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ABSTRACT 

Because . of cost, cylindrical, ground supported liquid storage tanks 

are often not fixed to their foundation, even in seismic areas. For 

such an unanchored tank made of steel, the weight of the cylindrical 

shell is mostly insufficient to prevent local uplift due to seismic over

turning moments. Although, for properly designed connecting pipes, 

uplift itself is not a problem, it results in larger vertical 

compressive stresses in the tank wall at the base, opposite to where the 

uplift occurs. These compressive stresses have often caused buckling, 

even in earthquakes which did not cause much damage to other structures. 

Various investigators have studied the behavior of unanchored tanks 

experimentally, but, due to the complexity of the problem, so far very 

little theoretical work has been done. Two methods of analysis for 

static lateral loads are presented: An approximate one in which the 

restraining action of the base plate is modeled by nonlinear Winkler 

springs, and a more comprehensive one in which the two dimensional 

nonlinear contact problem is solved by the finite difference energy 

method. The theoretical results are compared with existing experimental 

results and with the approach from current U.S. design standards. The 

theoretical peak compressive stresses are in good agreement with the 

experimental results, but in some cases exceed those calculated by the 

code method by more than 100%. 
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Finally, a new design concept, by which the tank wall is 

preuplifted all around its circumference by inserting a ring filler is 

described. It will be shown theoretically and experimentally that this 

preuplift method substantially improves the lateral load capacity. 
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1. INTRODUCTION 

1.1 MOTIVATION 

For anchored tanks, the tank wall is effectively fixed to a founda

tion which is sufficiently heavy to prevent uplift in the event of an 

earthquake. This means that the anchor bolts must be able to transmit 

the earthquake induced vertical tension in the tank wall to the founda

tion. Methods for the seismic analysis of such tanks are well 

established [Jacobsen (1949), Housner (1957, 1963), Veletsos and Yang 

(1977), Shaaban and Nash (1975), Haroun (1980), Haroun and Housner 

(1981, 1982 a,b), Liu and Lam (1983)], and complicating effects such as 

the excitation of modes with a higher circumferential wavenumber due to 

imperfections and geometrically nonlinear effects in the shell have also 

been considered [Turner (1978), Haroun (1980), Zui and Shinke (1984), 

Tani et al. (1984)]. 

In practice, anchoring a tank requires a large number of anchor 

bolts and suitable attachments welded onto the tank wall, so that the 

tension forces in the anchor bolts can be distributed evenly in the tank 

wall. Poorly designed attachments , or an attempt to carry too high a 

bolt force on a single attachment could result in tearing of the tank 

wall. Also, a fairly massive foundation may be required, especially for 

a larger tank. Thus, anchoring a tank is expensive, and, as a result, 

many tanks are unanchored, even in seismic areas. This is especially 

true for large capacity, broad tanks. 
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When an unanchored tank is subjected to strong ground shaking, the 

lateral force due to hydrodynamic pressures acting on the tank wall is 

of the same order of magnitude as the weight of the liquid. Unless the 

tank wall uplifts, the overturning moment induced by this lateral force 

can only be balanced by the stabilizing effect of the weight of the 

tank. For typical steel tanks the weight of the tank is much less than 

the weight of the contained liquid. Therefore, the weight of the tank 

is insufficient to balance the overturning moment due to hydrodynamic 

pressures acting on the tank wall, and the tank wall uplifts locally, as 

shown in Fig. 1.1. As a result, a crescent-shape strip of the base 

plate is also lifted from the foundation. The weight of the fluid rest

ing on the uplifted portion of the base plate provides the resisting 

moment against further uplift. 
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It must be emphasized that unanchored tanks are special in that 

only the weight of fluid resting on the uplifted portion of the base 

plate contributes to the stabilizing moment, whereas the entire mass of 

liquid contributes to the overturning moment. This is different from 

the usual case in which the entire weight of a structure and its 

contents contributes to the stabilizing moment. As a result, unanchored 

fluid storage tanks are particularly prone to uplift problems. 

Evidence of uplift can be found in the 1964 Alaska earthquake, dur

ing which snow found its way underneath the base plate of some tanks 

[Hanson (1973)] and during the 1971 San Fernando earthquake, when an 

anchor bolt of a 30 ft tall and 100 ft diameter tank was pulled up by 

14 in [Figure 7.21 in Jennings (1971)]. 

Although uplift itself is not necessarily associated with serious 

damage, it can be accompanied by large deformations and major changes in 

the stresses in the tank. The consequences of large uplift can include, 

(i) Damage and breakage of connecting pipes. 

(ii) Buckling of the tank wall because the vertical compressive 

stresses in the portion of the tank wall which remains in contact 

with the ground on the other side of the tank are greatly 

increased. 

(iii) Fracture at the junction between the base plate and the shell 

wall due to cyclic plastic hinge rotations. 
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Therefore, it is important to understand and be able to predict the 

behavior of unanchored liquid storage tanks in earthquakes. 

As will be seen in the next subsection, some experimental studies 

on unanchored tanks have been performed. However, because of the 

complexity of the problem, not much theoretical work has been done. 

Although the experiments provide useful information for certain 

prototype tanks, the results are not directly applicable for other tank 

dimensions. Also, an improved understanding of the behavior of 

unanchored tanks can be gained from theoretical analysis and comparison 

with existing experimental results. 

1.2 BACKGROUND 

A very large number of papers have been published on the dynamic 

behavior of anchored tanks. However, here the attention is focused on 

the somewhat more scanty literature on unanchored tanks. Publications 

on unanchored tanks can be divided into three categories, 

(i) Those documenting and evaluating the damage to unanchored tanks 

during past earthquakes. 

(ii) Experimental studies. 

(iii) Theoretical studies. 

These will be dealt with in the next three subsections. 
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1.2.1 Experience from Past Earthquakes 

The Prince William Sound, Alaska, earthquake of 1964 caused 

extensive damage to oil tanks, most of which appear to have been 

unanchored, as reported by Rinne (1967). For one of the tanks, plastic 

deformations in the base plate (presumably developing due to uplift) 

caused the tank to remain uplifted by 2 in after the earthquake. Many 

tanks buckled near the base due to vertical compressive stresses. A few 

of them collapsed as a consequence. Rinne defined a buckling resistance 

coefficient, CR, to be the lateral force coefficient applied to the 

total weight of the tank and contents1 for which the overturning stress2 

at the base is equal to a "theoretical buckling stress"3 • He found that 

tanks for which CR > 0.44 did not buckle at the base, whereas tanks for 

which CR < 0.44 did. He concluded that there must have been a substan

tial amplification or resonance buildup of the lateral forces. An 

alternative explanation is that the tanks buckled at lower lateral 

forces because of the large concentration of compressive stresses which 

occurs if the tank uplifts. 

1 Rinne approximated the total weight of the tank and contents by 1.1 
times the weight of the contents, and assumed that the lateral force 
acts at a height of 0.4 h above the base, where h is the height to 
which the tank is filled. 

2 The maximum vertical compressive stress at the base as calculated 
with the assumption that the tank is anchored. 

3 The "theoretical buckling stress" used by Rinne is about 0.18 times 
what is generally known as the classical buckling stress [Timoshenko 
and Gere (1961), p. 458, equation 11-1]. 
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Hanson (1973) took another look at the damage to tanks during the 

1964 Alaska earthquake. He performed a calculation to estimate a peak 

compressive stress for an unanchored tank which exceeds the peak 

compressive stress for the anchored case by a factor of more than 5. 

Thus he concluded that a 20%g maximum ground acceleration and a lightly 

damped spectral velocity of S 2.0 ft/s was sufficiently intense to v 

account for the observed damage. He also made the important suggestion 

that the base be thickened near the junction with the shell wall. This 

makes it possible for the base plate to carry the weight of the fluid on 

a larger uplifted portion. Thus a larger hold-down force can be 

developed. Finally, Hanson made the interesting observation that a 

possible source of roof damage is that "uplift on one side of the tank 

requires the roof to act as a structural diaphragm to hold the top of 

the shell circular. This diaphragm action tends to make the roof buckle 

unless it has been designed as a structural element." It will be seen in 

Chapters 3 and 4 that, for a tank without a roof, uplift can indeed 

result in large out-of-round distortions of the tank cross section 

associated with inextensional deformation modes of the cylindrical 

shell. 

During the 1971 San Fernando earthquake [Jennings (1971)] several 

tanks were also damaged, including a 100 ft diameter, 30 ft tall wash-

water tank at the Balboa Water Treatment Plant which experienced 14 in 

of uplift as evidenced by a pulled up anchor bolt. The tank was 

reported to be 1/2 to 3/4 full at the time of the earthquake and did not 

buckle at the base. However, at the top, the tank wall buckled inward, 
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possibly due to subatmospheric pressures induced by the increase in the 

enclosed volume which is associated with uplift. 

The Imperial County earthquake [Leeds (1980)], of magnitude 

ML = 6.6, also caused damage to a number of tanks located about 5 km 

from the Imperial Fault. Since strong ground motion data were available 

for nearby sites, Haroun (1983) was able to compare the observed damage 

with predictions based on existing methods of analysis. He computed 

overturning moments assuming that the tanks were anchored and rigid, and 

determined the actual and allowable maximum compressive stresses using 

the procedure recommended in the API standard 650 [American Petroleum 

Institute (1979)]. He concluded that the current standards and codes 

for seismic analysis of unanchored tanks lead to a conservative design. 

However, it is not clear whether the conservatism lies in the assumption 

that the lateral loads are the same as for a rigid anchored tank, in the 

method of estimating the peak compressive stress, or in the buckling 

criterion. 

Moore and Wong (1984) collected an extensive set of damage data 

from the 1980 Livermore earthquake, the 1978 Miyaki-Ken-Oki earthquake 

in Japan, the 1971 San Fernando earthquake, and from Alaska. From this 

set of data and experimental results [Clough (1977), Niwa (1978), Clough 

and Niwa (1979), Niwa and Clough (1982)], they concluded that the 

maximum width of the uplifted strip of the base plate and the allowable 

vertical stress in the tank wall given in the API standard 650 are too 

small. By modifying these quantities they obtained good correlation 

with the observed damage. 
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Finally, the damage to a number of unanchored tanks during the 1983 

Coalinga earthquake was studied by Manos and Clough (1985). Based on 

accelerographs from a nearby site recorded during the main event, and 

accelerographs from the tank sites recorded during aftershocks, they 

estimated peak ground accelerations ranging from 0.39g to 0.82g for the 

tank sites. Damage included buckling of the tank wall at the base, dam

age to floating roofs, spilling of oil over the top of many tanks, and 

damage to connecting pipes. All tanks included in the study were 

unanchored. Manos and Clough concluded that current U.S. practice 

[American Petroleum Institute (1979)] underestimates the sloshing 

response of tanks with floating roofs and does not adequately address 

the uplifting mechanism of tanks with floating roofs. 

1.2.2 Experimental Studies 

A number of shaking table tests were performed at the University 

of California at Berkeley [Clough (1977), Niwa (1978), Manos and Clough 

(1982)] using aluminum models, and for a full scale stainless steel wine 

tank [Niwa and Clough (1982)]. Based on the modulus of elasticity of 

aluminum, the models satisfy the requirement for similarity to steel 

prototypes which are three times larger. Uplift and out-of-round defor

mations of the cross section were a dominant feature of the response, 

and resulted in larger displacements and stresses in the tank wall. In 

several cases the measured vertical compressive stresses in the tank 

wall exceeded the code allowable values, without any signs of buckling 

or other distress. Manos and Clough (1982) measured stresses 2.85 and 



- 9 -

2.35 times larger than the allowable from the AWWA [American Water Works 

Association (1979. 1984)] and API standards respectively. They also 

showed that the peak compressive stresses could be reduced by using a 

flexible foundation. 

The observed response was quite complex, and the author believes 

that more can be learned from the test results than has been learned to 

date. Certainly these experimental results are an important basis for 

comparison with any analytical models. 

Somewhat simpler experimental results are obtained from static tilt 

tests [Clough and Niwa (1979), Manos and Clough (1982), Shih (1981)] in 

which a lateral load is induced by tilting the tank. Shih (1981) has 

shown that the stresses due to tilting are similar to those induced by 

seismic lateral loads (if the inertia associated with out-of-round dis

tortions is neglected). Some of the results of these tilt tests will be 

used in Chapters 4 and 5, for comparison with analytical results. 

Shih (1981), and Shih and Babcock (1980, 1984) use a different 

approach for their experimental work: Their mylar tanks satisfy the 

requirements for similarity with steel tanks 40 times larger. As a 

result, models as small as 5 in in diameter can be used to represent 

steel prototypes of a realistic size. Such models are easy to 

fabricate. Since they are not damaged by buckling of the shell. the 

same tank can be used in a number of buckling experiments. Another 

advantage of mylar tanks is that residual stresses due to welding are 

avoided. On the other hand. since mylar sheets are too flexible for the 

use of straingages. stresses can only be determined by analysis. Also, 
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for plastic deformations of the steel prototype, the similarity condi

tions break down because mylar does not yield. This is important if the 

steel prototype experiences some plastic deformation prior to buckling. 

The mylar tanks were tested on a shake table (with harmonic and 

transient excitation), and by static tilt. Test conditions which were 

varied include tank dimensions, base fixity condition (anchored or 

unanchored), top condition (with or without a roof or stiffening rim), 

and water level. In one of the transient tests the intensity of motion 

which produced buckling for an anchored tank is up to 10 times larger 

than for the unanchored case. Also, the experiments for the anchored 

case indicate that buckling occurs at stress levels close to the classi

cal value • 

. 1.2.3 Theoretical Work 

Despite the very large number of publications on the behavior 

tanks in earthquakes, only a few deal with the analysis of unanchored 

tanks. 

The method of analysis that has enjoyed the widest use is that of 

Wozniak and Mitchell (1978), which has been adopted in the AWWA and API 

standards: Using a rigid-plastic beam model for the base plate shown in 

Fig. 1.2, the maximum hold-down force due to the weight of fluid resting 

• on an uplifted portion of the base plate is 

* Eq. 1.1 is valid for any consistent set of units. 
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M 
y 

Figure 1.2: Rigid-plastic beam model used by Wozniak and Mitchell 
(1978) to calculate the hold-down force due to the weight of 
fluid resting on the uplifted portion of the base plate. 
Note: Since the moment at the plastic hinge location, H, is a 
maximum, the shear must vanish there. Therefore, the unknown 
distance HE and the force N can be determined by balancing 
the vertical forces and mom2nts for the free body HE. The hold 
down force is equal to the weight of fluid resting over the 
portion HE of the base plate. 
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N 
max 

~ 
y 

Figure 1.3: Assumed distribution of vertical forces in the tank 
wall at the base in the model of Wozniak and Mitchell (1978). 
Note: The parameters N 8nd B are determined by balancing the 
vertical forces and moffigfits acting on the cylindrical shell. 
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(1.1) 

N0 hold down force per unit length along the circumference of 

the shell, which is also the vertical membrane tension 

developed in the shell at the base. 

t thickness of the base plate. 

fy yield stress of the base plate. 

p hydrostatic pressure acting on the base plate. 

For a rigid-plastic beam, the force N is independent of the amount of 
0 

uplift. In reality however, the displacements required to develop the 

plastic hinges are so large that small deflection theory is no longer 

applicable. Nevertheless, Wozniak and Mitchell assumed that the hold 

down force given in Eq. 1.1 would be developed around the entire 

circumference except in a contact region which spans an angle 2~. In 

this contact region, the vertical force in the tank wall at the base is 

assumed to vary linearly with respect to a coordinate y measured along 

the loading axis as shown in Fig. 1.3. The resulting assumed distribu-

tion of vertical forces in the tank wall contains two unknown param-

eters: The maximum vertical force in the tank wall, denoted by N in max 

Fig. 1.3, and the angle spanned by the contact region, 2~. These two 

unknowns can be determined by balancing the vertical forces and moments 

acting on the shell. 

What makes the model of Wozniak and Mitchell particularly simple is 

that the magnitudes of the displacements do not enter in the calcula-

tion. Other simplified methods have been proposed by Clough (1977), 
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Shih (1981), Cambra (1983), Ishida et al. (1985) and Leon and Kausel 

(1986). None of these consider the deformations of the shell in deter

mining the extent of the contact region and the distribution of vertical 

stresses therein. 

Auli, Fisher and Rammerstorfer (1985) present an analysis in which 

the vertical restraining action of the base plate and the foundation is 

modeled by a circular bed of nonlinear Winkler springs. In tension 

these springs represent the restraining action due to the weight of 

fluid resting on an uplifted portion of the base plate, and in compres

sion they represent the rigidity of the foundation. A number of 

different models were studied in order to obtain the force-deflection of 

the springs in tension. In the one which best addresses the uplift 

problem, Auli et al. use the finite element method to solve the 

axisymmetric problem in which the base plate experiences a uniform 

uplift all around the circumference. The resulting relationship between 

uplifting force and uplifting displacement is then assumed to be appli

cable locally when the uplift varies around the circumference. Auli 

et al. also performed a stability analysis for the shell with and 

without imperfections, and found that buckling at the base occurred at 

stress levels close to the classical value. 

The concept of using equivalent Winkler springs to model approxi

mately the restraining action due to the base plate is also used in 

Chapter 4. The method of analysis presented therein was completed 

before the work of Auli et al. (1985) was known to the author or 

published, and can therefore be considered to be developed 
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independently. It will also be seen in Chapter 5 that there are 

instances when this method is not satisfactory. 

So far the discussion on methods of analysis for unanchored tanks 

has focused on the analysis of the tank for given lateral loads. Rock

ing affects the dynamics of the tank, and therefore also the lateral 

load level. A number of papers address the problem of the dynamic 

analysis of liquid filled tanks including rocking [Ishida (1980), Sakai 

et al. (1984), Haroun and Ellaithy (1985)]. In some cases the base of 

the tank is assumed to participate in the rocking motion, in others the 

base of the tank is assumed to remain flat, and only the shell undergoes 

the rocking motion. What happens for an unanchored tank is somewhere in 

between these two extremes: Close to the tank wall, the base plate 

participates in the rocking motion, but at the center the base plate 

remains in contact with the ground. 

Ishida and Kobayashi (1985) use a four degree of freedom dynamic 

model for a rocking tank. In order to obtain the properties of a rota

tional spring which resists the rocking motion for an unanchored tank, 

they assumed that the shell rotates as a rigid body. They also used a 

circular bed of nonlinear Winkler springs to model the resistance to 

vertical displacements of the tank wall at the base. An elastic-plastic 

beam model with axial tension served to estimate the resistance to 

uplift provided by the base plate. Ishida and Kobayashi also performed 

shaking table experiments, and compared the results with those from a 

time history analysis for their four degree of freedom system. 
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An effect which is not included in any of the dynamic rocking ana

lyses is the vertical displacement of the combined center of gravity of 

the tank and contents: At any time, the vertical displacement field for 

the base plate can be decomposed into one component which is 

antisymmetric in the coordinate y (Fig. 1.3), and a component which is 

symmetric in y. During a cycle of rocking motion, the antisymmetric 

part also undergoes one cycle of motion, but the symmetric part 

undergoes two. Furthermore, the spatial average of the symmetric part 

over the base plate is non-zero, indicating that the center of gravity 

of the fluid undergoes two cycles of vertical motion for each cycle of 

rocking. This not only increases the effective period of oscillation, 

but may also contribute towards dangerously high hydrodynamic pressures. 

1.3 SCOPE AND ORGANIZATION 

The author believes that it is important to gain a thorough under

standing of the statics problem of the tank subjected to lateral loads 

before much confidence can be placed in any dynamic solution. Therefore 

attention is focused on the analysis of the tank under given lateral 

loads, and comparison with (for the most part existing) experimental 

results. 

Since, in a time history analysis, the solution to the dynamic 

problem is obtained by solving a statics problem at each time step, the 

solution presented is a key ingredient for solving the dynamic problem. 

The method of analysis chosen for the static case is such that it can 

readily be incorporated in a dynamic analysis. Also, any simplifying 
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approximations which may emerge from studying the static solution are 

also applicable for the dynamic case. 

Although it is certainly desirable to obtain a dynamic solution to 

the problem , the uncertainty in the maximum seismic lateral load a tank 

might experience during its lifetime due to incomplete understanding of 

the dynamic behavior is probably no larger than the uncertainty about 

the intensity and frequency content of ground motion that might occur. 

Therefore, for design purposes, a justifiable approach is to design the 

tank for a given lateral load, which is estimated with due consideration 

of both sources of uncertainty. 

In Chapter 2 the axisymmetric problem in which the tank is 

uniformly uplifted all around the circumference is solved. After study

ing the behavior of the shell in Chapter 3, the relationship between 

uplift and hold-down force from the axisymmetric analysis of Chapter 2 

is used to define the properties of a bed of equivalent nonlinear 

Winkler springs at the base. The analysis of the tank on such a bed of 

springs is formulated in Chapter 4. The validity of this equivalent 

springs method is verified in Chapter 5 by solving the coupled, non

axisymmetric problem for the base plate and shell by the finite differ

ence energy method. Both geometric and material nonlinearities are 

considered in the analysis. Finally, a new design concept is proposed 

and evaluated in Chapter 6, and the main conclusions are summarized in 

Chapter 7. 
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The symbols used are redefined in each chapter, except that the 

nomenclature for Chapter 3 also applies for Chapter 4. Thus, for exam

ple, in Chapter 2, u denotes the radial displacement of a point on the 

base plate, whereas in Chapter 3 the same symbol is redefined to denote 

the vertical displacement of a point on the cylindrical shell. 
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2. AXISYMMETRIC UPLIFT PROBLEM 

When the tank wall uplifts due to earthquake induced overturning 

moments, it pulls the base plate up with it. Consequently, part of the 

weight of the fluid resting on the uplifted portion of the base plate 

becomes effective in resisting overturning moments. In this section the 

relationship between the radial extent of the uplifted portion of the 

base plate and the vertical uplift of the tank wall is studied by solv

ing the axisymmetric problem in which the tank is uniformly uplifted all 

around its circumference (see Fig. 2.1). It will be seen that due to 

geometrically nonlinear effects in the base plate, membrane stresses 

develop which are of primary importance. 

In strict terms, the solution to the axisymmetric problem is not 

applicable if the uplift varies around the circumference. However, if 

the uplifted width in the radial direction is small compared to the 

radius of the tank, and if the variations in vertical uplift are 

gradual, intuition suggests that the relation between vertical uplift 

and the uplifted width determined from the axisymmetric solution may be 

approximately applicable at any given point on the circumference. Thus, 

although axisymmetric uplift does not occur in an earthquake, the solu

tion to this problem may be useful in developing an approximate method 

of analysis for seismic lateral loads. 
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Figure 2.1: Definition of Axisymmetric Uplift Problem. 
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2.1 DEFINITION OF THE PROBLEM 

The axisymmetric uplift problem considered is shown in Fig. 2.1. 

Point E will be referred to as the edge, and point C, as the contact 

point. The displacements are taken to be u and w in the r and z 

coordinate directions, respectively. 

It is assumed that 

a) The foundation is rigid and frictionless; 

b) The tank is weightless and stress free when it is empty; 

c) Both the base plate and the shell remain elastic, but a plastic 

hinge can form at the edge, E. The stresses and displacements 

due to the hydrostatic fluid load and an axisymmetric uplift 

force per unit length, P, applied at the top of the tank, are 

to be determined. 

2.2 AXISYMMETRIC SHELL PROBLEM 

Since the radial displacements of the shell are relatively small, 

the linear theory for an axisymmetrically loaded cylindrical shell 

(Timoshenko and Woinowsky-Krieger, 1959) is applicable. According to 

this theory, bending moments and shears in the shell decay rapidly with 

distance from the edge. As a result, the shell may be assumed to be 

sufficiently long that the solution depends only on the thickness and 

elastic properties of the lowest course of the shell. In addition, the 

fluid pressure is taken to be constant over the region of influence of 

the shell. With these assumptions, the displacement and rotation of the 
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shell at the edge are found to be given by 

in which 

u 

_1_ [2M-AH] 
2D 

s 

(2.1) 

(2.2) 

u = radially outward component of displacement of the edge; 

~s = rotation of the shell-wall at edge, taken to be positive in 

the anti-clockwise direction, as shown in Fig. 2.1; 

H = radially inward force acting on the shell; 

M = moment acting on the shell at the edge, defined to be 

Positive when it acts in the same sense as the rotation ~ · 
s' 

D E t3 /[12(1-~2 )J, the flexural stiffness of shell; s s s s 

Es,~s =Young's modulus and Poisson's ratio for the shell, 

respectively; 

A [tsa]~~[3(1-~;)]~4 , the characteristic length, which 

determines the rate of decay of bending moments in the 

shell; 

p Fluid pressure at the edge (pointE in Fig. 2.1). 
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a = Radius of tank, as defined in Fig. 2.1. Equations 2.1 and 

2.2 will be used in the boundary conditions for the solu

tion of the base plate problem. 

2.3 GENERAL THEORY FOR BASE PLATE 

For a typical tank the uplift may be of the order of 50 times the 

base plate thickness. Since linear plate theory is only applicable for 

deflections which are small compared to the plate thickness, a nonlinear 

theory is required. The moderate deflection theory, also known as the 

Von Karman plate theory [used by Timoshenko and Krieger (1959) and 

Stoker (1968)] is applicable as long as the deflections are not too 

large compared to dimensions of the plate. For even larger displace

ments, the large deflection theory must be used. Here the equations for 

large deflections are developed first, then the approximations of the 

Von Karman theory are introduced. 

In the development of the large deflection theory the following 

assumptions are made in addition to those listed in Section 2.1: 

1. The strains are small. As a result, the differences between 

natural strains and engineering strains, or Piola-Kirchoff 

stresses and Cauchy stresses, are negligible. 

2. Changes in the distance of any point in the plate to the mid

surface are negligible. 

3. The pressure pis applied at the mid-surface. 
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A typical segment of the base plate is shown in Fig. 2.2. It is 

assumed that a point on the midsurface of the base plate moves from a 

point (r,O) in the original (empty, not uplifted) configuration to a 

point (R,w) = (r + u,w) in the loaded (full and uplifted) configuration. 

The membrane forces, denoted Nr in the radial direction and N9 in the 

tangential direction, are given by 

N 
r K(er + ~u/r) (2.3) 

(2.4) 

in which e is the strain in the radial direction, and K is the extenr 

sional rigidity given by 

K (2.5) 

in which E, ~ and t are Young's Modulus, Poisson's Ratio, and the thick-

ness of the base plate, respectively. 

The radial and tangential moments, are taken to be positive when 

they induce tension on the bottom of the base plate, and are given by 

M 
r = D(d' + ~ sin d/r) (2.6) 

D(~d' + sin d/r) (2.7) 

in which 0 is the slope angle defined in Figs. 2.1 and 2.2, D = Kt2/12 

is the flexural rigidity of the base plate, and the prime denotes 

differentiation with respect to r. Here the radial and circumferential 

curvatures, d' and sin 0/r, respectively, are taken to be the rate of 
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change of the unit normal vector to the mid surface per unit length in 

the original configuration. The radial shear force is denoted by Q , 
r 

and acts as shown in Fig. 2.2. The shear force, the membrane forces, 

and the moments are expressed as forces per unit length in the original 

configuration. 

Considering the changes in w and u for an infinitesimal change in 

the material coordinate gives 

w' - O+e ) sin ~ r 

u' (R-r)' = e - (1+e )(1- cos 0) 
r r 

(2.8) 

( 2. 9) 

The vertical and radial equilibrium equations for the segment of 

the base plate shown in Fig. 2.2 may be written as 

(2.10) 

rQ sin 0 + rN cos 0 r r 
(2.11) 

in which 

R 

F ro 0ro - f pRdR 
v 

(2.12) 

R 
0 

w r 

Fh ro Nro + f pRdw + f N9dr (2.13) 
r 

0 0 
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In Eqs. 2.12 and 2.13 N and Q are the radial membrane force and the ro ro 

shear force at the contact point. This shear force is generated by a 

concentrated line reaction exerted by the foundation on the base plate. 

The concentrated contact reaction occurs without deformations since the 

foundation is assumed to be rigid. Without the contact reaction no 

solution would be possible; it is required for the sudden change in 

shear force. In reality however the foundation always has some flexi-

bility, and the concentrated line reaction redistributes over a finite 

width. 

A third equilibrium equation results from considering the moments 

acting about the tangential axis on an element of the plate shown in 

Fig. 2.3. In obtaining this equilibrium equation, note that the verti-

cal components of the moments M9 cancel, and only the radial component 

. M9 cos 9 changes through an angle d9. The resulting moment-shear rela

tion is 

(rM ) , 
r (2.14) 

There are now nine equations, 2.3, 2.4, 2.6 through 2.11 and 2.14 

for the nine variables: u, w, er, d, Nr, N9 , Mr, M9 , Qr. Many of the 

variables could readily be eliminated, but here it is found convenient 

to leave any simplifications of the governing equations for later, when 

the method of numerical solution is discussed. 

The boundary conditions are as follows. 

point C: 

At r = r , the contact 
0 
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0 I M 
r 

K(1+~)e r 

0 (2.15) 

(2.16) 

The last conditions arise because, since the foundation is frictionless, 

the entire portion of the base plate which remains in contact with the 

ground is in a state of uniform, isotropic membrane forces 

(Nr = N9 = Nro for r < r 0 ). 

At r = a, the edge, Eqs. 2.1 and 2.2 for the shell need to be 

considered. The horizontal radial force and moment reaction conditions 

are: 

and M -M 
r 

(2.17) 

(2.18) 

If no plastic hinge forms, the additional condition is 0 = 0 ; if a s 

plastic hinge does form, the moment at the edge must be the lesser of 

the yield moments of the base plate, or the shell. Defining the lesser 

of these two moments by M , the yield condition is y 

M = -M r 

The effect of a stiffening ring at the edge could also be included, but 

is omitted here for simplicity. 
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2.4 SOLUTION FOR MODERATE DEFLECTIONS 

For moderate deflections sin 0 is replaced by 0 and cos 0 by unity, 

except that in Eq. 2.9, 1- cos 0 is replaced by ¥~2 • In addition, terms 

containing the factor 0e are neglected in Eqs. 2.8 and 2.9, and the r 

radial component of the shear force 0Qr is neglected in Eq. 2.11. Thus 

Eqs. 2.6, 2.7, 2.8, 2.9, 2.10, 2.11 and 2.14 become: 

M D(cJ' + ~0/r) (2.19) r 

M9 D(~cJ' + cJ/r) (2.20) 

w' - cJ (2.21) 

u' 8 - 'ht$2 (2.22) r 

rQ rNrcJ Fv (2.23) r 

rN = Fh (2.24) r 

(rM ) • = Ma + rQr (2.25) r 

Finally, the difference between R and r is neglected in Eq. 2.11 to give 

F 
v 

r 

r o Qro - J prdr 
R 

0 

(2.26) 

and the horizontal component of the pressure force is neglected in Eq. 

2.13 to give 
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(2.27) 

All other equations and boundary conditions remain the same except that 

the edge condition for radial force (Eq. 2.17) becomes H = Nr. This 

nonlinear contact problem is solved by the shooting method: The loca-

tion of the contact point, as well as the radial membrane force (N ) ro 

and the shear (Q ) at the contact point are assumed. This defines an ro 

initial value problem starting at the contact point, which is readily 

solved numerically. However, unless by chance the correct values of N ro 

and Oro were assumed, the solution of the initial value problem will not 

satisfy the boundary conditions at the edge. The mismatch in the 

boundary condition may be expressed as an out-of-balance force, termed 

Hob' and an out-of-balance moment, M
0

b. These out-of-balance forces 

depend on N and Q • They must vanish in order that the correct solu-ro ro 

tion to the problem be obtained. Symbolically, these requirements may 

be written as 

0 (2.28) 

0 ( 2. 2 9) 

These equations can be solved numerically, by Newton's method, to any 

desired degree of accuracy. The gradient matrix can be obtained from a 

set of linear, ordinary differential equations which are derived by 

considering a perturbation to the governing equations, or, more 

conveniently, by computing the gradient matrix numerically. Finally, 
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solving the problem for a number of locations of the contact point. a 

parametric description of the relationship between any two variables of 

interest can be obtained. 

Consider now the solution of the initial value problem in which N 
r 

and Qr are known at the contact point. Perhaps the most natural 

approach is to eliminate all variables except the displacements u and w 

from the equations. This gives two coupled ordinary differential equa

tions. of 3rd order in w and 2nd order in u, which can be solved by 

standard numerical methods. This was attempted by the author who found 

that assuming that u'' and w' ''vary linearly between nodal points. and 

using a method similar to Newmark's method of integrating the equations 

of motion, gives very poor results for any practicable step size, h. It 

is expected that similar problems would be encountered for other numeri

cal methods. The reason is that the equations contain the terms 

u' + w' 2/2 for the radial strain. Except very close to the contact 

point. the magnitude of both u' and w' 2/2 is much larger than the 

magnitude of the sum. For the case in which u'' and w''' are linear; u' 

is quadratic, w' is cubic, and w' 2/2 is a sixth degree polynomial. 

Although u' and w• 2/2 are smooth. the sum can exhibit strong variations 

over a steplength, h. A similar phenomenon occurs in the finite element 

method, and is known as membrane locking [Belytschko et al. (1984)]. 

The method described below avoids these difficulties by using an 

integrated version of the radial equilibrium equation, assuming that the 

radial strain varies smoothly within each step, and then calculating the 

corresponding variation in u. 
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It follows from Eqs. 2.3, 2.19, 2.20, 2.23, 2.24 and 2.25 that 

01 I 

8 r 

(2.30) 

(2.31) 

From the boundary conditions at the contact point (Eqs. 2.15, 2.16), it 

is readily shown that at r = r : 
0 

roNro Nro 
( K ( 1 +~) ' K ( 1+~) 

0ro 
, 0, 0, 0, D (2.32) 

The variables on the left hand side of Eq. 2.32 will be termed the state 

• variables . Any quantity of interest can be expressed as a function of 

these state variables. Now, suppose all state variables are known at 

r = r 1 , and characterize their values at this point by a subscript 1. 

Thus, u(r1) = u1 , and so on. Let r 2 = r 1 + h for a small step h, and 

characterize the values of the variables at r = r 2 by a subscript 2. 

Thus u(r2) = u2 , and so on. Assuming next that er and 0 11 vary linearly 

between r = r 1 , and r = r 2 , then all state variables at r = r 2 may be 

obtained as a function of er and 02
11

, by evaluating the following 

expressions in sequence. 

01 

2 
0 I + h ( d I I + 0 I I ) /2 1 1 2 (2.33) 

• They are not state variables in the strict mathematical sense of the 
word, because they are interrelated. 



- 33 -

(2.34) 

(2.35) 

( 2. 3 6) 

( 2 .37) 

(2.38) 

Equations 2.33 to 2.35 are obtained by exact integration. Equations 

2.36 to 2.38 result from trapezoidal integration, and Eq. 2.38 is exact 

if the fluid pressure p is constant between r 1 and r 2• Equations 2.33 

to 2.38 together with Eqs. 2.30 and 2.31 applied at r = r 2 are the set 

of 8 equations which determine the state variables at r r 2 given their 

value at r = r 1 • Numerical solution is simplified by the following 

iterative procedure: 

1. Start with 0••2 = 0' ' 1 and er2 = 8 r1' 
, 

2. Calculate 02, 02, w2, u2, Fh2' Fv2 from Eqs. 2.33 to 2. 3 8. 

3. Calculate 0', 
2 and er2 from Eqs. 2.30 and 2.31. 

4. Repeat steps 2 and 3 until convergence in 0'' and 2 8 r2' 

This scheme is applied repeatedly, starting with the values of the state 

variables at the contact point given in Eq. 2.32, until the entire solu-

tion to the initial value problem is generated. With this solution 

method, accurate results can be obtained with relatively large step 

sizes, h. The results are identical to those that would be obtained by 
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subdomain collocation: the average of the residual over each element 

vanishes. For the example presented in the next section (a = 57 in, 

t = ts = 0.078 in, p = 8.67 psi) for a 9 in width of the uplifted strip, 

9 steps at h = 1 in gives results accurate to 0.11% in M , 1.5% in w, 
r 

2.3% in u, 4.8% in d, 2.5% in Nr and 2.4% in N9 . For 36 steps at 

h = 0.25 in, these percentages become 0.01%, 0.08%, 0.12%, 0.29%, 0.14%, 

and 0.15%, respectively. Of several methods attempted by the author 

this one yields the most accurate results for a given step size. 

2.5 EXAMPLE PROBLEM 

One tank for which stresses in the baseplate have been measured is 

the stainless steel wine tank tested by Niwa and Clough (1982). This 

tank has a radius of a = 57 in, the thicknesses of the base plate and 

the lowest course of the shell are t = t 0.078in. It is assumed that s 

the tank is filled with water to a depth of 20 ft, for which the 

hydrostatic water pressure is 8.67 psi. The elastic properties for the 

stainless steel are taken to beE= 29 X 106 psi, and~ = 0.3. Based on 

a yield strength of 70 ksi for the stainless steel, the yield moment for 

the plastic hinge which is allowed to form at the edge is found to be 

My = 106.5 in-lb/in. The displacements, shear forces, bending moments, 

and membrane forces for widths of the uplifted strip of 9 in and 18 in 

are shown in Figures 2.4 to 2.8. In Fig. 2.6 the shear force Q is 
r 

plotted as the continuous line, and the broken line shows the total 

shear, including the shear force Q and the vertical component of the r 

membrane force, -d N (see Fig. 2.2). The difference between the broken 
r 
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Figure 2.4: __ Vertical uplift for the wine tank of Niwa and Clough 
(1982); (a) for 9in uplifted width, (b) for 18in uplifted width. 
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so 55 
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Figure 2.5 Radial Displacement for the wine tank of Niwa and 
Clough (1982); (a) for 9in uplifted width, (b) for 18in uplifted 
width. 
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Figure 2.6: Shear force Q (continuous lines), and total shear 
Q -¢N (broken lines) forrthe wine tank of Niwa and Clough (1982) 
f~r (§) 9in uplifted width, and (b) 18in uplifted width. 
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Figure 2.7: Radial bending moments for the wine tank of Niwa 
and Clough (1982), for (a) 9in uplifted, and (b) 18in uplifted 
width. 
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Figure 2.8: Radial Membrane force N (continuous lines) and 
circumferencial membrane force N

8 
(broken lines) for the wine tank 

tested by Niwa and Clough (1982), (a) for 9in uplifted width, and 
(b) for 18in uplifted width. 
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line and the continuous line is the vertical component of the radial 

membrane force, ~ Nr• For the case when small deflection theory is 

applicable , ~ Nr is negligible compared to Qr, and the broken and 

continuous lines would coincide. Figure 2.6 shows that even when the 

width of the uplifted strip is only 9 in, small deflection theory would 

be in error. For an uplifted width of 18 in, the shear is carried 

almost entirely by the membrane force N , except in localized boundary r 

layers near the edge and contact point. 

The radial membrane forces are shown in Fig. 2.8. They are 

generated almost entirely by nonlinear effects: Due to the finite slope 

of the baseplate in the radial direction, ~. there is a tendency for the 

baseplate to move radially inwards. This inward displacement is 

restricted by the tank wall and also by the base plate itself which 

resists any axisymmetric deformation. Such restrictions to inward 

motion generate the radial membrane stresses. The restraining effect of 

the tank wall is represented by the radial membrane force at the edge. 

The increase in the membrane force inward from the edge is due to the 

restriction from the baseplate itself. It arises because the baseplate 

is being deformed into a non-developable shape. As a consequence of 

membrane action, the bending moments (Figs. 2.7 and 2.9) are relatively 

small and do not increase as the uplifted width is increased from 9 in 

to 18 in. In contrast, for the linear theory, the bending moments 

increase as the square of the uplifted width, and the shape of the bend-

ing moment diagram is close to parabolic . 
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2.6 SOLUTION FOR LARGE DEFLECTIONS 

The governing equations for large deflections have already been 

developed. It remains to cast them in a convenient form for numerical 

implementation: Solving Eqs. 2.10 and 2.11 for Qr and Nr gives 

N 
r 

Q 
r 

= 

Substituting Eqs. 2.6, 2.7 and 2.39 into Eq. 2.14 gives 

(2.39) 

(2.40) 

~·· [<1+er)(Fv cos~+ Fh sin ~)/D +sin~ cos 0/r-~']/r .(2.41) 

Substituting Eq. 2.40 into Eq. 2.3: 

e 
r 

The numerical solution procedure is identical to that for moderate 

(2.42) 

deflections except that Eqs. 2.30 and 2.31 are replaced by Eqs. 2.41 and 

2.42, and Eqs. 2.35 to 2.38 are replaced by 

w2 = w - h[(1+er1) sin ~1 + (1+er2) sin 02]/2 1 
(2.43) 

u2 u1 + h[ t1 
e 
ri 

+ (1+eri)(l-cos 0i) l/2 (2.44) 

Fv2 Fv1 
2 2 I - p(R2-R1) 2 (2.45) 

in which 
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i 1,2 (2.47) 

Equations 2.43 to 2.47 are obtained by trapezoidal integration of Eqs. 

2.8, 2.9, 2.12 and 2.13. In evaluating 1-cos 0 for small values of 0, 

the Taylor series expansion must be used to avoid numerical truncation 

errors. By considering enough terms, 1-cos 0 can be evaluated to the 

full accuracy of the machine used. 

As an example, the wine tank tested by Niwa and Clough (1982) is 

considered again. The results for large deflections are so close to 

those for moderate deflections that the difference could not be seen on 

a plot. This confirms that the deflections in this problem (involving 

rotations up to around 0.2 radians) are characterizable as moderate, not 

large. 

2.7 COMPARISON WITH EXPERIMENTAL RESULTS 

If the width of the uplifted strip is small compared to the radius 

of the tank, the conditions in the uplifted portion of a rocking tank 

appear to be much the same as the conditions for the axisymmetric uplift 

problem with the same amount of uplift at the edge. If this is so for a 

rocking tank, for which stresses are changing as a function of the 

circumferential angle, 9, the stresses and displacements for any value 

of 9 may be approximated by those from the solution of the axisymmetric 

problem with the appropriate vertical uplift at the edge. When this 

hypothesis applies, the variations in stresses and displacements in the 

circumferential direction will be referred to as weak. The comparison 
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between experimental and theoretical radial membrane strains shown in 

Fig. 2.10 is based on the assumption that circumferential variations are 

weak and that the hydrodynamic pressure is small compared to the static 

fluid pressure. so that its effect on the uplifted portion of the 

baseplate may be neglected. At time 8.0s in Niwa and Clough's experi

mental results. a peak uplift of about 1.6 in occurs. The experimental 

points in Fig. 2.10 represent the measured radial strains at various 

locations at time 8.0s, and the continuous curve represents the 

axisymmetric solution for the case when the uplift at the edge is 1.6 

in. As can be seen from Fig. 2.10, both theory and experiment show very 

high membrane strains. but the spatial variations of membrane strain 

differ: Theory predicts a steady increase in the radial membrane strain 

towards the edge, due mainly to Poisson's ratio strains induced by the 

very large hoop compressive force, N9 (Fig. 2.8). In contrast. the 

experimental strains increase from 12 in to 6 in from the edge, then 

drop dramatically, being close to zero at 3 in from the edge. Possible 

reasons for this discrepancy include: 

a) The neglected effect of hydrodynamic pressures. 

b) Inapplicability of the assumption that the axisymmetric solu

tion applies to non-axisymmetric uplift (assumption of weak 

circumferential variations). 

c) Experimental error. 

d) Buckling of the base plate due to the large compressive 

stresses in the circumferential direction. 
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Figure 2.10: Theory versus experiment comparison of radial 
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figures in the journal paper. The error bars indicate the 
error in this scaling operation only.] 
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Which one of these explanations applies, or what combination, is not 

clear, but some assessment is possible. 

Hydrodynamic pressures have been measured in the experiment, and 

are of the order of one-half the hydrostatic pressure. If variations in 

the circumferential direction are indeed weak, it would be possible to 

carry out the axisymmetric analysis with a modified pressure, thus 

obtaining a solution which includes the effects of hydrodynamic pres

sures. Such a corrected theoretical solution would exhibit much the 

same trends as the solution already obtained. Therefore the effect of 

hydrodynamic pressure alone is not considered to be a valid explanation 

for the drop in the experimental radial membrane strain close to the 

edge. 

The assumption of weak circumferential variations is debatable: If 

it applies, the large circumferential compressive forces N9 in the base 

plate must vary around the circumference just as the uplift does. It 

seems that, unless this is accompanied by large shear forces, Nr9 , such 

changes in N9 would violate equilibrium in the circumferential direc

tion. However, it is hard to understand how the relatively slow varia

tion in uplift around the circumference could cause the rather dramatic 

change in strains observed. 

Buckling of the base plate by circumferential compression is 

thought to be the most likely explanation. Based on the theory of 

buckling of plates under uniform uniaxial stress, and an estimated 

effective half wavelength of 5 in in the radial and circumferential 

directions, a buckling circumferential force of N9 = 2000 lb/in was 
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calculated. Although, due to prebuckling curvature, the actual buckling 

stress is somewhat higher than that predicted by the theory for flat 

plates, buckling still seems likely before the maximum circumferential 

force (N9 = 5954 lb/in shown in Fig. 2.8 for 18 in uplifted width) is 

reached. 

To define more precisely when buckling by circumferential compres

sion may be expected to occur, the computer program BOSOR5 (Buckling of 

Shells of Revolution) developed by Bushnell (1974) was used. The 

capabilities of this program include material and geometrically non

linear analysis of shells (and as a special case, plates) of revolution 

subjected to axisymmetric loads, and determination of bifurcation loads 

for non-axisymmetric buckling modes. Numerical solution of the govern

ing equations is based on the finite difference energy method. Just as 

in the finite element method, the strains at integration points are 

expressed in terms of nodal displacements, and the contributions to the 

stiffness matrix from each integration point are summed. However, 

whereas in the finite element method a displacement field is defined 

within each element, and strains are computed by differentiation of this 

displacement field; in the finite difference energy method, strains are 

computed by finite difference expressions directly in terms of nodal 

displacements. Although the capabilities of BOSOR5 do not include 

contact problems, knowledge of the prebuckling solution from the shoot

ing method makes it possible to simulate the prebuckling conditions in 

the base plate by judicious choice of constraints and loading. Details 

of how this can be achieved are given in Appendix A. 
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Using BOSOR5 to look at the stability of asymmetric modes for vari-

ous locations of the contact point, it is found that the critical mode 

occurs for n = 33 circumferential waves, when the radial extent of the 

uplifted width is 12.75 in, the vertical uplift of the tank wall is 1.31 

in, and the circumferential force at the edge is 3415 lb/in. The 

buckling modes are shown in Fig. 2.11. Also this type of buckling is 

illustrated in Fig. 2.12 for a mylar tank. 

After the base plate buckles, the magnitude of circumferential 

compressive force, IN9 1, increases more slowly with increasing uplift. 

Via Poisson's effect, this means that the radial membrane strains also 

increase more slowly. In addition, since the radial membrane tension is 

for the most part generated by the hoop compressive forces, the radial 

membrane tension, N , also increases more slowly. Finally, there are r 

local effects associated with buckling which vary over a half-

wavelength. These can further influence experimental strain readings. 

Thus, bifurcation buckling appears to be the most likely explanation of 

the difference between theory and experimental points in Fig. 2.10. 

However, the other effects discussed may be contributing factors, too. 

2.8 CONCLUSIONS 

Solutions to the problem of uniform axisymmetric uplift of an 

unanchored filled liquid tank indicate that: 

1. Large membrane stresses develop in the base plate. These 

membrane stresses carry a large part of the fluid pressure on 
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Fi gure 2.12: 

Reflected light photograph of the buckles in the base plate 
of a mylar tank similar to the ones used by Shih(1981) . An 
axisymmetric uplift of 1/16" was applied by inserting a ring 
filler under the shell wall at the edge . The ring filler 
consists of a sheet of p1exiglass with a hole of diameter a 
few hundredth of an inch less than t he inner diameter of the 
shell . The dimensions of this tank are 5" for the diameter , 
and 0 . 002 " for the thickness of the shell a nd the base plate . 
It is filled with water to a de pth of a few inches . 
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the uplifted portion of the base plate. 

2. Bending stresses are relatively small except at the cylinder 

base plate joint, where a plastic hinge is expected to form. 

3. For the realistic example studied, results obtained by the 

large deflection theory are virtually identical to those from 

the moderate deflection (Von Karman) plate theory. 

4. For large enough uplift, buckling of the base plate due to the 

circumferential compressive forces occurs. 

5. Buckling of the base plate is the most likely explanation of 

the difference between the theoretical and experimental radial 

membrane strains shown in Fig. 2.10. 
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3. ANALYSIS AND BEHAVIOR OF THE CYLINDRICAL SHELL 

In this chapter, some elementary solutions relevant for understand

ing the behavior of the shell subjected to seismic lo~ds and uplift are 

discussed, and certain results are developed for later use. 

If the material yields at a critical section in the shell, such as 

near the base, it is likely that buckling would occur as a consequence 

of the drastic reduction in the material stiffness. Hence, from a 

design viewpoint, it is desirable to prevent yielding in the shell. 

Also, for the purpose of analysis of a tank at loads below the collapse 

load, plasticity in the shell need not be considered. 

The importance of considering geometric nonlinearities in the shell 

is more debatable, and will be discussed later. As a first approxima

tion, linear shell theory is assumed to hold. 

The linear analysis of cylindrical (or, more generally, conical) 

shells using annular finite elements is well established, e.g., Klein 

(1964). This approach has been used by Haroun (1980), who also included 

the nonlinear effects of the hoop force due to the hydrostatic pressure. 

These results, as well as added stiffness matrices for the pressure

rotation effect on the hydrostatic pressure, are summarized in Appendix 

B. In the following pages some elementary solutions in the linear 

theory of cylindrical shells are examined; these results are relevant in 

understanding the behavior of an unanchored fluid storage tank. 

Using superposition, the solution for an unanchored tank can be 

expressed as the sum of: 
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a) the solution for an anchored tank subjected to the loads 

experienced by the unanchored tank, and 

b) the solution for imposed displacements at the base of the tank, 

and no other applied loads. 

These two solutions will be discussed in sections 3.2 to 3.4, after 

presenting some basic definitions. 

3.1 DEFINITIONS 

The coordinates and displacement components are defined in Fig. 

3.1. All definitions coincide with those of Flugge (1960), Chapter 5, 

except that the angle which defines the point on the circumference is 

denoted by 9 instead of Flugge's ~. In accordance with Flugge's nota

tion, the components of displacement are taken to be u in the direction 

of increasing x, v in the direction of increasing 9, and w in the radi

ally outwards direction. The internal membrane forces, Nx' N9 , Nx9 ' 

N9x' are defined in Fig. 3.1b, and the internal moments Mx, M9 , Mx9 and 

M9x are taken to be positive when they generate a positive stress at the 

inside of the shell. Shears Qx and 09 , defined in Fig. 3.1b, are 

positive when they act radially inward on the face for which the outward 

pointing normal is in the positive x and 9 directions, respectively. 

The thickness of the tank is denoted by t, and the radius by a. 
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3.2 COMMENTS ON THE SOLUTION FOR AN ANCHORED TANK 

For an anchored tank, no inextensional modes are possible. This 

means that it is not possible to deform the shell without generating 

membrane strains. Smoothly varying loads from fluid pressure are 

carried mostly by membrane action with relatively little deformation of 

the shell. Except very close to the base, stresses and displacements 

can be accurately determined from the statically determinate membrane 

theory. Even close to the base, the solution can be obtained with good 

accuracy by superposing the solution from the membrane theory (which 

involves radial displacements at the base) upon an approximate solution 

for compensating imposed radial displacements at the base, which is 

discussed in the next section. 

3.3 COMMENTS ON SOLUTION FOR IMPOSED RADIAL DISPLACEMENTS AND ROTATIONS 
AT THE BASE 

The axisymmetric solution for a semi-infinite cylinder subjected to 

imposed radial displacements and rotations about the circumferential 

axis at the end (Timoshenko and Woinowsky-Krieger, 1959) is relatively 

simple, and has been used_in Chapter 2 to formulate the boundary condi-

tions for the axisymmetric analysis of the base plate. Solutions for 

imposed radial displacements and rotations that vary around the 

circumference are much more complicated. However, the author has shown 

that, as long as the variations in imposed displacements are slow in the 

sense that the change in imposed displacement over a length of (at)~ is 

small, the axisymmetric solution, applied locally, is a good approxima-
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tion to the much more complicated solution for imposed displacements 

which vary as functions of 9. Furthermore. as the thickness to radius 

ratio. t/a. becomes very small. the error in the radial displacement and 

its derivatives up to the 4th order decrease like (t/a)~. Since this 

result is not used extensively in what follows. the somewhat lengthy 

derivation is omitted. Instead. the range of validity of the approxima-

tion is verified numerically using the solution given by Flugge (1960) 

for a semi-infinite cylinder with loads applied at the base. x = 0. 

Suppose the radial displacement and rotation at the base are given by 

uh cos n9 

in which Uh is a constant 2 X 1 vector. Then. from the solution for the 

non-axisymmetric problem. the applied shear force and moment at the base 

are 

= 

in which 

where Khn is a 2 X 2 matrix. If the axisymmetric solution is applicable 

locally, Khn must be independent of n. The ratio of the elements of Khn 

to the corresponding elements of Kho are shown in Fig. 3.2. For a given 
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Semi-Infinite Tank Properties: 
V=0.3 
a/t=500, 1000, 2000 
(curves coincide for these 
values of a/t) 

04-----------~------------r-----------~-----------r----------~ 

0.0 0.2 0.4 0.6 0.8 
2 2 2 .l 

Normalized Harmonic Number, n/[3(1-V )a /t ] 4 

1.0 

Figure 3.2: Solution for imposed radial displacement and rotation at 
the base: Ratio of the exact value to the approximate value from 
the axisymmetric solution for 
a) Radial force at base (Q +M' 8 /a at x=O) due to imposed radial 

displacement (w=l at x=O) x 
b) Moment (M ) at base due to imposed radial displacement, or 

radial fo?ce due to imposed rotation 
c) Moment (M ) due to imposed radial rotation (w'=l at x=O). 

X 
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value of Poisson's ratio, these ratios depend on the harmonic number n, 

and the radius to thickness ratio (a/t). However, in the shallow shell 

theory they depend only on a normalized harmonic number, 

n/[3(1-~ 2 >a2/t2 J~. Plotting the ratios obtained from the general (not 

necessarily shallow) shell theory as functions of this parameter, it was 

found that the curves for a/t = 500, 1000, and 2000 are indistinguish-

able• Hence, the shallow shell theory is seen to be essentially exact 

for a/t ratios typical of steel tanks. The error in applying the 

axisymmetric solution locally for values of the normalized harmonic 

number up to 1.0 is seen to be 20% at most. An important implication of 

this result is that if the circumferential displacement v of the edge of 

the base plate is negligible, then, in as far as the boundary conditions 

at the edge are concerned, the assumption of weak circumferential varia-

tions in the base plate is acceptable. 

3.4 COMMENTS ON THE SOLUTION FOR IMPOSED VERTICAL DISPLACEMENTS AT THE 
BASE 

Due to diaphragm action of the base plate, it is assumed that the 

horizontal displacements (radial and circumferential) at the base 

vanish. The rotation of the tank wall about the circumferential axis is 

assumed to be unrestrained and a vertical displacement U is imposed at 

the base. Thus the boundary conditions at the base are 

u = u , v = w = 0 , M = 0 at X 
X 

0 (3.1) 

For a vertical displacement at the base, 



u 

the vertical force at the base is 

p 
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cos n9 

K cos n9 vn 

(3.2) 

(3.3) 

in which P, the vertical force at the base, is taken to be positive when 

it acts upwards. The sequence of stiffness coefficients, Kvn' defines 

the relation between vertical forces and displacements at the base. For 

n = 0, Eq. 3.2 defines an upward rigid body motion, for which K 0. 
VO 

For n = 1, the base undergoes a rigid body rotation about a horizontal 

n/2. • axis 9 = ± So K = 0 • For n .L 2 however, the tank is deformed v1 

and the stiffness coefficients are non-zero. It will be seen that for 

small n, the stiffness coefficients for a tank with a baseplate, but 

without a roof are of the order of (a/t> 2 times smaller than for the 

same tank with a roof. This radical difference arises because a tank 

without a roof can accommodate the displacement at the base without 

membrane strains. 

3.4.1 Inextensional Deformation Modes of a Cylindrical Shell 

For an inextensional cylindrical shell, the strains at the 

midsurface must vanish. Thus 

• Except that when nonlinear effects discussed in Appendix B are 
included, Kv1 becomes negative. 
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u' = 0 

u· + v' 0 (3.4 a-c) 

v· + w 0 

in which 

( ) , a ( ) ( ) . ...Q_ ( ) a-
ax ae (3.10) 

The general solution to Eqs. 3.4 is 

u u 

v -(x/a)U" + v (3.5 a-c) 

w = (x/a)U" • - v· 

in which U and V are arbitrary functions of 9 only. 

If the horizontal displacements at the base are zero (u = v = 0 at 

x = 0), then V = 0. As a result. Eqs. 3.5 reduce to 

u u 

v -(x/a)U" (3.6 a-c) 

w (x/a)U"" 

Eqs. 3.6 represent the inextensional modes of an unanchored tank without 

a roof. For U = cos n9, these become 

u cos n9 

v = n(x/a) sin n9 (3.7 a-c) 

w -n2 (x/a) cos n9 

A roof inhibits out-of-round displacements at x = L. It follows 

that only rigid body modes, but no inextensional deformation modes are 

possible. Hence, a tank with a roof cannot be deformed without 



- 60 -

generating membrane strains. 

3.4.2 Solution for a Tank With a Roof 

For the analysis of the cylindrical shell the axisymmetric finite 

elements developed in Appendix B can be used. However, a compatible 

roof element needs to be added. For a typical roof consisting of a 

steel plate supported by trusses, the rigidity in the vertical direction 

is negligible. For the in-plane direction on the other hand, the 

rigidity due to the steel plate is large, but the effect of the trusses 

may be neglected. Hence, the stiffness matrix for a roof element can be 

derived by solving the plane stress problem for a disk with loads 

applied at the circumference. Timoshenko and Goodier (1970), p. 133 

give a general expression for the Airy stress function for problems in 

polar coordinates. The solution of interest is obtained by selecting 

those terms which are not singular at r = 0. For the case in which the 

displacements at the circumference (r = a) are 

w = wn cos n9 

• (3.8 a,b) 
v = v sin n9 n 

the radial and shear forces at circumference are 

N Nrn cos n9 r 

• (3.9 a,b) 

Nr9 Nr9n sin n9 

* For the case n 0, sin n9 is to be replaced by unity. 
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in which 

r 
N 

1 r 
wn 

1 rn 
= KRn (3.10) I NrGn I v I 

l J l n J 

where KRn' the in plane stiffness matrix for the roof, is given by 

ERtR [ 1 0 l a(l-\)R) 0 0 for n = 0 

ERtR [ 1 1 l KRn a(3-\)R) 1 1 for n = 1 

ERtR [ 2n-(1-\)) 2-n(l-\)) 

l l a( 1+\)R) (3-\)R) 2-n(1-\)) 2n-(1-\)) 

for n 2. 2 (3.11) 

where ER, \)R, tR are Young's modulus, Poisson's ratio and the thickness 

of the roof, respectively. The finite element analysis of the tank with 

a roof proceeds by adding this in-plane stiffness matrix of the roof 

into the approximate locations of the global stiffness matrix of the 

shell. The results for a typical tank are shown in Fig. 3.3 by square 

markers. 

For comparison, consider the plane stress problem in a halfplane 

with loads applied at the edge. Let x be the coordinate direction 

normal to the boundary, such that x is positive in the halfplane, and 

let y be the coordinate tangential to the boundary. Let u and v be the 

displacements in the x and y direction, respectively. Specify the dis-

placements at the edge as 
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Figure 3.3: Stiffness for uplift u=cos n8 at base for 

a) tank with roof (finite element solution) 
b) semi-infinite plate (plane stress problem) 
c) semi-infinite cylinder (analytical solution of Fl~gge, 1960) 
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u cos (ny/a) 

v 0 

Thus, the variation in u has the same wavelength as in the shell 

problem. As in Eq. 3.3, the normal force at the boundary can be written 

as 

From the solution of the plane stress problem• 

K = vn 
2Etn 

This stiffness is shown in Fig. 3.3 as curve (b). As might be expected, 

for large n, the radius of curvature of the tank wall is small compared 

to the circumferential wavelength, and the stiffnesses for the tank and 

the halfplane coincide. More importantly, in this example, for any 

n L 2, the stiffness for the tank with a roof is no less than half the 

stiffness of the halfplane. 

From the comparison of the tank with a roof to the semi-infinite 

cylinder, it is seen that the roof has more of a stiffening effect than 

a semi-infinite continuation of the cylinder. This occurs because the 

solution for a semi-infinite cylinder with a large ratio of a/t contains 

terms in the expressions for the stresses and displacements which decay 

very slowly in x (Flugge, 1960). 

• The general solution to this problem is given by Timoshenko and 
Goodier (1970). The stresses and displacements decay like 
exp (-nx/a) or x exp (-nx/a). 
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3.4.3 Inextensional Solution for a Roofless Tank 

When inextensional modes are possible, they are often so flexible 

compared to deformational modes involving membrane strains that the dis-

placements associated with membrane strains become negligible compared 

to those associated with inextensional deformations. Under such condi-

tions, the use of inextensional theory is in order. 

Consider the determination of the vertical force that must be 

applied at the base to generate the displacements described by Eqs. 

3.6: It can be obtained from the principle of virtual work by applying 

an inextensional virtual displacement. As a first step, the strains and 

stresses through the thickness of the shell need to be determined. For 

this purpose, substitute the inextensional displacement field (Eqs. 3.6) 

* into what Flugge (1960) refers to as the exact strain-displacement 

relations for a cylindrical shell, expand the resulting expressions in 

powers of the distance from the mid-surface, and neglect terms of second 

and higher order, to obtain 

0 

(3.12 a-c) 

in which ex is the vertical strain, e9 the circumferential strain, Yxe 

the engineering shear strain, z is the distance from the mid-surface 

(positive so that a + z is the distance of the point from the axis of 

* The expressions are exact for infinitesimal displacements. 
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the cylinder), and 

( ) dnU 
U n - (3.13) 

Now consider a virtual, inextensional deformation arising from a verti-

cal virtual displacement &U at the base, and the corresponding virtual 

displacements &u, ov and ow, and virtual strains &ex, &e9 and orxe 

obtained by substituting U = &U into Eqs. 3.6 and 3.12. Equating the 

virtual work done by the vertical force at the base, P, and loads pr, Pe 

and p distributed over the surface of the cylinder to the virtual 
X 

change in strain energy yields 

27T r L 

f I (P&U + f 
0 l 0 

= 

(p &u + p ow + x r ad9 

27T L t/2 

rEe9 Erxe 
f f f -2 &ee + 2(1+~) 
0 0 -t/2 l1-~ 

or 91 dz dx ade 
X J 

(3.14) 

By substituting for the real and virtual strains from Eqs. 3.12, and for 

the virtual displacements from Eqs. 3.6, performing the integrations in 

x and z, and integrating by parts in 9, Eq. 3.14 reduces to 

27T r L 
f p + f 
0 l 0 

(p +X p·· +X p9·)dx] &U ad9 
x a r a 

27T 

= Ks J [u(S) + (2-a2>u< 6> + (1-2a2)u< 4> - a2u< 2>] &U ad9 , (3.15) 

0 



where 

a. 

K s 
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Finally, since oU is arbitrary, 

0 

The corresponding stiffness coefficient for U = cos n9 is 

K = vn 

2 
Et3L4 <n2

+a.
2 ><n2-1> n2 

36(1-\)2>a7 

(3.16) 

(3.17) 

(3.18) 

(3.19) 

Comparing this expression to the stiffnesses for the tank with a roof, 

it is seen that for small n these inextensional modes are of the order 

of (a/t) 2 times more flexible. Under such conditions, the inextensional 

theory is a good approximation. However, the stiffness of the inexten

sional modes increases like n8 , and for 

n [6a/t1~4 (3.20) 

the flexibility due to inextensional modes is of the same order as that 

for deformations involving membrane strains. This phenomenon is 

illustrated in Fig. 3.4. 
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Figure 3.4: Stiffness for uplift u=cos n at base for 

a) tank with no roof (finite element solution) 
b) semi-infinite plate (plane stress problem) 
c) semi-infinite cylinder (analytical solution of Flugge, 1960) 
d) inextensional tank with no roof 
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3.5 CONCLUSIONS 

The main purpose of this chapter is not to present techniques for 

the analysis of the shell. That is done in Appendix B. Rather, it is 

to review some relevant elementary solutions in order to help the reader 

interpret and evaluate the results of the following chapters. 

The principal conclusions drawn from the results presented are: 

1. If the circumferential displacement v at the junction between 

the base plate and the shell is negligible, then in as far as 

the determination of the radial force and moment exerted by 

the shell on the base plate is concerned, the assumption of 

weak circumferential variations in the base plate is accept

able. 

2. For an unanchored tank without a roof, very flexible inexten

sional deformational modes exist, which involve out of round 

deformations of the shell. These displacements increase 

proportionally with the distance from the base. A roof 

prevents such inextensional modes, and is therefore expected 

to have an important effect on the behavior of unanchored 

tanks. 

3. Although for some loading and boundary conditions, the 

behavior of a cylindrical shell is well described by the 

analytical approximations of this chapter; for an uplifting 

tank, the behavior is sufficiently complicated to require the 

use of numerical methods, such as the finite element method. 
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The formulation for axisymmetric elements used for this 

purpose, including a first order approximation for geometri

cally nonlinear effects, is given in Appendix B. 



- 70 -

4. ANALYSIS OF A SHELL ON A BED OF VERTICAL NONLINEAR SPRINGS 

In Chapter 2 the variations in the circumferential direction were 

said to be weak if the conditions in the baseplate at any circumferen

tial location, 9, were fully determined by the vertical uplift of the 

edge at the same location, and did not depend on the vertical uplift of 

the edge at other locations. If this is the case, and furthermore the 

foundation can be represented by Winkler springs, then the unanchored 

tank subjected to lateral loads can be modeled by considering the shell 

(and roof if present) to be mounted on a circular bed of vertical, 

nonlinear springs. The force per unit length-deflection relationship 

for these nonlinear springs in tension is determined from the 

axisymmetric uplift solution, and in compression from the properties of 

the foundation. 

In addition to the vertical boundary condition at the base of the 

shell, the conditions for radial and circumferential displacements and 

for rotation about the circumferential axis need to be described. If 

the assumption of weak circumferential variations is followed strictly, 

the radial force and the moment at any location are determined from the 

axisymmetric solution by the vertical displacement at the same location. 

In the circumferential direction, the stiffness of the base plate acting 

as a diaphragm is large compared to the corresponding stiffness of the 

shell. Hence, circumferential displacements at the base are small and 

may reasonably be assumed to vanish. 
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Simpler boundary conditions for radial displacement and rotation 

are possible if interaction effects are small. In this case the verti-

cal force is hardly affected by the non-vertical displacements, and the 

boundary conditions for radial displacement and rotation have little 

bearing on the solution for vertical displacements. Since the base 

plate offers a relatively large resistance to horizontal (radial and 

circumferential) displacements, and a relatively small resistance to 

rotations about the circumferential axis, it is assumed here that 

horizontal displacements of the shell wall vanish at the base, and that 

rotations about the circumferential axis are unrestrained. This assump-

tion is made only for the purpose of defining the relationship between 

uplift and vertical forces acting on the shell at the base. 

The formulation and solution for a tank on a circular bed of 

nonlinear Winkler springs will be given in Section 4.1 for a limiting 

case for which an analytical solution is possible, and in Section 4.2 

for a more general case. Definitions given in Chapter 3 also apply here 

and are not repeated. 

4.1 ANALYTICAL SOLUTION FOR A LIMITING CASE 

For an inextensional shell without a roof, Eq. 3.18 gives rise to 

the possibility of solving contact problems analytically. Consider the 

case in which the foundation is perfectly rigid in compression, and any 

• uplift causes a tensile force Nx = N0 at the base. Thus, 

• This is the assumption made by Wozniak and Mitchell (1978) in what 
has become part of the design standard of the American Water Works 
Association (1979). 
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u L o 

u 0 

for 

for (4.1 a,b) 

where R1 is the uplifted region and R2 is the region in contact with the 

base. Since the foundation is rigid, P need not be finite in R2 • It 

may contain Dirac delta function singularities corresponding to verti

cally upward point reactions. However, dipoles and higher order 

singularities are not permitted, because they involve tensile as well as 

compressive forces. Such tensile force cannot be generated (Eqs. 4.1). 

With reference to Eq. 3.18 it is seen that this means that u< 7> may be 

discontinuous, but all lower derivations must be continuous everywhere. 

Suppose now the contact region, R2 , has some finite extent. Then U 

and all its derivatives vanish in R2 • Since the first six derivatives 

of U must be continuous, this means that the boundary conditions for the 

solution in the uplifted region R1 are 

u<n> 0 for n = 0,1, .•. ,6 (4.2) 

at the boundary between regions R1 and R2 • Thus, for the solution in 

region R1 , there are 7 boundary conditions at each of 2 boundaries, a 

total of 14 conditions. These are more boundary conditions than can, in 

general, be accommodated by the solution of an 8th order differential 

equation. As a result, it appears to be impossible to obtain a solution 

in which the contact region has a finite extent. 

A more fruitful approach is to seek solutions in which the contact 

region R2 consists of one or more discrete contact points. While the 

solution of such problems may be of some theoretical interest, their 
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practical value is limited because the membrane deformations due to 

point reactions in the vicinity of the contact points cannot be 

neglected. On the other hand, away from the contact points, the effect 

of local membrane strains associated with the point reactions may well 

be small. 

Here only the simplest contact problem is considered, the case in 

which there is a single contact point. Since there can be no moment 

applied at a contact point, this means that loads applied to the tank 

must be such that the tank is just at the point of overturning. 

Let the distributed loads due to lateral fluid pressure and the 

weight of the tank wall be 

pr -f(x) cos 9 

0 (4.3 a-c) 

in which rt is the unit weight of the tank wall material. Substituting 

Eqs. 4.1a and 4.3 into Eq. 3.18, and factorizing the differential 

expression in U gives 

K8(d::- a2)(d~2 + ~
2 

::~ " -F0 + F1 cos 9 

in which F0 • yttL + N0 , and F1 • i! r(x)dx is proportional to the 

overturning moment due to lateral fluid pressure on the tank wall. 

(4.4) 
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The general solution to Eq. 4.4 which is symmetric in 9 is 

2 

u 
Fo £_ (F1/F0)9 cos 9 

K 2a2 8(1+a2) s 

+ c1 + c2 cos 9 + c3 9 sin 9 + c4 cosh(a9) (4.5) 

in which C. are arbitrary constants to be determined from the boundary 
~ 

conditions. The simplest case occurs when F1 is such that the tank is 

at the point of overturning. This happens when 

(4.6) 

Under such conditions overall equilibrium can only be satisfied if there 

is a single contact point at 9 = ±n. The boundary conditions at this 

point are 

u<n> (n) 

u<n>(n) = 

u<n>{-n) = 0 

u<n>(-n) 

for n = 0,1 
(4.7 a,b) 

for n = 2,3, ..• ,6 

Since U is symmetric in 9, all even derivatives are also symmetric in 9, 

and therefore satisfy the continuity conditions at 9 = ±n. However, the 

odd derivatives are antisymmetric and must therefore vanish at 9 = ±n. 

Hence the boundary conditions reduce to 

u<n>(n) 0 for n = 0,1,3,5 (4.8) 

Eqs. 4.8 are four conditions for the four arbitrary constants c1 to c4 . 

However, the solution is not unique. This can be expected because the 

tank is free to rotate about the contact point. For positive 
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displacements in the vicinity of the contact point, u< 2>(n) must be non-

negative. A limiting case occurs when 

0 (4.9) 

Using this condition in addition to Eqs. 4.8 leads to a unique solution 

for the constants c1 to c4• The resulting expression for U is 

n[cosh(a9) - cosh(an)] 
2 

a3 (1+a2) sinh(an) 

<i-2> 
4(l+a2 ) 

n cosh(an) 1(1+ S) ( ) 2 cos • 4.10 

a(l+a2) sinh(an)j 

By differentiating this expression according to Eqs. 3.6, the radial and 

tangential displacements are obtained. At any given location, the 

result can be expressed in the form 

.§. Fo .a 2 f(1 
= Et t a ' ~) a 

(4.11) 

in which & stands for a displacement, and f(.,.) is a dimensionless 

function. The resulting deformed shape is shown in Figs. 4.1 and 4.2 

for L/a 1 and 2, respectively. 

As a numerical example, for a typical tank of radius a = 30 ft, 

height L= 30 ft, thickness t = 0.25 in, made of steel 

(E = 30 X 106 psi, ~ = 0.3, rt = 0.28 lb/in3> with no tensile force 
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PLAN 

ELEVATION 

Figure 4.1: Deformed shape of an unanchored, roofless, 
inextension~l tan~ subjected to lateral loads. 
L/a=l, F a /(E t )=0.25, V=0.3 

0 
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PLAN 

ELEVATION 

Figure 4.2: Deformed shape of an unanchored, roofless, 
inextensional tank subjected to lateral loads 

2 3 L/a=2, F
0 

a /(E t )=1.0, V=0.3 
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generated at the base <N0 = 0), the scale factor for the deformed shape 

is 

This means that the deformations would be 28 times larger than those 

shown in Fig. 4.1. For N0 > 0, the deformations increase even more. In 

reality such large deformations do not occur because 

1. Geometrically nonlinear effects become dominant; 

2. Lateral loads change with a period which is short compared 

with the time it would take for the computed deformations to 

develop; 

3. The tensile force developed at the base is not independent of 

the amount of uplift, but increases with increasing uplift. 

This tends to prevent very large amounts of uplift. In fact, 

for a roofless tank with no bending rigidity at all, and 

disregarding effects 1 and 2, the distribution of vertical 

stresses at the base, as determined from the solution of the 

shell problem, does not depend on the distribution of uplift 

around the circumference, and must therefore be the same as 

for an anchored tank. Under such conditions the distribution 

of vertical stresses at the base for an unanchored tank is the 

same as for the anchored tank. Furthermore, uplift at any 

location on the circumference can be determined directly from 

the force-deflection relation for the foundation. 
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4. Roofless tanks are required to have a stiffening rim or wind 

girder at the top, which tends to reduce the out-of-round 

deformations. 

While the solution for an inextensional tank without a roof 

provides some insight into the behavior of the cylindrical shell under 

conditions of seismic uplift, it also points to the need for a more 

general method of analysis, one that includes the effects of membrane 

strains, a more general force-uplift relationship at the base, and the 

tendency of the hydrostatic internal fluid pressure to prevent out of 

round deformations of the shell. 

4.2 NUMERICAL SOLUTION FOR THE GENERAL CASE 

In this section, a numerical solution for the problem of the shell 

on a circular bed of nonlinear Winkler springs is given. The Winkler 

springs represent the restraining action of the foundation and the 

baseplate. It is assumed that the stiffness of the foundation is 

finite. As a result, finite displacements at the base imply finite 

forces, and no singularities in the solution are expected. Under such 

conditions, numerical solutions by Gallerkin's method can be expected to 

converge to the correct solution. 

4.2.1 Formulation 

Consider the cylindrical shell, loaded, with or without a roof, 

with boundary conditions at the base given by u = U, v = w = 0, M 0. 
X 

Suppose the imposed displacement, U, is expressed as a cosine series in 
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N 
[ 

n=O 
U cos n9 n (4.12) 

Then, using the axisymmetric finite elements described in Appendix B, 

the vertical force at the base can be obtained in the form 

p = 
N 
[ 

n=O 
P cos n9 n 

(4.13) 

where P, the vertical force acting on the shell at the base, is taken to 

be positive when it acts upwards, and 

p 
n 

(4.14) 

In Eq. 4.14, F are the Fourier components of the reaction at the base n 

that would be present if the displacements at the base were zero all 

around the circumference, and as in Eq. 3.3, K are the vertical stiffvn 

ness coefficients of the shell. 

At any point, the force acting on the circular bed of Winkler 

springs is equal in magnitude and opposite in direction to that acting 

on the shell. Thus, the equation for the springs is 

-P f(U) (4.15) 

where f(U) is the vertical force per unit length (positive upwards) act-

ing on the Winkler springs. For positive U, i.e., an upward deflection, 

f(U) is determined from the axisymmetric solution for the base plate 

given in Chapter 2. For negative U, f(U) is given from the properties 
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of the foundation. For the present formulation f(U) is assumed to be a 

known, nonlinear function. Substituting Eq. 4.14 into Eq. 4.13 and 

using the resulting expression for P along with Eq. 4.12 in Eq. 4.15 

gives 

[ ( F + K U ) cos n9 + f ( [ U cos n9) = 0 
n=O n vn n n=O n 

(4.16) 

Following Galerkin's method, multiply Eq. 4.16 by cos m9, 

m = 0,1,2, ••. ,N, and integrate around the circumference to obtain 

2n ( N 
n6 (F + K U ) + f f L 

m m vm m n=O 
0 

= 0 (4.17) 

in which 

2 for m = 0 

(4.18) 
1 otherwise 

The integral in Eq. 4.17 needs to be evaluated numerically. To avoid 

locking of the problem, it is judged advantageous to make the number of 

integration points equal to the number of Fourier harmonics used, N. 

Physically, this is equivalent to replacing the continuous circle of 

Winkler springs by discrete springs at locations 9 = in/N; 

i = 0,1, .•• ,2N-1. Thus Eq. 4.17 becomes 

2 [N ( [N nin) min K & U + -N yi f Un cos N cos N 
vm m m ~=O n=o 

-F & , ( 4 .19) 
m m 

where 



1 
2 

1 

- 82 -

for i 

otherwise 

-2N,-N,O,N,2N ••.. 

(4.20) 

are weighting factors which arise because the points at 9 = O,n only 

occur once, whereas other points occur at each side of the circumfer-

ence. 

Equations 4.19 form= 0,1,2, •.• N are N + 1 coupled nonlinear equa-

tions for the unknown Fourier components of the displacements u0 , 

u1 ••.•• UN. They can be solved numerically. However, in many practical 

cases, the stiffness of the foundation in compression is very high 

compared with other stiffnesses. As a result, the displacements at 

points that remain in contact with the foundation are very small. 

Computing these displacements by summing Fourier components which are 

not small in absolute value is potentially an illconditioned calcula-

tion. Difficulties can be avoided by the following transformation of 

variables. Denote the displacement at 9 = jn/N by Uj. Thus , 

N 
[ 

n=O 
U cos(njn/N) 

n 
(4.21) 

From Appendix c. Eq. C8, the inverse relation as derived from the theory 

of discrete Fourier transforms is 

u 
n 

2y N 
- __n ~ y Uj cos(njn/N) 
- N ~0 j 

(4.22) 

Thus Eq. 4.19 can be rewritten in terms of what might be termed the 

nodal displacements Uj as follows: 



- 83 -

= -F o 
m m 

Finally, multiplying Eq. 4.23 by (2/N>rmri cos(min/N), summing for 

(4.23) 

m = O,l ••. N, and making use of the discrete orthogonality relation given 

in Eq. C6 of Appendix C yields 

in which 

N 

~0 
-i 

-F 

-- (~N)2 rirj fl. 2 L_ K o r cos(min/N) cos(mjn/N) 
m=O vm m m 

-i 2Y i fl. 
F = ---N L_ r o F cos(min/N) 

m=O m m m 

( 4.24) 

(4.25) 

(4.26) 

Equation 4.24 can be solved numerically by Newton's method with the 

advantages that the matrix of coefficients Sij is symmetric, and only 

the diagonal terms of the Jacobian or tangent matrix change at each 

iteration. 

4.2.2 Implementation 

If the number of Fourier harmonics, N, is large, a large number 

of Newton iterations and/or loading steps are required to obtain a 

converged solution at load levels that are typical for earthquake 

resistant design. In addition, the computational effort for each 
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iteration increases like N3 • To reduce the effort for large N, the 

program was implemented with the capability to restart the analysis with 

a larger value of N. To achieve this, the nodal displacements Uj can be 

interpolated as follows: Suppose N1 is the value of N for the first 

run, and N2 L N1 is the value of N for the restart. Then the nodal dis-

placements for the restart can be obtained from 

N1 
= [ 

n=O 
U cos ( nj n/N2) 

n 
j 0,1, ... , N2 (4.27) 

in which U are the Fourier amplitudes for the displacements at the last 
n 

load step of the first run, as obtained from Eq. 4.22 with N = N1. 

With the restart capability, the user of the program can start with 

a small value of N, increase the loads to the desired level in several 

loadsteps, and restart at the desired load level with a larger value of 

N. In this case convergence to a more accurate solution occurs in only 

a few iterations. It is then possible to restart the program with an 

even larger value of N. Thus a high degree of accuracy can be achieved 

with a much reduced amount of computational effort. 

4.2.3 Results 

The analysis is performed for two tanks for which experimental 

results from tilt tests by Clough and Niwa (1979), and Manos and Clough 

(1982) are available. These will be dealt with in sections 4.2.3.1 and 

4.2.3.2 respectively. Most of the discussion of the results is reserved 

for Chapter S, where the same tanks will be reanalyzed by a more 
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comprehensive method. 

4.2.3.1 Tall Tank Tested by Clough and Niwa (1979) 

Design details for this 15 ft tall, 7 ft-9 in diameter aluminum 

tank are shown in Figure 4.3. The shell is fabricated out of three 5 ft 

courses, the lower two being 0.090 in thick, and the third 0.063 in 

thick. For the present analysis, it is modeled with 35 axisymmetric 

elements of lengths varying between 2 in near the base and top, and 8 in 

at midheight. Nonlinear effects due to the internal hydrostatic pres

sure described in Appendix B are included. The wind girder (stiffening 

ring at the top rim) is modeled as a 2 in long thickened shell element, 

assuming perfect bonding between the stiffening elements and the shell, 

plus a 1-1/16 in X 3/16 in rectangular ring element at the appropriate 

radial eccentricity to model the horizontal leg of the angle which forms 

the outer part of the stiffening rim. The 4 X 4 stiffness matrix for 

such a ring stiffener is given in Lee and Nash (1982), and restated in 

Appendix D. The ring stiffener is attached to the top node of the 

finite element model of the shell with zero vertical eccentricity. 

Although in reality, the centroid of the stiffener is 3/32 in below the 

top node of the finite element model, the assumption of zero vertical 

eccentricity makes it possible to use the readily available results from 

Lee and Nash (1982) and is expected to be a good approximation. 

The roof consists of a flat, 1/16 in thick aluminum plate, 

stiffened by two angle sections. The contribution to the stiffness 

matrix from the flat plate is calculated from Eqs. 3.11. This stiffness 
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Figure 4.3: Design details of the tall aluminum tank 
tested by Clough and Niwa (1979). (Reproduced from 
their report with the authors' permission) 
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alone is sufficient to suppress any out-of-round displacements at the 

top. Therefore, neglecting the in-plane stiffness of the angles hardly 

affects the stresses and displacements in the shell. 

For the axisymmetric analysis of the base plate, it is assumed that 

the entire base plate consists of one continuous sheet of 0.09 in thick 

aluminum. In reality, the inner part of the base plate consists of a 

1/8 in thick steel plate and is therefore stiffer, but this is offset by 

the flexible joint between the 1/8 in thick steel plate and the 0.09 in 

aluminum sheet (Detail-Din Fig. 4.3). The 2 in overlap of the base 

plate beyond the shell wall is included as a ring with only an axial 

stiffness provided by 0.18 sq. in of aluminum. The fluid pressure act-

ing on the base plate is calculated for zero tilt and assumed to be 

constant. 

6 The properties of aluminum are taken to be E = 10 X 10 psi for 

Young's modulus, and ~ = 0.25 for Poisson's ratio. The yield stress of 

the aluminum is taken to be sufficiently high to prevent formation of a 

plastic hinge at the junction between the tank wall and the base plate. 

To verify the sensitivity of the results to the last assumption, the 

axisymmetric analysis was repeated for a plastic moment capacity of 

60.75 in-lb/lb corresponding to a yield strength of 30 ksi. Even for 

large uplift, when some hinge rotation occurs, the uplift force is not 

sensitive to such rotations. 

The force per unit length-deflection relation, F(U), for the 

Winkler springs, for positive U, as obtained from the axisymmetric 

analysis, is shown in Fig. 4.4. Linear interpolation is used for values 
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between the points shown in Fig. 4.4. For negative U, compressive 

forces, the Winkler springs are taken to be linear with a stiffness of 

4.7 X 1010 lb/in2 • This high stiffness simulates a rigid foundation. 

In applying the loads from fluid pressure to the shell, special 

care had to be taken in the vicinity of the free surface, where the 

fluid pressure only acts over part of the circumference of the shell. 

At such locations, the fluid pressure on the wetted part of the 

circumference can be expressed as a cosine series containing only two 

terms, one of order zero and one of order one. However, on the dry part 

of the circumference, the same expression is not valid since the pres

sure is zero. For the purpose of applying the loads, the pressure at 

every elevation must be expressed as a cosine series which is valid on 

the entire circumference. Where the circumference is partially wetted 

such a cosine series contains infinitely many terms. Expressions for 

the coefficients are given in Appendix E. 

The analysis is performed for a 13 ft water depth, a tilt angle of 

6.45°, and with and without the enclosing roof. 

Convergence of the numerical method is studied in Figs. 4.5 and 

4.6. The maximum uplift is seen to converge very rapidly. Although in 

Fig. 4.5 convergence is from below, this is not necessarily the case. 

The maximum vertical compressive force at the base converges somewhat 

slower, because for N = 2 and 5, contact with the foundation occurs at 

only one of the discrete Winkler springs. When this is the case, the 

force in the one Winkler spring that is in compression may well be a 

good approximation to the total compressive force transmitted from the 
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Figure 4.6: Convergence of maximum vertical compressive force 
for the tank tested by Clough and Niwa (1979). N=5,10,20,50,100. 
[13ft water, tilt=6.45°, closed] 
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foundation to the structure, but the length of the contact region is 

less than the tributary length (~a/N) for a discrete spring. As a 

result, the calculated maximum vertical compressive force per unit 

length is too low, and increases proportionately with N until there is 

more than one Winkler spring in compression, or, equivalently, until the 

length of the contact region exceeds the tributary length for a discrete 

spring. 

The distribution of vertical stresses at the base of the shell is 

shown in Fig. 4.7 together with the experimental results by Clough and 

• Niwa (1979) • As can be seen, both theory and experiment show a higher 

compressive stress for the closed case. The reason for this is that the 

roof suppresses the inextensional deformation modes, leading to an 

increase in the vertical stiffness coefficients K and a decrease in vn 

the length of the contact region. 

Perhaps the most marked discrepancy between theory and experiment 

occurs at 9 = 0. At this point, the uplift and the theoretical vertical 

tension in the shell wall is a maximum, but the experimental stress is 

zero. Almost equally surprising are the large tensile stresses at 

9 = 135° and 270° that were measured, but not indicated by the theory. 

Although these discrepancies are significant, the most important 

comparison is for the large compressive stresses. In design, the plane 

of motion is unknown and the design must accommodate these stresses at 

• The comparison neglects the small stresses (about 20 psi) caused by 
the weight of the tank wall. These stresses are included in the 
analysis, but not in the experiment where only the changes in 
stresses from tilting were measured. 
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any point in the circumference. For large compressive stresses, the 

theory and experiment agree quite well. 

The Fourier coefficients for the displacements are shown in Table 

4.1. 

TABLE 4.1. Fourier Amplitudes of Vertical Uplift at Base, U , Theory 
n Versus Experimental Results from Fig. 5.15 of Clough and 

Niwa (1979) 

Open Top Closed Top 

n Theory Experiment Theory Experiment 
(in) (in) (in) (in) 

0 0.195 .46 0.193 .39 

1 0.234 .54 0.205 .44 

2 0.032 .06 0.003 .03 

3 -0.003 .04 -0.003 .03 

Both theory and experiment show larger displacements for the open case. 

However, for n = 0, 1, the experimental displacements are about double 

the theoretical displacements. 

For larger n, the theoretical displacement coefficients are essen-

tially zero, and the experimental values are also small, probably of the 

same order as the error in measuring them and scaling them from figures 

in the experimenters' report. 

A comparison of the analytical results with the compressive 

stresses calculated by the code procedure of Wozniak and Mitchell (1978) 

is shown in Fig. 4.8. For the code analysis of the aluminum model, the 
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yield stress of the base plate is taken to be 12 ksi, the appropriately 

scaled value for a mild steel prototype with a yield stress of 36 ksi. 

At a tilt angle of approximately 6.5°, the compressive stress calculated 

by the code procedure increases to infinity. For larger tilt angles the 

hold down force calculated by the code procedure is insufficient to 

prevent overturning. On the other hand, for smaller tilt angles, the 

maximum compressive stress from both the present analysis and the 

experimental results (the latter available for the open top case only) 

are higher than those from the code approach. Two reasons for this 

difference are offered: Firstly, the distribution of vertical 

compressive stresses is different from that assumed in the code 

analysis. In fact, for the open case at tilt angles between 1° and 5°, 

the maximum compressive stress does not occur at 9 = 180°. Secondly, 

and more importantly, in the code analysis, it is tacitly, but errone

ously assumed that the hold down force is fully developed for any amount 

of uplift, no matter how small. In reality, a substantial amount of 

uplift is required to develop the hold down force, and, as a result, the 

length of the contact region decreases and the maximum compressive 

stress increases. 

Since developing the required hold down force for an infinitesimal 

amount of uplift seems to be advantageous, the question that comes up 

naturally is whether the tank can be designed so that such conditions 

are achieved. It was in this context that the author conceived what 

might be termed the preuplift method: An annular filler is inserted 

under the tank wall as shown in Fig. 6.1, uplifting an annular region of 
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the base plate. For a properly designed filler, most of the weight of 

the fluid resting on that annular region is then carried by the filler 

in compression. As a result, for the tank wall to loose contact with 

the filler, the vertical tension in the tank wall must exceed the pre

compression in the ring filler. The effect of such preuplift on the 

behavior of a mylar tank is studied in Chapter 6 by analysis and experi

ment. 

4.2.3.2 Broad Tank Tested by Manos and Clough (1982) 

Design details for this 6 ft tall and 12 ft in diameter alumi

num tank are much the same as for the tall tank discussed in Section 

4.2.3.1. The shell consists of two 3 ft courses of aluminum of 

thicknesses of 0.08 in and O.OS in for the lower and upper course, 

respectively. The entire base plate consists of an outer annulus and an 

inner portion. Both parts consist of 0.08 in thick aluminum sheet and 

are joined by a double ring of 3/32 in countersunk rivets at 3 in spac

ing. As before, the base plate is modeled as one continuous sheet of 

0.08 in thick aluminum. All other design details, including the wind 

girder, are identical to those for the tank of Section 4.2.3.1 and are 

treated in the same way. The stiffness of the foundation in compression 

is taken to be 1011lb/in2 in order to simulate a rigid foundation. 

The case considered is for the top open, S ft water depth, and 16° 

tilt. In order to prevent the water from overflowing due to the tilt, 

the experimenters built an external structure to extend the tank. The 

forces resulting from water pressure acting on the external structure 
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were transmitted directly to the foundation and need therefore not be 

considered in the analysis of the tank. Also, to prevent leakage 

between the external structure and the tank a membrane was provided. 

The force exerted by the membrane on the tank is small, and was there-

fore neglected. 

Theoretical and experimental results for this broad tank are shown 

in Figs. 4.9 to 4.11. The experimental stresses are the changes in 

• stresses due to tilting , measured 2 in above the base. Perhaps the 

most remarkable feature of the vertical stress distributions is the 

bimodal distribution of compressive stresses predicted by the theory, 

which is not seen in the experimental data. Although surprising at 

first, the theoretical result becomes more plausible when one bears in 

mind that the tank under consideration is broad and has no roof. As a 

result, inextensional deformation modes can be expected to play an 

important role. For an inextensional tank, there would be a number of 

discrete contact points. For the case of Fig. 4.10, there would prob-

ably be two such contact points located near the maxima of compressive 

stress shown in the figure. As the inextensionality requirement is 

relaxed, the compressive point reactions redistribute over a finite 

length resulting in a compressive stress distribution like that of Fig. 

4.10. 

Although the bimodal distribution of compressive stresses is 

consistent with what one might expect from the inextensional theory, 

* The theoretical stresses also include a 7 psi uniform compression at 
zero tilt, which is negligible compared to stresses associated with 
tilting. 
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Figure 4.10: Results for broad aluminum tank [5 ft water depth, 
open top, 16° tilt, rigid foundation] 
(a) Approximate method of analysis described in this Chapter, 
(b) Code analysis of Wozniak and Mitchell (1979) 

360 

(c) Experimental results by Manos and Clough (1982), scaled with 
the permission of the authors from the report with an appro
ximate precision of ±100 psi for stress, and ±0.05in for 
uplift. 
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Figure 4.11: Calculated vertical stress at the base of the broad alu
minum tank tested by Manos and Clough (1982). (a) 4° tilt, (b) 8° 
tilt, (c) 12° tilt, (d) 16° tilt. [rigid foundation, 5 ft water 
depth, no roof] 
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comparing it to the unimodal experimental stress distribution does raise 

some questions about the validity of the analysis and the assumptions 

made. It will be seen in Chapter S that the bimodal distribution of 

compressive stresses persists when the assumption of weak circumferen

tial variations in the base plate is relaxed. Also, decreasing the 

stiffness of the foundation in compression to 107lb/in2, a value more 

appropriate for a layer of mortar on a steel tilt table, does not 

noticeably change the stress distribution. An assumption which is more 

debatable for the case of a broad tank than for taller tanks, is that 

the changes in pressure acting at any point on the shell due to tilting 

are small compared to the hydrostatic pressure at zero tilt. If this is 

not true, then it is not appropriate to linearize the shell problem 

about the full, but otherwise not loaded (or tilted) condition, as was 

done in Appendix B. 

The stress distribution from the code approach of Wozniak and 

Mitchell (1978) is shown in Fig. 4.10 as line (b). Again the peak 

compressive stress is seen to be much lower than that from the present 

analysis and the experimental results. 

As was the case for the tall tank (Fig. 4.7), the experimental 

vertical stresses are very small at 9 = 0, where the maximum uplift 

occurs, while large vertical tensions were measured at 9 = 90°, and 

270°. 

A puzzling feature of the experimental stress distribution is that 

the area above the zero line appears to be larger than the area below 

the zero line, indicating that there is a substantial net force acting 
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downward, at an angle from the vertical equal to the tilt angle a. How-

ever, equilibrium of forces in that direction indicates that the net 

force (or the change in the net force due to tilting) can be no larger 

* than the weight of the tank wall, which is very small. 

As for the tall tank, the measured uplift exceeds that predicted by 

the theory. Here the maximum differs by a factor of 1.5 as compared to 

a factor of 2.4 and 2.3 for the n = 0 and n = 1 Fourier coefficients of 

the uplift of the tall tank. 

4.3 CLOSING REMARKS 

It is seen that there are some significant differences between the 

results from the tank analysis described in this chapter, and those from 

experiments. Although some of these differences may be due to experi-

mental error, and the error from scaling the results from the experi-

menters' reports, the consistency of certain trends in the test results 

strongly suggeststhat there are other reasons. For one, the assumption 

of weak circumferential variations in the base plate, which formsthe 

basis of the analysis for the tank on nonlinear Winkler springs, may not 

be a good one. Other possible reasons include: Geometrically nonlinear 

effects in the shell, which are not considered in the linearized formu-

lation of Appendix B, yielding of the aluminum, initial strains (either 

due to fabrication procedure, or due to yielding that may have occurred 

during previous testing of the tanks), flexibility of the joint between 

* To be precise, the average compressive stress at zero tilt is 7 psi, 
and it decreases by (1-cos a) times that amount for a tilt angle a. 
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the inner and outer parts of the base plate, friction between the base 

plate and the foundation, or other modeling considerations. These 

possibilities will be discussed further in the next chapter, when the 

same experimental data are compared to the results of a more 

comprehensive analysis which does not rely on the assumption of weak 

circumferential variations. 
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5. NON-AXISYMMETRIC ANALYSIS OF AN UNANCHORED TANK 

In Chapter 4 it was seen that, in some instances, the measured 

stresses and displacements due to tilting of two aluminum tanks differed 

significantly from analytical results based on the assumption of weak 

circumferential variations in the base plate. In this chapter, that 

assumption is relaxed, in order to verify its validity and to see to 

what extent it might be the cause of the difference between theoretical 

and experimental results. This requires solution of the two-dimensional 

nonlinear contact problem for the base plate. 

5.1 ASSUMPTIONS 

The analysis employs the following assumptions 

1. Linear, small deflection theory is applicable for the shell, 

but nonlinear effects due to the internal hydrostatic pressure 

described in Appendix B are included. This means that the 

shell problem is linearized about the full but otherwise not 

loaded (or tilted} condition. 

2. The moderate deflection Von Karman theory is used for the base 

plate. This also implies that strains in the base plate are 

small, and that the radii of curvature are much larger than 

the thickness. 

3. The base plate material is elastic-perfectly plastic, with a 

Von Mises yield surface and a yield stress in uniaxial tension 

of ay. [c.f., in Chapter 2 it was assumed that the moment-
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curvature relation is elastic-perfectly plastic. which is not 

the same assumption]. 

4. In compression. the foundation under the base plate behaves 

like a bed of Winkler springs with a modulus of subgrade reac

tion k0 (foundation pressure per unit deflection). In addi

tion. there is a circular bed of Winkler springs of stiffness 

ke (force per unit length per unit deflection) under the tank 

wall. Neither set of Winkler springs can sustain tension. 

5. The foundation is frictionless, except at certain locations 

close to the center where sliding of the tank can be prevented 

by horizontal Winkler springs. 

5.2 FORMULATION 

For the non-axisymmetric analysis of the base. the finite differ

ence energy method (FDEM) with an expansion of the displacements into a 

Fourier series is used. This method has been used with considerable 

success by Bushnell (1970, 1974. 1981) in his BOSOR (Buckling Of Shells 

Of Revolution) computer code. However. in his formulation. finite dis

placements are considered only for the n = 0 Fourier harmonic. The 

higher Fourier coefficients of the displacements are infinitesimal. 

Herein. all Fourier coefficients are allowed to be finite. This couples 

the equations for the Fourier coefficients resulting in a much more 

complicated problem requiring a much larger computational effort. 

Despite this coupling, the FDEM has several advantages over the finite 

element method: 
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a) Membrane locking problems are avoided. 

b) Fewer degrees of freedom are required for a given accuracy. 

c) There are no rotational degrees of freedom. 

d) Less computational effort is required to form the tangent 

stiffness matrix. 

e) The expansion of the displacements as a Fourier series is 

compatible with the finite element formulation for the shell 

given in Appendix B. 

f) The method is simpler to implement. 

On the other hand, the boundary conditions are a little more 

complicated, convergence is not necessarily from below, and the computer 

code had to be developed by the author. On balance, the advantages 

outweigh these minor drawbacks. 

Before concentrating on the details of the analysis of the uplift

ing part of the base plate, three regions which are treated separately 

must be established. 

The first is a concentric circular inner portion of the base plate, 

of radius a1 , chosen by the analyst such that no part of the inner por

tion ever uplifts. It is modeled by annular finite elements, possesses 

only horizontal degrees of freedom, and can be attached to the founda

tion by linear, horizontal Winkler springs which prevent sliding of the 

tank. 

The second region is the shell and roof. It is modeled with the 

axisymmetric cylindrical shell elements of Appendix B, with added 
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stiffnesses due to the roof (Eq. 3.11) and ring stiffeners (Appendix D). 

Since the equations for the first and second region are linear, 

their internal degrees of freedom be eliminated by static condensation 

to obtain linear boundary conditions for the third region, which is the 

outer annular portion of the base plate. A portion of this third region 

is uplifted. It has horizontal and vertical degrees of freedom, and is 

nonlinear due to plasticity, contact, and finite displacements. The 

rest of the discussion will concentrate on this nonlinear region. Since 

most of the computational effort is spent here, it is advisable to make 

this nonlinear region as small as possible by making the radius of the 

inner part of the base plate, a
1

, as large as possible. 

The finite element formulation of structural problems involving 

geometric and material nonlinearities is well known [Zienkiewicz (1977), 

Bathe (1982)], and will not be repeated here. The essential first steps 

which vary somewhat from problem to problem are the following: 

(i) To establish a finite set of generalized displacements which at 

any time define the configuration of the structure • 

(ii) • To express the strains in terms of those generalized displace-

ments. 

• Here stresses and strains are to be understood in a generalized 
fashion as vectors of equal dimension such that the dot product of 
the stress with an increment in strain is the change in strain 
energy density. This is the only requirement for the choice of 
stress and strain vectors. The exact nature of these vectors 
depends on the structural element being modeled. Also, the change 
in strain energy density may be a change in strain energy per unit 
volume, per unit area, or per unit length. 
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(iii) To be able to calculate stresses and the tangent material matrix 

(partial derivatives of the stresses with respect to the strains) 

for any history of strains. 

Once these three steps are achieved, the rest of the finite element 

formulation follows standard procedures. 

The only difference between the finite element method and the 

finite difference energy method (FDEM) is that in the FDEM, displace-

ments are specified at certain nodal points without specifying exactly 

how the displacements vary in between nodal points, and the strains are 

• only defined at certain "integration points" as finite differences of 

the nodal displacements. 

Consider now step (i), describing the configuration of the 

structure in terms of a finite set of generalized displacements. Let 

there be NN real nodes, which are actually circles, equally spaced with 

the first node on the inner boundary, r = a1 , and the NNth node on the 

outer boundary r = a. Thus the ith node is located at 

ri a1 + (i-1)h ( 5.1) 

where 

h = (a-a1)/(NN-1) ( 5. 2) 

• These "integration points" are equivalent to the Gaussian 
integration points often used in the finite element method when 
numerical integration of the variations of the strain energy density 
is required. Here they coincide with nodal points. 
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Furthermore, in order to enforce the boundary conditions, a Oth node and 

an (NN+1}th node are required at locations defined by Eq. 5.1 with 

i = 0, and i = NN+1 respectively. It is also advantageous to define 

intermediate nodes, with the ith intermediate node located at 

r = ri- h/2, fori= 1,2, ..• , NN, NN+1. 

As illustrated in Fig. 5.1, the nodal displacements are 

at nodes i 0,1,2, ••• , NN, NN+1; and 

= 

NH 
[ u~ cos n9 

n=O 

NH 
[ v~ sin n9 
n=1 

(5.3} 

(5.4} 

(5.5} 

at the intermediate nodes, i = 1,2, •.•• NN+1. In Eqs. 5.3 to 5.5 u, v, 

and w represent the displacements in the radial (positive outwards}. 

circumferential (positive anticlockwise as seen from on top}. and verti-

cal (positive upward} directions. respectively. The superscript n is 

used to identify the coefficients of the expansions, and should not be 

interpreted as an exponent. NH and NW are the order of the last terms 

in the Fourier series for horizontal and vertical displacement 

components, respectively. 

which satisfies 

Finally N (9} is a cosine series of order NW 
n 
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1 for m = n 

0 for m e {0,1,2, ... ,NW}-{n} ( s. 6) 

From the theory of discrete Fourier transforms (see Appendix C), it is 

readily established that 

in which 

N ( 9) 
n 

[
w nk7t 

yk/NW cos NW cos k9 
k::O 

1/2 for s = •.. -2,-1,0,1,2, ••. 

1 otherwise 

The advantage of using Eq. 5.3 rather than a simple cosine series is 

that added stiffness due to vertical Winkler springs representing the 

foundation is added into the diagonal elements of the stiffness matrix. 

Since, for a rigid foundation, the added stiffness may be very large, 

this is not only convenient, but essential to avoid excessive truncation 

errors. In essence, using Eq. 5.3 rather than a simple cosine series is 

equivalent to introducing the change of variables made in Section 4.2.1. 

Before proceeding to step (ii), which is to express strains in 

terms of the generalized displacements, it is appropriate to consider 

how th~ variations in strain energy density will be integrated, in order 

to establish what quantities should be used as strains for each 

structural element, and at what points the expressions for the strains 

are required. Four types of structural elements are considered here. 
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1. The base plate itself. 

2. The annular bed of Winkler springs of stiffness k (pressure 
0 

per unit deflection) in compression. 

3. The circle of Winkler springs under the base of the tank wall, 

with stiffness k (force per unit length per unit deflection) e 

in compression. 

4. Linear constraints applied at any given real node, such as the 

boundary conditions due to the inner part of the base plate at 

node 1, and the boundary conditions due to the shell at node 

NN. 

Expressions for the variation in strain energy for each of these four 

structural elements will be given in Sections 5.1.1 to 5.1.4. These 

contributions must be summed to obtain the total variation in strain 

energy. 

5.2.1 Base Plate 

Of the stress components arr' arG' a99 , arz' aGz' and azz' where 

z is the vertical coordinate (positive upwards, with z 0 denoting the 

midsurface of the plate), only the first three are non zero. The varia-

tion in the strain energy per unit volume at location (r,9,z) can be 

written as 

&U(r,9,z) 

in which 

T = &e a (5.8) 
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(5.9a) 

are the in-plane stresses, and 

e (5.9b) 

are the strains. The contribution to the variation in strain energy due 

to the plate is 

a n t/2 

J J J &U(r,9,z)dz rd9 dr 

a1 -n -t/2 

(5.10) 

in which t is the thickness of the base plate. Replacing the integra-

tions with respect to r and 9 by summations, and taking advantage of the 

symmetry of the integrand with respect to 9, expression 5.10 becomes 

r 
t/2 NN 27t NC 

[ hy i/NN r i NC ~ 'Y j/NC f 
l.-1 l ,Fo I -t 2 

.1rr &U(ri ' NC ' z)dz] 
J 

(5.11) 

in which NC, the number of integration points around the circumference, 

is chosen depending on the accuracy desired. The remaining integration 

across the thickness of the plate is also done numerically using 

Simpson's rule with five integration points across the thickness. This 

scheme is exact when the cross section remains elastic, and has the 

advantage over Gaussian integration that there are points on both 

surfaces of the plate. Thus yielding starting on the surface of the 

plate is "detected" immediately. Furthermore, if the section becomes 

fully plastic in pure bending, Simpson's rule with five integration 
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points is also exact. 

Following Kirchhoff's hypothesis that plane sections remain plane, 

the strains are written as 

E = E - z l<r r r 

E9 = E9 - z 1<9 ( 5.12 a-c) 

E = E r9 - z l<r9 r9 

in which er, e9 and er9 are the midsurface (or membrane) strains, and 

l<r, 1<9 and l<r9 are the curvatures. Their values at a generic integra

tion point located at (r,9) = (ri, jn/NC) are given by : 

e 
r 

NH 
[ _n_ (v~+v~+1 )cos(njn/NC) n=1 2ri 

NH 
+\_1_ nn / 

L_ 2 (ui+ui+1)cos(njn NC) 
n=O ri 

r NW 12 
+ ~2 ...!... \ n N" ( jn/NC) 

r L_ wi n J l i n=O 



I< r 

_1_ 
2r. 

l 

+ [2~ 
...!.. 

NW 
= [ 

h2 n=O 

(v~+v~+1>1 
J 
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_n_ ( n n 
2r. ui +ui+l) 

l 

sin(nj1T/NC) 

NW 
(w~+1 -w~) N ( j1T/NC) 1 [..1.. [ [ 

n=O n J lri n=O 

(w~_1-2w~+w~+1 >Nn(j1T/NC) 

NW 
= 1

2 L w~ N~. ( j1t/NC) 
ri n=O 

= r 
n=O 

w~N" ( j1t/NC) 1 
1 n J 

( 5.13 a-f) 

Equations 5.12 and 5.13 define the strains in terms of the general-

ized displacements. It only remains to establish the stress-strain 

relationship, and the tangent material matrix. This is done in Appendix 

F, using the method of radial return (or elastic predictor, radial 

corrector method). 

5.2.2 Annular Bed of Winkler Springs 

The variation of the strain energy for the annular bed of Winkler 

springs is 



a 7T 

f f 

in which 

C(x) = x 

= 0 
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k C(w)&w rd9 dr 
0 

if X s_ 0 

otherwise 

(5.14) 

(5.15) 

In equation 5.14 the vertical displacement w can be considered to be the 

"strain," and 5 denotes a variation. With numerical integration expres-

sion 5.15 becomes 

(5.16) 

Note that the integration in 9 is replaced by summation over NW points, 

which would normally be less than the number of points (NC) used for 

integrating the strain energy in the plate. As in Section 4.2, this is 

considered advantageous in order to avoid locking problems. It also 

means that these springs affect only the diagonal elements of the stiff-

ness matrix. 

5.2.3 Circular Bed of Winkler Springs 

In Chapter 6, tanks for which the tank wall is preuplifted by 

placing a annular filler under the tank wall (Fig. 6.1) will be 

analyzed. For such a tank, the force per unit length in the circular 

bed of springs under the tank wall is k C(w-w ), in which wpre is the e pre 
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preuplift. As a result, the contribution to the variation in strain 

energy for these springs is 

7T 

f k C(w-w )ow ad9 e pre 
-7T 

which is approximated by 

In this chapter preuplift is not applied, and therefore w pre 

5.2.4 Linear Constraints 

(5.17) 

( 5 .18) 

o. 

A linear constraint at node i arises from the static condensation 

of any linear, axisymmetric structure attached to node i. Thus, there 

is a constraint at node 1 due to the inner part of the base plate, and 

at node NN due to the cylindrical shell and roof. The variation of the 

strain energy for such constraints can be written in the form 

in which 

& 
n 

Max(NH,NW) L & 1ta &r:l (F +K q ) 
n=O n n n n n 

2 for n = 0 

1 otherwise 

(5.19) 

(5.20) 



where 

ti 
n 

11 
n 

~ n 

~ n 

= 

= 

= 

= 
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(5.21) 

for n = 0 • 1 , 2 , • • • , NH 

c otherwise (5.22) 

for n = 1, 2, ••• ,NH 

0 otherwise (5.23) 

2y /NW NW k n 
k~ rk/NW 

cos(nkn/NW) w. NW ~ 

for n = 0 ,1, ••• ,NW 

0 otherwise (5.24) 

2Yn/NW NW k k [ 1 r - (w1+1-w1_1>cos(nkn/NW) NW k::O k/NW 2h 

for n = 0 ,1, •.. , NW 

0 otherwise (5.25) 

are the nth Fourier coefficients of the displacement components in the 

r, &, z directions (base plate coordinates) and the rotation about the 

circumferential axis respectively. F , 4 X 1 vectors, and K • 4 X 4 
n n 

matrices, are obtained from the static condensation of the attached 

structure. The elements of the 4 X 1 vector (F +K q ) are the nth n n n 

Fourier coefficients of the forces per unit length and the moment per 

unit length acting on the attached structure in the directions of the 
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displacements o • v , ~ and the rotation ~ • respectively. n n n n 

5.3 CRITERIA FOR CHOOSING NW, NH, AND NC 

The convergence studies in Chapter 4 (Fig. 4) can be used as a 

guide in choosing the number of Fourier harmonics required for the vert-

ical displacement, NW. For the choice of NH, the number of Fourier 

harmonics for the horizontal displacements, and NC, the number of 

integration points in the circumferential direction, the following 

results were helpful. 

Result 1: 

If no yielding occurs, then the numerical integration in the 

circumferential direction indicated in epression 5.11 is exact if 

NC > max(2NW,NH) (5.26) 

This result can be obtained by using eqs. 5.8 to 5.13 to evaluate the 

nature of the integrand, and the discrete orthogonality relation of 

Appendix C. It can also be shown that the variation in strain energy 

due to bending is integrated exactly if NC > NW. 

Result 2: 

If 

a) there is no yielding, and 

• b) the horizontal loads are of Fourier order 2NW, 

then the horizontal displacements are of Fourier order 2NW. Thus, 
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u~ 
~ 

0 for n > 2NW 

This means that under such conditions, making NH greater than 2NW serves 

no useful purpose. 

Briefly, the reason is that vertical displacements of Fourier order 

NW induce membrane strains of Fourier order 2NW. If no horizontal dis-

placements are allowed while the vertical displacements are applied, the 

horizontal forces that are required to achieve this are also of Fourier 

order 2NW. Releasing these, restraining forces results in horizontal 

displacements of Fourier order 2NW. 

Result 3: 

Since the variation in the strain energy is not integrated exactly, 

the displacements do not necessarily converge from below. A special 

case occurs when 

a) NW = 1, and 

b) NN and NC are sufficiently large to achieve essentially exact 

integration of the variation of the strain energy in the base 

plate. 

What is special about this case is that even though the distributed 

Winkler springs are replaced by discrete springs on the axis of loading, 

the vertical displacement at any point on the circumference is in 

between the displacements at the discrete springs. This means that for 

a rigid foundation the displacements are non-negative over the entire 

• Herein a function f(9) is said no 
be written in the form f( 9) = [ 

n=O 

be of "Fourier order" N if it can 
f ein9 

n 
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circumference. Hence, the displacements (or, strictly, the work done by 

the applied loads) are a lower bound. 

5.4 IMPLEMENTATION AND COMPUTATIONAL CONSIDERATIONS 

The generalized displacements are arranged into a vector q as 

follows 

NW o 
wo u1 

NW o 
wNN ~N+1 

NH 1 
~N+1 vNN+1 

NH o NW ] 
vNN+1 WNN+1 ••• WNN+1 

the total number of degrees of freedom is 

NUMDOF (NN+2)(NW+1) + (NN+1)(2NH+1) 

,(5.27) 

(5.28) 

The generalized displacements which affect the stresses and strains at 

the ith node are arranged into an "element displacement vector" qi as 

follows 

= 

NH o 
vi+1 wi+1 

The number of elements in this element displacement vector is 

NBD 3(NW+1) + 2(2NH+1) 

which is also the half-bandwidth of the tangent stiffness matrix. 

(5.29) 
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Newton Iteration was used to solve the nonlinear algebraic system 

of equations. The computational effort to factorize the tangent stiff-

ness matrix at each iteration is approximately proportional to NUMDOF 

2 (NBD) , which for NH = NW is in turn approximately proportional to 

NN(NW) 2 • 

5.5 TEST PROBLEMS 

The computer program developed for the non-axisymmetric analysis of 

the base plate will be referred to as NAAOAP (Non-Axisymmetric Analysis 

of Annular Plates). Constraint conditions can be imposed at any of the 

nodes. Using this feature, and setting the foundation stiffness to 

zero, the program can be used for annular plate problems for which the 

solution can also be obtained with the BOSOR5 program developed by 

• Bushnell (1974) • For various axisymmetric problems, including one 

involving a large amount of plastic deformation, the results from the 

two programs are in good agreement. 

In addition, to test the program for non-axisymmetric deformations, 

with strong geometrically nonlinear effects, the following problem 

involving bifurcation buckling with a relatively small number of 

circumferential waves is solved: An annular plate of thickness t = 1 in, 

modulus of elasticity E = 29 X 106 psi, Poisson's ratio ~ = 0.3, inner 

radius 100 in and outer radius 200 in is simply supported 

(u = v = w = 0, M = 0) at the inner edge, and free at the outer edge. 
r 

• Some of the features and capabilities of this program are described 
in Appendix A. 
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A transverse pressure p is applied. This produces an axisymmetric 

deformation of the plate. However, as the pressure increases, large 

compressive membrane forces develop near the outer edge in the 

circumferential direction. These stresses eventually cause buckling in 

a non-axisymmetric mode. From the BOSOR5 analysis, the buckling pres

sure is found to lie between p = 0.21 psi and p = 0.22 psi as indicated 

in Fig. 5.2 by the vertical lines. The circumferential wavenumber for 

the critical buckling mode is n = 3. This means that the displacements 

for the buckling mode vary like cos 39 or sin 39 in the circumferential 

direction. 

For the NAAOAP analysis, the tangent stiffness matrix should become 

singular as the buckling pressure is approached. To avoid this, a small 

transverse line load (force per unit length 0.003 lb/in cos 39) is 

applied at the outer edge. This introduces a small displacement (about 

0.001 in in the transverse direction) with a circumferential variation 

similar to that for the buckling mode. The non-axisymmetric line load 

is kept constant, whereas the pressure p is increased gradually. 

The NAAOAP analysis was performed with NN = 21 for the number of 

nodes, NW = NH = 3 for the number of Fourier coefficients to be 

included, and NC = 7 to achieve exact integration in the circumferential 

direction. The n = 0 and n = 3 Fourier coefficients of the transverse 

displacement at the outer edge are shown in Fig. 5.2. (The n = 1 and n 

= 2 Fourier coefficients are less than 10-9 in. The n = 0 Fourier 

coefficient is in excellent agreement (better than 0.2% for pressures up 

to the buckling pressure) with the axisymmetric solution from BOSOR5. 
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Also, for the n = 3 Fourier coefficient, the behavior is exactly what 

might be expected: The small displacement due to the non-axisymmetric 

line load is greatly amplified as the critical pressure is approached. 

Beyond the critical pressure the non-axisymmetric deformation increases 

rapidly. 

5.6 RESULTS 

As in Section 4.2.3, the analysis is performed for the tall and 

broad aluminum tanks tested at the University of California at Berkeley 

[Clough and Niwa {1979), Manos and Clough {1982)]. These will be 

discussed in Sections 5.5.1 and 5.5.2. In addition, a mylar tank tested 

by Shih {1981) is analyzed, and the calculated uplift is compared with 

the experimental readings in Section 5.5.3. 

5.6.1 Tall Tank Tested by Clough and Niwa {1979) 

This tank, and the assumptions made in modeling it, are described 

in Section 4.2.3.1. The only difference in this section is that the 

assumption of weak circumferential variations in the base plate is 

relaxed, and the changes in pressure acting on the base plate due to 

tilting are included. However, the effect of changes in the elevation 

of a point on the base plate on the pressure at that point are 

neglected. {Recall that the latter are included in the analysis of the 

shell). 
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The stiffness in compression for the circular bed of Winkler 

springs at the edge is taken to be 1011lb/in2 • and for the annular bed 

of springs under the nonlinear portion of the base plate, the stiffness 

10 I 3 is taken to be 10 lb in . 

The inner radius of the annular, nonlinear portion of the base 

plate is a1 = 38.5 in (see Fig. 5.1). This allows for a maximum width 

of the uplifted strip of 8 in. NN = 17 is used for the number of nodes, 

resulting in a radial spacing of 0.5 in between nodes. The inner part 

of the base plate is attached to the foundation with horizontal Winkler 

springs of stiffness 2,500 lb/in3 over a circle of radius 7.5 in at the 

center of the tank. 

Based on the convergence study in Fig. 4.6, NW = 30 is chosen so 

that accurate values of the vertical stresses can be obtained. For the 

horizontal displacements, NH = 12 is judged sufficient. Finally, 

NC = 61 is used to achieve exact integration around the circumference. 

The results are shown in Table 5.1 lines 4 and 9, and Figures 5.3 

to 5.7. In some cases the results of the experiments and the approxi-

mate analysis of Chapter 4 are also shown for comparison. Some of the 

features of these results deserve discussion: 

Figures 5.3 and 5.4 indicate that the base plate is uplifted radi-

ally inwards from locations where the shell wall (outermost node or cir-

ole) is in contact with the foundation. This occurs because the fluid 

pressure acting on the shell wall causes it to rotate about the 

circumferential axis at the edge. This rotation is also experienced by 

the base plate, and causes the base plate to uplift slightly inward from 
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the edge. 

TABLE 5.1. Fourier Amplitudes of Vertical Uplift at Base (in) for the 
Tall Aluminum Tank Tested by Niwa and Clough (1979) [6.45° 
tilt, 13 ft water depth] 

1. Harmonic number, n 

Open Top: 

1 2. Experiment 

3. Approximate theory of Chapter 4 

2 4. Present analysis 

5. Modified present analysis3 

4 6. Modified present analysis 

Closed Top: 

7. Experiment 

8. Approximate theory of Chapter 4 

2 9. Present analysis 

10. Modified present analysis 3 

11. Modified present analysis4 

Notes: 

0 

0.46 

0.195 

0.225 

0.316 

0.422 

0.39 

0.193 

0.222 

0.313 

0.428 

1 2 3 

0.54 0.06 .04 

0.234 0.032 -0.003 

0.267 0.034 -0.004 

0.362 0.038 -o .004 

0.468 0.038 -0.004 

0.44 0.03 0.03 

0.205 0.003 -0.003 

0.234 0.003 -0.003 

0.323 0.004 -o .003 

0.436 0.004 -o .003 

1. Experimental data obtained from Clough and Niwa (1979) with the 
authors' permission. 

2. Standard analysis, assumptions include no yielding, and the base 
plate modeled as one continuous sheet of 0.09 in thick aluminum. 

3. Modified analysis, includes plasticity in the base plate with a 
yield stress of 12 ksi, and a perfectly flexible gasketed joint in 
the base plate. 

4. Modified analysis as described in note 3, but the tilt angle was 
increased to 8.5° with subsequent unloading to a tilt angle of 

0 6.45 • 
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Figure 5.3: Nodes (circles) and contact points (stars) for the 
analysis of the nonlinear portion of the base plate of the tank 
tested by Clough and Niwa (1979). [13ft water depth, 6.45° tilt, 
open top] Each star indicates a discrete Winkler spring in 
compression. 
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Figure 5.4: Nodes (circles) and contact points (stars) for the 
analysis of the nonlinear portion of the base plate of the tank 
tested by Clough and Niwa (1979). [13ft w~ter depth, 6.45° tilt, 
closed top] Each star indicates a discrete Winkler spring in 
compression. 
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Figure 5.7: Stresses at the junction between the base plate and shell 
for the tank tested by Clough and Niwa (1979). [closed top, 13ft 
water, 6.45° tilt] Dashed lines show the stress in the base plate. 
The continuous lines show the corresponding stress acting on the 
shell. The mismatch is partly due to discreti~ation error, and 
partly due to the force carried by the 0.18in circumferential 
stiffener, which models the 2in overlap of the base plate beyond 
the shell wall. 
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The vertical stresses at the base are in good agreement with those 

from the approximate analysis. The peak compressive stress also agrees 

with the experimental result, but the small stress at 9 = 0 and large 

0 0 tension at 9 = 90 and 270 observed in the experiment are not matched 

by the theory. 

The sharp peaks in shear stress near 9 = 180° (Fig. 5.6) appear to 

be associated with the large rate of change in the vertical compressive 

stresses. Similar sharp peaks were obtained in the approximate analysis 

of Chapter 4 with N = 100 for the number of Fourier harmonics. This 

suggests that these peaks are not due to discretization error, but arise 

from some other cause. On the other hand, choosing NH = 12 does not 

allow circumferential displacements at the base which have Fourier 

components of order n L 13. Such displacements could release some of 

the stress associated with the peaks. Thus, while the peaks exist, the 

analysis may exaggerate them somewhat. 

The experimental shear stresses were measured 5 in above the base. 

It seems likely that at this elevation the sharp peaks would barely be 

noticeable. Even if the peaks were present 5 in above the base, not 

enough measurements were taken to detect them. Finally, although the 

peaks are remarkable, the stress levels are still low compared to the 

vertical compressive stresses. 

The vertical displacements at the edge (Table 5.1) are a little 

larger than those from the approximate analysis of Chapter 4, but still 

significantly smaller than the experimental displacements. In order to 

examine to what extent these differences might be due to plasticity and 



- 134 -

the flexibility of the gasketed joint in the base plate (Detail D in 

Fig. 4.3), the analysis is repeated with the following assumptions: 

(i) The base plate material is elastic-perfectly plastic with a yield 

stress uniaxial tension of 12 ksi. This corresponds to a yield 

stress of 36 ksi for the hypothetical steel prototype. 

(ii) The gasketed joint in the base plate is perfectly flexible. To 

balance the lateral component of force which the shell exerts on 

the base plate, a shear force which varies like sin 9 in the 

circumferential direction is applied at the inside edge of the 

outer annular portion of the base plate. 

For this modified analysis, the nonlinear portion of the base plate 

extends inward from the edge to the gasketed joint. The tilt angle was 

increased gradually to Clough and Niwa's (1979) "standard" tilt angle of 

0 6.45 • Then, in order to examine the effects of residual plastic 

strains resulting from previous loading of the tank, the tilt angle is 

increased to 8.5° (the largest tilt angle for which Niwa and Clough 

(1979) report results) and reduced again to the standard tilt of 6.45°. 

The analysis is performed with NN = 21, NW = 5, NH = 4, NC 6 which is 

judged sufficient for accurate values of the n = 0 and n 1 Fourier 

coefficients of the displacements. Results (Table 5.1), lines 5, 6, 10 

and 11) indicate that plasticity in the base plate and the flexibility 

of the gasketed joint increases the n = 0 and n = 1 coefficients for the 

uplift by a factor of 1.4. Loading to a tilt angle of 8.5° and unload-
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Figure 5.8: Relationship between the uplift force applied at the edge 
(base plate shear plus vertical component of radial membrane force) 
and uplift for the tall tank tested by Clough and Niwa (1979). 
(a) non-axisymmetric solution, closed top, 6.45° tilt 
(b) non-axisymmetric solution, open top, 6.45° tilt 
(c) axisymmetric solution 
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Figure 5.9: Relationship between membrane forces in the base plate at 
the edge and the vertical uplift at the edge for tall tank tested by 
Clough and Niwa (1979). 
(a) non-axisymmetric solution, closed top, 6.45° tilt 
(b) non-axisymmetric solution, open top, 6.45° tilt 
(c) axisymmetric solution 
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Figure 5.10: Relationship between vertical displacement, radial dis
placement and rotation at edge for tall tank tested by Clough and 
Niwa (1979). 

(a) non-axisymmetric solution, closed top, 6.45° tilt 
(b) non-axisymmetric solution, open top, 6.45° tilt 
(c) axisymmetric solution 
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Figure 5.11: Relationship between bending moments in the base plate at 
the edge, and uplift for the tall tank tested by Clough and Niwa 
(1979). 
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non-axisymmetric solution, closed top, 6.45° tilt 
non-axisymmetric solution, open top, 6.45° tilt 
axisymmetric solution 
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ing further increases the n = 0 and n = 1 coefficients of the uplift by 

a factor of 1.3 to 1.4. Including all these effects results in n = 0 

and n = 1 Fourier coefficients of the uplift which are reasonably close 

to the experimental values. 

The comparison between the results from the comprehensive analysis 

of this chapter and the approximate method of Chapter 4 serve to evalu

ate the assumption of weak circumferential variations. In Figs. 5.8 to 

5.11 this assumption is examined more closely by looking at the rela

tionship between the vertical uplift and various quantities of interest. 

An example of such a quantity of interest is the vertical uplifting 

force acting on the base plate at the edge. This uplift force is also 

equal to the vertical tension in the shell wall. For a given tilt 

angle, the values of the uplift force and the vertical uplift can be 

sampled at various points around the circumference for which some uplift 

occurs, and plotted, as in Fig. 5.8, lines (a) and (b). If the 

circumferential variations are indeed weak, this relationship between 

the uplift force and the vertical uplift should coincide identically 

with that from the axisymmetric solution [Fig. 5.8, line (c)]. As can 

be seen, the agreement for this case is fairly good. 

Figures 5.9 to 5.11 are similar plots for other quantities of 

interest. Perhaps the plot which best reveals how the assumption of 

weak circumferential variations might break down is the one for the 

circumferential membrane force, N
9

, at the edge (Fig. 5.9). It appears 

that the large circumferential compression that might be expected from 

the axisymmetric solution where the uplift is a maximum redistributesto 
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other points on the circumference. As a result of this circumferential 

spreading of the compressive force N9 , the axisymmetric solution 

overestimates the circumferential compression where the uplift is a 

maximum, but where the uplift is small and the circumferential compres

sion exceeds that from the axisymmetric solution. 

For reasons explained in Chapter 2, the circumferential compression 

at the edge determines to a large extent how much membrane action is 

present in the base plate. For small circumferential compression at the 

edge, there is little membrane action, and a smaller uplift force is 

required for a given amount of uplift. Hence, the circumferential 

spreading of the circumferential compression should decrease the uplift 

force for large values of uplift and increase it for small values of 

uplift. This is what is observed in Fig. 5.8. 

5.6.2 Broad Tank Tested by Manos and Clough (1982) 

The description of this tank and the assumptions made in modeling 

it can be found in Section 4.2.3.2. Results are shown in Figures 5.12 

and 5.13. It is seen that in this case relaxing the assumption of weak 

circumferential variations in the base plate increases the vertical 

uplift by a factor of more than 2. One reason for this might be that 

flexible inextensional modes in the shell wall make a distribution of 

vertical uplift at the edge possible, for which relatively little 

membrane action is developed in the base plate. 
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Figure 5.12: Nodes (circles) and contact points (stars) for the 
analysis of the nonlinear portion of the baseplate for the tank 
tested by Manos and Clough (1982). [Sft water depth, 16° tilt, 
open top] Each star indicates a discrete Winkler Spring in 
compression. 
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Figure 5.13: Comparison of Results from the analysis in this Chapter 
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line) for the broad aluminum tank tested by Manos and Clough (1982). 
[Sft water depth, 16° tilt, open top]. The experimental data are 
used with the authors' permission. 
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Another contributing effect is that, where the base plate uplifts 

the most, the fluid pressure is reduced due to tilting. This applies 

especially to broad tanks because 

a) For a given tilt angle, the change in pressure due to tilting 

is a larger fraction of the pressure at zero tilt. 

b) A larger tilt angle is required to generate a given overturn

ing moment. 

This effect is included in the analysis of this chapter, but not in the 

approximate analysis of Chapter 4. 

The breakdown of the assumption of weak circumferential variations 

is confirmed in Fig. 5.14, where the uplifting force for larger values 

of the uplift is seen to be much smaller than would be expected from the 

axisymmetric solution. 

Given the large change in the vertical uplift that occurs upon 

relaxation of the assumption of weak circumferential variations, it is 

remarkable that the distribution of vertical stresses hardly changes. 

It still exhibits the bimodal distribution of compressive stresses which 

is not seen in the experimental data. The analysis even indicates that 

the shell wall uplifts at 9 = 180°. As was explained in Section 

4.2.3.2, this is consistent with what might be expected from the 

inextensional shell theory. Although the experimental vertical stresses 

do not confirm this, the measured radial displacements at the top rim do 

give an indication that there may be some tendency for uplift at 

9 = 180°. To see this, note that if there is uplift at 9 = 180°, then 



Q) 

u ... 
0 

j;z... 

I 
( 

I 

I 
( 

/ 
I 

(/ 

/ 
/ 

-144-

(b)/ 
/ 

/ 
/ 

/ 
/ 

/ 

/ 

/ 
/ 

/ 

/ 
/ (a) 

04-------~------~-------r------~------~----~-,----~ 

0 0.1 0.2 0.3 0.4 
Vertical Uplift at Edge 

0.5 
(in) 

0.6 
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vertical uplifting force for the broad tank tested by Manos and 
Clough (1982) 
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(b) axisymmetric solution 
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Figure 5.15: Top rim radial displacements. Reproduced from Fig. 5.2.1 

in Manos and Clough (1982) with the authors' permission. 

[5 ft water depth, 16° tilt, rigid foundation, open top]. 

it is expected that the uplift at 9 = 180° is a local maximum. This 

means that the second derivative of the uplift with respect to 9 

(denoted by u·· in Chapters 3 and 4) is negative. From Eq. 3.6c it is 

seen that the radial displacement must therefore be negative, i.e., 

inwards. This is exactly what is shown in Fig. 5.15. Although Eq. 3.6c 

applies for inextensional tanks only, the argument is still relevant, 

because for a broad, roofless tank such as this one, inextensional 

deformation modes play an important role. 

5.6.3 Mylar Tank Tested by Shih (1981) 

In his Figure 5.7, Shih (1981) gives the results of a static tilt 

test on an unanchored mylar tank. The tank used is 5 in in diameter, 

10.5 in tall, and the thickness is 0.002 in for both the base plate and 

the shell. A stiffening rim was provided which essentially prevents 

out-of-round 
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deformations at the top. For the analysis, the same effect is achieved 

with a 0.02 in thick, flat mylar roof. Shih set the tank on a tilt 

table at a constant tilt angle of 10.3° and gradually filled it with 

water, measuring the vertical uplift1 and the width of the uplifted 

strip of the base plate. 2 

In modeling the tank, the elastic properties for mylar are taken to 

beE 0.735 X 106 psi for Young's modulus, and~ = 0.3 for Poisson's 

ratio. Sliding of the tank is prevented by horizontal Winkler springs 

of stiffness 103 lb/in3 on a 2 in diameter circle at the center of the 

tank. The stiffnesses for the vertical springs are taken to be 

k
0 

= 3,446 lb/in3 under the base plate, and ke = 516,900 lb/in2 at the 

edge. 

The radial spacing of the nodes in the nonlinear portion of the 

base plate is 0.05 in. The analysis is performed with NW = NH = 3, 

NC = 4. This is sufficient to obtain accurate values of the uplift. 

In the analysis, the loading process by filling of the tank is 

simulated by computing the appropriate load vector at each loading step. 

This means that the water level increases from one loading step to the 

next. As a result, the stiffness matrix of the shell also changes due 

to the nonlinear effects associated with the hydrostatic pressure. For 

simplicity, such changes in the stiffness matrix of the shell are not 

included in the analysis. Instead, the stiffness matrix of the shell is 

1 With feeler gauges. 

2 By inserting dye under the uplifted portion of the base plate, the 
extent of the uplifted portion became clearly visible. 
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computed for a water depth of 6.5 in and assumed to remain constant. 

The analytical results are compared with Shih's experimental read

ings in Fig. 5.16. The agreement is acceptable, if one considers the 

uncertainty in measuring the displacement with feeler gauges. Some of 

the differences between theory and experiment may also be due to the 

stiffening effect of a bead of epoxy used to bond the shell to the base 

plate. 

5.7 SUMMARY AND CLOSING REMARKS 

The comprehensive method of analysis developed in this chapter 

enables the assumption of weak circumferential variations in the base 

plate to be relaxed. In doing so it is seen that for a tall tank, this 

assumption is acceptable. For a broad, roofless tank, however, the 

assumption seems to be acceptable for calculating the distribution of 

vertical stresses in the shell at the base, but not for calculating the 

uplift. 

Significant differences between theoretical and experimental 

results remain, even after relaxing the assumption of weak circumferen

tial variations in the base plate. Exactly why these discrepancies 

occur is not clear. However, a number of possible explanations can be 

suggested and evaluated. 

Due to its high thermal conductivity, aluminum is difficult to 

weld. Therefore, some imperfections and residual stresses are inevit

able. There may also be some additional residual stress from forming of 

the aluminum sheet. Whereas for the linear behavior of a structure, the 
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changes in stresses due to external loading are unaffected by residual 

stresses, this does not apply for the base plate of a tank, for which 

the behavior is markedly nonlinear. In particular, it seems likely that 

there were some residual circumferential tension due to welding at the 

shell-base plate joint. This tends to reduce the membrane action in the 

base plate, resulting in larger uplift for a given tilt angle. 

It was seen that for the tall aluminum tank, yielding of the alumi

num, and the flexibility of the gasketed joint in the base plate have a 

strong influence on the uplift. The broad aluminum tank did not have a 

gasketed joint, but its behavior may have been affected by yielding of 

the aluminum at the time the tilt test was performed, or by residual 

plastic strains resulting from previous loading of the tank. 

Some important effects may have been lost in the linearized formu

lation for the shell. It would appear, for example, that the relatively 

sharp peaks in the distribution of compressive stresses at the base may 

be redistributed by the geometric shortening that occurs when a vertical 

line on the shell wall becomes a curve. This would result in a somewhat 

lower peak compressive stress. 

Finally, friction between the base plate and the foundation is not 

considered in the analysis. Such friction forces can change the 

distribution of membrane forces in the base plate. This in turn may 

affect membrane action in the uplifted portion of the base plate. 

In summary, there are several possible reasons for the differences 

between the theoretical and experimental results. What is not clear is 

exactly what effects are responsible for the differences in each case. 
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Resolving this would require improved capabilities for analysis, includ

ing a fully nonlinear formulation for the shell, in conjunction with 

carefully designed experiments. 



- 151 -

6. THE PREUPLIFT METHOD 

For an unanchored tank, uplift is necessary so that the earthquake 

induced overturning moment can be balanced by the weight of the fluid 

resting on an uplifted portion of the base plate. Thus uplift enables 

the weight of the water to participate in stabilizing the tank. How-

ever, uplift also can result in damage to connecting pipes or buckling 

of the shell wall due to the concentration of vertical compressive 

stresses at the base. 

The question that comes up naturally in this context is: Is it 

possible to reap the benefits of uplift (stabilization by the weight of 

the fluid resting on an uplifted portion of the base plate) without 

incurring its detrimental effects? This can indeed be achieved, if the 

tank wall is preuplifted all around its circumference by a ring filler, 

as shown in Fig. 6.1. 

Figure 6.1: A preuplifted tank. 

RING 
FILLER 
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The ring filler is designed in such a way that it carries not only the 

weight of the tank wall and roof. but also the weight of part of the 

fluid which rests on the preuplifted portion of the base plate. For 

uplift to occur. this preload on the ring filler must be overcome by the 

seismically-induced vertical tension in the shell wall. Thus. for light 

to moderate ground shaking the tank wall remains in contact with the 

ring filler all around its circumference, and the tank behaves essen

tially as if it were anchored even under shaking that would otherwise 

cause substantial uplift. Furthermore, it will be seen that even under 

ground shaking strong enough that the tank wall locally looses contact 

with the ring filler (i.e •• major amounts of uplift), preuplift improves 

the performance of the tank for any given lateral load. This conclusion 

is supported by experimental and theoretical results. First the experi

ments and method of analysis are described, then the results presented 

in the figures are discussed. 

6.1 EXPERIMENTS 

A mylar tank was fabricated following the methods of Shih (1981): 

The vertical seam in the tank wall was lapped and bonded with 1/ 4" wide 

double sided tape. At the junction between the shell wall and the base 

plate (henceforth referred to as the edge), a thin bead of epoxy was 

used as a bonding agent. At the top. a lucite ring prevents any out-of

round deformations of the cross section. 

The dimensions for the model tank are 5" for the diameter. 9-7/8" 

for the height, and 0.002" for the thickness of both the tank wall and 
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the base plate. Since the modulus of elasticity for mylar, 735,000 psi 

±9% as quoted by Shih (1981) from Weingarten, et al. (1960), is a factor 

of 40 less than that for steel, the model tank satisfies the conditions 

of similarity with a steel tank 40 times larger. This means that the 

hypothetical steel prototype is 16'-8" in diameter, 32'-11" talL and 

both the tank wall and the base plate are 0 .08" thick. This shell 

thickness is close to the minimum that would be required to support the 

hydrostatic water pressure, if the tank were full. 

The test setup is shown in Fig. 6.2. A static lateral load was 

induced by tilting the specimen on a tilt table which was designed for 

calibrating accelerometers. In doing so, the vertical lap joint in the 

shell was oriented on the axis of loading, opposite to the region of 

vertical compression. Two types of tests were performed: 

( i) The tank was filled with water to a depth of 4-9/ 16" at zero 

tilt, and the tilt angle was increased in increments of about 

0 3 , measuring the maximum uplift at each increment with 

feeler gauges (results in Fig. 6.5). 

(ii) The tilt angle was held fixed, and the tank was filled slowly 

through the aluminum tube visible in Fig. 6.2, until the 

first signs of a buckle (much smaller than the one shown in 

Fig. 6.3) could be detected visually, using light reflected 

on the tank wall. The water levels at buckling are shown in 

Fig. 6.7 for various tilt angles. Each experimental point is 

the average of two readings. 
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In the buckling tests, the first buckle always formed near the base, at 

the axis of loading. If the water level was increased further, the 

buckle gradually increased in size and more buckles formed (as in Fig. 

6.3). This agrees with Shih's (1981) observation that unanchored tanks 

do not collapse for water levels significantly higher than the water 

level at which the first buckle can be detected. However, in contrast 

to Shih (1981), who measured collapse water levels, here all experimen

tal data relate to incipient buckling. The author considers this to be 

a more appropriate failure criterion, because mylar tanks probably owe 

much of their post buckling strength to the fact that the mylar does not 

yield at stress levels which, when scaled to prototype stresses, are 

well above the yield stress for the mild steels out of which tanks are 

typically made. 

All tests were performed with and without preuplift. The ring 

filler consists of a 1/32" thick square sheet of plexiglass with a hole 

whose diameter is a few hundredth of an inch less than the inner diame

ter of the tank. This insures that the entire circumference of the tank 

wall is supported by the filler even if there is a small error in 

centering the filler. 

To prevent slipping of the tank it was bonded to its foundation at 

the center by a 1/4" square piece of double sided tape. 

6.2 ANALYSIS 

From Chapter 5, for the tall aluminum tank tested by Clough and 

Niwa (1979), the results from the comprehensive method of analysis are 
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in close agreement with those from the approximate analysis method 

described in Chapter 4. The theoretical maximum compressive stresses 

also agree with the experimental results. Since the mylar tank under 

consideration in this chapter has about the same height to diameter 

ratio as the tall aluminum tank of Chapter 5, the approximate method of 

analysis is used. For the case with preuplift, the vertical uplift 

varies gradually around the circumference, therefore the accuracy of the 

approximate method may be expected to be better for the case with 

preuplift. 

Consider the problem of the tank for which the base plate has been 

replaced by a ring of nonlinear Winkler springs. The force per unit 

length-deflection relationship for such springs is shown schematically 

in Fig. 6.4. For a tank without preuplift, the applicable curve is 

ABCD. The segment BCD of this curve is obtained from the axisymmetric 

uplift solution, and segment AB is taken to be linear, with a slope k e 

that is representative of the stiffness of the foundation in compres

sion. In the analysis reported herein a large number, k = 106lb/in2 , e 

is used to simulate a rigid foundation. 

Preuplift .can be accounted for simply by modifying the force-

deflection relation of the Winkler springs. In this case the force-

deflection relation is represented by curve A'CD in Fig. 6.4, in which 

the segment A'C is taken to be a straight line of slope ke, 

representative of the flexibility of the foundation and the ring filler 

in compression. In the present analyses, the ring filler as well as the 

foundation are taken to be rigid. Correspondingly, k = 106lb/in2 is e 
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FORCE 

D 

UPLIFT 

A 

Figure 6.4: 
Schematic force-deflection relation for the nonlinear 
Winkler springs at the base of the tank, without 
preuplift (curve ABCD), and with preuplift U (curve 
A'CD). 
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Figure 6.5: Comparison of experimental and theoretical results 
for the maximum vertical uplift, with or without pre
uplift. Note: For the preuplifted case, the vertical 
uplift includes the preuplift. 
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used, as for the case with no preuplift. 

6.3 DISCUSSION OF RESULTS 

The theoretical and experimental values of the uplift obtained with 

and without preuplift are shown in Fig. 6.5 as a function of the tilt 

angle. For the preuplifted case, the uplift shown in Fig. 6.5 includes 

the preuplift. The uplift due to tilting is much smaller for the 

preuplifted case. Also, for tilt angles greater than about 10°, both 

theory and experiment indicate that the total uplift is less for the 

preuplifted case. 

The agreement between theory and experiment for the case without 

preuplift is excellent. However, two compensatory effects may have been 

involved: On one hand it was found that the approximate method of 

analysis, based on the assumption of weak circumferential variations in 

the base plate, yields a maximum uplift slightly (10 to 20%) smaller 

than that from the more comprehensive analysis. On the other hand, the 

stiffness of the bead of epoxy, which bonds the base plate to the shell, 

and the stiffness of a small extension of the base plate on the outside 

of the tank wall were neglected in the analysis. 

For the case with preuplift, Fig. 6.5 indicates that uplift due to 

tilting is less than predicted by the analysis. Perhaps one of the more 

important contributing factors to this difference is the stiffening 

effect of the bead of epoxy at the edge. When the tank is uniformly 

uplifted all around the circumference, the edge tends to move radially 

inward. Due to the restraining action of the shell and the bead of 
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epoxy, this gives rise to a radial membrane tension in the base plate. 

For a larger radial tension at the edge, more membrane action is 

developed in the base plate, and the hold down force for a given amount 

of uplift is increased. This means that the restraining action due to 

the axial stiffness of the bead of epoxy will tend to decrease the 

uplift for a given water level and tilt angle. 

The axial stresses at the base, as obtained by analysis, for a 

water level of 4-9/16" and a tilt angle of 10° are shown in Fig. 6.6. 

The stresses are expressed as a fraction of what is generally referred 

to as the classical buckling stress [Timoshenko and Gere (1961)], given 

by 

(6.1) 

· in which E, ~~ t, R are Young's modulus, Poisson's ratio, the thickness 

and the radius of the shell, respectively. The location on the 

circumference is defined by an angle 9, which is measured from the axis 

of loading, with 9 = 0 on the side which is subject to uplift. Clearly, 

the maximum compressive stress at 9 = 180° is dramatically reduced by 

preuplift. No attempt was made to measure the stresses in the mylar. 

The stress distributions in Fig. 6.6 suggest that buckling due to 

the vertical compressive stress would occur at a higher tilt angle 

and/or water level if the tank is preuplifted. This is confirmed by the 

experimental data in Fig. 6.7, where the tilt angle for a given water 

depth at buckling is seen to be 1.5 to 2.0 times larger for the case 

with preuplift. Since the lateral load is approximately proportional to 
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the tilt angle, this means that the preuplift increases the lateral load 

capacity by a factor of up to 2. 

In order to obtain the theoretical tilt angles and water depths at 

buckling, it was assumed that the shell buckles when the peak vertical 

compressive stress reaches the classical buckling stress given in Eq. 

(6.1). This assumption is open to debate. On one hand, experiments on 

cylindrical shells in uniform axial compression [Weingarten, et al. 

(1960), Babcock (1974), Shih (1981)] indicate that the buckling loads 

are extremely sensitive to imperfections in the shell, and may be less 

than half the classical buckling load. On the other hand Shih (1981) 

found in his tilt tests on anchored mylar tanks, that the calculated 

peak compressive stress at buckling was about 1.24 times the classical 

value. He also discusses how the nonuniformity in the prebuckling 

stress field can result in higher buckling stresses. For an unanchored 

tank, one might expect that this effect of nonuniformity is even more 

pronounced, because the region of large vertical compressive stresses is 

smaller. 

The theoretical tilt angles and water levels at buckling, obtained 

with the classical buckling criterion, are shown in Fig. 6.7, by broken 

lines. They confirm that preuplift substantially increases the lateral 

load capacity. Also, the agreement with the experimental data is cer

tainly acceptable, if one considers the uncertainties in the buckling 

stress. 
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The calculated peak compressive stress at the tilt angles and water 

levels for which incipient buckling was observed in the experiments will 

be referred to as the experimental buckling stress. The ratios of these 

experimental buckling stresses to the classical value of Eq. (6.1) are 

plotted in Fig. 6.8. The average value is 0.83 as indicated by the bro-

ken line. Fig. 6.8 also indicates that neither the internal pressure 

(which is proportional to the water level), nor the circumferential 

angle spanned by the contact region, or whether or not the tank is 

preuplifted seem to have any significant influence on the experimental 

buckling stress. 

6.4 CLOSING REMARKS 

Both the theoretical and experimental results presented show that 

preuplift substantially increases the capacity of an unanchored tank to 

withstand lateral loads due to tilting. There is little doubt that the 

same conclusion would apply for seismic lateral loads.• However, a 

number of questions remain unanswered at this time. 

(i) Uplift will affect the dynamic response of the tank, by 

increasing its period of oscillation. For a preuplifted 

tank, this increase in the period of oscillation is less 

pronounced. Depending on the relative frequencies of the 

earthquake and the tank, this means that the preuplifted 

tank may experience a lateral load which is higher or lower 

• Shih (1981) has shown that for an anchored tank, the stresses due to 
tilting are similar to seismically induced stresses. 
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than that for the case without preuplift. 

(ii) The static stresses in the base plate induced by the 

preuplift may have some detrimental effect over long periods 

of time. Indeed, for most mild steel tanks preuplift 

results in flexural yield at the shell-base plate junction. 

This means that the weld at the junction must be stronger 

than both the shell and the base plate, and embrittlement of 

the heat affected zone must be avoided. 

(iii) Some of the effectiveness of the preuplift could be lost due 

to creep strains in the base plate developing before the 

earthquake. 

(iv) When, after a cycle of uplift, the tank wall descends upon 

the ring filler, the rapid vertical deceleration of the tank 

wall may well contribute to a large local hydrodynamic pres

sure acting on the preuplifted portion of the base plate. 

This could increase the plastic strains in the base plate 

and at the junction with the shell wall. As a result some 

of the effectiveness of the preuplift could be lost, and, 

ultimately, there may be some danger of tearing at the 

shell-base plate junction. This problem could be avoided if 

the ring filler is designed so that under normal operating 

conditions, it fills the space between the base plate and 

the foundation, but carries vertical loads only at the edge. 

This can be achieved by choosing a cross section of the ring 

filler which matches the deformed shape of the base plate 
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due to a uniform uplifting force applied at the edge only. 

Some of these questions also apply to unanchored tanks without 

preuplift. For example, the local hydrodynamic pressures mentioned in 

(iv) above may contribute to the formation of the "elephant foot bulge" 

so commonly observed. While these issues remain to be studied, and in 

some cases may limit the effectiveness of preuplift somewhat, the author 

concludes that preuplift will in most cases significantly improve the 

behavior of unanchored tanks subject to earthquake loads. 
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7. SUMMARY AND CLOSURE 

When a cylindrical steel tank is subjected to earthquake loads, the 

seismically induced vertical tension in the shell wall at the base 

exceeds the vertical compression due to the weight of the tank wall and 

roof (if present). This is true even for relatively light ground shak

ing. For an unanchored tank, the resulting net vertical tension causes 

the shell wall to uplift. The base plate is therefore also uplifted. 

Thus a hold-down force is developed due to the weight of fluid resting 

on the uplifted portion of the base plate. 

The analysis of this problem requires consideration of the shell 

and the base plate, including nonlinear effects due to finite displace

ments, yielding of the steel, and loss of contact with the foundation. 

The assumptions made in the method of analysis recommended in the 

current design standards of the American Water Works Association and the 

American Petroleum Institute are in most cases not applicable, and can 

result in calculated peak compressive stresses which are too low. On 

the other hand, the allowable peak compressive stress is also much lower 

than that observed. Therefore the current design standards are 

inconsistent rather than necessarily unconservative. 

In an attempt to provide a more realistic idealization of the 

problem, two methods of analysis have been developed. Both are based on 

the moderate deflection, Von Karman, theory for the base plate, and a 

linearized ,formulation for the shell. 
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The first method of analysis is an approximate one in which the 

tank wall is supported from below by a circular bed of nonlinear Winkler 

springs. When in tension, these Winkler springs represent resistance to 

uplift provided by the base plate. When in compression, the Winkler 

springs represent the stiffness of the foundation. The force-deflection 

relation for the Winkler springs is determined from the solution of the 

axisymmetric problem in which the tank wall is uniformly uplifted all 

around the circumference. Three computer programs are used for this 

approximate analysis: One to solve the axisymmetric uplift problem, one 

to perform a static condensation on the tank wall, and the third uses 

the output of the previous two to solve the contact problem. Each of 

these could be run on a personal computer. 

The second method of analysis is a more comprehensive one in which 

the non-axisymmetric problem for the partially uplifted base plate is 

solved. This is achieved by the finite difference energy method, using 

an expansion of the displacements as a Fourier series in the 

circumferential direction. Since both material and geometrical 

nonlinearities are included, the variations in the strain energy need to 

be integrated numerically. A tangent stiffness matrix is obtained in 

which there is coupling between the various Fourier coefficients of the 

displacements. This makes for a large amount of computational effort if 

a large number of Fourier coefficients are included in the analysis: A 

typical problem with 31* Fourier coefficients for the vertical displace

ments and 13* Fourier coefficients for the horizontal displacements took 

• Including the coefficient of order zero. 
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10 to 15 minutes on a CRAY XMP-2-4 computer. This is about the number 

of Fourier coefficients required for accuracy in the vertical stresses 

in the shell wall at the base. However, accurate values of the uplift 

displacements can be obtained using only two or three Fourier coeffi-

cients. As a result the computational effort is reduced by two to three 

2 3 orders of magnitude (a factor of 10 -10 ). This is important in apply-

ing the method for dynamic analysis: The inertial forces and 

hydrodynamic pressures can be obtained with fairly good accuracy and 

relatively little computational effort from a time history analysis, 

using a small number of Fourier coefficients. The most severe inertial 

forces and hydrodynamic pressures can then be applied as static loads in 

a subsequent analysis using a larger number of Fourier coefficients, in 

order to obtain accurate values of the stresses. 

In comparing the results from the approximate method of analysis 

based on the assumption of weak circumferential variations in the base 

plate to the more comprehensive approach, it is seen that for a tall 

aluminum tank which was loaded by applying a static tilt, the results 

from the approximate method of analysis are in close agreement with 

those from the more comprehensive method. For a broad, roofless tank 

however, the approximate analysis is distinctly less satisfactory. 

As expected, the analyses show that uplift results in a large 

increase in the peak compressive stress in the tank wall at the base. 

For a given lateral load, these calculated peak compressive stresses are 

in good agreement with experimental results. In some cases they exceed 

the stresses calculated by the procedures outlined in the current API 
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and AWWA standards by a factor of more than 2. On the other hand, 

experiments on mylar tanks indicate that the peak compressive stress at 

which buckling occurs is close to the classical value, which is much 

larger than the allowable compressive stress permitted by the current 

design standards. 

For most fluid storage tanks, the thickness to radius ratio is such 

that vertical compressive stresses can be expected to cause elastic 

buckling before they cause yielding. This is especially so if buckling 

occurs well before the classical buckling stress is reached. However, 

as has been suggested by Chen (1984), the combination of vertical 

stresses close to the classical buckling stress, hoop stresses due to 

internal hydrostatic and hydrodynamic pressures, and bending stresses 

due to the restraint at the base may well cause the material to yield 

before the point of elastic instability. In such cases plastic buckling 

can be expected to occur soon after the onset of yielding, because of 

the decrease in the material stiffness. This would probably result in 

what is generally referred to as an elephant foot bulge. 

Hence, yielding as well as elastic instability should be considered 

as a possible failure mechanism for the tank wall. Whereas for elastic 

instability, internal pressure tends to increase the buckling stress, 

for yielding, internal pressure produces hoop tension and bending 

stresses which combine with the axial compressive stress to produce a 

more severe loading condition. This is especially important if the 

internal pressures are amplified by resonant breathing modes [Haroun and 

Tayel (1984, 1985 a,b), Sakai et al. (1984), Veletsos and Kumar (1984)], 
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and by the vertical motion of the base associated with rocking. 

Although agreement of the theoretical results with available 

experimental results is good in some cases, in other cases there are 

significant discrepancies. These discrepancies could be due to geome

trically nonlinear effects in the shell, yielding of the aluminum, 

residual stresses (due to welding, forming of the aluminum sheet, or due 

to plastic strains that may have developed during previous testing of 

the tanks), friction between the base plate and the foundation, or other 

inaccuracies in the mathematical idealization of the tank. Which of 

these effects is responsible for the discrepancies in each particular 

case, and to what extent experimental errors may also be involved is not 

clear. 

In order to explain more precisely the differences between theoret

ical and experimental results, it seems that a program that allows an 

interplay between testing and analysis would be required. In an 

integrated program, experimental features could be addressed by special 

analyses and potential problems indicated by the analysis could be 

investigated experimentally. For example, the influence of friction 

between the foundation and the base plate could be virtually eliminated 

by greasing the surfaces. The tank could be annealed in order to 

eliminate residual stresses. Or, if this is impractical, an attempt 

could be made to estimate the residual stresses and they could be 

included in the analysis. Finally, a high strength material could be 

used to eliminate the effect of plasticity; or, alternatively, if 

plasticity is important the entire loading history for the tank could be 
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reproduced analytically. 

In any future experiment it would be important to measure the 

stresses and displacements at several locations on the uplifted portion 

of the base plate, since this is where the geometrically nonlinear 

effects are most pronounced. The stress-strain behavior of the material 

should be determined experimentally. Also, the effect of heating and 

cooling from nearby welds on the stress-strain behavior should be 

investigated. 

Using the preuplift method (Fig. 6.1) the hold-down force due to 

the weight of the fluid resting on an uplifted strip of the base plate 

can be developed without many of the undesirable consequences of uplift. 

It is shown by analysis and experiment, that for a S in diameter and 9-

7/8 in tall mylar tank, a preuplift of 1/32 in increases the resistance 

to lateral loads due to tilting by a factor of up to 2. 

Some questions regarding the preuplift method remain to be 

investigated: For example, preuplift affects the dynamics of an 

unanchored tank and therefore has some influence on the maximum lateral 

force and overturning moment. Also, the relatively large stresses in 

the base plate during operating conditions may have some detrimental 

effects such as creep, and the possibility of leakage due to the growth 

of microcracks. The loss of the effectiveness of the preuplift due to 

creep strains could be evaluated by an axisymmetric analysis, if a suit

able description for the creep behavior of the steel can be found. 

Although these issues deserve to be studied in more detail, it appears 

that the seismic performance of unanchored tanks can be improved 
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significantly by preuplift. 
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APPENDIX A - BUCKLING ANALYSIS OF BASE PLATE WITH BOSOR5 

This appendix explains the use of the computer program BOSOR5 by 

Bushnell (1974) to determine the critical load for circumferential 

buckling in the base plate. Since BOSOR5 does not have built-in 

capabilities for contact problems, a separate analysis is required for 

each location of the contact point. The BOSOR5 mathematical model for 

the example problem of Chapter 2 is shown in Fig. A1. In this figure 

and in the rest of this appendix the node numbers used refer to those 

specified by the user. The program inserts additional nodes at junc

tions in order to model the boundary conditions. 

The base plate is modeled as a single conical segment beginning at 

(r,z) = (0,0) and ending at (r,z) (57,0). Nodes 1 to 21 are equally 

spaced on the portion of the base plate which remains in contact with 

the ground. Nodes 21 to 73 are also equally spaced, and the actual 

spacing is chosen such that node 21 is at r = r
0

, the location of the 

contact point. At this node no rotation or vertical displacement are 

allowed. 

The shell is modeled by a second segment with 61 equally spaced 

nodes covering a length of 15 in. This length is considered sufficient 

to model accurately the constraint provided by the shell for rotations 

and horizontal displacements. In addition, although the vertical stiff

ness of a 15 in length of shell is lower than that for the full length 

of the shell, it is seen from Fig. 2.11 that this vertical stiffness is 

sufficient to suppress any vertical displacements associated with the 
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buckling mode at the edge. 

At the junction between the base plate and the shell, continuity of 

all displacement components and the rotation is required. The plastic 

hinge is allowed to form naturally by yielding of the material, which is 

taken to be linearly strain hardening from 70 ksi at first yield to 70.5 

ksi at 1% strain for loading in uniaxial tension. The stress resultants 

(membrane forces and bending moments) are obtained by numerical integra-

tion of the stresses at 7 points across the thickness of the plate. For 

the prebuckling analysis, the flow theory of plasticity is used with a 

Von Mises yield surface, and for the buckling analysis the deformation 

theory of plasticity is used. 

The loading is applied as shown in Fig. Al, the applied pressure p a 

and the uplift force P being given by a 

in which 

p 
a 

= 

~p 

p = actual pressure as defined in Chapter 2, 

P = uplift force determined by the shooting method (P depends 

on r ), and 
0 

~ loading parameter. 

(D1) 

(D2) 

Thus the loads are applied proportionally such that when the load param-

eter reaches unity, the conditions for the contact problem are matched. 

Although the loading path in this analysis is different from that for 
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the contact problem in which the radius to the contact point changes, 

this hardly affects the prebuckling conditions. since path dependencies 

can only be introduced due to yielding at the plastic hinge. As long as 

the direction of loading does not change, such path dependencies are 

limited to interaction effects between the various bending and membrane 

stresses, which are neglected. 

To verify that the prebuckling conditions are suitably simulated by 

the above procedure, stresses and displacements obtained with BOSORS 

were compared to those obtained by the shooting method. Fig. A2 shows 

the comparison of vertical displacements, radial bending moments and 

circumferential membrane forces. Similar agreement was obtained for 

other quantities. The most noticeable difference is in the hoop 

compressive force near the edge. It occurs due to interaction between 

radial bending and circumferential compression: In the presence of 

large radial bending moments the capacity in circumferential compression 

is reduced. The effect of a finite plastic hinge length in the BOSORS 

model upon the response near the edge is apparent in Fig. A2a. Since 

the extent of such local effects is small compared to the buckling 

wavelength, they were neglected. 

The trial and error procedure for determining the buckling load is 

as follows: 

1. Estimate the radius to the contact point, r , when buckling 
0 

occurs using results obtained by the shooting method, and sim-

ple plate buckling formulae. 
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a) Vertical Deflection 
w (in) 

b) Circumferencial Membrane 
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---~ 
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Figure A2: Comparison of prebuckling conditions from the BOSOR5 analysis 
(continuous lines) to those obtained by the shooting method (broken 
lines). 
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2. Construct the BOSOR5 model consistent with the chosen value of 

r , and determine the value of the load parameter ~ at 
0 

buckling. If it exceeds unity, try again with a smaller value 

of r
0

; if it is less than unity, try again with a larger value 

of r . 
0 

3. Keep trying until the value of r is found for which buckling 
0 

occurs at ~ = 1. For the example tank considered, this occurs 

for r = 44.25 in, corresponding to an uplifted width of 
0 

12.75 in. 
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APPENDIX B - CYLINDRICAL AXISYMMETRIC SHELL ELEMENT 

Klein (1964) has presented a derivation of the stiffness matrix for 

conical, and, as a special case, cylindrical shell elements in which the 

displacements and stresses vary as trigonometric functions in the 

circumferential direction. However, for the special case of a cylindri-

cal element his results are not stated in a convenient form. Haroun 

(1980) considers the specific case of a cylindrical element, but did not 

state the elements of the stiffness matrix explicitly. In the following 

pages, an outline of the derivation of such explicit expressions is 

given, and the final results are stated. The second section in this 

appendix is devoted to the added stiffness arising from non-linear 

effects due to internal fluid pressure. 

B1. DERIVATION OF STIFFNESS MATRIX FROM LINEAR SHELL THEORY 

The derivation is based on what Flugge (1960) refers to as the 

"exact"* relationship between the strains at any point and the 

midsurface displacements, and the principle of virtual displacements. 

Thus, the need to use classical shell theory and stress resultants is 

avoided. This approach is generally known as the degeneration approach. 

A typical element, and the coordinate system used are shown in Fig. B1. 

It coincides with that of Flugge (1960), with Flugge's 0 replaced by 9. 

The thickness of the shell, t, is taken to be uniform throughout the 

• Flugge's "exact" strain-midsurface displacement relations are only 
exact for infinitesimal displacem~ts. In other strain-midsurface 
displacement relations given by Flugge's (1960) the additional 
assumption that the thickness is very small compared to the radius 
is made. 
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F~gure Bl: Definition of coordinates. 
element dimensions, and displacement 
directions corresponding to each of 
the degrees of freedom. 

()R dx 
ax 

Figure B2: Pressure force df acting on 
an element d8 dx of the shell. 
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element, and the radius to the midsurface is a. As is indicated in Fig. 

B1, the intersection of the plane x = 0 and the cylinder will be termed 

node 1, and the intersection with the plane x 

length of the element, will be termed node 2. 

Le, where Le is the 

The displacement components of the midsurface are defined as: 

u Vertical component of displacement, positive in the direc

tion of increasing x. 

v Circumferential component of displacement positive in the 

direction of increasing 9. 

w radial displacement, positive outward. 

These displacements vary as functions of x and 9. The 9 dependence may 

be eliminated by making use of the orthogonality of trigonometric func

tions. In particular it is well known (Flugge, 1960) that in the 

linear shell theory the solution for radial and vertical loads varying 

as cos n9, and tangential loads varying as sin n9 may be written as 

u = u cos n9 (B1a) 
n 

I 
v sin n9 for nFO n 

v = (B1b) 
v for n=O 

0 

w = w cos n9 (B1c) n 

in which un' vn, wn are functions of x only. In the finite element 

model it is assumed that un and vn vary linearly between nodal points, 

and wn varies as a cubic polynomial. Thus the displacement in the ele-
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ment is fully determined by the values of u , v , w , and dwn/dx at the n n n 

nodal points. These nodal displacements are arranged into an element 

displacement vector q as follows 

= (B2) 

1 in which u = displacement u at node 1, etc. The Fourier coefficients 
n n 

of the displacements are then given by 

(B2) 

in which the 3 X 8 interpolation matrix N is given in Table B1. 

Using the relation between midsurface displacements and the strains 

at any location within the shell given in Flugge (1960), the strains 

can be expressed in the following form: 

e(x.~.z) = ~(~) B(x,z) q 
n 

(B3) 

in which the variables in parentheses indicate functional dependence, 

and 

z = Distance from point under consideration to the mid surface, 

positive when the point under consideration is on the out-

side of the mid surface. 
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e 3 X 1 vector containing the vertical strain, the engineering 

shear strain, and the hoop or circumferential strain in the 

order stated. 

sin n9 ] 

cos n9 

B 3 X 8 matrix of interpolation functions and their 

derivatives given in Table B1. 

Nodal loads are defined as forces or moments applied at the midsurface 

of the shell, expressed as a force or moment per unit length measured 

along the midsurface of the shell. Any twisting moments acting about x 

axis are replaced by their statically equivalent tangential and radial 

shear forces. This leads to the following nodal forces: 

Pi Vertical membrane force at node i acting in the direction of 

increasing x. 

Ti Tangential shear force at node i acting in the direction of 

increasing 9. 

Qi = Radial shear force at node i acting radially outwards. 

Mi = Moment at node i acting in the same sense as the rotation 

dw/dx. 

These nodal forces are arranged into an element load vector as follows: 
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R (B4) 

Note that R depends on 9. Since all radial and vertical loads vary as 

cos n9, and all tangential loads vary as sin n9, R can be expressed as 

R -9- R 
n 

-
(B5) 

in which R is independent of 9, and 9- is a 8 X 8 diagonal matrix, the 
n 

first and last four elements of which are given by cos n9, sin n9, 

cos n9, cos n9 in the order stated. 

The principle of virtual displacements can be written 

L t/2 27t 27T e 

f f f T f <9- oq ) T <9-R > ade (B6) &e De(a+z)d9dzdx = n n 
0 -t/2 0 0 

in which 

&qn Arbitrary virtual displacement vector. 

&e 9-B oq = virtual strains associated with virtual displace-n 

D 

ments oq • 
n 

~ 

1 

Substituting for e from Eq. B3 gives 

(B7) 
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L t/2 27T 27T e 
5 T qn f f BT f & TD9d9 B(a+z) dzdx qn 5 T qn f 

0 -t/2 0 0 

Finally, carrying out the integration with respect 

the arbitrary nature of the variation 5q gives 

in which 

K 

Kq = R 
n n 

Le t/2 

J J BTDB(1+z/a)dz dx 

0 -t/2 

- T -& & d9 aRn • ( B8) 

to a, and considering 

(B9) 

(B10) 

is the 8 X 8 symmetric element stiffness matrix. Carrying out the 

integrations indicated in Eq. 10, expressing the integrals as a power 

series in (t/a), and neglecting terms of the order (t/a> 5 and higher 

gives: 

K13 = -K57 



- 189 -

K15 
__]_L f- _.!_ + (1-~) Len2(1+k) l 
1-\)2 L 2 6a2 

l e 

K16 -K25 
__]_L [n( !:\))] 
1-\)2 

K17 = -K35 = Et [ 2k 
2a(1-\)2 ) n 

<1;\)> - \)] 

-l_n_ L r~ -n2k<lf-l] l K18 K45 
ak + ~ 

1-\)2 L 12a e 

_M_ rL n

2 l K22 K66 = _e_ + (1-\)) (1+3k) 
1-\)2 2 2 L 

l3a e J 

_M_ ~7L n l K23 K67 = __ e_ + nk (3-\)) 
1-\)2 O 2 L 2 a e 

_M_ 
r 1

2

n l K24 = -K68 ~ + \)nk 
1-\)2 l20 a 

K26 = __]_L ~- (1-~) (1+3k) l 
1-\)2 6 a2 2 L e 

K27 K36 
_M_ [ 3Len _ nk 

<3;\)>J 
1-\)2 20 a2 L e 

Et L2n 
K28 = -K46 

e 

(1-\)2}30 a2 

_M_ (12 a2k + 13 
L [1+(n2-1) 2k1 

+ 12 kn
2

] K33 = K77 = e 
1-\)2 L3 2 5 L 

e 
35 a e 



K34 -K78 

_M_ 
K37 1-~2 

K38 -K47 

K44 Kgg 

_M_ 
K48 1-~2 

in which 

- 190 -

_M_ (w 11 L2[1+(n2-1) 2k] 
+ kn2 <~+l/5)] + e 

1-~2 L2 210 2 a e 

(- 12 a
2
k 

9 L [1+(n2-1) 2kJ _ 12 n2kl + e 
L3 70 a2 5 L e e 

_M_ r~ 13 L2[1+(n2-1) 2kJ 
e 

1-~2 L2 420 2 
l e a 

~ [4 ;k + L 3 [1+(n2-1) 2kJ 4 e + = 
1-~2 Le 105 a 2 

h2k- L3[1+(n2-1) 2kJ e - Len2kl 
2 

l e 140 a 

k 

15 

_1_~ 
12 2 

a 

J 

+ n~kl 
J 

Le n2kl 
15 

(B11) 

(B12) 

Because of the large amount of algebra involved and the possibility of 

errors, Eqs. B11 were obtained with the aid of a symbolic manipulation 

computer program, and verified numerically on an example. For the 

reader who wishes to use these elements and check numerical values of 

the elements of the stiffness matrix, an example is provided in Table 

B2. 

The total strain energy in an element is ~~aqTKq for n F 0, and 

rraqTKq for n = 0, not simply ~~TKq, as is usually the case. 
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The performance of the element was checked for a semi-infinite 

cylinder with loads applied at the edge x = 0. For this problem the 

analytical solution is given in Flugge (1960). The finite element 

model was constructed by discretizing a finite length of the cylinder, 

enforcing the boundary conditions for a semi-infinite cylinder (avail-

able from the analytic solution) at one end, and applying edge loads at 

the other end. The numerical tests were carried out for n = 0 and 

n = 5, and a cylinder with a/t = 720, which is typical for a tank. It 

was found that the elements performed very well: Better than 5% 

accuracy was obtained with elements of length equal to the characteris-

tic length of the cylinder, 

close to the edge, and better than 1% for half that element size. If 

only axial force and tangential shear is applied at the edge, better 

than 5% accuracy in the displacements u, v and w was obtained for an 

element length of a/4, and better than 1% accuracy for half that element 

length. This indicates that in a region where bending stresses are 

negligible, element lengths of a/4 to a/8 can be used. If bending 

stresses are important, the element length should be of the order of 

(at)~. 
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B2. ADDED STIFFNESS DUE TO NON-LINEAR EFFECTS 

Much like the air pressure in a soap bubble tends to maintain its 

spherical shape, the fluid pressure in a cylindrical storage tank tends 

to maintain its round shape. This increase in the stiffness of the 

shell due to the hydrostatic fluid pressure is a non-linear effect. By 

established methods for the finite element solution of problems involv-

ing geometric nonlinearities (Zienkiewicz, 1977), the tangent stiffness 

matrix for a shell element subjected to an internal pressure p can be 

obtained. The added stiffness due to initial circumferential hoop 

forces has been derived by Haroun (1980) and is given in Table B3 for 

the coordinate system used here. 

Another effect which can be of some importance is the pressure-

rotation effect. Since the direction of the normal to the shell surface 

changes, so does the direction of the pressure load. In addition, the 

area of an element on the shell changes, so the magnitude of the pres-

sure force changes. Changes in area are proportional to membrane 

strains which tend to be much smaller than the rotations (expressed in 

radians). Hence, the pressure rotation effect is more important than 

the change in area. Here both effects are included. However, the 

effect of changes in the elevation of the free surface due to deforma-

tions of the shell is not considered. 
,..,.. ,.. 

Let r 9 and x be orthonormal unit vectors pointing in the direction 

of increasing r, 9 and x respectively (see Fig. B1). Then, in the 

deformed shell, the position vector of a point (e,x) on the midsurface 

of the shell is 
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A A A 
(a+w)r + v9 + (x+u)x (B13) 

Assume that the pressure p is constant over an element. From Fig. B2 it 

is seen that the force exerted by the pressure over an element d9dx of 

the shell is given by 

d( = p(~ d9) X (~ dx) (B14) 

evaluating the cross product, and neglecting terms which are quadratic 

in the displacements gives 

A A A 
d( = (Xx+Y9+Zr)ad9dx (B15) 

in which 

X - .P. w' 
a 

y = Q ( v-w·) ( B16 a-c) 

where 

( ) , 

z = 

= ..1... ( ) ax 

a 

p + Q 
a 

and 

(u '+w+v·) 

( ) . = ..1... ( ) 
ae 

X, Y and Z represent the forces per unit area acting in the vertical, 

tangential, and radial directions, respectively. The vertical and 

tangential forces are due to the pressure-rotation effect. In the 

expression for the radial force Z, the first term is due to the direct 

pressure, and will be omitted since it is already present in the usual 

linear formulation of the problem. The additional terms in Eq. B16c 
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arise due to the change in area. 

Substituting Eqs. Bl into Eqs. Bl6, and noting that the hydrostatic 

pressure p is a function of x only and not of 9, it is seen that 

(X,Y,Z) (Xn cos n9 , Yn sin n9 , Zn cos n9) (B17) 

where 

X Q w' n a n 

y Q (vn +nwn) n a 
(B18) 

z p + Q (u' +w +nv ) 
n a n n n 

The corresponding nodal loads are given by 

f<Xn ~ y n 

Nl zn 
L 

Ll zn e 

R f xn 
dx n 11 

0 

(B19) 

11 Yn 

r2 zn 
L2 zn 

Substituting from Table Bl, Eqs. B2, and Eqs. B18 into Eqn. B19, and 

performing the integration yields 



R 
n 
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(B20) 

for the energy equivalent nodal loads for the pressure-rotation effect, 

in which K is given in Table B4. K represents an added stiffness due 
p p 

to the pressure-rotation and the change in area of an element of the 

shell. The sum of the added stiffnesses due to the initial hoop force 

and due to the pressure-rotation effect is given in Table BS. 

B3. DISCUSSION OF SYMMETRY 

Note from Table B4 that there are two pairs of elements in K p 

which make the matrix non-symmetric. The reason for this is that the 

pressure load as defined here is non-conservative. To see this, 

consider the following closed cycle of deformations: 

0. Start with an undeformed shell element. 

1. Extend the element in the vertical, x-direction so as to 

increase its length from L to L + AL • Since this involves e e e 

only vertical displacements, the work done by the pressure 

force during this step is 

2. Expand the element in the radial direction so as to increase 

its radius from a to a + Aa. The work done by the pressure 

force during this step is 
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3. Remove the extension in the vertical direction, so as to 

reduce the length of the element back to L • As in step 1, 
e 

only vertical displacements are involved. Thus 

4. Remove the expansion in the radial direction, bringing the 

element back to its original, undeformed configuration. The 

work done by the pressure load during this final step is 

The total work done by the pressure force during this closed cycle of 

deformation is 

which is non-zero. This proves that the pressure force is non-

conservative. Hence, it should come as no surprise that the finite ele-

ment formulation leads to a non-symmetric matrix. 

Consider now the physical problem of liquid in a tank. Since for 

any configuration of the tank, the liquid has a well defined gravita-

tional potential, the hydrostatic pressure acting on the tank is a 

conservative load, and for any conservative system, the tangent stiff-

ness matrix is symmetric. However, for the tank-water system to be 

conservative in the mathematical formulation of the problem, it would be 
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necessary to consider the effect of changes in elevation of the free 

surface due to deformations of the shell, and the effect of changes in 

elevation of any point on the shell wall on the pressure at that point. 

Such a formulation would lead to a symmetric stiffness matrix. Hence, 

the lack of symmetry of the matrices given in Tables 4 and 5 is a result 

of approximations made in their derivation. 

Computationally, non-symmetric matrices are undesirable because of 

the additional computational effort and storage required. Since here 

the lack of symmetry arises from neglecting an effect which is presumed 

to be unimportant, it seems reasonable to make the matrix symmetric. In 

an attempt to do this one might consider only the pressure-rotation 

effect, and not the change in area of an element of the shell. In this 

case, the 1st, 2nd, 5th and 6th rows of K , would remain unchanged, but 
p 

the 3rd, 4th, 7th and 8th rows would become zero. This would make the 

matrix K much more non-symmetric. Thus there is a good reason to p 

include the effect of changes in area of an element of the shell wall. 

Consider the lack of symmetry in the matrix K that remains when p 

the effect of changes in area is considered. Those elements of the 

matrix K which do not have a symmetric counterpart on the other side of p 

the diagonal will be referred to as the "non-symmetric elements" of K • 
p 

They are Kp3l = -Kpll = Kp57 = -KP75 = p/2. Note that they are 

independent of element properties. Furthermore, if two elements 

subjected to the same internal hydrostatic pressure are connected, and 

their stiffness matrices are superposed in the appropriate way, the non-

symmetric elements of the matrices related to the connected node cancel. 
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For a storage tank, the hydrostatic pressure varies with elevation, so 

for any pair of elements the average hydrostatic pressure for the upper 

element is slightly lower than for the lower element, as is shown in 

Fig. B3. Hence, the non-symmetric elements of the element stiffness 

matrix do not cancel completely when the global stiffness matrix is 

formed. For node B of Fig. B3 the non-symmetric elements in the global 

added stiffness matrix KP are k13 = -k31 = (p2-p1)/2. They apply to 

degrees of freedom 1 and 3 shown in Fig. Bl. If the origin of these 

non-symmetric terms is traced through the derivation given above, it is 

seen that: The non-symmetric elements above the diagonal are due to the 

vertical component of the pressure force arising from the rotation w'/a. 

The non-symmetric elements below the diagonal on the other hand are due 

to the increase in radial component of the pressure force arising from 

changes in area associated with the vertical membrane strain u'/a. 

Since strains tend to be much smaller than rotations, it is tempting to 

achieve symmetry by changing the sign of the non-symmetric elements 

below the diagonal. In the following such a modification will be 

justified further. 

Consider the determination of k31 directly, with reference to Fig. 

B3: In the undeformed configuration of Fig. B3a, the nodal force for 

degree of freedom 3 is 
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Next apply a displacement A in the direction of degree of freedom 

number 1. The resulting configuration is shown in Fig. B3b, together 

with the pressure distribution that corresponds to the assumption that 

the pressure is a constant at a given location on the shell. In this 

deformed configuration, the nodal force for degree of freedom 3 is 

- ~(p -p ) 2 1 

However, more realistically, one might assume that the pressure at a 

given elevation is a constant. Thus if a point on the shell moves vert-

ically, it may move into a region of different pressure. In this case, 

the nodal force for degree of freedom 3 is obtained by applying the 

pressure distribution of Fig. B3a to the elements in their deformed 

configuration of Fig. B3b. Omitting terms of order A3 or higher, the 

resulting energy consistent nodal force is found to be 

which can be re-written in the form 

with 

Thus, with the assumption that the pressure is a constant at a given 

elevation, the non-symmetric element k31 changes sign, and the lack of 

symmetry disappears. Similar considerations for other elements of the 

global stiffness matrix lead to the conclusion that the other elements 
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• are not affected by the possibility that the pressure at a given point 

on the shell may change due to vertical displacements at that point. 

Hence, it is recommended that the added stiffness matrix be taken to be 

symmetric by using the upper triangular part of the matrices given in 

Tables 4 and 5. 

B.4 CONCLUDING REMARKS 

It must be emphasized that the added stiffness matrix derived here 

is the change in the tangent stiffness matrix due to loading by the 

hydrostatic fluid pressure. Additional seismic loads produce further 

changes in the tangent stiffness matrix and introduce coupling between 

the various Fourier harmonics (Tani et al. 1984) . Ignoring these 

effects is equivalent to linearizing the problem about the full, but 

otherwise unloaded state. This is a good approximation only if addi-

tional loads due to the earthquake are small compared to the hydrostatic 

fluid pressure. That is, the hydrodynamic pressures must be small 

compared to the hydrostatic pressure. Under strong shaking, the 

hydrodynamic pressures are often of the same order as the hydrostatic 

pressure. Under such conditions accurate solution of the non-linear 

problem would require simultaneous solution of non-linear equations at 

every load or time step. Therefore, although the analysis based on the 

tangent stiffness matrix derived in this appendix requires no more 

effort than a fully linear analysis, the accuracy for large seismic 

loads is open to question. 

* Except for the term k14 , where degree of freedom 4 is the rotation, 

for which the effect is of higher order in the displacements. 
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APPENDIX C - RESULTS FROM THE THEORY OF DISCRETE FOURIER TRANSFORMS 

The fundamental relation on which the theory of discrete Fourier 

transforms is based, quoted, for example, in Brigham (1974), can be 

written in the form 

2N-1 
nY::o ei rrrn/N 2N for r = ... -2N,0,2N, ... 

= 0 otherwise 

or, taking the real part of Eq. C1, 

but, 

where 

2N-1 
n~ cos ( rrrn/N) 

2N-1 
nY:.o cos(rrrn/N) 

1 
2 

1 

2N for r = ••• -2N,0,2N, ... 

0 otherwise 

for n = ••• -2N,-N,O,N,2N, ... 

otherwise 

Substituting n 2N-m, the last sum becomes 

(C1) 

(C2) 

(C3) 

(C4) 
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N 
[ ymcos[nr(2N-m)/N] 

m=O 

which by periodicity and symmetry of the cosine function is seen to be 

equal to the first term on the right hand side of Eq. C3. Hence Eq. C2 

becomes* 

N 
[ yncos(nrn/N) 

n=O 
N 

0 

Using Eq. C5 it can be shown that 

for r = ... , -2N,0,2N, ... 

otherwise 

_N2 [N 
l.=O 

YnYi cos(min/N) cos(nin/N) &mn 

for m,n 0,1,2, ... ,N 

(C5) 

( C6) 

where & is the Kronecker delta. Furthermore, Eq. C6 can be used to mn 

show that if 

N 
x <e) [ x cos ne 

n=O n 

and 

* A different form based on values of 
e = rrr(n- 1/2)/N does not involve y 
of problems this form does not leaH 
physical interest at e = 0 and n. 

the cosine function at 
factors, but in the formulation 
directly to quantities of 
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i N 
X - x(irr/N) [ X cos (nirr/N) ( C7) 

n=O n 

then 

2yn N i 
X N bo yix cos(nirr/N) (C8) 

n 
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APPENDIX D - STIFFNESS MATRIX FOR A RING ELEMENT 

From Lee and Nash (1982), the elements of the 4 X 4 stiffness 

matrix for a ring stiffener, which is compatible with the element stiff-

ness matrices of Appendix B are 

4 2 
Kll EI .n._ 

+ Git 
.n._ 

z a4 4 a 
0 0 

rn:- ~~ 2 
K14 Eiz + Git .n......9. 

la3 a4 a4 
l 0 0 J 0 

2 
K22 = EA .n._ 

2 a 

K23 EA _n_ [1 + n2e] 
a a a 

0 

EA 
[1 2f + Eix (1-n2) 2 K33 
~ + 2 a 4 a a 

0 0 

Eiz [1 + ~j2 
+ :~t[~:] 

2 

K44 (D1 a-f) 2 a 
0 

a = radius to midsurface of shell, as in Appendix B 

a radius to centroid of ring stiffener 
0 

e = a -a = radial eccentricity (vertical eccentricity must be zero) 
0 

A cross sectional area of the ring stiffener 

I second moment of area for the cross section of the ring about the 
X 

vertical axis 
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Iz second moment of area for the cross section of the ring about 

the horizontal axis 

It torsional constant for the ring cross section 

E Young's modulus for the ring 

G Shear modulus for the ring 

n = Fourier harmonic number (as in Appendix B) 

The elements of the 4 X 4 stiffness matrix for the ring not stated 

in Eqs. D1 are either determined from symmetry, or are zero. 

Lee and Nash (1982) also included the effects of prestress in the 

ring. As a result, they also need to consider the reduction of pre

stress in the shell due to the presence of the ring. This requires the 

axisymmetric problem to be solved before stiffness matrices for 

asymmetric loads can be formed. However, in the author's judgment, the 

stiffening effect due to prestress is approximately the same no matter 

whether the hydrostatic internal pressure is carried as a prestress in a 

ring stiffener or in the shell. Hence, assuming that all the internal 

hydrostatic pressure is carried as a prestress in the shell is expected 

to be a good approximation. This is the assumption which was made in 

Appendix B wherein the membrane theory was used to calculate the pre

stress in the shell. Thus, using the ring element without prestress 

along with the formulation for the shell in Appendix B accounts for all 

of the prestress. 
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APPENDIX E 

In this appendix expressions for the internal fluid pressure acting 

on the shell wall during a tilt test are given, and expressed as a 

Fourier series. The definitions of Section 3.1 are used here without 

restating them. Also, let the location of the surface at zero tilt be 

at x = xs, and d = xs - x be the depth under the surface at zero tilt. 

Then the pressure distribution around the circumference for any given x 

can be written in the form 

p = 
~ 

[ pn cos n9 
n=O 

in which three different expressions for the Fourier coefficients p 
n 

(El) 

apply depending on whether the circumference is fully wetted, partially 

wetted, or not wetted. 

For x < x - a tan a, the circumference is fully wetted, and s 

0 n L 2 (E2 a-c) 

in which yf is the unit weight of the fluid. 

For xs - a tan a < x < xs + a tan a, the circumference is partially 

wetted. The end of the wetted portion occurs at 9 = ±9 in which 
0 
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d/(a tan a) (E3) 

The coefficients for a Fourier series which is valid on the entire 

circumference are 

rf [ a(n-9 ) + a sin a sin 90] -;- d cos 0 

2yf 
[-d 

[sin 290 n-9 l l sin 9 + a sin 
__ o 

cos a a - 2 1\' 0 4 

2yf 
f-d 

sin n90 rsin(n+1)90 + sin(n-1)901 1 
cos a + a sin a 

1\' l n l 2(n+1) 2(n-1 J J 

for n 2. 2 (E3) 

Finally, for x L xs + a tan a, the circumference is entirely above the 

fluid, and 

0 for all n (E4) 

In order to obtain the nodal load vector for an element, it is necessary 

to multiply the Fourier coefficients p by the appropriate interpolation 
n 

functions (given in Appendix B) and to integrate vertically. When the 

inside of the element is fully wetted, this integration can be performed 

analytically. Otherwise, numerical integration must be used. 
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APPENDIX F - STRESS-STRAIN RELATION FOR THE BASE PLATE 

In this appendix the stress-strain relation for an elastic-

perfectly plastic material with a Von Mises yield envelope in plane 

stress is adapted for use in the non-axisymmetric analysis of the base 

plate of Chapter 5. The assumption that during each loadstep, yielding 

occurs at a constant stress equal to the stress at the end of the 

loadstep is adopted. It is shown that this gives rise to what is 

generally known as the method of radial return, or elastic predictor, 

radial corrector method. 

As in Eqs. 5.9 the stresses and strains are arranged into vectors 

and 

respectively. 

8 

The vertical strain 8 is also nonzero, but need not z 

enter in the derivation. Rather than using the results for six 

(Fl) 

(F2) 

components of stress and strain, and specializing them for plane stress 

conditions, it is much more convenient to derive the results directly 

for plane stress conditions. For this purpose note that if Drucker's 

postulate is valid for any closed stress path it is, in particular, 

valid for any closed stress path for which az = arz = a9z = 0. It 

follows that the flow rule for plane stress conditions can be written as 
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(F3) 

in which the partial differentiation with respect to the stress vector 

denotes the gradient with respect to the stress components, ePl are the 

plastic strains, and 

F ( cr) with A 

- 1 

2 (F4) 

is the yield function, which vanishes on the yield surface, and cr is 
y 

the uniaxial yield stress. The elastic stress strain relation can be 

written as 

where 

are the elastic strains, and 

D 

~ 

1 

Using Eqs. F3, FS, F6 , and the consistency condition, 

dF = 0 

one obtains 

(F5) 

(F6) 

(F7) 

(F8) 
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dcr (F9) 

The expression in square brackets is the tangent material matrix. To 

evaluate it as a function of the stresses, note from Eq. F4 that 

Acr (FlO) 

The tangent material matrix enables the increment in stress due to 

an infinitesimal strain increment to be determined. However, in the 

analysis of the base plate, the strain increment from one loadstep to 

the next is finite, rather than infinitesimal; this requires additional 

attention. 

Henceforth, let cr and e denote the stresses at the end of the 

loadstep and let cr
0 

and e
0 

be the stresses and strains at the beginning 

of the loadstep. The problem at hand is to determine cr given e, e and 
0 

cr
0

• In general, cr depends on the path from e
0 

to e in the three dimen

sional strain space. It is therefore necessary to make an assumption 

which will define this strain path. Perhaps the most natural assump-

tion, and the one that is generally preferred (Krieg and Krieg, 1977; 

Schreyer, Kulak and Kramer, 1979), is the assumption that the total 

strain path is a straight line from one loadstep to the next. If this 

assumption is adopted, a set of ordinary differential equations can be 

defined for the stress path and the stress cr at the end of the loadstep. 

For plane stress conditions, this set of ordinary differential equations 

needs to be solved numerically. 
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An alternative assumption, which turns out to be more convenient 

mathematically, is that the plastic strain path is a straight line from 

one loadstep to the next. This means that yielding must occur at 

constant stress. In addition, to define the stress and strain paths, it 

is assumed that the constant stress during the yielding process is the 

stress at the end of the loadstep, a. As a result, the plastic strain 

increment for the loadstep can be written as 

A Aa 

The stress at the end of the loadstep is 

which, after substitution from Eq. Fll becomes 

where 

* a 

* a - A DAa 

(Fll) 

(F12) 

(F13) 

(F14) 

is sometimes referred to as the elastic predictor stress. From Eq. Fl3, 

a can be expressed as a function of the unknown parameter A as follows 

(F15) 

which when substituted into Eq. F4, and enforcing the yield condition, 

F = 0, gives an equation in which the only unknown is A. To solve this 

equation by Newton iteration, note from Eq. F15 that 
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-(I+A. DA)-l DAa (F16) 

and, using the chain rule, the derivative required in the Newton-Raphson 

iteration can be expressed as 

(F17) 

which, on substitution from Eqs. FlO and F16, becomes 

dF 
dA. (F18) 

The numerical procedure for finding the plastic strains at each loadstep 

is 

1. • • Calculate a from Eq. F14, and F(a ) from Eq. F4. 

• * 2. If F(a ) ~ 0, no yield occurs during the loadstep, and a= a 

If F(a•) > 0, continue the procedure, starting with a 0 

A.
0 

= 0, i = 0. 

* 0' , 

3. Compute ~i from Eq. F18, with a= ai, and obtain an improved 

estimate of A. from 

4. i+l Calculate a from Eq. FlS with A. A.i+l' and compute 

F(ai+l). 

5. Repeat steps 3 to 4, incrementing i, each time, until 
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This assures that the distance from the yield surface is no 

more than 8 times the yield stress. The value used for 8 is 

-4 0.5 X 10 • 

The method presented here is generally known as the radial return 

method, which according to Schreyer et al. (1979) originated from 

Mendelson (1968). It has been found to give results that are in reason-

ably good agreement with those from the assumption that the total strain 

path is a straight line, no matter how large the loadstep. 



- 219 -

APPENDIX G - REFERENCES 

American Petroleum Institute (1979), "Welded Tanks for Oil Storage," API 
Standard 650, 6th edn., Rev. 3. 

American Water Works Association (1979), "AWWA Standard for Welded Steel 
Tanks for Water Storage," ANSI/AWWA D100-79, American Water Works 
Association, Denver, Colorado. 

American Water Works Association (1984), "AWWA Standard for Welded Steel 
Tanks for Water Storage," ANSI/AWWA D100-84, American Water Works 
Association, Denver, Colorado. 

Auli, W., Fisher, F.D. and Rammerstorfer, F.G. (1985), "Uplifting of 
Earthquake Loaded Liquid Filled Tanks," 1985 Pressure Vessels and 
Piping (PVP) Conference, American Society of Mechanical Engineers, 
New Orleans, June 1985. 

Babcock, C.D. (1974), "Experiments in Shell Buckling," Thin Shell 
Structures, Fung, Y.C. and Sechler, E.E., eds., pp. 345-369, 
Prentice Hall. 

Balendra, T. and Nash, W.A. (1978), "Earthquake Analysis of a Cylindri
cal Liquid Storage Tank with a Dome by Finite Element Method", 
Department of Civil Engineering, University of Massachusetts, 
Amherst, Massachusetts. 

Bathe, K.J. (1982), Finite Element Procedures in Engineering Analysis, 
Prentice Hall, Inc. 

Belytschko, T., Liu, W.K. and H. Stolarski (1984), "Locking and 
Kinematic Modes in Plate and Shell Elements," Bound Volume #H00298, 
ASME, 1984 PVP Conference, San Antonio, Texas, June 17-21. 

Brigham, O.E. (1974), The Fast Fourier Transform, Prentice Hall~ Inc. 

Bushnell, D. (1970), "Analysis of Buckling and Vibration of Ring 
Stiffened, Segmented Shells of Revolution," Intl. J. Solids and 
Structures , Vol. 6, pp. 157-181. 

Bushnell, D. (1974), "BOSOR5- A Computer Program for Buckling of 
Elastic-Plastic Complex Shells of Revolution Including Large 
Deflections and Creep," Lockheed Missiles and Space Company, Inc., 
Sunnyvale, California. 



- 220 -

Bushnell, D. ( 1981), "Computerized Analysis of Shells - Governing Equa
tions, Technical Report AFWAL-81-3048, Appl. Mech. Lab., Lockheed 
Palo Alto Res. Lab., Palo Alto, California. 

Cambra, F.J. (1983), "A Study of Liquid Storage Tank Seismic Uplift 
Behavior," Earthquake Behavior and Safety of Oil and Gas Storage 
Facilities, Buried Pipelines and Equipment, 1983 International 
Symposium on Lifeline , Earthquake Engineering, Portland, Oregon, 
June 19-24, T. Ariman Editor, PVP-Vol. 77, p. 37. 

Chen, G. (1984), "Why the 'Elephant's Foot' Phenomenon of Liquid Storage 
Tank Happened," Proceedings of the Eighth World Conference in 
Earthquake Engineering , Vol. 7, pp. 445-452, San Francisco, 
California, July 21-28, 1984. 

Clough, D.P. (1977), "Experimental Evaluation of Seismic Design Methods 
for Broad Cylindrical Tanks," University of California, Berkeley, 
EERC Report UCB/EERC-77/10. 

Clough, R.W. and Niwa, A. (1979), "Static Tilt Tests of a Tall Cylindri
cal Liquid Storage Tank," Earthquake Engineering Research Center, 
University of California, Berkeley, Report No. UCB/EERC 79-06. 

Crandall, S. H. and Norman, C. D. (1959), "An Introduction to the Mechan
ics of Solids," McGraw-Hill. 

Flugge, W. (1960), "Stresses in Shells," Springer-Verlag. 

Guo, H. and Qin, W.X. (1983), "Axisymmetric Uplift Mechanism of a 
Cylindrical Liquid Storage Tank," Earthquake Behavior and Safety of 
Oil and Gas Storage Facilities, Buried Pipelines and Equipment, 
1984 International Symposium on Earthquake Engineering, 4th 
National Conference on Pressure Vessel and Piping Technology, 
Portland, Oregon, June 19-24, T. Ariman, Editor, PVP-Vol. 77, 
p. 102. 

Hanson, R.D. (1973), "Behavior of Liquid Storage Tanks," The Great 
Alaska Earthquake of 1964, Engineering, National Academy of Sci
ences, Washington, D.C., pp. 331-339. 

Haroun, M.A. (1980), "Dynamic Analyses of Liquid Storage Tanks," Earth
quake Engineering Research Laboratory, Report No. EERL 80-4, 
California Institute of Technology, Pasadena, California, February 
1980. 

Haroun, M.A. ( 1983), "Behavior of Unanchored Oil Storage Tanks: Imperial 
Valley Earthquake," Journal of Technical Topics in Civil Engi
neering , ASCE, Vol. 109, No. 1, April 1983, pp. 23-40 (also 
presented at ASCE Convention, New York, May 11-15, 1981). 



- 221 -

Haroun, M.A. and Ellaithy, H.M. (1985), "Model for Flexible Tanks 
Undergoing Rocking," Journal of Engineering Mechanics , Vol. 111, 
No. 2, Feb. 1985, pp. 143-157. 

Haroun, M.A. and Housner, G.W. (1981), "Seismic Design of Liquid Storage 
Tanks," Journal of Technical Councils , ASCE, Vol. 107, No. TC1, 
Proc. Paper 16214, April 1981, pp. 191-207. 

Haroun, M.A. and Housner, G.W. (1982a), "Dynamic Characteristics of 
Liquid Storage Tanks," Journal of the Engineering Mechanics Divi
sion , ASCE, Vol. 108, No. EMS, Oct. 1982, pp. 783-800. 

Haroun, M.A. and Housner, G.W. (1982b), "Complications in Free Vibration 
Analysis of Tanks," Journal of the Engineering Mechanics Division , 
ASCE, Vol. 108, No. EMS, October 1982, pp. 801-818). 

Haroun, M.A. and Tayel, M.A. ( 1984), "Dynamic Behavior of Cylindrical 
Liquid Storage Tanks Under Vertical Earthquake Excitation," 
Proceedings of the Eighth World Conference on Earthquake Engi
neering, Vol. 7, San Francisco, California, June 21-28, 1984, pp. 
421-428. 

Haroun, M.A. and Tayel, A. T. ( 1985a), "Axisymmetrical Vibrations of 
Tanks -Numerical," Journal of Engineering Mechanics , Vol. 111, 
No. 3, March 1985, pp. 329-345. 

Haroun, M.A. and Tayel, A.T. (1985b), "Axisymmetrical Vibrations of 
Tanks - Analytical," Journal of Engineering Mechanics , Vol. 111, 
No. 3, March, pp. 346-358. 

Housner, G.W. (1957), "Dynamic Pressures on Accelerated Fluid Con
tainers," Bulletin of the Seismological Society of America , Vol. 
47, No. 1, pp. 15-35. 

Housner, G.W. (1963), "The Dynamic Behavior of Water Tanks," Bulletin of 
the Seismological Society of America , Vol. 53, No. 1, pp. 381-387. 

Ishida, K. (1980), "Rocking Behavior of Cylindrical Liquid Storage 
Tanks," 7th World Conference on Earthquake Engineering , Vol. 8. 

Ishida, K. and Kobayashi, N. (1985), "An Effective Method of Analyzing 
Rocking Motion for Unanchored Cylindrical Tanks Including Uplift," 
1985 Pressure Vessels and Piping (PVP) Conference, American Society 
of Mechanical Engineers, New Orleans, June 1985. 

Jacobsen, L.S. (1949), "Impulsive Hydrodynamics of Fluid Inside a 
Cylindrical Tank and of a Fluid Surrounding a Cylindrcal Pier," 
Bulletin of the Seismological Society of America , Vol. 39, pp. 
189-204. 



- 222 -

Jennings, P. C., Editor (1971), "Engineering Features of the San Fernando 
Earthquake, February 9, 1971," Earthquake Engineering Research 
Laboratory, Report No. EERL 71-02, Pasadena, California, June 1971. 

Klein, S. (1964), "Matrix Analysis of Shell Structures," S.M. Thesis, 
ASRL-TR-121-12, Department of Aeronautics and Astronautics, MIT, 
Cambridge, Massachusetts, June 1964. 

Krieg, R.D. and Krieg, D.B. (1977), "Accuracies of Numerical Solution 
Methods for the Elastic-Perfectly Plastic Model," Journal of Pres
sure Vessel Technology , ASME, pp. 510-515. 

Lee, S.C. and W.A. Nash (1982), "Seismic Response of Prestressed and 
Ring Stiffened Liquid-Filled Tanks," Department of Civil Engi
neering, University of Massachusetts, Amherst, MA01003, Dec. 1982. 

Leeds, D.J., Editor (1980), "Imperial County, California, Earthquake, 
October 15, 1979," Reconnaisance Report, Earthquake Engineering 
Research Institute, February 1980. 

Leon, G.S. and Kausel, E.A.M. (1986), "Seismic Analysis of Fluid Storage 
Tanks," Journal of Structural Engineering, ASCE, Vol. 112, No. 1, 
pp. 1-18. 

Liu, W.K. and Lam, D. (1983), "Nonlinear Analysis of Liquid-Filled 
Tank," Journal of Engineering Mechanics , ASCE, Vol. 9, No. 9. 

Manos, G.C. and Clough, R.W. (1982), "Further Study of the Earthquake 
Response of a Broad Cylindrical Liquid-Storage Tank Model," Report 
No. UCB/EERC-82/07, July 1982. 

Manos, G.C. and Clough, R.W. (1985), "Tank Damage During the Coalinga 
Earthquake," Earthquake Engineering and Structural Dynamics, 
Vol. 13, pp. 449-466. 

Mendelson, A. (1968), "Plasticity: Theory and Application," MacMillan 
Co., N.Y. 

Moore, T.A. and Wong, E.K. (1984), "The Response of Cylindrical Liquid 
Storage Tanks to Earthquakes," Proc. 8th World Conference in Earth
quake Engineering , San Francisco, California, July 1984, Vol. 5, 
pp. 239-246. 

Niwa, A. (1978), "Seismic Behavior of Tall Liquid Storage Tanks," Earth
quake Engineering Research Center, University of California, 
Berkeley, Report No. UCB/EERC-78/04. 



- 223 -

Niwa, A. and Clough, R. W. ( 1982), "Buckling of Cylindrical Liquid 
Storage Tanks Under Earthquake Loading," Earthquake Engineering and 
Structural Dynamics, Vol. 10, pp. 107-122. 

Rinne, J.E. (1967), "Oil Storage Tanks," The Prince William Sound, 
Alaska, Earthquake of 1964 and Aftershocks," Vol. II. Part A, ESSA, 
U.S. Coast and Geodetic Survey, Washington: Government Printing 
Office, pp. 245-252. 

Sakai, F., Ogawa, H., Isoe, A. (1984), "Horizontal Vertical and Rocking 
Fluid-Elastic Response and Design of Cylindrical Liquid Storage 
Tanks," Proceedings of the Eighth World Conference in Earthquake 
Engineering , San Francisco, California, July 21-28, 1984, Vol. 5, 
pp. 263-270. 

Shaaban, S.H. and Nash, W.A. (1975), "Finite Element Analysis of a 
Seismically Excited Cylindrical Storage Tank, Ground Supported and 
Partially Filled with Liquid," University of Massachusetts, 
Amherst, Massachusetts, August 1975. 

Shibata, H. and Akiyama, H. (1985), "Seismic Capacity Testing of a Thin 
Wall 500 Ton Cylindrical Tank," Bulletin of the Earthquake 
Resistant Structure Research Center , No. 18, Institute of Indus
trial Science, University of Tokyo. 

Shih, C.F. (1981), "Failure of Liquid Storage Tanks Due to Earthquake 
Excitation," Earthquake Engineering Research Laboratory, Report No. 
81-04, California Institute of Technology, Pasadena, California. 

Shih, C.F. and Babcock, C.D. (1980), "Scale Model Buckling Tests of A 
Fluid Filled Tank Under Harmonic Excitation," ASME Century 2 Pres
sure Vessels and Piping Conference, August 1980, 80-C21/PVP-66. 

Shih, C.F. and Babcock, C.D. (1984), "Buckling of Oil Storage Tanks in 
SPPL Tank Farm During the 1979 Imperial Valley Earthquake," ASME 
Paper No. 84-PVP-74, 1984 PVP Conference and Exhibition, ASME, San 
Antonio, Texas, June 17-21. 

Schreyer, H.L., Kulak, R.F. and Kramer, J.M. (1979), "Accurate Solutions 
for Elastic-Plastic Models," Journal of Pressure Vessel Technology 
, ASME, pp. 226-234. 

Stoker, J.J. (1968), "Nonlinear Elasticity," Gordon and Breach. 

Tani, S., HorL N. and Yamaguchi, K. ( 1984), "Nonlinear Dynamic Analysis 
of Cylindrical Tanks with Imperfect Circular Section Containing 
Liquid," Eighth World Conference on Earthquake Engineering , San 
Francisco, July 21-28, Vol. 5, pp. 247-254, 1984. 



- 224 -

Timoshenko, S.P. and Gere, J.H. (1961), Theory of Elastic Stability, 
Second Edition, McGraw-Hill. 

Timoshenko, S.P. and Goodier, J.N. (1970), Theory of Elasticity, 3rd 
ed., McGraw-Hill. 

Timoshenko, S. and Woinowsky-Krieger, S. (1959), Theory of Plates and 
Shells , McGraw-Hill. 

Turner, J.W. (1978), "Effect of Out-of-Roundness on the Dynamic Response 
of Liquid Storage Tanks," M.S. Thesis, Rice University, Houston, 
Texas, May 1978. 

Veletsos, A.S. (1974), "Seismic Effects in Flexible Liquid Storage 
Tanks," Proceedings of the International Association for Earthquake 
Engineering , Fifth World Conference, Rome, Italy, Vol. 1, pp. 630-
639. 

Veletsos, A.S. and Kumar, A. (1984), "Dynamic Response of Vertically 
Excited Liquid Storage Tanks," Proceedings of the Eighth World 
Conference in Earthquake Engineering, Vol. 7, pp. 453-460, San 
Francisco, California, July 21-28, 1984. 

Veletsos, A.S. and Yang, J.Y. (1977), "Advances in Civil Engineering 
Through Engineering Mechanics," Proceedings of the Annual EMD 
Specialty Conference, Raleigh, N.C., ASCE, pp. 1-24, 1977. 

Weingarten, V.I., Morgan, E.J. and Seide, P. (1960), Final Report on 
Development of Design Criteria for Elastic Stability of Thin Shell 
Structures, STL/TR-60-0000-19425, Space Technology Laboratories, 
Inc., Los Angeles, California. 

Wozniak, R.S. and Mitchell, W.W. (1978), "Basis of Seismic Design Provi
sions for Welded Oil Storage Tanks," Advances in Storage Tank 
Design API, 43rd Midyear Meeting, Toronto, Ontario, Canada. 

Zienkiewicz, O.C. (1977), "The Finite Element Method," 3rd Edition, 
McGraw-Hill. 

· Zui, H. and Shinke, T. (1984), "Seismic Analysis of Cylindrical Tanks 
with Initial Irregularities on Side Walls," Paper No. 84-PVP-70, 
1984 PVP Conference and Exhibition, American Society of Mechanical 
Engineers, San Antonio, Texas, June 17-21, 1984. 


	1_1141
	1_1142
	1_1143
	1_1144
	1_1145
	1_1146
	1_1147
	1_1148
	1_1149
	1_1150
	1_1151
	1_1152
	1_1153
	1_1154
	1_1155
	1_1156
	1_1157
	1_1158
	1_1162
	1_1163
	1_1164
	1_1165
	1_1166
	1_1167
	1_1168
	1_1169
	1_1170
	1_1171
	1_1172
	1_1173
	1_1174
	1_1175
	1_1176
	1_1177
	1_1178
	1_1179
	1_1180
	1_1181
	1_1182
	1_1183
	1_1184
	1_1185
	1_1186
	1_1187
	1_1188
	1_1189
	1_1190
	1_1191
	1_1192
	1_1193
	1_1194
	1_1195
	1_1196
	1_1197
	1_1198
	1_1199
	1_1200
	1_1201
	1_1202
	1_1203
	1_1204
	1_1205
	1_1206
	1_1207
	1_1208
	1_1209
	1_1210
	1_1211
	1_1212
	1_1213
	1_1214
	1_1215
	1_1216
	1_1217
	1_1218
	1_1219
	1_1220
	1_1221
	p71.pdf
	1_1222
	1_1223
	1_1224
	1_1225
	1_1226
	1_1227
	1_1228
	1_1229
	1_1230
	1_1241
	1_1242
	1_1243
	1_1244
	1_1245
	1_1246
	1_1247
	1_1248
	1_1249
	1_1250
	1_1251
	1_1252
	1_1253
	1_1254
	1_1255
	1_1256
	1_1257
	1_1258
	1_1259
	1_1260
	1_1261
	1_1262
	1_1263
	1_1264
	1_1265
	1_1266
	1_1267
	1_1268
	1_1269
	1_1270
	1_1271
	1_1272
	1_1273
	1_1274
	1_1275
	1_1276
	1_1277
	1_1278
	1_1279
	1_1280
	1_1281
	1_1282
	1_1283
	1_1284
	1_1285
	1_1286
	1_1287
	1_1288
	1_1289
	1_1290
	1_1291
	1_1292
	1_1293
	1_1294
	1_1295
	1_1296
	1_1297
	1_1298
	1_1299
	1_1300
	1_1301
	1_1302
	1_1303
	1_1304
	1_1305
	1_1306
	1_1307
	1_1308
	1_1309
	1_1310
	1_1311
	1_1312
	1_1313
	1_1314
	1_1315
	1_1316
	1_1317
	1_1318
	1_1319
	1_1320
	1_1321
	1_1322
	1_1323
	1_1324
	1_1325
	1_1326
	1_1327
	1_1328
	1_1329
	1_1330
	1_1331
	1_1332
	1_1333
	1_1334
	1_1335
	1_1336
	1_1337
	1_1338
	1_1339
	1_1340
	1_1341
	1_1342
	1_1343
	1_1344
	1_1345
	1_1346
	1_1347
	1_1348
	1_1349
	1_1350
	1_1351
	1_1352
	1_1353
	1_1354
	1_1355
	1_1356
	1_1357
	1_1358
	1_1359
	1_1360
	1_1361
	1_1362
	1_1363
	1_1364
	1_1365
	1_1366
	1_1367
	1_1368
	1_1369
	1_1370
	1_1371
	1_1372
	1_1373
	1_1374
	1_1375
	1_1376
	1_1377
	1_1378
	1_1379
	1_1380
	1_1381
	1_1382
	1_1383
	1_1384
	1_1385


