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Abstract 

Fractions highly enriched for gap junctions by morphological criteria have 

been isolated from rat liver, heart and eye lens, although some question exists 

as to the nature of the structures from lens. The junctions from each tissue are 

comprised of a single major protein of M 28,000 in the liver, M 30,000 in the r r 

heart, and Mr 26,000 (MIP 26) in the lens. The polypeptide profile of the liver 

fraction is complicated by endogenous proteolysis and aggregation in SDS of the 

gap junction protein and the presence of about 20% non-junctional material. Heart 

and lens junction proteins are also found to aggregate in SDS, while endogenous 

proteolysis typically reduces the cardiac gap junction protein to Mr 28,000 during 

isolation. 

Comparisons of two-dimensional peptide maps of the junctional proteins 

from these tissues, and the use, where necessary, of a third dimension of resolution 

(.HPLC), demonstr~tes the three proteins tc be very different in terms of their 

primary structures. The protein of each tissue, however, seems well conserved 

between mammalian species. For liver and lens, this finding has been confirmed 

in amino acid analyses and partial NH2-terminal sequences (to 58 and 33 residues, 

respectively). Cleavage products of these two proteins have also been produced 

to allow further sequence analysis in the future. In spite of the differences in 

primary structure, some conservation of the tertiary structures of these proteins 

is suggested by proteolysis of intact junctions (likely restricted to the cytoplasmic 

surfaces). Liver and heart gap junction proteins are reduced by trypsin to two 

fragments of M "'10,000, while a single M 21,000 fragment is produced from r r 

lens MIP 26. Sequence analysis (liver and lens only) indicates that most of the 

protein removed by tryptic hydrolysis is from the carboxy-terminus, although 

an additional loop of 4,000 daltons is excised from the center of the liver poly-

peptide and five residues are lost from the NH2-terminus of the lens protein. 
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The extent and possible significance of this surprising tissue specificity 

of the gap junction protein are discussed in the light of these findings. 
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INTRODUCTION 

With the advent of cell theory, higher organisms were, for the first time, 

considered to be comprised of millions of individual units, each capable of autonomous, 

independent activity. Some coordination of these independent activities is, however, 

provided by the actions of the nervous and hormonal signalling systems of multi-

cellular organisms. The integrity of the individual cellular units is not compromised 

by these signals, since all messages are "screened" through the cell membrane 

by either specific surface receptors linked to second messenger systems inside 

the cell, specific ionic channels within the membrane which mediate carefully 

balanced exchanges, or selective solubility of the signal molecules in the membranes. 

Cell-cell Coupling: It was not until the discovery of bidirectional electrical 

coupling between cells in electrically excitable tissues (Bullock, 194 5; Wiersma, 

1947; Weidman, 1952; Furshpan and Potter, 1959), that it became evident that 

somewhat less specific although more direct interactions may occur between 

the unit cells of an organism. The demonstration of similar coupling between 

the cells of non-excitable tissues which soon followed (Loewenstein and Kanno, 

1964) led to the first suggestion that direct communication between the cytoplasms 

of adjacent cells may be a widespread occurrence. This has indeed proved true, 

since intercellular coupling is now regarded as the rule rather than the exception 

in the Metazoa (see Loewenstein, 1981 and Peracchia, 1980 for reviews). In animals, 

this intercellular coupling seems to display a consistent set of properties. Coupling 

is bidirectional (with a few rare exceptions) and applies not only to the free passage 

of small ions, but also to compounds of molecular weights as high as 1000 (Kanno 

and Loewenstein, 1966; Potter et al., 1966). Recent studies with derivatized fluor-

escent probes are consistent with the presence, between cells, of non-selective 

aqueous channels permeable to molecules of< M 800 (i.e., .r14 Ain diameter) 
- r 
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in mammals and < M 1000 (i.e., .r 20 Ain diameter) in arthropods (Flagg-Newton, 
- r 

1980; Rose, 1980, respectively). Some selectivity of the channels to molecules 

near the size cut-off suggest that some electrostatic interactions may occur with 

negative charges in the channel wall or mouth (Brink and Dewey, 1980). While 

non-specific causes such as cell damage or anoxia may cause cell-cell uncoupling, 

it is now generally believed that Ca ++ and H + concentrations are the principle 

effectors of channel gating (see Loewenstein, 1981 and Bennett, 1978 for reviews) 

and may serve to mediate uncoupling in even non-specific cases such as those 

just described. 

Gap Jtmction Structure. Several structures have been proposed as mediators 

of cell-cell coupling, but the most likely candidate, the gap junction, was first 

described as we know it today by Revel and Karnovsky in 1967, although it had 

been observed earlier under different pseudonyms (Sjostrand et al., 1958; Karrer, 

1960; Dewey and Barr, 1962; Robertson, 1963). The plasma membranes of adjacent 

cells come into close apposition, a likely prerequisite for establishing direct coupling 

between cells, but remain separated by a uniform .r 2 nm extracellular space bridged 

by a hexag~mal array of subunits. Similar arrays of intramembrane particles in 

freeze fracture replicas at sites of close membrane apposition were also detected 

(Kreutziger, 1968; McNutt and Weinstein, 1970; Goodenough and Revel, 1970; 

Chalcroft and Bullivant, 1970). Since freeze fracture is believed to split the lipid 

bilayer and expose the interior of the membrane, these results suggested that 

the gap junction was comprised of hexagonally arrayed aggregates of proteins 

(visible as intra-membrane particles in freeze-fracture), presumably forming channels 

spanning the membranes of both cells and the extracellular gap between them. 

This view of the gap junction has now been confirmed in X-ray (Caspar et al., 

1977; Makowski et al., 1977, 1982) and optical (Unwin and Zampighi, 1980) diffraction 

studies on isolated liver gap junctions. Each channel is apparently comprised 
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of two halves (connexons--Goodenough, 1975), one in each cell membrane, which 

meet head to head in the extracellular space. The connexons are comprised of 

six, apparently identical, subunits arranged symmetrically around a central aqueous 

pore 10-15 A in diameter, although it should be noted that a continuous aqueous 

passage between cells has yet to be unequivocally demonstrated on structural 

grounds. Changes in the interrelationships of the subunits of the connexons observed 

under different conditions have been proposed as possible models for gating of 

the junctional channel (Unwin and Zampighi, 1980; Makowski et al., 1977), although 

no evidence exists that these changes occur in vivo. 

Correlation Between Gap Jtmetions and Cellular Coupling. Since the first 

description of the gap junction, an overwhelming array of circumstantial evidence 

has accumulated correlating the presence of this structure with the coupling of 

cells. In addition to the large number of coincident demonstrations of electrical, 

metabolic or dye coupling of cells and the presence of morphologically recognizable 

gap junctions (in some cases representing the only close association of coupled 

cells-J. Hudspeth, personal communication) there have also been several studies 

where the gap junction contact area between cells has been specifically manipulated. 

Progressive and reversible disruption of gap junction contacts resulting from shrinkage 

of the cells following perfusion of a tissue with hypertonic sucrose has been found 

to also reversibly uncouple the cells (Barr et al., 1965; Dreifuss et al., 1966; Kawamura 

and Konishi, 1967). An analogous correlation by Azarnia et al. (1974) showed 

that a cell hybrid formed by fusion of communication incompetent mouse cells 

and communication competent human cells, was communication competent and 

formed recognizable gap junctions. However, as human chromosomes were lost, 

both of these abilities were also lost concurrently. Mouse L-cells similar to those 

used by Azarnia have been used in studies demonstrating that the absence of gap 

junctions in some lines is concomitant with an inability to mediate intercellular 
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coupling (Goshima, 1969; Pitts, 1971; Gilula et al., 1972). Temporal correlations 

have also been established between gap junction formation and the onset of electrical 

coupling (Rash and Fambrough, 1973; Johnson et al., 1974). 

As more has been understood of gap junction structure, it has become apparent 

that this structure is compatible with the properties defined for intercellular 

coupling (see Loewenstein, 1981 and Hooper and Subak-Bharpe, 1981 for reviews). 

Estimates of the junctional pore size (10-15 X) would suggest a molecular weight 

cut-off of about 1000 (see above and Flagg-N ewton, 1980), and are consistent 

with current estimates for the single channel resistance in a gap junction (1010 n.­

Loewenstein, 1975). Furthermore, Ca ++and pH, which have been implicated as 

the mediators of cellular uncoupling (see Loewenstein, 1981 and Bennett, 1978 

for reviews), have been demonstrated to cause structural changes in the gap junction 

(see Peracchia, 1980 for review), albeit on a reportedly longer timescale than 

the actual uncoupling process (Raviola et al., 1980). 

All of these experiments point to gap junctions as sufficient criteria for 

coupling. However, the demonstration of gap junctions as a necessary criterion 

for coupling is difficult as long as some systems exist where coupling is demonstrable 

but gap junctions remain undetected (Daniel et al., 1976; Kurizama and Suzuki, 

1976; Meyer et al., 1981; Williams and DeHaan, 1981). The problem to be con­

sidered here is one of differential thresholds of detectability. It is clear from 

the study of Meyer et al. (1981) that electrical coupling of neighboring cells can 

actually appear enchanced when gap junctions are depleted, a phenomenon which 

can readily be explained through a cable analysis of the tissue. In these same 

circumstances, the slower diffusion of larger molecules through the junctional 

channels compared to ions could result in dye transfer between cells falling below 

detectable limits well before the cells become electrically uncoupled. This could 

explain several recent results demonstrating compartmentalization in embryos 
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with respect to dye transfer, while electrical coupling persists (Wier and Lo, 1982; 

Warner and Lawrence, 1982; Lo and Gilula, 1979). 

In addition to the variability in the sensitivities of methods used for detecting 

coupling, the difficulties associated with structurally defining a gap junction under 

conditions where they are in low abundance must be considered. There is a limit 

to how small a cluster of particles can be and still be identified as a gap junction. 

Therefore, in the limiting case, single connexons, which may mediate coupling 

in some cases (see Williams and De Haan, 1981; Meyer et al., 1981), would not 

be included in any calculations of junctional area. These limitations should be 

considered when evaluating reports of electrical communication in the absence 

of gap junctions. 

Functions of Gap Junction Mediated Coupling. Gap junctions are likely 

to subserve a multitude of functions throughout the body, but at this stage we 

can only guess their exact nature until the particular molecules of interest which 

pass through the junction can be defined. In electrically excitable tissues, it is 

clear that through the free passage of ions between cells, gap junctions can serve 

to synchronize electric activity in a tissue, such as that required to maintain syn­

chronous muscular contractions of the heart (Barr et al., 1965; Goshima, 1969) 

or the uterus during parturition (Garfield et al., 1977). In non-excitable tissues, 

the demonstration of gap junctional function is more difficult, although a number 

of possibilities have been proposed. In addition to relatively non-specialized tasks 

such as the distribution of nutrients in tissues with poor blood supply (e.g., lens­

Goodenough et al., 1981) and the coordination of a tissue response to an external 

signal (e.g., effects of insulin on pancreatic islet cells-Meda et al., 1979), gap 

junctions have also been implicated in less passive roles. The establishment of 

developmental compartments in several species has been correlated with the appearance 

of communication compartments created by selective restrictions in gap junction 
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communication between cell populations (Warner and Lawrence, 1982; Wier and 

Lo, 1982; Lo and Gilula, 1980). Such changes in junctional coupling have even 

been implicated at the stage of ovulation (Gilula et al., 1978). Gap junctions have 

also been proposed to play a role in control of cell growth. This theory is largely 

based on various observations which have correlated a reduction in gap junction 

complement between cells with either expression of a transformed phenotype 

(see Loewenstein, 1979 for review; also Yancey et al., 1982; Atkinson et al., 1981), 

the ability of carcinomas to metastasize (McNutt et al., 1971), or the onset of 

cell division during liver regeneration (Yancey et al., 1979). 

Scope of this Thesis. In this thesis the author has approached the study 

of gap junctions from a biochemical standpoint in the hope that study of the individual 

junctional components, specifically the protein(s), will lead to a better understanding 

of the molecular structure of the junctional channels, and hence of their function. 

Biochemical analysis of gap junctions has been severely restricted by the 

small numbers of these structures in any given tissue (frequently less than 1% 

of the cell membranes are occupied by junctions). The difficulties inherent in 

isolating such a minor component are increased by the absence of any assay for 

the gap junction other than its appearance in electron micrographs of the fractions. 

As a result, gap junctions from only three tissues (liver, heart and lens) have been 

isolated in any degree of purity, and of these, only the liver gap junctions have 

-been well characterized. The basic approach to isolating gap junctions which 

has persisted from the earliest preparations (e.g., Goodenough and Stoeckenius, 

1972) involves the isolation of a plasma membrane fraction which is treated with 

detergent to solubilize all but the tightly packed arrays of proteins present in 

the gap junctional plaques. The junctions are then separated from remaining membranes 

and fibrous material on a sucrose density gradient. In the earlier isolation protocols, 

proteases were employed to obtain clean fractions (Goodenough and Stoeckenius, 
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1972; Goodenough, 1974). Although the structure of the junctions seemed unaffected 

by these procedures, it was later demonstrated that contaminating proteases in 

commercial collagenase caused breakdown of the junctional protein (Duguid and 

Revel, 1976). Since this time, many different polypeptides have been identified 

as gap junctional in the liver--Mr 35,500 and 25,500 (Duguid and Revel, 1976); 

M 34,000 (Ehrhart and Chauveau, 1977); M 40,000 and 38,000 (Culvenor and r r 

Evans, 1977); M 26,000 and 21,000 (Henderson et al., 1979); M 28,000 and 47,000 
r r 

(Hertzberg and Gilula, 1979); M 30,000 (Zampighi and Unwin, 1979); M 26,000 
r r 

(Finbow et al., 1980); M 28,000 (Nicholson et al., 1981); M 16,000 (Finbow et al., r r 

1983); Mr 46,000 (Henderson, 1982). Although there is now a certain consistency 

in reports of a component of Mr 26,000-30,000, at the inception of this thesis 

such was not the case. Indeed, only as this work has progressed have some of the 

reasons for these widely disparate claims become apparent, as will be detailed 

in Chapter 2. In any event, the first goal in this project was to define and characterize 

the protein components of the liver gap junction. 

By modifying existing preparative techniques, a fraction highly enriched 

in gap junctions by morphological criteria was obtained from rat liver (Chapter 1). 

Despite the apparent purity of the fraction based on morphological criteria, analysis 

by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS PAGE) revealed 

a number of polypeptide components. Analysis of each component by peptide 

mapping and other methods enabled us to conclude that the isolated liver gap 

junctions were comprised of a single major protein of Mr 28,000, with all other 

components being attributable to contaminants (-v20%) or aggregation or partial 

proteolysis of the "native" junctional protein (Chapter 2). With the nature and 

properties of the junctional protein in rat liver defined, we proceded to characterize 

its primary structure through sequence analysis (Chapter 2) and its higher order 

structure by proteolytic treatments of the protein while still part of the gap junction 
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structure (Chapter 3). This latter approach also served to generate fragments 

useful for future sequence analysis. At this point, one obvious direction for further 

research lay in additional characterization of the liver protein through sequence 

analysis. This could be coupled to studies on the disposition of the polypeptide 

chain within the junctional structure using specific labeling with photoactivatable 

labels which would be restricted in their access to the protein by solubility (aqueous 

or lipid) and steric factors. 

However, at this time several groups had reported a remarkably high content 

of junctions in the membranes of eye lens fiber cells (50-70% in the chicken) and 

had succeeded in isolating highly enriched junctional fractions containing a single 

protein of Mr 26,000 (MIP 26) (Broekhuyse et al., 1976; Alcala et al., 1975; Takemoto 

and Hansen, 1981). Given the similarity in molecular weights of the junctional 

proteins of liver and lens and the availability of an assay for the two junctional 

proteins in the form of two dimensional peptide maps, we chose to direct our 

efforts towards a comparison of the junctional proteins of these tissues, hoping 

to further characterize each protein in parallel. When comparisons of the proteins 

revealed them to be very different (Chapter 4), a difficulty arose. Although generally 

similar in appearance to junctions elsewhere, the lens junctions did have some 

atypical features which some authors found substantially different from other 

gap junctions (Zampighi et al., 1982). Since no homology could be demonstrated 

between the protein components of a recognized gap junction and the lens junction, 

the possibility existed that the structure in lens was not a gap junction. 

To clarify this issue, or at least to settle the question of gap junction tissue 

specificity, we proceded to isolate junctions from a third tissue, heart, where 

the junctions were well characterized and morphologically similar to those in 

liver. The gap junction fraction isolated from heart by a modification of a previously 

published protocol (Kensler and Goodenough, 1979) was found, like those of liver 
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and lens, to contain a single junctional protein (Mr 28,000--apparently derived 

from an Mr 30,000 "native" protein). However, this protein was also found to 

share no detectable homology by peptide mapping with the proteins of liver or 

lens, thus demonstrating the tissue specificity of the junctional protein, and providing 

a new outlook on the gap junction. Perhaps it is not what it may have seemed 

at first--a ubiquitous, non-specific channel connecting cells into a syncitium of 

sorts. Although the gap junction channel may be rather non-specific with respect 

to the molecules which pass through it, it may well confer on the cell a specificity 

regarding the other cell types with which it will communicate and the specific 

signals which will open or close such communication channels. Therefore, the 

gap junction may prove to represent another means by which a cell may respond 

specifically to its environment and its neighbors. 
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CHAPTER 1 

Gap Junctions in Liver. 

Isolation, Morphological Analysis and Quantitation 

Running title: Isolation of Liver Gap Junctions 
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Introduction 

Gap junctions are arrays of cell-to-cell channels that permit exchanges 

of cytoplasmic low molecular weight constituents, such as ions, various metabolites, 

etc. (for reviews, see Revel et al./ Hooper and Subak-Sharpe2 and Flagg-Newton 

et al. 3). Gap junctions allow for metabolic cooperation between the cells of a 

tissue,4 for electrical coupling of excitable cells5 and are believed to play a major 

role in the control of growth and differentiation. S, 7 Gap junctions are ubiquitous 

structures, found in every metazoan phylum and nearly all tissues studied. 8 With 

few exceptions, all these junctions have a characteristic appearance, 9 a feature 

of major importance since it is one of the only criteria of purity available for 

following the isolation of gap junctions. 

From a biochemical standpoint, the best studied tissues are the liver and 

eye lens, and this paper focuses attention on the liver gap junctions. Here, the 

major protein component has been reasonably well characterized, 10- 12 and a 

partial amino acid sequence is available.12 X-ray diffraction13 and image recon­

struction based on low dose electron microscopy, 14 in combination with the other 

techniques, indicate that each gap junctional channel is comprised of two halves 

(connexons15), one through the membrane of each adjacent cell. Each connexon 

is composed of six apparently identical polypeptide chains, probably associated 

with phospholipid. Gap junctions, as usually visualized, consist of large arrays 

of closely packed connexon pairs, which appear to retain their integrity under 

a variety of experimental treatments.16 
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A. A Strategy for the Isolation of the Gap Junction Protein 

Virtually all the published procedures for the purification of gap junctions 

involve the isolation of a plasma membrane fraction and its subsequent treatment 

with a detergent which solubilizes other membrane components but leaves the 

gap junctions, clearly recognizable by their characteristic lattices, intact. The 

junctions are then separated on a sucrose gradient from the other detergent-resistant 

material of the plasma membrane fraction on the basis of density. Additional 

treatments with reagents such as 8 M urea, 17 ' 18 and solutions of high pH (e.g., 

n 10) have also been employed in various preparation procedures with little apparent 

disruption of the gap junction structure. The general protocol outlined above 

must be specifically modified for each tissue because of differences in membrane 

or junctional density, the presence of additional components peculiar to that tissue 

( . . th 1" 10 . d t• f"l t . d" 1 19 e.g., uricase m e Iver, myosm an ac m I amen s m car Iac muse e, crys-

tallins of lens20), or differences in the sensitivity of gap junctions to detergent 

treatments.19 We will review here the isolation of gap junctions as applied to 

a specific tissue, the rat liver, with emphasis on techniques that we have found 

to reproducibly provide good yields of highly enriched gap junction fractions. 

B. Isolation of Gap Junctions from Rat Liver 

I. Isolation of Plasma Membranes 

Solutions Needed 

Name 

1. Isolation buffer (IB) 

2. Perfusion buffer (PB) 

Composition 

2 mM NaHC03 

0.5 mM CaC12 

pH 7 .4; (4°C) 

IB + 0.9% NaCl (3~C) 

Volume (for 25 livers, 
i.e., 200g tissue) 

20 liters 

200 ml 
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3. Two-phase 80 g Dextran (Sigma: M ( ) 500,000) r av 

[Should be made up a 62 g Polyethyleneglycol 6000 (Baker) 

day before the isolation 11.92 g NaH 2P04 • H20 

and allowed to separate 16.22 g Na2HP04 • 7 H20 

in a separatory funnel 0.3 g NaN
3 

overnight in a cold room] 1486 ml H
2
0 (4°C) 

(a) Methodology- Available Methods 

In the majority of published isolation protocols for gap junctions from rat 

or mouse liver, the method of Neville,21 variously modified, has been used to 

isolate the plasma membrane fraction. The livers are homogenized and the homo-

genate filtered through cheesecloth to remove coarse fibrous material and precipi-

tated nuclear protein. The homogenate is then centrifuged once or twice at relatively 

low g to separate the membranes from most of the mitochondria and soluble proteins. 

The pellets from these spins are then loaded onto a discontinuous sucrose gradient 

and centrifuged. 

This gradient is usually composed of layers of 60, 54, 50 and 43% (w/v) sucrose. 

The membranes can be collected between the 50% (d = 1.191) and 43% (d = 1.168) 

(w/v) sucrose layers (for specific details, see ref. 10), or a crude plasma membrane 

fraction can be collected instead over a 52% (w /v) sucrose cushion. 22 An alternative 

route is that developed by Lesko et al. 23 in which the sucrose gradient is supplanted 

by a two-phase polymer system (Fig. 1). This technique produces fractions similar 

in purity and yield to those obtained from sucrose gradients.18 Although the ingred-

ients of the two-phase mixture are somewhat expensive, the method avoids the 

time consuming use of sucrose gradients, and allows one to handle large quantities 

of material (J'120 g wet weight of liver) at one time, even if a zonal rotor is not 

available. Since the only information available as to the appropriateness of this 
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method in the preparation of plasma membranes for gap junction isolation applies 

specifically to rat liver plasma membrane, caution should be used in adapting 

this technique to other tissues and species. 

(b) Methodology - The Two-Phase Method (Fig. 1) 

Twenty-five young adult rats (111200 g body weight-if they are much older, 

contamination with connective tissue becomes a problem) are sacrificed by cervical 

dislocation. After cutting the vena cava above the liver, each liver ("'8 g wet weight) 

is perfused by injecting 3-5 ml of 37°C PB through the spleen. Perfusion is achieved 

through the portal system. The perfused liver is excised and placed in ice-cold 

IB within 30 sec of death. All subsequent steps are performed on ice. Each liver is 

homogenized in 100 ml of IB with a Tissuemizer (Tekmar Ultra Turrax, SDT-182 EN) 

at maximum power for 5 sec. This step can also be achieved in a Dounce homoge-

nizer using 25 strokes of a loose fitting pestle after first dicing the liver with 

scissors. Homogenates of six livers are pooled, diluted to 1800 ml with IB, and 

placed on ice for 10-15 min to allow nucleoprotein to precipitate. The homogenate 

is then filtered twice through four layers of cheesecloth and the filtrate centrifuged 

at 5000 rpm for 30 min (Sorval HG-4L rotor; RC-3 centrifuge: 125,000 g min). 
av 

The pooled pellets are resuspended in 3600 ml of IB with vigorous shaking and 

centrifuged twice at 3000 rpm for 15 min (HG-4L rotor: 22,000 g min). The av 

supernatant, containing most of the mitochondria and soluble proteins, is discarded 

each tim e. After the second centrifugation at this speed, care must be taken to 

aspirate all of the supernatant, or the subsequent two-phase separation may fail. 

(If necessary, the pellets obtained after the second spin can be resuspended and 

compacted at higher g to allow for a more complete aspiration of the supernatant.) 

These pellets are resuspended by vigorous shaking in 600 ml of each phase of the 

two-phase system and distributed among four 1-liter bottles (150 ml of each 
I 

phase/bottle). After shaking, the bottles are allowed to stand for 15 min and then 
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PLASMA MEMBRANE ISOLATION 

Temperature (°Cl 

0-4 

Two Phose Method 

Homogenate (m lBl 

stand 15 min 

filter 2x through cheesecloth 

I 
jl25,700 9av min I 

~(pellet) 
resuspend in IB 

I 
122,000 9av min I 

l (pellet l 

I repeat I 
~ (pellet) 

resuspend in two phose 
stand 15 min 

117,000 9av min l(sw1ng-aut rotor) 

I (interface between phases) 

dilute with IB 

1148,000 9ov min I 
~ (pellet) 

I repeat I 
~ (pellet) 

Plasma Mei'T'brone 

Volume (mls) 
(per 25 livers) 

7500 

3600 

600 (of each phose) 

1200 

FIGURE 1. Protocol for the isolation of plasma membrane by the two-phase 

method23 from rat liver. For details refer to section B I. 
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centrifuged for 15 min at 2600 rpm (HG-4L rotor: 17,000 gav min) after which most 

of the nuclei will be in the pellets. The supernatants containing the separated 

phases and the plasma-membrane rich interfaces are poured into two 1-liter 

bottles, shaken vigorously, and recentrifuged as above. The "carpet-like" interface 

is harvested by aspiration, diluted to 1200 ml with ice-cold IB and spun down at 

10,000 rpm for 15 min (Sorval GSA rotor; RC-5B centrifuge: 148,000 g min). av 

This centrifugation is repeated once more out of a volume of 400 ml of IB to yield 

a plasma membrane fraction. This can be refrigerated overnight for the subsequent 

isolation of gap junctions. 

II. Isolation of "Native" Gap Junctions (Fig. 2) 

Solutions Needed 

Name 

1. Bicarbonate buffer (BB) 

2. 0.1 M NaCl 

3. 1.1% Sarkosyl 

4. 0.1 M Na2co3 

5. 34% (w/v) sucrose 

40% (w/v) sucrose 

77% (w/v) sucrose 

81% (w/v) sucrose 

Methodology 

Composition 

2 mM NaHC03 

pH 7.4 (4°C) 

0.1 M NaCl in BB (4°C) 

Volume (for 25 livers, 
i.e., 2 00 g tissue) 

600 ml 

100 ml 

1.1% Sarkosyl in BB (R.T.) 50 ml 

0.1 M Na
2
co3 (4°C) 5 ml 

5 ml 
sucrose in 

1M urea 
2 mM BB 

sucrose in -1.5 M urea; 

+ 0.1% Sarkosyl 

+ 2 mM BB 

15 ml 

15 ml 

10 ml 

The first highly purified fractions of gap junctions from liver were obtained 

by the treatment of plasma membrane fractions with enzymes24 (e.g., collagenase, 
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hyaluronidase). It soon became apparent that, while this treatment had little 

effect on the gap junction's morphological appearance, it did cause partial cleavage 

of the gap junction protein. 25 While such preparations have their uses (see section 

B III), most current protocols seek to minimize proteolysis in an attempt to isolate 

the "native" or undegraded protein. In addition to omitting specific proteolysis 

treatments from the protocol, the inclusion of protease inhibitors, notably 0.5 mM 

phenyl methyl sulfonyl fluoride (PMSF), in the original perfusion buffer and all 

subsequent steps (except the two-phase separations) seems to be useful in preventing 

cleavage of the junctional protein by endogenous proteases during the isolation 

procedure. 12 

The procedure we have adopted for the isolation of gap junctions from the 

plasma membrane fraction (Fig. 2) is very similar to that of Hertzberg and Gilula, 10 

but contains modifications which result in an increased yield without an associated 

loss in purity.l 2 Unless otherwise noted, all solutions are at 4°C. The plasma 

membrane pellets are suspended in 100 ml of 0.1 M NaCl in BB with vigorous shaking 

or use of a Dounce homogenizer. They are allowed to stand on ice for 15 min 

to release peripheral proteins adhering to the membranes. The salt washed membranes 

are pelleted at 12,000 rpm for 15 min (Sorval SS-34 rotor; RC-5B centrifuge: 

168,000 gav min), resuspended in BB and the centrifugation repeated. After resuspen­

sion in 50 ml of BB (room temperature) by a few strokes of the pestle of a Dounce 

homogenizer, an equal volume of 1.1% (w/v) Sarkosyl (NL 97) in BB (room temperature) 

is added. The mixture is stirred at room temperature for 40 min, during which 

time 15 ml aliquots are removed and sonicated with a micro-tip for 3-4 sec at 

setting number 4 on a Branson sonicator (S-125). The detergent insoluble material 

is pelleted at 20,000 rpm for 15 min (SS-34 rotor: 470,000 gav min), washed in 

ice-cold BB and recentrifuged. The pellets are next resuspended in 4 ml of 0.1 M 

Na2co3 (pH 11) by brief sonication in order to solubilize the substantial amount 
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of uricase copurifying with the junctions to this point. After exactly 15 min at 

4°C (longer times cause aggregation of gap junctions with copurifying contami­

nants), the insoluble material, which includes the gap junctions, is collected by 

centrifugation at 20,000 rpm for 15 min (SS-34 rotor). This pellet is washed once 

by resuspension in BB and centrifugation as above. For loading on sucrose gradients, 

the washed pellets are homogenized by brief sonication into 3 ml of BB to which 

is added 1 ml of 1.1% Sarkosyl, and 8 ml of 81.1% (w/v) sucrose in 1.5 M urea 

and BB. Three sucrose gradients are then poured, each containing 4 ml of 77.2% ( w /v) 

sucrose, 4 ml of sample (final concentrations of 54% (w/v) sucrose, 1 M urea 

and 0.09% Sarkosyl), 4 ml of 40% (w/v) sucrose, and 1 ml of 34% (w/v) sucrose. 

All sucrose solutions are made in 1 M urea in BB. After centrifugation at 

35,000 rpm for at least 1.5 hr at 4°C (Beckman SW-41 rotor; L3-50 ultracentrifuge: 

13,500,000 gav min), the 40/54% (w/v) sucrose interfaces are harvested, diluted 

with BB, and the final gap junction fraction collected by centrifugation at 

40,000 rpm for 1 hr (Beckman 42.1 rotor: 7,500,000 g min). The Sarkosyl and av 

urea present in the sucrose gradient seem to reduce the aggregation of gap junctions 

with themselves and copurifying contaminants such as collagen and other fine 

fibrous material. Loading the sample in the 54% (w/v) sucrose layer also aids 

in this respect since the junctions float upwards and the denser contaminants 

sediment to the lowest interface. This avoids the non-specific trapping of material 

which occurs when it is spun through the concentrated blanket of material which 

accumulates at each interface. The interface at which we collect our gap junction 

fraction (between layers of density 1.16 and 1.121) is consistent with the reported 

density of gap junctions on continuous sucrose gradients (i.e., 1.16510). 

The final junctional fraction can be stored as a pellet at -20°C for months 

without detectable structural or biochemical changes, especially if PMSF is included 
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"NATIVE" GAP JUNCTION ISOLATION 

Temperature (°C) 

0-4 

20 

0-4 

Plasma Membrane 

~ 
O.IM NoCI in BB 

stand 15 min 

I 
2x 1168,000 9ov min I 

t (pellet ) 

0.55% Sarkosyl in BB 

stir 10 min/sonicate/stir 10 min 

O.IM Na2co3 
sonicate -stand 15 m1n 

I 
2x 1470,000 9ov min I 

~ (pellet) 

Suspend in: ~-34) 
0.9% Sorkosylt _ 40 % (w/v) sucrose 

I M U 
m I M urea 

rea and 88 
54% (w/v) Sucrose -77 

in 88 

113,500,000 9ov min I 
• (40/50% interlace) 

dilute with 88 

I 
7,400,000 9ov min I 

• (pellet) 

Gop Junction Fraction 

Volume (mls) 
(per 2 5 livers) 

100 

100 

4 

3 
gradients 

(SW 41 rotor) 

fiGURE 2. Protocol for the isolation of a "native" gap junction fraction from 

rat liver plasma membrane. For details refer to section B II. 
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in the final centrifugation. The fraction shows only small amounts of contaminating 

amorphous material and collagen (see section C for a more detailed evaluation) 

and contains 150-300 llg of gap junction protein (Mr 28,000), which represents 

a yield of 1-2 llg of junction protein from every gram wet-weight of liver. The 

nature of the Mr 28,000 protein and the other components of this fraction will 

be discussed in section D. 

III. Isolation of "Enzyme Treated" Gap Junctions (Fig. 3) 

Solutions Needed 

Name 

1. Enzyme Buffer (EB) 

2. BB 

3. Sarkosyl 

4. Sucrose 

5. Triton X-100 wash 

Composition 

50 mM Tris/HCl 

5 mM CaC12 

pH 7.4; 3~C 

as in previous section 

as in previous section 

32% (w/v) sucrose 

54% (w/v) sucrose 

5% Triton X-100 

Volume (for 25 livers, 
i.e., 200 g tissue) 

100 ml 

300 ml 

75 ml 

24 ml 

24 ml 

(for rapid isolation 

procedure only) 

5 mM Tris/ Acetate, pH 7.4 

Methodology 

As mentioned above, gap junctions have been isolated from membranes in 

the past with the aid of proteases, the rationale being that gap junction ultrastructure 

appears unscathed even after extensive proteolysis. However, it is now recognized 

that the intactness of the junctional ultrastructure is not reflected in its major 

constituent protein (Mr 28,000) which is degraded to two fragments of Mr 10,000
12 

(representing 20,000 of the original 28,000 daltons upon exposure to proteases 
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[specifically trypsin]}. These polypeptides can be of considerable use in studies 

on the arrangement of the protein in the lipid bilayer. This method of isolating 

junctions also has one other major advantage. It produces highly enriched gap 

junction fractions from a variety of species while the "native" isolation procedure 

often produces fractions badly contaminated with fibrous material (e.g., collagen) 

when applied to species other than rat or mouse. 

The procedure described here (Fig. 3) is similar to that of Finbow et a1.18 

The plasma membrane fraction (section B I) is homogenized using a Dounce homogen-

izer with a loose-fitting pestle, into 70 ml of EB and then 10 ml of a 1.6 mg/ml 

collagenase (Worthington) solution is added. After gentle agitation at 370C for 

25 min, 10 ml of 0.6 mg/ml trypsin (Sigma, type XI) is added and the solution shaken 

gently for an additional 25 min. The enzyme resistant pellet is collected after 

centrifugation at 10,000 rpm for 15 min (Sorval GSA rotor; RC-5B centrifuge: 

150,000 g min) and then treated with Sarkosyl in a total volume of 150 ml as av 

described in section B 1). A spin of 20,000 rpm for 30 min (Sorval SS-34 rotor: 

900,000 g min) is used to collect the detergent-insoluble material which is then av 

resuspended in 30 ml of ice-cold BB and layered on top of six discontinuous gradients 

containing 4 ml of 32% (w/v) sucrose and 4 ml of 54% (w/v) sucrose in BB. The 

32/54% (w/v) sucrose interface is harvested after centrifugation for at least 1.5 hr 

at 35,000 rpm (Beckman SW-41 rotor; L3-50 ultracentrifuge: 13,500,000 gav min) 

and collected after dilution with BB by centrifugation at 40,000 rpm for 1 hr (Beckman, 

42.1 rotor: 7,500,000 g min). This gap junctional fraction, which can also be av 

stored for lengthy periods of time at -20°C with no apparent ill effects, looks 

morphologically very similar to the "native" gap junction preparations, although 

the yield of junctional protein is usually less (0.5 ~g per g wet weight of liver) 

and the major (and virtually only) band detectable by Coomassie staining after 

sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAG E) has an 

Mr of 10,000. 
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"ENZYME-TREATED" GAP JUNCTION ISOLATION 

Temperature (°C) 

37 

0-4 { 

20 

0-4 

Standard Isolation Protocol 

Plasma Membrane 

t 
Homogen1ze m EB 

odd Collagenase (1.6 mg / ml) 

stir 25 min 

odd Trypsin 
stir 25 min 

(06 mg/ml) 

jl48,000 9ov minJ 

• (pellet) 

0.55% Sarkosyl in BB 

stir 10 min / sonicate / stir 10 min 

I 
j940,000 9ov min J t (pellet) 

~~~~~=::) % (w/v) sucrose 
in BB 

j13,500,000 g0 v min l 
~ (32/54% 

dilute with BB 

interface) 

I 

Gap Junction Fraction 

~(mls) 
(per 25 livers) 

70 

10 

10 

150 

6 

orodients 
(SW 4 1 rotor) 

FIGURE 3. Protocol for the isolation of an "enzyme-treated" gap junction frac-

tion from rat liver plasma membrane. For details refer to section B ill. 
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C. Criteria of Purity - Morphological Methods 

I. Methodology 

Until recently, the only way of estimating the purity of gap junction fractions 

was to examine them in the electron microscope after negative staining, thin 

sectioning or occasionally freeze fracture of the final pellet. For thin sectioning 

and freeze fracture, gap junction fractions are first pelleted and then prepared 

by the same procedures that are used for blocks of tissue. 26 However, by far 

the most commonly used and simple technique for examining gap junction fractions 

. t t" t . 27 
IS o use nega 1ve s am. 

After thorough mixing, 1 111 or more of the fraction to be studied is deposited 

on a dental wax plate and mixed with an equal volume of phosphotungstic acid 

(PTA) neutralized to pH 7.4. The final concentration of the phosphotungstate 

is of the order of 0.5%, but should be adjusted up or downwards to give the best 

results after examination of a sample grid in the electron microscope. A carbon 

reinforced formvar or celloidin coated grid, held in fine jeweler's tweezers closed 

by rubber band or paper clip, is touched to the drop. The sample is allowed to 

stand, drop side up, so that the suspended material can settle on and bind to the 

surface of the grid. After a few minutes, the excess fluid is removed with a wick 

(a triangular wedge of Whatman No. 1 filter paper) touched to the edge of the 

grid. Care must be taken to remove material that might have been aspirated 

between the tines of the tweezers by capillary action. The grids are allowed to 

dry thoroughly (5 or 10 min at least) and then examined in an electron microscope 

operating at 80 kv. The entire grid is surveyed at low magnification and areas 

where the junctions are well spread chosen for further examination and photography. 

A magnification of 13 to 15,000 is usually needed to be able to detect connexons. 

If the material is very poorly distributed on the surface of the grid, heavily clumped 

in some areas while others are completely bare, fresh grids should be used. Old 
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ones can be made less hydrophobic again by placing them in the refrigerator over 

night or by dipping them in 0.1% serum albumin which is then drained off before 

addition of the material to be negatively stained. 

Superior results in terms of clarity and definition of the images have been 

published with junctions negatively stained with uranyl salts. 28 The use of uranium 

salts can be more difficult since they precipitate as hydroxides above pH 6. A 

possible routine for staining with uranyl acetate or formate would be to deposit 

a drop of the sample to be examined on the grid and allow it to settle as was described 

for PTA, but in the absence of any negative stain. The freshly dried sample can 

then be washed with solutions of appropriate pH (a similar routine is used to get 

rid of excess sucrose). Washing can consist of dipping the grid in a beaker of appro­

priate solutions (distilled water, or very dilute buffers, or buffers made from volatile 

mixtures such as ammonium acetate/acetic acid, etc.) draining the excess fluid 

on the grid and between the tines by touching the edge of the grid to a filter paper 

and then applying the appropriate negative stain as a droplet. After a few minutes 

the excess stain is drained off with a filter paper wick and the grid is then ready 

to be examined in the electron microscope. 

II. Appearance of Gap Junction Fractions 

In the "native" gap junction fractions, the junctions appear as irregularly 

shaped flat sheets showing the typical double membrane profile and closely packed, 

hexagonally arranged particles (connexons) in en face views. Occasionally, small 

gaps in the array of connexons suggest that some portions of the junction may 

have been lost, perhaps as a result of partial solubilization during the detergent 

extraction. 29 Of the non-junctional material present, the most ubiquitous are 

clumps of fine fibrous material which appear alone and associated with the surfaces 

of gap junctions. As yet, the origin of this material has not been identified and 

it cannot be consistently associated with any specific protein present in the gap 
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junction fraction. Other structures, seen more rarely in the junction fraction, 

include strands of collagen12 (these are much more abundant at the 54/77% (w/v) 

sucrose interface of the final sucrose gradient) and vesicles of non-junctional 

single membranes18 which apparently survive the detergent treatments of the 

isolation procedure and can most readily be detected in thin sectioned material. 

The "enzyme-treated" gap junctions differ from those in the "native" fraction 

in that they most frequently appear as closed vesicles or curved sheets. 24 The 

contaminating material seen in these fractions is similar to that described above 

with the exception that collagen strands are never seen. 

III. Limitations in Estimating Purity 

In general, morphological examination of the purified fractions provides 

some guidelines as to the nature and degree of contamination in junctional fractions 

and has played an important part in suggesting improved strategies for the isolation 

of gap junctions. However, as the purity of junctional fractions has steadily improved, 

the need for a quantitative estimate of the percentage of the final fraction which 

is composed of gap junctions has become greater. Electron microscopic examination 

presents problems in maintaining unbiased sampling both in the selection of a 

portion of the final pellet for examination and in the selection of the region of 

an electron microscope grid to be used for analysis. Furthermore, if one attempts 

to quantitate by measuring the surface area of the grid occupied by junctions, 

compared to that occupied by other material, the density of protein in each structure 

is ignored. Particularly troublesome has been the association of an Mr 34,000 

protein with gap junctional fractions. 25,30 This is likely to have been due to the 

presence of small crystals of uricase in the preparation which are readily overlooked 

in negatively stained samples. In addition, not all structures visible in the electron 

microscope can be correlated with the presence of specific proteins recognizable 

after SDS-PAGE of the fractions (e.g., the fine fibrous material referred to above). 
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This could suggest that the structure contains no protein or that it represents 

a different form (denatured?) of the gap junctions themselves. The possibility 

also exists that some of the contaminants in a fraction may not be visualized 

in preparations examined in the electron microscope. For example, in thin 

sectioned material, the "native" gap junction fractions are found to be comprised 

of ,..81% double membranes (gap junctions) and 19% single membranes (non-

junctional). However, as an estimate of purity, these numbers totally disregard 

non-membranous constituents such as the fibrous material, collagen and uricase 

crystals which are often seen in negatively stained fractions. 

As a result of these difficulties and the lack of an assay for the gap junction 

protein other than the presence of morphologically intact gap junctions, it has 

been difficult to reliably determine the purity of junctional fractions. Although 

this problem still exists in most instances, the recent characterization of the 

protein components of liver gap junction fractions, specifically those of rat and 

mouse,l0- 12 has enabled us to assess the purity of this fraction biochemically. 

D. Criteria of Purity - A Biochemical Approach 

I. Identification and Nature of the Gap Junction Protein 

The identity of the protein components of the gap junction has been a major 

point of contention in the field over the last ten years. Polypeptides of M 10,000-
r 

38,000 have been variously proposed as the major protein of gap junctions from 

rat or mouse liver.10,l1,24 ,30 ,31 The problem was the lack of a direct assay 

for the gap junction protein and only limited success in the production of antibodies. 

Only in this past year have preliminary reports of such an antibody appeared.32 

The only course was to isolate fractions highly enriched for gap junctions by morpho-

logical criteria. The protein components of this fraction were then examined, 

usually by separation on an SDS polyacrylamide gel, and the major species identified 
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as gap junctional proteins. This approach relies heavily on the efficiency of morpho­

logical techniqu,es in detecting non-junctional contaminants, the pitfalls of which 

have been discussed in section C II. Furthermore, the SDS polyacrylamide gel 

profiles were complex, not only as a consequence of non-junctional contaminants, 

but also because of the susceptibility of the junctional protein to proteolysis and 

its tendency to aggregate in SDS, particularly when heated.11 ' 12 

However, as will be described in Chapter 2,12 two dimensional peptide 

mapping, 33,34 along with other techniques, has now enabled the identity and 

properties of the liver gap junction protein (at least in rat) to be defined. These 

junctions are comprised of a single major protein of Mr 28,000 ~ 2,000 which has 

a tendency to aggregate to dimers (Mr 50,000) and higher multimers in the presence 

of SDS and is susceptible to partial proteolysis (generating polypeptides of Mr 26,000, 

24,000 and ultimately Mr 10,000 in "enzyme treated" gap junction fractions). 

A minor component of Mr 21,000 ("'4% of liver gap junction fractions from rat 

but considerably more abundant in the mouse11) seems to be related to the major 

Mr 28,000 protein, but does not seem to be a direct proteolytic degradation product. 

Contaminants of collagen, and proteins of Mr 38,000 and 34,000 (uricase ) are 

frequently found to copurify with the gap junctions. 

Although the Mr 28,000 protein has now been identified in several laboratories 

h 1 · f ·r· d 1· . t· f t· 10-12,18,22,32 as t e so e or maJor component o pur1 1e 1ver gap JUne IOn rae IOns, 

some contradictory observations have recently led to polypeptides of Mr 46,00035 

and 16,00036 being identified as the major gap junctional proteins of liver, and 

in the latter case, of other tissues and cultured cell lines as well. However, since 

other groups have been unable to find an Mr 16,000 polypeptide in their final 

junction fractions and since strong evidence exists to implicate components of 

M 45,000-50,000 as dimers of the M 28,000 protein, l1,12 the bulk of evidence r r 

would still seem to point to a single protein of Mr 28,000 as the structural protein 

unit of the mammalian liver gap junction. 
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II. Junctional Proteins as a Criteria for Purity 

Since the identity of the gap junction protein and its behaviour under varying 

conditions has now been defined, it is possible, at least in the case of rat liver, 

to quantitatively determine both the purity, and consequently, the yield of the 

various gap junction fractions based solely on a consideration of their protein 

composition. This can be analyzed by solubilizing a sample of the fraction under 

consideration in Laemmli solubilization buffer37 for 30-45 min at room temperature, 

separating the various protein components by SDS-PAGE and staining the gel 

with Coomassie blue R-250 (most protocols generally published for staining SDS 

polyacrylamide gels will suffice). Quantitation of the amount of each polypeptide 

in the sample can be achieved by scanning the appropriate lane of the gel with 

a densitometer and integrating the area under each peak (Figure 4). In our labora­

tory this was achieved by a Joyce Loebel densitometer and a digitizing tablet 

interfaced to a Tektronix mini-computer (4052). The total area under all 

the peaks corresponding to junctional polypeptides (as defined in the previous 

section and in Chapter 212> can then be divided by the total area under the densi­

tometer scan of the gel to obtain an estimate of the purity of the fraction. An 

estimate of the yield of junctional protein in the fraction requires, in addition, 

some absolute estimate of protein present. This can be obtained in one of two 

ways. The protein content of the whole fraction can be determined independently 

by amino acid analysis or a Lowry assay,38 although the latter may prove difficult 

since the junctions are poorly soluble in anything but SDS which is known to interfere 

with Lowry assays. This quantity can then be adjusted to include only gap junctional 

protein by correcting for the percent purity determined as described above. Alter­

natively, the total area of the peaks of gap junctional polypeptides determined 

from the scan of the stained polyacrylamide gel can be standardized against the 

areas of the peaks in densitometer scans of adjacent lanes on the same gel in 

which known amounts of various standard proteins have been loaded. 
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FIGURE 4. Quantitative analysis of the purity of a representative "native" 

gap junction fraction by consideration of its protein components after separation 

by SDS PAGE and Coomassie staining. The two estimates given for the percentage 

of gap junctional protein in the fraction (i.e., 65% based on total staining and 

85% based only on identified bands) represent under- and over-estimates, respec­

tively. Peptide mapping has shown the unidentified background staining, specifi­

cally that at the top of the gel, to be comprised of substantial amounts of gap 

junction protein and collagen as well as some minor, unidentified proteins, but 

the exact proportions could not be determined. 
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TABLE I 

Purity and Yield of Various Gap Junction Fractions 

Puritl Yieldb 

Isolation Procedure ( . GJ protein ) 
I.e.' Total protein x 100 ( · ll g GJ protein ) 

I.e.' g wet weight liver 

"Native" Gap Junction Fraction 77 + 9 0.8-2.0 

"Enzyme-treated" Gap Junction Fraction 81 + 6 0. 3-0.7 

~The mean:!:_ one standard error determined from several (4-9) different isolations are shown. 

~Based on an average weight of 8 g for a liver from a 200 g rat. 
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Both the determination of purity and yield are subject to certain inherent 

errors, based on limitations of Coomassie staining as a quantitative assay for 

proteins. Firstly, in any given gel system it is imperative to determine over what 

range and under what conditions the Coomassie staining remains linear with respect 

to protein concentration. However, even within this range, different proteins 

bind the dye with different efficiencies, so a determination of absolute protein 

concentration or even relative amounts of two different, unknown proteins can 

entail substantial errors, especially in the case of glycoproteins. Fortunately, 

no carbohydrate has been found to be associated with the gap junctional protein.lO,ll 

An independent check on the values obtained from Coomassie stained gels can 

be obtained by radioactively labeling the fraction in vitro with 125I, after solubili­

zation in SDS but before separation by PAGE. An autoradiogram of the gel could 

then be scanned in a similar way to a Coomassie stained gel. In this instance, 

differences in the labeling efficiencies of different proteins can be corrected 

for if their amino acid compositon is known, since iodine is known to specifically 

label tyrosine residues and, under some conditions, histidine. Figures calculated 

in our laboratory for the yield of junctional protein in and purity of gap junction 

fractions prepared from 25 rat livers by each of the methods described in section B 

are presented in Table I. 

III. The Validity of Extrapolating Results to Other Systems 

Gap junctions of different origins have many features in common. Only 

small differences in the size of the connexons or the width of the extracellular 

gap have been observed, 39 and could often be laid to differences in preparative 

procedures. There are more differences in terms of packing, but this feature 

could be under physiological control. 8 Gap junctions can mediate metabolic co­

operation or electrotonic coupling between cells in culture.4 This has proven true 

even in cell combinations derived from physiologically distinct species,40 again 
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suggesting a kinship extending far and wide. The rather uniform molecular weights 

ascribed to gap junction proteins (Mr 26-34,00010'11 '19,34) could also suggest 

a high degree of conservation, but it is only recently that this idea has become 

testable by detailed analysis of the protein(s). 

Peptide mapping of the gap junction proteins from several mammalian species 

(rat, mouse, calf and rabbit) has shown them to be virtually indistinguishable, 

while preliminary "fingerprints" of the gap junction protein from chicken liver 

suggests that there is some conservation even between classes.41 The main intrinsic 

protein (M 26,000) of eye lens fiber cell junctions, which have a similar appearance r 

and apparent properties to gap junctions in other tissues, is similarly conserved, 

with homology being demonstrated by both peptide mapping34 and immunology42 

in species as far distant as man and shark. However, when the gap junction proteins 

of different tissues are compared, a different story emerges. Major differences 

in the main intrinsic protein of eye lens and the gap junction protein of liver have 

now been demonstrated immunologically,43 by peptide mapping41 and in partial 

sequences of the two proteins purified from rat41 (the N-terminal18% of the 

lens protein and 24% of the liver protein). Indeed, if any homology does exist 

between the two proteins, it is barely detectable by the methods used to date. 

Recently, we have obtained peptide mapping data which demonstrate that the 

major protein of gap junction fractions from heart is also very different from 

those of liver or lens (see Chapter 5). It is, therefore, quite possible that a whole 

family of tissue-specific junction proteins exists. While there may be homologies 

between them with respect to both sequence and structure, it is quite clear that 

results on the properties or biochemistry of gap junctions in one tissue should 

not, in general, be extrapolated to other systems. 
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CHAPTER 2 

Rat Liver Gap Junction Protein: Properties and Partial Sequence 

Running Title: Sequencing and chemistry of liver gap junction protein 
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Rat liver gap junction protein: Properties and partial sequence 
(peptide mapping/ membrane proteins/ micro-sequence-analysis/aggregation/ proteolysis) 

BHL'CE J. N IC H O Lso :s; , .\1IC HAEL W Hl' :\KAPILLER, L Es B . GHI\1 , LEROY E. H ooo, A:\D }EA:\-PAcL RE\'EL 

Dis·ision of Biolop:s·. California Insti tu te ufTechnolo!(s·. Pasadena. California 91125 

Communica ted by Xorman Daridson. August 27". 1981 

ABSTRACT Gap junctions, strongly implicated as channels 
for direct cell-to-cell communication , have been isolated fwm rat 
liver in high yield and purity. These gap junction fractions contain 
few morphologically recognizable contaminants , but \laDodS04/ 

polyacrylamide gel electrophoresis reveals a number of polypep­
tides. With the exception of a nonjunctional component of M,. 
38,000 and some poorly soluble material , including collagen, all 
the polypeptides have very similar or identical two-dimensional 
peptide maps and arise from proteolytic cleavage of the COOH­
terminus or aggregation of a M, 28 ,000 protein . We report the 
sequence of the \IH2-terminal52 amino acids of this protein. The 
polypeptide (M , "' 10,000) characteristic of trypsin-treated gap 
junction preparations is shown to be two distinct polypeptides, 
both derived from theM, 28,000 protein. 

An extensive bodY of evidence implicates the gap junction as 
the mediator of exchanges of ions and small molecules behveen 
cells. Early attempts at characterization of the juncti onal pro-

•teins were carried out on partially proteo]yzed fragments (1-4). 
Fractions of similar purity can now be obtained without th e use 
of proteases , and junctional proteins of M, 26.000-28.000 are 
consistentlY found (5-9). Finbow et a/. (6) ha\·e also obtained 
independe;1t lines of e\'idence associa ting a protein of :\1, 26,000 
with gap junctions. Besides identifiable contaminants (e. g. , 
uricase, actin , collagen), other polypeptides found have been 
shown to resul t from aggregation of this protein (5), or are re­
lated to it , perhaps as proteolytic fragments [e.g. , M, 21 ,000 
protein (5)] . \l\1e present here direct evidence as to the nature 
of all the polypeptides detected on gels of gap junction fractions 
isolated from rat liver. The evidence is based on analvsis by hvo­
dimensional peptide mapping and 1\Hrterminal sequence de­
termination. We conclude that rat liver gap junctions are com­
posed of a single major componen t of M, 28,000. 

MATERIALS AND METHODS 

Isolation of Gap Junctions. After perfusion with warm saline, 
the livers of 50 young adu lt rats were homogenized , each in 100 
ml of cold isolation buffer (2 m\1 l\aHCOJi0.5 m'vl CaCI2opH 
7.4) in a Tissuemizer (Tekm ar Ultra Turrax, SDT-182£1\ ) at 
maximum power for 4-5 sec. Plasma membranes were th en 
prepared by an adaptation of the two-phase method described 
by Finbow et al. (6). These fractions were treated by a modifi­
cation of the Hertzberg and Gilula protocol (7). The salt, Sar­
kosyl , and sodium carbonate treatments were unaltered , except 
for doubling the volumes . The washed pellet from th e carbonate 
treatment was suspended in 24 ml of0.09% Sarkosyl and 54.1 % 
(wt/vol) sucrose. This and all other sucrose solutions were made 
up in 1 \1 urea/2 m\1 l\ aHC03 (pH 7.4). Six discontinuous 
gradients were then form ed by successively layering 4 ml of 
77.2% (wt/vol) sucrose , 4 ml of the sample , 4 ml of 40 .3% (wt/ 

The publication costs of this article were defrayed in part bY page charge 
payment. This article must therefore be hereby marked "adt:ertise­
ment'' in accordance with 18 U.S. C. §1734 solely to indicate this fact. 
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vol) sucrose , and 1-2 ml of 33. 8'7c (wt/\·ol) sucrose. After cen­
trifu gation in a Beckman S\\' 41 rotor at 38,000 rpm for at leas t 
90 min , the gap junction fraction was collected at the 40.3/ 
54.1 o/c sucrose interface , di luted with 2 m\1 l\aHC03 , and pel­
leted at 40 ,000 rpm for 60 min in a Beckman 42.1 ro tor. \ 'irtually 
no gap junctions were found at th e 33.8/40. 3% (wt/vol) sucrose 
inte rface, con trarY to th e original finding by Hertzberg and 
Gilula (7), but consistent with a recen t modification (10). In 
some cases , 0.5o/c phenylmethylsulfonYI flu oride (Ph\1eSo2F) 
was included in all solutions to reduce endogenous proteolysis. 
Gap junctions were also isolated by a slight modification of the 
techniqu e of Fin bow et a/. (6), using increased collagenase and 
trypsin concen trations of 1.6 and 0.6 mg/ml , respectively, and 
a SarkosYI extraction at neutral pH in 359c less volume . 

NaDodS04/Polyacrylamide Gel Electrophoresis. The 
Laemmli discon tinuous buffer s\·stem (ll ) was used with run ­
ning and stacking ge ls of 15o/c a;1d 4.5% acrylamide (Bio-Rad, 
electrophoresis grade ), respectively (30:0.8 crosslinking ratio). 
For anal\·tical purposes the microslab system of Amos (12) was 
used . Samples were solubilized at room temperature for 30-45 
min in 2% NaDodSO~ (Bio-Rad, electrophoresis grade ) and 5o/c 
(vol/vol) 2-mercaptoethanol in 62.5 m\1 Tris· HCl (pH 6 8)/ 
0.25 m\1 \llgCIJlO% (vol/\ ol) glyceroL The re lative amounts 
of protein in the bands on a gel afte r Coomass ie blue staining 
were quantitated by measuring the area under th e peaks from 
a Joyce-Loeb! densi tom ete r scan with a digitizing table t inter­
faced to a Tektronix minicomputer (4052) and correcting for the 
width of the lane . 

Iodination of Gap Junctions. Gap junction fractions were io­
dinated in the absence of de tergen ts bv the chloramine-T 
method of Greenwood et al. (13). The junctions were separated 
from free iodine by repeated centrifugations at 40,000 rpm for 
30 min in a Beckman 42. 1 or type 65 rotor. For peptide map­
ping, the junctional protein was solubilized in 2% 1\aDodSO~ 
before iodination. In this case, separation of protein and free 
iodine was achieved by NaDodSO.fpolyacrylamide gel elec­
trophoresis. Quantitation of th e radioactivi ty of a given band on 
a gel was determined from an autoradiogram (Kodak XR film 
exposed at -70°C with a Du Pont Cronex Lightning Plus in­
tensifying screen) as described above for Coomassie blue­
stained gels. 

Peptide Mapping. The method of Elder et al. (14) as modified 
by Takemoto et a/. (15) was used to obtain tryptic (Sigma type 
XI) and a-chymotrvptic (\Vorthington) hvo-dimensional pep­
tide maps. (Only iodinated peptides generated bv complete 
proteolysis are detected in this system. ) In addition to gap junc­
tion proteins , we have mapped others , including collagen, ac­
tin , glycophorin , and the other erythrocyte ghost proteins, and 
all have produced unique maps. Results from these proteins 
showed the recovery of radioactivity from th e gel slices to be 
(70 ± 20)%. The errors represent one standard deviation. 

Abbreviation: Ph~l eS02F , phenylmethY!sulfonyl flu oride. 
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Sequence Analysis . Analvtical grade reagents, deionized 
glass-distilled water, and acid-cleaned glassware were used 
throughout the preparation of polypeptides for sequence or 
amino acid analysis. The polypeptides present in junctional frac­
tions were separated by NaDodSOipolyacrylamide gel elec­
trophoresis and identified by briefCoomassie blue staining and 
destaining (total time 4 hr). After excision of the bands , the poly­
peptides were removed from the gel by electrophoretic elution 
(16) (recovery from gel fragments was =75%), exhaustively di­
alyzed against 0.03% l\aDodS04/50 m\1 NH 4 HC03 (pH 7.8), 
lyophilized twice to remove the NH 4HC03 , and stored at 
-20°C. l\H 2-terminal amino acid sequence analysis using au­
tomated Edman degradation was performed by the method of 
Hunkapiller and Hood (17) and Johnson et al. (18). NaDodSOi 
polvacrylamide gel electrophoresis of an aliquot of the sample 
was used to detect possible degradation immediately prior to 
sequence analysis. The yield of analyzable peptide compared 
to the total peptide loaded on the sequenator was =35%. Total 
peptide was estimated from Coomassie blue staining on ana­
lytical l\aDodS04/polvacrylamide gel electrophoresis or quan­
titative amino acid analysis of an aliquot. 

RESULTS 

Characterization of the gap junction fractions and their 
proteins 

Yield and Purity (Morphological Characterization). Aggre­
gation of junctions with denser contaminants causes losses dur­
ing the preparation of gap junctions in the absence of added 
proteases (7). These losses were minimized by shortening the 
exposure of junctions to l\ a2C03, including Sarkosyl in th e load­
ing layer of the sucrose gradient, and loading the junctions be­
tween the two interfaces where most of the material was col­
lected. We now isolate 300-600 J,Lg of gap junctional protein 
from 400 g (wet weight) of liver. This final junctional fraction 
contains only minor contamination by amorphous material (Fig. 

;< 
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FIG. 1. "Native" gap junction fractions negatively stained with 2% 
phosphotungstic acid. (a) At low magnification ( x ll ,OOO), the fraction 
appears highly enriched for gap junctional sheets and shows only mi­
nor contamination by amorphous material (arrows). (b) At higher mag­
nification ( x 105,000), the individual gap junction sheets show closely 
packed connexons in a hexameric array. 

42 Proc. Natl. Acad. Sci. USA 78 (1981 ) 7595 

1a). Appearing primarily as flat sheets , the junctions show th e 
typical packing of "connexons" (Fig. 1b) described previous]\ 
(5-8). When gap junctions were prepared from trypsin- and 
collagenase-treated plasma membranes, =150 J,Lg of M, 10,000 
junctional protein could be isolated from 400 g (wet weight) of 
liver. This final fraction also showed minimal contamination in 
negative stained specimens and th e gap junctions seemed to 
form vesicles or curved sheets (not shown, but see ref. 2). 

Protein Components . When endogenous protease activity 
is limited by thorough pe rfusion of the livers before excision and 
inclusion of Ph\1eS02F in all solutions, the junctional fraction 
contains a major protein of M, 28,000 (Fig. 2, lane a). Although 
not readily identifiable in Fig. 2, lane a, minor and more vari­
able components at M,s of50,000, 38,000, 26,000, 24 ,000, and 
21 ,000 can be clearly seen in fractions loaded at a higher con­
centration (Fig. 2, lane b). TheM, 38,000 protein is specificallv 
enriched in the lower interface [54 . l/77.3% (wt/vol) sucrose ] 
of the final gradient (Fig. 2, lane d), where morphologically and 
biochemically identifiable gap junctions are sparse. Hence, it 
is believed to be nonjunctional. TheM, 26,000 and 24 ,000 poly­
peptides and the M, 10,000 polypeptide are likely to be pro­
teolytic degradation products of theM, 28,000 protein , because 
they are enriched in preparations in which endogenous prote­
olysis was more likely (Fig. 2, lanes b and c) or exogenous pro­
teases (trypsin and collagenase) were specifically added (Fig. 
2, lane e). In vitro trypsin treatment of isolated gap junctions 
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FIG. 2. Coomassie-blue stained NaDodS04 microslab gel of var­
ious gap junction fractions isolated from rat liver. The Bio-Rad low 
molecular weight standards are shown on the left with their molecular 
weights in thousands. The estimated molecular weights of the com­
ponents in lanes a and bare similarly marked. Lane a, a "native" gap 
junction fraction [i.e., 40.3/54.1% (wtjvo]) sucrose interface], prepared 
in the presence of 0.5% PhMeS02F to inhibit proteolysis and run im­
mediately after isolation to reduce aggregation, shows a major band 
atM, 28,000 and some very faint minor components. Lane b, a "native" 
gap junction fraction prepared without specific protease inhibitors con­
tains more obvious components just below theM, 28,000 protein at M,s 
of 26,000 and 24,000. Because the sample was loaded more heavily 
than in lane a, the minor components are visible (M, 50,000, 38,000, 
and 21 ,000). The relative amount of M, 50,000 and higher molecular 
weight (M, 80,000 and llO,OOO) material compared to the M, 28,000 
and 26,000 bands was found to increase with concentration of the 
loaded sample, time in or heating in NaDodS04 , and storage time at 
-20°C. Lane c, a similar fraction prepared from poorly perfused livers, 
in which the likelihood of endogenous proteolysis is increased, shows 
an enrichment for theM, 24,000 polypeptide compared to lane b. Lane 
d, the lower interface [54.1/77.3% (wtjvo]) sucrose] of the final sucrose 
gradient of the "native" gap junction isolation also contains junctional 
bands (see text) , but is specifically enriched for theM, 38,000 protein 
and contains more insoluble and high molecular weight material con­
tributed in part by the high collagen content of the sample. Lane e, an 
"enzyme-treated" gap junction fraction prepared from trypsin- and col­
lagenase-treated plasma membranes contains a single diffuse band at 
M, 10,000. 
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FIG. 3. A purified fraction of "intact" gap junctional sheets (pro­
tein ""0.3 JJ.gl J.d in 50 mM NaHC03 , pH 7.8) was subjected to trypsin 
(Sigma, type XI, 3 ng/ J.J.I ) at 37°C in nondenaturing conditions. At var· 
ious intervals (marked in minutes above each gel lane), samples were 
removed, added to a 2-fold excess of soybean trypsin inhibitor (Sigma), 
solubilized for 15 min in regular gel solubilization buffer, and frozen 
for later analysis by polyacrylamide gel electrophoresis. TheM, 24 ,000 
band is indicated by an arrowhead in each lane where it appears, and 
the major bands present at 0 time are marked in M, x 10· . Lanes a-c 
and d-g are taken from different gels run on the same experiment. 

(Fig. 3) supports the idea that these changes in the polypeptide 
profiles of the various junctional fractions represent progressive 
stages of proteolvsis of the major junctional protein. This protein 
and its higher molecular weight aggregates (M, 50,000, 80,000. 

· etc.-see below) seem to be successively broken down to M, 
26,000 and 24 ,000 polvpeptides and their corresponding ag­
gregates (compare Fig. 2, lane c and Fig. 3, lane d) and ulti­
matelv, through a series of intermediates (M, 15,000-12,000) 
to aM, 10,000 component (compare Fig. 2, lane e and Fig. 3, 
lane g). Contaminating proteins of M, 38,000, 36,000, and 
32,000 (the latte r two appear in conjunction with the loss of in­
soluble material at the top of the gel) can also be seen in Fig. 
3 to survive trypsin treatment. Although the M, 21,000 com­
ponent (== 7-15o/c of the material at M, 28,000 and 26,000) does 
not seem to be a product of tryptic digestion of gap junctions 
(compare lanes band c in Fig. 2 and see Fig. 3), initial peptide 
mapping results (not shown) suggest it may also be a degradation 
product of the M, 28,000 protein , probably resulting from some 
non-serine-protease activity (i.e. , protease resistant to Ph­
\1eS02F; e.g., cathepsins-see ref. 5) in the liver. 

As reported previously for mouse (5), the major M, 28,000 
protein of rat liver gap junctions and its degradation products 
tend to aggregate on heating or prolonged standing in Na­
DodSO ~or after extended storage at - 20°C. Such preparations 
show an enhancement of diffuse bands at M, 50,000 and higher 
molecular weights (Fig. 2, lanes b and c). This aggregation 
seems partially reversible , because the isolated M, 50,000 pro­
tein partially dissociates to theM, 28,000 and 26,000 monomers 
on standing at room temperature (Fig. 4, lane c). Conversely, 
the M, 28,000 protein is seen to aggregate, forming the M, 
50,000 and higher molecular weight multimers (Fig. 4, lane b). 

Characteristic patterns of all the polypeptides present in gap 
junctional fractions have been obtained bv two-dimensional 
mapping of iodinated tryptic and chymotryptic fragments. In 
both cases the conclusions were the same. Only the chymo­
tryptic maps are illustrated (Fig. 5). All of the polypeptides 
showed closely related patterns with the exception of the M, 
38,000 protein , which shows no homology (Fig. 5b ). This sup­
ports the conclusion (see above) that this protein is nonjunc­
tional. Of the remaining polypeptides, theM, 28,000, 26,000, 
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FIG. 4. The protein components of gap junction fractions were sep­
arated by NaDodS04/polyacrylamide gel electrophoresis (lane a), the 
M, 28,000 and 50,000 bands were cut out, and the polypeptides were 
eluted and dialyzed for 3 days against 0.05% NaDodS04/10 mM so­
dium thioglycollate/50 mM NH4HC03_(pH 7.8). On reelectrophoresi s, 
the M, 28,000 protein had apparently aggregated to a dimer (M, 
50,000) (Jane b), which comigrates with a band in the original fraction 
(lane a). Conversely, the isolated M, 50,000 polypeptide, on reelectro­
phoresis, had partially dissociated to proteins of M, 28,000 and 26,000 
(Jane c). This suggests that this diffuse band of M, 50,000 is a mixture 
of dimers of these two proteins, which partially disassociate on stand­
ing. Aggregation to higher molecular weight multimers can be seen 
in all three lanes. 

and 50,000 components have nearly identical maps (Fig. 5 a and 
c). The same pattern is seen in the higher molecular weight 
proteins atM., ==80,000 and== 110,000 and even in the material 
failing to enter the running gel (maps not shown). However. 
these high molecular weight components show additional pep­
tides , including those characteristic of collagen. The lower mo­
lecular weight polypeptides of M, 24,000 (Fig. 5d), 21 ,000 (not 
shown), and 10,000 (Fig. 5e) retain the hvdrophobic peptides 
present in theM, 28 ,000 and 26,000 proteins, but lose several 
of the most basic and hydrophilic peptides while generating a 
new hydrophobic one. These results are consistent with the 
stepwise degradation of the M, 28,000 junctional protein dis­
cussed above and show that the portion of the protein protected 
from proteolysis is hydrophobic. 

Quantitative analysis of tryptic digestion of gap junctions 

Surprisingly, the complexity (total number of peptides) of the 
M, 28,000 and 24,000 proteins is conserved in the map of the 
M, 10,000 fragment to a much greater extent than would be 
expected on the basis of molecular weight. This led us to esti­
mate the recovery of protein after trypsin digestion of gap junc­
tions , using several methods. The recovery of radioactivity in 
gap junction fractions iodinated in the absence of detergent has 
been measured both in the total material pelleted before and 
after trypsin treatment and in the specific junctional proteins 
of these same fractions after separation by NaDodS04/poly­
acrylamide gel electrophoresis. The actual recovery of protein 
was determined directly in a series of parallel experiments in 
which protein was measured by Coomassie blue staining of gels 
or by quantitative amino acid analysis of pellets or of proteins 
eluted from gels. Despite the different errors inherent in each 
technique, all estimates indicate that 70 ± 15% (mean 67%) of 
the total junctional protein is recovered in theM, 10,000 band 
after trypsin digestion. That two-thirds of the mass is presen·ed 
is completely consistent with the number of peptides shown to 
be conserved when the maps of theM., 10,000 and 28 ,000 poly­
peptides are compared (Fig. 5 c and e). This suggests that the 
M., 10,000 band is composed of two polypeptides, a conclusion 
supported by sequence analysis (see below). 
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FIG. 5. Characteristic two-dimensional separation of the iodinated chymotryptic peptides of the proteins present in our gap junction fractions. 
M, x 10- 3 is indicated on each map. In all cases the origin is at the bottom left of the map and separation is achieved on a thin-layer cellulose plate 
by electrophoresis at pH 1.7 from left to right followed by ascending chromatography in a hydrophobic solvent (see ref. 14 for details). The most basic 
peptides migrate furthest in the electrophoresis dimension and the more hydrophobic peptides tend to partition to the mobile phase on the chro­
matography and are found nearest the top of the map. All maps show a great deal of homology amongst the hydrophobic peptides except for that 
of theM, 38,000 protein (see text). Three of the peptides conserved in all but theM, 38,000 protein are marked with arrows to provide a frame of 
reference, although it should be noted that additional peptides are also conserved. Maps of all polypeptides were repeated at least four times. 

Sequence analysis 

The sequence of the 52 residues at the !\ Hrterminus of the M, 
28,000 gap junction protein (one-fifth of the protein) has been 
determined (Fig. 6). After 14 uncharged amino acids at the 
!\H2-terminus , there is a strongly hydrophobic region of 18 res­
idues (nos. 23-40) interrupted by a single charged amino acid 
(Arg-32) and flanked at the NH2 terminus by three basic resi­
dues (nos. 15, 16, and 22) and at the COOH terminus bv a sim­
ilarly spaced group of three acidic residues (nos. 41 , 46, ~nd 47). 

The same NH 2-terminal sequence has been found for theM, 
26,000 and 10,000 products of proteolysis , demonstrating that 
the COOH terminus of the protein is exposed to proteolytic 
digestion in the intact structure, whereas the NH2 terminus is 
protected. In the case of theM, 10,000 component (sequence 
determined to 20 residues), one or two major sequences in ad­
dition to that seen for theM, 28,000 protein can be detected, 
indicating the presence of at least two polypeptide chains. These 
additional signals could not be resolved into a unique sequence 
and probably result from tryptic cleavage at several closely 
spaced and equally susceptible sites on the original M, 28,000 
protein , which could produce a second M, 10,000 polypeptide 
with various NH2-terminal starting points . 

DISCUSSION 

We have used a modified version of a published procedure (7) 
to isolate gap junctions from rat liver in high yield [0. 75-1.5 j.Lg 
of junctional protein per g (wet weight) of liver] and with few 
copurifying contaminants as judged from negatively stained 

samples . Nevertheless , as found by others, despite this appar­
ent purity several polvpeptides can be detected by !\aDodS04/ 

polyacrylamide gel electrophoresis. Examination of these polv­
peptides leads to the conclusion that gap junctions are com­
posed of a single major protein of M, 28,000. All other poly­
peptides can be attributed to demonstrable contaminants [e.g. , 
collagen , a more dense M, 38,000 protein , and an alkali-sen­
sitive M, 34,000 protein uricase (19)] or are derived from the 
M, 28,000 protein by proteolysis (compare Fig. 3 wi th lanes b 
and c of Fig. 2) or aggregation (Fig. 4 and ref. 5). The two-di­
mensional peptide mapping system of Elder et al. (14) used for 
this analysis was also found to provide an assay for gap junctions, 
at least those from rat liver. Differences between gap junctional 
proteins of different species (15, 20) and tissues (20) have been 
detected by this system . 

The quantitative study of the effect of trypsin on gap junctions 
has provided some insight into the arrangement of the protein 
in the membrane. Recoveries of 70% of the junctional protein 
present in junctions not subjected to proteolysis (major protein 
M, 28, 000) in the M, 10,000 fragment of junctions after trypsin 
digestion, and the presence of more than one polypeptide in 
this fragment , as detected by sequence analysis , leads us to con­
clude that the M, 28 ,000 protein is initially reduced to aM, 
24,000 polypeptide (Fig. 3, lanes a-d), which is in turn cleaved 
into two pieces of M, 10,000 by several steps (Fig. 3, lanes c-g). 
Several lines of evidence suggest that these two polypeptides 
are protected from further proteolysis by the surrounding mem­
branes . Peptide mapping and amino acid analysis show theM, 
10,000 tryptic polypeptides to be highly hydrophobic. In ad-
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FIG. 6. Sequence of the 52 NH2-terminal residues of theM, 28,000 protein of gap junctions. Hydrophobic residues are enclosed in boxes, thus 
emphasizing the strongly hydrophobic region (residues 23-40) flanked by basic (residues 15, 16, and 22) and acidic (residues 41 , 46, and 47) residues. 
The question marks indicate steps in the sequence at which no unequivocal signal could be distinguished from the background and could indicate 
a cysteine (undetected by this system) or an amino acid recovered in poor yield. 
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clition. whereas protein denaturing agents such as 1 \1 urea ha\·e 
no effect on the trYpsin sensiti\·itY of junctions , solubi li zation 
of the membrane with lmv concentrations of J\aDodS04 allows 
trypsin to digest th e junctional protein to small peptides (results 
not shown ). Furthe rmore. the dim ensions of both trYpsin and 
chvmotrypsin [greater than 50 A by x-ra\' crvstallogr~phy (21)] 
make it unlike ly [but do not e liminate th e poss ibilitY (22 l] th at 
they can pene trate the junctional pore or the extracellular gap 
between membranes without prior disruption of the nati\·e 
structure. Because the electron microscopic appearance of iso­
lated junctions remains largely unchanged after trypsin treat­
ment (cf. refs. 2 and 7). it appears that proteoh-sis is at the cv­
toplasmic face . The conservation of the J\H 2-terminal sequence 
of the :\1 r 28,000 protein in its proteolYtic degradation products 
(M, 26,000 and 10.000) is consistent with a localization of the 
COOH terminal of th e junctional protein at the cytoplasmic 
face. In addition . the existence of two major portions of the 
molecule , both apparenth- protected bY the surrounding mem­
brane vet joined by a region accessible to proteases , suggests 
that the junctional protein crosses the membrane more than 
once. 

This possibility is so far consistent with the sequence of th e 
M, 28,000 protein. In the l\Hz-terminal one-fifth of th e mole­
cule , we have identified a highly hydrophobic stretch of 18 res­
idues , bracketed b\· basic and acidic amino acids (J\ H 2- and 
COOH-terminal , respecti\e]v), attributes seen in the trans­
membrane portions of some other proteins (23-27). HoweYer , 
the secondarv structure of transm e mbrane spans of the gap 
junction protein is open to speculation. In a-helical confor­
mation , =23 residues would be required to span the 35 to 40-
A hydrophobic core of the membrane , which in th e hvdrophobic 
sequence identified here would require two charged residues 
(Arg-22 and Arg-32 or Arg-32 and Glu-41 ) to be buried in a hy­
drophobic e l1\·ironment. Alternatively, if this hydrophobic re­
gion were in {3-pleated-sheet conformation , only Arg-32 need 
be buried in the lipid environment (= 15 residues span the 
membrane). Both of these alte rnatives are possible, because 
ionic bonding between adjacent transmembrane strands could 
neutralize the charges buried in the lipid (e.g. , see ref. 28) or, 
specifically in the case of the gap junction , the charges could 
be located in the aqueous channel. Present evidence suggests 
that the {3-sheet conformation is more likelv. The Chou and 
Fasman paradigm (29) applied to the gap junctional protein 
strongly predicts the hydrophobic region (residues 23-38) to be 
in a {3-pleated-sheet conformation (data not shown ). It must be 
noted , however, that this predictive system , which is based on 
data from soluble proteins , fail s to make consistently correct 
predictions when applied to at least two membrane proteins of 
known secondary structure [e. g. , Escherichia coli protein I (30) 
and bacteriorhodopsin (our observation)], recent results from 
x-ray diffraction ofliver gap junctions (31) also indicate the pres­
ence of {3-pleated-sheet structure within the hydrophobic por­
tion of the lipid bilayer. If the protein is in this conformation, 
it is likely to form a {3-barrel structure in order to internally 
satisfy its hydrogen bonding capacity in a hyd~ophobic envi­
ronment. The diam eter of such a structure ( = 15 A) is COI'sistent 
with it representing the wall of the aqueous pore of a gap junc­
tion. If such were the case, the polypeptide strands composing 
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th e barrel would have to be contributed from separate protein 
molecules (the six subunits of a connexon ), whereas all curren th­
known {3-barrels are formed within a single poh-peptide chain·. 
As yet, we have insufficient convincing evidence to enable us 
to distinguish between th e possible models, but th e complete 
amino acid sequence should provide an important step towards 
the final resolution of the three-dimensional structure of thi s 
channel. 
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CHAPTER 3 

Structural Studies on the Liver Gap Junction Protein Using Proteolytic 

Treatments of Isolated Gap Junctions 

Running title: Proteolytic analysis of liver gap junctions 
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Abstract: 

In virtually all cases, extensive proteolysis of isolated liver gap junctions 

has no detectable effect on the junctional ultrastructure, although the M 28,000 
r 

junction protein is partially degraded. The pattern of this proteolysis is examined 

for a variety of proteases (trypsin, chymotrypsin, V8 protease and papain). In 

general, the protein appears to be cleaved into two fragments, with molecular 

weights between 14,000 and 10,000, which are protected from further proteolysis 

by the surrounding membrane. Prolonged exposure to papain, however, is found 

to cause further degradation. The separation of the two M 10,000 tryptic poly­
r 

peptides for possible sequence analysis is reported by both iso-electric focusing 

and high pressure liquid chromatography. Digestion of these polypeptides by 

cyanogen bromide provides small fragments of the "native" protein for addi-

tional sequence determinations. Analysis of the two-dimensional peptide maps 

of the two polypeptides produced by partial chymotryptic digestion of gap 

junctions (M 14,000 and 10,000) allows some conclusions to be drawn regarding 
r 

the disposition of the junction protein within the membrane. 
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Introduction: 

In the preceding two chapters, the isolation of gap junctions from rat liver 

in high purity and relatively high yield and the subsequent identification and partial 

characterization (including N H2 -terminal sequence analysis) of the single major 

protein component of M 28,000 was described (Nicholson and Revel, 1983; Nicholson 
r 

et al., 1981). In this chapter, experiments are reported which provide a basis for 

further defining the primary (i.e., amino acid sequence) and higher order structure 

(i.e., folding of the polypeptide chains in the membrane) of the liver gap junction 

protein. 

Primary sequence data beyond that already obtained for the NH2-terminus 

will require the generation of fragments of the "native" protein by specific protease 

or chemical cleavage. The sequences of these fragments can then be pieced together 

from overlapping sequences of polypeptides produced by different cleavage methods. 

Since, with the current technology (Hewick et al., 1981), polypeptides up to 6,000 

in molecular weight can be sequenced in their entirety, it is most efficient to obtain 

relatively large fragments for sequence analysis. This can be achieved either through 

very specific enzymatic or chemical cleavage at residues which occur only infre-

quently in the gap junction protein (see amino acid analysis in Table 2 of Appendix I) 

or through proteolysis of intact gap junctions where the membranes should provide 

some protection against enzymatic hydrolysis for portions of the polypeptide chain 

(cf. studies of bacteriorhodopsin by Ovchinnikov et al., 1979). It has been demon-

strated previously (Henderson et al., 1979; Finbow et al., 1980; Nicholson et al., 

1981; Makowski et al., 1982) that extensive treatment of gap junctions with 

various proteases has virtually no effect on their overall structure in that the 

membranes remain closely associated, separated by a uniform 2-3 nm gap, and the 

connexons remain associated in a polygonal (often hexameric) lattice. However, the 

protein is degraded into smaller polypeptides (of Mr 10,000 in the case of tryptic 
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hydrolysis; see Figure 3, Nicholson et al., 1981; i.e., Chapter 2). From arguments 

presented in the previous chapter based on the size and solubility in aqueous solution 

of trypsin and most other proteases, it seems likely that proteolysis of isolated 

gap junctions should be restricted to the cytoplasmic faces of the junction, with 

portions of the polypeptide chain in the membrane, putative transmembrane pore 

and intermembrane gap being protected. Fragments of the junctional protein 

produced in this manner are therefore not only useful for sequence analysis, but 

also provide information on the disposition of the protein in the membrane. 

As a result, it is this approach which we have principally used in the produc­

tion of fragments of the junctional protein for additional sequence analysis. In 

this chapter, the cleavage patterns of the gap junction protein resulting from 

various protease treatments of isolated gap junctions are reported in addition 

to some preliminary results on the chemical cleavage of the solubilized protein. 

Some aspects of the tertiary structure of the junction protein which can be deduced 

from peptide maps of the proteolytic fragments just described are also discussed. 

Materials and Methods: 

Isolation of gap junctions. "Native" and "enzyme treated" gap junction frac­

tions were isolated by the procedures described in Nicholson and Revel1983 (i.e., 

Chapter 1). "Enzyme treated" fractions from mice, used in the cyanogen bromide 

digestion, were prepared in the same way as for rat, with four mouse livers (each 

2 g wet weight) being substituted for each rat liver. 

Iodination of gap junction fractions by the chloramine T method of Greenwood 

et al. (1963), sodium dodecyl sulfate polyecrylamide gel electrophoresis (SDS PAGE) 

and two-dimensional peptide mapping were performed as described in Nicholson 

et al., 1981 (i.e., Chapter 2). 
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IEF and two-dimensional PAGE. After solubilization and iodination, the 

protein components of an "enzyme treated" gap junction fraction were separated 

by SDS PAGE, the M 10,000 band excised and the protein electroeluted as described 
r 

by Hunkapiller et al., 1983, as modified by Nicholson et al., 1981. The lyophilized 

eluate was taken up in 0.4% SDS (Biorad), 8 M urea (Schwartz Mann), 10% mercap-

thethanol and 1 mM NaHC03 (pH 7 .4) and allowed to stand for 20-30 minutes 

to ensure complete solubilization. An equal volume of 4% Triton X-100 (Sigma), 

8 M urea, 4% ampholines (LKB) and 1 mM NaHC03 (pH 7.4) was added in order 

to displace the SDS and replace it with the non-ionic detergent, Triton X-100 

(present in 10-fold excess over SDS, see Ames and Nikaido, 1976). Aliquots of 

the solubilized junctions were then loaded on five 6% acrylamide (9:1 crosslinking 

ratio) tube gels (0.4 em diameter) made up in 8 M urea, 2% Triton X-100 and 

2% ampholines and polymerized, after degassing, with 0.025% ammonium persulfate 

and 0.1% TEMED. Ampholines in both the solubilization buffer and the gel were 

a mixture of LKB 3.5-10.0, 6-8 and 8-9.5 ampholines in ratios of 1:9:4. The samples 

were overlayed with a 4 M urea, 2% Triton X-100 and 2% ampholine mixture before 

the 1.0 M NaOH upper reservoir solution was added. The reservoir solution at 

the anode was 0.2 M H3Po 4• lsoelectric focusing (IEF) was performed to equilib­

rium at 400 V for 10 hours (initially the voltage was adjusted to keep the current 

below 5 rnA) and at 550 V for the last hour. Four of the gels were then cut into 

2.5 mm slices for pH determination (in 10 mM degassed KCI) and counting in a 

Beckman 4000 gamma counter. The remaining gel was equilibrated for 2 hours 

at room temperature in Laemmli solubilization buffer (Laemmli, 1970) and loaded 

on a Laemmli discontinuous SDS polyacrylamide gel (described in Chapter 2). 

After running, the second dimension gel was fixed in 7.5% acetic acid, 20% methanol, 

washed several times in 10% glycerol, dried with heating under vacuum and exposed 

to Kodak XR film at -70°C with a DuPont Cronex Lightning plus intensifying screen. 
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High pressure liquid chromatography (HPLC). A sample of an "enzyme-

treated" gap junction fraction was iodinated and the gap junctions separated from 

free iodine by several centrifugations of 4 x 105 g min (15,000 rpm x 30 minutes av 

in an Eppendorf centrifuge). The final pellet was then solubilized in 2% SDS, 

50 mM NH4 HC03 and 10 mM sodium thioglycollate (pH 7 .8) and electrodialyzed 

(by the same procedure used for electroelution-Hunkapiller et al., 1983) until 

the SDS concentration was reduced to 0.1 %. Fifty !Jl of the dialysate was loaded 

on an IBM cyanopropyl silane HPLC column and the polypeptides eluted with a 

linear gradient of 0-60% acetonitrile in 0.1 M NaCl04 , 0.01% H
3
Po

4 
(pH 2.1) 

(Meek, 1980) over 90 minutes at a flow rate of 1 ml/minute. Fractions were col-

lected every 30 seconds and counted on a Beckman gamma counter. 

Proteolytic treatment of "native" gap junction fractions. Conditions for 

proteolysis of gap junction fractions were optimized for each enzyme used. 

The chymotryptic cleavages shown in Figure 3 were performed in 

50 mM NH4Hco3, pH 7.8, with 1 mM CaC12 added during long incubations (lane j) 

to stabilize the a chymotrypsin (Millipore Corp., Freehold, N.J.). Details are given 

in the figure legend. The same results are obtained in 80 mM Tris/HCl, 

100 m M CaC12 at pH 8.9 and in the presence of 2 M urea. 

Before adding substrate, the active sulphydryl group of papain (Millipore 

Corp., Freehold, N.J.) was activated by a 30 minute incubation in 1 mM EDTA, 

5 mM cysteine HCl and 0.6 mM mercaptoethanol at a concentration of 25% (w/v) 

enzyme. One JJl of the activated enzyme was added to 10 jJl of a "native" gap 

junction fraction (.r18 JJg protein) in 0.2 mM EDTA, 0.6 mM cysteine HCl (pH 6.2) 

with or without 2 M urea and the mixture incubated for 6 hours at room tempera-

ture. After removing an aliquot (3 !Jl) for analysis, 2 JJl of a 50% (w/v) activated 

papain solution was added and incubation resumed for an additional17 hours. 

The surviving junctions in both the aliquot and final sample were collected and 

washed by three successive centrifugations (9 x 10.5 gav min each). 
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Cleavage of "native" gap junctions by Staphylococcus VB protease (Miles 

Lab. Inc., Indiana) was performed at room temperature in 50 mM ammonium 

acetate, with or without 2 mM urea, at pH 4.0, conditions in which cleavage occurs 

only at glutamate residues (Houmard and Drapeau, 1972). The concentration of 

gap junction protein was 1BO% (w/v), while that of the VB protease was 6.5% (w/v) 

for the initial 7 hours of incubation, after which the sample was boosted with 

an equal amount of VB protease and incubated for an additional16 hours. Junctions 

were then collected in the same manner as for the papain digest. 

CNBr cleavage of the gap junction protein. At this time, only the cleavage 

of the mouse liver Mr 10,000 polypeptides has been examined. After iodination, 

a mouse liver "enzyme treated" gap junction fraction was run on an SDS polyacryl-

amide gel, the Mr 10,000 band cut out and the protein eluted and lyophilized. 

The lyophilizate, containing 3-5 J.!g of M 10,000 polypeptides and some SDS, was 
r 

taken up in 260 J.!l of 70% formic acid and 10 mg of CNBr was added. After a 

6 hour incubation at room temperature in the dark, an additional10 mg of CNBr 

was added and the incubation continued for 20 hours (in the dark). The reaction 

was terminated by the addition of four times the volume of 5% ammonium acetate 

followed by lyophilization. Approximately 25% of the radioactivity was lost by 

this procedure. The resulting polypeptides were separated by urea SDS PAGE 

(Swank and Munkries, 1971). After Coomassie blue staining, the lane containing 

the digested junctions was cut out and sliced into 2 mm wide bands for counting 

on a Beckman gamma counter. This method allows a higher resolution of the 

distribution of radioactive proteins than is provided by autoradiography. 

Results: 

Separation of the Mr 10,000 tryptic polypeptides. In the previous chapter 

it was demonstrated that tryptic hydrolysis of intact gap junctions generates two 
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polypeptides of Mr 10,000 which could not be separated by SDS PAGE. Two tech­

niques have now been employed in order to isolate each of the two polypeptides. 

From the sequence data discussed in Nicholson et al. (1981) one of these must 

represent the NH2-terminal one-third of the "native" Mr 28,000 junction protein, 

while the other, must represent a third of the native protein somewhere between 

the middle and carboxy terminus. NH2-terminal sequence analysis of this latter 

polypeptide should provide new data regarding the central portion of the Mr 28,000 

junctional polypeptide. 

(i) IEF. Gap junction polypeptides have generally proved recalcitrant to 

attempts at separation by isoelectric focusing, largely because of their insolubility 

in anything but strong, anionic detergents such as SDS. Although the Mr 10,000 

hydrophobic fragments of the junctional protein are particularly difficult in this 

regard, in one case apparent separation of these two polypeptides was achieved 

(Figure 1) by first solubilizing Mr 10,000 polypeptides eluted from an SDS poly­

acrylamide gel in SDS and then displacing this with an excess of the non-ionic 

detergent Triton X-100. By loading the sample at the basic end of the IEF gel, 

SDS would be rapidly stripped away and migrate to the opposite end of the gel. 

Some "streaking" of the polypeptides is evident in the gel (Figure 1a) and could 

possibly result from precipitation of the protein as SDS is removed. However, 

this seems unlikely since the distribution of radioactively labeled protein was 

virtually identical in four separate IEF gels (results of one shown in Figure 1a) 

and a two-dimensional gel at the level of the Mr 10,000 polypeptides (Figure 1b). 

Since no radioactivity could be detected corresponding to any other molecular 

weight on the two-dimensional gel, it would also seem that all of these radioactive 

peaks represent M 10,000 polypeptides with differing pis. This eliminates the 
r 

possibility that the multiple peaks seen in IEF might have arisen from free iodine, 

iodinated lipids or degradation products of the Mr 10,000 polypeptides, since these 
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FIGURE 1. Separation of mouse liver M 10,000 gap junction polypeptides by 
r 

iso-electric focusing (IEF). 

(a) Iodinated M 10,000 polypeptides eluted from an SDS polyacrylamide gel 
r 

were loaded at the basic end of a 6% acrylamide tube gel and iso-electric focusing 

conducted to equilibrium (4500 V hrs). The gel was cut into 2.5 mm slices, each 

of which was then counted on a Beckman gamma counter (histogram results) and 

then equilibrated in degassed 10 mM KCl for determination of the pH gradient (upper 

graph). The pattern and pi's of the peaks of radioactivity were reproducible in four 

gels run in parallel. 

(b) After iso-electric focusing as above, a fifth gel was run in a second 

dimension of SDS PAGE. An autoradiogram of this gel showed all the radioactive 

material to have a mobility corresponding to M 10,000. A densitometer scan of 
r 

the autoradiogram across its width at the level of this molecular weight is shown. 

Again, the pattern of peaks corresponds well with those seen in the first dimension-

see (a). 
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would have run at or near the dye front in SDS PAGE. The only possible exception 

could be the minor peak at pi 7.2 which is visible on the IEF gel (Figure 1a), but 

not at Mr 10,000 on the second dimension gel (Figure 1b). 

Two major peaks were detected at pis of 8.0 and 7 .9. This would be expected 

from the sequencing and peptide mapping results in Nicholson et al. (1981) and 

the quantitative estimates of junctional protein recovery after trypsinization 

(referred to in previous chapter and described in detail in Appendix 1), all of which 

suggest that "enzyme treated" gap junctions are comprised of two different 

Mr 10,000 polypeptides (representing 20,000 of the "native" protein's 28,000 daltons). 

The second of these peaks seemed considerably broader than the other. Several 

minor peaks were also reproducibly found with pis ranging from 7.2 to 8.1. Studies 

under similar conditions with standard proteins (Ferritin (pi 4.3), bovine y globulin 

(pi 6.5), ribonculease (pi 7 .6) and cytochrome c (pi 9.3)) indicated that focusing 

should have reached equilibrium. 

(ii) HPLC. Mr 10,000 polypeptides, especially hydrophobic ones, are somewhat 

large to be efficiently separated by a cyanopropyl silane HPLC column. Therefore, 

it is not surprising that most of the radioactivity in an iodinated "enzyme treated" 

gap junctional fraction was eluted very late in the gradient as two broad peaks 

(Figure 2), presumably corresponding to the two Mr 10,000 polypeptides alluded 

to in the previous section. Although both peaks seem to contain similar amounts 

of protein, as far as can be judged from radioactivity (see Nicholson and Revel, 

1983, section D II for a discussion of the problems with such an estimate), the 

first to be eluted seems to be comprised of a number of components. Other minor 

peaks are also evident in the HPLC eluate, including some very sharp peaks eluting 

at 4, 30 and 59 mintues. By analogy with other HPLC separations, the 4 minute 

peak is likely to be residual free iodine or iodotyrosine produced by partial hydrolysis 

of the sample. The sharpness of the peaks at 30 and 59 minutes seems inconsistent 
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FIGURE 2. Separation of the protein components of a rat liver "enzyme treated" 

gap junction fraction by high pressure liquid chromatography (HPLC). 

An iodinated, "enzyme treated" gap junction fraction from rat liver was 

solubilized in SDS and the labelled components separated on an IBM cyanopropyl 

silane HPLC column with a gradient of 0-60% acetonitrile in 0.1 M NaCl04, 

0.01% H3Po4 (pH 2.1). The two major, broad peaks of radioactive material eluting 

late in the gradient are likely to represent the M 10,000 polypeptides which com-
r 

prise most of the protein in the fraction. One of these peaks seems to be comprised 

of multiple components which may represent the tryptic variants of one of the 

Mr 10,000 polypeptides suggested by sequence data (Nicholson et al., 1981) and 

discussed in the text. Other peaks must arise from either minor contaminating 

proteins in the fraction, additional tryptic variants of the M 10,000 polypeptides, 
r 

or labelled phospholipids (see text). 
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with this material being polypeptides, since polypeptides hydrophobic or large 

enough to elute this late in the gradient usually form quite broad peaks. Although 

the nature of this material remains to be determined, it is possible that it could 

be iodinated phospholipids. 

Chymotryptic proteolysis of "native" gap junctions. The time course of 

chymotryptic digestion of gap junctions (Figure 3) is not grossly different from 

that of trypsin (described in Nicholson et al., 1981-Figure 3), although some 

different intermediates can be seen at about Mr 24,000-20,000 (Figure 3, lanes c 

to g). Even the ultimate end product is a single M 10,000 band (Figure 3, lane j) 
r 

which, by analogy with the tryptic digest,should contain two M 10,000 polypeptides. 
r 

However, there is at least one significant and useful difference. While the transi-

tion to the Mr 10,000 polypeptides is rapid in tryptic hydrolysis, with a chymotrypsin 

there is a relatively stable intermediate with one polypeptide of M 10,000 and 
r 

another of Mr 14,000 (Figure 3, lane h). This latter polypeptide requires several 

treatments with a chymotrypsin at enzyme: substrate ratios in excess of 1:20 

before it is reduced to Mr 10,000 (Figure 3, lane j). 

Peptide maps of the Mr 14,000 and 10,000 chymotryptic polypeptides along 

with a map of the mixture of Mr 10,000 tryptic polypeptides are shown in Figure 4. 

As might have been predicted, the maps of each of the chymotryptic fragments 

(Figures 4a and b) contain half of the peptides present in the map of the mixture 

of tryptic fragments (Figure 4c). Stated another way, the chymotryptic Mr 14,000 

and Mr 10,000 polypeptides each contain a mutually exclusive subset of the peptides 

contained in a mixture of the two M 10,000 tryptic fragments. This result has 
r 

been obtained in five independent mapping experiments and an analogous result is 

seen in tryptic maps (not shown). Some "cross contamination" of peptides between 

the maps of the two chymotryptic fragments does occur, resulting often in the 

two mutually exclusive sets of peptides being less clear-cut. This probably results 
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FIGURE 3. A timecourse of ex chymotryptic hydrolysis of a "native" rat liver 

gap junction fraction. 

(a) and (i) Biorad low molecular weight standards, molecular weights 

marked in thousands. 

(b)- (g) A "native" gap junction fraction (15% (w/v) protein) was treated 

with 0.2% (w/v) chymotrypsin in 50 mM NH4Hco3, pH 7.8, at 37°C. Samples 

for analysis by SDS PAGE were removed at the times indicated in minutes 

below each lane and the reaction stopped with phenyl methyl sulphonyl fluoride. 

Molecular weights of the major bands in thousands are marked to the right of 

(g), along with the position of residual chymotrypsin (Cht). 

(h) Under the conditions described above, half of a "native" gap junction 

fraction (20% (w/v) protein) was treated with 0.4% (w/v) chymotrypsin for 

one hour, and for an additionalll hours following a boost with half as much enzyme 

again. The junctional proteins are degraded to polypeptides of M 14,000 and 
r 

10,000, while the Mr 38,000 protein is partially reduced to Mr 36,000. 

(j) More extensive chymotryptic hydrolysis of the other half of this "native" 

gap junction fraction (17 hours at 0.4% (w/v), 2.5 hours following a boost with 

an equal amount of enzyme, and 7 hours after boosting the enzyme concentra-

tion by a factor of five) reduced both of the junctional polypeptides in (h) to 

M 10,000. Chymotryptic autolysis in these longer incubations was reduced r 

by including 1 mM CaC12 in the buffer. 
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FIGURE 4. Two-dimensional chymotryptic peptide maps of the major poly-

peptides produced from chymotryptic (a and b) or tryptic (c) hydrolysis of 

isolated "native" gap junctions. 

(a) and (b) Partial chymotryptic hydrolysis of isolated liver gap junctions 

reduced the "native" M 28,000 protein to two polypeptides of M 14,000 and r r 

10,000 (Figure 3h). The peptide maps of these polypeptides show that each is 

composed of a unique set of iodinated peptides, thus demonstrating that they 

represent different portions of the "native" protein. (Peptide 7 is common to 

both maps, but this is believed to be iodo-tyrosine and has been found in pep-

tide maps of all proteins studied to date--see text.) 

(c) The peptides from both maps (a) and (b) are found in the map of the 

Mr 10,000 band seen after SDS PAGE of trypsinized (Figure 3g in Chapter 2) 

or completely chymotrypsinized (Figure 3j in this chapter) gap junction frac-

tions. This further demonstrates that this band is comprised of two polypep-

tides representing more than two-thirds of the "native" M 28,000 molecule. 
r 
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from the proximity of the bands on the original gel from which they were excised, 

or some cleavage of the Mr 14,000 polypeptide to its Mr 10,000 fragment (see 

Figure 3, lanes h and j). In any event, the only consistent exception to the mutually 

exclusive nature of these two sets of peptides is peptide 7, and this peptide is 

found in the chymotryptic and tryptic maps of every protein that we have studied. 

Since it elutes at the very beginning of an HPLC gradient designed to separate 

small peptides (results not shown), we believe that it is likely to represent free 

iodotyrosine generated by limited hydrolysis of the sample in acid conditions, 

and does not, therefore represent a true chymotryptic or tryptic peptide. 

One unexpected result also came to light during these experiments. Frequently, 

polypeptides of Mr 14,000 and 10,000 are present in "native" gap junction fractions 

stored for protracted periods at -20°C, presumably as a result of some low level 

of contaminating, unidentified, proteolytic activity. In two cases, peptide maps 

of these polypeptides have been examined. They are identical to those of the 

chymotryptic fragments, except that peptide 10, found in the Mr 10,000 chymotryptic 

fragment, is found in the map of the Mr 14,000 fragment generated by proteolysis 

in the freezer. This is consistent with the observation that this Mr 14,000 fragment 

migrates a little slower than the Mr 14,000 chymotryptic fragment on SDS PAGE. 

Proteolysis of "native" gap junctions by other proteases. Comparing the 

chymotryptic or tryptic cleavage of the Mr 28,000 junctional protein after elution 

from a gel (i.e., peptide mapping) or while part of the intact junction (see Figure 3; 

in this chapter and Chapter 2), it is clear that the pattern of polypeptides obtained 

by proteolysis of whole junctions is largely a function of the disposition of the 

junctional protein in the membrane, and to a lesser extent the presence of available 

cleavage sites. Therefore, one would expect most proteases to produce similar 

size fragments. Experiments with Staphylococcus V8 protease (under conditions 

where cleavage only occurs at glutamate residues) and papain (a much less specific 
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protease) largely support this conclusion. V8 protease produces several fragments 

of Mr 14,000 to 10,000 which are poorly resolved by SDS PAGE (Figure 5, lane b). 

The multiple fragments suggest that proteolysis was not complete by 23 hours 

(compare Figure 5, lane b with the intermediate stages of chymotryptic (Figure 3, 

lane g) or tryptic (Chapter 2, Figure 3, lane d) digestion of gap junctions). Papain 

shows a similar timecourse to chymotrypsin with M 14,000 and 10,000 polypeptides 
r 

evident after 6 hours (Figure 5, lane c). As was the case for chymotrypsin and 

trypsin, no proteolytic intermediates of the junction are evident between M 24,000 
r 

and 14,000, despite the non-specificity of this protease. 

In some ways, however, these proteases do behave differently from those 

studied previously and may reveal new aspects of the three-dimensional organiza-

tion of the gap junction protein with respect to the membrane. While V8 protease 

cleaves the Mr 26,000 and 24,000 polypeptides of the "native" fraction (Figure 5, 

lane a) quite efficiently, it fails after 23 hours to affect the M 28,000 "native" 
r 

protein. This result was also obtained in the presence of 2 M urea, which should 

help to disrupt the secondary structure of the polypeptide chain outside the mem-

brane. Prolonged exposure (23 hours) to papain, on the other hand, reduces the 

junctional protein to an unresolved smear of polypeptides below Mr 10,000 on 

SDS PAGE (Figure 5, lane d), a result which is also independent of the presence 

of protein denaturants (i.e., 2 M urea). Examination of this fraction by negative 

staining in the electron microscope revealed that junctional plaques with hexagonally 

arrayed connexons were still intact despite the extensive degradation of the protein 

components (Figure 6a). Some images, however, did suggest that the membranes 

of some of the junctions may have been separated (i.e., the gap junctions may 

have been split; see Figure 6b and c). Further experiments remain to be done 

to confirm this possibility. 



62 

Stds a c d Stds 
94 - - 94 
68- -68 
43 43" 

29 ~ -.-29 

21 21 

14 14 

FIG,5, 



62a 

FIGURE 5. Analysis by SDS PAGE of the products of hydrolysis of "native" 

gap junction fractions by Staphylococcus V8 protease and papain. 

Biorad low molecular weight standards (molecular weights marked in 

thousands) are shown in the outer lanes. 

(a) "Native" gap junction fraction. 

(b) "Native" gap junctions treated for 23 hours with Staphylococcus V8 

protease in ammonium acetate at pH 4.0 (cleavage only at glutamate residues). 

The Mr 28,000 "native" protein is unaffected, but its partial endogenous degra­

dation products (Mr 26,000 and 24,000) are broken down to multiple components 

of Mr 14,000-10,000. The absence of an Mr 38,000 band would suggest that this 

contaminant may be susceptible to V8 proteolysis. No multimeric aggregates 

of the junctional protein are detected in this fraction. 

(c) "Native" gap junctions treated for six hours with papain. The june-

tional proteins have been largely degraded to an M 24,000 polypeptide which r 

has in turn been partially cleaved to fragments of M 14,000 and 10,000. The 
r 

M 38,000 protein has been partially cleaved to M 36,000 (cf. chymotryptic r r 

digests-Figure 3h). A dimeric aggregate of the Mr 24,000 polypeptide and 

some residual "native" M 28,000 material are also evident. 
r 

(d) "Native" gap junctions treated for 23 hours with papain. Further 

papain proteolysis reduces the junctional protein to multiple fragments with 

molecular weights less than 10,000. The Mr 38,000 protein is also apparently 

degraded to smaller polypeptides. See text for details of proteolysis conditions 

used. 
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FIGURE 6. 
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FIGURE 6. Negatively stained "native" gap junction fractions treated with 

papain for 23 hours (samples of the same fraction examined by SDS PAGE in 

Figure 5, lane d). 

(a) An overview of the fraction (mag- X120,000) shows it to be comprised 

almost totally of gap junction sheets which display very ordered, hexagonal 

arrays of connexons (particularly evident to the right of the picture). The 

lack of discontinuities or holes in the lattice of connexons suggests that there 

is little disruption of the lipid bilayer. Occasional, non-junctional vesicles 

are also seen (centre of picture). 

(b) Views of the junctional sheets in profile demonstrate, in some cases, 

the intact nature of the double membrane gap junction structure (note the 

stain excluding cross-bridges spanning the gap between membranes-white 

arrowheads). However, at times the two halves of the junction seem to be 

separating from one end (white arrow). En-face views are suggestive of 

similar splitting. In the region marked by (*),a portion of the upper half 

of the junction seems to have been removed, exposing the lower half 

(mag- X215,000). 

(c) More extensive separation of the junctional membranes can some­

times be seen(*). The pairing of one membrane sheet with two other mem­

branes, in one case on opposite sides of the bilayer (white arrowheads), and 

the reduced gap between membranes might suggest that these junctional 

membranes have been separated and the halves are now re-adhering to one 

another non-specifically rather than through specific connexon-connexon 

interactions (mag- X215,000). 
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FIGURE 7. Distribution of radioactivity in a urea SDS polyacrylamide gel of 

a CNBr digest of iodinated mouse liver Mr 10,000 gap junction polypeptides. 

Loading end of the gel is towards the left of the figure and the migration pattern 

of the standards run on the gel along with their molecular weights in thousands 

are marked along the X-axis. Standards are ribonuclease (Mr 14,000) glucagon 

(M 3,500) and a partial CNBr digest of cytochrome c (M 11,400; 7 ,200; 4 ,200; 
r r 

2,600; 1, 700). Major CNBr fragments of Mr 5,400, 2,100 and several between 

Mr 4,000 and 2,500 are detected (molecular weights marked in thousands in figure) 

as well as a minor component of M 8,000, which may represent a partial cleavage 
r 

product. See text for details of cleavage conditions. 
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CNBr cleavage of the mouse Mr 10,000 tryptic polyPeptides. The initial 

experiment on the cleavage of mouse liver Mr 10,000 gap junction polypeptides 

with CNBr yielded bands of Mr 8,000 and 5,000, as well as a diffuse band from 

M 3,000 to 2,000 when examined by urea SDS PAGE (results not shown). However, 
r 

a subsequent and more complete cleavage of iodinated M 10,000 polyPeptides 
r 

with CNBr (Figure 7) revealed much reduced levels of the M 8,000 polypeptide, 
r 

relatively sharp peaks at M 5,400 and 2,100, and a broad peak containing most 
r 

of the radioactivity centered around Mr 3,200. The profile of radioactivity in 

this major peak (Figure 7) suggested that it was composed of multiple components 

which could not be resolved by urea SDS PAGE and appeared as shoulders on the 

larger peak (a sharp one at Mr 4,000 and a broad leading edge shoulder around 

Mr 3,000). The most likely interpretation of these results would seem to be that 

CNBr treatment of the mixture of Mr 10,000 tryPtic polyPeptides from mouse 

liver produces a partial cleavage product of Mr 8,000 and fully cleaved products 

of M 5,400, 2,100 and several of M 2,500 to 4,000. 
r r 

Discussion: 

In order to further the determination of the amino acid sequence of the 

liver gap junction protein, we have produced several fragments of the Mr 28,000 

"native" protein. Since proteolysis of intact junctions was largely used for this 

purpose, certain conclusions as to the tertiary structure of the junctional protein 

can also be made. As alluded to in the introduction, most proteases are too large 

(e.g., tryPsin and chymotryPsin are both 5 nm across at their smallest diameter) 

to penetrate the transmembrane junctional pore (1.5 nm in diameter) or the extra­

cellular gap between the two membranes of a gap junction (2-3 nm wide), and, 

due to their hydrophilic surfaces, are equally unlikely to enter the lipid bilayer. 

This allows us to deduce the approximate location of the polyPeptides which remain 

as part of the intact gap junction structure after proteolysis. 
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Tryptic hydrolysis of gap junctions has been studied most extensively (Nicholson 

et al., 1981) and has been demonstrated to first remove about 4,000 daltons from 

the COOH-terminus of the native protein before cleaving the remaining M 24,000 
r 

polypeptide into two fragments of M 10,000. One of these polypeptides represents r 

the NH2-terminal end of the native protein (Nicholson et al., 1981). No unique 

sequence, however, could be deduced for the second polypeptide. This is likely the 

result of several, closely-s;;>aced, tryptic cleavage sites (approximately 14,000 daltons 

from the amino-terminus) exposed at the cytoplasmic surface just before the 

polypeptide chain enters the bilayer. These would provide a number of potential 

amino-terminal starting points for the sequence of the second polypeptide. This 

problem is not made any easier by the inability of SDS PAGE to separate the two 

major portions of the junctional protein. Using IEF and HPLC, we have attempted 

to separate the two Mr 10,000 polypeptides, and some of the "tryptic" variants 

of second Mr 10,000 fragment. Two major components were resolved by both 

techniques. Furthermore, there is evidence to suggest that at least some of the 

proposed tryptic variants of the Mr 10,000 polypeptides may have also been resolved. 

The first of the major peaks to be eluted from HPLC (Figure 2) seems to be com-

posed of multiple components. In IEF, several minor bands in addition to the major 

species at pis of 7.9 and 8.0 can be detected. Their mobilities in a second dimension 

confirm that they represent M 10,000 polypeptides, which could have been derived r 

from one of the major species by the loss of a few basic residues. Resolution of 

this issue will require preparative IEF or HPLC in order to isolate sufficient of 

these fractions to allow NH2-terminal sequence anlaysis. The isoelectric points 

of the major M 10,000 polypeptides determined here are consistent with their 
r 

amino acid composition (Appendix I, Table 2) if one assumes that about half of 

"glx" and "asx" are present as the amide, an assumption which appears justified 

on the basis of the available sequence (three amides and three free acids are 

present in the NH2-terminal 58 residues). 
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Chymotryptic proteolysis of gap junctions provides an alternative approach 

to separating the two protease resistant halves of the gap junction protein. Although 

eventually chymotrypsin also reduces the junctional protein to two Mr 10,000 

fragments (Figure 3, lane j), the final reduction of one of the polypeptides from 

a stable Mr 14,000 intermediate (Figure 3, lane i) proves to be very slow. Partially 

chymotrypsinized gap junctions should, then, contain easily resolvable components 

of Mr 14,000 and 10,000 analogous to the two Mr 10,000 tryptic polypeptides. 

Given this premise, certain predictions follow which can be tested by peptide 

mapping. Stated briefly, the peptide map of the mixture of Mr 10,000 tryptic 

fragments (Figure 4c) should contain two, mutually-exclusive sets of peptides, 

one of which should comprise the map of the Mr 14,000 chymotryptic fragment 

and the other the map of the Mr 10,000 chymotryptic fragment (of course, one 

or two additional pep tides might be found in the Mr 14,000 polypeptide considering 

the additional4 ,000 daltons of mass). This indeed proves to be the case, as can 

be seen in Figure 4 with peptides 1, 2, 5 and 8 in the Mr 14,000 polypeptide and 

peptides S, Sa, 4 and 10 in the Mr 10,000 polypeptide (peptide no. 5 was not labeled 

in the maps shown, but was detected in most other experiments). As alluded to 

in the Results, peptide no. 7 appears to represent free iodotyrosine. Interestingly, 

there are apparently no tyrosines or other iodination sites in the protein lost from 

the Mr 14,000 polypeptide in its conversion to Mr 10,000 since no additional peptides 

are seen in the map of the Mr 14,000 fragment. A comparison of these peptide 

maps .with those of the Mr 28,000 and 24,000 polypeptides (see Chapter 2, Figure 5) 

allows us to build a crude model of the gap junction protein in which some of the 

labeled peptides can be located (Figure 8). 

In reducing the Mr 28,000 protein to Mr 24,000 several hydrophilic peptides 

are lost (peptides 11, 12 and 13 and most of 9) and a new hydrophobic one appears 

(peptide Sa). Since the Mr 28,000 and 24,000 polypeptides share the same NH2-

terminal sequence (Nicholson et al., 1981), these peptides must be removed 
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from the COOH-terminus. For a new peptide to appear in the map of theM 24,000 r 

polypeptide (i.e., peptide 6a), one of the labeled peptides of the Mr 28,000 protein 

must have been cleaved, leaving its hydrophobic portion bearing the labeled tyrosine 

embedded in the membrane and attached to the M 24,000 polypeptide. The most 
r 

likely candidate for such a precursor peptide is no. 9, since residual amounts of 

it remain in most maps of the Mr 24,000 polypeptide. Since peptide 6a must 

represent the COOH-terminal peptide of the Mr 24,000 polypeptide, it follows 

that the Mr 10,000 chymotryptic fragment, which contains this peptide, must 

represent the COOH-terminal half of the Mr 24,000 protein. The Mr 14,000 

polypeptide, therefore, must represent the NH2-terminal half of the "native" 

protein. Peptide no. 10 was deduced to be at the NH2-terminal end of the 

Mr 10,000 fragment from a chance observation of "native" gap junction fractions 

stored for prolonged periods at -20°C. Such fractions undergo partial proteolysis 

by an unidentified enzyme to fragments of Mr 10,000 and 14,000 (actually, slightly 

higher in molecular weight than the Mr 14,000 chymotryptic fragment). These 

share identical maps with those of the corresponding chymotryptic fragments, 

with the one exception that peptide no. 10 is found in the map of the Mr 14,000 

polypeptide, and not that of the Mr 10,000 polypeptide. This would suggest the 

existence of an accessible cleavage site for this unidentified protease to the 

COOH-terminal side of peptide no. 10, and would argue that this peptide is wholly 

exposed at the cytoplasmic surface of the junction (not a surprising result con­

sidering the hydrophilic nature of the peptide). Since, as yet, no probes have been 

used to study groups located in the hydrophobic portion of the bilayer, in the lining 

of the transmembrane channel, or in the extracellular gap, the specific distribution 

of peptides 1, 2, 5 and 8 of theM 14,000 polypeptide and peptides 4 and 6 of 
r 

the M 10,000 polypeptide remains unknown. A similar model to the one shown r 

in Figure 8 can also be constructed using peptides from tryptic maps. 
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FIGURE 8. Model of the rat liver M 28,000 gap junction protein deduced 
r 

from chymotryptic cleavage of isolated gap junctions. 

Diagrammatic chymotryptic peptide maps of some of the polypeptides 

produced by chymotryptic hydrolysis of isolated gap junctions (see Figure 3) 

are shown here with the peptides numbered for ease of identification. These 

maps are based on data from five independent experiments (one shown in 

Figure 4). Using available sequence data and these peptide maps, the num-

bered peptides can be located along the length of the polypeptide chain of the 

Mr 28,000 "native" junction protein as presented in the model (see text for 

detailed discussion). The specific order of peptides 1, 2, 5 and 8, peptides 4 

and 6, and peptides 11, 12 and 13, along with the orientation of the NH2-

terminus (extracellular or cytoplasmic) remains to be determined. Shaded 

regions are deduced to represent portions of the protein in the membrane or 

extracellular gap between membranes since in the intact junction they are 

inaccessible to proteases which are considered too large to penetrate these 

areas (see text). The cleavage site of the unidentified protease present in 

isolated junction fractions (dotted arrow) was deduced from peptide maps of 

Mr 14,000 and 10,000 polypeptides which appear in fractions stored for pro­

longec! periods (peptide 10 is found in the map of the Mr 14,000 rather than 

the l't1r 10,000 polypeptide). 
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Preliminary studies with other proteases (Staphylococcus V8 protease and 

papain) have provided some interesting observations, which may later prove useful 

in understanding the folding of the junctional protein. In general, both proteases 

follow the pattern of chymotrypsin and trypsin in that the junctional protein is 

reduced to a molecular weight of about 24,000 before cleavage into two fragments 

with molecular weights between 14,000 and 10,000 (Figure 5, lanes b and c). This 

supports the contention that proteolytic cleavage patterns in the intact junction 

are mainly a function of junctional structure rather than available cleavage sites. 

Some unique properties are seen, however. The resistance of the "native" M 28,000 
r 

junctional protein to V8 proteolysis is in sharp contrast to the susceptibility of 

its tryptic degradation products (M 26,000 and 24,000; see Figure 5, lane b). 
r 

This seems to suggest that the carboxy-terminal 2,000 daltons of the junctional 

protein possesses no glutamate residues for V8 protease cleavage, and is folded 

so as to obscure any V8 proteolytic sites on the cytoplasmic surface. Once this 

2,000 dalton segment is removed by some other protease, these V8 cleavage sites 

are exposed. Although 2 M urea fails to disrupt the secondary or tertiary structure 

which is responsible for this behavior, it is possible that the folding is stabilized 

by disulfide bonds or by a portion of this carboxy-terminal 2,000 daltons being 

buried in the lipid bilayer. 

In contrast to V8 protease, papain is a much less specific protease. Perhaps 

as a result of this, papain is the only protease we have used which cleaves the 

junctional protein within the structure of the gap junction to fragments smaller 

than M 10,000. Several mechanisms could possibly explain this result. Although 
r 

papain has a similar molecular weight to trypsin and chymotrypsin, it does not 

share the overall spherical shape of these proteases (Stroud et al., 1974). X-ray 

diffraction studies indicate that the papain polypeptide chain folds into a dumbbell 

shape with dimensions of 36 x 36 x 48 K(Dreuth et al., 1968). By analogy with 
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other proteases and from the intact appearance of the junctional sheets after 

proteolysis (Figure 6a),it seems unlikely that papain would penetrate the lipid 

bilayer. However, the smaller size of the papain molecule (compared to trypsin 

and chymotrypsin which are >50 A in diameter) may allow penetration of the 

aqueous gap separating the membranes of the junction. Even if penetration is 

limited, the non-specificity of papain should increase the chances of cleavage 

sites being exposed in the gap at the edge of the junction, thus allowing proteolysis 

to proceed inward, much like the undoing of a zipper. This same lack of specificity 

might also explain the observed results even if papain were excluded from the 

extracellular gap, since there may be portions of the polypeptide chain exposed 

at the cytoplasmic surface which do not possess sites for more specific proteases 

such as trypsin, chymotrypsin or V8 protease, but which do contain sites susceptible 

to papain hydrolysis. Although inconclusive, negatively stained images of the 

fraction (Figure 6) are not inconsistent with the "unzipping" model proposed above. 

If indeed, proteolysis is occurring in the gap, exhaustive papain treatment of junc­

tions followed by isolation of the polypeptides on HPLC should provide some excel­

lent material for the sequencing of the junctional transmembrane sequences. 

In addition to proteolysis of intact junctions, we have also begun preliminary 

studies on specific chemical cleavage of the isolated proteins to produce smaller 

polypeptides for sequence analysis. CNBr cleavage of mouse Mr 10,000 polypeptides 

(under conditions where cleavage occurs preferentially at methionine residues; 

Givol and Porter, 1965) produces final fragments of Mr 5,400 and 2,100 and several 

around Mr 3,000. Since the amino-terminal 20 residues of mouse liver junctional 

protein are identical, with one exception, to those of rat liver (Nicholson et al., 1981), 

and since the peptide maps of the proteins from these two species are essentially 

identical (Nicholson et al., 1983; Figure 6-i.e., in Chapter 4), it seems reasonable 

to assume that CNBr cleavage of the mouse liver protein should be very similar 
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to that of the rat. The Mr 5,400 fragment most likely represents the NH2-terminal 

peptide of the protein, since in the amino-terminal 52 residues, no methionines 

are seen except that at the NH2-terminus itself. Unfortunately, the remaining 

methionines are apparently well dispersed throughout the remaining sequence, 

resulting in the production of a series of Mr 3,000 fragments (which cannot be 

resolved by SDS PAGE). While it is possible that CNBr cleavage of the "native" 

Mr 28,000 protein may produce polypeptides which can be resolved by PAGE, 

it currently seems that HPLC will have to be used in the preparation of CNBr 

fragments for sequence analysis. 

The isolation of these various fragments of the Mr 28,000 junction protein 

will clearly be useful for obtaining further sequence data on the protein, and has 

already enabled us to determine the relative positions in the "native" protein of 

the tryptic and chymotryptic peptides of our two-dimensional maps (Figure 8). 

It is also tempting to use this data, in conjunction with that available from NH2-

terminal sequence analysis (Nicholson et al., 1981), X-ray (Makowski et al., 1977; 

1982) and optical (Unwin and Zamphigi, 1980) diffraction, to speculate as to how 

the gap junction protein is arranged in the membrane and at the extracellular 

and intercellular surfaces. The number of possible models which can be con­

structed, however, makes such speculation meaningless until further information 

is available regarding the secondary and tertiary structure of the protein within 

the membrane (e.g., does it form ex helices, 8 barrels or 8 -jelly rolls, etc?). 

The one conclusion that can be drawn from these studies is that the junctional 

protein is likely to span the membrane at least three times. The COOH-terminal 

4,000 daltons (NJ5 residues) is exposed at the cytoplasmic surface after which 

the polypeptide chain appears to enter the membrane, since it is no longer subject 

to proteolysis. Ten thousand daltons or approximately 90 residues later, the chain 

emerges again at the cytoplasmic surface to form a 4,000 dalton (~5 residue) 
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protease-labile loop before re-entering the membrane for its final NH2-terminal 

10,000 daltons. Clearly the protected 10,000 dalton portion closest to the 

COOH-terminus must span the membrane at least twice in order to return to 

the cytoplasm. This assumes that it is not energetically permissible for a polypep­

tide chain to reverse direction halfway across a lipid bilayer, because of energy 

cost of the non-paired H bonds in a reverse turn in a hydrophobic environment. 

Since the location of the NH2-terminus on the extra-or intra-cellular side of the 

membrane has yet to be determined, the minimum number of times the NH2-terminal 

Mr 10,000 fragment must span the membrane is unknown. However, since a poly­

peptide chain can cross the membrane in 20 residues as an a helix or even less 

as a S sheet, it is possible for each of the Mr 10,000 tryptic fragments of the 

junctional protein to traverse the membrane as many as four times. This is unlikely 

to be the case for both fragments since then no protein would protrude into the 

extracellular gap, an arrangement of the polypeptide chain which is contrary to 

that suggested by both X-ray and optical diffraction studies of isolated gap junctions 

(Makowski et al., 1977; Unwin and Zamphigi, 1980). 

Failing the generation of more ordered crystals of the gap junction protein 

and subsequent high resolution X-ray analysis, the only approach to finally answering 

these issues lies in obtaining more of the sequence of the protein and determining 

its location in the three-dimensional structure of the junction. The work presented 

here lays groundwork necessary for producing such data. 
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CHAPTER 4 

Differences between Liver Gap Jtmction Protein and Lens MIP 26 from Rat: 

Implications for Tissue Specificity of Gap Jtmctions 
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Summary 

Liver gap junctions and gap-junction-like structures 
from eye lenses are each comprised of a single 
major protein (M, 28,000 and 26,000, respectively) . 
These proteins display different two-dimensional 
peptide fingerprints, distinct amino acid composi­
tions, nonhomologous N-terminal amino acid se­
quences and different sensitivities to proteases 
when part of the intact junction. However, the junc­
tional protein of each tissue is well conserved be­
tween species, as demonstrated previously for lens 
and now for liver in several mammalian species. 
The possibility of tissue-specific gap junction pro­
teins is discussed in the light of data suggesting 
that rat heart gap junctions are comprised of yet a 
third protein. 

Introduction 

Gap junctions can be defined as patches of closely 
packed intramembrane particles (termed connexons 
in Goodenough , 1975; Kreutziger, 1968; Gooden­
ough and Revel, 1970; McNutt and Weinstein, 1970) 
that span the membranes of adjacent cells and the 
uniform, -2 nm gap which separates them . The con­
sistent correlation of electrical coupling and / or the 
intercellular transfer of low molecular weight (<1 000) 
compounds with the presence of gap junctions (for 
review see Bennett, 1978) has led to the consensus 
that these physiological properties also denote the 
existence of gap junctions (see the recent discussion 
in Meyer et al., 1981 ). By the latter criteria or by direct 
morphological observation, gap junctions have been 
described in every metazoan phylum and in the vast 
majority of tissues studied (for reviews see Loewen­
stein, 1979, and Staehelin , 1974). Gap junctions in 
most of these systems display generally similar fea­
tures , and cells from several different tissues and 
species have been reported to establish direct inter­
cellular communication with one another in tissue 
culture (Michalke and Loewenstein , 1971; Epstein 
and Gilula, 1977; Gaunt and Subak-Sharpe, 1979). 
However, there is some evidence that all gap junctions 
are not identical. There are a number of instances 
where communication-competent cells derived from 
different tissues or species establish only miminal 

coupling or no coupling with one another (Fentiman 
et al. , 1976; Pitts and Burk, 1976; Gaunt and Subak­
Sharpe, 1979). In addition , minor heterogeneities 
have been observed in the morphology (Staehelin , 
197 4 ; Larsen, 1977), physiological properties (see 
Peracchia , 1980, for review) and molecular exclusion 
limits (Simpson et al. , 1977; Flagg-Newlon et al. , 
1979) of gap junctions from different sources. 

The biochemical basis of these heterogeneities is 
unclear. Analysis has so far been confined to two 
systems: gap junctions from liver, which contain a 
single major protein reported as M, 26,000 or 28,000 
(Hertzberg, 1980, and Nicholson et al. , 1981, rat ; 
Henderson et al. , 1979, mouse ; Hertzberg et al. , 
1978, calf) ; and junctions of eye lens fiber cell s, which 
also appear to be comprised of a single major protein , 
called main intrinsic protein (MIP), of M, - 26 ,000 
(Broekhuyse et al., 1976, calf; Alcala et al. , 1978, 
chi cken; Goodenough , 1979, mouse). While the work 
presented here was in progress (Nicholson et al. , 
1980), evidence of differences between the junctional 
proteins of rat liver and bovine lens, based on one­
dimensional peptide mapping and lack of immunolog­
ical cross-reactivity , was published (Hertzberg et al., 
1982). This evidence, in conjunction with the morpho­
logical (Goodenough , 1979; Zampighi et al., 1982) 
and physiological differences (Schuetze and Good­
enough , 1982) reported between lens fiber junctions 
and gap junctions in other tissues , could be inter­
preted to mean that the structures in the lens are not 
gap junctions. Alternatively , one could argue that 
these represent differences between gap junctions of 
different tissues. In this report, we speak of lens 
junctions without necessarily implying that these 
structures in the lens are the equivalent of gap junc­
tions elsewhere . We attempt to clarify the nature of 
these lens junctions by comparing the lens MIP and 
liver gap junction protein (both from rat) using two­
dimensional peptide mapping and partial amino acid 
sequencing of the two proteins. 

Results 

Morphological Assay of Junctional Fractions from 
Liver and Lens 
The usual method for assaying the purity of gap junc­
tion fractions involves electron microscopic analysis 
of a sample of the fraction to determine the relative 
percentages of intact junctions and recognizable con­
taminants . 
Liver 
The morphology of isolated rat liver gap junctions has 
been extensively described previously . In agreement 
with these observations, our final ·· native " gap junc­
tion fraction (that is , isolated under cond itions of min­
imal proteolysis-see Experimental Procedures) con­
tains predominantly flat sheets of membrane which in 
profile appear as two closely apposed membranes 
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Figure 1. Morphology of Isolated liver Gap Junctions and Lens Fiber Junctions from Rat 

liver gap junctions. (a) Thin sections of a " native' ' fraction reveals profiles of paired membranes separated by an approximately 2 nm " gap," a 
few single membranes and some contaminating fibrous material. Detail of the junctions, magnified 21 O,OOOx , is seen in the inset to (a) . (band c) 
liver junction fractions negatively stained with 2% phosphotungstic acid: in " native" fractions the gap junctions are seen as flat sheets of 
connexons arranged in a closely-packed hexagonal lattice (b); the gap junctions of " enzyme-treated" fractions display a similar arrangement of 
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separated by a gap of approx. 2 nm (Figure 1 a) and 
en face display a closely packed hexagonal array of 
connexons 7-8 nm in diameter (Figure 1 b). Some 
fibrous material and occasional collagen strands are 
also seen in this fraction. Negatively stained ·· enzyme­
treated " gap junction fractions (that is , isolated with 
the aid of trypsin and collagenase treatment-see 
Experimental Procedures) appear similar except that 
the gap junctions occur as vesicles or curved sheets 
and collagen is never seen (Figure 1 c) . 
Lens 
Deoxycholate-insoluble fractions of lens fiber cell 
plasma membranes , isolated by the procedure of 
Dunia et al. (1974) , contain membranes in closely 
apposed pairs and a small number of single mem­
branes (Figure 1 d). Whole plasma membrane fractions 
isolated by the method of Alcala et al. (1975) as 
modified by Takemoto et al. (1981) appear similar , 
but with a higher percentage of single membranes. 
Since the membranes of the lens junctions are sepa­
rated by less than the 2 nm characteristic of liver 
junctions, their cross-sectional profile is less (see 
inserts of Figures 1 a and 1 d). a feature previously 
reported by Hertzberg et al. (1982) and Zampighi et 
al. (1982). Even narrower profiles could be seen in 
some fractions (see arrow , Figure 1 d). However, since 
these regions display a reduced thickness of the lipid 
bilayer , it seems likely that they result from partial lipid 
extraction during detergent treatment. Negative stain­
ing of lens fractions yielded somewhat variable results 
(Figures 1 e and 1 f). Particles on the membrane sheets 
(referred to here as connexons) were frequently diffi­
cult to detect on many of the membrane sheets, per­
haps as a result of reduced amounts of negative stain 
trapped in the narrow extracellular gap. When con­
nexons could be detected , their packing varied from 
one preparation to another. Hexagonal arrays, indis­
tinguishable from those of liver (compare Peracchia 
and Peracchia, 1980a); disordered , loosely packed 
arrays (Figure 1 e; also compare Goodenough , 1979), 
and tetragonal lattices (Figure 1 f; also compare Zam­
pighi et al., 1982, and Peracchia and Peracchia, 
1980b) were each seen as the predominant arrange­
ment of connexons in different fractions of lens fiber 
junctions. 

In spite of these variations in appearance, each 
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fraction contains the same major protein (M , 26,000) , 
which always yields the same peptide map (see Figure 
3b) and comprises 60%-90% of the protein in the 
fraction . Although this raises the possibility that these 
various arrangements of connexons derive from the 
same structure during the isolation procedure (for 
example see Peracchia and Peracchia, 1 980a and 
1980b), problems with sampling, caused by the poor 
negative staining characteristics of the isolated frac­
tions , leave open the possibility suggested by Zam­
pighi et al. (1982) that more than one type of junction 
may be isolated from the lens (that is , tetragonal 
arrays and less prevalent, more " conventional " gap 
junctions). We varied the Ca2 + and H+ concentrations, 
pH and buffers used, factors which might affect the 
arrangement of connexons (see Peracchia and Per­
acchia, 1980a and 1980b), but could not consistently 
link them to the differences in the appearance of the 
fina l fractions . 

Protein Composition of Junctional Fractions from 
Liver and Lens 
Liver 
When proteolysis is minimized by the inclusion of 
0 .5% phenylmethylsulfonyl fluoride in all solutions 
during the isolation of the "native " gap junction frac­
tion from rat liver, a single major component of M, 
28,000 is seen in sodium dodecylsulfate (SOS) gels 
of this fraction (Figure 2b). The minor components of 
this fraction have previously been demonstrated 
(Hertzberg and Gilua, 1979; Henderson et al. , 1979; 
Nicholson et al. , 1981) to be either associated with 
nonjunctional contaminants (M, 38,000 and 34 ,000 
proteins and some collagen at the top of the gel), or 
derived from the M, 28,000 protein by proteolysis (M , 
26,000 or 24 ,000 polypeptides) or aggregation (M , 
50,000 and 45,000 proteins). 
Lens 
A fraction highly enriched for junctions, as judged 
from thin-sectioned samples, can be isolated from eye 
lens fiber cells by the rigorous preparative procedure 
of Dunia et al. (1974). When examined by 80S-poly­
acrylamide gel electrophoresis, this fraction reveals a 
single major component of M, 26,000 (MIP of lens; 
Figure 2d). The fractions obtained by the method of 
Alcala et al. (1975) as modified by Takemoto et al. 

connexons , but occur principally as curved sheets or vesic les (c). In both fractions, some amorphous, fibrous material is seen in addition to the 
gap junctions. 

Lens fiber junctions. (d) Thin sec tions of fractions isolated by the method of Dunia et al. ( 1974) contain paired membranes separated by a "" gap "" 
narrower than that of liver gap juncti ons. This is evident at a higher magnification (2 10,000X) seen in the inset to (d). Amorphous material and 
some single membrane profil es are also evident. The latter form a greater percentage of fractions isolated by the method of Alcala et al. (1975) as 
modified by Takemoto et al. (198 1) (not shown). Narrower profiles of paired membranes in which the thickness of the lipid bilayer is reduced are 
also occasionally seen (arrow). (e and f) Lens junction frac tions negative ly stained with 2% phosphotungstic ac id. In general, lens fiber junctions 
stain poorly, many membrane faces revealing no c lear pattern of connexons. When connexons can be identified, their arrangement seems to vary 
from preparation to preparation: connexons arrayed predominantly in loosely packed , disordered arrays, as reported by Goodenough, 1979 (e); 
connexons in tightly packed tetragonal arrays similar to those reported by Zampighi et al., 1982 (f) . A portion of this array, magnified 240,000x 

is shown in the inset to (f) . Two readily identifiable connexons are indicated with arrows. Junctions displaying hexagonal arrays of connexons 
indistingui shable from those of liver (Figure 1 b) have also been detected in some lens junct ion preparations (not shown). 
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Figure 2. An SDS-Polyacrylamide '' Microslab·· Gel of Various Liver 
and Lens Gap Junction Fract ions 

(Lane a) Bio-Rad low molecu lar weight standards (marked in kilodal­
tons) : phosphorylase A. bovine serum albumin . ovalbumin. carbonic 

anhydrase, soybean trypsin inhibitor and lysozyme. 
(Lane b) A .. native " gap junction fract ion from rat liver : a major band 

of M, 28,000 is evident. Also visible are faint dimers at M, 50.000 and 

45,000, a partial proteolysis breakdown product at M, 26.000 and 
contaminants at M, 38,000 and 34,000 (uricase) (see Nicholson et 
al.,1981). 

(Lane c) An "enzyme-treated " gap junction fraction from rat liver : in 

addition to the major. rather ditfuse band at M, 10,000, there are 
several bands of higher molecular weights. which represent multimers 
of the M, 10,000 component resulting from aggregation in SDS. 

(Lane d) A gap junction frac tion from ra t lens isolated by the method 
of Dunia et al. (1974): the major band has an M, of 26,000. 

(Lane e) A plasma membrane fraction from rat lens isolated by the 
method of Alcala et al. (1975) as modified by Takemoto et al. (1981 ): 

in addition to theM, 26.000 protein, several other unrelated polypep­
tides (as demonstrated by two-dimensional peptide maps) are evident. 

(Lanes f and g) Gap junct ion fractions iso lated in the absence of 
proteases were subjected to trypsin digestion in the absence of 

detergents or other membrane-denaturing agents. (f) liver; (g) lens. 

(1981) also contain a major protein of M, 26 ,000 in 
addition to other components (a major species at M, 
17,000 and several minor bands; Figure 2e) probably 
associated with the nonjunctional contaminants seen 
in thin-sectioned or negatively stained samples. Pep­
tide mapping shows these components to be unrelated 
to the M, 26,000 protein. Peptide mapping has also 
been employed to ensure that the bands seen at M, 
26,000 in gels of fractions from both isolation proto­
cols represent the same protein. However, sequence 
analysis has been based on lens MIP prepared by the 
method of Takemoto et al. (1981) because of the 
much higher yield it provides. 

Peptide Mapping 
Peptide mapping, especially in two or more dimen­
sions, has proven to be a highly sensitive method for 
detecting differences, of even a single amino acid, 
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between proteins (Bond et al.. 1980). When the iodi­
nated peptides from a complete a-chymotryptic digest 
of the junctional proteins of lens and liver are sepa­
rated by the two-dimensional mapping technique of 
Elder et al., 1977 (' 'fingerprinting' '), major differences 
between the two proteins can be seen (Figure 3) . 
Although both proteins clearly contain a predomi­
nance of hydrophobic peptides (migrating farthest 
toward the top of the map), the overall pattern of 
migration and labeling is different for lens and liver. 
Mixtures of the digestion products of the two proteins 
(Figure 3c) show that of the 11 liver peptides and 13 
lens peptides readily detectable by this technique, two 
to four have the same mobilities in both dimensions 
(arrows on Figures 3a and 3b). Similar comparisons 
of tryptic digests (not shown) lead to the conclusion 
that two to four of a possible 11 tryptic peptides 
comigrate also. This same percentage of comigrating 
peptides is seen whether the proteins are labeled with 
the chloramine T method, which labels tyrosine, 
(Greenwood et al.. 1963) or the Bolton and Hunter 
method , which labels lysine (Bolton and Hunter, 
1973). To determine whether this comigration of pep­
tides really reflects homology or is due to the inability 
of this two-dimensional system to separate some pep­
tides , we have used high pressure liquid chromatog­
raphy (HPLC) as a third dimension to attempt to sep­
arate those peptides which comigrate in two dimen­
sions. Of these. one to two peptides from the tryptic 
or a-chymotryptic digests of the lens and liver proteins 
also coelute in this third dimension . However, when 
comparisons were made between each of these junc­
tional proteins and an unrelated membrane protein, 
bacteriorhodopsin, a similar result was obtained, with 
two to three peptides comigrating in two dimensions 
and one to two of these coeluting in HPLC. It is clear 
that there is little or no conservation of either tryptic 
or a-chymotryptic cleavage sites between the junc­
tional proteins of lens and liver, at least as revealed 
by peptides containing tyrosine or lysine . Any homol­
ogies which might exist between the peptides cannot 
be distinguished from the nonspecific background 
inherent in the sytems used . 

Amino Acid and N-Terminal Sequence Analysis 
So far, the sequences of the N-terminal 1 8% of the 
lens protein (39 residues) and 24 % of the liver protein 
(58 residues) have been determined . As can be seen 
in Figure 4, no homology has yet been detected 
between these sequences. There are, however, some 
common features. The liver protein contains an 1 8 
residue stretch of strongly hydrophobic amino acids 
(residues 23-40) bracketed by three basic residues 
at the N-te.rminal end and three acidic residues at the 
C-terminal end, and interrupted by only one charged 
residue (Arg 32). A comparison of this region with 
transmembrane sequences of other proteins (see Ni-
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Figure 3. Two-Dimensional Peptide Maps of Iodinated, a-Chymotryptic Peptides 

(a) From rat liver, M, 28,000 gap junction protein. (b) From rat lens, M, 26,000 junction protein . (c) From a mixture of equal amounts (that is, equal 
total radioactivity) of (a) and (b). The origin is at the bottom left of each map. Electrophoresis in acidic solvent (pH 1. 7) was performed from left to 
right followed by ascending chromatography in a hydrophobic solvent. The most basic peptides migrate farthest to the right and the most 
hydrophobic farthest to the top of the maps. This comparison was repeated four times with both a-chymotryptic and tryptic (not shown) digests. 
The arrows denote peptides that seem, on the basis of all these comparisons, to comigrate in this system. In one case, these peptides were eluted 
and run on HPLC. Question marks denote peptides that did not appear to coelute in this third dimension . Peptides marked with an asterisk in the 

map of the lens protein have also been shown by Takemoto et at. (1981) to be conserved between the lens MIP 26 from a wide variety of 
vertebrate species. 

a) Liver Mr28,000 protein! 
10 ~g 
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ARGJVAL 
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JVAL TRPJ 
50 

I PHE ILEJ THR J LEu J GLN JP ROJ GLU ? GLY ASP GLU LYS ? SER ? ? 

b) Lens Mr26 000 protein I 
H2N1MET TRP] GLU I LEU I ARG ~ SER I ALA I SER I PHE 

lg 
ARG I ALA ALA I GLU !PHE 

20 
TRP J !LE PHE PHE ALA J THR 

I LEU PHEJ GL Y J LEU I GLY 
30 

PHE TYR VAL PHE SER SER ILE UJ ARG ITRP ALA PRO JGLY J PRO LEUJ 

Figure 4. Partial Amino Acid Sequences of the Amino Terminus of the Liver and Lens Junctional Proteins 

No primary sequence homology is evident. The hydrophobic residues are enclosed by boxes, emphasizing the highly hydrophobic stretches of 
18-21 residues identifiable in both proteins. The sequence of the N-terminal 12 residues of each protein has been confirmed in a minimum of 
three independent Edman degradations. In the case of the lens, the N-terminal sequences of the M, 26,000 protein isolated by either protocol (see 
Experimental Procedures) agree exactly for the 34 residues determined to date. Question marks denote steps in the sequence where no residue 
could be unambiguously assigned due to weak signals. The arrow between residues 5 and 6 in (b) indicates the tryptic site accessible when the 
protein is still in the membrane. 

cholson et al., 1981 ), suggests that this portion of the 
molecule may span the membrane. A similar region of 
hydrophobic amino acids (exceptionally rich in aro­
matic residues) of slightly greater length (residues 
12-32) is seen in the lens protein. By analogy, this is 
also a likely candidate for a transmembrane segment 
of this protein. In this case, however, the sequence is 

located closer to the N-terminus, bracketed at each 
end by single basic residues and interrupted by a 
single acidic residue (Giu 1 6). 

The amino acid analyses of the two proteins also 
show some differences (Table 1 ). The lens MIP con­
tains a consistently greater percentage of hydropho­
bic residues and fewer charged residues (especially 
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Table 1. Amino Acid Analysis 

Rat Liver Gap 
Junction Protein (mole 
%) 

Amino Acid ' M, 28,000 M, 10,000 

Asx 9.0 8 .7 

Glx 10.5 10.5 

His 2.4 2.0 

Lys 6.2 4 .7 

Arg 6.9 4 .4 

Ser 9.0 9 .1 

Thr 4.6 4 .8 

Rat Lens Fiber 
Junction Protein (mole 
%) 

M, 26 ,000 M, 21,000 

6.0 6.4 

7.5 7.2 

2.3 2 .3 

1.9 2.3 

5.3 3.9 

7.4 6.4 

5.3 4.4 
-·- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Glyb 16.5 16.6 12.8 17.9 

Tyr 3.1 2.3 1.9 1.8 

----------------------------------------
Phe 3.3 4.1 6.5 6.3 

Ala 5.8 7.1 12.5 12.0 

Val 5.8 6.8 8.0 9.4 

Leu 7.7 8.8 13.6 11.2 

lie 3.9 4.2 2.8 2.9 

Met 1.4 1.4 0.8 1.8 

Pro 3.9 4 .5 5.4 3.8 

% Polar resi-
dues' 48.6 44 .2 35.7 32 .9 

% Hydrophobic 
residues" 31.8 36.9 49.6 47.4 

' Cys and Trp are destroyed during hydrolysis. 
b Gly is artificially elevated, since the proteins were eluted from a 
Laemmli gel run in Tris-glycine buffer. 
' Includes Asx , Glx, His, Lys, Arg, Ser. Thr. 
" Includes Phe. Ala , Val, Leu, lie , Met, Pro. 

lysine) than the liver gap junction protein . In fact, 
when compared with other membrane proteins for 
which amino acid analyses are available, the liver 
protein is found to contain a relatively low percentage 
of hydrophobic residues-a property which may re­
flect its role in forming a hydrophilic channel of large 
diameter across the membrane. The significance of 
the higher content of hydrophobic amino acids in the 
lens MIP is unclear. It could indicate that the lens 
protein is not involved in the format ion of intercellular 
channels , or it could simply suggest differences in the 
way in which the channels in liver and lens are con­
structed. More complete sequence data will be 
needed to interpret this difference . The M, 10,000 
polypeptides of liver and the M, 21 ,000 polypeptide 
of lens that survive trypsinization of their respective 
intact junctions contain lower percentages of polar or 
charged residues than the "native" proteins from 
which they were derived. This result is consistent with 
the proposal, discussed below, that they represent 
the portions of the junctional proteins protected from 
further proteolysis by the surrounding membrane. 
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Protease Digestion of Intact Liver and Lens 
Junctions 
To compare the organization of the proteins in the 
membrane , we have analyzed their susceptibility to 
protease digestion while part of the intact junction. 
When exhaustively digested by trypsin in the absence 
of detergents and other agents which disrupt mem­
branes, the overall structure of both liver and lens 
junctions seen in negatively stained samples remains 
intact (compare Figures 1 b and 1 c), although the 
proteins are partially digested . The lens MIP is de­
graded to an M, 21 ,000 polypeptide (Figure 2g). N­
terminal sequence analysis has demonstrated that 
most of the 5000 daltons cleaved from the MIP by 
trypsin is removed from the C-terminus of the mole­
cule , but that the five N-terminal residues are also 
removed (see Figure 4b). After similar proteolysis, the 
liver gap junction protein is affected differently, being 
reduced to a diffuse band of M, 10,000 on SDS gels 
(Figure 2f). This has been shown by peptide mapping 
and N-terminal sequence analysis to be comprised of 
two major polypeptides, one of which has the same 
N-terminal sequence as the " parent " M, 28,000 pro­
tein (Nicholson et al., 1981 ). A consideration of the 
intermediate products of this tryptic digestion (poly­
peptides of M, 26,000 and 24,000-see Figure 3 in 
Nicholson et a!., 1 981) reveals that at least 4000 
daltons are removed by trypsin from the C-terminus 
of the "native" liver gap junction protein before it is 
cleaved into two equal fragments of M, 1 0,000. 

A Comparison of Liver Gap Junction Proteins from 
Different Species 
The use of proteases during the isolation of gap junc­
tions allows the preparation of "enzyme-treated" gap 
junction fractions from a variety of mammalian species 
(rat, mouse, rabbit and calf), all of which reproducibly 
appear highly enriched for gap junctions in negatively 
stained samples and show a single, but diffuse, major 
band at M, 10,000 after separation by 50S-polyacryl­
amide gel electrophoresis (Figure 5). In the rat, these 
M, 1 0,000 polypeptides have been demonstrated, by 
peptide mapping, to be identical with those generated 
by trypsinization of " native " gap junctions described 
above. We have now compared the proteins from each 
of these mammalian species by peptide mapping us­
ing complete a-chymotrypic digests (Figure 6). Al­
though there is some variability in the relative labeling 
of different peptides, it is clear that the patterns are 
very similar in all four species. Peptide maps of tryptic 
digests (not shown) have yielded the same conclusion. 
Preliminary maps of an M, 12,000 polypeptide of a 
gap junction fraction isolated from chicken liver ac­
cording to a method developed by R. Gomer (personal 
communication) suggest that there is some conser­
vation of several of the peptides, even between differ­
ent classes of vertebrates. 
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Discussion 

Comparison of Lens Fiber Junctions and Gap 
Junctions of Liver 
Morphological and Physiological Properties 
The controversy over the nature of the lens fiber 
junctions began with the observation of morphological 
differences between these junctions and the gap junc­
tions of other tissues (Goodenough, 1979; Zampighi 
et al., 1 982). In comparing lens fiber junctions with 
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Figure 5. An SDS-Polyacrylamide ·· M,croslab ·· Gel of ··Enzyme­
Treated ·· Liver Gap Junction Fractions from Four Mammalian Species 

The positions and molecular weights (in kilodaltons) of the Bio-Rad 
low molecular weight standards are indicated on the left. (a) rat ; (b) 
mouse; (c) rabbit , and (d) calf . 
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gap junctions from liver, we have also observed that 
lens junctions display a reduced extracellular gap 
(compare Figures 1 a and 1 d) and connexons arrayed 
in a variety of forms in addition to the hexagonal 
arrays typical of liver gap junctions (that is , random 
arrays, Figure 1 e; tetragonal arrays, Figure 1 f) . How­
ever, the significance of these differences is unclear 
for two reasons : the possibility , as proposed by Zam­
pighi et al. (1982), that these different arrays may 
represent different junctions which co-isolate; and the 
observation of similar tetragonal and random arrays 
in liver gap junctions under some conditions (for ex­
ample, in freeze-fracture of rapidly frozen liver-Yan­
cey and Heuser, unpublished observations). Lens 
junctions also differ from those of other tissues in their 
physiological properties. In most other tissues the 
cells can be uncoupled by treatments that elevate the 
internal H+ and / or Ca 2 + concentrations. The same 
manipulations fail to uncouple lens fiber cells , at least 
beyond embryonic stage 14 (Schuetze and Gooden­
ough , 1982). However, since there is a variation 
among tissues as to the ease with which uncoupling 
can be achieved , one could argue that the lens simply 
represents the extreme of a continuum , rather than a 
unique structure. Taken together, however, these dif­
ferences between liver and lens junctions have led to 
some doubt as to whether these abundant structures 
of the lens are " true " gap junctions. 
Primary Structure of the Proteins 
We have attempted to clarify the nature of the lens 
junction by comparing its major protein component 
with that of the well defined gap junction from liver. A 
degree of homology between the proteins would allow 

• 
CALF 
IOkD 

RABBIT 
IOkD 

Figure 6. Two-Dimensional Peptide Maps of theM, 10,000 Components of "" Enzyme-Treated "" Liver Gap Junction Fractions from Rat, Mouse, 
Calf and Rabbit 

' Apart from some variability in the intensity of labeling of the peptides, it is clear that these proteins are essentially identical , indicating that at least 
the portion of the liver gap junction protein which is protected from proteolysis is highly conserved between mammalian species. 
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one to conclude that the two junctions are derived 
from a common " ancestral " gap junction and are 
likely to be still performing similar functions as 
adapted to their specific tissue. 

There is already evidence that the major proteins of 
lens and liver junctions (M, 26,000 and 28,000, re­
spectively) differ. The bovine lens and rat liver proteins 
display different patterns in one-dimensional peptide 
maps and show no immunological cross-reactivity 
(Hertzberg et al., 1982). Although both of these tech­
niques clearly demonstrate differences between the 
proteins, they are limited in their sensitivity to anything 
but the closest homologies. It is likely, in an immuno­
logical analysis , that many determinants on the protein 
would not be represented in the immune serum. The 
inadequacy of one-dimensional peptide maps can be 
appreciated by examining the number of peptides that 
comigrate in the electrophoretic dimension of the two­
dimensional peptide maps in Figure 3. Obviously, 
many " peptides" seemingly homologous in one di­
mension are readily shown to differ in a second di­
mension . 

We have used two-dimensional peptide maps (and 
in selected cases, three-dimensional maps) and partial 
N-terminal sequence analysis to ach ieve a more sen­
sitive and quantitative comparison of these two pro­
teins . Two-dimensional peptide mapping , a sensitive 
technique for detecting differences between proteins, 
shows the proteins of liver gap junctions and lens fiber 
junctions to be quite different. Extension of the system 
to three dimensions (by analysis of eluted peptides on 
HPLC), and comparisons with maps of unrelated pro­
teins , like bacteriorhodopsin , led to the conclusion 
that if any homology does exist between the lens and 
liver junctional proteins, it is beyond the limits of 
detection of the techniques used here. It should be 
noted, however, that fingerprinting is more appropri­
ate for detecting differences than similarities, since a 
change in a single residue could be sufficient to alter 
the mobility of a peptide. 

Unambiguous determination of homologies between 
these proteins can be achieved only through a knowl­
edge of the amino acid sequences of the proteins. In 
the analysis presented h~re, the N-terminal 24% of 
the liver and 1 8% of the lens proteins so far se­
quenced reveal no primary sequence homology. Po­
tential transmembrane portions, rich in hydrophobic 
residues, have been detected in both proteins, but the 
detailed structure of these are different in terms of 
length, termination points and content of aromatic and 
charged residues, as well as actual amino acid se­
quence. This latter observation is consistent with the 
amino acid analysis data (Table 1) discussed in the 
Results, in that differences in the detailed structure of 
the protein inside the membrane would be predicted 
from the differences in the content df nonpolar resi­
dues. 

The junctional proteins of liver and lens thus differ 

from each other by the criteria used to date. This is in 
marked contrast to the results comparing liver or lens 
proteins of different species. There are virtually no 
differences between the four mammalian liver gap 
junction proteins compared by two-dimensional pep­
tide mapping , and there is considerable homology 
with the major protein of a fraction from chicken liver 
enriched for gap junctions. In the case of the lens 
junction , sequence analyses of lens MIP from calf and 
rat show only three conservative amino acid differ­
ences in the N-terminal 30 residues (results not 
shown). More extensive comparisons of the lens MIP 
show some conservation between amphibians and 
mammals (Takemoto et al., 1981). There has also 
been a report of immunological cross-reactivity be­
tween the lens MIPs of man and shark (Bok et al., 
1982). Consequently, if the proteins of liver gap junc­
tions and lens fiber junctions did diverge from a com­
mon ancestral gene, the point of divergence must 
have occurred before the origin of vertebrates. 
Tertiary Structure of the Proteins 
General conclusions as to the location of the polypep­
tide chain with respect to the membrane can be made 
from the susceptibility of the proteins to proteases in 
the intact junction . In both liver and lens, the junctional 
ultrastructure is essentially unaffected by treatment 
with trypsin or chymotrypsin , yet the junctional pro­
teins are reduced in molecular weight. Since both 
proteases are water soluble and have a minimum 
diameter of 5 nm (Stroud et al., 1974), it seems likely 
that they would be excluded from the hydrophobic 
domains of the membrane, the 1-1.5 nm aqueous 
pore of the connexons and the gap of 2 nm or less 
between membranes of lens or liver junctions. One 
might assume, therefore, that proteolysis would be 
largely restricted to the cytoplasmic face of the junc­
tion, at least during the short exposures sufficient to 
reduce the liver protein to M, 1 0,000 and the lens 
protein to M, 21,000 (see Experimental Procedures). 
Since trypsin largely removes residues from the C­
terminus of both the liver and the lens junctional 
proteins, as determined from N-terminal sequence 
analysis, we may conclude that the residues near the 
C-terminus of both proteins are exposed at the cyto­
plasmic face where they are accessible to proteases. 

In the case of the lens protein , trypsin treatment 
also removes five N-terminal amino acids, but leaves 
a tryptic site 11 residues from the N-terminus un­
touched . The concentration of hydrophobic residues 
surrounding this second , protected , tryptic site, and 
to the C-terminal side of it, suggests that this may be 
where the protein first enters the lipid bilayer. How­
ever, the possibility that the arginine-alanine peptide 
link is protected from trypsin by the secondary or 
tertiary structure of the protein cannot be excluded . 
Assuming , as outlined above, that trypsin can digest 
only polypeptides exposed at the cytoplasmic face of 
the junctions, this result would infer that both the N-
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terminus and the C-terminus of the lens MIP are on 
the cytoplasmic side of the membrane. This would be 
a similar situation to that suggested for band 3 of 
erythrocyte membranes (Sabban et al. , 1981), and 
would suggest that the lens MIP is not inserted into 
the membrane with an N-terminal signal sequence 
(Biobel and Dobberstein, 1975), but by "hairpin" 
insertion or by way of an internal signal sequence (von 
Heijne and Blomberg, 1979; Engelman and Steitz, 
1981; Blobel, 1980). 

As yet, similar speculations as to the location of the 
N-terminus of the liver protein are impossible, since 
no sequence analysis is available on polypeptides 
generated by a protease with a potential cleavage site 
near the N-terminus (in liver, the first potential tryptic 
site is between residues 1 5 and 16). At first glance, 
the fact that identical trypsin treatments of the isolated 
junctions reduce the liver M, 28,000 protein to M, 
10,000 and the lens M, 26,000 MIP to M, 21 ,000 
suggests major differences in the arrangement of 
these proteins in the membrane. However, we have 
shown previously (Nicholson et al., 1981) that in liver 
gap junctions two M, 1 0,000 polypeptides, represent­
ing 20,000 of the original 28,000 daltons, survive 
trypsin digestion. Consequently, this difference in sus­
ceptibility to trypsin could be attributed to relatively 
minor changes in the folding of the polypeptide chain, 
in the distribution of a few basic residues in the 
primary sequence and consequently the distribution 
of enzymatic cleavage sites (for example, at the N­
terminus of the molecules) or in other factors such as 
the disposition of lipids in the membranes. 

Comparisons with Other Gap Junction Proteins 
The evidence for biochemical differences between the 
lens and liver junctional proteins has been used to 
support the contention that lens fiber junctions are not 
gap junctions (Hertzberg et al., 1982). However, be­
fore this can be inferred, one must first answer the 
question of whether the gap junction proteins of other 
tissues are similar to that of liver or whether the 
difference between the liver and lens proteins is typi­
cal of the variation in the gap junction protein from 
tissue to tissue. 

An argument that has been used to support the idea 
of conservation of gap junctions between tissues is 
that, in general, cell lines derived from a wide variety 
of vertebrate tissues can form functional gap junctions 
with each other (Michalke and Loewenstein, 1971; 
Epstein and Gilula, 1977; Gaunt and Subak-Sharpe, 
1979), although some exceptions have been reported 
(Fentiman et al., 1976; Pitts and Burk, 1976; Gaunt 
and Subak-Sharpe, 1979). The ability to form contacts 
capable of supporting electrotonic coupling, however, 
does not provide direct evidence for or against the 
heterogeneity of gap junctional protein~ for the follow­
ing reasons : different gap junction proteins could be 
able to interact to" form heterojunctions; tissue culture 

cell lines may no longer express their original tissue­
specific gap junctions but some dedifferentiated prod­
uct; differences in geometry of growth or presence of 
a basement lamina could prevent junction formation 
between cells even if the proteins were the same. It 
would thus be difficult to arrive at any firm conclusion 
without a biochemical study of junctions derived from 
different species and organs. 

There are now some data on the gap junction pro­
tein in a tissue other than liver or lens. Kensler and 
Goodenough (1980), Colaco and Evans (1981) and 
Manjunath et al. (1982) have isolated gap-junction­
enriched fractions from mammalian hearts, and sev­
eral polypeptides of molecular weights from 19,000 
to 46,000 have been correlated with the presence of 
gap junctions (most consistently, polypeptides of M, 
28,000 and 35,000). Recent work in our laboratory 
by D. Gras has led to the isolation of a fraction from 
rat heart highly enriched for gap junctions and con­
taining no visible contamination by desmosomes, as 
judged from thin sections and negatively stained frac­
tions (Gras et al., 1982). When examined by SDS­
polyacrylamide gel electrophoresis, this fraction re­
veals a single major protein of M, 28,000 and some 
minor polypeptides shown by peptide mapping to be 
related to this major protein . From two-dimensional 
peptide maps similar to those described here, this 
protein appears to be as distinct from the liver and 
lens proteins as the latter are from each other. One 
must thus conclude that although there is junctional 
homology in a given tissue over a number of species 
(Takemoto et al., 1981; Figure 6, this paper), there is 
little homology detectable by these methods among 
the gap junction proteins of the different tissues ex­
amined so far. 

Conclusions on the Nature of Lens Fiber Junctions 
and the Tissue Specificity of Gap Junctions 
The extent of the data available makes it difficult to 
draw specific conclusions as to the nature of the lens 
junction. The electrical coupling (Eisenberg and Rae , 
1 976) and transfer of dye and radioactive metabolites 
(Rae, 1974; Goodenough et al. , 1980) between lens 
fiber cells does not provide definitive evidence for the 
identity of the lens junctions as gap junctions. It is 
possible that this coupling may not require the exten­
sive distribution of lens fiber junctions observed and 
could be mediated by a small number of " real" gap 
junctions scattered on the membrane. However, the 
low intercellular resistance recorded in the lens (Ei­
senberg and Rae, 1976) compared with that mea­
sured for other tissues (for example, liver; Meyer et 
al., 1981) suggests that gap junctions in the lens 
should comprise a high percentage of the membrane 
(greater than the 3% reported for liver by Yancey et 
al., 1979). On the other hand, it appears that the 
major differences seen in the proteins comprising the 
lens and liver junctions cannot be used to infer that 
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the structure in the lens is not a gap junction, since 
similar differences exist between the proteins of well 
defined gap junctions from other tissues (for example, 
heart and liver). 

Given all these considerations, it is currently impos­
sible to determine whether the MIP 26 is the major 
component of lens gap junctions, or the major com­
ponent of another type of junction, or a major com­
ponent of single membranes that tend to adhere to 
one another after isolation. However, the results on 
the heart gap junctions do indicate that there exists a 
family of tissue-specific gap junction proteins. It also 
seems possible that the eye lens MIP is one of these. 
Presumably, each protein has evolved to support the 
specific functions fulfilled by the gap junctions of that 
tissue. Analysis of the portions of the gap junction 
structure which are conserved in a given tissue, but 
vary between tissues, may provide clues as to the 
nature of these proposed functions and may serve to 
identify functional sites on the protein (such as Ca 2 + 
or H+ binding sites controlling gating). 

In addition, analysis of the peptides we have iden­
tified as comigrating in our peptide mapping systems 
should allow a test of the interesting possibility that 
there may be conservation of some regions of these 
proteins between tissues, possibly those which are 
fundamental to the formation of a channel with 
" junctional " properties (that is, permissive to all mol­
ecules of sufficiently low molecular weight). Additional 
sequence analysis will also be necessary to eliminate 
(or substantiate) the rather unlikely possibility that the 
various gap junction proteins arose from the conver­
gent evolution of independent proteins to form similar 
structures with apparently similar properties. 

Experimental Procedures 

Isolation of Gap Junctions 

Liver 
" Native .. Gap Junction Isolation 

Gap junctions were isolated from rat liver by the method described 
previously (Nicholson et al. , 1 981) in which proteolysis was minimized 
(0.05% phenylmethylsulfonyl fluoride was used throughout the iso­
lation). Plasma membranes were isolated by the two-phase method 
and then washed in 0 .1 M NaCI to remove proteins adhering nonspe­
cifically to the membrane . Alter treatment with 0.55% Sarkosyl to 

solubilize the nonjunctional membranes, the fraction was exposed to 
0 .15 M Na2C03 (pH 11) for 15 min to dissolve uricase, and the 
junctions were separated from fibrous material and lipid vesicles on 
a discontinuous sucrose gradient containing 1 M urea and 0.09% 
Sarkosyl (33%. 40%, 54 %, 77% [w / v] sucrose layers: gap junctions 
were collected at the 40%-54% interface). 
"Enzyme-Treated .. Gap Junction Isolation 
For our comparison of gap junctions from the livers of rat , mouse , 

calf and rabbit. fractions were obtained with the use of proteases by 
the method described by Finbow et al. (1980) and modified by 
Nicholson et al. (1981 ). Plasma membranes were treated with trypsin 
and collagenase to reduce contamination before treatment with 
0. 55% Sarkosyl and final separation of the junctions on a discontin­
uous sucrose gradient (0%, 32%, 54% [w / v] s'\crose layers; gap 
junctions were collected at the 32%-54 % interface). As a result, only 
large fragments (M, 1 0 ,000) of the protein are iso lated . 

Lens 
As for liver isolations. eye lenses were obtained from young adult 
rats . The method of Alcala et al. (1975) as modified by Takemoto et 
al. ( 1981) which consisted of repeated washes of a decapsulated 
lens homogenate in 5 mM Tris / HCI, 1 mM EDTA. 1 mM phenylmeth­
ylsulfonyl fluoride (pH 7 .9) buffer followed by several washes in 8 M 
urea in the same buffer yielded a pellet enriched for gap-junction-like 
structures. A more highly purified fraction was obtained by the pro­

tocol of Dunia et al. (1974) . Plasma membranes, isolated on a 
discontinuous sucrose gradient , were treated with 1% deoxycholate. 
and the insoluble material was separated on a continuous sucrose 
gradient. The buffer used throughout was 1 mM NaHC03, 0.5 mM 
CaCI2 (pH 7.4) . Although causing a considerable drop in yield, this 
detergent treatment resulted in the isolation of a highly purified 
junctional fraction . 

Electron Microscopy 
Isolated junctional fractions were prepared for thin sectioning accord­
ing to the method of Zampighi et al. (1982), al though tannic acid was 
not used in the fi xat ion of liver gap junctions . Negative staining of 
junctional fractions was achieved with 2% phosphotungstic acid (pH 
7.2). and the sample was layered on a carbon-coated grid treated 
with 0.02% Alcian blue to minimize clumping and stacking of the 
membranes. 

50S-Polyacrylamide Gel Electrophoresis 
The method of Laemmli (1 970) as applied by Nicholson et al. (1981) 
was used throughout . As pointed out previously (Henderson et al., 
1979; Nicholson et al., 1981 ), the solubilization of gap junction 
fractions . especially from li ver , was performed in 2% SDS in the 
presence of reducing agents for 30-4 5 min at room temperature in 
order to minimize aggregation of the junctional proteins. 

Peptide Mapping 
Gap junction fractions were iod inated by the chloramine T method 
(Greenwood et al. , 1963) alter solubilization in SDS, as described by 
Nicholson et al. (1981 ). Other studies (Krohn et al. , 1977) indicate 
that tyrosine, and in some cases phenylalanine and histidine. are 
labeled by this procedure. In one case, the iodination was achieved 
by the method of Bolton and Hunter (1973). which labels amino 

groups (lysine and the amino terminus). The method of Elder et al. 
(1977) , as modified by Takemoto et al. (1981 ), was used to generate 
peptides by complete tryptic or o-chymotryptic digestion of the junc­
tional proteins and to separate them in two dimensions on thin-layer 
cellulose plates. The iodinated peptides were then detected by au­
toradiography. To determine which, if any, of the peptides from any 
two proteins actually comigrate (thus suggesting homology), samples 
of the protease digests of each, containing equal amounts of radio­
activity, were mixed together and the peptides were separated by the 
usual procedure. The peptides, especially those that apparently co­
migrate in the two-dimensiona l system. could be further analyzed by 
HPLC to provide a third dimension of resolution . Individual spots 

identified on the autoradiograph were cut out . the cellulose scraped 
into a plastic well and the peptide eluted with shaking over 24 hr into 
80% acetic acid (aldehyde free ; Baker) . The eluate was collected, 
the excess cellulose spun out and the supernatant lyophilized. The 

sample was loaded onto an IBM cyanopropyl HPLC column in 0.1 M 
sodium perchlorate, 0.01 % phosphoric acid (pH 2.1) (buffer A) with 
0 .02% SDS. Elution from the HPLC was achieved with buffer A and 
a 0%-60% acetonitrile gradient (Meek. 1980), and the peptides were 
detected by counting frac tions on a Beckman gamma counter. 

Amino Acid or N-Terminal Sequence Analysis 
The polypeptides of the various junctional fraction s were separated 
by 80S-polyacrylamide gel elect rophoresis , excised and prepared 
for amino acid or N-terminal sequence analysis as described previ­
ously (Nicholson et al .. 1981 ). Following hydrolysis in 6 N HCI under 
vacuum at 11 0 °C for approximately 18 hr, amino acid analyses were 
obtained on a Durrum 0500 analyzer. Sequence information was 
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obtained by automated Edman degradation according to the methods 
of Hunkapiller and Hood (1980) and Johnson et al. (1979), or in some 
cases by the improved gas phase system of Hewick et al. ( 1981 ). In 
all cases, the yield of sequenceable peptide was compared with the 
amount loaded on the sequenator. The latter was estimated from an 
aliquot of the sample either by the intensity of Coomassie staining of 
the proteins after separation by SDS-polyacrylamide gel electropho­
resis on a " microslab ' ' gel (as described in Nicholson et al., 1981) or 
by quantitative amino acid analysis. These methods estimate that 
35% of the liver and 50% of the lens proteins loaded on the sequen­

ator could be sequenced. Under the same conditions, proteins known 
not to be N-terminal-blocked in vivo typically gave a yield of 40%-
70% of sequenceable peptide (Hunkapiller, personal communication). 
Several factors are responsible for this lack of 1 00% recovery, the 
most common of which are incomplete cleavage of the N-terminal 
residue at each step, resulting in a certain lag (at times substantial), 
and partial N-terminal blockage of the polypeptide resulting during 
the manipulations (for example, loading on a polyacrylamide gel) 
required to prepare the polypeptide for the sequenator. 

Proteolysis of Intact Junctions 
Isolated junctional fractions from either liver or lens were suspended 
in 25 mM NH, HC03, 1 mM CaCI2 (pH 7.8) to a concentration of 0.3 
mg / ml of protein. Trypsin (Sigma. type XI) was added to a concen­
tration of 10 l'g / ml , and the sample was incubated at 3JOC for 3 hr . 
After boosting with an equal amount of trypsin and incubating for an 
additional 2 hr, the proteolysed junctions could be collected by 
centrifugation (15,000 rpm x 30 min in an Eppendorf microcentri­
fuge, model 5412) 
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Abstract: 

A fraction, highly enriched for gap junctions by morphological criteria, has 

been isolated from rat myocardium. The major protein component of this fraction 

has a molecular weight of 28,000, although a minor component of M 30,000 seems 
r 

to be the "native" form of the protein. Other polypeptides which occur inconsis-

tently in this fraction appear, by peptide mapping, to be either non-junctional or 

derived from the "native" protein by endogenous proteolysis or aggregation. 

In vitro trypsin treatment of the isolated junctions cleaves the "native" protein 

into two M 11,000 polypeptides-an analogous behaviour to that of the liver gap r 

junction protein (Nicholson et al., 1981). However, despite the overall similarity 

in appearance of gap junctions from heart and liver and the similar molecular 

weights and trypsin sensitivities of their constituent proteins, comparisons by 

two-dimensional, and in some cases three-dimensional, peptide mapping reveals 

no homology between the gap junction proteins of these tissues. 
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Introduction: 

Despite the widespread occurrence of gap junctions in different tissues and 

phyla (see Larsen, 1977 and Loewenstein, 1981 for reviews), biochemical analysis 

of their components has been hindered by the limited amounts of this membrane 

specialization present in any given tissue. The only two tissues to be studied in 

any detail in this respect have been mammalian liver and lens, tissues in which 

the junctions are relatively abundant [..r3% of the lateral surface of hepatocytes 

(Yancey et al., 1979) and 20-70% of the surface of lens fiber cells (Bloemendal et al., 

1972; Kuszak et al., 1978)]. The junctions in each tissue are comprised of a single 

protein of similar size (M 28,000 in the liver and M 26,000 in the lens-Goodenough, r r 

1979; Hertzberg, 1980; Nicholson et al., 1981; Broekhuyse et al., 1976; Alcala 

et al., 1978; Takemoto and Hansen, 1981). However, several studies using immunological 

(Traub and Willecke, 1982; Ziegler and Horwitz, 1981; Hertzberg et al., 1982) 

peptide mapping (Hertzberg et al., 1982; Nicholson et al., 1983) and sequencing 

techniques (Nicholson et al., 1983) have demonstrated that the primary structures 

of the two proteins differ, although the protein in each tissue is substantially 

conserved between species (lens: Bok et al., 1982; Takemoto et al., 1981; liver: 

Nicholson et al., 1981). The implications about tissue specificity which stem from 

these results must be tempered by the questions which have arisen regarding the 

identity of the lens junction. Lens fiber cells are well coupled (Rae, 1974; Eisenberg 

and Rae, 1976; Goodenough et al., 1980; Schuetze and Goodenough, 1982) and 

the structures which connect them resemble the gap junctions in other tissues 

which seem to mediate such coupling (see Figure 1 in Chapter 4; also Kistler and 

Bullivant, 1980a, b; Bernardini and Peracchia, 1981; Kuszak et al., 1982). However, 

several differences, both morphological (Zampighi et al. , 1982) and physiological 

(Schuetze and Goodenough, 1982) have been demonstrated between the junctions 

in lens and other tissues. Furthermore, recent immunological studies (PatH and 
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Goodenough, 1983) have even questioned whether the Mr 26,000 MIP of lens is 

actually a component of lens junctions since it can only be detected in single mem-

branes. While these issues remain unresolved, there will be a question as to whether 

the protein differences betwen liver and lens reflect tissue specificity of the gap 

junction or merely differences between two types of junction. To gain a better 

perspective, we have turned to another tissue, heart, where the gap junctions 

have been thoroughly characterized morphologically and physiologically (McNutt 

and Weinstein, 1970; Gros et al., 1978 and 1982; Page and Shibata, 1981; de Mello, 

1982) and are present in relatively large numbers (.r1% of the cell surface: Gros 

et al., 1979; Page and Shibata, 1981). In collaboration with Dr. Gros, we have 

developed an isolation protocol for cardiac gap junctions and have identified their 

major protein component (M "'28,000). Despite the similarity in molecular weights, 
r 

this protein appears very different to the junctional proteins of liver and lens 

based on comparisons of their two-dimensional peptide maps. Therefore, a tissue 

specificity of the gap junction protein is conclusively demonstrated. The extent 

of the protein differences remains to be determined through sequence analysis, 

but similarities in the tryptic sensitivity of liver and heart gap junction proteins 

while part of the intact junctional structure may reflect some homology with 

respect to tertiary structure. 

Materials and Methods: 

Junction isolation protocols. 

1. Heart: See Figures 1a and 1b for flowchart. 

Buffers used: BB 

KITris 

1 mM NaHC03, pH 8.2 

5 mM Tris/HCl, pH 9 

0.6 M KI 

6 mM Na2s2
o

3 

Tris 5 mM Tris/HCl pH 9 
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Procedure: The protocol represents an adaption of that published by Kensler 

and Goodenough (1980). All steps, unless noted otherwise, were performed at 

0-4 OC. The hearts of 25 adult rats were excised, self-perfused by allowing them 

to beat in warm saline (in BB) for approximately one minute, and then trimmed 

of major vessels, connective tissue and atria before mincing and homogenization 

for 30 seconds at maximum power by a tissuemizer (Tekmar Ultra Turrax, SDT-182 EN). 

The homogenate was diluted with BB to 1600 ml, allowed to stand for 15 minutes 

and then filtered through 32 layers of cheesecloth. The filtrate was centrifuged 

at 4,000 rpm for 20 minutes (Sorvall GSA rotor; 43,000 g min). The pellet was av 

resuspended in 1500 ml of BB and the spin repeated. Supernatants from both these 

spins were also collected for centrifugation at 11,500 rpm for 40 minutes (GSA 

rotor; 704,000 gav min). The pellets of this spin were pooled with the pellets 

from the second low speed spin above and suspended in 600 ml of 0.6 M KI, 6 mM 

N a 2s2 
0 3 in BB. After stirring for at least 12 hours, the insoluble material was 

collected and washed by successive centrifugations at 12,000 rpm for 30 minutes 

(GSA rotor: 576,000 gav min), the second in KI-Tris buffer. This KI insoluble 

pellet was homogenized (15 seconds with the Tissuemizer) into 40 ml of KI-Tris 

and brought to 50% (w/v) sucrose by the addition of 80 ml of 76% (w/v) sucrose 

in KI-Tris. This formed the bottom layer of 12 discontinuous sucrose gradients 

(50/45/35/10% (w/v) sucrose in KI-Tris) which were spun at 25,000 rpm for 2 hours 

(SW27 rotor; 1 x 10 7 gav min). Plasma membranes were harvested at the 10/35% 

interface, diluted to 200 ml with Tris, and collected and washed by successive 

centrifugations at 25,000 rpm for 30 minutes (SW27 rotor; 2.5 x 106 g min). av 

The plasma membrane pellet was then homogenized with three strokes of 

a loose fitting pestle in a Dounce homogenizer into 600 ml of 0.3% Sarkosyl NL-97 

(ICN Pharamaceuticals, Inc., Plainview, New York) in Tris and stirred for 10 minutes 

at room temperature. Detergent insoluble material was collected by centrifugation 
~ 
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PLASMA MEMBRANE ISOLATO\I 
(for Heart) 

Homogenate (in 9Bl 

filter 2x lhroU<jl cheesecloth 

I 
2x j43,000 <Jov mini 

I IS/N) j '"'"" 
lr-::7-:-04-:-,~oo-=-=-o-'--g-ov-m....,i--,n. l 
· · 0.6M Kl 

I ., (in 99) 
(pellet) 6 mM Na

2
sz0

3 
stir 12 hours 

I 
2x 1576,000 g0 ., mini 

~(pellet) 
Suspend 1n: ~ ) 

50%(w/v) sucrose 
1n KI - Tns -

= ~5 %(w/v)sucrose 
1n Kl-Tns 

-45 

110,000,000 g0 ., min., 

! 110135% iotorloc•l 

Dilute w11h Tris 

2x 12,500,000 g0 ., mini 

! '"""' 
Plasma Membrane 

Vok.Jme (mls) 
(per 25 hearts) 

1600 

600 

12 gradients 
(SW 27 rotor) 

200 

88 = I mM NaHC03 
pH 92 

Tris = 5 mM Tris/HCI 

pH 9 

KI- Tris = 0.6M KI 
6 mM Na2s2o3 

in Tns 

FIGURE 1. (a) Protocol for the isolation of plasma membranes from rat 

heart, based on the procedure of R. W. Kensler and D. A. Goodenough. ~· Cell Biol. 

86, 755-764 (1980). 
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"NATIVE" GAP JUNCTION ISOLATION 

(for HeCJ1) 

Plasma Membrane 

j 
0 .3% Sarrosyl (in Trisl 

stir 10 min. 

I 
2x 1900,000 gCJ\1 min I 

j '"'""' 
Suspend m: 

54% (w/ v) sucrose 

IM Urea }-009% Sarkosyl 

in Tris 

jl3,500,000 9av min/ 

! (40/54% '"''"""' 

dilute with BB 

j7,400,000 9av min.j 

!'''""' 
Gop Junction Fraction 

%(w/v) sucrose 
in IM Urea 
and Tr1s 

Volume (mls) 
(per 25 hearts) 

600 

2 gradients 
(SW 41 rotcr) 

Tris = 5 mM Tr is/HCI 

pH9 

FIGURE 1. (b) Protocol for the isolation of cardiac gap junctions from plasma 

membrane. 
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at room temperature for 30 minutes at 18,000 rpm (SS-34 rotor; 900,000 g min), av 

followed by resuspension in Tris and centrifugation as above. This washed pellet 

~as suspended by brief sonication (setting 3, Branson Sonicator for 2-4 seconds) 

into 1.5 ml of Tris. To this was added 0.5 ml of 1.1% Sarkosyl and 4 ml of 81% (w/v) 

sucrose in 1.5 M urea and Tris. Two discontinuous sucrose gradients were then 

poured (77%/54% and sample/40%/30% (w/v) sucrose in 1 M urea and Tris) and cen­

trifuged for at least 1 1/2 hours at 35,000 rpm (SW41 rotor; 1.35 x 10 7 g min). av 

The final gap junction fraction was harvested at the 40/54% interface and collected 

after dilution in BB by centrifugation at 45,000 rpm x 1 hour (Ty65 rotor; 

7.4 x 106 g min). All solutions except Sarkosyl were made with either 0.1 mM av 

or 1 mM each of sodium ethylenediamine tetraacetate (EDTA), N-a-p-tosyl-L-

arginine-methyl-ester (TAME) and iodoacetamide. In some experiments, 1 mM 

phenylmethylsulfonyl fluoride (PMSF-from a 4 M stock in dimethylsulfoxide) 

was present throughout. 

2. Liver: "Native" liver gap junctions were isolated as described in Nicholson 

and Revel, 1983 (Chapter 1). 

3. Lens: Lens junctions were isolated by the Dunia et al. (1974) method, 

described as protocol I in Appendix fl. 

4. Isolations from other tissues analogous to heart: i) Liver junctions. 

Due to differences in the contaminants which co-isolate with gap junctions in heart 

and liver, it was not possible to use absolutely identical procedures to isolate both 

liver and heart junctions. However, modifications to the usual liver isolation were 

introduced to make it analogous to that used for heart. After the initial series of 

low speed spins (2 x 23,000 gav min compared to 2 x 43,000 gav min for heart), 

the pelleted material was treated overnight with KI and the insoluble material 

collected as described for heart. Plasma membranes were then collected at the 

0/43% (w/v) sucrose interface of a discontinuous sucrose gradient (0, 43, 54, 59 
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and 69% (w /v) sucrose in BB). The membranes were then treated with 0.1 M NaCl 

and 0.55% Sarkosyl as previously described for liver (Nicholson and Revel, 1983) 

and the junctions separated on the same sucrose gradient used for the isolation of 

heart gap junctions. 

ii) Lens junctions. Lens homogenate was treated in an identical manner to 

that described for heart, with volumes adjusted for the relative wet weights of 

material available. In separate comparisons with liver, lens plasma membranes 

were treated with 0.55% Sarkosyl in an analogous way to that for liver. Although 

the yield was low, the surviving insoluble junctions were comprised of the same 

Mr 26,000 protein (i.e., MIP 26) present in previously characterized lens junction 

fractions (Dunia et al., 1974; Takemoto et al., 1981). 

Tryptic digestion of heart gap junctions---quantitation of protein recovery. 

A heart gap junction fraction, after iodination with chloramine T as described for 

intact junctions in previous chapters, was suspended by sonication in 40 mM Tris/HCl, 

50 mM CaC12, pH 8. (-r20% (w/v) junctional protein.) To half of the suspension, 

trypsin (Sigma, type XI-i.e., treated with diphenylcarbamylchloride to inhibit 

chymotryptic activity) was added to a concentration of 3% (w/v). After incubation 

at room temperature for 21 hours, half as much trypsin was added again and the 

incubation continued for 3 hours, at which time a 1.3 fold excess of soybean trypsin 

inhibitor (Sigma, type 1-S) was added, and the remaining junctions pelleted and 

washed by two successive spins at 15,000 rpm x 45 min in an Eppendorf centrifuge 

model 5412. The second half of the suspension was treated identically except that 

only buffer was added in place of trypsin or soybean trypsin inhibitor. After counting 

the pellets in a y counter, they were resuspended in water and two-thirds taken 

for examination by sodium dodecyl sulfate polyacrylamide gel electrophoresis 

(SDS PAGE) on a preparative size gel. The remaining one-third was analysed by 

microslab SDS PAGE. The pro,tein content of each of the bands resolved by 
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SDS PAGE was determined from densitometer tracings of the Coomassie stained 

gel, and autoradiograms of the dried gels, as described in Chapter 1. In the case 

of the microslab, a silver stained gel was similarly analysed. 

The following procedures were performed as described in previous chapters: 

negative staining (Chapter 1), thin sectioning (Chapter 4), SDS PAGE (Chapter 2), 

peptide mapping (Chapters 2 and 4), HPLC (Chapter 4) and comparative tryptic 

digestions of intact junctions from different tissues (Chapter 4). 

Results: 

Morphological assay of gap junction fractions from heart. Most of the contrac­

tile system of myosin and actin fibrils in cardiac cells is dissociated and solubilized 

by overnight incubation in 0.6 M KI and 6 mM Na2s2o3 prior to the isolation of 

plasma membranes on a discontinuous sucrose gradient in the presence of KI. Con­

sequently, following treatment of the plasma membranes with 0.3% Sarkosyl to 

solubilize non-junctional membrane, the insoluble fraction collected by centrifugation 

proves to be highly enriched for gap junctions when examined in the electron micro­

scope (Figure 2a). The major contamination appears to be some single membranes 

which survive the rather mild detergent treatment. These are readily separated 

from the junctions by a sucrose density gradient virtually identical to that used 

in the last step of the isolation of "native" liver gap junctions (Nicholson and 

Revel, 1983 ). 

The final fraction contains some amorphous material similar to that described 

in liver gap junction fractions (Nicholson et al., 1981) and occasional vesicles which 

display no connexons on their surfaces. However, the vast majority of the sample 

is comprised of gap junctions, as flat sheets or vesicles (Figure 2c). In profile, these 

junctions display the typical paired membranes separated by a 2-3 nm gap (Figure 2b 

and arrows in Figure 3a). En f-tlce, hexagonal arrays of connexons, 5-7 nm in diameter 
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FIGURE 2. (a) Electron micrograph of a thin section through a pellet 

of 0.3% Sarkosyl-resistant material, stained "en bloc" with uranyl acetate, 

showing transverse and grazing sections of heart gap junctions. Note that 

this fraction, enriched with gap junctions, is contaminated by single mem­

branes (arrows). It can be freed of single membranes by using discontinuous 

sucrose gradients (refer to the isolation procedure). X-51,000 . 

(b) Electron micrograph of a thin section through an isolated "native" 

heart gap junction stained both with tannic acid and uranyl acetate. The 

junction appears heptalaminar with a 2 to 3 nm wide gap (arrow-heads) 

filled with the stain. Note the periodic appearance of the density in some 

parts of the gap. X 200,000. 

(c) Electron micrograph, at low magnification, of the end-product 

of the isolation procedure after negative staining with 2% phosphotungstate. 

The fraction appears highly enriched for gap junctions and shows minor 

contamination by amorphous material (arrows). X 19,500. 

(d) High magnification of an isolated "native" heart gap junction 

negatively stained with 2% phosphotungstate. The lattice structure is 

due to closely packed connexons; although hexagonal arrays of connexons 

can be recognized (white circles), the long-range order of the lattice is 

usually imperfect. Note the densely stained region in the center of most 

of the connexons (black circles). X 185,000. 
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FIGURE 3. (a) Isolated "native" heart gap junctions negatively stained 

with 2% phosphotungstate. Note the double-membrane profiles (arrows) of broken 

vesicles as well as the polygonal array of connexons (white dots) in the vesicles. 

Hexagonally arrayed connexons can also be seen (white circles). Periodic densities 

can be observed in the double-membrane profile (upper right corner). X 150,000. 

(b) Isolated heart gap junctions treated with trypsin and negatively stained 

with 2% phosphotungstate. The junctions subjected to in vitro trypsin treatment 

retain their characteristic lattice structure and look ultrastructurally identical 

to native junctions (compare with Figure 2c). As in native junctions, the central 

region of the connexons is densely stained (black circles) and hexagonal arrays 

are recognizable (white circles). X 185,000. 
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and with a center to center spacing of about 9-10 nm, can be seen with negative 

staining (Figure 2d). As for liver gap junctions, the hexagonal arrays are usually 

imperfect and, especially in the heart, are often broken up into small domains. 

Protein composition of cardiac gap junction fractions. The plethora of proteins 

present in the plasma membrane fraction (Figure 4, lane b) are mostly solubilized 

by Sarkosyl treatment, leaving an insoluble fraction enriched for gap junctions (see 

above) and for an Mr 28,000 polypeptide (Figure 4, lane c). Further enrichment 

for gap junctions on a discontinuous sucrose gradient, as documented above, was 

found to be concomitant with a further enrichment for the M 28,000 polypeptide 
r 

(Figure 4, land d). A faint band at Mr 30,000 is also persistently present, and can 

be enriched for if 1 m M EDT A, TAME and iodoacetamide are included throughout 

the isolation to reduce proteolysis (Figure 4, lane e). Additional use of 1 mM PMSF 

to further control proteolysis produced no change in the pattern of polypeptides 

in the final fraction. Some minor, and less consistent components of the final fraction 

of Mr 32,000, 43,000, 50,000 and 55,000 can sometimes be detected in fractions 

loaded at higher concentration (Figure 4, lane e). Of these, the Mr 32,000 polypeptide 

was most frequently seen, and in one case, for unknown reasons, was the major protein 

component of the final fraction. However, examination of this fraction by negative 

staining revealed a marked absence of gap junctions. 

Each of the components of this final fraction has also been examined by two­

dimensional peptide mapping ("fingerprinting") using both tryptic (Figure 5) and 

chymotryptic (results not shown) digests. The M 30,000 and 50,000 proteins share 
r 

virtually identical "fingerprints" with the major M 28,000 polypeptide, while all 
r 

the other components display peptide maps which are unrelated to one another or 

to that of the M 28,000 polypeptide (maps of the M 43,000 and 32,000 polypeptides 
r r 

are shown in Figure 5). 
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FIGURE 4. Analysis of various fractions obtained during the purification 

of myocardial gap junctions. SDS polyacrylamide gels were stained with Coomassie 

blue. Lanes a and f: standard proteins with their molecular weights in kilodaltons. 

Lane b: plasma membrane fraction collected at the 10/35% sucrose interface 

of sucrose-potassium iodide gradients. Lane c: the 0.3% Sarkosyl-resistant material 

shows a prominent band at Mr 28,000. Lane d: the gap junction fraction collected 

at the 4 0.3/54% sucrose interface of the last sucrose gradient contains a major 

protein of Mr 28,000 (solutions made up with 0.1 mM each of EDTA, TAME and 

iodoacetamide). Lane e: a gap junction fraction isolated with solutions made 

up with 1 mM each of EDTA, TAME and iodoacetamide. Inhibitors allow preser-

vation of a band of Mr 30,000. Because the sample was loaded more heavily than 

in lane d, minor components are visible (M 32,000, 43,000, 50,000, 55,000 and 
r 

proteins of higher molecular weights). 
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FIGURE 5. Two dimensional maps of the iodinated tryptic peptides of the 

proteins present in a myocardial gap junction fraction. The molecular weight 

(x 10-3) of the protein subjected to two-dimensional peptide mapping is indicated 

on each map. The origin of the maps is at the bottom left (black dot). The separa-

tion of peptides generated by tryptic digestion is achieved by electrophoresis 

from left to right followed by ascending chromatography. In the system used 

the most basic peptides migrate furthest in the electrophoretic dimension and 

the more hydrophobic peptides are found nearest the top of the maps. Note that 

the maps of the Mr 50,000 and Mr 28,000/30,000 proteins are very similar. In 

contrast, the maps of the M 32,000 and M 43,000 proteins show that these pro-r r 

teins are neither related to each other nor to the Mr 50,000, 30,000 and 28,000 

proteins. Two-dimensional maps of a-chymotryptic peptides of the above men­

tioned proteins lead to the same conclusions. The map (d) was obtained from 

the M 28,000 protein (see map of the M 30,000 protein in Figure 8). 
r r 
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Our purest gap junction fractions yield about 0.1-0.2 ~g of Mr 28,000 protein 

per g wet weight of starting material. Eliminating the final sucrose gradient 

increases this yield by a factor of almost 10. An even greater increase in yield 

can be achieved by isolating plasma membranes in the presence of 5 mM Ca ++, 

even when the final sucrose gradient is employed. However, under these conditons 

contamination increases drastically. 

Comparisons of gap junctions from heart, liver (and lens). 

(a) Morphology. 

As has been observed in vivo (Revel and Karnovsky, 1967; NcNutt and Weinstein, 

1970; Gros et al., 1978; Yee and Revel, 1978), heart gap junctions are virtually 

indistinguishable from liver gap junctions. They have the same appearance in 

profile (thin sections) and en face (by freeze fracture). The differences between 

these junctions and those of lens have been discussed thoroughly in Chapter 4. 

(b) Protein components-peptide mapping. 

The junction rich fractions from heart, liver and lens are each comprised 

of a single major protein, all of which have rather similar molecular weights [i.e., 

heart-M 28,000 (Figure 6, lane b-probable native protein-M 30,000); liver-r r 

Mr 28,000 (Figure 6, lane c); lens-Mr 26,000 (Figure 6, lane d)]. However, at 

this point the similarities seem to end. Comparisons of the peptide fingerprints, 

both chymotryptic (Figure 7) and tryptic (Figure 8, a-c), of these proteins reveal 

major differences between all three proteins. This held true whether the proteins 

were iodinated by the chloramine T method (Greenwood et al., 1963-generally 

labels tyrosine) or by the Bolton and Hunter method (Bolton and Hunter, 1973-labels 

amino groups)-compare the peptide maps in Figure 7, a-c and Figure 7, d-f, respec-

tively. Indeed, beyond their generally hydrophobic nature, no homologies could 

be detected between them. Based on five independent comparisons three peptides 

from the chloramine T labelled proteins (numbered arrows in Figure 7, a-c) did 
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FIGURE 6. Comparative analysis by SDS-PAG E of junctional proteins from 

rat heart, liver and lens. Gels were stained with Coomassie blue. Lanes a and e: 

standard proteins with their molecular weights in kilodaltons. Lane b: myocardial 

gap junction fraction with its major polypeptide of M 28,000. Lane c: liver native 
r 

gap junction fraction with a major protein of Mr 28,000. Lane d: lens native 

junction fraction containing the MIP of Mr 26,000. Lanes f, g and h: exhaustive 

digestion by trypsin of heart, liver and lens junctional fractions in vitro generates 

polypeptides of Mr 11,000 (lane f), 10,000 (lane g) and 21,000 (lane e), respectively. 

Quantitative data show that the bands of Mr 11,000 and 10,000 are comprised 

of two polypeptides each. 
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FIGURE 7. Two-dimensional, a-chymotryptic peptide maps of the 

liver M 28,000 gap junction protein (a and d), the lens M 26,000 main 
r r 

intrinsic protein (b and e) and the heart Mr 28,000 gap junction protein 

(c and f), all isolated from rat. The proteins were iodinated by the chlora­

mine T method in maps a to c (principally labels tyrosine and sometimes 

histidine and phenylalanine), and by the Bolton and Hunter method in maps 

d to f (principally labels lysine and the NH2-terminus). Although three 

peptides from the chloramine T labelled protein maps (numbered peptides 

in maps a-c) did seem to co-migrate in all three proteins, peptide #3 was 

shown not to co-migrate in a third dimension of resolution (HPLC of the 

eluted peptides) while peptide #2 is thought to be free iodo-tyrosine since 

it was universally present in all maps studied, and eluted very rapidly on 

HPLC. Furthermore, a similar number of co-migrating peptides could 

be found in comparisons between peptide maps of any of the junctional 

proteins and an unrelated integral membrane protein- bacteriorhodpsin. 

Therefore, it is clear that the junctional proteins from these three tissues 

are very different, to the extent that no homology can be detected by these 

mapping techniques. 
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appear to consistently co-migrate in the maps of all three proteins. However, 

when these peptides were cut out, eluted and run on HPLC for a third dimension 

of resolution, one was shown not to coelute in the three proteins (peptide# 3 in 

Figure 7, a-c), while another was demonstrated to be a very small peptide, most 

likely free iodo-tyrosine. Furthermore, when the junctional protein maps were 

compared with that of an unrelated membrane protein, bacteriorhodopsin, the 

same number of peptides were found to co-migrate in both two and three dimensions. 

One unavoidable difficulty with these results is that the most favorable 

methods for isolating junctions from the three tissues are quite different (see 

Materials and Methods). Therefore junctional fractions were also obtained from 

both lens and liver using protocols identical or very similar to that employed in 

the isolation of gap junctions from heart (see Materials and Methods). These pro-

tocols specifically included overnight treatment with KI, isolation of plasma mem-

brane by sucrose gradients, Sarkosyl treatment (0.3 or 0.55%) and a final separation 

on a sucrose-urea density gradient. The fractions isolated in this manner displayed 

essentially the same pattern of polypeptides as fractions isolated by the usual 

procedures for lens and liver (see Material and Methods). Two-dimensional peptide 

mapping confirmed that the major components of the fractions isolated in this 

manner from lens or liver were identical to the proteins isolated by the standard 

procedures. 

(c) Protein components-tryptic sensitivity in the junction. 

As previously demonstrated for liver (Goodenough, 1976; Henderson et al., 

1979; Makowski et al., 1982) and lens (Kistler and Bullivant, 1980b; Nicholson 

et al., 1983) junctions, heart gap junctions display virtually no morphological changes 

in response to extensive tryptic hydrolysis (see Figure 3b). Although the junctions 

seem unaffected, the major protein component in all three cases is reduced in 

molecular weight to M 11,000 in the heart (Figure 6, lane f), M 10,000 in the 
r r 
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liver (Figure 6, lane g), and Mr 21,000 in the lens (Figure 6, lane h). In Chapter 2 

and Appendix I it was shown that the tryptic degradation products of liver gap 

junctions are actually two polypeptides of Mr 10,000, representing 20,000 daltons 

of the original Mr 28,000 protein. By analogy with the liver, we have quantitated 

the recovery of junctional protein in trypsinized heart gap junctions to determine 

if two fragments of similar size are also produced in the heart. Based on molecular 

weights of 28,000 for the major protein present before trypsinization, and 11,000 

for the polypeptide(s) remaining after trypsinization (determined from SDS PAGE), 

one would in theory estimate the recovery of junctional protein after trypsinization 

to be 78% if two polypeptides are generated, but only 39% if one is produced. 

The actual recovery was measured by several independent methods (see Materials 

and Methods) which involved estimating protein from total radioactivity in pelleted 

material, radio-activity present in specifically identified junctional bands on SDS 

gels (estimated from an autoradiogram), and Coomassie (two independent estimates) 

and silver staining of these same bands. Although each of these techniques is 

subject to considerable errors (discussed in Chapter 1, Section D and Appendix I), 

the results from all four methods agreed quite well, estimating the recovery of 

protein to be 71 :_ 8% (mean :_ 1 standard error). Estimates ranged from 58 to 

82% recovery. The results clearly suggest that, as in the liver, two polypeptides, 

each of Mr 11,000, were produced from the "native" Mr 28,000 protein by tryptic 

hydrolysis of intact junctions. 

The peptide maps of these tryptic fragments in all three tissues are compared 

to the maps of the respective "native" proteins in Figure 8. In all cases, the more 

hydrophilic and basic peptides (those towards the bottom and right of the maps, 

respectively) are lost during the tryptic hydrolysis (arrows in Figure 8, a-c). Some 

new peptides appear in the maps of the fragments of liver and lens which survive 

trypsin treatment (arrows (*) in Figure 8, d-f). Presumably, during hydrolysis of 
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FIGURE 8. Comparative analysis by means of two-dimensional maps of 

iodinated tryptic peptides, of the major proteins from native (a,b,c) and trypsinized 

(e,f,g) junctional fractions of rat heart, liver and lens. As previously (Figure 5), 

the origin of the maps is at the bottom left (small dot); electrophoresis is con­

ducted from left to right and chromatography from bottom to top; molecular 

weights of analyzed proteins are indicated on the maps. The arrows in maps (a), 

(b) and (c) denote the peptides which are lost during trypsinization of intact junc­

tions, while the arrows labelled (*) of maps (e) and (f) indicate the new peptides 

generated by this proteolysis. 
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the gap junction, one of the labelled peptides in the native protein is cleaved and 

the labelled portion remains with the surviving protein embedded in the membrane. 

Disctm;ion: 

Characterization of heart gap junctions. Gap junctions, almost identical 

in structure to those present in liver fractions (see Nicholson et al., 1981, 1983), 

have been isolated from rat heart in very high purity, the only copurifying contami-

nants being some amorphous material and occasional non-junctional membrane 

vesicles. During the isolation protocol, as the fractions became progressively 

more enriched for gap junctions by morphological criteria, a concomitant enrichment 

for an Mr 28,000 protein was also observed (Figure 4, lanes b, c and d), culminating 

in the final fractions where it was virtually the only component (Figure 4, lane d), 

along with a faint band at Mr 30,000. This observation contrasts with those of 

previous authors who found multiple protein components in their final gap junctional 

fractions from heart (Mr 28,000, 31,000, 33,500 and 47,000 according to Kensler 

and Goodenough, 1980; M 28,500, 30,000, 33,000, 40,000 and 46,000 according 
r 

to Manjunath et al., 1982a). These additional proteins most likely represent con-

tamination by cytoskeletal material and especially desmosomes (see Kensler and 

Goodenough, 1980 and Colaco and Evans, 1982), which could arise from differences 

in the isolation protocol and in the species from which the hearts were obtained. 

When loaded heavily on gels, many of our heart fractions are seen to contain 

small amounts of proteins corresponding approximately to those observed by Kensler 

and Manjunath, notably polypeptides of M 55,000, 50,000, 43,000, 32,000 and 
r 

30,000 (Figure 4, lane e). The bands at M 55,000 and 43,000 are not consistently 
r 

found, and are absent from our cleanest fractions. The M 32,000 polypeptide 
r 

is a more consistent component of the final fraction but is also believed to be 

a contaminant since in rare cases where it is enriched in the final fraction, few 

gap junctions could be detected morphologically. 
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Peptide maps of all these components support these conclusions in that the 

Mr 55,000, 43,000 and 32,000 proteins have "fingerprints" unrelated to one another 

or to the major M 28,000 polypeptide (Figure 5-M 55,000 polypeptide not shown). r r 

The polypeptides of Mr 50,000, 30,000 and 28,000, on the other hand, have virtually 

identical "fingerprints." Since the M 30,000 protein is enriched in the final fraction r 

obtained when 1 mM protease inhibitors (EDTA, TAME and iodo-acetamide) are 

used throughout the isolation (as opposed to 0.1 mM), it seems likely that it repre­

sents a precurosr of the M 28,000 polypeptide, largely broken down by endogenous 
r 

proteases in vivo or during isolation. The Mr 50,000 protein is unlikely to represent 

a precursor, since its presence does not correlate with the use of protease inhibi-

tors. It remains to be conclusively demonstrated whether or not the M 50,000 protein 
r 

represents a dimer of the M 28,000 polypeptide, as might be surmised by analogy 
r 

with the liver (Chapter 2). However, preliminary studies on the Mr 28,000 polypeptide 

eluted from gels do indicate that it undergoes some aggregation in SDS, although 

to a much lesser degree than demonstrated for the rat liver gap junction protein 

(Nicholson et al., 1981). From these results, we conclude that isolated heart gap 

junctions are comprised of a single protein with a "native" molecular weight of at 

least 30,000, although it is usually reduced to Mr 28,000 after isolation. 

The procedure described here produces gap junction fractions of high purity. 

However, the protein yield (.r0.1-0.2 ).lg/g wet weight of heart) is rather low, even 

compared to that obtained for liver. When corrections are made for the gap junction 

complement in the whole tissue [1.5% of total hepatocyte surface area (Yee and 

Revel, 1978; Yancey et al., 1979) compared to 1% of myocyte surface area (Gros et al., 

1979; Page and Shibata, 1981)], a yield of 0.7-1.0 ).lg of junctional protein/g wet 

weight of starting material would be comparable to that obtained in the liver. 

Currently, this kind of yield can only be obtained, and often exceeded, at the sacri-

fice of purity by either eliminating the final sucrose gradient from the protocol 

or including 5 mM Ca ++during the isolation of plasma membranes. 
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Comparison of heart, liver (and lens) junctions. 

(a) Morphology: 

In virtually all respects, heart gap junctions are very similar to those from 

liver. Morphologically they are almost indistinguishable and both have even been 

reported to become more crystalline in response to uncoupling procedures (Peracchia, 

1977; Baldwin, 1979; Dahl and Isenberg, 1980), although the significance of these 

observations are still the subject of debate. The only consistent difference detected 

so far, other than in the protein components, is that heart junctions are more 

sensitive to detergents, being destroyed by Sarkosyl concentrations in excess of 

0.3% (Kensler and Goodenough, 1980; this chapter), while 0.55% Sarkosyl is consis­

tently used in the isolation of hepatic gap junctions. 

Lens junctions, in contrast, show many differences when compared to cardiac 

or hepatic gap junctions, including the packing of the connexons, separation of 

the membranes, etc. These were discussed previously (Nicholson et al., 1983-i.e., 

Chapter 4). 

(b) Junctional proteins: 

All three tissues have now been demonstrated to be comprised of a single 

major protein. The small differences in the molecular weights of these components 

(heart: Mr 30,000; liver: Mr 28,000; lens: Mr 26,000) could result from differences 

as small as a single amino acid substitution (de Jong et al., 1978). However, rather 

than this being the case, two-dimensional peptide maps of these proteins have 

shown them to differ from one another to a much greater extent than previously 

expected. Peptide maps of tryptic and chymotryptic peptides labelled either 

at tyrosine residues and possibly phenylalanine and histidine, (Krohn et al., 1977) 

(chloramine T method of iodination) or lysine residues and the amino terminus 

(Bolton and Hunter method of iodination) have all been examined, and even a third 

dimension of HPLC employed in some instances. The end result of these comparisons 
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is that any apparent homologies between the proteins indicated by any given 

method is found not to exceed the background level of the method. Although 

all these techniques fail to demonstrate homology between the proteins of heart, 

liver and lens junctions, the degree to which the primary sequences of the proteins 

differ is difficult to estimate, since the techniques are more suited to detecting 

differences than similarities. An instance of this is a recent comparison of bovine 

brain calmodulin and rabbit skeletal muscle troponin C, where a 50% sequence 

homology (Watterson et al., 1980) remained undetected in two-dimensional tryptic 

peptide maps (Stevens et al., 1976). 

Since the optimized preparation protocols for junctions from each tissue 

differ substantially, it would seem prudent to check if the differences in the proteins 

isolated was more a function of the protocol than of tissue-specificity in the gap 

junction protein. In fact, this proved not to be a problem, since isolation procedures 

closely resembling that used for the heart produced final fractions from liver 

and lens which were comprised of the same major proteins as found in fractions 

isolated by the standard procedures. 

(c) Tryptic hydrolysis of gap junctions: 

As discussed in Chapters 2 and 4, tryptic hydrolysis of the junction protein 

while it is part of the whole gap junction structure is most likely restricted to 

the cytoplasmic surfaces. As an aqueous protein, it should not penetrate the hydro-

phobic core of the membrane and its size (5 nm in diameter-Stroud et al., 1974) 

should exclude it from the extracellular gap (2-3 nm) and aqueous transmembrane 

pore (1.5-2 nm diameter). It is probably for this reason that the junction structure 

in all three tissues is so little affected by trypsin. It has previously been demon-

strated that the liver Mr 28,000 junction protein cleaved to produce two polypeptides 

of Mr 10,000 by such trypsin treatment (Nicholson et al., 1981), while the lens 

M 26,000 protein is reduced toM 21,000 (Takemoto et al., 1981; Nicholson et al., r r 
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1983). In both cases COOH-terminal residues are lost, and in the case of the 

lens, five NH2-terminal residues also (Nicholson et al., 1983). It has now been 

shown that the heart gap junction protein (Mr 28,000) is, like that of liver, reduced 

to two polypeptides of M 11,000. Which portions of the polypeptide chain are r 

removed by the hydrolysis remains to be determined. However, the marked simi-

larity of the effects of trypsin on both heart and liver junction proteins may well 

suggest that, in spite of considerable differences in primary sequence, the overall 

folding of the proteins in the membrane may be similar. 

Tissue~pecificity of junctional proteins-implications. 

One possible explanation of this truly surprising diversity in the proteins 

comprising very similar structure in two different tissues is that there is very 

little evolutionary pressure to conserve the primary sequence of a gap junction 

protein. In other words, since it forms a rather non~pecific intercellular channel, 

the gap junction protein may only require certain very general features of its 

structure such as strategically placed hydrophobic and hydrophilic domains to 

be conserved, to retain its function. This would allow rapid changes to accumulate 

in the primary sequence. However, despite the differences between different 

tissues, the gap junction proteins of liver and lens have both been demonstrated 

to be quite well conserved between a variety of vertebrate species (liver-Nicholson 

et al., 1983; lens- Takemoto et al., 1981; Ziegler and Horwitz, 1981; Bok et al., 

1982). Similar molecular weights (M 28-29,000) of the major protein present 
r 

in gap junction enriched fractions from mouse, rabbit and guinea pig hearts (Kensler 

and Goodenough, 1980; Manjunath et al., 1982b) might suggest that this same 

conservation is true in the heart. These observations would suggest that the tissue-

specific differences between junctions have specific significance and that evolutionary 

"pressures" exist to maintain them. Certainly, the finding of such diversity in 

the proteins comprising structures that are so similar morphologically is surprising 
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and contrary to previously held concepts of the gap junction as a non-specific 

channel which was probably the same in different tissues, species and even phyla. 

It is now possible that gap junctions may join the ranks of the growing number 

of systems (e.g., intermediate filaments, Osborn, M. and Weber, K., 1982) where 

the proteins exist as a gene family, all capable of making very similar structures. 

What significance could such tissue-specificity of the gap junction have? 

One possibility is that different gap junction proteins are made in different tissues 

during development in order to prevent promiscuous coupling and establish compart­

mental boundaries (note the junctional discontinuities observed in this regard 

by Weir and Lo, 1982). Arguments against such a function could be made from 

tissue culture studies in which cells derived from different tissues couple effectively 

(Michalke and Loewenstein, 1971, Epstein and Gilula, 1977; Gaunt and Subak-Sharpe, 

1979). However, in some experiments such coupling failed or was very inefficient 

(Fentiman et al., 1976; Pitts and Burk, 1976; Gaunt and Subak-Sharpe, 1979). 

Furthermore, it is quite possible that the tissue-culture cells used, mostly trans­

formed lines, may no longer express their original tissue-specific junctional proteins, 

as suggested by Pitts (1980), who writes "· •. specificity of junction formation 

in culture is a property of established cell lines rather than primary cells." 

A large number of studies have now demonstrated the gating of gap junctional 

channels in response to a variety of manipulations, most of which have been linked 

to changes in pH or [Ca ++]. (See Loewenstein, 1981, for review.) With such ubiqui­

tous effectors controlling junctional communication, it is likely that the sensitivity 

of junctions to their action might need to vary from tissue to tissue. Changes 

in the putative divalent cation binding site on the junctional protein could be a 

way to achieve such modulation. Schuetze and Goodenough (1982) have already 

documented a case in the eye lens where junctional sensitivity to pC02 as an 

uncoupler is lost during development. Given the already established differences 
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between the junctions of lens epithelial cells (fiber cell precursors) and adult fiber 

cells (Waggoner and Maisel, 1978; Broekhuyse et al., 1979; Peracchia, 1978), it 

is possible that the change in pC02 sensitivity is a function of a wholesale replace­

ment of one junctional protein with another. At present, it is also possible that 

the change reflects changes in junctional accessory proteins (see Kistler and 

Bullivant, 1980a). With current isolation protocols, any accessory proteins which 

might exist would almost certainly be removed and would not be expected to be 

seen in the final fraction. The existence of such components has already been 

suggested by the apparent association of avian sarcoma virus (Willingham et al., 

1979) and calmodulin (Welsh et al., 1982, Peracchia et al., 1981) with gap junctions. 

The significance of tissue-specific differences in the gap junctional protein 

will become clearer as we better understand the extent of the differences both 

in terms of the degree of diversity between primary sequences and in terms of 

the number of different junctional types. Since heart is mesodermal, liver endo­

dermal and lens ectodermal in origin, it is possible at this stage that junctional 

diversity will be explained in terms of embryological germ layer specificity. In 

any event, the differences in the protein structure of different gap junctions should 

not only prove of significance in physiological and embryological terms, but should 

also provide a source of diversity useful in the study of structure-function correla­

tions of the gap junction protein (see end of discussion in Nicholson et al., 1983-i.e., 

Chapter 4). 
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GENERAL CONCLUSION 

When the work presented heJ;'e was first begun, knowledge of the composition 

of the gap junction was rather limited. No agreement had been reached on either 

the number or molecular weights of the gap junction proteins. Various candidates 

from Mr 10,000 to 40,000 had been proposed as components of liver gap junctions, 

while polypeptides of Mr 34,000 and/or 26,000 had been associated with isolated 

junctional fractions from lens, the only other tissue to be studied in this regard 

(see Introduction for detailed bibliography). The situation has been much clarified 

in the interim, in some part by the results presented in this thesis. In some respects, 

the picture that emerges is pleasingly simple, in that each gap junction appears 

to be comprised of a single polypeptide. In other ways, however, the field has 

been shown to be far more complex than previously guessed with the demonstration 

of a remarkable degree of variability in the gap junction proteins from different 

tissues. 

The gap junction from mammalian liver, the model most used for study, 

has now been shown to be comprised of a single major protein of M 26-28,000 
r 

(Henderson et al., 1979; Hertzberg, 1980; Nicholson et al., 1981). Several properties 

of this protein have been established, including its tendency to aggregate in SDS 

(Henderson et al., 1979; Nicholson et al., 1981), its sensitivity to proteolysis while 

still part of the junctional structure (Duguid and Revel, 1976; Henderson et al., 

1979; Finbow et al., 1979; Nicholson et al., 1981) and its apparent lack of carbo-

hydrates (Hertzberg and Gilula, 1979). Two-dimensional peptide "fingerprints" 

of this gap junction protein have played an important role in its identification 

and characterization (Nicholson et al., 1981) and now may also provide the first 

assay for the junctional protein, enabling it to be identified in a mixture of polypeptides. 

A partial amino acid sequence for the protein has been obtained (Nicholson et al., 

1981) and several fragments of the protein suitable for further sequence analysis 

have been generated by enzymatic and chemical cleavage methods (Chapter 3). 
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The studies involving protease treatments of the intact junction, have also cast 

some light on the tertiary structrn:e of the protein (Chapter 3). Both the COOH­

terminal 35-40 residues (""4,00Q daltons of the molecule) and a loop of similar 

length in the center of the molecule (between 10,000 and 14,000 daltons from 

the NH2-terminus) are apparently exposed at the cytoplasmic face of the junction, 

leaving the remaining two, protease-resistant M 10,000 fragments disposed within 
r 

the lipid bilayer and extracellular gap between membranes. X-ray and optical 

diffraction studies on liver gap junctions (Caspar et al., 1977; Makowski et al., 

1977, 1982; Unwin and Zampighi, 1980) have also greatly contributed to our understand-

ing of the relationships of the individual polypeptide subunits to one another as 

they associate, apparently as hexamers, to form the unit transmembrane channels 

of the gap junction (connexons) which in turn interact head to head to form the 

connecting pathway between adjacent cells. Recently, there has even been evidence 

that B -pleated sheet structures may comprise a significant part of the secondary 

structure of the gap junction polypeptide within the lipid bilayer (Makowski et al., 

1982- also see discussion in Nicholson et al., 1981). 

Despite the extensive characterization of the Mr 28,000 "native" gap junction 

protein, it is still not certain that it is the only component of liver gap junctions 

in vivo. Minor components of the structure (e.g., <5%) could easily have been 

overlooked in our analyses, a problem which is exemplified by the work of D. Luck 

on flagellar components, which revealed that in addition to the major proteins, 

more than a hundred minor flagella proteins could be detected on two-dimensional 

gels (Piperna et al., 1977). A less extensive multiplicity of minor proteins has 

also been detected in intermediate filaments (Lazarides et al., 1981). In liver 

gap junctions, the M 21,000 polypeptide detected by Henderson et al. (1979) in 
r 

mouse and by us, in much smaller amounts, in the rat (Nicholson et al., 1981) has 

already been identified as a possible second, although minor, gap junction component. 
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It cannot be easily explained as a proteolytic degradation product of the M 28,000 
r 

protein (see Nicholson et al., 1981;. Traub and Willecke, 1982), although it is clearly 

related to it by peptide mapping, It should also be kept in mind that the final 

junctional fraction has been isolated under rather stringent washing conditions, 

including 0.1 M NaCl, 2M urea, pH 11, and a rigorous treatment with 0.55% sarkosyl 

which included brief sonication. As a result, accessory proteins, essential to the 

function of the gap junction in vivo, could have been inadvertently lost, since 

no assay exists for the functionality of isolated junctions. Recent reports associating 

calmodulin activity (Peracchia et al., 1981; Welsh et al., 1982) and the sarc gene 

product (Willingham et al., 1979) with gap junctions may point to the existence 

of such accessory proteins. However, it does seem to have been demonstrated 

that the existence of a basic junctional channel requires only a single major protein. 

Studies on the composition of gap junctions have now also been extended 

beyond the liver model to other tissues where gap junctions are relatively abundant-

notably eye lens and heart. In these tissues also, the basic junctional structure 

which can be isolated is comprised of a single major protein-Mr 26,000 in the 

lens and Mr 30,000 in the heart, although in the latter case only its degradation 

product of Mr 28,000 can be isolated in quantity. These junctional proteins do 

seem to share some common properties with that of liver in that they aggregate, 

to varying degrees, in SDS and display a sensitivity to proteolysis which seems 

to have no detectable repercussions on the integrity of the gap junctional ultra-

structure (Chapter 5). In this latter case, both heart and liver junctional proteins 

are affected similarly by proteolysis (e.g., by trypsin), being reduced to two Mr 

10-11,000 polypeptides, while the lens junction protein is reduced to a single Mr 

21,000 polypeptide. A comparison of the two-dimensional peptide maps of the 

"native" junctional proteins of these tissues, however, reveals that their primary 

sequences are very different, to the extent that no reliable degree of homology 
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could be demonstrated by this technique. In the case of lens and liver, this result 

has been substantiated both immunologically (Hertzberg et al., 1982; Traub et al., 

1983) and through direct sequence analysis at the NH 2-terminus (Nicholson et al., 

1983). It is still possible that some homologies exist between these proteins, if 

not at the level of primary sequence, at least in terms of tertiary structure, as 

might be suggested by their similar protease sensitivities in the intact gap junction. 

However, given the similar structures and properties of gap junctions from different 

tissues, the extensive variability in their protein components has proven to be 

truly surprising. It is tempting to speculate that the gap junction protein may 

form a gene family analogous to those previously described for actin (Kindle and 

Firtel, 1978; Fryberg et al., 1980), intermediate filaments (Weber and Osborn, 

1982), and others. Of course, after the fact it is not difficult to propose many 

possible reasons for this variability in the gap junction. These are discussed at 

length in Chapter 5, and include such roles as establishing non-communicating 

compartments in the embryo during development (e.g., Wier and Lo, 1982), changing 

the sensitivity of the gap junction channels in different tissues to gating by common 

effectors such as Ca ++or pH and perhaps even conferring a degree of selectivity 

on the junctions in different tissues to the passage of specific metabolites of importance. 

In some ways, our observations of gap junctional tissue specificity are not 

straightforward, especially when considering the junctions from eye lenses. As 

discussed in Nicholson et al. (1983), although lens junctions are generally similar 

in their features to gap junctions of other tissues (Peracchia and Peracchia, 1980a,b; 

Goodenough, 1979; Hertzberg et al., 1982), they do display some differences which 

have been reported by some authors to be substantial (Zampighi et al., 1982). 

These structural differences, in conjunction with the differences in their protein 

components, have been used to argue that the lens fiber junctions do not represent 

gap junctions, notwithstanding the demonstration of coupling between lens fiber 
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cells (Rae, 1974; Eisenberg and Rae, 1974; Goodenough et al., 1981; Schuetze 

and Goodenough, 1982). The who~e issue is further complicated by the heterogeneity 

of structures observed in lens j'!.mction fractions (see Appendix II for a detailed 

account). The significance of the different "junctional" profiles seen in thin sections 

(i.e., paired membranes) is unclear, as is their correlation with the varying connexon 

arrays observed in negative stain (see chapter 4, Figure 1). Even the association 

of the major Mr 26,000 protein with one or all of these structures is not easily 

demonstrated, particularly in the light of recent conflicting immunological reports 

(Bok et al., 1982; Paul and Goodenough, 1983). It is possible that several or all 

of the structures observed are variations of a single "junction" caused by factors 

such as lipid extraction with detergents (e.g., the narrower junction profiles detected 

by Zampighi et al., 1982; Nicholson et al., 1983; Paul and Goodenough, 1983) or 

changes in divalent cation concentrations or pH (Peracchia and Peracchia, 1980a,b). 

Some of the "junctions" observed may even represent single membranes which 

non-specifically adhere to one another. Alternatively, one could take a very hard 

line attitude and regard even minor variations in structure as evidence of different 

junctional types. Unfortunately, in the case of the lens, it is currently impossible 

to distinguish between this profusion of possible explanations on the basis of the 

rather confusing data available. It does appear that the most consistent components 

of lens junction fractions from several laboratories are "junctions" with similar 

or slightly narrower profiles than liver gap junctions, and the M 26,00 0 MIP. 
r 

Whether these represent a lens specific gap junction, some other junction or even 

an artifact created by urea and detergent treatment of lens membranes remains 

to be established. What is cear from this case is that our current definitions of 

the gap junction are inadequate, largely because we lack a functional assay. 

Ultimately, the demonstration of an aqueous channel of appropriate dimensions 

(i.e., 1-1.5 nm) which spans the membranes of adjacent cells and the extracellular 
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space, may prove to be the only reliable way of universally defining a gap junction 

or, more appropriately, a communicating junction (at times referred to as macula 

communicans). Certainly, the variability which we have detected in the junctional 

proteins of different tissues seems to forestall any prospect of a universal definition 

of the gap junction based on its protein components. 

AI though several issues have been settled by research in this field over the 

past six years, even more questions have been raised. Arising directly from the 

work presented here, several directions for future research are indicated. Perhaps 

foremost among these is understanding the significance of gap junction tissue 

specificity. Its elucidation is likely to be greatly aided by determining the extent 

of this tissue variability, both in terms of the degree of difference between any 

two tissue specific gap junction proteins and in terms of the number of different 

proteins in any given organism. For the first analysis, it is clearly necessary to 

first fully understand the structure of one gap junction protein, on which to base 

further comparisons. Progress has already been made in this regard with the liver 

protein, although much still remains to be done to define its primary and higher 

order structure. With respect to the second analysis, the study of gap junction 

diversity could be approached by applying the techniques used here to other tissues. 

However, this is likely to prove very laborious given the low abundance of gap 

junctions in most other tissues. A more promising approach is provided by the 

current genetic engineering technology, whereby synthetic oligonucleotide probes 

can be constructed from the known sequence of the liver gap junction protein 

(Nicholson et al., 1981) and used to select eDNA clones of the junctional protein 

messenger RNA and ultimately to screen the genome for the liver and related 

gap junction genes. Some progress has already been achieved along these lines 

by Dr. Yancey in our laboratory in collaboration with Drs. Horvath (in Dr. Hood's 

lab) and Gorin (in Dr. Horwitz's lab at UCLA Medical School). 
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The elucidation of the gap junctional protein structure from various tissues 

which should stem from such rese~rch will enable us to address many issues including 

the mechanisms of channel gating in the gap junction and the nature of the protein­

protein interactions involved in maintaning the integrity of the gap junction structure 

(between subunits of a connexon; between connexons in the plane of the membrane; 

between connexons of adjacent cells; etc.). It is even possible that the structure 

of the junctional channels, especially near the cytoplasmic surface, may confer, 

in different tissues, some selectivity, thereby providing a clue to one of the central 

questions of gap junction research-the identity, in any given system, of the metabolites 

or signals which pass between cells via the gap junctions. 
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APPENDIX I 

Quantitative Estimates of the Recovery of Junctional Protein 

after Tryptic Hydrolysis of Isolated "Native" Gap Junctions 

[A detailed treatment of Chapter 2-"Results-quantitative analysis 

of tryptic digestion of gap junctions'1 
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When "native" gap junction fractions, characterized by a single major protein 

of Mr 28,000, are subjected to extensive tryptic proteolysis, the gap junctions 

appear virtually unaffected structurally (see Chapter 4-Figure 1 band c). However, 

examination by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS 

PAGE) reveals a single band of Mr 10,000 as the only junctional protein to survive 

this treatment. At first, it might seem surprising that the ultrastructure of the 

junction is so little affected by this rather drastic reduction in the molecular 

weight of its constituent protein. The initial clue to an explanation of this phe-

nomenon is provided by comparisons of the two-dimensional peptide maps of the 

Mr 28,000 and Mr 10,000 polypeptides. These show that two-thirds of the iodinated 

peptides present in the "native" protein persist in its major tryptic fragment, 

thereby suggesting that the material at M 10,000 may represent more than the 
r 

one-third of the "native" protein implied by its apparent molecular weight. This 

contention is supported by sequence analysis of the M 10,000 band which reveals 
r 

the presence of at least two major sequences. Therefore, to unequivocally determine 

whether or not tryptic hydrolysis of isolated "native" gap junctions cleaves the 

junctional protein into two Mr 10,000 polypeptides, we have employed several 

different methods to estimate the yield of junctional protein which remains as­

sociated with the gap junction str~ctures after tryptic hydrolysis. A yield of 36% 

would be expected if one Mr 10,000 fragment is produced (Theoretical model (a) 

in Table 1B) and a yield of 71% would be predicted if two fragments result (Theoretical 

model (b) in Table 1B). 

An aliquot of "native" gap junctions labeled with 1251 using chloramine T 

oxidation, was added to 400 ).11 of a "native" gap junction fraction in 5 mM Tris/HCl, 

1 mM CaC1
2 

(pH 7 .4) ( 600 - 700 ).Jg gap junction protein). This junction suspension 

was homogenized by brief sonication and divided into two equal aliquots. One, 

the "trypsinized sample", was treated with 10 ).Jg trypsin (Sigma type XI--chymo-
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tryptic activity inhibited by diphenylcarbamylchloride) for 10 hr at room tempera­

ture, and for an additional 3.5 hr following a boost with a further 5 11g of trypsin. 

The second aliquot, the "control. sample", was treated in an identical manner except 

that trypsin was eliminated from all solutions. After these incubations, junctions 

were collected and washed by several centrifugations of 15,000 rpm for 30 min 

in an Eppendorf centrifuge. As an approximate estimate of junctional recovery, 

the pellets from the trypsinized and control samples were counted in a Beckman 

4000 gamma counter (Experimental estimate (1)- Table 1A). 

An analogous estimate was made using one-third of each pellet for amino 

acid analysis on a Durrum D-500 analyser in order to directly determine the total 

protein content. Half of the material taken was hydrolyzed in vacuo for 20 hrs 

at 105°C while the other half was used as an unhydrolyzed blank to correct for 

background levels of free amino acids. Sufficient material was available to allow 

determinations to be made using both 6 N HCl hydrolysis in which tryptophan 

and cysteine are destroyed (Experimental estimate (4a)- Table 1A) and 3 M mercapto­

ethanasulfonic acid hydrolysis, which preserves tryptophan (Experimental estimate 

{4b) -Table lA). The results of these analyses are given in Table 2. 

The remaining two-thirds of each pellet was solubilized and the proteins 

separated by preparative SDS PAGE. The amount of junctional protein present 

in each sample was determined from a densitometer scan of the appropriate lanes 

of the Coomassie stained gel, as outlined in section DII of Chapter 1. The recovery 

of junctional protein after trypsin treatment compared to the control sample 

was calculated after correcting for the small amount of degradation to Mr 14,000 

and 10,000 polypeptides which had occurred in the control (Experimental estimate 

(6a)- Table 1A). The individual junctional bands in each sample were then cut 

out of the gel, pooled and counted in a Beckman 4000 gamma counter, thus providing 

experimental estimate (2) in Table 1A. After counting, the polypeptides were 
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TABLE 1: RECOVERY OF GAP JUNCTION PROTEIN AFTER TRYPTIC 
HYDROLYSIS OF INTACT JUNCTIONS 

Method of Estimate 

( 1) Radioactiviti in pelleted material- [gamma counter] 

( 2) Radioactiviti in specific junctional bands after 
separation by SDS PAGE- [gamma counter] 

( 3) Radioactivi ty1 in specific junctional bands after 
separation by SDS PAGE - [autoradiography] 2 

(4) Amino acid analysis of pelleted material3 

( 5) Amino acid analysis of specific junctional proteins after 
separation by SDS PAGE and elution3 

( 6) Coomassie staining of specific junctional bands after 
separation by SDS PAGE 

MEAN ESTIMATE 

Theoretical protein recovery, assuming: 

(a) 

(b) 

"Native" Mr 28,000 protein hydrolysed to ONE 
Mr 10,000 polypeptide 

"Native" M 28,000 protein hydrolysed to TWO 
Mr 10, 000 rpolypeptides 

% Recovery of 
Gap Junction 

Protein 

61 

61 

65 

(a) 58 

(b) 4 53 

85 

(a) 68 

(b) 5 >55 

67 

36 

71 

1Proteins labeled with 1251 using chloramine T oxidation in the absence 
(estimate No. 1) or presence (estimates 2 and 3) of SDS. 

2Figure la. 
3Results of amino acid analyses given in Table 2. 

4 Amino acid analysis in mercaptoethanesulfonic acid to preserve tryptophan. 
5Figure lb. 



134 

TABLE 2: AMINO ACID ANALYSES OF THE GAP JUNCTION PROTEIN 

MOLE PERCENT 

"Native" Liver G .J. "Enzyme-Treated" Liver G. J. 
AMINO 
ACID 

Whole Pellet Eluted Mr 28,000 

band [2]a 

Whole Pellet Eluted Mr 10,000 

[3}a band [2]a 

Asx 7.1 9.0 6.1 
Glx 10.2 10.5 7.7 

Lys 5.0 6.2 3.2 
Arg 5.5 6.9 4.6 
His 3.9 2.4 3.8 

Ser 7.6 9.0 8.9 
Thr 5.0 4.6 5.9 

- - - - - ------ - - - - - - - - - - -
Gly 9.1 16.5b 6.8 

Tyr 3.5 3.1 4.1 
- - - - - - - - - - - - - ------ - - - - -

Phe 3.9 3.3 5.1 
Trp 4.7c 5.4c 

Ala 6.6 5.8 7.5 
Val 6.1 5.8 8.1 
Leu 9.3 7.7 10.2 
lle 3.7 3.9 4.5 

Metd 2.3 1.4 2.5 
Cys 
Pro 6.5 3.9 5.6 

% Polar e 

residues 44.3 48.6 40.2 

% hydro-f 
phobic 43.1 31.8 48.9 

residues 

aNumber of independent analyses performed. 

bGlycine values are elevated in analyses of proteins eluted from SDS poly­
acrylamide gels run in Tris/glycine buffer. 

8.7 
10.5 

4.7 
4.4 
2.0 

9.1 
4.8 

- - - -
16.6c 

2.3 

4.1 

7.1 
6.8 
8.8 
4.2 
1.4 

4.5 

44.2 

36.9 

cTryptophan values are based on a single analysis after hydrolysis with 3M mercapto-
ethanesulfonic acid. 

dCystine and cysteine are destroyed during hydrolysis. 

eincludes Asx, Glx,Lys, Arg, His, Ser and Thr. 
f Includes Phe, Trp, Ala, Val, Leu, lle, Met and Pro. 
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electroeluted from the gel slices for amino acid analysis to directly determine 

the protein content (Experimental estimate (5)- Table 1A). Corrections were 

made for yields from electroelution and hydrolysis which were determined by 

monitoring radioactive recoveries. Amino acid analyses, the results of which are 

shown in Table 2, were obtained in the same way as for the pelleted material, although 

only 6 N HCl hydrolysates were examined. It should be noted that a comparison of the 

analyses of the pellets, or the analyses of the eluted polypeptides, reveals the 

trypsinized junctions to have a more hydrophobic character than the "native" or 

control junctions. This is consistent with the proposal, outlined in Chapters 2-4, 

that the Mr 10,000 polypeptides represent the portion of the junction protein protected 

from proteolysis by the surrounding membrane. 

Additional estimates of the recovery of junctional protein after tryptic 

hydrolysis could also be obtained from time-courses of the proteolysis. After 

adding trypsin to a "native" gap junction fraction, samples were taken at various 

times for analysis by SDS PAGE (see Figure 1 for details). In cases where the 

"native" junction fraction was iodinated (chloramine T method), densitometer 

scans of autoradiograms of the analytical gels were used to determine the amount 

of junctional protein of specific molecular weights at each time point. From 

this, a time-course for the disappearance of protein of Mr 28,000-24,000 (and 

multimeric forms) and its appearance at Mr 14,000-10,000 could be established 

(Figure 1A). Extrapolation would then provide an estimate of the ultimate yield 

of Mr 10,000 polypeptides from the starting material of Mr 28,00Q-24,000. An 

analogous determination could be made using Coomassie stained gels (Figure 1B). 

One difficulty, aside from those discussed in section Dll- Chapter 1, is presented 

by the material which remains at the top of the running gel and which has been 

demonstrated by peptide mapping to be comprised of both non-junctional and 

aggregated junctional protein. Since it is only present in non-trypsinized samples, 
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FIGURE 1. 

Time course of tryptic hydrolysis of "native" gap junction fractions 

followed by radioactivity (a) and Coomassie staining (b) of specific june-

tional proteins separated by SDS PAGE. 

(a) After iodination by chloramine T, a "native 11 gap junction fraction 

(0.1 11g/ 111 junctional protein) in 50 mM NH4 HC03, pH 7.8 was treated 

with 0.01 11g/ 111 trypsin at 37°C. Samples (15 Jll) were removed at various 

times (see graph), and analyzed by SDS PAGE (see methodology described 

in Chapter 2) after the reaction had been terminated by the addition of 

a two-fold excess of soybean trypsin inhibitor. Autoradiograms of the 

dried gels (using Kodak XR film exposed at -70°C with a Cronex Lightning 

Plus intensifying screen) were scanned with a Joyce L~ebel densitometer. 

Sample scans before (0 time) and after (120 min) tryptic hydrolysis are 

shown. Areas of the peaks at Mr 28,000-24,000 and the dimer at Mr 50,000 

(e.g., shaded areas in 0 time scan) were used in determining the (x) time 

points, while those of the peaks at Mr 14,000-10,000 and the dimer at 

M 20,000 (e.g., shaded areas in 120 min scan- the dimer was only evident 
r 

after 60 and 120 min of hydrolysis) were used to determine the (0) time 

points. An estimated 66% of the initial junctional protein remained asso-

ciated with the gap junctions after tryptic hydrolysis (60 min time point). 
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FIGURE 1. 

(b) A similar analysis to that in (a) was performed using Coomassie 

staining and unlabeled junctional fractions. Hydrolysis conditions were 

the same, except that the concentration of junctional protein was 0.3 11g/ 111 

and trypsin 0.003 11g/ 111 (hence the slower time course). Although the reso-

lution of proteins by SDS PAGE was greater using Coomassie staining than 

with autoradiography (cf 0 time scans in (a) and (b)), the same peaks were 

used in determining the time course (areas shaded in 0 time scan for (x) 

time points, and areas shaded in 120 min scan for (0) time points) with 

the exception that the material at the top of the running gel was included 

as junctional in the (x) time points, and no M 20,000 dimers were detected 
r 

after tryptic hydrolysis. In this analysis, 55% of the initial junctional pro-

tein was estimated to remain associated with gap junctions after tryptic 

hydrolysis (60 min time point). 

The junctional nature of the polypeptides of the shaded peaks used 

in these analyses has been established using peptide "fingerprinting" (Chapter 2). 
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including it as junctional (Experimental estimate (6b)- Table 1; Figure 1B) leads 

to an underestimate of the yield of Mr 10,000 polypeptides, while omitting it from 

consideration (Experimental estimate (3)- Table 1; Figure 1A) could lead to an 

overestimate. 

Several techniques have been used in the estimation of protein for this analysis. 

This was thought to be necessary since any given method suffers from inherent 

problems, largely stemming from the fact that each method relies on the labeling 

or reaction of specific functional groups which are unevenly distributed in a given 

polypeptide chain, or between different proteins. A consideration of each method 

can be found as an addendum to this appendix. 

However, despite the variety of techniques used and the particular problems 

associated with each, it is clear from Table 1 that all results agreed to within 

.::_15% of the value predicted for theoretical model (b). Therefore, it can be concluded 

that trypsin treatment of intact junctions digests the "native" M 28,000 protein 
r 

toM 26,000 and 24,000 polypeptides, respectively, before ultimately cleaving 
r 

the molecule into two fragments of Mr 10,000 (see Chapter 2, Figure 3 for analysis 

of such a time course by SDS PAGE). 

Addendum 

Specific inaccuracies associated with techniques for estimating protein. 

1) Radioactive labeling: Proteins labeled in vitro, in this case with 1251 

by the chloramine T method, will be labeled on only those residues reactive with, 

and accessible to the particular modifying reagent used. In the work described 

here, this would be those tyrosine residues (and possibly some phenylalanine and 

histidine residues) which are exposed to an aqueous environmenL 

2) Coomassie blue staining of proteins separated by SDS PAGE: The affinity 

of Coomassie for proteins is somewhat variable, especially in the case of glycoproteins. 

While the junction protein is apparently devoid of carbohydrate, it has yet to be 
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demonstrated that the Mr 10,000 hydrophobic "core" of the protein which survives 

proteolysis binds Coomassie with the same affinity as the native Mr 28,000 protein. 

3) Amino acid analysis of proteins: Although more universally applicable 

than the other systems, some errors are introduced in this method by the selective 

destruction of some amino' acids during hydrolysis (HCl hydrolysis completely 

destroys tryptophan and cysteine and partially destroys serine and threonine), 

the presence of a background of contaminating free amino acids, and the estimation 

of the percentage of the total sample loaded on the analyzer. 
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APPENDIX IT 

Analysis of the Content and Purity of Lens Fiber Junction Fractions 

[A supplement to Chapter 4] 
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Two basic preparative techniques have been used for the isolation of lens 

junctions (see flow charts in Figu~es 7 and 8). A relatively crude plasma membrane 

fraction is obtained by repeate9 aqueous and 8 M urea washes in Protocol II (Takemoto 

et al., 1981). Protocol I (Dunia et al., 197 4) involves a more rigorous plasma 

membrane isolation employing a sucrose density gradient, followed by detergent 

extraction and separation on a second sucrose gradient to specifically enrich for 

junctions. As for the liver (Chapter 1), two basic methods have been used to assess 

the purity of the final fractions--morphology and protein composition determined 

by SDS PAGE. The results, however, prove less straightforward than in liver. 

Morphological assays of the final junction fractions from lens are subject 

to several obstacles above and beyond the more general ones discussed in Chapter 1. 

These problems all stem from a difficulty in defining what represents a lens junction. 

In negatively stained samples, "connexons" cannot be detected on most of the 

membrane sheets, although it is unclear how much of this is due to the genuine 

absence of junctional protein, and how much results from the poor staining char­

acteristics of lens junctions. When "connexons'' are detected, they have been 

found to occur in varying arrays (from random, to hexagonal (virtually identical 

to those seen in the liver) and even closely packed tetragonal) from one preparation 

to another (see Figure 1 in Chapter 4; also Peracchia and Peracchia, 1980a,b; 

Kistler and Bullivant, 1980a; Zampighi et al., 1982). In our hands we have been 

unable to determine the specific conditions responsible for this variability, although 

Peracchia and Peracchia (1980a,b) claim that it results from variations in H+ 

or Ca ++ concentrations. In any event, the various ordered connexon arrays, both 

hexagonal and tetragonal, would appear to be formed during the isolation protocol, 

since they have never been observed or induced in the intact lens fiber cells. 

Analogous problems to those just described also arise in considering thin 

sections of lens junctional fractions. Even fractions isolated by Protocol I contain 
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a surprisingly large percentage of single membranes (,...,45%), although other workers 

have reported considerably lower. levels using similar isolation protocols (Takemoto 

and Hansen, 1981; ~95% doubl~ membrane profiles). In addition, the double membrane 

profiles, which for brevity will be referred to as "junctions" without any intended 

inference as to function, seem to form a heterogeneous population. In thin sections 

of liver gap junction fractions, the junctional profiles range from about 150 to 

190 A in width. "Junctions" with similar dimensions are seen in fractions from lens, 

although the gap between the two membranes is often less evident (compare Figures 1a 

and d in Chapter 4). However, much narrower "junctional" profiles, as thin as 100 A, 

are detected in the fractions from lens. As yet it has proven impossible to determine 

whether the widths of the "junctional" profiles in our lens fiber junction fractions fall 

into two (or more ) overlapping categories or if they are better described as a continuous 

distribution from 100 to 200 A , skewed slightly towards the wider profiles. 

In general, other authors have made no reference to a particularly wide 

distribution of "junctional" widths in the lens, referring only to junctions with 

similar or slightly narrower profiles than those of liver gap junctions (Alcala et al., 

1975; Dunia et al., 1974; Takemoto and Hansen, 1981; Hertzberg et al., 1982). 

Recently, however, two reports have differentiated, on the basis of morphological 

(Zampighi et al., 1982) and immunological (Paul and Goodenough, 1983) criteria, 

two distinct classes of "junctions" in fractions from the lens-one rather typical 

of gap junctions elsewhere (termed "wide junctions" in the remainder of this discussion) 

and one considerably narrower ("narrow junctions"). However, even these authors 

differ as to the relative abundance of the structures, with Zampighi et al. (1982) 

claiming an overwhelming predominance of the "narrow junction" and Paul and 

Goodenough (1983) referring to this as a minor component, undetected in an earlier 

publication. 



The diverse, and often conflicting descriptions of lens junctional fractions 

arising from different laboratories has made the determination of the interrelation-

ship of these various "junctional" forms very difficult. Several possible explanations 

exist: 

(1) The different structures observed in the fractions represent variations 

of a single junctional structure induced by the treatments used in the isolation, 

such as lipid extractions with detergents and protein denaturation in 8 M urea. 

Such a proposal is supported by the results of Peracchia and Peracchia (1980a,b) 

who observe changes in connexon arrays in response to fluctuations in Ca ++and 

H+ concentrations and by the observation that, irrespective of the junctional forms 

reported (square, hexagonal or disordered "connexon" arrays; "narrow" or "wide" 

junctional profiles), the major or only protein component is the Mr 26,000 MIP. 

(2) Each structural variant reported represents a different structure or 

junctional type. Some support for this proposal stems from Kistler and Bullivant 

(1980b) who associated square arrays of "connexons" with a protein other than 

M 26,000, and claimed that they only existed on single membranes. However, 
r 

conflicting reports have since been published by Zampighi et al. (1982) who associate 

the same arrays with double membrane profiles and a protein of Mr 27,000. A 

difficulty with this theory is that virtually none of the structural variants observed 

in isolated fractions have been demonstrated in vivo. 

(3) The structures observed represent various stages of single membranes 

adhering to one another non-specifically following urea and/or detergent treatments. 

In the light of this possibility, the term "junction" should be used advisedly in this 

instance when referring to the extensive amounts of double membranes present 

in lens junction fractions. 

Without a resolution of these issues, it is impossible to derive any real morpho-

logical assay of purity, especially in the light of variable results from different 
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FIG. 3a. Quantitative analysis of the protein content of a lens fiber junction 

fraction isolated by Protocol I. The protein components of the fraction were 

separated by SDS PAGE and stained with Coomassie blue. Areas under the peaks 

in a Joyce LlJebel densitiometer scan of the stained gel were determined using 

a digitizing tablet (Tektronix No. 4956) interfaced to a minicomputer (Tektronix 

No. 5042). 
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laboratories. Even should such a resolution be at hand, however, the question 

of whether or not the junctions isoiated from lens represent gap junctions will 

remain, until some universal assay can be developed for gap junctions. 

Biochemical assays of the lens fiber junction fractions seem, at first, much 

more straightforward than the morphological ones. As junctions become a higher 

and higher percentage of the isolate (i.e., percentage of double membranes seen 

in thin sections), enrichment is seer. for the M 26,000 MIP of lens, until in the 
r 

final fractions isolated by Protocol I, it represents 70-85% of the total protein 

(Figure 3a). Even in the relatively crude plasma membrane fractions from Protocol 

II, the Mr 26,000 protein represents 4 0-65% of the total protein (Figure 3b). Despite 

this co-enrichment for junctions and lens MIP, the percentage of double membrane 

profiles present in our final fractions ( .r 55% determined from thin sections including 

both "wide" and "narrow" junctions) is much less than might be expected from 

the percentage of Mr 26,000 protein present. This could be explained by recent 

immunological experiments where antibodies to lens MIP bound to both double 

and single membranes (Bok et al., 1982), suggesting either that the single membranes 

represent "split" junctions or that lens MIP or its precursor is present in non-junctional 

membrane. However, conflicting results have now been reported by Paul and 

Goodenough (1983) who find that their antibodies to the lens MIP bind to single 

membranes, and to the "narrow junctions," but not to the "wide junctions" more 

characteristic of gap junctions in other tissues. Since the Mr 26,000 protein is 

the only protein detectable by SDS PAGE in their final fractions, and since the 

majority of their fractions appear to be comprised of "wide junctions" (Goodenough, 

1979), there are a limited number of explanations for this observation: 

(1) "Wide junctions" are mainly comprised of lipid. In this event, it would 

be surprising that they would be resistant to detergent treatments. In addition, 

junctional fractions comprised almost solely of "wide junctions" have been reported 

to contain large amounts of M 26,000 protein (Takemoto and Hansen, 1981). 
r 
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(2) "Wide junctions" are comprised of a protein which remains undetected 

on SDS PAGE. If this were true, ~t would represent a unique case, since we have 

failed to detect other major pr9tein components in gels of lens fractions (isolated 

by Protocol I) by Coomassie and silver staining, and autoradiography when the 

sample was first iodinated. 

(3) "Wide junctions" contain the Mr 26,000 protein, but it is present in a 

different conformation to that in single membranes and cannot be recognized 

by the antisera. 

In the face of this profusion of confusing results, it is difficult to draw any 

absolute conclusions. In spite of the recent immunological results, circumstantial 

evidence would suggest that our isolation protocols (and apparently those of others) 

prepare mostly lens fiber junctions (slightly narrower in profile than the gap junctions 

of liver), which are comprised of Mr 26,000 protein. Determination of whether 

these represent a lens specific gap junction, some other junction, or even an artifact 

created by urea and detergent treatments of lens membranes must await more 

definitive evidence such as the presence of homologies between other established 

junctional proteins and the lens MIP. 
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