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ABSTRACT

The leading log approximation to Quantum Chromodynamics is
derived, including the effects of gluon spin. The use of the leading
log approximation in simulating Quantum Chromodynamic events
is described. Models for the formation of hadrons from quarks and
gluons are reviewed. A model for hadron hadron scattering, using
the leading log approximation and a particular model for hadron
formation is described. This model is used to study the results of

calorimetric experiments.
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1. Introduction

It is now widely believed that Quantum Chromodynamics (QCD) is the
correct theory of the strong interactions!. This theory describes the dynamics
of quarks and gluons, collectively called partons, which are pointlike consti-
tuents of hadrons. The quarks are spin 1/2 particles that undergo an interac-
tion mediated by the gluons, which have spin 1. QCD is asymptotically free®
that is the interaction is strong at large distances; i. e., small momentum
transfers, and becomes weak at short distances, i e., large momentum
transfers. This means that the short distance behavior of the theory can be cal-
culated perturbatively, while the large distance behavior, which includes the
binding of partons into hadrons, cannot. It is believed that one consequence of

3 (compared

QCD is that colored objects cannot be separated by large distance
to hadron radii). Thus, quarks and gluons are permanently confined to the inte-
rior of hadrons. This property is called confinement. Because QCD confines its
basic quanta, the quarks and gluons, they are never seen in particle detectors,
which detect the hadrons made up of partons. Although some progress is being
made in the calculation of hadronic properties using the techniques of lattice
gauge theory* , there are, as yet, no reliable calculations of the predictions of
QCD for the properties of hadrons. However, because of the asymptotic freedom

of QCD we can hope to use high energy experiments as probes of the dynamics of

partons and as tests of QCD.

It is, however, not so easy to compute the predictions of the theory. Any
experimental process involving hadrons always has sorne'soft, i. e., long dis-
tance, physics; at the very least, it will depend on the properties of the hadrons
involved. While there are some 6bservables for which this dependence is not

very important, there are many observables of interest for which this is not the

case. To calculate QCD predictions for these processes one must include some
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phenomenological model describing the binding of partons into hadrons in addi-
tion to perturbative calculations of the hard, that is, short distance, processes

which may be involved.

QCD predictions that are not sensitive to the soft physics are in rough
agreement with the data. These include the ratio of the cross sections for e*e”

2 , ratios of total inclusive cross sections

annihilation to muon pairs and hadrons
in neutrino-nucleon and muon-nucleon scattering, the approximate scaling of
deep inelastic structure functions at high momentum transfer, and its viola-
tion®. Most of these tests require data that are very difficult to measure accu-
rately. At the level of accuracy currently achieved these experiments tend to
test the existence of quarks that have the quantum numbers expected from QCD
and that interact weakly at the high energy scales probed. Accurate tests of the
dynamics of the partons are not at present available. QCD based models, typi-
cally involving ad hoc assumptions about the long distance behavior of quarks
and QCD predictions for their short distance behavior, have been successful in
explaining the spectrum of hadrons’. Preliminary calculations using lattice
QCD indicate that the bound states of QCD are the hadrons observed experimen-

tally4, but these are not yet accurate enough to provide a quantitative test of

the theory.

It has recently been claimed that that jet cross sections at collider ener-

8 and an asymmetry in an energy energy correlation? are tests of QCD that

gies
are insensitive to the soft physics. It remains to be seen whether or no these

claims become generally accepted.

In this thesis we shall consider observables that are sensitive to the soft
physics. Most experimental observables fall into this class. While we shall not be

able to test QCD using these meodels, without having to deal with model
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dependent effects, we will be able to consider a wider variety of experiments,
most of which are more accurate than those for which clean calculations are
possible. We shall also be able to probe aspects of QCD that are not tested by
the cleanly calculable observables, like the behavior of gluons. We can also try
to learn about the behavior of QCD at larger distances by analyzing the com-

parison of experiment to the models.

We should keep in mind two closely related, long term goals of the investiga-
tion of hadronization models. One is to develop an understanding of the hadroni-
zation process; the other is to develop a model sufficiently reliable that one

believes its predictions for some of the observables sensitive to the soft physics.

Two experimental processes that we shall consider in detail are high energy
e*e” annihilation to hadrons, and high £ hadron hadron scattering. The QCD
description of the former is that the electrons annihilate to a virtual photon
which decays into a quark antiquark pair, which may, in turn, radiate gluons and
quark antiquark pairs. These partons eventually form hadrons. The formation
of the initial quarks and the radiation of hard partons from them can be calcu-
lated from QCD by perturbative methods. The formation of the hadrons from

the partons must be described by some phenomenological model.

In high Er hadron hadron scattering, two hadrons scatter, forming a system
of hadrons with a high value of transverse energy, Er, i. e., ZE‘isimﬁi. where E; is
the energy of the i** particle and 3; is the angle between the momentum of the
i** particle and the beam axis, all measured in the center of mass frame. The
sum is over all particles in the final state. The QCD description of this process is
that two partons, one from each of the incoming hadrons, undergo a hard colli-
sion, each having, possibly, radiated some partons before the hard collision. The

resulting partons then form hadrons. Here, the hard collision and radiation can
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be calculated perturbatively; the formation of hadrons from the partons and the
momentum distribution of the partons in the original hadrons must be modeled

phenomenologically.

A useful and common method for calculating QCD predictions for experi-
mental observables is to generate simulated events according to the predictions
of QCD and the phenomenological model for the soft physics. This approach is
needed because the phenomenological model for the formation of hadrons typi-
cally gives statistical distributions for the number, types, and momenta of the
hadrons generated from some partons that are sufficiently complicated that
analytic calculations are not possible. These event generation programs are

also useful for the analysis of experimental apparatus.

This thesis discusses an event generator that uses the QCD cluster model to
describe the formation of the hadrons. We believe that this is the most theoreti-
cally sound model yet proposed. The perturbative calculations on which the
event generator relies are developed and discussed, and the QCD cluster model
is described in detail and compared with other models. The algorithm of the
event generator is discussed in detail. The event generator is used to study
hadron hadron scattering, and its predictions are compared with experiment.
The agreement is generally good, but there are some discrepancies. These point
out a weakness of the version of the QCD cluster model; there is discussion of
improvements to the model that will correct this. Work toward implementing

these improvements is in progress.

In chapter 2 of this thesis we shall develop an approximation to the QCD
predictions for hard radiation that is particularly well suited for statistical event
generation. Chapter 3 contains a discussion of models for the formation of

hadrons from collections of partons. Chapter 4 is a detailed discussion of an



-5-

event generator for high &7 hadron hadron scattering. Chapter 5 is a discussion
of the predictions of the model of chapter 4, including comparisons with experi-
.mental data. Chapter 6 discusses the results of the studies, presents some con-
clusions and suggest some possible improvements to the model, some of which
are currently under investigation. A detailed description of the use of the pro-

gram described and used in this thesis is presented as an appendix.
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2. The Leading Log Approximation to QCD

2.1. Introduction

As we have mentioned, a useful method for computing the predictions of
QCD for some observables is to simulate events using perturbative QCD to
describe the hard scattering of partons, and using some QCD based model to
describe the combination of partons into hédrons. In this chapter we shall dis-

cuss the perturbative part of the calculation.

It can be advantageous not to use the full perturbative cross sections to
some order in the coupling constant to describe the probability for a particular
parton final state; it is often preferable to use an approximation to the probabil-
ity at each order in the coupling. This is for two reasons: at high energy parton
final states with many partons are important — it would be too difficult to com-
pute the perturbation series to a high enough order —and the complexity of the
hadronization calculations and the structure of the perturbative probabilities
make it desirable to produce parton final states distributed according to the
probabilities rather than to generate the parton final states uniformly, and then
weigh them by the perturbative probability. Because the probability for the par-
ton final state is singular as the partons become on shell and collinear, most of
the uniformly generated events would have low weight; much time would be
spent computing the hadron final states coming from unimportant parton final

states.

In this chapter we shall discuss a particularly useful approximation for this
purpose, and its application in the parton shower calculations used in event gen-
erators. The approximation we shall use is to consider only the part of the per-

turbative probability that is most singular in the collinear limit, to the lowest
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order in oy possible for the particular parton state, the so-called leading log
approximation. This approximation is very easy to calculate for any parton final
state. Because, in an axial gauge, there is no interference between diagrams, in
the leading log approximation, it is easy to generate parton final state with the
leading log approximation distribution by a shower Monte Carlo. One begins with
some collection of partons; any one of them has a certain probability of radiat-
ing, leaving a new system with one more parton. One can continue in a recursive
fashion until there are no more partons that will decay. Because the leading log
approximation can be described without interference effects, we can say that a
parton resulted from the decay of a particular other parton, so we can construct
a decay tree as described above. A shower Monte Carlo’™ uses the lack of
interference to generate the parton final state recursively. The initial partons
are generated from the decay of the virtual photon (in e*e’); they each have a
definite probability to be in the parton final state and probabilities for various
decays. The partons produced in these decays, in turn, may be in the parton
final state or may decay again, and so on. One can then weigh the events gen-
erated according to the leading log approximation by the ratio of the most accu-
rately known value for the parton level cross section to the leading log approxi-
mation. The weights would be much more uniform for the events distributed
according to the leading log approximation than they would be for uniformly dis-

tributed events.

The Monte Carlo programs now in use! do not use the correct leading log
approximation probabilities. In these calculations the vertices are treated as
though the amplitude for a decay were independent of the partons' polariza-
tions. Even in the leading log approximation this is not true. The difference

between the amplitudes for different polarizations introduces a correlation
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between the plane in which a gluon is produced and that in which it decays. For
observables that depend on the spins of the particles in the final state, it is, of

course, necessary to treat the polarizations correctly.

We shall derive the leading collinear singularity (leading log approximation),
discuss a simplified version for the common case where the observables do not
depend on the spins of the particles. We shall then discuss the use of the leading
log approximation in parton shower event generators. Throughout this chapter
we shall consider processes for which there are no partons in the initial state,
canonically e*e” annihilation to hadrons; the extension to processes with initial

state partons will be discussed in chapter 4.

2.2. Derivation and simplification of the spin sum

In an axial gauge (defined by n*A=0 for some fixed vector 7) the leading log
approximation to an exclusive amplitude is, as is shown below, the sum of
squares of tree graphsT. We can compute such a graph by a simple procedure

that we describe below.

An arbitrary tree graph can be written as the product of vertices, propaga-
tors, and external wave functions. For instance, the graph of Fig. 1 is usually
written as (We neglect color factors here and in most of the chapter; they are

included in the final formulae for the density matrices.):

' There are some ( infrared singular ) loop diagrams that contribute to the leading log ap-
proximation. Some give the running of the coupling constant; others cancel soft divergences
in the tree graphs. This is, for the moment, an inessential complication; we shall return to
this question at the end of the chapter when we discuss leading log approximation showers.
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(Of course not all the momenta above are independent.) G,/ ts5 is the axial

gauge propagator for the gluon, and %/t is the propagator for the quark.

(t; = pf). The spin sum G, is given by:

nuk otk nkk,
nk (mk)

Gu=—9wt (2.2)

Throughout this chapter the current masses of the quarks are neglected; when
the mass of a parton is mentioned, the square root of the square of the four
momentum is meant. At the end of the chapter we shall discuss the question of
massive quarks. The (explicitly written) ¥ matrices and the portion in bold face
are the three vertices. The spinors v and vectors e are the external wave func-

tions.

The propagator for any line can be written as:
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Pu= 35 Pule)pe)

' (2.8)
where ¢ is a wave function (either a spinor or vector) of the momentum of the
line, a and B are indices of the appropriate type, and ¢ is the square of the
momentum four vector. This spin sum is not only over the physical spins of the
on shell particles, but over the possible spins for the off shell particles. For the
gluons this means there are spin 0 and spin 1, helicity 0 components. For the
fermions the spin sum must include spinors of both parities, that is, the positive
zrerov spinors of the (three) momentum of the line, and the negative energy
spinors of the negative of this moimentum. f(s) is a weight. It is £1/2 for the
fermions, 1 for the helicity +1 gluons, and something that goes to zero with the
mass for the other gluon spin states. The vertices are functions of the momenta
coming into the vertex, and have indices on which to contract the wave functions
for the particles coming into the vertex. We can define a ""capped vertex" to be a
vertex with wave functions contracted in; it is a function of the momenta and

spins of the incoming particles.

For a three-gluon vertex the capped vertex is;
v(P'PLe-el,ez) =e (p—(p—p1))erezte; ((p—pi)tp)e-e; (R.4)
tez(—p-pi)e-ey,

where p is the momentum of the incoming gluon, and e is its polarization; p; is
the momentum of an outgoing gluon with polarization e;, and e is the polariza-
tion of the other outgoing gluon. If the polarizations are orthogonal to the
corresponding momenta, as the ones for physical helicity states are, this

simplifies to:

V(p P1e.e1,ez) =2e-pye;ex+le; pe-ey—Regpe-e;. (R.5)
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The capped vertex for a g »gG vertex is:

a(p—k,.spléu(p.s;), (.6)

where the s's are spins, e is the gluon polarization, p is the momentum of the
incoming quark, k is the (outgoing) gluon momentum, and u is a spinor. A gen-
eral tree graph can be written as the sum over all internal spins of a product of
capped vertices and a factor of 1/¢; for each internal line. Of course, the spin of
a particular internal line is the same for the vertices at the two ends of the line.

Using the capped vertices we can write the graph of Fig. 1 as:

f(s2)f (ss) ~ ~
o ﬁV(Phpz.s1,52-55)1’(}72.}’3.82-53.54)V(Ps.Pe.Ss'Se.Sﬂ. (2.7)
82385

where the spin sum is as in Eq. (2.1), and the V are the capped vertices. The
capped vertices have dimensions of mass. We shall show below that, if one res-
tricts the gluon polarizations to those that propagate in an axial gauge, the lead-
ing behavior of the capped vertices as all the partons go on shell is proportional
to the masses of the partons. If we did not restrict the polarization of the
gluons, we would have terms in the capped vertices that were proportional to
the energy of the decaying parton in the lab frame; they would cancel among
different graphs. This is why the leading log approximation includes interfer-
ence among graphs in a covariant gauge. In an axial gauge any interference
term would go like, at most, 1/+/f,f;. If one were interested in an observable
that does not depend on the momentum of the partons in question, say a single
particle inclusive cross section, the leading log approximation has a nonintegra-
ble singularity, where the interference term has two integrable singularities.
The kinematics constrains the mass of a child parton to be less than that of its
parentl. Since we are interested in the leading behavior as the masses of the

internal lines becomes small we shall neglect the terms in any capped vertex
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that are proportional to M;pyq4, the mass of an outgoing parton.

The sum over spins for the internal lines can be greatly simplified. It is
shown below that leading parts of the capped vertices are indeed proportional to
the parton masses, and that the unphysical helicities of the gluon decouple in
the leading log approximation. We shall also show that we can replace the sum
over 4 spinors for each fermion propagator with a single spinor times its Dirac
conjugate. This means that the sum over 4 spins for cach internal line can be
reduced to a sum over 2 spins for each gluon line; no spin sum is needed for the

internal quark lines.

We shall use an axial gauge whose gauge vector 7 is time-like and future
directed (so that it is not orthogonal to the four momentum of any gluon) and
not equal to the four momentum of any gluon.T In such a gauge the polarization
of the spin zero gluon is proportional to k#, and that of the helicity 0, spin 1
gluon, to (n-k)k#—(k -k )n* where n is the gauge vector. Polarizations along 7 do
not propagate, since G,,nY=0 so if the spin 0 gluons do not contribute to the
leading log approximation, the spin 1, helicity 0 ones don't do so either. Since
the spin 0 gluons are polarized along their four momentum, we shall call them

longitudinal.

We begin with the qqG vertices. These capped vertices are functions of two
independent momenta, the spin of the gluon, whether the spinors are positive or
negative energy solutions, and the helicities of the two quarks. Because of the
vector nature of the vertex, the capped g -+gG vertex is zero if the helicities of

the quarks are not the same. The G-gg capped vertex is zero if the helicities

Mhe gauge whose gauge vector is along the direction of the virtual photon is an example of
such a gauge. The lightlike gauge chosen by Odorico (Ref. 2) is, in the collinear limit, along
the four momenta of all the partons in one jet so it does not fit into this class.
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are not opposite. Since the propagator for massless fermions also conserves
helicity, from a knowledge of the helicities of the external quarks the helicity of
each internal quark line can be determined. The vertex conserves total helicity
in the collinear limit, so the capped vertex for helicity +1 gluons is of order of
the largest mass, that is, Mpsrent. Because of current conservation, the longitu-
dinal gluons do not couple to on shell quarks; the capped vertex is of order of

the mass of the more off shell quark.

We can,2

in the leading log approximation, replace the factor @ in the
numerator of a quark propagator with g, where p, = p—(p-p)v/ (Ru-p), where v
is any fixed vector whose dot product with p does not vanish as p-p goes to zero.
This changes the spin sum by a term of order p'p, but we are neglecting any-

thing smaller than Vp'p anyway. The vector p, is, to order (p-p)? light-like.

Therefore we can write g as », w(p,,s)Z(p;.s); the sum is now only over the

spins
positive energy spinors. The spinor that has a definite helicity with the momen-

tum p, is, up to corrections of order (p-'p), a linear combination of the positive
and negative energy spinors of momentum p and the same helicity, so the dis-
cussion about helicity conservation above is still valid. The difference between
these spinors is of order V(p p), so when the spinor represents a child quark
this difference can be ignored. When we give explicit forms for the capped ver-
tices we shall use the spinors with the choice v =7, the gauge vector. This is a
matter of convenience; other choices differ by subleading terms. We have
replaced a sum over 4 spinors for each fermion propagator with a single spinor
times its Dirac conjugate. If we have an observable that is insensitive to the
helicity of the final state fermion, we must sum over the helicities of each fer-
mion line, rather then those of each fermion propagator. In fact, we can do this

sum easily for any graph; as is discussed in section 4, the quark-gluon density
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matrices are replaced by their helicity averages.

The three-gluon vertex also conserves helicity in the collinear limit, even
though it is momentum dependent. Because of current conservation, the longi-
tudinal gluons do not couple to on shell gluons of physical helicity (£1). The
capped vertex coupling three longitudinal gluons also vanishes in the collinear
limit because the coupling is (k,A,—k,A,)[A44.4,]. Since both factors in the cou-
pling vanish for three collinear longitudinal gluons, this capped vertex is of
order of the square of the largest mass. These facts imply that all three-gluon
capped vertices vanish in the collinear limit; the capped three-gluon vertices
are, at most, of order Mpgren: Whether the gluons be longitudinal or of physical
spin. Since the propagation of longitudinal gluons is suppressed by the factor f
of Eq. (2.3), which vanishes with the mass of the line, they do not contribute to

leading log approximation.

Each capped vertex is of order Mp;en;. We can write the square of a tree
graph as the sum over the spins of the internal gluons of the product of a factor
1/ t? for each internal line, and for each vertex, a capped vertex times the com-
plex conjugate of a capped vertex (in general with different spins for the gluons).
The product of the two capped vertices is fpagns times a function of the spins of
the (two or six) gluons; we shall call this function a density matrix, since its

properties and significance are very much like those of a density matrix.

There are two independent possibilities for each gluon spin. We can write
the quark-gluon density matrices as 2x2 matrices and the three-gluon density
matrix as a 2x2x2x2x2x2 matrix, the indices running over the values of the
gluon spins. The sum over gluon spins becomes a trace of the products of den-
sity matrices over the relevant indices. Thus, (square of) the graph of Fig. 1

represents a probability of
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Pg’:aq (2 s)P:'f.Q (24)/)5";;‘(’;*"""(26)

ot (2.8)

The p's are the density matrices, the f; are the mass-squareds of the decaying
particles, and repeated indices are summed over. The density matrices depend
only on the variable 2z, which is something that approaches the momentum frac-
tion of the child particle in the collinear limit. This criterion does not specify z
uniquely; different choices for 2z differ by subleading terms. Converting the
basis at the production of a gluon to the basis at its do~ay introduces a depend-

ence on the angle between the production planes.

2.3. Explicit formulae for the density matrices

The basis in which the density matrices are most simple is related to the
so-called "transversity" basis, that is, the basis whose states are the eigenstates
of the component of gluon spin perpendicular to the production plane. The
antisymmetric combination of the "transversity” +1 and "transversity” -1 states
is the helicity O state, and is not present in leading log approximation. Our two
basis states will be the "transversity' O state, which we call state 1, and the sym-
metric combination of "transversity” +1 and -1, which we call state 2. In this

basis the density matrices are:

) [ —2ih(2—2)
' — 4 ]
Pargel?) = ggzl - 4(1—2 (R.9a)

z+
z
where z is the momentum fraction of the gluon and h is the helicity of the quark

(ﬂ:%).

1/2 ih(1-22)

Poeqa(®) =9 Lin(1-22) 1/2-22 (1-2) (2.9b)

where 2 is the momentum fraction of the quark and 4 its helicity (+}%), and
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ptcl*ojé+kk =6g2[61261k,/_m T—z) — &tk 572 _Z_Z__dkzdu \/T-Z_ ] (2.9¢)

4
[di'zdj""\/z_(szj—di""éj'z\ /=2 —6"'26"""\/?7:

where 2z is the momentum fraction of the gluon whose spin is represented by the

indices j and j'. These density matrices can be understood by considering the
operation of a spatial inversion, followed by a rotation of m about the normal to
the plane of the vertex. This is a symmetry of the density matrix. Those ele-
ments that would change sign under this operation (which leaves '"transversity"
unchanged and reverses helicity) are precisely those that are zero. This sym-
metry is also why the off-diagonal elements of the quark density matrices are
the ones proportional to the helicity. A vertex, for a particular quark helicity,
can be viewed as a vector in the two-dimensional space of gluon spins. The den-
sity matrix for a particular helicity of quark is thus of the form vv!, where v is
the vector representing the vertex; this is why the density matrices of Egs.

(R.9a) and (2.9b) have zero eigenvalues.

We can use these results to write the probability for the graph of Fig. 1. It

is:

(297)(69%)(39%)

(1—zg+28)? 1+(1—24)? 1-2z5
{ 20 +22zg(1—-2g) = cos¢},

(2.10)

1+(1—z4)2]x
24

where g is the angle between the plane defined by g, and Pz and that defined by
Pe and B, The term in curly braces is the contraction of the two density
matrices involving the virtual gluon. The ¢ dependence occurs because the
gluon is more likely to be emitted polarized in the production plane, that is in

state 2; and it is more likely to decay into the plane defined by its polarization
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and momentum.

The formula for the leading log approximation to the square of a graph can

*m¥m is the leading log approximation

be expressed recursively. Suppose A};}i"'
to the density matrix for a graph with m gluons and N—m quarks in the final
state. The indices correspond to the spins of the m gluons in the final state.

The probability corresponding to this graph, if the observable does not depend

on the gluon spins, is:
AFY mEmgtty L g (2.11)

If we were interested in an observable that depended on the gluon spins, we
would replace the Kronecker § 's of Eq. (2.10) with a matrices corresponding to
a suitably weighted spin sum. Now we consider a graph generated when one of
the final state partons of this graph radiates. There are three possibilities; a
quark can radiate a gluon, a gluon can decay into two gluons, and a gluon can

decay into a 9@ pair. If a quark radiates, the new density matrix is:

im+1i'm+1
i e e pImER()
A;Vl:-ll ‘mittmer — 4;}"1 ntm_979 7 .

(2.12)
where ¢ is the off shell mass of the decaying quark and 2 is the momentum frac-
tion of the decay. Since we neglect the dependence of the density matrices on

the child masses, we use the Ay with the decaying parton on shell; this is also

true for the other cases below. If a gluon, say the m*, decays to a g7 pair, we

would have:
tni'm
Ap:‘_ll m-1* m-1 = A;;}"l ‘m"m,_6+_ (213)

The repeated indices are summed over. Finally if a gluon, say gluon 1, decays

into two gluons, we would have:



-19 -
i‘li 'l*gn+1i'm+1im+2'."m+2

A]tf:-’la © o bmaetmae = Apill Tty pG-’GG - (Z) ) (2 14_)

For all three cases one computes the probability by tracing over the spin of
each gluon in the final state. The density matrices are given above in Eq. 2.9; if
we are considering an observable independent of the quark helicities we can
replace p;“;qc and pg;qq with their helicity averages, as is shown below. Finally,
if one is to generate properly distributed events, he needs to know the phase

space for each vertex, which is:

- de
- zdt dz 32, (2.15)

where £ is the mass squared of the decaying parton, 2z the momentum fraction

carried by one of the children, and ¢ is an azimuthal angle.

2.4. Quark helicities

If one were to consider a single particle inclusive observable that does not
depend on parton spins, like the §* dependence of a fragmentation function, one
would trace over all spins. This is because when we sum over all possibilities for
the other particles, each particle is equally likely to have either helicity. If one
does so to the above density matrices, he recovers the famous result of Altarelli
and Parisi*. In the Monte Carlo programs currently in use, ! the correct density
matrices are replaced by the Altarelli-Parisi splitting functions. This destroys
the correlation between the production plane of a gluon and its decay plane,
which is present in the correct leading log approximation result. This effect is
not very important, as the coefficient of the azimuthal dependence coming from
a G-GG decay has a coefficient that vanishes at the points where the splitting

function is singular; see, for example, Eq. 2.10. The G-gg decay is unimportant,

as gluons almost always decay into gluons.
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If the observable one were interested in were independent of the helicity of
the final state particles, one can replace each quark density matrix with its
average over helicities, which achieves a further simplification. We prove that
this can be done by a recursive argument based on the antisymmetry, in our
basis, of the helicity dependent part of the ¢ »Gg density matrix. We shall work
from the bottom of the tree up, that is, starting from the final partons. If we
contract a symmetric matrix into a g »qG density matrix, the result is indepen-
dent of helicity, so we can replace by its helicity average any q-»qG density
matrix that is contracted into a symmetric matrix. If we symmetrize p& 2
with respect to to 7 and 7' and with respect to £ and k', the result is symmetric
in the variables i and i'. Finally, if all the g g density matrices on a particular
quark line have been replaced by their helicity averages, one can replace the
G-qg density matrix on this line by its helicity average, since it is now the only
density matrix to depend on the helicity of that line. We begin by replacing the
G-q7 density matrix for any gluon decaying into final state quarks by its heli-
city average. We proceed recursively as follows. Consider a g »qG vertex such
that all the descendants of the gluon are either gluons or quarks such that the
density matrices on the quark line have all been replaced by their helicity aver-
ages. Since all the density matrices below the gluon are symmetric, the matrix
contracted into the density matrix for this vertex is symmetric, so the density
matrix can be replaced by its helicity average. Next, replace the density matrix
for each G-gg vertex such that all the g »Gg density matrices on that quark
line have been replaced by their helicity averages with its helicity average. If
there are any quark lines left whose density matrices have not been replaced by
their helicity averages, the process is repeated. Each recursion replaces the all
depsity matrices on at least one quark line with their helicity avefages, so only a

finite number of steps are needed.
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That one can replace the g¢-»Gg density matrix under the conditions
described above with its helicity average, follows from the charge conjugation
invariance of the strong interactions. Charge conjugation reverses the helicity
of a spinor, and does not affect the gluons. Therefore, the dependence of the
q »Gq density matrix, contracted over the part representing the descendants of
the gluon, can depend on the quark helicity only through its product with the
helicity of some quark descended from the gluon. (Since that contracted den-
sity matrix is a permissible strong interaction graph, and in the leading log
approximation there is no interference between graphs, it must be charge con-
jugation invariant). This means that if the product §f density matrices
representing the descendants of the gluon doesn't depend on any quark helicity,
the contracted density matrix for the g-» Gg vertex doesn't depend on the heli-
city of the decaying quark. Note that, even if we don't average over final state
helicities, the leading log amplitude depends only on the helicities of quark lines
that radiate gluons that in turn decay into quarks and those of these descendant

quarks.

2.5. Use of leading log approximation in Monte Carlo programs

One can generate parton final states distributed according to the the lead-
ing log approximation by a Monte Carlo procedureT. To do so one must address
the issue of the singularities of the density matrices as the 4-momentum of a
gluon goes to zero. Formally, these are canceled by a § function with an
infrared singular coefficient that comes from graphs with vertex and self-mass
corrections in place of the emission. To deal with this one needs an infrared

cutoff. We shall follow Ref. 3 in demanding that =z be such that it would be
1 The discussion in the beginning of this section follows that of Ref. 3.



- 22 -

consistent with both daughter partons’' being on shell.

We shall begin by considering a single parton; the behavior of systems of
partons is determined by decaying each of the partons in the system recur-
sively, until no parton decays further before the cutoff. Kinematically the mass
of a parton must be less than the mass of its parent, that is, the parton whose
radiation gave rise to it. The probability that the parton doesn't radiate

between the maximum mass®?, { .y, and some mass?, ¢ is

P =Mt mext)= lnjg(t:;ﬁiz)]wb' g
where,
b=11/2-1/3n;. (R.17)
7 is
7=fP(z)dz, (2.18)

where P is the Altarelli-Parisi splitting function. The integral is over those
values consistent with the cutoff. This is actually an underestimate; it is based
on the cutoff’'s being independent of the mass of the decaying parton. The
allowed range of z contracts as the mass of the decaying parton increases. The
procedure described below will distribute the masses correctly. We begin,
assuming the parton has been determined to decay between . and fcy, a

2

resolvability cut, according to Eq. 2.16, by choosing a mass® according to the

probability distribution

d__E___ H(tmax,t)as “”dt
dt _2rt '

(2.19)

Having chosen a value of the mass®? ¢, we then choose a value of 2. We choose a
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value, consistent with the infrared cutoff at the lowest mass (the one used to
compute 7¥), according to the Altarelli-Parisi splitting function P(z). If the
chosen value of 2 is outside the allowed range at the actually chosen value of ¢,
one chooses a new { and 2z, starting with the previously chosen ¢ as the max-

imum value. This is how we allow for the mass dependence of the infrared cutoff.

Once f{ and z have been chosen, we can choose the azimuthal angles and
spin of the gluons by the following procedure. When a quark emits a gluon, the
azimuthal angle is chosen uniformly. The density matrix of the gluon is com-
puted and stored. When an internal gluon decays into two gluons, one first con-
tracts the density matrix with the (already computed) density matrix of the
decaying gluon. The azimuthal angle is chosen according to the trace of this
over the spins of both daughter gluons. The density matrix for each gluon is this
traced over the other child's spin. When an internal gluon decays into a g7 pair,
one chooses the azimuthal angle according density matrix, contracted with the

(already computed) gluon density matrix.

Because the emission of a gluon off a gluon changes the spin of the gluon it
is not practical to give closed formulae for the possible azimuthal dependences;
the azimuthal dependence for a particular decay can depend on many branches
of the tree. The emission of a low 2 gluon does not change the spin; in the 2-0
limit the density matrix of Eq. (2.9¢) is dominated by the term whose spin struc-
ture is 6% 6**’, that is, the term that gives the other child gluon the same spin as
the parent. This means that any unresolved radiation does not affect the azimu-

thal angle.

If there are quarks in the initial state, the kinematics are changed; this is

described in detail in chapter 4.
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The discussion above holds, for the most part, for massive quarks. The
infrared cutoff, requiring 2 such that the partons are on shell depends on the
current mass. This effect is important only for gluons decaying into massive
pairs. That, in turn, is important only for observables that detect the presence
of heavy quarks. The other effect is that a massive quark radiates less then a
massless quark with the same (off shell) mass. The function I, expressing the

probability of going between two off shell masses is given by5 :

Tt ot )= log(((VE +m )2—m?)/ A%)|"®

Ty 220

where m is the current mass of the quark.

We have seen how to compute the leading log approximation to the cross-
sections for producing multi-parton final states correctly, and how to incor-
porate the results into a shower Monte Carlo program. It is possible to incor-
porate more accurate computations of the parton cross sections into the lead-
ing log approximation based shower program. There is some reason to believe
that it is important to do so. In e*e” annihilation the exact order a2 calculation
for many observables differs from leading log approximation calculations by 30%
or more®. One approach to incorporating the exact result into the shower
Monte Carlo is to generate the events by the leading log approximation and to
give them weights by the exact result (for the first four partons). Another
approach which is possible for the simple case of e*e™ is to generate two and
three parton events according to the order of cross section, generating 4 par-
ton events in some fashion, weighted by the cross section. Multiparton events

can be generated by allowing the four parton systems to radiate according to

the leading log approximation.
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3. Hadronization Models

3.1. Independent fragmentation—the Field Feynman model

We now turn to models for forming hadrons out of a collection of partons
generated by a leading log or other perturbative QCD calculation!.  This proc-
ess is called hadronization. The oldest model is the so-called Field-Feynman
model? (FFM.) Two models in current use are those of Ali® and Hoyer*. The
basic process of the FFM is the radiation of a meson by a quark. For instance, a
u quark might radiate a 7* leaving a d quark of lower energy. The energy of the

meson is distributed according to a function, called the fragmentation function:

dP _
o f(z.0% (8.1)

where 2z is the ratio of the hadron's energy to that of the quark and &7 is an
energy scale in the problem. The dependence of f on @? can be calculated per-
turbative1y5 ; the 2 dependence cannot. There is, in principle, an independent
distribution function for each type of quark and meson. The direction of the
hadron's momentum is chosen, in order to agree with experiment, to produce
jets of limited transverse momentum; that is, so that the momentum of each of
the radiated hadrons is, more or less, along the direction of the quark’'s momen-
tum. Each meson is given a momentum transverse to the quark, p; distributed

according to:

dP —p2/ 202
—— xg : (3.2)
dp;

The mesons are assumed to be vector mesons or pseudoscalars; the ratio
between the two spins is an input parameter. The process of radiating a meson

can be viewed as arising from the creation of a quark antiquark pair; the original
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quark combines with the new antiquark to make the meson, leaving the newly
created quark behind. The ratio of s§ pairs produced to uZ and dd pairs pro-

duced is also an input parameter.

If one wishes to hadronize a system of quarks and antiquarks, one begins
with any of the partons, and lets it radiate a meson, according to Egs. 3.1 and
3.2. The new parton resulting is likewise allowed to radiate a meson. This con-
tinues until the energy of the remaining parton falls below some cutoff. The
other partons are treated in the same way. Finally, the soft partons remaining

are combined into mesons.

Gluons are treated as quark antiquark pairs of random flavor. There is no
theoretical reason for this, but it seems to work fairly well for e*e ™ annihilation.
The momentum of the gluon is split between the quark and the antiquark
according to some ad hoc distribution; there are different ones currently in

popular use>?

. The model can also be extended to allow for baryon production;
the basic baryon producing process is a quark creating two pairs out of the

vacuum, which combine to form a baryon with two antiquarks left over.

The FFM can be tuned to agree well with the data® , although some of the
parameters seem to be energy dependent. An event generator based on the
FFM can be used to analyze a detector, or to study the effects of hadronization
on some observable, for example, how the ener‘gy flow of the hadrons differs
from that of the partons. The FFM as described, however, has, as was first real-

ized by its proporsoars2

, severe theoretical difficulties that prevent it from being
used as a model for understanding the soft physics. Most of these problems are
the result of hadronizing each parton independently. In the first place, the

basic process involves a massless quark radiating massive mesons; this means

that energy and momentum cannot be conserved simultaneously. One cannot
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correct this by holding the quark sufficiently far off shell, as this would mean
that the quark would be off shell by the mass of the jet, which is generally large
enough so that one should expect to be able to describe things perturbatively. A
related difficulty is that the cutoff procedure cannot be made frame independ-
ent; this means, for example, that a Lorentz boost can change the mean number
of particles that a given quark produces. There are also several arbitrary

parameters and several arbitrary functions.

Another severe problem is that the hadrons are produced in the wrong
order. There are very general theoretical arguments that suggest that the
hadrons with the most energy are produced last” ; this receives some experi-
mental support from experiments with heavy nuclei as t;argetsa. In the FFM,
however, the hadrons with the most energy are produced first; they must be
produced before their parent quarks have radiated too much energy. Perhaps
the most serious problem, though, comes from the assumption that the partons
hadronize independently. A quark and a collinear gluon cannot be distinguished
from a quark, much as an electron cannot, in the limit of zero mass, be dis-
tinguished from an electron and a collinear photon. This means one must con-
sider a quark with a gluon collinear to it, within some finite resolvability cri-
terion, as a single quark. The hadronization of a partonic system will not be con-

tinuous as a gluon moves across this cut.

3.2. String models—the Lund model

We are thus led to consider models of hadronization in which the partons do
not hadronize independently. Such models tend to be based on a QCD motivated
picture of confinement, the string picture. In this picture, when one tries to

separate a quark from an antiquark there are field lines between them,
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analogous to the field lines between electric charges as one tries to separate
them. The QCD field lines are confined to a tube of fixed width between the
.quarksg , which means that the field energy increases linearly as the quarks
separate. At some distance it becomes energetically favorable to create a pair
of quarks, splitting the flux tube. The energy required to produce the mass of
the new quarks comes from the energy of the part of the flux tube no longer
needed to connect the original quarks.

One model based on this picture is the Lund model'®. The simplest case is
ete " »qf »hadrons., One imagines a flux tube, sometimes called a string,
stretched between the quarks. If the system were classical and pair creation
impossible, the quarks would separate at the speed of light losing energy to the
flux tube until they were at rest. They would then move closer, gaining energy
from the flux tube; if the system were classical it would continue to oscillate. In
fact, the string is broken by the creation of quark antiquark pairs as it

stretches. Because the string is the same along its length one expects a uniform

probability for pair creation along its length:
dP = Pdzdt, (3.3)

for a 1+1 dimensional problem. The 4-momentum of a substring is the sum of
the 4-momentum of the original quark and the energy contained in the flux tube
between the original quark and the pair creation point. To extend this model to
3+1 dimensions, one must allow the produced pairs to have momentum
transverse to the string, i. e., for the quarks to have equal and opposite
transverse momentum. This means that the quarks created must have some
non-zero energy; to conserve energy they must replace a finite length of the

string. It is argued that this production over a finite distance is a quantum
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mechanical tunneling phenomenon, and it is asserted on the basis of an analogy
with the Schwinger model (QED in 1+1 dimensions) that the probability for pro-

ducing a pair of quarks with mass m,; and transverse momentum p; is:
2
dP = dpfe "% (3.4)
where m; is the so-called transverse mass,

m# = mE+p?, (3.5)

and a is the energy per unit length of string.

Before going on to discuss the treatment of gluons, we should notice that, if
the uniform probability for locating the break (Eq. 3.3) were adhered to
throughout, the final strings left over would not have the right masses to be
mesons. One must force adjacent breaks of the string to be correlated to leave
remnants with the mass of a meson with the quark content of the remnant. As
in the FFM, it is assumed that the mesons are either vectors or pseudoscalar,

with the ratio between these fixed by experiment.

The Lund model treats gluons by an extension of this string model. Con-
sider, for example, e*te »q@G-hadrons. The gluon has the color quantum
numbers of both a quark and an antiquark, and it has some momentum so it can
be considered as a kink in the string connecting the quark and antiquark; that
is, as connected to both ends of the string, but moving in some direction other
than along the direction of the quarks. The gluon thus stretches the string more
than it would be stretched by the quarks alone. This means that there will be
more breaks than there would otherwise be. Some of the particles will get most
of their momentum from that of the gluon; others, from one of the quarks. The

result, if each of the partons has enough energy in the center of mass frame, is
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a three-jet event, one jet along the direction of each of the partons. Events with

more gluons hadronize as strings with more kinks.

In this picture, everything is quite smooth as a gluon becomes collinear with
a quark. As that happens, the extra stretching of the string because of the
gluon, compared to a system with two quarks, one of which has absorbed the
momentum of the gluon, vanishes smoothly, so a system of partons in which a
gluon is becoming collinear with a quark smoothly approaches the system with
only a quark with the combined momentum. The other theoretical problems of
the FFM are also corrected in the Lund model. The model is Lorentz invariant,
the behavior being determined by the invariant masses of the strings, and it
conserves energy and momentum naturally. The softer hadrons are produced
first. While there are still several arbitrary parameters, the fragmentation func-

tions are determined be the model's assumptions.

Like the FFM, the Lund model can be adjusted to agree well with experi-
ment®. One should not, however, conclude that the Lund model and the FFM
differ only in the semantics and approach; there are differences in their predic-
tions. The most important differences between the models are direct conse-
quences of the FFM's hadronizing partons independently and the Lund model's
connecting partons by flux tubes. In a model with independent fragmentation,
like the FFM, the jet from any parton _is centered about the direction of its
momentum. In a string model the string, which will eventually break into the
hadrons, is being dragged along, in an event with gluons, by the kinks, that is,
the gluons. The string based picture will predict that the particles of one jet are
shifted toward the next gluon jet, whereas the independent fragmentation model
will predict that one jet is independent of the others. Experiments at PETRA

seem to confirm the string picture“.
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The Lund model, however, also has some aspects that are theoretically
troubling. These come from the constraint that the breaks in the string are
correlated to produce hadrons of the correct mass. It is not easy to see how a
quantum mechanical tunneling effect, in a semiclassical picture such as the
string picture, can produce such constrained pairs. This makes the assumptions
about the production of transverse momentum quite doubtful. In addition the
rather cumbersome constraints required to implement these correlations make
it difficult to see how a prediction of the model is related to its assumptions and

parameters.

3.3. Cluster models

We are, then, led to consider a version of the string model that is free of the
need for correlations between breaks of the strings. One way to assure this
would be to break the string into segments each of which is in the multihadron
continuum. An early model that used this idea of using the fundamental physics
to derive the formation of bits of hadronic matter in the continuum was that of
Hamer and Peierls'® , which used multiperipheral Regge theory to describe the
formation of clusters of hadronic matter that decayed according to the statisti-
cal bootstrap model to describe the width of the diffractive peak and central
pion production in low p; proton proton scattering. This model was used by
Berger and Fox'3 to understand experimental data for multiparticle production
at Fermilab and the ISR. The phenomenological success of the cluster approach
and its theoretical advantages suggest the use of a model where the strings
break into clusters of hadronic matter. Such a model is the QCD cluster model,
which was developed by Gottschalk!* incorporating ideas from the Lund meodel

and from Field and Wolfram!®. In this model, strings are put between the
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perturbatively generated partons and broken, as in the Lund model. They are
broken, however, not into individual mesons, but into color singlet subunits,
called clusters, which have a mass of about one or two GeV. The decay of the
clusters into hadrons is determined entirely by low energy experiment. This can
be implemented by having the clusters decay into hadrons by a phase space
model. Since the string breaking is into the continuum of multihadron states,
there is no need to impose correlations between the breaks of the string. In
addition, because momentum transverse to the direction of the string is gen-
erated by the phase space decay of the clusters, there is no need to assume the
exponential fall off of p; at the string breaks; the p; distribution of a jet is a
result of this model. A version of the cluster model is used in this thesis; this

version is discussed in detail in Chapter 4.

The QCD Cluster model does not try to explain how the partons make up
individual hadrons. The ideas about QCD dynamics incorporated into the model
are used to describe the formation of the clusters. The formation of the hadrons
from clusters is determined empirically from low energy experiments. The clus-
ter decay model was determined as nearly as possible from low energy experi-
ments where one can observe the decay of a single cluster. It is a basic assump-
tion of the QCD cluster model that the hadronization of a cluster does not
depend on the process that produced the cluster, only on its mass and quantum
numbers. The model divides a process into three stages. There are the hard
radiation and hard scattering process described by perturbative QCD, the
moderate scales described by the string model picture of QCD confinement, and

soft physics described by the empirical phase space model.

There are differences in the predictions of the Lund and cluster models.

Both models allow production of baryons and strange particles at the string
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breaks, by creating a pair of strange quarks or two quark antiquark pairs. The
rate of production at this stage is an input parameter of both models. The QCD
cluster models also allow production of strange particles and baryons in the
phase space decay. The amount of production here will depend on the mass dis-
tribution of the produced clusters, thus, on the energy scale of the problem.
Thus, if one considers the process e *e "»qg »hadrons, the ratio of, for example,
protons to pions 1s energy independent in the Lund meodel, but energy depen-

dent in the cluster model.

There are similar results for the transverse momentum of a jet. In the Lund
model there are two sources of transverse momentum. One is from hard QCD
radiation. This dominates events with large transverse momentum relative to,
say, the original quark directions. These events have high transverse momen-
tum because one of the original quarks gives rise to two jets, one along the
direction of the gluon, and one along the direction of the remnant quark. The
other source of transverse momentum governs the distribution of hadrons
within a jet; here the transverse momentum is generated at the string break, in
the Lund model, according to Egs. 3.4 and 3.5. These give a fixed transverse
momentum distribution for a jet, independent of its energy. In the cluster
model, on the other hand, the transverse momentum distribution of a jet is
determined by the distribution of cluster masses. This model predicts a slight

broadening of a jet as its mass increases. This is observed experirnentallyle.



-35 -

References for Chapter 3

[1]

(2]

(7]

(9]

A recent review is T. D. Gottschalk, CERN Preprint TH.3810-CERN, Lectures
given at the 19*" Int. School of Elem. Particle Phys., Kupari-Dubrovnik,

Yugoslavia, (1983).

R.D Field and R. P. Feynman, Phys. Rev. 115 (1977) 2590, and Nucl. Phys.

B139 (1978) 1.

A. Ali, E. Pietaranian, G. Kramer and J. Willrodt, Phys. Letf. 93B (1980) 155,
and A. Ali, E. Pietaranian and J. Willrodt, DESY Report T-01 (1980).

P. Hoyer, et al., Nucl. Phys. B181 (1979) 349.

R. D. Field, Lectures presented at the La Jolla Institute, 1978.

H. Obelack, Max Plank Institute preprint MPI-PAE/Exp.E1.110, Invited talk

given at the 2" Int. Confernece on Physics in collisions, Stockholm, June

1982.

J. D. Bjorken, Fermilab preprint FERMILAB-CONF-82/42-THY, Invited talk
given at the 2™ Int. Confernece on Physics in collisions, Stockholm, June

1982.

C. Bromberg, et al., Nucl. Phys. B171 (1980) 38,

K. Yung, Caltech Ph.D. Thesis, 1979.

R. P. Feynman, Lecture presented at 1981 EPS Int. Conf. on High Energy
Physics, Lisbon, Portugal, Jul. 9-15, 1981.

A. Casher, J. Kogut and L. Susskind, Phys. Fev. Lett. 31 (1973) 792.

[10] B. Andersson, et al., Phys. Rep. 97 (1983), 31 and references therein.



- 36 -

[11] W. Bartel, et al., DESY preprints DESY-83-079, DESY-83-080 (1983).
[1R] C. J. Hamer and R. F. Peierls, Phys. Rev. DB (1973) 1358.
[13] E. L. Berger and G. C. Fox, Phys. Lett. 47B (1973) 162.

[14] T. D. Gottschalk, Nucl. Phys. B214, (1983) 201,

T. D. Gottschalk, Nucl. Phys. B238 (1984) 349.
[15] R. D. Field and S. Wolfram, Nucl. Phys. B213 (1983) 85;

[16] P. Soding and G. Wolf, Ann. Rev. Nucl. Sci., 31 (1981) 231.



_3’?_

4. Event Generation in Hadron Hadron Scattering

4.1. Introduction and overview

We now present in detail the methods and algorithms used in an event gen-

erator for hadron hadron scattering. There are several steps involved. We shall

first list the steps to give an overall picture of the model, and then return to

describe each step in detail.

1:

A parton that will evolve into the parton which will undergo the hard scatter
is selected from each of the hadrons. Its type, energy, and momentum are
chosen according to some empirically determined wavefunction that

describes the partons in the hadrons at some low mass scale.

These partons are allowed to evolve, by radiating partons, to a scale g i. e.
the partons are allowed to radiate partons with timelike 4-momenta making
their 4-momenta more spacelike, so long as pp*>—@%, at which point the
parton has evolved the right amount to undergo the hard scatter. @® is
integrated over at the end. At this stage we have computed the scale
dependent distribution function at the appropriate scale, and found a col-
lection of partons resulting from the evolution of the distribution, which will

later hadronize.

These partons then undergo a hard 2-2 scattering, generating two new par-
tons with timelike 4- momentum; each of these partons has a momentum k;
transverse to the direction of the scattering partons, in their center of

mass frame, of magnitude |k?|=@%/ 4.
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The resulting system of partons evolves by radiation of partons to a cutoff
scale; that is, until the off shell mass of the partons is less than some
specified value. Fig. 4.1 shows a schematic picture of the model at this

stage.

Stage !

| S

Fig. 4.1
A disgrammatic representation of a hadron hadron event at the parton level. The
lower events are the stages described first above. The hard scatter is circled.

Color singlet subunits of the event are formed from the generated partons.

These will be hadronized according to the cluster model.

The spectator partons, the parts of the hadrons not involved in the hard
scatter, are now included. They give rise to the beam jets in the ensemble

of partons.
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7: The resulting system of "final state partons” is then hadronized according

to a version of the QCD cluster model.

4.2. Choosing the initial partons

The wavefunctions that govern the selection of the initial partons (step 1,)
called distribution functions, are determined in deep inelastic lepton scattering.
In this process, a lepton is scattered against a hadronic target. The scattered
lepton’s 4-momentum is measured; the hadronic final state is not. The momen-
tum of the quark off which the lepton scattered can be determined by the scat-

tered lepton's 4-momentum. In the infinite momentum limit:
pH = zPH, (4.1)

where p is the parton momentum, P is the hadron's momentum, and z is given

by

_ &
z = @Pq) (4.2)

where g is the 4-momentum transfer and §? is —g? By choosing different lep-
tons (u, v and V) and different hadrons (p and n) one can measure all the quark
distributions, as functions of z. Since the gluons do not couple directly to any
currents that the leptons do, the gluon distribution function cannot be deter-
mined directly from deep inelastic scattering data. Some information about the
gluon distribution can be inferred from the fact that whatever momentum of the

hadron is not carried by the quarks must be carried by gluons.

The distributions will depend on the scale @? at which the experiment is
performed. This scale dependence arises because the partons can radiate more

gluons or produce more quark pairs as they evolve to a higher scale than they
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can at a lower scale. The gluon distribution function at one scale contributes to
the quark distribution function at a higher scale because the gluons produce
quark pairs. One can, using this fact, make some inference about the gluon dis-
tribution at low scales. The distribution function for the sea quarks, that is the
pairs in addition to the valence quarks which determine the hadron's type,
depends strongly on the gluon distribution. One can measure the sea distribu-
tion by, for example, looking for signals from & quarks produced off § and d

quarks in antineutrino nucleon scattering.

The partons can also have momentum transverse to that of the hadrons;
this can be measured, for example, in the production of wx pairs in hadron
hadron scattering. The muons are produced by processes like g >y »u*u™ and
gG-qy >»gqu*y”. wu pairs with invariant mass @° give information about partons
at a scale of @% from the transverse momentum distribution of the pairs (that
is, the momentum of the pair transverse to the collision axis) one can infer the

transverse momentum distribution of the partons.

For the hadron hadron event generator we use the distribution functions at
some fixed, small scale. The evolution to the variable scale @® is governed by
perturbative QCD and is calculated during the event generation process. This
procedure is suggested by the success of the scale dependent distribution
functions in describing deep inelastic scattering cross sections, where it is
theoretically sound!. When one considers the hadronic final state, however,
this approach is open to question on theoretical grounds. In particular it leads
to difficulties with the beam remnants; a detailed discussion of this is deferred

until we reach the discussion of the beam remnants (step 8.)

For the analysis of chapter five we have chosen the following distribution

functions for the proton. There are valence distributions for the u and d
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quarks, an SU(3) symmetric sea, and a gluon distribution.

—r)3 _m\3
%=5.94(1x§) —2.88(1z_f;L, (4.3a)
R - |
d,,=2.8811—;*'}. (4.3b)
=
w 10
Sea=.202-(1—:L, (4.3¢)
for each species, and
—\5
G=2.64§1—:L, (4.3d)
or
—n=\10
G=6.05§1—:L. (4.3¢)

The transverse momentum distribution at @ = 1.8 GeV was taken to be Gaus-
sian, with mean transverse momentum of 700 MeV.

The distribution functions are based on those of Buras and Gaemers?® ,

which are extracted from deep inelastic scattering data. They differ from those
of Buras and Gaemers only in that the exponents of (1—z) in the valence distri-
butions were rounded to the nearest integer, 3, for computational convenience.
The difference is significant (more than about 10%) only for values of z so large
(2.7) that both distributions are quite small and the discrepancy does not have
much effect on the result. Any charm component of the proton, at that scale,
has been neglected. The transverse momentum is chosen to be comparable to

Ref. 3. It is chosen to be independent of the flavor of the parton for
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convenience; there is no experimental evidence compelling any other choice.

These distributions have non-integrable singularities as z-0; that is, there
are an infinite number of partons in a proton. The integral of z times the sum of
the distribution functions is 1, which is just the statement that the partons
carry all the momentum of the proton. To choose an initial parton from the pro-
ton we put some lower limit on the energy of the parton that will eventually
undergo the hard scatter. This can be done without affecting the result, as the
two active partons, with spacelike momentum, must have at least enough energy

to wind up with the correct transverse momentum. The cutoff used is:

- e - '
E, = a0/ F’ a =4, (4.4)

which was determined empirically by raising a until the cross section calculated
no longer changed. The exact form of the cutoff is not important; what is impor-
tant is that the cutoff be greater than 0 and that no parton with energy less than
the cutoff has a chance of finding a partner with which to undergo the hard
scatter. To make the'prograrn efficient, the cutoff should be as high as possible.
The form of the cutoff, a fraction of @, with the fraction required rising as a &
does, comes from the following picture. The two (spacelike) partons are
approaching each other more or less head on, in the event center of mass
frame; each one has a momentum larger than its energy. The momenta largely
cancel, leaving a system with timelike xﬁomentum. To become a real event at
any @® the system must have a mass of at least @; in the typical event the two
incoming SLPs have comparable energies and momenta, but some imbalance
does occur; hence the cutoff is a fraction of . As the partons get more off shell
and the required energies get larger the relative imbalance permissible

decreases; hence the cutoff gets closer to @/2 Empirically, partons with
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energies below the cutoff of Eq. 4.4 do not find other partons with which they can
combine to make a hard scattering event. Once the cutofl is determined, one

can choose a parton type, each type having the probability:

P = [, filz)az/ D [ 15(2)dz, (4.3)
J

where f;(z) is the distribution function for parton type i, £ is the cutoff, and the
sum is over all parton types. Once the type is chosen the value of z is chosen

according to:

B8

= £ (4.6)

f. 7 @)z

The transverse momentum of the parton is then chosen according to the Gaus-
sian distribution. For the moment the transverse momentum is chosen along
the y-axis, the 2z-axis being the beam axis; the collection of partons will later be
rotated by a random angle in the zy-plane before being combined with another

set to make the hard scattering event. The parton is given a weight

W = ;f:fj (z)dz, (4.7)

which will be used later to compute the contribution to the cross section of an

event involving this parton.

4.3. The evolution to the scale §?

In step 2 the parton is allowed to evolve, according to the formalism in
chapter 2, to the previously chosen scale %, see Fig. 4.2. Because we are, in this
phase, considering a parton with spacelike momentum evolving towards more
spacelike momentum, the kinematics is slightly different from the description in

chapter 2. We now have a parton with spacelike momentum radiating a parton
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A parton comes from the hadron (on the left) a.jcllg;efc;lzves to the hard

scatter (on the right).

with timelike momentum, leaving a parton with spacelike momentum with a
more negative mass®. The momentum distributions for each vertex are deter-
mined by the formulae of chapter 2, with £ everywhere replaced by |t | = —t. If
one were to compute the density matrices by the procedures used in chapter 2,
noting that the nonnegligible mass was that of the daughter with a spacelike
momentum, one would find that each density matrix differed from the result of
chapter 2 by an overall factor of —1/2. The minus sign is what changes £ to —¢
in the denominators, and the factor of 1/2 can be absorbed in converting the
flux factor in the cross section from that for the hadrons to that for the partons.
We shall do so here, using parton 2 -» 2 cross sections rather than matrix ele-
ments squared in computing the event cross section. The choice of —f for the

argument of o, is arbitrary and taken for convenience only, any change in the

coefficient of £ in the argument of ag is a subleading correction.

To implement the procedures described in chapter 2, one needs some sort
of cutoff to avoid the singularity as the four momentum of a gluon goes to zero.

We cannot use the same cutoff here that was described in chapter 2 and used for
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the decay of a parton with timelike momentum; i. e., that the value of 2 should
be such that both daughter partons could be on shell, since this is not kinemati-
cally possible. A variety of resolvability cuts can be imagined: cuts on the energy
of the particles, their transverse momentum, a cut at fixed 2z and so on. There
is no firm theoretical basis for choosing one particular cut. Earlier work by Fox*
has suggested that the exact nature of the cutoff used is not crucial. We, for
calculational convenience, use an energy cut, typically 1 GeV. This was checked
empirically by lowering the value and seeing that neither parton level cross sec-
tions, do/ dk? nor variables describing the shapes (energy flow) of the full
events were significantly changed. With this value of the cutoff, the disallowed
radiations would almost always have less than 300 MeV of momentum transverse
to that of the parent, so it is a reasonable value for a resolvability cut. The cross
sections are much more sensitive to the value of the cutoff below a region
around 1 GeV, as the partons radiate too much as the cutoff get too close to the
singularity. Observables that describe the energy flow of the events are changed
if the cutoff is raised too much above 1 GeV; this is a sign that, with such a high
cutoff, radiation that should be considered resolvable is being treated as

irresolvable.

The issue of the resolvability cut is quite problematic. To say that a partic-
ular radiated gluon is not resolvable is to say that it does not significantly affect
anything, once the strong interactions have gathered everything into hadrons;
that is, that the strong interaction spreads its energy and momentum among
hadrons in such a way that there is no real remnant of the radiated particle.
Thus, in the string picture in spacetime, the resolvability criterion is that a radi-
ated gluon travel a distance transverse to the string comparable to the string's

width before being brought to a stop by the strong forces. It is not clear how to
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implement this; neither the string formation, nor the forces that would slow a
parton moving across the string are well enough understood. It would seem
though, that a transverse momentum cut of some sort is more likely than the
energy in the event center of mass to be, conceptually, the best choice. It is
not, however, clear what transverse momentum cut to implement. There are
several sensible sounding choices: relative to the parent, relative to the beam
direction, or relative to some other estimate of the string's direction. In addi-
tion, the value of the cutoff might depend on the longitudinal momentum. It is
not clear which of these would be best, and all are harder to implement than the
energy cut. Relying on the work of Fox, which showed that whether the cutoff
for resolvable radiation for the partons with timelike momentum was a cutoff on
the parent mass (as is now used), on the energy, or the transverse momentum

did not matter much, we chose an energy cut for convenience.

The procedure for determining a radiation is as follows. It is determined
whether the parton will radiate, and if so to what value of |£|. This is deter-

mined according to the procedure in chapter 2, with II given by:

/b

Tt maE min) = log(—t min/ A®)

where both £,,x and £, are less than 0. Here the value of £ chosen is not that
of the parent, but of the daughter with spacelike momentum. The value of z,
the energy fraction carried by one of the daughters, is chosen according to the
Altarelli-Parisi splitting function. The energies of the two daughter partons are
computed. If both are below the cutoff of Eq. 4.4, the event is rejected; the
number of rejected events is stored for use in computing the cross section. The
fraction of events accepted is the Monte Carlo estimate of the fraction of the

partons with z above the cutoff at the scale @§ that still have z above the cutoff
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after evolving to the scale @? that is:

L7 (2.0%)z
felf (z,Q8)dz’

where £ is the cutoff and &y is the scale at which the wavefunctions are taken. If

(4.9)

only one of the energies is above the cutoff of Eq. 4.4, that parton is chosen as
the parton with spacelike momentum and the process continues. If both par-
tons have enough energy then one is chosen at random to be the parton with
spacelike momentum. The weight of the event is multiplied by two, in t‘his casge,
to compensate for the 1/2 chance that each parton was chosen, since the

correct weight for each choice is 1.

This process is repeated until it is determined that the parton with space-
like momentum does not radiate further below the scale @* Decay chains are
not computed for the parton with timelike momentum generated at each vertex
until it is known whether a usable event will be generated. Only the mass at
which the parton with timelike momentum decays, which is needed to compute
the kinematics of the radiation, is computed at this stage. At this point the
computed decay chain is stored and the process is repeated until there is a col-
lection of events each with a parton with spacelike momentum that has been
evolved to the scale §%. The energy distributions of these partons of different

type are the f;(z,@?).

There is no sure theoretical guide to choosing the scale g? to which the par-
tons are evolved. We can tell only that it should be some scale determined by
the kinematics of the parton level hard scatter. Since we are evolving the par-
tons, rather then using some parameterization of the @* dependent distribution
functions, we must, if the final program is to be efficient, choose some definition

that depends neither on the result of the evolution, for instance on the value of
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z for the final active parton, nor on the other parton in the hard scatter. An
example of a choice of @ that must be rejected on this basis is the invariant
mass? of the two partons undergoing the hard scatter. If we chose that as our
definition of @® we would not be able to determine how far to allow a quark to
evolve before knowing what the momenta of the two final partons with spacelike
momentum coming into the hard scatter were. The choice we have used is
Q*=4kf?. To calculate any observable, we calculate the observable by Monte
Carlo simulation at fixed @° and then integrate over @? by a trapezoidal integra-

tion.

4 4 Hard scatter and cross section

The third step is to compute the hard scatter. Two of the previously gen-
erated final partons with spacelike momentum are chosen at random. The
second parton and the other partons associated with it are reflected through the
plane normal to the beam axis and rotated by a random angle about the beam
axis. (If an observable without azimuthal symmetry is considered, the final event
must also be rotated by a random angle about the beam axis.) If the collision
considered is pp, the partons associated with the second parton are replaced by
their charge conjugates. The two final partons with spacelike momentum are
combined; if the invariant mass of the two is high enough to allow a scatter with

the required k;:
kf=Q%4 (4.10)

the event is accepted; otherwise it's rejected. The numbers of accepted and
rejected events are computed, for later use in determining the weights for the

events. If the event is acceptable we determine which parton has the positive
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z —momentum and what types they are (if there’s a choice) according to the
cross sections for on shell partons. A table of the acceptable events is made and

stored for later use.

When the desired number of acceptable events has been accumulated they

are considered one at a time. The weight for any event is:

do

_ 2
W=W\Wafzfs aep

(4.11)

where ¥, and W3 are the weights associated with the two partons that have been
combined, f is the fraction of of the attempts to evolve a parton to this @ that
gave a final parton with spacelike momentum with enough energy (above the
cutoff in Eq. 4.4), fs is the fraction of the attempts to have two partons undergo

a hard scatter where the two partons with spacelike momentum had a high

2
¢

scatter (to order af). 1—fsf2 is the fraction of attempts at generating an event

enough invariant mass, and % is the QCD cross section for the 2 -2 hard

where either one of the partons with spacelike momentum evolves below the
cutoff (Eq. 4.4) or the combination of the two partons with spacelike momentum,
after evolving, has too low an invariant mass to undergo the hard scatter. Thus
the factor W,Wsf2fs is the flux of suitable partons, in units of the hadronic flux.
The decay chains are computed according to the leading log approximation, so
when we are done we have parton level events distributed according to the cross
sections in the approximations discussed above, that is, order af for the hard
scatter and the leading log approximation everywhere else. We assume that
hadronization does not affect the cross section; every parton level event is

hadronized with weight 1.

This last assumption cannot possibly be exactly true; one need only con-

sider the e*e ~ annihilation cross section as the energy passes through a region
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of resonances (like the ¥ region) to see this. At high energies, it is reasonable to
expect that the hadronization does not have much effect on the cross section
.since hadronization effects are asymptotically suppressed by powers of the
energy scale relative to the leading effect. In e*e™ annihilation to hadrons at

high energy the cross section®

is in agreement with parton level calculations
within the experimental uncertainty, so there is experimental support for this

assumption as well.

4.5. Parton evolution after the hard scatter

In step 4 the partons with timelike momentum are allowed to evolve to a
cutoff scale f;,; according to the leading log approximation developed in chapter
2. This includes the partons with timelike momentum generated at the hard
scatter, as well as those generated as the partons with spacelike momentum
evolve to the scale @® For this part, the momentum fraction variable z is
identified with the fraction of E+|p| of the parent carried by one of the
daughters, measured in the rest frame of the parent's parente. With this
choice, the leading log approximation gives correctly both the leading term and
the first subleading term in the order ag cross section for ete "»ggG. The cutoff
to avoid the singularity as the 4 momentum of a gluon goes to zero is that 2
must be such that it would be consistent for both daughter partons to be on
shell. The masses of those partons that do not radiate before {;,; are chosen at
random between 0 and f;,, consistent with the exact kinematics. This does

make some difference, as is discussed in chapter 5.
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Step 5 begins the hadronization process. The first stage in this process
(step 5) is to organize the final partons into the initial color singlet clusters.
Each gluon is split into a quark and an antiquark; the flavor is chosen at random,
the relative probabilities for the different flavors is an input to the model. The
momentum of the gluon is shared between the two quarks; the fraction carried
is chosen uniformly. The predictions of the model are not sensitive to the distri-
bution used for the momentum sharing, provided that it is symmetric between
the quark and the antiquark. We now have a final system of quarks and anti-
quarks. If one starts with a color neutral string, one can track the string
through its evolution in the leading log approximation since there is no interfer-

ence. For example, consider the three parts of Fig. 4.3.
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Fig. 4.3¢

In the first diagram there is a quark; it is connected by a string to something
with the color quantum number of an antiquark, a 3, which is not shown in the
figure. When the quark radiates a gluon, which carries the color of the quark, 3,
and a 3, the color 3 of the gluon is connected to the 3 not shown. The color 3 of
the gluon is connected to the quark, as shown in the second part of the figure. If
the gluon were to radiate another gluon, the result would be as shown in the
third part of the figure; the strings that had been connected to the radiating
gluon are now connected to the daughter gluons, one to each daughter gluon.
The remaining strings of the daughters are connected together. The (effective)
quark and antiquark at the ends of each string are combined to make the initial

color singlet clusters.

This procedure of splitting the gluons is completely ad hoc, in fact, the
study reported in chapter 5 shows this to be phenomenologically unacceptable.
The original motive for its use was that one could directly extract the hadroniza-
tion properties of quark-antiquark clusters from low energy experiment, where
gluons are unimportant. Splitting the gluons has given good results in e‘e”
annihilation. Chapter 6 suggests a version of the cluster model that does not
require gluon splitting.

It is impossible to track the color evolution through the hard scatter in this

fashion. For many of the 2-+2 processes it is not unique. Since there is
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interference in the cross sections used, it is not possible to assign a correct
probability to each of the possible ways of connecting the strings. The connec-
tion of the strings is chosen at random, each possibility given equal weight. The
results do not seem to be sensitive to this; other possibilities were tried and did
not seem to make any difference. While in particular gauges the interference
terms can be made small, allowing one to track the color flow, there does not
seem to be much point in using this to assign probabilities since it seems to be

phenomenologically unimportant.

4.7. The beam remnants

We have, then, a collection of strings, each of which connects an eﬁevctive
quark with an effective antiquark. The only strings not like this are those con-
necting the partons originally selected to the rest of the hadrons. These are
treated (step 6) by the procedure, described below, by which these remnants

are treated.

The dynamics of the beam remnants is problematic. If one takes the
"active" parton from the hadron at some fixed scale, @§, about the same order
as hadron masses, the beam remnant will also have a mass of order @§. The
beam jets actually have a much higher mass. If one pictures an event in space-
time, there are the two scattered quarks and the two beam remnants, all
colored, beginning to separate. There-are strong forces involved in the color
screening. If, as is suggested by the success of this method in describing deep
inelastic scattering, we extract the active partons at a fixed scale and then
evolve it, one of the effects of these strong forces must be to drive the beam
remnants off shell. For our simulation the beam remnants are taken off shell by

exchanging a constant amount of momentum along the beam axis between them
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(750 MeV for the results discussed in chapter 5). This gives beam remnants with
an invariant mass-squared @'?«Pygem . If one imagined a string between the two
colored beam remnants, and assumed that it would stretch and break like any
other string, it would stretch for an amount independent of the beam remnants’

momentum, and give fragments with mass®« P, ., .

One or two soft hadrons are taken from each beam remnant to conserve
flavor quantum numbers according to the scheme described below, leaving the
quark (or pair) needed to be put on the end of the string(s) connecting to the
beam remnant. These quarks are allowed to evolve, as any other quark, as

described above.

The flavor of the soft hadron(s) and the leftover quark(s) is chosen by a pro-
cedure that depends on the flavor of the initial parton. If it is a valence quark, a
quark antiquark pair is created; the quark combines with the two remnant
valence quarks to form a baryon, the antiquark connects to the string; as shown

in Fig. 4.4a.
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Fig. 4.4a

Beam remnants for an active valence quark. The two solid lines entering from
the right are the remaining valence quarks; the dashed line is the string.

If the first parton is a gluon, two pairs are created. A quark and antiquark are
chosen from these pairs, plus the valence quarks, to connect to the strings car-
ried by the gluon. The remaining 5 quarks are combined, at random, to form a
baryon and a pseudoscalar meson, as shown in Fig. 4.4b. If the initial parton was

a quark other than a valence quark, a pair is created and added to the valence
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Fig. 4.4b
Beam remnants for an active gluon. The three solid lines entering on the left are the valence quarks.
The two dashed lines are the strings.

quarks and the antiparticle of the selected quark. One (anti)quark is chosen at
random to connect to the string; the remaining quarks are combined into a
baryon and a pseudoscalar meson, as shown in Fig. 4.4c.

q
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Fig. 4.4c

Beam remnants for an active nonvalence quark. The four solid lines entering on the left are the
valence quarks and the antiquark of the nonvalence quark. The dashed line is the string.

>
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%

The momentum of the hadrons is chosen by the following procedure. The
baryon is given an energy fraction 2z, in the rest frame of the remnant, after it
has been pushed off shell. 2z is distributed according to the probability distribu-

tion:
— =2z, (4.12)

which is chosen as a convenient way to get the baryon soft in the event's center
of mass frame. Its momentum is taken opposite the direction that the remnant
must be boosted to return to the event center of mass frame, so that it is soft in

that frame. If there is a meson, its momentum and energy are determined in



-56 -

the same fashion from the remaining mass. The leftover 4-momentum is given
to the quark connected to the string, or split equally between the two quark con-
nected to the strings in the case of an initial gluon. These quarks are allowed to

evolve as described above.

There is no theoretical justification for the procedure used for the beam jet.
It does satisfy certain requirements. It allows the beam jets to have enough par-
ticles, at least at ISR energies and lower. Because most of the particles are pro-
duced by the hadronization of the string, the beam remnant iragments like any
other jet, in accord with experiment7. The colored beam remnant is able to

radiate if its mass is high enough.

This rather clumsy procedure, involving extra baryons and so on, was
required because, at the time the program was written, the string breaking
model did not allow for strings with nonzero baryon number. It would now be
possible to make (one of the) the string(s) connecting the remnant to the initial
parton have baryon number. One would have to add a soft meson to conserve
quantum numbers only if the initial parton were a nonvalence quark. The model
of the beam remnant used here works well for describing energy flow at the
energies studied in chapter 5; it does not work well at the energy of the SPS col-
lider (540 GeV in the center of mass.) A modified version of this model, using
baryonic strings would probably fare no better at high energy, so it does not
seem worthwhile to implement. Some discussion of what can be done is in

chapter 6.
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4 8. Hadronization

After the evolution of the beam remnant we are left with a handful of
hadrons and some clusters, each with a quark and an antiquark. The last step,
step 7, is to hadronize these clusters. The mass of each of the clusters is
checked. If there is a cluster whose mass is less then a fixed cutoff (typically
250 MeV) above the two particle threshold for the flavors it contains, it is com-
bined with another cluster, if possible, to get above this cut, by recombining a
gluon that had been split into an effective quark antiquark pair. The gluon that
had lesser mass, if two gluons were split to form the cluster, is chosen to be
recombined. The momentum of the recombined gluon is shared between the
two quarks making up the larger cluster. If there is no gluon involved the clus-
ter is accepted. It is impossible to get a cluster below two particle threshold
after the recombination, as the quark masses are chosen to be hadron masses;

the v and d quarks are given the m mass; the s quark, the K mass, and so on.

The above procedure for combining clusters is purely arbitrary, and is done
only so that every cluster will have some hadronic state of the right mass avail-
able into which to decay. The improved model suggested in chapter 6 will not

give rise to such light clusters, which always come from splitting the gluons.

The final collection of clusters is hadronized according to the QCD cluster
model, which is described in detail in Ref. 8. Here it will suffice to review some
of the salient features. Clusters of a large mass (above some fixed cutoff) decay
into other clusters by a 1+1 dimensional string model, as described in chapter
3. Breaks in the string occur with uniform probability per unit area of space-
time swept out by the string, with the restriction that both daughter clusters
have mass more than 260 MeV above two-body threshold. Lighter clusters decay

by a phase space model. A cluster is allowed to decay into two-body states
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5. Comparison of the Model with Experiment

In this chapter we use an event generator implementing the model
described above to study proton proton collisions producing high Z; final states.
Hadronic reactions producing particles at large p; or F£; are believed to be the
reflection of hard scatlering of a single parton from each hadron. In the most
naive picture, such an event consists of four jets: the jei; :2ming from the par-
tons undergoing the hard scatter, and two jets along the beam axis coming from
the remnants of the two hadrons. Early experiments studying this phenomenon
concentrated on looking at single particle inclusive cross sections!. While they
did find large cross sections for high p; particles, they failed to observe the p;
dependence expected from the naive model. It was realized that these single
particle cross sections are very sensitive to the fragmentation of the partons
into jets and the transverse momentum of the partons in the original hadrons®.
Later experiments attempted to find jets directly, using calorimetric measure-
ments. The first experiments used calorimeters about the expected size of a
jets, The small size of the calorimeter made it difficult to determine whether
the observed events were indeed jets or just the result of statistical fluctuations
in nonjetlike events. Several experiments have been done using calorimeters
much larger than the size of jets. We shall discuss results of the NA5 experi-
ment? , E-657° and the AFS collaboration®. At lower energies Vs €30 GeV the

events are not jetlike. At higher energy the high F; events are jetlike.

For this analysis a Monte Carlo simulation using the QCD Cluster model,
described above, has been written, and compared with the experimental results.
No parameters were tuned for this analysis. The agreement with experiment is
generally good. Some disagreement is found; this points the way for improve-

ments to the model, which are being worked on.
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The model parameters, in addition to the hadronization parameters which
were determined from e*e” annihilation, are A, the quark masses, the scale at
which the perturbative evolution stops, and the distribution functions for
finding the partons in the protons at some scale. A® was fixed at .2GeV?, the
masses of the v and d quarks at 200 MeV, the s quark at 500 MeV, the ¢ at 2
GeV and the b at 5 GeV. The top quark was presumed to be too heavy to be pro-
duced. The quark distribution functions were described in chapter 4. The
dependence of various quantities on the cutoffs was checked. The cross sec-
tions depended moderateiy on the energy cutoff for the evolution before the
hard scatter, the shape variables not at all, as the cutoff was varied from .5 to
1.25 GeV (the minimum energy of the gluon in the center of mass). This indi-
cates that the model is insensitive to assumptions about the soft gluons gen-
erated at this point. (Since most of the energy is just motion along the direction
of the emitting parton, these are soft.) None of the observables checked at NA5
depended noticeably on the cutoff for the evolution after the scatter. At higher
energy the shape did depend on the cutoff for the evolution after the hard

scatter. This matter is discussed below.

The program was used to simulate pp collisions at center of mass energies
of: 23.8 GeV (NA5), 27.8 GeV (E-557), 30 GeV and 83 GeV (AFS). Between 30,000
and 60,000 events were used at each energy. The lower limit of the k; integra-
tion was, in each case, 2 GeV. The upper limit varied with energy; it was large
enough so that the cross sections for the E; values shown in the figures were not
significantly altered by the last k; value. Events with k; less then 2 GeV were not
included, as there is little reason to expect perturbative QCD to describe the
interactions of partons at such low energies. This means that the model does

not describe events without a hard scatter; these tend to be the lowest E;
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events. At low energies, such as those studied here, the events not described by

the simulation make up almost all of the cross section.

The first type of observable to be considered are the cross sections do/ dE;
for different calorimeters. Each of the experiments studied has a large calorim-
eter which subtends some large angle along the beam axis, and completely sur-
rounds the beam. The experiments can trigger on the F; deposited into either
the whole calorimeter, or some section extending only part way around the
beam. We shall sometimes refer to these sections by the azimuthal angle they
subtend. The smaller calorimeters tend to be most sensitive to jets in them.
The 2m calorimeters are sensitive both to events with jets of transverse momen-
tum, py¢, slightly less than £; /2 and to nonjetlike events. These latter are both
events of lower k;, that is, transverse momentum generated at the hard scatter,
where either more than the usual amount of bremsstrahlung has taken place, or
some low p; clusters have fragmented with high multiplicity. For example, at
Vs =63 about 3/4 of the cross section at £; of 20 is from events with k; <8, with

the remaining 1/4 coming from events with k; up to about 9 GeV.

At these energies the cross section do/ dkf is a very steeply falling function
of k;. In addition to the 1/k from the hard cross section there is, at these
energies, a factor of (l—z,)"(Qa). which comes from the wavefunction; it is the
probability that there is a parton of enough energy to undergo the hard scatter.
z; is Rky/ E,,, and a(@?) is at least 6 at @§ and increases with @ The result is
that the cross section do/dk? is a rapidly falling function of k? The parton
events at any fixed k; cover a range of values for any observable, for instance, F;
into some calorimeter. At any Z; in, say, a 27 calorimeter the cross section
comes both from events with k,~RE; /2, most of which have transverse energy

about £;, and from the tail of events with lower k; which fragment with
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particularly high transverse energy. Because the cross section is so steeply
decreasing, the small fraction of events at these lower k;'s that hadronize to a
system with transverse energy £; have a strong influence. Those events tend to
be ones with high amounts of bremsstrahlung or where either the beam jets or
scattered jets are at the high end of the range for transverse momentum. That
is, those events do not tend to look like four narrow jets. This is why, at low
energy (NA5S), high £; events are not jetlike. At higher energies (for example,
SPS) z; is smaller and the (1—z)% is not so important; the jets appear much

more cleanly.

The experimental data and the results of the simulation are shown in Figs.
5.1-9. The agreement is reasonable or good in all cases except the 2m calorime-
ter results from E-557, and, to a lesser extent, the 4m/5 calorimeter of that
experiment. This experiment and AFS are in disagreement since E-557 report
larger cross sections for fixed £; than do the AFS collaboration, who have a
larger calorimeter at the somewhat higher energy of 30 GeV. The 27 calorimeter
cross section at 30 GeV is about a factor of 2 lower than the experimental curve,

corresponding to a shift in £; of about a GeV.

That the simulation agrees with the experimental measurement of the cross
section for both 27 and smaller calorimeters over a range of energies is a strong
indication that both jetlike and nonjetlike events appear with the correct cross

section in the simulation.

At Vs =63 runs were made with two different gluon distributions, one that
went as (1-z)!° as z-»1 and one that went as (1—z)°. The simulation suggests
that the (1-z)° is preferred. The difference seems to come from the greater
density of soft gluons for the (1-z)!° the larger cross section at high & come

from events where a hard quark scatters off a soft gluon. The shape variables



_64_

were similar between the two runs.

Several different observables related to the shape of the events were stud-
ied at Vs =24, 30, and 63 GeV. As mentioned above, the accuracy of the simula-
tion of the cross section for calorimeters subtending different azimuthal angles
indicates that jetlike events occur at the correct rates, compared to the nonjet-

like events.

Fig. 5.10 is a comparison of the mean charge multiplicity between the
Monte Carlo and NA5 data. The agreement is moderately good, although the
simulated values rise more slowly than do the measured values. The current
simulation does better than previous work along these lines’ , and than the
predictions of a more naive model, where the event is just 4 Field Feynman
jets4.

Fig. 5.11 shows the mean value of £; into two back-to-back /2 sections of
the NAS calorimeter as a function of E; into the other m/2 sections. Both the
simulation and the data reach a constant level, the simulation being slightly
lower. The result of this simulation is significantly better than previous results.
The experimental curve approaches the plateau from below, the simulation from
above. This is an artifact of the simulation’'s requiring a parton scatter of k; at
least 2 GeV. Data with low £; in a back-to-back region are, experimentally, dom-
inated by low £; events, which are not simulated by the Monte Carlo. In the

Monte Carlo these events are dominantly those where the hard scattered par-

tons are in the opposite direction.

Planarity is a measure of how much an event, projected onto the plane nor-
mal to the beam axis, resembles back-to-back jets. It is constructed from the

transverse momentum tensor:

Ye¥ Ypapy

YPpy 2Py | (6.1)
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The sum is taken over all particles. The planarity is defined as:
P==—= (5.2)

where A and B are the larger and smaller eigenvalues of the transverse momen-
tum tensor (this is a two dimensional analogue of sphericity.) A value of 1 indi-
cates back-to-back jets, 0 a completely circular event. Fig. 5.12 shows the
planarity distribution for events with £;>10, and Fig. 5.13, the mean planarity as

a function of £;. Both results are in good agreerment with experiment.

Fig. 5.14 shows the mean total multiplicity in the AFS calorimeter com-
pared with experimental measurements of £; divided by the mean p; measured
in their drift chamber. The low £; events agree well with experiment; the high
E; events seem to have a lower multiplicity than the experimental measure-
ment. What this indicates about the shortcomings of this simulation is discussed

below.

Fig 15 shows the mean circularity (1 — planarity) as a function of ;. The
simulated events become too jetlike at too low an £;. Again, the significance of

this is discussed below.

Figs. 16-17 show the circularity distributions at Vs =63 for two bins of E;,
starting at 8 GeV, in one wall of the calorimeter. In the lower bin, 8 to 8.5 GeV
of transverse energy in the calorimeter, the events are somewhat too planar. In
the other bin they are far too planar. The problems with the shapes variables at

high F; are discussed in the next section.

All these discrepancies are consistent with the high p; jets fragmenting into
too few particles with too much p; per particle. This would make the jets nar-
rower, hence the events less circular. The mean multiplicity would also be

reduced at high F;. It would have little effect on do/dE; in the different
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calorimeters, as even the small ones are much larger than a jet. The mean p;
per particle was measured at the AFS in regions (in azimuth) toward, away from,
and normal to the thrust axis. The Monte Carlo calculations of the same quanti-
ties showed that the mean p; per particle in both the forward and away direc-
tions was 20% tc ?0% higher than the measured value. This gives further indica-
tion that the problem with the . “ape variables is that the high p; jets fragment

with too low a multiplicity.

Preliminary studies indicate that the trouble is caused by tne tr~atment of
the gluons, in particular, the fact that even soft gluons split color strings. When
a string, say the string connecting a final quark to the rest of the event, is bro-
ken by a soft gluon, the mass of the resulting cluster is not much larger than the
mass of the final quark, that is below \/f.e. A cluster this light can produce
only a few particles on hadronization. On the other hand, had the soft gluon not
been radiated (or had it not split the string), the cluster would have had a much

larger mass and hadronized into more particles.

There is much evidence to suggest that the disagreement with experiment
is, indeed, caused by the treatment of the gluons. The shape variables in the
region where the disagreement with experiment is most pronounced are sensi-
tive to changes in the conditions and cutoffs governing the splitting of gluons,
like the cutoff scale for radiation £,;. For example, if one refuses to split
gluons of less then some fixed energy, the agreement with experiment is much
improved. Likewise, if one puts all the final state gluons at zero mass, so that
soft gluons which are split get recombined because the clusters left behind are
below the cutoff, the agreement is much improved. Earlier work using parton
showers with a different model, with several ad hoc assumptions to reduce the

number of light clusters caused by splitting from soft gluons, for fragmenting
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gluons was able to reproduce the experimental result more closely7.

The treatment of gluons used here is intuitively unappealing in some
respects. Splitting gluons into quark antiquark pairs is completely artificial, and
allows soft gluons to break the string connecting, for example, a quark and an
antiquark. In the studies of e*e™ and NA5 it seems adequate to choose the
cutoffs such that there is not much soft radiation. The results of this study
indicate that in areas sensitive to hard gluons this method of reducing the
influence of the soft gluons is inadequate. The events with hard gluons are more
sensitive to the treatment of the soft gluons, since the hard gluons radiate far

more gluons than either soft gluons or quarks, whether hard or soft.

There is neither a calculation, nor an intuitive QCD based explanation for
the splitting of gluons, and certainly no basis to prefer one algorithm for doing
so to another on the basis of any theoretical grounds. One would strongly prefer
a model which is not very sensitive to such technical assumptions. In such a
model the soft gluons would become unimportant naturally and there would be
no need to adjust the technical assumptions to make them unimportant. We are
beginning to investigate other treatments of the gluons, that is, other ways to
model the division of parton final states with gluons into low mass color singlet
clusters which will then decay by phase space models. These methods will be dis-
cussed in chapter 6. The shape variables in high energy pp scattering seem to

be a good place to test new models.

The other area in need of improvement is the beam remnant. In the simu-
lation the mean p; per particle in the normal region was about 75 MeV (out of
400) lower than the experimental result. This result, as well as the low plateau
for the {£; > at 24 GeV, suggests that the beam remnants are somewhat too

narrow. While the model of the beam jet used here seems reasonable, though not
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good, at these energies, it predicts a multiplicity distribution at Vs =540 which

is far narrower than the UA1 measurements.

It is difficult to find theoretical guides for modeling the beam remnant. It
may well be that the best one can do is parametrize the experimental data. If
this is so more data on the structure of the high multiplicity events at UA1 will
be needed to parametrize the beam jets at collider energies. Possible improve-

ments to the treatment of the beam remnant are discussed in chapter 8.
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Fig. 5.18: Circularity distribution for events which deposit F; between 8.0 GeV and 8.5 GeV in one
wall of the AFS calorimeter, compared with the simulation. /s =63 GeV. The curve is the
simulated results, the points are measured data.
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of the AFS calorimeter, compared with the simulation. Vs =83 GeV. The line is drawn
through the Monte Carlo points to guide the eye.



-87_

6. Discussion and conclusions

6.1. Areas of phenomenological concern

The study reported in chapter 5 shows that the model described above is
moderately successful in describing high Z7y hadron hadron scattering at ISR
energies and below. There are some difficulties at these energies caused by the
treatment of the gluons, as discussed above. If one tries to extend the model to

collider energies, there is trouble with the beam remnants.

6.1.1. Treatment of gluons

The first issue is to correct the hadronization of the gluons. As we noted in
chapter 5, allowing soft gluons to split the color strings connecting the partons
has severe phenomenological problems. It produces clusters of too small a
mass, giving too few particles. In addition, it makes the predictions of the model
very sensitive to the number of soft gluons produced, for which the predictions

of the perturbation expansion are not reliable.

As an extreme example of the effects of soft gluons, consider a string con-
necting a quark and an antiquark; let each parton have a mass of 300 MeV and
the system have an invariant mass of 30 GeV, a typical PETRA energy. If no
gluon is radiated the system will evolve by string breaking to a few clusters, giv-
ing rise to an event with about 20 hadrons. If an arbitrarily soft gluon, say with
an energy of 1 eV, is radiated, we would have two clusters, each with a mass of

300 MeV. These could only give rise to a state with 4 pions.

Allowing a perturbatively generated soft gluon to have such a strong effect
is not only phenomenologically wrong, but it is inconsistent with the spirit of the

model. Perturbative QCD can only describe hard physics accurately; in the
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model the behavior of soft gluon fields is meant to be described by the string
model or parametrized by the phase space model. It is not described by pertur-
bation théory. A better model than the one we used would be one in which the
gluons naturally become unimportant as they become soft, so that perturba-

tively generated soft gluons have no effect.

One such model is to treat the gluons as kinks in the string, as is done in
the Lund picture described above. If one did not allow the strings to break, the
motion of the partons, acted on by the string tension, would describe a compli-
cated 2-dimensional surface in spacetime, the world surfaces of the strings. One
could then imagine allowing the string to break with uniform probability per unit
area, allowing only for cuts to insure that any remnant has enough mass for its
flavor. There would be a strong tendency for the string to break in the region of
a hard gluon where it is significantly stretched. Near a soft gluon the string is

not stretched so much; as the gluon gets softer its influence becomes less.

6.1.2. The beam remnant

The beam remnant is governed by low transverse momentum physics; it is
not described well by perturbative QCD. One can hope to describe it by
phenomenological models based on QCD ideas. As was mentioned above, the
model tried here, while moderately successful up to ISR energies, was not suc-
cessful at collider energies. There are several difficulties with the model at col-
lider energy (540 GeV). In the first place, the multiplicity distribution is not as
expected. If one plots probability for an event with n particles (or n charged
particles) vs, n/<n>, for low energy data, the plot is roughly independent of
the center of mass energyl. This is called KNO scalingz. At the collider the

KNO plot is much broader than at lower energys. Also there is a rise in the
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average multiplicity as the transverse momentum per particle increases that is
more than can be explained by events with hard bremsstrahlung4. There is, as
yet, no phenomenological model that can explain both the high energy and the

low energy data, so the best one can do is to fit the data at each energy.

The approach used also has some severe theoretical problems. In a hadron
hadron event there are the two bearn remnants, and the two scattered partons,
and whatever partons arise from radiation from these or from the partons with
spacelike momentum before the hard scatter, all separating from one another.
Initially all these are colored; then the color screens. In principle, all these
interact. In the model described above, the two beams exchange some momen-
tum, and their color is screened against a fairly soft gluon radiated by the active
partons heading toward the hard scatter. There is no reason, if the exchange of
momentum is really present that it should not involve the scattered jets as well.
In fact, in spacetime, the beam remnant, and most of the strings formed by par-
tons radiated as the active parton from that hadron evolves to the hard scatter,
are, at the time when the interactions get strong, on top of one another, given
the finite widths of the strings. One thus ought to expect the hadronization of
these strings to influence one another. In that case one needs some model for

the hadronization of such a system.

One idea that begins to éddress these issues, once the soft gluons do not
break the strings, is to treat the beam remnant as part of a baryonic string that
is connected to the remainder of the event as dictated by the evolution. In this
model the beam remnant is connected to the radiated quanta. When the string
breaks, probably near some hard radiation, the beam remnant would be left in a
substring with the softer radiation in a very massive substring, which would then

hadronize. This model may not go far enough. The model will only group the
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beam remnant and the attendant radiation as a substring part of the time, as
determined by the string breaking model. Other times the beam remnant may
be separa_ted from the radiation by the first string break. It might be necessary
to force the beam remnant and attendant radiation to hadronize together,

separate from the partons coming from the hard scatter or hard radiation.

6.2. Other concerns

6.2.1. Better perturbative approximations

We should use better approximations to perturbative QCD then those that
were used. It is known that the leading log approximation is accurate only very
close to the collinear limit® , and that higher order corrections are importante.
In e*e” it is possible to use the full perturbative cross section to order a2, or
higher, if it were computed, at least at PETRA energies. This is possible since
states with more than 4 partons are not very important; there are no 5 jet
events. In hadron hadron scattering, and e*e~ at higher energy, where many
parton events are important, it is not practical to compute perturbation to high
enough order. It is important to incorporate subleading terms into the vertices
of the decay chain to make them as accurate as possible. Some steps in this
direction were taken in this model by the particular choice made for z, the
E+|p| fraction, which does reproduce the most important subleading term in

ete -»qg7G. More work needs to be done in this area.

All that would be required to use a more accurate approximation for the
hard scattering cross section would be to compute the higher order perturba-

tive corrections to the 2-2 matrix elements by the usual procedures.
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Since, in hadron hadron scattering, hard radiation is most likely to occur
near the hard scatter (that's where the partons are furthest off shell) it might
be a good_idea to treat the hard scatter as a 2-n process to whatever order per-
turbation theory has been calculated; the leading log approximation would

describe the evolution of the partons going into, and the partons emitted from

the hard scatter. Care would have to be taken to avoid double counting.

6.2.2. Cutoffs and a spacetime picture

We have already remarked that the resolvability cutoffs used are theoreti-
cally questionable. The use of mass cutoffs to determine whether a cluster
decays by the string breaking picture or the phase space model and where a
string can break is also arbitrary. There is some evidence from heavy flavor
production in e*e” annihilation that a mass cutoff is not correct”. It has been
suggested that spacetime constraints might be better”. If so, it might be advan-
tageous to use a spacetime picture to determine all the cutoffs, as well as to
determine which partons overlap in the hadronization process and should,

therefore, be considered together.

A spacetime model would have some theoretical advantages besides provid-
ing a better picture of the cutoffs. The soft hadrons are produced before the
parton evolution has finished. The hard partons have moved away from the
region where the soft hadrons are formed, but the slowest among them can still
be close enough to the region where the soft hadrons form, within the intrinsic
size of the strings, for the partons and forming hadrons to affect one another. A
spacetime model of hadronization would allow us to address this issue. Develop-

ing such a model might improve our understanding of the hadronization process.



6.3. Conclusions

We have found hadron hadron scattering to be a useful place to study
aspects of QCD models not tested in the cleaner arena of e *e~. The ability of the
cluster model, which was developed for e*e™, to reproduce many features of the
data without adjusting parameters, is an indication that the model is based on
sound ideas. We have found, however, several aspects of the model which are
unsound. We have shown where the model must be improved to increase its reli-

ability.
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Appendix—Use of the Monte Carlo Program

This appendix describes the particular Monte Carlo Program described in

the text and used in the investigations reported in chaper 5. A tape of the pro-

gram is available from G. C. Fox. The tape is in the tar format for UNIX

machines.

The program is organized into several basic modules. The first step is to

input the data and organize the calculation. The values of k? are stepped

through; for each value the following modules are called:

1:

y

A collection of partons is evolved to the scale @*=4k{?. During this stage a
large disk file is created to store the information about the partons associ-
ated with the SLP and a smaller one, containing a summary of the set of
final SLPs generated, is also created. The program can be set to remove
these as it goes along.

The collection of final SLPs is gone through to find a set of hard scatters.
When a suitable set is found they are evolved, one by one, to the cutoff. A
disk file containing these events is written.

Each event, calculated at the parton level, is then run through a routine
which puts in the beam remnants and forms the initial clusters.

The clusters are hadronized according to a QCD cluster model. The output
of the hadronizer is contained in the common block pricls. The weight of
each event is in the common block sigma. The final events are written to

disk.

The disk files of final partons and final events are for calculating observ-

ables. The observables could be calculated on an event by event basis within the

main loop, avoiding the need for writing these large files if it were so desired.
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The files are found in several directories on the tape; FORTRAN and, some-
times, ratfor source is provided. There is one C program. The main directory
contains the main loop (in gedmain), the routine to input data, setup, a routine
tree which takes the output of the parton shower, forms the initial clusters and
calls routines beamj and flavs to setup the beam remnants and then calls the
hadronizer. There are also some utility programs to calculate Lorentz and vec-
tor algebra and a program dump.c to do rapid 1/0 with the disk. The parton
shower code is found in the directory parton. The hadron code is found in the
directory hadron. The directory cb contains common blocks for the routines.
In addition to the routines supplied, a function ranf() that returns a random
number Let*ween one and zero is needed. The seed for the random number gen-

erator is set by ranseed{integcr), and iseed() should return a seed.

The routines which a user is likely to wish to rnodify are the ones in the
1
main directory, and zint in the parton directory which gives f; f(z)dz, the

integral of the user supplied distribution functions, and the routines it calls.

The subroutine free takes the iriformation from the parton shower (in com-
mon block cjet) and finds clusters and effective quarks and antiquarks in them
which are stored in common blocks sngltz and kistrs; the soft hadrons pro-
duced by the beam jet routines are in common block pricls. There are com-
ment cards in the common blocks which should explain the variables. The code

for hadron types is supplied with the tape.

The version supplied on this tape is that described in the text; i. e., the
beam jets and the gluons have the problems alluded to in the text. When a ver-
sion of the hadronizer with the proposed treatment of the gluons is available, it

will be included on the tape.



& 96 &
The input required by the program is as follows:

read (5,*) iwhat,nf,ntries, jprt.nprl

iwhat should be set to 15. nf is the number of flavors that can be produced.
ntries is the number of partons with spacelike momentum with energy
above the cutoff to be generated before trying to combine them. jprtis a
print argument passed on to free; 0 is recommended. nprfl is how many

full events (at the parton level) are printed.

read (5,*) gsq,tcut,alam2,(xmasq(i),i=1,nf)
gsq is not used. teut is the mass cutoff for resolvable radiation from time-
like partons. alam2 is A?>. The xmasq(i) are the masses of the quarks.

read (5,*) jseed
jseed is the seed given to ransef. A value less than 1 means get the seed
from iseed.

read (5,*) ecm,q0sq,ec1,ec2

Respectively, the center of mass energy, the scale @§ at which the partons
are extracted, no longer used, and the energy cutoff for radiation from par-
tons with spacelike momentum
read (5,*) nprgd,nprbd,nball,iec1tp,kttype,iprtp

nprgd is how many good jets (up to hard scatter) are printed. nprbd is how
many bad jets (up to hard scatter) are printed. (Bad means that the parton
radiates to an energy below the cutoff.) nball is how many bad jets (up to
hard scatter) are allowed, a value of -1 means as many as needed, which is
what should be used. iecltp and kttype should be set to 0. iprtp should be

0 for a pp scattering and 1 for pp scattering.
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read (5,*) finprt,evprnt
These logical variables control some debugging prints in the main program.
They should be set false

read(5,*) (disfun(j,i),j=1,i0) for 6 cards
These are the distribution functions for valence u, valence d, light sea
quarks, s and § quarks, charmed quarks, and gluons, one per line. The first
nine entries on each line determine the z distribution; they are three sets
each of the form a,;z"3(1—z )3 which are added together. The tenth entry is

m<k;>* The (real) values for ag are rounded to the nearest integer for con-

venience.

read(5,"(a32)") file(i) for 6 lines
These are file names. Each is a prefix to which a character is added which
depends on which k; region the file refers to. The first is for the collections
of particles associated with the partons with spacelike momentum; the
second, for the summarry of parton with spacelike momentum properies.
The fourth is for the final events at the parton level; the fifth, for the hadron

level. The other R are no longer used.
read (5,*) maxev

The number of hard scatters in each region of k;. The actual number of

events generated may be slightly less than this because of roundoff errors.
read (5, *) bfud(1),bfud(2),beamwd,fudfig

Some parameters for the beam jet, respectively: the amount of momentum

transferred between the jets when the active parton is a quark, and a gluon.

The amount of transverse momentum for the soft hadrons relative to the

remnants. This should be very small ( .01 GeV? ), and a flag which should
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be false.
read (5,*) ktlow,kthi,nokt
The first two are real variables, the upper and lower values for the k&

integration. The third is the number of regions to devide the range into.

There is one more integer read in by the main loop after all these parame-
ters. It is the number of regions for which to delete the information about the

partons with spacelike momentum after it is no longer needed.



