assumed to conform to the physics of 

problems. 

The stiffness parameter fields are idealized as joint second-order Gaussian random 

fields. The uncertain physical properties, such as the spatial fluctuation, can then 

be addressed through a mathematical second-moment representation. The statistical 

properties for a Gaussian random field and a finite representation are described in the 

next section. 
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3.3 Random Field and Finite Representation 

A second-order Gaussian random field is a random process defined over a spatial space 

whose statistical properties are fully determined by its first two moments, i.e., the 

mean and the covariance function. The covariance function is symmetric and positive 

definite. A random field is said to be homogeneous when the statistical properties 

are invariant under an arbitrary shift of the reference coordinate. In such a case, the 

covariance function is a function of relative distance only. Otherwise, it is referred to 

as inhomogeneous. 

A finite representation of a Gaussian random field is expressed in terms of a set 

of independent Gaussian random variables with an associated set of deterministic 

spatial functions. This representation is useful because it permits the continuum of 

random variables to be represented by a denumerable set of independent random vari­

ables. The Karhunen-Loeve orthogonal decomposition is a widely used technique to 

achieve such a finite representation [31]. However, this process requires an eigenvalue­

eigenfunction solution to an integral equation with a covariance kernel. The induced 

mathematical difficulty limits its applications to only a few special cases. 

An alternative numerical scheme, referred to as the discrete Karhunen-Loeve de­

composition [38], is adopted in the present formulation. In this procedure, the con­

tinuous random field is sampled at an indexed set of spatial points. The resulting 

correlated random variables are then transformed into independent random variables 

using a matrix decomposition of the covariance matrix. Hence, the original infin­

ite dimensional eigenvalue-eigenfunction problem is replaced by a finite dimensional 

eigenvalue-eigenvector problem. The discretization scheme and its implication are 

described in the following subsections. 
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3.3.1 Basis Random Variables 

Let G(x) be a one-dimensional second-order Gaussian random field. The random field 

can be separated into its deterministic mean component and a random fluctuation 

component by 

G(x) = G(x) + Y(x) (3.5) 

In the above expression, G(x) is the mean value of G(x) given by 

G(x) = E[G(x)] (3.6) 

where E[·] is the expectation operator, and Y(x) is a zero-mean second-order Gaussian 

field characterized by a covariance function R( ~, TJ). That is, 

E[Y(0Y(TJ)] = R(~, TJ) (3.7) 

Let Y ( x) be approximated by Y ( x) expressed in terms of a denumerable set of 

random variables as 
ND ND 

Y(x ) = L L bnSnmcpm (x ) (3.8) 
n=l m=l 

where {bn};;'£_ is a set of independent random variables with zero means and unit 

variances, {cpm(x)}~£1 is a set of known deterministic spatial functions, and Snm are 

unknown constants to be determined. Denote R as the covariance function of the 

approximate process Y(x). Then, the expression for R is given by 

R(~, TJ) E[Y(~)Y(TJ)] 
ND ND ND 

L L L SnmSnscpm (~) cps (TJ) (3.9) 
n=l m=l s=l 

The expressions for the unknown constants Snm are obtained such that the differ­

ence of the covariance functions R(~ , TJ) and R(~, TJ) is minimized based on a certain 
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criterion. To achieved this, the following equations are employed 

r r wij(~, 11)[R(~, 11) - fl(~, 11)Jd~d11 = o, i, j = 1, ... , N n 
lv(x) lv(x) 

(3.10) 

where Wij(~, 17) are a set of weighting functions. Several selections for the weighting 

functions and the known spatial functions are applicable. One convenient selection for 

<t?m(x) is a collection of the Lagrange family of interpolation functions. Let an indexed 

set of spatial points { xi}~f be associated with the interpolation functions. Then, the 

interpolation functions satisfy 

(3.11) 

where 6nm is the Kronecker delta. 

The weighting functions can be selected as a set of delta functions placed over the 

indexed spatial points. The expressions for the weighting functions are given by 

(3.12) 

where 6( ·) is the Dirac delta function. Hence, the difference of covariance functions is 

forced to vanish at each indexed spatial point. 

Substituting Eqns. (3.9), (3.11) and (3.12) into Eqn. (3.10) will lead to the 

following algebraic equations 

ND 

R(xi , Xj) = L SniSnj, i, j = 1, ··· , ND (3.13) 
n=l 

The above equations are equivalent to a matrix equation of the form 

(3.14) 

Since the correlation function R is symmetric and positive definite, the correlation 
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matrix R is also symmetric and positive definite, which admits a spectral decompos­

ition given by 

(3.15) 

where \It is the matrix of eigenvectors satisfying q,q,T = I, and A is a diagonal matrix 

of the eigenvalues arranged in a decreasing order. It follows that the expression for S 

is related to the eigenvalue and eigenvector matrices by 

(3.16) 

With the numerical values of Snm, let Gn(x) be the deterministic spatial functions 

associated with the random variable bn defined by 

ND 

Gn(x) = L Snm<fJm(x) (3.17) 
m=l 

Combining Eqn. (3.8), Eqn. (3.5) and Eqn. (3.17), the continuous random field is 

thus represented as 
ND 

G(x) ~ G(x) + L bnGn(x) (3.18) 
n=l 

Eqn. (3.18) is a finite representation for the random field G(x). This representa-

tion involves a set of independent random variables, which is considered as the basis 

random variables for the system. 

3.3.2 Finite Random System 

The feasibility and applicability of the finite representation rely on two important 

statistical properties associated with the random field. The first property is the mag­

nitude of the randomness relative to the mean value of the parameter field. This 

property is prescribed by the coefficient of variation in the random field model. The 

second property is the degree of spatial fluctuation relative the size of the domain, 



- 43 -

which is characterized by the ratio of the correlation length of the random field to 

the total length of the physical system. Consider an extreme case where the random 

field is totally correlated. Then, the system possesses only one degree of randomness. 

That is, the finite representation contains only one random variable and the associated 

spatial function is a spatially uniform function . The other extreme case, where the 

random field is delta-correlated, represents a white noise assumption for the parameter 

field. In this case, a set of theoretically infinite many random variables is required to 

represent the random field. 

In the subsequent formulations, the correlation distance for the uncertain para-

meter fields is assumed to be comparatively large to the total length of the problem 

domain. As a result, the discrete Karhunen-Loeve decomposition yields a set of eigen-

solutions with rapidly decreasing magnitude. In addition, the randomness is assumed 

to be "small" which allows one to neglect the relatively small contribution from those 

random variables with higher indices. With these assumptions, the degree of random-

ness governing the system can be greatly reduced without significant loss of accuracy 

for an engineering consideration. 

Thus, let the stiffness parameter fields kL ( x) and kN ( x) be represented in terms 

of the first N R pairs of eigen-solutions by 

NR 

kL(x) rv k;L(x) + L bnk~(x) (3.19) 
n=l 

NR 
kN (x) rv k;N (x) + L bnk;{ (x) (3.20) 

n=l 

where k;L ( x) and k;N ( x) denote the mean values of the linear and nonlinear stiffness 

parameter fields, and k* ( x) and k;( ( x) symbolize the deterministic spatial functions 

associated with random variable bn. 

It is further assumed that linearity holds for the stress operators with respect to 
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the basis random variables. Then, 

NR 
TL(kL(x), w) = TL(k,L(x), w) + L bnTL(k~(x), w) (3.21) 

n=l 

NR 
TN(kN(x),w) = TN(kN(x),w) + L bnTN(k!;!(x),w) (3.22) 

n=l 

Substituting Eqns. (3.21) and (3.22) into Eqn. (3.1) yields an approximated random 

PDE as 

:x (TL(kL(x),w)) + ! (TN(kN(x),w)) - q(c(x),J;) 

+; bn { ! (TL(k~(x), w)) + :X (TN (k!;! (x), w))} 

= m(x)ili + p(x, t) in D(x) (3.23) 

where w = w ( t, x, b) symbolizes the dependent variable of the approximated PDE as 

a function oft, x and b = {b1 , b1 , · · ·, bNR}r. Hence, the original PDE involving the 

continuous parameter fields is approximated by a nonlinear PDE with finite random 

coefficients. Note that the functional dependency of the dependent variable contains 

the random variable set b. The dependent variable in the boundary conditions given 

by Eqn. (3.2) are then changed accordingly. 

3.4 Generalized Spatial Discretization 

This section provides a weak formulation (variational formulation) for the random 

approximated PDE via a spatial response representation. A set of generalized spatial 

functions is considered in the formulation. It may represent a spatial Galerkin assump-

tion, as used in a dynamical modal analysis, or may represent a spatial sub-domain 

discretization, as used in a finite element analysis. 

Let the generalized spatial functions be represented as a set of NS basis spatial 
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functions by 

(3.24) 

Associated with the set of spatial functions, introduce a vector of generalized random 

response variables 

(3.25) 

Then, the dependent variable w ( t, x, b) is represented as a linear sum of </J( x) and 

u(t, b) by 
NS 

w(t, x, b) = L Uj(t, b)</>j(x) (3.26) 
j=l 

Following this response representation, the stress and damping operators are also 

represented in terms of </J(x) and u(t, b) by 

NS 

TL(·, w) = L if(-, </J(x))uj(t, b) (3.27) 
j=l 

NS 

q(·, ~) = L qj ( ·, </J(x) )uj(t, b) (3.28) 
j=l 

Similarly, the nonlinear stress operator is expressed as 

(3.29) 

Substituting the above response representations into Eqn. (3.23), multiplying the 

resulting equation by the individual element of the basis spatial functions, and in-

tegrating over the spatial domain, a discrete random nonlinear ordinary differential 

equation can be derived. The equation may be written as 

NR 

Mii +Cu+ Ku+ g(u) + L bn[Knu + gn(u)] = f(t) (3.30) 
n=l 



- 46 -

where M, C and f(t) are the mass matrix, damping matrix and forcing vector re­

spectively; K and g( ·) are the mean stiffness matrix and nonlinear stiffness vector 

respectively; likewise, Kn and gn ( ·) are the stiffness matrix and nonlinear stiffness 

vector associated with the random variable bn respectively. 

The expression for the ijth element, indicated with a subscript ij, of these matrices 

and vectors are given below. 

Mij 1 m(x)¢>i(x)¢>j(x)d1J(x) 
D(x) 

(3.31) 

cj 1 <If (c(x), </>(x))¢>i(x)d1J(x) 
D(x) 

(3.32) 

[( .. 1 if ( k ( x) ' </> ( x) ) def>~ ( x) d1J ( x) (3.33) i] 
D(x) X 

.9i(u(e)) 1 N - def>i(x) f (k(x), <f>(x), u) d d1J(x) 
D(x) X 

(3.34) 

Knij 1 ff (kn(x), <f>(x)) def>~(x) d1J(x) 
D(x) X 

(3.35) 

9ni(u) 1 def>·(x) 
fN (kn(x), </>(x), u) ~ d1J(x) 

D(x) X 
(3.36) 

li(t) 1 p(x, t)¢>i (x)d1J(x) 
D(x) 

(3.37) 

i,j =l ,· ·· ,NS (3.38) 

3.5 Deterministic Equations 

The solution method developed in the previous chapter is employed herein for solving 

the random multi-degree-of-freedom systems resulting from the generalized spatial 

discretization. Let the generalized random response be expanded in terms of the 

orthogonal polynomials as 

NP 

u(t , b) = L ii1 112 ... 1NR (t)H1i1 2 ... 1NR(b) 
lll=O 

(3.39) 
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where H1i 12 ... /N R (b) are the set of N R-dimensional orthogonal polynomials satisfying 

the orthogonality condition 

NR 

E[HlilrlNR (b )Hs1s2···SNR (b )] = II Ol;si 
i=l 

(3.40) 

Since the random variables are Gaussian, these orthogonal polynomials represent the 

multi-dimensional Hermite polynomials. However, the Gaussian assumption has a 

theoretically unbounded range of random samples, which implies the possibility of a 

negative stiffness parameter field. Hence, it may be appropriate to approximate the 

Gaussian distribution by a bounded distribution, such as the family of Ultraspherical 

distribution. The various other types of orthogonal polynomials introduced previously 

are also applicable for the above formulation. 

To identify the coupling between the linear terms, it is more convenient to employ 

the recursive relationship for the orthogonal polynomials [30]. That is, 

(3.41) 

To obtain a final deterministic equation, one can first substitute Eqns. (3.41) and 

(3.39) into Eqn. (3.30) and multiply the resulting equation by the members of ortho-

gonal polynomials. Then, performing the mathematical expectation operator and using 

the orthogonality condition, a set of deterministic nonlinear differential equations is 

derived as 

NR 

+ L Kn (a1nUl1 ···ln-l···lNR (t) + a1nUli ···ln+l·· ·lNR (t)) 
n=l 

NR NR 

+ L E[gn(u(t , b))bnH1i12 ... /NR (b)] = f(t) II OtnO' Ill = 0, ···,NP (3.42) 
n=l n=l 
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This is a nonlinear equation set with lightly coupled linear parts and fully coupled 

nonlinear parts. For an efficient numerical treatment, it is preferred to have a polyno-

mial type of nonlinearity in terms of the response variables. Due to this limitation, the 

proposed solution scheme can be applied to problems involving nonlinear stress-strain 

characteristics only on a case-by-case basis. 

However, one type of nonlinearity, classified as geometrical nonlinearity, is gen-

erally expressed in a polynomial form. The governing equations for this class of 

nonlinear problems are derived using higher-order strain-displacement relationships 

[39], which results in a polynomial type of nonlinearity in the final discretized equa­

tions. Such problems are more frequently formulated as higher-order nonlinear PDEs 

with multi-dependent variables. Hence, it should be mentioned that the employed 

one-dimensional wave equation is mainly for illustration purpose. An extension of 

the solution scheme to other types of PDEs can be performed in a similar manner to 

accommodate geometrically nonlinear problems. 

Under the above mentioned conditions, the deterministic equation set can be solved 

numerically using a step-by-step time-integration scheme. Issues related to numerical 

difficulties and the methods for reducing computational effort are addressed in the 

previous chapter. After the discrete-time solutions are obtained, the response statistics 

can be evaluated from 

NS 

E[w(t, x, b)] = L uj00 ... 0 (t)</>j(x) 
j=l 

NS NS NP 

Var[w(t, x, b)] =LL L ui111 r 1NR (t)uj1112 1NR (t)</>i(x)</>j(x) 
i=l j=l lll=l 

Similarly, the statistics of the "strain" response can be evaluated from 

E[Bw(t ,x, b)] = ~u · (t)B</>j(x) 
~ ~ JOO· ·O ~ 
ux j=l ux 

(3.43) 

(3.44) 

(3.45) 
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fJw(t,x, b) NS NS NP oef>i (x) oef> ·(x) 
Var[ a l = LL L Ui11l2 · · lNR (t)uJl1l 2 ·lNR (t) a ~ 

x i=l j=l lll=l x ux 
(3.46) 

In the next chapter, a specific application of the proposed solution scheme is presen-

ted through an analysis of uncertain nonlinear shear beams. 
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Chapter 4 

Application: Nonlinear Uncertain Shear Beam 

Subjected to Near-Field Earthquake Ground Motion 

4.1 Introduction 

The dynamic behavior of structures subjected to near-field earthquakes has received 

increasing attention and has become an important consideration in the process of 

structural designs. Near-field earthquake ground motion is characterized by its long­

period, pulse-like wave form. A tall building subjected to such a pulse can exhibit a 

wave-type motion propagating along the building. This phenomenon is supported by 

the recorded response of tall buildings during near-field earthquakes. An important 

consequence of this type of response is considerable local structural deformations can 

be developed along the propagating path, and hence damage is likely to occur. 

Although the distinct feature of near-field ground motion has long been observed 

by the seismologists, its impact on modern buildings was not fully appreciated until 

the recent works by Heaton et al. [40], Hall et al. [41] and Iwan [42] . In the former 

studies, a detailed nonlinear analysis is performed for a 20-story steel-frame building 

and a three-story base-isolated structure using both a recorded and a simulated near­

field ground motion. The numerical results suggest the possible occurrence of high 

inter-story drift ratio for the ground motion being considered. Also investigated in this 

study is the response behavior of multi-story buildings idealized as a uniform shear­

beam model under different types of base pulses. Due to the wave-type response of 
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the shear-beam model, the peak shear strain can be directly related to the peak ground 

velocity. Calculations show that the peak shear strain may far exceed the elastic limit 

of most structures even with a moderately peak ground velocity. 

As a better indication of the near-field effect on structures, the concept of drift 

demand spectrum was proposed by Iwan [42] to complement the use of the response 

spectra as adopted in traditional earthquake engineering practices. The structural 

response is modeled as a damped wave motion propagating through a simple shear­

beam model. The formulation for the local shear strain, or equivalently the inter-story 

drift ratio, is then derived as a summation of the up-traveling waves from the base and 

the down-traveling waves reflected from the top of the structure. This study shows 

that the drift demand spectra for many near-field earthquakes exhibit much larger 

drift demand than that of far-field earthquakes. However, such a significant difference 

cannot be fully described from their response spectra. Hence, the near-field effect can 

be potentially damaging particularly to the local sub-structure in a building. 

The objective of this chapter is to investigate the dynamic response of structures 

exhibiting uncertain material properties to near-field earthquake ground motion. The 

analytical model considered resembles the shear-beam model employed by Iwan. The 

randomness of the shear rigidity as well as elastic nonlinear effect are both incorpor­

ated into the analysis. The newly developed method for analyzing uncertain continuous 

systems is then applied to this shear-beam model to perform a second-moment analysis 

of the shear strain response. This study is based a recorded near-field accelerogram 

obtained during the Northridge Earthquake of 1994. 
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4.2 Description of the Physical System 

A formulation and physical description of the shear-beam model is given in this section. 

Consider an undamped nonlinear shear beam described by the equation of motion 

:x ( G(x)h(~~)) = pw + pq(t) o < x < L (4.1) 

where w = w(t, x) is the transverse displacement relative to the base, pis a constant 

mass density per unit length, q(t) is the absolute acceleration of the base excitation, 

h( ·) represents a dimensionless nonlinear stress function of its argument, L is the 

total length of the beam and G(x) is the shear rigidity per unit length. Eqn. (4.1) is 

assumed to have zero initial conditions subjected to the following boundary conditions 

w(t, x)lx=O = 0 aw(t , x) I = 0 
8x x=L 

(4.2) 

The configuration and the coordinate system for this shear-beam model are depicted 

in Fig. 4.1. 

To model the uncertainty in its quantitative description, the shear rigidity is ideal­

ized as a second-order Gaussian random field with a uniform mean and an assumed 

slowly varying random fluctuation. The random shear rigidity allows a represent-

ation expressible in terms of a set of independent Gaussian random variables and 

deterministic spatial functions by 

NR 
G(x) rv G + L bnGn(x) (4.3) 

n=l 

where {bn}:;'~1 is a set of N R Gaussian random variables with zero means and unit 

variances, G is the uniform mean shear rigidity and G n ( x) is the deterministic spatial 

function associated with the random variable bn. These deterministic spatial functions 

are determined through the discrete Karhunen-Loeve decomposition of a discretized 
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covariance function of G(x) as described in the previous chapter. 

The nonlinearity of the system is due to the nonlinear stress-strain constitutive 

relationship described through the dimensionless stress function h(~~). Two types of 

stress-strain nonlinearity, a hardening type and a softening type, will be considered 

and formulated separately in Section 4.3 and Section 4.4 respectively. 

4.3 Cubic Hardening Nonlinearity 

This section considers a stress-strain nonlinearity of the hardening type. The model 

chosen is the cubic hardening nonlinearity given by 

(4.4) 

where 'Y is a positive parameter governing the degree of hardening nonlinearity. 

Substituting Eqns. (4.4) and (4.3) into Eqn. (4.1) yields an undamped nonlinear 

wave equation with random coefficients as 

=pJ;+pij(t) O<x<L (4.5) 

with the boundary conditions 

W ( t, X, b) I x=O = 0 
ow(t,x, b) I = 0 

OX x=L 

(4.6) 

where b = {b1 ,b2 ,···,bNR}T and w = w(t,x,b) is the dependent random response 

variable. The finite element method (FEM) will be employed to obtain a discrete 

nonlinear multi-degree-of-freedom (MDOF) system with random coefficients in the 

next section. 
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4.3.1 Finite Element Discretization 

Let the shear beam be uniformly discretized into N EL elements using the two-node 

rod element. The basis shape functions are graphically illustrated in Fig. 4.2. The 

shape functions, <Pie) and ef>~e), may be expressed in terms of the local coordinate, x, 

as 

(4.7) 

where le = N~L is the length of the element and the shape functions are defined over 

the subdomain 0 ::S x ::S le. The resulting FEM mesh is also used for constructing the 

finite representation of the random shear rigidity. 

For this FEM mesh, the random elemental displacement variable u/e)(t, x, b) is 

given by 

(4.8) 

where uie)(t,b) and u~e)(t,b) are the random nodal responses. Let u(e) = u(e)(t,b) 

be the random elemental displacement vector given by 

(4.9) 

Substituting Eqn. ( 4.8) into Eqn. ( 4.5) and performing the variational formulation, a 

discrete random nonlinear ordinary differential equation for u(e) is derived as 

(4.10) 

In the above equation, M(e) and fCe)(t) are respectively the elemental mass matrix and 
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the elemental force vector given by 

M(e) = ple [ 2 1 1 
6 1 2 

(4.11) 

The symbols K(e) and g;(e) are respectively the mean linear stiffness matrix and non­

linear stiffness vector given by 

:K(el = G [ 1 -1 1 
le -l 1 

(4.12) 

where 6.u(e) is the difference of nodal displacement for the element (e) defined as 

( 4.13) 

Similar notations K~e) and g~e) stand for the linear stiffness matrix and the nonlinear 

stiffness vector associated with the random variable bn given by 

K(e) = _n_ (J(e) [ 1 -1 1 
n le -l 1 

(4.14) 

where (J~e) denotes the local average of the nodal values of Gn(x) over the element 

( e). 

Note that the two-node rod element results in an element-wise constant strain given 

by 6.u(e) /le . All the linear and nonlinear stiffness matrices and vectors are directly 

expressible in terms of the constant strain. Also shown in Eqn. (4.14), the random 

components of linear and nonlinear stiffness are expressed in terms of the average, (J~e), 

which represent a constant shear strength for an element. Thus, it seems possible to 

embody the discretized random equation with a direct physical interpretation. 
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4.3.2 Discrete Analog to Random Continuous Systems 

The elemental mass matrix given by Eqn. ( 4.11) is usually referred to as the consistent 

mass matrix. Certain difficulties exist in giving a physical interpretation to the off-

diagonal terms appeared in the consistent mass matrix. In many FEM applications 

of structural dynamics, the so-called lumped mass matrix is more often used due to 

its appealing physical interpretation and comparable solution accuracy. By lumping 

the off-diagonal mass components to the diagonal terms, the lumped mass matrix for 

Eqn. (4.11) is given by 

M~e) = ple [ 1 0 1 
2 0 1 

(4.15) 

Clearly, this mass matrix represents two lumped mass on the both ends of an element. 

By grouping the linear and nonlinear stiffness, a total mean nonlinear restoring 

vector can be defined as 

g(e) (u(e)) = (; _u_ + 1(-U-)3 
(

6, (e) 6, (e) ) { -1 } 

le le 1 
(4.16) 

Similarly, the component of total nonlinear restoring force vector associated with the 

random variable bn is defined as 

( 4.17) 

Combining the consistent mass matrix and the newly introduced nonlinear restor-

ing vectors, an alternative form of the random equation is given by 

(4.18) 

Eqn. ( 4.18) represents a random MDOF nonlinear spring-mass system. This 
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system may be represented graphically as in Fig. 4.3. It consists of N EL mass blocks 

inter-connected by a set of deterministic and random springs. Except at the top, each 

mass block has the same amount of mass which is equal to the total distributed 

mass in an element. The top mass block has only half the amount of the mass of other 

elements as a consequence of the mass distribution rule of the FEM analysis. Only the 

adjacent mass blocks are connected by a set of parallel-arranged nonlinear springs. 

One of the springs, indicated by a solid line, represents a deterministic nonlinear 

restoring spring with a cubic hardening force-relative displacement relationship. The 

rest of the springs represent the random restoring springs. These random restoring 

springs have random initial slopes but still maintain the same cubic hardening rate as 

that of the deterministic restoring spring. 

The discrete analog not only provides a physical interpretation for the FEM dis-

cretization process but also provides insightful guidance when a simulation method 

is of interest. To see this, again consider the spring-mass system in Fig. 4.3. Note 

that the vertically aligned random restoring springs are controlled by the same ran-

dom variable. Hence, a sample value of this random variable will generate a set of 

sample spring characteristics for those restoring springs. Generalizing this concept, a 

sample of the random shear rigidity will yield not only vertically but also horizontally 

arranged restoring springs. By summing up the total spring strength in the same 

horizontal level , the sample nonlinear structure can be formed. 

4.3.3 Deterministic Equation 

Let the orthogonal polynomial expansion for the elemental response vector be ex-

pressed as 
NP 

u(e)(t , b) = L ui~i2···lNR(t)H1i1rlNR (b) 
IIl=O 

( 4.19) 
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As a result of the Gaussian assumption, the orthogonal polynomial H11 zr LN R (b) is the 

multi-dimensional Hermite polynomial of order Ill. 

Along with the above expansion, it is more convenient to denote the associated 

expansion for the elemental displacement difference by 

( 4.20) 

Applying the method of weighted residuals, the deterministic equation set is derived 

as 

Ill= 0,···,NP (4.21) 

where a 1n and Cizn are the constants coefficients defined previously and 

G NP NP NP 
']_ "" "" "" L::,.ft(e) (t) 6 ft(e) (t) 6 ft(e) (t) l 3 L L L P1P2···PNR r1r2·· ·TNR sis2···SNR 

e JpJ=O JrJ=O JsJ=O 

NR {-1 } II RznPnTnSn 
n=l 1 

(4.22) 

NR { 
(azn Rln -lPnTnSn + CiznRln+lPnTnsn) II RzmPmTmSm 

m = 1 

-1 } 1 ( 4.23) 

m =In 
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The expression for the constants ~jkl are given by 

( 4.24) 

In viewing the above equation set, certain numerical difficulties may arise because 

of the size of the problem and the total number of arithmetic operations involved. 

This solution scheme may become very inefficient when many random variables are 

present and a higher-order scheme is used. However, it is frequently the case that 

only the first few random variables dominate the response uncertainty. In addition, 

the random variables have a rapidly decreasing rate of contribution as the associated 

indices increase. This motivates one to define a norm for the orthogonal polynomials 

such that only a low-order expansion is used in the space spanned by the random 

variables with high indices. Such considerations can greatly reduce the total size of 

the problem but still yield the same level of solution accuracy. 

Additionally, several other techniques can be implemented to reduce the computa­

tional effort. Note that the evaluation of the product terms in Eqns. ( 4.22) and ( 4.23) 

dominates the computations. The coupling between these terms is totally determined 

by the time-independent constant product TI;;'~ RznPnrnsn . It is observed that a large 

number of these constants are identically equal to zero and hence the corresponding 

solution variables have no contribution. Therefore, these constants can be evaluated a 

priori and only the nonzero constants are retained and tabulated. Using the symmetry 

property between the triple products of the solution variables and the corresponding 

constants, the required arithmetic operations can be further effectively reduced. 
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4.4 Arctangent Softening Nonlinearity 

This section considers a shear-beam model with a softening stress-strain nonlinearity. 

The particular stress-strain model employed is the arctangent softening type given by 

( 4.25) 

where hy is an "yielding" level of the dimensionless stress function. This stress func-

tion has an unit initial slope as a function of the strain field. Since the shear stress is 

the product of the random shear rigidity G ( x) and the stress function h, a variation 

in the shear rigidity will result in both the variation of the initial shear stiffness and 

the ultimate yielding shear stress. 

Using Eqn. ( 4. 25) and the discrete representation of the random shear rigidity, an 

approximated random PDE for this case is obtained as 

G- o (2hy _1 ( n ow)) ~ b o (c ( )2hy _1 ( n ow)) - -tan -- + L..,, - x -tan --ox 7r 2hy OX n=l n OX n 7r 2hy OX 

=p;J;+pij(t) O<x < L ( 4.26) 

subject to the same boundary conditions as given in Eqn. ( 4.6). 

4.4.1 FEM Discretization and Nonlinear MDOF System 

The previously applied FEM discretization will also be implemented for this random 

softening system. Again adopting the two-node rod element and the lumped mass 

approach, the discretized equation can be shown to be given by 

( 4.27) 
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where M~e) and f(e) are as defined previously. The expressions for g(e) and g~) are 

obtained through the variational formulation. Since the shape functions selected imply 

a constant strain in each element, the expressions for g(e) and g~e) are greatly simplified 

to the followings: 

-~ } (4.28) 

where le and 6.u(e) are as defined previously. 

The FEM discretization of a shear beam with an arctangent stiffness constitutive 

relationship also possesses a direct discrete analog. An examination of Eqn. ( 4.27) 

and Eqn. ( 4.18) shows a similarity between the hardening and softening shear beams. 

Therefore, the schematic diagram shown in Fig. 4.3 and the discussion given for 

the hardening beam are both applicable except only for the difference in the spring 

characteristics. 

However, it is more difficult to apply the proposed solution method to the softening 

system due to the non-polynomial type of nonlinearity. To cope with this difficulty, 

introduce a vector of elemental state variables z(e) which satisfies the relationship 

( 4.29) 

Then, Eqn. ( 4.27) can be arranged as 

( 4.30) 

Furthermore, introduce a negative parameter 'Y defined by 

(4.31) 
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The case that "/ = 0 implies an infinite high "yield" stress and is therefore the case of 

a linear constitutive law. Decreasing the value of "/ will decrease the "yielding" value, 

hy, and therefore increase the degree of softening nonlinearity. 

The dynamics of the newly defined vector z(e) is then governed by an auxiliary 

equation 

(4.32) 

The random equation Eqn. (4.30) together with the nonlinear auxiliary equation set 

Eqn. ( 4.32) will be used to obtain a set of deterministic equations. 

4.4.2 Deterministic Equations 

Let the expansion of nodal response vectors be expanded as 

NP 

u(e)(t , b) = L ui~l2""" 1NR(t)Ht1l2""" l NR (b) 
lll=O 

NP 

z(e) (t, b) = L zi~l2··· lNR (t)Ht1l2···lNR (b) 
lll=O 

The final deterministic equations are given by 

Ill= 0,- ··,NP 

with an auxiliary equation 

( 4.33) 

(4.34) 

( 4.35) 

(4.36) 
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Eqn. (4.35) is linear and can be solved numerically very efficiently. However, in 

Eqn. (4.36), given the elemental response difference 'li~:~2 ... rNR(t) and u~~~rrNR(t), the 

time derivative of z{:frLNR (t) must be solved via a matrix equation. The size of the 

matrix is the same as the total number of orthogonal polynomials employed. Hence, 

this becomes a major drawback for this solution scheme when a system with many 

random variables is analyzed. 

4.5 Consideration of the Damping Matrix 

The formulations given in the previous sections are based on an undamped shear-

beam model. The energy dissipation of the system is assumed to be deterministic 

and its relation to the FEM formulation is addressed in this section. Quite often, the 

system damping is provided as a damping field in the governing wave equation. The 

FEM is then applied to the damping field to obtain the correspond damping matrix. 

Alternatively, the FEM discretization can be first applied to an undamped equation 

of motion. Then, the damping matrix is artificially generated using the resulting mass 

and stiffness matrices. The latter approach using a Rayleigh type of damping matrix 

is employed in the formulation . 

The Rayleigh damping matrix is a linear combination of the mass matrix and the 

stiffness matrix. As to the random system being considered, the Rayleigh damping is 

expressed as 
NEL 

C = L { aiMie) + a2K(e)} (4.37) 
e=l 

where C is the global damping matrix for the discretized system, Mie) is the elemental 

lumped mass matrix, K(e) is the mean elemental linear stiffness matrix and a 1 and a 2 

are two constants to be selected according to a specific engineering need. 

Using the property that the global mass matrix, linear mean stiffness matrix and 

the Rayleigh damping matrix can be diagonalized simultaneously, Eqn. ( 4.37) gives 
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the following expression for the ith linearized modal damping ratio. 

(4.38) 

where wi is the undamped natural frequency for the ith mode. Let (i and (j be two 

desired damping ratios for the ith and jth modes respectively. This leads to two 

algebraic equations for the parameters a 1 and a 2 . Solving the resulting algebraic 

equation yields the following expressions for a 1 and a 2 . 

(4.39) 

Hence, the global damping matrix can be constructed using the desired modal damping 

ratios, (i and (j, and the associated modal frequencies, wi and Wj. 

The Rayleigh damping matrix also possesses a direct physical interpretation. 

When a 1 vanishes, the resulting damping matrix is also referred to as the stiffness 

proportional damping matrix. Applying the spring-mass analog given previously, this 

case provides a set of viscous damped dashpots inter-connected in the same way as 

the deterministic restoring springs are arranged. Likewise, when a 2 vanishes, it is 

referred to as the mass proportional damping matrix. In this case, it corresponds to a 

set of dashpots connected from the mass blocks to the ambient. When both constants 

are present, the corresponding physical system is then the combined arrangement in 

the both cases. Finally, the incorporation of the damping matrix to the deterministic 

equation set becomes straightforward and will not be elaborated. 

4.6 Numerical Examples 

As mentioned earlier, the shear-beam model used in the current analysis resembles 

the one employed by Iwan in obtaining the drift spectrum. In this model, a single 
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parameter, T , the linear fundamental period of the shear beam, is used to determine 

the height and the mean shear wave velocity. From the Uniform Building Code (ICBO 

1994) for a steel structure [43], the total length of the shear beam L, measured in 

meters, is related to T by 

T = 0.0853L314 ( 4.40) 

Further using the linear fundamental modal equation, the mean shear wave velocity 

[G7P is related to T and L by 

T= 4L 

/G7P 
( 4.41) 

The random fluctuation component of the shear rigidity is assumed to be homogeneous 

and to follow the exponential correlation function 

( 4.42) 

where <J represents the coefficient of variation and µ represents the ratio of the correl-

ation distance to the total length L. 

Unless otherwise specified, the shear-beam model is uniformly discretized into ten 

elements for the cases examined. The resulting global mass matrix and the linear mean 

stiffness matrix are used to evaluate the modal natural frequencies and a subsequent 

construction of the Rayleigh damping matrix. A 53 model damping ratio for the first 

two modes is assumed in most of the examples presented. 

The input base excitation chosen is the N-S acceleration component recorded at 

Rinaldi Receiving Station during the 1994 Northridge Earthquake. The recorded 

data are processed using a special base-line correction technique developed by Iwan 

and Chen [44]. Figs. 4.6 and 4.7 shows the corrected acceleration and velocity time 

histories where the peak velocity reaches around 170 cm/sec. The time history shows 

a significant "pulse-like" ground motion due to the near-field effects. 
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4.6.1 Linear Deterministic Drift Spectrum 

It is recognized that a wave-propagation based solution approach is more appropriate 

in analyzing the response of a shear beam subjected to a pulse-like ground motion due 

to the fact that the local deformation may be derived from contributions of all modal 

responses. It is therefore necessary to validate the multi-modal solution approach as 

resulted from the FEM discretization prior to a full-scale nonlinear uncertain analysis. 

This allows one to estimate the size of the error and to understand the nature of the 

error due to the finite discretization of the continuum. Furthermore, a suitable size of 

FEM mesh for the problem can be selected. With these objectives, the case of a linear 

model with a uniform deterministic shear rigidity is first examined using a mesh size of 

10 elements and 20 elements. An exact solution for the continuous linear shear-beam 

model has been obtained by Iwan based on a nondispersive damped wave solution 

technique. These solutions are compared through the drift spectrum to emphasize the 

peak local deformation response. The term drift ratio is equivalent to the local shear 

strain in the subsequent discussions. 

Fig. 4.8 and Fig. 4.9 are the 2% and 5% damped drift spectra obtained by the 

damped wave solution and by the FEM model respectively. It shows two large peak 

drift ratios at a period about 1.0 second and 1.4 second. The spectral curves then 

gradually decrease as the period increased. For the period range less than 2 seconds, 

both results agree well except for a slight underestimation in the results of FEM model. 

However, for higher period range, the FEM model yields smaller values on the peak 

drift ratio. Only a little improvement in the difference is achieved when the mesh size 

is refined as 20 elements for both the 2% and 5% damped solutions. 

This discrepancy is believed to be caused by the different types of damping as­

sumed. The Rayleigh damping as employed in the FEM model yields a highly damped 

high modal response because of an increasing damping ratio as the modal number in­

creases. On the other hand, the damped wave solution has an effectively decreasing 
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theoretical modal damping ratio as the effective modal number increases. Therefore, 

less solution difference is observed when the response is strongly dominated by the 

fundamental mode. In general, the FEM model yields more conservative results when 

the participation of higher modal response is substantial. 

Despite its slightly conservative nature, the FEM model yields a good estimation of 

both the spectral shape and the drift magnitude. In addition, the employed Rayleigh 

damping also provides an alternative damping mechanism in modeling the energy 

dissipation of the shear-beam model. 

In the subsequent nonlinear uncertain analysis, a ten-element finite element model 

using the Rayleigh damping will be used to evaluate the response for a fundamental 

period range of 0.5 second to 2.5 seconds. The selected mesh size is believed to be 

capable of providing reasonable accuracy for the selected period range. 

4.6.2 Nonlinear Statistical Drift Spectrum (Effect of 'Y) 

The response uncertainty due to the effects of the uncertain shear rigidity and struc­

tural nonlinearity is examined in this and the next subsections. In order to investigate 

the combined effects of the natural frequency, nonlinearity and uncertain shear ri­

gidity, the study results are presented through a nonlinear statistical drift spectrum. 

The mean shear strain as well as the mean plus one standard deviation of the shear 

strain are considered as the representative response statistics. For each selected fun­

damental period T, the peak elemental response statistics are evaluated first. Then, 

the maximum of these peak elemental statistics is plotted as a function of T. 

In this subsection, an infinite correlation length, µ = oo, is assumed for the cor­

relation function R(~). Such an assumption gives a fully correlated shear rigidity 

in the axial direction. The uncertain shear rigidity therefore has a spatially uniform 

value controlled by only one random variable. The randomness of the shear rigidity 

is assumed to have 10% coefficient of variation given by CJ= 0.1. 
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Recall that the sign of I determined the hardening or softening type of nonlinearity. 

The effect of/ on the stress function-strain characteristics is illustrated in Fig. 4.4. 

Four representative cases of nonlinearity are chosen. The case I = 500 represents a 

hardening stress-strain relationship. The case / = 0 represents the linear structural 

characteristics. Two levels of softening nonlinearity are given by / = -500 and 

/ = -2000. The latter case results in half of the linear stiffness when the strain 

reaches around 5%. 

Figs. 4.10-4.13 show the resulting nonlinear statistical drift spectra where a third­

order approximation is used, except in the case I = -2000 where a fifth-order ap­

proximation is required for acceptable accuracy. These results are verified at selected 

data points using a simulation technique. Also shown are the results associated with 

the nonlinear shear beam with a uniform deterministic shear rigidity represented by 

er= 0. 

From these drift spectra, it is clear that the peak drift statistics increase as the 

degree of softening nonlinearity increased. For the case, / = -2000, the peak mean 

drift reaches about 4.7% and the peak mean plus one standard deviation exceeds 

5.5%. These statistics are much higher than the values observed in the linear case. By 

contrast, the case with hardening nonlinearity has relatively low mean strain and low 

standard deviation over the entire range of the fundamental period considered. The 

deterministic solution for all cases is all seen to be bounded by the mean and mean 

plus one standard deviation solutions. 

To further examine the influence of nonlinearity on the spectral shape of the drift 

spectrum, the peak statistics for selected values of / are plotted simultaneously in 

Fig. 4.14 and Fig. 4.15. This comparison shows a significant shift in the period 

of peak drift demand when the nonlinearity takes effect. In addition, this shift in 

period is accompanied by a change in the level of drift. The presence of a softening 

nonlinearity causes the period to shift toward a lower period range with an increasing 
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response level, while a hardening nonlinearity causes the opposite effect. Applying the 

notion of nonlinear modal analysis, the local strain is directly related to the dominant 

nonlinear modal response. Hence the variation of the period of maximal response may 

be interpreted in terms of the variation of the nominal effective modal period due to 

the nonlinear effect. 

To better describe the above observation, the time history of the drift statistics for 

the case, "( = -2000, T = 0.75, is given in Figs. 4.16-4.19. These figures correspond 

respectively to the response of the first four elements numbered sequentially from the 

base. The effective period lengthening is clearly evident in the mean drift response 

for the time duration of 2-4 seconds. The period of oscillation is approximately equal 

to one second which is about the same as the period of peak drift observed in the 

linear drift spectrum. The phases of these mean drift responses are approximately 

the same. The base element is seen to have the largest strain statistics, and the 

response magnitude gradually decreases away from the base. Hence a modal-like 

response and the mean nonlinear mode shape can be imagined. 

4.6.3 Nonlinear Statistical Drift Spectrum (Effect ofµ) 

This subsection considers a correlated random shear rigidity given by the exponential 

correlation function with µ = 0.5 and a = 0.1. This assumed correlation function 

can be found in Fig. 4.5. Due to the finite correlation distance, more than one ran­

dom variable is required to appropriately represent the governing randomness. By 

numerically solving the resulting eigenvalue-eigenvector problem, the deterministic 

spatial functions associated with the first three random variables are plotted in Fig. 

4.20. This plot shows that as the index of a random variable increases, the associ­

ated spatial function has a decreasing overall magnitude and an increasing degree of 

fluctuation. 

The response variability under the presence of individual random variables is first 
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examined using the model, '"'! = -2000, T = 0.75 sec. The results for the first four 

elements are shown in Figs. 4.21-4.24. These plots demonstrate a rapidly decreasing 

response variability for random variables of higher indices. Hence, the contribution 

from these random variables rapidly becomes negligible. Due to the preceding ana­

lysis, only the first three random variables are taken into account. 

The nonlinear statistical drift spectra for the cases '"'! = -2000 and '"'! = -500 

are given in Fig. 4.25 and Fig. 4.26. Great similarity is observed in the spectral 

curves for the case µ = 0.5 and the case µ = oo, especially in those structures 

having large drift response. Only a slight difference can be seen in the mean plus one 

standard deviation curves for a period higher than about 1.5 second. This indicates 

that the effect of spatial variation is not significant in the considered case and a 

uniformly correlated random rigidity can be a good approximation in evaluating the 

peak response statistics. 

Finally, time histories of statistics for the structure with T = 0.75 second and 

'"'! = -2000 are shown in Figs. 4.27 - 4.30 along with simulation results. The proposed 

method well predicts the response statistics for all time. The strain statistics for the 

base element is less accurate as compared to the other locations. This is because the 

base element exhibits a higher degree of response variation over the random parameter 

space. 

4.7 Remarks 

In the presented examples, two different levels of correlation ratio,µ = oo andµ = 0.5, 

are assumed for the random shear rigidity. For these levels of correlation ratio, it is 

appropriate to perform an analysis using only a few random variables. However, for 

problems with relatively small correlation ratio, the analysis must be based on a further 

refined FEM mesh and a large number of random variables. Due to its prohibitive size, 
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the simulation technique may become more appropriate for such problems. Further 

research to develop an efficient simulation technique is considered to be valuable. 

An auxiliary equation is herein employed for handling the arctangent type softening 

nonlinearity. Such an approximation yields satisfactory results but also results in a 

degree of computational inefficiency. The task of developing a solution method which 

can efficiently handle a non-polynomial nonlinearity and yield accurate results remains 

challenging. An extension to the proposed solution method that both allows a general 

nonlinearity to be treated and a higher-order approximation to be performed would 

prove very beneficial in analyzing the dynamic response of a nonlinear continuum with 

random parameter fields. 
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Chapter 5 

Nonlinear Random Vibration with Parameter 

Uncertainty 

5 .1 Introduction 

Many important engineering problems are prescribed under inherently uncertain dy­

namical environments. Such problems arise from, for example, the response evaluation 

of off-shore structures under wave excitation, or the dynamical analysis of buildings 

subjected to some types of earthquakes, etc. To account for the excitation uncertainty, 

stochastic excitation models, representing a statistical generalization of deterministic 

excitation, are more often used as the input sources for the systems being analyzed. 

In this chapter, the uncertainty due to excitation sources will also be incorporated 

in studying the dynamic response of uncertain nonlinear systems. The objective of this 

chapter is to provide a solution framework within which both the excitation uncertainty 

and the parameter uncertainty are treated simultaneously. The scope of study is 

extended to general nonlinear multi-degree-of-freedom systems with an emphasis on 

the nonstationary response. In this solution framework, the equivalent linearization 

technique is adopted to construct random equivalent systems. The solution procedure 

is illustrated via a general formulation for an uncertain multi-degree-of-freedom system 

subjected to external white noise excitation in the sequel. 
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5.2 Problem Formulation 

Consider a nonlinear dynamical system with a set of N uncertain parameters subjected 

to random input excitation idealized as a modulated white noise process. The equation 

of motion may be written as 

Mx(t) + g(x(t), x(t), 1) = O(t)n(t) (5.1) 

where M i,s the mass matrix which is assumed to be deterministic, x(t), x(t) and 

x(t) are the displacement, velocity and acceleration response vectors, O(t) is a vector 

of deterministic envelop functions, / = { --y1 , --y2 , · · ·, 'YN V is a vector of uncertain 

parameters and n(t) signifies a zero-mean Gaussian white process with a constant 

power spectrum density S0 . The autocorrelation function of n(t) is given by 

E[n(t)n(t + T)] = 27rS06(T) (5.2) 

where E[·] denotes the expectation operator and 6(·) is the Dirac delta function. 

Without loss of generality, the uncertain parameters are assumed to be time­

independent and are idealized as independent random variables. For convenience, 

I is represented in terms of a set of zero-mean, unit-variance independent random 

variables, b = {b1 , b2 , · · ·, bN }r, by the relation 

I= ')'+Ab (5.3) 

where')'= E[T], A= diag[A1 , A2 , ···,AN] and Ai is the variance of the uncertain para­

meter 'Yi· Substituting Eqn. (5.3) into Eqn. (5.1) and suppressing the deterministic 

arguments gives 

Mx ( t, b) + g ( x ( t, b), x ( t, b) , b) = O ( t) n ( t) (5.4) 
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The randomness governing Eqn. (5.4) comes from two statistically independent 

sources: randomness due to the parameter uncertainty represented as time-independent 

discrete random variables, and randomness due to the driving force uncertainty rep­

resented as a continuum of random variables in time. Denote flb and flt as the sample 

spaces of the parameter uncertainty and driving force uncertainty respectively. The 

response vectors x(t, b) and x(t, b) are therefore random processes defined on the 

space product flb x flt. Traditional analyses for random vibration problems with de­

terministic parameters provide the response moments averaged over the sample space 

flt. Under the presence of uncertain parameters, these response moments are still 

random quantities defined over the sample space flb . Thus, the objective of studying 

random vibration problems with parameter uncertainty may be aimed at providing a 

measure of these random response moments. In the current study, this task is accom­

plished by performing the unconditional mean and variance analyses of the random 

moments. 

When a stationary nonlinear response is of interest , exact closed-form solutions 

exist for some single-degree-of-freedom systems [14, 13, 15]. The statistics of moments 

can then be evaluated by either a numerical integration or a mathematical integration 

with the possibility of closed-form moment statistics. Yet, great difficulties have been 

encountered in pursuing exact analyses for the cases of nonstationary response or for 

systems with more than one degree-of-freedom. To the best knowledge of the author, 

no exact solution has been obtained so far for the types of problems mentioned above. 

Lacking an explicit solution, approximation techniques have to be adopted in both 

aspects of the random sources. In particular, the notion of equivalent linearization is 

employed in the formulation . In the next section, the traditional linearization scheme 

is further generalized to accommodate the problems with random parameters. 
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5.3 Equivalent Random System 

The basic framework of equivalent linearization is to approximate an unknown nonlin­

ear solution with the aid of an auxiliary linear system. Due to the linear assumption, 

this solution technique can also be interpreted as a Gaussian approximation method 

when the driving force is Gaussian. By prescribing a measure of the equation error, 

the principle of minimization is then applied over the entire class of linear solutions. 

This results in a set of partial differentiation procedures for obtaining the expression 

of the equivalent linear parameters. Special consideration is required when the system 

parameters are assumed to be random. This is due to the fact that the presence of 

parameter uncertainty yields the randomness in nb x flt of the response vectors and so 

does the equation error. Therefore, the equation error becomes a random functional. 

The following is a theoretical supplement of the linearization scheme for the transition 

from problems with deterministic parameters to problems with random parameters. 

Let the candidate equivalent system to Eqn. (5.4) be described by 

Mx(t , b) + Ceq(Q(t, b), b)x(t, b) + Keq(Q(t , b), b)x(t, b) = O(t)n(t) (5.5) 

where Q(t , b) denotes the time-varying covariance matrix. The randomness of the 

equivalent damping matrix and stiffness matrix are implicitly declared in their argu­

ment lists. Denote the equation difference as E(t, b). A comparison of Eqn. (5.4) and 

(5.5) then yields 

E(t, b) = Ceq(Q(t, b), b)x(t, b) + Keq(Q(t, b), b)x(t, b) - g(x(t, b),x(t, b), b) (5.6) 

Let J be the objective function to be minimized and define J as the unconditional 
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mean square equation error giving by 

(5.7) 

where T is an arbitrary instant of time. Following the fundamental properties of 

probability theory, the expectation operator in Eqn. (5. 7) can be conditioned on the 

sample vector of b as 

(5.8) 

where /3 is a vector of the sample values of the random parameters b. Given the 

condition b = /3 , the equation error is statistically independent of the random para-

meters. Further using the commutation of the expectation operator and the integration 

operator, Eqn. (5.8) may be rewritten as 

(5.9) 

The integrand of Eqn. (5 .9) involves only a deterministic set of the elements of the 

equivalent stiffness and damping matrices. Hence, regular calculus of variation can 

be directly applied for obtaining an optimal function representation. 

Let 

fJJ = 0 (5 .10) 

Then, two independent Euler equations are derived as 

8E[ET(t, /3)E(t , /3)] = O [ ] 
(" .) t E 0, T, aceig (Q(t, /3), /3) 

(5.11) 

8E[ET(t, /3)E(t , /3)] = O [ ] 
(" ') t E 0, T, 

8Ke2/ (Q(t, /3), /3) 
(5.12) 



- 95 -

where the superscript (ij) denotes the ijth element of a matrix. These equation sets 

are used to determine the equivalent system parameters. It has been shown by Atalik 

[21] that under the Gaussian assumption and certain required smooth conditions, the 

Ceq and K eq take the expressions 

c (Q(t a) a)= E [og(x(t,{3),x(t,{3) ,{3)] 
eq 'tJ ' tJ ox(t, {3) (5.13) 

(5.14) 

This indicates that the optimal C eq and K eq that minimize Eqn. (5.7) depend only on 

the instantaneous covariance matrix and the sample point of the random parameters 

being conditioned. This observation agrees with the postulated equivalent system 

given in Eqn. (5.5). In addition, the expressions given by Eqn. (5.13) and (5 .14) are 

identical to what is given for the problems with deterministic parameters, and these 

expressions indeed minimize the unconditional mean square equation error. Note that 

the vector argument {3 is defined in the random sample space nb. Therefore, the 

randomness of these matrices is automatically defined. 

5.4 Random Liapunov Equation 

As indicated previously, the response vector of the equivalent system is a zero-mean 

Gaussian process when the excitation is zero-mean Gaussian, and the statistical prop-

erties of any Gaussian process are fully characterized by its first two moments. The 

first moment response is identically equal to zero and is therefore independent to 

the parameter uncertainty. It can then be concluded that a random second-moment 

equation alone serves as an alternative statement for the response process under the 

linearized scheme. This observation motivates a process of partially suppressing the 

response randomness in Dt as the first step toward the solution of the random equi-
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valent system. As a result, a Liapunov equation with random parameters governing 

the covariance matrix is derived. Using the state-space formulation, the derivation for 

the random Liapunov equation is given below. 

Let s( t, b) be a vector of m state variables defined by 

{ 
x(t, b) } 

s(t, b) = 
x(t,b) 

(5.15) 

and f(t) be the corresponding forcing vector given by 

{ 
0 } f(t) = 

M-1o(t) 
(5.16) 

Eqn. (5.5) is then converted into a first-order state-space equation by 

s(t, b) = Aeq(t, b)s(t, b) + f(t)n(t) (5.17) 

where Aeq(t, b) denotes the time-varying equivalent system matrix given by 

(5.18) 

Let the symbol Et(·) be the average operator over the random space of the driving 

force flt. Post-multiplying Eqn. (5 .17) by sT, premultiplying the transpose of Eqn. 

(5.17) by s and then performing the Et operator on the sum of resulting equations 

yields 

Q(t, b) Aeq(t, b )Q(t, b) + Q(t, b )A~q(t, b) + 

Et[s(t, b)n(t)]fT(t) + f(t)Et[sT(t, b)n(t)] (5.19) 
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where Q(t, b) = Et[s(t, b)sT(t , b)]. 

Eqn. ( 5 .19) can be further simplified by considering the correlation between the 

response vector s(t, b) and the white noise excitation n(t) . Noting that s(t, b) is the 

solution of the linear equation Eqn. (5.17) , there exists a random principle matrix 

<I>( t , b) satisfying the following two conditions 

<i>(t, b) = A eq(t, b )<I>(t, b) (5.20) 

<I>(O, b) =I (5 .21) 

Then, the response s(t, b) is expressed in terms of the principle matrix and white 

noise excitation as 

s(t, b) = <I>(t, b)s(O, b) + <I>(t, b) lot <I>-1(T, b)f(T)n(T)dT (5 .22) 

Multiplying Eqn. (5.22) by n(t) and then performing Et operator gives 

Et[s(t , b)n(t)] = <I>(t, b) lot <I>-1(T, b)f(T)Et[n(T)n(t)]dT. (5.23) 

Recall that the white process n(t) is delta-correlated satisfying 

(5.24) 

Substituting Eqn. (5 .24) into Eqn. (5.23) yields 

Et[s(t , b )n(t)] = KS0f(t) (5 .25) 

Substituting Eqn. (5.25) and its transpose into Eqn. (5 .19) gives a random Liapunov 
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equation of the form 

Q(t, b) = Aeq(t, b)Q(t, b) + Q(t, b)A~q(t, b) + 27rSof(t)fT(t) (5.26) 

Eqn. (5.26) is a matrix equation representing a set of m x m equations. Since the 

random covariance matrix is symmetric, there are only m(n;+i) independent equations 

out of the m 2 equations. Alternatively, Eqn. (5.26) can be expressed as a vector form 

where only the independent equations are involved. 

5.5 Approximation of the Random System Matrix 

Given a random instantaneous covariance matrix, the Ceq and Keq can be approxim-

ated as quadratic functions of b. Let D(b) be a matrix of functions b, and denote the 

nth partial derivative coefficient matrix as nt~j· Then, 

(5.27) 

A second-order Taylor expansion of the instantaneous equivalent damping and stiffness 

matrices takes the forms 

Ceq(Q(t, b ), b) 
N 1 N N 

~ c[0l(t) + :Lci1l(t)bi + 2 :L:LciYl(t)bibj 
i=l i=lj=l 
N 1 N N 

~ K[0l(t) + L Ki
1
l(t)bi + 2 LL Ki~1l(t)bibj 

i=l i=l j=l 
(5.28) Keq(Q(t, b), b) 

where the time-dependent nth-order variation matrices are obtained through the chain 

rule of partial differentiation of the covariance matrix and the random variables. The 

variation matrices may contain functions of the covariance matrix up to the nth-order 
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as indicated by the following symbolic expressions 

C[n] · (t) = C[n] · [Q[O] (t) Q[I] (t) · · · Q[n] · (t)] 
i "' ] i" ·] ' i ' ' i"'] 

(5.29) 

K[n] · (t) = K[n] · [Q[O] (t) Q[I] (t) · · · Q[n] · (t)] 
i"'] i"'] ' i ' ' i" ' ] 

(5 .30) 

Denote A[0l(t), Al1l(t) and AlYl(t) as the zero, first and second-order time-varying 

matrices respectively. These matrices are defined as 

(5.31) 

Then a second-order approximation of the random system matrix, denoted as A(t, b ), 

is given by 
N 1 N N 

A(t, b) = A[0l(t) + L Al1l(t)bi + 2 LL AlYl(t)bibj 
i=l i=l j=l 

(5.32) 

The approximated random Liapunov equation thus becomes 

Q(t, b) = A(t, b)Q(t, b) + Q(t, b)AT(t, b) + 2KS0f(t)fT(t) (5.33) 

where the expression for the matrix A(t, b) is given in Eqn. (5.32) 

Note that, except for the twice-differentiable condition with respect to b of the 

equivalent system matrix, no additional assumption is made on the type of system 

nonlinearity or the way the uncertain parameters appear in the equation of motion. 

Also note that the random variable set is extracted explicitly up to the second order. 

Thus, there is great advantage in converting the random Liapunov equation into a 

deterministic one. 
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5.6 Deterministic Liapunov Equation 

To solve Eqn. (5.33), the covariance matrix is expanded in terms of the set of ortho­

gonal polynomials as 

NP 

Q(t, b),...., L QlilrlN(t)Ht1l2 .. ·LN(b) 
J!J=O 

where Ill denotes the norm which can take 

(5.34) 

(5.35) 

Recall that the set of orthogonal polynomials { H1itrlN (b) }ilf =o satisfy the orthogon­

ality condition 
N 

E[Ht1l2 ···LN(b)Hm1m2 ···mN(b)] =II Ot;m; 
i=l 

(5.36) 

Note that the system matrices involve the evaluation of up to the nth-order Taylor 

coefficient matrices of the covariance matrix. With the orthogonal polynomial solution 

basis, these Taylor coefficient matrices can be evaluated explicitly by 

~ QA ( ) fr Hz1trtN (b) I 
~ l1lrlN t Ob ... Ob. 
JIJ=O i J b=O 
NP 

L QlilrlN (t)Hl~]rlN,i·· -j 
JIJ=O 

(5.37) 

where Hl~1rtN,i ·· -j are constant coefficients which can be evaluated efficiently and tab­

ulated. Thus, the system matrices becomes 

A[n) A[n) A [OJ A [I) A [n) 
i··-j(t) = i··-j[Q (t), Qi (t), ... ' Qi .. )t)] (5.38) 

In the preceding formulations, the instantaneous stiffness and damping matrices 

are approximated by quadratic random functions. These quadratic random functions 
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are expressed explicitly in terms of the power of the random variables. It is useful to 

apply the recursive relationships of the orthogonal polynomials for subsequent deriv-

ations. For a symmetric probability density function, the recursive relationships may 

be expressed as 

(5.39) 

(5.40) 

where the coefficients in Eqn. (5.40) are derived from Eqn. (5.39) . Their relations 

are given by 

-li ao 

azi azi-1 
-1 -1 

azi azi-1 + 1i a1i+1 
-1 i a1 -1 

(5.41) 

To obtain the final deterministic equations, first substitute Eqn. (5 .38) and Eqn. 

(5.34) into Eqn. (5.33) and multiply the resulting equation with individual orthogonal 

polynomials. Applying the expectation operator and using the recursive relationships 

will lead to a coupled set of deterministic Liapunov equations as 

i=l 

Eqn. (5.42) can be solved numerically in time to obtain the nonstationary covari-
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ance response. The nonstationary response statistics can then be calculated using 

E [Q(ij) (t, b)] 

Var [Q(ij) (t, b)] (5.43) 

where the bracketed superscript, (ij ), denotes the ijth element of the covariance mat-

nx. 
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Chapter 6 

Application: Hardening and Softening SDOF 

Systems 

In this chapter, the newly developed solution technique for obtaining the statistics 

of nonstationary response moments is applied to several uncertain nonlinear single­

degree-of-freedom systems subjected to modulated white noise excitation. 

6.1 Formulation 

Consider a nonlinear uncertain single-degree-of-freedom system subjected to a mod­

ulated white noise excitation formulated by the equation of motion 

x(t, b) + g(x(t, b), x(t, b), b) = e(t)n(t) (6.1) 

In the above equation, n(t) is a Gaussian white noise process with a constant power 

spectral density S0 , ()(t) is a deterministic envelop function, b denotes a vector of 

N independent random variables with zero means and unit variances, and x(t, b) and 

x( t, b) are the random displacement and velocity responses respectively. 

In terms of the state-space formulation, the state vector contains the displacement 

and velocity response. The covariance matrix for the system becomes a 2-by-2 matrix 

with three independent random response moments. Define the vector of these random 
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moments by 

qxx(t, b) 

q(t, b) = qxx(t, b) =Et x(t, b)x(t, b) (6.2) 

qxx(t, b) 

where the operator Et(·) is the average operator over the sample space of the random 

driving force. Then, the equivalent linear system is expressed in terms of q( t, b) as 

x(t, b) + Ceq(q(t, b) , b) x(t, b) + keq(q(t, b), b)x(t, b) = B(t)n(t) (6.3) 

As a special case of the nonlinear matrix equations derived in the previous chapter, 

the equations governing the evolutionary covariance matrix can be rearranged and 

represented as three independent sets of nonlinear moment equations for this single-

degree-of-freedom system. These equation sets are given by 

izxx,l1l2'""lN (t) = qxx,l1l2'""lN (t) - (k[0l(t)qxx,lil 2 ···lN (t) + cl0l(t)qxx,lil2 ···lN (t)) 
N 

- L L a~i (kP1(t)qxx,li ···l;+r···lN(t) + d11 (t)qxx,li· ··li+r·· ·lN(t) ) 
i=l r=-1,1 

1 ~ " - li ( [II] ( ) ( ) [II] ( ) ( ) ) -2 ~ ~ aT kii t qxx,li ···l;+r···lN t + Cii t qXX,l1·· ·li+T···lN t 
i=l r=-2 ,0,2 

(6.4) 

(6.5) 

N 

izxx,lil2'""lN(t) = -2 (k l0l(t)qxx,lil2 . .. 1N(t) + cl0l(t)qxx,lil2'""lN(t)) + 27rSoB2 (t) IT boln 
n=O 

N 

-22: L a~i (k~11 (t)qxx,li-··li+r· ·· lN (t) + d11
(t)qxx,li ···l;+r···lN(t)) 

i=l r=-1,1 
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N 

- L L a~i (kl~ 11 (t)qxx,li···l;+r ···lN(t) + d~11 (t)qxx,l1···l;+r···tN(t)) 
i=l r=-2 ,0,2 

N 

- L L a~ia~; ( klY1 (t)qxx,li- ··l;+r···li+s···lN (t) + cl~1l(t)qxx,li ···l;+r· · ·li+s · ··lN (t)) 
i ,j=l r,s=-1,1 

N 

L: zi = o, 1, 2 (6.6) 
i=l 

In the above equation sets, the subscription ( ·) ,lilrtN indicates various orders of the 

orthogonal polynomial expansion associated with the moment response as usual. The 

constant coefficients a~ and a~ are given previously and their values depend on the 

type of probability density function of the random parameters. 

The above equation set represents a general solution format for a problem express-

ible in the forms given by Eqn. (6.1) and Eqn. (6.3). It encompasses a wide-class 

of uncertain nonlinear single-degree-of-freedom random vibration problems including 

some types of uncertain hysteretic systems. Under this solution format, the feature of 

nonlinearity and parameter uncertainty is provided through the second-order Taylor 

coefficients of the equivalent stiffness and damping by the following formulations. 

k[II] = [J2keq I i,j = 1, ... 'N 
iJ ob/Jbj b=O 

(6.7) 

[OJ - I C - Ceq b=O 
[II] 0

2
Ceq I . . _ 

cii = ob·ob · i,J-1,···,N 
i J b=O 

(6.8) 

The proposed solution scheme will be applied to uncertain nonlinear systems with 

uncertain hardening and softening stiffnesses in the following sections. For validation 

and comparison purposes, other solution schemes are also considered and introduced 

in the next section. 
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6.2 Existing Solution Methods 

Three other approximation methods for obtaining the moment statistics are investig­

ated. These methods are presented and described below. 

A second-order perturbation method using a set of random moment equations is 

considered herein as the first method for comparison. These random moment equa­

tions are derived from the nonstationary equivalent linearization technique. In an 

alternative viewpoint, these random moment equations represent a set of coupled 

nonlinear equations with random parameters. Hence, the response moments can be 

perturbed about the means of the random parameters and the moment statistics can 

then be evaluated using the numerical solutions of the resulting perturbed equations. 

This moment-equation based perturbation scheme is referred to as the MEP method 

in later use. 

A simulation method based on the same set of nonlinear random moment equa­

tions is also considered . This method first generates a set of samples of the uncertain 

parameters. For each sample, the corresponding set of moment equations is evalu­

ated numerically. The statistics of the moment response are then calculated. This 

moment-equation based simulation method is referred to as the MES method. For a 

large number of samples combined with a sophisticated numerical integration scheme, 

the MES method can accurately provide the moment statistics given by the nonstation­

ary equivalent linearization. Hence, MES will be used to verify the accuracy of the 

expansion technique employed in the proposed method. 

In addition to these moment-equation based approximations, a Monte-Carlo type 

of simulation method, referred to as the MCS method, is also provided. In MCS, 

two groups of random samples are generated which are associated with the random 

system parameters and random driving force . The driving force samples are a fixed 

set of simulated white noise processes. For each sample of the uncertain system 

parameters, the resulting nonlinear system is sequentially excited by the set of white 
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nmse processes. Due to the theoretical zero first moment, only the second moment is 

calculated and stored. This process continues until the second moments for all samples 

of system parameters are evaluated. The final statistics of the moment response are 

then evaluated. MCS can provide the highest accuracy but at the expense of extremely 

extensive computations. 

6.3 Examples of Uncertain Hardening Systems 

Consider the Duffing oscillator subjected to white noise random excitation expressed 

as 

x + 2(w0x + w6(x + ryx3
) = B(t)n(t) (6.9) 

where ( and w0 are the linear damping ratio and undamped natural frequency respect­

ively, ry is a positive nonlinear parameter indicating the degree of nonlinearity, and B(t) 

is a deterministic envelop function chosen as the unit step function. The arguments 

of the response x are suppressed for simplicity. 

The equivalent stiffness of the system is well-known to be 

(6.10) 

The implementation and performance of the proposed method are illustrated through 

two different types of uncertain hardening restoring force by assuming uncertain ry 

and uncertain w0 respectively. For each numerical example, the MEP, MES and MCS 

methods are also employed for comparison. For both types of uncertainty, the solu­

tion results are presented in terms of the mean moment response and the mean plus 

one standard deviation. The statistics for both the displacement moment and velo­

city moment will be given. The cross correlation of the displacement and velocity 

response is in general small and will not be presented. To facilitate the discussion, 
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the abbreviated notations if.xx and q:x will stand for the mean value of qxx and the 

mean plus one standard deviation of qxx · Similar notations, if.xx and if.tx, are used for 

the statistics of velocity moments. The example with uncertain nonlinear parameter 

/ is first presented in the next subsection. 

6.3.1 Uncertain Hardening Nonlinear Parameter 

In this subsection, the system is assumed to have uniformly distributed uncertain I 

represented by 

I= 1 + >.b (6.11) 

Substituting Eqn. (6.11) and Eqn. (6.10) into Eqn. (6.7) yields the following expres-

SlOnS 

k[O] w~(l + 3ryq1~) 

k1[I] 3w2 (>.q[O] + ;;;;q[I] ) 
0 xx 1 xx,l 

k [II] 
11 

2 ( , [I] - [II] ) 
3wo 2/\qxx,1 + /qxx,11 

The only nonzero damping component in Eqn. (6.8) is given by 

(6.12) 

(6.13) 

Substituting Eqn. (6.12) and (6 .13) into Eqns. (6.4) - (6.6) gives the deterministic 

moment equation set to be evaluated numerically. The system parameters are chosen 

as w0 = 27r, ( = 23, 1 = 0.5 and >. = 0.25 . The selection of 1 and >. corresponds to a 

uniformly distributed parameter range [ 0.07, 0.93 ]. The numerical scheme adopted 

is a fourth-order Runge-Kutta time-integration scheme with a time increment 0.02 

second. Two levels of input intensity, S0 = 1 and S0 = 4, are chosen to vary the 

degree of nonlinearity. 
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For the case S0 = 1, the evolutionary moment statistics for various methods are 

compared in Figs. 6.2, 6.3 and 6.4. In Fig. 6.2, all the moment statistics obtained by 

the proposed method agree well with that from MES. This indicates that the proposed 

method excellently approximates the moment response of the equivalent linearization 

technique in the random parameter space. MEP also provides acceptable statistics 

except for an oscillatory component as shown in Fig. 6.4. 

From the iixx and ift:r responses, the velocity moments are seen insignificant to 

variations of 'Y for the entire response history. In fact, the stationary qxx given by 

the equivalent linearization technique is the exact solution and the expression is in­

dependent of 'Y· Due to the deterministic nature of the stationary velocity moment, 

the nonstationary velocity moment is conceivably less sensitive to the parameter vari­

ation of 'Y· This explains the small standard deviation of velocity moment in all the 

proposed method, the MES method and the MCS method. In addition, the stationary 

velocity moment also provides a measure on the accuracy of the Monte-Carlo sim­

ulation scheme used in MCS. The validation is demonstrated through the excellent 

agreement of the velocity moments as shown in Fig. 6.3. 

The peak iiix for the given level of excitation is about 0.26. Using the square root 

of the peak iiix and the parameter range 'Y = [ 0.07, 0.93], the degree of nonlinearity 

can be estimated in a statistical sense from force-displacement curves in Fig. 6.1. It 

shows that only a slight level of nonlinearity is developed in the system responses. 

For this level of nonlinearity, an excellent approximation of the displacement moment 

is achieved by the equivalent linearization technique as shown in Fig. 6.3. 

The results for the case of S0 = 4 are given in Figs. 6.5 - 6. 7. The peak iiix for 

this case reaches a value of approximated 0.8 which indicates a level of mild nonlinear 

responses in a statistical sense. In Fig. 6.5, the iiix of the proposed method differs 

only slightly from that of the MES method with a small underestimation. In Fig. 6.6, 

the proposed method solution still qualitatively agrees with the MCS solution for this 



- 110 -

level of nonlinearity. 

The results of the MEP method become highly oscillatory and unacceptable. To 

understand this difference, the qxx and qxx responses implied by the proposed method, 

MEP and MES are plotted as a function of 'Y /1 at a fixed time t = 6.0 sec. in Fig. 

6.8. It is seen that the MES method shows a ripple-like moment curve as a function of 

r. The MEP method seeks a local exact curvature at the mean uncertain parameter 

r = 1 while results in very large overall error for the given range of r· The proposed 

method seeks a best quadratic curve in the sense of global approximation, in contrast 

to the local quadratic approximation given by the MEP method. Hence, much better 

results are achieved by the proposed method. 

6.3.2 Uncertain Natural Frequency 

In this case example, a deterministic nonlinear parameter r and an uncertain natural 

frequency is considered. The dispersion on the restoring force-displacement charac-

teristics due to the parameter variation of the natural frequency may be illustrated in 

Fig. 6.9. The randomness of the natural frequency is represented by 

wo = wo + >.b (6.14) 

where w0 is the mean value of w0 , >. is the variance and b is a random variable with 

zero mean and unit variance. 

Following the procedures of partial differentiation with respect to the random vari-

able b, Eqn. (6.7) becomes 

k[0l w~(l + 3rql01) 
kl1l 2>.wo + 3"f(2>.wo>.ql01 + wo 2qg1,i) 

k[II] 
11 

, - ( [OJ) , - [I] 3 - 2 (II] 2AWo 1 + 3rqxx + 12AWoqxx,l + "(Wo qxx,ll (6.15) 
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Note that the uncertainty of the natural frequency also introduces randomness of the 

system damping. This gives higher-order damping components in Eqn. (6.8) as 

2(,\ (6.16) 

The parameter values, w0 = 27f, ( = 23, 'Y = 0.5 and a 203 coefficient of vari-

ation of the natural frequency, ,\ = 0.47f, are used to study the response uncertainty. 

The uncertain w0 is assumed to be uniformly distributed. Similarly, this system is 

subjected to two levels of input intensity given by S0 = 1 and S0 = 4. 

For the case S0 = 1, excellent statistics prediction is again achieved by the proposed 

method as shown in Fig. 6.10. It is noted that not only the displacement moment but 

also the velocity moment exhibit severe response uncertainty. A rough calculation 

shows that the assumed 203 coefficient of variation in the natural frequency results 

in approximately a 503 coefficient of variation in the peak Qxx and a 253 coefficient 

of variation in the peak Qxx· The moment statistics given by the proposed method 

also agree well with the MCS solutions in Fig. 6.11. However, in Fig. 6.12, the MEP 

method already results in poor prediction for this level of excitation. 

The results for the case S0 = 4 are given in Figs. 6.13, 6.14 and 6.15. All the 

moment statistics increase as the input intensity increases. Good performance is still 

achieved by the proposed method, however the MEP solutions become even worse. 

The reason for such poor performance of MEP may be seen from Fig. 6.16, where 

the moment responses implied by the proposed method, MEP and MES are plotted 

as functions of w0/w0 at t = 6.0 sec. The observations and discussions described for 

the case of uncertain 'Y are also applicable for this case. 

The conclusion is drawn that the instantaneous response moment as a function 

defined in the random parameter space exhibits a smooth, ripple-like profile for both 
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types of uncertain hardening nonlinear stiffness. Hence, any locally perturbative solu­

tion scheme may not be appropriate when the the subdomain being approximated 

is substantially smaller than the domain the uncertain parameters are defined. This 

situation frequently occurs in the nonstationary response of an uncertain system sub­

jected to a suddenly applied loading condition, especially when a hardening system or 

a multi-degree-of-freedom system is to be analyzed. Therefore, great caution should 

be excised in applying the MEP method for analyzing the nonstationary response of 

the systems being mentioned. 

6.4 Examples of Uncertain Softening Systems 

Consider a system with nonlinear softening restoring force given by 

(6 .17) 

where (, w0 , e(t) and n(t) are as defined previously, sgn(·) is the signum function 

and f y is the "yielding" level of the softening restoring force. Typical restoring force­

displacement curves of this softening system are graphically illustrated in Fig. 6.17. 

The envelop function chosen is the Saragoni-Hart type [45] given by 

e(t) = te-nst t > 0 (6.18) 

where a 5 is a decaying constant. This type of envelop function has been implemented 

widely to simulate the nonstationary feature of earthquake ground motion. 

Applying the technique of equivalent linearization, the expression for the equivalent 

stiffness can be shown to be 

(6.19) 

where erfc(·) is the complementary error function and the introduced parameter a is 
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defined as 

(6.20) 

The extreme case f y ---+ oo corresponds to a linear system and the expression for the 

equivalent stiffness is reduced to the linear stiffness w5. The value of keq gradually 

decreases as the yielding level decreases. Clearly, a non-polynomial type of equivalent 

system parameter is present in this example problem. 

Several important issues in implementing the proposed solution scheme are ad-

dressed and considered in this example problem. First , the accuracy of the evolution-

ary moment statistics subjected to the time-varying input intensity is to be explored. 

Second, the performance under the presence of non-polynomial type of equivalent 

system parameters is to be examined. In addition, the dimension of the uncertain 

parameter space is further expanded to allow both the stiffness and damping uncer-

tainties to be presented simultaneously. 

The sources of uncertainty are considered to be due to the the damping ratio (and 

the yielding parameter fy· These parameters are assumed to be statistical independent 

and are represented by 

(6.21) 

where b1 and b2 are independent random variables with zero means and unit variances. 

Substituting Eqn. (6 .21) into Eqn. (6.19) and performing the procedure of par­

tial differentiation with respect to b1 and b2 will yield various orders of stiffness and 

damping components. For simplicity, introduce a constant coefficient /3 = >..2f fy and 

the following set of time-dependent variables 

[I] 
C. - qxx,i . 1 2 
<, i - [OJ ' '/, = ' ' 

2qxx 

[II] 

c,J. = q2xx[,Oi]j' . . 1 2 <,. i, J = ' 
qxx 

(6.22) 
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The stiffness components in Eqn. (6.7) can be shown to be given by 

kJ!l rJ(~i - /301i), i = 1, 2 

k~~r] 2(~i - f361i)(~j - /301j)(µ(l + a5) + aow6/../i) 

+rJ(~ij - 2~i~j + (32oiloj1), i, j = 1, 2 (6.23) 

where rJ is a time-dependent variable as a function of a 0 only. The expression for rJ is 

given by 

(6.24) 

Similarly, the nonzero damping terms in Eqn. (6.8) are given by 

(6.25) 

Substituting Eqn. (6.23) into Eqn. (6.25) into Eqns. (6.4) - (6.6) gives the set of 

deterministic equations for numerical evaluation. The results are compared to those 

obtained by MES and MCS. Two levels of input intensity, S0 = 1 and S0 = 2, along 

with the parameter values w0 = 2n, ( = 2%, fy = 4n2 and a8 = w0 /10n are used 

to generate numerical results . The random parameters are all assumed to follow the 

Ultraspherical distribution with index M = 2. Two special cases will be considered: 

the case of only uncertain yielding force with 20% coefficient of variation represented 

by ,\1 = 0 and ,\2 = 0.8n2 , and the case of both uncertain parameters presented 

simultaneously given by -A 1 = 0.5% and -A2 = 0.8n2
. 

For the first level of excitation, S0 = 1, the numerical results for the case with 

uncertain yielding force only are given in Figs. 6.18 and 6.19. It is seen that the 

proposed solution method again agrees well with the MES solutions. The comparison 
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shown in Fig. 6.19 indicates a slight underestimation on the displacement moment 

statistics which is concluded to be due to an error resulting from the equivalent lin­

earization process. The velocity moment is again seen to be insensitive to the stiffness 

uncertainty. 

Figs. 6.20 and 6.21 show the results for the case where the uncertain yielding 

force and uncertain damping are present simultaneously. The additional damping 

uncertainty slightly increases both the ifxx and if.xx · In addition, the uncertainty in the 

velocity moment becomes substantial with the introduction of damping uncertainty. 

Using the peak value of if:x and the restoring force curves shown in Fig. 6.17, a mean 

ductility ratio is estimated as 1.5 for this case. For this degree of softening nonlinearity, 

the proposed method provides good moment statistics in both the response time rate 

and the response magnitude. 

Figs. 6.22 and 6.23 give the numerical results for the case with uncertain yielding 

force subjected to input intensity S0 = 2. In Fig. 6.22, the solutions of the proposed 

method and the MES method become distinguishable but the difference is within an 

error level acceptable for an engineering purpose. This difference is believed to be 

due to the limited second-order capability of the proposed method in modeling the 

random equivalent stiffness. The proposed method yields higher estimations than 

MES for both ifxx and q:x· However, these solutions are still smaller the MCS results, 

which is the consequence of the conservative nature of the equivalent linearization. 

The results for the case with uncertainty in both parameters are given in Figs. 

6.24 and 6.25. Using the same calculation procedure mentioned previously, the mean 

ductility ratio reaches approximately a value of 2.8. Hence, the response is considered 

to be in the level of mild nonlinearity. In this case, the proposed method still yields 

satisfactory results. 
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6.5 Effect of Nonlinearity and Parameter Uncertainty 

A comparison on the effect of system nonlinearity and parameter uncertainty is 

provided in this section. This comparison is based on the peak nonstationary moment 

statistics of two representative uncertain nonlinear systems. They are respectively a 

hardening Duffing system and the softening system introduced in the previous sec­

tions. The hardening system possesses an uncertain hardening nonlinear parameter 

/, and the the softening system possesses an uncertain "yielding" level fy· Both sys­

tems have the same values of deterministic initial linear stiffness and the same degrees 

of uncertain linear damping. The modulated white noise process employed previously 

is used as the input excitation for both systems. For a selected value of input intens­

ity S0 , the peak moment statistics are evaluated using the proposed solution method. 

These peaks statistics are then plotted as a function of S0 for the range S0 = [O, 3]. 

Additionally, the peak moment response conditioned on the mean parameter values 

is also provided for comparison. These results are presented in Figs. 6.26 and 6.27, 

where the parameter values of the representative systems are also given. 

To facilitate the discussions, a qualitative description for the response of an un­

certain linear system is first given. For an uncertain linear system with a fixed degree 

of parameter uncertainty, the peak values of nonstationary if.xx, if.ix, if.xx and if.Ix are 

linearly proportional to the excitation intensity S0 . This is due to a linear relation­

ship between the response moments and the input excitation. As shown in Figs. 6.26 

and 6.27, nonlinear relationships are clearly developed in the if.xx and if.ix curves for 

both the hardening and softening systems. For the softening system, the if.xx and if.ix 

curves shows a steadily increasing trend as S0 increases. This results in a very large 

displacement response uncertainty for a large S0 . On the other hand, the hardening 

system shows much smaller if.xx and if.ix values as compared to the softening system. 

The if.ix value for the softening system at S0 = 3 exceeds a value of 14, which is about 

10 times larger than that of the hardening system. Hence, the type of nonlinearity 
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greatly affects the statistics of the displacement moment. 

Furthermore, the peak unconditional fJ.xx for both systems are all greater than the 

conditional fJ.xx · This is because of a bias in the Qxx response subjected to variations 

of nonlinear stiffness and damping coefficient. Hence, the deterministic analysis based 

on the mean parameter values will yield more conservative results than a statistical 

analysis. 

Both the peak fJ.±± and ?J.tx curves as functions of S0 are approximately linear. The 

difference between conditional and unconditional solutions is also less significant. The 

velocity moments for both systems are of the same response level, as contrast to the 

significant difference in the displacement moments. This shows that the peak fJ.±± is 

insensitive to the types of nonlinearity. However, the hardening system has slightly 

larger peak velocity statistics than the softening system. To explain this, recall that 

the nonlinear stiffness has no effect on the stationary velocity response. It is then 

clear that this difference is due to the nonstationarity of the excitation and a faster 

response rate of the hardening system. 
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Figure 6.3: Comparison of displacement and velocity moment statistics given by the 
proposed method and MCS (Monte-Carlo based Simulation) method, sample size = 

1000x20, for an uncertain hardening system, S0 = 1, ( = 2%, wo = 27r, 1 = 0.5, 
,\ = 0.25. 
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Figure 6.4: Comparison of displacement and velocity moment statistics given by the 
proposed method and MEP (Moment Equation based Perturbation) method for an 
uncertain hardening system, S0 = 1, ( = 23, w0 = 27f , 1 = 0.5, >. = 0.25. 
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Figure 6.6: Comparison of displacement and velocity moment statistics given the pro­
posed method and MCS method, sample size= 1000x20, for an uncertain hardening 
system, S0 = 4, ( = 2%, w0 = 27r , 1 = 0.5, >. = 0.25. 
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Figure 6.12: Comparison of displacement and velocity moment statistics given by 
the proposed method and MEP method for an uncertain hardening system, S0 = 1, 
( = 2%, Wo = 27r, "( = 0.5, ,\ = 0.47r. 
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Figure 6.13: Comparison of displacement and velocity moment statistics given by the 
proposed method and the MES method, sample size= 100, for an uncertain hardening 
system, S0 = 4, ( = 2%, w0 = 27r, / = 0.5, ,\ = 0.47r. 
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Figure 6.15: Comparison of displacement and velocity moment statistics given by 
the proposed method and MEP method for an uncertain hardening system, S0 = 4, 
( = 2%, wo = 27r, r = 0.5, ).. = 0.47r. 
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Figure 6.16: Comparison of displacement and velocity response statistics given by the 
proposed method and MEP method, S0 = 4, ( = 2%, w0 = 27r, 1 = 0.5, .\ = 0.25. 
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Figure 6.20: Comparison of displacement and velocity moment statistics given by the 
proposed method and MES method for a softening system with uncertain "yielding" 
force and damping, w0 = 21f, ( = 2%, ]y = 41f2 , -X1 = 0.5%, -X2 = 0.81f2 , S0 = 1. 
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Figure 6.25: Comparison of displacement and velocity moment statistics given by the 
proposed method and MCS method, sample size= 500x10x10, for a softening system 
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Figure 6.26: Comparison of peak moment statistics for uncertain hardening system, 
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distribution with index M=2. 
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Figure 6.27: Comparison of peak moment statistics for uncertain softening system, 
w0 = 27r, ( = 2%, .A1 = 0.5%, fy = 47r2

, .A2 = 0.87r2
, Ultraspherical distribution with 

index M=2. 
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Chapter 7 

Summary and Conclusions 

A solution approach is introduced in this thesis for obtaining response moments of 

nonlinear dynamical systems with uncertain parameters. The uncertain parameters 

are idealized as time-independent random variables with an assumed statistical distri­

bution. A set of orthogonal polynomials associated with this distribution is employed 

as a solution basis. The method of weighted residuals is used to derive a deterministic 

nonlinear ordinary differential equation set which can be evaluated numerically using 

a step-by-step time-integration scheme. 

The main features of this solution approach are: 

1. The approximation of random response variables is based on the global response 

profile defined over the random parameter space. Such a solution approach can 

better handle cases where a severe response variation in the vicinity of the mean 

parameter values is present. Very often, the above mentioned phenomenon is ob­

served in the transient response of uncertain dynamical systems. Therefore, this 

solution approach generally yields more accurate and reliable transient moment 

solutions than the perturbation method. 

2. Various types of distribution functions for the uncertain parameters may be 

incorporated into the analyses. This statistical information is also used in de­

fining the minimization criterion for obtaining the polynomial approximation. 

Hence, the introduced solution approach can better characterize the dependence 

of the response moments on the probability distribution of uncertain parameters. 
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This approach is considered to be more appropriate than other non-statistical 

approaches, such as repeated response simulations using numerical integration 

methods. 

The introduced solution approach is more suitable to problems with polynomial 

nonlinearity due to an inherent difficulty in evaluating the resulting probability in­

tegrals. However, for problems where a lower-order solution scheme is appropriate, 

approximations to the probability integrals can be adopted and this limitation can be 

removed. 

This solution approach is employed in the subsequent formulations for nonlinear 

discrete and continuous systems with parameter uncertainty subjected to determin­

istic dynamic loadings, as well as uncertain nonlinear systems subjected to random 

excitation. A synopsis of these formulations and applications is given below. 

In Chapter 2, a method is proposed for analyzing nonlinear discrete dynamical sys­

tems subjected to deterministic external excitation. Applications to nonlinear single­

degree-of-freedom systems with uncertain nonlinear stiffness, and uncertain damping 

are given. For validation and comparison purposes, a perturbation method and a 

simulation technique are also employed. Numerical results show that the response de­

pendence to the parameters can be highly nonlinear at large times. This nonlinear de­

pendence is strongly related to the amount of damping, the nonlinearity of the system, 

the response history and the range of uncertain parameters. For the cases examined, 

the proposed method gives much better solutions than the perturbation method for 

both a second-order and a third-order solution scheme. This comparison reveals the 

difference in performance when different solution approaches are considered. 

Chapter 3 is an extension to the above formulation to nonlinear continuous sys­

tems with uncertain parameter fields . Following theoretical descriptions for a random 

field and a general finite representation, a discrete Karhunen-Loeve decomposition 

is employed to derive a set of basis random variables. Then, a generalized spatial 
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discretization is used to obtain a variational formulation for the continuous random 

systems. The resulting discrete systems with random parameters can be readily solved 

using the method developed in Chapter 2. 

As an application of solution method developed in Chapter 3, a nonlinear analysis 

of an uncertain continuous shear-beam model subjected to a near-field earthquake 

excitation is given in Chapter 4. The finite element method of spatial discretization is 

employed for the discretization of random shear rigidity, and the spatial representation 

of response variables as well. Consideration is given to both hardening and softening 

nonlinear stress-strain characteristics. This study shows that the type of nonlinearity 

highly affects the peak statistics of the local shear strain for the earthquake excitation 

considered. The softening type of stress-strain characteristics results in much larger 

response statistics and response uncertainty. The peak statistics are seen insensitive 

to the spatial fluctuation of the shear rigidity when the correlation distance is large 

relative to the total length of the beam. Hence, a totally correlated shear rigidity 

can be used to approximate a finite correlated shear rigidity for analyzing the peak 

response statistics. 

A general solution framework for uncertain nonlinear systems subjected to external 

white noise excitation is presented in Chapter 5. This solution framework is based 

on an extended formulation of the standard equivalent linearization where the para­

meter randomness and the response nonstationarity are considered simultaneously. 

The instantaneous equivalent random stiffness and damping matrices are respectively 

approximated as quadratic random functions via a second-order Taylor series expan­

sion. The resulting random Liapunov equation with explicit random coefficients is 

then converted to a deterministic Liapunov equation. By numerically solving the 

deterministic equation, the statistics of the response moments can be evaluated. 

Applications of the solution framework to nonlinear single-degree-of-freedom sys­

tems are presented in Chapter 6. In numerical examples, extensive studies are given 
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for a hardening Duffing oscillator subjected to a suddenly applied white noise excita­

tion. The nonstationary moment response shows a ripple-like profile over the random 

space when either an uncertain natural frequency or an uncertain hardening parameter 

is assumed. For the levels of excitation intensity considered, the proposed solution 

framework again results in much better statistics than the second-order perturbation 

method. A softening system with uncertain damping and uncertain yielding level 

is also examined. Good performance is also achieved, by which the proposed solu­

tion approach combined with the equivalent linearization technique is concluded as a 

suitable means of analyzing uncertain nonlinear random vibration problems. 

In the examples presented, the velocity moment is insensitive to variations of 

nonlinear stiffness, of either a hardening or a softening type. On the other hand, 

the type of nonlinearity and the degree of nonlinearity play a significant role in the 

response uncertainty of the displacement moment. Such an observation is particularly 

evident from the analysis presented in the last section of Chapter 6. 

The treatment of problems with time-independent uncertain parameters may also 

be extended to problems with time-dependent uncertain parametric excitation. The 

application domain is directed toward linear or nonlinear systems subjected to non­

stationary, non-white stochastic parametric excitation. Such a generalization is con­

sidered as the suggested future research to the current study. A problem description 

and a potential solution approach are briefly described in the following paragraph. 

Traditional studies of parametric excitation primarily focus on stability issues. 

Nevertheless, it can be of great engineering interest to evaluate the stable evolution­

ary moment response for systems under such as combined external and parametric 

stochastic excitation. Unfortunately, research studies and development of solution 

techniques for such a problem are extremely limited. The posed problem may be char­

acterized as an ordinary differential equation with a temporally correlated parametric 

excitation which, to some extent, resembles the partial differential equation with a 
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spatially correlated parameter field as considered in Chapter 3. Due to such a similar­

ity, the proposed solution scheme may also be used to solve response moments of the 

posed problems. To achieve this, the nonstationary parametric excitation can be de­

composed into a set of independent random variables with deterministic time-varying 

excitation functions. The resulting governing equation with random coefficients may 

then be solved using the solution method given in the Chapter 2. 
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