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ABSTRACT

Because of cost, cylindrical, ground supported liquid storage tanks
are often not fixed to their foundation, even in seismic areas. For
such an unanchored tank made of steel, the weight of the c¢ylindrical
shell is mostly insufficient to brevent local uplift due to seismic over-
turning moments. Although, for properly designed connecting pipes,
uplift itself is not a problem, it results in 1larger vertical
compressive stresses in the tank wall at the base, opposite to where the
uplift occurs. These compressive stresses have often caused buckling,
even in earthquakes which did not cause much damage to other structures.

Various investigators have studied the behavior of unanchored tanks
experimentally, but, due to the complexity of the problem, so far very
little theoretical work has been done. Two methods of analysis for
static lateral 1loads are presented: An approximate one in which the
restraining action of the base plate is modeled by nonlinear Winkler
springs, and a more comprehensive one in which the two dimensional
nonlinear contact problem is solved by the finite difference energy
method. The theoretical results are compared with existing experimental
results and with the approach from current U.S. design standards. The
theoretical peak compressive stresses are in good agreement with the
experimental results, but in some cases exceed those calculated by the

code method by more than 100%.



Finally, a new design concept, by which the tank wall is
preuplifted all around its circumference by inserting a ring filler is
described. It will be shown theoretically and experimentally that this

preuplift method substantially improves the lateral load capacity.



TABLE OF CONTENTS

ACKNOWLEDGMENTS & & ¢ ¢ ¢ « o 2 « o o o s o o o &
ABSTRACT . ¢ o o o o o o o o o o o o o o o o o o o
1. INTRODUCTION . & & « o o o o o o o o o o o o &
1.1 MOTIVATION. © ¢ o « o o o o o o o o o o
1.2 BACKGROUND. . &« ¢ &« o o o o o « o o o
1.2.1 Experience from Past Earthquakes .
1.2.2 Experimental Studies . . . . . . .
1.2.3 Theoretical Work . « « « « « o« &

1.3 SCOPE AND ORGANIZATION. . ¢ « ¢ ¢ o « o« &

AXISYMMETRIC UPLIFT PROBLEM. . . . . . « . .

2.1 DEFINITION OF THE PROBLEM . . . . . . . .

2.2 AXISYMMETRIC SHELL PROBLEM. . . . . . .

2.3 GENERAL THEORY FOR BASE PLATE . . . . .

2.4 SOLUTION FOR MODERATE DEFLECTIONS . . . .

2.5 EXAMPLE PROBLEM . . & ¢ ¢ ¢ ¢ ¢ ¢ o o « &

2.6 SOLUTION FOR LARGE DEFLECTIONS. . . . .

2.7 COMPARISON WITH EXPERIMENTAL RESULTS. . .

2.8 CONCLUSIONS . ¢« & & o o o o o o o o o &

ANALYSIS AND BEHAVIOR OF THE CYLINDRICAL SHELL .

3.1 DEFINITIONS . ¢ ¢ ¢ ¢ ¢ ¢ o o o o o o o &

3.2 COMMENTS ON THE SOLUTION FOR AN
ANCHORED TANK . ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ o o &

PAGE

ii

iii

16

19

21

21

23

29

34

41

42

47

51

52

54



TABLE OF CONTENTS (CONTINUED)

3.3 COMMENTS ON THE SOLUTION FOR IMPOSED
RADIAL DISPLACEMENTS AND ROTATIONS AT THE

3.4 COMMENTS ON THE SOLUTION FOR IMPOSED
VERTICAL DISPLACEMENTS AT THE BASE. . . .

3.4.1 Inextensional Deformation Modes

of a Cylindrical Shell . . . .
3.4.2 Solution for a Tank with

a ROOf &« & ¢ ¢ ¢ ¢ ¢ ¢ 6 o e o o
3.4.3 Inextensional Solution for

a Roofless Tank. « « v ¢ « o o o @

3.5 CONCLUSIONS & ¢ ¢ ¢ ¢ ¢ ¢ ¢ o o o o o o &

ANALYSIS OF A SHELL ON A BED OF
NONLINEAR SPRINGS. . ¢ ¢ ¢ « ¢ « o o« o & &

4.1 ANALYTICAL SOLUTION FOR A
LIMITING CASE . ¢ ¢ ¢ ¢ ¢« ¢« ¢ o o o o« &

4.2 NUMERICAL SOLUTION FOR GENERAL CASE .

1 Formulation. . « ¢« ¢ ¢ ¢« ¢« ¢ o o &
.2 Implementation . . . « ¢« ¢« « o« &
3 Results: « « o s w % s o % & o & 5

4.2,3.1 Tall Tank Tested by Clough
and Niwa (1979) . . . « « . .

4.2.3.2 Broad Tank Tested by Mano
and Clough (1982) . . . . . .

4.3 CLOSING REMARKS . « o o &« ¢ o o o « o o

NON-AXISYMMETRIC ANALYSIS OF AN
UNANCHORED TANK. « ¢ ¢ ¢ ¢ o ¢ ¢ o o o o o o &

5.1 ASSUMPTIONS . ¢ ¢ © o o o o o s o o o o o
5.2 FORMULATION . & « o ¢ o o o o o o o o o
Base Plate « ¢ ¢« ¢« ¢« ¢ ¢ o o o o &
Annular Bed of Winkler Springs .

Circular Bed of Winkler Springs.
Linear Constraints . . « « « . .

WD W
NN
W

BASE.

PAGE

54

57

58
60
64

68

70

71
79
79
83
84
85
96

102

104
104
105
112
115

116
117



-vii-

TABLE OF CONTENTS (CONTINUED)

PAGE
5.3 CRITERIA FOR CHOOSING NW, NH AND NC . . « « « « &« « &« « o 119
5.4 IMPLEMENTATION AND COMPUTATONAL

CONSIDERATIONS. & & ¢ o o o o o o o o o o o o o o o« o« o o« 121

5.5 TEST PROBLEMS . ¢ &« o o o ¢ o o« o o o o o o o o o o o o o 122

56 BRESULTS w o v s o v & % & & # @« @ & & % & @ & & & @ « m & 12D
5.6.1 Tall Tank Tested by Clough

and Niwa (1979). . . T R b5

5.6.2 Broad Tank Tested by Manos
and Clough (1982). . v ¢ & « o« o o o o o o o « « o 140
5.6.3 Mylar Tank Tested by Shih (1981) . . . . . . . . . 145
5.7 SUMMARY AND CLOSING REMARKS . ¢ & ¢ « o o o« o« o o o« o o o 148
6. THE PREUPLIFT METHOD . « o « &« « ¢ o o o o o o o o o o o o o o 151

6.1 EXPERIMENTS . . ¢ ¢ ¢ ¢ o o o o o s o o o o o o o o o o« o 152

6.2 ANALYSTIS. s « = s o s s s & « s o s s« » # ¢« « s« » » « s &« 135

6.3 DISCUSSION OF RESULTS « & &« ¢ « ¢ ¢ o o o o« o o o« o« o « o 159

6.4 CLOSING REMARKS . . &+ & ¢« ¢ 4 ¢ ¢ o« o o« o o o o o o« « o o 165
7. SUMMARY AND CLOSURE. + &+ & « 4 « o « o o o« o o o o o« o o o« « « 168
APPENDIX

A - BUCKLING ANALYSIS OF BASE PLATE
WITH BOSORS: o o o« s o o 5 2 s s « o o 5. = # o » 8 $ % & « &« & 1J9

B - CYLINDRICAL AXISYMMETRIC SHELL ELEMENT . . . . . « «. « « . « . 181

Bl. DERIVATION OF STIFFNESS MATRIX

FROM LINEAR SHELL THEORY. . « « ¢ ¢ & ¢ o o o o o « « « o 181
B2. ADDED STIFFNESS DUE TO

NONLmEAR EFFECTS . . L o . ) . . . . L L o o L] L] L] . L] L] 1 93
B3. DISCUSSION OF SYMMETRY. « &« « ¢ « ¢ o« o ¢ o o o o o o o« o 197

B4. CONCLUDING REMARKS. o ¢ & s o « o s « o o s o« o o o o o o 205



-viii-

TABLE OF CONTENTS (CONCLUDED)

PAGE
RESULTS FROM THE THEORY OF DISCRETE
FOURIER TRANSFORMS . &+ v 4 & & ¢ o o o o o o o o o o o « « « o 206
STIFFNESS MATRIX FOR A RING ELEMENT. . . . « ¢« « « o « « « « o 209
APPENDIX E . « o « o o o o« o o ¢ o s s s 8 o 6 « s o o s ¢ o o 211
STRESS-STRAIN RELATION FOR THE
BASE PLATE . o o« s 5 + o s » s 5 s 3 8 = s » o s s 0 o« s s « s 213

REFERENCES u v ¢« # 5 o & & o « % & & o # & & & &« 5 % & & % » » 219



1. INTRODUCTION

1.1 MOTIVATION

For anchored tanks, the tank wall is effectively fixed to a founda-
tion which is sufficiently heavy to prevent uplift in the event of an
earthquake. This means that the anchor bolts must be able to transmit
the earthquake induced vertical tension in the tank wall to the founda-

tion. Methods for the seismic analysis of such tanks are well

established [Jacobsen (1949), Housner (1957, 1963), Veletsos and Yang
(1977), Shaaban and Nash (1975), Haroun (1980), Haroun and Housner
(1981, 1982 a,b), Liu and Lam (1983)], and complicating effects such as
the excitation of modes with a higher circumferential wavenumber due to
imperfections and geometrically nonlinear effects in the shell have also
been considered [Turner (1978), Haroun (1980), Zui and Shinke (1984),
Tani et al. (1984)].

In practice, anchoring a tank requires a large number of anchor
bolts and suitable attachments welded onto the tank wall, so that the
tension forces in the anchor bolts can be distributed evenly in the tank
wall. Poorly designed attachments, or an attempt to carry too high a
bolt force on a single attachment could result in tearing of the tank
wall. Also, a fairly massive foundation may be required, especially for
a larger tank. Thus, anchoring a tank is expensive, and, as a result,
many tanks are unanchored, even in seismic areas. This is especially

true for large capacity, broad tanks.



When an unanchored tank is subjected to strong ground shaking, the
lateral force due to hydrodynamic pressures acting on the tank wall is
of the same order of magnitude as the weight of the liquid. Unless the
tank wall uplifits, the overturning moment induced by this lateral force
can only be balanced by the stabilizing effect of the weight of the
tank. For typical steel tanks the weight of the tank is much less than
the weight of the contained liquid. Therefore, the weight of the tank
is insufficient to balance the overturning moment due to hydrodynamic
pressures acting on the tank wall, and the tank wall uplifts locally, as
shown in Fig. 1.1. As a result, a crescent-shape strip of the base
plate is also lifted from the foundation. The weight of the fluid rest-
ing on the uplifted portion of the base plate provides the resisting

moment against further uplift.



It must be emphasized that unanchored tanks are special in that
only the weight of fluid resting on the uplifted portion of the base
plate contributes to the stabilizing moment, whereas the entire mass of
liquid contributes to the overturning moment. This is different from
the usual case in which the entire weight of a structure and its
contents contributes to the stabilizing moment. As a result, unanchored
fluid storage tanks are particularly prone to uplift problems.

Evidence of uplift can be found in the 1964 Alaska earthquake, dur-
ing which snow found its way underneath the base plate of some tanks
[Hanson (1973)] and during the 1971 San Fernando earthquake, when an
anchor bolt of a 30 ft tall and 100 ft diameter tank was pulled up by
14 in [Figure 7.21 in Jennings (1971)].

Although uplift itself is not necessarily associated with serious
damage, it can be accompanied by large deformations and major changes in

the stresses in the tank. The consequences of large uplift can include,

(i) Damage and breakage of connecting pipes.

(ii) Buckling of the tank wall because the vertical compressive
stresses in the portion of the tank wall which remains in contact
with the ground on the other side of the tank are greatly
increased.

(iii) Fracture at the junction between the base plate and the shell

wall due to cyclic plastic hinge rotations.



Therefore, it is important to understand and be able to predict the
behavior of unanchored liquid storage tanks in earthquakes.

As will be seen in the next subsection, some experimental studies
on unanchored tanks have been performed. However, because of the
complexity of the problem, not much theoretical work has been done.
Although the experiments provide useful information for certain
prototype tanks, the results are not directly applicable for other tank
dimensions. Also, an improved understanding of the behavior of
unanchored tanks can be gained from theoretical analysis and comparison

with existing experimental results.

1.2 BACKGROUND

A very large number of papers have been published on the dynamic
behavior of anchored tanks. However, here the attention is focused on
the somewhat more scanty literature on unanchored tanks. Publications

on unanchored tanks can be divided into three categories,

(i) Those documenting and evaluating the damage to unanchored tanks
during past earthquakes.
(ii) Experimental studies.

(iii) Theoretical studies.

These will be dealt with in the next three subsections.



1.2.1 Experience from Past Earthquakes

The Prince William Sound, Alaska, earthquake of 1964 caused
extensive damage to oil tanks, most of which appear to have been
unanchored, as reported by Rinne (1967). For one of the tanks, plastic
deformations in the base plate (presumably developing due to uplift)
caused the tank to remain uplifted by 2 in after the earthquake. Many
tanks buckled near the base due to vertical compressive stresses. A few

of them collapsed as a consequence. Rinne defined a buckling resistance

coefficient, Cp, to be the lateral force coefficient applied to the
total weight of the tank and contentsl for which the overturning stre552

at the base is equal to a "theoretical buckling stress"s. He found that
tanks for which Cp > 0.44 did not buckle at the base, whereas tanks for
which Cp ¢ 0.44 did. He concluded that there must have been a substan-
tial amplification or resonance buildup of the lateral forces. An
alternative explanation is that the tanks buckled at lower lateral
forces because of the large concentration of compressive stresses which

occurs if the tank uplifts.

1 Rinne approximated the total weight of the tank and contents by 1.1
times the weight of the contents, and assumed that the lateral force
acts at a height of 0.4 h above the base, where h is the height to
which the tank is filled.

2 The maximum vertical compressive stress at the base as calculated
with the assumption that the tank is anchored.

3 The "theoretical buckling stress” used by Rinne is about 0.18 times
what is generally known as the classical buckling stress [Timoshenko
and Gere (1961), p. 458, equation 11-1].
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Hanson (1973) took another look at the damage to tanks during the
1964 Alaska earthquake. He performed a calculation to estimate a peak
compressive stress for an unanchored tank which exceeds the peak
compressive stress for the anchored case by a factor of more than 5.
Thus he concluded that a 20%g maximum ground acceleration and a lightly
damped spectral velocity of Sv = 2.0 ft/s was sufficiently intense to
account for the observed damage. He also made the important suggestion
that the base be thickened near the junction with the shell wall. This
makes it possible for the base plate to carry the weight of the fluid on
a larger uplifted portion. Thus a larger hold-down force can be
developed. Finally, Hanson made the interesting observation that a
possible source of roof damage is that "uplift on one side of the tank
requires the roof to act as a structural diaphragm to hold the top of
the shell circular. This diaphragm action tends to make the roof buckle
unless it has been designed as a structural element.” It will be seen in
Chapters 3 and 4 that, for a tank without a roof, uplift can indeed
result in large out-of-round distortions of the tank cross section
associated with inextensional deformation modes of the cylindrical
shell.

During the 1971 San Fernando earthquake [Jennings (1971)] several
tanks were also damaged, including a 100 ft diameter, 30 ft tall wash-
water tank at the Balboa Water Treatment Plant which experienced 14 in
of uplift as evidenced by a pulled up anchor bolt. The tank was
reported to be 1/2 to 3/4 full at the time of the earthquake and did not

buckle at the base. However, at the top, the tank wall buckled inward,
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possibly due to subatmospheric pressures induced by the increase in the
enclosed volume which is associated with uplift.

The Imperial County earthquake [Leeds (1980)], of magnitude
ML = 6.6, also caused damage to a number of tanks located about 5 km
from the Imperial Fault. Since strong ground motion data were available
for nearby sites, Haroun (1983) was able to compare the observed damage
with predictions based on existing methods of analysis. He computed
overturning moments assuming that the tanks were anchored and rigid, and
determined the actual and allowable maximum compressive stresses using
the procedure recommended in the API standard 650 [American Petroleum
Institute (1979)]. He concluded that the current standards and codes
for seismic analysis of unanchored tanks lead to a conservative design.
However, it is not clear whether the conservatism lies in the assumption
that the lateral loads are the same as for a rigid anchored tank, in the
method of estimating the peak compressive stress, or in the buckling
criterion.

Moore and Wong (1984) collected an extensive set of damage data
from the 1980 Livermore earthquake, the 1978 Miyaki-Ken-Oki earthquake
in Japan, the 1971 San Fernando earthquake, and from Alaska. From this
set of data and experimental results [Clough (1977), Niwa (1978), Clough
and Niwa (1979), Niwa and Clough (1982)], they concluded that the
maximum width of the uplifted strip of the base plate and the allowable
vertical stress in the tank wall given in the API standard 650 are too
small. By modifying these quantities they obtained good correlation

with the observed damage.
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Finally, the damage to a number of unanchored tanks during the 1983
Coalinga earthquake was studied by Manos and Clough (1985). Based on
accelerographs from a nearby site recorded during the main event, and
accelerographs from the tank sites recorded during aftershocks, they
estimated peak ground accelerations ranging from 0.39g to 0.82g for the
tank sites. Damage included buckling of the tank wall at the base, dam-
age to floating roofs, spilling of oil over the top of many tanks, and
damage to connecting pipes. All tanks included in the study were
unanchored. Manos and Clough concluded that current U.S. practice
[American Petroleum Institute (1979)] underestimates the sloshing
response of tanks with floating roofs and does not adequately address

the uplifting mechanism of tanks with floating roofs.

1.2.2 Experimental Studies

A number of shaking table tests were performed at the University
of California at Berkeley [Clough (1977), Niwa (1978), Manos and Clough
(1982)] using aluminum models, and for a full scale stainless steel wine
tank [Niwa and Clough (1982)]. Based on the modulus of elasticity of
aluminum, the models satisfy the requirement for similarity to steel
prototypes which are three times larger. Uplift and out-of-round defor-
mations of the cross section were a dominant feature of the response,
and resulted in larger displacements and stresses in the tank wall. 1In
several cases the measured vertical compressive stresses in the tank
wall exceeded the code allowable values, without any signs of buckling

or other distress. Manos and Clough (1982) measured stresses 2.85 and
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2.35 times larger than the allowable from the AWWA [American Water Works
Association (1979, 1984)] and API standards respectively. They also
showed that the peak compressive stresses could be reduced by using a
flexible foundation.

The observed response was quite complex, and the author believes
that more can be learned from the test results than has been learned to
date. Certainly these experimental results are an important basis for
comparison with any analytical models.

Somewhat simpler experimental results are obtained from static tilt
tests [Clough and Niwa (1979), Manos and Clough (1982), Shih (1981)] in
which a lateral load is induced by tilting the tank. Shih (1981) has
shown that the stresses due to tilting are similar to those induced by
seismic lateral loads (if the inertia associated with out-of-round dis-
tortions is neglected). Some of the results of these tilt tests will be
used in Chapters 4 and 5, for comparison with analytical results.

Shih (1981), and Shih and Babcock (1980, 1984) use a different
approach for their experimental work: Their mylar tanks satisfy the
requirements for similarity with steel tanks 40 times larger. As a
result, models as small as 5 in in diameter can be used to represent
steel prototypes of a realistic size. Such models are easy to
fabricate. Since they are not damaged by buckling of the shell, the
same tank can be used in a number of buckling experiments. Another
advantage of mylar tanks is that residual stresses due to welding are
avoided. On the other hand, since mylar sheets are too flexible for the

use of straingages, stresses can only be determined by analysis. Also,
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for plastic deformations of the steel prototype, the similarity condi-
tions break down because mylar does not yield. This is important if the
steel prototype experiences some plastic deformation prior to buckling.
The mylar tanks were tested on a shake table (with harmonic and
transient excitation), and by static tilt. Test conditions which were
varied include tank dimensions, base fixity condition (anchored or
unanchored), top condition (with or without a roof or stiffening rim),
and water level. In one of the transient tests the intensity of motion
which produced buckling for an anchored tank is up to 10 times larger
than for the unanchored case. Also, the experiments for the anchored
case indicate that buckling occurs at stress levels close to the classi-

cal value.

.1.2.3 Theoretical Work

Despite the very large number of publications on the behavior
tanks in earthquakes, only a few deal with the analysis of unanchored
tanks.

The method of analysis that has enjoyed the widest use is that of
Wozniak and Mitchell (1978), which has been adopted in the AWWA and API
standards: Using a rigid-plastic beam model for the base plate shown in
Fig. 1.2, the maximum hold-down force due to the weight of fluid resting

*
on an uplifted portion of the base plate is

* Eq. 1.1 is valid for any consistent set of units.
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internal pressure, p

A T P T T 77 )= =7 7 =iy 7= = s

Figure 1.2: Rigid-plastic beam model used by Wozniak and Mitchell
(1978) to calculate the hold-down force due to the weight of
fluid resting on the uplifted portion of the base plate.

Note: Since the moment at the plastic hinge location, H, is a
maximum, the shear must vanish there. Therefore, the unknown
distance HE and the force N can be determined by balancing
the vertical forces and moménts for the free body HE. The hold
down force is equal to the weight of fluid resting over the
portion HE of the base plate.



12—

max y

Figure 1.3: Assumed distribution of vertical forces in the tank
wall at the base in the model of Wozniak and Mitchell (1978).
Note: The parameters N and B are determined by balancing the
vertical forces and moents acting on the cylindrical shell.
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Ny = efege]” . (1.1)

No = hold down force per unit length along the circumference of

the shell, which is also the vertical membrane tension
developed in the shell at the base.
t = thickness of the base plate.

fy = yield stress of the base plate.

= hydrostatic pressure acting on the base plate.

For a rigid-plastic beam, the force No is independent of the amount of
uplift. In reality however, the displacements required to develop the
plastic hinges are so large that small deflection theory is no longer
applicable. Nevertheless, Wozniak and Mitchell assumed that the hold
down force given in Eq. 1.1 would be developed around the entire
circumference except in a contact region which spans an angle 28. 1In
this contact region, the vertical force iq the tank wall at the base is
assumed to vary linearly with respect to a coordinate y measured along
the loading axis as shown in Fig. 1.3. The resulting assumed distribu-
tion of vertical forces in the tank wall contains two unknown param-
eters: The maximum vertical force in the tank wall, denoted by Nmax in
Fig. 1.3, and the angle spanned by the contact region, 2B. These two
unknowns can be determined by balancing the vertical forces and moments
acting on the shell.

What makes the model of Wozniak and Mitchell particularly simple is

that the magnitudes of the displacements do not enter in the calcula-

tion. Other simplified methods have been proposed by Clough (1977),
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Shih (1981), Cambra (1983), Ishida et al. (1985) and Leon and Kausel
(1986). None of these consider the deformations of the shell in deter-
mining the extent of the contact region and the distribution of vertical
stresses therein.

Auli, Fisher and Rammerstorfer (1985) present an analysis in which
the vertical restraining action of the base plate and the foundation is
modeled by a circular bed of nonlinear Winkler springs. In tension
these springs represent the restraining action due to the weight of
fluid resting on an uplifted portion of the base plate, and in compres-
sion they represent the rigidity of the foundation. A number of
different models were studied in order to obtain the force-deflection of
the springs in tension. In the one which best addresses the uplift
problem, Auli et al. use the finite element method to solve the
axisymmetric problem in which the base plate experiences a uniform
uplift all around the circumference. The resulting relationship between
uplifting force and uplifting displacement is then assumed to be appli-
cable locally when the uplift varies around the circumference. Auli
et al. also performed a stability analysis for the shell with and
without imperfections, and found that buckling at the base occurred at
stress levels close to the classical value.

The concept of using equivalent Winkler springs to model approxi-
mately the restraining action due to the base plate is also used in
Chapter 4. The method of analysis presented therein was completed
before the work of Auli et al. (1985) was known to the author or

published, and can therefore be considered to be developed
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independently. It will also be seen in Chapter 5 that there are
instances when this method is not satisfactory.

So far the discussion on methods of analysis for unanchored tanks
has focused on the analysis of the tank for given lateral loads. Rock-
ing affects the dynamics of the tank, and therefore also the lateral
load level. A number of papers address the problem of the dynamic
analysis of liquid filled tanks including rocking [Ishida (1980), Sakai
et al. (1984), Haroun and Ellaithy (1985)]. In some cases the base of
the tank is assumed to participate in the rocking motion, in others the
base of the tank is assumed to remain flat, and only the shell undergoes
the rocking motion. What happens for an unanchored tank is somewhere in
between these two extremes: Close to the tank wall, the base plate
participates in the rocking motion, but at the center the base plate
remains in contact with the ground.

Ishida and Kobayashi (1985) use a four degree of freedom dynamic
model for a rocking tank. In order to obtain the properties of a rota-
tional spring which resists the rocking motion for an unanchored tank,
they assumed that the shell rotates as a rigid body. They also used a
circular bed of nonlinear Winkler springs to model the resistance to
vertical displacements of the tank wall at the base. An elastic-plastic
beam model with axial tension served to estimate the resistance to
uplift provided by the base plate. Ishida and Kobayashi also performed
shaking table experiments, and compared the results with those from a

time history analysis for their four degree of freedom system.
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An effect which is not included in any of the dynamic rocking ana-
lyses is the vertical displacement of the combined center of gravity of
the tank and contents: At any time, the vertical displacement field for
the base plate can be decomposed into one component which is
antisymmetric in the coordinate y (Fig. 1.3), and a component which is
symmetric in y. During a cycle of rocking motion, the antisymmetric
part also undergoes one cycle of motion, but the symmetric part
undergoes two. Furthermore, the spatial average of the symmetric part
over the base plate is non-zero, indicating that the center of gravity
of the fluid undergoes two cycles of vertical motion for each cycle of
rocking. This not only increases the effective period of oscillation,

but may also contribute towards dangerously high hydrodynamic pressures.

1.3 SCOPE AND ORGANIZATION

The author believes that it is important to gain a thorough under-
standing of the statics problem of the tank subjected to lateral loads
before much confidence can be placed in any dynamic solution. Therefore
attention is focused on the analysis of the tank under given lateral
loads, and comparison with (for the most part existing) experimental
results.

Since, in a time history analysis, the solution to the dynamic
problem is obtained by solving a statics problem at each time step, the
solution presented is a key ingredient for solving the dynamic problem.
The method of analysis chosen for the static case is such that it can

readily be incorporated in a dynamic analysis. Also, any simplifying
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approximations which may emerge from studying the static solution are
also applicable for the dynamic case.

Although it is certainly desirable to obtain a dynamic solution to
the problem, the uncertainty in the maximum seismic lateral load a tank
might experience during its lifetime due to incomplete understanding of
the dynamic behavior is probably no larger than the uncertainty about
the intensity and frequency content of ground motion that might occur.
Therefore, for design purposes, a justifiable approach is to design the
tank for a given lateral load, which is estimated with due consideration
of both sources of uncertainty.

In Chapter 2 the axisymmetric problem in which the tank is
uniformly uplifted all around the circumference is solved. After study-
ing the behavior of the shell in Chapter 3, the relationship between
uplift and hold—-down force from the axisymmetric analysis of Chapter 2
is used to define the properties of a bed of equivalent nonlinear
Winkler springs at the base. The analysis of the tank on such a bed of
springs is formulated in Chapter 4. The validity of this equivalent
springs method is verified in Chapter § by solving the coupled, non-
axisymmetric problem for the base plate and shell by the finite differ-
ence energy method. Both geometric and material nonlinearities are
considered in the analysis. Finally, a new design concept is proposed
and evaluated in Chapter 6, and the main conclusions are summarized in

Chapter 7.
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The symbols used are redefined in each chapter, except that the
nomenclature for Chapter 3 also applies for Chapter 4. Thus, for exam-—
ple, in Chapter 2, u denotes the radial displacement of a point on the
base plate, whereas in Chapter 3 the same symbol is redefined to denote

the vertical displacement of a point on the cylindrical shell.
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2 AXTSYMMETRIC UPLIFT PROBLEM

When the tank wall uplifts due to earthquake induced overturning
moments, it pulls the base plate up with it. Consequently, part of the
weight of the fluid resting on the uplifted portion of the base plate
becomes effective in resisting overturning moments. In this section the
relationship between the radial extent of the uplifted portion of the
base plate and the vertical uplift of the tank wall is studied by solv-
ing the axisymmetric problem in which the tank is uniformly uplifted all
around its circumference (see Fig. 2.1). It will be seen that due to
geometrically nonlinear effects in the base plate, membrane stresses
develop which are of primary importance.

In strict terms, the solution to the axisymmetric problem is not
applicable if the uplift varies around the circumference. However, if
the upliffed width in the radial direction is small compared to the
radius of the tank, and if the variations in vertical uplift are
gradual, intuition suggests that the relation between vertical uplift
and the uplifted width determined from the axisymmetric solution may be
approximately applicable at any given point on the circumference. Thus,
although axisymmetric uplift does not occur in an earthquake, the solu-
tion to this problem may be useful in developing an approximate method

of analysis for seismic lateral loads.
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Figure 2.1: Definition of Axisymmetric Uplift Problem.
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2.1 DEFINITION OF THE PROBLEM

The axisymmetric uplift problem considered is shown in Fig. 2.1.
Point E will be referred to as the edge, and point C, as the contact
point. The displacements are taken to be u and w in the r and z
coordinate directions, respectively.

It is assumed that

a) The foundation is rigid and frictionless;

b) The tank is weightless and stress free when it is empty:;

c) Both the base plate and the shell remain elastic, but a plastic
hinge can form at the edge, E. The stresses and displacements
due to the hydrostatic fluid load and an axisymmetric uplift
force per unit length, P, applied at the top of the tank, are

to be determined.

2.2 AXTSYMMETRIC SHELL PROBLEM

Since the radial displacements of the shell are relatively small,
the linear theory for an axisymmetrically loaded cylindrical shell
(Timoshenko and Woinowsky-Krieger, 1959) is applicable. According to
this theory, bending moments and shears in the shell decay rapidly with
distance from the edge. As a result, the shell may be assumed to be
sufficiently long that the solution depends only on the thickness and
elastic properties of the lowest course of the shell. In addition, the
fluid pressure is taken to be constant over the region of influence of

the shell. With these assumptions, the displacement and rotation of the
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shell at the edge are found to be given by

a(pa—VsP) 2

A [M-AH] (2.1)

u = +
Ests 2D

I -
ds = 2D [2M-AH] , (2.2)
s
in which

u = radially outward component of displacement of the edge;

d_ = rotation of the shell-wall at edge, taken to be positive in

the anti-clockwise direction, as shown in Fig. 2.1;
H = radially inward force acting on the shell;

M = moment acting on the shell at the edge, defined to be

positive when it acts in the same sense as the rotation ds;

D_ = EstZ/[lz(l—Vg)], the flexural stiffness of shell;

ES,VS = Young's modulus and Poisson’s ratio for the shell,
respectively;
_ Y 2, Y . .
A= [tsa] /[3(1—Vs)] , the characteristic length, which

determines the rate of decay of bending moments in the

shell;

p = Fluid pressure at the edge (point E in Fig. 2.1).
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a = Radius of tank, as defined in Fig. 2.1. Equations 2.1 and
2.2 will be used in the boundary conditions for the solu-

tion of the base plate problem.

2.3 GENERAL THEORY FOR BASE PLATE

For a typical tank the uplift may be of the order of 50 times the
base plate thickness. Since linear plate theory is only applicable for
deflections which are small compared to the plate thickness, a nonlinear
theory is required. The moderate deflection theory, also known as the
Von Karman plate theory [used by Timoshenko and Krieger (1959) and
Stoker (1968)] is applicable as long as the deflections are not too
large compared to dimensions of the plate. For even larger displace-
ments, the large deflection theory must be used. Here the equations for
large deflections are developed first, then the approximations of the
Von Karman theory are introduced.

In the development of the large deflection theory the following

assumptions are made in addition to those listed in Section 2.1:

1. The strains are small. As a result, the differences between
natural strains and engineering strains, or Piola-Kirchoff
stresses and Cauchy stresses, are negligible.

2. Changes in the distance of any point in the plate to the mid-
surface are negligible.

3. The pressure p is applied at the mid-surface.
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A typical segment of the base plate is shown in Fig. 2.2. It is
assumed that a point on the midsurface of the base plate moves from a
point (r,0) in the original (empty, not uplifted) configuration to a
point (R,w) = (r + u,w) in the loaded (full and uplifted) configuration.
The membrane forces, denoted Nr in the radial direction and Ny in the

tangential direction, are given by

N, = K(e, + Yu/r) (2.3)

Ng = K(Ve +u/r) , (2.4)

in which €, is the strain in the radial direction, and K is the exten-

sional rigidity given by
K = Et/(1-9%) , (2.5)

in which E, V and t are Young'’s Modulus, Poisson’s Ratio, and the thick-
ness of the base plate, respectively.
The radial and tangential moments, are taken to be positive when

they induce tension on the bottom of the base plate, and are given by

M, = D(d’' +V sin ¢/r) (2.6)

Me = D(Vd' + sin d/r) , (2.7)

in which é is the slope angle defined in Figs. 2.1 and 2.2, D = Kt2/12
is the flexural rigidity of the base plate, and the prime denotes
differentiation with respect to r. Here the radial and circumferential

curvatures, d' and sin dé/r, respectively, are taken to be the rate of
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change of the unit normal vector to the mid surface per unit length in
the original configuration. The radial shear force is denoted by Qr’
and acts as shown in Fig. 2.2. The shear force, the membrane forces,
and the moments are expressed as forces per unit length in the original
configuration.

Considering the changes in w and u for an infinitesimal change in

the material coordinate gives
W o= - (1+8r) sin @ (2.8)
u’ = (R-r)’' = e, = (1+e ) (1- cos @) . (2.9)

The vertical and radial equilibrium equations for the segment of

the base plate shown in Fig. 2.2 may be written as

PQP cos ¢ - rN, sind = F, (2.10)
I’Qr sin ¢ + r-NP cos ¢4 = Fh " (2.11)
in which

R
F, = ry Q. - j pRAR (2.12)

R

o

W r

Fp = rg N, + [ pRdw +rf Ngdr . (2.13)

o o
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In Eqs. 2.12 and 2.13 N and Q.. are the radial membrane force and the
shear force at the contact point. This shear force is generated by a
concentrated line reaction exerted by the foundation on the base plate.
The concentrated contact reaction occurs without deformations since the
foundation is assumed to be rigid. Without the contact reaction no
solution would be possible; it is required for the sudden change in
shear force. In reality however the foundation always has some flexi-
bility, and the concentrated line reaction redistributes over a finite
width.

A third equilibrium equation results from considering the moments
acting about the tangential axis on an element of the plate shown in
Fig. 2.3. In obtaining this equilibrium equation, note that the verti-
cal components of the moments Me cancel, and only the radial component

-M9 cos 6 changes through an angle d6. The resulting moment-shear rela-

tion is

(er)v = Me cos 6 + (1+er)rQr . (2.14)

There are now nine equations, 2.3, 2.4, 2.6 through 2.11 and 2.14

for the nine variables: u, w, €., d, N_, NO’ M, Me, Qp. Many of the

) &g &

variables could readily be eliminated, but here it is found convenient
to leave any simplifications of the governing equations for later, when
the method of numerical solution is discussed.

The boundary conditions are as follows. At r = ro the contact

point C:



w =0,d = 0,M = o (2.15)

K(1\)u/r = K(1+\))ar, = N - (2.16)

The last conditions arise because, since the foundation is frictionless,
the entire portion of the base plate which remains in contact with the
ground is in a state of uniform, isotropic membrane forces
(Nr =Ng =N, for r <r)).

At r = a, the edge, Eqs. 2.1 and 2.2 for the shell need to be

considered. The horizontal radial force and moment reaction conditions

are:

H = Nr cos ¢ + Q. sin 4 , (2.17)

and M = -M (2.18)

If no plastic hinge forms, the additional condition is & = ds; if a
plastic hinge does form, the moment at the edge must be the lesser of
the yield moments of the base plate, or the shell. Defining the lesser

of these two moments by My. the yield condition is

The effect of a stiffening ring at the edge could also be included, but

is omitted here for simplicity.
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2.4 SOLUTION FOR MODERATE DEFLECTIONS

For moderate deflections sin ¢ is replaced by ¢ and cos & by unity,
except that in Eq. 2.9, 1- cos & is replaced by %dz. In addition, terms
containing the factor de are neglected in Eqs. 2.8 and 2.9, and the
radial component of the shear force er is neglected in Eq. 2.11. Thus

Eqs. 2.6, 2.7, 2.8, 2.9, 2.10, 2.11 and 2.14 become:

M, = D(4' + Vé/r) (2.19)
M9 = D(Vd' + d/r) (2.20)
o= = (2.21)
wo= e - Yo (2.22)
rQ, - rNd = F, (2.23)
rNr = ¥ (2.24)
(er)' = Mg + rQ, (2.25)

Finally, the difference between R and r is neglected in Eq. 2.11 to give

r
Fv & Q.= J. prdr , (2.26)

R

o

and the horizontal component of the pressure force is neglected in Eq.

2.13 to give
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r
Fh = r, Nro + J. Nedr . (2.27)

r
o

All other equations and boundary conditions remain the same except that
the edge condition for radial force (Eq. 2.17) becomes H = Nr’ This
nonlinear contact problem is solved by the shooting method: The loca-
tion of the contact point, as well as the radial membrane force (Nro)
and the shear (Qro) at the contact point are assumed. This defines an
initial value problem starting at the contact point, which is readily
solved numerically. However, unless by chance the correct values of Nro
and Qro were assumed, the solution of the initial value problem will not
satisfy the boundary conditions at the edge. The mismatch in the

boundary condition may be expressed as an out-of-balance force, termed

Hob' and an out-of-balance moment, Mob' These out-of-balance forces
depend on Nro and Q. . They must vanish in order that the correct solu-
tion to the problem be obtained. Symbolically, these requirements may

be written as

(N, ,Q ) (2.28)

Hob ro’ “ro

|
(=]

(N ) (2.29)

|
o

Mob ro’Qro

These equations can be solved numerically, by Newton’s method, to any
desired degree of accuracy. The gradient matrix can be obtained from a
set of linear, ordinary differential equations which are derived by
considering a perturbation to the governing equations, or, more

conveniently, by computing the gradient matrix numerically. Finally,
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solving the problem for a number of locations of the contact point, a
parametric description of the relationship between any two variables of
interest can be obtained.

Consider now the solution of the initial value problem in which Nr
and Qr are known at the contact point. Perhaps the most natural
approach is to eliminate all variables except the displacements u and w
from the equations. This gives two coupled ordinary differential equa-
tions, of 3rd order in w and 2nd order in u, which can be solved by
standard numerical methods. This was attempted by the author who found
that assuming that u’’ and w'''’ vary linearly between nodal points, and
using a method similar to Newmark's method of integrating the equations
of motion, gives very poor results for any practicable step size, h. It
is expected that similar problems would be encountered for other numeri-
cal methods. The reason is that the equations contain the terms
u’ + w'2/2 for the radial strain. Except very close to the contact
point, the magnitude of both u’ and w'2/2 is much larger than the
magnitude of the sum. For the case in which u’’ and w'’’ are linear; u’
is quadratiec, w' is cubiec, and w'2/2 is a sixth degree polynomial.
Although u' and w'2/2 are smooth, the sum can exhibit strong variations
over a steplength, h. A similar phenomenon occurs in the finite element
method, and is known as membrane locking [Belytschko et al. (1984)].

The method described below avoids these difficulties by using an
integrated version of the radial equilibrium equation, assuming that the
radial strain varies smoothly within each step, and then calculating the

corresponding variation in u.
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It follows from Egs. 2.3, 2.19, 2.20, 2.23, 2.24 and 2.25 that

¢'' = [(F_ + dF,) /D + d/r - é'l/r (2.30)

g, = (F /K -Vu)/r . (2.31)

From the boundary conditions at the contact point (Egs. 2.15, 2.16), it

is readily shown that at r = r :

o
(u, e, w, 4, ¢', ¢'', Fp, F)
r N N Q
o'ro ro ~ro
Ga) P 'aey » 0 % 0 o r N, rg Q) (2.32)

The variables on the left hand side of Eq. 2.32 will be termed the state
variables*. Any quantity of interest can be expressed as a function of
these state variables. Now, suppose all state variables are known at

i rys and characterize their values at this point by a subscript 1.
Thus, U(PI) = u;, and so on. Letry, =r; +h for a small step h, and
characterize the values of the variables at r = ry by a subscript 2.
Thus u(rz) = Uy, and so on. Assuming next that e, and é'' vary linearly
between r = rl, and r = ry» then all state variables at r = r, may be
obtained as a function of €, and dz", by evaluating the following

expressions in sequence.

8, = 4’y +h(d''y + 8"y /2 (2.33)

* They are not state variables in the strict mathematical sense of the
word, because they are interrelated.
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d, = d, +hd'y +h2(26"" + d'7))/6 (2.34)
Wy = w; - hdy - h%8' /2 - 33471, + 471,) /24 (2.35)
u, = u, +h(e,; +e,)/2 - h(d> +dd)/4 (2.36)

2 1 rl r2 1 2 )
Fop = Fpy * Kn[ug/r; + uy/ry + V(e e 00 ]/2 (2.37)
Fio = F,q ~ phiry+ry)/2 (2.38)

Equations 2.33 to 2.35 are obtained by exact integration. Equations
2.36 to 2.38 result from trapezoidal integration, and Eq. 2.38 is exact
if the fluid pressure p is constant between r, and r,. Equations 2.33
to 2.38 together with Eqs. 2.30 and 2.31 applied at r = r, are the set
of 8 equations which determine the state variables at r = ry given their

value at r = Pl. Numerical solution is simplified by the following

iterative procedure:

1. Start with & 5 = d"l and €hy = Epp-

2. Calculate dz, dz, Wy, Uy, Fyo, Fop from Egqs. 2.33 to 2.38.
3. Calculate ¢"2 and e,, from Eqs. 2.30 and 2.31.

4. Repeat steps 2 and 3 until convergence in d"z and €pnpe

This scheme is applied repeatedly, starting with the values of the state
variables at the contact point given in Eq. 2.32, until the entire solu-
tion to the initial value problem is generated. With this solution
method, accurate results can be obtained with relatively large step

sizes, h. The results are identical to those that would be obtained by
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subdomain collocation: the average of the residual over each element
vanishes. For the example presented in the next section (a = 57 in,

t = ts = 0.078 in, p = 8.67 psi) for a 9 in width of the uplifted strip,
9 steps at h = 1 in gives results accurate to 0.11% in Mr’ 1.5% in w,
2.3% in u, 4.8% in ¢, 2.5% in Nr and 2.4% in Ng. For 36 steps at

h = 0.25 in, these percentages become 0.01%, 0.08%, 0.12%, 0.29%, 0.14%,
and 0.15%, respectively. Of several methods attempted by the author

this one yields the most accurate results for a given step size.

2.5 EXAMPLE PROBLEM

One tank for which stresses in the baseplate have been measured is
the stainless steel wine tank tested by Niwa and Clough (1982). This
tank has a radius of a = 57 in, the thicknesses of the base plate and
the lowest course of the shell are t = ts = 0.078in. It is assumed that
the tank is filled with water to a depth of 20 ft, for which the
hydrostatic water pressure is 8.67 psi. The elastic properties for the
stainless steel are taken to be E = 29 X 106 psi, and V = 0.3. Based on
a yield strength of 70 ksi for the stainless steel, the yield moment for
the plastic hinge which is allowed to form at the edge is found to be
My = 106.5 in-1b/in. The displacements, shear forces, bending moments,
and membrane forces for widths of the uplifted strip of 9 in and 18 in
are shown in Figures 2.4 to 2.8. In Fig. 2.6 the shear force Qr is
plotted as the continuous line, and the broken line shows the total

shear, including the shear force Qr, and the vertical component of the

membrane force, -d¢ Nr (see Fig. 2.2). The difference between the broken
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Figure 2.4: Vertical uplift for the wine tank of Niwa and Clough
(1982); (a) for 9in uplifted width, (b) for 18in uplifted width.
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Figure 2.5 Radial Displacement for the wine tank of Niwa and
Clough (1982); (a) for 9in uplifted width, (b) for 18in uplifted
width.
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line and the continuous line is the vertical component of the radial

membrane force, @ N.. For the case when small deflection theory is
applicable, ¢ Nr is negligible compared to Qr’ and the broken and
continuous lines would coincide. Figure 2.6 shows that even when the
width of the uplifted strip is only 9 in, small deflection theory would
be in error. For an uplifted width of 18 in, the shear is carried
almost entirely by the membrane force Nr’ except in localized boundary
layers near the edge and contact point.

The radial membrane forces are shown in Fig. 2.8. They are
generated almost entirely by nonlinear effects: Due to the finite slope
of the baseplate in the radial direction, d, there is a tendency for the
baseplate to move radially inwards. This inward displacement is
restricted by the tank wall and also by the base plate itself which
resists any axisymmetric deformation. Such restrictions to inward
motion generate the radial membrane stresses. The restraining effect of
the tank wall is represented by the radial membrane force at the edge.
The increase in the membrane force inward from the edge is due to the
restriction from the baseplate itself. It arises because the baseplate
is being deformed into a non-developable shape. As a consequence of
membrane action, the bending moments (Figs. 2.7 and 2.9) are relatively
small and do not increase as the uplifted width is increased from 9 in
to 18 in. In contrast, for the linear theory, the bending moments
increase as the square of the uplifted width, and the shape of the bend-

ing moment diagram is close to parabolic.
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2.6 SOLUTION FOR LARGE DEFLECTIONS

The governing equations for large deflections have already been
developed. It remains to cast them in a convenient form for numerical

implementation: Solving Eqs. 2.10 and 2.11 for Qr and Nr gives

Q = [FV cos 4 + F, sin d]/r (2.39)

N, = [—FV sin 4 + Fy cos d]/r ’ (2.40)

Substituting Eqs. 2.6, 2.7 and 2.39 into Eq. 2.14 gives

¢’ = [(1+8r)(Fv cos ¢ + Fy sin @) /D + sin & cos ¢/r-d']/r (241

Substituting Eq. 2.40 into Eq. 2.3:

By = [(-—Fv sin ¢ + F, cos d)/K—Vu]/r . (2.42)

The numerical solution procedure is identical to that for moderate
deflections except that Egqs. 2.30 and 2.31 are replaced by Eqs. 2.41 and

2.42, and Eqs. 2.35 to 2.38 are replaced by

W, = wy - h[(1+e ) sin d + (1+e ,) sin 6,]/2 . (2.43)
2
u, = uy + h{ 2;1 eri + (1+ari)(1—cos di) 1/2 (2.44)
)
F, = Fo - pR3-R2)/2 (2.45)
Fop = Fpq *+ DGip-uy) (R+R)) /2 + Rnfuy /ey +uy/ry V(e ve p) [/2  (2.46)

in which
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i=1,2 . (2.47)

Equations 2.43 to 2.47 are obtained by trapezoidal integration of Egs.
2.8, 2.9, 2.12 and 2.13. In evaluating 1-cos & for small values of d,
the Taylor series expansion must be used to avoid numerical truncation
errors. By considering enough terms, 1-cos & can be evaluated to the

full accuracy of the machine used.

As an example, the wine tank tested by Niwa and Clough (1982) is
considered again. The results for large deflections are so close to
those for moderate deflections that the difference could not be seen on
a plot. This confirms that the deflections in this problem (involving
rotations up to around 0.2 radians) are characterizable as moderate, not

large.

2.7 COMPARISON WITH EXPERIMENTAL RESULTS

If the width of the uplifted strip is small compared to the radius
of the tank, the conditions in the uplifted portion of a rocking tank
appear to be much the same as the conditions for the axisymmetric uplift
problem with the same amount of uplift at the edge. If this is so for a
rocking tank, for which stresses are changing as a function of the
circumferential angle, 6, the stresses and displacements for any value
of 6 may be approximated by those from the solution of the axisymmetric
problem with the appropriate vertical uplift at the edge. When this
hypothesis applies, the variations in stresses and displacements in the

circumferential direction will be referred to as weak. The comparison
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between experimental and theoretical radial membrane strains shown in
Fig. 2.10 is based on the assumption that circumferential variations are
weak and that the hydrodynamic pressure is small compared to the static
fluid pressure, so that its effect on the uplifted portion of the
baseplate may be neglected. At time 8.0s in Niwa and Clough's experi-
mental results, a peak uplift of about 1.6 in occurs. The experimental
points in Fig. 2.10 represent the measured radial strains at various
locations at time 8.0s, and the continuous curve represents the
axisymmetric solution for the case when the uplift at the edge is 1.6
in. As can be seen from Fig. 2.10, both theory and experiment show very
high membrane strains, but the spatial variations of membrane strain
differ: Theory predicts a steady increase in the radial membrane strain
towards the edge, due mainly to Poisson’s ratio strains induced by the
very large hoop compressive force, Ny (Fig. 2.8). In contrast, the
experimental strains increase from 12 in to 6 in from the edge, then
drop dramatically, being close to zero at 3 in from the edge. Possible

reasons for this discrepancy include:

a) The neglected effect of hydrodynamic pressures.

b) Inapplicability of the assumption that the axisymmetric solu-
tion applies to non-axisymmetric uplift (assumption of weak
circumferential variations).

c¢) Experimental error.

d) Buckling of the base plate due to the large compressive

stresses in the circumferential direction.
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Figure 2.10: Theory versus experiment comparison of radial

membrane strains.

o Experimental points, scaled from figures in Niwa and
Clough (1982) at time=8s.

——— Axisymmetric solution for a verical uplift at the
edge (W=1.62 in) matching the measured vertical uplift
at time=8s.

[Note: Since original experimental data are no longer

available, experimental strains had to be scaled from the

figures in the journal paper. The error bars indicate the
error in this scaling operation only. ]
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Which one of these explanations applies, or what combination, is not
clear, but some assessment is possible.

Hydrodynamic pressures have been measured in the experiment, and
are of the order of one-half the hydrostatic pressure. If variations in
the circumferential direction are indeed weak, it would be possible to
carry out the axisymmetric analysis with a modified pressure, thus
obtaining a solution which includes the effects of hydrodynamic pres-
sures. Such a corrected theoretical solution would exhibit much the
same trends as the solution already obtained. Therefore the effect of
hydrodynamic pressure alone is not considered to be a valid explanation
for the drop in the experimental radial membrane strain close to the
edge.

The assumption of weak circumferential variations is debatable: If
it applies, the large circumferential compressive forces Ne in the base
plate must vary around the circumference just as the uplift does. It
seems that, unless this is accompanied by large shear forces, NrG' such
changes in Ny would violate equilibrium in the circumferential direc-
tion. However, it is hard to understand how the relatively slow varia-
tion in uplift around the circumference could cause the rather dramatic
change in strains observed.

Buckling of the base plate by circumferential compression is
thought to be the most likely explanation. Based on the theory of
buckling of plates under uniform uniaxial stress, and an estimated
effective half wavelength of 5 in in the radial and circumferential

directions, a buckling circumferential force of N0 = 2000 lb/in was
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calculated. Although, due to prebuckling curvature, the actual buckling
stress is somewhat higher than that predicted by the theory for flat
plates, buckling still seems likely before the maximum circumferential
force (N9 = 5954 1b/in shown in Fig. 2.8 for 18 in uplifted width) is
reached.

To define more precisely when buckling by circumferential compres-—
sion may be expected to occur, the computer program BOSOR5 (Buckling of
Shells of Revolution) developed by Bushnell (1974) was used. The
capabilities of this program include material and geometrically non-
linear analysis of shells (and as a special case, plates) of revolution
subjected to axisymmetric loads, and determination of bifurcation loads
for non—axisymmetric buckling modes. Numerical solution of the govern-
ing equations is based on the finite difference energy method. Just as
in the finite element method, the strains at integration points are
expressed in terms of nodal displacements, and the contributions to the
stiffness matrix from each integration point are summed. However,
whereas in the finite element method a displacement field is defined
within each element, and strains are computed by differentiation of this
displacement field; in the finite difference energy method, strains are
computed by finite difference expressions directly in terms of nodal
displacements. Although the capabilities of BOSORS do not include
contact problems, knowledge of the prebuckling solution from the shoot-
ing method makes it possible to simulate the prebuckling conditions in
the base plate by judicious choice of constraints and loading. Details

of how this can be achieved are given in Appendix A.
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Using BOSORS5S to look at the stability of asymmetric modes for vari-
ous locations of the contact point, it is found that the critical mode
occurs for n = 33 circumferential waves, when the radial extent of the
uplifted width is 12.75 in, the vertical uplift of the tank wall is 1.31
in, and the circumferential force at the edge is 3415 1b/in. The
buckling modes are shown in Fig. 2.11. Also this type of buckling is
illustrated in Fig. 2.12 for a mylar tank.

After the base plate buckles, the magnitude of circumferential
compressive force, |N9I, increases more slowly with increasing uplift.
Via Poisson's effect, this means that the radial membrane strains also
increase more slowly. In addition, since the radial membrane tension is
for the most part generated by the hoop compressive forces, the radial
membrane tension, Nr’ also increases more slowly. Finally, there are
local effects associated with buckling which vary over a half-
wavelength. These can further influence experimental strain readings.
Thus, bifurcation buckling appears to be the most likely explanation of
the difference between theory and experimental points in Fig. 2.10.

However, the other effects discussed may be contributing factors, too.

2.8 CONCLUSIONS
Solutions to the problem of uniform axisymmetric uplift of an

unanchored filled liquid tank indicate that:

1. Large membrane stresses develop in the base plate. These

membrane stresses carry a large part of the fluid pressure on
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Figure 2.11: Buckling mode (eigenvector) for the wine tank of Niwa
and Clough (1982), normalized so that the largest displacement is
1.0. Circumferencial wave number, n=33.




Figure 2.12:

Reflected light photograph of the buckles in the base plate
of a mylar tank similar to the ones used by Shih(1981). An
axisymmetric uplift of 1/16" was applied by inserting a ring
filler under the shell wall at the edge. The ring filler
consists of a sheet of plexiglass with a hole of diameter a
few hundredth of an inch less than the inner diameter of the
shell. The dimensions of this tank are 5" for the diameter,
and 0.002" for the thickness of the shell and the base plate.
It is filled with water to a depth of a few inches.
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the uplifted portion of the base plate.

Bending stresses are relatively small except at the cylinder
base plate joint, where a plastic hinge is expected to form.
For the realistic example studied, results obtained by the
large deflection theory are virtually identical to those from
the moderate deflection (Von Karman) plate theory.

For large enough uplift, buckling of the base plate due to the
circumferential compressive forces occurs.

Buckling of the base plate is the most likely explanation of
the difference between the theoretical and experimental radial

membrane strains shown in Fig. 2.10.
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3. ANALYSTS AND BEHAVIOR OF THE CYLINDRICAL SHELL

In this chapter, some elementary solutions relevant for understand-
ing the behavior of the shell subjected to seismic loads and uplift are
discussed, and certain results are developed for later use.

If the material yields at a critical section in the shell, such as
near the base, it is likely that buckling would occur as a consequence
of the drastic reduction in the material stiffness. Hence, from a
design viewpoint, it is desirable to prevent yielding in the shell.
Also, for the purpose of analysis of a tank at loads below the collapse
load, plasticity in the shell need not be considered.

The importance of considering geometric nonlinearities in the shell
is more debatable, and will be discussed later. As a first approxima-
tion, linear shell theory is assumed to hold.

The linear analysis of cylindrical (or, more generally, conical)
shells using annular finite elements is well established, e.g., Klein
(1964). This approach has been used by Haroun (1980), who also included
the nonlinear effects of the hoop force due to the hydrostatic pressure.
These results, as well as added stiffness matrices for the pressure-
rotation effect on the hydrostatic pressure, are summarized in Appendix
B. In the following pages some elementary solutions in the linear
theory of cylindrical shells are examined; these results are relevant in
understanding the behavior of an unanchored fluid storage tank.

Using superposition, the solution for an unanchored tank can be

expressed as the sum of':
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a) the solution for an anchored tank subjected to the loads
experienced by the unanchored tank, and
b) the solution for imposed displacements at the base of the tank,

and no other applied loads.

These two solutions will be discussed in sections 3.2 to 3.4, after

presenting some basic definitions.

3.1 DEFINITIONS

The coordinates and displacement components are defined in Fig.
3.1. All definitions coincide with those of Flhége (1960), Chapter 5,
except that the angle which defines the point on the circumference is
denoted by 6 instead of Flhége's d. In accordance with Flhége's nota-—
tion, the components of displacement are taken to be u in the direction
of increasing x, v in the direction of increasing 6, and w in the radi-

ally outwards direction. The internal membrane forces, Nx’ N N

6’ "x0’

Nex‘ are defined in Fig. 3.1b, and the internal moments Mx’ MO’ MXe and
Mex are taken to be positive when they generate a positive stress at the
inside of the shell. Shears Qx and Qe, defined in Fig. 3.1b, are
positive when they act radially inward on the face for which the outward

pointing normal is in 