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Abstract 

Three sets of crossed molecular beam scattering experiments are described. 

In the first experiment, total differential cross sections are measured for 

collisions between two methane molecules. Treating the scattering as elastic, 

these cross sections are used to determine an isotropic intermolecular potential 

energy function for the methane-methane system. The second experiment 

involves the measurement of total differential cross sections and time-of-flight 

spectra for neon-chlorine scattering. These data are modeled using the. 

infinite order sudden approximation for rotationally inelastic scattering, and 

an anisotropic potential function for neon-chlorine is determined. In the third 

experiment, the angular and time-of-flight distributions for the products of the 

three-body photofragmentation of 1,2-diiodotetrafluoroethane at 266 nm are 

measured. These data are analyzed to determine the product translational energy 

distributions. 
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Chapter 1 
Crossed· Beams Experiments 

The crossed molecular beams technique is a versatile method for studying 

molecular interactions. Applications of crossed beams experiments can involve 

elastic, inelastic, and reactive scattering processes. Since these processes are 

strongly dependent upon intermolecular potential energy surfaces, crossed beams 

data can provide details, often difficult to obtain using other methods, about 

features of the potentials. 

This thesis describes three sets of experiments, all performed with a crossed 

molecular beams apparatus. The first experiment is an attempt to quantify the 

methane-methane interaction using an isotropic potential energy function and 

treating the scattering as elastic. The second examines the elastic and inelastic 

processes of the neon-chlorine molecule interaction and results in an anisotropic 

intermolecular potential. The third describes the energy partitioning in the 

fragmentation processes which occur when 1,2-diiodotetrafluoroethane absorbs 

an ultraviolet photon. 

This first chapter provides an introduction to the crossed beams apparatus 

and the type of data obtained. The first section describes the apparatus, 

and the second introduces the fundamental datum of a scattering experiment, 

the differential cross section, from an experimental viewpoint. Then follows a 

discussion of scattering experiments using the systems of this work as examples. 

This lays groundwork for the understanding of the following chapters which relate 

the details of the three experiments. 
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1.1 The Crossed Beams Apparatus 

Crossed beams instruments are designed to monitor the scattering which 

occurs when particles in two intersecting beams collide. Detailed observation 

of the scattered particles, with spatial and energy resolution, provides data 

with which to reconstruct the collision and subsequent processes. Since 

the convolution of many different sorts of collisions which lead to the same 

observation makes the reconstruction process difficult, if not impossible, the 

collision conditions must be well defined. The requirements for detection 

resolution and collision conditions underlie the design of the apparatus used to 

perform the experiments described herein. 

The instrument is a high resolution Sparks version 1 of a crossed beams 

instrument described by Lee, et al. 2 Details particular to the apparatus used 

have been documented3 and only a brief overview is given here. A schematic top 

view of the instrument is shown in Figure 1.1 and a more detailed cross section 

in Figure 1.2. The design has several features which are highly advantageous 

for crossed beams experiments. The molecular beam sources are designed 

for supersonic expansions which provide intense beams with narrow velocity 

distributions. Two stages of differential pumping and small defining apertures 

allow well collimated beams to enter the scattering chamber. The scattering 

chamber is precision machined so that the beams can be aligned at a right 

angle. This main chamber of the apparatus provides a high vacuum ( ~ 2 x 10-8 

torr) region to ensure single collision events between particles in the beams. An 

ultrahigh vacuum (partial pressures less than 10-10 torr) chamber rotates in the 

plane of the molecular beams and about their intersection. This chamber houses 

an electron impact ionizer, a quadrupole mass filter, and an ion detection system 
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Figure 1.1 Top view of the crossed molecular beams apparatus. (Figure 
adapted from Reference (1).) 



- 4-

Beam Source Chamber 

1ft 

Figure 1.2 Side view of crossed molecular beams apparatus. (Figure 

from Reference ( 3).) 
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to form a "universal" detector for chemical species. Three differential pumping 

regions (labeled I, II, and III in Figure 1.2) within the rotating detector produce 

the low partial pressures required for sensitive detection of scattered products. 

The rotation of the detector and its small collimating apertures allow for the 

determination of spatial scattering distributions. 

The instrumental design allows for several relatively easy modifications. Two 

important modifications were used in the present work. One is the placement of 

a rotating slotted disk in front of the detector opening. This provides a means to 

measure the translational energy of scattered particles and of incident beams by 

measuring the time of flight of the particles. The 30 em flight path from the wheel 

to the ionizer and the ~ 1 em ionizer length determine the translational energy 

resolution. The second modification is the replacement of one of the molecular 

beam sources with a window through which a laser beam may pass. This 

allows the interactions of photons and molecules, photofragmentation processes 

in particular, to be studied. 

1.2 Experimental Data: Laboratory Differential Cross Sections 

The preceeding section described an instrument which can detect scattered 

particles at a specific angle and with a particular time-of-flight over a known flight 

path. These quantities define a laboratory velocity vector, and it is convenient 

to look at velocity vector diagrams, called "Newton" diagrams, in order to 

understand and analyze scattering experiments. Consider a general experiment 

with the scattering of molecules 1 and 2 resulting in 3 and 4: 

1+2---+3+4 (1.1) 
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Figure 1.3 shows a perspective diagram defining the directions of the beam 

velocities, V 1 and V 2 , and the laboratory scattering angles 0 and~ for particle 

3 scattered with velocity V 3 . The diagram also shows the rotation axis of the 

detector and the angular limits of the detector opening centered at the angles 

0o = 0 and ~o = 0. Figure 1.3 illustrates that the detector accepts scattering 

over a range of angles defined by the solid angle, ~0, subtended by the detector. 

The time resolution of the detector will also be finite. The experimentally 

determined quantity, 83(rn, 0o, ~o;x), will be the number of particles of type 

3 which are detected per unit time with the detector located in the direction 

defined by the angles 0 0 and ~0 and having times of flight in a range ~T 

centered atTn. The parameter x includes all of the experimental parameters upon 

which 8?> depends. The important components of x are the spatial, velocity, and. 

internal state distributions of the beams and the geometry, efficiency, and state 

selection of the detector. In order to relate the quantity 83 to other experiments 

and to theory, it is desirable to obtain a distribution which is independent of 

the parameters particular to a given instrument. First we define a quantity, 

d~:~o (V3, e, ~; ELab), by Equation 1.2: 

(1.2) 

The parameter ELab contains the limiting velocities and internal states of the 

beams, as well as the internal states of the scattered particles. To make 

~~ independent of the experimental apparatus, 83 is first divided by those 

parameters to which it is directly proportional: the relative flux of colliding 

particles, Frel, the solid angle subtended by the detector, ~0 = ~cos 0~~, the 

detector efficiency, D, and the velocity interval corresponding to the time interval 

over which 8 was measured, ~ V. When ~0, ~ V, and all beam spreads go to 
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Figure 1.3 Velocity vector diagram showing beam velocity directions 
and a velocity vector of a scattered particle. The scattered velocity 
vector V 3 makes the angle E> in the plane and Cl> out of the plane 
formed by the beams. The detector rotates about the indicated axis 
and is in the plane formed by the two beams. 
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zero dt:~o becomes independent of the experimental resolution. The limit 

in Equation 1.1 represents this limit of infinite experimental resolution. The 

quantity dt:~n is termed a laboratory double differential cross section. It is a 

differential quantity with respect to n and V3 , and as a cross section has units 

of area per unit velocity per unit solid angle. Physically, this is the probabiltity 

distribution function per unit incident flux per unit time for scattering at ( e, <I>) 

with velocity V3 • 

1.3 Center-of-Mass Differential Cross Sections 

A further simplification of the scattering data is to reduce the dependence of 

dt:~o on both beam velocities to a dependence upon only the relative velocity. 

This is done by transforming dt:~n to the center-of-mass coordinate system. The 

center of mass is defined so that it has the position coordinate, Rem, given in 

Equation 1.3, 

(1.3) 

in which m1 and m2 are the masses of the particles in the two beams, R 1 and 

R2 are their position vectors and M = m1 + m2. If V em is the vector which 

describes the time rate of change of Rem, then the reference frame which has 

velocity V em in the laboratory frame is commonly termed the "center-of-mass" 

frame. Since, in a Hamiltonian representing the system, any potential energy 

function will be independent of Rem and the absolute orientation of the system, 

the motion of Rem may be factored out of the system. The motion which cannot 

be factored out is the relative motion within the center-of-mass system. This 

can be described by only one coordinate, r 12 = R1 - R2 whose time rate of 

change is V12· The relationships between Vem, v12 and the beam velocities in 
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the laboratory, V1 and V2, and in the center-of-mass system, V1 and V2, are 

conveniently summarized in the Newton diagram of Figure 1.4. 

Since the important motion is in the center-of-mass system, the fundamental 

theoretical quantity to relate to a scattering experiment is the center-of-mass 

differential cross section, d~:W ( v, (),</>;E), where the lower case variables are 

analogous to the upper case variables in the laboratory frame. The factor which 

relates the center-of-mass differential cross section to the laboratory differential 

cross section is, as it is for any coordinate transformation of differential quantites, 

the Jacobian, JLab-+cm = J(Va,n), of transformation between the two reference 
v 3 ,w 

frames: 

(1.4) 

In all situations encountered here, the center-of-mass differential cross sections 

are independent of </> and hence this variable will be dropped from the notation. 

1.4 Simulation of Experimental Data 

If the experiment is of high resolution and the system being studied is 

amenable, the center of mass differential cross sections may be extracted from 

the measured quantity Sa. In all the work detailed herein, however, this 

approach was presumed not to be reliable. Instead, trial-and-error procedures 

were used in which center-of-mass differential cross sections are estimated, 

either theoretically or empirically, and then convoluted over the experimental 

parameters to calculate an estimate for Sa. This procedure is repeated until 

the calculated and experimental distributions are the same. The procedure for 

convoluting the center-of-mass cross sections can be quantified by reversing the 
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Figure 1.4 Relation of center-of-mass coordinates (lower case) to 
laboratory coordinates (upper case). 
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procedure used above to go from Sa to d~:~w. Equation 1.5 gives a schematic 

view of this: 

(1.5) 

Since the detector of the apparatus can only rotate in the plane defined by the 

molecular beams, ~0 is constant, can be taken as zero, and is dropped from 

the notation. Explicitly including the averaging over the instrument parameters 

contained in x and relating the relative flux to the velocity number densities 

of the beams, n1 (V 1, r c) and n2 (V 2, r c), the relative velocity and the collision 

volume, J drc, we can write equation 1.6: 

Each integral over a vectoral quantity denotes three scaler integrals over each 

of the vector components. The Jacobian, J(!f ), from velocity space to time 

space is included to transform the integration into time. The integration over r 

includes all appropriate factors concerning the finite resolution of the ionizer and 

the time-of-flight wheel slits. 

1.5 Scattering Examples 

Equation 1.5 shows the bridge between theoretically calculated quantities, 

l::w, and the experimental scattering signal, S. The expression is fairly general 

in nature, and all the simulations of experimental data described here are special 

cases of this equation. This section describes in more detail these special cases. 

In doing so, each of the experiments of the following chapters is introduced. 
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1.5.1 Methane-Methane Scattering 

A representative Newton diagram for the methane-methane scattering of 

Chapter 2 is shown in Figure 1.5. The analysis in Chapter 2 assumes that 

the scattering is elastic, i.e., the relative translational energy and thus the 

magnitudes of the methane velocities in the center-of-mass system are the same 

before and after collision. For a "spherical" molecule such as methane, this could 

be a reasonable approximation. In the case of elastic scattering, the conservation 

of energy and momentum constrain the velocity vectors of the scattered products 

to lie on a sphere centered at the tip of Vcm (see Figure 1.5). Since the speed, 

v3 , of the detected particle in the center-of-mass frame is not an independent 

variable, a cross section differentiated with respect to v3 is unnecessary. To 

maintain the formalism of Equation 1.5 we can write: 

(1.7) 

in which v 8 is the scattered speed in the center-of-mass system. This has the 

effect of eliminating the integration overt (or V3 ) in Equation 1.6 and allows the 

scattering to be measured only as a function of angle. The Jacobian, J(TI-), now 

does not include a transformation between the speed coordinates and becomes 

(1.8) 

where 6 is the angle between v 3 and V 3 • 4 Combining Equations 1. 7 and 1.8 in 

Equation 1.6 yields 

(1.8) 
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The symmetry of the methane-methane system allows a scan of 90° in the 

center-of-mass frame to cover all possible scattering and this translates, as seen 

in Figure 1.5, into 45° in the laboratory frame. The features of elastic scattering 

from a weak, van der Waals type of attraction can be expected over this region. 

These features can be observed in the theoretical calculation for the methane­

methane system shown in Figure 1.6. This calculation corresponds to the limit 

of infinite experimental resolution. The scattering is usually strongly peaked in 

the forward direction, that of the incident beam at 0° (although for methane­

methane scattering it is impossible to tell from which beam the detected particle 

came), and has an exponential decrease with increasing scattering angle. Two 

types of oscillatory behavior are often observed. Rainbow oscillations are large 

period undulations which arise from the potential having an attractive well. The. 

broad hump in Figure 1.6 between 9 and 16° is a rainbow maximum. There are 

also higher frequency oscillations which are related to diffraction effects during 

the scattering process. These oscillations are useful in determining the range of 

the interaction. The oscillations seen in Figure 1.6 are significantly damped in 

actual experimental data due to the averaging processes embodied in Equation 

1.9. When these averaging effects are included the scattering appears as shown in 

Figure 1. 7. In the methane-methane case, a third sort of oscillation can arise from 

symmetry restrictions upon the wave functions of systems with identical particles. 

The scattering from normal methane, as described in Chapter 2, will result in a 

combination of contributions from even wave functions, odd wave functions and 

even plus odd wave functions The effects on the observed scattering can be seen 

in the interference effects at angles larger than 12° in Figure 1. 7. 

When the interaction is quantified in an isotropic potential energy function, 

elastic scattering differential cross sections can be easily calculated using well 
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Figure 1.6 A calculation of methane-methane scattering from a 
spherical potential with infinite experimental resolution. The collision 
energy is 745 KkB, where kB is the Boltzmann constant. The rapid 
diffraction oscillations and the rainbow maximum are clearly visible. 
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Figure 1. 7 A calculation of methane-methane scattering from a 
spherical potential with the effects of instrument averaging included. 
The diffraction oscillations are severely quenched but are still visible 
around 8°. The rainbow maximum is clearly resolved. Interference 
patterns which arise from symmetry restrictions upon the methane­
methane wavefunctions are visible down the outer side of the rainbow 
structure and at large angles. 
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developed theory. 5 Variation of an estimated potential until the calculated 

scattering fits the experimental data, as done in Chapter 2, provides an empirical 

potential which can be used in modeling other methane and methane-like 

interactions. 

1.5.2 Neon-Chlorine Inelastic Scattering 

The neon-chlorine system should be significantly more anisotropic than 

the spherical-like methane-methane system. This suggests that a spherical 

approximation will probably fail. It also implies that there will be significant 

inelastic transitions. At low collision energies the inelasticity is rotational. 

Although the scattering is not confined to a single velocity as it is for elastic 

scattering, it is confined to a set of discrete velocities corresponding to the 

discrete rotational energy states of the chlorine molecule. Thus, the center_-

of-mass differential cross sections are not continuous with respect to velocity, 

but there are a set of differential cross sections to cover the range of inelastic 

transitions energetically available. Equation 1.10 is the analog for discrete 

inelastic scattering of Equation 1. 7 for elastic scattering: 

d2u du 
dv dw (v3,0;E) = L dw (O;i-+ j,E)6(v3- Vif)· 

3 if 

(1.10) 

In this equation, Vif represents the center-of-mass velocity of the detected particle 

scattered from initial state i to final state i. Since the rotational constant, 

Be, of chlorine is small, we cannot resolve individual rotational energy states 

experimentally. This results in a continuous laboratory time-of-flight spectrum 

and prohibits the direct determination of the state-to-state differential cross 

sections suggested by Equation 1.10. Modeling of the data must again be done by 

using Equation 1.6. Since the velocities in the center-of-mass system are discrete, 
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the Jacobian of equation 1.8 must be used. This is troublesome, as can be seen 

by studying Figure 1.8, a Newton diagram for the neon-chlorine system. The 

Jacobian is numerically well behaved in many cases, for example, the detection of 

the neon at velocities near elastic scattering velocities. But consider the scattered 

chlorine when the detector is placed such that the laboratory velocity, V Cl:~, is 

perpendicular to the center-of-mass velocity, v cl2 • This results in a singularity 

in the Jacobian since co~o goes to infinity at this point. Physically this is a 

laboratory angle, one side of which there can be no scattering at the given 

inelastic transition and the other side of which there can be. The scattering 

probability density distribution will therefore go to inifinity at this point. Of 

course, ~~ ~0 will be finite, but the explicit inclusion of the Jacobian in a 

quadrature is numerically dangerous. A reasonable alternative is to transform 

the limits of integration over the detector to the limits in the center-of-mass 

frame and remove the explicit form of the Jacobian. If this is done only for the 

e variable, then, for the detection of chlorine, Equation 1.6 becomes: 

Scl 2 (rn, 8o; x) = j /, /, 111 L : (8; i---+ /, E)J(:) 
r. v2 vl r ~ 8 if 

X nln2V12J( Vel:~ )D d() d~ dr av 1 dV 2 drc. 
T 

(1.11) 

Time-of-flight distributions calculated from Equation 1.11 are shown in 

Figure 1.9. The distributions are for detection of chlorine scattered from neon 

with the detector at an angle of 14 o from the chlorine beam. The two peaks 

correspond to scattering on opposite sides of the Newton circles show in Figure 

1.8 and in the inset in Figure 1.9. The peaks are at different center-of-mass 

angles but, since 14 o is near the velocity of the center of mass, each peak contains 

contributions from only a small range of center-of-mass angles. The figure shows 
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Figure 1.9 Time-of-flight spectrum calculated for chlorine scattering 
from neon. The heavy line shows elastic scattering from a spherical 
potential averaged over the experimental conditions in Chapter 3. 
The dotted line is inelastic scattering from an anisotropic potential. 
The inset Newton diagram shows the regions in velocity space which 
correspond to the time-of-flight peaks. 
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the difference between elastic scattering from a spherical potential and inelastic 

processes from an anisotropic potential. The amount of inelastic scattering is 

very sensitive to the anisotropy of the potential energy function. 

Integrating the time-of-flight spectra over time produces angular 

distributions which are akin to summing the state-to-state differential cross 

sections at a given center-of-mass angle. These angular distributions are termed 

laboratory total differential cross sections and they show the same sort of 

behavior as the elastic scattering cross sections discussed in the previous section. 

The oscillatory features are not as sharp, however, since the anisotropic potential 

and the resulting inelastic scattering smear them out. 

To complete the theoretical calculation of the scattering, all that is needed 

1s an estimate of the state-to-state center-of-mass differential cross sections. 

These can be calculated from an anisotropic intermolecular potential by use 

of the infinite order sudden approximation (IOSA),6 which is expected to be 

reasonable for the neon-chlorine system. A brief outline of the IOS approximation 

is provided in Chapter 3 while details of the exact calculations are provided by 

the computer code in Appendix D. Fitting both the time-of-flight spectra and 

angular distributions calculated from an estimated potential energy function to 

the experimental data allows the anisotropic interaction to be quantified. 

1.5.3 Photodissociation of 1,2-Diiodotetrafluoroethane 

The last example of scattering experiments is the photodissociation of 1,2-

diiodotetrafluoroethane. In this instance one of the molecular beams has been 

replaced by an ultraviolet laser. We can postulate two processes occuring: 

(1.12a) 
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and 

(1.12b) 

Figure 1.10 shows a Newton diagram of the situation and depicts possible 

scattering of the products. In this experiment, the beam velocity, V c 2 F.I2 is 

the velocity of the center of mass, V em· The first dissociation, Equation 1.12a, 

produces the fragments C2F4 I and I with the velocities Vc2 F"I and v 1 (4) in the 

center-of-mass frame. After some length of time the C2F4 I fragment, internally 

excited from the initial dissociation, unimolecularly fragments to produce C2F4 

and I with velocities Wc2 F" and WJ(a) measured in the reference frame of the 

C2F4I radical. 

The internal states of the polyatomic fragments are densely spaced and 

cannot be resolved experimentally. We can treat the differential cross sections 

as if they were true continuous functions of velocity, just as originally defined in 

Equation 1.4. Equation 1.6 simplifies in this case because one of the molecular 

beams has been eliminated. For example, the calculation of the scattering of the 

iodine from the first dissociation process can be described by Equation 1.13: 

The photon flux is given by /2. The actual detected signal of iodine will include 

contributions from both dissociation processes. The calculation of the differential 

cross sections for the products from the second dissociation is complicated by the 

convolution of all possible outcomes of the first process. 

The fitting of the center-of-mass angular distributions of the scattering from 

the first dissociation provides information about the orientation of the 
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Figure 1.10 A Newton diagram for the photofragmentation of 1,2-
diiodotetrafl uoroethane. 
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electronic transition moment for the photon absorption with respect to the C­

I bond which fractures. 7 The angular distribution of the second dissociation is 

somewhat dependent upon the lifetime of the C2 F4 I fragment. The translational 

energy distributions can indicate the dynamics and energy partitioning, including 

electronic excitation of the iodine, in the dissociation processes. The details are 

presented in Chapter 4. 
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Chapter 2 

Methane-Methane Isotropic Interaction Potential* 

Abstract 

Total differential cross sections (DCS) for methane-methane scattering at 
three collision energies were determined using the crossed molecular beams 

technique. These DCS's were used along with literature viscosity and second 

virial coefficient data to determine a spherical methane-methane interaction 

potential energy function. The potential has a zero crossing point, u, of 3.62 

A, a well depth, e, of 200 K, and an intermolecular separation at the minimum, 

rm, of 4.02 A. 

*Published in modified form as: 

Methane-Methane Isotropic Interaction Potential from 
Total Differential Cross Sections 

Brian P. Reid, Michael J . O'Loughlin, and Randal K. Sparks 

The Journal of Chemical Physics 83, 5656, (1985). 
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2.1 Introduction 

The methane-methane van der Waals interaction, while being of interest 

for the determination of methane properties, can also serve as a prototype 

for modeling of more complex molecules. Such "nonbonding" interactions 

are essential components in the "force-field" approach to the determination 

of molecular structure. 1 In the structural determination of proteins and other 

biological molecules where structures are critical to the function of the molecules, 

the complexity of the problem precludes the use of ab initio methods. 2 If an 

accurate methane-methane potential energy function were available, it could 

be used within the force-field method to simplify the conformational analysis 

of these large organic molecules. The interest in an accurate characterization 

of the methane-methane interaction has led to many attempts to develop a 

suitable intermolecular potential for this system.3 However, the results of these 

attempts, often based on only one physical property measured over a small range 

of interaction energies, are inconsistent. 

As part of our work on the intermolecular potentials of methane-containing 

systems, we have performed crossed molecular beams total differential cross 

section studies on the methane-methane system. The determination of a 

complete, accurate anisotropic potential based on a fit to methane-methane 

total differential cross sections (DCS) is not practical using methods currently 

available. Therefore we have modeled the methane interactions as isotropic. The 

pseud<rspherical nature of methane suggests that this approximation could be 

reasonable and, in fact, it has often been used in order to determine isotropic 

methane-methane potentials from bulk data. The well developed methodology 

of determining isotropic potentials using scattering and bulk data indicates that 
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the application of such procedures to the methane-methane system would be 

relatively easy and produce a useful methane-methane potential. 

In order to determine such an isotropic methane-methane potential we 

have followed the same general procedure given in our work on the neon­

methane and argon-methane systems.4 We have determined the parameters of 

an isotropic potential form by fitting the properties calculated from the potential 

to experimental data. The data used include our DCS's measured at three 

collision energies and literature for viscosity and virial coefficients which span 

broad temperature ranges. In this paper we present our experiment and results 

for the methane-methane system. Included are a comparison of our potential with 

previously determined potentials and a discussion of the validity and nature of 

modeling methane interactions as isotropic. 

2.2 Experimental Procedure 

The experiment is similar to that previously described by O'Loughlin et 

al.4 We briefly summarize it here and detail only those aspects particular to 

the methane-methane system. In the molecular beams apparatus two methane 

beams were crossed at 90°, and the scattered methane was detected using a 

quadrupole mass spectrometer which rotates in the plane defined by the two 

beams. The beams were produced by the expansion of methane gas (Matheson 

purity, 99.99% min., used without further purification) through .075 mm nozzles, 

and the collision energy was selected by controlling the temperature of the gas 

in the stagnation region of the beam source. Velocity distributions, P(v), of 
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the beam sources were measured using time-of-flight techniques and fit to the 

functional form shown in Formula 2.1. 

(2.1) 

The parameter s is the speed ratio of the beam and vo is the flow velocity of 

the beam. For the three collision energies studied, beam source temperatures, 

stagnation pressures, velocities and speed ratios4 are given in Table 2.1. Detector 

aperture dimensions and beam dimensions are the same as those given in 

Reference (4). Intensity distributions of the scattered methane were obtained 

by scanning from 2.5° to 45° measured with respect to the primary beam (the 

narrower of the two beams). The secondary beam was modulated with a 150Hz 

tuning fork chopper to account for the background from the primary beam. IIi­

addition, modulated background from the secondary beam was accounted for by 

performing the data counting cycle with the primary beam alternately blocked 

and unblocked. The measured distributions and experimental uncertainties are 

given in Appendix A for scattering at three collision energies of 1180, 7 45 and 

448K kB, where K stands for Kelvin and kB is the Boltzmann constant. 

2.3 Analysis and Results 

The analysis of the data has also been described in detail by O'Loughlin 

et al. 4 To determine an effective spherical potential for methane we chose 

an analytical potential form and varied its parameters so that the properties 

calculated from that potential fit the experimental data. The potential we used 
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Table 2.1 
Beam source characteristics for methane-methane at the three collision en­
ergies. 

Beam Source Collision Energy /kB (K) 
Characteristic 

(Primary /Secondary) 1180 745 448 

Stagnation pressure(torr) 800/1175 920/920 320/400 

Stagnation temperature(K) 303/303 193/202 118/118 

Velocity(104 em/sec) 11.25/10.91 8.71/8.91 6.79/6.84 

Speed ratio 7.6/8.2 9.9/9.9 9.4/9.8 
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for these calculations was a Morse-Morse-spline-van der Waals (MMSV) form, 

which is given by Equation 2.2. 

f(x) = 

w-1e.Bl-x.B:~w[e.Bl-x.B:~w- 2] 
e.B2 (1-x)[e.B2 (1-x) _ 2] 
b1 + (x- xt)x 
{b2 + (x- x2)[b3 + (x- xt)b4]} 

-6 -8 -c6x - csx 

for x < 1 - f32 1 ln 2 
for 1- f32 1 ln2 :S x :S x1 

for X1 <X< X2 
for x2 :S x 

(2.2) 

The potential is written in reduced form (x = r/rm, f(x) = U(x)jE, where rm 

is the intermolecular separation and E the depth at the potential minimum). In 

the equation, w = (!31 -ln2)/(f32 -ln2), and Ci = Ci/Er!-n where the ci are 

the long range van der Waals dispersion coefficients. The spline coefficients, bi, 

are determined by the constraints that the potential and its first derivative bE! 

continuous at x1 and x2. 

With this potential, center of mass DCS's were calculated using standard 

formulae for elastic scattering. 5 In calculating the scattered wavefunctions, 

approximately 400 partial waves were used. The phase shifts were calculated 

using the JWKB approximation, and averaging was done over the instrument 

parameters to determine laboratory scattering intensities. Since collisions are 

between identical particles, the symmetry of the scattered wavefunctions, as well 

as the scattering from both beams, must be accounted for. Methane has three 

possible total nuclear spins with values 0, 1, or 2. The population of the total 

nuclear spin states in the methane beams was assumed to be that for normal 

methane: 1
2
6 

spin 0, 1
9
6 

spin 1, and 1
5
6 

spin 2.6 Since the total nuclear spin of 

a methane molecule is always integral, each molecule was treated as a boson. 

For collisions between molecules with the same total nuclear spins ( 43 % of 

the collisions), the standard weighting of symmetric and antisymmetric spatial 

wavefunctions was employed (approximately two thirds even partial waves and 
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one third odd).5b For collisions between molecules in different total spin states 

symmetry requirements on the scattered wavefunctions are not necessary. In 

Figure 2.1 we show a section of the 745K kB scattering date which illustrates the 

effect of identical particle scattering. Small symmetry oscillations are apparent 

in the data, and they appear in the proper scattering calculation but not when 

identical particle considerations are neglected. 

Second virial coefficients, B(T), were calculated from the intermolecular 

potential using the classical formula plus the first order quantum correction which 

are summarized in Equation 2.3. 7 

NA is Avagadro's number, M is the mass of methane, T is the absolute 

temperature, and x, as before, is r/rm. Numerical evaluations were performed as 

described by O'Loughlin et al.4 Experimental values for B(T) for methane were 

obtained from Dymond and Smith.7 

The equations and the numerical procedures employed to calculate the 

viscosity coefficients of methane are detailed in Appendix B, which also contains 

the computer code used. Briefly, viscosities were calculated to second order 

using the first order Chapman-Enskog term and the second order Kihara 

approximation. 8 The generalized cross sections and collision integrals were 

computed using JWKB phase shifts calculated at 30 energies between 13 and 

30,000K kB except that below 60K kB exact quantum phase shifts were used. 

Identical particle effects are negligible for this system in the temperature range for 

which experimental data are available and were not included in the calculations. 
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• Experiment 
- Calculation with symmetry 

considerations 
- - Calculation without symmetry 

considerations 

Collision Energy 7 45 K 

19 21 
(0EGREESl 

I 

Figure 2.1 Identical paritcle effects in methane-methane scattering are 

apparent in the data and calculations. A calculation including proper wave 

function symmetries (solid line) shows oscillations also visible in the data. 

These do not occur in the same calculation ignoring symmetries (dashed 

line). The curves are calculated from Potential D. 
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The calculated viscosities were compared with 18 values given m a critical 

compilation by Maitland and Smith 9 • 

The potential parameters were adjusted to give the lowest dimensionless 

root mean square (rms) deviation from the experimental data. 10 This was 

done simultaneously for the scattering, viscosity and virial data. All potential 

parameters were adjusted with the following qualifications. The spline 

parameters, x 1 and x 2 , were restricted so that the potential had no oscillations 

in the spline region. The van der Waals coefficient C6 , chosen as that given by 

Thomas and Meath, 11 was kept fixed to ensure the correct theoretical asymptotic 

form of the potential. Since theoretical estimates for C8 and C10 vary widely we. 

did not include C1o in the potential and adjusted the C8 coefficient (but did not 

allow it to become negative) in order to determine an effective C 8 • 

The MMSV potential parameters resulting from such minimized rms 

deviation fits to several combinations of the different sets of experimental data 

are presented in Table 2.2. The parameters of Potential A correspond to a fit to 

all three sets of scattering data and both bulk properties, Potential B to the two 

highest energy sets of scattering data and both bulk properties, and Potentials 

C, D, and E to the 1180, 745, and 448K kB scattering data individually along 

with the bulk properties. Potential F was determined just from the scattering 

data at all three collision energies (no bulk properties were used). Potentials G, 

H, and I were determined only from the scattering data at 1180, 7 45, and 448K 

kB respectivley. Potential B is shown in Figure 2.2 with estimated limits of 

uncertainty. The upper and lower bounds shown were chosen so that Potentials 

A through E in Table 2.3 would lie within these limits. The scattering and bulk 

properties predicted by Potential B are shown in Figures 2.3 and 2.4. 
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Table 2.2 
MMSV p&rllllleters for methane-methane potentials determined from fits to the data indicated. 
Viscosity data are indicated by 'I· 

Potential E rm /31 /32 X1 X2 c6 Cs 
(K) (A) (K nm6 ) (K nms) 

Potential A 201 4.03 15.7 6.64 1.07 1.74 0.898 0 
(1180,745,448 K,11, B(T)) 

Potential B 199 4.02 7.50 7.22 1.09 1.49 0.898 .141 
(1180,745 K, 11, B(T)) 

Potential C 202 4.01 8.80 7.06 1.09 1.52 0.898 .101 
(1180 K, 11, B(T)) 

Potential D 195 4.03 7.60 7.17 1.09 1.48 0.898 .161 
(745 K, 11, B(T)) 

Potential E 195 4.13 5.54 6.60 1.07 1.67 0.898 0 
(448 K, 1/, B(T) ) 

Potential F 195 4.36 6.55 6.98 1.06 1.79 0.898 0 
(1180,745,448 K) 

Potential G 197 4.10 5.85 7.84 1.09 1.55 0.898 .131 
(1180 K) 

Potential H 182 4.12 6.80 7.46 1.09 1.52 0.898 .141 
(745 K) 

Potential I 191 4.25 5.61 6.24 1.07 1.72 0.898 0 
(448 K) 
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Figure 2.2 Methane-methane potential B (solid line) with limits of 

uncertainty (dashed lines). A detail of the wall region is shown in the 

inset. 
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• Experiment 
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Collision Energy 

f- 1180 K 
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f- 448 K 
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ANGLE (0EGREESl 

Figure 2.3 Laboratory scattering intensities are plotted as a function of 

laboratory angle, with the data for the different collision energies offset 

and the uncertainties shown by the error bars . The solid line is calculated 

from potential B whose parameters are given in Table 2.2. 
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calculated from potential B. Experimental uncertainties are shown where 
they are larger than the data markers. 



- 39-

2.4 Discussion 

Using the spherical approximation we have determined intermolecular 

potential energy functions which fit our new scattering data and the literature 

bulk property data. Although these potentials are spherical they are not 

necessarily identical to the solid angle spherical average of the true anisotropic 

potential. Rather, our potentials are effective spherical potentials. Relating 

effective isotropic potentials to the true anisotropic potential is not a well resolved 

problem. Several types of isotropic potentials based on anisotropic potentials 

have been suggested. These include the spherical average or mean, the spherical 

median, 12 and the sphericallimit. 13 When the anisotropy of the system is large, 

spherical averages have been shown not to accurately reproduce the properties 

of the anisotropic potential. The median potential, which is the median of the 

anisotropic potential at fixed internuclear distance, has been shown, for a diatom­

diatom system, to be close to the effective spherical potential that results from the 

inversion of bulk, thermophysical data, even when the anisotropy of the system 

is large.14 The spherical limit is defined for an anisotropic potential which has 

the same form but different parameters at different angular orientations. When 

only the first term in the angular expansion of the parameters is used in the 

potential form, the spherical limit results. It has been shown in some cases that 

scattering and bulk properties are predicted well by the sphericallimit.13 In this 

section we consider these types of spherical potentials in relation to our effective 

potentials. Specifically, we discuss possible effects of the true anisotropic nature 

of the potential on our data and our effective isotropic potential, compare our 

work to previously determined potentials, both isotropic and anisotropic, and 
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present a comparison of the isotropic modeling of methane to the truly isotropic 

interactions of krypton with other atomic species. 

2.4.1 Anisotropic Effects 

The deviations of our spherically produced fits from the experimental data 

give an indication of the anisotropy present in the methane-methane interaction. 

The fits illustrate that the lowest energy scattering data (448K kB) are the most 

difficult to reproduce using our spherical potential form. Attempts to force the 

potential to fit the 448K kB scattering data, using either the individual 448K 

kB data set or all three sets of scattering data together, degrade the fits to the 

bulk data and to the higher energy scattering data. When the C6 van der Waals 

coefficient is adjusted in the fitting procedure, it becomes unrealistically small 

for the individual fit to the low energy scattering data (approximately one half 

the theoretical estimate), but it stays very close to the theoretical estimate for 

the individual fits to both the higher energies. Part of the problem in fitting 

the low temperature data could be due to potential form not being flexibile 

enough to model the anisotropic data. However, the effect of the anisotropy 

upon the scattering would be expected to become most noticable at the lowest 

collision energy, and the deviation from a spherical calculation should be most 

prominent there. Anisotropies in intermolecular interactions have been shown to 

damp the rainbow oscillations in the scattering, compared to the scattering from 

the spherical limit of the potential.13 This effect is apparent when our data and 

spherical fits are compared, especially in the damping of the rainbow oscillations 

of the 448K kB scattering shown in Figure 2.3. Also, although it is possible to 

fit any individual set of scattering data fairly well, it is very difficult to fit all 

the sets with the same potential. These observations indicate that the scattering 
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data, especially the low energy data, contain some important information about 

the anisotropy of the system. 

Although the bulk data are more easily fit with a spherical potential than 

the scattering data, this does not necessarily mean that the anisotropy has less 

effect on the bulk properties. In work concerning direct inversion of bulk data for 

anisotropic systems to yield an effective isotropic potential, it has been found that 

the isotropic potentials have deeper wells at shorter separation than the spherical 

average of the anisotropic potential. 15 This effect grows as the anisotropy of the 

system increases. In order to see the effect of the bulk data on our potentials we 

performed the fitting procedure without the bulk data. As seen in Table 2.2 this 

results in slightly shallower wells and larger separations at the minimum. This 

may indicate that effective spherical potentials based solely on total DCS data 

maybe somewhere between the spherical average of the potential and an effective 

potential determined from inversion of bulk data. 

In order to minimize the effect of the anisotropy, while still including the 

sensitive information contained in the scattering data, we determined Potential 

B using only the 745 and 1180K kB scattering data along with the two sets of 

bulk property data. The anisotropy should be less significant at these two higher 

energies, and spherical potentials are able to reproduce the scattering data at 

these energies more accurately than at the low energy. Since Potential B also 

gives very good fits to the bulk properties, it gives the best overall fit to those 

data which are most easily fit by a spherical potential. 

2.4.2 Comparison with Previous Potentials 

While investigating previously determined methane-methane potentials, we 

have looked both at how they compare to our potentials and how well they 
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predict the scattering and bulk data relative to our potentials. In comparing our 

scattering data with calculations from the various potentials we rely not only on 

the numerical deviation but also on the reproduction of the rainbow maxima. In 

Figure 2.3 one can see the rainbow structure, which is typical in scattering from 

potentials with both attractive and repulsive regions, at 6, 9, and 16° for the 

three different collision energies. For a given potential energy form, the position 

of the rainbow in center-of-mass coordinates is directly dependent upon the ratio 

of the well depth of the potential to the collision energy. This is apparent in the 

laboratory data: as the collision energy decreases, the rainbow angle increases. 

In the lowest energy data one can see a small additional feature around 6° which 

is a supernumerary rainbow. Our Potential A predicts all the rainbows at the 

proper angles while Potential B reproduces the rainbow oscillations of the two­

higher energy sets of data quantitatively and gives the correct positions of the 

low energy rainbow oscillations. Potential B also fits the bulk properties with a 

fair degree of accuracy. 

We have compared several of the many methane-methane potentials in 

the literature to our data and our potential. The selections include several 

potential forms determined from both theoretical and empirical work. In Table 

2.3 we list three potentials representative of the previous work. These include 

work by Matthews and Smith (MS-1976),3a Righini, Maki and Klein (RMK-

1981),3b and Bohm, Ahlrichs, Scharf, and Schiffer (BASS-1984).3c The table 

lists our Potentials A and B as well as the Kr-Kr potentiaJl6 (see section IV 

C). The parameters u (the point where U(u/rm) = 0), e, and rm as well as the 

dimensionless rms deviations of the properties predicted by the potentials 



Table 2.3 

Dimensionless rms deviations from experimental methane data for various potentials. Viscosity data is indicated by fJ. 
Kr-Kr potential is from Reference (16). 

Potential Basis Parameters RMS Deviations 
(type) u f./kn Rm 1180 K 778 K 448 K Virial Viscosity Total (Total 

(A) (K) (A) Data Data Data Data Data less 448 K data) 

Potential A DCS, 3.61 201 4.03 3.7 6.3 8.7 2.6 2.3 5.3(4.1) 
(MMSV) fJ, B(T) 

Potential B DCS, 3.63 199 4.02 2.3 3.2 15.3 1.0 1.1 7.1(2.1) 
(MMSV) tJ,B(T) 

MS-1976 fJ, B(T) 3.56 217 3.88 2.8 7.2 14.7 1.0 0.6 7.4(3.9) 
(L-J 20-6) """ w 

RMK-1981 B(T), 3.69 174 4.14 7.2 4.8 13.9 3.2 1.2 7.5(4.7) 
(Spherical solid state 

Average) 

BASS-1984 ab initio, 3.92 80 4.38 16.7 21.0 20.1 47.8 9.9 26.5(27.9) 
(Spherical B(T) 

Average) 

BMW-1985 DCS, 3.64 205 3.96 3.4 2.7 14.3 2.2 1.6 6.8(2.6) 
(Barker) B(T) 

Kr-Kr krypton 3.59 200 4.01 2.5 5.7 14.0 4.3 2.4 7.2(4.0) 
(HFGRK) data 
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from the actual experimental data are also given. These potential functions are 

displayed in Figure 2.5. 

To summarize the comparisons for effective isotropic potentials based on 

viscosity or virial data, we find that in general the potentials with well depths 

shallower (deeper) than ours predict rainbow structure at angles smaller (greater) 

than in the actual experiment. While the position and depth of the minimum 

vary widely among these previous isotropic potentials, the values of u seem quite 

similar to ours. The representative potential in this category is the numerical 

potential of Matthews and Smith which was determined by inversion of viscosity 

and virial data. For our calculations we have only used the Lennard-J ones 20:6 

form which they fit to their numerical potential. Since the 20:6 form did not 

reproduce the shape of the numerical well it may not be an adequate substitute 

for the numerical potential, but it is similar and more convenient. The large well 

depth of this potential produces the scattering rainbows at angles slightly larger 

than the experimental data. Although its minimum is 0.15 A smaller than ours 

(Potentials A and B), its value for u is only about 0.06 A smaller. Again we 

point out that the fits to the scattering data alone, without the bulk data, give 

smaller e's and larger separations at the minimum, and this seems to indicate 

that the inversion potential and the potential that best fits the scattering data 

are not the same. 

We have spherically averaged the anisotropic potentials, RMK-1981 and 

BASS-1984, and it is the results for these average potentials which are given in 

Table 2.3. The anisotropic potentials have been determined in the form of atom­

atom exponential repulsions and electrostatic interactions with added dispersion 

energies. We have averaged them analytically following the method 
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Figure 2.5 Our Potential B is displayed along with the MS-1976 

potential, the spherical averages of the RMK-1981 and BASS-1984 

potentials, and the BMW-1985 potential. 
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implied by Meinander and Tabisz.17 When spherically averaged, the electrostatic 

interactions cancel and the resulting isotropic potential involves only the atom­

atom repulsions and the dispersion energies. When averaging the BASS-1984 

potential we did not damp the dispersion energies for the carbon-hydrogen and 

hydrogen-hydgrogen interactions in the same anisotropic manner as was indicated 

in the original paper. Instead we averaged the dispersion energies undamped and 

then included an isotropic damping factor. The error that this approximation 

could introduce was found to be less than 8K kB in the well depth and 0.05 A 

in the minimum. The RMK-1981 potential is based on virial coefficients and 

solid state data and the authors suggest that it is perhaps the result of the true 

anisotropic potential averaged, in some sense, over the ground state librational 

wavefunction of the solid. Indeed the RMK-1981 spherical average is closer to­

our effective spherical potentials and the complete RMK-1981 potential is less 

anisotropic than the BASS-1984 potential which is based on ab initio calculations 

and virial data. As can be seen in Table 2.3, the RMK-1981 average predicts 

reasonable experimental properites while the BASS-1984 is clearly not useful in 

a spherically averaged form. This indicates that the spherical average of the 

true anisotropic potential may indeed be significantly different than our effective 

spherical potentials in the manner found for the bulk data inversion potentials, 15 

the former having shallower wells at greater intermolecular separation. 

2.4.3 Comparison with Other Crossed Beams Data 

Since the completion of this work, other total differential cross section data 

has been reported by Boughton, et al. 18 They report room temperature beam 

data, and their measured intensities are the same as our highest energy data to 

within a few percent at angles from 2.5° to about 12°. At larger angles their data 
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are higher than ours. This is accounted for by the fact that their cross sections 

were measured using a bolometric detector which is sensitive to the energy of the 

particles being detected. Since the laboratory velocity of the scattered methane 

increases with increasing angle, a larger bolometric signal is expected. 

The parameters of their reported isotropic potential, BMW-1985, are given 

in Table 2.3, and the potential is displayed in Figure 2.5. Their potential is 

extremely similar to ours and reproduces our data well. One small difference 

is that the repulsive wall of the BMW potential is slightly steeper than ours. 

This is reflected in the large angle scattering, where their potential predicts 

cross sections slightly too high. Boughton, et al. discuss this discrepancy but 

were unable to resolve it. The influencing of the methane internal energy upon 

the bolometer is uknown and introduces some uncertainty in their large angle 

scattering. Our measured and calculated cross sections do not suffer from these 

problems. Overall, however, the very good agreement between the data from the 

two instruments and the similarity of the determined potentials lend support to 

the results. 

2.4.4 Comparison of Methane with Krypton 

It was pointed out by Righini et al. that the spherical average of the RMK-

1981 potential was quite close to the krypton-krypton interaction potential. 16 

We have noticed that our effective isotropic methane-methane potentials are also 

extremely similar to the Kr-Kr potential, and in Table 2.3 we have included the 

deviations of the methane-methane properties predicted by the Kr-Kr potential. 

The relatively small deviations are astounding in light of the fact that the Kr-Kr 

potential was not fit to any data relating to methane. Since we4 and others19•20 

have determined several isotropic methane-atom interactions it is interesting to 
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compare the resulting potentials with those for the same systems with methane 

replaced by krypton. 16•21 •22 The comparison is summarized in Table 2.4. The 

comparison is quite good for the methane-, argon- and neon-methane systems 

but is less so for helium and hydrogen. The deviations are somewhat systematic 

with the methane seeming effectively larger and slightly less attractive to the 

smaller interaction partners. The similarity between krypton and methane is 

most likely related to their similar polarizabilities, 2.60A 3 for methane8a and 

2.4 7 A 3 for krypton. 23 The correlation between the potential parameters for van 

der Waals interactions and the polarizabilities of the interacting particles has 

been examined and appears to be general. 24 

2.5 Conclusions 

We have performed cross molecular beam studies at three collision energies 

on the methane-methane van der Waals system. These sets of scattering data 

provide detailed information about the methane-methane interaction. Using the 

new data and previously reported viscosity and second virial coefficient data we 

have determined effective, spherical methane-methane potential energy functions 

which can adequately reproduce the scattering data and accurately reproduce the 

bulk property data. Such effective isotropic potentials for this system appear to 

be somewhat different from the spherical average of the true anisotropic potential. 

Effects of the anisotropy in the potential are visible in the fits to the scattering 

data, and this indicates that our scattering data could be used to determine 

an accurate anisotropic potential surface when the methodology to perform the 

necessary calcluations becomes available. 
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Table 2., 
Potential parameters for methane and krypton systems. 

E (K kB) 

CH4-CH4a I Kr-Krb 1991200 

CH4-Arc I Kr-Ard 1701168 

CH4-Nec I Kr-Nee 66170 

CH4-Hef I Kr-Hed 23130 
CH4-Hg I Kr-Hd 58168 

(a) This work. 
(b) From reference (16). 

(c) From reference ( 4). 
(d) From reference (21). 

(e) From reference ( 22). 

(f) From reference (19). 

(g) From reference (20). 

Rm (A) 

4.0214.01 

3.8513.88 

3.6813.70 

3.8513.67 

3.6913.57 
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Chapter 3 

An Anisotropic Interaction Potential for Neon-Chlorine 

3.1 Introduction 

The intermolecular transfer and intramolecular redistribution of energy are 

fundamental to chemical phenomena. van der Waals molecules composed of an 

atom and a diatom provide simple systems for studying these processes. For 

closed shell, ground electronic state atoms and molecules, a single potential 

energy surface formed within the Born-Oppenheimer approximation will serve 

to summarize the forces involved in such systems at low energies. The nature 

of this potential energy surface determines the dynamics of dissociation of the 

weak van der Waals bond. 1•2 Spectroscopic studies of rare gas-halogen molecule 

systems have provided interesting results about such dissociations.3 In particular, 

a very long lived (over 10 J.LS) metastable state of neon-chlorine has been observed 

with a quantum of vibrational excitation in the Cl-Cl stretch. 4 The amount of 

energy in that vibrational quantum is several times the energy required to break 

the van der Waals bond. The determination of accurate potential energy surfaces 

for such systems will help to quantify the dynamics involved in such processes. 

The scattering of atoms with diatomic molecules also strongly depends upon 

the potential surface. The analysis of crossed molecular beams scattering data, 

which has proved to be an important tool for quantifying spherical atom-atom 

van der Waals potentials,5 has been applied to molecular systems with anisotropic 

potentials.6 While the same features seen in atom-atom elastic scattering provide 
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information about the general size and strength of an atom-diatom interaction, 

the effects of translation-to-rotation energy transfer in the scattering can be used 

as a sensitive probe of the anisotropy of the potential. 

In order to help determine the anisotropic interaction potential for the 

neon-chlorine system, we have measured the angular intensity distribution of 

neon scattered from chlorine at two collision energies as well as time-of-flight 

spectra of chlorine scattered from neon at a single collision energy. The angular 

distributions determined by detecting neon are similar to center-of-mass total 

differential cross sections of the neon-chlorine system. The rainbow scattering 

observed in these distributions provides information on the well depth and well 

depth anisotropy of the potential while the barely resolved diffraction oscillations 

are a measure of the position of the repulsive wall. The time-of-flight spectra. 

measure the energy changes that occur during collision, which are determined 

by the state-to-state differential cross sections . These are highly sensitive to the 

anisotropy in the range of the potential. 

The infinite order sudden approximation (IOSA),7 provides a method for 

the quantitative calculation of differential cross sections. The computational 

quickness provided by the IOSA allows a potential to be fit by comparison of 

calculated cross sections with the scattering data. The lOS approximation is 

expected to be valid when the relative kinetic enery of the system before and 

after collision is large compared to the rotational energy change and compared 

to the well depth of the interaction. The small rotational constant of chlorine 

and the relatively weak attraction between neon and chlorine make the choice of 

the IOSA reasonable. 

O'Loughlin8 has calculated center-of-mass total differential cross sections 

for both the neon-chlorine and helium-chlorine systems using the infinite 
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order sudden approximation and transformed these to the laboratory frame 

as elastic differential cross sections. Varying parameters of a potential form 

within constraints imposed by preliminary fits to the time-of-flight data and 

spectroscopic data,9 he produced an anisotropic potential for the system. 

However, in more detailed analyses, it has not proved possible to find a potential 

which is consistent with the spectroscopic data, the total angular scattering data, 

and the time-of-flight spectra. The analysis herein produces a potential with 

features significantly different from the spectroscopic data and from the potential 

fit to only the total angular distributions. 

3.2 Experimental Procedure 

The angular intensity distributions of neon (2°Ne) were measured at two. 

collision energies, 464 K and 612 K. Throughout the following discussion, energies 

given in units of K have been divided by the Boltzman constant, kB. The 

procedure was essentially that employed in Chapter 2 for the methane-methane 

angular distributions; the experimental details and the data are available in 

Reference ( 8). 

For the time-of-flight spectra, we detected chlorine (35 Cl-35 Cl and 35 Cl-

37 Cl) in order to take advantage of its high pumping speed and high detection 

efficiency compared to neon. In order to narrow the velocity distribution of the 

chlorine beam we used a mixture of 10% chlorine seeded in helium. This mixture 

produced a beam with less than 0.5% chlorine molecule dimers and negligible 

helium-chlorine van der Waals molecules, as detected by the electron impact 

ionization mass spectrometer. The beam source defining slits and geometries 

were modified from those given in References ( 8) and ( 10). The beam source 

conditions and geometry are listed in Table 3.1. Data at seven angles equally 
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Table 3.1 
Beam source characteristics for neon and chlorine at 1467 K collision 
energy. 

Ne Cl2(in He) 

stagnation pressure( torr) 1225 1100 

stagnation temperature(K) 303 303 

velocity(m/sec) 790 971 

speed ratio 20.3 16.9 

angular width 1.80 0.5° 

angular height 2.8° 0.9° 

nozzle diameter (J.£m) 76 76 
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spaced between six and thirty degrees from the chlorine beam were taken and 

are given in Appendix C. 

The time-of-flight spectra were obtained using a 255 channel cross correlation 

wheel rotating at 490.2 Hz. 11 The detected molecules must pass through the 

slotted wheel and traverse a 30 em flight path before being ionized and counted 

in 8-microsecond bins by a custom designed multichannel scaler. Background 

counting was performed at those angles where time dependent background was 

observed. For the angles at which no time dependent background was observed, 

the average of the first several channels was used as the background signal. The 

data which appear in Appendix C and which are displayed in this chapter are 

the correlated data with background subtracted. 

3.3 Analysis 

Since individual state-t~state differential cross sections are not resolvable 

in the time-of-flight data, we have modeled the experiment by calculating center­

of-mass state-t~state differential cross sections from a parametric potential and 

convoluting these over the experimental conditions to produce a calculated 

distribution for comparison with the experimental data. A trial-and-error 

procedure was used to vary the potential parameters in order to achieve a fit 

to all of the data. 

In the analysis, we have included no vibrational effects of the Cl-Cl bond. 

We have assumed a rigid rotor structure for Ch. This approximation is expected 

to be adequate for the present analysis. 6 Cooling in the expansion of the chlorine 

beams, although somewhat inefficient for the vibrational degree of freedom, 

should produce a beam with only a small fraction of vibrationally excited 

chlorine, approximately 2% for a beam cooled vibrationally to 200 K. Since 
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a quantum of vibrational energy in the Cl2 stretch is about 800 K, only at 

the highest collision energy is excitation of the chlorine vibration energetically 

possible. Even in this case,the scattering is expected to be dominated by 

rotational transitions. 6 

3.3.1 Potential Form 

The choice of an appropriate potential form to model the neon-chlorine 

system was based on several factors. Since the chlorine is assumed to be a rigid 

rotor, the potential need only be a function of two variables, rand/, as shown in 

Figure 3.1. Anisotropic potentials which are formed from an isotropic potential 

whose parameters are allowed to vary as a function of 1 have been found to 

converge more quicky than direct expansions of the potential. 12 A Morse-Morse-

van der Waals form was chosen for the isotropic potential. At short and medium 

range the potential is described by a Morse function: 

(3.1) 

in which e is the depth of the well at the minimum rm. The potential is joined 

smoothly at the minimum to a second Morse function of the form, 

UM' = f ef3/rm.(rm.-r) [ef3/rm.(rm.-r)- 2]. 

At long range the potential has the van der Waals expansion form: 

Cs Cs 
Uv(r) = --- -. 

r6 rB 

The complete potential is given by Equation 3.4, 

(3.2) 

(3.3) 

(3.4) 
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,---
1 ®------r- - - - - - L - Center-of-Mass 

ofBC 

Figure 8.1 The coordinates r, R, and 1 are defined for a general 

atom-diatom interaction. (Figure from Reference 8.) 
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where Ti = rm(l + ln 2/ ,B) is the inflection point of the second Morse function. 

The Morse-Morse-van der Waals form was chosen for the isotropic potential 

because variation of the well depth and position of the minimum is simple with 

the Morse function, and the correct asymptotic form is assured with the van der 

Waals expansion. The second Morse function is included to assure that the short 

range and long range regions are not spuriously affected by each other. To join 

the Morse region to the van der Waals region a weighted average of the Morse 

and the van der Waals parts is used at values of r greater than the inflection 

point of the Morse function. The resulting function behaves very much like the 

Morse near the inflection point and becomes asymptotically close to the van der 

Waals function. This method was used instead of a spline function, 13 since the 

spline functions are prone to. unsettling oscillations. The averaging function has 

a parameter p which essentially allows the Morse function to change to the van 

der Waals expansion quickly or slowly as r increases. This factor was kept at 

four in order to allow a fairly quick but smooth transition. 

To make the potential anisotropic, the parameters are expanded in Legendre 

polynomials, Pi (cos 1). For example, the well depth, e, is expanded as 

The symmetry of the chlorine allows only even functions to be included when the 

slight shift in the center-of-mass of 35 Cl-3 7Cl is neglected. The parameters, e(l), 

a(l), C6(1) and Cs(l) have been expanded as in Equation 3.5 with truncation at 

the P 2 term. The expansion of rm(l) also includes a P4 coefficient. The second 

Morse parameter ,8 was not expanded in order to limit the number of variables. It 

was felt that this would be acceptable since the parameter is essentially a reduced 

quantity and would not be expected to vary much with angle. The inclusion of 



- 60-

its expansion also would probably not affect the overall results of the calculated 

scattering or the final potential. 

3.3.2 Cross sections from the IOS approximation 

We briefly state the equations used in the IOS approximation to calculate 

rotational state-to-state differential cross sections for an atom-symmetric rigid 

rotor system. The IOSA involves two approximations, the centrifugal sudden 

(CS) and the energy sudden (ES) approximations, which treat as constant 

the angular momentum operators in the Hamiltonian in order to decouple the 

equations of motion. 7 The energy sudden approximation replaces the rotational 

angular momentum operator, J 2 , of the diatomic rotor by a constant, eigenvalue 

form, )(] + 1)1i2
• The centrifugal sudden approximation assumes that the 

orbital angular momentum operator L 2 can be replaced by an eigenvalue form 

[([ + 1)1i2
• The choice of [as either the intial, l, or the final, l', orbital angular 

momentum quantum number of the collision, leads to the simple expressions 

listed below. 14 However, these choices for the orbital angular momentum predict 

the phase of odd t::..j transitions incorrectly.15 This deficiency is corrected when 

lave = ! (l + l'), the average of the initial and final angular momentum, is used for 

[. Approximate differential cross sections derived from the lave choice reduce to 

the form given below for even !::..;· transitions. 15 Since, for N e-Cl2 , the scattering 

will be dominated by even t::..j transitions, the simple forms should be sufficient. 

Equation 3.6 gives the differential cross section at the center-of-mass angle, 

0, from rotational state j toP in terms of a 'matrix element' of the scattering 

amplitude: 

-2 

:(O;j' +-;.,E)= (2j+l)- 1 ~~ 2:1U'm;lti'(o;,)l;·m;)l2
• (3.6) 

1 m; 
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In Equation 3.6, the scattering amplitude Jk(0;1), a function of the relative 

atom-diatom orientation angle, 1, is 

• 00 

fk(0;1) = ~ L)2l + 1){1- exp[2i7]f(l)]}Pl(cos0), (3.7) 
2k l=O 

where 11f ( 1) is the lth phase shift calculated from the isotropic potential formed 

by varying r at constant I· k is defined by 

(3.8) 

in which E is the energy of the system and I is the moment of inertia of the 

diatomic molecule. The IOS approximation also allows the entire matrix ot 

state-to-state cross sections to be calculated from only one column of the matrix; 

This takes numerical form in Equation 3.9, 

:: (O;j'- j, E) = ~~ L C 2 (i,j",i'iOOO):: (O;j"- 0, E), (3.9) 
1 i" 

which shows that all differential cross sections can be calculated as a sum over 

Clebsch-Gordon coefficients times the j = 0 to j" cross sections. When j = 0 is 

placed in Equation 3.6, one integral over 1 is left: 

(3.10) 

To evaluate Equation 3.10 numerically, Gauss-Legendre quadrature was 

used. The number of points in the quadrature must be, at the least, larger 

than j". Since, at the largest collision energy encountered, j" could be over 

65, 80 point quadrature was used. To evaluate the integrand in Equation 3.10 

at the points of the quadrature, the phase shifts were expanded in Legendre 
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polynomials of cos 1 with the expansion coefficients evaluated by 12 point Gauss­

Legendre quadrature. 14 The results using 12 points did not differ significantly 

from the results obtained using 64 points. Phase shifts for 250 partial waves 

were evaluated using the JWKB approximation and seven point Gauss-Mehler 

quadrature. 15 In these evaluations the choice of J was variable. For initial fitting 

purposes, the simple and computationally quick choice of }=0 was used. Since 

this choice may overestimate very inelastic transitions at large scattering angles, 

the choice of J so that k2 = ~ [ k5 + k}u J, was used for the final stages of fitting. 

This choice has been shown to improve the lOS approximation for wide angle 

scattering. 15 So that different phase shifts would not have to be calculated for 

every i", J was changed only for every tenth i" value. These selections of i" are 

discussed in Section 3.5.3 below. 

3.3.3 Calculation of Laboratory Scattering Distributions 

To obtain a laboratory time-of-flight distribution we first form a laboratory 

velocity distribution from the cross sections calculated in Equation 3.10. This is 

shown in Equation 3.11: 

N(V,eo)dV = 1/, /, "£P; "£ 1 ::(O;i' ~;",E) 
ro v2 vl i jt 0 

w 
x J(

0
)n1n2IV1-V2ID(V)dOdV1dV2drc (3.11) 

The sums include all possible transitions which can produce scattering observable 

with the detector at 9 0 and with the laboratory velocities between V and V + dV. 

The eleven integrals (integrals over vectoral quantities imply integrals over the 

three scaler components of each vector) describe instrument averaging over the 

collision volume, J drc, the beam source velocities, V 1 and V 2, and the solid 

angle, 0, subtended by the detector. The probability that the chlorine is intially 
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in rotational state j is given by P;. The number density distribution for each 

beam at rc and velocity V;, is described by n;,(rc, V;,). J(fi) is the Jacobian of 

the transformation from the center-of-mass coordinate system to the laboratory 

coordinate system. D(V) is the detector efficiency for the detected species with 

velocity V. Since the electron impact ionizer is sensitive to number density and 

since only relative intensities are measured, D(V) is taken as proportional to 

ljV. 

The expression for N(V, 9 0 ) is simplified by several approximations. 

Variations of the integrand in Equation 3.11 with coordinates out of the plane of 

the beams and the detector were neglected. Beam velocities at different poiats 

in the collision volume were assumed to be only in the direction of streamlines 

radiating from the nozzle and to have the speed distributions measured along the 

beam axis. The spatial distributions of the beams were assumed to be constant 

over the collision volume. In a very simple case of the reduction of integration 

described by Pack, 17 the integrations over the two "in-plane" dimensions of the 

scattering volume and the integration over the in-plane detector angle, 0, were 

replaced by an integration over the relative angle of intersection, e, of the two 

beams and an integration over an effective detector width to account for the 

absolute orientation of the beams and the detector width. 

In the detection of the inelastically scattered products, especially when 

detecting chlorine, many cases arise in which the Jacobian, J ( fi) = v 2 ~:s 6 , from 

the center-of-mass system to the laboratory coordinate system becomes infinite. 

This occurs when 6, the angle between the laboratory velocity V and the center­

of-mass velocity v of the scattered product, is 90°. To handle this numerically 

troublesome situation, the domain of the integration over the laboratory angle 

9 was transformed to the center-of-mass angle (). Multiplying the remaining 
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Jacobl·an J(!!) Vsine 17 b d () d . 1 •t• . h ' ~ = v sine cos( ~-4>), Y cos pro uces no smgu ar1 1es m t e 

regions of interest. 

The preceeding approximations, simplifications and transformation, change 

Equation 3.11 to Equation 3.12: 

(3.12) 

In this equation, Pe(€, V,E>o,8), is an effective detector weighting function, and 

the constant c includes the collision volume ~rc, the approximately constant 

quantity sinE>o~~' and the detector efficiency D(V)V. 

In .. order to determine the signal Sn(E>o) measured in channel n of the 

multichannel scaler, the N(V, 0 0 ) distribution must be averaged over the the 

channel width, ~Tc, of the scaler, the length of the ionizer, ~l, the finite width 

of the slots in the time-of-flight wheel, and the size of the detector aperture. This 

is described in Equation 3.13: 

The quantity ~T11 is the time it takes for one channel in the time-of-flight wheel to 

pass the midpoint of the detector while ~Ta is the time it takes for the midpoint of 

a wheel slot to pass across the detector aperture. The flight length to the middle 

of the ionizer is f, while V = l jt is the laboratory velocity and t = Tc + T11 + Ta +To 

is the flight time. To is an offset determined mainly by the flight time of the ions 

from the ionizer to the ion detector. The Jacobian, ft, is included to transform 

the integration from velocity to time space. 
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To evaluate Equation 3.12 numerically, dV was approximated by a finite 

AV = 3 mjs. The integrations over e and () were approximated by Gauss­

Legendre quadrature. The quadrature over() used seven points. The integrations 

over v1 and v2 were done using an extended trapezoidal rule19 quadrature 

over regions approximately twice the full width at half maximum of the speed 

distributions. Six points were used for the chlorine velocity, V1 , while two points 

were used for the neon velocity, V2 • This velocity averaging procedure provides 

much better results for time-of-flight spectra than the Gauss-Hermite quadrature 

used for velocity averaging of total differential cross sections. 8 •10 When we 

simulated the argon-helium elastic scattering time-of-flight spectra of Meyer,20 

where no inelastic effects interfere, ten by ten point Gauss-Hermite quadrature 

could not reproduce the experiment as well as five by five points of the trapezoid 

technique. This simulation also accurately reproduced the observed scattering of 

argon from helium near points where J(~) is singular, verifying the treatment 

of the transformation singularities. In Equation 3.13, the integrations over T8 

and Ta were combined into a single integration with an appropriate convolution 

function. No correction was made for the cross-correlation time-of-flight, 11 but 

this omission is neglible for the slit and aperture sizes used. 

The distributions for P; were approximated by assuming Boltzmann 

distributions at reasonable rotational temperatures. For the chlorine beam 

seeded in helium the translational temperature was 2 K and the rotational 

temperature was chosen as 6 K. The distribution was truncated at j = 8. 

Although Boltzmann distributions have been shown not to accurately describe 

rotational populations in supersonic beams, 21 they are probably a reasonable 

approximation. The calculated scattering was relatively insensitive to the exact 

temperature chosen, but a definite difference was seen between assuming a 0 K 
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and a 6 K distribution. For fitting purposes, only the 20Ne and 35 Cl isotopes 

were used, while in the final calculations all natural isotopic abundances were 

included. 

3.3.6 Laboratory Angular distributions 

The total laboratory angular distributions are found by integrating N dV: 

ST(E>o) = / N(V, E>o) dV. (3.14) 

For the data for which time-of-flight measurements exist, the integral of Equation 

3.14 can be evaluated by simply summing the contributions from all the channels, 

Sn ( E>). For the other data, some savings in computer time was found by. 

choosing a V in Equation 3.12 to include all possible scattering at a given angle. 

Making sure to transform each cross section from the center-of-mass frame to 

the laboratory frame properly, the methods described above were employed for 

these calculations. To ensure proper averaging over the rather wide detector 

in the sensitive region of the diffraction oscillations, seven points were used in 

the Gauss-Legendre quadrature over 0 for the total angular distributions. For 

the pure chlorine beams, the translational temperature of 22 K was used as the 

rotational temperature. 

3.3. 7 Determination of Potential Parameters 

The van der Waals coefficients, Ca,o, Ca,2, Cs,o, and Cs,2, were estimated as 

described in Reference (8). These were not varied in the fitting procedure. The 

remaining parameters were varied to achieve reasonable fits to both the angular 

and time-of-flight distributions. Since the calculations which include full velocity 

and detector averaging, many initial rotational states, and different ) values 

for different j" values are very time consuming, initial fitting was done using a 
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limited amount of averaging and a reduced number of j and ] values. Once the 

parameters were adjusted to near their final values, fine adjustments were made 

using the full averaging procedures. While numerical deviations were used as 

a guide in the selection of parameter values, no attempt was made to find the 

absolute minimum of the total numerical deviation of calculated scattering from 

the experimental data. Some experimental discrepancies in the time-of-flight 

data made such an attempt unproductive (see Section 3.5.2). 

3.4 Results 

The potential parameters determined by fitting the data are listed in Table 

3.2. The simulated angular distributions are shown with the experimental data 

in Figure 3.2, while the time-of-flight spectra are displayed in Figure 3.3. A 

contour plot of the potential is shown in Figure 3.4, while Figure 3.5 shows cross 

sectional cuts of the potential at 1=0° and !=90°. Figure 3.6 is included to show 

the Legendre polynomial expansion defined by Equation 3.15: 

(3.15) 

The first five nonzero functions ui(r) are displayed. 

3.5 Discussion 

Several aspects of the analysis and results deserve attention. This section 

includes a · discussion of the simulations of the total angular and the time-of­

flight distributions, an examination of the rotational excitation found in the 

neon-chlorine system, and a comparison of the potential with other data. 
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Table 3.2 
Morse-Morse-van der Waals potential parameters for neon-chlorine. 

f.o/kB 76.5 K 
f.2/kB -42.3 K 
f.J./kB 97.6 K 
rm,o 4.52 A 
rm,2 o.8o A 
rm,4 -.17 A 
Tml. 4.05 A 
.6.rm 1.10 A 
ao 1.65 A- 1 

a2 -.2o A - 1 

/3 7.5 

Ca,o/kB .397 K nm6 

Ca,2/kB .063 K nm6 

Ca,o/kB .030 K nm8 

Ca,2/kB .015 K nm8 

p 4 
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Figure 3.2 The total angular distribution of neon scattered from 

chlorine are compared to the calculated scattering from the potential 

whose parameters are given in Table 3.2. 
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Figure 3.3 Time-of-flight spectra of chlorine scattered from neon are 
displayed with the simulated scattering. The inset shows a Newton 
diagram for the experiment with an elastic scattering circle. The arrows 
indicate the positions of elastic transitions. Flight times include the ion 
flight time on 28 p.s. 
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Figure 3.6 The first five non-zero functions of a Legendre expansion 

of the Ne-Ch potential. 
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3.5.1 Total Angular Distributions 

The IOS expression for state-to-state cross sections, Equation 3.10, includes 

an integration over cos1. The laboratory total angular distributions, being sums 

over the individual inelastic transitions, will be essentially an average of spherical 

scattering over the orientation angle 1 with sin 1 weighting. This IOSA relation is 

exactly true in the center-of-mass system.14 Thus, the total angular distributions 

are more sensitive to the region around 1 = 90°. 

Since the angular distributions can be thought of as an average over 

"spherical" scattering from different orientations, it is not surprising that the 

scattering apears like that of scattering from spherical systems with averaging or 

damping effects present. The diffraction oscillations, small but definitely visible, 

in the higher energy distribution (upper curve of Figure 3.2) are sensitive to the 

range of the potential. These are damped to a large extent by both the anisotropic 

potential and instrument resolution. It was found, however, that to fit these 

oscillations properly, while also maintaining the correct time-of-flight spectra, 

determined r m,o or r m.L, the position of the minimum in the T -configuration, 

to within ±.15 A. In Figure 3.2, resolved rainbow structure is quite apparent. 

The positions of the rainbow structure should not be significantly influenced by 

damping and instrument resolution. These provide a measure of the attractive 

well of the potential. With other parameters fixed, the variation of Eo and 

E2 directly determines the position and damping of the rainbows. With other 

parameters close to the values listed in Table 3.2, Eo and E2 could vary by ±3 K 

before significant deviation of the calculated distribution and data occur. Since 

there is some correlation with other the parameters, this uncertainty should be 

at least doubled. 
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Overall, the calculated distributions shown in Figure 3.2 fit the data fairly 

well at most angles. The deviations, which appear mostly in the lower energy 

scattering, stem from the inability to reproduce the scattering at both energies 

perfectly. The lower energy data would be better fit by a slightly smaller well 

depth, but still within 2 or 3 K of the reported value. This may be due to some 

systematic experimental error or to lack of complete flexibility of the potential 

form. 

3.5.2 Time-of-Flight Distributions 

The time-of-flight distributions, being comprised of the unresolved individual 

rotational transitions, are very sensitive to the anisotropy of the potential. The 

individual inelastic transitions include the spherical harmonics in the integration 

over I· This makes these sensitive to variations in the scattering amplitude as 

a function of I· The time-of-flight distributions show significant inelasticities 

which are related to the anisotropy in the range of the potential. Since the 

inelasticities are most directly related to the anisotropy in the location of the 

repulsive wall, they are indirectly related to the anisotropy in rm. It was found 

that the rm,2 term in the expansion of rm highly influenced the average positions 

of the peaks in the time-of-flight, especially the highly inelastic "slow" peaks 

(those at longer flight times) which correspond to wide angle scattering. The 

particular shapes of these peaks in the time-of-flight data at 14°, 18°, and 22° 

are influenced by the rm,4 term. The values of the expansion parameters of rm 

are influenced by the choice of a 0 and a 2 , since they determine the position of 

the hard wall with respect to the minimum. Furthermore, a reduced potential 

form has a disadvantage in that when Eo and f2 are varied, the anisotropy in 
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the repulsive wall changes. Thus there is some coupling between the f and rm 

anisotropy parameters. 

In the 6°, 10°, and 14° time-of-flight spectra, deviation of the data from 

the simulation is apparent in the 360 to 460 p,s region. No potential could fit 

this region while also fitting the slow time-of-flight peak distributions. Some 

deviation may be due to inadequate modeling, however, this region is near the 

center-of-mass for Cl2-Ch dimer scattering from neon. The contributions from 

scattering of these dimers would be localized in this region. When the stagnation 

pressure of the source was increased so that more dimers formed, these regions 

gained intensity, although reduction of the stagnation pressure below that listed 

in Table 3.1 did not further decrease the intensity in the regions. These relatively 

small descrepancies were ignored in the fitting procedure and should not affect 

the fitting of the slow peaks which mainly determined the anisotropy in the range 

of the potential. 

3.5.3 The IOSA and Rotational Energy Transfer 

While the uncertainties in the experimental data and in the fitting 

procedures introduce uncertainties in the potential, the IOSA, being an 

approximate theory, may also be a source of substantial uncertainty. The 

centrifugal sudden approximation is expected to be valid, among other 

conditions, for rotational transitions in which the relative kinetic energy of both 

the initial and final states is greater than the well depth of the interaction. 7 

Since the collision energies studied here, 500 to 1500 K, are considerably larger 

than the maximum well depth of 120 K, this constraint will limit the validity of 

the CS approximation only for extremely large .::lj transitions. Such transitions 

will tend to be sizable only at large scattering angles. The CS approximation is 
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also expected to break down for inelastic scattering from large impact parameter 

collisions. These collisions would result in very small angle scattering. Since 

most of the measured small angle scattering is elastic or near elastic, which 

is expected to be well treated in the CS approximation, this should not be a 

problem, at least for the total angular distributions. The validity of the energy 

sudden approximation relies upon the relative motion of the atom and diatom 

being reasonably fast compared to the rotational motion of the diatom. Since 

chlorine has a small rotational constant, the rotation of the chlorine will be 

relatively slow for all but the highest energetically accessible rotational states. 

The previous discussion suggests that the IOSA should be reasonable for the 

total angular distributions of neon, since they are taken over a moderate range of 

laboratory angles where no large IOSA breakdowns are expected. The time-of­

flight spectra, however, include contributions from practically all center-of-mass 

angles. The very inelastic transitions, occurring at large scattering angles, may 

not be well approximated by the IOSA. To see just how inelastic the transitions 

are, Figure 3. 7 shows plots of ~: (i" +-0), as a function of i", for several 

center-of-mass angles and a collision energy of 1500 K. These plots show the 

rotational rainbow structure typical of inelastic scattering from a mainly repulsive 

potential. 22 It is seen that at the smaller scattering angles the rotational energy 

change, while definitely not zero, is relatively small. For example, .LlE(10+-0) 

is 39 K, less than 3% of the 1500 K collision energy. At the large angles, much 

more inelasticity is observed. At 180°, the scattering shows significant transitions 

with the final rotational energy at 60% of the collision energy (i" = 50). The 

IOSA may lose quantitative accuracy for these transitions, although qualitative 

accuracy would still be expected. To estimate the magnitude of possible error, 
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Figure 3. 7 Differential cross sections for j = 0 -+ j" as a function 

of the final rotational state. The difference between two choices of 

k{]) is also shown. The solid lines show those cross sections which 

reproduce the experimental data. 
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the effect of the choice of k (]) on the calculated scattering was investigated. The 

difference between choosing k = ko and P = 4(k5 + kj,), which approximates 

the rotational energy half way between the initial and final values, is shown in 

Figure 3.7. When the k = ko method is used to fit a potential, ~rm = rmll-rm.L, 

where rmll is the postion of the minimum in the collinear configuration, decreases 

by 0.1 A. This can be used to give a range of uncertainty for ~rm of ±0.1 A. 

An interesting point related to the inelastic transitions and to the choice of k 

is the proper transformation of the inelastic cross sections from the center-of-mass 

system to the laboratory system for the total angular distributions. For systems 

with small anisotropy or small reduced mass, 24 total angular distributions have 

been calculated using the extremely simple formula for center-of-mass total 

differential cross sections: 14 

dn 1/dn dw (0) = 2 dw (1, 0) dcos /, (3.16) 

where ~: (0) is the total differential cross section and ~: (1, 0) is the differential 

cross section calculated as if the scattering were elastic from the isotropic 

potential formed by keeping 1 constant. These cross sections were then 

transformed as elastic. While this approximation is acceptable for systems with 

small velocity changes upon collision, it has been shown to be incorrect for 

heavy systems with large anisotropy such as Ar-C0 2 ,24 especially for wide angle 

scattering. The present case has a moderately heavy reduced mass scattering 

from a relatively anisotropic potential. The simple formula of Equation 3.16 

assumes k = k0 • For the Ne-Cl2 potential determined here, this choice tends 

to slightly overestimate the scattering at wide angles compared to the other 

choice of k. The transformation of the cross sections, on the other hand tends 

to underestimate the laboratory wide angle scattering. These two effects tend to 
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cancel and for the potential given in Table 3.2 the use of Equation 3.16 and elastic 

transformations results in wide angle laboratory scattering only slightly smaller 

than the proper calculations. The substantial savings in computational effort 

afforded by Equation 3.16 make its use attractive for systems such as Ne-Ch. 

3.5.4 Comparison With Other Results 

The anisotropy in the position of the repulsive wall of the potential as 

measured by l:l.u = u _1_- ull, where UJJ is the zero crossing point of the potential in 

the collinear configuration and u _1_ is that point in the T -shape configuration, is 

1.05 A. This is very close to half the bond distance of the chlorine molecule 

and is close to the value of the anisotropy, 0.95 A, found by Hoffbauer, et 

al. in the modeling of their argon-chlorine scattering data with a classical 

rotational rainbow analysis. 25 The absolute range of the potential is described 

by rm_l_ = 4.05 A, the minimum of the potential in the T-shape. This value is 

very different from the the Ne-Ch van der Waals bond distance of 3.565± .035 

A determined spectroscopically by Evard et al.9 for the van der Waals molecule 

with a quantum of vibration in the chlorine-chlorine stretch. This value is clearly 

smaller than our value of rm_l_ and out of the range of mutual uncertainties. While 

the two quantities measure different properties, our value being the minimum of 

the well and theirs being the expectation value of the position of the wave function 

in that well, it is difficult to imagine there being so large a discrepancy from this 

distinction. 

Considerable effort was spent in constraining the rm_l_ to values close to the 

spectroscopic result and varying the other parameters of the Morse-Morse-van 

der Waals potential form. No fit was found that satisfactorily reproduced the 
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diffraction oscillations of the 612 K data while still maintaining the proper time­

of-flight spectra. A more flexible Morse-Morse-Morse-van der Waals forms was 

also tried, but it did not produce significantly better fits. A typical fit with rm.L 

constrained to 3.5A is shown in Figure 3.8. The fit is not unreasonable; at least 

one diffraction oscillation lines up well with the 612 K data. The diffraction 

oscillation spacing is incorrect, however. 

To investigate this discrepancy in r m.L, we can compare other anisotropic 

potentials which have been determined for atom-diatom systems. The closest 

system is helium-chlorine. 8 It has been observed that for spherical interactions 

between different sized partners that the position of the minimum is largely 

determined by the more polarizable (larger) interaction component.26 Using 

this as a guide, one would expect the minimum positions for neon-chlorine to 

be similar to those for helium-chlorine. Several potentials were fit to total 

differential cross sections in Reference (8), although no inelastic scattering 

was used. The total differential cross sections show pronounced diffraction 

oscillations. The potentials of Reference (8) show a range of r0 from 4 A to 

4.7 A. One (Potential BHe) which fits the data well has ro=4.518 A which 

is virtually identical to the r 0 =4.515 A for neon-chlorine. The anisotropy of 

the helium-chlorine potentials of Reference (8) is slightly larger than for neon­

chlorine resulting in rm.L =3.85 A for helium-chlorine. This value is in the middle 

of the range of 3.8 ± 0.4 A found from low resolution laser spectroscopy of the 

He-Ch van der Waals molecule.~7 Although the value for He-Chis smaller than 

the 4.05 A value for Ne-Ch, the results are fairly close. 

The rare gas-holgen van der Waals molecule He-I~ is reported to have a 

bond length of 4.47 ± .13 A,~8 while length of 3.7 ± 0.2 has been reported for 

He-Br~.~9 Both of these studies were spectroscopic. The value for He-Br2 seems 
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Figure 3.8 A calculation for neon-chlorine scattering from a 

potential with rm..l = 3.5 A shows deviations in the period of the 

diffraction oscillations. The potential used reproduces the time-of­

flight spectra accurately. 
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in line with the Ne-Cl2 value of Evard, et al. The large He-12 value appears more 

consistent with our Ne-Cl2 value of rm..l = 4.05 A. 

Examples of other systems for which experimental inelastic differential 

cross section data are available include helium-oxygen30 and helium-nitrogen.31 

Potentials proposed for these systems fit the total and inelastic data well. At 

short ranges theoretical calculations determined the interaction energy. For 
I 

helium-oxygen, rm..l =3.34 A and for helium-nitrogen, rm..l =3.55 A. Since oxygen 

and nitrogen are considerably less polarizable than chlorine, the minimum 

position would be expected to be significantly smaller for the oxygen and nitrogen 

systems. 26 Qualitatively, this is certainly consistant with our proposed potential. 

The well depths of spherical interactions have been found to depend most 

upon the less polarizable of the two interaction partners.26 The well parameter, 

Eo, determined for Ne-Ch is very similar to those of neon-heavier rare gas 

interactions.32 The well depth in the T-shape, f..l, is very similar to those 

found for other neon-halogen van der Waals molecules (see Reference (8) for 

a comparison). 

3.6 Conclusions 

A model potential to describe the anisotropic interaction between a neon 

atom and a chlorine molecule has been determined using crossed molecular beams 

scattering data and the infinite order sudden approximation. The potential has 

been fit only to scattering data using an approximate theory, considerations 

which may affect its reliability.33 The scattering data are influenced mostly by 

the well region and the lower part of the repulsive wall of the potential. The 

short range regions of the potential, which are above the scattering energies, 

may significantly deviate from the true potential. The long range interaction has 
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been approximated with van der Waals coefficients estimated from semiempirical 

formulas. The proposed potential does have a well depth and anisotropies which 

are physically reasonable. However the position of the minimum in the T­

configuration appears to be approximately half an Angstrom greater than the 

Ne-Cl2 bond length found spectroscopically, a discrepancy which warrants further 

investigation. 
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Chapter 4 

UV Photofragmentation of 1,2-Diiodotetrafiuoroethane 

4.1 Introduction 

Photodissociation studies of organic iodides have provided interesting 

systems for the study of intramolecular energy dynamics. 1 The absorption of 

an ultraviolet photon excites a highly repulsive electronic state causing very 

quick dissociation of the carbon-iodine bond. The energy of the photon, 

beyond that which is required to break the C-I bond, goes into fragment 

internal and translational energy. The iodine fragment may be in the ground 

electronic state (2 P!.) or in a spin-orbit excited state (2 P!.), denoted as I*. 
2 2 

The organic fragment will have a distribution of internal energies, and if this 

fragment has enough internal excitation, secondary dissociation may occur. 2 - 5 

Recently Knee, Khundkar, and Zewail have observed product formation in 

the photodissociation of 1,2-diiodotetra:fluoroethane (C 2 F 412 ) at 280 nm with 

picosecond time resolution. 6 They report the formation of I* with a single 

time constant of less than a picosecond, while the formation of ground state 

iodine can be modeled by two different rates, one with a time constant of less 

than a picosecond and the other with a time constant of 32 picoseconds. The 

fast formation of I* is similar to the observed dissociation of other :flourinated 

alkyl iodides containing a single iodine atom, in which virtually all dissociated 

iodine was electronically excited.7 The I* from the C2F 412 dissociation is thus 
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presumed to result from an initial dissociation. The formation of unexcited iodine 

is suggested to occur as a secondary, unimolecular dissociation of the C2F 41 

fragment. The distribution of internal energies in the excited C2F 41 radical 

may be responsible for the two appearance rates of the ground state iodine. 

We report here a crossed molecular-laser beams photofragmention study of 1,2-

diiodotetrafiuoroethane at 266 nm. The measured time-of-flight distributions of 

I and C2F 4 provide translational energy distributions which are consistent with 

this proposed two step dissociation process. 

4.2 Experimental Procedure 

The crossed molecular beams apparatus has been described in previous­

experiments reported from this laboratory.8 The molecular beam of 1,2-

diiodotetrafiuoroethane was formed by bubbling neon through a glass frit 

submersed in C2F 4!2 (obtained from SCM Chemicals and used without further 

purification) at room temperature (vapor pressure of -30 torr). The mixture was 

expanded through a quartz nozzle with a 0.11 mm opening. To inhibit cluster 

formation, the tip of the nozzle was heated so that the gas near the opening 

was at 85° C. The expansion was skimmed and collimated using two stages of 

differential pumping, producing a beam with a 1.4° width and a 2.8° height. 

Table 4.1 summarizes the beam source conditions and velocity. 

The 266 nm light source for the dissociation was a frequency quadrupled 

Nd:YAG laser from Quanta-Ray (model DCR 2A-10 with harmonic generator 

and prism separator). The laser was operated at 10 Hz, and the measured energy 

output was between -10 and 40 mJ per pulse with a factory specified length of 

5 ns. A 50 em focal length fused silica lens outside the scattering chamber focused 

the light through a fused silica window into the chamber at a right angle to the 
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Table 4.1 

Beam source conditions for the dissociation of C2F 4!2 

at 266 nm. The velocity distributions were fit to the 
form v2 exp(S2( 

11

11

0 
- 1)2). 

Carrier gas Ne 

C2F 4!2 temperature 22°C 

Stagnation pressure 300 torr 

Nozzle temperature 85°C 

Flow velocity, vo 675 m/s 

Speed ratio, S 13 

Angular width 1.40 

Angular height 2.8° 

Nozzle diameter 0.11 mm 
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molecular beam. At the intersection point, the laser beam had a diameter of 

about 2 mm and was linearly polarized in the plane defined by the two beams. 

The detector, which rotates in the plane of the beams, had apertures which 

allowed 1° angular resolution. Photodissociated particles must traverse 34.5 em 

from the beam intersection region before being ionized by an electron impact 

ionizer, mass filtered and detected. The discriminated data pulses were counted 

by a 4096 channel scaler. Data was collected by detecting m/e = 127 amu (I), 

at 10°, 15°, 20°, 25°, 30°, 40°, and 50° from the direction of the C2F 4h beam. 

Data for m/e = 100 amu (C2F 4) was also detected at 20° and 30°. No C2F4I 

fragments could be observed as scattered products. 

4.3 Analysis 

To analyze the data, two distinct dissociation processes were assumed: 

(4.1a) 

and 

(4.1b) 

The observation of iodine will include contributions from both proccesses while 

the observation of C2F 4 will have only one contribution but one that is convoluted 

over both dissociation processes. 

A diagram showing the velocities involved in these processes is shown in 

Figure 4.1. For simplicity the diagram shows only velocities in the plane defined 

by the beams and the detector, although scattering will occur in all three 

dimensions. The parenthetical labels in Equations 4.1a and 4.1b are used as 

subscripts in the notation to identify the different reactants and products, while 

the labels "a" and "b" will be used to identify each reaction. In the diagram and 
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Figure 4.1 Newton diagram for the C2F 4I2 dissociation processes. 

The velocity of the molecular beam of C2F 4I2 is V 1· Possible 

velocity vectors from the first dissociation, va for C2F 4I and V4 

for I*, are shown at the tip of V 1• The Newton circles indicate that 

these vectors may be oriented in any direction. The vectors also 

have a distribution of lengths. At the tip of the C2F 4I velocity, va, 

possible velocity vectors, Ws for C2F 4 and Ws for I, are shown. The 

laboratory velocities for I, V s, and I*, V 4, are indicated. Oa and (Jb 

denote the scattering angles for the two processes. 
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in the following analysis, coordinates in upper case letters refer to the laboratory 

frame of reference. Coordinates in lower case refer to quantities measured in 

center-of-mass reference frames. Because of the double dissociation, two different 

center-of-mass reference frames are used in the analysis. For the first dissociation 

process (Equation 4.1a) the center-of-mass velocities are measured in the frame 

of reference in which the C2F 4 1:~ is at rest and the polar coordinates have the 

direction of the molecular beam as the pole. Velocities in this frame are denoted 

by v's. Center-of-mass velocities of the products from the second dissociation 

(Equation 4.1b) are measured in the reference frame in which the C2F 41 fragment 

is at rest and the angular coordinates have the direction of the C2F 41 velocity in 

the C2F 41:~ reference frame as the pole. Velocities in this frame are denoted by 

w's. 

Since the energy resolution of the experiment cannot resolve internal 

rovibrational energy states of the products, the scattering can be considered 

a continuous function of both angle and velocity. Thus, cross sections differential 

with respect to both angle and velocity can be defined for both dissociations 

described in Equations 4.1a and b. We define d~;d~; to be such a cross section 

so that d~;~i dvidw; is proportional to the probability that scattering from 

dissociation j produces fragment i with a velocity vector having magnitude 

between Vi and Vi+ dvi and direction within the solid angle dw; = d cos() ;d¢;. It 

is convenient to relate these to a flux distribution, F;(E;, 0; ), as a function of the 

relative translational energy of the recoiling fragments, E; = !J.£;v}, where J.£j 

is the appropriate reduced mass and v; is the relative velocity of the fragments 

recoiling from disscociation j. This flux distribution is defined in Equation 4.2: 

(4.2) 
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in which M; is the total mass of the fragments recoiling from dissociation ;", 

and mi is the mass of fragment i. The flux distribution is proportional to the 

probability of products scattering with center-of-mass angle 0; and with relative 

translational energy E;, per unit time. 

Laboratory scattering intensities which are functions of laboratory velocity 

and angle, can be related to the differential cross sections and flux distribution 

defined above by applying appropriate transformations. The laboratory 

distribution for iodine scattered from the first dissociation is given in Equation 

4.3: 

(4.3a} 

(4.3b) 

where the subscripts refer to those of Equation 4.1. The m's are the masses of 

the indicated species and the J is the Jacobian of the transformation from the 

center-of-mass reference frame to the laboratory frame. A factor of J. converts 

the flux to number density, to which the electron impact ionization detector is 

sensitive. 

The iodine observed from the second dissociation depends upon the fragment 

distribution from the first dissociation. This situation is handled in a manner 

similar to that used by Kroger and Riley to model the two-step, three-body 

dissociation of CH3 COI.l The probablity of the second dissociation producing 

scattering at a given laboratory velocity is integrated over all possible velocities 

of the ClF 41 fragment. Equation 4.4 describes this procedure: 

(4.4a) 
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Similarly for detecting C2F 4, 

84 , 85 , and S6 have been calculated from assumed Fa and Fb distributions 

and compared with experiment. The Fa and Fb flux distributions were than 

adjusted in a trial-and-error procedure so that the simulations matched the 

experimental data. To make this problem tractable, analytic forms for Fa and 

Fb were chosen. 

The angular dependence of Fa for a single photon dissociation in the electric 

dipole approximation, is expected to have the form: 9 

The angle Oa is measured from the direction of the molecular beam. The 

parameter {3 lies between -1 and 2. For fast dissociation, the rotational motion 

of the molecule can be neglected. In this limit, and for polarized light, a 

pure parallel type transition will have {3=2, while a perpendicular transition 

will have {3=-1. Deviation of {3 from these limits indicates impure transitions 

or a finite dissociation time. Since no distributions which are purely from the 

first dissociation were observed, it is not possible to estimate a center-of-mass 

energy flux distribution, Pa(Ea), from a direct inversion of the time-of-flight 

distributions. For simplicity the analytical form, 10 

(4.7) 
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was chosen, where a1, a2, Emaz, and Emin are adjustable parameters. 

The energy flux distribution Fb(EB,Wbi EJ) for the second dissociation will 

depend upon the energy, Ef, in the C2F 4! fragment, which is available to go 

into translation. If the energy of the photon is Ehv, the internal energy above 

the zero point for C2F 412 before photon absorption is Eint, the energy of the 

excited iodine is Er·, the dissociation energy for C2F 4l2---+C2F 4! is D(C2F 4!-I), 

the dissociation energy for C2F 4l---+C2F 4 is D(C2F 4- I) and Ea is the relative 

translational energy of the fragments from first dissociation, then E 1 is 

In modeling the second dissociation, the energy flux distribution was assumed to 

be a separable function of energy and angle: 

(4.9) 

This assumption facilitates the numerical modeling, and should be reasonable for 

a long lived complex. While several forms for the angular function were tried, 

a flexible form which allows asymmetric, forward-backward peaked distributions 

was used: 

(4.10) 

where m is an even integer and go, 91 and 92 are adjustable constants. The form 

for Pb ( Eb) was chosen to be similar to that for P a: 

(4.11) 

where 1 1 , 12, and aE. are adjustable parameters. 
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The form given by Equation 4.11 was chosen to facilitate comparison with 

translational energy distributions characteristic of statistical processes. For 

statistical processes with no barrier in the exit channel, Quack has proposed 

a relatively simple formula for translational energy distributions which mimics 

the results from detailed statistical calculations.11 This is given in Equation 4.12: 

( 4.12) 

In this equation, C is a proportionality constant, Et is the amount of energy in 

translation, n is an adjustable parameter, and p(E- Et) is the combined density 

of internal rovibronic states of the dissociation fragments. Quack has shown that 

variation of the parameter n over the range of zero to three can reproduce the 

effects of potential surface parameters of detailed statistical calculations. 

The estimation of the combined density of states, p, for Equation 4.1b 

is simplified because the final fragments are tetraflouroethene and iodine. If 

electronic excitation of the iodine is neglected, the combined density of states of 

the products is only the density of states of the tetrafluoroethene. The Whitten­

Rabinovitch approximation to the density of vibrational states, combined with a 

classical treatment of the rotational degrees of freedom, 12 gives, 

(4.13) 

in which E 6 is the zero point energy, s is the number of vibrational degrees of 

freedom, and a is an energy dependent variable. Using Equation 4.13 in Equation 

4.12 gives: 

(4.14) 
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This form is, in fact, the same form as that chosen for the analysis in Equation 

4.11, with 1 1 = n, 12 = s + t, and the energy dependent parameter, a, 

approximated by a constant. 

Using these analytical forms for Fa(Ea, Ba) and Fb(Eb, 8b), the scattering 

distributions can be calculated using Equations 4.3 through 4.5 and compared 

to the experimental data. The integrals in Equations 4.4 and 4.5 were evaluated 

numerically over the kinematically accessable regions. The resulting laboratory 

velocity distributions were then averaged over the beam velocity spread and 

detector aperture. The averaged velocity distributions were averaged over the 

finite length of the ionizer and transformed to time space. 

The possibility of two photon processes must be considered, since the scheme: 

( 4.15) 

results in the same dissociation products as Equation 4.1. If the cross sections 

for the first and second photon absorptions are similar in magnitude, then 

a dependence of the scattered distributions upon the laser power might be 

expected. For laser powers ranging over a factor of four, no significant difference 

in the iodine distributions was observed. The distributions would probably be 

fairly insensitive to some fraction of the fragments absorbing a second photon, 

since, considering the energy distributions found below (see Section 4.4), all the 

fragments are expected to dissociate spontaneously. However, a significantly 

larger amount of total energy is available for the two photon process. The 

distributions expected from the two photon process can be modeled in the same 

manner as described above, with the modification of the energy and angular 

distributions to those appropriate for the absorption of a photon. When this 

is performed, significant intensity of the products is predicted at laboratory 
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velocities larger than those experimentally observed. Also, nearly all of the 

slow laboratory products are found to be absent. This modeling suggsets that, 

while a small fraction of the C2F 41 fragments may absorb a second photon, 

most decompose spontaneously. This appears reasonable when the rate for 

absorption of a second photon is compared with the rate for spontaneous decay. 

An estimate of the average photon intensity, I, for this experiment is ,...,1x 1017 

photons/cm2 ns. A typical absorption cross section, n , on the order of 1x 

10-18 cm2 would yield a rate constant, k = In, of 0.1 ns- 1 corresponding 

to a time constant of 10 ns. This is some 300 times longer than the 32 ps 

time constant found in the picosecond spectroscopy experiments. 6 Since our 

experiments were performed with a photon energy ,...,6 kcal/mole greater than 

that of the picosecond spectroscopy experiment {266 nm vs. 280 nm), this 

suggests that for the two photon process to compete with spontaneous second 

dissociation, the cross section for absorption by C2F 41 would have to be on the 

order of 10-16 cm2 or larger. In the the two photon dissociation of CH2 12 , the 

cross section for CH21 (1x10- 19 cm2) was actually smaller than that for CH212 

(2 x1o- 18 cm2). 13 However, in the case of CH2 Br2 , the cross section for CH2 Br 

was found to be larger than that for CH2Br2.14 The necessity of a large cross 

section for the occurance of two photon events and the observed velocities suggest 

that two photon processes can be largely neglected in this analysis. 

4.4 Results 

Figure 4.2 shows the measured time-of-flight distributions for iodine, while 

Figure 4.3 shows the C2F 4 fragment distributions. These figures also show the 

simulations produced by the method described in the preceding section. For the 

iodine distributions, the dashed lines show the modeled contributions for the two 
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Figure 4.2a The experimental time-of-flight spectra (points) for 

iodine at 10°, 15°, 20°, and 25° are displayed along with the simulated 

spectra. The long dashed line indicates the contributions to the 

simulation from the first dissociation process. The short dashed line 

is for the second dissociation and the solid line is the sum of the two 

contributions. 
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Figure 4.2b The iodine time-of-flight spectra at angles 30°, 40°, and 

sao. Simulation and data are displayed as described in the caption of 

Figure 4.2a. 
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Figure 4.3 The C2F 4 time-of-flight spectra at 20° and 30°. The 

solid line is the simulation of the data points. The data points have 

been smoothed. 
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dissociation processes of Equations 4.1a and 4.1b, while the solid line is their sum. 

Figure 4.4 shows the time integrated iodine intensities as a function of laboratory 

angle. The functions Pa(Ea), Pb(Eb), and Tb(Ob) are shown in Figures 4.5, 4.6, 

and 4. 7, respectively. 

The parameters were determined as follows. The parameter ,8=1.65, which 

describes the angular distribution of the initial dissociation, was determined 

mainly by fitting the angular distributions of Figure 4.4 and the shape of the time­

of-flight spectrum of iodine at 50°, shown in Figure 4.2. The inseparability of the 

two dissociation processes makes the determination of .B somewhat uncertain. 

The parameter Emaz, found in the expression for the energy flux distribution 

from the first dissociation (see Equation 4.7), was estimated as the photon energy 

minus the C-I bond energy and the I* excitation energy: 

Emaz = Ehv- D(C2F 4I- I)- E1• = 107.1- 52.5- 21.7 ~ 33 kcal/mole. 

The value for D(C2F 4I-I) was assumed to be the same as for D(C2F 5-I). 15 

The a1 and a2 parameters were then determined largely from the positions and 

widths of the fast peaks in the iodine distributions. Of course, reasonable fits 

to the second dissociation had to be obtained before the parameters for Pa(Ea), 

the estimated flux from the first dissociation, could be accurately determined. 

The parameters for asymmetric angular distribution from the second 

dissociation (see Equation 4.10) were determined by the relative intensities of 

the dual peaks in the C2F 4 distributions. The translational energy parameters 

for the second dissociation were adjusted so that the positions of the C2 F 4 peaks 

and the small, broad iodine peaks were in the proper locations. These parameters 

could be adjusted over a fairly wide range and still fit the data adequately. The 

average amount of translational energy was similar in the different cases, 
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Figure 4.4 The total angular intensities for iodine are shown with 

the calculated intensities. Error bars are chosen to account for beam 

source and laser fluctuations. 
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Figure 4.5 The energy flux distribution for the first dissociation, 

Pa(Ea) is shown. The distribution peaks at 14 kcal/mole and has a 

full width at half the maximum (FWHM) of 11 kcal/mole. 
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Figure 4.6 The energy flux distribution Pb(Eb; E 1) is shown for the 

case when the C2F 41 fragment energy is 20 kcaljmole. 
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Figure 4.7 The angular distribution Tb(lh) for the second 

dissociation is shown. The angle fh is measured between the 

direction of the C2F 4! velocity and the iodine velocity. 
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although the peaks and widths of the distribution could vary. To evaluate the 

expression for EJ (Equation 4.8), the value D(C2F4I-I)=O kcaljmole, estimated 

by Krajnovich, et al. was assumed, along with no significant internal excitation 

of the C2F 4I2 . The fit shown was chosen so that "Yl =12.5. This corresponds 

to choosing s = 12, which is the number of vibrational degrees of freedom in 

C2F 4. The value a=0.8, was chosen to approximate the more accurate Whitten-

Rabinovitch approximation for the energies encounterd. Ez was chosen as the 

zero point energy of C2F 4, 13.4 kcaljmole, as calculated from the vibrational 

frequencies. 16 With these selections, the value of n = "Y2 was found to be 2.2. 

4.5 Discussion 

The initial dissociation can be compared to the photofragmentation of alkyl 

monoiodides. In the fragmentation of CH3I, for example, two time-of-flight 

peaks are observed which correspond to the formation of excited and ground 

state iodine. 17 In the present case, initial dissociation to produce both ground 

and excited state iodine would also be expected to give two peaks; the ground 

state peak, however, would have laboratory velocities higher than those observed. 

This indicates that there is little formation of ground state I (2 P!) from the first 
2 

dissociation. This is consistent with the nearly exclusive formation of I* (2 P1 ) 
2 

seen for other fluorinated iodides. 7 

Impulsive models have been used to describe these fast photodissociation 

reactions. 18 In the "soft radical" impulsive limit, the iodine is pictured as 

recoiling only against the carbon atom. When the carbon atom then recoils 

against the rest of the fragment, rotational and vibrational modes can be excited. 

This limit produces high internal excitation and low translational energy. In the 

"rigid radical" limit, the iodine recoils against a rigid fragment with energy 
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partitioned only m translation and rotation. In the initial dissociation, the 

average fraction of available energy going into product translation, 42%, is 

smaller than the 53% for C2F 4Bri,4 indicating that the C2F 4I2 dissociation may 

be more toward the "soft radical" limit of impulsive models. The width of the 

translational energy distribution, 11 kcalfmole FWHM, is the same as that for 

C2F 4Brl. The value of the angular parameter ,8=1.65 is slightly smaller than the 

1.8 value for C2F 4Bri, but the transition would appear to still be close to parallel 

to the C-I bond. The value reported here also has more uncertainty associated 

with it, since the second dissociation interferes with the angular distribution of 

the first dissociation. 

The angular distribution of the second dissociation (Figure 4. 7) is forward­

backward peaked with respect to the direction of the C2F 4I velocity, Vg. 

This behavior, observed for complexes which live longer than a rotational 

period, can be understood in terms of angular momentum constraints. 19 If 

the rotational angular momentum of the C2F 4I2 is small, then the rotational 

angular momentum of the C2F 4I fragment will be approximately equal and 

opposite to the orbital angular momentum of the iodine and C2F 4I fragments. 

This implies that the rotational angular momentum vector of the C2F 4I will 

be perpendicular to its velocity. If the C2F 4I dissociates so that most of 

its rotational angular momentum becomes orbital angular momentum of the 

C2F 4 and I fragments, then the relative velocity of the recoiling fragments 

will be perpendicular to the rotational angular momentum of the C2F 4!. The 

combination of the rotational angular momenta of C2F 4I distributed uniformly 

but perpendicular to the C2F 4I velocity, and the recoil velocities of the C2F 4 

and I fragments distributed uniformly but perpendicular to the C2F 4I rotational 

angular momentum, yields a distribution for the recoil velocities of the C2F 4 and 
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I fragments which is peaked in the forward and backward directions relative to 

the C2F 41 velocity. The strongly peaked distribution seen in Figure 4. 7 suggests 

these angular momentum constraints are very important in this system. The 

distribution should be symmetric in the forward and backward direction if all 

intermediates are long lived. 

Figure 4. 7, however, shows a distribution which is not symmetric. The 

asymmetry has been determined from the relative heights of the dual peaks in 

the C2F 4 distributions. Since one of the corresponding peaks for the iodine is 

obscured by the initial dissociation, it is not possible to confirm this behavior 

with the presumably complementary behavior of iodine. There is also some 

discrepancy in the relative heights of the iodine peaks at the smaller angles. It is 

also conceivable that inadequacies of the model force the asymmetry. However, 

assuming that the distribution is qualitatively correct, it appears that 58% of 

the C2F 4 is scattered backwards with respect to the C2F 41 velocity. This might 

be expected if a fraction of the C2F 41 fragments decay before rotating several 

times, a likely situation for highly internally excited fragments. Assuming this, 

the implication of the asymmetric, forward-backward peaked distribution is that 

many of the complexes are long lived with respect to a rotational period, but 

some complexes may live only on the order of one rotational period. 

To make a rough estimate of the rotational period for the complex, we 

assumed the first dissociation occurs with the iodines of C2F 412 in an anti 

configuration, not an unreasonable assumption for a cold, supersonic expansion. 

The center-of-mass of the C2F 41 fragment is then in the plane formed by the I-C­

C-I chain. If we assume a geometry of the C2F 41 fragment similar to that of the 

C2F 4!2, then the moment of inertia of the fragment about an axis perpendicular 

to the aforementioned plane and through the center of mass is approximately 
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600 gjmole A2 • To determine the amount of energy imparted to the rotation 

of this fragment from the first dissociation requires further assumptions. In the 

"rigid radical" limit, 18 the amount of rotational excitation of the C2 F 4! fragment 

would be 10% to 20% of the available energy. Assuming a value for the rotational 

energy of -3 kcal/mole gives a rotational period of -3 ps. Using this simple 

estimate with the above arguments would suggest that many C2F 4! radicals live 

significantly longer than 3 ps while some may survive only for about 3ps. This is 

simply an estimate, and our data are not particulary sensitive to the lifetime, or 

distribution of lifetimes, of the complex. The estimate does seem to be consistent 

with the two time constants of 0.5 and 32 ps for the rate of ground state iodine 

formation seen in the picosecond monitoring experiment. 6 

The translational energy distribution for the second dissociation (Figure 

4.6) is peaked at about 25% of the available energy of the C2F 4 ! fragment. As 

mentioned previously, the form for the translational energy distribution of the 

second dissociation was chosen so that it could be easily compared with statistical 

distributions. The value for n of 2.2 is within the range of 0 to 3 given by Quack 

for distributions which are consistent with statistical process. 11 Values larger 

than three would be considered out of the range of statistical behavior. Although 

this value of n is in the upper end of the region, it should be noted that an 

exit channel barrier is conceivable. The energy of activation for Equation 4.1b is 

probably in the range of the value estimated for loss of iodine from a hydrocarbon 

radical (-2 kcaljmole) 20 and the value estimated by Knee, et al. to simulate the 

two rates of formation seen in their experiment (-5 kcaljmole).6 The energy of a 

barrier in the exit channel, the activation energy minus D(C2F 4-I), might also be 

on the order of 2 or 3 kcal/mole. The energy of such a barrier would be expected 

to appear mostly in translation, effectively decreasing the value of n. 
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4.6 Conclusions 

The molecular-laser beams photofragmentation study of C2F 412 shows 

translational energy distributions of iodine and tetrafiuoroethane which are 

consistent with two, stepwise dissociation processes. The first dissociation is 

typical for the ultraviolet absorption of alkyl iodides while the second appears 

to result from a unimolecular decay of the C2F 41 fragments having a range of 

lifetimes from a picosecond to many picoseconds. 
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Appendix A 

Methane-Methane Laboratory Scattering Intensities 

This appendix contains the laboratory scattering intensities measured in the 

methane-methane experiments described in Chapter 2. The scattering intensities 

(signal) are listed by laboratory angle (0). The uncertainties (.6.) used to 

determine the deviations of calculated distributions from these data are also 

g1ven. 

Table A.l. Methane-methane collision energy 1180 K 

e Signal .6. 9 Signal .6. 

2.50 1128.06 64.30 13.00 40.48 2.34 
3.00 779.10 38.40 14.00 31.87 2.24 
3.50 639.82 26.14 15.00 25.89 2.18 
4.00 568.32 18.13 16.00 23.63 2.18 
4.50 524.68 11.89 17.00 21.60 2.20 
5.00 480.67 6.64 18.00 21.95 2.22 
5.50 427.72 6.60 19.00 20.43 2.24 
6.00 388.27 6.48 20.00 20.56 2.00 
6.50 333.66 6.36 22.00 18.02 2.02 
7.00 287.76 6.24 24.00 16.14 2.00 
7.50 243.07 4.88 26.00 15.88 2.00 
8.00 201.02 4.68 28.00 13.16 1.96 
8.50 168.60 4.46 30.00 13.19 1.94 
9.00 139.61 4.24 33.00 14.91 1.90 
9.50 116.77 3.98 36.00 13.74 1.86 

10.00 100.00 1.28 39.00 11.64 1.72 
11.00 70.21 2.98 42.00 13.56 1.70 
12.00 53.07 2.60 45.00 12.21 1.66 
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Table A.2. Methane-methane collision energy 7 45 K 

9 Signal ~ 9 Signal ~ 

2.50 906.96 50.25 13.50 50.98 1.46 
3.00 605.69 28.61 13.75 46.34 1.74 
3.50 410.69 16.44 14.00 45.79 1.42 
4.00 296.16 9.90 14.25 43.42 1.72 
4.50 223.67 6.08 14.50 42.17 1.40 
5.00 187.99 3.88 14.75 37.23 1.66 
5.25 170.78 4.62 15.00 36.60 1.38 
5.50 162.87 3.86 15.50 34.32 1.44 
5.75 155.70 4.56 16.00 31.61 1.58 
6.00 151.24 3.82 16.50 28.16 1.42 
6.25 142.42 . 4.48 17.00 25.29 1.56 
6.50 146.09 4.68 17.50 23.56 1.40 
6.75 142.68 4.46 18.00 22.28 1.56 
7.00 144.90 4.56 18.50 20.56 1.38 
7.25 135.94 4.36 19.00 20.29 1.54 
7.50 137.23 . 3.60 19.50 19.08 1.38 
7.75 132.52 3.44 20.00 17.50 0.90 
8.00 129.17 3.46 20.50 16.98 1.20 
8.25 126.29 3.36 21.00 15.19 0.84 
8.50 123.27 3.36 22.00 15.10 1.02 
8.75 118.02 3.22 23.00 13.54 1.02 
9.00 119.96 3.20 24.00 12.75 1.04 
9.25 110.21 3.04 25.00 13.53 1.04 
9.50 108.25 3.04 26.00 12.93 0.94 
9.75 106.67 2.90 27.00 10.43 1.86 

10,00 100.00 0.68 28.00 11.84 0.82 
10.25 95.28 2.52 29.00 10.45 1.28 
10.50 92.93 2.30 30.00 10.34 0.80 
10.75 88.36 2.34 31.00 9.88 1.26 
11.00 85.95 2.12 32.00 9.72 0.80 
11.25 80.08 2.14 33.00 9.22 1.26 
11.50 76.38 1.96 34.00 9.25 0.78 
11.75 75.23 1.98 35.00 9.27 1.26 
12.00 69.60 1.80 36.00 9.52 0.78 
12.25 65.85 1.80 38.00 9.42 0.78 
12.50 63.52 1.66 40.00 9.13 0.76 
12.75 59.64 1.98 42.00 7.50 0.76 
13.00 56.50 1.56 44.00 8.87 0.74 
13.25 53.26 1.86 
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Table A.3. Methane-methane collision energy 448 K 

9 Signal ~ 9 Signal ~ 

2.00 1512.74 100.08 11.50 85.20 3.18 
2.25 1105.30 69.01 12.00 81.40 2.96 
2.50 867.37 53.01 12.50 78.09 2.78 
2.75 790.64 42.90 13.00 79.64 2.64 
3.00 630.81 31.95 13.50 77.87 2.54 
3.25 545.37 25.53 14.00 73.65 1.82 
3.50 479.22 20.60 14.50 74.29 1.82 
3.75 452.83 17.36 15.00 70.22 1.80 
4.00 428.46 14.47 15.50 66.12 1.90 
4.25 397.94 11.79 16.00 66.51 1.84 
4.50 373.26 9.47 16.50 64.09 1.92 
4.75 346.87 7.43 17.00 63.02 1.86 
5.00 329.31 5.78 17.50 61.37 1.96 
5.25 307.38 5.66 18.00 59.10 1.86 
5.50 291.80 5.70 18.50 57.21 1.62 
5.75 276.64 5.64 19.00 52.14 1.56 
6.00 254.48 5.68 19.50 53.04 1.62 
6.25 236.67 5.54 20.00 48.27 1.54 
6.50 216.46 5.48 21.00 45.64 1.60 
6.75 206.10 5.44 22.00 42.01 1.90 
7.00 196.10 5.42 23.00 39.00 1.90 
7.25 183.95 5.30 24.00 34.51 1.90 
7.50 170.62 5.24 25.00 31.79 1.88 
7.75 159.12 5.12 26.00 31.10 1.74 
8.00 149.51 4.34 27.00 26.20 1.62 
8.25 137.59 4.22 28.00 25.51 1.66 
8.50 129.80 4.18 29.00 22.85 1.58 
8.75 126.44 4.06 30.00 21.51 1.62 
9.00 117.52 3.96 32.00 18.89 1.48 
9.25 112.68 4.48 34.00 19.31 1.52 
9.50 109.24 4.40 36.00 15.67 1.50 
9.75 103.70 4.22 38.00 15.66 1.54 

10.00 100.00 0.88 40.00 14.14 1.52 
10.50 93.83 3.62 42.00 13.77 1.54 
11.00 87.76 3.42 44.00 12.36 1.64 
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Appendix B 

Viscosity Calculations 

The transport of momentum through a dilute gas is described by the 

coefficient of viscosity. This transport is dependent upon scattering due 

to collisions of the gas molecules and hence is also dependent upon the 

intermolecular potential. In determining our isotropic methane potential of 

Chapter 2 and the neon-methane and argon-methane potentials of Reference (1) 

we have used literature viscosity data as a constraint. This appendix describes 

the details of our calculation of viscosity coefficients from a potential energy 

funtion. 

B.l Equations for Viscosity 

At a temperature, T, the coefficient of viscosity, '1, for a pure, dilute gas is 

given by Equation B.1, 

5kBT 
,., = !., 80(2,2) ' (B.1) 

in which kB is the Boltzmann constant. In the first order Chapman-Enskog2 •3 

approximation,/., is 1 and when the second order Kihara3 •4 approximation is 

added, 

3 [40<2
•
3
> 7] 2 

!., = 1 + 49 0(2,2) - 2 (B.2) 

The collision (or omega) integrals O(n,a), which are referred to in Equations B.1 

and B.2, are given in general by Equation B.3. 
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In this equation IJ is the reduced mass for a collision between two of the 

particles in the gas, at energy E and with generalized cross sections Q(n). These 

generalized cross sections are given by the quantum mechanical expression of 

Equation B.4: 

{11" da 
Q(n) = 211" Jo (1- cosn x) dw sin X dx. (B.4) 

The differential cross section, 211" ~~, for scattering at energy E into angle x, is 

found by using a partial wave expansion to solve the Schrodinger equation. The 

differential cross sections are given in terms of phase shifts, T/l, for each term 

in the expansion. For n=O the generalized cross section reduces to the ordinary 

total collision cross section. For n=1 and 2, the quantum mechanical expressions 

can be written in the forms given by equations B.5 and B.6, respectively:3 

00 

Q(l) = !: L(l + 1) sin2
[77l+l - m]; 

1=0 

(B.5) 

Q(2)- 411"~ (l + 1){l + 2) . 2[ l 
- k'J. ~ (2l + 3) sm 171+2 - 111 • 

1=0 

(B.6) 

We obtained a slightly more complicated, but still relatively simple formula for 

n=3 as shown in Equation B.7: 

Q(3)- 411"~ [(l + 3)(l + 2)(l + 1) . 2( ) 
- k2 ~ (2l + 5) (2l + 3) sm 77l+3 

- 171 

3 ( l2 + 21 - 1 )( z + 1) . 2 ] 

+ (2l + 5){2l- 1) sm (Tll+l -Til) 

(B.7) 

In these expressions, k, the wavenumber of the collision is defined byE= 1i2 k 2 . 

The cross section Q( 2) of Equation B.6, when used in Equations B.1, B.2, and 

B.3, is all that is needed to define the viscosity of a pure gas. 



- 119-

When a gas is a mixture of two components the expression for 77 given by 

B.1 is not sufficient. In this case, to first order,3 

(B.S) 

in which 

(B.Sa) 

(B.Bb) 

and 

(B.Bc) 

The mole fractions of components 1 and 2 in the mixture are x 1 and x 2 , their 

masses are m1 and m2, and their reduced mass is J..£12· The viscosity coefficients of 

these pure gases are 77 1 and 712· The subscript on 0~~· 1 > indicates that the collision 

integral is for collisions between the two different gas components. Second order 

corrections are more complicated, involving higher order collision integrals and 

cross sections ( Q (a), for example), and were not used. 

B.2 Numerical Evaluation 

The general method used to evaluate the equations of Section B.1 is that 

outlined and used by Pack. 5 •6 To evaluate the collision integrals, whence the 

viscosities are calculated, ten point Gauss-Laguerre quadrature was employed. 

The integrand must be evaluated at each of the ten points in the quadrature 

for each of the 18 temperatures at which the calculations were compared with 
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experimental methane data. To perform these evaluations, generalized cross 

sections (and hence phase shifts) have to be calculated at 180 energies. Instead 

of performing the evaluation of the cross sections at all energies, the phase 

shifts were evaluated at 30 energies logarithmically spaced between 13 and 

30,000 K. Below 60 K an exact quantum routine was used to determine the 

phase shifts, while above this energy JWKB phase shifts were employed. The 

maximum partial wave used in the summations of equations B.5 and B.6 was 

given by 50+ 12k where k is the wave number in atomic units. The generalized 

cross sections obtained at the 30 energies were then used along with four point 

Lagrange interpolation to determine the integrands of the collision integrals at 

all 180 points. 

B.3 Computer code 

The FORTRAN subroutine VISCOUS is used to calculate viscosities from 

an intermolecular potential provided by the user. It was designed to be used with 

our modified version of program ELASTIC written by M. F. Vernon. 8 ELASTIC 

provides the input for VISCOUS as well as for elastic scattering8 and virial 

coefficient calculations.9 A program to run the subroutine alone is provided here 

to indicate necessary input. 

The calculations follow the method outlined above. The potential is 

generated within the program by calls to a subroutine, POT, which is external 

for versatility. POT operates in a reduced format (input is x = r / r m and 

output is V(x) = U(r)/E) and calculates an analytical potential from parameters 

passed to the subroutine in array A. Examples of such potentials can be 
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found in Reference 8. The input data, including the experimental values of 

the viscosity, the associated errors, and parameters for the calculation are 

passed to the subroutine from the calling program through the common block, 

COMMON /VIS. The calculated viscosities are then passed back to the calling 

program in that same common block. 

The collision integrals generated by this routine were compared with those 

given by Pack et al.7 for Kr-Xe and were found to be in good agreement. The 

phase shift routines JWPS, for JWKB phase shifts, and EXPS, for exact phase 

shifts, were modified from the phase shift routines of Reference (8). The phase 

shifts generated from both routines for a Lennard-Jones 6:12 potential were found 

to be in very good agreement with those given by Bernstein.9 

C SUBROUTINE VISCOUS calculates viscosity and diffusion 
C coefficients for a given potential 
c 
C SUBROUTINES needed are POT, and versions of the EXACT and 
C JWKB phase shift routines entitled EXPS and JWPS 
c 
C VARIABLES: 
c 
C A(15) =potential parameters 
C OMEGA1(25) = (1,1) collision integral 
C OMEGA2(25) = (2,2) collision integral 
C ENERGY(50) = energies at which generalized cross 
C sections are evaluated 
C Q1(50) = 1st generalized cross section 
C Q2(50) = 2nd generalized cross section 
C U(25) =points for Gauss-Laguerre quadrature 
C W(25) =weights for Gauss-Laguerre quadrature 
C ETA(2500) = phase shifts 
C variables in POTX- see exact phase shift routine 
C ELOW = lowest energy for cross section calculation 
C EHIGH = highest energy for cross section calculation 
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C NEN =number of energies at which cross sections are calculated 
C at each energy LMAX = YIL+ YSL*K phase shifts are calculated 
C K is the wavenumber of the system in atomic units 
C at energies<ESW use exact phase shifts; 
C at energies>ESW use JWKB approximation 
C IPRV = 0 no printing of intermediate results 
C = 1 causes printing intermediate results 
C = 2 causes more printing 
C VISCD(25,10) = viscosity data 
C (temperature,mole fraction of component No. 1) 
C (Quantities in parentheses refer to the quantities which vary when 
C (the indices of the array variables vary.) 
C VISC1(25) = viscosity of pure component No. 1 
C (temperature) - for mixtures 
C VISC2(25) = viscosity of pure component No. 2 
C (temperature) - for mixtures 
C VISCE(25,10) =viscosity errors (temperature,mole fraction) 
C VISCT(25) =temperature of viscosity data 
C NT = number of temperatures for which there are data 
C VISC(25,10) = calculated viscosities (temperature,mole fraction) 
C IVFLAG = 0 for no viscosity calculation 
C = 1 for a pure gas viscosity calculation 
C = 2 for a mixture viscosity calculation 
C PRIM = mass of component No. 1 
C SECM =mass of component No. 2 
C NX(25) = number of mole fractions for which there are data 
C (temperature) 
C NVIS = total number of different viscosities calculated 
C XMOLE =mole fraction of component No. 1 (temperature, mole fraction) 
C NGL = number of points in Gauss-Laguerre quadrature 
C NL = number of points in Legendre interpolation of cross sections 

SUBROUTINE VISCOUS(VISDEL2,A,RM) 
DIMENSION A(15),0MEGA1(25),0MEGA2(25) 
DIMENSION X(10},ENERGY(50},Q1(50),Q2(50) 
DIMENSION U(25),W(25) 
DIMENSION V1(10),VP(10) 
COMMON I ATE/ETA(2500) 
COMMON /POTX/V(2001) ,XM2(2001) ,XSTART ,XSTEP ,RNPHAS 

&,ERROR 
COMMON/VIS/ELOW,EHIGH,NEN,YIL,YSL,ESW,IPRV, 

&VISCD(25,10},VISC2(25) 
&,VISCE(25,10),VISCT(25},NT,VISC(25,10),IVFLAG,SECM 
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&,PRIM,VISC1{25) 
&,NX(25),NVIS,XMOLE(25,10) 
DATA BZI20.7477 I 
DATA NGLI10I ,NLI61 
DATA (U(I),I=1,10)I29.920697,21.996586,16.279258,11.843786, 

&8.330153,5.552496,3.4014337 ,1.8083429,. 72945455,.137793411 
DATA (W(I),I=1,10)I9.911827E-13,1.839565E-9,4.249314E-7, 

&2.825923E-5, 7 .530084E-4,9.501517E-3,6.2087 46E-2,2.180683E-1, 
&4.011199E-1,3.084411E-11 

C Initialize OMEGA arrays 
c 

DO 2 I=1,25 
OMEGA1(I)=O. 

2 OMEGA2(I)=O. 
c 
C Set up potential array for calculation of exact phase shifts 
c 

IF(ELOW.GT.ESW) GOTO 12 
XMIN=XSTART 
XH=XSTEP 
L=INT(RNPHAS) 
X(1)=XMIN-XH 
DO 10 I=1,L 
X(1)=X(1)+XH 
CALL POT(X,A,V1,VP,1,RM) 
V(I)=V1(1)*BZ 
XM2 (I)= 1. I (X( 1) *X( 1)) 

10 CONTINUE 
12 IF(IPRV.NE.2) GOTO 15 

WRITE(6,11) (XM2(I),V(I),I=1,L) 
11 FORMAT(2X,6E10.4) 
15 CONTINUE 
c 
C Set up energies at which generalized cross sections 
C are calculated 
c 

DE=(EHIGHIELOW)**(LI(FLOAT(NEN)-1.)) 
ENERGY(1)=ELOW 
DO 100 I=1,NEN 
RK=0.107428*SQRT(RM*ENERGY(I)) 
LMAX=INT(YIL+ YSL*RK) 
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IF (LMAX.GT.2500) LMAX=2500 
IF (ENERGY(I).GT.ESW) GOTO 50 

c 
C Do exact phase shifts 
c 

ZE=ENERGY(I)*0.001987 
IF (IPRV.EQ.2)WRITE(6,2000) ENERGY(I),LMAX 

2000 FORMAT(' ENTERING EXPS AT ENERGY ',F10.4,' AND LMAX =' 
&,110) 

c 

CALL EXPS(A,RM,ZE,LMAX,O) 
GOTO 60 

C Do JWKB phase shifts 
c 
50 ZE=ENERGY(I) *0.001987 

IF (IPRV.EQ.2)WRITE(6,2001) ENERGY(I),LMAX 
2001 FORMAT(' ENTERING JWPS AT ENERGY ',F10.4,' AND LMAX =' 

&,110) 
CALL JWPS( A,RM,ZE,LMAX,O) 

60 Ql(I)=O. 
Q2(1)=0. 

c 
C Calculate generalized collision cross sections 
c 

DO 70 J=l,LMAX-2 
RJ=FLOAT(J) 
Ql(I)=Ql(I)+RJ*(SIN(ETA(J+l)-ETA(J))**2) 

70 Q2(1)=Q2(1)+RJ*(RJ+l.)/(RJ+.5)*(SIN(ETA(J+2)-ETA(J))**2) 
RJ=RJ+l. 
J=LMAX-1 
Ql(I)=Ql(I)+RJ*(SIN(ETA(J+l)-ETA(J))**2) 
QU1=3.51894E-20/(RK*RK) 
Ql(I)=QUl *Ql(I) 
Q2(1)=QU1 * .5*Q2(1) 
ENERGY(!+ 1 )=ENERGY(!) *DE 

100 CONTINUE 
c 
C At each temperature Legendre interpolation is used to 
C determine the generalized cross sections at the points 
C where Gauss-Laguerre quadrature is performed to compute 
C the integral cross sections OMEGA! and OMEGA2 
c 
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C Calculations are done at NT temperatures 
c 

c 

DO 300 N=1,NT 
OMEGA3=0. 
INDEX=NEN+1 

C OMEGAS are calculated using NGL point quadratures 
c 

c 

DO 200 I=1,NGL 
EK=U(I)*VISCT(N) 

C Find range of NL points for interpolation 
c 
110 INDEX=INDEX-1 

IF(EK.GT.ENERGY(INDEX).OR.INDEX.LE.1) GOTO 120 
GOTO 110 

120 ITOP=MINO(INDEX+NL/2,NEN) 

c 

ITOP=MAXO(ITOP,NL) 
ITOP=ITOP+1 

C Do interpolation 
c 

Qli=O. 
Q2I=O. 
DO 140 J=1,4 
PROD=l. 
DO 130 K=1,4 
IF (J.EQ.K) GOTO 130 
PROD=PROD* (EK-ENERGY(ITOP-K)) 

& /(ENERGY(ITOP-J)-ENERGY(ITOP-K)) 
130 CONTINUE 

Qli=Qli+Ql(ITOP-J)*PROD 
Q2I=Q2I+Q2(ITOP-J) *PROD 

140 CONTINUE 
c 
C Do quadrature 
c 

TEMP= U(I) *U(I) *W(I) 
OMEGA1(N)= OMEGA1(N)+Qli*TEMP 
QQQ=Q2I*TEMP*U(I) 
OMEGA2(N)= OMEGA2(N)+QQQ 
OMEGA3=0MEGA3+QQQ*U(I) 
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200 CONTINUE 

c 

TEMP=18.188*SQRT(VISCT(N) /RM) 
OMEGl=OMEGAl(N) 
OMEG2=0MEGA2(N) 
OMEGA3=0MEGA3/ 4. 
FK=1.+3./49. *(4. *OMEGA3/0MEG2-3.5) **2 
OMEGAl(N)=OMEGAl(N)*TEMP 
OMEGA2(N)=OMEGA2(N)*TEMP 

C If the calculation is for a mixture use OMEGAS and pure viscosities 
C to calculate mixture viscosity 
c 

IF (IVFLAG.EQ.2) GOTO 225 
c 
C For a pure gas calculate viscosty from OMEGA2 
C FK is a factor for the second order Kihara approximation 
c 

VISC(N,l)=FK*8.627E-17*VISCT(N)/OMEGA2(N) 
GOTO 240 

225 HTEMP=11.58866E+16*RM/((SECM+PRIM)*VISCT(N)) 
HllTEMP=HTEMP*(.6666667*0MEGAl(N)+.2*SECM/PRIM 

& *OMEGA2(N)) 
H22TEMP=HTEMP*(.6666667*0MEGA1(N)+.2*PRIM/SECM 

& *OMEGA2(N)) 
H12TEMP=HTEMP*(.6666667*0MEGA1(N)-.2*0MEGA2(N)) 
DO 230 J=l,NX(N) 
Xl=XMOLE(N,J) 
X2=1.-XMOLE(N,J) 
Hll=Xl *Xl/VISCl(N)+Xl *X2*H11 TEMP 
H22=X2*X2 /VISC2(N) + Xl *X2*H22TEMP 
H12=-Xl *X2*H12TEMP 
HDIF=Hll *H22-H12*H12 
VISC(N,J)=(H22*Xl *Xl-2.*H12*Xl *X2+H11 *X2*X2)/HDIF 

230 CONTINUE 

240 CONTINUE 
IF(IPRV.EQ.O) GOTO 300 
DO 245 J=l,NX(N) 

245 WRITE(6,250) VISCT(N),VISC(N,J),OMEGA1(N),OMEGA2(N) 
250 FORMAT(lX,' AT ',F7.2,' K VISCOSITY= ',E15.5, 

&'OMEGA!= ',E15.5,' AND OMEGA2 = ',E15.5) 
300 CONTINUE 
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S=O. 
c 
C Calculate deviation from experimental data 
c 

DO 400 l=l,NT 
DO 400 J=l,NX(I) 
D= (VISC (I,J)-VIS CD (I,J)) /VISCE(I,J) 
S=S+D*D 

400 CONTINUE 
IF(IVFLAG.EQ.l) NVIS=NT 
VISDEL2=S /FLOAT(NVIS) 
RETURN 
END 
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c 
C Test program for SUBROUTINE VISCOUS 
c 

DIMENSION A{15),X{10),VA{10),VP{10) 
COMMON/PHSWTS/XQ{10),WQ{10),NXQ 
COMMON/POTX/V{2001),XM2{2001),XSTART,XSTEP, 

& RNPHASE,ERROR 
COMMON/VIS/ELOW,EHIGH,NEN,YIL,YSL,ESW,IPRV, 

& VISCD{25,10),VISC2{25) 
& ,VISCE{25,10) ,VISCT{25) ,NT ,VISC{25,10) ,IVFLAG,SECM, 
& PRIM,VISC1{25),NX{25),NVIS,XMOLE{25,10) 
DIMENSION GXQ{10),GWQ{10) 

c 
C Data for Gausian quadrature for JWKB phase shifts. 
c 

c 

DATA ( GXQ{I) ,I=1, 7) I .20119,.39415,.57097 ,. 72442,.84821,.93727' 
& .98799/ 
DATA {GWQ{I),I=1,7)/.19843,.18616,.16627,.13957,.10716,.07037, 

& .03075/ 

C Read input data. 
C PRIM and SECM are the mass{es) of the components of the 
C gas. If PRIM=SECM then the gas is pure; if PRIM is not equal 
C to SECM then the gas is a binary mixture. 
c 

c 

READ{5,1) PRIM,SECM 
IVFLAG=1 
IF {PRIM.NE.SECM) IVFLAG=2 

C ELOW,EHIGH,YIL,YSL, and ESW are parameters that depend upon the 
C desired calculation, its accuracy and speed. See SUBROUTINE 
C VISCOUS for details. 
c 

READ{5,1) ELOW,EHIGH,YIL,YSL,ESW 
1 FORMAT{8F10.3) 
c 
C XSTART,XSTEP,RNPHASE, and ERROR are used by the exact phase 
C shift routine. See M.F. Vernon thesis, U.C. Berekely 1981. 
c 

READ{5,1) XSTART,XSTEP,RNPHASE,ERROR 
c 
C NEN is the number of energies at which to calculate phase shifts. 
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c 
READ(5,2) NEN 

2 FORMAT(I3) 
c 
C Read in potential parameters, reduced mass and the number of 
C temperatures at which to calculate viscosities. 
c 

c 

READ(5,1) (A(I),I=1,15) 
READ(5,1) RM 
READ(5,2) NT 

C Write out input. 
c 

c 

WRITE(6,1) ELOW,EHIGH,YIL,YSL,ESW 
WRITE(6,2) NEN 
WRITE(6,1) (A(I),I=1,15) 
WRITE(6,1) RM 
WRITE(6,2) NT 
IF(IVFLAG.EQ.2) GOTO 203 

C H gas is pure, read in temperatures of viscosity data, the data 
C itself, and the associated uncertainty in the data. 
c 

c 

READ(5,1) (VISCT(I),VISCD(I,1),I=1,NT) 
READ(5,l) (VISCE(I,1),I=1,NT) 
WRITE(6,1) (VISCT(I),VISCD(I,l),I=1,NT) 
WRITE(6,1) (VISCE(I,1),I=1,NT) 
GOTO 204 

C H the gas is a binary mixture, read in the number of 
C mole fractions of component 1 at each temperature. 
c 
203 READ (5,2) (NX(I),I=1,NT) 

WRITE(6,2) (NX(I),I=1,NT) 
NVIS=O 

c 

DO 201 I=1,NT 
NVIS=NVIS+ NX(I) 

C Read in the viscosity temperatures and the pure viscosities 
C of the components at those temperatures. 
c 

READ (5,1) VISCT (I), VISC 1 (I), VIS C2 (I) 
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WRITE(6,1) VISCT(I),VISC1(I),VISC2(I) 
c 
C Read in the mole fractions, experimental viscosities and errors. 
c 

READ(5,1) (XMOLE(I,J),VISCD(I,J),VISCE(I,J),J=1,NX(I)) 
201 WRITE(6,1) (XMOLE(I,J),VISCD(I,J),VISCE(I,J),J=1,NX(I)) 

WRITE(6,1) (VISCT(I),I=1,NT) 
204 NXQ=7 
c 
C Set up Gaussian quadrature for JWKB phase shifts. 
c 

c 

DO 5 I=l,NXQ 
XQ(I)=l.-GXQ(I)*GXQ(I) 
WQ(I)=2.*GXQ(I)*GXQ(I)*GWQ(I) 
5 CONTINUE 
WRITE(6,1) (XQ(I),WQ(I),I=1,NXQ) 
CALL VISCOUS(VISDEL2,A,RM) 

C Write out results. 
c 

DO 200 I=1,NT 
IF(IVFLAG.EQ.1) NX(I)=l 
DO 200 J=1,NX(I) 
WRITE(6,100) VISCT(I),VISC(I,J),VISCD(I,J),VISCE(I,J) 

100 FORMAT(1X,'AT ',F7.1,' VISC= ',F10.3,' EXPT= ',E15.5,' ERROR' 
&,'=',F5.2) 

200 CONTINUE 
CALL EXIT 
END 
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Appendix C 

Neon-Chlorine Time-of-Flight Data 

This appendix lists the distributions of chlorine scattering from neon which 

were analyzed in Chapter 3. Included are data for both an angular and time-of-

flight distributions. The angular intensity distributions include laboratory angle 

(0), intensity, and experimental uncertainty(~). The time-of-flight distributions 

have been normalized to the angular intensities. The time corresponding to 

the center of each channel is found by multiplying the channel number by 8 

microseconds and subtracting on offset of 28 microseconds, which accounts for 

the ion flight time. 

Table C.l. Neon-Chlorine angular distribution for collision energy 1476 K. 

E> Intensity ~ 

6.0° 1575 10 
10.0° 1000 2 
14.0° 796 6 
18.0° 701 4 
22.0° 787 4 
26.0° 848 3 
30.0° 564 2 
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Table C.2. Neon-chlorine time-of-flight data for collision energy 1476 K. 

Channel 60 100 14° 18° 22° 26° 30° 

33 6 84 98 0 0 0 0 
34 53 0 74 12 0 0 0 
35 5 58 44 1 0 0 0 
36 769 974 646 33 0 0 0 
37 4489 4632 3026 1171 56 0 0 
38 14046 11367 7681 4278 1022 0 0 
39 25497 16630 11493 8325 3197 232 0 
40 29293 15285 11003 10456 6062 1209 0 
41 23239 10114 7343 9225 7721 3187 66 
42 14577 5852 3970 6218 7778 5047 446 
43 8689 3520 2347 3503 7098 5580 1118 
44 5519 2339 1702 1873 5794 5199 2389 
45 3810 1771 1335 983 4155 4747 3749 
46 2578 1370 1034 535 2722 4416 4279 
47 1831 1082 869 283 1599 4236 4139 
48 1333 782 656 163 1081 4074 3645 
49 968 599 504 153 695 3955 3154 
50 772 628 549 177 516 3671 2754 
51 688 480 483 118 436 3369 2542 
52 658 483 367 199 501 3107 2297 
53 550 386 264 162 635 2898 2101 
54 271 284 191 48 610 2536 1986 
55 309 237 205 113 739 2302 1891 
56 180 225 156 190 907 2113 1780 
57 73 146 99 183 1102 1943 1646 
58 8 124 122 274 1258 1765 1569 
59 -62 115 248 401 1281 1520 1585 
60 268 229 389 680 1424 1418 1488 
61 342 365 464 826 1506 1352 1368 
62 531 488 598 934 1350 1232 1315 
63 743 639 705 1092 1323 1157 1342 

- continued-
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Table C.2. continued 

Channel 60 100 14° 18° 22° 26° 30° 

64 937 750 910 1267 1352 1139 1163 
65 1044 848 916 1239 1190 1103 1018 
66 1214 1042 1123 1159 1119 1042 944 
67 1387 1243 1186 1169 969 1016 886 
68 1426 1273 1177 1121 910 932 760 
69 1507 1237 1216 1071 933 942 594 
70 1342 1170 1109 1053 1026 915 429 
71 1185 1179 1069 975 931 853 330 
72 1257 1163 1028 847 830 662 294 
73 1268 1068 1034 891 882 623 282 
74 1176 992 932 923 940 562 178 
75 1046 879 875 784 769 439 71 
76 753 811 806 712 627 325 72 
77 637 732 722 558 484 273 134 
78 551 716 734 615 506 202 2 
79 385 558 641 440 314 151 4 
80 393 543 623 393 255 104 0 
81 501 454 485 367 216 105 0 
82 419 413 380 312 172 123 0 
83 222 283 311 149 99 50 0 
84 136 201 258 106 59 19 17 
85 267 278 243 155 119 91 22 
86 217 155 220 108 115 27 0 
87 74 82 176 30 58 23 35 
88 145 274 203 86 144 51 0 
89 191 240 201 70 76 45 0 
90 134 151 151 74 20 1 98 
91 104 220 103 96 96 89 69 
92 156 148 174 111 186 87 49 
93 107 119 155 97 68 104 0 
94 136 80 133 68 128 53 23 



- 135-

Appendix D 

Rotationally Inelastic Scattering Simulation 

D.l Computer Code 

A computer code was developed to simulate the rotationally inelastic 

scattering described in Chapter 3. The program calculates laboratory time-of­

flight spectra as well as laboratory total angular distributions (total differential 

cross sections) including proper transformation of the individual inelastic cross 

sections from the center-of-mass frame to the laboratory frame. The routine 

LSTSQ, an overall least squares fitting program employing MINPACK routines, 1 

was modified from the elastic scattering program developed by Vernon at 

Berkeley. 2 The function which is used in the least squares routine, includes 

calls to the routine CMLB, a modified version of a reactive scattering program 

also developed at Berkeley.3 CMLB calculates center-of-mass and laboratory 

coordinates for Newton diagrams corresponding to the experimental conditions. 

CMLB calls the routine EVAL which evaluates the scattering into a specified 

region in velocity space. EVAL is included below to describe the implementation 

of the IOSA equations presented in Chapter 3 which calculate the rotationally 

inelastic scattering. The potential and phase shift routines called in EVAL are 

similar to those described in Reference (2). EVAL uses vector and matrix routines 

available for the Floating Point Systems 164 attatched processor, to facilitate the 

quadrature needed for the IOS approximation. Standard FORTRAN routines 

which emulate these special FPS 164 routines are also included here. 
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c *************************************************** 
SUBROUTINE EVAL(A,NSET) 

c *************************************************** 
c 
C This routine is for use with a center-of-mass to lab 
C transformation program. 
c 
C On the initial call this 
C routine determines center-of-mass differential 
C cross sections at given collision energies and center-of-
C mass angles from 0 to 180 degrees for an atom-diatom collision, 
C using the Infinite Order Sudden approximation. 
c 
C On subsequent calls scattering from 
C all transitions which can contribute to flux into a region 
C in laboratory velocity space is calculated from the 
C differential cross sections. 
c 
C Written 1985-1986 Brian Reid 
c 
c 

c 

DIMENSION P(250),V(75),DCS0(71,200,24) 
DIMENSION PG(80,80),PGT(80,80),CETA(250,80),SETA(250,80) 
DIMENSION CA(80,200),S(80,200),WGAMMA(80) 
DIMENSION ETA(250,12),COSGAM(80),A(15) 
DIMENSION TLP1(250),ANGLE(200),AI(12),XI(l2),WI(l2),PX(12,12) 
DIMENSION PXT(12,12) ,ETAT(12,250) ,ETAL(12,250) 
DIMENSION W2M(4),VLAB(8),TDCS(200,24),FC(80) 
DIMENSION TLAB(8),THETA(8),D1(75),D0(75),FS(80) 
DIMENSION XII(7),WII(7) 
DIMENSION VLIM2(2),BX(2) 

C The common blocks EVALS and SAVE are used for least 
C squares fitting of one or more sets of data. 
c 

c 

COMMON/EVALS/MAXJI,NETA,MAXJF,ROTJ(20) 
COMMON/SAVE/NVS(2,3),NGAMS(3),NGRIDS(3),HWIDBS(3), 

& VPARS(2,2,3),CXYZS(200,3,3),URS(200,3,3), 
& CMS(200,3,3),CS(200,3),ES(200,3),US(200,3), 
& FABGS(200,3),MIJKS(3),TPPS(200,3),CSQS(200,3) 
& ,THCS(200,3),NANGS(3),NVLS(3),VOS(3),VDS(3),ANGS(100,3) 
& ,BS(100,3),VLS(300,3),NATOFS(3),STDS(100,3),MAXJIS(3) 
& ,NETAS(3),MAXJFS(3),ROTJS(20,3),NSETS,GBS(2,3),GCMS(3) 
& ,G3S(3) 
& ,XCS(3),YCS(3),DRS(3),NDETS(3) 
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C The common block WIGNER is used to store and retrieve Wigner 
C 3-j coefficients. 
c 

COMMON/WIGNER/W3J(900,76) 
c 
C The common block NDPAR contains parameters associated 
C with each Newton diagram for which cross sections or 
C scattering may be calculated. 
c 

COMMON/NDPAR/NONPL,NV(2), NGAM,NGRID,GB(2),GCM,G3 
& ,GAMMA,HWIDB,VPAR(2,2) 
& ,CXYZ(200,3),UR(200,3),CM(200,3),C(200),E(200), 
& U(200),FABG(200),MIJK,TPP(200),CSQ(200),THC(200) 

c 
C The common block EVALN contains passes information about 
C the particular call to EVAL. 
c 

c 

COMMON/EVALN/ECM,PP,COLLEN,CTH,ESWITCH,LSWITCH, 
& COST,EP,NLEGV,PPP(16),BB(9),IJK,ALIM(2),VLIM(2),VALUE, 
& COSA(2),SINA(2),ALAB,ALIMA,ALIMB,ALIMC 
COMMON/PHSWTS/XQ(lO),WQ(lO),NXQ 
DIMENSION GXQ(10),GWQ(10) 
LOGICAL ESWITCH,LSWITCH 
DATA PI,PI2,U2TOEN/3.141592654,6.283185308,1.19503E-3/ 
DATA L0/6/ 

C Data for quadratures and interpolations are stored 
C in this section. 
c 
C AI contains angles corresponding to the arccos of 
C the XI point of a KQUAD Gaussian quadrature. 
C WI are the associated quadrature weights. 
C These are the atom-molecule orientations at which 
C phase shifts are evaluated. 
c 
C COSGAM contains the NQUAD points for a Gaussian 
C quadrature. WGAMMA contains the corresponding weights. 
C This is for integration over the atom-molecule orientations 
C to determine state-to-state differential cross sections. 
c 
C GXQ and GWQ contain points and weights for Gaussian 
C to evaluate the JWKB phase shifts. 
c 

DATA KQUAD/12/ 
DATA AI/1.37846,1.12931,.878689,.627741,.376676,.125563, 

&-.125563,-.376676,-.627741,-.878689,-1.12931,-1.37846/ 
DATA XI/ -.981561,-.904117,-.769903,-.587318,-.367832,-.125233 

& ,.125233,.367832,.587318,. 769903,.904117,.9815611 
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DATA WI/ .04 71753,.106939,.160078,.203167,.233493,.24914 7 
& ,.249141,.233493,.203167 ,.16oo78,.1o6939,.o4 117531 
DATA NQUAD/80/ 
DATA (COSGAM(I),1=1,72)/-0.9995538226,-0.9976498643, 

& -0.9942275409,-0.9892913024, 
& -0.9828485 727,-0.97 49091405,-0.9654850890,-0.9545907663, 
& -0.9422427613,-0.9284598771,-0.9132631025,-0.8966755794, 
& -0.8787225676,-0.8594314066,-0.8388314735,-0.8169541386, 
& -0.7938327175,-0.7695024201,-0.7 440002975,-0.7173651853, 
& -0.6896376443,-0.6608598989,-0.6310757730,-0.6003306228, 
& -0.5686712681,-0.5361459208,-0.5028041118,-0.4686966151, 
& -0.4338753708,-0.3983934058,-0.362304 7534,-0.3256643707' 
& -0.2885280548,-0.2509523583,-0.2129945028,-0.17 4 7122918, 
& -0.1361640228,-0.0974083984,-0.0585044371,-0.0195113832, 
& 0.0195113832, 0.0585044371, 0.0974083984, 0.1361640228, 
& 0.1747122918, 0.2129945028, 0.2509523583, 0.2885280548, 
& 0.3256643707, 0.3623047534, 0.3983934058, 0.4338753708, 
& 0.4686966151, 0.5028041118, 0.5361459208, 0.5686712681, 
& 0.6003306228, 0.6310757730, 0.6608598989, 0.6896376443, 
& 0.7173651853, 0.7440002975, 0.7695024201, 0.7938327175, 
& 0.8169541386, 0.8388314735, 0.8594314066, 0.8787225676, 
& 0.8966755794, 0.9132631025, 0.9284598771, 0.9422427613/ 
DATA (COSGAM(I),1=73,80)/ 0.9545907663, 0.9654850890, 

& 0.9749091405, 0.9828485727, 
& 0.9892913024, 0.9942275409, 
& 0.9976498643, 0.9995538226/ 
DATA (WGAMMA(I),I=1,72)/0.0011449500, 0.0026635335, 

& 0.0041803131, 0.0056909224, 
& 0.0071929047, 0.0086839452, 0.0101617660, 0.0116241141, 
& 0.0130687615, 0.0144935080, 0.0158961835, 0.01727 46520, 
& 0.0186268142, 0.0199506108, 0.0212440261, 0.0225050902, 
& 0.0237318828, 0.0249225357, 0.0260752357, 0.0271882275, 
& 0.0282598160, 0.0292883695, 0.0302723217' 0.03121017 41, 
& 0.0321004986, 0.0329419393, 0.0337332149, 0.0344731204, 
& 0.0351605290, 0.0357943939, 0.0363737 499, 0.0368977146, 
& 0.0373654902, 0.0377763643, 0.0381297113, 0.0384249930, 
& 0.0386617597' 0.0388396510, 0.0389583959, 0.0390178136, 
& 0.0390178136, 0.0389583959, 0.0388396510, 0.0386617597, 
& 0.0384249930, 0.0381297113, 0.0377763643, 0.0373654902, 
& 0.0368977146, 0.0363737499, 0.0357943939, 0.0351605290, 
& 0.0344731204, 0.0337332149, 0.0329419393, 0.0321004986, 
& 0.0312101741, 0.0302723217, 0.0292883695, 0.0282598160, 
& 0.0271882275, 0.0260752357, 0.0249225357, 0.0237318828, 
& 0.0225050902, 0.0212440261, 0.0199506108, 0.0186268142, 
& o.o1121 4652o, o.o158961835, o.o144935o8o, o.o130687615 1 
DATA (WGAMMA(I),1=73,80)/ 

& 0.0116241141, 0.0101617660, 0.0086839452, 0.007192904 7' 
& 0.0056909224, 0.0041803131, 0.0026635335, 0.0011449500/ 
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DATA( GXQ(I) ,1=1, 7) I .20119,.39415,.57097 ,. 72442,.84821, 
& .93727,.987991 
DATA(GWQ(I),I=1,7)I.19843,.18616,.16627,.13957,.10716, 

& .07037,.030751 

C FORMAT statements for input. 
c 

c 

c 

1 FORMAT(10F10.3) 
2 FORMAT{lOilO) 

NLEGV=1 
IF(ESWITCH) GOTO 25 
IF(LSWITCH) GOTO 325 

C For initial time through read in necessary parameters and 
C do set up 
c 
C PMASS =mass of primary beam in amu (glmole) 
C SMASS =mass of secondary beam in amu (glmole) 
C BE = rotational constant of diatomic molecule in kcallmole (!) 
C MAXJI= maximum rotational state of initial distribution 
C MAXJF= maximum final rotational state considered 
C ISYM = 1 for heteronuclear diatomic molecule 
C ISYM = 2 for homonuclear diatomic molecule 
C ISYM = 3 for spherical calculation 
C MAXNFS =maximum number of final states needed for 
C JINITIAL=O this is (MAXJF+1)12 for isym=2 
C NETA = number of phase shifts used in cross section calculations 
C IPSP = print flag for phase shifts, O=no printing 1=print 
C ROT J (I) = relative population of ith initial rotational level 
C A() =set of potential parameters 
C JBSTEP = Every JBSTEP final J values use the same value of JBAR 
C in the ES part of the IOSA. For JBAR=O for all 
C transitions use JBSTEP>MAXNFS. Using JBSTEP=l will 
C calculate phase shifts for energies E-BE* JF*(JF+l)l2 
C for each J =0 to JF transition. 
c 

READ(5,1) BE 
READ(5,2) MAXJI,NETA,IPSP,MAXJF ,ISYM,JBSTEP 
ISYMS=ISYM 
IF(ISYM.NE.3) GOTO 26 
WRITE(L0,27) 

27 FORMAT(' Calculation is spherical') 
ISYMS=l 

c 
C NFLAG, NANGl, NANG2, NANG3, NANG4 are parameters to 
C determine the angles at which the differential cross sections 
C are calculated 
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c 
26 READ (5,2) NFLAG,NANG1,NANG2,NANG 
c 
C If NFLAG equals 0 then the differential cross section will be read 
C in from unit 4 using the same input format as output is done to unit 8. 
C If NFLAG equals 1 then des's are calculated but not written to unit 8. 
C If NFLAG equals 2 then des's are calculated and written to unit 8. 
c 
C NANG!= no. of angles starting at 1 (zero degrees) to be spaced by 
C SOOths of pi radians ( .36 degrees). 
C NANG2= no. of angles starting at nangl+l to be spaced by 
C 200ths of pi radians (.9 degrees). 
C NANG= TOTAL no. of angles to fill to Pi radians 
c 

IF (NFLAG.GT.O) GOTO 80 
c 
C Read in angles from unit 4 if desired. 
c 

OPEN(4,FILE='FOR004',STATUS='OLD') 
READ(4,8002) NANG,IDUM2 
READ(4,8003) (ANGLE(N),N=l,NANG) 
DO 804 IE=l,NGRID 
READ(4,8003) (TDCS(N,IE),N=l,NANG) 
DO 804 JFINAL=O,MAXJF+MAXJI,isymS 
READ ( 4,8002) JDUM 

804 READ(4,8003) (DCSO(JFINAL+l,N,IE),N=l,NANG) 
80 ANGLE(l)=O. 

do 81 I=2,nangl 
81 ANGLE(I)=ANGLE(I-1)+.0062831853 

DO 82 I=NANG1+1,NANG2+NANG1 
82 ANGLE(I)=ANGLE(I-1)+.0157079633 

NANG12=NANG1+NANG2 
DANG=(PI-ANGLE(NANG12))/(NANG-NANG12) 
DANGI=l./DANG 
DO 7 I=NANG12+1,NANG 
7 ANGLE(I)=ANGLE(I-l)+DANG 

83 MAXNFS=(MAXJF+MAXJI)/ISYMS+l 

c 

MAXJFl=MAXJF+l 
READ(5,1) (ROTJ(I),I=l,MAXJI+l) 
READ(5,1) (A(I),I=1,15) 

C Write out input. 
c 

WRITE(L0,1002) GB(l),GB(2),BE,NETA 
WRITE(L0,1009) JBSTEP 
WRITE(10,1009) JBSTEP 
WRITE(L0,1003) 
WRITE(L0,1004) (1-l,ROTJ(I),I=l,MAXJI+l) 
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write(L0,1006) MAXJF ,MAXNFS 
1006 FORMAT(' The maximum final J is ',i4, 

&' and the number of final states is ',i4,'. ') 
C WRITE(L0,1005) (A(I),I=1,15) 

WRITE(10,1005) (A(I),I=1,15) 
1002 FORMAT(/' Mass of primary beam = ',F10.4, 

&'Mass of secondary beam=',/, 
&F10.4,' Be = ',F10.5,' Number of phase shifts= ',15) 

1003 FORMAT(/' Initial rotational distribution (J and weight)') 
1004 FORMAT(4(2X,I5,F8.4)) 
1005 FORMAT(' Potential parameters ',/,2(8F10.4,/)) 
1009 FORMAT (' Jbstep ',IlO) 
c 
C Get Wigner 3-J symbols needed for the determination of 
C the entire matrix of state-to-state des's from the first 
C column. 
C Symbols will be returned in two dimensional array W3J. 
C For J1,J2,J3 second array index is J1+1 and first array 
C index is (J2-J1)*((J1+2)/2)+(J3-J2+2)/2. 
C This array is not densely packed but don't worry about it. 
C The subroutine WIGVEC will make use of the array when we 
C need the symbols. 
c 

CALL WIGNER3J 
39 IF(NFLAG.EQ.O) RETURN 
c 
C Set up gaussian quadruture points and weights for the semi-
C classical phase shift routine. 
c 

NXQ=7 
DO 15 1=1,NXQ 
XQ(I)=l.-GXQ(I)*GXQ(I) 
WQ(I)=2. *GXQ(I)*GXQ(I)*GWQ(I) 

15 CONTINUE 
c 
C Set up vectors to find coefficients of scattering intensity 
C expansion in Legendre polynomials. 
C PG(i,j) is an array of Legendre polynomials Pi( cos aj) 
C and PGT is its transpose. 
c 

DO 11 KGAMMA=1,NQUAD 
11 CALL LPOLY(COSGAM(KGAMMA),NQUAD,PG(1,KGAMMA)) 

CALL MTRANS(PG,1,PGT,1,NQUAD,NQUAD) 
c 
C Set up vectors to find coefficients of phase shift 
C expansion in Legendre polynomials. 
C PX and PXT are analogous to PG and PGT. 
c 
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DO 111 KX=1,KQUAD 
111 CALL LPOLY(XI(KX),KQUAD,PX(1,KX)) 

CALL MTRANS(PX,1,PXT,1,KQUAD,KQUAD) 
c 
C PXT and PGT are column multiplied by the Gaussian quadrature 
C weights. 
c 

DO 113 I=1,KQUAD 
113 CALL VMUL(PXT(1,I),1,WI,1,PXT(1,I),1,KQUAD ) 

DO 13 I=1,NQUAD 
13 CALL VMUL(PGT(1,I),1,WGAMMA,1,PGT(1,I),1,NQUAD) 
c 
C Set up vector of 2L+l. 
c 

TLP1(1)=1 
DO 12 L=2,250 

12 TLP1(L)=TLP1(L-1)+2 
c 
C Phase shifts must be calculated for different orientation angles, 
C GAMMA, and for energies appropriate to a given transition. For 
C this first model I just use the initial collision energy. 
C KQUAD orientations are used. A(15) is assumed to be the 
C angle for the potential. The phase shift routine should 
C return ETA(L+1,KGAMMA) for the Lth phase shift at angle 
C GAMMA. The phase shifts are calculated at NGRID energy 
C points which are provided by the calling routine. 
c 
C For ISYM=1 the calculation is for a heteronuclear diatom and the 
C maximum work must be done. 
C For ISYM=2 the calculation is for a homonuclear diatom and only 
C half the work need be done. 
C For ISYM=3 the calculation is for a spherical potential and even 
C less work is done. 
c 

IF(ISYM.NE.3) GOTO 88 
KQSYM=1 
GOTO 89 

88 KQSYM=KQUAD /ISYM 
c 
C Save things for least squares with more than one set of data. 
c 
89 MAXJIS (NSET) =MAXJI 

NETAS(NSET)=NETA 
MAXJFS(NSET)=MAXJF 
CALL VMOV(ROTJ(1),1,ROTJS(1,NSET),1,20) 
RETURN 

325 CONTINUE 
c 
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C RMASS is the reduced mass. FACTM, RKFACT and FMBE 
C are factors used in converting energy units, etc. 
c 

c 

PMASS=GB(1) 
SMASS=GB(2) 
RMASS=PMASS *SMASS I (PMASS+SMASS) 
FACTM=U2TOEN*PMASS*PMASS/RMASS 
RKFACT=l./(RMASS*20.747*4.) 
FMBE=FACTM/BE 
MAXFS=MAXJF+MAXJI 
MAXFS1=MAXJF+MAXJI+1 
MAXNFS= (MAXFS) /ISYMS+ 1 

C DELTAH and DELTAL are the max and min possible changes in 
C energy associated with inelastic transitions (in units of BE). 
c 

c 

DELTAH=MAXJF*(MAXJF1) 
DELTAL=-MAXJI*(MAXJI+1) 

C Set up weights for quadrature over detector limits. 
c 

c 

IQUAD=NDETS(NSET) 
CALL GLQ(IQUAD,-l.,l.,XII,WII) 
DO 110 I=1,NGRID 
DO 100 JFP1=1,MAXFS1,ISYMS 

C A dependence of JBAR in the IOSA upon the final J state 
C is included. This is done by asuming JBAR= 
C (SQRT(1+2*JF*JF+2*JF)-1)/2 for every JBSTEP final J value. 
c 

JF=JFP1-1 
IF(BE*JF*JFPl.LT.E(I)) GOTO 218 
DO 219 N=1,NANG 
DCSO(JFP1,N,I)=O. 

219 CONTINUE 
GOTO 100 

218 IF(MOD(JF,JBSTEP).NE.O) GOTO 103 
ENERG=E(I)-.5*BE* JF* JFP1 
DO 220 KX=1,KQSYM 
A(15)=AI(KX) 
CALL PREPOT(A,RMASS) 

220 CALL PHASE(ETA(1,KX),NETA,ENERG,1,A,RMASS,IPSP) 
IF (ISYM.EQ.2) GOTO 223 
IF (ISYM.EQ.1) GOTO 224 

c 
C For spherical calculation. We now need to find the cosines and 
C sines of 2. *eta's. These manipulations are performed 
C vectorially. The routines are standard for a Floating Point 
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C System Attached Processor. Standard FORTRAN routines are included 
C for general use. 
c 

c 

CALL VSMUL(ETA,1,2.,ETA, l,NETA) 
CALL VCOS(ETA,l,CETA(l,l),l,NETA) 
CALL VSIN(ETA,l,SETA(l,l),l,NETA) 
CALL VSADD(CETA(l,l),l,-l.,CETA(l,l),l,NETA) 
CALL VMUL(CETA(l,l),l,TLPl,l,CETA(l,l), l,NETA) 
CALL VMUL(SETA(l,l),l,TLPl,l,SETA(l,l), l,NETA) 

C We now loop over all angles and take the vector product of P with 
C the cosine and sine of the vector ETA(L+l) for each GAMMA in order 
C to determine the scattering amplitude F(GAMMA). 
c 

c 

DO 350 N=l,NANG 
COSTHE=COS(ANGLE(N)) 
CALL LPOLY( COSTHE,NETA,P) 

C We will take the vector product of P with the 
C cosine and sine of the vector ETA(L+l) for each GAMMA in order 
C to determine the scattering amplitude F(GAMMA). 
c 

CALL DOTPR(CETA(l,l),l,P,l,CA(l,N),NETA) 
CALL DOTPR(SETA(l,l),l,P,l,S(l,N),NETA) 

350 CONTINUE 
c 
C For the spherical calculation there is only one des per angle. 
C It is the absolute square of the scattering amplitude and 
C is equal to the Total Differential Cross Section TDCS. 
C RK2 is a unit factor that should make the cross sections 
C come out in square angstroms. 
c 

RK2=RKFACT /E(I) 
DO 3105 N=l,NANG 
FC3=CA(l,N) *CA(l,N) 
FS3=S(l,N)*S(l,N) 
TDCS(N,I)=FC3+FS3 
DCSO(l,N,I)=TDCS(N,I)*RK2 

3105 CONTINUE 

c 

CALL VSMUL(TDCS(l,I),l,RK2,TDCS(l,I), !,NANG) 
GOTO 110 

C For homonuclear diatomic molecules the phase shifts 
C were calculated at only half of the orientations. 
C Now the other half of the symmetric array is filled in. 
C ETAT holds the transpose of this array. 
c 
223 DO 222 KX=l,KQSYM 
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222 CALL VMOV(ETA(l,KX),l,ETA(l,KQUAD+l-KX),l,NETA) 
224 CALL MTRANS(ETA,l,ETAT,l,KQUAD,250) 
c 
C Now the coefficients for expansion of the phase shifts 
C as a function of angle in K QUAD Legendre polynomials 
C are found and stored in ETAL. This is done by 
C using K QUAD quadrature and the phase shifts calculated 
C above. 
c 

DO 230 L=l,NETA 
DO 225 KL=l,KQUAD 

225 CALL DOTPR(ETAT(l,L),l,PXT(l,KL),l,ETAL(KL,L),KQUAD) 
230 CALL VMUL(ETAL(l,L),l,TLPl,l,ETAL(l,L),l,KQUAD) 

NQUADS=NQUAD /ISYMS 
DO 50 KGAMMA=l,NQUADS 

c 
C We need the phase shifts at the particluar angular orientation 
C for each point over the NQUAD Gauss-Legendre quadrature. 
C These are found from the expansion of ETA in K QUAD Legendre 
C polynomials. 
c 

CALL LPOLY(COSGAM(KGAMMA),KQUAD,P) 
DO 49 L=l,NETA 

49 CALL DOTPR(ETAL(l,L),l,P(l),l,ETA(L,l),KQUAD) 
c 
C We really need the (2L+l)SIN(2*ETA) and (2L+l)(l-COS(2*ETA)) 
C But we do not need to multiply ETA'S by 2 since the ETAL'S were 
C twice as large as they ought to have been (they were not divided 
C by two when calculated). 
C CALL VSMUL(ETA,1,2.,ETA,l,NETA) 
c 
C This is similar to section above for spherical calculation. 
c 

c 

CALL VCOS(ETA,l,CETA(l,KGAMMA),l,NETA) 
CALL VSIN(ETA,l,SETA(l,KGAMMA),l,NETA) 
CALL VSADD(CETA(l,KGAMMA),l,-l.,CETA(l,KGAMMA), 
& l,NETA) 
CALL VMUL(CETA(l,KGAMMA),l,TLPl,l, 
& CETA(l,KGAMMA), l,NETA) 
CALL VMUL(SETA(l,KGAMMA),l,TLPl,l, 
& SETA(l,KGAMMA), l,NETA) 
DO 50 N=l,NANG 
COSTHE=COS(ANGLE(N)) 
CALL LPOLY(COSTHE,NETA,P) 

C We take the vector product of P with the 
C cosine and sine of the vector ETA(L+l) for each GAMMA in order 
C to determine the scattering amplitude F(GAMMA). 
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CALL DOTPR(CETA(l,KGAMMA),l,P,l,CA(KGAMMA,N),NETA) 
CALL DOTPR(SETA(l,KGAMMA),l,P,l,S(KGAMMA,N),NETA) 

50 CONTINUE 
c 
C Now the differential cross sections for J=O to JFINAL are 
C calculated for JFIN AL from 0 to MXJFIN. This is done by 
C averaging the scattering amplitude over the rotational 
C wavefunctions for J=O and JFINAL. These are just Legendre 
C polynomials (with angular momentum quantum numbers m=O). 
c 

RK2=RKFACT /E(I) 
103 DO 104 N=l,NANG 

ifQf.ne.O) goto 102 
CALL VMUL(CA(l,N),l,CA(l,N),l,FC, l,NQUADS) 
CALL VMUL(S(l,N),l,S(l,N),l,FS, l,NQUADS) 
CALL VADD(FS,l,FC,l,FC,l,NQUADS) 
CALL DOTPR(FC,l,WGAMMA,l,TDCS(N,I),NQUADS) 

102 CALL DOTPR(Ca(l,N),l,PGT(l,JFPl),l,Fl,NQUADS) 
CALL DOTPR(S(l,N),l,PGT(l,JFPl),l,F2,NQUADS) 
DCSO(JFPl,N,I)=Fl *Fl+F2*F2 

104 CONTINUE 
100 CONTINUE 

DO 105 N=l,NANG 
CALL VMUL(DCSO(l,N,I),ISYMS,TLPl,ISYMS,DCSO(l,N,I), 

&ISYMS,MAXNFS) 
CALL VSMUL(DCSO(l,N,I),ISYMS, 

&isyms* .5*RK2,DCSO(l,N ,I) ,ISYMS,MAXNFS) 
105 CONTINUE 

CALL VSMUL(TDCS(l,I),l,isyms* .5*RK2,TDCS(l,I), !,NANG) 
110 CONTINUE 

IF (NFLAG.NE.2) GOTO 8005 
OPEN(8,FILE='FOR008' ,STATUS='NEW') 
WRITE(8,8002) NANG,MAXFSl 

8002 FORMAT(IlO) 
WRITE(8,8003) (ANGLE(N),N=l,NANG) 

8003 FORMAT(8e15.8) 
DO 8004 IE=l,NGRID 
WRITE(8,8003) (TDCS(N,IE),N=l,NANG) 
DO 8004 JFINAL=O,MAXFS,isym 
WRITE(8,8002) JFINAL 

8004 WRITE(8,8003) (DCSO(JFINAL+l,N,IE),N=l,NANG) 
c 
C Return here after initial call. 
c 
8005 RETURN 
25 CONTINUE 
c 
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C If this is not the initial call the scattering intensity over 
C the laboratory observation area in velocity space needs to be 
C calculated. The input data to define this area are VLIM(1) and 
C VLIM(2) and ALIM(1) and ALIM(2). For both vectors value 1 
C should be less than value 2. VLIM defines the laboratory velocity 
C limits and ALIM defines the detector angular resolution limits. 
c 
C C1 and C2 are the x andy components of the center-of-mass 
C velocity vector. PPP(1) and VALUE are both the scattering intensity 
C which is returned. 
c 

c 

C1=CM(IJK,1) 
C2=CM(IJK,2) 
C2SQ=C2*C2 
VALUE=O. 
PPP(1)=0. 

C Check for center of mass vector being in velocity region. 
C Ignore the case when it is. THC(IJK) is the angle the c-o-m 
C velocity makes with the primary beam. 
c 

IF(ALIM(2).LT.THC(IJK)) GOTO 499 
IF(ALIM(l).GT.THC(IJK)) GOTO 499 
IF(VLIM(2).LT.C(IJK)) GOTO 499 
IF(VLIM(1).GT.C(IJK)) GOTO 499 
RETURN 

499 K=O 
c 
C We calculate the maximum and minimum velocities in the 
C center of mass frame which could give scattering into the 
C observation area. This is a geometry problem. 
c 

DO 602 1=1,2 
BX(I)=C1 *COSA(I)+C2*SINA(I) 
VLIM2 (I)= VLIM(I) *VLIM(I) 
DO 603 J=1,2 
K=K+l 
WX=VLIM(I)*COSA(J)-C1 
WY=VLIM(I)*SINA(J)-C2 
W2M(K)=WX*WX+WY*WY 

603 CONTINUE 
602 CONTINUE 

W2MAX=AMAX1(W2M(1),W2M(2),W2M(3),W2M(4)) 
W2MIN=AMIN1(W2M(1),W2M(2),W2M(3),W2M(4)) 
ICASE=l 
IF(ALIM(2).LT.THC(IJK)) ICASE=2 
WP=Cl *SINA(ICASE)-C2*COSA(ICASE) 
W2P=WP*WP 
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V2P=CSQ(IJK)-W2P 
IF(V2P.LE.VLIM2(1)) GOTO 496 
IF(V2P.GE.VLIM2(2)) GOTO 496 

497 W2MIN=AMIN1(W2MIN,W2P) 
496 CBE=COLLEN /BE 
c 
C Check to make sure any scattering is possible. 
c 

c 

DEMIN=CBE-FMBE*W2MAX 
DEMAX=CBE-FMBE*W2MIN 
IF(DEMIN.GT.DELTAH) RETURN 
IF(DEMAX.LT.DELTAL) RETURN 

C Now loop over initial and final rotational states to determine 
C transitions whose Newton circles intersect the observation region 
C and where the intersection occurs. 
c 

DO 10 JI=O,MAXJI 
c 
C Once the initial state, JI, is chosen, only a select 
C range of final states, JF, are possible. They also must 
C · be of the same parity if the diatom is symmetric. 
C This is another geometry problem. 
c 

Jll=JI+1 
ENJ=Jil*JI 
DISC=DEMIN+ENJ 
IF (DISC.GE.O.) GOTO 606 
JFS=O 
GOTO 607 

606 CJ=(-l.+SQRT(l.+4. *DISC))* .5 
JFS=INT(CJ+l.) 

607 JDIF=ABS(JI-JFS) 

c 

JFS=JFS+MOD(JDIF ,ISYMS) 
DISC=DEMAX+ENJ 
IF (DISC.LT.O.) GOTO 10 
CJ=(-l.+SQRT(1.+4. *DISC))* .5 
JFE=INT(CJ) 
JDIF=ABS(JI-JFE) 
JFE=JFE-MOD(JDIF ,ISYMS) 
IF (JFS.GT.MAXJF) GOTO 10 
IF (JFE.LT.JFS) GOTO 10 
IF (JFE.GT.MAXJF) JFE=MAXJF-MOD(MAXJF-JI,ISYMS) 

C Now we have the final state range, from JFS to JFE. 
c 

DO 20 JF=JFS,JFE,ISYM 
c 
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C Find max and min angular momentum q-numbers which 
C can add with JI and JF. 
c 
C MAXJP1 = maximum J prime plus 1 
C MINJP1 =minimum J prime plus 1 
c 

c 

MINJP=ABS(JF-JI) 
MINJP1=MINJP+1+MOD(MINJP,ISYMS) 
MAXJP=JF+JI 
MAXJP1=MAXJP+1-MOD(MAXJP,ISYMS) 
JPDELTA=(MAXJP1-MINJP1)/ISYMS+1 
IPOINT=O 
JF1=JF+1 

C DELTAE is the difference between the initial collison energy 
C and the final product translational energy. COLLEN is the 
C collision energy. W is the final velocity in the center of 
C mass system. 
c 

c 

DELTAE=BE*(JF1 * JF-Jil * JI) 
SCATEN =COLLEN-DELTAE 
W2=SCATEN /FACTM 
W=SQRT(W2) 

C At this point we try to find intersections of the 
C Newton circle with radius W with ALIM'S. More geometry. 
C The number of intersections which will give scattering 
C contributions to the selected area is indexed by !POINT. 
C The laboratory coordinates of these intersections are 
C kept in VLAB() and TLAB(). 
c 

DO 609 1=1,2 
B=BX(I) 
DISC=B*B-CSQ(IJK)+ W2 
IF (DISC.LT.O.) GOTO 609 
SR=SQRT(DISC) 
VTRY=B+SR 
IF(VTRY.LT.VLIM(1)) GOTO 1609 
IF(VTRY.GT.VLIM(2)) GOTO 1609 
IPOINT=IPOINT+1 
VLAB(IPOINT)=VTRY 
TLAB(IPOINT)=ALIM(I) 

1609 VTRY =B-SR 
IF(VTRY.LT.VLIM(1)) GOTO 609 
IF(VTRY.GT.VLIM(2)) GOTO 609 
IPOINT=IPOINT+1 
VLAB(IPOINT)=VTRY 
TLAB(IPOINT)=ALIM(I) 
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609 CONTINUE 
c 
C Now find intersections with VLIM'S. 
c 

DO 610 I=1,2 
BIG=AMAX1 (VLIM(I) ,C (IJK), W) 
IF(BIG.GE.VLIM(I)+C(IJK)+ W-BIG) GOTO 610 
CALPHA=(VLIM2(I)+CSQ(IJK)-W2)/ (VLIM(I)*2. *C(IJK)) 
ALPHA=ACOS(CALPHA) 
ATTRY =THC (IJK)-ALPHA 
IF(ATTRY.LT.ALIM(1)) GOTO 1610 
IF(ATTRY.GT.ALIM(2)) GOTO 1610 
IPOINT=IPOINT+1 
VLAB(IPOINT)=VLIM(I) 
TLAB(IPOINT)=ATTRY 

1610 ATTRY=THC(IJK)+ALPHA 
IF(ATTRY.LT.ALIM(1)) GOTO 610 
IF(ATTRY.GT.ALIM(2)) GOTO 610 
IPOINT=IPOINT+1 
VLAB(IPOINT)=VLIM(I) 
TLAB(IPOINT)=ATTRY 

610 CONTINUE 
IF(IPOINT.EQ.O) GOTO 20 

c 
C Now integrate over THETA in the center of mass frame. 
C To do this we need to find the limits for integration in order 
C of increasing THETA. 
c 
637 DO 611 I=1,IPOINT 

WX=VLAB(I)*COS(TLAB(I))-C1 
WY = VLAB(I) *SIN(TLAB(I) )-C2 
TP=ATAN(WY /WX) 
IF(WX.GT.O.) GOTO 640 
IF(WY) 638,640,639 

638 TP=TP-PI 
GOTO 640 

639 TP=TP+PI 
640 THETA(I)=TP-TPP(IJK) 

IF(THETA(I).GT.PI) THETA(I)=THETA(I)-PI2 
611 CONTINUE 
c 
C Need to do bubble sort for THETA. 
c 

IFLAG=O 
660 DO 612 l=1,IPOINT-1 

DO 613 I2=I+1,IPOINT 
TSAVE=THETA(I) 
VSAVE= VLAB(I) 
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IF(THETA(I2).GT.TSAVE) GOTO 613 
THETA(I)=THETA(I2) 
THETA(I2)=TSAVE 
VLAB(I)=VLAB(I2) 
VLAB(I2)=VSAVE 

613 CONTINUE 
612 CONTINUE 

IF (IFLAG.EQ.l) GOTO 661 
c 
C !POINT should be even, if it isn't then something's wrong 
c 

IP2=1POINT /2 
c 
C Check to see if intersection points overlap the discontinuity 
C in the angular region for THETA, -pi to pi. 
c 

DO 650 IN=l,IP2 
THETA1=THETA(IN*2-1) 
THETA2=THETA(IN*2) 
THETAB=THETA2-THETA! 
IF (THETAB.LT.PI) GOTO 650 
IFLAG=l 
THETA(IN*2-l)=THETA1+PI2 

650 CONTINUE 
IF(IFLAG.EQ.l) GOTO 660 

c 
C Now do IP2 integrations over THETAC 
C This is done by !QUAD point Gauss-Legendre quadrature. 
c 
661 DO 620 IN=l,IP2 

c 

IN2=IN*2 
1Nl=IN2-1 
THETAl=THETA(INl) 
THETA2=THETA(IN2) 
THETAA=THETA2+THETA1 
THETAB=THETA2-THE TAl 
QU=O. 
DO 621 IQ=l,IQUAD 

C Calculate THETAs needed for !QUAD point quadratue. 
c 

c 

TQ=(THETAB*XII(IQ)+THETAA)*.5 
OTQ=TQ 
IF(TQ.LT.O.) TQ=-TQ 
IF(TQ.GT.PI) TQ=PI2-TQ 

C DETWET accounts for the trapezoidal weighting function 
C over the effective detector size. To determine DETWET 
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C The lab angle corresponding to TQ must be found. 
c 

WLA=TPP (IJK) +OTQ 
XL=W*COS(WLA)+C1 
YL=W*SIN(WLA)+C2 
TL=ATAN(YL/XL) 
XTL=ABS(TL-ALIMA)* ALIMB 
DETWET=AMIN1(1.,(1.-XTL)* ALIMC) 
IF(TQ.GT.ANGLE(NANG12)) GOTO 631 
IF(TQ.GT.ANGLE(NANG1)) GOTO 630 
KA=INT{TQ*159.1549431)+2 
GOTO 632 

630 KA=NANG1+INT((TQ-ANGLE(NANG1))*63.66197724)+1 
GOTO 632 

631 KA=INT((TQ-ANGLE(NANG12))*DANGI)+NANG12+1 
KA=MIN(KA,NANG) 

632 CONTINUE 
c 
C Linearly interpolate DCSO as a function of angle from the 
C table of DSCO's calculate in the initial call. 
c 
623 SS=l./(ANGLE{KA)-ANGLE(KA-1)) 

c 

T1={ANGLE(KA)-TQ)*SS 
T2={TQ-ANGLE(KA-1))*SS 
CALL VSMUL(DCSO(MINJP1,KA,IJK) ,ISYMS,T1, 
& D1,ISYMS,JPDELTA) 
CALL VSMUL(DCSO{MINJP1,KA-1,IJK),ISYMS,T2, 

& DO,ISYMS,JPDELTA) 
CALL VADD(Dl,ISYMS,DO,ISYMS,DO,ISYMS,JPDELTA) 

C The des for ji to jf may be calculated from the 
C j=O to jfinal des's via a sum over Wigner 3J coefficients. 
C These are retrieved by WIGVEC and the sum is done as 
C a dot product. 
c 

CALL WIGVEC(JI,JF ,V) 
CALL DOTPR{V,ISYMS,DO,ISYMS,F ,JPDELTA) 

c 
C Multiplication by THETAB completes the integration over 
C the center of mass theta. Multiplication by VLABA is in 
C the Jacobian for the center-of-mass phi to lab phi 
C transformation, but this is left out here 
C and we won't divided by it in CMLB. This is only 
C good for number density detection. For flux 
C detection please multiply by VLABA. 
c 
621 QU=QU+(2.*JF+L)*F*THETAB*WII{IQ)*DETWET 
620 CONTINUE 
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c 
C Divide by em velocity which is in Jacobian for 
C center of mass phi to lab phi transformation. 
C The laboratory value of sin(Szab)A(<}zab) 
C is assumed to remain constant. 
c 

VALUE=VALUE+QU*ROTJ(Jil)/W 
c 
C A factor for adjusting k2 's is left out as an approximation. 
C The calculations are performed at 
C constant collision energy and not constant total energy. This 
C differs by the initial rotational energy of the diatom which 
C is assumed to be small. 
c 
20 CONTINUE 
10 CONTINUE 
C At this point we have calculated the number of particle 
C entering the detector with velocitites 
C in the selected range per unit time per unit incident flux. 
c 

PPP(1)=VALUE 
RETURN 
END 
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c ************************************************************ 
c 

c 

SUBROUTINE LPOLY(CTH,NETA,P) 
IMPLICIT DOUBLE PRECISION (A-H,O-Z) 

C Subroutine to calculate legendre polynomials of COS(CTH) 
C from order zero up to NETA 
C adapted from SUBROUTINE INTENS 
C of PROGRAM ELASTIC by M.F. Vernon 
c 

c 

DIMENSION P(lOOO) 
X=CTH 

C INITIALIZE RECURSION LOOP 
c 

c 

P(l)=l. 
P(2)=X 
PO=l. 
Pl=X 
DEL=3. 

C DO RECURSION 
c 

c 

DO 50 l=3,NETA 
P2=(DEI,.*X*Pl-FLOAT(I-2)*PO)/FLOAT(I-1) 
P(I)=P2 

C UPDATE RECURSION 
c 

PO=Pl 
Pl=P2 
DEL=DEL+2. 

50 CONTINUE 
c 
C THAT'S ALL. 
c 

c 

RETURN 
END 

c ************************************************************ 
c ************************************************************ 
c 



- 155-

SUBROUTINE WIGNER3J 
IMPLICIT DOUBLE PRECISION (A-H,O-Z) 

c 
C Subroutine to produce the squares of M1=0,M2=0, M3=0 Wigner 3-J 
C symbols for integral J 
c 
C Program will produce an array up to J1, J2, J3= JMAX 
C (actually J2,J3 go up to 3*JMAX/2 for some cases) 
C JMAX should be even. 
c 
C The array produced is a something by JMAX2+1 array and looks 
C something like this: 
c 
c (0 1 1) (1 1 2) (2 2 2) (3 3 4) .. . 
c (0 2 2) (1 2 3) (2 2 4) (3 3 6) .. . 
c (0 3 3) (1 3 4) (2 3 3) (3 4 5) .. . 
c (0 4 4) (1 4 5) (2 3 5) (3 4 7) .. . 
c (0 5 5) (1 5 6) (2 4 4) (3 5 6) .. . 
c (0 6 6) ... 
c 
c 
c 
c 
C The three numbers in each triplet stand for J1, J2 and J3 
C JMAX has been abrieviated by J. 
C The symbols stand for Wigner 3-J symbols without the M values 
C and all other possible symbols 
C are either permutations of the above or have the value of zero. 
c 
C This version has space for JMAX=75 so the dimensions of the 
C array are C(860,76). 
c 

c 

COMMON/WIGNER/C(860,76) 
JMAX=75 
IX=(3* JMAX)/2 

C KC WILL LABEL ARRAY COLUMNS 
C KR WILL LABEL ARRAY ROWS 
c 
C CALCULATE FIRST COLUMN 
c 

KC=1 
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DO 10 KR=1,IX 
10 C(KR,KC)=l./(2.*(KR-1)+1.) 
c 
C CALCULATE OTHER COLUMNS IN LOWER PART OF ARRAY A 
c 

MX=JMAX+1 
DO 20 KC=2,MX 
J1=KC-1 
R3=FLOAT(J1) 
DO 20 J2=J1,MAX(IX-J1,JMAX) 
J1EVEN=((J1+1)/2)*2-J1 
DO 20 J3=J2+J1EVEN,J1+J2,2 
J=J1+J2+J3 
R=FLOAT(J) 
R2=FLOAT(J2) 
KR=(J2-J1)*((J1+2)/2)+(J3-J2+2)/2 
KOC=J1 
J01=J1-1 
IF(J2.EQ.J3) GOTO 14 
J02=J2+1 
J03=J3 
GOTO 16 

14 J02=J3 
J03=J2+1 

16 KOR=( J02-JO 1) * ( ( JO 1 + 2) /2) + ( J03-J02+ 2) /2 
C(KR,KC)=C(KOR,KOC)*(R-2. *R2-1)* (R-2. *R3+2.) I 

&( (R-2. *R2) * (R-2. *R3+ 1.)) 
20 CONTINUE 
c 
C THIS SECTION IS FOR WRITING OUT THE COEFFICIENTS 
C IT IS NOT NECESSARY AS A SUBROUTINE 
c 
C DO 40 J1=0,30 
C DO 40 J2=J1,30 
C DO 40 J3=J2,30 
c J=J1+J2+J3 
C JODD=(J /2)*2 
C IF (JODD.NE.J) GOTO 40 
C IF (J1+J2.LT.J3) GOTO 40 
C KC=J1+1 
C KR=(J2-J1)*((J1+2)/2)+(J3-J2+2)/2 
C VALUE=C(KR,KC) 
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C WRITE(6,100) J1,J2,J3,VALUE 
C 40 CONTINUE 
C 100 FORMAT(1X,'(',I2,',',12,','12,')',F8.5) 

RETURN 
END 

c 
c ************************************************************ 
c ************************************************************ 
c 

c 

SUBROUTINE WIGVEC(J1,J3,V) 
IMPLICIT DOUBLE PRECISION (A-H,O-Z) 

C This subroutine returns a vector of the squares of Wigner 3-J 
C coefficients having the J1 and J3 given. It will do this for 
C J2 up to JMAX=75 
c 

DIMENSION V(76) 
COMMON/WIGNER/C(860,76) 
DO 100 J2=0,75 
J=J1+J2+J3 
JE=(J/2)*2 
IF (J.NE.JE) GOTO 50 
K=3 
IF (Jl.GT.J3) K=1 
IF (J2.GT.Jl.AND.J2.GT.J3) K=2 
L=1 
IF (J2.LT.J1) L=2 
IF (J3.LT.Jl.AND.J3.LT.J2) L=3 
JA=J1 
JB=J2 
JC=J3 
GOTO (10,20,30),K 

10 GOTO (40,12,13),L 
12 JA=J2 

JB=J3 
JC=J1 
GOTO 40 

13 JA=J3 
JB=J2 
JC=J1 
GOTO 40 

20 GOTO (21,40,23),L 



21 JA=J1 
JB=J3 
JC=J2 
GOTO 40 

23 JA=J3 
JB=J1 
JC=J2 
GOTO 40 

30 GOTO (40,32,40),1 
32 JA=J2 

JB=J1 
JC=J3 
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40 IF(JA+JB.LT.JC) GOTO 50 
KR=(JB-JA)*((JA+2)/2)+(JC-JB+2)/2 
KC=JA+1 
V(J2+1)=C(KR,KC) 
GOTO 100 

50 V(J2+1)=0. 
100 CONTINUE 

RETURN 
END 



c 
c 
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C LIBRARY OF STANDARD FORTRAN ROUTINES 
C TO SIMULATE APMATH CALLS USED BY THE 
C FPS 164 ARRAY PROCESSOR 
c 

SUBROUTINE DOTPR(A,IA,B,IB,C,N) 
C VECTOR PRODUCT 

DIMENSION A(IA *N),B(IB*N) 
C=O. 
JA=l 
JB=1 
DO 200 J=l,N 
C=C+A(JA)*B(JB) 
JA=JA+IA 
JB=JB+IB 

200 CONTINUE 

c 
c 

RETURN 
END 

SUBROUTINE VMOV(A,IA,B,IB,N) 
C VECTOR MOVE 

DIMENSION A(IA*N),B(IB*N) 
JA=l 
JB=l 
DO 200 J=l,N 
B(JB)=A(JA) 
JA=JA+IA 
JB=JB+IB 

200 CONTINUE 

c 
c 

RETURN 
END 

SUBROUTINE VSUB(A,IA,B,IB,C,IC,N) 
C VECTORSUBTRACT 

DIMENSION A(IA *N),B(IB*N),C(IC*N) 
JA=l 
JB=1 
JC=l 
DO 200 J=1,N 
C(JC)=B(JB)-A(JA) 
JA=JA+IA 



JB=JB+ill 
JC=JC+IC 
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200 CONTINUE 

c 

RETURN 
END 

SUBROUTINE VADD(A,IA,B,IB,C,IC,N) 
C VECTOR ADD 

DIMENSION A(IA *N),B(IB*N),C(IC*N) 
JA=l 
JB=l 
JC=l 
DO 200 J=l,N 
C(JC)=B(JB)+A(JA) 
JA=JA+IA 
JB=JB+IB 
JC=JC+IC 

200 CONTINUE 

c 
c 

RETURN 
END 

SUBROUTINE VSIN(A,IA,B,IB,N) 
C SINE OF VECTOR 

DIMENSION A(IA *N),B(IB*N) 
JA=l 
JB=l 
DO 200 J=l,N 
B(JB)=SIN(A(JA)) 
JA=JA+IA 
JB=JB+ill 

200 CONTINUE 

c 
c 

RETURN 
END 

SUBROUTINE VSQ(A,IA,B,IB,N) 
C SQUARE COMPONENTS OF VECTOR 

DIMENSION A(IA *N),B(IB*N) 
JA=l 
JB=l 
DO 200 J=l,N 
B(JB)=A(JA)* A(JA) 
JA=JA+IA 
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JB=JB+IB 
200 CONTINUE 

RETURN 
END 

c 
c 

SUBROUTINE VCLR(A,IA,N) 
c CLEAR COMPONENTS OF VECTOR 

DIMENSION A(IA *N) 
JA=1 
DO 200 J=1,N 
A(JA)=O. 
JA=JA+IA 

200 CONTINUE 
RETURN 
END 

c 
SUBROUTINE VCOS(A,IA,B,IB,N) 

c VECTOR COSINE 
DIMENSION A(IA *N),B(IB*N) 
JA=1 
JB=1 
DO 200 J=1,N 
B(JB)=COS(A(JA)) 
JA=JA+IA 
JB=JB+IB 

200 CONTINUE 
RETURN 
END 

c 
SUBROUTINE VSADD(A,IA,B,C,IC,N) 

c VECTOR SCALAR ADD 
DIMENSION A(IA *N),C(IC*N) 
JA=l 
JC=l 
DO 200 J=l,N 
C(JC)=B+A(JA) 
JA=JA+IA 
JC=JC+IC 

200 CONTINUE 
RETURN 
END 

c 
c 



- 162-

SUBROUTINE VSMUL(A,IA,B,C,IC,N) 
C VECTOR SCALAR MULTIPLY 

DIMENSION A(IA *N) ,C(IC*N) 
JA=l 
JC=l 
DO 200 J=l,N 
C(JC)=B* A(JA) 
JA=JA+IA 
JC=JC+IC 

200 CONTINUE 

c 
c 

RETURN 
END 

SUBROUTINE VMUL(A,IA,B,IB,C,IC,N) 
C VECTOR MULTIPLY 

DIMENSION A(IA *N),B(IB*N),C(IC*N) 
JA=l 
JB=l 
JC=l 
DO 200 J=l,N 
C(JC)=A(JA)*B(JB) 
JA=JA+IA 
JB=JB+IB 
JC=JC+IC 

200 CONTINUE 

c 
c 

RETURN 
END 

SUBROUTINE MTRANS(A,IA,B,IB,IC,IR) 
C MATRIX TRANSPOSE 

DIMENSION A(IR,IC),B(IC,IR) 
DO 200 JC=l,IC 
DO 200 JR=l,IR 
B(JC,JR)=A(JR,JC) 

200 CONTINUE 
RETURN 
END 
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