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ABSTRACT

This thesis consists of three essays. The first essay describes
a model in which a dominant player can be endogenously determined.
The model is developed in the context of Cournot and Stackelberg
equilibria. Cournot equilibria are obtained in games where players
move simultaneously (or sequentially but unobservably), and the
extensive form strategy spaces of these players are isomorphic to each
other. Stackelberg equilibria, on the other hand, are obtained as the
perfect equilibria of perfect information games in which the players
move sequentially, with the dominant player or the leader firm moving first
and the other player moving second. Thus, the question of how to model
an industry--Cournot or Stackelberg--is answered by examining timing
and information conditions both of which are presumed exogenous. Firm
sizes and technologies and demand characteristics are, in this context
irrelevant. What we do instead, is to note that if demand is resolved
over time,then firms may face a trade-off between making decisions
before the uncertainty in demand is revealed and thereby establishing
a "leadership'" position, or waiting until after resolution of demand
in order to avoid production mistakes. The sequentially rational Nash
equilibrium of the resulting game is examined. It is shown that in a
market with one large firm (i.e., a firm whose output affects price)
and a nonatomic continuum of small firms (i.e., firms whose individual
outputs do not affect price), the only equilibrium of the game described
above, with nontrivial but small uncertainty, is a Stackelberg

equilibrium with the large firm as the endogenously determined dominant



player. The difference between a large and a small firm is also embodied
in their respective cost functions.

The second essay answers the question of whether markets with one
large firm and several small but atomic firms can be approximated by
or can approximate a Stackelberg equilibrium. This is answered by
establishing that the equilibrium correspondence of a family of games,
each of which has one large firm and several small firms, and the
number of small firms increases to infinity, is continuous.

The third essay adapts the model developed in the first essay
to a model of noncooperative general exchange in which the traders are
in the same strategic position with respect to each other. Thus a
noncooperative game is defined in an exchange economy such that a
price-setting monopolist is determined endogenously in equilibrium,

and this is the unique sequentially rational Nash equilibrium.



A NONCOOPERATIVE EQUILIBRIUM WITH AN ENDOGENOUSLY DETERMINED
DOMINANT PLAYER: THE CASE OF COURNOT VERSUS STACKELBERG

1. INIRODUCIrION

There have been two classical ways of modeling the behavior of
firms in oligopolies. The models differ in their assumptions about
firm behaviour and result in different equilibrium outcomes. In one
set of models, it is assumed that the firms in a market play a Cournot
game with each other. A Cournot game is a noncooperative game in
extensive form in which the players are in the same strategic position
with respect to each other. That is, the players move simultaneously
(or sequentially but unobservably) and their strategy spaces are
isomorphic to each other. An example of the Nash equilibrium of such
a game when firms choose quantities of production, is the Cournot
equilibrium. A more detailed description of a cournot equilibrium
follows in section 4.

In the other type of models, it is assumed that the firms play
a noncooperative game in which some of the players are in a dominant
strategic position with respect to some others. Such a game is called
a Stackelberg game. Here, the dominant players move first and have
strategy spaces that are not isomorphic to those of the other players.
Moreover, these are games of perfect information and the payoffs to a
player, among other things, also depend upon when a player moves. An
example of the Nash equilibrium of such a game when the dominant firm
chooses output quantities and the other firms choose their output

quantities as functions of the dominant firm's output is the



Stackelberg equilibrium.

Thus in order to be able to know how to model an industry—-—
Cournot game or Stackelberg game——it would be sufficient to examine
timing and information conditions both of which are presumed
exogenous. The sizes or technologies of firms, or the characteristics
of demand, are in this context, irrelevant. On the other hand there
is a "Folk Theorem” that outcomes in oligopolies are best modeled by
Cournot equilibria if the firms are of equal size, but by Stackelberg
equilibria if they are not. This suggests the possibility that timing
and intformation conditions could be endogenously determined using
among other things, firm sizes or technologies as exogenous.

However, unless one is able to obtain a systematic relation
between these exogenous characteristics and the choice between a
Cournot game or a Stackelberg game to describe an industry, one has to
make an ad hoc assumption about the firms' conduct in the industry.
Such would be the case as long as one is unable to discern firm
behavior in a systematic way using observable data—like firm sizes or
demand characteristics. Sometimes this assumption is crucial to
policy decisions. Consider for example, a regulator trying to decide
whether or not to regulate a duopoly. Let the regulator’s objective
function be consumer’s surplus. Also, let the firms have zero
marginal costs. Let the firms'’ output quantities be denoted by x1 ana
x2 respectively. Assume that demand is linear and is given by
price = y — x1 — 22, Let R be the cost of regulating this industry.

Under the assumption that the firms are playing a Cournot game, the



consumer surplus is 2y2/9 and under the assumption that the firms are
playing a Stackelberg game, the consumer surplus is 9y2/32.

If 2y2/9 (RK 9y2/32 then, wnile it may be worthwhile regulating the
industry under the assumption that it is a Cournot duopoly, it is
unprofitable to regulate the same industry if it is assumed that it is
a Stackelberg duopoly. Note that in general, using output and demand
data, one would not be able to infer the type of equilibrium——Cournot
or Stackelberg——without complete information on the cost functions of
the firms involved.

The basic purpose of this chapter is to make timing and
information conditions endogenous using data on the sizes or
technologies of firms and certain characteristics of demand. Thus, we
wish to make the choice between a Cournot game and a Stackelberg game
endogenous. Since in our model, sizes and technologies are exogenous,
we will be able to obtain a rigorous formulation and verification of
the "Folk Theorems."”

One may try to make timing and information conditions
endogenous (i.e., endogenize the choice between a Cournot game and a
Stackelberg game) by simply developing a framework in which the firms
are allowed to decide which game they want to play. This will not
work because in general, in a Stackelberg equilibrium, the leader
(dominant) firms are better off than the follower firms and in
general, could be better off than in a Cournot equilibrium. Hence all
the firms might want to play the Stackelberg game expecting to be the

leader. In other words, in order to obtain a Stackelberg equilibrium



in which there is a leader and a follower, one would be forced to
exogenously assign the dominant player. This assignment would be
quite as ad hoc as making the assumption that the firms are playing a
Cournot or Stackelberg game. What we do therefore, is to describe a
game of imperfect information in which ex ante, the players are in the
same strategic position with respect to each other. However, when the
sequentially rational Nash equilibrium (see [5]) strategies are being
played, it would appear as if the firms are playing the equilibrium
strategies of a Stackelberg game or a Cournot game.

In a quantity—-setting example of the Cournot game, the
strategies of a1l the firms are output levels. In a quantity—setting
example of the Stackelberg game, the dominant firms'’ strategies are
output levels while the other firms' strategies are reaction functions
(i.e., output levels that are functions of the dominant firms' output
level). On the other hand, if demand uncertainty is resolved over
time, then firms may face a trade—off between making quantity
decisions early so as to establish a "leadership” position, or waiting
until the demand uncertainty has been resolved so as to avoid
production decision mistakes. Thus, a larger game is constructed in
which there are two logical time periods. There is uncertainty in
demand which is revealed between the two time periods. We assume that
the firms behave in a sequentially rational way given the information
they have in each time period. The firms move simultaneously before
the beginning of the first period. The behavior strategy for each

firm in the beginning ot the game consists of a probability that it



would enter in period 1 and the quantity it would produce if it were
to enter in period 1. If both firms end up entering in the same
period, the sequentially rational Nash equilibrium is Courmot-1like,
whereas if they end up entering in different periods, it is
Stackelberg—like. This will now provide a framework in which we can
ask how firms' sizes and technologies and the nature of demand can
determine whether an industry is best modelled as Cournot or
Stackelberg. An example of the larger game we are alluding to, with
two tirms and two levels of production for each firm is shown in
Figure 6. We will describe this in greater detail in section 2. The
basic results of this paper are about the nature of the sequentially

rational Nash equilibrium of this larger game and are the following:

1. VWith the symmetric firms, there is a symmetric equilibrium which
is the appropriate generalization of a Cournot equilibrium. (See
Section 3 below.) This result assumes a particular technology

with linear demand and quadratic costs.

2. In a market with one large firm and a continuum of small firms,

the only equilibrium is a Stackelberg Equilibrium.

3. Unaer some conditions set forth below, firms in this equilibrium
will not randomize their "times of entry."1 Every temporally
nonrandomized equilibrium corresponds to either a Cournot or a
Stackelberg equilibrium in the strong sense that the quantities
produced are exactly those predicted by the respective extemnsive

form concepts.



4. With two symmetric firms, under certain conditions, specified
below symmetric equilibrium must be temporally randomized. This

is proved in the paper using the technology of result 2.

We now develop some notation in Section 2. In Section 3, the
Cournot game, the Stackelberg game and the larger game of our concern
are detined. Section 4 examines some properties of the equilibrium of

the larger game and Section 5 concludes the paper.

2. DEFiniTIONS AND NOTATIONS

We recall the definition of a game in its extensive form as in
Kuhn [3]. However, since only a particular game of the form shown in
Figure 6 is analyzed, in order to minimize notation, we develop the
derinitions only with respect to the game depicted in Figure 5. We
wi1ll refer to this game ad the "larger game."”

The game is represented by a tree. The edges that come out of
each node represent the alternatives at that node. Nodes which
possess alternatives are called moves and those that do not possess
alternatives are called terminal nodes. The rank of a node is the
number of moves that are on the path from the initial node to itself.
The set ot moves of a given rank represents a turn for some player.
The turns ot player 1, player 2 and nature are denoted by (1), (2),
and (N) respectively. There is a path or branch running from the
initial node to each terminal node. Each such branch is associated
with certain payoff; to the players. Often, in a particular players's

turn, the player does not have information about which alternative the



previous player has chosen. In such a case, the set of nodes at the
end points of all those edges is called an information set. For

example, the nodes J J

11° 12,I13 form an information set for player 2.

In any game represented in its extensive form by a tree, we
could consider the set of nodes in any information set as the set of
initial nodes of another game. This is called the subgame of the
original game, and the tree that follows this information set is

called the subtree of the original tree.2

r [

N is the number of players. In Figure 5, N = 2,

The set of vertices that are not terminal vertices are
partitioned according to the moves that represent each player's turn.

This is the player partition [Pl,P P }. 1In Figure 5, the player

gree Py
partition is {PI'PZ} where P1 = {1112,...I7J and
P2 = {Jll,le’Jls :Jz) . .J61)J62)J71:J72} .

B is the set of branches (a branch is denoted by b). Since
randomized strategies may be played by all players including nature, a
probability is assigned to each branch. It is with respect to these
probabilities that players make their expected payoff calculationms.
Gb(B) is the set ot probability measures on B, and gb is an element
of Gb'

The information partition is a refinement of the player

partition into information sets Ui for each player i. Again in

Figure 5,

U, = {I

1 TS| PN (G (P |

171y I3 Igs Ieu It
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U = {{J JJ ’J {J {J ]}o

11791229138 390950340 35 U0 T6o b 10074,

A; is the set ot edges that come out of node n.
Alternatively, one could think ot A; as the set of nodes at the end of
these edges.

Next, M; is the set of probability measures on A; and m; € M:.

M, is the product [I M.
i n
nePi

A behavior strategy for each player is a strategy that

consists of randomizing over the alternatives at each move of that
player. Further, since in an information set a player cannot
distinguisn between the nodes, the randomization over the alternatives
at each node in the information set should be the same.

Thus for a player i, a behavior strategy at a node n is a
probability measure si on Ai such that for every information set u,
and all n,n' ¢ u, si = si,. For this reason we may ignore the

subscript n on s;. Let Si L Mi be the set of all behavior strategies

of player i, each behavior strategy denoted by B, I1 s;. Let the
nsPi

3

3
payoff function be given by Il : B — B ani IIi(b) be éne L0

[
component of [I(b); i.e., the A player's payoff.

Next, 1let

There is a mapping

p:S - Gb(B)
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induced by the probability measures on the set of branches, due to
behavior strategy N-tuples. The measure p is derived inductively in
the following way. Consider a game in its extensive form that has

(n + 1) turns numbered from 0 to n. There may be more than one node
in each turn, and the particular information set which is of concern
to the player when his turn arrives will depend upon the alternative
that was chosen in the previous move. Denote the ith node in the jth

turn by ;ji' and the set of nodes in that turn by ;j. Then define

Pq = 5
n
o
*) = *
beay A9 = [ R RRE
n kj kj
—i * - . .
for every M+l measurable subset A* of nk+1. Since each terminal
node is associated with a unique branch in the game tree, p_ derines

n+l

the function p mentioned above. The symbol Ep denotes the expectation

with respect to p and EPI is the expectation with respect to p

()

conditioned on ( ° ).

3. An Example with an Endogenously Determined Dominant Player

In this section, results (1) and (2) in the Introduction are
proved. To recapitulate, they are stated below.

The equilibrium of the larger game has two forms, one of which
is symmetric and the other asymmetric. It will be shown that the

symmetric form depends on the nature of the uncertainty. Thus, at the



extremes of risk (i.e., zero variance of the demand distribution or a
"too diffuse” distribution), it is temporally nonrandomized and
corresponds to a Cournot equilibrium, and at intermediate values of
the variance it is temporally randomized. A continuous function
contained in the equilibrium correspondence links these Cournot end
points and a1l symmetric equilibria lying on this path., It is in this
sense remarked to be an appropriate extension of a Cournot
equilibrium. This is result (1) of the Introduction. The asymmetric
form of the equilibrium will be discussed in Section 4.

Next, we will study how these equilibria depend on relative
firm sizes. It will be demonstrated that in a market with one large
firm and a continuum of small firms, the only equilibrium is a
Stackelberg equilibrium where the large firm moves before the demand
is revealed as a leader, and the small firms enter the market as
followers after the demand is revealed. This is result (2) of the
Introduction.

A very complicated model would be needed to derive these
results in complete gemnerality. However, since what is important is
the nature of the game tree, rather than the technology of the
individual players, the results are proved in the context of a
particular technology where the demand is linear and firms have
quadratic costs.

The following notation is used in this section:

Y — is the variance of nature’s distribution tunction.

X — is a production level of firm 1i.
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— is a value of the production level when firm i

iR
decides to enter "Before.”
X4 — is a value of the production level when firm i
decides to enter "After.”
blxiB,y — are the paths that result when X.B and y, the

outcome of the random variable are fixed,

and x.

iB or xjA are allowed to vary,

for all j, j # i.

Let the demand be given by P.=Y - 2; X where p_ is the

price and y is the random shift parameter. Let Nf be the set of firms
that want to enter the market. At first we shall consider the case of
duopoly.

17 X The cost

The market demand is given by P =F - =
function for both firms is C(xi) = (xi) for an output level X, .

[ (]
Denote by II(beiB’y)’ the set of values that Il takes ftor the

different branches represented by blxiB,y. Similarly,

[
I](b|x ; X ,y) is the payoff associated with the particular
i) i)
branch containing x 5 X and y. From the tree in Figure 6, it
i)y 307

is easy to see that there is always at most one such branch.

The Cournot equilibrium points are then easily seen to be

E (y)

95 = 5 (1)

1B

and
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X = X

_ 3
1A= %A T 5 (2)

While the Stackelberg equilibrium points are:

3E (y)
BT 14 (3)
3E (y)
y -
_ 2 14
Xpp = 2 (4)

The equilibrium or the larger game is obtained as follows.

n

Denote E (y) by E, E (y2) by E
¥ y
and (Ey(y))2 by E2.

Further, let firm i's probability of entering in period B be Vi and
the quantity it decides to produce when entering in period B be X pe
In the larger game, in the first information set ot every
player, the player has to decide on a probability of entering in
perioa B and the quantity it would produce if it were to enter in
period B. In order to decide on the quantity it would produce if it
were to enter in period B, the firm has to choose a quantity so that
its ante expected payotf of entering in period B is maximized given

certain beliefs about nature's actions and the other player’s actions.

Thus player i will maximize over his choice variable XiB’
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Ey(vj : ni(XiB,XjB,y) + (1 - Vj)ni(XiB. XjA,y))i # j

noting that xjA is the best response function given KiB and y. Thus

~

it obtains an optimal Xi

g 2S 2 function of ij’ VZ and E. On the

other hand, the probability that the ith player will enter in period B
is calculated in the following way: Given that it is going to

randomize between entering in period A and entering in period B with

*
[

the optimal amount Xi it must be indifferent (since we are

BJ
considering only sequentially rational Nash equilibria) between

entering in period A and entering in period B.

Thus

L3 3
Xp = arifax Ey{Vz II(bIX,XZB,y) + (1 - 92) rI(b|x,X2A,y)}

noting that x is a measurable function of x and y. It is thus a

2A

random variable.

Similarly, we get an expression for x In equilibrium

2B°

]

[
X .p and \ i satisfy (i = 1,2)

(3 13
(a) X = x = X

[ ~
iB iB B and Vi = Vi =V, i#j

<

and, given that we are now interested in temporally randomized

equilibria,
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fo fo
(b) Ey{V ) I](ble,y) 4 (L =N) ° rl(ble,xA,y)} (5)

[3 L3
= Ey{\) H(ble,xB,y) + (1 -V) H(ble,y)}
It is easy to verify that the values of xp and of V thus obtained are

the equilibrium values. Solving the maximization problem using (5a),

we find

x, = 3E + EV (6)
14 + 6V

Finally, substituting for Xp in (5b) above, we obtain

n n
V3(650E% - 648E) + V2 (4200E% - 4176 E )

2 2

+ V(8850E> - 8904E) + (6300E> - 6272E) = 0. (7)
A solution to the above equation assuming y is normally
distributed with mean 1 and variance y, yields V) as a function of vy,
the variance of y. We deduce from equations (5a), (6) and (7) that
the equilibrium is symmetric across players.
Also from equation (7), V(u) = 1, and with E = 1,
V(.0044) = 0. Thus when the uncertainty is nontrivial (y # 0), but
sufficiently small (y < 0.0044), temporal randomization occurs i.e.,

V #0,1. Also, for y > .0044, any nonzero V) is not a Nash

equitibrium.
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Hence there are two equilibria: an asymmetric one
corresponding to a Stackelberg equilibrium; and a symmetric one, with
the probability of entering "Before” given by the solution to equation
(7) and the quantity to be produced a function of that probability as
given in (6).

Further, note that in expression (6) V = 1 yields xp = % which
is indeed the Cournot level of production (see equation (1)) should

both firms decide to go "Before.”

We are now in a position to prove the following theorem.

Theorem 1: In the above duopoly game parameterized by variance as a
risk parameter, the equilibrium corresponding to Cournot equilibria
(which occur at both extremes of risk) are connected by a continuous
path in the graph of the equilibrium correspondence, and the

equilibria along this path are symmetric.

Proof: Clearly if y = 0, then Y = 1 for both players, and an ex ante
Cournot equilibrium results. Further for y = 0.0044, (if E = 1)
V = 0, and an ex post Cournot equilibrium results. Consider the
correspondence di : {y} :z [0,1], with di(y) = »i obtained from

equation (7).

Let us first look at the nature of the correspondence knowing

the following facts.

(a) From Proposition 2, (see section 4 below) di(y) # 0 or 1 when

vy # 0 or < .0044,



-18-

(b) The cubic (7) can be written in terms of y, the variance, i.e.,
£OV,y) = V3(648(.003086 - ¥)) + V2(4176(.005 - 7))

+ V(8904(-.005 - y)) + (62722(.004 — 1)) = 0.

(c) At y = 0, by Descartes’ Rule of Signs there are 2 or 0 positive
roots, 1 negative root and if the discriminant is 0 then there

are two identical roots.

(a) At y = 0.0044, there are 2 or 0 positive roots, no negative
roots, no identical roots, or 1 real root and 2 imaginary roots,

and the discriminant is mnegative.

(e) At y = 0.003086, there are 2 or 0 positive roots, no mnegative
roots, and the discriminant is positive; i.e., there are two
distinct roots. This is because the polynomial becomes a

quadratic at this point.

a£(),y)
ay

for all y. Thus, the Jacobian of the

(f) The partial derivative of the polynomial is never 0 for

VY e [0,1] and Qi%%ﬁll #0

polynomial is never O in the range of concern.

The graph ot the correspondence then would look like Figure 1.
[Figure 1 Herel

Now, it is sufficient to show that there is at least one

continuous path from the point (0,1) to the point (0.0044, 0).
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FIGURE 1
These roots become
*J’-imaginary here.
. B
1
A
(0,0) ' ' .003086 .0044 v

%

~ There are only 2 roots at Y= .103086

/\/\—f—o
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Let £(V,y) = 0 be the polynomial equation under consideration.
We know that ¥(y,V) e [0, 0.0044] X [0,1], the Jacobian of partial
derivatives of first order, J(£f(V,y)) is nonzero.

Then consider any point (YO,VO), with v, e (0, 0.0044]1, and
“O ¢ 1 such that f(VO,yO) = 0. Then by the implicit function theorem,

there exists a smooth function g and a neighborhood N(yo) such that

for all y ¢ N(YO), J(E(V,y)) £ 0.

glyy) = Vo

and

Vy ¢ N(yo), f(g(y),y) =0

From observation (e) above, the neighborhood
N(YO) = [0, 0.0044]. Thus, the continuous path that is required is
the graph or g.

Q.E.D.

Two simple, but interesting, corollaries follow from theorem 2
above. The first corollary states that the continuous path connecting
the Cournot extremes is monotone decreasing in the graph of the
correspondence ¢ described above. This means that for both firms, in
the symmetric equilibrium, the probability of entering "Before’” keeps
getting smaller as the variance of nature’s distribution increases,
i.e., as the uncertainty in the demand increases they are less likely

to enter the market betore the demand information is revealed.



=D

Corollary 1: ¥y > 0, ¥V ¢ [0,1], 4 < 0.

dy
—of
A \\) 0 : . - .
Proof: Writing ar as o using the implicit function theorem, the
v

proof is obvious.

The second corollary states that given one firm is more likely
to go "After"” as demand uncertainty increases, the other firm will
want to produce more in the period "Before.” Further, this desire to
produce more is continuous in the probability of entry ""Before,” until
the other firm will want to produce the Stackelberg leader's quantity

when the first firm wants to enter "After” for certain.

dx

Corollary 2: ¥V ¢ [0,1], :E? > 0.

Proof: Obvious from expression (6) and corollary 1 above.

In the context of result (2) of the Introduction, we will see
that if a mixed set of firms (one large atomic firm and a nonatomic
continuum of firms), is contemplating entry into a market with
uncertain demand, it is a Nash Equilibrium for the atomic firm to go
"Berore'" as a Stackelberg leader, and for the nonatomic firms to go
"Afcer” as tollowers., The intuitive reason is that each nonatomic
firm is so small that it can have no incentive effect on the atomic
firm or other nonatomic firms. Furthermore, we will show that since

moving "Afcter” is the dominant strategy for the nonatomic firms, and
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theretfore, this is the unique Nash equilibrium.
Denote the large firm's production level by X and the small
firms' production level by Xy
Let the set ot "small” firms be indexed by the unit interval
I =1[0,1], endowed with Lebesgue measure . Thus for S I, o (s), is
the proportion of firms beionging to the subset s. Let x(i) denote
the amount produced by each firm i ¢ I. The profit associated with
x(i) is denoted by rIi(x(i)). Let the "large'” atomic firm be referred
to as the firm of type 1 with a cost function Cl(x). We let the cost
function for the atomic firm be F1 + Clxi and tor the nonatomic firm

be F, + C x2. F.,C., ¢ R, i =1,2, VWe are now in a position to state
2 272 i’ i

and prove result (2) of the Introduction.

Theorem 2: With one large firm and a continuum of nonatomic firms,
with the technology given above, (if there is nontrivial uncertainty),
the small firms will enter in period A in the equilibrium of the
larger game. If this uncertainty is sufficiently small, then the only

equilibrium corresponds to a Stackelberg equilibrium.

Proof: We will show that in the type ot markets described above, a
Stackelberg equilibrium with the atomic firm entering in period B as
leader, is the only equilibrium of the larger game provided there is

sufficiently small uncertainty in the demand parameter.

Should it decide to enter early as a Stackelberg leader,
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firm 1 decides on its production level, as follows:

1

x2 - E.),

Xl = argmax Ey(y - (xl + I 151 .

x(y,xl)dp))x1 -C
0

where x(y,xl) is the follower firm's reaction tunction.

For a follower, nonatomic firm, X, maximizes ex post profits

and is the solution to

1
max (y - X - f x(y,xl)dp)x2 - C2x2 - F2
X, 0

A x(x,) 1
yielding x, = 2C2 where x(xl) = Jox(y,xl)du.

Then the profits of a follower are

2
Ly = xl) (2C2 = 1)

- F (8)
(2C2 + 1)2 2

1
Since I xzdp = x(xl), we have
0

1]
—y
w P
Qo
M
~~
9
-
N
[=h
=

x(xl)

therefore x(x)) =30 71 =% £9)

Substituting this into the first order condition for firm 1 yields
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CZE

1 C1 + 2C1C2 + C2

(10)

It is easy to show that, when the uncertainty is not too
large, the large firm's profits are lower if it decides to enter in
Period A. On the other hand, the firm contemplating moving "Betore”
(i.e., the deviant firm), decides on its production level by
maximizing its ex ante profits. Thus,

xde _ E = Xy - Ey(x(xl))

2 2C2

E - %4
so that its ex ante profits are,
2
(E - xl) (2C2 - 1)
- F (12)

(2C2 + 1)2 2

Theretore, ex ante, if the deviant firm wants to compare profits, it

sees that

(g ~ x1)2(2C2 = 17 (E - xl)z(zcz -1
E >
y 2 = 2
(2¢, + 1) (2¢, + 1)

since E2 = E2 = var > 0.
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So for the nonatomic firm it is dominant to be a follower and enter
"After"” for all y. It can be shown further, that if the amount of
uncertainty as measured by y is larger than a certain value, depending
upon the cost characteristics of the large firm, all firms will enter
a period A, The proof of this in the case of linear demand——quadratic
cost is easy to see. Another example of the argument is used in
Chapter 3.

Thus we observe that in the case of two identical firms a
symmetric equilibrium results. While in the case of one atomic firm
of measure one and a nonatomic continuum of firms, with non—-trivial
but small uncertainty, the only equilibrium is a Stackelberg
equilibrium. A natural question would be: Is it true that, as we
increase the cardinality of one set of firms while decreasing the
measure of every firm in it, the resulting respective equilibria
converge to the case of an asymmetric equilibrium of a mixed market?

This will be examined in the next chapter.

4. A More General Model

In this section, a more general from of the Cournot game,
Stackelberg game and the larger game are detfined, and results (3) and
(4) of the introduction are derived.

First, Cournot and Stackelberg equilibria are defined in their
general extensive forms. Uncertainty in the market demand is next
embedded into the above definitions with players assumed to be
Bayesian decision makers whose alternatives at each turn are

quantities of production.
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In the Stackelberg game, the natural time for the demand
uncertainty to be resolved is between the "entry time"” of the leader
and that ot the follower. In Cournot equilibrium, it is possible that
uncertainty might be resolved either before or after the time at which
firms simultaneously make their quantity decisions.

In the extensive form of the larger game each firm is free to
make its quantity decisions either before or after the demand is
known. The sequentially rational Nash equilibrium ot the subgame that
results when both firms decide at the same time (either before or
atter) is the Cournot equilibrium and the equilibrium of the subgame
that results when one firm makes quantity decisions before the
intormation is revealed and the other makes it after, is the
Stackelberg equilibrium.

Thus, we want to describe an extensive form game whose Nash
equilibria, under certain conditions, correspond to a Cournot or a
Stackelberg equilibrium. In order to do this, we construct a game by
combining subgames in which the Nash equilibria are precisely the
Cournot or the Stackelberg equilibrium. Therefore, we first define
these in their extensive forms, and then embed these trees in an

extensive form game whose Nash equilibrium we examine.

Cournot Equilibrium in its Extensive Form

Consider the following game, in which there are two players 1

and 2 and two produetion levels, high (H) and low (L).

[Figure 2 herel
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FIGURE 2
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In the general multiplayer game with continuously variable
production, let S; € M, be a behavior strategy of player i. A
Cournot equilibrium is a vector s & S such that ¥i & N 3, Sir € Si

with

~

[
E IT.(v) < E IT . (b) (13)
u(sl,sz,...,si....) i 'beB p(sl,sz,...,si,...) i 'beB

where EM is the expectation over p.

Stackelberg Eguilibrium in its Extensive Form

Consider a game in extensive form whose representative tree

for two players, and two production levels is:
[Figure 3 herel

Stackelberg equilibrium is the sequentially rational Nash equilibrium
of this game (see [5]) and it is a dominant player equilibrium.

In the general multiplayer case, let D € N be the dominant

[
player, who moves first. Again, let [l : B — R be the payoff
function, and p : S = Gb(B) be the induced probability measure on the

branches.

Then a sequentially rational Nash equilibrium of such a game is a

vector s ¢ S such that,

’
(a) j‘sD € MD .
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[ fo

Epls IID(b)bEB <E , nD(b)baB
D pls
D
’ [
(b) VYs. e M, Yi e N, i # D, ﬁs, e M, ,
D D i i
~ ~
E s K IIi(b)baB < E Is' . Hi(b)beB . (14)
BISi»9p HIS;-5p

Condition (b) ensures that the equilibrium is sequentially ratiomal.

Next, uncertainty in the market demand is embedded into the
above derinitions. Let there be two "time periods.” Assume that
demand is revealed between these periods. The periods are referred to
as "Berore”" (B) and "After” (A). Thus, nature is conceived of as
having a distribution over a demand shift parameter y. Recall that
the reason for introducing demand uncertainty is to describe the
strategic relation between the players, allowing them not only to
choose production quantities, but "entry times"” as well. 1In a Cournot
equilibrium it is possible that uncertainty might be resolved either
before or after the time at which firms simultaneously make their
quantity decisions. The players are assumed to be Bayesian decision
makers.

For instance, if y had two possible values high (h) and low
(1), then a representative tree might look like Figure 4a or

Figure 4b.

[Figures 4a and 4b Herel



-31-

FIGURE 4a
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FIGURE 4b

In this figure (:) denotes nature's move.
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In general, let nature’s strategy be a particular probability measure
gy(Y) on Y which consists of the possible actions nature can take,
denoted by y. Y is a subset of R. Let gy(Y) have a variance y. The
probability measure gy in an element of Gy(Y), the set of all

probability measures on Y. Then if,

S= II M. XG (Y)
ieN 1 y

and p : S = Gb(B) is the induced probability measure on the branches,

then a Nash equilibrium is a vector s & S such that,

’ 13 [
YieN, zsi LR AT HUNFRS. % M., o (15
y K i’gy
In the Stackelberg game, on the other hand, the natural time
for the uncertainty to be resolved is between the "entry time” of the
leader and that of the follower. Again, a simple example is given in.

Figure 5. It is reasonable to assume here that firm 1, which enters

berore nature's play, is the dominant player.
[Figure 5 Herel

In general, using the notation of the earlier discussion of dominant

player equilibrium, and letting
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FIGURE 5

In this figure (:) denotes nature's moves.
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a dominant player equilibrium is the sequentially rational Nash

equilibrium or this type of game. The equilibrium is a vector s ¢ S,

with,
( j '
a) sp & MD such that
ﬁ [
EuISD p®y.p <E IID(b)b‘3B
uls
D
1] 1
(b) Vs, e M, VYi e N, i # D, s. ¢ M, such that
D D i i
L3 [ 3
E , Hi(b) <E , Hi(b). (16)
* *
pls,.sp.y uls ospoy

The equilibrium which endogenizes the Cournot—Stackelberg
choice is now defined as the sequentially rational Nash equilibrium of
the extensive form game in which each firm is free to make its
quantity decisions either before or after the demand is known. The
Nash equilibrium of the subgame that results when both firms decide at
the same time (either before or after) is the Cournot equilibrium and
the equilibrium of the subgame that results when one firm makes
quantity decisions before the information is revealed and the other
makes it after, is the Stackelberg equilibrium.

A typical tree when there are two players, two levels of
production for each player and two values that y can take is shown in

Figure 6.
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FIGURE 6

(Similar looking paths have not all been completely drawn)
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[Figure 6 Herel

To indicate the Nash equilibrium for the general case becomes very
complicated and so we will do so for the case of a duopoly. We do
this to show the explicit relationship between this equilibrium and
the Cournot equilibrium and the Stackelberg equilibrium. Refer to

Figure 6.

The vector (s_,s

: : ; i
1 2) € S1 X 82 is a sequentially rational Nash

equilibrium if,

’

’
Yi# j, Vs, e M, ﬂs,a M, ,
it

1 1

A [

E , Hiw)<E ., Hiw) (17)

ulsi,sj,gy ulsi,sj,gy

We are now in a position to compare these equilibria by
stating and proving the following proposition in two parts. The
second part of the proposition is proved in the body of the proof of

the first part.

Proposition 1(a): For two symmetric firms, every temporally

nonrandomized equilibrium of the larger game corresponds to either a

Cournot or a Stackelberg equilibrium.

Proof: It an equilibrium of the larger game is temporally
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nonrandomized, then at each node n, for every player i, si is such
that the probability of an edge which is an action about only when to
enter is 0 or 1. Of course if a strategy is such that the probability
of an edge is 0, then gb(b) = 0 for every path that contains that

edge.

Thus if s} is such that the probability of A = 0, and s§ is
1 11

such that the probability of A = 0, then the equilibrium ot the larger
game is such that from equation (17), the set of paths with nonzero
probabilities is the same as the ex ante Cournot game in Figure 4b.

Similarly if sl
Il

is such that the probability of A =1, then the equilibrium of

is such that the probability of A =1, and

S
13

the larger game corresponds to an ex post Cournot equilibrium. Notice
however that this is not a Nash equilibrium of the larger game tree

because if temporal randomization is allowed, then at Jll (say) player

two can find a strategy which will yield him at least as good a payoff

2 o
as an ex ante Courmnot, viz, Sy which is such that the probability of

11
A=1.

Next if si is such that the probability of A = 0, and s§ is
1 11

such that the probability of A =1, then in the equilibrium of the

larger game, for player 1:

14
)451 € M1 3
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o [3
Hl(b) ( E ls' ﬂl(b)
ll 1’gy

E
nlsy e
Similarly this condition can be reinterpreted for player 2,
and the set of paths of nonzero probabilities is the same as that of
the Stackelberg game in Figure 5.
Notice here that this is an asymmetric equilibrium of the
larger game even when we allow temporal randomization. For person 2

can do no better against person 1’s equilibrium strategy of si for
1

which the probability of A = 0.
Of course another equilibrium strategy would be with person 2

having a strategy with s2 resulting in the probability of A = 0 and

J11

s is such that the probability of A = 1.

I1
Also, it is easy to see that a symmetric equilibrium with the
probability of A =1 in both 51 and Sy is not an equilibrium ot the
larger game if we assume that y & (0,y'), where y' is some finite
vairue or the variance of nature’s distribution such that the gain in
being a Stackelberg leader is greater than playing an ex post Courmnot
game.
Thus for every v & (0,y'), there can be no symmetric

nonrandomized equilibrium ot the larger game.

Q.E.D.

Proposition 1(b): With two symmetric firms there is an equilibrium of

the larger game corresponding to a Stackelberg equilibrium. There is
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also a symmetric (in both timing and information contingent output)
equilibrium. If the uncertainty is nontrivial but sufficiently small
so that being a Stackelberg leader is more profitable than being an ex
post Cournot firm, then the symmetric equilibrium must be temporally

randomized.

5. COUNCLUSION

In this chapter, we set out to answer the question: wunder
what circumstances might noncooperative equilibrium take a Courmnot
form and when might it take a Stackelberg form? In a Cournot game,
the players are in the same strategic position with respect to each
other and they are assumed to be moving simultaneously (or
sequentially but unobservably). In a Stackelberg game, there are some
players who are dominant, who move first and who are in a different
strategic position with respect to the other players. Thus, a
classical way to try and answer the question was to examine timing and
information conditions, both of which were presumed exogenous. If
these were unobservable, then one was guided by the "Folk Theorem”
that outcomes in oligopolies were best modeled by a Courmnot
equilibrium if the firms were of equal size and by a Stackelberg
equilibrium, it they were not. The technologies of the firms and
demand characteristics were irrelevant.

On the other hand, we answered the question by detining a game
in which ex ante all the players were in the same strategic position

with respect to each other, while demand characteristics and sizes and
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firm technologies were exogenous. The basic idea was that if demand
uncertainty was resolved over time, then firms may face a trade—off
between making quantity decisions early so as to establish a
"leadership” position, or waiting until the demand uncertainty is
resolved so as to avoid production mistakes. A sequentially rational
Nash equilibrium ot the resulting game was Cournot—-like if all firms
produced at the same time, whereas it was Stackelberg—-like if some
produced berore, and others after, the demand uncertainty was
resolved. Equilibrium with respect to this game weas studied and it
was shown that there are two classes of equilibria, one of which
directly corresponded to a Stackelberg equilibrium and the other
represented a natural gemneralization of Cournot equilibrium. We also
showed that in a market with one "large” firm and a continuum of |
"small” firms facing a set of passive consumers, the only equilibrium
was the Stackelberg equilibrium with the "large” firm as the leader.
There were also some comparative static results on the symmetric form
of the equilibrium and how it changed with the amount of uncertainty
in demand. This confirmed one part of the Folk Theorem: mnamely, that
when there are firms of different sizes in an industry, it is best
modeled by a Stackelberg equilibrium.

On the other hand, we showed through results 1 and 2, that
even when an industry has identical firms, a Stackelberg equilibrium
is an endogenously determined Nash equilibrium. This refutes the
other part of the Folk Theorem: mnamely, that when an industry has

firms of identical sizes, it is best modelled as a Cournot
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equilibrium.

Further research could adapt the model developed in this paper
to the framework of a model of noncooperative exchange where all
agents are treated symmetrically, i.e., they are in the same strategic
position (such as the noncooperative gemeral exchange model ot
Shapley). This way one would be able to obtain an endogenously
determined price—setting monopolist as an equilibrium of a
noncooperative game. Finally, this model can be used to examine

advertising and timing or technological innovations as strategic

market activities.



.

FOOTNOTES

This result closely resembles an observation made by Guasch and

Weiss [4].

The game tree could be uncountably infinite——i.e., there could be
a continuum of alternatives at some or all of the moves——but of
finite play length. Clearly, this might lead to some
measurability problems as discussed in Aumann [1]. However, in
our game tree the respective spaces are standard measurable spaces
as required by Aumann, and theretore these problems do not

confront us.

We could have more than 1 dominant player. In general let D = N
be the set of dominant players: the dominant players move
together but betore the other players. Then, the dominant players

equilibrium would be a vector v ¢ V with:
(a) d £ D, sq ® M, ,

IId(b) <E , IId(b)

Eplsd,s.jsD ls s igD
J RIS s jJE

14 ’

. -
(b) for every d ¢ D, sq & Md’ ieN, ieD, s; € Mi 5

E , IIi(b) CE , IIi(b) (4")
j * 2 . j DJ *
ulsi,steD:y uls, s;ieD,y
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EQUILIBRIUM WITH ENDOGENOUSLY DETERMINED

DOMINANT PLAYERS: CONTINUITY PROPERTIES OF THE
EQUILIBRIUM CORRESPONDENCE

1. Introduction

In the last chapter, a noncooperative game was described in which
a dominant player was endogenously determined in equilibrium. Using
firm sizes and demand characteristics as exogenous, it was shown that in
a market with one large firm and a nonatomic continuum of small firms,
with nontrivial but small uncertainty in demand, the game had a unique
sequentially rational Nash equilibrium in which the large firm was the
endogenously determined dominant player. It was also shown, that in a
market with two identical firms, there were three Nash equilibrium
points. Two of these were asymmetric dominant player (Stackelberg type)
equilibria and one was a symmetric (Cournot type) equilibrium. The
question this paper addresses is the following: Would it be true that
if we considered a sequence of games in which in each game the large
firm played against a set of firms, and the individual firm size in
these sets converged to zero, the resulting respective equilibria
converged in some sense to the unique asymmetric equilibrium of the
large firm versus the continuum case noted above? The point is that a
continuum set—up is of interest only in so far as it is a model for the
behaviour of large but finite markets. Thus, for example, if the
equilibrium correspondence of the above sequence of games was upper
hemicontinuous, then the description of the equilibrium of a market with

one large firm and several small but atomic firms could be approximated
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by a Stackelberg equilibrium. Hence, the folklore that large firms are
leaders and small firms are followers, would formally be an
approximation. We will show that this equilibrium correspondence is
indeed upper hemicontinuous. What the upper hemicontinuity tells us is
that in the game described in the last chapter, the equilibrium,when

there are several (but finite) small firms can be approximated by a

Stackelberg equilibrium. However, since for non-trivial but small
uncertainty, the Stackelberg equilibrium is the unique equilibrium in
the limit when there are non-atomic small firms, the correspondence is
also lower hemicontinuous. This means that the Stackelberg equilibrium

approximates the equilibrium in the game when there is a finite number

of small firms.

Section 2 of this chapter develops the basic notation. Section 3
provides an overview of the proof and Section 4 contains the proof.

2. Definitions and Notations

Let N denote the set of natural numbers, and T = {t+, t”}
denote the space of player types. The type tt is the type of the
large firm and t~ is the type of the small firms.

Let G =NT U {m} be the space of games, topologized as the
one—point compactification of NT. Here g € G represents a game with
one large firm and g+l small firms of size 1/g+l each. If the large
firm is defined to be of size 1, and it has a cost function C;(q) for an
output level q, then a firm of size o has a cost function Cy(q) such
that Cy(asq) = a°C1(q). Thus. it is sufficient to know C; and the

game g in order to be able to specify the cost function of the small
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firms in that game. Cost functions will therefore be parametrized by g
and the cost of producing q, for a small firm in game g, will be denoted
by C(g,q).

Let M be the monopoly output for the large firm.

As we have noted in the introduction, given the assumption of
sequential rationality, the strategy for each player consists of
choosing a probability that it will enter in period B and the quantity
it will produce if it were to enter in period B. Thus, the strategy
space is denoted by S = [0, M] x [0, 1]. This is the same for all
players in all games g € G.

A strategic environment assigns a strategy for each player type.

Thus, the space of strategic environments is V = SZ, and is endowed with
the product topology. This means, only strategic environments in which
the small firms act symmetrically will be considered. We will show in
section 4 that this will be sufficient for the purpose of the proof. We
will also discuss this further in section 3. So, for a firm of type £t
v denotes its own strategy in conjunction with everyone else's. But for
a firm of type t7, v denotes everyone else's strategy. We will in
general denote by T(e)s the projection onto the (¢) axis. Thus, T (v)

will be denoted by S, and m - (v) will be denoted by S_.

A player's decision in a strategic environment is described by

identifying the player type and the strategy which he plays. 1In
particular, the ordered pair (t, m (v)) is the decision of a player

of type t in the strategic environment v. Thus, every decision is an

element of T x S and this will be denoted by D.
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The circumstance of a player in a strategic environment is

described by the player's strategy and the environment itself. That is,
the ordered pair (my(v),v) is the circumstance of player t in a
strategic environment v. Every circumstance c, is an element of the
product set S x V, which will be denoted by C. Players' preferences
will compare circumstances rather than strategic environments.

Define r (g,t,x,y,a,b) to be the sequentially rational best
response in market g, of a firm of type t, if it were to enter in period
A (i.e. wait until after the resolution of uncertainty to decide on a
production level). Here x is the aggregate production that is committed
to by the firms that have entered in period B, y is the realized value
of the demand uncertainty, (Y denotes the space of all y) a is a dummy
variable indicating whether the large firm has precommitted or not
(a =1 if it has, a = 0 if not), and b is the proportion of small firms
which are entering in period A.

We assume that r is well-defined, single-valued, and uniformly
continuous. We will now work out as an example the algebraic form of r
in the case of linear demand - quadratic costs for finite g with a =1,
to show that this assumption is consistent.

Thus, let the inverse demand function be given by

price = y - (total quantity of production) and for a small firm in game

g, the costs of producing q is . T. q2 where T is some constant.

g+l
Then, the best response for the small firm in period A is to choose q,

its production level, so as to
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2
-x— - o8
max. (y-x-bq). q )
q
Therefore, q = __SZ:El?_ is the best response and we see that it is
2 (b+ EIT )

consistent in this case with our assumptions about r.
A correspondence H:X > Y is a mapping of the topological space X
to subsets of the space Y. H is open or closed if its graph
{(x,y)‘y € H(x)} is open or closed, respectively. H is lower
hemicontinuous (l.h.c.) if {X!H(X) N U # @) is open in X for every open
set U in Y. H is upper hemicontinuous (u.h.c.) if {xiH(x) < U} is open
in X for every open set U in Y and H(x) is nonempty for every x in X.
Each strategic environment results from a combination of strategy
choices. These are specified by a correspondence J: GxV + D. The
interpretation of (t,s) € J (g,v) means that in a game g, with a
strategic environment v, at least one player of type t has chosen
strategy s.

The correspondence F: G + V is the feasible strategy

correspondence. v € f(g) if v is a strategic environment in which every
player plays a feasible strategy. Note that for all games g € G,
F (g) = ([0, M] x [O, 11)2. The correspondence F is therefore closed,

u.h.c. and compact valued.

A correspondence A: G x T x C » C is called the alternative
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correspondence, and (s', v') € A (g, t, s, v) means that in a game g, a
player of type t has changed his strategy from s to s' when the
strategic environment was v. The strategic environment now is v'.
There is a preference relation P C G x T x (S x V)2. Let
nt GxTx S xVzxY+>R be the expected profit function of a firm
(expectation given the randomization by the other firms), expressed
conditionally on the value of y, the realized value of the demand
uncertainity, given a strategic environment.

We define
P = {(g,t,SaV,S',V')/EyTl (g,t,s,v,y) > Eyn (g,t,s',v',y)}

where Ey denotes the expectation with respect to the random variable
Ve

Let an individual firm's strategy s be denoted by the ordered
pair (q, §). Here, q is the quantity that the firm will produce if it
entered in period B and § is the probability that it will enter in
period B. The strategic environment v = (q+, 6+, q~, 87), where q+ and
q~ denote the quantity a firm of type t¥ or t7 would respectively
produce if it entered in period B, and 6§t and 6~ are the respective
probabilities that those firms will enter in period B.

Deviation from a strategy vector by a single firm is considered
via the alternative correspondence and the preference relation. Let
(t,s,v) be the normal - form strategy vector in which one firm of type t

plays strategy s while all other firms play the strategies prescribed by
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the strategic environment v. Under this interpretation,

A (g,t7,s,v) = S x {v}. The preference relation then, would mean the
following:

(g,t,s',v',s,v) P if a firm of type t gets higher expected profits in
game g from the normal - form strategy vector (t,s',v') (with itself
being the firm to play s') than from (t,s,v).

An inadmissible-decision correspondence I:G x V+ D is defined by

(t,s) £ I(g,v) <=> ¢ [c ¢ A(g,t,[s,v]) and (g,t,c,[s,v] € P]. The

equilibrium correspondence E:G > V is defined by

v ¢ E(g) <=> [v ¢ F(g) and I(g,v) n J(g,v) = B].

A topological family of these games is specified by a relation P and

correspondences F, A and J which satisfy
P is open,

F is closed,

A is lower hemicontinuous, and

J is lower hemicontinuous.

Now, in order to show that the equilibrium correspondence of the
family of games we are considering is u.h.c., we will use Theorem 1 and

the Corollary of [2]. We will now state that theorem.

Theorem (Green): The equilibrium correspondence of a topological

family of games is closed. Furthermore, if E is nonempty-valued

and F is u.h.c. and compact-valued, then E is u.h.c.
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Thus, we wish to show that E is u.h.c. We are now in a position

to give an overview of the proof.

3. An Overview of the Proof:

In order to show that E is u.h.c., we will first show that G is a

topological family of games. That is, we will prove that F is closed,

X is l.h.c., J is 1l.h.c. and P is open. We will also show that F is
compact valued and u.h.c. This is sufficient to establish the upper
hemicontinuity of E. The openness of P is proved by computing the
profits n and then by showing that Ey‘n is jointly continuous in its
arguments. The key to computing profits will be to describe the
distribution of the aggregate production (which will be shown to be a
random variable), net of the production of the firm whose strategy is
under consideration, conditional on that firm's decision and on the
value of y. Using this, we will show that for any finite g, Ey‘q is
sequentially continuous in its arguments. In order to show the
continuity of Ey at g ==, we will first show that as g approaches «,
these random variables (the net aggregate expected production) converge
in distribution to random variables in which the contribution of the
small firms is a deterministic function of the decision of the large
firm. Thus, we will know the form of these random variables at g ==,
and using that we will show continuity of Eyq at g =%,

Having done this, we recall that we considered only those
strategic environments in which the small firms acted symmetrically.

Thus, we will next show that for any given amount of uncertainity in vy,
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there is a finite game g, such that an equilibrium for this finite g

and any game larger than g, corresponds to a symmetric (i.e., among
small firms) normal - form equilibrium. For the proof that the
equilibrium of the game g = % corresponds to a symmetric equilibrium,
the reader is referred to Lemma 1 in chapter 1. For games less than this
finite g, equilibria in which the small firms do not play symmetric
strategies do not matter because any correspondence which maps the
interval [l,g] to any description of equilibrium strategies of the
players will be u.h.c. since [l,g] has the discrete topology. It is due
to this that we are able to define the range of E to be strategic

environments. We will now prove that E is u.h.c.

4, Proof that the Equilibrium Correspondence is u.h.c.

We will first show through a series of lemmas, that the family of
games we are considering is a topological family.
To begin with, since F(g) = ([0,M] x [0,1]) , for all g ¢ G, it

is easy to see that F is closed, u.h.c. and compact-valued. We will
next show that A is l.h.c. We will do this in two parts. First it will

be shown that A( ,t+ , , ) is l.h.c. and then that A( ,t™, , ) is

l.h.c. Hence, if C+ = {(s,v)/ﬂ£+ (v) = s}, define Agt+ :SxV=>SxV

such that



= s

{(s',8", % ~(v))/s" ¢ s}
Agt+ (s,v) = |if (s,v) £ C+

S x V otherwise.

—

Also, define Agt- : Sx V>SS x V such that Két_ (s,v) = A(g,t—,s,v)

we will show that Agt+ and A gt— are l.h.c. Then, using lemmas 3 and

4, we will show the A is l.h.c.

Lemma 1: A + is l.h.c.

Call this Z.

We will show (S x V)\Z is closed. (S x v\z = C+\Agt+ (W). Now,

7Tt— (W) is open in S because of openness of projection maps.
o' e Agt+ W) = {(s', s',TCt— (w))/weW, s'gS} is open in

{(s', g'; tilr g s, s'¢ Sk =C,.

A
s C;\Agt+ (W) is closed.

So (S x V)\Z is closed and this means Z is open in S X V.

Q.E.D.
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Lemma 2: A - is l.h.c.

Proof: Consider U open in S X V. Then g(s,v)'Agt— (s,v)N U ¢} is

equal to = S x {ﬂ§ (u) which is open in S x V. Hence Agt- is l.hece
Q.E.D.

Lemma 3: Let L and X be topological spaces and L have the discrete

topology. Let f¢L index a set of l.h.c. correspondences H;: X X.

Also, define the correspondence H : L x X X such that H(/,x) = H, (X).

X

Then, H is l.h.c.
Proof: Consider a set U open in X.

Then, consider i‘(I,X)lﬂ(i,X) N U £ ¢} = {(Q,x) Hl(x) N U¢ ¢}
Now, we know that for all /, ileﬂ (x) N U¢E ¢} is open in L x X.

Since arbitrary union of open sets is open,
i(f,x)lﬁ (8,x) N\ U¢ ¢B is open in L x X.
Q.E.D.
By letting L in lemma 3 be the space T and let X in lemma 3 be

the space SxV then, the correspondenge A:TxS xV-rSxV is l.,h.c. for
every g s G. We will now show that A : G x T x S x V - SxV is l.h.c.,

where A (g, , , )=A (, , ). This is primarily because Ag is

the same correspondence for all g ¢ G.
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Lemma 4:
Let K, X, Y be topological spaces. Let k index a set of l.h.c.

correspondence, H. :

K’ X Y. Then, define H : K x X > Y. Such that

~

H(k,x) = Hy (x). Suppose further that H = H., = H for all k', k ¢ K.

Then, H is l.h.c.

Proof: Let U be open in Y. Consider

i(k,x)!H(k,x) N U+ B

i(k,x)lﬂk (x) N U+ ¢}

7 A
{(x, x)|H (x) A U# @J. This is open in K x X.
Q.E.D.

Hence, let k in lemma 4 be G and X in lemma 4 be T x S x V, and Y
be S x V, we then have that A is l.h.c. We will now show that the
correspondence J is l.h.c. Let Jg : V-~ D such that Jg (v) =J (g,v).

We will now use lemma 5 to prove that Jg is l.h.c.

Lemma 5: Let X and Y be topological spaces. Let X be finite and have
the discrete topology. Further, let YX and X x Y have the product
topology. Then H : YX-) X x Y such that, H (x) = i(x,y)‘f; (®) = yB is

l.h.c. For every &, the correspondence H gives the graph of X.
Proof: Let u be open in X x Y. Then, since X is discrete, u can be

written as X w where w 1is open in Y.
b4 X

U £ %y
T )
Xe X(u)
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Then, consider i*i, YXlH ()N U+ ¢}. This set is equal to

iy i 2 .
&(sz;(u) wX) (X£X'ﬁx(u) Y)E which is open in Y since X is finite and

discrete.
QQE.D.

If in the above lemma, we let X be T and Y be S, J is l.g.c.
Furthermore, since Jg is the same for all g ¢ G, by lemma 4, J is 1l.h.c.

Next, we wish to show that P is open. That p is open is established

if we show that Eyq is continuous in its arguments. In order to show
that Eyq is continuous, it is sufficient to prove that it is

sequentially continuous. This is because its domain G x T x S x V x Y
is a metric space being the product of metric spaces. (G is
homeomorphic to the subspace il/n n = 1,2...} U %OB of R. See [5],
exercise 19 B.,2). As noted in section 3 above, we will now write down
the aggregate production as a random variable and then compute the

expected profits.,

Let X; denote the total production net of a firm of type t_, assuming it
precommits.

X, denote the total production net of a firm of type t , assuming it
enters in period A.

|

: ; + .
denote the total production net of the firm of type t , assuming
it enters in period B.

o

+
denote the total production net of the firm of type t , assuming
it enters in period A.

>+



-
Then, given a normal-form strategy vector,

= + ’+ - — - —
(t, (,8), (9 , &, q, &), X and XA are random variables and are

described as follows: X; takes the value,

kq _ q kq g-k
(a) + o+l + Ll=a)e ¥ (g’ ’ g+l + Q(a) P = g+l’ y, a, g+l

(g-k) = _kq -k
—_ + T
52 g+1 r(g,t ’ g+l Q(a) + g+l’ y, a, g+1)

with probability

_ _ &k
Sy &) (H* a-8)

Where k = 0, 1, ... g
Sy =6%, sy =1-¢"
+
q (1) =q, q(0) =0

= k
Note that XB is a function of the independent random variables by in

which k is Binomial (&, g) and a which is Binomial (&', 1). Similarly,

X, takes the value,

A
kq kq g+l-k
q(a) + —= = + (l-a)er (g, et , q(a) + ol Yot T )
(g-k) q g+l-k
S e T (g, t, q(a) + = e e =



-59—

with probability
~.k —-.g-k
§@ ) O a-HE
where k = 0, 1 ... g and & (a) and q (a) are as described above.

Similarly, X; is a function of the independent random variables E%T and

a.

Again, X; takes the value

kq L (g=ktl) | g+l -k

— kq
g+l e L TL I B s S AR
+ - - g-k+
with probability, (gkl) (€ )k (1-—67)g * 1. Where k = 0, 1, ... g+l.

+
while, XA takes the value

kq . (g-ktl) - ka_ g+l-k
g+1 =+ g+1 L ( 9t ’ g+l) Yy, 0’ g+l )
with probability (gzl) (3" g-gyE

where k = 0, 1, ... gtl. 1In this case, XZ, X; are functions of the

random variables g%r in which k is Binomial (d~, g+l).

We can now write the profit functions for each firm type and then
show that the expected value of profit (expectation over y) for each

firm type is continuous in its arguments. This continuity implies that

P is open.
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Consider a firm of type t~ with the normal-form strategy vector
(t~, s, v) = (t7, (q,9), (qd¥, 8, q7, §)). 1Its profit function
conditional on the value of y is written as follows:

M (g, t7, s, V)

k.

g+l’ a)

=J18- g G @ + @) q- T, £, O dp

+S10-9 - [oex; <g—‘;1-, A+ (g £, X v, A b )

- - 3
- C(g, t , r)]] dp (E”r—f’ a),

where D is the inverse demand function, C is the cost function,,;

; ' k ;
denotes the joint distribution of EIT-and a. Since a takes two values,

+1 with probability § ¥+, and O with probability (1-sF), we can rewrite n
as follows:

x

n = J[J'a'+ SiD(x}_3 (g%, 1) +q)+ q - E(g,t',q))g d p' (ng

+ (1-d") iD(x; (g%, 0) +q) - q - Clg,t ,q)] d ' (g%)]

k k

+(1-8) [jf{n(x; (G D #1) e x- Tlg,t ,q)] d u' ()
+ -k - = g K k
+(l—d ) 1D(XA (E:'._]__" 0) + r) ® T (g,t ,XB (E’l" O)’ Yy, 05 b(ng‘))

T @ ofdp o] s (0
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The profit function for the firm of type tt is written as
follows: Let the firm have a normal-form strategy vector
(%, (q%,8D, @ 5%, a7, £)). Then,

—+

n (ga i &y %)

k

te ~ - Kk +, + = - +
= ){D(XB (gq) +q)q - Clg,t ,q)J d/,u' (é_;l.)

+ + k k
Where r denotes r(g, t , XB (EIT)’ v, 0, b (EIT))'

In all, we now have six random variables X; Ces51), X; (= 1)
Xo (¢,0), X. (¢,0), X, and X'. 1In th i ' is th
B 00, X, (e Vs g an A n these expressions, u' is the

k
probability measure that induces the distribution of E;T. These are
measures on R and given a game g, the support of a measure is the set

of values taken by §§T' The space of these measures is endowed with

the topology of weak convergence. In this topology, a sequence of

measures § p'} converges to p' iff for all bounded, uniformly
}‘nl Po

continuous real valued functions

& 3 R»R,‘SR gdpé & SR gdf%. Assume D and C are bounded, uniformly
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continuous functions. Having defined these random variables, we first
note that as g approaches o, these random variables converge in
distribution to random variables where the contribution of the small
firms (i.e. firms of type t~) is a deterministic function of the
decision of the large firm (i.e. the firm of type tt). In order to

prove this, we observe that the randomness created by the small firms in

the above expressions is due to g%f’ in which k has the binomial

distribution (ﬁ)(s’)k (1~5')g'k.

Lemma 6

. k : : :
As g » o, the random variable EIT converges in distribution to

the constant §7.

Proof

We know from elementary probability theory (c.f. [6]) that a
sequence of random variables convergesin distribution to a limiting
distribution iff their respective moment generating functions converge

to that of the limiting distribution (wherever they all exist).

Now, let M K (t) denote the moment generating function of the
g+|
E
; k _ e g+l _T\18 :
random variable e Then, M K (t) = [6 e + (1-6 )]®. We will
g+l

now take the limit as g + .
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t
Lim [~ 5l + (1-67)18
g+oo

_t
: . S >

= antilog lim g 2n(8§ e + (1-6 ))

g-)-w

_t
- + ==

= antilog lim %n (& eg 1 + (1-8 )).

g+® A

g

using L' Hospital's rule this expression

_t
2 ~ a1
= antilog lim & 2 M
2 t
g+o (g+1) P _
e 87 57 4+ (1-87)
= antilog té
ts
= e

Q.E.D.

Thus, as g +» =, X; (¢, 1) converges in distribution to the

+ - - - -+ - -
constant ¢ +68 q + (1-§ ) er (», t ,q +68 q, vy, 1, 1-8§ ). The

, . - ~ + = &
random variables XB (®; 0)s XA (e, 1), XA (=5 O)5 XA (*5 @), XA’ XB

converge to similar constants.
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The profit function n for the firm of type t~ has four terms.
The profit function for the firm of type tt has two terms. We will show
that the expected value (with respect to y) of the first term of the
profit for the firm of type t~ is sequentially continuous in
(g, t7, S, V). The proof that the expected value (with respect to y) of
the other terms is continuous is similar. Further, we know that the

finite sum of continuous functions is continuous. Thus Ey (n) for the

firm of type t~ would be continuous. The proof for t* is similar.

Denote this first term by Ey (nl).

Lemma 7:

Let {(gn, t—, S Vs y)} > (go, E, Sy» Voo y) then,

{Ey (n (g, t , s , V., yN} -+ By (nl (g5, t 5 555 Yps ¥)).

Proof: We will consider two cases: when go is < » and when gO = ®,

Case 1: Let g (o , Let € > 0 be given. Then, because the relative

+ +
topology of N as a subspace of G is discrete, there exists N* € N ,
such that for n > N*, g, = &° Next, Ey (nl (g, t , s, v, y)) can be

written down as,

+  k
oy,

g+l 4 + ( - =
T E {6 e D(q + B _ . Ex, ¥ (g; £t 5 E%T + q

g-k
1, =)
k=0 g+l g+l

g+l

+q) *q - Clg, t , @} ~{(§) (8 (1-6")F ¥,
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It is now easy to see that each of the (g+l) terms is continuous in
(gs £ 5 80 %5 ¥)u

+
Thus, given the € > 0O, there exists an N, € N , such that for

i
n > Ni’ the ith term is less than EET' Now, consider the expression for
- gotl &
E (nl (g, t s, v, ¥)). Then, for N = max {{N.} , N }, for every
y 0 — i
n > N,

Ey (nl (gn) t, Sna vn9 Y)) - Ey (nl (g09 t, Sos VO’ y)) <e,

Hence, Ey (nl) is sequentially continuous in (g, t_, S, V, ¥)o

Case 2: Let gy = =

Again, note that because of the assumptions on D and E} the

integrand of Ey (nl) is a bounded, uniformly continuous function see

[41exercise 4.53). Now, consider a sequence

{(gn, t, 8> vn)} > (=, t , 80> vo). Let € > 0 be given. We wish to

show that there exists Q such that for n > Q,

Ey (nl (gn ’ t‘-, Sn’ Vn’ Y)) = Ey (nl (°°’ t-: SO’ VO) Y)) < €.
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Denote the integrand in Ey(nl) by I(g, t s, v, y) and recall from

equation (0) that the measure depends upon g and v. If we examine
the integral, we see that for each (g,t,s,v,y), the measure in
that equation can be immediately determined. The integral takes

on different values due to the different values of E%I Hence,

we wish to show that, for n large enough

B, (T (s t7h s vis 90) d ' (gs v))

- Ey ([ 1(=, T, 80> Vg y) du' (e, vO)) <e
Consider the L.H.S. of the above inequality. It can be written as
‘Ey ([T (g, t,s,v,ydyp (g ,v))
- Ey ( f I (=, t—, Sgs Voo y) du' (gn,vn))
B, LT (o, £, 50, Vs ¥)) du' (gs V)
= Ey (I (=, t, Sg» Vg ¥) du’ (o, Vo) -(1)

Now, it is easy to show that I(gn, t S, Vo y) converges

uniformly to I(w, t , Sps Voo y). Furthermore, the sequence is



.

uniformly bounded. Thus, for any € > 0, there exists Ql’ such that for
all n > Ql’ I (gn, t—, Sys Voo y)) = I(», t , Sys Voo yv)| < /2.

Now, the first term above can be rewritten as

B, () (e € 500 v 1) = o, £, 5, vg, W du' (g, v,)

Hence (by monotonicity and linearity of the integral), for n > Ql’ this

e

is £ 4] ; du! (gn ’Vn))' But since u' is a probability measure, the

¥
above expression < €/2.
Again, by lemma 4 and by the definition of weak convergence of

measures, since I is a bounded, uniformly continuous function, there

exists a Q2 such that for n > Q2, the second term in expression 1 can

be made less than €/2. Hence we have the required inequality.

QExDis
Thus, for each firm of type

t, Ey (n(g, t, s, v, y)) is continuous in (g, t, s, v, y). Hence P is

open. We have also shown that F is closed and that A and J are 1l.h.c.
Hence G is a topological family of games, also F is u.h.c. and compact
valued. Thus, by the theorem of Green ( see section 2), its equilibrium
correspondence is u.h.c.

Since we had considered only those strategic environments in

which the small firms chose symmetric strategies, it now remains to be
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shown that this is sufficient for the purpose of our proof. This does
not mean that in every equilibrium in every game, the small firms choose
symmetric strategi