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Chapter 5 Analysis of the scalability of a 
cascaded filled-aperture coherent beam 
combining system 
5.1. Introduction 

Coherent beam combining (CBC) has been implemented with both tiled-aperture and 

filled-aperture schemes. In both schemes, the combining efficiency (the useful combined 

output optical power divided by the input optical power) is degraded by various noise and 

loss sources, including the relative phase error between the element beams, the 

polarization mismatch, the intensity mismatch, the relative element beam pointing error, 

the absorption and scattering loss of optical components, and a less-than-unity fill factor 

in the tiled-aperture scheme or non-ideal near-field overlap in the filled-aperture scheme. 

Influence of the relative phase error and the less-than-unity fill factor on the combining 

efficiency and beam quality has been studied for the tiled-aperture scheme[52]. Among 

all the factors, the control of the relative phase between the element beams remains the 

most critical and difficult task. In the last chapter, we proposed, analyzed, and 

demonstrated using a full electronic servo system made of multilevel PLLs to address this 

issue. However, the OPLLs introduce some residual phase error between the element 

beams, and the VCO loop introduces a non-zero steady state phase error between the 

element beams. In the presence of these phase errors, a combining efficiency of 94% is 

achieved when combining two beams in fiber. In this chapter, I will study to what extent 

these phase errors will affect a CBC system of combining a large number of beams.  

 The OPLL servo system can be applied to both the tiled-aperture and the 

filled-aperture schemes. Analysis of the combining efficiency of a tiled-aperture scheme 

has been given in [52]. Here I focus on analyzing the combining efficiency of the 

filled-aperture scheme in the presence of various noise sources, particularly the residual 

phase noise of the OPLLs, the frequency jitter of the VCO and the resulting non-zero 
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steady state phase error in the VCO loops, the phase front deformation due to the 

combining beam splitters and mirrors, and the intensity noise. Our analysis will focus on 

the scalability of the system given all the noise sources. A rigorous analysis should 

consider the coupling of all the different factors, which is a very difficult task. Here I will 

assume that they do not affect each other and that one can consider them separately. Since 

high power fiber amplifiers will be used to boost the optical power, the phase noise 

introduced by the fiber amplifier will also be discussed and characterized.  
 

5.2  Combining efficiency of the filled-aperture scheme 

In a filled-aperture CBC scheme, multiple beams can be combined with a combiner such 

as a 1N ×  fiber coupler. Alternatively two beams are overlapped and combined with a 

beam splitter. A cascaded binary-tree scheme can then be used to scale the system to 

combine a large number of beams. Now consider combining N beams at a combiner. The 

combined intensity at the output of the combiner, averaged over time and space, pI , is 

given by  

 ( )
2

, ,p i i
i

I E r r t⊥ ⊥⎡ ⎤= Φ⎣ ⎦∑
G

 (5.1) 

where ( ), ,i iE r r t⊥ ⊥⎡ ⎤Φ⎣ ⎦
G

 is the complex electric field of the individual beam i having a 

phase fluctuation ( ),i r t⊥Φ . ( ),i r t⊥Φ  is a function of both time t and the transverse 

coordinate r⊥
G . The r⊥

G  dependence of iE
G

 allows for the consideration of wave-front 

overlap, e.g., alignment mismatch. The temporal and spatial dependence of ( ),i r t⊥Φ  

allows for the consideration of the degree of mutual coherence and the phase front error 

between the element beams due to the OPLL residual phase noise, the surface 

deformation of the optical components, and the pointing error. 

 Fig. 5.1 shows an example of combining two beams using a beam splitter. Two plane 
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waves, 1E  and 2E , at the same frequency with fixed relative phase are incident upon a 

beam splitter having an amplitude reflectivity r. At the outputs of the beam splitter there 

are two pairs of waves propagating at right angles, whose intensities are given by  

 
( ) ( ) ( )

( ) ( ) ( )

1/ 22 2 2 2 2
1 1 2 1 2

1/ 22 2 2 2 2
2 2 1 1 2

1 2 1 cos

1 2 1 cos

P

P

I E r E r E E r r

I E r E r E E r r

α φ

α φ π

⎡ ⎤= + − + − Δ⎢ ⎥⎣ ⎦
⎡ ⎤= + − + − Δ +⎢ ⎥⎣ ⎦

 (5.2) 

 
Fig. 5.1 Example of coherent beam combining using a beam splitter. r is the reflectivity 
of the beam splitter. 
 

where φΔ  is the phase difference between the two incident waves and α  is a constant 

factor. In the simplest case the two beams possess equal amplitudes, and the beam splitter 

has a 50:50 splitting ratio, i.e., 1 2 01/ 2,  r E E E= = = . In this case Eq. (5.2) is 

simplified to 

 ( ) ( )2 2
1 0 2 01 cos ,  1 cosP PI E I Eφ φ⎡ ⎤ ⎡ ⎤= + Δ = − Δ⎣ ⎦ ⎣ ⎦  (5.3) 

In the ideal case, 0φΔ = , all the input power comes out of output 1 and the combining 

efficiency is 100%. When a position and time dependent phase noise and an intensity 

variation are present, the combining efficiency becomes  

 
( )

( )

2
1 2

1 2

2 2 2
1 2

1 1 1 exp
4

1 11
4 8

pI
r r i

I I

r r

η φ

φ

= = + + +
+

≈ − − +

 (5.4) 
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where 1r , 2r  stands for the relative intensity noise (RIN) of beam 1 and 2, and φ  

represents the differential phase error between the two beams. The bar over 1r , 2r , and 

φ  stands for the averaging over either time or space depending on the situation. In 

obtaining Eq. (5.4) I have assumed that the noises have zero mean and are small enough 

so that the higher order expansion terms can be ignored. To the second-order, the phase 

noise and the intensity noise are not coupled to each other and hence their effects will be 

studied separately. Having understood the effect of noises on combining two beams, I 

will proceed to the analysis of the combination of any number of beams. 

 

 

  Fig. 5.2 Schematic diagram of a 2-level binary-tree filled-aperture CBC system 

 

5.2.1 Effect of OPLLs residual phase noise 

Fig. 5.2 shows a schematic diagram of a 2-level binary-tree filled-aperture CBC system. 

This scheme can be scaled to an arbitrary number of beams 2nN =  where n is the 

number of levels in the binary tree structure. Assuming all the beams have equal 

amplitudes and are perfectly aligned, the combined field takes the form of   
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 0
1

i
N

i
t

i
E E e φ

=

= ∑  (5.5) 

where ( )i tφ  represents the phase of the individual beam i referred to a common 

reference phase plane. The intensity of the combined field is proportional to the square of 

the electric field. Normalizing the combined power by the total input power, one obtains 

the CBC efficiency 

 ( )
2

, 1

1 i j
N i

i j
e

N
φ φη −

=

= ∑  (5.6) 

    I  further assume that iφ  obeys a Gaussian distribution with zero mean and 

variance ( )2 2
i tφ σ= . If iφ  and jφ  are uncorrelated, then 

( ) ( )2
,exp i j i ji eφ φ δ σ⎡ ⎤− = −⎣ ⎦ [52, 63]  where ,i jδ  is the Kronecker's delta. Eq. (5.6) 

then becomes  

 ( )211 1N e
N

ση −−
= − −  (5.7) 

Assuming 2 1σ << , Eq. (5.7) further reduces to  

 ( ) 21
1

N
N

η σ
−

= −  (5.8) 

 As can be seen, the combining efficiency converges to 21 σ−  for a large number of 

beams. In Chapter 2 I have obtained the phase noise of the ith locked slave laser as 

 ( ) ( ) ( ),
1

1 1
op n n

i m fr i
op op

G
s s s

G G
φ φ φ= +

+ +
 (5.9) 

where n
mφ  and ,

n
fr iφ  are, respectively, the phase noise of the master laser and the ith 

slave laser the under free-running condition, and opG  is the open loop transfer function 

of the ith OPLL. If one takes the inverse Fourier transform of Eq. (5.9) and plug it into 
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( ) ( )i jt tφ φ−  of Eq. (5.6), the first term relating to the phase noise of the master laser n
mφ  

will cancel out as long as opG  is the same for different OPLLs. Thus, one concludes that 

the phase noise of the master laser does not affect the combining efficiency, since it acts 

as a common phase reference for all the slave lasers. The second term of Eq. (5.9) is 

uncorrelated among different slave lasers. If the corresponding variance is 2σ , Eqs. (5.7) 

and (5.8) can be used to calculate the degraded combining efficiency. In Fig. 5.3 I  plot 

the combining efficiency calculated with the small signal approximation as a function of 

the rms phase error σ  for N=2 and N=8. The small signal approximation agrees well 

with the Monte Carlo simulation results for small σ .  

 

 

Fig. 5.3 Calculated combining efficiency as a function of the residual differential phase 
noise 

 

From Eq. (5.8), for a given number of beams and a desired combining efficiency, the rms 

phase error has to satisfy 

 ( )1
1

N
N

σ η≤ −
−

 (5.10) 
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e.g, if 8 beams are to be combined with an efficiency 95%η = , the rms phase error has 

to be smaller than 0.24rad . For the IPS OPLL the smallest rms phase error I  have 

measured is around 0.13rad, which ultimately limits the combining efficiency to ~98%.  
 

5.2.2 Effect of the frequency jitter of the VCO  

 

Fig. 5.4 Schematic diagram of a binary-tree filled-aperture CBC system using the VCO 

loops to correct for the optical path-length variation in fibers 
 

In Chapter 4 I discussed the use of a VCO loop to correct for the optical path-length 

variation in fibers. I pointed out that a non-zero steady state phase error between the 

element beams is required to tolerate the frequency jitter of the VCO, and leads to a 

reduced combining efficiency. In this section I will evaluate the influence of the 

frequency jitter of the VCO and the nonzero steady-state phase error on the combining 

efficiency of a cascaded filled-aperture CBC system. 

 In Chapter 4 I derived that the steady state solution of the phase error in the VCO 

loop is 

 ,1
, cos 1 os v f

ev ss
vK

ω ω
φ − −⎛ ⎞

= −⎜ ⎟
⎝ ⎠

 (5.11) 
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where osω  is the frequency of the RF offset signal provided by the signal generator and 

,v fω  is the frequency of the free-running VCO, and vK  is the VCO loop gain. Eq. (5.11) 

has a solution when 

 ( ),0 / 2os v f vKω ω< − <  (5.12) 

The combining efficiency is given by ( )1 cos / 2evφ+ , therefore one wants to minimize 

,ev ssφ  to maximize the combining efficiency. However, if the steady state frequency 

difference ,os v fω ω−  takes a negative value, Eq. (5.11) has no solution which means the 

VCO loop will lose lock. Assume that the frequency jitter of the free-running VCO has 

Gaussian distribution with zero mean and variance ωσ . Obviously, if , 0os v fω ω− =  the 

VCO could only acquire lock half of the time. If one sets ,os v fω ω−  equal to x ωσ , 

where x is a positive number, the quantity ,os v fω ω−  obeys the Gaussian distribution 

with mean value x ωσ  and variance ωσ . The probability for ( ), /os v f vKω ω−  to take a 

negative value is described by the cumulative distribution function of Gaussian 
distribution 

 ( )
21;0,1 exp

22

x uF x du
π

−

−∞

⎛ ⎞
− = −⎜ ⎟

⎝ ⎠
∫  (5.13) 

 If x is small and vKωσ << , the probability that ( ), / 2os v f vKω ω− >  is very small 

and can be ignored. Then the probability that Eq. (5.11) has a solution, or equivalently, 

that the VCO loop can acquire lock, is given by ( )1 ;0,1F x− − . E.g, if one lets 

( ),os v f ss
ω ω−  2 ωσ= , the probability that the VCO loop is in lock is given by 

( )1 2;0,1 97.72%F− − = .  

 In the binary-tree cascaded filled-aperture scheme, a VCO loop is needed each time 

two beams are combined. If 2nN =  beams are to be combined, the number of VCO 
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loops will be 2 1n − (refer to Fig. 5.4). If any one of the VCO loops loses lock, the whole 

system will be disrupted. To simplify the analysis, I assume that the VCO loops are 

uncorrelated, so that the probability that all the VCO loops are in lock is given by 

 ( ) 2 1
1 ;0,1

n

lockP F x
−

⎡ ⎤= − −⎣ ⎦  (5.14) 

 Meanwhile, the combining efficiency is reduced due to the frequency jitter and the 

non-zero ,ev ssφ  even when the system is in lock. At each combining level of the 

binary-tree scheme, the combining efficiency is  

 
( )

,
   

1 cos / 2

1
2

ev

os v f

vK

η φ

ω ω

= +

−
= −

 (5.15) 

In deriving Eq. (5.15) I have used Eq. (5.11). Assuming ,os v fω ω− = x ωσ , the combining 

efficiency of a locked system with n levels is  

 1
2

n

lock
v

x
K
ωση

⎛ ⎞
= −⎜ ⎟
⎝ ⎠

 (5.16) 

Now one takes into account the fact that the system stays in lock only with a certain 

probability. Therefore the true combining efficiency should be the product of lockP  and 

lockη    

 ( ) 2 1
1 ;0,1 1

2

n
n

v

xF x
K
ωση

− ⎛ ⎞
⎡ ⎤= − − ⋅ −⎜ ⎟⎣ ⎦

⎝ ⎠
 (5.17) 

lockP  is a monotonously increasing function of x , while lockη  is a monotonously 

decreasing function of x  in the range 0 / 2vx Kωσ< <  where Eq. (5.11) has a solution. 

Hence an optimal value of x can be chosen to maximize the efficiency described by Eq. 

(5.17). In Fig. 5.5(a) I plot the combining efficiency as a function of the normalized 

frequency detuning ( ), /os v fx ωω ω σ= −  for a given normalized frequency jitter 

/ 0.05vKωσ = . For each value of n, an appropriate value of x can be chosen to maximize 
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the overall combining efficiency. 
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Fig. 5.5 (a) Combining efficiency as a function of the normalized frequency detuning 

( ), /os v fx ωω ω σ= −  given / 0.05vKωσ = . A maximum value can be reached by picking 

the appropriate value of x. (b) Maximum combining efficiency as a function of the 

normalized VCO frequency jitter / vKωσ . osω  is the frequency of the RF offset signal 

provided by the signal generator, ,v fω  is the frequency of the free-running VCO, ωσ  is 

the rms frequency jitter of the VCO, and vK  is the VCO loop gain. The number of 

element beams is 2n .  

 

 In Fig. 5.5(b) I plot the maximum combining efficiency as a function of the 
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normalized frequency jitter / vKωσ  for different values of n. The combining efficiency 

drops quickly with the increase of both / vKωσ  and n. To combine a large number of 

beams, it is therefore critical to have a small value of / vKωσ  to achieve a high 

combining efficiency. In the CBC experiment with one VCO loop presented in Section 

4.3.2, I estimate the combining efficiency lost about 2% due to the residual phase error in 

the OPLLs and 4% due to the non-zero steady state phase error due to the frequency jitter 

of the VCO. The corresponding value of / vKωσ  is about 0.03. As I have pointed out in 

Section 4.3.2.c, one solution to reduce / vKωσ  is to reduce ωσ , e.g., to use a cleaner 

VCO with smaller frequency jitter. Another solution is to increase vK  using a lag-lead 

filter. With such a filter / vKωσ  can be reduced by an order of magnitude, and the 

combining efficiency penalty due to this steady state phase error can be reduced to less 

than 10% even for n = 7 (128 element beams). 

 

5.2.3 Effect of phase front deformation due to optical components 

Optical components such as beam splitters and reflection mirrors used in the combining 

system introduce phase front deformations in addition to absorption and scattering losses. 

Though this noise source has nothing to do with the OPLL servo system, I would like to 

emphasize it here because its influence on the combining efficiency could be more 

significant than that of the phase error in the OPLLs and the VCO loops I have analyzed. 

 I use Eqs. (5.6) and (5.7) to calculate the combining efficiency. In this case the bar in 

Eq. (5.6) represents averaging over space instead of time. Two beams passing through the 

same beam splitter or reflected by the same mirror will see the same phase front 

deformation. Thus the phase front deformations of the two beams are correlated. This 

scenario is illustrated in Fig. 5.6(a). Beam 1 and 2 are combined at beam splitter 1 and 
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see the same phase front deformation 1φ . Beam 3 and 4 see the same phase front 

deformation 2φ , and beam 1,2,3 and 4 also see the same phase front deformation 3φ , etc. 

A second scenario is illustrated in Fig. 5.6(b). This happens, for example, when two 

beams are combined at a beam splitter, where one beam is transmitted through it and the 

other one is reflected. Hence the two beams see different phase front deformations.  

   

Fig. 5.6 Two scenarios of phase front deformation caused by the combining optics 

 
 I first look at scenario 1. The phase front deformations caused by different beam 

splitters should be uncorrelated and I will assume that the deformations obey Gaussian 

distribution with zero mean and variance 2σ . One can define a distance function 

between any two individual laser beams labeled by index i and j, 

 ( ) 22 log ,    
,

0,                        

i j i j
D i j

i j

⎧ ⎡ ⎤− ≠⎪ ⎣ ⎦= ⎨
=⎪⎩

 (5.18) 

( ),D i j  indicates the number of different beam splitters (or mirrors) which the beams i 

and j go through. For example, in Fig. 5.6(a) ( )1, 2 0D =  because beam 1 and 2 go 

through the same beam splitters, and ( )1,3 2D =  because beam 1 and 3 go through two 

different beam splitters. The combining efficiency can then be calculated as  

 ( ) ( ) 21 ,
2

2 2
, 1 , 1

1 1i j
N N D i ji

i j i j
e e

N N
σφ φη

−−

= =

= =∑ ∑  (5.19) 



 

 

90

where the total number of beams is 2nN = . An analytical result can be obtained using 

mathematical recursion if the small error approximation is assumed  

 
( )

( ) ( )
21 , 2 22 1 11 , ,   , 1

2 2
D i j

e D i j D i j
σ

σ σ
−

≈ − <<  (5.20) 

Eq. (5.19) then reduces to 

 ( )
2 2

2
2

, 1

1 2 ,
22

n

n
n

i j
D i jση

=

⎛ ⎞
= −⎜ ⎟⎜ ⎟

⎝ ⎠
∑  (5.21) 

If one defines the function ( ) ( )
2

, 1
,

n

i j
f n D i j

=

= ∑ , then  

 ( ) ( ) ( )
1 1 1 12 2 2 2 2 2 2

, 1 , 1 1 1, 2 1 2 1 2 1

1 , ,
n n n n n n n

n n ni j i j i ji j j i

f n D i j D i j
+ + + +

= = = == + = + = +

⎛ ⎞
⎜ ⎟+ = = + + +
⎜ ⎟
⎝ ⎠

∑ ∑ ∑ ∑ ∑ ∑ ∑  (5.22) 

Since ( ),D i j  only depends on the difference of the indices i j− , the first two terms 

in Eq. (5.22) are the same and are equal to ( )f n . The other two terms are also equal to 

each other. Therefore Eq. (5.22) becomes  

 

( ) ( )

( )

1

1

2 2

2
1 2 1

2 2

1 2 1

1 2 2 2 log

2 2 2

n n

n

n n

n

i j

i j

f n f n i j

f n n

+

+

= = +

= = +

⎡ ⎤+ = + −⎣ ⎦

= +

∑ ∑

∑ ∑
 (5.23) 

Using mathematical recursion one obtains 

 ( ) 3 1

1
1 2 2

n
n i

i
f n i+ −

=

+ = ∑  (5.24) 

Using the mathematical relation 

 ( )
( )

'' 1
1

2
1 0

1 11
1 1

nnn n
i i

i i

nx n xxix x
x x

+
−

= =

⎛ ⎞ − − +⎛ ⎞ −
= = =⎜ ⎟⎜ ⎟ − −⎝ ⎠ ⎝ ⎠

∑ ∑  (5.25) 

and after some algebra one obtains  

 ( ) 2 1 2( 2)2 2n nf n n + += − +  (5.26) 
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Substituting Eq. (5.26) back into Eq. (5.21) gives us the combining efficiency  

 1 21 ( 2) 2 nnη σ−⎡ ⎤= − − +⎣ ⎦  (5.27) 

 For the second scenario described in Fig. 5.6(b), calculating the combining efficiency 

is not so straightforward. However one can make a slight modification of the diagram Fig. 

5.6(b) to make it similar to Fig. 5.6(a). Take any triangle in the tree structure of Fig. 

5.6(b), one can split the phase front error φ  in one arm into two uncorrelated phase front 

errors 1φ  and 2φ  on both arms and let 2 2 2
1 2

1
2

φ φ φ= = =  21
2
σ , as displayed in Fig. 

5.7. Next I will prove that Fig. 5.7(a) and Fig. 5.7(b) have equivalent contribution to the 

combining efficiency calculated using Eq. (5.19). 

 

Fig. 5.7. Splitting (a) the one-side phase error into (b) two-side phase errors. Four cases 

need to be considered to calculate the combining efficiency (Eq. (5.19)). Case 1: both 

beams i and j are from the same node a or b. Case 2: one beam is from node a and the 

other beam is from node b. Case 3: one beam (e.g. i) is from this triangle and the other 

beam is not. i’ is the image of beam i in this triangle. Case 4: neither i nor j goes through 

this triangle.  

 

 There are four cases that arise while calculating the contribution of this triangle to 
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any two beams i and j in Eq. (5.19). In the first case, both the beams i and j come in 

through the same node in Fig. 5.7 (either a or b). This triangle adds a common phase front 

error to the beams i and j. Therefore both Fig. 5.7(a) and Fig. 5.7(b) have no contribution 

to the quantity ( )2
i jφ φ−  in Eq. (5.19). In the second case, where one beam comes in 

through node a and the other beam through node b, both triangles in Fig. 5.7(a) and Fig. 

5.7(b) contribute the same amount 2 2 2
1 2φ φ φ+ =  to ( )2

i jφ φ− . The third case happens 

when one beam (e.g. i) goes through either node a or node b, and the other beam (e.g. j) 

does not go through this triangle. In this case one can always find the image beam i’ of 

beam i going through this triangle. If we calculate the contribution of this triangle to the 

quantity ( ) ( )2 2
'i j i jφ φ φ φ− + − , Fig. 5.7(a) and Fig. 5.7(b) are the same. The fourth case 

is when neither beam i nor j goes through this triangle, and splitting the phase front error 

does not change anything. Therefore Fig. 5.7(a) and Fig. 5.7(b) are equivalent under the 

small signal approximation.  

 With the above modification, scenario 2 (Fig. 5.7(b)) is similar to scenario 1 (Fig. 

5.7(a)) and Eq. (5.21) accordingly changes to  

 ( )
2 2

2
2

, 1

1 / 22 ,
22

n

n
n

i j
D i jση

=

⎛ ⎞
= −⎜ ⎟⎜ ⎟

⎝ ⎠
∑  (5.28) 

with   

 ( ) 22 log 1 ,    
,

0,                        

i j i j
D i j

i j

⎧ ⎡ ⎤− + ≠⎪ ⎣ ⎦= ⎨
=⎪⎩

 (5.29) 

Using the same mathematical recursion one obtains 

 ( ) ( )
2

2 1 2 2 1 1

, 1
, ( 2)2 2 2 2 1 2 ( 1)2 2

n

n n n n n n

i j
D i j n n+ + + +

=

= − + + − = − +∑  (5.30) 

and the combining efficiency is 

 1 211 2
2

nnη σ− −−⎡ ⎤= − +⎢ ⎥⎣ ⎦
 (5.31) 
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 One can observe from Eqs. (5.27) and (5.31) that the combining efficiency drops 

linearly with the number of levels in the tree structure n=log2N. Typical rms phase front 

deformations of optical components are about / 40λ  [64]. If N = 8 beams are to be 

combined, the maximum efficiency limited by phase front deformation is about ~ 97%η . 

This efficiency penalty is comparable to that caused by the residual phase noise in OPLLs 

and the non-zero steady state phase error in the VCO loops. Since it increases linearly 

with log2N, optical components of superior surface flatness have to be used if a large 

number of beams are to be combined. 

 

5.2.4 Effect of intensity noise 

The combining efficiency can also be degraded by intensity noise, as indicated in Eq. 

(5.4). The intensity noise could arise from the relative intensity noise (RIN) of the slave 

lasers, the fiber amplifiers, or just the amplitude mismatch errors between the element 

beams. Assume that there is no phase noise and that the amplitude of the ith beam takes 

the form of ( )0 1i iE E r= + , where ir  is the relative amplitude fluctuation with zero 

mean and variance 2 2
ir δ= . The efficiency of combining N beams affected by the 

intensity noise can then be calculated as 

 2

1 1

1 1/ 1 1
N N

p i i
i i

I I r
N N

η
= =

⎛ ⎞= ≈ − −⎜ ⎟
⎝ ⎠

∑ ∑  (5.32) 

If all the beams have similar intensity fluctuations, the combining efficiency 

converges to 21η δ= −  for a large number N and the efficiency penalty does not 

increase with the number of beams. 

 The free-running RIN of state-of-the-art SCLs is typically very small. I have 
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characterized the RIN of the IPS lasers used in CBC by detecting the power with a 

photodetector and measuring the output on an oscilloscope. The bandwidth of the 

photodetector is 12GHz and the bandwidth of the oscilloscope is 500MHz. The measured 

rms RIN is 2e-4, which is limited by the shot noise and photodetector electronic noise. 

Since the rms residual phase noise in the OPLLs is about 0.12rad, in Eq.(5.4) the third 

term is much smaller than the second term and can thus be ignored safely. 

 Additional intensity noise can also be introduced by the OPLL feedback current. 

Since the current feedback is used to control the relative phase error between the slave 

laser and the master laser, the intensity of the slave laser can also be modulated and the 

magnitude needs to be carefully checked.  

 Here I only want to estimate the magnitude of the intensity noise caused by the 

feedback current. Assuming that the FM responses of the circuit and the laser are flat, the 

current fed back into the SCL is  

 0 sin ei i φ=  (5.33) 

where eφ  is the detected phase difference between the master laser and the slave laser, 

and 0i  is a constant deciding the loop gain. Assume the intensity modulation 

responsivity is AMK , the intensity modulation is 0 sinAM eP K i φΔ =  and the RIN is 

 0 0
0

/ sinAM
s e

Kr P P i
P

φ= Δ =  (5.34) 

where 0P   is the DC optical power. AMK  can be estimated from the slope of the P-I 

curve of the slave laser, i.e., 

 ( )0 /AM thK P I I= −  (5.35) 

where thI  is the threshold current. In Eq. (5.33) 0i  determines the holding range of the 

OPLL and can thus be calculated by 

 0 /h FMi f K= Δ  (5.36) 
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where hfΔ  is the holding range and FMK  is the FM responsivity of the SCL. 

Substituting Eqs. (5.35) and (5.36) in Eq. (5.34) one obtains the RIN 

 ( ) ( ) ( )sinh
s e

th FM

fr t t
I I K

φΔ
=

−
 (5.37) 

 Using the typical parameters of the IPS laser OPLL 200hf MHzΔ ≈ , 

300thI I mA− ≈ , 200 /FMK MHz mA≈ , Eq. (5.37) gives ( ) ( )1 sin
300s er t tφ= . Thus the 

RIN introduced by the feedback current is at least two orders of magnitude smaller than 

the residual phase noise of the OPLL, and its effect on the combining efficiency can be 

neglected. 

 

5.2.5 Effect of fiber amplifier phase noise 

SCLs have relatively low output power. To achieve high average power, tens of 

thousands of SCLs need to be combined, which is very difficult to do. State-of-the-art 

fiber lasers or fiber amplifiers can emit single frequency beams of hundreds of watts with 

diffraction limited beam quality. An alternative option to obtain high average power is to 

use the locked slave laser to seed tens of high power fiber amplifiers, whose output 

beams are then coherently combined. Since CBC is very sensitive to phase noise, the 

phase noise introduced by the fiber amplifiers needs to be examined.  

 Historically there have been two different models proposed to explain the effects of 

fiber amplifier phase noise. The first model assumes that the amplified spontaneous 

emission (ASE) in the fiber amplifier adds a multiplicative phase term to the electrical 

field at the output of the optical amplifier[65, 66], i.e., 

 ( )( )
0( ) . . ai ti t i t

outE t GE e e e φφ ω=  (5.38) 

where 0E  is the amplitude of the signal at the amplifier input，G is the optical gain of 

the amplifier， ( )tφ  is the phase of the input signal, and ( )a tφ  is the phase noise 
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introduced by the amplifier.  

 This multiplicative phase noise model predicts a linewidth broadening of the signal. 

Following the derivation in [66], one arrives at an expression for the linewidth 

broadening due to ASE in the fiber amplifier: 

 
( )22 3. 1

4
sp s

in

n h G
GP

ν ν
δν

π
Δ −

=  (5.39) 

where nsp~1 is the spontaneous emission factor, svΔ  is the input signal linewidth, v  is 

the optical frequency, and Pin is the power of the input signal. 

 It was further pointed out in [66] that if the effect of ASE is taken into account only 

over the fiber amplifier bandwidth B0, the predicted linewidth broadening is much smaller, 

given by 

 
( )0

0
1

4
sp

in

n h B G
B

GP
ν

δν
π

−
=  (5.40) 

 However, more recent investigations into fiber amplifier phase noise have revealed 

that this multiplicative model may not be accurate[67, 68]. Instead, an additive noise 

model has been proposed, where the output field is given by 

 ( )( )
0( ) . . . ai ti t i t i t

out nE t GE e e E e e φφ ω ω= +  (5.41) 

where En is the amplitude of the ASE noise within the signal bandwidth. The signal-to- 

noise ratio of an unsaturated fiber amplifier is given by [39] 

 
1

in

soutput

PS G
N h Gμ ν ν

⎛ ⎞
=⎜ ⎟ Δ −⎝ ⎠

 (5.42) 

where μ is the population inversion factor (μ ≈ 1).  

 Since the predicted linewidth broadening (Eq. (5.39) or (5.40)) of the first model can 

be much smaller than the signal linewidth, a self-heterodyne balanced interferometer 

experiment as shown in Fig. 5.8(a) is usually employed to measure the linewidth 

broadening. This measurement removes the phase noise of the laser source, and is 

therefore more sensitive[68]. In this measurement, when the fiber amplifier is turned off, 
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one should see a delta function as shown in Fig. 5.8(b). When the amplifier is on, if the 

phase noise is multiplicative, one expects to see a Lorenzian lineshape as given in Fig. 

5.8(c). If the phase noise is additive, one expects to see a delta function with a Lorenzian 

pedestal, whose width is determined by the sum of the laser and amplifier phase noise. 

The ratio of the signal power to the noise power (area under the Lorenzian pedestal) is 

given by Eq. (5.42).  

 
SA: Spectrum analyzer,  PD: photodetector 

Fig. 5.8 (a) Self-heterodyne fiber amplifier phase noise measurement setup.  (b)-(d) 
Predicted beat spectra with (b) no amplifier noise, (c) multiplicative phase noise, and (d) 
additive phase noise  
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Fig. 5.9 Experimental results of the self-heterodyne fiber amplifier phase noise 
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measurement with span of (a) 10MHz and (b) 1kHz 

 

 I conducted a self-heterodyne balanced interferometer experiment as shown in Fig. 

5.8(a). A 1064 nm IPS external cavity SCL is used to seed a Nufern 3 W Yb-doped fiber 

amplifier. A phase modulator is used as the frequency shifter. In Fig. 5.9, I plot the 

measured spectrum with a span of 10 MHz and 1kHz. I see neither any observable 

linewidth broadening down to the resolution limit of the spectrum analyzer (~ 1 Hz) nor a 

noise pedestal down to the noise floor (67 dB below the signal level). However Fig. 5.9(b) 

shows the presence of many noise peaks, which are mainly the harmonics of the power 

line frequency (60 Hz) and are more than 20dB lower than the signal. This noise results 

from the acoustic noise picked up by the fiber. I replaced the amplifier with a passive 

fiber of equivalent length (~30m) and observed the same noise peaks.  
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Fig. 5.10 (a) Experimental setup to measure the fiber amplifier phase noise added to the 
OPLL. (b) and (c) Beat spectra at the photodetectors PD1 and PD2 in (a).  
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 I also performed a direct measurement of the amplifier phase noise added to the 

OPLL as shown in Fig. 5.10(a). The slave laser is phase locked to the master laser with a 

frequency offset osω , amplified and then beat with the master laser in a balanced 

interferometer to remove the effect of the master laser phase noise. Comparing Fig. 

5.10(b) to Fig. 5.10(c), I do not see any effect of phase noise added by the amplifier. In 

fact, the multiplicative phase noise model[66] predicts a linewidth broadening of less 

than 1Hz for an laser linewidth of 500 kHz, fiber amplifier gain of 40, and an input power 

level of 75 mW in our case. The additive phase noise model predicts a signal-to-noise 

ratio[39] of ~120 dB. In either case, the effect of ASE in the fiber amplifier is far below 

our measurement sensitivity and can be safely neglected compared to the other factors 

reducing the combining efficiency. While the amplifier does introduce a lot of thermal 

phase variation [25] and picks up acoustic noise, these variations are at very low 

frequency compared to the VCO loop bandwidth of ~100kHz discussed in chapter 4 and 

should be significantly suppressed by the VCO loops. 

 

5.3 Conclusion 

In Chapters 4 and 5, I have presented a detailed study using OPLLs to coherently 

combine optical beams. The full electronic servo system enabled by the OPLLs 

technology eliminates the need for optical phase shifters and should significantly reduce 

the cost and size of the system. In the preliminary experiment of combining two laser 

beams, a promising combining efficiency of 94% is achieved. This approach can be 

applied to both tiled-aperture and filled-aperture CBC implementations. In either case, 

the efficiency penalty due to the residual phase noise of the OPLLs is less than 2% if IPS 

external cavity lasers are used. In the filled-aperture approach, the efficiency penalty 

caused by the phase error in the VCO loops and the phase front deformation scales up as 

~log2N. This poses a serious challenge if a large number of beams are to be combined. 
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Fortunately, with the power of single-mode fiber amplifiers reaching hundreds of watts 

and even kilowatts, combining tens of beams can scale the power up to the regime of 

10kW or even 100kW.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


