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Abstract

The methods for Representation Theorem (RT) coupling of finite element (FE)
or finite difference calculations and Harkrider’s (Harkrider 1964, 1970) propagator
matrix method calculations to produce a hybrid method for propagation of SH mode
sum seismograms across paths that contain regions of non plane-layered structure are
explained and developed. The coupling methods explained in detail use a 2-D Carte-
sian FE formulation. Analogous methods for the 3-D method follow directly. Exten-
sive tests illustrating the validity and accuracy of the implementation of these cou-
pling methods are discussed. These hybrid techniques are developed to study the
propagation of surface waves across regional transition zones or other heterogeneities
that exist in part of allonger, mostly plane-layered, path. The effects of a thinning or
thickening of the crustal layer on the propagation of Lg mode sum seismograms have
been examined in this study. The thinning or thickening of the crustal layer is used
as a simple model of ocean continent transitions. The Lg phase is of particular
interest since it is used in several important applications such as mapping the extent
of continental crust, magnitude determination, and discrimination between explosive
and earthquake sources. The understanding of the observations that Lg wave 1s
attenuated completely when the propagation path includes an oceanic portion of
length greater than one hundred to two hundred kilometers or a region of complex
crustal structure is not complete, and a clear explanation of these phenomena could
have important consequences for all these types of studies. The transition model cal-
culations done in this study show that passage through a region of thinning crustal
thickness, the model for a continent to ocean transition, increases the amplitude and

coda length of the Lg wave at the surface, and allows much of the modal energy
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trapped in the crust, which forms the Lg phase, to escape into the subcrustal layers
as body waves or other downgoing phases. The magnitude of both these effects
iﬁcreases as the length of the transition increases or the slope of the layer boundaries
decrease. The passage of the wavefront éxiting the continent to ocean transition
region through the oceanic structure allows further energy to escape from the crustal
layer, and produces a decrease in L, amplitude at the surface as the length of the oce-
anic path increases. The amplitude decrease is maximum near the transition region
and decreases with distance from it. Passage through a region of thickening crust,
the model of a ocean to continent transition, causes a rapid decrease in the L, ampli-
tude at the surface of the crust. The energy previously trapped in the oceanic crustal
layer spreads throughout the thickening crustal layer, and any amplitude which has
been traveling through the subcrustal layer but has not reached depths below the
base of the continental crust is transmitted back into the continental crust. The
attenuafion of Lg at the crustal surface along a partially oceanic path occurs in the
oceanic structure and in the ocean to continent transition region. The attenuation
at the surface depends in part on the escape of energy at depth through the continent
to ocean transition region into the underlaying half-space. The total attenuation of
Lg due to propagation through a forward transition followed by a reverse transition
i1s at most a factor of four to six. This is inadequate to explain the observed attenua-
tion of Lg. Thus, additional effects, other than geometry must be considered to pro-

vide a complete explanation of the attenuation of Lg.
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Introduction

This thesis presents a study of the propagation of L, waves across ocean con-
tinent transition regions. The transition regions are represented by a simplified model
consisting of a crustal layer with thickness that increases or decreases smoothly
between oceanic and continental values. The distance over which this smooth varia-
tion occurs is referred to as the length of the transition region. The changes to a L,
wavefield, when it travels through one of these simple transition regions, are modeled
using a hybrid method which is explained and developed in sections four, five, and six
of chapter one. The hybrid method combines the Finite Element method and the Pro-
pagator Matrix technique through application of the Seismic Representation Theorem.
These two methods are explained and the notation associated with them is defined in
section two and three of chapter one. In the regions of complex structure, those
regions containing the transition regions, the Finite Element method is used to
transmit the L, waves. In the regions of plane layered structure either the Propagator
Matrix technique is used to directly determine the seismograms for a source in the
layers being considered, or it is used to determine the Green’s functions for propaga-
tion from the interface between the complex region and the layered region to the
receiver. In the first case, displacement time histories are determined at a set of points
equally spaced in depth along a vertical plane. These time histories are used as boun-
dary conditions for the Finite Element method. Extensive tests of the accuracy of
producing a Finite Element wavefield by specifying the displacements as a function of
time along the vertical plane defining the Finite Element grid edge are presented in
sections seven and eight of chapter one. The results of these tests are useful in under-
standing the sources of uncertainty due to truncation of the vertical plane at some
depth less than infinity. In the case where the propagator method is used to deter-
mine Green’s functions the Green’s functions are combined with the stress and dis-

placement time histories recorded at the boundary between the plane layered region



and the complex region according to the Representation Theorem. Tests of the vali-
dity and accuracy of this method of coupling are discussed in section two of chapter
three. The results of the study on the effects of transition length on the propagation
of Ly waves are reported, discussed and interpreted in chapter two. The results of the
study of the effects of the length of the intermediate oceanic path on the propagation
of L, are mentioned in chapter two and again in the first and last sections of chapter
three. In order to understand why the models used were chosen for this study, and
why this study is important, it is useful to discuss and review the the different types
of studies that use L, data. In the remainder of this section the background of the

problem will be discussed.

In order to choose a reasonable form for a simple model of a ocean continent or
continent ocean transition region it is useful to examine existing observations of such
regions. Structures of transition regions have been studied using many techniques,
both geological and geophysical. These techniques include reflection and refraction
seismic surveys, gravity studies, and geologic mapping and interpretation. Many such
studies have been completed so only a few examples will be cited here to support the
choice of the model structure used. A review of studies of the continental margins of
the eastern and western coasts of Canada by Keen and Hyndman (1979) shows sample
sections of the transition regions along the passive margins of the eastern coast. The
transition lengths observed vary between about fifty and two hundred kilometers with
the average being about one hundred kilometers. Sheridan et al. (1979) and Grow et
al. (1979) discuss refaction studies off the northeastern United States coast which
show similar transition geometries and transition lengths of one to three hundred
kilometers. Uchupi and Austin (1979) examine reflection profiles off the eastern coast
of North America which indicate that the length of the upper surface of the transition

region is about one hundred kilometers. Hinz et al. (1979) present the same types of



results off Labrador and Greenland showing transition lengths of about one hundred
kilometers. Studies off northern Alaska by Eittreim and Grantz (1979) and Grantz et
al. (1979) show transition lengths of the upper transition surface of between fifty and
one hundred kilometers. Barton et al. (1984) derive a structure beneath the North Sea
which shows similar transition regions. Le Douaran et al. (1984) examine the crustal
structure in the northwestern Mediterranean Basin, and Makris et al. (1983) and
Makris and Stobbe (1984) derive structures in the Eastern Mediterranean. In the
Mediterranean region the transition regions are fifty to one hundred fifty kilometers in
length. Most of the transition region structures mentioned above show similarities. In
all cases the crustal layer thins from the continent toward the ocean. In most cases
this thinning is fairly constant. The thicknesses of the continental and oceanic crustal
layers vary somewhat. The resolution and detail in the models vary considerably. The
details would need to be accounted for if cases of detailed waveform modeling were to
be undertaken, but, they are not critical for this study. The lengths of transition
regions suggested by the observations are between fifty and three hundred kilometers.
These studies all indicate that the simplified models used in this investigation are rea-
sonable. These models use a thirty two kilometer crustal layer over a half-space as a
model of the continental structure and a five kilometer ocean over a five kilometer
crust over a half-space as a model of the oceanic structure. The thickness of the crus-
tal layer varies smoothly between the oceanic and continental values as one passes
through a transition region. Model transition regions are constrained by computa-

tional limits to lengths of one hundred kilometers or less.

The wavefields transmitted through these models are synthesized to model the L,
arrivals in a seismogram. The L, arrival was first defined by Press and Ewing (1952).
Based on studies of seismograms recorded in North America, they defined L, to have

periods of 0.5 to 6 seconds, phase velocities between 2.0 and 3.5 km/s, reverse



dispersion at distances greater than 20°, and a sharp high amplitude onset. They
noted that L, arrivals are visible for purely continental paths and are gradually elim-
inated as the oceanic portion of the path increases in length beyond one hundred
kilometers. The arrivals are visible on all three components but are larger on the hor-
izontals. They suggested two possible interpretations of L,, then abandoned the one
which explained Lg; in terms of higher mode Love waves in favor of one which
explained them as channel waves trapped in the crust above a low velocity layer.
The idea that L was a crustal channel wave was expanded and discussed by Press
and Gutenburg (1956) and Gutenburg (1955) but even they stated that such an expla-
nation was at best tentative. The interpretation of Ly in terms of higher mode Love
waves was abandoned by Press and Ewing (1952) because of the motions on the verti-
cal and longitudinal components and the long coda. Oliver and Ewing (1957, 1958a,
1958b) and Oliver et al. (1959) studied higher mode Love waves and Rayleigh waves
and concluded that the vertical and longitudinal components of L, are composed of
higher mode Rayleigh waves and that higher mode Love waves could account for the
transverse component. They considered only the first two higher modes and thus did
not explain the long coda, but only its initial portion. Kovach and Anderson (1964)
showed in detail that L, could be interpreted using higher mode Rayleigh and Love
waves. Panza et al. (1972) related the higher mode Rayleigh wave interpretation to
the channel wave explanation. Panza and Calcagnile (1974, 1975) compare models
with and without a low velocity channel below the crustal waveguide and conclude
that such a channel is not necessary for the existence of L, waves. Thus, the L,
arrival is clearly explained as a superposition of the higher mode Love waves and Ray-

leigh waves.

All the studies of higher mode Rayleigh waves and Love waves discussed above

are based on analysis of group velocities, and phase velocities, with the L, arrivals



corresponding to the group velocities of the extrema of the group velocity curves.
Knopoff et al. (1975) used the higher mode interpretation of Ly to calculate synthetic
seismograms for L,. These seismograms further establish the validity of the previous
interpretations based on group velocities of higher mode Love and Rayleigh waves by
matching not only arrival times but also relative amplitudes. These seismograms also
establish that the observed properties of Ly waves can be produced without including
a low velocity channel. Knopoff et al. (1975) continued their studies using synthetic
Lg waves to define properties of Ly that can be used to discriminate differences in crus-
tal structure. Bouchon (1981,1982) used an alternate method for determining L, syn-
thetics at short distances (150 - 350 km) to model data from an earthquake in France.
He concluded that the L, arrivals were composed of multiply reflected post-critical SH
and SV rays and that synthetics modeled the data well for group velocities between
3.5 and 2.8 km/s. Several other workers have used the fact that Love waves can be
expressed as the superposition of post-critical multiply reflected SH rays in the crust
to investigate the L, arrivals. Herrin and Richmond (1960) along with corrections in
Herrin (1961) used ray theory to show L, could be modeled using multiply reflected
and refracted ray in a thin crustal layer. This type of approach was also used by Pec
(1967) and Kennett (1986) to address some properties of L,. Cara and Minster (1981)
developed a method to analyze Rayleigh type L, seismograms recorded along a linear
array. Cara et al. (1981) applied this method to data recorded in the northwestern
Sierra Nevada and in southern California. They conclude that representation of L, as
a single multimode wavetrain is an oversimplified approach which can explain observa-
tions in the initial portions of the wavetrain (group velocity > 3.2 km/s), while the
later portions of the waveform are strongly affected by reflections and diffractions from
any discontinuities in structure. Other phases previously defined in terms of the chan-

nel model have also been modeled using the higher mode surface wave model. Schwab



et al. (1974), Mantovani et al. (1977), Nakanishi et al. (1977), and Mantovani (1978)
considered S,, Stephens and Isacks (1977) considered the transverse component of S,
and Cansi and Bethoux (1985) investigate the T phase which converted to L, at the
continental margin. In light of all the evidence the highe'r mode interpretation of L,
best explains the observed properties of Lg, even though variations in the crustal
structure may cause a longer coda than that calculated using a simple layered struc-
ture. The SH L, seismograms used to produce the wavefields used to drive the FE cal-

culations in this study are determined as mode sums over the fundamental and first

five higher modes.

One of the important uses of L, has been to distinguish regions with oceanic
crustal structures from those with continental crustal structures and to map regions
where sudden changes in crustal structure occur. While the theoretical interpretation
of Ly were being debated many observational studies of L, waves were being con-
ducted. These studies were conducted to map regions of oceanic crustal structure and
regions of complex crustal structure on continents which caused the L, arrival to be
heavily attenuated or vanish. The studies considered a strong L, to indicate con-
tinental structure and a missing or highly attenuated Lg to indicate passage through
oceanic crust. Intermediate cases were included in one group or the other depending

on the workers, but none used a quantitative scale.

Bath (1954,1958) collected a large sample of L, data along Euroasiatic paths and
fashioned explanations of his data based on the guided wave interpretation of L,. He
also defined two arrivals he called Ly and Ly, with distinctly different phase velocities
of 3.54 km/s and 3.37 km/s. His observations supported the conclusion of Press and
Ewing (1952) that partially oceanic paths resulted in attenuation of the L, phase.
However, he interpreted some portions of the Arctic Ocean where L, was not

attenuated as being continental in structure. This approach, of defining paths which



pass under oceans but do not attenuate Lg as continental paths has also been used in
most of the more recent studies of this type since that time. These studies used L,
recorded in many regions of the world. Press et al. (1956) considered paths in Africa,
Press (1956) used paths in California, Savarensky and Valdner (1960) studied the
Black Sea region, Bolt (1957) studied data from Australia, Utsu (..) considered Japan
and the region surrounding it, and Lehmann (1952, 1957) studied significant events in
North America and Europe. Oliver et al. (1955) considered L, propagation in the Arc-
tic region, Herrin and Minton (1960) in the Southwestern United States and Mexico,
and Wetmiller (1974) investigated the crustal structure in the Baffin Bay area. Gre-
gersen (1984) studied the crustal structure near Denmark and in the North Sea. Addi-
tional data for this area were presented by Kennett and Mykkeltveit (1984) who used
the supplemented data set and the method of Kennett (1984a) to produce synthetics
and an interpretation of the data in terms of a multimode wavetrain traveling through

a crustal ’pinch’.

As originally noted by Bath, some purely continental paths show attenuated L,
and the later studies mapped these regions. Gumper and Pomeroy (1970) made a
more extensive study of L, and other phases in Africa. They found L, velocities
between 3.48 and 3.60 km/s and a discontinuity in the crust near the rift zone.
Ruzaikin et al. (1977) mapped regions of L, propagation in Asia and saw attenuation
in Tibet and regions of China. Kadinsky-Cade et al. (1981) conducted a detailed
study of L, S,, P, and P, propagation in India, the Himalayan Arc and the Tibetan
Plateau producing a more detailed map than Ruzaikin et al.,, and agreeing with their
observations and the sparse observations of Bath that showed the absence of L, on
paths crossing or originating in Tibet. Finally, Ni and Barazangi (1983) report the
results of a detailed study in India, Tibet, and the Himalayan Arc which agrees with

other results. Chinn et al. (1980) studied L, and S, in western South America and



observed that L, propagation was efficient only parallel to the strike of the Andes.
They also observed conversion of Oceanic S, to L, in areas of crustal thickening.
Isacks and Stephens (1975) also observed conversion of S, to L, both in earthquakes
from the West Indies observed in Eastern. North America and in earthquakes near
southernmost Mexico observed on the northern coast of the Gulf of Mexico. Some of
their claims of observed conversions are disputed by Shurbet (1962, 1974, 1976). Gre-
gersen (1978) discusses conversion between different modes of Love waves and between
Love and Rayleigh waves at an ocean continent boundary. These studies illustrate
the importance of a clear understanding of the mechanisms of attenuation of L, along
mixed paths. Simply stating that a path which passes under an ocean but is not
attenuated implies that the floor of that ocean has a continental structure could be
misleading. A clearer understanding of the effects of structural transitions on the

attenuation of L, is important.

Another major use of L, waves is the determination of magnitudes of explosions
and earthquakes and of regional attenuation properties. These magnitudes, usually

referred to as Mmp,, and other types of magnitudes are compared to discriminate

between the two types of sources (Blandford, 1982, and Pomeroy et al. 1982). The
ratio of body wave magnitude, my, to surface wave magnitude, Mg, is one such
discriminant whose physical basis is explained by Stephens and Day (1985). In order
to examine whether this type of discriminant can be generalized to periods shorter
than than those considered when using the twenty second surface wave magnitude,
new empirical relations for short period phases such as L, (Baker, 1970) and R, (Bas-
ham, 1971) were derived to measure short period surface wave magnitudes. Nuttli

(1973) used observed attenuation of short period Rayleigh waves (L, and R,) to

g’
present a theoretical explanation and generalization of the empirical relations and

defined their limitations. He explained how to use data of L, amplitude versus



distance to determine the value of ~, the coefficient of anelastic attenuation. Nuttli
(1978) extended the definitions from one second waves to frequencies as high as ten
Hertz. These studies provided a more quantitative method for mapping the attenua-
tion of Lg than simply recording whether L, was observed, not observed, or
attenuated. Thus, a series of studies mapping the attenuation of L, using the determi-
nation of v were initiated. An extensive study of the United States at 0.5 to 2 Hz. had
previously been completed by Sutton et al. (1967) using other methods. Nuttli (1973)
developed an L, magnitude scale for the central United States. Herrmann and Nuttli

(1982) studied the relation of this scale, my,, to the local magnitude scale, My. The

attenuation observed was used to model ground motions at regional distances due to
earthquakes and assess the possible destructiveness of the L, part of the wavetrain
(Herrmann and Nuttli, 1975a, 1975b). An additional study of this type of problem
using added data was done by Street (1984). Street et al. (1975) studied L, spectra of
United States earthquakes. The results were the basis of a study of L, moments, mag-
nitudes, and intensities (Street and Turcotte, 1977) and the development of an L,
magnitude scale analogous to that of Nuttli (1973) for the northeastern United States
and southeastern Canada (Street, 1976). Jones et al. (1977) studied attenuation of L,
in the southeastern United States. Nuttli (1980) considered a region including Iran.
Bollinger (1979) again studied the northeastern United States obtaining results con-
sistent with Street (1976). Nuttli (1981) examined attenuation of Lg in western and
central Asia for both earthquakes and explosions. Barker et al. (1981) studied the
crustal structure at the Nevada Test Site using Ly and P,. Chung and Bernreuter
(1981) reviewed the studies of regional relations between various magnitude scales
including mypp, . Nicolas et al. (1982) studied attenuation of regional phases in western
Europe. Gupta et al. (1980) considered both earthquakes and explosions in western

Russia, and Gupta et al. (1982) studied variations in horizontal to vertical L,
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amplitude ratios. Ebel (1982) criticizes the my, scale as being inappropriate at five to

ten Hertz for earthquakes in the northeastern United States. Dwyer et al. (1983)
presented a frequency dependent study of L, in the central United States which

addresses this criticism of the myp scale. Singh and Herrmann (1983) present a

regionalized map of L, attenuation in the continental United States for periods
between 0.5 and 3.5 Hz. Herrmann and Kijko (1983a, 1983b) also investigate neces-
sary changes to the L, magnitude scale to allow use of data for instruments with
predominant periods other than the one second period of the WWSSN instrument.
Campillo et al. (1984) studied the excitation of spectra and geometrical attenuation of
regional phases including L. Der et al. (1984) studied the coherence of the L, wave
crossing a given region. All these studies are based on the interpretation of L, as a
superposition of higher mode Love and Rayleigh waves. They all assume that the L,
waves are traveling through a relatively constant thickness crustal layer, and most do
not account for reflection of diffraction of Ly energy from changes in thickness of the
crust. Clearly, it is important to understand if such changes will produce significant

effects not accounted for in the interpretations given.

Many attempts to understand the propagation of seismic disturbances across
regions of varying structure such as transition zones have been made. First, simple
models were used and analytic solutions were derived for soluble special cases, then
increasingly complicated models were considered as available computational power
increased. The types of models that have been used to approximate transition regions

can be separated into several types which are illustrated in Figure 1.

The simplest type of model (Figure la) consists of two homogeneous layered
regions, 1 1°, and 3 3’, with layer over half-space structures separated by a vertical
boundary or a region 2 2’ in which density, p, rigidity p, and SH wave velocity , 5,

vary smoothly between their values in the regions 1 1’ and 3 3’. Sato (1961a) discusses
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Figure 1: Types of models used in studies of propagation of Love waves across
continent ocean boundaries. Part a) shows the simplest model, two regions labeled 1
and 3 separated by a vertical boundary or a intermediate region, 2, of varying proper-
ties. Part b) shows another type of simple model, a layer of a half-space with a sudden
step change in the thickness of the layer. Part c¢) shows a more general type of
simplified model with a more gradual change in thickness rather than a step. Part d)
shows the type of model used in this study, which includes smooth thickness variation
both at the surface and the base of the crustal layer.
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both these cases applying the conditions

K3 B3 . - = o
- = 12—51'2=522-,32'2
H1 Hy!

to assure the transmission of fundamental mode Love waves across the boundary
without modal conversion. He derives analytic expressions for the transmitted and
reflected waves, the phase and group velocities, and the reflection and transmission
coeflicients in each case. The case for which no transition regions is present has since
been used by Alsop (1966), Boore (1970), and Gregersen and Alsop (1974, 1976) as a
test case for more generalizable numerical methods. More recently, Kennett (1973) has
developed a numerical technique to consider the problem of seismic waves interacting
with a layer or layers in which properties change across a surface perpendicular to or

at a specified angle from the layering.

The next level of complexity that can be introduced into the model is the inclu-
sion of a change in the thickness of the surface layer at the discontinuity between the
two structures. This type of model is illustrated in Figure 1b. In most cases the
material properties do not change when the layer thickness changes. Sato (1961b)
used the Wiener-Hopft technique to obtain analytic expressions for the transmitted
and reflected waves for a model with a surface step with height h much less than the
wavelength of the incident wavefield A\. Using these solutions he obtained approxi-
mate expressions for energy reflection and transmission coefficients for a surface step
model using a Green’s function method. Hudson and Knopoff (1964) calculated
expression for the motion and the reflection and transmission coefficients for the sur-
face step model. They did not need or use the h<< <<\ approximation. Alsop (1966)
developed an approximate method for determining Love wave transmission and
reflection coefficients in a model of type 1b. This method assumes that all energy

remains in Love waves, introducing errors, particularly at intermediate periods, if any
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energy is converted between modes or into forms other than modal energy. The latter
two methods had the advantage that higher modes could be used and that no specific
interrelation of elastic properties between the different layers or regions was necessary.
Gregersen and Alsop (1974, 1976) extended the method of Alsop (1966,1968) to the
determination of transmission coefficients for the case of non-normally incident Love
waves. At normal incidence results correspond well to those found in previous studies,
for oblique incidence at angles less than forty degrees normal incidence is a good
approximation. Bose (1975) solves the surface step problem using an integral equation
formulation which yields asymptotic solutions for large distances from the step. His
results show increases in amplitude for a step down and decrease in amplitude for a
step up, consistent with results derived for the step models in this study. Kazi (1978a,
1978b) uses the variational method of Schwinger-Le.vine to derive solutions to the sur-
face step problem that account for the Love waves converted to body waves at the
surface step. He determines the reflection and transmission coefficients by way of a
scattering matrix and evaluates them for the same cases as Alsop (1966) and Knopoff
and Hudson (1964) showing that the transmission coefficients increased after the cutoff
frequency rather than decreasing as was observed in earler studies that neglected the
body waves. Lapwood, Hudson, and Kembhavi (1973, 1975) and Lapwood and Hud-
son (1975) used a similar variational technique to study normally and obliquely
incident plane waves incident on a layer between two uniform half-spaces. Hudson
(1977) extended their method to the surface step problem but concluded that the
numerical implementation of the method would not be more efficient than existing
techniques. Martel (1980) used a finite element technique to evaluate propagation of
Love waves across a Moho step. Spatial filtering of the transmitted and reflected
modes to determine transmission and reflection coefficients allowed the isolation of the

diffracted body wave component.
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Studies using the surface step model and the Moho step model have been general-
ized in several ways. First, and most relevant to this study, the step can be replaced
by a transition region as discussed in the next paragraph. Other types of generaliza-
tion allow the study of the effect of topography, of a short section if thinner crust
referred to as a crustal ’pinch’, or of continuous but small variations in crustal thick-
ness on the incident wavefield. Gilbert and Knopoff (1960) used a method similar to a
Born approximation to study seismic scattering from topography and to produce
approximations valid for pulses with duration short with respect to the horizontal
travel time across the irregularity. Hudson (1967) extended the method of Gilbert and
Knopoff (1960) to variations in elastic properties at the surface such as sediment filled
depressions, as well as surface distortions. The method can be used to obtain a rough
estimate of the dimension of the scatterer. Boore et al. (1971) and Boore (1972) study
the effect of topography on SH waves using the Finite Difference method to propagate
a simple pulse through the structure. This approach, unlike the previously discussed
methods, allows the consideration of steep topography or topography with wavelength
similar to or smaller than that of the incident waves. Herrera (1964a, 1964b)
developed a perturbation method to study the effects on a propagating seismic distur-
bance of a crustal layer with slowly varying thickness. Mal and Herrera (1965) studied
the effect of a short section of thinner crust, where the difference in crustal thickness
between the thin and the thick crust is small compared with the wavelength of the

incident energy.

The next increase in the complexity of the transition model is the introduction of
a transition region in which the crustal thickness varies smoothly between the crustal
thicknesses at its ends. The simplest models of this type are shown in figure 1c. In
these models either the surface or the Moho have a smooth slope in the transition

region. Knopoff and Mal (1967), and Knopoff et al. (1970) explained an analytic
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solution for this type of model when the slope of the surface (or Moho) of the transi-
tion region is small. They also assumed that the local phase velocity was the same as
that in a layered structure with the local layer thickness. They found forward scatter-
ing to be much less important than back scattering. Pec (1967) calculated the disper-
sion of Love waves propagating in a wedge shaped layer such as the transition region
in models of type lc. He considered Love waves in terms of the constructive interfer-
ence of multiply reflected SH rays and found that the inclination of the Moho caused
the largest changes in phase velocity and amplitudes at short periods. Boore(1970)
studied the propagation of a simple low frequency Love wave across the type of struc-
ture shown in figure 1c. He specified the displacements at t=0 and t=dt throughout
the grid such that the displacement at t=0 at the surface of the layer over a half-
space portion of the model was a Ricker wavelet. The Finite Difference method was
then used to calculate phase velocities and transmission coefficients at various points
along the grid surface for a one hundred twenty kilometer long transition region.
Periods of twenty to one hundred thirty seconds were used. Phase velocities were
lower for propagation from continent to ocean than from ocean to continent. He
noted that in the region of the transition that mode conversions and conversion to
other types of waves seemed to be important. Lysmer and Drake (1971, 1972) and
Drake(1972), who discusses mainly Rayleigh wave results but states that they also
apply to Love waves, use a Finite Element method based on Zienkiewicz and Cheung
(1967) which includes a rigid grid bottom and thus allows no energy to escape the
grid. The formulation also requires that the incident modal energy is exactly equal to
the sum of the reflected and transmitted modal energy, thus disallowing conversion to
other types of waves. Lysmer and Drake (1971) use this method to study the effect of
a transition of type lc, with length one hundred twenty kilometers, or 1d, with a

length of one hundred kilometers, on the incident fundamental mode Love wave
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energy. With their constraint no difference in continent to ocean and ocean to con-
tinent phase velocities is seen, so they attribute the differences to body wave interfer-
ence. They estimate that about one percent of the energy at 25s period is transmitted
without mode conversion and about 35% is. transmitted in other modes. Drake(1971)
discusses mainly Rayleigh wave results but states that they also apply to Love waves.
Drake and Bolt (1980) used the method of Lysmer and Drake (1972) to study a more
complicated model with the upper and lower transition surfaces having different
lengths to model phase velocity data of events normally incident on the California
continental margin. They considered periods between 4.4 and 60 seconds and modeled
only incident fundamental mode waves. They discuss the period ranges over which
fundamental mode transmission is small and conversion to particular higher modes is
large. They conclude that the ocean continent boundary strongly increases the
attenuation of fundamental mode Love waves. Schlue (1979) shows some simple

examples of a three dimensional Finite Element solution for Love wave propagation.

All the studies discussed in the previous paragraph used periods much longer
than those that will be considered in the following discussions. The shorter periods
used in this study allow the examination of the effects of transition regions with length
many times the wavelength of the incident energy. Most previous studies considered
transition regions with lengths comparable the wavelength of the incident energy. The
method of Lysmer and Drake (1972) purposely excluded the possibility of conversion
from modal energy to body waves, and thus excludes the possible escape of energy
from the system as these body waves travel out the bottom of the grid. This escaping
energy is shown in this study to be an important component of the explanation of the
attenuation of the L, phase traveling on partially oceanic paths. The studies using the
method of Lysmer and Drake (1972) used periods shorter than other studies but longer

than those used here. They also considered only fundamental mode Love wave input
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and calculated each mode separately, while the driving functions used in this study are
a sum over a range of frequencies on the fundamental and first five higher branches.
In fact most of the earlier studies with Finite Element or Finite Difference considered
the fundamental mode at one frequency rather than over a range of frequencies. None
of these studies has generated realistic seismograms, but instead they all concentrated
on measuring phase velocities and transmission and reflection coefficients. In light of
these facts it is clear that the results discussed in this thesis can give a significant

addition to the understanding of the propagation of L, waves across transition regions.

Finally, the content of each chapter will be summarized. The first four sections of
chapter one present the basics of and the notation associated with the Propagator
Matrix and FE techniques. Sections five and six discuss the theory of the two cou-
pling methods. .The remainder of the chapter is a series of tests of the accuracy of the
coupling technique discussed in section five and used in chapter two. Sections one to
three of chapter two discuss the design of the numerical experiments presented in the
remainder of that chapter, and in section two of chapter three. The remainder of
chapter two discussed the effects of transition of L, wavetrains and the dependence of
those effects on transition length. Chapter three first presents FE results investigating
the effect of the length of the oceanic path on the L, wavefield. Then examples of the
accuracy and efficiency of the coupling method discussed in section six of chapter one
are presented. Finally, this method is used to determine seismograms after propaga-
tion through a transition and then oceanic paths of different lengths. Reasons for the
attenuation of L, for oceanic path lengths longer than 100-200 kilometers are dis-

cussed.
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Chapter 1
Representation Theorem Coupling of the Finite Element

and Modal Propagator Matrix Methods

Intoduction

In this chapter the methods for Representation Theorem (RT) coupling of finite
element (FE) or finite difference calculations and Harkrider’s (Harkrider 1964, 1970)
propagator matrix method calculations to produce a hybrid method for propagation of
SH mode sum seismograms across paths that contain regions of non plane-layered
structures are explained and developed. The FE method used in this study is an
extensively modified version of the Stress Waves in Solids code (Frazier, Alexander and
Petersen, 1973). The coupling methods explained in detail in this chapter use a 2-D
Cartesian FE formulation. Analogous methods for the 3-D method follow directly.
The hybrid method linking propagator matrix results to FE calculations assumes that
the wavefield arrives at the edge of the FE grid after propagating many wavelengths
in the layered structure. Extensive tests illustrating the validity and accuracy of the
implementation of this method are presented in this chapter. These tests use a struc-
ture consisting of a layer over a half-space. This simple structure allows the calcula-
tion of synthetic seismograms using only the propagator matrix technique. These syn-
thetic seismograms can be directly compared to the hybrid results to ascertain the
accuracy and the limitations of the coupling technique. After propagation through a
path of length much less than the source to FE grid distance in the FE grid the
wavefields can be coupled back into a layered medium. The layering in the second
layered medium need not be identical to that in the first layered medium. The tests

of coupling from FE to propagator matrix are discussed in chapter 3. This sequence of
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procedures can be repeated any number of times, thus including several regions of

complexity in the source to receiver path.

These hybrid techniques are developed to study the propagation of surface waves
across regional transition zones or other heterogeneities that exist in part of a longer,
mostly plane-layered, path. Examples of structures of interest through which surface
waves can be propagated using these techniques include, regions of crustal thickening
or thinning such as continent ocean transitions or basins, anomalous bodies of any
shape located in the path, topography, and sudden transitions from one structure to
another. In fact, any arbitrary structure of interest can be placed in the FE portion of

the path.

To clearly explain the methods used to couple _ﬁnite element (FE) and propagator
matrix methods, enabling transmission of a disturbance along part of its path from the
source to the receiver by each method, it is useful to first discuss some of the founda-
tions on which each method is based, and some of the details of the implementation of
each method. The propagator matrix technique is used to transmit mode sum syn-
thetics through sections of their paths that consist of simple plane layered structures.
The theory used to derive this technique is explained in detail by Harkrider (Harkrider
1964). His numerical implementation of these ideas forms the basis for the slightly
modified codes used in this study. The fundamentals of this method which are central
to the understanding of the Representation Theorem coupling techniques and the gen-
eration of the mode sum synthetics and the Green’s Function synthetics used in these
techniques will be discussed below. The modifications to the numerical implementa-
tion of Harkrider will also be discussed. The FE calculations discussed here are done
using an extensively modified version of the Stress Waves in Solids (SWIS) code
developed by Frazier, Alexander, and Petersen (Frazier et al. 1973, Frazier and Peter-

sen 1974). The basic structure of SWIS code is retained, but many options in the code
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are removed, and the detailed implementation is changed in order to produce a large
increase in the speed of execution. Further options not available in the version of the
SWIS code used were added to enable grid points to be constrained to move with a
gi.ven time history, to allow the production of time slices, and to implement hourglass
corrections for the SH case. Details of these changes and their impact will be dis-
cussed later, as will the basic formulation of the SWIS FE method.

The Propagator Matrix Technique

The basic idea behind the propagator matrix method as implemented by Har-
krider is to transmit the disturbance produced by a source within a layered half-space
structure through that structure by combining terms that describe the source, the
medium response, and the propagation effects. The terms that apply the effects for
the propagation path in the z direction are in the form of propagator matrices. For
source and receiver both at depth, they are separated into two parts, the propagation
in z from the source to the surface, and the propagation in z from the surface to the
receiver. An additional propagation term adds the effect of the propagation in the r
coordinate. In most cases the general form of a modal displacement at a receiver at

depth is

v(r,4,z) =S Ay [vsv(h) ]H [VR(Z) ] P (1)
H

0 Vo

where S is a function of the source strength and geometry, A; represents the medium

response for a surface source and a surface receiver, P expresses the propagation effects

vg(h)

in direction r, [ ] is the term for transmitting the disturbance from the source
H

depth to the surface which because of reciprocity can be expressed as a modal propa-

vr(2)

Vo

gator from the surface to the source depth, and [ :{ is the propagator from the
H

surface to the receiver depth. The subscript H on the terms which transmit the modal
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disturbances in z denotes homogeneous, that is independent of and not containing a
source. The expressions within the square brackets of these terms represent matrix

quantities, not simple ratios. If the source is a stress source rather than a displacement

vg(h k *
source then s(h) is replaced by e _; ﬂ , Where pug is the rigidity at the
Vo |mu Bs | vo/cL |g

depth of the source. If stress rather than displacement is to be recorded at the

receiver, then [VR(Z) ] is replaced by -k—L l:—TlZ-L] . In this expression pg is the
Vo Jm FR [ Vo/cL |

rigidity at the depth of the receiver. As an example of a specific case of this type of

representation, the displacement expressions for a double couple source of arbitrary

orientation will be stated in terms of the propagator formulation. This expression will

then be used to obtain the expressions for displacements from a dip slip and a strike

slip source. These expressions will be used extensively in subsequent discussions. Fol-

lowing this discussion the modifications made to the propagator matrix codes will be

explained.

The displacement for an arbitrary double couple source follows directly from the
expression for the SH displacement at the free surface produced by a double couple

source of arbitrary orientation at depth h ( Harkrider 1964, 1970 ).

sin2¢

cosh sind cos2¢ — sinh

sin26 vg(h) 8H2(2)(kLr)
2 H

{VO} = 2irm K#kgu_A_L { = e

- [sin)\ cos26 cos¢p + cosh cosd sin¢] [

1 [ 7*(h) } 8H Pk r) @
H

Bs | vo / cL or
where
K4 = _M(WQ) = 1M03 Vo = lwvy (3)
4Tpw 4mpw
k}:‘*’_z:”s(‘ﬁ =2 =i (4)
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In equations (2), (3), and (4), X is the strike of the double couple source, § is the dip, ¢
is the azimuth to the station, A is the SH wave velocity, p, is the density at the depth
of the source, h is the source depth, w is the frequency, r is the distance from the
source to the receiver, ¢, is the Love wave velocity, pug and pg are respectively the rigi-

dity at the source depth and at the receiver depth, A; is the medium response for a

Vo vo /L

vg(h *
surface source and receiver, [ s(h) ] and AEL are the terms that transmit
H H
the source disruption in z from the source to the surface receiver, and the term con-
taining the Hankel function is the propagation term in r. The source term is defined

to contain all the angular dependence on 6, A\, and ¢, as well as the term 2i7rkﬂ2K#,

and the factors of p. The second equality in the first expression of equation (3)

M,

assumes a step moment, that is M(w) = —.
iw

It is well known that a double couple of arbitrary orientation can be expressed in
terms of a linear combination of double couple sources of three types, vertical strike
slip, vertical dip slip and 45° dip slip. Thus, results for these three fault types can be
added to produce results for an arbitrary orientation, removing the necessity to repeat
the entire procedure for each orientation to be studied. Substituting (3) and (4) into
(2) and evaluating the expression for each of the three basic fault types yields, (5), the
expressions used to determine displacement at the surface. For a vertical strike slip
fault 6§ = 90°, and A = 0°. In the following development part a of each set of equa-
tions will be the expression for the strike slip fault. For a vertical dip slip fault
6 = 90° and X\ = 90°. Part b of each set of equations below will be the appropriate
expression for the vertical dip slip fault. For a 45° dip slip fault 6 = 45°, and

A = 90°. Part c of the next group of equations is for a 45° dip slip fault.
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M [ vs(h) | oH{(ker)

{Vo} == —% AI COSQQS h VO ]H 31- (53)
. My, 1 [ 2wy ] oHP (k)
{VO}—‘%A—LWTS_% ol or (5b)

{_}: le B (—si;2¢) [vs(h)' OH{(kyr)

0
Vo (91'

(5¢)

H

Examining equations (5) shows that, for SH waves, any fault geometry can be
modeled using a linear combination of only the vertical dip slip and the vertical strike
slip faults. This follows from the observation that the vertical dip slip and the 45° dip
slip expressions differ only by a function of the azimuth ¢. For the remainder of this
development only vertical dip slip and vertical strike slip fault types will be con-
sidered. This is equivalent to setting sing = cos2¢ = 1, and sin2¢ = 0, that is
¢ = 90°. For a given value of ¢ any fault geometry can be reconstructed by reintro-
ducing the appropriate values of sing , cos2¢ , and sin2¢ into the coefficients of the
linear combination of the remaining two factors. The displacements determined by
equation (5) are those produced at the surface by a double couple source at depth h.
To determine the displacements at depth, a term propagating the energy from the
surface to the depth of the receiver must be included. For a receiver at depth z the

modal displacement expressions become

(6a)

_ My . oHP(er) [vet) ] [ve)
{V(Z)}=—2wAL T [s L L

Vo | Vo
o My 1 8HP) [ ) ] [ ve(2)
{V(Z)} i AL W Bz L’o ™ el s (6b)

Most of the changes made to the propagator matrix codes of Harkrider were

minor. The only major changes were the addition of an option to evaluate the
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analytic expressions for the stresses and the implementation of an alternate code
which uses the line source rather than the point force, double couple, or explosive
sources already available. The implementation of the stress calculation will be dis-
cussed later. The construction of the line source code required changes to the source
terms and the modal propagation terms that propagate in r. The basic form of the z

dependent modal propagator terms is identical regardless of the source used, so no

changes were necessary in the calculation of
h vr(z * *
vs(b) ] " { r(?) ] i (h) , or —ﬂ . The line source code is set up to
Yo J|u Vo |u |Vo/cL |u vo/cL |u

calculate displacement, stress, and displacement and stress Green’s functions. The
minor changes made to the codes include the restructuring of the order of operations
to allow the efficient calculation of particular types of sets of seismograms. To
efficiently calculate sets of displacement and stress seismograms in which successive
seismograms are at the same horizontal distance r, and at a series of receiver depths at
intervals of Az, the operations were reordered to avoid unnecessary recalculation of
intermediate results. The propagation terms in r need to be calculated only once, as
does the source to surface term. To efficiently calculate sets of displacement and
stress line source Green’s functions the calculations were reordered in a different
manner so that the surface to receiver propagator term and the propagation term in r
needed to be evaluated only once. The codes still retain the ability to calculate
seismograms for sets of receivers or Green’s functions for sets of sources which do not
form depth sections. However, for these sets the order of operations is not necessarily
optimal and extra time may be taken in calculation of displacements or stresses.

The Modified SWIS Finite Element Code

The SWIS FE program is a flexible code capable of calculating the propagation of
stress waves through solids of arbitrary complexity. Properties such as density, and

elastic wave velocity are defined at a grid of nodes whose locations can be defined in
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curvilinear coordinates. These properties are then used to determine the location,
stress, and motion of the nodes in the grid as a function of time. Next, it is useful to

give a simple step by step outline of the procedures used in the SWIS FE code.

First, several quantities are defined at each node or at each element in the grid to
provide the initial conditions. In particular, the properties that are initialized at each

node before the first time step are, the nodal position X(t), nodal displacement U(t),

and nodal velocity U [t - %] The properties defined for each element are the force

as a function of time, F(t), resulting from body forces f(t) within the element and from
tractions z(t) applied to the surface of the element, and the elastic constants as deter-
mined by specification of density and elastic wave velocities. The values, within a ele-
ment, of the variables initialized on each node are defined by interpolation between
the nodal values at the nodes surrounding that element. In order to define the form of
the interpolation functions the coordinate systems which define the location of a point
within an element and the location of an element within the body must be defined and
related. The ’natural’ or local coordinate system defines the location of any point in
the element with respect to the nodes surrounding that element. Each node is defined
to be a unit distance, in each coordinate, from the element center. Let z; be the coor-
dinates of a point in element e in this 'natural’ coordinate system, and let Z;™ be the
coordinates of node m, one of the nodes bordering element e, in the ’natural’ coordi-
nate system. This means that Z;" is always +1. A Cartesian coordinate system is
defined within the volume V containing the body composed of the elements. In this
Cartesian coordinate system, the i*" component of the position of node m bordering
element e will be denoted X;™, and the i*! coordinate of a point z within element e will
be denoted x;. The Cartesian coordinates x; and X;™ can be transformed to an arbi-
trary curvilinear coordinate system y; and Y;™ using the well known relations for the

transformation of quantities between Cartesian and general curvilinear coordinates.
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Since all calculations in this study are performed in Cartesian coordinates, the
transformation to general curvilinear coordinates will be omitted in further discussion
of the SWIS FE method. Now it is possible to define the interpolation function used
to determine positions, dislocations, velocities, accelerations and stresses within an ele-
ment. In ’natural’ coordinates the interpolation function used to define the coordi-

nates of a point z within element e has the form

1 D
P?(z) = = TI( + zZ™) (7)
27 =1
where
P™(z) the interpolation function at point z for position of node m bordering
element e
D number of space dimensions

Using the interpolation function it is possible to define the value of any of the quanti-
ties initially defined at each node at any point within an element, in terms of the
Cartesian coordinates of the nodes surrounding the element. The location of the
evaluation point within the element is expressed in the ’natural’ coordinate system,
For the position, displacement, applied force, or velocity at any point in an element

surrounded by 2P nodes the relation is or is analogous to equation (9).
2P
xi = ) P(2)X" (8)
m=1

For the stresses the relation is

2P m

oP™(z

oy = __a_ﬁ=lxim (9)
m=1 Z;

The SWIS code is based upon a one point quadrature integration rule, so the point z

used to evaluate these expressions is the centroid of the element. Given the initial

values the SWIS code uses one of several series of calculations to advance the proper-

ties of the nodes of the grid one time step, At. Only the option used for the
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calculations in this study is discussed below. To update the values of the initialized
quantities by At, thus yielding the configuration of the grid at time t+At the follow-

ing time centered explicit FE integration procedure is used;

(1) Compute strain and thus stress at the centroid of each element m

1 &P 1 oP™ op™
oii(x,t) = QH{E—a%LllUi(t) + g—azﬁUj(t)} + >‘5ijTZk(%lUk(t) (10)
i j

(2) Compute the restoring forces for each element m

R™(t) = oyxt) 2 (11)

Then use the values of restoring force R;™ at each element m surrounding a given node

to determine a net restoring force R; at each node.

(3) Integrate the equation of motion to give the values of location, stress and motion

at each node at time t + At.

(Fit) + Ri(t))
M

Uit + At) = Uj(t) + At U[t— %] + At

(12)

The basic series of calculations described above form the core of the SWIS code and
were retained in principle in the modified and accelerated version of SWIS used in this

study.

In the discussion of the basics of the FE method used no mention was made of
the exact method by which a source can be introduced into the FE calculations. In
the basic version of SWIS a point source or a source of finite spatial dimension can be
defined by constraining a node or nodes in the grid to have a specified displacement at
time zero. Alternately, given body forces, F;, can be applied at the centroids of one or

more elements at time zero to create a source. Clearly, a more general source would
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be desirable, and in fact necessary for the RT coupling of Propagator Matrix or other
results into a FE calculation. To couple energy from a source outside the FE grid into
the FE calculation it is necessary to specify the displacement time history of a column
of nodes. An additional option to allow the specification of displacement as a function
of time for any node or nodes within the grid was added to the basic SWIS code. This
option allows the specification of a time history constraint at up to two hundred
nodes. However, if time history constraints are specified at more than one node, they
must have a common duration at all nodes used. Constraints used to define boundary
conditions are defined separately and persist for the entire calculation. The time his-
tory constraints can have any duration. If the duration of the constraint is less than
the duration of the calculations then the constrained nodes are released when the time
t within the calculation exceeds the duration of the constraint. If the duration of the
constraint exceeds the duration used to define the length of the calculation then only

the first portion of the constraining displacement time histories are used.

A second modification to the SWIS FE code was added to enable the production
of time slices, or ’snapshots’ of the motions at each node within the grid at a chosen
time t. This option allows the code to write a file which contains the displacements at
every node in the grid, or at every node in a decimated grid every n time steps. If a
decimated grid is chosen it is specified by an integer decimation factor. If this factor
has a value 1 then in a given row (I-1) nodes are skipped between each node for which
a value is recorded, and (I-1) rows of nodes are skipped between each row where dis-
placements are recorded. These displacements are then plotted to produce a series of
figures showing the displacement as a function of location within the grid at a selec-
tion of times. The sequence of plots illustrates how the energy propagates through the

grid as a function of time.



- 929 -

The final, and most important addition to the SWIS code was the SH hourglass
correction terms. The finite element (FE) code uses a one-point quadrature integra-
tion rule so stresses are evaluated only at the center of mass of each element. Conse-
quently any stress state that produces non-constant stress within an element is not
treated completely in the calculation. Such a stress state can be decomposed into
the sum of a constant stress state, which the one point integration represents exactly,
and a non-constant stress state with zero stress at the centroid, known as the hour-
glass mode. To account for the hourglass modes in a code which uses one point
integration an additional term is added to the restoring force. The form of this term
for SH or antiplane motion is explained and derived below. For the in plane or P-SV
problem corresponding hourglass modes occur as discussed by Kosloff and Frazier
(1978). In all cases the hourglass term in the restoring force is calculated using similar

procedures.

Figure 1a) shows a 2-D rectilinear element of the type used in the SH Finite Ele-
ment calculations, and the form of the hourglass deformation present for SH motion of
such an element. This deformation lifts one pair of diagonally opposite element
corners and depresses the other pair of corners by the same amount, producing no
stress or dispacement at the centroid of the element. Since the Finite Element code
depends upon evaluation of stress only at the centroid of each element, it is singular
with respect to such deformation. A correction to the restoring forces must be made
to offset this hourglass motion. This correction must be singular with respect to con-
stant stress states and rigid body translations. The constant-stress states produce
motions as shown in Figure 1b) and 1c). It is clear that no sum of these motions and
a translation in y will produce the deformation shown in la). Thus, the hourglass

deformation is indeed singular with respect to translations and constant-stress states.
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Figure 1: Types of SH motion of a 2-D rectilinear element. a) shows the hourglass
mode for SH motion. Arrows at the element corners show the direction of displace-
ment in y. The displacement and stress at the centroid (coordinate origin) of the ele-
ment are zero. b) and c) show the motions accounted for in the uncorrected stiffness
matrix, the constant stress modes.
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For a body undergoing pure antiplane (SH) deformation, perpendicular to the x-z

plane, the following conditions are satisfied:

a.) Uy = U; =
b) T == = Oxz
ou, (13)
) ow=Hg
du
d) Uzy I‘l'a_zy

These relations are used as a basis to derive the form of this hourglass correction fac-
tor to the restoring forces for the case of SH motion. Using equations (7), (8) and (9)
and the equation (14) below, from Zienkiewicz (1971), the hourglass correction to the
restoring force at node m, R;™, can be calculated. The details of this calculation are
given in the following paragraphs. Equation (14)'expresses the hourglass restoring
forces on each node in terms of the interpolation functions, the tractions on the sur-

faces of the surrounding elements and the body forces in those elements.

R — 33 [BP7(2)dV + ¥ [PT(z)TdS (14)
emVe emS,
where
h; body forces in volume V, i component i=1, ..., D
Sy the portion of the element surface S on which tractions T, are
specified
Y sum over all elements bounding the node
em

To calculate the hourglass restoring forces the traction, T;, on the element sur-
faces are needed. The quantities used as tractions for the purpose of calculating hour-
glass restoring forces are the stresses oy, and o,,. Consider the 2-D rectilinear element
illustrated in Figure 2, with a linear varying traction o,, applied to its sides at z==b

and oy, applied to its sides at x==a. Let the form of the tractions o,, be

Ouy = Oy (15)

Ty = H ox
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2a

Z%=(1,-1)

Figure 2: Configuration of an element used to calculate hourglass restoring rorces
for 2-D SH motion. The diameters of the circles on the element edges indicate the

@ P
=(0,0)

¢ ’/z —

5] L

amplitudes of the applied tractions T; (T = 0yy, x=x=a, T = oy, z=x+Db)

selected points. Variation between illustrated points is linear. Circles with embedded
crosses indicate motion into the page. Those with embedded dots indicate motion out
of the page. Z; are the natural coordinates of the nodes. The lengths a, b are the

dimensions of the element in the Cartesian coordinate system.
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From this relation uy can be determined by integrating oy, with respect to x.
Uy, = foozdx. = ogzx + {(z) (16)

However, at x=0, z=b, uy=0so f(z)=0. Now u, at each of the j nodes surrounding
element e may be determined. Expressing the uy for node m, m=1,..,j, as the m'" ele-
ment of a vector {U,}, and defining the unit vector {1} to carry the sign information

as

T

(1) = o 0) o

enables the y displacements at the nodes to be written

uy(-1, 1)
(v} = zi—lf,—ll)) ety (19)
uy( 1,-1)

Simple manipulation of (18) leads to the following expression for oy

=5} o)

It should also be noted that equations (16), (13a), and (13d) lead directly to an expres-

sion for o,

Oy = P~ = 00X (20)

Now we have the expression for the traction T; = o,y, 0y, to be used in equation

zy)
(9) to calculate the restoring forces. For a 2-D quadrilateral element subject to (13)
the body forces h; are zero so the first term in (9) vanishes and the interpolation func-

tions become
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P™(z) =

(1+2z,Z™) (1 + 20Z3") (21)

AI»—-

Substituting (21) into (14) gives the following expressions for R™, the hourglass restor-
ing forces.

a b

2 2
__f; (1-z;) UonX+f—(1+Z2)UOZdZ_00.£%_}2_l

b
2 2
R2 == f—;- (1+Zl) OpX dx -+ f';— (1+Z2) 1Y/ dZ = —0) ﬁ—a‘:‘;—bl
-b

a b

(a2 + bY)

R3 = —f% (1-z1) opx dx - f% (1-25) ogz dz = -0 <2 _; ® (22)
"1 "1 (a2 + b?)

R = f— (142z;) opx dx — f— (1-25) 0z dz = 0 ~——L
) ) 3

Thus, in vector form the restoring forces are

{R} =—ao@{1} (23)

Substituting (15) in (19) gives the value of the restoring forces used in the SH FE
code. Square elements were used, that is a=b, so the final form of the hourglass res-

toring force corrections are:

W)= 0 () o

This restoring force has been implemented in the version of SWIS used for all subse-

quent calculations

It remains to be shown that these corrections are necessary and adequate to allow
the FE code to produce accurate results. To illustrate the effect of the corrections two

test examples were completed, each of them with and without the hourglass restoring
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force terms. The first example uses a point source located at one of the nodes within
the grid. This source configuration is known to be a severe test of the stability of a
FE or finite difference (FD) calculation. The second example uses a two step pro-
cedure, the validity of which will be demonstrated later, to couple energy propagated
from a distant line source into the FE calculation through the edge of the FE grid.
This procedure produces a more stable source and introduces hourglass instabilities
only in the FE portion of the path. Consequently, smaller differences are introduced

into the results when hourglass restoring forces are omitted.

Results of the first set of calculations, using the line source within the grid, are
shown in Figure 3. The line source is located at a depth of 10 km from the free sur-
face and a horizontal distance of fifty kilometers from the left hand grid edge. The
grid has dimensions of 200x100 nodes, and node spacing of dx=dy=0.5 km. All cal-
culations use a time step of 0.05s. The displacement time history of the source is a
triangle eight time steps wide with a rise time of four time steps. Each group of three
seismograms shown in Figure 3 is recorded at a given node. The nine nodes for which
seismograms are illustrated surround four adjacent elements that share a common
node. That common node is 12.5 km from the source, at the same depth as the
source. The geometric arrangement of the groups of seismograms in Figure 3 is identi-
cal to that of the nodes at which they are recorded. The maximum amplitude of each
trace is normalized to one. The uppermost seismograms in each group of three seismo-
grams in Figure 3 is calculated by direct numerical evaluation of the analytic expres-
sion for the propagation of waves from a line source through a half-space. This

expression 1Is

t ¢
w,(zt) = [ 1) _ars | f(tr) _g4r (25)
n/v | 7P2-r2/v? ro/v | 7—ry2/v?
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Figure 3: Waveforms for synthetic and FE seismograms calculated at nine adja-
cent nodes. Amplitude of each trace is normalized to one. Each group of three traces
is recorded at one node. The groups of traces are displayed in the same geometrical
arrangement as the nodes at which they are recorded. The central node is at a depth
of 10 km, 12.5 km from a 10 km deep source. The spacing between the illustrated
nodes is 0.5 km. In each group the top trace is synthetic, the second trace is a FE
result including hourglass restoring forces, and the third trace is a FE result without
hourglass restoring forces.
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Where r; is the direct source to receiver distance, ry is the source to receiver distance
for the reflection from the free surface, v is the SH wave velocity in the half-space, t is
the time of observation with t—=0 being the origin time, and x and z are the receiver
coordinates. The first term on the right hand side of this equation gives the direct
arrival, the second term the reflection from the free surface. The first peak in each
synthetic is the direct arrival, the second peak is the free surface reflection. The cen-
tral seismogram in each group is the FE result including the hourglass restoring forces.
The last seismogram in each group is the FE solution omitting the hourglass terms.
The waveforms and amplitudes for the first two traces in each group differ mainly in
that some spurious oscillations are present in the FE solution. These oscillations are
due to instabilities caused by the finiteness and high frequency of the source. The
waveforms for the FE solution without hourglass corrections show marked discrepan-
cies when compared to either the corrected FE solutions or the synthetics. For alter-
nate nodes in any row or column these discrepancies have a different character. In one
case the shape of the waveform shows only a small discrepancy and the peak ampli-
tude is increased by more than 10%. In the other case the entire character of the
waveform changes and the amplitude decreases by at least 20%. Clearly the hourglass

corrections are necessary if accurate results are to be determined.

The second example used a 100x100 node FE grid whose first column is 1500 km
from a ten kilometer deep line source in a layer over a half space. The layer has den-
sity 2.7 g/cm® and SH wave velocity 3.5 km/s and the half space has density 3.2
g/cm® and SH wave velocity 4.5 km/s. The time step size and the vertical and hor-
izontal spacing of nodes in the FE grid were identical to those used in the previous
example. Seismograms were calculated for a group of nodes along the surface and
down depth sections at twenty five, forty and sixty five nodes from the grid edge using

a two step procedure. First, synthetic seismograms were generated at a horizontal



- 38 -

distance of 1500 km from the source, at the surface and at half kilometer depth inter-
vals to a depth of thirty kilometers. These seismograms were used to constrain the
displacement time histories of the leftmost column of nodes in the FE grid. It will be
shown that applying such constraints completely specifies the distant source. Analytic
synthetic seismograms were also generated at the same locations. The two step
seismograms, which have been propagated through a FE grid for thirty to thirty five
kilometers between 1500 km and the receiver should be identical to the analytic syn-
thetics at the same receivers if the FE calculation is stable. Results from this test are
shown in Figure 4. The pairs of two step seismograms illustrated show how the intro-
duction of the hourglass corrections effects the waveform and amplitude of the results.
The upper trace in each pair includes the hourglass restoring force the lower trace does
not. At the scale of the figure the corresponding analytic synthetics are indistinguish-
able from the two step results with hourglass restoring terms. The uppermost number
to the right of each trace is the ratio of the peak to peak amplitude of the illustrated
trace to that of a synthetic calculated for the same location. The lower number is the
same type of ratio using an RMS amplitude measure discussed in detail later. These
three pairs of seismograms were recorded at the free surface at distances of 30, 32.5,
and 35 km from the left hand grid edge. These distances illustrate the behavior of the
amplitudes at adjacent nodes within the grid. Some intermediate nodes have been
omitted, but the alternation of higher and lower amplitudes for the uncorrected syn-
thetics is seen as long as an even number of nodes are skipped between illustrated
nodes. Examining the illustrated results shows that adding the hourglass restoring
force term makes a small but perceptible change to the waveform. This change pro-
duces a slight improvement to the already excellent correspondence between the FE
and analytic waveforms. However, the important improvement made when hourglass
restoring force terms are included is in the amplitude correspondence between the FE

and synthetic results. When no hourglass corrections are made the amplitudes of FE
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Figure 4: Waveforms for hybrid seismograms calculated in a FE grid removed
from the source by a distance of 1500 km. Seismograms are calculated for a line
source in a layer over a half-space. Each pair of seismograms is recorded at a given
node. The upper trace in each pair includes the hourglass restoring force terms. The
lower trace in each pair does not. The number to the right of each trace are ampli-
tude ratios. The amplitude of the illustrated seismogram is compared to that of a
synthetic calculated for the same location. The upper number is a ratio for peak to
peak amplitudes, the lower for RMS amplitudes. Seismograms are of duration 102
seconds.
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seismograms at successive nodes along any row or down any column alternate between
being larger and smaller than those of the corresponding synthetics. Introduction of
the hourglass restoring force terms removes this oscillation in the amplitude. Clearly
tile presence of the oscillatory term caused by the hourglass instabilities superimposed
on the correct solution is not desirable. Thus, it is necessary to apply the hourglass

restoring force correction to obtain the correct solution.

With these additions the SWIS FE code produces accurate solutions. However,
the calculations are extremely time consuming. An effort was made to increase the
speed of the calculations for the Cartesian SH option used for the calculations in this
study. First, the options for general curvilinear and cylindrical coordinates were
removed. Some small subroutines were incorporated into higher level routines to
reduce the number of subroutine calls. The system was defined to have two dimen-
sions and one degree of freedom thus removing a number of decision statements and
blocks of code necessary to the implementation of other options. These changes also
allowed the removal of a number of do loops and their replacement with single state-
ments. Other modifications were made where incorporation of analytic simplifications
of the expression being evaluated by the code substantially reduced the number of
necessary calculations. The overall effect of these modifications was an increase of
between a factor of four and and factor of five in the speed of execution of the
modified and accelerated SWIS code over the original SWIS code for case of the propa-

gation of SH waves in Cartesian coordinates.

The FE and propagator matrix methods used in the studies have now been
explained, and the components of each which must be understood to explain the
Representation Theorem coupling methods have been described. The modifications
made to the SWIS FE code have increased the speed of the code by more than a fac-

tor of five. They have also allowed the application of time dependent displacement
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constraints to selected nodes in the grid, and the recording of time slices, or snapshots
of the motion of each node in the grid at a given time. These additional capabilities
are utilized to implement the propagator to FE coupling, to allow the use of larger FE
grids, and to better understand the propagation of disturbances through complex
structures. Next it is necessary to understand the Representation Theorem (RT) and
how it can be applied to coupling these two methods to produce a hybrid method util-
izing the strengths of each.

The Representation Theorem and Green’s Functions

The basis of the method used to couple the propagator matrix calculation to the
FE calculation, or to couple the FE calculation into the Propagator matrix calculation
is the application of the Representation Theorem on the boundary between the regions
in which each method is used. The Representation Theorem (RT) relates the displace-
ment at a point in a volume V to the body forces f; in the volume V and to the dis-
placements u and the tractions T; on the surface S of volume V. There are many

equivalent ways of expressing the RT, for example ( Aki and Richards; eq 2.41)

u,(Xt) = f dr f{f f;(¢, 1) Gp(x,t-7; €,0) dV(§) (26)

+00
+ f def {Gip&)t_r ) _6.,0) Ti [ Ti(—é;‘r): nj] — Cjjkl %ka(—fc,t—r ) —é)o) ui(g y T) n; } dS(_é)
-00 S 1

where € the location of a point of the surface S of volume V, X the location of a
receiver in volume V, u,(%,t) is the p component of the displacement at time t at the
receiver location, X, t is the time at which the observation is made, 7 is the source
time, Ti(_é , 7) is the boundary condition specifying.stress as a function of source time 7
for all points on surface S, n; is the j*" component of the outward unit normal to the
surface S, ui(—E , 7) is the boundary condition specifying displacement as a function of

source time 7 for all points € on the surface S, and G, is the Green’s function which
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represents the displacement in the i*" direction at X at time t due to a unit impulse
applied in the p*" direction at position _f at time 7. The desired Green’s functions are

obtained by solving the wave equation below in volume V, subject to the initial condi-

tions that G, and aiGip are zero for t<r.
X
by 87 -B) 8t - 1) = 05y, 0, 1) - 2 feGtx, 152, 9) (@)
1p 8t2 1p ) ) ) aXJ 1) axl P Z) ) ]

The form of the RT given as equation (26) is not optimal to demonstrate how the
coupling of the two methods is accomplished. To transform it to a more manageable
form several conditions are applied. First, it is assumed that no body forces are
present within volume V. Thus, the first term on the right hand side of equation (26)
vanishes. Next, the medium is assumed to be isotropic. This reduces the number of

independent c;j) terms to nine from eighty one. It allows them to be written as

Cijkl = X &5 S, + p (6ik 6 — &y 65) (28)

Using these values of c;j the tractions T can be expressed as
y ? uZ S EY 29
i = Tij i = Cijpq Eup £,7) 0= i e (0 4 ) ¢ (29)
q

Substituting (28), and (29) into (26) a more useful form of the RT is found.

+00

wxt) = [ dr [ {Gpm,- + 2Gyyy u; + (Gyij + Gygi) ui} ndS(E)  (30)
—00 S

Where all derivatives are with respect to €. For the case of SH waves only, (30) can be

further simplified by applying the conditions governing SH motion and by assuming

all quantities are constant with respect to x,, that is
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Also, it i1s usual to assume that the motion and stress are everywhere zero for times
less than 7=0. Applying this condition and the conditions given in (31) to (30) and
integrating from —oco to oo over xy gives the form of RT appropriate for a 2-D SH
line source.

00

ug(X,t) = {df !;# {F22u2,k + F22,ku2}nkdo(§1,§3,7) (32)

where C is the curve defined by the intersection of the surface S with the x;—x3 plane,
and following the notation of de Hoop (de Hoop 1958)

+00

Ty = [ Gijx1,x3,t)dxs (33)
_w

Omitting the integration over x, gives a SH RT appropriate for a 3-D analogue of the
procedure described below. Further discussions in this chapter relate to the 2-D prob-

lem.

The form of the line source Green’s function given by de Hoop (de Hoop 1958) is
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WlﬂzKo(sr/ﬁ)= 1 f Ly e dt (34)

N _} exp [%s/ﬂ)(e%r?)‘”] ;

(€% + 2

where 12 = (x;-€;)? + (x3-&;)2. This form is valid for a whole space, and must be
modified to satisfy the half-space problem. The whole space problem is a solution to

0Ty
r

equation (27) subject to the radiation condition that I'5o—0 and —0 as r—oo0.

For the half-space problem I'ys must satisfy an additional BC as well as satisfying

equation (27) and the radiation condition. The BC TI'gy must satisfy is that there be no

stress, 0y, on the free surface. That is, the relation 2 = 0, must be satisfied on

2
0z
the free surface, at z=0. This is equivalent to specifying that volume V is a half-space
rather than a whole space. Physically, the introduction of the free surface boundary
at z=0 implies that energy that would otherwise continue to radiate towards infinity
will instead be reflected back toward the depth of the receiver. This implies that the
addition of a term of the same form as the whole space solution, so that it will satisfy
the original equation, but with the propagation distance r equal to the propagation
path length of a surface reflection rather than a direct arrival, will satisfy the zero
stress BC at the surface. The half-space Green’s function for a SH line source given
below is based on this reasoning and can be shown to satisfy the BC, the radiation

condition, and the initial equation.

Lo % 8) = =1 [Kolor/8) + Kofor/6) | (35)

.
2T
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where ¥ = 1/(x;-;)* + (z+£&3)°. To compare this form for the Green’s functions to
the forms of the displacements used in the rest of this discussion it is first necessary to
transform the equation from the Laplace transform domain to the Fourier transform
domain, and to express the modified Bessel function, K, in terms of Hankel functions
or of exponentials. Examining the second expression in the first line of equation (34)
indicates that it is the Laplace transform of a quantity, {(r,z), where f(r,z) is the first
term in the integrand. Applying the change of variables, &2 = (vt)*r?, changes the
lower limit of integration to zero and the integration variable to £&. Then, noticing the
symmetry of the resulting integrand allows the lower limit of the integral to be
changed to —oo if a factor of one half is introduced. This gives the form of the equa-
tion in the second line of equation (34). Finally, introducing an additional change of
variables, s = iw, changes the Laplace transform to a Fourier transform. The result-

ing expression for the Green’s function is

I [ Ko(ikgr*) + Ko(ikﬂr”)] - (36)

.3
2mp B
Next, it is useful to transform the modified Bessel functions, K, into Hankel functions
to make direct comparison with the displacement solution for the line source in a lay-

ered half-space possible. The modified Bessel function can be expressed in terms of

Hankel functions (Abramowitz and Stegun, eq 9.6.4)

-——Vv

K,(z) — —im o 2 HV(2)(Ze—i7r/2) -—;L<arg(z)g1r (37)

The argument of the modified Bessel function, ikgr, is of the form ix where x is a posi-
tive real number. Thus, arg(z)=—72r—, and the expression (37), is applicable. Substitut-
ing equation (37), with v=0, into equation (36) gives the first expression in the next

group of equalities. It is in the form that it can be directly compared to a line source

displacement expression for a homogeneous half-space that is used in the propagator
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technique to develop the expression for the layered half-space. This expression is
r,8,2) = T [Ho®(ksr + Holicpr | (39)

Alternately, the equation (36) can be written in terms of integrals of exponentials and
then be compared directly to the solution for a line source in a homogeneous half-
space. The exponential form of the equation is the result of substituting the appropri-
ately transformed version of the integral expression in equation (34) for each modified
Bessel function in equation (36). This representation of the Green’s function is given

as the second equality in the next group of equations.

gy — i [HOQ(kﬂr+) + H02(kﬂr_)] (39)
oo [o¢]
— 21 f — I/Qe‘i“"du—jv . e “tdt
e [t2—r12 /,92] v, [t2—r22 /ﬂ2]

Comparing the second equality in equation (39) to equation (25) for the line
source in a homogeneous half space, and comparing the first equality in (38) to the
alternate expression for the line source in the homogeneous half-space, equation (38),

shows that
— 1
Uy(x,2) = mrzz( %; €) (40)

Thus, the displacement Green’s function can be calculated in a manner identical to

the displacement solution, in either a layered half-space or a homogeneous half space.

However, one must be careful to include the multiplicative factor of when deter-

2T

mining the Green’s functions for use in the Representation Theorem expressions.
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The form of the Representation Theorem (RT) given in equation (32) has been
used to determine approximate analytic solutions to the problems of propagation
across a surface step (Knopoff and Hudson 1964), and of propagation in a layered elas-
tic wedge (Hudson and Knopoff 1964). This is also the form used in this study to

develop procedures for the coupling of FE and Propagator Matrix solutions.

Figures 5 and 6 show geometries useful for developing and explaining the
methods to be used for coupling FE and propagator matrix methods. The purpose of
developing these methods is to allow the propagation of wavefields from a source to a
receiver through a series of plane layered media separated by complex regions that
cannot be modeled using a plane layered structure, or by changes in the layered struc-
ture. For example, the complex regions that will be considered in chapter 2 are con-
tinent to ocean and ocean to continent boundaries. A simple geometry, consisting of a
layer over a half-space, is used as a test case to show how the methods work, and how
they can be applied in both this simple case and in more complicated cases. Figure 5
can be used to illustrate the geometry used to couple energy traveling through a lay-
ered medium, into a FE grid which may contain structures of arbitrary complexity.
Figure 6 can be used to illustrate the coupling from such a FE grid into a layered
structure where propagator matrix methods are used to transmit the energy further.
Each of these figures will be discussed in detail later.

Propagator to Finite Element Coupling

In a layered medium the wavefield can be mathematically constructed at any
point receiver within the layered half-space using the propagator matrix technique and
an appropriate form of a source representation. The resulting seismogram at any
point in the layered half-space will include not only a direct arrival and a surface
reflection but also the superposition of many multiple reflections which produce the

surface waves in the wavetrain. Although the seismograms are produced as modal
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sums, in the limit of using all possible modes, they are equivalent to summing over all
possible multiple reflections in terms of rays. Thus, they can be conceptualized in
terms of rays. To simplify the graphical representation used in Figures 5 and 6 the
seismogram at a source point in the layered half-space is represented by a single direct
line from the source to the receiver. This line also implicitly represents all the
reflected and multiply reflected rays in that seismogram which would hopelessly

clutter the diagrams if they were included.

Figure 5 shows a graphical representation of a layer over a half-space. The
source is represented by a large asterisk, and each receiver by a large point. The ori-
gin of the coordinate axes is also shown as a large point. The coordinate axes x; = x,
and x, = z, are labeled at the origin of the Cartesian coordinate system used in this
discussion. The arrows show the directions in which the values of each coordinate
increase. The distance x increases to the right, the depth z increases downwards, and
the coordinate y = x, increases out of the page. All motion occurs in the y direction
since this is an SH wave problem. The free surface of the half-space is located at z=0,
and the source is located at x=0 at depth h. The second long horizontal line is
located at z=D, where D is the thickness of the layer above the half-space. The
points denoting the receivers, also illustrate the locations of the nodes in two columns
of a FE grid. The intervening columns of nodes are not illustrated to avoid cluttering
the diagram. The short horizontal line that connects the lowermost nodes is at
z = Dpg, and denotes the bottom of the FE grid. The FE grid is assumed to extend
off the page toward the right. The vertical line connecting the leftmost column of
receivers shows the lefthand edge of the FE grid. For the sake of simplicity and clar-
ity the structure illustrated within the FE grid is the same layer over the same half-

space as that used in the region traversed using the propagator matrix calculation.
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The coupling of a wavefield defined by the discrete sampling of seismograms
along the leftmost edge of a FE grid, into that FE grid is straightforward. The
seismograms, for a specified source function, are generated at a group of receivers
equally spaced in z located a horizontal distance X from the source. The depth spac-
ing Az between the receivers is the node spacing in the FE grid into which the
wavefield is to be coupled. The distance X is the minimum separation between the
source and the lefthand edge of the grid. The solid lines connecting the source to the
receivers along the left edge of the grid illustrates these seismograms. They are calcu-
lated by transmitting the appropriate source functions through the layer over a half-
space structure from the source to the leftmost edge of the FE grid by using the prop-
agator matrix method. The seismograms are then applied as displacement time his-
tory constraints on the leftmost column of nodes in the FE grid. The application of
this type of constraints to a column of nodes in the FE grid completely specifies the
subsequent motion at all points in that FE grid. Thus, a hybrid seismogram can be
recorded at any node in the FE grid provided a FE calculation of suitable duration is
completed. Consider, as an example, that the receiver at which the hybrid and ana-
lytic seismograms are to be compared is the surface receiver at a distance X2 from the
source. The minimum distance from the source to the second column of nodes illus-
trated in Figure 5 is X2. The heavy solid line in Figure 5 represents the analytic
seismogram, calculated using only the propagator matrix method and the appropriate
source functions. The hybrid seismogram is represented by the integration over all the
dashed paths connecting the edge nodes and the receiver. Each dashed path
represents a seismogram for which the appropriate forcing function is a time depen-

dent source.

Figure 5 shows the layer over a half-space structure extending into the FE grid.

A series of calculations completed using such a homogeneous structure provides a
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useful test of the procedures used. It allows the comparison of the hybrid solutions,
those solutions propagated from the source to the receiver using a combination of
methods, to analytic synthetics, those calculated entirely with the source functions
and the propagator matrix technique, for receivers in locations identical with respect
to the source. Hybrid and analytic synthetics calculated by using the layer over a
half-space structure in both portions of the path will be shown later. These seismo-
grams will be used to demonstrate the validity of the coupling method by comparing
the hybrid results to the analytic results. Although, in this example, the FE grid con-
tains the same layer over a half-space structure as that used for the propagator matrix
calculations, any other arbitrary structure can be put into the FE grid without alter-
ing the coupling method. However, the calculation of analytic synthetics to which the
resulting hybrid synthetics can be compared may be difficult or impossible. Thus,
although we wish to address the effects of complex structures within the FE portion of
the path the simple case where the FE grid contains the same layered structure as
used for the propagator matrix calculation will be discussed here as it is the best test

of the method.

In the examples discussed in later sections the seismograms used as forcing func-
tions are generated using more than one type of source. The first types of sources
used are line sources, for a single point force in a homogeneous half-space or a layered
half-space. For these cases the applied forcing functions are uy(x,y,z). However, the
balance of the sources used are double couple point sources. The propagator matrix
solutions for these sources are of the form ¥(r,¢,z). The displacements are expressed in
cylindrical coordinates rather than in the Cartesian coordinates appropriate to the RT
integral or the Cartesian FE representation. Thus it must be demonstrated that these
cylindrical displacements can be used in place of the Cartesian ones expected without

adversely affecting the results. This will be demonstrated in the following paragraphs.



- 592 -

The expressions for ¥(r,$,z) for the dip slip and strike slip faults, equations (6),
are in cylindrical coordinates (r,¢,z), where r = \/(x2+y2). Displacement time histories
of a series of locations corresponding to the first column of nodes in a FE grid a dis-
t;nce r; from the source were evaluated using these expressions. When these displace-
ment seismograms are used as input forcing functions then they are used as if ¥(r,¢,z)
was an expression for Uy(x,y,z) rather than for Wy(r,¢,z). No transformation from
cylindrical to Cartesian coordinates is performed. The displacement field defined by
the imposition of displacement time history constraints down the FE grid edge is then
propagated an additional distance, Ar, through the FE grid to give the hybrid seismo-
grams that approximate T, at the receiver. The validity of using ¥(r,¢,z) rather than
U,(x,y,2) will now be demonstrated. It will be shown that for r;>>Ar substituting
u, for uy gives a good approximation of uy at the receiver despite the fact that the FE

method produces 2-D rather than 3-D propagation effects.

Consider a FE grid with its leftmost edge a distance r; from a source, and a
receiver, where hybrid and analytic synthetic results are recorded, a distance r, from
the source. Define the distance propagated within the FE grid as Ar = r, — r;. Con-
sider, also, the expressions (6) for the displacements from a point dip slip or strike slip
source. Only variations in the r coordinate need to be discussed to establish the vali-
dity of this procedure so, for clarity, (6a) or (6b) will be reduced to,

A I(kyr)

{V(r,qS,z)} = 7v,(¢,2) .

(41)

where v = 2 for a strike slip source and v =1 for a dip slip source. The derivative
of the Hankel function can be expanded in terms of undifferentiated Hankel functions

using (Abramowitz and Stegun, eq 9.1.29)

= Hfkur) = - B (kur) + ZH ) (42)
L LT
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Each resulting Hankel function can be expanded in terms of the asymptotic expansion
of H, for large r (Abramowitz, Stegun, eq 9.2.4)

1 1
-i(kyp-—vr-—n)
2 ~ 4 —2r<arg(kyr)<mw (43)

H(kpr) = p

Replacing the derivative of the Hankel function in equation (41) with the product of

k;, and the right side of expression (42), gives an expression for {V(r,¢,z)} including

only undifferentiated Hankel functions. Substituting the asymptotic expansion, equa-

tion (43), for each of these Hankel functions gives an alternate expression for

{V(r,d),z) } It is

Ao
{V(r,«s,z)}:vuw,z)\/ﬂfLr [kL—f]e gt (44)

Since we are considering the case of r large, kL>>£, and the second term in the
r

square brackets can be ignored, {V(r2,¢,z)} can be expressed in terms of ¢, z, 1y,

and Ar as
. !2u—1!
= - L " —ikyr; -k Ar
{V(r2,¢,z)} = V,(¢,2) Tt AN ¢ 4 g (45)

r, + Aar
— {V(r1,¢,z)} l_rl__ . ikp Ar

~ {V(rl,cﬁ,z)} o KLAT Ar<<r; kir;>>1

Now, for a line source in a half space, equation (25), or for a line source in a vertically

inhomogeneous half-space, the modal relation analogous to equation (45) is,
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) iluext y ¢l

uy(x2,2) = uy(xl,z = uy(x1,2 (46)

Comparing (46) and (45) shows that both expressions have the same form. In each
case the displacement at r, can be expressed as the displacement at r; multiplied by a
propagation factor. A FE or RT calculation will give the same propagation factor for
each mode as the analytic expression, (46), above. If the displacements at rj,

. -ik; A —-ik; A
¥(ry,¢,2) or uy(x,z), and the propagation factors, e M ore

, are correlated by
considering x1=r; and Ax=Ar, then ¥(r;,¢,z), the 3-D solution, will be given by
uy(x,z), the result of the 2-D FE or RT calculation, so long as the source is many
wavelengths, kyr, from the boundary and r is normal to the FE grid edge or the RT

integration surface.

Finite Element to Propagator Coupling

The coupling of FE seismograms into a layered media through which they are
transmitted by the propagator matrix technique and the application of the RT, is
accomplished by direct evaluation of the RT integral as given in equation (32) using
propagator matrix generated line source Green’s functions. The geometry of the prob-
lem 1is illustrated in Figure 6. The geometry will be explained, then the coupling pro-

cedure will be discussed.

Figure 6 shows the geometry used to evaluate the RT integral, equation (32).
Again, the layer above a half-space model is illustrated in both the FE and propagator
matrix regions for clarity. In practice any structure can be used in the FE grid. The
two long horizontal lines show the free surface and the boundary between the layer
and the half-space. The solid vertical line which does not have dots superimposed
upon it is the righthand edge of the FE grid. The FE grid is assumed to continue off
the figure to the left. The source can be assumed to be either in the FE grid itself or
on the far side of the FE grid. The short horizontal line shows the bottom of the FE

grid. The x’s shown within the grid and on its bottom boundary represent nodes in
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Figure 6: Geometry used to explain the coupling of FE stress and displacement
time histories into propagator matrix calculations. The RT integration path, C, is
shown as the closed curve FGHF. Finite element nodes are shown as open circles. The
short vertical and horizontal lines are the boundaries of the FE grid. The two long
horizontal lines show the free surface and the boundary between the layer and the
half-space. The filled circles superimposed on the FG section of the integration path
are element centers within the FE grid where stress and displacement time histories
are recorded. The dot within the integration path denotes the receiver. The lines con-
necting the element centers and the receiver represent the line source Green’s funec-
tions.
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the FE grid. The two illustrated columns of nodes define the corners of a column of
elements. The center of each of these elements is shown as a dot. The integration
path, C, for the RT integral is illustrated as the closed curve FGHF. The arrows at G
and H indicate that the integral is evaluated on the contour, C, where the x coordi-
nate at G, and the z coordinate at H both tend to infinity. An example of a possible
receiver inside the contour C is illustrated as a large dot outside the FE grid. The
lines connecting the dots showing the column of element centers within the FE grid to
the receiver represent the line source Green’s functions for propagation from a source

at the location of the element center to the receiver.

The evaluation of the RT integral on the contour, C, will be discussed in three
parts. First the quantities used in the evaluation of the RT integral on the segment
FG of the contour, C, will be discussed. Then, the procedure used to estimate the
value of this integral will be explained. Finally, it will be shown that the contribu-
tions to the RT integral from integration along segments GH and HF of the contour,

C, do not contribute to the solution.

Before the particulars of the integration procedure can be discussed, each of the
quantities in equation (32) must be defined. The integration surface for the segment
GH is a line with the x coordinate held constant, only the terms generated by setting
k=1 in equation (32) need to be considered. Thus, the quantities of interest are,
M, Uy, Oyy, Tgg, and T'gp 5. The displacement and stress time histories at the element
centers, illustrated as dots in Figure 6, are recorded during the FE calculation. The
element center displacement u,, and the element center stress, oy, are used as the
Uy and pug; terms respectively, in the RT integral (32). Line source Green’s functions
are calculated for the transmission of a unit line displacement, applied at each of the
nodes illustrated as dots in Figure 6 at time t, to the receiver point. These Green’s

functions are calculated using the propagator matrix method. These displacement
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Green’s functions are the Iy terms in equation (32). The evaluation of the Iy,
terms is analogous to the calculation of the displacement Green’s functions. The
details of this calculation will be discussed later when the evaluation of stress seismo-
grams is discussed. Now, all the necessary time dependent quantities in the RT
integral have been defined. It remains to note that the rigidity, u, in equation (32) is

the rigidity at the depth of the source.

The next step is to explain how the RT integral is numerically integrated. Con-
sider the displacement and stress seismograms, and the displacement and stress
Green’s functions as time series. Each time series gives the amplitude of a displace-
ment or a stress as a function of time. The time spacing between successive points in
each time series is the time step duration, At, used in the FE calculation. It should be
remembered that the terms I'gpougy and I'gokuy , in the RT integral, equation (32), are
convolutions. Thus, the evaluation of the integrand at each integration point is a four
step process. First, each of the displacement and stress seismograms is Fourier
transformed into the frequency domain. Then, the products of the Green’s functions
and FE results, Tgplp and I'gy Ty, are calculated. In these expressions a bar denotes
a Fourier transform. Next, the resulting products are inverse Fourier transformed
back into the time domain. Finally, the sum of the two convolutions is determined
and multiplied by the rigidity. Now, the value of the integrand at each element center
on the integration surface is known. Integration along the segment FG or the contour,
C, is approximated by taking the sum over the values of the integrand at each ele-
ment center along the subsegment FF; of the segment FG times the segment length,
and applying the assumption that the contributions to the integral from the remainder
of segment FG are negligible. The assumption that no significant contribution is
made by integration along segment F;G can be justified for the case where F; is

chosen so that the earliest possible arrival of energy from a source at depth F; is later
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than the last arrival in the seismogram being considered. For the remainder of this
discussion we will assume that the depth F; illustrated in Figure 6 satisfies this cri-
terion. Thus, the integration of the RT integral on the segment FG of the contour, C,
is expressed as a sum over the value of the integrand at each of the element centers
along subsegment FF; times the segment length. This is equivalent to applying a

trapezoidal rule numerical integration to the equation (32) along segment FF;.

Next, the integration over the remaining two segments of the contour, C, will be
shown to give no contribution to the RT integral. The segment of the contour FH,
along the free surface will be considered first. The integration surface for the segment
FH of the contour, C, is a line with the z coordinate held constant. Thus, only terms
generated by setting k=3 in equation (32) need to be considered. The free surface
boundary condition applied on this surface states that the is zero stress on this sur-
face. Thus, at z=0 the stress, pugy3, is zero. Since the Green’s function, I'yo, used in
all the calculations also satisfies the free surface BC, the Green’s function stress,
pl903, is also zero at z=0. Therefore, one term in each product in the integrand of
equation (32) is zero, causing the value of the integral along this portion of the con-
tour, C, to be zero. Next, the segment GH of the contour, C, will be considered. As
r—oo the displacements 'y and u, must approach zero. The radiation BC used in
deriving the expressions for these values imposes such a condition. Substituting the
asymptotic expansion for H, into equation (38) and (39) and taking the limit as r—o0
also verifies this statement. Again, one component of each product in the integrand of
equation (32) is zero. Clearly, this makes the integrand zero and verifies that the sec-

tion GH of contour, C, makes no contribution to the RT integral.

In summary, the mechanics of the methods used to couple propagator matrix
solutions into FE calculations and to couple FE results into the RT integral using line

source Green’s functions generated with the propagator matrix method are described
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briefly. To couple propagator matrix solutions into a FE calculation three basic steps

are necessary.

(1)

(2)

(3)

Generate seismograms at an appropriate set of receivers using the desired source
functions and the propagator matrix technique. An appropriate set of receivers
consists of receivers at a fixed horizontal distance from the source, at depths
corresponding to the nodes in the first column of the FE grid to be used in the

FE calculation.

Use this set of seismograms as displacement time history constraints on the left-

most column of nodes in that FE grid.

Record hybrid seismograms at the desired locations within the FE grid as the

constrained FE calculation proceeds.

To couple results from a FE calculation back into a simple layered structure across

which they can be transmitted using propagator matrix Green’s functions and the RT

integral five steps are needed.

(1)

(2)

(4)

Record element center displacement and stress time histories from the FE calcu-

lation.

Calculate line source displacement and stress Green’s functions that will transmit

a disturbance from each element center to the desired receiver.

Fourier transform the displacement and stress time histories and the displace-
ment and stress line source Green’s functions into the frequency domain. Per-
form the multiplication of the displacement time history with the stress Green’s
function and the stress time histories with the displacement Green’s functions.

Inverse Fourier transform the products back into the time domain.

Add the appropriate pairs of products and multiply by the rigidity to give the

values of the integrand at each of the element centers.



(5) Sum the values of the integrands multiplied by their respective interval lengths
along the integration surface to give the hybrid seismogram.

Tests of Accuracy: SH Pulse Input

The first, and the most basic, test of the validity of the RT formulation is the
coupling of two successive FE calculations. This type coupling can in itself be used to
advantage under some conditions, and will be referred to as grid extension in later dis-
cussions. For example, propagation through successive FE grids can be useful in some
cases to deal with unwanted boundary reflections. As will be demonstrated later the
transmitting BC used is angularly dependent, and removes little of the reflection at
grazing or near grazing incidence. For FE calculations with large aspect ratios, that is
nx >> nz, wide angle reflections from the grid bottom can contaminate the results.
When seismograms of short duration are required these wide angle reflections can be
avoided by using a series of small aspect ratio grids. For example, if a series of two
small aspect ratio FE calculations are used to model a long aspect ratio problem then
it should be possible to shift at least half the width of the grid without worrying
about wide angle reflections. In that case two small grid runs of the FE would be fas-
ter than one run with an expanded grid. Thus, the grid extension would be

worthwhile.

In Figure 7 a pair of fifty by fifty node grids are illustrated. A line force source,
which is a point force when it is projected onto the x-z plane defined by the FE grid,
is applied to the first node in the n** row of nodes in the first, or upper grid. It is
shown in the figure as an crossed circle on the left edge of the upper grid. The wide
vertical line within this grid represent the sixteenth column of elements, where inter-
mediate seismograms are recorded for later use as forcing functions input to the
second step of the procedure. The narrow vertical line in the upper grid represents

the thirty first column of nodes where direct seismograms representing results for a
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Figure 7: Grids used to test coupling of two successive FE calculations. Both
grids are illustrated to scale. The horizontal lines ending in arrows are labeled with
the number of element widths they span. The vertical lines within the grids show the
locations of the depth sections where results were recorded. The crossed circle on the
left side of the first grid represents the line source. Both grids have dimensions 50x50.
The horizontal shift of the second grid with respect to the first grid is 15 element
widths.
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single FE calculation in a fifty by fifty grid are recorded. Figure 7 also shows the spa-
tial relationship of the grid used for the second step of the procedure to the grid used
to calculate the direct results and the forcing functions. The first column of nodes in
the second grid is shifted to the right to coincide with the location of the sixteenth
column of nodes in the first grid. The vertical position of the free surface in each grid
is identical. For the second step the intermediate seismograms recorded in step one
are used as forcing functions on the first column of nodes in the second grid. The sin-
gle vertical line within the second grid represents column sixteen, where ’two step’
seismograms are recorded. The total propagation distance for the ’two step’ pro-
cedure, summed over both steps, is equal to the distance propagated in the direct cal-
culation. The application of the displacement time histories used as forcing functions
to the .left; hand edge, or the first column of nodes, of the second grid demonstrates
that specifying the the displacements as a function of time due to a given source, for
each of the nodes in the leftmost column of a FE grid constrains the motions of all
points in the grid to be consistent with that source. When any column other than
that closest to the source, in this case the leftmost column, is used as the input
column, all nodes more distant from the source than the input column are consistent
with the source. The nodes sourceward of the input column form a mirror image of
the distant nodes with the symmetry line being the input column. Any energy incident
upon the boundary formed by the input column is reflected as it would be from a rigid

boundary.

Figure 8 shows a comparison of the seismograms generated by a direct calcula-
tion and by the ’two step’ procedure. The top seismogram in each column is recorded
at the surface. The vertical spacing between the nodes at which the remaining seismo-
grams are recorded is 0.4 km or two element widths, depth increases as one moves

down each column. The first column shows the direct results recorded at column
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Figure 8: Sample waveforms recorded along the depth section thirty element
widths from the source that is illustrated in figure 1.2d. The first column shows the
direct seismograms, those recorded in the grid containing the source. The second
column shows the two step results recorded at the same distance from the source but
in the grid shifted away from the source. The vertical spacing between nodes where
seismograms are illustrated is 2 element widths. The uppermost pair of seismograms
are recorded at the surface. Depth increases as one moves down each column.
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thirty two in the first grid. The second column shows the corresponding ’two step’
results recorded at column sixteen of the second grid. The initial waveforms in each
column are almost identical, the only discernible difference being a second pulse result-
ing from reflection from the right hand end of the grid which is seen for the direct cal-
culation only. The reflection is not seen for the ’two step’ procedure because the right
hand end of the grid is fifteen element widths farther to the right, moving the
reflection to a time later than the end of the seismogram. The amplitudes, measured
as the height of the first peak, are equivalent. The amplitude variations between
methods are less the 0.19. These results demonstrate the validity of coupling two

successive FE calculations by applying forcing functions as BC’s on the edge of the

second FE grid.

Figure 9 shows the grid geometry used to illustrate how forcing functions can be
used to couple energy from a distant source into a FE grid. Seismograms for a line
source 2.5 km below the free surface in a half-space, at a horizontal distance of fifteen
kilometers from the edge of the grid, were determined using a numerical evaluation of
the analytic solution for the direct ray and the ray reflected from the free surface (eq
25). The seismograms form a complete set of forcing functions including a seismogram
for each node in the first column of the grid. Analytic seismograms determined by
evaluation of the expressions for a line source in a half-space (eq 25) were calculated at
horizontal distances from the source corresponding to rows sixteen and thirty-one of
the grid. Rows sixteen, thirty one, and forty six are shown in Figure 9 as the three
vertical lines within the grid. Using the forcing functions as input to a FE calculation
hybrid solutions were calculated for all nodes in columns sixteen and thirty-one.
Thus, the analytic solutions can be used as a reference against which the hybrid solu-

tions can be compared.
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Figure 9: Geometry used to show the validity of coupling energy from a distant
source into a FE calculation. The grid illustrated is 50x50 nodes, and is shown to
scale. The source is illustrated as the filled circle outside the grid. The source to
grid distance is not to scale. The vertical lines in the grid show the depth sections
where seismograms were recorded. These seismograms are illustrated in Figure 10
The horizontal lines ending in arrows are labeled with their lengths.



- 66 -

Figure 10 shows the results of the test of the validity of the RT coupling of
energy from a distant source into a FE calculation. The first two columns show the
results for column sixteen of the grid, which is three kilometers into the grid. The
second two columns show analogous results at column thirty two, six kilometers into
the grid. The first column in each group shows analytic seismograms for reference.
The second column in each group shows the hybrid seismograms at the corresponding
locations. The first seismogram in each column is recorded at the free surface. Suc-
cessive seismograms moving down each column are recorded with one kilometer depth
spacing. The waveforms of the analytic and the hybrid results agree extremely well.
However, the ’hybrid’ results for column thirty two include a reflection from the end
boundary of the grid, not present in the analytic calculations. The illustrated seismo-
grams are scaled so that the maximum peak has unit height. Thus, the apparent
amplitude differences in the initial peaks at six kilometers is an artifact of the scaling.
The correspondence in amplitude between the two methods is excellent. At three
kilometers the agreement deteriorates below the fortieth of fifty grid points from
better than 0.5% to as much as 10-20%. At six kilometers the departure from the
correct amplitudes begins at a shallower depth, after about thirty five grid points. The
variations of the quality of fit with distance from the grid edge and with depth from
the free surface, can easily be explained. The truncation of the RT integration at the
bottom of the grid causes artifacts which are largest as the depth of truncation is
approached or surpassed. To be more specific, it is useful to extend the test discussed
above to more clearly delineate the nature of these variations, and the restrictions
they place on the use of this method of coupling a distant source into a FE calcula-

tion. A more extensive test will be discussed below.

To minimize the calculation needed to obtain the forcing functions, it is useful to

investigate the effect of reducing the number of forcing functions used, that is limiting
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Figure 10: Demonstration of the coupling of a distance source into a FE calcula-
iion. Two pairs of columns showing seismograms recorded at the depth sections three
ind six kilometers from the grid edge. The first column in each pair shows the results
f the FE step of the hybrid calculation, the second column shows the half-space syn-
hetics at the same locations. The first row of seismograms are recorded at the sur-
‘ace, successive rows are separated by one kilometer in depth. Peak amplitudes are
1ormalized to one.
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the depth extent over which forcing functions are applied to the left hand grid edge.
The exact solution of the RT coupling problem requires integration to infinite depth.
However, energy arriving after the time of the last sample in the modeled seismogram
can be ignored. Thus, the maximum depth which needs to be considered is twice the
depth of the deepest receiver plus the distance over which the travel time is equal to
the seismogram duration. It is clear that prohibitively large FE grids would be
required to produce records of reasonable length or at large distances. However, solu-
tion of acceptable accuracy can be produced by integrating over a comparatively small
number of forcing functions. The previous example, of coupling energy from a dis-
tance source into a FE grid illustrates that this is the case. For a fifty by fifty grid,
discrepgncies of less than 0.3% for the uppermost forty grid points are observed. A
complete solution at the depth of the fortieth row of receivers would require nz to be
larger than one hundred fifty, three times the size used in the example. This observa-
tion implies that fewer forcing functions are needed if some differences at depth, near
the bottom of the grid, are permissible. An experiment to investigate the effects of
applying forcing functions to only the top n nodes in the input column has been per-
formed. A geometry and procedure analogous to that used to demonstrate the vali-

dity of the RT coupling of a distant source into a FE calculation was used.

The geometry of the grids used to investigate the effects of changing the number
of the applied forcing functions and thus, the depth where the deepest forcing function
is applied, on the accuracy of the resulting seismograms is shown in Figure 11. A line
source embedded in a half-space at a depth of 2.5 km was used and is shown as a
large solid dot on the vertical dotted line denoting the x coordinate origin. The hor-
izontal distance from the source to the left hand edge of the grid is fifty kilometers.
The first column of nodes in the grids used are shown as a pair of vertical solid lines.

The two single solid vertical lines within the grids are the locations where the analytic
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Figure 11: Grids used to test the effect of varying the number of forcing func-
tions. Double vertical lines show the left edge of the grids. Horizontal lines crossing
these vertical lines show the bottommost forcing function for each test. Tests A15,
A25, A35, and A50 are completed in the 50x50 grid whose extent is marked by the
dotted boundaries. Tests B30, B50, B70, and B100 are done in the large grid whose
bottom is shown as a horizontal line ending in a solid arrow. The solid vertical lines
within the grid show the depth sections where results are recorded. Solid horizontal

lines ending in arrows are labeled with their lengths.
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synthetic seismograms are compared with the hybrid seismograms from the FE calcu-
lations. They are at distances of 53.5 km and 57.0 km from the source, corresponding
to columns sixteen and thirty one in the FE grids. Two grids are used for these tests.
The dotted lines within the large 100x100 grid are the bottom and right hand edges of
the smaller fifty by fifty grid used for the first four tests. The solid horizontal lines
ending in solid arrows show the free surface and the bottom edge of the large FE grid
used for the remaining tests. For both FE grids hybrid seismograms were calculated
for four cases. Each of these cases used a different number of forcing functions. For
the small FE grid fifteen, twenty five, thirty five, or fifty forcing functions were used.
For the large FE grid thirty, fifty, seventy, or one hundred forcing functions were
used. The vertical extents of the input forcing functions are illustrated to scale in Fig-
ure 11; The locations of the bottommost input forcing function for the small grid
tests are shown by the horizontal lines labeled A15, A25, A35, and A50 which cross
the first column of elements in the illustrated grid. For the large grid the bottommost
forcing functions are shown as the lines labeled B30, B50, B70, and the bottom of the
large grid, B100. Results from each of these eight tests were examined to determine

the effects of grid size and vertical extent of the input forcing functions.

Figure 12 shows examples of the seismograms observed at column sixteen in the
four small grid tests. The surface seismograms are illustrated in the first row of the
figure. Each row is recorded at nodes about 0.9 km deeper, that is four element
widths deeper than the previous row. The column of numbers in the middle of the
figure give the node row at which that row of seismograms was recorded. The first
column shows results from test A50. These waveforms are very similar to the analytic
seismograms recorded for the same locations. The agreement is best at the surface, at
depths below the thirty fifth node the decay of the pulse becomes less rapid than that

seen on the analytic synthetic and the maximum amplitude of the pulse increases with
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Figure 12: Seismograms for four cases using different numbers of forcing func-
tions. Each column shows seismograms on a depth section at 53.5 km from the
source. The first row is recorded at the surface. Vertical spacing between rows is
about 0.9 km. The first column uses 50 forcing functions, the second 35, the third 25,
and the fourth 15. The column of numbers in the center of the figure gives the node
row number for each row of seismograms. -
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respect to the analytic synthetic. For this test the difference in waveform shape is
small. The second column shows results from test A35. A second pulse not visible for
the A50 test is present. This pulse is a reflection from the grid bottom of energy not
canceled by the disturbances input in the bottommost fifteen forcing functions in test
A50. The pulse is most prominent for traces recorded at depths below the bottom-
most forcing function applied in this test. This is predictable since it could not be
expected that results for receivers below the input nodes would be reliable. If the
reflection can be removed, as with an absorbing BC then the correspondence of A35
results to direct synthetics is good down to node row thirty or thirty five. The third
column shows results of test A25. Again a reflected pulse contaminates the deeper
receivers. Results compare well with the analytic synthetics down to about node row
twenty; The fourth column shows results of test Al5. Here, the same trend already
observed continues. The correspondence between A15 results and analytic synthetics
is good down to about node row ten. It appears that acceptable waveforms can be
calculated for depths such that at least five to ten input forcing functions are applied
at rows below the receiver. Similar results are observed for these tests at seven kilom-
eters from the grid edge, and for the large grid tests at both distances. Some indica-
tion that calculation of accurate seismograms at longer distances may require a larger

vertical extent of input forcing functions has been observed.

Figure 13 gives a more complete analysis of the amplitudes of the seismograms
recorded in these eight tests in relation to the amplitudes of analytic synthetics. At
both distances the maximum amplitudes of the seismograms from each test were tabu-
lated. These amplitudes were used to calculate amplitude ratios. The amplitude

ratio, A, is defined as

AMPLITUDE OF DEPTH EXTENT TEST (node i)

Alnode §) = XIPLITUDE OF DIRECT CALCULATION (node i

(47)
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Figure 13: Relative amplitudes of synthetic and two step seismograms at the
same locations, as a function of the number of input forcing functions. The left hand
graph shows results recorded at a depth section 3.5 km from the grid edge, the right
hand graph results recorded at 7 km. Heavy lines show tests for which all node TOWS
in the grid have forcing functions applied. Lighter solid lines show results of tests in
the 50x50 grid. Dotted line show result of tests in the 100x100 grid. The number in
the label above each line indicated the number of forcing functions used in that test.
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These amplitude ratios were then plotted as a function of depth, measured as a
number of node rows. The resulting plots are shown in Figure 13. The left hand plot
is for a distance of 3.5 km, and the right hand plot for a distance of seven kilometers.
The heavy lines in each plot indicate the amplitude ratios for the two tests in which
all nodes in column one of the grid have forcing functions applied to them, A50 and
B100. These tests are used as a reference against which the other tests can be com-
pared. The dotted lines labeled A15, A25, and A35 show where the amplitude ratios
for the three tests in the small grid, using partial sets of forcing function input, depart
from those of test A50. The amplitude ratios agree well with those of the A50 test for
the near surface nodes in each test. The depth at which they depart from the A50
results increases as the number of input forcing functions increases. As expected the
amplitude correspondence is better when more complete input is used. Examining
these results at a distance of 3.5 km shows that if results for n rows are desired, input
forcing functions should be applied to n+5 nodes. At seven kilometers similar results
are observed but the departure from acceptable amplitude ratios occurs four or five
nodes shallower. Thus, as distance increases a larger depth extent of input forcing
functions is needed to produce amplitude correspondence within acceptable bounds.
The results for the tests using the larger grid are show in Figure 13 as the light lines
labeled B30 and B50. The results show the same trends as the results for the small
grid indicating that the artifacts in the tests using truncated input sets are due to
interaction with the grid bottom of incompletely integrated signals in the seismo-

grams.

If one wishes the analytic solutions to correspond well to the FE solutions the fre-
quency content of the forcing functions used to drive the FE calculation becomes
important. To investigate the effects of the frequency content of the input, sets of

forcing functions for a source distant from the FE grid were calculated for two cases.
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Each of these sets consists of seismograms calculated along a depth section fifty kilom-
eters from the source, with a vertical node spacing of 0.2 km. Both sets of seismo-
grams were determined for a line source, with a triangular time function, in a half-
space (eq 25). The first case used a time function with a duration of .15 seconds, the

second used a time function with a duration of .45 seconds.

The results of these tests are illustrated in Figures 14 15, and 16. The first two
of these figures show the seismograms recorded on a depth section 53.5 km from the
source. The vertical spacing between successive rows of seismograms is about one
kilometer. The amplitudes in all traces in these figures have been normalized such
that the peak amplitudes of each trace appear the same size. The first column in each
figure shows the analytic solutions. The second column shows the same seismograms
band pass filtered between one and one hundred seconds. The third column shows the
bandpass filtered hybrid solutions. Figure 14 shows the results using the 0.15s time
function, and Figure 15 shows the results for the 0.45s time function. Figure 16
addresses the amplitude correspondence for both cases. In Figure 14 it is possible to
see both the direct arrival and the arrival reflected from the free surface in the direct
seismograms recorded at depth. These arrivals are clearly higher frequency than the
minimum period of one second transmittable by the FE grid. The hybrid solutions for
this case contain unwanted oscillations. However, when the hybrid solutions, and the
direct solutions are both band pass filtered their waveforms are in excellent agreement.
Alternatively, band pass filtering the forcing functions before they are input to the FE
calculation will produce unfiltered hybrid solutions almost indistinguishable from the
filtered hybrid solutions calculated using the unfiltered forcing functions. Aliasing of
energy traveling in waves of frequency higher than can be propagated by the grid into
lower frequency bands does not seem to be a problem for these tests. Figure 15 shows

that waveforms of the direct and hybrid solutions correspond well when the input has
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Figure 14: Effects of filtering and internal damping on FE solutions. Column one
shows a depth section of line source half-space synthetics with a triangular time func-
tion of .15s duration. Column two shows the same seismograms band pass filtered
between 1s and 100s period. Column three shows the hybrid solutions without inter-
nal damping and with the same bandpass filter applied. The fourth column shows the
hybrid solution with internal damping. No filter is applied. Amplitudes of each trace
are normalized to give unit peak amplitude.
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Figure 15: Effects of filtering and internal damping on FE solutions. As for figure
14 but using a triangular time function of .45s duration.
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no significant high frequency component. In this case the bandpass filtering makes lit-

tle or no additional improvement to the correspondence of the two sets of results.

The spurious oscillations seen in the unfiltered hybrid solutions can be removed
by filtering as discussed above, or by the introduction of a damping coefficient within
the FE calculations. For each of the sets of forcing functions used in the tests dis-
cussed in the previous paragraph FE solutions were determined both with and without
damping. The damping coefficient used in the FE code is dependent on distance.
Therefore, a single damping coefficient cannot produce correct amplitudes at a variety
of distances. At the distance for which the coefficient is calculated, and within a few
grid spacings of that distance, the coeflicient produces FE results that correspond very
well with the direct solution. If the direct solution contains high frequencies the
results correspond to the filtered direct results. This can be seen by examining Figures
14 and 15. In each of these figures column two shows the filtered direct solutions, and
column four shows the hybrid solution using internal damping with the FE calcula-
tion. The damping coefficient is chosen to be optimal at the illustrated distance. The

correspondence in waveform between these two columns is very good.

Figure 16 shows the amplitude ratios for the tests of filtering and damping
efficiency. It illustrates the relative accuracy of using the damped FE and the filtered
undamped FE approaches. The damped FE calculation shows more variation with
depth of the amplitude ratios. The ratios are calculated at the distance for which the
damping coefficient was optimal. However, for the calculation which includes damp-
ing, as distance from this point increases the amplitude ratios rapidly depart from one
and show even larger variations with depth. On the other hand the ratios for the

filtered undamped FE calculation remain quite stable.

The results of these tests can be summarized by noting the following important

observations. If the input seismograms contain frequencies higher than those that can
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Figure 16: Amplitude ratios as a function of depth for seismograms recorded on
a depth section 57 km from the source.
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be propagated through the FE grid, as in the case of the rapid rise observed for the
forcing functions and analytic seismograms with the 0.15s time function, then the grid
acts as a filter. The amplitude of the FE solutions are significantly reduced with
respect to the analytic solutions and spurious oscillations are introduced near the end
of the waveform. The correspondence of amplitudes and waveforms between the ana-
lytic solution and the hybrid solution for this situation is poor because the analytic
solution contains higher frequencies than the hybrid solution, and the hybrid solution
contains numerical artifacts. Low pass filtering the analytic solution and the hybrid
solution will improve the waveform fit enormously, and bring the amplitude ratios
much closer to one. The cutoff frequency of the low pass filter should be at most the
highest frequency that the grid can propagate. It is not important whether the input
forcing‘functions or the output hybrid solutions are filtered. Both approaches produce
equivalent results. When input forcing functions contain no frequencies too high for
propagation, filtering of hybrid solutions or analytic synthetics is not necessary as it
does not change the goodness of fit. The use of internal damping in the FE calcula-
tion is distance dependent and introduces addition variation in the goodness of fit of
\ amplitude and waveform as a function of depth. Considering all these observations
the best combination of filtering and damping when a range of distances is to be used
is to filter an undamped FE solution. If theoretical results are available the filtered
undamped solutions should be compared directly to them. If the theoretical results
contain high frequencies they should be low pass filtered before being compared to the
filtered undamped solutions. This approach should give the best correspondence to
the theoretical results.

Tests of Accuracy: SH Lg Mode Sum Input

The accuracy of coupling a 2-D SH pulse from a source outside a FE grid into

that grid have now been thoroughly discussed. The limitations of such an approach
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have also been defined. However, generalizing these results, which have been demon-
strated only for a line source in a half-space, to a line source or a point source in a lay-
ered media or even in a layer over a half-space can be misleading. Some of the tests
discussed below illustrate cases for which results do not generalize. The physical
model used in all of these tests is a layer over a half-space. The addition of the layer
above the half-space allows for the existence of Love waves. This changes the behavior
of the accuracy of coupling a distant source to a FE calculation. In these tests the
layer has a thickness of thirty two kilometers, an S wave velocity of 3.5 km/s, and a
density of 2.7 g/cc. The underlying half-space has an S wave velocity of 4.5 km/s,
and a density of 3.5 g/cc. The initial calculation demonstrating the validity of cou-
pling a distant source into a FE grid for the case of a layer over a half-space used a
grid spacing of 0.53 km in both x and z. All subsequent tests used a grid spacing of 0.5
km in both x and z. All tests use a time step of 0.05 s. Each test uses the same set of
ninety forcing functions, or a subset of that same set, applied to the leftmost column
of nodes. Forcing functions are calculated for a strike slip point double couple source
at a depth of eight kilometers. The source to grid edge horizontal distance is 1500

km.

The seismograms used as forcing functions in the tests discussed below are calcu-
lated as mode sums over modes with periods between 0.5 s and 100 s. The fundamen-
tal mode and the first five higher modes are included in each calculation. This is not a
complete representation, but produces a seismogram that shows the overall character
of the arrivals seen in data in the L, group velocity range of between 2.8 and 3.5
km/s. A complete representation would require as much as five times the amount of
calculation to produce the forcing functions or the synthetics used for comparison to
the hybrid results. To assure the inclusion of all energy down to a period of 0.5 s

twenty two higher modes would be necessary, for all energy down to a period of one
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second eleven higher modes need to be included. The cutoff frequency of the sixth
higher mode is 1.9 s. The forcing functions used are complete to that period and con-
tain a significant portion of the energy at the shorter periods considered. For
waveform modeling of data the use of a more complete mode set would be advisable,
but for the tests discussed here it is an unnecessary expenditure of effort. An example
of a forcing function or direct seismogram, recorded at the surface at a distance of
1500 km from the source is shown in Figure 17. The group velocities of the arrivals
are shown along the horizontal axis. The heavy rectangle enclosing the largest portion
of the seismogram delimits the portion of the trace used as a displacement time his-
tory to drive the surface node on the depth section at 1500 km from the source. The
seismogram shown in this figure is not the actual trace used as a forcing function. It
has been band pass filtered between 0.01 and 1.0 Hz and has had the WWSSN short
period receiver function applied to it. The traces used as forcing functions have been
band pass filtered but do not have the instrument applied. Examples of such traces at
different source receiver separations are shown in Figure 18. In this figure these traces

are labeled synthetic.

At this point it is useful to digress and to more precisely define the RMS ampli-
tude measure used in subsequent discussions and the method used to calculate it. The

form of the relation used to determine the RMS amplitude is

5 ampi{n 2
RMS = \/“gl\/[a " J m = % (48)

where m is the number of points in a sampling window or duration Tgpyg seconds.
The location of the sampling window with respect to the arrivals of maximum ampli-
tude and the duration of the trace contained within the sampling window have a

significant effect on the value of the RMS amplitude. Care must be taken to choose



_ 83 -

1500 km g :
input window

|

Acth: |1

‘ : Pﬂg'“
il

s

450 4.00 3.75 350 325 3.00 2.80
km/s

Figure 17: Sample forcing function for SH L, wave FE calculation. The seismo-
gram includes modes with periods between 0.5s and 1000s. Only the fundamental and
the first five higher modes are used. The mode sum synthetic has been transmitted
1500 km from the source using the propagator matrix technique. The resulting
seismogram has been band pass filtered between 0.01 and 1 hz, and has the WWSSN
short period instrument has been convolved with it. The portion of the seismogram
within the box labeled input window is used as a forcing function. The numbers along
the axis indicate the group velocities of the arrivals.
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windows for two sets of results that are compatible with each other and produce
meaningful comparisons. For example, choosing the beginning of the seismogram
being considered as the first point in the sampling window can cause difficulties when
cémparing different calculations or when comparing successive seismograms along a
depth or distance section. When different calculations are being compared extreme
care must be taken to insure that both seismograms begin at the same absolute time.
When successive seismograms in a depth or distance section are being comp’ared, the
duration of the portion of the trace with negligible amplitude that occurs before the
first arrival increases with distance from the source. This creates an artifact that
makes RMS amplitudes appear to decrease with distance. To avoid these and other
problems some other method of determining the beginning of the sampling window
must l;e devised. It would be possible to correct for the distance term by ignoring
enough points at the beginning of the seismogram to compensate for the difference in
arrival time. However, when models became more complicated the choice of the first
arrival, and the determination of its travel time from the source becomes more compli-
cated due to the possible presence of strong refracted or diffracted phases. Thus, a
more general approach which does not require the use of theoretical travel times has
been chosen. Two different methods of selecting the first point in the sampling win-
dow have been used. The selection of one of these two methods was based on the

characteristics of the waveform as discussed below.

The first method, which was used in the majority of cases, selects the first point
to be included in the sampling window and the last point to be included in the seismo-
gram by bracketing the portion of the seismogram whose RMS amplitude is to be
measured. This piece of the seismogram is bracketed with sections of seismogram with
sustained low amplitude persisting for at least a defined minimum duration. This

method is used when the oscillations in the waveform are very small until the first
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large and impulsive arrival occurs, when no periods of sustained low amplitude occur

during the duration of the trace, and when the amplitude of the seismogram decays to

a sustained low amplitude at its end. Given that all three of these conditions are

satisfied the following algorithm produces stable and accurate RMS amplitude meas-

ures. The algorithm consists of five steps:

(1)

(2)

(5)

Determine the size of the maximum absolute value of amplitude in the seismo-

gram

Set a cutoff value for the amplitude at some fraction of the maximum (usually

.01 or .05)

Beginning at the location of the maximum absolute value scan toward the begin-
ning of the seismogram until a series of samples two seconds in duration all have
amplitudes smaller than the cutoff amplitude. The first point in this series is
defined to be the first point in the sampling window used to determine the RMS

amplitude.

Beginning at the location of the maximum absolute value scan toward the end of
the seismogram until a series of samples two seconds in duration all have ampli-
tudes less than the cutoff amplitude. The first sample in that series of samples

defines the last point in the seismogram.

Calculate the RMS amplitude for sampling windows with durations 15, 20, 25, ..,
85s. If the duration of the sampling window exceeds the duration of the seismo-
gram then the longest sampling window used is the duration of the seismogram,

and that duration is recorded.

The second method is used when small arrivals precede the main arrival on only

a subset of the traces being considered, when the small arrivals preceding the main

arrival contain sustained periods of low amplitude on some subset of the traces, and

when sustained periods of low amplitude occur elsewhere within any of the
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seismograms. This method is not used when the arrival with maximum absolute
amplitude is preceded by a lower amplitude arrival of long (>10s) duration, or when
the maximum amplitude occurs within the first 10s of the seismogram. This method
is also useful when slight wraparound occurs as a result of convolving the instrument
with the seismogram producing small spurious arrivals before the main peak. If
significant wraparound occurs, the convolution length is extended to remove it. The
determination of RMS amplitude is not expected to correct it. The basics for the algo-
rithm used for the second method are identical to those used in the first method. The
only differences lie in the method used to select the first point in the sampling window,
and in the duration (5s) of sustained low amplitude that defines the end of the seismo-
gram. When using the second method the first point in the sampling window is
defined to be the point in the time series for a time ten seconds before the time of the
peak of maximum absolute amplitude. Clearly, if the maximum amplitude occurs late
in the seismogram this method is not useful. However, when periods of sustained low
amplitude occur early in the seismogram, or when small amplitude early arrivals are
detected on only a subset of the seismograms then this method gives stable RMS

amplitudes whereas the amplitudes using the first method will not be stable.

These algorithms yield a series of RMS amplitude values that can be used to
compare results derived using different methods. If RMS amplitudes agree within all
period ranges, and waveforms are similar the fit is considered to be excellent. If
discrepancies occur or increase with the length of the sample window, then there is
probably a problem modeling the later arrivals, that is, the representation of later
arrivals is probably incomplete. If the shortest time windows show discrepancies that
decrease rapidly as the window length increases then the amplitudes of the initial
arrivals are unstable or incorrect. Examining the behavior of the RMS amplitude as a

function of sample window length can give insight into the nature of and the
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underlying reasons for misfit between methods. In most of the discussions that follow,
the method used to obtain RMS amplitudes will not be specified. Both methods
described above give consistent interpretations if they are applied to all seismograms
in a given example. While the actual amplitude measures may vary between the two
methods the changes seen in amplitude within a given example are the same regardless
of the method used so long as the same method is consistently applied. The variation
of RMS amplitude with the length of the sample window will be discussed only when

such variation have direct impact upon the results of the comparisons.

Now I will return to the discussion of the RT coupling of a distant line source in
a model consisting of a layer over a half-space into a FE calculation. First, it is useful
to establish that the coupling of energy from a distant source into a FE grid is valid
for a layered structure more complicated than a half-space. The seismograms illus-
trated in Figures 18 and 19 verify that the method of coupling does generalize as the
theory implies it should. The seismograms in Figure 18 are recorded at two distances
from the grid edge, and at five depths for each of these distances. A pair of seismo-
grams is shown for each of these ten locations. The upper seismogram in each pair is
the direct synthetic determined as a mode sum and transmitted to the receiver using
the propagator technique. The lower seismogram in each pair is the hybrid synthetic
for which the first portion of the path is traversed using the propagator matrix tech-
nique and the remainder of the path is traversed in a FE grid. For this test a 100x100
node grid was used and sixty forcing functions were applied to the FE grid edge. All
seismograms in Figure 18 have a duration of fifty five seconds and have been band
pass filtered between .01 and 1 Hz. The amplitudes of all traces are normalized so the
maximum peak to peak amplitude of each trace appears to have the same value.
Within each pair the variation in peak to peak amplitude is less than five percent.

The peak to peak amplitude ratios of the hybrid synthetic to the analytic synthetic
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trace in each pair is a mode sum synthetic transmitted using only propagator
matrices. The lower seismogram in each pair is the hybrid solution. The depths for
each row and the horizontal propagation distances in the FE grid for each column are

shown.

The ratio of the FE to synthetic peak to peak amplitudes is given as the

number below each pair of traces. Each trace has been band pass filtered between .01
and 1.0 Hz, and its maximum peak to peak excursion has been normalized to one.
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Figure 19: Comparison of hybrid solutions and 3-D mode sum synthetics. The
forcing functions used are 3-D mode sum synthetics. The upper trace in each pair is
the mode sum synthetic, the lower trace is the hybrid solution. Numbers at the left
above each pair of seismograms indicates distance from source to receiver at the sur-

face. Numbers at the right give the ratio of RMS amplitude of the hybrid solution to
the RMS amplitude of the direct synthetic.
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are shown below the right end of each pair of traces. The major differences in the
synthetic and hybrid solutions are seen in the amplitude of the first large positive and
negative peaks. The amplitude of these peaks is not stable since they are the result of
sampling a very high frequency arrival not resolved at the time spacing used. These
peaks yield the maximum peak to peak amplitude so the peak to peak amplitude is
not stable. This makes the peak to peak amplitude a poor measure of the amplitude
fit between models. A far more stable measure of amplitude correspondence between
seismograms of this type is the RMS amplitude calculated over some time window
appropriate to the seismograms being compared. The RMS amplitudes calculated
with window lengths of as much as 45s agree to better than one percent for all pairs of
seismograms shown in Figure 18. RMS amplitudes calculated with window lengths
greater than 45 seconds show discrepancies in the amplitude correspondence between
each pair due to the finite length of the seismogram. Some discrepancies are seen
between the detailed waveforms of the direct and hybrid synthetics. These discrepan-
cies are of at least two types. First, and most easily explained, are the small arrivals
seen at the beginning of the seismogram in the direct synthetics only. The lack of
these arrivals on the hybrid synthetics is due to the exclusion of the very low ampli-
tude initial portion of each seismogram used as forcing function. These portions lie
outside the input window as illustrated in Figure 17. Second, are the small discrepan-
cies seen in the higher frequency component of the seismograms, particularly within
the first twenty seconds of the trace. To better quantify these shorter period
differences, and to enable one to view the record as one would see data from an event,
the WWSSN short period instrument response is convolved with seismograms of the

type shown in Figure 18 to give seismograms of the type shown in Figure 19.

Figure 19 shows comparisons between direct and hybrid synthetics for a selection

of horizontal distances along the free surface. Above each pair of seismograms the
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horizontal distance from the source to the receiver is shown. For this test a FE grid of
dimensions 150x300 nodes was used. Beside each pair of traces the ratio of hybrid to
direct RMS amplitudes is given. In each pair, the upper seismogram is the direct syn-
thetic and the lower trace is the hybrid synthetic. The duration of all seismograms is
102s and the peak to peak amplitude of each trace is scaled to the same value. Each
seismogram shown is bandpass filtered between 0.01 and 1.00 Hz and includes the
WWSSN instrument. The bandpass filter is applied to the forcing functions and to
the resulting FE seismograms. It is applied twice in succession to the direct synthet-
ics. The waveform correspondence between the two types of synthetics is excellent for
short horizontal distances, but worsens as horizontal distance increases. The most
striking changes occur in the maximum peak to peak amplitudes, and in the ampli-
tudes of successive peaks relative to each other in the first ten to twenty seconds of
the record. It appears that the waveform correspondence between the two types of
synthetics is excellent if the first ten to twenty seconds of the record is omitted. The
discrepancies early in the seismogram could have several sources such as, truncation
errors due to the use of too few input forcing functions, the comparison of hybrid
seismograms which experience 2-D spreading in the portion of their paths in the FE
grid to direct seismograms which experience 3-D propagation along the entire path,
reflections from the bottom of the FE grid, and possible intrinsic errors due to the
accuracy of the numerical codes or completeness of the chosen representation for the
forcing functions and direct seismograms. Some of these possible sources for
differences in waveform will be discussed in detail below or in later chapters. It is
important to note that despite the small variations in the waveform the RMS ampli-

tude correspondence is excellent and stable as propagation distance increases.

Next the necessary vertical extent of input forcing functions needed to produce

an accurate mode sum hybrid seismogram and the truncation error associated with
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that vertical extent will be discussed. For the case of the SH pulse from a line source
discussed earlier it was found that accurate results required a vertical extent of forcing
functions greater than the depth of the receiver by an amount that increased as the
hérizontal propagation distance increased. This meant that the coupling of an SH
pulse from a distant source into a grid with a high aspect ratio necessarily produced
results that became very poor at large distances. Fortunately, this behavior does not
directly generalize to the case of a layer over a half-space. For a layer over a half-
space the results are compatible with and can be explained by considering the Love
waves to be modeled in terms of constructive interference of post critical multiple
reflections trapped within the crustal layer. This interpretation of Love waves sug-
gests that the most critical nodes at which forcing functions need to be applied are the
initial ﬁodes in each row of the grid located in the crustal layer. The results of the
calculations illustrated in Figures 20 and 21 show large changes in the waveforms and
amplitudes of hybrid synthetics occur as the number of input forcing functions
increases, until all nodes in the first column of the grid that lie within the crustal layer
have forcing functions applied to them. Further increases in the depth extent of
applied forcing functions produce only small changes in waveform in the first thirty
seconds of the trace and almost no changes in RMS amplitudes. This remains true of
the hybrid synthetics after propagation distances of more than five to ten layer

thicknesses of the crustal layer.

All results shown in Figures 20 and 21 were calculated in a FE grid of dimension
150x300 nodes. Five FE calculations were completed, each using a different number of
applied forcing functions. These tests use fifteen, thirty, forty five, sixty, and ninety
applied forcing functions. In Figures 20 and 21 a number or numbers appear below
and at the right end of each seismogram. This number n indicates that n forcing

functions are applied to the topmost n nodes in the first column of the FE grid in the
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calculation that produced the illustrated seismogram. The pairs of numbers at the left
end of each seismogram are peak to peak and fifty five second RMS amplitude ratios.
For each seismogram the ratio shown is the ratio of the amplitude of the seismogram
being considered to the amplitude of the seismogram at the same location for the
example using sixty forcing functions. The uppermost number is the peak to peak
ratio, the number below it is the RMS ratio. The layer thickness of thirty two kilome-
ters 1s equivalent to sixty four rows of nodes. The sixty fifth row of nodes is the first
row describing the half-space. The calculation using sixty applied forcing functions is
used as a reference since the behavior of the discrepancies due to truncation of the
vertical extent of input forcing functions changes when forcing functions are applied

outside the layer.

Figure 20 shows three groups of seismograms. Each group is recorded at the sur-
face at a given horizontal distance. That distance is shown on the figure above each
group of traces. The first group consists of a single seismogram recorded five kilome-
ters or ten elements from the grid edge. This seismogram represents the identical
results observed in the five test cases. The second group of seismograms are recorded
twenty five kilometers from the grid edge. The first seismogram in this group
represents the almost identical results for the three test cases using the largest
numbers of applied forcing functions. Amplitude discrepancies between these cases
were less that 0.29, and no differences in waveform could be seen when the seismo-
grams for each case were overlaid. However, the second two seismograms in the
group, representing the tests with thirty and fifteen applied forcing functions respec-
tively show significant differences in waveform and amplitude. The most striking
effect of using fewer applied forcing functions is the reduction in the amplitudes of the
later arrivals in the seismograms with respect to the early arrivals. The peak to peak

amplitudes and the RMS amplitudes with longer window lengths were also reduced as
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Figure 20: Comparison of hybrid results using different numbers of input forcing
functions. Each group of seismograms shows results at a given horizontal distance, as
labeled above that group. The number or numbers below and to the right of each
seismogram indicate the number of nodes where forcing functions are applied. The
pairs of numbers to the left of each seismogram are amplitude ratios. The upper
number in each pair is the ratio of the peak to peak amplitudes of that trace to the
trace using 60 forcing functions recorded at that distance. The lower number in each
pair is the corresponding ratio for RMS amplitudes.
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the number of applied forcing functions decreased. In particular, for the seismogram
generated using thirty applied forcing functions the RMS amplitude measure
corresponds well with the examples using more forcing functions until the window
le.ngth of the RMS operator exceeds sixty seconds, then the discrepancy increases as
the window.length increases. For the example using fifteen forcing functions the trend
seen in the RMS amplitudes follows the same pattern but the differences in peak to
peak amplitude mean that agreement is not good even at a window length of fifteen
seconds. If results of the calculation using fifteen forcing functions are examined at
locations between the two distances illustrated it is found that the behavior seen in
the thirty forcing function example is seen at distances around twelve kilometers in
the fifteen forcing function calculation. The third group of seismograms is recorded at
a distailce of fifty kilometers. The second two seismograms in that group also show
the rapid decline in RMS amplitude as the RMS window length increases. However,
the example using thirty forcing functions now also shows poor agreement even in the
fifteen second window. The example using forty five forcing functions is not illus-
trated at this distance. The RMS amplitude of the forty five forcing function seismo-
gram corresponds well with the more complete examples for RMS windows as long as
sixty five seconds. It was not considered necessary to illustrate this seismogram as it
was so similar to the first seismogram in the group. From examining the seismograms
at these three distances patterns are beginning to emerge, that will be clarified by the

additional distances illustrated in the next figure.

Figure 21 is a continuation of Figure 20 for seismograms recorded at greater dis-
tances along the free surface. The amplitude ratios of the two examples using fifteen
and thirty forcing functions continue to decrease with distance, although the RMS
amplitudes have almost stablized by the time the horizontal distance has reach 150

km. The disturbances visible in the trace have become larger with respect to the
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Figure 21: Comparison of hybrid results using different numbers of input forcing
functions. Details are the same as figure 20.
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shrinking arrival that determines the maximum peak to peak amplitude of the seismo-
gram. For the example using forty five forcing functions the later arrivals continue to
shrink with respect to the earlier arrivals as horizontal distance increases, reducing the
RMS amplitude in successively shorter time windows. At distances between seventy
five and one hundred kilometers the RMS amplitude stabilizes at about 90% of the
values seen for the examples using more forcing functions. However, the waveforms
correspondence continues to decay. Generalizing the results seen in the examples
using a depth extent of forcing functions considerably less than the thickness of the
crustal layer leads to several observations. Seismograms along the surface are identical
regardless of the number of forcing functions used provided that the propagation dis-
tance in the FE grid is less than or equal to the depth extent of the forcing functions.
BeyondA that distance range the amplitude of the waveform begins to decay. The
amplitudes of the latest arrivals are the first to be reduced. As the distance increases
progressively earlier arrivals are reduced in amplitude while amplitudes of the later
arrivals continue to decay further. As the number of forcing functions increases the
rate of amplitude decay decreases and the RMS amplitude value at which the ampli-
tude eventually stabilizes increases. When the depth extent of forcing functions
exceeds the crustal layer thickness this behavior changes. At a distance of three hun-
dred kilometers the two examples using sixty and ninety forcing functions continue to
agree very well. They show some differences in waveform, barely perceptible when the
waveforms are overlaid, in the relative amplitudes of successive peaks during the first
twenty to thirty seconds of the seismogram. At larger distances this discrepancy
increases slightly, but the amplitude ratios remain very stable and the waveform
differences remain small and confined to the first thirty seconds of the seismograms.
Thus, truncation error can explain at least a part of the waveform discrepancies seen
in the early portions of the seismograms illustrated in the surface section shown in

Figure 19.
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Figures 22 and 23 illustrate the effects of using different numbers of row of nodes,
that is varying the vertical extent of the FE grid, on the resulting SH L, mode sum
seismograms. In each of these figures two groups of three seismograms are shown.
Each group is labeled with its propagation distance in the FE grid. The same forcing
functions, for a source 1500 km distant at a depth of eight kilometers, are used for
each calculation. All seismograms in these figures are plotted at the same scale. The
uppermost seismogram in each group was calculated in a FE grid with ninety rows,
the center seismogram in a FE grid with one hundred fifty rows and the lower seismo-
gram in a FE grid with three hundred rows. An additional difference between the
grids used in these tests is that the grid in which the uppermost seismogram in each
group is calculated has a length of five hundred nodes and the other two grids have a
length ;>f three hundred nodes. Consequently, differences seen in the last ten to twelve
seconds of the upper two records can be attributed to reflections from the righthand
edge of the grid. All other differences seen between these seismograms can be attri-
buted to reflections from the bottom edge of the grid. Since the travel time to the
bottom of the grid is increased as the number of rows in the grid is increased, any
reflections from the bottom of the grid should be seen at different points in the seismo-
gram for each grid. The length of the seismogram is chosen so that reflections from
the bottom of the three hundred row grid should arrive after the end of the seismo-
gram. The reflections from the righthand edge of the grid are small but clearly visible,
and are, as expected, identical on both of the lower two seismograms in each group.
Examining the group of seismograms for a propagation distance of fifty kilometers
within the FE grid shows essentially no differences between the seismograms recorded
in grids with ninety and three hundred rows. When compared carefully to these
seismograms the seismogram calculated in the grid with one hundred fifty rows shows
some small differences in the amplitudes of some of the peaks. The RMS amplitudes

agree to within less than 0.1%. This implies that reflections from the bottom of the
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Figure 22: Comparison of hybrid solutions for cases using different numbers of
rows of nodes. Results show wide angle reflections are not important. Each group of
three seismograms is recorded at the free surface at the indicated distance from the
grid edge. The upper trace in each group uses 90 rows of nodes, the center trace 150
rows of nodes and the bottom trace 300 rows. The peak to peak amplitudes of each
trace are normalized to one. Differences in peak to peak amplitudes are so small that
all peak to peak and RMS amplitude ratios are 1.00. Duration of each seismogram is
102 seconds.
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Figure 23 Comparison of hybrid solutions for cases using different numbers of
rows of nodes. Details are the same as for figure 22.
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grid are insignificant with short path lengths in the grid. For a path length of one
hundred kilometers within the FE grid the reflections from the bottom of the grid
remain insignificant, as illustrated in the second group of seismograms in figure 22.
The two groups of seismograms in Figure 23 show that the reflections from the bot-
tom of the grid remain insignificant to distances of at least one hundred fifty kilome-
ters. Thus, even for aspect ratios as high as three the reflections from the bottom of
the grid are not significant when the propagation of SH type L, mode sum seismo-
grams in a layer over a half-space is being considered. This conclusion will be further
supported when the transparent boundary conditions are considered in the following
chapter. It will be demonstrated that reflections from the bottom of the grid are
signiﬁca_unt only when structures are not plane layered.

Summary

In this chapter the basics of the modal propagator matrix method and the FE
method were discussed, including the modifications made to the existing implementa-
tions of these methods. An approach to apply the Representation Theorem to com-
bine these techniques into a hybrid method was explained. The particulars of the
implementiation of the coupling technique differ depending on whether the propagator
results are to be passed into the FE calculation or the the FE results are to be
transmitted further using the propagator matrix technique. The coupling from modal
propagator matrix results to the FE method was demonstrated for the simple example
of a layer over a half-space. This simple structure allowed the calculation of analytic
synthetics to which the hybrid synthetics could be directly compared to give estimates

of the accuracy of the coupling technique.
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Chapter 2
Application of Modal Propagator Matrix to Finite Element Coupling

to Investigation of L, Propagation across Ocean Continent Boundaries

Introduction

In this chapter the effects of a thinning or thickening of the crustal layer on the
propagation of L, mode sum seismograms will be examined. The thinning or thicken-
ing of the crustal layer is used as a simple model of ocean to continent or continent to
ocean transitions. The L, phase is of particular interest since it is used in several
important applications such as mapping the extent of continental crust, magnitude
determination, and discrimination between explosive and earthquake sources. The
understanding of the observations that L, wave is attenuated completely when the
propagation path includes an oceanic portion of length greater than one hundred to
two hundred kilometers or a region of complex crustal structure is not complete, and a
clear explanation of this phenomenon could have important consequences for all these

types of studies.

The transition model calculations presented in this chapter show that passage
through a region of thinning crustal thickness, the model for a continent to ocean
transition, increases the amplitude and coda length of the L, wave at the surface, and
allows much of the modal energy trapped in the crust, which forms the L, phase, to
escape into the subcrustal layers as body waves or other downgoing phases. The mag-
nitude of both these effects increases as the length of the transition increases or the
slope of the layer boundaries decrease. The passage of the wavefront exiting the con-
tinent to ocean transition region through the oceanic structure allows further energy

to escape from the crustal layer, and produces a decrease in L, amplitude at the
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surface as the length of the oceanic path increases. The amplitude decrease is max-
imum near the transition region and decreases with distance from it. Passage through
a region of thickening crust, the model of a ocean to continent transition, causes a
rapid decrease in the L, amplitude at the surface of the crust. The energy previously
trapped in the oceanic crustal layer spreads throughout the thickening crustal layer,
and any amplitude which has been traveling through the subcrustal layer but has not
reached depths below the base of the continental crust is transmitted back into the
continental crust. The attenuation of L, at the crustal surface along a partially oce-
anic path occurs in the oceanic structure and in the ocean to continent transition
region. The attenuation at the surface depends in part on the escape of energy at
depth through the continent to ocean transition region into the underlaying half-space.

Designing FE Grids and Sampling FE Solutions

A study of the effects of the length of simple transition regions on the attenua-
tion of SH type L, mode sum seismograms passing through them has yielded some
interesting results. Two classes of transition models were considered. An example of
each class is illustrated in Figure 1. Calculations were performed for four individual
models from each class, for a continental crustal layer over a mantle half-space, and
for an ocean layer and an oceanic crustal layer over a mantle half-space. The
difference between individual transition models was the length of the transition region,
or the horizontal distance between points B and D shown in Figure 1. As discussed
earlier, real ocean to continent type transitions occur over lengths of order one hun-
dred kilometers. However, an upper limit on the length of the transition of one hun-
dred kilometers was imposed by limiting FE computation time per model to approxi-
mately one cpu day. Thus, the lengths used for this investigation were a step transi-
tion (0 km), twenty five , fifty, and one hundred kilometers. In order to discuss the

results of the FE calculations using these models one must first describe the models.
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Figure 1: Explanation of terms and illustration of the model classes used to

describe the behavior on passage through a transition region. The heavy line (—)

between the water layer and the crustal layer is the surface. The sloping portion of
this surface is the continent to ocean boundary for the forward transition model and
the ocean to continent boundary for the reverse transition model. Similarly, the slop-
ing dashed line (----) between the crust and mantle layers is the crust to mantle bound-
iary for the forward transition and the mantle to crust boundary for the reverse case.
The length of the transition is the distance from B to D, B is referred to as the begin-
ning of the transition , D as the end of the transition, C as the center of the transi-
tion. A is 5 km from B, E is 5 km from D.
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Also, the methods used to obtain and display the results of the calculations using

those models must be considered.

Analysis of the effects of various transitions on the waveforms and amplitudes of
L, waves using FE techniques requires that the motions of the nodes of the FE grid be
sampled so that the progress of the L; waves across the transition can be observed.
Two methods of sampling are used in this study. Complete displacement time his-
tories are recorded for selected nodes, and the displacements of all nodes in the grid
are recorded at given time intervals. The first approach produces seismograms which
can be used to illustrate variations of amplitude and waveform with distance or depth,
the second approach produces time slices and is a clear way to illustrate the propaga-
tion and distortion of wavefronts caused by passage through the inhomogeneous struc-
ture. For each model seismograms were recorded at intervals of approximately five
kilometers along the surface. Groups of seismograms at the same horizontal distance,
A, from the edge of the grid, were recorded at each of several different A’ s. At each
of these A’ s the surface seismogram and seismograms equally spaced in depth below
it were recorded. Such depth sections, with a vertical spacing of 2.5 km, were recorded
at distances including those corresponding to positions A through E (Figure 1) for each
model. For each one hundred kilometer transition additional depth sections were
recorded midway between B and C and midway between C and D. For the fifty
kilometer forward transition an additional depth section with vertical spacing of 0.5
km was recorded twenty five kilometers beyond the end of the transition region. This
section was used as input for later reverse transition calculations. For the continental
layer over a half-space model, or the forward reference model, depth sections were
recorded at distances corresponding to positions A though E in each forward transition
calculation. Thus, each depth section in a forward transition model corresponds to a

depth section in the forward reference model whose component seismograms have
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propagated the same distance, both as mode sum synthetics in the same plane layered
medium, and as waves in their respective FE grids. Similarly, depth sections at dis-
tances corresponding to positions A through E in each reverse transition model are
recorded in the reverse reference model calculation. For each model time slices were
recorded once or twice every twenty five seconds, that is, every two hundred fifty or

five hundred time steps.

At this point it is useful to digress and explain the time slices used in these stu-
dies. A time slice records the displacement at each point in the FE grid. These dis-
placements are graphically represented by centered symbols plotted at an array of
points depicting the nodes in the FE grid. The size of the symbol plotted at the node
is increased as the absolute value of the displacement increases, producing darker
areas where larger displacements are occurring. Each of the time slices is self scaled,
that is the largest value of the absolute value of amplitude in the grid sets the symbol
size to 1.5 element widths at the node where it occurs. At all other nodes the product
of two quantities, the ratio of the amplitude at that point to the maximum amplitude,
and the size of the largest symbol (1.5 element widths), is the size of the symbol plot-
ted. The symbols also have a minimum size set by the resolution of the plotter.
Therefore, to avoid plotting points whose amplitudes vary by orders of magnitude at
the same minimum size, a cutoffl must be defined below which no symbol is plotted.
For the illustrated layer over a half-space time slices this cutoff is one percent of the
maximum amplitude. For the illustrated forward and reverse time slices the cutoff is
two percent of the maximum amplitude. Setting the cutoff this low means that the
smallest symbols cover a range of amplitudes between one or two percent and about
eight to ten percent of the maximum amplitude. The self scaling of the time slices
means that successive time slices may show the same absolute amplitude as a different

symbol size. Thus, the same region of the waveform will appear darker on a time slice
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with a given maximum amplitude than on another time slice with a larger maximum
amplitude. This difference must be remembered when interpreting the time slices. At
any depth within the grid the pattern of displacements seen in a time slice, as a func-
tion of distance, can be understood by comparing it to a seismogram recorded at that
same depth. The oscillations in amplitude with distance at a given time are similar to
those seen as a function of time at a given distance. Thus, the seismogram can be
considered to be a recording of the passage of successive points of the coherent
wavefield seen in the time slice past a fixed recorder. Conversely, the time slice can be
viewed as showing the location in space of the energy that forms each peak in the

seismogram, at a given instant of time.

Now, returning to the definition of the model classes used in this study, the two
classes of transition models and the two classes of reference models used will be dis-
cussed. An example of each transition model class is shown in Figure 1. The
difference between individual transition models within each class is the length of the
transition region, or the horizontal distance between points B and D shown in Figure
1. The first class of models are used to describe continent to ocean transition regions.
In further discussions these models will be referred to as forward models, and the tran-
sitions they represent as forward transitions. The second class of models are used to
describe ocean to continent transition regions. In further discussions these models will
be referred to as reverse models and the transitions they represent as reverse transi-
tions. As the length of the transition region increases in either class of transition
model, the angle that the the ocean to crust boundary or crust to ocean boundary
makes with the horizontal (¢oc or co in Figure 1) varies between 3° and 90° , and
the angle the the crust to mantle boundary or the mantle to crust boundary makes
with the horizontal (¢pc or ¢oym in Figure 1) varies from 12° to 90°. The differences in

slope of the boundaries and the different elastic properties of the layers they separate



- 108 -

indicate that different behavior should be expected along those two boundaries. The
first type of reference model consists of a thirty two kilometer thick layer over a half-
space. This will be referred to as the continental reference model. The second type of
reference model consists of two five kilometer thick layers, one water and one of the
same material as the layer in the continental reference model, and a half-space of the
same material as the half-space in the continental reference model. This model will be
referred to as the oceanic reference model. All of these models will be described in
detail below. Then the design of the FE grids to represent these models will then be

discussed.

The first class of models are models of forward transitions. In each forward
model the transition region is characterized by a continuous rate of thinning of the
crustal layer between the thirty two kilometer thick continental crust at the beginning
of the transition region and the five kilometer thick oceanic crust, overlain by five
kilometers of water, at the end of the transition region. The crustal layer has a SH
wave velocity, vg, of 3.5 km/s and a density of 2.7 g/cc, while the half-space has an
SH wave velocity, vy, of 4.5 km/s and a density of 3.4 g/cc. Each transition model
has the same boundary conditions (BC’s) applied to it. Thus, the same set of forcing
functions are used to drive the FE calculation performed on each forward model. In
each case the leftmost column of nodes of the forward transition FE grid are con-
strained to move with the displacement time histories specified by the forcing func-
tions. The forcing functions are a vertical section of sixty mode sum seismograms, cal-
culated at depth intervals of 0.5 km beginning at the surface, for a source at eight
kilometers depth at a distance of A=1500 km. The same mode sum forcing func-

tions are also used as input to the continental reference model.

The second class of models are models of reverse transitions. Each reverse transi-

tion is modeled as a smooth increase in thickness of the crustal layer between a five
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kilometer thick oceanic crust, overlain by five kilometers of ocean, at the beginning of
the transition and a thirty two kilometer thick continental crust at the end of the
transition. The forcing functions for the reverse transition tests are recorded during
the fifty kilometer forward transition calculation. They consist of a depth section of
hybrid seismograms recorded twenty five kilometers past the oceanic end of the fifty
kilometer forward transition transition region, which corresponds to a distance of 1755
km from the source. The vertical spacing within the depth section is 0.5 km. The
reverse transition forcing functions are also used as input to a reverse reference or oce-
anic model of a five kilometer thick ocean layer and a five kilometer thick oceanic
crustal layer over a mantle half-space. An additional series of calculations using the
reverse. transition models were done to investigate the effects of ocean to continent
transitions on mode sum seismograms from an oceanic source. The forcing functions
used for these calculations were determined as a sum of the fundamental and the first
ten higher modes for a source 1500 km from the grid edge at a depth of eight kilome-
ters below the ocean surface in an oceanic structure. These oceanic mode sum seismo-

grams are also used as input for the reverse reference model.

Finite Element calculations are computationally intensive, consuming many hours
of computer time. In order to maximize the information yielded by a calculation using
a particular amount of cpu time, the model grids must be carefully designed. It is
important to minimize the number of grid points, and the time spacing, and to max-
imize the spacing between nodes. Other considerations are also important, most not-
ably, the removal of reflections created by the boundaries of the grid from the portion
of the waveform to be studied.

The first step in designing a grid for FE calculations is to determine grid size,

grid spacing, and the time step duration. These quantities are chosen so that the FE

calculation remains stable but executes as rapidly as possible. The highest frequency
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of the waveform to be modeled and the S velocity of the material through which it
propagates determine the smallest allowable grid spacing. At least six nodes per
wavelength are needed to avoid numerical dispersion problems. Therefore, to prop-
agate a wave with a maximum frequency of f through a medium with velocity V, the

grid spacing required is

dx< o 1)

It should be noted that in a structure containing regions of different velocities the
slowest velocity should be used to determine dx to insure stability of the calculations.
Given the minimum grid spacing dx, the maximum time step duration follows directly.
To maintain numerical stability in the code the wavefront can travel no more that

half the grid spacing per time step.

dtgs—\’; 2)

In this case the minimum velocity, V, within a complicated model should be used to
insure stability within the whole model. In this study, we are considering L, waves
with a predominant peri.od of approximately one second propagating through a layer
of 3.5 km/s over a half-space of 4.5 km/s. Thus, we have chosen dx=.5 km and

dt=.05s. This will allow the inclusion of frequencies as high as 1.17 Hz.

The next step in designing the grid is determining the number of grid points that
will be needed, the dimensions of the grid, the location of the transition region within
the grid, and the duration of the input forcing functions. The dimensions of the grid
are expressed as the number of grid points in the horizontal direction, nx, and in the
depth direction, nz. The location of the transition region within the grid is defined in
terms of the distances from the leftmost grid edge to positions A, B, C, D, E, in Figure

1. The values of these parameters were chosen to satisfy two criteria. First, that a
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seismogram of duration Dy seconds could be recorded at A (Figure 1) before the multi-
ple reflection of the input wave from the beginning of the transition, B, to the leftmost
grid boundary then back to A reaches A. Second, that a seismogram uncontaminated
by the multiple reflection with duration Dy seconds could be recorded at the receiver
closest to the rightmost edge of the grid. This receiver is defined to be at a distance x;
from the leftmost grid edge. For the calculations in this study x; was chosen to be
twenty five kilometers past the end of the transition. These two criteria concern
themselves only with reflections from the leftmost edge of the grid. Nonphysical
reflections can also occur from the bottom and the rightmost edge of the grid. These
latter reflections are removed using transparent BC’s which are explained and verified
in a later section. Using the present code it is not possible to apply these BC’s to a
node which is constrained to a given displacement time history. Applying such a con-
straint makes the boundary appear rigid to any wave incident upon it from the grid.
Since the leftmost column of nodes must be so constrained to couple the source into
the FE grid, the left hand edge of the grid is considered to be reflecting. The duration
D, was chosen to be fifty five seconds because it was observed to be the coda length
for a SH Ly mode sum seismogram, including the fundamental and the first five higher
modes, at a distance of one thousand kilometers from the source. Although the input
seismograms finally used were calculated at 1500 km and have a coda of at least
seventy seconds, the amplitudes in the coda are reduced by an order or magnitude at
fifty five seconds with respect to the beginning of the trace, and are rapidly decfeas—
ing. Thus, extending the grids and the number of time steps was considered to be an
unnecessary expenditure of computer time. For all the models used in this study the
values of parameters defining the size of the grid and the location of the transition
region within it are given in table 1. In this table all quantities except nt and Tz,

are given as the number of nodes in the horizontal direction from the left edge of the
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grid to the depth section or boundary indicated. For the corresponding distances in
kilometers divide the numbers by two. The quantity nt is given as a number of time

steps, and the value of T, is in seconds.

TABLE 1

GRID CHARACTERISTICS FOR TRANSITION MODELS

nx | nz nt T ol A | BJ|]cCc|D E

model | # nodes | # At s # nodes
of 310 | 90 1921 96 230 | 240 | 240 | 240 | 250
25f 365 90 2101 105 240 | 250 | 275 | 300 | 310
50f 525 | 90 3101 155 350 | 360 | 410 | 460 | 470
100f 500 | 90 2441 122 250 | 260 | 360 | 460 | 470
Or 350 | 90 | 2561 128 275 | 285 | 285 | 285 | 295
251 400 | 90 | 2501 125 275 | 285 | 310 | 335 | 345
50r 450 | 90 | 2601 130 275 | 285 | 335 | 385 | 395
100r 525 | 90 | 2941 147 275- |1 285 | 385 | 485 | 495
31f 575 | 90 | 2701 135 255 | 265 | 315 | 365 | 375
31r 575 | 90 | 2701 135 417 | 427 | 477 | 527 | 537
69f 675 | 90 | 3001 150 265 | 275 | 325 | 375 | 385
69r 675 | 90 3001 150 523 533 | 583 633 643
fref 530 | 90 | 3201 160
rref 525 | 90 3201 160

To calculate the duration of the displacement time histories used to drive the cal-
culation, T, the distance from the leftmost side of the grid to the beginning of the
transition region, A (see Figure 1), and the number of time steps the calculation must
run to produce the desired seismograms, T .1, @ simple series of calculations was per-
formed. The duration of the forcing functions, T,;, must be long enough that a
seismogram of duration Dy can be recorded at both x; and A. In a layered medium the
first arrival at a distance x will occur between the arrival times of a wave traveling
entirely in the slowest medium, Tg.,=r/V i, , and the wave traveling entirely in the
fastest medium, Tyu=r/Vax - In these expressions r = Vx? + (h-z)® where h is
source depth and z is receiver depth. To allow the possible arrival time of the first

significant energy to be anywhere between Ty and Tp,y, Ty is chosen to be Dy plus
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the travel time difference AT=T,yw—Trast- Since AT will be largest for the longest dis-
tance, providing a long enough seismogram at x; will automatically provide one at A.

So T,; becomes

V- Vo
T =D 3 Xt max min (3)
o ° Vmamein

In this expression r has been replaced by x. This is a valid substitution for distances
x>>X,, the critical reflection distance. For the examples considered here the source to
receiver distance is larger than 1500 km, well in excess of the critical reflection dis-
tance. This would seen to imply that this substitution is valid for these calculations.
However, the coupling of the energy from the distant source into the FE grid requires
the spéciﬁcation of displacement time histories on a column of nodes. This is
equivalent to applying a time variable source at each of the nodes constrained by a
forcing function. The distance from these sources to the receivers within the FE grid
is less than or of the same order as x,. It can still be show that the substitution of x
for r is valid, although, it may give an overestimate of the necessary duration, Tpy;.
To demonstrate this consider a receiver at depth z. The first significant energy at
that receiver arrives from the nearest source, that at depth h=z. Thus, substituting x
for r in the expression for Ty, is correct. Substituting x for r in the expression for
Ti,s Will either make no difference or decrease the value of Ty,. Thus the travel time
distance, AT, can be larger that the exact value but not smaller. This guarantees
that portions of the seismogram that should not be contaminated with reflections will

not be.

To determine a numerical value for T, the distance x; must be known. The
value of x; follows directly when the distance to the beginning of the transition, B, is
known. To assure a seismogram at A of duration D, which is not contaminated by

reflections from the leftmost edge of the grid it is sufficient to specify that the two
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way travel time from A to the leftmost edge of the grid be T ;. Then the unknown

value of x; cancels and A can be expressed as

A — Dstianax + (Tl + xf)(Vma.x - Vmin) (4)
(Vmax + Vmin)

where V., is the velocity in the oceanic and continental crustal layers (3.5 km/s),
Vmax is the velocity in the mantle layer (4.5 km/s), and T) is the length of transition
region, (0, 25, 50, 100 km), x, is the distance from the end of the transition to the last
receiver (25 km) plus the distance from A to B (5 km). Once the distance to A is
determined the distances to B, C, D, E, and x; are known. This allows Tp; to be

determined from (3), and the duration of the calculation follows directly.

i (5)
Vmin

Tmcalc = Ds I

These calculations are modified slightly when the output at x; is to be used as the
input to a subsequent FE calculation. The necessary duration of uncontaminated
seismogram at x; becomes the duration of the input forcing functions needed for the
second FE calculation. This is why the values of A, T,;, and T, for the fifty
kilometer forward transition are larger than the values given by the above relations.
The seismograms from the fifty kilometer forward transition at x; are used as the forc-
ing functions for all the reverse transition calculations. When a series of more than
two FE calculations are performed, the values of the parameters above should first be
determined for the final calculation. The value of T,; for this calculation will give the
value of Dy for the penultimate calculation. In this way the values of the parameters
for each FE calculation from the last to the first can be determined.

Understanding the Accuracy and Efficiency of the Transparent BC

Transparent boundary conditions (BC’s) are applied at two boundaries, both the

rightmost edge and the bottom edge of each transition model FE grid. These, BC’s
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are introduced to remove the nonphysical reflections created by the interaction of the
wavefronts with those two boundaries. Their introduction removes the requirement
that those boundaries be far enough from the receivers that no reflections from them
contaminate the desired results. However, the BC’s do not remove all of the reflected
energy, thus for detailed waveform modeling it is preferable to enlarge the grid rather
than using the BC’s, if such an enlargement is feasible. In all other cases, where small
discrepancies in waveform can be tolerated, the interference on the small reflection
with the incoming seismogram produces changes of less than 1% in the RMS ampli-
tudes. For seismograms of fifty five seconds duration, removing the reflection from
the right end of the grid by extending the grid would require increasing nx by almost
two hundred grid points. This increases execution time by thirty to sixty percent. If
reflections from the bottom edge of the grid must also be removed, nz must also be
increased by two hundred grid points. The increase in execution time to remove both
types of reflection by extending the grid is a factor of three to five. Clearly, a more

efficient way to remove the reflections is desirable.

The transparent BC used in the calculations discussed in this study is imple-
mented by averaging a rigid boundary solution with a free boundary solution for the
displacement at the edge nodes. If no boundary condition is applied the boundary
nodes form a free surface. When a wavefront interacts with a free surface a complete
reflection of the incident wavefront occurs. If the edge nodes are constrained to have
zero displacement, that is to produce a rigid boundary, the incident wavefront is com-
pletely reflected, but a change in the sign of the amplitude is introduced. This sug-
gests that one way to remove contamination due to reflections is to add a solution
with a rigid right edge boundary to a solution with a free right edge boundary (Smith
1974). Adding the corresponding seismograms from these two separate calculations is,

however, a poor solution. Such an approach takes more computer time than simply
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extending the grid in nx, and it also removes only the primary reflections, leaving mul-
tiple reflections to contaminate the results. The situation for removing reflections due
to both bottom and edge boundaries is little better since four separate calculations are
required to remove the primary reflections in this case. A better solution, suggested
by Frazier, Alexander, and Petersen (1973), is to calculate displacements for the rigid
boundary and for the free boundary cases, for each edge node at each time step.
Those two displacements can then be averaged to give a displacement closer to that
observed if the boundary was not present. For a normally incident plane wave this
average exactly represents the transparent boundary. However in practice the
incident wavefront is neither normally incident nor a plane wave. This means that
the actual value at the transmitting boundary is a linear combination of the rigid
boundary and free boundary solutions whose coeﬁicients depend upon the angle of
incidence of the energy. The boundary condition used here assumes that the average
of the two solutions will in most cases be the best approximation to the transparent
boundary that can be simply implemented. To implement the transparent BC’s about
twice as many calculations are necessary at each node on the transparent boundary.
This increases the overall execution time of a transition type run by less than two per-

cent.

The efficiency of the transparent BC’s must be demonstrated and their limita-
tions must be understood. The validity of the BC’s for L, mode sum input will be dis-
cussed later, but to more clearly illustrate their limitations it is useful to examine their
effects on a simple SH pulse traveling in a homogeneous 2-D half-space. Two different
situations are examined, first reflections from the rightmost edge of the grid are con-
sidered, then reflections from the bottom of the grid. The grids used for each of these
tests are shown in Figure 2. The heavy lines within the grid show the nodes where

hybrid seismograms are recorded. The time step used was of 0.05 seconds duration,
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Figure 2: Grid geometries for the tests of the boundary condition for a 2-D SH
pulse. Part a) shows the grid used to investigate reflections from the right end of the
grid, part b) the grid used to study reflections from the bottom of the grid. Sample
source to receiver ray paths are shown in both grids for the direct path, and for the
path reflected from the grid bottom. Sample ray paths including a reflection from the
right grid edge in a), or a free surface reflection in b) are also shown. Each ray path is
labeled with its travel time. The sets of receivers are indicated by the solid lines
within the grids. The dotted lines in the inset boxes show the variation of incident

angle as a function of receiver depth or range.
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and the grid spacing was 0.5 km. The dotted line in the inset rectangle shows the
variation of the angle between the incident SH ray and the boundary being investi-
gated along that boundary. In each grid the important SH ray paths are illustrated

for sample receivers, and labeled with their travel times.

The geometry of the grid used to examine edge reflections is illustrated in Figure
2a). The size of this grid, 80x450 nodes. Examining the illustrated travel times shows
that no contamination from bottom reflections reaches the receivers during the thirty
five second duration or the seismograms. The horizontal distance from the source to
the left edge of the FE grid is four kilometers. The horizontal distances from the
source to the depth sections where results are recorded are eight and ten kilometers.
The vertical range of receivers is between the surface and fifty kilometers depth.
Thus, angles of incidence at the right end boundary of the FE grid are between thirty

and ninety degrees.

The geometry of the grid used to study reflections from the bottom of the FE
grid is shown in Figure 2b). The dimensions of the grid are 350x110 nodes. For this
series of calculations the source used is a line source applied at a single point within
the grid. The source was located within the grid to allow for a large range of angles of
incidence at the bottom boundary. The time history of the force applied at the source
is triangular with a rise time of ten time steps and a total width of twenty time steps.
The small higher frequency oscillations superimposed on the decaying portion of the
pulse in both calculations is due to finiteness of the embedded source. The illustrated
travel times indicate that the reflection from the free surface arrives at a time well

separated from the reflection from the bottom of the grid.
Figure 3 illustrates the effect of introducing the transparent BC’s at the right-

most grid edge of the grid shown in Figure 2a). Each pair of seismograms represents

one of the receivers on the depth section eight kilometers from the source. Figure 4
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Figure 3: Efficiency of the absorbing BC demonstrated by results from calcula-
tions in the grid illustrated in Figure 2a. The uppermost seismogram in each pair is
the hybrid solution with no BC’s applied. The lower seismogram of each pair shows
the hybrid solution with the BC applied to the appropriate boundary as a solid trace
and the direct synthetic solution as a dotted line. The numbers beside each pair indi-
cate the angle of incidence of the arrival at the reflecting boundary.
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Figure 4. Efficiency of the absorbing BC demonstrated by results from calcula-
tions in the grid illustrated in Figure 2b. Details are identical to those explained in
Figure 4.
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illustrates the effect of introducing the them at the bottom grid edge of the grid shown
in Figure 2b). Each pair of seismograms represents one of the receivers along the
plane at thirty five kilometers depth. The uppermost trace in each pair shows the
hybrid synthetic with no BC applied. The lowermost trace of each group shows both
the analytic synthetic and the hybrid synthetic calculated using the BC. on the right-
most edge of the grid. The dotted portion of this trace shows where the analytic syn-
thetic departs from the hybrid solution. The number to the left of each pair of traces
indicates the angle of incidence, in degrees, at the rightmost edge of the grid in Figure
3 or the bottom edge of the grid in Figure 4. A second reflection, whose amplitude is
inverted with respect to the first, is seen in Figure 3 only. This is the multiple
reflection from the rightmost grid edge then from the rightmost grid edge. It illus-
trates that a boundary, such as the rightmost grid edge, with displacement time his-
tory constraints applied to it acts as a rigid boundary when considering energy
incident upon it from the FE grid. In Figure 4 the upper trace in each group shows
two pairs of almost equivalent sized peaks. The first pair of peaks are the direct
arrival and its reflection from the bottom edge boundary of the grid, the second
smaller pair of peaks shows the free surface reflection followed by its multiple

reflection from the bottom grid edge.

For normal incidence the BC is very efficient, removing 93% of the reflected
amplitude. The reflected pulse prominent when no BC is applied is very small when it
is applied. For near normal incidence, the BC continues to be efficient, reflecting at
most thirty percent of the incident amplitude for angles of incidence as small as fifty
degrees. The BC is equally efficient for the same angle of incidence on either bound-
ary. The two grids used to investigate the two boundaries separately illustrate some
difficulties that occur when using such an angularly dependent transmitting BC. Most

geometries of interest here involve a distant source, so the angles of incidence at the
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bottom boundary are much smaller than at the rightmost edge boundary. When the
angle of incidence is small less than half the incident energy is removed. Thus,
_although the reflections from the rightmost grid edge are uniformly small and produce
on the order of a one percent change in RMS amplitude for a distant source, the
reflections from the bottom of the grid are only slightly reduced in amplitude and con-
tribute significant unwanted components to the resulting seismograms. Conversely, a
nearby source was chosen for the test of the BC at the rightmost edge of the grid and
a source in the grid was chosen for the bottom grid boundary test. In both cases these

choices were made to give a large range of incident angles in the calculations.

Next the validity of the BC’s for L, mode sum seismogram input will be dis-
cussed. Figure 5 shows the layer over a half-space (L/HS) grid models used to verify
the accuracy and efficiency of the BC’s as applied to SH L, wave propagation. All FE
calculations discussed for the test use the forward transition forcing functions as
input. The results of these calculations are illustrated in Figure 6 and Figure 7. Both
figures show seismograms that have been band pass filtered between .01 and 1.0 Hz.
The seismograms shown in Figure 6 have also been convolved with the WWSSN short
period instrument response. Four separate calculations were performed. First, an L,
mode sum synthetic seismogram for the same source used to generate the forward
transition forcing functions was calculated for surface nodes at distances corresponding
to R1 and R2 in Figure 5. These are the uppermost traces in each group in Figure 6.
Next, seismograms were generated using the hybrid method and the long grid, in Fig-
ure 5. No BC’s were applied when the seismograms were propagated through the FE
portion of the path. The length of the long grid, nx=200, was chosen so that fifty
five seconds of seismogram could be recorded at R1 and R2 without contamination
from end reflections. Sample results from this calculation are shown as the second

seismogram in each group in Figure 6 and the uppermost seismogram in each group in
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Figure 5: Grid configuration for test of absorbing BC’s for the case of incident L,
mode sum waves. The solid vertical lines within the grid shown the locations of the
depth sections of receivers where results are recorded. The dotted vertical line indi-
cates the end of the short grid.
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Figure 7: Seismograms recorded at the surface and at depth at the distances R1
and R2 in Figure 5. The first seismogram in each group is a hybrid synthetic deter-
mined using the long grid shown in Figure 5. The second and third are hybrid syn-
thetics determined using the short grid with and without BC’s respectively. Seismo-
grams are normalized so the peak to peak amplitude of each trace appears identical.
RMS amplitudes of each group of traces agree to within 1% before the arrival of the
reflection. The seismograms have been band pass filtered between .01 and 1.0 Hz.
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Figure 7. Third, seismograms were generated using the hybrid method and the short
grid illustrated in Figure 5. The short grid is terminated at its rightmost edge by the
vertical dotted line. Along this edge the transparent BC was applied at each node at
each time step in the calculation which propagated the input seismograms through the
FE portion of the path. Seismograms resulting from this calculation are shown as the
third trace in each group in Figure 6 and as the center trace in each group in Figure 7.
Finally, the previous FE calculation was repeated without the transparent BC’s, and
the results are illustrated as the fourth and final trace in each group in Figure 6 and

as the bottom trace in each group in Figure 7.

When the final three traces in each group in Figure 6 are compared to each other
or the three traces in each group in Figure 7 are compared to each other it becomes
clear that the transparent BC’s are removing most of the reflected energy. In the last
trace the reflection from the grid edge is clearly visible, and the multiple reflection is
also clear. Arrival times of the two large peaks marking these reflections are con-
sistent with their identification as reflections. The arrival time of the two reflections
are shown on Figure 6 as arrows below the bottom seismogram in each group. Com-
parison of the long grid and the short grid with transparent BC’s shows that most of
the reflected amplitude has been removed by the BC’s. Comparing the results show in
Figures 6 and 7 shows that the BC’s are also somewhaLt frequency dependent for L,
mode sum seismogram type input. Very little difference is seen between the hybrid
long grid solutions and the hybrid short grid solutions with the BC’s applied when the
results in Figure 7 are examined, and the changes that are seen appear to be in the
higher frequency component of the traces. This observation is corroborated by the
results shown in Figure 6. These results have had the WWSSN short period instru-
ment applied to them, and thus, have had their higher frequency component enhanced

and their lower frequency component attenuated. They show larger differences
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between the hybrid long grid solutions and the hybrid short grid solutions with the
BC’s applied than are visible in the results before the instrument is applied. The
increased differences are coincident with reflections obvious on the seismogram show-
ing the hybrid short grid results without BC’s. The differences are largest for the mul-
tiple reflections. Despite easily visible differences in waveform the seismograms shown
in Figure 6 have RMS amplitudes that agree to within less than two percent for all
RMS window lengths. This indicates that small changes in waveform may be expected
but the amplitudes of the seismograms should be stable and not significantly contam-
inated by reflections from the grid edges. The increased discrepancies in both
waveform and amplitude introduced by the multiple reflections will be avoided in the
transition FE grids described below. This reduces the discrepancies in RMS amplitude

to less than one percent.

Reflections from the bottom edge of the grid should also be considered. As previ-
ously discussed, the transparent BC can be very inefficient for the case of an SH pulse
incident at the bottom of the grid. Due to the small angle between the SH ray and the
grid bottom for any source which is not in the grid or in close proximity to the grid
the BC will remove only a small portion of the reflected amplitude. Fortunately, this
behavior does not generalize to modal displacement in a layered half-space. For the
case of L, mode sums propagating in a layer over a half-space, the Ly wave input to
the grid is constructed as a superposition of Love wave modes. These Love wave
modes can be thought of as the superposition of the constructive interference between
multiply reflected post-critical SH waves in the crust. This suggests that much of the
energy in the SH type L, waves for a layer over a half-space should be contained in
the layer, interacting predominantly with the real boundary between the layer and the
half-space, and with the free surface. The waveforms of the hybrid seismograms with

and without the transparent BC’s on the grid bottom are almost identical. Amplitude
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comparisons show differences of less the 0.1%. This can be seen by examining the first
two seismograms in each group in Figure 6. The analytic synthetics and the hybrid
results with no BC’s are in excellent agreement indicating that reflections from the
bottom boundary in the FE portion of the hybrid calculation are not significant.
Thus, it appears that, for a layer over a half-space, reflections from the grid bottom
are not important when modal displacements are being propagated. This argument
applies to the forward and reverse reference models when mode sum SH L, seismo-
grams generated for the forward or reverse reference modes respectively are used.
This argument cannot, however, be generalized to imply that little energy reaches the
bottom boundary for the transition model calculations, or for the reverse reference
model using the depth section recorded at x; in the fifty kilometer forward transition
model as forcing functions. It will be shown that in these models significant energy

escapes from the crustal layer into the mantle half-space.

The properties discussed above are also observed in the time slices from the layer
over a half-space calculation shown in Figure 8. At the upper right corner of each
time slice a number indicating the time, in seconds, since the beginning of the FE cal-
culation is shown. The arrows pointing to the surfaces of the bottom three time slices
show the location that the slowest traveling energy seen at the leftmost edge of the
wavefield of the previous time slice has moved to in the time elapsed between the two
sections. The first striking feature of the time slices are that the SH type L, waves
are, in the most part, confined within the layer. The bottom of the layer in the illus-
trated depth sections is easily visible as the bottom of the high amplitude portion of
the wavefield. This delineation is clear even though forcing functions are applied to
all illustrated rows of nodes. Thus, the time slices show that a negligible portion of the
energy interacts with the bottom of the grid. Thus, introducing transparent BC’s on

the bottom of the grid where little energy reaches makes no perceptible difference in



Figure 8: Time slices showing the propagation of an SH type L, wavefield
through a layer over a half-space structure. The bottom of the layer can be seen as
the lower termination of the darker regions. The dark triangular regions show the
wavefronts. The arrows above the lower three time slices show the location of the
slowest traveling energy visible at the lefthand edge of the previous time-slice at the
time of the present time slice. The time since the initiation of the FE calculation is
show at the upper right corner of each time slice.
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the results. The second striking feature is that the high amplitude portions of the
wavefield resemble the wavefronts for multiply reflected SH waves of a collection of

different phase velocities superimposed upon one another.

Another feature clearly visible in these time slices is the energy reflected back
toward the source from the rightmost edge of the grid. The upper two time slices
both show the maximum amplitude portion of the waveform propagating through the
grid. In the first time slice the large peaks at the beginning of the waveform, seen as
the darkest regions, have propagated about halfway across the grid. In the second
time slice they have reached the right end of the grid. In the third time slice these
high amplitude regions have propagated beyond the rightmost edge of the grid. Thus,
the maximum amplitude in the third time slice is smaller than that in the first two
time slices. The same regions of wavefield in the third time slice appear darker than
in the second time slice. The reflection from the grid edge is also visible if the time
slice is carefully examined. In the fourth time slice, the maximum amplitude has again
been reduced and the end of the applied wavefield is accentuated. The amplification
also makes the reflected wavefield clearly visible particularly in the portion of the grid
which the incident wavefield has completely passed through. The end of the incident
wavefield is clearly visible in this time slice as the end of the portion of the wavefield
showing superimposed triangular regions of high amplitude. To the left of this area
an attenuated mirror image of the beginning of the incident wavefield can be seen.
This is the beginning of the reflected wavefield. Examining seismograms shows that
actual amplitudes of this reflection are between five and eight percent of the incident

amplitudes.

This discussion has established that the transmitting BC at the grid bottom
boundary is not important for SH type Lg mode sum seismograms traveling through

the same layered structure in which the source is located. However, the purpose of
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this study is to examine the effects of continental oceanic boundaries on the transmis-
sion of L, mode sum seismograms. When the crustal layer is thinned or thickened
with distance, the modes are no longer completely trapped within the layer. Energy
can be converted to modes compatible with the local layer thickness and to other
forms including forms such as body waves that can propagate into the half-space and
away from the layer. When the wavefield reaches the second layered structure, modes
incompatible with that new layer thickness will leak out of the layer, rapidly at first,
then at a steadily decreasing rate. These phenomena are observed and will be dis-
cussed and explained in detail later as the results are presented. They imply that
reflections of energy escaping from the crustal layer towards the bottom boundary of
the grid could possible seriously contaminate transition calculation results. The grids
are designed to minimize these problems. Consider a node on one of the dotted
boundaries shown in Figure 1. At this node energy is converted into modes consistent
with the local layer thickness and into forms that will propagate into the half-space.
Thus, it can be considered as a source for a wavefield propagating into the half-space.
Wide angle reflections, of the energy escaping from the thinning crustal layer, from the
grid bottom require long distances, A, to travel from this source to the grid bottom to
the receiver. In almost all cases the model grids do not extend far enough, in the x
direction, beyond the transition for this to be a problem. The energy will encounter
the rightmost end of the grid, either on the downgoing or the upgoing portion of its
path, rather than reaching a receiver at or near the surface as a wide angle reflection.
Since a wavefront which has a small angle of incidence with the bottom boundary has
a large angle of incidence with respect to the end boundary, most of the amplitude of
the wavefront from the conversion source incident on the rightmost end boundary, will
be transmitted rather than reflected. Therefore, it is removed from the grid. Careful

grid design will prevent significant contamination from wide angle bottom reflections.
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The results from the forward and reverse transition calculations will now be dis-
cussed. First the effects of a forward transition on the incoming SH L, mode sum
seismograms will be explained. Then, the further effects due to continued propagation
of this energy through a reverse transition will be considered. Next, the variation in
the effects introduced by the forward transition as a function of transition length will
be discussed. Finally, the variations in the effects observed as the wavefront passes
through the reverse transition, as a function of the length of that transition will be
explained. The consideration of the effects due to varying the length of the oceanic
path between the two transition regions will be discussed briefly. A more complete
discussion of this problem will be given in the next chapter.

Changes to L, Wavetrains on Passage through a

Forward Transition Region

The passage of a wavefield consisting of SH type L, mode sum energy contained
mainly in the layer above the half-space through a forward transition such as that
illustrated in Figure la) has several effects on that wavefield. These effects are illus-
trated in Figures 9 to 15. These figures show several important tendencies. As
expected the behavior along the continent ocean boundary shows distinct differences
when compared to the behavior at the crust mantle boundary. Along the continent
ocean boundary amplitudes are seen to increase with distance, A. No energy is prop-
agated into the ocean layer. Energy which is not reflected back from the crust ocean
boundary toward the source appears to be concentrated near this boundary and prop-
agated along it to produce an amplification of amplitude which is maximum at the
surface of the crust. Along the crust mantle boundary a similar but smaller concen-
tration effect is seen. However, this effect is dominated by the conversion and/or
escape of energy across the boundary into the mantle layer. The propagation of the

energy remaining in the crustal layer when the wavefront leaves the transition region
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through the oceanic layered model shows that energy is leaking out of the bottom of
the oceanic crustal layer, particularly at the beginning of the oceanic layer near the
end of the transition region. Each of these observations will be discussed in detail

below and supporting results will be shown in the figures.

First the results of a sample calculation with a transition length of twenty kilom-
eters will be discussed. The geometry of the grid is illustrated, to scale, in Figure 9.
The upper hatched region is the ocean layer, the unhatched region the crustal layer,
and the lower hatched region is the mantle layer. The heavy vertical line at the left-
most edge of the grid represents the column of nodes constrained to move with the
input L, displacement histories. The heavy vertical line labeled A is the column of
nodes for which displacement time histories are recorded to use as input to the reverse
transition. The two vertical lines labeled Fcl and Fc2 show receiver sections used to
llustrate the effect of the transition on the distribution of amplitude with depth. Dots
on Fcl, and Fc2 indicate positions of receivers for which displacement time histories
are illustrated in Figure 10. Open circles, and dots located at the surface of the crus-
tal layer, refer to nodes for which displacement histories are plotted in Figure 11. In
both Figures 10 and 12 all seismograms are band pass filtered between .01 and 1.0 Hz,
but no instrument is applied. The numbers above and to the right of each seismo-

gram are the maximum peak to peak amplitudes of each seismogram.

Figure 10 shows seismograms recorded at the positions shown as dots in Figure
11. The first column of seismograms in this figure shows the changes seen with depth
at distance Fcl. The second column shows the seismograms on depth section Fc2.
The seismogram at the surface of the oceanic crustal layer in the depth section at Fc2
shows a substantial increase in amplitude over the seismogram at the same depth in
depth section Fcl. These seismograms are shown as the second row in this figure.

Not only is the peak to peak amplitude fifty percent larger but the average amplitude



- 134 -

"IT 2In31,| Ul UMOYS al® SUIRISOWSIAS YOIYM IOJ SI9AI903]
9} moys Jake| [B)SNIO 3y} Jo 90vJINS () Juo[e s3[2410 uado Ay, ‘(O 2InJ1 ul pajery
-SN[[l 9J® SWRISOWSIIS YIIYM JOJ SIIAI9D31 MOUS ZO pu® [d, UO SJOP dYJ, ‘SISAID3I
Jo suorjoes yjdop moys go Pu® [0 Po[9qE[ Saul| [edI}IsA Y[, ‘'suoljounj Juroloj se
porjdde ase sweiBowstes 3 [ YoIym 0} SI9A19001 JO UWIN[OD 3Y)} SI PLIS 2y} Jo pud 9J9]
99 e aul] £ABIY 9y ], 'UOIJB[ND|BD UOI}ISURI) 9SIdASI 9) UI SUOIJOUNJ FUIDIOJ SB asn O]
Papiooal al® SWRISOWSIAS AIIYM SMOYS Y/ PI[oqe[ 2UI| [BII}IdA AABAY 9Y ], 'IaA®[ [€)SNIDd
9y} uoi3al paydjeyun 9y} pue ‘Iafe[ 9[juBW Y} UOIZAI paydjey Jamo[ oY) ‘lafe| olue
-900 3Y} sI uol3al payojey Jaddn ayJ, -yjdep pue ‘y ‘sour)sip jo uoljounj e se sweid
-owisias Jo sopnjijdwe pue SUIIOJOABM 3Y) UO UOI}ISURI) PIEMIO) ® JO §)03[j aY) ajel)
-SN[[l 0} Pash UOI}ISULI) PIBMIO]J JOJWO[IY AJUam) 3y} JOJ A1}9WI0a3 puLIY) ;6 In3i g

¢°d 104

Al ..
A\

v

REETL
g€ =g

uoljisusl} plemio}



- 135 -

Fc1 " Fc2
1320 -
H-r“:,}*.%%w
vack 1600
it vaww
Vigd 1080
L R SN J o

" Wil
|

- ' 969 745
“1!“""’1*'*’"“‘ penis Ht,#mm

- 917 696
.4 ,
W" L N ]—‘VWW
] " ‘
=

Figure 10: Seismograms recorded at receivers shown as dots on depth sections
Fcl and Fc2 in Figure 9. The first column shows the seismograms recorded at Fecl,
the second the seismograms recorded at Fc2. The numbers above the right end of
each seismogram show the peak to peak amplitude. The first row of seismograms
show receivers at the depth of the surface of the continental crust. Successive rows
show pairs of receivers at increasing depths. The second row is at the depth of the
surface of the oceanic crust, the third at the depth of the base of the oceanic crust.
All receivers illustrated are above the base of the continental crust.
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Figure 11: Seismograms recorded at receivers along the surface of the crustal
layer in a forward transition calculation. These seismograms are recorded at the re-
ceivers shown as open circles and dots on the surface of the crustal layer in Figure 10.
The numbers to the left of each seismogram indicate the location of the node at which
that seismogram is recorded. The leftmost open circle is receiver 1. The numbers in-
crease as one moves to the left along the surface of the crustal layer. The numbers
above the right end of each seismogram give the peak to peak amplitude of that
seismogram.
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of the coda has increased by a factor of approximately two with respect to the max-
imum peak to peak amplitude. Thus, the increase in RMS amplitude is considerably
larger. The nodes at the depth of the bottom of the oceanic crustal layer, the third
row of seismograms in this figure, show a small decrease in peak to peak amplitude
and a relatively constant RMS amplitude across the transition. Examination of the
nodes on Fcl and Fc2 with depths between these pairs shows that the increase in
amplitude is largest at the surface of the crust and decreases rapidly toward the base
of the crust. The amplitudes of the seismograms transmitted across the crust mantle
boundary, rows four and five in this figure, are decreased by passage through the
transition region. The transmitted waveforms are similar to the incident waveforms
and show an increasing reduction in transmitted peak to peak amplitude as depth
increases. Amplitude is seen at depths below the depth of the bottom of the continen-
tal crustal layer. These results support the statements that energy is concentrated at
and then travels along the crust ocean boundary, and that energy escapes from the
crustal waveguide when the wavefield crosses the transition. They also indicate that
some of the energy escaping from the transition region into the half-space is traveling
down towards the bottom boundary of the grid. This figure helps quantify the magni-
tudes of these effects. The actual distortions of the wavefield will be clearer when the

time slices, Figures 12 to 14, are discussed.

Figure 11 shows seismograms recorded at the receivers along the surface of the
crust. These receivers are shown in Figure 9 as open circles and as the dots on crustal
surface on depth sections Fcl and Fc2. The numbers to the left of each seismogram
show the sequence, in space, at which the seismograms were recorded. Seismogram
one was recorded at the leftmost surface receiver shown in Figure 9. The number used
as the label increases as one moves towards the right across Figure 9. A clear increase

in peak to peak amplitude is seen as one moves down the crust ocean boundary
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towards the oceanic portion of the model. This increase is not necessarily monotonic,
as will be shown later when the properties of the transition response to an incident
wavefield as a function of transition length are discussed. Not only is the amplitude
increasing but the length of the coda with amplitudes above one third of the max-
imum peak to peak amplitude is also increasing. These seismograms are some of the
strongest evidence for the concentration of amplitude at the surface of the crust as the
wavefield passes through the transition. They also illustrate how the nature of the

waveforms change as the wavefield passes through the transition.

A series of time slices is shown in Figures 12 through 14. These time slices were
recorded during the FE calculation for the twenty five kilometer long forward transi-
tion discussed earlier. The time slices are recorded at intervals of twenty five seconds
beginning twenty five seconds after the initiation of the FE calculation. The time
elapsed since the start of the FE calculation is shown for each time slice above and at
the right end of that time slice. The dimensions of the illustrated grid are 365x90
nodes. The heavy lines outlining the grid show the bounds of the crustal layer, the
bottom edge, and both end edges of the grid. The water layer is not outlined as no
displacements take place within it. For this calculation sixty forcing functions were
used. Thus all displacement input to the grid through the leftmost grid edge is within
the crustal layer. The cutoff for minimum amplitude to be plotted on each time slice
is two percent of the maximum amplitude within that time slice. The arrow above
each time slice except the first shows the location to which the component of the
wavefield with velocity 2.8 km/s, seen at the leftmost edge of the grid in the previous

time slice, has moved in the time elapsed since the previous time slice.

Figure 12 shows the first two time slices, which illustrate the wavefield approach-
ing the transition region within the grid through the plane layered continental struc-

ture. In the first time slice the displacements which are seen entering the grid are
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equivalent to the largest peak to peak amplitudes in the seismograms. The dark,
almost vertical lines show the same displacements seen in the seismograms as the
highest amplitude initial peaks. The light grey areas seen to the right of the dark
vertical linear areas are very low amplitude disturbances that precede the large
arrivals in the seismograms. The second time slice shows the same high frequency
arrivals after they have propagated about halfway through the plane layered portion
of the transition grid. In this time slice more of the wavefield can be seen. As more of

the wavefield enters the grid triangular regions of maximum amplitude become visible.

Figure 13 shows the next two time slices in the sequence which illustrate the pas-
sage of the highest amplitude portions of the wavefield through the transition region.
In the third time slice, the first shown in this figure, the dark linear vertical region at
the beginning of the wavefield has passed about halfway through the transition region.
Comparing the portion of the wavefield visible within the grid in the second time slice
with the same portion in the third time slice shows that the normalized amplitudes of
all the displacements have been reduced in the third time slice with respect to the first
two. This is evidence that the maximum amplitudes seen within the transition region
are considerably larger than the displacements in the unperturbed layer over a half-
space wavefield. As the high amplitude disturbance passes through the transition the
maximum amplitude along the crust ocean boundary is most strongly amplified, and
the dependence of amplitude on depth becomes more pronounced, since the amplitude
near the depth of the base of the continental crustal layer is reduced. The sections of
the wavefield present in both the third and fourth time slices are much more prom-
inent in the fourth time slice. This is because the highest amplitude region of the
wavefield, seen within the transition in the third time slice, has propagated past the
rightmost edge of the grid. Thus, the maximum amplitude in the fourth time slice is

much smaller than in the third. Figure 14 shows an additional time slice. Again the
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amplitude has been reduced with respect to the previous time slice and the portion of
the wavefield visible in both slices is amplified in the fifth time slice. The wavefield
continues to show triangular regions of maximum amplitude. The extent of each tri-
angular region, in the x direction, increases for regions of the wavefield incident on the

left end of the grid at a later time.

The triangular pattern of maximum amplitudes in the wavefields can easily be
explained. Let the SH L, energy in the crustal layer be interpreted in terms of being
the superposition of the constructive interference of post-critically reflected multiple
SH wave reflections. The critical angle, the minimum angle between the ray and the
normal to the boundary for which total internal reflection occurs, is about fifty one
degrees. Since the wavefront can be considered to be perpendicular to the ray, the
wavefronts that are visible as the triangular regions of maximum amplitudes can be
expected to show angles of incidence with the boundary of between 0° and 39°. In the
first two time slices the angles of incidence range between 0° and 25°. In the third
time slice the angles of incidence of the wavefronts at the layer boundary reach 35°, in
the fourth time slice they reach 38°. The superimposed triangular regions of max-
imum amplitude are seen to increase in average width as the left edge of the grid is
approached in any given time slice, that is, as portions of the wavefield incident on the
left grid edge at later times are considered. This increase in width of the triangular
maxima corresponds to an increase in phase velocity which can be translated to a
increase in period and/or a larger contribution from higher modes. Thus, the higher
frequency content at the beginning of the seismogram is also clearly visible in the time
slices. The later parts of the seismogram are predominantly of longer periods and con-

tain more higher mode energy.

It can be seen that some energy is leaking into the half-space even in the plane

layered region, this leakage is small and cannot be seen in the seismograms in this
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example. However, in the layer over a half-space reference model the time slices show
this leakage is largest closely following the maximum amplitude regions, seen as the
dark vertical lines in the first two time slices. The extent of the low amplitude distur-
bance produced by this leakage increases with distance propagated through the grid.
The region of the seismogram corresponding to this region of the wavefield where leak-
age is maximum is the region in which small discrepancies are seen between synthetics
and FE results for large propagation distances in the grid. The observation of ampli-
tude passing into the half-space helps explain why some small waveform changes can

be seen.

When regions of the wavefield with large amplitudes pass through the transition
region, .amplitude can be seen crossing the crust mantle boundary particularly adja-
cent to the high amplitude regions within the crustal layer of the transition region.
The energy crossing the boundary produces regions of significant amplitudes that are
visible in the oceanic half-space both in the transition region and in the region of oce-
anic structure. In the region of this oceanic half-space corresponding in depth to the
continental crust two main effects on the propagating amplitudes can be seen. First,
as X increases, the highest amplitude regions in the half-space which form at the inter-
sections of the wavefronts with the crust mantle boundary in the transition region, are
propagating at some angle away from the crustal layer toward the bottom boundary
of the grid. The component of the motion towards the bottom boundary increases as
the width of the triangular regions of maxima in the incident wavefield increases.
Thus, as the angle between the wavefront and the crust mantle boundary in the con-
tinental crustal layer decreases the maximum amplitude regions crossing the crust
mantle boundary in the transition region propagate to the grid bottom while traveling
a shorter horizontal distance. The high amplitude regions in the half-space of the oce-

anic structure propagate towards the bottom boundary of the grid more rapidly for
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the energy later in the incident wavefield. Second, energy is escaping from the high
amplitude regions in the crustal layer as they propagate through the oceanic crustal
layer. This energy forms a forward bending arc in the mantle half-space, due to the
higher velocity in that half-space, that connects to the energy which escaped from the
same portion of the wavefield when the wavefield passed through the transition to the
bottom of the half-space. As the high amplitude regions of the wavefieldpropagate
more directly towards the grid bottom the tails forming due to leakage from the oce-
anic crustal layer become fainter and detach from the high amplitude downward trav-

eling portions of the wavefield.

To explain the observations made of the time slices the ray diagrams shown in
Figure 15 are useful. This figure shows two transition structure outlines identical to
those used to accentuate the structure on the time slices. The lines within these out-
lines show three multiply reflected rays, for angles of incidence, i, at the crust mantle
interface of the continental structure of 55° 65° and 75° respectively, and the effect
of the forward transition region on each. The angles chosen give a good sampling of
the possible post-critical range of incident angles (>51°). The arrows on the rays
show the directions of propagation. The triangular regions of high amplitude in the
time slices show the wavefronts which are perpendicular to the rays shown in Figure

15.

The upper transition shows the ray paths when the rays encounter the crust
mantle boundary of the transition before the crust water boundary. When these rays
pass into the transition region their incident angles, i, at the crust mantle interface in
the continental structure are reduced by the angle, ¢op, to give their incident angles,
j=i-¢cm, at the crust mantle boundary. This angle of incidence, j, allows transmis-
sion into the mantle layer when j<<51°. The angle between the transmitted ray and

the normal to the crust mantle boundary, shown in the figure as a dashed line, is j’.
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74

Figure 15: Illustration of ray paths within a forward transition structure. Each
diagram shows rays with angles of incidence, i, 55°, 65°, and 75° at the free surface
and crust mantle interface in the continental portion of the model. The transition
structure within which the rays are traveling is a 25 km forward transition drawn to
scale. ‘The upper diagram shows propagation paths for rays that encounter the crust
mantle boundary before the crust water boundary. The lower diagram shows propa-
gation paths for rays that encounter the crust ocean boundary only as they pass

through the transition region. The arrows indicate the direction of propagation of the
wavefront along the ray.
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The angle, j/ =sin™ [sinjV—M], increases as the angle, j, increases and the portion of
C

the incident amplitude transmitted across the crust mantle boundary decreases. Thus,
as the angle 1 increases the fraction of the incident amplitude transmitted into the
half-space decreases and the resulting regions of high amplitude in the half-space
travel across the crust mantle boundary more horizontally. It follows that as the angle
of incidence of the wavefront at the crust mantle interface of the continental structure
increases the wavefield propagates more directly towards the base of the grid as it
crosses the crust mantle boundary. This explains the increase in z component of pro-
pagation in the half-space as the calculation proceeds and the incident energy is of
higher phase velocity and period. The rays reflected from the crust mantle boundary
are reﬂécted back toward the source for angles of incidence at the crust mantle bound-
ary less than twice ¢cy. For reflections points immediately preceding the beginning of
the transition region rays can propagate through the transition region without
interacting with either boundary within the transition and then propagate with

unchanged angles of incidence through the oceanic crustal layer.

The lower transition shows the ray paths when the rays encounter the crust
ocean boundary before they encounter the crust mantle boundary. For reflection
points close to the end of the transition reflected rays are transmitted directly into the
oceanic crustal layer. The same angles of incidence at the crust mantle interface in
the continental structure are used as in the previous example. These angles of
incidence in the continental crustal layer yield angles of incidence j=i-¢¢g in the oce-
anic crustal layer. The illustrated paths show one way modes which are not of
appropriate frequencies to be trapped within the oceanic crustal layer enter that layer.
They produce multiply reflected rays at pre-critical angles within the oceanic crust
and demonstrate why amplitude is seen crossing the crust mantle boundary in the oce-

anic structure following the transition. They also explain why this leakage is
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maximum near the transition and decreases as the distance from the transition
increases. If, at each successive reflection at the crust mantle interface the transmis-
sion coefficient is T, then the amount of transmitted amplitude for the n**® bounce is
(1-T)™'TA , where A is the original amplitude, and T is less than one. Clearly, the
amount of escaping energy decreases with distance. Rays that pass through the tran-
sition without encountering any boundary can be directly converted to oceanic modes
and continue to bounce with the same post-critical angles of incidence at the crust
mantle interface and the free surface as they did in the continental structure. Rays
that reflect from the crust ocean boundary then from the crust mantle boundary have
angles of incidence of i-¢op—2¢co at the crust mantle boundary. If this angle is less
than twice ¢op then the ray is reflected back towards the source. If the angle is larger
than this value then pre-critically reflected rays in the oceanic crustal layer, with
angles of incidence i-2¢om—3¢co are produced.
Changes to L; Wavetrains on Passage through a

Reverse Transition Region

The passage of a wavefield consisting of SH type L, mode sum energy for a con-
tinental layer over a half-space model, which has passed through a forward transition
of fifty kilometers length, through a reverse transition such as that illustrated in Fig-
ure 1b) has several effe