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Abstract 

This dissertation consists of two parts . The first part contains a discussion 

of the 'fine-tuning' and 'naturalness ' problems in grand unified theories . lt is 

argued that, while it is impossible to solve these problems in conventional 

theories which contain scalars, supersymmetric theories that require no fine 

tuning can be constructed . ln these theories the problem reduces to that of 

obtaining a light Higgs doublet at the tree level, without any unnatural adjust­

ment of parameters . A realistic supersymmetric grand unified theory that has 

this feature is constructed. lt is based on the gauge group SO(lO) . Supersym­

metry is explicitly broken through terms of dimension two. 

The second part is an analysis of the interaction of fermions with a non­

Abelian ('t Hooft-Polyakov) monopole . Monopoles are invariably present in grand 

unified theories , and recent studies with massless isospin half fermions have 

shown that monopoles catalyse fermion number violation. We show that this 

phenomenon can be described in simple terms using the language of instanton 

physics. This description also permits a straightforward extension of previous 

results to arbitrary fermion representations . The importance of half-integer 

winding numbers is stressed. An explicit calculation is done in the case of iso­

vector fermions. 
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INTRODUCTION 

One of the principal goals of physics since the beginning of the century 

has been the unification of all particle interactions. Today we are aware of 

four kinds of interactions that, at least at low energies, behave in qualitatively 

different ways. They are the gravitational, weak, electromagnetic and strong 

interactions. The first major step towards unification was taken when it was 

realized that the weak interactions could be described by a gauge theory very 

similar to electromagnetism and it was .noticed by Weinber.g and .Salam 

(independently) that both interactions could be described by an SU(2)x U(l) 

gauge theory. Having a non simple gauge group and consequently two 

independent and unrelated coupling constants meant that it was not a true 

unification in the literal sense of the word. However it was a conceptual 

unification in that both interactions were now parts of one bigger gauge 

theory. Belief in gauge theories was further strengthened by a series of 

developments: The Weinberg-Salam theory was shown to be "renormalizable"­

which meant that one could now make detailed and unambiguous calculations 

of scattering amplitudes and compare them with experiment. The strong 

interactions were also shown to be quite adequately described by a gauge 

theory based on the group SU(3) . While calculations were difficult to do 

because of technical complications - infrared divergences -there was no prob­

lem of principle. The discovery of asymptotic freedom opened up the high­

energy regions to calculations and even made some successful predictions 

such as the violation of scaling. 

Having discovered a complete theory (at least for low energies) of the 

three basic interactions and being struck by the fact that they were all 

described by gauge theories based on compact semi-simple Lie groups, it was 

time for physicists to be more ambitious. It was shown that one could achieve 

a true unification of the three interactions by embedding SU(3)xSU(2)x U(l) 
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in the simple Lie group SU(5) . Besidesthe aesthetic appeal of unification, it 

also automatically solved the longstanding problem of explaining the quantiza­

tion of electric charge . 

As more detailed calculations with the minimal SU(5) theory were done, it 

became clear that it could not be taken to be a complete theory, since some 

of its predictions, particularly fermion masses, were not quite right. The spe­

cial successes of the SU(5) theory were that it predicted correctly sin2e w and 

mb . Apart from these specific quantitative predictions, the hypothesis of 
mT 
grand unification also suggested solutions to the puzzle of the observed baryon 

- antibaryon asymmetry observed in the universe . Thus the idea of grand 

unification has been widely accepted though the difficulties with the SU(5) 

model prompted innumerable other models based on different gauge groups 

to be constructed . 

To make further progress one needs to develop some criteria to enable 

one to select from a plethora of possible theories the few that are worthy of 

detailed analysis . We already have some abstract principles , namely, we 

believe in local renormalizable quantum field t.heory , at least up to energies 

comparable to the Planck mass, and we can insist on theories based on a 

gauge principle , since all known theories (including gravity) are such. A new 

additional requirement that can be imposed is that of naturalness . We require 

a theory to be more than just renormalizable , we require it to be natural. i.e ., 

one should have natural explanations of any dimensionless number that can­

not be said to be of 0( 1) (by any stretch of the imagination) . Grand unified 

theories, as we explain later, abound in such unexplained small numbers. 

Imposing this requirement, in fact, would directly rule out all conventional 

grand unified theories . The Technicolour and Extended-technicolour theories 

were motivated by just such considerations. These have not been very suc­

cessful phenomenologically, however. More attractive in this respect are 

supersymmetric theories. Supersymmetry is a symmetry that relates bosons 

with fermions and in the process effects many cancellations of divergences in 
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quantum calculations . It affords a way to make grand unified theories more 

natural. 

Another independent requirement one would want to impose on a theory 

is that it describe quantum gravity as well. This is a non trivial requirement, 

as evinced by the fact that gravity is nonrenormalizable and is also extremely 

singular at the quantum level as soon as it is coupled to ordinary matter. 

Remarkably enough, supersymmetry may come to the rescue here also. To 

describe gravity all we have to do is to require that supersymmetry be a local 

(gauge) symmetry. (This is also in keeping with our proclivity towards gauge 

principles.) Since the commutator of two supersymmetries generates a 

space-time translation, we automatically get a theory of gravity when it is 

made local . Supergravity theories (there are eight of them known as N= 1 to 

N=B supergravity) are all much less singular in their quantum properties. 

There is even the faint hope that N=B supergravity might be completely finite 

to all orders, though it is suspected to be divergent at either three loops or 

seven loops. In any case , it is significant that these two superficially unrelated 

requirements, namely, that the theory describe gravity and that it be natural, 

seem to point towards the same physical principle -that of supersymmetry.We 

think there is strong motivation, then, for trying to construct supersymmetric 

grand unified theories that share the successes of ordinary grand unified 

theories and furthermore satisfy the requirement of naturalness. In the first 

part of this thesis, we describe an attempt to construct a realistic supersym­

metric grand unified theory that satisfies certain naturalness criteria. 

The ultimate test of a physical theory lies in comparing its predictions 

with what is observed in the real world. One of the most significant unverified 

predictions of grand unified theories is the existence of extended objects (sol­

itons) that look like magnetic monopoles at large distances . They are, in fact, 

a serious problem in the old standard cosmology, since it has been argued 

that monopoles should have been produced in significant numbers in the early 

universe whereas none have been observed experimentally. In the inflationary 
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universe scenario this problem does not arise since the number density of 

monopoles is sufficiently diluted during the inflationary phase. Still, it is 

important to be able to set precise experimental limits on the number density 

of monopoles in order to be able to compare with predictions of different 

cosmological models . 

Recent studies on the properties of monopoles indicate that much more 

stringent limits can be placed on the number density of monopoles than was 

hitherto thought possible . This is due to the phenomenon of monopole 

catalysed nucleon decay. In the second part of this thesis we investigate this 

phenomenon in some detail. We consider an SU(2) gauge theory broken to 

U(l) . We study the interaction of fermions with the monopoles in this theory. 

The monopoles that occur in grand unified theories are essentially the same as 

these , since, at least locally, they can be described by the SU(2) subgroup of 

the full gauge group . It is expected that these results will be applicable to the 

grand unified monopoles also - this is a subject of ongoing research. 



- 5-

Supersymmetric Grand Unified Theories 

1. The Hierarchy, Naturalness and Fm.e-Tuning Problems: 

In the real world there are various observed mass scales, which on the 

face of it seem to be completely unrelated to each other . In order of decreas­

ing magnitude : the Planck mass (Mp ~ 1019 Ge V ), the weak interaction scale 

(Mw ::l;j 102 Ge V, the strong interaction scale (AQcD ::l;j 102 MeV), the electron 

mass m 8 ::l;j lMev, the inverse radius of the universe ::l;j 10-32ev - to mention 

only the most striking ones. In addition to these scales grand unified theories 

introduce yet another unobserved scale Mx - the scale at which the strong, 

weak and electromagnetic coupling constants become equal, which is on the 

order of 1016 Ge V . What is striking is - and this is essentially the statement of 

the hierarchy problem - the large ratios of some of these numbers to the oth­

ers . There are extremely small dimensionless numbers like 

MMw ~ 1 o-17or Mw ~ 10-14 in our theories and no explanation or understanding 
P Mx 

of why they are so small. In the absence of a sensible ( finite or renormalizable 

) quantum theory of gravity, it is perhaps premature to worry about the ratio z:. However, the ratio Z; in grand-unified theories still remains to be 

explained. The same holds for most of the other small numbers that occur. • 

In addition to having two widely separated unexplained mass scales , 

grand- unified theories have other unpleasant features. In order to get the 

right low energy phenomenology, one has to 'fine-tune' parameters in the 

Lagrangian to an incredible degree of accuracy. This has been called the 

'naturalness' or 'fine-tuning' problem. In its usual form, this involves choosing 

• The ratio ~D is usually 'explained' as the exponential of a not so small number. 
Mx 
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two large mass parameters MA,MB :::::~ Mx such that MA-MB :::::~ Mw . This implies 

a fine-tuning of the relative values of MA and Ms to an accuracy of fourteen 

decimal places . It is plausible that a satisfactory physical theory should not 

be dependent on such delicate adjustments but rather have predictions that 

are not excessively sensitive to small changes in the bare parameters of the 

Lagrangian. In ordinary renormalizable field theories with scalars this prob­

lem also manifests itself at the quantum level. for example in corrections to 

physical quantities such as masses of the scalar particles. The corrections 

6m2 are of O(A2) where A is the cutoff in the theory. This entails a subtraction 

to keep the physical mass at the experimentally observed value , i.e. 

2 - 2 + 2 _ - A2 
m ph.ys - m ph.ys m c.t . '-'H . 

Here 'f'nph.ys is the physical mass of the scalar particle and is taken to be the 

renormalized parameter in the Lagrangian. m 2ph.ys + m 
2 

c t is the bare 

(mass )2 (c .t . stands for counterterm) and is chosen to cancel the quantum 

corrections that are generated, which include the divergent piece a.A2. If 

m 2phys :::::~ 100 Ge V 2 and A :::::~ Mp then we have a fine tuning of 34 decimal places! 

This has to be repeated at each order in perturbation theory. Thus, whether 

or not we have to tune things at the tree level (as in grand-unified theories), in 

all field theories with scalars we have to tune parameters at the quantum 

(loop) level. It should be emphasised that there is no inconsistency in any of 

these operations. However, one would like to restrict a physical theory to be 

more than just consistent , one requires it to be natural . We can phrase this 

requirement in the following way: a change o'A. in the bare parameters A. of the 

theory such that o'A.A. «1 should lead to a change 6P in the value of a physical 

quantity P , satisfying 0: «l. This requirement is imposed before any sub­

traction or any other form of renormalization is done , so a physical cutoff is 

kept in the theory. Stated in this form this requirement essentially forbids 

any form of fine tuning both at the classical and quantum level. 
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In the above description the problem of scales was divided into two 

separate problems. One was the difficult issue of how the scales were gen­

erated in the first place. The other was the question of how, given two widely 

separated scales, they are to be kept apart without any unnatural adjustments 

of parameters, either at the tree level or at the loop level. It is clear that any 

theory that claims to solve the first one (the hierarchy problem) must neces­

sarily solve the second one also. 

There have been some attempts to solve the hierarchy problem. Many of 

them are based on having no fundamental scalars in the theory but only com­

posite ones , made out of fermions . These are the technicolour schemes [ 1]. 

This automatically solves the problem of quadratically divergent corrections 

to the masses of scalars (simply because there are no fundamental scalars•), 

and hence the fine tuning problem. The solution to the hierarchy problem 

then consists of generating a scale Atech.nico!our in a manner analogous to the 

way AQCD is generated . The full gauge group thus is of the form ~ech.nicotour X 

SU(3) X SU(2) X U(l) . At this scale the technicolour interactions cause the 

techniquarks to confine and also break chiral symmetry, and the resulting 

technipions become the Higgs scalars necessary for the Weinberg- Salam 

mechanism. While extremely elegant in its conception this scheme suffers 

from a serious defect- there is no mechanism for generating quark and lepton 

masses . To get around this various modifications have been proposed like the 

extended technicolour schemes [2] but none of these have really been suc­

cessful. The only other serious attempt to solve the hierarchy problem is the 

inverted hierarchy scheme [3]. However, we shall not describe it here. In this 

thesis we shall not have anything new to say about the hierarchy problem. We 

shall only discuss an attempt to solve the fine tuning problem . In the next 

section we describe field theories that have global supersymmetry and 

• Fermion mass correcuons can onJy be logarithmically divergent and a number like Jog 
Mp I M r l'tj 20 which is not unacceptable from the point of view of the fine tuning problem. 
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introduce N=l superfield notation. In sec. 1.3 we discuss a supersymmetric 

grand unified theory that does require a fine tuning. We also motivate explicit 

supersymmetry breaking. 

In sec. 1.4 a realistic SO(lO) theory that does not require any fine tuning, is 

described and we conclude in sec 1.5 with some thoughts on linking up super­

symmetric grand unified theories with higher N supersymmetry and super­

gravity theories. 
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2. Supersymmetry 

Supersymmetry is a symmetry that relates particles of different spin with 

each other. There exists a huge mass of literature [ 4] on field theories with 

global or local supersymmetry, so we shall not discuss these theories in detail 

here. However we shall mention a few salient features that make these 

theories so interesting even in the absence of any experimental evidence for 

supersymmetry. First, the unification of particles of different spins into one 

supermultiplet is aesthetically very attractive. Second, the supersymmetry 

algebra can include both internal symmetry and space time symmetry gen­

erators. The commutator of two ~upersymmetry transformations gives a 

spacetime translation.• Thus when supersymmetry is made local we naturally 

obtain a theory of gravity. Since the algebra contains internal symmetry gen­

erators also, there is for the first time , the possibility of a real unification of 

gravity with the other three interactions. Finally, and perhaps most impor­

tantly, theories with super symmetry, local or global are invariably less singu­

lar in their quantum properties than corresponding non supersymmetric 

theories. AB an extreme example N=4 supersymmetric Yang-Mills theory has 

been proven to be finite to all orders of perturbation theory. The N=B super­

gravity theory is known to be one-loop finite even though it contains a rich 

spectrum of particles besides the graviton. Ordinary gravity on the other 

hand is extremely singular as soon as you include any 'matter' particles (par­

ticles of spin <2) . The N= 1 supersymmetric theories also have much better 

quantwn properties than ordinary field theories. They obey certain 'no­

renormalization' [5] properties. These have the consequence that, apart from 

overall wave function renormalizations, only supersymmetric expressions 

which can be written in the form J d 48( ... ) are generated by graphs in any 

order of perlur.bation theory. This implies , then, that masses and Yukawa 

couplings are not renormalized. This property makes supersymmetry very 

•The supersymmetry algebra is described in Appencfu A 
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useful when one tries to solve the fine tuning problem. In non-supersymmetric 

grand-unified theories with scalars there is no hope of solving either the 

hierarchy or fine-tuning problems. 

We proceed to describe the construction and properties of renormalizable 

field theories that are supersyrnmetric. Only theories with one supersym­

metry are described here. 

In Appendix A the abstract supersyrnmetry algebra with N supersym­

metry generators (N < 4 for reasons explained there), has been written down 

and the field content of the supermultiplets that form irreducible representa­

tions of this algebra is also given. We reproduce here for convenience the 

relevant part for N=1 supersyrnmetry. The algebra is 

[ Q ll' p ~] = [ Q ~ 'p ~] = 0 

[Qa.M,u.v] = i(a;.wQ)a 

and the irreducible representations are ( 0 , 112) -scalar multiplet which con­

sists of one complex scalar and one Major ana ( or Weyl) spinor . ( 1/2 , 1 )- vec­

tor multiplet with one Majorana (or Weyl) spinor and one real vector. In order 

to write down Lagrangians that have invariance under supersyrnmetry we have 

to represent the abstract algebra on fields. The first such representation 

found was : 

6A = ia'ljJ 
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A and F are scalars , B and G are pseudoscalars and 'if; is a Majorana spinor. 

One can verify that (o1o2 - o2o1)A = -2iaa.Ua2a~. Thus the commutator of 

two supersyrnmetry transformations gives a space-time translation as 

required by the abstract algebra. Furthermore, using the equations of motion 

(O-m2)A = (0-m2)B = (a+m)'if; = 0 

one can verify that the combinations (rnA + F) and (mB + G) are invariant 

under supersymmetry. Thus one can take F = -rnA and G = -mB without spoil­

ing the supersymmetry. Thus the independent degrees of freedom are A, B 

and 'if;. This constitutes the (0, 1/2) representation mentioned earlier. F and G 

are auxiliary fields and can be eliminated using their algebraic equations of 

motion. It is possible to describe all the fields (A, B, 'if; , F. G) as the com­

ponents of one superfield- known as the chiral superfield, as follows: 

. . 
<P(x ,e) = !f~(x) + eo.'if!o. + e2z + ieo.£lao.p'P + i/213 27!/ao.p'l/lo.(x)- 1/482iFO'P 

where !f1 = A -iB ' z = F + iG eo. · t t w 1 · e- · ·t -./2 , 1s a wo componen ey spmor . ~ 1s 1 s 

complex conjugate with the opposite chirality. It is a Grassmann (anticommut­

ing) number i.e. it satisfies ~eo.,epl = 0, f de = 0 and j dee = 1. x.u,e and e 
constitute the coordinates of a superspace. If e is assumed to have negative 

chirality then 'if; describes a left handed spinor. 

To write down a Lagrangian in terms of <P it is necessary , first, to write 

down the kinetic terms. In components the supersymmetric kinetic term is: 

In terms of superfields it is J d4e~<P. A mass term is easily written down in 

terms of chiral superfields: 
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A cubic interaction term would be 

A word about the dimensionality of the superfields : <P has the dimensions of 

mass since it starts off as rp = ~(A -iB) and A and B are canonical scalar 

fields . Furthermore 'if; has a canonical dimension of 3/2 which implies that e 
has dimension -1/2. From J dee = 1 we conclude that de has dimension 

+1/2. Thus J d 2e<P3 is a dimension four term, as it should be . The others can 

be checked similarly. We can now write down a general Lagrangian in the form 

The Lagrangian is manifestly supersymmetric, being written in terms of 

superfields and integrated over all e. W ( <P) is called the superpotential for 

reasons that will become clear and has the generic form m <P 2 + g <P 3 . To get 

the component level Lagrangian we have to eliminate the auxiliary fields F and 

G using their equations of motion. If, for e .g., W(<P) = m<P2 + ~g<P3 then: 

G + mB + 2gAB = 0 

Substituting these expressions for F and G into the mass, kinetic and interac-

tion terms the full scalar potential is obtained. A very convenient shorthand 

way of writing this potential is: 

V(A,B) = f"G + G2 

where it is understood that for F and G one is to substitute their equations of 

motion. This tells us two things right away : i) V(A ,B)'?:. 0 in supersymmetric 

theories . ii) If F=G=O at the minimum, i.e. if supersymmetry is unbroken, then 

V(A,B)min =0. Also , if we can find a solution to the equations F=G=O, we have 
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automatically minimised the potential and also verified that supersymmetry is 

unbroken at the minimum. 

Let us denote F-iG by z and F+iG by z •. Then we require z = z • = 0. The 

equation z = 0 implies (using the equation of motion of z): 

2 4 .i-3 where W = miP + 3g'i' . But 

. J 2e oiP a w 
1 Smce d az = 1. we get 8i &=o =0. It is easier to say this in words : write 

down the superpotenlial and replace the superfields by their scalar com­

ponents and then minimise this 'potential'. All this assumes that the equations 

F=G=O have a solution. If they do not, we cannot use this short-cut. We have 

to minimise the full potential V(A.B)=F2(A.B) + G2(A,B) . Furthermore in 

that case supersymmetry is spontaneously broken. 

We now turn to the vector superfield: V(x ,e .e) can be expanded as (in the 

Wess-Zumino gauge) 

Internal symmetry indices have been suppressed. We do not bother to write 

down the supersymmetry transformation laws of the components fields. The 

gauge invariant supersymmetric kinetic term is 

which shows that D is an auxiliary field. We can now write down a gauge invari­

ant interaction between the chiral superfields and the vector superfield: 

On expanding into components , in addition to the usual covariantising of 

deriv~tives we get an additional term rp' Da. (ta )/rp/ where t a are the Hermitian 
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generators of the group. Thus the equation of motion forD becomes : 

The potential of the scalar fields V(A,B) becomes now 

V(A,B) = F2(A,B) + G2(A,B) + D2(A,B) 

To minimise this we have to require F=G=D=O. The extra condition D (A.B)=O is 

usually not very difficult to satisfy. For instance we can write down the impli­

cations of requiring D=O for some representations of S0(10) that will be useful 

in a later section. 

for all values of a . Either A=O or B=O or A B. 

45,54 [A,B] liiJ = 0 

16, 16 

If we assume that <x[>=<xl> = (0,0, .. ,., ,1) as usually required for S0(1 0), 

then each term is individually zero unless ta is diagonal . Then however 

ta = ta• and so a necessary and sufficient condition for the vanishing of the D 

term is <x1> = <x2>· 

Having described the N= 1 supersymmetric Lagrangian and the tree level 

properties of the superpotential we move on to the quantum properties of 

these theories .[5] The quantum calculations can be done in a manifestly 

supersymmetric way using the technique of supergraphs. A result due to 

Grisaru, Rocek and Siegel is that to any order in perturbation theory the 

effective action can be written as an expression local in e : 

Power counting leads to the following result for the degree of divergence of a 
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graph: d = 2- E-M (-1 if the graph has only chiral or only anti-chiral external 

lines) where E is the number of external chiral (or anti chiral) lines and M is 

the number of mass insertions in the internal lines. This formula is easy to 

explain : d48 takes up two powers of mass, each external chiral line takes up 

one power of mass and so do the mass insertions. Finally, if all the external 

lines are either chiral or anti-chiral then one needs either a D2 or a JJ2 to get a 

non zero d 48 integration. 

The most important point is that, as mentioned before, neither the 

masses nor the Yukawa coupling constants get renormalized except through 

wave function renormalizations . This is because they are all of the form 

J d 28 W(cfl) and not J d48 . Thus we are allowed to leave out mass terms or 

Yukawa terms, even if there is no global or local symmetry forbidding them, 

without compromising renormalizability. We will have occasion to comment on 

this later. 

From the phenomenological point of view the N= 1 theories with super­

symmetry broken softly can be made consistent with all the low-energy exper­

iments. At higher energies they are expected to show significant differences 

from ordinary grand-unified theories, not least because they predict a host of 

new particles that are not necessarily superheavy. The higher N supersym­

metric theories have a basic problem in that they are all left-right symmetric 

(for the spin 1/2 particles) contrary to what is observed in the real world. 

This is because there are two supersymmetry generators and in turn they 

relate a helicity + 1/2 to a helicity 0 particle and the helicity zero particle to a 

helicity -1/2 particle all in the same representation of the gauge group 

(because the supersymmetry generator is a gauge singlet). The problem is 

less severe in the gauged supergravity theories where the supersymmetry 

generators themselves carry internal symmetry indices. In that case the left­

handed and right-handed fermions, related by supersymmetry, could have 

different internal quantum numbers such as electric charge or colour . 



- 16-

We restrict ourselves in this thesis to N=l supersymmetry except for a 

brief discussion of the N=2 case in the Appendices. We shall describe the 

supersymmetrised version [7] of the SU(5) grand-unified theory [8] and use 

that opportunity to illustrate the fine tuning problem. We shall then describe 

in detail an SO( 1 0) model which does not have this problem. 
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3. A SUpersymmetric Vodel Illustrating the FIDe-Tuning Problem. 

Let us look at the following SU(5) model. which illustrates the fine tuning 

problem: 

W is the superpotential, i.e. the Lagrangian is J d 4xd2B W +h. c. + kinetic 

terms. ~is a chiral superfield transforming as a 24 under SU(5) . Hand H' are 

also chiral superfields that transform as a 5 and 5 respectively. ~ contains in it 

the adjoint 24 needed to break SU(5) down to SU(3)XSU(2)XU(1). Hand H' are 

responsible for breaking SU(2)XU(1) down to U(1). Unlike the case of ordinary 

SU(5) the super symmetric theory does not allow the complex conjugate of the 

5 in place of a 5, because complex conjugation changes the chirality of the fer­

miens in the superfield. The chirality of the superfield is important, because 

the coupling J d2Brp 1rp 2rp 2 contains Yukawa couplings between the fermions of 

each superfield. Thus we need a separate left-handed 5. To minimise the 

potential we have to solve the equations F=G=O. These are : 

...£.!.. =0 
8Hz 

~=0 
BHy 

(1) 

=> 

=> 

We are using some shorthand notation : in the equations, ~. H, and H' stand for 

the (non auxiliary) A+iB components of the superfields ~ . H and H' respec-

tively. There are three possible solutions to these equations corresponding to 

three vacua each with a different symmetry and all of them degenerate in 

energy. One of them has <H> = <H' > = < ~ > = 0 and SU(5) is unbroken . 

Another has SU(5) broken to SU(4)XU(1) . The third one, which is the one we 

shall study, has SU(5) broken to SU(3)XSU(2)XU(1). 

(I) c Diag. (3,3,-2,-2,-2) 
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Consider the term A.2H (E + 3m'o)H . On substituting for the scalar part of E, 

the vacuum expectation value (vev) shown above, it becomes clear that the 

colour triplet Higgs gets a (mass )2 oc (2m +3m' )2 whereas the doublet which is 

the Weinberg-Salam Higgs gets a (mass )2 oc (3m-3m' )2 . Since the doublet has 

to get a vev at lower energies it has to be kept light. The colour triplet on the 

other hand, has to be made superheavy in order to prevent proton decay from 

occurring with too high a rate . Thus we must impose m- m' R:j O(Mr; ). m is of 

order 1015 Ge V. since it characterizes the SU(5) breaking scale and if we 

choose m' also of the same order the colour triplets become superheavy. We 

have a situation, then, where m, m' R:j 0(1015 Ge V. ), but m-m' R:j 0(102 Ge V. ). 

Let us apply our naturalness criterion to this case : we require for o'A'A «1 

where 'A are the parameters of the theory 0
: «1 where Pis any physical quan­

tity. In the above situation we can vary m and m' independently since no sym­

metry relates them, so we let om = 10-3 (say) and let om' =0 . Then we find 
m 

since om = 10-3x 1015 = 1012GeV. the Higgs mass becomes 0(1012GeV. ) . Thus 

6J is certainly not much less than 1 (It can vary between 1 and 109 depending 

on whether one takes the initial P or the final P in the denominator ) . Thus it 

looks like a case of fine luning . However, before we come to such a conclu­

sion, we must be a bit more careful. In supersyrnmetric theories the quantum 

corrections are very mild - only wave function renormalization for the Yukawa 

and mass terms . In the above example it is easy to see that both m and m' 

are renormalized by the same factor - the wave function renormalization of 

the E field . In the perturbative trivial vacuum where <E> = 0 and < H > = < H' 

> = 0, m and m' have a physical significance . They are the masses of the E 

field and H field respectively. However, it is conceivable that in the new 

vacuum that has only SU(3)XSU(2)XU(l) symmetry one might be able to define 

new parameters that have independent physical significance and in terms of 

which there is no tine tuning . Let us then try to define m-m' =O(M~r) as the 

physical parameter . Expanding around the new vacuum, we have some fields 

of mass O(Mr;), others of mass O(m), and there appears to be no tine tuning 
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required, since we have defined these to be the parameters of the theory. 

However, this soon leads (not unexpectedly) to trouble. The Higgs triplet now 

has a mass that is some complicated function of m and M w. The underlying 

SU(5) symmetry requires that it have that precise value for its mass . But if we 

insist on viewing the theory as one whose parameters are m and M w and 

ignore the original structure, then the Higgs triplet mass has no particular 

reason to have that precise value . Thus the fine tuning is still present , showing 

itself in a different place, and this redefinition of parameters has not improved 

the situation. The moral of this rather long-winded discussion is that while at 

first sight there appears to be a certain amount of arbitrariness in our 

interpretation of the fine-tuning problem because of ambiguities in definitions 

of what the bare parameters of the theory are , in fact, the problem is well 

defined . 

The basic problem, then, in supersymmetric grand-unified theories is to 

obtain at the tree level a "naturally" light Higgs doublet . Supersymmetry 

ensures that the quantum corrections do not reintroduce fine tuning. 

A realistic theory cannot be super symmetric . All the particles in a super­

multiplet have the same mass because P JJ-PJJ- is a Casimir operator of the 

supersymmetry algebra. This degeneracy is certainly not observed in the real 

world, and therefore supersymmetry has to be broken. The breaking can 

either be explicit or spontaneous. There are two reasons why explicit break­

ing is preferred. First, global symmetries are unnatural and so one prefers to 

associate the supermultiplet structure of particles with an underlying local 

supersymmetry (supergravity) . There are also independent reasons that 

make supergravity attractive. As mentioned earlier, they hold out a promise of 

providing a sensible quantum theory of gravity and at the same time unifying 

it with the other three interactions. At low energies, the effective theory with 

" = 0 derived from this supergravity theory, will have a global supersymmetry. 

Furthermore, if the local supersymmetry is spontaneously broken at some 

scale , then in the low energy (k = 0) theory there are terms that explicitly 
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break this global supersymmetry. This provides a rationale for introducing 

explicit supersymmetry breaking . Second, spontaneously broken global 

supersyrnmetry would require the existence of a massless spin 1/2 particle 

sometimes called the 'goldstine' . It is not observed experimentally. Realistic 

models that have global supersyrnmetry spontaneously broken are extremely 

contrived and invariably require the addition of a large number of extra fields 

that have the sole function of breaking supersyrnmetry spontaneously and hid­

ing the resultant goldstine from the eyes of the experimentalist. If the theory 

has underlying local supersymmetry, then the goldstine is eaten up by the 

gravitino which becomes massive via a super-Higgs effect, avoiding experimen­

tal conflict . The explicit supersymmetry breaking terms should be 'soft', i.e., 

they should not reintroduce quadratic divergences into the theory. The 

allowed terms for both N= l and N=2 theories have been classified [9]. The 

result for the N= l can be summarised as follows : One can add any dimension­

two term (i.e . mass term for the scalars) , but the only dimension-three terms 

allowed are mass terms for the gauginos (superpartners of the gauge bosons) 

and a particular cubic scalar coupling . • We no:w have all the information we 

need to construct a specific model. 

•See Appendix B for details. 
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4. A Supersymmetric SO(lO) Model with No Tine Tuning. 

We now describe in detail a realistic model that has the feature that it 

requires no fine tuning of its parameters to obtain phenomenologically accept­

able predictions. To be precise for any change oA.: oA.A. « 1 of its parameters 

the predictions 'P' satisfy o; « 1. We emphasize that no attempt is made to 

understand the existence of widely separated scales (the hierarchy problem). 

The scales are put in by hand, i.e ., we start with a Lagrangian that contains 

both large and small mass parameters. 

The gauge group is S0(10) . The superfield content is the following : i)the 

gauge vector multiplet V (45) . ii)chiral superfields Ma (16), one for each fam­

ily, 'a.' being a family index, iii)chiral superfields 

!ll(54).~ and~ 1 (both 45) .x1(16) and x2(16), iv) three chiral superfields H. H' and 

M (all 10's) . The 45 's are written as 10X10 antisymrnetric matrices ~if , ~tf. 

where i,j are vector indices and take values from 0 to 9. The 45 can also be 

written in the spinor representation of S0(1 0) as a 16x16 matrix,i.e ., 

~: = (aif)~~ii , where a.,b are spinor indices that run from 1 to 16. aif are the 

S0(1 0) generators represented by 16x16 matrices . They are the Clebsch Gor­

dan coefficients that pick out the 45 from 16x 16. We use the conventions of 

ref. [ 13], reproduced in Appendix C. The 54 is a traceless symmetric 10x10 

matrix . 

Before proceeding further, we would like to motivate this choice of 

representations. The gauge multiplet V and matter Ma need no motivation. 

The 54, 45, 16, and 16 are all needed to break S0(10)-> SU(3)XSU(2)XU(1) . To 

see this let us write down the most general superpotential consistent with 

S0(10) invariance•: 

W= M 1 Tr~P2 + A. 1 Tr!ll3 + M2 Tr~2 +A.2Tr~IP~+gx1~X2+mx1X2 · (2) 
2 3 2 

------
•Note that there_ye no ~3 ter ms because ~ is antisymrnetric in its indices. Also neither 
16X 16 nor 16x 16 cont ains a 54. 
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Matrix notation is being used here . Thus, for instance, x1l:X2 stands for 

x~(l:)!xzb. The equations for the minimum are : 

:~ = 0 => [Ml!ll + Xl(!lJ2- 110 Tr!lJ2) + Xz(l:2- 110 Trl:2)]ii = 0 (3 .1) 

o~ = 0 => Mzl:ii + Xz(l:!ll + «lll:)ii + gx~(aii)!Xzb = o (3.2) 
ol:\' 

We try the following ansatz for the vev that gives us the required 

SU(3)XSU(2)X U(1) symmetry: 

3 

-a.. 

0 

a 
-11. 

0 

Q. 

0 

-~ 

-7-

b 
-p 

-'2. 
-~ 
-~ 

0 

(4) 
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Using these one can check that all the equations are satisfied provided the fol­

lowing scalar equations are satisfied : 

(5 .1) 

(5.2) 

ba(M2- 4~v) = gx 2 

m + g (3b + 2a)a = 0 (5.3) 

It is easy to convince oneself that none of the representations (45, 54, 16, 16) 

are redundant if one is to have solutions where the final symmetry is broken 

down to SU(3)XSU(2)XU(1). For instance, without the 54 one could have a solu­

tion where b=a, but this would have a residual SU(5) symmetry. The other 

point to note is that if m~M 1 ~M2 ~10 16 GeV, then v,a,x~1016GeV, so 

S0(10) -->SU(3)XSU(2)XU(1)at the superheavy scale Mx directly, without any 

intermediate scales. Intermediate scales, as in SO(lO) -> 

SU(3)XSU(2)LXSU(2)RXU(l)- .... SU(3)XSU(2)LXU(1), usually result in an 

unacceptably large value of sin2elf[11], and are best avoided. 

As mentioned before, the colour triplets contained in the 10 of Higgs, 

mediate proton decay and therefore have to be made superheavy. At the 

same time the doublets have to be kept light, because at low energies they 

have to develop a vev and break SU(2)LXU(1) down to U(1) . A possible way of 

doing this was first suggested by Dirnopoulos and Wilczek [ 10]. The idea is as 

follows: If the 45 of SO(lO) is given a vev of the form: 

0 0 

1 
-1 

0 11 
-1 

-1 
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then one can have the coupling 10 x 45 x 10 and the first four components of 

the 10 (the complex Higgs doublet) would be light and the last six (=3+ 3 of 

SU(3)) would get a mass of the order of the vev of the 45. Thus the doublets 

and the triplets are automatically split . 'This would solve the fine tuning prob­

lem. A possible way to implement this in the minimal model described above 

(with 45, 54, 16, 16) would be to let <16>=< 16 >=0, i.e. x=O in equation (5.2) 

and also let 'a' (one of the parameters in equation (4)) = 0. 'This is clearly one 

possible solution. However the residual symmetry is now S0(4) XSU(3)XU(1). 

The S0(4) can be written as SU(2)LXSU(2)R, where SU(2)L can be identified 

with the SU(2)r of the Weinberg-Salam model. One can, now, at a much lower 

scale, give a vev to the 16 (by adding some explicit supersymmetry breaking 

terms) and break SU(2)R. But this also modifies the vev of the 45 and makes 

the parameter 'a' of eq. ( 4) non zero. 'This means that the Weinberg-Salam 

doublet gets a mass of the same order as the scale of SU(2)R breaking. This 

scale therefore cannot be much higher than 103 Ge V . An intermediate scale 

as low as 103 Ge V is phenomenologically unacceptable because of problems 

with sin29 If mentioned earlier. The conclusion then is that in the minimal 

model with only one 45 it is not possible to solve the fine-tuning problem. 

We can make use of the Dimopoulos-Wilczek scheme by expanding our 

minimal set of fields to include another 45 called 2: 1. In that case one of the 

45's can be used to give a mass to the triplet Higgs while the other 45 can be 

used to produce the symmetry breaking pattern SO(lO) -> SU(3)XSU(2)XU(l) . 

The superpotential in (2) is modified by the addition of some terms involv­

ing the new 45. It reads now 

Mt At M2 
W = [ 2Tr<P2 + 3Tr<P3 + 2Tr2:2 + A2Tri:<PI: + mx1X2 + 9Xt2:X2] 

M 
+ ( T Tr I:f + As Tr 2: 1 <P2: 1 + f H2: 1H) + ;,;.B2+ J.L'H 2 + f ab Mar Mb H 

Here M1,M2 ,M3andm ~ 0(1016GeV) and J.L,J.L' ~ O(le>2GeV ). The terms in the 

square brackets are the same as in the minimal model. The new terms are 
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those involving the field 1:1 (the second 45) in the curved brackets. We need 

two 10's (H and H') because I:fi is antisymmetric in its two indices and a term 

like H'E1H would vanish identically. This term will be responsible for splitting 

the colour triplets from the doublets by giving the triplets a large mass, while 

keeping the doublets light . The last term is the Yukawa coupling of the Higgs 

to matter fields , and T' stands for the Clebsch-Gordan coefficients for the 10 

contained in 16X16 (see Appendix C) . 

It should be noted at this point that this superpotential is not the most 

general that can be written down consistent with supersymmetry and SO( 10) 

invariance. For example the term x11: 1x2 has not been included. In general, in 

supersymmetric theories one is allowed to do this because of the no­

renormalization theorems of supersymmetry [5]. However, as earlier pointed 

out one would like more than mere consistency, one wants naturalness and it 

is not enough to invoke the no renormalization theorems . The question of 

whether or not setting a parameter equal to zero is a violation of naturalness 

requires some consideration. We had , earlier, defined a theory to be natural if 

it satisfies 
6J « 1for ot.f... « 1 where Pis a physical property (e .g. the mass of 

the W ) and A is a bare parameter. Choose A to be the coefficient of a term 

that has not been included in the Lagrangian, i.e. A= 0. Changing A from 0 to 

OA > 0 is not a small change since 0: is not a small number however small OA 

might be . This is a reflection of the fact that the theory is qualitatively 

modified when A is changed from zero . So if a bare parameter is zero, then in 

testing the naturalness of a theory , this parameter should not be varied at all. 

Only the non zero parameters should be varied. Thus setting bare parameters 

to zero in supersymmelric theories does not by itself make the theory unna­

tural. We think this is sufficient justification for omitting some terms from the 

Lagrangian. However for the sceptical reader this is justified separately on 

the grounds that the Lagrangian that has been written down is the most gen­

eral consistent with supersymmetry, S0( 10) and the following discrete sym-

me tries : 
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(6a) 

(6b) 

(6c) 

The term x1}:; 1x2 for example is ruled out by (a) . The complete list of terms 

otherwise allowed but ruled out by these symmetries is given below: (The 

letter in paranthesis refers to the particular symmetry that rules out the 

term) 

HH(a) 

H}:;H(a) 

The analysis of the minimum of the potential proceeds as follows : Setting 

the auxiliary fields to zero gives : (matter fields have been put equal to zero in 

equations 7.1 to 7. 7) 

Dl = 0 (7) 

Ff! = 0 Ml~ + A.1(~2- 110 Tr~2) + ~(}:;2- 110 Tr}:;2) + (7 .1) 

+ A:3(}:;r - _l_ Tr}:;r) = o 
10 

(7.2) 
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FX2 = 0 mxf + gx~"Eg = 0 (7 .5) 

(7 .6) 

(7 .7) 

Setting D = 0 forces X1 = X2 and [AE,Bd = 0 = [A 41,B41 ] where A and B are the 

real and imaginary parts of the scalar components of the superfield. The 

parametrisation (4) along with the following. 

0 
1 

-1 
11 

-11 
gives us the following algebraic equations : 

m + g (3b + 2a)a = 0 

M3 = 4ft.3v 

These can be solved as follows : 

Using (8 .2) and (8.4), 

a = b 

Ms 
v=-

4ft.s 

H"' = (o,o ... o) 

H'": (o,o ... o) 

(8 .1) 

(8 .2) 

(8 .3) 

(8 .4) 
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Using (8.3), 

This follows from (8.2). The quantities on the R.H.S . are all known. Finally, we 

can substitute into (8.1) the expressions for v, b, a and alb to get an expres­

sion for a1. Given that M1,M2,M3 and mare all of 0(1016 GeV.) it is clear that x, 

a,a1 and v are all also of the same order of magnitude. <cfl>.<x1> and < I: > 

have little groups S0(4) X S0(6), SU(5) and SU(3)XSU(2)XU(1) respectively. 

The residual symmetry of ti.1e vacuum is therefore SU(3)XSU(2)XU( 1) being the 

little group of the Qombined system (cfl, x1• x2 • I:)• This symmetry breaking 

occurs at 1016
. Note that <1: 1> has a little group S0(4)XU(3). Furthermore 

since the couplings of 1:1 are not the most general S0(10) invariant ones, one 

can show that the parametrization chosen for <1: 1> is not unique. One can see 

this as follows : Equations (7.1) and (7.3) (which are the only ones containing 

1:1) have an S0(4)XS0(6) covariance . Thus any transformation generated by 

the elements of sg(h~) changes the parametrization of < 1: 1 > but will leave it 

a solution of the equations because the form of the equations is unchanged. 

Thus we have a continuum of degenerate vacuum states corresponding to the 

different solutions for <1: 1>. At the tree level, then, we have massless parti­

cles, pseudo-Goldstone bosons, parametrizing the coset space S~h~) scalars 

corresponding to 3+ 3 of SU(3). The expression pseudo Goldstone boson 

signifies the fact that the extra vacuum degeneracy is only present at the tree 

level. The full Lagrangian, in particular the gauge interaction, does not have 

the extra symmetry that corresponds to this vacuum degeneracy, and so 

quantum corrections remove the degeneracy and make the pseudo Goldstone 

bosons massive . Actually, in supersymmetric theories the preceding 

•There are other solutions to the equations corresponding to the completely symmetric va­
cuum and to one wjth symmetry SU(4)XU(l). This ambiguity is resolved when supersym­
metry is explicitly broken. 
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statement is not quite true. Unbroken supersymmetry ensures that the 

vacuum that had zero energy at the tree level continues to have zero energy 

even in the full quantum theory and the pseudo Goldstone particles remain 

exactly massless . Their fermionic partners are also exactly massless. Only 

when supersymmetry is broken do quantum corrections give masses to these 

particles . The scale of supersymmetry breaking has a lower bound coming 

from the requirement that these coloured strongly interacting particles get 

su!Iiciently large masses. 

Before discussing supersymmetry breaking let us briefly review our posi­

tion. The S0(10) symmetry is broken at a superheavy scale Mx ::::l 1016 Ge V. 

( ) ( ) ( ) 
SO( 1 0) 

directly to SU 3 XSU 2 XU 1 and the SU(3)XSU(Z)XU(l) gauge bosons 

become super heavy via the usual Higgs mechanism. SU(2)XU( 1) is still unbro-

ken. The only light (massless) scalars in the theory are the Weinberg-Salam 

doublets and the 3+3 pseudo Goldstone bosons . The rest of the scalars, 

including the colour-triplet partners of the Weinberg-Salam doublets and the 

colour triplets of H' are superheavy . This splitting is achieved without any 

fine tuning of parameters. The price paid for this is the addition of a 45 to the 

minimal set of superfields . The superpartners of the ordinary particles are all 

degenerate in mass, because supersymmetry has not been broken. Thus, in 

particular, we have a host of unwanted light particles : the scalar partners of 

the quarks and leptons, the ferrnionic partners of the gauge bosons (gaugi­

nos), Higgs doublets, and the pseudo Goldstone bosons . The different vacua 

(the symmetric vacuum where all fields have zero vevs, the one with 

SU(4)XU(1)symmetry and the one with SU(3)XSU(2)XU(1)) symmetry are all 

degenerate in energy. This follows from the fact that supersymmetry is unbro­

ken in each of the vacua, and that unbroken global supersymmetry automati­

cally implies that the ground state has zero energy (see Appendix A) . The 

present situation is thus not phenomenologically satisfactory. However all 

these problems can be solved by the simple expedient of breaking supersym­

metry. 
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We have argued in sec.1.3 that soft explicit breaking of global supersym­

metry is preferable to spontaneous breaking for several reasons. We therefore 

now modify our supersymmetric Lagrangian by adding non-supersymmetric 

terms. The kinds of soft supersymmetry breaking terms that are allowed to 

be added are listed in Appendix B (we remind the reader that "soft" here 

means "does not give rise to quadratic divergences") . Only dimension-two 

scalar mass terms are considered for reasons that will become clear soon. 

Thus,for instance , mass terms for the gauginos are not added since they have 

dimension three. Once a dimension-two term is added renormalizability 

requires all possible S0(10) invariant dimension two terms. Symanzik's 

theorem implies that terms of higher dimensionality are not required . 

We need a term -J..~-rH2 • to give HT a vev (h0,0,0 ,h 3 ,0, .. 0) which breaks 

SU(2)XU(1) -> U(1). This fixes J..i-1 to be 0( 102 ) GeV. We also add positive mass 

terms for the scalar partners of the quarks and leptons, i .e ., ~ Ma. Ma . (Note : 

In superfield notation a mass term of the form J..~-2 (A2 + B 2
) is given by 

J d48 U~rp where U = J..i-2e'Z(j2 and a mass term J..~-2 (A2 - B2
) is given by 

J d 28xrprp +h. c . where x = J..~-28 2 . See Appendix B for further details) . Further­

more to pick the right SU(3)XSU(2)XU(1) vacuum a term J.lJTr~ 2 is added. With 

the addition of these three terms, we have achieved the following : We have 

SU(2)XU(l) -> U(1) at the right scale 0(102)GeV. This automatically makes the 

S~~~) gauge fields massive and to zeroth order in the supersymmetry break­

ing parameters 1-4.2 , the corresponding gauginos also get masses of 0( 102
) GeV. 

as required by low energy phenomenology. In this process the Higgs fermions 

in H also become heavy by pairing up with the gauge fermions to make a mas­

sive Dirac fermion. All the unwanted scalars except for the pseudo Goldstone 

bosons have masses of 0(102)GeV . It is also clear that adding S0(10) invari­

ant mass terms J..~-2 TrL.f , J..1-2 TrL. 2 ,J..i-2 Tr"i:q'E cannot make the pseudo Goldstone 

•As before , we use the same symbol for the superfield and its scalar component. It is always 
clear from the context which is being referred to. 
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bosons heavy at the tree level, because the terms J.J-2 'Pr'E2 and J.J-2 'Pr'Ef being 

S0(10) invariant have the same value at the difierent minima and, therefore, 

do not distinguish between them. The term J.J-2 'Pr'E'E 1 distinguishes between 

them, but due to the fact that the 'E fields are superheavy this mixing results 
2 

only in masses of 0( 7j) for the pseudo Goldstone bosons . These particles 

acquire a significant mass only when radiative corrections are included. The 

same is true for the gluinos (superpartners of the gluons) and the photino. 

The tree-level mass spectrum is shown in fig . 1. It agrees with low energy 

observations except for the afore-mentioned gauginos and pseudo Goldstone 

bosons . 

Consider, now, the effects of the other dimension two non-

supersymmetric terms which are required by renormalizability . In particular 

we have to ensure that they do not change he and h 3 , which set the weak 

breaking scale , by large amounts . The only supersym.metry breaking terms 

that directly affect he and h 3are 11-2 H 2 and J-L2HH. These are of the same 

order of magnitude as J-L2H 2 and do not cause he and h 3 to shift dangerously. 

The other dimension two terms such as J-L2 Tr~2 .J-L2 Tr'E2 ,J.J-2X 1X2 etc . affect he and 

h 3 only indirectly through changes in the vevs of ~ . 'E , 'E 1 . x 1 .x2 • etc. However, 

only those fields that are not superheavy can have their vevs changed 

significantly. This can be seen as follows : If 'If is a field with mass M and vev '!fe. 

i.e . 'If= '!fe+~. then the potential near the minimum is approximated by M2~2 . 

If we add a term -J.J-21/12 the equation for its minimum becomes 

"' 1£ Therefore 'If ~ M . Furthermore the superheavy fields 'If can only occur qua-

dratically in an equation for h . (This follows from group theory considera­

tions) . They occur in equations of the form J-L2h + (1/lr -1/l~)h' = 0 where 1/11.2 

are superhe avy, and h , h ' are 1 0' s and 1-L is of 0 ( 1 02
) Ge V: . Before adding the 

perturbing term 1/1 1 = 1/12 at the minimum. Then oh ~ 0( 1f 10~ 1h') ~ O(J.J-) ,which 
1-L 

is harmless . Apart from the pseudo Goldstone bosons all the particles 
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contained in l:,l: 1,ifl and X1.2 are superheavy and do no harm. The pseudo Gold­

stone bosons in turn are contained in I:fi with i,j :4-9 , and they do not affect 

the equation for h 0 and h 3. Thus , we conclude that the addition of all possible 

dimension two terms has no significant effect on the vev of H and consequently 

does not induce any fine tuning . Note that this argument would not have 

worked if we had included dimension three terms. These would result in 

changes 61/J Rl O(J.L) . If the previous analysis is repeated with dimension-three 

terms, we get oh Rl ~ Rl O(M) . This would mean that the value of hat its 
J.L 

minimum changes by an enormous amount and one would have to perform an 

extreme fine tuning to recover a value of 102 Ge V for the scale of the weak 

interactions . We conclude that we cannot add any dimension three terms, 

even if they do not introduce quadratic divergences. 

This concludes the tree level analysis of the spectrum. At the loop level 

fig . 2a shows the pseudo Goldstone boson mass generation Fig . 2b is the 

corresponding diagram for the ferrnionic superpartners of the pseudo Gold-

stone bosons. The pseudo Goldstone boson mass term generated is 

J d 48 Ul: 1l: 1 where U = p,2e2lJ2. The mass term for the ferrnions is 

~~ d 48X,X(Dal: 1)(Dal: 1) . In both these expressions 1: 1 stands for the 3 + 3 part 
m 
of the 45. 

ex 2 4 
The graph in fig . 2b is eslimated to be ~ ~· The two powers of p,2 

16rr m 

come from the two explicit insertions . The gluino couples strongly, hence, ex;, 
2, 

( exs = fl......:.... , where gs is the QCD coupling constant . ex5 Rl .1) and the 16 rr2 in 
411' 

the denominator is because it is a two loop graph. m is the mass of the parti-

cles running around the loop and has to be O(J.L) for this approximation to be 

valid. One has to choose J.L Rl m Rl 0 ( 106 Ge V. ) for the mass generated to be 

0(102)GeV. From this we get the constraint that supersymmetry has to be 

broken at a scale 0(106 GeV) , which is a few orders higher than the weak 

interaction scale. This could induce, either at the tree level, or via radiative 

corrections, a certain amount of fine tuning to the tune of three decimal 

places. However, in any case, in all such softly broken supersymmetric 
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theories there is always another source of a three decimal place fine tuning 

which is needed for the super-GIM [7] mechanism to work• which we shall 

describe shortly. The graph in fig . 2b also forces us to add an extra represen­

tation of fields for the following reason: In the vacuum polarization loop of the 

gluino superfield the particles running around are colour triplets 'M '. The 

graph requires an explicit supersymmetry breaking mass term of the form 

J d 2BxM2 . This means that M has to be a real representation of S0(10) (the 

mass term J d48 UMM would not require M to be in a real representation; how­

ever, this term would not serve our purpose) . Furthermore, it cannot be 

superheavy. The ordinary quarks cannot be used because they belong to a 16 

which is not real . We do have real lO's of Higgs but the colour triplets in them 

must be heavy (to prevent fast proton decay) . So we have to introduce a mul­

tiplet , say a 10, having a mass of 0(106)GeV . At this point we have to check 

that the theory is asymptotically free : each superfield family ('superfamily') 

is equivalent to 3 / 2 ordinary families. The 3+3 pseudo Goldstone super multi­

plet and the 3+ 3 from M can be combined into one superfamily. That makes 

four superfamilies (= 6 families) coming from the matter Higgs fields . The 

gluino being in the adjoint (and also Majorana) counts as 3/2 families . So we 

have a total of seven and a half families . Asymptotic freedom allows 8.25 fami­

lies. The theory is therefore asymptotically free but cannot accommodate any 

more superfamilies. 

The gluino mass comes from the diagram in fig . 3. For the supersym­

metry breaking scale of 0(106 Ge V) the gluino mass is estimated to be 

0( 104 GeV) which makes it completely unobservable . 

The final superpotential and the explicit supersymmetry breaking terms 

are summarised below: 

L = J d 28 W +h. c. + b.L..b. + Kinetic and gauge terms. 

•Some models in which the supersymmetry breaking terms automatically have a family in­
dependent struct ure are except ions. [12). 
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M1 At M2 
W = [ z-7rcJI2 + 3TrcJI3 + z-7rL:2 + A2TrL:cJIL: + mx1X2 + 9Xtl:X2] 

Ms 
+ ( 2 Trl:2 + As TrL:1cJIL: 1 + f HL: 1H) + 

where X(==J.Li,B 2 , U;.=J.4,2B21P The three dots indicate that all other SO(lO) 

invariant combinations should be included. The masses of some of these fields 

are constrained (as mentioned above) . x1andx4 ~ 106 Ge V, U1 ~ -102Ge V, 

(responsible for the vev of H), U2 ~ 102 Ge V, and should also be independent of 

the family in the first approximation i.e. bm
2

2 
~10-3 . This comes from requiring 

m 

absence of flavour changing neutral currents , which we describe below. Apart 

from this there are no special requirements on the values of the other mass 

parameters . 

To the superpotential the term J.LM 2 has been added for reasons already 

explained. The list of discrete symmetries can also be extended to include a 

fourth one: M-> -M. This prevents unnecessary couplings forM. 

Consider the neutrinos . In this model the neutrino gets a Dirac mass 

term along with the other leptons and quarks . This is unsatisfactory 

phenomenologically. This problem can be solved by giving the right-handed 

neutrino a large mass . This causes it to decouple from the left-handed neu­

trino leaving the latter almost massless. For this purpose a singlet S has been 

added. When x2 gets a vev the right-handed neutrino becomes superheavy and 

decouples from the left-handed neutrino. Having added the singlet field S one 

has to modify the discrete symmetry (b) to X14 - x1.x2 .... -x2• s .... -s and (c) to 
• TT . TT 
\- -'\-

H-+-H,H -+-H .Ma_.e 2 Ma ,S-+e 2 to ensure the invariance of the added term 
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We now turn to the K 0-K0 mixing problem. In the standard model the 

G.I.M. mechanism takes care of this (f]g . 4a). In supersymm.etric theories 

there is a corresponding diagram where the W"' bosons are replaced by the 

corresponding fermions , and the u, c quarks by their scalar superpartners 

(fig. 4b) . In order for the cancellation to occur, the masses of these scalars 
f:!.m2 

have to satisfy the relation - 2- ~ 10-3. This has to be put in by hand and is a 
m 

source of fine tuning that cannot be avoided in such models . It should be 

pointed out that in models where the softly broken supersymmetric theory is 

derived as the low energy limit of coupled matter-supergravity systems, this 

mass relation is automatically impl~mented because of the flavour indepen­

dence of the gravity interaction. 

Finally, we comment on proton decay modes in supersymmetric models 

[ 14]. Unlike conventional grand-unified theories where the baryon number 

violation takes place via the superheavy vector bosons that result in effective 

dimension-6 operators, in supersymmetric grand-unified theories it is possible 

to have dimension-5 operators . These are shown in fig . 5a. The operator is, 

therefore , suppressed by only one power of the ·superheavy mass . Completing 

it to a four fermion operator introduces only an additional suppression of ---1-­

,where W is the gaugino (fig. 5b). Fig . 5a has a coefficient gn where gn i~: 
mn 

Yukawa coupling r::::~ Trl.qu.a.rJc and mn is the mass of the Higgs triplet. Fig . 5b 
<v> 2 . 

contributes a factor ~ JJ..::....M where g is a gauge coupling. Thus there is an 
~6rr 2 w 

overall factor ~ g~ ~. In flg . 5a the (q q sq sq) operator has to involve 
16rr mw mn 

one set (u, c, t) of quarks at one vertex and the other set (d, s , b) at the other 

vertex. This is seen by explicitly writing out all the dimension five operators 

that can be generated by the graphs of fig . 5 [14]. So gn ~ '771.u ~ . Thus the 

overall factor becomes ~~W. ~92 . This tells us two things : first, 
16 M MwMn 

although dimension five operators are involved, because the Yukawa couplings 

are small the proton lifetime much longer than naive expectations based on 

power counting , and is compatible with experimental lower limits . Second, 

because of the factor ~ strange decays are preferred to non strange decays 
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in contrast with conventional grand-unified theories . Thus typically N -> 

DT +strange and N -•D~ +strange are the dominant modes [14] rather than N 

-> e + + pion as in conventional grand-unified theories . Lifetimes are of the 

same order as in non-supersymmetric theories- 10S1 years. 
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5. Conclusions 

We have described a possible solution to the fine tuning problem that has 

plagued grand-unified theories from the beginning. The essential ingredient 

for the solution was supersymmetry. There are independent and strong 

motivations for positing that supersymmetry might be an exact symmetry of 

nature at some high energy scale . These come from the promise held out by 

some of the supergravity theories , like N=B supergravity (or perhaps the 

superstring theory [15]) of both providing a sensible quantum theory of grav­

ity, and unifying gravity with the other three interactions. The gauged N=B 

supergravity [16] seems to hold particular promise. We would like , therefore , 

to conclude this chapter with a short analysis of possible directions that could 

be pursued in trying to relate supergravity to the real world. 

We assume for the purposes of this discussion that the N=B supergravity 

theory (or the string theory , which has N=B supergravity as its low energy 

limit) is the ultimate theory of nature . To establish a connection with N=B 

supergravity, the globally supersymmetric grand-unified theories have to be 

extended in two obvious directions . First, gravity has to be included, and 

second, the ot her seven supersymmetries have to be accounted for . These 

seven supersymmetries could, in principle , remain good symmetries up to 

energies well below the Planck mass . However , a closer inspection reveals 

that this is unlikely , simply because the fermion representation content of 

higher N supersymmetric theories is vector like . For every left-handed parti­

cle , there is a right-handed particle with exactly the same quantum numbers . 

The observed particle spectrum does not show this left-right symmetry. In 

fact it seems to be impossible to write down an N=2 globally supersymmetric 

version of the Weinberg-Salam theory, which would reduce at some energy 

scale to an effective N= 1 supersymmetric theory, and at yet lower scales to 

the standard Weinberg-Salam model. Thus , it seems highly likely that the 

seven remaining supersyrnrnetries are broken at around the Planck mass. If 

that is the case, it would seem more fruitful to study the matter-supergravity 
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systems starting with N=1 and then proceed with the question of the remain­

ing supersymmetries in the context of supergravity theories. In these 

theories there is the possibility that the particle representations can be 

flavour chiral, because the supersymmetry charges themselves can carry 

internal quantum numbers . The N= 1 matter supergravity system has received 

some attention. A plausible scenario that has been found to be phenomenolog­

ically viable is the following: The remaining supersymmetry is broken at some 

reasonably high scale 'M', by the super-Higgs effect in some sector of the 

theory. The effective low energy theory is a globally supersymmetric theory 

with soft explicit supersymmetry breaking terms . The mass of the gravitino 

m 3 is the relevant scale of global supersyrnmetry breaking. This scheme also 
2 

has the advantage that [12] one finds, for instance , a common flavour indepen-

dent mass term for all scalar particles. This is useful for the super GIM 

mechanism. The supergravity effects also remove the vacuum degeneracy 

problem. To make further progress, however, we need a more thorough 

understanding of the N=B supergravity theory. 
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Appendix A : Super Poincare Algebra and Representations 

(Al) 

Q's are the supersymmetry generators . We have written them in two com­

l'Onent notation ( ~ r = Q~i . 'i' is the internal symmetry index and Q~i 

transforms as the complex conjugate representation of ~ . Ba. is the internal 

symmetry generator represented by the Hermitian matrices S~ ;on the Q's. 

From the relation ! Q~, Qj!;! = af:PP JJ- we can derive the following : 

If ~ I 0> = 0 i.e . the vacuum is supersymmetric then 

<O I !~.Q~d i O> = 0 =><OIP0 IO> = 0 This implies that the vacuum energy is 

zero. This is an operator identity and is exact provided the supersymmetry 

algebra is valid. It is easy to see that P ~/J- is a Casimir invariant for the above 

algebra whereas W JJ-WJJ- ( W is the Pauli-Lubanski vector ) is not. Thus a single 

miultiplet contains particles of different spins. We can now study the 

representations. Take the massless case : ( assume only one supersymmetry) 

(A2) 

Choosing a frame where PJJ- = (1,0,0, l)P 

(A3) 
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In the representation 

We get 

(A4) 

Thus applying Q1 orQi on a state gives a state of zero norm and we only use Q2 

or Q2. If we start with a state In> of helicity n that satisfies Q2 In > = 0 we can 

construct a state Q2 I n > . It can be shown using the commutation relations 

that thes states have helicity n + 1/2 . Thus Q2 1n> = In+~> and 

Q2 Q2 In> = 0 because of the anticommuting nature of the Q's . Thus the multi­

plets have the form (n, n +1/2) . (0, 1/2) is the scalar multiplet, and (1/2, 1) 

is the vector multiplet. It is understood that the CPT conjugates are also 

added to preserve CPT invariance. 

We can modify the above construction easily to get representions of the 

higher N superalgebras. Let us derive the N=2 representation which will be 

needed in Appendix B. We adjoin to the Q's an internal symmetry index i that 

takes on the values 1 and 2. Thus A4 is modified to 

(A5) 

Starting with In> satisfying Q2.1n> = 0 we get Q~ In> and Q~ In> as two other 
1 

states with helicity n + 1/2 and helicity n + 1 respectively. Thus the multiplet 

contains helicities (0, 1/2, 1) or (-1/2, 0, +1/2). The first two are the vector 

and scalar hypermultiplet [ 17]. Once again it is understood that the CPT con­

jugate of each particle is also included. 

Proceeding in a similar manner we can construct representations for all 

the higher N theories. Globally supersymmetric theories can have up to four 

supersymmetries so that spin ~ 1 and supergravity theories can have up to 
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eight without exceeding a spin of two. The table below gives the representa­

t ions of superalgebras with N~4. 
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Appendix B : Soft Supersymmetry Breaking 

The soft breaking terms for N= 1 supersymmetry are the following [9]: 

(a) 

(b) 

(c) 

(d) 

N =2 Supersymmetry 

In terms of N= 1 superfields the Lagrangian is the following: 

The notation is the following : V is a vector superfield. N, S and T are 

scalar superfields . (V, N) form an N=2 vector hypermultiplet and (T, S) form 

an N=2 scalar hypermultiplet. (For further details see ref. [ 17]). This Lagran­

gian has an internal SU(2) symmetry that rotates the two supersymmetry gen­

erators into each other. More useful for us will be the following approximate 

'R' symmetry: N -+e iz N ,S -+e iy S, T -+e i(:c+y) T for arbiirary x, y. It is only an 

approximate symmetry because the mass term violates it. 

All the soft breaking terms allowed by N= 1 supersymmetry are allowed 

here also . In addition the following are allowed: 

(1) 

In the N=1 case gauge fermion mass terms were allowed. This mass term is 

the N=2 extension of that. This expression has R- number 2x . From power 

counting we see that quadratic divergences have to be of the following forms : 

(Note that U has dimension -1) 
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(i) J d48 UN . 1bis term is allowed if N is a singlet i.e. if the gauge group 

has a U(l) factor. It has R- number x. The di!Ierence of x has to be 

due to the mass term. Thus at least one power of m should multiply 

this expression, which means the divergence can at most be loga­

rithmic. 

(ii) J d 48 UT,j d 48 US. These terms have the wrong R-number and can­

not occur. Moreover they would have to be singlets for this expres­

sion to be allowed. In N=2 supersymmetry singlets decouple from 

everything else and are uninteresting. 

(iii) J d 48 UU... terms with higher powers of U. These would require 

D2andl52 to survive thee integration. Since these have dimensions of 

mass they reduce the degree of divergence. 

Thus the term J d48 UDo. N D o.N is soft. 

(2) f d48 UDo.TDo.T = mxx is allowed by an analysis identical to the one 

above. Thus fermion masses are allowed. 

(3) J d 4e U( T + T) 3 = mA3 . Has R-number of 3(x+y) . or (x+y) . Violates inter­

nal SU(2) . The possible quadratic divergences are: 

(i) J d 48 UN . Has R-number x and cannot be generated. 

(ii) J d4e UT . This can be there if Tis a singlet. (figure 6) 

(iii) J d 48 US. Has R-number y and would require an m insertion. Hence 

only logarithmically divergent. 

(4) J d4e U( T+ T)(S+S)(N +N) . Has R-number 0, 2x, 2y, 2x+2y. 

(i) J d 4e UN . Has R-number x . So at least one m insertion is needed. 

Only logarithmic divergence. 

(ii) J d 4e UT. Has R- number x+y. Not generated. 
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(iii) J d48 US Has R- number y. Not generated. 

(5) f d48 U( T3+ T3
) = f d28rJ( T3+ T3

) where rJ = J,JE 2 . This term was allowed in 

N=l supersymmetry also so it is certainly allowed here. 

(6) f d48 UTT(T+T) = Jk4(A2+B2) . Has R-number ±(x+y). 

(i) J d 48 UN . Has R-number x. Hence not generated. 

(ii) J d48 US. Has R-number y. Requires one 'm' insertion. So it is not 

dangerous . 

(iii) J d48 UT. Is generated if Tis a singlet (figure 6) . 

(7) J d48(N3+N3
) . Allowed since it is allowed in N=l supersymmetry. 

(B) J d48NN(N+N) . Generates quadratic divergences d48 UN if N is a 

singlet. 

(9) d 48 (N + N)3. Has R-number ±x ,±3x. 

(i) J d48 UN . Generated if N is a singlet. (figure 7) 

(ii) J d48 UT . Has R-number x+y . Hence not generated. 

Thus we conclude that if there are no singlets all dimension three terms 

are allowed. If N is a singlet ( U( 1) factor in the gauge group) then terms 

(B) and (9) are not allowed. If T is a singlet, terms (3) and (6) are not 

allowed. This is the complete list of soft supersymmetry breaking terms 

for N=2 supersymmetry. 
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Appendix C 

The S0(10) generators in the spinor (16) representation are reproduced 

for convenience. If we let ii,r,rj,p stand for the following : 

d-
'# 

1- .... 0 
0" 

~ -= - .. 
<f1' ... 

0 fS" 
-a-
~ 

i.e. a acts on the smallest 2 X 2 space, r on the next smallest and so on, then 

the generators are: [ 13] 

where i,j: 1-3. 

The 'a' matrices in this representation are J.-Lo;. This is the analog of the a 

matrices of S0(4). Thus the 10 can be written as H 0 + iJ.-Lo;Hi in terms of 

16X16 matrices . (Analogous to writing the 4 of S0(4) as a 0 + aiai). 
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Figure Captions 

[ 1] Tree level particle spectrum. The twiddle indicates a superpartner. e.g . 

g stands for the gluino. 'pgb' stands for pseudo-Goldstone boson. 

[2a] The finite part of this graph gives a mass to the pseudo goldstone bosons 

A and B which are a 3+3. J d4() Ul: 1~ 1 Rj J.,L2 (A2+B2) . 

[2b] A graph which gives a mass to the fermionic partners of the pseudo geld­

stone bosons. ~J d4BX,x(D«l: 1)(Dal: 1) Rj .Jt.._Na· Here 1:1 and 1/1 stand 
m m 3 

for the 3+3 piece of the 45. 

[3] Graph which gives a mass to the gluino. 

!J d4Bx'Pr(lJ2D«V)(DaV) Rj ~Trr.a>-a. 

[ 4a] f).S = 2 box diagram- GIM mechanism. 

[ 4b] f).S = 2 box diagram -Super GIM mechanism. Twiddles indicate super-

partners. 

[5a] (! f j j ) dimension five operator is generated by exchange of the Higgs 

superfields. Arrows indicate the flow of chirality of a superfield. Note 

that the corresponding diagram with a gauge superfield exchange is 

suppressed by chirality conservation. 

[5b] Exchange of a g or W converts the scalar matter to ordinary fermionic 

matter. This is only suppressed by --I:- . 
Mw 

[6] The vertex J d48 UTTT results in a quadratic divergence J d4() UT if Tis a 

singlet. 

[7] Exactly the same situation as in fig .6 with T replaced by N 
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Fig. 3 
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Monopoles and Fermion Number Violation 

1. Grand Unified Monopoles and Baryon Number Violation 

Recently, some interesting properties of the fermion-monopole system 

have been discovered [1.2]. It was found that monopoles can catalyse 

processes that violate fermion number and chirality, processes that are other­

wise strongly suppressed. The calculations were done in a spontaneously bro­

ken SU(2) theory where the surviving symmetry is U(l) (Georgi-Glashow 

model), and with fermions in the i~ospinor (2) representation. It was found 

that in the presence of these (massless) fermions, the monopole is surrounded 

by a chirality and fermion number violating condensate of operators multil­

inear in the fermion fields. This implies that the ground state in the monopole 

sector breaks fermion number and chirality. This would manifest itself in 

chirality violating scattering amplitudes. Even more remarkably, the conden­

sate formation is not suppressed by any powers of the coupling constant or 

inverse powers of the large mass parameter in: the theory. Thus, in the pres­

ence of a monopole, these chirality and fermion- number violating processes 

would have large cross sections. This has phenomenological consequences in 

grand unified theories which are known to possess classical solutions that 

describe magnetic monopoles [3]. 

The monopoles of grand unified theories have a finite but very large mass 

and are singularity free, unlike the Dirac monopole . It has been argued [ 4] 

that they should have been produced copiously in the early universe . There 

has even been a possible experimental indication of their existence [5] 

although no subsequent experiment has seen any evidence . 

The spherically-symmetric monopole solutions of the SU(5) theory have 

been classified [6). If one were to extend the fermion number and chirality 

violation results of the SU(2) theory to the SU(5) case, one would be led to the 
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remarkable conclusion that baryon number is strongly violated by these 

monopoles and the cross sections would have the magnitude typical of strong 

interaction cross sections. There have been attempts to pin down the various 

observational consequences this would have, especially in astrophysics [7] and 

also in the proton decay experiments . Typically, these can be converted to 

bounds on the number density of monopoles, which in turn gives some useful 

information about the early universe . However, one needs a much more 

detailed and quantitative understanding of the various reaction rates and 

selection rules of processes that could be catalysed by monopoles . Before 

anything definite can be said, the calculations of Rubakov and Callan which 

were done with SU(2) monopoles and isospinor fermions must be extended to 

different fermion representations, to different kinds of monopoles with 

different magnetic charges, and one must also include the effects of non-zero 

fermion masses. In this dissertation, we take a first step towards generalizing 

these calculations by analysing arbitrary fermion representations. This exten­

sion is quite straightforward when one realizes that the underlying physics is 

essentially the same as that responsible for UA ( 1) violation in QCD [ B]. This 

chapter is organized as follows . First, we review briefly some classical and 

quantum aspects of the 't Hooft-Polyakov monopole in theories without any 

fermions . In section 1.3 we introduce massless fermions into the theory and 

give a qualitative picture of condensate formation around monopoles . This is 

followed up in section 1.4 with an explicit calculation. In section 1.5 these 

results are interpreted and a discussion of the general features of a fermion­

monopole system is given. In section 1.6 we generalize to the case where fer­

miens in arbitrary representations of the gauge group are present. In section 

1. 7 the relevance of these calculations to the real world is illustrated with two 

examples . 
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2. The 't Hooft-Polyakov Monopole. 

Consider an SU(2) gauge theory with a triplet of scalars, which gets a vev 

and breaks the gauge group down to U(l) . There is a continuum of degenerate 

minima for the scalar potential corresponding to the coset space SU(2)/U(1) . 

The following configuration of the scalar fields has a conserved topological 

winding number associated with it and is therefore stable against decay (fig . B) 

: take a point '0' where the Higgs has zero vev, and a surface 5 2 around it. On 

the surface 5 2 the Higgs vev takes values in SU(2)/U(1) in such a way that it 

defines a mapping from S 2 ..,. 
5J{~)) corresponding to the element 1 of 

rr2 ( uf1~)•. This element is the winding number of the map 5 2 ..,. S~l~), 
i.e ., it counts the number of distinct points of S 2 that are mapped onto each 

element of 
5~~~) . If we fix the ax.es of SU(2) isospin in the figure so that 1 1 is 

along the x-axis , 1 2 along the y-axis and so on, a configuration with winding 

number one , is one in which the Higgs field points radially in isospin space . 

(The trivial configuration where the Higgs fields point in the same direction 

everywhere has winding number = 0.) To change the winding number of a 

configuration, the Higgs fields everywhere have to be rotated by a finite angle 

in isospin space . A finite kinetic energy has to be expended per unit volume if 

this rotation is done in a finite period of time. If we assume an infinite 

universe , this process requires infinite action and does not take place . These 

configurations are therefore stable. At this point , as described, these 

configurations seem to have infinite energy because the derivatives 

airp ~ la 17rp ~ l . This means that energy (E) 
T T 

However , the theory has a local gauge invariance and this is illusory. One can 

• 7Tr:( Syt!,> )•. is the second homoto~up of ~Yr(~) . The element s of this group are the 
differE!'nt classes of maps from 8 2 t o . Two m!l.p~ correspopd to the same element of 7T2 
if t hey can be continuously deformed Ji£Peach other. 1r2( SJL>.:

1
ll !) A~ Z (group of integers). 

U~ • 
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choose a gauge (coordinate system) in such a way that the Higgs fields appear 

to point in the same direction everywhere . 1bis is equivalent to having the 

connections W JJ. satisfy DJJ.rp = 0 (although aJJ.rp 7- 0). From the topology of the 

configuration it is clear that DJJ.rp cannot be zero all the way down to the origin 

without encountering a singularity. In fact, on solving the equations of motion, 

one finds DJJ.rp R:j e-llr ,where M is the scale of SU(2) breaking rather than ..!. as 
T 

in the theory without gauge invariance. The solution to the equations of motion 

in the radial (spherically symmetric) gauge is the following: 

rpa = cr H(r) 
gr 

erriir. 
W~ = --' F(r) 

l gr 

wg = o 

(1) 

where a = 1.2,3 is the SU(2) isospin index and i = 1,2,3 labels Cartesian spatial 

directions . H(r) and F(r) are as shown in fig. 9. They satisfy H(O)=F(O)=O and 

H(oo)=F(oo)= 1, approaching these values asymptotically . The scale of variation 

is characterised by ry , which can be called the core radius . It is inversely 

proportional to the Higgs vev and the mass of the heavy bosons . Outside the 

core, the non vanishing component of the field strength B points in the unbro­

ken U( 1) direction:; , f . This can be identified as the magnetic field of a mono­

pole. The quantity J B. i's is a constant conserved quantity independent of the 
s 

above surface S, and can be called the magnetic charge 'm'. For the 

configuration (1), r;:: = -1, where that 'g' is the electric charge of the w:r 

boson. If isospin half fermions are introduced with charge q = ± ~, then 

qm = ..!. , the smallest value allowed by the Dirac quantization condition. 
411' 2 

The solution ( 1) is symmetric under a combined isospin ( T) and space ( 

L) rotation. It satisfies 

[.l.t + Ti,rp] = 0, 
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i.e . it is a scalar under L+S+ T (Sis spin) . Thus in the monopole background 

the quantity J =L + S + f is conserved. It also has the commutation relations 

appropriate to angular momentum and hence it can be called angular momen­

tum. 

Thus far the discussion is purely classical. Quantization of the theory 

requires treating the various collective coordinates carefully [9]. Collective 

coordinates describe zero frequency motions of solitons. They reflect the 

underlying symmetries of the theory that are broken by the soliton solution. 

Thus the 't Hooft Polyakov monopole has four collective coordinates : three 

corresponding to translations and one corresponding to isospin rotations in 

the unbroken V( 1) direction. (There is no collective coordinate corresponding 

to global spatial rotations since this can be compensated by global isospin 

rotations . •) We will not be interested in translations of the monopole since 

they are irrelevant to the phenomenon we are interested in. Let us assume 

that the monopole is extremely heavy and work in the rest frame of the mono­

pole with the origin of the coordinate system at the centre of the monopole . 

The fourth collective coordinate is the angle of global isospin rotation around 

the unbroken V(l) axis . Its conjugate momentum is electric charge. Thus a 

charged monopole, or dyon, can be pictured as a 't Hooft-Polyakov monopole 

rotating in internal space. Since this coordinate is an angle, its conjugate 

momentum, the electric charge, is quantized. Thus, in the quantum theory, 

the existence of dyons with quantized electric charge is a direct consequence 

of the existence of monopoles . To see how time dependent rotations in isospin 

space can give rise to electric charge, consider the following configuration in 

the temporal gauge: 

Ao = 0 

• There might be some confusion at this point : Is it possible then that one can do a sirrrilar 
(reverse) thing for the aforementioned U(l) i.e. can that be undone by a global space rota­
tion? The answer is no because-the unbroken U(l) rotations are not, strictly speaking, glo­
bal rotations. The generator is r. T which depends on position. 

(2) 
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where h = exp(2ic.> :;, T), c.>(O,t) = 0 It should be emphasized that, since 

c.>(r ,t) depends on time, this configuration is not a gauge transformation of the 
I 

monopole configuration. Let us now perform a gauge transformation with h -l 

(which does not affect the electric field) to make the effect more transparent: 

The electric field is Er = -zar a,(.):; T. This can be described as being due to 

an electric charge . Though we will not be interested in dyon solutions of the 

classical equations of motion, virtual dyonic excitations (due to quantum 

fluctuations) of the form (2) play a crucial role in the phenomenon we shall 

investigate . 

This was a brief survey of some of the classical and quantum properties of 

monopoles . We now introduce fermions into the problem. 
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3. Monopoles and Fermions 

In this section we discuss the effect of introducing fermions into the 

monopole sector and the behaviour of fermions when the gauge fields have non 

trivial topology. Section 1.4 presents some explicit and detailed calculations 

with isovector fermions and section 1.5 is a discussion of the physical interpre­

tation of the results. 

Before discussing the interactions of fermions with non-Abelian mono-

poles, let us first look at the (Abelian) Dirac monopole fermion system. This 

has been studied in detail by Kazama, Yang and Goldhaber [11] and by Gol­

dhaber [12]. One of the interesting results is the fact that there is a non­

vanishing helicity tlip amplitude for a spin half particle scattering from a 

monopole . In the presence of a monopole there is an extra contribution to the 

angular momentum of a charged particle given by q!:;: where qg is the 

charge of the particle and m is the magnetic charge of the monopole. This 

angular momentum is stored in the electromagnetic field as can be inferred 

from the fact that there is a non-vanishing ExB field circulating around the 

axis joining the charged particle and the monopole . If q is a multiple of ~, 

then g m = 1 from the Dirac quantization condition. Thus the electromagnetic 
41i 

contribution to J is q, and the lowest angular momentum state for an electron, 

which has spin ~, has J = [q[ - 1/2. It was found that this state can only 

undergo scattering if accompanied by a helicity tlip. • This is a bit surprising 

because normally in a static magnetic field , helicity is conserved. However, as 

was shown in ref [ 12] this is not true in the presence of a monopole. The 

monopole field is singular at the origin. If a particle is allowed to go through 

the singularity, unusual processes can take place because neither the Hamil­

tonian nor the helicity operator is self adjoint. In fact, the J = [q[ - 1 /2 state is 

precisely the one whose wave function does not vanish at th~ origin because a 

• Note that for a massless particle, helicity, which is the component of spin along the 
momentum, and chirality,Q5 , which is the eigenvalue of y, are the same . 
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particle in this state does not see a repulsive 'centrifugal barrier' . If a parti­

cle goes through the monopole its helicity has to flip . See fig. 10. All we need 

is conservation of angular momentum. As the particle goes through the cen­

tre, the sign of~ changes, and the term qm:;: changes sign. Conservation of 
4rr 

angular momentum then requires that the particle's helicity also changes 

sign. One can formalize this result by the following procedure (only an outline 

is given since Abelian monopoles are not the subject of this dissertation. 

Details can be found in refs . [11.12]) . First regularize the singularity by 

adding an extra magnetic moment k to the fermion. On solving the wave equa­

tion, one finds that even the J = Jql - 1 /2 wave function vanishes at the origin 

making the Hamiltonian well defined. Calculate scattering amplitudes and 

then take the limit k -> 0. This procedure has been shown to reproduce the 

result that the state with J = Jql - 1 /2 contributes only to helicity fup ampli­

tude. 

The fact that chirality can flip in the presence of a monopole should not 

come as a surprise . Consider a state with a non Abelian monopole . ( Note that 

the Abelian monopole can be considered to be the limiting case of a non 

Abelian monopole as Mx-+oc where Mx is the scale of SU(2) breaking) . Witten 

has argued [14] that a rotation of 2rr generated by the electric charge opera­

tor, Q, changes the winding number (defined to be ~~ r1 4xF 1~}~~v) of the 
64rr 

configuration by one unit . From the anomaly equation t it follows that this 

changes the chirality of the state. Thus the operator Q is a translation opera­

tor in the Q5 representation, in the presence of a monopole, 

i.e. we can represent Q by m 
8 
~5 . This implies [ Q, Q5] ~ m, where m is the 

n2 "" - J ta;,JIJ-5 = ~F~vF~. where Jt is the axiaJ current ffY'¢' and Q5 = r15xJg 
64rr 

• Another, equaJJy heuristic , way of saying the same thing is that Q5 changes the vacuum e.n­
gleifJ and therefore the charge of a state with a monopole since the monopole has charge 
e ~. {f1us Q5 is a translation operator in the Q representation. 
Qs-~ m aQ=>[Q5,Q] ~ m 
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magnetic charge of a monopole. • This shows that a state with a monopole can 

either have definite charge, or definite chirality, but not both. Charge, unlike 

chirality, costs energy since it couples to gauge fields. The ground state is 

thus an uncharged monopole which does not, therefore, have definite chirality. 

Another dramatic consequence of having massless fermions is the decay 

of dyons. It was shown by Blaer, Christ and Tang [13] that dyons are unstable 

and decay into fermion pairs giving out charge and chirality. An easy way of 

seeing this is the following : the anomaly equation tells us that 

The L.H.S. is non zero for a dyon since it has E R:j Er and B R:j Br· The R.H.S. 

has to be zero in any stationary state . This shows that a dyon is not a station­

ary state. Yet another aspect of the fermion monopole system was noticed by 

Callan [2] who showed that the charge, e :rr (due to the vacuum angle e [14]), 

of a monopole gets spread out over an infinite volume in the presence of mass-

less fermions. Therefore inside any arbitrarily large but finite volume contain­

ing the monopole, the net charge is zero. It ~as shown that the collective 

coordinate, conjugate to charge, which in the absence of fermions has the 

relatively simple dynamics of a rigid rotor, does not have this simple 

behaviour in the presence of fermions. One finds on solving the equations of 

motion that there are no solutions that correspond to a dyon. 

Finally it was shown by Rubakov [ 1] and later by Callan [2] that the 

(uncharged) monopole is surrounded by a chirality and fermion number 

violating condensate . Rubakov likened this to the fermion condensate caused 

by instantons [8], which violates the U(1)A symmetry of QCD. In the presence 

of monopoles such effects are enhanced. In this and subsequent sections, it is 

this phenomenon of condensate formation that we shall discuss in detail. We 

shall see that many of the concepts that are useful in conventional instanton 

physics have their counterparts here and can be used to obtain a simple 

description of this phenomenon. Such analogies will also enable us to extend 
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the results of Rubakov and Callan to higher fermion representations. 

It is useful to recapitulate some well known facts from instanton physics 

[15]. Consider the theory of SU(2) gauge fields coupled to massless fermions . 

Quantum fiuctuations of the gauge fields can give rise to configurations of non 

. zero winding number.• It can be shown by using the anomaly equations that 

configurations with non-zero winding number take the trivial vacuum at 

Euclidean time t = _.., to a state with fermions at t = +oo . Thus the amplitude 

<110>=0, where, by In>. we denote the vacuum with winding number nand no 

fermions . An amplitude of the form < ll-yi11f2(z) I O>t can be non zero, and as a 

function of 'x' , can be interpreted as the amplitude that during the process 

IO> -> 11> the fermions 1/11 and 1/12 appear at the point x ( to be annihilated by 

the operator 1f;1-yi2(x )). It can also be interpreted as a condensate of the com­

posite field -yit1f12. This condensate violates chirality. All these facts follow 

""' from the anomaly equation a~~5 oc F JJ.If~v. Integrating over space-time, we 

get !J.Q5 oc v, where v is the winding number of the configuration, and gives the 

number of chirality-violating fermion -stat-es that are generated. The func­

tional integral formalism provides another way of looking at the same process . 

In a given background gauge field configuration, the index theorem (of which 

the anomaly equation is the local version) determines the number of normaliz­

able zero modes of the Dirac operator. This determines those amplitudes of 

the form <ll-yi1-yi2 (x) ... IO> that can be non zero. (The normalizability of a 

mode means that one fermion of that type is 'produced' between Euclidean 

time t=-cc and t = +cc .) Thus we have different and consistent ways of looking 

at the same phenomenon. In doing calculations one typically uses a saddle 

point approximation around classical solutions of the (Euclidean) equations of 

motion, that have non zero winding number. These are the well known 

•Winding number is defined to be ~J dh:'ITF J'I'V. 
321r 

t The nwnber of fermion fields to be inserted depends on the :fermion content of the theory. 
We will come to this later. 
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instanton solutions. They have integer winding number, v, and finite action 

8~ v. This means that processes involving instantons are suppressed by the 
g Bn-2 

factor exp(--2 v). 
g 

One can use essentially the same picture to describe the formation of 

condensates around monopoles (unless otherwise stated, we restrict ourselves 

to the case of a 't Hooft Polyakov monopole in an SU(2) -> U(l) gauge theory) 

with the following modifications : a) In the presence of monopoles, 

configurations with non zero winding number exist, which have arbitrarily 

small action, hence there is no suppression factor. b) The winding number 

does not have to be an integer, it can be any real number. c) The back action 

of the fermions on the gauge field is important and we do not treat the fer­

mions as propagating in a fixed background. 

Let us look at each of these modifications a bit more closely : a) Witten 

showed [14] that in the monopole sector one can connect vacua IM;n> with 

different winding number by means of histories of the form given in equation 

(2) 

Ao = 0 (2) 

with h = exp(2iw(r,t);.f) . ; . tis the unbroken U(1) generator. To avoid a 

singularity at the origin we require c.>(O ,t) = 0. When c.> is time independent, 

this is an allowed gauge transformation because it does not rotate the Higgs 

fields . Consider c.; as shown in fig . 11. The history 'h' that has c.;(r ,-oo) = 0 and 

c.>(r ,+oo) as shown in the figure, has winding number k. This can be seen as fol­

lows (asuurne that we have a Dirac monopole, for simplicity) : 
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with v =winding number . Integrating by parts, and using 8;,B;, = g63(r) as well 

as the boundary condition on r.> 

and we get winding number m k (we have used J B. d.S = m, magnetic 

charge) . It is clear from this that the presence of the monopole is crucial. 

Furthermore, as T-> "" and r.> becomes time independent, h reduces to an 

allowed gauge transformation. This makes one suspect that there is no poten­

tial barrier for this process and that the cost in action comes entirely from 

the time derivatives in the kinetic term. This can also be shown by a simple 

scaling argument. We require 

+T 

Jdtjd 3x E.B ~ 1. 
-T 

In the monopole sector there is a conslant B field and so Er scales like 1 /T. 

Furthermore, it can also be shown that the E field is purely radial : 
~r· ..... 

Et = F Oi = 81 A,; - aiAo - [A0.A,;]. A,; = N 1 = erzi; .:...._:__l_Z. and A0 = i8, r;n- . f This gives 
.- p. . 'LT 

8iAo = i8i8rr;n- .7" + i8tr.>...::L;i where P;.; is the projection operator (r;,r;- 6;,;) . 
T 

This gives FOi = -ia,a,~ . ::r. Since r.>(r,t) depends only on 'r' it follows that 

the E field is purely radial. If we impose 8r8t r.>;::; 0( ~ ), the action for this his-
r 

tory is finite and R:l jE j2 T R:l ~2 T R:l ~ · Thus as T->oo, the action is zero, as 

conjectured. (We have subtracted out the monopole energy) . This is to be 

contrasted with the instanton case , where E, B R:l Jr and the action goes as 

(E2 + B 2) T R:l t R:l constant . Thus, unlike the pure SV(2) gauge theory, 

where, for configurations of nonzero winding number, there is a lower bound 

on the action [15] of 8 ~v (v = winding number, g =coupling constant) which 
g 

is realized by the instanton solution in the monopole sector, one has 
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configurations of nonzero winding number with arbitrarily small action. In the 

presence of such configurations, massless fermions have zero modes, as dic­

tated by the index theorem [16], and this results in condensate formation just 

as in the trivial vacuum sector. 

b) In the monopole sector one has finite action field configurations with 

non integer winding number J d 4z'PrF JMIFIM'. It was shown in the previous para­

graph that a history of the type shown in fig . 11 has winding number k. There 

is no reason for k to be an integer. This is not true in a pure gauge theory 

where all finite action configurations have integer winding number. To see 

this, let us study the instanton solutions a bit more carefully : 

4 . Tt, 
A = i u' ---,,..---

(z2 + 1) 
(3) 

where uii = ~tif.t uk, ui4 = ~ui ui being the Pauli matrices and z =~zJJ.. To 

compare it with the configurations of the form in eq. 2 it is useful to transform 

the instanton solution to the temporal gauge A4 = 0. A gauge transformation 

'h' (not to be confused with the h of eq. 2 ) that accomplishes this is deter-

mined. h satisfies 

Assuming h = exp(ic.,; .a), we get a, r.> = ... 2 
1

2 z + :z;4 + 1 

1 :z;4 
r.> = tan-1 + const . 

....; %2 + 1 ....; %2 + 1 

It is convenient to rewrite the instanton solution (3) as 

g = 
2 

A - :r g -la 
4- 1 + :r2 49 

In the temporal gauge 

AI= 0 
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Here the superscript T denotes 'temporal gauge'. (Note that as 

z or :z: 4 .... oo • A{= hg - 1Bi (hg-1}-1 which is pure gauge. This is expected, since 

in the vacuum sector all configurations have to reduce to pure gauge at 

infinity if the action is to be finite). Furthermore, using 

(5) 

we get 

It is also clear that as :z: .... oo, h g-1 becomes time independent, as required for 

a pure gauge transformation in the temporal gauge. 

h g-1 is plotted in figure 12 along with the dyonic excitations of eq. 2 for 

comparison. For large :z:4 and large x, hg - 1 contains all the information about 

the instanton configuration. This is also sufficient to determine the winding 

number. Also at x = 0, the piece h a~.h -1 is zero so we can ignore it . At 

x = 0, :z:4 ~ 0, hg-18;. (hg- 1)-1 is singular because it changes discontinuously. 
2 

However it is multiplied by :z: 
2 

which smooths this. The important point to 
1+x 

note in the first column of fig. 12 is that the winding number arises due to the 

change in the value of G.> from 0 to -71' at the origin and not at spatial inftni.ty 

where its value is constant . Since the group element is well defined at the ori­

gin only if it is a constant (±1), it follows that G.> has to change in steps of 11'. In 

complete contrast, as the figures in the second column indicate, the winding 

number in the monopole case arises due to changes in G.> at inftni.ty, and thus is 

unconstrained. When fermions are added, the situation changes since the 

winding number also counts fermion states via the anomaly equation. This 

quantizes the winding number, but still allows half integral values in certain 

cases. 

c) We have already seen in the case of a dyon that fermions have a very 

significant effect on the dynamics of the gauge field . Thus , the calculation will 

be organized as follows. The fermions are first integrated out . This modifies 
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the kinetic term for the gauge field. After that, the difierent gauge field 

configurations are integrated over . Thus, no fixed background gauge field 

configuration is put in by hand. Once the integration is done it can be 

checked, a posteriori, that the dominant configurations have winding numbers 

consistent with the index theorem. 
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4. Isovector Fermions 

In this section we analyse the monopole fermion system with the fermion 

in the adjoint representation. The monopole is the usual 't Hooft Polyakov one 

rpcl = c;. T H(r ) . 

F(r) and H(r) are the functions shown in fig. 9. <rp> = c, far away from the 

monopole and the mass Mx of the heavy bosons ~ gc . The core radius r 11 is 

0( ~x ) . To simplify calculations, we take the limit Mx-+oo or r11 -+0. If the 

gauge bosons are much heavier than the fermions, this is a good approxima­

tion. The effects of the monopole persist even in this limit , which means that 

they are not suppressed by factors of 1/ Mx. as one might suppose naively. 

The effects of the monopole manifest itself in certain boundary conditions that 

the fermion fields have to satisfy at the centre . Even after the limit r 11 -+0 is 

taken, these boundary conditions convey information about the core to the 

outside. Therefore we shall first write down the Lagrangian keeping a finite 

core radius, obtain the boundary conditions, and then let the core radius r 11 

go to zero. 

The excitations of the gauge fields being considered are of the form (2). 

The background, as well as these excitations, are invariant under 

j = l + S + T (the total angular momentum ). It is convenient to employ a 

Fourier decomposition of the fermion fields. The operators 

Jj, J3 , ;,§and ;, f can be diagonalized simultaneously. The eigenvalues 

are denoted by J(J+l), M. u:r. respectively, and the eigenfunctions by tfLf!T. 

The fermion field can be expanded in terms of these eigenfunctions: 

1/J(r,t) = 2: UfLf!T(r,t)tkrrr (G,rp) 
J Jl.a.T 
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After transforming to a gauge where A.: = Af1, the Lagrangian becomes 

(6) 

where !:-Do= iai(o\J" _;:i.;j)(aj +A;) -i 0~; is the angular part of the Dirac 

operator. To derive the exact Lagrangian requires a certain amount of algebra 

which has been outlined in Appendix A. Only the final result is given here. 

The J = 1/2 and J > 1 /2 pieces are written separately: 

s = S1 + 2: s, 
2 />! 

2 

S1 = s{ + s{ 
2 2 2 

S 1 = 2: j[ Ug:.r(a, +Ac +ia(Br+ E)) u.lltTT + 
Mrrr r 

(7) 

1 1 For J = 1/2, M takes the values ± 2, a takes the values ± 2 and ; takes values 
0 1 -1 -1 1 0, ±1. wtth I a+ 7' I ~1. Thus for each M, (a,;) = ( 2,0), ( -z.O) , ( 2· 1), ( 2 ,-1). 

S1 = ~ j(l-F)[u;rrr (i£)Ugrrr +...J'i'=? u:rrrUNrrr 
1/rrr r 

+ v'2t (U'!.1' U'( + ul(•u'!.1 +h.c . )] .,. .. c/..,.J.t 
r 2 o 2-1 2o 2 1 

S{ vanishes asymptotically, i.e . as F -> 1. 
2 

S 1 = J [ Uk~ (a, + 2i;a, c.>+ 2ia(ar + 1 )) Ukrrr 
/>2 T 

+ 1uk~U/i-rrr-v J(J+1) + 1_;2 ]r 2drdt 
r 4 

(B) 

In equation (B), the limit F -> 1 has been taken. For J > 1/2, 

~) + i- r > 0 because for isovector fermions ITI ~ 1. This term 

acts like a centrifugal barrier and makes the wave function vanish at the ori­

gin. It will be argued later that for the existence of a zero mode and conse­

quent condensate formation, it is essential that the wave function be non van­

ishing at the origin. Thus, for the moment, we concentrate on the J = 1/2 sec­

tot. 
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For simplicity we shall approximate F(r) by 1 outside a radius r11 . When 

Mx is very large this should be a good approximation because the distance 

over which F(r) changes from 0 to 1 is ~ M1 which is << - 1- the Compton 
x m1 

wavelength of the fermions , the only other scale in the problem. 

At the origin, F=O, and the Lagrangian density Lf where Sf = J Lf d4x 
2 2 2 

contains singular terms that blow up as 1 /r, and the Hamiltonian density also 

blows up . To prevent this, some restrictions have to be imposed on the fields 

Ullrrr· The 1/r pieces can be collected and written as follows:(an index M that 

takes the values ± i is understood on all fields in the J = i sector) 

( ... u.. u- u. .. ) 1 -~ 0 .JI ul. -l J -1 •• 1 
.. ..o ~ s. r;2. 0 -c.. -1 .. ~ 

0 -Ji 1 0 

-li 0 0 -1 

We then require that at the origin the vector U = 

be parallel to the null eigenvector which is : 

1 
i 

..J2i 
-.../2 

This can more conveniently be written as three boundary conditions : 

[ U 1_
1 
(O,t )-iU _

11 
(O,t) ]=...12[ iU 10(0,t )+ U =-!0(0,t )] 

2 2 2 2 

(9a) 

(9b) 

(9c) 

On studying S{ and S{, it is clear that in the limit rg .... 0, the only remnant of 
2 2 
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the coupling between the -r = 1 and -r = 0 fields is the boundary condition (9c) . 

The next simplifying step is to take this limit r.11 .... 0. Define new 'tilde' 

fields U(r ,t) generically in terms of the corresponding U(r,t) variables by 

_1_lfJexp(J.r1-F(r) d.r) = U(r,t) 
"I/41T r • r 

For r < TJI , fJ = U and for r > TJI fJ = rU. Thus fJ interpolates smoothly 

between the fields U(r,t) inside the core and rU(r,t) outside, the latter of 

which is the convenient variable to work with. The Dirac equation written in 

terms of fJ is smooth at r = r.11 and the boundary condition (9) is imposed on 

U(r ,t) at r = TJI, and in the limit rll-+ 0, this is identical to (9) . 

Anticipating this limit we concentrate from now onwards exclusively on the 

region r >rJl . The -r = ± 1 and -r = 0 fields decouple in this region except for 

the boundary condition (9c) . The -r = ± 1 Lagrangian is 

where 

L = ~Jff-r3(a 1 -2ir(a, G))+-r 1 ar)D d.rdt 
ll 

(10) 

and boundary condition (9a) is U2(r11 ) = 0. This is exactly the same Lagrangian 

and boundary condition as in the isospinor case with two fiavours which was 

worked out by Rubakov and Callan, except that the interaction term involves 

28, G) instead of a, G) . This corresponds to the fact that the charge of the 

charged isovector fermions is twice that of isospinor ferrnions . This Lagran­

gian, in fact, describes a massless Schwinger model with two fermion 'fiavours' 

(M= ± ~) with r ~ -f, -r 1 ~ )'1, -r2 ~-f . The -r = ±1 (J=1/2) part, by itself, is 

thus exactly solvable [ 17]. 
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The -r = 0 Lagrangian is 

We define 

so that the boundary condition (9b) simply becomes vf(r11 ,t) = 0. 

Without boundary condition (9c), the -r = 0 and -r = ±1 sectors are com­

pletely decoupled, in which case the Green's functions for the fermions are 2 x 

2 matrices for each sector (-r = 0 and -r = ±1) . However (9c) requires that 

both sectors be treated simultaneously, i.e. with 4 x 4 matrices , and this 

means that the similarity of the -r = ± 1 sector to the Schwinger model cannot 

be exploited. At first sight, this problem appears to be considerably less tract­

able than the isospin 1/2 case . However, it will be shown that if r11 is small 

enough, errors made in treating the two sectors independently are negligible . 

This is because the terms that couple the two sectors in the 4 x 4 Green's 

function matrix vanish as ,.., TJI . Thus as long as questions about short dis-
r 

tance structure, r Rj r11 Rj ~x, are not being asked, these terms can be 

ignored and the fermion Green's function becomes block diagonal as TJI .... 0. 

Consider the behaviour of the Green's function for the vf ,v¥ system just 

outside the core . The equation of motion for the Green's function there can be 

written as 

The Green's function has been parametrised by the functions G1 and G2. From 

(10) we obtain : 



- 74 -

so that G2 ... r 2 as r11 .... 0, and to ensure that vf (O,t) = 0, choose the solution 

where G1 - r as r ->0. ( In the above equation, excitations of the gauge field of 

the form (2) that add terms of the form o, c.> to the equation of motion have not 

been considered. 1bis is justified by the fact that the parameter c.> of equation 

(2) satisfies c.>(O,t) = 0 and therefore in the region of interest r ~ TJI ~ 0 one 

can safely neglect the effect of such interactions) . Notice however that 

vf (O,t) also becomes zero with this choice of Green's function. Thus , while 

(9b) has been satisfied, something still has to be done about (9c) according to 

which Lim (vf(rJI) = . ~2 U{'(ry)) . If left as such, this would force U/'(ry) = 0, 
TM..,D Vi::': 

and since already U~(ry) = 0, all fields would vanish at the origin. Since it will 

be argued later that a zero mode is necessarily non vanishing at the origin, 

the conclusion would seem to be that there is no condensate formation in the 

isovector case. However , we now show that this conclusion is not correct 

because the Green's function given above is not the most general that can be 

written down. One can add , as part of the full Green's function for the com­

bined system of T = 0 and T = ± 1 fermions , a solution to the homogeneous 

equation (12) that enables (9c) to be satisfied in a trivial manner. 

For convenience the t-variable is Fourier transformed and the frequency 

denoted by z. The functions 

ry 1+zry 

~ (z ,T ,Ty )]-
(z,r ,rg) - ry -%(r--rM) 1+zr 

-e 
r 1+zrg 

satisfy the system (12) with the R.H . . put equal to zero. Also 

f (z ,ry ,ry )=1 
ZTM 

g (z ,rg ,ry )= 
1 

. 
+zry 

Keeping these properties of f and gin mind, consider the Green's function for 

the combined ( fJ 1.fl2 ,v 1.v 2) system: 



H2 
H4 

gA2(z ,r ,t) 
I A2(z ,r ,t) 
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0 
0 

8t G1 

-i(8r-~) 

0 
0 

-i(8r+ l )G:! 
r 

8tG:! 

where H;. are the Green's functions for the ; = ± 1 system, which we assume 

satisfy the boundary condition (9a) : H 3(rJ1,z,r',t') ~ H 4(rJl .z.r',t) ~ O(rll) ~ 0 

and 

At(z,r,t) = _JzH1(rJI,Z,r,t) 

1 
A2(z ,r ,t) = ....rzH2 (rJI,Z ,r ,t) 

At r = rM , G(r ,z ,r' ,t') becomes 

H1 
~o(rM) 

GYrJi _l_H 
l+GYrM ..J2 I 

1 
..J2H1 

0 
0 

~o(r11 ) 
r::JQ(rN) 

where the arguments (rM,z ,r' ,t') for H 1 and H 2 are understood. Now H 1 and 

H 2 are Dirac Green's functions which behave as l as z-> oo•. Therefore we can 
z 

safely say that v'2 ( zrM )H12(rJi,z,r',t')-+ 0 as Z-+ 00 . This Green's function 
2 1 + ZTM ' 

thus satisfies all the boundary conditions (9) . The functions f and g have 

another interesting property : in the limit r 11 -+0 , they vanish for any value of r 

> 0. Thus lhe Green's function also becomes block diagonal in this limit and 

the ; = 0 and ; = ± 1 sectors are decoupled. 

Let us summarize brieft.y, what we have done so far in the isovector case. 

First, the core of the monopole is removed from the problem by imposing 

some boundary conditions at r = TM so that the equations of motion need be 

• This is strictly true for the free Green's function. The short distance behaviour of the 
Green's function is not affected by interactions. 
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solved only in the region r > r 11 . This approximation becomes exact in the 

limit r11 .... 0. Second, the Green's functions are modified by the addition of 

homogeneous solutions of the equations of motion in such a way that all the 

boundary conditions at r = r11 are satisfied. Furthermore, in the region 

r > r 11 + t, where t > 0, but small, and E: goes to zero as r 11 .... 0 , these homo­

geneous solutions are negligible and may be ignored. In the limit r 11 .... 0 , 

t .... 0, this approximation also becomes exact.In fig. 13 the situation for finite 

r11 is depicted. The -r = ± 1 zero mode ( condensate ) is non vanishing at the 

origin. Since the core of the monopole is a region where SU(2) is unbroken, 

one expects that there should be a certain amount of the -r = 0 condensate as 

well. This is also what the boundary conditions seem to indicate. However the 

-r = 0 condensate vanishes quite rapidly over a distance of O(r11 ) . Now we can 

proceed to treat the T = 0 and T = ± 1 parts separately. 

The -r = 0 Lagrangian outside the core was given in equation ( 11) . The 

-r = 0 fermions do not couple to the gauge field excitations, and hence do not 

have any zero modes . They do not form any condensate, except in a region 

around the core of extent (rg ) , as mentioned in the previous paragraph. 

Consider the -r = ±1 Lagrangian (equation (10)) : 

L = L,J ff-r3(81 -2i-r2(81 c.>)+-r18r) D drdt 
M 

with boundary condition fJ f(O) = o•. We can proceed just as in the isospinor 

case. The free fermion equation is 

(-r38c + -r1 Br)G(~.f) = 6(~- f) 

Where t:(r,t). Th l t· t thi . ~-(tt')- 1 r(t-t')+-r
1
(r-r') The .., e sou 10n o s IS vo o; • .., - Zrr (r _ r')2 + (t _ t')2 · 

boundary condition U2(0,t) = 0 has to be satisfied, so the same boundary con-

dition is imposed on the Green's function. It can be seen that the Green's 

• The two values of M should be considered to be flavour indices for the purposes of this cal­
culation. 
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function G0((r - r),(t - t')) + G0((r + r),(t - t'))r automatically satisfies this. 

As in the Schwinger model. one can now solve for the Green's function in the 

presence of a gauge field excitation parametrised by c.>(r ,t) . The solution is 

[17,1,2] 

G(~.f) = exp[2i-r2{a(~)) + 2(ua)- u(f))]G0 (~.f)exp 2i-r2a(f) {13) 

where 

r 
a(f) = Ja:u(r,t)dr 

0 

0-1 = O-l((r - r). (t - i )) + O-l((r +.;. ). (t - t')) 

(14) 

i.e. it is the Green's function for a scalar field in two dimensions that satisfies 

D\1' = 0 and has boundary condition Or\I'(O,t) = 0. Also note that a(O) = 0. This 

is required because imposing ( 1-13) G0(0,t ,r' ,t') = 0 is not sufficient for 

(1-,S)G(O,t ;r' ,t') = 0 to be satisfied because the matrix a(D)-r2 in the exponent 

can mix the upper and lower components. D '1(r,t) = _Llog,u2(r 2+t 2) where .u 
41T 

is an arbitrary mass scale . Now the fermions can be integrated out exactly. 

This is worked out in Appendix B. The result is 

( 15) 

The corresponding expression in the isospinor case with two flavours was 

( 16) 

The factor of 4 is easily understood. The gauge field excitation term in the iso­

vector case is 2(o: c.>), versus (8: c.>) in the isospinor case . This reflects the rela­

tive charges of the fermions in the two cases . The number of flavours is two (M 

= ± ~ ), just as in the isospinor calculation. Thus simply replacing u by 2a 

gives us the required factor of four . 
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To get the full action. the gauge field kinetic term has to be added. Ignor­

ing the constant background of the monopole, we are left with the electric 

field due to the excitations which is given by BrBt r.>. Thus the term to be added 

is : 

Using (14). this can be written as 

Thus we finally get: 

(17) 

The propagator for the a field and some of its asymptotics are given in Appen­

dix C. 

We can now calculate the expectation value of an operator of the form 

Letting 

(18) becomes 

this becomes 

U"" ·u"' 
fu l 

-1 +t 1 .. -1 --1 
.,_ 1 - 2 2 u- L. ... -!iu~~ + ut 

lU2 .fi -1 --1 
2 2 

Ul!1 
(l+iT1) 2 1 

V2 u¥ = 
--1 

1 1 2 
-T --

U2 U 2 . In terms of the tilde variables, 

Thus we have to calculate 

<MIQ(r .t)IM>. 

( 18) 

1 

fJ2, (see equation 10) 

(19) 

(20) 



- 79 -

First evaluate 

+ 
<M I Q(r ,t )Q(r' ,t') I M>. (21) 

In the limit (t- t') -> ""· this should become, by the cluster decomposition pro­

perty, 

~ ' <M I Q(r,t) IM><M I Q(r',t) IM>. (22) 

(21) is easier to ev~uate because it can be written directly in terms of the fer­

mion Green's functions (13) which are known exactly. 

= ~ ~ Tr[ G1T(r ,t ;r ' ,t' )CJ2(r ,t ;r' ,t' )] 
r r 

(23) 

Substituting the expressions for G from equation (13) and S,Jf (a) from equa­

tion (17) one finds : 

U . G __ 1 ,..S(t - t) + 1 1(r - r) _L (t - i) - ir2(r + r') w t 
Slng O- 2rr (f - t')2 + (r - r)2 + 2rr (t - t')2 + (r + r)2 ' e ge 

r _ 1 [ 1 1 ] 
Tr GoGo- 2rr2 (t - t')2 + (r - r)2 + (t - t')2 + (r + i)2 

(25) 

To evaluate 

j[da]e -s,J/(a) HaW -4a(f), 

observe that the terms linear in a can be treated as source terms with the 
,. .. " ' 

source being J(~) = 46(~ - 0 - 46(~ - ~ ) . Then the result of doing the Gaus-

sian integral is just : 
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(26) 

where K is the a-field propagator described in Appendix C. Equation 26 then 

becomes 

e 8K(U) + 8K(f,f) - 16K(U'). 

Using the asymptotic expressions from Appendix C : 

4K(~.O = -¥[ 4~log,u2((r - r')2 + (t -/)2) 

I 2 ( ')2 + ...Llog,u2((r + r)2 + (t - t)2)] - _l_log (t - t) +r - r . 
4rr 4rr Brr' 

Letting (r - r) = e and t=t' . we get a·fter taking the limit £-+ 0, 

-1 2 1 1 
4K((.0 = 4logJL - Blog32- 4logr 2 

and 

and 

-1 2 1 ° 2 I 2 1 I 2 ° 2 4K((,(') = 4logJL - Blog [(r- r) + (t - t)]- Blog[(r + r) + (t - t)]. 

Putting everything together one finds 

Substituting (25) and (27) in (24) we get 

t 
<MIQ(r,t)Q(r' ,t')IM> = 

_1 ___ 1_[ 1 + 1 ] 
2rr2 r3r' 3 (t - t')2 + (r - i)2 (t - t')2 + (r + r')2 

xV(r - r')2 + (t - t)2V(r + r')2 + (t - t,2. 

In the limit (t-t')-> oo, this expression simplifies to 2~2 r~, 3 . Using the cluster 

property one finds 
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<MIQ(r,t)IM>~ r; · (28) 

The important points to note are that the expression is independent of the 

coupling constant, and that it has no dimensionful parameter in it. Depen­

dence on the coupling constant enters only in higher order corrections. Thus 

we have shown that the operator in equation (18) gets a vev in the presence of 

the monopole. The calculation is almost identical to that done originally by 

Rubakov for the isospinor case. Let us pause for a minute and summarize 

what we have learnt from this calculation. The isotriplet fermions are 

expanded in spherical harmonics of total angular momentum J, with J= 1/2, 

3/2, 5/2 ... There is a centrifugal barrier proportional to ..J J(J +1)+ 1/4- '? 

which prevents the harmonics with J > 1/2 from participating in the conden­

sate (this is still to be shown ). In the J=1/2 sector the centrifugal barrier 

vanishes forT= ±1. but not forT= 0. Consequently T = 0 fermions also do not 

participate except in an infinitesimal region around the core. • The T = ± 1 fer-

mions behave like an isodoublet, but with twice the charge of a genuine iso­

doublet. We refer to these as "isodoublets". Also since J = 1/2, there are two 

values of M which, for all calculational purposes, are like two fiavours. In the 

presence of configurations with non zero winding number, these "isodoublets" 

have zero modes . To count the number of zero modes invoke the index 

theorem, which says that if the winding number is one, an isodoublet has one 

zero mode (since these are Weyl fermions). There are two "isodoublets", but 

each one is doubly charged. This means that the effective winding number 

seen by the "isodoublet" is twice that seen by the usual isodoublet. Thus, in a 

configuration with winding number one, there are four zero modes and a four­

fermi operator should condense . However, explicit calculation showed that it 

was a two fermion operator which got a vev. This could only mean that the 

gauge field configuration that was responsible for the zero modes had a 

• Another reason for not participating in the condensate, special to T = 0 fermions, is that 
they are uncharged and do not see the monopole in the limit rg .... 0. 
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winding number of 1/2. In fact, it bas already been argued that there is no 

reason for the winding number to be an integer, and so there is no cause for 

surprise. The winding number can be checked as follows. It was pointed out 

that the terms linear a in equation (24) can be treated as source terms where 

J({) = 46({ - {) - 46({ -f). The classical solution to the equations of 

motion is then given by the configuration 

(29) 

= 4K(f,{) - 4K(f,f). 

Usually, this is only a saddle point of the integrand, but in our case, because 

the action is quadratic this gives the exact result of the functional integral . 

Knowing the exact form of the configuration, one can evaluate the value of 

c.>(oc ,+oo)- c.>(oo,-oo), which gives us the winding number. It is found to be a 

combination of winding numbers ± t (the + 1/2 part, + K, being responsible 
., 

for <MI Q(r.t) lM > and the other, - K , for <M IQ (r' ,t') IM> ). Thus, whenever the 

fermions have integral charge (T = 1. 2 .. ), we can expect to have winding 

numbers that are half integral. However. the addition of two ftavours of isospi­

nors (so that now there is one isovector along with two isospinors) modifies the 

picture once again. One can re-do the calculation (this requires only minor 

modifications and is done in Appendix D) to find that the non-vanishing con­

densate has four fermions from the T=1 multiplet and one each from the 

T= 1 /2 multiplets. This is consistent with a winding number of one . In this 

case, one cannot have a winding number of half, because that would require 

half a fermion each, from the isospinor multiplets . This feature generalizes to 

arbitrary representations, i.e. if there is even one fermion representation that 

has half integral isospin, the winding number has to be integral. 

To complete this analysis from the point of view of instanton physics, the 

following question should be answered: the index theorem states that 

NL - NR = c v[NL = number of negative chirality zero modes: NR =number of 



- ' 83-

positive frequency zero modes ; v = winding number ;c a numerical constant ]. 

What can be said about NL and NR individually ? In the case of the instanton 

solutions, the self duality (or anti self duality ) ensured that NL ( or NR) was 

non zero. In the present case, it was implicitly assumed in the discussions of 

the previous paragraphs that a similar property held. We would like now to 

substantiate this assumption by showing that, for the gauge field configuration 

in equation (29), Nr or NR is zero. We use the notation of ref. [18]. Then 

where O..J.' = (icU) 

In our case, 

This was seen explicitly in the isovector case, and also in the isospinor case 

[1.2]. This is true in general also because :;: , T +:;.a= :;,j, For a zero mode, 

v J(J + 1) + 1/4-? = 0, which requires J = 7'- ~ · This implies 

1:;. T I > 1:;] I, and therefore (:;.a) has to have a sign opposite that of :;, T, 
which proves the statement. Also, in the case where r.> increases from 0 to ; , 

it can be shown from the formula in equation (29) that a, Brr.> is positive. To 

ft_ (r -r)2 + (t- t)2 
see this, note that a, Brr.> ~ 

2 
~ [ 1 + 2TT' ] (see Appendix C), 

and k is a function of the coupling constant but > 0 always . ~ then has the 

property that ~ (x) > 0 if x > 1. So a, Orr.> is positive everywhere. Thus 

( aJ.' + AJ.')2 + 2i uJ.W F J.W is a positive definite operator for winding number 1/2. 

There are therefore no normalizable zero modes for 1/IR if the winding number 
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is 1/2. Similar arguments hold for winding number -1/2, and also for higher 

winding numbers . 

We now demonstrate as promised earlier that the condensate consists 

entirely of J = 1/2 fermions. The J > 1/2 fermions do not participate in the 

condensate because there are no zero mode solutions with J > 1/2. The J > 1/2 

Lagrangian in the limit rll-.o is (B) 

1 ~J(J+1)+1..-r2 
L = f U/ifn' (Be + 2iioer.> + 2ia(or + - )) Ukfn' + 4 Ukfn' UiJ_a-rfJ.f r r 

Then 

L = j [ UfJT(ae + 2ilo1 r.> + 2ia3Br + c(~, 1)a 1 )UfJT]dr (30) 

where c (J ,I) = ~) + 1.. - r2. 

v~T = [u~fn' + ~uiJ_fn'] 4 
UiJfn' - tUk-UT 

further redefinition 

allows us to write the equation for the Green's function in the following form: 

where G1 and Gz satisfy: 

[or+ oi- c(c;l)]G1(r,t ;r' ,t') = o((r -r))o((t- t)) (32) 
r 

[or+ a;- c{c;l)]Gz(r,t;r' ,t') = o( (r -r))o((t- t)) . 
r 

If J >~ . then c C!: ~. Thus both c(c+l) and c(c-1) are necessarily> 0. In 
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that case, it is easy to see that the Green's function has to vanish at the ori­

gin. In the case of G1 for small r, v - rv'§ or r 1-vs. The latter solution would 

require U Rj r -vs which is not square integrable at the origin. Therefore we 

are left with r V§ which vanishes at the origin. The same is true for G.z. This 

can be made use of as follows•. The vanishing of the Green's function at the 

origin allows us to perform a singular gauge transformation on the gauge fields 

gauge transformations of the form AJ.' .... g-1A~ + g-1o~ where 

g = exp(iA(r ,t) ;, T), A(O,t )# 0. The fermion determinant in terms of 

diagrams is shown in fig. 14. In coordinate space it is of the form 

(33) 

a = -ylo'alo', a# is the excitation of the background monopole configuration. In 

the calculations so far al = o.ao = 21"0t c.>, -y0 = i!, -y1 = ia3. Consider the part 

J d2y2G" (y 1,y2)-ylo'G' (y2 .Ys)alo'. A gauge transformation adds to alo' the piece 

a#A 

J d 2y2G' (y 1 ,y2)~G" (Y2·Ys)B#A(y2) can be shown to be zero. Integrating 

by parts we get 

The last two terms cancel against each other on using the equation of motion. 

The first term vanishes being a surface term. since G' (y ,y') vanishes both at 

r=O and r= "" · If G had not vanished at r=O we would have had to require A(O,t) 

=0. Thus the terms shown in fig . 16, and hence the fermion determinant, are 

invariant under gauge transformations, for which A(O,t )# 0. But by means of 

such singular gauge transformations one can change the winding number of a 

configuration. Consider a gauge transformation with A(r,-oo) = 0, A(r,+oo) =rr. 

• This argument was made by Rubakov [1]. We have given it a physical interpretation 
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This has a winding number of one. This can be seen by noting that on the sur­

face at infinity of Euclidean space, S 3 , this has the same form as an instanton 

configuration (in the Lorentz gauge ) of winding number one. Since the wind­

ing number of a configuration depends only on the values on this surface at 

infinity, the result follows . The fact that the winding number can be changed 

at will, and in particular be made zero, without affecting the fermion deter­

minant implies that there are no zero modes . These J > 1 /2 fermions do not 

'see' any winding number, and therefore the condensate consists entirely of J 

= 1/2 fermions. This argument applies to other fermion representations also, 

and will be made use of in generalizing the results of this section. 

The calculation of the condensate formation in the monopole isovector 

fermion system is now complete up to finite mass effects . We also have a sim­

ple instanton picture to understand the condensate formation. These results 

along with results from the isodoublet calculation of Rubakov and Callan 

enable us to discuss the general features of the fermion monopole system. 

This is done in the next section. 
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5. The Monopole Fermion System 

In the presence of massless fermions the monopole is surrounded by a 

condensate of J-invariant multilinear fermion operators. We lmow the compo­

sition of this condensate in the case of the fermions which are isodoublets or 

isotriplets. (The more general representation is treated in the next section). 

For an isotriplet ('~V:f/;0 ,1/1-). the condensate is 1/1+1/1- (if no isodoublet is 
+ - + -

present) . If isodoublets (x 1 
, x 1

) and (x 2
, x 2

) are also present, the conden-

sate is 1/1+1/l-1/1+1/l-/1x -2 as discussed in the last section. These condensates fall 

ofi as r-Sn/ 2 where n is the number of fermion operators in the condensate. 

What. symmetries do these condensates violate ? The answer is as follows. 

Symmetries that are preserved by the Lagrangian and that are anomaly free 

are not violated by the condensate . Of course this is not a coincidence. It is 

clear from the instanton picture that the distribution of fermions in the con­

densate is governed by the index theorem which counts the nurnber of zero 

modes for each representation. Also, as previously mentioned, the anomaly 

equation is just a local version of the index theorem. Thus the condensate for­

mation has to be consistent with the anomaly equation. In particular, if a 

symmetry is anomaly free, the anomaly equation requires that the condensate 

be neutral under that symmetry. • On the other hand, if a symmetry is 

anomalous, the anomaly equation also tells you how many units of that quan­

tum number is violated by the condensate. Let us illustrate this with a simple 

example. Consider a theory with two left handed isodoublets 1/1± , x± . The 

minimal condensate formed is 1/l+x- -1/1-x+. •• The superscripts ± refer to 

charge:;:, f . This charge is conserved and anomaly free, as is reflected by the 

manifest charge neutrality of the condensate . It is also J invariant, which is a 

~lobel symmetries corresponding to exactly conserved currents can get spontaneously bro­
ken by the vacuum e.g. chira1 symmetries in QCD. But these are strong coupling effects. 
Here we are talking about effects that exist for arbitrarily weak coupling. 

••Note that we are always referring to a condensate with-the least possible number of fer­
rnions in it . Thus condensates of the form (t+x- - ·rx+r for arbitrary n are formed but 
they fall off much faster than the minimal one. 
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statement of the conservation of angular momentum. For the isodoublet case 

this is trivially true, since each fermion field in the condensate has J=O •••. 

and is therefore invariant under J. It does not have to be invariant under the 

full Lorentz group, because the monopole background is not invariant under 

boosts. This condensate carries -2 units of chirality. This is easily seen to be 

consistent with the anomaly equation. The UA ( 1) (A stands for axial) current 
e2 

satisfies a. ;~:J = N--t F~vFpa. (N is the number of flavours 
JoW 64rr ~pa 

6
:-rr'GJ d4xt~paF~Ji'Pa = 11 winding number). For 11 = 1, N =2 we get .6Q:J=2. 

Similarly one can define conserved fermion numbers or any other quantum 

number and verify that there is always complete agreement between the viola­

tion (or conservation) of quantum numbers predicted by the anomaly equation 

prediction and the violation (or conservation) by the condensate . 

Motivated by the approximate baryon number conservation in SU(5), we 

would like now, to understand what happens to quantum numbers that are 

only approximately conserved. In the SU(5) example, at low energies where 

the gauge group is SU(3) X SU(2) X U(1). baryon number is conserved approxi­

mately. Any perturbative violation is proportional to ~x. where Mx is the 

scale of SU(5) breaking . In the limit Mx-+<:rJ one expects this symmetry to be 

conserved exactly. Yet, this need not be true in the presence of a grand 

unified monopole, since the very existence of such a monopole is a reminder of 

the underlying grand unification. (Of course as Mx-+ 00 , the monopole itself 

becomes infinitely heavy, but if they had been produced in sufficient numbers 

in the early universe this does not cost us anything) . Rubakov and Callan have 

argued. that when the results for SU(2) monopoles are extended to SU(5) 

monopoles, one should expect to see strong baryon number violation, even in 

the limit Mx-+<:rJ . In order to examine approximately conserved symmetries. 

let us go back to our SU\2) monopole with two isodoublets, 1/lt , x.t. Let us 

... When we say that "f+x-- "f-x+ is the condensate , it is understood that only those harmon­
ics of "f,x with the appropriate J (J=O for isospin 1/2), actually participate in this. 
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define some U(l) quantum number (G) as follows: 

This global U(l) symmetry is clearly anomaly free, and also conserved in the 

low energy theory by the photon interactions. But there is no consistent 

assignment of U(l) charges possible for the w± bosons. Thus the full lagran­

gian has interactions terms involving the w± fields that explicitly violate this 

symmetry. In the absence of a monopole, any violation of this baryon number 

G is suppressed by powers of ~g, because of the W propagators . This sym­

metry G is exactly like baryon number in SU(5) (except for the fact that G is 

anomaly free even in the full theory, unlike baryon number) . However, in the 

presence of the monopole, the condensate '1/J+x- - 'f/1-x+ is formed which 

violates G by ±1. Furthermore, this violation is strong, because the condensate 

falls off only as ~. and exists even in the limit Mx~oo . Although this sym-
r 

metry is anomaly free, the current assoc iated with this symmetry is not con-

served. It satisfies o;JJJ.c ~ eDJJ.~~~ · (We assign quantum numbers to W± so 

that the term x.Dx is invariant under this symmetry) . The R.H.S. reflects the 

explicit violation of this symmetry . Integrating over space-time we get 

b.G ~ J d4xDJJ.~~~ · Since this quantity is a pure dimensionless number and 

there is only one scale, Mx in the problem, it cannot depend on this scale (the 

fermions being massless) . Substituting for 'f/!the J=O zero mode of ref .[ l ], one 

finds for finite Mx. a non zero contribution from the core where DJJ.rp-.t 0 . 

Since it does not depend on Mx this contribution remains non vanishing in the 

limit Mx ... co. Therefore it is not surprising that the vacuum around the mono­

pole violates this symmetry even in this limit. 

Let us turn to a discussion of the scattering process . Only the J=O sector 

undergoes a chirality-tlip scattering in the isospinor case. Since 

:;:: . T + :; . S = 0, a positively charged particle (:;::. T>O) has to have its spin 
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pointing inward. So there are positively charged, incoming right-handed and 

outgoing left-handed particles, and the reverse for negatively charged parti­

cles. If the condensate is ,vx.-. then X-L can annihiliate a left-handed incom­

ing particle and replace it with an outgoing right-handed negatively charged 

particle (1/1+ Lr· Charge is conserved and chirality violated in the process . It 

also violates the baryon number G introduced earlier. We will discuss the 

SU(5) case briefly in sec . 2.7. 

We have been describing till now the chirality violating scattering as tak­

ing place around the monopole . However, just as in the analysis of the Dirac 

monopole (sec 1.3), one can study the process purely quantum mechanically, 

without introducing the quantum field-theoretic concept of a condensate . This 

has been done by many authors. The picture that emerges is that all the 

action (chirality flipping , baryon number violation) takes place as the particle 

goes through the centre of the monopole, just as in the Abelian case. In this 

picture, lhe condensate of w± bosons in the centre of lhe monopole, is respon­

sible for the violation of baryon number G rather than the condensate of fer­

miens surrounding the monopole . (This process cannot, of course, be the per­

turbalive process 1/lt-+ 1/1- (fig . 15) which involves a charge exchange, but has to 

be something more complicated). One might think at first that the two 

approaches would predict dramatically different values for the cross section, 

because in one case the particle has to go through the centre of the monopole 

whereas in the other case it scatters off the condensate, which extends a great 

distance outside the core , and therefore provides a bigger target. This is not 

the case. For example, in the isospin 1/2 case, in the quantum mechanical pic­

ture, only the J=O wave sees the core and undergoes chirality flip. In the field 

theoretic calculation also, the condensate consists of J=O fermions and there­

fore only J=O fermions scatter off the condensate and flip chirality. In both 

cases chirality changes with unit probability. Thus the geometric size of the 

target is irrelevant. Any difference between the two pictures is necessarily of 

e. more subtle nature . One possible difference could lie in the following effect. 
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Imagine a wave packet (in the J=O state) concentrated around r=R and moving 

inwards. In the quantum mechanical picture we can expect to see chirality 

ftip scattering only after a time interval of 2R, where v is the velocity of the 
v 

wave packet because it has to go through the core. In the other picture, we 

expect to see scattering long before that because the condensate exists for 

macroscopic distances outside the monopole. Thus, in principle, one should 

expect to see some difference in the two pictures. This requires further inves-

tigation and will not be pursued here. 
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6. Fennions in Arbitrary Representations 

In this section we shall extend the results of Rubakov and Callan for iso-

doublet ferrnions, and that of section 2.4 for isovector fermions, to fermions in 

arbitrary representations of the SU(2) group . The generalization is straight­

forward and introduces no new concepts. 

Consider a fermion vrith isospin T. We can expand the fermion field opera­

tor into eigenstates of j],J3 ,;..s,;.. T as in eq. (6) . The Lagrangian is of the 

form given in eq. (B) for all J's once the limit TJl ... o is taken. The centrifugal 

barrier is proportional to ~) + i- r 0 This vanishes for J =I- ~­
Thus if IJ I > ITI. the Green 's function necessarily vanishes at the origin, and by 

the same arguments as before, it can be shown that there are no normalizable 

zero modes and hence no condensate formation. We therefore concentrate on 

I J 1 ~ I T-~ 1. Let us count the number of zero modes . For any given value of 

1. the value of J for which the centrifugal barrier vanishes is 1- ~ · If J = ~· 
........ 1 '"'"'j --~ ....... 

then (r . J)ma:x = 1- 2· Also, r . = r . .:::> + r. T = a + 1. Of the two values for 

a (± ~) , we are forced to have a = - ~ . The only remaining label for the wave 

function is M, which takes on 2J + 1 = 2; values . So we have 2; such functions. 

Furthermore . for a given winding number, say v, as c.> varies from 0 to vrr , the 

effective variation of c.> as seen by this particle is 1 times as much, since it has 

charge 1 . Thus the number of zero modes is 2i2v. We have to sum this over all 

possible values of 1 from -T to +T. So the total number of zero modes is 
-r=+T 

2 L rv = 2/3T(T+1)(2T+l)v. This is a standard result , but we have 
-r=-T 

obtained it merely by studying the form of the Lagrangian. For an application 

of these ideas to a few cases see Table 1. 

The picture which emerges then is the following : a fermion representa­

tion of isospin T behaves like a union of decoupled doublets , the different 

doublets having 1 = ±T.±(T-1), ... with J = ;-~ . in each case . Also the 

number of doublets with a given 1 is 21. The Lagrangian for each doublet is 

exactly the same , except for the value of the charge, which is 1 . A word about 
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the 

boundary conditions. For the T=1/2 case there is a boundary condition that 

equates the values of the T = + ~ and -r = - ~ components at the origin. The 

physical reason for this is quite clear. The Hamiltonian contains terms that 

connect these two states and these terms go as 1 /r. This forces the com­

ponents to be exactly equal at the origin. For the isovector case also, all the 

components had to have values in some definite proportion at the origin. 

Furthermore, the T = +1 component was equal to the T = -1 component. This 

should be the case for higher values of T also and one expects to have a 

definite relation between the +-rand --r components of the doublets . In fact, 

by symmetry they have to be equal as in the isovector case . Again as in the 

isovector case, it should be possible to satisfy the boundary conditions in a 

trivial way. Thus we expect no difference (except for the details already men­

tioned) as we go to higher representations . Furthermore, as in the isovector 

case , if all representations have integral isospin, one can have half integral 

winding numbers and the minimal condensate contains half the number of fer­

mion operators one would put in naively. Putting all these facts together, one 

finally arrives at the following prescription for the form of the condensate . If 

1/Jt. are left handed fermion fields in the theory, the operator that gets a vev is 

of the form v./;' 11/;;2 · · · with mt. being integers. The operator satisfies the fol-

lowing conditions . 

(a) It is neutral under all anomaly free symmetries of the theory . 

(b) It is a singlet under l + S + T 

(c) The ~ are such, that a fermion with charge T and J =-r-~ occurs 4-r2v 

times, v being the winding number. vis an integer if there is at least one 

representation with half integral isospin and half integer otherwise. 
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7. Conclusions 

In this chapter we have described in some detail the fermion monopole 

system. The discussion was essentially restricted to the 't Hoeft Polyakov 

monopole in an SU(2) gauge theory. We conclude now with a brief discussion 

of the possible relevance the phenomena described might have to the real 

world. Since, thus far, no one has succeeded in doing any realistic calcula­

tions, the discussion shall necessarily be of a conjectural nature. 

We had mentioned earlier the possibility of baryon number violation being 

catalysed by grand unified monopoles . Let us look at the fundamental mono­

pole in the SU(5) grand unified theory [6]. The SU(2) embedding in the SU(5) 

can be described by identifying the location of the 2x2 Pauli matrices within 

the 5x5 SU(5) generators . 

0 

It acts on the third and fourth indices of the 5. The fermions of one family 

that interact "With this monopole can be grouped into four doublets . 

- l) ~ 

U' 

ln accordance with the rules discussed the minimal condensate consists of one 

fermion from each doublet and also conserves:;, T. One of the possibilities is 

the combinalion uiufdfeL-· This combination has the quantum numbers of 

p e- and violates baryon number. Note that it preserves B-L which is an exact 

symmetry in SU(5) . The scattering process has u 1,u2 as incoming particles in 

J=O waves so that :; 0 T + :; .s = 0, and d3,e + as outgoing particles. Thus the 

process is (fig. 16) : 
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or 

This suggests that monopoles catalyse baryon number violation at strong 

interaction rates. The effect this has on neutron stars has been examined and 

used to place strong bounds on the flux of monopoles in the galaxy [7]. These 

results should be taken as tentative because there has not been any quantita­

tive estimate of the process p --+rr0 + e +. The effects of fermion masses have 

to be taken into account. The confining effects of gluon interactions have also 

been neglected. These are topics that require further investigation. 

Another interesting application of the ideas discussed here is the U(1) 

problem of QCD. QCD has an SU(N)L xSU(N)Rx U(l)vx U(1)A symmetry. When 

chiral symmetry breaks down spontaneously and the quarks get their masses, 

the remaining symmetry is SU(N)vx U(l)y. The pions and their extensions to 
SU(N)rxSU(N)R 

SU(N) are the pseudo- Goldstone bosons associated with SU(N)v 

(They are pseudo-Goldstone bosons because the bare mass terms for the 

quarks explicitly break SU(N)rxSU(N)R.) There should be a pseudo geld­

stone boson for the U(l)A also. It was first thought to be the r}' but it was 

shown that the relation m'I'J' ~..J3m11 had to hold in that case. This is not true 

experimentally (m11 :::::: 139Mev, m'f'l':::::: 958J.fev ). This is the U(l) problem. The 

solution to this invokes instanton effects. It is known that U(1)A had an ano­

maly. This has a non trivial effect when instanton configurations are turned 

on. It can be shown first of all, that because of the anomaly, the goldstone 

boson is not a physical particle, and does not show up as a physical pole in 

gauge invariant Green's functions and therefore the TJ is not the pseudo­

Goldstone boson for the U(1)A. Secondly, the instanton effects cause there to 

be a condensate of fermion multilinear operators in the QCD ground state 

which could give a mass to the TJ particle. This mass is, of course, 
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incalculable, due to the infrared divergences of QCD. 

The phenomenon discussed in this paper allows us to link the mass of the 

fJ more directly to the confinement mechanism in the following way. It is 

known that the confining vacuum of QCD can be described as a condensate of 

monopoles . Then there should also exist a condensate of fermion operators 

around each microscopic monopole due to the phenomenon described in this 

chapter. This condensate is exactly the same as the one for which the instan­

tons were responsible before and therefore gives a mass to the fJ! It should 

be emphasized that although there was no need to invoke instantons in this 

picture, this mechanism and the instanton mechanism are essentially the 

same. The word 'instanton' refers to a particular approximation scheme for 

some QCD calculations. The monopole mechanism is a different approximation 

scheme. Since the effects of infrared divergences, which plague instanton cal­

culations, have presumably all been lumped into the parameters describing 

the monopole condensate, this should provide a better starting point for cal­

culations . This concludes our discussion of the monopole fermion system. 
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Table I 

T T J J 2+1/4-;2 No . of zero modes 1.(] 

1/2 1/2 0 0 1 -ve 

1 1 1/2 0 4 -ve 

1 0 1/2 1 0 ? 

3/2 1/2 0 0 1 -ve 

3/2 3/2 1 0 9 -ve 

3/2 1/2 1 2 0 ? 

2 1 1/2 0 4 -ve 

2 0 1/2 1 0 ? 

2 2 3/2 0 16 -ve 

2 1 3/2 3 0 ? 

2 0 3/2 4 0 ? 

Note :' ? ' stands for no definite sign 
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APPENDIXA : 

We would like to outline the calculation leading to the Lagrangian for T=l fer­

miens . We are only concerned with excitations of the type 

Ao = 2i8o~· T, 

The Lagrangian of the theory is 

where 1E= 1. 11 = iu' . Substituting the form of Af1 given in equation (1) it takes the 

form: 

where 

ln the limit F-> 1 only D00 survives . D0g has the nice commutation and anti- commuta­

tion rules : 

(Al) 

(A2) 

Also 
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~1 lA. .. e 
Dng2 = J.J+l/4-(r.T) (A3) 

We split the calculation into two parts. First we evaluate the Lagrangian using Do . 
0 

This is very straightforward if we use (Al).(A2) and ~3) with the expansion 

(A4) 

where the tfJUT satisfy 

e.nd ;,j = u + 'T 'Ibis gives for the J=l/2, T=l case 

L j[ v:UT(Bo+Ao + 2iu(Br+llr))VJIUT + ~ u;UTulJ-UT]r 2drdt 
Jl.a:r r 

(AS) 

To evaluate the contribution due to !::., it is more convenient to use explicit expressions 

for t}rrr 

(A6) 

where 

i,j =:-2 are isospin indices and a=l-2 is a spin index, M =1-2 is the index correspondir-'6 

to J 3=±:/2, 'Ta with a=1-3 are the Pauli matrices and S,V,T.A are meant to suggest 

scalar, vector, tensor and axial vector respectively. 

Using this expa.'1sion one finds that the contribution to L proportional tc: (:-F) 1s 

4i. t + t t T t 
-l(xe- ex)+ (xe- e>-.) + ((>-.- >--0) 
r (A7) 

Yie now have lo express this in terms of the U~. By acting \\ith the generators';_§ c._-::::: 

;._ T one can verify that the tensors S,V,T a.'1d A combine into e~:=::r,_,_,-:-t:::-::'" 'Cff' 'the 
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above generators in the following way : 

-1 
A+S+T:u=2· -r=+1 

T-v: C1 = -i I .,. = 0 

1 A-S-T: u = +2.-r = -1 

T+V: u = +~.-r= 0 

For each (a.-r) pair there are two values of Jl. ·we have lo normalize these before identi­

fying them V~ith the tMCTT· So we require j(A+S+T)•iJali(A+S+T)iJa.NdO = 6JLv and 

lhe same for the rest which lead to 

t_
1 

= (A+S+T) 
21 2V2 
t _ (T-V) 

.::.lo - 2 
2 

t 
1 

= ..>..:..( A.::,_--"'S-=-,....:.T....L.) 
2-1 2v'2 

t - (T+V) 
lo- 2 
2 

The follc"V>J.n..g iden:ities were useful in the calculations described abo\'e 

So expansions ( A4) and (A6 j become identical if we identify (suppressing the index }.=) 

( = 

PiJ..;ging all this into (A,_7) yields the r.::::·~~ ·. 
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which added to (M) gives us the full T=l Lagrangian. 
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AppendixB 

The details of the evaluation of the fermion determinant is given here . 

We have 

(B : ) 

= [.DetD] 2 

Use the fact that 

6[1n.DetD] = jdrdtoA.<J>A (B2) 

We have to evaluate <JfJ> since A 1 = 0 

(B3) 

The subscript A indicates that there is a background A field . Since the product 

of operators at the same space time point is not well defined we use the point 

splitting procedure . Let x' and x be at equal times so x'-x is purely spacelike . 
• 

• 

. -i2•r fA~'-az~' 
<J~(x)>=~~Tr[~~G(x,x')e 11 

] (B5) 

-vii jA.az 
The factor e 11 is inserted in the usual way to make it gauge invariant. In 

our case A1 = 0 and A0 = za, c.> . 

• 
-i75jA.az 

<J~(x )> = LimTr [ He2i-,.5{a(z)-a(tt))-2cr(z)+2cr(z")Gc(z ,x' )e • . ] (B6) 
l( .. z 

We have used equation (13) for the full Green's function . 

e 

where x' -x = t and we have used the fact that t'-t = 0. Also J Adz = J A1dz 1 = 0 
e' 

since A 1 = 0 Taking the limit t -+0 we are left with 

(BB) 
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Substit.utin.g BE into B2 

The surface term vanishes because a,c.>(r=O) = 0 and a(r=oo) = 0 Using (14) 

6[1n.DetD] = - 4 J drdt 6(82a)a 
1r 

+2! = - drdt o [ (a~a)(a~a)] 
1r 

ln.DetD = ~ J drdt (a~a)2 
1r 

which is equation (15). 

(B9) 
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Appeuclix C 

We reproduce here the equation for the a pro?agat.cr and its asymptot:cs . 

The action for the c field is ( eq. 1 7) 

( 17) 

The propagator Ka ,f) satisfies : 

(C l ) 

with boundary conditions BrK(r,t;r',t')lr=C = 0 Let us write ...1... = _L. so that 
e•2 e2 

(Cl) becomes 

(C2) 

This equation for 4K is identical to the equation for the propagator in the isospi­

nor case of Rubakov. We proceed in the same way: Let 

4K(r ,t ;r' ,t') = - ¥[D-1((r-r' ),(t -t' )) + 0 -1((r+r'),(t -t')) - K(r ,t ;r' ,t' 'IJ:-3) 

Then K satisfies 

The solution is 

e•2 ..., 
(0- -

2
)K(r,t ,',t') = 6((r-r'))6((t-t')) 

41TT 

K = -1 Q [ (r-r')2 + (t-t')2 + 1] 
2rr v 2rr' 

. 1 e' 2 i 
With 1.1 = 2 [(1+ ,.r) - 1] Some asymptotics are : 

for r' -> r , t' -> t 

K 1 1 [ (t -t')2 + (r-r')2]+ t 
.... 4rr og Brr' cons . 

..... rr' 
K .... canst . [ 2 ( ')2 ] 

r' + t -t 

... const . ( ~ )-l-v 
r 

r ... o 

r-+co 

(C4) 

(C5) 
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-+( (t -t')2)-l-ll 
2rr' 

!(t-t')i-+:xo 
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Ap~ndixD 

We would like to calculate the condensate formation in the case where Y'te 

have two ftavours of isodoublets and one isotriplet. In the notation of equation 

(19) define 

(Dl) 

where ± ~ refers to the values of M. Similarly let 

(D2) 

where rp« and rp" are two isodoublets and a,b stand for the two ftavours . If the 

winding number is one the operator that gets an expectation value will be : 

(D3) 

We shall evaluate this by first evaluating as usual <OjF(r,t) F(r' ,t') ID> then let­

ting I (t -t ) J .... oo and using the cluster property. Let us write FF in terms of the 

Green's functions : 

Substituting for Q1, Q 1 the expressions (Dl) and (D2) we find on performing the 
2 

Wick contractions : 

Where G1 is the Green's function for the isovector field and G1 for the isospinor 
2 

field rp . We find 

17-[GoGoT]=Z[ 1 + l ] (D6) 
(t-t )2 + (r-r )2 (t-t )2 + (r+r )2 

7T[GoG6GoG6] = 2[( (t-t )21 (r-r )2 + (t-t )2; (r+r )2)2 

... 4 1 ] 
((t-t )2 + (r-r )2)((t-t )2 + (r+r )2) 

where 
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Go= r(t -t ) + "r
1(r-r) + (t -t ) - i-;2(r +T ) 

(t-t )2 + (r-r )2 (t-t )2 + (r+r )2 

is the free particle Green's function. Also 

(D7) 

Using (D6) and (D7) 

FF = - 1
-2[ 1 - 1 ]2 (DB) 

(rr')6 (t-t)2 +(r-r)2 (t-t) 2 +(r+r)2 

X[ 1 + 1 ]e lOu(£)- tOu(f) 
(t-t ) 2 + (r-r )2· (t-t ) 2 + (r+r )2 

We have to evaluate 

In this case 

The coefficient 5 in the second term gets a contribution 1 from the isodoublets 

and 4 from the isotriplet. As in Appendix C we find the equation for K in this 

case is the same as in the isospinor case. Thus our K merely differs by a fac­

torof 5 from the K of the isospinor case. Using this we find 

<lllFFIM>= -( 1)e2[( )21 ( )2- ( )21 )2]2 rr' t -t + r -r t -t + ( r +r 

X[ 1 + 1 ]e tO(K(H) + tOK(f,f)-20K(f.f)) 
(t -t )2 + (r -r )2 (t -t )2 + (r +r )2 

As T-+oc the exponential factor goes as T10. The net result is 

<AI \FFjM> ~ (r:.')g Using the cluster property we get <M IFIM> ~ : 9 as 

expected. 



- 108 -

References 

[1] V. A. Rubakov, Nucl. Phys. B203 (1982) 311 

[2] C. Callan, Phys. Rev. D26 (1982) 2058: Phys . Rev. D25 (1982) 2141 

[3] G. 't Hooft, Nucl. Phys . B79 276; A. Polyakov, JETP Lett 20 (1974) 194 

[4] J. Preskill, Phys. Rev. Lett. 43 (1979) 1365 

[5] B. Cabrera, Phys. Rev. Lett. 48 (1982) 1378 

[6] C. Dokos, T. Tomaras, Phys. Rev. D21 (1980) 2940 

[7] E. Kolb, Colgate, J . Harvey, Phys. Rev. Lett. 49 (1982) 1373 

[8] A. A. Belavin et al. Phys. Lett . 59B 85, G. 't Hooft Phys. Rev. D14 3432 

[9] J . Gervais, B. Sakita, Phys. Rev. D11 2943 

[10] B. Julia, A. Zee, Phys. Rev. D11 (1975) 2227 

[J 1] Y. Kazama, C.N. Yang, A. Goldhaber, Phys. Rev. D15 (1977) 2287 

[12] A. Goldhaber, Phys . Rev. D16 (1977) 1815 

[13] A. Blaer, N. Christ , J-F. Tang, Phys . Rev. Lett . 47 (1981) 1364 

[14] E. Witten, Phys . Lett. 86B (1979) 283 

[ 15] A. Schwartz et al. see ref. 8 

[16] M. F. Atiyah, I. Singer, Ann. Math. 87,485 

[17] J . Schwinger, Phys . Rev. 128 (1962) 2425 

[18] R. Jackiw, C. Rebbi, Phys. Rev. D16 1052 

[19] V. N. Gribov, Nucl. Phys. B206 (1982) 103 



- 109 -

Figure Captions 

[8] The 't Hooft-Polyakov monopole located at '0' in the spherically sym-
........ 

metric gauge . The Higgs vev is in the isospin direction r. T. 

[9] The functions H(r) and F(r) both go to 1 asymptotically. The core radius 

TJI ~ _1_ 
Mx· 

[10] The heavy arrow indicates the helicity and the light arrow, the momen-

tum. The helicity fiips as the particle goes through the centre of the 

monopole . 

[ 11] This configuration has winding number k. 

[ 12] The first column is a plot of the (Euclidean) time evolution of the function 

hg-1 (sec . l.3, eq.(5)) describing an instanton. The second column is the 

corresponding plot for a configuration with non-zero Winding number in 

the presence of a monopole . 

[ 13] The form of the condensate for the T = 1 system. 

[ 14] The fermion determinant expanded in powers of the externa; photon field. 

[15] A process that does not take place because it involves charge exchange 

and is energetically unfavourable. 

[16] Proton decay. Note that p-> e +is not allowed by J conservation. 
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