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Abstract 
 
Piezoelectric materials, capable of 0.1% strains, have been extensively used in sensor and 

actuator applications.  Ferroelectric materials, a subset of the piezoelectric class, are 

capable of strains an order of magnitude larger.  For a ferroelectric material with 

tetragonal crystal structure, large strains can be achieved through 90o domain switching 

between a and c domains.  Bulk barium titanate has been shown to produce strains of 

0.9% through such domain switching under combined electromechanical loading.  Lead 

titanate has a larger c/a ratio and would be expected to produce 6% strains, though it is 

prone to brittle fracture.  By examining the solid solution lead barium titanate, larger 

strains can be achieved while maintaining mechanical integrity.  The work presented here 

covers the development of multiple sol-gel processes for producing powder and highly 

oriented thin film lead barium titanate, and a detailed discussion of their parametric 

optimization towards low temperature crystallization.  Finally, results of early efforts 

toward integrating these films into useful structures and devices are discussed, including 

sol-gel synthesis of highly oriented conductive oxide electrodes.  Thin film barium lead 

oxide and lanthanum nickelate electrodes were produced using sol-gel processing.  (100)-

oriented lanthanum nickelate electrodes were produced on a wide variety of amorphous 

and crystalline substrates, and subsequently deposited PBT showed excellent (100/001)-

orientation regardless of substrate. The ability to produce highly oriented ferroelectric 

films on oxide electrodes deposited directly on Si promises to improve fatigue 

characteristics and greatly facilitate efforts to integrate ferroelectric thin films into 

MEMS process. 
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I. Introduction 
 

 

Ferroelectric materials, which are characterized by permanent macroscopic reversible 

polarization, are of considerable interest for use in a wide range of dielectric and 

electromechanical applications.  The polarization of a ferroelectric material can be altered 

through the application of a mechanical stress or electric field.  Valued for their 

dielectric, pyroelectric, and piezoelectric properties, ferroelectric materials have been 

integrated into a wide range of products, from pressure sensors to non-volatile FERAM 

and tunable microwave devices [1-5].  Such applications generally capitalize on the 

significant change in dielectric constant associated with the ferroelectric-paraelectric 

transition near the Curie temperature.  The work reported here represents part of a larger 

effort to exploit the mechanical properties of ferroelectrics, namely the large strains 

induced via domain switching.   

 

For tetragonal ferroelectrics, switching domains between a and c-axis orientation 

produces a mechanical strain directly related to the c/a ratio.  It is thus valuable to 

consider systems with large c/a ratios for potential use as large strain sensors and 

actuators.   Lead titanate (PbTiO3), or PT, is known to have a very high c/a ratio (1.063).  

If it were possible to harness all of the strain of an a-to-c domain switch, a 6% strain 

would be obtained, remarkably higher than the 0.1% strain typical of piezoelectric 

actuators in common use.  However, PT requires a large coercive field to induce domain 

wall motion and is prone to brittle fracture.  Bulk barium titanate, with c/a = 1.01 

(BaTiO3, BT), in contrast, has been shown to exhibit usable strains of 0.9% on domain 
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switching [6, 7].  It is hoped that a solid solution of lead barium titanate (Pb1-xBaxTiO3, 

PBT) will provide intermediate strains while retaining mechanical integrity.   

 

In order for PBT to be successfully utilized in microactuation applications and also be 

integrated into silicon device technology, it is necessary to synthesize high-quality 

epitaxial thin films at moderate temperatures. Moderate crystallization temperatures are 

desired to facilitate easy integration into current semiconductor microelectromechanical 

(MEMS) processing, where high temperatures can cause layers to melt together and 

doping levels to be redistributed. While there are several widely used techniques for 

fabricating oxide thin films, including physical/chemical vapor deposition, ion beam 

sputtering, electron beam evaporation, and pulsed laser ablation, the sol-gel method has 

been selected here because of its potential for low temperature crystallization and the 

possibility of low cost fabrication. In the sol-gel process, controlled hydrolysis of 

dissolved metalorganic precursors (forming M-OH bonds) followed by a condensation 

reaction (forming M-O-M or M-OH-M bonds), resulting in the formation of a three 

dimensional network of particles [8]. Key challenges in the sol-gel synthesis of PBT are 

the identification of a solvent system in which multiple metalorganic precursors are 

mutually compatible and the preparation of a sol stable against uncontrolled hydrolysis. 

Moreover, while sol-gel and other solution techniques have been widely used for the 

fabrication of ferroelectric films of PbTiO3 and BaTiO3 [9-14], few studies of solution 

deposition techniques to prepare PBT thin films have been reported [15, 16]. Here, a 

parametrically optimized sol-gel route for the low temperature crystallization of powder 
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and thin film PBT is detailed, and the impact of various process parameters on 

crystallization behavior is examined. 

 

The goal is to crystallize phase pure, highly oriented thin film PBT at low temperatures, 

and then to integrate the film into a variety of test structures.  This can be broken down 

into three development phases: (1) producing a stable sol, (2) using the sol to produce 

oriented thin films, and (3) integrating the films into useful structures.   

 

 
Scope of the Thesis 
 
 
While sol-gel and other solution techniques have been widely used for the fabrication of 

ferroelectric films of PbTiO3 and BaTiO3, few studies of solution deposition techniques 

to prepare PBT thin films have been reported.  Here, a series of parametrically optimized 

sol-gel routes for the low temperature crystallization of powder and thin film PBT is 

described.  A systematic approach to materials engineering via sol-gel processing is 

followed in order to maximize the usability of results as they apply to other related 

materials systems.  By comparing results between systems, the relevance of various 

processing parameters, particularly solution chemistry, was determined.  The particular 

chelating agent used was found to have a large effect on sol stability and phase purity, 

and an understanding of the roles played by chelating agents is discussed in detail. 

 

Suitable precursors were identified, and a low cost and highly reliable process for 

producing PBT is described in detail. A detailed and optimized procedure for depositing 

oriented PBT thin films on MgO via spin coating is also given.   
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Efforts towards integrating PBT into useful devices and structures are also detailed, 

including a summary of efforts to use ion beam assisted deposition of MgO thin films on 

Si3N4/Si to provide orientation on a Si-based substrate.  Additional work towards the 

integration of this material into semiconductor processing techniques is also presented, 

including the investigation of conductive oxide electrodes including barium 

metaplumbate (BaPbO3) and, particularly, lanthanum nickelate (LaNiO3).  A method to 

deposit highly oriented LaNiO3 on a variety of amorphous and crystalline substrates is 

detailed, which enables the production of highly oriented PBT thin films on a wide 

variety of substrates without additional buffer layers. This breakthrough allows for highly 

crystalline, highly oriented ferroelectrics to be deposited on a conducting oxide electrode 

directly on Si, which will greatly improve fatigue characteristics of the ferroelectric, and 

speed integration of ferroelectric thin films into MEMS process.   

 

I.1. Ferroelectrics 
 
 
Ferroelectric materials are crystalline solids that have a spontaneous polarization 

direction below a certain temperature, known as the Curie temperature.  At the Curie 

temperature ferroelectric materials undergo a phase transition.  Above the Curie 

temperature, a ferroelectric material is cubic, while below the Curie temperature a non-

cubic polar crystal structure forms.  This polar structure is generally further subdivided 

into domains, each having a particular polarization direction.  For a tetragonal unit cell in 

the absence of external fields, this polarization can exist in six energetically equivalent 
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states [Figure 1].  Because these states remain stable until an external force or electric 

field is applied, ferroelectrics have been used in a wide range of applications.  One of the 

most prominent applications is ferroelectric non-volatile random access memory 

(NVRAM or FERAM).  Polarization states are read as 1’s and 0’s, which provide a long-

lasting record of information without requiring the constant application of an electric 

field.  NVRAM has been used to reduce power requirements in many portable devices.  

The large change in the pyroelectric coefficient near the Curie temperature phase 

transition is also exploited in a host of applications, including infrared detectors and 

tunable microwave filters [17-19].  Ferroelectrics have also been used in capacitors, 

acoustic transducers, waveguides, optical memory, cameras, and chemical detectors [20-

26].  

 

 

Figure 1. The six variants of a ferroelectric tetragonal unit cell. The arrows represent the polarization 

direction. 
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I.1.1. Ferroelectric vs. Piezoelectric 
 
Ferroelectric materials are a subset of the piezoelectric class of materials.  Piezoelectric 

materials develop a polarization in response to an applied stress and produce strains when 

exposed to electric fields.  They are commonly used as transducers and have found wide 

application in a variety of sensor and actuator applications.  Though all ferroelectrics are 

also piezoelectrics, not all piezoelectrics are ferroelectric.  The most common example of 

a piezoelectric that is not ferroelectric is quartz.  While ferroelectrics maintain their 

domain structure once a coercive electric field or stress is removed, piezoelectrics that 

lack the ferroelectric property return to a randomly polarized state.   

 

I.1.2. Domain Switching 
 
The domains in ferroelectrics with a tetragonal unit cell can consist of any of the six 

polarization variants shown in Figure 1.  The polarization directions of the variants differ 

from each other by either 90o or 180o, and thus the boundaries between domains of 

different variants are referred to as 90o or 180o domain walls, respectively.  Through 

application of a stress, coercive electric field, or combination of the two, the polarization 

direction of ferroelectric domains can be aligned along a preferred direction through a 

process known as poling.  Once the field and/or stress is removed, the domains will 

remain aligned until an outside force or field acts upon the material.   

 

Once a ferroelectric material has its domains aligned, large strains can be obtained 

through the ferroelastic switching of domains from one orientation to another non-180o 

variant.  For a tetragonal unit cell, for example, the strain obtained from switching an a 
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domain to a c domain is given by:  c/a – 1 (strain = elongation / unit length = (c-a)/a = 

c/a -1).  The larger the difference between a and c, the larger the strain.  Barium titanate, 

a well-known ferroelectric with a tetragonal unit cell and c/a =1.01, has been shown to 

produce strains of 0.9% under combined electromechanical loading [6].  Lead titanate has 

a c/a ratio of 1.06 and would presumably produce larger strain; however, it is prone to 

brittle fracture and requires a larger electric field to induce switching.  By using solid 

solution lead barium titanate, the c/a ratio presumably can be varied between 1.01 and 

1.06.  Studying this solid solution, we can determine the maximum strains attainable 

without mechanical failure.  If these materials can then be integrated into useful devices 

and structures, such large strain capability would enable a host of new sensor and 

actuator applications and have an enormous impact on the future of 

microelectromechanical systems (MEMS). 

 

A ferroelectric thin film micropump has been suggested as a preliminary device concept 

that takes advantage of the large strains associated with domain switching [Figure 2].  

The device consists of a uniformly (100) or (001)-oriented ferroelectric thin film, which 

is fully released in a square region. Upon application of an electric field, the film 

undergoes 90o domain switching, forming domain walls as shown in Figure 2, thus 

deforming out of plane in a tent-like structure.  The in-plane stress of the film provides a 

restoring force to return the pump to its rest position once the field is removed.  When 

used with appropriate check valves, this reversible deformation can be used as a 

microfluidic pump. 
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Figure 2. Ferroelectric thin film micropump schematic. Polarization direction indicated by arrows.  [Image 

courtesy Kaushik Bhattacharya]  

 

I.1.3. PBT vs. PZT 
 
Much ferroelectric research has focused on lead zirconate titanate (PbZrxTi1-xO3, PZT), 

which consists of a mixture of tetragonal PbTiO3 and rhombohedral PbZrO3.  PZT has 

been widely used as an active material layer in MEMS, and deposition methods involving 

sol-gel, pulsed laser deposition (PLD), sputtering, metal organic chemical vapor 

deposition (MOCVD), and others have been widely investigated, though crystallization 

temperatures are generally high and integration of the material into standard 

semiconductor processes is extremely limited [22, 27-32].  The advantage of PBT over 
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PZT is most apparent through comparing their strains.  Strains of 0.1% are typically 

achieved with PZT, whereas PBT is expected to produce strains an order of magnitude 

larger.   

 

The PBT system has another, more subtle advantage over the more commonly studied 

PZT.  In the PZT system, large piezoelectric strains are attainable only near a 

compositional morphotropic phase boundary, where the tetragonal and rhombohedral 

phases are both present.  Off-stoichiometric PZT suffers from greatly diminished 

piezoelectric strains. Even small lead loss can be detrimental to such a delicately 

balanced system. In the case of PBT, however, the strains achievable are expected to be 

linearly tied to composition.  The large strains are derived from switching the tetragonal 

crystal structure between variants and are not dependant on finding a compositional 

“sweet spot.”  Thus, small compositional fluctuations are considerably less important in 

the PBT system, as films are expected to be actively switchable throughout the entire 

solid solution range.   

 

Our computational collaborators also benefit from the relative simplicity of the PBT 

system compared to multi-phase ferroelectrics like PZT.  In terms of modeling, the 

advantage of a single phase material is obvious.  Thus, PBT provides an excellent 

opportunity for concurrent theoretical study with experimental validation.   
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I.2. Experimental Method 
 

In order for PBT to be successfully utilized in microactuation applications and also be 

integrated into silicon device technology, it is necessary to synthesize high-quality 

oriented thin films at moderate temperatures. Moderate crystallization temperatures are 

desired to facilitate integration with standard semiconductor processing techniques.  

While there are a variety of techniques for fabricating oxide thin films, including physical 

vapor deposition, ion beam sputtering, electron beam evaporation, and pulsed laser 

ablation, the sol-gel method has been selected here because of the potential for meeting 

the objectives of low temperature crystallization and low cost fabrication.   

 

I.2.1. Introduction to Sol-gel 
 
Historically, sol-gel synthesis was synonymous with silica.  First widely developed in the 

1960s and expanded to study perovskite films in the mid 1980s, the sol-gel field has since 

expanded to include almost any wet chemical route to produce powders and thin films 

through drying and subsequent heat treatment [33, 34].  Indeed, there are a number of 

competing definitions of a sol-gel process.  By the most general definition, the sol-gel 

process involves the controlled hydrolysis of dissolved metalorganic precursors (M(OR)n 

+ x H2O  M(OH)x(OR)n-x + x ROH) followed by a condensation reaction (M-OR + M-

OH  M-O-M + R-OH  or  M-OH + M-OH  M-O-M + H-OH), resulting in the 

formation of a three dimensional network of particles [8, 35].  Depending on the type of 

precursors, the temperatures and pressures used, and the extent that gelation is or is not 

involved, the technique can be variously termed sol-gel, metalorganic solution deposition 
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(MOSD), chemical solution deposition (CSD), chelate method, or metalorganic 

decomposition (MOD).  The difference between these techniques is largely semantic.  

Most involve the dissolution of precursors into a common solvent (forming a sol), 

followed by hydrolysis and polycondensation reactions, which form a gel network. A 

broader term, ‘soft solution processing,’ has been suggested to encompass all of the 

above and more, but has yet to gain a significant following [36, 37].  Schwartz [34] 

distinguishes between sol-gel methods that are 2-methoxyethanol-based systems, and 

hybrid sol-gel or chelate methods that involve chelating agents to modify the metal 

alkoxide.  Following these conventions, the techniques in this thesis are most 

appropriately referred to as hybrid sol-gel or chelate methods, in the case of lead barium 

titanate.  The methods used for lanthanum nickelate conductive oxide electrodes, which 

are 2-methoxyethanol-based, represent a more conventional sol-gel approach. 

 

After deposition, thermal treatments are used to crystallize the sol-gel film.  During heat 

treatment, crystal nuclei can form either within the bulk of the film or at the film-

substrate interface.  These two types of nucleation are referred to as homogeneous (or 

bulk) and heterogeneous nucleation, respectively.  Bulk nucleation is generally associated 

with randomly oriented films as crystalline growth in regions far from the surface and 

substrate is energetically equivalent in all directions.  For grains nucleating near a 

substrate, however, growth of the crystalline orientation associated with the lowest 

interface energy is favored [38].  Thus, preferentially oriented thin films can be produced 

via sol-gel with heterogeneous nucleation at a lattice-matched substrate. Some authors 

suggest heterogeneous nucleation is aided by the use of very thin films (thickness < 
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average grain size), which ensures nucleation occurs ‘near’ the substrate, or faster heating 

rates that can provide a higher temperature near the substrate to encourage heterogeneous 

nucleation (and provide less energy to surmount the nucleation barriers in the bulk) [38-

40].  The use of seed layers to encourage nucleation at the substrate is also widely 

reported [41-44].  It is important to note that these two nucleation mechanisms are not 

mutually exclusive, and oriented films can sometimes be obtained even without pure 

heterogeneous nucleation.  In some cases with mixed homo- and heterogeneous 

nucleation, heterogeneously nucleated crystal grains grow to consume the bulk-nucleated, 

randomly oriented grains to eventually produce oriented films [43, 45].   

 

I.2.2. Advantages of Sol-gel over Other Techniques 
 

Sol-gel is a widely used technique for a variety of reasons.  First, the use of a sol-gel 

process provides enhanced homogeneity.  Since all of the precursors are mixed in the 

liquid state, homogeneity is expected on a molecular scale [46].   Sol-gel is also desirable 

for its versatility.  Once a stable sol is produced, conformal coatings can be produced for 

a wide range of substrate geometries through spin, dip, or spray coating.  For some 

exceptionally stable sols, thin films can be prepared from stock solution days, weeks, or 

even months later without degradation [23].  Further, producing doped materials via sol-

gel is generally straightforward, as dopants can be dissolved in the sol to produce a 

homogeneous dopant distribution.   
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Compositional control is also facilitated by sol-gel, as precursor stoichiometry is directly 

reflected in the resulting materials [47].  In contrast, chemical vapor deposition (CVD) 

stoichiometry is controlled through indirect mechanisms, chiefly through controlling 

precursor gas flow rates in a control loop, and sputtering stoichiometry is determined by 

target composition, which is not, however, the same as film composition.  In both cases, 

experimental determination of ideal flow rates or target composition and O2 partial 

pressures is required to get desired stoichiometry.   Other physical methods, such as rf 

magnetron sputtering, also tend to suffer poor stoichiometric control and low deposition 

rates [48].  Unlike sputtering, sol-gel is not limited to line-of-sight deposition.  Recently, 

the adaptation of ink jet printers for use in direct sol-gel patterning has been reported, and 

sols might also be of use in the emerging field of AFM dip-pen nanolithography [49, 50]. 

 

Sol-gel processing is often a low cost technique involving minimal equipment, especially 

when compared with more capital-intensive high vacuum techniques such as CVD and 

molecular beam epitaxy (MBE).  It is also considered more environmentally friendly than 

vapor techniques, which require more energy to vaporize the precursors as well as more 

sophisticated containment mechanisms for toxic byproducts [37, 46].   

 

I.2.3. Sol-gel Processing of BT, PT, and PBT: Literature Survey 
 

Two approaches have been recently pursued in the literature as a means of crystallizing 

the end-member barium titanate from sol-gel methods at temperatures close to ambient. 

The first, demonstrated by Frey and Payne [51], involves the use of barium and titanium 
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alkoxides that are relatively stable against rapid hydrolysis and, therefore, can be 

prepared with a high water to metal cation ratio (Rw) for the gelation step. The high water 

content apparently ensures that all metal alcohol ligands are completely replaced with 

metal oxygen bonds during gel formation, and all alcohol byproducts are evaporated 

during a drying step carried out under mild heating (50-125oC).  By eliminating organic 

components during drying, barium carbonate, an intermediate product that otherwise 

requires high temperature calcination for conversion to the perovskite phase, is avoided.  

Crystallization, using barium and titanium methoxyethoxides dissolved in 2-

methoxyethanol, has been reported to occur at temperatures as low as 120oC.  The second 

approach, developed by Kuwabara and co-workers [13], relies on the preparation of 

highly concentrated alkoxide solutions, without concern for the particular ligand group 

used. Such solutions yield very dense gel-structures, which, for reasons that are not 

entirely obvious, readily crystallize at low temperatures.  Crystallization at temperatures 

as low as 50oC has been obtained when gels (prepared as thin films) were aged under 

water/alcohol saturated atmospheres, although no preferential orientation resulted [52].  

 

Low temperature crystallization of the second end member in the PBT system, lead 

titanate, via sol-gel methods has been explored to a much lesser extent.  The most 

important demonstration has been that of Selvaraj et al. [10], who obtained oriented thin-

film PbTiO3 from solutions of lead acetylacetonate and titanium isopropoxide in 2-

methoxyethanol at temperatures as low as 425oC.  The use of lead acetylacetonate as 

opposed to the more typical lead acetate trihydrate apparently ensured the absence of any 

water from the solution prior to the hydrolysis step and led to more stable gels.  It is 
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likely that the acetylacetonate ligand also served as a chelating agent for the titanium in 

the system, further stabilizing the system.  It is not entirely obvious why stable gels 

should result in lower temperature crystallization.  

 

Synthesis of PBT through sol-gel methods has been studied to an even lesser extent.    

Meng et al. [53] examined grain size effects on Curie temperature for sol-gel prepared 

powders over the entire range of Pb1-xBaxTiO3.  Few synthetic details were provided, and 

crystallization was carried out at unspecified temperatures in the range of 500-900oC.  

More recently, Giridharan and Jayavel [15] reported the synthesis of Pb0.8Ba0.2TiO3 thin 

films via a sol-gel route.  The starting materials were barium acetate, lead acetate 

trihydrate, and titanium butoxide as cation sources, acetic acid as the solvent, and 2-

methoxyethanol as the chelating agent.  Complete crystallization of films required 

calcination temperatures of ~ 650oC (with the onset of crystallization at 400oC), and films 

showed a random orientation on the Pt-coated Si and fused quartz substrates utilized.  

Little rationale for the particular chemical system or substrates selected was provided. 

 

The studies of the end-member compounds suggest competing approaches to sol-gel 

systems that yield crystalline products at low temperatures, which cannot be 

simultaneously implemented: incorporation of high water content to avoid carbonate 

formation; preparation of highly concentrated solutions; and use of an anhydrous lead 

precursor.  Furthermore, the precursors and solvent implied by those earlier 

investigations, barium methoxyethoxide, titanium methoxyethoxide, lead acetylacetonate, 

and methoxyethanol, were found here to be incompatible.  That is, a transparent sol based 
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on these compounds could not be prepared.  In light of this initial result, an extensive 

survey was carried out to determine a tenable combination of metal sources, chelating 

agents, and solvents, and is documented in Chapter II.  

 

I.2.4. Parameters Involved in Sol-gel 
 

The number of parameters affecting the sol-gel process presents both a strength and 

weakness of the technique.  Such parameters include choice of starting materials, solvent 

selection, concentration of reagents, order of mixing, mixing times and temperatures, and 

particular thermal treatment used, to name only a very few [27].  Indeed, references 

abound regarding the affect of processing parameters on sol-gel processes [33, 45, 54-

58].  The number of parameters involved reflects the versatility of the sol-gel method, as 

it can be adapted as necessary for each material.  However, it is difficult to determine 

exactly how each of the parameters interacts, and generally optimization is done through 

rote experiment.  A carefully controlled study, as is presented here, allows for a deeper 

understanding of these interactions, and the gained insight allows a more predictive 

accounting of processing parameters capable of shortening development time for new 

sol-gel systems.   

 

The sheer number of processing parameters also presents difficulty when sol-gel results 

are published in literature.  In most articles, few synthetic details are given.  Thus, it is 

frequently difficult to ascertain whether the published conclusions apply universally or 

only within the controlled setting of the authors’ lab. It is often impossible to distill an 
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entire procedure from published literature, and occasionally the only description given is 

a listing of starting reagents.  Thus, reproducing published experiments is akin to trying 

to craft a complicated recipe given only a list of ingredients.  Only in rare instances can 

one find a full accounting of synthetic details.  Thus, much effort was taken to provide for 

a full accounting of synthetic details in this work, and a strict systematic approach was 

taken towards parametric optimization.   

 

I.2.5.  Selection of Precursors 
 

The most commonly used metallic precursors in sol-gel are metal alkoxides with the 

chemical structure M(OR)n where M is a metal cation (in this case, Ti).  Alkoxides are 

favored for use in sol-gel processes due to their high reactivity and capability of forming 

desired phases at low processing temperatures.  During hydrolysis, alkoxides favor the 

formation of M-O-M bonds, helping to preserve homogeneity throughout the gelation 

process.  There has been some progress in the development of multiple metal alkoxides, 

and there is strong indication that a multiple metal alkoxide would provide very low 

processing temperatures and excellent homogeneity as M’-O-M bonds would form during 

condensation [59].  However, mixed metal alkoxides are expensive and difficult to 

handle.  They are generally very sensitive to even trace amounts of moisture and tend to 

decompose rapidly.  Furthermore, for the PBT system, there is no known single Pb-Ba-Ti 

alkoxide precursor, and the individual alkoxides are not mutually compatible.  Titanium 
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alkoxides, however, are readily available [60].1 Thus, a hybrid alkoxide route is taken 

here, involving titanium alkoxides with lead and barium salts. 

 

Titanium alkoxides, though easy to obtain, are generally not stable when exposed to 

atmospheric moisture.  The hydration enthalpies of the most common titanium alkoxides 

are given in Table 1 below, as originally reported by Golubko et al. [61].   The value for 

titanium isopropoxide is notably the largest, and this is attributed to its being a 

monomeric species (i.e., there is no oligomeric bonding between the alkoxide molecules).  

Since titanium isopropoxide lacks oligomeric bonds, the monomers can be attacked from 

all sides by water without first undergoing depolymerization. Titanium butoxide and 

titanium ethoxide are trimeric (i.e., the fundamental unit consists of three identical 

oligomerically bonded monomers).  Thus, for these two alkoxides, significant energy is 

expended breaking the oligomeric bonds before hydrolysis can proceed, leading to a 

lower hydration enthalpy [61].   

 

Table 1. Hydration enthalpies of commonly used titanium alkoxides, as reported in [61]. 

 Hydration Enthalpy 
(kJ/mol) 

Titanium Butoxide 
(TBu) -19.3 

Titanium Ethoxide 
(TEt) -14.2 

Titanium Isopropoxide 
(TIp) -64.9 

 

In order to stabilize titanium precursors against rapid decomposition, chelating agents are 

often used to modify the titanium.  Chelating agents achieve this by either physically 
                                                 
1 The first metal alkoxide, titanium tetraethoxide, was reported in 1875. 
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surrounding the Ti cation in solution (steric hindrance), or bonding directly with it to 

lower its chemical reactivity (inductive effect). 

 

I.2.5.1. Chelating Agent Selection 
 

The most widely reported chelating agent used for titanium in the preparation of widely 

studied PZT is acetylacetone (also known as 2,2-pentanedione).  Acetylacetone (acac) 

substitutes for some or all of the alkoxide ligands, and since acac-ligands are not readily 

hydrolysable, the overall hydrolysis rate of the chelated sol is lowered.  The ratio of 

acac:Ti has been shown to have a profound effect on hydrolysis rate, particle size, and the 

condensation pathway [59, 62-64].  It is important to note, however, that complete 

removal of the alkoxy ligands is generally not possible under neutral conditions, even in 

the presence of excess water [64].  Further, it has been shown that acac-ligands remain 

tightly bound to the metal cation after hydrolysis and condensation, and can necessitate 

high temperatures for complete removal [34].  Indeed, the presence of acac-ligands after 

hydrolysis and condensation has been linked to a dependence on condensed particle size 

with chelating agent:titanium molar ratio.   

 

Acetic acid has also been widely used to reduce the reactivity of titanium alkoxides [27, 

33, 65-67].     Gelation and precipitation in sols containing titanium alkoxides can be 

suppressed with the addition of moderate amounts of acetic acid; however, when the 

acetic acid:titanium ratio is large, insoluble acetate species can be formed [67-69].  

Hasenkox suggests TiO2 particles form as acetate precipitates decompose, preventing 
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direct crystallization into the perovskite phase, and increasing inhomogeneity in the film 

[68].  Thus, the proper acetic acid:titanium ratio is crucial to production of homogeneous 

films when acetic acid is used as a chelating agent. 

 

Another chelating agent, diethanolamine (DEA), has been found to be useful in the 

production of TiO2 via sol-gel processes [70-74].  Use of diethanolamine in ferroelectric 

sol-gel synthesis, however, has been reported to a lesser extent [9, 23, 75-77].  DEA is a 

low-melting solid and has a basic pH.  DEA was found to provide TIp and TBu with 

extreme stability against hydrolysis. 

 

The chemical formulas and boiling points for these three chelating agents are given in 

Table 2. 

 

Table 2. Chelating agents studied for PBT sol-gel synthesis. 

 
 

Chemical Formula 
 

Boiling Point 

 
Acetylacetone 

 
CH3COCH2COCH3 140oC 

 
Diethanolamine 

 
NH(CH3CH2O)2 217oC 

 
Acetic Acid 

 
HOOCCH3 118oC 
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I.2.5.2.  Solvent Selection 
 

The choice of a solvent is primarily driven by the need to identify a medium in which Ba, 

Pb, and Ti species are mutually compatible.  Secondary considerations include viscosity, 

availability, stability, and toxicity.  A number of different solvents suitable for sol-gel 

processing have been reported in literature, including acids, alcohols, glycols, diols, and 

alkanolamines.   

 

The most widely reported sol-gel systems involve 2-methoxyethanol (2-MOE) as a 

solvent.  However, 2-methoxyethanol is very toxic to humans [14].  It further requires 

multiple time-consuming distillation steps that necessitate a rotary evaporation system. 

(Where possible, methods were adapted to use hotplate/stirrer techniques rather than 

rotary evaporation.)   Alternate solvents were thus considered to reduce the cost, 

complexity, and toxicity of synthesis.   

 

Simple alcohols were generally found to be incapable of co-dissolving lead and barium 

species.  Their use in sol-gel ferroelectric literature is often relegated to dilution of sols, 

rather than as a primary solvent. 

 

Diols, glycols, and alkanolamines were found to be particularly attractive as solvents.  In 

addition to being able to co-dissolve the precursors, glycols and diols generally have a 

higher viscosity than alcohols, enabling the production of thicker films through spin 

coating [14].  They have also been shown to aid in the preparation of denser, crack-free 

films [27].  Ethylene glycol, in particular, has been used variously as a solvent and 
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additive.  Yi, for example, uses it to “prevent cracking and improve surface smoothness” 

of PZT films prepared using acetic acid as a solvent [27]. Diols are known to form 

complexes with titanium leading to highly polymeric species [78].  They have the further 

benefit of being less moisture-sensitive (than 2-MOE, for example) and relatively stable 

in air. 

 

Additional detailed discussions of precursor selection are available in the literature [43, 

59].  In this work, many solvents were investigated empirically, and ultimately ethylene 

glycol was chosen as the ideal solvent for PBT systems, acetic acid was used for BaPbO3, 

and 2-methoxyethanol was used for LaNiO3. 

 

I.2.5.3. Substrate Selection 
 
 

In order to produce oriented thin film PBT, heterogeneous nucleation at a lattice-matched 

substrate is desired.  Cubic magnesium oxide (MgO) single crystals (a = 4.21Ǻ) are 

readily attainable commercially and provide good lattice matching with PBT.  Further, 

MgO has been widely used to produce oriented ferroelectric films, including BaTiO3 and 

PbTiO3 [26, 79, 80].  The thermal coefficients of expansion (TCE) of MgO and PBT also 

compare favorably and place the film under compressive stress on cooling, favoring c-

axis orientation [26, 54, 81].  Prior to use, MgO substrates were cleaned by annealing at 

high temperatures in a tube furnace to provide the best growth surface, as demonstrated 

in [82, 83].   
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The lattice parameters and TCEs of several commonly used substrates are given below 

(Table 3). 

 

Table 3. Lattice parameter and thermal coefficient of expansion for selected substrates. 

 
a 

(cubic phase) 

TCE 

(x10-6) 
Reference 

MgO 4.21 14.8 [84], [26, 79, 80, 85] 

SrTiO3 3.95 11.7 [56, 86] 

Pt 3.91 9.6 [86], [87, 88] 

Si 5.43 2.6 [84, 89] 

Fused Silica N/A 0.5 [90], [2, 23] 

 

 

I.2.5.4. Deposition Method 
 

There are many methods available to produce thin films from stable sols.  Spin coating 

and dip coating are perhaps the most common methods used to produce sol-gel films 

[91].  Spin coating involves dispensing sol onto a substrate mounted on a rotating chuck, 

and held in place by a vacuum.  Film thickness is determined by spin speed, with faster 

rotation producing thinner films as excess sol is cast off due to higher centripetal force.  

Film thickness uniformity is excellent; however, some edge effects can result if substrates 

are not round.  Efforts to reduce such edge effects are well-documented in literature [92, 

93].   



24 
 

Dip coating involves immersing the substrate into a sol and withdrawing it at a constant 

rate, fully coating all sides of the substrate [77].  Films are somewhat less uniform than 

those produced via spin coating due to gravitational gradients during withdrawal, 

although substrate shape is not a large factor in uniformity.   

 

Since single-sided films are desired for eventual integration into actuator applications, 

spin coating was chosen as the deposition mechanism. Spin coating is already widely 

used in the semi-conductor industry, especially for production of photoresist films [94].   

 

I.2.6. Analytical Techniques 
 
Chemical features of the sols were probed by FTIR spectroscopy (Nicolet Magna 860 

spectrometer) over the wave number range 4000 to 400 cm-1. Thermal decomposition 

characteristics of oven-dried gels were studied by simultaneous differential scanning 

calorimetry (DSC) and thermogravimetric analysis (TGA, Netzsch, STA-449) at a 

constant heating rate of 5-10°C/min under an argon atmosphere. In some cases, the 

gaseous byproducts evolved during thermal analysis were examined using mass 

spectrometry (Balzers AMU200).  Calcined powders were examined by X-ray diffraction 

(XRD, Bruker D8 Discover, or Philips X’Pert), FTIR, and micro-Raman spectroscopy 

(Renishaw M1000 Micro-Raman Spectrometer with Ar ion laser at 514.5 nm excitation 

through optical microscope).  Thin films were produced via spin coating (Chemat, KW4-

A or Laurell WS-400B-6NPP-LITE) and were calcined either in a conventional tube 

furnace or rapid thermal annealer (ULVAC MILA-3000-P-F). Thin films were examined 
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by XRD, micro-Raman spectroscopy, and field emission scanning electron microscopy 

(FESEM, LEO 1550VP) with energy dispersive spectrometer (EDS, Oxford INCA 

Energy 300). 
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II. Sol-gel Synthesis of Pb1-xBaxTiO3  

 

II.1. Precursor Selection 
 

Key challenges in the sol-gel synthesis of PBT are the preparation of a sol stable against 

uncontrolled hydrolysis and the identification of a solvent system in which multiple 

metal-organic precursors are compatible.  A group of readily available barium, lead, and 

titanium precursors and solvents (Table 4) was chosen for investigation.  Extensive 

solubility studies were performed to determine a set of mutually-compatible lead and 

barium precursors (see Appendix). Once a stable pair of lead and barium precursors was 

identified, they were tested for compatibility with various titanium alkoxides.  

Acetylacetone (2,4-pentanedione, AcAc), acetic acid (AA), and diethanolamine (DEA) 

were used in select systems as chelating agents for titanium.   

Table 4.  Metallic sources, solvents, and chelating agents investigated for sol-gel PBT. 

 Successfully 
Demonstrated 

Not Successfully 
Demonstrated 

Barium Source Barium Acetate, 
Barium 2-Ethylhexanoate 

Barium Hydroxide, Barium Nitrate, 
Barium Oxalate, Barium Chloride,  

Barium Isopropoxide 

Lead Source Lead Acetate Trihydrate, 
Lead Citrate, Lead Nitrate Lead Acetylacetonate 

Titanium Source Titanium Isopropoxide, 
Titanium Butoxide Titanium Ethoxide 

Solvent 
Ethylene Glycol,  

Acetic Acid, 
Trifluoroacetic Acid 

Methanol, Ethanol, Isopropanol, 
1,3-propanediol, Acetone, Butanol, 
Acetylacetone, Ethylenediamine, 

Propylene Glycol, Tetrahydrofuran, 
2-Methoxyethanol,  

N,N-Dimethylacetamide 

Chelating Agent Acetic Acid, Acetylacetone, 
Diethanolamine Ethanolamine, Triethanolamine 
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These metal precursors and solvents were then incorporated into a series of sol-gel 

processes, schematically shown in Figure 3, to produce Pb0.5Ba0.5TiO3 powders.  A listing 

of compatible precursor/solvent/chelating agent combinations is given in Table 5.   

 

 

 

Figure 3.  Scheme for typical sol-gel process. 

Lead Source and Barium 
Source in Solvent 

Titanium Source and 
Chelating Agent (if any) 

All Cations in 
Solution 

(Sol)

     H2O  

Drying  at 100-175°C 
(Xerogel) 

Calcine 

Polycrystalline Product 

Spin Coat onto 
MgO 

Film 

Powder   Thin Film 

 Pyrolyze  
 Calcine 
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Table 5. Summary of sol-gel systems investigated.  Shading highlights differences between systems. 

System 
Name 

Barium 
Source 

Lead 
Source

Titanium 
Source Solvent Chelating 

Agent2 Outcome

TIpAc Acetate Acetate Isopropoxide Ethylene Glycol AcAc  

AAS Acetate Acetate Isopropoxide Ethylene Glycol 
& Acetic Acid  Too acidic

AAC3 Acetate Nitrate Isopropoxide Ethylene Glycol AA Too acidic

TIpDEA Acetate Nitrate Isopropoxide Ethylene Glycol DEA  

TBuDEA Acetate Nitrate Butoxide Ethylene Glycol DEA  

TBuAc Acetate Nitrate Butoxide Ethylene Glycol AcAc  

EG2NO3 Acetate Nitrate Isopropoxide Ethylene Glycol  Fast 
gelation 

F3 Acetate Citrate Isopropoxide Trifluoroacetic 
Acid  Unstable & 

too acidic 

BEtF3 Ethylhexanoate Acetate Isopropoxide Trifluoroacetic 
Acid  Unstable & 

too acidic 

PCBeF3 Ethylhexanoate Citrate Isopropoxide Trifluoroacetic 
Acid  Unstable & 

too acidic 
 

 

                                                 
2 AcAc = acetylacetone (2,4-pentanedione); AA = acetic acid; DEA = diethanolamine 

3 AAC differs from AAS in the lead precursor used, and amount of acetic acid present. Acetic acid is used 

in large quantities as a solvent for the AAS system, but only in limited quantities as a chelating agent in the 

AAC system. 
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II.2. Choosing the Best Sol Candidates 
 

Sols were prepared for each of the various systems given in Table 5.  Excluding the 

TIpAc system, all systems could be easily reproducibly prepared using either a rotary 

evaporator or hotplate/stirrer.  The TIpAc system could only be prepared using a 

hotplate/stirrer, as discussed below.   

 

Parameters considered likely to affect material properties, such as water:titanium molar 

ratios (Rw) and chelating agent:Ti molar ratios (Ra), were then varied individually for 

each system, and a series of powders was produced.  XRD was used to determine phase 

purity.  Systems capable of producing phase pure PBT powders at moderate temperatures 

(<800oC) were then used to produce thin films. 

 

Systems involving trifluoroacetic acid were found to be unstable. Though the sols were 

initially transparent, within hours or days they precipitated heavily.  Further, strongly 

acidic systems are not suitable for thin film deposition since they have a tendency to 

attack substrates [70].  The AAS, AAC, F3, BEtF3, and PCBeF3 systems were strongly 

acidic, and thus were not considered further (see Appendix).   

 

The EG2NO3 system is the only system without a chelating agent having a reasonable 

pH. As would be expected, however, since it lacks a chelating agent, it is relatively 

unstable and undergoes rapid hydrolysis when exposed to even trace amounts of water. 
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Rw values greater than 2 resulted in immediate gelation.  Fast gelation upon exposure to 

air is undesired, as it makes production of films with uniform thickness and composition 

difficult under atmospheric conditions. Rapid hydrolysis is also undesirable because it is 

associated with bulk nucleation, while heterogeneous nucleation at the substrate is 

desired to produce textured films [95].  Lacking suitable glove box facilities to perform 

the entire synthesis and deposition in a dry environment, this system was not considered 

further (see Appendix).  

 

Thus, four systems were selected for further consideration (Table 6).  Each is described in 

more detail below. 

 

 

Table 6. Four sol-gel systems suitable for depositing thin film PBT. 

System 
Name 

Barium 
Source Lead Source Titanium 

Source Solvent Chelating Agent

TIpAc Acetate Acetate Isopropoxide Ethylene 
Glycol AcAc 

TBuAc Acetate Nitrate Butoxide Ethylene 
Glycol AcAc 

TIpDEA Acetate Nitrate Isopropoxide Ethylene 
Glycol DEA 

TBuDEA Acetate Nitrate Butoxide Ethylene 
Glycol DEA 

 

II.2.1. Stability of Selected Systems 
 

The TIpAc system (chemical precursors: barium acetate, lead acetate, titanium 

isopropoxide, ethylene glycol, and acetylacetone) was prepared exclusively using a 
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hotplate/stirrer and condenser. Heavy precipitation occurred when using a rotary 

evaporator to mix the lead and barium sources.   Thus, this system was not able to be 

reproduced in a rotary evaporator. As suggested by Hasenkox, success using the 

hotplate/stirrer is likely due to the increased turbulence during mixing, which can 

influence the degree of coordination between solutes [68].   Further, the TIpAc system 

was extremely sensitive to any procedural variation and often resulted in precipitates 

rather than stable sol, likely due to unequal rates of hydrolysis of the various metal-

organic components [69, 96].  Once a sol was successfully produced, however, it was 

remarkably stable against hydrolysis.  Sols remained stable in sealed vials for over two 

years without any noticeable changes.  It is noteworthy that attempts to replace lead 

acetate with lead nitrate in this system caused heavy precipitation. 

 

The TBuAc system (chemical precursors: barium acetate, lead nitrate, titanium butoxide, 

ethylene glycol, and acetylacetone) was easily reproducible using hotplate/stirrer 

techniques.  It involves different lead and titanium precursors than the TIpAc system and 

does not suffer the same degree of atmospheric and procedural sensitivity.  Sols with 

chelating agent:titanium molar ratio (Rw) ≤ 4 remained stable in sealed vials for several 

months. 

 

TIpDEA system (chemical precursors: barium acetate, lead nitrate, titanium 

isopropoxide, ethylene glycol, and diethanolamine) samples were prepared using 

conventional rotary evaporator techniques with Rw values between 2 and 32.  Sols with 

Rw ≤ 8 remained stable for longer than 6 months.  Similarly, TBuDEA sols (chemical 
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precursors: barium acetate, lead nitrate, titanium butoxide, ethylene glycol, and 

diethanolamine) with Rw ≤ 4 remained stable for several months.  Both systems were 

readily adapted to hotplate/stirrer techniques.  The use of lead acetate trihydrate in the 

hotplate technique for TIpDEA was also investigated for completeness.   

 

 

II.3. Parametric Optimization of Sols and Powders 
 

Parameters considered likely to affect crystallization behavior and ultimately material 

properties were examined for each system.  These include chelating agent:Ti molar ratio 

(Ra), water:Ti molar ratio (Rw), mixing times and temperatures, drying times, and aging 

conditions [33, 52, 56, 97].  

 

First, the chelating agent:titanium ratio was considered for each of the titanium sources 

and chelating agents.  Since all organics introduced to the system must be fully removed 

during calcination in order to obtain phase pure powders, we chose to use the minimum 

chelating agent content that was capable of stabilizing the titanium to withstand the 

moderate hydrolysis condition Rw = 8.  The stability of each titanium precursor against 

rapid hydrolysis for varied chelating agent:Ti is shown in Figure 4.    A detailed 

procedure for the stability testing, based on [9, 70] is given in the Appendix.  At low 

values of Ra, titanium butoxide appears more hydrolytically stable than titanium 

isopropoxide.  This is easily explained by the difference in their enthalpies of hydrolysis 

(Chapter I, Table 1), since titanium isopropoxide has a much more negative enthalpy of 
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hydrolysis, it is not surprising that TIp tends to decompose in the presence of even small 

amounts of water.  At higher values of Ra, however, TIp becomes more stable than 

titanium butoxide, probably because of more complete ligand exchange.   Using the data 

in Figure 4, the optimal values of Ra for titanium butoxide, as defined above, were found 

to be 4 and 2 for acetylacetone and diethanolamine, respectively.4  For titanium 

isopropoxide, Ra = 4 was selected for both chelating agents. 
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Figure 4. Stability against rapid hydrolysis of titanium isopropoxide and titanium butoxide with varied 

chelating agent:titanium ratio. [Data collected by Arvind Subramaniam] 

                                                 
4 It was later found that using Ra = 4 for the titanium butoxide and diethanolamine system produced more 

oriented films. This is possibly explained by unseen precipitates in sols prepared with Ra = 2, which would 

provide additional nucleation points within the films leading to less oriented films. 
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With an optimal value of Ra 
in hand, a series of powders was produced with water:Ti 

molar ratio (Rw) varied between 2-32 and calcination temperatures (Tc) between 400-

600oC.  The resulting effect on powders was determined using XRD and FTIR.  The 

parameters were optimized with the goal of obtaining low-temperature, phase-pure 

perovskite crystallization. 

 

As expected, not all parameters initially investigated were important, and several 

additional important parameters were identified along the way.  Drying time and aging 

conditions were found to have no effect on resulting powders.  Interestingly, however, pH 

was found to have a prominent effect. 

 

Occasionally the addition of water would cause a DEA-based sol to precipitate, 

especially for sols with varied Ba:Pb stoichiometries.  This was attributed to the 

difference in nitrate:acetate ligands, and specifically to the varying pH associated with 

such variations.  Since the nitrate ligand is strongly acidic, whereas the acetate ligand is a 

weak acid, lead rich (and thus nitrate-rich) sols had lower pH than barium (acetate) rich 

sols.  Sols with very low or very high pH were found to be less favorable for thin film 

deposition, as they were associated with either weak crystallinity or impurity phases.  The 

effect of varying stoichiometry can be somewhat compensated for by pH adjustment of 

the resulting sols before water addition.  pH was lowered using acetic acid (nitric acid 

additions resulted in rapid precipitation) or raised through the addition of diethanolamine.  

FTIR showed that the addition of acetic acid did not introduce new bonds, rather it 
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simply increased the amplitude of COO- symmetric and asymmetric stretching.  FTIR of 

sols prepared with varying amounts of DEA were also found to be similar.  Thus, we 

have reason to believe that the role of the additives was only to modify the pH of the sol.    

 

The pH of an aqueous solution has long been known to affect the specific hydrolytic 

route taken by metal cations [33, 59].  Brinker gives a detailed discussion of the effect of 

pH on the coordination number of water molecules surrounding metal ions [59]. Each of 

these coordination schemes promotes a distinct mechanism for hydrolysis and 

condensation.   Titanium, for example, tends to be surrounded by H2O molecules at low 

pH values (known as the “aquo” regime), by OH- ions at moderate pH values 

(“hydroxo”), and by O2- ions at higher pH values (“oxo”).  Barium and lead ions, having 

an oxidation number of +2, are capable of only the H2O and OH- schemes.  Though 

Brinker’s discussion is limited to metal ions dissolved in noncomplexing aqueous 

solutions, the results seem to apply here as well.  Based on experimental observations, it 

found that the narrow pH range where Ti4+, Ba2+, and Pb2+ all exist within the same 

hydrolytic regime leads to the best films. For the DEA system, this is the OH- regime, 

corresponding to the hydroxo state.  As the upper pH boundary is approached, the 

titanium becomes more oxo-hydroxo, whereas the Ba and Pb become aquo-hydroxo.  At 

low pH values, the Ba and Pb are thoroughly aquo, whereas the titanium becomes aquo-

hydroxo.  Since each of these hydrolytic processes has its own rate constant, at pH values 

where Ti, Ba, and Pb are in different ionic states, we would expect to have differing 

hydrolysis rates amongst the various metals, and thus a propensity for phase separation.  

In the ideal case, Pb, Ba, and Ti would hydrolyze at the same rate, thus tending to form a 
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perfectly random (and hence uniform) network of particles.  This suggests the DEA-

based systems, in which all species exist in the same regime, are preferred for producing 

homogeneous PBT.  Through adjusting the pH of a sol before adding water, we can alter 

the hydrolysis-condensation pathway, in hopes of achieving this balance.  Indeed, such 

pH adjustment proved necessary for producing sols for the full solid solution range of 

BaxPb1-xTiO3.   

 

 

II.4. Parametric Optimization of Thin Film Deposition Process 
 

Thin films were prepared from optimized sols using a spin coating process.  A substrate 

is held in place on a vacuum chuck, and the substrate surface is covered with sol.  The 

spin coater (Chemat KW-4A or Laurell WS-400B-6NPP-LITE) is then programmed to 

rotate the substrate at a given speed to produce a uniform thin film. By controlling spin 

speed, the film thickness can be varied. Faster spin speeds lead to thinner films, whereas 

slow speeds lead to thick films.  The thickness of films is generally limited by the 

achievable uniformity at low speeds.  Further, to obtain oriented PBT thin films on single 

crystal MgO, the layers must be thin enough to encourage heterogeneous nucleation at 

the film/substrate interface rather than homogeneously in the bulk. Typically, thicker 

oriented films are produced via a multi-step spin coating process involving alternating 

spinning and pyrolysis (drying) steps.   Spin speed was varied to determine the slowest 

speed for which oriented films could be produced, thereby maximizing individual layer 

thickness. 
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II.5. Detailed Results for TIpDEA System 
 

The basic optimization procedure was the same for each of the four chosen systems.  

Ultimately, the preferred method of synthesis was determined to be the TIpDEA route, as 

it proved to be the most robust to small variations in process parameters. Thus, the 

optimization procedure for TIpDEA will be presented in the most detail.  Results for the 

optimization process for TIpAc are detailed in [98] and the Appendix.  Switching the 

titanium precursor to butoxide from isopropoxide had limited effects beyond changing 

the ideal Ra and Rw, as discussed in [99].  Unless otherwise specified, all PBT results 

presented hereafter specifically apply to the TIpDEA system. 

 

II.5.1. Optimizing the TIpDEA Sol 
 

A schematic of the TIpDEA sol-gel synthesis procedure is given in Figure 5.  The general 

procedure is to dissolve lead nitrate and barium acetate in ethylene glycol at 60oC in a 

rotary evaporator, while separately mixing titanium isopropoxide and diethanolamine (in 

a prescribed ratio Ra) at room temperature (stirred at 600rpm with a magnetic stirrer).  

After allowing the Pb/Ba solution to cool to room temperature, the chelated titanium sol 

is added to the Pb/Ba, and the resulting solution is mixed with the rotary evaporator at 

60oC for 30 minutes and again allowed to cool.  Water (in a prescribed ratio with Ti, Rw) 

mixed with ethylene glycol is then added to the solution, which is reattached to the rotary 
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evaporator for a final 30 minutes.  Detailed preparation procedures are given for the 

optimized process elsewhere [75] and in the Appendix.  

 

Figure 5. Schematic of the TIpDEA sol-gel process for producing powder and thin film PBT.  

 

As discussed earlier, for this system the ratio of diethanolamine to titanium was fixed at 

Ra = 4.    The ratio of water:titanium was then varied from Rw = 2 to 32.  The sols were 

dried at 175oC and calcined to 500oC.  XRD data is shown in Figure 6 for these powders.  

As shown in the figure, the undesired BaCO3 phase is detected for high water contents.  

The reason for this is unclear; however, some researchers have suggested gaseous CO2 in 

water can promote carbonate formation [100, 101].  The ideal Rw was thus chosen to be 4 

for subsequent experiments.  This optimized sol has a concentration of 0.35M and shows 

remarkable stability.  TIpDEA sol has been used for over a year to produce PBT thin 

films without any noticeable degradation.   
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Figure 6. XRD of TIpDEA sols prepared with the stated water:titanium (Rw) ratio and calcined at 500oC 

(* indicates BaCO3 impurity phase). 

 

TIpDEA sol (Ra = Rw = 4) was dried at 175oC to form a xerogel. The xerogel was then 

calcined at a range of temperatures (Tc) in air using a tube furnace.  The resulting 

powders were examined using FTIR and XRD (Figure 7 and Figure 9).   
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FTIR of the sol, xerogel, and powders shows that most organics are removed during 

drying.  The sol exhibits peaks due to the presence of the organic moieties of ethylene 

glycol, isopropoxide, acetate, and diethanolamine, as indicated on the figure. After drying 

at 175°C to form the xerogel, most of the organics are removed. The OH/NH [3300–3370 

cm-1], CH [2900 cm-1 doublet], and (CH) [875 cm-1 doublet] peaks are greatly diminished 

in intensity. The COO stretching band (1350 cm-1 broad doublet for symmetric and 

asymmetric stretching modes) is retained, suggesting that acetate groups remain bound to 

barium and/or lead ions. Perhaps more significantly, a new peak appears at 1620 cm-1, 

with a comparable intensity to the peak at 1065 cm-1. The moieties responsible for these 

absorptions are not readily identifiable, and the peaks are tentatively attributed to strong 

chelation of titanium by DEA. On heating to 450°C, only a peak at 1425 cm-1 is present, 

along with a very small peak at 855 cm-1. The spectrum at 600°C is identical, with the 

exception of the appearance of the Ti-O band at 540 cm-1. This pair of peaks (1425 and 

855 cm-1) is likely due to Ba2Ti2O5CO3  [102, 103]. An adsorption band at 3000 cm-1, in 

addition to that at 1425 cm-1, would be expected for simple barium carbonate [104].  By 

700°C, all trace of organic components is absent, and even the spectrum obtained after 

annealing at 450°C shows relatively little organic (i.e., oxycarbonate) content. In 

comparison to these results, preliminary experiments in which lead acetate rather than 

lead nitrate was used as the lead source indicated retention of the peaks assigned to 

oxycarbonate to temperatures of at least 800°C (Figure 8).  This reinforces the selection 

of TIpDEA as the ideal system for production of phase-pure PBT at moderate 

temperatures. 
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Figure 7. FTIR of TIpDEA sol, xerogel, and calcined powders.  
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Figure 8. FTIR of modified TIpDEA sol, xerogel, and calcined powders made with lead acetate. 

 
 

XRD shows crystallization of PBT in stagnant air begins by 400oC though in the presence 

of BaCO3, and phase pure PBT is produced by 500oC (Figure 9).  Crystallinity continues 

to increase with higher temperatures.  To ensure complete crystallinity, Tc = 600oC was 

used in subsequent experiments. 
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Figure 9. XRD of TIpDEA powders calcined at the given temperatures. 

 

 

II.5.2. Effect of Calcination Atmosphere on TIpDEA System 
 

Thermal analysis was performed on TIpDEA xerogel (dried at 175oC) using a Netzsch 

Model STA-449 simultaneous thermal analysis (STA) system, which provides concurrent 
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thermogravimetric analysis (TGA), differential scanning calorimetry5 (DSC), and mass 

spectrometry (MS).  The annealing atmosphere was varied in composition and flow rate, 

as shown in Table 7 using ultra-high purity argon and oxygen.  Error is estimated to be 

+/-2% due to flow metering methods used.   For each STA run, samples were brought 

from room temperature to 700oC using a heating rate of 5oC/min and data collection rate 

of 15 points/oC, and then cooled to room temperature at 50oC/min.  Results were 

examined, and the first derivative of the TGA curves (DTG) was plotted using Netzsch’s 

Proteus software suite.  Samples were retained and used for subsequent XRD and Raman 

analysis. To examine the phases present during different stages of thermal treatment, 

samples were prepared using the same atmosphere and heating rate with various end 

temperatures to correspond to regions of interest in the DSC to allow for XRD and 

Raman analysis of intermediate phases.  To determine the effects (if any) of gas flow 

rate, a second run in 50% oxygen was carried out using a higher flow rate, denoted by 

50(h).   

Table 7. Composition of annealing atmosphere and flow rates. 

% Oxygen 
(balance 
Argon) 

O2 
(mL/min) 

Ar 
(mL/min) 

Total 
(mL/min) 

0 0 34 34 
5* 5 97 102 
10 19 170 189 
20 19 85 104 
50 19 19 38 

50(h) 54 54 108 
*Single pre-mixed tank used for 5%O2 runs. 

                                                 
5 Technically, this instrument is better described as a ‘heat flux DSC,’ which uses differential thermal 

analysis rather than scanning calorimetry [105].  
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XRD showed that except for the case of pure Ar, PBT is the predominant phase after 

STA runs to 700oC.  TGA and DTGA results as a function of annealing atmosphere and 

flow rate are shown in Table 8.  There is very little difference in total weight loss 

between 100-600oC for any of the atmospheres containing oxygen.   

 

Table 8. Weight loss and endo-/exotherms observed between 100-600oC for the TIpDEA 

 system, with %O2 atmosphere indicated (exotherms in italics are questionable). 

% Oxygen Weight loss 
(100-600oC) 

Endo-/Exotherms 
(100-600oC) 

0% 32.3% 265,576 

5% 42.0% 261, 358, 576 

10% 48.7% 260, 440, 470 

20% 48.3% 264, 428, 454, 579 

50% 
50%(h) 

50.5% 
50.1% 

253, 352,435,581 
258, 359,441,582 

 

For convenience, the STA data is broken down into four temperature regimes: 100-285, 

285-380, 380-550, and 550-600oC (Figure 10, Figure 11, Figure 12).  TGA and DTGA 

data for all of the atmospheres are shown in Figure 10 and Figure 11, respectively.  The 

curves for samples in 10-50% oxygen appear somewhat similar, while those of 0 and 

5%O2 are significantly different from the others.  Complete results, including TGA, DSC, 

and MS, are given in the Appendix. 
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Figure 10. TGA of TIpDEA xerogels in the %O2 atmosphere indicated. 

100 200 300 400 500 600 700

5

D
TG

Temperature (C)

Region IVRegion IIIRegion IIRegion I

0

10

20

50

50(h)

 

Figure 11. DTGA of TIpDEA xerogels in the %O2 atmosphere indicated. 
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DSC data for oxygen-containing atmospheres are shown in Figure 12.  The features of 

the sample heated under pure argon are too small to be shown clearly at the same scale.  

DTG, when compared with DSC, shows that all weight losses correspond well to DSC 

peaks.   

 

A brief analysis of the four thermal regimes is given below. 
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Figure 12. DSC of TIpDEA xerogels in the %O2 atmosphere indicated. 
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Region I: 100-285oC 

 

This regime contains the first DSC peak, an exothermic event near 260oC.  The 

percentage of total weight loss occurring in this regime is given for each of the 

atmospheres in Table 9.   Presumably, volatile species not strongly chelated to any of the 

metal ions in the gel network are given off in this regime.  Increasing the flow rate caused 

the DSC curve to broaden and deepen for the 50%O2 case.  However, the peak did not 

shift significantly with changes in %O2. 

 

 

Table 9. Percent weight loss in Region I (100-285oC) for the indicated %O2 atmosphere. 

O2 (%) 
% Weight Loss 

(100-285oC) 
0 8.4 
5 10.5 
10 9.7 
20 10.2 
50 11.2 

50(h) 10.9 
 

 

Region II: 285-380oC 

 

This temperature regime encompasses the temperature range between the first DSC/DTG 

peak and the main exothermic event in oxygen-containing atmospheres.  For the case of 

pure argon (0%O2), most weight loss occurs in this temperature regime, and it is 

associated with a small exothermic event in the DSC, possibly due to the combustion of 
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DEA and remaining organics.  For oxygen-containing atmospheres, weight loss 

continues, though without additional exothermic events detected in the DSC.  A summary 

of weight loss in this region II is given in Table 10. 

 

Table 10. Percent weight loss in Region II (285-380oC) for the indicated %O2 atmosphere. 

O2 (%) % Weight Loss 
(285-380oC) 

0 16.1 
5 13.9 
10 14.4 
20 14.3 
50 14.1 

50(h) 15.0
 

 

Region III: 380-550oC 

 

For oxygen-containing atmospheres, region III is the primary weight loss regime, as it 

includes the large exothermic event seen between ~ 400-450oC in all of the DSC patterns 

(though it is somewhat weaker for the 5%O2 case).  Increasing oxygen content shifts the 

main exothermic peak to lower temperatures (Figure 12). There are no sharp weight loss 

events in the 0 and 5%O2 DTG curves.  A summary of weight loss in region III is given 

in Table 11. 

 

In all cases, the main exotherm was accompanied by the release of masses 12, 22, 44, 45, 

which correspond to the release of CO2 and strongly indicate combustion.  Interestingly, 

in the case of high oxygen content, the large exotherm is preceded by a sharp peak in the 

MS data indicating mass 17, and broader peaks indicating masses 25, 26, 29, 41, 42, 50, 
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and 52-59  are released.  Thus, in the case of 50%O2, decomposition produces a larger 

number of mass fragments, including many heavy fragments.  This might indicate a rapid 

and ‘dirty’ combustion step.  The lack of sharp weight loss for the 0 and 5%O2 samples is 

explainable by the low oxygen content, which suppresses combustion. 

 

Table 11. Percent weight loss in Region III (380-550oC) for the indicated %O2 atmosphere. 

O2 (%) % Weight Loss 
(380-550o) 

0 6.7 
5 13.0 
10 23.4 
20 23.2 
50 24.7 

50(h) 23.7 
 

Region IV: 550-600oC 

 

This small temperature range includes the slight endotherm seen in some DSC curves, 

and a corresponding peak in DTGA.  The peak is likely associated with carbonate or 

nitrate decomposition and appears to be correlated with flow rate rather than oxygen 

content.  The peak is most prominent for 10%O2, which has the highest flow rate, and is 

progressively weaker in the order 20, 50, 0% which coincides exactly with decreasing 

flow rate.  To verify this, a second run in 50%O2 was carried out using a flow rate 

comparable to that of the 20% run (50h in the figures).  As can be seen in Figure 11 and 

Figure 12, the effect of increased flow rate was to broaden and deepen the lower 

temperature (Region I) endotherm, as seen in DSC, and slightly sharpen the 580o peak 



51 
seen in DTGA.  Results for the runs were otherwise identical. This supports that the 

580oC DTGA peak increases in intensity as flow rate increases.   

 

Table 12. Percent weight loss in Region IV (550-600oC) for the indicated %O2 atmosphere. 

O2 (%) % Weight Loss 
(550-600oC) 

0 1.1 
5 4.6 
10 1.3 
20 0.6 
50 0.47 

50(h) 0.54 
 

Excluding the 5% case, weight loss in this region generally decreases with increasing 

oxygen content, suggesting less carbonate or nitrate decomposes in oxygen-rich 

atmospheres.  Whether it is due to an incomplete conversion of nitrogen-containing 

precursors into PBT or decreased amount of carbonate formed through the decomposition 

process remains to be determined.  

 

 

Post-STA Analysis 

  

A summary of the weight loss occurring in different temperature regions is given in 

Figure 13.  Regions I and II show relative independence of O2 content, which is 

consistent with the removal of volatile species.  The positive slope of the curve for 

Region III indicates increasing weight loss with increasing O2 content, consistent with 

combustion. 
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Figure 13. Percent weight loss occurring within various temperature ranges as a function of % oxygen 

atmosphere. 

 
 

It is apparent that in the absence of oxygen, an entirely different decomposition pathway 

prevails.  Whereas all samples run with oxygen show a series of exothermic peaks with a 

slight endotherm around 580oC, the sample run in pure Ar shows no significant 

exothermic events.  However, this sample’s weight loss is also significantly less, and 

micro-Raman analysis (Figure 14) shows carbonaceous material remaining behind after 

heat treatment to 700oC (Raman shifts near 1350 and 1565 cm-1).  The sample powder 

appears black under a microscope.  Thus, the exotherm for organic decomposition in pure 

Ar is likely at a higher temperature as organic combustion cannot occur in the absence of 

oxygen. 
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Figure 14. Micro-Raman analysis of TIpDEA samples after STA treatment to 700oC. 

 

The case with 5%O2 shows only a weak exothermic peak above 550oC. This peak might 

correspond to a right-shifted main exotherm indicating combustion at higher temperatures 

for this sample.  XRD and micro-Raman show PBT is formed by 700oC.  The Raman 

shifts associated with PBT are detailed elsewhere [106] and correlate well with samples 

prepared in 5-20%O2.  For the 10% sample, an additional Raman shift at approximately 

1060cm-1 might be attributable to the presence of an intermediate oxy-carbonate phase.  

Powders prepared in the presence of 5-20% oxygen appeared uniformly white and did not 

show carbon content in their micro-Raman analysis.  Raman signals from samples 

prepared in 50%O2, however, do not correspond well with PBT.   
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Summary 

In summary, annealing atmosphere significantly alters the decomposition pathway of sol-

gel derived xerogels for the production of PBT.  Low-temperature formation requires at 

least some oxygen, though a highly-enriched oxygen atmosphere is not desirable for PBT 

formation, as seen in the Raman spectra.  Additional studies are warranted to determine 

the optimum flow rate and oxygen content for production of phase-pure PBT at the 

lowest temperature.  Further, the influence of atmospheric oxygen content on thin films 

should be investigated due to the different nucleation mechanisms involved in 

crystallization. 

 

 

II.5.3. PBT Thin Films  
 

As described in Chapter I, PBT sols are deposited on lattice-matched MgO(100) single 

crystal substrates with the goal of achieving heterogeneous nucleation at the substrate 

interface to produce textured PBT films with (001/100)-orientation.  The deposition 

process is optimized here for the TIpDEA system.  Slightly different results would be 

expected for TBuDEA and, to a greater extent, the TIpAc and TBuAc systems due to 

differences in viscosity and sol concentration; however, the general optimization 

procedure is the same. 

 

To determine the thickest attainable single layer oriented film, spin speed was varied 

between 2-4krpm.  Films produced with spin speeds less than 2krpm were visibly 
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nonuniform, as the spinning was not sufficiently fast to evenly distribute the sol.  It is 

unclear why the thick film produced at 2500rpm shows weak crystallinity, although it is 

possible insufficient grain growth in heterogeneously nucleated crystallites at the 

substrate interface resulted in a poor crystallization throughout the thickness of the film.  

Films prepared with a spin speed of 3krpm showed the best crystallinity and orientation 

[Figure 15]. Thus, spin speed was held fixed at 3krpm for further studies, as it is the 

slowest speed (indicating the thickest film) that reliably results in oriented and crystalline 

PBT.   
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Figure 15. XRD of single layer TIpDEA films produced with the spin speeds indicated (Tc = 600oC). 

 
 

Cross-sectional SEM showed that films prepared by spin coating at 3krpm for 40 seconds 

were approximately 60nm thick per layer [Figure 16]. 
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Figure 16. Cross-sectional SEM of 3 layer TIpDEA film deposited on MgO showing thickness is 

approximately 60nm/layer. 

 

To determine the thickest oriented multilayer film attainable, further studies were 

conducted to investigate the most suitable process for multilayer deposition.  A series of 

two layer films was prepared with either a 5 minute drying (pyrolysis) step or pyrolysis 

and full calcination between each layer.  The pyrolysis step involved placing the wet film 

on a hot plate at a fixed temperature (Tp).  Various pyrolysis temperatures were used, and 

the results for two and three layer films are shown in Figure 17-Figure 19.  As can be 

seen in the figures, the pyrolyzed films showed better orientation retention after multiple 

layers than those samples calcined to 600oC between each layer.  Since the pyrolysis step 

is considerably shorter than calcinations (5 minutes vs. 3 hours), this greatly shortened 
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the time required to make multi-layer films.  It is believed that calcination between each 

layer prevented the layers from coalescing to form a single entity before crystallization.  

The second layer, then, would crystallize from the imperfect template of the surface of 

the first layer, rather than the MgO underneath.  After two layers, all of the pyrolyzed 

films except for Tp = 300oC remained (001/100)-oriented.  Since the Tp = 300oC film 

showed signs of (110)-orientation after two layers, that temperature was not considered 

further.  After three layers, orientation is retained best by the Tp = 200oC sample.  The 

loss of orientation by the other samples is attributed to increased surface roughness due to 

the rapid boiling of DEA in the sol (b.p. = 217oC), which provides additional nucleation 

points for misoriented grains. SEM images of films pyrolyzed at 200 and 300oC are 

shown in Figure 20.  
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Figure 17. XRD of two layer TIpDEA films produced with a five minute pyrolysis at the temperature 

indicated and full calcination between layers (Tc = 600oC). 
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Figure 18. XRD of two layer TIpDEA films produced with a five minute pyrolysis at the temperature 

indicated before calcination (Tc = 600oC). 
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Figure 19. XRD of three layer TIpDEA films pyrolyzed at the temperature indicated between layers (Tc = 

600oC). 
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Figure 20. SEM images of TIpDEA films pyrolyzed at the given temperatures and then calcined to 600oC.  

Note the increased surface roughness of the film pyrolyzed at 300oC. 

 

Additional layers were deposited, and the film remained oriented for four layers. It was 

found that an 8 layer oriented film could be prepared by annealing the film after the 4th 

and 8th layers (Figure 21).     

 

Tp = 200

Tp = 300
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Figure 21. XRD of 6 and 8 layer films prepared with Tp = 200oC between layers and a full calcination after 

the 3rd or 4th layer, respectively (Tc = 600oC). 

 
Heating rate was independently varied between 1-20°C/min, respectively.  The resulting 

effect on orientation was determined through XRD (Figure 22).  Orientation was not 

greatly affected by heating rate, although grain size is somewhat smaller and less uniform 

for faster heating rates.  SEM images of films prepared with different heating rates are 

shown in Figure 23 and Figure 24. 
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Figure 22. XRD of three layer TIpDEA films (Tp = 200oC) calcined with the indicated heating rates (Tc = 

600oC). 
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Figure 23. SEM image of three layer TIpDEA film prepared with Tp = 200oC between layers and a heating 

rate of 5oC/min (Tc = 600oC). 

 

 
Figure 24.  SEM image of three layer TIpDEA film prepared with Tp = 200oC between layers and a 

heating rate of 40oC/min. 
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Thin films were prepared for the solid solution Pb1-xBaxTiO3 (x = 0.2, 0.4, 0.5, 0.6, 0.8).  

XRD of these films is shown in Figure 25.  Tetragonal splitting of the (001/100) peaks is 

strongest for higher lead content, as expected due to the larger difference between the a 

and c lattice parameters of PbTiO3 compared with BaTiO3. Some excess ethylene glycol 

was required to dissolve the barium acetate in the case of x = 0.8.  All films show good 

(001/100)-orientation. 
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Figure 25. XRD of three layer Pb1-xBaxTiO3 films with the compositions indicated (TIpDEA system, Tp = 

200oC, Tc  = 600oC) 
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II.6. Summary 
 

Lead barium titanate was produced using a variety of novel sol-gel methods.  Four 

particular systems were studied in detail, and one was found to be remarkably stable 

against small processing variations.  The optimized system involves lead nitrate, barium 

acetate, and titanium isopropoxide metal precursors with ethylene glycol as a solvent at 

diethanolamine as a chelating agent.  The optimal chelation agent:titanium ratio was 

found to be 4, and the water:titanium ratio was fixed at 4.  Highly (001/100)-oriented Pb1-

xBaxTiO3 thin films were deposited onto MgO single crystals using a spin speed of 

3000rpm for 40seconds, pyrolysis temperature of 200oC for 5 minutes between layers, 

and two hour calcination at 600oC with a 5oC/min heating rate.  Layer thickness, as 

determined through cross-sectional SEM, is approximately 60nm. 
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III. Electrodes 
 

III.1. Pt Electrode 
 

Initial testing of ferroelectric properties was completed on a Pt/Si3N4/Si substrate with a 

sputtered Pt top electrode.  Pt is commonly used as an electrode due to ease of deposition.  

Films deposited on Pt, however, are randomly oriented due to poor lattice matching 

between the cubic electrode layer and tetragonal perovskite film.  It has been widely 

shown in literature that Pt electrodes are also associated with high fatigue [40, 87, 107].  

Even though Pt is far from ideal for use in devices, it can be used for preliminary testing 

of the ferroelectric properties of the films.   

 

Piezoresponse force microscopy (PFM) has recently been shown to be a useful technique 

for measuring the piezoelectric properties of thin films, imaging ferroelectric domain 

walls, and modifying domain structures [108-110].  The technique is essentially an 

extension of atomic force microscopy (AFM), involving applying a modulated ac voltage 

to the film through a conductive tip which is scanned across the film surface serving as a 

movable top electrode.  Tip deflection and torsion from piezoelectric strain upon 

application of a voltage are used to determine in-plane and out-of-plane polarizations, 

respectively, thus quantifying the piezoresponse of the film.  An excellent review of PFM 

techniques is given in [108].  
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PFM results for randomly oriented films deposited on Pt electrodes confirmed the films 

were indeed ferroelectric (Figure 26 and Figure 27).  The figures show the local 

piezoelectric hysteresis and actuation strain curves for Pb0.5Ba0.5TiO3 deposited on 

Pt/Si3N4/Si obtained from the out-of-plane PFM signal. The effective piezoelectric 

coefficient, d33
 eff, obtained by calibrating tip deflection from the force-distance curve is 

less than 5.3 pm/V [111].  
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Figure 26. Local piezoresponse-electric field hysteresis curve obtained from out-of-plane polarization via 

PFM for three layer PBT film deposited on Pt/Si3N4/Si (TIpDEA system, 3 layers, Tp = 200oC, Tc = 

600oC).  [Data collected by Y.B. Park]. 
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Figure 27. PFM results showing actuation strain for PBT film deposited on Pt/Si3N4/Si (TIpDEA system, 3 

layers, Tp = 200oC, Tc = 600oC).  [Data collected by Y.B. Park] 

 

Traditional atomic force microscopy is achieved by scanning the tip across the film 

surface without application of an electric field.  Vertical deflections of the tip correspond 

to film topography (Figure 28a).  By applying an electric field to selected areas of the 

film through the conductive tip, domains in discrete areas can be switched by 180o and 

subsequently imaged using piezoresponse force microscopy [108, 109].  Scanning the tip 

across areas of the film and selectively applying an electric field, the 180o domain 

structure can be patterned, as shown in Figure 28b.  Light areas and dark areas in the 

PFM image differ by 180o polarization.  Recent work has demonstrated 90o domain 



70 
switching in these films through use of combined in-plane polarization and out-of-plane 

polarization piezoresponse force microscopy [111]. 

 

Figure 28. Atomic force microscopy of PBT thin film showing surface topography (left) and demonstration 

of 180o domain patterning using piezoresponse force microscopy (right). Light regions in the PFM image 

indicate polarization directed into the page, and dark areas show polarization directed out of the page. 

(TIpDEA system, 3 layers, Tp = 200oC, Tc = 600oC) [Data collected by Y.B. Park] 

 

III.2. Conductive Oxide Electrodes 
 

Conductive oxide electrodes provide an attractive alternative to Pt for use in ferroelectric 

devices.  Though conductivity is slightly less than Pt, conductive oxides with perovskite 

structures and good lattice matching with PBT might provide better orientated 

ferroelectrics with improved fatigue compared to Pt electrodes [12]. A summary of the 

relevant properties of suitable conductive oxides is given in Table 13.  The properties of 

PBT are also given for reference. Literature also provides some examples of doped 
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conductive oxides, which may be of future interest in tailoring the lattice parameters and 

TCEs of the chosen electrodes [112].   

 

Table 13. Summary of lattice parameters and resistivities of several conductive oxide materials. Lattice 

parameters of PBT are included for comparison. 

 

Pseudocubic Lattice 
Parameters 

(actual crystal 
structure) 

Resistivity (Ohm*cm) References 

SrRuO3 
(SRO) 

ac = 3.921 
(orthorhombic) 4.7-9.1*10-4  [113] 

BaRuO3 
(BRO) 

ac = 4.07 
(rhombohedral)  

1.35*10-4 
10-2-10-4 [114, 115] 

LaxSr1-xCoO3 
(LSCO, x = 

0.5) 

ac = 3.84 
(orthorhombic) 

0.3 
2*10-3  

 
[116, 117] 

BaPbO3 
(BPO) 

ac = 4.27 
(orthorhombic) 

3-8*10-4  
5.4*10-5 

 
[79, 118] 

LaNiO3 
(LNO) 

ac = 3.84 
(rhombohedral) 5.4*10-4  [119] 

Pb1-xBaxTiO3 
(x = 0.5) 

ac = 3.99 
(tetragonal)  

 

 
 

Although most of the above conductive oxide electrodes shown in the table have similar 

lattice parameters to PBT, limited information is available concerning oriented 

conductive oxides produced via sol-gel methods [120].  There is even less information 
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available regarding oriented ferroelectrics deposited on oriented conductive oxide 

electrodes.   

   

One of the most widely studied conductive oxide electrodes is SrRuO3 (strontium 

ruthenate, SRO).  Sol-gel synthesis methods for SRO are generally considered 

undesirable, as a byproduct of SRO synthesis through annealing is highly toxic volatile 

RuO2, and preparation of phase pure SRO via sol-gel is difficult [121, 122].  Instead, 

SRO is typically deposited using molecular beam epitaxy (MBE) or 90o off-axis 

sputtering [89].  Through MBE, SRO has been successfully grown epitaxially on Si [31, 

123].  SRO is thus considered a viable candidate for substrate selection, though 

inexpensive synthesis via sol-gel is unlikely.   

 

BaRuO3 has been studied to a much lesser extent; however, its microstructure and 

conductivity have been shown to strongly depend on deposition temperature [114]. Sol-

gel synthesis has not been reported, though RuO2 production is expected to remain a 

concern. Further, only weak orientation has been reported for lattice-matched substrates 

[115].  BaRuO3 was not investigated in this study. 

 

LSCO has been shown to have properties that vary substantially depending on particular 

composition [116, 124, 125].  Further, the tri-metallic nature of this compound greatly 

complicates sol-gel synthesis compared with the other systems with only two metal 

cations.  Thus, sol-gel synthesis of LSCO was not investigated here. 
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LaNiO3 (lanthanum nickelate, LNO) sol-gel methods have been studied to a greater 

extent, and several researchers have reported the production of preferentially oriented 

LNO on a limited selection of substrates [120, 126].  Some researchers have noted that 

diffusion of La and Ni species into PZT thin films has a deleterious effect on their 

ferroelectricity, possibly due to the high temperatures used in the studies [127].  It is 

noteworthy that oftentimes La is a desirable dopant for ferroelectrics, especially PZT and 

(Ba, Sr)TiO3.  LNO was investigated as an electrode candidate. 

 

BaPbO3 (barium metaplumbate, BPO) is perhaps the most attractive conductive oxide 

electrode candidate for use with PBT, since it does not introduce new elements into the 

system. Liang [128] notes that diffusion of Pb and Ba into a PZT ferroelectric thin film 

does not negatively affect ferroelectric properties, as can the more commonly used 

LaNiO3.  The advantages for modeling a BPO/PBT/BPO system are evident.  

Additionally, experimental expertise gained investigating PBT can be leveraged in 

attempts to produce BPO.  For CVD production of BPO, for example, one would suspect 

simply turning off the Ti-source would lead to the desired conductive oxide without the 

need to move the substrate into a new chamber, or introduce any new processes.6  

Similarly, a sol-gel procedure for producing BPO would obviate the need for sputtering 

or other high vacuum processes entirely.  Thus, using BPO would enable production of 

thin film stacks using a single deposition method.  Such pure-play sol-gel or CVD films 

                                                 
6 This expectation turns out to be incorrect, however, as our colleagues have not been able to produce BPO 

thin films via MOCVD.  Working with the sol-gel version of the material, it appears likely this is caused by 

poor adhesion to the substrate or BPO having a large surface energy. 
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would presumably hasten the development cycle for integrating PBT into useful 

structures and devices, as compatibility issues between electrode and film deposition 

methods are sidestepped entirely.   

 

III.2.1. BaPbO3: Literature Survey 
 

BaPbO3 has been of sporadic interest to the research community for a variety of uses 

between its discovery in 1958 and the present [129].  Several papers have addressed the 

conduction mechanisms of BPO, in which the Pb 6s and O 2p orbitals overlap to produce 

high mobility electrons and lower mobility holes [130-132].  BPO thus has an interesting 

array of temperature-dependant physical properties.  It has variously been suggested for 

applications in thick film resistors [133, 134], high temperature superconductors [135], 

thermoelectrics [136], and electrodes.  Kuwabara describes thermally bonded BPO and 

PBT produced via solid state routes for use as a self-controlled heating element [137]. 

 

Liang [128] and Luo [107] showed that BPO used as an electrode effectively reduced the 

crystallization temperature of PZT, and produced a smoother film surface than compared 

with Pt.  Luo also showed that the coercive field of PZT was lower for BPO electrodes 

than Pt.  Skeele reports the single crystal resisivity of BPO is 3.2x10-4
 Ohm*cm [138]. 

 

In most examples in literature, the solid state synthesis approach is taken, where the 

precursors are milled together in powder form and then sintered at very high temperatures 

in controlled atmospheres.  Commonly, this leads to Pb-deficient BPO.  A few sol-gel 
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processes for BPO have been reported [13, 79, 129, 139, 140], though most involve high 

temperature processing.  Wang [129] used a particularly simple process involving barium 

acetate, lead acetate, water, and PVA resulting in BPO phase formation at 600-700oC.  

Detailed TGA/DTA is provided as well as a discussion of the chemical pathway taken 

from precursors to final phase.  However, the films were found to be unstable when 

additional layers were deposited, probably due to the redissolution or decomposition of 

the BPO layer.  The authors attribute this to H+ attacking the Pb-O bond, but note the 

film can be reclaimed upon re-annealing.  

 

Takahashi [140] reported a 2-methoxyethanol route involving barium metal and lead 

isopropoxide, which resulted in BPO crystallization at temperatures as low as 500oC with 

some (110)-preferred orientation on MgO.  However, a BaTiO3 layer deposited on top of 

the BPO showed phase separation after heat treatment to 600oC, which was not 

explained. 

 

Kuwabara reported a sol-gel method for depositing randomly oriented PBT on BPO, 

although it is unclear from the article whether the BPO substrate was oriented [137].  

There has been only a single mention of preferentially (100)-oriented PBT on BPO, and 

the orientation is not perfect [16].7 Only (100/001)-orientations are permissible for the 

proposed large-strain domain switching device applications, and thus further 

experimental study of the BPO system was conducted to determine whether good 

orientation could be achieved. 

 
                                                 
7 Note: this study was published while research was ongoing. 
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III.2.2. Sol-gel Synthesis of BaPbO3 
 

Using the results of the extensive solubility tests performed for the initial synthesis of 

PBT, a series of compatible lead and barium precursors was selected for consideration.  

Initial attempts involved simply dissolving the precursors in a common solvent and then 

drying and calcining.  This method, however, is likely to require the highest calcination 

temperatures, as the lead and barium are not likely to form Pb-O-Ba bonds while in 

solution, requiring formation of the oxide network through high temperature solid state 

reactions.  The numerous phases present even after calcining at 600oC support this 

conclusion (Figure 29). 
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Figure 29. XRD of initial attempts to produce BPO powders. (Ba-ac = barium acetate, Pb-ac = lead acetate, 

Pb-N = lead nitrate, AA = acetic acid, EG = ethylene glycol, Tc = 600oC). 
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Next, chelating agents were investigated to encourage cross-linking in the sol.  Acetic 

acid, known to encourage bridging bonding, was used to dissolve lead and barium 

acetate.  It has the added benefit of providing a single-ligand system.  After calcining at 

600oC, this system showed considerably fewer phases (as shown in Figure 29d), and BPO 

was indeed the most prominent phase present in calcined powders.   

 

The effect of a subsequent hydrolysis step was then considered.  Water, in a prescribed 

ratio with Pb and Ba, was added, and the sol was dried at 175oC.  Comparing the XRD 

results of the xerogels of sols prepared with and without water addition suggests that 

water addition results in a dramatic reduction in the presence of carbon species in the 

xerogel (Figure 30).  Indeed, the xerogel of the Rw = 4 sol shows primarily a mixture of 

oxides after drying.  This is important because carbonate decomposition typically occurs 

at a higher temperature than oxide-oxide interaction.  However, subsequent experiments 

showed the hydrolyzed sol became multiphasic by 600oC, and thus Rw = 0 was chosen 

for further study. 
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Figure 30. Influence of added water on BPO formation. XRD of xerogels with Rw = 0 and 4, as indicated. 

 

 

 

TGA/DSC of the dried xerogel (Rw = 0, Tdry = 175oC) is shown in Figure 31.  The 

atmosphere was 20%O2/80%Ar. A single exothermic event, accompanied by 25% weight 

loss occurs at 342.4oC, which is likely due to the release of CO2 from the decomposition 

of BaCO3. (BaCO3  BaO + CO2 suggests a weight loss of 22.3%).  There is a possible 

second weight loss event starting at 600oC, possibly due to lead volatilization, which 

occurs at high temperatures.   



79 

100 200 300 400 500 600
-20

-18

-16

-14

-12

-10

-8

-6

-4

-2

0

Temperature (oC)

D
S

C
 (m

W
/m

g)

342.4o

70
72
74
76
78
80
82
84
86
88
90
92
94
96
98
100

TG
A (%

)

ex
o

 

Figure 31. TGA/DSC of dried BaPbO3 xerogel.  

 

As shown in Figure 32, phase pure BaPbO3 is formed by 600oC.  Powders calcined at 

600oC were pressed into pellets, and sheet resistance was measured using a four point 

probe. BaPbO3 pellets showed surface resistance of 1.05Ohm/□. 
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Figure 32. XRD of powders calcined in air at the temperatures indicated.  The powder calcined at 550oC 

shows BaCO3 (ICSD 05-0378) and PbO (05-0570). All others show BaPbO3. 

 

Thin films were produced using the BPO sol via spin coating onto MgO single crystals at 

2000rpm for 40 seconds. Multilayer films were pyrolyzed for 5 minutes at 200oC 

between layers.  Finally, films were calcined at 600oC for two hours with heating rates of 

1-2oC/min.  XRD shows slightly oriented, phase pure BPO (Figure 33).  
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Figure 33. XRD of single layer and three layer BaPbO3 thin films deposited on MgO and calcined to 600oC 

in air.  

 
 
Single and multilayer BaPbO3 thin films, however, showed limited adhesion to the 

substrate and could easily be rubbed off during handling.  Samples were sent to Jandel for 

four point probe testing (using a tungsten carbide probe with 1mm spacing and 500μm tip 

radius, with Jandel multi-height probe station and 100g/needle loading). Not surprisingly, 

as seen in Table 14, thicker films resulted in lower resistances. A thinner film, produced 

by spin coating at 3000rpm, had a drastically higher resistance. Thus, for electrode 

applications thicker films are preferred.  To determine the effect of calcination 

atmosphere on surface resistance, two films were calcined in flowing oxygen.  As shown 
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in Table 14, these films showed lower resistance, consistent with p-type conductivity 

[141].   

 

 

Table 14. Surface resistance of BaPbO3 thin films calcined at 600oC. 

Number of 
Layers Atmosphere Sheet Resistance 

(Ohm/□) 
1* Air 1.5x105 
3 Air 5.4x103 
1 Oxygen 2.4x103 
3 Oxygen 1.6x103 

(* spin speed was 3000rpm) 

 

 

PBT films deposited on the BPO electrodes showed some (001/100)-preferred orientation 

(Figure 34), with no new phases detected.  Although additional studies were preformed 

with varied heating rates, pyrolysis temperatures, and substrates, orientation did not show 

marked improvement.  The lack of strong orientation and poor adhesion to the substrate 

make BaPbO3 less than ideal for our research purposes, and other conductive oxide 

electrodes were subsequently investigated. 
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Figure 34. XRD of (a) BaPbO3 thin film on MgO and (b) single layer Pb0.5Ba0.5TiO3 film on BaPbO3/MgO 

showing preferred (001/100) orientation. 

 

III.2.3. Lanthanum Nickelate Literature Survey 
 

LaNiO3 (LNO) is a conducting oxide with a rhombohedral perovskite structure (a = 0.546 

nm).  Along its <100> pseudocubic direction, the repeat distance is 0.384nm, which 

matches well with many ferroelectric materials, including PBT.  Several methods have 

been employed in an attempt to grow oriented LNO thin films suitable for use as an 

electrode material, including sputtering, metal-organic decomposition, and sol-gel [16, 
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120, 126, 142-144].  Pontes was successful in growing highly, but not completely, (100)-

oriented Pb0.8Ba0.2TiO3 on lanthanum nickelate; however, he used lanthanum aluminate 

(LaAlO3) single crystal substrates, which have nearly perfect lattice matching to both 

LNO and PBT [16].  Pontes also used a very unconventional annealing method involving 

microwave radiation.  LaAlO3 is a non-ideal substrate because it is expensive and cannot 

be as easily integrated into current semiconductor processing methods, in which  Si is 

generally used. Miyake was successful in growing oriented LNO with a 2-

methoxyethanol and monoethanolamine system using SiO2 glass, Ce/Si, and SrTiO3 as 

substrates; however, few synthetic details were given [120, 126]. 

 

III.2.4. Sol-gel Synthesis of LaNiO3 

 

Several sol-gel systems were developed to produce LaNiO3 (Table 15).  In the end, most 

were found to be unsuitable for producing oriented electrode thin films.  One system, 

however, was found to produce extremely well-oriented films.  The LaNiO3 sol was 

prepared by dissolving lanthanum acetate (5 mmol) and nickel nitrate (5 mmol) in 2-

methoxyethanol (10.7mL), with the addition of ethanolamine (5 mL) (Figure 35).  The 

resulting sol is stirred at 60oC for 2 hours.  Thin film LaNiO3 electrodes were produced 

via spin-coating the sol onto various cleaned substrates at 3000rpm for 40 seconds. A 

two-step pyrolysis and short anneal (detailed below) were carried out between layers, as 

suggested by Miyake.  Calcination temperature and film thickness (number of layers) 

were varied to determine the effect on orientation and conductivity.   
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Table 15.  Summary of LaNiO3 sol-gel systems investigated. 

Lanthanum 
Precursor 

Nickel 
Precursor Solvent(s) Oriented 

Films? 

Lanthanum Acetate Nickel Nitrate 
Ethylene Glycol + 

Water 
No 

Lanthanum Acetate Nickel Nitrate 
Ethylene Glycol + 

Ethanolamine 
No 

Lanthanum Acetate Nickel Nitrate Acetic Acid No 

Lanthanum Acetate Nickel Nitrate 
2-Methoxyethanol 

+ Ethanolamine 
Yes 

Lanthanum Acetate Nickel Acetate Acetic Acid No 

 

 

 

Figure 35. Sol-gel system for producing LaNiO3
 thin films. 

 

LaNiO3 sol was dried at 150oC to form a xerogel.  Simultaneous thermal analysis data 

from the xerogel is shown in Figure 36, where a heating rate of 5oC/min was used and the 

atmosphere was 20%O2/80%Ar.  As shown in the figure, LaNiO3 forms through two 

main exothermic events, and each is associated with a weight loss.  Total weight loss 

between 100-700oC is 58%.  Mass spectrometry suggests the first exothermic event, 

Lanthanum Acetate and Nickel Nitrate
2-Methoxyethanol 

Stir 700rpm, 60°C, 2hours

Ethanolamine 

LNO sol
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which peaks at 265oC, is primarily associated with the release of H2O. The second 

exotherm, with a peak at 414oC, is associated with the release of CO2, NO, and others, 

likely corresponding to a combustion process.  Weight loss is complete by 700oC, though 

the DSC curve remains concave-up, suggesting crystallization is 

continuing.
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Figure 36. Simultaneous thermal analysis (DSC/TGA) of LaNiO3 xerogel and mass spectrometry data of 

volatiles released during heating (heating rate = 5oC/min, 20%O2/80%Ar). 

 

The conventional film deposition method, involving a five minute pyrolysis at 400oC 

between layers and then final calcination at 700oC for two hours with a heating rate of 

5oC/min, produced unoriented films (Figure 37).   
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Figure 37.  XRD of four layer LaNiO3 deposited on Si3N4/Si with five minute pyrolysis at 400oC between 

layers and final calcination at 700oC for 2 hours with heating rate of 5oC/min. 

 

Better orientation was obtained for films pyrolyzed (at temperature Tp) for 5 minutes and 

then briefly annealed in a preheated furnace at the calcination temperature (Tc) for 10 

minutes between layers.  After the final layer was deposited, the film was calcined at Tc 

for 2 hours in stagnant air. XRD of LNO thin films deposited on fused silica (using a 

pyrolysis temperature of 300oC) show that LNO has formed by 600oC, and crystallization 

continues to improve to 700oC (Figure 38).  These films are all predominantly (100)-

oriented, and orientation increases as crystallization continues.  
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Figure 38. XRD of LaNiO3 deposited on fused silica and calcined at the temperatures indicated. (4 layers, 

Tp = 300oC) The amorphous hump seen at low 2-theta is due to the amorphous silica substrate. 

 

Pyrolysis temperature was varied, and the resulting effects on orientation and sheet 

resistance are shown in Table 16.  Orientation factors were calculated using XRD 

patterns from the films.  The factor is calculated by adding the intensity of the desired 

(100) and (200) LNO peaks and dividing by the total intensity of all of the LNO peaks in 

the scan. For a randomly oriented film, this factor would be 0.362. As shown in the table, 

a pyrolysis temperature of 400°C produced the most oriented LNO films, though well-

oriented films were obtained for all of the pyrolysis temperatures.  This suggests the use 

of a two-stage heating process between layers was more important than the particular 
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pyrolysis temperature used.  Following this optimized procedure, films were produced 

with 5 minute pyrolysis on a hot plate at 400oC then a 10 minute anneal to 700oC in a 

preheated furnace between layers.   

 

Table 16. Orientation factors (the sum of the intensities of (100) and (200) LaNiO3 peaks divided by the 

intensity of all peaks) and sheet resistances of LaNiO3 films deposited on fused silica prepared using the 

pyrolysis temperatures (Tp) indicated. (6 layers, Tc = 700oC) 

Sample Orientation Sheet Resistance 
(Ω/□) 

Tp = 200ºC .980 55.3 
Tp = 300ºC .969 85.5 
Tp = 400ºC .983 78.5 
Tp = 500ºC .977 79.2 

 
 

LNO was deposited on a variety of amorphous and crystalline substrates using the same 

procedure.  As shown in Figure 39, the LNO is predominantly (100)-oriented in all 

cases.8  This is exciting because the ability to obtain oriented LNO electrodes directly on 

Si enables numerous semiconductor processing techniques that are not typically 

compatible with specialized single crystal substrates frequently used to obtain oriented 

ferroelectric thin films via lattice matching (e.g., SrTiO3, MgO, LaAlO3).   The fact that 

LNO is oriented on a wide variety of materials indicates that the orientation is not 

inherited from the substrate via templating.  Rather, orientation is achieved through a 

                                                 
8 LaNiO3 was later deposited on sapphire and also found to be (100)-oriented.  Sapphire is a commonly 

used substrate for electronic applications involving UV and microwave radiation.  Studies are underway to 

determine whether LaNiO3 electrodes on sapphire can provide increased performance of BST for tunable 

microwave filter applications [collaboration with Melanie Cole at Army Research Lab]. 
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mechanism that involves random heterogeneous nucleation at the film/substrate interface 

during pyrolysis. During the crystallite growth stage, crystals with slow-growing, low 

surface energy faces oriented parallel to the substrate eventually overgrow crystals 

displaying fast-growing, high surface energy faces (Figure 40).  This is referred to in 

literature as the Van der Drift orientation mechanism [145]. 
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Figure 39. XRD of LaNiO3 thin films deposited on a variety of substrates. (4 layers, Tp = 400oC, Tc = 

700oC)  
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Figure 40. Illustration of the orientation mechanism of LaNiO3. (top) Heterogeneous random nucleation 

occurs at the film-substrate interface. Light nuclei are those with the (100) plane parallel to the substrate 

and dark nuclei are those with (100) plane at an angle to the substrate.  (middle) During growth, the (100) 

surfaces grow slower than planes with higher surface energy, resulting in unfavorably oriented dark nuclei 

growing faster vertically and taking on a triangular shape while favorably oriented light nuclei grow 

outward. (bottom) Outward growth of favorably oriented nuclei overtakes unfavorably oriented grains, 

leaving a (100)-oriented film. 

 

The sheet resistance of these films is given in Table 17. Cross sectional SEM showed the 

LNO film thickness was 48±5nm per layer.   
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Table 17. Orientation and conductivity of the LaNiO3 films deposited on various substrates. 

Tp 
(°C) # Layers Substrate Orientation Sheet Resistance 

(Ω/□) 
300 8 Fused Silica .979 85.6 
300 6 Fused Silica .969 85.5 
300 4 Fused Silica .978 146.6 
300 4 Pt/Ti/SiO2/Si .949 .92 (see Pt not LNO here)

300 4 MgO .987 21.3 
300 4 Ti/Si .955 39.4 
300 4 Si(111) .970 44.2 
300 4 Si(100) .901 50.4 
400 4 Si(100) .942 28.4 
400 4 Si3N4 .995 33.5 
400 4 SiO2(2µm)/Si .993 39.3 

 

 

The effect of thickness on orientation and sheet resistance was investigated.  XRD shows 

a single layer LNO film is only slightly oriented, while subsequent layers show improved 

orientation (Figure 41).  This improvement of orientation with thickness further supports 

the orientation mechanism described above. Similarly, sheet resistance is high for a single 

layer film and drops rapidly with each additional layers (Table 18 and Figure 42). Thus, 

for the four layer film deposited on Si(100), sheet resistance is 28.4 Ω /□, corresponding 

to a resistivity of 5.45x10-4Ω*cm.  This agrees well with the resistivity of 5.4x10-4 Ω*cm 

reported by Bao for LaNiO3 electrodes used in ferroelectric devices [119], and thus 4 

layer films are considered ‘thick enough’ for optimal orientation and conductivity.   
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Figure 41. XRD of LaNiO3 thin films deposited on Si(100) with the number of layers indicated (Tp = 400, 

Tc = 700oC). 

 
Table 18. Orientation and sheet resistance of LaNiO3 thin films with the indicated number of layers (on Si, 

Tp = 400oC, Tc = 700oC). 

Number of 
Layers Orientation Sheet Resistance 

(Ω /□) 

1 0.616 536.1 

2 0.901 86.6 

3 0.929 44.4 

4 0.942 28.4 
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Figure 42. Graphical representation of the previous table showing rapid decline in LaNiO3 sheet resistance 

with increasing number of layers. 

 
Surface roughness of four layer films was measured using atomic force microscopy 

(AFM).  Results for various substrates are given in Figure 43.  Surface roughness for the 

sample deposited on MgO is slightly higher than the others, probably due to the 

degradation of the MgO surface by atmospheric moisture.   

 

0 

100 

200 

300 

400 

500 

600 

1 2 3 4 5 

Number of Layers

Sh
ee

t R
es

is
ta

nc
e 

(O
hm

/s
q)

 



96 

 

Figure 43. Atomic force microscopy (AFM) of 4 layer LaNiO3 films deposited on the substrates indicated. 

[Data courtesy Melanie Cole, Army Research Laboratory] 

 

SEM was used to image the surface of LaNiO3 films.  The films were found to be 

somewhat porous (Figure 44).  Preliminary studies show porosity is correlated with 

processing parameters including concentration, pyrolysis temperature, and calcination 

temperature.   

 

Ra = 2.180nm LNO/sapphire 

Ra = 2.119nm LNO/PtSi 

Ra = 3.509nm 
LNO/MgO 

Ra = 2.895nm 
LNO/n+Si 
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Figure 44. SEM image of 4 layer LaNiO3 film deposited on Si (sol concentration 0.32M, Tp = 400oC, Tc = 

700oC). 

 

The effect of sol concentration on 4 layer LNO films deposited on single crystal MgO 

substrates is shown in Figure 45 and Figure 46.  Higher concentration LNO sols resulted 

in slightly less porous films; however, they were prone to cracking (Figure 47).  Miyazaki 

presented similar results and attributed the cracking to the large stresses generated as 

organic components are removed from the thicker films associated with high 

concentration [146].  Additional studies are necessary to determine the optimal 

concentration of LNO sols.    
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Figure 45. SEM image of 4 layer LaNiO3 film deposited on MgO using sol with 0.22M concentration (Tp 

= 400oC, Tc = 700oC). 

 

Figure 46. SEM image of 4 layer LaNiO3 film deposited on MgO using sol with 0.42M concentration (Tp 

= 400oC, Tc = 700oC). 
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Figure 47. SEM images at 8 and 150k magnification of cracking in 4 layer LaNiO3 film deposited on MgO 

using sol with 0.42M concentration (Tp = 400oC, Tc = 700oC). 

 

Additional SEM images showing the effect of pyrolysis temperature, calcination 

temperature, heating rate, and number of layers on the surface morphology of LNO thin 

films are provided in the Appendix.  Further research is needed to fully optimize 

processing parameters to produce films with the optimal combination of surface 

morphology, orientation, and conductivity. 

 

III.2.5. PBT on LaNiO3 

 
 
Pb0.5Ba0.5TiO3 (TIpDEA system) deposited on LNO also showed good orientation 

regardless of substrate (Figure 48 and Table 19). Thus, oriented LaNiO3 thin films 

provide an excellent template for the growth of (100)-oriented lead barium titanate.  
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Figure 48. PBT on LNO on various substrates (4 layers LNO, Tp = 400oC, Tc = 700oC; 3 layers PBT, Tp = 

200oC, Tc = 600oC). 
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Table 19.  Orientation of LNO and PBT on various substrates. 

Substrate LNO 
Orientation 

PBT 
Orientation 

Si3N4 .985 1.0 
SiO2/Si .982 1.0 
Si (100) .979 1.0 
Ti/Si .966 1.0 
MgO .955 1.0 
Fused Silica .932 .926 
Pt/Ti/SiO2/Si .935 1.0 

 

LaNiO3 thin film electrodes were also shown to reduce the effects of humidity on the 

crystallinity of PBT thin films as compared with MgO substrates.  As shown in Figure 49 

for the TBuDEA system, crystallinity of PBT on single crystal MgO varied significantly 

with atmospheric humidity, likely due to water adsorption on the single crystal, which 

has a deleterious affect on heterogeneous nucleation at the interface.  Using LaNiO3-

coated MgO substrates, PBT shows consistently high crystallinity regardless of humidity.  

Figure 50 shows XRD of the ‘best’ case PBT/MgO compared with a typical result for 

PBT/LNO/MgO.  This result also applies for the TIpDEA system, and a comparison of 

films deposited on MgO and LNO/MgO prepared under identical conditions is shown in 

Figure 51.  Thus, LaNiO3 thin film electrodes provide a humidity-insensitive means of 

depositing oriented PBT, even on moisture-sensitive substrates. 
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Figure 49. Effect of humidity on the crystallization of PBT produced using the TBuDEA system. (3 layer, 

Tp = 200oC, Tc = 600oC). [Data collected by G. Sukul] 
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Figure 50. XRD of 'best case' PBT thin film deposited on MgO (35% humidity) versus typical PBT film 

deposited on LNO/MgO using TBuDEA system (PBT: 3 layer, Tp = 200oC, Tc = 600oC; LNO: 4 layer, Tp 

= 400oC, Tc = 700oC). 
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Figure 51. XRD of PBT thin films deposited on MgO and LNO/MgO as indicated under the same 

atmospheric conditions (PBT: TIpDEA system, 3 layer, Tp = 200oC, Tc = 600oC; LNO: 6 layer, Tp = 

400oC, Tc = 700oC). 

 
The excellent crystallinity and orientation of PBT on LNO regardless of substrate 

suggests the LaNiO3 provides ample sites for the heterogeneous nucleation of the 

ferroelectric thin film.  Such enhanced nucleation might lower the temperature required 

for crystallization of PBT.  As described in Chapter I, a calcination temperature of 600oC 

is required for PBT crystallization on MgO single crystals.  As shown in Figure 52, PBT 

peaks can be discerned on LaNiO3/Si substrates at a calcination temperature as low as 

450oC–a 150oC reduction in the required calcination temperature! 
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Figure 52. XRD of 3 layer PBT films deposited on the substrates indicated and calcined at the stated 

temperatures.  (PBT: TIpDEA system, Tp = 200oC, LNO: 4 layers, Tp = 400, Tc = 700oC). 

 

 

III.2.6. Other Ferroelectrics on LaNiO3 

 

The pseudocubic lattice parameter of LaNiO3 matches well with a variety of ferroelectric 

materials, including BaTiO3, PbTiO3, Pb(Zr, Ti)O3, and (Ba,Sr)TiO3.  The suitability of 

LaNiO3 as a bottom electrode for several of these materials was investigated.   

 

PbZr0.52Ti0.48O3 (PZT) polymeric sol was obtained commercially (Item #39758, Alfa 

Aesar, Ward Hill, MA) and spin coated onto single crystal MgO and LaNiO3/Si 

substrates.  XRD shows PZT is crystalline and well-oriented on both substrates (Figure 
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53).  It is noteworthy that PZT cannot be deposited directly on Si because of the 

formation of lead silicide phases.  As no new phases are detected for the PZT/LaNiO3/Si 

film, it can be concluded that in addition to being an electrode, LNO also acts as a 

sufficient diffusion barrier to Pb, allowing for phase pure and oriented PZT to be 

deposited on a Si substrate without the use of further buffer layers such as Ta or Ti. 
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Figure 53. XRD of 3 layer PZT thin film deposited on MgO and LNO/Si, as indicated. XRD of the LNO/Si 

film before PZT deposition is also shown. (PZT: 3 layers, Tp = 200oC, Tc = 600oC; LNO: 4 layers, Tp = 

400oC, Tc = 700oC) 
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IV. Integration  
 

IV.1. Introduction to Integration Issues 
 

In order to build complex devices with ferroelectrics, it is desirable to use the wealth of 

tools and techniques available through semiconductor and, particularly, 

microelectromechanical systems (MEMS) technology.  Typical semiconductor and 

MEMS devices are based on layer processes.  Individual layers are deposited on a 

substrate, typically silicon, and then patterned, etched, or machined into useful structures 

and devices.  Layers can include metals, nitrides, oxides, or other dielectrics, and they 

can be deposited or patterned with chemical vapor deposition, oxygen plasmas, reactive 

ion etching (RIE), deep reactive ion etching (DRIE), wet etching, and others [147].  

Dopants are often added to discrete regions in silicon in order to affect its conductivity.  

As devices have been scaled down to smaller dimensions, individual layers have gotten 

thinner, and dopant profiles have been carefully controlled.   

 

IV.1.1. Thermal Constraints 
 

One of the largest hurdles to integrating ferroelectric films into semiconductor processing 

is the high temperature typically required for calcination of the ferroelectric layer.  High 

temperatures and long dwell times can lead to redistribution of dopant profiles or 

interdiffusion between discrete layers.  Careful attention, therefore, must be paid to the 

so-called thermal budget, which considers both the temperature and dwell time.  The 
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particular times and temperatures permissible depends on the types of dopants used and 

the size of structures involved.  A detailed discussion of thermal budgets is given in 

[148].  Alternately, robust device designs can be developed that do not require many 

layers of carefully controlled composition.  Another strategy to side-step the thermal 

budget constraints is to discretize the ferroelectric part of the device, and integrate it with 

a conventionally prepared multi-layer stack later.  For ferroelectrics to be widely used as 

a functional layer, however, these strategies only delay the inevitable integration 

challenges.  

 

Here, the preferred method of addressing thermal constraints is to lower the 

crystallization temperature of the ferroelectric layer as much as possible.  Process flows 

are also designed with thermal budgets in mind.  High temperature processes should 

completed as early possible in the deposition/patterning sequence, so that subsequent 

layers are not affected at all by high temperatures.  This strategy imposes some 

containment difficulties, because when the ferroelectric layer is incorporated early in the 

design, the layer must be contained throughout the remainder of processing, as described 

below.   

 

IV.1.2. Contamination 
 

In order to produce useful structures and devices using ferroelectric thin films, the films 

must be either selectively deposited or selectively etched.  MEMS techniques are well 

developed for such purposes. However, due to contamination concerns, most state-of-the-



109 
art MEMS equipment has been unavailable for use with ferroelectric films, especially 

those containing lead.  Thus, early attempts to integrate ferroelectric films as active layers 

have employed containment strategies to isolate the ferroelectric from the processing 

equipment.  This can mean either encapsulating the ferroelectric film to prevent 

contamination, or using MEMS techniques only on the front-end of the process before the 

ferroelectric is deposited.  Applying the ferroelectric films as part of a back-end process, 

however, presents the challenge that processed surfaces are generally not single crystals 

with good lattice matching suitable for producing oriented ferroelectrics.  Rather, the 

growth surfaces consist of metal layers or dielectric materials that are not generally able 

to produce texture.   

 

IV.1.3. Integration Strategy 
 

Ultimately, released membrane structures of oriented PBT are desired for electrical and 

mechanical testing towards implementation of the ferroelectric pump described in 

Chapter I.  In order to take advantage of MEMS process efficiencies and avoid as much 

contamination concern as is reasonable, processes were designed in which the majority of 

micromachining was completed before ferroelectric deposition.  For membrane design, 

this meant pre-etching most of the Si before depositing the ferroelectric so that only a 

small amount of etching needs to be done to release the ferroelectric film.  A variety of 

techniques and strategies developed for addressing these integration concerns is described 

below, and an excellent review is given in [149]. 
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IV.2. Patterning  
 

The simplest applications of ferroelectric films do not require patterning.  To produce a 

parallel plate capacitor, for example, a conductive substrate can be uniformly coated with 

a ferroelectric film and then top electrode to finish the device [150].  More interesting 

devices, however, require patterning of the ferroelectric layer.  Patterning in MEMS is 

generally accomplished either through selective deposition or selective (subtractive) 

etching.  Contamination concerns typically limit the availability of processing equipment, 

such as RIE or DRIE, suitable for high aspect ratio etching of lead-containing 

ferroelectrics.  Thus, it is generally easier to design devices with patterned substrates 

rather than patterned ferroelectrics.  Wet etching can be used to selectively etch the 

ferroelectric layer, but such processes are generally isotropic, and etch rates must be 

carefully calibrated for each ferroelectric material.   

 

IV.2.1. Photolithography 
 

In order to selectively etch films, some sort of masking is generally used.  Standard 

MEMS masking techniques involve photolithography of photoresist.  The photoresist 

polymer is spin coated onto a ferroelectric film and then selectively exposed to UV light.  

Depending on the particular photoresist used, the UV light either cross-links and hardens 

the resist, or causes it to breakdown.   A series of chemical baths develops the resist, and 

then strips away the exposed/unexposed areas to reveal the desired pattern.  The patterned 

film can then be subjected to wet or dry etchants to selectively remove the exposed areas 

of the ferroelectric film.  Subsequently, the remaining photoresist is removed, leaving 
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behind a patterned ferroelectric layer.  Preliminary tests indicate the PBT films are at 

least to first order compatible with photoresist process.  Photoresist (AZ4400) was 

painted onto a PBT film and then the sample was exposed to UV light (365nm, 10 

minutes) before developing (AZ351 developer diluted 1:4 with water) and stripping the 

resist.   Optical microscopy and XRD of PBT films before and after photoresist 

deposition, baking (100oC 10-30 min, 120oC 10 min), and developing show no major 

changes in the films.  However, a cursory test of chemical etchants (KOH, HCl, H2SO4, 

Fluoroboric acid) did not find a suitable wet etch capable of etching PBT without also 

etching photoresist.9  To achieve good feature scales and photoresist uniformity, a 

lithography system and clean room setup is needed.   

 

Alternative patterning methods were thus investigated in order to quickly and cheaply 

produce patterned PBT films without requiring expensive equipment or clean room 

facilities. 

 

IV.2.2. UV Patterning 
 

UV radiation has been shown, in some cases, to lower the calcination temperature 

required for producing ZnO and TiO2 thin films by facilitating organic decomposition at 

lower temperatures [71, 151, 152].  Several researchers have also reported use of UV-

                                                 
9 HCl and H2SO4 appeared to etch PBT faster than photoresist, with HCl etching faster than H2SO4. Careful 

etch rate studies might render these chemicals useful for wet etch purposes, but will require more stringent 

control of photoresist thickness. 
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sensitive modifiers to facilitate patterning of sol-gel films [153, 154].  Uozumi [154] used 

a photosensitive modifier known as NBAL to pattern PZT through selective irradiation 

with 365nm UV and subsequently wash off unexposed areas with solvent. 

Monoethanolamine and ethylenediamine have a UV sensitive C=N bond, which has also 

been used to pattern TiO2 films [151].   

 

Ohya notes that the ideal radiation wavelength corresponds to the ligand-to-metal charge 

transfer, which weakens metal-chelate bonding [71]. For titanium isopropoxide, the 

absorption band is found to be ~300nm [151]. Both acetylacetone (acac) and 

diethanolamine have been shown to be photoactive in the UV region, with acac absorbing 

near 300nm and diethanolamine absorbing at ~240nm [152, 153].10    UV spectrometry 

was used to determine the UV absorption characteristics of TIpDEA and TBuDEA sols 

prepared as described in Chapter II.  As shown in Figure 54 and Figure 55, both sols 

absorb UV radiation below 300nm.   

                                                 
10 N-phenyldiethanolamine (PhDEA) was found to be more photosensitive than DEA (it absorbs at 256nm 

and 303nm) however titanium sols are less stable with PhDEA.  Kikuta attributes this to a reduction in the 

basicity of the N atom by the phenyl group [153]. 
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Figure 54. UV transmission spectrum for TIpDEA sol. 

 

 

 

Figure 55. UV transmission spectrum for TBuDEA sol. 

 

An inexpensive, low power UV lamp (wavelengths 365nm and 254nm) was used to 

irradiate PBT thin films during pyrolysis.  Preliminary tests were inconclusive, with one 

film showing enhanced crystallinity at 450oC with exposure to 365nm radiation and 

others not showing any effect (Figure 56).  This experiment was not readily reproducible, 

as atmospheric conditions were not controlled and varied significantly over the course of 

film preparation.  However, several lessons can be learned from this preliminary effort.  

An experimental setup should be designed that incorporates a higher power UV source, 
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perhaps with a wide band emission rather than single discrete wavelength to maximize 

the effect of absorption.  The UV source should be positioned above the film during 

pyrolysis, however care must be taken to not melt the insulation surrounding the bulb 

when high temperatures are used.  After testing, significant buildup of organics was 

observed on the lamp, probably due to redeposition of pyrolyzed organics (ruining the 

lamp).  It is reasonable to suspect this significantly reduced the intensity of radiation at 

the film surface, particularly at the shorter wavelength, which would have been expected 

to provide the most noticeable effect.   
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Figure 56. XRD of PBT thin films with and without UV treatment, as indicated. 

  

Further study is warranted of the use of UV radiation for both lowering the calcination 

temperature and patterning PBT thin films, especially in conjunction with LNO electrode 

substrates.  With sufficiently high power, UV irradiation can likely be used to selectively 
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cure PBT thin films, allowing for the production of films with complex patterns and 

excellent feature size. 

 
 

IV.2.3. Selective Deposition 
 

Selective deposition is a more attractive alternative for patterning sol-gel materials.  

Techniques for selectively depositing sols include simple mask techniques, ink-jet 

printing [49], screen printing [155] and the “soft lithography” techniques known as 

microcontact printing [156-158], and micromolding [159, 160], which boast feature sizes 

down to 30nm [160].    

 

Physical Masking 

Physical masking provides a quick and cheap alternative to photolithography.  Before 

spin coating, the substrate is selectively covered with a physical mask to prevent 

deposition in covered areas.  Scotch tape was successfully used to provide a physical 

mask for PBT deposition.  After spin coating, the tape is removed before pyrolysis (and 

reapplied between layers for multi-layer films).  Although tedious, this method works 

quite well for providing access to an electroded substrate for electrical testing.  Scotch 

tape was found to be sufficiently thin so as not to cause the formation of a large edge 

bead near the tape border; however for thicker tapes or thinner films, this might be of 

concern.  This crude technique is not suitable for very small feature sizes or complex 

patterns requiring careful alignment. 
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Microcontact Printing 

Microcontact printing involves surface modification of the substrate using self-assembled 

monolayers (SAM) to pattern a subsequently deposited film.  One method involves using 

the elastomer polydimethylsiloxane (PDMS) as a stamp to selectively deposit a 

surfactant, octadecyltrichlorosilate (OTS), which causes a subsequently deposited sol-gel 

film to crack heavily upon pyrolysis. The cracked areas can then be easily removed 

through wiping or washing, leaving behind a patterned ferroelectric film.  Alternative 

surfactants can be used to influence the wettability of selected areas of the substrate to 

achieve similar results.  While interesting, this technique is relatively new and not well-

studied.  If other simpler patterning techniques are found to be unsuitable, microcontact 

printing should be considered.  Feature sizes of 4μm have been reported for microcontact 

printing of (Pb, La)TiO3 [158]. 

 

Micromolding 

Rather than involving the intermediate step of self-assembled monolayers, micromolding 

techniques (sometimes referred to as micromolding in capillaries, or “MIMIC”) use 

PDMS as a mold rather than a stamp.  PDMS molds can be produced by casting the 

liquid polymer onto a negatively-machined mold. Alternatively, some PDMS 

formulations allow for direct UV patterning through photolithography. The cured 

polymer can then be bonded to a substrate, such as glass.  Since PDMS is an elastomer, 

nonplanar substrates can also be accommodated [159]. Sol is then introduced either 

through the side of the mold through capillary forces, or through holes drilled into the top 

of the mold.  The sample is dried, and the PDMS mold is peeled off of the substrate to 
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reveal a patterned xerogel, which can be calcined to produce a patterned ferroelectric.  

Feature sizes of 500nm have been demonstrated [159], and this technique has recently 

been proven suitable for producing wonderfully complex patterns in PZT thin films 

[160].   

 

PDMS has been shown to be compatible with a wide variety of chemicals, including all 

of the ones used in sol-gel processing of PBT.  In order to test proof-of-concept, PBT sol 

was injected into PDMS (Sylgard 184, Dow Corning, Midland, MI) molds attached to 

glass slides.  Several channel lengths, widths, and geometries were tried (Figure 57 and 

Figure 58).  All channels were 10-12μm in depth.  Injection of the sol into the mold using 

a syringe pump was found to be the most suitable method, as the capillary method 

required a large (unpatterned) pool of sol adjacent to the mold, which is generally a mess 

(Figure 59).  In order to ensure full channels, a second ‘exhaust’ hole was drilled at the 

end of the channels, and the mold was filled through one hole until sol began to spill out 

of the second hole. 

 



118 

 

Figure 57.  PBT sol injected into PDMS mold on glass slide showing ability to fill connecting channels 

from single injection point. The main channel is 50μm wide, and the two smaller branches are 40μm wide. 

  
Figure 58. Channel filled with xerogel after drying showing cracking as function of channel width. (Dried 

100oC, 20 hours) Widest part is 50μm. 

 
 

The patterned ferroelectrics, shown in Figure 59 and Figure 60, are visibly cracked.  This 

is not surprising due to the large shrinkage that occurs during drying and calcination.  
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More careful study including consideration of the Griffith’s criteria should lead to an 

optimum channel width and depth to suppress cracking [159, 160]; however, more 

detailed study is required to determine the critical length above which cracking becomes 

thickness dependant. Repeating the injection-drying step multiple times before removing 

the mold could also help densify the xerogel, or more concentrated sols can be produced 

to reduce shrinkage. 

 

Attempts to bond the PDMS to MgO single crystal substrates, however, failed.  Upon 

injection of sol into a mold on MgO, the molds peeled off the substrate, resulting in 

complete surface wetting.  Some limited adhesion was realized by first roughening the 

MgO with oxygen plasma before bonding with PDMS.  Figure 59 shows patterned 

ferroelectric lines deposited on MgO using the capillary technique.  Cracking is most 

prominent for the thickest line (Figure 60).   
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Figure 59. PBT deposited using capillary technique on 10mm square MgO substrate showing variety of 

line widths.  Line widths from left to right: 10, 50, 100, and 500μm. 

 

Figure 60. Thickest (500μm) line in previous figure, close-up after calcination. 

 

The author strongly recommends revisiting PDMS micromolding in conjunction with 

LaNiO3 electrodes, which should provide better PDMS adhesion and also present the 
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possibility of oriented patterned structures.  Other types of PDMS can also be 

investigated that allow for higher drying temperatures [161]. 

  

IV.3. Orientation: IBAD MgO 
 

The initial approach taken to address the issue of obtaining oriented ferroelectric films on 

Si-based substrates involved the use of ion beam assisted deposition (IBAD) MgO.  As 

described more fully elsewhere [162], IBAD involves the use of e-beam evaporated MgO 

with simultaneous Ar+ ion bombardment at a 45o incidence angle to a Si3N4/Si substrate.  

Biaxial texture can be obtained by varying the ratio of ion/MgO flux during deposition 

[163, 164].  A 20nm homoepitaxial layer of MgO is then deposited onto the IBAD layer 

at 600oC.  Subsequently deposited ferroelectrics inherit this biaxial texture, thus 

providing a route for producing textured PBT on a Si-based substrate. In principle, IBAD 

can be used to deposit textured MgO on any smooth amorphous substrate. 

 

Both the TIpAc and TIpDEA systems were used to deposit sol-gel lead barium titanate 

onto IBAD MgO/Si3N4/Si substrates.  For both systems, XRD shows the PBT is highly a-

axis oriented.  This is in contrast to MgO single crystal substrates which yield mixed a- 

and c-axis orientation.  The difference can be easily explained by the large thermal 

mismatch between the Si substrate and ferroelectric thin film (αSi = 2.6x10-6/K [84], 

αPbTiO3 = 12.6x10-6 /K [165], αBaTiO3 = 9.8x10-6/K [166]), which places the ferroelectric 

film under tension during cooling, thus favoring a-axis orientation (long axis in the 

plane).  On single crystal MgO (αMgO = 14.8x10-6/K [165]), the film is under compression 
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during cooling, resulting in c-axis preferred orientation.  However, the compressive stress 

is comparatively mild compared with the tensile stress of Si, and thus PBT on single 

crystal MgO results in a mixed a/c-orientation (Figure 61).   
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Figure 61. XRD of PBT thin film on single crystal MgO and IBAD MgO/Si3N4/Si. (PBT: 3 layer, 

TIpDEA, Tp = 200oC, Tc = 600oC) 

 

RHEED analysis of (TIpAc) PBT films deposited on IBAD MgO substrates shows that 

the out-of-plane orientation distribution (FWHM) is Δω = 4o.  High resolution 

transmission electron microscopy (HRTEM) shows the PBT film has grain sizes of 20-

30nm.   Interestingly, although sol-gel deposition is shown to attack the MgO layer, it 

results in improved in-plane texture over the template layer itself [162].  This has been 

explained in the following manner.  MgO is susceptible to hydroxylation on its surface in 

the presence of water, and the damage incurred prevents such surfaces from effectively 

templating PBT growth.  Sol-gel chemistry inherently involves water, and thus the MgO 
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substrate is attacked, which would otherwise serve as sites for the nucleation of 

misoriented PBT grains, quickly become hydroxylated retarding PBT nucleation in those 

regions. 

 

IV.3.1. Membrane Process Flow 
 

A process flow for using IBAD MgO as a buffer layer to produce oriented ferroelectric 

films on partially released Si3N4/Si templates is shown in Figure 62. 

 

Figure 62. Process flow for producing partially released PBT/MgO/Si3N4 membranes. 
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The process begins with a Si3N4/Si wafer.  First, 3μm SiO2 is sputtered on the back of the 

wafer.  Photoresist (Clariant AZ4620) is then spun on at 3krpm to produce a 6μm resist 

layer.  The photoresist is patterned with photolithography and developed using Clariant 

AZ351 developer diluted 1:4 with deionized water to remove the exposed regions of 

photoresist. The now uncovered regions of SiO2 are etched using a buffered hydrofluoric 

acid etch (BHF).  Remaining photoresist is then stripped using acetone, isopropanol, and 

deionized water.  Using the remaining oxide as an etch mask, the wafer undergoes deep 

reactive ion etching (DRIE), where Si is directionally etched in regions unprotected by 

SiO2.  IBAD MgO is deposited on the wafer, and finally sol-gel PBT is deposited on top 

to finish the structure. 

 

After PBT deposition, these films can be released to form Si3N4/MgO/PBT membranes 

using the additional process steps shown in Figure 63, which uses the same color scheme.  

As shown in the figure, photoresist is spun on top of the ferroelectric layer to prevent Pb 

contamination.  XeF2, a dry gas that gently and isotropically etches Si, is then used to 

fully release the film.  The protective photoresist cap is then removed either through wet 

chemical methods or supercritical CO2. 

 

 

Figure 63. Process flow for final release of PBT/MgO/Si3N4 membranes. 
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IV.3.2. TEM Windows 
 

IBAD MgO and PBT were also deposited on commercially purchased Si3N4 TEM 

windows (Figure 64). These windows consist of 30nm Si3N4 membranes released from a 

200μm Si substrate in a 1mm x 1mm square region.  The overall dimensions of the TEM 

windows are 3mm x 3mm, making them exceedingly difficult to handle.  Their small size 

also precluded spin coating.  Their delicacy resulted in a high loss rate, as many would 

break during handling or calcination.  One intact film was produced by dripping sol onto 

the window while holding it on edge and allowing the excess to drip off before calcining.  

This method was abandoned as being imprecise as well as cost and time prohibitive. 

 

 

Figure 64. PBT-coated TEM window (left) and schematic showing side view of structure (right). 

  

IV.4. Orientation: Lanthanum Nickelate 
 

The development of conductive oxide electrodes, discussed earlier, mitigates many 

integration challenges, as it provides a simple way to integrate oriented ferroelectrics 
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with a wide variety of substrates, while also providing an electrode layer that is stable to 

sufficiently high temperatures.   

 

IV.4.1. LaNiO3/PBT/LaNiO3/Si Stacks 
 

A stack was prepared of LNO/PBT/LNO/Si(111) by depositing 4 layers of LaNiO3 (as 

described in Chapter III), then 3 layers of PBT (as described in Chapter II), and finally 

another four layers of LaNiO3.  The orientation factor of the LaNiO3 for this stack 

structure is 0.967, and the factor for PBT is 1.0, as determined from the XRD (Figure 65).  

This demonstrates that the PBT layer remains phase pure and oriented after excursions to 

700oC.  Further, by tape masking the corner of the samples during PBT and top electrode 

deposition, access to both top and bottom electrodes can be achieved. 
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Figure 65.  XRD of stack structure LNO/PBT/LNO/Si(111). 

 

IV.4.2. Commercial Arrays 
 

LNO was also deposited on commercially purchased 6 x 6 arrays of 100nm thick 

membranes of Si3N4 (Figure 66). The released areas are 0.5mm x 0.5 mm in size. LNO 

was deposited via spin coating by carefully aligning the vacuum chuck between the 

windows.  As shown by XRD, the two layer LNO film was highly oriented (Figure 67).  

As part of our collaborators’ mechanical testing setup required optical transparency of the 

films, we were limited to two layers of LaNiO3, as the film became too dark after 

deposition of subsequent layers.  The array was delivered to our collaborators for 

mechanical and electrical testing. 
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Figure 66. LaNiO3 film (2 layers) deposited on commercially purchased 6 x 6 Si3N4 membrane array. 

20 30 40 50 60

(2
00

)

(1
10

)

In
te

ns
ity

2Theta

(1
00

)

 

Figure 67. XRD of LaNiO3 film (2 layers) deposited on 6x6 Si3N4 membrane array. 
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After testing, three layers of PBT were deposited on the array LaNiO3 using the TIpDEA 

process described in Chapter II.  One corner was masked with tape to provide access to 

the bottom electrode for electrical testing.  After calcination to 600oC, XRD shows the 

PBT film is highly (001/100)-oriented (Figure 68).  Twenty membranes remained intact 

after calcination (Figure 69). 
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Figure 68. XRD of 3 layer PBT films deposited on 2 layer LNO on commercially obtained Si3N4/Si arrays. 



130 

 
Figure 69. Photograph of array after PBT deposition showing which membranes remained intact. 

 
 

IV.4.3. Membrane Process Flow 
 

Since the LaNiO3 electrode is an oxide, it acts as an etch stop for some commonly used 

silicon etchants, which facilitates bulk micromachining. A process flow for producing 

released PBT/LNO membranes on a Si substrate is given in Figure 70.  The process starts 

with a thermally oxidized Si wafer.  On the backside, photoresist (Clariant AZ4620) is 

spun on at 3krpm to produce a 6μm photoresist layer.  The photoresist is then exposed via 

photolithography and developed with Clariant AZ351 developer diluted 1:4 with 

deionized water to remove the exposed regions of resist.  Buffered hydrofluoric acid is 

used to remove the now uncovered regions of SiO2 on the bottom side of the wafer, as 
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well as the SiO2 on top of the wafer.  Remaining photoresist is then stripped using 

acetone, isopropanol, and water.  The wafer is placed in the DRIE machine to 

directionally etch Si in the regions unprotected by SiO2.  After DRIE, only a few microns 

of Si remain in the etched regions to provide mechanical stability during sol-gel 

processing.  The remaining SiO2 is etched with buffered hydrofluoric acid.  This substrate 

is used as a substrate for LaNiO3 and PBT deposition as described in Chapters II and III.  

The sample is then exposed to XeF2 to gently and isotropically release the remaining Si 

to produce free standing PBT/LaNiO3 membrane structures. 

 

 

Figure 70. Process flow for producing released PBT/LNO membranes on Si. 
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As an alternate route, the DRIE etch of Si can be replaced by a wet etch if desired.  KOH, 

for example, can be used to provide angled side walls rather than the vertical (high aspect 

ratio) side walls obtained using DRIE.11  Further, the Si wafer can be replaced with 

Si3N4/Si to provide additional support to the PBT/LNO membrane if necessary.  For 

electrical isolation of the Si substrate, a thin SiO2 layer may be used between the silicon 

and LaNiO3. 

 

IV.4.4. Mask Design 
 

The mask design for die used in the process flow shown in Figure 70 is given in Figure 

71.  It was developed in order to simplify mechanical and electrical testing, considering 

the experimental setups in use by other groups.  Nine square membranes (sized 0.5-

1.5mm) are distributed throughout the die, leaving at least 2mm between membranes so 

they are individually addressable for testing.  The center of the die is left intact, to 

facilitate easy handling during spin coating (the vacuum chuck needs to be placed in the 

center, which needs to be solid).  The mask is designed to allow for 16 individual die per 

4” Si wafer processed.   

                                                 
11 Since KOH preferentially attacks the <100> plane of Si, it results in an anisotropic etch with sidewalls 

inclined 54.7o to the surface. 
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Figure 71. Die mask designed for producing released PBT/LNO membranes for electrical and mechanical 

testing. 

 
 

IV.4.5. XeF2 Dry Etch 
 
 
Dry gas etches are useful in releasing delicate membrane structures from Si, as they avoid 

the stiction and surface tension effects often reported with wet etch techniques.  XeF2 dry 

gas etching has been used in MEMS processing to isotropically etch Si.  It has a high 

selectivity over SiO2
 (10,000:1), meaning that Si is etched much faster than SiO2.  Thus, 

silicon dioxide can be used as an etch mask to produce patterned structures.  PZT 

membranes and cantilevers released using XeF2 have already been reported [167-169].   

LaNiO3 was subjected to XeF2 to determine whether the conductive oxide could be used 

as an etch stop.  The etch process involves a series of loops in which XeF2 is introduced 
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into a vacuum-purged chamber for 30 seconds and then vented, after a set number of 

loops the chamber is purged with N2.  For the die size used, each loop corresponds to 

approximately 4μm of Si etching.  It was determined that XeF2 has a high selectivity over 

LaNiO3, with the 200nm-thick conductive oxide being unaffected after 4 etch loops 

(while comparatively Si is etched 16μm).  This presents the possibility of using LNO as 

both a template for orientation and an etch stop for patterning PBT released structures.    

 

Test arrays were produced with Si substrates prepared using the mask design and process 

described above.  Square membranes with three different sizes (0.5-1.5mm) were 

patterned onto a Si wafer using conventional photolithography techniques.  The wafer 

was then partially etched using DRIE to leave only 12μm Si in those regions. The wafer 

was cleaved into 16 individual die, which were used as substrates for LNO deposition. 

 

Figure 72. Partially released Si membranes produced using DRIE. 
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After LNO deposition, the die were then subjected to XeF2 to isotropically etch away the 

remaining Si from the membrane regions.  Initial attempts to produce fully released LNO 

membranes via XeF2 were encouraging, although not entirely successful.  In both DRIE 

and XeF2 etching, large regions of Si are preferentially etched over small regions.  This 

so-called “loading effect” causes a differential etch rate between the membrane sizes, 

with the largest membranes showing some release after 4 loops, and small membranes 

only partially released after 11 etch loops.  Some areas, particularly for the largest 

membranes, showed cracking or rupture.  These ruptures are likely caused by the large 

tensile stress in the LNO thin (200nm) film, which is built up during the annealing 

process.  Low stress SiO2 or Si3N4 buffer layers might improve the thermal coefficient of 

expansion mismatch to reduce the stress in the film, allowing for larger released 

structures.  

 

Figure 73. Small (0.5mm) square membrane showing partial release from the Si substrate after 11 etch 

loops (20x magnification). 
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Figure 74.  Cracking and rupture of partially released membrane in large square (1.5mm) membrane after 

11 etch loops (20x magnification). 

 

IV.5. Soluble Substrates 
 

Free-standing oriented PBT films are desired to facilitate mechanical and electrical 

testing, and TEM analysis.  Towards this goal, we present here preliminary results of 

efforts to produce oriented thin films on water soluble substrates.   

 

Both NaCl and LiF are readily integrable into multilayer semiconductor process, as they 

can be deposited using evaporation or sputtering for use as sacrificial layers.  Although 

LiF is only marginally soluble in water (1.3g/L), it has a cubic lattice constant (a = 

4.03Ǻ) that is comparable to that of PBT (a = 3.94Ǻ, c = 4.07Ǻ) [170].  Thus, good 

orientation of PBT on LiF(100) is expected.  In contrast, NaCl is both highly soluble in 

water (359g/L) and well-matched to PBT.  Although its cubic lattice constant is 5.64Ǻ, 
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the <110> directions have a repeat distance of √2a/2 = 3.99Ǻ, which compares favorably 

with c-axis oriented PBT.  

 

Some success attaining preferentially oriented ferroelectric thin films on LiF and NaCl 

has already been reported [48, 171-174].  MOCVD has been used to deposit (001)-

oriented PbTiO3 on NaCl(100) [171, 172].  However, sol-gel deposition of PbTiO3 on 

NaCl by Ren et al. resulted in unoriented films [174], while some slight c-axis preference 

was exhibited in another sol-gel process by Lu et al. [173].  Xiong et al. used pulsed laser 

deposition to obtain (100)-oriented Pb0.72La0.28TiO3 on LiF using an MgO buffer layer 

[48].  No studies have yet examined sol-gel deposited ferroelectrics on LiF.  Here, we 

seek to determine whether sol-gel methods might be used to deposit oriented lead barium 

titanate on NaCl or LiF. 

 

Lead barium titanate sol was prepared using a sol-gel technique involving lead nitrate, 

barium acetate, and titanium isopropoxide precursors, with diethanolamine as a chelating 

agent and ethylene glycol as a solvent (TIpDEA system, described extensively in Chapter 

II). LiF(100) and NaCl(111) single-side polished substrates were obtained from MTI 

Crystal and used as received.  NaCl(100) substrates were prepared through cleaving 

single crystals (obtained from Structure Probe, Inc.) in air just prior to deposition.  PBT 

thin films were deposited onto the LiF and NaCl substrates via spin coating at 3krpm for 

40 seconds (Chemat KW4-A Spin Coater) and were calcined for 2 hours in air.  Heating 

rate (HR) and calcination temperature (Tc) were varied to determine the resulting effects 
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on film characteristics.  X-ray diffraction (XRD) was used to determine the phases 

present and extent of orientation in the films.   

 

For all the substrates, heating/cooling rates of 20oC/min or higher led to heavy crack 

formation. This can be explained by the large difference in the coefficients of thermal 

expansion between the ferroelectric thin film and substrates (Table 20).  Lower heating 

and cooling rates (1-5oC/min) resulted in smooth, crack-free films.  The problem of 

substrate volatility or ‘out-gassing,’ reported by researchers using PLD deposition 

processes, was not observed here, likely due to the ambient pressures involved in sol-gel 

processing [17].  By not requiring a low pressure atmosphere, the sol-gel process makes it 

possible to calcine the films to higher temperatures, even near the melting point of the 

substrate, without significant out-gassing. 

  
Table 20. Properties of LiF, NaCl, and Pb0.5Ba0.5TiO3. 

 Lattice 
Parameters 

TCE 
(x10-6/K) 

Melting Point
(oC) 

Solubility in 
Water (25oC)

(g/L) 

LiF a = 4.03 37 870 1.3 

NaCl a = 5.64 44 801 359 

PBT a = 3.944 
c = 4.075 

9 (for BaTiO3) 
12 (for PbTiO3) 

- - 
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IV.5.1. PBT on LiF 
 

PBT thin films deposited on LiF(100) showed good orientation, but lacked phase purity.  

The XRD peaks indicate the presence of (100/001)-oriented PBT with a secondary 

impurity phase of BaPbO3, suggesting some titanium from the sol diffused into the LiF 

substrate (Figure 75).  This is supported by the observation that a very slow heating rate 

(HR = 1oC/min) leads to formation of BaPbO3 exclusively, as diffusion progresses to a 

greater extent.  The amount of BaPbO3 appears to remain constant as more layers are 

added to the film, suggesting the loss of titanium is restricted to the interface of the film 

and substrate.  It also suggests that, once formed, BaPbO3 serves as a diffusion barrier to 

further Ti loss. Diffusion is also slowed by lowering the calcination temperature, and, as 

shown in Figure 76, lowering the calcination temperature to 550oC reduced the amount of 

BaPbO3 formation and dramatically improved the orientation of the PBT.  While 

formation of BaPbO3 was not the goal of these synthesis efforts, its presence may, in fact, 

be beneficial.  Because of its good electronic conductivity, BaPbO3 could be used as an 

electrode [79, 141].  Thus, sol-gel deposition of PBT on LiF may provide a route for in 

situ electrode incorporation, but would not get the benefit of lattice matching to LiF. 
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Figure 75. PBT thin films on LiF with the heating rates and number of layers indicated (Tc = 600oC). 
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Figure 76.  PBT thin films on LiF with the calcination temperatures indicated (HR = 5oC/min). 
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IV.5.2. PBT on NaCl 
 

In contrast, PBT thin films on NaCl(111) are phase pure, though randomly oriented 

(Figure 77).  As there is no BaPbO3 formation, titanium diffusion is apparently not a 

factor for the NaCl(111) substrate.  The lack of orientation can be explained by the lack 

of any lattice match with PBT.   
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Figure 77. PBT thin films deposited on NaCl(111) with the number of layers indicated (Tc = 600oC for 120 

minutes in air, HR = 5oC/min). 

 

As with NaCl(111), NaCl(100) did not suffer from the titanium diffusion observed with 

LiF, even for very slow heating rates (HR = 1oC/min).  As shown in Figure 78, PBT thin 

films deposited on NaCl(100) crystallized by 500oC and were phase pure by 550oC.  The 

films show some (001/100) preferred orientation, although other orientations are also 

present.  It is hypothesized that the other orientations occur due to surface imperfections 
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resulting from the cleaving process. As shown in Figure 79, the surface is quite rough.  

Further studies are required to determine whether misoriented grains occur preferentially 

at the surface steps.   
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Figure 78. PBT thin films deposited on NaCl(100) and calcined at the temperatures indicated (HR = 

1oC/min). 
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Figure 79. Optical microscope image of fresh cleaved NaCl(100) surface, 50x magnification. 
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V.  Conclusions 
 

Several sol-gel systems were developed to produce powder and thin film lead barium 

titanate.  The importance of several processing parameters was determined and chelating 

agent selection was found to be critical for reliably producing phase pure powders and 

films at moderate temperatures. Lead barium titanate thin films were produced using an 

optimized sol-gel system involving lead nitrate, barium acetate, and titanium 

isopropoxide metal precursors with ethylene glycol as a solvent and diethanolamine as a 

chelating agent.  Highly (001/100)-oriented thin films were produced on lattice matched 

substrates at temperatures as low as 600oC. 

 

Conductive oxide electrodes were also investigated to address orientation and fatigue 

concerns associated with metal electrodes.  Sol-gel deposition of LaNiO3 thin films 

resulted in (100)-orientation on a wide variety of amorphous and crystalline substrates.  

Orientation was achieved through random heterogeneous nucleation at the film/substrate 

interface followed by the slow growth of (100)-planes which have the lowest surface 

energy.  These highly oriented, lattice matched films were found to be excellent 

substrates for producing (001/100)-oriented lead barium titanate.  Enhanced nucleation at 

the LaNiO3 substrate resulted in a 150o reduction in crystallization temperature of PBT 

compared to MgO. 

 

Lead barium titanate and lanthanum nickelate were deposited on a variety of patterned 

substrates to facilitate electrical and mechanical testing.  Highly oriented films were 
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deposited on pre-released 100nm Si3N4 membranes, and on partially released Si 

substrates.  Further, LaNiO3 was found to be an excellent etch stop for XeF2 dry gas 

etchant, allowing for the production of free-standing electrode membranes on Si 

substrates.   

 

V.1. Suggestions for Future Research 
 

V.1.1. Electrical and mechanical testing 
 
 

Most parameters investigated here relied on XRD, FTIR, and/or SEM to determine 

the optimal parameter value on the basis of phase purity, orientation, and/or surface 

morphology.  In some cases, no major difference was seen using these techniques.  

The influence of these parameters, most notably heating rate, holding time, and 

titanium alkoxide precursor, should be investigated further using electrical and 

mechanical testing to determine the relevance of these parameters in terms of future 

device applications. 

 

V.1.2. Solvent selection for LaNiO3 

 
 

Currently, 2-methoxyethanol is used as the solvent in lanthanum nickelate sol-gel 

preparation.  The toxicity of 2-methoxyethanol is well-established, and a more 

environmentally-friendly chemical should be found if possible.  Some studies suggest 
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using 1,3-propanediol as an alternative, however this substitution was not 

immediately successful. 

 

V.1.3. Application of electric field during calcination   
 

 

Below the Curie temperature, all six tetragonal polarization directions are 

energetically equivalent.  For c-axis or a-axis oriented films, two 180o variants 

possess lower energy and are prevalent.  The effect of the application of an electric 

field during calcination should be investigated to determine whether a single 

orientation can be obtained, using the applied field to favor one variant over the other.  

A bias can be applied during calcination using parallel plate electrodes separated by 

high-temperature insulating ceramic supports and connected to a voltage source using 

high temperature wire.  This should be easily facilitated using LaNiO3-coated 

substrates, which effectively require only Tc = 450oC for PBT calcination.   

 

V.1.4. Patterning using broad spectrum UV source 
 

Both acetylacetone and diethanolamine-based sol-gel processes were found to have 

broad regions of UV absorption.  A broad spectrum UV source should be obtained to 

determine whether UV exposure can cause organics to breakdown at lower 

temperatures, resulting in a lower crystallization temperature.  If so, this can be used 

to pattern wet films through selective UV exposure on a hotplate.  Exposed regions 
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would crystallize, while unexposed regions would be easily washed away using the 

parent solvent (in this case, ethylene glycol). 

 

V.1.5. Orientation of LaNiO3 
 

The in-plane orientation of LaNiO3 should be investigated in detail using pole figure 

analysis to determine whether there is the possibility of achieving in-plane orientation 

of the conductive oxide electrode.  Bi-axially textured films are required for the 

micropump application, and a mechanism to produce bi-axially textured LaNiO3 

should be investigated.  One possible alternate suggestion is to chemically or 

mechanically polish LaNiO3 to produce a smooth surface for IBAD deposition of 

MgO to provide a template for in-plane orientation of subsequently deposited PBT. 

 

V.1.6. Porosity of LaNiO3 
 

SEM studies should be completed to determine the effect of various process 

parameters on the porosity of LaNiO3
 thin films.   The effect of substrate, sol 

concentration, pyrolysis temperature and time, calcination temperature and time, layer 

thickness, etc. should be examined.   
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V.1.7. Solid solution range of Pb1-xBaxTiO3 

 
 

The entire solid solution range of PBT was investigated only in powder form.  Thin 

films should be prepared using varied Pb:Ba on LaNiO3-coated substrates.  These 

films should then be examined using XRD, SEM, and PFM to determine the phase 

purity, crystallinity, grain size, surface morphology, and ferroelectric properties as a 

function of Pb:Ba content.  Free standing membranes should also be prepared for 

each composition in order to determine the effect of Pb:Ba on mechanical properties 

of the thin films. 

 

V.1.8. Effect of calcination atmosphere 
 

 

The effect of calcination atmosphere should be investigated via measurement of 

ferroelectric properties of films prepared in atmospheres with varied oxygen content.  

13C-NMR studies might be used to further study the effect of calcination atmosphere 

on the decomposition pathway in powders, as barium carbonate and oxycarbonate 

have been reported to have noticeably different NMR spectra [Duran 2001].   
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V.2. Final Remarks & Outlook 
 
 

The ultimate goal of this thesis work, fabricating oriented PBT thin films, was 

successfully achieved.  Moreover, several device fabrication challenges were addressed, 

most notably the incorporation of conductive oxide electrodes and the preparation of 

released membrane structures.  Although electromechanical testing of the films was not 

directly a part of this thesis, preliminary experiments carried out by collaborator 

Rongjing Zhang indicate the films deposited on Si3N4 have a deflected rest-state (Figure 

80), and can withstand mechanical loading and unloading.  Calculations are forthcoming 

which will provide the Youngs modulus and ultimate strength for LaNiO3 and 

Pb0.5Ba0.5TiO3 films.  These moduli will aid in the design of future thin film ferroelectric 

mechanical actuators.  
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Figure 80. Picture at 10x magnification showing micro interferometry of a released membrane of 

PBT(180nm)/LaNiO3(96nm)/Si3N4(100nm) showing vertical deflection of the film. The substrate is tilted 

with respect to the camera. Fringe spacing is 0.273μm. [Image courtesy Rongjing Zhang] 

 
 

The outlook for the integration of ferroelectric films into semiconductor layer process is 

very promising.  The ability to produce oriented, electroded ferroelectric thin films on Si-

based substrates will greatly enhance the range of devices and structures achievable using 

MEMS processing techniques.  Fabrication of these films is an essential first  

step towards demonstration of the concept of microelectromechanical devices  

controlled via ferroelectric domain boundary reorientation. 
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A. Appendix 
 

A.1. TIpAc System: Standard Procedure 

 

1.  Barium acetate (8.23mmol, 3.12g, Aldrich, 99%,) was dissolved in 20mL of ethylene 

glycol, using a hotplate/stirrer at 50°C. 

 

2. Lead acetate trihydrate (8.23mmol, 2.10g, Alpha Aesar, 99%) was added to 10mL 

ethylene glycol and attached to a condenser/guard tube assembly, placed on a 

hotplate/stirrer at 260°C and 700rpm for 1 hour, and then allowed to cool to room 

temperature.   

 

3.  The two metal acetate solutions were then mixed together with 15mL ethylene glycol 

and stirred for 15 minutes (room temperature, 700rpm).   

 

4.  Titanium isopropoxide (16.46 mmol, 4.83mL, Alpha Aesar, 99%) and acetylacetone 

(in a prescribed ratio with titanium, Aldrich, 99%) was added to the mixed acetate 

solution, and the resulting solution was heated to 260°C while stirring for 1 hour attached 

to a condenser/guard tube.   

 

5.  Water (in a prescribed ratio with titanium) and equal amount of ethylene glycol were 

added to the solution, which was then heated at 260°C in a hotplate and stirred for 1 hour.   
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6.  This solution was alternately dried in an air oven to produce dried gels, or it was spin-

coated onto MgO single crystals to produce thin films.  

 

 

Figure 81. Schematic of TIpAc system procedure for producing PBT powders or thin films. 
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A.2. TBuAc System: Standard Procedure 

 

1. Lead nitrate (4.14g, 12.5mmol) and barium acetate (3.193g, 12.5mmol) were dissolved 

in 40mL ethylene glycol in an Erlenmeyer flask on a hotplate/stirrer (700rpm, 120°C, 

30min) and then cooled 30 minutes.  

 

2.  Titanium butoxide (8.53mL, 25mmol) was added to acetylacetone (15.40mL, 

150mmol) in a Erlenmeyer flask and stirred at 700rpm on a hotplate/stirrer at 180oC for 

30 minutes. 10mL ethylene glycol was added and the solution stirred at RT, 15 minutes. 

 

3.  The Ti/AcAc solution was then added to the Pb/Ba solution and stirred at 700rpm, 

120oC, 30min. The solution was allowed to cool for 30min.  

 

4.  De-ionized water (Rw = 4, 1.8mL, 100mmol) was added to the above system together 

with ethylene glycol in a 1:3 volume ratio (5.4mL).  The resulting sol was stirred at room 

temperature, 700rpm, 15min). The sol was divided into two parts, and one part was used 

for spin coating and the other part dried at 175°C in an oven to form a xerogel.  
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Figure 82. Schematic of TBuAc system procedure for producing PBT powders or thin films. 
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A.3. TBuDEA System: Standard Procedure 

 

1. Lead nitrate (4.14g, 12.5mmol) and barium acetate (3.193g, 12.5mmol) were dissolved 

in 40mL ethylene glycol in an Erlenmeyer flask on a hotplate/stirrer (700rpm, 120°C, 

30min) and then cooled 30 minutes.  

 

2.  Titanium butoxide (8.53mL, 25mmol) was added to diethanolamine (4.79mL, 

50mmol) in an Erlenmeyer flask and stirred at 700rpm on a hotplate/stirrer at 180oC for 

30 minutes. 10mL ethylene glycol was added and the solution stirred at RT, 15 minutes. 

 

3.  The Ti/DEA solution was then added to the Pb/Ba solution and stirred at 700rpm, 

120oC, 30min. The solution was allowed to cool for 30 min.  

 

4.  De-ionized water (Rw = 4, 1.8 mL, 100 mmol) is added to the above system together 

with ethylene glycol in a 1:3 volume ratio (5.4mL).  The resulting sol was stirred at room 

temperature, 700rpm, 15min). The sol was divided into two parts, and one part was used 

for spin coating and the other part dried at 175°C in an oven to form a xerogel.  
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Figure 83. Schematic of TBuAc system procedure for producing PBT powders or thin films. 
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A.4. TBuDEA System: Rotary Evaporator Procedure 

 

1. Lead nitrate (8.28g, 25mmol) and barium acetate (6.38g, 25mmol) were dissolved in 

112.3mL ethylene glycol in a round bottom flask attached to a rotary evaporating system 

(120rpm, 72mbar, 60°C, 30min) and then cooled 30 minutes.  

 

2.  Titanium butoxide (17.052mL, 50mmol) was added to diethanolamine (9.6mL, 

100mmol) in an Erlenmeyer flask and stirred at 600rpm on a hotplate/stirrer at room 

temperature for 30 minutes.  

 

3.  The Ti/DEA solution was then added to the Pb/Ba solution and attached to the rotary 

evaporating system (120rpm, 72 mbar, 60°C, 30min). The solution was allowed to cool 

for 30min.  

 

4.  De-ionized water (Rw = 4, 3.6mL, 200 mmol) was mixed with ethylene glycol (7.2mL) 

and then added to the above system.  The resulting sol was then attached to the rotary 

evaporating system (120 pm, 72mbar, 60°C, 30min). The sol was divided into two parts, 

and one part was used for spin coating and the other part dried at 175°C in an oven to 

form a xerogel.  

 

 

 



180 

A.5. TIpDEA System: Standard Procedure 

 

1. Lead nitrate (8.28g, 25mmol) and barium acetate (6.38g, 25mmol) were dissolved in 

112.3mL ethylene glycol in a round bottom flask attached to a rotary evaporating system 

(120rpm, 72mbar, 60°C, 30min) and then cooled 30 minutes.  

 

2.  Titanium isopropoxide (14.6mL, 50mmol) was added to diethanolamine (19.2mL, 

200mmol) in a Erlenmeyer flask and stirred at 600rpm on a hotplate/stirrer at room 

temperature for 30 minutes.  

 

3.  The Ti/DEA solution was then added to the Pb/Ba solution and attached to the rotary 

evaporating system (120rpm, 72 mbar, 60°C, 30min). The solution was allowed to cool 

for 30min.  

 

4.  De-ionized water (Rw = 4, 3.6mL, 200 mmol) was mixed with ethylene glycol (7.2mL) 

and then added to the above system.  The resulting sol was then attached to the rotary 

evaporating system (120 pm, 72mbar, 60°C, 30min). The sol was divided into two parts, 

and one part was used for spin coating and the other part dried at 175°C in an oven to 

form a xerogel.  
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Figure 84. Schematic of TIpDEA system procedure for producing PBT powders or thin films. 
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A.6. BPO System: Standard Procedure 

 

1. Barium acetate (2.55g, 10mmol) and lead acetate (3.79g, 10mmol) were dissolved in 

22.9mL acetic acid in an Erlenmeyer flask on a hotplate stirrer at (60oC, 600rpm, 30 

minutes) 

 

 

 

 

 

 

Figure 85. Schematic of BPO system procedure for producing BaPbO3 sol. 
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A.7. LNO System: Standard Procedure 

 

1. Lanthanum acetate (1.72g, 5mmol) and nickel nitrate (1.46g, 5mmol) were dissolved 

in 10.7mL 2-methoxyethanol in an Erlenmeyer flask on a hotplate stirrer at (60oC, 

700rpm, 5 minutes). 

 

2.  Ethanolamine (5mL) was added, and the solution was stirred for 2 hours (60oC, 

700rpm). 

 

 

 

 

 
 
 
 
 
Figure 86. Schematic of LNO system procedure for producing LaNiO3 sol. 
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A.8. Solubility Test Results 

 
 
Table A-1.  Solubility of Barium Precursors 

 Barium 
Acetate 

Barium 
Isopropoxide

12 

Barium 
Nitrate 

Barium 
Oxalate Barium 

Hydroxide 

Barium 
Chloride 

Acetic Acid Yes - No No No No 

Acetic Anhydride No - No No No No 

Acetone No No No No No No 

Acetylacetone 
(2,4-pentanedione) No No No No No No 

1-Butanol No No13 No No No No 

N,N-
Dimethylacetamide No Yes No No No No 

Ethanol No No No No No No 

Ethylenediamine No - Yes Some No Some 

Ethylene Glycol Yes No14 Some15 No16 No17 Yes 

Hexanes No Yes 
(Highly) 

No 
(crystallized!) No No No 

Isopropanol No Yes 
(Highly) No No No No 

Methanol No No18 No No No No19 

2-Methoxyethanol No Yes 
(Highly) No No Some20 No 

                                                 
12 Solution quality/concentration suspect–precipitates formed in bottle 
13 Soluble at first, turns cloudy after a few seconds 
14 Gelatinous precipitate, dissolves easily with stirring…maybe try again later? 
15 Some dissolved, try higher temperature and longer time 
16 Also tried refluxing for 1 hour (~5g in 40mL) 
17 Some impurity formed (cottonlike particles) on boiling; on reflux not soluble 
18 Precipitate forms but dissolves upon stirring 
19 Some appeared to dissolve in methanol, anhydrous barium chloride was clearly not soluble 
20 Slightly solube at 80oC.  Some impurity formed (cottonlike particles) on boiling 
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 Barium 

Acetate 
Barium 

Isopropoxide
12 

Barium 
Nitrate 

Barium 
Oxalate Barium 

Hydroxide 

Barium 
Chloride 

1,3-Propanediol No Yes21 Some22 No No No 

Propylene Glycol No - No Some23 No No 

Sec-Butanol No No24 No No No No 

Tetrahydrofuran No No No No No No 

Diethanolamine Yes - No No No  

 

                                                 
21 Soluble, highly viscous. Initially 2 layers and small cloudy precipitate–dissolved w/ stirring 
22 Quite a bit dissolved, not enough...higher temps did not help (100oC) 
23 Tried at 100oC also, some dissolved. On refluxing, dark brown solution resulted with some precipitate 
24 Soluble at first, turns cloudy after a few seconds 
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Table A-2. Solubility of Lead Precursors 

 Lead 
Citrate Lead Nitrate Lead Acetate Lead 

Acetylacetonate25

Acetic Acid No No Yes 
(highly)  

Acetic Anhydride No No No  

Acetone No No No  

Acetylacetone 
(2,4-pentanedione) No No Some26  

1-Butanol No No No  

N,N-
Dimethylacetamide No Yes 

(highly) 
Yes 

(highly)  

Ethanol No No No  

Ethylenediamine Some Yes 
(highly) Yes  

Ethylene Glycol No Yes 
(highly) Yes Yes 

Hexanes No No No  

Isopropanol No No No  

Methanol No No Yes 
(highly)  

2-Methoxyethanol No27 No No Yes 

1,3-Propanediol No No Yes 
(highly)  

Propylene Glycol No No No  

Sec-Butanol No No No  

Tetrahydrofuran No No No  

Diethanolamine  some Yes  

 

                                                 
25 Chemical is too expensive and comes in very small quantities–not suitable for study. 
26 Some dissolved at 1000C 
27 Also tried refluxing for 2 hours (~5g in 40mL) 
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Table A-3. Solubility of Lead and Barium Precursors Together 

 Solvent 
Barium 
Acetate 

in Acetic Acid 

Barium 
Acetate in 
Elthylene 

Glycol 

Barium 
Chloride in 

Ethylene 
Glycol 

N,N 
Dimethylacetamide No Not repeatable No 

Ethylene Glycol Yes 
(AAS System) 

Yes 
(TIpAc System) Precip with Ti 

1,3 propanediol 
 Yes Yes No 

Methanol 
 No Yes No 

Lead 
Acetate 

Acetic Acid 
 Yes Yes 

(AAS System) No 

Ethylene Glycol 
 

Yes 
(AAC System) Yes Yes Lead 

Nitrate N,N 
Dimethylacetamide Yes Yes No 
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A.9. Sol-gel Systems Investigated 

 
Table A-4.  PBT Sol-gel Systems Investigated 

 Barium 
Precursor 

Lead 
Precursor Solvent Chelating Agent 

TIpAc Barium 
Acetate Lead Acetate Ethylene Glycol Acetylacetone 

(2,4-Pentanedione)

AAS Barium 
Acetate Lead Acetate Ethylene Glycol 

& Acetic Acid - 

AAC Barium 
Acetate Lead Nitrate Ethylene Glycol Acetic Acid 

TIpDEA Barium 
Acetate Lead Nitrate Ethylene Glycol Diethanolamine 

(DEA) 

EG2NO3 Barium 
Acetate Lead Nitrate Ethylene Glycol - 

EG2NO3Ac Barium 
Acetate Lead Nitrate Ethylene Glycol Acetylacetone 

(2,4-Pentanedione)

F3AC Barium 
Acetate Lead Citrate Trifluoroacetic 

Acid - 

BEtF3AC Barium 
Ethylhexanoate Lead Acetate Trifluoroacetic 

Acid - 

PCBEt Barium 
Ethylhexanoate Lead Citrate Trifluoroacetic 

Acid - 

TBuAc Barium 
Acetate Lead Nitrate Ethylene Glycol Acetylacetone 

(2,4 Pentanedione)

TBuDEA Barium 
Acetate Lead Nitrate Ethylene Glycol Diethanolamine 

 
Systems investigated in greatest detail shown in red. 
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Table A-5. Pros and Cons of Various PBT Sol-gel Systems 

 Pro Con Comments 

TIpAc 
Stable for long 
periods after 
preparation 

Process 
difficult, 
sometimes 
doesn’t work 

Cannot be reproduced using 
rotary evaporator, metals only 
slightly soluble in ethylene glycol 
at reduced pressure 

AAS Simple, all acetate Impurities 

Large number of impurities, even 
at very high Tc.  Best observed 
for Rw = 6, Tc = 1000, still not 
pure. 

AAC Low crystallization 
temp Impurities Large number of impurities 

regardless of water content, Tc 

TIpDEA 

Stable for long 
periods, pure phase 
at 500oC, easily 
reproducible 

Xerogels are 
messy (DEA) 

Pure phase PBT for Rw = 4, Tc 
between 500-800oC 

EG2NO3 Low crystallization 
temp 

Rapid 
Hydrolysis 

Hydrolysis proceeds rapidly on 
exposure to air 

EG2NO3Ac 
Similar to EG, more 
stable than 
EG2NO3 

Impurities Stable with Rw = 4, though has 
many impurities 

F3AC Simple system, 
stable Impurities  

BEtF3AC Varies Barium 
Precursor Impurities  

TBuDEA 
Titanium butoxide 
more stable than 
isopropoxide 

Impurities 
difficult to 
control 

Reproducibility not as good as 
TIpDEA 
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Table A-6. Further Details of Selected PBT Sol-gel Systems 

 Optimum RA Optimum Rw Impurity Free 
(Tc) 

Surface Area 
(Powder) 

TIpAc 4 8 550oC 19.9833 m2/g 

AAS - 6 - 15.8631 m2/g 
Rw = 2 

TIpDEA 4 4 500oC 20.0294 m2/g 

EG2NO3 - 0 500oC 5.1155 m2/g 

TBuAc 6 4   

TBuDEA 2 4   
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A.10. AAC System: Additional Results 

 
A sol-gel system for the synthesis of solid solution lead barium titanate (PBT) was 

devised using lead nitrate, barium acetate, and titanium isopropoxide as metal precursors, 

ethylene glycol as a solvent, and acetic acid as a chelating agent.  This system differs 

from the TIpAc system in the lead precursor and chelating agent used. 

 

AAC System Procedure 

Lead nitrate (25mmol, 8.8g) and barium acetate (25mmol, 6.38g) were dissolved in 

112.3mL ethylene glycol using a rotory evaporator (120rpm, 80°C, 30 min). Separately, 

titanium isopropoxide (50mmol, 14.63mL) was added to acetic acid (100mmol, 

5.724mL) and stirred for 15 min. The titanium isopropoxide and acetic acid mixture was 

then added to the above lead/barium precursor solution and attached to a rotary 

evaporator (120rpm, 80°C, 30 min).  The solution was then cooled for 20 minutes.  De-

ionized water (100mmol, 1.8mL) and ethylene glycol (3.6mL) were then added, and the 

solution was again attached to a rotary evaporator (120rpm, 80°C, 30 min). The solution 

was dried at 150oC in an air oven. 

 

AAC System: Stability 

Samples were prepared with Rw = 2, 4, 6.  Immediate gellation occurred for Rw = 6.  For 

Rw = 4, gellation occurred within 3 hours of synthesis.  The solution with Rw = 2 was 

stable for 3 days. 
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AAC System: XRD Powder Analysis 

XRD patterns were obtained for all samples.  All samples showed crystallinity by Tc = 

400oC, though all had significant impurity phases present.  Peaks at 2θ ≈ 24o, 29o, 43o are 

identified as an undesired, non-ferroelectric pyrochlore phase.  Peaks at 2θ ≈ 30o
 and 34o 

are unidentified.  Interestingly the relative intensity of these impurity phases varies as 

temperature increases.  For all values of Rw, the intensity of peaks at 24o, 29o, and 34o
 

decreases as calcination temperature increases, while the intensity of the 30o peak 

increases.  Results for Rw = 4, 6 are analogous. 
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Figure 87. AAC System: Powder XRD, Rw = 4, varied Tc. 

 
 
AAC System: Summary 

The AAC System is well-crystallized by Tc = 400oC.  Though PBT is present, there are a 

large number of undesired phases present in samples with Rw = 2, 4, 6.  This system was 

not considered further. 
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A.11. EG2NO3 System: Additional Results 

 
 
A sol-gel system for the synthesis of solid solution lead barium titanate (PBT) was 

devised using lead nitrate, barium acetate, and titanium isopropoxide as metal precursors, 

and ethylene glycol as a solvent.  This system is principally different from previously 

reported methods in that is does not incorporate a chelating agent.   

 

EG2NO3 System Procedure 

Barium acetate (6.25mmol, 1.596g) and lead nitrate (6.25mmol, 2.07g) were dissolved in 

ethylene glycol (0.5mol, 28mL) in a round bottom flask attached to a rotary evaporating 

system (120rpm, 72mbar, 40oC, 15 minutes).  Titanium isopropoxide (12.5mmol, 

3.66mL) was added, and the solution was stirred in the rotary evaporator, as above, for 1 

hour.  De-ionized water (H2O:Ti = Rw) was then added, together with an equal part 

ethylene glycol, and the resulting solution was stirred for 1 hour.  The solution was then 

either stored, used to spin coat thin films, or dried at 150o C to form a powder. Powders 

were subsequently calcined by holding at furnace temperature (Tc) 400, 500, 600, 700, 

and 800oC for 2 hours. 

 

EG2NO3 System: Stability 

Samples were prepared with Rw = 0, 0.5, 1, 1.5, 2, 3.  Immediate gellation occurred for 

Rw = 3 and is thus not considered further.  Samples with Rw = 2 gelled within 24 hours, 

while all others were stable for several days when kept in a sealed vial.  This system is 

sensitive to atmospheric moisture, and prolonged exposure to air triggers rapid gellation. 
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EG2NO3 System: XRD Powder Analysis 

XRD patterns were obtained for all samples.  There is evidence of limited crystallinity at 

temperatures as low as 150oC, though it appears to be in the form of large crystalline 

particles rather than a uniformly crystalline powder.  
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Figure 88. EG2NO3 System: Powder XRD, Rw = 0, varied Tc. 

 
 
Peaks at 2θ ≈ 24o, 29o, 43o are identified as an undesired, non-ferroelctric pyrochlore 

phase.  As shown in Figure 88, the pyrochlore phase becomes prominent in samples with 
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Rw = 0 at temperatures of 700oC and higher.  Interestingly, for Rw = 0, the PBT phase is 

most prominent at low temperatures.   
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Figure 89. EG2NO3 System: Powder XRD, Tc = 400oC, varied Rw. 

 

In Figure 89, it can be seen that at 400oC, the relative amount of pyrochlore:PBT 

increases with increasing water content. This suggests that lower values of Rw tend to 

produce the most phase-pure PBT at low temperatures.  Samples with Rw > 1 have 

multiple undesired phases at all temperatures, and thus are not considered further. 

 

EG2NO3 System: TGA Analysis 

Thermogravimetric analysis was performed between 100-600oC on powder samples dried 

at 150oC using a Netzsch STA-449 TGA System.  The Rw = 0 sample shows 

considerable weight loss (~14%) between 250-400oC.  This corresponds well to the large 

difference observed between XRD patterns at 150oC and 400oC.  Samples were calcined 

,
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at 200, 300, and 350oC to further explore the observed change.  There is a large shift in 

XRD patterns between 300 and 350oC, where an unidentified phase with diffraction 

peaks at 2θ = 19o and 37o observed at the lower temperature disappears completely in 

favor of the desired PBT phase. 

100 200 300 400 500 600

80

85

90

95

100

W
t %

Temperature

 
 
Figure 90. EG2NO3 System: TGA, Rw = 0. 
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Figure 91. EG2NO3 System: Powder XRD, Rw = 0. 

 
EG2NO3 System: Thin Films 
 
A thin film was prepared with Rw = 0, Tp = 150, Tc = 600oC.  XRD shows the film is not 

highly oriented (Figure 92). Optical microscopy shows the film surface is heavily cracked 

(Figure 93). 
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Figure 92. XRD of EG2NO3 thin film (Rw = 0, Tp = 150oC, Tc = 600oC). 

 

 
Figure 93. Optical microscope image of EG2NO3 film surface. 
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EG2NO3 System: Summary 

Powders prepared using the EG2NO3 system begin crystallization at temperatures as low 

as 150oC, with PBT becoming the predominant phase at 350oC.  The perovskite is 

favored in samples with the lowest Rw and for moderate Tc.  The pyrochlore phase is 

favored for higher Rw and Tc. Thin films produced with EG2NO3 show large amounts of 

cracking.  This system was not investigated further. 
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A.12. F3AC System: Additional Results 

 
A novel sol-gel system for the synthesis of solid solution lead barium titanate (PBT) was 

devised using lead citrate trihydrate, barium acetate, and titanium isopropoxide as metal 

precursors and trifluoroacetic acid as a solvent.  This system differs from previous 

systems in the lead precursor and solvent used. 

 

F3AC System Procedure 

Lead citrate trihydrate (Pb3C12H16O17, 8.33mmol, 8.77g) and barium acetate (25mmol, 

6.38g) were dissolved in trifluoroacetic acid (1mol, 114mL) and refluxed for 30 minutes 

in a rotary evaporator (40oC, 90 mbar).  The solution was then cooled for 20 min. 

Titanium isopropoxide (50mmol, 14.6mL) was added to the above solution and then 

refluxed (as above) for 30 minutes and cooled for 20 minutes.  De-ionized water 

(200mmol, 3.6mL) was then added and the solution was further refluxed for 30 minutes. 

The sol was then dried at 150oC for 24 hours. 
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Figure 94. F3AC System procedure. 

 

F3AC System: Stability 

The F3AC system is stable for at least several weeks without any sign of gellation. 

 

F3AC System: XRD Powder Analysis 

Limited XRD analysis has been performed for this system. For Rw = 4, crystallization is 

evident in samples calcined at 500o and 600oC.  Though some PBT peaks are observed, 

many significant impurities are also found.  Diffraction peaks associated with lead 

pyrochlore are observed at 2θ = 29 and 43°C. Several additional unidentified (and 

undesired) phases are also present. 

All cations in solution 
Titanium 
isopropoxide 

      Sol 

 Water 

Polycrystalline product 

Dry at 150oC and Calcine at Tc  

Lead citrate trihydrate and barium 
acetate in trifluoroacetic acid. 
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Figure 95. F3AC System: Powder XRD, Rw = 4, varied Tc. 

 
 
F3AC System: Summary 

The F3AC System is well-crystallized by Tc = 500oC.  Though PBT is present, there are 

a large number of undesired phases present in all observed samples.  This system was not 

considered further. 

 

 

 

 

 

 



203 

A.13. TIpAc System: Additional Results 

 

A sol-gel process incorporating lead acetate trihydrate, barium acetate, and titanium 

isopropoxide as precursors, acetylacetone as a chelating agent, and ethylene glycol as a 

solvent was used to prepare solid solution (Pb0.5,Ba0.5)TiO3.  Water content, calcination 

temperature, and heating rate were varied, and the resulting effects on material properties 

were studied using TGA/DSC, FTIR, FESEM, and X-ray diffraction. 

 

TIpAc System Procedure 

To prepare (Pb0.5,Ba0.5)TiO3, barium acetate (8.23mmol, 3.12g, Aldrich, 99%) was 

dissolved in 20mL of ethylene glycol, using a hotplate/stirrer at 50°C.  Separately, lead 

acetate trihydrate (8.23mmol, 2.10g, Alpha Aesar, 99%) was added to 10mL ethylene 

glycol, attached to a condenser, and stirred at 260°C for 1 hour.  After cooling, the two 

metal acetate solutions were then mixed, 15mL ethylene glycol was added, and the 

solution is stirred for 15 minutes.  Titanium isopropoxide (16.46mmol, 4.83mL, Alpha 

Aesar, 99%) and acetylacetone (in a prescribed ratio with titanium, Aldrich, 99%) was 

added to the mixed acetate solution, and the resulting solution was heated to 260°C while 

stirring for 1 hour attached to a condenser.  Water (in a prescribed ratio with titanium) 

and an equal amount of ethylene glycol were added to the solution, which was then 

heated at 260°C on a hotplate and stirred for 1 hour.  This solution was alternately dried 

in an air oven to produce dried gels or it was spin-coated onto MgO single crystals to 

produce thin films. In the spin-coating process, the films were dried on a hotplate at 

specified temperature (Tp) between coats in what was considered a ‘pyrolysis step.’  
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Using the above procedure as a root, various parameters were modified  individually and 

the resulting effects on material properties observed.  For powders, the parameters under 

consideration were H2O:Ti ratio (Rw) and calcination temperature. For thin films, 

pyrolysis temperature (Tp) and calcination temperature were varied. Thermal 

decomposition characteristics of the oven dried samples were studied by DSC and TGA.  

The dried gels and thin films were then calcined in a tube furnace and examined by XRD 

and FESEM.  

 

 

TIpAc System: Stability 

Samples were prepared with Rw = 2, 4, 8, 16, 32. All samples were found to be stable for 

more than two months.  During an aging study, one sample (Rw = 4), held at 120°C for 5 

days, remained in liquid form.  

 

TIpAc System: XRD Powder Analysis 

Crystallization behavior as a function of calcination temperature is presented in Figure 96 

for (Pb0.5,Ba0.5)TiO3 powders processed using the optimized parameters RA = 4 and Rw = 

8. At 450°C crystallization of the perovskite phase occurred, along with a secondary 

phase that is likely pyrochlore. As would be expected, crystallinity increased with 

increasing temperature. By 500°C, the diffraction data are dominated by the perovskite 

phase, although peaks due to barium carbonate are evident. Complete crystallization of an 

impurity-free perovskite phase was obtained at 550°C. Pyrochlore was also evident at 

700 and 800°C.  
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Figure 96. TIpAc powder XRD, Rw = 8, RA = 4 calcined at the temperatures indicated. 

 
 
TIpAc System: Thin films 

To understand the effect of pyrolysis temperature (Tp) on the crystallinity and orientation 

of films, the temperature used to heat treat the films between coatings was varied. A 

series of films was prepared (Tp = 150, 300, 450, 500°C), and the films were calcined at 

500°C for 2 hours with a fixed heating rate of 5oC/min.  XRD studies showed strong 

crystallinity and orientation in all samples. FESEM studies showed that all films were 

crack free. Grain growth was observed in the film heat treated at a pyrolysis temperature 

300°C and 450°C.  The film at 500°C pyrolysis showed phase separation.  The optimal 

pyrolysis temperature was thus determined to be 450°C. The heating rate used during 

calcination (HR) was then varied. Samples were calcined at 600°C for 2 hours with HR= 

1, 2, 5, 10, 20°C/ min. Diffraction data (Figure 97) reveals that both very low (1°C/min) 

and very high heating rates (≥ 10°C/min) lead to undesirable orientations, whereas 

intermediate values of 2 and 5°C/min yield highly a/c-axis oriented films. 
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Figure 97. TIpAc system powder XRD, Tc = 600°C, Tp = 450°C, with heating rate indicated. 

 

TIpAc System: Summary 

Perovskite-phase crystallization occurred at a temperature as low as 450°C. Single-phase 

PBT was obtained at 600°C. Deposition of the optimized sol by spin coating on (100) 

MgO resulted in highly oriented PBT films, with mixed (001)/(100) orientation.   
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A.14. TIpDEA System: Additional Results 

 
A novel sol-gel synthesis procedure for producing PBT was developed using lead nitrate,  

barium acetate, and titanium isopropoxide as metal sources, ethylene glycol as a solvent, 

and diethanolamine as a chelating agent.  

 

TIpDEA System Procedure 

Lead nitrate (25mmol, 8.25g) and barium acetate (25mmol, 6.38g) were dissolved in 

112.3mL ethylene glycol in a round bottom flask attached to a rotary evaporating system 

(120 rpm, 72 mbar, 60°C, 30 min). Separately, titanium isopropoxide (50mmol, 14.6mL) 

was added to diethanolamine (200mmol, 19.2mL) and stirred for 15 minutes. This 

solution was then added to the lead/barium system and again attached to a rotary 

evaporating system (120 rpm, 72 mbar, 60°C, 30 min). The solution was then cooled for 

20 min. De-ionized water (in a prescribed molar ratio with titanium) and ethylene glycol 

(7.2 mL) were added to the above system, which was then attached to the rotary 

evaporating system (120 rpm, 72 mbar, 60°C, 30 min). The solution was divided into two 

parts and one part was used for spin coating and the other dried at 150°C to form a 

xerogel. The xerogels were calcined at Tc = 400, 500, 600, 700, 800°C for 2 hours.  

 

TIpDEA System: Stability 

Immediate gelation occurred for Rw = 32. All other samples were stable for at least 3 

weeks.  Sols with Rw = 4 were stored and used for more than 2 years without noticeable 

degradation. 
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TIpDEA System: XRD Powder Analysis 

Diethanolamine:titanium was taken as 4:1 in order to ensure complete chelation. Water 

for hydrolysis was varied (Rw = 2, 4, 6, 8, 16, and 32). Powder X-ray diffraction patterns 

show the presence of impurity phases in all samples except Rw = 4. Thus, Rw = 4 was 

chosen as ideal and is fixed in further studies. 
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Figure 98. TIpDEA System: Powder XRD, Tc = 500oC, varied Rw. 

 
Calcination temperature was varied (400 to 800°C). PBT phases are observed at a 

temperature as low as 400°C, with phase-pure PBT obtained at 500°C. This method 

offers a wide range of temperatures with phase-pure PBT. 
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Figure 99. TIpDEA system: Powder XRD, Rw = 4, varied Tc. 

 

 

TIpDEA System: Summary 

Crystallization of the PBT perovskite phase occurred at a temperature as low as 400°C. 

Single-phase PBT was obtained at 500°C.  
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TIpDEA System: STA Results for Various Atmospheres 
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Figure 100. STA with mass spectrometry data for TIpDEA (pure Ar atmosphere). 
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Figure 101. DTG of TIpDEA in pure Ar has peaks at 264oC (-2.427 J/g), 359oC, and 576oC (-0.3482 J/g).  

The peak at 359oC is not accompanied by a discernible DSC peak.  
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Figure 102. STA of TIpDEA in 5%O2 atmosphere. 
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Figure 103. DTGA of TIpDEA (5%O2) showing peaks at 258oC (-4.174J/g), 358oC (-0.1601J/g), and 

576oC (-1.057 J/g). 
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Figure 104. STA with mass spectrometry data for TIpDEA in 10%O2 atmosphere. 
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Figure 105. DTGA of TIpDEA in 10%O2 showing peaks at 260, 474 (-93.14 J/g), and 579oC (+0.2053 

J/g). There is also a slight shoulder at 435o and a broader peak at 346o that do not correspond to DSC 

events. 
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Figure 106. STA with mass spectrometry data for TIpDEA in 20%O2 atmosphere. 
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Figure 107. DTG of TIpDEA in 20%O2 shows clear peaks at 261oC (-17.59J/g), 423oC, 458oC (-98.68J/g), 

and 579oC (0.1431 J/g), which agrees well with DSC.  The spike at 501oC is not accounted for. 
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Figure 108. STA with mass spectrometry data for TIpDEA in 50%O2 atmosphere showing masses 2-42. 
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Figure 109. STA with mass spectrometry data for TIpDEA in 20%O2 atmosphere showing masses 44-59. 
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Figure 110. DTG of TIpDEA in 50%O2 atmosphere showing clear peaks at 251 (-9.489 J/g), 352, 434 (-

99.07 J/g), and 581oC, as well as a spike at 228. The peaks 251 and 434 correspond well with DSC.  The 

peak at 352 is unaccounted for, as is the small peak at 581oC. 
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Figure 111. STA of TIpDEA with 50%O2 atmosphere using high flow rate of 120mL/min. 
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Figure 112. DTG shows clear peaks at 258 (-12.57 J/g), 351, 433 (-130.5 J/g), and 582oC.  This 

corresponds well with DSC. 
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A.15. LaNiO3: Effect of Pyrolysis Temperature on Surface Morphology 

 

All films were deposited on fused silica substrates. Sol concentration was 0.32M, spin 

speed was 3krpm, 40 seconds. Pyrolysis was at Tp indicated for 5 minutes, followed by 

direct insertion into a preheated furnace at 700oC for 10 minutes. After deposition of the 

final (6th) layer, the films were calcined at 700oC for 2 hours. 

 

 

Figure 113. SEM image of 6 layer LaNiO3 film deposited on fused silica with Tp = 200oC. 
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Figure 114. SEM image of 6 layer LaNiO3 film deposited on fused silica with Tp = 300oC. 

 

Figure 115. SEM image at lower magnification, showing extensive cracking on surface of 6 layer LaNiO3 

film deposited on fused silica with Tp = 300oC. 
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Figure 116. SEM image of 6 layer LaNiO3 film deposited on fused silica with Tp = 400oC. 

 

Figure 117. SEM image of 6 layer LaNiO3 film deposited on fused silica with Tp = 500oC. 
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A.16. LaNiO3: Effect of Number of Layers on Surface Morphology 

 

All films were deposited on Si substrates. Sol concentration was 0.32M, spin speed was 

3krpm, 40 seconds. Pyrolysis was at 400oC for 5 minutes, followed by direct insertion 

into a preheated furnace at 700oC for 10 minutes. After deposition of the final layer, the 

films were calcined at 700oC for 2 hours. 

 

 

Figure 118. SEM image of 1 layer LaNiO3 film deposited on Si (Tp = 400oC). 
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Figure 119. SEM image of 2 layer LaNiO3 film deposited on Si (Tp = 400oC). 

 

 

Figure 120.  SEM image of 3 layer LaNiO3 film deposited on Si (Tp = 400oC). 
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Figure 121.  SEM image of 4 layer LaNiO3 film deposited on Si (Tp = 400oC). 
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A.17. LaNiO3: Effect of Calcination Temperature and Heating Rate on 

Surface Morphology 

 

All films were deposited on Si substrates. Sol concentration was 0.32M, spin speed was 

3krpm, 40 seconds. Unless otherwise noted, pyrolysis was at 400oC for 5 minutes, 

followed by direct insertion into a preheated furnace at Tc for 10 minutes. After 

deposition of the final layer, the films were calcined at Tc for 2 hours. 

 

 

Figure 122. SEM image of 4 layer LaNiO3 film deposited on Si without pyrolysis step (Tc = 700). 
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Figure 123. SEM image of 4 layer LaNiO3 film deposited on Si with Tp = 400, Tc = 800. 
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Figure 124. SEM image of 4 layer LaNiO3 film deposited on Si3N4/Si with only Tp = 400 between layers, 

and final calcination at Tc = 700 with HR = 5oC/min. 

 
 
 
 
 
 
 
 
 
 
 
 
 


