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This thesis is dedicated to my 

parents, self-taught, who said, "Son, get 

an education." 
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The most mysterious aspect of difficult science is the way it is 

done. Not the routine, not just the fitting together of things 

that no one had guessed at fitting, not the making of 

connections; these are merely the workaday details, the 

methods of operating. They are interesting, but not as 

fascinating as the central mystery, which is that we do it at 

all, and that we do it under such compulsion. 

- Lewis Thomas 

Not just a job, it's an adventure. 

Army Recruitment Commercial 
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ABSTRACT 

The amino acid sequence of the two kappa chain constant region allotypes found 

in inbred rat strains indicated that these alleles are very different and therefore may 

have had an unusual evolutionary history. To understand the evolution of these genes, 

serologic tests were performed to determine if inbred rats express latent or 

unexpected CK alleles. They apparently do not do so. Wild Norway rats were tested, 

and it was found that the laboratory strains do not represent a subset of the rat CK 

polymorphism. Further tests indicated that only one of the two serologic specificities 

could be found in related rodent species. 

The structure of the T cell antigen-binding receptor is a major controversial 

issue in immunology. It has been asserted that the T cell antigen-receptor is 

homologous to immunoglobulins, and one popular theory contends that V H genes are 

responsible for the specificity of the receptor. We tested these theories by 

hybridizing immunoglobulin DNA probes to RNA and DNA from cloned T cells. First, 

we determined that the C,, J , C , JH' C and C genes and the sequences involved 
11. K K \1 a 

in heavy chain class switching are not rearranged in a T helper, a cytotoxic T cell and 

a T lymphoma. These cells also do not transcribe C , C,, JH' C and C RNA. 
K 11. 11 a 

Second, a eDNA clone encoding heavy chain variable region characteristic of most 

B cells which respond to the antigen GAT was isolated and sequenced. Poly(A)+ RNA 

was prepared from 12 cloned T lymphocytes specific for GAT. While six of these 

T cells display antigenic determinants present on immunoglobulins that bind GAT, 

none of them contained a transcript homologous to the eDNA probe. Finally, using a 

random primer, large eDNA libraries (105-106 colonies) were constructed from three 

T-cell hybridomas. These libraries were screened by two separate, well-

characterized methods which should permit the detection of all or most V H gene 

segments. No V H eDNA colonies were found by these methods. Therefore 

immunoglobulin gene segments are not likely to be part of the T cell antigen 

receptor. 
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The 1-J serologic specificity has been reported to be present on T cell-derived 

antigen-binding molecules. Cosmid clones have been previously obtained containing 

all the sequences between the 1-A and 1- E subregions of the murine major 

histocompatibility complex, where 1-J has been genetically mapped. The putative 1-J 

DNA does not, however, hybridize to RNA from 1-J positive suppressor T cells. Also, 

suppressor T lymphocytes do not rearrange this DNA. Therefore the 1-J coding 

sequences must map elsewhere. 
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Chapter 1 

EXPRESSION AND EVOLUTION OF RAT KAPPA CHAIN 

CONSTANT REGION ALLOTYPES 
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Introduction 

Immunoglobulin kappa light chains from inbred laboratory rat (Rattus 

norvegicus) strains have two serologically detectable forms that segregate as 

codominant alleles (Armerding, 1971; Gutman and Weissman, 1971; Rokhlin et al., 

1971). The genetic locus that controls the expression of these markers is RI-1, and 

the corresponding alleles are RI -1 a and RI -1 b. The biochemical differences 

responsible for these serological markers are located in the constant region of the 

kappa chain (Nezlin et al. , 1974). Eighty-one out of 111 residues in the constant 

regions of the RI-1a and RI-1b kappa chains have been compared by amino acid 

sequence analysis (Gutman et al., 1975) and it was found that they differ by 10 amino 

acid substitutions and a sequence gap. 

Allelic variants at a single genetic locus generally differ by one or a few amino 

acid substitutions. For example, over 200 human hemoglobins have been examined 

and most differ by one residue, a few differ by two and only one differs by as many as 

three residues (Hunt et al. , 1972). The use of the term "complex allotypes" has been 

suggested to denote serologically detectable markers which segregate as Mendelian 

alleles at a single genetic locus, and differ from one another by multiple amino acid 

substitutions (Gutman et al., 1975; Farnsworth et al., 1976; Silver and Hood, 1976). 

On this basis, rat kappa chain alleles, rabbit kappa chain constant region (Farnsworth 

et al., 1976), and heavy chain variable region (Strosberg, 1977) allotypes, and H-2K 

and H -2D alleles of the murine major histocompatibility complex (Silver and Hood, 

1976; Maizels et al., 1979) have beeri classified as complex allotypes. The term 

complex allotypes is purely descriptive of the multiple differences, but is meant to 

focus attention on the fact that these alleles may have had an unusual evolutionary 

history. 

There are three general models which explain the evolution of complex 

allotypes (Fig. 1; Gutman et al., 1975): 1) The alleles evolve in a normal fashion from 
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a single ancestral gene by the successive occurrence and fixation of multiple 

mutations in this gene. At many of the loci encoding complex allotypes, one must 

postulate either intense selective pressures to account for an unusually rapid 

divergence of the alleles, or that the alleles began to diverge long before the 

formation of the present-day species. 2) An early gene duplication may allow the 

fixation of many nucleotide differences in these duplicated genes. Two homologous 

but unequal crossovers could then generate two different populations, each one having 

only one of the duplicated gene copies. 3) The allelic genes are actually duplicated 

genes present on the same homologue and a control mechanism selects which of the 

pseudoallelic forms is expressed. In this case, the genetic studies are detecting 

allelic forms of a control mechanism rather than alleles for the structural genes. 

We have studied the rat kappa chain constant region (CK) allotypes in order to 

better understand the evolution of complex allotypes and to distinguish between the 

three models for the formation of complex allotypes listed above. Specifically, we 

tried to answer three questions: 1) Do inbred rat strains express latent allotypes? 

The transient and/or low level expression of allotypes not expected according to the 

conventional Mendelian behavior of alleles (i.e., two or more allotypes in an inbred 

rat strain) would provide evidence for a gene duplication and a control mechanism 

regulating expression of the duplicated genes. We employed a sensitive, quantitative 

radioimmunoassay (RIA) in order to detect unexpected RI-1 alleles (latent allotypes). 

2) How many RI-1 alleles are present in Rattus norvegicus? The detection and 

characterization of new CK allotypes would help i.n understanding the evolutionary 

history of these alleles. For example, the detection of cross-reactive light chains 

"intermediate" between the RI-1 a and RI-1 b specificities would tend to support the 

hypothesis that the alleles diverged in a normal fashion from a single ancestral gene 

in Rattus. To detect such alleles, we tested wild Rattus norvegicus with anti-allotype 

sera. (3) When did the RI-1 alleles begin to diverge? Could such divergent alleles 
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have been formed from a single ancestral gene in Rattus norvegicus? To address this 

point, we tested three other rodent species for the presence of RI-1a and RI-1b kappa 

chains. 

Materials and Methods 

Inbred rats. WF /fMai, BN/fMai, LEW /fMai, ACI/fMai and F344/fMai were 

originally obtained from Microbiological Associates, Walkersville, Maryland, and were 

bred for several generations in our colony. 

Wild rats. Rattus norvegicus (Norway rats) were trapped at Los Angeles and 

Seal Beach, California, with the help of Orange County Vector Control. Dr. David 

Gasser, University of Pennsylvania, Philadelphia, Pennsylvania, kindly sent us the sera 

from eight wild Norway rats trapped in Philadelphia. Neotoma fuscipes (dusky-footed 

wood rats) were trapped in the Santa Monica mountains of Los Angeles, California. 

Rattus rattus (roof rats) were trapped in Los Angeles, California, and the sera from 

these rats was the gift of Dr. John Estes, University of Southern California Medical 

School, Los Angeles, California. 

Preparation of anti-allotype sera. Anti-RI-1a was made in WF rats against ACI 

immunoglobulin and anti-RI-1 b was made in ACI rats against WF immunoglobulin. 

The anti-allotype sera were prepared according to published procedures (Gutman and 

Weissman, 1971). Briefly, rats were given two or three intraperitoneal injections of 

pertussis vaccine (Eli Lilly and Co., Indianapolis, Ind.) and bled one week later. Anti-

pertussis rat serum was mixed with the vaccine and the pertussis-anti-pertussis 

complex served as the immunogen. 

Radioimmunoassay. A solid phase radioimmunoassay (RIA) was used to 

quantitate allotype. The globulin fraction of the anti-allotype serum was coupled to 

CNBr-activated Sepharose (March et al., 197 4) at a ratio of approximately 1 mg of 

protein per ml of packed beads. Radiolabeled antigens were the IgG fraction of WF 
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or ACI serum proteins. These were prepared by precipitating pooled WF or ACI sera 

three times with 18% (w/v) Na2so 4. The precipitate was then filtered through a 

2.5 x 100 em Sephadex G-200 (Pharmacia, Uppsala, Sweden) column in BBS (0.17 M 

H3Bo3, 0.13 M NaCl, 28 mM NaOH, pH 8.1 with 0.02% NaN 3). Gel electrophoresis in 

0.1% SDS under reducing conditions (Fairbanks et al., 1970) indicated that the peak 

containing IgG which eluted from the G-200 column consisted of >90% heavy and 

light chains. Immunoglobulin antigens were iodinated by the chloramine-T method 

(Hunter, 1973). One hundred to 150 ]JCi of 125Iodine was added to 5 ]Jg of protein 

and gave a final specific activity of 5-20 ]JCi/]Jg. To test antigen binding, 4 ng of 

125I-labeled antigen and Sepharose coupled anti-allotype were placed in a Beckman 

microfuge tube. PBS (0.05 M phosphate, pH 7 .4, 0.15 M NaCl) with 10% fetal bovine 

serum (FBS) was added to bring the final volume to 350 ].11 and the contents were 

rotated continuously at room temperature in an end-over-end mixer. To obtain 

maximal sensitivity for inhibition assays, the labeled antigen was used in slight excess 

(about 50% of added cpm bound) to the anti-allotype reagent. Antigen binding under 

these conditions reached a plateau at 12 hours. We mixed the tubes for 18 hours, spun 

them down in a Beckman microfuge, and removed the supernatant. The pellet 

containing anti-allotype coupled to Sepharose and any bound labeled antigen was 

washed twice with 350 ].11 of PBS containing 10% FBS. The final pellet and the total 

supernatant volume were counted in a Chicago-Nuclear y counter. All experiments 

included a blank tube which contained 125Iodine-labeled antigen, underivatized 

Sepharose and PBS with 10% FBS in a total volume of 350 ].11. The fraction of the 

radiolabeled antigen bound to the antiserum was calculated according to the following 

formula: 

Fraction bound = cpm pellet 
cpm supernatant 

+ cpm pellet 

cpm pellet blank 
cpm supernatant blank 

+ cpm pellet blank 

Standard curves were constructed using various amounts of the purified unlabeled IgG 
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fractions (described above) as competitors for binding with the 125I-labeled antigen. 

Protein concentrations were estimated by reading the optical density at 280 nm 

(1.4 O.D. = 1 mg/ml). 

B. 
% inhibition = (1 --1

) 100 
Bo 

B. = fraction bound with inhibitor 
1 concentration i 

B
0 

=fraction bound without inhibitor 

Inhibitors were mixed for 1 hr with the anti-allotype reagent before addition of 

labeled antigen. Aside from standard curves, unfractionated serum samples were 

used as inhibitors. All data points were taken in triplicate. Inhibition of binding 

greater than or equal to 10% was considered significant. 

Passive hemagglutination. Passive hemagglutination and inhibition of passive 

hemagglutination were carried out as described (Gutman and Weissman, 1971). WF 

and ACI rat anti-sheep red blood cell antisera were prepared and these sensitizing 

antisera were mixed with sheep red blood cells at a dilution just past the 

agglutination end point. Sheep red blood cells coated with rat immunoglobulin were 

then tested with 20 ).11 of anti-allotype antibody and serial dilutions of inhibitor sera. 

Allotype suppression. One-day-old rats received an intraperitoneal injection of 

0.2 ml of anti-allotype sera. The process was repeated on day seven. 

Results 

Rat alloantisera recognize light chain allotypes. In most cases we used a radio-

immunoassay for serologic tests. This assay was more sensitive, quantitative and 

reproducible than the hemagglutination assay that had been previously employed. The 

RIA should therefore more easily permit detection of low levels of latent allotype 

expression and is better suited to distinguish cross-reactive from identical light chain 

serotypes. 

Figure 2 shows examples of standard curves obtained using Sepharose-coupled 

antisera. The A VN, BN, LEW and LOU strains are reported to express the RI -1 b 
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specificity (Gasser, 1977). Two J.ll of pooled serum from each of these strains 

inhibited binding of 125I-WF Ig (RI-1 b) to antibodies against WF Ig. Binding of 125I­

ACI Ig (RI-la) to antisera against ACI Ig was not inhibited (data not shown). TheDA, 

F344 and OM strains reported to be RI-1a positive (Gasser, 1977) inhibited binding of 

125I-ACI Ig but not binding of radioactive WF Ig. Isolated ACI and WF light chains 

can completely inhibit binding of radioactive whole immunoglobulin by the 

appropriate antisera (data not shown). These results indicate that our antisera 

recognize the defined light chain allotypic specificities. 

Latent allotype expression in normal rats. Inbred laboratory rats were tested 

for latent allotype expression. Initially, 31 rats were bled by cardiac puncture and 

their whole sera were individually tested. For example, serum from an RI-1a 

homozygous rat was added to anti-allotype (anti-RI-1b) and labeled RI-1b immuno­

globulin and the percent inhibition of antigen binding was observed. We deliberately 

chose to test rats of varied backgrounds since a control mechanism might "leak" or 

permit latent allotype expression only under limited circumstances (Strossberg, 1977). 

Our test sera came from rats from five different inbred strains, both male and 

female, ranging in age from three weeks to over one year old. Six animals had been 

repeatedly immunized with pertussis vaccine. 

Fifty J.ll of serum from 19 RI-1b homozygotes were tested with anti-RI-1a 

serum. This is at least 250 times as much as was needed to completely inhibit binding 

of labeled RI-1b immunoglobulin to anti-RI-1b sera (data not shown). Eighteen out of 

19 RI-1 b sera inhibited binding of labeled RI-1 a immunoglobulin, with values ranging 

from 12.9% to 42.9% (Table 1). For the RI -1 a rats, 50 J.ll of sera from 10 out of 12 

animals inhibited binding of labeled RI-1b, ranging from 14.0% to 59.3% inhibition 

(Table I). Fifty J.ll of pooled BALB/c mouse serum did not cause inhibition of binding 

of anti-allotype sera to either RI-1 b or RI-1 a rat immunoglobulin. Thus, the 

inhibition observed is not an artifact caused by having a large amount of serum 
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protein present in the assay tube. 

The mean inhibition of binding of the anti-allotype sera to RI-1 a immuno­

globulin by 19 Rl-lb sera was 28.6%. The mean inhibition of binding of Rl-lb by 10 

Rl-la sera was 34.3%. To rigorously establish a serological identity between the 

cross-reactive material and the unexpected or latent CK allotype, we should be able 

to satisfy two criteria: 1) the cross-reactive material should be able to inhibit at 

least 90% of the binding of the Sepharose-coupled anti-allotype to the labeled 

immunoglobulin; and 2) the slope of the inhibition curve should be similar to the slope 

of a standard curve using purified immunoglobulin with the allotype in question. In 

order to increase the amount of competitor serum added to the assay tubes by an 

order of magnitude, we concentrated the sera from single bleedings of 12 individual 

rats by pressure dialysis. Most of these rats had been tested earlier using 50 lll of 

serum (Table 1). Inhibition curves for four of these serum samples are shown (Fig. 2). 

The data fall into two groups. 1) In 10 cases, the competitor appears to only 

partially cross react with the unexpected allotype. The percent inhibition in these 

cases (two are shown in Fig. 2) either increases very slowly, reaches a plateau, or 

even decreases with increasing concentration of serum. 2) In two cases, rats WF 10 

and AVN 02 (Fig. 2B), the inhibition points fall on a straight line. Neither line 

contains many points since the experiment in Figure 2B required a total of 2.4 ml of 

AVN and 3.2 ml of WF serum. For the AVN 02 serum, the maximum inhibition was 

67% and for the WF 10 serum the maximum was only 51% and so it is possible that we 

are observing plateau values. 

Allotype suppression. We attempted to suppress the nominal allotype of Rl-1 

homozygous rats reasoning that latent CK allotype production might compensate for 

the suppressed allele of the homozygote. Our first step was to show that CK allotypes 

could be suppressed in rats. 
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Neonatal F 1 rats which had received two injections of antiserum to their 

paternal CK allotype show a profound depression in the synthesis of that allotype six 

weeks later (Table II). The capacity to be suppressed does not seem to be restricted 

to either allotype or to any particular strain combination of the ones tested. Two 

animals assayed at four months of age still showed only about 1% of normal C 
K 

allotype synthesis. Allotype suppression has also been characterized in mice and 

rabbits (Herzenberg et al., 1975; Mage, 1975). It is possible that allotype suppressed 

F 1 (1 ax1 b) females could be backcrossed to 1 a homozygous males in order to obtain 

allotype suppressed homozygous progeny. Unfortunately, disease in our colony wiped 

out the few suppressed female rats we had obtained and this experiment was not 

completed. 

Allotype suppression was attempted by directly injecting anti-RI -1 sera into 

normal homozygous neonates. Concentrated sera were used, and these animals 

received four times the dose of the F 1 rats. This treatment apparently had little 

effect on the expression of the expected C allotype of the homozygous animals 
K 

which in all cases except one was greater than 2 mg/ml of serum (data not shown). A 

small amount of latent allotype expression observed in these animals can be 

attributed to the persistence of the injected anti-allotype immunoglobulin in their 

circulation. After a few weeks the observed levels of cross-reactive material were 

no greater than those seen in normal homozygotes (data not shown). 

Number of RI-1 alleles in Rattus norvegicus. Additional alleles might exist in 

Rattus norvegicus but may not have been detected because the inbred strains 

represent only a portion of the total polymorphism present in the species. Many 

inbred rat strains share a common ancestry, apparently having originated from the 

early Wistar and Sprague-Dawley colonies (Palm and Black, 1971). We tested the sera 

of 24 wild Norway rats trapped in widely separated locales by inhibition of passive 

hemagglutination and in 17 cases by radioimmunoassay as well. As shown in Table III, 
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there are no rats lacking both allotypes, and the RIA data are consistent with there 

being no intermediate or partially cross-reactive forms (data not shown). 

Interspecies relationships of RI-1 alleles. Table IV shows the inhibition of 

passive hemagglutination and RIA data obtained from other wild rodents that were 

trapped locally. Rattus rattus (family muridae) which is closely related to the 

Norway rat but does not interbreed with it (Robinson, 1965) has the RI-1 b but not the 

RI-1a serologic specificity. On the other hand, the kappa chains of the BALB/c 

inbred mouse strain (also family muridae) show no cross-reaction with either anti-

allotype. The New World rodent Neotoma fuscipes (family cricetidae) appears to 

share few specificities with any rat kappa chains, although a slight cross-reaction 

with RI -1 b may be just at the limit of detection. 

Discussion 

Complex allotypes are encoded by the mouse major histocompatibility complex 

(MHC), rabbit kappa chain constant region and heavy chain variable region loci, and 

by the rat kappa chain constant region locus. Several systems that exhibit multiple 

serological specificities such as the mouse IgG2a locus (Lieberman, 1978) and the 

human IgG3 locus (Fudenberg et al., 1978) may turn out to encode complex allotypes 

as defined by amino acid sequence criteria. Thus, complex allotypes constitute a 

major class of the polymorphisms found in the immune system and possibly in other 

systems as well (Gutman et al., 1975). We have studied the rat C allotypes as a 
K 

model system for understanding the evolution of complex allotypes. 

Models for the evolution of complex allotypes 

Three general models (Fig. 1) have been proposed for the evolution of complex 

allotypes. 

(1) The alleles evolve in a normal fashion from a single ancestral gene by the 

successive occurrence and fixation of multiple mutations in this gene. In most cases 
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it is not easy to see how these alleles could have evolved from a single ancestral gene 

present in a species. A striking example is the b4 and b9 kappa chain constant region 

alleles of the rabbit which differ by 33 residues (Farnsworth et al., 1976). The 

observed sequence divergence is consistent with the alleles having been separate for 

over 50 x 106 years (Dayhoff, 1969). A second possibility consistent with this model 

is that the alleles began to evolve in a normal fashion long before the formation of 

the species that expresses them. New species formed in this evolutionary line must 

therefore have started from individuals already polymorphic at this locus. 

(2) Complex allotypes may evolve by gene duplication and subsequent gene loss 

through homologous but unequal crossing over The gene duplication may occur before 

or after the formation of the species in which the particular polymorphism is found. 

The rate of fixation of mutations may be increased if we assume either that one gene 

is silent and can accumulate mutation free of stringent selective pressure or 

alternatively if both genes are expressed but only one functional gene is required for 

survival fitness. Later in evolution, two unequal but homologous crossing-over events 

can occur to generate two populations of organisms, each having a different form of 

the gene in question. 

(3) Complex allotypes may evolve by gene duplication and be differentially 

expressed via a control mechanism. This model is similar to the second model in 

postulating a gene duplication which permits a rapid divergence of the duplicated 

genes. The critical difference in the second and third models is the arrangement and 

expression of genes in the contemporary organism. In the second model, allelic 

behavior for the duplicated genes is caused by a crossover event leading to a gene 

reduction while in the third model a control mechanism allows expression of only one 

of the gene copies. Similar control mechanism proposals have been made by others 

(Rivat et al., 1970; Bodmer, 1973). The regulatory or control gene model for the 

evolution of complex allotypes is unattractive since it postulates control which by an 
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unknown mechanism must mimic allelic inheritance. There are, however, at least two 

sets of genes in eukaryotes, those coded by the yeast mating type (Hicks and 

Herskowitz, 1977) and mouse TL loci (Old and Stockert, 1977) which involve control 

genes that mimic allelic inheritance. 

Latent CK allotype expression is not observed in rats 

One way to distinguish between the models listed above would be to find 

expression of unexpected or latent allotypes in inbred strains of rats. 

We examined a total of 61 rats and six pools of sera (Tables I, II, Fig. 3, data not 

shown) for expression of latent allotypes. In many cases, the competitor serum gave 

a cross-reaction rather than a reaction of identity with immunoglobulin bearing the 

unexpected Rl-1 allotype. In no instance could the rat sera inhibit more than 67% of 

binding of immunoglobulin with latent allotype and in most cases the inhibition curve 

appeared to plateau at about 60%. The structure of this cross-reactive material is 

unknown and we have no evidence that it is a K light chain. It should be noted that 

the immunogen used to make the antisera is an antibody-antigen complex which could 

contain many different proteins. Precedents exist for puzzling, apparently 

artifactual cross-reactions of specific antisera with allotypic markers (Litwin, 1971; 

Mage et al., 1977). In two cases, probably because of a shortage of serum, plateau 

values for inhibition were not reached. Because of the widespread appearance of 

RI -1 cross-reactive material, we have assumed that the molecule causing inhibition in 

these cases is also cross-reactive rather than identical. However, if the inhibitor is 

the latent RI-1 allele, then AVN 02 expresses about 190 ng/ml of immunoglobulin 

with the RI-1b kappa chain and WF 10 expresses about 60 ng/ml of RI-1a. These 

values are less than 0.01% of the concentration of the expressed or nominal allotype 

in the serum. While we have found no convincing evidence for the synthesis of latent 

RI -1 alleles, this does not entirely disprove the control mechanism model since such a 

hypothetical mechanism might not permit even low levels of latent allotype 

expression. 
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Our attempts at immunological manipulation of latent allotype levels were 

unsuccessful. In the course of doing these experiments, we were able to demonstrate 

nearly complete and chronic suppression of the paternal CK allotypes of F 1 rats 

(Table V). The attempt at direct suppression of homozygous rats failed despite the 

extra dose of antisera, presumably because of the large amount of maternally derived 

antibody present in the circulation of the neonate. However, suppression of K chain 

allotype in homozygous rabbits, produced by backcrossing allotype suppressed F 1 

females to normal homozygous males, led to elevation of CA. rather than latent CK 

allotype expression (Mage, 1975). 

Rattus norvegicus expresses only two RI-1 alleles 

Expression of a kappa light chain which is either partially cross-reactive or does 

not react with the anti-allotype sera would shed light on the evolution of these 

alleles. For the first model, which postulates no gene duplication, we might expect 

a C allele intermediate between the 11extremes11 of RI-1a and RI-1b to have been 
K 

fixed in some populations. The detection of such an allele, would not, however, 

eliminate the other models. A large number of inbred rat strains have been typed for 

RI-1 alleles. Forty-four strains have the RI-1b allele, and 16 have the RI-1a allele. 

No strains have both allotypic markers, neither do any strains lack both these 

markers. There is no evidence for a third allele or a partially cross-reactive 

intermediate allele. Including the work reported here, five different sets of antisera 

give apparently equivalent results (Armerding, 1971; Gutman and Weissman, 1971; 

Beckers et al., 1974; Rokhlin and Nezlin, 1974; Gutman, 1977; Gasser, 1977). 

However, because many inbred rat strains originated from the same two colonies, 

these strains may not represent the full extent of Rattus norvegicus polymorphism. 

Therefore, a screening of wild Norway rats was undertaken. These animals typed as 

. a b a b either RI-1 , RI-1 , or 1 /1 heterozygotes with no double negatives observed. 

Similar results have been reported by others (Nezlin and Rokhlin, 1976; Gutman, 
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1977), and it therefore appears unlikely that we have sampled only a very limited 

portion of Rattus norvegicus Rl-1 polymorphism. 

It is possible, however, that a low frequency allele which is not cross-reactive 

has escaped detection. For such an allele, the tests conducted will detect only x/x 

homozygotes, whereas a/x or b/x heterozygotes would type as Rl-1 homozygotes. It 

also is possible that the anti-allotype sera recognize one or few immunodominant 

determinants among many differences in the constant region and that light chains 

assigned a particular RI -1 allele are really not identical to one another. Only a 

biochemical analysis of rat kappa chain constant regions can settle this question. 

Rl-1 alleles evolved before formation of Rattus norvegicus as a separate species 

The Rattus rattus we tested had the RI -1 b, but not the RI -1 a allotypic 

specificities. This result is consistent with the data of George Gutman and his 

collaborators (Gutman and Moriwaki, 1979) who found the Rl-1 b specificity is widely 

distributed among Rattus species. Thus it is clear that at least one of these alleles 

had evolved before the formation of Rattus norvegicus as a separate species. There 

is no evidence for any light chain identical to or cross-reactive with Rl-1a, and the 

origin of this specificity is mysterious. The New World rodent Neotoma fuscipes and 

a Mus musculus inbred strain displayed neither serotype. 

Postscript - 1982 

The rapid evolution of some immunoglobulin constant region allotypes is still 

poorly understood. Analysis of the rat CK genes in the laboratory of Dr. George 

Gutman has proven that inbred rats expressing the Rl-1 a or Rl-1 b specificities 

contain a single CK gene (Sheppard and Gutman, 1981). Thus, in this species the 

control gene model cannot be correct. Alleles of the mouse y2a heavy chain constant 

region differ by 111 out of 1093 nucleotides compared (Schreier et al., 1981). A 

control gene model for these alleles is also not possible. Some of the changes present 
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in one y2a allele may have been caused by a gene conversion event involving y2b 

sequences. The situation for the rabbit CK locus is quite different. Amino acid 

sequence analysis has confirmed one case of latent allotype expression which was 

originally identified serologically (Yarmush et al., 1980). Southern blot hybridizations 

of a K probe (b4) to DNA from b4, b5, b6 and b9 homozygous rabbits indicate that 

each rabbit contains multiple C genes (Heidmann and Rougeon, 1982). It has not yet 
K 

been determined if some of these hybridizing sequences are silent versions of 

expressed alleles, nor do we understand how the expression of the rabbit CK genes is 

regulated. Finally, it is not clear whether the rabbit C genes are an exception or if 
K 

many other examples of complex allotypes regulated by control genes will be found. 
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TABLE I 

TEST FOR THE PRESENCE OF LATENT ALLOTYPES IN SERA OF NORMAL RATS 

Nominal 
Strain RI-1 type 

Latent RI-1 a 

WF 

LEW 

AVN 

BN 

Total 

b Latent RI-1 

ACI 

F344 

Total 

b 

b 

b 

b 

a 

a 

Volume 
Number tested 

11 50 ].11 

5 50 ].11 

1 50 ].11 

2 50 ].11 

19 

12 50 ].11 

2 50 ].11 

14 

RIA as described in Materials and Methods. 

Number inhibiting % Inhibition 
binding (range) 

10 12.9-36.7 

5 23.9-38.4 

1 23.5 

2 34.3-42.9 

18 

10 14.6-59.3 

2 32.7-40.5 

12 
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TABLER 

ALLOTYPE SUPPRESSION IN F l RATS 

Concentration of 
RI-1 Rat Age Allotype immunoglobulin (mg/ml) 

Strain type No. (weeks) suppressed containing RI -1 

a b 

(WFxF344)F 1 b/a -3 1 6 a 3. 3 X 10 4.32 

2 6 a 3.3x10 -3 
4.45 

3 6 a 2. 3 X 10 -3 
2.92 

(LEWxACI)F 1 b/a -3 1 6 a 0. 4 X 10 0.53 

2 6 a 0.9 X 10 -3 
0.98 

3 6 a 0. 5 X 10 -3 
0.61 

2 16 a 11.5x10 -3 
n.d. 

3 16 a 12.5x10 -3 
n.d. 

(ACixLEW)F1 a/b 
1 6 b 0.91 <0 .1 -
2 6 b 1.29 <0 .1 -
3 6 b 0.63 <0.1 

(F344xWF)F 1 a/b 
1 6 n.d. 1.49 1.42 

2 6 n.d. 1. 76 1.16 

3 6 n.d. 0.89 1. 32 

Neonatal rats were allotype-suppressed as described in Materials and Methods and 

their sera were individually tested for RI-1 a and RI-1 b by RIA at the age indicated. 

Fifteen ]11 of sera were used to measure the amount of RI-1 a immunoglobulin in 

rats suppressed for the RI-1 a specificity. 
-2 In all other cases, 4 x 10 ]11 of sera 

were tested. n.d. = not done. 
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TABLEffi 

Rl-1 TYPING OF WILD RATTUS NORVEGICUS 

RI-1 type 

Location a a/b b 

Los Angeles, CA 0 5 (5) 0 

Seal Beach , CA 2 (2) 5 (4) 3 (3) 

Philadelphia, P A 8 (2) 1 (1) 0 

TOTAL 10 (4) 11 (10) 3 (3) 

Rats were typed by inhibition of passive 

hemagglutination. Parentheses indicate the number 

confirmed by RIA. 
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TABLE IV 

Rl-1 TYPING OF WILD RODENTS 

Inhibitor sera 
Log2 Hemagglutination 

titre RIA-% Inhibition 

Strain or ACiaWF + WFaACI + ACiaWF + WFaACI + RI-1 
species Location WF-SRBC ACI-SRBC 125I-WFig 1251-ACIIg type 

None 8 8 0.0 0.0 

WF 0 8 95.4 5.8 b 

ACI 8 0 1.9 105.7 a 

Rattus Los Angeles, CA 
rattus 1 0 8 100.5 5.6 b 

2 0 8 100.0 4.1 b 

3 0 8 105.2 9.7 b 

4 0 8 103.3 0.2 b 

Neotoma Los Angeles, CA 
fuscipes 1 8 7 15.3 3.2 

2 8 7 15.2 0.7 

3 8 7 2.6 -1.8 

4 7 7 15.1 -0.9 

5 7 7 10.8 n.d. 

Rodents were tested for allotype by inhibition of passive hemagglutination and radio-

immunoassay as described. For the RIA, 5 J.ll of competitor serum were tested. 
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Figure 1. Genetic models for the expression and evolution of the rat C allotypes. 
K 

(a) Classical alleles. (b) Alleles by crossing-over. (c) Alleles by gene duplication and 

a control mechanism. 
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Figure 2. Standard curve for anti-allotype sera. Sepharose-coupled anti-allotype was 

mixed with various amounts of unlabeled immunoglobulin (Ig) for one hour before 

addition of labeled antigen. Percentage of inhibition of binding is plotted against 

concentration of unlabeled immunoglobulin. Slope and intercept of the lines 

determined by the method of least squares. 

o; Sepharose-AC1aWF, 1251-WF and WF 1g unlabeled competitor; 

!::,; Sepharose-AC1aWF, 125!-WF and AC1 1g unlabeled competitor; 

0; Sepharose WFaAC1, 1251-ACI and AC1 1g unlabeled competitor; 

x; Sepharose WFaAC1, 1251-AC1 and WF 1g unlabeled competitor. 
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Figure 3. Sera from individual rats having material cross-reactive with unexpected 

allotypes was concentrated by pressure dialysis and then added to anti-allotype 

reagents to test for latent allotype as described. Volume of competitor serum plotted 

on the abscissa is the equivalent volume used had the serum not been concentrated. 

In all cases shown, Rl-lb rats were tested for Rl-la expression. 

(a) e, WF rat (No. 11) serum. 0 , LEW rat (No. 05) serum. 

(b) o, AVN rat (No. 02) serum. 0 , WF rat (No. 10) serum. 
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Chapter 2 

SOME QUESTIONS AND CONTROVERSIES CONCERNING THE T-cELL 

ANTIGEN-BINDING RECEPTOR 
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B and T lymphocytes are unique in their capacity to respond specifically to 

antigens. While the range of the immune response can encompass diverse antigens, 

individual lymphocytes can recognize only a very few antigenic determinants. The 

set of determinants recognized by a cell result from the specificity of the antigen­

binding receptor expressed on the surface of that lymphocyte. For B cells, it is 

known that the receptor molecule is an immunoglobulin.1' 2 For T lymphocytes, the 

structure of the receptor is completely uncharacterized. Although it has been a 

decade since the publication by Simonsen and his collaborators of the landmark paper 

entitled "The Elusive T Cell Receptor," 3 the adjective "elusive" is often used to 

describe the antigen receptor today. 

A. T Cell Development and Function. T lymphocytes arise from stem cells in the 

bone marrow and T-cell precursors migrate to the thymus where they become 

immunocompetent. 4 These virgin T cells leave the thymus and subsequently seed T­

cell-specific domains of peripheral lymphoid organs. 4-6 Some of the different stages 

of this maturational pathway are characterized by differences in the expression of 

cell-surface alloantigens such as Thy-1, TL and Lyt 1, 2, and 3.7 

T cells have at least two roles in the immune system. First, they regulate the 

immune response by providing signals that help or suppress other lymphocytes. 

Second, they are cytotoxic for cells that display antigenic determinants on their 

surface. The lymphocytes that carry out these roles can be divided into at least three 

separate functional subclasses: helper T cells, 8,9 suppressor T cells10 and killer T 

cells.11 T lymphocytes undergo an antigen-independent differentiation that results in 

commitment to one of these functional subclasses.12,13 The presence of cell-surface 

alloantigens is correlated with the functional subclass; Lyt-1 positive cells tend to be 

helper cells, 9,12 Lyt 2,3 positive cells are cytotoxic or suppressor cells, 12,13 and I -J 

encoded molecules are expressed primarily on cells involved in suppression. 14 



32 

Within the last five years, a number of techniques have become available that 

permit the isolation and propagation of functional cloned T lymphocytes. The two 

most commonly employed methods for immortalizing T cells are fusion to a drug­

sensitive thymona cell line (usually BW5147)15 ,16 or continued restimulation with 

antigen and/or T-cell growth factor (Interleukin-2). These cloned T cells have 

already been used in a large number of studies that have greatly expanded our 

knowledge of lymphocyte function. In addition, the specificity of these cloned cells 

proves that T lymphocytes do not passively acquire any part of their antigen-binding 

receptor from B lymphocytes. 

B. T Cell Antigen Recognition: Results from Functional Studies. Experiments us­

ing molecules with precisely defined antigenic determinants, such as insulins, 19 

cytochromes20 and fibrino-peptides, 21 have demonstrated the ability of T lympho-

cytes to discriminate between very closely related antigens. The description of Ir 

gene defects (Section B.3) may indicate, however, that the range of T-cell immune 

responses is more restricted than antibody-antigen interactions. In addition, there is 

some controversy over whether T cell receptors must recognize a different type of 

antigenic determinant than immunoglobulins. In a number of cases, T and B cells 

responding to the same antigen recognize different antigenic determinants, 19,22 

while the results of other experiments suggest the same determinant is probably 

recognized. 23 -25 A major difference between B cell and T cell antigen recognition 

concerns the major histocompatibility complex (MHC). The MHC or H -2 complex of 

. 26 27 the mouse encodes at least two classes of cell-surface molecules (Ftgure 1). ' The 

class I molecules include the transplantation antigens encoded by the H -2K, H -2D, 

H -21 and H -2R genes. Transplantation antigens are found on most of the cells in an 

organism. Class II molecules or Ia antigens, encoded by the H -2I region of the MHC, 

are present primarily on B lymphocytes and various types of macrophages. Studies of 

T-cell responses have indicated three ways in which the MHC influences antigen 
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recognition by T cells. 

1. MHC Alloreactions. One to five percent of the T lymphocyte population can 

respond to stimulating cells from a mouse strain bearing a different set of H-2 alleles 

(H-2 haplotype). 28- 30 By contrast, T cells responding to conventional antigen may be 

present at a frequency of 1/104 to 11105.31 Cytotoxic T cells responding to MHC 

differences tend to recognize class I gene products, 32 while cells which proliferate in 

response to MHC differences (predominantly helper T cells) tend to recognize class II 

molecules. 32,33 The extremely high frequency of MHC alloreactive cells has posed 

two interesting problems to immunologists. First, many different MHC haplotypes 

exist in any species, yet each different haplotype is recognized by many responding 

T cells. The high frequency responding to a single haplotype has therefore raised 

questions regarding the clonal selection theory and the notion that a single 

lymphocyte synthesizes just one antigen-receptor. Can we explain the high frequency 

by assuming that there is a great degree of cross-reactivity between different MHC 

alleles, or must the possibility of pluripotent responding T cells be seriously 

considered? Second, exposure to MHC alloantigens and the generation of a cellular 

immune response to these molecules occurs as a result of either organ transplantation 

in hospitals or laboratory experiments. Why is it that T cells are preoccupied with 

responding to antigens that are not an integral part of pathogenic organisms and may 

only rarely have served as immunogens throughout vertebrate evolution? 

2. MHC Restriction. Many T lymphocytes do not recognize antigen alone, but 

respond to antigen in conjunction with products of their own MHC. 34 This require­

ment for MHC recognition is often referred to as MHC restriction and is illustrated in 

Table I for the case of cytotoxic T cells responding to virally infected cells. The 

specificity of the cytotoxic T cells is tested in a short-term (4 hour) assay. This assay 

allows the readout of the functional capability of primed cells generated by 

immunization, but requires too short a time to permit the generation of a new 
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immune response. 35 Thus, after immunization with virus, no response can be 

detected by A haplotype lymphocytes to the B haplotype target cells (line 2), even 

targets differ at the MHC and can therefore certainly be recognized by some A cells. 

The cytotoxic T cells generated are highly antigen-specific, since virus X does not 

cross-react with virus Y (line 3). The cytotoxic cells, however, will not kill any cell 

infected with virus X, but only those cells that share the MHC haplotype of the 

immunizing cells. A-X targets are killed but not B-X, although both cells display 

presumably identical viral-encoded polypeptides (lines 4,5). The surprising phenomena 

of MHC restriction have profoundly influenced concepts ofT-cell antigen recognition. 

In addition, MHC-restricted antigen-recognition has led to new explanations for the 

polymorphism of MHC gene products, 36 the nearly ubiquitous tissue distribution of 

the transplantation antigens, 37 and the puzzling immune response (Ir) gene effects 

(Section B.3, 38). MHC restriction of antigen recognition is not a property solely of 

cytotoxic T cells. As with MHC alloreactive cells, there appears to be a division of 

labor such that Lyt-1 cells which provide help recognize antigen in conjunction with 

class II products, while Lyt-2,3 cells including cytotoxic T cells and some suppressors 

recognize antigen in the context of class I products. 39 

Originally it was proposed that MHC restriction occurred because T cells 

interacted with other lymphocytes or target cells via a "physiological" interaction of 

self-MHC with self-MHc.40 Two kinds of experiments indicate that a like-like 

interaction of MHC-encoded molecules does not occur and that T cells recognize 

self-MHC using a set of receptors that bind these molecules. First, individual 

T lymphocytes express more MHC molecules than they are capable of recognizing as 

self. For example, cytotoxic T cells bearing a recombinant MHC haplotype (KdDs) 

express both Kd and Ds transplantation antigens but contain separate populations of 

effector cells that respond to antigen plus Kd or antigen plus Ds but not both. 41 

Second, experiments utilizing bone marrow chimeras or thymic transplants have 
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indicated that the MHC molecules which can be recognized by MHC restricted T cells 

are not determined by the T lymphocyte genotype but result from a developmental 

process which may occur in the thymus. 42 

Two major kinds of theories have arisen to explain the apparent dual specificity 

ofT lymphocytes (Figure 1). One theory proposes that an antigen-specific T cell has 

two receptors, one to bind the antigen and a second specific for self-MHC 

molecules. 37 '43 ,44 The two binding sites could be on different polypeptide subunits 

on the same molecule or could even be on the same polypeptide, as long as these sites 

are separate. Two receptor theories maintain that the antigen-specific cells cannot 

be activated unless both receptor sites bind their respective ligands. Therefore, 

neither free antigen alone, nor self-MHC are sufficient to trigger a T-cell 

response. 43 The second class of theories proposes that the T cell has a single receptor 

or recognition site. 34,45 This site does not bind a self-MHC molecule or antigen 

alone, but it does bind a complex or neoantigenic determinant formed by the 

interaction of these two molecules. The complex of antigen and MHC molecule is 

sometimes referred to as "altered-self." This type of theory leads to rather simple 

explanations for a number of immune phenomena (such as the high frequency of MHC 

alloreactive T cells) but it must postulate a close interaction between MHC molecules 

and all types of antigens which is difficult to rationalize. 

3. Ir Gene Effects. Immune response (Ir) genes that map to the I region of the 

MHC control the level of antibody production and T-cell proliferation to a number of 

different antigens. 26 ,46 Low responsiveness or Ir gene defects in the response to an 

antigen are inherited as recessive Mendelian traits. Low responsiveness is specific 

both for a particular Ir gene allele and a particular antigenic determinant. In addition 

to the Ir genes, polymorphic cell-surface molecules (Ia antigens or class II molecules) 

have been mapped to the I region. 46 Recent evidence has indicated that these Ia 

antigens are in fact responsible for the Ir gene defects. 47- 49 A similar set of 
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phenomena which are controlled by genes encoding transplantation antigens has been 

described for cytotoxic T cells. Low responsiveness specific for certain H-2K or H-

2D alleles in combination with certain viruses is well characterized. 38,39 While it 

can be argued that this is not strictly an Ir gene defect since the low responsiveness 

of cytotoxic T cells do not map to the I region, the effect of the class I gene products 

on cytotoxic T cell responses is completely analogous to the effect of class II 

products upon helper T cells. 

The specificity of the Ir gene effect led to the proposal in 1972 that Ia antigens 

or the products of closely linked genes are T-cell antigen-binding receptors. 50,51 

However, there appear to be a limited number of polypeptides encoded in the I region 

and it is therefore unlikely that Ia antigens themselves are the T-cell receptor. 52,53 

Today it is widely believed that the Ir gene defects are a consequence of MHC­

restricted antigen recognition by T lymphocytes. 27 ' 46 Since MHC restriction itself is 

poorly understood, there is no general agreement as to the mechanism involved in the 

Ir gene defects. Most evidence supports the hypothesis that the defect results 

somehow from the inability of T cells to respond to a particular combination of 

antigen and MHC molecule. 54- 56 This occurs because this combination (altered-self) 

closely resembles self57 and is tolerated, or because of a number of hypothetical 

rules concerning the expression and somatic diversification of T-cell antigen 

receptors. 37 ' 44 An alternative hypothesis (determinant selection) states that the Ir 

gene defect is not a problem of T-cell antigen recognition but resides instead in the 

inability of antigen presenting cells (B cells and macrophages) or target cells to form 

an MHC-antigen complex. 58 

In summary, functional studies of immune T cells have provided insight into the 

T-cell receptor problem. From the antigen-recognition viewpoint, there appear to be 

two major categories ofT cells-those that react to differences in MHC alloantigens 

and those that react to conventional antigens in association with self-MHC antigens. 
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In addition, MHC-encoded molecules can influence the level of the immune response 

to antigens. These results have raised a number of interesting problems whose 

resolution depends upon a more detailed knowledge of the biochemistry of MHC­

encoded molecules and T-cell antigen-binding receptors. These include: 1) What is 

the number and specificity of antigen receptors present on T lymphocytes? What is 

the number of polypeptides per receptor? 2) What differences are there between 

receptors expressed by different functional subclasses of T cells? Why is there an 

association between the T-cell functional subclass and the class of MHC molecule 

which must be recognized? Are there T-cell isotypes? 3) How do the receptors on 

MHC alloreactive cells differ from these on lymphocytes responding to conventional 

antigens? Why is there such a high frequency of these MHC alloreactive cells? 4) If 

each T lymphocyte has two antigen-binding sites, how does activation of the MHC 

alloreactive cells differ from the MHC-restricted activation of cells responding to 

conventional antigens? 5) What is the mechanism whereby MHC genes influence the 

immune response? Is a complex formed between antigen and self-MHC molecule? 

Can relevant structural differences between antigen receptors in low and high 

responder mice be defined? 6) How does the thymus influence the expression of 

antigen-receptors by developing T lymphocytes? 

A number of theories have been developed which attempt to answer one or more 

of the above questions. 34,37 ' 43-45,51 ,57-61 Some of the issues, particularly the 

number of antigen-binding receptors expressed by MHC-restricted T lymphocytes, 

have inspired a rather lively debate. 37 ,S2,63 Most theories suffer from the inclusion 

of ad hoc assumptions that are not currently testable and they will therefore not be 

considered in detail. For example, several dual receptor theories assume, based on 

J erne's proposal, 64 that the library of germline genes for T-cell antigen receptors 

encodes a set of polypeptides that recognize all the MHC alleles present in a given 

species. 37 ' 44 Not only is it difficult to understand how the T-cell receptor and MHC 
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gene families can coevolve in this way, but the hypothesis is almost impossible to 

falsify. While, characterization of the genes encoding T-cell antigen-binding recep-

tors is essential to understanding T lymphocyte specificity and MHC function, clearly, 

a large number of experiments, including functional and biochemical studies combined 

with in vitro mutagenesis of cloned MHC genes will be required to answer the lengthy 

list of questions we have posed. 

C. Serology and Biochemistry of T-een Antigen-Binding Receptors. After the dis-

covery that lymphocytes can be divided into B-cell and T-cell subsets, there was a 

consensus that immunoglobulin would constitute the antigen receptor for both types 

of lymphocytes. 3 However, solid evidence for the presence of immunoglobulin on the 

surface of T lymphocytes was difficult to obtain. When we began our experiments, 

there was no longer any consensus and it was believed that the antigen-binding 

receptor on T lymphocytes might consist of either: 1) conventional immunoglobulin 

including V and C regions of B cell light and heavy chains;65 ,66 2) portions of 

conventional immunoglobulin, usually V H regions, presumably expressed along with 

unique T-cell constant regions;67 '68 3) MHC-encoded molecules;50 ,51 or d) molecules 

not encoded by any of the above gene families. Various combinations of these 

·bn·t· h al b t d 43,63,69-72 poss1 1 1es ave so een sugges e . 

In our analysis of the structure of T-cell antigen-binding receptors, we focused 

exclusively on the possibility that T lymphocytes express immunoglobulin genes. 

There were several reasons for doing this. First, a variety of cloned B cell 

immunoglobulin DNA probes had recently become available. The rearrangement of 

these genes and their patterns of transcription had been well characterized in B 

lymphocytes allowing us to unambiguously answer questions concerning immuno­

globulin gene expression and rearrangement in T cells. 73 Second, a considerable 

amount of evidence was consistent with immunoglobulin gene expression by T 

lymphocytes (Section D). Finally, identification of nonimmunoglobulin genes which 
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might encode T-cell antigen-binding receptors was hindered by the fact that there 

existed no reliable assay for gene products involved in T-cell antigen recognition. 

This appears to be the case today (see Chapter 6). 

D. Evidence for Immunoglobulin Gene Expression by T Lymphocytes. T cells do not 

generally react with conventional anti-mouse immunoglobulin or anti-constant region 

sera.74,75 In fact, positive or negative selection of lymphocytes using these sera is a 

major method for the separation of B and T lymphocytes. However, expression of 

immunoglobulin constant regions in T cells remained controversial for many years. 76 

There are numerous reports of anti-immunoglobulin sera reacting with T lympho­

cytes. 69 ,77 Some anti -K chain sera effect T-cell function, 78 and there are reports 

that anti-l-1,66 ,79 anti-y66 ,80 and anti-K sera66 bind to the surface or precipitate 

proteins from T lymphocytes. How can we reconcile these findings with a much 

larger body of negative results? It is likely that the use of poorly characterized 

polyclonal antisera or the impurity of the cell populations tested could lead to false 

positives for immunoglobulin expression. However, it is also possible that T cells do 

synthesize immunoglobulin polypeptides but that these proteins may be masked on the 

cell membrane and/or present in very small amounts. Differences in antisera, T cell 

populations tested or the method of preparation of cell-surface proteins might then 

be critically important. The possibility that immunoglobulins are synthesized by T 

cells was further supported by the finding that K, a and ll chain RN As were detected 

in thymocytes and T lymphomas. 81-84 However, interpretation of these experiments 

is complicated by the fact that cloned immunoglobulin nucleic acid probes were not 

used. 

While the evidence in favor of constant region expression is not convincing, a 

large body of work supports the idea that T cells utilize variable gene segments to 

encode part of their antigen-specific receptor. 23 ,24,43 ,85-87 It has been demonstrat­

ed that anti-idiotypic sera can effect T-cell functions in vivo and in vitro, bind to 
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T-cell antigen-binding material secreted or shed from the cells, and bind to the 

surface of T lymphocytes. Experiments indicate that the idiotype-positive protein is 

synthesized rather than passively acquired by the T cells and that the expression of 

idiotype is linked to genes coding for the heavy chain constant region. In the response 

to the hapten NP (4-hydroxy-3-nitrophenyl-acetate), monoclonal anti-idiotypic sera 

were shown to react with cloned T cells. 88 Thus, in this instance the expression of 

idiotype by T lymphocytes cannot be attributed to artifacts resulting from the 

heterogeneity of the cells tested or uncharacterized antibodies in polyclonal sera. 

ldiotype was often detected in the absence of serological determinants present on 

light or heavy chain constant regions. 67 '68,85 ,86 Linkage of idiotype to the genes 

coding for heavy chain constant regions, 89 but not to V or C genes, 90,91 led to the 
K K 

hypothesis that the T-cell antigen-binding receptor contains heavy chain variable 

regions without light chain variable or heavy and light chain constant regions. 

Despite the years of intensive investigation, over 200 publications, and some very 

impressive experiments, the expression of the V H gene segments by T lymphocytes 

has remained controversial. There are several reasons for this. First, although 

idiotype-positive T lymphocytes have been described in the responses to over a dozen 

different antigens, a number of critical experiments have never been successfully 

performed. For example, in very few instances has it been directly demonstrated 

that anti-idiotypic sera can inhibit binding of antigen to T lymphocytes.70,92,93 In 

addition, these sera have never been successfully used to immunoprecipitate 

biosynthetically-labeled molecules from the surface of T lymphocytes. Second, 

although idiotypic determinants may be present on T-cell antigen-binding receptors, 

these experiments may have been overinterpreted since in principle one cannot infer 

close structural homology based upon serological cross-reactivity. This problem is 

discussed in Chapter 4. 

In the following chapters we describe attempts to detect immunoglobulin gene 



41 

expression in T cells. Specifically, we asked three questions: 1) Do T lymphocytes 

rearrange or transcribe immunoglobulin J and C gene segments? 2) DoT lymphocytes 

responding to an antigen transcribe V H gene segments homologous to those 

transcribed by B cells responding to the same antigen? 3) Do T cells utilize any V H 

gene segments as part of their antigen receptor? By employing cloned immuno­

globulin DNA probes and cloned T lymphocytes, we avoided some of the ambiguities 

that plagued experiments based upon detecting cross-reactive antigenic determinants. 

We demonstrated that T cells do not use J and C gene segments as part of their 

antigen-binding receptor. Neither do they transcribe VH gene segments homologous 

to those transcribed by B cells responding to the same antigen. In addition, we were 

able to make a strong argument against T-cell expression of any V H gene segments. 

However, the T-cell antigen receptor remains elusive. 
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Table I 

Immune T Cells Recognize Viral Antigen Plus MHC Gene Products 

Responders 1 

(cytotoxic T cells) 

1. A lymphocytes2 

2. A lymphocytes 

3. A lymphocytes 

4. A lymphocytes 

5. A lymphocytes 

Stimulators 
(immunizing cells) 

A-X3 

A-X 

A-X 

A-X 

A-X 

Targets 

A 

B 

A-Y 

A-X 

B-X 

Cytotoxic 
response4 

+ 

1Generally a secondary response is measured. 39 In a typical protocol, virus is 

first injected into an animal and after several days lymphoid tissue containing 

immune cells (responders) is removed. The immune lymphocytes are cultured for 

three to five days in the presence of virally-infected cells (stimulators). MHC 

restriction has also been observed for primary responses.94 This table is adapted 

from Reference 45. 

2 
A, B =different MHC haplotypes. 

3x, Y = different viruses or polypeptides encoded by different viruses on the 

surface of infected cells. 

4Target cells for the cytotoxic assay are labeled with 51cr. Lysis of the targets 

by cytotoxic T cells is measured by monitoring release of 51cr into the culture 

d
. 35 me mm. 
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Dual Receptor Hypothesis 

Altered-self Hypothesis 

Figure 1 
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HELPER AND KILLER T CELLS DO NOT EXPRESS 

B CELL IMMUNOGLOBULIN JOINING 

AND CONSTANT REGION GENE SEGMENTS* 

Bv MITCHELL KRONENBERG, MARK M. DAVIS, PHILIP W. EARLY, 
LEROY E. HOOD, AND JAMES D. WATSON 

From The Division of Biology, California Institute of Technology, Pasadena~ · California 9112 5; and The 
Department of Microbiology, University of California at Irvine, Irvine, California 92 717 

The immune system is characterized by both the specificity and breadth of its 
response. The generation of an immune response depends upon the specific recognition 
of antigens by lymphocytes. There are two classes of lymphocytes: B cells capable of 
secreting large quantities of immunoglobulin and T cells that can carry out facilitation 
or help of lymphocyte responses (1, 2), suppression of lymphocyte responses (3), or 
cytotoxicity directed against appropriate target cells (4). A T cell is apparently 
committed to a single functional subclass prior to any exposure to antigen (5, 6). 

The antigen-binding receptor on the surface of B lymphocytes is an immunoglob­
ulin molecule composed of two identical light chain and two identical heavy chain 
polypeptides. Both light and heavy chains have variable regions responsible for 
antigen binding and constant regions responsible for various effector functions such 
as complement fixation . The immunoglobulins are encoded by three unlinked gene 
families : two light chain families , K and A, and a heavy chain family. In mice, there 
are one or more constant region genes for each light chain famil y, and at least eight 
heavy chain constant region genes ()1. , ~' y3, y~, Y2b, Y2a, a, and €). Each mature B cell 
and its progeny can respond to only one or a few antigenic determinants because it 
can synthesize only one light chain and one heavy chain variable region . However, 
during their development , B cells switch from the expression of IgM molecules 
containing ll heavy chains to the expression of other immunoglobulin classes contain­
ing different heavy chain constant regions, while continuing to express the same VH 
region and light chain (7, 8) . 

Recent experiments employing recombinant DNA techniques have clarified some 
of the molecular events necessary for B-ee! I antibody expression. Both the commitment 
to express single VH and VL regions, and the switch in expression of heavy chain 
constant region are characterized by DNA rearrangements. In the mouse, the light 
chain is encoded by three separate gene segments-V,J1 (joining) , and C (constant) 
(9). The V and J gene segments together code for the variable region. For mouse K 

chains, there are multiple germline V~ gene segments (:=::200) (10) and four j. gene 
segments (11, 12). The heavy chain is encoded by four gene segments-VH, D 
(diversity), ]H and CH, and in some cases an M (membrane) exon (13-16). The V 

*Supported by gram AI 10781 from the U. S. Public Health Service. 
1 Abbreviations used in this papa: C, constant ; Gr, constant region ; D, diversit y; J, joining; Jr, J gene 

segment ; kb , kilobase; V , variable. 

J. ExP. Mw. ©The Rockefeller Universit y Press · 0022-1007/80/12/1745/17 S 1.00 

\'oltJJJH" 1'>2 December 1980 1745- 1761 
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gene segment (and presumably the D gene segment) expressed in a given B cell is 
rearranged from its germ-line context and becomes contiguous with a J gene segment 
that is located a few kilobases 5' from a C gene (11-13, 17) . DNA sequences between 
the V and J gene segments are deleted during this rearrangement (II, 18, 19). Heavy 
chain constant-region switching takes place through replacement of the p. constant­
region gene and some of its flanking sequence by another CH gene (20) .2 

Individual T cells can also respond specifically to one or a few antigenic determi­
nants (21-23). However, the molecular properties of the T-cell antigen-binding 
receptor are a subject of great controversy (24) . Most attempts to define the receptor 
have relied on antisera made to either B-cell derived immunoglobulin (25-31) or to 
responding T cells (32, 33) in conjunction with immunological or genetic experiments. 
There is considerable evidence that T cells synthesize VH regions without light chains 
or any of the CH regions expressed in B cells (29- 31), but there are a number of 
reports of the expression of light chains and CH regions in T cells (25-28, 34, 35). 

The development of two relatively new techniques has persuaded us to reexamine 
the controversy regarding immunoglobulin synthesis by T cells . First, cell lines grown 
in T-cell growth factor or Interleukin II (36) provided us with large numbers of 
mature, functional T cells that are entirely free of contaminating B cells and have a 
well-defined antigen specificity. Second, using the methods of recombinant DNA 
research, we have obtained cloned DNA probes for immunoglobulin heavy and light 
chain J and C gene segments. We have used our DNA probes to ask whether these J 
and C gene segments are rearranged and transcribed into RNA by T cells. Because 
both the T cells and the DNA probes are homogeneous and well characterized, we 
hoped to avoid the ambiguities of some of the earlier experiments concerning T-cell 
expression of immunoglobulin constant regions. In addition, by using probes for the 
heavy and light chain J gene segments, we could obtain information on T-cell 
expression of the 3' part of the variable region . We have obtained convincing data 
that the B-cell immunoglobulin light and heavy chain J and C gene segments are 
neither rearranged nor expressed in the monoclonal helper and killer T cells that we 
have analyzed. 

Materials and Methods 
T Cells. BALB/c Cum mice were originally obtained from Cumberland View Farms, 

Clinton , Tenn., and have since then been bred in our animal colony at the California Institute 
of Technology. C57BL/6J mice were obtained from The Jackson Laboratory, Bar Harbor, 
Maine. Thymus tissue was dissected from 2- to 4-wk-old BALB/c mice killed by inhalation of 
ether. Mice were injected with 0. 1 ml oflndia ink prior to sacrifice to facilitate visualization 
and removal ofparathymic lymph nodes. The antigen specificity and cell-surface phenotype of 
our monoclonal T cells are presented in Table I. WEHI- 22 is an irradiation-induced BALB/c 
T lymphoma (27). It has been reported to synthesize large amounts of a 68,000 mol wt protein 
that cross-reacts with an antiserum made against mouse immunoglobulin (28). WEHI-22 cells 
were a gift of Dr. Noel Warner, University of New Mexico, Albuquerque, N. Mex. and were 
grown in suspension culture in Dulbecco's modified Eagle's medium (Grand Island Biological 
Co., Grand Island, N. Y.) supplemented with 10% fetal bovine serum. The helper cell line HT-
1 (23) and the alloreactive killer cell line CTLLi6 (37) were grown in RPMI-1640 medium 
(Grand Island Biological Co.) supplemented with 10% heat-inactivated fetal bovine serum, I 
mM glutamine, 50 U/ml penicillin , 50 J.Lg/ml streptomycin, and 5 X 10-5 M 2-mercaptoethanol. 

2 Davis, M. M., S. Kim , and L. Hood. DNA sequences mediating heavy chain switching in alpha 
immunoglobulin genes. Manuscript submitted for publication . 
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TABLE I 
Monoclonal T Cells Analyzed wzth Cloned Immunoglobulin D NA Probes 

Cell line 
Strain of 

Function 
Antigen C ell surface 

Description 
origin specificity phenot ype 

I-IT-I C 5 7BI /6j Helper Sheep eryth- fr , Lyt-1+ Growth factor-
rocytes dependent 

Helps H-2h B cell line 
cells 

CTLLi6 C57BI /6J Killer H-2d fr , Lyt-2+ Growth factor-
dependent 
cell line 

WEHI-22 BALB/c e+ T lymphoma 

TABLE II 

Cloned Immunoglobulin Probes 

Region Source 

c, (C region Subclonc from BALB/c 
subclone) genomic DNA 

J, (j region Subclonc from BALB/c 
subclone) genom ic DNA 

Cr (pA by 1-7) eDNA from HOPC 2020 

Switch (p5.1) 

C, (p104E~t6) 

c. 

mRNA 

Fragment from BALB/c 
genomic DNA 

Subclone from BALB/c 
myeloma DNA 

eDNA from MI04E 
mRNA 

eDNA from SI07 mRNA 

5' 

..... s 
0::-o 
Oc u .-
WI 

C region subclone -s I 8 
-o E "0 
c c 
£ 0 

CD I 
5' I ll!!!J I I I I 3' 

JK CK lkb ,....._.. -J reg ion subc lone 

RI RI RI Rl 
5' 1-l -1-1--I@~J?~C-.:2"-?A<L_~Iu.llul_-ll 3' 

JH Cp. 
...... 6.2 kb~ ~b 

JH probe 

Rl RI Rl Rl 
5' I I ~ Ill I 3' 

VHDJH Ca lkb 
switch 
site 

~5.1kb~ 

switch probe 

3 ' 
~H~CH4 •I• .,, 3'UT l~p M 

5' 3' IOObp 
f--C H 1-----+-CH fl 1------< 

1747 

R-eference 

23 

37 

27 

Reference 

38 

:38 

A. B01hwell. 
Persona l 
coJnrnuni­

ca tion . 

20; this report 

20 

14 

20 

A supernatant fraction from concanavalin A-stimulated lymphocytes enriched for Int erleukin 
II was prepared as described (23) and added to the medium at a concentration of 10 U/m l. 

Immunoglobulin Probes. Description of the immunoglobulin DNA probes employed in these 
studies is presented in Table II. The C, and J, gene segments were subcloned from a liver DNA 
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genomic clone. These subclones were a gift of Dr. Michael Steinmetz, California Institute of 
Technology, Calif. (38). A C>. eDNA clone, pAb/\J-7, was a gift of Dr. Alfred Bothwell and Dr. 
David Baltimore, Massachusetts Institute of Technology, Boston, Mass. A probe containiQg the 
]H gene segments was prepared by electroeluting a 6.2 kilobase (kb) EcoRI fragment from the 
ChSp p.27 clone originally isolated as a C~-containing clone from a collection or library of 
BALB/c sperm DNA clones (20) . The probe containing heavy chain constant region swrtch 
sites was subcloned from the Ch603a6 clone. This clone was originally isolated from a library 
made from the DNA of the IgA-producing myeloma McPC603 (17). The original a6 clone 
contains the 603 YH gene segment joined to a ]H gene segment , with C. gene found 6.8 kb to 
the 3' side of the ]H gene segment. The subclone is a 5.1 kb EcoRI fragment containing 
intervening DNA sequence and the 5' half of the C. gene (17). In the embryo, 1.5 kb of this 
intervening sequence is found adjacent to the C~ gene and not the C. gene (20). The point at 
which C~ and C. adjacent sequences are joined is denoted the switch site. Five examples of CH 
switching have thus far been analyzed, including three from rearranged genes of Co-producing 
myeloma tumors (17, 20) / one from a C,1 producer (39, 40), and one from a C,2b producer (41). 
All the active genes from these myelomas have c~ flanking sequence extending from a ]H gene 
segment towards the expressed C, orCa gene. The point of deletion of the C~ flanking sequence 
or switch site is not the same for every tumor, but they are all found within about 300 base 
pairs of one another. The 5.1 kb subclone we used as a probe should hybridize with restriction 
fragments containing all these known switch sites as well as several kb of surrounding DNA. 

Preparation of DNA and Southern Blots. High molecular weight DNA was prepared according 
to the method of Blin and Stafford (42). Embryo DNA was prepared from whole 12-d 
BALB/c embryos. DNA digested with restriction enzymes was electrophoresed in 0.7% agarose 
gels, transferred to nitrocellulose filters (43), and hybridized with nick-translated probes (44). 
Unless otherwise noted, hybridizations were performed at 68°C in 1.0 M NaCl/ 0.045 M 
Trisodium citrate/0.2% bovine serum albumin/0.2% Ficoll/0.2% polyvinylpyrrolidone/0. 1% 
NaDodS04/IOO p.g/ml denatured Salmon sperm DNA/25 p.g/ml poly-rA. Subsequent to 
hybridization, filters were washed extensively in 0.30 M NaCl/0.03 M Trisodium citrate/0.1 % 
NaDodS04/0.l % sodium pyrophosphate at 68°C and autoradiographed. 

Preparation of RNA and Northern Blots. Purified immunoglobulin mRNA containing the a 
(MOPCI67) and p. (M 104E) heavy chain constant regions and the K (S 107) light chain constant 
region were prepared as described (17). Total RNA was prepared from T cells homogenized in 
guanidinium thiocyanate and centrifuged through cesium chloride (45). RNA preparations 
electrophoresed on agarose gels and stained with ethidium bromide were undegraded, free of 
contaminating DNA, and had a 260 nm/280 nm absorbance ratio of about 2.1 : I. 3H-labeled 
RNA from sea urachin (Strongylocentrotus purpuratus) embryos (a gift of Dr. Frank Costantini , 
California Institute of Technology) was added at the beginning of the T cell RNA preparation 
as a recovery marker. Between 43 and 64% of the added counts per minute were present in the 
final RNA solution. From the absorbance of the mouse T cell RNA at 260 nm, and the yield 
of labeled S. purpuratus RNA estimated from recovered counts per minute, we calculated that 
WEHI-22 has 12.7 pg of RNA/cell, HT-1 has 5.8 pg/cell, CTLLi6 has 3.7 pg/cell , and thymus 
has 1.6 pg/cell. Polyadenylated [poly(AtJ RNA was selected by oligo(dT)-cellulose chroma­
tography (46). Poly(At RNA was denatured and electrophoresed on agarose gels containing 
2.2 M formaldehyde (4 7). Denatured RNA was transferred directly onto nitrocellulose filters 
(B. Seed and D. Goldberg. Manuscript in preEaration.), and filters were hybridized at 42°C in 
50% formamide (48). In control experiments, 2P-labeled RNA from Sindbis virus-infected cells 
(a gift of Charles Rice, California Institute of Technology) was electrophoresed on agarose gels, 
transferred to nitrocellulose filters , and incubated in hybridization and wash solutions. Virla 
RNA as large as 13.0 kb was efficiently transferred to filters. About 45% of the RNA remained 
bound to the nitrocellulose as measured by densitometry of viral RNA bands present on 
autoradiographs of the filter exposed before and after incubation in hybridization buffers. In 
one experiment, diazophenylthioether paper (a gift of Brian Seed, California Institute of 
Technology) rather than nitrocellulose, was used as a solid support to bind RNA. 

Results 
Experimental Strategy. T cell DNA was analyzed for rearrangement using the 

Southern blot technique (43). High molecular weight genomic DNA was digested 
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with a restriction enzyme and the resulting fragments were separated according to 
molecular weight in an agarose gel. The double-stranded DNA was then denatured 
so that single strands were available for hybridization . The size-separated- and 
denatured DNA was transferred from the agarose gel to a solid support, gene-rally a 
nitrocellulose filter, and the filter-bound DNA was hybridized with a radioactive­
cloned DNA probe. The filter was autoradiographed, and restriction fragments, 
having sequences complementary to the probe, appeared as bands on the film. By 
comparing the band pattern in T cells with the band pattern obtained from germ­
line DNA, we assessed whether a particular DNA sequence was rearranged. In 
analyzing the DNA from WEHI-22 and BALB/c thymus, cells from 12-d BALB/c 
embryos and adult livers provided a source of germ-line DNA. For the HT-1 and 
CTLLi6 cell lines, which come from C57BL/6J mice, DNA undifferentiated with 
respect to immunoglobulin genes was obtained from the cells of adult liver and 
kidney. 

We used Northern blots to detect immunoglobulin sequences in T cell RNA. The 
experimental strategy is very similar to that employed to detect DNA rearrangements. 
Poly(At total cell RNA from T cells was size-separated on agarose gels, transferred 
to nitrocellulose filters, hybridized with radioactive immunoglobulin DNA probes, 
and the filters were then autoradiographed. 

T Cell DNA Analyzed for Gene Rearrangement Using Light Chain Probes. The results 
obtained from hybridizing light chain DNA probes to restriction fragments ofT cell 
DNA are presented in Table III and Fig. I. All the bands present in the T cell DNA 
are also present in the germ-line DNA from the same strain, indicating that CK, J., 
and C.>. sequences are not rearranged in the T cells. In a few cases, however, C57BL/ 

TABLE III 
Sizes of Restriction Fragments Containing Light Chain Immunoglobulin Genes in T Cell and Nonlymphoid 

DNA 

Probes 

Digests 
C, J, c, 

Bam Eco 
Hind III 

Bam Eco 
Hind III 

Bam 
Eco Rl Hind III 

I-II Rl I-ll RI I-II 

C57B16 DNA 
I-IT-1 13.0 15.0 4.3, 2.7 13.0 15.0 2.7 7.3 9.0 8.4, 3.2 
CTLLi6 13.0 15.0 4.3, 2.7 13.0 15.0 2.7 7.3 9.0 8.4, 3.2 
Liver or kid- 13.0 15.0 4.3, 3.5 13.0 15.0 3.5, 2.7 7.3 9.0. 6.6 8.4, 3.2 

ney 2.7 

BALB/c DNA 
WEI-11-22 13.0 15.0 4.3, 2.7 ND* 15.0 ND ND 9.0 ND 

Thymus 13.0 15.0 4.3, 2.7 ND 15.0 2.7 ND 9.0 ND 
Liver or em- 13.0 15.0 4.3, 2.7 ND 15.0 2.7 ND 9.0 ND 

bryo 

• Sizes of restriction fragments containing immunoglobulin genes were estimated from the migration of 
molecular weight standards that included Eco Rl- and Hind Ill-digested >.. bacteriophage DNA, and 
pBr322 plasmid digested with both Ava I and Hind II. In every case, T cell DNA was electrophoresed in 
a lane adjacent to one of the non lymphoid DNA samples. WEI-11-22 and BALB/c thymus DNA were 
electrophoresed on the same gels; I-IT-1 and CTLLi6 DNA were electrophoresed on separate gels. 

* ND, not determined. 



1750 

15kb-. 

CTLL 
i 6 

a 

C57 
LIVER 

60 

T CELLS DO NOT EXPRESS C GENES 

C57 HT-1 C57 
LIVER KIDNEY 

13kb-. --

b 

BALB/c 
EMBRYO 

BALB/c I 
THYMUS f 

c 

WEHI 
22 

--4.3kb 

--2.7kb 

Ftc. I. T cell and nonlymphoid DNA hybridized with a radioactive C. probe. (a-c) are autora­
diographs of DNA from separate gels. In (a) DNA samples were digest ed with restriction enzyme 
Eco Rl ; in (b) they were digested with Bam HI ; and (c) they were digested with Hind III. The sizes 
of the hybridizing fragments are indicated. For experimental details see Materials and M ethods. 

6J liver and kidney DNA had a restriction fragment hybridizing with the light chain 
probes that was not apparent in the two monoclonal T cell lines (fable III). The 
extra band in C57BL/6J liver and kidney is sometimes faint, and a technical artifact 
probably accounts for this result . A number of much less likely explanations are 
formally possible, however, including a genetic polymorphism in C57BL/6J mice, a 
T-cell specific sequence deletion (as opposed to rearrangement), or even an immu­
noglobulin gene rearrangement specific to liver and kidney cells. 

T Cell DNA Analyzed for Gene Rearrangement Using Heavy Chain Probes. The results 
obtained from hybridizing heavy chain probes to restriction fragments ofT-cell DNA 
are presented in Table IV and Figs. 2 and 3. 

We observed no rearrangement of ]H gene segments in the T cells tested. The 6.2 
kb ]H probe contains a sequence at its 5' end that is repeated in the mouse genome 
(P. W. Early. Unpublished observations.) . To reduce the background caused by 
hybridization with these repeated sequences, filters hybridized with the 6.2 kb ]H 
probe were washed extensively in low salt conditions (20 mM cation at 68°C) , that 
favor melting of imperfectly matched hybrid molecules. After the low salt washes, one 
(EcoRI and Hind III digests) or two (Bam HI digest) dark bands remained on the 
filter, and the sizes of these major bands are presented in Table IV. The Eco RI 
fragment from BALB/c DNA that hybridizes with the probe is the same size as the 
EcoRI fragment used to isolate the probe from a sperm DNA clone, suggesting that 
this m~or band is not simply a large tandem array of repeated sequences or some 
other artifact. A 5.1 kb subclone containing sequences involved in B-cell heavy chain 
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TABLE IV 
Sizes of Restriction Fragments Containing Heavy Chain Immunoglobulin Genes in T Cell and Non lymphoid 

D NA 

Probes 

Digests 
jH Switch 

Bam Eco Hind Bam 
Eco RI , 

Hind 
HI RI III HI III 

C57B I6 DNA 
HT-1 I LO 6.2 2.0 23.0 15.0 6.2 

LO 0.9 14.0 10.0 5.7 
CTLLi6 I LO 6.2 2.0 23.0 15.0 6.2 

LO 0.9 14.0 10.0 5.7 
Liver or kid- 1 LO 6.2 2.0 23.0 15.0 6.2 

ney LO 0.9 14.0 10.0 5.7 
BALB/c DNA 

WEHI-22 10.0 6.2 2.0 ND* 12.5 ND 
LO 0.9 9.5, 4.8 

Thymus 10.0 6.2 2.0 ND 12.5 ND 
LO 0.9 9.5, 4.8 

Liver or em- 10.0 6.2 2.0 ND 12.5 ND 
bryo LO 0.9 9.5, 4.8 

For details see the legend for Table IlL 
• ND, not determined. 

CTLL 
i 6 

15.0kb--. ..., 

·!J/4 

C57 
LIVER 

• 

'-;·'• 

a 

C57 
HT-1 LIVER 

15.0k~--

• 

b 

c" membrane Cu 

Bam Eco 
HI RI 

I LO 15.0 

I LO 15.0 

1 LO 15.0 

1 LO 12.5 

1 LO 12.5 

I LO 12.5 

Hind Bam 
III HI 

2.65 22.5 
L25 
2.65 22.5 
L25 
2.65 22.5 
L25 

2.65 22.5 
L25 
2.65 22.5 
L25 
2.65 22.5 
L25 

BALB/c 
EMBRYO 

Eco 
R I 

10.0 

10.0 

10.0 

9.5 

9.5 

9.5 

WEHI lBALB/c 
22 THYMUS 

t • -

Hind 
III 

5.7 

5.7 

5.7 

3.7 

3.7 

3. 7 

·- ... .... 12.4kb 
_..f 

.... 
~ . i;:~t: 

f.; it;~~:~;;, 

c 
FIG. 2. T cell and nonlymphoid DNA hybridized with a radioactive C" probe. All DNA samples 
were d igested with Eco RL See Fig. 1 legend and Materials and Met hods for details. 
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15.0kb __.. 
IO.Okb ____.. 

C57 
Ll VER 

HT-1 t 

b 

BALB/c 
LIVER 

WEHI I BALB/c 
22 f THYMUS 

c 

.--12.5 kb 
.-- 9.5 kb 

~4.8 kb 

FIG. 3. T cell and nonlymphoid DNA hybridized with a radioactive probe contain ing heavy chain 
constant region swi tch sites. In 3 a , DNA was digested with Bam HI, whereas in Figs. 3 b and c the 
DNA was digested with Eco RI. See Fig. 1 legend and Materials and Methods for details. 

Ca ~ CK BALB/c WEHI 
20pg THYMUS 22 

1.9 kb .... 

2 3 4 5 6 

CTLL 
i6 

7 

HT-1 

8 
Ftc. 4. Filter-bound poly(At RNA hybridized with C. and C. probes. RNA molecular weight 
standards included Eschtrichia coli 16, and 23S ribosomal RNA, and murine 18 and 28S ribosomal 
RNA. Purified myeloma RNA is present in lanes 1, 2, and 4. When the probes are hybridized to 
separate filters , the C. RNA sequence in thymus is 1.2 kb , whereas the larger C. RNA is 1.9 kb. We 
could detect 1.4 copies/cell of K RNA and< 1.0 copy/cell of a RNA on this autoradiograph. 
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CfL BALB/c 
IOpg THYMUS 

2 3 4 

WEHI 
22 

5 

CTLL 
i 6 

6 

HT-1 

7 

1753 

FIG. 5. Filter-bound poly(At RNA hybridized with a C" probe. RNA molecular weight standards 
included 26S and 42S Sindbis virus RNA and E. coli, and murine ribosomal RNA. Purified myeloma 
RNA standards are present in lanes I , 2, and 3. Molecular weights of thymus RNA bands are 
indicated. We could detect 1.8 copies/cell or less of J.l RNA on this autoradiograph. Detection limit 
varied with different samples because of different amounts ofpoly(A)+ RNA (1- 10 J.lg) added to the 
gel. 

a b 

~2.3kb 

~1.9kb 

FIG. 6. Poly(At thymus RNA hybridized to C, and C" probes. (a) Poly(At thymus RNA was 
size-separated on an agarose gel and transferred to diazotized paper. RNA covalently bound to the 
diazotized paper was hybridized with a radioactive C, probe, and the paper was autoradiographed. 
(b) The paper with bound thymus RNA, as in (a) , was washed in 95% formamide at 68°C to 

remove the radioactive C, probe. It was then hybridized with a C" probe and autoradiographed. 
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constant region switching was hybridized to the T cell DNA. No rearrangement of 
these sequences was observed (Fig. 2). The C~< probe we used is a eDNA clone made 
from RNA coding for the membrane form of ll heavy chain . We have detected no 
rearrangement of the C~< gene in the T cells (Fig. 3) . The C., gene was also present ip 
the germline or undifferentiated configuration in all the T cells analyzed. 

In addition , because of report s that T cells make a polypeptide serologicall y cross­
reactive with the ll chain (25, 26) , we hybridized the C~< probe at 55°C to BALB/c 
and C57BI/6J liver DNA cut with various restriction enzymes. The filter was 
subsequently washed at 55°C. All other conditions were as described in Materials and 
Methods. These low temperature conditions should permit hybridization of two 
nucleotide sequences that are only 70% homologous (see Discussion) . No bands besides 
those known to contain the cl' gene hybridized with the probe, therefore the gene for 
the putative cl' homologue was not detected in this experiment. 

Northern Blot Analysis of T Cell RNA. Although gene rearrangement is closely 
associated with immunoglobulin gene expression in B cells, it is possible that T cells 
could express immunoglobulin genes without rearranging them. We therefore ana­
lyzed T-cell RNA for the presence of immunoglobulin sequences. Size-separated 
poly(At RNA from T cells was hybridized with 32P-labeled C. (Fig. 4) , Ca (Fig. 4), 
C~< (Fig. 5) , and C"' (data not shown) probes. Purified immunoglobulin RNA were run 
on the same gels, and provided us with an estimate of our detection limit , which 
ranged from 10 to 50 pg of RNA in a series of five gels . Given the detection limit , the 
amount of poly(At RNA/cell (which is about I% of the total cell RNA calculated in 
Materials and Methods) and the micrograms of RNA added per gel lane, we estimate 
that we could detect less than two molecules of immunoglobulin RNA/cell in every 
case. No immunoglobulin RNA was detected in three monoclonal T -celllines. Whole 
thymus, however, contained -150 pg of C. RNA (7 copies/ cell), 30 pg of Cu RNA 
(0. 7 copies/cell) , and 680 pg of Cll RNA (16 copies/cell) as judged by densitometric 
comparison of thymus RNA bands to the bands obtained with purified immunoglob­
ulin-RNA. In addition, a 4.7 kb species that hybridized with the Cll probe was present 
on some gels at -0.4 copies/cell. Whole thymus was not tested for the presence of C,>. 
RNA. The C. and C., RNA in the thymus were found in the poly(At fraction only 
(data not shown) , and were approximately the same molecular weight as the polysomal 
C. and Ca mRNAs found in B lymphocytes. The C" RNA was found in a diffuse 
band ranging from -2.3 to I. 7 kb in size. The ll mRNA species in B cells are 2. 7 and 
2.4 kb (13). The relatively low molecular weight for C" sequences in thymus was 
observed in two separate RNA preparations, and a control experiment , in which both 
the K and ll probes were hybridized to the same RNA, verified that degradation was 
not responsible for the diffuse band and decreased size. The thymus RNA sequences 
hybridizing with the K probe appeared to be a single species of about 1.2 kb (Fig. 6 a), 
whereas the sequences hybridizing with the ell probe had a characteristic broad 
molecular weight distribution , ranging in this case from -2.6 to I. 7 kb, with major 
bands visible at -2.3 and 1.9 kb (Fig. 6 b) . 

Discussion 

After 10 years of intensive investigation , the structure of the T-cell antigen receptor 
remains controversial. Approaches toT-cell antigen recognition molecules based on 
the use of antisera to immunoglobulins have failed to yield definitive results. In this 
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study we have employed cloned probes containing immunoglobulin coding and 
flanking genomic DNA sequences to test for rearrangement and expression of immu­
noglobulin genes in T cells. The experiments depend upon the ability of our labeled 
probes to hybridize with genomic DNA or poly(At RNA containing immunoglobulin 
sequences. This approach has two distinct advantages: (a) The physical and chemical 
basis of nucleic acid hybridization is well understood and we can estimate the degree 
of sequence homology required for hybridization. (b) We can detect events, such as 
the synthesis of RNA molecules, which occur at two copies/cell or less. Most of our 
experiments were performed on three cloned cell lines, eliminating the possibility of 
any B cell contamination of our DNA and RNA preparations. In addition, HT-1 and 
CTLLi6 are bona fide mature T cells with a defined antigen specificity and functional 
subclass. 

There is No Rearrangement of Immunoglobulin J and C Gene Segments in the Monoclonal T 

Cells. We used the Southern blot technique to determine whether T cells rearrange 
immunoglobulin J and C gene segments. Such rearrangements are clearly involved in 
V gene expression and heavy chain constant region switching in B cells. A rearranged 
DNA sequence could, however, give a band pattern identical to embryo DNA on 
Southern blots for two reasons : (a) The sequence is fortuitously rearranged to a new 
restriction fragment the same size as the embryonic fragment . (b) The restriction 
enzyme emp.loyed cuts a fragment that does not span the part of the DNA sequence 
rearranged . For example, the restriction enzyme might cut a fragment from the 
middle of a CH gene stretching several kb to the 3' side of this gene. This cleavage 
would not detect DNA rearrangement in B cells because when the V and J gene 
segments are joined in these cells, all the sequences 3' to the constant region remain 
in the germ-line configuration . To reduce the possibility of missing a rearrangement , 
we generally hybridized each of our probes to separate T cell DNA samples cut with 
three different restriction enzymes. This is particularly important for the C57BL/6J­
derived T cells because the position of restriction enzyme sites with respect to the 
immunoglobulin genes is not as well characterized in this inbred strain as it is in 
BALB/c mice. In total, we have carried out 45 separate comparisons of the T-cell 
DNA with liver, kidney, and embryo DNA using the heavy chain probes, and another 
27 with the light chain probes (Table III , Table IV, M . Kronenberg. Unpublished 
observations.) . All the restriction fragments that hybridize with immunoglobulin 
probes in T cells also are present in the nonlymphoid DNA. The JK, CK, Ct- , ]H, elL, 
and Ca gene segments, as well as the defined heavy chain constant region switch sites, 
are therefore not rearranged in the T cells analyzed. Although we have not directly 
tested for the rearrangement of the Cs or Cy heavy chain genes, it seems unlikely that 
T cells express these sequences because theJH gene segments and heavy chain constant 
region switch sequences are not rearranged. Because the]>- gene segment should be on 
the same EcoRI restriction fragment as the Ct- gene in BALB/c, we can also infer that 
the ]t- gene segment is not rearranged in WEHI-22. 

It is difficult to draw definitive conclusions from Southern blots of thymus DNA. 
If some thymus cells rearrange immunoglobulin genes, we would expect each clone of 
cells to generate a new restriction fragment when it joins a J gene segment to a 
particular V gene segment. The detection limit on our Southern blots was between 
0.1 and 0.5 copies/cell. The concentration in thymus DNA of any rearranged fragment 
particular to a given clone of cells would therefore be too low to detect on Southern 
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blots. Blots on thymus DNA then can only rule out a rearrangement common to most 
thymus cells that might, for example, be involved in the inactivation of the imJ11.u­
noglobulin gene loci. There is no evidence for joining of variable gene segments tp ]H 
and J. gene segments in thymus, and our data clearly indicate that monoclonal~ 
mature T cells, which certainly developed in the thymus, do not rearrange these gene 
segments. 

Monoclonal T Cells Do Not Synthesize RNA Containing Immunoglobulin Sequences. In 
addition to testing for gene rearrangement, we analyzed T cells for transcription of 
immunoglobulin genes. We could not detect any C., C>., C11, or C" RNA in the 
monoclonal T cells. Because of the susceptibility of RNA molecules to enzymatic 
degradation, conclusions based upon negative data from Nothern blots must be 
viewed with caution. However, poly(At T-cell RNA electrophoresed on agarose gels 
and stained with ethidium bromide appeared intact as judged by general size 
distribution and the staining of some residual 18 and 28S ribosomal RNA bands. In 
addition, spleen and S!l7 myeloma RNA, prepared and handled exactly as the T­
cell RN I\ were, and run in parallel on the same gels, gave strong hybridization with 
the radioactive immunoglobulin probes (data not shown). Finally, Southern blot 
analysis has indicated that the C., C>., C11 , and C" gene segments are found in the 
germ-line configuration. Thus, if we did miss a small amount of RNA synthesis, the 
transcribed constant region gene was not close to a V gene segment, and this 
transcription is therefore unlikely to be involved in antigen-receptor biosynthesis. It 
has recently been reported that WEHI-22 cells synthesize about three copies of C11 

RNA/cell (49) . We retested our poly(At RNA from WEHI-22, under conditions 
where we should have been able to detect -0.4 copies/cell, and found no hybridization 
with the C11 probe (M. Kronenberg. Unpublished observation.). This discrepancy is 
most probably caused by some heterogeneity in the WEHI-22 cell line. 

Thymocytes May S;,nthesize Some RNA with C11 Sequences. In preparations of total cell 
RNA from thymus, we find small amounts of C., C11 , and Ca RNA in the poly(At 
fraction. We have no information as to whether the immunoglobulin RNA is in the 
nucleus, free in the cytoplasm, or on polysomes, nor is it entirely clear which cell type 
synthesizes the RNA. 

The sizes of the K and a RNA are similar to that found in antibody-secreting B 
cells. It is therefore unlikely that this RNA originated from c~lls with unrearranged 
K and a genes. In our experiments, B-ee!! contamination may be a likely explanation 
for RNA containing K and a sequences. Given the amount of immunoglobulin RNA 
in plasmacytomas (50), if our thymus preparations contained -0.01% plasma cells, 
we would have obtained the C. and C" hybridization that was observed on Northern 
blots. Storb et a!. have previously reported the presence of C. and C" RNA in 
thymocytes, although they detected about 50-fold more RNA/cell than we did (51, 
52). Conflicting data have been obtained on the question of whether or not the C. 
RNA is synthesized by contaminating B cells (53, 54). 

The unusual molecular weight distribution observed for C11 RNA in the thymus is 
similar to that previously observed for thymocytes (53) , and for 7 out of 13 different 
T lymphomas ([49] ; and D. Kemp. Personal communication.). This suggests that the 
C11 RNA that we have detected may originate from thymocytes rather than contam­
inating B cells. Because most thymocytes are not immunologically competent (55), 
one could speculate that immature T cells synthesize p. heavy chain before switching 
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to expression ofT cell constant regions. T cell-derived Ji RNA is transcribe<;! from 
unrearranged DNA and does not contain either VH or ]H gene segments (D. Kemp. 
Personal communication.). The relationship of this C" sequence transcription to 
eventual expression of antigen receptors that presu.mably contain V regions is unclear. 

The Gene for a Putative T Cell Constant Region Must Have Diverged by at Least 30% from 
the C" Gene Segment. There are reports in the literature that T cells synthesize a 
polypeptide serologicaliy cross-reactive with Ji heavy chain (25, 26). In DNA cleaved 
with several restriction enzymes, we have found only one band containing a single 
gene (15) that hybridizes with the C" probe. We can obtain a rough estimate of how 
far a homologous C" gene must have diverged in order to have not cross-hybridized 
with the C" probe. Hybridization of a C" probe to a homologous gene will depend 
upon a number of conditions including salt, temperature, percent guanine and 
cytosine content of the DNA sequence, and the length of the hybridizing fragments 
(56). Under our standard hybridization conditions, we are -30°C below the temper­
ature at which 50% of hybrid molecules formed will separate (T m) for perfectly 
matched sequences. We therefore estimate that a gene 25% divergent in DNA 
sequence from a probe can be detected, and this has been empirically verified (S. 
Crews. Unpublished observations.). For a 55°C hybridization, we might hope to 
detect a gene that is another 10% (i.e., 35%) divergent from our C" probe. Although 
there are uncertainties in the estimates, given our Southern blot results, if there is a 
polypeptide homologous to Ji made by T cells, it is likely that the gene coding for this 
protein diverged by at least 30% from the B cell C" gene sequence. 

The T Cell Receptor Genes May Have J and C Gene Segments that are Distinct from Those of 
Their B Cell Counterparts. In Fig. 7 is given our model of the organization of the genes 
encoding the B and T cell antigen receptors. Evolutionary considerations indicate 
that multigene families can duplicate to generate new families that can acquire 
different functions and interact with gene products of the old family (57). This 
suggests that the gene families encoding the B and T cell antigen receptors could have 
evolved from a common ancestral gene family . If so, they should share common or 
homologous gene elements and mechanisms of DNA rearrangement for gene expres­
sion. This has been demonstrated for the B-cell K, .>-., and heavy chain gene families 
(9, 11-13, 57). Our model is based upon these evolutionary considerations, data drawn 
from the literature indicating that B and T cells express the same VH gene segments 
(29-33), and the data presented in this paper demonstrating that T cells do not 
express B-cell J and C gene segments. Several points should be emphasized. (a) We 
presume that T cells express VH gene segments through a mechanism similar to the 
mechanism that has been defined for B cells. This implies that T cells express VH 
gene segments in conjunction with T cell-specific constant region (CT) genes, and that 
there are multiple CT genes that are expressed differentially on the functional 
subclasses ofT cells. We believe that the rearrangement of a VH gene segment, with 

JH JT 

VHI VH2 VH3 VHn 
~ c,. Ca Ca 

~ 

CTI CT2 CTn 1234 1234 
· ··~l I I I I I I I I ···~l I I I I I I I I • .• -l....J.._ 

FIG. 7. A model of the genes encoding the B and T cell antigen binding receptors. Exons and 
intervening DNA sequences are not drawn to scale. Subscript T denotes gene segments expressed in 
T cells only. The position of the postulated ]T and CT gene segment cluster with respect to the other 
indicated gene segments is unknown. 
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or without a D segment, to a T cell J gene segment 0T) will place that VH gene 
segment in the proper context for expression along with CT genes. (b) The ]H gene 
segment codes for much of the third hypervariable region of B-ee!! derived antibody 
molecules (13). IfT cells employ different ]H gene segments along with the B-cell"VH 
gene segments, then we might expect to find some differences in the antigen-binding' 
specificities ofT cells. This may partially explain experiments indicating that T cells 
recognize different antigenic determinants than B cells (58) . In addition, some 
idiotypic markers that depend upon specific residues in the J region should be absent 
from T cell antigen binding receptors . This has implications for experiments employ­
ing anti-idiotypic reagents as probes for antigen-binding receptors and for the 
proposed regulation of immune responses via idiotypic antiidiotypic interactions. (c) 
Although there is much evidence for VH expression, there is little evidence for VL 
gene segment expression by idiotype-positive T cells (31, 32, 59). If T cells do express 
VL gene segments, then the statements we make concerning the heavy chain gene 
family can be readily extended to include the light chain family. (d) If there is a CT 
gene product that cross-reacts serologically with the p. chain, we have obtained data 
indicating the gene for this protein is not likely to be > 70% homologous to the cl' 
heavy chain gene sequence. This is not surprising because CT genes probably diverged 
from B-cell CH genes about the time of appearance of vertebrates with circulating 
immunoglobulin, and we would therefore expect only limited sequence homology 
between the B and T cell C gene clusters. 

Summary 
We have analyzed four kinds of T cells for rearrangement and expression of 

immunoglobulin genes. These cells include: (a) whole thymus; (b) WEHI-22, aT-cell 
lymphoma; (c) HT-1, an major histocompatability complex-restricted T helper line; 
and (d) CTLLi6, an H-2 alloreactive killer cell line. None of the B-cell joining and 
constant gene segments are rearranged in the T cells. The monoclonal cells do not 
express any C., C>-, Cl', or C .. RNA species. Small amounts of C., C .. , and Cl' sequences 
are present in RNA prepared from the thymus, although the significance of this RNA 
for T-cell antigen receptor synthesis is uncertain. The data support the hypothesis 
that expression of B-cell joining and C gene segments is unnecessary forT-cell helper 
and T-cell killer activity. 

We thank Dr. David Kemp for helpful discussions, and Joanne Dugdale and Connie Katz for 
preparation of this manuscript. 
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The generation of a humoral immune response depends on the interaction 

between B lymphocytes, which synthesize immunoglobulin, and T lymphocytes, which 

regulate the B cell response. Although an organism can respond to a large set of 

diverse antigens, individual T and B cells synthesize receptors which can recognize 

only a few related antigenic determinants. B cells bind antigen through cell-surface 

immunoglobulin, a molecule composed of two identical heavy (H) and two identical 

light (L) polypeptide chains. During differentiation, individual B cells undergo a 

series of DNA rearrangements, becoming committed to the synthesis of 

immunoglobulin of a single specificity. The heavy chain variable region is composed 

of three separate gene segments, V H' D, and J H' which become joined to form the 

expressed heavy chain gene (1). Similarly, the light chain variable region is encoded 

by two distinct gene segments, VL and JL' which become joined by a DNA 

rearrangement to produce the transcriptionally active light chain gene (2). 

T cells also exhibit a high degree of antigen specificity, but the molecular 

nature of the T cell receptor for antigen is not well characterized. Previous work has 

shown that the T cell antigen-binding receptor is not a conventional immunoglobulin; 

many functional murine T cells do not transcribe the CH, CL' JH' or JL gene 

segments which are required for encoding a complete immunoglobulin molecule (3). 

However, serological studies have suggested that T cells involved in the responses to 

synthetic polypeptides (4, 5), carbohydrate residues (6), alloantigens (7), haptens 

(8, 9), and protein antigens (12) express idiotypic determinants characteristic of 

immunoglobulins generated in response to the same antigens. Anti-idiotypic sera 

have been used to affect T cell function both in vivo and in vitro (6, 9, 13, 14) and are 

capable of binding antigen-specific factors secreted by T cells (4, 5, 8, 9). 

Furthermore, in a number of systems, the expression of idiotypic determinants by T 

cells is linked to the V H or CH' but not the CK, locus (9, 15-19). Two conclusions 

have often been drawn from these experiments. First, it has been proposed that T 
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cells transcribe V H gene segments joined not to the immunoglobulin D, JH and CH 

gene segments, but to T cell-specific constant region segments (10). Second, it has 

been asserted that T and B cells use the V H gene repertoire in a similar fashion such 

that both types of lymphocyte might transcribe similar V H gene segments in response 

to the same antigen (11). 

We set out to determine whether T and B cells which respond to the same 

antigen and share idiotypic determinants do in fact transcribe the same V H gene 

segments. We have chosen to analyze the murine immune response to the synthetic 

polypeptide, glutamic acid60, alanine30 and tyrosine10 (GAT), for two reasons. First, 

the B cell response to GAT displays limited diversity, as evidenced by a restricted 

isoelectric focusing pattern (20), and the presence of a predominant idiotype, CGAT 

(21). In addition, the sequences of five out of five heavy chains derived from 

immunoglobulins that bind GAT and four out of five heavy chains derived from 

proteins binding the related synthetic polymer GA are highly similar, even though 

only four of the antibodies express the CGAT idiotype (22). Therefore it is likely that 

there is one or a few highly homologous V H gene segments expressed in the murine B 

cell response to GAT. Second, GAT-reactive T cells of different functional classes 

have been cloned and many display CGAT idiotypic determinants (5, 23, 24). 

Therefore, we can address directly whether a set of GAT-specific T cell clones, some 

of which are idiotype-positive, transcribe the GAT V H gene segment. 

We isolated a eDNA clone encoding the GAT VH from a GAT-reactive B-cell 

hybridoma. Using the GAT VH probe, we tested RNA from nine GAT-specific T­

suppressor hybridomas, one GAT-specific helper hybridoma, and two GAT-specific T 

helper cell lines. Although six of these T cells express the CGA T idiotype on 

secreted, antigen-binding factors, we were unable to detect a GAT VH transcript in 

any of the T cell RNAs. We therefore conclude that T and B cells responding to the 

same antigen do not use the same V H gene segment. The large body of data 
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suggesting the expression of idiotypic determinants on T cells must be reinterpreted 

in light of this result. 

Materials and Methods 

Cells. The GAT-specific B cell hybridoma, F9-238.9, was produced by the 

fusion of GAT-primed DBA/2 spleen cells and the HAT-sensitive myeloma cell line, 

P3-X63-Ag8 (25). The resulting hybridoma synthesizes both the MOPC21 (y, K) 

immunoglobulin derived from the myeloma parent and a GAT-binding immunoglobulin 

(]..1, K) (Fig. 1). The F9-238.9 cells were kindly provided by Dr. Ronald N. Germain 

(NIH, Bethesda, MD). 

The suppressor T-cell hybridomas were derived by fusion of splenic T cells from 

mice immunized with either GAT, GT, TsF1 plus GT, or GAT conjugated to 

macrophages and BW5147, a HAT-sensitive T lymphoma of AKR origin (23, 24). The 

helper T-cell hybridoma resulted from a fusion between cultured T cell blasts derived 

from lymph node cells reactive with GAT and BW5147. The TH lines were derived 

from lymph node lymphocytes of mice primed in vivo with soluble GAT and were 

maintained in vitro on GAT plus supernatant from ConA stimulated rat spleen cells. 

The characteristics of the T cell clones that we analyzed are summarized in Table I. 

Before RNA isolation, the T-cell hybridomas were expanded in liquid culture from 

frozen stocks and assayed for GAT-specific reactivity by previously published 

methods (23, 24, 26). The cells were harvested and the resulting pellets frozen at 

-70°C. 

RNA Isolation. The frozen cell pellets were lysed by vortexing in 4 M 

guanidinium thiocyanate (Tridom, Hauppage, NY), 25 mM sodium acetate, pH 5, 0.5% 

sodium sarkosyl, 0.33% antifoam (Sigma, St. Louis, MO), 1 M 8-mercaptoethanol. 

The RNA was purified by centrifugation through a cushion of cesium chloride (27), 

and the poly(A)-containing fraction enriched by two passages over oligo(dT) cellulose 

(28) (Type 3, Collaborative Research, Waltham, MA). The RNA concentration was 
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determined spectrophotometrically. 

Construction of eDNA Library. A eDNA library was constructed using 15 ].lg 

poly(A)-RNA from F9-238.9 GAT-specific B cells. Synthesis of the first eDNA strand 

by AMV reverse transcriptase (Life Sciences, Inc., St. Petersburg, FL) was carried out 

with minor modifications of published procedures (29-32). The synthesis was initiated 

at random sites along the mRNA by the addition of sheared calf thymus DNA primer 

(33). The primer was prepared by digesting calf thymus DNA with DNase I to an 

average size of 10-15 nucleotides. RNasin (Biotec, Madison, WI) was added to the 

reverse transcriptase reaction to inhibit degradation of the RNA template (34). 

The alkaline hydrolysis of the RNA and subsequent synthesis of the second 

eDNA strand by E. coli DNA polymerase I (Boehringer Mannheim, Indianapolis, IN) 

were performed as previously described (29, 30, 35). Following digestion of the 

single-stranded loop with Aspergillus S1 nuclease (Sigma, St. Louis, MO) (29, 30), the 

double-stranded eDNA was fractionated by gel filtration on a Biogel A150 (BioRad, 

Richmond, CA) column. The eDNA greater than 500 nucleotides in length, with an 

average size of approximately 800 bases, was tailed at each 3' end with 10-15 dCTP 

nucleotides using terminal deoxynucleotidyl transferase (New England Nuclear, 

Boston, MA) (36). 

The eDNA was then annealed to the tetracycline-resistant plasmid, pBR322, 

which had been digested with the restriction enzyme Pstl (New England Biolabs, 

Beverly, MA) and tailed at the resulting 3' ends with 8-10 nucleotides of dGTP. The 

annealed DNA was used to transform~· coli strain MC1061 (37), as described (38) and 

the transformants were selected by plating on nitrocellulose filters (Millipore, 

Bedford, MA) placed on media containing 15 ].lg/ml tetracycline. Replica filters were 

prepared for hybridization or frozen for storage as described (39). 
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Isolation of pGAT50, the GAT VH eDNA Clone. The eDNA library was 

A 

screened with a mixture of 32 pentadecamers (5'CAT~TA~GT~Tc6TT3'), synthe­

C 

sized at Hoffmann LaRoche (Nutley, NJ) and kindly provided by Dr. Ken Wieder. The 

probe mixture was labeled at the 5' end with T4 polynucleotide kinase and [ y-

3 2P] dA TP (ICN, Irvine, CA) ( 40). Prior to screening with the radioactive probe, 

plasmid DNA was amplified for 36 h on plates containing 12.5 11g/ml chloramphenicol. 

The bacterial cells then were lysed and prepared for hybridization with the probe as 

described (39). Duplicate filters were pre-hybridized at 23° for 3 h in hybridization 

buffer, consisting of 5X SET (0.75 M sodium chloride/0.15 M Tris, pH 8, 5 mM 

ethylenediaminetetraacetic acid), 5X Denhardts solution (41), 10 11g/ml each of poly 

(rA), poly (rC), and poly (rG), 0.5% sodium dodecyl sulfate, and 250 11g/ml denatured, 

sheared salmon sperm DNA. The probe was added to the filters in fresh hybridization 

buffer at 0.5 pmol/ml or 5.5 x 106 cpm/ml. Following 16 h of hybridization at 23°, 

the filters were washed in 5X SET, 0.1% sodium dodecyl sulfate, 0.1% sodium 

pyrophosphate at 23° and exposed to Kodak XAR-5 film with an intensifying screen at 

-80°. 

DNA Sequencing. DNA from the GAT VH clone pGAT50 was digested either 

with Pstl or Pvull (New England Biolabs, Inc., Beverly, MA), subcloned into the 

bacteriophage vector, M13mp8 (Bethesda Research Laboratories, Gaithersburg, MD) 

and sequenced by the dideoxy method (42). Also, pGAT50 cleaved with Stui (New 

England Biolabs, Beverly, MA) and labeled at the 5' ends with T4 polynucleotide 

kinase was digested with Bgll and Pvui (New England Biolabs, Beverly, MA) and the 

labeled fragments purified and sequenced by the Maxam-Gilbert technique (43). 

Northern Blots. Poly(A)-containing RNA was denatured, electrophoresed in 

agarose gels containing formaldehyde (44) and blotted to nitrocellulose (45). E. coli --
16S and 23S rRNAs and murine 18S and 28S rRNAs were electrophoresed in parallel as 
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molecular weight standards. The filters were hybridized at 42° in formamide and 

dextran sulphate (Pharmacia, Piscataway, NJ) as previously described (45), with the 

addition of 5 11g/mlliver poly(A)-minus RNA. The blots were washed in 0.3 M sodium 

chloride, 0.03 M sodium citrate, and 0.1% sodium dodecyl sulfate, pH 7. at 50° and 

then exposed to Kodak XAR-5 film using an intensifying screen. 

Hybridization probes. The following cloned DNAs were labeled to a specific 

activity of 2-8 x 108 cpm/11g by nick-translation (46, 47). 1. C probe. Plasmid _11__._.___ 

pSp11Al (48) was digested with four restriction endonucleases, BamHI, Kpnl, EcoRI 

and Xbai, to produce a restriction fragment containing the exons encoding C 3, C 4 
11 11 

and half of C 2. This restriction fragment was purified by electroelution from a 
11 

preparative agarose gel. 2. MOPC 21 probe. A eDNA contianing virtually the entire 

MOPC21 heavy chain variable region gene was cloned into pBR322 (49). 3. Vll 

probe. A 3.5 kb SauiiiA restriction fragment, containing the genomic Vll gene 

segment (50), was subcloned into pBR322. Vll is a member of the TEPC15 gene 

family. DNA was kindly provided by Dr. Johanna A. Griffin (University of Alabama, 

Birmingham, AL). 4. V14A probe. A BamHI-EcoRI restriction fragment containing 

most of the genomic V H gene segment, V14A, was subcloned into pBR322 (Stephen 

Crews, unpublished). The V14A sequence is very similar to the gene encoding the 

J606 myeloma heavy chain. The DNA was given to us by Dr. Stephen Crews 

(California Institute of Technology, Pasadena, CA). 5. S107 probe. A eDNA clone 

containing the V H gene segment expressed by the S107 myeloma was previously 

isolated (2). S107 is a member of the TEPC15 gene family. The DNA was prepared 

by Dr. J. A. Griffin. 6. GAT50 probe. The derivation of the pGAT50, the GAT VH 

eDNA clone is described in this manuscript. 7. H-2 class I probe. pH-2IIa was 

subcloned from a eDNA encoding a class I gene of the d haplotype (51). The DNA was 

provided by Dr. Michael Steinmetz (Basel Institute, Switzerland). 8. ~H probe. A 

2 kb fragment containing all four JH gene segments was excised from the plasmid 
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pSp11A1 (48) by digestion with Hpaii (New England Biolabs, Beverly, MA) and purified 

as described above. 9. CK probe. A 6 kb BamHI-Hindiii fragment containing the 

germline CK gene was subcloned in pBR322 from a genomic clone. The DNA was 

prepared by Dr. M. Steinmetz (Basel Institute for Immunology, Basel Switzerland). 

Results 

Isolation of pGAT50, a GAT VH eDNA Clone. To isolate a eDNA clone 

containing the GAT immunoglobulin V H coding region, we had to overcome two 

technical problems. First, the 11 RNA is long, approximately 2.4 kb in length and the 

V H region is located at its 5' end. Conventionally, eDNA synthesis is initiated by an 

oligo(dT) primer hybridized to the poly(A) tail found at the 3' end of most eukaryotic 

messenger RNAs. Therefore, to obtain a clone containing the entire GAT V H would 

require synthesis of a eDNA greater than 2 kb in length. Since cDNAs this long are 

rare, we initiated synthesis using short fragments of calf thymus DNA as a primer. 

This primer could anneal at various points along the mRNA and the eDNA synthesized 

would derive from the 5' end of the RNA more frequently than with an oligo(dT) 

primer. Therefore, the probability of cloning the VH sequence should be increased. 

The second technical problem arose because the GAT B-hybridoma, F9-238.9, 

contains approximately 10 times more y heavy chain mRNA derived from the 

myeloma parent than 11 mRNA containing the GAT VH. This is demonstrated by 

hybridizing a blot containing the B cell RNA with a germline JH probe capable of 

detecting all heavy chain messenger RNAs. Hybridization to the 1.9 kb MOPC21 y 

mRNA species is significantly more intense than hybridization to the 2.4 kb GAT 

heavy chain 11 mRNA (Fig. 1). In addition, the F9-238.9 cells secrete approximately 

one tenth as much 11 as y heavy chain (Kraig, unpublished observation). To distinguish 

between the clones containing the GAT V H and the more prevalent clones encoding 

the MOPC21 V H' initially we screened the eDNA library with a C 
11 

probe. Although 

several clones containing some VH sequence were isolated, no eDNA clones 
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containing the entire GAT V H gene were identified. Since the NH 2 -terminal amino 

acid sequence of several GAT-binding immunoglobulin heavy chains had been 

determined, it was possible to synthesize an oligonucleotide probe, complementary to 

the RNA sequence predicted to encode amino acid residues 31-35 (Fig. 2). Because 

there exist ambiguous positions in the reverse translation from amino acid into 

nucleotide sequence, the complements of all 32 possible coding sequences were 

synthesized. We hybridized the pool of labeled pentadecamers to the eDNA library 

under conditions which would distinguish between MOPC21 V H' which has no more 

than 12 of 15 nucleotides identical to any of the 32 pentadecamers, and the GAT V H' 

which should be identical to one of the probes at all 15 positions. Of 6000 eDNA 

clones screened, one, designated pGAT50, hybridized to the pool of radioactive 

pentadecamers and was characterized further. 

The nucleotide sequence of pGAT50 and the sequencing strategy used are 

summarized in Fig. 3. The eDNA clone contains 106 nucleotides from the 5' 

untranslated (UT) region, a sequence capable of encoding a hydrophobic 19 amino acid 

leader peptide, complete V H' D, and JH gene segments and 72 nucleotides of the C J.l 

gene. The V H' D, and JH gene segments have rearranged in a continuous translational 

reading frame, indicating that the eDNA clone encodes a functional V region. The 

amino acid sequence predicted from pGAT50 (Fig. 3) agrees with the 33 residues of 

published NH2-terminal protein sequence data for the F9-238.9 heavy chain (22). The 

D is identical to DFLl 6.1 (52) and the J gene segment used is JH2 (53). The clone 

also contains 72 nucleotides whose sequence is identical to that published for the 

NH 2-terminal portion of the first domain of C J.l (54). 

GAT-specific T Cells Do Not Transcribe the GAT VH Sequence. RNA was 

extracted from 10 different GAT-specific T-cell hybridomas and two T-cell lines 

(Table I) and the poly(A)-containing RNA purified by two or three sequential passages 

over oligo(dT)-cellulose. Ten ].lg of each T hybridoma RNA were separated according 
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to molecular weight on a denaturing gel, blotted to nitrocellulose, and hybridized with 

the radioactive pGAT50 probe. There was no evidence of a T-cell mRNA species 

which hybridized to the GAT VH probe (Fig. 4). Similarly, there was no GAT VH 

sequence in 3-6 ].lg of poly(A) RNA from two TH lines, BB02' and BD01' (data not 

shown). The GAT VH sequence could, however, be detected when as little as 50 ng of 

poly(A)-containing RNA from the B-cell hybridoma were loaded on the gel (Fig. 4). 

The T cell RNA was shown to be present and undegraded by a positive control 

hybridization using pH2-IIa, a eDNA encoding an H-2a class I polypeptide (Fig. 5). All 

of the T cell RNAs contained an mRNA approximately 1.9 kb in length which 

hybridized to the H-2 probe and encodes the H-2 class I polypeptide localized in the 

cell membrane. In addition, several of the TS hybridoma RNAs had a second mRNA 

of about 1.8 kb which hybridized to the class I probe. This smaller species of mRNA 

had been observed previously in liver and possibly encodes a secreted H-2 class I 

polypeptide (55). 

It is possible that V H sequences encoding T cell-derived GAT binding 

polypeptides are related rather than identical to the GAT VH gene. Therefore to 

estimate the effect of nucleotide sequence divergence on the intensity of the 

hybridization signal, several V H gene probes were hybridized to 2 ng of sucrose 

gradient-purified heavy chain RNA from the myeloma S107. For a messenger RNA 

present at 50 copies per cell, 2 ng is the amount of a 2 kb messenger sequence that 

would be present in 10 ].lg of total poly(A) RNA. All experimental conditions were 

identical to those described for the analysis of GAT V H expression by T cells. 

Hybridization of C , C , and MOPC 21 VH probes to varying amounts of F9-238.9 
K ].l 

RNA provided a standard from which the effect on signal could be visually estimated 

(Figs. 6A and 6B). Hybridization of the S107 RNA to the VHll probe, which shares 

90% sequence identity, was reflected in three to fivefold loss of hybridization signal 

when compared to the completely identical S107 probe (Figs. 6C and 6D). 
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Furthermore, the VH14A probe which shared only 75% identity with the S107 RNA 

gave no detectable signal (Fig. 6E). Therefore, if the T cell hybridomas contained a 

moderately abundant sequence, less than 75-80% identical to the GAT VH probe, this 

transcript would not have been detected. 

Discussion 

We wished to determine whether T and B cell receptors which bind the same 

antigen and share idiotypic determinants are encoded by similar V H gene segments. 

The murine immune response to GAT is an ideal system in which to address this 

question. Therefore, we obtained and characterized a eDNA clone (pGAT50) 

containing the entire V H coding sequence from F9-238.9, a GAT-specific B-cell 

hybridoma. The eDNA clone has been sequenced and is identical to the mRNA 

predicted from the 33 NH2-terminal amino acid residues determined for the GAT­

binding antibodies (22). The B cell response to GAT is relatively homogeneous and 

pGAT50 certainly should hybridize to mRNA encoding any of the five sequenced 

heavy chains present in antibodies which bind GAT. Therefore, if B and T cells 

responding to the same antigen use the V H gene repertoire in a similar way, we would 

expect the GAT VH probe to hybridize to transcripts from the GAT-specific T-cell 

clones. 

Using pGAT50 as a probe, no hybridizing RNA species were detected on 

Northern blots of 12 different T cell RNAs. The GAT-specific T lymphocytes were of 

three different functional classes, Ts1, TS2' and TH" To ensure that the cells tested 

had maintained antigen-specific function, all lines were assayed for GAT-specific 

reactivity after expansion in culture and prior to RNA purification. Furthermore, 

positive control hybridizations with an H-2 class I probe argue that the RNA was 

intact and capable of hybridizing. Furthermore, although the GAT heavy chain 

transcript is only moderately abundant (Fig. 1), the GAT V H sequence was detected in 

as little as 50 ng poly(A)-RNA from the GAT B hybridoma. Since 10 ]lg of each T-
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hybridoma poly(A)-RNA was tested, we conclude that there must be at least 200 

times (10 llg/50 ng) less GAT VH-encoding RNA in the T hybridoma than in the B cell 

hybridoma. We estimate the detection limit of this analysis to be approximately 1.5 

copies of GAT VH sequence per T hybridoma.2 A similar calculation leads to an 

estimated detection limit of 5-10 copies per cell for the two T cell lines tested. With 

the sensitivity of the Northern blots, we easily could have identified transcripts as 

abundant as the mRNA encoding ll heavy chain in B lymphomas, approximately 100 

copies per cell (56). Furthermore, most mRNAs in the low abundance class are 

present in mammalian cells at 10-20 copies per cell (57), so we could have detected 

even a transcript in this class. Nevertheless, the T cells analyzed do not contain 

detectable levels of a messenger RNA similar to GAT VH" This result is consistent 

with a report that a T8 clone which secretes a T8F that binds phosphorylcholine and 

shares the predominant idiotype (TEPC15) of PC-binding antibodies, fails to 

transcribe or rearrange the TEPC15 V H gene segment (58). Therefore, we conclude 

that shared idiotypic determinants need not imply transcription of highly similar V H 

genes. 

There are two limitations to the analysis we have presented. First, although 

unlikely, the homologous RNA could be present, with an average abundance of less 

than 1.5 molecules per cell. For example, despite the fact that antigen-specific 

function was assayed, it is possible that only 10% of the T lymphocytes were 

synthesizing antigen-receptor mRNA at the time of harvest. We consider this 

improbable, since function was tested directly after the cells were expanded in 

culture and 12 different cloned T cells were analyzed. However, if for example, the 

half-life of the T
8

F protein were sufficiently long, mRNA need not have been 

continually present. Second, the hybridization signal we obtained is sensitive to the 

amount of similarity between the probe and the RNA sequence tested. Thus, if a 

GAT-specific T cell transcribed a V H gene segment less than 80% similar to pGAT50, 
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this T-cell transcript probably would not have been detected. However, in the 

accompanying manuscript (49), we report the screening of T cell eDNA libraries 

directly with probes capable of hybridizing to virtually any known V H sequence. 

These experiments demonstrate that T cells probably do not transcribe any gene 

segments from the B cell V H repertoire. 

Since there is no evidence for transcription of similar V H gene segments by T 

and B cells responding to the same antigen, how does one explain the widespread 

occurrence of shared idiotypic determinants on these cells? First, it should be noted 

that serological cross-reactivity between molecules does not imply that they are 

highly similar in primary structure. In fact, there are numerous cases in which either 

complex antisera or monoclonal reagents detected cross reactions between molecules 

lacking extensive sequence similarity (59-62). For example, a monoclonal antibody 

raised against the Thy-1 antigen cross reacts with the S107 light chain variable region 

(60). Also, antibodies raised against insulin react with both insulin and with 

antibodies against the insulin receptor (61). 

Generally there are two ways to consider the expression of idiotypic 

determinants by T lymphocytes. The cross reactions observed may be biologically 

irrelevant. In some cases, it is possible that T and B cell antigen receptors reported 

to share idiotypic determinants actually express no common serological specificity. 

For example, if the immunogen used to raise the anti-idiotypic reagent contained 

contaminating T cells or T cell-derived antigen-binding material, the resulting sera 

might detect different determinants on both B and T cells. In other cases, the 

detection of idiotype expression by T lymphocytes depended upon the use of complex 

antisera containing multiple serological specificities. In such complex sera, a minor 

subset of antibodies might recognize a determinant on both B and T cell receptors, 

even though these molecules share little or no structural similarity. Since the assay 

for T-cell idiotype is often the ability to disrupt T cell activity in vitro, perturbations 
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in T cell function due to a minor subset of antibodies would not be easily 

distinguishable from inhibition by the major components of the anti-idiotypic sera. 

No doubt other explanations are possible and no single rationale can account for every 

report of idiotype expression by T cells. However, the sharing of idiotypic 

determinants by B and T cells may be instead a biologically relevant phenomenon, 

reflecting a network or some other selection mechanism which acts similarly on both 

B and T cell antigen receptors. We favor this explanation for several reasons. First 

it has been demonstrated in several instances that monoclonal anti-idiotypic reagents 

can react with T lymphocytes, so in these cases, the reactivity cannot be due to 

minor components in a complex sera. These data formally demonstrate that T and B 

lymphocytes can share a single serologic determinant. Second, the presence of 

idiotypic determinants on T lymphocytes is generally correlated with antigen 

specificity. GAT-specific T cells express the CGAT and not the T15 idiotype, while 

some PC-specific T cells express T15. Third, in a number of cases, the expression of 

idiotype by T lymphocytes is linked to the genes encoding immunoglobulin heavy chain 

allotypes. 

Although it is not certain how the presumptive selection mechanism operates, it 

is clear that such selective pressures do exist at least for the B cell compartment. 

For example, mice responding to phosphorylcholine primarily synthesize antibodies of 

the TEPC15 idiotype. However, if suppressed for TEPC15 production, the mice 

nevertheless can generate an idiotype-negative antibody response (63). Therefore, for 

B lymphocytes, the heterogeneity of receptors expressed in response to some antigens 

reflects both the diversity of the receptor repertoire and the selective forces which 

operate on it. Since T cells involved in many immune responses also express idiotypic 

determinants, it is likely that many anti-idiotypic sera recognize idiotopes involved in 

the selection or regulation of receptors. Finally, since T cell idiotype has been linked 

to the CH locus, it has been concluded that the T cell receptor for antigen also is 
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encoded on chromosome 12. Alternatively, if the regulatory mechanism were 

dominated by B cell antigen receptors, the genes encoding the T cell antigen receptor 

would appear to map to chromosome 12 even though they are actually located 

elsewhere. 

We conclude that T cells and B cells which recognize the same antigen and 

share idiotypic determinants, need not transcribe similar V H gene segments. 

Understanding the structural and genetic bases for idiotype expression by T cells 

awaits a thorough characterization of the antigen-binding molecules themselves and 

the genes which encode them. 

We wish to thank Dr. Ronald Germain for providing the GAT B hybridoma cells, Dr. 

Ken Wieder for the synthetic oligonucleotide, and Dr. James Casey for the generous 
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Footnotes 

1 Abbreviations used in this paper: AMV, avian myeloblastosis virus; C, constant 

region; CGAT, predominant idiotype in murine response to GAT; D, diversity gene 

segment; dATP, deoxyadenosine triphosphate; dCTP, deoxycytidine triphosphate; 

dGTP, deoxyguanosine triphosphate; dT, deoxythymidine monophosphate; GA, synthetic 

1 f 1 t . 'd50 1 . 50 GAT 1 t . 'd60 1 . 30 t . 10 GT po ymer o g u am1c ac1 :a amne ; , g u am1c aCI :a amne : yrosme ; , 

glutamic acid50:tyrosine50; H, immunoglobulin heavy chain; HAT, medium containing 

hypoxanthine, aminopterin and thymidine; Ig, immunoglobulin; IL-2, interleukin 2 or T 

cell growth factor; J, joining gene segment; K, kappa light chain; Kb,kilobase (1000 

nucleotides); PC, phosphorylcholine; T H' helper T cell; T S' suppressor T cell; T SF, T 

cell suppressor factor; UT, untranslated; V, variable region. 

2By comparing the signal obtained with JH, MOPC21 VH' GAT50 VH' and Cl-1 probes 

hybridized to F9-238.9 RNA and purified myeloma RNAs, we estimate that 

approximately 0.2% of the F9-238.9 poly(A)-RNA encodes the GAT Ig heavy chain 

(Kraig and Kronenberg, unpublished observation). The 5' untranslated (5' UT) region 

plus V H comprise 21% = (500/2400) of the mass of the entire l-1 mRNA, therefore, the 

V H plus 5' UT should be present at 0.04% of the mass of the F9-238.9 poly(A)-RNA. 

Since a sequence this abundant could be detected in 50 ng of B cell RNA (Fig. 4, 

lane 3) and since 10 l-!g of each T hybridoma poly(A)-RNA was tested, we could have 

detected an homologous V H sequence present in T cells at 0.00021% of the mass of the 

poly(A)-RNA. Assuming 0.2 pg poly(A)-RNA perT cell (49), we could have detected as 

-7 -7 little as 4 x 10 pg VH/cell. One molecule of 5' UT-VH weighs 2.76 x 10 pg = (500 

nucleotides) (330 daltons/nucleotide) (1.67 x 10-12 pg/dalton). Therefore the calcu­

lated detection limit is 1.5 molecules/cell= (4 x 10-7 pg detectable/cell)/(2.76 x 10-7 

pg/5' UT-V H). This number is a best estimate, but there is a degree of uncertainty in 

determining both the percentage of the F9-238.9 poly(A)-RNA which encodes the GAT 

immunoglobulin heavy chain and the amount of poly(A)-RNA per cell in the T cells. 
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Footnote 2 (continued) 

Since less RNA from the T H cell lines was tested, the detection limit is two to 

threefold higher than the detection limit for the T cell hybridomas. 
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FIG. 1. Hybridization of a probe containing the four germline JH gene segments to a 

Northern blot of poly(A)-RNA from the F9-238.9 GAT B-cell hybridoma. The 

migration distances of the RNA molecular weight standards and their sizes in kilobases 

are indicated. The lower band contains MOPC21-y RNA while the upper band contains 

GAT VH-J.l. For an additional comparison, see Figs. 6A and 6B. 
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FIG. 2. Ologonucleotide probes. The GAT V H amino acid sequence, the predicted 

mRNA sequences and the pentadecamers synthesized as probes complementary to the 

mRNA are shown. 
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FIG. 3. Characterization of pGATSO. The pGATSO eDNA clone is shown with the 

recognition sites for the restriction endonucleases, Pst I (.), Pvuii (?), and Stul (.,), 

indicated. The specified restriction fragments from pGATSO and pGAT40 (*),a second 

eDNA clone containing only part of the GAT VH sequence, were subcloned into 

M13mp8, a bacteriophage vector, and sequenced by the dideoxy method (42) in the 

direction indicated by the arrows. The sequence of pGATSO was confirmed and 

extended by the Maxam-Gilbert method (43) from the Stul site, as shown. 

The resulting DNA sequence of pGATSO and its translation into protein sequence 

are given. The position of the pentadecamer used as a hybridization probe is under­

scored. Vertical lines delineate the boundaries of 5' UT, L, V H' D, and JH" 
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FIG. 4. Hybridization of Northern blot containing RNA from GAT-specific T and B 

cells with the pGAT50 probe. Varying amounts of poly(A)-RNA from F9-238.9, the 

GAT-B hybridoma, ten J.lg of poly(A)-T cell RNA from the T-cell hybridomas were 

loaded as follows: lane 4, 301D4A5; lane 5, 342B1.11; lane 6, 365C6.4; lane 7, 258C4.4; 

lane 8, 367 A5.2; lane 9, 368B1.5; lane 10, BW5147; lane 11, 145F3511; lane 12, 

301A2.3; lane 13, 469B5.5; lane 14, 372B3.5; and lane 15, 372D6.5. The positions, i.e., 

301A2.3, and sizes (in kilobases) of the rRNA markers are indicated. 
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FIG. 5. Hybridization of Northern blot of T cell RNAs with H-2 class I probe. The 

blot used in Fig. 4 was rehybridized with pH-112A, a murine class I probe. Residual 

hybridization of pGAT50 to the B cell RNA is observed. The positions and sizes (in 

kilobases) of the rRNA markers are indicated. 
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FIG. 6. Effect of nucleotide sequence divergence upon hybridization signal. 

A. Hybridization of a C and C probe to various amounts of F9-238.9 RNA. 
].l K 

B. Hybridization of the MOPC21 V H eDNA to various amounts of F9-238.9 RNA. 

C. 8107 RNA hybridized with the 8107 V H probe. D. 8107 RNA hybridized with the 

VHll probe (90% similar). E. 8107 RNA hybridized with the VH14A probe (75% 

similar). 
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Chapter 5 

THREET CELL HYBRIDS DO NOT EXPRESS DETECTABLE 

HEAVY CHAIN VARIABLE GENE TRANSCRIPTS 

This chapter has been accepted for publication in 

the Journal of Experimental Medicine. Figures 6 and 7 have been published previously in 

Isolation, Characterization and Utililzation of T Lymphocyte Clones, 

c. Garrison Fathman and Frank Fitch, editors. Academic Press, New York. p. 467 and 

are reprinted here with permission of the publisher. 
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Footnotes 

1 
Abbreviations used in this paper: eDNA, DNA complementary to mRNA; D, 

diversity gene segment; GAT, L-glutamic acid60-L-alanine30-L-tyrosine10; GT, L­

glutamic acid
50

-L-tyrosine50; HGG, human gamma globulin; JH' heavy chain joining 

gene segment; kb, kilobase; KLH, keyhole limpet hemocyanin; MHC, major histo-

compatibility complex; NP, 4-hydroxy-3-nitrophenyl acetyl; PC, phosphorylcholine; 

V H' heavy chain variable; V K' kappa light chain variable; V !..' lambda light chain 

variable. 

2 A number of measurements have indicated that most mammalian cells, 

including lymphocytes, contain about 104 different sequences or species of mRNA of 

average length 2 x 103 nucleotides (48-51). Thus, about 2 x 107 base pairs(= 104 x 2 

x 103) of genomic DNA are transcribed into mRNA. The random chance of any one of 

the four nucleotides occurring at a particular place in a DNA sequence is 1/4; 

therefore, if we ignore the effects of base composition and nearest neighbors, the 

probability that an 11-nucleotide sequence will occur is (1/4)11 = 2.5 x 10-7. 

Multiplying the probability of occurrence for the undecamer by the number of 

nucleotides in the mRNA gives the number of different mRNA species expected to be 

perfectly complementary to the oligonucleotide, (2 x 107) (2.5 x 10-7) = 5. 
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There is considerable controversy as to whether or not the genes encoding the 

T-cell antigen receptor are homologous to immunoglobulin gene segments. Results 

from a number of different experiments have been interpreted as evidence that T 

lymphocytes utilize heavy chain variable (V H 1) regions to bind specifically to antigen. 

For example, some anti-idiotypic and anti-V H framework sera interfere with T-cell 

function and/or bind to antigen-specific factors secreted by T cells (1-3). In several 

cases, the gene encoding the cross-reactive determinant expressed by the T cells is 

linked to the immunoglobulin heavy chain gene cluster (4-9). Also, the genes 

encoding a series of T-cell alloantigens have been mapped to chromosome 12, 

between the CH gene locus, lgh-1, and the prealbumin gene (9, 10). Recently, these 

alloantigens have been detected on antigen-binding factors secreted by T cells 

(11-13). It has been proposed that the antigenic determinants encoded by CH-linked 

genes are T-cell isotypes which may be expressed in conjunction with V H gene 

segments (10, 14). Furthermore, some T lymphocytes contain rearranged JH gene 

segments or a CJ..l transcript (15-23). This may indicate that the mechanisms 

controlling V H-D-J H joining and immunoglobulin transcription also operate upon 

homologous sequences in the synthesis of T-cell antigen-binding receptors. 

Experiments which report the expression of V H serologic determinants by T 

lymphocytes have provided the most extensive and convincing data in support of V H 

gene transcription by T cells. However, the serologic data are indirect, and there are 

three possible ways to interpret them. First, T and B cells responding to the same 

antigen may express highly similar or identical V H gene segments. It should be noted 

that in several experimental systems the receptor synthesized by T cells responding 

to an antigen does not share all the serologic determinants present on the 

immunoglobulin synthesized by B cells responding to the same antigen (1, 24). In 

addition, we and others have demonstrated that idiotype-positive T and B lympho­

cytes which respond to the same antigen do not transcribe highly similar V H gene 
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segments (25, 26). Second, it is possible that T cells use the repertoire of V H genes 

differently than B cells do. This might occur because T lymphocytes do not express 

light chain genes (3, 4) or because T cells recognize antigen in the context of 

syngeneic MHC gene products. lf this were true, then T cells responding to an 

antigen may transcribe V H gene segments which have limited structural similarity to 

those transcribed in B cells responding to the same antigen, although these different 

V H gene products could share some idiotopes. Finally, it is possible that the V H 

cross-reactive determinants present on T cells and T-cell factors are not the products 

of VH genes. 

In this paper, we report our attempts to determine whether any V H gene 

segments are expressed in T lymphocytes. eDNA libraries were constructed from a 

suppressor T-cell hybridoma specific for the synthetic polypeptide GAT, and from 

two helper T-cell hybridomas, one specific for HGG and the second responding to 

KLH. The eDNA libraries were hybridized with two sets of probes; each set capable 

of detecting a wide range of V H gene segments. In constructing the probes, no 

assumptions were made concerning the degree of homology between the B-cell heavy 

chain variable regions binding GAT, HGG, or KLH and VH gene transcripts which 

might be present in the T-cell hybridomas. One set of probes was a synthetic 

oligonucleotide complementary to a conserved sequence found at the 3' end of many 

mouse VH gene segments and a single-stranded eDNA synthesized primarily from the 

heavy chain variable genes present in spleen RNA. The second set of probes was two 

cloned V H gene segments, one from the V HII gene subgroup and one from the V Hill 

gene subgroup. The eDNA libraries were sufficiently large so that the chance of 

detecting a sequence found in the nonabundant messenger RNA class (10-20 copies 

per cell) was excellent. Since no V H-containing cDN A colonies were found, we 

conclude that V H gene segments are not likely to encode the T-cell antigen-binding 

receptor. 
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Methods 

RNA Preparation. T-cell hybridomas were grown in liquid culture and 

harvested. The cell pellets were lysed in guanidinium thiocyanate, and the RNA was 

prepared by centrifugation through a cushion of cesium chloride (27). The percent 

yield and the amount of RNA per cell were estimated using a recovery marker as 

previously described (20). RNA was similarly prepared from spleens of 6-month-old 

BALB/c Cum mice. Poly(A)+ RNA was purified by two cycles of oligo(dT)-cellulose 

chromatography (28). 

eDNA Synthesis. Double-stranded eDNA was synthesized as described (29, 30). 

First strand synthesis was initiated by random priming using sheared calf thymus DNA 

(31). The double-stranded eDNA was fractionated by gel filtration and the material 

ranging in size from 400 to 1500 base pairs was pooled. The average length of the 

eDNA was approximately 800 base pairs. The eDNA was cloned into the Pst I site of 

the tetracycline-resistant plasmid pBR322 by annealing dC-tailed eDNA to dG-tailed 

vector (32). Bacterial strain MC1061 (33) was transformed with eDNA and the 

transformants were selected with tetracycline (34). We obtained approximately 106 

colonies per J.lg of eDNA. Transformation with vector alone (dG-tailed pBR322) 

yielded a 2% background. 

Synthetic Oligonucleotides. Two undecamers were synthesized separately by 

Dr. S. Horvath (California Institute of Technology) by the phosphite coupling method 

(35, 36) (Fig. 1). The sequences were verified by the method of Maxam and Gilbert 

(37). The oligonucleotide probes were labeled with 5'-[ y-32P] dATP to a specific 

activity of greater than 2 J.1Ci/pmol using T4 polynucleotide kinase (38). Filters were 

prehybridized and hybridized with the radioactive oligonucleotides at 4°C as 

previously described (25). The filters were washed with several changes of 5X SET 

(0.75 M NaCl/0.15 M Tris pH 8.0/5 mM EDTA) with 0.1% sodium pyrophosphate 

between 12 and 20°C and were then exposed to film. 
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Specifically-Primed eDNA Made from Spleen RNA. The synthesis of the JH-

primed spleen eDNA probe is illustrated in Fig. 2. The primer was prepared by 

purifying a 2 kb Hpa II fragment containing the four J H coding sequences from a 

subclone derived from the bacteriophage lambda clone ChSp].127 which contains 

germline BALB/c DNA. This 2-kb fragment was then digested with the restriction 

enzymes · Dde I, Hae III, Pst I, and Rsa I. This results in a number of restriction 

fragments, including four which contain part of the JH coding sequences (21) (Fig. 3). 

The restriction fragments were denatured by boiling and annealed to poly(A)+ RNA 

from spleen. eDNA synthesis primed with the annealed JH fragments was carried out 

as described (29). The concentration of a-32P-labeled and unlabeled deoxynucleotide 

triphosphates was adjusted so that the synthesized material had a specific activity of 

2-3 x 108 cpm/].lg. RNA in the reaction was hydrolyzed with alkali and the single-

stranded eDNA was separated from unincorporated nucleotides by gel filtration. The 

yield of eDNA was about 0.5% the mass of spleen RNA in the reaction; a fourfold 

stimulation over a reaction with no added primer. Filters were prehybridized at 50°C 

and hybridized at the same temperature with 5 ng/ml of JH-primed eDNA for 48 h. 

Conditions were otherwise as previously described (25). Filters were washed at 50°C 

in several changes of 5X SET/0.1% sodium pyrophosphate/0.1% SDS before exposure 

to film. 

V Region Probes. The plasmid p107V1 contains the entire gene segment coding 

for the heavy chain variable region expressed in the S107 myeloma (39). The V H gene 

can be separated from the pBR322 vector DNA by digestion with Pst I. The plasmid 

pVH3 obtained by the laboratory of Dr. Sam Strober, was provided by Dr. Michael 

McGrath, Stanford University. This plasmid has a 1 kb Bam HI fragment which 

contains the heavy chain variable gene expressed by the BCL1 lymphoma (40). The 

1 kb Bam HI fragment of pVH3 and the 445 base pair Pst I fragment of p107Vl were 

nick translated (41) to a specific activity of 1-8 x 108 cpm/].lg. Filters hybridized 
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with these probes were handled as described for the JH-primed eDNA except the 

probe was present at a concentration of 0.2-1.0 ng/ml. 

Colony Hybridization. Nitrocellulose filters (HATF 13750, Millipore, Bedford, 

MA) were replica plated and prepared for in situ hybridization as described (42). 

Duplicate filters were annealed with each probe. For each screening, a positive 

control filter with colonies containing a heavy chain variable gene segment (MOPC21) 

was hybridized in parallel (Fig. 4). 

Southern Blots. Plasmid DNA was prepared from clones isolated from the 

eDNA libraries. This DNA was digested with various restriction endonucleases, 

separated by molecular weights in 1% (w/v) agarose gels and transferred to nitro­

cellulose (43). The filters were then hybridized with the synthetic oligonucleotides or 

the JH-primed spleen eDNA as described above. 

DNA Sequencing. Restriction fragments were labeled at the 5' end with 

32P-y-dA TP using polynucleotide kinase (37) or labeled at the 3' end with 32P-o:­

cordycepin-5'-triphosphate using terminal deoxynucleotidyl transferase (44). The 

labeled fragments were cut internally with a second enzyme and those isolated 

fragments were sequenced according to the method of Maxam and Gilbert (37). 

Results 

eDNA libraries were constructed from three different T-cell hybridomas. Some 

features of the three hybrid cell lines are summarized in Table I. These cells were 

chosen for several reasons. First, they have retained function which is antigen 

specific, and in two cases MHC restricted. Second, they grow continuously in the 

absence of irradiated feeder spleen cells which, if present, could contribute 

contaminating immunoglobulin sequences to the T-cell RNA preparations (21). Third, 

the hybridomas are specific for structurally unrelated antigens and are therefore 

likely to employ rather different antigen-binding receptors. If T lymphocytes do 
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transcribe V H gene segments, this should increase the probability that the probes will 

have sufficient homology to hybridize with a V H gene transcript from at least one of 

the lines. Finally, two hybridomas help B cells secrete antibody and the third 

secretes a specific suppressor factor. Since most reports of idiotype expression by T 

lymphocytes involve the helper or suppressor functional subclasses, these types of 

cells may be best suited for the detection of V H transcripts (2, 3, 7). To detect 

virtually any V H gene transcript present in these cells, we employed two 

experimental strategies for screening the eDNA libraries. 

Hybridization with Synthetic Oligonucleotides and JH-Primed eDNA. In the 

first attempt, two types of probes, synthetic oligonucleotides and a JH-primed eDNA, 

were used to screen the libraries. Each probe will hybridize to a variety of V H gene 

segments, as well as to some sequences that do not contain V H genes. The frequency 

of such non-VH hybridizing sequences is low, so that a clone hybridizing with both 

types of probes probably contains a V H gene segment. 

The sequences of the eleven-base synthetic oligonucleotides are 

5' GCA CAG TAA/G TA 3' (Fig. 1). These probes are complementary to a highly 

conserved sequence found at the 3' end (amino acids 95-98) of mouse heavy chain 

variable region gene segments. A sequence perfectly complementary to either 

oligonucleotide is found in 50% (17 /34) of the murine V H genes for which DNA 

sequence data are available. The degree of homology of the cloned murine V H gene 

segments to the oligonucleotides is listed in Table II. Furthermore, in those cases for 

which no DNA sequence but amino acid sequence data are available, 78% (18/23) of 

the mouse immunoglobulin variable regions have tyr-tyr-cys-ala at positions 95-98, 

and therefore may share complete homology to one of the probes (45, 46). However, 

the oligonucleotide is not long enough to identify unambiguously a V H gene segment. 

Given the number of nucleotides of genomic DNA transcribed into RNA, and the 

random chance of occurrence of an 11-nucleotide sequence, we calculate that any 
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mouse cell, whether it synthesizes immunoglobulin or not, should contain about five 

species of messenger RNA which will hybridize with each oligonucleotide. 2 

The second type of probe was a eDNA synthesized from spleen RNA (Fig. 2). 

The spleen contains a relatively high proportion of B cells which should express many 

different immunoglobulin heavy chains. Therefore, it was possible to use JH DNA as 

a primer to stimulate the synthesis of a radioactive single-stranded eDNA 

complementary to many V H genes. Using either Southern blots or hybridization to 

cloned DNA spotted onto nitrocellulose filters, the specifically primed eDNA 

hybridized to several V H gene segments tested. These include T15, MOPC21, V HB2, 

and V14A (Fig. 5). Since two of the hybridizing gene segments, T15 and V HB2, share 

less than 60% homology (Table II), this probe should hybridize to a large number of 

different V H sequences. In addition, the specifically primed eDNA does hybridize to 

a few cloned DNA segments which do not contain V H genes (M. Kronenberg, 

unpublished observations). There are two explanations for hybridization to sequences 

lacking V H genes: 1) There is a significant amount of eDNA synthesis in the absence 

of added primer (see Methods) which should not be enriched for immunoglobulin 

sequences. 2) The primer DNA is a mixture of restriction fragments from both the 

JH gene segments and the intervening and nearby flanking sequences. Some of the 

fragments from the noncoding DNA may prime eDNA synthesis from nonimmuno­

globulin sequences in spleen RNA. It is possible that some of the nonimmunoglobulin 

sequences which hybridize with the probe are repeated DNA sequences which are 

transcribed abundantly in spleen cells. We have not, however, characterized these 

hybridizing sequences. 

To demonstrate that these probes can detect a V H sequence we screened a 

eDNA library made with RNA extracted from a B-cell hybridoma (25). A colony 

which hybridized with both the oligonucleotide and the JH-primed eDNA (21) was 

characterized further. The nucleotide sequence of this eDNA clone (Fig. 6) indicates 
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that it encodes the MOPC21 heavy chain variable region synthesized by the 

P3-X63-Ag8 myeloma parent cell. The clone includes almost the entire V H gene 

segment beginning at the codon for amino acid 2 as well as the entire D and JH4 gene 

segments. 

Having determined that these probes were able to detect B-cell V H gene 

segments, we screened the three T-cell eDNA libraries with the synthetic 

undecamers. The filters were hybridized and washed under conditions such that 11/11 

homology was required to give a positive signal. Fifty-four positive colonies were 

found (Table III). A single filter containing three hybridizing colonies is shown 

(Fig. 7). The frequency of positives was low, indicating that these cells do not 

contain abundant RNA molecules with sequences complementary to the undecamers. 

Northern blots hybridized with the synthetic oligonucleotide gave a similar result 

(M. Kronenberg, unpublished observations). In fourteen cases, the colony which 

hybridized with the oligonucleotide was isolated and the plasmid DNA prepared from 

the bacterial clone. Southern blots of this plasmid DNA also hybridized with the 

oligonucleotide, thereby confirming the colony hybridization results (Fig. 8 and unpub­

lished observations). 

Following hybridization with the oligonucleotides, the three eDNA libraries 

were screened with the J H-primed cDN A. To test for colonies homologous to both 

probes, all filters which contained a colony that annealed with the oligonucleotide 

were hybridized with the eDNA probe. The frequency of positive colonies was 

fifteen- to fortyfold higher with the JH-primed spleen eDNA than was obtained with 

the synthetic probe (Table III). However, none of the colonies which hybridized with 

the spleen eDNA also hybridized with the oligonucleotide (Fig. 7). Plasmid DNA 

isolated from fourteen colonies which hybridized with the undecamer was also tested 

with this probe. None of the isolated plasmid DNA hybridized with the JH-primed 

eDNA (Fig. 8). 
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Hybridization with Cloned VH DNA Sequences. Using cloned VH DNA probes 

and hybridization conditions of decreased stringency, it is possible to detect eDNA 

colonies containing V H genes which are only 55-60% homologous to the probe 

(S. Crews, unpublished observations, Fig. 4). We therefore screened the three T-cell 

eDNA libraries with V H probes from the S107 (V H subgroup III) and BCL1 (V H 

subgroup II) tumors. These were chosen because the complete DNA sequences of 

these V H gene segments are available and because fragments of the appropriate sizes 

are easily prepared without contaminating vector or much flanking DNA. However, 

there were no colonies in the three T-cell cDN A libraries which hybridized with 

either of these probes. A positive control filter with colonies containing the MOPC21 

V H gene segment hybridized with pVH3, which contains the V H gene expressed in 

BCL1 (Fig. 4). The MOPC21 and pVH3 V H gene segments share only 58% homology. 

Table II indicates that the V H gene segments for which nucleotide sequences are 

available have greater than 56% homology to at least one of our probes. Therefore, it 

is likely that we could have detected all of these V H genes. 

Discussion 

We have utilized several strategies to evaluate whether T cells express any V H 

gene segments. To accomplish this, we had to construct DNA probes capable of 

detecting many different V H genes. The Northern blot hybridization is the most 

direct method to test for a particular transcript present even at the level of a single 

copy per cell (20). For the detection of possible V H transcripts in T cells, we decided 

instead to screen large eDNA libraries. There are two reasons for doing this. First, 

we have found that it is possible to detect V H sequences less than 60% homologous to 

the probe in hybridizations to eDNA colonies (Fig. 1), while greater than 80% 

homology is required when hybridizing under conditions of moderate stringency to 

Northern blots (25). This difference may reflect a number of factors, including the 
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concentration of the filter-bound nucleic acid. In addition, we have achieved a 

greater hybridization signal to filter bound DNA as opposed to RNA, even when both 

nucleic acids contained identical sequences electrophoresed in parallel and hybridized 

to the same probe in the presence of 50% formamide (M. Kronenberg, unpublished 

observations). Second, the initial strategy to detect a V H gene segment involved the 

use of two probes which could hybridize to a number of sequences, including those not 

containing V H genes. Since there are multiple sequences present in the poly(A) + RNA 

which hybridize to these probes, we detect diffuse smears rather than discrete bands 

on Northern blots. By contrast, each cloned eDNA in the library is physically 

separate and could be analyzed individually for the possibly rare sequences which 

hybridize with both probes. 

The eDNA libraries were screened with a synthetic oligonucleotide and a JH­

primed eDNA made from spleen RNA. This method has been characterized 

extensively by test hybridizations (21) (Figs. 4, 5) and by the cloning and sequencing 

of the MOPC21 V H eDNA from a B-cell hybridoma (Fig. 6). Of the approximately 1.2 

x 106 colonies from three T-cell eDNA libraries hybridized with the synthetic 

oligonucleotide, fifty-four clones were positive. Because of the relatively short 

length of the probe, we would have predicted, on statistical grounds, the existence of 

such colonies even in eDNA made from nonlymphoid RNA. None of these colonies 

also annealed with the specifically-primed spleen cDN A when tested in situ (54 cases) 

or after Southern blotting the purified plasmid DNA (14 cases). A relatively large 

number of colonies did, however, hybridize with the spleen eDNA probe. The 

identification of colonies which hybridized with either one of the two probes provided 

an internal control and indicates that there was no technical problem with the 

screening which would have prevented us from identifying clones of interest. Positive 

control hybridizations with V H-containing colonies support this conclusion. Since no 

colonies hybridized with both probes, we conclude that V H gene segments are absent 
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from these libraries. Hybridization with cloned VH DNA gene segments under 

conditions whereby sequences less than 60% homologous to the probe could be 

detected constituted a second, independent test for the presence of V H genes. By 

hybridizing the eDNA libraries with just two V H sequences from different heavy chain 

subgroups, we should be able to detect all of the well-characterized V H genes. NoT­

een eDNA colonies hybridized with these probes, confirming the result obtained by 

the first method. 

While B lymphocytes expressing cell-surface IgM contain 100-200 copies of C 
]J 

RNA per cell (17, 47), a messenger RNA for the T-cell receptor may not be this 

prevalent. The bulk of the 5,000-15,000 sequences found in most eukaryotic cells, 

including lymphocytes, are in the low abundance class (10-20 copies/cell) (48-51). 

Our calculations indicate that we had a good chance of detecting V H sequences 

transcribed at this level (Table IV). For example, if there is a V H sequence 

homologous to the probes and present at 10 copies per cell, the probability of 

detection was 77% for the AODK 10.4 eDNA library, 88% for the AODH 7.1 eDNA 

library, and greater than 99% for the 395A4.4 library. The probabilities of detecting 

a sequence present at 15 or 20 copies per cell are higher. If each library construction 

and screening were an independent event, then the overall probability of not obtaining 

a V H clone which is present at 10 copies per cell becomes extremely low (0.23 x 0.12 

x 0.01 = 0.00028). This analysis cannot exclude the possibility of expression of V H 

genes at one or even a few copies per cell. However, there is some indication that 

these hybrids synthesize a significant amount of receptor protein. The T-cell 

hybridoma AODH 7.1 binds antigen avidly in the presence of the proper antigen­

presenting cells and almost all the cells in the culture retain this ability (J. Kappler 

and P. Marrack, unpublished observations). In addition, the 395A4.4 hybridoma 

constitutively synthesizes both an antigen-binding suppressor factor and an antigen­

binding receptor. We therefore consider it unlikely that the receptor mRNA could be 
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present at an extremely low-copy number. 

The calculated detection limit depends on a formula which assumes that the 

probability of detecting a eDNA is solely a function of the abundance of its RNA 

template in the population (52, 53). This will be true only if the synthesis and cloning 

of cDNAs uses all templates with equal efficiency. Although factors such as 

secondary structure of an RNA (54) may influence the ultimate cloning efficiency, 

there does not appear to be a selection against cloning of heavy chain variable region 

eDNA. In addition, since the bulk of the first strand of eDNA synthesis is shorter 

than the average 2-kb length of an mRNA, there is an intrinsic bias towards obtaining 

eDNA clones containing sequences close to the point of initiation of synthesis. By 

using a sheared calf thymus DNA primer to randomly initiate eDNA synthesis at many 

points along the RNA templates, as opposed to an oligo(dT) primer which will initiate 

synthesis at the 3' end, we eliminated any bias towards obtaining clones corresponding 

to only one end of the messenger RNA. Given these considerations, we feel justified 

in using the formula shown in Table IV. Finally, in order to calculate the probability 

of cloning a particular messenger RNA, we needed to estimate the amount of 

poly(A)+ RNA per cell. Each of the hybrid cells contains between 5 and 10 pg of total 

RNA (Table IV). We assumed that 0.3 pg of this total is in the poly(A)+ fraction, 

although our actual yield was substantially lower, between 0.05 and 0.15 pg per cell. 

Poly(A)+ RNA selected by oligo(dT)-cellulose chromatography will contain a residual 

poly(A)- component which is mostly ribosomal RNA. Since this material may give 

rise to a proportionate fraction of the eDNA colonies in Table IV, we corrected N, the 

number of colonies screened, to account for the contaminating poly(A) RNA. 

The calculations are based upon reasonable estimates of the purity of the 

poly(A)+ RNA and the amount present per cell. However, if we assume there is 

somewhat more than 0.3 pg of poly(A)+ RNA per cell, or if the poly(A)+ fraction of 

the RNA preparation is less than 75% of the total mass, the basic conclusion remains 
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valid. For example, if the oligo(dT)-passaged RNA were only 50% pure, the 

probability of detecting a homologous V H sequence present at 10 copies per cell 

becomes 63% for the AODK 10.4 eDNA library, 75% for the AODH 7.1 library, and 

greater than 99% for the 395A4.4 library. 

Although unlikely, it is possible that the three T lymphocytes might express a 

V H gene which could not be detected by either of our two screening methods. The 

DNA sequence homology of mouse V H gene segments to our probes is presented in 

Table II. The JH-primed spleen eDNA hybridized with all of the five V H gene 

segments tested (21). In addition, homology with the undecamers does not appear to 

be restricted to any particular type of heavy chain. Some murine V H genes coding for 

proteins in subgroups I, II, and III, as well as three out of four human V H gene 

segments (all subgroup III) have complete homology to these probes (55, 56). Even 

two mouse germline VA. gene segments have 10/11 matching nucleotides (57, 58). 

However, the synthetic oligonucleotides will not hybridize with half of the known 

murine V H gene segments. In principle, none of these genes would have been 

detected by our first method. However, all of the V H gene segments listed in Table II 

are greater than 56% homologous to one of the two cloned V H probes and probably 

could be detected by the second method. 

Estimates of the ability of the probes to detect different V H gene segments 

depend upon comparison with the known DNA sequences of relatively few variable 

gene segments. Almost all of these sequences come from V H subgroups II and III and 

a large proportion are members of the gene families involved in binding the NP and 

PC haptens. It is not certain how well these sequences represent the total germline 

V H gene repertoire. To increase the probability of detecting V H expression, we 

constructed eDNA libraries from three T-cell hybridomas responding to presumably 

dissimilar antigens. Since each of these cells maintained antigen-specific function, if 

V H genes encode the T-cell antigen-binding receptor, each should synthesize an RNA 
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containing a V H gene segment. Because the hybrids are the product of two (395A4.4) 

or more parental T cells (59, 60), they might be expected to express two or more V H 

genes if, as in B-cell hybrids, V H gene segments are transcribed from several 

chromosome 12 homologues. In addition, it has been suggested that even a single 

diploid T cell may synthesize more than one V H RNA (61, 62). Thus, if T cells use the 

entire V H gene repertoire, we believe there would have been a V H segment 

sufficiently homologous to have been detected by one of our two screening methods. 

Although it remains formally possible that T cells express selectively a portion of the 

B-cell V H gene repertoire containing sequences only distantly related to our probes, 

no such V H genes have been characterized. 

We have presented strong evidence in favor of the proposition that the helper 

and suppressor T cells tested do not contain RNA with V H gene segments. This 

negative conclusion is not, however, completely compelling and two major objections 

concerning the detection limit and the range of our library screening, have been 

discussed. A number of unlikely possibilities, including selection against cloning the 

V H-containing sequences or a V H mRNA that is present mostly in the poly(A)­

fraction, have also not been eliminated. However, using different methods, another 

laboratory has reported that T lymphocytes do not transcribe any V H gene segments 

(63). 

Many of the genes which have dominated our thinking about the immune 

response including s2-microglobulin and the class I and class II products of the MHC, 

show clear homology to immunoglobulin genes (64-68). The T cell and B cell antigen­

binding receptors presumably have somewhat homologous functions. We would be 

surprised, therefore, if the genes encoding the T-cell antigen receptor were to have 

no homology to immunoglobulin genes. Since multigene families are known to 

duplicate and diverge (69), it is possible that gene families important for B- and 

T-cell antigen recognition diverged prior to or relatively early in vertebrate 
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evolution. Attempts to clone T-cell receptor genes using VH probes might therefore 

not be feasible, somewhat analogous to attempting to clone V gene segments using 
K 

V)... probes. At this point, we can only speculate on the selective forces which may 

have resulted in separate V gene families expressed in BandT cells. 

Summary 

We attempted to determine if T cells express any V H gene segments. eDNA 

libraries were constructed from one suppressor and two helper T-cell hybridomas. 

Both the library construction and screening were designed to maximize detection of a 

wide range of V H gene segments. One screening method should detect about half of 

the sequenced V H genes, while the second should detect most of these genes. The 

probability of detecting a V H gene homologous to the probes and present at 10 copies 

per cell was 77% for one helper cell eDNA library, 88% for the second helper cell 

library, and greater than 99% for the suppressor cell library. No eDNA clones with 

V H gene segments were detected. From this result, we conclude that V H gene 

segments are not likely to encode the antigen-specific receptor in the cells we tested. 

We thank Drs. Stephen Crews and Roger Perlmutter for helpful discussions, Dr. 

Suzanna J. Horvath for synthesis of the oligonucleotides, Tim Hunkapiller for 

development of the data base and computer programs, and Bernita Larsh for help in 

preparing the manuscript. 
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FIG. 1. Synthetic oligonucleotide probes. The conserved oligonucleotide sequences 

found in immunoglobulin V gene segments, the amino acids these sequences encode, 

and the complementary undecamers we synthesized are shown. 



Protein Sequence: 

Conserved DNA Sequences: 

Synthesized Complementary 

Oligonucleotides: 

147 

Tyr Tyr Cys Ala Tyr Tyr Cys Ala 

5' TAT TAC TGT GC 3' 5' TAC TAC TGT CG 3' 

3' ATA ATG ACA CG 5' 3' ATG ATG ACA CG 5' 

Figure 1 
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FIG. 2. Synthesis of JH-primed eDNA from spleen RNA. Coding sequences on the 

immunoglobulin heavy chain messenger RNAs are indicated as follows: C, constant 

region; J, joining gene segment; V a and V b' two different ·V H gene segments. The J H 

primer is indicated by the thick horizontal line. The short vertical lines represent 

hydrogen-bonded base pairs and the X's represent radioactive nucleotides 

incorporated into eDNA. 
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Synthesis of JH Primed eDNA 

SPLEEN POLY (A)+ RNA 

--AAA Va J C AAA 

-----AAA 

--AAA 

-----AAA 

--AAA 

-----AAA 

vb J c --=;..__- AAA 

ANNEAL 
PRIMER 
FRAGMENT 

VaJCAAA 
LIJ 

Vb J C AAA 
LIJ 

eDNA 
SYNTHESIS 

V0 J C 
Ill l.., AAA 

vb J c 
'lllQ AAA 

Figure 2 

ALKALINE 
HYDROLYSIS 
OF RNA 
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FIG. 3. JH primer fragments. The sequence of the primer fragments, used to 

generate the spleen eDNa probe, is shown (78). Digestion of a 2 kb restriction 

fragment containing the four JH gene segments generates four separate fragments 

containing the JH coding sequences and about 30 fragments from sequences flanking 

the JH gene segments. Only the JH coding sequences are shown. Restriction enzyme 

sites are indicated with vertical lines and the primer fragments generated are 

enclosed in rectangles. 
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J 1 5' TACTGG1FCTTCGATGTCTGGGGCGCAGGGACCACGGTCACCGTTTC~CA 3' 

Rsal Ode! 

J 
2 

5' T ACTTTGACTACTGGG<fCAAGGCACCACTCT~CAGTCTCCfrCA 3' 

Haelll Ode! 

J 
3 

5' GCCTGGTTIGCTTACTGGG<fCAAGGGACTCTGGTCACTGTCTCTGCAJ 3' 

Hoell! Patl 

J 
4 

s• TACTATGCTATGGACTACTGGGGTCAAGGAACGTCAGTCACCGrc§CA 3' 

Ode! Odel 

Figure 3 
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FIG. 4. Positive control hybridizations to eDNA colonies containing a cloned V H gene 

segment. A circular nitrocellulose filter containing DNA from several thousand 

identical pF9V21 (MOPC21) V H eDNA clones was cut into sections. Hybridization 

conditions are described in the Materials and Methods section. The hybridization 

probes were: (a) Radiolabeled synthetic oligonucleotides. The filter was exposed to 

film for 12 h. (b) Radiolabeled JH-primed spleen eDNA. The filter was exposed for 

24 h. (c) pVH3 plasmid containing the BCL1 V H gene. The filter was exposed for 

10 h. The same section of filter was hybridized to the synthetic oligonucleotides, 

washed to remove the probe, and was then hybridized with the JH-primed spleen 

eDNA. 
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FIG. 5. Hybridization of specifically primed spleen eDNA to clones that contain V H 

genes. (A) Agarose gel stained with ethidium bromide. 1, BamHI digest of plasmid 

containing V HB2 sequence. 2, EcoRI digest of a bacteriophage A clone containing two 

V gene segments, V14A and V14B. These V genes should be located on separate 

restriction fragments 5.0 and 2.0 kilobases long. 3, BamHI digest of a bacteriophage 

A clone containing the T15 V H gene segment. The T15 V H sequence is located on a 

2.4 kilobase restriction fragment. (B) Southern blot of DNA in (A) hybridized to the 

specifically primed spleen eDNA. Three fragments containing V gene segments gave 

detectable hybridization. In lane 2, the 2.0 kilobase fragnnet containing a V gene 

segment did not hybridize. The higher molecular weight fragment in lane 3 may be 

uncut DNA. Migration distances of the molecular weight markers are shown. kb, 

kilobase. 



(A) (B) 

9.5kb-

6.7kb-

4.2kb-

2.2 kb-

1 2 3 1 ·2 3 
Figure 5 
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FIG. 6. Nucleotide sequence of a V H cDN A clone (F9V21) detected with the synthetic 

oligonucleotides and JH-primed spleen eDNA. The predicted amino acid sequence is 

shown above the DNA sequence. The sequence agrees with one previously reported 

for the MOPC21 V H gene (73), except for the 209th nucleotide which was cytidine 

instead of adenosine. This difference is silent with respect to the predicted amino 

acid sequence. As noted previously, there are six discrepancies between the published 

amino acid sequence for MOPC21 and the nucleotide sequence (45, 73). The F9V21 

eDNA clone begins in the middle of the codon for the second amino acid, and contains 

the entire VH' D, and JH4 gene segments. A portion of the D and the entire JH gene 

segment are not shown. The 11-nucleotide sequence complementary to one of the 

synthetic nucleotides is underscored. 
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FIG. 7. Hybridization of the synthetic oligonucleotides and JH-primed spleen eDNA 

toT-cell eDNA colonies. A single circular filter containing several thousand colonies 

from the 395A4.4 suppressor T-cell eDNA library is shown. (A) Hybridization with 

the synthetic oligonucleotide. The arrows indicate three colonies to which 

hybridization of the radiolabeled synthetic oligonucleotides was detected in a 72-h 

exposure. A duplicate filter gave the same pattern of oligonucleotide-positive 

colonies. (B) Hybridization with the JH-primed spleen eDNA. After incubation of the 

filter at 50°C to remove the hybridized oligonucleotides, the same filter as shown in 

(A) was hybridized with the radiolabeled JH-primed spleen eDNA. The signal from 

positive colonies varies and some nonspecific background is present. The filter was 

exposed for 48 h. The arrows mark the position of the three oligonucleotide-positive 

colonies. None of the colonies hybridized with both probes. 
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FIG. 8. Southern blots of some oligonucleotide-positive T-cell eDNA colonies. 

Plasmid DNA was prepared from several T-cell eDNA clones which hybridized with 

the synthetic oligonucleotides. Restriction mapping of the plasmids indicated they 

contain an average of 800 base pairs of mouse eDNA inserted into the pBR322 cloning 

vector (4.36 kb). The purified plasmid DNA was digested with the restriction 

enzymes Eco RI and Pvu II. Digested DNA was electrophoresed on 1% agarose gels 

and blotted onto nitrocellulose sheets. Migration distances of some molecular weight 

markers, and their lengths in kilobases, are indicated. Lanes 1-3 and 6-9 contain 

DNA from separate oligonucleotide-positive colonies isolated from the 395A4.4 

library. Lane 4 contains pBR322 vector DNA. Lane 5 contains the MOPC21 V H 

eDNA. (a) Hybridization with the radiolabeled synthetic oligonucleotides. Exposure 

for 3 h. (b) Hybridization with the radiolabeled JH-primed eDNA. The filter was 

exposed for 24 h. 



161 

~ -1 0) 

co 

~ 
CX) 

co 

~ ,.... H I 

co 

~ 

co 
co 

~ . 
II) 

~ • 
co 

I I I 
co It) Ill ~ 
fti ..j N ... 

Figure 8 



162 

Chapter 6 

RNA TRANSCRIPTS FOR I-J POLYPEPTIDES ARE APPARENTLY 

NOT ENCODED BETWEEN THE I-A AND I-E SUBREGIONS OF 

THE MURINE MAJOR IDSTOCOMPATIBILITY COMPLEX 

Submitted for publication to the Proceedings of the National Academy of Science, USA 
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ABSTRACT The 1-J subregion of the mouse major histocompatibility complex has 

been reported to encode polypeptides expressed by suppressor T cells. Previously, we 

obtained cosmid clones from mouse sperm DNA which contain all of the sequences 

between the 1-A and 1-E subregions, where 1-J has been mapped genetically. 

However, hybridization of these sequences to RNA prepared from several 1-J 

positive, suppressor T cell hybridomas did not reveal the presence of a transcript. In 

addition, no rearrangements in this DNA were detected in the suppressor T cells that 

we have analyzed. Our results indicate that the 1-J polypeptides are not encoded 

between the 1-A and 1-E subregions of the major histocompatibility complex. We 

discuss several hypotheses concerning the possible location and expression of 1-J 

genes. 
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The I region of the murine major histocompatibility complex (MHC) encodes 

polymorphic cell-surface molecules which are involved in lymphocyte interactions 

(1, 2). The I region has been divided by analysis of recombinant inbred mice into five 

subregions arranged in the order: I-A, I-B, I-J, 1-E, and 1-C (Fig. 1A) (3). The I-A 

and 1-E subregions code for class II molecules or Ia antigens which are found 

predominantly on the surfaces of B cells and macrophages (4, 5). These molecules are 

composed of two polypeptides, an Cl chain of approximately 32,000 daltons, and a e 
chain of approximately 28,000 daltons (6). In order to mount an immune response, 

some T lymphocytes, including helper or inducer T cells, must recognize syngeneic 

class II molecules in addition to the stimulating antigen (7, 8). The other subregions, 

1-B, 1-J, and 1-C, are less well characterized. For example, while the 1-B subregion 

may affect the level of the immune response to certain antigens, it does not encode 

serologically detectable molecules and its existence is controversial (9, 10). On the 

other hand, numerous alloantisera and monoclonal antibodiies have been raised 

against lymphocytes from strains which differ only in the 1-J subregion (11-14). The 

antigens recognized by these antibodies have a unique tissue distribution; they are 

found predominantly on the surface of suppressor T cells and on soluble factors with 

suppressive activity secreted by these cells (11-16). In addition, there are some 

reports of 1-J positive subsets of helper T lymphocytes (17) and macrophages (18). 

Interest in the 1-J subregion and its gene products has been heightened by two 

findings. First, 1-J-encoded molecules are associated with or are actually part of the 

antigen-binding polypeptides made by suppressor T cells (19-21). Thus, a biochemical 

characterization of 1-J molecules may help to define the T-cell antigen-binding 

receptor. Second, in some cases 1-J-encoded molecules appear to regulate 

interactions between T lymphocytes (22). Thus, they may be models for proteins 

which mediate cell-cell communication. 

There are several reports indicating that the 1-J specificity is present on 
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proteins with a molecular weight of approximately 25,000 daltons (20, 21, 23). In 

addition, because the I-J serological determinant can be found on proteins translated 

in vitro by a rabbit reticulocyte system, the antigenic determinant is presumed to be 

a polypeptide rather than a carbohydrate structure (23). Little more is known, 

however, about the structure of I-J-encoded molecules. 

Recently we have been able to define a 2.0 kilobase (kb) DNA sequence which 

should contain the gene(s) encoding the I-J serologic specificity (24, 25). First, using 

a BALB/c mouse (H-2d) cosmid library and two human eDNA probes, we have 

isolated 200 kilobases (kb) of contiguous DNA sequence located in the I region. The 

coding sequences for the E
13 

chain encoded in the I-A subregion and Ea chain encoded 

in the I-E subregion were found to be separated by only 33 kb of DNA (Figs. lB, 1C) 

(24). Next, to define more precisely the boundaries of the I-A and I-E subregions, we 

identified polymorphic restriction enzyme sites in the I region and tested genomic 

DNA from parental and I region recombinant strains for the presence of these 

polymorphic sites (24, 25). This analysis permitted us to correlate the genetic map of 

the I region with the molecular map of the cosmid cluster. We discovered that the 

boundaries of the I-A and I-E subregions, which define I-J, are less than 2.0 kb apart 

(Fig. 1D). * 

There are two reasons why this region seems too small to encode the I-J 

polypeptides. First, the 2.0-kb sequence is actually contained within the E
13 

gene 

and includes part of the intron between the first (131) and second (132) major exons and 

probably all of the second major exon (132) of the E
13 

gene (Figs. 10, 1 E). Second, 

distinct I-J-encoded specificities have been detected on different T-cell sub­

populations or cloned T cells, suggesting that the 1-J subregion could in fact contain 

several genes (26-28). To resolve this problem, we have proposed several models for 

the location and expression of the 1-J gene(s) (Table 1) (24). One set of models (la, 

1b, 1c, and 1d) proposes that all or part of the 1-J gene is located between the I-A 
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and I-E subregions. These models have been excluded in the experiments reported 

below. A second set of models (2a, 2b, and 2c), which propose that the 1-J-coding 

sequence is located elsewhere, are considered in the discussion. 

MATERIALS AND METHODS 

Cells. T suppressor hybridomas are described in Table 2. Three T helper 

hybridomas were obtained from the laboratory of Drs. John Kappler and Philippa 

Marrack, National Jewish Hospital, Denver, Colorado. These cells are: AODK 10.4, 

which is specific for keyhole limpet hemocyanin and 1-A d (31), AODH 7.1, which is 

specific for human gammaglobulin and l-Ed (31) and DO 11.10 which is specific for 

chicken ovalbumin and I-A d (32). 

~orthern Blots. + Poly(A) RNA was prepared (33,34), electrophoresed in 

denaturing gels (35) and transferred to nitrocellulose (36) as previously described. 

DNA probes were nick-translated (38) to a specific activity of 8 x 108 cpm/J..Ig and 

were hybridized to Northern blots at a concentration of 2 x 105 cpm/ml in the 

presence of 50% (vol/vol) formamide (37) and 10% (wt/vol) dextran sulfate. To 

reduce background caused by the hybridization of repeat nucleotide sequences in the 

probes, both the prehybridization and hybridization solutiosn contained 25 J..lg/ml of 

denatured BALB/c liver DNA. The filters were washed in 15 mM NaCl/1.5 mM 

sodium citrate/0.1% NaDodSO 4 at 58°C and exposed to Kodak XAR-5 film in the 

presence of an intensifying screen for 4 days. 

Southern Blots. High molecular weight DNa was prepared from T cell 

hybridomas, T lymphoma BW5147, and from mouse liver according to the method of 

Blin and Stafford (39). DNA was electrophoresed, blotted to nitrocellulose (40) and 

then was hybridized with the radiolabeled DNA probes as described above. 

Hybridization Probes. Hybridization probes derived from the I region included 

the cosmids depicted in Fig. 1B and the sequences diagrammed in Fig. 1E. 8.48 and 

8.47 are 7.2 and 4.8 kb Hindm restriction fragments from cosmid 8.4, subcloned into 
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pBR325 by standard methods (41, 42). Probe 3, a 2 kb EcoRI restriction fragment 

derived from cosmid 24.2 and probe 4, a 500 base pair Sau3A fragment purified from 

cosmid 39.1, have been described previously (24). pH-2lla is a 688 base pair Pstl-Pvun 

subclone from a eDNA clone encoding an H-2d transplantation antigen (43). 

RESULTS 

Transcripts Homologous to the Presumed 1-J Subregion Are Not 

Detectable in Suppressor T Cells. To identify I-J transcripts, we analyzed 13 

suppressor T-cell hybridomas for the presence of RNA molecules which hybridize to 

cloned DNA probes which include all the sequences between the I-A and I-E 

subregions. Some properties of these suppressor cells are summarized in Table 2. 

Nine of the hybridomas were tested either with anti-I-J alloantisera, monoclonal 

antibody or both and in each case the cells were found to be I-J positive. Because 

extensive sequence polymorphism might greatly reduce hybridization of probe derived 

from the H-2d haplotype to other I-J alleles, we tested one hybridoma generated 

from BALB/c lymphocytes, the same inbred strain from which the cosmid clone bank 

+ had been prepared. Northern blots of poly(A) RNA from each of the T cells was 

hybridized with a mixture of the 32P-labeled 8.48 and 8.47 subclones (Fig. 1D). Each 

RNA preparation was tested on at least two Northern blots, and in no case were 

transcripts detected in the suppressor T-cell RNA. Results obtained with nine of the 

suppressor cells are presented in Fig. 2. Since MHC-encoded transplantation antigens 

are expressed by most cell types, rehybridization of the same Northern blots with 

pH-2IIa, a probe encoding an H-2d transplantation antigen, provided a positive control 

for the presence of intact RNA (Fig. 2B). Although the hybridomas transcribe varying 

amounts of RNA homologous to this probe, in 12 cases a distinct 1.9-kb band was 

detected. One hybridoma, 36881.5, transcribes very low amounts of class I sequence 

which can be detected only on very long exposures (44). Additional control 

hybridizations were carried out using the I region subclones and various amounts of 
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+ spleen poly(A) RNA. We could detect hybridization of the E
8 

coding sequence in 

these subclones to 0.1-0.3 11g of spleen RNA. . By comparing the E
8 

hybridization 

signal to the signal obtained with a kappa light chain constant region probe hybridized 

to a known amount of purified S1 07 myeloma K chain RNA, we estimate that the E S 

RNA represents approximately 0.03 percent of the spleen poly(A)+ RNA (unpublished 

data). Similar estimates for the abundance of class II mRNA have been reported by 

other laboratories (45-47). Figure 2 demonstrates that we could detect an RNA 

species which is 0.03 percent of 0.3 11g spleen RNA tested. Thus we should have been 

able to detect sequences present at less than one part in 105 contained in the 10 11g of 

T cell RNA analyzed. Since the E
8 

RNA is about 1300 nucleotides long and T-een 

hybridomas generally contain 0.2 to 0.3 pg of poly(A)+ RNA per cell (48), our 

detection limit is roughly 3-4 copies per cell. 

Transcripts Homologous to 170 kb of Cloned I Region DNA Are Not Detectable 

in Five T Cell Hybridomas. To determine whether any cloned I region sequences are 

transcribed in T lymphocytes, we hybridized the six full-length cosmid DNA clones 

indicated in Fig. 1B singly, or in pairs, to poly(A)+ RNA from the 368B1.5 and 372B3.5 

suppressor hybridomas and to poly RNA(A)+ RNA from the AODH 7.1, AODK 10.4, 

and DO 11.10 helper T-cell hybridomas. No discrete transcritps were found in any of 

the T-cell hybridomas (Fig. 3 and unpublished data). Occasionally, however, we 

observed a faint smear of hybridization to high molecular weight RNA (Fig. 3). We 

believe this is caused by hybridization of repeat sequences in the cosmid probes to 

poly(A)+ nuclear RNA, since similar smears were observed in liver RNA as well 

(unpublished data). Therefore, we conclude that no 1-J exons are located on 170 kb of 

cloned I region sequence. As described above, a positive control was obtained in each 

case by rehybridizing the RNA with a probe encoding an H-2d transplantation antigen 

(unpublished data). As an additional control, we found that hybridization of cosmids 

41.1, 24.2, 8.4, and 17.2 detected a 1.3-kb transcript in 0.3 11g of poly(A)+ RNA from 



170 

BALB/c spleen, while cosmids 21.1 and 7.1 did not detect any transcripts using 3 llg 

of RNA (Fig. 3 and unpublished data). These results are consistent with the map of I 

region coding sequences depicted in Fig. 1C. 

The 1-J Gene Is Not Formed by Rearrangement of DNA Sequences 

Between the 1-A and 1-H Subregions. We determined whether a DNA rearrangement 

in suppressor T cells might form an I-J gene. High molecular weight DNA that was 

prepared from four T-cell hybridomas. was digested with one of several restriction 

enzymes, and was hybridized with some of the cloned probes indicated in Fig. 1D. No 

DNA rearrangements were observed on any of these Southern blots. Figure 4 shows 

some cases in which the enzyme digest allowed us to distinguish between those 

restriction fragments derived from the normal T-cell parent and those from the 

BW5147 thymoma. Because the probes contain repeated sequences, sometimes a 

series of faint bands not predicted by the restriction map of the cosmid clones were 

also visible (Fig. 4, lanes 10-12). 

DISCUSSION 

Using a series of cosmids, we have previously determined that the boundaries of 

the I-A and I-E subregions are separated by only 2.0 kb of DNA (24, 25). This analysis 

confines the I-J subregion to a relatively short sequence which is actually located 

within the Ea gene (Fig. 1). A number of experimental results have convinced us that 

the BALB/c cosmid DNA map is an accurate representation of the germline sequences 

found between the Ea and Ea genes. First, we have obtained seven different 

overlapping cosmid clones containing all or part of the DNA between Ea and Ea (24). 

This eliminates the possibility that the map fuses noncontiguous sequences and 

thereby misses a gene. Second, extensive comparisons of the restriction enzyme 

maps between BALB/c mice and other strains indicate that the BALB/c genomic DNA 

contains neither a deletion nor an inversion breakpoint between the Ea and Ea genes 
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(24, 25). Finally, we have obtained cosmid DNA clones from the AKR inbred strain 

which has a MHC haplotype (H-2k) different from BALB/c. In this strain, the El3 and 

Ea genes are also separated by approximately 33 kb (unpublished data). 

We have found no evidence for an I-J coding sequence located between the I-A 

and I-E subregions. If some I-J exons were present between the I-A and I-E 

subregions there could be two reasons for failing to detect them in the poly(A)+ RNA: 

1) When cloned, suppressor hybridomas are grown in vitro, the I-J serologic 

specificities can often be detected on only a fraction of the cells (26, 27). Thus, if 

many cells in a population do not express an I-J polypeptide, the average 

concentration of I-J transcripts could be extremely low. Although the cells used for 

RNA purification were tested for antigen-specific function, we cannot state what 

fraction displayed I-J serologic determinants at the time of harvest. However, it 

seems improbable that such a low level of I-J transcription, with little quantitative 

variation, would be maintained in each of 13 suppressor T cells grown in two different 

laboratories and shown to express high levels of antigen-specific suppressor activity. 

2) It is possible that only a single exon, encoding a small portion of the I-J gene 

product, actually is located between the 1-A and I-E subregions. A polymorphic 

sequence, which perhaps could be as small as the immunoglobulin D gene segment, 

would not have been detected on an RNA blot. Such a short segment could be 

co-expressed with other exons located outside the 2.0-kb sequence via RNA splicing. 

However, we have hybridized cosmid probes spanning most of the 200 kb of cloned I 

region DNA to Northern blots of poly(A)+ RNA from two suppressor T cells and have 

not detected any complementary sequences (Fig. 3 and unpublished data). Therefore 

any short exon between the I-A and I-E subregions would have to be present on an 

extremely large primary transcript originating outside the sequences we have cloned. 

The minimum length of such a transcript, assuming that the I-J exon(s) are located at 

one of the ends of the messenger RNA, would be appropriately 60 kb. Alternatively, 
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a short exon encoding the polymorphic 1-J determinant could be co-expressed with 

other exons following a DNA rearrangement. However, the Southern blots we have 

performed exclude this possibility as well (Fig. 4). 

We conclude that the genes encoding 1-J serologic determinants expressed by 

suppressor T cells do not map between the 1-A and 1-E subregions. There are several 

possibilities which are outlined in Table 1. (a) 1-J may be linked to the MHC, but the 

assigned map position is incorrect. The genetic mapping is based upon the analysis of 

a few recombinant mice and the reasonable assumption that multiple crossovers are 

rare. Yet in some regions of the mouse genome, it is known that multiple crossovers 

are relatively common (49). A recombination hotspot which has been localized within 

or near to the boundaries of the 1-A and 1-E subregions (24) may have affected the 

genetic localization of 1-J. This hotspot could be associated with a high frequency of 

multiple crossovers (negative interference) or some other anomaly. However, we 

have no data to support this speculation and we do not know of any documented cases 

of double recombinants involving the well-characterized MHC loci. (b) Each inbred 

mouse strain may contain several pseudoallelic 1-J genes and a regulatory locus which 

determines the 1-J gene expressed. To explain the reported properties of 1-J gene 

products, the regulatory locus must be polymorphic, it must map between the I-A and 

1-E subregions and it must regulate expression of the pseudoallelic genes in a 

haplotype-specific manner. There are proven no examples of such a polymorphic 

regulatory sequence. (c) Because T cells have antigen receptors which recognize 

either self class II molecules, or a self class II-antigen complex, the 1-J serologic 

determinant actually may be present on the T-cell antigen receptor. The linkage of 

the 1-J specificity to the MHC in laboratory mouse strains could then be explained if 

polymorphic class II molecules select for expression of anti-self T-cell receptors from 

a receptor gene pool which does not vary greatly in these inbred strains. The genetic 

map would then predict that the suppressor T cells have receptors which recognize 
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determinants encoded by the E
8 

gene. However, some inbred mouse strains may not 

express E
8 

(50), while some strains which express different I-J alleles may have 

identical EB genes (51). 

In summary, our experiments indicate that I-J exons are not likely to be present 

between the boundaries of the I-A and I-E subregions. While none of the three 

alternative models for the location of the I-J gene is entirely satisfactory, the 

possibility of a high frequency of multiple crossovers leading to an incorrect map for 

the subregions of the I region order is most attractive, since this hypothesis requires 

the fewest ad hoc assumptions and special mechanisms to account for the reported 

data. We have cloned the recombination point between the I-A and I-E subregions in 

several I region recombinant strains (25). Further characterization of these 

recombinants as well as the isolation of cloned sequences encoding the I-J 

polypeptide will finally resolve the paradox of I-J gene location and expression. 

We thank Dr. Donal Murphy for many helpful discussions and Drs. John Kappler 

and Philippa Marrack for providing helper T-cell hybridomas. This work was 

supported by NIH research grants AI 17565, AI 18959, AI 15353, and 1F32CA06693-0l 

(E.K.), and by a grant from the Ministry of Education, Culture and Science of Japan. 
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Footnote 

* The 2.0-kb sequence is defined on the left side (I-A) by a polymorphic restriction site 

which distinguishes H-2b from H-2d DNA, and on the right side (I-E) by a site which 

distinguishes H-2k from H-2s (25). The localization of I-J to the 2.0-kb sequence 

therefore assumes that both anti-I-Jb and anti-I-Jk plus anti-I-~ alloantisera 

recognize a specificity encoded by the same or else a nearby exon of the I-J gene. If 

this is not the case, then the I-J gene may be encoded in a somewhat longer sequence. 

However, it should be noted that the 8.48 and 8.47 Northern blot hybridization probes 

covered approximately 12 kb of DNA in this region (Fig. 1D). 
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Table 1. Models for the location of the I-J gene 

1. The 1-J gene is encoded between the 1-A and 1-E subregions. 

a. The 1-J gene is actually the ES gene. The 1-J specificity is formed via 

special post-translational modification (e.g., glycosylation) of the ES 

gene product. 

b. The 1-J gene is formed via an alternative RNA splicing pattern which 

includes some of the ES exons and some exons unique to I-J. 

c. The 1-J gene is transcribed from the DNA strand complementary to that 

which encodes the ES gene. 

d. The 1-J gene is formed by a DNA rearrangement in suppressor T lympho­

cytes, which inserts some coding sequences between the I-A and 1-E 

subregions. 

2. The 1-J structural gene is not encoded between the 1-A and I-E subregions. 

a. Because of the occurrence of multiple recombination events, the map 

order I-A/1-J/1-E is incorrect. 

b. The 1-J subregion contains a control element which regulates the expression 

of 1-J genes encoded elsewhere. 

c. The 1-J serologic specificities are present on T-cell receptors for self 

MHC molecules. 
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Table 2. Characteristics of suppressor Teen hybridomas 

T-parental Antigen 
* Number Hybridoma H-2 haplotype specificity+ 1-J 

:j: 

1 258C4.4 q GAT/GA Iq(a); 1-Jk(m) 

2 342Bl.ll s GAT/GT 1-Js(a); I-Jk(m) 

3 365C6.4 GAT k s 1-J (m) 

4 367 A5.2 k GT 

5 368B1.5 d GT/GAT ld(a) 

6 301D4.5 f GT 

7 301A2.3 f GT 

8 469B5.5 a GT/GAT I-Jk(a) 

9 372B3.5 b GAT/GT 
b k 1-J (a,m); 1-J (m) 

10 372D6.5 b GAT/GT I-Jb(a) 

11 395A4.4 s GT/GAT 

12 7C3-13 k NP 
k 1-J (a,m) 

13 7F4-30 k NP 
k 1-J (a,m) 

* All the hybridomas were formed by fusion of lymphocytes to the HAT-sensitive 

k AKR thymoma BW5147, and they therefore contain H-2 haplotype DNA 

contributed by the tumor parent. 

+ 
Antigen-binding specificities of T hybridoma suppressor factors. G A is a 

h . l f l t . "d60 l . 40 GAT . l t . synt etlc po ymer o a g u amiC aci :a amne ; Is g u amic 

"d60 l . 30 t . 10 GT . l t . "d50 t . 50 NP . 4 h d aci :a amne : yrosme ; IS g u amiC aci : yrosme ; IS - y roxy-

3-nitrophenyl acetyl. In all cases, the immunogen is listed first followed by any 

other known specificities. 

:f: 
1-J specificities found on the suppressor T cell hybridomas. - = not tested. a = 

positive with specific alloantisera. m = positive with monoclonal antibody. 

Suppressor 3 was tested for cell-surface 1-J expression only. Suppressors 5, 8, 

and 10 were tested for the presence of 1-J on a soluble suppressor factor. The 

other positive cells were tested for 1-J on both the cell surface and on the 
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Table 2 (continued) 

suppressor factor, and were doubly positive in all cases. For suppressors 2, 3, and 

9 a monoclonal anti-1-Jk antibody detected a specificity presumably derived from 

a BW5147 gene activated post-fusion. The monoclonal anti-1-Jk is believed to 

cross-react with the 1-Jq suppressor factor made by suppressor 1. The 

alloantisera used to test suppressors 1 and 5 are not specific for 1-J alone, but 

should recognize all I region differences. Further details concerning the 

serologic testing can be found in the references (14, 27, 29, 30). 
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Fig. 1. (A) Some of the genetically defined loci in the mouse major histocompatibility 

complex are indicated. K and D are cell-surface molecules important for graft 

rejection and target recognition by cytotoxic lymphocytes. S encodes some of the 

components of the complement cascade. The other loci are described in the text. 

I-B has been omitted, since it is confined to the same 2.0 kb sequence as I-J, and 

codes for no serologically detected product. The map is not drawn to scale. (B) I 

region molecular map. The I subregion boundaries and the length and position of the 

cosmid hybridization probes are indicated. (C) The locations of the known I region 

coding sequences are indicated by the rectangles. Intervening sequences are not 

depicted except the long intron between the first and second external domains of the 

E f3 gene. E f3 2 is not yet well characterized and could be a pseudogene. The Ea. and 

E f3 polypeptides associate to form the I-E molecule, while A f3 associates with A a to 

form the I-A protein. Figs. 1B and 1C are drawn on the same scale. The 19-kb 

sequence in Fig. 1C demarcated by vertical lines is shown enlarged in Figs. 1d and 1E. 

(D) The area near the bounaries of the I-A and I-E subregions is depicted. 8.48 and 

8.47 were used to analyze T suppressor cells for I-J transcripts, while probes 3 and 4 

were used to test these cells for DNA rearrangement. (E) The direction of 

transcription and the approximate location of the exons of the E f3 gene are indicated. 

f3 1 and f3 2 code for the first and second external domains, while Tm indicates the trans­

membrane/cytoplasmic exon(s). Figs. lD and lE are drawn on the same scale. 
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FIG. 2. (A) Hybridization of the 8.48 and 8.4 7 subclones to spleen poly(A) + RNA and 

+ to 10 ).lg of suppressor T-clel poly(A) RNA. T-een hybridomas are designated by the 

single or double digit numbers in the left-hand column of Table 2. RNA preparations 

on three separate filters were hybridized together with the 1-J probes. (B) The same 

filter as in A, hybridized with pH-2IIa, a subclone from a eDNA encoding an H-2d 

transplantation antigen. The migration distances of the molecular weight markers, 

mouse and Escherichia coli ribosomal RNA, and their lengths in kb are indicated. 
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FIG. 3. Hybridization of cosmids 21.1 and 7.1 to poly(A)+ RNA from spleen and T-cell 

hybridomas. Lane 1, 3 llg of poly( A)+ RNA from BALB/c spleen. Lane 2, 0.3 llg of 

+ spleen poly(A) RNA. Lane 3, suppressor 9 (372B3.5). Lane 4, suppressor 5 (368B1.5). 

Lane 5, AOD4 10.4 T helper hybridoma. Lane 6, D011.10 T helper hybridoma. Lane 

7, AODK 7.1 T helper hybridoma 10 llg of poly(A)+ RNA from each of the T cells 

were tested. 
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FIG. 4. Southern blots of T suppressor hybridoma DNA hybridized with I-J probes. 

Lanes 1-6 contain Kpn-digested DNA hybridized to probe 3. Lane 1 BW5147 thymoma 

(H-2k), lane 2 B10 liver (H-2b), lane 3 372B3.5 suppressor (H-2b /H-2k), lane 4 AKR 

liver (H-2k), lane 5 B10.S liver (H-2s), lane 6 395A4.4 suppressor (H-2s /H-2k). Lanes 

7-9 contain BamHI-digested DNA hybridized to probe 3. Lane 7 AKR liver (H-2k), 

lane 8 372B3.5 (H-2b /H-2k), lane 9 B10 liver (h-2b). Lanes 10-12 contain EcoRI­

digested DNA hybridized to probe 4. Lane 10 BW5147 thymoma (H-2k), lane 11 

366D3.2 hybridoma (H-2b /H-2k; this is an I-Jb positive, GT-specific suppressor not 

described in Table 2). Lane 12 B10 liver (H-2b). The migration distance of some 

molecular weight markers are indicated. 
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Chapter 7 

CONCLUSION 

WHY IS THE T CELL ANTIGEN- BINDING RECEPTOR ELUSIVE? 
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In retrospect, we might appear credulous having invested so much effort testing 

for expression of immunoglobulin genes by T lymphocytes. The hypothesis that T 

lymphocytes express immunoglobulin, primarily V H gene segments, is based upon one 

of several possible interpretations of a body of experiments which all depend upon the 

detection of serologic cross-reactions between T cells and antibodies. We believe, 

however, that these data are cogent enough to have made the test of immunoglobulin 

expression the logical beginning for any analysis of the molecular biology of T-cell 

antigen-binding receptors. In fact, a similar approach has been taken in nearly 

a dozen laboratories around the world, and their results are largely consistent with 

1-9 ours. 

Advances in recombinant DNA technology have made it possible to isolate 

cloned sequences derived from genes which are expressed at low levels. For example, 

a cDN A clone can be obtained based upon partial amino acid sequence of the 

polypeptide encoded by that clone. The amino acid sequence can be reverse­

translated into nucleotide sequence and a synthetic oligonucleotide primer comple­

mentary to a portion of the deduced nucleotide sequence can be used to identify the 

relevant clone. However, even with the most sophisticated instrumentation available, 

microgram quantities of purified material are required for amino acid sequencing.10 

A number of laboratories have attempted to obtain this amount of purified antigen­

binding receptor from cloned T cells and with one exception (see below), have had no 

success.11 It is also possible to obtain eDNA clones via assay of the protein product 

encoded by that clone.12 Cloned cDNA(s) can be hybridized to RNA molecules and 

the specifically hybridized RNA can be translated in vitro. Some vector-host systems 

may permit both transcription and translation of the cloned segment, eliminating the 

need for hybridization selection of RNA. All of the above methods depend upon 

having a dependable assay for the T cell antigen-binding receptor. There are a 

number of potential assays which we consider below; unfortunately, none of these can 

be considered reliable. 
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1. Antigen binding. There are two potential problems with using antigen­

binding to identify polypeptides that are involved in antigen recognition. First, 

although T cells clearly respond in a highly specific fashion to antigen, it has been 

difficult to demonstrate that they do in fact bind antigen. This difficulty could be 

caused by the presence of a small number of receptors on the surface of the cell, a 

low avidity of the receptor for antigen, or finally because the antigenic determinant 

itself is not well defined. In a number of experiments, T cells apparently could bind 

antigen on the surface of macrophages or other cells, but could not bind free 

antigen.13,14 The binding to cell-surface antigen is restricted to cells with the proper 

MHC haplotype, which suggested to some workers that only a complex of antigen and 

MHC (altered-self), as opposed to free antigen, is actually recognized by the T-cell 

receptor.13,14 There are, however, a few exceptions in which T cells apparently do 

bind antigen ,15- 18 and soluble factors derived from T lymphocytes often will bind to 

antigen affinity columns.19 Currently, the controversies concerning the existence of 

T lymphocytes capable of binding free as opposed to macrophage-adsorbed antigen 

remain unresolved. The second problem concerns the possibility that some other 

cellular protein(s) will bind antigen with relatively high affinity. This is particularly 

serious for the "academic" antigens preferred by immunologists which are often 

small, highly charged or aromatic haptens. A polypeptide binding azobenzene 

arsonate (Ars) synthesized by a presumed Ars-specific T cell hybrid, is not an antigen­

binding receptor as originally reported, 20 and may in fact be an enzyme involved in 

phosphate metabolism. 21 Polypeptides synthesized by a GAT-specific T cell 

hybridoma and a control T lymphoma which bind a GAT Sepharose affinity column 

have been analyzed by gel electrophoresis. In this case, both the antigen-specific cell 

and the control T lymphoma synthesized a large number of proteins which bound to 

the affinity column and the gel patterns are quite similar for the two samples 

tested. 2 2 Another group has reported that some GAT specific T cell hybridomas bind 
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significantly more radiolabeled GAT than the control cells do. Unfortunately, some 

KLH-specific T cell hybridomas and T lymphomas also bind increased amounts of 

GAT.23 

2. Antisera. A number of laboratories have attempted to generate monoclonal 

antibodies against the T-cell antigen-binding receptor. Following immunization with 

cloned T cells, antibodies produced by hybrid B cells are assayed for their ability to 

alter T-cell function. However, this is a poor criterion for defining anti-receptor 

antibody, since the functional effect could be caused by steric hindrance if the 

antibody recognizes a molecule found in close proximity to the receptor. It is also 

possible that the antibody could act by altering the mobility and/or distribution of 

cell-surface components not specific for antigen, but important for the activation of 

lymphocytes. In fact, most of the monoclonal antibodies which interfere with T-cell 

function do not recognize the antigen-receptor. At least four separate laboratories 

screened for monoclonal antibodies which interfered with cytolytic T-cell function, 

and in 17/20 cases the antibodies recognized the murine Lyt-2,3 molecular complex 

(or its human equivalent). 24- 27 However, this protein appears to be a differentiation 

antigen rather than an antigen receptor since the Lyt-2,3 molecules display little 

charge heterogeneity when analyzed on two-dimensional gels. 28 In addition, there 

are some antigen-specific cytotoxic T cell clones which do not express the Lyt-2 

specificity. 27 Two other monoclonal antibodies which inhibited cytotoxic T-cell 

function recognize a molecule (LF A -1) which is not likely to be the T-cell antigen­

receptor since it is present on B cells and bone marrow cells as well as T lympho­

cytes. 25,27 ' 29 The final monoclonal antibody has not yet been characterized. At 

least two groups have generated antibodies specific for particular cloned T cells. 30 

These "anti-idiotypic" antibodies can even distinguish between cloned helper T cells 

responding to the same antigen, and it is possible they recognize the variable portion 

of the T-cell antigen-binding receptor.30 Very recently, monoclonal antibodies 
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specific for particular T cell clones have also been obtained. 31 As noted above, 

assays which measure the effect on a complex cellular response are difficult to 

interpret, and it is also possible that different cloned cells may display the same 

molecule differently on the cell surface. For example, only 59/115 mouse cytolytic 

T cell lines could be inhibited by monoclonal antibody directed against Lyt-2,3, 

despite the fact that all the cells tested expressed roughly equivalent amounts of the 

Lyt-2,3 molecule. 32 Blocking of cytotoxicity by the antibody did not correlate with 

either the antigenic specificity or the lytic activity of the T cell lines. Similar 

results have been reported with human T cell lines. 26 It is possible, then, that some 

of the clone-specific antibodies will recognize not the T-cell antigen-receptor, but 

molecules expressed on very small subsets of T lymphocytes which are otherwise 

quite analogous to Lyt-2. 

In order to avoid generating a large number of B-cell hybridomas making 

antibodies against T lymphocyte antigens which seem to be immunodominant such as 

Thy-1 or Lyt-2, a number of investigators have used congenic strains which have 

limited differences in their genetic background for their initial immunizations. The 

most conspicuous success has been achieved using mice congenic for the heavy chain 

constant region locus. 33- 35 Three laboratories have obtained monoclonal antibodies 

that recognize a set ofT cell antigens linked to the constant region (lg-1) locus.35- 37 

Monoclonal antibodies specific predominantly for thymocytes (Tthy)38 , helper T cells 

(Tind)35- 38, suppressor T cells (Tsu)35- 38 and recently for killer T cells35 have been 

defined. The Tsu determinant has been mapped between the CH and prealbumin 

genes. 39 The gene order is V H-CH-Tsu-Pre. The antibodies can perturb T-cell 

functions, immunoprecipitate proteins and react with antigen-specific soluble factors. 

It has been hypothesized that these alloantigens are the constant region of the T-cell 

antigen-binding receptor. The data indicating that these antibodies can recognize 

determinants on the antigen-receptor, however, are very limited. The monoclonal 
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antibodies bind to molecules in crude extracts of T cells that contain either 

augmenting (helper) or suppressing T cell factors. 35,37 ' 40,41 However, the 

physiological significance of these factors is not clear, since they have a very small 

effect on the hapten-specific B cell response. In addition, a recent study showed that 

in a series of T-cell hybridomas, cell-surface expression of Tinct and Tsu is not 

correlated with expression of Lyt antigens. 38 Since Lyt antigen expression is 

correlated with T-cell function, this raises questions concerning the functional 

significance of the Ig-1 linked T cell alloantigens. 

3. Biological Assay. Direct functional assay of genes encoding antigen-binding 

receptors must await the isolation of clones encoding the T cell antigen-receptor or 

techniques for the efficient transfection of lymphocytes. However some cloned T 

cells synthesize protein molecules (factors) which bind specifically to antigen affinity 

columns and can replace the antigen-specific function of the T cell in vitro.19 Thus, 

hybridization-selection schemes can be employed to clone the gene(s) which encode 

the factor(s). The factors, however, are very poorly characterized. Some reported 

molecular weights are 80,000, 65,000, 34,000 and 24,000 daltons for the antigen-

b. d. h . 17-19,42-44 A d h . h. h t . I . d d m mg c am. secon c am w 1c may con am region enco e 

d t . t . t• t 17 ' 42 - 45 I . t th t· b. d. •t e ermman s 1s some 1mes presen • none ms ance, e an 1gen- m mg s1 e, 

idiotype and I-J determinants are reported to be present on a single 24,000 dalton 

polypeptide. 43 We must question whether the diversity in the molecular properties of 

the factors reflect genuine T cell heterogeneity or experimental artifact. Moreover, 

the biological significance of the factors is not without question. Although it is 

difficult to compare systems for the generation of in vitro immune responses to 

different antigens, the reported biological activities of suppressor factors can vary 

over three orders of magnitude.46- 47 While many of the soluble factors are antigen-

specific, it is conceivable that some are immunologically-irrelevant proteins that bind 

to or hydrolyze the antigen in question, thereby efficiently removing it from culture 
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and depressing the immune response to that particular antigen. In this regard, it is 

noteworthy that the partial amino acid sequence of the best characterized suppressor 

factor is virtually identical to the abundant high density lipoprotein Apo-Al. 48 

In summary, at the functional level the T-cell antigen receptor is reasonably 

well understood (Chapter 2), while at the structural level it remains a mystery. 

Currently, there is no assay (aside from measurement of the antigen-specific 

responses of T lymphocytes) which can unambiguously identify this molecule. In the 

above discussion, we have considered some of the difficulties involved in defining the 

T-cell antigen-binding polypeptide. It is possible that a combination of techniques, 

including serological assays using monoclonal antibody and functional studies will 

permit the problem to be solved. As we learn more about the structure and function 

of MHC gene products and the fine specificity of H-2 restricted T cell responses, the 

questions concerning the T-cell antigen receptor become even more tantalizing. 

Hopefully the elusive receptor will soon be captured. 
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