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Abstract 
A phase lock loop (PLL) is a negative feedback control system that fixes the frequency 

and phase of a local oscillator in relation to the frequency and phase of a "reference" 

signal. Electronic phase lock loop has been studied for more than half a century and has 

been widely used for clock recovery and generation, spread spectrum, clock distribution, 

jitter and noise reduction. 

 However, the study and applications of Optical phase lock loop (OPLL), the 

counterpart of electronic PLL in the optical domain, are far from the same level of 

progress as electronic PLL. Part of the reason is that most applications of optical signals 

so far do not require the precise control of the phase of the optical signals; another reason 

is that most implemented OPLLs are based on either gas lasers or solid state lasers, 

whose bulky size and high cost inhibit the applications of OPLLs.  

 Today semiconductor lasers are being used in numerous applications due to their low 

cost, small size, and high efficiency. OPLLs based on SCLs were once studied in the late 

1980s and early 1990s for coherent optical communication purposes. However, at that 

time, a few technical difficulties associated with SCLs were not completely solved and 

the technology was not mature. Since the invention of Erbium doped fiber amplifier, 

direct detection has become the dominant technology for telecommunication and research 

on SCL OPLLs has declined abruptly.    

 In the last decade, heavy investment in telecom has significantly improved the 

performance of SCLs. Emerging applications have drawn the attention of researchers to 

phase coherent optics again. In this thesis, I report on a study of OPLLs using 

commercial SCLs, and explore the applications in emerging fields other than 

telecommunication.  

 The first part introduces the theory of OPLLs and presents the experimental study of 

OPLLs made from different commercial SCLs. The non-uniform FM response of single- 

section SCLs and the non-negligible loop delay are identified as the critical factors which 

http://en.wikipedia.org/wiki/Phase_%28waves%29
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limit the performance of the OPLLs. In order to improve the performance of OPLLs, 

electronic compensations using filter designs are also discussed and studied.  

 In the second part, the application of OPLLs in coherent beam combining is firstly 

studied. Using OPLLs, an array of slave lasers can be phase locked to the same master 

laser at the same frequency, their outputs can then be coherently combined. The phase 

variations of the element beams due to the optical path-length variations in fibers can be 

further corrected for by using multi-level OPLLs. This approach eliminates the use of the 

optical phase/frequency shifters conventionally required in a coherent beam combining 

system. Proof of principle experiments are demonstrated using the filled-aperture 

combining scheme. Furthermore, I will discuss the scalability of a cascaded filled- 

aperture combining system for the combination of a large number of lasers.         

 The second application using OPLLs explored in this work is to clone the superior 

coherence property of a high-quality master laser to inexpensive SCLs. First, I will 

describe the theory of coherence transfer using OPLLs. I will then present the 

experimental measurements of the linewidths and frequency noises of the master laser, 

the free-running and locked slave lasers.   

 The thesis concludes by identifying future works that need to be done to advance the 

development of this technology.  
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Chapter 1 Introduction 
1.1 Background and motivation 

 Phase locked loops(PLLs) are the most prolific feedback systems today and are 

widely used in almost all electronic systems including satellite communication systems, 

radars, cell phones, televisions, radios, pagers, computers, etc.[1, 2] The concept of PLL 

was first developed in the 1930’s. The key parts in a PLL include a phase detector (PD) 

and a local oscillator whose frequency can be tuned by changing the input voltage or 

current. The system forces the local oscillator (LO) to follow the frequency/phase of an 

incoming reference signal. The earliest widespread use of PLLs was in radio and 

television. After the first PLL integrated circuit arrived in the 1960’s, there has been an 

explosion of the use of PLLs in FM demodulation, synchronization, frequency 

synthesizers, etc.  

 Optical phase lock loops (OPLLs) are essentially the counterparts of PLLs in the 

optical domain, where a slave laser is used as the LO and is phase-locked to a master 

laser. The role of the phase detector is played by a photo detector. OPLL was first 

described four years after the invention of laser in 1960’s[3]. Since then OPLLs based on 

various laser systems have been demonstrated[4-11]. One would naturally expect OPLLs 

to have a similar significance and impact in the optical domain as their counterparts have 

in the electronic domain. Historically, OPLLs have been studied for very few applications, 

including coherent optical communication[12-15], RF signal generation and delivery[4, 

9-11], and most recently, in optical clocks[16-18]. Most of the OPLLs have been 

demonstrated in laboratories and have never achieved wide commercial application. The 

great potential of OPLL technology is far from being realized. This can be attributed to 
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both the very high cost, the immaturity of OPLL technology, and the lack of mature 

applications demanding this technology. 

 In an OPLL, the most critical condition to achieve the optical phase locking is that 

the sum of the linewidths of the master laser and the slave laser be much smaller than the 

loop bandwidth. This condition is relatively easy to implement with solid state lasers, gas 

lasers and fiber lasers because they have superior frequency stability and very narrow 

linewidth (equal or less than a few kHz), so they do not require a high loop bandwidth to 

be locked[11, 19]. However these lasers are very expensive and bulky. In addition, they 

are typically thermal or piezo tuned, which limits their tuning speed and range. These 

lasers have recently been used in very special applications, including space coherent 

optical communication[20], precision frequency standard synthesized using optical 

clocks[16-18], and accurate control of fiber lengths for millimeter wave signal 

distribution in large radio telescope arrays[21].   

 In comparison with solid state and fiber lasers, semiconductor laser (SCL) is a more 

favorable candidate to build agile, low cost OPLLs for a variety of applications, due to 

their unparalleled advantages:  

• SCLs have a very high energy efficiency; state-of-the-art solid state lasers or fiber 

lasers have an efficiency of around 10%, while SCLs with efficiencies greater than 

80% have been demonstrated recently.  

• SCLs are significantly cheaper than solid state or fiber lasers. 

• SCLs can be current tuned at very high speed.    



 

 

3

• SCLs are very small. Due to their small size, the compatibility of their fabrication 

process with the semiconductor industry, and their current frequency tuning capability, 

SCLs are the excellent candidates to build integrated OPLL, which will significantly 

reduce their cost and open up numerous applications. 

 On the negative side, SCLs possess wide linewidth, which requires a high loop 

bandwidth and high speed feedback electronics to lock the lasers. A serious issue with 

single section SCLs is that their current frequency modulation(FM) response exhibits a 

0180  phase reversal within the frequency range of 0.1-10 MHz, which limits the loop 

bandwidth to the same frequency range[22, 23]. In order to efficiently lock the SCLs, 

either their linewidth has to be reduced, or the laser structure has to be redesigned to 

obtain a wide uniform FM response. In the late 1980’s and early 1990’s, a great deal of 

research activity was directed to the development of a coherent receiver for long-range 

coherent optical communication. Sub-MHz external cavity SCLs were built in 

laboratories and used to implement OPLLs [7, 9]. However, external cavity SCLs are 

complex, expensive, and bulky. Multi-section SCLs were demonstrated to possess a flat 

FM response up to a few GHz[11, 24]. However these lasers were only built in 

laboratories and had reliability issues[23]. In addition, coherent communication 

technology lost out to direct detection optical communication technology since the 

invention of Erbium doped fiber amplifiers in the 1990’s. Research into SCL OPLLs has 

declined abruptly since then, except for some continuing work on RF signal generation 

with OPLLs[11].  
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 In the last decade, the performance of SCLs has been improved significantly as a 

result of heavy investment in the telecom industry towards the end of the last century. 

Low cost telecom standard DFB lasers and external cavity SCLs with sub-MHz linewidth 

are now commercially available. The fact that their linewidth is smaller than the loop 

bandwidth limited by the thermal crossover makes it possible to lock these low cost, 

highly reliable commercial SCLs, and paves the way for a number of emerging 

applications. In this thesis I will study the OPLLs based on state-of-the-art commercial 

SCLs. In particular I will study the use of various high speed feedback electronics 

designs to improve the performance of SCL OPLLs, and explore the application of SCL 

OPLLs in coherent beam combining and coherence cloning.  

 Coherent beam combining(CBC) promises to enable high power laser systems with 

near-ideal beam quality for a number of industrial applications[25, 26]. Of the different 

CBC techniques, active feedback phase control is the most promising and has attracted 

intensive study[25, 27]. Conventionally, optical phase or frequency shifters such as phase 

modulators, fiber stretchers and acoustic optical modulators (AOM) are used in the 

feedback phase control system[25, 27-29]. Due to their ability to control the phase of the 

slave laser, OPLLs provide a natural platform for phase control of the SCLs, which 

enables a full electronic phase control system and significantly reduces the cost and 

dimension of the system by eliminating optical frequency/phase shifters.  

 Another application of OPLLs explored in this thesis is coherence cloning. For 

example, an optical sensing network requires a large number of coherent sources of very 
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narrow linewidths. Instead of using a number of solid state lasers or fiber lasers, an array 

of inexpensive SCLs can be locked to one high quality laser so that they have similar 

superior coherence properties. This technology can significantly reduce the system cost 

by eliminating the need for a large number of expensive solid state or fiber lasers. 

Another possible application is in the field of high precision optical clock signal 

distribution. Isolated high finesse optical cavities has been used to narrow a laser 

linewidth to less than Hz[30, 31]. One can easily transfer the superior frequency stability 

and coherence of this sophisticated laser system to SCLs by using heterodyne OPLLs.  

1.2 Thesis outline 

This thesis is organized as follows: The theoretical analysis of PLL in both the time and 

the frequency domain is presented in Chapter 2, with the latter one being the emphasis of 

this study. A major analysis tool called the bode plot, is introduced, and is used to study 

the performance of a PLL in terms of its stability, acquisition range, holding range, 

residual frequency noise, etc. I then add the non-uniform current FM response of the 

SCLs and the non-negligible loop delay into the analysis and consider their influence on 

the loop performance. 

 Chapter 3 is devoted to the experimental study of OPLLs. This chapter starts with the 

measurement of current FM response, and then presents the experimental demonstration 

and characterization of OPLLs based on various commercial SCLs. The last part of this 

chapter is devoted to the electronic filter design aimed at optimizing the system’s 

performance. In particular, a phase lead-lag filter, passive and active lag-lead filters and 

an aided acquisition circuit are discussed and implemented. 

 An experimental study of coherent beam combining using OPLLs is presented in 

Chapter 4. I will first demonstrate the combination of two slave lasers phase locked to the 
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same master laser. However the optical path length variation in the combining fibers 

changes the combined output power and needs to corrected for. A higher level PLL 

control loop using a RF voltage controlled oscillator(VCO) is introduced, analyzed, and 

implemented to correct for the optical path length variation in fiber. A combining 

efficiency of 94% is demonstrated. 

 Although I have demonstrated the coherent combining of two SCLs, the scalability 

of this technology to the combination of a large number of lasers is not clear. In Chapter 5, 

I will use a cascaded filled-aperture scheme to analyze the efficiency of combining a 

large number of lasers in the presence of various noise sources. In particular I will 

consider the residual differential phase error due to the limited loop bandwidth, the phase 

error introduced by the VCO phase control loop, the phase noise introduced by the high 

power fiber amplifiers in the MOPA scheme, the phase front error introduced by 

combining optics, and intensity noise.   

 In Chapter 6 I will present the study of coherence cloning using OPLLs. First I will 

present the theoretical description of the coherence property of a laser under both the 

free-running and the phase-locked conditions. I will then describe the measurement of the 

laser lineshape using a self-delayed heterodyne interferometer, and the measurement of 

frequency noise using a Mach Zehnder interferometer. Finally the measured linewidths 

and frequency noises of the master laser, the free-running and the phase-locked slave 

lasers are shown and compared.    
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Chapter 2 Theory of Optical Phase lock 
Loops  

A Phase Lock Loop (PLL) is a negative feedback control system, which forces a local 

oscillator (LO) to track the frequency and phase of a reference signal within the loop 

bandwidth. This same idea can be used to construct an Optical Phase Lock Loop (OPLL), 

in which a slave laser tracks the frequency and phase of the optical signal of a master 

laser. In this chapter, I will study the theory of an OPLL in detail. I will first summarize 

the basic concept and theory of OPLLs and present both the time domain and the 

frequency domain analyses of an OPLL. I will then linearize the system using the small 

signal approximation and utilize the transfer function methodology to study the stability, 

acquisition range, holding range, and the residual phase noise of the OPLLs. Finally the 

effect of the loop delay and the non-uniform FM response will be considered. 

 

2.1 Principle of operation 

 

Fig. 2.1 Schematic diagram of an OPLL.  

 

A schematic diagram of a typical heterodyne OPLL is plotted in Fig. 2.1. The optical 

signals of the master laser ( )sinm m mA tω φ+
 
and the slave laser ( )sins s sA tω φ+  are 

combined at a photodetector, which detects the phase and frequency differences. The 

output of the photodetector is further mixed with a reference signal ( )sinr r rA tω φ+ . The 
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down-converted phase error signal passes through a loop filter and is fed back to the 

slave laser. The frequency and phase of the slave laser are modulated by the feedback 

current, and are forced to track those of the master laser with a frequency and phase offset 

determined by the reference signal. A rigorous analysis of the OPLLs can be performed in 

either the time domain or the frequency domain. 

 

2.2 Time domain analysis 

The operation principle of an OPLL is very similar to the well-studied electronic PLLs. 

Therefore the theoretical analysis of OPLL can be directly borrowed from the theoretical 

framework of PLLs[1, 2]. In Fig. 2.1 the photodetector and the radio frequency (RF) 

mixer together play the role of a phase detector. The master laser signal and the slave 

laser signal are mixed and fed into the photodetector (with a built-in trans-impedance 

amplifier), the resulting output is given by  

 ( ) ( ) ( ) ( )1 2 sinpd m s m s m st R P P t t tν ω ω φ φ⎡ ⎤= − + −⎣ ⎦  (2.1) 

where pdR  is the responsivity of the photodetector, mP and sP  are the optical power of 

the master laser and the slave laser respectively. ( )1 tν is further mixed with a RF 

reference signal ( )( )cosr r r rE A t tω φ= +  using a RF mixer. Neglecting the sum 

frequency term, the down-converted phase error current signal provided by the mixer is 

 ( ) ( ) ( ) ( ) ( )sin sinpd e pd m s r m s ri t K K t t t tφ ω ω ω φ φ φ⎡ ⎤= = − − + − −⎣ ⎦  (2.2) 

where pd pd m s rK R P P Aη=  is defined as the gain of the phase detector, and η  is the 

current responsivity of the RF mixer. Care must be taken when determining η  since 

most mixers are neither ideal current sources nor ideal voltage sources, and η  also 

depends on the load applied to the output port of the mixer. The down-converted phase 

error signal is fed back to the slave laser, whose phase is modulated as  
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 ( ) ( ) ( ) ( ){ }s
s flt s

d t
K i t f t f t

dt
φ

= ⋅ ∗ ∗  (2.3) 

where sK is the current FM sensitivity of the slave laser and ( )fltf t  and ( )sf t  are the 

impulse response of the loop filter and the slave laser respectively. By setting all the 

/d dt  terms equal to zero in Eq. (2.3), the steady state solution is obtained as 

 
( ) ( )

0

0 ,

,     

/
s m r s m r e

e m s fr r dcsin K

ω ω ω φ φ φ φ

φ ω ω ω

= − = − −

= − −
 (2.4) 

where ,s frω is the frequency of the free-running slave laser, dc pd f sK K K K=  is the loop 

DC gain, fK  is the DC response of the loop filter, and 0eφ  is the steady state phase 

error. Eq. (2.4) shows that the frequency and phase difference between the locked slave 

laser and the master laser are set by the RF reference signal. This configuration is called 

heterodyne OPLL. If there is no frequency offset, i.e., 0rω = , when the loop is in lock 

s mω ω=  and the system becomes a homodyne OPLL. The analyses of heterodyne and 

homodyne OPLLs are similar, except that the frequency and phase of the RF reference 

signal have to be considered in Eq. (2.2) and the conversion gain of the mixer has to be 

included while calculating the loop gain. For the sake of simplicity, I will use the 

homodyne OPLL scheme to perform the analysis in the remainder of the thesis, unless 

explicitly stated otherwise. 

 In general Eq. (2.3) is a complex nonlinear differential equation involving 

convolutions and there is no simple analytic solution. To understand the fundamental 

dynamic process of this feedback control system, I assume that the response of the slave 

laser is instantaneous, i.e., ( ) ( )sf t tδ= . Ignoring the loop filter and using the dynamic 

variable e m sφ φ φ= − , Eq. (2.3) reduces to  

 ( ) ( ) ( )' 'sine dc e mt K t tφ φ φ+ =  (2.5) 
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where dc pd sK K K=  is the loop DC gain. Assuming a small phase error ( ) 1e tφ << , the 

solution to this differential equation takes the form  

 ( ) ( )' ' ' 'dc dc dcK t K t K t
e mt e e t dt ceφ φ− − −= +∫  (2.6) 

 It is instructive to look at two simple cases. The first case is one starting with a 

constant phase error, i.e., ( )0eφ φ= Δ , then the solution is  

 ( ) dcK t
e t eφ φ −= Δ  (2.7) 

Eq. (2.7) corresponds to an exponentially decaying phase error with a time constant 

1/ dcK , so that the phase of the slave laser eventually tracks the phase of the master laser. 

The loop gain dcK  determines the speed of phase-tracking, or the loop bandwidth. 

 Another typical case is one of a phase ramp ( )m t tφ ω= Δ ⋅ . This is the case when 

there exists an initial frequency offset ωΔ  between the slave laser and the master laser. 

The solution to this case is 

 ( ) ( )1 dcK t
e

dc
t e

K
ωφ −Δ

= −  (2.8) 

In this case in the limit t →∞  there is a nonzero steady state phase error 

 0 /e dcKφ ω= Δ  (2.9) 

which results in a constant feedback current, that forces the frequency of the slave laser to 

track that of the master laser. Eqs. (2.7) and (2.8) show that the function of an OPLL is to 

force the phase and frequency of the slave laser to track that of the master laser. 

 

2.3 Frequency domain analysis 

2.3.1 Transfer function method 

Frequency domain analysis is a more convenient and powerful tool in characterizing 

OPLLs. In the time domain, solving Eq. (2.3) involves a complicated and 
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time-consuming convolution algorithm. In the frequency domain, Eq. (2.3) involves only 

products of Fourier transforms, i.e., the transfer functions. The performance of OPLLs 

such as their stability, the loop bandwidth, the compensation filter design can be analyzed 

by means of the transfer function formalism and Bode plots. 

 

Fig. 2.2 The frequency domain representation of OPLLs. 

 

The schematic frequency domain representation of a homodyne OPLL is shown in 

Fig. 2.2. s jω=  is the Laplace variable, ( )exp dsτ−  represents the delay of the loop, 

( )fF s  is the normalized transfer function of the loop filter, and ( )FMF s  is the 

normalized transfer function of the FM response of the slave laser. The 1/s block 

originates from the fact that the phase φ , which is the dynamic variable, is the 

integration of the frequency over time. By using the small signal perturbation to linearize 

Eq. (2.3) about the steady state locking point 0eφ , and taking the Fourier transform, the 

open loop transfer function is derived as 

 ( ) ( )
( )

( ) ( ) ( )expdc f FM ds
op

e

K F s F s ss
G s

s s
τφ

φ
′ −

≡ =  (2.10) 

where 0cosdc dc eK K φ′ = . The closed loop signal transfer function is defined as 
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 ( ) ( )
( )

( )
( )

( ) ( ) ( )
( ) ( ) ( )

exp
1 exp

ops dc FM d
o

m op dc FM d

G ss K F s F s s
H s

s G s s K F s F s s
φ τ
φ τ

′ −
≡ = =

′+ + −
 (2.11) 

and the error transfer function is 

 ( ) ( )
( ) ( )

1 1
1

e
e o

m op

s
H s H

s G s
φ
φ

≡ = = −
+

 (2.12) 

The closed loop signal transfer function ( )oH s  acts as a low pass filter, which means 

that the phase of the slave laser tracks the phase of the master laser within the bandwidth 

of the filter. On the other hand, the phase error transfer function ( )eH s  behaves as a 

high pass filter. The differential phase error within the loop bandwidth is thus suppressed 

by the OPLL. In practice, the loop bandwidth is limited mainly by the non-negligible 

loop delay and the non-uniform FM response of the slave laser. These issues will be 

discussed in detail in Section 2.5.  

 

2.3.2 Acquisition and holding range  

Two important parameters describing the locking capability and the stability of the OPLL 

are the acquisition range acqfΔ (the maximal frequency difference between the 

free-running slave laser and the master laser for the OPLL to acquire lock), and the 

holding range hfΔ (the maximal frequency difference between the free-running slave 

laser and the master laser for the OPLL to stay in lock). The acquisition and holding 

ranges of a PLL generally depend on the loop gain and the loop order[32]. 

First order PLL 

The first order PLL is defined as one with no loop filter, i.e., ( ) 1fF s = . If I assume that 

the slave laser has a flat frequency modulation response ( ) 1FMF s = , then the open loop 

gain is found from Eq. (2.10) as 

 ( ) dsdcKG s e
s

τ−=  (2.13) 
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In this case, the acquisition and holding ranges are simply[1]  

 / 2acq h dcf f K πΔ = Δ =  (2.14) 

Second-order PLL 

Traditionally three types of loop filters are typically used to make the second-order PLL: 

the lowpass(LP) filter, the passive lead-lag (or lag-lead) filter, and the active second-order 

filter. An active second-order filter has a transfer function of 

 ( ) 2

1

1 sF s
s
τ
τ
+

=  (2.15) 

Since this type of filter has an integration term 1/ s , the loop has very high open loop 

gain at low frequency and provides the best performance with respect to phase noise 

reduction[1]. The acquisition and holding ranges are theoretically infinite for such a loop 

filter. 
 

2.3.3 Bode plot and stability criterion 

 

Fig. 2.3 The Bode plot of a PLL with a second-order low pass filter. The gain margin is 

10.5 mG dB=  and the phase margin is 038mP = . 

 
The Bode plot is a powerful graphic tool in studying the performance and stability of 
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PLLs especially when various compensation filters are included. Fig. 2.3 shows the Bode 

plot of a PLL with a second-order low pass loop filter, in which both the amplitude 

( )opG jω  (dB scale) and the phase ( )opArg G jω⎡ ⎤⎣ ⎦  (in degrees) are plotted as a 

function of the frequency.  

Stability criterion: The stability criterion of an OPLL can easily be derived from its 

Bode plot: if the amplitude of ( )opG s  crosses 0 dB at only one frequency, the amplitude 

( )G j πω  must be smaller than 1 at the π  phase lag frequency πω  

( ( ) 180o
opG j πω∠ = − ). Equivalently, the phase lag ( )op gcG jω∠  must be bigger than 

180o−  at the gain crossover frequency gcω ( ( ) 1op gcG jω = )[1]. This can be understood 

by the following intuitive reasoning. At the π  phase lag frequency πω  the original 

negative feedback system becomes a positive feedback system. If the amplitude of the 

loop gain is higher than 1, any noise in the system will be amplified in each round-trip, 

eventually leading to oscillations. 

Stability margins 

Based on the stability criterion, one can define two stability margins: the phase margin is 

defined as ( )op gcG jω π∠ + , and the gain margin is defined as ( )20log opG j dBπω− . 

Sufficient phase margin or gain margin are necessary to guarantee the stability of the loop. 

Based on the time domain simulation, the gain margin is generally chosen to be within 

the range 8~10 dB to suppress excessive ringing during the acquisition[33].  

 

2.4 Loop noise characterization  

In an OPLL, various noise sources affect the loop performance and need to be considered. 

Among these noise sources, the phase noise of the SCLs, is the dominant one, since SCLs 

typically possess a linewidth between hundreds of KHz and a few MHz. Other noise 

sources include the photodetector shot noise and the electronics noise. A schematic 
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diagram of the various phase noise sources and their points of entry in an OPLL is shown 

in Fig. 2.4. The phase noise of the master laser and the slave laser are accounted for by 

n
mφ  and n

sφ . snφ  stands for the photodetector shot noise. The electronics noise is small 

and can be ignored. 

 

Fig. 2.4 Sources of phase noise in an OPLL 

 

Following the standard negative feedback analysis, one obtain the phase of the locked 

slave laser and the differential phase error as  

 ( ) ( ) /n n
s m m o sn pd o s es H K H Hφ φ φ φ φ= + ⋅ + ⋅ + ⋅  (2.16) 

 ( ) ( ) /n n
e m m s e sn pd os H K Hφ φ φ φ φ= + + ⋅ + ⋅  (2.17) 

The corresponding spectral power density functions are 

 ( ) ( ) ( ) ( ) ( ) ( )2 22
,/s m sn pd o s fr eS f S f S f K H f S f H f⎡ ⎤= + +⎣ ⎦  (2.18) 

 ( ) ( ) ( ) ( ) ( ) ( )2 22
, /e m s fr e sn pd oS f S f S f H f S f K H f⎡ ⎤= + ⋅ + ⋅⎣ ⎦  (2.19) 

where , , ,s fr m snS S S  are, respectively, the spectral density functions of phase noise of the 

free-running slave laser, the phase noise of the master laser, and the shot noise.  

 Here I will only use the differential phase error to characterize the noise level of an 

OPLL. A detailed analysis and measurement of the phase noise of the slave laser in an 

OPLL will be given in Chapter 6 (Coherence cloning using OPLLs). Assuming that the 
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frequency noise of the lasers has a white Gaussian distribution, the double-sided spectral 

densities of the different noise sources are given by [19]  

 ( ) ( ) ( ) ( )2 2,   ,  2
2 2

m s
m s sn s m

f fS f S f S f eR P P
f fπ π

Δ Δ
= = = +  (2.20) 

where mfΔ  and sfΔ are the FWHM linewidths of the master laser and the free-running 

slave laser, R is the responsivity of the photodetector. Fig. 2.5 shows the power spectral 

density of the differential phase error eφ  in a typical OPLL with a loop delay of 100 ns. 

At low frequencies, the phase error is significantly reduced by the feedback loop. As the 

loop gain increases, the bandwidth and ratio of the noise reduction increase. However, as 

the gain approaches the maximum allowable loop gain, as per the stability criterion, a 

spectral peak appears and the noise at the corresponding frequency is significantly 

amplified. In Fig. 2.5(b) an active second-order filter ( ) ( )0 01 / / /f f f f+  is used to 

further reduce the phase noise at low frequencies. 
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Fig. 2.5 The spectral density functions of the differential phase error eφ  for different 

small signal loop gain K. mK  is the maximum allowable loop gain determined by the 

stability criterion. (a) No loop filter is used. (b) An active second-order filter 

( ) ( )0 01 / / /f f f f+  is used. In both (a) and (b), a loop delay of 100 ns is assumed. 

  

 An important parameter called the phase error variance can be obtained by 

integrating the phase noise spectral density over all frequencies 

 ( )2 S f dfσ
∞

−∞

= ∫  (2.21) 
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Thus the variance of the differential phase error is  

 ( ) ( ) ( ) ( ) ( )2 22 2
, /

e e m s fr e sn pd oS df S f S f H f S f K H f dfφ φσ
+∞ +∞

−∞ −∞

⎡ ⎤= = + ⋅ + ⋅⎣ ⎦∫ ∫  (2.22) 

Combining Eq. (2.20) with the definitions 

 ( ) ( ) 2

0 0

 and /n o p eB H f df I H f f df
∞ ∞

= =∫ ∫  (2.23) 

Eq. (2.22) is simplified to 

 ( )2
e

n m s
p

m s

eB P Pf I
RP Pφσ π

+Δ
= +  (2.24) 

where m sf f fΔ = Δ + Δ  is the sum of the linewidths of the master laser and the slave laser.

 In the presence of phase noise, the loop loses lock through cycle slipping (the output 

phase error rotates through 2π  after initially starting at zero)[1], and the noise in the 

OPLL can be evaluated by the average time between cycle slips csT . For the first order, 

the modified first-order, and the second-order type II loops, csT  is related to 2σ  by, 

respectively[1]  

 
2 22 / / 2/ 4 ,    /cs I n cs II nT e B T e Bσ π σπ− −� �  (2.25) 

 

2.5 Practical limitations of the loop bandwidth 

In the previous analysis, the bandwidth, acquisition range, holding range and noise 

reduction capability of an OPLL all rely on one critical parameter: i.e., the loop gain dcK . 

Therefore, a large, loop gain is desired. However, dcK  is limited by two major practical 

constraints – namely, the non-negligible loop delay and the non-uniform frequency 

modulation response of SCLs. In this section I will analyze the loop performance limited 

by these two factors.  
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2.5.1 The non-negligible loop delay 

Loop delay exists in all practical feedback control systems. In the presence of the loop 

delay, the phase lag increases unbounded as the frequency increases. As described in 

Section 2.3.3, the stability criterion requires the loop gain to be restricted to less than 1 at 

the 180 degree phase lag frequency. Hence the loop gain and the resulting loop 

bandwidth will be limited. In electronic PLLs made of integrated circuits, the length of 

the loop is at most a few mm and the delay is not a serous concern. In constructing an 

OPLL, either using micro-optics or using fiber optical components, the delay can be as 

big as a few ns. As the desired loop bandwidth is equal or greater than tens of MHz, due 

to the large linewidth of SCLs, the effect of the loop delay at these frequency ranges can’t 

be ignored. Here I first restrict the analysis to the case where the loop bandwidth is only 

limited by the loop delay. The FM responses of the slave laser and all the electronics are 

assumed to be ideal. With the above assumption, and in the absence of a loop filter, the 

open loop transfer function (Eq. (2.10)) is simplified to  

 ( ) ( )exp d
op dc

s
G s K

s
τ−

′=  (2.26) 

and the 1800 phase lag frequency is  

 / 2   or  1/ 4d dfπ πω π τ τ= =  (2.27) 

Considering the stability criterion described in Section 2.3.3, the maximum loop gain 

dcK  is / 2 dπ τ . The resulting maximum holding range and acquisition range are 

1/ 4 dfπ τ= . In practice, this number is even smaller since a gain margin of 8~10 dB is 

needed to avoid excessive ringing.  

I have studied the dynamic locking process in the time domain using the Simulink 

toolbox in MATLAB®. The FM response of the slave laser is assumed to be uniform, and 

the laser is modeled as an ideal integrator 1/s. As an example, I assume that the delay 

time is td = 5 ns, the frequency difference between the free-running slave laser and the 
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master laser is ωΔ = 2 MHz. No loop filter is used. The corresponding maximum loop 

gain in this case is 710 10 /rad sπ × . The simulated temporal dependence of ( )sin e tφ  is 

plotted in Fig. 2.6. When the loop gain is 74 10 /rad sπ × (corresponding to a gain margin 

of 8dB), the photodetector output ( )sin e tφ  quickly settles down to the steady state 

locking point. As the loop gain is increased to 78 10 /rad sπ × , ( )sin e tφ  converges to 

the steady state locking point with significant ringing. As the loop gain is further 

increased to 710.2 10 /rad sπ × , the loop becomes unstable and starts oscillating. From 

this time domain simulation, one can see that a gain margin of at least 8 dB is needed to 

suppress ringing effects.  

 

     

Fig. 2.6 Temporal dependence of sin eφ  for different DC loop gain dcK . A loop delay of 

5 ns and a free-running frequency difference of 2 MHz are assumed in the simulation. 

 

 The variance of the differential phase error can be calculated according to Eq. (2.22). 

Using the parameters 1m sP P mW= = , R = 0.5A/W, and a gain margin of 8 dB, I 

calculate the variance of the differential phase error as a function of the loop delay and 

the summed linewidth of the lasers. From the calculation one observes that the variance 

of the differential phase error is only dependent on the summed linewidth normalized by 
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the π  phase lag frequency, i.e. /f fπΔ , not on the absolute value of the delay time. 

This observation can be proved rigorously. By plugging Eq. (2.26) and Eq. (2.27) into Eq. 

(2.26) one obtains 

 

( )
( )

( )

2

0

2

0

exp / 2
=  

exp / 2

1 1 /
exp / 2

mg
n

mg

p
mg

G f
B f df f

f G f

I df f
f f G f

π π

π
π

π
β

π

α
π

∞

∞

′−
′= ⋅

′ ′+ −

′= ⋅ =
′ ′+ −

∫

∫

 (2.28) 

where /f f fπ′ =  is the normalized frequency, ( )max/mg dc dcG K K=  is the gain margin, 

α  and β  are dimentionless numbers which only depend on the gain margin. Next I 

plug Eq. (2.28) back into Eq. (2.27) and get 

 ( )2
e

m s

m s

e P Pf f
f RP Pφ π
π

σ α β
π

+Δ
= +  (2.29) 

Using typical values for ~ 1f MHzΔ  for SCLs, 8mgG dB= , ~ 0.5 /R A W , ~ 1sP mW , 

~ 0.01mP mW  and 100f MHzπ ≤ , I estimate that the second term (~ 6 210 rad− ) is much 

smaller than the first term(~0.01rad2 ) in Eq. (2.29). Therefore 2
eφ

σ  only depends on the 

normalized laser linewidth, i.e., 2 /
e

f fφ πσ α π= Δ . In Fig. 2. I plot the variance of the 

differential phase error as a function of the normalized summed laser linewidth /f fπΔ . 

If one uses =10yearscsT as the figure of merit for a high performance OPLL, the summed 

laser linewidth has to be smaller than ~1/60 of 1/ 4 dfπ τ= . When fiber optical 

components are used, dτ  is typically 5 ns. It can be reduced to ~0.5 ns if microoptics are 

used instead. The corresponding summed laser linewidth has to be smaller than ~0.8MHz 

or ~8 MHz separately to achieve =10yearscsT . 



 

 

22

 

Fig. 2.7 The variance of the differential phase error as a function of the normalized 

summed laser linewidth /f fπΔ . 1/ 4 dfπ τ=  is the π phase lag frequency given by the 

loop delay. csT  is the average time between cycle slips defined in Eq. (2.25). 

 

2.5.2 The non-uniform frequency modulation (FM) response of SCLs 

In an SCL based OPLL, the SCL acts as a current-controlled oscillator (CCO) and its 

frequency is directly modulated by the current feedback signal[34, 35]. In the previous 

analysis I have assumed that the slave laser is an ideal CCO with a flat FM response. In 

practice, the FM response of SCLs is not uniform and exhibits different characteristics 

depending on the range of the modulation frequency. For a typical single-section SCL, 

the low frequency (smaller than 10MHz) FM response is dominated by the thermal effect 

and the carrier-induced effect. At the intermediate frequency (above 100MHz), the 

thermal effect fades out and the carrier-induced effect is the summation of an adiabatic 

term and a transient term[35]. As the modulation frequency further increases to a few 

GHz, the relaxation resonance effect becomes significant. All these phenomena 

contribute to the FM response and need to be examined in the OPLL analysis. 

First, the relaxation resonance effect is excluded in this analysis since it is significant 
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only at frequencies above a few GHz, which is far beyond the OPLL bandwidths (< 

10MHz) encountered in this work.  

In the intermediate frequency range, the FM response is composed of two terms, the 

adiabatic term and the transient term[35]. Using the results of [35], the current-phase 

modulation of a SCL is given by  

 sd dA i Bi
dt dt
φ

= +  (2.30) 

where A and B are respectively the adiabatic and the transient modulation coefficients, 

and i is the modulation current. Taking the Fourier transform of Eq. (2.30) and 

substituting it into Eq. (2.10), the open loop transfer function becomes  

 ( ) ( )1 expdc
op d

K AG s s s
s B

τ⎛ ⎞= + −⎜ ⎟
⎝ ⎠

 (2.31) 

In Eq. (2.31) A/B is typically around 10-11[35], which means the adiabatic term becomes 

significant only at frequencies above 1 GHz. One can thus ignore its effect within the 

typical OPLL bandwidths studied in this work. 

At frequencies smaller than 100MHz, the FM response of SCLs is composed of the 

thermal effect and the carrier-induced effect. While the carrier-induced effect is in phase 

with the modulation current and results in a blue shift with increasing current, the thermal 

effect is out of phase with the modulation current and produces a red shift. Due to the 

competition between the thermal and the carrier-induced effects, the FM response of a 

single section SCL exhibits a characteristic π  phase reversal in the frequency range 100 

kHz~10 MHz[23]. Compared to the loop delay, this phenomenon imposes a more serious 

constraint on the achievable loop bandwidth[22, 23, 36]. In this section I will analyze the 

influence of the thermal FM response on the performance of an OPLL.  
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Fig. 2.8 FM response of single-section DFB lasers calculated with the modified low-pass 

filter model. The fitting parameters are: 1cf MHz=  and b = 1, 2 and 3. 

 

The thermal effect dominates at low frequency and fades out with the increase of the 

modulation frequency. Employing a modified low-pass filter model, an empirical FM 

transfer function of the thermal effect is given by[23, 37]  

 1( )
1th th

c

H f K
j f f

= − ⋅
+

 (2.32) 

where thK  is the thermal FM efficiency in Hz/mA and cf  is the thermal cut-off 

frequency. The fitting parameter cf is structure-dependent and is typically in the range of 

10kHz-10MHz[22]. The carrier-induced FM response is flat from DC to frequencies in 

the neighborhood of the relaxation frequency, and is in phase with the modulation current, 

i.e.  

 el elH K=  (2.33) 

Combining the thermal and carrier-induced effects, the total FM response is described by
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 0( ) 
1

cDFB
FM

c

b j f fKH f
b j f f

⎛ ⎞−
= − ⎜ ⎟⎜ ⎟+⎝ ⎠

 (2.34) 

where 0K  is the DC current-frequency tuning sensitivity and / 1th elb K K= −  is related 

to the relative strengths of the carrier-induced effect and the thermal effect. In Fig. 2.8 I 

plot the FM responses for 1cf MHz=  and b = 1, 2 and 3, respectively. 

 

Fig. 2.9 (a) The Bode plots of the open loop transfer functions for different values of the 
fitting parameter b in Eq. (2.34).  (b) The variance of the differential phase error as a 

function of the normalized laser linewidth /f fπΔ . 

 

 Substituting Eq. (2.34) into Eq. (2.10), I proceed to calculate the open loop transfer 
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function and the results are plotted in Fig. 2.9(a). The gain margin is 8 dB and the other 

parameters are the same as those in Fig. 2.8. The corresponding π  phase lag frequencies 

fπ  are 1, 3.2 and 6.6MHz respectively. I further calculate the variance of the differential 

phase error with Eq. (2.22). The results are shown in Fig. 2.9(b) as a function of the 

normalized summed laser linewidth /f fπΔ . Similar to the loop delay case, the variance 

of the differential phase error only depends on /f fπΔ  for a given gain margin. 

 In conclusion, to phase lock SCLs with reasonably small residual differential phase 

error, the summed linewidth has to be significantly smaller than the loop bandwidth. The 

bandwidth of the OPLL, however, is limited to a few MHz due to the non-uniform FM 

response of the single section SCLs. Historically, specially designed SCLs, such as 

multi-section DFBs, have been demonstrated to have flat FM response up to a few 

GHz[11]. However, these lasers are not commercially available and their stability needs 

to be improved. On the other hand, the linewidth of SCLs can be reduced by introducing 

optical feedback. Therefore external cavity SCLs with sub-MHz linewidth have been 

used to build OPLLs. In the next chapter, I will present and characterize the experimental 

study of OPLLs built using different commercial SCLs.    
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Chapter 3 Experimental study and 
optimization of OPLLs 

In Chapter 2 I have presented the theory of OPLL and identified critical issues for OPLLs 

using SCLs. In this chapter I will present the detailed experimental study of OPLLs 

constructed using different commercial SCLs. I first start the chapter with the 

measurement of the current-frequency modulation (FM) response of SCLs. Once the FM 

response is known, one can include it into the open loop transfer function and model the 

performance of the OPLL. In Section 3.2 I will describe the experimental setup of OPLLs 

in details and the measurement results, in particular the spectrum of the beat signal 

between the master laser and the locked slave laser, from which the residual differential 

phase error can be characterized. In the last Section 3.3, I will discuss the use of various 

compensation filters and circuits to improve the acquisition range, the holding range, and 

the residual differential phase error.  

 

3.1 Measurement of the FM response 

In Chapter 2 I pointed out that the characteristic phase reversal of the FM response of the 

single-section SCLs presents the main constraint on the bandwidth of the OPLLs. Given 

the limited loop bandwidth, the slave laser can be locked to the master laser with 

reasonable locking quality only if the summed linewidth of the master laser and the slave 

laser is much smaller than the π  phase lag frequency fπ ,. The linewidth of typical 

SCLs lies between ~100kHz and ~10MHz and fπ  is usually in the same frequency 

range. Thus the preliminary characterization of the linewidth and the FM response of the 

laser is necessary before implementing the OPLL.  

 The summed linewidth can be measured using a heterodyne mixing method. The 

signals of the master laser and the slave laser are first mixed at a high speed photodetector. 

An RF spectrum analyzer is then used to measure the linewidth of the photocurrent, 
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which is exactly the summed linewidth of the lasers. The FM response measurement, 

however, is more complicated and will be introduced in the following section.  

 

3.1.1 Analysis of the FM response measurement system  

Fiber 
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Network 
analyzer

laser PD

Quadrature
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PD

Fiber 
stretcher
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Network 
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laser PD

Quadrature
biasing

PD

 
PD: photodetector 

PC: polarization controller 

Fig. 3.1 Schematic diagram of a FM response measurement setup 

 

The FM response of a laser can be measured with a network analyzer and an optical 

frequency discriminator[38]. Fig. 3.1 displays the schematic diagram of a typical FM 

response measurement setup. The network analyzer drives the laser with a modulation 

signal. The frequency of the laser is modulated and the frequency discriminator converts 

the frequency modulation into an intensity modulation, which is detected using a 

photodetector. The output of the photodetector is then fed back into the network analyzer 

to measure the amplitude and phase of the FM response of the laser[38].   

 The optical electric field fed into the frequency discriminator can be described by 

 ( ) ( ) ( )( )oj t tE t P t e ω φ+=  (3.35) 

where P(t) is the optical power, 0 02 fω π=  is the average angular frequency, and ( )tφ  

is the optical phase. In a network analysis measurement, the laser is stimulated at a 

modulation frequency and its response (both amplitude and phase) is measured at the 
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same frequency. When the network analyzer applies a voltage modulation signal 

{ }Re mj t
mV e ω� at the frequency mm fπω 2=  to the laser, the optical power is given by 

 ( ) { }0Re 1  mj tP t P me ω⎡ ⎤= +⎣ ⎦�  (3.36) 

where m�  is a complex variable representing the intensity modulation factor. In general 

m~  is a function of the modulation frequency. 

 Meanwhile the optical phase is also modulated as  

 ( ) { }Re mj t
mt e ωφ φ= �  (3.37) 

where mφ�  is the complex phase modulation factor. The frequency modulation can be 

deduced from the phase modulation by taking the derivative of Eq. (3.37)   

 ( ) { }1 Re
2

mj t
m

dt e
dt

ωφυ υ
π

= = �  (3.38) 

where mmm jfφυ ~~ =  represents the frequency deviation of the optical carrier at the 

modulation frequency  fm .   

 The frequency discriminator depicted in Fig. 3.1 is simply a Mach-Zehnder 

interferometer. The modulated optical field is split into two signals using a fiber optical 

coupler. One part is delayed by time τ  and then combined with the other signal again 

using a fiber optical coupler. The photocurrent resulted from the mixed signals is given 

by 

 ( ) ( ) ( ) 2
DI t E t E t τ∝ + −  (3.39) 

where I have assumed 3-dB directional couplers and matched polarization states for the 

recombining signals. Substituting (3.35) into (3.39), the photocurrent becomes  

 ( ) ( ) ( ) ( ) ( ) ( )( )02 cosDI t P t P t P t P t tτ τ φ ω τ∝ + − + − Δ +  (3.40) 

where ( ) ( ) ( )t t tφ φ φ τΔ = − −  is the phase difference between the recombining optical 

signals due to the differential delay τ  through the interferometer. Information on the 

phase or frequency deviations of the input optical signal is contained in this phase 
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difference term.  

 
Fig. 3.2 Variation of the photocurrent at the output of a frequency discriminator as a 

function of the differential time delay τ  without modulation. 

 

 Fig. 3.2 shows the variation of the photocurrent as a function of this differential time 

delay without any frequency modulation. By adjusting the differential time delay (e.g., 

through the use of a fiber stretcher) or the average optical frequency, the interferometer 

can be held in the quadrature condition (i.e., 2/20 ππτω ±= N ). If both the intensity 

modulation and the phase modulation are small, one can plug Eqs. (3.36) and (3.38) into 

Eq. (3.40) and linearize it to derive the complex photocurrent 

 ( ) ( ) ( ) ( )0m m m m m m mI f I H f m f H fυ υ⎡ ⎤≈ ±⎣ ⎦
� � � ��  (3.41) 

where ( ) ( ) τπτπ mfj
mmm effH −= cos~  is the intensity modulation transfer function and 

( ) ( )sin mj f
m mH f c f e π τ

υ πτ π τ −=�  is the frequency modulation transfer function of the 

Mach-Zehnder interferometer. In our measurement, the time delay is chosen such that 

τ/1<<mf  which reduces ( )mH fυ
� to a constant proportionality factor independent of the 

modulation frequency. 

 Eq. (3.41) shows that the measured photocurrent is a combination of both the filtered 

intensity modulation and frequency modulation on the optical input. One can separate the 
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intensity modulation and the frequency modulation responses by making two separate 

measurements, each biased at quadrature but on opposite slopes (see Fig. 3.2). By taking 

the vector subtraction of these two measurements, the intensity modulation response can 

be removed. Letting +
mI~  be the measured photocurrent at the modulation frequency 

while the discriminator is locked on the positive slope and −
mI~  for the negative slope 

(see Fig. 3.2), the FM response is obtained from Eq. (3.41) to give 

 ( )0  2FM m m m mI I I I fπτ υ+ −= − ≈� � � �  (3.42) 

if the condition τ/1<<mf  is satisfied. 

 By comparing the photocurrent signal FMI�  to the driving voltage signal mV� , the 

network analyzer measures the amplitude and phase response of the whole system, 

including not only the FM response of the SCL, but also the response of the frequency 

discriminator, the photodetector, the electronics, and the delay of the optical fiber and the 

electric cable. This can be written down mathematically as  

 ' DFBmFM
FM FM PD delay

m m

iIH H H H H
V V υ= = ⋅ ⋅ ⋅ ⋅
� �� � � � �
� �  (3.43) 

where 'FMH�  is the measured frequency modulation response of the system, mi�  is the 

modulation current received by the laser, DFB
FMH�  is the current FM response of the laser, 

( )mH fυ
�  is the response of the Mach Zehnder interferometer which is defined in Eq. 

(3.41), PDH�  is the response of the photodetector, and delayH�  represents the system 

delay.  

 To obtain DFB
FMH� , one needs to calibrate and remove the responses of all the other 

components. This can be done by performing an intensity modulation measurement using 

the same system with the shorter path of the Mach Zehnder interferometer disconnected. 

In this case the frequency discriminator acts as a fixed delay line. The measured intensity 
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modulation of the system can be described by  

 ' mAM
AM AM PD delay

m m

iIH H H H
V V

= = ⋅ ⋅ ⋅
� �� � � �
� �  (3.44) 

where AMH~  accounts for the laser’s intensity modulation response. The other variables 

are the same as those defined in Eq. (3.43). Dividing Eq. (3.43) by Eq. (3.44) one obtains 

the FM response of the laser  

 '
'

DFB FM
FM AM

AM

HH H
H Hυ

=
�� �
� �  (3.45) 

The measurement of the FM response is therefore calibrated by taking the ratio of the two 

measurements. The responses of the circuit, the delay, and the photodetector are 

automatically accounted for. For a modulation frequency much smaller than the 

relaxation resonance frequency of the laser, I can assume that the intensity modulation 

response of the laser AMH�  is a constant. The response of the frequency discriminator is 

also a constant for τ/1<<mf . Eq. (3.45) then reduces to  

 ' / 'DFB
FM FM AMH H H� � �∼  (3.46) 

Finally, the DC FM sensitivity can be obtained by changing the DC current and 

measuring the frequency shift. 
 

3.1.2 Experimental measurement  

To measure the FM response I constructed a FM response measurement setup similar to 

the one shown in Fig. 3.1. In the setup I use an Agilent 4395A network analyzer to drive 

the laser and measure the modulation response. The frequency range of the network 

analyzer is from 10Hz to 500MHz, which covers the typical thermal crossover frequency 

of SCLs. The photodetector I use is a New Focus 1544-B high speed photodetector. The 

frequency discriminator is made of two 3dB fiber couplers. The total length of the 

frequency discriminator (the longer path) is 1.7m and the differential delay length is 
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20cm which translates to the delay time ~ 1nsτ . Typically the FM measurement is 

performed in the range of 1kHz to 50MHz, which satisfies the condition 1/mf τ<< . In 

the measurement, the Mach Zehnder interferometer is not actively biased at its quadrature 

point. Thus the method described by Eq. (3.42) can not be directly used here. However, 

the high FM sensitivity of the SCLs combined with the high sensitivity of the frequency 

discriminator (proportional to the differential delay ~ 1nsτ ), result in the second term in 

Eq. (3.41) arising from the frequency modulation being typically 20dB higher than the 

first term arising from the intensity modulation. Therefore the intensity modulation in Eq. 

(3.41) can be ignored. 

 

Fig. 3.3 Measurement (blue line) and theoretical fitting (red line) of the FM response of a 

JDSU DFB laser. The fitting parameters are: 1.98b =  and MHzfc 6.1= . 

 

 I first measured the FM response of a JDSU CQF935/908 DFB laser. The laser is 

driven with an ILX low noise battery diode driver and the temperature is stabilized with 

an ILX TEC controller. The bias current is 400mA and the output power is 16dBm. By 

measuring the intensity modulation and the frequency modulation responses, I use Eq. 

(3.46) to calculate the FM response of the laser and the result is plotted in Fig. 3.3. The 
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blue solid line is the measured data and the red solid line is a theoretical fitting with the 

model described in Section 2.5.2 [23]  

 0( ) 
1

cDFB
FM

c

b j f fKH f
b j f f

⎛ ⎞−
= − ⎜ ⎟⎜ ⎟+⎝ ⎠

 (3.47) 

In obtaining Fig. 3.3 I have used the fitting parameters 1.98b =  and MHzfc 6.1= . As I 

have discussed in Chapter 2.5.2, the amplitude of the FM response is not uniform and 

exhibits a characteristic dip at a few MHz. The phase of the FM response exhibits a π  

phase reversal starting from a few hundreds of kHz to a few tens of MHz. 

  
Fig. 3.4 Measured FM response of the JDSU DFB laser with different bias currents 

 
 

 It has been pointed out in [23] that the heat generated in the laser chip is proportional 

to the square of the bias current, and the small signal thermal FM strength is proportional 

to the bias current. According to the definition of the parameter b following Eq. (2.34), 

higher bias currents result in a stronger thermal FM contribution, which leads to a larger 

value of b and a higher thermal crossover frequency, as shown in Fig. 2.10. To confirm 

this I further measured the FM response of the JDSU DFB laser with bias currents of 

200mA, 300mA and 400mA, respectively. The results are plotted in Fig. 3.4. As can be 

seen, the phase reversal of the FM response is indeed shifted to higher frequency with 
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higher bias current. Specifically, the 90 degree phase lag frequencies (corresponding to 

the π  phase lag frequency in the open loop transfer function) are, respectively, 3.5MHz, 

4.2MHz and 5.1MHz.  

 

Fig. 3.5 Measured spectrum of the heterodyne beat signal between two JDSU DFB lasers 

 

 It is well known that the linewidth of a SCL is inversely proportional to the optical 

power[39]. Thus it is preferable to operate the laser at higher bias currents so that the 

loop performance can benefit from both the higher loop bandwidth (due to higher thermal 

crossover frequency of the FM response) and the smaller linewidth.  

 A straightforward method of measuring the linewidth of the laser is to heterodyne 

mix two lasers of similar linewidths and measure the RF beat signal on a spectrum 

analyzer. Fig. 3.5 gives the spectrum of the beat signal between two JDSU CQF 485 

lasers measured with a HP 8565E RF Spectrum analyzer. The measured lineshape 

deviates from a Lorentzian shape due to frequency jitter. The summed FWHM is 

~1.2MHz and the 20dB linewidth is ~ 7MHz. Since the summed 3dB linewidth is much 

smaller than the π  phase lag frequency, ~ 5f MHzπ  determined from the non-uniform 

FM response, the laser can be locked. 
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3.2 Phase lock of different lasers 

3.2.1 Phase lock of the JDSU DFB SCLs 

Mixer

Slave laser

Master laser SA

1.5 GHz
RF signalLoop filter

PD1

PD2

Amplifier

Mixer

Slave laser

Master laser SA

1.5 GHz
RF signalLoop filter

PD1

PD2

Amplifier

 
      PD: photodetector  SA: Spectrum analyzer 

Fig. 3.6 Schematic diagram of a heterodyne OPLL. 

 
I first built a heterodyne OPLL with the JDSU DFB laser as the slave laser and an Agilent 

81640A tunable laser as the master laser. The schematic diagram of the system is plotted 

in Fig. 3.6. The master laser has a 3dB linewidth of about 50kHz and its output power can 

be adjusted from -20dBm to 3dBm. The JDSU laser is biased at 400mA and the output 

power is 16dBm. A 3dB 1550nm fiber optical coupler is used to combine the signals of 

the master laser and the slave laser. One output of the coupler is fed to the New Focus 

1544B high speed photodetector, whose output is further down-converted by mixing with 

an offset RF signal (1.5GHz, ~15dBm) using a Minicircuits Z11-H RF mixer. The RF 

reference signal is produced by a HP8359A signal generator. The down-converted signal 

goes through a loop filter and is fed back to the slave laser to complete the negative 

feedback loop. The other output of the fiber coupler is fed into a HP 11982A 

photodetector, whose output signal is measured by an HP 8565 RF spectrum analyzer to 

monitor the locking status. An RF amplifier can be added following the output of the 

photodetector to further increase the total loop gain. With the electric gain compensation, 

the master laser signal can be reduced to as small as -15dBm to lock the slave laser. The 

fact that the loop gain can be electrically compensated enables the possibility of locking a 
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large number of slave lasers to one low power master laser. 

 The total delay time of the optical and the electric path is estimated to be about 5ns 

based on measuring their physical length. At the frequency of a few MHz, the phase lag 

due to this delay time is less than 10 degrees. Taking into account the inherent / 2π  

phase lag due to the integration of the current controlled oscillator, and the thermal 

crossover of the FM response, the π  phase lag frequency fπ  of the open loop transfer 

function should be about 5MHz. The measured acquisition range and holding range are 

about 9MHz.  

 

Fig. 3.7(a) A picture of the JDSU OPLL experimental setup. (b) Measured spectra of the 

locked beat signal of the JDSU OPLL for different loop gains.  
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 Fig. 3.7(a) shows a picture of the actual JDSU OPLL setup. Fig. 3.7(b) shows the 

measured power spectra of the locked beat signal between the master laser and the slave 

laser for different loop gains. The red line corresponds to a low loop gain. As the loop 

gain is increased and the gain margin is reduced(the blue line), the frequency of the 

residual phase noise peak is pushed to a higher frequency. When the gain is further 

increased(the green line), one starts seeing the higher order side bands of the noise peak, 

which indicates significant ringing effect in the loop. This trend agrees with the 

theoretical calculation shown in Fig. 2.5. As I have pointed out in Section 2.3.3, as the 

gain margin approaches 0dB, the system starts oscillating at fπ . Hence the frequency 

difference between the central carrier and the first order noise peak in the ringing case is 

a good estimate of the π  phase lag frequency fπ  of the OPLL. In Fig. 3.7(b) fπ  is 

about 5 MHz, which agrees with the theoretical prediction based on the measured FM 

response of the slave laser and the estimated loop delay. 
 

3.2.2 Estimation of the residual differential phase error 

In Section 2.5. I have pointed out the residual differential phase error is an important 

metric for evaluating the quality of an OPLL. Based on the measured power spectrum of 

the locked beat signal, one can calculate the root-mean-square (rms) differential phase 

error.  

Assume the locked beat signal takes the form of  

 ( )0 cos rf nE E tω φ= +  (3.48) 

where rfω  is the frequency of the RF offset signal. When the two lasers are locked, the 

phase noise nφ  is bounded. Assuming 1nφ << , one can expand Eq. (3.48) to 

 0[cos sin ]rf rf nE E t tω ω φ≈ − ⋅  (3.49) 

The first term is a pure tone at the frequency of rfω  which gives the central carrier 
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signal in the power spectra shown in Fig. 3.7(b). By averaging the square of the electric 

field over a time scale much longer than the period of the signal, one obtains the power of 

the signal as 2
0~sP E . The second term in Eq. (3.49) leads to the double side noise 

shoulder seen in Fig. 3.7(b) when there is no significant ringing effect. Use the same 

argument described above, the power of the second term in Eq. (3.49) is 2 2
0~n nP E φ , 

which can be calculated by integrating the double side power spectral density excluding 

the central carrier. From the ratio between the noise power and the carrier power one can 

estimate the rms differential phase error  

 2 /n n sP Pσ φ= =  (3.50) 

In Fig. 3.7(b), the rms phase error of the blue curve is about 0.32 rad.  

 

3.2.3 Phase lock of the QPC MOPAs 

Based on the same OPLL scheme, I also phase locked a QPC semiconductor 

Master-Oscillator-Power-Amplifier (MOPA) laser to the Agilent tunable laser. The MOPA 

is soldered on a C-mount, which is mounted on a copper block for heat dissipation. The 

MOPA is temperature controlled and operated with bias currents of 485 mA and 4 A, for 

the oscillator section and the amplifier section respectively. The wavelength of the MOPA 

is 1548nm and the output power is ~1W. The measured linewidth is less than 1MHz. The 

beam of the MOPA diverges in free space and part of the optical power is collected using 

a cleaved single mode fiber and then combined with the reference optical signal using a 

3dB optical fiber coupler. The resulting phase error signal is injected into the oscillator 

section to modulate the optical frequency. Fig. 3.8(a) gives a picture of the actual setup 

and Fig. 3.8(b) displays the measured spectrum of the locked beat signal. The differential 

phase error between the slave laser and the master laser is calculated with Eq. (3.50) to be 

about 0.3 rad. 
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Fig. 3.8 (a) A picture of the QPC OPLL experimental setup. (b) Measured spectrum of the 
locked beat signal. 
 

3.2.4 Phase lock of IPS external cavity lasers 

I also phase-locked 75mW 1064nm external cavity SCLs (Innovative Photonic Solutions) 

with a 3 dB FWHM linewidth of 0.5 MHz. The reference laser is a spectrally stabilized 

NP Photonics fiber laser with a 3dB FWHM linewidth of 2.5 kHz. Fig. 3.9 gives the 

spectrum of the locked beat signal. A compensation filter with the lag-lead property at 

low frequency and the lead-lag property at frequency close to the fπ  is used, and the 

rms differential phase error is about 0.13 rad. The topic of the compensation filter will be 

discussed in detail in the next section. 
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Fig. 3.9 Measured spectrum of the locked beat signal of the IPS OPLL. 

 

3.3 Optimization with the compensation circuits 

In Chapter 2 I pointed out that the loop bandwidth is limited by the non-uniform FM 

response of SCLs and the loop delay. This results in a number of critical issues, besides 

the non-negligible residual phase error. For example, the acquisition range and the 

holding range, which are proportional to the loop DC gain for the first-order PLL, are 

only a few MHz in the OPLLs I built. Upon being turned on, the frequency of the beat 

signal has to be manually tuned to be within ~10MHz from the frequency of the RF 

reference signal for the loop to acquire lock. In addition, the frequency of the SCLs jitters 

for tens of MHz within a few seconds, and hundreds of MHz over the long term, due to 

thermal fluctuations, current source noise, and acoustic noise. When the holding range is 

small the frequency jitter of the SCLs constantly throws the loop out of lock. All these 

issues can be partially solved by using certain compensation circuits. In this section I will 

study the use of three types of compensation circuits: the phase lead-lag filter, the 

lag-lead filter, and the aided-acquisition circuit.     

 

 

3.3.1 Lead-lag filter to increase the phase margin 
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Fig. 3.10(a) Open loop transfer function of the JDSU OPLL with and without a lead-lag 

filter.  (b). Corresponding power spectral density of the differential phase error. The FM 

response of the slave laser is described by Eq. (3.47) with b = 2.6, cf = 1MHz. The 

transfer function of the filter is ( ) ( )2 11 / 1F s sτ τ= + +  with 1 8nsτ =  and 2 40nsτ = .  

 

As can be seen, the π  phase lag frequency fπ  is limited to a few MHz, due mainly to 

the phase lag given by the non-uniform FM response of the laser. Phase lead-lag filters 

can be used to increase fπ . The transfer function of a lead-lag filter is  
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Eq. (3.51) can be included into the OPLL open loop transfer function to evaluate its 

influence. In Fig. 3.10(a) I compare the open loop transfer function with and without a 

lead-lag filter. In the calculation I use the FM response of the slave laser described by Eq. 

(3.47) and the parameters b = 2.6, cf = 1MHz. The parameters of the lead-lag filter are 

1 8nsτ =  and 2 40nsτ = . With the lead-lag filter fπ  is increased from 5MHz to 14MHz. 

However this comes at the cost of reduced gain margin because the lead-lag filter raises 

the loop gain at high frequency. This can be seen in Fig. 3.10(a). The amplitudes of the 

blue (no filter) and the orange (with the lead-lag filter) lines are the same at low 

frequency. The amplitude of the orange line rises above the blue line at higher frequency. 

In Fig. 3.10(b) I also compare the power spectral density of the differential phase error 

without and with a lead-lag filter. On the diagram, the spectral peak at the frequency 

close to fπ  is suppressed and broadened with the filter.  

 

Fig. 3.11 The variance of the differential phase error as a function of the summed 

linewidth of the lasers fΔ normalized by the π  phase lag frequency fπ , with and 

without a lead-lag filter. 
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I further calculate and compare the variance of the differential phase error as a 

function of the normalized linewidth /f fπΔ  with and without a lead-lag filter. The 

results are plotted in Fig. 3.11. With the lead-lag filter the variance of the differential 

phase error can be reduced by almost a factor of 2. 

 

Experimental demonstration 
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Fig. 3.12 Schematic diagram of the feedback circuit with a lead-lag filter        
 
I have implemented a lead-lag filter in the JDSU OPLL and the circuit diagram is shown 

in Fig. 3.12. The mixer is modeled as a voltage source 0V  with the internal impedance 

sR . The phase error voltage signal is filtered and converted to the current feedback signal 

Li  and sent into the laser diode LR . A straightforward calculation leads to              

 2

2 1 1

1 ,   
1

o
L

L s

V si
R R R R s

τ
τ

+
=

+ + + +
 (3.52) 

where ( ) ( )1 1 2 1 2 2 1/ ,   L s L sR R R R C R R R R R Cτ τ= + + + + + = . All the parameters are 

defined in Fig. 3.12.  

 The filter is implemented with the parameters 1 430R = Ω , 2 7.3R = Ω , and 

100C pF= . Impedance of the laser diode is 3LR ≈ Ω  and impedance of the mixer is 

50sR = Ω . Using these numbers I obtain the time constants 9
1 5.3 10 sτ −= ×  and 
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8
2 4.3 10 sτ −= × . With the same fitting parameters used in obtaining Fig. 3.3, one finds 

that the π  phase lag frequency fπ  is increased from 4.3 MHz to 11MHz with the 

filter.  

 

Fig. 3.13 Measured spectra of the locked beat signal of the JDSU OPLL without and with 

a lead-lag filter. The loop gain is increased in (b) such that the π  phase lag frequency 

fπ  can be estimated from the ringing frequency. 

 

 Fig. 3.13 is a comparison of the measured spectra of the locked beat signal with and 

without the lead-lag filter. In Fig. 3.13(a) one can see the noise shoulder is suppressed 

and broadened as predicted in Fig. 3.10(b). By integrating the double-sided noise power 
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spectral density, the variance of the phase noise is found to be reduced from 0.081 rad2 to 

0.053 rad2. I further increase the loop gain until the ringing effect appears and the loop is 

close to oscillation, as indicated by the multiple side peaks shown in Fig. 3.13(b). The 

frequency difference between the central carrier and the first side peak gives a good 

estimate of fπ , which is increased from 5MHz to 11MHz as predicted by theory.  

 

3.3.2 Passive lag-lead filter to increase the holding range 

The frequency of SCLs strongly depends on the bias current and the temperature. E.g., 

the JDSU DFB laser has a current-frequency tuning sensitivity of ~500MHz/mA and a 

temperature-frequency tuning sensitivity of ~10GHz/C. Even with a high accuracy TEC 

controller and a low noise current source, I have seen that the frequency of the laser 

jitters by tens of MHz within a few seconds, and hundreds of MHz over tens of minutes. 

For external cavity SCLs, the frequency is also very sensitive to acoustic perturbation. 

The frequency jitter due to the current and temperature variation can throw the loop out 

of lock frequently, since the holding range is typically ~10MHz. In the experiment, the 

JDSU OPLL typically stays in lock for about 10 seconds without using a compensation 

filter.  

 In Section 2.2 I have also pointed out that the steady state differential phase error 

relies on the free-running frequency difference between the lasers normalized by the loop 

DC gain, i.e., 0 /e dcKωΦ = Δ . And the small signal loop gain 0cosdc dc eK K′ = Φ  relates 

to ωΔ  through 0eΦ . Even when the loop stays in lock, the frequency jitter changes the 

steady state differential phase error 0eΦ  and the small signal loop gain, events which 

should be avoided or minimized. 

The frequency of SCLs can be stabilized to a very high degree by frequency locking 

to a stable frequency reference. The frequency reference could be a stabilized Fabry-Perot 

cavity[40, 41] or the absorption line of certain molecules[42]. However these solutions 
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require complicated systems and the advantages of SCLs, such as their small size and low 

cost, are lost. Also limited are the choices of molecules’ absorption lines, to which the 

SCLs can be locked. Here I study a more attractive solution, i.e., the use of the lag-lead 

filter to compensate for the frequency jitter of the SCLs.  

In a PLL, the acquisition range acqfΔ  depends on the detailed shape of the open 

loop transfer function, and the holding range hfΔ  is mainly determined by the loop DC 

gain / 2h dcf K πΔ = [1]. In a practical OPLL, the loop gain is limited by the stability 

criterion ( ) 1opG fπ <  and fπ  is usually limited to a few MHz, due to the non-uniform 

FM response of SCLs and the loop delay. If one increase the loop gain only at 

frequencies lower than fπ  and do not reduce the gain margin at fπ , the stability 

criterion is still maintained while the holding range hfΔ  is increased. This can be 

achieved using a lag-lead filter. The transfer function of a lag-lead filter can be described 

by 

 ( ) 2
1 2

1

1 ,    
1

sF s
s

τ τ τ
τ

+
= >

+
 (3.53) 

Fig. 3.14(a) shows the Bode plot of a typical lag-lead filter. The filter has high gain at 

low frequency and reduced gain at higher frequency. In Fig. 3.14(b) I compare the open 

loop transfer function of the JDSU OPLL without and with a lag-lead filter. The open 

loop gain at low frequency, and the resulting holding range is enhanced by a factor of 

1 2τ τ . A theoretical study has demonstrated that the acquisition range can also be 

enhanced by approximately 1 22 /τ τ [1]. The benefit, however, comes at the cost of a 

reduced phase margin at the intermediate frequency( 4 510 ~ 10 Hz  in Fig. 3.14(b)) due to 

the phase lag property of the filter. Hence, care must be taken while picking the time 

constants 1τ  and 2τ  to maintain sufficient phase margin and avoid loop instability. In 



 

 

48

addition, the frequency range of the phase lag induced by the filter should be kept far 

away from the fπ  without affecting it.  

 

Fig. 3.14 (a) Transfer function of a lag-lead filter.  (b). The open loop transfer function 

of the JDSU OPLL without and with a lag-lead filter. Eq. (3.47) and the parameters b = 

2.6, cf = 1MHz are used in the calculation. The transfer function of the filter is 

( ) ( )2 11 / 1F s sτ τ= + +  with 1 124 sτ μ=  and 2 6 sτ μ=   

 

Experimental result 

I have implemented a passive lag-lead filter illustrated in Fig. 3.15. With the 

parameters defined in Fig. 3.15, the feedback current is given by 
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where ( )( ) ( )1 2 3 1 3/L s L sR R R R R R R R R Cτ ⎡ ⎤= + + + + + +⎣ ⎦  and 2 2R Cτ = . Two 

sets of lag-lead filter parameters were tried in the JDSU OPLL and the results are listed in 

table 3.1. The holding range is increased by ~6 times with filter 1 and ~16 times with 

filter 2. If one assumes that the frequency jitter is a random walk process, if the holding 

range is increased by a factor of 1 2/τ τ , the average time required for the frequency jitter 

to exceed the holding range should increase by a factor of ( )2
1 2/τ τ . In the experiment I 

observed that the locking duration is increased from ~10 seconds to hours. I also 

implemented the lag-lead filters in the IPS OPLL and successfully increased the holding 

range from ~±10MHz to ±200MHz.  
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Fig. 3.15 Schematic diagram of the lag-lead filter circuit 

 

Table 3.1 Measured single-side holding range and acquisition range of the JDSU OPLL 

with the lag-lead filters. 

 holding range 

(MHz) 

acquisition range 

(MHz) 

no filter: 8 ~ 10 6 ~ 8 

filter 1 50 ~ 60 ~ 17 

filter2 130 ~ 180 ~ 30 

 

Further increase of the holding range with the passive lag-lead filter will be 



 

 

50

ultimately limited by the current driving capability of the RF mixer, since it is the mixer 

that provides the feedback current to hold the slave laser in lock. For a typical level7 

mixer (e.g., the minicircuits zx05-C24), the maximum output current is about +/-2mA, 

which translates to a holding range of a few hundred MHz to 1GHz, depending on the 

current FM sensitivity of the laser. To further increase the holding range, an active filter 

must be used. 

 

3.3.3 Active lag-lead filter to increase the holding range 

A second-order active filter can potentially provide a current of tens of mA and thus 

provide a holding range of multiple GHz. It can also provide excellent low frequency 

noise reduction since the loop gain is significantly enhanced at low frequency. Fig. 3.16(a) 

is the circuit diagram of a second-order active filter with the transfer function 

( ) ( )2 11 /F s s sτ τ= + . Since it is an all-pass filter for signals from DC to very high 

frequency, it requires a very high speed Operational amplifier(Op-Amp) with a flat phase 

response.  

 

OpAmp: operational amplifier 

Fig. 3.16 (a) Schematic diagram of a second-order active filter. (b) Schematic diagram of 

an active lag-lead filter.  

 

I take a different approach to address the problem. Another active feedback path can 

be added in addition to the passive feedback path to increase the feedback current and the 
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loop gain at low frequency. Fig. 3.16(b) is a schematic diagram of the dual-path filter. 

The passive path could be the typical passive lag-lead filter I have discussed. The active 

path is made of a low-pass filter followed by an Op-Amp.  

To analyze the total effect of this filter, one can add the transfer functions of the dual 

feedback paths   

 ( ) ( ) ( )1 2totF s F s F s A= +  (3.55) 

where ( )1F s , ( )2F s , and A represent, respectively, the transfer function of the passive 

feedback path, the filter in the active feedback path, and the Op-Amp gain. For the sake 

of simplicity, I assume that ( )1 1F s = , and ( )2F s  is a low-pass filter described by 

( ) ( )2 1/ 1 / cF s s ω= + . The gain A>>1 is a constant for frequency much lower than the 

bandwidth of the OpAmp. Then Eq. (3.55) becomes    

 ( ) 1 /
1 /

c
tot

c

s AF s A
s

ω
ω

+
≈

+
 (3.56) 

Eq. (3.56) is essentially the transfer function of a lag-lead filter (Eq. (3.53)) except 

for a constant gain factor A. The advantage of this active filter design is the elimination of 

the need of a high speed Op-Amp. A slow and low noise Op-Amp is ideal for building 

this active lag-lead filter. A typical Op-Amp can easily drive 10~100mA current, which is 

equivalent to a holding range of multiple GHz. 

An example of such an active lag-lead filter is realized and tested in an OPLL made 

of an external cavity laser. The schematic diagram of the circuit is given in Fig. 3.17. The 

OPLL has an initial holding range of around +/-50MHz. The current FM sensitivity of the 

laser is about 150MHz/mA. A passive lag-lead filter is first implemented to increase the 

holding range to ~+/-300MHz. This corresponds to ~+/-2mA current output of the RF 

mixer. I then add the parallel active feedback path. This filter first detects the voltage 

signal from a resistor in the passive lag-lead filter. The voltage signal is amplified by a 

differential amplifier with a gain of 40 times and filtered by a low-pass filter. A second 
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stage Op-Amp with adjustable gain followed by a voltage-to-current conversion circuit is 

then used to further amplify the signal and convert it into current feedback signal. The 

cutoff frequency of the low-pass filter is 8Hz. The maximum gain of this active feedback 

path is about 20, which in theory should increase the holding range from +/-300MHz to 

+/-6GHz. With this filter, I can change the laser diode bias current by +/-30mA without 

losing lock, which indicates the holding range is +/-4.5GHz.  
 

 
Fig. 3.17 Circuit diagram of the active lag-lead filter 

 

If even higher holding range is desired, I can feed the current signal of the active path 

into the TEC controller to temperature-modulate the frequency. Due to the very high 

temperature FM sensitivity of SCLs, this should potentially increase the holding range by 

orders of magnitude. Another possible benefit of the temperature modulation is that it 

avoids the intensity variation caused by the feedback current modulation.  
 

3.3.4 Aided-acquisition circuit to increase the acquisition range 
So far I have discussed the use of different filters to compensate for the holding range. 

However the acquisition range can not be improved significantly with the lag-lead filter. 

To bring the laser in lock automatically upon being powered on, an aided acquisition 

circuit can be used. This circuit also automatically bringd the laser back to lock if the 

loop loses lock occasionally.  
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Fig. 3.18 Schematic diagram of an aided-acquisition circuit 

 
 Fig. 3.18 is a schematic diagram of an aided acquisition circuit designed and built by 

Firooz Aflatouni and Prof. Hossein Hashemi at USC. This circuit splits the beat signal 

and feeds it into a sharp low-pass filter and a high-pass filter. By comparing the output of 

the two filters, the circuit decides whether the frequency of the beat signal is smaller or 

larger than the frequency of the RF offset signal, and generates a current ramp which 

brings the frequency of the beat signal to be within the acquisition range of the OPLL 

[43]. The AAC is tested on both the QPC OPLL and the IPS OPLL. The acquisition range 

is increased from ±10MHz to ±1.1GHz.  

 

3.4 Conclusion 

I have successfully phase locked various commercial SCLs. The loop performance is 

mainly limited by the non-uniform FM response of the SCLs and the loop delay. With the 

use of compensation filters, the acquisition range and holding range are significantly 

increased. A locking efficiency of above 90% and a locking time of a few hours have 

been achieved. Although discrete components have been used in all the experiments 

demonstrated in this chapter, an integrated circuits having the function of the locking 
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circuits including the RF mixer, the RF amplifier, and the compensation filters can be 

designed and used to significantly reduce the system’s dimension and cost. Research in 

this direction is currently being carried out by Firooz Aflatouni and Prof. Hossein 

Hashemi at USC.    

 Starting with the next chapter, I will study the applications of OPLLs, particularly in 

coherent beam combining and coherence cloning. 
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Chapter 4 Application of OPLLs in coherent 
beam combining  

4.1 Introduction of coherent beam combining 

4.1.1 Spectral beam combining vs coherent beam combining 

High power, high brightness lasers with diffraction limited beam quality have been 

sought since the earliest days of laser technology. Today, high power gas lasers, solid 

state lasers and fiber lasers are able to output thousands of watts of light under 

continuous-wave operation. Further increase of the power will be limited by thermo-optic 

effects, nonlinear effects, and material damage. A promising solution to these challenges 

is to use beam combining techniques, meaning to combine the outputs of a number of 

lasers or amplifiers to obtain a single output. The goal of beam combining is not only to 

scale the power, but also the brightness. For this purpose the beam quality needs to be 

preserved. Semiconductor lasers and fiber amplifiers have attractive attributes for beam 

combining because of their ease in building array formats, their high efficiency, and their 

ability to get near diffraction-limited beams from the individual elements[44-49]. There 

are generally two classes of beam combining with increased brightness: spectral beam 

combining (SBC)[44, 49, 50] and coherent beam combining (CBC)[25, 27, 29, 51]. 

 CBC combines an array of element beams with the same frequency and controlled 

relative phases such that there is constructive interference. This is analogous to 

phased-array transmitters in the radio-frequency (RF) and microwave portions of the 

electromagnetic spectrum, but in the optical domain. Beam steering by controlling the 

relative phase of each element beam is also possible with CBC. However CBC has 

proven to be difficult because of the shortness of the optical wavelength and the 

requirement that the phases of the array elements be controlled to a small fraction of a 

wavelength.  

 The general principle of SBC is to have several beams with non-overlapping optical 
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spectra and cto ombine them at some kind of wavelength-sensitive beam combiner such 

as a prism, a diffraction grating, a dichroic mirror, or a volume Bragg grating, which can 

deflect incident beams according to their wavelengths so that afterwards these all 

propagate in the same direction. To combine the outputs of a large number of lasers, one 

requires that each laser must have high wavelength stability and the beam combiner must 

have sufficient dispersion. Compared with CBC, SBC has the advantage of not requiring 

the mutual temporal coherence of the combined beams. This eliminates some important 

technical challenges and makes it much easier to obtain stable operation at high power 

levels.  

4.1.2 Tiled-aperture and filled-aperture CBC 

 CBC is of interest, however, for applications requiring both high power and narrow 

spectrum. There are a few excellent reviews of CBC systems[45-48]. Depending on the 

combining implementation, CBC can be subdivided into tiled-aperture approach 

(side-by-side combining leading to a larger beam size but reduced divergence), and 

filled-aperture approach (where several beams are combined to a single beam with the 

same beam size and divergence, using e.g. beam splitters). The function of beam steering 

can only be realized with the tiled-aperture approach. 

 As an example of the side-by-side tiled-aperture combining, consider four beams 

with top-hat intensity profiles of rectangular cross section and flat phase profiles. One 

may arrange these profiles to obtain a single beam with two times the dimensions, or four 

times the area, and of course four times the power. If the beams are all monochromatic 

and mutually coherent, and the relative phases are properly adjusted to obtain essentially 

plane wavefronts over the whole cross section, one obtains a beam divergence which is 

only half that of each single beam. As a result, the beam quality is preserved, and the 

brightness of the far field can be sixteen times that of each single beam. In practice, the 

top-hat beam profile is not easily obtainable, and the gaps between the individual beams 

http://www.rp-photonics.com/dichroic_mirrors.html
http://www.rp-photonics.com/beam_divergence.html
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(i.e., the non-unity fill factor) together lead to side lobes in the far-field beam pattern and 

reduce the beam quality and brightness. 

 To understand the principle of the filled-aperture techniques, consider a beam splitter 

with 50% reflectivity. Overlapping two input beams at this beam splitter will in general 

lead to two outputs, but one can obtain a single output if the two beams are mutually 

coherent and adjusted so that there is destructive interference for one of the outputs. This 

technique makes it easier to preserve the beam quality and does not require special beam 

shapes, but it may be less convenient for large numbers of emitters, where a series of 

beam combining stages is required. If any one stage fails, the performance of the whole 

system degrades significantly.  

 In any case, the constructive interference plays the key role, and the mutual 

coherence of the combined beams is essential. Typically the room-mean-square(rms) 

relative phase deviations must be well below 1 rad[47, 52]. In addition, the mismatches 

of the amplitudes, polarizations, pointing and alignment of the element beams all 

contribute to the degradation of the beam combining efficiency and the beam quality, and 

need to be well managed.  

4.1.3 Methods to Obtain Mutual Coherence 

There are a variety of techniques to obtain mutual temporal coherence between the 

element beams, which are briefly summarized in the following: 

• The phases of multiple lasers can be synchronized by some kind of optical 

coupling, such as evanescent wave or leaky-wave coupling[53-56]. This approach 

has been extensively used, particularly with laser diode arrays [56], where optical 

coupling can be obtained simply by placing the waveguides sufficiently close 

together. This may also be applied to multi-core optical fibers. In-phase coupling 

of the array elements is desired to obtain high on-axis far-field intensity. However, 

http://www.rp-photonics.com/interference.html
http://www.rp-photonics.com/coherence.html
http://www.rp-photonics.com/diode_bars.html
http://www.rp-photonics.com/fibers.html
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the coupling is often predominantly out-of-phase, giving a power null on-axis. 

This can be attributed to the modal gain/loss discrimination. The out-of-phase 

coupling gives a null between the array elements that, compared with the in-phase 

coupling, leads to less loss if the space between the elements is lossy, and higher 

gain because of better spatial overlap of the mode with the gain region. Another 

issue is tolerance the phase error. While scaling to a large array of N elements, the 

degradation of the on-axis field intensity and beam quality increases with 2N  

due to the nature of the correlated phase error between the array elements[52].   

• The out-of-phase coupling problem is partially avoided in the common-resonator 

techniques, where the beams are fully combined at the output coupler, but split 

within the resonator (laser resonator) to be amplified in different gain elements 

[57-59]. To force the lowest order transverse-mode operation (corresponding to 

the in-phase coupling) an intracavity spatial filter can be used to select the mode. 

Though this approach has been successful at low power, it is difficult to obtain the 

lowest order transverse mode operation as power increases due to the thermally 

induced variation in the optical path length. 

• Another extensively studied method of obtaining mutually coherent 

monochromatic beams is to use active-feedback, where the differential phases 

among the array elements are detected and then feedback is used to equalize the 

optical path lengths modulo 2π [25, 28, 60, 61]. This approach has been used in 

master-oscillator power-amplifier (MOPA) architectures, where a 

single-frequency laser output is split and amplified, e.g., by high power fiber 

amplifiers, whose outputs are combined. It has also been used in optical injection 

locking architecture, where the optical power of a master laser is used to 

injection-lock an array of slave lasers, whose outputs are amplified by fiber 

amplifiers and then combined. In both cases the key issues are the detection of the 

differences in optical path length and the design of a phase control servo system 

http://www.rp-photonics.com/output_couplers.html
http://www.rp-photonics.com/laser_resonators.html
http://www.rp-photonics.com/single_frequency_operation.html
http://www.rp-photonics.com/single_frequency_lasers.html
http://www.rp-photonics.com/fiber_amplifiers.html
http://www.rp-photonics.com/fiber_amplifiers.html


 

 

59

with sufficient bandwidth and dynamic range to correct for these variations. For 

example, one can adjust the pump power of each amplifier or use an optical phase 

modulator, a fiber stretcher, or an acoustic optical modulator in front of each 

amplifier input to adjust the phase of each element beam. The resulting 

phase-coherent beams can be combined with either the filled-aperture approach or 

the tiled-aperture approach. 

 The CBC system I am going to discuss in this thesis falls into the last category, the 

active feedback control. We propose that mutual coherence between the element beams 

be established by locking an array of slave lasers to one master laser using OPLLs. 

Following each slave laser, a fiber amplifier can be used to increase the power. However, 

the differential phase between the outputs of the fiber amplifiers varies due to optical path 

length variation in the fiber, which needs to be corrected for. As I have pointed out in 

Chapter 2, in a heterodyne OPLL, the phase of the slave laser depends on the phase of the 

RF offset signal. Hence, a RF phase or frequency shifter, instead of an optical phase or 

frequency shifter, can be used to correct for the optical path length variation. The use of 

OPLLs thus eliminates the need for expensive and bulky optical phase modulators or 

acoustic optical modulators, and enables a full electronic phase control servo, which can 

significantly reduce the cost and size of the CBC system.   

 In this chapter, I present both the theoretical and the experimental study of the 

frequency/phase control of the element beams with multilevel OPLLs. 

 

4.2  Synchronizing two SCLs with OPLLs  

In Chapter3 I have demonstrated the phase locking of different commercial SCLs, 

including a 16dBm JDSU DFB laser at 1538nm, a 1W QPC master-oscillator-power 

-amplifier (MOPA) at 1548nm, and a 18dBm IPS external cavity laser at 1064nm. To 

demonstrate the idea of CBC with OPLLs, I combined two OPLLs in which the two slave 

http://www.rp-photonics.com/phase_modulators.html
http://www.rp-photonics.com/phase_modulators.html
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lasers are locked to the same master laser and have the same frequency. 

 

 
Fig. 4.1 (a) Schematic diagram of coherent beam combining of two SCLs locked to a 

common master laser. (b) Time domain measurement of the combined power. The blue 

dots are the measured data, the red solid line is the smoothed data. 

 

 Fig. 4.1(a) shows the schematic diagram of combining two OPLLs using the 

filled-aperture approach. OPLL1 and OPLL2 share the same master laser, which is an 

Agilent 81640A tunable laser, and the slave lasers are JDSU DFB lasers. The power of 

the master laser distributed to the OPLLs is typically -3dBm and could be reduced to 

-15dB since a RF amplifier can be used to compensate for the loop gain. A 1.48GHz RF 

offset signal provided by the HP 8565E signal generator is split and distributed to both 

OPLLs. The optical signals of the two slave lasers are combined with a 3dB fiber optical 

coupler. The locking status of the two OPLLs is monitored in the frequency domain with 
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the HP 8565E spectrum analyzer. The combined signal is detected by a photodetector 

whose output is displayed in the time domain(Fig. 4.1(b)) using a Tektronix TDS3052B 

oscilloscope. If one assumes that the amplitudes and the polarization of the two optical 

signals are matched, the combined power received by the photodetector is 

 ( )( )2 1 cos eP I tω φ= ⋅ + Δ ⋅ +  (4.1) 

where I stands for the power of the individual beams, ωΔ  is the frequency difference, 

and 2 1eφ φ φ= −  is the differential phase error between the individual beams. 2φ  and 1φ  

are, respectively, the phases of the signals of slave laser 2 and 1 at the combining point. 

When at least one of the two slave lasers is not locked to the master laser, the output of 

the photodetector is an AC signal (the right part of Fig. 4.1(b)) at the frequency ωΔ . The 

data appears as a scatter of points, since ωΔ  is in the MHz range while the time 

resolution of the oscilloscope is set at 2 seconds. When both the slave lasers are locked 

( ωΔ = 0), the individual beams have the same frequency and are coherently added. The 

output of the photodetector ideally consists of a DC signal which in our case varies 

slowly on the time scale of seconds as can be seen on the left part of Fig. 4.1(b). This 

slow variation reflects, as it should, the change of the difference in the optical path 

lengths experienced by the two individual optical signals due to the slow variation of 

temperature and environment. The spreading of the coherently combined signal reflects 

the residual differential phase noise in the OPLLs that I analyzed in Section 2.4. From the 

degree of scattering of the data I estimate that the rms differential phase error between the 

two individual signals is about 30 degrees. In Chapter3, based on the measured power 

spectrum of the locked beat signal, I have calculated that the rms differential phase error 

between the slave laser and the master laser in a single OPLL is about 19 degrees. 

Assuming the differential phase errors in two OPLLs are uncorrelated, the rms 

differential phase error between the two slave lasers should be approximately 

27192 =× degrees. Thus the rms phase error calculated from the frequency domain 

measurement agrees with that obtained from the time domain measurement. 
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LockedUnlocked

(a)

(b)

LockedUnlocked LockedUnlocked

(a)

(b)

 

Fig. 4.2 Time domain measurement of the coherently combined power of (a) two QPC 

MOPAs, (b) two IPS external cavity SCLs  

 

 Based on the similar experimental scheme, I repeated the same experiment with the 

QPC MOPAs and the IPS external cavity SCLs. The Agilent tunable laser is still used as 

the master laser for the QPC MOPAs. A spectrally stabilized NP Photonics fiber laser 

with a 3 dB linewidth of 2.5 kHz is used as the master laser for the IPS lasers. The measured 

combined power in the time domain is shown Fig. 4.2. From the degree of scattering of 

the data, I estimate that the rms differential phase error between the two individual lasers 

is about 22 degrees for the QPC MOPAs and 10 degrees for the IPS lasers.  
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4.3  Correction for the optical path-length variation 

Thus far, I have demonstrated the use of OPLLs to synchronize and combine two slave 

lasers. However one critical issue remains, i.e., the slow variation of the differential phase 

between the element beams due to the change of the optical path-length in the fibers. A 

servo system is required to detect this differential phase variation and correct for it. An 

optical phase shifter (phase modulator or Piezo fiber stretcher) or frequency shifter (an 

acoustic optical modulator) has previously been used as the phase actuator to correct for 

the differential phase variation[25, 62]. However these optical phase actuators are 

typically very expensive (a few thousand dollars each), bulky and can not handle very 

high optical powers. In the heterodyne OPLLs analyzed in Chapter 2, the phase of the 

slave laser follows the phase of the RF offset signal within the loop bandwidth. Thus a 

RF phase shifter can be used to correct for the optical path-length variation. 

Signal 
generator
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2

~

LPF

LPF

Channel 1

Channel 2
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1.48 GHz + 100 MHz

(a) (b)
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(c) (d) (e)  

LPF: low pass filter 

Fig. 4.3 (a) Schematic diagram of the phase control of the individual MOPA. (b) 

Comparison of the output waveforms of the two independent OPLLs. (c)-(d) Lissajou 

curves reflecting the control of the relative phase between the two OPLLs’ output signals 
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4.3.1 Phase control using an RF phase shifter 

Fig. 4.3(a) is a schematic diagram depicting the phase control of an individual QPC 

MOPA using a RF phase shifter. The HP signal generator is still used to provide the RF 

offset signals (1.48GHz) for the two OPLLs, however the RF signal sent to OPLL2 is 

now followed by a mechanical RF phase shifter. The beat signals between the master 

laser and the slave lasers in the two OPLLs are down-converted to 100MHz and the 

waveforms are compared on the oscilloscope (Fig. 4.3(b)). By adjusting the mechanical 

RF phase shifter, one can control the relative phase between the beat signals in the two 

OPLLs, as seen in the Lissajou curves of Fig. 4.3(c)-(e).   

 

Fig. 4.4(a) Schematic diagram of combining two OPLLs with an additional RF phase 

shifter loop. (b) Graphic tools to find the steady-state solution of the RF phase shifter 
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feedback loop. (c) Steady state solution of the differential phase error eφ  between the 

combined individual beams as a function of the phase noise nφ  induced by the 

differential optical path-length variation. The solution depends on both the value and the 

history of nφ . 

 

 Fig. 4.4(a) is a schematic diagram of the combining experiment with a RF phase 

shifter loop to correct for the optical path-length variation. The details of the OPLLs are 

given in Fig. 4.1(a) and thus not plotted here. In the filled-aperture scheme the combining 

element, which is a fiber coupler here, has two outputs. Our goal is to minimize one of 

the outputs and maximize the other output. The output we want to minimize is detected 

by a null detector (PD1 in Fig. 4.4(a)), whose output is fed back to the RF phase shifter. 

Assume the amplitudes, and polarization states of the two individual optical signals are 

matched, and that their phase difference is ( )e tφ , the output of the null detector is 

proportional to ( )1 cos e tφ− . Our goal is to maintain ( )e tφ  as close to zero as possible. 

This signal is amplified and applied to the phase shifter. The resulting phase change of 

the RF offset signal seen by OPLL2 is  

 ( ) ( ) ( )1 cos ,   0  2e e ef G fφ φ φ π= − ≤ ≤  (4.2) 

where G is the phase shifter loop gain, and the phase shifter’s dynamic range is from 0 to 

2π . Note in Eq. (2.4) of Section 2.2, the phase of the slave laser is inversely related to 

the phase of the RF offset signal by  s rφ φ−∼ . Therefore the phase of the slave laser 

changes by ( )ef φ−  when the phase of the RF offset signal is changed by ( )ef φ . If the 

differential optical path-length in the fiber varies by ( )n tφ , the differential phase error 

between the combined individual beams satisfies  

 ( )2 1e e nfφ φ φ φ φ= − = − +  (4.3) 
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 Eq. (4.3) can be solved graphically as illustrated in Fig. 4.4(b). I have assumed that 

the phase change given by the phase shifter is limited from 0 to 2π  and the loop gain is 

50. Eq. (4.3) is modified to the form ( )e n ef φ φ φ= − . The blue solid line in Fig. 4.4(b) 

represents the RF phase shifter output ( )ef φ , the groups of dashed lines represent 

n eφ φ−  for different values of nφ . The point of intersection between the blue line and a 

dashed line satisfies Eq. (4.3) for the particular value of nφ . Two critical issues of this 

servo system can be deduced from Fig. 4.4(b): First, the limited dynamic range requires a 

complicated phase unwrapping circuit to control the RF phase shifter once it saturates, 

e.g., as nφ  increases from point F to B, the phase shifter is tracking nφ  and eφ  is kept 

small. At the saturation point B, if nφ  continues to increase, eφ  will increase linearly 

with nφ  and a phase unwrapping circuit is necessary to bring the steady state back to 

point F. The second issue is that of cycle slips. A small reduction in nφ  moves the 

locking point from point F to G and the loop experiences a cycle slip. In Fig. 4.4(c) I plot 

the trace of the differential phase error eφ  as a function of the fiber path-length variation 

induced phase noise nφ . If nφ  increases monotonously, the phase shifter loop stops 

tracking after nφ  exceeds its dynamic range. If nφ  decreases monotonously, frequent 

cycle slips are expected. A combination of tracking, loss of tracking and cycle slips will 

be expected in practice, since nφ  varies randomly. I performed the CBC experiment with 

a phase shifter using the IPS lasers, without a phase unwrapping circuit. Fig. 4.5 shows 

the combined signal measured on the oscilloscope. Comparing this to the result shown in 

Fig. 4.2(b), one can see that the servo system works only when the phase shifter operates 

within its dynamic range and is not saturated.  
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Fig. 4.5 Coherently combined power of two IPS lasers with the servo system made of a 

RF phase shifter feedback loop without the use of an unwrapping circuit (Fig. 4.4(a)) 

 

 The issue of the limited dynamic range can be solved by replacing the phase shifter 

with a frequency shifter, e.g., a voltage-controlled oscillator (VCO), which acts as an 

integrating phase shifter and has infinite dynamic range. 

 

4.3.2 Phase control using an RF VCO  

Fig. 4.6 is a schematic diagram of using a VCO in the servo system. As before, the signal 

generator provides the RF offset signal for OPLL2. However the RF offset signal of 

OPLL1 is now provided by a VCO (dashed red line) instead of the signal generator 

(dashed line (1)). The output of the null detector (PD2) is fed back to the VCO. The VCO 

feedback loop has two functions. First, it forces the VCO to track the frequency of the 

signal generator, so that the slave lasers in the two OPLLs have the same frequency. 

Secondly, it automatically corrects the differential optical path-length variation in the 

fiber. In this section I analyze this servo system in detail. 
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PD: photodetector  M: mixer  VCO: voltage-controlled-oscillator  Scope: oscilloscope 

Fig. 4.6 Schematic diagram of combining two OPLLs using a VCO feedback loop to 

correct for the optical path-length variation 

 

Coupled PLLs picture 

 

Fig. 4.7 Steady state phase model of the combining system with the VCO loop. The LO 

laser 2 is locked to the master laser in OPLL2, and is not shown here. 
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 A rigorous analysis of the servo system needs to consider OPLL1 and the VCO loop 

as a coupled system. The steady state phase model of the VCO combining scheme is 

shown in Fig. 4.7. The LO laser 2 is locked to the master laser (of frequency mω ) at a 

frequency offset of osω , and has a residual phase noise of 2 ( )tφ . 1sω  and vω  are the 

free-running frequencies of the slave laser 1 and the VCO, respectively. 1K  is the OPLL 

gain given by the product of the gains of the photodetector PDa, mixer, and the loop filter, 

and the FM responsivity of the laser. Similarly, vK  is the net gain in the VCO branch 

given by the product of the gains of the photodetector PD2, the FM responsivity of the 

VCO, and the loop filter. Referring to Fig. 4.7, the differential phase error 1( )e tφ  in the 

OPLL1 and ( )ev tφ  in the VCO loop are given by 

 ( )1 1 1 1

phase of slave laser 1 phase of the VCO

( ) sin ( ) 1 cos ( )
t t

e m s e v v evt t t K t dt t K t dtφ ω ω φ ω φ
−∞ −∞

⎛ ⎞ ⎛ ⎞
= − + − + −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∫ ∫

�����	����
 ������	�����

 (4.4) 

 ( ){ }1 1 1 2

phase of slave laser 2
phase of slave laser 1

( ) sin ( )
t

ev s e m ost t K t dt tφ ω φ ω ω φ
−∞

⎛ ⎞
= + − − +⎜ ⎟⎜ ⎟
⎝ ⎠

∫ ����	���

�����	����


 (4.5) 

Differentiating Eqs. (4.4) and (4.5), one obtains 

 ( ) ( ) ( )1 1 1 1sin 1 cose m s v e v evt K Kφ ω ω ω φ φ= − − − − −�  (4.6) 

 ( )1 1 1 2sinev s m os eKφ ω ω ω φ φ= − + + −� �  (4.7) 

The steady state operating point of the system is obtained by setting the time derivatives 

of the mixer (M1) and photodetector (PD2) outputs 1( )e tφ  and ( )ev tφ , to zero in Eqs. 

(4.6) and (4.7), giving 

 1 1
1,

1
sin m s os

e ss K
ω ω ω

φ − ⎛ ⎞− −
= ⎜ ⎟

⎝ ⎠
 (4.8) 
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 1
, cos 1 os v

ev ss
vK

ω ω
φ − ⎛ ⎞−

= −⎜ ⎟
⎝ ⎠

 (4.9) 

The total combined power detected at the photodetector PD1 is 

 ( )0 1 cos evP P φ= +  (4.10) 

where 0P  is the power of one beam. For maximum power combining efficiency (the 

useful combined output power divided by the input optical power), ,ev ssφ  should be as 

close to zero as possible. Combining Eq. (4.9) and Eq. (4.10), the power combining 

efficiency can be tuned by varying vω , the free-running frequency of the VCO. 100% 

efficiency is achieved when the VCO free-running frequency is made equal to the offset 

signal frequency osω . However, there is a trade-off between the combining efficiency 

and the frequency of cycle slips, as can be seen from Eq. (4.9). As ,ev ssφ  approaches zero, 

the frequency jitter of the VCO can cause the quantity os vω ω−  to take a negative value, 

in which case there is no solution to Eq. (4.9) and the VCO loop loses lock. Therefore, 

the frequency noise of the free-running VCO compared to the loop gain vK  limits the 

minimum value that ,ev ssφ  can take.  

 
Fig. 4.8 Schematic diagram of the phase noise propagation in the coupled OPLLs 
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Small signal analysis 

Next, I linearise the system about the steady state operating point, in order to analyze its 

small signal noise property. Strictly speaking, this linearisation is inappropriate because 

the photodetector output (Eq.(4.10)) is highly nonlinear at the null point. However, a 

linear analysis is useful in obtaining some physical insight into the problem. The 

linearised model for the system is shown in Fig. 4.8. One can write down the loop 

equations  

 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

1
1 1 1

1
1 1 2

e n nv
ev v e

e n n n
f ev

s KK s s s s
s s

s
K s s s s

s

φ
φ φ φ φ

φ
φ φ φ φ

⎧ ⎛ ⎞ ′
′− + − − =⎪ ⎜ ⎟

⎪ ⎝ ⎠⎨
⎪

′ + + − =⎪⎩

 (4.11) 

where ( )1
n sφ  and ( )n

v sφ  are the intrinsic phase noise of the slave laser 1 and the VCO, 

( )2
n sφ  is the phase noise of the locked slave laser 2, and ( )n

f sφ  is the phase noise 

resulting from the differential optical path-length variation of the combining fibers. 1K ′  

and vK ′  are the small signal “loop gains” defined as 

 1 1 1,

,

cos

sin
e ss

v v ev ss

K K

K K

φ

φ

′⎧⎪
⎨

′⎪⎩

�

�
 (4.12) 

where 1,e ssφ  and ,ev ssφ  are given in Eqs. (4.8) and (4.9). After some algebra, one can 

simplify Eq. (4.11) to obtain  
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⎨
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 (4.13) 

In principle Eq. (4.13) should be used to analyze the residual phase noise and the 

performance of the OPLL and the VCO loop. This picture is very complicated and does 

not provide an intuitive understanding of the servo system. In the next part I will use a 
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simplified picture to analyze the servo system to gain a better intuitive understanding.  

 

Fig. 4.9 Simplified picture of the VCO servo system. 

 

A simplified picture─ the decoupled PLLs 

To obtain an intuitive picture of the function of the servo system using the VCO loop, one 

can simplify the analysis by decoupling OPLL1 and the VCO loop and studying them 

separately. This simplified picture is illustrated in Fig. 4.9. The validity of this picture can 

be justified using the following argument: OPLL1, which locks the slave laser 1 to the 

master laser, typically has a bandwidth of ~10MHz. The VCO loop is used to correct the 

phase variation in fiber (~Hz) and can be much slower compared to OPLL1. Actually the 

VCO loop delay, mainly the length of fiber in the fiber amplifier is more than 30m. This 

long delay, combined with the phase delay of the other electronics, limits the bandwidth 

of the VCO loop to a few hundred kHz. Thus one can assume that OPLL1 always tracks 

the phase of the VCO instantly when the phase of the VCO is adjusted to correct for the 

optical path length variation. Thus the two loops can be studied separately. The analysis 

of OPLL1 is already given in Chapter 2. In Fig. 4.9, one observes that the VCO loop is 

similar to a standard PLL, except that the output of the phase detector is proportional to 

( )1 cos evφ−  instead of sin evφ . Following the standard PLL analysis[1], the evolution 

equation of the VCO loop is  

 ( ) ( ), 2

phase of beam 2phase of beam 1

1 cosm v f v ev m os evt t K dt tω ω φ ω ω φ φ⎡ ⎤− − − − − + =⎣ ⎦∫ ����	���
������	�����

 (4.14) 
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where ,, ,m os v fω ω ω are, respectively, the frequency of the master laser, the RF offset 

signal, and the free-running VCO, vK  is the VCO loop gain, evφ  is the phase 

difference between the two individual beams at the combining point, and 2φ  is the phase 

of beam 2. In obtaining Eq. (4.14) I have used the equality ( )1 cosv v evK dtφ φ= −∫ . 

Differentiating Eq. (4.14) and setting the time derivatives of 2φ  and evφ  to zero, one 

finds the steady state phase error: 

 ,1
, cos 1 os v f

ev ss
vK

ω ω
φ − −⎛ ⎞

= −⎜ ⎟
⎝ ⎠

 (4.15) 

 So the steady state solution obtained in this decoupled picture is the same as the one 

obtained in the coupled loops picture (Eq. (4.9)). As long as ( ),0 / 2os v f vKω ω< − < , Eq. 

(4.15) has a solution and the VCO frequency can be locked to the frequency of the offset 

signal. It is important to note that the steady state phase error under lock, ,ev ssφ , which 

controls the CBC efficiency, can be adjusted by tuning the frequency difference 

,os fυω ω− . High combining efficiency is achieved by minimizing ,ev ssφ . However, this 

comes at the cost of increased cycle-slips caused by the residual phase noise in the 

OPLLs and frequency jitter of the VCO. The smallest feasible ,ev ssφ  is mainly limited by 

the intrinsic frequency jitter of the free-running VCO and the equivalent frequency jitter 

of the phase noise in fiber compared to the loop gain vK . Generally a clean VCO will be 

helpful in reducing ,ev ssφ  and increasing the CBC efficiency. The CBC efficiency can 

also be increased by increasing the loop gain vK . However, as I have pointed out, the 

loop gain of the VCO loop is limited by the long fiber delay if a fiber amplifier is to be 

used. This dilemma is very similar to the situation I analyzed in Section 3.3.2, where the 

OPLL bandwidth is limited by the thermal crossover of the FM response and is not 
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enough to hold the loop in lock due to the frequency jitter of SCLs. If the frequency jitter 

of the VCO is much slower than the bandwidth of the VCO loop, I can use similar 

strategies to those given in Section 3.3.2, i.e. the use of a lag-lead filter to increase the 

loop gain at low frequency and reduce ,ev ssφ  to a smaller number.  

 

Fig. 4.10 Linearized model of the VCO loop 

 

 Next I linearize the system about the steady state point and perform the small signal 

analysis. A small signal linearized model is presented in Fig. 4.10. ( )n
f sφ and ( )n

v sφ  are 

the optical path length variation in fiber and the phase noise of the free-running VCO 

respectively. 1φ and 2φ  denote the residual phase noise of OPLL1 and OPLL2 

respectively. Following the standard PLL analysis, one obtains  

 ( ) ( ) ( ) ( ) ( ) ( ),
1 2

sinv ev ssn n
f ev v ev

K
s s s s s s

s
φ

φ φ φ φ φ φ
⎡ ⎤

+ − ⋅ + − =⎢ ⎥
⎢ ⎥⎣ ⎦

 (4.16) 

Solving for ( )ev sφ gives  

 ( ) ( ) ( ) ( ) ( )1 2

,sin
1

n n
f v

ev
v ev ss

s s s s
s K

s

φ φ φ φ
φ φ

+ − −
=

+
 (4.17) 

In Eq. (4.17) one first observes that a nonzero ,ev ssφ  is needed to provide a non-zero 

small signal loop gain. Secondly, the residual phase noises from OPLL1 and OPLL2 are 
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mostly concentrated at frequencies of a few MHz as I have shown in Chapter 3. Since the 

bandwidth of the VCO loop is ≤ 100kHz, the VCO feedback loop does not greatly affect 

the residual phase noise of the OPLLs. A typical high quality VCO possesses very low 

phase noise compared to a SCL. The optical path length variation ( )n
f sφ  is at very low 

frequency, according to our experimental observation (~Hz). These noises can be 

significantly suppressed by the VCO loop with a bandwidth of ~100kHz.  

 

Experimental result 

I performed the CBC experiment with the IPS lasers as shown in Fig. 4.6. A MinCircuits 

ZX95-2150 VCO is used in the experiment. Fig. 4.11(b) shows the combined power 

using the VCO feedback scheme, and demonstrates the high combining efficiency 

achieved. Compared with Fig. 4.2(b), the combined power is held at constant with a 

power combining efficiency of about 94%. The loss of the combining efficiency (6%) can 

be attributed to the residual differential phase noise in the individual OPLLs, the 

frequency jitter of the VCO, and the nonzero steady state phase error in the VCO control 

loop. Mathematically the combining efficiency is expressed as  

 ( )( ), 2 11 cos / 2ev ss evη φ φ φ φ= + + Δ + −  (4.18) 

where ,ev ssφ  is the steady state phase error in the VCO loop, evφΔ  is the phase jitter 

caused by the frequency jitter of the VCO, and 1φ  and 2φ  are the residual phase noises 

in OPLL1 and OPLL2 respectively. Assuming ,ev ssφ , evφΔ , 1φ , and 2φ  are small 

numbers and not correlated, and that evφΔ , 1φ , 2φ  all have zero means, one can expand 

Eq. (4.18) and reduce it to 

 ( )2 2 2 2
, 2 11 / 4ev ss evη φ φ φ φ≈ − + Δ + +  (4.19) 

2
1φ  and 2

2φ  can be calculated from the measured power spectrum of the locked beat 

signal (Section 3.2.1), i.e. 2 /n n sP Pφ = . Where sP  is the power of the central carrier 
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signal and nP  is the power of the phase noise and can be obtained by integrating the 

double-sided power spectral density excluding the central carrier. Fig. 4.11(a) shows a 

typical power spectrum of the locked beat signal in an IPS laser OPLL. Based on the 

measured spectrum, the typical values of 2
2φ  and 2

1φ  are 0.02~0.05. Substituting the 

numbers in Eq. (4.19), I estimate 1~2% of the combined power is lost due to the residual 

phase noise in the OPLLs. Another 4% is lost due to the non-zero steady state value 

,ev ssφ  and the frequency jitter of the VCO. In Fig. 4.11(b), one observes that the mean 

value of the combined signal slowly increases with time and more cycle slips are seen. 

This can be attributed to the slow drift of the VCO frequency which reduces ,ev ssφ  and 

leads to more frequent cycle slips.  

 
Fig. 4.11 (a) A typical power spectrum of the locked beat signal in an IPS laser OPLL. (b) 

Measured combined signal of two IPS lasers. The differential optical path-length 

variation in the fiber is corrected for by the VCO loop. 
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 In conclusion, I have demonstrated the coherent power combining of two 

commercial SCLs in fiber with the filed-aperture approach using the OPLLs. An 

additional feedback loop with a VCO has been used to compensate for fluctuations of the 

differential optical path lengths of the combining optical waves. This full electronic servo 

scheme eliminates the need for optical feedback or expensive optical components such as 

optical phase/frequency modulators[3, 4]. However, as I have pointed out in this chapter, 

that the combining efficiency is reduced by various factors, such as the residual phase 

noise of the OPLLs and the non-zero steady-state operating point of the VCO loop. It is 

not clear to what extent these factors will affect the CBC system when this technology is 

scaled to the combination of a large number of beams. This will be the topic of study in 

the next chapter. 
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Chapter 5 Analysis of the scalability of a 
cascaded filled-aperture coherent beam 
combining system 
5.1. Introduction 

Coherent beam combining (CBC) has been implemented with both tiled-aperture and 

filled-aperture schemes. In both schemes, the combining efficiency (the useful combined 

output optical power divided by the input optical power) is degraded by various noise and 

loss sources, including the relative phase error between the element beams, the 

polarization mismatch, the intensity mismatch, the relative element beam pointing error, 

the absorption and scattering loss of optical components, and a less-than-unity fill factor 

in the tiled-aperture scheme or non-ideal near-field overlap in the filled-aperture scheme. 

Influence of the relative phase error and the less-than-unity fill factor on the combining 

efficiency and beam quality has been studied for the tiled-aperture scheme[52]. Among 

all the factors, the control of the relative phase between the element beams remains the 

most critical and difficult task. In the last chapter, we proposed, analyzed, and 

demonstrated using a full electronic servo system made of multilevel PLLs to address this 

issue. However, the OPLLs introduce some residual phase error between the element 

beams, and the VCO loop introduces a non-zero steady state phase error between the 

element beams. In the presence of these phase errors, a combining efficiency of 94% is 

achieved when combining two beams in fiber. In this chapter, I will study to what extent 

these phase errors will affect a CBC system of combining a large number of beams.  

 The OPLL servo system can be applied to both the tiled-aperture and the 

filled-aperture schemes. Analysis of the combining efficiency of a tiled-aperture scheme 

has been given in [52]. Here I focus on analyzing the combining efficiency of the 

filled-aperture scheme in the presence of various noise sources, particularly the residual 

phase noise of the OPLLs, the frequency jitter of the VCO and the resulting non-zero 
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steady state phase error in the VCO loops, the phase front deformation due to the 

combining beam splitters and mirrors, and the intensity noise. Our analysis will focus on 

the scalability of the system given all the noise sources. A rigorous analysis should 

consider the coupling of all the different factors, which is a very difficult task. Here I will 

assume that they do not affect each other and that one can consider them separately. Since 

high power fiber amplifiers will be used to boost the optical power, the phase noise 

introduced by the fiber amplifier will also be discussed and characterized.  
 

5.2  Combining efficiency of the filled-aperture scheme 

In a filled-aperture CBC scheme, multiple beams can be combined with a combiner such 

as a 1N ×  fiber coupler. Alternatively two beams are overlapped and combined with a 

beam splitter. A cascaded binary-tree scheme can then be used to scale the system to 

combine a large number of beams. Now consider combining N beams at a combiner. The 

combined intensity at the output of the combiner, averaged over time and space, pI , is 

given by  

 ( )
2

, ,p i i
i

I E r r t⊥ ⊥⎡ ⎤= Φ⎣ ⎦∑
G

 (5.1) 

where ( ), ,i iE r r t⊥ ⊥⎡ ⎤Φ⎣ ⎦
G

 is the complex electric field of the individual beam i having a 

phase fluctuation ( ),i r t⊥Φ . ( ),i r t⊥Φ  is a function of both time t and the transverse 

coordinate r⊥
G . The r⊥

G  dependence of iE
G

 allows for the consideration of wave-front 

overlap, e.g., alignment mismatch. The temporal and spatial dependence of ( ),i r t⊥Φ  

allows for the consideration of the degree of mutual coherence and the phase front error 

between the element beams due to the OPLL residual phase noise, the surface 

deformation of the optical components, and the pointing error. 

 Fig. 5.1 shows an example of combining two beams using a beam splitter. Two plane 
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waves, 1E  and 2E , at the same frequency with fixed relative phase are incident upon a 

beam splitter having an amplitude reflectivity r. At the outputs of the beam splitter there 

are two pairs of waves propagating at right angles, whose intensities are given by  

 
( ) ( ) ( )

( ) ( ) ( )

1/ 22 2 2 2 2
1 1 2 1 2

1/ 22 2 2 2 2
2 2 1 1 2

1 2 1 cos

1 2 1 cos

P

P

I E r E r E E r r

I E r E r E E r r

α φ

α φ π

⎡ ⎤= + − + − Δ⎢ ⎥⎣ ⎦
⎡ ⎤= + − + − Δ +⎢ ⎥⎣ ⎦

 (5.2) 

 
Fig. 5.1 Example of coherent beam combining using a beam splitter. r is the reflectivity 
of the beam splitter. 
 

where φΔ  is the phase difference between the two incident waves and α  is a constant 

factor. In the simplest case the two beams possess equal amplitudes, and the beam splitter 

has a 50:50 splitting ratio, i.e., 1 2 01/ 2,  r E E E= = = . In this case Eq. (5.2) is 

simplified to 

 ( ) ( )2 2
1 0 2 01 cos ,  1 cosP PI E I Eφ φ⎡ ⎤ ⎡ ⎤= + Δ = − Δ⎣ ⎦ ⎣ ⎦  (5.3) 

In the ideal case, 0φΔ = , all the input power comes out of output 1 and the combining 

efficiency is 100%. When a position and time dependent phase noise and an intensity 

variation are present, the combining efficiency becomes  

 
( )

( )

2
1 2

1 2

2 2 2
1 2

1 1 1 exp
4

1 11
4 8

pI
r r i

I I

r r

η φ

φ

= = + + +
+

≈ − − +

 (5.4) 
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where 1r , 2r  stands for the relative intensity noise (RIN) of beam 1 and 2, and φ  

represents the differential phase error between the two beams. The bar over 1r , 2r , and 

φ  stands for the averaging over either time or space depending on the situation. In 

obtaining Eq. (5.4) I have assumed that the noises have zero mean and are small enough 

so that the higher order expansion terms can be ignored. To the second-order, the phase 

noise and the intensity noise are not coupled to each other and hence their effects will be 

studied separately. Having understood the effect of noises on combining two beams, I 

will proceed to the analysis of the combination of any number of beams. 

 

 

  Fig. 5.2 Schematic diagram of a 2-level binary-tree filled-aperture CBC system 

 

5.2.1 Effect of OPLLs residual phase noise 

Fig. 5.2 shows a schematic diagram of a 2-level binary-tree filled-aperture CBC system. 

This scheme can be scaled to an arbitrary number of beams 2nN =  where n is the 

number of levels in the binary tree structure. Assuming all the beams have equal 

amplitudes and are perfectly aligned, the combined field takes the form of   
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 0
1

i
N

i
t

i
E E e φ

=

= ∑  (5.5) 

where ( )i tφ  represents the phase of the individual beam i referred to a common 

reference phase plane. The intensity of the combined field is proportional to the square of 

the electric field. Normalizing the combined power by the total input power, one obtains 

the CBC efficiency 

 ( )
2

, 1

1 i j
N i

i j
e

N
φ φη −

=

= ∑  (5.6) 

    I  further assume that iφ  obeys a Gaussian distribution with zero mean and 

variance ( )2 2
i tφ σ= . If iφ  and jφ  are uncorrelated, then 

( ) ( )2
,exp i j i ji eφ φ δ σ⎡ ⎤− = −⎣ ⎦ [52, 63]  where ,i jδ  is the Kronecker's delta. Eq. (5.6) 

then becomes  

 ( )211 1N e
N

ση −−
= − −  (5.7) 

Assuming 2 1σ << , Eq. (5.7) further reduces to  

 ( ) 21
1

N
N

η σ
−

= −  (5.8) 

 As can be seen, the combining efficiency converges to 21 σ−  for a large number of 

beams. In Chapter 2 I have obtained the phase noise of the ith locked slave laser as 

 ( ) ( ) ( ),
1

1 1
op n n

i m fr i
op op

G
s s s

G G
φ φ φ= +

+ +
 (5.9) 

where n
mφ  and ,

n
fr iφ  are, respectively, the phase noise of the master laser and the ith 

slave laser the under free-running condition, and opG  is the open loop transfer function 

of the ith OPLL. If one takes the inverse Fourier transform of Eq. (5.9) and plug it into 
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( ) ( )i jt tφ φ−  of Eq. (5.6), the first term relating to the phase noise of the master laser n
mφ  

will cancel out as long as opG  is the same for different OPLLs. Thus, one concludes that 

the phase noise of the master laser does not affect the combining efficiency, since it acts 

as a common phase reference for all the slave lasers. The second term of Eq. (5.9) is 

uncorrelated among different slave lasers. If the corresponding variance is 2σ , Eqs. (5.7) 

and (5.8) can be used to calculate the degraded combining efficiency. In Fig. 5.3 I  plot 

the combining efficiency calculated with the small signal approximation as a function of 

the rms phase error σ  for N=2 and N=8. The small signal approximation agrees well 

with the Monte Carlo simulation results for small σ .  

 

 

Fig. 5.3 Calculated combining efficiency as a function of the residual differential phase 
noise 

 

From Eq. (5.8), for a given number of beams and a desired combining efficiency, the rms 

phase error has to satisfy 

 ( )1
1

N
N

σ η≤ −
−

 (5.10) 
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e.g, if 8 beams are to be combined with an efficiency 95%η = , the rms phase error has 

to be smaller than 0.24rad . For the IPS OPLL the smallest rms phase error I  have 

measured is around 0.13rad, which ultimately limits the combining efficiency to ~98%.  
 

5.2.2 Effect of the frequency jitter of the VCO  

 

Fig. 5.4 Schematic diagram of a binary-tree filled-aperture CBC system using the VCO 

loops to correct for the optical path-length variation in fibers 
 

In Chapter 4 I discussed the use of a VCO loop to correct for the optical path-length 

variation in fibers. I pointed out that a non-zero steady state phase error between the 

element beams is required to tolerate the frequency jitter of the VCO, and leads to a 

reduced combining efficiency. In this section I will evaluate the influence of the 

frequency jitter of the VCO and the nonzero steady-state phase error on the combining 

efficiency of a cascaded filled-aperture CBC system. 

 In Chapter 4 I derived that the steady state solution of the phase error in the VCO 

loop is 

 ,1
, cos 1 os v f

ev ss
vK

ω ω
φ − −⎛ ⎞

= −⎜ ⎟
⎝ ⎠

 (5.11) 
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where osω  is the frequency of the RF offset signal provided by the signal generator and 

,v fω  is the frequency of the free-running VCO, and vK  is the VCO loop gain. Eq. (5.11) 

has a solution when 

 ( ),0 / 2os v f vKω ω< − <  (5.12) 

The combining efficiency is given by ( )1 cos / 2evφ+ , therefore one wants to minimize 

,ev ssφ  to maximize the combining efficiency. However, if the steady state frequency 

difference ,os v fω ω−  takes a negative value, Eq. (5.11) has no solution which means the 

VCO loop will lose lock. Assume that the frequency jitter of the free-running VCO has 

Gaussian distribution with zero mean and variance ωσ . Obviously, if , 0os v fω ω− =  the 

VCO could only acquire lock half of the time. If one sets ,os v fω ω−  equal to x ωσ , 

where x is a positive number, the quantity ,os v fω ω−  obeys the Gaussian distribution 

with mean value x ωσ  and variance ωσ . The probability for ( ), /os v f vKω ω−  to take a 

negative value is described by the cumulative distribution function of Gaussian 
distribution 

 ( )
21;0,1 exp

22

x uF x du
π

−

−∞

⎛ ⎞
− = −⎜ ⎟

⎝ ⎠
∫  (5.13) 

 If x is small and vKωσ << , the probability that ( ), / 2os v f vKω ω− >  is very small 

and can be ignored. Then the probability that Eq. (5.11) has a solution, or equivalently, 

that the VCO loop can acquire lock, is given by ( )1 ;0,1F x− − . E.g, if one lets 

( ),os v f ss
ω ω−  2 ωσ= , the probability that the VCO loop is in lock is given by 

( )1 2;0,1 97.72%F− − = .  

 In the binary-tree cascaded filled-aperture scheme, a VCO loop is needed each time 

two beams are combined. If 2nN =  beams are to be combined, the number of VCO 
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loops will be 2 1n − (refer to Fig. 5.4). If any one of the VCO loops loses lock, the whole 

system will be disrupted. To simplify the analysis, I assume that the VCO loops are 

uncorrelated, so that the probability that all the VCO loops are in lock is given by 

 ( ) 2 1
1 ;0,1

n

lockP F x
−

⎡ ⎤= − −⎣ ⎦  (5.14) 

 Meanwhile, the combining efficiency is reduced due to the frequency jitter and the 

non-zero ,ev ssφ  even when the system is in lock. At each combining level of the 

binary-tree scheme, the combining efficiency is  

 
( )

,
   

1 cos / 2

1
2

ev

os v f

vK

η φ

ω ω

= +

−
= −

 (5.15) 

In deriving Eq. (5.15) I have used Eq. (5.11). Assuming ,os v fω ω− = x ωσ , the combining 

efficiency of a locked system with n levels is  

 1
2

n

lock
v

x
K
ωση

⎛ ⎞
= −⎜ ⎟
⎝ ⎠

 (5.16) 

Now one takes into account the fact that the system stays in lock only with a certain 

probability. Therefore the true combining efficiency should be the product of lockP  and 

lockη    

 ( ) 2 1
1 ;0,1 1

2

n
n

v

xF x
K
ωση

− ⎛ ⎞
⎡ ⎤= − − ⋅ −⎜ ⎟⎣ ⎦

⎝ ⎠
 (5.17) 

lockP  is a monotonously increasing function of x , while lockη  is a monotonously 

decreasing function of x  in the range 0 / 2vx Kωσ< <  where Eq. (5.11) has a solution. 

Hence an optimal value of x can be chosen to maximize the efficiency described by Eq. 

(5.17). In Fig. 5.5(a) I plot the combining efficiency as a function of the normalized 

frequency detuning ( ), /os v fx ωω ω σ= −  for a given normalized frequency jitter 

/ 0.05vKωσ = . For each value of n, an appropriate value of x can be chosen to maximize 
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the overall combining efficiency. 
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Fig. 5.5 (a) Combining efficiency as a function of the normalized frequency detuning 

( ), /os v fx ωω ω σ= −  given / 0.05vKωσ = . A maximum value can be reached by picking 

the appropriate value of x. (b) Maximum combining efficiency as a function of the 

normalized VCO frequency jitter / vKωσ . osω  is the frequency of the RF offset signal 

provided by the signal generator, ,v fω  is the frequency of the free-running VCO, ωσ  is 

the rms frequency jitter of the VCO, and vK  is the VCO loop gain. The number of 

element beams is 2n .  

 

 In Fig. 5.5(b) I plot the maximum combining efficiency as a function of the 
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normalized frequency jitter / vKωσ  for different values of n. The combining efficiency 

drops quickly with the increase of both / vKωσ  and n. To combine a large number of 

beams, it is therefore critical to have a small value of / vKωσ  to achieve a high 

combining efficiency. In the CBC experiment with one VCO loop presented in Section 

4.3.2, I estimate the combining efficiency lost about 2% due to the residual phase error in 

the OPLLs and 4% due to the non-zero steady state phase error due to the frequency jitter 

of the VCO. The corresponding value of / vKωσ  is about 0.03. As I have pointed out in 

Section 4.3.2.c, one solution to reduce / vKωσ  is to reduce ωσ , e.g., to use a cleaner 

VCO with smaller frequency jitter. Another solution is to increase vK  using a lag-lead 

filter. With such a filter / vKωσ  can be reduced by an order of magnitude, and the 

combining efficiency penalty due to this steady state phase error can be reduced to less 

than 10% even for n = 7 (128 element beams). 

 

5.2.3 Effect of phase front deformation due to optical components 

Optical components such as beam splitters and reflection mirrors used in the combining 

system introduce phase front deformations in addition to absorption and scattering losses. 

Though this noise source has nothing to do with the OPLL servo system, I would like to 

emphasize it here because its influence on the combining efficiency could be more 

significant than that of the phase error in the OPLLs and the VCO loops I have analyzed. 

 I use Eqs. (5.6) and (5.7) to calculate the combining efficiency. In this case the bar in 

Eq. (5.6) represents averaging over space instead of time. Two beams passing through the 

same beam splitter or reflected by the same mirror will see the same phase front 

deformation. Thus the phase front deformations of the two beams are correlated. This 

scenario is illustrated in Fig. 5.6(a). Beam 1 and 2 are combined at beam splitter 1 and 
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see the same phase front deformation 1φ . Beam 3 and 4 see the same phase front 

deformation 2φ , and beam 1,2,3 and 4 also see the same phase front deformation 3φ , etc. 

A second scenario is illustrated in Fig. 5.6(b). This happens, for example, when two 

beams are combined at a beam splitter, where one beam is transmitted through it and the 

other one is reflected. Hence the two beams see different phase front deformations.  

   

Fig. 5.6 Two scenarios of phase front deformation caused by the combining optics 

 
 I first look at scenario 1. The phase front deformations caused by different beam 

splitters should be uncorrelated and I will assume that the deformations obey Gaussian 

distribution with zero mean and variance 2σ . One can define a distance function 

between any two individual laser beams labeled by index i and j, 

 ( ) 22 log ,    
,

0,                        

i j i j
D i j

i j

⎧ ⎡ ⎤− ≠⎪ ⎣ ⎦= ⎨
=⎪⎩

 (5.18) 

( ),D i j  indicates the number of different beam splitters (or mirrors) which the beams i 

and j go through. For example, in Fig. 5.6(a) ( )1, 2 0D =  because beam 1 and 2 go 

through the same beam splitters, and ( )1,3 2D =  because beam 1 and 3 go through two 

different beam splitters. The combining efficiency can then be calculated as  

 ( ) ( ) 21 ,
2

2 2
, 1 , 1

1 1i j
N N D i ji

i j i j
e e

N N
σφ φη

−−

= =

= =∑ ∑  (5.19) 
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where the total number of beams is 2nN = . An analytical result can be obtained using 

mathematical recursion if the small error approximation is assumed  

 
( )

( ) ( )
21 , 2 22 1 11 , ,   , 1

2 2
D i j

e D i j D i j
σ

σ σ
−

≈ − <<  (5.20) 

Eq. (5.19) then reduces to 

 ( )
2 2

2
2

, 1

1 2 ,
22

n

n
n

i j
D i jση

=

⎛ ⎞
= −⎜ ⎟⎜ ⎟

⎝ ⎠
∑  (5.21) 

If one defines the function ( ) ( )
2

, 1
,

n

i j
f n D i j

=

= ∑ , then  

 ( ) ( ) ( )
1 1 1 12 2 2 2 2 2 2

, 1 , 1 1 1, 2 1 2 1 2 1

1 , ,
n n n n n n n

n n ni j i j i ji j j i

f n D i j D i j
+ + + +

= = = == + = + = +

⎛ ⎞
⎜ ⎟+ = = + + +
⎜ ⎟
⎝ ⎠

∑ ∑ ∑ ∑ ∑ ∑ ∑  (5.22) 

Since ( ),D i j  only depends on the difference of the indices i j− , the first two terms 

in Eq. (5.22) are the same and are equal to ( )f n . The other two terms are also equal to 

each other. Therefore Eq. (5.22) becomes  

 

( ) ( )

( )

1

1

2 2

2
1 2 1

2 2

1 2 1

1 2 2 2 log

2 2 2

n n

n

n n

n

i j

i j

f n f n i j

f n n

+

+

= = +

= = +

⎡ ⎤+ = + −⎣ ⎦

= +

∑ ∑

∑ ∑
 (5.23) 

Using mathematical recursion one obtains 

 ( ) 3 1

1
1 2 2

n
n i

i
f n i+ −

=

+ = ∑  (5.24) 

Using the mathematical relation 

 ( )
( )

'' 1
1

2
1 0

1 11
1 1

nnn n
i i

i i

nx n xxix x
x x

+
−

= =

⎛ ⎞ − − +⎛ ⎞ −
= = =⎜ ⎟⎜ ⎟ − −⎝ ⎠ ⎝ ⎠

∑ ∑  (5.25) 

and after some algebra one obtains  

 ( ) 2 1 2( 2)2 2n nf n n + += − +  (5.26) 
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Substituting Eq. (5.26) back into Eq. (5.21) gives us the combining efficiency  

 1 21 ( 2) 2 nnη σ−⎡ ⎤= − − +⎣ ⎦  (5.27) 

 For the second scenario described in Fig. 5.6(b), calculating the combining efficiency 

is not so straightforward. However one can make a slight modification of the diagram Fig. 

5.6(b) to make it similar to Fig. 5.6(a). Take any triangle in the tree structure of Fig. 

5.6(b), one can split the phase front error φ  in one arm into two uncorrelated phase front 

errors 1φ  and 2φ  on both arms and let 2 2 2
1 2

1
2

φ φ φ= = =  21
2
σ , as displayed in Fig. 

5.7. Next I will prove that Fig. 5.7(a) and Fig. 5.7(b) have equivalent contribution to the 

combining efficiency calculated using Eq. (5.19). 

 

Fig. 5.7. Splitting (a) the one-side phase error into (b) two-side phase errors. Four cases 

need to be considered to calculate the combining efficiency (Eq. (5.19)). Case 1: both 

beams i and j are from the same node a or b. Case 2: one beam is from node a and the 

other beam is from node b. Case 3: one beam (e.g. i) is from this triangle and the other 

beam is not. i’ is the image of beam i in this triangle. Case 4: neither i nor j goes through 

this triangle.  

 

 There are four cases that arise while calculating the contribution of this triangle to 
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any two beams i and j in Eq. (5.19). In the first case, both the beams i and j come in 

through the same node in Fig. 5.7 (either a or b). This triangle adds a common phase front 

error to the beams i and j. Therefore both Fig. 5.7(a) and Fig. 5.7(b) have no contribution 

to the quantity ( )2
i jφ φ−  in Eq. (5.19). In the second case, where one beam comes in 

through node a and the other beam through node b, both triangles in Fig. 5.7(a) and Fig. 

5.7(b) contribute the same amount 2 2 2
1 2φ φ φ+ =  to ( )2

i jφ φ− . The third case happens 

when one beam (e.g. i) goes through either node a or node b, and the other beam (e.g. j) 

does not go through this triangle. In this case one can always find the image beam i’ of 

beam i going through this triangle. If we calculate the contribution of this triangle to the 

quantity ( ) ( )2 2
'i j i jφ φ φ φ− + − , Fig. 5.7(a) and Fig. 5.7(b) are the same. The fourth case 

is when neither beam i nor j goes through this triangle, and splitting the phase front error 

does not change anything. Therefore Fig. 5.7(a) and Fig. 5.7(b) are equivalent under the 

small signal approximation.  

 With the above modification, scenario 2 (Fig. 5.7(b)) is similar to scenario 1 (Fig. 

5.7(a)) and Eq. (5.21) accordingly changes to  

 ( )
2 2

2
2

, 1

1 / 22 ,
22

n

n
n

i j
D i jση

=

⎛ ⎞
= −⎜ ⎟⎜ ⎟

⎝ ⎠
∑  (5.28) 

with   

 ( ) 22 log 1 ,    
,

0,                        

i j i j
D i j

i j

⎧ ⎡ ⎤− + ≠⎪ ⎣ ⎦= ⎨
=⎪⎩

 (5.29) 

Using the same mathematical recursion one obtains 

 ( ) ( )
2

2 1 2 2 1 1

, 1
, ( 2)2 2 2 2 1 2 ( 1)2 2

n

n n n n n n

i j
D i j n n+ + + +

=

= − + + − = − +∑  (5.30) 

and the combining efficiency is 

 1 211 2
2

nnη σ− −−⎡ ⎤= − +⎢ ⎥⎣ ⎦
 (5.31) 
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 One can observe from Eqs. (5.27) and (5.31) that the combining efficiency drops 

linearly with the number of levels in the tree structure n=log2N. Typical rms phase front 

deformations of optical components are about / 40λ  [64]. If N = 8 beams are to be 

combined, the maximum efficiency limited by phase front deformation is about ~ 97%η . 

This efficiency penalty is comparable to that caused by the residual phase noise in OPLLs 

and the non-zero steady state phase error in the VCO loops. Since it increases linearly 

with log2N, optical components of superior surface flatness have to be used if a large 

number of beams are to be combined. 

 

5.2.4 Effect of intensity noise 

The combining efficiency can also be degraded by intensity noise, as indicated in Eq. 

(5.4). The intensity noise could arise from the relative intensity noise (RIN) of the slave 

lasers, the fiber amplifiers, or just the amplitude mismatch errors between the element 

beams. Assume that there is no phase noise and that the amplitude of the ith beam takes 

the form of ( )0 1i iE E r= + , where ir  is the relative amplitude fluctuation with zero 

mean and variance 2 2
ir δ= . The efficiency of combining N beams affected by the 

intensity noise can then be calculated as 

 2

1 1

1 1/ 1 1
N N

p i i
i i

I I r
N N

η
= =

⎛ ⎞= ≈ − −⎜ ⎟
⎝ ⎠

∑ ∑  (5.32) 

If all the beams have similar intensity fluctuations, the combining efficiency 

converges to 21η δ= −  for a large number N and the efficiency penalty does not 

increase with the number of beams. 

 The free-running RIN of state-of-the-art SCLs is typically very small. I have 
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characterized the RIN of the IPS lasers used in CBC by detecting the power with a 

photodetector and measuring the output on an oscilloscope. The bandwidth of the 

photodetector is 12GHz and the bandwidth of the oscilloscope is 500MHz. The measured 

rms RIN is 2e-4, which is limited by the shot noise and photodetector electronic noise. 

Since the rms residual phase noise in the OPLLs is about 0.12rad, in Eq.(5.4) the third 

term is much smaller than the second term and can thus be ignored safely. 

 Additional intensity noise can also be introduced by the OPLL feedback current. 

Since the current feedback is used to control the relative phase error between the slave 

laser and the master laser, the intensity of the slave laser can also be modulated and the 

magnitude needs to be carefully checked.  

 Here I only want to estimate the magnitude of the intensity noise caused by the 

feedback current. Assuming that the FM responses of the circuit and the laser are flat, the 

current fed back into the SCL is  

 0 sin ei i φ=  (5.33) 

where eφ  is the detected phase difference between the master laser and the slave laser, 

and 0i  is a constant deciding the loop gain. Assume the intensity modulation 

responsivity is AMK , the intensity modulation is 0 sinAM eP K i φΔ =  and the RIN is 

 0 0
0

/ sinAM
s e

Kr P P i
P

φ= Δ =  (5.34) 

where 0P   is the DC optical power. AMK  can be estimated from the slope of the P-I 

curve of the slave laser, i.e., 

 ( )0 /AM thK P I I= −  (5.35) 

where thI  is the threshold current. In Eq. (5.33) 0i  determines the holding range of the 

OPLL and can thus be calculated by 

 0 /h FMi f K= Δ  (5.36) 
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where hfΔ  is the holding range and FMK  is the FM responsivity of the SCL. 

Substituting Eqs. (5.35) and (5.36) in Eq. (5.34) one obtains the RIN 

 ( ) ( ) ( )sinh
s e

th FM

fr t t
I I K

φΔ
=

−
 (5.37) 

 Using the typical parameters of the IPS laser OPLL 200hf MHzΔ ≈ , 

300thI I mA− ≈ , 200 /FMK MHz mA≈ , Eq. (5.37) gives ( ) ( )1 sin
300s er t tφ= . Thus the 

RIN introduced by the feedback current is at least two orders of magnitude smaller than 

the residual phase noise of the OPLL, and its effect on the combining efficiency can be 

neglected. 

 

5.2.5 Effect of fiber amplifier phase noise 

SCLs have relatively low output power. To achieve high average power, tens of 

thousands of SCLs need to be combined, which is very difficult to do. State-of-the-art 

fiber lasers or fiber amplifiers can emit single frequency beams of hundreds of watts with 

diffraction limited beam quality. An alternative option to obtain high average power is to 

use the locked slave laser to seed tens of high power fiber amplifiers, whose output 

beams are then coherently combined. Since CBC is very sensitive to phase noise, the 

phase noise introduced by the fiber amplifiers needs to be examined.  

 Historically there have been two different models proposed to explain the effects of 

fiber amplifier phase noise. The first model assumes that the amplified spontaneous 

emission (ASE) in the fiber amplifier adds a multiplicative phase term to the electrical 

field at the output of the optical amplifier[65, 66], i.e., 

 ( )( )
0( ) . . ai ti t i t

outE t GE e e e φφ ω=  (5.38) 

where 0E  is the amplitude of the signal at the amplifier input，G is the optical gain of 

the amplifier， ( )tφ  is the phase of the input signal, and ( )a tφ  is the phase noise 
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introduced by the amplifier.  

 This multiplicative phase noise model predicts a linewidth broadening of the signal. 

Following the derivation in [66], one arrives at an expression for the linewidth 

broadening due to ASE in the fiber amplifier: 

 
( )22 3. 1

4
sp s

in

n h G
GP

ν ν
δν

π
Δ −

=  (5.39) 

where nsp~1 is the spontaneous emission factor, svΔ  is the input signal linewidth, v  is 

the optical frequency, and Pin is the power of the input signal. 

 It was further pointed out in [66] that if the effect of ASE is taken into account only 

over the fiber amplifier bandwidth B0, the predicted linewidth broadening is much smaller, 

given by 

 
( )0

0
1

4
sp

in

n h B G
B

GP
ν

δν
π

−
=  (5.40) 

 However, more recent investigations into fiber amplifier phase noise have revealed 

that this multiplicative model may not be accurate[67, 68]. Instead, an additive noise 

model has been proposed, where the output field is given by 

 ( )( )
0( ) . . . ai ti t i t i t

out nE t GE e e E e e φφ ω ω= +  (5.41) 

where En is the amplitude of the ASE noise within the signal bandwidth. The signal-to- 

noise ratio of an unsaturated fiber amplifier is given by [39] 

 
1

in

soutput

PS G
N h Gμ ν ν

⎛ ⎞
=⎜ ⎟ Δ −⎝ ⎠

 (5.42) 

where μ is the population inversion factor (μ ≈ 1).  

 Since the predicted linewidth broadening (Eq. (5.39) or (5.40)) of the first model can 

be much smaller than the signal linewidth, a self-heterodyne balanced interferometer 

experiment as shown in Fig. 5.8(a) is usually employed to measure the linewidth 

broadening. This measurement removes the phase noise of the laser source, and is 

therefore more sensitive[68]. In this measurement, when the fiber amplifier is turned off, 
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one should see a delta function as shown in Fig. 5.8(b). When the amplifier is on, if the 

phase noise is multiplicative, one expects to see a Lorenzian lineshape as given in Fig. 

5.8(c). If the phase noise is additive, one expects to see a delta function with a Lorenzian 

pedestal, whose width is determined by the sum of the laser and amplifier phase noise. 

The ratio of the signal power to the noise power (area under the Lorenzian pedestal) is 

given by Eq. (5.42).  

 
SA: Spectrum analyzer,  PD: photodetector 

Fig. 5.8 (a) Self-heterodyne fiber amplifier phase noise measurement setup.  (b)-(d) 
Predicted beat spectra with (b) no amplifier noise, (c) multiplicative phase noise, and (d) 
additive phase noise  

995 1000 1005
-100

-90

-80

-70

-60

-50

-40
RB:10kHz  
VB:0.3kHz 

-400 -200 0 200 400

-120

-100

-80

-60

-40

 RB:1Hz 
 VB:1Hz 

(a) (b)

 

Fig. 5.9 Experimental results of the self-heterodyne fiber amplifier phase noise 
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measurement with span of (a) 10MHz and (b) 1kHz 

 

 I conducted a self-heterodyne balanced interferometer experiment as shown in Fig. 

5.8(a). A 1064 nm IPS external cavity SCL is used to seed a Nufern 3 W Yb-doped fiber 

amplifier. A phase modulator is used as the frequency shifter. In Fig. 5.9, I plot the 

measured spectrum with a span of 10 MHz and 1kHz. I see neither any observable 

linewidth broadening down to the resolution limit of the spectrum analyzer (~ 1 Hz) nor a 

noise pedestal down to the noise floor (67 dB below the signal level). However Fig. 5.9(b) 

shows the presence of many noise peaks, which are mainly the harmonics of the power 

line frequency (60 Hz) and are more than 20dB lower than the signal. This noise results 

from the acoustic noise picked up by the fiber. I replaced the amplifier with a passive 

fiber of equivalent length (~30m) and observed the same noise peaks.  

Laser 1

Laser 2
(Reference)

(Slave)
PD 1

PLL

SA 1 PD 2

SA 2

Heterodyne PLL at 1.5 GHz

PD: Photodetector,
SA: RF Spectrum Analyser
PLL: Phase Lock Loop

Equivalent delay (~31 m)

G

Fiber Amplifier

-10 0 10

-80

-70

-60

-50

-40

-30

-20

RB:30kHz 
VB:0.3kHz 

-10 0 10
-90

-80

-70

-60

-50

-40

-30

RB:30kHz 
VB:0.3kHz 

(a)

(b) (c)

Laser 1

Laser 2
(Reference)

(Slave)
PD 1

PLL

SA 1 PD 2

SA 2

Heterodyne PLL at 1.5 GHz

PD: Photodetector,
SA: RF Spectrum Analyser
PLL: Phase Lock Loop

Equivalent delay (~31 m)

G

Fiber Amplifier

Laser 1

Laser 2
(Reference)

(Slave)
PD 1

PLL

SA 1 PD 2

SA 2

Heterodyne PLL at 1.5 GHz

PD: Photodetector,
SA: RF Spectrum Analyser
PLL: Phase Lock Loop

Equivalent delay (~31 m)

G

Fiber Amplifier

-10 0 10

-80

-70

-60

-50

-40

-30

-20

RB:30kHz 
VB:0.3kHz 

-10 0 10
-90

-80

-70

-60

-50

-40

-30

RB:30kHz 
VB:0.3kHz 

(a)

(b) (c)

-10 0 10

-80

-70

-60

-50

-40

-30

-20

RB:30kHz 
VB:0.3kHz 

-10 0 10
-90

-80

-70

-60

-50

-40

-30

RB:30kHz 
VB:0.3kHz 

-10 0 10

-80

-70

-60

-50

-40

-30

-20

RB:30kHz 
VB:0.3kHz 

-10 0 10
-90

-80

-70

-60

-50

-40

-30

RB:30kHz 
VB:0.3kHz 

(a)

(b) (c)

 

Fig. 5.10 (a) Experimental setup to measure the fiber amplifier phase noise added to the 
OPLL. (b) and (c) Beat spectra at the photodetectors PD1 and PD2 in (a).  
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 I also performed a direct measurement of the amplifier phase noise added to the 

OPLL as shown in Fig. 5.10(a). The slave laser is phase locked to the master laser with a 

frequency offset osω , amplified and then beat with the master laser in a balanced 

interferometer to remove the effect of the master laser phase noise. Comparing Fig. 

5.10(b) to Fig. 5.10(c), I do not see any effect of phase noise added by the amplifier. In 

fact, the multiplicative phase noise model[66] predicts a linewidth broadening of less 

than 1Hz for an laser linewidth of 500 kHz, fiber amplifier gain of 40, and an input power 

level of 75 mW in our case. The additive phase noise model predicts a signal-to-noise 

ratio[39] of ~120 dB. In either case, the effect of ASE in the fiber amplifier is far below 

our measurement sensitivity and can be safely neglected compared to the other factors 

reducing the combining efficiency. While the amplifier does introduce a lot of thermal 

phase variation [25] and picks up acoustic noise, these variations are at very low 

frequency compared to the VCO loop bandwidth of ~100kHz discussed in chapter 4 and 

should be significantly suppressed by the VCO loops. 

 

5.3 Conclusion 

In Chapters 4 and 5, I have presented a detailed study using OPLLs to coherently 

combine optical beams. The full electronic servo system enabled by the OPLLs 

technology eliminates the need for optical phase shifters and should significantly reduce 

the cost and size of the system. In the preliminary experiment of combining two laser 

beams, a promising combining efficiency of 94% is achieved. This approach can be 

applied to both tiled-aperture and filled-aperture CBC implementations. In either case, 

the efficiency penalty due to the residual phase noise of the OPLLs is less than 2% if IPS 

external cavity lasers are used. In the filled-aperture approach, the efficiency penalty 

caused by the phase error in the VCO loops and the phase front deformation scales up as 

~log2N. This poses a serious challenge if a large number of beams are to be combined. 
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Fortunately, with the power of single-mode fiber amplifiers reaching hundreds of watts 

and even kilowatts, combining tens of beams can scale the power up to the regime of 

10kW or even 100kW.  
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Chapter 6 Coherence cloning using OPLLs 
6.1 Introduction 

Ultra-stable lasers with narrow linewidth and long coherence length are required for 

applications such as various types of interferometric sensing, Doppler LIDAR, gas 

detection, frequency metrology, RF signal generation, and coherent communications[4, 

40, 69, 70]. The requirement of the linewidth could vary from MHz to sub Hz, depending 

on the particular application. For the short distance fiber optical sensing, linewidths of a 

few kHz might be enough. For ground based or space borne gravitational wave detection 

(VIRGO, LIGO) [71], or RF reference signal distribution in large radiotelescope arrays 

(ALMA) [71], accurate measurement of tens to millions of km with a resolution of sub 

micrometer requires the laser to have a sub-Hz linewidth[71].  

 To achieve a narrow linewidth, an extended optical cavity with very high quality 

factor is usually used. For example, gas lasers, solid state lasers or fiber lasers with long 

cavity can have linewidth of a few kHz [72]. Electrical feedback can also be used to 

further narrow the linewidth of the laser. Very stable Fabry-Perot intefereometers with 

very high finesse, or the narrow absorption lines of certain gases have been used as 

frequency discriminators to detect and reduce a laser’s frequency noise over a limited 

frequency bandwidth[40, 70]. Using this approach, lasers with linewidths of sub-Hz have 

been demonstrated for precision frequency standard synthesis with optical clocks[30, 31]. 

However these lasers are typically bulky and very expensive due to the complexity of the 

frequency stabilizing system. 

 Semiconductor lasers typically have linewidth of between a few hundred kHz and a 

few MHz due to the low reflectivity of the laser waveguide facet and the linewdith 

broadening effect[73-76]. Using optical feedback from an external cavity, their linewidths 

can be reduced to a few kHz. However, the long laser cavity makes it more challenging to 

achieve stable single frequency operation, and a great deal of effort is necessary for 

packaging to mechanically isolate the cavity. The linewidth of SCLs has also been 
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reduced with the electric feedback approach using either a Fabry-Perot interferometer or 

the absorption line of gases[40, 70]. No matter which approach is used, the advantages of 

SCLs such as their small size and low cost are lost. 

 In an ideal OPLL, the slave laser tracks the phase of the master laser instantaneously 

and thus inherits the coherence property of the master laser. It only takes low cost SCLs 

and electronic circuits to make OPLLs, which provides an economic way of cloning the 

superior coherence property of an expensive master laser. This could be very attractive 

for applications where a large number of coherent laser sources are needed.  

 Another advantage of heterodyne OPLL is the additional flexibility of controlling the 

frequency of the slave laser by using an RF offset signal. Once a fixed frequency standard 

is established, e.g., using a gas absorption line or an optic clock, a tunable narrow 

linewidth laser source can be made using the heterodyne OPLL technology. A frequency 

tuning range of up to 100GHz can be achieved with the state-of-the-art RF 

electronics[21].  

 In this chapter I will study the cloning of the coherence of a narrow linewidth laser to 

inexpensive off-the-shelf commercial SCLs with the OPLLs. I will first summarize the 

description of the frequency stability and the coherence of a single frequency laser. 

Different experimental methods of characterizing the frequency stability will also be 

discussed. Afterwards I shall give the theoretical calculation of the frequency or phase 

noise, the Allan deviation, the degree of coherence, and the lineshape of a SCL phase 

locked to a cleaner master laser. Finally the experimental measurements will be presented 

and discussed. 

  

6.2 Phase noise and frequency stability of a single frequency laser  

6.2.1 Phase and frequency fluctuations of an oscillator 

The optical field of a single frequency laser is modeled as a quasimonochromatic field  
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 ( ) ( )0 0exp 2E t E j v t tπ φ⎡ ⎤= +⎣ ⎦  (6.1) 

where 0v  is the average optical frequency and ( )tφ  is the phase fluctuation. The 

intensity noise is not considered here because in semiconductor lasers its integrated 

power is much smaller than that of the phase noise.  

 The frequency stability of a laser can be characterized in both the time domain and 

the frequency domain. In the time domain, traditionally two random variables are widely 

used to characterize the frequency stability of an oscillator. They are the fractional phase 

fluctuation ( )x t  and the fractional frequency fluctuation ( )y t , which are defined 

as[77] 

 ( ) ( ) ( ) ( )
0 0

   and   
2 2

t t
x t y t

v v
φ φ
π π

= =
�

 (6.2) 

Note that ( )x t  also represents the time jittering of the clock signal described by Eq. 

(6.1). The absolute phase fluctuation is related to ( )x t  by ( ) ( )02t v x tφ π=  and the 

absolute frequency fluctuation is ( ) ( )0/ 2t v y tφ π =� .  

 

6.2.2 Power spectral density of the phase or frequency fluctuation  

In actual experimental measurement people typically measure the single-sided power 

spectral density (PSD) of the fractional frequency fluctuation, i.e. , ( )yS f . The PSD of 

the fractional phase fluctuation, the absolute phase fluctuation, and the absolute 

frequency fluctuation are related to ( )yS f  by  

 ( ) ( )
( )

( ) ( ) ( ) ( ) ( )2 2
0 02 ,    2 ,     

2
y

x x v y
S f

S f S f v S f S f v S f
f

φ π
π

= = =  (6.3) 

 Actual experimental practice shows that the single-sided PSD of the fractional 

frequency fluctuations in most oscillators generally takes a polynomial form[2, 78] 
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 ( )
2

2
yS f h f αα

α=−
= ∑  (6.4) 

with     a=2: white phase noise 
     a=1: flicker phase noise   
     a=0: white frequency noise  
     a=-1: flicker frequency noise   
     a=-2: random walk frequency noise  
 Depending on the detailed composition of an oscillator, the PSD of the frequency 

fluctuation can have a few non-zero polynomial components. Low values of “a” have not 

been clearly identified yet because of experimental difficulties related to very long term 

data acquisition and to the control of experimental conditions for long time. In practice 

the finite duration of measurements introduces a low frequency cutoff which prevents the 

divergence of ( )yS f  as 0f →  for a<0. Furthermore, low pass filtering is always 

present in the measuring instruments, which ensures convergence conditions at the 

higher-frequency side of the power spectrum. 

 Experimental studies of the power spectral density of frequency noise and the 

lineshape have shown that the main contributions in single-mode semiconductor lasers 

are the white frequency noise due to spontaneous emission, and the 1/f flicker noise due 

to the fluctuation of charge carriers[32, 79-82]. The white frequency noise leads to the 

well known Lorentzian lineshape and the presence of the 1/f noise leads to a Voigt profile 

resulting from the convolution of a Lorentzian lineshape with a Gaussian lineshape[32, 

80]. The 1/f noise dominates at low frequency and becomes pronounced only in 

measurements of long duration. In the following theoretical description I only consider 

the white frequency noise for the sake of simplicity.  

 

6.2.3 Autocorrelation, coherence and linewidth of an optical field 

The autocorrelation of the field and its temporal coherence are very important concepts 

widely used in many interferometric measurements. The optical field autocorrelation 

function is a measurement of the coherence between an optical signal and the delayed 
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version of itself, i.e.,  

 ( ) ( ) ( ) ( ) ( ) ( )1 *
0exp , expEG E t E t j t jτ τ φ τ ω τ⎡ ⎤= + = Δ⎣ ⎦  (6.5) 

where τ  is the delay time, ( ) ( ) ( ),t t tφ τ φ τ φΔ = + −  is the phase jitter between time t  

and t τ+ , and  represents averaging over infinite time. The Fourier transform of 

( ) ( )1
EG τ  gives the spectrum, or the lineshape, of the optical field. 

 In general it is very difficult to calculate the field autocorrelation function given by 

Eq. (6.5). For the spontaneous emission induced quantum phase noise, the phase jitter 

( ),tφ τΔ  is assumed to be a zero-mean stationary random Gaussian process[83-86]. With 

this assumption, one can use the well known relation [87]  

 ( ) ( )2exp , exp / 2j tφ τ φ τ⎡ ⎤⎡ ⎤± Δ = − Δ⎣ ⎦ ⎣ ⎦  (6.6) 

and the laser field autocorrelation function is simplified to 

 ( ) ( ) ( ) ( )1 2
0

1exp exp
2EG jτ φ τ ω τ⎡ ⎤= − Δ⎢ ⎥⎣ ⎦

 (6.7) 

The absolute value of ( ) ( )1
EG τ  as a function of τ  can be used to measure the degree of 

coherence of an optical field. The mean square phase jitter ( )2φ τΔ  is related to the 

single-sided frequency noise spectrum ( )S fν  by[87] 

 ( ) ( ) ( )2 2
2

0

4 sin dff S f
fνφ τ π τ

+∞

Δ = ∫  (6.8) 

 Next I will use two examples to illustrate how the degree of coherence and the 

lineshape of the field can be obtained from the PSD of the frequency fluctuation.  

 

6.2.4 Example: white frequency noise 

White frequency noise due to spontaneous emission is the primary noise source in 

semiconductor lasers. The corresponding single-sided PSD is ( ) /S f fν π= Δ [39, 73, 84], 
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leading to the mean square phase jitter ( )2φ τΔ  increasing linearly with the delay τ  

 ( )2 2 fφ τ π τΔ = Δ  (6.9) 

where fΔ is the FWHM of the laser spectrum. Substituting Eq. (6.9) into Eq. (6.7), the 

degree of coherence is simply an exponentially decaying function 

 ( ) ( ) [ ]1 expEG fτ π τ= − Δ  (6.10) 

 
 By taking the Fourier transform of the autocorrelation function, the normalized 

lineshape corresponding to the white frequency noise exhibits the well known Lorentzian 

shape  

 ( )
( ) ( )22

0

/ 2

/ 2
E

fS f
f f f

πΔ
=

Δ + −
 (6.11) 

 

6.3 Experimental methods of measuring the frequency stability 

The experimental characterization of the frequency stability or coherence of a single 

frequency laser can be conducted both in the time domain and the frequency domain.  In 

the time domain, a frequency counter can be used to record the beat note between two 

independent lasers, where either the reference laser has significantly lower noise than the 

device under test, or both lasers have similar performance. This method can achieve very 

high resolution. However, it requires a second laser and can be inconvenient. In the 

frequency domain, one can convert frequency fluctuations into intensity fluctuations 

using a frequency discriminator, such as an unbalanced Mach Zehnder interferometer or a 

high-finesse reference cavity[38]. By measuring the PSD of the resultant intensity 

fluctuations, one obtains the PSD of the frequency fluctuations.The linewidth or 

lineshape of the optical field is another indicator of the coherence of a single frequency 

laser. To measure the linewidth or lineshape, one often uses the delayed self-heterodyne 

inteferometer (DSHI) technique, which involves measuring the beat note between the 

http://www.rp-photonics.com/beat_note.html


 

 

107

laser output and a frequency-shifted and delayed version of itself.  

 

6.3.1 Time domain measurement of the frequency fluctuation 

Assuming that a frequency counter is used to measure the fractional frequency averaged 

over time interval [ ],k kt t τ+  

 ( )1 ' 'k

k

t
k t

y y t dt
τ

τ
+

= ∫  (6.12) 

If the time interval between two consecutive measurements is T, the N-sample variance of 

ky  will be  

 ( )
21

2

0 0

1 1, ,
1

N N

y k k
k k

N T y y
N N

σ τ
−

= =

⎛ ⎞
= −⎜ ⎟− ⎝ ⎠

∑ ∑  (6.13) 

The dependence of the expectation value of the N-sample variance on the number of 

samples N, the sample time τ , and the power spectral density has been considered by 

Allan[88]. It can be shown that the computation of the average of the N-sample variance 

introduces a filtering of the PSD ( )yS f [77] 

 ( ) ( ) ( ) 22
0

, ,y yN T S f H f dfσ τ
∞

= ∫  (6.14) 

where ( )H f  is the transfer function of a linear filter 

 ( )
2 2

sin sin1
1 sin

N f fNTH f
N f N fT

π τ π
π τ π

⎧ ⎫⎡ ⎤ ⎡ ⎤⎪ ⎪= −⎨ ⎬⎢ ⎥ ⎢ ⎥− ⎣ ⎦ ⎣ ⎦⎪ ⎪⎩ ⎭
 (6.15) 

The expectation value of the two-sample variance without dead time, i.e., N = 2 and 

T τ= , is called the Allan variance and is generally accepted as the measure of frequency 

stability in the time domain. One sets  

 
( ) ( ) ( )

( ) ( )
( )

22 2
1

4

20

12, ,
2

sin
          =2

y y k k

y

y y

f
S f df

f

σ τ σ τ τ

π τ

π τ

+

∞

= = −

∫
 (6.16) 

The square root of the Allan variance is called the Allan deviation ( )yσ τ .  
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 The Allan deviation is useful for characterizing a frequency source because of the 

type of phase noise present is revealed by the dependence of ( )yσ τ  on τ . For example, 

for white frequency noise, ( ) 1/ 2
yσ τ τ −∝ . For the Allan deviation to reliably reflect the 

type of noise present, it is crucial that there should be no dead time between consecutive 

average frequency measurements used to determine ( )yσ τ . 

 

6.3.2 Frequency domain measurement 

In this section I introduce the different methods of measuring the frequency fluctuation 

and lineshape of lasers in the frequency domain. 

 

Laser
Freq. shifter

PD SA
SMFLaser

Freq. shifter

PD SA
SMF

 

Fig.6.1 Schematic diagram of the delayed self-heterodyne interferometer lineshape 

measurement setup 

 
 Fig. 6.1 gives a schematic diagram of the delayed self-heterodyne interferometer 

setup. The delay line must be longer than the coherence length of the laser to measure the 

lineshape. It can also be used as a frequency discriminator to measure the frequency noise 

spectrum if the delay is kept much shorter than the coherence length and the frequency 

shifter is removed. Assume the detected total field is a superposition of a laser field ( )E t  

expressed by Eq. (6.1) with a time-delayed and frequency-shifted image of itself[89] 

 ( ) ( ) ( )0 exp 2TE t E t E t j tα τ π= + + Ω  (6.17) 

α  is a real factor which accounts for the amplitude ratio between the two mixed fields, 

Ω  is the mean frequency difference between the two mixed fields.  
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 The photo current is proportional to the optical field intensity. Assuming stationary 

fields, to find the spectrum of the photo current, one can calculate the autocorrelation 

function of the photocurrent 

 ( ) ( ) ( ) ( ) ( ) ( )2 220
T TI E ER e G Gτ η δ τ η τ= +  (6.18) 

where e  is the electronic charge, η  is the detector sensitivity, and ( ) ( )2
TEG τ  is the 

second-order optical field correlation function defined as 

 ( ) ( ) ( ) ( ) ( ) ( )2 * *
T T T T TEG E t E t E t E tτ τ τ= + +  (6.19) 

The first term in Eq. (6.18) is the short noise associated with the DC component of the 

photocurrent. 

 

6.3.2.1 Power spectral density of the frequency noise  

A rigorous analysis of the output of a homodyne frequency discriminator can be obtained 

by taking the Fourier transform of Eq. (6.19), which is studied in detail in [89]. It 

involves multiple integrations and is numerically complicated to calculate. A much 

simpler relation between the photocurrent spectrum and the laser frequency noise 

spectrum can be found if certain requirements are met.  

 Assuming that the mixed fields have the same amplitudes, and ignoring the shot 

noise, the photocurrent generated by the photodetector at one output of the homodyne FM 

discriminator is[38] 

 ( ){ }* 2
0 0 0 02 2cos ,T TI E E E tη η ω τ φ τ⎡ ⎤= = + + Δ⎣ ⎦  (6.20) 

where 0ω  is the average frequency of the optical field and 0τ  is the differential delay 

of the interferometer. The interferometer is typically biased at the quadrature point 

0 0 2 / 2Nω τ π π= ±  where the frequency discrimination sensitivity is the highest. If the 

phase jitter is small ( )0, 1tφ τΔ << ,  Eq. (6.20) can be simplified to  
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 ( )2
0 02 ,I E tη φ τ≈ ± Δ  (6.21) 

Taking the Fourier transform of Eq. (6.21), the relation between the photocurrent 

spectrum and the frequency noise spectrum is found to be 

 ( ) ( ) ( )2 2 2 2 2
0 0 0/(2 ) 4 sinIS f E c f S fνη π τ τ=  (6.22) 

where ( )sin sin /c x x xπ π= . For frequencies much smaller than the free spectral range 

of the interferometer, i.e., 0 1fτ << , ( )2
0sin 1c fτ ≈  and ( )IS f is proportional to 

( )S fν . Thus the spectrum of the photocurrent is a direct measurement of the frequency 

noise spectrum of the laser. The sensitivity of the interferometer is proportional to 0τ . 

Therefore a long delay time 0τ  is preferred as long as it satisfies 0 1fτ <<  in the 

frequency range of interest.  

 

6.3.2.2 Self-delayed heterodyne measurement of the lineshape 

In the case of the self-delayed heterodyne lineshape measurement, following Eq. (6.19) 

the second-order optical field autocorrelation function is [89] 

 ( ) ( ) ( ) ( ) ( )
22 4 2 2

0/ 1 2 cos 2 exp
TEG E Aτ α α π τ⎡ ⎤= + + Ω ⋅ −⎢ ⎥⎣ ⎦

 (6.23) 

where A is 

 ( ) ( ) ( ) ( )2 2 2 2
0 0 0/ 2 / 2A φ τ φ τ φ τ τ φ τ τ= + − + − −  (6.24) 

If the spectrum of the frequency noise is known, the mean-square phase jitter ( )2φ τΔ  

and thus the autocorrelation of the photocurrent can be calculated using Eq. (6.8) and Eq. 

(6.23). As an example, for white frequency noise, one can plug Eq. (6.9) in Eq. (6.23) to 

get  

 
( ) ( ) ( )
2

2 02 2
4

0 00

  for 
1 2 cos exp

 for 
TEG

E

τ τ τ τ
α α τ

τ τ τ
⎧− <⎪= + + Ω ⋅ ⎨− >⎪⎩

 (6.25) 



 

 

111

Assuming that the mixed signals have equal amplitudes, i.e. 1α =  and ignoring the shot 

noise term, the spectrum of the photocurrent is obtained by taking the Fourier transform 

of Eq. (6.25) 
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 (6.26) 

For delay times much longer than the coherence time 0 1fτΔ >> , Eq. (6.26) reduces to  

 ( )
( )2 4 22

0

/IS f f
E f f

π
η

Δ
=
Δ + −Ω

 (6.27) 

which is a Lorentzian shape with a FWHM of 2 fΔ . 

 

6.4 Coherence cloning using OPLLs 

In Chapter 2 I pointed out that the slave laser is forced to track the phase and frequency 

of the master laser in an OPLL. In an ideal OPLL with infinite bandwidth, the slave laser 

has the same phase as the master laser and thus should inherit the coherence property of 

the master laser. In Section 2.4 I derived the phase noise of the locked slave laser without 

taking into account the relative intensity noise (RIN). As a matter of fact, the RIN of the 

master laser could transfer to the phase variation of the slave laser through the feedback 

loop, particularly if the RIN of the master laser is significant within the bandwidth of the 

loop. Due to the gain saturation effect of semiconductor lasers, the RIN of SCLs in an 

OPLL is significantly lower than the residual phase noise and can be ignored. This 

assumption will be further justified later by our experimental observations. Taking into 

account the RIN of the master laser, I will derive the phase noise of the slave laser in the 

OPLL.  

 If one assumes that the master laser has a power of ( )0 1m mP P r= +  where r 
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represents the RIN, and that the slave laser has a power of sP , the feedback current 

reflecting the phase error is   

 ( ) ( ) ( )0 1 sinpd m s ei t R P r P tφ= +  (6.28) 

where pdR  is the responsivity of the photodetector, and e m sφ φ φ= −  is the differential 

phase error between the master laser and the slave laser. eφ  can be written as the sum of 

a steady state value and the fluctuation, i.e., 0
n

e e eφ φ φ= + . Assuming small errors 

, n
er φ <<1, one can expand Eq. (6.28) to first order 

 ( ) ( ) ( )0 0sin 1 cos
2

n
pd e e e

r t
i t K tφ φ φ

⎡ ⎤⎛ ⎞
= ⋅ + + ⋅⎢ ⎥⎜ ⎟

⎢ ⎥⎝ ⎠⎣ ⎦
 (6.29) 

where pdK  is the photodetector gain. The constant term 0sinpd eK φ  compensates for 

the free-running frequency difference between the master laser and the slave laser. Using 

Eq. (6.29) one can perform a small signal noise analysis similar to the analysis in Section 

2.4. Fig. 6.2 is a schematic diagram of the small signal noise propagation in OPLLs. Here 

the shot noise of the photodetector is ignored. In addition to the phase error signal 

( )0cos n
dc e eK tφ φ⋅ , another term, ( )0sin / 2dc eK r tφ ⋅ , is added due to the RIN of the 

master laser. The closed loop noise relation can be obtained as 

 ( ) ( ) ( ) ( ) ( )0 0cos sin / 2n
s s op e m s op es s G s s G r sφ φ φ φ φ φ⎡ ⎤= + ⋅ − + ⋅⎣ ⎦  (6.30) 

where the open loop gain is defined as ( ) ( ) ( )exp /op dc f FM dG K F s F s s sτ= − , and dcK  

is a constant representing the DC loop gain. After some algebra one obtains 

 ( ) ( )0 0

0 0 0

cos sin1
1 cos 1 cos 2 1 cos

op e op en
s m s

op e op e op e

G Gr s
s

G G G
φ φ

φ φ φ
φ φ φ

= ⋅ + ⋅ +
+ + +

 (6.31) 

The PSD of the phase noise of the locked slave laser is thus  
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where , ,  ,  and s fr m m
RINS S Sφ φ , are respectively, the PSD of the phase noise of the 

free-running slave laser, the master laser, and the RIN of the master laser. The PSD of the 

frequency noise is simply ( ) ( )2S f f S fν φ= .  

 Comparing with the phase noise of the locked slave laser derived in Section 2.4, in 

Eq. (6.31) and Eq. (6.32) contain an additional term, due to the RIN of the master laser. 

In general, the steady state phase error 0eφ  is not zero and the RIN-induced residual 

phase noise needs to be carefully evaluated. 
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Fig. 6.2 Small signal noise propagation in an OPLL with the RIN of the master laser 

being considered 

mφ : phase of the master laser 

 sφ : phase of the slave laser 

 n
sφ : free-running phase noise of the slave laser 

 dcK : loop DC gain 

 0eφ : steady state differential phase error 

 ( )e sφ : small signal differential phase error 

 r : relative intensity noise of master laser 



 

 

114

 ( )fF s : normalized transfer function of the loop filter 

 ( )FMF s : normalized transfer function of the current-frequency modulation response  of 

the semiconductor laser 
 

 I will use the JDSU DFB laser as an example to simulate the frequency noise of a 

slave laser phase locked to a narrow linewidth master laser. For the purpose of simplicity, 

I assume that the frequency noises of both the master laser and the slave laser are white 

Gaussian and the RIN of the master laser can be ignored. The current-frequency 

modulation response of the JDSU laser obtained in section 3.1.2 is used in the simulation. 

In Fig. 6.3(a) the frequency noise of a free-running JDSU laser, a narrow linewidth 

master laser, and the locked JDSU laser are plotted. The frequency noises of the 

free-running lasers are assumed to be white Gaussian. In Fig. 6.3(b)-(d) the 

corresponding Allan deviation, degree of coherence and single-sided lineshape are also 

shown. The frequency noise of the JDSU laser tracks that of the master laser within the 

bandwidth of the loop, as does the Allan deviation, the degree of coherence, and 

lineshape. For frequencies bigger than the loop bandwidth, the frequency noise goes back 

to the free-running level and is even amplified at a few MHz, due to the insufficient phase 

margin of the feedback loop. 
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M. L.: master laser;  S. L.:slave laser;  f.r.: free-running 
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Fig. 6.3(a) Frequency noise, (b) Allan deviation, (c) degree of coherence and (d) 

single-sided lineshape of the free-running and phase locked JDSU DFB laser. White 

frequency noise is assumed for the free-running master and slave lasers. In the simulation 

I have assumed a loop gain margin of Gmg=10dB and used the FM response of the JDSU 

laser obtained in Section 3.1.2. 
 

6.5. Experimental measurement  

In this section, I will present the experimental measurement of the relative intensity noise 

(RIN), the frequency noise, and the lineshape of the master laser, the free-running slave 

laser and the locked slave laser. To measure the RIN, the optical signal is fed into a 

photodetector, whose output is then measured with a RF spectrum analyzer. The 

lineshape is measured using the delayed self-heterodyne interferometer displayed in Fig. 

6.1. A similar setup is used to measure the frequency noise where the frequency shifter is 

removed and the delay length of the fiber is much shorter than the coherence length of the 

laser.  

6.5.1 Measurement of the Agilent laser 

6.5.1.1 RIN of the Agilent laser 

I first measure the RIN of the Agilent laser, which will be used as the master laser to lock 

the JDSU DFB laser. Fig. 6.4(a) shows the measured RIN of the Agilent laser. The 

Agilent tunable laser is an external cavity semiconductor laser of relatively long cavity 

length and the RIN is significant from a few hundreds of kHz to a few MHz due to the 

relaxation resonance effect[39, 90].  

 I have pointed out in Section 6.4 that the RIN of the master laser can transfer to the 

frequency noise of the slave laser through the feedback loop. One can use Eq. (6.32) to 

evaluate the residual frequency noise of the locked slave laser due to the RIN of the 

master laser, and compare it with the residual frequency noise due to the free-running 
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frequency noise of the slave laser. In the calculation I use 0sin 1eφ =  for an upper bound 

estimation. I also use the JDSU DFB as the slave laser and assume that it has a white 

frequency noise corresponding to a FWHM of 0.3MHz. The results are plotted in Fig. 

6.4(b). As can be seen, the blue curve is orders of magnitude lower than the red curve. 

Thus the residual frequency noise coupled from the RIN of the Agilent laser can be 

neglected. 

 
Fig. 6.4(a) Measured RIN of the Agilent laser. The black curve is the instrument noise 

floor.  (b) Comparison of the residual frequency noise of the locked slave laser due to 
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the free-running noise of the slave laser (red curve) and the RIN of the Agilent laser (blue 

curve). In the calculation I have used Eq. (6.32) and assumed that the slave laser 

possesses a FWHM of 0.3MHz. 

 

6.5.1.2 Frequency noise of the Agilent laser 

 
Fig. 6.5. Measured frequency noise (blue curve) of the Agilent laser. The red curve is a 

theoretical fitting assuming a white frequency noise corresponding to 2kHz FWHM 

linewidth. The dip at about 40MHz is given by the free-spectral-range of the Mach 

Zehnder interferometer of ~5m differential delay. The green curve represents the 

contribution of the RIN in the frequency noise measurement. 

 

To measure the frequency noise of the Agilent laser I use a Mach Zehnder interferometer 

with a differential delay of ~5m. The blue curve in Fig. 6.5 is the measured frequency 

noise ( )S fν  (Hz2/Hz) after the calibration. The red curve is a theoretical fit using Eq. 

(6.22), assuming a white frequency noise corresponding to a FWHM of 2kHz. In deriving 

Eq. (6.22), I have ignored the intensity noise. To consider the intensity noise one can 
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modify the quadrature-biased interferometer output (Eq. (6.22)) to 

 ( ) ( ) ( ) ( )2 2 2 2 2
0 0 0/(2 ) 4 sinI RINS f E S f c f S fνη π τ τ= +  (6.33) 

Eq. (6.33) indicates that the calibrated frequency noise shown in Fig. 6.5 is actually the 

summation of the RIN ( )RINS f  multiplied by a factor of ( )2 2
01/ 4π τ , and the 

frequency noise ( )S fν  multiplied by a factor of ( )2
0sin c fτ .  Using the measured 

RIN shown in Fig. 6.4(a), I also calculate the normalized RIN ( ) 2 2
0/ 4RINS f π τ  and plot 

it in Fig. 6.5. As can be seen, the contribution of the RIN is at least two orders of 

magnitude lower than the measured frequency noise. Thus one can neglect the effect of 

the RIN in the frequency noise measurement.  

 The frequency noise of the Agilent laser at frequency above ~30kHz is mainly white 

with significantly higher noise between ~100kHz and ~10MHz due to the 

intensity-frequency noise coupling. At frequency lower than 30kHz, higher order 

frequency noises such as 1f −  and 2f −  noises dominate.  

 

6.5.1.3 Lineshape of the Agilent laser 

 To measure the lineshape I use the delayed self-heterodyne interferometer. Due to the 

frequency jitter, the measured lineshape and linewidth depend on the differential delay 

time of the interferometer[32, 82]. With a fiber delay of 500m, the mixed signals are still 

coherent and interference fringes can be seen on the spectrum. When the delay length is 

increased to 4km, the signals are almost incoherent. Fig. 6.6 gives the measured 

lineshape(green curve) of the Agilent laser with a fiber delay of 4km. The 20dB full 

width is about 0.46MHz.  
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Fig. 6.6 Delayed self-heterodyne lineshape measurement of the master laser, the 

free-running slave laser, and the locked slave laser. (a) A JDSU DFB is used as the slave 

laser and (b) A QPC MOPA is used as the slave laser. The master laser is an Agilent 

tunable laser.  

6.5.2 Measurement of the free-running and locked JDSU DFB laser 

I repeated similar measurements on the JDSU DFB laser. The measured RIN and 
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frequency noise of the free-running JDSU DFB laser are plotted in 6.7(a) and 6.7(b). The 

RIN measurement is limited by the instrument noise floor at frequency smaller than 

~1MHz and by the shot noise at higher frequencies. As seen in Fig. 6.7(b), the frequency 

noise agrees well with the theoretical fit assuming a white frequency noise corresponding 

to a FWHM of 0.3MHz. The lineshape is measured with the same interferometer of 4km 

differential delay and plotted by the blue curve in Fig. 6.6(a). 

 

Fig. 6.7 Measured (a) RIN and (b) frequency noise of the free-running JDSU DFB laser. 

In (b), the red curve is a theoretical fitting assuming a white frequency noise 

corresponding to a FWHM linewidth of 0.3MHz.  
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 I next phase locked the JDSU laser to the Agilent laser and measured its RIN, 

frequency noise, and lineshape. The RIN of the locked JDSU laser is similar to the 

free-running case and its measurement is limited by the instrument and shot noise floor. 

The low RIN justifies the assumption in deriving Eq. (6.28) that the RIN of the slave 

laser can be neglected when one analyze the residual frequency noise of the slave laser in 

the OPLLs.  

   

Fig. 6.8 Comparison of the frequency noise of the Agilent master laser (black curve), the 

free-running (blue curve), and the phase locked JDSU slave laser(red curve). The green 

curve is a theoretical fitting of the frequency noise of the locked JDSU laser using the 

measured frequency noise of the free-running JDSU laser, the Agilent laser, and the loop 

transfer function. The measured data shown here are smoothed with a 5 points moving 

average algorithm. 

 

 The measured frequency noise of the locked JDSU laser is plotted in Fig. 6.8 and 

compared to the free-running JDSU laser and the Agilent laser. As can be seen, the 

frequency noise of the locked slave laser follows that of the master laser for frequencies 
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smaller than ~100kHz. The frequency noise is reduced between ~2kHz and ~1MHz and 

increased for frequency less than ~2kHz due to the higher frequency noise of the master 

laser at low frequency. It is also amplified between 1MHz and 20MHz due to the 

insufficient phase margin of the loop. 

 With the knowledge of the frequency noises of the free-running JDSU laser, the 

Agilent master laser and the loop transfer function, one can theoretically calculate the 

frequency noise of the locked JDSU laser using Eq. (6.32) and compare it to the 

measurement. The calculation is also plotted in Fig. 6.8 by the green curve. The 

theoretical calculation agrees reasonably well with the measured result (red curve). 

 The measured lineshape of the locked JDSU laser is plotted in Fig. 6.6(a) as the red 

curve. Compared to the free-running case (blue curve), the lineshape of the locked JDSU 

laser is significantly narrowed within the bandwidth of the OPLL(<1MHz). The 20dB 

full width is reduced from 6MHz to 0.46MHz. The linewidth of the locked slave laser is 

limited by the linewidth of the master laser.  

 

6.5.3 Measurement of the NP fiber laser and the locked JDSU laser 

 Fiber lasers are well known for their narrow linewidth and low phase noise[72]. In 

this section I will use a spectrally stabilized NP photonics fiber laser as the master laser to 

lock the JDSU DFB laser, then measure and compare their noise properties.  

 I first measured the RIN, the frequency noise, and the lineshape of the NP fiber laser. 

Fig. 6.9(a) is the measured RIN of the NP fiber laser under the free-running mode 

operation (red curve) and the RIN suppression mode operation (blue curve). The spectral 

peak at ~1MHz is caused by the relaxation resonance effect[39, 90] of the fiber laser. The 

black curve is the instrument noise floor. I further use Eq. (6.32) to calculate and compare 

the residual frequency noise of the locked slave laser due to its free-running frequency 

noise and to the RIN of the NP fiber laser under the RIN suppression mode operation. 
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The results are plotted in Fig. 6.9(b). The RIN-induced residual frequency noise is 

significantly lower and can be neglected. 

 
Fig. 6.9(a) Measured RIN of the NP fiber laser under both the free-running and the RIN 

suppression modes. (b) Calculated residual frequency noise of the locked slave laser 

(JDSU DFB) due to its free-running frequency noise (green curve) and to the RIN of the 

master laser(red curve). A white frequency noise corresponding to a FWHM of 0.3MHz 
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is assumed for the free-running slave laser. 

 

 I then use a fiber Mach-Zehnder interferometer to measure the frequency noise of the 

NP fiber laser. Because the fiber laser has significantly lower frequency noise compared 

to the Agilent laser and the JDSU DFB laser, a differential delay of ~50m has to be used 

to enhance the sensitivity of the interferometer. However, the small free spectral range of 

the interferometer, combined with the frequency jitter of the NP laser, makes it very 

difficult to bias the Mach Zehnder interferometer at the quadrature point long enough to 

take a measurement of the frequency noise spectrum with a small enough resolution and 

video bandwidth. To solve this problem, I measure a large number of traces of the 

frequency noise spectrum at random times and average these traces. In order to prove that 

this method works, I expand Eq. (6.20) to 

 ( ) ( ) ( )2
0 0 0 0 0 0 0/ 2 1 cos cos , sin sin ,I E t tη ω τ φ τ ω τ φ τ+ Δ − Δ�  (6.34) 

Under the small differential phase error assumption ( )0, 1tφ τΔ << , one keeps only the 

last term of Eq. (6.34), which leads to the relation Eq. (6.22) at the quadrature point 

( )0 0 1/ 2Nω τ π= + . In general 0 0ω τ  varies with time and can be any value due to the 

frequency jittering of the laser and the variation of the interferometer, and the measured 

frequency noise spectrum has an additional multiplication factor ( )2
0 0sin ω τ . If one 

takes the average of a large number of traces, it is equivalent to averaging the factor 

( )2
0 0sin 1/ 2ω τ = . Thus one only needs to calibrate the averaged frequency noise 

spectrum by a factor of 2 to get the right answer. However care must be taken if the small 

differential phase error assumption ( ), 1tφ τΔ <<  is not satisfied, since the second term 

in Eq. (6.34) is highly nonlinear away from the quadrature point, and can spread the 

spectral energy of the frequency noise and skew the measurement. An example of such a 

case will be given later. 
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Fig. 6.10(a) Comparison of the measured frequency noises of the NP fiber laser. The 

green curve is measured in Orbitslightwave. Inc using a real-time spectrum analyzer, by 

taking the FFT of the output of the Mach Zehnder interferometer near the quadrature 

point. The red curve is measured by averaging a large number of traces taken by a 

sweep-filter type spectrum analyzer. In both measurements the differential delay of the 

interferometer is ~50m. (b) Comparison of the measured frequency noise of the master 

laser(NP fiber laser), the free-running and the locked JDSU laser. The red curve between 
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1kHz and 1MHz is measured at the quadrature point of an interferometer of 5m 

differential delay. The blue line is measured by averaging a large number of the 

frequency noise spectra using an interferometer of 50m differential delay. The green 

curve is a theoretical fitting of the frequency noise of the locked JDSU laser using Eq. 

(6.32).   

 

 Using the spectrum averaging approach, I measured the frequency noise of the NP 

fiber laser using an interferometer of 50m and plot it in Fig. 10(a). The green curve is 

measured using a real-time spectrum analyzer by taking the FFT of the output of the 

Mach Zehnder interferometer near the quadrature point. The results of the two 

approaches agree well with each other between 10Hz and 100kHz. Using the same 

approach, I also measured the frequency noise of the NP laser, the free-running and the 

locked JDSU laser from 10Hz to a few MHz. They are plotted in Fig. 10(b), respectively, 

as the black, the brown, and the blue curves. I also measured the frequency noise of the 

locked JDSU laser between 1kHz and 1MHz at the quadrature point of an interferometer 

of 5m delay. The data is plotted as the blue curve in Fig. 10(b). Using Eq. (6.32), I also 

calculate the expected frequency noise of the locked slave laser and plot it as the green 

curve. As can be seen, the spectrum averaging approach works well at frequency lower 

than ~30kHz and bigger than ~800kHz. In the range 30kHz-800kHz, the measured noise 

level is much higher than the expected value. Instead, the measurement taken at the 

quadrature point is close to the expected value. This is due to the significant nonlinearity 

of the second term in Eq. (6.34) when the interferometer drifts away from the quadrature 

point. The energy of the frequency noise at higher frequency spreads out to the lower 

frequency range through the nonlinear effect of the interferometer. The detailed study of 

the phenomenon is out of the scope of this thesis.  
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Fig. 6.11 Measured lineshapes of the master laser (NP fiber laser), the free-running and 

the locked slave laser (JDSU DFB) on a (a) 5MHz span and (b) 0.5MHz span  

 

 I also measured the lineshape of the NP fiber laser and the locked JDSU DFB laser. 

Using a delay line of 25km, the measured lineshapes of the NP fiber laser, the 

free-running JDSU DFB laser and the locked JDSU DFB laser are plotted and compared 
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in Fig. 6.11(a) on a span of 50MHz and in Fig. 6.11(b) on a span of 0.5MHz. One can see 

that the lineshape of the JDSU DFB laser follows that of the NP fiber laser within 

± 50kHz frequency range and the 20dB full linewidth is reduced from ~5MHz to ~50kHz. 

The linewidth of the locked slave laser is still limited by the linewidth of the master laser. 

The part of the lineshape at higher frequencies is not affected due to the limited noise 

correction bandwidth of the OPLL. This observation is also consistent with the frequency 

noise measurement shown in Fig. 10(b), where the frequency noise of the locked JDSU 

laser follows that of the NP laser only for frequencies lower than ~50kHz. 

 

Conclusion 

In this chapter I have studied the application of OPLL in cloning the coherence property 

of a low phase noise fiber laser to an inexpensive commercial semiconductor DFB laser. 

Compared to fiber lasers, SCLs have very low RIN but much higher frequency noise. 

When the SCLs are phase locked to the fiber laser, they have essentially the same 

frequency noise as the fiber laser, meanwhile their RIN remains very low. Nevertheless, 

due to the insufficient loop bandwidth limited mainly by the non-uniform 

current-frequency modulation response of the SCLs, the coherence property of the fiber 

laser can only be cloned to the SCLs within a limited bandwidth. If multisection SCLs are 

used to remove this barrier, one can use the OPLL technology to obtain high power laser 

source of both low RIN and low phase noise for a number of critical applications.  
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Chapter 7 Conclusion 
Most of the applications in the field of optics today utilize the intensity information of 

optical signals. The phase of an optical signal is at least equally, if not more, important 

than the intensity information. The tremendous potential of phase coherent optics is yet to 

be realized. OPLL provides a powerful tool to manipulate the phase of an optical signal. 

In this thesis I have studied OPLLs based on semiconductor lasers and the applications in 

coherent beam combining and coherence cloning. Looking into the future, significant 

amount of work needs to be done to bring this technology into practical applications.  

 First, similar to the PLL in electronic domain, OPLL is a technology platform that 

can enable numerous applications. Nevertheless, only a few applications based on OPLLs 

have been explored by researchers so far. The applications of this technology need to be 

significantly broadened by researchers to promote its further development.  

 Second, the performance of the OPLLs needs to be improved to bring them into 

practical applications. For OPLLs made from single section SCLs, the relatively small 

loop bandwidth(~MHz) limited by the phase reversal of the current-frequency 

modulation response presents the main obstacle toward achieving high performance 

OPLLs[22, 23, 36]. Firstly, the relatively small loop bandwidth combined with the large 

linewidth of SCLs leads to significant residual differential phase error between the master 

laser and the locked slave laser[10, 11, 91]. The smallest residual phase error I have 

shown in this thesis is about 0.1rad, which is far from being useful for certain 

applications requiring very low residual phase noise such as coherent optical 

communication, RF signal generation and delivery etc. For coherent beam combining, the 

residual phase error can significantly reduce the combining efficiency and the combined 

beam quality. For coherence cloning, the small loop bandwidth limits the frequency range 

in which the frequency noise of the slave laser can be reduced. Secondly, the large 

frequency jitter and drift of SCLs due to temperature variations, current noise, and 

mechanical vibration, require additional compensation circuits to stably lock the lasers.  
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 To solve the problem, one has to come up with a better laser design for flat frequency 

modulation response up to 1GHz. For example, one can make a laser of multiple sections 

and drive each section with modulation currents of different amplitudes and phases. 

Multi-section lasers have been designed with a reasonably flat FM response up to a few 

GHz[24]. However, their FM response depends on the bias current and is likely to change 

during aging[23]. 

 Another approach to get around the problem is to add an external phase/frequency 

modulator in addition to the slave laser. The combined FM response of the laser plus the 

external phase/frequency modulator can be made flat by driving them separately. A 

similar concept has already been applied to lock fiber lasers by adding an acoustic optical 

modulator[21]. Modulation of fiber laser is typically realized with PZT fiber stretcher and 

the bandwidth is usually limited to a few kHz. The AOM acts as a frequency shifter and 

has much higher modulation speed. The loop bandwidth of the combined system can thus 

be enhanced but still limited to less than 1MHz because of the relatively long traveling 

time of the acoustic wave in the AOM. Using a similar idea, one can add a phase 

modulator in order to increase the loop bandwidth of the SCL OPLL.  
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Fig. 7.1 Schematic diagram of an OPLL with a phase modulator (PM) feedback loop 

 

 Fig. 7.1 shows a schematic diagram of an OPLL with an additional phase modulator 

feedback loop. The solid lines and blocks stand for a typical OPLL built with a single- 

section SCL. In Chapter 2 I obtained the open loop transfer function of this OPLL as 
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 ( ) ( ) ( ) ( )1
1exp

DFB
dc FM

op
K F s H s

G s s
s

τ= − −  (7.1) 

where        

 1 1( ) 
1 1 2

DFB
FM

c

H s a
a s fπ

⎛ ⎞
= − −⎜ ⎟⎜ ⎟− +⎝ ⎠

 (7.2) 

is the normalized FM response of the DFB laser. In Eq. (7.1), fjs π2= , and dcK , 

( )sF1 , and 1τ  stand for the gain of the phase detector (PD), the transfer function of the 

loop filter 1 and the loop delay respectively. In Eq. (7.2) cf  is the structure-dependent 

thermal cut-off frequency of the slave laser and thel KKa /=  is the relative strength 

between the carrier effect and the thermal effect, and is typically smaller than 1.  

 Adding an external phase modulator following the DFB laser and using the same 

error signal to feed into the phase modulator as shown in Fig. 7.1, the OPLL contains two 

parallel feedback loops and the open loop transfer function is given by  

 ( ) ( ) ( ) ( ) ( ) ( )1
1 2 2exp exp

DFB
d FM

op PM
K F s H s

G s s K F s s
s

τ τ= − − + −  (7.3) 

where PMK , ( )sF2 , and 2τ  represent, respectively, the DC gain, the transfer function of 

the loop filter 2 and the delay of the PM feedback loop. In Eq. (7.3) I have assumed that 

the modulation strength of the phase modulator is almost constant within the frequency 

range (DC~ 1GHz) considered here. To simplify the analysis I first neglect all the loop 

delays and the loop filters. After substituting Eq. (7.2) into Eq. (7.3) one obtains  

 ( ) ( )
1

1 1 / 2
dc

op PM
c

KG s a K
s a s fπ

⎡ ⎤
= − + +⎢ ⎥

− +⎢ ⎥⎣ ⎦
 (7.4) 

The stability condition of the whole system requires ( ) 1<sGop  at the π -phase 

frequency ( )opG fπ π∠ = − [1]. Without the PM feedback loop, the thermal effect 

dominates at low frequency and gives way to the carrier effect at higher frequency. The 



 

 

133

shifting of the dominant effect causes ( )opG s  to experience a π  phase reversal btween 

100kHz-10MHz and thus limits the loop bandwidth to the same frequency range. By 

adding the phase modulator feedback loop one “adds” the term PMK  in Eq. (7.4). When 

sufficiently large, the combined thermal and PM contribution can dominate the carrier 

effect at all frequencies and the phase reversal of ( )opG s  is eliminated. Thus the 

constraint on the loop bandwidth is removed. 

 Considering the long loop delay, the complexity and cost of discrete fiber optical 

components, the best way to implement OPLLs is using planar integrated optics. Looking 

back on the history of electronic PLLs, it is the invention of PLL integrated circuits that 

had made the wide applications of PLL take off. Today, the technology of integrating 

SCLs, PDs, modulators and waveguides on the same chip is already available. Should 

OPLL chips of low cost and high performance be implemented, its extensive applications 

in phase coherent optics and RF photonics can be expected. 
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