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Abstract 

The thesis consists basically of two parts. The first part 

deals with speculators in commodity markets. In particular, we are 

interested in the role of speculators in stabilizing or destabilizing 

market price. The second part takes up hedgers in commodity futures 

markets. Here, we are concerned with the asymmetries between short 

and long hedgers. Specifically, we study whether or not the 

asymmetries discussed in the literature will lead to a backwardation 

equilibrium in futures markets. 

The two approaches differ in the way speculators are treated 

in the framework as market participants. In the literature dealing 

with speculators and stabilization, the non-speculators are inactive; 

their only role is to provide an (exogenous) non-speculative excess 

demand function based on which speculators choose their transactions 

to maximize their objective functions. Conversely, in the futures 

market ltterature, under rational expectations and common beliefs on 

the part of all traders, speculators are only the supporting actors 

while hedgers play the leading roles; speculators act only to reduce 

the imbalance between short and long hedging. The difference between 

these two approaches is, however, not as clear-cut as it seems to be. 

The reason is simply that hedgers often take some speculative 

positions in their decision-making process. Consequently, it can be 

argued that both speculators and non-speculators are active 

participants in the futures markets. This specific characteristic 
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thus generates the ambiguities about the role of speculators in 

stabilizing or destabilizing market price in the futures market 

framework. 

The main results of the thesis are as follows. From an ex 

post viewpoint, Chapter 1 indicates that profitable speculation will 

necessarily stabilize market price if and only if the non-speculative 

excess demand function is linear, with no lag structure and with the 

law of demand being satisfied. This conclusion falsifies the famous 

Friedman conjecture (i.e., profitable speculation necessarily 

stabilizes market price). We then study the case of linear non­

speculative excess demand function using an ex ante approach. At a 

rational expectations equilibirum, it is shown that Friedman's 

conjecture holds when speculators' expected utility function can be 

expressed in terms of mean-variance consideration. Whether or not 

there are nonlinear non-speculative excess demand functions that 

verify the Friedman conjecture in ex ante framework is a matter for 

future research. 

In Chapters 3 through S, we deal with two well-known 

asymmetries between short and long hedging, namely, asymmetric 

arbitrage opportunities and the so-called Houthakker effect. First, 

we show that the asymmetric arbitrage argument has no standing in the 

way of establishing the existence of a backwardation equilibrium in 

forward markets, whereas some highly restrictive assumptions must be 

imposed for the asymmetric arbitrage argument to lead to a 

backwardation equilibrium in a true futures market. Thus the 
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theoretical argument for a link between asymmetric arbitrage 

opportunities and a backwardation equilibrium is weak. Yet the 

question remains as to whether or not asymmetric arbitrage 

opportunities prevail in functioning futures markets. This is studied 

in Chapter 4 with respect to wheat and corn futures contracts traded 

on the Chicago Board of Trade (CBOT). The results indicate that 

asymmetric arbitrage oppo~tunities have impacts upon CBOT wheat 

futures markets, but not upon CBOT corn futures markets. 

Consequently, the asymmetric arbitrage argument may apply only to some 

specific commodities. 

Finally, in Chapter 5, we apply the same sample to test the 

existence of the Houthakker effect. Again, the hypothesis is 

rejected. Therefore, the two well-known asymmetries between short and 

long hedging do not have impacts upon CBOT wheat and corn futures 

markets. notwithstanding their roles in the way of a backwardation 

equilibrium. 

The thesis is concerned with developing an understanding of 

the way in which futures markets function, and the role of speculators 

and hedgers in the markets. The results presented here indicate that 

it is only under rather restrictive conditions that definite results 

concerning these issues can be derived, particularly in the context of 

the true futures markets, that is, markets in which several delivery 

options exist under a futures contract. 
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Chapter 1. Profitable Speculation and Price Stability 

An Ex Post Analysis 

Introduction 

In arguing the case for flexible versus fixed exchange rates, 

it was maintained by Friedman (1953) that profitable speculation 

necessarily stabilizes prices. The reason is that speculators can 

make profits only when they buy at low prices and sell at high prices. 

Both activities act to reduce the variability of the market price and 

hence are stabilizing. This intuitive argument involves several 

difficulties. First, we need a definition for speculators. In fact, 

Friedman defined a speculator to be a person who buys for future 

sales, not for his own consumption. As recognized by Friedman, this 

definition works well for ex post analyses; but it does not apply as 

well to decision making under uncertainty, where in the absence of a 

complete set of contingent claim markets, essentially all market 

participants are (or plan to be) speculators in this sense (see Feiger 

(1976)). 

To see this, we first adopt a more precise definition of 

speculators based on Friedman (1953) and Kaldor (1939). That is, 

speculators are agents who trade to a bundle of goods from which they 

hope to trade away profitably after some price movements (see Feiger 

(1976)). Now, consider an exchange economy in which agents initially 

have an endowment contingent upon states of nature. Assume there are 

two time periods: a first period, denoted by t = 0, in which there is 



2 

no uncertainty and a second period, denoted by t = 1, in which any one 

of S states of nature may prevail. There are G goods but no 

contingent claim markets exist. 

An agent, a, has a state-dependent intertemporal utility 

function, 

ua = ua(ca,ca),s = 1, ••• ,S, a= l, ••• ,A; s s 0 s 

Also, he has subjective probabilities of the occurrence of the states: 

s n: l 0, [ n: = 1, a= l, •.. ,A. 
s=l 

Define ha to be the vector of commodities bought in the first period 
0 

to be hoarded by agent a.(Essentially, this, implies the agent is an 

ex ante speculator; for an ex ante nonspeculator, b, hb is constrained 
0 

to be zero.) Agent a consumes the vector ca in the first period and 
0 

ca should state s eventuate in the second. And he possesses first­s' 

period (wa) and contingent (wa) endowments, traded in the first period 
0 s 

and the second at prices P
0 

and Ps' respectively. Agents thus face a 

recursive decision problem in deciding their consumption bundles and 

hoardings. If state s occurs in the next period, for given ca the 
0 

agents would face the decision problem: 

subject to P • (wa + ha - ca) L 0 s s 0 s 

The solution to this problem defines an indirect utility function: 
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Since markets are incomplete, some prices are uncertain; therefore, 

the agent may take an expectation over them to leave 

Thus, in the first period agents face the decision problem: 

subject to P • (ca + ha - wa) / 0 
0 0 0 0 ~ • 

Following Feiger (1976, Proposition 2), it was shown that the optimal 

solution to the second period problem (after c~ and h~ have been 

determined from solving the first-period problem), ca, will equal to s 

w: + h~ only coincidentally. Hence, every agent will choose w~ + h~ 

first; then, upon the realization of the state, a trade to ca will s 

occur. As such, every agent is a speculator in the sense of "buying 

for resales." 

From an ex post point of view with only one commodity being 

considered, it may as well be the case that upon the realization of 

the state, some agents do not engage in further transactions on that 

commodity. Consequently, they will be classified as nonspeculators 

(although they are speculators from an ex ante point of view); all 

others who engage in further transactions are thus speculators. 

The above analysis justified the premise that everyone who 

might engage in hoarding is a speculator from an ex ante point of 

view. In cases where some agents, b =A+ 1, A+ 2, ••• ,A + B, are 
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excluded from hoarding due to lack of storage capacity, they face a 

constrained decision problem ,with hb = 0. Consequently, they will be 
0 

nonspeculators from both ex post and ex ante points of view because 

they cannot buy for resales . The solution to their decision problems 

then give rise to the nonspeculative excess demand function in an ex 

ante framework. To this point, it is clear that speculators are whose 

who might engage in hoarding from an ex ante point of view, while they 

consist of two groups, those lack of storage capacity and those who 

have storage capacity but happen to choose not to hoard, from an ex 

post point of view . 

We now turn to the second problem associated with Friedman's 

argument. Mainly, speculators operating under uncertainty cannot know 

when prices are "low" or "high", so that any ex ante analysis has to 

be supplemented by some assumption such as rational expectations, if 

ex ante expected profitability is to be used as a measure of 

"profitable" speculation(see Telser ( 1959)). 

Finally, we need a measure for market price stability. In the 

literature, the basic approach has been to study the effect on the 

variance of the market price of profitable speculative activity. That 

is, variance was adopted as the measure of price stability1 • It is 

not at all clear that this is the appropriate measure from the point 

of view of evaluating the effects of speculation on social welfare 

(see Johnson (1976)). In this chapter, we will study the Friedman 

conjecture from an ex post point of view. Therefore, Friedman's 

definition of speculator and the forecasting ability of speculators 
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will not cause any difficulty. Moreover, we also use the variance to 

measure price stability. 

The problem of concern is whether or not Friedman's conjecture 

is correct in general, and, If not, to what extent it is correct. 

Concerning this, Baumel constructed a theoretical counterexample to 

show that the Friedman conjecture is not always true2• Nonetheless, 

the counterexample requires a non-speculative excess demand function 

that depends on previous price levels. Friedman then argued that such 

a functional form does not qualify as a non-speculative excess demand 

function because all persons whose demand or supply depends on 

previous prices must be classified as speculators. Since the issue is 

still unresolved, the two possible functional forms are studied in 

this chapter. 

Later, Stein (1961) also provided a real-life counterexample 

to invalidate Friedman's conjecture. In his paper, the example 

involved only two dates; therefore, it is unclear what kind of 

functional form the non-speculative excess demand actually took. More 

importantly, whether or not the two data points lie on the same non­

speculative excess demand remains unclear. In fact, it is easy to 

show that, if the non-speculative excess demand function changes over 

time, the Friedman's conjecture is generally false. In the 

literature, however, it is generally accepted that we are dealing with 

a non-speculative excess demand function that remains unchanged over 

time. 

The above two papers looked at the negative aspects of the 
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Friedman conJecture. On the other hand, both Kemp (1963) and Telser 

(1959) showed that when the non-speculative excess demand function is 

linear with no lag structure and satisfies the law of demand, 

Friedman's conjecture is always true. At this point in the debate, it 

was clear there were only certain classes of non-speculative excess 

demand functions which can validate Friedman's conjecture. The 

problem is what classes and the the question of whether or not these 

classes can generally describe market behavior. 

Farrell (1966) tackled these problems, and showed that, (i) 

for a two-period model, any continuous negatively sloped non­

speculative excess demand function would validate Friedman's argument 

if there is no lag structure; and (ii) given the independence 

assumption and the law of demand, for aT-period model with T 2 3, a 

negatively sloped linear non-speculative excess demand function is 

necessary and sufficient for Friedman's conjecture to be true if there 

is no lag structure. Schimmler (1973) generalized Farrell's results 

to the case of lag-responsive non-speculative excess demand, showing 

again that linearity coupled with the law of demand is necessary and 

sufficient to validate Friedman's argument. 

However, there are some problems in Farrell's and Schimmler's 

approaches that invalidate their proofs. In this paper we will show 

that, after correcting these slips, Farrell's two results are in fact 

correct, and we will redo Schimmler's problem for time-independent 

non-speculative excess demand functions. The conclusions derived for 

Schimmler's problem are (i) for two-period models, any continuously 
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differentiable non-speculative excess demand f(Pt, p ) with t-1 
Clf(Pt,Pt_1) 

aPt 
Clf(Pt,Pt_1) 

f (P P ) - ) will validate Friedman's conjecture; (ii) 2 t' t-1 - aPt-l 

forT-period models (T L 3), within the class of twice continuously 

differentiable functions, linear non-speculative excess demand 

functions f(Pt,Pt_1 ,··· ,Pt-T+1 > satisfying f 1 < 0, 

f 2 = f 3 = ••• = ft-T+l = 0 represent necessary and sufficient 

conditions for Friedman's conjecture to be true. 

On the other hand, while Friedman's conjecture does not hold 

with nonlinear non-speculative excess demand functions, this still 

leaves open the question as to whether the conjecture is valid at a 

rational expectations equilibrium (where profits are maximized). 

Given a three-period model, we show that examples can be constructed 

of a rational expectations equilibrium such that prices are 

destabilized, given that the market clearing prices without 

speculation differ in all three periods. Thus, while the analysis of 

this paper takes an ex post approach, still there are certain ex ante 

implications of the analysis as well. 

The appendix contains proofs of the most general results of 

the paper. We also prove a basic result on linear demand functions. 

Proofs of most other results are omitted, but the basic strategy 

underlying such proofs follows that of the three proofs presented. 
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Farrell's F~mework: A Re-examination 

Farrell considered a discrete time abstract market model, 

where the associated commodity is storable. Lett= 1, 2, ···, T 

denote T periods. Within any period all transactions are assumed to 

take place at the same price. Also, let P~. t = 1, 2, ···, T denote 

the price in period t when there is no speculation, and let P~, 

t = 1,2,.~ •• T denote the price in period t given the speculation 

sequence {s1 , s2 , ···, sT}' where st' t = 1, 2, •••• T, is the 

speculative sales in period t. To make the effects of speculation 

sequences welldefined, we need a clear-cut terminal date. Therefore, 

following Farrell, we define a complete speculation sequence as a 

speculation sequence {s1 , s2 , ···, sT} such that 

( 1) 

By sales and purchases in the market, speculators' profits are 

( 2) 

The introduction of speculation changes the variance of prices 

according to 
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where 

is taken to be the measure of the stabilizing effect of speculation. 

That is, if C > 0, we say the speculation sequence destabilizes 

prices; if C < 0, we say the speculation sequence stabilizes prices. 

Since Farrell considered only complete speculation sequences, 

Friedman's conjecture can be formalized as follows: 

T 
When [ s t = 0 , if n > 0, then C < 0. 

t=l 

To derive his two results about (4), Farrell employed an 

independence assumption;!-~·· he assumed that the non-speculative 

excess demand function has the following property: 

P~ - P~ = h( st), \It, for some function h( ·) 
, 

such that h(O) = 0 and h (.) < 0. 

In other words, suppose we have a non-speculative excess demand 

( 4) 

( 5) 

function f(•) such that Q~ = f(P~). When there are speculative sales 

st, p~ must be adjusted toP~ in order to clear the market,!-~·· we 

must have Q~ + st = f(P~) which implies st = f(P~)- f(P~). 

Therefore, we can rewrite (5) as 

h(f(P~)- f(P~)). ( 5) , 



10 

Under Eq. (5) (or equivalently Eq. (5) '),Farrell derived the 

results: (i) for a two-period model, any continuous negatively sloped 

non-speculative excess demand function will satisfy (4); (ii) for a 

T-period model (T} 3), a negatively sloped linear non-speculative 

excess demand function is necessary and sufficient for (4) to be true. 

The problem with Farrell's proofs is that there is a tautology 

involved. To see this, we ask when we can write Eq. (5). 

Equivalently, what functional form for non-speculative excess demand 

is consistent with Eq. (5) '? 

Theorem 1 

Let Qs = f(Ps), Qw = f(Pw). Then, within the class of 

continuous, differentiable functions, the only functional form h(") 

which can satisfy Ps-Pw = h(Qs-Qw) for all Ps 2 O, Pw 2 0 is linear. 

Also, f(") must be linear. 

[Proof] 

Ps-Pw = h(Qs-Qw) = h(f(Ps)-f(Pw)), VPs,Pw 

Taking the partial derivative with respect to Ps, we have 

1 = h'(f(Ps)- f(Pw))f'(Ps), VPs, Pw. 

Similarly, taking the partial derivative with respect to Pw, 

-1 = h'(f(Ps)- f(Pw))(-f'(Pw)), VPs, Pw. 

Hence , (f'(Ps) - f'(Pw))h'(f(Ps) - f(Pw)) = 0, VPs, Pw 

~ f'(Ps) = f'(Pw), VPs, Pw; 1·~·· f(") is linear . Therefore, 

h'(Qs-Qw) is also a constant which implies that h(") is linear. 

Q.E.D. 
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Theorem 1 shows that only linear non-speculative excess demand 

functions are consistent witH (5) '. Therefore, Farrell's proofs 

involve writing down a functional form (5) which can be satisfied only 

by a linear non-speculative excess demand function. Farrell then 

proved (4) is true only when we have linear non-speculative excess 

demand. Obviously, this involves a tautology. 

Nonetheless, for every non-linear non-speculative excess 

demand function f{.), if we fix Pw and allows to vary, we can still 

find a correspondence h between Ps - Pw and s. But that 

correspondence depends as well on Pw; 1.~ .. 

ps- pw = h{s,Pw) = h(Qs- Qw,Pw). Farrell's proof depends on the 

assumption that h is independent of Pw, since the proof proceeds by 

exploiting the properties of a single curve h in (Pw,s) space. Once 

it is recognized that h must be parameterized by Pw, the geometric 

approach requires a family of curves, each member corresponding to 

some price Pw, if non-linear non-speculative excess demands are to be 

included in the analysis. 

While Farrell's proofs are incorrect, the remaining question 

is whether his two results are still true. The following three 

theorems show that both his claims are, in fact, correct. 

Theorem 2 

For a two-period model, any differentiable, negatively sloped 

non-speculative excess demand function will satisfy Friedman's 

conjecture <1·~·· Eq. {4)). 
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Theorem 3 

For a three-period model, the only (nontrivial3) continuously 

differentiable functional form for the non-speculative excess demand 

function which can satisfy Friedman's conjecture is linear with 

negative slope. 

Theorem 4 

For a T-period model with T L 3, the only nontrivial 

continuously differentiable non-speculative excess demand functional 

form which can satisfy Friedman's conjecture is linear with negative 

slope. 

Actually, Theorems 2 and 3 are special cases of Theorems 6 and 

7; hence, we won't provide proofs (interested readers may check Lien 

(1984)). Theorem 4 is a generali~ation of Theorem 3 which can be 

easily proved by arbitrarily taking three consecutive periods and then 

applying Theorem 3. 

Lag-Responsive Non-speculative Excess Demand 

Friedman made the argument that the presence of a lagged 

response in non-speculative excess demand functions converts non-

speculators into speculators. Nonetheless, it is still of interest to 

see to what extent the above results generalize to this case. 

Schimmler investigated this problem by generalizing Farrell's 

approach to consider interdependent demand situations. First, let 

PS = [P~,P~, ••• ,P~]', 

Qw [Q~,Q~ •••• ,Q~l ', 

w w w w , s s s s1 P = [P1,P2, ... ,PTl Q = £01 ' 02· •.• •OT '' 
s = Qs - Qw, all (T X 1) vectors. Schimmler 
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assumed that-the non-speculative excess demand function has the 

following property: 

( 6) 

where H is a mapping from :m T to :m T. Under ( 6) , Schimml er showed 

that a necessary and sufficient condition for Friedman's conjecture to 

be true is that H*(S) = H(S)- H<~·uu = b(S)·s, where b(S) is a 

real-valued function and U = [1,1,1, ••• ,1]' is a (T X 1) vector. 

Since Schimmler's assumption (Eq. (6)) is only a generalized 

version of Farrell's assumption (Eq. (5)), then, by employing similar 

procedures, we can prove once again that only linear mappings are 

consistent with Eq. (6). 

Theorem S 

Let Ps, Pw, Qs, QW be (T X 1) vectors satisfying Qs = f(Ps), 

QW = f(Pw). Within the class of continuously differentiable mappings, 

the only mapping H(•) which can satisfy PS- PW = H(QS- QW) for all 

Ps, Pw is linear. Also, f(•) is linear. 

[Proof] See Lien (1984, p.14). 

Again, Theorem S shows that Schimmler's approach involved the 

same problems as Farrell's. Therefore, we reconsider interdependent 

excess demand situations and provide the following theorems: 4 
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Theorem 6 

Any continuously differentiable non-speculative excess demand 

function f(Pt,Pt_1) with f 1(Pt,Pt_1> < 0, f 2(Pt.Pt_1> ~ 0 will satisfy 

Friedman's conjecture in the two-period model. 

Theorem 7 

For a three-period model, within the class of twice 

continuously differentiable functions, the only (nontrivial) non­

speculative excess demand functional form, f(Pt,Pt_1 .Pt_2>. that can 

satisfy Friedman's conjecture is linear with f 1 < o. f 2 = f 3 = 0. 

Theorem 6 shows that, as in the independent excess demand 

case, if we consider only two-period models, a large class of 

continuously differentiable non-speculative excess demand functions 

will satisfy Friedman's conjecture, even though they involve past 

prices. However, Theorem 7 states that. for Friedman's conjecture to 

be true in a three-period model, we can never have a lag structure. if 

we assume a non-speculative excess demand functional form that is 

independent of time. (The proofs of Theorems 6 and 7 are described in 

the Appendix.) This implies that Friedman's classification of 

speculators cannot be relaxed; otherwise, his conjecture will in 

general be invalidated. In fact, Theorem 7 can be easily generalized 

to a T-period model with T 2 3 as follows: 



15 

Theorem 8 

For a T-period model ·with T 2 3, within the class of twice 

continuously differentiable functions, the only (nontrivial) non­

speculative excess demand functional form Qt = f(Pt,Pt_1 , ••• ,pt-(T-1)> 

which can satisfy Friedman's conjecture is linear with f 1 < o, 

f2 = f3 = ••• - ft-(T-1) = O. 

Now, we really come to a dead end. That is, if non-

speculative excess demand involves a non-degenerate lag structure, 

then Friedman's conjecture is always false. On the other hand, 

Friedman has already rejected this class of excess demand functions, 

because of his claim that such excess demand functions can only 

represent speculators, and not non-speculators. These conclusions 

apply only to T-period models, when T 2 3. When T=2, there is a large 

class of functions which can satisfy Friedman's conjecture even if a 

lag structure exists. 

Maximum Profit vs. Price Stabilization 

While nonlinear non-speculative excess demand functions will 

invalidate Friedman's conjecture, (i.§., there exist profitable 

speculation sequences which destabilize prices), a further question is 

whether this can be true for a profit maximizing speculation sequence. 

In particular, given that a speculator has perfect information about 

future prices, at a rational expectations equilibrium, the speculator 

will choose a profit-maximizing speculation sequence. Can such a 

speculation sequence destabilize prices? 
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To tackle this problem, consider the following maximization 

problem: 

T 
Max [ Ps{f(Ps) - f(P~)) 
{Ps} t=1 t t 

t 
T 

Subject To: L {f(P~) - f(P~)) = 0 
t=1 

and Var{P~} } Var{P~}. 

Forming the Lagrangian, we have 

T T 
n. _ L ps{f(Ps) - f(P~)) +A. L {f(P~) - f(P~)) + !!(Var{P~} - Var{P~)). 

t=1 t t t=1 

Therefore, if there is a profit-maximizing speculation sequence which 

destabilizes prices, we must have 11 = 0. In this case, assuming 

T = 3, the first-order conditions are 

(P~ + A.)f'(P~) + f(P~) = f(P~), V t = 1, 2, 3 

3 L {f(P~) - f(P~)) = 0 
t=1 

Var {P~} > Var {P~}. 

Now, summing up Eq. (7) over t, we have A. 

3 
Also, from (7), \pS{f(P8 )- f(Pwt)) l=1 t t 

3 3 
} } (Ps- Ps)2f'(Ps)f'(Ps) 

=-

(7) 

( 8) 

( 9) 

< o. 

- ~1 j=~j)i i j i j 
-=--=::;_,.,~--::::~:...:::...-3--------- } 0, and equality holds only when 

\ f' (Ps) 
l=1 t 



p~ 
~ 

pS v ±, j 
j' v 1, 2, 3. 
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The Appendix provides a proof of the following. 

Theorem 9 

For a three-period model with P~ = P~ for some i # j 
~ J • 

i, j = 1, 2, 3, any profit-maximizing speculation sequence will 

stabilize prices, given a continuous, differentiable non-speculative 

excess demand function with negative slope everywhere. 

w We next take up the case where P1, 

Consider the following numerical example5: 

pw and pW are all distinct. 
2 3 

p~ = 7. p~ = 12, p~ = 2; 

A= -10.95; P~ = 10.9, P~ = 11, P; = 2.1; f(2) = 85, f(2.1) = 83, 

f(7) = 12, f(10.9) = 10, f(ll) = 64, f(12) = 60; f'(2.1) = - 8:85 • 

f'(10.9) = -40, f'(ll) = -80 (see Fig. 1). These values will satisfy 

Eqs. (7)- (9). Specifically, Var {P~} = ~O < 5;·2 = Var {P~}. 
w w w Similar examples can be constructed whenever P1 , P2 , and P3 are 

distinct, as is easily verified by examining the conditions (7) and 

(8) in this case. Therefore, we have the following theorem: 

Theorem 10 

LetT= 3. Given any sequence {P~, P~, P~} of market clearing 

prices in the absence of speculation where P~. P~ and P~ are distinct, 

there exists a non-linear excess demand function f(P) with f'(P) < 0 

such that (i) f(P~) = Q~, V t = 1, 2, 3; (ii) at a rational 

expectations equilibrium with a complete speculation sequence {st}, 

s w s w f(Pt) = Qt + st, V t = 1, 2, 3 and Var {Pt} > Var {Pt}. 
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Q 

p 

FIGURE 1.1 THE CASE OF RATIONAL DESTABILIZING SPECULATION 
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Theorem 10 establishes that the Friedman conjecture does not 

hold at a rational expectations equilibrium. Thus Farrell's original 

findings, while phrased in ex post terms, actually have some 

applications in ex ante analysis as well. 
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Appendix To Chapter 1 

1. Proof of Theorem~ 

Let P0 be the exogeneously determined price at 0 period, and 

let P1 , p2 be the prices in periods 1 and 2 under the speculation 

sequence {S1 ,s2J. Also, let q1 , q2 be the prices in periods 1 and 2 

when there is no speculation. Therefore, s1 = Q~ - Q~ = 
s w f(P1 ,P0)- f(q1 ,P0) and s2 = Q2 - ~ = f(P2 ,P1)- f(q2 ,q1). 

Now, consider the following minimization problem: 

Min V(ql,q2) = (q~ + q~) - t<q1 + q2)2. 
{ql.q2} 

Subject To: f(P1 ,P0) - f(q1 ,P0) + f(P2 ,P1) - f(q2 ,q1) = 0 (A1) 

~1 [f(P1 ,P0 ) - f(q1 ,P
0

)] + P2 [f(P2 ,P1) - f(q2 ,q1)1 2 0. (A2) 

To verify Friedman's conjecture, we must require <P1 ,P2> to achieve 

the minimum;!.§., (P1 ,P2> must be a minimum point. 

Case A: If both (A1) and (A2) are binding, then 

• • [f(P1 ,P
0

) f(q1 ,P
0
)](P1 - P2) = 0 =9 q1 = P1 , if P1 I P2 

• =+q
2 

= P
2 

(by (Al)). 

• • If P1 = P2 , then it can easily be shown that q1 = q2 = P1 = P2 • 

• • • Case B: If (A2) is not binding, then we have q1 = q2 = q (by solving 

• first-order conditions), and [f(P1 .P0) - f(q ,P0>1<P1 - P2> ~ 0. 

• • • (i) If P1 > P2 , then f(P1 ,P0) 2 f(q ,P0) =9 f(P2 .P1) - f(q ,q ) i 
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• 0 and pl s cr-. 

we must • Since fl < 0, f2 s 0, have P2 2 q ~ p2 2 pl' contradicting 

pl ) P2. 

(ii) Similarly, if P1 < P2 , then we have P1 2 P2 , also a 

contradiction. 

Thus far, we have shown that the optimum point must be (P1 ,P2> for any 

given (P1 ,P2). To make sure V achieves a minimum, we'll check the 

local properties of Vat (P1 ,P2), while still satisfying (Al) and (A2) 

as follows: 

(i) If P1 > P2 , then to satisfy (A1) and (A2), we must have 

(f(P1,PO)- f(q1,PO))(P1- P2) L 0, 

which implies f(P1 ,P0) 2 f(q1 ,P0) ~ P1 ~ q1 • Now by (A1), we have 

f(P2 ,P1) i f(q2 ,q1) ~ P2 2 q2 • Hence, V(P1 ,P2) i V(q1 ,q2). 

(ii) Similarly, if P1 < P2 , we also have V(P1 ,P2> i V(q1 ,q2). 

(iii) If P1 = P2 , then (P1 ,P2> is the only feasible point satisfying 

(A1) and (A2). 

Therefore, (P1 ,P2) achieves a minimum of V(q1 ,q2) subject to 

constraints (A1) and (A2), implying that Friedman's conjecture is 

satisfied. 

2. Proof of Theorem 1 

Let P_1 and P0 be exogeneously determined prices in periods -1 

and 0, respectively, and let P1 , P2 and P3 be prices in periods 1, 2 

and 3 associated with speculative sequence {S1 ,s2 ,s3}. Also, let q1 , 
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q2 , -and q3 be prices in periods 1, 2 and 3 when there is no 

speculation. Hence, we have: 

Now, the minimization problem under consideration is 

subject to: 

f(P1 ,P0 ,P_1) - f(q1 ,P0 ,P_1 ) + f(P2 ,P1 ,P0) - f(q2 ,q1 ,P0) 

+ f(P3 ,P2 ,P1) - f(q3 ,q2 ,q1) = 0 (A3) 

and P1[f(P1 ,P0 ,P_1) - f(q1 ,P0 ,P_1)] + P2[f(P2 ,P1 ,P0) - f(q2 ,q1 ,P0)] 

(A4) 

Forming the Lagrangian, we can derive the first-order conditions as 

following: 

2 3 + A.[f(1) + f(2) + f(3)] - [f(1)p + f(2)p + f( 3)P ] = 0 2P1- 3(k/i) 1 2 3 J.l 1 1 2 2 3 3 

(A5) 

2 3 + A.[f(2) + f< 3 > l - [f(2)p + f(3)p ] 2p2 - 3<~/i) = 0 (A6) 1 2 J.l 1 2 2 3 

2 3 + A.f(3) - f(3)p 2p3- 3<~/i) = 0, (A7) 1 J.l 1 3 



23 

1 =~. 2, 3~ 

Now, consider only the binding case, !.g., ~ ~ 0, ~ ~ 0. Then to 

satisfy Friedman's conjecture, we require (P1 ,P2 ,P3) to satisfy Eqs. 

(AS) to (A7). By adding up (AS) to (A7), 

f( 1)P + (f( 2) + f( 2))P + (f( 3) + f( 3) + f( 3))P 
1 1 1 2 2 1 2 3 3 • 

~ = 
f(1) + f(2) + f(2) + f(3) + f(3) + f(3) 
1 1 2 1 2 3 

(A8) 

Since for any given P1 , P2 and P3 , Eqs. (AS) - (A8) must always hold, 

we can choose P1 , P2 , P3 such that P1 + P2 = 2P3 and P1 ~ P3 , P2 ~ P3• 

Thus, from (A7), 

since f is nontrivial. Substituting this into (A8), and using the 

fact that ~ ~ 0, P1 = 2P3 - P2 , P2 ~ P3, we have 

f 1 <P2 ,P1 ,P0)- f 1(P1 ,P0,P_1) = -f2(P2 ,P1 ,P0), when P1 + P2 = 2P3 , and 

P1 ~ P2 • Now, since we can arbitrarily change P3 also by twice 

continuous differentiability of f, we have 

Note that P_1 is arbitrarily given, and only f 1 (P1 ,P0 ,P_1> involves 

this term, implies that f 13 <P1 ,P0 ,P_1> = 0, V P1 ,P0,P_1 

=+ f13(Pt,Pt-1'pt-2) = O, V Pt,Pt-1'pt-2" 

Similarly, if we fix P1 ,P0 ,P_1 and change P2 , we'll have 
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-

. fll(P2rFl,PO) + f21(P2,Pl,PO) = 0, V P2,Pl,PO 

=9 fll(Pt,Pt-l'pt-2) + f21(Pt,Pt-l'pt-2) = O, V Pt,Pt-l'pt-2, (AlO) 

which is a partial differential equation. The solution of (AlO) is 

f 1 (Pt,Pt-l'Pt_2> =a+ bPt- bPt-l for some constants a and b (Note: 

f 13 = 0.) Substituting into (A9), 

Now, choose P1 ,P2 ,P3 such that P1 + P3 = 2P2 , P1 F P2 , P3 F P2; then 

(A6) reduces to 

Substituting into (AS), after algebraic operations, we have 

f~l) - f~ 3 > = fj 3>, since f~ 2 ) F o, P2 F P3 , f~ 3 > = o 

=9 f 3 (P3 ,P2 ,P1) = (a + bP1 - bP0) - (a + bP3 - bP2) 

= -bP3 + bP2 + bP1 - bP0 , when P1 + P3 = 2P2 , P1 F P3 • 

Hence, by arbitrarily changing P0 , we must have 

ar3(P3 ,P2 ,P1>/aP0 = -b = o, 

which implies f 1(Pt,Pt-l'Pt_2> =a and f 2(Pt,Pt-l'Pt_2> = 0 

=9 fj 3> = o when 2P2 = P1 + P3 and P1 F P3 , !·~·· 

However, f31(Pt,Pt-l'Pt-2) = f13(Pt,Pt-l'Pt-2) = 0, 

f32(Pt,Pt-l'pt-2) = f23(Pt,Pt-l'pt-2) = O; hence, f3(Pt,Pt-l'pt-2) = 
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g(P£_2) for~ome function g(·), and f 3 <P3 ,P2 ,2P2 - P3) = g(2P2 - P3). 

Since we can arbitrarily choose P2 , P3; therefore, g(2P2 - P
3

) = 0, 

V P2 ,P3 implies that g(Pt_2) = 0, and f 3(Pt,Pt-l'Pt_2> = 0. 

Combining the above results, we have f(Pt,Pt-l'Pt_2> = K +aPt for 

some constants K and a. 

Next, consider the nonbinding case <i·~·· A=~= 0); then we must 

require that (A4) not be satisfied. This will lead us to a < 0, which 

completes the proof. 

3 • Proof of Theorem 2 

Let xt = P~. yt = P~. V t = L 2, 3. Now, assume y1 = y2; we 

have three cases: 

Case A: y3 > y1 

(i) If x1, x2 > y1 , then f(x 1>. f(x2> < f(y1>. 

( ii) 

(iii) 

::::+ <x1 + A)f'(x1> > 0, <x2 + A)f'(x2> > 0 ~ x1 , x2 < -A. 

By (8), x3 < y3 , since x1 , x2 > y1 = y2 and f'(•) < 0. This 

implies f(x3) > f(y3) =+ (x3 +A)f'(x3) < 0 =+ x3 > -A. 

Hence, y1 = y2 < x1 , x2 < -A< x3 < y3 ::::+ Var {P~} > Var {P~}, 

contradicting (9). 

If x1 , x2 < y1 , then x1 , x2 > -A. Also, x3 > y3 ::::+ x3 < -A. 

Therefore, y1 > xl' x2 > -A > x3 > y3 , contradicting Y3 > Yt • 

If x1 > Yt' x2 < y1 , then x1 < -A, x2 > -A =+ x2 > xl. But 

xl > Yt > x2; hence we also have a contradiction. 
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( iv)" If xl. = Yt• then x1 = -A.. 

(a) If x2 > Yt, then x2 < -A. =9 x2 < xl Yt, contradiction. 

(b) If x2 < Yt, then x2 > -A. =9 x2 > xl Yt, contradiction. 

(c) If then by ( 8) , x3 = Y3 =9 Var {Pw} =Var s 
x2 Yt, t {Pt}, 

contradicting (9). 

Case ~: y3 < Yt 

Clearly, the proof of case A is applicable here as well, 

producing a contradiction in each instance. 

Case .Q: y3 = y1 

(i) Assume x1 = x2 = x3 is not true; then, without loss of 

generality, let x1 > y1 and x2 < y1 • Then x2 < y1 

=9 f(x2) > f(y1) =9 <x2 + A.)f'(x2> < 0 =+ x1 > y1 > x2 > -A.. 

But x1 >-A. =9 (x1 + A.)f'(x1> + f(x 1> < f(x1> < f(y1), a 

contradiction. 

(ii) Assume x1 = x2 = x3; then Var {P~} = Var {P~}, contradicting 

( 9) • 

Combining these three cases, it follows that ~ = 0 doesn't 

provide a solution for the associated maximization problem, meaning 

that the profit maximizing speculation sequence must stabilize price. 

This completes the proof. 
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Footnotes For Chapter 1 

1. Some other measures of price stability are summary statistics of 

price peaks and price troughs as provided by Baumol(19S7) and 

market equilibrium stability provided by Kemp(1963). Although 

there are problems associated with using the variance as a measure 

of price stability, yet it seems to be widely accepted(see Telser 

( 19 s 9' p. 2 96) ) • 

2. Actually, Baumel provided two counterexamples. The other, as 

pointed out by Telser, is a case in which speculators' profits are 

unrealized. Consequently, Baumel withdrew this counterexample. 

Any valid counterexample to Friedman's conjecture must involve a 

complete speculation sequence, that is, one in which speculative 

profits are actually realized. 

3. By "nontrivial," we mean that the non-speculative excess demand 

4. There are two important points worth noting about Theorem 6 and 7: 

(a) Though we assume Qt = f(Pt,Pt_1> in two-period models, 

Qt = f(Pt,Pt-l'Pt_2> in a three-period model, actually we can add 

more lags since they're irrelevant in the proofs. 

(b) In this paper, we consider only time-independent lag-

responsive speculative excess demand. Therefore, Theorems 6 and 7 
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-apply only to this case. 

5. Second-order conditions for this numerical example can be 

established by requiring f''(.) to satisfy some necessary 

s conditions at Pt' t = 1, 2, 3. 
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-
Chapter 2. Speculative Holdings Under Linear Expectation Processes: 

A Mean-Variance Approach 

Introduction 

Friedman's conjecture raises the general question as to 

whether speculators operating in an uncertain environment, acting in a 

manner consistent with a rational expectations equilibrium, will trade 

in such a way as to stabilize prices. The basic approach is as 

follows. We first assume the speculators have some price forecasting 

function and some objective functions. Based on their forecasting 

outcome, rational speculation sequences (that is, the speculation 

sequences maximizing the objective function) will be chosen, which in 

turn affect the realized market price in the next period. The 

rational expectations equilibrium then requires the equality between 

the forecasting outcome and the realized price. The main thrust of 

this approach then rests on the characterization of speculators' 

behavior under the expectation processes they use. Thereafter, the 

investigation of the Friedman conjecture is an immediate consequence. 

In the literature, there have been several studies that 

attempt to characterize speculators' behavior under a linear 

expectation process (Kohn (1978), Rogerson (1979)). However, these 

papers assumed that speculators are expected profit-maximizers, 

regardless of the riskiness of their market operations. 1 In this 

paper, we assume that speculators employ a mean-variance approach2 , 

and then characterize their impacts on the market again, assuming a 
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linear expectation process. Within this framework, and assuming a 

linear non-speculative excess demand function, Friedman's conjecture 

holds (1.~ .. profitable speculation necessarily stabilizes prices) 

from an ex ante point of view. 

The plan of this paper is as follows: We first describe the 

market structure and the speculator's problem. Dynamic programming is 

then applied to solve the problem and some general properties of the 

solution are exploited. As expected, the results depend crucially on 

the specific expectation process assumed. To proceed further, linear 

expectation rules are introduced. Thereafter, we consider first the 

special case when inventory cost is a fixed constant. Then we take up 

the general quadratic inventory cost cases. 

In modelling the rational expectations equilibrium, a non­

speculative excess demand function is introduced. By taking into 

account rational speculation sequences, we can derive the probability 

distribution of the market price over time. Given a rational 

expectations equilibrium, we examine the Friedman conjecture. The 

summary of the main results then conclude the paper. 

Market Structure 

Consider a discrete time spot market, where the associated 

commodity is storable. There is no forward nor futures market in this 

commodity, and short-selling in the spot market is prohibited. The 

market opens at time t = 0, 1, 2, ••• and transactions take place 

immediately thereafter. 
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There are three different types of agents in this market: 

producers, speculators and consumers. Producers and consumers as a 

group are called non-speculators. The type of each agent is 

exogeneously determined. We also assume that the decisions of 

producers and consumers are made without considering the effects of 

speculators. Hence, we can treat non-speculative excess demand as 

exogeneously given. Random effects that enter the model come from 

either the production side or the non-speculative demand side but are 

assumed to be independent of speculators' behavior. 

Each speculator takes prices as given <i·~·· the case of 

competitive speculation), and he employs a mean-variance approach to 

solve his decision problem, using all information available to him. 

Let St denote the stock level at time t for a specified speculator 

(later, we'll assume all speculators are identical). Now, at timet, 

the speculator observes the market price Pt and his carry-over from 

the previous period St-t• He then constructs a probability density 

function to summarize his expectations about next period's market 

price Pt+l using all available information. From this p.d.f., he 

determines his stock level St. Any inventory holding cost h(St) is 

assumed to be incurred at time t. 

Let ~ be the discount factor employed by this speculator and 

let ~/2 be the weighting factor of market risk (variance) in his 

objective function. Then, the speculator entering the market at time 

t solves the following problem: 

(A) 
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where the expectations are taken, conditional on his available 

information; hence, they are different operators at different points 

in time. Speculators are assumed to be risk-averse; hence ~ > 0. 

Before trying to solve (A), we make two further assumptions: 3 

(1) Var (Pt1Pt_1) = cl. V Pt,Pt_1 , t = 0, 1, 2, ••• ; 

2 
(2) h(S) = c<S;b> + d, V S 2 0. Assumption (2) incorporates a 

convenience-yield effect; 1·~ · · at stock level b, we achieve minimum 

inventory cost. If there is no convenience-yield effect, then minimum 

inventory cost should be achieved at S = 0, which implies b = 0. 4 

(See Rogerson (1979)). 

Optimal Speculative Carry-over 

To solve problem (A), assume that lim St = b (equivalently, 
t~oo 

this says that in the limit, the speculator will choose a minimum-cost 

inventory stock level), and consider a decision beginning at t = 0. 

Under some regularity assumptions, we can utilize dynamic programming 

to solve the speculator's problem. Specifically, assume at time T 

that the speculator's problem is over and his stock decision is 

• St = b; V t 2. T. Therefore , at time (T-1), his problem is: 

(Note that, at (T-1), PT_1 and ST_2 are both known.) 
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The first-order condition for (A1) is 

2 • • 
~ET - ~~a (ST_1 - b) - PT_1 - c(ST_1 - b) = 0 

~ET - PT-1 + be + b£H.i 

~~a2 + c ~~a2 + c' 

where ET = EPT' the conditional expectation of PT using information 

• about PT_1 , and St is the optimal choice of St, t = 0, 1, .••• 

Next, at time t = T - 2, his problem becomes 

(A2) 

where K0 is a constant term independent of ST_2 • 

Since 

where K1 is a constant term independent of ST_2 and ET_1 = EPT_1; 

therefore, the first-order condition for (A2) is 



~A.a2 + c 
• c(ST_2 - b) = 0 
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In general, define f 0(Pt) = Cov(Pt,Pt(~Et+1 - Pt)), V t and 

fk(Pt) = Cov(Pt,Ptfk_1<Pt+1)), V k = 1, 2, ••• , V t. Then we can 

state the following theorem: 

Theorem 1 

The optimal speculative stock level that solves (A) under the 

assumption that T is the terminal date is: 

• ~Et+1 - pt be T!-1 2 )i ~A.a2 )T-t 
st = + ( £lA.a + b( 

fH.a2 + c ~A.a2 + c =0 ~A.a2 + c ~A.a2 + c 

+ 6~ T-t-2 SA. i 
( 1) 

( ~ A.a2 + c)2 
},: ( 2 ) fi(Pt+1)' 

0 ~A.a + c 

V t = 0, 1, 2, • • • , T-1. 

[Proof] 

The cases t = T-1, T-2 can be checked easily. Now, assume at 

• timet, St satisfies Eq. (1). Then, at time (t-1), the speculator's 

problem is 
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where K2 is a constant term independent of St_1 • From Eq. (1), we 

have 

2 
E[Ptfi(Pt+1)])} 

2 2 2b 2 T-r-1 i A)._ 2 T-t 2 
= a st-1 _ca d s - 2b ( ., a ) a -

2 t-1 2 
~Aa + c ~=1 ~Aa + c 

2 

where d = ~Aa2/(~Aa2 +c). Therefore, the first-order condition for 

(A3) is: 

2 T-t-1 
A{E ~ 28• + bc

2
A.a [: ...~i + b~ ... 2...~T-t + A. f (P > + 

t' t - 11.0' t-1 'II ll.v " 2 0 t 
~).a + c =0 ~AO' + c 

61..2 T!-2 Bb i • 
( 2 ) fi+1(Pt)} - pt-1- c(St-1- b) = O 

(~A.a2 + c) 2 =0 ~Aa + c 
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_. ~~- pt-1 be tn.i T-t-1 
<ii .6?..i <iT-t + 

=9 8 t-1 + + be [ + b 
~1..0'2 + c ~1..0'2 + c ( ~1..0'2 + c) 2 ~=0 ~1..0'2 + c 

~b 
T-t-2 

Bl.. ) i+1f 2 2£fo<Pt> + [ ( ( p t)} 
(~1..0' + c) ~=0 ~1..0'2 + c i+1 

• ~E - pt-1 T-t t ~c L 0k + =9 8 t-1 = + 
~1..0'2 + c ~1..0' + c lC=O 

bcJT-t+1 + ~~.. 
T-t-1 k 

[ < ~"' ( ~1..0'2 + c) 2 
) fk(Pt), 

lC=O ~l..a + c 

by letting K i + 1. Therefore, the proof is completed. 

Q.E.D. 

Eq. (1) expresses the optimal speculative stock level as the 

summation of four terms: (1) the current expected profit effect 

~Et+1 - p 2 
-.><..:...o-"---'""'t; ( 2) the terminal convenience yield effect b( · fP.a ) T-t; 

~1..0'2 + c ~1..0'2 + c 

(3) the cost-factor-and-convenience-yield interaction effect 

be T-t-1 2 
[ ( 8~0' ) i 
~=0 ~1..0' + c 

and (4) the covariance risk effect 

Among these four effects, (2) vanishes as T approaches infinity, while 

(3) and (4) are special features rising because the mean-variance 

approach is used to describe the speculator's preferences.(That is, we 

consider a risk averse speculator instead of a risk neutral one.) 

These will be discussed further in the following section. 
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Properties o? the Optimal Stock Level 

First, note that in the derivations leading to Eq. (1), we 

. * impl~citly assumed St l 0. However, since short selling is not 

allowed, the optimal speculative stock level should be written as 

A * * st = max(St' 0) for every t > 0; and if we have t', such that St, < 0, 

* then all formulas forSt' tit' are now invalid. This introduces a 

complex discontinuity into the problem. In the general case, we will 

* simply assume St l 0. [There are some special cases, however, in 

* which St l 0 can be proved (!.~·· the case where c • 0 ).] 

Second, assume A = 0 and let T approach infinity. Then Eq. 

(1) reduces to the case considered in Rogerson (1979); 1.~ .. all 

competitive speculators are expected-profit maximizing agents. Hence, 

* tiEt+1 - pt 
Eq. ( 1) becomes St = c + b, since the terminal convenience 

yield effect (2) and covariance risk effect (4) both vanish when 

A = 0, T ~ =, and the interaction effect becomes b. There is one 

period time-lag difference between our model and that used in Rogerson 

as to when the inventory cost occurs. Adjusting for this, we obtain 

the optimal stock level derived in Rogerson (1979), which is therefore 

a special case of our model. 

Third, note that Eq. (1) holds when T is the terminal date. 

But to solve (A), we must letT approach infinity, creating 

tP" 
2 

Note that if c > O, then 0 < d =
2
« < 1, 

JiAa + c 
convergence problems. 

and convergence problems arise only from the covariance risk effect. 

However, if c 0 (!.~., there are no variable inventory costs), then 

all the terms except (2) require further consideration. 
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The last points we want to make are about the interaction 

effect and the covariance risk effect. Each of these is a discounted 

sum of a sequence but uses apparently different discount rates, 

6Aa
2 

respectively. This is somewhat misleading. 

When we introduce fK(') into Eq. (1), it turns out that both 

eAq2 
expressions involve the same discount rate d = --~~~---

~ba2 + c 
If we let 

b = 0 or c = 0, then the interaction effect vanishes (but the 

covariance risk effect remains). As for fK('), these functions all 

take the covariance operator form. For example, 

f 0 (Pt) = Cov(Pt' Pt(~Et+l- Pt)) is the covariance between price and 

expected profit for the next period; 

fK(Pt) = Cov(Pt, PtfK-l(Pt+l)) 

= Cov(Pt, PtCov(Pt+l'pt+lfK_2(Pt+2>> = 

= Cov(Pt,PtCov(Pt+l'pt+lCov(Pt+2 ' ••. , 

Cov(Pt+K'pt+K(~Et+K+l - pt+K)) 

measures the covariance between price and expected profit K periods 

later (by updating information at each subsequential future period). 

Therefore, we named (4) as the covariance risk effect. Note that this 

effect comes across time, rather than across alternatives at a point 

in time (leading to a covariance risk effect in the Capital Asset 

Pricing Models). 

Linear Expectation Rule 
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Now, assume every speculator is identical with price 

expectation formation equation given by: 

P~ = o + aPt_1 + et' V t, (2) 

where a is the price expectation adjustment coefficient; o/(1 a) is 

the long-run rational expectations equilibrium price; {et} is a 

sequence of identically independently distributed random variables 

with E(et1Pt_1) = 0; Var(etiPt_1> = a2 
and E(e~IPt_1 > = 0 (!.~ .. the 

probability density function of et is symmetric with respect to zero), 

V t. When a > 1, we say the speculator is responsive; when a < 1, we 

say he is unresponsive. 

Using (2), we can determine fK(Pt) for every K l o. For 

example, 

also, 

f 0(Pt) = Cov(Pt,Pt(~Et+1 - Pt)) = Cov(Pt,Pt(~o + (~a- 1)Pt)) 

= ~oa2 + (~a - 1) Cov(Pt,P~) 

~6a2 +(~a- 1)E{et"[2(o + aPt_1)et + e~- a2JJ 

2 
= {~6 + 2(~a- 1)(6 + aPt_1)Ja ; 

f 1 <Pt) = Cov(Pt,Ptf0 (Pt+1 >> = Cov(Pt,Pt(~6 + 2(~a- 1)(o 

4 2 2 = a {~6 + 2(~a - 1)6} + 2a (~a - 1)a Cov(Pt,Pt) 

= {~o + 2(~a- 1)o + 2a(~a- 1)(6 + aPt_1)Ja4 • 

In general, we can prove the following theorem: 
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Theorem 2 

Under the linear expectation rule (Eq. (2)), 

K+1 . 
fk(Pt) = {~& + 2&(~a - 1) [ aJ-1 + 

J=1 

2aK+1 (~a - 1)Pt_
1

}a2K+2 , V K, V Pt. 

[Proof] 

(3) 

The cases where K = 0 and K = 1 can be easily checked. Now, 

assume forK= i, fk(Pt) satisfies Eq. (3); hence, 

Cov(Pt,Ptfi(Pt+1)) 

= Cov(Pt,Pt(~& + sJ::2(~a- l)aj-l + 2ai+l(~a- l)Pt)a2i+Z) 

i+l 
= {~& + &j,:12(~a- 1)aj-1Ja21+4 + 2ai+1 <~a- 1)a21+2cov(Pt,P~) 

i+1 
{~& + &]:12(~a- 1)aj-1}a2i+4 + 2(~a- 1)ai+1a2i+4(& + aPt-1) 

{~& + 2&(~a- 1)~2aj-1 + 2(~a- 1)ai+2pt-1}a2i+4, 
J=1 

which completes the proof. 

Q.E.D. 

Substituting Eq. (3) into Eq. (1), we have 

s; = t+1 t + be ( 6A.a ) i + b ( 6A.a ) T-t + ~E - P Ty;-1 2 2 

~Aa2 + c ~Aa2 + c =0 ~Aa2 + c ~Aa2 + c 
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i+1 . 1 . 
{~& + 2&(~a - 1) [ aJ- , + 2aH1 (~a - 1)Pt} 

J=1 
( 4) 

• Next we will consider the problem of the condition under which St will 

converge as T ~ (1). 

Zero Variable Inventory Cost 

s* 
t 

When c = 0, Eq. (4) becomes 

~Et+1 - pt T-t-2 
+ b + 'b {~ + 

~ A.a2 =0 ~A.a 

2&(8a - 1) 1 - a 
i+1 2ai+1 <~a-. + 

~)..0'2 1 - a ~)..0'2 

if a I= 1. 

AE - p T-t-2 2(A 1)P 
p t+1 t + b + ~ {~ + 2&(8- 1)(i + 1) + p- t}, 

~ A.a
2 f:=o ~ A.a

2 ~ A.a
2 ~ A.a2 

if a = 1 

( 4 I) 

Theorem 3 

Given c = 0, assume & I= 0. • Then, if T ~ CD, st is unbounded 

for every t. 

1)Pt 
} , 
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[Proof] 

* Obviously, when a = 1, & F 0, T ~ ~. then St ~ -~. On the 

* other hand, if a F 1, then for St to be bounded, we must require that: 

i+1 
(1) a < 1 and ( 2) lim ~ + 26 ( B a - 1 ) • 1 - a = 0. Now, ( 2) 

i ~~ ln.a2 ID .. a2 1 - a 

implies ~(1 - a) + 2(~a - 1) = 0 ~ ~(a + 1) = 2, contradicting 

* a, ~ < 1. Hence, St is unbounded when & F 0, T ~ ~. 

Q.E.D • 

• Although St is unbounded from below, yet since short selling 

is prohibited, St must be non-negative. Hence, the optimal stock 

A * St = max(St, 0) is either ~ or 0, when & F 0 and T ~ ~. This implies 

Corollary 1 

A A 
Given c = 0, 0 .{ St < ~. \1 t and St > 0 for some t implies 

one of the following conditions: 

(i) & = 0, a < 1 

(ii) T is finite. 

Corollary 2 

Given c = 0, & 
A 

= 0, a < 1, and T ~ ~ implies S t = 0, \1 t. 

Corollaries 1 and 2 show that, with zero variable inventory 

holding costs, when T ~ ~. and short selling is prohibited, then the 

speculator accumulates either unbounded stocks or no stocks at all;, 

1·~·· speculators are either highly active or totally inactive. For 
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example, when & = 0, a < 1, they always hold zero stock. In the other 

cases, when & ~ 0, they might switch from an unbounded stock to zero 

at some points and then remain for few periods; finally, they switch 

from zero to an unbounded level of stocks. This implies that they are 

highly active. 

Theorem 4 

Given c = 0, when T < m, any time-independent linear 

expectation of speculators won't be fulfilled. 

The proof of Theorem 4 involves the structure of non-

speculative excess demand; therefore, we put it into the Appendix 

after the introduction of a market demand structure. Nonetheless, the 

reason we state Theorem 4 here is to claim that "T < m" is also not a 

useful assumption to avoid the "unboundedness" problems that arise 

when c = 0. In the following sections, c ~ 0 is assumed. 

Nonzero Variable Inventory Cost 

When c ~ 0, Eq. (4) can be written as: 

where 

Mlt 
be 0 1 _ d.T-t 

= 1 - d • 
13 A.a2 + c 

M2t = bdT-t 

a2&A.a2 1 
T-t-1 

M3t 
0 - d = 

13 A.a2 + c 1 - d 
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2&(~a- 1)6la2 T-J:t-2Ji. 1- ai 
2 2 

~ 1 _ a , where a F 1 
(fH.a + c) · =0 

+ 1), when a= 1 

( ~la2 + c) 2 

~n.i 

Hence, as T ~ co, 
be 

M1t ~ 2 
~Aa + c 

a2&Ai 

_1_ 
1 - d = b; M2 t ~ O; 

2 
2a~AO' (~a - 1)Pt 2 

---------~--, when a£U.q < 1 

~{ (~l..,l + c)[ (1 : a) ~,_.,l + c] ~Aa2 + c 

co, when at\la 2 1 
~Aa2 + c 

2&(l~a - 1HH.i 
c(1- a)(~Aa2 +c) (1- a)(~Aa2 + c)[(1- a)~A.a2 + c] 

2 
when a F 1 and atU.a < 1 

~Aa2 + c 
2 

:1: co when a F 1 and at\la 2 1 
~A.a2 + c 

when a = 1. 

2 
Note that when a = 1, at\la < 1 is satisfied. Therefore, we have 

~6.0'2 + c 



47 

-

the following theorem: 

Theorem 5 

Assume T ~ ~. If a~Aa2 l ~Aa2 + c, then s; is unbounded. 

* Furthermore, whether St =~or -~depends on M4t and Mst· On the 

other hand, if a~Aa2 < ~Aa2 + c, then as T ~ ~. s; will converge to 

where 

and 

2&(l}a - 1)1n..i 

c(1- a)(~Aa2 +c) 

when a F 1; 

c(1- a)(~Aa2 + c)[(1- a)~Aa2 + c] 

M = Bo + p
2
oAl + b + 2&<p - 1>pA.i 

~Aa2 + c c(~Aa2 + c) c2 

when a = 1. 

Corollary 3 

Given a~Aa2 < ~Aa2 + c, St > 0 implies 

(i) ast/ab = 1, v t. 
(ii) sgn(astjaPt) = sgn(~a- 1), V t. 

[Proof] 
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(i) is obvious. For (ii), if a< 1, then 

sgn(aSt/aPt) = sgn(~a - 1) < 0, since 1 - a > 0 and ~. a, 
2 a , c > 0. 

If a > 1, then since a~Aa2 < ~Aa2 + c =9 c + (1 - a)~Aa2 > 0, hence 

sgn(aSt/aPt) = sgn(~a- 1), Y t. 

Q.E.D. 

Theorem 5 shows that {St} is the solution for problem (A) when 

a~Aa2 < ~Aa2 + c and c > 0 (note that, by hypothesis, St L O, Y t); 

therefore, the optimal speculative stock level is fully characterized. 

Otherwise, we always have St = ~ or 0. Corollary 3 shows that, as the 

minimum-cost stock level b changes by one unit, the optimal stock 

level St also changes by one unit in the same direction for every t. 

Furthermore, when the current price Pt changes, which direction St 

will change to is determined by the sign of (~a- 1). 

Market Price Behavior 

Now, since we take the behavior of non-speculators as given, 

we can summarize their impacts on the market by a non- speculative 

excess demand function. Following the literature, we postulate a 

linear non-speculative excess demand function of the form: 

where {yt} is a sequence of identically independently distributed 

random variables with E(yt) = ~· Var(yt) = V. 

By the market clearing condition, 5 we have 

(5) 
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-
st-1 - st = -aPt + 'Yt• V t 

~ zPt_1 - zpt = -aPt + 'Yt• V t 

~ pt = z ~ apt-1 - z ~t a' V t (6) 

t-1 . 'Y 
~ pt = (-z-)tP - }: ___!L.) J t-i, v t 0 1 2 (7) 

z- a 0 z- a z- a v ' ' ' • • •• 
=0 

2 
where z =(Sa- 1 )£( 1 + al6Aa + 0 }. Note that this result is derived 

~6a2 + c (1 - a)~6a2 + c 
2 2 -

when a~6a < ~6a + c and 0 ~ St < CD, V t. 

From (7), we have 

t-1 
= (-z-) tp _ } (-z-) j__JL_ 

z - a o j=o z - a z - a 

Var Pt 

1 _ (-z-)t 
_!L_. z-a = (-z-)tp 

z - a 0 z - a 1- _z_ 
z- a 

= wtP + 1!(1 - wt) where w = _z_. 
0 a ' z - a' 

t-1 . 'Y 
= Var { (-z-) tp - }: (-z-) J~} 

z-a 0 z-a z-a 
=0 

t-1 2 
V ; (-z-) 2j = (l - w) V 

( ) 2 0 z - a a2 z- a 
= 

2t . 1 - w 
1 - w2 • 

Since w = _z_ ~ za - aw = z ~ z = --IDL.. ~ z - a = _a_ 
z-a w-1 w-1' 

t-1 j~ t-h-1 k 'Yt-h-k 
Cov ( P t , Pt h) = Cov (- f w • - [ w ) - .:f=o z - a K=D z - a 

_ t~-1 2k+h • V = (1 - w> 2V • h 1 - it-2h 
- Lw 2 2 w 2 

K:O ( z - a) a 1 - w 

when 0 ~ h < t. 

This proves: 

Theorem 6 



( i) lim EPt = 
t~oo 

( ii) lim VarP t = 
t ~00 

so 

!· if lwl < 1 

±oo, if lwl > 1 

0 - w> v if I w I < 1 
a2 0 + w)' 

oo, if lwl > 1 

h 
w (1 - w)V if lwl < 1 
a2 ( 1 + w) ' 

(iii) lim Cov(Pt,Pt-h) 
t ~00 

±oo, if lwl > 1. 

Since we want price to be non-negative, we make the following 

assumptions: (i) w > 0 and (ii) P0 > !· Therefore, for lwl < 1, we 

need 0 < _z_ < 1 =+ z < 0 =+ Pa < 1, since (1 - a)~A.a2 + c > 0. z- a 

Now, if c > (1 - p)A.a2 , then PA.a2 + c > A.a2 =+ 1 + _c_ > *; hence, 
~ i.a2 .. 

6A.a
2 

+ c ~ a < ! a < p;.a2 ~ ~· which establishes the following: 

Theorem 7 

Assume a> 1. If c > (1- ~);.~, then s: bounded and 

lim EPt' lim VarPt unbounded do not violate market clearing. Under 
t ~00 t ~00 

this configuration, the action of competitive speculators will 



51 

-
destabilize prices. 

As to whether the speculator's expectations will be fulfilled, 

we can compare Eq. (6) and Eq. (2) to derive the following theorem: 

Theorem 8 

(i) 

Fulfilling of speculator's expectation implies: 

_z_ =a and 
z- a 

(ii) 

2 
z = Ba- 1 {<1 + a>ala + c}, 

~la2 + c (1 - a)~la2 + c 

and (ii) holds for every t = 1, 2, 

Corollary 4 

If speculators' expectations are fulfilled, then 

( i ) a < 1, ( 11) 11 = f> ( a - z ) , ( iii) v2 = ( a - z) 2 a2 • 

[Proof] 

Assume a = 1; then, fulfilling expectation implied -Z- = 1 z-a 

~ z = z - a =9 a = 0, a contradiction. On the other hand, if 

z a > 1, then (z _ a) = a 
ast 

~ z > a > 0 and ap = z > a. 
t 

Therefore, as 

Pt ~ ~. St ~ ~ which is unbounded. Since we dealt only with bounded 

St, hence a < 1 is required. (ii) and (iii) are derived from 

E( Yt 
a - z 

Yt 
= E(O + et} and Var(a _ z) = Var(O + st), respectively (where 

expectations are conditional on available information). 

Q.E.D. 
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Therefore, when speculators' expectations are fulfilled, EPt, 

• VarPt and Cov(Pt,Pt-h) are all bounded. Also, St is bounded. 

Profitable Speculation 

In this section, we turn to Friedman's conjecture; i-~·· 

profitable speculation necessarily stabilizes prices. Recall that, in 

problem (A), St = b, \I t is a feasible strategy; therefore, any 

strategy {St} with St F b, for some t certainly incurs positive 

profits (actually, the profits must be high enough to cover the losses 

in expected utility due to nonzero variance). From TheoremS, this 

implies M + zpt F b for some t which is easily satisfied. 

Now, from Theorem 7, when a> 1, there would be destabilizing 

profitable speculation. However, in this case, the speculators' 

expectations won't be fulfilled. On the other hand, when their 

expectations are fulfilled, a < 1 and 

VarPt = < 1 - w> V • ( 1 _ w2 t) < v
2

, 

a2 (1 + w) a 

(since a < 1 ~ z < 0 ~ 0 < w = _z_ < 1) , where .:i... = 
z - a a2 

VarPt when 

there are no speculators. Therefore, 

Theorem 9 

At a rational expectations equilibrium <!·~·· speculators' 

expectations are fulfilled), and given a linear non-speculative excess 

demand, profitable speculation always stabilizes prices. 
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Theorem 9 leaves it open whether. at a rational expectations 

equilibrium with non-linear non-speculative excess demand, profitable 

speculation always stabilizes prices. Because of earlier results (see 

Farrell (1966). Lien (1984), Schimmler (1973)), it seems unlikely that 

Friedman's conjecture will hold with non-linear excess demands. 

however. 

Conclusion 

In this paper, speculators are taken to be risk-averse, and a 

mean-variance approach is employed. Under this approach, the optimal 

stock level for speculators has been derived. Nonetheless, this stock 

level might be unbounded. To carry the analysis further, we found 

that. when the marginal inventory cost is zero, speculators are either 

highly active (St =~>or inactive (St = 0). To resolve the problem 

of unboundedness of St when c = 0 requires either the assumption that 

the long-run equilibrium price equals zero (which leads to St = o. 

V t) or the assumption of a finite horizon (in which case 

speculators' expectations won't be fulfilled6). 

On the other hand, when the inventory carrying cost function 

is of a non-degenerate quadratic form. one possible equilibrium 

configuration involves bounded stock levels and unbounded prices, with 

the expectation adjustment coefficient greater than 1. However. this 

does not constitute a rational expectations equilibrium. 7 When a 

rational expectations equilibrium exists, given linear non-speculative 

excess demand, the stock level is bounded, price is also bounded, and 
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Friedman's conjecture is verified; i·~·· profitable speculation 

necessarily stabilizes prices. 
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Appendix To Chapter 2 

Proof of Theorem 4 

By inspecting Eq. (2) and Eq. (4'), we know that unless 

~a - 1 = 0, the speculators' expectations won't be fulfilled, since, 

in (4'), price terms involve multiplicative time factors when ~a~ 1. 

On the other hand, when ~a- 1 = 0, then 

= _!§_(T - t) + b 2. 0, \,/ t S. T 
~Aa2 

Therefore, the market clearing condition becomes 

- aP + 'Yt - _L "r/tS,T t - Aa2, 

~ pt 
'Yt f> "r/tS,T. a ---2, 

aAa 

Now, for expectations to be fulfilled, we need a = 0, which 

contradicts ~a - 1 = 0. Hence, the proof is completed. 
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Footnotes For Chapter 2 

1. On the other hand, both Sarris (1984) and Turnovsky (1983) 

employed mean-variance approach to determine one-period optimal 

stock level, without taking account of the dynamic effects. 

2. When dealing with risk neutral speculators, it is only the 

expectation of market price that matters. Consequently, the 

rational expectations equilibrium in this case requires only the 

equality with respect to the first moment of forecasted and 

realized prices. On the other hand, if risk-averse speculators 

are considered, the equality of second moments is also required. 

3. The assumption Var(Pt1Pt_1) = a2 , V t can be relaxed to 

2 Var(Pt1Pt_1> = at' which is a constant term independent of Pt, 

Pt-l' but might change over time. Under this assumption, the 

results can be easily adjusted to characterize the optimal stock 

level. Nonetheless, the market price process will be highly 

complex and difficult to analyze. 

4. If the inventory cost function were chosen to be linear rather 

than quadratic, then, when b = 0 <1·~·· no convenience yield), the 

inventory cost curve is a straight line over [0,~). However, if 

b F 0, then we have to introduce a kinked point in the inventory 

cost curve. 

s. Strictly speaking, the left-hand side of the market clearing 
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equation should be multiplied by the number of representative 

speculators, but, without loss of generality, we set this factor 

to be one. 

6. In the one-period framework, considering all the agents in the 

market, Turnovsky showed that constant marginal inventory cost may 

lead to the nonexistence of rational expectations equilibrium in 

futures market as well. 

1. Without considering the "unboundedness" problem of the optimal 

stock level, when a > 1 and the speculator's expectation is 

fulfilled, the optimal stock level will increase monotonically 

over time. Therefore, there will never be realized profits. 
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Chapter 3. Asymmetric Arbitrage and the Pattern 
of Futures Prices under Rational Expectations 

Introduction 

It is now over sixty years since Keynes (1930) first argued 

that the "normal" state of affairs on futures markets was one of 

backwardation, here interpreted as a situation in which the current 

price of a futures contract is less than its expected price at 

maturity of the futures contract. Keynes argued that short hedgers 

(long in the cash market, short in the futures market) t.;ould pay a 

risk premium t o speculators, this premium representing the degree of 

backwardation in the market. Keynes did not explain why it was that 

only short hedgers, and not both short and long hedgers, would have to 

pay such a premium. (Long hedgers are long in the futures market and 

short in the cash market.) Later, Hicks (1965) argued that a 

preponderance of short over long hedgers was to be expected because 

purchasers of inputs have more possibilities of substitution available 

to them than do the producers of a commodity. Kaldor (1939) admitted 

the possibility of an excess of long over short hedging on the market, 

in part because of the quantity risks that a producer exposes himself 

to, if he engages in a hedge to avoid price risks. In the more recent 

literature, backwardation and the preponderance of short over long 

hedging has been attributed to information asymmetries (Danthine 

(1978)), to a highly elastic demand for the final good (Macminn, 

Morgan and Smith (1984)) or to the fact that futures contracts provide 

poor consumption hedges (Richard and Sundaresan (1981)), and sometimes 
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backwardation is simply imposed ad hoc as a condition of the model 

describing the futures market (Baesel and Grant (1982)). 

In this paper, we explore an explanation for backwardation 

advanced by Houthakker (1959) , namely, the idea that arbitrage on the 

futures market is asymmetric in such a way as to favor short hedgers 

over long hedgers. The idea here is that, at any point in time, the 

futures price cannot exceed the cash price plus carrying costs to the 

maturity date of the futures contract, since otherwise there is a 

riskless profit to be earned by selling a futures contract, buying 

cash and storing to deliver on the futures. Arbitrage thus provides 

an upper limit on the amount by which the futures price can exceed the 

cash price, but there is no corresponding arbitrage operation 

available to limit the amount by which the cash price can exceed the 

futures price. 

Actually, Houthakker suggested two explanations for 

backwardation in his seminal work of the 1950s and 1960s, the second 

being the tendency for the delivery alternatives admissible under a 

futures contract to be better substitutes for one another at low 

rather than at high cash prices. In a recent paper, Fort and Quirk 

(1984) show that under an appropriate specification of such a 

"Houthakker effect," a backwardation equilibrium can be constructed, 

even when there is an equal number of short and long hedgers on the 

market, with identical utility functions and densities over cash and 

futures prices. 

The existence of a "Houthakker effect," however, is closely 
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tied to seasonality in production patterns and the existence of 

multiple delivery alternatives under futures contracts. These 

features are present in agricultural futures contracts but are not as 

common in financial futures or in futures covering metals and other 

industrial commodities. For this reason among others, it is important 

to determine whether the presence of asymmetric arbitrage in and of 

itself is sufficient to generate a pattern of backwardation on a 

futures market. 

Briefly, our results in the present paper are the following. 

In a world with an equal number of short and long hedgers, with 

identical utility functions and densities over cash and futures 

prices, asymmetric arbitrage has no effect on the pattern of cash and 

futures prices when the futures market is in fact a forward market, 

that is, a market in which the cash and futures prices are identically 

equal at maturity of the futures contract. In such a world, under 

rational expectations, the resulting equilibrium is a martingale 

equilibrium in the futures market (current price of the futures 

contract equals its expected price next period), with the current 

futures price equal to the current cash price plus carrying costs to 

maturity of the futures contract. 

The situation is different in a true futures market, that is, 

a market in which there are two or more delivery alternatives 

admissible under the futures contract, these being less than perfect 

substitutes for one another. 

In a true futures market, the effect of asymmetric arbitrage 
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on a previous martingale equilibrium is indeterminate in the general 

case; it might be to produce 'a backwardation equilibrium, or a 

contango, or no change at all. Given an arbitrary symmetric joint 

density over the cash and futures prices and given an arbitrary 

concave utility function for traders, the introduction of asymmetric 

arbitrage does not even necessarily encourage short hedging and 

discourage long hedging, despite the intuitive appeal of Houthakker's 

argument. But even when, under highly specialized conditions, it can 

be shown that the Houthakker conjecture holds in the sense that short 

hedging is encouraged and long hedging is discouraged by asymmetric 

arbitrage, additional restrictions need to be imposed to guarantee a 

backwardation equilibrium. Moreover, imposing a rational expectations 

framework on the model of the futures market implies that, given a T­

period futures contract, the effects of asymmetric arbitrage show up 

only in the futures markets for periods T - 1 and T, while, in earlier 

periods, the futures market behaves like a forward market. In effect, 

rational expectations, by precluding the possibility of capital gains 

by traders in earlier periods, rule out speculation as a market force 

during those periods. 

The upshot of all this is that, despite its intuitive appeal, 

Houthakker's argument that asymmetry of arbitrage works to produce a 

backwardation equilibrium has no standing when the market is a forward 

market and is at best highly conjectural when applied to a true 

futures market. 
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The -Model 

We consider a world in which there is a futures market as well 

as cash markets in the grade-location alternatives deliverable under 

the futures contract. This is aT period (t = 0,1,2, .•. ,T) world. 

There is one futures contract available, maturing at time T. Traders 

on the futures market are long (L) hedgers, short (S) hedgers, and 

speculators. All traders are assumed to have the same strictly 

concave utility function over income and the same probability beliefs 

concerning futures and cash prices for periods in the future. 

Let p~ denote the cash price at time t of a grade-location 

alternative deliverable under the futures contract. Let pf denote the 
t 

price of the futures contract at time t. 

We take short hedgers to be elevator operators, while long 

hedgers are millers. For short hedgers, let W~ denote the cash 

commitment (no. of bushels stored) for a typical short hedger at time 

t, and let V~ denote the number of futures contracts sold at time t. 

Profits for the short hedger during period t, beginning at t - 1 and 

s ending at t, are denoted by nt' which is given by 

( 1) 

In (1), kt is the carrying cost per bushel of wheat over the 

tth period, which is taken to be a known constant independent of 

prices and of storage levels. X~ denotes the flow of wheat through 

the elevator during the tth period, so that X~= W~_1 - W~. Rt(•) is 

a strictly concave function, giving the net revenue earned by the 
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elevator operator from those activities (grading, handling, etc.) for 

which per-bushel profits are 'unrelated to changes in cash prices. In 

the formulation adopted here, it is assumed that the short hedger in 

effect liquidates both his cash and futures positions at the end of 

each period. 

For a typical long hedging miller, let W~ denote the cash 

(wheat) commitment of the miller at time t. We interpret this as 

follows. At t = 0, the miller signs forward contracts to deliver 

flour to its customers between t = 0 and t = T. These contracts 

provide for a delivered price (in wheat equivalent terms) equal to 

t 
p~ + [ k~ plus a milling fee, if delivery occurs at time t. Option 

~=1 

as to the delivery date is with the miller. 

Let V~ denote the number of futures contracts bought at time t 

and let L L L Xt = Wt_1 - Wt. Then it is convenient to write the expression 

L for profits, nt, in the form 

c)WL + ( f f )VL + R (XL) 
Pt t-1 pt - pt-1 t-1 t t • ( 2) 

Equation (2) expresses profits in the tth period under the 

assumption that the cash and futures positions are liquidated at time 

t. Thus, if the cash position were liquidated at time t, wheat 

sufficient to deliver on outstanding forward contracts could be 

purchased at p~ per bushel (for instantaneous processing). If 

X~ < W~_ 1 , this means that, in effect, the miller "repurchases" his 

remaining forward contracts at the beginning of the t + 1st period, 

increasing the selling price by the carrying charge kt+l" Expressing 
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profits in this way makes the long hedger's profit function directly 

comparable to that of the short hedger. The Rt(") function gives 

(net) revenues to the miller from activities where per bushel earnings 

are not related to changes in the cash prices, for example, milling 

operations. To complete the picture, we assume an equal number of 

elevator operators and millers, operating in competitive cash and 

futures markets. For symmetry, we take the Rt("} functions for both 

the short and long hedgers to be identical. 

It is assumed that the commodity in question is a seasonal 

good, but the argument can be extended in a natural fashion to cover 

financial futures or futures in non-agricultural commodities. Time 

t = 0 can be thought of as the harvest time, with no harvest occurring 

again until after time t = T. Thus all of the commodity available for 

use at time t = 1 to t T is represented by the cash commitments of 

short hedgers (elevator operators) at time t = 0. Similarly, it is 

assumed that all of the commitments for consumption at t = 1 to t T 

are represented by the cash commitments of long hedgers (millers) at 

time t = o. Assuming an equal number of identical short and long 

hedgers, we have the following market clearing conditions. 

Cash Markets: 

0, 1, ••• ,T (3) 
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Fut1.1res Markets: 

VL + Vspec c 
t t , n, l , ... ,T- 1, ( 4) 

::F )E:O where Vt , t = 0,1,2, ••. ,T- 1 is the number of purchases of futures 

contract s by pure speculators. Speculators buy futures whenever 

f f expected profits from purchases are positive (Ept > pt_1 > and sell 

f utures whenever expe cted profits from sales are positive 

f f (Ept < pt_
1

>. We assume that the aggregate (excess) demand functions 

for futures by speculators are of less than infinite elasticity. 

In describing the pattern of prices on the futures market, we 

use the following terminology. The futures market attains a 

martingale equilibrium at time t - 1 if the market clearing prices 

p~_ 1 ,p~ satisfy the condition: 

f 
= pt- 1• ( 5) 

The futures market is said to exhibit backwardation at time t- 1, if 

( 6) 

Similarly, the futures market exhibits a contango at time 

t - 1 if 

( 7) 

In analyzing the effect of asymmetric arbitrage on the pattern 

of prices on the futures market, it is helpful to distinguish between 

two cases, the case of a forward market, and the case of a "true" 
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futures marKet. A forward market is one where there is only one 

grade-location alternative d~liverable under the futures contract, so 

that p~ p~ is known to be the relationship that will hold at time T 

between the market clearing prices on the cash and futures markets. 

This is the case where "perfect hedges" occur and is the case 

typically studied in the theoretical literature dealing with futures 

markets (e.g., see Anderson and Danthine (1983)). 

In contrast, if two or more grade-location alternatives are 

deliverable under a futures contract, with these being less than 

perfect substitutes for one another, then we have the case of a "true" 

futures market. 

Because choice of the grade-location alternative to deliver 

under the futures contract is up to the seller, buyers and sellers in 

a true futures market know that what will be delivered under the 

futures contract will be that delivery alternative with the lowest 

cash price at time T. Hence arbitrage ensures that the relationship 

between equilibrium prices of the futures and any delivery alternative 

at time t = T in a true futures market takes the less restrictive form 

pf ! p~: hedges now become "imperfect" and there is a nondegenerate 

joint pdf over pf,p~ that must be analyzed in examining the time 

pattern of cash and futures prices. 

Moreover, at any time t < T, arbitrage imposes additional 

constraints on the futures price through the relationship 

f c T 
Pt ~ Pt + ~ k , where k~ is the cost of carrying a unit of the 

~='t+l ~ 

commodity over the ~th period. If this constraint were violated, then 
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ther-e would ~e a riskless profit that could be earned by selling a 

futures, buying a deliverable grade on the cash market, and then 

storing to deliver at time T under the futures contract. Because 

f arbitrage acts only to impose an upper (but not a lower) bound on pt, 

arbitrage is asymmetric. We first investigate the effect of 

asymmetric arbitrage on a forward market. 

Price Patterns in a Forward Market 

Since p~ = p~ is the equilibrium condition at time T in a 

forward market, thus at t = T- 1, cash and futures commitments of 

short and long hedgers are chosen under the degenerate joint density 

f(p~) <= f f(pT)), held in common by all traders. Further, we have 

wS = wL = 0 so s s and L L Hence, first-order T T that XT = WT_1 XT = WT-1' 

conditions for a short hedger are given by 

CX> 

S u'(rrS)[pc- PC - k + RT']f(pTc)dpTc 0 
O T T T-1 T 

( 8) 

Similarly, first-order conditions for the long hedger are given by 

( 9) 

Consider as a possible candidate for equilibrium in the 

t = T - 1 cash and futures market the following price and commitment 
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f 
Pr-1 
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Note that combining the two first-order conditions in (8) and 

(9) we have 

I f C 
Setting WT_1 such that RT(WT_1> = 0, then Pr_1 = Pr_1 + kT, and we 

also satisfy the cash market equilibrium condition in (3). 

Further, integrate the first integral in (8) by parts to 

obtain 

(10) 

cl c c ' s Given that E(pT Pr_1 > = Pr_1 + kT with RT(WT_1 > = o, strict 

concavity of u implies that W~_1 = V~_1 • A similar development 

establishes that wi_1 = vi_1 • Hence, we satisfy the market clearing 

condition vi_1 = vi_1 for the futures market. 

Consider, next, equilibrium in the time t T- 2 market. 
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Suppose it is common knowledge at t = T - 2 that all traders have 

identical utility functions and identical probability beliefs about 

time t = T - 1 and time t = T cash and futures prices. Then we claim 

that a rational expectations equilibrium at time t = T - 2 is one such 

f c . f I f f that Pr_2 = Pr_2 + kT_1 + kT' w1th E(pT_1 Pr_2) = Pr_2 and 

c I c c s L E(pT_1 Pr_2 > = Pr_2 + kT_1 • Further, XT_1 XT_1 = XT_ 1 , where 
, 

XT_1 = WT_2 - WT_ 1 satisfies RT_1 (XT_1 ) = 0. 
S L 

Here WT-2 = WT-2 = WT-2 
S L 

with VT_2 VT_2 = WT_2 • 

The argument is much like the one above establishing the 

martingale property in the time t = T - 1 markets. Given the common 

knowledge assumption, each trader knows that the equilibrium price 

pattern in the time t = T - 1 markets is one such that 

f c Since Pr_1 = Pr_1 + kT, again we can describe the 

probability beliefs of traders in terms of a degenerate density over 

c c S L Pr_
1 

only, say g(pT_1 >. Further, WT_1 and WT_1 are known to equal 

S S L L 
WT_1 , so that XT_1 = WT_2 - WT_1 and XT_1 = WT_2 - WT_ 1 • 

First-order conditions for the short hedger are then given by 

( 11) 

The long hedger's first-order conditions are 

(12) 
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Using the earlier approach, it immediately follows from (11) 

S L · . and (12) that, if WT_2 = WT_ 2 = WT_2 sucn that 

' S ' L RT_1 <XT_1 > = RT_1 <XT_1 > = 0, then market clearing prices in the 

t = T - 2 markets satisfy 

f 
Pr-2 

f 
Pr-2' 

Similarly, the above arguments apply tot= T- 3, 

T- 4, ••• ,0. Thus, we have established the following. 

Proposition 1. Given a forward market with an equal number of short 

and long hedgers, each with identical utility functions and densities 

over cash and futures prices, there exists a rational expectations 

equilibrium which is also a martingale equilibrium, satisfying 

pf 
T 

PC 
+ ~ k ' t 0,1, ••• ,T- 1, t t 't= +1 't 

f PC with Pr = T 

fl f E(pt Pt-1) 
f 

pt-1' t = 1, ••• , T 

1,2, ••• ,T 

0,1, .•• ,T- 1. 
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One ~hing to note about this rational expectations martingale 

equilibrium is that there is no role for Houthakker's "asymmetric 

arbitrage" to play in influencing the configuration of equilibrium 

prices, or the decisions taken by short or long hedgers. In fact, 

with a forward market, the futures prices at all times t = 0,1,2, .•• ,T 

are set at the maximum levels permitted by arbitrage (futures price 

equals the cash price plus carrying cost to maturity of the futures 

contract) • 

Price Patterns on a True Futures Market 

The situation is quite different once we move to a true 

futures market, with two or more delivery options available under the 

futures contract. In a true futures market, asymmetric arbitrage can 

impose a binding constraint on the joint pdf over the cash and futures 

prices and hence can have an impact on the decisions of hedgers 

concerning their cash and futures commitments, which in turn has an 

effect on the pattern of the market clearing prices in the cash and 

futures markets. 

Recall that in a true futures market, arbitrage ensures that 

f c f c T 
PT ~ PT' and Pt ~ Pt + f k , t = O,l, ••• ,T- 1, but there are no 

't='t+l 't 

corresponding constraints limiting the amount by which the cash price 

can exceed the futures price at any point in time. 

Consider now a futures market in which arbitrage is not 

( c f permitted to occur. Let h pt,pt) denote the joint density over the 

cash and futures prices at time t in such a situation, held by all 
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traders at time t- 1.1 Our approach is first to construct an 

equilibrium for the case where arbitrage is not permitted to occur and 

then to contrast the resulting pattern of market clearing prices with 

that which obtains under arbitrage. 

Because we wish to explore the effects of asymmetric arbitrage 

under as simple conditions as possible, it is convenient to begin with 

a set of assumptions under which the equilibrium (without arbitrage) 

is a martingale equilibrium. In particular, assume that the density 

c f held by traders at t = T - 1 is symmetric about EpT, EpT, and consider 

as a candidate for equilibrium in the T - 1 markets the price and 

commitment relationships: 

fl f E(pT PT-1) = 

, 
with WT_1 satisfying RT(WT_1) 0 and 

with 

S L S S Once again we have WT = WT = 0, so that XT = WT_1 and 

X~= W~_1 • At t = T- 1 the first-order conditions for the short 

hedger are 

CD CD 

J J u'(ni)[p~ 
0 0 

0 

0. 

(13) 
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SimiTarly, the first-order conditions for the long hedger are 

0 

(14) 

o. 

I 

Suppose that W~_1 = wi_1 = WT_1 satisfies RT(WT_1) = 0, and 

assume S L 
that VT_1 = VT_1 = VT_1 • 

c c f f 
Let x = Pr - EpT, y = Pr - EpT. Then 

by symmetry, h(Ep~ + x,Ep~ + y) f - x,EpT - y) for all x,y. 

Also, given that Ep~ = P~_ 1 + kT, f s = Pr_1 • we have nT(x,y) = 

h(Ep~ 

f 
Epr 

L 
WT-1x- VT-1y + RT(WT-1) = nT(-x,-y). 

Rewriting the first-order conditions (13) and (14), we have 

= 

a> a> 

f cf fu'(n~(x,y))xh(Ep~ + x,Ep~ + y)dydx = o 
-EpT -EpT 

a> a> 

f cf fu'(ni(x,y))xh(Ep~ + x,Ep~ + y)dydx = o 
-EpT -EpT 

a> a> 

J 
0
J ru'(n~(x,y))yh(.,.)dydx = 0 

-EpT -EpT 

a> a> 

- J cf fu'(ni(x,y))yh(.,.)dydx 
-Ep -Ep T T 

o. 

( 15) 
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Clearly. by substituting (-x.-y) for (x.y) in the second and 

fourth equations. these reduce to the first and third. Hence. market 

clearing in both the cash and futures markets is consistent with the 

first order conditions in the t = T - 1 markets. 

We might note that. in contrast to the t = T - 1 equilibrium 

in the case of a forward market. here there is no guarantee that all 

cash commitments will be hedged; all we know is that vi_
1 

Consider now the t = T - 2 markets. Again invoking a common 

knowledge assumption. all traders know that the equilibrium pattern of 

prices on the t = T - 1 markets will satisfy pf_
1 

= p~_1 + k
1

• with 
I 

w1_1 such that Rr<w1_1 > = o. Using the line of 

reasoning employed earlier. we can show that a rational expectations 

equilibrium exists on the t = T - 2 markets such that 

+ kT with E(pf_1 1pf_2> = pf_2 , and 

+ kT_1 • with wi_2 = wi_2 = w1_2 satisfying 

R;_1(WT_2 - WT_1) = 0, and with vi_2 = vi_2 = WT_2 • Note that we do 

not require symmetry of the density over time t = T - 1 prices, since 

the rational expectations assumption reduces the t = T - 1 market to a 

forward market. Similarly, the same argument applies to 

t = T- 3.T- 4, ••• ,0. We formalize this as follows. 

Proposition 2. Given an equal number of short and long hedgers, each 

with identical utility functions and density functions over futures 

and cash prices. and with the density over t = T prices symmetric 

about the mean cash and futures prices, there exists a rational 
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expectations-equilibrium which is also a martingale equilibrium, 

satisfying 

f T 
Pt = PC + f k , t 

t 't'='t+1 't' 

f 
pt-1, t 

0,1,2, •.• ,T- 1. 

1,2, ••• ,T 

c pt_1 + kt' t = 1,2, .•• ,T. 

We next examine the effects of asymmetric arbitrage on the 

cash and futures commitments of traders. A natural way to incorporate 

c f asymmetric arbitrage into the picture is to assume that, if h(pt,pt) 

is the density when arbitrage is not permitted, and f(p~,p~) is the 

density when arbitrage can occur, then 

for 

co 

J h(p~,p~)dp~ for 
p~+d(t) 

where rJ(t) = 

0 

T 
) k • 

't'=~+1 't' 

for 

PC + d(t) 
t 

Thus, the effect of arbitrage is to concentrate at 

(16) 

c c ( c f (pt,pt + rJ(t)) all the probability weight assigned under h to pt,pt) 

for higher values of p~. Given this specification of f, it 

immediately follows that h stochastically dominates f in the sense of 

first-degree stochastic dominance (see Quirk and Saposnik (1963)), 
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sinGe, c for any pt, we have 

f rt c f(pt,v)dv 
0 

f f for all pt' with strict inequality for some values of pt. By the 

well-known property of dominating distributions, Ehu > Efu if u is 

f monotone increasing in pt, and Ehu < Efu if u is monotone decreasing 

in p~. Hence we have the following. 

Proposition 3. Arbitrage acts to increase expected utility for short 

hedgers, and to decrease expected utility for long hedgers. 

[Proof] 

s s s For every W,V, Ehu(n (W,V)) < Efu(n (W,V)) since n is 

monotone decreasing in p~ while u is monotone increasing in n3 . Let 

* * s ** ** s W ,V maximize Ehu(n) and let W ,V maximize Efu(n ). Then 

s * • s ~ * s ** ** Ehu(n (W , V ) ) < Efu(n (W , V ) ) S. Efu(n (W , V '• ! . A similar 

argument establishes the proposition for long hedgers. 

When arbitrage is permitted, the first-order conditions for 

short hedgers at T - 1 are given by 

(17) 
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o. 

- s - s Let WT_1 ,VT_1 denote the optimal choices of the short hedger 

-s -s under arbitrage, satisfying (17), and let WT_1 ,vT_1 denote the choices 

of the short hedger when arbitrage is not permitted, satisfying (13). 

-s -s Evaluate the first order conditions in (17) at WT_1 ,vT_1 , and consider 

s s 
aEhu _ aEfu 

Then we have 

s 
aEfu 

s 
avT-1 

-s -s 
evaluated at WT_1 ,VT_1 • 

where n° n~ evaluated at p~ = 

(18) 

( 19) 
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In order to show that arbitrage encourages short hedging, in 

effect we need to solve a comparative statics problem where the 

exogenous shift involves the change from the density h to the density 

f. 

Assuming a regular maximum, the local solution to the 

comparative statics problem can be written as 

ClEhu 
s s 

a2Eus a2Eus 
aEfu 

s s 

( AWS l av2 awav awT-1 awT-1 
1 (20) 

llVS J a2EuS a2Eus s s 
aEhu aEfu 

awav aw2 s s 
avT-1 avT-1 J 

where llWS is the change in W~_1 induced by the change from h to f, and 

llVS is the corresponding change in V~_ 1 • J is the determinant of the 

Hessian matrix, with J > 0 at a regular maximum. 

To solve the above comparative statics problem from 

qualitative information, for an arbitrary density h and an arbitrary 

concave utility function, the signs of ( 18) and ( 19) should be 

determinate. Using integration by parts, it is straightforward to 

establish that if the utility function satisfies constant or 

decreasing absolute risk aversion, then (19) is negative for an 

arbitrary symmetric density h. 

Thus, we can write (19) as 



f 

J
CD - s 
{[u'(rr)-

0 T 
0 JPT f 

u I ( 1T ) ] ( PT-1 
0 

f 

JOD JPT f 
- ( (pT-1 

Pc 0 
T 
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co 

- x)h(p~.x)dxl c 
PT 

s Since rrT rr 0 when p~ = p~. the first term under the integral 

is negative. Given a martingale equilibrium in (13), and with the 

utility function exhibiting constant or decreasing absolute risk 

aversion, u''' > 0, and the second term is negative, so that (19) is 

negative for an arbitrary symmetric h. 

However, the sign of (18) depends on obscure properties of the 

utility function and the density even when there is constant or 

decreasing absolute risk aversion, as is easy to verify. Hence, 

despite the intuitive appeal of the asymmetric arbitrage argument, it 

turns out, that in the general case, we cannot even show that the 

presence of arbitrage encourages short hedging (and discourages long 

hedging) , much less tha ~ arbitrage leads to a backwardation 

equilibrium. 

Thus, integrating by parts, the term inside the curved 

brackets in (18) is positive, but in order to sign (18) we need to 

c know whether this term increases or decreases with pT. Even assuming 

constant or decreasing absolute risk aversion does not resolve the 

ambiguity, which requires, instead, restrictive conditions on the 

derivative of h with respect to p~. 
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To i~dicate the difficulty, differentiate the term in curved 

brackets in (18) with respect to p~ to obtain 

( 21) 

The assumption that u is characterized by constant or 

decreasing absolute risk aversion signs the first term on the RHS of 

(21) as negative, but the second term is generally of ambiguous sign. 

It is true that if h is nonincreasing with respect to p~. then the 

second term also is signed as negative. However. since h is taken to 

be symmetric about Ep~. this means that only in the uniform case would 

this argument be relevant. (In the uniform case, with a constant or 

decreasing absolute risk aversion utility function, W and V are 

a2Eu cooperative inputs <awav > 0), and it can be seen from (20) that 

Houthakker's conjecture holds in that asymmetric arbitrage leads to a 

larger cash and hedging commitment by short hedgers. while the 

opposite is true for long hedgers.) 

Thus. excluding the uniform case, (18) can be signed only is 

restrictive conditions are imposed on the higher derivatives of h. so 

that, despite its intuitive appeal, it is clear that to establish the 
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Houthakker GGnjecture concerning the effect of asymmetric arbitrage on 

hedging behavior will require highly restrictive conditions on the 

underlying joint density over cash and futures prices. 

The basic reason that Houthakker's intuitive argument does not 

hold in general is that, when arbitrage is introduced, this produces 

effects on both the cash and futures commitments of traders. If we 

ignored the effect of arbitrage on the cash commitment (so that the 

right-hand side of (18) were identically zero), then the Houthakker 

conjecture--that arbitrage encourages short hedging and discourages 

long hedging--is immediate, since the right-hand side of (19) is 

always negative, implying that avS > 0 at a stable equilibrium, from 

(20). But the indeterminacy of sign in (18) in the general case means 

that it is possible that introducing arbitrage can actually decrease 

the (expected) marginal utility of cash commitments. When this 

happens, it raises the further possibility that the increase in 

expected utility for short hedgers engendered by arbitrage occurs 

through a decrease, rather than an increase, in the amount hedged. 

But this doesn't end things. Note that in the uniform case 

there is no guarantee that the equilibrium when arbitrage is present 

in a backwardation equilibrium. The reason is that the introduction 

of arbitrage makes short hedging more attractive in part because it 

lowers the expected value of the futures price at time T, since the 

upper tail of the density h is lopped off by arbitrage. What is 

required for arbitrage to lead to backwardation is not simply that 

short hedging be encouraged and long hedging be discouraged; net short 
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hedging must- be encouraged enough so that the fall in the futures 

price at t = T - 1 more than ·compensates for the fall in the expected 

value of the futures price at t = T. This requires further 

restrictive quantitative conditions on the utility function and on the 

density, even beyond such highly specialized conditions as that h be 

uniform or the condition that the right hand side of (18) be zero. It 

is clear that the presence of asymmetric arbitrage is at best a highly 

tenuous argument for a backwardation equilibrium. 

One other point should be made about the pattern of futures 

prices under asymmetric arbitrage, given the rational expectations 

framework. The common knowledge assumption that underlies rational 

expectations equilibria guarantees that the only effect that 

asymmetric arbitrage will have so far as backwardation (or a contango) 

is concerned is in the t = T - 1 market. The reason for this is that 

whatever the relationship between the market clearing cash and futures 

prices on the t = T - 1 markets, this relationship will be inferred by 

all traders at a rational expectations equilibrium at t = T- 2. 

Similar arguments apply tot= T- 3,T- 4, ••• ,0. Backwardation (or a 

contango) can occur only in the t = T - 1 markets. This means, that 

at a rational expectations equilibrium, the upper limit on the futures 

price imposed by arbitrage does not constrain the equilibrium in any 

period prior toT- 1, and the futures market is reduced to a simple 

forward market in all such prior periods. The futures price in such 

periods simply equals the cash price plus carrying costs to maturity 

of the futures contract, and there is no role for speculation to play, 
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sinGe the futures market attains a martingale equilibrium. This might 

be viewed as a rationalization of sorts for the widespread use of two 

period models in the literature on futures markets or, alternatively, 

an indication of the limited usefulness of the rational expectations 

framework in analyzing futures markets. 

Conclusion 

In this paper we have explored the implications of asymmetric 

arbitrage on the pattern of prices on a futures market under rational 

expectations, and in particular we have looked into the question as to 

whether asymmetric arbitrage is a force making for backwardation. Our 

conclusions are generally negative. If the futures market is a 

forward market, then in a rational expectations framework, asymmetric 

arbitrage has no effect on the pattern of futures (or cash) prices. 

If we are dealing with a true futures market, then arbitrage will 

typically have some effect on the pattern of hedging and hence on the 

pattern of futures prices. However, there is no clear-cut conclusion 

that the introduction of arbitrage acts to encourage short hedging and 

to discourage long hedging: generally, this depends on the specific 

properties of the joint density over cash and futures prices and on 

the specific properties of the utility function. Furthermore, even 

when it is known that short hedging increases and long hedging 

decreases because of the introduction of arbitrage, this does not 

imply that a martingale equilibrium becomes a backwardation 

equilibrium; this requires even further quantitative restrictions. 
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Footnotes For Chapter 3 

1. 
c f The pdf h(pt,pt) reflects uncertainties on the part of traders as 

to the level of demand by consumers as to goods produced using the 

given grade-location alternative (say grade #1 winter wheat 

delivered at Chicago), as well as uncertainty as to the demands by 

consumers for goods produced using substitutes, including other 

grade-location alternatives deliverable under the futures 

contract, and of course there are also uncertainties as to general 

economic and political conditions which also have an impact on the 

cash and futures markets. In particular, since the terminal value 

f of the futures price, Pr• equals the minimum of the cash prices at 

time T of deliverable grade-location alternatives, the state of 

the cash markets for these other alternatives plays a critical 

role in determining the form of h. 
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Chapter 4. Asymmetric Arbitrage in Futures Markets: 

An Empirical Study 

Introduction 

Dating back to Keynes (1930), Hicks (1965), and Kaldor (1940), 

an extensive literature deals with the problem of backwardation in the 

futures markets. Herein, the term backwardation refers to a situation 

in which the current futures price is a downward biased estimator of 

the futures price in future periods. While not the notion of 

backwardation used by Keynes and the other earlier writers1 , it is the 

notion most often used in the recent futures market literature. 

Under the assumption of common beliefs on the part of all 

traders, hedgers and speculators, a theoretical basis for 

backwardation requires establishing an argument for the dominance of 

short hedging over long hedging. By the statement, "short hedging 

dominates long hedging" we mean that if the current futures price is 

equal to its expected price at contract maturity2 , there is an excess 

of short hedging over long hedging. With common expectations and risk 

averse traders, speculative activity by itself cannot generate a 

backwardation (or contango) equilibrium but can act only to mitigate 

the extent of such an equilibrium. Several possible bases for the 

preponderance of short over long hedging have been identified, 

including information asymmetries (Danthine (1978)), highly elastic 

demand for the final good (Macminn, Morgan and Smith (1984)), and the 

fact that futures contracts provide a poor consumption hedge (Richard 
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and -Sundaresan (1981)), to name a few. 

In this paper, we investigate another intuitive argument for 

backwardation proposed by Houthakker (1959, 1968), namely, asymmetric 

arbitrage opportunities3 • This argument asserts that, at any point in 

time, the futures price cannot exceed the spot price plus carrying 

cost to the maturity date of the futures contract, since, otherwise, 

selling a futures contract, buying spot and storing to deliver would 

earn a riskless profit. Arbitrage thus provides an upper limit on the 

amount by which the futures price can exceed the spot price, but no 

corresponding arbitrage operation limits the amount by which the spot 

price can exceed the futures price. Thus, asymmetric arbitrage in and 

of itself benefits short hedgers by limiting their price risk, 

relative to long hedgers. As a result, Houthakker argued that 

asymmetric arbitrage acts to encourage short hedging and discourage 

long hedging. 

Despite its intuitive appeal, the theoretical work dealing 

with the asymmetric arbitrage argument generally establishes negative 

results. Specifically, Lien and Quirk (1985) show that asymmetric 

arbitrage has no effect on the pattern of futures prices within a 

rational expectations framework if the futures market is a forward 

market. If we are dealing with a true futures market (one with 

several delivery alternatives), instances can be identified in which 

asymmetric arbitrage acts to encourage short hedging and discourage 

long hedging, but even this restrictively weak conclusion does not 

hold under gereral conditions. Moreover, it is shown that even when 
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short hedging is encouraged and long hedging discouraged by asymmetric 

arbitrage, this is still not 'sufficient to establish a backwardation 

equilibrium. The Lien and Quirk paper assumes an efficient market 

operating under rational expectations and common beliefs, so that the 

theoretical conclusions derived in that paper concerning asymmetric 

arbitrage do not necessarily imply, of course, that it is not a factor 

present in functioning futures markets. Instead, empirical work is 

needed to determine the relevance of the Houthakker argument for 

functioning futures markets. That is the objective of the present 

paper. 

We do not, however, attempt to resolve all of the issues 

relating to Houthakker's argument. In particular, we do not attempt 

to prove or disprove the contention that asymmetric arbitrage as it 

operates in practice leads to a backwardation equilibrium. The 

objective here is more modest. We wish to determine whether 

asymmetric arbitrage has an impact on the pattern of spot and futures 

prices, and if so, what that impact is. In this paper, we address 

these problems as they apply to Chicago wheat and corn futures 

markets4 • 

As in all empirical studies, some limitations are imposed by 

the data. After adjusting for data deficiencies, the empirical test 

results generally support the notion that asymmetric arbitrage has an 

impact on the pattern of spot and futures prices when dealing with 

CBOT wheat futures; asymmetric arbitrage, however, is ineffective in 

the CBOT corn futures market. 
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The structure of the paper is as follows. In Section II, the 

theoretical aspects of asymmetric arbitrage are discussed. We then 

describe the statistical methods we employ and the nature of the data 

in Section III. The test results and their implications are presented 

in Section IV. 

Theoretical Aspects of Asymmetric Arbitrage 

As stated above, Houthakker maintained that asymmetric 

arbitrage favors short hedgers over long hedgers. Since short hedgers 

sell futures and long hedgers buy futures, Houthakker argued that 

asymmetric arbitrage tends to depress the current futures price and 

hence promotes backwardation. That is, at any point in time, " ••• the 

spot price cannot fall below the futures price by more than the cost 

of carrying inventories from now to the maturity of the futures 

contract; if it did, riskless profit could be made by buying spot, 

selling futures, and making deliveries. On the other hand, there is 

no limit to the amount by which the spot price can exceed the futures 

price, for the arbitrage just mentioned cannot be reversed ••••• As a 

result of this asymmetry short hedgers have a limited risk, while long 

hedgers have an unlimited risk, of adverse changes in the basis." 

(Houthakker (1968, p.196)). Thus, in a forward market with the 

deliverable grade and delivery location's being completely specified, 

c if plt is the spot price of the deliverable grade at location 1 at 

time t and pf is the futures price at time t. we have 
t 

(1) 
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where kt is the carrying cost from t to the maturity date of the 

futures contract, including warehousing cost, insurance charges, 

transportation cost from the spot location 1 to the delivery location, 

and the interest cost arising from the cash commitment5 • 

On the other hand, to avoid squeezes and corners, a true 

futures contract generally provides multiple grade-location 

alternatives with a specified premium/discount structure, the 

alternatives being less than perfect substitutes for one another. In 

the setting of a true futures contract, Equation (1) becomes 

P~ ~ P~lt + kidt - mi- nd, where i e I, d e D, 1 e L, (2) 

where I is the set of deliverable grades, D is the set of delivery 

c locations and L is the set of all possible spot locations; pilt is the 

spot price of the i-th grade at location 1 at time t; kidt is the 

carrying cost (including the transportation cost from 1 to d)for the 

i-th grade from t to the maturity date of the futures contract with 

delivery location being d, mi is the premium/discount for delivering 

the i-th grade, and nd is the premium/discount for delivering at 

c location d. Thus, pilt + kidt - mi - nd is the actual cost of buying 

the i-th grade at spot location 1 and storing to deliver at location d 

at the maturity date of the futures contract. Equation (2) then 

insures that no riskless arbitrage opportunity exists in the true 

futures market. 

Combining Equations (1)-(2), we can construct the upper bound 

Ut for p~ in a general futures market as follows: 
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c 
min { pilt + kidt - mi - nd; (i,d,l) e I x D x L }. (3) 

If the futures market is actually a forward market, then I and D are 

both singletons (i.e., only one deliverable option exists), and 

mi = nd = 0. The equation for Ut' without a corresponding equation 

specifying the lower bound of p~(other than zero), fully characterizes 

asymmetric arbitrage opportunities. 

As noted earlier, Houthakker has argued that asymmetric 

arbitrage is a force working toward backwardation on the futures 

market. However, despite its intuitive appeal, asymmetric arbitrage 

alone is not sufficient to generate a backwardation equilibrium in a 

general framework6• Specifically, assume an equal number of short and 

long hedgers, with identical utility functions and identical densities 

over spot and futures prices, with speculators having the same 

densities, Lien and Quirk (1985) show that, under rational 

expectations, asymmetric arbitrage has no standing as an explanation 

for backwardation when the market is a forward market and is at best 

highly conjectural when applied to a true futures market7 • 

The basic reason that Houthakker's intuitive argument does not 

hold in general is that asymmetric arbitrage affects both the cash and 

futures commitments of traders. If we ignored the effect of arbitrage 

on the cash commitment, then the Houthakker conjecture that asymmetric 

arbitrage encourages short hedging and discourages long hedging is 

immediate. But Lien and Quirk show that, once the cash commitment of a 

trader is taken as a decision variable, the introduction of asymmetric 

arbitrage no longer leads necessarily to an excess of short over long 



94 

hedging at a-martingale equilibrium. Then the indeterminacy of the 

effect of arbitrage on the ca'sh commitment renders difficulties. 

Note that the Lien and Quirk theoretical model excludes 

several other possible explanations for backwardation by the 

assumptions of identical utility functions and identical densities, 

etc. Of particular importance is the assumption that markets are 

characterized by rational expectations. Thus, whether functioning 

futures markets satisfy the Lien and Quirk assumptions is an open 

question, so that an empirical investigation of asymmetric arbitrage 

opportunities remains an open, interesting question. 

Data Description and Statistical Methods 

The market characteristics underlying Houthakker's asymmetric 

arbitrage argument are tested in this paper using the wheat and corn 

futures contracts traded on the Chicago Board of Trade (CBOT). As 

shown in Table 1, the wheat futures contract allows eleven different 

qualities of wheat to be delivered at Chicago or Toledo at any time in 

the maturity month with specified premiums/discounts. Previous 

studies indicate the following important characteristics of this 

futures market: 

(1) Delivery rarely occurs under the CBOT wheat futures contract (Gray 

and Peck (1981)). 

(2) Typically, the open interest (i.e., the number of contracts 

outstanding) in wheat futures contracts for a given delivery month 

begins building up slowly about a year before the delivery date, and 

subsequently rises more rapidly reaching a peak shortly after the 
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TABLE 4.la STRCTURE 0~ PREMIUMS / DISCOUNTS FOR CBOT 
WHEAT FUTURES (MAY 1977+) 

DELIVERABLE GRADES 

No. 2 Red Soft 
No. 2 Red Hard 
No. 2 Dark North Spring 
No. 1 North Spring 
No. 1 Red Soft 
No. 1 Red Hard 
No. 1 Dark North Spring 
No. 3 Red Soft 
No. 3 Red Hard 
No. 3 Dark North Spring 
No. 2 North Spring 

DELIVERY LOCATIONS 

Chicago 
Toledo 

PREMIUMS/DISCOUNTS(PER BUSHEL) 

par 
par 
par 
par 
1.0 c 
1.0 c 
1.0 c 

-1.0 c 
-1.0 c 
-1.0 ¢ 

-1.0 c 

PREMIUMS/DISCOUNTS{PER BUSHEL) 

par 
-2.0 ¢ 
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TABLE 4.lb STRUCTURE OF PREMIUMS/DISCOUNTS FOR CBOT 
CORN FUTURES (MAY 1977+) 

DELIVERABLE GRADES 

No. 1 Yellow 
No. 2 Yellow 
No. 3 Yellow 

DELIVERY LOCATIONS 

Chicago 
Burn Harbor 
Toledo 
St. Louis 

PREMIUMS/DISCOUNTS(PER BUSHEL) 

0.5 ¢ 

par 
-0.5 ¢ 

PREMIUMS/DISCOUNTS(PER BUSHEL) 

par 
par 

-4.0 ¢ 
-4.0 ¢ 
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expiration of trading in prior month contracts from which point 

contracts are liquidated until the end of trading (Gray and Peck 

(1981)). 

(3) In those cases where actual deliveries occur, they are almost 

universally No.2 Red Hard Winter wheat or No.2 Red Soft Winter wheat 

and deliveries occur at Chicago rather than Toledo8 (Gay and Manaster 

(1984)) • 

The above observations lead us to choose two months prior to 

the maturity date as the sample period to test the impacts of 

asymmetric arbitrage. This time span enables us to cover the period 

during which the peak hedging activity in a contract takes place, 

close enough to contract maturity so that links between the futures 

and spot prices are closer than in earlier months when speculative 

forces may be of more importance in the futures market9• 

In the case of CBOT corn futures contracts, three different 

qualities of corn are deliverable at Chicago, Burn Harbor, Toledo or 

St. Louis at any time in the maturity month with specified 

premiums/discounts. For purpose of comparisons, we adopted the same 

approach as we did for wheat futures. That is, we also chose two 

months prior to the maturity date to test the impacts of asymmetric 

arbitrage. 

Ideally, to test the presence of asymmetric arbitrage 

opportunities, we should consider all possible grade-location 

combinations (see Equation (3)). For any grade-location combination, 

a corresponding spot price series exists with all spot prices 
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corresponding to different combinations being closely linked by the 

substitutabilities among grades and transportation costs. However, 

there are only a few spot price series that are readily available, 

reflecting the most heavily traded cash markets. In the case of wheat 

futures, most of the deliveries by traders occur at Chicago and No.2 

Red Soft or No.2 Red Hard Winter wheat are the grades delivered. The 

spot price data available to us consist only of the spot price of No.2 

Red Soft wheat at Chicago. While this situation is not ideal, 

nonetheless the price series applies to one of the most common 

delivery alternative. Accordingly, this spot price series is relevant 

to the asymmetric arbitrage conjecture. Similar arguments apply to 

CBOT corn futures in which the spot price series available are those 

of No.2 Yellow recorded at Chicago. The grade and delivery location 

both involve no premiums or discounts. 

The futures price we use in this paper is the settlement 

price. It is essentially a weighted average price over the last few 

bid prices on any given day (Kolb (1984)). The settlement price is 

commonly used in empirical studies because it smooths out the noisy 

signals occurring at the end of each daily trading period. It 

provides a better representation of information flows in the futures 

market than does the closing price. 

The basic data series were obtained from the Center for the 

Study of Futures Markets at Columbia University, and cover the period 

from 1966 to 1982 (for wheat futures) and from 1966 to 1985 (for corn 

futures). However, we dealt only with the most recent five-year 
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period in which data are available for both markets. That is, we 

considered only the period from 1978 to 1982. Unfortunately, given 

these truncations, the wheat futures data (but not the corn futures 

data) still impose•some limitations. Specifically, prior to May 1982, 

the spot price provided is that of No.2 Red Soft Winter wheat at 

Chicago; subsequent spot prices of No.2 Red Soft Winter wheat are 

recorded at St. Louis. Moreover, some futures contracts (for example, 

the contract with May 1980 being the delivery month) do not have 

futures price data in the maturity month. In this paper, only the 

contracts from 1978 to May 1982 with complete futures prices data are 

considered. 

To test the impacts of asymmetric arbitrage, we also need 

estimates of the carrying cost for wheat and corn. The estimate used 

in this paper was derived from the "Uniform Storage Agreement Schedule 

of Rates" (USASR) published by the the U.S. Department of Agriculture 

(USDA). The USASR estimate includes warehousing cost, insurance 

charges, etc. It is essentially what USDA paid in total to public 

elevator operators on a daily basis for storage of goverment-owned 

grains listed by year. Another series of storage cost data appears in 

Gay and Manaster (1984), showing much higher storage cost levels than 

the USDA series. Two cost items have to be taken into account in 

adjusting the USDA data to reflect the total cost of private storage: 

the loading charge, which is about 5 cents per bushel during the 

1978-1982 period and the interest cost. Our approach is to adjust the 

USASR estimates by adding those two costs, using the interest rate on 
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three month commercial paper. Table 2 displays these cost items. 

Now we turn to the statistical methods employed in this paper. 

Let p~, p~ denote the spot price for No.2 Red Soft Winter wheat (or 

No.2 Yellow corn) at Chicago and the CBOT futures price (measured in 

cents per bushel) at time t, respectively; let T denote the maturity 

date of the futures contract with i denoting the interest rate and S 

the carrying cost from USASR. By Equation (2), a crude upper bound 

for pf is 
t 

U t = p~ • [ 1 + i ( T - t)] + S • ( T - t) + S, ( 4) 

where Ut is measured in cents per bushel. Obviously, Ut as calculated 

in (4) is larger than the true upper bound calculated with all options 

being taken into account. Because arbitrage is asymmetric, no lower 

bound on p~ corresponds to Ut. However, were the arbitrage 

opportunities asymmetric, i.e., if arbitrage limited the risks of long 

hedgers as it did for short hedgers, a crude lower bound for pf 
t 

corresponding to Ut is given by: 

Lt = p~ • [1 - i(T- t)] - S • (T- t) - S, 

where Lt is also measured in cents per bushel. This is, of course, 

not a true bound, since the futures price has no lower limit (other 

than 0). 

To test whether the existence of an upper bound (but not a 

( 5) 

lower bound) has any potential effect on hedging decisions, one direct 

approach is to compute the number of cases where the futures price 

lies above the upper bound and the number of cases where the futures 
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price falls below the (corresponding) lower bound. If the futures 

price seldom falls below the lower bound, then the upper bound should 

not have much impact on hedging, and hence on backwardation10 • 

Moreover, when the futures price lies above the upper bound, a 

riskless profitable arbitrage opportunity occurs in the markets. In 

an efficient market, the transaction flows will quickly eliminate this 

opportunity; a long lasting arbitrage opportunity thus undoubtedly 

reflects measurement errors. Examples are September 1981 and December 

1981 wheat futures contracts, where the futures price always lies 

above the upper bound as calculated in (4). Conversely, since no 

appropriate arbitrage operations are available in cases where the 

futures price falls below the lower bound, it may last for a long 

time. Figures 1 and 2 illustrate these two situations. 

Figure 1 displays the futures price, the upper bound and the 

corresponding lower bound for December 1979 wheat futures contract. 

On several occasions the futures price lies above the upper bound, but 

in most of those cases the arbitrage opportunity lasts only one day. 

The longest period for consecutive arbitrage opportunities is four 

days. On the other hand, Figure 2 illustrates that almost all the 

time the futures price for May 1979 wheat futures contract falls below 

the lower bound, the longest period for which is nineteen days. 

Empirical Test Results and Their Implications 

The results from testing the impact of asymmetric arbitrage 

opportunities are summarized in Tables 3-7. We first discuss CBOT 

f wheat futures market. The monthly average of (pt- Ut) [i.e., the 



48
00

 

47
00

 

4n
O

O
 

45
00

 

44
00

 

43
00

 

42
00

 

41
00

 

40
00

 

39
00

 

38
00

 

37
00

 

FI
G

U
R

E 
4

.1
 

TH
E 

FU
TU

RE
S 

PR
IC

E 
PA

TT
ER

N
 

IN
 

79
-D

EC
EM

B
ER

 
W

HE
AT

 
CO

NT
RA

CT
 

' 
--,

--
·-,-

· 
' ' 

: I 
: ' 

: I 
' 

' 
'!I' 

' : I
 I

 ' II
 ·

I' 
I 

I ' 
I! I

I 
I 

1\ 
1'1

 I i 'I
 : 

' I
 ; 

I 
: 
I 
I :l

j' I 
., : 

! II 
! : 

' 
·. 

r 
I 

1 
' 

J 
I 

' 
:I 

"
I 

' 
' 

I 'II
·, i

l
i
l
i
 

<
 Il

l 
'I 

i 
:I;

 II 
'i 

It I:
 i: 

II:
 I 

' 
u :·

I 
. I 

·!
 i I!Jj! 

j I 
lid

. 
. 

! 
I 
~:'I 

i 
: 

. 
' 

'
.
 

j .
. 

"
'

I 
,,

 
I 

,,
, 

I 
II 

I
I 

':
 

Ii
i 

,,
. 

li
 

I 
I'

 I
 

•II
 

':
1 

, 
. 

I 
• 

· 
' 

::
: 

1 , ;
. 

j,
,

l 
I 

'·
II

 I
ii

\ 
jj1

 
_(l+

J! 
1 i i

l!
.i

il 
.J

j 
li

!J
U 

U
ill

 
I 

jj 
I

· 
1 

1 
W

 
' 

! 
; I

 
• 

-
~~-

. _
)_

._
 

' 
--

!.
' 

J 
' 

• 
' 

t,
!. 

11
1 

' 
" 

' 
I 

' 
I 

" 
. 

: '
. 

'I
 

"
I 

'! 
' 

. ;
 

. 
-·

--
. 

•"
 

--
-·

. -
-

-~--~
----

-
--

··:~ 
~~-· 

..
.. 

'
t--

:;
1+·

 
· .
..

 tHU
~ 

.(-
:-l+

t; 
: 

1'![1
·1

1':
! 

'lli
\lh

it 
jl:

jll,
 j

l!l
j 

!!II!
 !!!

L 
il.l

!l!lll
'i.l

l! I'
ll
 
l'l 

'!'I
Ii 

,,11,
11 

ill 
. 

. 
. 

. 
.. 

, 
• 

• •
 I 

• 
• 

• ,
 ! I

 
.. 

• 
u· 

. 1

, 
: ~, 

!iu !.,
 •

 •
 

~~~
 

. 1. 
I 

., 

1 

. 
. i 

._
: 

...
 

· .
..

. ·
 

1·
: 

:1!
 :

··
 

·- 1
 ;

: 
! 

! 1·:
 

::
::

 
.~
.~

~~,:·
 1

::
1 

-,:r
, 1

 1
 :, 

! :1
"·U

 ,i,. 
11,, 

ill
' 

i 
•. 

, 
w:

; .1
1 

u: 
. 

. 
' 

::
I 

'::
I 

: 
l 

: :I
 

! 
' 

' 
:I:

 
::

' 
I i:

' 
:i 

~!
' :

':
' 

! :I
. 

'I 
:.;.

; 
I' 

II 
i 

:-
:'

 
' 

':
 IJ~ 

' 
. 

I; 
' 

II 
I: 

II! 
I 

. '
 

. -
. 

..-
. -

--
---

. 
---

· -
r-:

---
:-

l.:
.; 

. 
. 

. 
.,

 
.-:-

:-rr
nn

· 
: :

, .. 
i!:

l 
'iJ 

IT
~~

~. 
11

,,'1
: I'

. il 
,,, 

d
!:

. 
II 

il 
~~~

 
, 

I 
l' 
Ill 

ltl
 

ki.
 

: i 
: 

:1:.
 ::il

 i:i:
 J::,

 :iH
:' i1

!i 
!!1 

':II
i:;

 [li~: 
::,ill

~ i:li 
:l!i:

 ~~ 
I :

h 
,i 
i,,i,

!ll,
, ii 

'" 
i;

 
,1

 , ':
.11 1 

il'
 

r-tr
~---

... ~
: ,~

; l:~: 
i)li

11
 li

\i
1

\:i!
 :t:.

:t~; 
!!!,

'i!il
 !1:1

! iii;
 l!;!

 ;t
jj :

:1,!
 !ii:

 lil!
 :H

 1 !ll 
1 11

 t 
l',jl

l ~ 
~ i

t 
.ft' 

1

' 
ill! 

I 
I 

~~ 
\ 

: 
~:1

!. 
!l,

t 
•·

:· 
:!

,1
 

.:
jl 

·:
 '

'I
 

I 
' 

'i
ll
 

:1 
; .

. 
!J

• 
I .. 

' 
:1.

. 
ij

 
·i

l 
il 

. I
 
~ 

II 
II 

:;:1
 

[! 

. 
. 

.. 
--

-
:-:

--
I .

 l 
I.

. 
: 

';
; 

':
.'

 .
 'I

 ' 
' '

I'
 ;

 ':
 I 

' .
; :

 
li 

I I'!
 I IT

 : :
 If 

! 'I
 ' 

II:
 i 

'iI
i 

; i I
: 

'~ i:
 I

: I :
I:

 I 
I 

il
l 

ljl
l "J'

! 
ll 

+I 
ll''

't 
~~ 

t 
' 
~
 !!

' ~
~ 
' :.

 'jl
1 

!I 
' 

. 
. 

. 
' 

,,
 I

 
·I

 
I· 

11
 !l 

. ,
!:

'
!!

II
 ,

,,
, 
,-1

· .
.. :

 ,
. 

:·
ll 

; 
··:r

 
I r

ill!+
 

li 
t 

I 
., 

' 
I 

I 
• 

, 
: 

:
··
:
:
 

::
 
~::

; ~
~~

-
..

 J
 

·.
; 

..
. 
·'il

 .
 1· 

1 
: 1· 

:: 
· 

· 
, 

: 
:'

1:
 

1::
 

11
1 

1 
1· 

11
 u'

 
11 

u 
' 

' 
! 

' 
ili

· 
Il

l 
l'

 i 
I 

,I
 

,,
·:

 
11 : 

ill
' 

I 
: I

ll 
' 

!! 
li 

!!1 1
 .

 
II 

ill
 

I 
II

 
' 

II 

-~--
-·

--~
~·-

____
 N
 ___ ;'
w··:,

~~ 
i.n

\tii':
 i:;~

:!:i 
l~~~~ 

iii: 
ill!

 i!
i ~ 

~~ ~
~~1 

: 1, ~;
1;H

~ u
 ~~ 1~:.

 ~~ 
~~ 

i 
1f 

· 
'i 

'! 
. 

: 
I.

, f
1 
~ 

~
 

. 
,:J

 
.tf 1

11 1
, 

1-
_,

 
~, 

:·
:·

 
1:

, 
_,

 1
 

-~rr
 1i

JJ
1!i

P 
Jt 

:1
 

!I
I 

fj 
,

11
1 

11 
li 

rl 
!li 

I 
. 

' I 
lil

' ' 
lll

.!
 

' 
: u

 
'I 

II 
i i I

 
' 
''
 ' 
II I

I
' 

I iI
I 

II
 

I!
 I

 
' 

. 
. 
I 
I" 

'' 
J--

---
-1

--
--1
--

-+
--

-
..

..
 1

 ~
~-

:: 
;I 

' i
 

' 
~: 

!J
!, 

·i
l:

 !
I::

 ir
:' 

i!;;
 lj!

\ 
II

! 
lr. 

N·
 

•: 
, j

 jj
,l 

' 
I •

 
-~i 

~ j
lj

ll
llU

I 
t-.

..J
A

':'
' 

. 
:·:

 :
: •

• 
~-~

·~ 
·.

r·
 .

,·
•: 

,:
.,

 ·lt
'·l'

t:·l
l!. 

,: 
, .

. , 
~,

: 
..

 ; t 
P.-

. 
r 

1 
I 

I 
~~~ 

·~u'
 

, .
. '

· 
' 

' 
' 

' 
'' 

' 
'' 

' 
I I I

' 
' !

 i' 
j I 

" .
 ' 

I 
I 

,·
 
I
' 

I
'
'

! 
I 

• 
I
'
 

' 
I
' 

'
I
 

'I
 

'
.
.
.
 

• 
I 

I 
!i

' 
'i 

'I
I 

. 
' 

'I
' 

li 
.
.
 

'
I 

I 
'

. 
' 

. 

~J·/ 
·.\,

--~-
:--~

--:::
: ~-i

: 7 ;r'f:~~
: wi

;,' 
i::; 

~~~·W
ti '1

 
I' 

i'' 
~ '

 · 
1 

l 
I 

~1 
' 

· 
~i' 

1l
 

· 
lll

lll
lll

lll
tll

lll
lll

L 
' 

• 
'I

 
[l_

' 
I 

' 
[~
 I 

li i
' I 

il 
1 ~
 

11 
Ill

[ j
ll

llll
!l\

11
1\l

ljl
jl 

,-1.
. 

--
· 
~ -

-~ 
: 

:: 
; 

· 
; i "

 :
 ~ : .

 i 
::

: 
. :

 ' 
. '/

 
1 u

 
r1 

I~ 
" 

111
 1

11
11

11:
 11

111
111

11
' 

I 
,I

''
 
I'·'

 1'~::
 I

IJ 
~; 

'Il
l 

'I 
rr;

 
IHI 

I 
I 

I 
I 

I 
I 

I 
1 

J 
' 

;•
I 

:!1
 . 

; ,
!
 

1'1
: 

iH
I 

'lj
! 

/lh
 

.! 
I 

.: 
I 

I 
I 

Iii
 

I
.
.
 

!II
' 

,. 
ij 

I
. 

Il
l 

II
 

II
 

I 

'-
l .

..
. .

l .
. -t;-

--r
-c'

i-8-
ir' 

'l·
i 

Ill
 

l~jl
'l 

:!!
! 

I'
 

Ill
 

I 
:;

 
w·

 
ll
 

lj
' 

11 
I I

 
! 

1 
''

" 
'
'
I
 
I' 

I 
I 

I
'
 
!I 

' 
' 

I 
! 

'T 
I 

I 
I' 

. '.
.: 

::{
 :;

H 
1 ~ 1F1

il1 ·~
I -

1~ 1: rH
· 

li
 ~rf

 
I. 

, ''
~II

 1
 -~'., 

•:
: 

: 
• ti 

~ii 
+~
 
~ 

.l~
 

:: 
:1U

 iU
J 

li
'l 

I 
'!

 ![
til

 
II 

11
 

'' 
1 

' 
, 

.~f
w· •

 . . u /
1 ]I

 i tm 
I@

 II' I
I i: 

1 1lt
 rHI1 

' 
'1..

. 
:!I~ 

lj 
li I 

!ffil
ll]j]

i III
IIII

IIII
IIW

IIIl
iH

Ul
lllll

lllll
lllll

•u
• 

-·-
+-

1--
+

·.;.(
c 

., 
. .

 
, ..

 I 
'' 

il
 

, 
··

 
11

 l~ 
1!

1 :
j!

:l
' 

. 
·I

• 
'I 

•I 
I 

:!
 -

' 
! I

t~ 
II

: 
' 

I 
' 

I I
 

' 
I 

,: 
. 

I :6
1 

I i 
I
ii
 

. :
 

I:
: 

' 
' 

-
-

~ 
. 

j 

:~1: 
!'!!

 ~q
 ,,Hi

! !
i\j

1 
' 

11
, 
'.L

 ill 
!jl

l 
:;:

 :
l,''i' 

I 
li 

' 
:l 

I 
i 

lli
iii

ii
iii

U
!l

lli
lli

ill
lll

lll
W

lli
ill

lll
lll

lil
lll

ili
lll

lll
iiU

lil
llJ

 
I

' 
I.

 I
 

1-
1

. 
II 

' 
' 

' 
I 

I 
-li

l 
jj
 

l1
{: 

II
 

. 
I! 

~~:·
. : ,

 ; :I j 
[1: r i 

~~Iii I 
't:;

 t
 ij 

~~~~ +
 

l, i' 
~ ,~1·

1: rr:t~
i l ~ rl

· ~ 
., i

 I 
I 

. 
! 

,~~-
. ..

. '
 ...

 ,'I
I 

:1 
ijl

i 
i 

I 
li

 
. 

I 
11

11
 

'' 
s ;

 . _;_;__:_ 
: I 

; 
i 

! '~
~ 

i II
 

I 
: 

I i 
i I

 
I 

:I
I 

11 
H-

Il
l ~ 

I 
I 

I 
' 

il
,y

, 
~
G~

j,, 
. 

P
II 

i! 
j!!!

! 
!I 

li 
'"

''
' 

u 
Jl'''l

l''"
 

p 
i 

II 
w

 
.,,~~m

-ml
mi1

1i•
mtt

ttt
tt1

H1 
\\i

\ 
\\:

. :1
:: !

!:!
 !J!:

 \
 ! I

:: :
ll! 

:1~! 
tt,l

 :n:
 ~H 

tjll
 l!

 !.:
 
rjt:

ltt.
, .

. · ,
,{

,!1,
11/!

. 1

i 
I! 

' 
rfi11

ll'lln
lm

1.1
11

1 
ri~
L 

. 
1

_
1 

,.
i.

 

1
/1

0
 

1
8

/1
2

 

~
 

0 LU
 



44
00

 

43
00

 

42
00

 

t, 
10

0 

40
00

 

39
00

 

38
00

 

37
00

 

36
00

 

35
00

 

34
00

 

33
00

 

FI
G

U
R

E 
4

.2
 

TH
E 

FU
TU

RE
S 

PR
IC

E 
PA

TT
ER

N
 

IN
 

79
-M

A
Y

 
W

HE
AT

 
CO

NT
RA

CT
 

•I
 

' 
. 

I 
'

1
•· 

I 
$',•

 .. !
 

,,
 

. 
I 

'I 
.

. ,
 

I
' 

I 
I
I
' 

. 
I 

. 
. 

..
 

' 
I 

'1
.' 

'' 
. "

I 
' 

. '
 ..

. 
I 

'
I 

:
·
 

. 
't

 
I 

,·
 

J,
';

 
l 

I 
!l

 
I 

'i
 I

' 
:l

 
:1,

 
I 

' 
' 

I 
::

 i I
 

' 
' 

ll
 

.!.i 
':

 '
 '

' 
I ~
1 

II
 

' 
'i~

 
I' 

-H~
~-

I,
 

. 
. 

-·-
--

•
-·

·•
· .

. ·
t·

· 
·t----

---~1 
.. 

;-
.. 

--
-·

 .
. 1

 111-'-
··•~';-

c·-·· 
'":

::f
ti 

+Tf
~ f!

~ffiji,
: ![:

: 
.: 
-~: 

' 
I 

I 
I 

<
I 

I 
I 

I 
" 

I 
I 

' ! !
 ~ j 

" 
I •

 I 
.. 

I 
i 

I 
I 

I 
t 

II i
 : :

 
. 

. 
, 

..
 

,:
'I

I 
, 

1,
 .

. 
:'

 ..
 

II
! 

, .
. 
J
il

l
: 

:·J
 'u'

 :li 
. 

; 
.,;.

1 .
1;

1 
· 

· 
· 

· 
• 

i.
 I il

l·
 :

 .. 
''· 

, i:
 1:!

;1
 1

:· 
I 

\!
 

: 
u· 

. J·
11

 
,·~;

. :
.il 

;1
11

 
•

I
• 

' 
1 

, 
t 

11
1 

t 
I 

•,
:'

11
 1

1
 

i' 
'I

t'
 

::
1

•
11

11
 

':
J 

;1
! 

il_
 

'1
' 

+t.
j 

........
..... ··

·-
ll]

~
 ~
-

-
c
 ·
-

..
. 
-
-
,;

-
..

 
~
 ··

-
·c

" 
~
 .

.. 
';

•<
-'f

 
.,_

 w
iS

 '
 

II
:.

, 
! 

,;
: 

'Ii
li

i 
IJ 

I;· 
I~

~~~ 
i'TT

i i
l'i

 'i
!: 

li 
I 

' 
' 

. 
' 

. 
I'

' 
II

' 
'' 

I 
' 
l'. 

I"
! '

'II
 

: 
·I'

 '
 I

I 
ill

 Jl 
'.

'I
 

' 
' 

' 
'
•'

 
' 

' 
' 

. 
. 

'I
 

' 
" 

I 
I 

I 
·I

'' 
'I

 
. 
I 

It
 

I 
• 

I 
.. 

, 
. 

d
i·

 
t 

r 
•

• 
' 

'
•
'
 

' 
r 

1 
1

. 
,

, 
• 

• 
•

.-
t 

J 
1 

'1
 

1 
I•

 
, 

, 
' 

I
• 

t
t
l
 

·m
 .. ~ ~ 

r 
.' 

. ;
 . 

:_
·:

:·
I

: 
: 

:·
 .:

 :
 ,

· 
:· 

t!
' 

: 
:

. 
::

:.
 

;.
 

I 
·,,

 !
:.·

 ;.
,! 

;·~i 
Ill t

lii
 11

1 :
 
li 

I U
Ll 

Ui·
 

' '
lU

l 
.!i

 lll
1 
I 

u~
 

.. 
· 

--
·---

--
t-

".
:-

p
 

':
, 

:. 
:,

 :
:

, 
::·

. 
, 

,, 
, 

1
t-

+
--

LL
 
·~-

-~· 
:···i

"ff
!,l

l 
;T

.;!
 -~

:lll
lli!

1 i!
J':

 ;;
 j'[!

i '
JIJ

t'1
 

[[
,I

 
lill

 il
l'!

 I!
, 

ill! 
' 

. 
..

 
'I

I 
':

' 
' 

' 
. 

' 
; 

. 
I I

I 
i 

I 
! :I

 
! :I

: I
 L 

,,
 'I:

 
ll 

ttl
~"
 :

 p
 !

+,' 
'I 

Lrt
-11

 
't

 l 
'11

 d 
I 

I 
I 

"
.·

· 
.. 

1'
1' 

. 
·.

: 
-..

 :
. 

''
 

..
. 

; 
,' 

·;
I

·. 
,I
',

'.
,

[·
 

.!
'i

 
•It

 
I; 

il
l 

:I
 'I

 I
! 

I 
II

 
I 
'u.

 u
 

' 
' 

: i
. 

'i 
.. 

'I
;'

 
J 

. '
 :

 
'' 

'I
 

" 
; '

 
: 

i 
I'

 l
iL

i 
' 

I'
! 

I i 
I 

I :1
 l

l 
I i:

 iI
i 

' 
1.1

 
I 

I 
' 

j 

·
-

·
·4

 
-
-
-
4

0
 

·--
-·

--
l-
-
~

~ 
;· 

. 
I 

··
'"'"

 
. 

:!
 ,

 :
· .

. 
:, 

:.M
 :-L

r ·
,, 

·, 
: 

, 
.: 

.;
,.

il
l,

 I
ii!

 :
.,

1 
I.(. 

!ul
! 

ill
 j

'i
l~

 :1· 
!i 

l 
I' I

 II
 

':i
, I

' 
[1

 
' 

. 
''
 

' 
' 

''
 

. 
''

 
! 

' 
' 

':
 

I 
' 

':
I

' 
II

'.
 

II
 

. 
I 

..
 I

' I
 

f-il
 

• 
. 

if
. 

l 
• 

..
 

. 
·

: 
l 

. 
:J

 ;·
!:

 .
. 

, 
·i:

 
~, 

:, 
::,

 
: 

.
. 

::
 .. 

:f-
: 

!If
· !

ji
J 

:j
::

 
·l;

i 
::;

; 
I, .

.. ;t
 u

' I
 

" 
t1 

. 
I 

lh 
I 

: 
lt 

,'
. 

I
:
':

·
 1 jj:

 !·
!I

 ,
:ii

 ·
I 

I,
;·~

·· 
·J

 i
l 

jj.
: 

;;::
 .1

11
 1

1t!
 !

,I
. 
i·l

l 
'i

l 
!!g

il
 i 

!I
 
I 

': 
lli

 
' 

. 
··--

-·-
-~

-· 
.
..

.
.
.

.
..

..
..

 _4
_ 

.
..

..
 ~
 :

 
, 

.
.
.
 !'

 ;
.;.

 i
':

' .
. 
~: 

::·
 .· 

dl
l 
·1!

' ,
:,,

 l,f
' I

I!!
 !

!t:
 ::

li :
J!i 

11
'!

1!1
!1

) 
dil

l 
j 

'j! 
'' 

I 
dl 

I 
-·I

··· 
\ 

. 
..

 
' 

' 
: .

. 
! 

Il
l.

 
'"

I:
.:

 
::

 ..
 
•i

· 
1'

.: 
!, .

.. ,,
 IL

! 
,.,1

. 
i'll

 :Il
l i

l. 
1~1

·1 :!
t :

.j~
' 

r!-
\J. 

h 
1t

~i 
!lr

 l
 

i 
j,

. 
I;

 
;,·

, 
'I

·:
 !I

' 
i:i

. 
·:'

 
,,;

 
':1

; 
i·

j h
f'

' 
I 

: 
!; 

l 
::

.:
 

·,!1
' 

li 
!l

il
'i

l
li 

i 
II

 
'i

ll 
' 

' 
,
,
 

I•
• 

,
, 

I 
'•

'
• 

I 
•

1 
' 

I
I
 

I 
' 

I 
l 

!_
!_

 
' 

• 

..
..

.
..

.. 
--

· 
. 
~
 _

__
_

__
_ 
-
-
-
-
-
·
-

•
•
 

II
· 

I 
··

1· 
. 

. 
. 

. t
'-;

-r 
..

 , 
il ..

 t
i! 

,, 
.
.
 I

 .
:1

: 

11

1 
m

 ~.;,
 
. 

I 
I~

, 
''·

 ,
, 

. 
. 

' 
'I

'' 
. 

::
'' 

: 
' 

'I
 

I 
'I

 
::

 
I 

I' 
' I

 
II

 
I 

I 
I 

,I
 

: 
I 

' 
• 

LL
L 

t 
·I' 

;,~
 

:··
: .

, 
:;:

: 
.. ;

: 
; f

! 
1

:
·:

 
:j

, :
:

. ~
:!1 

~~~~
 tj

l· 
1

1i 
·l 

t-lq
rj 

r 
1 

• 
• 

H
 

, 
. 

I 
~ h

h 
t1

: 
-~
1
 !, 

~-
! 

'I
·.

,:
::

::
 

.':
l!

!i
i,

::
:l 

:i~ 
1 ·

.:
 
:li

d 
Ii

I!
! 

II 
I 

!1
, 

,,,
, 

' 
11

 
tl 

..
...

. -
--

·-
--

~
 

' 
. 

~h
it
 c

<:-
;tt

t'f
T

'•·
,I

 
I .

, :
'1 

I! 
' 

: 
'·

II
 

I k
 

I! 
. 

I 
' 

'
I
 

J'fi
\ 

H
 :

 '~! 
t' :

 .. -
?

:
! ! ;

 : .~~ 
~-i u

!; 
l!;!

 l;
 :

 i ,:
_; ;.

 !
 ! ;.; 

I 
H

 
jl' I-

ll 
' 

~ 
I HI! 

i I 
1 

I 
I 

i r 
ljtlJ

HI-f
lliit

i lm~
t· 

~
 .

.
.

. ' 
"!

!'
 

i·:
: 

:!
: 

, 
·u.

!' :
:;, 

1 
• 

1 
,,

 
• 

~r
 n

rr, 
, 

• 
, 

1
, 

1 
!

I 
+
~

ii
l!
: 

1 
:1

' 
1 

I
I 

. 

-~
--

-
-

··-
--

· F
 

---
r 

. 
'':

 'r
rt

NI 
:t

 i;
 7

: I
I 

'I
 

II
' 

I 
I! 

w
 

I~
 

• 
I 

• 
I 

• 
I 

• 
• 

I 
' 

: 
I 

I 
' 

: 
! :

 ~ 
~ 1 

. 
• 

: 
: 

' 
I I 

! 
I I 

I 
I i

 ! 
. 

. i
 

I 
I !

 
' 

' 
.. ·

. .
.. 

. 
..•

.. :
, :

:.:
 .

:. 
·,!1

: 
;:: 

::;
: :

:, 
p,
:~H

!~
Hi:

 -/
~!! 

I 
:· 

ulil
u'~i

llfl
lrT~

j,! 
lij

lill
 

\ 

' 
' 

' 
'I

' 
' 

' 
It

. i
' 

! iJ
 tl

i
: I

 i 
' 

' 
' 

I'
 

U
M

itJ
JI

II
III

 
ll
 Il

L 
·•·

-
·
--

~
---

--..
 

....:.
..~.

c;
 

·:
 .

. 
,;

 
.:

 
::

ll:
~:

:i
,
~

'~
.:

:;
,l

 
.
.
 I 

'
,
.
,
I
 

I!
 

. 
I 

::
; 

:::
 !

:::
 

ii 
!,.

,,
,11

::
 :

; 
i 

i!i
i 
:Ill

 
d 

I· 
l.

 
i '! 

1
-

I! 
I 

I 
I !

I 
lllj

iiiJ
lll

ljj
lll

l+
 lll

llj_
[ .• 

' 
' 

:·
: 

:·::
: 

·:
: 

:tl
~ 

::~
: :

 1 : 
':

· 
ii

 ! 
ii'l

l 
i 

r 
' 

' 
I 

! 
,t 

lu
 ~
 

1\
J 

rtl
lltH

tlii
itlt

H
-

H
ill 

_\
. 

: 
:;

: 
:1

:: 
.::

, 
IT

iii
 

!.
'i

 l
i:

1 lh
ll 

u_.
_:

 
iii

 I
 

• 
I 

'1
 

I 
1 

J'l
 

. 
rtl

ll
 

\ ..
 

··
-

-
-
-
-
-

~-
--

--
; 

,.
1

: 
~:::

• :
'II'

 IJ
III 

:i
ll
 ,

H-
,,1 

i'l'''·
l: I

 i
•lijl

 
I! 
~~

~~ 
I 

Ll 
. 

V!l
i!H

!I 
' 

' 
I~

 
' 

.
. :

 j'
 

I 
• 

' 
'i
 I
' 

' 
' 

I'
 

I 
J 

II: 
. .

 .
. 

..
 

'\
 

' .
. 

I 
l 

. '
 

..
. 

! '
;I

 
' 

~'
ti

 
II

 
H

i 1
1 

I 
I 

-
. 

I 

.: .. ~
~~
~\
 : 
~ 

,; :
 :::i

 !i
ii 

ilil~
: litl

 
:D.

 i!
li 

~!1 
!j I

 
I 

! .
 

: j 
W

lJ
lJ

Jl
Ji

lll
lll

lll
lll

lll
lll

lll
lll

lll
lll

lll
lll

lll
lll

lll
lll

l 

~--~r
-l 

:,::
 i::~N

ll
l.~ ~~

rt
r~

i! 111\~!
ii J

i 1
1 1 

J 
' 

, 
I!, 

~ i!
illl

llii
~W 

. 
. 

. 
. 

: •
 IJ

 1:
 : 

, 
·:)

' 
. 

: :j 
J.: :

 ! rt
l 

11 
1 

1.1
-f 

r :<
 

. 
. 
.I i

 
1 

.
.
.
 
---
~-

-~
---

----
1w,

;:
·~

-
.t

 .
.

..
..

..
.
.
 ,

, 
!i

'J
iil

. 
~·~

~~I
I. 

• 
II 

!I!
 

. 
. :

 
. 

: 
. 

:. 
~ i r

:;i
l ;:

1 
: ij

: 
J
l!

 
:: 

:-
,, 

lj!
 l

!j'
 

, i
 
~.

 
. 

. 
~ 1 

I 
it 

1~ 
, 

1 
·;i

i -~
 ... _

__
 ;~ 

, 
:,:

; 
;;i!

 :;
:;l

lii
d/j

' 
l[i,J

!::
 Uf1

ii!
 .

. :.
 ~~ 

. 
]fl 

1 
, 

I 
liil

ifll
 I

 H
 1

! l
i 

11
111

1 
H

JU
 

tl
ll
ll
ll
l 

ll
ll

ll
il

li
ll

ll
l 

~if.
 

':
 ;

 :: 
': 

1 !1 
jl:

 
! '

 :q
 

1 !i
: 

:;:
 

lJ:
 !J

!: 
:1

, 
:1

:' 
i!:

 
! 

. 
I 

I 
'I 

J 
'1!

 !''I
lL.

 I, 
lli 

! 
. 

II 
Ill 

. 
1 /

11 
1!1

111
11 

I! 
,,

:, 
:: 

i· 
'::

 
I 
:;:i 

ui 
w

 ~H ln
i 'p

 ~~, 1 "
' 
~d ni

l iii 
I t1,l

:l1r
lliil

lllll
il!"

 ;,''
 ;!!:

 1l!
: 

11
1 

Hi
 1

 II
III ~I

! .,!!I
IIII~

 I 1
111

111
 

ij,,l
lll 

I 

1
/3

 
2

1
/5

 

1-
-' 

0 ~
 



1 05 

TABLE 4 . 3 TEST RESULTS (TWO MONTHS PRIOR TO THE DATE OF MATURITY) 

MONTHLY AVERAGE OF MONTHLY AVERAGE OF 
f f ) (p - u ) (L -t t t pt 

CONTRACT TYPE/I WHEAT CORN WHEAT CORN 

7803 -11.24 -10.71 -18.36 - 7.41 
7805 -16.27 - 9.39 -19.11 -18.74 
7807 -19.79 -20.28 -16.48 - 9.89 
7809 -20.03 - 5.62 -11.09 -21.91 
7812 -16.80 - 8.58 -15.54 -19.78 
7903 -45.14 -14.96 7.35 -16.22 
7905 -43.94 -15.90 16.90 -16.82 
7907 -43.65 -14.53 5.20 -18.70 
7909 -13.58 -10.31 -27.00 -24.44 
7912 - 4.11 -10.06 -36.19 -23.62 
8003 -17.00 * -26.42 * 
8005 * - 7.57 * -27.52 
8007 * - R.38 * -28.02 
8009 * -13.03 * -24.85 
8103 * - 5 . 91 * -38.50 
8105 * -10.41 * -34.78 
8109 * - 2.98 * -40.25 
8203 -10.29 - 8. 72 -31.19 -27.00 
8205 -18.20 * -23.01 * 

II The contract with March 1978 being the delivery month is specified as 
7803; similarly for other contracts. 
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TABLE 4.4 TEST RESULTS (ONE MONTH PRIOR TO THE DATE OF MATURITY) 

MONTHLY AVERAGE OF MONTHLY AVERAGE OF 
f f (p - u ) (L - p ) 
t t t t 

CONTRACT TYPE WHEAT CORN WHEAT CORN 

7803 -10.18 - 7.60 -16.57 - 3.76 
7805 - 5.49 - 7.94 -17.76 -13.14 
7807 - 9.39 - 6.57 -12.37 -15.09 
7809 -20.33 - 9.05 - 2.11 -11.63 
7812 -13.08 -12.50 -10.12 - 8.27 
7903 -16.07 -14.25 - 9. 96 - 9.20 
7905 -31.09 -14.80 10.58 - 9.46 
7907 -29.57 - 8.18 - 3.52 -13.71 
7909 - 7.88 -12.87 -19.89 -11.91 
7912 - 0.81 - 3.96 -26.48 -19.76 
8003 - 2.56 * -27.11 * 
8005 * - 6.48 * -18.56 
8007 * - 5.39 * -20.47 
8009 * - 8.56 * -18.10 
8103 * - 3.16 * -27.50 
8105 * - 4.16 * -27.05 
8109 * - 7.63 * -21.79 
8203 - 6.43 - 7.68 -22.29 -18.23 
8205 -13.83 * -14.70 * 
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TABLE- 4. 5 TEST RESULTS (MATURITY MONTH) 

MONTHLY AVERAGE OF MONTHLY AVERAGE OF 
f 

(Lt - p~) (p - u ) 
t t 

CONTRACT TYPE WHEAT CORN WHEAT CORN 

7803 - 9.41 - 6.66 - 7.10 1.71 
7805 - 5.32 -10.69 - 7.89 - 4.68 
7807 -15.97 - 3.53 1. 35 -10.97 
7809 - 9.17 - 9.47 - 6.25 - 4.95 
7812 -11.52 -15.36 - 4.58 - 0.47 
7903 -12.01 -13.53 - 5.21 - 2.49 
7905 -30.77 -10.43 15.67 - 5.58 
7907 - 5.56 - 1.81 -11.96 -14.16 
7909 - 3.28 - 9.37 -14.21 - 6.77 
7912 - 2.21 - 6.43 -16.22 -10.03 
8003 - 4.68 * -13.91 * 
8005 * - 7.92 * - 9.12 
8007 * - 7.85 * - 9.04 
8009 * - 0.90 * -16.77 
8103 * - 5.39 * -13.82 
8105 * - 9.51 * -10.15 
8109 * - 1.98 * -15.64 
8203 -17.39 -16.51 - 6.22 - 0.61 
8205 14.28 * -32.92 * 
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futures price minus the upper bound] is always negative for the sample 

contracts, except for the May 1982 contract where a drastic drop of 

the spot price occurs because the measurement point moves from Chicago 

to St. Louis at the end of April, 1982. Thus, on average, the upper 

bound we calculated is effective. Conversely, for several cases the 

monthly average of (Lt- p~) [i.e., the corresponding lower bound 

minus the futures price] is positive; that is, the futures price falls 

below the lower bound on average. Based on the monthly average values 

f f of (pt- Ut) and (Lt- pt), the empirical results indicate that the 

hypothetical lower bound is a less effective constraint than the upper 

bound, suggesting that asymmetric arbitrage might indeed have an 

impact on hedgers' decisions. 

As shown in Table 6, the number of cases where the futures 

price falls below the lower bound exceeds the number of cases where 

the futures price rises above the upper bound in eight out of twelve 

contracts. Averaging over all the sample contracts, we find the 

latter number is less than half of the former (i.e., 5.3:12.6). This 

result provides further evidence for the hypothesis that asymmetric 

arbitrage influences the distribution of spot and futures prices. 

Another comparison shown in the table indicates that the longest 

duration with consecutively positive (p~ - Ut) is generally less than 

the duration of consecutively positive (Lt- p~); on average, the 

latter number is about 2.4 times of the former one. By the asymmetric 

arbitrage argument, this situation arises from the fact that a 

positive (p~- Ut) creates arbitrage opportunities11 , but no 
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corresponding arbitrage operations are available working to eliminate 

a positive (Lt- p~). Combining the above three observations, we can 

conclude that asymmetric arbitrage does have an impact on the observed 

joint distribution of cash and futures prices and hence presumably on 

hedgers' decision making. 

Thus, the range of the CBOT wheat futures price incorporates 

an effective upper bound while the (hypothetical) lower bound 

constructed from the symmetric assumption is less effective. 

Alternatively, this means the empirical probability density function 

of the basis (futures minus spot prices) is asymmetric with the 

highest positive value it can take being less than the absolute value 

of the lowest negative value. The risk of short hedgers is 

represented by positive values of the basis, while that of long 

hedgers is represented by the negative values of the basis. Thus, 

arbitrage acts to limit the risk of short hedgers relative to long 

hedgers. Consequently, the asymmetric arbitrage opportunities present 

in the CBOT wheat futures market will create asymmetries in the p.d.f. 

of the basis (or the joint p.d.f. of spot and futures prices) which 

are beneficial to short hedgers as compared to long hedgers. 

We now turn to CBOT corn futures market. Here, as shown in 

Tables 3-5, the monthly average of (p~ - Ut) and (Lt - p~) are almost 

always negative; the only exception is the March 1978 contract where 

the monthly average of (Lt - p~) is positive for the maturity month. 

Therefore, the hypothetical lower bound is actually an effective 

constraint. Moreover, as shown in Table 7, the number of cases where 
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the futures price falls below the lower bound exceeds the number of 

cases where the futures price rises above the upper bound in seven 

contracts; however, the latter exceeds the former in eight contracts. 

Averaging over all the sample contracts, we find the latter is about 

1.3 times the former (i.e., 2.6:2.0). Combining all these 

observations, we conclude that asymmetric arbitrage does not have 

impacts on the observed joint distribution of cash and futures prices. 

To this point, Houthakker's arguments in the way of a backwardation 

equilibrium cannot be applied since the precondition is already 

falsified. 

The empirical results for corn are thus inconsistent with the 

Houthakker argument. That is, although we establish the preconditions 

of the Lien and Quirk results under rational expectations for CBOT 

wheat futures, yet whether asymmetric arbitrage's effects on the 

density of spot and futures prices is pronounced enough to lead to an 

excess of short over long hedging at a martingale equilibrium cannot 

be determined from the results reported here. On the other hand, the 

precondition is falsified in CBOT corn futures, and hence the 

Houthakker arguments will not hold. Consequently, at best we can only 

argue that Houthakker's arguments may hold for some commodity futures. 
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Footnotes For Chapter 4 

1. Mathematically, the term "backwardation" employed in this paper 

can be written as: 

p~ < Et(p~+l), (.) 

where pf is the futures price at times, and E (.) denotes the s s 

expectation operator at time s. On the other hand, the notion 

adopted by earlier writers is : 

p~ < Et(p~+1), (**) 

where pc is the spot price at time s. When dealing with a forward 
s 

contract, we have p~ = p~ at the maturity date T. Consequently, 

the two versions are equivalent, once we set T = t + 1. However, 

if we deal with a true futures contract, there will be many "spot" 

commodities. For each specified spot commodity, we can only 

f c establish pT ~pT. Thus, it appears that our version (i.e., 

equation(*)) is stronger than the earlier version (i.e., equation 

(**}}; but the latter encounters a problem as to which spot 

commodity we refer to in the investigation of the existence of a 

backwardation equilibrium. Furthermore, if we require (**) be 

established for all spot commodities to verify the existence of a 

backwardation equilibrium, then the two versions will be 

equivalent, once we set T = t + 1. 

2. This statement implies implicitly that we set T = t + 1 because we 

consider only the relationship between the current futures price 
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and the expected futures price at contract maturation. 

3. Actually, Houthakker provided two arguments for a backwardation 

equilibrium in the futures market. The other argument, the so­

called Houthakker effect, relates to the notion that the 

correlation between the spot and futures prices depends on the 

stocks of the commodity. Theoretical work dealing with the 

Houthakker effect validates Houthakker's conjecture under a quite 

restrictive specification of such an effect (see Fort and Quirk 

(1984)). 

4. Originally, Houthakker tested his arguments on wheat, corn and 

cotton futures markets. For the purpose of comparisons, we also 

worked on these markets. Unfortunately, the daily changes in 

cotton futures prices and those in cotton spot prices are the same 

for most trading days in 1978-82, reflecting some sort of 

government intervention in the market. In fact, before USDA bids 

in the cotton spot market, the New York Cotton Exchange has 

already closed the daily transactions. Hence, USDA generally 

takes the daily change in cotton futures prices into account and 

adjusts the bid price by the very amount. Due to these market 

manipulaions, we exclude cotton futures from our empirical 

studies. 

5. In fact, the carrying cost associated with a cash commitment is a 

random variable, since in particular the interest cost depends on 

the spot price, which is random. The simplifying assumption is 
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made here that carrying cost is known with certainty. This might 

possibly be rationalized in that we deal here only with relatively 

short-term {1 to 2.5 months) carrying periods, so that the 

uncertainties associated with the carrying cost are second-order 

effects relative to the uncertainties associated with the spot and 

futures prices. 

6. Houthakker's arguments center on hedging activities. In some 

cases, speculative trading can dominate the role of hedging so far 

as the pattern of futures prices is concerned. Yamey {1971) made 

a similar point. In Lien and Quirk, the Houthakker arguments are 

examined under the assumptions of common beliefs and risk 

aversions on the part of all traders, so that speculative trading 

acts only to reduce the degree of backwardation or contango from 

an imbalace of hedging. 

7. Another interesting result from Lien and Quirk is that, under 

rational expectations in a multiperiod framework, the futures 

market is always in martingale equilibrium except in the last 

period. Basically, the rational expectations assumptions rule out 

the possibilities of speculative profits {on average) in the 

market. On the one hand, this result justifies the studies of a 

two-period framework; on the other hand, it challenges the 

usefulness of the rational expectations concepts in futures 

markets. 

8. This observation may be explained by Garbade and Silber's approach 
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(see Garbade and Silber (1983)). In fact, since no uniform 

characteristic is extractable from wheat, the discount/premium 

structure of CBOT wheat futures contract is a penalty system 

rather than an equivalence system. Thus, the deliveries at 

Chicago rather than Toledo are generally expected. 

9. If we exclude maturity months from our consideration, the result 

for CBOT wheat futures indicates that the number of observations 

that fall below the lower bound is about 2.65 times the number of 

observations that exceed the upper bound (105:40). Again, the 

asymmetric arbitrage is effective in this case. Consequently, our 

conclusions remain the same whether or not maturity months are 

taken into account. Similar results can be established for CBOT 

corn futures; asymmetric arbitrage is ineffective whether or not 

maturity months are considered. 

10. More specifically, the null hypotheses of our tests stated that 

the number of observations that exceed the upper bound equals the 

number of observations that fall below the lower bound. This 

property depends only on the symmetry conditions, which are 

independent of stationary patterns. Consequently, the 

nonstationary patterns of futures prices argued by Anderson (1985) 

would not cause any bias. Moreover, given the null hypotheses, we 

can apply a simple binomial test to investigate whether or not it 

is acceptable. Upon applying the normal approximation (for 

example, see Pollard (1977)) to the aggregate data, the null 
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hypothesis will be rejected at the 1% significant level for CBOT 

wheat futures markets. On the other hand, the null hypothesis 

cannot be rejected at the 1~ significant level for CBOT corn 

futures markets. 

11. Although a positive (p~- Ut) creates arbitrage opportunities 

which then generate a riskless profit, in our empirical studiess 

these profits are generally small. More specifically, in CBOT 

wheat futures, the average of these profits is 4.54 cents per 

bushel with the standard error being 3.86 cents per bushel; the 

maximum of these profits is 14.16 cents per bushel (which is about 

4.8~ of the corresponding futures price). In CBOT corn futures, 

the average is 2.55 cents per bushel with the standard error being 

1.92 cents per bushel. Also, the maximum of these profits is 6.38 

cents per bushel, about 2.41% of the corresponding futures price. 
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Chapter 5. Testing the Houthakker Effect 

in Commodity Futures Markets 

In the previous chapter, we investigated the impacts of 

asymmetric arbitrage opportunities on the CBOT wheat and corn futures 

markets. Now we turn to the second argument provided by Houthakker 

(1968) in the way of a backwardation equilibrium, the so-called 

Houthakker effect. The Houthakker effect, as described by Fort and 

Quirk (1984), relates to the notion that the correlation between the 

spot and futures prices depends on the stocks of the commodity. 

Specifically, when inventories of a commodity are large, the spot and 

futures prices tend to be highly correlated. Since large inventories 

tend to be associated with low spot prices, and short hedgers (short 

in futures, long in spot) endeavor to avoid the risk associated with 

low spot prices, the correlation pattern thus renders the futures 

contract as an effective instrument for short hedgers. In contrast, 

long hedgers (long in futures, short in spot) try to avoid the risk 

associated with high spot prices, but the correlation pattern limits 

the effectiveness of futures contracts for such hedging purposes. The 

preponderance of short over long hedging is thus established. 

Recent theoretical work dealing with the Houthakker effect 

does not provide unambiguous results concerning its relevance for 

backwardation. Specifically, Fort and Quirk show that it is possible 

to construct a backwardation equilibrium if the joint probability 
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density function of spot and futures prices is characterized by a 

"Houthakker effect," but this requires a quite restrictive 

specification of such an effect. Consequently, the theoretical 

standing of the Houthakker effect is not all that convincing, 

suggesting in turn that empirical work is needed to determine the 

relevance of the Houthakker effect for functioning futures markets. 

That is the objective of the present paper. 

We do not attempt to resolve all of the issues relating to the 

Houthakker effect in this paper. In particular, we do not attempt to 

prove or disprove the contention that the presence of a Houthakker 

effect leads to a backwardation equilibrium. The objective here is 

more modest. What we wish to do is to determine whether the pattern 

of spot and futures prices observed in the market exhibits a 

Houthakker effect. Again, we address these problems as they apply to 

the Chicago wheat and corn futures markets. 

Upon comparing the two relevant conditional correlations, our 

empirical test results indicate that the Houthakker effect is absent 

in CBOT wheat and corn futures markets. This sheds some doubt about 

the Houthakker argument for normal backwardation. 

The structure of the paper is as follows. First, we discuss 

the theoretical aspects of the Houthakker effect. We then describe the 

statistical methods we employ. Finally, the test results and their 

implications conclude the paper. 
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Theoretical -Aspects of The Houthakker Effect 

Basically, Houthakker's argument for backwardation is composed 

of two parts, namely, (i) the correlation pattern between spot and 

futures prices and (ii) the specific basis pattern in futures markets. 

Thus, Houthakker argued, "When inventories are large, there will in 

general be no excessive shortages or surpluses of particular grades 

and locations, so that all prices will tend to move closely together. 

On the other hand, when inventories are small, they are also likely to 

be unevenly distributed; the market will to some extent disintegrate 

into submarkets, and the correlation tends to be less close." 

(Houthakker (1968, p.198)). 

Now, since hedgers' decisions about their participation in a 

futures market hinge on the correlation of spot and futures prices (at 

least, in a mean-variance framework), therefore, in a seasonal 

commodity market, the correlation pattern (i.e., the Houthakker 

effect) favors hedging ( both short and long ) in the middle of the 

crop year when inventories are large, but not before and immediately 

after harvest when commercial inventories are small. Note that this 

definition of the Houthakker effect is merely a seasonal phenomenon; 

that is, the specific correlation pattern is established across 

different months. Also, the correlation referred to is that of 

futures and spot-price movements, rather than the levels of futures 

and spot prices. Most importantly, this notion of a Houthakker effect 

does not establish the preponderance of short over long hedging; both 

are encouraged when inventories are large. 
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The~econd part of Houthakker's argument claims that, in the 

middle of the crop year, " ••• the algebraic change in the spot price 

exceeds the corresponding change in the futures price, but during the 

summer and autumn the spot price rises less, or falls more, than the 

futures price. This seasonal pattern means that short hedging is 

favored, and long hedging discouraged, during the period when stocks 

in commercial hands are large. Conversely, the seasonality of the 

basis is favorable to long hedging, and unfavorable to short hedging, 

when commercial stocks are small." (Houthakker (1968, p.200)) It is 

these two effects, the Houthakker effect and the basis pattern effect, 

which leads to a backwardation equilibrium in the futures market when 

(total) inventories are large. 

The argument concerning the basis pattern is an empirical one, 

based on Houthakker's analysis of data in the corn and cotton markets. 

From a theoretical point of view, there is some circularity. To argue 

that short hedging is encouraged by a seasonal pattern of basis 

changes favorable to short hedging ignores the fact that basis 

movements reflect in turn the pattern of hedging that actually occurs. 

Thus, the basis pattern concept of Houthakker's argument is really an 

argument for a sort of reverse "bubble"-- short hedging increases 

because short hedgers expect short hedging to decline relative to long 

hedging during the middle of the crop year, thus producing a favorable 

pattern of basis change so far as short hedgers are concerned. 

To see this, consider a simple two-period forward contract 

model and let p~, p~ denote the futures and spot prices at time t, 
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t = _Q, 1, where t = 1 denotes the maturity date of the contract. The 

structure leads to a perfect · hedge situation, i.e., the cash 

commitments of hedgers equal to the corresponding futures commitments. 

Let w8, wL > 0 denote the futures commitments of short hedgers and 

long hedgers, respectively; then the profits accrued to short hedgers 

(rr8 ) and long hedgers (nL) are 

s n = WS[Apc Apf]; 

= WL[Apf- Ape]. 

Thus, whenever Ap 0 > Apr, n8 will increase and short hedgers will 

increase their futures commitments; also, nL will decrease and long 

hedgers will decrease their futures commitments. On the other hand, 

at t = 1 the short hedgers buy back their futures contracts while the 

long hedgers sell futures to liquidate their futures commitments; 

hence Ap 0 > Apf implies that pi is relatively low, which in turn 

implies the short hedging level is low since it represents the demand 

side so as to determine pi the level. Consequently, the expectation 

of Ap 0 > Apf implies the expectation of declines in short hedging, 

which in turn encourages current short hedging so that a reverse 

bubble is thus produced. 

Employing a different version of the Houthakker effect, Fort 

and Quirk actually prove the desirable result (linking the Houthakker 

effect to backwardation) within a world with an equal number of short 

and long hedgers, with identical utility functions and identical 

densities over spot and futures prices. Specifically, assume , at some 

time point before the maturity date of the futures contract, that 
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hedgers hold-a common probability density function over spot and 

futures prices at the maturity date. Fort and Quirk interpret the 

Houthakker effect as stating that, when the (maturity date) spot price 

is low. the correlation between the spot and futures prices is high; 

and, conversely, when the spot price is high, the correlation tends to 

be low. The notion employed here extends the original Houthakker 

effect based on a seasonal pattern and total inventories to that based 

on a maturity date pattern and inventories of a specific grade, since 

low spot prices for a grade are associated with large inventories of 

the grade1 • 

Intutively, since short hedgers endeavor to avoid the risk 

associated with low spot prices, hence given a Houthakker effect, the 

futures contract offers a desirable instrument for short hedgers. On 

the other hand, long hedgers try to avoid the risk of high spot 

prices, but the low correlation between spot and futures prices at 

high spot prices limits the effectiveness of the futures contract for 

long hedging purposes. Under an appropriate specification of the 

Houthakker effect, a preponderance of short over long hedging, and a 

backwardation equilibrium, can be established. 

In the Fort-Quirk paper, the Houthakker effect is defined in 

terms of the "closeness" of the spot and futures prices at low versus 

high spot prices, rather than in terms of correlation levels. But 

again the conditions required to establish backwardation are highly 

specialized, and the question as to whether this version of the 

Houthakker effect is reasonable or not is a matter for empirical 
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tests. 

The Statistical Methods 

The market characteristics underlying the Houthakker effect 

are tested using the wheat and corn futures contracts traded on the 

Chicago Board of Trade (CBOT). The nature and limitations of these 

data have been described in the previous chapter. 

We now turn to the statistical methods employed in this paper. 

Let p~, p~ denote the CBOT wheat (or corn) futures price and the spot 

price respectively for No.2 Red Soft wheat (or No.2 Yellow corn) at 

Chicago at the maturity date. The Houthakker effect can be 

characterized by the following mathematical statement: 

f cl c f I c -Corr(pT, PT pT! R> > Corr(pT' PTPT l p), ( 1) 

where R is an appropriately chosen "low" spot price, and p is some 

f cl "high" spot price. For all nonnull events A, Corr(pT,pT A) is the 

correlation of p~, p~ conditional on A occurring; i.e., 

( 2) 

used in those cases when the spot price is high. Note that, if p # Q, 

the specification of the Houthakker effect involves great 

c arbitrariness, a reasonable choice will be p = R = EpT. That is what 

we employ in our empirical studies. 

Given the above statements, the null hypothesis for testing 

the presence of the Houthakker effect is 
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(3) 

while the alternative hypothesis is 

( 4) 

To simplify the notation, we use LCOR (Lower Conditional Correlation) 

UCOR (Upper Conditional Correlation) 

Ideally, we would like to employ a 

nonparametric test in which no specific assumption on the joint 

( f c distribution of pT,pT) is required. This approach, however, is 

beyond the scope of this paper, simply because once truncations (or 

hazard rates) are encountered; there are no nonparametric tests 

available in the literature (see Lee (1984)). Consequently, a 

parametric test that requires the assumption of the underlying 

generating process of (p~,p~) must be proposed2 • 

To tackle this problem, we assume that (log p~.log p~) follows 

a vector AR(1) process. That is, we have 

[
log P~l = [:11 

log pt 21 [
log P~-11 
log Pt_1 

where (e1t,e2t> is an identically, independently distributed 

bivariate normal random vector. The specification is more general 

than other specifications currently applied in the literature. For 

example, if we consider only the futures price equation and let 

a21 = 0, a22 = 1, then we derive a lognormal-normal process for 

futures prices (see Clark (1973)). Tests of the efficient market 

hypothesis, on the other hand, are generally based only on the spot 

( 5) 
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price equation. There remain some doubts about the validity of 

Equation (5); but in general · our empirical results indicate that the 

data fit well into the proposed models. To carry through our 

empirical studies, we asume the vector AR(1) process to be a corect 

specification and it is stationary (Obviously, these two assumptions 

may be invalid for some contracts as shown in Tables 1-4). 

Given that (log pf,log p~) follows a vector AR(1) process, the 

variance-covariance matrix of (log pf,log p~) satisfies a first-order 

vector difference equation. Since we are concerned with the 

variance-covariance matrix at the maturity date, a natural estimate 

will be the stationary solution of the vector difference equation3 • 

That is, if we let Qt denote the variance-covariance matrix of 

c f) \ (log pt,log pt and let L denote the variance-covariance matrix of 

(elt,s2t>, then 

( 6) 

which is a vector difference equation the stationary solution of which 

will be treated as the estimate of QT. Furthermore, since 

c f c f (log pT,log pT) is a bivariate normal random vector, (pT,pT) is a 

bivariate lognormal random vector. The results derived in Lien (1985) 

can be applied to derive the estimates for terms included in equation 

( 3) • 

More specifically, let (x, y) be a bivariate lognormal random 

vector such that 

[log x] 
log y 1· 

(7) 
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Then. for any A > 0 with B =log A- 111 • we have 

(i) E(xlx LA) = c ~(a1 - B/a1)/ ~(-B/a1 ) 

(ii)E(ylx LA) = d ~((a12 - B)/a1>/ ~(-B/a1 > 

21 2 2 (iii) E(x x LA) = c exp(a1 )~(2a1 - B/a1>/ ~(-B/a1 ) 

(iv)E(xylx LA) = cd exp(a12 )~((ai + a12 - B)/a1>/ ~(-B/a1 > 

(v) E(y2 lx LA) = d 2exp(a~)~((2a12 - B)/a1>/ ~(-B/a1 >. 
2 2 where c = exp(J.ll + a1/2), d = exp(J.12 + a2/2) and~(.) is the 

cumulative density function of a standard univariate normal variable. 

Similarly, the conditional expectations. E(xlx ~ A) and E(x21x ~ A) 

etc., can be constructed. Consequently, LCOR and UCOR can be derived 

upon applying the above formulae once we replace (x, y) by (p~, p~) 

2 and set A= exp(J.11 + a1/2). More specifically, let Wij denote the 

(i,j) element of QT. Then 

{exp(W11 )~(a3 )~(6) - ~2 <a1 ) }lh{exp(W22 )~(a5 )~(6) - cfl<a2) }lh 

where 91 = w~1 /2, 92 = w12w~- (W~1 /2), 93 = 3W~1 /2, 

( 8) 

( 9) 

94 = w12w~ + (W~1 /2), 95 = 2w12w~- <wt1/2), r = -w~1 /2 = -6; also 

ai = -9i, Vi= 1, ••• ,5. In Lien (1985), it was also shown that the 

Houthakker effect may be accepted or rejected depending upon the 

values of the parameters given a bivariate lognormal specification of 

f c 
( PT' pT) • 
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In f~ct, the appropriate test statistics for the presence of 

the Houthakker effect is certainly LUCOR = LCOR - UCOR. That is, if 

LUCOR > 0, then we accept the null hypothesis that the Houthakker 

effect prevails; otherwise, we reject the null hypothesis. The above 

formulae provide us with the estimate of LUCOR; yet the significance 

of a test result still requires the estimate of the variance of LUCOR. 

To this point, Rao's large sample theory can be applied once the 

sample size is sufficiently large4• Unfortunately, our empirical 

studies include only small samples because we have to consider each 

contract separately, which in turn is due to the nonstationary pattern 

of futures prices across contracts (see Anderson (1985)) 5• On the 

other hand, the exact distribution of LUCOR for finite sample cases is 

highly complicated. As a result, our conclusions will simply draw 

from the signs of LUCOR regardless of the significance level. 

Test Results and Implications 

The test results are presented in Tables 1-6. Tables 1 and 3 

present the estimation of wheat and corn futures price equations, 

respectively. In general, the two coefficients associated with 

previous futures and spot prices (in logarithmic terms) are both 

highly significant different from zero. 
-2 Moreover, R is also quite 

-2 
large while the corn futures price equation generally has a greater R 

than the wheat futures price equation. These results are expected, 

since the specific spot commodities we considered are typically the 

relevant delivery options in determining the futures prices at 
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TABLE 5.1 ESTIMATION OF FUTURES PRICE EQUATIONS (WHEAT ) 

CONTRACT CONSTANT COEFFICIENT COEFFICIENT D.W. 
f c -2 TYPE TERM OF 1og(p 

1
) OF 1og(p 

1
) STATISTICS R t- t-

II ** ** 7803 0.2756** 0.2081** o. 7572** 1. 3103 0.9466 
7805 -0.9577 0.2285** o. 8920 o. 9877 0.9651 
7807 1.0602 0.7545** 0.1137** 1.6113 0.6046 
7809 -0.2750 0.7584** 0.2752** 2.0016 0.8034 
7812 1. 3874** 0.5715** 0.2593** 1. 6191 0.4551 
7903 1. 9679 0.6290** 0.1317** 2. 7273 0.8282 
7905 0.3297* 0.4662** 0.4900** 1.4086 0.9482 
7907 -0.7518* 0.3523** 0.7367** 1. 0233 0.9427 
7912 1.2196 0.2639** 0.5921* 0.6602 0.7865 
8003 0.2915* 0.7976** 0.1676** 1.8846 0.9188 
8109 1.8329** 0.6598** 0.1201** 2.0206 0.6210 
8112 -2.5904** 0.6672** 0.6456** 1.6954 0.9529 
8203 -1.4028** 0.6146** 0.5572** 1. 7828 0.9121 
8205 1. 7427 ** 0.5823** 0.2057 l.L420 0.9274 
8207 2. 7716 0.7480 -0 . 0894** 1.6478 o. 5171 
8209 1. 7321 0.0410** 0.7535 0.4973 0. 1695 
8212 0.5564 1.1055 -0.1743 1.4227 0.8432 

* significant at the 90% level 
** significant at the 95% level 

II The contract with March 1978 being the delivery month is specified 
as 7803; similarly for other ·contracts. 
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TABLE 5.2 ESTIMATION OF SPOT PRICE EQUATIONS (WHEAT) 

CONTRACT CONSTANT COEFFICIENT COEFFICIENT D.W. 

TYPE TERM f 
OF 1og(pt_1) 

c 
OF 1og(pt_1) STATISTICS -2 

R 

** 7803 0.3236 -0.0861 1. 0454** 1. 7995 0.8591 
7805 1.1729"'* -0.0142 0.86~4** 2.0083 0.6706 
7807 2.5565** -0.1367* U.8197 1. 7L09 0.5506 
7809 3.1498** 0.2745 0.3381** 1. 8273 0.3575 
7812 7.7938 -0.3143 0.3642** l. 4694 0.1034 
7903 1. 2827 0.0424** 0.8018 2.1845 0.6582 
7905 0. 6432** 0.6026 0.3239** 2.3525 0.8473 
7907 1.6860 0.0675 0.7320** 1. 8808 0.7222 
7909 1. 5138** 0.1549 0.6638** 1.9107 0.6381 
7912 2.9259** -0.1831** 0.8328 2.0681 0.5799 
8003 1. 9477 0.6441** 0.1211 1. 7751 o. 7011 
8109 -o.59:n 0.8144 . 0. 2515*" 2.0165 0.1370 
8112 0.1930** 0.0985** 0.87/5** 1.4168 0.8817 
82U3 1.6721 -0.2008 0.9965** 1. 6283 0.6843 
8205 -1. 8311** 0.5377 0.6842*" 1. 9191 0.8469 
8207 3.6760** -0.2507 0.7975** 1. 5296 0.5679 
8209 2.8035 -U.Ol31* 0.6742** 1.6L25 a. 3710 
8212 o. 2710 0.2846 0.6820 1.4163 0.8306 
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TABLE 5.3 ESTIMATION OF FUTURES PRICE EQUATIONS (CO RN) 

CONTRACT CONSTANT COEFFICIENT COEFFICIENT D.W. 
f OF c -2 TYPE TERM OF log(p 

1
J logtp 

1
) STATISTICS R 

t- t-

** ** 7!W3 0.4954** 0.4465** 0.4904** 1. 8139 o. 9)18 
7805 -:.!.0608 0.6700** 0.5928** 1. 6075 0.8675 
7807 -0.2700 o. 5058"* o. 5293h 2.0461 0.9867 
7809 -0.0075 0.5316** u.4b91** 1.4is02 u.7'171 
7812 -1.4'165** 0.!:1859 0.3069** 1.4552 0.8667 
7903 3.9123 -0.1085** 0.6038** 1. 7514 0.4640 
7905 -0.1976 0.2311 0."/933"'* 1. 7308 0.9595 
7907 -0.1907 0.0091 1.0171** 1.0621 u. 9170 
7'109 1.4781** o.u224*• 0.7909** 1. 5052 0.6934 
7912 2.0217 0.5695** 0.1751 1. 4995 0.7565 
!S003 0.6532** 0.9489 -0.0319** 2.5884 0.8893 
8005 J.1.)92** 0.1705** 0.4J04** 1.1017 0.7451 
8007 0.6889 0.3254* 0.5901** 1. 796J 0.'1879 
!:1009 -0.2090 0.1009** 0.9270 1.2800 0.9678 
80.12 0.0167** 0.8898** 0.1091** 1. 614 7 0.7691 
8103 -5.5203** 0.6014** 1.0768** 1. 3843 0.9051 
8105 -3.2578 o. 7758** 0.6236 1. 2978 0.9084 
8107 1.4369 0.7165** 0.1070** 1. 5316 0.6340 
8109 0.0874 0.4328** 0.5571 1.4012 0.9794 
8112 -0. 5485* 0.9123** 0.1574** 1. 7899 0.9548 
8203 -1.3044 0.9092** 0.2562 2.3274 0.9564 
8205 1. 6161 0.9445** -0.1498** 2.4664 0.8694 
8207 0.1132* 0. 6972** 0.2903 2.1613 0.8563 
8209 1. 0708** 0.9015** -0.0404 1. j65J 0.!:1497 
8212 2.4837 0.6086 0.0718 2.0521 0.7334 
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TABLE 5.4 ESTIMATION OF SPOT PRICE EQUATIONS (CORN) 

CONTRACT CONSTANT COEFFICIENT COEFFICIENT o.w. 
f c R2 TYPE TERM OF 1og(p ) OF 1og(p ) STATISTICS 
t-1 t-1 

** 
7803 -0.3185* 0.2172 0.8241** 1. 6463 0.8918 
7805 2.0112 0.0375 0.7050** 2.3844 0.47/.7 
7807 -0.0457** -0.1415 1.14 72** 1. 4569 0.9627 
7~09 l. 8982* -0.1017 0.8546** 1. 9336 0.6219 
7812 2.0912 -0.0383 0.7680** 1.6696 0.5228 
7903 -0.3614 0. 2383 0.~08Y** 2. 0497 U.8J32 
7905 1.3115 0.1468 0.6868** 2.0729 0. 6671 
7907 0.7460** 0.0573 0. 8496"'* l. 6294 0.8870 
7909 3.5678 0.0156 0.5350** l. 8558 0.2523 
7Y12 0.3:.!81** 0.1723* 0.7858 '1..4470 0.8741 
8003 5.7174"'* 0.2839*" -0.0103** 1.4390 0.4694 
8005 3. 2113 -0.3772 0.9707** 2.5903 0.7390 
d007 0.1457** -0.1403 1.12:n** 1.8817 0.9575 
8009 1. 6184** 0.0202 0.7810** 1.9511 0.6950 
8012 4.8979** -0.1055 0 • .:)05!1** 2.:.!097 0.2165 
8103 4.5352** 0.0998 0.3435** 1.8868 0.1587 
8105 2.5083 0.0536* 0.6390 1.4169 0.4903 
8107 3.1610 0.4780** 0.1311** 1.9666 0.129:.! 
iH09 0.1536 0.3639 0.6150** 2.0363 0.9217 
8112 o. 6772** 0.0973** 0.8157** 2.1428 0.8224 
8203 1. 4149** -0.0963 0.9167** 2.2910 0.6397 
8205 2.6303 -0.0244 0.6901** 2.1635 0.6602 
11207 1.154Y -0.1026 0.9561** 1. 6793 0.7362 
8209 1. 0524** 0.0833 0.7795** 1.1122 0.7665 
8212 2.0566 0.0570 0. 6773 2.6284 0.8104 
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TABLE 5.5 TEST RE SULTS FOR THE PRESENCE OF THE HOUTHAKKER 
EFFE CT IN CBOT WHEAT FUTURES MARKET 

CONTRACT ESTIMATE ESTIMATE ESTIMATE# 
TYPE OF LCOR OF UCOR OF LUCOR 

7803 0.1893 0.1924 -0.0031 
7805 -0 . 0590 -0.0520 -0.0070 
7807 -0.3074 -0.3053 -0.0021 
7809 0.6923 0. 6922 0.0001 
7812 -0.3075 -0.2973 -0.0102 
7903 0.3066 0. 2821 0.0245 
7905 0 . 6847 0.6865 -0.0018 
7907 0.2199 0.2163 0.0036 
7909 0.1279 0.1174 0.0105 
7912 0.0153 0. 0001 0. 0152 
8003 0.7867 0. 7975 -0.0108 
8109 0.5690 0.5714 -0.0024 
8203 0.1013 0.1051 -0.0038 
8205 0 . 7049 0.7047 0.0002 
8207 -0.5065 -0.5031 -0.0034 
8209 -0.0111 -0.0273 0.0162 
8212 0.8117 0.8152 -0.0035 

# LUCOR ~ LCOR - UCOR 
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TABLE 5.6 TEST RESULTS FOR THE PRESENCE OF THE HOUTHAKKER 
EFFECT IN CBOT CORN FUTURES MARKET 

CONTRACT ESTIMATE ESTIMATE ESTIMATE 
TYPE OF LCOR OF UCOR OF LUCOR 

7805 0.3645 0.5585 -0.1940 
7807 0.8675 0.8699 -0.00~4 

7809 -0.0992 -0.1184 0.0192 
7812 -0.4974 -0.4955 -0.0019 
7903 0.1493 0.1502 -0.0008 
7905 0.2174 0. 2311 -0.0137 
7907 0.0891 0.0897 -0.0006 
7912 0.3282 0.3344 -0.0062 
8003 0.8504 0.8584 -0.0079 
8005 0.1235 0.1275 -0.0041 
8012 -0.6799 -0~6683 -0.0117 
8103 0.5129 0.5228 -0.0098 
8105 0.6392 0.6190 0.0201 
8107 0.5754 0.5767 -0.0013 
8203 -0.2160 -0.2152 -0.0008 
8207 -0.0487 -0.0514 0.0027 
8209 0.5859 0.5896 -0.0038 
8212 0.3388 0. 2715 0.0673 
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termination~f the futures contracts6 . In other words, they are 

"basis grades" for CBOT wheat· and corn futures contracts, 

respectively. Therefore, the close link between spot and futures 

prices is expected. 

Moreover, since there are only three deliverable grades in 

corn futures while there are eleven deliverable grades in CBOT wheat 

futures, the uncertainties about which grade constitutes the basis 

grade are propably greater in the latter market. Consequently, the 

estimation of the corn futures price equation is expected to be better 

than that of the wheat futures price equation. In fact, the 

expectation is fulfilled in terms of R2 or Durbin-Watson statistics. 

There are eight out of eighteen wheat futures price equations 

that correspond to unsatisfactory Durbin-Watson statistics. This 

implies that some sort of serial correlation in the disturbance terms 

may be present. For corn futures price equations. the Durin-Watson 

statistics are quite satisfactory in almost all cases7 • 

Tables 2 and 4 present the estimation of the wheat and corn 

spot price equations. The results are not as good as those of the 

corresponding futures price equations. The reason is as follows : the 

specific spot price we utilized tends to be correlated with all the 

other spot prices; but the futures price reflects only the price level 

of the basis grade. Therefore, the current spot price is not closely 

related to the previous futures price when the basis grade changes 

frequently over time. The estimation results actually confirm the 

above statements : only five out of twenty five corn spot price 
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equ~tions and six out of eighteen wheat spot price equations contain 

significant coefficients associated with previous futures prices. The 

Durbin-Watson statistics for all spot price equations are quite 

satisfactory, either in terms of absolute levels or in comparison to 

corresponding futures price equations. This suggests that the AR(l) 

process may be a good approximation for wheat and corn spot prices. 

Now we turn to the test results related to the Houthakker 

effect. From Table s. ten out of seventeen CBOT wheat futures 

contracts have negative LUCOR. which is contradictory to the 

Houthakker effect conjecture. Although the three contracts with 

highest absolute values of LUCOR support the presence of the effect. 

the evidence is quite weak. On the other hand. fourteen out of 

eighteen CBOT corn futures contracts have negative LUCOR. While the 

other four contracts provide significantly positive LUCOR. this 

provides very weak support for the existence of the Houthakker effect. 

On the basis of the data summarized here, the Houthakker effect was 

shown not to be present in either the CBOT wheat nor the corn futures 

markets8 •9 • Consequently, the conjecture that the Houthakker effect 

is an empirically significant foundation for a backwardation 

equilibrium appears to be false. In particular. the empirical results 

indicate that the correlation between the futures and spot prices at 

the maturity date does not depend on the spot price level in the 

manner argued by Houthakker. In fact, the empirical results suggest 

that short and long hedgers are in symmetric positions in terms of 

correlation consideration. That is. short and long hedgers in CBOT 
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corn or wheat futures markets actually face equivalent risk levels. 
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Footnotes For Chapter 5 

1. For some other implications arising from the presence of the 

Houthakker effect, see Quirk(1985). Also, note that Quirk's 

expression for the Houthakker effect was in terms of correlation, 

which differs from that of Fort and Quirk (1984). 

2. If the joint distribution of spot and futures prices is symmetric, 

then we have LCOR = UCOR (see Lien (1985)). Consequently, an 

asymmetric joint distribution is needed to effect test the 

presence of the Houthakker meanifully. 

3. There are some cases in which the stationary solution does not 

exist; all these cases are excluded from our consideration when 

dealng with the tests on the Houthakker effect. 

4. In fact, the variance of LUCOR cannot exceed 4. Nonetheless, 

applications of large sample theory to our models yield a much 

larger asymptotic variance. As a result, the significance level 

calculated with the asymptotic variance becomes meaningless. The 

difficulty is generally expected in the literature of futures 

markets (See Taylor (1985)). 

5. The nonstationary patterns of futures prices across contracts 

eliminate the possibility of pooling all maturity date data over 

all contracts to investigate the joint distribution of spot and 

futures prices. On the other hand, if Houthakker's argument is 
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correctL_the price level will certainly depend on the stock level. 

Thus, we cannot pool contracts together and then impose stationary 

assumptions. 

6. Another interesting result is that four out of five insignificant 

estimates of coefficients associated with previous futures and 

spot prices in CBOT wheat futures markets appear after May 1982. 

-2 Also, if we use May 1982 as the dividing line, we find that the R 

associated with the period after May 1982 is much lower than that 

associated with the period before May 1982. This indicates that 

Chicago is a better candidate for "basis location" than St. Louis, 

once we notice that, after May 1982, the spot price series is 

recorded at St. Louis instead of Chicago. 

7. Since lag endogenous variables are invloved in the specification 

of Equation (5), the Durbin-Watson statistics will be biased 

toward the null hypotheses. Therefore, the statements associated 

with satisfactory Durbin-Watson statistics should be treated with 

caution. 

8. We also tested the Houthakker effect and the basis pattern effect 

on CBOT wheat futures using Houthakker's approach. The result is 

again negative; but here the problem may arise because we consider 

only the five-years period, which is rather short compared to 

Houthakker's sample data. 

9. If we investigate the possible seasonal patterns of our test 
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results J especially the one suggested by Houthakker) , again there 

is no significant conclus.ion. 
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