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Abstract 

In this work, we study various Monte Carlo methods for lattice gauge 

theories . The mass of the o+ glueball for SU(2) gauge theory in 4 dimensions is 

calculated. This computation was done on a prototype parallel processor and 

the implementation of gauge theories on this system is described in detail. 

Using an action of the purely Wilson form (trace of plaquette in the fundamental 

representation), we obtain results with high statistics . We conclude that these 

results are not consistent with scaling according to the continuum renormaliza

tion group. Using actions containing higher representations of the group, we 

search for one which is closer to the continuum limit. Our choice is based upon 

the phase structure of these extended theories and also upon the Migdal

Kadanoff approximation to the renormalization group on the lattice . We obtain 

the mass of the o+ glueball for this improved action and find that the mass 

divided by the square root of the string tension is a constant as the lattice spac

ing is varied . We conclude that scaling has set in and that this lattice theory is 

closer to the continuum limit than the simple Wilson version. 

The other topic studied is the inclusion of dynamical fermions into Monte 

Carlo calculations via the pseudo fermion technique . Monte Carlo results 

obtained with this method are compared with those from an exact algorithm 

based on Gauss-Seidel inversion. We first apply the methods to the Schwinger 

model (QED in 1 + 1 dimensions) and show, in a coupling regime where the 

dynamical fermions have a nontrivial e>ffect, that the mass gap is obtained with 

the correct value . After giving simple arguments explaining why the method 

works better than expected, we turn to a study of SU(3) in 4 dimensions 

(although on small lattices). Comparing with the exact algorithm, we again find 

encouraging agreement with the pseudo fermion technique . Evidence is given 

which shows that any systematic bias , associated with the breaking of the Mar

kov process which generates the field configurations, is small. 
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Introduction 

The invention of lattice gauge theories [1] has profoundly -deepene-d our 

understanding of quantum field theories. Besides providing an explicit ultra

violet cutoti, the lattice version of gauge theories allows one to attack the theory 

with methods beyond those of standard weak coupling perturbation theory (the 

Feynman graph expansion) . Prominent among these methods are strong cou

pling expansions [2], Monte Carlo (numerical) estimates [3], and the renormali

zation group program (blocking or decimation of the fundamental degrees of 

freedom) [ 4]. 

The last few years have seen enormous progress in our understanding of the 

lattice theories themselves and this, in turn, has shed light on the non

perturbative aspects of QCD. Probably the most important result obtained so 

far is the rather strong numerical evidence (see Fig . 1.1) that SU(2) and SU(3) 

gauge theories in 4 dimensions are confining [5]. Much excitement has been 

generated by the "quenched" approximation to the path integral [6], in which 

internal quark loops are ignored. Though it is still unclear how accurate the 

approximation is, one can at least say that the results for the hadronic masses 

are encouraging. Another important area is the investigation of the spontaneous 

breakdown of chiral symmetry. In numerical calculations [7], the spontaneous 

breakdown is explicitly seen and it is shown that, for SU(3), the breakdown hap

pens at length scales similar to the confinement scale. 

In this work, we concentrate on Monte Carlo (numerical) techniques for lat

tice gauge theories . In Chapter I, an introduction and overview of lattice gauge 
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theories is given. We can, of course, only touch upon this rapidly growing sub

ject and the topics chosen are biased toward what will be needed later. Excel

lent reviews of the subject have been given by Kogut [8]. 

Chapter II t!Jrns to the calculation of the glueball mass via Monte Carlo. 

Computational speed is a severe constraint on these calculations and we 

describe the Caltech effort at achieving large amounts of computer power 

through parallel processing . Glueball mass results from a prototype parallel 

processor are given. Though our results are almost identical to the results given 

by other groups, we find that they are inadequate and that continuum physics is 

not being accurately described in this calculation. One possible way of improv

ing the calculation is to push to larger lattices via more powerful computers and 

in the future there is no doubt that t.his will be done. Another improvement is 

possible , however, and this is the subject of Chapter III . There is a freedom in 

the way the lattice theory is constructed, that is, there are different ways of 

discretizing the continuum Lagrangian. One can take advantage of this freedom 

and search for lattice actions which model continuum physics more accurately 

than the simplest lattice action. In Chapter III , we describe one method for 

finding such improved actions and we present results showing that it does give 

better results. 

The inclusion of dynamical fermions into Monte Carlo calculations is a 

severe problem due to the generation of a non-local interaction between the 

gauge fields. Perhaps the most promising technique for including dynamical fer

miens is the pseudo fermion method, and this technique is studied in Chapter N. 

Additional approximations to the pseudo fermion method, which make it a 

potentially very fast algorithm, are discussed. This approximate algorithm is 

then applied to QED in 1+ 1 dimensions and, on small lattices, SU(3) in 4 dimen

sions. In both of these calculations we compare with an exact (though very slow) 
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way of including the dynamical fermions . In both cases. we find the pseudo fer

mion algorithm to be fast and to give good agreement with the exact method. 
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Chapter I: Introduction to Lattice Gauge Theories 

1. Basics 

Let us briefly review some of the basic formalism of lattice gauge theories . 

The starting point is the Feynman path integral: 

(I.l.l) 

Here, J [dip] denotes functional integration over all possible configurations of 

the field, if' . We have seth =1 and have rotated to imaginary (Euclidean) time, 

T =it. The path integral associated with a quantum field theory plays the same 

role as the partition function for statistical mechanics . The action, S, is the 

analog of the Hamiltonian divided by temperature and physical observables, 0, 

are obtained by averaging with the "Boltzmann factor ": 

(1.1.2) 

The above functional integrals are rather formal objects: one way to explicitly 

make sense of them, and at the same time provide an ultraviolet cutoff for the 

theory, is to go to a spacetime lattice [9, 10]: 

J [dip] e- S[~] -+ J · · · J IT d \Oi exp (-2:: L [if'] a 4 ) (1. 1.3) 
i i 

Spacetime has been discretized into cells of side a and the integrals on the right 

hand side are now ordinary integrals over the countably many variables if'i, each 

of which represents the average of the field over cell i. For a simple, scalar field 

theory, derivatives appearing in the Lagrangian density, L, are replaced by finite 
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differences in the usual way. A slight problem arises for gauge theories, how-

ever. This is the fact that if one puts the theory onto the lattice in this straight-

forward way, then local gauge invariance will be broken for non-zero lattice 

spacing, a. One could ignore this and hope that exact gauge invariance is 

recovered in the limit a ~o; after all, the lattice itself breaks Lorentz invariance, 

which we certainly expect to be recovered as a ~o . We would like to break as few 

of the symmetries of the theory as possible, however, and since a simple way 

exists to make the lattice theory exactly gauge invariant, this is what is typically 

done .1 Wilson [ 1] gave the following form of the lattice action for pure gauge, 

SU(N) theories . 

Consider a four dimensional hypercubicallattice. Call the lines connecting 

adjacent sites "links"; associated with each link is an SU(N) matrix, UJJ-(n ), 

where n labels the site and is integer valued, and J..L denotes the direction of the 

link originating from n . The path integral on the lattice is: 

J IT dU JJ.(n) e - .BS[ ~l (1.1.4) 
n.J.L 

(i is 2~, where g is the bare (lattice) coupling constant and S[ U] is a sum over 
g 

all the elementary squares or "plaquettes" of the lattice , 

S [ U] = I; Sptaq 
plaqs 

See Fig . 1. 2 for a picture of this . 

1. A study has been attempted for the case in which the lattice theory breaks local gauge in
variance . See reference (20). 

(1.1.5) 
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Matter fields are associated with the sites of the lattice. The U matrices 

are the SU(N) color rotations which a (colored) particle undergoes as it travels 

in the presence of the gauge field - if a quark moves from the site n to the site 

n+J.L, its wave function changes as, 

t(n) __. U,u(n)it(n) (1.1.6) 

The inverse matrix, u-1= ut. is associated with a move in the negative J.L direc-

tion. The U's are related to the usual vector potential, A.u, by: 

(1.1 .7) 

If one expands Eq. (1.1.5) for small a (assuming the fields have a smooth 

limil as a --*0), one recovers the usual continuum, pure gauge action for SU(N) 

Yang-Mills : 

-{3 2:: Spta.q ""* ~ 2:: tr( F .uvFJ.W) a 4 

plaqs n.;.w 
(1.1 .8) 

with, 

The lattice action, Eq. (1.1.5) is invariant under the transformation, 

(I.l. 9) 

for all the link variables U ,u(n ), where V(n) is an arbitrary SU (N) matrix associ

ated with the site n . This is the local gauge symmetry in the lattice formulation. 

The measure, dU,u(n), in Eq. (1.1.4) is a group invariant measure, that is, 
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(I.l.lO) 

for any SU(N) matrix, U ' . 

The reader used to continuum path integrals may be wondering about the 

lack of a gauge fixing term in the path integral on a lattice . In the continuum, 

such a term arises in the following way. Consider the Abelian case; the action is : 

(I.l.ll) 

with, 

(!.1.12) 

The operator, KJ..W, is singular (and so, non-invertible) . Any gauge configuration 

which is gauge equivalent to the zero configuration, i.e., 

(!. 1.1 3) 

with A an arbitrary function, gives a zero contribution to the action: 

(1.1.14) 

This is , of course, just the gauge invariance of the action. Since the action pays 

no attention to the longitudinal part of the field (the part proportional to aJ.LII.), 

these are not damped out in the sum over all configurations and give an infinite 

contribution. The continuum path integral without gauge fixing will be ill-defined. 

The procedure, therefore , is to modify the path integral so as to integrate only 

over gauge non-equivalent configurations, with the introduction of the gauge 

fixing term (making KJ..W invertible) , along with the consequent appearance of 

"ghosts" [ 10]. 
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The situation on the lattice is, however, different. If the gauge group is 

compact (as is usually the case) and if we have a finite number of sites, the 

integration over all gauge equivalent configurations, though not damped by the 

action, makes just a finite contribution to the path integral. Hence, gauge fixing 

is not necessary on the lattice. 

The action of Eq. (1.1.5) is not unique. One can construct lattice actions 

consisting of traces of products of U's around closed loops larger than the ele

mentary square. Higher representations (than the fundamental) of the group 

may also be included. If we again assume that the fields have a smooth limit as 

a ~a. we can choose the coefficients of the various terms in the action so as to 

give the correct continuum action, as in Eq. (I.l.B). We will later take advantage 

of this freedom in the choice of the lattice action. 

Before getting on to the main topic of this work, Monte Carlo methods for 

evaluating the path integral. we will briefly discuss the other two main methods: 

strong coupling expansions and renormalization transformations on the lattice. 

This is done for two reasons. First of all, it will give an overview of the tech

niques used in lattice gauge theories and will show where the present work fits 

in. Secondly, some of the results from these techniques will be used here - for 

instance, an approximate renormalization technique (Migdal-Kadanoff) will be 

used in Chapter III to find an improved lattice action for calculating glueball 

masses. 

2. Strong Coupling Expansions 

AB an illustration of this technique, which will also give us an important 

result, we will calculate the expectation of Wilson loops for pure gauge U(l). The 

Wilson loop is the expectation value of the trace of a product of U matrices 

around some closed path, C: 
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We= <~IJU> 
c 

(1.2.1) 

Since C is closed, this is a gauge invariant quantity. What is the physical 

significance of this observable? Recall that the U matrices are related to the 

vector potential by, 

U ( ) 
_ igaA~(n) 

J.> n - e , (1.2.2) 

which can be written as, 

(1.2.3) 

with, 

](x) = g {la 64(x-n) . 

J (x) is the current for an infinitely massive charge. The Wilson loop measures 

the interaction of the gauge field with an external current loop . Suppose now 

that the loop is rectangular, of width R in the spatial direction, length T in the 

time direction, with T» R . Consider a time slice through the loop . At each time 

slice, there is a charge +1 at x=O, a charge -1 at x=R. Since these charges are 

static and we are measuring interaction energy, we have , for T large, 

W - e-TV(R) 
RxT- · (1.2 .4) 

V(R) is the potential energy of the system. It includes both the interaction 

energy between the two charges (giving the force), and also the self-energy of 

each charge interacting with the field . 

Let us now calculate this quantity for the U(1) gauge theory, for g large. 

The link variables are phase factors, UJ.>(n) = ei.,~(n) , and the action (from Eq. 

(1. 1.5)) is, 
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1 f 1 i L: "'~ -\ L: "'~ l 
S = - 2- I; l1-~e plaqs + e platp ) 

g pltlqs 2 
(I.2.5) 

We are evaluating, 

21f 

<exp(il:;,~)> = ~ J fld,~(n)e:rp(i2:,~)e-s 
C 0 n.~ C 

(I.2.6) 

Now consider the above for g 2»1. Expanding e-s in powers of \.we find that 
g 

the lowest orders of the expansion give zero. To see this, take an integral involv-

ing one of the angles of the contour, C. For low orders of the expansion we will 

just have, 

(I.2.7) 

"Exposed" phase factors give zero - they will contribute only if they are canceled 

by the phases inS to give, 

(I. 2.8) 

Expand the exponential: 

1 ii;'Jj~ -il;'Jj~ 1 I 1 ii;'Jj~ -iL;'Jj~ ln 
exp ( - 2 2: ( e P + e P ) ) = IT 2: -

1 
- 2 ( e P + e P ) . (I. 2. 9) 

2g P P n n. 2g 

Call those plaquettes which lie on the minimal spanning surface of C the 

"minimal spanning set." If, in Eq. (1.2.9), we pick out the n=l term for each pla

quette of this set (and the n =0 term for the others), we get the non-vanishing 

contribution with fewest powers of ~. See Fig. 1.3. The outermost ring of pla
g 

quettes are included to cancel the exposed phase factors of the Wilson loop, but 

they, in turn, have exposed phase factors for a rectangle one unit smaller and 
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must be canceled, and so on, until the entire spanning surface is tiled. This 

gives, 

(I. 2.10) 

where A is the area of the minimal spanning surface of C. Higher orders in this 

strong coupling expansion will correspond to spanning surfaces beyond the 

minimal one. 

We have found that Wilson loops, for g large, fall off with an area law, 

(1.2.11) 

Comparing with Eq. (1.2.4), we see that an area law fall off for RxT loops implies 

that 

(1.2.12) 

that is, a linearly confining potential. Taken at face value, this is a crazy result

QED is not a confining theory! One can also perform a weak coupling expansion 

of the Wilson loop and find that the loop expectation then falls off as the perime

ter of the loop (sell' energy), plus a term corresponding to the Coulomb poten

tial. What happens between strong and weak coupling is that there is a phase 

transition (in 4 dimensions) at some finite value of g at which the loops change 

from area law decay to perimeter law decay [11]. 

For the case of SU(N), the non-abelian nature of the group leads to a more 

complicated strong coupling expansion [ 12]. For similar reasons to U( 1), how

ever, a minimal spanning set of plaquettes is again needed and so the Wilson loop 

has area law decay, Eq. (1.2.11). In contrast with U(1), it has been found that 

there is UQ phase transition between strong and weak coupling for SU(2) and 
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SU(3) gauge theories, using the action of Eq. (1.1.5). This is, therefore, evidence 

that in the weak coupling regime, Wilson loops also decay (asymptotically) with 

an area behavior and that the continuum theory is confining. 

The result of Eq. (I. 2.11) shows that as g 4oo, the Wilson loop expectations all 

go to 0. As g 4oo, the links are becoming uncorrelated with each other. We can 

define a correlation length, ~. as, 

(1.2.13) 

so we see that as g 4 00 , ~40. For the lattice theory to have any relevance to the 

continuum, we want ~4oo in units of the lattice spacing, so that the system loses 

all "memory" of the lattice. Strong coupling expansions are an expansion in a 

region far from the continuum; for them to have quantitative significance for the 

continuum theory they must be carried to very high order (perhaps need to be 

summed to all orders). 

3. Renormalization on the Lattice 

The goal in lattice calculations is to work on large lattices, with couplings 

chosen so as to make the correlation length, ~. very large, and to compute 

observables which are also very long range in character. In this way, one will be 

assured that the theory "forgot" the finite lattice spacing; one would be near the 

continuum limit. This ideal, though, is very hard to achieve. In strong coupling 

expansions, we have already mentioned that a large correlation length means 

that expansions will have to be carried to very high orders. For Monte Carlo 

techniques, ~ large means that large lattices must be used, and this, coupled 

with the critical slowing down of the speed with which the Monte Carlo travels 

through configuration space, will exhaust all present day computers. 
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One· of the goals of the renormalization group program is to find a new, 

effective lattice theory which has a much smaller correlation length (in units of 

the lattice spacing) than the original theory, yet has the same behavior for large 

distance scale (measured in physical units) observables. In order to accomplish 

this, the effective theory must, in general, have complicated, non-local interac-

tions. 

The effective theory is obtained by integrating out high frequency degrees 

of freedom, 

e Se!J[II''] = J [ d)O] e S[ll'l ' 

h:ighv 
(1.3.1) 

where the new field variables, 10 ', are some combination of the original variables, 

10. A common choice is for 10 ' to be a local average of the 10 variables in a small 

volume ("blocking"); another is for the 10' variables to be just a subset of the ori-

ginal variables (thinning of degrees of freedom, "decimation") . The new vari-

abies will be more sparse than before, that is, the lattice spacing of the new, 

effective theory will be some factor, A., larger than the original. The effective 

theory is the renormalization of the original; its couplings are "running" cou-

plings. 

If we are working with a renormalizable field theory, the first few renormali-

zation transformations will do nothing but change some of the couplings in S. 

Sa!J will have the same functional form as S. Eventually, however, Sa!f will 

change in structure and complicated, long range interactions will develop. If 

one could implement this program for QCD, for example, one would start with a 

theory of quarks and gluons which would be weakly coupled at some short dis-

tance scale due to asymptotic freedom. For the first few transformations, g 

would just be renormalized in accordance with the usual weak coupling {3 func-

tion. Eventually, the long range interactions will set in; we expect that these 
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would cause collective excitations of the degrees of freedom corresponding to 

"flux tubes". "strings", etc. . We would then have a model for the hadrons, 

derived from first principles. Continuing the renormalization process and 

redefining the field variables in a suitable way, we should eventually arrive at a 

theory of interacting baryons and mesons -i.e., nuclear physics! 

The preceding discussion is the renormalization program in its most ambi-

tious form. The transformations are very hard to implement accurately. A 

more realistic goal is to renormalize a lattice theory a few times, arriving at an 

effective theory with some non-local interactions. Suppose the effective theory 

is the result of N renormalization transformations, each of length scale change 

'A. Then, a correlation length of ~ in the effective theory will correspond to a 

correlation length of ('A)N ~ in the original. The effective theory will be, for a 

given correlation length, much "closer" to the continuum limit than the original 

one. 

Renormalization can, in principle , be implemented exactly using Monte 

Carlo methods [13], the only limitation being computer time. Approximate, 

truncated analytic methods exist and we will illustrate one such method here for 

a simple model: Migdal-Kadanoff recursion applied to the 2 dimensional Ising 

model [14]. 

The 2 dimensional Ising model is pictured in Fig . 1.4a. On the sites are 

spins which can take on values ±1 and the action is of nearest neighbor form 

with partition function, 

fJ ~ (71 (72 

Z = 2:; e <" 1"~ 
C7=±1 

(I. 3.2) 

We wish to decimate the system by performing the sum in Z for every other 

column of spins - those labeled as ai in Fig. 1.4b. The variables labeled 1-4. will 
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become the variables of the effective theory (sc' in Eq. (I.3.1)) . In contrast to the 

1 dimensional case, tbis sum cannot be done exactly. The problem is that the 

vertical bonds among the a's of a column will generate non-local interactions 

among the J..L's in the vertical direction. To proceed we must make an approxi-

mation. Assuming the spins are well correlated, we shift the vertical bonds 

between the a spins over to those between the J.L spins, obtaining the system 

shown in Fig. 1.4c. We now do the a sum. Using, 

I; ( 1 + k J.L1 a) ( 1 + k J.L2 a) = 2 ( 1 + k 2 J..L1 J.Lz) , (1.3.3) 
CT=±l 

we get : 

I; e fJJJ-t CT e fJ~J-aCT = 2 cosh2,B exp[ tanh -l ( tanh2 ,B) J..L1 J.Lz] (1.3 .4) 
a=±l 

Absorbing the irrelevant constant, we see that this first renormalization 

transform has changed the couplings to, 

(1 .3.5) 

where .Bz ,,By are, respectively, the couplings in the x andy directions . Now per

form the same transformation on the system but in the other direction. At the 

end, we will have : 

(1.3 .6) 

Unfortunately, these are not equal - our effective theory is no longer isotropic. 
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This must be an artefact of our approximations since the original system was 

isotropic. Therefore, average the couplings to regain an isotropic theory: 

(1.3.7) 

The above was for a scale change of A.= 2. The result for any integer A. is easily 

generalized to, 

(1.3.8) 

We wish to ftnd the change in coupling for small changes in the length scale 

(the "beta" function) . To do this, assume we can use Eq. (1.3.8) for A. non-integer 

and, in particular, near 1. This can be interpreted as a procedure in which only 

some of the vertical columns of a's are integrated out, and then the coupling 

defined as the average of the couplings in that direction (we want the system to 

stay homogeneous) . Once again, we are assuming the system to be well corre-

lated. We have also numerically compared Eq. (1.3.8), for non-integer A., with the 

result of such an averaging procedure and find that the two compare quite 

closely (5%) over the {3 range for which it will be used. Expanding Eq. (1.3 .8) for 

A. = 1 + !::J., !::J. small. the isotropy is recovered and we find. 

{3x = {3 + !::J. [ {3 + sinh,8 cosh{3ln( tanh{3)] (1.3 .9) 

The function, 

(3 + sinh{3 cosh{3ln(tanh(3) , (1 .3.10) 

governs the change of couplings with scale changes . It has a zero at (3=f3c;::, .436, 

to be compared with the exact. result of .4407 . This zero corresponds to a fixed 
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point - under renormalization the action reproduces itself and so the correlation 

length is infinite . This is part of the reason why the Migdal-Kadanoff method is 

able to find the location of the critical point so well - the approximations become 

good as ~ 4 oo . The quality of the agreement with the exact result is also some

what accidental. 

What about the non-local interactions which we threw away? Martinelli and 

Parisi [ 14] show how one can systematically improve the method by including 

some of the non-local terms generated by the spin decimation. They get 

improved agreement with the exact result for both the location of the critical 

point and a critical exponent at this point . 

The Migdal-Kadanoff method for gauge theories is similar to the spin model 

application. As we will later discuss , the decimation involves the integration of 

planes of link variables ; the bond shifting of the Ising model becomes the shift

ing of plaquettes . For the gauge theory case , we will use an effective action 

which has several couplings , so the form of the action will actually change under 

renormalization, in contrast to the above Ising model approximation. 

4. The Monte Carlo Method 

In this method the ensemble of all possible configurations is sampled, 

numerically, via an algorithm which produces a biased, random walk through 

configuration space . Observables are then found, from Eq. (1. 1. 2) , as simple 

averages of "measurements" made in the ensemble. These estimates, since they 

are statistical in nature , converge as J.n , where N is the number of 

configurations sampled. The exponent, e -.BS l'l'l, implies that the sampling of 

configurations cannot be done in a purely random way. S[ if? ] consists of a sum 

of terms over the entire lattice and therefore grows as the volume of the space

time lattice . This means that e -.BSlrpJ is a function which is incredibly peaked 
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about those configurations which minimize S [so]. If we just randomly sampled 

field configurations , we would never hit those configurations which give the 

major contribution to the path integral. 

What is done, instead, is to pick the field configurations in a random way, 

but with the probability of each configuration appearing proportional to the 

exponential factor, 

(1.4 .1 ) 

Observables then become simple averages over this biased ensemble: 

,i j [dso] O[so )e-.Bs[9'J = ~ L: o[sod 
9'( 

(1.4.2) 

In this way, the Monte Carlo explores only the important part of configuration 

space since the configurations which minimize S will appear often in the ensem-

ble . 

The problem of distributing configurations according to Eq. (!.4.1) is 

equivalent to the numerical simulation of a thermodynamic system in thermal 

equilibrium. The probability corresponds to the Boltzmann factor. with {3 as the 

inverse temperature and S as the Hamiltonian. The generation of the ensemble 

is accomplished in the following way. Start with some arbitrary configuration. 

Typical choices are totally ordered configurations ("cold" start) or totally ran

dom ones ("hot" start) . This configuration is then changed into a new one 

according to a set of transition probabilities P;, ... in i labeling the configuration. 

In this way. a random walk through configuration space is constructed. It is 

called a "Markov chain" because the choice of the ith configuration depends 

only on the i -lth configuration and not the i -2th. i -3th. etc . . This has practi-

cal importance in that only one configuration need be stored in the computer at 

any given time. 
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A sufficient (but not necessary) constraint on the Pi-.i+l• so that the ensem-

ble satisfies Eq. (!.4.1), is that of "detailed balance" . Let '1ti be the number of 

times that configuration i appears in the ensemble . Then if, 

(I. 4.3) 

the system will reach thermal equilibrium, and if we choose the transition pro-

babilities so that: 

(1.4.4) 

then the correct ensemble will be obtained, since the right hand side is just the 

Boltzmann factor. 

A particularly simple and powerful way of satisfying detailed balance is the 

method of Metropolis, et.al. [ 15]. Suppose we have some configuration, k, and 

we take some field variable and change it by some random amount to get a new 

configuration, i (i differs from k only at a single site) . We compute the change 

in the action, Si -Sk . If Si -Sk <0, the change in the field variable is accepted; if 

Si -sk >0, the change is accepted with probability e -p(si -s~c) . The algorithm then 

goes on to repeat the same procedure on the next field variable, eventually 

sweeping through the entire lattice . This method satisfies Eq. (1.4.3). Jf 

-{3(S~c-Si) . -{3(Si-Sk) 
Si-Sk<O then Pk-.i= 1 and Pi_.k=e ; 1f Si-Sk>O then Pk .. i=e and 

As long as the transition probabilities satisfy detailed balance, we are 

guaranteed [ 16] that, asymptotically (in the Markov chain) , the configurations 

generated by this procedure will be distributed according to the Boltzmann fac-

tors. The time it takes for this to happen, from the arbitrary starting 

configuration, is called the thermalization time. 
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One further requirement which must be satisfied in order for the Markov 

chain to give the correct ensemble is that of ergodicity, that is, all 

configurations must be reachable. This can be a problem if the system is at a 

phase transition so that distinct phases can exist. For example, in some spin 

models rotational symmetry can be spontaneously broken- the spins all point in 

some particular direction. If one is in this phase and starts the Markov chain 

with all spins "up," they will stay "up." On any finite lattice, such states are only 

metastable - all configurations will be explored (it takes only a finite number of 

"spin flips" to change the overall magnetization), though it may take a long time. 

Another ergodicity problem is that certain configurations may be topologi-

cally disallowed by the boundary conditions chosen for the finite lattice. For 

example, if one chooses periodic boundary conditions on a 2 dimensional lattice 

(i.e. a torus) for the planar spin model, then the total vorticity is rigorously 

zero . Configurations with non-zero vortex number won't be present in the 

ensemble. This is not, however, really a problem If the lattice is sufficiently 

large, local quantities such as the density, distribution, etc., of vortices, will take 

on their correct values . We would be working in the canonical ensemble instead 

of the grand-canonical ensemble of the theory. 

A few practical remarks concerning the Metropolis Monte Carlo method. 

The calculation of the change in the action, Si -Sic, involves, since the action is 

local, the calculation of just a few terms involving field variables nearby the one 

which has be en moved. 2 Since the i th configuration evolves out of the i -lth, 

these configurations will be highly correlated. Measurements made in them will 

not be statistically independent and for this reason, one typically only bothers 

to measure observables once every 10-100 sweeps (a "sweep" being defined as 

2. This no longer is true when dynamical ferrnions are included. This case will be discussed in 
Chapter rv. 
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the application of the Metropolis procedure to the entire lattice) . When estimat-

ing error bars, one must be careful to take such correlations into account . 

Monte Carlo methods have been quite successful . They are not limited to 

strong or weak couplings and can, in principle (given adequate computer time!), 

compute any observable to any desired degree of accuracy. 

5. Fermions 

AB was mentioned earlier, matter fields live on the sites of the lattice . For 

scalar fields , no problems appear when derivatives of the Lagrangian are 

replaced by finite differences in the usual way. For spin 1/2 fermions, however, 

a problem does arise when this is done . Unphysical modes , which do not go away 

in the continuum limit, appear. 

Consider the Dirac equation in 1 + 1 dimensions. The Dirac field is a two 

component spinor satisfying, 

(1.5 .1) 

Put the system onto a spatial lattice : x = n a . Then, replacing B:~: by a (sym-

metric) finite difference , we get, 

Bt'l/l(n) = 
2
a..a (1/l(n+ l )-1/J(n-1)) . (1.5.2) 

Expand 1/1 in terms of 1/1± , where 1/J± are eigenvectors of a.. : 

(1.5.3) 

Trying a plane wave solution, e -i(icz-Et) 1/J± , then leads to the dispersion relation, 

(1.5 .4) 
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while the dispersion relation in the continuum is, 

E = ± k , -oo < k < oo . (1.5.5) 

As we take a -40, the modes near k =0 are the ones we are interested in- they are 

long wavelength (in lattice units), and the energy of these modes becomes 

correct: sin(ka) -4 k as a -40. The modes at k =±!I., howver, stay finite in energy 
a a 

as a 40, even though their momentum goes to infinity. Since their energy is 

small. they will, for example, appear in a Monte Carlo simulation of the system. 

This is the problem of unphysical modes in the lattice formulation of spin 1/2 

particles . 

One needs to put the spin 1/2 field onto the lattice in such a way so as to 

prevent the appearance of unphysical modes. One way to do this is the 

approach of Susskind [ 17]. He splits the Dirac spinor, putting upper com-

ponents on the even sites, lower components on the odd sites . This doubles the 

size of the unit cell and has the effect of halving the size of the Brillouin zone: k 

now runs from -
2
7T to 

2
rr . This removes the problem at k = ± ~ , and the 

a a a 

unphysical modes do not appear. This method has the disadvantage that, in 

higher dimensions, though all unphysical modes (E finite, k infinite) are 

removed, extra flavors appear . Starting with a Lagrangian which, in the contin-

uum, describes only one fermion, one gets , on the lattice in 4 dimensions, 4 fer-

mion species. 

The other approach to removing unphysical modes is due to Wilson [ 18]. In 

this method, all the components of the Dirac spinor are at each site . An extra 

term is added to the lattice Lagrangian which does not effect the modes at k =0, 

but raises the energy of those near k = ± ~, so that, in the continuum limit their 
- a 

energy goes to infinity and they decouple from the system. This method has the 
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disadvantage that chiral symmetry is broken for non-zero lattice spacing; in the 

Susskind approach, some of the chiral symmetry remains, even for a non zero. 

However, the Wilson approach does not have species doubling problems. 

Since we will be using the Wilson approach to putting fermions on the lat-

tice, let us now explicitly give the lattice Lagrangian. The action on the lattice 

is: 

Q is given by 

with 

S [ U,'ljt.~] = Sgauge [ U] + 2:: ~i Qii 1Jti 
ij 

(1.5.6) 

(1.5 .7) 

(1.5.8) 

x ,y are lattice sites, a,(3 are Dirac indices , and A,B are color indices. The pro-

jection operators 1 +f'.u, 1-~ act to remove the spurious fermion modes from the 

lattice formulation . In the continuum limit JC is related to the mass, m, the lat-

tice spacing a , and the dimension d , by: 

1 
/C = ...,.....----=;.._-

2am +2d 
(1.5 .9) 

Since in the Wilson formulation there is no chiral symmetry to prevent the 

appearance of mass terms under renormalization, JC is renormalized, and JC = 
2
1d 

does not necessarily mean that the bare mass, m 0 , is zero . For finite a, JC must 

be fine-tuned so as to produce the correct result for some observable such as 

the mass of the pion. 
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The combined fermion-gauge theory is described by the path integral, 

(1.5.10) 

The fermion variables, 1/J, are anticommuting (Grassman) numbers so as to 

enforce Pauli exclusion. A direct Monte Carlo evaluation of the above path 

integral is possible in 1 + 1 dimensions [ 19]. By going to the number representa-

tion for the fermions, the Pauli principle can be simply satisfied - a site is either 

occupied or unoccupied. Though this approach works well in 1 + 1 dimensions, it 

breaks down in higher dimensions, where the anticommuting variables cause 

negative signs to appear. This would mean that observables would be found 

through huge cancelations and so the method is unreliable. 

Another approach is to simply integrate out the fermion field. For most 

interesting theories , the fermion field appears as a bilinear and the field can be 

integrated out using [21], 

(!.5.11) 

Only the gauge fields are left, but they now interact via the non-local deter

minant (in addition to the usual pure gauge action) . To apply the Metropolis 

method of updating the gauge fields , we need to evaluate the ratio of two such 

determinants . If a particular gauge link is moved: 

then Q will change : 

and we need to compute 

u~ U+oU, 

Q ~ Q + oQ, 

det(Q+oQ) 
det( Q) 

det ( 1 + Q-1 6 Q) . 

(!.5.12) 

(1.5.13) 

(1.5.14) 
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oQ is a known, simple matrix. What is needed is an efficient way to find Q-1[ U], 

the fermion propagator in an external gauge field, which depends on all of the U 

variables of the lattice. We will investigate one possible method in Chapter IV. 
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Figure Captions 

[1.1]The string tension for SU(2) (1.1a) and SU(3) (l.lb) gauge theories. It is the 

lower envelope of the data which is the string tension; the reliability is to be 

judged by how well the envelope follows the continuum renormalization 

group result (the sets of 3 solid lines). These figures are from reference [5]. 

[1.2]The plaquette corresponding to Eq. (!.1.5) . n is the site in the lower left 

corner and the inverse matrix is used when traveling in the negative direc

tion. 

[ 1.3]The strong coupling expansion for a Wilson loop. The outer curve is the con

tour C, the inner squares are the plaquettes from the expansion of the 

action which cancel the exposed phase factors . 

[ 1. 4 ](a) The 2 dimensional Ising model. On the sites are spins taking on the 

values ±1. (b) The columns of spins labeled a are being integrated out 

(decimated), the columns labeled f..L become the variables of the effective 

theory. (c) The lattice after the bond shifting. 
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Chapter II: The Glueball Mass on an Array of Computers 

Introduction 

In this chapter, we will report on some calculations of the mass of the o+ 

glueball (a bound state composed mostly of gluonic degrees of freedom) in SU(2) 

pure gauge theory. Some of this work has been previously described in [ 1]. The 

relevan?e of our calculation to the real o+ glueball mass is unclear. First of all, 

the effect of dynamical quarks (internal loops) is being set to zero. This 

"quenched" approximation can be partly justified on both experimental grounds : 

the apparent validity of the OZI rule (quark pairs are hard to create) ; and on 

theoretical grounds: the success that such quenched calculations have had in 

explaining some features of the flavor non-singlet part of the hadronic spec

trum. Secondly, we are using the group SU(2) instead of the correct one, SU(3) . 

This is done for practical reasons - the Monte Carlo calculation using SU(2) 

proceeds approximately an order of magnitude faster than the SU(3) version. 

Instead of attempting to make physical predictions, we are taking a more skept

ical attitude and are trying to judge the reliability of such Monte Carlo calcula

tions. In this way, the SU(2) glueball calculation should be looked upon as a 

model of what the "ultimate" calculation will require . 

Section 1 will discuss methods for calculating masses in lattice gauge 

theories. The need for the computation of exponentially small numbers is 

pointed out . The difficulty of achieving reliable estimates of such small effects 

leads to two conclusions: huge amounts of computer power are needed, and an 

improved lattice calculation must be found, perhaps along the lines of the renor

malization transformation methods as outlined in Chapter I. Section 2 will 
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describe the Caltech effort at achieving large amounts of computational power, 

involving parallel processing on arrays of microprocessors, and the implementa-

tion of pure gauge theories on such machines. The results of the glueball calcu-

lation, using the usual Wilson form of the action (Eq. (1.1.5)), on a prototype 

parallel processor (an array of 4 computers), are given in section 3. These 

results are in agreement with those given by other groups. The fact that the 

data do not convincingly scale (i.e . not depend on the lattice spacing used) is 

pointed out. Improved calculations are considered in the next chapter. 

1. Masses in Lattice Gauge Theories 

Estimates of the mass spectrum of a theory can be obtained through the 

use of the asymptotic decay of 2 point correlation functions of operators which 

have a non-zero overlap with the state in question. Recall that the path integral 

can be written as [2], 

Z = tr e -T H = L; < k I e ·-T H I k > , 
k 

{II .l.l) 

where T is a time corresponding to the inverse temperature of the system, and 

I k > is some complete set of states. The usual path integral is recovered by 

inserting complete sets of states in every M interval: 

Z = L; <k I e -~tH ll ><l I e -~m ·1 n > · · · <a I e -~tH I k > 
k.t . ... 

(II.l .2) 

Now consider the 2 point correlation of some operator 0, from time 0 to time T . 

As T -+oo, the only state in Eq. (II.l.l) which will contribute is the ground state 

(the rest are exponentially down) . Using this, and taking the complete set of 

states to be energy eigenstates, we find , 

< 0(-r) 0(0) >r-..., = L; I <n I 0 I 0 > 12 e --r(E.-. -Eo) (II.1.3) 
n 
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Taking the "connected" 2 point function, defined as, 

< 0(;) 0(0) >- < 0(;) > < 0(0) > ' (ll . l.4) 

we find, 

<0(;)0(0)>-<0(;)><0(0)>= ~ l<niOIO>I 2 e--r(Kn-Eo) . (II.l.5) 
n,oO 

That is, only the states higher than the ground state (the vacuum) contribute to 

the connected function. Measuring the exponential decay of connected correla-

tions of various operators therefore gives us a way to find the spectrum of the 

theory. For finite temperature ( T finite in Eq. (II.l.l)), which corresponds to the 

actual case in Monte Carlo calculations, Eq. (II .l.5) is modified by the addition of 

an additional term corresponding to propagation from 0 to 1 the "other" way 

around the lattice (the lattice is periodic in time at finite temperature). More 

details on this effect can be found in [3]. 

By picking 0 to have particular quantum numbers (i.e. be an eigenstate of 

various symmetries of the Hamiltonian), we can isolate particular states and find 

their masses reliably. An important example is momentum. If 0 is not chosen 

to be an operator of definite momentum, then there will be a continuum of 

states contributing to the right hand side of Eq. (11.1.5), with energies given by 

E 2=p 2+m2. On the lattice it is not an actual continuum since p can take on only 

a discrete set of values. However, the mixing with higher states will be severe, 

and since the lattice dispersion relation between E,p,m is not known, it 

becomes difficult to extract a mass reliably. Typically, 0 is chosen to be an 

operator of momentum zero. 

With the amount of statistics available in present day Monte Carlos, it has 

not been possible to extract more than the lowest lying mass for each choice of 

spin and parity (for the glueball sector) . This is found by looking at the large T 
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decay of Eq. (II.l.5) ; one needs to go to large; so that contributions from higher 

states (with the same spin. parity, etc.) are negligible. The calculation can be 

improved by taking advantage of the remaining freedom in the choice of 0 . If 

we could find an 0 which exactly created the state (100% overlap) we were 

interested in, then the contributions from higher states would be zero (the 

states are guaranteed to be orthogonal) . This forms the basis of an optimized 2 

point correlation method, or, as it is commonly called, "Monte Carlo Variational 

Method" (MCVM) [ 4]. The usual variational method is based upon: 

(II.1.6) 

A minimum is then taken over ~' s to get the best estimate of E. This is 

equivalent to . 

e -EAt ~ < ce I e -HAt I ce > 
<~I~> 

(II.l. 7) 

so that maximizing the right hand side gives the best estimate of E . This max-

imization is exactly the same as, in the 2 point correlation method, maximizing 

the "signal" or overlap with the lowest state . 

The MCVM method is a combination of variational and 2 point correlation 

techniques . There are two extreme ways of using the method. The first would 

consist of using a very poor choice of 0 and extracting the mass from large ; 

values , the second would be to work very hard at finding an 0 with high overlap 

and then getting the mass estimate from the first time slice , ;=a. Since calcu-

lating a complicated operator would cost much computer time, as would running 

long enough to get the 2 point function for; very large, the optimum method, in 

terms of computer time needed, probably lies somewhere between the two 

extremes. An additional bonus of the MCVM method is that not only is the mass 

found, but some information about the actual wavefunctional of the state is 
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obtained through the operator 0 . 

We have seen that mass estimates require the computation of an exponen

tially small signal. For glueballs and other ftavor singlets (of spin o+) , this com

putation is difficult for an additional reason. These states can mix with the 

vacuum, i.e . < 0 > is not zero, causing the exponentially small signal to be com

puted as the difference of large, fluctuating quantities (Eq. (II . l.5)) . There has 

been little progress in finding a more stable method to computing glueball 

masses [ 17] and this remains one of the most difficult computations in terms of 

the amount of statistics required . 

In the next section, we will describe the effort underway at Caltech to 

achieve large amounts of computer power. 

2. Parallel Processing and Lattice Gauge Theories 

Fundamental limits on computational speed and feature size in VLSI tech

nologies suggest that significant increases in performance will come not from 

pushing current designs yet further, but instead from new computer architec

tures utilizing many computers in parallel: concurrent processing [5]. A simple 

design for such a computer is a "Homogeneous Machine :" a regular array of 

(independent) processors with a small number of interconnections per proces

sor [6]. Such a machine is actually being built at Caltech and consists of a 

4X4X4 array of microprocessors wired as a 3 dimensional (periodic) cube and 

has a total CPU power of 10 VAX. 111780's . We have found that the Homogeneous 

Machine design is suited for use on many computationally intensive problems in 

the physical sciences such as partial differential equations , matrix inversion, 

and fast fourier transforms [7]. 

The locality of the actions used in Monte Carlo simulations of gauge theories 

implies that these computations can be concurrently processed in a 
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straightforward way. In the standard Metropolis procedure , for instance, the 

change in the action due to the move of a link variable, /).S, involves only nearby 

link variables coupled to the one in question through plaquettes. This means 

that sets of de coupled links (links which nowhere appear in the same plaquette) 

can be simultaneously updated via the standard procedure, and the gauge field 

configurations will be generated according to the correct distribution, i.e . 

according to Eq. (1.4.1) . This is because for each update, the /).S's computed will 

not feel the effects of the other links being updated at the same time (they are 

decoupled) and so they will be exactly the same as for the usual sequential 

update algorithm. The simultaneous update of N decoupled links is exactly 

equivalent to the sequential update, in arbitrary order, of these same N links . 

The maximum number of decoupled links which can exist on the lattice at 

any given time is ~Ntot, where Ntot is the total number of links of the lattice. The 

structure of this maximal set of decoupled links is illustrated in Fig. 2. 1, for 2,3 

and 4 dimensions . 

Beyond the simultaneous update of all the elements of a set of decoupled 

links, one could simultaneously update more than one link in a given plaquette . 

One must be careful, however, to use a procedure which generates the correct 

multi-link probability distribution, and not merely the product of the simple 

one-link distributions . AB an example , suppose we wanted to simultaneously 

update 2 links, both of which are in the same plaquette . Using the Metropolis 

method, one could proceed as follows . Move each of the link matrices: 

U1 -+ U1 +o U1, U2 -+ U2+o U2 . Then compute the total change in the action, 

(II.2 .1) 

Now, if /).$ is < 0, or if e -{J~S >r with r a random number E[O, 1], accept .l.2Q1.h 

moves, o U1 and o U2. Otherwise, reject .l.2Q1.h moves, and return the matrices to 
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U1 and U2 . The above method satisfies the constraint of detailed balance and 

can of course be generalized to more than 2 link matrices. Currently, we are 

not running in this multi-link update mode- we are simultaneously updating sets 

of decoupled links . 

Pure gauge theories have been programmed on the four element prototype 

array which was built to test the hardware and software for the 64 element 

microprocessor array currently being constructed. The four element prototype 

is configured as shown in Fig. 2.2. The processors labeled (0-3) are the nodes of 

the array which have bidirectional communication paths shown by solid lines . 

Each of these processors is based on the Intel 8086/8087 microprocessor . This 

microcomputer1 has about ~h the power of a VAX. 111780 in typical scientific 

computing . Each microprocessor board has 128k bytes of memory and 6 

bidirectional data channels which allow communication with other processors in 

the array. 

The machine labeled IH is the intermediate host, which is also an Intel 

8086/8087 based processor. This processor functions as the controller of the 

array and also as a data buffer between the VAX and the array. 

The application and system programming for the Homogeneous Machine is 

all performed on a VAX. with a cross compiler producing 8086 code which is then 

loaded into the array. Currently, all our programs are written in the high level 

language C. 

We will now discuss some of the details of 4 dimensional pure gauge algo

rithms on a 4-node concurrent processor. This machine illustrates all of the 

essential features of larger machines . In particular, the algorithms developed 

for this machine will run on the 64 node machine with a few minor modifications. 

1. For an 6066-6067 processor running at 5 mhz. 
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The lattice is divided up among the computers so that neighboring variables of 

the lattice are either in the same node or in neighboring nodes. For the 2x2 

square, the 4 dimensional lattice is divided up in 2 of its dimensions, the other 2 

dimensions are "squashed" into the processors: if the total lattice is 4x4x4x4, 

each node stores a 2x2X4X4 subcell of the lattice. 

To illustrate how the algorithm for gauge theories works on a homogeneous 

machine we will outline the steps required to update a link residing in one of the 

subcells of the lattice. To be definite, suppose we are updating the link labeled 

A in Fig. 2. 3a. For the sake of simplicity only a two dimensional example is dis

cussed. To update link A, the matrices Bc-1D-1 and E-1F-1G must be con

structed and passed to processor 1. As will become clear, the algorithm is writ

ten in such a way so as to keep the processors synchronized- that is, the situa

tion is actually as shown in Fig . 2.3b. At the same time that processor 1 is 

updating link A1, processor 0 is updating link A0 , and so on. The corresponding 

matrices, Bi q- 1Di-1 and Ei- 1Fi- 1 ~. must be constructed and passed to proces

sor i. The first step in the algorithm is for the B matrices to be exchanged 

between processors 0 and 2, 1 and 3. All such communications are done via a 

polled-mailbox scheme. Taking the 1,3 exchange as an example, processor 3 

sends the matrix B 1 to the "mailbox" (an internal buffer) of processor 1 across 

the bidirectional channel "vchan" (vertical channel) . After putting the matrix in 

the mailbox, the "ftag" of the mailbox is set, indicating to processor 1 that the 

mailbox is ready to be read. Processor 1 likewise sends matrix B 3 to the mail

box of processor 3 and sets the fiag. Each processor then polls their mailbox

checking the fiag to see if there is something there to be read. If the ftag 

indicates the mailbox is full, the processor empties the buffer, resets the ftag to 

the "empty" position and proceeds to its next instruction. If the fiag indicates 

that the mailbox is still empty, the processor effectively halts: it polls the fiag 
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indefinitely until the mailbox is filled. This is how the processors are kept syn

chronized - if processor 3 is lagging behind 1. when 1 gets to the instruction to 

read its mailbox, it will stop at that point in its instruction sequence until 3 

writes to it. 

Once this B exchange is finished, the matrices Bi reside in the same pro

cessors as Ci and Dt. so the products Bi q-1ni-l are formed and are ready to be 

used for the update . The products Ei- 1Fi- 1Gi are a bit more difficult since the 

matrices Ei are in the next-nearest neighbor processor to the one containing A . 

In order to minimize communication time, we adopt the strategy of passing E 1 

to processor 0, forming the product E11F11D1 in processor 0, and passing only 

the resultant product to processor 1. The same is, of course, simultaneously 

done for E0 , E 2 and E 3 . The matrices are again passed via the polled-mailbox 

scheme as described above for the matrices Bt. Once all this is accomplished, 

the processors all update their ~ and then proceed to the next link, staying in 

step due to the nature of the communications software. 

The above may seem complicated to implement but in reality it is not. 

Once the fundamental matrix exchange subroutines are written, all that is 

required beyond the usual Metropolis update algorithm is a few logical "if" state

ments which are needed to detect if the matrices Bt, etc. need to be communi

cated from a neighboring processor. In fact, the entire coding and debugging 

(starting from debugged VAX code) for SU(2) in 4 dimensions required only 

about 20 hours of time: a modest investment for the computer power which is 

gained. 

We have implemented pure gauge SU(2) on the 4 node machine, using the 

120-element icosahedral subgroup method to speed up the computation. 

This method speeds up our calculation by a factor of about 3. It has been shown 

[B] that this discrete approximation to SU(2) is sufficiently fine grained so as not 
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to affect results in the region of couplings in which we will work. Since we work 

with a finite subgroup, only integers labeling the members of the subgroup need 

to be communicated between the processors ; actual matrices are not passed. 

Each node of the machine stores the entire group multiplication table of 14,400 

integers. As a partial check of the correctness of the algorithm on the 4 node 

machine, we have verified that the usual average plaquette results were 

obtained- see Fig. 2.4. 

Since the speed of each node is ~h VAX, one would naively expect the per

formance of the 4 node machine to be that of ~ of a VAX. 111780. This is , of 

course, degraded by the communications overhead present in a homogeneous 

machine , but not in a normal, sequential computer . This overhead was meas

ured by timing the program, and then timing a version of the program in which 

all commi.Ulications were done twice , doubling the commi.Ulication overhead. 

The difference in these timings then gave the time spent in interprocessor com

munication. The results are shown in Fig. 2.5 for various lattice sizes, and are 

given in terms of percentage of total time spent in commllilications. Since this 

percentage is governed by the surface area to volume ratio of the subcells resid

ing in each node , one expects the overhead to be worse for smaller subcells . 

This is apparent in Fig. 2.5, where the worst case of a 2x2x4x4 subcell gave a 

communications percentage of 25%. The fact that the overhead grows slowly as 

the subcell is made smaller and that the "worst case" overhead is still a reason

ably small frac tion is important. We want to add more nodes (the 64 node 

machine) and run on lattices of 83x l 6 , for example , so the subcells in each node 

will always be fairly small. The 25% figure means that the performance of these 

larger machines will not be severely degraded by commi.Ulications overhead, at 

least for this icosahedral version of SU(2) . The overheads given can actually be 

improved upon by at least a factor of 2; we have not yet fully optimized our 
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communications software . 

One may worry that in a more realistic gauge theory, i.e. SU(3), one will 

have to pass full 3x3 complex matrices between the nodes so that the communi-

cation overhead may become quite large . This turns out not to be the case, how-

ever. The reason is that although the communication time does indeed grow, 

the computation time per matrix communication grows even faster . For exam-

ple , if the size of the matrix is N, matrix multiplication grows as N 3 , while the 

communication time goes as N 2 . We have actually implemented SU(3) and find 

that the communications overhead is , in fact , smaller : for the worst case 

2x2x4x4 subcell, we find an overhead of 18% . 

3. The Glueball Mass 

The MCVM method, as described in Section 1, was used for calculating the 

mass of the o+ glueball . The operator 0 was t aken t o be a linear combination of 

gauge invariant operators, 

(II .3.1 ) 

The Wi are combinations of Wilson loops chosen so as to excite states of definite 

spin, parity and momentum. The mass is , 

m =lim m (T) , 
7" ... "' 

(II .3.2) 

with, 

_ r(T-1) 
m (T) = ln r(T) , (II .3.3) 

and, 

r(T) = ( (O(T)-<0>)(0(0)-<0>)) . (II .3.4) 
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The signal, ~g~ . was maximized as a function of the parameters a,: . One could 

try to maximize other combinations of r·s, such as H~~ or H7~ . Due to the 

statistical noise in the data, such procedures turned out to be unreliable -if one 

of the correlation functions ( "'< Wi(T) W;(O) >)happens to fluctuate upwards at 

T=2, the maximization algorithm would then choose the corresponding 

coefficient very large, giving bad results for the other time slice estimates, 

m ( T). Similarly, including more operators , Wi, in the maximization does not 

always improve the mass estimate . m( 1) is, of course, always lowered by the 

addition of more operators, since the minimization is done on m(1) . This does 

not necessarily hold for m (2) ,m (3), · · · , however , if the operator is too noisy. 

For a given amount of statistics, only a limited number of operators should be 

included in the mass estimates. More operators should ~e added only if the the 

amount of statistics gathered on all the correlations is correspondingly 

increased. 

We now present the results for the SU(2) o+ glueball mass . The action used 

is that given in Eq. (1. 1. 5) with the U matrices in the fundamental representation 

of SU(2). We have worked at six values of the coupling, (3=2 .0, 2.1, 2.1 5, 2.2, 2.25 

and 2.3 on a 4X4X4x8 lattice. We have collected data with ve ry large statistics : 

for our most ambitious data point ((3=2 .3) a total of 250 ,000 sweeps was gen

erated. Roughly two-thirds of the time was spent in update and one-third in 

measurements . The entire computation, for all values of the coupling , took 

approximately 1000 hours on the 2x2 Homogeneous Machine , which is equivalent 

to 400 hours on the VAX 11 1780. 

The five operators used in the variational calculation are shown in Fig. 2.6. 

These are the simple plaquette , all three operators of perimeter six and the 2x2 

planer loop . The calculation of such observables on the Homogeneous Machine is 
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nontrivial. Rather than give the details here, an explanation of the algorithm 

used is given in Appendix 1. 

To construct an operator of spin 0, all spatial rotations of the loops are 

added together with coefficient 1. The lattice has only cubic symmetry, so this 

combination of loops also excites spin 4 states. We will assume that the spin 4 

mass is above that of the spin 0 and interpret our lowest state as spin 0. All the 

spin 0 combinations of loops on a time slice are then added together, with 

coefficient 1. to form a translationally invariant, zero momentum state. Using 

the loops of Fig . 2.6, the parity of our state is +1. For example, the inversion of 

loop c in Fig . 2.6 gives just a rotation of that loop and is already included with 

relative coefficient 1. To get a o- state, one could use a loop such as the one 

shown in Fig . 2. 7. The inversion of this loop cannot be reached by a rotation. 

Hence, using this loop and its inverse, with relative phase -1, and then taking all 

rotations (with + 1 phase), will yield a o- state . 

We chose our lattice to be only 4 sites on a side, in the spatial directions, 

for reasons of statistics. Since we construct a zero momentum state, the 2 

point correlation function is a correlation between sums of operators over entire 

time slices. This function is a large scale observable and this causes it to move 

very slowly as the Monte Carlo proceeds, that is , it is very correlated with itself 

from sweep to sweep. This effect becomes much more severe as the time slices 

are increased in size, hence, we were limited to 43 time slices . We do not believe 

this lattice is too small for our calculation. We shall see that the correlation 

length for our range of couplings is 1.0 - 1.5, therefore, our lattice is approxi

mately 3 times the size of the relevant length scale . 

The glueball mass (times the lattice spacing) as a function of the coupling is 

plotted in Fig . 2.8. The error bars are statistical and take into account the 
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sweep to sweep correlations in the data.2 The different symbols of the figure 

correspond to the different time slice estimates of the mass, i.e. m(T) in Eq. 

(11.3.3). Since the lowest state is isolated as T-HlO, we expect the m(T) to be 

equal for T sufficiently large, signaling that the isolation has indeed happened. 

Therefore, it is the lower envelope of the points in Fig. 2.8 which are the mass 

predictions, as a function of {3 (or g). 

The lines drawn in the figure correspond to the prediction of the continuum 

renormalization group in two loop perturbation theory. The numbers which 

come out of a Monte Carlo calculation are masses in units of the inverse lattice 

spacing, l_. This scale can be related to a more usual scale, such as Gev. The 
a 

coupling constant, g, can be thought of as the (running) coupling at the scale of 

the lattice spacing: g =g (a) . For g sufficiently small, changes in a are related 

to changes in g by the usual, continuum renormalization group expression. 

Including two loops, one finds [9] that the quantity, 

(II.3 .5) 

( {30 = ~and {3 1 =~for SU(2) ) is a constant, which is conventionally called 
2411' 9611' 

the "lattice mass scale", AL . This is related to the more conventional scale, 

AMOM· by 

AMoM = 57.4AL (SU(2)) . 

2. sweep to sweep correlations among the data have been taken into account in the estima
tion of the error through the use of the formula, 

a2 = <A2>-<A>2 [ 1 + 2 f: <~~+p>-<A>2 J , 
N p=l <A2>-<A>2 . 

where the subscript on the observable A labels sweep number. 

(II.3 .6) 
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The number, 57.4, represents the difference between the regularization schemes 

of the lattice cutoff and the usual continuum methods, such as dimensional reg

ularization [10]. The lines in Fig. 2 .8 are a 11..1 , times various constants. If the 

lower envelope of the data coincides with one of these lines , it means that a is 

moving with g in accordance with the continuum renormalization group and that 

the lattice spacing is small enough to be modeling continuum physics accu

rately. 

We note that our results are almost identical to those of Berg, Billoire and 

Rebbi [ 11] , though we have somewhat more statistics. In particular, the very low 

values for m (3) at {3= 2.15 , 2.2, a prominent feature of our data, are also present 

in the data of [1 1]. See Fig. 2.9. This, coupled with the fact that both m(3) 

values are approximately 2 standard deviations lower than the m (2) values, 

leads us to conclude that they are a real feature and not merely a statistical 

fluctuation. 

If we restrict ourselves to just the r =2 mass estimates, as is done in [ 12], 

the data do seem to be consistent with scaling according to the continuum 

renormalization group, and we can quote a value, in physical units , for the glue

ball mass . In terms of 11..1 , we get , 

m(0+)=(170 ± 20)11..L , 

in agreement with [ 11] . 

Including the r=3 mass estimates , we do not think that the data are con

sistent with scaling. The o+ state is clearly not isolated at r=2 for {3=2.15, 2.2, 

and the true values (the lower envelope) are far below the ( 170±20)1\..L lines. 

Our conviction that this is the case is strengthened by an examination of the 

specific heat in this same region of couplings . The specific heat is given by, 

(Il .3 .7) 
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where Wp is the trace of the pth plaquette . Since C is expressible in terms of 

the plaquette-piaquette correlation function, summed over the lattice volume , it 

is clear that a high value of C corresponds to a low value for m (o+) and vice-

versa . Lautrup and Nauenberg [ 13] found C, via Monte Carlo, for the {3 range we 

are considering . Their results are shown in Fig . 2.10. A large peak in Cis found 

at {3=2.2 . We interpret our low mass values at 2. 15, 2.2 as being associated with 

the peak in the specific heat. 

This peak is a lattice artifact and has nothing to do with the physical, con-

tinuum theory. Using a lattice action with an adjoint representation plaquette 

in addition to the usual, fundamental representation plaquette, it was found [ 14] 

that there is an actual phase transition near the region in which we are working . 

The action used was, 

(II .3.8) 

As discussed in Chapter I. this action gives the same continuum theory, as 

f3F,f3A -H>o, as Eq. (!.1 .5) . In the f3F,f3A plane, the phase structure shown in Fig . 

2.11 is found . We see that the region containing the strange behavior in the 

specific heat, (3=2.2 , is the linear extrapolation of a nearby line of phase transi-

tions . The peak is a "shadow" of nearby, nontrivial behavior in the lattice 

theory. 

In view of this, coupled with our direct evidence of anomalously low mass 

values, we conclude that scaling behavior is nQt seen for the range 2. 1~(3~2 . 3 . 

This conclusion is contrary to those given in [ 11. 12]. To reliably find the mass of 

the o+ gluebalL using the fundamental representation action of Eq. (1. 1.5), one 

needs to work at {P-2.3 . This requires more CPU power than we presently have 

available in our 4 node , prototype computer . 
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The situation is very similar for SU(3). In this case, there is also a specific 

heat peak in the relevant coupling range. The extended plane phase diagram is 

very similar to the SU(2) diagram, see Fig. 2.12. In fact , the line of critical 

points comes closer to the f3F axis (for SU(4) it actually crosses [15]) . Berg and 

Billoire [16] also note that mass values seem to be too low, again, this occurs at 

the location of the peak in the specific heat. Though they conclude that the o+ 

data do scale , we feel that the nearby phase transition has not been adequately 

considered. 

To improve the reliability of these glueball calculations , two things can be 

done . The first is simply to push to smaller lattice spacings ( {P-:2.3) with faster 

computers . The second is to search for lattice actions which model the large 

distance behavior of the continuum theory more accurately. This is the topic of 

the next chapter. 
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Figure Captions 

[2.1]Maximal set of decoupled links (bold lines) in (a) 2 dimensions, (b) 3 dimen-

sions, (c) 4 dimensions . 

[2.2]Schematic diagram of 4 node Homogeneous Machine . 

[2.3]Example of pure gauge update to illustrate inter-processor communication. 

[2.4]The average plaquette as a function of coupling for SU(2) gauge theory in 4 

dimensions. 

[2.5]Communication overhead as a function of subcell size (L, where each pro

cessor stores a LxLx4x4 subcell of the lattice) for SU(2). 

[2.6]0perators used in the variational calculation of the glueball wavefunction. 

[2. ?]Example of a loop which can be used to construct a parity negative state. 

The parity (i.e . inversion through the origin) transform of this loop cannot 

be reached by a rotation of the loop . 

[2.8] Mass of the o+ glueball as a function of coupling for SU(2) gauge theory. 

[2.9]The data of Berg, Billoire and Rebbi for the o+ glueball. This figure is from 

B. Berg, CERN preprint, .TH.3327-CERN, (1 982) . 

[2. 10]The specific heat, C, as a function of {3 . The curves are strong and weak 

coupling expansions. From reference [1 3]. 

[2.11 ]The phase diagram of SU(2) in the extended {3p,f3A plane. The plotted 

points are the locations of first order phase transitions . From reference 

[14]. 

[2. 12]The phase diagram of SU(3) in the e}."tended plane. The points on the line 

AB are the locations of the first order phase transitions. The points on the 

bold line correspond to transitions occuring due to the use of a finite sub

group, S(648), and, for our purposes, can be ignored. This figure is from G. 

Bhanot, Phys. Lett. 108B, 337 (1 982) . 
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Fig. 2.8 
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Chapter lll: Migdal--Kadanoff improved actions and the Glueball Mass 

Introduction 

In the previous chapter we came to the conclusion that, for actions of the 

purely Wilson form in the range of 2.cn::;~~2.3, the o+ glueball mass does not 

scale. We attributed this to a nearby phase transition in the extended action 

plane, (~r . ~A)· One might, therefore, try working in a region in this plane which 

is farther away from this phase transition, that is, go to ~A negative. 

Beyond this simple interpretation, there is another motivation for working 

with ~A negative. This is the result that, in the Migdal-Kadanoff approximation to 

the renormalization group on the lattice, one finds that actions starting along 

the Wilson axis (~A= 0), under renormalization, flow towards ~A < 0 [ 1]. To the 

extent that we can trust the Migdal-Kadanoff approximation, this means that 

theories with ~A < 0 describe large distance physics much better (i.e. at smaller 

lattice distances) than theories with ~A = 0. We work in a coupling region 

motivated by the Migdal-Kadanoff results, and we do indeed find improved scal

ing results for the o+ glueball. We therefore conclude that this set of actions is 

superior to the usual Wilson actions in the sense that the true large distance 

physics is more accurately modeled. 

In Section 1 we discuss the Migdal-Kadanoff technique for gauge theories. 

Section 2 describes the results of Bitar, Gottlieb, and Zachos [ 1] and discuss 

what they imply for strong coupling and Monte Carlo calculations. We give our 

Monte Carlo results in Section 3. Checking the consistency of the results with 

scaling is somewhat problematical. Using a large N resummation resuJt of 

Grossman and Samuel [2], we find that our results do scale. Independent of this 
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large N resummalion, our data show that the mass of the o+ glue ball divided by 

the square root of the string tension is a constant for this set of actions, as it 

should be if scaling has set in. This is not true of the data along the Wilson axis 

for 2.~,8~2 . 3 . 

1. Migdal-Kadanotl Renormalization for Gauge Theories 

The standard references for this are the original papers by Migdal [3] and 

Kadanoff [ 4]. We will explain the technique along similar lines to lhe 2 dimen-

sional Ising model example of Chapter 1. We start with a 2 dimensional gauge 

theory, where link decimation can be done exactly. 

Consider two neighboring plaquettes, as in Fig. 3.1. We wish to integrate out 

the link labeled U. The integral is: 

J fJtr (U' rl) ptr ( rJt rl a) 
dUe 1 e , (lll . l.l) 

where U 1 = UJ Ubt Uc, U2 = Ua Ue U} . To do this integral, it is convenient to 

expand in the characters of the group (traces of various irreducible representa-

tion matrices). Denote the character of the representation v by Xv . They 

satisfy the orlhogonality property, 

(Ill .l. 2) 

where dv is the dimensionality of the representation v and is equal to xv(l) . 

For SU(2) the characters are quite simple. The "spin" j representation 

matrix is : 

(lll.l.3) 

where J are the spin j generators, and ~ = rpfi are the 3 parameters of the 
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rotation. The character of this representation is the trace of this matrix and is 

given by: 

Xi = 
m=-j 

sin(2j +1)} 

sinfL 
2 

Expand the exponential of each plaquette in terms of characters: 

The integral can now be easily done: 

J dU eptr('J1 'J)eptr(ut'J2) = J dV'i2cv(f3)c;J.({3)dvd;J.Xv(UtU)x;J.([;tU2) 
V)J. 

v 

(III.l.4) 

(III.l.5) 

(III.l.6) 

This can be continued to the integration of the links in the other direction (the 

horizontal links in Fig . 3.1). Each plaquette will add another power of c v(f3) . 

After integrating a ,f of Fig . 3.1, we will have, 

'22 [ C v(f3) ]4 dvXv( U2x2) , (III.l. 7) 
v 

where U2x2 is the ordered product of matrices around the 2x2 square . 

This was for a scale change of 2. For a scale change of A, the above immedi-

ately generalizes to: 

'22 [cv(f3)]X
2

dvXv(Uxx;x.) (III .l.B) 
v 

This result is exact for integer A. As in the Ising model, we assume it is true for 

all ~1 . This can, again, be justified by integrating out only some of the links 
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and then averaging . 

In higher dimensions, lines of links cannot be integrated out exactly. We 

resort to a procedure in which the troublesome plaquettes are shifted to neigh-

boring planes . This is the analog of the bond shifting operation in the Ising 

model. This means that some plaquettes will have their strength increased by a 

factor of ,\: 

e -+ e - iLJ Cv vXv vp . 
ptr(rJ,) .\ptr(rJ,)_'"" ({3)d (")].\ 

l v 
(III . l.9) 

As in the Ising case, for /..=2 the isotropy is lost under these transformations. As 

,\-+ 1 it is recovered, however, and we write for the full transformation in d 

dimensions: 

(IIJ.l.lO) 

The entire term is raised to the power r..ct-2 since, in d dimensions, to integrate 

out a link requires the shifting of d -2 planes of plaquettes . 

This defines the Mi.gdal-Kadanoff renormalization transformation. Starting 

with some arbitrary action, under the application of this transformation traces 

of plaquette matrices in all irreducible representations of the group will appear. 

Terms more non-local than the plaquette are not included in this approximation. 

The systematic improvement of the Migdal-Kadanoff program given by Martinelli 

and Parisi [5] can, in principle, find the non-local terms also (no one has yet 

attempted it for gauge theories since it is technically difficult). 
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1. The Results of Bitar, Gottlieb and Zachos 

Bitar, Gottlieb and Zachos have applied the Migdal-Kadanoff transformation 

to SU(2) . They implement Eq. (III.1.10) numerically by expanding their action in 

terms of the first 20 characters of SU(2). Their major result is that they are 

able to accurately reproduce the phase diagram of SU(2) in the fJF,fJA plane, 

which is obtained from Monte Carlo calculations. What interests us, however, is 

that they also map out the renormalization flows of theories in the fJF,fJA plane. 

Let us quickly review their results. 

After many Migdal-Kadanoff transformations, the coupling between different 

plaquettes becomes weak (the plaquettes after several transformations are 

"large" plaquettes- they represent large scale physics). Once this happens, the 

remaining plaquettes can be integrated out as if they were independent, 

yielding an expression for the free energy per plaquette. Let us denote the 

action after N applications of the Migdal-Kadanoff transformation by S(Up,'ANa), 

and expand it in characters as : 

(IJI.2.1) 

Then, integration of a single plaquette gives, 

f dUP e-S(!lpJ.Ntl) = J dUP 2.: cv('ANa)dvXv(Up) (III.2.2) 
v 

and we get for the free energy per plaquette (F = lnZ), 

(III .2.3) 

F is a function of the starting action. Suppose we start somewhere in the flF,flA 
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plane and write the vector, (f3F,f3A) as {3(cF,cA ), where c} + c1 = 1. Then, the 

change of F with {3 gives us the average action, 

aF 
- < sp > = f3 a{3 . (III.2.4) 

and another derivative gives us the specific heat: 

(III.2.5) 

These derivatives were found by finding F, for a range of {3's, via Eq. (III .2.3) and 

then numerically differentiating . 

Phase transitions are signaled by singular behavior in the specific heat, C. 

By identifying sharp behavior (i.e. cusps, bumps) in C with phase transitions, the 

phase diagram shown in Fig. 3.2 was produced. Fig. 3.2 also shows the locations 

of phase transitions as determined from Monte Carlo calculations, and it is found 

that the two methods agree quite well. Though the Migdal-Kadanoff recursion 

technique seems to miss the order of the transition (in [1 ], bumps inC are seen 

instead of the expected 6 function), the locations of the phase transitions are 

obtained accurately. This is consistent with what has been seen in other models 

[5,6]. The Migdal-Kadanoff recursion formula, Eq. (III. l.1 0), has one free param

eter, A, appearing . From the derivation of Eq. (III.l.10), we know that A should 

be kept near 1. In [ 1], A is fixed by requiring that the location of the phase tran-

sition along the axis f3F=O is obtained correctly. This gives A= l. Different 

choices of A, in the range 1.05 to 1.15, give qualitatively the same phase 

diagram, but with critical lines moving by approximately 10%. 

The Migdal-Kadanoff transformation is able to reproduce the correct phase 

diagram in the f3F ,f3A plane . Beyond this , the actual renormalization flows of 

various lattice actions can be studied. This is done by starting with some action 
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in the f3r.fJA plane, converting to the character expansion (Eq. (III.2.1 )) , renor

malizing via Eq. (III . l.lO) , and then projecting back onto an action containing the 

first 4 representations: spin ~, 1. ~, and 2. It is found that the spin ~ and 2 

coefficients stay much smaller than f3r or f3A · A theory starting in the f3r,f3A 

plane tends to stay in that plane: theories starting out of the plane tend to flow 

onto it. The renormalization flows in the plane are shown in Fig . 3.3. 

All flows eventually go to the origin, f3A ={3p=O. This is simply due to the fact 

that as one applies the Migdal-Kadanoff transformation again and again, the pla

quettes represent physics on larger and larger length scales, and, therefore, 

become weakly coupled ({3 small). The interesting feature of Fig. 3.3, at least for 

our purposes, is that theories starting on the Wilson axis (f3A =0) tend to flow 

downwards (f3A <0), and coalesce onto a line. The parts of the action which are 

irrelevant for large scale physics are dying out as the actions flow onto this 

stable line . For any action in the plane, there is an action on the stable line 

which has the same large distance (in physical units) behavior, but at smaller 

lattice distances. Of course, this statement is true only to the extent that the 

Migdal-Kadanoff technique is accurate . 

Suppose the Migdal-Kadanoff approximation was exact , so that the large dis

tance physics of the initial action would be exactly preserved under the 

transformations. Then we could work on the stable line very close to the point 

f3r.f3A =0 . Near this point, the lattice correlation length is small. This would 

mean that strong coupling expansions along this line might converge much more 

rapidly than they do for the simple f3A =0 action. Monte Carlo calculations would 

also become more reliable as the lattice correlation length is made small . 

In actual fact, though, we do not trust the Migdal-Kadanoff approximation 

completely. For this reason, we work on the stable line of the flows coming from 

this approximation, but at couplings closer to the naive continuum limit, g -+0. 
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In Chapter II we interpreted the lack of scaling of the glueball mass as being 

due to a nearby critical point in the fJF,fJA plane. We thereby came to the con

clusion that one should work in the fJA <0 coupling region. This conclusion is now 

strengthened by the results discussed in this section. The Migdal-Kadanoff 

transformation tells us that actions along the stable line of Fig. 3.3 are perhaps 

closer to the continuum limit than those along the fJA=O axis. In the next sec

tion we will present our Monte Carlo results obtained along the stable line . 

2. Results 

We have calculated the o+ glueball mass in the fJF,fJA plane along the line 

fJA=-.24fJF, for 2 . 8~{Jp;3 . 2 . These couplings lie along the stable line of Fig. 3.3. 

Though our choices of couplings are motivated by the Migdal-Kadanoff renormal

ization technique, our results do not rely on the accuracy of the technique . 

The glueball mass was, again, found by the MCVM method described in 

Chapter II. The calculation was done on the 4 node parallel processor using a 

43x8 lattice. The set of operators over which the minimization was done is the 

same as that used previously - the set of 5 loops shown in Fig . 2.6 . We did try 

including an additional operator, the l x 1 loop in the adjoint representation, but 

we found it made little contribution. After approximately 600 hours of running, 

we arrived at the results shown in Fig. 3.4. 

For the results at {Jp=2.8,2 .9, the glueball seems to be well isolated at the 

second time slice, t =2. For fJF=3.0,3.2 , at least the t =3 time slice seems to be 

necessary to isolate the state . In contrast to the situation on the fJA=O axis, the 

lower envelope of the masses seems to be falling smoothly and monotonically. 

There is no si.gn of a "bump" in the masses as there is on the fJA =0 axis. As 

expected, the influence of the critical endpoint has decreased. 
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No obvious signs of lattice artifacts are seen but, the question is, do our 

masses for this coupling range scale according to the continuum renormaliza-

tion group? The answer to this is problematicaL By examining the coefficient of 

F J.WFP-11 in the naive continuum limit of an action containing both fundamental 

and adjoint traces, one finds the following relation between g and the {J's: 

1 1 2 -= -{JF + -{JA 
g 2 4 3 

(III . 3 .1) 

Negative fJA implies larger values for g, and for our range of couplings along the 

stable line, g 2 ranges from 3.47 to 4.23 (to compared with 1.74 to 2.0 on the Wil-

son axis). Such large values for g 2 makes one suspicious of any comparison with 

2 loop perturbation theory, and this suspicion is , in fact, well founded. For 

actions containing both adjoint and fundamental representations , the connec-

tion between the lattice spacing, the couplings , and a physical mass scale is 

given by [7] (for SU(2)): 

. (Ill.3.2) 

If we convert our mass results to physical units using the above, totally nonsen-

sical results are found . This was also found by Bhanot and Dashen [7]. They 

computed string tensions in the fJF ,fJA plane and found large disagreements with 

scaling as fJA was taken negative. Perturbation theory has broken down in the 

regions of couplings in which we work. This shouldn' t be too surprising; the 

whole point of the fJA <0 region is that large scale physics is accurately modeled 

at short lattice distances. The only way to achieve this is if non-trivial interac-

tions are included (the higher representations), with the couplings not neces-

sarily changing according to weak coupling perturbation theory. 
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Perturbation theory can't tell us the relation between our lattice spacing 

and a physical scale. One way out of this dilemma would be to know exactly 

which action on the f3A =0 axis corresponded to which set of actions along the 

stable line. One could start with an action far into the weak coupling regime (g 2 

small) on the axis , and then scale it by a factor, A. , many times, eventually land

ing on the stable line. Assuming the Migdal-Kadanoff approximation to be accu

rate, we could then relate the lattice spacing of the theory on the stable line to 

the spacing of the initial theory by a factor , t..N, where N is the number of 

transformations between the two theories. We would then have our lattice spac

ing related to a spacing far into the weak coupling regime, where the usual 2 

loop formula (Eq. (II .3.5)) would hold. This procedure is unreliable due to the 

large extrapolation required - the power N is large and we would need to rely on 

the accuracy of the Migdal-Kadanoff technique for a very large change in length 

scales. 

A comparison with continuum perturbation theory would be possible if the 

expression were known to greater than 2 loops . Such a result is, perhaps, avail

able. Grossman and Samuel [2] give an argument based on a large N expansion 

(SU(N) for N large) which, in effect, resurns perturbation theory . They achieve 

good results in the sense that they are able to agree with string tension data for 

negative f3A, for which the standard 2 loop result rapidly breaks down. Their 

lines of constant string tension are shown in Fig . 3.5a. These lines rely on the 

value of the average plaquette, for which Grossman and Samuel use a weak cou

pling approximation. We improve, slightly, on their results by using the value for 

the plaquette as obtained from accurate Monte Carlo calculations [8]. Our 

improvement is shown in Fig. 3.5b . It is seen that the agreement with the string 

tensions is improved. 
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The resumrnation relates theories with negative f3A to theories with f3A =0, at 

a new, effective value for f3F . The relation is: 

(III.3.3) 

where Up is the plaquette matrix. We can now map our glueball masses onto the 

Wilson axis using the above result. This is shown in Fig. 3.6. We are quite 

encouraged by these results. First of all, the lower envelope of our data does 

seem to be falling with approximately the correct slope. There is no large 

disagreement, and we make the claim that the data are consistent with scaling. 

Secondly, the coupling region in which we worked corresponds to, on the Wilson 

axis, a region of weaker couplings than we were able to directly do on this axis. 

Therefore, our hope that the Migdal-Kadanoff improved action would be closer to 

the continuum limit seems to be confirmed. Lastly, our data seem to smoothly 

join onto the data obtained on the Wilson axis. On this axis at {3=2.3, we previ-

ously concluded that the third time slice, t =3, was not far enough to isolate the 

glue ball. By pushing to t =4, it is plausible that the mass at this value would 

agree with the data coming from the f3A <0 region. 

One can argue with the reliability of the resummation of Grossman and 

Samuel. After all, it relies on a large N argument, and N is 2! Our only reason 

for believing it has any relevance to the N=2 case lies in the fact that it does 

agree with string tension data quite well. 

We can, however, divorce our results from this possibly unreliable resum-

mation by just comparing our masses to the string tension directly. Different 

physical observables will be affected by the discrete lattice lattice approxima-

tion in different ways . If dimensionless ratios are taken, a sign that the calcula-

tion has "forgotten" the finite lattice spacing is when such ratios become con-

stant. 
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The square root of the string tension depends on the lattice spacing as .L, 
a 

as does the glueball mass . We can regard the large N resummation result as 

nothing more than a convenient way of fitting the Monte Carlo string tensions to 

a simple functional form (linear). Our result that the masses, when mapped 

onto the Wilson axis, follow the the scaling curve can now be reinterpreted as 

showing that, in the region of couplings in which we have worked, we find the 

ratio of the glueball mass to the square root of the string tension to be a con-

stant. Fig. 3. 7 explicitly shows the ratio of the mass to the "fit" of the string ten-

sions. This result is independent of the, perhaps dubious, large N resummation. 

Before ending this section, we would like to point out that our masses 

change, from {3p=2.9 to {3p=3.2, by a factor consistent with the scale change of 

the Migdal-Kadanoff transformation. The point (3.2, -. 768) is transformed to the 

point (2.9,- .696) by approximately 2.5 transformations, each of scale change, 

A.= 1. 1. This gives a total change in scale of 1. 12·5 Rj 1. 27 . Our masses change 

from approximalely .80 to 1.05 over this same range, giving a scale change of 

Rj1 .31. The two values are equal within our limited statistics , and we believe this 

shows that the Migdal-Kadanoti approximation is accurate for our region of cou-

plings. 

Conclusions 

We have shown that actions incorporating a negative component of the 

adjoint representation are closer to the continuum limit than actions along the 

Wilson axis . Working on the stable line of the Migdal-Kadanoff approximate 

renormalization flows , we have shown that the mass of the o+ glueball divided by 

the square root of the string tension is a constant, something which is nQl true 

on the Wilson axis for the coupling range which has been studied. 
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Further work needs to be done in the fJA <0 region. An obvious extension is 

to calculate higher states of the glueball spectrum. We did not do this since one 

expects that scaling is harder to achieve for these states. The wavefunctionals 

of the higher states must have nodes and hence vary more rapidly in space than 

the o+ . This makes them more sensitive to the discrete lattice . This argument 

is consistent with the results of [9], which finds that the 2+ state does not scale. 

If the fJA <0 actions are modeling continuum physics more accurately, however, 

we expect to see scaling for these higher states sooner than on the Wilson axis . 

Improvements on the Migdal-Kadanoff scheme are also needed. The method 

of Martinelli and Parisi [5] is a possibility, though the method of renormalizing 

via Monte Carlo (the "Monte Carlo Renormalization Group") proposed by Wilson 

[1 0], is perhaps the most powerful method. With such improvements in the lat

tice theories, coupled with more powerful computing capabilities, it is reason

able to expect that reliable calculations of the glueball spectrum for QCD are not 

far away. 
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Figure Captions 

[3.1]Two neighboring plaquettes . We integrate out the link marked as U . 

[3.2]The phase diagram of reference [ 1]. The points are the locations of phase 

transitions as determined from the Migdal-Kadanoti recursion; the dashed 

lines are the Monte Carlo results. The dotted line is the extrapolation of the 

critical line to the Wilson axis and intersects it at the location of the peak in 

the specific heat (S) . The normalizations of the couplings are different 

between our work and that of [1]; denoting their couplings by ,Bl 1l, the rela

tion is : 

[3.3]The renormalization fiows of reference [1]. 

[3.4]0ur data in the negative f1A region. The horizontal axis is .BF . 

[3.5](a) The Grossman, Samuel [2] prediction for the lines of constant string ten

sion. The points are from Monte Carlo [7] and the cross-hatched lines are 

the prediction. (b) Our improvement, using the Monte Carlo value of 

< trUP >instead of the weak coupling result. 

[3.6]0ur results for the glueball mass mapped onto the Wilson axis. The data on 

the left hand side (2.0::;;{1::;;2.25) are the old data coming from runs on the 

axis ; the data toward the right(2 .28=:;;[j=:;;2.41) are the new data coming from 

the f1A <0 region. 

[ 3. 7]The glue ball mass divided by the square root of the string tension. (a) For 

the .BA<O region, (b) the f1A=O region. 
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Chapter N: Numerical Fermion Techniques 

Introduction 

The inclusion of dynamical fermions in Monte Carlo calculations is one of 

the most important problems in the field of lattice gauge theories . Even if one is 

optimistic and believes that the "quenched" approximation is accurate, it is 

known that it cannot reproduce .all features of the hadronic mass spectrum. An 

example is the mixing of glueballs with flavor singlet, qq states and the TJ,TJ' 

splitting . Secondly, the calculations cannot be considered to be based on first 

principles until dynamical fermions have been included. 

At the present time , there seem to be two promising methods for including 

dynamical fermions : the stochastic technique of Kuti [1 ], and the pseudo fer

mion method invented by Fucito, Marinari, Parisi, and Rebbi [2]. These two 

methods have a "chance" in the sense that they can accurately represent the 

non-local interaction induced by the dynamical fermions, and they can run in 

reasonable computation times . This last condition is necessary so that adequate 

lattice sizes and statistics can be gathered to calculate interesting observables . 

In this chapter, we will study the pseudo fermion technique by comparing 

Monte Carlo results obtained with this method to those obtained from an exact 

algorithm based on Gauss-Seidel inversion. In Section 1, we will explain the 

exact Gauss-Seidel algorithm and also briefly mention the stochastic technique . 

The pseudo fermion method is introduced, and results of the application to 1 + 1 

QED are given, in Section 2. We show that, in a coupling regime where the 

dynamical fermions have a nontrivial effect , the method seems to work well. 

Section 3 gives simple arguments showing why the method works better than 
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one might naively expect. Section 4 moves on to study the real theory, 4 dimen-

sional SU(3) with dynamical fermions, on small lattices . Comparing with the 

exact (Gauss-Seidel) algorithm, we again find encouraging agreement with the 

pseudo fermion technique. We also give some evidence that any systematic bias 

{associated with the "breaking" of the Markov process which generates the field 

configurations) is small. The results of the pseudo fermion method applied to 

the Schwinger model has been previously described in [3]. 

1. Exact Algorithm, Stochastic Method 

The basic formalism for fermions on the lattice was already introduced in 

Chapter I. In the following, we will use the Wilson formulation for fermions on 

the lattice. Considering the Metropolis method for updating the gauge field 

configuration, we found that the moving of a gauge link, 

U-+ U+oU, 

induced a change in the matrix Q, 

Q-+Q+oQ, 

and the required ratio of determinants is : 

det( Q + 6 Q) 
det( Q) 

Q is here repeated for completeness, 

with, 

det( 1 + Q- 1 6Q). 

(N.l.l) 

(N.l.2) 

(N.1.3) 

(N.l.4) 
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x ,y are lattice sites, cx,{3 are Dirac indices, and A,B are color indices . 

If a single link is changed, 6Q will have only two non-zero entries (neglecting 

spin and color) and the determinant of Eq. (IV.l.3) reduces to the determinant 

of a small matrix, requiring only a few elements of Q-1 [ 4]. To be explicit, sup-

pose we change Uz.~ for some fixed x, {l 

(N.l.6) 

Then, 

where we have suppressed color indices. Thus, the matrix Qzp~wu 6 Qwu,yfJ is 

non-zero only when y =x or y =x + jl . This implies , 

Qz-r}zp 6 Qzp.z +fi!J 

1 + Qz-+
1
P-a .zp 6 Qzp.z +fi!J 

(N.l.B) 

In 4 dimensions , taking the Dirac indices into account, this is an BxB matrix 

(ignoring the color indices). We see that, by finding a few elements of Q- 1, it is 

possible to evaluate the ratio of fermion determinants exactly. These elements 

can be found (with very high accuracy) via a Gauss-Seidel iteration [5] and this 

forms the basis for the "exact" algorithm with which we will compare our pseudo 

fermion results . The method of Gauss-Seidel iteration is explained in Appendix 

2. Though it is a relatively slow way to invert Q, it converges geometrically and 

so gives a very accurate estimate of Q- 1
. The exact algorithm proceeds as fol-

lows . A particular link is moved, inducing Q to change by 6 Q Gauss-Seidels are 

then run to find the elements of Q- 1 needed for the ratio of determinants. Once 

this ratio is found, it is combined with the change in the pure gauge action, 

!:J.Sgauge , and it is decided whether or not to accept the link move , 6 U . The 
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entire process is then repeated to update the next link . 

This method is very slow. Entire Gauss-Seidel iterations must be run to 

update a single link. Since the time for each Gauss-Seidel grows as the volume 

of the lattice, the total time for the exact algorithm grows as the square of the 

lattice volume. This method is not really compatible with present day Monte 

Carlos , which have very limited statistics . What is the use of evaluating the fer-

mion determinant to .01% accuracy if only 10 sweeps can be run, generating 

100% statistical errors? What is needed is a method which can quickly give a 

rough, 10-20% estimate of the determinant ratio . 

The stochastic technique [ 1] finds Q- 1 using the expansion, 

(N.l.9) 

The structure of M is such that it couples nearest neighbor sites . Therefore, the 

term Kf ( ML)~ consists of the sum of all random walks of length L which start at 

X and end at y . For each such path, the product n ( 1 +r.U) u is evaluated; these 

are added for all the paths to give ML . The stochastic algorithm samples the 

series of Eq. (N.1.9) by constructing such random walks, with the probability 

that any particular walk will be constructed proportional to JCL . 

A problem with this method is the huge number of random paths in 4 

dimensions. If x and y are nearest neighbors (needed for the determinant 

ratio), the number of paths between them of length 5 is 11 4, of length 7, 3618, 

and of length 9, 122100 ! It is important to realize that a length 9 path is not 

that long; the farthest it can get from x ,y is 4 and the distance for the average 

path is "' 2. Asymptotically , the number of paths of length L grows as 7L [6]. 

The crucial question is: for a given correlation length, ~. what fraction of all pos-

sible paths of length L needs to be sampled before a reasonably accurate esti-

mate of Q- 1 is found? 
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2. The Pseudo Fermion Veth.od 

The pseudo fermion technique allows one to find many elements of Q-1 

simultaneously so that many links can be updated, gaining a large factor in 

speed. This technique relies on the result, 

(N.2 .1 ) 

where the rp 's carry Dirac and color indices, but are bosonic (commuting) vari-

ables instead of Grassmann. This is numerically well defined only if Q is hermi-

tian so that all it's eigenvalues are real. Since our Q is not, we cannot use Eq. 

(IV.2.1) as it stands. Using detQ>O and detQt=detQ ,1 one can square Q to get a 

hermitian matrix: 

detQ = vdetQ detQ = -JdetQtQ (N.2.2) 

and 

* = [det(l+(QtQ)- 1o(QtQ))]* . (N.2.3) 

Now use Eq. (IV.2.1) for QtQ: 

(N.2.4) 

First, consider the use of this result for the update of a single link. To find 

the needed elements of (QtQ)- 1, a Monte Carlo is run in the complex field rp, 

which interacts via the next-nearest neighbor action rpQt Qrp . AB this auxiliary 

1. These results can be proved using: {5 Q {5 = Qt . 
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Monte Carlo runs, the correlations "VJiCfJi are measured, providing an estimate for 

( QtQ)ii.1 which converges statistically (as Jn, where N is the number of sweeps 

in the pseudo variables) to the correct value. These estimates are then used in 

Eq. (N.2.3) to calculate the ratio of determinants. The analog of Eq. (N.l .B) 

involves a much larger matrix due to the next-nearest neighbor structure of 

Qt Q. Once the present link is updated, a new pseudo Monte Carlo is run to 

update the next linl{. In the limit of an infinite number of pseudo-sweeps, N -Ho, 

this is an exact algorithm, though a very slow one. The improvements in speed 

come with some approximations . 

The idea is to partially break the Markov chain of configuration i evolving 

out of configuration i -1. and so on, and, instead, update several gauge links 

using the estimates for ( QtQ)-1 from the~ pseudo Monte Carlo. The Markov 

chain is broken since the ( Qt Q)-1 estimates will not take into account the links 

that have been moved since the pseudo Monte Carlo was run - they will be "old" 

estimates . If P gauge links are updated from the same pseudo Monte Carlo, one 

gains a factor of P in speed. The idea certainly makes sense for a sparse set of 

links- the effect on (QtQ)-1 of the movement of a far away link (distance>() is 

small. 

Since o Q can be made small by making the Metropolis hit, o U, small. we 

can expand the determinant ratio in powers of o U: 

(N.2 .5) 

The trace is much easier to evaluate than the determinant , but the real 

improvement in speed comes when this linearizing approximation is applied to 

an entire sweep through the gauge links . Suppose we sweep through all the 

gauge links of the lattice, recalculating (QtQ)-1 for each update (as one 

rigorously should) . Effectively, one is then calculating the product, (denote QtQ 
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by W), 

det(W+6W 1) det(W+6W 1+6W2 ) 

det( W) det( W+6 W1) 

det(W+6W 1+ · · · +6Wn) 
det( W +6 W 1 + · · · +6 Wn _1) . (N.2 .6) 

This is, to linear order in 6 U, 

(N.2.7) 

We see that, if one is linearizing the determinant, it is formally just as good an 

approximation to use the same ( QtQ)- 1 for all of the link updates. That is, in 

this approximation, the pseudo Monte Carlo needs to be run only once in order to 

update the entire gauge field configuration. 

Of course, this is only formally true - one could just as well run the pseudo 

Monte Carlo at the beginning of a run and then use it to update the gauge 

configuration 100 times! The errors, though of order (6 U)2 , build up. We will call 

this error, which is associated with the breaking of the Markov chain, the "sys-

tematic" error (it doesn't go away as N 4oo). 

Our original intent was to study the severity of the systematic error by 

updating subsets of all the gauge links from the same pseudo Monte Carlo. As a 

first step, we did the fastest algorithm, and the one with the largest systematic 

error - we updated .all the gauge links using a single pseudo Monte Carlo. 

Surprisingly, this seemed to work quite well. Let us move on to some of the 

numerical results . 
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Results 

We chose, as a testing ground for the pseudo fermion method, the 

Schwinger Model, QED in 1 + 1 dimensions. The lattice action is, 

S[U,,P.~] = {3 2: [1- cos~~(x)] + I:~i Qi;'if!; 
:~ u 

where {3( = 12 ) is the coupling constant and ~;.w is given by, 
g 

(N.2.8) 

(N.2.9) 

~,u(x) is the gauge variable that takes on values in [0,2rr) and lives on the link 

(x ,J.,L) . The matrix Q in the fermion part of the action is identical to that in Eqs. 

(N.1.4) and (N.l.5). The Dirac indices a and {3 take on values 0 or 1 and there is 

only one "color ." 

The subgroup Z(200) was used to approximate U( 1) in the pure gauge part 

of the action and the Metropolis algorithm was used to update the lattice. All 

our computation was done on a VAX 111780 computer and took about 300 hours 

of CPU time. We worked on a 4x12 lattice at a coupling constant of {3=2.5 and a 

hopping parameter value of JC=0.25. We chose to work at only one value of the 

coupling where the correlation length is of order unity due to limitations on 

computer time. The continuum limit of this model is not reached until the 

correlation length is very large [7]. Our only attempt has been to study the vali-

dity of various approximations in the pseudo fermion method in a region where 

it is essential to include the effects of dynamical fermions . 

The mass gap of the model was calculated using the decay of the 2 point 

function: 

(N.2.10) 
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The operator 1/rr51/l has the correct quantum numbers to create, out of the 

vacuum, the meson whose mass we wish to measure . Such observables can be 

expressed in terms of the fermion propagator in the external gauge field: 

(N.2.11) 

= d~m (detQ) = Q;;;} detQ 

Similarly, 

(N.2.12) 

and so the 2 point functions such as Eq. (N.2.10) are obtained by running 

Gauss-Seidel inversions to find the various Q-1 elements. A typical result for this 

observable is shown in Fig . 4.1. 

We first computed the mass gap in the quenched approximation where all 

closed fermion loops are neglected by setting the fermion determinant equal to 

a constant. Next, the "exact" calculation was done by including the effects of 

dynamical fermions via Gauss-Seidel as explained in Section 1. This method is 

exact to the extent that the Gauss-Seidel converges exponentially to the correct 

value of Q-1. The results already tell us something important; the inclusion of 

dynamical fermions has a nontrivial effect which changes the mass by 25%. 

(Table 1) . 

We now turn to the pseudo fermion method. The pseudo fermion Monte 

Carlo was run only once for every gauge sweep through the lattice, i.e ., the 

update of the entire gauge field configuration as in Eq. (N.2 . 7) . To see how well 

the determinant estimates from the pseudo Monte Carlo were converging, we 
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computed the determinant in the linear approximation, Eq. (N.2.5) and com-

pared it with the exact determinant (Eq. (N.1 . B)) evaluated at the same link in 

the same configuration. Some representative results are shown in in Fig. 4 .2. 

We see that even after 100 pseudo sweeps the determinant estimate can still be 

off by "'50% from the correct value. We ascertained that our programs were 

correct by running for a very large number of pseudo Monte Carlo sweeps (up to 

10,000) until the linearized result converged to the exact result for small hit 

size. 

Table 1: Mass Gap of the Schwinger Model 

Algorithm Number of Mass 

pseudo-sweeps in units of .L 
a 

Quenched 0 .708 ± 0.041 

Exact (G.S.) 0 .986 ± .052 

Pseudo-Fermion 100 1. 020 ± 0.029 

50 1. 059 ± 0 .023 

25 1. 000 ± 0.027 

12 1. 040 ± 0.026 

6 0.925 ± 0.035 

The mass gap, determined from runs in which the dynamical fermions are 

included via the auxiliary, pseudo field, is also given in Table 1. To make the 

error introduced by the linearization of the determinant small (Eq. (N.2.7) , "sys-

tematic" error) , we chose the Metropolis hit size, 619- , to be small. 619- was taken 

to be ±. 05· 2rr . This is 4 times smaller than the optimal2 value used for the 

2. The "optimal" value for the hit s:ize is defined to be that value which gives an accept ance of 
50%, i.e., t he link move is accept ed 50% of the time . 
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exact calculation. Since the hit size (the step size of the random walk) is 

smaller, the Monte Carlo using the pseudo field, for a given number of gauge 

sweeps, explores configuration space more slowly than the exact Monte Carlo. 

The CPU time per sweep is, however, much lower. The determinant estimates 

only converge as the number of pseudo sweeps, N, goes to infinity, so we have 

done runs of various choices: N = 6,12,25,50 and 100. The results are given in 

Table 1 and are plotted in Fig. 4. 3. 

We find our results to be quite encouraging. Even though the error in the 

determinant (or more generally, in the action) due to the finite statistics is 

often large (Fig . 4.2), the validity of the approximation is finally to be judged by 

the error on the mass gap (or other observables). It seems that already at N 

=12, the mass has converged to the asymptotic value . The masses 

from N=12, 25, 50, 100 are essentially constant (within statistical errors) . A 

linear extrapolation of these 4 values is shown in Fig. 4.3 and gives the value, for 

the mass gap from the pseudo fermion method, of: 

Trl.pseudJJ = 1. 034±. 037 , 

which is consistent with the value obtained from the exact algorithm: 

7?1.azact = . 986± .052 . 

When the dynamical fermions are "turned on", the exact calculation shows 

us that the mass gap shifts by approximately 25%. The pseudo fermion algo

rithm is able to reproduce this shift and the two methods agree to within 5% . 



- 90-

1. Why did it work so well? 

It is actually quite surprising that as few as 12 to 25 sweeps in the pseudo 

field can give such (apparently) good results. As was mentioned in the last sec-

tion, the determinants are not very well determined for N=12,25, with 50-100% 

errors being common. So, how can it work? The answer is that the gauge field is 

moving through configuration space slowly - the (true) determinant ratio at a 

particular link does not change very rapidly as the Monte Carlo runs. This 

means that the wildly fluctuating determinant estimates tend to average out 

over gauge sweeps, effectively giving a much more accurate estimate of the 

determinant. 

One realizes that it is not the value of N that matters - rather, it is the r.sillQ 

of speeds through configuration space of the two Monte Carlos that counts. The 

pseudo field, rp, must explore its configuration space much more rapidly than 

the gauge ti.eld does . 

The argument so far has been intuitive. One can make it more precise by 

considering the Langevin formulation of the problem. The Langevin equations 

are a set of stochastic differential equations (i.e. containing noise terms) which 

are equivalent to the path integral. One can think of them in terms of a Monte 

Carlo simulation - in Appendix 3 it is shown that the Langevin method is just 

another method, similar to the Metropolis procedure, of satisfying detailed bal-

ance. For our purposes, the usefulness of this formalism lies in the fact that it 

is an easy way to write down equations which describe what the Monte Carlo is 

doing, and it also explicitly contains the ratio of speeds through configuration 

space . The Langevin equations for our problem are : 

(IV.3.1) 

. 1 -Q 1 
rp = TfP + ~9' (IV.3.2) 
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T« 1 . 

The condition T«l insures that the rp field moves through configuration space 

much faster than the U field . 77 r; and T)rp are gaussian random noise terms, satis-

fying: 

<T)r;(t')TJr;(t)> = <T)rp(t')TJ,(t)> = 26(t' -t) ' (N.3.3) 

which serves to normalize them. The "time", t, is a fictitious time and is the 

analog of the Monte Carlo sweep number. 

Think of these equations as describing a Monte Carlo evolution of the fields. 

The gaussian random noise terms are the analogs of the "random hit", 6 U, of the 

Metropolis procedure . The other terms on the right hand sides are - ~~ and 

6S - ~;uao : they act to bias the evolution of the field toward field configurations 

with low action and are the analog of the acceptance, rejection part of the 

Metropolis procedure. 

The term <rhrp; > (~~~if is the contribution of the fermion determinant. 

Define Starmion through, 

(N.3.4) 

and so, 

(N.3.5) 

The brackets in < fPi rp; > represent a "time" average over an interval much 

longer than the rp evolution time scale , T; it is the analog of the average over N 

pseudo sweeps in the usual Monte Carlo approach. It is shown in Appendix 3 that 

(6 U) 2 
T corresponds to N of the Monte Carlo . 
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We now come to our claim: forT sufficiently small, the brackets in <cp.;,cp1 > 

can be completely removed from Eq. (N.3. 1), which is equivalent to setting N= l 

in the Monte Carlo . 

The intuitive justification for this is the following . T small implies that, on 

the evolution time scale of the rp's, the U field is static. The factor ~ ~ is thus , 

essentially, a constant. This implies that, in the time evolution of the U field for 

k steps, the contribution of this term is, 

(IV.3.6) 

and so the effect of the term in each time step is, 

(IV.3.7) 

We see that, for the averaging over gauge configurations to work, the Langevin 

equations must be linear in the brackets . 1f the brackets are removed from a 

quadratic term, <~cp><~cp> , the averaging produces the incorrect result, 

<~cp~rp> . A~ that the brackets can be removed has been given for a simple 

model [B]. F'or our model, we give numerical evidence that this is the case. 

The above argument suggests that the correct theory is obtained even in 

the extreme limit : N= 1, 6'19-~o. To check this , we ran Monte Carlo's for N= 1, 

6'19-= 10,7,5,3 (measured in units of 2~0 ). The results are plotted in Fig . 4.4 as a 

function of 6'19- . It appears that the results are indeed converging to the correct 

value as 6'19-~0 . We take these data to be a strong indication, at least for the 

Schwinger model, that the intuitive arguments given in this section are correct. 

The determinant estimates coming from a pseudo Monte Carlo with N= 1 are, of 

course, very bad; the only way for the correct results to be found is if the 
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averaging mechanism is in fact working . 

For their simple model, F'ucito and Marinari [8] prove that the error in solv

ing the Langevin equations (with the brackets removed) for finite T is propor

tional to T . For the Monte Carlo this would mean that the error in the pseudo 

fermion method should be proportional to (6 ~)
2 

. This is not what one might 

naively expect- for instance, the determinant estimates converge as Jn, so we 

might expect the overall error to be the same. From Fig . 4.5, where the data 

are plotted vs ~ and (6t9.)2, it seems that the error, for the Schwinger model, 

is also proportional to (6 ~)
2 

. Again, it is the averaging mechanism which is 

responsible for the error to be of higher order than naively expected. 

Let us now summarize what we have learned from the Schwinger model cal

culation. We have seen that, for surpri.singly small choices of N, the averaging 

mechanism implies that good results can still be obtained. The exciting possibil

ity exists that a Monte Carlo, including the effects of dynamical fermions, can 

run at a speed which is only a factor N slower than the pure gauge calculation 

(and not go as volume squared!) . This is somewhat misleading, however . As the 

correlation length, ~. grows, the "systematic" error associated with updating 

many gauge links using "old" Q-1 estimates becomes more severe . This implies 

that 6 U will have to be made small, implying that the calculation moves through 

configuration space more slowly. So, the actual speed of the method is some

what slower (how much?) than just a factor N over pure gauge . Let us now 

move on to the interesting case of SU(3) in 4 dimensions . 
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2. SU(3} in 4 dimensions 

We have done some preliminary studies on the application of the pseudo 

fermion method to the real theory: SU(3) in 4 dimensions . The same strategy is 

adopted as in the Schwinger model calculation - we wish to test the reliability of 

the method by comparing against an exact algorithm based on Gauss-Seidel 

inversion. Due to the extreme slowness ( 12 VAX minutes per sweep) of this exact 

algorithm, we are forced to do our comparisons on very small. 24 lattices. We 

emphasize that it is only the exact algorithm which is limited to such small lat

tices - the pseudo fermion algorithm could easily be run on larger (i.e . 64 ) lat

tices, on our VAX 11/780. We want to make the finite size effects on our observ

able be the same, however. For this reason, both algorithms have been run on z4 

lattices . 

The observable which is compared is the average value of the plaquette, or 

1x 1 Wilson loop. This is, admittedly, a very simple observable . It does show the 

effects of the dynamical fermions, however, and can easily be obtained with high 

accuracy. The average plaquette serves as our indicator that the dynamical fer

miens are changing the distribution of gauge field configurations. 

The work of this section is also described in [9]. SU(3) with dynamical fer

miens is presently being studied by Hamber, Marinari, Parisi and Rebbi [ 1 0]. 

They work with Susskind fermions and go up to 84 lattices . They do not compare 

with an exact algorithm. However, they do note that their average plaquette has 

the correct qualitative behavior as the dynamical fermions are included. 

In this work, we again use the Wilson formulation of fermions on the lattice . 

We are presently coding the Susskind case and plan to study these and compare 

with the Wilson results . More will later be said about the advantages and disad

vantages of these two competing formalisms . 
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The full group of SU(3) was simulated in the Monte Carlo . Though discrete 

subgroups of SU(3) exist. the largest one has been found to be too coarse for 

reliable calculations [ 11]. The SU(3) links are updated using a Metropolis pro

cedure involving SU(2) subgroups [ 12]. The pure gauge part of the action was 

taken to be the usual Wilson form (Eq. (1.1.5)). 

(N.4.1) 

with the U's in the fundamental representation of SU(3), and {3 is related to the 

coupling by {3=-.;- . Since we use the Wilson formulation of fermions. on each 
g 

site there are 12 (complex) degrees of freedom ( 4(spin)x3(color) ). The action 

for the pseudo fields is quadratic in the fields . Since there exists an efficient 

algorithm for generating a random variable, x, distributed according to the pro

bability distribution P(x )"'e -o.z
2 

[ 13], we updated the pseudo fields via a "heat 

bath" procedure [ 14]. This involves choosing the transition probabilities to be, 

(N.4.2) 

so that Eq. (1 .4.4) is immediately satisfied. When this procedure is possible it is 

much more efficient than the Metropolis procedure since successive 

configurations are much less correlated. The coding of· this algorithm turned 

out to be quite a task. For example, there are 48 different Dirac ((1 ±;P)( 1±7v)) 

matrices needed for the next-nearest neighbor action of the pseudo field : cpQtQrp 

In order to avoid needless floating point operations (i.e . multiplication of 

zeros) these 48, 4X4 matrices were "hand wired" into the code. We worked in a 

coupling regime of {3= 5.5 to 5.9 . The correlation length in this regime is 

approximately 1, and current calculations are being done in this regime . 

Fig . 4.6 shows the plaquette for {3= 5.5 to 5.9 . Along with the pure gauge 
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values , we plot the results from runs in which the fermions were included via the 

pseudo fermion method. We included 2 flavors of fermion with /C= .l25 (for both) . 

The points of Fig . 4.6 were obtained with the Metropolis hit size, 6 U, equal to the 

optimal pure gauge value (a "large" 6 U) , and with N=20 . Already, we see that 

the qualitative effect is the correct one . With dynamical quarks included we 

expect the behavior of Wilson loops to change from an area law decay to a per

imeter law decay. Physically, this corresponds to the fact that as one pulls two 

quarks apart, stretching the flux tube between them, a quark-antiquark pair can 

pop out of the vacuum, forming two mesons . This screening effect translates 

into perimeter decay of Wilson loops. If area law is changing to perimeter law, 

we would expect the expectations of loops to rise. and this is what is seen in Fig. 

4.6. 

Next, let us compare the pseudo fermion technique with the exact algo

rithm. for reasons of limited CPU Lime , this was done only at one value of the 

coupling, {3=5.7 . Fig . 4. 7 shows the results of the exacl algorithm and the 

pseudo fermion results for N =20.40,80. 6 U is still equal to the large , optimal 

value . We see that N=20. is definitely too low, and that N=40,80 is converging to 

the true result . This was with the large 6 U; if 6 U is smaller, then, by the argu

ments given in the previous section, N can also be taken smaller. 

AB in the Schwinger model case, we investigated the limit N small, 6 U40. 

Consider first the run withN= l O. oU= large . optimal value . For this low value of 

N, the determinant estimates fluctuate wildly. Since 6 U is large , the deter

minant acts as a large random noise term and disorders the field configurations . 

This is seen in the run: the plaquette falls from the pure gauge value of .59 to 

"' .40 . As 6 U is taken towards 0. we expect the averaging mechanism to cause 

the field configurations to become ordered and, eventually, give the correct 

result for the plaquette . This is what is seen. Fig . 4 .8 shows the results for 
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N=lO, 6U ->O . We see that the plaquette values are converging towards the 

correct answer of "' .66 . The averaging mechanism is at work here, as it was for 

the Schwinger model. 

We find our results to be quite encouraging . The good results obtained in 

the Schwinger model calculation do not seem to be model dependent . Even for 

the real theory, SU(3) in 4 dimensions , our results indicate that with a very mod

est number of pseudo sweeps, N "'50, and with the extreme linearized approxi

mation of updating all gauge links from the same pseudo Monte Carlo (Eq. 

(N.2. 7)), the correct distribution of field configurations is obtained. 

Lastly, we would like to take a look at the systematic error we are making 

by using "old" determinant estimates for the update of the gauge links . What 

one would like to !mow is: how much does the "old" determinant deviate from 

the actual determinant, at each link. To see this, we did the following . Picking 

some typical gauge configuration, we held it fixed and found , via Gauss-Seidel. 

the determinants at each link and printed them out. Then, with the same 

configuration, we went back to the beginning and again found the determinants . 

This time , however, we allowed the links to move exactly as they do in a typical 

update . Taking the ratios of these two lists of determinants gives us the ratio of 

the true determinant divided by the "old" determinant, as a function of the link 

number through the sweep. Some results are shown in Fig . 4.9. We see that, 

through most of the sweep, the ratios are very close to 1 - the "old" determinant 

is the same as the true determinant. Though many of the links have been moved 

by 6 U, this apparently averages out - the determinant is a smooth function in 

configuration space . Towards the end of the sweep some sizable differences are 

found . However, there does not seem to be a systematic drift to values >1 or <1 

as one might suspect. 
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Before concluding this chapter, we would like to say a few words about the 

choice of fermion formalism. In the Susskind approach, the components of the 

Dirac spinor are spread out among various sites, so there are less degrees of 

freedom per unit volume than in the Wilson approach. The advantages of this 

approach are: 

(1) For the same lattice size, this method will run"' 8 times faster than the Wil

son method (in 4 dimensions). 

(2) There is a remnant of continuous chiral symmetry on the lattice for m =0. 

at any g [ 15]. 

The disadvantages are: 

(1) The unit cell in this formalism is 2a on a side, so, at least in weak coupling 

one needs ~times the lattice volume as in Wilson. 

(2) This formalism has species doubling problems. In 4 dimensions. there are 4 

flavors . In [10]. the square root of the determinant is used to effectively 

give 2 flavors. It is not clear that this procedure is correct. 

The Wilson method has no species doubling problems, however, chiral sym

metry is explicitly broken for any finite g. These two fermion formulations need 

to be studied further. We are presently coding the Susskind case and plan to 

compare it against the Wilson method in the future. 

Conclusions 

In closing, we should mention the prospects for implementing the fermion 

methods described in this chapter on parallel computers, in particular, those of 

the Homogeneous Machine ilk. There is no problem with the implementation of 

pseudo fermions since the interaction is local. Though it did turn out to be a 

second nearest neighbor interaction, this is no worse than the case of a pure 
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gauge theory (Jinks interact via plaquettes) and is not a serious problem for the 

Homogeneous Machine. For the stochastic algorithm or the related hopping 

expansion method [ 16], the basic quantities needed are Wilson loops of arbitrary 

shapes. Using the algorithm described in Appendix 1, these loops can be calcu-

lated efficiently, with little extra effort on the part of the programmer. We feel 

that either method can be effectively implemented on the Homogeneous 

Machine. 

With the combination of improved fermion techniques running on new, 

powerful computers , Monte Carlo calculations including dynamical quark effects 

on realistic lattice sizes will perhaps be possible in the near future . 
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F'igure Captions 

[ 4.l ]A representative two-point function. 

[ 4.2]Representative plots of the linearized and exact ratios of determinants, as 

functions of the change in angle 6'19-, measured on a randomly chosen link in 

four different configurations. The angle is measured in units of ;~. The 

curve is the ratio obtained from the exact algorithm and the straight line is 

that obtained in the linear approximation from a pseudo Monte Carlo of 

N= l OO sweeps with a Metropolis hit size of ±1.0. 

[ 4.3]The mass gap as a function of ~. where N is the number of pseudo-

sweeps. The solid line is a linear extrapolation of the last four data points. 

Also shown are the results for the quenched and exact algorithm, plotted at 

1 
VN = o. 
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[ 4.4]The mass gap as a function of the Metropolis hit size, 61.9- (measured in units 

2rr :~ of 
200 1

,for a fixed number of pseudo-sweeps, N= 1. The exact value is plot-

ted at 61.9-=0 . 

[ 4.5](a) The mass gap as a function of ~ . (b) The mass gap as a function of 

(61.9-) 2 , for N=l. Again, the exact and quenched mass gap results are plotted 

at 61.9-=0. 

[ 4.6]The average plaquette for SU(3) . The squares are the pure gauge results ; 

the triangles are the results with the inclusion of dynamical quarks (2 

flavors) via the pseudo fermion method, N=20 . 

[ 4. ?]The average plaquette at {3=5.7. Shown is the pure gauge result (square), 

the Gauss-Seidel result (cross) , and the pseudo fermion results , plotted as a 

function of ~ . 

[ 4.8]The average plaquette as a function of hit size . N is fixed at 10, and 6 U is 

taken towards 0. For convenience, the results are plotted versus the accep-

tance (fraction of Metropolis hits accepted) . Small 6 U implies high accep-

tance, and as 6U40, the acceptance 4 1. The pure gauge and Gauss-Seidel 

results are plotted at acceptance equal to unity . 

[ 4. 9]The ratio of "new" to "old" determinants for typical configurations at {3=5. 7. 

The determinants themselves deviate from 1. 0 by, typically, .06 . 
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Schwinger model: 
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Appendix 1: Wilson Loops on the Homogeneous Machine 

At first sight, the calculation of Wilson loops of arbitrary shape and orien

tation on the Homogeneous Machine seems very difficult. A loop such as that 

shown in Fig. 2.6(d) can intersect the subcells of seyeral processors. Keeping 

track of all the necessary communications for increasingly complex loops (which 

we need for glueball calculations) is a difficult task for the programmer. 

This turns out not to be the case, however, if one sets up the algorithm in 

the following way. Describe the shape of a loop by strings of integers, where 

each integer corresponds to a unit translation vector of the lattice : 1 

corresponds to +x, 2 corresponds to +fj, ... , 5 corresponds to -x, etc . For exam

ple , the loop of Fig . 2.6(d) is described by the string "253617" . A routine is then 

constructed which takes the starting location of the loop and a string of integers 

(of arbitrary length) as input,and produces the matrix product along that path. 

This is done by moving to the site of the lattice where the loop starts and then 

reading the input string one integer at a time . When an integer is read, the 

matrix in the corresponding direction is fetched, multiplied into the current 

matrix product and, finally, the current site location is incremented in the same 

direction. The routine is then ready to read the next integer. It continues this 

way, literally "walking around" the path described by the input string. 

The only modification necessary for this algorithm to work on the Homo

geneous Machine is a simple test which, at each step of the "walk," tests to see if 

one is stepping out of the current subcell. If this is true, the processor sends its 

current matrix product to the processor in the direction of the step. The string 

does not need to be passed. All the processors are calculating the same shape 

loop located at the same point in each subcell (the calculation is, again, syn

chronized by the communications procedure), so aU processors will be at the 

same step of the same path. 
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The above algorithm for Wilson loops was quite easy to implement and once 

this was done, the code for glueball masses, including an arbitrary number of 

operators, required very little additional work . One slight complication is the 

fact that a 2-point correlation, being a global observable, cannot be easily calcu

lated within the Homogeneous Machine. What we do is the following. First, all 

the Wi.lson loops on the lattice are calculated in the nodes of the machine. The 

zero momentum operators are then found by adding the loops in the spatial 

directions - this is done by adding results and passing the results towards pro

cessor 0. The zero momentum operators, for each time slice, now reside in pro

cessor 0 and all that needs to be done is for the 2-point correlations between the 

various slices to be calculated. Instead of doing this in processor 0, we pass the 

numbers to the Intermediate Host (IH) and have it calculate the correlations. 

This frees the array to continue on to the next sweep. Since the amount of work 

that the IH has to do is small in comparison to that required to sweep through a 

subcell, the IH has no trouble keeping up with the array. 



Appendix 2: Gauss-Seidel Inversion 

Consider the equation, 
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Mx = b (A2.1) 

M is a matrix, x and b are column vectors. We want to solve Eq. (A2.1) for x. 

The Gauss-Seidel method consists of iteratively solving the i th equation for .:~; . 

One starts by picking some vector, xC0>, as an initial guess. Then go to the first 

row and solve for x 1 , go the second row and solve for x 2 (using the new value for 

x 1), and so on, sweeping down the rows of M to get the first iterate, xC 1) . This 

procedure is continued until x is no longer changing. We can be more precise . 

Write Mas, 

M=D-L-U, (A2.2) 

where D is the diagonal part of M, and L and U are the lower and upper triangu

lar parts of M . The iteration described above can be written as: 

(D -L )x(k+ 1) = b + Ux(lc) (A2 .3) 

or , 

(A2.4) 

etc., leading to, 

or, 

x = (D-L)-1 ~ 1 + U(D-Lt 1 + U(D-L)-1 U(D-L)-1 + · · ·jb . (A2.6) 
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To see when this method converges, expand b in terms of the eigenvectors of 

U(D-L)-1 : 

where, 

Then Eq. (A2.6) implies, 

X= (D -L)-l 2:: O'.i [ 1 +~ +~2 + .. . ]'Pi 
i 

We see that the Gauss-Seidel method converges if all the ~ satisfy 

~ < 1 . 

(A2.7) 

(A2.8) 

(A2 .9) 

(A2.1 0) 

Eq. (A2. 9) also shows that the convergence goes as t...N, where 'A is the largest of 

the ~ , and N is the number of iterations. 
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AppeDdix 3: Langevin equations are equivalent to the Path Integral 

We will give a physicist's "proof" (non-rigorous) that the Langevin equations 

are equivalent to the usual path integral. It is based on going through the opera-

tions required to solve the equations. We will show that these operations satisfy 

detailed balance and hence that the correct ensemble of field configurations is 

obtained. 

The path integral is, 

(A3.1) 

and observables are found through, 

(A3.2) 

Suppose we solve the set of stochastic differential equations: 

(A3.3) 

(A3.4) 

Then the clillm is: 

1 T . 
< f [SO] > = lim -T J dt f [SO (t)] . 

T-+oo O 
(A3.5) 

The index i labels spacetime location. 7'} is a gaussian noise, normalized by Eq. 

(A3.4). The "time", t, is a fictitious time and is the analog of the sweep number 

in a Monte Carlo. 

Consider the numerical solution of Eq. (A3.3),(A3.4). We discretize "time" 

into steps of size ~. The equation for the evolution of the (k + 1)th field from the 

k th becomes: 
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(A3.6) 

R is a gaussian random number of width 1, that is, the probability distribution 

forR, P(R), is, 

R2 
1 -

P(R) = _ = e 2 
-v2rr 

(A3.7) 

This distribution gives < R 2 >= 1 . The distribution of all possible choices of r;'pc+l) 

is shown in Fig . A3.1 . 

The condition of detailed balance reads: 

(A3.8) 

where n~c is the number of contlgurations in state k and Pk .. k+l is the transition 

probability from state k to state k + 1. We want: 

= (A3 .9) 

So we need, 

(A3.10) 

Verify this using the picture of the distribution in Fi.g. A3 .1: 

(A3.11) 

and, 

with C a constant. This gives , 
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Now, 

(A3.12) 

6S * = -
6 

I (t) + O(e ) rp 'P 

We have, finally, 

(A3.13) 

and so detailed balance is satisfied as e--+0 . 

This proves that the ensemble obtained through the solution of the Langevin 

equations has its members distributed according to the Boltzmann factor, e -s, 

and hence it is equivalent to the path integral. 

Finally, we would like to show that Tin the equations, 

(A3.14) 

. 1 -Q 1 
rp = -:rrp + ~'P (A3.15) 

<7] r:;( t')7Jr:;(t)> = <7Jrp(t')7Jrp(t)> = 26(t' -t) ' 

(6 U) 2 
corresponds to N in the Monte Carlo. 

The distance that the rp field travels through configuration space, which is 

proportional to YN in the Monte Carlo, goes as :* in the Langevin approach 

since this multiplies the width of the distribution in Fig. A3.1. Hence, 
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1 T 0(-

N' (A3.16) 

t To see the dependence on 6 U, shift the time scale by T . Lett ~t· = -. The equa
T 

tions become, 

· 6Sgav.ga 6 Q u 
U = -T 6 U - T <rp-;.(Pj >( 6 U Jij + TIZ7'} r.l (A3.17) 

(p = rp Q + 7Jrp ' (A3.18) 

<rJ r;(t' )rJ r;(t )> = <rJ'~'(t' )rJrp(t )> = z 6(t' -t) 

We see that the Metropolis hit size, 6 U, is proportional to T* since this is, again, 

the width of the distribution. Therefore, 

and we have, 

T C( (6 U)2 , 

TO( (6 U) 2 

N 
(A3.1 9) 
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