
IMPERFECT INFORMATION AND OLIGOPOLY 

WITH ENDOGENOUS MARKET POWER 

Thesis by 

Venkatraman Sadanand 

In Partial Fulfillment of the Requirements 

for the Degree of 

Doctor of Philosophy 

California Institute of Technology 

Pasadena, California 

1983 

(Submitted January 20, 1983) 



-ii-

ACKNOWLEDGEMENTS 

I would like to sincerely thank Professor Edward Green, my 

principal advisor for his enormous help, support, and advice which 

made this thesis possible. He has been very patient with me and 

extremely generous with his time. His keen insight, enthusiasm and 

willingness to share his understanding of economic theory with me 

has made this research very pleasurable. Not only has he moulded my 

approach to the subject, but he has taught me that relentless dedication 

to work and adherence to truth is the hallmark of a scientist. 

I would also like to thank the rest of my thesis committee members, 

Professors Kirn Border, Richard McKelvey and Jennifer Reinganum for 

their thoughtful comments on this thesis. I also thank Professor Border 

for kindly consenting to be the chairman of my thesis committee and 

for his extensive comments that have significantly improved the expo­

sition of this thesis. 

I gratefully acknowledge the graduate research and teaching 

assistantships from the Division of Humanities and Social Sciences of 

the California Institute of Technology which have provided me with 

financial support during my years there. 

I am thankful to Barbara Calli and Jeeva Jonahs for the excellent 

job of typing this thesis and to Ms. Christina Smith for coordinating 

the submission of the thesis in Pasadena while I was in Vancouver, 

Finally I would like to thank my parents for everything they 

have been through in order to provide me with the education I have 

received; and my wife Asha who made it all worthwhile. 



-iii-

TABLE OF CONTENTS 

ACKNOWLEDGE1'1ENTS ............................•....... 

TABLE OF CONTENTS ...............................•... 

ABSTRACT ...•........................................ 

I. An Equilibrium with an Endogenously 

Determined Dominant Player: The Case 

of Cournot versus Stackelberg .................. . 

References ..................................... . 

II. Equilibrium with Endogenously 

Det'ermined Dominant Players: Continuity 

Properti es of the Equilibrium Correspondence ... . 

References ..................................... . 

III.Endogenously Determined Price-Setting 

Monopoly in an Exchange Economy ................ . 

References ..................................... . 

ii 

iii 

1 

3 

45 

46 

81 

82 

102 



-1-

ABSTRACT 

This thesis consists of three essays. The first essay describes 

a model in which a dominant player can be endogenously determined. 

The model is developed in the context of Cournot and Stackelberg 

equilibria. Cournot equilibria are obtained in games where players 

move simultaneously (or sequentially but unobservably), and the 

extensive form strategy spaces of these players are isomorphic to each 

other. Stackelberg equilibria, on the other hand, are obtained as the 

perfect equilibria of perfect information games in which the players 

move sequentially, with the dominant player or the leader firm moving first 

and the other player moving second. Thus, the question of how to model 

. 
an industry--Cournot or Stackelberg--is answered by examining timing 

and information conditions both of which are presumed exogenous. Firm 

sizes and technologies and demand characteristics are, in this context 

irrelevant. What we do instead, is to note that if demand is resolved 

over time,then firms may face a trade-off between making decisions 

before the uncertainty in demand is revealed and thereby establishing 

a "leadership" position, or waiting until after resolution of demand 

in order to avoid production mistakes. The sequentially rational Nash 

equilibrium of the resulting game is examined. It is shown that in a 

market with one large firm (i.e., a firm whose output affects price) 

and a nonatomic continuum of small firms (i.e., firms whose individual 

outputs do not affect price), the only equilibrium of the game described 

above, with nontrivial but small uncertainty, is a Stackelberg 

equilibrium with the large firm as the endogenously determined dominant 
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player. The difference between a large and a small firm is also embodied 

in their respective cost functions. 

The second essay answers the question of whether markets with one 

large firm and several small but atomic firms can be approximated by 

or can approximate a Stackelberg equilibrium. This is answered by 

establishing that the equilibrium correspondence of a family of games, 

each of which has one large firm and several small firms, and the 

number of small firms increases to infinity, is continuous. 

The third essay adapts the model developed in the first essay 

to a model of noncooperative general exchange in which the traders are 

in the same strategic position with respect to each other. Thus a 

noncooperative game is defined in an exchange economy such that a 

price-setting monopolist is determined endogenously in equilibrium, 

and this is the unique sequentially rational Nash equilibrium. 
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A NONCOOPERATIVE EQUILIBRIUM WITH AN ENDOGENOUSLY DETERMINED 
DOrHNANT PLAYER: THE CASE OF COURNOT VERSUS STACKELBERG 

1. IN'lRODUC!ION 

There have been two classical ways of modeling the behavior of 

firms in oligopolies. The models differ in their assumptions about 

firm behaviour and result in different equilibrium outcomes. In one 

set of models, it is assumed that the firms in a market play a Cournot 

game with each other. A Cournot game is a noncooperative game in 

extensive form in which the players are in the same strategic position 

with respect to each other. That is, the players move simultaneously 

(or sequentially but unobservably) and their strategy spaces are 

isomorphic to each other. An example of the Nash equilibrium of such 

a game when firms choose quantities of production, is the Cournot 

equilibrium. A more detailed description of a cournot equilibrium 

follows in section 4. 

In the other type of models, it is assumed that the firms play 

a noncooperative game in which some of the players are in a dominant 

strategic position with respect to some others. Such a game is called 

a Stackelberg game. Here, the dominant players move first and have 

strategy spaces that are not isomorphic to those of the other players. 

Moreover, these are games of perfect information and the payoffs to a 

player, among other things, also depend upon when a player moves. An 

example of the Nash equilibrium of such a game when the dominant firm 

chooses output quantities and the other firms choose their output 

quantities as functions of the dominant firm's output is the 
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Stackelberg equilibrium. 

Thus in order to be able to know how to model an industry-­

Cournot game or Stackelberg game--it would be sufficient to examine 

timing and information conditions both of which are presumed 

exogenous. The sizes or technologies of firms, or the characteristics 

of demand, are in this context, irrelevant. On the other hand there 

is a "Folk Theorem" that outcomes in oligopolies are best modeled by 

Cournot equilibria if the firms are of equal size, but by Stackelberg 

equilibria if they are not. This suggests the possibility that timing 

and intormation conditions could be endogenously determined using 

among other things, firm sizes or technologies as exogenous. 

However, unless one is able to obtain a systematic relation 

between these exogenous characteristics and the choice between a 

Cournot game or a Stackelberg game to describe an industry, one has to 

make an ad hoc assumption about the firms' conduct in the industry. 

Such would be the case as long as one is unable to discern firm 

behavior in a systematic way using observable data-like firm sizes or 

demand characteristics. Sometimes this assumption is crucial to 

policy decisions. Consider for example, a regulator trying to decide 

whether or not to regulate a duopoly. Let the regulator's objective 

function be consumer's surplus . Also, let the firms have zero 

marginal costs. Let the firms' output quantities be denoted by xl ana 

x2 respec~ively. Assume that demand is linear and is given by 

price = y - xl - x2. Let K be the cost of regulating this industry. 

Under the assumption that the firms are playing a Cournot game, the 
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consumer surplus is 2y
2

/9 and under the assumption that the firms are 

playing a Stackelberg game, the consumer surplus is 9y
2

/32. 

If 2y
2
/9 < R < 9y

2
/32 then, wnile it may be worthwhile regulating the 

industry under the assumption that it is a Cournot duopoly, it is 

unprofitable to regulate the same industry if it is assumed that it is 

a Stackelberg duopoly. Note that in general, using output and demand 

data, one would not be able to infer the type of equilibrium--Cournot 

or Stackelberg--without complete information on the cost functions of 

the firms involved. 

The basic purpose of this chapter is to make timing and 

information conditions endogenous using data on the sizes or 

technologies of firms and certain characteristics of demand. Thus, we 

wish to make the choice between a Cournot game and a Stackelberg game 

endogenous. Since in our model, sizes and technologies are exogenous, 

we will be able to obtain a rigorous formulation and verification of 

the "Folk Theorems." 

One may try to make timing and information conditions 

endogenous (i.e., endogenize the choice between a Cournot game and a 

Stackelberg game) by simply developing a framework in wnich the firms 

are allowed to decide which game they want to play. This will not 

work because in general, in a Stackelberg equilibrium, the leader 

(dominant) firms are better off than the follower firms and in 

general, could be better off than in a Cournot equilibrium. Hence all 

the firms might want to play the Stackelberg game expecting to be the 

leader. In other words, in order to obtain a Stackelberg equilibrium 
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in which there is a leader and a follower, one would be forced to 

exogenously assign the dominant player. This assignment would be 

quite as ad hoc as making the assumption that the firms are playing a 

Cournot or Stackelberg game. What we do therefore, is to describe a 

game of imperfect information in which ex ante, the players are in the 

same strategic position with respect to each other. However, when the 

sequentially rational Nash equilibrium (see [5]) strategies are being 

played, it would appear as if the firms are playing the equilibrium 

strategies of a Stackelberg game or a Cournot game. 

In a quantity-setting example of the Cournot game, the 

strategies of ail the firms are output levels. In a quantity-setting 

example of the Stackelberg game, the dominant firms' strategies are 

output levels while the other firms' strategies are reaction functions 

(i.e., output levels that are functions of the dominant firms' output 

level). On the other hand, if demand uncertainty is resolved over 

time, then firms may face a trade-off between making quantity 

decisions early so as to establish a ttleadershiptt position, or waiting 

until the demand uncertainty has been resolved so as to avoid 

production decision mistakes. Thus, a larger game is constructed in 

which there are two logical time periods. There is uncertainty in 

demand which is revealed between the two time periods. We assume that 

the firms behave in a sequentially rational way given the information 

they have in each time period. The firms move simultaneously before 

the beginning of the first period. The behavior strategy for each 

firm in the beginning of the game consists of a probability that it 
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would enter in period 1 and the quantity it would produce if it were 

to enter in period 1. If both firms end up entering in the same 

period, the sequentially rational Nash equilibrium is Cournot-like, 

whereas if they end up entering in different periods, it is 

Stackelberg-like. This will now provide a framework in which we can 

ask how firms' sizes and technologies and the nature of demand can 

determine whether an industry is best modelled as Cournot or 

Stackelberg. An example of the larger game we are a1luding to, with 

two firms and two levels of production for each firm is shown in 

Figure 6. We will describe this in greater detail in section 2. The 

basic results of this paper are about the nature of the sequentially 

rational Nash equilibrium of this larger game and are the following: 

1. Wit:h the symmetric firms, there is a symmetric equilibrium which 

is the appropriate generalization of a Cournot equilibrium. (See 

Section 3 below.) This result assumes a particular technology 

with linear demand and quadratic costs. 

2. In a market with one large firm and a continuum of small firms, 

the only equilibrium is a Stackelberg Equilibrium. 

3. Unaer some conditions set forth below, firms in this equilibrium 

will not randomize their "times of entry. 111 Every temporally 

nonrandomizea equilibrium corresponds to either a Cournot or a 

Stackelberg equilibrium in the strong sense that the quantities 

produced are exactly those predicted by the respective extensive 

form concepts. 
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4. With two symmetric firms, under certain conditions, specified 

below symmetric equilibrium must be temporally randomized. This 

is proved in the paper using the technology of result 2. 

We now develop some notation in Section 2. In Section 3, the 

Cournot game, the Stackelberg game and the larger game of our concern 

are defined. Section 4 examines some properties of the equilibrium of 

the larger game and Section 5 concludes the paper. 

2. DEF.t1'l.tT!UNS AND NOTATIONS 

We recall the definition of a game in its extensive form as in 

Kuhn [3J. However, since only a particular game of the form shown in 

Figure 6 is analyzed, in order to minimize notation, we develop the 

derinitions only with respect to the game depicted in Figure 5. We 

will refer to this game ad the ttlarger game.tt 

The game is represented by a tree. The edges that come out of 

each node represent the alternatives at that node. Nodes which 

possess alternatives are called moves and those that do not possess 

alternatives are called terminal nodes. The rank of a node is the 

number of moves that are on the path from the initial node to itself. 

The set or moves of a given rank represents a turn for some player. 

The turns or player 1, player 2 and nature are denoted by (1), (2), 

and (N) respec~ively. There is a path or branch running from the 

initial node to each terminal node. Each such branch is associated 

with certain payoffs to the players. Often, in a particular players's 

turn, the player does not have information about which alternative the 
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previous player has chosen. In such a case, the set of nodes at the 

end points of all those edges is called an information set. For 

example, the nodes J
11

,J
12

,J
13 

form an information set for player 2. 

In any game represented in its extensive form by a tree, we 

could consider the set of nodes in any information set as the set of 

initial nodes of another game. This is called the subgame of the 

original game, and the tree that follows this information set is 

ld b h .. lt 2 cal e the su tree of t e origina ree. 

~ ~ 

N is the number of players. In Figure 5 , N = 2. 

' The set of vertices that are not terminal vertices are 

partitioned according to the moves that represent each player's turn. 

This is the player partition {P
1

,P
2

, •.• PN}. In Figure 5, the player 

p2 = {Jll,J12'J13'J2' 000 J6l'J62'J71'J72 1• 

Bis the set of branches (a branch is denoted by b). Since 

ranaomized strategies may be played by all players including nature, a 

probability is assigned to each branch. It is with respect to these 

probabilities that players make their expected payoff calculations. 

Gb(B) is the set or probability measures on B, and gb is an element 

The information partition is a refinement of the player 

partition into information sets U. for each player i. Again in 
i 

Figure 5, 
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Ai is the set of edges that come out of node n. 
n 

Alternatively, one could think or Ai as the set of nodes at the end of 
n 

these edges. 

Next, Mi is the set of probability measures on Ai and mi e Mi. 
n n n n 

M. is the product 
1 

n 
neP. 

1 

A behavior strategy for each player is a strategy that 

consists of randomizing over the alternatives at each move of that 

player. Further, since in an information set a player cannot 

distinguisn between the nodes, the randomization over the alternatives 

at each node in the information set should be the same. 

Thus for a player i, a behavior strategy at a node n is a 

probability measure si on Ai such that for every information set u, 
n n 

i and all n,n' e u, s 
n 

For this reason we may ignore the 

i 
subscript n on s . 

n 
Let S. 

1 
~ M. be the set of all behavior strategies 

1 

of player i, each behavior strategy denoted by s. 
1 

n 
neP. 

1 

i 
s . 

n 

,. 
payoff function be given by n : B --7 RN and Il .(b) be the ith 

1 

,. .th 
component of fl(b); i.e., the 1 player's payoff. 

Next, let 

s 

There is a mapping 

n 
ieN 

s .. 
1 

Let the 



-11-

inaucea by the probability measures on the set of branches, due to 

behavior strategy N-tuples. The measure µ is derived inductively in 

the following way. Consider a game in its extensive form that has 

(n + 1) turns numbered from 0 to n. There may be more than one node 

in each turn, and the particular information set which is of concern 

to the player when his turn arrives will depend upon the alternative 

that was chosen in the previous move. Denote the ith node in the jth 

turn by n . . , 
Ji 

and the set of nodes in that turn by n .. 
J 

µk+l (A*) f s (A_ 
- n n 
nk kj kj 

Then define 

for every µk+l -- measurable subset A* of nk+l. Since each terminal 

node is associated with a unique branch in the game tree, µ_ derines 
n+l 

the function µ mentioned above. The symbol E denotes the expectation 
µ 

with respect toµ and Eµlt ") is the expectation with respect toµ 

conditioned on ( • ) . 

3. An Example with an Endogenously Determined Dominant Player 

In this section, results (1) and (2) in the Introduction are 

proved. To recapitulate, they are stated below. 

The equilibrium of the larger game has two forms, one of which 

is symmetric and the other asymmetric. It will be snown that the 

symmetric form depends on the nature of the uncertainty. Thus, at the 
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extremes of risk (i.e., zero variance of the demand distribution or a 

"too diffuse" distribution), it is temporally nonrandomized and 

corresponds to a Cournot equilibrium, and at intermediate values of 

the variance it is temporally randomized. A continuous function 

contained in the equilibrium correspondence links these Cournot end 

points and ail symmetric equilibria lying on this path. It is in this 

sense remarked to be an appropriate extension of a Cournot 

equilibrium. This is result (lJ of the Introduction. The asymmetric 

form of the equilibrium will be discussed in Section 4. 

, Next, we will study how these equilibria depend on relative 

firm sizes. It will be demonstrated that in a market with one large 

firm and a continuum of small firms, the only equilibrium is a 

Stackelberg equilibrium where the large firm moves before the demand 

is revealed as a leader, and the small firms enter the market as 

followers after the demand is revealed. This is result (2) of the 

Introduction. 

A very complicated model would be needed to derive these 

results in complete generality. However, since what is important is 

the nature of the game tree, rather than the technology of the 

individual players, the results are proved in the context of a 

particular technology where the demand is linear and firms have 

quadratic costs. 

r 

x. 
i 

The following notation is used in this section: 

- is the variance of nature's distribution tunction. 

is a production level of firm i. 
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is a value of the production level when firm i 

decides to enter "Before." 

is a value of the production level when firm i 

decides to enter "After." 

- are the paths that result when xiB and y, the 

outcome of the random variable are fixed, 

and xjB or xjA are allowed to vary, 

for all j, j 'I= i. 

Let the demand be given by p = y - ~ x., where p is the 
r . 1 r 

1 

price and y is the random snift parameter. Let Nf be the set of firms 

that want to enter the market. At first we shall consider the case of 

duopoly. 

The market demand is given 

function for both firms is C(x.) 
1 

by Pr = y - x1 - x2 • The cost 

2 (x.) for an output level x .. 
1 1 

~ ~ 

Denote by Il (blxiB,y), the set of values that Il takes for the 

different branches represented by blxiB'y. Similarly, 

~ 

Il<blx , x ,y) is the payoff associated with the particular 
i(') j(') 

branch containing x , x and y. From the tree in Figure 6, it 
i(') j(') 

is easy to see that there is always at most one such branch. 

and 

The Cournot equilibrium points are then easily seen to be 

E (y) 
_y_:_ 

5 
(11 
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= y 
5 

While the Stackelberg equilibrium points are: 

3E ( y) 
y 

xlB 14 

3E ( y) 
y y -
14 

x2A 4 

The equ ~ librium or the larger game is obtained as follows. 

Denote 

and 

E ( y) by E, E ( l) by E 
y y 

( E ( y) ) 2 by E
2 . 

y 

Further, let firm i's probability or entering in period B be\) , and 
1 

(2) 

( 3) 

( 4) 

the quantity it decides to produce when entering in period B be xiB" 

In the larger game, in the first information set ot every 

player, the player has to decide on a probability of entering in 

perioa B and the quantity it would produce if it were to enter in 

perioa B. In order to decide on the quantity it would produce if it 

were to enter in period B, the firm has to choose a quantity so that 

its ante expected p pyotf of entering in period B is maximized given 

certain beliefs about nature's actions and the other player's actions. 

Thus player i will maximize over his choice variable XiB' 
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E (~ .. rr.(X.
8

,x .
8

,y) + (1 - ~ . )n.(X. 8 , X.A,y))i # j 
y J 1 1 J J 1 1 J 

noting that XjA is the best response function given liB and y. Thus 

,. 
it obtains an optimal X iB as a function of X jB' ~:l and h. On the 

other hand, the probability that the ith player will enter in period B 

is calculated in the following way: Given that it is going to 

randomize between entering in period A and entering in period B with 

* ,. 
the optimal amount X iB' it must be indifferent (since we are 

considering only sequentially rational Nash equilibria) between 

entering in period A and entering in period B. 

Thus 

noting that x
2

A is a measurable function of x and y. It is thus a 

random variable. 

Similarly, we get an expression for x 2B. In equilibrium 

(a) 

,. ,. 
x iB and ~ i satisfy (i 1,2) 

,. ,. 
x iB xjB 

,. 
~­

J 
~, i # j 

and, given that we are now interested in temporally randomized 

equilibria, 
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(b) (5) 

It is easy to verify that the values of ~ and of » thus obtained are 

the equilibrium values. Solving the maximization problem using (Sa), 

we find 

3E + E» 

14 + 6» 

Finally, substituting for ~ in (Sb) above, we obtain 

»3
C6soE

2 
- 648E> + »2

<4200E
2 

- 4176E
2

> 

+ » ( 8850E2 - 8904 E) + ( o300E
2 

- 6272 E) o. 

A solution to the above equation assuming y is normally 

( 6) 

(7) 

distributed with mean 1 and variance y, yields » as a function of y, 

the variance of y. We deduce from equations (Sa), (6) and (7) that 

the equilibrium is symmetric across players. 

Also from equation (7), »Cui = l, and with h = 1, 

»C.0044) = 0. Thus when the uncertainty is nontrivial (y F OJ, but 

sufficiently small (y < 0.0044), temporal randomization occurs i.e., 

» F 0,1. Also, for y > .0044, any nonzero » is not a Nash 

equi1 ibri um . 
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Hence there are two equilibria: an asymmetric one 

corresponding to a Stackelberg equilibrium; and a symmetric one, with 

the probability of entering "Before" given by the solution to equation 

(!) and the quantity to be produced a function of that probability as 

given in (6J. 

Further, note that in expression (6) ~ = 1 yields xB =~which 

is indeed the Cournot level of production (see equation (1)) should 

both firms decide to go "Before." 

We are now in a position to prove the following theorem. 

Theorem 1: In the above duopoly game parameterized by variance as a 

risk parameter, the equilibrium corresponding to Cournot equilibria 

(which occur at both extremes of risk) are connected by a continuous 

path in the graph of the equilibrium correspondence, and the 

equilibria along this path are symmetric. 

Proof: Clearly if y = 0, then v = 1 for both players, and an ex ante 

Cournot equilibrium results. Further for y = 0.0044, (if E = 1) 

~ = 0, and an ex post Cournot equilibrium results. Consider the 

correspondence d. : {y} -: [O,l], with d.(y) =~-obtained from i -, i i 

equation (7). 

Let us first look at the nature of the correspondence knowing 

the following facts. 

(a) From Proposition 2, (see section 4 below) d.(y) F 0 or 1 when 
i 

y F 0 or < .0044. 
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(b) The cubic (7) can be written in terms of y, the variance, i.e., 

f(~,y) = ~ 3 (648(.003086 - y)) + ~2 {4176(.005 - y)) 

+ ~(8904(-.005 - y)) + (62722{.004 - lJ) = o. 

(c) At y = 0, by Descartes' Rule of Signs there are 2 or 0 positive 

roots, 1 negative root and if the discriminant is 0 then there 

are two identical roots. 

(d) At y = 0.0044, there are 2 or 0 positive roots, no negative 

roots, no identical roots, or 1 real root and 2 imaginary roots, 

an~ the discriminant is negative. 

(e) At y = 0.003086, there are 2 or 0 positive roots, no negative 

roots, and the discriminant is positive; i.e., there are two 

distinct roots. This is because the polynomial becomes a 

quadratic at this point. 

( ) . of(~,y) o f f The partial derivative of the polynomial oy is never or 

~ e [0,1] and of(~,y) F 0 
a~ 

for all y. Thus, the Jacobian of the 

polynomial is never 0 in the range of concern. 

The graph ot the correspondence then would look like Figure 1. 

[Figure 1 Here] 

Now, it is sufficient to show that there is at least one 

continuous path from the point (0,1) to the point (0.0044, 0). 
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FIGURE 1 

_r These roots becorn.: 
imaginary here. 

.003086 .00~4 

\ 
-- There are only 2 roots at y = .103086 
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Let f(~,y) = 0 be the polynomial equation under consideration. 

We know that V(y,~) e [0, 0.0044] X [0,1], the Jacobian of partial 

derivatives of first order, J(f(~,y)J is nonzero. 

Then consider any point (y 0 .~ 0 J, with y
0 

e (u, 0.0044], and 

~O < 1 such that f(~ 0 ,y0 ) = O. Then by the implicit function theorem, 

there exists a smooth function g and a neighborhood N(y
0

J such that 

for ally e N(y
0
), J(f(~,y)) f 0. 

and 

Vy e N(y
0

J, f(g(y),y) 0 

From observation (e) above, the neighborhood 

N(y
0

J = [U, 0.0044]. Thus, the continuous path that is required is 

the graph ot g. 

O.E.D. 

Two simple, but interesting, corollaries follow from theorem 2 

above. The first corollary states that the continuous path connecting 

the Cournot extremes is monotone decreasing in the graph of the 

correspondence d described above. This means that for both firms, in 

the symmetric equilibrium, the probability of entering "Before" keeps 

getting smaller as the variance of nature's distribution increases, 

i.e., as the uncertainty in the demand increases they are less likely 

to enter the market before the demand information is revealed. 
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Corollary 1: \/y 2. 0, 
Q]_ 

\/~ e [0,1], ( 0. 
dy 

-af 

Proof: Writing ~ as k using 
il 

the implicit function theorem, the 

a~ 

proof is oovious. 

The second corollary states that given one firm is more likely 

to go "After" as demand uncertainty increases, the other firm will 

want to produce more in the period "Before." Further, this desire to 

produce more is continuous in the probability of entry "Before," until 

the other firm will want to produce the Stackelberg leader's quantity 

when the first firm wants to enter "After" for certain. 

Corollary 2: 
dxB 

\/~ e [0,1), dy > O. 

Proof: Obvious from expression (6) and corollary 1 above. 

In the context of result (2) of the Introduction, we will see 

that if a mixed set of firms (one large atomic firm and a nonatomic 

continuum of firms), is contemplating entry into a market with 

uncertain demand, it is a Nash Equilibrium for the atomic firm to go 

"Berure" as a Stackelberg leader, and for the nonatomic firms to go 

"AfLer" as tollowers. The intuitive reason is that each nonatomic 

firm is so small that it can have no incentive effect on the atomic 

firm or other nonatomic firms. Furthermore, we will show that since 

moving "AfLer" is the dominant strategy for the nonatomic firms, and 
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therefore, tnis is the unique Nash equilibrium. 

Denote the large firm's production level by x
1 

and the small 

firms' production level by x
2

• 

Let the set or "small" firms be indexed by the unit interval 

I= [0,1], endowed with Lebesgue measure cr. Thus for S ~I, cr (s), is 

the proportion of firms be.ionging to the subset s. Let x(i) denote 

the amount produced by each firm i e I. The profit associated with 

x(i) is denoted by fi i(x(i)). Let the "large" atomic firm be referred 

to as the firm of type 1 with a cost function c
1 

(x). We let the cost 

2 
function for the atomic firm be F

1 
+ c

1
x

1 
and for the nonatomic firm 

F.,C. e R, i = 1,2. We are now in a position to state 
1 1 

and prove result (2) of the Introduction. 

Theorem 2: With one large firm and a continuum of nonatomic firms, 

with the technology given above, (if there is nontrivial uncertainty), 

the small firms will enter in period A in the equilibrium of the 

larger game. If this uncertainty is sufficiently small, then the only 

equilibrium corresponds to a Stackelberg equilibrium. 

Proof: We will show that in the type of markets described above, a 

Stackelberg equilibrium with the atomic firm entering in period B as 

leader, is the only equilibrium of the larger game provided there is 

sufficiently small uncertainty in the demand parameter. 

Should it decide to enter early as a Stackelberg leader, 
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firm 1 decides on its production level, as follows: 

is the follower firm's reaction tunction. 

For a follower, nonatomic firm, x
2 

maximizes ex post profits 

and is the solution to 

max 

y - x
1 

- x(x
1

) 

2c where x(x
1

) 
2 

Then the profits of a follower are 

2 ( y - x ) ( 2C - lJ 
1 2 - F ( 8) 

(2C
2 

+ 1) 
2 2 

1 
Since f x2dµ x(x

1
), we have 

0 

f 1 
y - x

1 
- x(x

1
) 

x(x
1

) 
2C

2 
dµ 

0 

therefore ( 9) 

Suostituting this into the first order condition for firm 1 yields 
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(10) 

It is easy to show that, wnen the uncertainty is not too 

large, the large firm's profits are lower if it decides to enter in 

Period A. On the other hand, the firm contemplating moving nBetore" 

(i.e., the deviant firm), decides on its production level by 

maximizing its ex ante profits. Thus, 

E - x
1 

- Ey(x(x
1

)) 

2C
2 

so that its ex ante profits are, 

( 11) 

(12) 

Theretore, ex ante, if the deviant firm wants to compare profits, it 

sees that 

since 

E 
y 

var 2 O. 

- x1 J
2

l2C2 - lJ 

(2C2 + 1)2 
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So for the nonatomic firm it is dominant to be a follower and enter 

"After" for all y. It can be shown further, that if the amount of 

uncertainty as measured by y is larger than a certain value, depending 

upon the cost characteristics of the large firm, all firms will enter 

a period A. The proof of this in the case of linear demand~quadratic 

cost is easy to see. Another example of the argument is used in 

Chapter 3. 

Thus we observe that in the case of two identical firms a 

symmetric equilibrium results. While in the case of one atomic firm 

of measure one and a nonatomic continuum of firms, with non-trivial 

but small uncertainty, the only equilibrium is a Stackelberg 

equilibrium. A natural question would be: Is it true that, as we 

increase the cardinality of one set of firms while decreasing the 

measure of every firm in it, the resulting respective equilibria 

converge to the case of an asymmetric equilibrium of a mixed market? 

This will be examined in the next chapter. 

4. A More General Model 

In this section, a more general from of the Cournot game, 

Stackelberg game and the larger game are defined, and results (3) and 

(4) of the introduction are derivea. 

First, Cournot and Stackelberg equilibria are defined in their 

general extensive forms. Uncertainty in the market demand is next 

embeaded into the above definitions with players assumed to be 

Bayesian decision makers whose alternatives at each turn are 

quantities of production. 
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In the Stackelberg game, the natural time for the demand 

uncertainty to be resolved is between the "entry time" of the leader 

and that ot the follower. In Cournot equilibrium, it is possible that 

uncertainty might be resolved either before or after the time at which 

firms simultaneously make their quantity decisions. 

In the extensive form of the larger game each firm is free to 

make its quantity decisions either before or after the demand is 

known. The sequentially rational Nash equilibrium or the subgame that 

results when both firms decide at the same time (either betore or 

after) ~ s the Cournot equilibrium and the equilibrium of the subgame 

that results when one firm makes quantity decisions before the 

inrormation is revealed and the other makes it after, is the 

Stackelberg equilibrium. 

Thus, we want to describe an extensive form game whose Nash 

equilibria, under certain conditions, correspond to a Cournot or a 

Stackelberg equilibrium. In order to do this, we construct a game by 

combining subgames in which the Nash equilibria are precisely the 

Cournot or the Stackelberg equilibrium. Therefore, we first define 

these in their e x tensive forms, and then embed these trees in an 

extensive form game whose Nash equilibrium we exam i ne. 

Cournot Equilibrium in its Extensive Form 

Consider the following game, in which there are two players 1 

and 2 and two produe tion levels, high (H) and low (L). 

[Figure 2 here] 
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FIGURE 2 

H 
L 
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FIGURE 3
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In the general multiplayer game with continuously variable 

production, let si e Mi be a behavior strategy of player i. A 

Cournot equilibrium is a vector s e S such that Vi e N 3. e S. 
1 

with 

where E is the expectation over µ. 
µ 

Stackelberg Equilibrium in its Extensive Form 

(13) 

' Consider a game in extensive form whose representative tree 

for two players, and two production levels is: 

[Figure 3 here] 

Stackelberg equilibrium is the sequentially rational Nash equilibrium 

of this game (see [5)) and it is a dominant player equilibrium. 

In the general multiplayer case, let D e N be the dominant 

player, who moves first. 
,. N 

Again, let fi : B -7 R be the payoff 

function, and µ : S -7 Gb(B) be the induced probability measure on the 

branches. 

Then a sequentially rational Nash equilibrium ot such a game is a 

vector s e S such that, 

(a) 
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(b) 

(14) 

Condition (b) ensures that the equilibrium is sequentially rational. 

Next, uncertainty in the market demand is embedded into the 

above derinitions. Let there be two "time periods." Assume that 

demand is revealea between these periods. The periods are referred to 

as "Ber ore" (B) and "After" (A). Thus, nature is conceived of as 

having a distribution over a demand shift parameter y. Recall that 

the reason for introducing demand uncertainty is to describe the 

strategic relation between the players, allowing them not only to 

choose production quantities, but "entry times" as well. In a Cournot 

equilibrium it is possible that uncertainty might be resolved either 

before or after the time at which firms simultaneously make their 

quantity decisions. The players are assumed to be Bayesian decision 

makers. 

For instance, if y had two possible values high (h) and low 

(1), then a representative tree might look like Figure 4a or 

Figure 4b. 

[Figures 4a and 4b Here] 
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FIGURE 4a 

H 
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FIGURE 4b 

H 

h 1 \ 
In this figure ~ denotes nature's move. 
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In general, let nature's strategy be a particular probability measure 

g (Y) on Y which consists of the possible actions nature can take, 
y 

denoted by y. y is 

probability measure 

probability measures 

s 

a subset of R. 

gy in an element 

on Y. Then if , 

n 
ieN 

f.f. X G (Y) 
1 y 

Let gy (Y) have a variance y. 

of G ( Y) , the set of all 
y 

The 

and µ S -7 Gb(E) is the induced probability measure on the branches, 

then a Nash equilibrium is a vector s e S such that, 

Vi e N, j s 
1
'. e M

1
. , E I p µ s.,g 

1 y 

" n i (b)beB < (15) 

In the Stackelberg game, on the other hand, the natural time 

for the uncertainty to be resolved is between the "entry time" of the 

leader and that of the follower. Again, a simple example is given in . 

Figure 5. It is reasonable to assume here that firm 1 , which enters 

berure nature's play, is the dominant player. 

[Figure 5 Here] 

In general, using the notation of the earlier discussion of dominant 

player equilibrium, and letting 

s = n 
ieN 

M. 
1 

X G (Y), 
y 
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FIGURE 5 

h 1 

H 

In this figure ~ denotes nature's moves. 
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a dominant player equilibrium is the sequentially rational Nash 

equilibrium or this type ot game. The equilibrium is a vector s e S, 

with, 

(a) ~s~ e MD such that 

(b) Vs~ e MD, Vi e N, if. D, jS: e Mi such that 

" Il . (b) <E I I 

i µlsi,sD,y* 

,. 3 n . Cb>. 
1 

(16) 

The equilibrium which endogenizes the Cournot-Stackelberg 

choice is now defined as the sequentially rational Nash equilibrium of 

the extensive form game in which each firm is free to make its 

quantity decisions either before or after the demand is known. The 

Nash equilibrium of the subgame that results when both firms decide at 

the same time (either before or after) is the Cournot equilibrium and 

the equilibrium of the subgame that results when one firm makes 

quantity decisions before the information is revealed and the other 

makes it after, is the Stackelberg equilibrium. 

A typical tree when there are two players, two levels of 

production for each player and two values that y can take is shown in 

Figure 6. 
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FIGURE 6 

A 

® 

\~ 
\ 

(Similar looking paths have not all been completely drai.'Tl) 
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[Figure 6 Here] 

To indicate the Nash equilibrium for the general case becomes very 

complicated and so we will do so for the case of a duopoly. We do 

this to show the explicit relationship between this equilibrium and 

the Cournot equilibrium and the Stackelberg equilibrium. Refer to 

Figure 6. 

The vector (sl,s2J E sl x s2 is a sequentially rational Nash 

equilibrium if, 

E I 

µls.,s . ,g 
1 J y 

" n. <b> < 
1 

E I I 

µls . ,s.,g 
1 J y 

" n. <b> 
1 

We are now in a position to compare these equilibria by 

stating and proving the following proposition in two parts. The 

(17) 

second part of the proposition is proved in the body of the proof of 

the first part. 

Proposition l(a): For two symmetric firms, every temporally 

nonrandomized equilibrium of the larger game corresponds to either a 

Cournot or a Stackelberg equilibrium. 

Proof: If an equilibrium of the larger game is temporally 
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i nonrandomized, then at each node n, for every player i, s is such 
n 

that the probability of an edge which is an action about only when to 

enter is 0 or 1. Of course if a strategy is such that the probability 

of an edge is 0, then gb(b) = 0 for every path that contains that 

edge. 

1 
Thus if sI 

1 

2 
is such that the probability of A= 0, and s is 

1
11 

such that the probability of A= 0, then the equilibrium or the larger 

game is such that from equation (17), the set of paths with nonzero 

probabiLities is the same as the ex ante Cournot game in Figure 4b. 

Similarly if si is such that the probability of A = 1, and 
1 

2 s is such that the probability of A= 1, then the equilibrium of 
1

13 

the larger game corresponds to an ex post Cournot equilibrium. Notice 

however that this is not a Nash equilibrium of the larger game tree 

because if temporal randomization is allowed, then at J
11 

(say) player 

two can find a strategy which will yield him at least as good a payoff 

as an ex ante Cournot, viz, 
2 

s which is such that the probability of 
1

11 

A= 1. 

1 
Next if sI is such that the probability of A= 0, and 

2 
s is 
1

11 1 

such that the probability of A 1, then in the equilibrium of the 

larger game, for player 1: 
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" E 
1 

n 1 <b> < E , 
µ s1,gy I µ sl,gy 

Similarly this condition can be reinterpreted for player 2, 

and the set of paths of nonzero probabilities is the same as that of 

the Stackelberg game in Figure 5. 

Notice here that this is an asymmetric equilibrium of the 

larger game even when we allow temporal randomization. For person 2 

1 can do no better against person l's equilibrium strategy of sI for 
1 

which t~e probability of A= O. 

Of course another equilibrium strategy would be with person 2 

h . . h 2 .aving a strategy wit s
1 

resulting in the probability of A= 0 and 
11 

1 
sI is such that the probability of A 1. 

1 

Also, it is easy to see that a symmetric equilibrium with the 

probability of A = 1 in both s
1 

and s
2 

is not an equilibrium of the 

larger game if we assume that re (0,y'), where r' is some finite 

vaiue or the variance of nature's distribution such that the gain in 

being a Stackelberg leader is greater than playing an ex post Cournot 

game. 

Thus for every re (0,y'), there can be no symmetric 

nonrandomized equilibrium or the larger game. 

Q.E.D. 

Proposition l(b): With two symmetric firms there is an equilibrium of 

the larger game corresponding to a Stackelberg equilibrium. There is 
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also a symmetric (in both timing and information contingent output) 

equilibrium. If the uncertainty is nontrivial but sufficiently small 

so that being a Stackelberg leader is more profitable than being an ex 

post Cournot firm, then the symmetric equilibrium must be temporally 

randomized. 

5. CONCLUSION 

In this chapter, we set out to answer the question: under 

what circumstances might noncooperative equilibrium take a Cournot 

form and when might it take a Stackelberg form? In a Cournot game, 

the players are in the same strategic position with respect to each 

other and they are assumed to be moving simultaneously (or 

sequentially but unobservably). In a Stackelberg game, there are some 

players who are dominant, who move first and who are in a different 

strategic position with respect to the other players. Tb.us, a 

classical way to try and answer the question was to examine timing and 

information conditions, both of which were presumed exogenous. If 

these were unobservable, then one was guided by the "Folk Theorem" 

that outcomes in oligopolies were best modeled by a Cournot 

equilibrium if the firms were of equal size and by a Stackelberg 

equilibrium, it they were not. The technologies of the firms and 

demand characteristics were irrelevant. 

On the other hand, we answered the question by detining a game 

in which ex ante all the players were in the same strategic position 

with respect to each other, while demand characteristics and sizes and 
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firm technologies were exogenous. The basic idea was that if demand 

uncertainty was resolved over time, then firms may face a trade-off 

between making quantity decisions early so as to establish a 

"l~adersnip" position, or waiting until the demand uncertainty is 

resolved so as to avoid production mistakes. A sequentially rational 

Nasn equilibrium or the resulting game was Cournot-like if all firms 

producea at the same time, whereas it was Stackelberg-like if some 

producea berore, and others after, the demand uncertainty was 

resolved. Equilibrium with respect to this game was studied and it 

was sho~n that there are two classes of equilibria, one of which 

directly corresponded to a Stackelberg equilibrium and the other 

represented a natural generalization of Cournot equilibrium. We also 

showed that in a market with one "large" firm and a continuum of 

"small" firms facing a set of passive consumers, the only equilibrium 

was the Stackelberg equilibrium with the "large" firm as the leader. 

There were also some co~parative static results on the symmetric form 

of the equilibrium and how it changed with the amount of uncertainty 

in demand. This confirmed one part of the Folk Theorem: namely, that 

when there are firms of different sizes in an industry, it is best 

modeled by a Stackelberg equilibrium. 

On the other hand, we showed through results 1 and 2, that 

even when an industry has identical firms, a Stackelberg equilibrium 

is an endogenously determined Nash equilibrium. This refutes the 

other part of the Folk Theorem: namely, that when an industry has 

firms of identical sizes, it is best modelled as a Cournot 
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equilibrium. 

Further research could adapt the model developed in this paper 

to the framework of a model of noncooperative exchange wnere all 

agents are treated symmetrically, i.e., they are in the same strategic 

position (such as the noncooperative general exchange model ot 

Shapley). This way one would be able to obtain an endogenously 

determined price-setting monopolist as an equilibrium of a 

noncooperative game. Finally, this model can be used to examine 

advertising and timing 01 technological innovations as strategic 

market activities. 
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FOOTNOTES 

1. This result closely resembles an observation made by Guasch and 

Weiss [4). 

2. The game tree could be uncountably infinite--i.e., there could be 

a continuum of alternatives at some or all of the moves--but of 

finite play length. Clearly, this might lead to some 

measurability problems as discussed in Aumann [1]. However, in 

our game tree the respective spaces are standard measurable spaces 

' 
as required by Aumann, and therefore these problems do not 

confront us. 

3. We could have more than 1 dominant player. In general let D c N 

be the set of dominant players: the dominant players move 

together but before the other players. Then, the dominant players 

equilibrium would be a vector v e V with: 

(b) for every d e D, i e N, i e D, s. e M. 
i i 

E , 
µls.,s . jeD,y* 

i J 

fl . (b) < E , , 
1 µls . ,s.jeD,y* 

i J 

n. <b> 
1 

( 4,) 
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EQUILIBRIUM WITH ENDOGENOUSLY DETERMINED 
DOMINANT PLAYERS: CONTINUITY PROPERTIES OF THE 

EQUILIBRIUM CORRESPONDENCE 

1. Introduction 

In the last chapter, a noncooperative game was described in which 

a dominant player was endogenously determined in equilibrium. Using 

firm sizes and demand characteristics as exogenous, it was shown that in 

a market with one large firm and a nonatomic continuum of small firms, 

with nontrivial but small uncertainty in demand, the game had a unique 

sequentially rational Nash equilibrium in which the large firm was the 

' 
endogenously determined dominant player. It was also shown, that in a 

market with two identical firms, there were three Nash equilibrium 

points. Two of these were asymmetric dominant player (Stackelberg type) 

equilibria and one was a symmetric (Cournot type) equilibrium. The 

question this paper addresses is the following: Would it be true that 

if we considered a sequence of games in which in each game the large 

firm played against a set of firms, and the individual firm size in 

these sets converged to zero, the resulting respective equilibria 

converged in some sense to the unique asymmetric equilibrium of the 

large firm versus the continuum case noted above? The point is that a 

continuum set-up is of interest only in so far as it is a model for the 

behaviour of large but finite markets. Thus, for example, if the 

equilibrium correspondence of the above sequence of games was upper 

hemicontinuous, then the description of the equilibrium of a market with 

one large firm and several small but atomic firms could be approximated 



-46-

by a Stackelberg equilibrium. Hence, the folklore that large firms are 

leaders and small firms are followers, would formally be an 

approximation. We will show that this equilibrium correspondence is 

indeed upper hemicontinuous. What the upper hemicontinuity tells us is 

that in the game described in the last chapter, the equilibrium,when 

there are several (but finite) small firms can be approximated by a 

Stackelberg equilibrium. However, since for non-trivial but small 

uncertainty, the Stackelberg equilibrium is the unique equilibrium in 

the limit when there are non-atomic small firms, the correspondence is 

also lower hemicontinuous. This means that the Stackelberg equilibrium 

approximates the equilibrium in the game when there is a finite number 

of small firms. 

Section 2 of this chapter develops the basic notation. Section 3 

provides an overview of the proof and Section 4 contains the proof. 

2. Definitions and Notations 

Let N+ denote the set of natural numbers, and T = {t+, t-} 

denote the space of player types. The type t+ is the type of the 

large firm and t- is the type of the small firms. 

Let G = ~ U {00 } be the space of games, topologized as the 

one-point compactification of~- Here g EG represents a game with 

one large firm and g+l small firms of size l/g+l each. If the large 

firm is defined to be of size 1, and it has a cost function c1(q) for an 

output level q, then a firm of size a has a cost function Ca(q) such 

that Ca(a•q) = a•C 1(q). Thus. it is sufficient to know c1 and the 

game g in order to be able to specify the cost function of the small 
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firms in that game. Cost functions will therefore be parametrized by g 

and the cost of producing q, for a small firm in game g, will be denoted 

by C(g,q). 

Let M be the monopoly output for the large firm. 

As we have noted in the introduction, given the assumption of 

sequential rationality, the strategy for each player consists of 

choosing a probability that it will enter in period B and the quantity 

it will produce if it were to enter in period B. Thus, the strategy 

space is denoted by S = [O, M] x [O, l]. This is the same for all 

players in all games g E G. 

A strategic environment assigns a strategy for each player type. 

Th h f · · · v s2 us, t e space o strategic environments is = and is endowed with 

the product topology. This means, only strategic environments in which 

the small firms act symmetrically will be considered. We will show in 

section 4 that this will be sufficient for the purpose of the proof. We 

will also discuss this further in section 3. So, for a firm of type t+, 

v denotes its own strategy in conjunction with everyone else's. But for 

a firm of type t-, v denotes everyone else's strategy. We will in 

general denote by TI(•)• the projection onto the (•) axis. Thus, nt+ (v) 

will be denoted by S+ and nt- (v) will be denoted by S_. 

A player's decision in a strategic environment is described by 

identifying the player type and the strategy which he plays. In 

particular, the ordered pair (t, nt (v)) is the decision of a player 

of type t in the strategic environment v. Thus, every decision is an 

element of T x S and this will be denoted by D. 
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The circumstance of a player in a strategic environment is 

described by the player's strategy and the environment itself. That is, 

the ordered pair (nt(v),v) is the circumstance of player t in a 

strategic environment v. Every circumstance c, is an element of the 

product set S x V, which will be denoted by C. Players' preferences 

will compare circumstances rather than strategic environments. 

Define r (g,t,x,y,a,b) to be the sequentially rational best 

response in market g, of a firm of type t, if it were to enter in period 

A (i.e. wait until after the resolution of uncertainty to decide on a 

production level). Here xis the aggregate production that is committed 

to by the firms that have entered in period B, y is the realized value 

of the demand uncertainty, (Y denotes the space of all y) a is a dummy 

variable indicating whether the large firm has precommitted or not 

(a= 1 if it has, a 0 if not), and bis the proportion of small firms 

which are entering in period A. 

We assume that r is well-defined, single-valued, and uniformly 

continuous. We will now work out as an example the algebraic form of r 

in the case of linear demand - quadratic costs for finite g with a= 1, 

to show that this assumption is consistent. 

Thus, let the inverse demand function be given by 

price = y - (total quantity of production) and for a small firm in game 

g, the costs of producing q is g~l. T. q2 where T is some constant. 

Then, the best response for the small firm in period A is to choose q, 

its production level, so as to 
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max. (y-x-bq). q -
q 

2 Tq 
g+l 

Therefore, q (y-x) is the best response and we see that it is 
T 

2 (b+ g+l ) 

consistent in this case with our assumptions about r. 

A correspondence H:X + Y is a mapping of the topological space X 

to subsets of the space Y. H is open or closed if its graph 

{(x,y)ly € H(x)} is open or closed, respectively. His lower 

hemicontinuous (l.h.c.) if {x,H(x) (l U * ¢) is open in X for every open 

set U in Y. H is upper hemicontinuous (u.h.c.) if {x,H(x) f U} is open 

in X for every open set U in Y and H(x) is nonempty for every x in X. 

Each strategic environment results from a combination of strategy 

choices. These are specified by a correspondence J: GxV + D. The 

interpretation of (t,s) € J (g,v) means that in a game g, with a 

strategic environment v, at least one player of type t has chosen 

strategy s. 

The correspondence F: G + V is the feasible strategy 

correspondence. v € f(g) if v is a strategic environment in which every 

player plays a feasible strategy. Note that for all games g € G, 

F (g) = ([O, M] x [O, 1))2 • The correspondence F is therefore closed, 

u.h.c. and compact valued. 

A correspondence A: G x T x C + C is called the alternative 
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correspondence, and (SI ' v') £ A (g, t, s, v) means that in a game 

player of type t has changed his strategy from s to s' when the 

strategic environment was v. The strategic environment now is VI• 

There is a preference relation P C G x T x(SxV) 2 • Let 

n: G x T x S x V x Y + R be the expected profit function of a firm 

(expectation given the randomization by the other firms), expressed 

conditionally on the value of y, the realized value of the demand 

uncertainity, given a strategic environment. 

We define 

P ' = { ( g , t , s , v , s ' , v ' ) I Ey n ( g , t , s , v , y ) > EY n ( g , t , s ' , v ' , y ) } 

g, 

where Ey denotes the expectation with respect to the random variable 

y. 

a 

Let an individual firm's strategy s be denoted by the ordered 

pair (q, o). Here, q is the quantity that the firm will produce if it 

entered in period B and o is the probability that it will enter in 

period B. The strategic environment v = (q+, o+, q-, o-), where q+ and 

q denote the quantity a firm of type t+ or t would respectively 

produce if it entered in period B, and a+ and o- are the respective 

probabilities that those firms will enter in period B. 

Deviation from a strategy vector by a single firm is considered 

via the alternative correspondence and the preference relation. Let 

(t,s,v) be the normal - form strategy vector in which one firm of type t 

plays strategy s while all other firms play the strategies prescribed by 
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the strategic environment v. Under this interpretation, 

A (g,t-,s,v) = S x {v}. The preference relation then, would mean the 

following: 

(g,t,s' ,v' ,s,v) P if a firm of type t gets higher expected profits in 

game g from the normal - form strategy vector (t,s' ,v') (with itself 

being the firm to play s') than from (t,s,v). 

An inadmissible-decision correspondence I:G x V ~ D is defined by 

( t , s ) l I ( g , v) < = > c [ c £ A ( g , t , [ s , v ] ) and ( g , t , c , [ s , v] E P] • The 

equilibrium correspondence E:G~ Vis defined by 

v E E(g) <=> [v £ F(g) and I(g,v) n J(g,v) 0]. 

A topological family of these games is specified by a relation P and 

correspondences F, A and J which satisfy 

P is open , 

F is closed, 

A is lower hemicontinuous, and 

J is lower hemicontinuous. 

Now, in order to show that the equilibrium correspondence of the 

family of games we are considering is u.h.c., we will use Theorem 1 and 

the Corollary of [2]. We will now state that theorem. 

Theo r em (Gr een ) : The equil i b r i um co rrespondence of a t op olo gi ca l 

family of games i s closed. Furthermore , i f E is nonempt y- valued 

and F i s u.h. c . and compac t-va l ued, t hen E is u. h.c. 
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Thus, we wish to show that E is u.h.c. We are now in a position 

to give an overview of the proof. 

3. An Overview of t:he Proof: 

In order to show that Eis u.h.c., we will first show that G is a 

topological family of games. That is, we will prove that F is closed, 

A is l.h.c., J is l.h.c. and Pis open. We will also show that Fis 

compact valued and u.h.c. This is sufficient to establish the upper 

hemicontinuity of E. The openness of P is proved by computing the 

profits ~ and then by showing that Ey 11.. is jointly continuous in its 

arguments. The key to computing profits will be to describe the 

distribution of the aggregate production (which will be shown to be a 

random variable), net of the production of the firm whose strategy is 

under consideration, conditional on that firm's decision and on the 

value of y. Using this, we will show that for any finite g, Ey1l is 

sequentially continuous in its arguments. In order to show the 

continuity of Ey at g = {)(.)' we will first show that as g approaches~, 

these random variables (the net aggregate expected production) converge 

in distribution to random variables in which the contribution of the 

small firms is a deterministic function of the decision of the large 

firm. Thus, we will know the form of these random variables at g =~ , 

and using that we will show continuity of Ey 1l at g = JJ. 

Having done this, we recall that we considered only those 

strategic environments in which the small firms acted symmetrically. 

Thus, we will next show that for any given amount of uncertainity in y, 
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there is a finite game g, such that an equilibrium for this finite g 

and any game larger than g, corresponds to a symmetric (i.e., among 

small firms) normal - form equilibrium. For the proof that the 

equilibrium of the game g = ~ corresponds to a symmetric equilibrium, 

the reader is referred to Lemma 1 in chapter 1. For games less than this 

finite g, equilibria in which the small firms do not play symmetric 

strategies do not matter because any correspondence which maps the 

interval [l,g] to any description of equilibrium strategies of the 

players will be u.h.c. since [l,g] has the discrete topology. It is due 

to this that we are able to define the range of E to be strategic 

environments. We will now prove that E is u.h.c. 

4. Proof that the Equilibrium Correspondence is u.h.c. 

We will first show through a series of lemmas, that the family of 

games we are considering is a topological family. 

To begin with, since F(g) = ([O,M] x [O,l]) , for all g f G, it 

is easy to see that F is closed, u.h.c. and compact-valued. We will 

next show that A is l.h.c. We will do this in two parts. First it will 

be shown that A( , ) is l.h.c. and then that A( ,t-, , ) is 

l.h.c. Hence, if C+ {(s,v)/tr + (v) = s}, define A + :S x V -+ S x V 
t gt 

such that 
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{Cs' ,s' ,Tt.t-(v))/s' t. s} 

if (s,v) £. c+ 

S x V otherwise. 

Also, define A 
gt 

S x V ~ S x V such that Agt- (s,v) = A(g,t-,s,v) 

we will show that A + and A are l.h.c. Then, using lemmas 3 and 
gt gt 

4, we will show the A is l.h.c. 

Lemma 1: A +is l.h.c. 
gt 

/'. 

Proof: Consider a set W open in S x V. Then W W U W where 

"' 
,.._ A 

w c c+ and w ~ c'\c+. The prnmage of W under A + is A + (W) U (c\c+). 
gt gt 

Call this Z. 

We will show (S x V)\z is closed. (S x V)\z = c+\Agt+ (W). Now, 

JC - (W) is open in S because of openness of projection maps. 
t 

. . . A + (W) = { ( s' , 
gt 

s' JI -, t (w))/wfW, s' l S} is open in 

i,Cs', s', r)/r £. s+, s' ( SJ c+. 

A 

c+\ Agt + (W) is closed. 

So (S x v)\z is closed and this means Z is open in S XV. 

Q.E.D. 
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Proof: Consider U open in S XV. Then f <s,v) IAgt- (s,v) () U 0} is 

equal to S x ~rrv (u) which is open in S x V. Hence Agt is l.h.c. 

Q.E.D. 

Lemma 3: Let L and X be topological spaces and L have the discrete 

topology. Let 2£L index a set of l.h.c. correspondences H1 : X X. 

Also, define the correspondence H : L x X X such that H(j,x) H , (x). 
J.. 

Then, Has l.h.c. 

Proof: Consider a set U open in X. 

Now, we know that for all f, \.xlHJ (x) n U t 0J is open in L x X. 

Since arbitrary union of open sets is open, 

1,U,x) IH U,x) (\ U-/:- 0) is open in L x X. 

Q.E.D. 

By letting L in lemma 3 be the space T and let X in lemma 3 be 

the space SxV then, the corresponden~e A : T x S x V -'t SxV is l.h.c. for 

every g £ G. We will now show that A G x T x S x V -°t' SxV is 1. h. c. , 

where A (g, , ) = A ( , 
g 

). This is primarily because A is 
g 

the same correspondence for all g £ G. 
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Lemma 4: 

Let K, X, Y be topological spaces. Let k index a set of l.h.c. 

correspondence, Hk: X ~ Y. Then, define H : K x X --'t' Y. Such that 

H(k,x) = Hk (x). Suppose further that Hk H for all k' , k l K. 

Then, H is l.h.c. 

Proof: Let U be open in Y. Consider 

[Ck,x),H(k,x) (\ u 1- 0J 
A 

tCk,x) IHk (x) n u .:t- 0} 

. A 

l (k, x) IH (x) (I U :f 0}. This is open in K x X. 

Q.E.D. 

Hence, let k in lemma 4 be G and X in lemma 4 be T x S x V, and Y 

be S x V, we then have that A is l.h.c. We will now show that the 

correspondence J is l.h.c. Let J 
g 

V ~ D such that J (v) = J (g,v). 
g 

We will now use lemma 5 to prove that J is l.h.c. 
g 

Lemma 5: Let X and Y be topological spaces. Let X be finite and have 

the discrete topology. Further, let YX and X x Y have the product 

topology. Then H: 0~ Xx Y such that, H (><) ='lCx,y)IT~ (C\):: YJ is 

1. h. c. For every 0(, the correspondence H gives the graph of ;!(. 

Proof: Let u be open in x x Y. Then, since x is discrete, u can be 

written as u \x} x w where w is open in Y. 
xcnX(u) x x 
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Then, considerl"-t. YXIH (o<.)() U :.f 0}. This set is equal to 

< ·rr w ) ( IT Y)1 which is open in Y since X is finite and 1.Cxt-Y!(u) x xf.X7i. (u) · 
x x 

discrete. 

If in the above lemma, we let X be T and Y be S, J 

Q.E.D. 

is l.h.c. 
g 

Furthermore, since Jg is the same for all g 7. G, by lemma 4, J is l.h.c. 

Next, we wish to show that P is open. That p is open is established 

if we show that E ~ is continuous in its arguments. In order to show 
y 

that E ~ is continuous, it is sufficient to prove that it is 
y 

sequentially continuous. This is because its domain G x T x S x V x Y 

is a metric space being the product of metric spaces. (G is 

homeomorphic to the subspace ll!n\n = 1,2 ••• ) U io~ of R. See [5], 

exercise 19 B.2). As noted in section 3 above, we will now write down 

the aggregate production as a random variable and then compute the 

expected profits. 

Let ~ denote the total production net of a firm of type t , assuming it 
precommits. 

-XA denote the total production net of a firm of type t , assuming it 
enters in period A. 

x; denote the total production net of the firm of type t+, assuming 
it enters in period B. 

+ + 
XA denote the total production net of the firm of type t , assuming 

it enters in period A. 
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Then, given a normal-form strategy vector, 

(t-, (q,S), (q+, 6+, q, [), X and XA are random variables and are 

-
described as follows: XB takes the value, 

( ) kq- ( ) ( + _q_ + ( ) kq- g-k) q a + ~- + 1-a • r g ,t , q a + ~-g+l g+l g+l' y, a, g+l 

+ (g-k) r(g,t , _q_ + q(a) + ~ y, a, g-k) 
g+l g+l g+l' g+l 

with probability 

Where k = 0, 1, ••• g 

~ -+ 
'- (1)= 6 , J (O) 

+ 
q (1) = q , q (O) = 0 

Note that x; is a function of the independent random variables g~l in 

which k is Binomial (J-, g) and a which is Binomial (6+, 1). Similarly, 

XA takes the value, 

q(a) + ;1~ + (1-a)•r (g,t+, q(a) + ;1~· y,a, g;~~k) 

-
(g-k) 

+ g+l • r (g, 
-

t , 
kq g+l-k 

q(a) + g+l' y,a, g+l ) 
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with probability 

where k 0, 1 ••• g and c (a) and q (a) are as described above. 

k Similarly, XA is a function of the independent random variables g+l and 

a. 

+ Again, ~ takes the value 

- -
kq + (g-k+l) ( - + kq 1 g+l-k) 
g+ 1 ·----g:+l " r g ' t ' q g+ 1 ' y ' ' g+ 1 

0, 1 , • • • g+ 1 • 

+ while, XA takes the value 

kq ( g-k+ 1) - kq g+l -k) 
g+l + g+l 'r (g,t 'g+l' y, O, g+l 

with probability 

where k 0, 1, g+l. In this case, x1, x; are functions of the 

random variables k in which k is Binomial (d.-, g+l). 
g+f 

We can now write the profit functions for each firm type and then 

show that the expected value of profit (expectation over y) for each 

firm type is continuous in its arguments. This continuity implies that 

P is open. 



-60-

Consider a firm of type t- with the normal-form strategy vector 

Ct-, s, v) =Ct-, (q,j), (q+, s+, q-, [)). Its profit function 

conditional on the value of y is written as follows: 

Y/. (g, t-, s, v) 

= J [ [ · [D(x; (g:l, a) + q) q - C(g, - k 
t , q)]] d~ (g+l, a) 

+ J [ (1- l) • [ D ( X ~ ( g: f, a) + r) • r ( g, 
- k 

t , XB, y, a, b (g+l)) 

- c(g, t , 
k 

r) l l d r ( g+ 1 , a) ' 

where Dis the inverse demand function, C is the cost function,!-'-

denotes the joint distribution of g~l and a. Since a takes two values, 

+l with probability[:,+, and 0 with probability (1- ,r+), we can rewrite 'l. 

as follows: 

+( - k - - ) d ' k 
+(1- J) [f s lD(XA <g+l' 1) + r) • r - C(g,t ,q)J f'" <g+f) 

+(1-J+) \,D(X~ (g:l' O) + r) .. r (g,t-,x; (g:l' 0), y, 0, b(·g:l)) 

•.•.. (0) 
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The profit function for the firm of type t+ is written as 

follows: Let the firm have a normal-form strategy vector 

11 (g, t+, s, v) 

.+ ·( - k + + - - + J k 
.:, j 2 D ( XB ( g+l ) + q ) q - C ( g , t , q ) d_,/'-' ' ( g+ f) 

+ + k k 
Where r denotes r(g, t , XB (g+l)' y, 0, b (g+l)). 

In all, we now have six random variables ~ ( • , 1), XA (, , 1), 

+ + 
XB (<,O), XA (:,0), XB and XA. In these expressions,r' is the 

k 
probability measure that induces the distribution of g+l. These are 

measures on R and given a game g, the support of a measure is the set 

k 
of values taken by g+l. The space of these measures is endowed with 

the topology of weak convergence. In this topology, a sequence of 

measures lf~} converges to /"'~ iff for all bounded, uniformly 

continuous real valued functions 

g R'>R, JR gd,..~ ~ j R gdf~· Assume D and C are bounded, uniformly 
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continuous functions. Having defined these random variables, we first 

note that as g approaches 00 , these random variables converge in 

distribution to random variables where the contribution of the small 

firms (i.e. firms of type t-) is a deterministic function of the 

decision of the large firm (i.e. the firm of type t+). In order to 

prove this, we observe that the randomness created by the small firms in 

k 
the above expressions is due to ~- in which k has the binomial g+l' 

Lemma 6 

k As g + 00 , the random variable converges in distribution to 
g+l 

the constant 0-. 

Proof 

We know from elementary probability theory (c.f. [6]) that a 

sequence of random variables convergesin distribution to a limiting 

distribution iff their respective moment generating functions converge 

to that of the limiting distribution (wherever they all exist). 

Now, let Mk (t) denote the moment generating function of the 

g+l 

t 

k 
random variable g+l. Then, M k (t) [ 0 eg+l + (1-o-)]g. We will 

g+l 

now take the limit as g + oo. 
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t 
g+l -

e +(1-o)) 

t 

antilog lim £n (o- eg+f + (1-o )). 
g-t-00 1 

g 

using L' Hospital's rule this expression 

antilog lim 
g+oo 

antilog to 

to 
e 

2 g 

(g+l) 2 

-

t --
- g+l to •e 

t 
g+l -e 0 + (1-o 

-
) 

Q.E.D. 

Thus, as g + 00 , XB (•, 1) converges in distribution to the 

+ constant q + o q + (1-o ) • r ( 00 , t + q + o q , y , 1 , 1 - o ) • The 

( - C ) - C ) x+ C ) + x+ random variables XB •, 0), XA •, 1 , XA •, 0 , A •, 0 , XA, B 

converge to similar constants. 
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The profit function n for the firm of type t- has four terms. 

The profit function for the firm of type t+ has two terms. We will show 

that the expected value (with respect to y) of the first term of the 

profit for the firm of type t- is sequentially continuous in 

(g, t-, S, V). The proof that the expected value (with respect toy) of 

the other terms is continuous is similar. Further, we know that the 

finite sum of continuous functions is continuous. Thus E (n) for the 
y 

firm of type t- would be continuous. The proof for t+ is similar. 

Denote this first tenn by Ey (nl). 

Lemma 7: 

Proof: We will consider two cases: when g
0 

is < 00 and when g
0 

= 00 • 

Case 1: Let g
0 

< oo • Let € > 0 be given. Then, because the relative 

topology of N+ as a subspace of G is discrete, there exists N* € N+ 

such that for n > N* g 
' n 

written down as, 

g+l 
l: 

k=O 
E {o+ • D(q+ + kq- + g-k 

y g+l g+l 

Next, E (nl (g, t , s, v, y)) can be 
y 

• r ( _q_ + + + kq - 1 g-k) 
g ' t ' g+ 1 q g+ 1 ' y ' ' g+ 1 
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It is now easy to see that each of the (g+l) terms is continuous in 

(g, t-, s, v, y). 

+ Thus, given the £ > 0, there exists an N
1 

£ N , such that for 

£ 
n > N1 , the 1th term is less than g+l. Now, consider the expression for 

s, v, y)). 
go+l * 

Then, for N = max { {N.} , N } , for every 
l. i=l 

n ) N, 

t ' 

Hence, E (nl) is sequentially continuous in (g, t , s, v, y). 
y 

Case 2: Let g
0 

= ~. 

Again, note that because of the assumptions on D and C, the 

integrand of E (nl) is a bounded, uniformly continuous function see 
y 

(.41exercise 4.53). Now, consider a sequence 

show that there exists Q such that for n > Q, 

y)) - E (nl (~, 
y 

-t , 
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Denote the integrand in E (nl) by I(g, t s, v, y) and recall from 
y 

equation (0) that the measure depends upon g and v. If we examine 

the integral, we see that for each (g,t,s,v,y), the measure in 

that equation can be immediately determined. The integral takes 

k 
on different values due to the different values of g+l . Hence, 

we wish to show that, for n large enough 

-
I (gn, t , 

Consider the L.H.S. of the above inequality. It can be written as 

-[l) 

Now, it is easy to show that I(gn, t , sn, vn, y) converges 

-uniformly to I(oo, t , s
0

, v
0

, y). Furthermore, the sequence is 
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uniformly bounded. Thus, for any E > O, there exists Q
1

, such that for 

Now, the first term above can be rewritten as 

Hence (by monotonicity and linearity of the integral), for n > Q
1

, this 

is < E Cf 2E dµ' (g ,v )). But sinceµ' is a probability mea sure, the y n n 

above expression < E/2. 

Again, by lemma 4 and by the definition of weak convergence of 

measures, since I is a bounded, uniformly continuous function, there 

exists a Q2 such that for n > Q2 , the second term in expression 1 can 

be made less than E/2. Hence we have the required inequality. 

Q.E.D. 

Thus, for each firm of type 

t, E (n(g, t, s, v, y)) is continuous in (g, t, s, v, y). Hence Pis 
y 

open. We have also shown that F is closed and that A and J are l.h.c. 

Hence G is a topological family of games, also F is u.h.c. and compact 

valued. Thus, by the theorem of Green (see section 2), its equilibrium 

correspondence is u.h.c. 

Since we had considered only those strategic environments in 

which the small firms chose symmetric strategies, it now remains to be 
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shown that this is sufficient for the purpose of our proof. This does 

not mean that in every equilibrium in every game, the small firms choose 

symmetric strategies. For any given amount of uncertainty (variance of 

y), there will be a finite number of games in which the small firms will 

not play symmetric strategies. But, we will show that for each amount 

of uncertainty, there is a finite game g such that for any game greater 

than or equal to g, the small firms will play symmetric strategies. The 

reason why this is sufficient for our purposes is because, c\{ 00 } has the 

discrete topology and so the equilibrium correspondence for g E c\{oo} is 

trivially u.h.c. Thus, what we are claiming is that for any given 

amount of uncertainty, the small firms will not play symmetric 

strategies in every equilibrium up to some finite g. But since c\{ 00 } 

has the discrete topology, E is u.h.c. However, for any game greater 

than or equal to g+l, it will be shown that the small firms will play 

symmetric strategies and in that case the family of games has been 

proved to be a topological family and hence the equilibrium 

correspondence for that part will be u.h.c. Furthermore, since [l, g] 

and [g+l, 00 ] are open in G for any finite g, this part of the 

equilibrium correspondence is u.h.c. by lemma 8. 

Lemma 8: Let H
1 

: x
1 

+ Y and H
2 

x
2 

+ Y be u.h.c. correspondences. 

If x
1 

and x2 are open subsets of X with x
1 

('\ x2 ¢, then, 

H x
1 

U x2 + Y such that H (x) ~1 (x) if x € x1 

H2 (x) if x € x2 

is u.h.c. 
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Proof: Let W be open in Y. Then, consider {xlH (x) _g_ w}. This set 

equals 

The first set is open in x
1 

by upper hemicontinuity of H
1

• 

Furthermore, since x
1 

is open in X, it is open in X. Similarly, the 

second set is open in X. Hence, {xlH (x) C w} is open in X. 

Q.E.D. 

We will now consider the technology with zero costs and linear 

demand and show that for any amount of uncertainty, there is a game g* 

such that for g > g*, all the small firms will play symmetric 

equilibrium strategies. Let a be the proportion of small firms except 

for one small firm under consideration that in equilibrium decides to 

enter in period B with probability 1. The proportion 1-a enters in 

period A. Consider now the single small firm that is entering in period 

B with probability 1. We will show that for any given amount of 

uncertainty, for all a, there is a finite g* such that for g > g*, this 
a a 

small firm's ex ante expected profits of entering with probability 1 in 

period B is less than the ex ante expected profits of entering in period 

A. Once this one firm deviates and decides to enter in period A, a is 

changed. But since this result holds for all a > 0, and there are only 

a finite number of small firms for any g < 00 , there will be only 

symmetric strategies played amongst the small firms for g >max {g*}, a 
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which is finite. The proportion a is computed as follows. Suppose 

g 10, and there are 3 small firms that enter in period B. Then, 

a = 2/10 and 1-a = 8/10. 

Thus, in a game g, the figure below gives the proportion of small 

firms that enter in period B or A given that the small firm under 

consideration enters in period B or A. 

Small firm under Proportion of small 
consideration firms entering in + B A 

+ period 

B 
1 1 a+-- 1-a - --g+l g+l 

A a 1-a 

Now, the large firm can either enter with probability 1 in period B or 

with the same probability in period A. We will only consider the case 

where the large firm enters with probability 1 in period B. The proof 

with the large firm entering in period A with probability 1 is similar. 

Recall that the game we are considering has two classes of 

equilibria. One is a generalization of the Cournot equilibrium (see chapter 

one}. Under this equilibrium, we showed that whenever the amount of 

uncertainty is nontrivial but small, the firms will randomize their 

times of entry. Whenever there is temporal randomization, identical 

firms will have identical strategies. Furthermore, for trivial or too 

large amounts of uncertainty, there is no temporal randomization, and in 

the resulting Cournot equilibrium, identical firms will have identical 

equilibrium strategies. Lastly, in the second class of equilibria, 
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where there is no temporal randomization for any amount of uncertainty, 

firms entering in the same period will play a Cournot game, and hence 

here too identical firms will have identical strategies. The basic 

claim that these three statements make is the following: In a Cournot 

game, in a symmetric equilibrium, identical firms will have identical 

equilibrium strategies. For a proof of this, see lemma 9. 

Since, for symmetric strategies amongst the small firms, the 

equilibrium correspondence is u.h.c., the part of the equilibrium 

correspondence for the generalized Cournot equilibrium case is u.h.c. 

We will next be proving that for the second class of equilibria, the 
. 

equilibrium correspondence is again u.h.c, by showing (considering a 

particular technology) this in this equilibrium the small firms will 

play symmetric strategies in all games g that are larger than some 

finite game. Then, by proposition A. III. 1, of [7], Eis u.h.c. 

We will now proceed to prove that for any given amount of 

uncertainity, for every a > 0, there is some g* such that for all 

g ~ g*, a small firm under consideration that is entering in period B 

will find that its ex ante expected profits of entering with probability 

1 in period B is less than that of entering in period A. 

First, we will compute the profits to the small firm if it were 

to enter with probability one in period B. 

The large firm's problem would be 
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where rB is the best response of each small firm that is entering in 

period A, and qB is the output of each small firm entering in period B. 

A typical small firm i, that is entering in period B solves: 

{q iB 
+ I. s 

qjB - qiB 1 
r B)} max E (y-q - (1-a- -) 

qiB y B J £ BB g+l g+l g+l 
J=H 

where SBB is the set of all the small firms entering in period B 

when the firm under consideration is entering in period B. Similarly, 

we denot~ by SAB, the set of small firms entering in period A when the 

firm under consideration is entering in period B. We also have SAA and 

SBA defined in the similar way. 

A typical small firm entering in period A will solve: 

rjB _ riB 
g+l g+l)). 

Solving these, we obtain the optimal outputs of these firms in these 

three situations. We have (the * represents optimal values and the 

subscript B refers to the case where the firm under consideration enters 

in period B), 



where 

_L_ 
1-a 

1 
1-a 
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1 
E y - Ek kl (1-a- g+l) 

y 1 

2 1 
(a+ g+l ) (l-k2 (1-a- g+l)) 

1 
2 

(a+ g+l) 

1 2 
(a + g+l) 

1 • 
2(1-K (1-a- -) ) 

2 g+l 

Thus, expected profit for the small firm under consideration if 

it were to enter in period B is: 
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• • • (Xl) 

On the other hand, with the same a, if the firm under 

consideration were to enter with probability 1 in period A, then, the 

large firm's optimization problems would be the following: 

The typical small firm i, which is entering in period B solves, 

max 
qjA _ qiA 
g+l g+l 

and, the typical small firm which is entering in period A solves, 

+ I (y-qA - a•qA - j t:S 
JHAA 

The respective optimized quantities now are 

* K - K K + e f e 
q = 

A 1 - Kf Kd 

rjA _ riA 
g+l g+l)}. 
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* K - K K + e r e 
q = 
A 1 - Kf Kd 

* K - K K K - K K 
r = K _ K ( e f c +a• ( c d e)) 

A a b 1 - Kf Kd 1 - Kf Kd 

K 
a 

Kb 

K 
c 

Kd 

K 
e 

= 
y 

1 1-(1-a+ -) g+l 

1 

1-a- 1 
g+l 

E y - E k (1-a) 
y k a 

a 
1 

(1-k (1-a)) (a+ g+l) b 

1 
1 

(a+ g+l) 

K 1 
c (a+ g+l) 

2 

2 
a 

2 (1-Kb ( 1-a) ) 
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Profits for the small firm, given (l, if it were to enter in 

period A with probability 1 is, 

* + * 
K y- KaqA - K a qA a a 

* 
+ +2K (1-a) ~ qA +2K 

a a 

* -~a qA 

-K2 * 
b a qA 

* 2 + 
(1-a) - Kl; qA 

* + 
y +~a qA qA 

* + -~ (1-a) qA 

K2 (1-a) 
a 

(1-a) ~ a 

* 

* (1-a) a qA 

2 

* 
qA 

*2 
+~ a qA 

2 * a qA (1-a) 

It is now a trivial algebraic exercise to show that 

- (Yl) 

expression (Xl) - expected value with respect to y of expression (Yl) 

can be made negative for some finite g. 

All that now remains to be shown is the following: 

Lemma 9: Whenever there is no temporal randomization, identical small 

firms entering in the same period will choose identical optimal 

quantities of production. When there is temporal randomization, then 

the small firms will again have the same equilibrium strategies. 
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Proof: The proof is rather simple and two cases will be considered 

separately (with and without randomization). 

When there is no temporal randomization. then, in a game g, 

denote the set of small firms entering in period B by SB. When we 

consider the small firms that are entering in period A, the proof is 

similar. Let us also assume, without loss of generality, that the large 

firm is entering in period A. Thus, the small firm i solves the 

optimization problem, 

q , 
+-1 +L),y)•q.-C(q g)} 

g+l 1 i' ' 

where L is the aggregate production in period A. Let ql be the first 

argument of D, and qo be the aggregate precommitted production. 

The first order condition for firm i is 

q
1
. 3E D 

_y_ 
g+l • aq1 ( 1 + --2!:'.) - -c I ( ) + D a q.' g 

qo i 

Similarly, the first order condition for firm j is 

3E D 
_y_ • (1 + "aL) - C' (q., g) + D 
aql oqo J 

Define 

h(q) 

o. 

0. 

( 1 + a!~) -c' (qi, g) 

<lE D 

g~ 1 a q ~ • ( 1 + a!~) + c' C q , g) • 
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Now, 

h' = C" - 1 
g+l 

Thus, h' > 0 if C" > 0, D' < 0, and L' > -1. Furthermore, h(q.) 0 
1 

and h(q.) 
J 

0. Hence, for any i, j, qi 

The assumption of ~·· > 0 is consistent with, for example, the 

quadratic costs case we considered. The functional form of the reaction 

of individual firms in that case is also consistent with the assumption 

that L' > -1. In fact, in that case 

L' 
2• (number of firms entering in period A+ 1) 0 

number of firms entering in period A 

On the other hand, when there is temporal randomization, then let 

q(a) = q+ if a= 1, and q(a) = 0 if a= 0, and let c(a) = c+ if a= 1 

and let c(a) 

problem is 

max 

(1-c+) if a= O. Then, a small firm i's optimization. 

• E n({q(a) + 
y 

- c (qi' g)} • 

l qk +qi+ L(qO)},y) 
k£S 
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where Pi is the power set of the set of all firms excluding firm i. 

Similarly, a small firm j's optimization problem can be written, and by 

an argument similar to the one above, (qi, oi) = (qj, oj) for 

any i,j. 

Q.E.D. 

Thus, we have shown that the family of games we considered has an 

upper hemicontinuous equilibrium correspondence. This means that 

markets with one large firm and several small, but atomic firms can be 

approximated by a Stackelberg equilibrium. However, since f or non-trivia l 

but small uncertainty, the Stackelberg equilibrium is the unique 

equilibrium in the limit when there are non-atomic small firms, the 

correspondence is also lower hemicontinuous. This means that the 

Stackelberg equilibrium also approximates the equilibrium in the game 

when there is a finite number of small firms. 
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ENDOGENOUSLY DETERMINED PRICE-SETTING K>NOPOLY 

IN AN EKCHANGE ECONOMY 

1. Introduction 

The behaviour of a perfectly-discriminating monopolist was first 

explained by the classical theory of monopoly. Later, using Edgeworth's 

theory of a pure exchange economy and the core as an equilibrium concept 

of a cooperative game, the perfectly-discriminating monopolist was 

obtained as the cooperative equilibrium of an exchange economy for 

particular characteristics of the agents' relative sizes. It was shown 

that giv;n positive initial allocations, with two agent types one of 

which was an atomless collection of several identical agents and the 

other type was a single atom, the final equilibrium allocation was in 

the Core. Moreover, with those allocations, every nonatomic trader was 

indifferent between trade and no-trade (see [3] ). 

On the other hand, it could be shown using offer-curves, that a 

price-setting monopolist in a pure exchange economy would cause final 

allocations to lie outside the core. Thus in order to be able to obtain 

a price-setting monopolist as the equilibrium of some game in an 

exchange economy, the natural direction to proceed is to consider the 

pure exchange economy as some form of a noncooperative game and use the 

noncooperative Nash equilibrium concept. This was made possible with 

the development of noncooperative exchange models (for example [2]). 

However, it was claimed (see [l]) that the examination of market 

structures similar to the one that had earlier yielded the 
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perfectly-discriminating monopolist, would now only result in trivial 

no-trade equilibria. This claim was driven by the ad hoc assumption 

that firms in such a market play a Cournot game with each other. A 

Cournot game is a noncooperative game in extensive form in which the 

players are in the same strategic position with respect to each other. 

That is, the players move simultaneously (or sequentially but 

unobservably) and their strategy spaces are isomorphic to each other. 

An example of the Nash equilibrium of such a game is the Cournot 

equilibrium. 

The purpose of this paper is to describe an "intuitively 

plausible" noncooperative game in an exchange economy, such that a 

price-setting monopoly is a sequentially rational Nash equilibrium of 

that game and the price-setting monopolist is determined endogenously. 

We recall that another classical way to characterize the 

quantity-setting equilibrium in an oligopoly, is by the use of a 

noncooperative game in which some of the players are in a dominant 

strategic position with respect to some others. Such a game is called a 

Stackelberg game. Here, the dominant players move first and have 

strategy spaces that are not isomorphic to those of the other players. 

Moreover, the payoffs to a firm also depend upon when it moves. An 

example of the Nash equilibrium of such a game is the Stackelberg 

equilibrium. It would appear that if we were to define such a game in 

an exchange economy, that it may be possible to obtain an equilibrium in 

which the dominant player is the price-setting monopolist. However, 

such an approach may not be intuitively appealing because there is no a 



-83-

priori reason why a particular firm should be exogeneously assigned to 

be the dominant player. This assignment would be quite as ad hoc as the 

assumption that all firms play a Cournot game. 

What we do therefore, is to describe a game of imperfect informa­

tion in which ex ante, the players are in the same strategic position 

with respect to each other. Next, we will obtain sufficient conditions 

for such a game to have a unique equilibrium, such that when the equili­

brium strategies are being played, it appears as if the traders are 

playing a Stackelberg game. The sufficient conditions would then also 

determine when a price-setting monopolist would exist. The main point 

is, we do not arbitrarily assign who should be the dominant player. 

Instead we assume that the firms behave rationally in a larger game in 

which all firms are strategically equivalent in some sense and then 

examine sufficient conditions on the market structure that would yield a 

unique equilibrium of this game which results in a price-setting 

monopolist. The model we will use will be directly adapted from Chapter 

1 • 

We will first describe the basic notation and model developed 

in [l]. This will be done in Section 2. In Section 3 we will describe 

our model and derive the main result. Section 4 concludes this Chapter. 

2. Noncooperative Exchange With a Syndicate 

The unit interval I = [O, l] represents traders and is endowed 

with Lebesgue measureµ. I is partitioned into TO and T'. The members 

of TO are unorganized traders. The members of T' are organized or 
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syndicated traders or a combination of these with unorganized traders. 

The members of a syndicate act in concert and decide on a common trade 

they will all make while those that are unorganized will act 

individually. 

There are two commodities represented by m and y. Both enter the 

utility functions of the traders. 

The utility function for a trader i is represented by Ui which is 

the same for all members of a particular syndicate. The initial 

endowments of the trader are represented by wm of good m and w~ 
i 1 

of good y. 

Trade takes place through a market in which the two goods are 

exchanged against one another. Each trader sends some amount of one or 

the other commodity into the market. The price ratio is the ratio of 

the aggregate supplies. We will denote as the price ratio p, the 

aggregate supply of good y divided by the aggregate supply of good m. 

For each trader, the amount of the good supplied by him will purchase at 

the effective price a proportional quantity of the other good. An 

unorganized trader faces a budget constraint that coincides with that of 

the usual Walrasian price-taker. However, organized traders acting in 

concert exert a non-negligible impact on prices. The agents recognize 

this phenomenon. 

Specifically, if each trader were allowed to supply both goods to 

the market, the amount of good m and good y each trader supplies is 

called a supply profile and is represented by 
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For such a supply profile, the unorganized trader i will receive 

in return 

and 

m. • 
1-

f 1 mµdµ 

y i • j I y µ dµ 

of good y 

of good m 

The organized trader who belongs to a syndicate S C T' of 

s 
measureµ will receive in return for a supply of (mi, yi), 

m • 
i 

+ of good y 

+ 

and a similar amount of good m. 

I 
Let ME ( R2 ) be the market supply profile. + 

endowed with the product topology. 

I 
The space ( R2) is + 

I 
A net trade is an integrable function X : ( R

2
) x I + R

2 
such 

+ 

that f 1 X (M,i)dµ ~ 0, and it represents the initial endowment vector of 

each trader net of the amounts supplied to the market and the amounts 

obtained in exchange from the market. 
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Thus, for an unorganized trader with the supply profile (mi, yi),

the net trade X(M,i) is equal to the ordered pair

A similar expression obtains for the organized trader belonging to a 

syndicate S of measure μS. Points in the domain of individual utility

functions are X(M,i). A trader's utility is higher for higher values of

net trade in either commodity. Thus the individual firms in I are

playing a game of imperfect information. Each player has only one

information set and it represents the information available to him when

it is his turn to play. The various alternatives that a player has 

during his turn are the quantities of good m and good y that he decides 

to send to the exchange market. If he is a member of T0, then he does 

not know what any other player has decided to send to the market and if

he is a member of Τ', then he only knows what the members of his 

syndicate have decided. The information set of trader i ε T0 for

instance, is the space . Thus every trader i's pure strategies

are points (mi, yi) ε R2+.

A strategy vector is an - vector of individual strategies 

(mi, yi) for every i ε I. This is a market profile.

The equilibrium concept we will use is that of a sequentially

rational Nash equilibrium in pure strategies. At this point we must
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note that there are examples where such an equilibrium will fail to 

exist. The reader is referred to Professor Rosenthal's comments 

following [2] for an example of this, when there are consumption 

externalities. However, we will assume, as is done in the literature, 

that such an equilibrium exists. 

A sequentially rational Nash equilibrium is a market profile 

I 
M € ( R!) such that for each unorganized trader 

where M'(j) M(j) -V- j * i and M'(i) < (w~, w~) and for each 
1 1 

I 
i € s c T', t M' € ( R2) with M' (i) < (w~, wr), M'(i) M(i) 

+ 

-v i € 1\s and for i ,j € s, M' (i) MI (j) such that 

U. (X(M', i)) > U. (X(M,i)). 
1 1 

It is assumed in this model that for each trader i € I, 

mi • Yi 0 but m. + Yi > o. This assumption reduces the size 
1 

is because if (m,y) are the aggregate amounts of good m and good y in 

the market and if for a trader i €SC T', (mi, yi) is a feasible supply 

profile then so is (m. + <, 
1 

+ T 1-) for some T 
m > O; and the net 

trades for that trader are the same in both cases. Furthermore, it is 
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part of the definition of To that -V- i, j E TO, m • y. O. 
i J 

Given the set-up above it can be argued that in a market with one 

large trader without a competitive fringe, i.e., all of T' consisting of 

only one trader, and an unorganized sector To, the only equilibrium as 

defined above, is trivial. 

This is because the large trader can make the relative price of 

the commodity he wants arbitrarily small. Each small trader realizes 

this together with the fact that he cannot affect the price and that 

this will result in the commodity he wants being arbitrarily expensive. 

No trade will therefore be the only Nash equilibrium. 

Proposition 1: (Okuno, Postlewaite, Roberts) 

Let all of T' be a syndicate with µ(T') t O. Let µ(TO) t O. 

Then in an exchange economy with the technology given above, 

I 
0 s ( R

2
) is the only Nash equilibrium. + 

Proof: 
I 

We will first show that any M t 0 s ( R2 ) is not a Nash + 

equilibrium. It is then trivial to see that ((0,0), (O,O)) is a Nash 

equilibrium. 

Without loss of generality let the syndicate's supply profile be 

represented by the 2-Vector (m£, o) such that m£ is > O. For the case 

m£ = o it will be seen later, that for every i s TO, a supply profile 

(o,o) is the "best response". Next let firm i E TO have a supply 

profile (o, y ), y > o. 
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i i 

Then the price 
f yi dµ 

p 
m£ 

!__E_ f Yi dµ and with 
a m£ 2 

m£ 

a P µ (i) o. 
ayi m£ 

The syndicate's utility u£ is equal to 

m 
m£)' 

y 
m£ • p)) u£ ((w£ - (w£ + 

a u a u a u ap 
£ £ + £ (m • -+ p) a m£ a 1 az- £ am£ 

Where and represent the partial derivative of utility with 

respect to its first and second arguments respectively. Therefore, 

a u£ a u£ a u£ f yidµ f y,dµ 
+ (- + 1 ) 

a m£ a 1 az- m£ m£ 

a u£ 
---

a i 

Hence for any m£ > o, its utility can be increased by decreasing m£. 



is 

-90-

The unorganized trader's utility level given any m > o 
t 

mi m 

J d ), (w. - yi)). 
Yi µ i 

a u. 
J. 

a i 

a P 
(y • 

i Cl Yi 
+ 

1 

p ) -

Since the unorganized trader knows the sign of the partial 

derivative of the syndicated trader, ~e realizes that l will be very 
p 

close to zero and hence 

a u. 
J. 

al < 0 

Thus for any yi > O, the unorganized trader can increase its 

+ 
utility by decreasing y .• Any m * 0 is therefore not a Nash 

J. 

equilibrium. It is trivial to see that ((0,0), (O,O)) is a Nash 

equilibrium. 

Q.E.D. 

On the other hand, by incorporating the basic model of Chapter 1 

into a general noncooperative exchange context we will find that under 

any nontrivial uncertainty, the large trader will be a Stackelberg 
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leader, the small traders will be Stackelberg followers and trade will 

take place in equilibrium. Even under complete certainty the traders 

are indifferent between playing a Cournot game and playing a Stackelberg 

game. Hence, although the equilibrium resulting from the Cournot game 

will be trivial as noted earlier, trade will take place in the 

equilibrium of the Stackelberg game. Note that the game involves 

quantity-setting strategies. However, when there are many small traders 

in the market, those traders can exert only negligible influence on 

their terms of trade. That is, they are virtually price-takers. Thus, 

the remaining large trader has latitude to Set the price. This 

situation holds exactly in the limit and is approximated asymptotically 

as the unorganized traders are made small and numerous. With only a 

small number of unorganized traders, price-setting equilibrium is not 

presumed to occur. We will now present our model, which is similar to 

the one described in the introduction. 

3. A Hodel of Non-cooperative General Exchange with an Endogenously 
Determined Price-Setting Monopolist 

There two time periods denoted by B for period "Before" and A for 

period "After". There is uncertainty in price and this is revealed 

between the two periods. We will shortly explain how this uncertainity 

could arise. The initial endowments of the large trader are (w~, wi) 

and of a small trader i are (w~, wr). 

If a trader decides to "enter" in period B then it has to set aside 

a supply profile, say a designated fraction a of its initial endowment 
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of good m. 
m 

Thus a • wi is set aside to be sent to the market. However, 

the actual amount that the market receives is uncertain and is denoted 

by a • 
m 

w • 
i 

k. where k. is a random variable for the ith trader and 
l. l. 

whose range is say [0,2]. For example, the traders could be thought of 

being endowed with seeds, but trade is done in the crops obtained. If a 

trader decides to "enter" in period A, however, he knows the realized 

value of the random variable. The crops enter the utility functions of 

the traders. The random variable could have different independent 

distributions for different traders. 

The extensive form of the game that the traders are assumed to be 

playing is exactly the one in figure 1. Thus revised initial endowments 

in period B for a firm i are (w~ • k., ..l. • k.). As before, utility 
l. l. l. l. 

functions are defined on net trades. In the first information set of 

every trader, its behaviour strategies consist of announcing a 

probability of entering in period B and the proportion a. of its initial 
l. 

endowment that it will send to the market if it enters in period B. 

We will now consider the situation with the large trader "entering" 

in period B as the Stackelberg leader and the small traders ''.entering" 

in period A as followers. The large traders and the small traders trade 

in different commodities. Thus for the small traders, the optimal value 

* of the choice variable a. will be a function of the price p and the 
l. 

value of ki • The aggregate supply of the good (say m) by the small 

firms will be 
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where ki is the realized value of the random variable. 

Thus a trader i £ TO will maximize 

s.t. 0 < m 
w. 

1 
k. 

1 

- 1 -

The large trader on the other hand realizes that p is a function 

* * of ai and for each small trader, therefore, ai is a composite function 

* 
of ai. He will maximize his expected utility in order to obtain the 

optimal ai. 

We will show through a lemma that for any non-trivial 

uncertainty,this situation is a Nash equilibrium of the game described 

in figure 5 ofChapter 1. Furthermore, it is shown that in this kind of 

Stackelberg equilibrium, "entering" in period B is a dominant strategy 

of the small firms. 

Lemma 1: 

Let P C R be the range of a random variable with a distribution 

function g, X ~ R and let f: X x P + R be a measurable function 

such that argmax f(x,p) exists for each p £ P. Since f is a random 
x £ x 
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variable, E(f(x,p)) is well defined for each x E X. 
*l 

Then if x denotes 

argmax E(f(x,p)) and x*(p) denotes argmax f(x,p) then 
X E X X E X 

* E(f (x (p),p)) > *l 
E(f(x , p)). 

Proof: 

* E(f(x (p),p)) f:_ * ~ f(x (p),p) g(p) dp 

and 

Joo f ( *l 
-co x , p) g(p) dp 

* * Since x (p) maximizes f(x,p), f(x (p), p) > *l f(x , p), and the proof 

is complete. 

Q.E.D. 

Thus appealing to the above lemma if we let f be the utility 

function of the small trader, and p be the price and if we consider the 

Stackelberg situation discussed above, we see that any small trader that 

is considering deviating and entering in period B will observe that ex 

ante its expected utility of entering in period B is never larger than 

the expected utility of entering in period A. The respective expected 

utilities can at most be equal when there is no uncertainty. 

Note that if the large trader decides to enter in period A, then 

in equilibrium there is no trade as shown in Proposition 1. It is easy 

to see that under some non-trivial uncertainty, the expected payoff to 

the large trader of entering in period B is at least as large as that of 

entering in period A given that the small traders enter in period A. 

However, it is important to question whether or not this equilibrium is 
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sensitive to the amount of uncertainty in the random variables. That 

is, will there be some large enough uncertainty such that ex ante the 

large trader finds it more profitable to enter in period A? One has 

good reasons to suspect this since even for risk-neutral firms it is 

possible for the ex ante expected payoff of making ex post choices to be 

dependent on the amount of uncertainty. We will now show why this may 

be the case. Let k be a random variable and suppose a firm has an 

objective function f(x,k) where x is its choice variable and f is a 

measurable function of k. Assume f is concave in x. Since expectation 

is a linear operator, the expected value of f denoted by Ek(f) is also 

concave in x. Assume further that the firm is risk-neutral. We will 

show that the result 
(l2f 

we seek holds even when ~ 0. The point is, we 

are trying to show that even Ek(f) does not depend upon the variance 

of k, and the firms are risk-neutral, it is possible for the ex ante 

expected payoff of making ex post choices to depend upon the amount of 

uncertainty in the random variable. Let us also assume that the random 

variable k is revealed at some time and the firm has to decide ex ante, 

whether to choose the optimal amount of x "Before" k is revealed or 

"After" the revelation. Consider each case separately. 

Before: 

The firm maximizes Ex(f(x,k)) over its choice variable x 

* Thus the optimal x = xB could, in general, a function of E(k). If it 
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is, then the optimized value of the objective function 

Again 0 and the ex ante expected optimized payoff = E(f*) does 

not depend upon the amount of uncertainty measured by variance. 

After: 

The firm now maximizes f(x,k) over its choice variable x 

* Clf 
setting ax 0, obtaining an optimal x xA as a function of k. Thus 

the optimized value of the objective function f 

+ 
ax* a2 f 
(~)2 + 

ak ak2 

which need not be equal to zero. 

* * fA(xA(k), k) and 

* ax 
(~)2 

ak 

If it does not, then the ex ante expected payoff of deciding 

* after revelation of the random variable is E(f A) and this is a function 

of the variance of k. Thus ex ante, the expected payoff of deciding 

"After" changes with the variance of the random variable. In [3] it was 

shown in fact that as the variance increased, the ex ante expe~ ted 

payoff of deciding to enter ''After" increased. This means that although 

for some amounts of uncertainty the firm found it more profitable to 

decide to enter "Before" the random variable was revealed, as the amount 

of uncertainty got sufficiently large, the ex ante expected payoff of 
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deciding to enter "After" got sufficiently large to exceed the constant 

(relative to amount of uncertainty) ex ante payoff of deciding to enter 

"Before". 

It would therefore be reasonable to expect such a result in the 

present case. Hence, we examine utility functions which are 

linear in the random variable but concave in the choice variable 

ai• The agents are expected-utility maximizers. 

However, we know from Proposition 1 that if the large trader were 

to enter in period A, then no-trade is the only equilibrium. In other 

* words, xA is a constant (equal to zero) and so 

o. 

Therefore, the ex ante expected payoff of entering in period A does not 

change with the amount of uncertainty in the random variable. Hence the 

large trader will always (for any amount of uncertainty) enter in period 

B. We will now demonstrate this through a simple example. 

Example : Let U = xY yl-y, 0 < y < 1, 

where X is the net trade in good m and Y is the net trade in good y. 

Assume the constraint in equation 1 is not binding. Also assume for 

simplicity, that the random variable k is the same for all traders. The 

small trader's optimal choice ai is given by 

a. 
1 

1 - y -
wi y 

m 
wi p 

(2) 
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where p is the market price. Let M be the aggregate 

initial endowment of good m and G of good y. Also denote the 

denominator in the price formula by k.I. 

Then from equation 2, 

I M - My - Gy 
p 

But from the price formula, I 

Therefore 

p 

(3) 

(4) 

Substituting this expression for p into equation 3 above, we get 

I M(l - y) (5) 

Therefore 

WY Gy 
M(l - y) ___ £ __ _ 

(a,Q, wi + Gy)
2 

(6) 

Large trader: For the large trader, the ex ante expected payoff of 

entering in period A would be 
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which does not depend upon the variance of k. 

Its ex ante expected payoff of entering in period B is 

* Thus a which maximizes this expected payoff, is a function of E(k). 

The optimized value of the payoff is therefore 

and again this does not depend upon the variance of k. 

We now have the following theorem. 

Theorem: 

In an exchange economy with one large trader and a continuum of 

small traders given the technology above, there will be non-trivial 

equilibrium with trade in which the large trader in the Stackelberg 

leader in the sense discussed above and the small traders will be 

followers in the same sense. The large trader is the endogenously 
\ 

determined price-setting monopolist. Furthermore, with any non-trivial 

uncertainty, this is the unique Nash equilibrium. 
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4. Conclusion 

We have been able to define a noncooperative game in an exchange 

economy such that a price-setting monopolist is endogenously determined 

and is the only Nash equilibrium of this game. it was pointed out that 

although such a monopolist could be obtained as the Nash equilibrium of 

a Stackelberg type game in the exchange economy, such a derivation was 

not 'sensible' because of the ad hoc assumption that the monopolist was 

the dominant player in the Stackelberg game. Instead, we defined 

another game in which the traders were in the same strategic position 

' with respect to each other. The Nash equilibria of such a game depended 

upon the structure of the market, among other things. It was then shown 

that in a market with one 'large' trader (i.e., a trader whose output 

affects price) and several nonatomic traders, the only Nash equilibrium 

of this game resulted in the large trader being endogenously determined 

as a price-setting monopolist. 
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