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Abstract 

In Chapter I, the fundamental electronic properties of two-dimensional (2D) graphene 

and one-dimensional (1D) carbon nanotubes are discussed, along with the carbon 

nanotube single-electron transistors (SETs). In addition to nanotubes’ extraordinary 

electronic properties, the phenomena of phonon transport in carbon nanotubes are also 

notable. In Chapter II, we discuss our experiments probing the thermal properties of 

multi-walled carbon nanotubes. We exploit the specific breakdown temperature under a 

large current, which provides an effective thermometer, in conjunction with the known 

power input to measure the thermal conductivity of the nanotubes. Our results reveal the 

exceptional micron-scale phonon mean free path at temperatures approaching 900K, and 

we demonstrate the first evidence for ballistic phonon propagation in nanotubes, reaching 

a regime where the thermal conductance of nanotubes is limited only by fundamental 

quantum mechanical limits imposed by their 1D nature.  

Moreover, the combination of remarkable electrical and mechanical properties makes 

carbon nanotubes a highly promising candidate for nanoelectromechanical systems 

(NEMS). In Chapter III, we investigate using doubly clamped suspended single-walled 

carbon nanotubes as nanomechanical resonators at cryogenic temperatures. Their intrinsic 

single-electron transistor behavior provides a mixing mechanism to self-detect their 

motion based on their capacitance to a nearby gate electrode. We exploit our devices to 

attain an ultrasensitive mass sensor, realizing atomic-scale mass sensing. Finally, in 

Chapter IV, nanoelectromechanical switches based on using multi-walled carbon 

nanotubes as nanoscale linear bearings are discussed. First we demonstrate the 

preparation of the initial OFF state by using electrical breakdown to create gaps in a free-

standing MWNT device, while subsequently the ON state is actuated with electrical 

forces and undergoes linear bearing motion that telescopes the inner shells to bridge the 

gaps. The switching cycle can be performed in double-walled nanotube devices by 

restoring the insulating OFF state with a controllable gate voltage. These tubular switches 

can potentially serve as nonvolatile memory or logic gate elements.      
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Chapter I 

Introduction to Carbon Nanotubes 

Single-walled carbon nanotubes (SWNTs) are one-dimensional conductors, acting as 

quantum wires [1]; the intrinsic conductance of high-quality samples has been observed 

to be close to the quantum conductance 4e2/h. The remarkable electrical properties of 

carbon nanotubes are directly inherited from graphene, an unusual planar semimetal; its 

charge carriers propagate in the reduced dimension with effectively zero mass and 

constant velocity. Nearly defect-free nanotubes are perfect candidates to study electronic 

systems in one dimension, where the strong electron-electron interactions lead to 

Luttinger  liquid behavior [2], and the formation of a 1D Wigner crystal phenomena 

emerges in a dilute electron system [3]. Furthermore, a recent study shows the electrons 

in nominally metallic nanotubes comprise a 1D Mott insulator, indicating that carbon 

nanotubes are never truly metallic. Therefore, in this chapter, a review of the fundamental 

electrical properties of SWNTs will be discussed, from graphene structure and energy 

dispersion relations to carbon nanotubes. In additional, carbon nanotube single-electron 

transistor phenomena will be introduced, which is background material for Chapter III. 

I-1 Structure of Graphene 

Graphene is a single layer of graphite which is an array of carbon atoms arranged in a 

honeycomb lattice, as shown in Figure I-1 (a). The blue-dashed rhombus, constructed by 

the primitive vectors and 1ar 2ar , is the unit cell of graphene enclosing two atoms, 

indicated by red and blue colors. The gray-shaded hexagon can be viewed as the Wigner-

Seitz cell of extended rhombus lattice, which through translation can readily be seen to 

enclose two atoms per unit cell. Here, the real-space primitive vectors  and  are 1av 2av

⎟⎟
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⎝
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2
and have the lengths of the lattice spacing 46.23|||| 11 =×=== −CCaaaa rr Ǻ, where 

 is the nearest-neighbor C–C distance. Correspondingly, the reciprocal lattice of 

graphene is shown in Figure I-1(b). The dashed rhombus is the primitive unit cell defined 

by the reciprocal lattice vectors 

CCa −

1b
r

 and 2b
r

, which are expressed by  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

aa
b

aa
b ππππ 2,

3
2,2,

3
2

21

rr
. 

There two lattice vectors that correspond to a lattice constant a34π  in reciprocal 

space and satisfy the standard definition 2i j ia b jπ δ⋅ =
rr  in 2D system, where ijδ  is the 

Kroneker delta.  

Figure I-1. Graphene lattice. (a) Real space of graphene lattice. (b) 
Graphene reciprocal lattice. High symmetry points, Γ , K, and M are all 
shown in the figure. 

The shaded hexagon shown in Figure I-1(b) is Brillouin zone of graphene, which is 

depicted in several shades of color (red, green and blue) to identify zones related by 

reciprocal lattice vectors to corresponding zones of the primitive unit cell. There are two 

of the high-symmetry inequivalent K points (under translational symmetry) at the corners 

of the hexagonal Brillouin zone labeled as K  and K ′ , and these, as well as equivalent 

points in the lattice, are shown as blue and red dots, respectively.  
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I-2 Dispersion Relation of Graphene Structure 

The electronic properties of single-walled carbon nanotubes, at first order, can be 

deduced from that of graphene by mapping the band structure of 2D hexagonal lattice 

onto a cylinder. Thus, before we start discussing the nanotube electronic band structure, it 

is appropriate to consider the energy dispersion relation of graphene first.  

In graphene’s hexagonal structure, each carbon atom has three nearest neighbors and 

four valence electrons. Three of these valence electrons (i.e., 2s, 2px and 2py) are 

hybridized to form the sp2 σ  bonds with adjacent carbon atoms constructing the skeleton 

of the local structure; while the fourth electron (i.e., 2pz) contributes to the π  band, 

which is orientated perpendicular to the plane of the sheet with each carbon atom 

contributing one spin-degenerate orbital centered on that atom. Because the nodal plane 

of these π  orbitals is coincident with the plane of the graphene sheet, the π bonds of 

graphene are separated by symmetry from the σ  bonds, which leads to two 

distinguishing π  electrons in the valence band and  electrons in the conducting band. 

Only the 

∗π

π electrons near the Fermi level contribute to the electronic properties of 

graphene.  

Figure I-2 shows the energy dispersion relation of graphene, which is calculated 

according to a tight-bonding model. The diagram shows 3 pairs of σ  and bands, and 

one pair of 

∗σ

π  and bands.  ∗π
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Figure I-2. The energy dispersion relations for σ and π  bands of graphene, 
simulated based on the tight binding method with parameters from ref. [4]. 

 

H Value (eV) S Value 
Hss -6.769 Sss 0.212 
Hsp -5.580 Ssp 0.102 
Hσ -5.037 Sσ 0.146 
Hπ ≡ t -3.033 Sπ = s 0.129 
Ε2s -8.868   

Table I-1. The coupling parameters of carbon atoms in the Hamiltonian for 
π and σ bands in 2D graphene from ref. [4]. Note that the value for ε2s is 
given relative to ε2p = 0. 
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Figure I-3. Graphene lattice with two-atom basis 

nearest-neighbor B atoms relative to an A atom 

, , and 1R
v

2R
v

3R
v

. (b) Three nearest-neighbor A ato

denoted by the vectors 1R
v

, 2R
v

, and 3R
v
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where p2ε is the electron site energy, t is the transfer integral with the nearest neighbor 

defined as ( ) ( / 2A B )R H r R aϕ ϕ= − − ±

>

t r , and the s is the tight binding overlap 

integral. When t , 0 +E and −E are corresponding to the bonding π  and  energy 

bands, respectively. The function 

∗π

)(k
v

ω  is given by   
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Figure I-4 is the 3D plot of the energy dispersion relation of graphene with a hexagonal 

Brillouin zone of six gapless Dirac points, which corresponds to two inequivalent K 

points. 

 

yk  
Γ  

Figure I-4. The energy dispersion relations of graphene with the hexagonal 
Brillouin zone. The blue and red circles indicate the high-symmetry points 
K and K ′ , respectively. The parameters 02 =pε , t = -3.033 eV, and s = 
0.129. 

xk  
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I-2-1 Low-Energy Approximation 

Furthermore, because there is only one electron per spin degenerate orbital, the Fermi 

level for a neutral graphene sheet is at the K points. For energies near the Fermi energy, 

the dispersion near the six K points can be linearized, yielding a dispersion corresponding 

to relativistic massless Dirac Fermions. After Taylor expansion in terms of Fkkk
vv

−=∆ , 

we get 

3
2Fk F

F F F

E ta k

v k k

ε

ε

± = ± −

= −

Fk
v v

v v
m h .

                                             (I-2) 

The energy dispersion relation )(2, kE Dg

v
±  given by eq. (I-1) and the Fermi velocity 

is 3
2Fv =
h

ta

2

; using known values for t and a, we obtain vF ≈ 8.7×105 m/s. 

I-3 Structure of Single-Walled Carbon Nanotubes 

A single-wall carbon nanotube (SWNT) can be visualized by rolling up a graphene sheet 

along the chiral vector 1hC n a m a= +
r r r to construct a nanotube with diameter ( , )n m

πht Cd
v

= . In Figure I-1, the shaded quadrilateral area ABOB ′  is the unit cell of a 

 nanotube in terms of the primitive cell of the graphene hexagonal lattice.  )2,4(
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Figure I-5. Making a nanotube and its structure. The background is 
graphene hexagonal lattice defined by the primitive lattice vectors  and 

in real space. A gray-shaded rhombus is the primitive cell of graphene 
with a basis of two carbon atoms. The gray-shaded quadrilateral  is 
the unrolled hexagonal lattice of a nanotube unit cell. 

1av

2av

BBOA ′

OA  and OB define 
the chiral vector hC

v
and the translational vector T

v
, respectively. The 

figure corresponds to )2,4(=hC
v

, )5,4( −=T
v

, 28=N  and the d  = dR  = 
2. 

The electronic properties of single-walled carbon nanotubes can be specified by one 

single parameter, the chiral vector. Therefore, there are three categories of nanotubes: an 

armchair nanotube corresponds to the case of mn = , that is , which 

represents metallic nanotube, a 1D quantum conductor; a zigzag nanotube corresponds to 

the case of  or , which is generally semiconducting and only metal 

when n is an integer multiple of three; all other (  chiral vectors correspond to chiral 

nanotubes. However, if the curvature effect [5] is considered, in the chiral case when 

 is a multiple of 3 then the nanotube is semiconducting with a very small band gap; 

these nanotubes were supposed to be metallic, but the gap is open due to the curvature –– 

in other words, this is caused by the hybridization of sp

),( nnCh =
r

0=m )0,(nCh =
r

, )n m

mn −

3 and sp2 orbitals [6]. 
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More recent results [7] show that carbon nanotubes are never metallic due to the 

Mott insulating state, which is a manifestation of strong electron interactions in 

nominally metallic systems, and this gap has a magnitude of ~ 10 to 100 milli-electron 

volts and a nanotube radius (r) dependence of ~1/r.  

Although there are many intrinsic and extrinsic factors that can alter the nanotube 

electronic band structures from the first-order approximation, it still gives us a general 

idea of carbon nanotube electronic properties based on the graphene honeycomb 

structure. In the later section, one armchair nanotube with )5,5(=hC
r

, one zigzag 

nanotube with )0,8(=hC
r

, and a chiral nanotube with )2,4(=hC
r

will be discussed in 

detail.  

After a chiral vector is chosen, the translational vector T
v

 is also defined to be 

perpendicular to the chiral vector and parallel to the nanotube axis. The translational 

vectorT
v

in Figure I-4 is represented byOB , which corresponds to the first lattice point of 

the 2D graphene sheet. It can be written as ),( 212211 ttatatT =+=
rrr

, where the coefficient 

and are 1t 2t Rdnmt )2(1 += and Rdmnt )2(2 +−=  and is the greatest common 

divisor of  and . In other words, and  have no common divisor except 

unity. 

Rd

nm +2 mn +2 1t 2t

The magnitude of the translation vector is RdLT 3=
v

. Therefore, the number of 

hexagons, N, contained within the 1D unit cell of a nanotube is determined by the 

division of nanotube unit cell area by graphene unit cell area 

R

h

d
nmnm

aa

TC
N )(2 22

21

++
=

×

×
= vv

rv

. 

For the (4, 2) nanotube in Figure I-5, we obtain )5,4( −=T
v

and N = 28, so that the unit 

cell of the (4, 2) nanotube encloses 28 hexagons, or 2 × 28 = 56 carbon atoms. Every 
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atom in a nanotube unit cell can contribute one electron, which would generate N pairs 

of bonding π and anti-bonding  electronic energy bands. ∗π

I-4 Electrical Properties of Carbon Nanotubes 

Applying the following definition in 2D system enables us to construct the reciprocal 

lattice vectors of a nanotube with the chiral vector hC
v

and translational vector T
v

:  

π
π

2,0
0,2

22

11

=⋅=⋅
=⋅=⋅

KTKC
KTKC

h

h vvvv

vvvv

      .                                 (I-3) 

As a result of the spatial confinement of the nanotube in the circumferential direction, the 

vector hC
v

 does not act as a translation vector, but as a generator of pure rotations. In this 

sense, the relation π21 =⋅KCh

vv
 can only be satisfied for 1K

v
 being integer multiples 

of td2 , where  is the diameter of the nanotube. In other words, the electron 

wavefunctions have to be the same when 

td

rv  goes around the circumference, thus the 

factor , where n is the integer. After some straightforward algebraic 

manipulations to equation (I.3), we obtain   

niKC ee h )2(11 π==⋅−
vv

1 2 1 1 2 2 1
1 1( ), (K t b t b K mb n
N N

= − + = − 2 )b
v v v v

. 

The reciprocal lattice vector 2K
v

is along the nanotube axis and 1K
v

 gives discrete k values 

in the circumference direction. The first Brillouin of this 1D structure is the line segment 

passing through the Γ point shown in Figure I-6. 

Because the nanotube unit cell is much larger than graphene hexagonal unit cell, the 

reciprocal lattice vectors  1K
v

 and 2K
v

are much smaller. Thus in the later section we adopt 

the zone boundary folding method to map out the whole nanotube Brillouin zone.  Thus, 

the Brillouin zone folding model is applied to obtain the electronic band structure of 

SWNT.  
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⎠

⎞
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⎝

⎛
+= 1

2

2
2)( K

K
KkEkE Dg

r
r

r

µµ , ( 0, , 1, andN k
T T

)π πµ = − − < <L r r  

Where T is the length of the translation vector T
r

and µ is defined by the number of 

hexagonal unit cells in the carbon nanotube unit cell. 

The following is a simple geometry calculation, which can assist in determining 

whether, for a given chiral vector, the nanotube is metallic or a small band gap 

semiconducting nanotube in the first-order approximation.  

 

K

1K
K ′

Figure I-6. The condition for metallic energy bands. Graphene hexagonal 
Brillouin with nanotube line segments Brillouin  

From the previous discussion, if there is any nanotube Brillouin zone cutting through 

either K or K ′  points, then nanotube would show the metallic behavior. In other words, 

the distance YK or Y K′ ′ in Figure I-6 are multiples of the length of 1K
r

, where YK
uuur

or 

are perpendicular to the reciprocal lattice vectors KY K′ ′
uuuur

2

v
and parallel to 1K

v
. In Figure I-

6, the parallel line segments are allowed vectors (1D Brillouin zone), which are quantized 

along the direction 1K
r

 and equally spaced by 1K
r

. In addition, Y point is drawn by )(Y ′
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perpendicularly intersecting the 2K

r
 vector (through Γ point) from  point. Then, )(KK ′

YK vector is given by 

( )
2

1

1

K

KΓKYK r

r
⋅

= 1K
r

 

where 21
2121

3
1

3
2

62
bbbbbbMKΓMΓK
rr

rrrr

+=
−

+
+

=+= . Calculating the vector product 

and simplifying the expression, we get 

13
2 KmnYK

r+
= .  

Similarly,  

13
2 KmnY'K'

v+
−= . 

Therefore, the condition for metallic nanotubes is that (2n+m) or (n–m) is a multiple of 3. 

Armchair nanotubes denoted by are always metallic, and the zigzag nanotubes (n, 

0) are only metallic when n is a multiple of 3. For any other chiral nanotubes satisfying 

the above condition, they would show small band gap semiconducting behavior. Again, 

we emphasize that the most recent study shows that carbon nanotubes are never metallic 

due to the formation of a Mott insulating state [7]. 

),( nn

 In the following, three different types of nanotube are introduced, a chiral 

semiconducting nanotube with )2,4(=hC , an armchair metallic with and a 

zigzag semiconducting nanotube with 

)5,5(=hC

)0,8(=hC . 
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 A chiral semiconducting nanotube with the chiral vector (n, m) = (4, 2)  

 

Figure I-7. A chiral semiconducting nanotube with the chiral vector (n, m) 
= (4, 2). The Brillouin zone of a carbon nanotube is represented by the 
segment line which passes through the highest symmetry point Γ . The 
vectors 1K

v
and 2K

v
are reciprocal lattice vectors corresponding to and hC T , 

respectively. , )2,4(=hC )5,4( −=T , = (5b1K 1 + 4b2) / 28, = (2b2K 1 – 4 
b2) / 28 and N = 28.  

 An  armchair metallic carbon nanotube with the chiral vector (n, m) = (5, 5)  

 

Figure I-8. An armchair metallic carbon nanotube with the chiral vector 
(n, m) = (5, 5) The Brillouin zone of a carbon nanotube is represented by 
the segment line which passes through the highest symmetry point Γ . The 
vectors and are reciprocal lattice vectors corresponding to C and 1K 2K h T , 
respectively. ,)5,5(=hC )1,1( −=T , = (b1K 1 + b2) / 10, = (b2K 1 – b2) / 2 
and N = 10.  
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 A zigzag semiconducting carbon nanotube with the chiral vector (n, m) = (8, 0)  

 

Figure I-9. A zigzag semiconducting carbon nanotube with the chiral 
vector (n, m) = (8, 0). The Brillouin zone of a carbon nanotube is 
represented by the segment line which passes through the highest 
symmetry point Γ . The vector and are reciprocal lattice vectors 
corresponding to and 

1K 2K

hC T , respectively. )0,8(=hC , T = (1, –2), = 
(2b

1K
1 + b2) /16, = –b2K 2 /2, and N = 16.   

 

 



 15
The energy dispersion relations of these three types of nanotubes are shown in Figure 

I-10. 
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Figure I-10. One-dimensional e
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Tunnel Junctions 

 

Figure I-11. A schematic diagram of single-electron transistor 

I-5-1 Quantum Dots 

A quantum dot is a small size of metallic island; electrons are strongly restricted by the 

spatial confinement in each dimension, which causes the energy in this island to be 

quantized as an artificial atom, analogous to the electron in the hydrogen atom. In order 

to study the intrinsic properties of a quantum dot, two tunnel junctions are made to 

connect to source and drain electrodes (see Figure I-11); both act as electron reservoirs. 

In addition, the electrical potential of the island can be tuned by a gate electrode 

capacitively coupled to the island. In our case, the carbon nanotube in our system actually 

acts as a quantum dot usually at low temperature as electrons are confined in a length 

direction, producing discrete energy levels. 

I-5-2 Tunnel Junctions  

Tunnel junctions play a critical role in Coulomb blockade phenomena. A tunnel junction 

can be modeled by a parallel resistor-capacitor circuit shown in Figure I-12. The 

tunneling resistance  is a phenomenological quantity which is defined when the bias 

voltage V is applied to the electrodes on either side of the tunnel barriers. Electron 

transport through the junction occurs, even though from a classical point of view their 

energy would not be enough to overcome the potential barrier within the junction. Thus, 

TR

Gate 

Drain Source Island 

VG 

VRVL

Gate Capacitor 
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transport in the Coulomb blockade regime is a quantum mechanical phenomenon. 

Moreover, the capacitance in the tunnel junctions has to be very small, in order to 

produce a Coulomb charging energy CeEC 22=  for a single electron that is larger than 

the available thermal energy.  

I-5-3 Electrostatic Energy of SETs 

Consider a metallic island connected to any number of voltage sources Vi, the 

electrostatic energy of a symmetric generalized circuit in Figure I-12, and those tunnel 

junctions viewed as capacitor Ci and tunneling resistance Ri. Note the system has to be 

considered with respect to the same reference point, though it can be arbitrary. When 

there are n number of electrons added to the island from an initially neutral condition, we 

start with charge neutrality and obtain 

∑ −=− )( ϕii VCne . 

Then the potential
∑

+
= ∑

C
neVC iiφ , where ∑=∑ iCC the total capacitance.  

V2 V3

R3C2

R2

 

Figure I-12. Schematic diagram of a generalized single-island circuit, with 
a number of linkages to voltage sources. is a tunneling resistance.  iR

V1 V4

R1

R4
C3

C1

C4V=φ 
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Thus, the total internal energy is  

2

2
2

1 ( )
2

1 (( )
2 2

i i

i j i j
i j i

U C V

neC C V V
C C

ϕ

>

)

∑ ∑

= −

= −

∑

∑∑ +  . 

The above equation states the Coulomb energy of n number of electrons and all 

applied voltage sources . The work due to tunneling of an electron in or out of the 

island has to be considered in the total energy. When an electron is added to the island, 

the potential 

iV

ϕ  of the island will shift by ∑Ce , while the fraction of the change is 

∑CCe i for each capacitor. The work done by each voltage source is Σ− CCeV ii , except 

at the injecting junction j, where it is ( ) jj eVCC Σ−1 . The total work done in the system 

is  

∑
∑ −=

C
C

VVeW i

i
ijj )(  . 

Thus the total energy E is   

j
i ij

jiji W
C

neVVCC
C

E ++−= ∑∑
> ∑∑ 2

)()(
2

1 2
2  . 

In one of the carbon nanotube resonator projects in Chapter III, Figure III-19, we assume 

there are n number of electrons injecting from drain electrode,  

∑∑

−+−=
C
C

VVne
C
CVVneW G

GR
L

LRR )()( . 

So total Enthalpy E is   
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This is the electrostatic energy of the carbon nanotube quantum dot system in Chapter 

III. The details of discussion can be found in Section 7.4, Introduction to 

superconductivity, 2nd edition by Michael Tinkham.   

I-5-4 Coulomb Blockade Oscillations 

The typical total charge and transport curves yielded by Coulomb blockade are shown in 

Figure I-13 (a) and (b), demonstrating both a staircase in charge and separate peaks 

successively in conductance. In the Coulomb blockade regime, as each Coulomb 

oscillation corresponds to the addition of one electron entering the island, the number of 

charges added to an island can be precisely counted. 

 

G
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Here, Coulomb blockade in single-electron transistor scheme will be discussed 

from the energy point of view. We start with n number of electron charges giving a total 

charge ne on an island, and here we assume there is zero bias between source and drain 

voltages (VL and VR, respectively), with the drain contact grounded, yielding VL = VR = 0. 

The total equilibrium electrostatic energy is  

2 2

2 2

1 ( ) 2 ( )
2

1 1( ) (1 2 )
2 2

G G G R L G

G G G G G

E ne neC V C C C V
C

C V ne C C C V
C

Σ

∑
∑

.

⎡ ⎤= + + +⎣ ⎦

= + + −
                               (I-5) 

Minimizing the energy with respect to n, we obtain eVCn GG−= , corresponding to 

an induced charge  . Note that the charge on the tunnel junction capacitor 

is a continuous variable since it describes the whole displacement of electron density in 

the electrode with respect to the positive ionic background. Thus,  can be an arbitrary 

small fraction of the charge quantum e.  

GGVCQ −=0 0Q

0Q

However, since n must be an integer, the minimum energy for given is obtained if 

n is the closest integer to 

0Q

eQ0 . That is, the n giving the lowest energy in eq. (I-5) must 

lie in the range  

2
1

2
1 00 +≤≤−

e
Q

n
e

Q
                                                  (I-6) 

More generally, eq. (I-5) generates a family of parabolic curves shown in Figure I-14 

(here we neglect a constant contribution to the energy). 

Thus, when the gate voltage  is swept down, one electron tunnels out of the metallic 

island at each crossing point, changing the number of extra electrons on the island from n 

to n-1. When an infinitesimal bias voltage is applied, the electron can go in or out of the 

island at the crossing points without having to overcome any energy barrier even at T = 0, 

GV
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thus there will be a steady current response to the bias whenever   is swept through 

the values of 

GV

eQ0  as a half-integer of e, giving rise to a series of current peaks. This 

phenomenon yields the Coulomb blockade oscillations shown in Figure I-13(b).  

 

cE
E  

eQ0  

Figure I-14. The n-dependent par
the gate charge at T = 0.  The 
n and n+1 (n−1) charge states are 

0Q
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quantum fluctuations of the charge sme
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Chapter II 

Ballistic Phonon Thermal Transport in Multiwalled Carbon 

Nanotubes[9] 

II-1 Abstract 

We report electrical transport experiments, using the phenomenon of electrical 

breakdown to perform thermometry, that probe the thermal properties of individual 

multiwalled carbon nanotubes. Our results show that nanotubes can readily conduct heat 

by ballistic phonon propagation. We determine the thermal conductance quantum, the 

ultimate limit to thermal conductance for a single phonon channel, and find good 

agreement with theoretical calculations. Moreover, our results suggest a breakdown 

mechanism of thermally activated C-C bond breaking coupled with the electrical stress of 

carrying ~1012 A/m2. We also demonstrate a current-driven self-heating technique to 

improve the conductance of nanotube devices dramatically.  

II-2 Introduction 

The ultimate thermal conductance attainable by any conductor below its Debye 

temperature is determined by the thermal conductance quantum [10, 11]. In practice, 

phonon scattering reduces the thermal conductivity, making it difficult to observe 

quantum thermal phenomena except at ultralow temperatures [12]. Carbon nanotubes 

have remarkable thermal properties [13-16], including conductivity as high as 3000 

W/m·K [17]. Here we report the observation of ballistic phonon motion and quantum 

thermal transport in micron-scale individual carbon nanotube devices, demonstrating the 

universal limit to thermal transport. In this qualitatively different regime, quantum 

mechanics limits the entropy flow, giving a maximum thermal conductance and an 

absolute physical limit to the information bandwidth that a nanotube can transport per 

unit power [10, 11]. From our data, we obtain a measurement of the thermal conductance 

quantum that is in good agreement with theory. 
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Very recently the thermal conductance of a carbon nanotube attached to an atomic 

force microscope (AFM) tip has been observed to be independent of the AFM retraction 

length, and the result was interpreted in terms of ballistic phonon propagation[18]. 

However, the phonon scattering length and thermal conductance quantum were not 

determined. 

In our experiments, we heat multiwalled nanotubes (MWNTs) with an electrical 

current and monitor temperature by the electrical breakdown phenomenon [19, 20]. Our 

data yield an experimental measurement of the thermal conductance quantum, which 

agrees with theoretical predictions [10, 11, 21] as well as thermal transport results on 

cryogenically cooled Si3N4 nanobridges [12]. This demonstrates that fundamental 

knowledge about thermal transport in nanotubes can be obtained from an electrical 

transport experiment. This knowledge, which is challenging to obtain by other means, 

also contributes toward understanding thermal management issues relevant to the rational 

design of nanotube interconnects and logic devices. 

II-3 Sample Fabrication 

Our multi-walled carbon nanotubes (MWNTs) were provided in powder form by the 

Forró group in Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland. A small 

amount of the MWNTs powder is dispersed into 1,2-dichloroethane by overnight 

sonication; meanwhile, an array of Au/Cr alignment markers are patterned on a heavily 

doped Boron (p++) silicon wafer with 1 micron thermally grown silicon oxide (see 

process (a)–(d) in Figure II-1). This patterning process is called electron-beam 

lithography (EBL); we perform this process by using the Nanometer Pattern Generation 

System (NPGS) integrated in a Scanning Electron Microscope (Model S-4100 Field 

Emission Hitachi SEM). 

One drop of well-dispersed MWNT solution is placed on the pre-patterned alignment 

markers substrate and rinsed by using isopropanol alcohol (IPA) followed by a nitrogen 

blow drying (see process (e)–(f) in Figure II-1).  
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(a) (d) 

 

Figure II-1. Electron beam lithography for alignment markers and 
MWNTs deposition. (a) PMMA/MAA bi-layer of positive resist is spun 
on the substrate. (b) An electron beam exposes the defined area and the 
sample is developed to create a window. (The undercut of MAA layer will 
help make the lift-off process (d) easier.) (c) Au/Cr metals are thermally 
evaporated onto the surface of substrate through the windows. (d) Lift-off 
of the remaining resists in acetone; alignment markers are revealed. (e) 
MWNT solution deposition. (f) Randomly scattered nanotubes with 
alignment markers 

After the MWNT deposition process is done, the samples are placed inside a 1 inch 

quartz tube furnace, and heated up to 350ºC for 30 minutes with moderate oxygen flow 

rate. This hot oxygen cleaning process removes soot, amorphous carbon, and any organic 

detergent residue, which are byproducts of the nanotube production and purification. 

(b) (e) 

(c) (f) 
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After the nanotubes are successfully deposited on substrate, we use an atomic force 

microscopic (AFM) to locate nanotube positions relative to the defined alignment 

markers (see Figure II-2(a) and (b)). Note that the van der Waals force is strong enough 

to anchor the nanotubes to substrate very well [22, 23]; therefore nanotube positions 

remain the same even under multiple rinsings, chemical processings and AFM imagings, 

(although partial movement can occur at very high power sonication or manipulation by 

AFM tips). 

A computer-aided design (CAD) layout is made for electrodes which bridge two ends 

of nanotubes and extend to the extensive bonding pads. A second EBL is performed to 

create the contact electrodes (see Figure II-2 (c)).    

(a) (b) (c)

 

Figure II-2. Image of alignment markers and nanotube devices. (a) SEM 
image of the alignment markers; total area covers 1010×  markers, run 
from 01 to 100. (b) AFM image with pattern drawings. (c) SEM image of 
a zoom-in complete device layout, the bonding pads are not shown. 

In our experiment, we have two different device configurations shown in Figure II-3; 

one is substrate-supported MWNTs and the other one is doubly clamped freestanding 

MWNTs, shown in Figure II-3 (a) and (b), respectively. The suspended nanotube devices 

go through an extra step of oxide etching, which usually is performed in buffered oxide 

etch (BOE, aqueous NH4-HF etchant solutions) with gentle agitation followed by a 

sequence rinse. We often chose isopropyl alcohol (IPA) or methanol as the final rinse 

solution since these solvents have much less surface tension than water (72.8 mN/m at 

1µm 1µm 80µm 
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25°C). For a two-electrode geometry, we can usually use the metal electrodes as etch 

masks, thus the distances between source and drain electrodes can be easily brought 

down to 100 nm.  

(a) (b
) 

 

Cr layer

375nm300nm 

Figure II-3. SEM images of two device configurations. (a) A substrate-
supported MWNT with visible diffused Cr skirt due to MMA undercut (b) 
A doubly clamped freestanding MWNT 

If the suspended length is designed to be less than 500 nm for SWNTs, or the aspect 

ratio is small for MWNTs, there are two options to suspend nanotubes. In the first option, 

samples can be taken out directly from isopropyl alcohol (IPA), and baked on a preheated 

hotplate (~ 55°C), letting it dry. In the second option, we heat up methanol with the 

sample immersed and take the sample out from the beaker while the methanol is boiling. 

However, the yield from the first option is typically acceptable. We have also developed 

a more sophisticated process to suspend SWNTs in a different device configuration, 

which is detailed in Chapter III. Note that we didn’t find any noticeable quality loss in the 

nanotube characteristics by the BOE etch. 

 

SiO2

Figure II-4. Sch
Undercut struct
p++ Si
 

ematic diagram of metal electrodes as the etch mask. 
ures are always present after etching.  
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II-4 Experimental Approach 

In this research, we adopt electric breakdown as our main experimental indicator to probe 

the thermal properties of MWNTs. There are two major factors that lead us to this 

approach. One is that the shell-by-shell breakdown occurs in a series of abrupt processes 

in which we can monitor the onset of each one; the other factor is that breakdown 

temperature  can be taken to be a constant, intrinsically determined by the carbon-

carbon binding energy. Thus the electrical breakdown of a nanotube acts as a nanoscale 

thermometer. 

BT

The observation of electrical breakdown in a MWNT system [19]  was inspired by the 

early study of metallic SWNTs in which their current carrying capacities exceed 10 

µA/nm2 [24], while most the metal wires can only reach up to 10 nA/nm2, limited by the 

electromigration. The exceptionally high current capacity of carbon nanotubes is 

attributed to their strong carbon-carbon bonds. Instead of electromigration ( a nonthermal 

current-assisted diffusion process) to metal wires, MWNTs fail via a series of sharp 

current drops in abrupt events separated by ~ 1 sec (see Figure II-5), due to the ablation 

of individual nanotube shells in sufficiently high electrical power dissipation in 

conjunction with the electrical stress of carrying a large current. This behavior was 

recently imaged by transmission electron microscopy (TEM) [25]. It was carefully argued 

that the breakdown temperature  was ~ 900K [19]. Nevertheless, Joule heating alone is 

not likely to account entirely for the shell breakdown [26]. 

BT
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Figure II-5. Time trace of the current I(t) and dissipated power P(t) during 
a MWNT breakdown from ref. [19] (a) The current exhibits a staircase of 
stable currents separated by 12 µA steps. (b) Power P(t) during the 
electrical breakdown 

In our experiments, the electrical breakdown is performed in an argon ambient 

environment by applying a high bias voltage between source and drain (see in Figure II-

7); simultaneously monitoring the breakdown current. One of our typical device I-V 

curves is shown in Figure II-6 and the sudden current drop that occurs indicates the 

breaking of the outermost shell. 

 

Figure II-6. I-V curve of a MWNT during the outermost shell breakdown. 
The breakdown power is about 460 µW for this device. 
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Figure II-7. The schematic diagram of a doubly clamped freestanding 
MWNT with the ablation of the outermost shell breakdown 

 

II-5 Thermal Transport 

According to the previous section, the breakdown temperature is assumed to be ~ 900K 

[19]. In order to address the role of breakdown temperature in nanotube breakdown, we 

start with the heat transfer mechanism in two different device configurations: 

freestanding and substrate supported. In the later one, the substrate yields an additional 

cooling pathway.  In the IV curve from Figure II-6, the breakdown power is measured at 

~ 460 µW; this implies it must have sufficient amount of electrical power dissipating in 

the MWNTs before the breakdown occurs and Joule heating is likely a significant factor 

in the breakdown process. In order to understand the temperature profile, models of heat 

transfer in both systems are required; three types of heat dissipation mechanisms: 

conduction, convection, and radiation, will be introduced and examined in our system.  

II-5-1 Convention 

First, we can eliminate the cause of heat dissipation from a convection mechanism; as 

mentioned before, we typically performed our measurement in an argon ambient 

environment to prevent any oxygen from initiating the breakdown at a lower power [19]. 

The devices were enclosed in a small chamber during the measurement while a slight 

argon overpressure prevented air flow inwards.  However, we found similar breakdown 

power thresholds in Ar as were found in previous measurements in vacuum [19], which 

rules out convection as a significant cooling mechanism. 
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II-5-2 Radiation 

Radiation can also dissipate heat from a hot source as long as a temperature difference 

exists. According to Stefan-Boltzmann law, the emissive power (total energy radiated per 

unit area per unit time) is , where4
sb TE εσ= 4281067.5 KmW ⋅×= −σ is the Stefan-

Boltzmann constant, ε , emissivity and surface temperature. Since the breakdown 

temperature is assumed to be T

sT

B ~ 900K, we can estimate the radiation-heat transfer rate 

qR for a 2 µm length and 30nm diameter half surface exposure MWNT, based on the 

assumption that the emissivity is unity and all the surface is at breakdown temperature.  
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Based on the above the estimate (~ 3.5 nW) and the experimental breakdown power (~ 

460 µW), we can simply ignore heat dissipation through radiation. 

II-5-3 Conduction 

Conduction is the heat transfer through a solid or a stationary fluid. Considering all metal 

electrodes, substrate, and argon ambient environment, however, the thermal conductivity 

of argon is four orders of magnitude smaller than the gold and two orders of magnitude 

smaller than silicon oxide, so it is practical to ignore the heat dissipation through the 

argon. Thus, we will focus on the conduction through the silicon oxide and metal.   

II-5-4 Free-Standing Carbon Nanotube  

From Fourier’s law  

dx
dTqx κ−=′′ ,                                                     (II-1) 
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heat flux ( )2mWqx′′ is the heat transfer rate in the x direction per unit area 

perpendicular to the direction of transfer, and κ is the thermal conductivity ( )KmW ⋅ . 

Here we define the heat transfer q  with unit in power (W). Consider an infinitesimal 

volume , if there are temperature gradients, conduction heat transfer will 

occur across each of the volume surfaces—for example in x direction, the inflow  is 

not necessarily equal to the outflow , where we can use the Taylor series expansion,  

dzdydxdV =

xq

dxxq +

dx
x

q
qq x

xdxx ∂
∂

+=+  while neglecting higher-order terms. Similar expressions are 

obtained for the y and z direction. On a rate basis, the general form of conservation 

energy requirement is  

stgoutin EEEE &&&& =+−                                                   (II-2) 

where , are denoted as the energy inflow and outflow; is the energy 

generated in the volume, and energy storage term 

inE& outE& dzdydxqEg && =

dzdydx
t
TcE pst ∂

∂
= ρ& , where 

t
Tcp ∂

∂ρ  is the time rate of change of the internal energy of the medium per unit volume.  

After considering inflow and outflow of the control element, we get   
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Dividing by the control volume from eq. (II-3) we can simplify the expression to the 

following  
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Substituting from eq. (II-1), one can get the heat diffusion equation in Cartesian 

coordinates  
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Thus, the one-dimensional heat diffusion equation in steady state is 

0=+⎟
⎠
⎞

⎜
⎝
⎛

∂
∂ q

dx
dT

x
&κ . Here we denote the electrical power  generated inside the nanotube 

as P. The general solution to this equation, assuming a constant κ, is 

q&

21
2

2
CxCxPT ++−=

κ
. In the free-standing MWNTs case, the only channel for the heat 

to dissipate into the environment is through the electrodes. Since the thermal conductivity 

of the Au electrodes is good enough to provide a thermal anchor at room temperature, the 

boundary condition is a constant temperature at the nanotube ends roomTtLTtT == ),(),0( . 

The solution for roomTxxLPxT +−= )(
2

)(
κ

 is a parabolic distribution in which the 

maximum temperature exists at the midpoint. The breakdown power is then 

T
L
RTT

L
RP roomB ∆=−=

κπκπ 22 8)(8 . 

 

Figure II-8. Temperature distribution along nanotube for freestanding case 
in heat diffusion regime 
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II-5-5 Substrate-Supported Carbon Nanotube 

For the substrate-supported nanotube, we can simply model the nanotube as immersed in 

the silicon oxide, with the heat mainly is spreading out through the substrate. We can 

write down the heat equation in cylindrical coordinates, only considering the radial part 

by symmetry.  

We consider the situation right before breakdown. The tube accumulates the heat and 

reaches the breakdown temperature, in that moment, the nanotube temperature is in 

steady state. Consider the energy conservation in the cylindrical geometry for the steady-

state conditions seen in Figure II-9. R is the nanotube actual radius,  is the estimated 

radius for silicon oxide where room temperature conditions prevail.  

0R

 

Figure II-9. The radial part of R is the nanotube radius and R0 is an 
imaginary cutoff radius.  

 

With heat generation from carbon nanotube and dissipating through silicon oxide, we 

consider the Fourier’s law, eq. (II-1), in radial direction. Therefore,  

(2 )r s s
dT dTP q A rL
dr dr

κ κ π= = − = − . 
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Thus, we can find the relationship between the power and length of nanotube is  

)/ln(
2

0 RR
TL

P s∆=
κπ

. 

The following is the summary for these two types of device configurations. 

Freestanding nanotube: T
L
RP ∆=
κπ 28  , LP 1∝  

Substrate-supported: 
)/ln(

2

0 RR
TL

P s∆=
κπ

, LP ∝  

Note the different scaling for the two situations with the nanotube length. 

II-6 Breakdown Temperature Investigation 

To examine the dissipated power versus the nanotube length, we selected a few 

nanotubes with similar diameters. Figure II-10 (a) shows current-voltage (I-V) data from 

three freestanding nanotube devices with radius R = 10 nm, determined by SEM imaging. 

Note that we carefully calibrated the SEM radius measurements by comparing SEM 

images to AFM images on the same nanotube for a selected subset of the nanotubes. We 

also note that the typical diameter of the nanotubes used in this study is 15–25 nm, which 

exceeds our SEM’s typical resolution of < 3 nm. Figure II-10 (b) shows similar data for 

supported nanotubes, with R = 8 nm, 9 nm, and 14 nm. At breakdown, the resistance is 

directly proportional to the nanotube length, indicating negligible contact resistance. 

From our IV data, we deduce the breakdown power P for each first shell.  
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Figure II-10 I-V curves for two device configurations. (a) I-V 
characteristic from freestanding nanotube devices with R = 10 nm. The 
arrow indicates increasing lengths (0.50, 0.64, and 1.58 µm). Dotted line: 
isopower curve. (b) I-V characteristic of substrate-supported devices with 
R = 8, 9, and 14 nm increasing in length (0.74, 1.26, and 1.66 µm) 
following the arrow. Dotted line: isopower curve 

Figure II-11 shows a log-log plot of P versus L. Freestanding tubes approximately 

follow 1−∝ LP behavior, while the supported tubes exhibit LP ∝  behavior. This 

behavior can be understood using a diffusive thermal transport model. For freestanding 

tubes, the power P to increase the temperature at the tube center by ∆T is 

LTRP ∆= κπ 28 , where κ is the characteristic nanotube thermal conductivity. With TB 

~ 900 K, a linear fit to our data with ∆T ~ 600 K (dashed line in Figure II-11) yields a 

thermal conductivity of KmW ⋅≈ 600κ , consistent with previous thermal conductivity 

measurements on individual MWNTs in the diffusive regime [17].  

For supported nanotubes, the relation LP ∝  indicates that the cooling occurs mainly 

by heat conduction into the substrate. We estimate heat transport in this geometry as 

between concentric cylinders. This yields )ln(2 0 RRTLP s∆= κπ , with  the outer 

cylinder radius at which T drops to the ambient value, and 

0R

sκ the substrate thermal 

conductivity. Taking = 50 nm and 0R R = 10 nm, the fit shown by the dotted line in 

Figure II-9 yields KmWs ⋅5.0~κ , in agreement with the bulk thermal conductivity of 
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SiO2 KmWs ⋅5.1~κ . Considering the two cases together, our data and analysis 

indicate that the shell ablation occurs at a well-defined temperature TB. 

    

 

Figure II-11. P versus L on a log-log scale for freestanding tubes (open 
circles) and substrate-supported nanotubes (filled squares). Dotted 
line: , dashed line:LP ∝ 1−∝ LP  
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II-7 Short Free-Standing MWNTs 

We now focus on freestanding devices, representing a broad range of L and R values. 

Figure II-12 shows 28 RPPN π=  versus for ~ 30 samples. Based on diffusive heat 

transport, we expect plotting the normalized power 

1−L

28 RPPN π=  versus should 

yield a straight line with a slope of 

1−L

κBT . Remarkably, although the initial trend for the 

longer tubes appears linear, for nanotubes with  (filled squares) P11 µm)5.0( −− ≥L N 

saturates and becomes L independent. We note that this cannot be explained by electrical 

contact resistance. Power dissipation at the contacts should be less effective in heating the 

nanotube than power dissipation in its bulk, because the contacts provide the most direct 

thermal anchoring to ambient temperature conditions. This would increase the breakdown 

power for shorter tubes, contradicting the saturation behavior we observe.  

 

Figure II-12. The plot of normalized power 12 )8( −LvsRP π . Open 
circles: longer tubes. Filled squares: shorter tubes. Dashed line: fit to data 
for an interpolation formula described in text. Inset: breakpoint position 
normalized to L versus L on log scale. 

This shows that heat flow from the nanotube occurs at an L-independent rate, 

depending only on R. The rest of the shells are then broken, producing a gap in the 
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nanotube. The Figure II-12 inset shows the gap position, normalized to the suspended 

tube length. This breakpoint is near the center for tubes longer than ~ 0.5 µm, but for L in 

the saturation regime the scatter in the breakpoint values increases. As the statistical 

distribution of breakpoints reflects the temperature distribution along the nanotube, this 

suggests the nanotube temperature becomes more spatially uniform as they become 

shorter than 0.5 µm. 

 

Figure II-13. Log-log plot of P versus R (lower scale) and M (upper scale). 
Open circles: longer tubes. Filled squares: shorter tubes. Dashed line: 
power-law fit to short nanotube P versus R and M data. Inset: Linear plot 
of P versus R and fit. 

Figure II-13 shows P versus R on a log-log scale. Data from short tube samples 

follow the power-law fit, showing that αRP ∝ , with 1.2=α . Some data from longer 

samples fall near the line, but for the longest nanotubes, the data points fall below the 

line. The curve followed by the short nanotube data represents an upper limit to P; 

modulo experimental scatter, data for each nanotube falls on or below the curve and 
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achieves the maximum only for nanotubes with µm5.0≤L . The Figure II-13 inset 

shows the same data and fit on a linear scale. 

II-8 Explanations  

We now consider interpretations for this behavior. One possibility is that a dominant 

metal-nanotube thermal contact resistance Cκ  produces the saturation seen in Figure II-

12. This is unlikely, however, as Cκ  was determined to be negligible in ref. [17], which 

also used metal contacts as thermal reservoirs, as well as in ref. [18] which used graphite 

contacts as a thermal reservoir. Finally, based on the supported tubes’ behavior, we 

would expect Cκ , and hence P, to be approximately independent of R. The observed 

systematic relationship 2RP ∝ differs sharply from this expectation.  

Another possibility is that because of ballistic electron transport [27], the electrical 

current primarily heats the electrodes. In this case, the required power to reach  may be 

relatively L insensitive. However, both experiments and theory [24, 28] indicate the 

electronic mean free path due to phonon emission at the high biases applied to our 

samples is ~ 10 nm. Since each optical or zone boundary phonon emission is associated 

with an energy ~ 180 meV [24], we expect even for our shortest nanotube studied (~ 150 

nm) that most of the energy eV provided by the electric field to each electron is converted 

into phonons within the nanotube. 

BT

II-9 Ballistic Transport in MWNTs  

We now discuss the possibility of ballistic phonon transport within the nanotube. In this 

picture, a diffusive heat transport regime with umklapp interphonon scattering as the 

dominant scattering mechanism [17] makes a transition to a ballistic center-of-mass 

motion regime for sample lengths L ~ 0.5 µm. This suggests the temperature distribution 

along the tube should broaden as L decreases, consistent with the data in the Figure II-12 

inset. Furthermore, because the characteristic distance the phonons travel before escaping 

the tube is ~ L/2, we would infer a characteristic umklapp scattering mean-free path lU ~  
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0.2µm. We note that this situation, where the electron mean-free path is shorter than lU, 

is reminiscent of the conditions prevailing in silicon-based transistors [29]. This must be 

accounted for to understand thermal management in Si transistors. Similar issues may 

therefore occur in nanotube transistor devices.  

In the ballistic regime, the heat flux carried by the phonons P is given by [21, 30] 

)()],()([
2 0

max,

min,
nnnnen

n
ph TdP n

n

ωξωηωηω
π
ωω

ω
−= ∑∫ h                        (II.5) 

where the integration is over each of the nth photon modes’ bandwidths. max,nω , min,nω are 

the nth phonon branch cutoff frequencies, and )( nne ωη is the nonequilibrium phonon 

distribution for nth phonon branch; ),( 0Tnωη is the Bose-Einstein distribution coefficient 

for phonons escaping into the electrodes.  

We now make several assumptions to simplify eq. (II-5). Although the geometry 

dependence of )( nωξ  for various situations was calculated by Rego and Kirczenow [31], 

our geometry of an extended lateral contact was not addressed. However, considering the 

negligibility of Cκ as discussed above, as well as the relatively large characteristic 

thermal phonon wave vector ~ 1010 m-1 compared to that studied in ref. [31], we take 

1)( ≈nωξ . Moreover, since  we neglect 0TTB >> ),( 0Tnωη relative to )( nne ωη . Since 

breakdown depends on P, rather than V or I separately, the hot phonons emitted by the 

electrons likely achieve thermodynamic equilibrium over a thermalization length 

after a few L-independent characteristic number of collisions. Llth <<

Additionally, we expect that the typical phonon-phonon scattering mean-free path lp-p 

should be smaller than the umklapp scattering length by )exp(~ BDUpp Tll Θ−− ~ 10–20 

nm. Given the relatively few collisions (independent of L) required for thermalization, we 

expect on these grounds also that lth≪L. 
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Thus we set ),()( Tnnne ωηωη = , where T is the tube temperature. We also set 

Rncn /min, ≈ω  [32], where is the in-plane speed of sound in graphite 

[33]. Since T

smc /105.1~ 4×

B is considerably less than ~ 2500DΘ K, the graphene Debye temperature, 

we replace max,nω by infinity. Finally, motivated by the observed relationship, we 

assume that the thermal current is carried by the different nanotube shells in parallel. 

Summing over the contribution from each shell in the MWNT spaced by a = 0.34 nm 

independently (justified by weak coupling between graphite sheets), the power dissipated 

by phonons exiting the nanotube is then  

2P R∝

ca
RTkP Bph 2

2
3))(3(2

hπ
ς≈                                                 (II-6) 

taking into account the heat flow into both contacts and phonon mode degeneracy factor 

2, with ς  the Riemann zeta function. Note that this expression contains no free 

parameters. We rewrite eq. (II-6) as TMP Qph κ2≈ , analogous to the well-known 

Landauer formula for the ballistic conduction of electrons. Here , 

corresponding to the characteristic number of occupied phonon branches, and 

is the thermal conductance quantum [10, 11].  

hacTRkM B /5.1 2π≈

hTkp BQ 3/22=κ

Plotting P versus M for samples shorter than ~ 0.5 µm should thus yield a straight line 

with a slope of QBT κ2 . Figure II-13 shows such a plot (M axis, upper scale) with T = TB 

= 900K for tubes with . The data closely follow a straight line with a fitted 

slope of 1.0 µW/branch. From this, we infer a value for the thermal conductance quantum 

of . This is the key experimental finding of this work. Although the 

accuracy of this measured value of 

µm5.0≤L

W/K106 10−×

Qκ is somewhat limited by the uncertainty in and 

the assumptions of our model, our experimental determination of 

BT

Qκ  is nevertheless in 

good quantitative agreement to the theoretical value . This 

demonstrates that we readily reach quantum mechanical limits to thermal transport in our 

W/K109 10−×=Qκ
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nanotube devices that act as ballistic phonon waveguides. This is the first such 

observation for a nanostructure under ambient conditions, enabled by the unique thermal 

properties of carbon nanotubes. 

II-10 Phonon Mean-Free Path 

From our model and the data of Figure II-12, we also obtain an estimate for the phonon 

mean-free path, which was not determined in ref. [18]. Since the thermal conductance in 

the diffusive limit may be written as LMK Qκλ= , where λ  is the phonon mean-free 

path, we can obtain an interpolated expression for the power, appropriate to T = 900 K, 

that agrees with the asymptotic limits discussed earlier, )83(2 11
int λκ += −− LLMP Q . 

The dashed line is a fit of 2
int 8 RP π to the data of Figure II-12 with λ = 220 nm, 

yielding a satisfactory fit to the data over the entire length range with only a single free 

parameter. 

II-11 Electrical Breakdown Mechanism 

Our data yields insight into the breakdown process. The well-defined breakdown 

temperature suggests it requires an initial defect-forming step with activation energy. The 

bond breaking process is very similar to the rate of diffusion in solids, which is mainly 

affected by the presence of defects. As an atom diffuses through a crystal, it must 

overcome a series of energy barriers presented by its neighbors as it moves from lattice 

site to lattice site or from interstitial position to interstitial position. In the electrical 

breakdown scenario, it involves a sequence of C-C bond breaking. Since the breakdown 

process is under an inert environment (such as Argon), extra bond-forming chemical 

reactions should not be involved. Let us consider interstitial diffusion of impurities. If 

this barrier height is ∆, then )exp( TkB∆− can be thought of as the fraction of time that 

vibrating bond will have an energy exceeding ε  to disassociate. If Aω  is the 

characteristic attempt frequency then the probability per unit time that bond will be able 

to pass over the barrier is Tk
A

Bep ∆−ω~ . The defect formation rate is Γ ~ 
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B Bk Texp( / )ANω −∆ , where N is the number of atoms in the tube at temperature TB   ~ 

900K. We find  ~ 3–4V with ∆ Γ ~1 s-1, a range of Aω ~ 108–1018 s-1 and N ~ 106, highly 

insensitivity to the choice of N and Aω . 

One possible origin for ∆  is the formation of a Stone-Wales defect. This defect 

formation is about the rotation of a C-C bond in graphite. However, the estimated ∆  from 

our data is considerably smaller than the theoretically determined barrier ~ 10 eV to from 

a Stone-Wales defect in graphite and MWNT [34], ruling out this possible mechanism.  

Another, more likely, scenario follows from STM experiments where nanotubes were 

cut with voltage pulses, showing a well-defined cutting threshold voltage ~ 3.8 V [35]. 

This was interpreted as the signature of an electronic excitation from a σ  to  state in 

the nanotube by the tunneling electrons [36]. Such transitions produce a local weakening 

of the carbon-carbon bonds in graphite, with a characteristic energy cost of 

eV (see, e.g., ref. [33]), close to our estimated ~ 3–4 eV. This suggests that in 

our experiments the available thermal energy provides the energy . Combined with 

the electrical stress of carrying a current density > 10

∗π

~ 3.6E
σ π ∗−

∗−πσ
E

12 A/cm2, which would readily break 

metal wire by electromigration, theseσ  to  transitions cause defect formation and a 

dissipation cascade that ablates the nanotube shell. 

∗π

Finally, we are able to improve nanotube device conductance considerably using the 

electric current flow. Freestanding samples with initial low-bias resistance of 50 kΩ up to 

10 MΩ typically show a rapid increase in conductance as the voltage across the sample is 

ramped, such as shown in Figure II-14. At higher voltages, a cascade of shell ablation 

begins and the current decreases in a stepwise fashion. The inset shows that the rise in 

conductance occurs in a smooth fashion. This behavior may be related to the structural 

annealing recently imaged by TEM [15]. 
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Further experiments, however, are necessary to fully clarify the origins of this 

behavior, which is of practical value in addressing the challenge of obtaining a high yield 

of conductive nanotube devices. 

 

Figure II-14. I-V characteristic of a freestanding nanotube device with R = 
14 nm. The arrow indicates a dramatic current increase. Inset: expanded 
view of data in the rapid-increase region 
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Chapter III 

Atomic-Scale Mass Sensing Using Carbon Nanotube 

Resonators[37] 

III-1 Abstract 

Ultra-miniaturized mass spectrometers are highly sought-after tools, with numerous 

applications in areas such as environmental protection, exploration, and drug 

development.  We have developed, in a nanoelectromechanical system (NEMS), the 

capability of weighing atoms by using doubly clamped suspended carbon nanotube 

electromechanical resonators, in which their single-electron transistor properties allow 

self-detection of the nanotube vibration. We also demonstrated that mass sensitivity has 

been greatly increased by two orders of magnitude over previous experiments based on 

the nanowire mass sensors [38]. As a consequence of the atomic-scale sensitivity, we 

were also able to observe atomic shot noise from the arriving atoms landing on random 

positions along the nanotubes, enabling us to quantitatively determine the mass of the 

nanotubes themselves as well as the atomic mass of adsorbing species.  

Carbon nanotube mass sensors may have an advantage in detecting bio-materials, i.e. 

DNA or proteins, since this system is quite different from the traditional mass 

spectroscopy, which requires ionizing the neutral species and can potentially damage the 

samples. Furthermore, this highly sensitive mass detection capability may eventually 

enable applications such as on-chip detection, analysis, and identification of chemical 

compounds. There remains plenty of room for improvement, potentially enabling 

chemical or isotopic identification, and applications such as ultra-miniaturized mass 

spectrometry on a chip.  
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III-2 Introduction  

Nanoelectromechanical systems (NEMS), which comprise of electromechanical devices, 

are designed to sense, process, or control the surrounding environment. The NEMS 

technology is the next step forward from the microelectromechanical systems (MEMS), 

which have been successfully applied in various contemporary technologies— e.g. airbag 

accelerometer sensors which are small integrated circuits with micromechanical 

components that respond to rapid deceleration. From an economic point of view, the 

nano-integrated systems can potentially achieve lower cost, lower power consumption, 

and greater miniaturization with better performance than their MEMS counterparts, 

because of improved sensing capabilities derived from nanoscale mechanical features. 

In this chapter, we describe the operating principles, fabrication processes and low 

temperature measurement of our carbon nanotube mechanical resonators. Nanotube 

resonators draw mass sensing advantages from their remarkably high Young's modulus 

and light structure, coupled with their capability to act as single-electron transistors. The 

aforementioned properties help to increase the mass sensitivity by two orders of 

magnitude over the previously demonstrated mass sensors based on nanowires. 

In addition, there are various other potential applications in NEMS. For example, they 

are one of the candidates to directly probe the fundamental quantum phenomena, such as 

zero-point quantum fluctuations in the displacement of a mesoscopic system [39]. 

Furthermore, the ultrahigh force sensitivity of NEMS devices has the potential to directly 

sense the Casimir force, which has recently become an important topic in NEMS-based 

devices [40]. Therefore, these electromechanical systems not only can lead to many 

prospective applications, but also provide the opportunity to bring a mesoscopic system 

into quantum regime, which might help us to bridge the conceptual gap between the 

probability wave description of microscopic objects and the apparent certainties of 

macroscopic world.  
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 III-3 Device Fabrication 

We adopt a doubly clamped suspended carbon nanotube structure as our mechanical 

resonator. Source and drain electrodes are attached to the nanotubes, and a third electrode 

is placed in close proximity to the suspended nanotube acting as a side gate. Note that the 

side gate provides the capability for tuning the nanotube electronic potential, as well as 

controlling the electrostatic force between nanotube and side gate.  

 

Figure III-1. SEM image of SWNT resonator. Device geometry of a 
representative suspended nanotube device with source, drain, and gate 
electrodes 

The method of making a carbon nanotube resonator can be summarized in three steps. 

The first step is the chemical vapor deposition (CVD) growth of carbon nanotubes, the 

second step is the electrode contact fabrication, which involves electron-beam 

lithography and metal deposition, and the last step is the suspension of nanotubes by 

oxide etch. Each process still has room for improvement, and this section covers the best 

of our knowledge to date. 

An SEM image of a typical carbon nanotube tri-electrode device is shown in Figure 

III-1. The central segment of the nanotube is suspended over the etched trench, and the 

supported sections of the nanotube are strongly anchored by the van der Waals force to 

the substrate with high binding energies [22, 41]. These carbon nanotube devices are 
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specially designed to meet the operational requirements at cryogenic temperatures and 

at very high frequencies, ranging from 100 MHz to several GHz. A metallic close-

proximity side gate is made to improve the mobility of charge carriers driven at high 

frequencies and also to enhance the electrostatic coupling between the carbon nanotube 

and the side-gate electrode. Generally speaking at low-temperatures, the heavily doped 

silicon substrate that operated as the back gate is sufficient to couple to the device in the 

DC regime, but not in the high frequency regime. The distance between the metallic side 

gate and nanotube is typically kept around 100–150 nm for the strongest possible 

coupling without breaking the nanotube. If the side gate is too close to the nanotube, 

there is a higher chance that the nanotubes can stick to the side gate and cause a short 

circuit. Starting with light inertial mass and high resonant frequency necessitates as short 

a suspended nanotube segment as possible. The minimum length of the suspended 

nanotubes comes out to be about 400 nm, limited by that the etch process both affects the 

resist poly(methyl methacrylate) (PMMA) mask and silicon oxides.    

III-3-1 SWNTs CVD Growth 

In order to achieve a sufficiently large density of nanotube growth without forming 

carbon nanotube network which can produce short circuits or gate leakage, we adopted 

the method of catalyst islands [42] to define the coverage of catalysts. In addition, we 

made a major improvement by combining the alignment markers with catalyst islands. 

This simplification can avoid unnecessary contaminations during sample fabrication and 

results in good electrical contact. 

Alignment markers are patterned by electron beam lithography (EBL) and formed by 

depositing about 15 nm of Cr followed by 180 nm of Au deposition. The exceptionally 

thick gold layer is to sustain the metal deformation during the nanotube growth at 900°C 

and to remain decipherable for the following EBLs of contact fabricating and PMMA 

etch-window patterning.  
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The following schematic diagrams show the step-by-step processes for the 

alignment markers fabrication and the catalyst islands deposition. 

(a) (d)

 

Figure III-2. Electron beam lithography for alignment markers and catalyst 
islands. (a) PMMA/MAA bi-layer of positive resist is spun on the 
substrate. (b) An electron beam exposes the defined area and the sample is 
developed to create a window. (The undercut of MAA layer will make the 
lift-off process (f) easier.) (c) Au/Cr metals are evaporated onto the 
surface of substrate through the windows. (d) Deposit catalyst solution 
everywhere. (e) A quick baking process. (f) Lift-off of the remaining resist 
and catalyst stay on the alignment markers 

The nanotubes were first grown by CVD on degenerately p-doped boron silicon 

wafers capped with 300 nm or 1 µm thermally grown oxide. 
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Fe(NOFe(NO ))

 

Figure III-3. Carbon nanotube CVD growth from catalyst islands. (a) 
Cross-section view of silicon wafer and predefined metal pattern with 
exaggerated catalyst particles on surface. (b) During a high temperature 
chemical reaction process. (c) A zoom-in image from (b), shows grown 
SWNTs only from the predefined metal pattern.  

The catalyst solution consists of 40 mg of iron(III) nitrate nonahydrate 

Fe(NO3)3·9H2O (Sigma-Aldrich), 2 mg of Molybdenum Acetate MoO2(acac)2 (Sigma-

Aldrich), and 30 mg of alumina nanorods (Sigma-Aldrich) mixed in 30 ml of methanol. 

The size of the iron nanoparticles determines the diameters of the SWNTs. The advantage 

of using alumina nanorods is to prevent the iron nanoparticles from thermally drifting 

around during the high-temperature tube growth and to create more nanotube nucleation 

sites by having higher alumina surface area. The role of MoO2(acac)2 in nanotube growth 

is still not fully understood. However it has been suggested that the metal salt is 
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decomposed during heating in the CVD process to form Fe–Mo nanoparticles with 

diameters small enough to grow SWNTs [43]. 

After the catalyst solution is sonicated for an hour, a full drop of catalyst solution is 

deposited onto the prebaked silicon wafer with defined metal alignment marker openings 

in the PMMA resist and then dried on a hot plate. The remaining resist and metal are 

lifted off by immersing the sample in acetone for an hour without stirring. In addition we 

use a hot plate to maintain the temperature of acetone. This can help to maintain a 

constant nanotube growth density despite seasonal or daily temperature fluctuations. 

T 

900°
C

(a) (b) (c) 

(d) (e) 
25°C 

Time  

Figure III-4. The temporal diagram of nanotube growth processes. (a)–(e) 
are the processes in different composition of gas rates.   

Step Interval Gas composition 

(a) 2 min Ar 1000 
sccm 

(b) 25 min Ar
H2

250 sccm 
400 sccm 

(c) 5 min H2
CH4

700 sccm 
520 sccm 

(d) 2 min Ar 2000 
sccm 

(e) 15 min Ar 400 sccm 

Table III-1 Tube growth parameters corresponding to the processes in 
Figure III-4 
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After the lift-off, the sample with patterned catalyst islands (right on the metallized 

alignment markers) is placed in a 1 inch quartz tube furnace and the CVD is effectuated 

at 900°C with 700 sccm H2, 520 sccm CH4 for 5 min. Argon and hydrogen are flown 

during heating up and cooling down to prevent any chemical reactions during these 

phases. This recipe of methane and hydrogen flow rates has been optimized to obtain 

long and clean nanotubes (~ 10 µm) without amorphous carbon deposition [44]. 

There are five tube growth steps: (a) flush the quartz tube by large flowing argon rate, 

(b) ramp up to the desired tube growth temperature, (c) allow the actual tube growth 

process, and (d) terminate tube growth by running a huge amount of argon through to 

flush the remaining hydrogen and methane. In addition, this large flow rate of argon can 

align nanotubes right after growth. Finally, (e) is the cooling process; the presence of 

flowing argon prevents oxidation at high temperature. 

III-3-2 Characterization of SWNT Diameters  

A general question that arises when a tube growth recipe is altered or carbon nanotubes 

are provided from other sources is whether we have clean and single-walled nanotube 

samples. The most reliable way to examine the growth outcome is by taking transmission 

electron microscope (TEM) images. Figure III-5 is a TEM image that clearly shows one 

single-walled carbon nanotube among many grown nanotubes with very little amorphous 

carbon contamination. However, this procedure requires special sample preparation to 

grow the nanotube on an AFM tip, followed by a careful examination of protruded 

nanotubes from the edges of the tip.  

An alternative method to examine this material is to use atomic force microscopy 

(AFM). However SWNT diameter is usually smaller than 3 nm, the measurement of 

nanotube diameter can vary with different AFM tips, due to the different sharpness of the 

tips. As a result, AFM can provide a general idea of nanotube diameter, but it cannot 

precisely determine the number of shells of nanotubes.  
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Figure III-5. Transmission Electron Microscope (TEM) image of our 
CVD-grown single-walled carbon nanotubes  

There is yet another method to obtain the information of shell counts from electrical 

transport measurement. According to previous high-biased saturation and breakdown 

current studies [19, 24], measuring the breakdown current can accurately determine the 

numbers of shells of a MWNT nanotube. Literature shows that every single shell has a 

limited current capacity, limited by the optical phonon scattering to be ~25 µA, 

independent of the length of nanotubes. Additional discussion can be found in the 

Chapter II. 

 

Figure III-6. HIgh-bias I-V characteristics of a substrate-supported SWNT. 
The saturation current is about 25 µA, independent of the length of 
nanotubes.  
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III-3-3 Electron Beam Lithography 

After nanotube growth, an AFM or SEM image is necessary to locate the nanotube 

positions relative to the predefined alignment markers. A CAD layout is made 

accordingly for the electrodes to make contact to the two ends of nanotubes, and a 

metallic close-proximity side gate which is extended to the bonding pads. In order to 

have strong coupling between the nanotube and the side-gate electrode, the distance 

between them is designed to be ~ 120 nm. This gives a pronounced resonant response. 

We can then use either of the following methods to locate the nanotubes  

1. Electrostatic Force Microscope (EFM) 

Generally, nanotubes are located relative to the alignment marks using an atomic force 

microscope (AFM) and this is the most time-consuming step in fabricating SWNT 

devices. To obtain a good-quality image, AFM is practical only for a small scanned area 

(~ 10 µm10× 2). However, the total area of the alignment markers is large ( ), 

and the diameters of the SWNTs are very small (~ 1–3 nm). In order to locate SWNTs 

within the whole pattern of alignment markers, we need a better technique. We find 

electrostatic force microscopy (EFM) well suited for this application. During an EFM 

scan, a topographical line scan is acquired first, followed by a second pass at a constant 

height above the surface with a constant applied tip voltage. This technique can resolve 

SWNTs in a large region due to the long range nature of the electrostatic force (Coulomb 

interaction). Figure III-7 is a sample EFM image of SWNTs. On the whole, EFM 

scanning is still time consuming, and the electrostatic force may damage nanotubes. The 

resulting defects can be seen especially at low temperatures. In addition, the image 

quality of the alignment markers is generally poor, which limits the accuracy in the 

following sample fabrication process. 

2µm7676×
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Figure III-7. EFM image of single-walled carbon nanotubes. The red lines 
are SWNT and the bumpy structures are the predefined alignment markers. 

2. Scanning Electron Microscope (SEM) 

Overall, we find that SEM is the most useful tool because it provides a quick and clear 

image process. To attain better image contrast of the SWNTs on silicon oxide (non-

conducting substrate) requires critically low accelerating voltages of ~1 kV, for 

minimizing the negative charging of the substrate. Moreover, at higher accelerating 

voltages, the electron beam penetrates deeper into the oxide, producing fewer secondary 

electrons that sense the surface potential differences [45], which is undesirable.  

A disadvantage of using SEM for imaging is that the specimen gets contaminated by 

amorphous carbon [46]. In order to keep the device clean from after imaging, baking the 

sample in a constant oxygen flow rate inside a furnace at 300°C for 30 min is 

recommended before the next fabrication step. We have examined the outcome by using 

AFM to compared the before and after images. This oxygen cleaning method is proven to 

remove organic residues. Nevertheless, we cannot rule out any soot grown along 

nanotubes because it is not observable by AFM,      
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Figure III-8. A SEM image of pristine single-walled carbon nanotubes and 
alignment markers (only partial pattern shown). These supposed-to-be- 
square alignment markers are slightly deformed during tube growth. Scale 
bar indicates as 1 µm.  
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The following schematic diagram is the fabrication flow chart. 

(a) (c) 

 

Figure III-9. Electron beam lithography for contact electrodes (a) 
PMMA/LOR bi-layer of resist is spun on the substrate. (b) An electron 
beam exposes the defined area and the sample is developed to make a 
window. (The LOR layer, is not affected by either electron beam or 
ultraviolet light, it has a large undercut, which makes lift-off process (d) 
easier.) (c) Au/Pd metals are evaporated onto the surface of substrate 
through the windows. (d) Lift-off of the remaining resist  

In the second EBL process of patterning the electrode contacts, thin layers of 

palladium (15 nm) and gold (40 nm) metals are thermally deposited right after 

developing the PMMA and lift-off resist (LOR) layers. Palladium has been shown to be 

the best ohmic contact to carbon nanotubes [47]. Since palladium thin films are 

hydrophilic, once the thin film makes contact with any aqueous solution, the film would 

be stripped into small fragments immediately. Therefore, a gold layer is deposited on top 

of palladium to suppress this peeling behavior. Furthermore, we need a suitable resist and 

nonaqueous developer to work with the palladium contacts. The applicable chemical we 

found is MicroChem LOR 3B and PG-Remover (nonaqueous). The advantage of using 

LOR 3B resist is to greatly reduce the contact resistance because it leaves mush less 

residue than any other resists we’ve tested. 

(b) (d) 
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We examined the palladium contacts with sub-micron on-substrate SWNTs. The 

electrical conductance obtained in a two-point measurement at room temperature can 

sometimes be very close to the expected quantum conductance heG 24= ≈(6.45kΩ)-1 of 

a 1D quantum wire such as a SWNT. The factor 4 in the equation of conductance comes 

from two independent conducting spin-degenerate channels in SWNTs. For such 

nanotube devices, the low contact resistance gives them an open dot behavior, yielding 

Fabry-Perot interference in a nanotube electron waveguide. Detailed discussion 

concerning the quantum dot physics can be found in Section I-5. 

III-3-4 Suspend Carbon Nanotubes 

After contact fabrication, the final step is to suspend the carbon nanotubes using wet-

etch. The major obstacle to overcome in this suspending process is the surface tension of 

the processing solutions. At the microscale or nanoscale, the ratio of surface to volume 

increases, inverse-proportional to the dimension of the device. Therefore, the surface 

tension dominates other forces when the scale is smaller than a few microns. Figure III-

10 illustrates how surface tension affects the nanostructure during the evaporation of a 

liquid drop.  

The wet etching is performed in buffered oxide etch (BOE, aqueous NH4-HF etchant 

solutions) with gentle agitation followed by a rinse in solvents. We often chose isopropyl 

alcohol (IPA) or methanol as the final rinse solution because these solutions have smaller 

less surface tension than water (72.8 mN/m at 25°C). 
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(a) (b) 

Solid 
Solid

 

(c) (d) 

Solid

Figure III-10. Schematic diagram of surface tension in micron scale. (a) 
The diameter of droplet is right to match the height of the beam. (b) When 
the droplet gets smaller, the surface tension pulls the beam downwards. (c) 
The more the droplet shrinks the more the beam stretches and deforms. (d) 
The beam might break or go through plastic deformation, depending on 
the aspect ratio of the beam and the distance between beam and solid 
surface. In the diagram, a half beam adheres to the solid surface due to the 
van der Waals force. 

The following are two schemes to produce the suspended segment of nanotubes: 

1. Metal Electrodes as the Etch Mask  

Using metal electrodes as the etch mask is the simplest choice to suspend CNTs: we can 

directly place the sample in BOE to etch away the substrate. If the suspended segment is 

less than 500 nm for a SWNTs device, or if the aspect ratio of MWNTs is small, there are 

two quick ways to dry the samples. First option: we take the sample out directly from 

isopropyl alcohol (IPA), the final rinse solution, and bake the sample on a preheated 

hotplate (~ 50°C), letting it naturally dry. Second option: we can heat up methanol with 

the sample inside and take the sample out from the beaker while the methanol is boiling.  
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etch process, both the PMMA resist and silicon oxide are etched, producing a 

broadened trench.  

A critical point drying (CPD) exploits the phenomenon known as the continuity of 

state, where there is no apparent difference between the liquid and gas states of a medium 

above its critical point, reducing the surface tension at this interface to zero. The most 

common and convenient transitional medium for critical point drying is carbon dioxide 

(CO2), which has a critical point at 31°C and 73.0 atm. Although it might not be 

necessary to run a CPD process for a submicron-suspended device, it is essential for 

making a close-proximity side gate located ~100 nm from the suspended nanotube. The 

yield of CPD is much higher than other methods, and thus it provides significant 

improvement for our sample fabrication.  

 

Figure III-13. The phase diagram of carbon dioxide 

III-4 Basis of Elastic Beam Theory 

For the purpose of understanding the range of expected resonant frequencies of carbon 

nanotube resonators (from fundamental mode to higher excited modes), it is necessary to 

examine a system at the physical level of device modeling and analysis. In this section we 

will start with a structural mechanics including elasticity and elementary structure, and 

Temperature (°C) 

73.0 
Solid Liquid  

Gas  

Critical point 

Pr
es

su
re

 (a
tm

)  

5.11 Triple point 

-56.4  31.1 



 

 

62
will subsequently elucidate an energy-based method to describe our SWNT resonator 

devices, which is a practical means to address our complicated system that involves both 

mechanical and electrostatic energy contributions.  

However, before we proceed to the theoretical groundwork, we have to consider the 

factors that may arise in a realistic device. Our system is more complicated than a simple 

bending beam, since we apply a considerable amount of electrostatic force on nanotube 

by applying DC voltage through the side gate. There is typically some degree of slack 

(excess length between electrodes, e.g., Figure III-14 (a)) built in a suspended nanotube 

during the fabrication process, especially from the tube growth. The first factor hardens 

the resonant modes by increasing electrostatic force. However, the second factor softens 

the resonant mode and generates an additional dynamic motion, called the “jump-rope” 

mode shown in Figure III-14 (b). Beyond these two external factors, the aspect ratio of 

the beam is one intrinsic factor. We can discard this cause by reason of the fact that our 

nanotube aspect ratio is  200.  ≥

(a) (b) 

 

Figure III-14 A suspended nanotube with slack: (a) under the action of a 
gate voltage V, (b) the “jump-rope” mode [48] 

In our case, the device lengths is about ~ 400–500 nm where the empirical slack is 

quite small. Particularly when a large DC side-gate voltage is present, the electrostatic 

force can reduce the effects of an initial slack. This is very different from those reported 

nanotube resonator devices from a few groups [49-51] having 1–2 µm of nanotubes with 

large slacks, which reduce the resonant frequencies significantly. Figure III-15 

categorizes three regimes of nanotube behavior [48] based on the initial slack and gate 

voltage. These regimes are the buckled beam, hanging chain, and hanging spring. We 
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find our nanotube resonators typically falling into the hanging spring regime, hence we 

often take the stretched string (analogous to a guitar string) as the simplest model for 

analysis.  

 

Figure III-15. The three regimes in which nanotube behavior simplifies, as 

a function of voltage and slack [48] 

After understanding the issues of slack and the aspect ratio, we only consider the 

possible residual stress and the electrostatic force between nanotube and gate electrode in 

the subsequent discussions. Given that there are two chapters in this thesis covering two 

different nanoelectromechanical systems, it is worth to address the fundamental 

properties of related beam theory.  

III-4-1 Bending of Beams 

An overview of elastic beam theory in the differential element is adopted in this section. 

First, starting with the differential beam element of Figure III-16, we have three types of 

loads to consider: external transverse loads q (which conventionally denoted the force per 

unit length), shear forces V (V+dV) parallel to the lateral loading, and rotational moments 

M (M+dM). 
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q 

M V V+dV M+dM 

dx 
 

Figure III-16. A fully loaded differential beam element of length dx with 
moments and shear forces  

Applying the constraint of total static equilibrium (zero force and zero rotational 

moment) to this differential element; we obtain the differential relations among the 

different loads. The total force Fnet on the differential element is  

VdVVdxqFnet −++= )( . 

Based on the constraint of the zero net force, we can get   

 q
dx
dV

−= .                                                       (III-1) 

The net rotational moment Mnet acting on the differential element with respect to the left-

hand edge is 

dxdxqdxdVVMdMMM net 2
)()( −+−−+= . 

If we neglect this  term, it yields  2)(dx

V
dx

dM
≅ .                                                        (III-2) 
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Combining eqs. (III-1) and (III-2), we can obtain  

q
dx

Md
−=2

2

.                                                     (III-3) 

These relations are the keys for solving elastic systems, later we will use them to 

establish the differential equations governing the bending of beams. 

Now we consider a bending-type deformation that results the transverse loading of 

beams. Figure III-17 shows the small section of a beam that has been bent in response to 

the application of transverse loads. The dashed arc in the middle of the beam is called the 

neutral axis, the entire length of which is unchanged during bending. The material above 

the neutral axis is in a state of tension, while the material below the neutral axis is in 

compression. The radius of the bending curvature is defined as ρ, and the external applied 

moment is denoted by M0.  

Neutral Axis Tension

 

Figure III-17. A segment of a beam in pure bending; vertical 
displacements and angles are greatly exaggerated. Note the positive 
direction of z is downward in this figure. 
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The length of the dashed segment at position z is 

θρ dzdL )( −= .                                                 (III-4) 

At the position of neutral axis, the length of the corresponding segment is 

  θρ ddx = .                                                     (III-5) 

From eqs. (III-4) and (III-5), an axial stress in the beam segment is  

ρ
εσ zE

dx
dxdLEE xx −=

−
== .                                   (III-6) 

In eq. (III-6), we have assumed the beam is isotropic, that the normal stress in the x 

direction xσ  is linearly related to the uniaxial strain in the x direction xε , thus xx Eεσ = . 

The proportionality constant is called Young’s modulus and it is denoted by E. 

  

This structure has a distribution of internal stresses, we can find the total internal 

bending moment M by calculating the first moment of distributed internal stress.  
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where  is the width, h is the height, Iw x is the beam cross-section moment of inertia 

about the neutral axis x, and  z is the perpendicular distance to the neutral axis.  

xIE
M

−=
ρ
1                                                      (III-8) 

Since equilibrium requires that the total moment to be zero, the external M0 that created it 

in the first place must equal –M. So we could equally write 
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xIE
M 01

=
ρ

.                                                        (III-9) 

Hence we have the relation of the radius of curvature of the beam in terms of the 

externally applied bending moment, eq. (III-8) or internal bending moment, eq. (III-9).   

 

For a circular cross section with radius R, the center of mass is at the center of the 

circle, and the principal axes are arbitrary. The moment of inertia about any axis lying in 

the cross-section and passing through the center is 

4

4
1 RI x π= .                                                   (III-10) 

For a SWNT, if we consider it as a hollow structure, the momentum of the inertia can be 

written as ])([
4
1 44 aRRI x −−= π , where a is regarded as the interlayer spacing of 

graphite. 

III-4-2 The Euler-Bernoulli Beam Theory 

We consider a carbon nanotube as an example of a continuous system; its mass is 

distributed and inseparable from the elasticity of the nanotube. If the deflection of the 

nanotube is assumed due to the bending moment only, and the aspect ratio of our 

nanotube devices are generally large, we can simply apply the Euler-Bernoulli beam 

model to our systems. However, in the case of a shorter carbon nanotube with small 

aspect ratios whose higher-order resonant frequencies fall within terahertz range. Hence, 

these nanotubes should be modeled as Timoshenko beams instead of Euler-Bernoulli 

beams, because the rotary inertia and shear deformation are more significant for higher-

order modes of shorter elastic beams. 

),( txu
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Figure III-18. Free-body sketches of an element of beam. (a) A schematic 
diagram of a doubly clamped beam. (b) A differential element dx with 
forces involved from (c) and (d). (c) The free-body sketch of an element 
dx of a string. (d) The free-body sketch of an element dx of a beam 

Consider the free-body sketch of an element of beam (nanotube) shown in Figure III-

18 (b). The tension is assumed constant for small deflections of the beam and the other 

effects are negligible. The forces involved are the spring problem in Figure III-18 (c) and 

the beam problem in Figure III-18(d). From Newton’s second law, the dynamic force 

equation in the lateral direction is  
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where µ is mass per unit length, xu ∂∂=θ  = slope, and V the shear force. Summing the 

rotational moments (torques) of the differential element with respect to the right face 

yields 

0≅−
∂
∂ Vdxdx

x
M  

or 

V
x

M
=

∂
∂ ,                                                 (III-12) 

and from the elementary strength of materials, the beam curvature and the moment M are 

related to  

M
x
uEI =

∂
∂

2

2

                                                   (III-13) 

where EIx is the flexural stiffness of the beam (nanotube). After substitutions, we obtain 
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Eq. (III-14) is the equation including the effect of axial tension T. The sign of T is 

reversed if the beam is under compression.  

Let us find the natural frequency of a uniform doubly clamped beam subjected to an axial 

tension T. Assume the existence of principal modes as )sin()(),( ψωφ += txtxu . 

Substituting to (III-14) and simplifying, we get  ),( txu
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Let the solution be , where C and s are constants. It can be shown the 

corresponding characteristic equation is  

sxCe=φ

0224 =−− µωTssEI                                            (III-16) 

or 

02224 =−− λξ ss                                               (III-17) 

where 
xEI

µωλ = and 
EI
T

=ξ . 

The quadratic roots are  

]4[
2
1 2222

2,1 λξξ +±=s .                                         (III-18) 

Which must be real and of opposite sign. Let  and , or where 22
1 as = 22

2 bs −= bis ±=2

1−=i . Hence the solution of the eq. (III-17) is  

bxCbxCaxCaxCx cossincoshsinh)( 4321 +++=φ . 

The boundary conditions of a fixed-fixed (doubly clamped) beam are  

0||
0

0 ====
=

=
=

=
Lx

Lx
x

x dx
d

dx
d φφφφ . 

The above equation has a nonzero solution; this yields the following equation for the 

frequencyω : 
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and the solution is the following with an arbitrary amplitude   

]
))cosh()(cos(

))sinh()sin())(cosh()(cos()sin()[sinh()( 1 aLbLb
aLbbLaaxbxbx

b
aaxCx

−
−−

+−=φ . 

In the following, we focus on the fundamental mode 0ω , in the limiting cases, the 0ω  are 
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The frequency dependence  is associated with a loose string, while 

means that the string is tied like a guitar.   

2
0

−∝ Lω

1
0

−∝ Lω

When the axial tension is absent, , we can find the displacement function 

is   

024 =− µωEIs

]
)cosh()cos(

))sinh()))(sin(cosh()(cos()sin()[sinh()( 1 LL
LLxxxxCx

κκ
κκκκκκφ

−
−−

−−=  

where , λκ =2 Lκ = 4.73004, 7.8532, 10.9956, 14.1372, which satisfy the condition 

1)cosh()cos( =LL κκ . 

And the lowest natural frequency is 
µ

ω EI
L

2

0
73004.4

⎟
⎠
⎞

⎜
⎝
⎛= . 

For a SWNT with 1.3 nm in diameter and 500 nm in length, E = 1.2 TPa, 4

64
1 dI π= , 

and   µ  (mass per unit length) = d×39204.2 (nm)  zg/nm. 
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We therefore obtain the resonant frequency πω 200 =f  ~ 100 MHz in the pure 

bending and tension-free case.   

The analysis of this section is based on the Euler-Bernoulli beam model with axial 

loading T, which works well for simple geometry and known tension. In fact, the tension 

in our system is not a directly measurable (controllable) quantity. Therefore, in the next 

section, we will go through the “Energy Methods”, which can readily address a more 

complicated system involving multiple forces, i.e., the mechanical and electrostatic forces 

in our system. In other words, the resonant frequencies of our devices can be controlled 

by applying DC voltage through the side-gate electrode. Hence, we are able to link the 

actual gate voltage to tension in our system, and also the derivation shows that it is 

possible to observe the quantized frequency change in the quantum dot regime [52].  

III-4-3 Energy Methods 

The advantage of using the energy methods is that we can consider different types of 

energy stored in an energy-conserving system. The energy stored in a body (i.e., elastic 

material) due to the quasi-static action of surface and body forces is equal to the work 

done by these forces. We can formulate the stored energy as a function of the 

deformation of a mechanical object, then determine how an object responds to a force by 

determining the shape the object must take in order to minimize the difference U between 

the stored energy and the work done by the forces.  

doneWorkEnergyStoredU −= . 

The carbon nanotube resonator system can be simplified as the following schematic 

diagram. A SWNT (modeled as a rod of length L along x axis) is freely suspended 

between source and drain electrodes, in the vicinity of a gate. The nanotube is attached to 

the electrodes via tunneling contacts and capacitances between nanotube and electrodes 

are denoted by CL and CR. An electrostatic force (gate voltage) bends the tube; the 
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deviation from a straight line is denoted by  with 0< x< L.  is called the gate 

capacitance per unit length, which is varying along the nanotube. 

)(xz )(zc

L 

V, CL CRz

hCg(z) 

VG

x 
 

Figure III-19. A schematic diagram of a suspended nanotube capacitively 
coupled to a gate electrode 

The entire energy stored in the above system is derived in the following discussions. 

As the nanotube is mechanically deformed by electrostatic forces, there are three types of 

energy contributions to consider: the elastic energy due to the bending (unstressed), the 

stress energy from stretching, and the electrostatic energy which is stored in the electrical 

capacitance between the nanotube and gate electrode. 

Elastic Strain Energy   

A beam made of an isotropic material is subjected to bending (refer to Figure III-18(a)). 

Consider a differential element of length dx and cross-section area dS. 

Using the relations for bending from the previous section, we know the an axial stress 

from eq. (III-6)  ρσ Ezx −=  and eq. (III-8) xEIM−=ρ1  

From eqs. (III-6) and (III-8), this element dx is subjected to a normal stress: 

xx IzM=σ . 
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The strain energy density on this element is xxu εσ2

1= , for linear elastic material 

Eu x 22σ= , hence, the strain energy for a slice of the beam, of width dx, is  

( ) dx
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MdxdSudU

x
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x

22

2
2

2

2

==⋅= ∫∫ 43421
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volume

. 

Since the curvature 
2

2

1

x

z M
x EIρ
∂

= = = −
∂

, the strain energy of a differential element is  

dxzEIdx
x

zEIdU xx 22
2

2

2
)(

2
′′=

∂
∂

= . 

Stress Energy 

Consider the suspended nanotube system shown in Figure III-19 with the stress force 

TTT += 0
~ . Here, is the residual stress which is may result, e.g., from the fabrication, 

and induced stress T is due to the elongation of the tube caused by the gate voltage. 

0T

 
dl

Figure III-20. A schematic diagram of a doubly clamped beam. A segment 
dx is defined along the original neutral axis and the segment of dl is used 
to show the deformation components.     

To calculate the elongation component from the original natural segment, 
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A Taylor expansion for small δ gives δδ 2
111 +≈+ , so we can obtain the strain  

2
)( 2xz

dx
dxdl

x
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2
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SE
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and integrating over the entire length of the nanotube,   

dxxzdx
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T LL
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′

≈
0

2
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and the stress force T is 
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L

EST
L

∫ ′≈
0

2)(
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Therefore, energy stored due to the external stress  

dxxzTdxdlTdW 2)(
4
1)(

2
1 ′≈−= . 

The total energy stored including the external stress and residual stress 
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L L
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84

. 



 

 

76
Elastic Energy + Stress Energy 

Gathering the energy of an unstressed bend rod and the effect of the stress 

from TTT += 0
~ , we have  

∫ ∫ ⎭
⎬
⎫

⎩
⎨
⎧ ′′++′′=

L Lx
el zdxz

L
EST

z
EI

dxxzW
0

2

0

202 ]
84

[
2

)]([  

                        

where E is Young’s modulus, is the moment of cross-section area (in our system xI

44rI π= ), and is the cross-section area. Here, 2rS π= r  is the (external) radius of the 

tube.  

Electrostatic Energy 

To write down the electrostatic energy for the nanotube system in Figure III-19, we 

denote the capacitances of barriers connecting the nanotube with the source and drain 

as , , respectively. The capacitance to the gate per unit length is . 

Approximating the gate by an infinite plane at distance h  from the nanotube, we obtain 

LC RC )(zc

2

)2ln(2

)(

)2ln(2

1

))(2ln(2

1)(

⎥⎦
⎤

⎢⎣
⎡

+≈
−

=

r
hh

xz

r
h

r
zh

zc                        (III-20) 

where the Taylor expansion restricts validity to hz << . In this limit, van der Waals 

forces between the nanotube and the side-gate electrode can be neglected. We have 

mentioned in the fabrication section that distances between nanotubes and side-gate 

electrodes usually range from 120–150 nm, and the maximal deflection of z(x) is about 1 

nm. Thus,  is indeed valid in our case. hz >>

To find the electrostatic energy of the system, we need to know the electrical 

potential φ  in the nanotube. If there is n excess electrons yielding charge ne on the 
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ne

nanotube, then the opposite charges induced in those surrounding capacitances should 

equal to –ne by charge neutrality. Hence, we have 

( ) ( ) ( )L L R R G GV C V C V Cϕ ϕ ϕ− + − + − = − , 

where = V and VLV G are the potential of the source and the gate electrodes, while the 

drain potential is set to zero, 0=RV . Note that the last term in eq. (III-20) depends on the 

tube displacement and thus on the number of electrons. Therefore, it can not be omitted, 

as in the standard Coulomb-blockade treatment that replaces this term by the constant, 

making  a periodic function of gate voltage.  estW

For a uniform charge distribution, the capacitance to the gate equals  

dxxzcC
L

G ∫=
0

)]([ . 

Solving the charge neutrality equation, we find electrical potential on nanotube is 
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GGL
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VCVCqn

++
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=ϕ . 

The electrostatic energy is expressed by 
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substitute ϕ  and let , and the total electrostatic energy is 0=RV
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Minimizing the Entire Energy 

Minimize the energy )]([)]([)]([ xzWxzWxzW esteln +=  by  

G
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n neV
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)]([
2

0 2

2
22  

Introducing the variational principle for this system and setting the residual stress 00 =T , 

after operating a few times using integration by parts with the appropriate boundary 

condition for the doubly clamped beam, 0)()0()()0( =′=′== LzzLzz , leads to the 

following detailed derivation:   
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After, 

hL
neKzTzIE 2

2

0
)(

≡=′′−′′′′  

where is the electrostatic force per unit length, which we approximate by a constant. 

Higher-order terms are small for 

0K

hz <<  
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where
EI
T

=ξ . 

In 2LEIT << cases, the tension is much smaller than the rigidity. On the other hand, 
2LEIT >> cases, the tension is much stronger than rigidity, we can find  

2 6 2 2
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1 3 2 3 2
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60480
( 24) ( ) .
K L S EI T EI L

T
ES K L T EI L

⎧ <<
= ⎨

>>⎩
                             (III-21) 

In the 2LEIT << case, the tension is much smaller than rigidity, which indicates a weak 

bending of the tube, and the tube displacement is small.  On the other hand, in the 
2LEIT >>  case, the tension is much stronger than the rigidity, which describes the 

strong bending case, and the tube displacement is large 

Discussion  

If we take a closer look at eq. (III-21), the external stress force T is function of E, I , S , L, 

and . E is the Young’s modulus; I, S, and L are the geometric parameters. is the 

key to link the electrostatic energy to the stress force, since we perform this system in the 

single-electron transistor operation regime, such that counting the Coulomb blockade 

oscillations can provide us with the number of electrons in a nanotube. After we find the 

stress force T, we can use eq. (III-19) derived by Euler-Bernoulli beam theory. Find 

the

0K 0K

EIT=ξ , then we can find the resonant frequency using the external T.  



 

 

80
III-5 NEMS Actuation and Detection Techniques 

For a movable component of an electromechanical system, approaches to actuation and 

detection are two major considerations of system design. The actuation approaches to a 

micro- or nano system can include electrostatic, electromagnetic, thermal, or 

piezoelectric methods and all have their advantages and drawbacks. For example, 

electrostatic actuation uses less current consumption but requires high operation voltage; 

on the other hand, the electromagnetic actuation has need of less voltage, but uses 

significantly higher current consumption. Once the system has been actuated, a detection 

technique is required to read out the mechanical positions. This can also be carried out by 

a variety of approaches, for example optical, magneto-motive, electrostatic, 

thermoelectric, electromagnetic, or piezoelectric techniques. This combination of 

actuation and detection techniques yields flexibility in customizing sensors for various 

practical applications. 

After preliminary considerations in finding an appropriate technique to apply to our 

nanotube system, we choose an electrostatic method to actuate nanotubes as well as to 

detect the motion of nanotube. In addition, we exploit the field-effect transistor properties 

of a carbon nanotube, which not only performs as a mechanical vibrating element but 

also an electrical mixer. This mixing technique of readout is required to overcome the 

impedance mismatch of nanotube to measurement circuit, because while the impedances 

of nanotubes can vary with many factors—intrinsic properties (i.e., SET behavior, 

impedance is quite different in the valleys or the peaks of Coulomb oscillations) or 

extrinsic effects (i.e., the contact resistance due to the fabrication)—they are generally 

much larger than the typical transmission line impedance of 50 Ω.  
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III-5-1 Electrostatic Actuation Method 

The general idea of the electrostatic actuation is the electromechanical energy 

conservation in MEMS or NEMS. A spring attached to a movable parallel-plate capacitor 

is an example of this scheme. The electrostatic and mechanical energy can be easily 

transformed into each other during pull-in and pull-out cycles.  

However, our nanotube electromechanical system is operated as a SET; the 

mechanical properties coupled with a SET system will be addressed in this section. The 

conclusion of the following derivations are similar to the general expression of a field-

effect transistor or semiconducting/small-band-gap nanotube at room temperature, which 

have been discussed in Sazonova’s thesis [53]. Similar notations are used to make easy 

comparison, and the fundamental concept of SET can be found in Chapter I.   

The carbon nanotube resonator system we work with is shown in Figure III-19. The 

SWNT acts as a quantum dot which connects source-drain electrodes through tunnel 

junctions. The gate electrode can tune the electrical potential of the nanotube. We start 

with n number of electron charges giving a total charge ne on a nanotube (or –ne for 

holes), here we assume there is zero bias between source and drain voltages (VL and VR, 

respectively), with the drain contact grounded, yielding VL = VR = 0. From Section I-5, we 

can obtain the total equilibrium electrostatic energy as  

22 )21(
2
1)(

2
1

GGGGG VCCCneVC
C

E ∑
∑

−++= .                              (III-23) 

Minimizing the energy with respect to n, we obtain eVCn GG−= , corresponding to an 

induced charge  . As we discussed in Chapter I before, the charge  is a 

continuous variable and can be an arbitrarily small fraction of the charge e.  

GGVCQ −=0 0Q

As described in Section I-5-4, when the energy is in minimum but Q0 is not an integer 

(see Figure I-14), the maximum energy of the first term is 4cE  and the second term is 

usually dominated. Thus, we can neglect the first term and obtain 
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Thus, the electrostatic force in the z direction is 
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If there is a small AC voltage at frequency ω  applied to the gate electrode, shown as  

DC
G G GV V V ω= + % ,  

where )cos(~~ tVV GG ωω = , the electrostatic force applied on the nanotube is 
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The above equations are the expressions for the actuation forces, where the DC term is 

used to control the axial tension along the nanotube while the AC term stimulates the 

nanotube into the motion. 
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III-5-2 Capacitive Sensing Technique 

In this electromechanical system, we can write down the capacitance as a function of 

vertical distance along x direction  (in Figure III-19). In order to couple 

the mechanical degree of freedom into the electronic quantity, i.e., current or conductance, 

at the certain source-drain voltage , we can assume the conductance G is a function of 

the applied gate voltage and gate capacitance as . Once the nanotube is in 

motion, we can denote the additional displacement by 

dxxzcC
L

G ∫=
0

)]([

sdV

),( GG CVG

ωz~ due to a small AC modulation of 

gate voltage ω
GV~ , and the total gate voltage as ω

G
DC

GG VVV ~+= . Thus, the capacitance ω
GC~  

is modulated at the same harmonic vibration as ωz~  and total gate capacitance can be 

expressed as , where ωω zCCzzC DC
GG

~]~[ 0 ′+≈+ ωω zCCG
~~ ′≅ . To describe the conductance 

with this small AC modulation at ω , extract the lowest order of Taylor’s expansion with 

small ω
GV~ and ω

GC~  , and we obtain  

K+++≅++ ωωωω
G

G
G

G
GGGGGG C

dC
dGV

dV
dGCVGCCVVG ~~),()~,~(  .        (III-25) 

In the above we assumed that the modulation is small and neglected the cross term.  

In order to simplify the above equation into an expression dependent upon 

measurable quantities, we consider the excess static charge Q0 induced by the applied 

gate voltage as . In the SET operating regime, we can tune the gate voltage 

and let the induced charge Q

GGo VCQ −=

0 be such that the operating point is very close to the 

shoulder of a Coulomb peak; the equilibrium number of electron on the shoulder of a 

peak is very close to the half integer 21+n , corresponding to the maximum of a 

Coulomb blockade peak. 
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Here we treat and as independent variables; GC GV GGo VCQ −= is a continuous 

variable without any constraint. Any charge difference can come from two terms  

GGGG VCVCQ δδδ −−=0 . Thus, using the chain rule 
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And we can also obtain 
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Thus from eq. (III-27) we can write down the relation  
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Substituting the eq. (III-28) into eq. (III-26) 
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Therefore, we can rewrite the conductance with this small AC modulation at ω , 
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The above expression is the conductance coupled with the mechanical motion at the 

frequencyω .     
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III-5-3 Mixing Technique 

To detect the motion of nanotube on resonance, we exploit its transport characteristic 

based on its single electron transistor behavior, the Coulomb blockade feature, which 

leads to much higher sensitivity of 
GdV

dG  than in the previous experiments at room 

temperature. These previous works [49, 50] have been tested by using 1–2 µm 

semiconducting or small-band-gap carbon nanotubes at room temperature. We apply an 

AC source voltage at frequency ωω ∆+  and current can be expressed into two terms 

with different frequencies,  
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The first term of the equation is at the original frequency ωω ∆+ , and the second term is 

the mixing signal from  
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Taking the low frequency component ω∆ , 
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The mixing signal equation reveals two origins of contributions, the first term is the 

background signal and the second term is due to the mechanical motion. Furthermore, 

both background and mechanical signals are proportional to a derivative of the 
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transconductance

GdV
dG , which can be greatly improved at low temperature in the 

Coulomb blockade regime. In this regime 
GdV

dG is proportional to the height of Coulomb 

peaks, and the background can always be subtracted. 

III-5-4 Displacement of a Vibrating Nanotube  

In this section, we would like estimate how much displacement is induced in this 

electromechanical system. If we take another look at eq. (III-31) and consider the rms 

current:  

sd
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G
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G
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C
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dV
dGI ~
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22
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⋅= , 

where is the measureable quantity; rmsI
GdV

dG can be found in a DC measurement. and DC
GV

sdV~  are the known voltage sources. Therefore, the ratio of the capacitance change can be 

expressed as 
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221

~

⋅
= . 

Hence, we can first get the estimation of GC~  based on all known parameters and we 

assume this is a simple spring, such that we can find the effective spring constant  and 

displacement 

effk

zδ . As an order-of-magnitude estimate, we consider only the bending 

stress in this system, and thus according to the eq. (III-14), we can write down the force 

per unit length as  
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Here f is the electrostatic force on the nanotube, assuming uniform distribution along the 

tube axis. In this case, we ignore the axial tension T and the mass of nanotube itself. In 



 

 

87
addition, the material is homogenous along the tube axis, which applies to the cross-

section of tube the same in every position. We obtain 

4
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−= , 

the solution is  with the doubly clamped boundary 4
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and the equation itself 4
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Thus, we yield the solution as  
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and the maximum deflection at the center for a uniformly loaded beam is given 

( )
A

L

EI
Lfu

384

4

2 =  

where  is the loading force per unit length, f E is the modulus of elasticity, and is the 

area moment of inertia of the beam. Since the force F is , we find 

AI

Lf 3384 LEIk Aeff = . 

On resonance the force is enhanced by the quality factor Q, so we have  

( ) eff
L kQFuz == 2δ .                                              (III-32) 

Now we need to find F. This follows from electrostatics. The gate capacitance follows 

from that between a wire and a plane, with r the nanotube radius, z the height above the 

gate, and 0ε  the vacuum permittivity:  
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( )rz
L

CG /2ln
2 0επ≅ . 

The force F from the previous section is then given by 
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G
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GGel VVCgF ~~ ′=  

where 222 ])(2[ ∑∑∑ −−−= CCCCg G , 1g ≅ − when ,G LC C CR<< . 

For mixing, only the ω  frequency component is relevant: 
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From eq. (III-32) and eq. (III-33), we can find zδ : 

( )

4
0

2

2
384ln 2 /

DC
G G

A

L QLz V V
EIz z r

ωπεδ = −
⎡ ⎤⎣ ⎦

% . 

Finally, from this we can find zdzdCC G δδ = : 
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Looking at (III-31), we see that the current signal decreases as L5, but is proportional to 

, and varies as a large power in the length. Thus, we expect a decrease in 

length must be compensated for by significantly increasing the various applied voltages 

in order to maintain the same signal level. 

2~~ DC
GGsd VVV

III-6 Experimental Setup  

Our experimental setup consists of the following instruments: (1) two Agilent 8648D 

Synthesized RF Signal Generators for source and gate electrodes; (2) one Stanford 
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Research System Model SR830 DSP lock-in amplifier; (3) and one current pre-

amplifier, DL instruments Model 1211. Moreover, we have a customized cryostat with a 

dry pump, Adixen - Drytel 1025. The whole setup for the mass sensing application is 

much simpler than an Oxford Helium-3 system. 

III-6-1 Circuit Design 

Z0 1nF

 

Figure III-21. Schematic diagram of the measurement circuit. The 
transmission lines with characteristic impedance Z0 = 50 Ω are both 
terminated at each end with a 50 Ω resistor to ground. There are two RF 
voltages: ω

sdV~  and ωω ∆+
GV~  are the AC source-drain and gate voltage, 

respectively. There are two DC voltages: and  are DC source-
drain and gate voltage, respectively.  The nanotube is shown in red. 

DC
sdV DC

GV

The following schematic diagram is the circuit design for a two-source mixing technique. 

Since the operating frequency is normally below 1 GHz, and the wavelength of a 1 GHz 

signal in free space is about 30 cm, which is much longer than our device circuit in the 

sample holder (3 cm), the only challenge is to put all the connector and components into 

a compact circuit board. To this end we designed a 3D circuit board integrated with 

surface-mounted resistors and capacitors. We used the vector network analyzer to check 

the reflection coefficient, and this circuit has less than 10% reflection over a range of 10 

MHz–1 GHz.   

1kΩ

Z0 1nF

DC
GV

1kΩ

DC
sdV

I 
ref. Lock-in 

ωω ∆+
GV~ ω
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III-6-2 Customized Cryostat System Design—Cryotube 

The advantage of running this experiment at low temperature, as mentioned before, is to 

achieve high 
G

dG
dV  from the Coulomb blockade features and also to enable adsorbates to 

stick on the nanotube without thermally driven desorption for the application of atomic-

scale mass sensing. 

Initially, in the interest of fundamental research, our devices were operated in Oxford 

Helium-3 insert incorporated with SMA cables and several modifications (i.e., a series of 

RF attenuators thermally anchored at different reservoirs to reduce the thermal noise). 

After the preliminary result from loading helium gas in the sample chamber, we became 

aware of the possibility of reaching atomic-scale mass sensing. By our estimate, it is 

possible to reach single proton mass sensitivity in the optimal case, which means it may 

eventually be possible to distinguish isotopes in this NEMs mass sensor. Thus, atomic-

scale mass sensing is a milestone we were capable of reaching. However, our Oxford 

Helium-3 insert lacks a line of sight allowing atoms (except helium which does not 

condense on the cold surfaces) to arrive on the nanotube, thus we immediately designed 

and built a customized cryotube to achieve this atomic-scale mass sensing.  

This customized cryotube is designed to meet several criteria: clear line of sight, liquid 

helium temperature, high vacuum, electrical feedthrough, and easy to operate. In the 

following, several major concepts of cryostat design will be introduced. 

Baffles with the BeCu Fingers 

For the application of mass sensing, the cryostat system must be operated at high vacuum 

(< 10-7 torr) to allow the atomic/molecular beam to arrive ballistically on our devices. It 

would not be possible to maintain the system at liquid-helium temperature by exchange 

gas alone. Besides, there is always thermal radiation that can heat up the cold reservoir.   

In the beginning of the cooling process, a few Torr of helium gas are added in the 

cryotube as exchange gas, which assists in cooling down the system quickly. After the 
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cryotube reaches liquid-helium temperature for 10 minutes, we pump out the exchange 

gas for a couple of hours, using built-in Allen-Bradley resistors to monitor the interior 

device temperature. In order to maintain the cryotube at liquid-helium temperature, the 

only means of cooling is via thermal conduction. Therefore, we designed a series of 

cooper baffles with the BeCu fingers, to perform as good thermal anchors and physical 

baffles/cold trap for gas that is not following the line of sight trajectory. 

The BeCu fingers are flexible and can easily slide in and out of the can and make 

reasonable thermal contact to conduct heat. The baffles are placed below the liquid- 

helium level. These thermally anchored cold baffles not only can trap the atomic or 

molecular beam off the line of sight, but also block the radiation from the top at room 

temperature. We successfully operated this cryostat with high vacuum at around 5 K.  

Electrical Feedthrough 

Seven Manganin DC wires and two stainless steel SMA feedthroughs were placed inside 

the cryotube: five DC lines for devices and two for the Allen-Bradley thermal resistor.  

Note that the DC and RF wire materials are carefully chosen to prevent excessive heat 

from reaching the sample. 

Nozzles  

The nozzle is best maintained at room temperature, in order to prevent the aperture from 

being clogged by ice. We have three nozzle aperture sizes: 135 mm, 200 mm, and 300 

mm. From the known geometry of the cryotube, we can estimate the atomic flux for the 

analyte gases. An appropriate atomic flux can lead us to observe one or two atoms 

arriving on nanotube resonator within a few seconds without building a mechanical 

shutter [38]. 

In order to calculate the atomic flux, we first consider the Knudsen number LKn λ= , 

the ratio of the molecular mean free path length λ  to a representative physical length 

scale , taken to be the diameter of the aperture. In our experiment for all kinds of gases, L
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the Kn is greater than 1, and therefore we can assume those gases are in thermal 

equilibrium in the reservoir and effuse into the sample space through the aperture. This 

enables the determination of the atomic flux 0ϕ through the aperture, yielding 

TkmP Bπϕ 20 = , where P is the pressure in the reservoir, m is the atomic or molecular 

mass, is Boltzmann’s constant, and T is the temperature. Bk

Thermal Interfacial Resistance 

We can manage the thermal conduction in every piece of material by checking the 

thermal properties of the materials. Nevertheless, the thermal interfacial resistances are 

always not easy to deal with. They are different for different materials. The interfacial 

resistance is, to a good approximation, a function of the normal force between different 

surfaces. However, grease also helps, presumably because it increases the effective 

contact area between materials. Therefore, to connect two pieces of material, there are a 

few options to use: apply grease (thermally conductive but electrical insulating), use 

screws to increase the normal force between them, or use stiff spring. Gold-plated copper 

block with screws is also recommended. Detailed discussion can be found in ref. [54].   
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DC wires 

Baffle 

SMA cables 

Baffle with BeCu fingers 

Sample holder 

 
Spring with copper mesh  

Nozzle 

Figure III-22. The interior design of the customized cryotube. The total 

length of this tube is about 140 cm.  

III-7 Mass Sensing  

At the temperature T ≈ 6 K of our experiment, the nanotubes act as single-electron 

transistors (SET) in which the charge on the nanotube is an integer multiple of the 

electron charge e [55]. As the gate voltage  is swept, electrons enter the SET one at a GV
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time, with each transition between discrete charge states producing a Coulomb peak in 

the source-drain conductance (see, e.g., ref [56]). Figure III-23 shows this behavior. To 

measure the resonant vibrational amplitude of the carbon nanotubes, we drive their 

motion electrostatically and take advantage of these SET properties to sense the resulting 

displacement capacitively [57]. This approach is adapted from that described by 

Sazonova et al. [49] Figure III-21 shows a diagram of the experimental setup. A voltage 

)cos(~ tVVV sd
DC

sdsd ω+=  is applied across the source and drain electrodes, where t is the 

time and ω is the frequency, while a voltage with a detuned AC component at frequency 

ωω ∆+  is applied to the gate so that ])cos[(~ tVVV G
DC

GG ωω ∆++= . The nanotube 

transistor mixes the signals to yield a current I  that is measured by a lock-in amplifier 

with a ~1 Hz bandwidth at the difference frequency ω∆ . Tuning ω to a nanomechanical 

resonance of the nanotube produces vibrations that modulate the tube-gate capacitance, 

changing the measured I in proportion to the vibration amplitude. 

 
DC

GV

Figure III-23. Source-drain conductance versus gate voltage showing 
Coulomb peaks and single-electron transistor behavior at T ≈ 6K.  

Figure III-24 (a) shows a color-scale plot of I  versus and DC
GV πω 2=f  at T ≈ 6 K 

for a suspended nanotube device. The tube diameter d is ~ 1 nm, as determined by atomic 

force microscopy on the substrate-supported segment. From d, we estimate the suspended 

tube mass m0 ~ 1000 zg. Typical values for the applied voltages are sdV~ ≈ 0.8 mV and 
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GV~ ≈ 0.8 mV. The current signal measured at the lock-in amplifier is proportional 

to GdVdG [49, 50]. On the shoulders of the Coulomb peaks GdVdG becomes large, as 

high as ~ 380 µS/V, producing the vertical stripelike background in Figure III-24 (a).  

 

DC
GV

Figure III-24. Nanotube resonator vibration characteristics. (a) Color plot 
of the mixing current I  detected by the lock-in amplifier at the difference 
frequency, as described in the text, versus DC gate voltage and drive 
frequency. (b) Line trace of the mixing current 

DC
GV

I  versus the drive 
frequency f. A peak occurs when the frequency is tuned to a 
nanomechanical resonance of the nanotube device. Achieving such large 
peak heights and resulting signal-to noise ratio required the side gate to be 
in close proximity to the nanotube, typically 150 nm or less. 

The approximately horizontal feature corresponds to a nanomechanical resonance. 

Increasing increases the tension in the nanotube, raising its resonance frequency[49]. DC
GV
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This produces a finite-slope feature [49, 50]. From the small slack we observe in our 

SEM images, we expect that the nanotube in our device behaves as a stretched string [48, 

49]. Following a similar analysis as given in ref. [49], we find the characteristic vibration 

amplitude for our system with the given sdV~ and GV~ is ~ 1 nm. A line trace of I  versus f is 

shown in Figure III-24 (b), showing that the resonance has a quality factor Q ~ 200. The 

characteristic fundamental-mode resonance frequencies f0 = 100−300 MHz are consistent 

with those expected for single-walled nanotubes with the ~ 400−500 nm length and 

nanometer-scale diameters under study [49, 58]. Note that the line shape is asymmetric, 

which may indicate the onset of nonlinearity[49, 59]. At sufficiently large drives, such 

nonlinearity may produce an upper bound on the signal-to-noise ratio for frequency 

measurements [59], although this is not a limitation of our present experiment. 

III-7-1 Xenon Mass Loading at T ~5-6K 

After identifying a promising resonance peak (typically > 100 pA for the given sdV~ and 

GV~ ), we expose the device to an atomic or molecular beam. Figure III-22 shows the 

experimental setup, which is similar to that employed by Yang et al. [38] to mass load 

top-down fabricated nanowire mass sensors. A reservoir maintained near room 

temperature connects to the sample space through a small aperture (≈ 135 µm in 

diameter) and is filled with the analyte gas. Baffles maintained near liquid helium 

temperature are interposed between the aperture and sample and serve to block any atoms 

that are not on a ballistic trajectory from the inlet. Assuming that the gas effuses into the 

sample space through the aperture enables the determination of the atomic flux 0ϕ  

through the aperture, yielding TkmP Bπϕ 20 = , where P is the pressure in the 

reservoir, m is the atomic or molecular mass, kB is Boltzmann’s constant, and T is the 

temperature. From 0ϕ and the distance between the aperture and the sample , we 

determine the atomic flux arriving at the nanotube, 

mh 9.0≅

2
00 2 hAn πϕϕ =  , where 

is the area of the aperture used in our experiments.  28104.1 mA −×≅
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We first fill the reservoir with Xe. The main panel of Figure III-25 shows that the 

resonance traces shift and broaden as the atoms land on the nanotube and adsorb on the 

surface. The amplitude also decreases slightly. The broadening and amplitude decrease 

indicate a reduction in the effective quality factor of the nanotube resonator, although 

further experiments are required to address the origin of this behavior. The black trace 

shows the initial resonance, while the red and blue traces show the resonance after ≈ 600 

s and ≈ 1600 s, respectively. Based on the resonance frequency shift , which 

in a harmonic oscillator picture for the vibrating nanotube should follow 

MHz30 ≈∆f

000 2mmff A=∆ , where is the adsorbed mass, we deduce that the  corresponds 

to approximately 100–200 Xe atoms. At the low temperature of our experiment, 

desorption does not readily occur and the resonance frequency remains stable once the 

reservoir is pumped out. Finally, we note that in an independent trial we mass loaded the 

resonator with a constant background pressure of Helium and found that the frequency 

increased with the gate voltage magnitude, with a similar slope as in vacuum. 

Am Am

 

Figure III-25. Response of nanomechanical resonance under mass loading 
and experimental setup. Mixing current I versus drive frequency f for a 
resonator device during mass loading by Xe. The black curve shows the 
initial resonance, the red curve after mass loading for ≈ 600 s, and the blue 
curve after mass loading for ≈ 1600 s.  
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III-7-2 Atomic-Scale Mass Sensing 

The large observed shifts for the small adsorbed mass suggests our devices could be 

sensitive to the arrival of individual atoms. To explore this, we fixed the drive frequency 

to the side of the resonance peak and then monitored the lock-in current as a function of 

time. Changes in the resonance frequency thereby produced changes in the lock-in 

current. We then exposed the nanotube to an atomic arrival rate of ~ 3 atoms/s by filling 

the reservoir to a pressure of ~ 1 Torr. Before the mass loading begins by filling the 

reservoir, I  is roughly constant, demonstrating the stability of our device. Once the Xe 

fills the reservoir, at the time indicated by the arrow, I  begins to increase as the 

resonance peak shifts downward in frequency due to the mass loading. Remarkably, I  

shows a series of steplike features with the largest ~ 10 pA as the Xe flux is maintained. 

After ~ 600 s, the reservoir is emptied and the current rise stops. 
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occurring for adsorption in the center of the nanotube. Modeling the nanotube as a 

stretched string and using the result for the frequency shift due to an attached point mass 

(e.g., ref. [60]), we find that for 0mm << , where m is the atomic mass 

]/)(sin[)/sin(
00

0 LaLLa
m
m

f
f

−−≅
∆ ππ                       (III-34) 

(a) 
0.02 

0.01 

0 
0

%⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ∆
f
f

0

 

100 200 300 400 
(b) Nanotube Length  

600 

 

Figure III-27 Simulation of a point mass attached on the different position 
of nanotube. (a) The simulated distribution of frequency change by a 
single atom landing on the nanotube. (b) A simulated distribution of count 
of frequency shifts corresponding to (a). Both simulations are based on the 
following device parameters: length is 450 nm, diameter is 1 nm, resonant 
frequency is 223 MHz, nanotube mass = 1076 zg, adsorbate: Xenon 
(0.218 zg). 

where a is the position along the nanotube at which the atom absorbs, and L is the 

suspended length. Assuming the atoms land anywhere along the nanotube with equal 
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probability, the mean of  is00 / ff∆ 000 2// mmff =∆ , and the mean square value 

is 2
08

32
00 )/()/( mmff =∆ . A simulation of a point mass attached on a different position 

of nanotube is shown in Figure III-27 (a), we can easily tell the largest frequency change 

happened in the center of the nanotube. Here we assume that we are exciting the 

fundamental mode, although relaxing that assumption yields the same results. The 

general description for any higher modes is that the largest frequency changes happen in 

the antinodes. There is another simulation of numbers of counts for getting the large 

frequency changes for the fundamental mode as well in Figure III-27 (b). Two piles of 

counts fall into the extreme cases indicating the contributions from the antinodes, where 

the frequency shift is stationary with respect to position variations.        

 The red trace in Figure III-26 (a) shows a  simulated time trace of the current based on 

eq. (III-34), using the parameters m0  ~ 1000 zg, m = mXe = 0.218 zg, and an adsorption 

rate of 0.07 atoms/s, determined from m0 and the slope of the frequency versus time 

curve. The trace, plotted without free parameters, shows a series of steps each 

corresponding to the adsorption of an atom. The largest single steps occur when the 

atoms land near or at the center of the tube and are of magnitude 5.8 pA. In comparison, 

the root-mean-square noise level we observe is ~ 1.4 pA. This calculation suggests that 

our measurement is sensitive to the added mass of individual Xe atoms, provided they 

land near the tube center. Steps of this order of magnitude are apparent in Figure III-26(a), 

although we cannot exclude the possibility of several atoms adsorbing on the nanotube 

within the 1 s measurement time constant. On the basis of 00 ff∆ given above and the 

total 00 ff∆ ~ 3600 ppm for the entire mass loading period, we estimate the nanotube 

captured ~ 30 Xe atoms during the mass loading process. This indicates that only about 

3% of the incident Xe atoms stick to the surface upon colliding with the nanotube, 

consistent with molecular dynamic calculations of Xe collisions with nanotubes [61, 62], 

which predict that nanotubes will capture and adsorb only a small fraction of incident 

atoms. Note that, compared to graphene, the highly curved geometry of a nanotube 

produces a range of effective incident angles to the normal and is expected to somewhat 
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lower the binding potential energy. In addition, the sticking coefficient may be further 

reduced by the presence of surface impurities [63], e.g., processing residue. 

Figure III-26(b) shows similar data taken by mass loading the nanotube with Ar. The 

reservoir is loaded at the time indicated by the arrow and emptied after about ~ 1200 s. 

The mean mass accumulation rate is ~ 2 times smaller than for the data shown in Figure 

III-26(a), although the reservoir pressure was larger, suggesting that the sticking 

coefficient for Ar on the nanotube is smaller than that for Xe. The red curve below the 

data shows a simulated trace with m0 = 1000 zg, m = mAr = 0.066 zg, and an adsorption 

rate of ~ 0.09 atoms/s, which appears similar to the data. Compared to the data for Xe, 

the Ar data has narrower plateaus and shorter steps. 

III-7-3 Atomic Shot Noise Analysis 

To use nanotubes as an atomic scale mass sensor, we require a measurement of m0. To 

achieve this, we note that these frequency shifts during the adsorption could be viewed as 

arising from shot noise due to the arriving atoms, similar to the adsorption-desorption 

noise expected for a resonator immersed in a gas [64-66]. Studying the shot noise enables 

the statistical fluctuations in mass changes due to atomic arrival to be analyzed even 

when the smallest individual steps may be obscured by the noise floor present in the 

measurement. We now compute the expected magnitude of the shot noise. Shot noise 

produces fluctuations in the mass arrival current dtdmA . The mean value of Adm dt  

, where Γ is the mean atomic adsorption rate. This is related to the mean rate of 

increase 

m= Γ

dtdIH = in the current by dfdIfmmdfdIfffH 002
1

000 Γ=∆Γ= , 

where dfdI is the slope of the resonance curve at the operating point, taken to be 

roughly constant over a significant portion of the side of a resonance. The shot noise 

power S of H is 2
02 IS ∆Γ= , where 2

0I∆ is the mean-square current increase from a 

single atom adsorption event. From this we find HfdfdImmt 004
32

0 =σ , where t0 is 

an averaging time window (1/t0 is the effective measurement bandwidth) and σ is the 
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standard deviation of the window-averaged H. This expression can be rearranged to 

express the mass ratio m/m0 in terms of only known or measurable parameter: 

dfdIfH
t

m
m

0

2
0

0 3
4 σ

=                                             (III-35) 

(a) (b) 

 

Figure III-28. The effective shot noise power versus effective mass current 
for a number of different data runs (a) for Xe and (b) for Ar. In measuring 
the shot noise, care was taken to select only those data sets in which the 
current was generally monotonically increasing. Some data sets, 
particularly after the nanotubes had a significant amount of accumulated 
mass, showed large up and down current fluctuations relative to the 
initially measured background noise, which we attribute to the surface 
diffusion of adsorbed atoms, possibly driven by the impinging atoms. Data 
sets with such fluctuations did not generally yield consistent results for the 
shot noise versus the adsorbate atomic mass. 

We now use this result to determine m0 from the experimental data. The inset to 

Figure III-28(a) shows a plot of H with t0 ~ 50 s for the data shown in the main panel. 

Inspecting eq. (III-35) indicates that if we plot an effective noise power 2
03

4 σtS N =  

versus an effective mass current dfdIfHI mass 0= , we expect the data to fall on a 

straight line with a slope equal to m/m0. The solid circles in Figure III-28(a) show SN 

versus Imass taken from five different data sets. In each data set, to account for excess 

fluctuations due to the background noise, we subtract the variance taken from before 
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mass loading from the variance taken during mass loading. Fitting a straight line that 

goes through the origin using statistical weighting (blue line) yields a slope 1.4 × 10-4. 

Using the known mass of Xe of 0.218 zg yields a nanotube mass m0 ~ 1600 zg, consistent 

with the expected value based on the nanotube diameter and length. We have therefore 

used Xe to weigh the suspended nanotube segment. 

With the measured mass of the nanotube, the atomic mass of Ar can then be 

determined from our data, such as shown in the inset to Figure III-28(b). Figure III-28(b) 

shows SN versus Imass data taken from four different data sets. Fitting a straight line 

through the origin to these points using statistical weighting (red line) yields a slope of 

5.5 × 10-5. Using the measured value for m0 yields an Ar atomic mass of 0.085 zg, in 

agreement with the expected mass of 0.066 zg. We have therefore weighed the 

potentially unknown atomic species of Ar using the mass-calibrated nanotube, 

demonstrating the potential of using nanotubes to perform ultraminiaturized mass 

spectrometry on a chip. 

III-7-4 Origin of the Noise 

Before any mass loading, there are fluctuations in current shown both in Figure III-26 (a) 

and (b), the root-mean-square noise level we observe is ~ 1.4 pA with the lock-in time 

constant ~ 1 s. Based on the relations found in ref. [64] and the physical parameters of 

our devices, the noise is too large to be accounted for by thermomechanical or 

temperature fluctuation noise. We therefore attribute this background noise to 

environmental charge fluctuations, which would yield a charge noise of ~ 10-4 e/Hz1/2, 

similar to that found in previous experiments on nanotube SETs (e.g., ref. [67]).  

To characterize the performance of a single-electron transistor, we determine how 

accurately charge on the gate can be measured eQδ . In order to calculate the charge 

fluctuations Qδ , we start with the measurable current fluctuation,  
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The voltage difference required to add an electron in nanotube is . Thus we 

can write down, 
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And substituting eq. (III-37) for eq. (III-36), we have  
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where in this data set the current noise is 1.4pA/ HzIδ = , and estimate the  

~ 300µS V,
G

dG
dV  from data in Figure III-23. 0.0625VGV∆ =

Hz
10~ 4 eQ −δ , which is 

similar to the value obtained from the SET at 60K in the ref. [67]. 

III-8 Summary 

The atomic-scale mass resolution we observe here has significant scope for further 

improvement, for example, by using shorter nanotubes to reduce the nanotube mass, 

achieving better contacts, lowering the temperature to increase dG/dVG, and maintaining 

the drive frequency near resonance using feedback to improve the dynamic range of mass 

sensitivity. Such further improvement may conceivably permit a resolution on the order 

of the proton mass ~1 yg, which could enable isotopic or chemical identification. Finally, 

for sufficiently short nanotubes, room temperature operation of the nanotubes as single-
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electron transistors [67] may also yield highly sensitive detecting and weighing of 

adsorbates. Finally, we note that similar results came out independently from the Zettl 

group in Berkeley in 2008 [68]. 

Appendix  

In this section, some preliminary experiments were not completed during my graduate 

study. A few initial results and observations will be discussed. 

A-1 Argon Desorption at T ~ 20K 

Carbon nanotube resonators provide an opportunity to study the interaction between 

adsorbates and nanotube cylindrical surface. We found that the estimated binding energy 

of argon on carbon nanotubes is less than on graphite at T ~ 20 K, this result might be 

attributed to the curved surface lowering the binding energy.   

This experiment is performed at T ~ 20 K; we found that Argon desorbs readily at this 

temperature. In order to measure the desorption rate, argon gas is effused into the sample 

space, following which the nanotube is mass loaded. We then turn on the pump to break 

the equilibrium, then monitor the favored desorption process. We record both amplitude 

(R) and phase (θ) evolving over a time period.  
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Figure III-29. Ar mass loading at T ~ 20 K. The resonant frequency up-shifted 
over a time period. (a) Shows the  amplitude part of peak versus time. (b) 
Shows the phase part of the peak versus time  

We can see two obvious curves from both signals, and then we carefully identified 

peaks in every line trace from phase signals, and plotted all the frequencies versus  time 

in Figure III-30. 

368 

 

Figure III-30. The desorption curve with a fit parameter τ ~ 200 sec. The 
left-frame scale is frequency and the right-frame scale is in the number of 
desorption argon atoms relative to steady state.   

The associated microscopic thermal dynamical desorption rate ][][ Nk
dt
Nd

−= , where 

[N] is the number of argon atoms that stick to the nanotubes and k  is the rate constant. 

However, the rate equation can be rewritten in macroscopic phenomenological 

expression as 

⎥⎦
⎤

⎢⎣
⎡ −−= )exp(10 τ

tNN ,                                                 (III.A-1) 

where τ is the macroscopic time constant and  is the total amount of the adhered 

atoms having escaped from the surface. Also, the reaction rate coefficient k has a 

temperature dependence, which typically is given by the Arrhenius equation.  
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a−==                                            (III.A-2) 

where is an activation energy and is the thermal energy. At temperature aE TkB T the 

molecules have energies given by a Boltzmann distribution; one can expect the number 

of collisions with energy greater than to be proportional to aE )exp( Tk
E
B

a− . A is an attempt 

frequency factor. In the desorption case, is equivalent to aE ∆ , the binding energy, and A 

is equivalent to Aω , the characteristic of the vibrational frequency of the bond holding 

adsorbates to surfaces, typically .  11310~ −− sAω

For the total amount of adhered atoms to escape from the surface, we can write 

down the rate equation; to integrate this equation, we can find where 

0N

τ is the macroscopic 

time constant )exp()(1 TkETk BaA −== ωτ . From the data, we found the fitting 

parameter τ ~206 sec, therefore, the estimated binding energy  ~ 60 meV, which is 

somewhat smaller than the previous binding energy obtained for argon on graphite ~ 

1113K (95.9 meV) [69, 70]. This discrepancy might be attributable to nanotube 

curvature, and having only a wrapped single sheet, in contrast to the flat multilayer 

structure of graphite.     

aE

Carbon nanotube resonators are an important breakthrough in NEMS not only 

because they enable high sensitivity of force or mass sensing, but also because they 

provides a unique platform for exploring the surface properties from a nearly atomically 

perfect surface, such as the above case in which we studied the binding energy between 

inert gases and carbon nanotubes.  

A-2 Nonlinearity and Duffing Oscillator  

In all the previous sections we only considered the linear response of mechanical 

oscillators. However, when the drive becomes sufficiently large, a mechanical system can 

be driven into a nonlinear regime. Figure III-31 shows the nonlinear behavior of a 
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platinum nanowire resonator 43 nm in diameter and 1.3 µm in length [71]. The main 

panel shows the drastic change in shape via a strain hardening effect while the driving 

amplitude increases; the inset shows the development of hysteresis or jump phenomenon 

for a nonlinear oscillator. Our carbon nanotube resonator has shown similar results, the 

asymmetric lineshapes can be found in Figure III-24 (b) and Figure III-25.  

 

Figure III-31. The nonlinear oscillator made from Pt nanowire device [71]. 

Here we introduce the Duffing oscillator [72] to model this nonlinear system. Based 

on the formulation of the Duffing oscillator, the dominant nonlinearity in the restoring 

force is cubic which provides a mode–mode coupling, analogous to photon–photon 

coupling in nonlinear dielectrics, and drives instabilities. The equation is expressed as 

)cos()()()()( 032
0

0 t
m
F

tztztz
Q

tz ωαω
ω

=+++ &&&                      (III-A.3) 

where )1( 2
0

2

2

2

43
4

0 EI
TL

S
EI

L πµ
πω +=  and  ( )42

18 L
E π
µα = [73], where S is the cross-sectional area, 

E is Young’s modulus, µ is the density, I is the moment of inertia about the longitudinal 

axis of the beam, and Q is the mechanical quality factor as obtained in the linear regime.  
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Figure III-32 shows a typical response of a Duffing oscillator while the amplitude 

of vibration is increased. Usually the vibration amplitudes are small, the lineshape of the 

response is Lorentzian. However, above the critical amplitude , the peak is pulled over 

toward higher frequencies due to the strain hardening effect. At this point, there are three 

solutions to III-A.3: two stable solutions and one unstable. The onset of nonlinearity due 

to elongation of the beam is expected at [72] 

ca
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Then the critical amplitude for the onset of nonlinearity of carbon nanotube is expressed  
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 The dynamic range is shown in Figure III-32.  

 

Figure III-32. Nonlinear resonator response. Resonator response versus 
driving frequency for increasing vibration amplitude[73] 
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A-3 Quality Factor 

The quality factor is a dimensionless parameter which is the ratio of the time constant for 

decay of an oscillating physical system's amplitude to its oscillation period. Equivalently, 

it compares the frequency at which a system oscillates to the rate at which it dissipates its 

energy. A higher Q indicates a lower rate of energy dissipation relative to the oscillation 

frequency, so the oscillations decay more slowly.  

Generally speaking, nanotube resonators in our system are easily driven into the 

nonlinear regime, which leads to the prediction that the dynamic range of a nanotube is 

small [73]. Even the AC drive amplitudes in our case are ~ 0.8 mV at ~ 6K; the resonator 

responds in an asymmetric shape shown in Figure III-24(b) and Figure III-25—it is hard 

to obtain the quality factor precisely from a non-Lorentzian lineshape. A coarse 

estimation of the quality factor in our nanotube resonator is ~200–2000. However, to 

study the cause of quality factor in the bottom-up fabrication system is hard to examine 

systematically, especially for our nanotube devices (which are made by random tube 

growth involving different type of nanotubes). Also the contact resistance varies from 

tube to tube and each fabrication.  

Here we only address the possible dissipation mechanisms of a carbon nanotube 

resonator, we can rule out the cause of air damping in high-vacuum operation 

requirement, the clamping loss due to the small aspect ratio of beams, and the surface 

roughness.  
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Chapter IV 

Carbon-Nanotube Linear-Bearing Nanoswitches[74] 

IV-1 Abstract 

We exploit the remarkable low-friction bearing capabilities of multiwalled carbon 

nanotubes (MWNTs) to realize nanoelectromechanical switches. Our switches consist of 

two open-ended MWNT segments separated by a nanometer-scale gap. Switching occurs 

through electrostatically actuated sliding of the inner nanotube shells to close the gap, 

producing a conducting ON state. For double-walled nanotubes in particular, a gate 

voltage can restore the insulating OFF state. Acting as a nonvolatile memory element 

capable of several switching cycles, our devices are straightforward to implement, self-

aligned, and do not require complex fabrication or geometries, allowing for convenient 

scalability. 

IV-2 Introduction 

Microelectromechanical structures have produced a wealth of novel devices for sensing, 

actuation, and lab-on-a-chip applications. Making smaller nanomechanical systems 

promises faster and more compact versions of their larger counterparts, and it opens up 

the possibility of highly integrated nanoscale machines and logic circuits [75, 76]. 

However, challenges such as friction and precise control of device geometry remain 

important obstacles to the miniaturization of mechanical systems. Carbon nanotubes 

promise to address many of these challenges because of their intrinsic nanoscale 

dimensions, mechanical stiffness, structural perfection, and low intershell friction. Here 

we exploit the remarkable low-friction bearing capabilities [77-79] of multi- and double-

walled carbon nanotubes (MWNTs and DWNTs) to realize a nanoelectromechanical 

switch that operates on an entirely different principle than previous efforts exploiting 

nanotube bending [80-84].  
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Our nanotube bearing devices are fabricated in high yield by using electric 

breakdown [19] to create gaps in a free-standing multiwall nanotube device producing an 

insulating OFF state. The devices are actuated with electrostatic forces and undergo 

linear bearing motion that telescopes the inner shells in the two MWNT or DWNT 

segments [85] so that they bridge the gap. This restores electrical contact and produces an 

ON state. Adhesion forces between the nanotube ends maintain the conductive state. For 

double-walled nanotube devices in particular, the insulating state is controllably restored 

using a gate voltage, enabling several repeated ON/OFF cycles. We thereby create three-

terminal nonvolatile memory devices. We model the device behavior by considering the 

balance of electrostatic forces tending to close the device and restore the conductance and 

the retraction force from the intertube van der Waals forces. A fit of our model to data 

yields an estimate for the inner shell retraction force, which agrees with theoretical 

calculations as well as the results from atomic force microscopy (AFM) measurements 

[86]. Our results suggest that the intratube electrostatic repulsion makes a significant 

contribution to actuating the bearing motion. Finally, we estimate the switching speed of 

our devices, and find subnanosecond switching times for the typical nanoscale device 

geometries employed in our experiment, with considerable scope for further optimization 

of switching speed by using shorter and thinner nanotubes. 

IV-3 Sample Fabrication 

Samples are fabricated by one of two methods on top of heavily doped Si wafers capped 

by 300 nm or 1 µm of SiO2. The first method is to evaporate Cr/Au contacts on arc-

discharge synthesized MWNTs (dispersed in 1,2-dichloroethane) deposited on the 

substrate, and then use 10:1 buffered HF to etch the oxide and suspend the tubes, which is 

completely described in Section II-3. The second method is by forming the electrical 

leads, etching the oxide with 10:1 buffered HF, and then depositing MWNTs on top. A 

device schematic diagram with the nanotubes on top of the leads is shown in Figure IV-1. 



 

 

113

 

Figure IV-1. MWNT device geometry with attached electrodes and back 
gate 

Once the device is fabricated, we perform the electrical breakdown on MWNT devices to 

create a gap. The details of the electrical breakdown mechanism are discussed in Chapter 

II.  

 

Figure IV-2. Schematic diagram of a MWNT device tailored by electrical 
breakdown 

IV-4 Experimental Approach  

IV-4-1 Initial OFF State Preparation 

Our ~ 40 MWNT samples studied typically had an initial resistance ranging from ~10 kΩ 

to a few megaohms. A sufficiently high voltage, V, across the higher-resistance samples 

usually resulted in a rapid drop in resistance [87, 88]. This phenomenon enabled us to 

obtain low-resistance nanotube devices with resistance ~ 10−20 kΩ from nearly all 

contacted nanotubes. Figure IV-3 shows an I-V curve taken in an argon atmosphere from 

a device that was preannealed (device D1). The current rises approximately linearly until 

V ≈ 4.45 V, at which point I drops to zero and V is quickly ramped down. This 

p++ Si 

SiO2

Au/Cr 
+ - Vsd

A

+-  Vsd
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observation is consistent with previous work in which heating and electrical stress 

result in the successive breakdown of the nanotube shells [19]. Indeed, SEM examination 

of devices after breakdown typically shows two segments with tapered ends, with each 

segment consisting of 10−30 shells, separated by a gap d ≈ 5−20 nm. Figure IV-3 shows 

an SEM image from a representative device D2 with such a gap. After the gaps are 

formed, the devices are in an insulating OFF state, consistent with expected negligible 

tunnel current for electrode separation exceeding ~ 1−2 nm.  

 

Figure IV-3. Relay device from free-standing MWNT. Main panel: IV 
characteristics of device D1 leading to electrical breakdown. Inset: 
MWNT D2 with a nanometer-size gap after electrical breakdown 

IV-4-2 Switching to the ON State   

On application of a higher bias (typically in the range of ~ 5−10 V) to D1 in the OFF 

state, at a voltage V = 4.53 V as shown in Figure IV-4, the current increases abruptly, 

leading to a conductive ON state (open squares). Once the bias was reduced to 0 V, the 

device remains latched in this ON state, showing a finite zero-bias resistance (filled 

squares). In the latched ON state, subsequent SEM imaging of the devices shows that the 

gap vanishes, indicating nanomechanical motion of the nanotube shells to physically 

rejoin the two nanotube segments and complete the electrical circuit. The Figure IV-4 
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lower-right inset shows this closure for device D2. Our devices thus act as an 

electrostatically actuated nanomechanical switch. Approximately 1/3 of MWNT devices 

switched to the ON state with V ≤ 10 V. 

 

Figure IV-4. Relay device ON characteristics. Main panel: abrupt rise in 
conductance of device D1 on sweeping of voltage Vsd (open squares) and 
subsequent latching in the ON state (filled squares). Lower right inset: 
SEM image of D2 after latching shows that gap has closed. Upper right 
inset: schematic cup and cone model of the tube ends used for analysis. 

IV-5 Analysis  

Careful examination of the MWNT positions in a number of representative samples 

before and after joining showed that the outer shell remains pinned to the contact even 

when gaps as large as ~ 20 nm have been closed. Furthermore, SEM examination of our 

devices rarely shows any observable slack, consistent with the high mechanical stiffness 

of the ~ 10−20 nm diameter MWNTs. Thus, actuation is unlikely to occur in general by 

nanotube bending. Having ruled out these possibilities, we then consider telescoping of 

inner shells from their outer casing as the actuation mechanism [77]. We use the linear 

bearing model of Cumings and Zettl [77] to model the van der Waals force between 

shells within the MWNT. The bearing is expected to act as a constant-force spring, that 
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is, the force is independent of the extended length, with the expected retraction force 

FR = αR, with R the extended core radius and α ≈ 1 N/m a constant. To close the circuit, 

FR must be overcome by the electrostatic force due to the applied voltage. To model the 

electrostatic force, we approximate the MWNT segments with a cone for the tapered part, 

and a spherical cap at the tip (Figure IV-4, upper-left inset) [89]. The geometric 

parameters for this model (cap radius R, gap d, cone-half-angle θ) are carefully extracted 

from the SEM images using a MATLAB image-processing program. Note that we 

calibrated the SEM radius measurements carefully by comparing SEM images to AFM 

images on the same nanotube for a selected subset of the nanotubes. The estimated radius 

measurement error is ±1 nm, as indicated in Figure IV-5. 

The two main force contributions arise from electrostatic attraction between the 

segments and intrashell electrostatic repulsion within a segment. Both of these forces 

tend to slide one or more shells out to close the gap. It is most straightforward to estimate 

these for the case where the two segments are far apart (d >> R). In this case, the 

attractive force between segments (considered to be point charges for this evaluation) is 
222

0 )2( RdRV +πε  while the repulsive force within a segment (modeled as force 

between two halves of a charged sphere) is . The force balance gives 2
0Vπε

]1
)2(

[ 2

2
2

0 +
+

=
Rd

RVR πεα . 

Plotting V2 versus R for data points with d/R >> 1 should thus yield a straight line 

with a slope 0πεα  where α ≈ 1 N/m, obtained from previous AFM measurements [86]. 

Scaling data points as d/R in Figure IV-5, indeed we find that data points with the largest 

d/R (corresponding to the bigger squares) lie closest to α = 1 N/m.  

This demonstrates that for d/R in this range the dominant actuation force comes from the 

intratube repulsive forces rather than the intertube attractive forces. For data with d ≈ R 

(corresponding to the smaller squares) the data falls below the line, signifying a smaller 

voltage to overcome the van der Waals forces for a given R. Although accurate modeling 
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of the electrostatics for d ≈ R is challenging because of a lack of charge distribution 

information on individual shells, we expect that in this regime both the electrostatic 

intratube repulsion and intertube attraction are , leading to a smaller closing 

voltage than in the d » R regime, in qualitative agreement with our observations. 

2
0~ Vπε

 

Figure IV-5. Plot of  versus R. Data points’ sizes are proportional to 
d/R. Plot shows that data matches the parameter-free model (as indicated 
by the force constant of 1 N/m) closely for large d/R, where it is expected 
to have the greatest validity. The plot also reveals that samples with 
nanotube segments close in (R ≈ d) are actuated at lower V than those well 
separated (d >> R). 

2V

IV-6 DWNT Cycling Operation  

The above procedure of electrical breakdown and closing of gap with bias voltage has 

been applied to DWNTs as well. DWNTs were obtained commercially from NanoLab, 

Inc., and had a typical diameter D ≈ 3−6 nm. Using the p-doped silicon wafer as a back 

gate in these samples, we find that for high-enough gate voltage, devices switch back to 

the OFF state, thus enabling repeated ON−OFF cycles. Figure IV-6 shows the time-trace 

plot of DWNT device D3 (with a pre-breakdown resistance of 100 kΩ) for two cycles in 

Ar environment.  
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Figure IV-6 Three-terminal relay switching and operation. Plot shows the 
time trace of bias voltage (V), gate voltage (Vg), and conductance (G) for 
DWNT device D3 for two cycles. The device initially in the OFF state 
turns ON, OFF, and ON again, as seen in the plot of G. Transport data was 
obtained from D3 in series with a 1 MΩ protection resistor. 

In the OFF state, on applying a bias voltage, the conductance increases abruptly at Vsd 

= 9 V leading to the ON state. With Vsd = 10 mV, at Vgate = 110 V the device snaps back 

to the zero conductance (OFF) state. On application of bias voltage, at Vsd = 9 V the 

device turns ON again. Nearly all of the 10 DWNT devices tested successfully switched 

back to the ON state after electrical breakdown and either became insulating or remained 

latched in the ON state within 3−4 switching cycles. 

We consider the possible explanations for this reversible gate-switching. Previously, a 

gate voltage has been used to induce the same sign charge and create repulsive 

electrostatic forces between nanotubes in lateral contact, [90] thereby breaking the 

contact between two nanotubes. However, in our devices this mechanism is unlikely, 

because with the tapered geometry the electrostatic forces are unlikely to have any tensile 

component. 
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Another possibility is that the gate voltage places a bending stress on the nanotube 

that acts to break the connection. After setting the gate voltage back to zero, the nanotube 

segments elastically return to their original OFF state positions. Consider the conductor-

to-plane capacitance Ccp between a cylindrical conductor of radius R and a conducting 

plane a distance h from the cylinder, as shown in Figure IV-7, where 

)/2ln(
2

)/(cosh
2

1 Rh
l

Rh
lCcp

επεπ
≈= − . 

Thus we can obtain the electrostatic force (per unit length) on the nanotube due to Vg,  
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)]2[ln( Rhh
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el

πε
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Figure IV-7. (a) Schematic diagram of device configuration with 
electrostatic force present. (b) Simplified diagram of (a), representing an 
infinite conducting wire a distance h above an infinite conducting plane 

On the basis of elementary beam mechanics, the maximum bending stress 

corresponding to Fel, (occurring at the midpoint of the nanotube) is 32 34 DLFel πσ = . 

Vg L

D
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To determine the bending stress, we can continue the derivation in Section III-6-4, 

which has considered a doubly clamped nanotube and the maximum displacement  

( )
EI

Lfu L

384

4

2 = . 

From the relations of a bending element, the curvature 
xIE
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x
u 0
2

21
=

∂
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ρ

 and the 

bending stress xx IyM=σ . (A reminder: is the external moment and M is internal, 

.) We have 

0M

MM −=0 12)66( 22
0 fEIxxLLM x+−=  with the maximum moment 

occurring at the center of the beam. Thus, ( ) MLfM L −=−= 242
20 with the maximum 

stress occurring at the outmost surface, 2/Dy = , and since we know the area moment of 

inertia of the beam moment 644RI x π= , we obtain  
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This is ~ 1011 Pa for V = 110 V and typical values of d, L, and h (D = 5 nm, L = 500 

nm, h = 350 nm). We note that this force greatly exceeds the van der Waals forces 

between tube ends, which correspond to a binding stress of ~ 107 Pa, using the value for 

the interlayer adhesion in graphite. Further evidence for this mechanical switching action 

comes from the fact that we do not see gate-voltage switching with MWNTs, which have 

much larger diameters and greatly reduced bending stress. 

Also, the gap-closing OFF−ON transition is not as stable as that seen in Figure IV-6, 

if the device is imaged in the SEM in the intermediate stage or even just exposed to the 

ambient atmosphere, indicating that the cleanliness of the tube ends is important for 

stable adhesion. This and the large-magnitude gate-induced bending stress suggest that 

the nanotube adhesion results from the formation of one or more covalent bonds between 

the atoms in the tube ends. However, further experiments are necessary to fully elucidate 

the adhesion mechanism: for example, high-temperature vacuum annealing of the device 
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post-breakdown, to close and cap the ends of the inner nanotube shells [91]. It is 

expected that the tube ends would then adhere with the smaller van der Waals bonds, and 

may permit, for example, the realization of microwave-frequency oscillators [92, 93] or 

charge shuttles. 

We also note that the observed switching voltage can likely be reduced by 

optimization of the geometry such as using thinner nanotubes and decreasing the distance 

between the nanotube and the back gate. Using a core mass m ≈ 2 × 10-19 kg 

corresponding to a nanotube of length 500 nm and core radius ~ 5 nm, an accelerating 

force ~ 5 nN, and a gap distance ~ 5 nm, we estimate using Newton's laws a switching 

speed ~ 400 ps, comparable to silicon-based transistor technology. This could be reduced 

substantially in principle by using shorter core lengths and smaller diameter to decrease 

m. The time to turn the device off should be much faster, comparable to the femto- or 

picosecond characteristic time scale for chemical bond breaking. These intrinsic 

nanomechanical time scales represent a lower bound for the switching speed 

approachable in practice only by carefully reducing the stray device capacitances and 

hence the characteristic RC charging times. 

IV-7 Summary  

In sum, we report nanoelectromechanical nonvolatile memory devices that operate by 

using multiwalled nanotubes as low-friction bearings. The devices are straightforward to 

fabricate in high yield and go through reversible ON−OFF conductance cycles with 

extremely high estimated switching speeds and high ON/OFF ratios. Aside from their use 

as nanoscale memory elements, their unique closing motion can be exploited: for 

example, as adjustable-gap probes to make electrical contact to other nanostructures that 

are attached using the flexible chemistry of the open nanotube ends. 
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Conclusions  

In the thermal transport subject in Chapter II we discussed our experiments to probe the 

thermal properties of individual carbon nanotubes. We demonstrated heat conduction via 

ballistic phonon propagation in nanotubes, and determined the thermal conductance 

quantum, which is the ultimate limit to thermal conductance for a single phonon channel, 

at T ~ 900K. In addition, we suggested the breakdown mechanism of thermally activated 

C-C bond breaking coupled with the electrical stress of carrying 1012 A/m2. In this 

project, we also demonstrated a current-driven self-heating technique to improve the 

conductance of nanotube devices dramatically. 

 

In the electromechanical systems based on nanotubes discussed in chapter III, we 

provided the first reported carbon nanotube resonators at cryogenic temperatures, using 

their single-electron transistor properties to enable self-detection of the nanotube 

vibrations. We also observed nonlinear oscillator phenomena and provided a preliminary 

study of the binding energy between inert gases and carbon nanotube curved surface. The 

main achievement is the weighing of atomic inertial mass by carbon nanotube resonators; 

an atomic shot noise measurement was used to first calibrate the mass of the nanotube 

and then to determine those of unknown atoms/molecules.  

 

In another electromechanical system of nanotubes in Chapter VI, we exploited the 

remarkable low-friction bearing capabilities of MWNTs to realize nanoelectromechanical 

switches. Our switches consisted of two open-ended MWNT segments separated by a 

nanometer-scale gap. Switching occurs through electrostatically actuated sliding of the 

inner nanotube shells to close the gap, producing a conducting ON state; for double-

walled nanotubes in particular, a gate voltage can restore the insulating OFF state. These 

devices thus act as nonvolatile, switchable memory elements, with the added advantage 

that they are straightforward to implement, self-aligned, and do not require complex 

fabrication or geometries, allowing for convenient scalability. 
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