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Chapter 6 Coherence cloning using OPLLs 
6.1 Introduction 

Ultra-stable lasers with narrow linewidth and long coherence length are required for 

applications such as various types of interferometric sensing, Doppler LIDAR, gas 

detection, frequency metrology, RF signal generation, and coherent communications[4, 

40, 69, 70]. The requirement of the linewidth could vary from MHz to sub Hz, depending 

on the particular application. For the short distance fiber optical sensing, linewidths of a 

few kHz might be enough. For ground based or space borne gravitational wave detection 

(VIRGO, LIGO) [71], or RF reference signal distribution in large radiotelescope arrays 

(ALMA) [71], accurate measurement of tens to millions of km with a resolution of sub 

micrometer requires the laser to have a sub-Hz linewidth[71].  

 To achieve a narrow linewidth, an extended optical cavity with very high quality 

factor is usually used. For example, gas lasers, solid state lasers or fiber lasers with long 

cavity can have linewidth of a few kHz [72]. Electrical feedback can also be used to 

further narrow the linewidth of the laser. Very stable Fabry-Perot intefereometers with 

very high finesse, or the narrow absorption lines of certain gases have been used as 

frequency discriminators to detect and reduce a laser’s frequency noise over a limited 

frequency bandwidth[40, 70]. Using this approach, lasers with linewidths of sub-Hz have 

been demonstrated for precision frequency standard synthesis with optical clocks[30, 31]. 

However these lasers are typically bulky and very expensive due to the complexity of the 

frequency stabilizing system. 

 Semiconductor lasers typically have linewidth of between a few hundred kHz and a 

few MHz due to the low reflectivity of the laser waveguide facet and the linewdith 

broadening effect[73-76]. Using optical feedback from an external cavity, their linewidths 

can be reduced to a few kHz. However, the long laser cavity makes it more challenging to 

achieve stable single frequency operation, and a great deal of effort is necessary for 

packaging to mechanically isolate the cavity. The linewidth of SCLs has also been 
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reduced with the electric feedback approach using either a Fabry-Perot interferometer or 

the absorption line of gases[40, 70]. No matter which approach is used, the advantages of 

SCLs such as their small size and low cost are lost. 

 In an ideal OPLL, the slave laser tracks the phase of the master laser instantaneously 

and thus inherits the coherence property of the master laser. It only takes low cost SCLs 

and electronic circuits to make OPLLs, which provides an economic way of cloning the 

superior coherence property of an expensive master laser. This could be very attractive 

for applications where a large number of coherent laser sources are needed.  

 Another advantage of heterodyne OPLL is the additional flexibility of controlling the 

frequency of the slave laser by using an RF offset signal. Once a fixed frequency standard 

is established, e.g., using a gas absorption line or an optic clock, a tunable narrow 

linewidth laser source can be made using the heterodyne OPLL technology. A frequency 

tuning range of up to 100GHz can be achieved with the state-of-the-art RF 

electronics[21].  

 In this chapter I will study the cloning of the coherence of a narrow linewidth laser to 

inexpensive off-the-shelf commercial SCLs with the OPLLs. I will first summarize the 

description of the frequency stability and the coherence of a single frequency laser. 

Different experimental methods of characterizing the frequency stability will also be 

discussed. Afterwards I shall give the theoretical calculation of the frequency or phase 

noise, the Allan deviation, the degree of coherence, and the lineshape of a SCL phase 

locked to a cleaner master laser. Finally the experimental measurements will be presented 

and discussed. 

  

6.2 Phase noise and frequency stability of a single frequency laser  

6.2.1 Phase and frequency fluctuations of an oscillator 

The optical field of a single frequency laser is modeled as a quasimonochromatic field  
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 ( ) ( )0 0exp 2E t E j v t tπ φ⎡ ⎤= +⎣ ⎦  (6.1) 

where 0v  is the average optical frequency and ( )tφ  is the phase fluctuation. The 

intensity noise is not considered here because in semiconductor lasers its integrated 

power is much smaller than that of the phase noise.  

 The frequency stability of a laser can be characterized in both the time domain and 

the frequency domain. In the time domain, traditionally two random variables are widely 

used to characterize the frequency stability of an oscillator. They are the fractional phase 

fluctuation ( )x t  and the fractional frequency fluctuation ( )y t , which are defined 

as[77] 

 ( ) ( ) ( ) ( )
0 0

   and   
2 2

t t
x t y t

v v
φ φ
π π

= =
�

 (6.2) 

Note that ( )x t  also represents the time jittering of the clock signal described by Eq. 

(6.1). The absolute phase fluctuation is related to ( )x t  by ( ) ( )02t v x tφ π=  and the 

absolute frequency fluctuation is ( ) ( )0/ 2t v y tφ π =� .  

 

6.2.2 Power spectral density of the phase or frequency fluctuation  

In actual experimental measurement people typically measure the single-sided power 

spectral density (PSD) of the fractional frequency fluctuation, i.e. , ( )yS f . The PSD of 

the fractional phase fluctuation, the absolute phase fluctuation, and the absolute 

frequency fluctuation are related to ( )yS f  by  

 ( ) ( )
( )

( ) ( ) ( ) ( ) ( )2 2
0 02 ,    2 ,     

2
y

x x v y
S f

S f S f v S f S f v S f
f

φ π
π

= = =  (6.3) 

 Actual experimental practice shows that the single-sided PSD of the fractional 

frequency fluctuations in most oscillators generally takes a polynomial form[2, 78] 



 

 

104

 ( )
2

2
yS f h f αα

α=−
= ∑  (6.4) 

with     a=2: white phase noise 
     a=1: flicker phase noise   
     a=0: white frequency noise  
     a=-1: flicker frequency noise   
     a=-2: random walk frequency noise  
 Depending on the detailed composition of an oscillator, the PSD of the frequency 

fluctuation can have a few non-zero polynomial components. Low values of “a” have not 

been clearly identified yet because of experimental difficulties related to very long term 

data acquisition and to the control of experimental conditions for long time. In practice 

the finite duration of measurements introduces a low frequency cutoff which prevents the 

divergence of ( )yS f  as 0f →  for a<0. Furthermore, low pass filtering is always 

present in the measuring instruments, which ensures convergence conditions at the 

higher-frequency side of the power spectrum. 

 Experimental studies of the power spectral density of frequency noise and the 

lineshape have shown that the main contributions in single-mode semiconductor lasers 

are the white frequency noise due to spontaneous emission, and the 1/f flicker noise due 

to the fluctuation of charge carriers[32, 79-82]. The white frequency noise leads to the 

well known Lorentzian lineshape and the presence of the 1/f noise leads to a Voigt profile 

resulting from the convolution of a Lorentzian lineshape with a Gaussian lineshape[32, 

80]. The 1/f noise dominates at low frequency and becomes pronounced only in 

measurements of long duration. In the following theoretical description I only consider 

the white frequency noise for the sake of simplicity.  

 

6.2.3 Autocorrelation, coherence and linewidth of an optical field 

The autocorrelation of the field and its temporal coherence are very important concepts 

widely used in many interferometric measurements. The optical field autocorrelation 

function is a measurement of the coherence between an optical signal and the delayed 
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version of itself, i.e.,  

 ( ) ( ) ( ) ( ) ( ) ( )1 *
0exp , expEG E t E t j t jτ τ φ τ ω τ⎡ ⎤= + = Δ⎣ ⎦  (6.5) 

where τ  is the delay time, ( ) ( ) ( ),t t tφ τ φ τ φΔ = + −  is the phase jitter between time t  

and t τ+ , and  represents averaging over infinite time. The Fourier transform of 

( ) ( )1
EG τ  gives the spectrum, or the lineshape, of the optical field. 

 In general it is very difficult to calculate the field autocorrelation function given by 

Eq. (6.5). For the spontaneous emission induced quantum phase noise, the phase jitter 

( ),tφ τΔ  is assumed to be a zero-mean stationary random Gaussian process[83-86]. With 

this assumption, one can use the well known relation [87]  

 ( ) ( )2exp , exp / 2j tφ τ φ τ⎡ ⎤⎡ ⎤± Δ = − Δ⎣ ⎦ ⎣ ⎦  (6.6) 

and the laser field autocorrelation function is simplified to 

 ( ) ( ) ( ) ( )1 2
0

1exp exp
2EG jτ φ τ ω τ⎡ ⎤= − Δ⎢ ⎥⎣ ⎦

 (6.7) 

The absolute value of ( ) ( )1
EG τ  as a function of τ  can be used to measure the degree of 

coherence of an optical field. The mean square phase jitter ( )2φ τΔ  is related to the 

single-sided frequency noise spectrum ( )S fν  by[87] 

 ( ) ( ) ( )2 2
2

0

4 sin dff S f
fνφ τ π τ

+∞

Δ = ∫  (6.8) 

 Next I will use two examples to illustrate how the degree of coherence and the 

lineshape of the field can be obtained from the PSD of the frequency fluctuation.  

 

6.2.4 Example: white frequency noise 

White frequency noise due to spontaneous emission is the primary noise source in 

semiconductor lasers. The corresponding single-sided PSD is ( ) /S f fν π= Δ [39, 73, 84], 
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leading to the mean square phase jitter ( )2φ τΔ  increasing linearly with the delay τ  

 ( )2 2 fφ τ π τΔ = Δ  (6.9) 

where fΔ is the FWHM of the laser spectrum. Substituting Eq. (6.9) into Eq. (6.7), the 

degree of coherence is simply an exponentially decaying function 

 ( ) ( ) [ ]1 expEG fτ π τ= − Δ  (6.10) 

 
 By taking the Fourier transform of the autocorrelation function, the normalized 

lineshape corresponding to the white frequency noise exhibits the well known Lorentzian 

shape  

 ( )
( ) ( )22

0

/ 2

/ 2
E

fS f
f f f

πΔ
=

Δ + −
 (6.11) 

 

6.3 Experimental methods of measuring the frequency stability 

The experimental characterization of the frequency stability or coherence of a single 

frequency laser can be conducted both in the time domain and the frequency domain.  In 

the time domain, a frequency counter can be used to record the beat note between two 

independent lasers, where either the reference laser has significantly lower noise than the 

device under test, or both lasers have similar performance. This method can achieve very 

high resolution. However, it requires a second laser and can be inconvenient. In the 

frequency domain, one can convert frequency fluctuations into intensity fluctuations 

using a frequency discriminator, such as an unbalanced Mach Zehnder interferometer or a 

high-finesse reference cavity[38]. By measuring the PSD of the resultant intensity 

fluctuations, one obtains the PSD of the frequency fluctuations.The linewidth or 

lineshape of the optical field is another indicator of the coherence of a single frequency 

laser. To measure the linewidth or lineshape, one often uses the delayed self-heterodyne 

inteferometer (DSHI) technique, which involves measuring the beat note between the 

http://www.rp-photonics.com/beat_note.html
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laser output and a frequency-shifted and delayed version of itself.  

 

6.3.1 Time domain measurement of the frequency fluctuation 

Assuming that a frequency counter is used to measure the fractional frequency averaged 

over time interval [ ],k kt t τ+  

 ( )1 ' 'k

k

t
k t

y y t dt
τ

τ
+

= ∫  (6.12) 

If the time interval between two consecutive measurements is T, the N-sample variance of 

ky  will be  

 ( )
21

2

0 0

1 1, ,
1

N N

y k k
k k

N T y y
N N

σ τ
−

= =

⎛ ⎞
= −⎜ ⎟− ⎝ ⎠

∑ ∑  (6.13) 

The dependence of the expectation value of the N-sample variance on the number of 

samples N, the sample time τ , and the power spectral density has been considered by 

Allan[88]. It can be shown that the computation of the average of the N-sample variance 

introduces a filtering of the PSD ( )yS f [77] 

 ( ) ( ) ( ) 22
0

, ,y yN T S f H f dfσ τ
∞

= ∫  (6.14) 

where ( )H f  is the transfer function of a linear filter 

 ( )
2 2

sin sin1
1 sin

N f fNTH f
N f N fT

π τ π
π τ π

⎧ ⎫⎡ ⎤ ⎡ ⎤⎪ ⎪= −⎨ ⎬⎢ ⎥ ⎢ ⎥− ⎣ ⎦ ⎣ ⎦⎪ ⎪⎩ ⎭
 (6.15) 

The expectation value of the two-sample variance without dead time, i.e., N = 2 and 

T τ= , is called the Allan variance and is generally accepted as the measure of frequency 

stability in the time domain. One sets  

 
( ) ( ) ( )

( ) ( )
( )

22 2
1

4

20

12, ,
2

sin
          =2

y y k k

y

y y

f
S f df

f

σ τ σ τ τ

π τ

π τ

+

∞

= = −

∫
 (6.16) 

The square root of the Allan variance is called the Allan deviation ( )yσ τ .  
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 The Allan deviation is useful for characterizing a frequency source because of the 

type of phase noise present is revealed by the dependence of ( )yσ τ  on τ . For example, 

for white frequency noise, ( ) 1/ 2
yσ τ τ −∝ . For the Allan deviation to reliably reflect the 

type of noise present, it is crucial that there should be no dead time between consecutive 

average frequency measurements used to determine ( )yσ τ . 

 

6.3.2 Frequency domain measurement 

In this section I introduce the different methods of measuring the frequency fluctuation 

and lineshape of lasers in the frequency domain. 

 

Laser
Freq. shifter

PD SA
SMFLaser

Freq. shifter

PD SA
SMF

 

Fig.6.1 Schematic diagram of the delayed self-heterodyne interferometer lineshape 

measurement setup 

 
 Fig. 6.1 gives a schematic diagram of the delayed self-heterodyne interferometer 

setup. The delay line must be longer than the coherence length of the laser to measure the 

lineshape. It can also be used as a frequency discriminator to measure the frequency noise 

spectrum if the delay is kept much shorter than the coherence length and the frequency 

shifter is removed. Assume the detected total field is a superposition of a laser field ( )E t  

expressed by Eq. (6.1) with a time-delayed and frequency-shifted image of itself[89] 

 ( ) ( ) ( )0 exp 2TE t E t E t j tα τ π= + + Ω  (6.17) 

α  is a real factor which accounts for the amplitude ratio between the two mixed fields, 

Ω  is the mean frequency difference between the two mixed fields.  
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 The photo current is proportional to the optical field intensity. Assuming stationary 

fields, to find the spectrum of the photo current, one can calculate the autocorrelation 

function of the photocurrent 

 ( ) ( ) ( ) ( ) ( ) ( )2 220
T TI E ER e G Gτ η δ τ η τ= +  (6.18) 

where e  is the electronic charge, η  is the detector sensitivity, and ( ) ( )2
TEG τ  is the 

second-order optical field correlation function defined as 

 ( ) ( ) ( ) ( ) ( ) ( )2 * *
T T T T TEG E t E t E t E tτ τ τ= + +  (6.19) 

The first term in Eq. (6.18) is the short noise associated with the DC component of the 

photocurrent. 

 

6.3.2.1 Power spectral density of the frequency noise  

A rigorous analysis of the output of a homodyne frequency discriminator can be obtained 

by taking the Fourier transform of Eq. (6.19), which is studied in detail in [89]. It 

involves multiple integrations and is numerically complicated to calculate. A much 

simpler relation between the photocurrent spectrum and the laser frequency noise 

spectrum can be found if certain requirements are met.  

 Assuming that the mixed fields have the same amplitudes, and ignoring the shot 

noise, the photocurrent generated by the photodetector at one output of the homodyne FM 

discriminator is[38] 

 ( ){ }* 2
0 0 0 02 2cos ,T TI E E E tη η ω τ φ τ⎡ ⎤= = + + Δ⎣ ⎦  (6.20) 

where 0ω  is the average frequency of the optical field and 0τ  is the differential delay 

of the interferometer. The interferometer is typically biased at the quadrature point 

0 0 2 / 2Nω τ π π= ±  where the frequency discrimination sensitivity is the highest. If the 

phase jitter is small ( )0, 1tφ τΔ << ,  Eq. (6.20) can be simplified to  
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 ( )2
0 02 ,I E tη φ τ≈ ± Δ  (6.21) 

Taking the Fourier transform of Eq. (6.21), the relation between the photocurrent 

spectrum and the frequency noise spectrum is found to be 

 ( ) ( ) ( )2 2 2 2 2
0 0 0/(2 ) 4 sinIS f E c f S fνη π τ τ=  (6.22) 

where ( )sin sin /c x x xπ π= . For frequencies much smaller than the free spectral range 

of the interferometer, i.e., 0 1fτ << , ( )2
0sin 1c fτ ≈  and ( )IS f is proportional to 

( )S fν . Thus the spectrum of the photocurrent is a direct measurement of the frequency 

noise spectrum of the laser. The sensitivity of the interferometer is proportional to 0τ . 

Therefore a long delay time 0τ  is preferred as long as it satisfies 0 1fτ <<  in the 

frequency range of interest.  

 

6.3.2.2 Self-delayed heterodyne measurement of the lineshape 

In the case of the self-delayed heterodyne lineshape measurement, following Eq. (6.19) 

the second-order optical field autocorrelation function is [89] 

 ( ) ( ) ( ) ( ) ( )
22 4 2 2

0/ 1 2 cos 2 exp
TEG E Aτ α α π τ⎡ ⎤= + + Ω ⋅ −⎢ ⎥⎣ ⎦

 (6.23) 

where A is 

 ( ) ( ) ( ) ( )2 2 2 2
0 0 0/ 2 / 2A φ τ φ τ φ τ τ φ τ τ= + − + − −  (6.24) 

If the spectrum of the frequency noise is known, the mean-square phase jitter ( )2φ τΔ  

and thus the autocorrelation of the photocurrent can be calculated using Eq. (6.8) and Eq. 

(6.23). As an example, for white frequency noise, one can plug Eq. (6.9) in Eq. (6.23) to 

get  

 
( ) ( ) ( )
2

2 02 2
4

0 00

  for 
1 2 cos exp

 for 
TEG

E

τ τ τ τ
α α τ

τ τ τ
⎧− <⎪= + + Ω ⋅ ⎨− >⎪⎩

 (6.25) 
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Assuming that the mixed signals have equal amplitudes, i.e. 1α =  and ignoring the shot 

noise term, the spectrum of the photocurrent is obtained by taking the Fourier transform 

of Eq. (6.25) 

 

( ) ( ) ( ) ( )
( )

( ) ( ) ( )
( )

02 4 22
0

0
0 0

/4 exp 2

sin 2
1 xp 2 cos 2

IS f ff f f
E f f

f
e f f f

f

πδ π τ δ
η

π τ
π τ π τ

Δ
= + − Δ ⋅ −Ω + ⋅

Δ + −Ω

⎧ ⎫⎡ ⎤−Ω⎪ ⎪− − Δ ⋅ −Ω + Δ⎢ ⎥⎨ ⎬−Ω⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

 (6.26) 

For delay times much longer than the coherence time 0 1fτΔ >> , Eq. (6.26) reduces to  

 ( )
( )2 4 22

0

/IS f f
E f f

π
η

Δ
=
Δ + −Ω

 (6.27) 

which is a Lorentzian shape with a FWHM of 2 fΔ . 

 

6.4 Coherence cloning using OPLLs 

In Chapter 2 I pointed out that the slave laser is forced to track the phase and frequency 

of the master laser in an OPLL. In an ideal OPLL with infinite bandwidth, the slave laser 

has the same phase as the master laser and thus should inherit the coherence property of 

the master laser. In Section 2.4 I derived the phase noise of the locked slave laser without 

taking into account the relative intensity noise (RIN). As a matter of fact, the RIN of the 

master laser could transfer to the phase variation of the slave laser through the feedback 

loop, particularly if the RIN of the master laser is significant within the bandwidth of the 

loop. Due to the gain saturation effect of semiconductor lasers, the RIN of SCLs in an 

OPLL is significantly lower than the residual phase noise and can be ignored. This 

assumption will be further justified later by our experimental observations. Taking into 

account the RIN of the master laser, I will derive the phase noise of the slave laser in the 

OPLL.  

 If one assumes that the master laser has a power of ( )0 1m mP P r= +  where r 
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represents the RIN, and that the slave laser has a power of sP , the feedback current 

reflecting the phase error is   

 ( ) ( ) ( )0 1 sinpd m s ei t R P r P tφ= +  (6.28) 

where pdR  is the responsivity of the photodetector, and e m sφ φ φ= −  is the differential 

phase error between the master laser and the slave laser. eφ  can be written as the sum of 

a steady state value and the fluctuation, i.e., 0
n

e e eφ φ φ= + . Assuming small errors 

, n
er φ <<1, one can expand Eq. (6.28) to first order 

 ( ) ( ) ( )0 0sin 1 cos
2

n
pd e e e

r t
i t K tφ φ φ

⎡ ⎤⎛ ⎞
= ⋅ + + ⋅⎢ ⎥⎜ ⎟

⎢ ⎥⎝ ⎠⎣ ⎦
 (6.29) 

where pdK  is the photodetector gain. The constant term 0sinpd eK φ  compensates for 

the free-running frequency difference between the master laser and the slave laser. Using 

Eq. (6.29) one can perform a small signal noise analysis similar to the analysis in Section 

2.4. Fig. 6.2 is a schematic diagram of the small signal noise propagation in OPLLs. Here 

the shot noise of the photodetector is ignored. In addition to the phase error signal 

( )0cos n
dc e eK tφ φ⋅ , another term, ( )0sin / 2dc eK r tφ ⋅ , is added due to the RIN of the 

master laser. The closed loop noise relation can be obtained as 

 ( ) ( ) ( ) ( ) ( )0 0cos sin / 2n
s s op e m s op es s G s s G r sφ φ φ φ φ φ⎡ ⎤= + ⋅ − + ⋅⎣ ⎦  (6.30) 

where the open loop gain is defined as ( ) ( ) ( )exp /op dc f FM dG K F s F s s sτ= − , and dcK  

is a constant representing the DC loop gain. After some algebra one obtains 

 ( ) ( )0 0

0 0 0

cos sin1
1 cos 1 cos 2 1 cos

op e op en
s m s

op e op e op e

G Gr s
s

G G G
φ φ

φ φ φ
φ φ φ

= ⋅ + ⋅ +
+ + +

 (6.31) 

The PSD of the phase noise of the locked slave laser is thus  

 
2 2 2

0 0,

0 0 0

cos sin1
1 cos 1 cos 4 1 cos

m
op e op es m s fr RIN

op e op e op e

G GSS S S
G G Gφ φ φ

φ φ
φ φ φ

= ⋅ + ⋅ +
+ + +

 (6.32) 
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where , ,  ,  and s fr m m
RINS S Sφ φ , are respectively, the PSD of the phase noise of the 

free-running slave laser, the master laser, and the RIN of the master laser. The PSD of the 

frequency noise is simply ( ) ( )2S f f S fν φ= .  

 Comparing with the phase noise of the locked slave laser derived in Section 2.4, in 

Eq. (6.31) and Eq. (6.32) contain an additional term, due to the RIN of the master laser. 

In general, the steady state phase error 0eφ  is not zero and the RIN-induced residual 

phase noise needs to be carefully evaluated. 

( )fF s
SCL

PD

filter
( )n

s sφ

mφ

( )FMF s
1/s

delayse τ−
( )s sφ

( ) ( )cosdc eo eK sφ φ

( )sin / 2dc eoK rφ

( )fF s
SCL

PD

filter
( )n

s sφ

mφ

( )FMF s
1/s

delayse τ−
( )s sφ

( ) ( )cosdc eo eK sφ φ( ) ( )cosdc eo eK sφ φ

( )sin / 2dc eoK rφ( )sin / 2dc eoK rφ

 

Fig. 6.2 Small signal noise propagation in an OPLL with the RIN of the master laser 

being considered 

mφ : phase of the master laser 

 sφ : phase of the slave laser 

 n
sφ : free-running phase noise of the slave laser 

 dcK : loop DC gain 

 0eφ : steady state differential phase error 

 ( )e sφ : small signal differential phase error 

 r : relative intensity noise of master laser 
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 ( )fF s : normalized transfer function of the loop filter 

 ( )FMF s : normalized transfer function of the current-frequency modulation response  of 

the semiconductor laser 
 

 I will use the JDSU DFB laser as an example to simulate the frequency noise of a 

slave laser phase locked to a narrow linewidth master laser. For the purpose of simplicity, 

I assume that the frequency noises of both the master laser and the slave laser are white 

Gaussian and the RIN of the master laser can be ignored. The current-frequency 

modulation response of the JDSU laser obtained in section 3.1.2 is used in the simulation. 

In Fig. 6.3(a) the frequency noise of a free-running JDSU laser, a narrow linewidth 

master laser, and the locked JDSU laser are plotted. The frequency noises of the 

free-running lasers are assumed to be white Gaussian. In Fig. 6.3(b)-(d) the 

corresponding Allan deviation, degree of coherence and single-sided lineshape are also 

shown. The frequency noise of the JDSU laser tracks that of the master laser within the 

bandwidth of the loop, as does the Allan deviation, the degree of coherence, and 

lineshape. For frequencies bigger than the loop bandwidth, the frequency noise goes back 

to the free-running level and is even amplified at a few MHz, due to the insufficient phase 

margin of the feedback loop. 
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M. L.: master laser;  S. L.:slave laser;  f.r.: free-running 
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Fig. 6.3(a) Frequency noise, (b) Allan deviation, (c) degree of coherence and (d) 

single-sided lineshape of the free-running and phase locked JDSU DFB laser. White 

frequency noise is assumed for the free-running master and slave lasers. In the simulation 

I have assumed a loop gain margin of Gmg=10dB and used the FM response of the JDSU 

laser obtained in Section 3.1.2. 
 

6.5. Experimental measurement  

In this section, I will present the experimental measurement of the relative intensity noise 

(RIN), the frequency noise, and the lineshape of the master laser, the free-running slave 

laser and the locked slave laser. To measure the RIN, the optical signal is fed into a 

photodetector, whose output is then measured with a RF spectrum analyzer. The 

lineshape is measured using the delayed self-heterodyne interferometer displayed in Fig. 

6.1. A similar setup is used to measure the frequency noise where the frequency shifter is 

removed and the delay length of the fiber is much shorter than the coherence length of the 

laser.  

6.5.1 Measurement of the Agilent laser 

6.5.1.1 RIN of the Agilent laser 

I first measure the RIN of the Agilent laser, which will be used as the master laser to lock 

the JDSU DFB laser. Fig. 6.4(a) shows the measured RIN of the Agilent laser. The 

Agilent tunable laser is an external cavity semiconductor laser of relatively long cavity 

length and the RIN is significant from a few hundreds of kHz to a few MHz due to the 

relaxation resonance effect[39, 90].  

 I have pointed out in Section 6.4 that the RIN of the master laser can transfer to the 

frequency noise of the slave laser through the feedback loop. One can use Eq. (6.32) to 

evaluate the residual frequency noise of the locked slave laser due to the RIN of the 

master laser, and compare it with the residual frequency noise due to the free-running 
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frequency noise of the slave laser. In the calculation I use 0sin 1eφ =  for an upper bound 

estimation. I also use the JDSU DFB as the slave laser and assume that it has a white 

frequency noise corresponding to a FWHM of 0.3MHz. The results are plotted in Fig. 

6.4(b). As can be seen, the blue curve is orders of magnitude lower than the red curve. 

Thus the residual frequency noise coupled from the RIN of the Agilent laser can be 

neglected. 

 
Fig. 6.4(a) Measured RIN of the Agilent laser. The black curve is the instrument noise 

floor.  (b) Comparison of the residual frequency noise of the locked slave laser due to 
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the free-running noise of the slave laser (red curve) and the RIN of the Agilent laser (blue 

curve). In the calculation I have used Eq. (6.32) and assumed that the slave laser 

possesses a FWHM of 0.3MHz. 

 

6.5.1.2 Frequency noise of the Agilent laser 

 
Fig. 6.5. Measured frequency noise (blue curve) of the Agilent laser. The red curve is a 

theoretical fitting assuming a white frequency noise corresponding to 2kHz FWHM 

linewidth. The dip at about 40MHz is given by the free-spectral-range of the Mach 

Zehnder interferometer of ~5m differential delay. The green curve represents the 

contribution of the RIN in the frequency noise measurement. 

 

To measure the frequency noise of the Agilent laser I use a Mach Zehnder interferometer 

with a differential delay of ~5m. The blue curve in Fig. 6.5 is the measured frequency 

noise ( )S fν  (Hz2/Hz) after the calibration. The red curve is a theoretical fit using Eq. 

(6.22), assuming a white frequency noise corresponding to a FWHM of 2kHz. In deriving 

Eq. (6.22), I have ignored the intensity noise. To consider the intensity noise one can 
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modify the quadrature-biased interferometer output (Eq. (6.22)) to 

 ( ) ( ) ( ) ( )2 2 2 2 2
0 0 0/(2 ) 4 sinI RINS f E S f c f S fνη π τ τ= +  (6.33) 

Eq. (6.33) indicates that the calibrated frequency noise shown in Fig. 6.5 is actually the 

summation of the RIN ( )RINS f  multiplied by a factor of ( )2 2
01/ 4π τ , and the 

frequency noise ( )S fν  multiplied by a factor of ( )2
0sin c fτ .  Using the measured 

RIN shown in Fig. 6.4(a), I also calculate the normalized RIN ( ) 2 2
0/ 4RINS f π τ  and plot 

it in Fig. 6.5. As can be seen, the contribution of the RIN is at least two orders of 

magnitude lower than the measured frequency noise. Thus one can neglect the effect of 

the RIN in the frequency noise measurement.  

 The frequency noise of the Agilent laser at frequency above ~30kHz is mainly white 

with significantly higher noise between ~100kHz and ~10MHz due to the 

intensity-frequency noise coupling. At frequency lower than 30kHz, higher order 

frequency noises such as 1f −  and 2f −  noises dominate.  

 

6.5.1.3 Lineshape of the Agilent laser 

 To measure the lineshape I use the delayed self-heterodyne interferometer. Due to the 

frequency jitter, the measured lineshape and linewidth depend on the differential delay 

time of the interferometer[32, 82]. With a fiber delay of 500m, the mixed signals are still 

coherent and interference fringes can be seen on the spectrum. When the delay length is 

increased to 4km, the signals are almost incoherent. Fig. 6.6 gives the measured 

lineshape(green curve) of the Agilent laser with a fiber delay of 4km. The 20dB full 

width is about 0.46MHz.  
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Fig. 6.6 Delayed self-heterodyne lineshape measurement of the master laser, the 

free-running slave laser, and the locked slave laser. (a) A JDSU DFB is used as the slave 

laser and (b) A QPC MOPA is used as the slave laser. The master laser is an Agilent 

tunable laser.  

6.5.2 Measurement of the free-running and locked JDSU DFB laser 

I repeated similar measurements on the JDSU DFB laser. The measured RIN and 
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frequency noise of the free-running JDSU DFB laser are plotted in 6.7(a) and 6.7(b). The 

RIN measurement is limited by the instrument noise floor at frequency smaller than 

~1MHz and by the shot noise at higher frequencies. As seen in Fig. 6.7(b), the frequency 

noise agrees well with the theoretical fit assuming a white frequency noise corresponding 

to a FWHM of 0.3MHz. The lineshape is measured with the same interferometer of 4km 

differential delay and plotted by the blue curve in Fig. 6.6(a). 

 

Fig. 6.7 Measured (a) RIN and (b) frequency noise of the free-running JDSU DFB laser. 

In (b), the red curve is a theoretical fitting assuming a white frequency noise 

corresponding to a FWHM linewidth of 0.3MHz.  
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 I next phase locked the JDSU laser to the Agilent laser and measured its RIN, 

frequency noise, and lineshape. The RIN of the locked JDSU laser is similar to the 

free-running case and its measurement is limited by the instrument and shot noise floor. 

The low RIN justifies the assumption in deriving Eq. (6.28) that the RIN of the slave 

laser can be neglected when one analyze the residual frequency noise of the slave laser in 

the OPLLs.  

   

Fig. 6.8 Comparison of the frequency noise of the Agilent master laser (black curve), the 

free-running (blue curve), and the phase locked JDSU slave laser(red curve). The green 

curve is a theoretical fitting of the frequency noise of the locked JDSU laser using the 

measured frequency noise of the free-running JDSU laser, the Agilent laser, and the loop 

transfer function. The measured data shown here are smoothed with a 5 points moving 

average algorithm. 

 

 The measured frequency noise of the locked JDSU laser is plotted in Fig. 6.8 and 

compared to the free-running JDSU laser and the Agilent laser. As can be seen, the 

frequency noise of the locked slave laser follows that of the master laser for frequencies 



 

 

123

smaller than ~100kHz. The frequency noise is reduced between ~2kHz and ~1MHz and 

increased for frequency less than ~2kHz due to the higher frequency noise of the master 

laser at low frequency. It is also amplified between 1MHz and 20MHz due to the 

insufficient phase margin of the loop. 

 With the knowledge of the frequency noises of the free-running JDSU laser, the 

Agilent master laser and the loop transfer function, one can theoretically calculate the 

frequency noise of the locked JDSU laser using Eq. (6.32) and compare it to the 

measurement. The calculation is also plotted in Fig. 6.8 by the green curve. The 

theoretical calculation agrees reasonably well with the measured result (red curve). 

 The measured lineshape of the locked JDSU laser is plotted in Fig. 6.6(a) as the red 

curve. Compared to the free-running case (blue curve), the lineshape of the locked JDSU 

laser is significantly narrowed within the bandwidth of the OPLL(<1MHz). The 20dB 

full width is reduced from 6MHz to 0.46MHz. The linewidth of the locked slave laser is 

limited by the linewidth of the master laser.  

 

6.5.3 Measurement of the NP fiber laser and the locked JDSU laser 

 Fiber lasers are well known for their narrow linewidth and low phase noise[72]. In 

this section I will use a spectrally stabilized NP photonics fiber laser as the master laser to 

lock the JDSU DFB laser, then measure and compare their noise properties.  

 I first measured the RIN, the frequency noise, and the lineshape of the NP fiber laser. 

Fig. 6.9(a) is the measured RIN of the NP fiber laser under the free-running mode 

operation (red curve) and the RIN suppression mode operation (blue curve). The spectral 

peak at ~1MHz is caused by the relaxation resonance effect[39, 90] of the fiber laser. The 

black curve is the instrument noise floor. I further use Eq. (6.32) to calculate and compare 

the residual frequency noise of the locked slave laser due to its free-running frequency 

noise and to the RIN of the NP fiber laser under the RIN suppression mode operation. 
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The results are plotted in Fig. 6.9(b). The RIN-induced residual frequency noise is 

significantly lower and can be neglected. 

 
Fig. 6.9(a) Measured RIN of the NP fiber laser under both the free-running and the RIN 

suppression modes. (b) Calculated residual frequency noise of the locked slave laser 

(JDSU DFB) due to its free-running frequency noise (green curve) and to the RIN of the 

master laser(red curve). A white frequency noise corresponding to a FWHM of 0.3MHz 
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is assumed for the free-running slave laser. 

 

 I then use a fiber Mach-Zehnder interferometer to measure the frequency noise of the 

NP fiber laser. Because the fiber laser has significantly lower frequency noise compared 

to the Agilent laser and the JDSU DFB laser, a differential delay of ~50m has to be used 

to enhance the sensitivity of the interferometer. However, the small free spectral range of 

the interferometer, combined with the frequency jitter of the NP laser, makes it very 

difficult to bias the Mach Zehnder interferometer at the quadrature point long enough to 

take a measurement of the frequency noise spectrum with a small enough resolution and 

video bandwidth. To solve this problem, I measure a large number of traces of the 

frequency noise spectrum at random times and average these traces. In order to prove that 

this method works, I expand Eq. (6.20) to 

 ( ) ( ) ( )2
0 0 0 0 0 0 0/ 2 1 cos cos , sin sin ,I E t tη ω τ φ τ ω τ φ τ+ Δ − Δ�  (6.34) 

Under the small differential phase error assumption ( )0, 1tφ τΔ << , one keeps only the 

last term of Eq. (6.34), which leads to the relation Eq. (6.22) at the quadrature point 

( )0 0 1/ 2Nω τ π= + . In general 0 0ω τ  varies with time and can be any value due to the 

frequency jittering of the laser and the variation of the interferometer, and the measured 

frequency noise spectrum has an additional multiplication factor ( )2
0 0sin ω τ . If one 

takes the average of a large number of traces, it is equivalent to averaging the factor 

( )2
0 0sin 1/ 2ω τ = . Thus one only needs to calibrate the averaged frequency noise 

spectrum by a factor of 2 to get the right answer. However care must be taken if the small 

differential phase error assumption ( ), 1tφ τΔ <<  is not satisfied, since the second term 

in Eq. (6.34) is highly nonlinear away from the quadrature point, and can spread the 

spectral energy of the frequency noise and skew the measurement. An example of such a 

case will be given later. 
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Fig. 6.10(a) Comparison of the measured frequency noises of the NP fiber laser. The 

green curve is measured in Orbitslightwave. Inc using a real-time spectrum analyzer, by 

taking the FFT of the output of the Mach Zehnder interferometer near the quadrature 

point. The red curve is measured by averaging a large number of traces taken by a 

sweep-filter type spectrum analyzer. In both measurements the differential delay of the 

interferometer is ~50m. (b) Comparison of the measured frequency noise of the master 

laser(NP fiber laser), the free-running and the locked JDSU laser. The red curve between 
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1kHz and 1MHz is measured at the quadrature point of an interferometer of 5m 

differential delay. The blue line is measured by averaging a large number of the 

frequency noise spectra using an interferometer of 50m differential delay. The green 

curve is a theoretical fitting of the frequency noise of the locked JDSU laser using Eq. 

(6.32).   

 

 Using the spectrum averaging approach, I measured the frequency noise of the NP 

fiber laser using an interferometer of 50m and plot it in Fig. 10(a). The green curve is 

measured using a real-time spectrum analyzer by taking the FFT of the output of the 

Mach Zehnder interferometer near the quadrature point. The results of the two 

approaches agree well with each other between 10Hz and 100kHz. Using the same 

approach, I also measured the frequency noise of the NP laser, the free-running and the 

locked JDSU laser from 10Hz to a few MHz. They are plotted in Fig. 10(b), respectively, 

as the black, the brown, and the blue curves. I also measured the frequency noise of the 

locked JDSU laser between 1kHz and 1MHz at the quadrature point of an interferometer 

of 5m delay. The data is plotted as the blue curve in Fig. 10(b). Using Eq. (6.32), I also 

calculate the expected frequency noise of the locked slave laser and plot it as the green 

curve. As can be seen, the spectrum averaging approach works well at frequency lower 

than ~30kHz and bigger than ~800kHz. In the range 30kHz-800kHz, the measured noise 

level is much higher than the expected value. Instead, the measurement taken at the 

quadrature point is close to the expected value. This is due to the significant nonlinearity 

of the second term in Eq. (6.34) when the interferometer drifts away from the quadrature 

point. The energy of the frequency noise at higher frequency spreads out to the lower 

frequency range through the nonlinear effect of the interferometer. The detailed study of 

the phenomenon is out of the scope of this thesis.  
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Fig. 6.11 Measured lineshapes of the master laser (NP fiber laser), the free-running and 

the locked slave laser (JDSU DFB) on a (a) 5MHz span and (b) 0.5MHz span  

 

 I also measured the lineshape of the NP fiber laser and the locked JDSU DFB laser. 

Using a delay line of 25km, the measured lineshapes of the NP fiber laser, the 

free-running JDSU DFB laser and the locked JDSU DFB laser are plotted and compared 
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in Fig. 6.11(a) on a span of 50MHz and in Fig. 6.11(b) on a span of 0.5MHz. One can see 

that the lineshape of the JDSU DFB laser follows that of the NP fiber laser within 

± 50kHz frequency range and the 20dB full linewidth is reduced from ~5MHz to ~50kHz. 

The linewidth of the locked slave laser is still limited by the linewidth of the master laser. 

The part of the lineshape at higher frequencies is not affected due to the limited noise 

correction bandwidth of the OPLL. This observation is also consistent with the frequency 

noise measurement shown in Fig. 10(b), where the frequency noise of the locked JDSU 

laser follows that of the NP laser only for frequencies lower than ~50kHz. 

 

Conclusion 

In this chapter I have studied the application of OPLL in cloning the coherence property 

of a low phase noise fiber laser to an inexpensive commercial semiconductor DFB laser. 

Compared to fiber lasers, SCLs have very low RIN but much higher frequency noise. 

When the SCLs are phase locked to the fiber laser, they have essentially the same 

frequency noise as the fiber laser, meanwhile their RIN remains very low. Nevertheless, 

due to the insufficient loop bandwidth limited mainly by the non-uniform 

current-frequency modulation response of the SCLs, the coherence property of the fiber 

laser can only be cloned to the SCLs within a limited bandwidth. If multisection SCLs are 

used to remove this barrier, one can use the OPLL technology to obtain high power laser 

source of both low RIN and low phase noise for a number of critical applications.  

 

 
 
 
 
 
 
 
 


