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ABSTRACT

This thesis presents the results of a theoretical and experimental investiga-
tion concerned with the hydrodynamic stability of extensional flows. In particu-
lar, model extensional flows in the class of two-dimensional linear flows are con-
sidered. These flows may be classified by a parameter A ranging from A = 0 for

simple shear flow to A = 1 for pure extensional flow.

In Chapter 1, a linear stability analysis is given for an unbounded Newtonian
fluid undergoing two-dimensional linear flows. The linearized velocity distur-
bance equations are analyzed to yield the large-time asymptotic behavior of spa-
tially periodic initial disturbances. The results confirm the established fact that
simple shear flow (A = 0} is linearly stable. However, it is found that unbounded
extensional flows in the range 0 < A< 1 are unconditionally unstable. Spatially
periodic initial disturbances which have lines of constant phase parallel to the
inlet streamline of the basic flow and have sufficiently small wavenumbers in the
direction normal to the plane of the basic flow must grow exponentially in time.
A complete analytical solution of the vorticity disturbance equation is obtained

for the case of pure extensional flow (A = 1).

Chapter II presents a linear stability analysis for an Oldroyd-type fluid
undergoing two-dimensional linear flows throughout an unbounded region. The
effects of fluid elasticity on extensional-flow stability are considered. The time
derivatives in the constitutive equation can be varied continously from co-
rotational to co-deformational as a parameter 8 varies from 0 to 1. It is again
found that unbounded flows in the range 0 < A< 1 are unconditionally unstable
with respect to spatially pericdic intitial disturbances that have lines of constant
phase parallel to the inlet streamline in the plane of the basic flow. For small
values of the Weissenberg number, only disturbances with sufficiently small

wavenumbers as in the direction normal to the plane of the basic flow give rise
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to instability. However, for certain values of §, there exist critical values of the
Weissenberg number above which flows are unstable for all values of the

wavenumber ag.

The results of an experimental investigation of the flow of a Newtonian fluid
in a four-roll mill are found in Chapter IlI. The four-roll mill may be used to gen-
erate an approximation to two-dimensional linear flow in a central region
between the rollers. A photographic flow-visualization technique was employed to
study the stability of a pure extensional flow (A = 1). Two four-roll mills with
different ratios of roller length to gap width between adjacent rollers (namely,
L/d = 3.39 and 12.73) were used in order to study end effects on flow stability. At
sufficiently small Reynolds numbers the flow in both devices is essentially two-
dimensional throughout most of the region between the rollers, except near the
top and bottormn bounding surfaces where three-dimensional flow involving four
symmetrically positioned vortices appears. The vertical extent of this two-
dimensional flow gradually diminishes and the vortices grow in size and strength
as the Reynolds number is increased up to a quasi-critical range. An increase in
Reynolds number through this quasi-critical range results in an abrupt transi-
tion to a steady three-dimensional flow throughout the entire region between the
rollers. The three-dimensionality is significantly less pronounced in the device
with L/d = 12.73, however. At sufficiently high Reynolds numbers beycnd the
quasi-critical range, the flow becomes unsteady in time and eventually tur-

bulent.
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CHAPTER 1

THE STABILITY OF TWO-DIMENSIONAL LINEAR FLOWS OF A NEWTONIAN FLUID

The text of Chapter I consists of an article which appeared in The Physics of

Fluids, Volume 27, pages 1094-1101, May 1984.
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Abstract

A theoretical investigation is made of the linear stability of a viscous
incompressible fluid undergoing a steady, unbounded two-dimensicnal flow in
which the velocity field is a linear function of position. Such flows are approxi-
mately generated by a four-roll mill device which has many experimental appli-
cations, and can be characterized completely by a single parameter A which
ranges from A = 0 for simple shear flow to A = 1 for pure extensional flow. The
linearized velocity disturbance equations are analyzed for an arbitrary spatially
periodic initial disturbance to give the asymptotic behavior of the disturbance
at large time for 0 < A < 1. In addition, a complete analytical solution of the vor-
ticity disturbance equation is obtained for the case A = 1. It is found that
unbounded flows with 0 < A < 1 are unconditionally unstable. An instability cri-
terion relating the initial disturbance wave vector a to the steady flow strain
rate B, kinematic viscosity v, and the parameter A is obtained. This criterion
shows that for all admissible values of I and v, a wave vector a may be found
which corresponds to disturbances that grow exponentially in time. The growth
of these disturbances is accompanied by a growth of vorticity oriented along the
principal axis of extensional strain in the case A = 1. The results of this investi-
gation also confirm the established fact that simple shear flow (A = 0) is stable

to all infinitesimal spatially periodic disturbances.



1. Introduction

A linear stability analysis is the usual first step taken to investigate the physi-
cal realizability ("stability') of a laminar flow. Although nonlinear effects
and/or the presence of boundaries will generally lead to a discrepancy between
linearized theory and experimental observations of instability in real systems,!3
the linear stability analysis can still contribute to an understanding of the
processes which lead to a departure from the base flow (i.e,an "instability’) as
well as at least a qualitative estimate of conditions for this change in the flow.
The majority of linear stability analyses of flows are simplified by the fact that
the base flow is unidirectional, and the flow domain unbounded in one or more

directions in space.

We consider here a linear stability analysis for an unbounded incompressible
Newtonian fluid which is undergoing a two-dimensional flow in which the velocity
varies linearly with position. The analysis applies to a class of two-dimensional
linear flows ranging from simple shear flow to pure extensional flow which can
be produced approximately in the region between the rollers of two- and four-
roll mills. The four-roll mill was invented in 1932 by G. 1. Taylor* and consists
basically of four cylindrical rollers which are positioned at the corners of a
square and immersed in a tank of fluid. The two-roll mill is a simpler version of
this device with two of the rollers removed. One reason for interest in the two-
dimensional linear flows produced by the two- and four-roll mills is their appli-
cation as models for the flows occurring in real polymer processes such as
calendering and extrusion. Another reason is the increasing experimental use
of two- and four-roll mills for the study of such phenomena as drop deformation
and breakup,*”” flow-induced changes in the conformation of macromolecules in

solution ®® and floc stability in flow.



In spite of the importance of these flows, relatively few basic fluid mechanical
investigations have been made. The stability of actual two- and four-roll mill
flows has never undergone a thorough theoretical or experimental study, though
it is generally recognized that the onset of instability at quite small roller speeds
is one of the main limitations in the use of these devices for the studies men-
tioned earlier. Furthermore, even the idealized model of an unbounded two-
dimensional linear flow has not been subjected to a rigorous stability analysis

except in the limiting cases of simple shear flow and pure extensional fiow.

The stability of simple shear flow between parallel plane boundaries (plane
Couette flow) has undergone thorough investigation. A linear stability analysis
for this flow requires solution of the Orr-Sommerfeld equation that governs
infinitesimal disturbances which are pericdic in the direction of the basic flow.

Hopf1®

carried out an asymptotic analysis of solutions for very small and very
large values of aRe (where a is the wavenumber of the disturbance and Re is the
Reynolds number of the basic flow). Gallagher and Mercer!! obtained numerical
solutions for values of aRe up to 1000. An exact analytical solution of the Orr-
Sommerfeld equation was given by Reid!? who also considered semi-bounded
plane Couette flow. Asymptotic and numerical investigations were carried out
by many other authors, as well. All of these studies indicate that plane Couette
flow is stable to all infinitesimal disturbances at all Reynolds numbers,

The specific case of pure extensional flow has been considered (indirectly) by

Pearson!®

in a paper concerned with the behavior of weak homogeneous tur-
bulence subjected to a uniform distortion. Pearson found that the total energy
associated with the turbulence increases without limit when the mean flow is an
unbounded pure extensional flow. This result was obtained by an analysis of a

linearized form of the Navier-Stokes equations. It may be inferred from this

analysis that an unbounded pure extensional flow is unconditionally unstable to



infinitesimal disturbances.

In the present paper, we report a straightforward linear stability analysis for
a general, one-parameter class of unbounded two-dimensional linear flows which
range from simple shear flow to pure extensional flow. Our purpose is to investi-
gate the effect of flow type (e.g,the ratio of strain-rate to vorticity) on stability
in order to provide a link between the results obtained for the two limiting
cases. We shall obtain criteria for determining the stability of the basic flow
with respect to spatially periodic disturbances as well as a qualitative interpre-

tation of the physical mechanism for instability.

II. The Basic Flow
The velocity field U for a steady linear flow can be expressed in the form
U=Ix, (1)

where T" is a second-order tensor which is independent of the position vector x.
It has been demonstrated by Marrucci and Astarital® that this general form of
the equations defining steady two-dimensional linear flow of an incompressible
fluid can be reduced to a form which contains only two parameters. In particu-
lar, a Cartesian coordinate system can be selected relative to which the matrix

of components of I'is

F 1+A 1-A 0
=2 |-(t-N-(1+N0] (2)

0 0 0
Here, E = 0 is the magnitude of the local velocity gradient, and A a parameter
which specifies the type of flow as it varies between +1. The cases A = -1, A =0,
and A = 1 correspond to pure rotational flow, simple shear flow, and pure exten-

sional (straining) flow, respectively.

From Egs. (1) and (), the Cartesian components of the basic velocity field



are found to be

Uy = E 700+ 0% + (1 = M%) |

&

Uz = =2 [(1 =%, + (1 + Nxe] o

Us =0 .
The family of curves

(x) + %)% = A(x; —%2)2=C,
(4)

where C is an arbitrary constant comprises the streamlines for this flow field.
Figure 1 depicts streamlines of the basic flow for several values of A. All fiows
possess a stagnation point at x = 0. The cases -1 <A < 0 and 0 =A< 1

correspond to closed- and open-streamline flows, respectively.

The principal strain-rates and principal axes of strain for the basic flow are
determined by the eigenvalues and eigenvectors, respectively, of the rate-of-
strain tensor I" + I'". With I in the form of (), we find that the principal axes of
strain coincide with the x;-, xz— and x3—axes, and the associated principal
strain-rates are E(1 + A), -E(1 + A), and O, respectively. The basic vorticity field

{} = Vx U has Cartesian components

0 =0 D=0 03=-E(1—-A).
(8)

Hence, the magnitude of the vorticity relative to the largest strain-rate is given
by (1 -A)/{1 + A). This ratio varies monotonically from += to 0 as A ranges from

-1to +1.

The flows for which 0 < A < 1 are called "strong" flows because the strain-rate

is greater than the vorticity.!"!” In this flow regime, the streamlines form a

family of hyperbolas with two streamlines as asymptotes. Thege acymptotes are



straight lines intersecting at the central stagnation point with slopes of
(VX + 1)/(¥X = 1) and (VX — 1)/{¥X + 1) and shall be referred to as the "inlet"
and "outlet" streamlines, respectively. The streamlines for a typical strong flow
are shown in Fig. 2. It is apparent that flow is directed toward the stagnation

point along the inlet streamline and away along the outlet streamiine.

1. The Linearized Disturbance Equations

We consider an unbounded incompressible Newtonian fluid with constant den-
sity p and kinematic viscosity v which is undergoeing the steady two-dimensional
linear flow given by Egs. (1) and (R). This steady velocity field U(x), and the

corresponding steady pressure field P(X) satisfy the Navier-Stokes equation
UvU = —‘%VP + UV (6)

and the incompressibility condition
VU=0 . (7)

Suppose that this steady flow is disturbed at some initial time t = 0. Let
u'(xt) = U(x) + u{xt) and p'(x.t) = P(x) + p(x,t) denote, respectively, the velocity
and pressure fields of the subsequent altered flow.

Restricting our attention in this paper to the assumption, {jull << {|Ul], the
resulting linearized disturbance equation for the solenoidal disturbance velocity
uis

odu IS
at+(I‘)1)Vu— Iu pr+uV2u, (8)

where (1) has been used.

In order teo determine the stability of the unbounded flow, we must find all

solutions u{xt) of Eq. (B) for x € R® and t > 0 which satisfy the initial condition



u(x,0) = u’(x) . (9)

The vector field u®(x) specifies the arbitrary initial disturbance and is assumed

for physical reasons to be solenoidal and spatially bounded.

The usual approach in a linear stability analysis is to seek disturbance solu-

tions of the form

u(xt) = et f(x),

p(xt) =e™ p(x),

and solve the resulting spectral problem for the eigenvalues ¢ and eigenfunc-
tions (f,p). Stability is then judged by the sign of the real parts of the eigen-
values. In the case of two-dimensional linear flow, the basic flow is a function of
two spatial variables (except for simple shear flow), and this spectral problem is
difficult to solve analytically. We circumvent this difficulty by seeking an alter-
native representation of the solutions of (8). The fact that we seek solutions of
the velocity disturbance equations on an unbounded domain in space suggests
the use of spatial Fourier transforms. We follow this suggestion in the following
section. After application of the spatial Fourier transform to the velocity distur-
bance equations, we obtain a system of first-order linear partial differential
equations which can be solved by the method of characteristics. The velocity
disturbance Fourier transform so obtained can then be inverted to yield the

desired general solution.

1IV. General Solution of Linearized Disturbance Equations

A general solution of the linearized disturbance Eq. (B) will now be obtained
following the procedure outlined at the end of the preceding section. Our solu-

tion is general in the sense that the initial disturbance u°(x) is left unspecified.
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A later consideration of specific forms for u®(x) will lead to the establishment of
flow stability criteria.

Since we are considering the flow of an unbounded fluid, the disturbance velo-
city u(x,t) and disturbance pressure p(x.t) are defined for all values of x in RS,

The Fourier transforms of u(xt) and p(xt) are defined as

a(kt) =fexp(ik-x)u(x.t)dx ,

(10)
plkt) = f exp(ik'x)p(x,t)dx .
Thus, formally taking the Fourier transform of Eq. {(B), we obtain
U _(a)Wd = - TG+ - Pk — vkPi, (11)
ot p
while incompressibility and the initial condition require
k=0, (12)
a(k,0) = 6°(k) . (13)

In (11)-(13), G°(k) is the Fourier transform of u°(x), V,{ is the gradient of Gi(kt)
with respect to the wave vector k, and k® = k'k. The pressure term in Eq. (11)
can be eliminated by first forming the inner product of Eq. (11) with k and

using the condition (12) to obtain

;i).. Pk = 2 (kT'D)k . (14)

which is then substituted for the pressure term in Eq. (11). We obtain the fol-

lowing equation for the Fourier transform of the velocity disturbance:
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%t“— —(IMK)V,d = - T + 5—2 (kT-0)k — VK20 . (15)
Equation (15) represents a system of first-order linear partial differential
equations for the components of fi(k,t). The solution of Eq. (15) satisfying the

initial condition (13) can be obtained using the method of characteristics which

are obtained by solving the linear system

=k, (16)
subject to the initial condition
k(o) =a . (17)
The solution for t = 0 is
k() =eTa (18)

where T is the fundamental ratrix solution for the linear system (16). The
characteristic curve of Eq. (15) which passes through the point a is then
represented parametrically by Eq. (18). Equation (18) also defines a transfor-
mation of variables from (kt) to {(a,t). Let i'(a,t) denote the function which
assumes the values of ti(k,t) at points on the characteristic passing through a

at t = 0. Then, @'{a,t) is defined by
(o t) = e at) . (19)
Along the characteristics (18), @' obeys

%—‘: = I + B — kA0 (20)

'(a.0) = 6°(a) . (21)

Here, k*{t) = k{t)-k{t), with k(t) given by Eq. (18), and the tensor B(t) is
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2
K3(t)

B{t) = K(t)k(t) T . (22)

For a fixed value of «, Eq. (20) represents a system of linear ordinary differential
equations with initial condition (21). This linear system then governs the

behavior of Gi(k.t) along a characteristic. The solution of (20) is given by

f'(at) = #(a,t)d(a) , (3)
where ®(a.t) denotes the fundamental matrix solution for the linear system
(20). For fixed g, this fundamental matrix satisfies the equations

:T'I’ = -T"® + B(t)-® — vk3(1)® |

(R4)
¢(a,0)=1.
Substituting the result
a=elk
into (23), we obtain
&' (eT ki t) = d(eT -k t)-G(el k) .
Hence, in view of Eq. (19), it follows that
Ak t) = $(eTk,t)-a°(eT k) (25)

gives the solution of {15) and (13).

The inverse Fourier transform of Gi(kt) then yields the general solution for

the velocity disturbance
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u(xt) = ?5170? [ exp(~ikx)® (et Kk t)-8(e k) dk . (26)

We can simplify this solution somewhat by changing the variable of integration
fromktoa= e k. The Jacobian for this transformation is unity and we obtain

the following form of the general solution

1

ey J epl-ie ™ a) e (a ) B (a)da (27)

u(xt) =

Y. Consideration of Fundamental Modes

In order to judge the stability of the flow from the general velocity distur-
bance solution (27), we must give consideration to a specific form of the initial
disturbance u®(x). The usual approach is to consider an initial disturbance
which is a periodic function of spatial position. The solution of the velocity dis-
turbance equation corresponding to this periedic initial disturbance is called a

fundamental mode.
Let the initial disturbance be given by
u’(x) = exp{—ia'x)V° , (28)

where v° is a constant vector, and the wave vector a = (a;,xz,&3) has real com-

ponents. The fundamental mode solution is given by
u(xt) = exp[—i(e™ T a)x]d(a t)v . (29)
The general solution (27) obviously expresses the velocity disturbance with an

arbitrary initial value u®{x) as a superposition of these fundamental modes.

The stability of the basic flow with respect to a spatially periodic initial dis-
turbance (28) is then determined by the asymptotic behavior as t-+= of the fun-
damental mode solution (29). The term exp[—i(e“rT-a)-x] stays bounded as t-=,
Herce, the prowth or decay of the disturbance depends only on the behavior of

$(a.t)-v° which for a fixed value of a is a solution of the linear system
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‘(_ii% = -y + B{t)y - vk¥(t)y . (30)

satisfying the initial condition
y(o) =¥ . (31)

Here, k(t) and B(t) are defined by (1B) and (22),respectively. It is not possible to
obtain a simple expression for the solution of (30). Instead, we shall analyze the
system asymptotically in order to determine the effect of the parameters a, E v

and A on the behavior of solutions as t-eo,

We begin by deriving a differential inequality for the Euclidean norm of a solu-

tion of (30). Forming the inner product of Eq. (30) with y and introducing the

1/2

Fuclidean norm |y = (yy)'/*, we obtain

H}ﬁld%- y! = (-T'y)y + (Blt)y)y - vk*(O)I¥f . (32)

An application of the Cauchy-Schwarz inequality gives upper bounds for the first
two terms on the right-hand side of Eq. (32). This leads to the differential ine-

guality
Lyl = (3T - vi(W]ly (33)

where |T| denotes the spectral norm of I' and is defined by

T =supl IDXL. yeme, HxH#O]. (34)

X
lix

It can be shown that ||I| must also equal the square root of the largest eigen-

value of I"T". Using (2) we find thatfor0<A <1
It =E . (35)

Thus one obtains
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t

-v f K3(T)dr

o

lly(t)li = liy(o)[lexp{3Et)exp (386)

where

1Rt = fle Tl .

We shall determine the form of k*(t) separately for the cases A=0 in which IT has
a multiple eigenvalue and 0 < A< 1 in which I has distinct eigenvalues. The ine-
quality (36) can then be used in each case to reveal conditions under which the

solutions of (30) decay to zero as t-oe.

A TheCaseA =0

For simple shear flow, A = 0, a Cartesian coordinate system can be chosen

such that

oo
o0

n-[353 .
(r1=19 : (37)

The fundamental matrix e in this case is given by

T 1 00
el =]-FEt 10 (38)
0 01
The Cartesian components of k(t) = eT".q are then found to be
ky(b) = &y, ke(t) = ag—Etoy, ks(t) = as, (39)
and it follows that
t
exp|—v f K(T)dT | =
C
2
exp[—v(af + af + af)t]exp(VEa;apt?)exp —% aigtS] : (40)

Substituting (40) into the inequality {38), we obtain
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1901 = iy(0) lexpl[BE-v(af + af + of) [Jexp(vEasaztDexp| - oft? | (41)

From (41) we can conclude that |iy{t)|| = 0 as t-»= if either of the following condi-

tions are satisfied
o, #0 , (4Ra)
or

o, =0 ,rx§+a§>%£i, (42b)

If ¢; = 0 and af + af < % then the right-hand side of (41) is unbounded as

t»s. Whether or not |ly(t)|| is unbounded cannot be determined in this case,

however.

B. TheCase 0 < A <1

In this case we consider the form of T given by Eq. (2). The eigenvalues of —I"
are EV}, 0, and -EVA, and the fundamental matrix eI is found to assume the

following form

e”‘fr =
—(1 - \/X)2eE\’Xt +{1+ .\/X)ze-Efot (1 - A)(eEVR — e—Mt) 0
4\1/}: (1 = A)(eBVRL — g EVAY) (1 + VR)2eEVARL — (1 — VR)ZeEVR g
‘ 0 0 4V
The Cartesian components of k(t) = e™ -a are then given by
_1=VA VR LEYR o BVR
ky(t) = == (@ro)ef™™ + = (graje N (442)
1+ VA Vie L 1= VX BV
( - , EE At ) EVat A4
ka(t) . (qa) v, (gea)e , (44b)
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ks(t) =ag . (44c)
where
g =(-1+VX 1+vX0) and ge=(1+VX -1+VXD0). (45)
It then follows that
2y = LFA (e eEVRL L L RN N2 PEVAL 4 2
ke() = LER (qua)e i + LR (g VR 4 o
1-A
* (qrra)(gea) (46)

and

‘ FAE 1l _Y 1N N2 2RV
lly(t)]| < lly{o)/lexp (3E vcxs>t]exp{ B Ienx (g a)®e ]

Z_ 1+A . 2~2E\/xt _V!l"‘)\? . .
x exp{E o (gorx)*e }exp{ 75N (q-a)(gera)t

xp{-E— LA (g —<qz-a>2}} . (47)

From (47) we can conclude that ly{t)l| » O as t»= under either of the following

conditions

(qra) = (-1 + VX, + (1 + VX))o 20, (48a)

or

(qra) =0 and ag>

E]W . (48b)

The asymptotic behavior of y{t) cannot be determined from (47) if q;'a = 0 and
ag < (3E/ V)72,

It remains now to determine the asymptotic behavior of solutions of (30) for
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the cases
A=0, o, =0, a§+a§<-3U£. (49a)
and
SE /2
D<A, (m1+VX)x+ (1+VX)az =0, ag< T] . (49b)

where stability could not be demonstrated by the preceding analysis. For these
cases we consider a direct solution y{t) of the linear system (30). Let a function

z(t) be defined by

[ )
y{t) =expl—u f K2(T)dT |2(t) . (50)

Then z{t) satisfies the linear system

dz _ _ y .
T Iz + B(t)z . (51)

The solutions of (30) are then obtained from the solutions of (51) using (50). We

first consider case (49a).

C. TheCaseA=0anda, =0
The components of I'in this case are given by (37). From this it is found that

k(t) =0, ko(t) = ap kg(t) =oag .

We then find that B{t) = O, and thus z obeys

.(_1_2_.— Iz ,

dt

for which solutions are given by



z(t) = e e |

Here, c is a constant vector specifying the initial condition e = 2(0) = y(0) and

0
0.
1

et is the fundamental matrix solution

t

[e@felo)

-E
1
0

Since a; = 0, Eq. (40) yields

[ ¢
expl—v f K3(7)dT

©

2 2
- e—v(tx2 +ait '

It then follows from Eq. (50) that all solutions of (30) in this case are of the

form

2

2 1 -Et 0
yit) = e—v(az +ad)t [8 é (1)] 5(0) . (52)

If af + o # 0, the solution decays to zero exponentially as t-»=. On the other
hand, if o, = az = az = 0, the "rigid-motion” disturbance simply convects with
the base flow and grows linearly in time just as an element of fiuid in the base

flow would.

D. The Case 0 <A <1 and (-1 +VA)a; + (1 + VA)az = 0

We consider in this case the Cartesian coordinate system for which T' is
represented by BEq. (). Under these conditions Egs. (44a,b,c) give the Cartesian

components of k(t) as




where gz = (1 + VX, =1 + VX, 0). If we substitute these expressions for k,(t),
kp(t) and ks(t) into Eq. (R2), we find that the components of B(t) are either zero

or in the form

by) = —emstantle 7 =1 29) (53)
(097 + L (g ope

where p;; = 1 or 2.

Since B{t) # 0, it is not possible to find a simple analytic form of the solution
of (51). We can, however, determine the asymptotic behavior of solutions as t-»w

with the aid of the following theorem due to Levinson.!®

Theorem (Levinson).

Consider the linear system of differential equations

dz
d_t =Az+ B(t)-z .
where (1) A is a constant nxn matrix with distinct eigenvalues ;. g, ..., o, (2)

B(t) is an nxn matrix for which the elements, b;(t) satisfy

S by ldt <= (Lj=12..n) .
[e]
Then for large t there exist n linearly independent solutions zm, z(z), z™) such
that as t-»=
(5
209(t) = ™ [wh +0(1)] (k=1.2...1n),

where W) is an eigenvector of A corresponding to the eigenvalue wy.

Thus, under the conditions stated in the theorem, the solutions of the full,
variable coefficient system of equations behave asymptotically like solutions of

the constant coefficient system



For the case which we are now considering, the conditions of the theorem are
satisfied. The elements of B{t) as given by (53) satisfy the integrability condi-
tion, and the matrix A = -T' has the distinct eigenvalues w; = EVAX, up = 0, and
iz = —EVX. Now, the general solution of Eq. (51) can be expressed as a linear
combination of solutions in the form of (54). In view of Eq. (50), the general

solution of the linear system can be expressed for large t as

y(t) = exp

-V ft k2(7)d'rJ % e w4 o(1)], (55)
[ k=1

where the ¢, are arbitrary constants and the wk are eigenvectors of T'
corresponding to the eigenvalues u; = EVX, up = 0, and u3 = -EVA. Integrating

(48) from O to t for this case where q;-a = 0, we find

[ ¢
exp[—u f Kk*(T)dT

o]

f 1+A
= exp [—uagt ]exp[—-g— BN (qzra)?(1 — e—zEx/Xt) '

Hence, it follows that as t-=

ly(t)|| = Ofexp[(EVX ~ vad)t]} .
We conclude that if 0 <A< 1 and q;-a = 0, then |jy(t)|| » 0, if

a3>

E'\/X ]1/2

whereas {|y{t)]| - e, if

xg <

E\/X]vz
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The effect of the parameters a, E, 1, and A on the asymptotic behavior of solu-
tions of (30) as t-»= has been completely established. This in turn determines
the asymptotic behavior of all fundamental mode velocity disturbances. We can
consequently draw the following conclusions regarding the behavior of spatially

periodic initial disturbances on two-dimensional linear flows.

In the case of simple shear flow (A = 0), all spatially periodic initial distur-
bances (28) with wave vectors o # O decay to zero as t-= for all positive values
of E and v. A disturbance with a = O will grow linearly in time for reasons cited

earlier.

For "strong" flows where 0 < A< 1, all spatially periodic initial disturbances
which satisfy (-1 + VA)a; + (1 + VA)xp # 0 decay to zero as t-o= for all positive
values of E and v. If the disturbance wavenumbers oa; and ap satisfy
(—1+VXN)a; + (1 + VA)ag = 0, on the other hand, then the disturbance will decay
to zero if as > (EVA/ 1) 2 and grow exponentially in time if ag < (EVA/v)Y 2.
The necessary condition (—=1+VX)a; + {1 + VA)az = 0 for instability of a periodic
initial disturbance has a simple physical interpretation. As shown in Fig. 2, the
inlet streamline for a strong flow has a slope of (VA + 1)/ (VA —1). The condi-
tion (-1 + VA)a, + (1 + VA)ag = 0 is met when the initial disturbance has lines of
constant phase in the {x;xp)-plane parallel to the inlet streamline. In other
words, the initial disturbance is periodic in a direction normal to the inlet

streamline.

V1. Exact Solution of Linearized Vorticity Disturbance Equation for A =1

It is possible to obtain an exact analytical solution of the linearized vorticity
disturbance equation for the special case of pure extensional flow (A = 1).

Although the more general analysis of the preceding section includes this spe-

cial case, the exact analytical solution proves to be useful in elucidating the
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physical mechanism for instability.

We again consider the disturbance of a steady two-dimensional linear flow at
some initial time t=0, as we did in Sec. III. Let w(xt) = Vx u(xt) and w°(x) =
V x u°(x) denote the vorticity disturbance and its initial value, respectively. The

linearized vorticity disturbance equation reads

%—f + UVo + 0V = VU + 09 + oo . (56)

Here, ((x) = V x U(X) is the basic vorticity with Cartesian components given by
(5). For pure extensional flow (A = 1), the basic vorticity field vanishes. Using

this fact and substituting for the basic velocity field in (58), we obtain

%‘E—’ + (I"x)Vo =Tw + W . (57)

This equation is to be solved for all x € R® and t = 0, subject to the initial condi-
tion
w(x,0) = w°(x) . (58)

The solution can be obtained as in Sec. IV by application of an exponential

Fourier transform. The Fourier transform of w(x,t) can be shown to be

t
~v [l KR4

o

Blkt) = exp etr-c'3°(e‘ﬂ-k) .

This transform can be inverted with the aid of the convolution theorem to yield

the following general solution for the vorticity disturbance

[
o(x.t) = 1 J el €A [erle Tx - )3t (69)

(4mv)¥ 2l detA(t)]/? 4y

where

t
p T —aTT
At) = foe T.e~Tdr (60)
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We shall again resort to the consideration of spatially periodic initial vorti-
city disturbances in order to assess the stability of the flow. Let the initial vorti-

city disturbance be given by

w°(x) = exp(—ia-x)w° , (61)
where a has real wavenumbers a,, oz, and o3 as components and w° is a constant
vector. Substituting {6!) into (59) and carrying out the integration, we obtain
the fundamental mode disturbance

b4
w(xt) = exp[—i(e - a)-x]exp|-v f e a2d7 |etTe® . (62)

<]

This solution applies to the case of pure extensional flow for which I' has the

representation
E 0O
F1=1o £ 0}
0 00
and
eEt 0 0o
ef'=]10 e® 0
0 0 1

Thus, the fundamental mode solution (62) reduces to

w(xt) = exp[—i(e Fla;x; + ePapx, + ogxs)Jexp -;—g—af(l — g 2R

[
-y ) ;
x exp|=—aj{e® - 1)

o exp(—vast)(wfef wge B 0g) | (83)

From Eq. (63) we see that if a # 0, all components of w{xt) decay to zero as
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t+e, If 2z = 0 and ag > (E/v)! 2, then all components of w(x,t) again decay to
zero as t-+wo. However, if az = 0 and ag < (E/v)! ?, then the component w;(xt)
must grow exponentially as t-=. This result complies with the instability cri-

terion found for fundamental mode velocity disturbances in Sec. V.

VII. Discussion

The results of the linear stability analysis predict that unbounded two-
dimensional linear flows in the strong flow regime (0 < A < 1) are unconditionally
unstable. For any assignment of positive values to E and v, a spatially periodic

initial disturbance with wavenumbers «,, oz, and ag satisfying

(-1 + VXN, + (1 +VXN)az =0,
g < (E\/X/V)l/ 2,

must grow in time as exp (EVA —va$)t]. It was shown that such an unstable
disturbance is initially invariant in a direction parallel to the inlet streamline in

the plane of the basic flow.

Consideration of the vorticity disturbance Eq. (57) and its solution (63), both
valid for pure extensional flow (A = 1), yields a simple qualitative interpretation
of the mechanism for instability. The vorticity component w; along the principal
axis of extensional strain increases at an exponential rate due to vortex line
stretching, represented by the term I in (57). However, this growth process
competes against the stabilizing influence of vorticity diffusion, and the rate of
diffusion in the x,— or xp—directions is modified in time due to the advection of
vorticity represented by (Ix)-Vw in (57). The mechanism responsible for this
advection effect is very simple. Because of the "stretching" or "extensional”

nature of the basic flow, the effective wavenumber of the disturbance vorticity is

altered by its advection in the flow. Thus, vorticity gradients either increase or
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decrease in time and the stabilizing rate of vorticity diffusion is correspondingly
increased or decreased. For this case of pure extensional flow, the principal
axes of extension are parallel to the x,— and xs;—axes, and the wavenumber of a
disturbance which is periodic in x; decreases as e“mal, while the wavenumber of
a disturbance which is periodic in X, increases as eE‘ag. This effect of the basic
flow on the magnitude of vorticity gradients is reflected in the complicated argu-

ments of the exponential decay term

-V - —v
exp gﬁ—af(l — e 2B == af(e?t - 1)

2
5F exp(—vast)

exp

in solution (83). It is evident upon examination of (63) that the effect of
diffusion, enhanced by the advective increase of vorticity gradients along the
inlet streamline direction, will always dominate the simple exponential rate of
vorticity growth due to vortex line stretching if a; # 0. Only periodic initial vor-
ticity disturbances which are aperiodic in the direction of the inlet streamline
(in this case the X,-direction) so that az = 0 can grow in time. Among these dis-
turbances, only the disturbances with sufficiently small wavenumber
ag < (E/v)! ? are unstable. In these cases the growth rate of disturbance vorti-
city due to vortex line stretching by the basic flow exceeds the rate of decay

from viscous diffusion in the xz-direction normal to the basic flow plane.

The qualitative description of the mechanism for instability can be extended
to the two-dimensional linear flows with 0 < A < 1 with only slight modification.
These flows differ from pure extensional flow in that the inlet and outlet stream-
lines are no longer aligned with the principal axes of strain for the basic flow.
Vortex line stretching along the principal axis of extensional strain again pro-
vides the source of instability. This effect cannot overcome the stabilizing effect
of convection-enhanced diffusion if a periodic initial disturbance is not aperiodic

in the direction of the inlet streamline. Any periodicity along the inlet
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streamline leads to a faster-than-exponential rate of decay due to the "mixing"
of positive and negative vorticity by diffusion. Periodic initial disturbances
which do not vary along the inlet streamline can be unstable if the wavenumber
in the direction normal to the basic flow plane is sufficiently small. In this case
the stabilizing influence of diffusion in the direction of the inlet streamline is

VAt

absent and the disturbance vorticity growth rate eF exceeds the diffusive

decay rate e_vasat. For simple shear flow (A = 0), vorticity disturbances can grow
only linearly with time as a result of the weaker vortex line stretching. Viscous
diffusion of disturbance vorticity still results in an exponential rate of decay for
periodic initial disturbances. Hence, simple shear flow is stable with respect to

all such disturbances.
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Figure Captions
Figure 1. Streamlines for two-dimensional linear flows. (a) A = 1, (b) A = 0.5,

(c)A=10, (d) A=-0.5,(e) A =-1.

Figure 2. Streamlines for a strong flow (A = 0.5). L inlet streamline (slope =

(VA + 1)/ (VA = 1)). L, outlet streamline (slope = (VA — 1)/ (VA + 1)).
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CHAPTER I

THE STABILITY OF TWO-DIMENSIONAL LINEAR FLOWS OF AN OLDROYD-TYPE FLUID

The text of Chapter I consists of an article which has been accepted for publica-

tion in the Journal of Non-Newtonian Fluid Mechanics,
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Summary

A linear stability analysis is rnade for an Oldroyd-type fluid undergoing steady
two-dimensional flows in which the velocity fleld is a linear function of position
throughout an unbounded region. This class of basic flows is characterized by a
parameter A which ranges from A = 0 for simple shear flow to A = 1 for pure
extensional flow. The time derivatives in the constitutive equation can be varied
continuously from co-rotational to co-deformational as a parameter 8 varies
from 0 to 1. The linearized disturbance equations are analyzed to determine the
asymptotic behavior as time t -» = of a spatially periodic initial disturbance. It
is found that unbounded flows in the range 0 < A< 1 are unconditionally
unstable with respect to periodic initial disturbances which have lines of con-
stant phase parallel to the inlet streamline in the plane of the basic flow. When
the Weissenberg number is sufficiently small, only disturbances with sufficiently
small wavenumber «g in the direction normal to the basic flow plane are
unstable. However, for certain values of 8, critical Weissenberg numbers can be

found above which flows are unstable for all values of the wavenumber aj.
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1. Introduction

Many important industrial processes involve steady flows of polymeric liquids
which exhibit complex non-Newtonian rheological behavior. Production rates in
these processes are often limited by the onset of flow instabilities. Two well-
known examples of this phenomenon are film casting and fiber spinning, where
a periodic variation in fiber diameter or film thickness is observed when a criti-
cal take-up speed is exceeded [1]. Numerous attempts have been made to
understand polymer processing instabilities via theoretical stability analyses for
model viscoelastic fluids in simple flow geometries [1,2]. However, the majority
of these studies have mimicked earlier work on the stability of Newtonian fluids
in considering only unidirectional shear flows, such as Couette flow and plane
Poiseuille flow. While shear flow may provide a useful approximation for some
processes such as flow in a screw extruder, a number of important problems
including film casting and fiber spinning involve extensional flow in which the
velocity varies with position in its own coordinate direction. Efforts to under-
stand the stability of extensional flows have so far been limited to Newtonian
fluids. In an earlier paper, we considered the linear stability of a class of two-
dimensional, homogeneous extensional flows in an unbounded domain. The only
other work, so far as we are aware, has been ad hoc approximate analyses for
actual processing flows, again for Newtonian fluids. Pearson and Matovich [3]
examined the stability of the fiber spinning flow and Yeow [4] considered the

film casting process,

In the present paper we extend our earlier work on the stability of Newtonian
fluids in extensional flow [5], to consider the linear stability of a model non-
Newtonian fluid that is undergoing one of the class of steady, two-dimensional
linear flows in an unbounded domain. The complete class of two-dimensional

linear flows can be characterized by only two parameters [8]. These are a shear
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rate E and a parameter A which ranges from A = -1 for a purely rotational flow
to A = 1 for pure extensional flow, with the intermediate value A = 0 correspond-
ing to simple shear flow where the strength of the rotational and straining parts
of the flow are equal. In the present work, we consider only values of A in the
range 0 < A < 1, for which the magnitude of the strain-rate exceeds the vorticity.
The same flows were considered in our earlier analysis for Newtonian fluids [5].
The rheological behavior of the fluid is modeled using a version of the Oldroyd
[7] constitutive equation, which is set up so that the form of the time derivatives
can be altered between the two extremes of co-rotational and co-deformational

by variation of one model parameter.

The motivation for our present study comes from three sources: first, we
hope to gain some understanding of the effects of fluid elasticity on the stability
of extensional flows; second, we hope to shed some light on the behavior of the
Oldroyd-Maxwell mode!l in flows with an extensional character where many
unsuccessful attempts have been made to obtain numerical solutions of the
equations of motion; third, we intend to provide a basis for comparison between
predictions for the Oldroyd model and the behavior of real viscoelastic fluids in

so-called two- and four-roll milling flows.

The problem with numerical solutions for {model) viscoelastic fluids is, by
now, well known to most workers in rheclogy and non-Newtonian fiuid mechan-
ics. It is quite simply that in all published numerical studies, a relatively low
limit on the Weissenberg number appears [Wi ~ 0{1)] above which the numerical
algorithms fail to converge [8]. The precise value of this limit depends on such
factors as the constitutive model, the flow geometry, and the mesh size for the
numerical scheme. We note, however, that the Oldroyd-Maxwell class of consti-
tutive models, involving time derivatives ranging from co-rotational to co-

deformational, have been by far the most prevalent among the variety of
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constitutive models that have appeared in these numerical studies. This fact
lends relevance to the Oldroyd-type model with adjustable time derivatives that

we have chosen for the present investigation.

A good approximation to the two-dimensional linear flows considered here is
generated by two- and four-roll mills [9]. Among the many important uses of
these devices are experimental studies of flow-induced changes in the conforma-
tion of macromolecules in solution [10,11]. Such experimental studies, which
involve viscoelastic fluids, are limited by the onset of instabilities in two- and
four-roll mills at fairly small roller speeds. However, no thorough theoretical or
experimental investigation of the stability of viscoelastic fluid flow in these dev-
ices has been made. In part, this is because of the complexity of the basic flows.
Although the class of linear flows considered here is approximately realized in
the central region between rollers, there is a weaker, complicated flow in the
region outside the rollers. Furthermore, even in the central region, the real flow
is not exactly two-dimensional, nor is it unbounded due to the presence of the
rollers and the finite extent of the device in the third direction. In spite of these
complications, it appears that the present analysis of the stability of an
unbounded, linear, two-dimensional flow should provide an initial step toward
understanding the stability of the real, two- and four-roll milling flows. As a
complement to the presént work, we are currently studying the stability of flows
in the two- and four-roll mills experimentally for both Newtonian and non-
Newtonian fluids. To some extent, it should be possible to separate the
geometric limitations of applying an unbounded flow analysis from the equally
unknown limitations of the constitutive model for this type of flow, by first com-
paring the predictions of our earlier analysis for Newtonian fluids with observa-

tions for Newtonian fluids, and then making the same comparison for the non-

Newtonian case.
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2. The Constitutive Equation

We consider an Oldroyd-type viscoelastic fluid model for which the extra-
stress tensor T is related to the rate-of-strain tensor e = é—[Vu + (Vu)T] by the

constitutive equation

T+ g—: — B{eT + T-€)| = 2npe + 272 g—f —26(e-e)| .

(1)
Here, 8, is the relaxation time, 6, is the retardation time, and 7g is the zero-
shear viscosity. The quantities in square brackets represent time derivatives of
the extra-stress T and the rate-of-strain e. The form of these time derivatives
depends upon the parameter 8 which assumes values in the range 0<g<1.
When B = 0 the co-rotational time derivative appears, which is defined for an

arbitrary tensor B as

DB _ 0B vB_w
Dt_6t+uVB w'B + Bw,

where w = %{Vu - (Vu)T] is the vorticity tensor, and the constitutive equation

reduces to the so-called co-rotational Jefireys model. This model exhibits shear-
thinning in simple shear flow, but a constant extensional viscosity. When 8 =1,
on the other hand, the co-deformational (Oldroyd) time derivative is attained,
and (1) is the so-called Oldroyd-B model. This model exhibits a constant shear

viscosity, but is strain-thickening in extensional flows.

The rheological behavior of an actual viscoelastic fluid will, in general, be best
described from a qualitative point of view by some intermediate value of g
(0 < 8 < 1), where an "intermediate” time derivative appears. Such "intermedi-
ate" time derivatives occur in constitutive models proposed both for polymer

solutions of high concentration on the basis of networks with non-affine defor-

mation [12,13], and for dilute solutions and suspensions on the basis of
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theoretically derived constitutive equations [13,14].

It is well known that certain restrictions are necessary on the values of the
constants which appear in the constitutive Eq. {1). These restrictions are dis-
cussed at length by Bird et al. [15] for the general Oldroyd B-constant model.

For the constitutive equation considered here, we require

76 >0,
(R)
and either
0oy g =1
<% = if g=1,
(3)
or
1 S )
—_— —_— <<
gselsl if O0=g8«<1.

Further details regarding the constitutive Eq. (1) and its suitability as a model
for the rheological behavior of viscoelastic fluids are discussed by Zana [16] and

Tiefenbruck [17].

3. The Basic Velocity and Stress Fields

We consider, as the undisturbed velocity field, any of the class of unbounded,

two-dimensional, linear flows

U=Tx,
(4)
where
E 1+ A 1-=A O
Fl=51-(=2 -(1+X0},
0 0 0 (5)

and x is a general position vector. Here, E= 0 is a constant shear rate which

represents the magnitude of the local velocity gradient, and A is a constant
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parameter whose value specifies the flow type, ranging from pure rotation for
A = —1 to pure strain for A = +1. Figure 1 shows streamlines corresponding to
several values of A. The same class of flows was considered in our earlier paper
on the stability of Newtonian fluids, and many other general features are dis-
cussed there. As in [5], we restrict our present considerations to "strong" flows
for which 0 < A < 1, and (briefly) to simple shear flow where A = 0. In the regime
0 < A < 1, the streamlines corresponding to (4) form a family of hyperbolas with
two asymptotes which intersect at the stagnation point, having slopes
(VX +1)/(¥X —=1) and (VA -1)/(VA+ 1), respectively. The first of these
asymptotes will be referred to as the "inlet” streamline since flow is directed
along it toward the stagnation point, while the other is referred to as the
"outlet' streamline since the flow directed along it is away from the stagnation

point. The streamlines for a typical strong flow are shown in Fig. 2.

In order to determine the undisturbed stresses, associated with the flow field
(4) and (5), we substitute into the constitutive Eq. (1) and solve for the com-
ponents of the extra-stress tensor T. The nonzero, steady Cartesian com-

ponents of T are found to be

noE[l - gi (1 +N)[1 +Ee,B(1 +A)] o
- ! Yz
T T e R G e Y
—ncE[l - gz—}(l +A)[1 —Ee,8(1 + A)]
Top = ‘ —moB2E (1 +A)
- 1 = (BoyRIAE(1 + A)2 — (1 = N)?] e, " (6w
—'noE[l ~ o Ee,(1 =A%)
_ _ 1
fie = e S T e )RR + N — (2 — MR (60)

The dimensionless product of the shear rate E and the relaxation time 6,

defines the Weissenberg number for the basic flow, Wi = Ee,. It is evident, upon
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examination of (8a)-(6c), that the stress components will become unbounded for

a certain value of Wi,

Wit = [B3(1 + A2 — (1 - N 7V/R,

(7)
provided
BE(1+ A2 —(1-AP>0.
(8)
On the other hand, when the constitutive equation and the basic flow are such
that
B(1+A¥R -(1-A*<0,
(9)
ie,
1-=A
ﬁ$1+x'

then the stress components remain bounded for arbitrarily large values of Wi
In the case of simple shear flow (A = 0), the stress components are clearly

bounded for all Wi and for any 8 in therange 0<f<1.

The critical Weissenberg number defined by (7) provides an upper limit on Wi
above which the constitutive model (1) fails to predict physically realistic steady
stress components for this basic flow., We interpret this to mean that the
Oldroyd-type fluid considered here can realize steady, two-dimensional linear

flow only under the conditions

O<Wi<Wi", B> =A/{1+A),
(10a)

0<Wi<ew, B=(1-=-A)/(1+N).
(10b)

In other words, the velocity field (4) does not exist as a valid solution to the
equations of motion for this constitutive model when conditions (10a) and (10b)
are violated. Consequently, when 6;/6; # 1, we confine our stability analysis to

basic flows which satisfy conditions (10a) and (10b). When 6,/6, =1, the
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constitutive model reduces to that of a Newtonian fluid and restrictions (10a)

and (10b) have no significance.

4. The linearized Disturbance Equations

We present here the linearized equations which govern disturbances to the
steady basic flow (4) for a fluid with constitutive model (1). In order to reduce
the number of physical parameters, these disturbance equations are derived in
dimensionless form, using as the characteristic time t. = E™!, the characteristic
length 1. = (ng/pE)!/? the characteristic velocity U, = (Eme/p)/% and the

characteristic pressure (stress) p. = ngE.

For convenience, we let U(x) and P(x) denote the velocity and pressure fields
for the undisturbed flow, given by Egs. (4) and (5). The corresponding extra-
stress, strain-rate, and vorticity tensors are denoted as T(x), E(x), and W(x),
respectively. Now let us suppose that this steady flow is disturbed slightly at

some initial time t = 0. We denote the subsequent altered fields as
u'(xt) = U(x) + u(xt),
p'(xt) = P(x) + p(xt) ,
T(xt) = T(x) + 7(xt),
e(xt) = Ex) + e(xt),
and
wixt) = W(x) + w(xt) .

This altered flow must satisfy the equation of motion

%u_t +u-Vu' = -Vp' + V1",
(11)

the continuity equation



Vu =0
(12)
and the constitutive equation
T + Wi br _ (7' + T-e) | =Re + 2eWi Le _ 2B(eve) | .
Dt Dt (13)

The dimensionless parameters which appear in (13) are the Weissenberg number
Wi = Ee; and the ratio of the retardation and relaxation times ¢ = 6;/0,, along

with the previously defined parameter 8.

The subsequent linear stability analysis is simplified by expressing Egs. (11)
and (13) in a modified form, which is obtained by simply decomposing the

altered and basic stress tensors into viscous and viscoelastic parts:

'=2¢ce + 0,
(14a)

T=2eE+ X .
(14b)

Using the decomposition (14a), Eqs. (11) and (13) reduce to
%% +u-Vu' = —Vp' + eV*u' + Vo',
(15)
.
o'+ Wi %at—— Ble o' +o'e) | =2(1 —¢)e .

(16)

in which the time derivative of e has been eliminated. We denote the difference

between ¢' and ¥ as o{x,t) = o'(x.t) — L(x).

The linearized equations governing the disturbance variables u, p, and o are
obtained from (12), (15), and (18) by subtracting the corresponding time-
independent equations satisfied by the basic flow variables U, P, and ¥ and then
neglecting terms which are nonlinear in any of the disturbance variables. Using

(4), these dimensionless linearized disturbance equations can be written as
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%1 +(I"x)Vu + "u = -Vp + eVRu + V.o,
t (17)
Vou=0,
(18)
%% + (I'x)-Vo — [% [0 + oI" + VUl + Z:(Vu)T]
_ ﬂ_—_l]qfr.a +oT + (Vu)™-L + LVu] + —o0 = [1 - ][Vu + (Vu)7] .
[ 2 t Wi Wi (19)

The dimensionless components of I' are given by (5) with E replaced by 1. The
dimensionless components of the basic viscoelastic stress contribution £ are

obtained from (6a)-(6c) using (14b). The nonzero components of ¥ are given by

so= (=801 + N1+ Wig(1 + A)]
T - WiBB(L + A - (1 = A

(20a)
s —(1 =)0 + A1 = Wig{1 + \)]
T L= WBB(1 + )2 = (1 - AP (20b)
S o=y = —(1 — &)Wi{1 = A®)
BT L CWRIBR(1 + N - (1 = NF] (20c)

In deriving the disturbance equations, (17)-(19), we have assumed that the
basic flow is disturbed at some initial instant of time t = 0. This arbitrary initial

disturbance in velocity and stress is specified by the initial conditions

u(x,0) = u’(x),

(R1a)
o(x.0) = 0%(x) .

(21b)

These initial conditions may be prescribed arbitrarily within the limits of the fol-
lowing constraints. Both u’(x) and ¢%(x) are assumed for physical reasons to be
bounded for all x € R°. In addition, the disturbance velocity u’{x) must be a
solenoidal vector field since the fluid is incompressible. Furthermore, the initial
disturbance velocity u’(x) and the initial disturbance stress ¢°x) must be

related by the constitutive equation.
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The stability of the basic flow with respect to infinitesimal disturbances is
judged by determining the asymptotic behavior as t » = of the disturbance velo-
city field u(x,t), using Egs. (17)-(19) subject to the initial conditions (21a) and
(21b). A general solution of these equations is given in the following section.
The fact that both u® and ¢® must appear in this general solution, is a conse-
quence of the fact that the constitutive equation cannot be inverted to obtain
an explicit expression for ¢ in terms of u. Thus, in spite of the fact that the
stress could be eliminated, in principle, from the disturbance equations to
obtain equations that involve u and p alone, this cannot be done in reality, and
both u® and ¢° thus appear in the general solution for u. As we shall see, it is
not necessary, insofar as the linear stability analysis is concerned, to spell out

the details of the relationship between u® and o°.

5. General Solution of Linearized Disturbance Equations

Let us now consider the solution of the disturbance Egs. (17)-(19) on an
unbounded domain satisfying the arbitrary initial conditions (21a) and (21b).
The fact that we seek solutions on an unbounded domain suggests the use of

spatial Fourier transforms, defined according to

dkt) = fexp(ik-x)u(x,t)dx.

(2Ra)
pkt) = fexp(ik-x)p(x,t)dx,

(22b)
o(kt) =i f exp(ik-x)o(x.t)dx ,

(22c)

If we formally take the Fourier transform of Egs. (17)-(19), (21a),and (21b), we

obtain

B — (M)W + I = ipk — £k20 - Bk

0 (23)



k=0,
(24)
%‘%_(Iﬁ_k).vka_[% (I"'g + 8 -T7 + Gk-T + Ikid)
(25)
_[ﬁ_gl (I8 + 8 - T + kG + L.dk) + %Az[lvﬁs ](ﬁk+kﬁ)
(k,0) = 8%(k)
(26)
a(k.,0) =8°(k) .
(27)

Here, G°(k) denotes the Fourier transform of u’(x), Vg represents the gradient
with respect to the wave vector k, and k* = k-k. Also, °(k) is i times the Fourier

transform of o%x).

The pressure term in (23) can be eliminated by first forming the inner prod-

uct of Eq. (R3) with k and using the condition (24) to obtain

. 2 1 ~
ipk = = (kk )4 + = (kk-3)k,

and then substituting (28) for the pressure term in Eq. (23). This substitution

results in
o ~ “ - 2 ~ 1 ~ -
F (IMk) Vi + i = — ek3h + el (kk-I)-d + = (kk6) -k — G-k .

K (29)

Equations (29) and (25) comprise a system of first-order linear partial
differential equations for the components of @i(kt) and &(k.t), which are to be
solved subject to the initial conditions (26) and (27). The solution can be
obtained by means of the method of characteristics. The characteristics of (R9)
and (25) are determined by solving the following linear system and initial condi-

tion:



k(D)= a .

The solution

K(t) = e

(32)
provides a parametric representation of the characteristic curve in (k,t) space

passing through the wave vector a at t = 0. The functions fi'(a,t) and o'(a.t)
defined by

g'at) = ﬁ(e“ﬂq-a.t) ,
(33)

o'{at) = ﬁ(e“ﬂ-a,t) ,
(34)

assume the values of @i{kt) and @(k.t), respectively, along the characteristic
curve (32). Along the characteristic, which corresponds to some arbitrary fixed
value of &, u and o satisfy the first-order ordinary differential equations derived

from (29) and (25):

)Vl ~ - 2 1 - ~
— = -’ - =k3(t)aq’ (k(O)k(t) TG k(t)k(t)-o'|-k(t) — 7 k(t),
(LA PR - L5 U PP SRPRY KO
T we T I8 + 3 I7 + Wk(t)-L + Z-k(t)d']
+ L—; L ] (I8 + 6T + k(t)4 L + S-ak{t)]+ 1‘; = ak(t) + k(t)a],
' (36)

where k{t) is given by (32), and Kk?(t) = k(t)k{(t). The initial conditions
corresponding to (26) and (27) are

G'(a,0) = 0%a) , )

9'(a.0) = 3%a) . (36)

The Fourier transforms @i(k.t) and 6(k,t) can be recovered from the solution of

(35)-(38) by means of the relations
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(kt) = (e Kk t)
(39)

d(kt) = 8'(eMkt)
(40)
which follow from (33) and (34)

Equations (35) and (36) correspond to a set of nine ordinary differential
equations for the three components of @' and the six independent components
of . It is convenient for the purpose of representing this system to introduce

the vector of independent disturbance components

y(x.t) = (4;.U2U3,011.012.0,3.022,023.033)7 ,
and the corresponding vector of initial values

y(x) = (Ulo.uzo»ug091-ngﬁlosﬁgzﬂzgsﬁgs)vr :

Further, we let §{kt) and $°(k) denote the Fourier transforms of y and y°,

respectively, and define the vector
¥(at) = (0).0z\05',811".812 615 Gaz' Bag'.5ss)" .
containing the independent components of @' and &. It then follows from Egs.

(35)-(38) that the vector function ¥(a,t) satisfies the linear system

9 = Ay,
ot (41)
and the initial condition
¥(a.0) = §%a) .
(42)
Here, A(t) is a 9x9 matrix whose components are listed in Appendix A.
The solution of (41) and (4R) can be expressed as
¥(at) = #(at)5%(a)
(43)

where {at) is the fundamental matrix solution for the linear system (41). In

view of Eqs. (39) and (40), the Fourier transform ¥ is given by



49

F(kt) = §(eTkt) = $(eTkt)§°(et" k) .
(44)

Taking the inverse Fourier transform of (44), we obtain
y(xt) = —1——3—_/ exp(—ik-x)ti)(ewT-k,t)-?D(e‘rT-k)dk.
The form of this solution can be simplified by changing the variable of integra-
tion from k to ¢ = e‘rT-k, yielding
1 oot -
¥(xt) = — [ exp[~i(e™-¢)-x]&(£,L)5°(£)de .
Equation (46) provides in final form a general solution for the components of
the disturbance velocity u and disturbance stress o in terms of the initial values

u’ and ¢° and the fundamental matrix solution of the linear system (41).

6. Fundamental Mode Analysis

In order to assess the stability of the basic flow using the general disturbance
solution (46), we must consider the initial disturbance vector ¥°(x) in greater
detail. We shall follow the usual approach of linear stability theory by represent-
ing the initial disturbance as a superposition of spatially periodic functions of

the form

y°(X) = exp(—ia-x)c®,
(47)

where ¢ is a constant vector, and the wave vector a has real components a,, ag,

and ag. Taking the Fourier transform of (47) yields

Y (k) = (2m)36(k — a)c®,
(48)

where ¢ denotes the Dirac delta function. Substituting (48) into the general

solution {48), we obtain the fundamental mode solution

yixt) = exp[—'1(e"‘PT-cx)-x]¢I>(o&,t)-ctJ .
(49)
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A comparison of Eqgs. (46) and (49) reveals that the general disturbance solu-
tion (486) is a superposition of fundamental modes of the form (49). Hence, sta-
bility criteria for the basic flow may be determined if the behavior of these fun-
damental mode disturbances is known asymptotically as t -+ = for each value of
the wave vector a. Since the term exp[—i(e‘tr'r-a)-x] remains bounded as t - o,
we see from (49) that the growth or decay of the disturbance depends only on

the behavior of ®{a.t)-c® which is a solution of the linear system (41).

The elements of the coefficient matrix A(t) in (41) depend upon the values of
the dimensionless parameters A, Wi, &, and 8, along with the dimensionless com-
ponents of the disturbance wave vector a. In addition, the elements of At)
depend implicitly upon the characteristic length 1, = (n¢/pE)”? used to non-
dimensionalize the components of a. Flow stability criteria will result from the
determination of the effect of these parameters on the asymptotic behavior of

solutions of the linear system (4:).

7. Asymptotic Behavior of Linear System

Since the coefficient matrix A(t) in (41) is not constant, it is not possible to
find a simple analytical solution of this linear system. It is possible under cer-
tain conditions, however, to determine the asymptotic behavior of solutions of
(41) using the approach taken by Lagnado et al. [5] for the linear stability of a

Newtonian fluid.

Employing similar manipulations to those described above, the Newtonian
stability analysis was reduced to the problem of determining the asymptotic
behavior as t - = of solutions of a linear system with a 3x3 nonconstant
coefficient matrix. In that case, a differential inequality governing the Euclidean
norm of a solution vector was first obtained. Sufficient conditions for stability

were then obtained by solving this differential inequality for a decaying upper
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bound on the solution norm. These conditions involved the components of the
disturbance wave vector a = (a@;,a03). The only case where asymptotic

behavior could not be established in this way was

(=1 + VX))o, + (1 + VA)oz =0
(50)

Under condition (50) the coefficient matrix for the linear system was shown to
assume the form C + B{t), where Cis a constant matrix and the elements of B{t)

satisfy

" by () ldt < oo
J by (5)

For these cases, the solutions of the full nonconstant coefficient system behave
asymptotically for large time like solutions of the linear system with constant
coefficient matrix C (cf. Levinson [18]). Thus the eigenvalues of C determine this

asymptotic behavior.

In the present non-Newtonian stability analysis, the complicated form of the
coefficient matrix A{t) in (41) prevents us from obtaining sufficient conditions
for stability by means of a differential inequality. We can, however, repeat the
analysis used in the Newtonian problem when condition (50) is satisfied. The
ensuing conclusions regarding stability or instability of the non-Newtonian flow
will, of course, only apply to the restricted class of initial disturbances charac-
terized by condition (50). The elements of the coefficient matrix A(t), showt, in
Appendix A, depend upon the components of k(t) = eI The form of these
components must be determined separately for the case of strong flows
(0 < A= 1) in which IT has distinct eigenvalues and the case of simple shear flow
(A =0) in which IT has one multiple eigenvalue. For the sake of brevity we
present the detailed analysis enly for the strong flows in the remainder of this

paper. The results for simple shear flow can be inferred from the limiting



52
behavior of the strong flow stability criteria in the limit as A = 0. The details of
a parallel treatment for simple shear flow are given in Appendix C.
Strong Flows (0 <A < 1)

In this case the dimensionless components of I' are given by (5) with E

replaced by 1. The eigenvalues of —I" are VA, 0, and -VX, and the fundamental

matrix e " assumes the form
(1= VA2 4 (14 VR)ZeN (1= A) (R = MR 0
et = Yo j/x (1= A (@ — MRy (1+ VR)ZA™ — (1- VR)2Ze N
0 0 VAVHN
(62)

for 0 <A< 1. The Cartesian components of k(t) = e™q are then given by

I e NSRS VS . '/ NS VLY
kl(t) - 4—'\/X (ql a)e + 4'\/X (QZ a)e ' (53a)
1+VA ve 1=V RVEN
ko(t) = —{qg,-a)e* —— (g, AR
2(t) S a) t IR (gra)e (53b)
ks(t) =ag .
(53c)
where
q =(-1+VX 1++VX0),
(54a)
Q@ ={1+VX —-1+VX0).
(54b)

Note that the vectors q, and g, are directed along the "inlet” and "outlet”

streamlines of the basic flow, respectively.

We consider only spatially periodic initial disturbances for which the

wavenumbers a; and a, satisfy condition (50). This condition implies that
Qa=(-1+VX)a; + (1 +VR)a, =0,

and it follows that the components of k{t) simplify to
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14+ VA

- o )e- A2
kl(t) - 4\5 (q?. a)e '

(55a)

1 -V gy
ke(t) = = (gra)e™" ™,
2 4\/X (55b)

ky(t) = ag . (55)
c

Using (55a)-(55¢), we find that under condition {50) the coefficient matrix At) is

of the form

A(t) = A + B(t) .
(58)

Here, AV is a constant matrix whose elements are listed in Appendix B, and the
elements of B(t) are either zero or satisfy

by(t) = 0(e ™™y | (ij = 1.2.3).
(57)

where p;; = 1, 2, or 3. The elements of B(t) clearly satisfy the integrability condi-
tion (51). Hence, the eigenvalues of AV determine the asymptotic behavior as
t » = of solutions of the linear system (41). The components of A!") depend upon
the parameters A, B, &, Wi, and a3, and the eigenvalues are therefore functions of
these parameters. If all eigenvalues have negative real parts, then all solutions
of (41) decay to zero. If, on the other hand, at least one eigenvalue has a posi-
tive real part, then there exist solutions of (41) which grow exponentially in time

and the system is unstable for that combination of parameters.

The eigenvalues of Al are the nine roots of the characteristic polynomial
det(A"") = uI). This polynomial can be partially factored to permit the immedi-

ate determination of five eigenvalues

H1 = —Eag
(58a)

(58b)
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The remaining four eigenvalues ug, u7, ug and ug are the roots of the quartic

equation

54

—em2 — | L1FAL _{1=A
1=A 1+
['z— Eag S
det

11— -1 -
[T g + %Jznas [%1—}2120{3

-1 1- 1

[% L0 [W_f ag + 2l ]2220‘3

[B2(1 + N)% = (1 = N)3)72,

+ 621+ N2 = (1 - N2,

(5Bc)

(58d)

0

1-A

vl

i_ 1+

Wi 2
(59)

When A = 1, the left-hand side of {59) can be factored as the product of two quad-

ratic polyriomials and the eigenvalues are easily found to be

1

i[i—(scxagi- W+1—ﬂ)z—(

He _—_._1 2..__1__
{m} glead = 3= 1+4)

+ 1—(w(§+
4

1

Wi

G 1B (1 +w§)(—+ﬁ)-[1w;f

of

172

=L
2

1/2
2
L2203

(60a)

80b)
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For 0 <A <1, the polynomial in (59) cannot be factored conveniently and
analytical expressions for the eigenvalues could be obtained only by the
extremely complicated task of solving the quartic equation algebraically. As a
consequence, we choose instead to determine the instability conditions for
0 <A <1 by computing the eigenvalues numerically as the physical parameters

ere systematically varied.

8. Results

We determine and discuss here the conditions under which the strong two-
dimer.sional linear flows are unstable with respect to disturbances satisfying
cenditien (50) on wavenumbers a; and az. These instability conditions are illus-
trated by plotting neutral stability curves in the first quadrant of the (Winf)-
plane for fixed values of the parameters A, §, and &. Such neutral stability
curves separale regions of instability where at least one eigenvalue of A1) has a
positive real part from regions of stability where all eigenvalues of A have

rnegative real parts.

For~ convenience in making comparisons, we first summarize the results of
the Newtonian stability analysis given by Lagnado et al. [5]. In this earlier study
it war found that the strong, two-dimensional linear flows are unstable only for

aisturbances which satisfy condition (50) and for which

Vr\
2 o)
3

- E

2
L < VX

04

Here, &3 denotes the dimensional wavenumber in the direction normal to the
plane of the basic flow, and v is the Newtonian kinematic viscosity. Thus, only

disturbances with small values of ag are unstable for a Newtonian fluid.

Proceeding with the present analysis, analytical expressions for the eigen-

values f, ug. (3, pg, and us are provided by (58a)-(58d) for all fiows in the range
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0 <A=1. An inspection of these expressions reveals that the real parts of
M1 Me. piz, and u, are always negative since we rmust have Wi>0 and £=0.
Furthermore, the real part of s is always negative for all values of A, Wi, and B
which comply with restrictions {10a) and (10b). The real part of us is positive
only when §> (1 -X)/(1 +A) and Wi > [B%(1 + A)? — (1 —A)?]V2. Under these
conditions the Weissenberg number exceeds the critical value Wi® at which the
basiz stress components become infinite. It is interesting to note that the
"nonexistence” of the assumed basic flow as a solution for this Oldroyd-tvpe
constitutive equation is also reflected by an “apparent" instability for all values

of the disturbance wavenumber as.

We proceed now with the determination of conditions for fiow instability by
exarnining the remaining eigenvalues ug, ;. g, and ug for values of the parame-
ters which satisfy restrictions (10a) and (10b). Since the real parts of four
seperate eigenvalues determine these instability conditions, the corresponding

neulral stability curves assume a piecewise smooth appearance.

Le* us first consider the case A = 1 corresponding to pure extensional flow. In
this cesz, the remaining eigenvalues of A" are given exactly by (60a) and (80b).
Viith some effort, instability criteria for pure extensicnal flow can be derived
from (€0a) and (B0b) as a set of algebraic relations that indicate when at least
one eigenvalue has a positive real part. The resulting instability criteria are best
illustrated by plotting neutral stability curves for several values of the parame-
ters 3 and . These instability criteria are, of course, valid only over the range
of Weissenberg numbers specified by restrictions (10a) and (10b) which, in the

case of pure extensional flow {A = 1), reduce to

D<Wi<Wi'= = for 0<f=1 and eg#1,

=
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0=Wic<ew for =0 or £e=1.

We first examine pure extensional flow for the limiting case § = 1 where co-
deformational derivatives appear in the constitutive equation. For g =1 and
£ # 1, the assumed basic flow is valid only for 0 < Wi < Wi* = 1/2. The neutral

stability curve is given by

1+ Wi

s
o = ———,
S 1+ eWi

and the flow is unstable for small wavenumbers satisfying

ol ¢ LWL
I UtV

Figure 3 shows this neutral stability curve plotted for several values of the
parameter ¢. The Newtonian criterion for instabiiity of pure extensional flow is
af < .. This result is reproduced in the present theory both for Wi = 0 and for
¢ = 1 for which the constitutive equation reduces to the Newtonian form. Fluid
elasticily is seen to be destabilizing when =1 in the sense that the range of
unst.ble wavenumbers az increases with increasing Weissenberg number.
Increasing the retardation time (i.e., £) has a stabilizing effect in that a smaller
rang= of ag values are unstable for a given Wi. The widest range of unstable

vavenumbers at any Wi occurs in the case &£ =0 corresponding to a co-

defermational Maxwell model.

Ve next examine the stability of pure extensional flow for 8 = 0. In this case,
the constitutive equation assumes the co-rotational Jeffreys form, and there is
no limit on Wi for the existence of the undisturbed steady flow. The neutral sta-
bulity curve for the particular case & = 0.2 is shown in Fig. 4. These results for
£ = 0.2 are qualitatively representative of the behavior for A = 1 and g =0 over

the entire range of the retardation parameter, 1/9=<¢ < 1. The neutral stability

curve consists of the union of three intersecting smooth curves labeled a, b, and
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cin Fig. 4. When 0< Wi < 1/V71 —¢, the flow is unstable for

N S
14 (1 —g)wi'

of <
(1.2., below curve a in Fig. 4). Thus, oniy the small wavenumber disturbances
lead to instability when the Weissenberg number is sufficiently small, and in this
sense the small Wi results are similar to those shown earlier for the co-
deformational model (8 = 1). However, in this case (A = 1, = 0), the fluid elas-
ticity actually stabilizes the flow since the range of unstable wavenumbers
decreases relative to the Newtonian fluid limit as Wi increases from 0 to
1/~ =& This result for small Wi is, however, just a "small” correction to the
basic Newtonian mode of instability. Elasticity begins to exert a very strong des-
tabilizing influence when Wi exceeds 1/v1 —¢. Indeed, for Wi > 1/vI —¢ the
range of unstable wavenumbers first increases, and then for

1/(1 —¢g) <Wi< 1/(1 —Ve) we find that both small wavenumber disturbances

satisfying

2o iy - 1
o =1 - =,
3 £ Wi

(i.e., below curve b in Fig. 4), and larze wavenumber disturbances satisfying

(ie, above curve c in Fig. 4) result in instability. In Fig. 4, the dotted line
labeled d indicates the asymptote Wi=1/(i—¢) to curve c for a§ - = This
asymptote is significant in that it marks the critical value of Wi beyond which
large wavenumber disturbances are unstable. Finally, the flow is unstable for
the entire range 0< o3 <= when Wi>1/(1 —+Ve). This result is particularly
interesting since the constitutive equation predicts finite basic stress com-

penerts for all Weissenberg numbers when g = 0.
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In this case of the co-rotational model (8 = 0), an increase in retardation
time (i.e., &) has a slightly destabilizing effect for small Weissenberg numbers.
This behavior is manifested by the fact that the neutral stability curve
of = 1/[1 + (1 —&)Wi] gradually rises up to the horizontal line af =1 as ¢ - 1.
For large Weissenberg numbers, however, an increase in retardation time is
strongly stabilizing for this model. In particular, both the critical Weissenberg
number where instability first occurs for all wavenumbers, and the Weissenberg
number above which large wavenumber disturbances become unstable, increase
as ¢ increases, the first as 1/(1~Ve) and the latter as 1/{1—¢). Indeed, these
values tend to infinity as ¢ » 1. Of course, this latter result is to be expected

since the constitutive model reverts to that of a Newtonian fluid for £ = 1, and

no instability was found in that case for large wavenumbers.

Finally, we turn to the results for intermediate forms of the constitutive
equation associated with values of 8 in the range 0 < 8 < 1. The typical behavior
1s illustrated by Fig. 5 which shows the neutral stability curve for A =1, 8 = 0.5,
and £ = 0.2, We see that pure extensional flow is unstable to disturbances with

smr.all wavenumbers satisfying

o2 < 1+ BWi
ST 1+ efWi+ [(1 - B)(1 — )WL/ (L + 28WD)]

(ie, below curve a in Fig. 5) for sufficiently small values of Wi. Furthermore, for

Wis (U —e+B8+2:p) —[(1 —g+ 8 +2eB)? — BepR)/2
B 4g(? '

large wavenumber disturbances with

af > - 1 — g
ST -1+ efWi+ (1 - B)(1 —e)Wi/ (1 — 28W1)]

(e, above curve b in Fig. 5) also become unstable. The critical Weissenberg

number marking the onset of large wavenumber instability is indicated in Fig. 5
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by the asymptote ¢ to curve b. The branches of the neutral stability curve
corresponding to small and large wavenumber instability eventually intersect,
and the full range of wavenumbers 0 < az < = are unstable for values of Wi
beyond this point. As we have already noted, the basic flow does not exist for
Wi>Wi"=1/(26). In the case § =0.5, plotted in Fig. 5, this corresponds to
Wi> 1 It is noteworthy that the critical Weissenberg number for instability to
disturbances of all wavenumbers is smaller than this limiting value. The effect
of increasing retardation time (i.e., £) for intermediate @ is illustrated by Fig. 6
which depicts the neutral stability curve for A=1, =05, and ¢ = 0.8. It is
apparent that as £ » 1, the critical Weissenberg number, above which both small
and large wavenumber disturbances are unstable, asymptotically approaches
the limiting value Wi' = 1/(28) for existence of the undisturbed, steady flow.

Again we see that increasing the retardation parameter ¢ has a stabilizing effect.

We are unable to provide analytical descriptions of instability conditions for
the remaining strong linear flows in the range 0 < A < 1. However, the neutral
stability curves for these flows may be obtained from numerical calculations of
the eigenvalues of AV, We find that the effects of the parameters § and ¢ on the
neutral stability curves remain qualitatively similar to the results cited above

for A =1,

Figure 7 illustrates the case A = 0.7 and 8 = 1, with neutral stability curves
plotted for several values of ¢&. These curves are similar to their counterparts
shewn in Fig. 3 for the case A = 1. Again only small wavenumber disturbances
are unstable for values of Weissenberg number below Wi’ There are two essen-
tial differences, though. First, the range of Weissenberg number over which the
steady undisturbed flow exists is larger when A = 0.7 than when A = 1. Indeed, in
the case of a co-deformational model (§ = 1) this range is given for arbitrary A

arde # 1 by
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O<Wi<Wi"=[(1+A)®—(1-AR]V2,

The upper limit Wi’ for the existence of the basic flow clearly tends to = as A - 0.
Second, the range of unstable disturbance wavenumbers ag is smaller for A = 0.7
than for A =1 at any fixed Wi and £. In view of the Newtonian instability condi-
tion af < VX, it is clear that the neutral stability curves in regions of small Wi

mus!. tend toward af = 0 as A » 0 for any value of ¢ (and B, as well).

The case of a co-rotational model {8 = 0) and an intermediate flow (A = 0.7) is
illustrated in Fig. 8, with neutral stability curves plotted for £ = 0.2 and & = 0.4.
Again, these curves are qualitatively similar to the neutral stability curve shown
in Fig. 4 for x = 1 and § = 0. We note that the curves in Fig. B are both piecewise
smooth unions of three intersecting curves as in Fig. 4. The curves in Fig. 8
appear smooth, but this is only because the separate pieces intersect at points
where their slopes are nearly equal. An increase in the retardation parameter ¢
Is agzin seen to exert a stabilizing influence in the case A\ = 0.7 by increasing the
critical Weissenberg number beyond which large wavenumber disturbances are

unstable,

A decrease in the value of the parameter A appears to stabilize the basic flow
with respect to disturbances satisfying condition (50) for all forms of the consti-
tutive equation. This tendency is clearly indicated in Fig. 9 which compares neu-
tral stability curves for A=1, A=0.7, and A=0.5, all corresponding to the
specific case §=0 and £=02 In general, the range of unstable small
wavenumbers occurring for small values of the Weissenberg number decreases
as A » 0. Furthermore, the critical Weissenberg numbers marking either large
wavenumber instability or the nonexistence of the basic flow grow larger as
A -» 0. This behavior suggests that unbounded simple shear flow (A = 0) should

De linearly stable with respect to periodic initial disturbances satisfying condi-
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tion (50) for all forms of the Oldroyd-type constitutive model (1). The physical
significance of condition (50) is revealed in the case of simple shear flow when
the present coordinate system is transformed by rotating the x,— and xz—axes
through a 45° angle about the xs—axis. Under this transformation, the new
x,—axis corresponds to the streamwise direction for simple shear flow and con-
dition (50) reduces for A =0 to o, = 0. Thus, it must be emphasized that the
conclusion of stability for simple shear flow of this Oldroyd-type fluid applies
only to spatially periodic initial disturbances with vanishing streamwise
wavenumber. Other types of disturbances may lead to instability. This possibil-
ity is likely in view of the results of a study by Gorodtsov and Leonov [19]. They
found that bounded plane Couette flow of a co-deformational Maxwell fluid
(B =1 and £ = 0 in this case) is unstable at small Reynolds number and large
Weissenberg number for periodic disturbances with large wavenumbers in the

streamwise direction.

9. Concluding Remarks

The linear stability analysis for unbounded, two-dimensional linear flows of
an Oldroyd-type fluid reveals that the strong flows (0 < A< 1) are uncondition-
ally unstable. This instability persists for all forms of the constitutive equation
ranging from the co-rotational type to the co-deformational type. This result
was obtained by considering only spatially periodic initial disturbances with
wavenumbers a; and &3 in the x;~— and xy—directions, respectively, which satisfy

condition (50), viz.
(=1 +VA)x; + (1 + VX)) =0 .

As shown in Fig. 2, the inlet streamline for a strong flow in the (x;,X;)~plane has
a slope of (VX + 1)/(V¥X —1). The preceding condition on &, and oz implies that

th= initia: disturbance has lines of constant phase in the {x;,x,)—plane parallel
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to the inlet streamline, and, therefore, is invariant in the direction parallel to
the Inlet streamline. For small values of Wi, initial disturbances of this type
grow unstably in time if the wavenumber ag in the direction normal to the plane
of the basic flow is sufficiently small. This is qualitatively the same result as
obtained for a Newtonian fluid by Lagnado et al. [5]. Instability occurs in a
Newtonlan fluid undergoing a strong linear flow only for disturbances which are
invariant along the inlet streamline and which satisfy af < VA. It was shown
that under these conditions, vortex line stretching causes the disturbance vorti-
city to grow in time at an exponential rate which exceeds the rate of decay due
to convection-enhanced diffusion. For the Oldroyd-type fluid considered in the
present study, the moderate elasticity associated with small values of Wi is seen
to exert a relatively slight modifying influence on the physical mechanism for
instability described for the Newtonian fluid, but not to change it in a funda-
mental way. We have shown that increases of Wi can be either stabilizing or des-
tabilizing for an Oldroyd-type fluid, depending upon the form of the time deriva-
tives that appear in the constitutive equation. For the co-deformational model
(B=1) a small increase in the Weissenberg number increases the range of
wavenurr.bers g corresponding to unstable disturbances. However, the opposite
effect is observed for the co-rotational model (f =0). In any case, the effects

are small for Wi « 1, and are not of any great significance.

As the Weissenberg number increases to values of order unity [i.e., Wi ~ 0(1)],
however, a radical departure from the Newtonian or near-Newtonian behavior is
predicted to occur. In particular, the presence of elastic effects which are com-
parable in magnitude to viscous effects appears to significantly destabilize the
class of strong linear flows. This destabilization is characterized by the appear-

ance a new branch of critical Weissenberg numbers, above which disturbances

beth with small and large values of the wavenumber ag are unstable. In any
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attempt to interpret this result, it is important to recall that some forms of the
constitutive equation yield physically unrealistic basic stress components when
the Weissenberg number exceeds a certain value (thus, basic flows correspond-
ing to these Weissenberg numbers are not allowable). In particular, when
B> (1 =A)/{(1 +X), for the Oldroyd-type constitutive equation considered here,
there is a finite value of the Weissenberg number, Wi’ given by Eq. (7), at which
the basic stress components become infinite. In such cases the large
wavenumber instability for Wi > Wi’ may be connected to the fact that the steady
basic flow is not allowed by the constitutive model. However, for the co-
rotational model (8 = 0) and intermediate models (0 < 8 < 1) we find that insta-
bility for both small and large values of the wavenumber ag occurs at Weissen-
berg numbers where the basic flow is allowed and the behavior of the constitu-

tive model appears to be perfectly reasonable.

It is important to emphasize that our stability results apply only to distur-
bances which satisfy condition (50), and there remains the uncertainty of
whether or not this condition represents the most unstable disturbance mode
for ar. Oldroyd-type fluid as it did for a Newtonian fluid. This uncertainty does
not alter the conclusion of unconditional flow instability, though, since this is
guaranteed by the existence of at least one unstable disturbance mode
corresponding to each set of values assumed by the physical parameters. How-
ever, there may exist disturbances to the non-Newtonian flow which fail to
satisfy (50) but which are unstable over a wider range of ag values at small

Weissenberg numbers.

The change in mechanism which accounts for the instability of unbounded
two-dimensional linear flows to large wavenumber {ag) disturbances beyond a
critical Weissenberg number assumes added significance when one attempts to

discuss these results in the context of real two- and four-roll mill flows. Any
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attempt to connect the stability theory for unbounded linear flows with actual
milling flow behavior must address the fact that a milling device is bounded in
extent and the flow it produces is accurately represented by the linear flow field
only over the central region of the flow domain. The restricted size of the device
in the direction normal to the plane of the flow has two effects on the stability
problem. First, it imposes a lower limit on the wavenumber as and a
corresponding upper limit on the wavelength of a disturbance mode which can
be realized. Second, the allowable disturbances must vanish at the top and bot-
tom of the device due to the no-slip condition. We do not attempt to account for
this second effect in the present work, in part because we see no justification for
trying to apply boundary conditions at the top and bottom, without simultane-
ously applying boundary conditions at the roller surfaces and this would make
the analysis impossibly complex. If we simply consider the effect of a geometric
wavenumber cutofl, it is evident that the analysis predicts that the flow for
Wi =0 or Wi small should be stable up to some critical Reynolds number.
Indeed, the top and bottomm walls restrict the dimensional disturbance

wavenumber &g in the direction of the roller axes according to

where h is the length of the rollers. The results of our present study have shown
that the urbounded linear flow is unstable for an Oldroyd-type fluid at small
Weissenberg number only when

~ 2
o _ To&X3

Q3 pE

Here, ¢ is a conslant which depends upon A and Wi and assumes the value ¢ = VX
in the Newtonian case. Assuming that the boundaries exert no effect other

than disturbance wavenumber restriction, one would expect the milling flow to
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be stable for small Reynolds number

Re_—_ @(f_
Mo c '

and unstable, otherwise. For large values of Weissenberg number, on the other
hand, the unbounded flow is unstable to disturbances with arbitrarily large
wavenumbers ag. Such small wavelength disturbances could never be excluded
by the presence of boundaries, and one is led to the conjecture that at a
sufficiently large Weissenberg number a two-dimensional linear flow would be
unstable and unrealizable in any portion of a milling device at any Reynolds
number. This conjecture presumes, of course, that the rheological behavior of
the fluid is adequately modeled by the constitutive Eq. (1). Broadbent et al.
[R0] have observed instabilities and irregularities in calendering flows of viscoe-
lastic fluids in a two-roll mill which would seem to lend support to our conjec-
ture. They found, in particular, that flow patterns for viscoelastic solutions of
polyacrylamide and polyox were considerably three-dimensional in contrast to
the reasonably two-dimensional flow patterns exhibited by Newtonian glycerol at
the same roller speeds and gap widths. However, further discussion of these
points awaits the completion of a thorough experimental study of flow in a four-

roll mill which we are currently undertaking.

The predicted existence of an instability for strong flows of the Oldroyd model
fluid to disturbances of all wavenumber at a critical Weissenberg number of 0{1)
1s also suggestive of a possible connection with the problem of nonconvergence
in the numerical solution of viscoelastic flows beyond a critical Weissenberg
number of 0(1), though, of course, the flows attempted numerically are more
complicated than those considered in the present stability analysis. One possi-
ble cause for the convergence breakdown is temporal instability due either to

the existence of a physical instability for the particular constitutive model and
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flow, or the nonexistence of steady flow solutions for Wi larger than some critical
value [21]. While a temporal instability may account for convergence problems
in time-dependent numerical calculations, it is not necessarily apparent that a
steady solution could not be obtained by a time-independent numerical tech-
nique. The introduction of iterative methods would, however, be expected to
lead to difficulties. Indeed, Tanner {22] has shown that an iterative finite-
difference scheme applied to steady one-dimensional flow of a Maxwell fiuid
becomes unstable when the Weissenberg number based on mesh size exceeds a
critical value of 0(1). In such numerical stability analyses, equations governing
nurmnerical disturbances (due to round-off error) are obtained from the discre-
tized form of the equations of motion. For the simplest problems, solutions to
these disturbance equations can be obtained by consideration of disturbance
Fourier modes, yielding conditions for the growth or decay of numerical distur-
bances with increasing iteration number. The numerical stability analysis is
similar in many ways to the present temporal stability analysis for the contin-
uum equations, especially when one identifies iteration number as a sort of
"false” time. Thus, it is plausible that there exists a connection between the
mechanisms causing numerical and temporal instabilities for a particular con-
stitutive equation. The results of the present investigation indicate that there is
a mechanism built into Oldroyd-type constitutive models which results in desta-
bilization of two-dimensional linear flows with respect to large wavenumber dis-
turbances for sufficiently large Weissenberg numbers. In any numerical experi-
ment, the small wavenumber (long wavelength) numerical disturbances will be
absent below a minimum wavenumber corresponding to the physical length
scale of the flow. The large wavenumber (small wavelength) numerical distur-

bances will be present, however, up to a maximum wavenumber associated with

the mesh spacing for the numerical scheme. Hence, the convergenoe breakdown
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of numerical solutions for Oldroyd-type constitutive models may be another

manifestation of the instability mechanism described here.

One interesting result which may corroborate the connection between our
stability results and the numerical convergence problem is the stabilizing effect
of retardation time. As our analysis indicates, an increase in the retardation
parameter ¢ stabilizes the basic flow by increasing the critical value of Weissen-
berg number above which disturbances of all wavenumbers as are unstable. A
similar conclusion was reached by Phan-Thien [23] who studied the linear stabil-
ity of creeping torsional flow of an Oldroyd-B fluid (8 = 0 in this case). He found
that the basic flow is unstable if the Weissenberg number, defined by the pro-

duct of relaxation time 8; and the angular velocity of the top disk, exceeds the

value n/ V(I —¢)/(5 —2¢). The stabilizing influence of retardation time (i.e.,
increasing &) is seen clearly. By way of comparison, Crochet and Keunings [R4]
have shown that the range of Weissenberg numbers over which a steady "die
sweil” solution can be calculated using a finite-element method is four times
larger for an Oldroyd-B model including a retardation time than for the
corresponding Maxwell model which is obtained by setting the retardation time

equal to zero.
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Appendix A. The Matrix A(t)

The matrix A(t) is a 9x9 matrix the nonzero elements of which are

2
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2
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_ 1
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Here, k;, kg, and ky are the components of k(t) = et" .o, and k? = k? + k& + k&
Also, I'1y, T'ie, Te1, and I'pp are dimensionless components of I and are given by (5)

with E replaced by 1. The components £;,, Z;2, and Zy; are given by (20a)-(R0c).



73

Appendix B. The Matrix A(!)

The matrix A" is a constant 9x9 matrix the nonzero elements of which are

a;; = —-srxg—;—(l +A),
— 1 o3
a;p = 5 (1 =N,
218 = — (3,
1
= =(1-A),
agl 2 ( )
_ 2, 1
ags = —EQ3 + 5‘(1 + >\),
Agg = —X3,
as3 = —£Qf,
Wi '
ags = 1 —A
s = = = (1 =N
4 2 '
a e — ._];_.
55 wTi’
1
= — (] -
357 2 ('“ )\)'
1 -2 -1
ag; = [ Wi |2a + % 103
—1
agg = [%]2120‘3

dgg = —W—i'+ %(1'*’)\).
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= Ly
8eg > (1 =N,
azs = —(1 —>\)
_ 1
@y = — Wi“'—ﬁ(l +A),
-1
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1l - -1
age = [ W%t %]2220‘3
ags = — é—(l -\,
1
agg = —W_%(l+)\)’
_ [2’1 ~-&
gy = l Wi Az,
_ 1
dgg = — ﬁ‘

where the components Z,,, £z, and Zy; are given by (20a)-(20c).
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Appendix C. Simple Shear Flow (A = 0)

In the case of simple shear flow, the components of the basic velocity gra-
dient tensor I' are given by Eq. (5) with A = 0. If we transform the coordinate
system corresponding to (5) by rotating the x,~ and Xg—axes through a 45°
angle about the xs—axis, then the components of T assume the following simpler
form when A = 0:

m=5[33¢]
000 (C1)
The nonzero components of the basic stress tensor T (relative to this new coor-

dinate system) are predicted for simple shear flow by the constitutive Eq. (1) to

be
T = 7oE%(8) — @2)(1 + B)
U1+ (Bl - 67 (C2a)
_ —ncE¥e; —e)(1 - B)
Tee = 2¢ 2 '
1+ (Ee))*(1 — g?) (C2b)
E[1 + E®8,0,(1 — 8
T12=T21=n° I 182{1 = %) ]

1+ (B )*(1 -5 (C2c)

Note that these components remain bounded for all values of Wi =FEe, for
0=<g=<1 In dimensionless form, the nonzero components of the viscoelastic

stress contribution I defined by {14b) are given by

L= Q“ §)W1(1 + ﬂ)

1+ WiR(1 —g7) (C3a)
- _ {1 -aWi(1 -8
Zgg = 1+ Wiz(l\ — g% (C3b)
— — 1 -¢
T T (€30)

The fundamental matrix e " (dimensionless) assumes the form
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1 00
e“"rTz[—t 1 o] .
0 1

0 (C4)
and the components of k(t) = e o are given by
ki(t) = o1 ke(t) = ap —agt,  kg(t) = ag,
(C5)

Stability criteria for simple shear flow can be determined by considering the
asymptotic behavior of solutions of the linear system (41) when A = 0. We can
carry out this analysis only for spatially periodic initial disturbances satisfying
condition (50). In the new coordinate system, this condition reduces (for A = 0)

to

X = 0.
(Cs)

Thus, we consider disturbances to simple shear flow only with vanishing stream-

wise wavenumber. In this case the components of k(t) are constants

ki(t) =0, ko(t) = oz Kks(t) = as,
(C7)

and the coefficient matrix A(t) for the linear system (41) reduces to a constant
matrix C. The components of C may be obtained from the expressions for the
components of A(t) listed in Appendix A by substituting the results (C1) (made
dimensionless with E replaced by 1), (C3a)-(C3c),and (C7). Under condition (C8),
the eigenvalues of C determine the asymptotic behavior of solutions of (41) as
t » = since Cis the constant coefficient matrix. These eigenvalues are the roots
of the ninth-degree characteristic polynomial of C. This polynomial has no
readily apparent factored form, so stability criteria for simple shear flow would
have to be determined by numerical computation of the eigenvalues of C for
fixed values of the parameters 8, Wi, &, ap, and ag. It appears from our numeri-
cal computations that the eigenvalues of C always have negative real parts.
dince it is impossible to check the eigenvalues for all admissible values of the

parameters, numerical computation alone cannot guarantee that conditions do
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not exist under which some eigenvalues have positive real parts. However, the
results for strong flows (0 <A<1) in the limit as A -» 0O strongly suggest that
simple shear flow is linearly stable with respect to disturbances of the form (C6)

under all conditions on the physical parameters.
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Figure Captions
Figure 1. Streamlines for two-dimensicnal linear flows. (a) A = 1, (b) A = 0.5,

(e)A=0,(d) A =-0.5 (e) A = -1.

Figure 2. Streamlines for a strong flow (A = 0.5). L; inlet streamline (slope =

(VA + 1)/ (VA = 1)). Ly outlet streamline (slope = (VX — 1)/ (VX + ).
Figure 3. Neutral stability curvesfor A= 1,8=1,and £ =0, 0.2, 0.8, and 1.
Figure 4. Neutral stability curvefor A= 1,8=0,and ¢ = 0.2.
Figure 5. Neutral stability curve for A =1, 8=0.5,and ¢ = 0.2.
Figure 6. Neutral stability curve for A =1, 8= 0.5, and £ = 0.8.
Figure 7. Neulral stability curves for A= 0.7, 8= 1,and ¢ = 0, 0.2, 0.8, and 1.
Figure B. Neutral stability curves for A= 0.7, 8 =0, and ¢ = 0.2 and 0.4.

Figure 9. Neutral stability curves for =0, ¢ = 0.2, and A = 1, 0.7, and 0.5.
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CHAPTER 111

AN EXPERIMENTAL STUDY OF FLOW IN A FOUR-ROLL MILL
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Abstract

An experimental study of the flow of a Newtonian fluid in a four-roll mill has
been made by means of flow visualization and photography. The effect of
increasing Reynolds number (i.e., roller speed) on the appearance of the flow
field between the rollers is reported. Observations have been made using two
four-roll mills with different ratios of roller length to gap width between adja-
cent rollers (namely, L/d = 3.39 and 12.73), in order to investigate the effect of
the distance separating top and bottom bounding surfaces. In all experiments
the rollers were made to rotate with equal angular speeds and in appropriate
directions so as to simulate a pure extensional flow in the central region
between the rollers. At sufficiently small Reynolds numbers, the flow in both
devices is essentially two-dimensicnal throughout most of the region between
the rollers, except near the top and bottom bounding surfaces where a three-
dimensional flow involving four symmetrically positioned vortices appears. The
vertical extent of this two-dimensional flow gradually diminishes and the vor-
tices grow in size and strength as the Reynolds number is increased up to a
guasi-critical range. An increase in Reynolds number through this quasi-critical
range results in an abrupt transition to a steady three-dimensional flow
throughout the entire region between the rollers. The three-dimensionality is
significantly less pronounced in the device with L/d = 12.73, however. At suffi-
ciently high Reynolds numbers beyond the quasi-critical range, the flow

becomes unsteady in time and eventually turbulent.
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1. Introduction

The four-roll mill was originally developed by G. 1. Taylor! for an experimen-
tal study of the formation of emulsions. This study examined, in particular, the
deformation and breakup of a fluid drop suspended in another fiuid undergoing
an extensional flow. Taylor invented the four-roll mill specifically for the pur-
pose of generating an approximation to two-dimensional extensional flow
(hyperbolic flow) in the suspending fluid. However, this device is considerably
more important as an experimental tool in that it is capable of simulating a wide
variety of two-dimensional flows of which the pure extensional flow considered
by Taylor is one special case. As a consequence of this versatility, the four-roll
mill has been used in numerous experimental investigations of such phenomena
as drop deformation and breakup,! ® flow-induced changes in the conformation
of macromolecules in solution (studied via birefringence measurements),”"!!

and shear-induced crystallization of polymers.12

The basic geometric configuration of a typical four-roll mill is illustrated in
Figure 1. This device consists of four cylindrical rollers of diameter D, radius R,
and length L which are contained in a box with internal dimensions W x W x H.
The rollers are symmetrically positioned around the center of the box so that
their central axes are parallel and pass through the corners of a square with
sides of length S. The width of the gap between adjacent rollers is then given by
d = 5 - D Rotation of the four rollers produces flow in the fluid filling the con-

tainer.

The aforementioned experimental applications of the four-roll mill rely on
the assumption that the rollers can be suitably driven to produce any flow in the
class of linear two-dimensional flows throughout a central region in the device.

This class of flows may be represented by a velocity field U of the form



a3
U=Tx, (1)

where X is a general position vector and I' is a constant velocity gradient tensor

with Cartesian components given by

rj= E (11+ >\)\) (11—+>\>\) 8 2

Here, E = 0 is the magnitude of the local velocity gradient, and A is a flow-type
parameter ranging from -1 to 1. The cases A= -1, A =0, and A = 1 correspond
tc pure rotational flow, simple shear flow, and pure extensional flow, respec-
tively. Typical streamlines are shown in Figure 2, and further kinematical
details are discussed by Fuller and Leal'® and Lagnado et al.!3 We note here that
all of the flows given by (1) and (R) possess a central stagnation point. For flows
in the range 0 < A< 1 the strearmlines are open and form a family of hyperbolas

with asymptotes that are separated by an angle ¢ given by
tan (g/2) = Va (3)

On the other hand, if -1 € X <0, then the streamlines are closed and form a

family of ellipses with major axis length a and minor axis length b related to A by

2avan (4)

Giesekus!4 first demonstrated that a four-roll mill can be used to simulate two-
dimensional linear flows. In order to produce these flows, the device must be
" operated so that each of the rcllers in a diagonal pair (e.g., rollers 1 and 3 or
rollers 2 and 4 in Figure 2) have the same angular speed and direction of rota-
tion. If the ratio of the angular speeds of these diagonal pairs of rollers (i.e.,
w3/ Wz 4) IS in the range from -1 to 1, then a stagnation point appears at the
center of the region between the rollers, and the flow is approximately of the

form given by (1) and (2) in a neighborhood of the stagnation point. In fact, the

flow parameter A is related to the angular speeds of the rollers by



A= —— 5
Do e (5)

Giesekus verified this fact by showing that equations (3) and (4) were satisfied
with A defined by (5) and corresponding values of ¢, a, and b measured from

photographs of actual streamlines produced in a four-roll mill.

It is obvious that the linear flow field given by (1) and (2) cannot represent
the flow everywhere in a four-roll mill due to the presence of the rollers and the
container surfaces where the no-slip condition must be satisfied. Furthermore,
the flow in the space between the rollers can never be truly two-dimensional; a
significant component of velocity in the vertical direction will be present in the
vicinity of the top and bottom container surfaces. Thus, the actual flow in a
four-roll mill may be described as the superposition of a primary flow given by
(1) and (R) and a secondary flow which accounts for the effects induced by the
boundary surfaces. Another problem encountered in experimental applications
of the four-roll mill is the onset of flow instability which limits the range of roller
speeds in which the two-dimensional linear flow field appears in at least a por-
tion of the device. An increase in roller speed (and Reynolds number) eventually
causes a transition from the two-dimensional linear flow in the space between
the rollers to a steady three-dimensional flow and, ultimately, to a turbulent
flow throughout the entire region. Although this occurrence has been reported
by numerous investigators as an undesirable limitation on the scope of their
experiments, no attempt has ever been made to characterize the process lead-
ing to this instability.

In the present paper, we report the results of a flow-visualization study of
the four-roll mill which examines the effect of increasing roller speed (and Rey-

nolds number) on the qualitative features of the flow in the Space between the
rollers. Observations were made using two four-roll mills with two different

values of the ratio L/d (i.e., roller length over gap width between adjacent
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rollers). In both devices the ratio of the distance between centers of adjacent
rollers to roller diameter is S/D = 1.295. This ratio was selected to optimize the
fit between the circular roller surfaces and hyperbolic streamlines associated
with pure extensional flow (A = 1) by minimizing the area between the curves.
Bentley® discusses at length various design criteria for four-roll mills. These cri-
teria prescribe values of S/D in the range from 1.172 to 1.414. Thus, the spacing
of the rollers in the present study is typical of devices used in experimental
applications. An important result of the present study is a description of the
effect of increasing roller speed on the evolution of the secondary flow in the
space between the rollers. In particular, we describe changes in the vertical
extent of the region throughout which the secondary flow is negligible and the
flow is essentially two-dimensional. We also elucidate the destabilization process

which results in fully three-dimensional flow between the rollers.

The results of the present study provide some practical information which
may be of use in the design of four-roll mills for experimental applications.
However, our main purpose is to gain some understanding of the fundamental
mechanism associated with the instability of extensional flows. This study is, in
fact, intended to serve as an experimental complement to the theoretical inves-
tigation of the stability of two-dimensional linear flows by Lagnado et al.!® This
theoretical study consisted of a linear stability analysis for an wnbounded
Newtonian fluid undergoing two-dimensional linear flows in the range from sim-
ple shear flow (A =0) to pure extensional flow (A =1). We shall discuss our
experimental observations of pure extensional flow in the four-roll mill in the

context of the theoretical results and attempt to explain similarities and differ-

ences.

The present study is similar to many others in the area of hydrodynamic

stability in that it involves the following question; given the results of a theoreti-
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cal linear stability analysis for an unbounded or semibounded fluid undergoing a
simple flow, how are these results connected to observations of an approximate
realization of the same flow in a region of finite extent? This question of the role
of boundaries on flow stability is an important problem of current interest to
many investigators in the field of fluid mechanics. A good example of this gen-
eral problem is provided by the many recent investigations of the stability of
flow between two rotating concentric cylinders (i.e., a Couette device). A
theoretical linear stability analysis of circular Couette flow between cylinders of
infinite length was first undertaken by Taylor!® and later refined in many other
studies. In the simplest case, fluid fills the annular space between a stationary
outer cylinder and an inner cylinder rotating with an adjustable, constant angu-
tar speed. The theory predicts that the circular Couette flow becomes unstable
at a critical value of a suitably defined Reynolds number. Above this critical Rey-
nolds number, the simple circular Couette flow exchanges stability with a more
complicated flow involving steady toroidal vortices (i.e., so-called Taylor cells).
In experimental studies of flow between concentric cylinders of finite extent,
the presence of end boundaries causes a deviation from the predictions of the
idealized theory for infinitely long cylinders. It is found that the Taylor cells do
not appear suddenly at a critical Reynolds number, but they develop gradually
as the Reynolds number is raised through a narrow, quasi-critical range. This
quasi-critical range is, however, close to the critical Reynolds number predicted
by the idealized theory. Experiments by Kusnetsov et al.!® have shown that the
Taylor cells do not develop uniformly throughout the annular space between the
cylinders but spread inward from the top and bottom boundaries. Further stu-
dies of end effects on Couette flow have been conducted by Benjamin and co-
workers.!”"2! These studies have demonstrated a large multiplicity in the stable
stecdy flows which are realizable in a Couette device beyond the quasi-critical

range of Reynolds number. The present study of the four-roll mill is, in a sense,
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a first step as an extensional-flow analog of these investigations of flow stability

in a Couette device.
II. Experimental Details

A. Apparatus: Four - Roll Mill

The experimental study was conducted using two separate four-roll mills.
The geometric configuration and dimensions of these two devices are identical
except for the length of the rollers and the depth of the enclosing containers.
These differences allowed for an investigation of the effect of the distance
between the top and bottom container surfaces on the three-dimensional char-

acter of the flow.

A schematic diagram of the shallower four-roll mill {(hereafter referred to
as FRM1) is shown in Figure 3. The four rollers in this device are contained in a
box, the internal dimensions of which are 7 x 7 x 1.6 in. The top and bottom of
the container are 1/4 in. thick Pyrex plates, while the side walls are made of
1/2 in. thick Lucite. Each of the four rollers is a cylinder, 1.5 in. long by 1.5 in.
diameter, made of anodized aluminum and fitted with a stainless steel axle.
These axles run in bearings which are contained in housings cemented to the
outer surface of the top plate of the container. The rollers are mounted so that
their central axes are parallel and fixed in position at the corners of a square
~ with sides of length 1.942 in. Clearances of 1/32 in. and 1/16 in. are present
between the rollers and the inner surfaces of the top and bottom plates of the

container, respectively.

The schematic diagram of the deeper four-roll mill (hereafter referred to
as FRNM2) appears in Figure 4. Only the side view is shown, since the top-view

dimensions are identical to those of FRM 1. For FRM2, the rollers are 5.625 in.

long, and the enclosing container has internal dimensions of 7x7x6.1 in. The
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clearance between the rollers and the top of the container is 1/32 in. {(as in
FRM1), but the clearance between the rollers and the bottom of the container is
7718 in. This added clearance allows the bottom of the container in FRM2 to be
covered with a thin layer of mercury, if desired, in order to study the effect of a
free bounding surface on the flow. The effect of a solid bottom surface with the
same clearance as in FRM1 can also be studied by placing a 3/8 in. thick Lucite
plate at the bottom of FRM2. The only other difference between the two devices
is that the bottom of the container in FRMR2 is made of 1/4 in. thick Lucite
rather than Pyrex. All other details of the construction of FRM1 and FRM2 are

identical.

In both four-roll mills, the rollers are driven by four independent variable-
speed d.c. motors through clutch and gear assemblies. The clutches are
operated electrically and can be engaged simultaneously in order to "instan-
taneously” initiate the flow. The speed of each motor is measured by an elec-
tromagnetic sensor which sends a signal to a digital tachometer. The motors are
connected to electronic controllers which can maintain constant motor speeds
to within one or two percent throughout the range from 200 to 2400 r.p.m. A
gear reduction of 6:1 then produces roller angular speeds ranging from 3.5 to

42 rad/s (approximately).

B. Procedure: Flow Visualization and Photography

The test fluids used for the experiments were agueous solutions of glycerol.
For the purpose of flow visualization, a small quantity of tracer particles (1G101
Eccospheres, manufactured by Emerson & Cuming. Inc.) were suspended in the
fluid. These particles are hollow glass spheres of approximately 100 um mean
diameter and 0.24 g/cm 3 mean density. By illuminating the fluid in flow, these
highly reflective particles could produce trajectory streaks on a time exposure

photograph. We assume that these trajectories accurately correspond to
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streamlines for the flow with tracer particles absent but, otherwise, under
identical conditions. This assumption is justified if the particles are sufficiently
small, i.e., the particles follow true streamlines with increasing accuracy as the
particle diameter decreases. A general rule for particle selction is that the par-
ticle size should be at least one order of magnitude smaller than the fine struc-
ture of the flow being investigated.®? The tracer particles of 100 um diameter

easily satisfied this criterion in the experiments to be reported.

The fluid in the four-roll mill was illuminated by a planar beam of light with
A thickness of 1 /B to 1/4 in. The beam was produced by shining the light from a
300 W projector bulb through a deep channel formed by two parallel aluminum
plates held 1/8 in. apart. This method of illumination allowed streamlines in thin
cross-sections of the flow domain to be viewed and photographed. Several dif-
ferent regions inside the four-roll mill were selected to be photographed in this
manner in order to convey the most important features of the three-
dimensional flow. These regions are described below with reference being made

to the coordinate system and notation of Figure 1.
Region1. 0 < x; < d, =d/2 < xp < d/2, -h/2 < x5 < h/R2

This region is a vertical section in the space between the rollers parallel to
the (z,,x3)—plane. Photographs were made with the camera lens aligned perpen-

{

dicularly {ie., in the negative x,—direction) so that the primary flow was

. directed towards the camera.

Region 2. —-d/R2 < x; < d/2, 0 < %x < d, -h/R2 < xg < h/2

This region is a vertical section in the space between the rollers parallel to
the (z, x3)—plane. Photographs were made with the camera lens aligned perpen-

dicularly (i.e., in the negative xp—direction) so that the primary flow was

directed away from the camera.
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Region 3. —d/2 < x; < d/R, —d/2 < X < d/R, -b/R% < X3 < b/R

This region is a horizontal section at mid-height in the space between the
rollers which is parallel to the {(z,,x;)-plane (i.e., the plane of the primary flow).
The thickness of this region is denoted by b, the light beam thickness. Photo-
graphs were made with the camera positioned above and the camera lens

aligned perpendicularly {i.e., in the negative xg—direction).

The photographs were made on Kodak Tri-X Pan film rated at 400 ASA using
a Canon A-1 camera equipped with a ¥D 200mm f/4 Macro lens. The exposure
time was usually set at one second, which was a sufficient length of time for the
tracer particles to produce long, continuous streaks on the photographs. A vari-
able power supply was used to adjust the intensity of the light so that the proper
exposure could be obtained with an f-stop of 4.0. This f-stop was chosen to
reduce the depth-of-field to about 1/4 in. around the mid-plane of the

illuminated region on which the camera was focused.

The temperature of the fluid in the four-roll mill could be measured to
within 0.01 °C using a thermistor which was encased in a brass thermometer
well projecting through the filling tube of the container. During the course of an
experiment, the fluid temperature was found to rise by as much as 5 to 10 °C
due to viscous heat generation and the presence of the illuminating device. A
temperature reading was made when each photograph was taken. The kinematic
viscosities of the test fluids were measured with a Cannon-Fenske Routine
viscometer over the range of temperatures encountered in the experiments (20
to 30 °C). For each fluid, the viscosity-temperature data were found to closely

fit a relationship of the form

Inv=A4A+ =,

where v is the kinematic viscosity and T is the absolute temperature. The
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parameters A and B were obtained by the method of least squares. The
kinematic viscosity and the Reynclds number could then be calculated from the
temperature and roller speed associated with the flow conditions in each photo-

graph.

1. Observations

In the flow-visualization studies of the two four-roll mills, the rollers were
made to rotate in the following manner. All of the rollers rotated with the same
angular speed w, and each of the rollers in one diagonal pair rotated in a clock-
wise direction while each of the rollers in the other diagonal pair rotated in a
counterclockwise direction. This, of course, is the mode of operation required to
produce pure extensional flow {see Figure 2, A = 1). For a four-roll mill operated
in this manner, the flow depends upon a single dynamical parameter, the Rey-

nolds number, which we define as

Re = wRd ‘ (8)

where R is the radius of the rollers, d is the gap width between adjacent rollers,
and v is the Kinematic viscosity of the fluid. Our observations are presented as
sequences of streamline photographs for increasing values of this Reynolds

number.

A FRM1 (L/d = 3.39)

We first describe the flows observed in the shallower four-roll mill FRM1.
The test fluid used was a glycerol/water mixture with a concentration of
approximately 90% glycerol by weight and a kinematic viscosity of 194.7 centis-
tokes at 20.0 °C. A sequence of photographs showing streamlines near the hor-
izontal mid-plane (i.e., Region 3) are shown in Figures 5 - 7. Portions of the roll-
ers appear in the corners of the photographs. The upper left-hand and lower

right-hand rollers were rotating in the clockwise direction while the upper
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right-hand and lower left-hand rollers were rotating in the counterclockwise
direction. Thus, the fluid was flowing into the region between the rollers from
the gaps pictured at the top and bottom of each photograph, and it was flowing
out through the gaps at the right and left. It is apparent from the photographs
in Figures 5 and B that up to a Reynolds number of about 37, the flow in a thin
region around the horizontal mid-plane appears to be an essentially two-
dimensional pure extensional flow near the stagnation peoint between the rollers.
The streamlines seem to show no detectable deviation from the hyperbelic
shape in photographs 5(a)-(f) and 6(a). Of course, the streamline photographs
alone are insufficient to confirm a quantitative agreement with the velocity field
given by equations (1) and (2). However, an investigation of the homogeneity of
the flow field produced in the same four-roll mill was conducted by Fuller et al.?®
In this study, homodyne light-scattering spectroscopy was employed to measure
the velocity gradient profile on the horizontal mid-plane. These measurements
were made for values of the Reynolds number up to 13.4 and showed that the
velocity gradient is constant in a region around the stagnation point with
dimensions approximately equal to the gap width between two adjacent rollers.
This region corresponds roughly to the highly illuminated square area seen in

the center of each photograph in Figures 6 - 7.

The sequence of photographs in Figure 6 shows that a fully three-
dimensional flow eventually develops as the Reynolds number increases. The
onset of a vertical cormmponent of velocity at the horizontal mid-plane occurs at
a Reynolds number of about 37. This three-dimensional motion is just percepti-
ble in Figure 6(b) at Re = 3B.6 where streamlines appear to cross in the vicinity
of the stagnation point. The subsequent photographs of Figure 8 and those of

Figure 7 reveal that the three-dimensional flow becomes more pronounced as

the Revnolds number increases beyond 40 and is characterized by a helical

swirling motion of fluid as it passes out of the region between the rollers.
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Indeed, a steady vortex develops which is aligned in the direction of the outflow
axis (i.e., the x,—axis). However, the streamlines near the roller surfaces and
those along the inflow axis in the roller gaps shown at the top and bottom of
each photograph remain essentially unchanged in appearance from the low Rey-
nolds number photographs of Figure 5. Thus, the three-dimensional motion at

the horizontal mid-plane is confined to a strip along the outflow axis.

The process leading to the development of the swirling flow is more clearly
illustrated by side-view photographs of Regions 1 and 2. Figures B - 11 show the
effect of increasing Reynolds number on the flow pattern in Region 1. These
photographs depict a vertical cross-section of the flow in the space between the
rollers as viewed along an outflow axis. The rollers appearing at the right and
left in the photographs were rotating so that the primary flow was directed out
of the plane of the photograph. At low Reynolds number (i.e., Re < 5) the flow is
essentially two-dimensional throughout most of the region between the rollers
except near the top and bottom container surfaces. Near these surfaces, a
secondary flow with a non-zero vertical component of velocity is always present.
Both the magnitude of the secondary flow and the vertical extent of the region
where it is significant gradually increase as the Reynolds number grows larger.
Correspondingly, the vertical extent of the region in which the flow is effectively
two-dimensional decreases. The photographs in Figure B8 show streamlines for
- values of Reynolds number in the range from 16 to 37. These photographs
clearly reveal the structure of the secondary flow as four symmetrically posi-
tioned vortices. The fluid motion in these vortices is a helical superposition of
the primary flow, which follows hyperbolic paths in horizontal planes through
the region between the rollers, and the secondary flow, which involves a circular

motion in the vertical planes of Region 1. The fluid spirals in a clockwise direc-
tion in the upper right-hand and lower left-hand vortices. The spiraling motion

is counterclockwise in the other two vortices. When the Reynolds number



104

attains a value of about 37, the four vortices completely fill the region between

the rollers, and the flow is two-dimensional only on the horizontal mid-plane.

Up to Re = 37, the flow field remains symmetric with respect to the hor-
izontal and vertical mid-planes (i.e., the (z;.xz)—, (z2.X3)—, and (z,x3)—planes in
Figure 1). The appearance of the flow field changes abruptly, however, as the
Reynolds number is increased through a quasi-critical range, approximately
given by 37 <Re < 41. The sequence of photographs in Figure 10 provides a
striking illustration of the transition which coccurs in this quasi-critical range.
At a Reynolds number of about 37, the flow field loses its symmetric appearance
with respect to the horizontal mid-plane and the vertical mid-plane containing
the outflow axis. This event is illustrated by Figures 10{a) and 10(b) and is
accompanied by the incipience of a non-zero vertical component of velocity at
each point on the horizontal mid-plane. Thus, the loss of symmetry in the vortex
structure shown in Figure 10 coincides with the onset of three-dimensional
motion seen in the top-view photographs of Figure 8. As the Reynolds number is
increased further through the quasi-critical range, one of the upper votices
gradually shifts in position towards the center of Region 1. As this vortex shifts,
it assumes a highly eccentric elliptical shape and it displaces the diagonally
opposed lower vortex. This displaced vortex diminishes in size and eventually
retreats behind one of the rollers. Simultaneously, the remaining two vortices

assume centered positions above and below the elliptical vortex.

For each value of the Reynolds number in (and beyond) the quasi-critical
range two different steady flows may be realized. These two flows differ only in
the orientation of the semi-major axis of the central elliptical vortex. In one
type of flow this axis is inclined at an angle of +45° with respect to the vertical

direction; in the other type of flow the angle of inclination is —45° from vertical.

The first orientation (+45°) has already been shown in Figure 10 and is attained
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when the upper right-hand vortex shifts to the center as the Reynolds number is
increased through the quasi-critical range. The other possible orientation
(—45°) results from a shift of the upper left-hand vortex with increasing Rey-
nolds number. The particular orientation which is actually attained in an exper-
iment depends upon the order in which the speeds of the rollers are raised to
increase the Reynolds number. Aside from this multiplicity in vortex orienta-
tion, the steady flow patterns in the quasi-critical range depend uniquely on the
Reynolds number. Thus, the same flow pattern will be observed at a given Rey-
nolds number regardless of whether this Reynolds number is attained by gra-
dual increase from below, gradual decrease from above, or instantaneous initia-

tion of the flow.

As the Reynolds number is increased beyond the quasi-critical range up to
about 50, the eccentricity of the central vortex decreases. This effect is illus-
trated by the sequence of photographs in Figure 11. These photographs also
indicate that the central vortex expands slightly with increasing Reynolds
number, thereby causing the upper and lower vortices to become flatter in
appearance. The steady three-vortex pattern persists with no other changes in
structure up to a Reynolds number of about 60. Beyond Re = 80, the flow
becomes increasingly unsteady in time and eventually turbulent. However, the
characterization of this process is beyond the scope of a flow-visualization

study employing a still camera.

The photographic sequences in Figures 12 - 15 depict the evolution of the
flow in Region 2 with increasing Reynolds number. These photographs
correspond identically or closely in Reynolds number to the Region 1 photo-
graphs in Figures 8 - 11. Figures 12 - 15 show the flow in a vertical cross-section

of the region between the rollers viewed along an inflow axis. This view is con-

siderably less effective in conveying the features of the flow since the interest-
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ing vortex structure is aligned with the outflow axis. Nevertheless, the photo-
graphs in Figures 12 and 13 give a good indication of the secondary-flow
development near the top and bottom container surfaces with increasing Rey-
nolds number. Also, the photographs in Figure 15 provide a lateral view of the

central vortex which appears beyond the quasi-critical range 37 < Re < 41.

B. FRM2 (L/d = 12.73)

Two different flow-visualization studies of the deeper four-roll mill FRM2
were conducted. In the first study, solid bounding surfaces were present above
and below the rollers in FRM2, as they were in FRM1. The second study con-
sidered the effect of a slip boundary condition on the flow in the region between
the rollers. This was accomplished by replacing the solid boundary beneath the
rollers of FRM2 with a layer of mercury. Both studies were conducted using the
same glycerol/water mixture (approximately 90% giycerol by weight) that was

used in FRV ©.

No-slip condition at top and bottom boundaries

For the first study, the 3/8 in. thick Lucite plate was placed on the bottom
of FRMZ so that the clearance between the rollers and the top and bottom sur-
faces containing the fluid were the same as in FRM1. The photographs in Fig-
ures 16 - 17 show streamlines in Region 1 of FRM2 for values of the Reynolds
. number below 37. Only the bottom half of Region 1, extending from the bottom
container surface to the horizontal mid-plane, was photographed because the
view of the top half was obscured by the structure supporting the motors. How-
ever, the flow fields were observed to be symmetrical with respect to the hor-
izontal mid-plane throughout this range of the Reynolds number. These photo-
graphs illustrate the development of the secondary flow near the top and bot-

tom container boundaries. The four vortices appear to develop in a manner
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identical to the process observed in FRM1 up to Re = 37. The four vortices in
FRMZ2 are again symmetrically positioned and appear to grow in size at the same
rate as the ones which form in FRM1. Even at Reynolds numbers near 37, a
large portion of the region between the rollers in FRMZ2 is occupied by fluid
which undergoes an essentially two-dimensional flow. This is in sharp contrast
to the observation that the vortices completely filled the space between the roll-
ers in FRM1 at Re = 37. The increased extent of the region of two-dimensional
fiow in FRMRZ in contrast to FRM1 is an obvious consequence of the increased
roller length in FRM2 and the fact that the boundary vortices grow at the same

rate in both devices.

An abrupt transition in the vortex structure also occurs in FRM2 as the
Reynolds number is increased through a quasi-critical range beyond Re = 37.
The photographs of Figure 18 reveal that this transition is characterized by a
loss of symmetry in the boundary vortices with respect to a vertical mid-plane
(i.e., the (z,,%x3)-plane). As the Reynolds number increases, one vortex grows
and shifts in a lateral direction to displace the neighboring vortex. This process
occurs simultaneously at both the top and bottom container boundaries. Furth-
ermore, a vertical component of velocity begins to develop in the region
bounded above and below by the vortices {where the flow was previously two-
dimensional). However, in contrast to FRM1, this quasi-critical transition is not
accompanied by the development of a distinctive swirling flow in the center of
the region between the rollers. In fact, the precise nature of the three-
dimensional motion which develops between the boundary vortices cannot be

easily conveyed by the flow-visualization photographs.

Figure 19 shows a sequence of photographs for values of the Reynolds

number past the quasi-critical range. The flow continues to be steady and dis-

tinguished by the asymmetric appearance of the boundary vortices up to a Rey-
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nolds number of about 55. At this point, an unsteady motion commences which
involves a periodic inward shedding of vortices from the top and bottom boun-
daries. The frequency of this vortex shedding increases with increasing Rey-
nolds number. Eventually the vortex shedding assumes a chaotic quality, and

the flow tends towards complete turbulence,

Slip condition at bottom boundary

The second series of observations of flow in FRM2 was made with the 3/8
in. thick Lucite plate removed frdm beneath the rellers and replaced by a 3/8
in. thick layer of mercury. In this way, the no-slip condition previously imposed
at the bottom boundary of the region between the rollers was replaced by a
weaker constraint requiring continuity of velocity and shear stress across the

mercury interface.

The effect of the mercury interface on the evolution of secondary flow in
FR¥Z is illustrated by Figures 20-22. The photographs in these figures show
streamlines in the bottom half of Region 1 of FRM.2 above the mercury interface.
As the Reynolds number is increased, the secondary flow develops above the
mercury interface in a manner similar to that observed when the solid bottoem
boundary was present. Once again, two vortices appear at the bottom of Region
1. Beyond Re = 37 the vortices lose their symmetric appearance with respect to
the vertical mid-plane (see Figure 22). The steady vortex patterns again persist
up to a Reynolds number of about 55, above which the flow becomes unsteady as

vortices are shed upward from the mercury interface.

Although the process of vortex growth above the mercury interface is qual-
itatively similar to the process observed above a solid boundary, the rate of
growth in the presence of the mercury interface is significantly slower. This is
clearly indicated by a comparison of Figure 16¢ and Figure 21c. The vortices

appearing in Figure Ric above the mercury interface at Re = R20.5 are
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approximately half the size of the vortices seen in Figure 16c above the solid
surface and again at Re = 20.5. Thus, the development of the secondary flow in
the region between the rollers is strongly influenced by the precise nature of

the boundary conditions imposed at the top and bottom container surfaces.

IV. Discussion

This study has shown that flow in a four-roll mill can assume an extremely
complicated, albeit interesting, three-dimensional character throughout the
region between the rollers prior to the onset of turbulence. A secondary flow
involving four symmetrically positioned vortices is always present near the top
and bottom container boundaries. This secondary flow is enhanced as the Rey-
nolds number increases up to a quasi-critical range. Through this quasi-critical
range a rapid transition occurs which alters the symmetry and structure of the
flow. The exact nature of this transiticn is dependent upon the ratio of roller
length to gap width between adjacent rollers, L/d. This transition is accom-
panied by the incipience of three-dimensional motion throughout the entire
region between the rollers. However, the three-dimensionality appears to be sig-
nificantly less pronounced for larger values of L/d. In all cases, the quasi-
critical range of Reynolds number is closely followed by a critical Reynolds

number corresponding to the onset of unsteady flow.

The secondary flow near the top and bottom boundaries can extend a signi-
ficant distance towards the horizontal mid-plane, even for fairly low values of
the Reynolds number (i.e., Re = 0{10)). Since the usual experimental purpose of
the four-roll mill is to simulate fwo-dimensional linear flows, it is extremely
important to take this secondary flow into account when designing an apparatus
for a specific experimental purpose. Flow birefringence measurements, for
example, are averaged over the entire depth of a four-roll mill. Thus, the secon-

dary flow will cause deviations in the measured level of birefringence from the
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level which would exist in a true two-dirnensional linear flow. The obvious
remedy suggested by this flow-visualization study is to make the ratio L/d as
large as possible in order to maximize the extent of the region of two-
dimensional flow at a given Reynolds number. This remedy has practical limita-
tions, of course. Furthermore, there will probably exist an upper limit on the
Reynolds number beyond which a good approximation to two-dimensional flow

may never be realized, regardless of the magnitude of L/d.

These observations of flow in a four-roll mill provide a good example of an
interesting fluid-mechanical phenomenon: the transition with increasing Rey-
nolds number of a simple steady laminar flow to a more complicated steady lam-
inar flow. In this case, the initial flow may be represented by a two-dimensional
pure extensional velocity field throughout at least part of the flow domain.
Thus, as a first step towards understanding the experimentally observed
phenomenon we attempt to apply the linear stability theory for two-dimensional
linear flows of an unbounded fluid obtained by Lagnado et al.!® According to this
theory, unbounded two-dimensional linear flows in the range 0 <A <1 are
unconditionally unstable. For any positive values of the basic flow shear rate E
and the kinematic viscosity v, there exist spatially periodic initial disturbances
which grow exponentially in time. Such destabilizing disturbances have wave
vectors a = (a;,a5,03) whose components satisfy the following necessary and

sufficient conditions for instability:
(-1 + VN, + (1 +VNaz =0, (7)

. EVa
X3 < -

(8)

Equation (7) is satisfied by periodic disturbances having lines of constant phase
in the plane of the basic flow thal are parallel to the inlet streamline of the

basic flow. Among such initial disturbances, only those with sufficiently small
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values of the wavenumber ag in the direction normal to the plane of the basic
flow are unstable. The linear stability theory also shows that for pure exten-
sional flow (A = 1) the growth of disturbances is accompanied by the growth of
only one component of vorticity, namely, the component along the principal axis
of extensional strain. In the case of pure extensional flow, the principal axis of
extensional strain coincides with the outlet streamline and the outflow axis in

the four-roll mill (i.e., the x,~axis).

In order to apply this linear stability theory to a four-roll mill, some
account must be made of the fact that the flow in a four-roll mill is bounded by
solid surfaces. The boundaries have two effects on the stability problem. First,
they induce a secondary flow, thereby rendering the basic flow of the linear sta-
bility analysis invalid outside of a central region in the flow domain. Second,
they impose a restriction on the wavelengths of disturbances which can be real-
ized within the finite extent of the flow device. The only effect which can be
easily accounted for is the disturbance wavelength restriction imposed by the
top and bottom container surfaces. Any velocity disturbance must vanish on
these surfaces due to the no-slip condition. Thus, the disturbance wavenumber
In the direction normal to the plane of the basic flow must be restricted accord-

ing to
— < 2H, (9)

where H is the distance between the top and bottom container surfaces. Hence,
in view of the instability criterion (7), one would expect a pure extensional flow

(A = 1) to be stable in a four-roll mill under the condition

B <2, (10)

and unstable, otherwise. This stability criterion neglects all boundary effects

other than the wavenumber cut-off imposed by the top and bottem container
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surfaces. The dimensionless group EH?/ v in (10) is a Reynolds number based on
the shear rate E of the basic flow. Fuller and Leal!® have measured the shear
rate for the linear flows generated in the horizontal mid-plane of FRM1. They
found that this shear rate depends upon the angular speed w of the fastest pair

of rollers according to the linear relationship
E = 0878w, (11)

The same linear relationship should be valid for the flow in FRMZ, since the hor-
izontal dimensions of this device are identical to those of FRM1. Equation (11)
and the dimensions of FRM1 and FRM2 may be used to determine instability cri-
teria for the two four-rell mills, equivalent to (10), but involving the Reynolds
number Re = wRd/v. In this manner, we predict the instability of two-

dimensional pure extensional flow under the following conditions:

Re > 1.89 (in FRM1),

Re > 0.30 (in FRM2) .

Thus, the idealized theory predicts that an increase in the distance between the
top and bottom container surfaces (i.e., an increase in L/d) should lower the

critical Reynolds number for instability.

The idealized theory presented above differs from the experimental obser-
vations in two respects. First, the theory predicts that the two-dimensional pure
extensional flow in a four-roll mill should become unstable at a fairly low value
of the Reynolds number. However, no sharp transition was observed in either
FRM1 or FRMR at the respective predicted critical Reynolds numbers. The two-
dimensional flow gradually evolved into a three-dimensional flow with increasing

Reynolds number as a result of secondary-flow development. Furthermore, the

observed flows showed no apparent decrease in stability corresponding to an
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increase in L/d. Presumably, the boundary effects neglected in the idealized
theory account for this discrepancy. In the case of Couette flow, the experi-
mentally observed quasi-critical range of Reynolds number associated with the
growth of Taylor vortices is in good quantitative agreement with the results of
the linear stability theory for infinitely long cylinders. In this case, however, the
linear stability theory includes the presence of the cylinder surfaces and only
neglects the small top and bottom boundaries of the annular flow domain. In
the present study of the four-roll mill, no attempt has been made to analyze the
apparently considerable effect of roller surfaces and container side walls on the
flow. A complete analysis of the flow in a four-roll mill would require numerical
solution of the full Navier-Stokes equations. However, such an analysis appears
to be intractable at present due to the extremely complex geometric features of

the four-roll mill.
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Figure Captions
Figure 1. Four-roll mill geometry. (a) top view, (b) side view.
Figure 2. Flow fields produced in a four-roll mill.
Figure 3. Diagram of apparatus FRM1. (a) top view, (b) s%de view.
Figure 4. Diagram of apparatus FRM2 (side view).

Figure 5. Streamlines in Region 3 of FRM1. (a) Re = 5.9, (b) Re = 11.8,

(c) Re = 20.9, (d) Re = 23.9, (e) Re = 27.0, (f) Re = 34.9.

Figure 8. Streamlines in Region 3 of FRM1. (a) Re = 36.9, (b) Re = 38.6,

(c) Re = 39.5, (d) Re = 40.1, (e) Re = 40.7, (f) Re = 41.1.

Figure 7. Streamlines in Region 3 of FRM1. (a) Re = 42 3, (b) Re = 44.8,

(c) Re = 46.0, (d) Re =50.7, (¢) Re = 54 8, (f) Re = 56.5.

Figure B. Streamlines in Region 1 of FRM1. (a) Re = 4.1, (b) Re = 5.6,

(c) Re =82, (d) Re = 10.8, (e) Re = 11.1, (f) Re = 13.5.

Figure 9. Streamlines in Region 1 of FRM1. (a) Re = 16.2, (b) Re = 1B.7,

(c) Re = 21.2, (d) Re = 26.2, (e) Re = 32.9, (f) Re = 36.2.

Figure 10. Streamlines in Region 1 of FRM!. (a) Re = 37.7, (b) Re = 38.1,

(c) Re = 38.7, (d) Re = 39.2, () Re = 30.9, (f) Re = 41.4.

Figure 11. Streamlines in Region 1 of FRM1. (a) Re = 42.0, (b) Re = 42.6,

(c) Re = 45.6, (d) Re = 48.3, (e) Re = 51.1, (f) Re = 54.2.

Figure 12. Streamlines in Region 2 of FRM1. (a) Re = 4.1, (b) Re = 5.8,

(c)Re =82, (d)Re = 10.8, (e) Re = 11.1, (f) Re = 135,



Figure 13.

Figure 14.

Figure 15.

Figure 18.

Figure 17,

Figure 18.

Figure 19

Figure 20.

Flgure 27.

Figure 22
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Streamlines in Region 2 of FRM1. (a) Re = 16.1, (b) Re = 18.7,

(c) Re = 21.2, (d) Re = 26.2, (e) Re = 32.9, (f) Re = 36.4.

Streamlines in Region 2 of FRM1. (a) Re = 38.0, (b) Re = 38.1,

(c) Re = 38.7, (d) Re = 39.9, (e) Re = 40.7.

Streamlines in Region 2 of FRM1. (a) Re = 42.0, (b) Re = 45.7,

(c) Re = 4B.0, (d) Re = 52.4, (e) Re = 54.7.

Streamlines in Region 1 of FRM2. (a) Re = 4.0, (b) Re = 10.1,

(c) Re = 20.5.

Streamlines in Region 1 of FRM2. (a) Re = 24.8, (b) Re = 29.1,

(c) Re = 36.0.

Streamlines in Region 1 of FRM2. {a) Re = 37.3, (b) Re = 39.4,

(c) Re = 40.5.

Streamlines in Region 1 of FRM2. (a) Re = 42.8, (b) Re = 45.0,

(c) Re = 47.0.

Streamlines in Region 1 of FRM2. {mercury layer present)

(a) Re = 4.0, (b) Re = 10.1, {c¢) Re = 20.5.

Streamlines in Region 1 of FRM2. {mercury layer present)

(a) Re = 24.8, (b) Re = 29.2, (c) Re = 36.0.

Streamlines in Region 1 of FRM2. (mercury layer present)

(a) Re = 38.3, (b) Re = 40.8, (c) Re = 45.3.
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