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ABSI'RACT 

This thesis presents the results of a detailed computation of the leading 

order scattering amplitude and cross-section for the elastic reaction 

11"+ rr+ --> rr+ rr+, in the context of the quark model and perturbative QCD. The cal

culation is based on the recently demonstrated applicability of QCD

factorization and the renormalization group to exclusive hadronic processes at 

large momentum-transfers . We show that a large fraction of the hard subpro

cess diagrams have a pinch s_ingularity in them, which means that the amplitude 

resulting from these diagrams cannot be proved to be short-distance dominated. 

This contribution to the scattering amplitude is computed separately and, even 

after including a Sudakov factor, it is shown to be comparable in magnitude to 

the hard-scattering contribution. We calculate the energy and angular depen

dence of the pinch contribution and point out that some of the systematic devia

tions from power-law scaling, observed in high-P1 meson-baryon and baryon

baryon elastic scattering data, can be explained by assuming that the cross

section for these reactions is dominated by pinch, rather than hard, effects . By 

normalizing the pion distribution amplitude with the help of the pion decay con

stant, we have also determined the absolute normalization of the rrrr elastic 

cross-section. 
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CHAPTER I 

INTRODUCTION 

The last few years of theoretical work in the field of perturbative quantum 

chromodynamics (QCD) has led to the view that high momentum-transfer 

exclusive processes are calculable, in the framework of the renormalization 

group, to the same level of rigor that exists for the calculability of inclusive 

processes. This development in the theory has provided a firm theoretical basis 

to the dimensional counting rules of Brodsky and Farrar. These simple rules 

had long been known to provide a reasonably good description of the energy 

fall-off of high-P1 data from several different exclusive reactions . The progress in 

our understanding of these processes has also created the possibility of making 

and testing detailed predictions of various other features of exclusive scatter

ing, thus opening up a new testing ground for QCD. The present thesis is an 

attempt to add to the growing list of detailed predictions emerging from this 

ad:uancement, and to confront these predictions with existing experimental 

data. 

Precise and unassailable tests of QCD are as yet lacking, and our faith in the 

theory rests on a large number of qualitative agreements with spectroscopic and 

scattering data. This situation is likely to remain unchanged until the non

perturbative domain of the theory yields to a quantitative understanding. In the 

meantime the best we can do is to broaden the range of phenomenon that show 

a definite "consistency" with QCD and to keep a look out for experimental obser

vations that can be shown to constitute a clear-cut refutation of the theory. The 
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opportunities created by the successful application of well established QCD

techniques to exclusive processes are therefore very welcome and should be 

exploited as far as possible. Moreover, the investigation of exclusive processes 

promises to throw some light on the short distance structure of hadron wave 

functions, in a way that is not possible through a study of inclusive phenomenon. 

A better knowledge of the hadron wave function in the short distance domain 

could serve as a unifying link between perturbative and non-perturbative treat

ments of QCD and help make contact with low momentum-transfer reactions, 

whose understanding lies in the long distance regime of the wave function. 

Detailed calculations of the hard subprocesses involved in exclusive reac

tions are usually more difficult than those for inclusive reactions because these 

subprocesses usually involve more than two in-going partons. The excess in the 

number of partons involved in the subprocess leads to a proliferation in the 

number of diagrams contributing to even the leading order amplitude and adds 

to the inherent difficulty of computing this subprocess. Because of this problem, 

detailed calculations of exclusive processes exist only for some elastic and tran

sition form factors and for ·the two photon reaction (/"Y-+ MM), all of which 

involve the constituents of a single hadron. Unfortunately, the available high-P1 

data for these processes are rather limited and usually have large errors, thus 

preventing a good comparison of theory and experiment. On the other band 

there are plenty of accurate data at high momentum-transfers for elastic 

scattering reactions between pairs of hadrons. Thus, a detailed calculation of 

the hard subprocesses involved in these reactions should furnish excellent 

opportunities of testing the predictions of perturbative QCD. 

Because of the obvious unavailability of meson targets, experimental data 

are confined to meson-baryon and baryon-baryon elastic scattering. The leading 

order amplitudes corresponding to the hard subprocesses for both these cases 
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involve diagrams numbering in excess of 10,000. Before tackling the task of 

computing such an enormous number of diagrams, each involving five or six 

quarks as the case may be, it is advisable to start out with the simpler, but still 

physically realizable, case of meson-meson scattering . Even though the results 

of such a calculation cannot be directly compared with experimental data, they 

can provide a thorough understanding of the complications involved in the cal

culation of hadron-hadron elastic scattering cross-sections. Hopefully, once the 

various difficulties and qualitative features of the meson-meson case are 

identified and understood the calculation of the more complex reactions will be 

easier and faster . In this thesis we limit ourselves to computing and understand

ing same-charge 1m elastic scattering, leaving the calculation of rrp and pp elas

tic scattering to future efforts . AB we shall see later, the results of rrrr scattering 

can be used for making rough extrapolations to rrp and pp scattering, thus allow

ing us to check if QCD can account for the absolute magnitude and the qualita

tive behavior of these measured elastic cross-sections. 

One complication that does not exist in the calculation of hadronic form 

factors, or of exclusive processes involving photons, is the persistence of a pinch 

singvla:rity in the integrated amplitude . The presence of this soft gluon singu

larity in the QCD analysis of elastic scattering has been acknowledged for a long 

time and it is usually presented in its manifestation as a different mechanism of 

elastic scattering (the multiple scattering mechanism). The diagrams associated 

with this mechanism are called Landshoff diagrams, after the person who first 

pointed them out as legitimate contributers to elastic scattering. The multiple 

scattering mechanism is not dominated by short distance interactions and the 

extent of its contribution to elastic scattering at available energies has been an 

area of much controversy. A Sudakov factor, obtained by the summation of lead

ing double-logs in the perturbation expansion of the scattering amplitude, is 
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claimed by many authors to effectively suppress the pinch contribution. How

ever the summation of double-logs in perturbative QCD has been an ill

understood subject and is under intensive investigation even at present. In our 

calculation we use the most recent understanding of the proper way to incor

porate Sudakov effects in an exclusive scattering calculation, and we carefully 

investigate the effect of the Landshoff mechanism on the mr elastic scattering 

cross-section. The suppression, or lack thereof, of the pinch contribution has 

very important consequences for the qualitative behavior of the resulting cross

section. The investigation of this phenomenon and the exploration of its conse

quences for the resulting cross-section, are perhaps the most important contri

butions of this project to the understanding of high-Pr elastic hadron scattering. 

The thesis also contains a comprehensive review of the present day theoret

ical understanding of exclusive hadronic processes, and in particular of elastic 

scattering, in the context of perturbative QCD. This review brings together the 

work of several authors on this subject and attempts to put into proper perspec

tive the relationship between Landshoff's multiple scattering mechanism and the 

pinch singularity encountered in computing the contribution of connected 

hard-scattering diagrams. The theoretical review is followed by a detailed review 

of the experimental data on high-Pr elastic scattering. This review critically 

examines the available data for evidence of power-law scaling, and points out 

several features which do not uphold the assumption of short-distance dom

inated constituent scattering. Some of these features have been regularly 

ignored in the comparison of QCD predictions with experiment, and as we shall 

see in Chap. N the results of our calculation could prove instrumental in gaining 

a better understanding of the source that leads to these features . The final 

chapter summarizes the conclusions following from our calculation and suggests 

a path for future investigations. 
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CHAPTER II 

IIlGH PT ELASTIC HADRON SCATTERING: 
REVIEW OF THEORY 

In this review, we confine our analysis of elastic hadron scattering to within 

the context of perturbative quantum chromodynamics . No other approach has 

proved as universally successful as QCD in understanding high momentum-

transfer scattering phenomenon involving hadrons . A short report on alternative 

approaches can be found in a comprehensive review of high-Pr physics by Sivers 

et al .[1]. 

2.1. TifE QCD APPROACH TO HIGH PT SCAITERING 

2.1.1. INTRODUCTION 

The success of using perturbative QCD to analyze high momentum-transfer 

hadronic scattering processes, whether they be inclusive or exclusive, depends 

crucially on being able to write the scattering amplitude or cross-section as a 

product of separate parts, each possessing well defined momentum ft.ow proper-

ties. The purpose of this "factorization" is to isolate the hadronic scattering 

mechanism from the bound state physics of the hadrons . The scattering subpro-

cess that is actually responsible for the transfer of high momentum between the 

two colliding particles is called the hard subprocess. The internal propagators in 

the Born diagrams for this hard-scattering subprocess are typically off shell by 

0( Q2), Q2 being the invariant associated with the momentum-transfer involved in 
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the process ( Q2= I (p1 -pi)2 I). If Q2 is large enough, then the amplitude for this 

subprocess has the possibility of being evaluated through a perturbative expan

sion in the running coupling constant O'.s ( Q2) . The full hadronic cross-section 

invariably includes other factors which involve, in some way or another, the 

bound state physics of hadrons and are referred to as so/ t parts . These parts 

involve internal momenta which are typically of the order of the renormalization 

scale of the theory and they cannot therefore be completely determined by 

perturbative methods. However, they do have the property of being process 

independent and can often be extracted from the measurement of one process 

and used to predict the result of another one . Furthermore, perturbative QCD 

can be used to analyze the far-off-shell tail of the soft parts, and this leads to a 

prediction for how they evolve with a change in the Q2 associated with the 

scattering process . Such predictions have been used to explain the observed 

scale breaking of deep inelastic structure functions and to determine the strong 

interaction scale A Perturbative calculations of the hard subprocess have been 

used, in some cases, to directly determine cx8 ( Q2) and to verify other properties 

of the QCD interaction. 

We present below a brief discussion of the fundamental basis for the QCD 

approach used in the analysis of high-P1 hadron scattering . 

2.1.2. THE PARTON PICTURE 

In breaking down the amplitude or cross-section of a high momentum

transfer hadronic process into subprocesses we assume a microscopic picture 

that was first developed for the naive parton model. A hadron is here viewed as a 

superposition of Fock states, each consisting of a finite number of on-shell par

tons which, in the context of QCD, can be assumed to be quarks and gluons in 

color singlet combinations. In this picture a hadron interacts with another 
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particle only through the individual interactions of one or more of its partons 

with that particle . The parton model further assumes that these interactions 

can be treated in the same way that we treat the interaction of fundamental 

bare fields in any renormalizable field theory, e .g . QED, using free-field boundary 

conditions, even though the quarks and gluons are confined in bound states and 

cannot be isolated in nature . The asymptotic freedom property of QCD is now 

used as a justification for this assumption. 

To get the final cross-section for a hadronic scattering process we must 

take int o account the information contained in the bound state wave functions 

of the hadrons involved in the process. If the constituents of a hadron interact 

coherently in a process, preserving the identity of the ir parent through the 

interaction, then the initial and final hadron wave functions must be folded into 

the hard-subprocess amplitude to obtain the final amplitude . If the constituents 

interact incoherently, resulting in the breaking up of the incoming hadron, then 

the probability distribution function of the struck constituent (obtained by 

squaring the wave function and integrating over the spectator constituents) 

must be folded into the hard-subprocess cross-section to obtain the final cross

section. If the process involves the detection of an outgoing hadron produced by 

the "hadronization" of a parton emerging from the hard-interaction region, then 

we need to fold into the cross-section the so called fragmentation function for 

this hadron (obtained from the overlap of the hadron wave function with the cas

cading shower of partons produced by the soft radiation of quarks and gluons 

trom the emerging part on) . 

We see then, that the parton model assumptions naturally lead to a factor

ized expression for the scattering cross-section. Fig. 2.1 illustrates this factori

zation for the single-particle inclusive hadron-hadron scattering process 

AB-+ CX. The cross-section can be expressed as follows : 
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1 

da-49-+CT' = J dxadxb dzc Gf(xa) ~(xb) Df(zc) da®-+cct(xa,Xb ,Zc) 
0 

where G represents the distribution function and D the fragmentation function 

and Xa ,xb ,zc are longitudinal momentum fractions on which these functions 

mainly depend. ab ->cd is the underlying hard subprocess which causes the high-

P1 event to occur. 

2.1.3. QCD FACTORIZATION 

If QCD is assumed to be the theory that defines the interaction between par

tons then du® -+cct should be computable as a sum of Feynman diagrams. How

ever, this sum contains terms like a.s ( Q2) ln(Q2/m2) which are divergent in the 

limit of the quark mass m going to zero, and further theoretical understanding 

is necessary in order to do a meaningful computation. These divergent terms 

are generated by the collinear region of the loop integrals in some of the higher 

order diagrams and should actually belong to the nonperturbative part of the 

cross-section. This mishap can be corrected by theoretical techniques which 

involve, successively, the summation of the leading logarithms in the perturba-

tion series, their absorption into the uncalculable soft-subprocess functions and 

finally the derivation and solution of evolution equations to determine the Q2-

evolution of these functions. A more formal treatment of this theoretical tech-

nique uses the operator product expansion and the renormalization group 

i:n.terpretation. 

These general methods have been rewardingly used, for almost a decade 

now, to analyze inclusive hadronic processes. In the last few years this approach 

has been successfully extended to cover high momentum-transfer exclusive 

processes [2], creating a new range of QCD predictions. Here one needs a deeper 
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understanding of the hadronic wave function which, till recently, was generally 

considered to be off-limits to perturbative QCD. In the next section of this 

chapter, we shall discuss in detail the diagrammatic approach to proving QCD 

factorization for exclusive processes and the derivation of evolution equations 

for quark distribution amplitudes associated with hadron wave functions. 

2.2. EXCLUSIVE PROCESSES IN PERTURBATIVE QCD 

2.2.1 PARTON MODEL ANALYSIS 

As a relatively simple example of an exclusive process, that serves to clarify 

the application of parton model ideas and QCD factorization to such processes, 

we shull analyze the elastic hadron form factor . Consider the proton's magnetic 

form factor Gn(Q2) at large Q2 (Q2=-q 2 where q is the four-momentum 

transferred to the proton by the virtual photon) . In general a baryon has two 

independent form factors, F 1( Q2) and F 2( Q2), but for high momentum-transfers 

F 2 is suppressed with respect to Fi by a factor of O(m/Q) where m is the quark 

mass. In the limit Q2-->oo, or equivalently m-->0, F 2 vanishes and the magnetic 

form factor, which is a linear combination of Fi and F2, becomes identical to Fi . 

Then G.v ( Q2) can be identified with the amplitude for the constituents of the pro

ton to absorb the virtual photon while keeping the proton intact. 

Consider the simplest Fock state of the proton which contains only the 

three valence quarks, all moving roughly parallel with the proton. Let T be the 

amplitude for the incoming three-quark state to absorb the photon and produce 

the three quarks in the outgoing state. Since this amplitude depends on the ini

tial and final momenta of the quarks in addition to the photon momentum q, we 

must convolve it with the initial and final proton wave functions in order to get 
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the final amplitude. The proton wave function '!/! is best expressed in terms of 

the infinite-momentum frame variables; longitudinal momentum fractions, xi, 

for each of the three quarks, and their transverse momenta, kli. Then the 

scalar function '!/!(xi ,kli) represents the space-time part of the full hadron wave 

function. It is assumed that the well known color, flavor, spin and Dirac struc-

ture of the full wave function has been absorbed in the amplitude T. It will be 

seen later that the more complicated nonvalence Fock states in the proton (i.e., 

qqqqq, qqqg, . . . ) are unimportant as Q2 __. 00 • Then the proton's magnetic form 

factor can be written as (see Fig . 2.2a): 

1 

G.v(Q2
) = j[dx][dy]j[d2k1][d2l1] 'i/l*(yi,lli)T(xi,yi,kli.lli ·q)'i/l(xi ,kli) (2.la) 

0 _.,. 

where 

[ dx] = o ( 1 - f; xi ) fl dxi (2.1 b) 
i=l i=l 

and 

(2 . lc) 

Being the amplitude for the hard subprocess, T is expected to have a per

turbation expansion in a8 ( Q2) and it can therefore be analyzed in terms of Feyn-

man diagrams . The lowest order term in Tis the sum of all tree diagrams in 

which the spectator quarks are all connected to the struck quark through gluons 

(Fig. 2.2b) . The connectedness prevents any conditions from having to be 

imposed on the transverse momenta of the incoming or outgoing quarks and 

ensures that all the hard momenta are exchanged inside T and not inside any of 
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the wave functions . 

Intuitively, we expect the wave function 'ljl(xi,kli) to be peaked at low lcli 

since a composite particle has little amplitude for existing while its constituents 

are ftying apart with large transverse momentum. In the parton model picture 

the kli distribution was, in fact, assumed to be a Gaussian with a width of about 

300-500 Mev. Thus for \kli I~ A the integrand is exponentially damped and the 

important contribution to the integral comes from the region, kli. 2~ A2. If we 

further assume that, to all orders, T has no singularities in the region where the 

constituents become collinear with each other then, for Q2»A2, we can put 

kli ,lli =O in T since the error introduced is of O(NQ) . The wave functions can 

now be integrated over their own transverse momentum to give 

1 

Gy(Q2
) = j[dx][dy] sc•(yi) T(:i; ,y;..q) sc(xi). 

0 
(2.2a) 

where 

.. 
sc(x,) = j[d2k1] 'ljl(xi:.k1i) (2.2b) -

with a similar definition for yo(yi) . Since the color singlet nature of the wave 

functions prevents any infrared singularities in T, we can see now that, aside 

from the UV scale parameter in a5 ( Q2) , q is the only momentum scale in the 

amplitude . This leads immediately to a dimensional scaling law for the proton 

form factor, Gg(Q2)ocl/ (Q2) 2, which is consistent with the Q2-dependence of the 

Born term in T and agrees with the constituent counting rules of Brodsky and 

Farrar. 

As we shall see, a rigorous treatment using perturbative QCD, does not sup

port the parton model assumptions . The integral of the wave function over its 
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transverse momentum is in fact unbounded and the higher order corrections to 

the Born amplitude for T have logarithmic divergences as the quarks become 

collinear. Thus we need a much more careful analysis of these processes to jus

tify and improve the parton model predictions. 

It can at least be seen now that nonvalence Fock states in the proton are 

unimportant since all such states contain four or more constituents, each of 

which must be turned towards the final direction through the means of a hard 

gluon in the Born term of T. Thus the amplitude for these states falls as 1/ ( Q2) 3 

or faster and is negligible relative to the valence contribution as Q2
-+ 00 • Thus 

nonvalence ("sea") quarks and gluons in the proton do not contribute in this 

limit. Actually this observation is strictly true only in the light-cone gauge. In a 

general covariant gauge, higher Fock states, containing nonphysical, longitudi

nally polarized gluons, produce the same Q2-dependence in the scattering ampli

tude as the valence state, and must be included in the form factor . It is possible 

to overcome this problem by defining an effective valence Fock state which 

essentially sums all the Fock states contributing to the form factor. 

2.2.2. TIIE HADRON WAVE FUNCTION 

In order to treat the form factor more rigorously we first analyze the 

hadron wave function in perturbative QCD. The Bethe-Salpeter equation provides 

the most systematic way to study a bound state in the context of a renormaliz

able field theory. It is not possible to solve this equation exactly even for a two

particle bound state, but it enables us to use perturbative QCD to analyze the 

large transverse momentum tail of the hadron wave function 'ifl(xi ,k li), in much 

the same way that we use it to analyze high momentum-transfer scattering . 

Since we are taking an approach where the other particles interact with a 

hadron through its on-shell Fock state constituents the appropriate version of 
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the Bethe-Salpeter bound state equation to be used for this wave function is the 

one derived in non-covariant, time-ordered perturbation theory. Since we are 

assuming both quarks and gluons to be massless it is also advantageous to use 

light-cone variables and light-cone quantization in these perturbative calcula-

tions. The longitudinal momentum fractions xi, of the constituents are then 

defined to be xi = k//p+ = (kP+ki3)/ (p 0+p3). The bound state equation is 

1 

1f;(xi,k1.J = S(x;.,kli)j[dy]j[d2l1] K(xi,yi,kli•lli) 1f;(yi,lli), 
0 _.., 

(2 .3a) 

where S is the renormalized n-particle propagator and the kernel K is the sum 

of all n-particle irreducible graphs with n incoming and n outgoing legs. If all 

kli 2 are large so that as (k li 2) are small we can organize these graphs into a per-

turbation expansion for K in powers of as. The leading-order term in this series 

is the sum of all one-gluon-exchange graphs . Graphs with a self-energy correc-

tion on one constituent line, which are also of leading order, are not needed in K 

because they are already included in the renormalized propagator S . 

If we now make the parton model assumptions, i.e . 1f;(yi.lli) is peaked at 

low l1;. and K has a well behaved perturbation series with no collinear singulari

ties in higher order terms, then lli can be set to zero in K and 1/l(Y.;. ,lli) can be 

replaced by rp(y;,), as defined by Eq. (2 .2b) . Then Eq. (2.3a) becomes 

1 

1f;(x;.,kli) = S(x;.,kli)j[dy] K(xi,yi ,kli) cp(yd. 
0 

(2.3b) 

Consider first, the simplest case, where n =2. Then S and K depend on only one 

independent transverse momentum, ki. and, either by looking at the one-gluon-

exchange graph or by a straightforward dimensional analysis, we immediately 

get the prediction that 1f;(x ,k1)ocl/ (k12). With similar arguments and using 
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symmetry one can also prove that for the n-particle case 1f;(xi,kli)oc1/ (kH 2) . 

Thus the hadron wave function falls as a power of the quark transverse momen

tum and not as an exponential as was assumed in the parton model. We still need 

to correct or justify the assumptions made above but, as we shall see , a rigorous 

analysis leads only to an additional logarithmic factor and does not change the 

power-law prediction obtained from the simpler model. 

Eq. (2.3a) is a self-consistent integral equation for the n-particle bound 

state wave function with K being given by an infinite series in powers of O'.s . 

Since we want to treat this equation perturbatively it is important to identify the 

leading order terms in the kernel. These may not necessarily be limited to the 

terms with the least power of O'.s. If we are working in a covariant gauge then 

graphs with higher powers of O'.s have collinear divergences which manifest 

themselves as powers of ln(kli 2/m2) . Each such factor tends to cancel one 

power of O'.s(kli2). effectively reducing the order of the term. The perturbative 

analysis of K is made much more transparent and simpler if we work in an axial 

gauge such as the light-cone gauge . In this gauge the collinear divergences are 

confined to n-particle reducible graphs and the terms in the kernel are there

fore completely free of these divergences . Thus for a two-particle wave function 

(see Fig . 2.3), the leading order term in the kernel is the single-gluon-exchange 

graph which, when iterated through the bound state equation, generates an 

infinite-rung "ladder" of gluons between the constituent lines of the wave func

tion. Thus perturbative QCD provides us with the leading order structure of the 

wave function at large transverse momentum. 

Having studied the hadron wave function to some extent we can now analyze 

the perturbation expansion for T. As mentioned earlier, the higher order terms 

in this expansion do have collinear divergences which tend to spoil the conver

gence of the series . If, however, we work again in the light-cone gauge, then the 
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only graphs in T which have these divergences are the ones which are n -particle 

reducible on either side of the photon vertex. For example, in the two-particle 

case, all the graphs which have a ladder structure with two or more gluon-rungs 

between the constituent lines, are collinear-divergent. As a result their contribu

tion is of the same order as the one-gluon Born term and therefore cannot be 

ignored in the leading order calculation of the form factor at large Q2. But we 

now see that the extra gluons in the ladder graph can be absorbed into either of 

the two wave functions since the wave functions satisfy the bound state equation 

to leading order in perturbation theory. This means that the contribution of the 

reducible graphs to the perturbation expansion of T is already accounted for by 

the structure of the hadron wave function. Therefore we can redefine T to con

sist only of two-particle irreducible graphs . This reduced amplitude, henceforth 

denoted by TH, is called the hard-scattering amplitude because it is free of soft 

and collinear divergences and is dominated by the far-off-shell region of the 

internal propagator momenta. We shall see later that, that part of the contribu

tion from reducible graphs which comes from the non-collinear region of loop 

integration can still be retained in TH . One way to rephrase the substitution of 

TH for T is to say that the leading logarithms in the perturbation series for T, 

that come from the non-perturbative near-on-shell region of the internal propa

gator momenta, have been summed and absorbed into the "bare" wave function. 

which then obeys the integral equation (2.3a) with K replaced by the one-gluon

exchange kernel. 
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2.2.3. THE QUARK DISTRIBUTION AMPIJTUDE 

Having analyzed the wave function and the hard subprocess amplitude we 

can now go back to a more rigorous treatment of the proton form factor . For the 

sake of simplicity let us look instead at the pion form factor, where the wave 

function depends on only two independent variables, x and ki of the quark. The 

momentum of the anti-quark is ther.. given by (1-x) and -k1. In analogy to the 

case of the proton, (Eq. 2.la), and with T replaced by TH. we have 

(2.4) 

We would still like to do away with the transverse momenta integrals so that we 

do not have to deal with the unknown ki-distribution in the near-collinear region, 

and also so that we can concentrate on the dependence of TH on the momentum 
' 

scale set by q. As shown in Sec. 2.2.2, 1f;(x ,k1)o<.1/ kl (modulo logarithms) and 

therefore the integral of 1/J(x ,k1) over lk1 I is no longer bounded but diverges log-

arithmically with its upper limit. If we now examine the Born term of T we find 

that it can provide further damping of the integrand at large I k1 I through its 

denominator which, for the diagram with the photon hitting the quark, has a fac

tor of the form [(l-x)q1 +k1]. where q1 is the component of q transverse to the 

direction of the incident pion. Thus for I k i 1 » Q, ( ql 2= Q2). the integrand falls 

with a higher power of the transverse momentum than was the case with the 

wave function. The transition in the power of the fall-off with I k1 I takes place 

around lk1 I =(1-x)Q and one way to express this Q-dependence of the integral 

is to carry it out to the finite upper limit, ( 1-x) Q. The error made in this 

approximation can be shown to be of 0( 1/ lnQ2) when the logarithmic factors in 

the k1-dependence of 1/J(x ,k1) are included. This correction is therefore of 

higher order in a 5 ( Q2). Furthermore, provided the region, x "'1, does not result 
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in a singularity in the amplitude, (1-x)Q can be replaced by Q to leading order 

accuracy. The Li-integral in Eq. (2.4) can be treated in the same way as the lc1-

integral. 

The hadron wave function is still peaked at small transverse momenta, 

lk1 I~ A, and having used the large k1 behavior of Tn to cut off the integral at Q , 

we can again make the approximation of setting k1.l1=0 in Tn . This is now safe 

to do because Tn is free of collinear divergences. The error introduced because 

of this approximation is of O(A/Q) . The pion form factor can now be rewritten as 

1 

F"(Q2) = J d3:dyrp•(y ,Q2) Tn(x ,y,Q2 ) rp(x,Q2), 

0 

where 

(2.5a) 

(2.5b) 

and a similar definition holds for rp(y, Q2). In general, for a hadron with n consti

tuents, ljll(!li .Q2) is defined as the integral of 'lf(21,kH) over all kli up to the same 

upper limit Q2 and is called the quark distribution amplitude. It is the ampli

tude for finding the constituents with longitudinal momentum fractions !li, in the 

hadron, which are all collinear up to the scale Q. 

2.2.4. THE Q2-EVOLUTION EQUATION 

We are now in a position to see the approximate validity of the dimensional 

scaling law for the pion form factor and also to determine the modification 

caused by the detailed structure of perturbative QCD. The dependence of Te on 

Q2 follows immediately because of the absence of any other mass-scale in it . 
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Counting dimensions, THO(_l/ Q2 , except for the logarithms coming from the cou

pling constant as ( Q2) . The formalism developed so far is also sufficient to deter

mine the logarithmic modification caused by the Q2-evolution of the quark dis-

tribution amplitudes. In order to derive an evolution equation for the distribu-

tion amplitude we must go back to the bound state equation for the wave func-

tion. We consider the case of the two particle wave function and we make the 

replacement ki ->q1. Then Eq. (2.3a) becomes 

1 .. 

'l/J(x,q1) = S(x ,q1)J dyj d6
2

~ci K(~.y.q1,l1) 'l/l(y ,l1) . 
0 _..,17r 

(2.6) 

We can now approximate the transverse momentum integral in this equation in 

exactly the same way that we used for the pion form factor equation. The kernel 

Know provides additional damping of the integrand for l1»q1. and we can trun

cate the Li-integral at l12=q1
2=Q2 . We can then put l1=0 in K since it is known to 

be collinear-finite . The errors involved in these approximations are of O[as(Q2)] 

and O(AIQ) respectively. The bound state equation then becomes 

1 

'l/l(x .q1) = S(x ,Q2) J dy K(x ,y ,Q2) rp(y ,Q2) 
D 

which can be rewritten as 

- 1 

'l/J(x,q1) = Bn°'11~~2) .{dy V(x,y) rp(y,Q2), (2.7) 

·- . ·. . . ' • . . - : . . . . . ... . . . . - . .. . . . . 

where V(x ,y) is the Q2-independent part of the the product SK. V(x ,y), in fact , 

describes the ampiitude for a collinear qq pair with momentum fractions y and 

1-y to evolve by gluon exchange into a collinear qq pair with tractions x and 

1-z. If qi 2»A2 then the leading order term in the perturbative expansion of 
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V(x ,y) is determined by the one-gluon-exc :~ange ken:.el c:.nG. ;;:1e rc:x_:::~"~:_-c ::.~: ::: .• ~ 

two-particle propagator. If we identify V(x ,y) vvith its Born contributic1 t l::.s=i it 

can be shown to be given by 

V(x,y) = cF[~11 (i+-1-)e(x-y) + ~(1+-1-)e(y-x)) -x x-y y y-x + 
(2.8) 

where the "+ function" is defined in a way similar to the one used for the 

Altarelli-Parisi functions, which arise in the evolution equations for quark and 

gluon probability distributions in a hadron. By definition 

l l 

f dy( )+rp(y' Q2) = J dy ( 
0 0 

The "+ function" serves to regularize the singularity that would otherwise occur 

in V(x ,y) at x =y, but is now canceled by a contribution arising from self-energy 

corrections to the quark and anti-quark propagators (which occur only at x=y). 

These self-energy graphs are present in V(x ,y) because of the inclusion of the 

renormalized propagator S in its definition. 

From the definition, (2.5b), of the distribution amplitude we have, 

_£_ rri(x Q2) = j;(x' Q) 
fJQ2 T ' 1671"2 • 

Since, in all our applications, Q2»A2 , we can use Eq. (2.7) to substitute for 

j;(x, Q) in the above equation. We then finally arrive at the evolution equation 

that the distribution amplitude, rp(x, Q2), must satisfy if the wave function is 

described by the bound state equation. The evolution equation is 

2 1 
2 a ( 2) _ O'.s ( Q ) I ( ) ( Q2) Q a Q2 rp x. Q - 2rr 0 dy v x . y rp y. . (2.9) 
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is given by Eq. (2 .8) , then the above diffcsrential equation can. b:c sc:ved exa.ct~y 

for sc(x ,Q2) in terms of an initial condition rp(x, Q~) at some reference momen

tum Q0 . Both Q2 and Q; must be large so that the highe r order corrections are 

small. 

We sketch here, very briefly and without any attempt at mathematical 

rigor, the method used for the solution of this equation. We first expand sc(x, Q2 ) 

on the basis provided by Gegenbauer polynomials of order 3/2. [x(l-x)] is the 

appropriate weight function for the chosen argument, [ x -( 1-x)], of the polyno-

mials . Then we have 

9'(x,Q2) = x(l-x) f; 9'n(Q2)Gn:V2(2x - 1), (2 .10) 
n=O 

where the coefficients Son(Q2), also called Gegenbauer moments , can be deter-

mined by inverting the above equation using the orthogonality of the polynomi

als . This expansion results in a set of differential equations for the Son ( Q2) 's 

which can be easily solved to give 

where 

2AnNS 
d,i = -- . 

f3o 

(2 .11) 

Here AnNS are the familiar non-singlet anomalous dimensions first encountered in 

the Q2-evolution of non-singlet quark distributions c;~q~ (x, Q2) in deep inelastic 

scattering. The final solution for rp(x ,Q2) can now be written as 
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( Q2)- ( ~ )-0[C<s (Q2)1dnG 3/2(. '"'· ) (Q2) f{J X, - X 1-.,, L.J ( 2 ) n ~x -1 9'n 0 , 

n:::O O'.s Qo 
(2.12) 

where 

1 

( 2) 4(2n +3) J..J- 1es12( 2 ) ( Q2) ~n Qo = (n+l)(n+2) 
0 
~ "'TI. x-1 (/) x, 0 • (2.13) 

Thus given the wave function, 9'(x, Q;), at some Q~, one can compute it at 

any other Q2 provided one knows the UV scale parameter A. In Eq. (2.12), except 

for n =O, in which case d 0=0, all terms die off like fractional powers of 

for all such evolution equations d,,, >do for all n. This means that as Q2 becomes 

much larger than Q; , 9'(x, Q2) approaches the first term in the infinite series, 

and is given by 

= x(l-x)9'o(Q~), (2.14) 

where we have used the property, G612 (x )= 1, of Gegenbauer polynomials. The 

approach to this limiting expression for ip(x, Q2) is, however, extremely slow and 

needs a much larger Q2 than is presently available. 

In general rp (x, Q;) is an unknown function essentially non-perturbative in 

its character. However, if we take a hint from Eq. (2.14) and assume that it has 

the particularly simple form, given by 

rp (x, Q;) = Cn x ( 1-x) , (2 .15) 



then from Eq. (2.13) we see that 

[
c'lr for n =O 

rt'n(Q~) = O for n>O 
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(2.16) 

For this choice rp(x, Q2) does not evolve with Q2 even if we retain all the terms in 

the Gegenbauer series and is given by 

(2.17) 

Since this distribution amplitude is involved in the decay of a pion into lep-

tons, we can use the pion decay constant to determine c'lr. The pion form factor 

is then completely determined in this Q2 -'* 00 limit. To first order in as it is given 

by, 

(2.18) 

2.2.5. ENi>-PbINT SINGULARITIES 

The above analysis has shown the hard-scattering amplitude, TH , to be free 

of soft and collinear divergences that arise from loop integrals in higher order 

terms. However , the integration of T8 over the longitudinal momentum frac-

tions of the constituents may still lead to singularities in the final amplitude . 

The Born contribution to TH for the pion form factor can be shown to be 

(2.19) 

where eq and e11 are the charges carried by the quark and anti-quark. For the 

case of the photon hitting the quark, the amplitude blows up at the end-points, 
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x = 1 and y = 1. of the intervals of integration. This singularity in U--..e amplitude is 

a result of the gluon propagator, in the Born diagram, going on shell. In the end

point region the quark, which absorbs the photon, carries almost all the longitu

dinal momentum of the pion. The gluon, that connects the two constituents, 

does not need to transfer large transverse momentum to the anti-quark to make 

it collinear with the direction of motion of the final state pion. Thus the gluon 

becomes either soft or collinear, causing the amplitude to diverge. We need to 

study the contribution from this singularity more carefully. 

Note that (1-x)Q is a measure of the transverse momentum that must flow 

from the quark to the anti-quark. As long as (1-x)Q»A, the whole perturbative 

analysis, which allows the factorization of soft and hard parts, is still valid. As 

was pointed out in Sec . 2.2.3, the momentum scale that goes into the argument 

of the distribution amplitude is in fact ( 1-x) Q and not Q. The same is true for 

the argument of the running coupling constant. Integration of TH over this fac

torizable regime, 1 < ( 1-x) « A/Q, has the potential to generate an additional 

logarithmic factor, ln( QI A), in the leading order form factor result. However, it 

can be shown by a perturbative analysis of the Bethe-Salpeter bound state equa

tion in the region x ""1, that the pion distribution amplitude vanishes as x 41; 

specifically, c;o(x,Q2)"" (1-x)*'~. with e(Q2)>0, irrespective of the initial condi

tion c;o(x, Q; ). Furthermore, we can see from Eq. (2.14) that, as a consequence of 

the evolution equation, e( Q2)4 l as Q2 4oo, Thus the presence of the distribution 

amplitudes in the integrand eliminates the possibility of a logarithmic factor 

from the region 1 « ( 1-x) or ( 1-y) « A/Q. The same can be shown to be true in 

the case of a baryon form factor. 

In the end-point region, (1-x)~A/Q, so that large transverse momentum 

does not flow through the gluon connecting the two constituents and the pertur

bative analysis used for the derivation of Eq. (2.19) is no longer obviously valid. 
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Furthermore, the 1/ Q2 suppression from the hard gluon p:·8;_~c..;&~c~· is nc-.. -

expected to be absent from the amplitude. The contribution from t hls region or 

integration could be significant and must therefore be analyzed sepG.ro.'~ c,ly. Fo~' 

this analysis it is best to absorb the soft or near-collinear gluon connecting the 

two constituents into the closest wave function so that, in leading or der, the fast 

constituent alone absorbs all the momentum of the photon while the slow one 

acts as a mere spectator. To this lowest order then, the form fact.or can be 

expressed purely as a convolution of the initial and final wave functions . Using 

this representation for the whole range of momentum fractions, the form factor 

becomes (see Fig . 2.4a): 

(2 .20) 

where, as before, 91 is the component of the photon momentum transverse to 

the incident pion. In this representation all gluon corrections which can be 

separated away from the photon vertex are considered to be buried in either of 

the two wave functions which still obey the bound state equation (2.3a) . 

As an aside, we can now see that, when (1-x)Q »A. the constituents in at 

least one of the wave functions are constrained to have large transverse momen-

tum. Then, since 1ji(x ,k1)"' 11 kl, the amplitude falls with Q as 11 Q2 . Further-

more, the bound state equation can be used to separate out one or more of the 

hard gluons (l1
2-(1-x)2 Q2) in the wave functions, so that the pion constituents 

no longer have any constraints on their transverse momentum. Since only those 

gluons that contribute to imparting large transverse momentum to the consti-

tuents are to be extracted out of the wave functions, the loop momenta involved 

in the resulting ladder diagrams must be restricted to be greater than Q , so 

that all gluons extracted remain hard. This analysis, together with gluon 
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corrections to the photon vertex, results in building up the hard scatter~g 

amplitude, Tn, and leaves behind, the Q2-dependent distribution amplitude s . 

This is a slightly different but equivalent way to derive the factorized amplitude 

of Eq. (2.5a). 

In the end-point region, where (1-x)Q f;.A, the amplitude falls as 1/ ki4 and 

the integral over the transverse momentum is then convergent for all ki. It is 

therefore dominated by the near-collinear region ( lk1I ~A) of both wave func-

tions, and we need no longer define a distribution amplitude to do away with the 

explicit ki-integral. Instead we can approximate this integral by replacing 

lk1 I =A in the wave functions. Thus the contribution to the form factor from the 

end-point region is governed only by the x behavior of '1/J(x ,A) as x-> 1, i.e. 

1 

M'rr(Q2)"" J dx l'l/J(x,A) 1
2 

1-AIQ 

.... (AIQ)1+2.S I (2.21) 

where '1/J(x ,A) "' ( 1-x )6 as x-> 1. 

In time-ordered, light-cone perturbation theory, in place of the Feynman 

propagators for internal lines, we have "energy denominators", where the energy 

used is the "light-cone energy" k-=k0-k3=(k12+m2)/ k+ . The magnitude of 

these denominators is analogous to the "ofi-shellness" of the internal lines in 

covariant perturbation theory, and provides the scale for the argument of the 

running coupling constant relevant to the diagram. For a one-gluon-exchange 

kernel in light-cone perturbation theory, with the gluon traveling from anti

quark to quark, the "ofi-shellness" is approximately given by ki2/ (1-x). There

fore, even though k 12 ( ...,A2) is small in the region ( 1-x) ~ A/Q, the ofi-shellness is 
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typically A2/ (AIQ)=AQ, and is large for large Q. This enables us to analyze the 

end-point region perturbatively in a way similar to the hard scattering region. 

The kernel in the end-point region can be organized in a power series in a..8 (AQ) . 

Then, to leading order, the wave function can be represented by a convolution of 

itself with the one-gluon-exchange kernel. This kernel vanishes linearly as x 41, 

and the wave function in this region can then be approximated by 

( ) ( ) (1-x) 
'I/I x ,kl. "' as AQ 2 A2 . 

k1 + 

This implies that o= 1, and thus the contribution to the form factor from the 

end-point region is suppressed, compared to the hard scattering contribution, 

by a factor of a...(AQ) (AIQ), making it negligible. Higher order corrections to the 

kernel result only in the modification of the leading order x dependence of 

'l/l(x .ki.) by factors of [ln( 1-.x) ]n. The end-point contribution to the baryon form 

factor can also be shown to be similarly suppressed; in this case by a factor of 

In writing Eq. (2.20) to .analyze the end-point contribution to the form fac-

tor, we ignored the higher order corrections to the photon-quark vertex. Since 

the renormalization group approach is no longer applicable these corrections 

are not obviously small. The most important contributions come from radiative 

corrections involving only the struck quark (Fig. 2.4b). The off-shellness of the 

struck quark is given by f:f.2 ..... A2/(1-z) ..... AQ«Q2, and the soft and collinear 

divergences encountered in each loop integration result in double logarithmic 

factors of ln2 (Q2/f:f.2) ..... ln2(Q/A). As pointed out earlier, it is no longer possible 

to absorb the collinear divergences into factorized distribution amplitudes. 

Furthermore, the cancellation of soft divergences in the vertex corrections, 

against similar divergences coming from other diagrams (a result of the hadrons 
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being color singlet s), is no lon_J;er L·ue in the e;_-i.d-pci1.t ~- '.~ .;~.:. ::. °T - J . : ~ 
l '...... ..... ... ........ .... 1,.,._ _ _ _ ~ l... . 

gluon joining the struck quark to a spectator quark ( Fi~. 2 . .:.ce: ) · -~ - - _ , ). J _ '"'"" -- __ r. __ .... 
1 .i.. ... -...L.::.: •... \..l. C:. ..1....1.. .::J.Cl 

finite longitudinal momentum to it if the loop integral is to result in a soft-

logarithm. This force s the amplitude to move away fro m the end-point singular -

ity, thereby killing the logarithm which would otherwise cancel the one coming 

from the vertex correction. These double logarithms, then, persist at each 

order of the calculation and seem to spoil the convergence of the perturbation 

series. However, it is well known that the logarithms from successive orders of 

the vertex correction combine to produce the so called Sudakov factor , which in 

this case works out to be exp[-(as(AQ)/2rr)ln2(Q/A)]. This factor, after 

simplification, is equivalent to (A/Q)
21

P0 and causes further suppression of the 

end-point contribution. 

2.3. lilGH-PT EUSTIC HADRON SCA'ITERING 

2.3.1. DIMENSIONAL SCAIJNG LAWS 

The techniques developed in the previous sections can be applied to a study 

of exclusive hadron-hadron scattering. The cross-section for the case of a two-

particle final state, AB__. CD, depends solely on the Mandelstam invariants s and 

t. We can study this cross-section perturbatively in the limits 400 at fixed t/s or 

equivalently, fixed center-of-mass angle, ec.m. (cosecm. = 1 + 2t/s). Since t/s is 

fixed, the large s limit is also the high momentum transfer limit of the scatter-

ing . The momentum transferred from a quark in one hadron to a quark in the 

other has to be distributed amongst the other valence quarks in order to form 

the final state hadrons. This necessitates a hard gluon interaction between the 

quarks of each hadron and allows us to factor out a perturbative hard scattering 
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amplitude, TH, by absorbin6 U:'3 c :::~~i:-:..ear divergences in::.c L1e C.~:::~ : ~:;-.i~~ ~ ::.::: 

amplitude s associated with each h c.dto:1. The final amplitude is a conYclu'~:on c< 

TH with the four distribution amplitudes and can be writter: as (Fig. 2.5a): 

1 

MAB-+CD(s 'ec.m) = j[ dxa][ dxb ][ dxc ][ dxa] c,oi(xc 'Q2
) c,o°%(xa 'Q2

) 
0 

(2.22) 

where Xa, . .. , xd represent sets of momentum fractions (xa =[ Xa. 1,xa. 2 . .. ]) 

corresponding to the sets of valence quarks in each of the hadrons A, . .. , D, 

and [dxa] .... , [dxd] are defined as in Eq. (2. lb) . To leading order accuracy, we 

can take Q2 to be given by 

Q2 = -t = !_ ( 1-c OS 6) ) , 
2 c.m. 

In leading order, TH is the sum of all connected tree diagrams in which 

each hadron is replaced by collinear valence quarks (Fig. 2.5b). The connected-

ness is necessary so that the quarks belonging to each of the final state hadrons 

can rearrange themselves to be collinear after having absorbed large transverse 

momentum through the inter-hadron interaction. Since TH is free of soft and 

collinear divergences to all orders and, at fixed angle, depends on only one 

momentum scale, s (ignoring the dependence on the running coupling con

stant), its dependence on this scale can be immediately determined by counting 

dimensions . Ass -H>O with ec.m. fixed, it follows that 

(2.23) 



- 29 -

where n =nA +nB +nc+n.v is the total nwnber of constituents in the initial and 

final states together. The evolution of each of the distribution amplitudes in Eq. 

(2.22), with Q2, is completely determined by evolution equations similar to Eq. 

(2.9). As s ~ 00 these amplitudes tend to their asymptotic forms, as in Eq (2.14) 

for the pion amplitude . Then, in this limit, the leading order contribution to the 

cross-section can be written down as: 

[ ln-21 I ( A B c D) da ~s ( Q2) Q2 -2 cto +cto +cto +cto 
- (s e ) = ln- f (e ) dt AB ... CD ' c.m. S A2 c.m. . (2.24) 

Ifs is not large enough for the asymptotic form of the distribution amplitudes to 

be valid, then we need to replace them with the full series solution like the one 

obtained in Eq. (2.12) for the case of the pion. The modification caused to the 

power-law dependence on s is still only through a multiplicative , slowly varying 

(logarithmic) function of s . 

·This analysis provides a rigorous basis for the dimensional counting rules 

predicted by Brodsky and Farrar and also determines the logarithmic 

modification to the power-law fall-off. In the "very large s" limit, the function, 

f (ec.m). which contains the angular dependence of the cross-section, can also 

be calculated up to an overall normalizatio.n constant. This is a direct conse-

quence of the fact that the x-dependence of each distribution amplitude is 

known, in this limit, up to a normalization constant. The normalization of the 

distribution amplitudes can, in principle, be determined from the form factor 

data for the hadrons involved, and Eq. (2.24) can then be used to make a QCD 

prediction for the absolute normalization of the elastic cross-section. 
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2.3.2. TIIE PINCH SINGUIARITY 

We now want to focus our discussion on high momentum transfer elastic 

scattering processes, AB_.AB . As in the case of elastic form factors, the 

integration over the longitudinal momentum fractions in Eq. (2 .22) can lead to 

singularities in the scattering amplitude . This in turn can generate, through the 

introduction of a new mass scale, a logarithmic or even a power-law violation of 

the scaling laws derived above. The first such possibility that needs to be exam

ined is that of end-point singularities, which were discussed in Sec . 2.2.5 for the 

case of form factors . These make their appearance in elastic scattering when 

one of the quarks in either or both hadrons carries almost all the longitudinal 

momentum of that hadron, causing some of the internal propagators to go on 

shell. In the region where both hadrons contain such a quark one must also con

sider the diagram where the scattering takes place through the exchange of 

these two quarks . The analysis of these singularities in Sec 2.2.5 can be carried 

over, with almost no change, to the present case and the contribution of the 

end-point region to the elastic scattering amplitude can be shown to be 

suppressed by powers of a8 (AQ) and also by a Sudakov factor generated in this 

region. 

Far more significant is Landshoff's pinch singularity, which is a new feature, 

not found in form factors . It turns out that in the case of elastic scattering the 

hard scattering amplitude can become infinitely large, not only in the end

region of the integration space, but also in regions in the middle of this space . 

Let us, for the moment, assume that we are working in covariant perturbation 

theory. Then each of these singular regions is defined by a given relationship 

between the longitudinal momentum fractions of the various quarks which, when 

obeyed, causes one of the internal propagators in a particular Born diagram to 

go on shell, resulting in the vanishing of the denominator of TH. Assuming that 
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the propagators have a small imaginary part, it, these singularities in TH can be 

viewed as poles in the complex plane associated with one of the integration vari

ables; and they merely lead to an imaginary (absorptive) part in the integrated 

amplitude, corresponding to the presence of real intermediate states. However, 

as the other variables change their values these poles move along trajectories in 

this complex plane and two or more of them may coincide with each other for 

some particular values of these other variables. If this coincidence occurs 

between poles on the same side of the integration contour then it is harmless 

and still leads to a finite integral. It turns out that, for some Born diagrams in 

TH, two poles on opposite sides of the integration contour coincide with each 

other and as e is taken to zero this coincidence leads to a "pinch singularity" in 

the integrated amplitude , so named since it is a result of the integration con

tour being pinched between the two poles. 

In order to be able to calculate the contribution of these singular diagrams 

we must regulate the singularity. This can be done by re-introducing the quark 

transverse momentum into the propagators, which in Eq. (2 .5a) had been set to 

zero as an approximation. We now replace the transverse momentum squared by 

its average value, A2 . (The singularity can also be regulated by introducing a 

quark mass in the quark propagators). After the regulated integral is carried 

out one finds that the pinch singularity manifests itself as a power of s/ A2 in the 

integrated amplitude. Thus the effect of the mass scale A persists even at high 

energies and the dimensional scaling law for the scattering process no longer 

holds for the contribution of the "pinch diagrams" to the cross-section. 

As a simple example consider the case of 11'11' elastic scattering. Fig. 2.6a 

represents an example of a hard-subprocess Born diagram which has a pinch 

singularity in its contribution to the amplitude. The two quark propagators, 

q1 ,~. and the gluon propagator, g 1, are the ones that go on shell in the middle of 
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the integration space . The denominators of these propagators, in covariant per

turbation theory, can be shown to have the following representation: 

The three poles, corresponding to each of these propagators going on shell, coin

cide in the region defined by xb =xc =xa, and give rise to a pinch singularity in 

the integrated amplitude corresponding to this diagram. After regulation, the 

contribution to the amplitude from the singular region of this diagram can be 

shown to contain a factor, (s/A2)*. over and above the s-dependence expected 

from dimensional counting [3]. For large enoughs, the "pinch contribution" will 

dominate the amplitude obtained from this diagram, and furthermore, the con

tribution of the "pinch diagrams" will dominate the total Born amplitude for the 

process . Thus the power-law of the cross-section will change from the dimen

sional counting prediction of 1/s6 to a slower fall-off withs given by 1/s5. More

over, to calculate the absolute normalization of the cross-section, we now need 

to know, with good accuracy, the mass scale that regulates the singularity. This 

scale must be of the same order of magnitude as the QCD scale parameter, A. 

used in the definition of the running coupling constant , but it does not have to 

be equal to it. 

We shall see in the next section that the above calculation of the pinch con

tribution is not entirely fair . It does provide the correct s-dependence but it 

does not reveal the full uncertainty of the absolute normalization. 
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2.3.3. THE MULTIPLE SCA'ITERING MODEL 

The transverse momentum that flows through the gluon connecting the two 

constituents of the incident pion in Fig. 2.6a, can be shown to be given by 

(xc -xb)vt +(xa-xb)~. For large angle scattering s, t and u are all of the 

same order. Thus in the region defined by (xc -xb )RJ(xa-xb )RJA/Vs, the gluon 

does not transfer large transverse momentum from one constituent to another. 

(Note that this gluon need not be soft: it may transfer longitudinal momentum 

from one constituent to another if it is collinear with the pion momentum). The 

contribution of the pinch singularity to the amplitude corresponding to this 

diagram comes from integration over exactly this region, which is therefore 

called the "pinch region". Because of the absence of hard gluon interactions 

amongst the constituents within any of the participating hadrons, the perturba

tive analysis used in the derivation of Eq. (2 .22), is no longer obviously valid in 

this region. The calculation described in the previous section is therefore based 

on wrong assumptions and the contribution from the pinch region must be 

analyzed separately. 

Since the gluon g 1 in Fig. 2 .6a is not necessary for the hard scattering of the 

hadrons in the pinch region, we can absorb it in the wave function of the 

incident pion, as was done for the end-point region of the form factor . The lead

ing order contribution to the hard scattering process in the pinch region can 

now be given a different interpretation. The hadrons transfer large transverse 

momentum to each other through the independent scattering of each consti

tuent of one hadron against a different constituent of the other hadron. This is 

illustrated in Fig 2 .6b for the case of meson-meson scattering which consists of 

two independent scatterings . The baryon-baryon case will similarly involve 

three such scatterings. Meson-baryon scattering has to be handled separately 

since the two hadrons contain a different number of constituents . Note that the 
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scatterings take place between nearly on-shell quarks and, after undergoing 

independent hard scatterings, the momenta of the quarks are so aligned that 

they can readily recombine to make up the final state hadrons. 

The above picture of elastic hadron scattering is sometimes called the 

multiple-scattering model. It was first proposed by Landshoff as an alternative 

mechanism for high momentum transfer elastic scattering [ 4]. The 1/ Q2 

suppression of the amplitude, caused by the presence of an additional hard 

gluon in the hard-scattering model diagrams for mr scattering, is absent in the 

case of multiple scattering. On the other hand, the multiple scattering contribu-

tion is suppressed because the phase space available to the constituents, if they 

are to recombine after being scattered independently, is limited. In the multi-

ple scattering model, it is the scale which defines the limit on the transverse 

momentum of the hadronic constituents, (again denoted by A) , that causes the 

scale breaking of the cross-section to occur. 

As a first step towards calculating the pinch contribution (which is now 

identified with the multiple scattering contribution) let us express the elastic 

scattering amplitude for mr scattering as a convolution of the multiple scatter-

ing amplitude with the wave functions for the initial and final hadronic states . 

Then, working once again in the infinite momentum frame and using time-

ordered perturbation theory, this representation of the amplitude, assumed to 

hold for the whole range of momentum fractions, becomes 

1 

Mmr(s ,ec.m.) = j[dxa] .. . [dxc1Jf[dkia] ... [dk1cd 1/li(xc ,k1c) 1/1%(xc1,k1r1.) 
0 _.., 
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where TMs is the leading order multiple scattering amplitude . The independent 

conservation of momentum in each of the two scatterings in Fig. 2.6b imposes 

restrictions on the independence of the longitudinal and transverse momenta of 

the quarks belonging to different hadron states. The restrictions are: 

(2.26a) 

(2.26b) 

For most values of Xa, . .. , xd , at least one of kia2 •. .. , kid 2 is of order 

s = It I+ I u I. and a hard scattering amplitude can be built up by extracting the 

hard gluons from the wave functions. However, we are interested in the contri

bution from the pinch region (or the multiple scattering region) which is now 

defined by the equations, x 11 Rlxb RlXc Rlxd, all equalities being true to within 

A/..../S. In this region I kia +k1b -kic -kid I RlA and all quark transverse momenta 

can be small. The large transverse momentum region of each wave function will 

be damped by the large transverse momentum that must necessarily flow 

through at least one of the other wave function. The transverse momentum 

integrals in Eq. (2.25) are then convergent for all Jk1J~A and it is no longer pos

sible to factor out distribution amplitudes and to use them to absorb collinear 

divergences in the higher order corrections to TJJs. It is , however, possible to 

show that the s-dependence of the pinch contribution obtained from integrating 

the un.factored, leading order amplitude in Eq. (2 .25) is the same as the one 

obtained from the integral in Eq. (2.22). 

Because of their rapid convergence in the pinch region, the transverse 

momentum integrals in Eq. (2. 25) can be approximated by replacing each of the 

kl.a • ... , kid in the wave functions, and in TMs. by A. After a simple analysis of 

the energy-denominators, the pinch singularity in TMs can be factored out in the 
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form of a o-function. The multiple scattering contribution then becomes 

1 A/.../f A/../U 

Mmr(s ,Bc.m) "'Jdxa J d(xc-xb) J d(xa-xb)1/IJ(xc ,A)1f;'J(xa.f,) 
0 -A/.../f -A/../U 

1 "' -(~:~~I dxa 1/16(xa,A) 1/l'J(xa ,A) 1/IA(xa,A) 1/IB(xa,A) 

(2.27) 

where Mqq is the quark-quark elastic scattering amplitude. This amplitude can 

be easily computed and it turns out to be independent of Xa, 

M = 8 x [sit for equal quark helicities , 
qq 1f0'.s u/t for opposite helicities , 

In lowest order, the contribution to the rrrr cross-section from the pinch region 

can now be written as 

da NS (s2+u2)2 
dt (s,Bc .mJoccxi 35 

mT-+mT s t u 

cxt = -f(e ) s5 c.m . . (2.28) 

We now see that the fixed-angle s-dependence of this contribution agrees 

with the s-dependence of the pinch contribution calculation described in the 

previous section. The above calculation completely determines the energy 

dependence and the angular dependence of the multiple scattering cross-
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section but the absolute normalization depends, not only on the little known 

constant A, but also on the non-perturbative, and therefore completely unk

nown, part of the pion wave function. If the elastic cross-section is dominated 

by the pinch contribution, then any hopes of determining its absolute normali

zation, using only perturbative QCD, are lost . Furthermore, the higher order 

corrections to this lowest order result are no longer obviously small because the 

scattering amplitude in the pinch region does not yield to a renormalization 

group approach. 

2.3.4. THE SUDAKOV FACTOR 

The above analysis of the multiple scattering mechanism ignores the pres

ence of infrared divergences in higher order corrections to the amplitude. These 

divergences tend to spoil the convergence of the perturbation series. It is 

important to examine these corrections to see if they lead to a modification of 

the s-dependence of the leading order result stated in Eq. (2.28) . The higher 

order corrections to TMs can be divided into two distinct classes: (a) those where 

the extra propagators added to the Born diagram just modify the individual 

quark-quark scatterings , and (b) those where they connect different scatterings. 

Fig . 2. 7 shows examples of both classes of diagrams for the case of a single-gluon 

insertion into the rrrr multiple scattering diagram of Fig . 2.6b . Within the class

(a) diagrams, important contributions come from radiative corrections to the 

quark-gluon vertices and from the exchange of additional gluons between the 

two quarks . The loop integrals in these diagrams have divergences, which come 

from the region where the inserted gluons become soft or collinear. If the cou

pling constant is assumed to be independent of the gluon momentum then each 

loop integral contributes a double logarithm. The double-log term in the first 

order correction to TMs. from the diagrams in class-(a), can be shown to be 
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given by (4CFC:Xs/ rr)ln2(s / ~2) times TJJs, where ~2 is the off-shellness of the 

quarks involved in the scatterings. In the pinch region we can take ~2 to be equal 

to A2
. The error caused by assuming the coupling constant to be fixed only 

affects the non-leading logs . It is well known that the leading double-logs in each 

order of fermion-fermion scattering can be summed into an exponential factor 

(Sudak.av factor J that multiplies the leading order amplitude. 

The diagrams in class-(b) do not have loops but they do contain extra 

degrees of freedom to be integrated over, since the restrictions imposed by the 

independent conservation of momenta in each scattering are now absent. These 

degrees of freedom can be translated into the longitudinal and transverse 

momentum of the connecting gluon. Since we are interested in the corrections 

to the pinch contribution of the scattering amplitude the momentum of this 

gluon should be routed through the wave functions in such a way that the pinch 

singularity of the remaining amplitude is preserved during the integration over 

this momentum. This is equivalent to ensuring that the amplitude still involves 

nearly on-shell quarks, so that we keep away from the hard scattering regime . 

(Notice that class-(b) diagrams are also the diagrams involved in the leading 

order hard scattering mechanism.) The soft-collinear region of this integration 

then yields double logarithms with the same argument as the ones from the loop 

integrals of class-(a) diagrams. The color singlet nature of the pion implies that 

these double-logs should exactly cancel the previous ones. However, the 

integration over the component of the gluon momentum which is perpendicular 

to the plane of scattering is suppressed by the 1/ kl2 factor from the pion wave 

function, thus reducing the double-log contribution from the class-(b) diagrams 

to half their expected value. This prevents a complete cancellation and the 

remaining double-log terms still exponentiate to give a Sudakov factor. In the 

leading log approximation, the Sudakov factor for rm scattering can be shown to 
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be 

( 
2CF0'.5 2 s ) 

Srm(s) = exp - 7r lrr A2 . (2.29) 

This factor severely damps the contribution of the scattering amplitude coming 

from the pinch region. Even for moderate values of s the Sudakov factor works 

out to be much smaller than A/Vs, and for a fixed coupling constant, the factor 

falls withs faster than any fixed power of s. Thus, despite the slower fall-off with 

s of the multiple scattering mechanism, its contribution seems to be negligible 

because of the suppression from the Sudakov factor. It seems then, that the 

hard scattering mechanism may still provide the dominant contribution to elas-

tic hadron scattering . The application of the renormalization group to elastic 

scattering would then be justified, and a calculation of the first order, hard 

scattering contribution, for large enoughs, should yield a reliable cross-section. 

This conclusion, despite popular belief, is wrong! The ability to sum lead-

ing double-logs to generate a Sudalcov factor is not confined to the pinch region 

of the integration space. !)ouble-log factors of ln2(s I 6.2) are generated when-

ever the ofI-shellness of the quarks, undergoing high momentum transfer 

scattering, is held fixed at some 6.2 . Thus the factor derived in Eq. (2.29), when 

generalized by replacing A2 by 6.2 , holds for all regions of the integration space. 

AB one moves from the hard sc altering region, b.2 = 0 ( s), to the pinch region, 

h.2=0(A2), the effect of the Sudakov factor changes from no suppression to max-

imum suppression. In calculating the contribution from a connected pinch 

diagram, such as the one in Fig . 2.6a, we must now include the Sudakov factor in 

the integration over the momentum fractions of the quarks . The pinch region is 

then automatically suppressed and the factorized representation of the scatter-

ing amplitude, as displayed in Eq. (2.22). is valid for the whole range of 
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integration. 

Before we discuss further the pinch diagram calculation, let us go back and 

improve the Sudakov factor by allowing the coupling constant to run with the 

gluon momentum, as is the case in QCD. Mueller [3] has studied this in detail and 

he has shown that the leading divergence in the class-(a) diagram loop-integrals 

can be reduced to the following integral over gluon transverse momentum: 

(2.30) 

where {30 = 11-(2/ 3)n1 , n1 being the number of quark flavors. This contribution 

can be summed into an exponential, in a manner similar to the double-logs, and 

yields a more accurate Sudakov factor. In order to use this factor to carry out 

the integration for an amplitude corresponding to a given pinch diagram we 

need to express b.2 in terms of the integration variables. Taking the diagram of 

Fig. 2.6a as an example, we see that only two of the eight quark legs go off shell 

as we move away from the pinch region. Mueller has shown that the end result 

of adding all the leading log contributions from this diagram is the same as that 

derived in Eq. (2.30) for a simple loop integral, except that b.2 is now replaced by 

the minimum of ~e absolute value of the off-shellness of the three propagators 

that go on shell in the pinch region. The off-shellness of each of these three pro-

pagators can be expressed as a function of the momentum fractions, as shown in 

Sec. 2.3 .2. Then, expressing the minimum off-shellness as a fraction of s, i.e. 

l:i.~=Xs, so that X=X(xa ... Xct,Bc.m.), the rm Sudakov factor becomes 

(2 .31) 
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We can now replace TH by the product SrmTH in the integrand of Eq. (2.22) 

and carry out the integral over the momentum fractions. The pinch region is 

again severely suppressed. In this region Xs =O(A2) and the Sudakov factor 

reduces to the following, 

( ) ( 
BCF s s) Smr s = canst. exp -Tc ln A2 lnln A2 (2.32) 

The constant multiplying this Sudakov factor is unpredictable because it arises 

from the non-perturbative, low k12 part of the integration range. However, the 

contribution from the pinch region again falls with s faster than any fixed power 

of s an.d becomes negligible compared to the rest of the contribution. Even 

though the integrated amplitude is now free of the pinch singularity, and no 

regulation of the integrand is necessary, it is not clear that the amplitude will 

obey the dimensional scaling law, because the Sudakov factor in Eq. (2.31) con-

tains a mass scale of its own! The factorization of the s-dependence from the 

angular dependence, observed in Eq. (2.24) , is also no longer obvious because 

the Sudakov factor itself depends on ec.m.· In general, one can express the 

Sudakov-modified multiple scattering amplitude for the rm case as follows: 

(2 .33) 

where we have ignored the logarithmic factors present in the amplitude, and the 

function g is the result of carrying out the integral over momentum fractions . 

Mueller [3] has made an analytical approximation to the Sudakov-modified 

integral for the amplitude corresponding to the diagram in Fig. 2.6a. His result 

contradicts the naive expectations of previous authors, who assumed that after 

Sudakov suppression the s-dependence of the integrated amplitude should 
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correspond to the dimensional scaling laws. It turns out that, in Mueller's 

approximation, the scattering amplitude still falls as a power of s but the power 

is intermediate between the one predicted for hard scattering and the one for 

multiple scattering . Technically, this happens because the region that dom

inates the integral is given by A2 « !Y,2 « s, which is intermediate between the 

hard scattering and pinch reg ions. The renormalization group is applicable in 

this region but the mass scale in the Sudakov factor causes a deviation from the 

scaling prediction. Mueller ' s result, derived in the limit s 4 00 , can be expressed 

as follows : 

M "' - -
l [ S l(l/2)-cln((2c+l)/2c) 

mr s2 A2 
(2 .34) 

where c =(BCFI ,80 )=32/25 for SU(3) with 4 flavors. The power of s/A2 for this 

value of c works out to be about 0.08, independent of Bc.m.- Thus the deviation 

from the hard scattering prediction seems to be quite small. However. the 

assumptions made by Mueller in order to get the above result are not at all obvi-

ous and one needs an accurate numerical integration to find the true effect of 

the Sudakov factor on the s-dependence of the cross-section. In fact our result 

(discussed later), obtained by a numerical treatment of the same integral. show 

Mueller's result to be quantitatively incorrect but in reasonable qualitative 

agreement . Meanwhile , there is still an uncertainty in the absolute normaliza-

tion because of the lack of knowledge of the exact mass scale that goes into the 

Sudakov factor . 

Not all the diagrams that contribute to Tn have a pinch singularity in them. 

For some Born diagrams the poles associated with propagators going on shell do 

not pinch the integration contour and the integrated amplitude has no singular-

ity. A Sudakov factor cannot be extracted for the amplitude corresponding to 
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these diagrams and their contribution obeys the dimensional scaling law. Thus 

the elastic scattering amplitude consists of two separate components; the hard 

scattering component, which falls with s according to dimensional scaling and 

the multiple scattering component which, even after Sudakov suppression, prob

ably has a softer dependence on s . For mr scattering there are about as many 

diagrams with a pinch singularity in them as there are without it. For rrp and pp 

scattering the two numbers are again estimated to be comparable. Whether one 

contribution dominates over the other or not, at a given energy and angle, 

depends on the as yet uncalculated functions f (ec.m) and g (s/A2 ,ec.m.), and on 

the magnitude of A Our analysis up to now allows us to represent the elastic 

scattering cross-section as follows : 

(2.35) 

(n=6 for rrrr , n=B for rrp and n=10 for pp). 

If, as we are led to believe from Mueller's analysis, g(s/A2 ,9c.m) is an 

increasing function of s at fixed angle, then the non-scaling multiple scattering 

component will dominate the cross-section at large enough energy. Thus the 

suppression of Landshoff diagrams, which has become a widely believed proposi

tion, is not al all obvious in this more careful analysis . This crucial question can 

only be answered by a detailed calculation of the functions f and g. 

2.3.5. ANGUIAR DEPENDENCE 

The calculation of the angular dependence of the elastic scattering cross

section, in the "QCD model" discussed above, is a very complicated task. It 

involves the detailed computation of a very large number of Feynman diagrams 

followed by a multi-dimensional integral over the momentum fractions of the 
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participating hadrons. The only case in the past literature where such an 

attempt has been made is a calculation by Farrar and Wu [5], wherein they cal

culate the angular dependence of a very limited set of Feynman diagrams for pp 

elastic scattering. Their calculation is restricted to the multiple-scattering pp 

diagrams, and that too without a Sudakov factor (the naive Landshoff contribu

tion). Therefore, their result does .not shed much light on the predictions of the 

above section. 

All other attempts in this direction have been made in the context of a once 

moderately popular but now quite untenable model, the so called constituent 

interchange model (CIM) [ 6]. This model does have its foundation in QCD but it 

includes within it some extra assumptions that have no theoretical basis but 

were added on, in order to provide a quick and simple explanation of some high

PT exclusive and inclusive data. The basic assumption of this model is that the 

interchange of quarks between two hadrons provides the dominant mechanism 

for their interaction in scattering reactions . This further implies that the hard 

subprocess in a high-PT scattering amplitude consists, not of quark-quark 

interactions but of quark-hadron interactions. Consequently, one has to intro

duce dimensional coupling constants and the scaling property of QCD ampli

tudes is destroyed. For the case of elastic hadron scattering this model implies 

that the diagrams with any gluon exchange between quarks of different hadrons 

are suppressed. Thus the only diagrams that survive are the ones involving 

interchange of two or more quarks with all gluon interaction restricted to within 

the quarks of an incoming or outgoing hadron. Making some further simplifying 

assumptions about the structure of hadron wave functions, one can calculate 

the angular dependence of this special set of diagrams without having to do any 

complicated trace calculations. The CIM prediction for pp elastic scattering, for 

ec.m. not too small, is given by (see Ref. [6]): 



da 
dt pp 

1 
5 12 

J(sinec.m) 
sin129 c.m. 
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(2 .36) 

where J is a slowly varying function. The agreement with data cf this angular 

dependence is satisfactory but not convincingly good. Moreover, the calculation 

is quite sensitive to the assumed spin structure of the proton wave function. 

Almost all the successes of the CIM model have now been explained by a 

more careful analysis of the quark-quark subprocess, and in some cases detailed 

QCD calculations of the CIM diagrams have shown that the assumptions of the 

model are not true in perturbative QCD. The only reason that we mention this 

over-simplified model in this review is because the data on pp elastic scattering 

seem to favor the strong dominance of quark exchange diagrams over diagrams 

involving only gluon exchange between hadrons . It is important to see if we can 

find any clue to this unexpected behavior in our QCD model developed in the 

above sections. The number of quark exchange diagrams for pp scattering is 

somewhat larger than the number of gluon exchange diagrams but certainly not 

enough to explain the experimental data. The way to settle the question of 

whether or not the CIM assumptions hold true in perturbative QCD again lies in a 

detailed computation of the Feynman diagrams, a task that has been avoided by 

theorists because of the large number and the extreme complexity of these 

diagrams . 

Even though, finding the angular dependence of an elastic scattering 

diagram needs a detailed calculation, one can quite easily deduce the asymp-

totic form of the amplitude as the scattering angle tends to zero . If the ampli

tude corresponding to a given diagram is represented by A(s ,t), then this 

analysis is equivalent to finding the limiting form of A as t/s goes to zero. The 

study of Feynman diagrams in this limit has its origin in Regge theory which is 
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useful for analyzing amplitudes at small, fixed t as s ->oo. In this so called Regge 

limit, the amplitude can be shown to truce the formA(s,t) ..... ,B(t)sa(t>. For large t 

the coupling constant is small, the Born term dominates the scattering ampli

tude and a tends to an integer or a half-integer equal to the spin of the 

exchanged particle . Now in QCD the Born terms for hadron scattering are always 

box diagrams and never single particle exchange, because of color conservation. 

(The Born terms can also involve more than two exchanged particles). We then 

need to derive an asymptotic form for the box diagram given the form for the 

single particle exchange. One can use the unitarity equation to show, that for 

the box diagram amplitude, 

(2.37) 

where ti. t 2 are integrated over the allowed kinematic region and a 1 and a 2 are 

the spins of the two exchanged particles. 

We can now apply Eq. (2.37) to the mr scattering box diagrams (Fig. 2.8) . We 

immediately see that the behavior of quark-exchange and gluon-exchange 

diagrams is completely different and serves as a way to tell them apart while 

analyzing angular dependence data. For quark-exchange each a 1=1/ 2 and so 

the resultant box has a= 1/ 2 + 1/ 2 -1 = 0. For gluon-exchange each cx1=1 and 

the power of s in the amplitude is given by ex= 1 + 1 - 1 = 1. One can now treat 

the new power, ex, as an effective spin of the combination of the two exchange 

particles and use the formula in Eq. (2.37) once again to find the power of s 

when a third exchange particle is added to the diagram. We then see that adding 

additional exchange gluons to the two diagrams in Fig. (2.3) does not change the 

values of a calculated above . If the scattering amplitude goes like sa then the 

cross-section will go like s 2a-2 . The results obtained above, for fixed t, s -> 00 , can 

then be summarized as follows: 
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quark-exchange : A ,..., canst. 

gluon-exchange : A ,..., s 

da 
dt 

da 
dt 

1 
s2 

,..., const. 

(2.38a) 

(2.38b) 

If we further assume that dimensional scaling is valid for the scattering 

diagrams considered above, then the t-dependence of the amplitude can be 

immediately deduced from the s-dependence . Thus for mr scattering the quark

exchange amplitude goes like 1/ t 2 while the one for gluon-exchange goes like 

s / t 3 . We can then express the rm elastic scattering cross-section at small 

angles (i.e . small t/s) in terms of two calculable constants: 

da 1 s 1 . [ ]2 - ,..., - c-+c
dt mr s 2 g t 3 q t 2 (2 .39) 

If there is any truth at all in the CIM assumptions for elastic hadron scattering 

then we would expect cq/cg » 1. This ratio is independent of the coupling con-

stant and the distribution amplitudes and can be accurately computed in our 

QCD model. 
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FIGURE CAPTIONS 

Factorization of the underlying hard subprocess (ab 4Cd) from the 

soft subprocess functions in the inclusive reaction AB 4 CX. 

(a) The factorized representation of the proton's magnetic form fac

tor. (b) Some lowest order diagrams that contribute to T. 

(a) Diagrammatic representation of the Bethe Salpeter bound state 

equation for a pion. (b) Some terms in the perturbative expansion 

of the kernel. 

(a) Representation of the proton form factor in the end-point region. 

(b) A radiative correction to the photon-quark vertex. (c) A higher 

order correction involving the spectator quark. 

(a) The factorized representation of the exclusive process AB4CD . 

(b) Some leading order contributions to the hard scattering ampli

tude for meson-baryon elastic scattering. 

(a) A connected hard-subprocess diagram for mr scattering which 

contains a pinch singularity. (b) A multiple scattering diagram 

resulting from the absorption of the soft gluon into the wave func

tion of pion A. 
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Higher order corrections to the multiple scattering amplitude : (a) 

some diagrams where the extra gluon only modifies an individual 

quark-quark scattering; (b) some diagrams where the gluon con

nects the two individual scatterings. 

Box diagrams for mr elastic scattering : (a) quark exchange (b) 

gluon exchange . 



-50-

A c 

B 

Fig. 2.1 

(a) 

K1 y, x, y, 

T - l(, Y& +~ 'ti+ • • • -
x, Ys , y, 

(b) 

Fig. 2.2 



-51-

(a) : I - : ~nD 
'II ~.,t.~ 1f(!f,l) 

(b) ~ - I+X+=:f= + .•. 

Fig. 2.3 

(a) 

> 

(b) (c) 

Fig. 2.4 



-52-

-. A c 

(a) 

B D 

<P8 cpD 

+ 

+ ••• 

Fig. 2.5 



(a) 

(b) 

-53-

:x:, 
°" Xe 

9. 
1-:t .. 2. 

1-~c 
~ 

(a) 91 

JC~ x .. 

1-x .. \- Xot 

A C 

(b) 

~ \ ! . ! ~ 

-

Fig. 2.6 

Fig. 2. 7 

~± \ ~ 
~x i ~ 

~ ! ~ i ~ 

~i l i ~ 



-54-

----
(a) 

----

(b) 

Fig. 2. 8 
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CHAPTER III 

HIGH P,. ELASTIC HADRON SCATTERING: 
REVIEW OF EXPERIMENT 

Differential cross-sections for high-P1 elastic hadron scattering have been 

measured for several pairs of hadrons and for various ranges of center-of-mass 

energy and center-of-mass angle. Data in this area of hadronic phenomenon 

have been accumulating for a span of almost two decades now. For this review it 

is useful to divide the available data into two broad classes : (a) - intermediate 

energy data spanning the whole range of c.m. angles and useful for our purposes 

in the domain of relatively large angles; these data come from experiments at 

Argonne, Brookhaven and the CERN-PS . (b) - high energy data measured at small 

c .m . angles in experiments at Fermilab and the CERN-JSR. We shall examine the 

two classes of data one by one since they shed light on different aspects of the 

theory. 

3.1. INTERMEDIATE ENERGY, WIDE ANGLE DATA 

Scaling of the structure functions in deep inelastic scattering seems to hold 

for values of Q2 as low as a couple of Gev2. We should therefore expect that elas

tic scattering data for It I-values above a few Gev2 will prove to be useful for 

comparison with the QCD model developed in the previous chapter. Large It I 

(which in this case implies wide-angle) data, is available for several different 

elastic scattering reactions, enabling us to put the theory to a fairly stringent 

test. Some of the reactions for which wide-angle data have been used for such 
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tests are listed below, along with the maximum energy up to which wide-angle 

measurements exist in each case. The values of n shown are the predictions for 

the power-law fall-off with s assuming dimensional scaling to hold true in this 

energy range. 

pp--+ pp 

np--+ np 

rr-p --+ rr-p 

rr+p --+ rr+p 

K-p--+ K-p 

K+p--+ K+p 

s ~ 60 Gev2 

s ~ 24 Gev2 

s ~ 60 Gev2 

s ~ 40 Gev2 

s ~ 20 Gev2 

s ~ 20 Gev2 

n=lO 

n=lO 

n=B 

n=B 

n=B 

n=B 

The intermediate energy data naturally separate into two different regimes: 

the small angle regime which is dominated by diffractive effects and is charac

terized by an exponential drop-off in transverse momentum: and the wide angle 

regime where one can hope to look for evidence for constituent models charac

terized by power-law scaling behavior. While the exponential drop-off and any 

fine structure in the small angle data is controlled by a length scale characteris

tic of the hadron size (""1 fermi), the wide angle data should be free of such a 

scale if they are indeed dominated by hard scattering , or equivalently short

distance, interaction between constituents . 

Most of the analysis of the wide angle elastic scattering data has been car

ried out with a view to claim support for the predominance of the hard scatter

ing mechanism at the available momentum transfers. The predictions of the 

"hard scattering model" can be restated in the form of two easily verifiable 

statements: (a) - there is a factorization of the angular dependence and the 

energy dependence of the cross-section, (i.e. the angular dependence is a univer

sal function of Bc.m. independent of energy) and (b) - the cross-section falls wilh 
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energy as a fixed, integral power of s (the model also predicts this power for 

any given pair of hadrons). This "power-law scaling" hypothesis for the elastic 

cross-section can be expressed very simply: 

da 1 ( ) 
dt "' Sn I ec .m. (3.1) 

As shown in the last chapter, the exact expression includes some logarithmic 

scale breaking which weakly modifies the power-law. 

Figures 3.1 through 3.5 show the comparison of the above mentioned hard 

scattering predictions with the wide angle elastic data. It is quite remarkable 

that none of the data show any alarming deviations from these predictions. The 

fall-off withs at fixed large angles, of all the elastic cross-sections (Figs. 3.1-3. 3), 

seems to be consistent with the value of n predicted by the hard scattering 

model. It should be mentioned, however, that the data do not allow an accurate 

determination of n . The errors in a fit to determine n can be anywhere between 

(±.5) to (±1) depending on the set of data and the method used for estimating 

the error. The energy independence of the angular distributions can only be 

checked for rather small ranges of energy (Figs . 3.4, 3.5). Again there seems to 

be no major inconsistency between data and prediction, but again the errors are 

quite large, leaving room for other possibilities. Taken individually, it is difficult 

to take any set of data as convincing evidence for power-law scaling. However, if 

we consider all the elastic data and add to it the scaling observed in electromag-

netic form factors, photon-hadron exclusive reactions and charge-exchange 

hadron scattering, then it may be safe to conclude that we are seeing the 

effects of constituent interaction in exclusive processes similar to those seen in 

high-PT data on inclusive processes. To see if the data lend strong support to any 

particular constituent model for elastic scattering requires a much more 
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careful analysis, which we shall attempt in the remaining chapter. 

By far the most extensively measured elastic scattering reaction is pp 

scattering. Not only are the data for this reaction the most accurate but they 

also extends to a much higher energy than the other cases. These features make 

pp data more suitable than others for a more careful analysis to look for evi

dence for any particular constituent model or even any other type of model. A 

quick perusal of the past literature shows that many different authors have 

analyzed pp data, and interestingly, they have arrived at widely differing conclu

sions about what model they support. In the recent past, the discovery of QCD 

factorization in exclusive processes and the success of hard scattering models in 

explaining many inclusive measurements has led to the wide spread belief, that 

power-law scaling in exclusive processes is a well established fact. However, it is 

important to study the different interpretations of the data and resolve the 

disagreements, before one can place confidence in the power-law scaling 

behavior of elastic scattering. 

The often cited work on the analysis of pp data, that claims strong support 

for power-law scaling is the one carried out by Landshoff and Polkinghorne [7]. 

They use all the available data and plot the cross-section against s (on a loga

rithmic scale) for several different fixed c.m. angles (Fig. 3.6). The data seem to 

fit parallel straight lines very well, provided the following restrictions are 

imposed on them: 

I t I ~ 2. 5 Gev2 , s ~ 15Gev2. 

The slope of the straight lines corresponds to n=9.7. The lines were in fact posi

tioned by eye and the error inn is approximately estimated to be ±0.5. These 

authors also carry out a fit to the data on angular dependence and they show 
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that for wide angles (0.6 ~ sinec.m. ~ 1.0) the cross-section falls with increasing 

angle as (sinec.m.)-14 (Fig. 3. 7). Their analysis can then be summarized by the 

following expression for the elastic pp cross-section at wide angles : 

da 1 1 
dt "' s 9 ·7 sin14£l c.m. 

(3.2) 

The restriction imposed on It I for the above fits is a reasonable one since 

we expect the data below It I-values of 2.5 to be dominated by diffractive effects 

and Regge behavior . However, the restriction on s seems to be quite arbitrary , 

dictated by the desire to have a good fit for n . Theoretical arguments strongly 

suggest that the onset of hard scattering behavior should be determined by a 

threshold in t. Since fixing t determines s for a given angle one does not expect 

to have to impose a separate restriction on s . For 90° scattering this implies 

that scaling should begin at s ~ 7 Gev2 instead of s ~ 15 Gev2. 

The above comment is only meant to draw the attention of the reader to a 

possible shortcoming of the data analysis . We shall now examine some of the 

more serious criticisms of the scaling interpretation of elastic scattering data. 

A. ABSENCE OF IDGARITHMIC OCALE BREAKING 

A very serious defect in the scaling interpretation of pp data is the com-

plete lack of evidence of logarithmic scale breaking expected from the running 

of the coupling constant (the cross-section contains a factor of c:xJ0) and from 

the Q2-evolution of the proton distribution amplitudes . Even the authors who 

quote the above data analysis as lending strong support to the hard scattering 

model for elastic scattering, qualify their positive statements with a mention of 

the puzzling absence of logarithmic deviations from the power-law fall-off. Brod-

sky [2] has been pushing the point of view that the lack of visible scale breaking 
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in the data implies that the QCD scale, A. is somewhat smaller than the value 

that has been extracted from the analysis of scale breaking in inclusive 

processes. He claims that A!(;. 0.1 Gev is consistent with all the elastic data. This 

should be compared with A"' 0. 2 Gev favored by deep inelastic muon scattering 

and A"' 0.4 Gev favored by deep inelastic electron scattering . It is perhaps possi

ble that part of the scale breaking in inclusive processes can be explained by 

the proper treatment of higher-twist effects and the inconsistency thereby 

avoided. However, our own analysis shows that the data do not allow A to be as 

high as Brodsky' s claim, making the situation much more serious. 

Considering the go0 fit to pp data, which extends through the range 

15~s ~50, and using A=O.l one can show that the coupling constant factor 

([a.8 (t)]1°) in the cross-section changes by a factor of about 5, raising the 

predicted value of n by about 1.3. The data are certctinly inconsistent with a line 

corresponding to n=ll.3 (10.0+1.3) . If we assume that the data can tolerate 

n = 10. 5, which is still beyond the quoted error in estimating n, then it can be 

shown that only A~0.001 (A2 ~10-6) is allowed. Ifwe use t;g (i.e . the average Q2 

of the gluons in a hard scattering diagram) instead of t in the argument of a8 , 

then the value of A goes down even further. Such a small value of A is not 

acceptable in our present picture of hadronic phenomenon. 

If the above analysis leaves any doubts about the existence of a problem 

then a look at some recently measured, high statistics pp elastic scattering data 

(not used in the above mentioned analysis) should help to drive home the point 

even further. This is the data of Jenkins et al. ( 197g) [ 8] taken in an experiment 

at ANL. A mathematically rendered fit to the go0 data for the range 

12~s ~lgGev2 (see Fig . 3.8) gives n=l0.07±0.11 (with a X2 of 30 for 24 degrees 

of freedom) . If we again assume A"'O. l then the coupling constant factor raises 

the expected value of n, in this energy range, by 1.5 units above the dimensional 
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counting prediction. This means that hard scattering should result in n=11.5 , 

which differs from the experimental value of n by more than ten times the error 

quoted on the fit . The hard scattering interpretation of these data analysis will 

force a ridiculously small limit on the value of A. 

A comment on the qualitative features of the data may also be of some 

relevance to this issue. Since logarithms change faster at smaller values of 

their argument , we should expect to see a small downward-pointing convexity in 

these high statistics data, if the prediction of the hard scattering model is 

indeed being followed by it. This does not seem to be the case at all . If anything, 

the data seem to suggest a slight upward convexity. If we further argue that 

data below 12 Gev2 should also be in the hard scattering regime, then there is a 

definite upward convexity shown by the data, which is opposite of what loga

rithmic scale breaking leads us to expect. Proponents of power-law scaling must 

resolve this problem if they are to maintain their optimism. We shall return to 

this anomaly later in the review. 

B. PERSISI'ENCE OF FINE srRUCTURE 

Another source of controversy in the interpretation of pp data stems from 

the fine structure that seems to be present in the high-PT data all the way up 

to the highest energies measured for wide angle scattering. A closer look at the 

fixed angle plot of ln(da/dt) vs ln(s) shows that the data slowly oscillate around 

the straight line fit. This oscillation cannot be discounted as a random fluctua

tion, and its systematics have been studied by more than one author. Though 

they differ in detail, the general conclusion of these analyses is that the oscilla

tions are a strong indication of the presence of a length scale in the wide angle 

data, and that this scale is the same as the one that manifests itself in the small 

angle regime (R "' 1 fermi) . We mention, below, some details of two different 
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analyses of this fine structure. 

Schrempp and Schrempp [9] claim that fixed angle pp data are better 

described by a falling exponential in transverse momentum (exp(-bp1)) than by 

a power-law fall-off ins . Their fit does look just as good as the power-law fit (Fig. 

3. 9) and it has the extra advantage of not requiring an arbitrary restriction on 

the energy-range used for the fit (power-law fit needs s ~12 Gev2). The length 

scale in the exponent, b , varies slowly with the angle. The authors then show 

that the oscillations around this line can be fit by a sinusoidal curve (Fig. 3.10) 

with a period corresponding to the hadronic radius ("' 1 fer mi). This behavior of 

exclusive data (exponential drop-off with regular oscillations) is characteristic of 

a geometrical picture rather than a constituent one. One way to make a 

compromise between the two different interpretations is to state that we are in 

a transition region where the constituent effect provides a power-law fall-off in 

the higher energy region, but the effect of the hadronic size is not completely 

lost and manifests itself in the oscillating fine structure . It is interesting to note 

that similar oscillations can also be observed in rr-p data (Fig. 3.11), though the 

range and accuracy of the data is not sufficient for a good analysis . 

The second author, A.P.Hendry [10], is also of the opinion that wide angle pp 

data does not provide convincing evidence for the power-law scaling prediction, 

da/dt "'s-n / ( e'). He interprets the oscillations in the fixed angle plot as breaks 

or small dips in the pp scattering cross-section (see Fig. 3.12), of the same kind 

that have been recognized and interpreted in low energy data for a long time. 

These breaks are constant in t as we change the scattering angle and Hendry 

shows that they can be explained in the context of an optical model with 

diffractive and peripheral pieces. This interpretation again suggests the pres

ence of a non-negligible geometrical (soft subprocess dominated) component in 

the wide angle high energy data. The same model as above is also shown, by the 
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author, to work for wide angle rr+p and rr-p elastic scattering. As to the possibil

ity of a power-law scaling description for the averaged outs-dependence of fixed 

angle data, Hendry points out that rough lines through the whole range of data 

are convex up, (as are the segments between any two breaks in the data). This 

suggests that (da/dt )8 falls slightly faster than a fixed power of s. In addition 

the author notices that the rough lines for different angles are not quite parallel 

and therefore the factorization of the s a:nd e dependence of the cross-section is 

cmly rather approximate. 

Even if the fine structure merely indicates the presence of a small non

scaling component in the elastic scattering amplitude , which will eventually 

disappear as we go to even higher energies, the two observations stated at the 

end of the last paragraph present further obstacles to the hard-scattering

model enthusiasts. Both of these systematic deviations from power-law scaling 

in elastic scattering data have been noticed by several authors in the past. We 

shall review them, one by one . 

· C. CHANGE OF n WITH ENERGY 

The increase in the value of n for a power-law fit to (da/dt)8 with increasing 

energy was first pointed out in the analysis of Barger et al. [11]. They show that 

for a power-law fit to the wide angle data, changing the low energy cut-off from 

s ~7Gev2 to s ~18Gev2 changes the value of n from "'9.3 to "'10 (see Fig. 3.15) . 

This fact, by itself, could be interpreted as just a delay in the asymptotic 

approach to power-law scaling, but it has been noticed that the data-points at 

the highest energies systematically lie below the power-law fits and seem to 

prefer an even higher value of n . In two different analyses, one by Schrempp and 

Schrempp [9] (Fig . 3 .13) and the other by Gun.ion et al . [6] (Fig . 3.14), it is 

shown that straight lines with n =12 describe the highest energy data 
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(s ~ 30 Gev2) extremely well. (This was once cited as evidence for the CJM 

mechanism!) 

A similar observation has been made by Jenkins et al . [B] for rr-p scatter

ing, though the energy range of the data used in their analysis is rather limited 

and does not permit an equally confident statement. The following is a result of 

power-law fits , to go 0 data, with three different low-energy cut-offs: 

10 ~ s ~ 19 Gev2 

12 ~ s ~ 19 Gev2 

14 ~ s ~ 1g Gev2 

n=5.69±0.12 

n=6.67±0.22 

n=B.32±0.33 

These numbers suggest that the energy dependence becomes steeper with 

increasing energy and, furthermore, there is no indication that n stops increas

ing at B. This trend is also present in their rr-p data at other large angles. 

A very recent measurement of rr-p elastic scattering at s = 40 Gev2 and 

s = 60 Gev2 by Almas et al . ( 1 gso) [ 12] confirms this trend without leaving any 

room for doubt. They combine their go0 data at these two high energies with the 

90° data at s "'1gGev2 from Ref .[13] and compute n to be g.5±0.5! There is thus 

a close parallel between the rr-p and pp data, and in each case the predicted 

value of n is only obtained if one restricts the fit to a small energy range in the 

middle . The data for other elastic reactions are too limited to look for similar 

trends, but one should note in passing that the isolated data point at s = 20Gev2 

in K+p scattering lies far below the 1/ s 8 fit to the lower energy (s ~ 10 Gev2) data 

(Fig . 3.2) . 
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D. CHANGE OF n WITH ANGLE 

The second objection to the scaling interpretation, (perhaps even more 

worthy of concern than the first), is the lack of factorization in the s and e 

dependence of the cross-section, manifested by the change of n with angle . This 

problem again has been noticed by several authors and it, too, was first brought 

to attention by the analysis of Barger et al . [11] , who made a plot of n vs Bc.m. 

all the way from Bc.m.=0.6° to Bc.m.=90° (n is computed from fits withs~ 7 Gev2) 

(see Figs . 3.15, 3.16) . For our purposes, the plot is only relevant for Bc.m. ~ 40° 

(cost:Jc.m. ~ 0.75) because the data for smaller angles is not well described by a 

power-law fit (It I is too small for these angles). In the relevant region of the 

plot, the value of n rises monotonically from 6.8 to 9 .3, and n can only be con

sidered to be approximately constant for angles very close to 90° . To help 

remove any lingering doubts about the existence of a real problem, one can 

again look at the high statistics pp data of Jenkins et al . [B]. There analysis 

gives n=9.21±0.13 for ec.m.=75° compared to n=l0.07±0.11 for 90°. Similar ana

lyses of available data on other elastic scattering reactions confirms this trend 

of a decrease inn for decreasing angle, even more convincingly. The following 

tables summarize the results of such analyses for three different reactions: The 

data for np elastic scattering is taken from Ref. [ 14]. 



pp-> pp, 12 ~ s ~ 19 Gev2 

90° 

85° 

80° 

75° 

ec.m. 

105° 

100° 

95° 

90° 

85° 

80° 

75° 
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n 

10.07±0.11 

10.05±0.11 

9.74±0.11 

9.21±0.13 

n 

6.52±0.89 

6.79±0.49 

6.96±0.29 

8.32±0.33 

8.22±0.29 

7.34±0.29 

6.63±0.29 



np --) np , 10 ~s ~ 24 Gev2 

120° 

90° 

60° 
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n 

B.10±0.22 

10.40±0.34 

B.04±0.15 

The numbers shown in these tables point to a universal trend in high-Pr elastic 

scattering; the cross-section falls with s most rapidly at 90° and the steepness 

decreases for angles both below and above this value . The results for rr+p 

scattering have large errors and are not listed above, but they too show a simi

lar trend. 

For the hard headed skeptics who may still harbor doubts in their minds 

about the failure of the factorization hypothesis we again refer to the recent rr-p 

measurements by Almas et al. [ 12] compute n for two angular ranges by com

bining their high energy data with the data of others at lower energies. For 

0 < cosec.m. < 0.45 they deduce n = 9 .5±0.5, and for 0.45 < cosec.m. < 0.6 the fitted 

value of n = B.0±0.3. This is a very significant difference and that too in an 

energy range where we expect sub-asymptotic effects to have become negligible . 

In conclusion then, our review of high-Pr wide angle elastic data suggests 

that there is a significant geometrical (or non-constituent-model) component in 

the scattering amplitude at the measured energies, which produces fine struc

ture in the data; but even in the average sense the data are not well described 

by the power-law scaling hypothesis , though their fall with energy at 90° and at 

intermediate energies is closely approximated by the hard-scattering prediction 

(assuming a very small A). If the closeness of the measured value of n to its 
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scaling value is not a complete accident then the averaged out data could well 

be giving indications of constituent scattering but the amplitude involved may 

not be as simple as the one derived in the hard scattering model, and may 

involve the hadronic length scale in an important way. 

3.2. IDGH ENERGY, SMAlJ... ANGLE DATA 

In the last few years, elastic scattering measurements for rr-p and pp have 

been carried out at Fermilab energies [15,16,17], and for pp also at ISR energies 

[18]. At these high energies (s ~400Gev2), the elastic cross-section at wide 

angles is too small to be measurable and the data have to be restricted to small 

angles . However , fairly large values of It I can still be achieved (It I ~ 11 Gev2 for 

rr-p and It I ~ 15Gev2 for pp) , thus providing an opportunity to verify the predic

tions of constituent scattering models . 

The high energy data have been measured at only a few chosen values of s. 

Since the angular range of these data is not compatible with the range of the 

intermediate energy data, the high energy data are not suitable for extending 

the ftxed-angle energy-dependence analysis to check the validity of power-law 

scaling at these energies . However, the t-ranges of the two classes of data are 

compatible, and by combining the intermediate and high energy data we can 

study the fixed-t energy-dependence of the elastic cross-section for a very 

large range of energies . As discussed in the last section of the theory review, 

this analysis should reveal the asymptotic form of the scattering amplitude in 

the limit t/s-->0. The approach to this asymptotic form can provide important 

information on the relative contribution of quark-exchange and gluon-exchange 

scattering mechanisms. 



- 69 -

A DATA FOR pp SC.A'.ITERING 

Fig. 3 .1 7 shows the variation of the pp elastic cross-section with s for 

several different values of t. The data points in this plot are taken from many 

different experiments and the curves are drawn to guide the eye . For smaller 

energies the fixed t cross-section falls quite rapidly but at the highest available 

energies it seem to be approaching an energy-independent value. Notice also, 

that for smaller values of It I the cross-section levels off at the highest meas

ured energies but for higher It I it is still falling in that range . This strongly sug-

gests that the approach to an asymptotic value is governed by the ratio t/s . This 

fact is consistent with scaling since the function f ( Bc.m.) in Eq. (3 .1) can always 

be expanded in powers of t/s . Note however that for -t =3.6 Gev2 the asymptotic 

region is not reached until s "'2000 Gev2. Thus, if we express the cross-section as 

a sum of a part that is independent of s and a part that has a factor of t/s in it , 

then the second part must have a coefficient much larger than the first. We can 

study this property of the data more carefully in the context of the hard 

scattering model. 

Using the known asymptotic forms of amplitudes corresponding to quark-

exchange and gluon-exchange diagrams, and assuming dimensional scaling we 

can express the pp elastic scattering cross-section as follows : 

da 1 s 1 
[ ]

2 

dt pp "' 52 Cg t5 + Cq t4 (3.3) 

We can now fit this expression to the small angle data and evaluate the constants 

cg and cq· This has been done in the analysis of Lepage and Brodsky [ ], who 

make a fit for the data at three energies (s "'400, 800, and 3000 Gev2) and for a 

large range int (5Gev2 ~ It I~ 15Gev2). The fits are shown in Fig. 3.18. A cou-

pling constant factor with A=O. l Gev is included in the fits . The authors express 
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the two constants in dimensionless units by dividing each of them with t 4Gg(t ), 

which is a constant in the large t limit (GM ( t) is the proton's magnetic form fac

tor). They then find cg~B and cq~510, so that the ratio cq!cg~64. This ratio is 

much greater than 1 and calls for some explanation if we are to retain our faith 

in the hard scattering model. Since the numbers of the two kinds of diagrams 

are comparable, this situation can only come about if the intrinsic normalization 

of quark-exchange diagrams is much larger than that of the gluon-exchange 

diagrams . This of course was the main assumption of the CIM model. AB we shall 

see, our own calculations for rm scattering do not bear out this assumption, thus 

raising serious doubts about the credibility of the model that leads to Eq. (3.3) . 

If we look more carefully at the plots in Fig . 3.1 7 we see that in the the 

intermediate energy range, where the cq-component of the scattering amplitude 

is expected to dominate completely, the cross-section is falling much more 

rapidly than 1/ s 2. This is not surprising because the form in Eq. (3 .3) only holds 

in the asymptotic region and presumably t/s is not small enough in the inter-

mediate region. One way, in which to better appreciate this possibility is to take 

the phenomenological form for the wide-angle cross-section established by 

Landshoff and Polkinghorne (Eq. (3.2)) and expand it in powers of t/s. This exer-

cise yields , 

- "' -- 1+7...l!...J..+21-+ . . . da 1 [ It I t 2 
[ 

dt PP s2.7t7 s s2 
(3.4) 

It is quite clear from the above expression that the first term of the series is not 

a good parameterization of the cross-section unless t/s is quite small (at least 

less than 0.1). Despite this fact, Lepage and Brodsky (Ref. [ ]) use the form in 

Eq. (3.3) to compute cq for some 90° data at intermediate energies. Not surpris-

ingly, they find cq "' 5000 in the same units as those used for the high energy fit 
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above . We feel that this result is not meaningful, and is not a direct measure of 

the number of hard scattering diagrams, that get summed to make up the elas

tic scattering amplitude, as is triumphantly claimed by these authors . 

Lastly we mention that some authors [19] have suggested that high energy 

data , if plotted at fixed-s as a function of t, seems to fit rather well the form 

1/ t 6 (scaling predicts 1/ t 10 for an energy independent cross-section) . This fit is 

shown in Fig. 3.19. They claim that this may be an indication of the dominance, 

at these energies , of the unsuppressed pinch contribution. We would like to point 

out that the good fit could easily be caused by the presence, in significant 

amount, of the cq-component of the scattering amplitude (which falls as 1/ t 8 for 

constant s ), since most of the data used are at higher values of It I where the 

cross-section has not yet achieved energy-independence. The viability of this 

argument is well illustrated by the fits of Lepage and Brodsky (Fig . 3.18) which 

describe the data just as well as the 1/ t 6 fit does . There is still the possibility 

that the energy independent part of the cross-section is due to the pinch 

diagrams rather than the hard scattering ones (both contributions are indepen

dent of s and only differ in the power of t involved). Without the availability of 

more accurate and higher energy data, this question cannot be settled experi

mentally. 

B. DATA FOR 7r-p SCMI'ERING 

The high energy, large It I data for rr-p elastic scattering are rather limited 

and do not permit very many firm conclusions. One of the problems with analyz

ing these data to look for hard scattering effects is the fact that diffraction 

structures in the data extend to higher values of It I than they do in pp scatter

ing. While the fixed-s plot of high energy pp data [18] (Fig . 3.21) has a small dip 

at -t = 1.4 Gev2 and is very smooth after -t ""2 Gev2, the rr-p plot (Fig. 3. 22) , at an 
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s-value of "'400Gev2 [15] , has a large dip at -t=4Gev2 followed by a peak at 

-t "'5 Gev2 and is expected to be smooth only after about 6 Gev2. Thus there is 

only a small region of t where we can study the fixed-t energy dependence to 

look for the relative size of different hard scattering contributions . 

Fixed-t plots of the rr-p cross-section, such as the one we just analyzed for 

pp data, have been made for s ~45Gev2 and t ~4.5Gev2 [20] (Fig . 3 .20) . The dip 

at -t =4 does not exist at these energies and since t/s is fairly small. it may be 

reasonable to look for evidence for the small angle prediction for the rr-p cross-

section, in these plots . The small angle prediction for meson-baryon scattering 

is given by, 

da 1 s 1 
[ 1

2 

dhrp "' s 2 Cg t 4 + Cq ts (3.5) 

where the constants cg and cq now have different values. The plots in Fig . 3 .20 

have a character very similar to the ones for pp data. For small It I the cross

section attains energy independence at the highest energies but the larger It I 

data are still falling quite rapidly. If we decide to ignore data for It I~ 2.5, as 

was done for the pp case, then only two values of t (-t =3 .5, -t =4.5) are left to 

consider. For both these values the cross-section is still falling faster than 1/ s 2 

at s "'45 Gev2, indicating that we are far away from the asymptotic region and 

the form in Eq. (3.5) is not yet applicable . 

Fixed-t plots for higher values of It J, and up to higher energies, should pro-

vide a more meaningful comparison with hard scattering predictions. Even 

though data at high It I's are available over a large energy range , such plots do 

not exist in the published literature. We have therefore made our own plots for 

-t=BGev2 and -t=10Gev2 (Fig . 3.23), which t-values are away from the dip 

region allowing us to use the highest energy data. The plots show that even at 



- 73 -

the highest measured energy (s "'400Gev2), the cross-section is still falling, 

though the slope is rapidly decreasing and may finally go to zero. If Eq. (3.5) is 

fitted to the data we again expect to get a large value for cq1c8 , though it may be 

somewhat smaller than the one obtained for pp scattering. 

3.3. CONCLUDING REMARKS 

Our review of both intermediate and high energy elastic scattering data 

suggests, that the belief that quark-exchange hard-scattering is the dominant 

mechanism in wide-angle scattering is not compatible with the behavior of the 

data, when examined over a large range of energies and angles. The data do have 

some characteristics of constituent scattering (approximate power-law fall-off), 

but they are not quite free of an intrinsic scale and the scale breaking is more 

serious than a logarithmic modifi.cation. On a concluding note we would like to 

add that the success claimed for reproducing the angular dependence of the 

cross-section by CIM calculations is far from impressive . The calculations 

include a lot of free parameters and cannot reproduce any of the detailed struc

ture seen in rrp and np scattering data. There is also no evidence for the pres

ence of Landshoff's multiple scattering mechanism (without Sudakov effects) in 

the elastic data, which differs from hard scattering mostly because of a different 

prediction for n (n=B for baryon-baryon scattering and n=7 for meson-baryon 

scattering). 

Perhaps the data is indicating the presence of a completely different kind 

of mechanism, or perhaps a more careful treatment of the hard scattering 

model will produce the required deviations from the overly simple power-law 

scaling hypothesis. Whatever be this mechanism, both pp and rr-p elastic data 

suggest that the magnitude of its contribution at intermediate energies is much 
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greater than the magnitude of the energy independent contribution. A detailed 

calculation of the diagrams contributing to the hard scattering amplitude could 

be of enormous help in resolving some of these issues. 
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F1GURE CAPTIONS 

Power-law fit for pp and np elastic scattering (figure taken from 

Ref. [14]). 

Comparison of K+p elastic data with the hard scattering prediction 

(figure from Ref. [1]). 

Comparison of rr-p and rr+p data with the scaling prediction [8]. 

The angular dependence of s 10(da/dt) and da/dt for pp elastic 

scattering [ 1]. 

The angular dependence of s 8( da/dt) and da/dt for some meson

proton elastic reactions [ 1]. 

Power law fits to fixed angle pp scattering [7]. The straight lines 

are positioned by eye and the value of n is found to be 9.7±0.5. 

Angular dependence of the pp cross-section [7]. The straight line 

through the data corresponds to f (e)"' (sine)-14. 

Power law fit to the high statistics pp data of Ref. [8]. 
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Fig. 3.10 

Fig. 3.11 

Fig . 3 .12 

Fig. 3.13 

Fig . 3 .14 

Fig . 3.15 

Fig . 3 .16 

Fig. 3.17 
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Exponential fit s to pp elastic scattering data [9]. 

A sinusoidal fit to the oscillations of pp data around the exponential 

fit[9]. 

A plot of s 6(da/dt) against s for rr-p scattering. The data may be 

giving some indication of oscillations [B]. 

Plots of fixed angle pp scattering showing dip structure [ 10]. 

Plots showing that the n=12 fit is better than the n=10 fit for 

highest energy pp data [9]. 

Another comparison of the two possible fits to pp data . This figure 

is from Ref. [6]. 

Power law fits to fixed angle pp elastic scattering data [11]. 

Plot of n, determined from the fits of Fig . 3.15, as a function of 

cos(ec.m.). 

Fixed-t plots of the pp elastic scattering cross-section as a function 

of energy. 
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Fig. 3.19 

Fig. 3.20 

Fig. 3.21 

Fig. 3.22 

Fig. 3.23 
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Fits of the high energy pp data to the form in Eq.(3.3). 

A fit of the high energy pp data to the prediction of the Landshoff 

mechanism. 

Fixed-t plots of the rr-p data as a function of energy. 

The pp cross-section as a function of t at vs =53 Gev. 

The rr-p cross-section as a function oft at s ~400 Gev2. 

Fixed-t plots of rr-p data for t =B and t = 10 Gev2. 
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CHAPTER IV 

RESULTS OF TifE TITI CALCULATION 

We report in this chapter the results of a detailed QCD computation, to lead

ing order in cx.5 , of mr elastic scattering. An analytic approach to this problem is 

easily seen to be an extremely tedious and time consuming task, if not an 

impossible one. We have therefore developed, for this calculation, a numerical 

algorithm for computing tree diagrams in perturbative QCD. This algorithm was 

translated into a FORTRAN 77 program, and the computation was carried out on 

a VAX 111780 computer. The details of the method of computation are 

presented in an appendix to the thesis, and in this chapter we shall concentrate 

on reporting and analyzing the results. 

4.1. SE'ITING THE SI'AGE 

4.1.1. MOTIVATION 

Much as one would desire, the results of this calculation cannot be directly 

compared with experimental data, since data on high-P1 mr elastic scattering 

are non-existent (due to the obvious difficulty of making a pion target). The 

motivation for choosing to compute this process, instead of 1Tp or pp scattering, 

stems from its relative simplicity. The elastic scattering of two mesons involves 

far fewer diagrams than meson-baryon or baryon-baryon scattering and each 

diagram itself is simpler with a fewer number of quarks and therefore fewer 
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degrees of freedom to integrate over. On the other hand, meson-meson scatter

ing has all the essential theoretical complexity encountered in the modeling and 

computing of elastic hadron scattering involving baryons, and is therefore 

expected to exhibit all the important qualitative features that one might find in 

the more realistic processes. It is therefore of great theoretical as well as 

experimental interest to carry out a detailed QCD computation of the simplest 

hadron-hadron scattering process. Such a computation could prove to be a more 

detailed and quantitative test of the theory than the ones possible for inclusive 

processes, where quark fragmentation introduces many uncertainties in the cal

culation. Moreover, the method developed for this computation is completely 

general with respect to the number of quarks involved in the diagram, so that 

with the availability of more computer time and faster computers it should be 

easily possible to extend the calculation to the case of rrp and pp in the future. 

The results presented here are for the case of same charge rrrr scattering 

(i.e. rr+rr+ or rr-rr-). Other cases of rrrr scattering will involve more diagrams 

because of the possibility of quark annihilation, but the qualitative behavior for 

most purposes is expected to be the same. The restriction of same-charge also 

makes the process we calculate more akin to the case of pp scattering, which is 

the best measured elastic scattering reaction and therefore most suitable for 

comparison with theory. rr+rr+ and rr-rr- scattering are expected to be identical 

to each other because of charge conjugation symmetry. 

4.1.2. THE mr SCA1*l'ERING AMPLITUDE 

Our calculation is based on the theoretical analysis of exclusive processes 

presented in detail in Chap. 11. We rewrite here the expression for the elastic 

sattering amplitude derived in Chap. II (Eq. (2.22)), adopting the same conven

tions and notation that was used in that chapter, 
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1 

MAB .. co(s I ec.m) = j[ dxa][dxb ][ dxc ][dxa] r.oi(xc 'Q2
) r,o;(xa' Q2

) 
0 

where the scale Q2 is taken to be, 

Q2 = -t = ~(1-cosec .m.). 

For the case of 1T1T scattering we need associate only one independent 

momentum fraction with each incoming or outgoing hadron. Thus, for example, 

we can let Xa be the momentum fraction of the quark in pion A, so that the 

momentum fraction of the anti-quark is given by (1-xa) . Then the integral in Eq. 

( 4.1) is a four dimensional integral and the region of integration is the four-

dimensional unit cube. The hard scattering amplitude TH can be expanded as a 

perturbation series in powers of a8 ( Q2) and can thus be computed, to any given 

order, as a sum of Feynman diagrams. The distribution amplitudes satisfy well 

defined evolution equations which can be solved to determine r,o(x, Q2) in terms 

of a given initial condition r,o(x .Q~) . Let us examine these components of the 

amplitude in more detail in order to better appreciate the significance of the 

results of this calculation. 

4.1.3. TIIE PION DisrRIBUTION AMPIJTUDE 

The differential equation governing the Q2-evolution of the pion distribution 

amplitude is derived in Sec. 2 .2.4 and its solution is presented in Eqs. (2.12) and 

(2.13). Each experimental data point for an exclusive process represents the 

result of an integration over the momentum fractions associated with the 
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constituents of the reacting hadrons. The elastic scattering data at some fixed 

Q; cannot therefore be used to determine the initial distribution amplitude 

rp(x, Q;) and thus the amplitude, rp (x, Q2), for all higher Q2. In fact we need data 

at a large (theoretically infinite) number of Q2-values in order to determine the 

constants f/Jn ( Q~) in Eq. (2.12) and thus the function rp(x, Q;) using the expan

sion given in Eq. (2.10) . It is then evident that in order to compute the elastic 

scattering cross-section in an absolute sense, so as to test our theoretical 

model. we must use the data for a different exclusive process but involving the 

same distribution amplitude, to determine the function rp(x, Q; ). The elastic 

form factor of the hadron is a natural choice for such a process . Unfortunately, 

the data available for the pion form factor are very limited and have large 

errors. We therefore adopt a somewhat less ambitious strategy to solve the 

problem. 

In the limit of very large Q2 the solution for rp(x, Q2) has an asymptotic form 

which is completely determined (independent of the initial condition) up to a 

normalization constant (Eq. 2 .14) . 

(4.2) 

Even though the Q2-values of the available data on elastic scattering may not be 

large enough for this limit to be valid, the asymptotic form should serve as a 

very good approximation. The function x(l-x) vanishes at the end-points, is 

peaked at equal momenta of constituents and is smooth in between; which is 

what we expect of the distribution amplitude at any value of Q2 . The constant c11 

could now be determined from the form factor data, but in fact a more accurate 

estimate is obtained by using the pion decay constant / 11 • For the purposes of 

the current calculation, the distribution amplitude of Eq. (4.2) is certainly quite 

adequate, since we are interested in the qualitative features of the cross-section 
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and in obtaining reasonable estimates of the absolute normalization and angular 

dependence . 

The full pion wave function involves color, flavor, spin and Dirac structure in 

addition to the space-time part discussed above . These parts of the wave func-

tion are well known and we express below the complete wave function for rr± in 

order to define the conventions adopted for the calculation. 

'1t(x ,p1T) = c1Tx ( 1-x) E1T f: [ uTiv +i - U+iv Ti] 
i=l 

(4.3) 

where p1T is the four-momentum and E1T the energy of the pion. The sum is over 

the three color indices. The factor, ..Jx(l-x), coming from the normalization of 

the spinors, has been absorbed into the distribution amplitude. For the present 

calculation all quarks have been assumed massless, so that uu = iJv = 0 in our 

convention for spinors. With these assumptions the computation of c1T from the 

measured value off 1T yields the following result: 

c1T = 0.065Gev 

4.1.4. THE HARD SUBPROCE~ DIAGRAMS 

As discussed in Chap. II, the leading order contribution to Ta consists of the 

sum of all connected tree diagrams where the scattering is assumed to take 

place between sets of collinear quarks representing each hadron. Even for the 

case of rrrr scattering, which involves four constituents, the quarks and anti-

quarks can be connected to each other by gluon lines in a large munber of ways, 

giving rise to a large set of tree diagrams. It is easy to see that an increase in 

the number of scattered constituents leads to very rapid increase in the number 

of diagrams. The diagrams for pp scattering have an estimated count of over a 
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million! Before launching on a diagram by diagram computation it is useful to 

organize these diagrams into specific classes . For same charge mr scattering 

the diagrams divide into two major classes : (a) - diagrams which do not involve 

the interchange of any quark-constituents during the scattering process, and 

(b) - diagrams which do involve the interchange of the quarks or of the anti

quarks between the two interacting pians. For the case of same charge scatter

ing we do not have to worry about the possibility of quark anti-quark annihila

tion. We have already seen that these two classes of diagrams have a very 

different small angle behavior. 

Each of the above classes can be further subdivided into two categories; 

diagrams which result in a pinch singularity in the integrated amplitude, and 

diagrams which do not. The pinch diagrams do not obey dimensional scaling 

because of the persistence of long distance effects and result in the so called 

multiple scattering mechanism. The hard diagrams are dominated by short dis

tance interactions and are responsible for the hard scattering mechanism which 

we have seen leads to power-law scaling . The pinch diagrams can be visually 

separated from the hard ones because of their direct relationship with multiple 

scattering (Landshoff) diagrams. If a 1m connected diagram can be reduced to a 

multiple scattering diagram by the removal of a single gluon line, at least one 

of whose ends is connected to a quark line, then the diagram belongs to the 

pinch category. Otherwise it is a hard diagram. As we have seen in Chap. II, a 

careful treatment of infra-red divergences in pinch diagrams forces us to 

include a Sudakov factor in the integrand, which then causes a partial suppres

sion of the pinch region and, in addition, leads to the introduction of a length 

scale into the integrated amplitude. This length scale is essentially an infra-red 

cut-off corresponding to the hadronic radius ("' 1/A) beyond which the system is 

color neutral. The Sudakov factor is then a means by which some of the effects 
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of soft gluon interactions can be included in the scattering amplitude within the 

context of perturbation theory. The effect of these long range interactions on 

the behavior of the elastic cross-section is an important item to be investigated 

in the current calculation. 

The task of computing the diagrams can be immensely shortened by mak

ing use of the symmetries that exist among various diagrams . For class-(a) 

diagrams (henceforth called gluon exchange diagrams) one can easily identify 

four symmetry transformations . These can be listed as : (1,2) the exchange of 

the quark with the anti-quark within either of the two pions , which can at most 

lead to a change in the sign of the diagram, (3) the exchange of the two pions 

with each other which is essentially a rotation of the diagram by 180° about a 

horizontal axis, (4) the exchange of the in-going pions with the out-going pions, 

which can be considered as a 180° rotation about a vertical axis or alternatively 

a time reversal transformation. These transformations should result in sixteen 

diagrams having the same magnitude for their amplitude. However, sometimes a 

symmetry transformation leads to the same diagram as before, so that sixteen 

only represents the maximum possible number in a symmetry group. For class

(b) diagrams (henceforth called quark exchange diagrams) the first two sym

metries do not hold because the constituent which undergoes an interchange 

cannot be identified with any one pion. The rotations about the horizontal and 

vertical axis are still valid symmetries and can at most relate four different 

diagrams . Another useful fact to notice is that gluon exchange diagrams , which 

have a single gluon going across from one pion to another, have a vanishing 

color-factor, and need not be computed. This is not true for the quark exchange 

diagrams . 

We are now in a position to catalog all the contributing diagrams and to 

label them with a numbering scheme for the sake of easy reference . Fig . 4.1 
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shows the three multiple scattering diagrams that are useful in separating the 

pinch diagrams from the hard ones. Every pinch diagram can be reduced to one 

of these three diagrams by removing one gluon line from it. It is the region 

where this extra gluon becomes soft or collinear that produces the pinch singu

larity in these diagrams . Fig. 4.2 presents the complete list of connected 

diagrams that contribute to same charge mr elastic scattering . The list is organ

ized according to the classes that have been discussed above. We do not include 

diagrams that involve the interchange of the anti-quarks in the pions or those 

that involve the interchange of both constituents. The contribution of these 

diagrams is automatically taken into account when we symmetrize the elastic 

scattering amplitude with respect to the exchange of the two final state pions . 

For the sake of brevity, only one representative diagram is drawn for each sym

metry group. The others can be obtained by carrying out the symmetry 

transformations on this one. 

The labeling scheme for the diagrams is designed to help identify their class 

and sub-class. The first letter in the label is either G, for gluon exchange, or Q 

for quark exchange, while the second letter is either P, for pinch diagram, or H 

for hard diagram. The diagrams in each sub-class are numbered with two 

numbers such that all diagrams that differ only because of a different time

ordering of the gluon vertices have the same first number. A count of the 

diagrams reveals the following: there are 75 gluon exchange diagrams (48 pinch 

and 27 hard), and there are 100 quark exchange diagrams (24 pinch and 76 

hard). 
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4.1.5. SOME MORE REMARKS 

A few more explanatory remarks are in order before we present the results 

of our calculation. The basic object of the present calculation is to compute the 

two functions f and g defined in Sec. 2.3.4. As expressed in Eq. (2 .35), the ampli-

tude for mr scattering, after integrating over all the momentum fractions , can 

be written as: 

( ) Cn
4 

f 2 ] M1f1f s ,ec.m. "' ~ l/ (Bc.m) + g(s/A .ec.m.) (4.4) 

We have extracted the four powers of c11 coming from the four distribution ampli-

tudes in the matrix element, so that the functions inside the brackets are 

dimensionless. f contains the contribution of the hard diagrams and g the con-

tribution of the pinch diagrams. To be exact, f too has some dependence on s 

because of the presence in it of the coupling constant, O'.s ( Q2) . However, this 

dependence is through a known logarithmic factor while the s -dependence in g 

can be more complex and serious. In the computation of each diagram, the 

momenta of the quarks are expressed in units of the center-of-mass energy. This 

implies that the result of a diagram computation is in fact proportional to 

s 2M1f1f• where f.i1f1f is the matrix element corresponding to a single diagram. Thus 

summing this quantity for each class of diagrams will directly yield the desired 

functions . 

Since some of the propagators, in both pinch as well as hard diagrams, can 

go on shell in the middle of the integration region, it is necessary to add a small 

imaginary part to these propagators (p 2 -+ p 2 +iA2) in order to carry out the 

numerical integration. This displaces the pole from the real axis and makes the 

integrand finite in the whole region. In the case of pinch diagrams this 

modification of the propagator also serves to regulate the pinch singularity. 
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While the hard contribution is expected to become independent of A. as this 

mass scale is taken to zero, the unsuppressed pinch contribution depends on A 

in an important way. 

We now have three mass scales involved in the diagram calculation, all of 

them of the order of the QCD scale , A It is important to be able to tell them 

apart and we do so by appending a subscript to A. indicating which of the three 

scales it denotes. Ao. is the scale involved in the argument of the running cou

pling constant [a8 (Q21 ~)].This is the scale that is often referred to as the QCD 

scale. Ap is the scale used in the regulation of the diagram propagators and, as 

was argued in Sec . 2.3.2 .. this too has a "natural" magnitude of the order of the 

QCD scale. ~ is the scale that appears in the QCD-improved Sudakov factor (Eq. 

(2.31)). The functions f and g can depend on these scales through the dimen

sionless ratios of these scales with the energy scale Vs. 

4.2. FIXED ANGLE ENERGYDEPENDENCE 

In this section we investigate the fixed angle behavior of the quantity s 2M111r 

for some typical diagrams . Let us refer to this function as h, so that there is an 

h associated with each diagram. To get the desired functions f and g we must 

sum h over a class of diagrams but, for the purposes of analyzing general 

behavior, it is far simpler to study this function for a representative diagram. 

As discussed above, h can, in general, depend on s/~. s/fli , s 11\i and of course 

Bc.m.· Since some of the diagram propagators have imaginary parts (iJ\$) in 

them, h is a complex function. We calculate both the real and imaginary parts 

of h and plot them as functions of different variables. 
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4.2.1. THE HARD CONTRIBUTION 

We first study the behavior of h for hard diagrams. We choose as our typi

cal hard diagram, the one listed in the catalog as GHl. l. Let us look, first, at the 

behavior of h for the case where the coupling constant factor (a~) has been 

excluded from the amplitude. In this case the fixed-angle h will depend only on 

s/~. Ass/~ increases h should attain a constant value. Fig. 4 .3 shows the 

results for a 90° calculation of GHl.1 and the behavior of both the real and ima

ginary parts of h is exactly as expected. The plot of h against s /~ can be 

viewed either as showing the dependence on s for a fixed Ap, or as depicting the 

dependence on Ap for a fixed s. If we assume that the addition of i~ to the pro

pagator represents a genuine modification of the amplitude (indicating the ina

bility of on-shell colored quarks or gluons to travel long distances; i. e. 1/ Ap is a 

decay length) and if we further assume Ap to be fixed at 100 Mev then the energy 

independence of h is achieved around s "'5Gev2 (s/~"'500). Thus for large 

enough s we expect the cross-section corresponding to this diagram to obey 

power-law scaling with n=6. 

The inclusion of the coupling constant factor (a~) in the calculation causes 

a further dependence of h on s/A;.. We can associate one coupling constant with 

each of the three gluons in the diagram. In the actual calculation, the argument 

of each coupling constant, at a given point in the integration space, is taken to 

be the off-shellness of its associated gluon at that integration point. This 

method should result in a more accurate treatment of coupling constant effects 

than that obtained by using the constant arguments, It I or It/ 4 I . 

The result of this calculation is plotted in Fig. 4.4. For simplicity we take 

Ap =Ao_, and we view the plot as a function of s for some fixed value of these mass 

scales. The effect of including the coupling constant factor is quite dramatic. 
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Both, real and imaginary parts now fall rapidly as a function of s /~, though the 

slope is very gradually decreasing as expected. The imaginary part dominates 

the amplitude as it did for the previous calculation. The plot shows that even for 

s I A!"' 50, 000 the rate of fall is substantial. AB we saw from our previous plot 

(Fig . 4. 3), the effect of Ap lasts only up to s It-.:"' 500 . Thus after this value fer 

s I~ the behavior is completely controlled by the scale Ao,. In the region, 

1000 <s I~< 5000, the imaginary part of h can be very well described by a 

straight line with a slope of -0. 71. If we take Ao. to be 100 Mev, then this range 

corresponds to 10 < s < 50 Gev2, which is the entire range of presently existing 

wide-angle pp elastic data. This behavior of h leads to a large increase in the 

power of s that describes the fall-off, with energy, of the rrrr cross-section. In the 

above energy range the value of n resulting from the slope of the plotted line is 

7.42 instead of the dimensional counting prediction of 6. In the case of pp elas

tic scattering, the increase in n is expected to be even larger because the 

cross-section has 10 powers of as instead of 6. This is an important fact to be 

kept in mind while comparing elastic data with the predictions of the hard 

scattering model. 

4.2.2. THE PINCH CONTRIBUTION 

Let us now look at the results of calculating h for a typical pinch diagram. 

Here we expect more interesting effects in the fixed angle behavior of h . We 

choose the diagram labeled GPl.1 and first present the results for the amplitude 

which contains neither a coupling constant factor nor a Sudakov factor. Then h, 

for fixed angle , is only a function of s It-.: . This function, for ec.m.=90° I is plotted 

in Fig. 4.5, and we immediately see the effect of the pinch singularity in the con

sistently rising nature of both the real and imaginary parts of h . After a brief 

nonasymptotic region for small s , the curves attain a constant slope which can 
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be accurately calculated to be 0.5. Thus the function h is asymptotically pro

portional to~· This is exactly the result obtained through analytical calcu

lations of rm pinch diagrams, and causes the cross-section for such diagrams to 

fall like 1/ s 5 instead of 1/ s 6 . It is also interesting to note that the real and ima

ginary parts of h seem to become equal to each other asymptotically . This is 

not a significant result because the relative magnitude of the real and imaginary 

parts of h, depends completely on the relative magnitude of the real and ima

ginary parts of the constant added to the propagator for regulating the singular

ity. If i:.his constant is real instead of imaginary, then, asymptotically, the pinch 

contribution comes out to be pure imaginary. 

In our next calculation of the same diagram we include the Sudakov factor 

in the integrand, but still avoid the coupling constant factor in order to better 

see what the Sudakov modification does to the fixed angle behavior of the pinch 

diagram amplitude . The result for the 90° h is plotted in Fig . 4 .6 . as a function 

of s /A;. The regulation of the propagators with the scale Ap is no longer neces

sary because the Sudakov factor automatically removes the singular regions of 

the integrand. In fact we have put Ap =O for the present calculation in order to 

see the uncontaminated effect of the Sudakov factor . Including Ap affects only 

the initial part of the curves . The plot shows that the imaginary part is falling 

rapidly and can be taken to be zero in the asymptotic region. The reason for this 

is that the imaginary contribution comes only from the pinch region of the 

integration space and this region is completely suppressed by the Sudakov fac

tor. However, the real part, which gets its contribution from the whole of the 

integration space is only partially suppressed and, despite the Sudakov factor, it 

still shows up as a rising function of s I Ai. This function d.Des not seem to attain 

any asymptotic slope even up to values of s ;A'f as high as 500,000 (not shown on 

the plot of Fig . 4 .6) . The rate of change of the slope of the curve seems to be 
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decreasing with an increase of s I.Ai and the curve is convex pointing upward. 

The function does not fit any simple analytical form, and it certainly does not 

agree with the approximate analytical calculation of Mueller. Even at the highest 

values of s I A; in the plot , the slope has only achieved a value of 0.20, which is 

far from the asymptotic value of 0.08 predicted by Mueller (see Sec . 2.3.4). Our 

numerical calculation is certainly more accurate and trustworthy than the 

analytical one by Mueller and we strongly suspect the validity of his approxima

tion method, for which he does not give any proof. This is then a completely new 

and very important result, obtained by a numerical integration, where analytical 

methods are too difficult. A good way to characterize the function plotted in Fig. 

4.6 is to specify its slope at regular intervals. The results of this exercise are 

shown in the table below along with the value of n resulting from each slope. 

s/A; slope n 

100 0.63 4.74 

400 0.48 5 .04 

1600 0.35 5.30 

6400 0.27 5.46 

25600 0.20 5 .60 

We now add the coupling constant factor to the integrand and look at the 

final result of the QCD prediction for pinch diagrams. Fig . 4.7 shows the plot of 

the real part of h resulting from our calculation. The imaginary part has been 

left out since it remains insignificant compared to the real part and can be 

safely ignored. Again, as a simplest case, we have set Ap=Ao.=~ and we view the 

plot as a function of s for some fixed value of these constants. The function h 
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has a very interesting form. It begins to rise a little: but soon the coupling con

stant effect overcomes the pinch effect resulting in a slowly falling function. This 

results in a low, broad hump and a remarkably fiat function over a wide range of 

s I A;, . The shape of this curve is controlled by the the interplay between the 

Sudakov modified pinch effect and the the coupling constant effect. Changing Ap 

only slightly shifts the location of the peak of the hump but otherwise the shape 

of the curve remains the same. The opposing scale breaking effects of the pinch 

singularity and the running coupling constant seem to nullify each other and the 

resulting amplitude closely approximates the dimensional scaling behavior. For 

a better comparison with elastic scattering data we shall again characterize this 

curve by specifying the slope at regular intervals of ln(s 11\i). This is displayed in 

the table below and we again show the value of n resulting from the slope. Note 

that dimensional scaling predicts n = 6. 

sl!\i slope n 

100 0.21 5.58 

200 0.04 5.92 

400 -0 .16 6 .32 

800 -0 .23 6 .46 

1600 -0.25 6.50 

3200 -0.22 6.44 

6400 -0.20 6 .40 

What is interesting to notice from the above table is that the value of n is 

never far removed from the scaling prediction. In fact, if we take ±0.5 as a grace 

margin around the scaling value of n (this is often the experimental accuracy 
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within which n can be determined from data), then the calculated amplitude is 

consistent with n =6 in the whole of the range for which it has been plotted. The 

slope of the curve is exactly zero (corresponding to n=6) at about s/~"'250. If 

we assume that all the mass scales have the value 100 Mev then this position 

corresponds to 2.5 Gev2, and if we use the value 200 Mev then this privileged 

point is at 10 Gev2. Changing the relative magnitude of the scales also results in 

a shift of the peak, but it is important to emphasize that the general character 

of the function is fairly insensitive to the relative magnitude of the mass scales, 

as long as they are reasonably close to each other. The dependence of the func

tion h on the center-of-mass angle will be discussed later, but choosing another 

wide angle instead of 90° would have led us to the same conclusions about 

energy dependence. 

It is important, also, to establish that the behavior of h discussed for the 

above two diagrams is not peculiar to those diagrams. We have made similar cal

culations for several other diagrams in each class and the results lend strong 

support to the claim of generality for the behavior observed in the two selected 

diagrams. The details do differ slightly from diagram to diagram, e.g. the energy 

at which a hard diagram becomes independent of lip can vary a little, and for the 

pinch diagrams the slope of the Sudakov modified h-function at a given value of 

s/A; can change by as much as 0.05 (slope for diagram GP2.l at s/A;=25600 is 

0.25); but our general conclusions about the energy dependence at wide angles 

remain unchanged. Our calculations also show that the fixed angle behavior of h 

is independent of whether the diagram involves gluon exchange or quark 

exchange. Thus, one need pay heed to only the pinch/hard distinction while 

analyzing the fixed angle energy dependence of the elastic cross-section. 
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4.3. TIIE NORMAIJZATION FOR 90° SCATI'ERING 

4.3.1. REI.ATIVE NORMAIJZA.TION 

Before we leave this topic it is of great interest to compare the relative nor

malization of the two contributions whose behavior we have analyzed. Whichever 

contribution dominates the total amplitude will be the one that determines the 

actual behavior of the elastic cross-section for rm scattering. From our analysis 

of fixed angle energy dependence it is clear that for large enough s the pinch 

contribution will dominate the cross-section since the hard contribution is fal

ling much more rapidly withs than is the pinch contribution (compare Figs. 4.4 

and 4.7) . However, we would like to investigate the relative magnitude of the the 

two contributions at energies where most of the wide angle elastic data have 

been collected. There is an inherent uncertainty that must be faced in this 

attempt because our calculation provides the amplitude as a function of s/11..2 , 

and the exact value of the various hadronic mass scales is not known. Even so, 

we can derive significant conclusions from such an analysis, and if the same cal

culations as above are done for a measured elastic process then the results can 

be used to make an estimate of the magnitude of A In the following analysis we 

assume all the mass scales to be equal in magnitude and we denote them by A 

To simplify our analysis, let us choose a single value of s/ 11..2 at which to 

make comparisons of the calculated amplitudes. We choose this to be given by 

s/ 11..2= 2000. If A= 100 Mev then this point corresponds to s = 20 Gev2 which is close 

to where most of the wide angle data exist. For ll..=200 Mev the same point 

corresponds to s =BO Gev2, and so on. Let us first consider the effects of the 

coupling constant factor and the Sudakov factor on the normalization at this 

point. In the case of the hard diagram we only have the coupling constant to 
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worry about. Adding the coupling constant to the calculation reduces the ima

ginary part of the amplitude by a factor of about 25. The real part is not known 

with enough accuracy at this energy, but it is sub-dominant anyway. Jn the case 

of pinch diagrams, both the Sudakov factor and the coupling constant factor 

affect the normalization obtained from the "bare" diagram calculation. At the 

value of s/A2 being considered, the Sudakov factor reduces the amplitude by a 

factor of about 30 and the coupling constant does the same by another factor of 

30. 

Let us now compare the normalization of the pinch and hard diagrams with 

each other. In the units that we use to express the function h obtained from our 

calculation, the magnitude of the hard diagram at s/A2 =2000 is 0 .065, and the 

magnitude of the pinch diagram with all factors included is 0 .012. These two 

numbers are quite comparable and urge us to go further and do a more com

plete calculation of the full hard amplitude and the full pinch amplitude. It 

turns out that the magnitude of h changes by up to an order of magnitude from 

one diagram to another in the same class . It is therefore not very useful to cal

culate one diagram and to multiply its contribution by the number in that class . 

One must do a detailed calculation of all the contributing diagrams. This way we 

can also obtain the QCD prediction for the absolute normalization of the go0 rm 

elastic cross-section, which was one of the aims with which we set out on this 

project. Even though the mr cross-section at large Pr has not been measured, 

one can still hope to do some phenomenology by using the data for rrp and pp 

cross-sections. This detailed calculation will also allow us to compare the magni

tude of the gluon exchange and quark exchange contributions, which is very 

relevant to the analysis of small angle behavior. 

The results for the go 0 calculation of h at s/A2 =2000 are presented in the 

following tables. We calculate each representative diagram of a symmetry group 
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(listed in Fig. 4.2) and then multiply the result by the number in that group to 

get the answer, which goes as an entry in our table against the identification 

label of that symmetry group. The number of diagrams (Nsym.). in the symmetry 

group is also listed in the tables. The contribution from each of the four classes 

into which the diagrams have been divided is summed separately. 

A. GLUON EXCHANGE PINCH DIAGRAMS 

h(s/A2=2000) 

DIAGRAM Nsym 

REAL IMAGINARY 

GPl.1 8 0.10 0.0 

GPl .2 8 0.08 0.0 

GP2.1 8 -0.93 0.0 

GP2.2 8 -0.81 0.0 

GP3.1 16 0.05 0.0 

TOTAL 48 -1.51 0.0 



- 105 -

B. GLUON EXCHANGE HARD DIAGRAMS 

h (s/ A2=2000) 

DIAGRAM Nsym 

REAL IMAGINARY 

GHl.1 16 0.05 1.04 

GHl.2 8 0.0 -0 .01 

GH2.1 2 -0.51 0 .72 

GH3.1 1 0.11 0.0 

TOTAL 27 -0.35 1.73 
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C. QUARK EXCHANGE PINCH DIAGRAMS 

h(s/A2=2000) 

DIAGRAM Nsym. 

REAL IMAGINARY 

QPl.1 4 0.022 0.0 

QPl.2 4 0.019 0.0 

QPl.3 4 0.017 0.0 

QPl .4 4 -0.238 0.0 
J 

QP2.l 2 -0.004 0.0 

QP2.2 2 -0.003 0.0 

QP3.l 2 -0 .004 0.0 

QP3.2 2 -0.003 0.0 

TOTAL 24 -0.194 0.0 
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D. QUARK EXCHANGE HARD DIAGRAMS 

h(s/A2=2000) 

DIAGRAM Nsym 

REAL IMAGINARY 

QH l. 1 2 0.030 0.0 

QHl.2 4 0.007 0.014 

QHl .3 2 -0 .003 0.002 

QH2. l 2 0.030 0.0 

QH2.2 4 0.007 0.014 

QH2.3 2 -0 .003 0.002 

\ 

QH3.l 4 -0 .042 0.0 

QH3.2 4 0.033 -0.004 

QH3 .3 4 0.040 0.0 

QH3 .4 4 0.001 -0.002 

QH4.1 2 0.030 0.0 

QH4.2 2 0 .0 0.023 

QH4.3 2 0 .0 0.023 

QH4.4 2 -0 .001 -0.002 

QH4.5 2 -0 .001 -0.002 

QH4.6 2 -0 .026 0.042 

... cont . 
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h(s/A2=2000) 

DIAGRAM Nsym 

REAL IMAGINARY 

QH5.1 2 0.030 0.0 

QH5.2 4 o.o 0.046 

QH5.3 4 -0.002 -0.004 

QH5.4 2 -0 .026 0.042 

QH6 .1 4 0.034 0.0 

QH6.2 4 0.004 0.053 

QH7.1 4 0 .034 0.0 

QH7.2 4 0 .004 0.053 

QHB .1 1 -0.003 -0.006 

QH9.1 2 -0 .019 -0.002 

QH10.1 1 0.007 0.0 

TOTAL 76 0.127 0.155 

The numbers listed in these tables are calculated to within an accuracy of 

10.%. The accuracy can be increased indefL.J.itely by using more points in the 

numerical integration, which in turn requires more computer time . However , for 

our purposes this accuracy is quite sufficient. Notice that many quark exchange 

diagrams have identical answers even though they are in different symmetry 

groups. This fact can be shown to be a consequence of an accidental symmetry 
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which is present for ec.m.=90°, but which does not hold at other angles. 

Let us first compare the relative normalizations of the four different contri

butions. The CIM model, which for a long time has been used as a framework in 

which to view the detailed behavior of elastic scattering, is built on the shaky 

assumption that diagrams which involve the exchange of gluons between 

different hadrons are suppressed with respect to the ones which involve the 

exchange of quarks. Our calculation strongly questions the validity of this 

unproved assumption. Adding the pinch and hard contributions, the absolute 

magnitude of the gluon exchange amplitude comes out to be 2.54 while that of 

the quark exchange contribution works out to be 0.17. Thus, if anything, it is the 

gluon exchange mechanism that dominates the elastic cross-section for mr 

scattering. In fact, only one symmetry group (QH3. l), consisting of four 

diagrams out of a total of a hundred quark exchange diagrams, contributes to 

the CIM mechanism and, as can be seen, there is nothing special about the value 

of this contribution. On the average, the intrinsic normalization of a quark 

exchange diagram is of the same order of magnitude as that of a gluon exchange 

diagram, and since the energy behavior does not depend on the exchange-type 

of the diagram, this relationship is independent of s. Moreover, there is no rea

son to expect a very different conclusion for the results of a rrp or pp calcula

tion. In fact it seems that the relatively lower level of symmetry in the quark 

exchange diagrams may cause them to suffer more cancellation amongst each 

other, and thereby result in a smaller total magnitude then the one for the 

gluon exchange diagrams. Thus, inasmuch as our calculation is based on a fairly 

rigorous treatment of perturbative QCD, this theory does not provide any evi

dence for the CJM model assumptions, and if one is to continue working in the 

QCD framework, other explanations must be found for the successes of the CIM. 

Some recent QCD calculations [21] for inclusive processes have also shown a 
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lack of support for the CIM. 

The other long held belief brought to a severe question by our calculation is 

the suppression of the multiple scattering mechanism with respect to the hard 

scattering one . The fact that the experimental rate of fall of the elastic cross

sections, with energy, is very close to the dimensional counting prediction has 

led many people to conclude that hard scattering is the dominating mechanism 

for elastic processes at large P1 . The Sudakov factor that builds up in the ampli

tude for the scattering of nearly on shell quarks is the most frequently quoted 

justification for the suppression of the pinch diagrams. Our calculation shows 

that, with a more careful treatment of Sudakov effects, the suppression is only 

partial and the magnitude of the pinch contribution at the energy of existing 

elastic data is of the same order of magnitude as the hard contribution. For 

both the gluon exchange and the quark exchange diagrams , the pinch and hard 

contributions at s/.t\2=2000 and ec.m.=90° work out to be almost equal. This 

means that for a somewhat higher value of s/ .t\2, say 10,000, the pinch contribu

tion clearly dominates over the hard one . It thus seems that a detailed analysis 

of elastic scattering in QCD does not provide any justification for ignoring the 

multiple scattering mechanism in the analysis of elastic data. 

It would be extremely interesting to compare the two contributions for rrp 

and pp scattering. In the absence of such a calculation we can only make a few 

comments. First, contrary to a statement by Brodsky and Lepage, rough estima

tion shows the number of pinch and hard diagrams to be comparable for all elas

tic scattering processes . (The table at the end of this section presents a sum

mary of the number of diagrams in each of the four classes for the three 

processes : rrrr , rrp and pp. The numbers for rrp and pp are only rough estimates.) 

Secondly, since the general form of the Sudakov factor is the same for all such 

processes, there is no reason to expect a qualitatively different behavior of the 
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Sudakov modified pinch contribution for processes with more quarks . Further

more, the pinch singularity in pp scattering is even more severe than that in the 

case of rm scattering . In some of the pp pinch diagrams, two gluons can 

become soft or collinear in the middle of the integration region at the same 

time. The h-function for such diagrams can be shown to be asymptotically pro

portional to s/A2 instead of ~. as was the case with rm. The Sudakov 

modified h-function corresponding to these diagrams can then be expected to 

rise with s even faster than was the case with rm, and therefore the energy at 

which the pinch contribution begins to dominate over the hard one will be even 

smaller. Thus, it is not at all unreasonable to conclude from our calculations 

that pp elastic scattering at intermediate energies may be completely dom

i:nated by pinch effects rather than short distance ones. 

PROCESS Ncp NcH NQP NQH 

1T1T 48 27 24 76 

rrp "-'1000 "-'1500 "'1500 .... 7500 

pp ,,,.30,000 "'40,000 "-'50,000 "-'350,000 

4.3.2. ABSOLUTE NORMALIZATION 

From the results presented in the tables we can also work out the absolute 

normalization of the 90° rm cross-section. Adding all the four contributions, the 

value of h at s/A2=2000 comes out to be -l .79+il .89 . After multiplying lh 1
2 by 

appropriate factors , including the four powers of c1T whose value was determined 

from the pion decay constant, the 90° result for the rrrr cross-section at 

s=20Gev2 and s/A2 =2000 works out to be 6.75x10-s:scm2/Gev2. For the sake of 
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a rough comparison, we quote here the experimental value of the rrp and pp 90° 

cross-sections at the same energy (s =20 Gev2). The value for rrp i.s 

2.6x10-33 cm2/Gev2 and that for pp is 7.2x10-32 cm2/Gev2. However, the com

parison of these numbers is not very meaningful because the different cross

sections fall with energy at quite different rates, and their ratios will change with 

a change in the energy at which they are computed or measured. It may there

fore be more sensible to compare the results for sn(da/dt) where n is the 

power describing the fall-off of the relevant cross-section. These numbers are 

independent of energy but they all have different dimensions since the value of 

n is different for each cross-section, and therefore the comparison will now 

depend on the units of energy being used. If we further divide these numbers by 

the dimensional normalization constants of the distribution amplitudes present 

in the QCD expressions for the corresponding cross-sections, then we will have a 

dimensionless number for each of the cross-sections, enabling a more meaning

ful comparison. 

Another small improvement is made if, instead of the normalization con

stants en and cP, we use the value of tFrr(t) and t 2GJ,i(t) to divide the cross

sections . By this means some of the uninteresting constants present in the 

cross-sections will also be divided out, giving more relevant numbers for our 

comparison. AB was discussed in the theoretical review, the expressions tFrr(t) 

and t 2 GJ,(t) are asymptotically independent of t, and are proportional to the 

square of the normalization constant of the distribution amplitude involved. Let 

us denote these constants by Cn and Cp for pion and proton respectively . Then 

the value of Cn, determined from the theoretical expression for F'", involving the 

pion decay constant, is about 0.10Gev2 and the value of Cp determined from the 

experimental data on the proton magnetic form factor works out to be about 

0.35 Gev4. Underneath we present the results of this analysis for the three 
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cross-sections, using the theoretically calculated value for mr and the experi-

mentally determined ones for rrp and pp. 

s 6 da = 1.11X105 ~ [3 .33X102) 2 

C1/ dt nn 

s 10 da - - = 1.26 x 1011 ~ [3.55 x 105 ] 2 

Cp4 dt PP 

The values in the square brackets are the square roots of the numbers obtained 

for each cross-section. These square root values reflect the magnitude of the 

scattering amplitude instead of the cross-section, and are easier to interpret . 

The next obvious question is that what significance, if any, can we associate 

with the magnitude of these dimensionless numbers? These numbers are pro-

portional to the sum over all diagrams of the multi-dimensional integral, over 

quark momentum fractions, associated with each diagram (with the appropriate 

powers of s and of en and Gp extracted out of the integral). The magnitude of 

this number for a given scattering reaction therefore depends on two parame-

ters, the average value of this integral for that scattering process and the 

number of diagrams that contribute to that process . Brodsky and Lepage in 

their review claim that using the square of the form factor as a divisor gets rid 

of the dependence on the intrinsic normalization of the diagrams, so that these 

numbers directly reflect the diagram count for each process . The soundness of 

this claim is very questionable and a careful analysis calls for a more prudent 

attitude. Firstly, the form factor only involves hard diagrams and does not have 

any equivalence of the pinch singularity. Secondly, the diagram obtained from 

squaring a form factor diagram (and replacing the photon by a gluon) has only 
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one gluon going across between the two diagrams and this diagram is already 

known to have a vanishing contribution. Our calculation has shown that even 

within the same class the contribution of two diagrams can differ by an order of 

magnitude. Thus it is hardly reasonable to treat the form factor as providing the 

typical magnitude of an elastic scattering diagram. 

Another source of uncertainty in estimating the numbers of diagrams by 

such methods comes from the wide variation in the phase of the amplitude 

corresponding to a diagram. If we assume complete randomness in the phase 

then the above numbers are proportional to VN instead of N, where N 

represents the number of ~iagram and we assume their contributions to be 

roughly equal in magnitude . The number in a single class of rrrr diagrams is too 

small to ascertain if the cancellation is close to what we expect from a random 

distribution. However, a check with the contributions of the 16 or so unequal 

symmetry groups of quark exchange hard diagrams shows that the result is 

close to what is expected from a random distribution. Even if we accept this as 

generally true, the fact that there are always some diagrams constrained to be 

equal because of symmetry requirements, will make the total contribution pro

portional to something in between N and VN . 

Despite all these uncertainties we give below a comparison of the dimen

sionless numbers calculated above, with an estimate of the N and ..JN of the 

gluon exchange hard diagrams that contribute to each process. The numbers in 

other diagram-classes can also be used, but we choose this class because if the 

form factor provides an estimate of any diagram contribution at all it has to be 

the gluon exchange hard diagram contribution. 
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ELASTIC DIMENSIONLESS 
NGn VNc;;; 

REACTION NUMBER 

nrr ,..,.330 27 ,..,.5 

7rp "'1200 "'1500 -40 

pp -350,000 -40,000 -200 

It should be kept in mind that the absolute value of our characteristic 

numbers is not very meaningful and we are only interested in the ratios. The 

table shows that these numbers are very close to being proportional to NGn . 

Given the various uncertainties involved in this analysis we do not attempt to 

draw any conclusions from this result. If, as we have shown possible, the 90° 

cross-section is dominated by the pinch contribution then the ratios of these 

dimensionless numbers will depend very much on the Sudakov modified h

function that results from the integral in each of the three processes, in addi

tion to the number of pinch diagrams involved in that process . For the moment, 

we conclude this analysis with the statement that there is nothing horribly 

inconsistent about the absolute normalization of our calculation when it is com

pared to the experimental measurements of rrp and pp scattering . Later we will 

compare this analysis to a similar one for the small angle normalization of the 

1m cross-section. 
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4.4. ANGULAR DEPENDENCE AT WIDE ANGLES 

Having studied the fixed angle energy dependence and the go0 normaliza

tion of the rm cross-section, we now turn to its angular dependence . We will first 

look at the angular dependence in the wide angle regime and then study the 

small angle behavior to look for the fixed-t s dependence of the different contri

butions. It is again interesting to separately consider the contributions from 

pinch and hard diagrams and to compare them. For experimental data we must 

still look to rrp and pp and see if we can make some general comparisons . As 

before, we begin by analyzing the results from a single representative diagram 

in each class, and we choose the same two diagrams that were studied in the 

previous section. All the mass scales are again taken to be equal to each other. 

The results for the diagram GPl. 1 are shown in Fig . 4.8. We plot the square 

of the magnitude of h as a function of cos(ec.mJ, for the fixed energy 

corresponding to s/A2 =2000. The square of his used so as to look at the angular 

dependence of the cross-section, which is a more relevant quantity, experimen

tally . Only the region ec.m. ~ go0 is shown in the plot since the function is sym

metric around the go 0 angle. A similar plot is shown for diagram GHl.1 in Fig . 

4.9 . It is very clear that the angular function for the p inch diagram rises more 

slowly with decreasing angle than the one for the hard diagram. This means that 

since the magnitude of the two contributions at 90° and at the chosen energy 

was comparable, at smaller angles the hard contribution will somewhat dom

inate the pinch one . But this domination can again be inverted by going to some

what higher energies and if for rrp and pp the domination of the pinch is much 

stronger, then the change in angle will not effect the situation very much. It is 

also interesting to note that the measured angular dependence of rrp and pp 

scattering looks much more like the pinch diagram result rather than the hard 
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result. This is perhaps another piece of evidence that suggests the dominance of 

the pinch contribution at wide angles . A calculation of the complete angular 

dependence for the np and pp cross-sections would be very useful in settling this 

issue . None of the previous calculations of these angular functions , in simplified 

models like the CIM, give very satisfactory fits to the data, despite the fact that 

they often have several adjustable parameters. 

The next interesting aspect to look at is to see if the angular dependence 

changes with a change in the center-of-mass energy. The energy independence 

of the angular dependence is a hallmark of power-law scaling and we have 

already seen in Chap. III that there is strong evidence that experimental data on 

elastic scattering does not satisfy this requirement. The hard diagram contri

bution (as measured by the function h) , without considering coupling constant 

effects, acquires a constant value independent of energy at all angles . This fact 

immediately implies energy independence for the angular dependence of the 

hard contribution, as had been predicted by the QCD analysis of the hard 

scattering mechanism. Including the coupling constant factor in the calculation, 

does not significantly affect this conclusion since the magnitude of this addi

tional factor , at a given energy, changes very little with angle (specially so in the 

wide angle regime) . 

The function h for the pinch contribution, however, involves a dependence 

on s/A2 even without considering the coupling constant factor . There is there

fore no reason to expect the pinch contribution to have an energy independent 

angular dependence, unless the ec.m. and s/A2 dependences of the function fac

torize . Instead of plotting the angular dependence of h at various energies we 

study this problem here by looking at the energy plots of h for various angles. 

This method is closer to the analysis of experimental data on elastic scattering , 

discussed in Chap . 111. We leave out the coupling constant factor so as to 



- 118 -

concentrate on the behavior of the Sudakov modified pinch amplitude, and 

because we have already seen that the effect of the coupling constant on factori

zation is unnoticeable. We have plotted the function h against s/A2 for several 

different wide angles in Fig. 4.10. The diagram being used is again GPl.1. Even 

to the eye it is fairly clear that the lines for different angles are not quite paral

lel to each other, so that the factorization of the angular and energy depen

dences does not hold. To quantify the deviation from factorization we compare 

the slopes of the curves at three different energies and present the results of 

this exercise in the following table. 

slope of h 

fJc .m. 

s/.i\.2 =100 s/.i\.2=500 s/.i\.2=2000 

60° 0.77 0.45 0 .40 

70° 0 .73 0 .42 0.36 

80° 0.70 0.40 0.34 

90° 0.65 0.38 0.30 

Even though these slopes have been calculated by using hand drawn 

tangents, and lack great accuracy, the numbers in the table exhibit a very clear 

pattern. The slope is the smallest for the go 0 curve for all three energies and it 

tends to increase consistently with a decrease in the scattering angle. Because 

of the symmetry around go0
, we expect this pattern to be reflected identically 

for angles greater than go0
• These changes in slope will eventually lead to a 

dependence of n on angle for the pinch contribution to the elastic mr cross

section. For the energy range being considered, the change in n in going from 
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90° to 60° is about 0.2 . This change is somewhat smaller then the kind of effects 

that have been seen in rrp, pp and np elastic data (Sec. 3.1-D) . However the pat

tern of change is exactly of the kind that has been observed in these data and it 

is certainly possible that a similar calculation carried out for rrp or pp would 

yield a larger change in n with angle . In any case this result of ours is again 

rather suggestive of the possibility that some of the features of wide angle elas

tic data are better explained by assuming the dominance of pinch diagrams 

rather than the dominance of the hard ones. 

4.5. SMALL ANGLE BEHAVIOR 

It is of great interest to see if the small angle behavior of the various contri

butions to the rm cross-section can throw any light on the rather unexpected 

small angle behavior of rrp and pp cross-sections discussed in the previous 

chapter. It was observed there, that one had to to go to extremely high energies 

before the elastic cross-section data at moderate values of t began to show 

energy independent behavior. Since we already know from studying the Regge 

limit of scattering amplitudes in perturbation theory that diagrams involving the 

exchange of fermions lead to an asymptotically falling cross-section (going as 

1/ s 2), and those involving the exchange of vector bosons lead to an asymptoti

cally energy independent cross-section, then the natural explanation of this 

phenomenon is to assume that quark-exchange diagrams strongly dominate 

over the gluon-exchange ones at wide angles (where s F::J t ) . It has been claimed 

that this experimental observation provides a further reason for believing in the 

CI.M picture of hadronic scattering . However, the results of our rrrr calculation at 

90° make it highly unlikely that quark-exchange will be a strongly dominating 

mechanism in any elastic scattering reaction. If, therefore, we are to continue 
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to maintain our faith in the QCD analysis of exclusive processes, it behooves us 

to look for an alternative explanation of this phenomenon. 

We analyze the small angle behavior of the four classes of diagrams by 

working out the s-dependence of the function h at fixed t, and ass 400 . Since we 

already know the energy dependence of h at fixed angles (i. e . fixed t/s ), this 

analysis enables us to deduce the asymptotic form of the amplitude in terms of 

powers of s and t. Having determined the functional forms of the different con

tributions to the scattering amplitude, we can use our calculation to deduce the 

relatively as well as absolutely normalized coefficients that multiply these 

forms. These coefficients are the best suited numbers for making rough com

parisons with the small angle data on rrp and pp scattering, and for speculating 

on the various possibilities for how these results can be extrapolated to other 

elastic reactions. 

The method we use to carry out this analysis is to plot the expression 

(t/s)nh as a function of s/A2 for a fixed value of -t/A2, where n can be any 

integer. For each diagram we try out various values of n until we find one that 

makes the expression (t/s)nh approach a constant value as s/A2 is being 

increased. This value of n then determines the asymptotic s dependence of the 

function h, and thereby of the amplitude M mro corresponding to a particular 

diagram; and the constant value attained is the coefficient that multiplies the 

form that has thus been ascertained. Adding these coefficients for all diagrams 

possessing the same asymptotic form will then give us the desired coefficient for 

the contribution to the scattering amplitude corresponding to this class of 

diagrams . In an attempt to stay close to the energy regime of the existing elas

tic scattering data, as was the aim in our previous analyses, we choose 

-ti A2= 1000 as the fixed value at which to carry out this analysis. For A= 100 Mev 

this corresponds to at-value of 10Gev2, which is in the midst of the region where 
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small angle data has been examined for evidence of hard scattering effects . 

Since the argument of the running coupling constant is essentially proportional 

to t, its presence in the amplitude does not significantly effect our analysis of 

the fixed-t s-dependence of h. The coupling constant factor , however, does 

introduce a t-dependence into the coefficients obtained from the analysis. 

Figures 4.11 through 4.14 show some examples from the diagram by 

diagram determination of the functional forms and of the coefficients that go 

with them. We have chosen a representative diagram from each class . For the 

gluon exchange diagrams we again choose GH l. 1 and GPl.1, which by now should 

be quite familiar to the reader. In Fig . 4.11 we plot the results for the real and 

imaginary parts of GHl. l. We see that the plot of (tis )5h against s/A2 gives an 

asymptotically constant result . This implies that h goes as s 5 and therefore M1rrr 

for this diagram goes as s, which in turn leads to an energy independent cross

section. This result is exactly what we were led to expect from our theoretical 

analysis in Sec. 2.3 .5. The asymptotic amplitude for this diagram can now be 

written as a coefficient times the form s I t 5 . Since the hard diagrams obey 

dimensional scaling, we expect this coefficient to be independent of the actual 

value of t used for carrying out the analysis . In actual fact, the coefficient drops 

with t fairly rapidly, because of the coupling constant factor. This can be seen 

clearly from the plot in Fig . 4 .4 discussed in Sec 4.3.2 . 

In Fig . 4.12 the results for the diagram GPl.1 are plotted. Here, we are in 

for a surprise . Because of the presence of the Sudakov factor in the integrand, 

the analysis of Feynman diagrams in the Regge limit does not apply for the 

Sudakov modified pinch contribution. It turns out that, for this diagram, one 

has to plot the expression (t/s )2h in order to get something that approaches a 

constant value with increasing s. Thus , even though this is a gluon exchange 

diagram, its contribution does not yield an energy independent cross-section in 
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the asymptotic limit. The amplitude Mrm becomes constant with s and the 

cross-section falls like 1/ s 2 . Fig. 4.12 only shows the real part of the amplitude 

as the imaginary part is negligible . The second set of points in the figure 

represents the result of the unmodified pinch contribution corresponding to the 

same diagram; which we have included for the sake of making a comparison. The 

line drawn through these points has slope +1, so that the corresponding ampli

tude rises as s and again leads to an energy independent cross-section. Thus, 

both the hard as well as the pinch gluon-exchange diagrams yield cross-sections 

that are asymptotically independent of energy, but adding a Sudakov factor to 

the pinch diagram changes the s-dependence of its contribution in an important 

way. The coefficient obtained for the Sudakov modified pinch contribution must 

now multiply the form 1/ t 2 . Without the presence of the coupling constant fac

tor, this coefficient will rise slowly with an increase in the -t/ A2 used for its 

determination. However, as we saw in Sec 4 .3.2 while analyzing the fixed angle 

energy dependence of h , the falling effect of the coupling constant factor just 

about cancels the rising effect of the pinch singularity, which implies that the 

coefficient obtained is very close to being independent of t . 

Figs. 4.13 and 4.14 show the resulting plots for the representative diagrams 

QHl.1 and QPl.1, respectively. Again the results of the hard diagram (QHl.1) 

are exactly as expected from a diagram involving the exchange of two spin-M 

particles. We need to plot (tis )2h in order to attain constancy with energy, 

which means that the amplitude Mrm is asymptotically independent of s and the 

corresponding cross-section falls like 1/ s 2. The Sudakov modified pinch diagram 

again behaves differently (Fig. 4 .14) and again falls faster than the hard diagram 

by a power of s. The asymptotic cross-section corresponding to this diagram will 

then fall like 1/ s 4 since the asymptotic form of the amplitude is 1/ st . 
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The most interesting outcome of this analysis is that the gluon exchange 

pinch contribution falls with s, for small t/s, almost exactly like the contribu

tion from the quark exchange hard diagrams. Thus, even if the quark exchange 

contribution is never dominant in elastic scattering processes, a dominance of 

the pinch contribution could just as well delay the onset of energy independent 

behavior of elastic cross-sections and thereby provide an alternative explanation 

for the observed behavior of small angle elastic data. To investigate this possi

bility a little further and to make rough comparisons of our calculation with rrp 

and pp data, we now present the results of a full fl.edged calculation of the 

coefficients for all the diagrams that contribute to rrrr scattering . We tabulate 

the results using the same format that was used for the 90° normalization 

results, and we separately add the coefficients for each group of diagrams hav

ing the same asymptotic form and belonging to the same diagram-class . 

Some comments regarding the detailed results presented below would be 

appropriate at this juncture. The four diagrams that we analyzed above are 

representative of the classes they belong to, but every diagram in a class does 

not always conform to this representative behavior. There are no exceptions for 

the pinch diagrams , of both the gluon and quark exchange types , but the two 

classes of hard diagrams show more variety amongst their members . First, the 

real part of diagrams involving triple or quadruple gluon vertices in both gluon 

and quark exchange hard diagrams, have an extra factor of s It in their asymp

totic form as compared to the representative diagram in that class. This would 

be worrisome except that the coefficients of these real parts always cancel out 

and do not give any net contribution. This fact is undoubtedly a manifestation of 

the gauge invariance of the final result. (It should be kept in mind that the 

coefficients for these real parts entered in the tables actually multiply a 

different functional form than is indicated at the head of the table .) Second, the 
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quark exchange hard diagrams divide into three groups, each one with a 

different asymptotic form. The group that agrees with the expectations of our 

general theoretical analysis of diagrams in the Regge limit is the one that con

sists of diagrams that include a gluon line connecting the two exchanged quarks . 

The other two groups fall faster with energy in the asymptotic region. The 

second group, which has an extra factor of t/s in its asymptotic form, consists 

of diagrams where neither the two exchanged quarks nor the two spectator 

quarks are connected with a single gluon line . The third and final group has two 

factors of t/s in it compared to the representative diagram and it consists of 

diagrams which involve a gluon line connecting the two spectator quarks . 

Diagrams with gluon lines between exchange as well spectator quarks of course 

belong to the pinch category. For the purposes of analyzing the small angle 

behavior of the different classes of diagrams the contributions of the last two 

groups can be neglected since, for small t/s, they are much smaller than the 

contribution of the first group. 
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A. GLUON EXCHANGE PINCH DIAGRAMS 

Mmr = c : 2 [1 + O(t/s )] 

c (-ti A2= 1000) 

DIAGRAM Nsym 

REAL IMAGINARY 

GP1.1 B 0.05 0.0 

GP1.2 B 0.02 0.0 

GP2.1 8 -0.85 0.0 

GP2.2 B -0.53 0.0 

GP3. l 16 0.03 0.0 

TOTAL 48 -1.28 0.0 
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B. GLUON EXCHANGE HARD DIAGRAMS 

DIAGRAM 

GH1.1 

GH1.2 

GH2.1 

GH3.l 

TOTAL 

..... s 
Mmr = c 3[1 + O(t/s)] 

t 

c (-t/ A2= 1000) 

Nsym 

REAL IMAGINARY 

16 0.008 0.156 

8 0.0 -0.003 

2 -0.045 0.135 

1 0.045 0.0 

27 0.008 0.288 
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C. QUARK EXCHANGE PINCH DIAGRAMS 

..... 1 
Mmr = c st[l + O(t/s)] 

c (-ti A2= 1000) 

DIAGRAM Nsym 

REAL IMAGINARY 

QPl .1 4 0 .024 0.0 

QPl.2 4 0 .013 0.0 

QPl.3 4 0 .010 0 .0 

QPl.4 4 -0.156 0.0 

QP2.1 2 -0 .006 0.0 

QP2.2 2 -0.004 0.0 

QP3.l 2 -0.003 0.0 

QP3.2 2 -0.002 0 .0 

TOTAL 24 -0.125 0.0 
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D. QUARK EXCHANGE HARD DIAGRAMS 

..... 1 
Mmr = c t 2 [1 + O(t/s)] (I) 

c ( - t/ A2= 1000) 

DIAGRAM Nsym 

REAL IMAGINARY 

QHl.1 2 0 .013 0.0 

QH1.2 4 0 .002 0.009 

QHl.3 2 -0.001 0.001 

QH4.1 2 0.007 0.0 

QH4.2 2 0.0 0.011 

QH4.3 2 0 .0 0 .011 

QH4.4 2 -0 .000 -0 .001 

QH4.5 2 -0.000 ·0 .001 

QH4.6 2 -0.005 0.013 

QH6.1 4 0.015 0.0 

QH6.2 4 0 .002 0.021 

QHB.1 1 -0.002 -0 .004 

QH9.1 2 -0.008 -0 .001 

QH10.1 1 0.010 0.0 

TOTAL 32 0.033 0.059 
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M1111 = c ~t[l + O(t/s)] (II) 

c (-ti A2= 1000) 

DIAGRAM Nsym 

REAL IMAGINARY 

QH3.1 4 -0 .012 0.0 

QH3.2 4 0 .008 -0 .001 

QH3.3 4 0.021 0.0 

QH3.4 4 0.000 -0 .001 

TOTAL 16 0.017 -0.002 
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= c --\[1 + O(t/s )] 
s 

(III) 

c (-ti A2= 1000) 

DIAGRAM Nsym 

REAL IMAGINARY 

QH2.1 2 0.021 0.0 

QH2.2 4 0.004 0.011 

QH2.3 2 -0.004 0 .003 

QH5.1 2 0 .019 0 .0 

QH5.2 4 0.0 0.017 

QH5.3 4 -0 .003 -0.005 

QH5.4 2 -0.015 0.018 

QH7.1 4 0 .023 0 .0 

QH7.2 4 0.001 0.029 

TOTAL 28 0 .046 0.073 

The first thing to notice from our results is that the coefficients for quark 

exchange contributions are again somewhat smaller than those for the gluon 

exchange contributions . The ratio cq/cg. defined in Chap. III, works out to be 

about 0.23 for the results of our mr calculation. This ratio is not sensitive to the 

value of -t/A2 at which it is evaluated and there is no reason to expect the situa-

tion to be vastly different for rrp and pp scattering, even though the ratio of 

quark to gluon exchange diagrams is somewhat higher for these elastic 
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reactions . Let us therefore concentrate on the gluon exchange diagrams. The 

coefficient for the pinch diagrams is -1.28 and that for the hard diagrams is 

0.008+i0 .228. Thus the coefficient for the pinch contribution is already some-

what bigger and if we go to higher values of t it will remain approximately con-

stant while the coefficient for the hard contribution will fall because of the cou-

pling constant factor, leading to a stronger and stronger domination. Because of 

the double-pinch effect in pp scattering, there is again reason to expect that for 

the pp case the pinch contribution may already be strongly dominant at 

-ti A.2= 1000. This could then provide the explanation for the large value for the 

ratio cq_lcg observed in experiment. We write below the expression for the rm 

cross-section coming from just the gluon exchange diagrams. The real part of 

the hard contribution is being ignored because it is very small. 

da 1 . s 1 

I 1

2 

dt mr "" s2 20.29 tS - 1.28 t2 (4.5) 

As s is increased for a fixed value of t, the pinch contribution will soon fall 

away and the cross-section . will be dominated by the energy independent hard 

contribution. Thus by looking at the region where the cross-section has achieved 

energy independence we automatically isolate the contribution of the hard gluon 

exchange diagrams. We already know from experiment that this region exists 

for rrp and pp scattering, though at very high energies . From the measured 

cross-section in this region and from the known dependence on t from dimen-

sional scaling we can work out the coefficient of the gluon-exchange hard contri-

bution of rrp and pp scattering and compare the results with the calculated 

coefficient for mr. 

Let us first quote the numerical values of the three cross-sections at 

t = 10 Gev2 in the energy independent region. The calculated value for mr, 
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assuming A=100Mev, is 5.1x10-35cm2/ Gev2. The measured value for rrp and pp 

(some extrapolation is necessary for the rrp case) are given by 

1.7x10-36cm2/ Gev2 and 3.7x10-37cm2/ Gev2 respectively. These numbers of 

course depend strongly on t and we would therefore like to compare the expres

sions tn ( da/dt) which are essentially the squares of the above mentioned 

coefficients . However, the n is different for the three cases and therefore we 

must again divide by the appropriate powers of the normalization constants to 

get dimensionless numbers . The situation is identical to the analysis of the 90° 

results, and we basically repeat the steps of our previous analysis . 

t 6 da = 1.31x103 ~ [3.62x 10]2 

en 4 dt 1T1T 

t 6 da = 3.6 x 103 ~ [6 .0 x 10]2 

c1T2 cP 2 Tt TTP 

t 10 da = 6.4X 102 ~ [2 .5X 10]2 

Cp4 dt PP 

It now makes more sense to compare these numbers with the number of gluon 

exchange hard diagrams, though the uncertainties are still all there and we can-

not afford to take the comparison very seriously. The following table shows this 

comparison: 



- 133 -

ELASTIC DIMENSIONLESS 
NaH ~ 

REACTION NUMBER 

rrrr ..... 36 27 ...... 5 

1Tp ...... 60 ...... 1500 ..... 40 

pp ,..,z5 ..... 40,000 ...... 200 

The dimensionless numbers are now more or less equal to each other and 

show no significant dependence on NaH. This is very different from the result for 

the 90° normalization. If the numbers obtained above are a better indication of 

the dependence of the "reduced" cross-section on the numbers of diagrams that 

contribute to it, then the characteristic numbers obtained for the 90° case are 

indicating the presence of a completely different effect. Unlike the situation for 

hard diagrams, in the case of pinch diagrams the normalization also strongly 

depends on the amount of enhancement coming from the pinch singularity. This 

enhancement can be quite different for different processes and could serve as a 

possible explanation for the large difference in the process dependence of wide 

angle and small angle normalizations. Our comparison of absolute normaliza

tions, then, not only indicates that the magnitude of the elastic cross-section 

predicted by QCD is not off the mark by orders of magnitude, but it also sug

gests that the wide angle cross-section for rrp and pp scattering may be dom

inated by the contribution of pinch diagrams even after a Sudakov factor is 

included in their calculation. 
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FIGURE CAPI10NS 

The multiple scattering diagrams for for mr scattering. 

Catalog of all connected diagrams for mr scattering . 

Plot of h90° against s I f.i for GH1.1 without the coupling constant 

factor . 

Plot of h 90° against s I~ for GH1.1 with coupling constant factor . 

Plot of h 90o against s I f.i for GP1.1 with no factors. 

Plot of h 90o against s I Ai for GP1.1 with only the Sudakov factor . 

Plot of h90° against s /~ for GP1.1 with both, the Sudakov factor 

and the coupling constant factor. 

Angular dependence of GP1.1 at wide angles. 

Angular dependence of GH1.1 at wide angles . 
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Fig . 4.10 Plots of the function he for several different scattering angles . 
c.m. 

The curves are not parallel to each other, thus proving the lack of 

factorization of the energy and angular dependence of the pinch 

contribution to rrrr scattering. 

Fig. 4 .11 Plot of (t/s)3h against s/A2 for GH1.1. 

Fig . 4 .12 Plot of (t/s) 2h against s/A2 for GP1.1. 

Fig. 4.13 Plot of (t/s )2h against s/ A2 for QH1.1. 

Fig . 4 .14 Plot of ( t/s )h against s/ A2 for QP 1.1. 
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MULTIPLE SCATTERING DIAGRAMS 

(a) (b) 

(c) 

Fig. 4.1 
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GLUON ~)(CHANGE PINCH DIAGRAMS 

Representativ e Diagram Label No. in Symmetry Group 

i 
I 

-~ I -.. 
., 

) 

GP 1.1 8 

~ -
.~ -

' 

GP 1. 2 8 

-
' -
' : 
' 

-

- GP 2 .1 8 

I GP 2.2 8 

GP 3 . 1 16 



-138-

GLUON EXCHANGE HARD DIAGRAMS 

Representative Diagram Label No. in Symmetry Group 

GH 1.1 16 

) 

GH 1.2 8 

GH 2.1 2 

GH 3.1 1 
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QUARK EXCHANGE PINCH DIAGRAMS 

Representative Diagram Label No. in Symmetry Group 

QP 1.1 4 

QP 1.2 4 

QP 1.3 4 

QP 1.4 4 
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QUARK EXCHANGE PINCH DIAGRAMS (continued) 

Representative Diagram Label No. in Synnnetry Group 

QP 2.1 2 

QP 2.2 2 

Q,P 3.1 2 

QP 3.2 2 
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QUARK EXCHANGE HARD DIAGRAMS 

Representative Diagram Label No. in Symmetry Group 

QH 1.1 2 

QH 1.2 4 

QH 1.3 2 

QH 2.1 2 

QH 2.2 4 

QH 2.3 2 
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QUARK EXCHANGE HARD DIAGRAMS (continued) 

Representative Diagram Label No. in Symmetry Group 

QH 3.1 4 

QH 3.2 4 

QH 3.3 4 

QH 3.4 4 
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QUARK EXCHANGE HARD DIAGRAMS (continued) 

Representative Diagram Label No. in Symmetry Group 

QH 4.1 2 

QH 4.2 2 

QH 4.3 2 

QH 4.4 2 

QH 4.5 2 

QH 4.6 2 
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QUARK EXCHANGE HARD DIAGRAMS (continued) 

Representative Dia gram Label No . in Syrrnne try Gr oup 

')H 5.1 2 

4 
QH 5.2 

QH 5.3 4 

QH 5.4 2 

QH 6. 1 4 

QH 6 . 2 4 



-145-

QUARK EXCHANGE HARD DIAGRAMS (continued) 

Representative Diag t am Label No. in Symmetry Gr ou p 

QH 7.1 4 

QH 7.2 4 

QH 8.1 1 

QH 9.1 2 

QH 10.1 1 

Fig. 4.2 
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GHl.1 YiITH COUPLlNG CONSTANT FACTOR 
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GPl.1 ¥lITH NO FACTORS 
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GPl.1 WITH SUDAKOV AND COUPLING CONSTANT FACTOR 
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ANGULAR DEPENDENCE OF h-FUNCTION 
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FIXED-t PLOT FOR QHl.1 
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CHAPTERV 

SUMMARY AND CONCLUSIONS 

ln this thesis we have used the state of the art understanding of perturba

tive QCD to carry out a detailed computation of same-charge mr elastic scatter

ing. Our calculation shows many interesting features which when generalized to 

7rp and pp scattering provide us with an entirely new perspective on the 

interpretation of the wide angle and small angle behavior of high-P1 elastic data. 

Because of the good agreement with dimensional counting rules, of the 

energy dependence of wide angle data from many different exclusive reactions, 

it has come to be taken for granted that the scattering mechanism at these 

momentum transfers is dominated by the short distance interaction of the 

valence quarks in each hadron. For the case of hadron-hadron elastic scattering 

there exists an alternative scattering mechanism, the multiple scattering 

mechanism, which is not short-distance dominated and therefore poses a threat 

to the above interpretation. The adherents of the hard scattering interpretation 

usually appeal to the presence of a Sudakov factor in the amplitude for the 

scattering of nearly on-shell quarks, in order to show the relative insignificance 

of this contribution. ln our theoretical review we have shown that a careful 

treatment, of the double-logs in the higher order corrections to multiple 

scattering diagrams, leads to the following conclusion: the region of 

momentum-fraction integration where the quarks being scattered are off-shell 

by an amount much greater than A2 but much less than s or It I is not 

suppressed, and in fact gives rise to a non-scaling contribution because of the 
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presence in it of an infra-red length scale. We also show that the correct way to 

compute this contribution to the total scattering amplitude is to calculate and 

' sum the amplitudes corresponding to all the so called pinch diagrams that form 

part of the full set of connected diagrams contributing to the hard subprocess. A 

Sudakov factor is of course included in the integral corresponding to these 

diagrams . The pinch diagrams are comparable in number to the hard ones and 

since their contribution falls slower with energy than the scaling contribution, 

there is a distinct possibility that it could be dominating the elastic cross

section at experimental energies . 

Even though the experimental data seems to agree quite well with the hard 

scattering prediction of power-law scaling, a closer look reveals the presence of 

systematic deviations from this prediction. This point is well demonstrated in 

our experimental review, where we make use of some very recent high statistics 

data on rrp and pp elastic scattering . One of the most serious problems with a 

hard scattering interpretation of the data is the absence of the scale-breaking 

effect expected from the many powers of the coupling constant present in the 

cross-section. Other deviations from scaling include the presence of fine struc

ture over and above a power-law behavior, an increase in the power, n. with 

increasing energy and a definite dependence of n on the scattering angle. The 

delay in the achievement of energy independence of the fixed-t cross-section 

with increasing s is also worrisome since the contribution of gluon exchange 

diagrams in QCD should be comparable to other contributions involving the 

interchange or annihilation of quarks. These observations taken together sug

gest that QCD hard scattering in its simplest form cannot account for all the 

features of the data at the energies involved, and either we are seeing some of 

the sub-asymptotic diffraction type effects which will go away at higher energies 

or the deviations are being caused by a different type of constituent scattering 
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mechanism that is sensitive to the hadronic length scale in a manner different 

from the usual dependence that comes from the running of the coupling con

stant. 

The results of our detailed QCD calculation, limited though they are to mr 

scattering, suggest a possible explanation for the features observed in high-P1 

elastic data. Using the new understanding of Sudakov effects we have calculated 

and analyzed the pinch contribution to mr scattering and we see that its 

behavior is reminiscent of the behavior of elastic data in more ways than one. 

Whether or not this contribution dominates in mr scattering depends very much 

on the magnitude of the infra-red scale A used in the Sudakov factor. The exact 

value of this scale cannot be determined perturbatively but we do expect that it 

should be of the same order of magnitude as the QCD scale in the coupling con

stant. Our calculation certainly demonstrates the possibility that rrp and pp 

elastic scattering may be dominated by pinch effects at experimental energies 

rather tha..'l hard scattering effects. If this is so than the lack of scale breaking 

observed in the data could be caused by a delicate balance between the oppos

ing effects of the coupling constant factor and the partially suppressed pinch 

singularity. The dependence of n on energy and scattering angle is also con

sistent with the behavior of the mr pinch contribution. The oscillating fine struc

ture in the data is not so easily explained, but that could well be a lingering 

geometrical effect not related to constituent scattering. The delay in the 

achievement of energy independence of the fixed-t cross-section at high ener

gies can again be explained in the context of a strong pinch dominance, because 

unlike the gluon exchange hard contribution the pinch contribution keeps falling 

with energy. 

Our calculation shows no support for the constituent interchange model 

(CIM). The diagrams that contribute to the CIM are a small fraction of the total 
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number of diagrams and the contributions of these diagrams have nothing spe

cial about them. In fact despite the somewhat larger number of quark exchange 

diagrams, the contribution of the gluon exchange diagrams works out to be 

larger by an order of magnitude . 

The results of this thesis provide a strong motivation to carry out a similar 

calculation for rrp and pp elastic scattering, and to see if the pinch contribution 

does or does not dominate these cross-sections. It would also be interesting to 

see if the behavior of the pinch contribution can reproduce the angular depen

dence observed in experiment for these reactions and if it has some of the other 

interesting features noticed in our rrrr calculation. The method developed for our 

11'11' computation is completely general and can be extended to the case of rrp or 

pp by merely changing a few numbers used as input into our computer program. 

It is estimated that each diagram for rrp scattering will take about ten times the 

CPU time for a rrrr diagram and since there are about a hundred times more 

diagrams for rrp the total time is multiplied by a factor of about a thousand. 

Considering that each diagram for rrrr scattering takes , on an average, two hours 

of CPU time to get 10% accuracy, this is a very large amount of time on a busy 

Department computer. However with faster and more efficient computers this 

should be possible to tackle. For the pp calculation the time will get multiplied 

by yet another similar factor. An interesting possibility that should be con

sidered seriously is to use a Monte Carlo method to compute the sum of all 

diagram amplitudes by calculating a random set of diagrams. By using well 

known methods of importance sampling this could prove to be a reliable and fast 

method of estimating the absolute normalization of the cross-section and could 

enable us to test the applicability of perturbative QCD to exclusive processes. 

If, as seems to be the case, the renormalization group approach is valid for 

calculating the measured cross-sections at the available energies, then we can 
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actually use the variety of data available for elastic scattering reactions to 

experimentally determine the magnitude of the QCD scale A. and even more 

interestingly, to explore the functional form of the hadron wave function that is 

involved in high-P1 exclusive scattering. Such an investigation could provide a 

unifying link between the perturbative and non-perturbative domains of the 

theory and could help to increase our understanding of the bound state problem 

in QCD. 
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APPENDIX 

DETAILS OF METIIOD 

In this appendix we present some of the details of the method used to carry 

out a numerical computation of the large number of Feynman diagrams encoun

tered in the leading order calculation of rm elastic scattering . The usual method 

of squaring the diagram amplitude and using the casimir trick to get a trace in 

the numerator is not very useful because of the large number of interference 

terms that would be produced in this process. We would like to calculate all the 

amplitudes first, add them up and then square the result to get the cross

section. Thus we need a method of calculation that uses the helicity spinors of 

the quarks involved and carries out the detailed matrix multiplication of these 

spinors with the gamma matrices coming from quark-gluon vertices . This matrix 

multiplication leads to the determination of tensors, one for each quark line, 

with indices given by the Lorentz indices of the gluon polarization tensor. These 

indices must be contracted with each other to give the numerator of the matrix 

element. 

The denominator is much easier to calculate. The momenta of the internal 

propagators can be determined by solving a set of linear equations. These 

momenta are then squared and multiplied to provide the denominator. The color 

factor for each diagram is calculated separately and then plugged into the final 

result of the amplitude . The actual implementation of these procedures can be 

understood by studying the computer program (written in FORTRAN 77) which 

we list below. 



program pipi 

real pie 

integer tpn,grn,dgn,tmn 

integer seed,sx,nx,mx,ax,bx,cx,ix 

integer ns 

- 164 -

real lz,lrz,lsz, tz(20),sz(20),lrsq(20) 

real gee(4,4),eps(4,4,4,4) 

real tdeg,trad 

real az(-1: 1,-1 :1,4) 

real pli( 4),plf( 4),p2i( 4),p2f( 4) 

integer fm(4),dr(4) 

integer q,tq,tqx,g,tg,tp,nqp 

integer tv(6),ng(6,4),sg(6,4),nq(5,-1: 1),nv(5,-1:1) 

integer v,vi(6),vf(6,4) 

real x1i,xlf ,x2i,x2f,xfac 

real pi(4,4),pf(4,4) 

real pa(5,5),pb(5,4) 

integer er 

real wa(5) 

real psq(5),rgp(5,20) ,rep(5,20),imp(5,20) 

real dc,rc,red(20,4),imd(20,4) 

real arg ,alf(3), ca, afac(20) 

real xq,sq,lx,ls,lxs,sfac(20) 
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real num,fun(20),rem(20,4),imm(20,4),trem(20,4),timm(20,4) 

real frem(20),firnm(20) 

real tfrem(20),tfirnm(20),sfrem(20),sfimm(20) 

real cf ac,rmx,rei(20,4) ,imi(20,4) ,frei(20) ,fimi(20) 

real fres(20) ,free(20) ,fims(20) ,fime(20) 

common/setup I pa,pb,pi,pf, tp 

common/compt/ gee,eps,fm,dr,az 

common/ngsg/ ng ,sg 

common/nqnv I nq,nv, tv, tq, tqx 

pie=S.1415926536 

ca=( 12. *pie) /25. 

read(5, •) tpn,grn,dgn,tmn 

read(5, •) seed,nx,bx 

read(5, •) tdeg 

trad=(tdeg*pie)/ 180. 

read(5, •) ns 

read(5, •) (sz(j),j= 1,ns) 

do 95 j=l,ns 

tz(j)= (sz(j) •( 1.-cos (tr ad))) /2 . 

95 continue 

read(5, •) lz,lrz,isz 

call metric(gee) 

call levciv(eps) 



call vecamp(trad,az) 

call hadmom(trad,pli.p1f,p2i,p2f) 

call fmdr(fm,dr) 
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c • setting up the diagram functions • 

read(5, •) tq,tqx,tg,tp 

read(5, •) (nq(g, + 1),nq(g ,-1) ,g = 1. tg) 

do 215 q=l,tqx 

tv(q)=O 

215 continue 

do 220 g=l,tg 

q=nq(g ,+1) 

tv( q) =tv( q) + 1 

q=nq(g,-1) 

tv(q)=tv(q)+l 

220 continue 

do 230 q=l,tq 

if (tv(q).eq.1) vf(q,1)=1 

if (tv(q) .eq.2) read(5,•) vf(q, 1),vf(q,2) 

if (tv(q) .eq.3) read(5,•) vf(q,1),vf(q,2),vf(q,3) 

230 continue 

do 231 q=(tq+l) ,tqx 

if (tv(q) .eq.3) then 

vf(q, 1)=1 



vf(q,2)=2 

vf(q,3)=3 

end if 

if (tv(q).eq.4) then 

vf(q, 1)=1 

vf(q,2)=2 

vf(q,3)=3 

vf(q,4)=4 

end if 

231 continue 

do 235 q=l,tqx 

vi(q)=O 

235 continue 

do 240 g=l,tg 

do 240 ig=-1,1,2 

q=nq(g,ig) 

vi(q)=vi(q)+l 

v=vf( q,vi( q)) 

nv(g,ig)=v 

ng(q,v)=g 

sg(q,v)=ig 

240 continue 
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c "'*** integrating the mtrx. elem. over **** 

c "'*** quark to hadron mom. fractions **** 



read(5, •) ax 

do 250 k=1,4 

read(5, •) (trem(j,k),j=Lns) 

read(5, •) (timm(j ,k),j=1,ns) 

250 continue 

read(5,•) (tfrem(j),j=l,ns) 

read(5, •) (sfrem(j),j=1,ns) 

read(5,•) (tfimm(j) ,j=1,ns) 

read(5, •) (sfunm(j),j=1,ns) 

cx=O 

sx=seed 

mx=ax 

do 390 ix=(ax+1),nx 

x1i=ran(sx) 

x1f=ran(sx) 

x2i=ran(sx) 

x2f=ran(sx) 
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c •initial and final values of quark mom. • 

do 330 k=1.4 

pi(l,k)= x1i•p1i(k) 



pi(2,k)=( 1.-xli)*pli(k) 

pi(3,k)= x2i*p2i(k) 

pi( 4,k)=( l .-x2i)*p2i(k) 

pf(l.k)= xlf*plf(k) 

pf (2,k) =( 1.-xlf) *plf(k) 

pf(3,k)= x2f*p2f(k) 

pf ( 4, k) = ( 1. -x2f) *p2f(k) 

330 continue 
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c • setting up the matrix equations for • 

c •mom. conservation at diagram vertices • 

i=l 

nqp=tg+l 

do 180 q=l,tq 

if (tv(q).eq. l) call setupx(i,q) 

if (tv(q) .eq.2) then 

call setupl(i,nqp,q,l) 

call setupr(i,nqp,q,2) 

end if 

if (tv(q) .eq.3) then 

call setupl(i,nqp,q,l) 

call setupm(i,nqp,q,2) 

call setupr(i,nqp,q,3) 

end if 

180 continue 



do 181 q=(tq+l),tqx 

if (tv(q) .eq.3) call setp3g(i.q) 

if (tv(q).eq.4) call setp4g(i,q) 

181 continue 
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c • solving the matrix equations for mom. of int. lines • 

call leqtlf(pa,4,tp,5,pb,O,wa,er) 

c • calculating the denominator of the matrix element • 

do 170 i=l,tp 

psq(i)= pb(i, 1)*pb(i,1)-pb(i,2)*pb(i,2) 

1 -pb(i,3)*pb(i,3)-pb(i,4)*pb(i,4) 

do 165 j=l,ns 

lrsq(j)=( 4. •lrz*lrz) /sz(j) 

rgp(i,j) =psq(i) *psq(i) + lrsq(j) *lrsq(j) 

rep(i,j) =psq(i) /rgp(i,j) 

imp(i,j)=lrsq(j) /rgp(i,j) 

165 continue 

1 70 continue 

dc=psq(2) •psq (3) 

if (dc.eq.0.) go to 390 

rc=l. /de 

mx=mx+l 
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do 190 j=l,ns 

red(j , 1)=rc•rep( 1,j)•rep( 4,j)•rep(5,j) 

red(j,2)=rc•rep( 1,j)*imp( 4,j)•imp(5,j) 

red(j,3)=rc•imp( 1,j)•rep( 4,j)•imp(5,j) 

red(j.4) =re *imp( 1,j) *imp( 4,j) •rep( 5,j) 

imd(j, 1)=rc•rep( 1,j)*rep( 4,j)•imp(5,j) 

imd(j,2)=rc•rep( 1,j)*imp( 4,j) •rep(5,j) 

imd(j,3)=rc*imp( l ,j)•rep( 4,j)*rep(5,j) 

imd(j,4)=rc*imp( l ,j)•imp( 4,j)*imp(5,j) 

190 continue 

c • calculating the coupling canst. factor • 

do 195j=1.ns 

afac(j)=l. 

do 185 i= 1, tg 

arg=( abs(psq(i))•sz(j)) I ( 4. *lz*lz) 

if (arg.le .1.0) then 

alf(i)=l.O 

go to 184 

end if 

alf ( i) =ca /log( arg) 

if (alf(i) .gt.1.0) alf(i)=l.O 

184 afac (j) =afac(j) *alf (i) 

185 continue 

195 continue 
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c • calculating the suppression factor • 

do 200 j=l,ns 

xq=min(abs(psq( 1)) ,abs(psq( 4)),abs(psq(5))) 

sq=sz(j) I( 4. *lsz*lsz) 

lx=log(xq) 

ls=log(sq) 

lxs=lx+ls 

if (lxs .le.0 .0) then 

sfac(j)=O.O 

else 

sf ac (j) =exp(-1 . 2B*(ls*(log (ls)-log (lxs)) + lx)) 

end if 

200 continue 

c • evaluation of quark-line tensor amplitudes • 

nqp=tg+l 

do 510 q=l,tq 

if (tv(q).eq.1) call comptl(q) 

if (tv(q).eq.2) call compt2(q,nqp ,pb) 

if (tv(q) .eq.3) call compt3(q,nqp,pb) 

510 continue 

do 511 q=(tq+l),tqx 

if (tv(q) .eq.3) call cmpt3g(q,pb) 

if (tv(q).eq.4) call cmpt4g(q) 

511 continue 
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c • contraction of quark-line tensor-amplitudes • 

if (tg.eq.3) call cont3(gee,nurn) 

if (tg.eq.4) call cont4(gee,nurn) 

if (tg .eq.5) call cont5(gee,nurn) 

c •calculating and accumulating the mtrx. elem. • 

do 380 j=l,ns 

fun(j)=nurn•xfac•sfac(j) 

do 385 k=l,4 

rem(j ,k) =fun(j) •red(j,k) 

trem(j, k) =trem(j ,k) +rem(j ,k) 

imm(j,k)=fun(j)•imd(j,k) 

timm(j ,k) =timm(j ,k) +imm(j ,k) 

385 continue 

frem(j)=rem(j, 1)-rem(j,2)-rem(j,3)-rem(j,4) 

tfrem(j) =tfrem(j) +frem(j) 

sfrem(j) =sfrem(j) +frem(J) •frem(j) 

funm(j)=imm(j, l)+imm(j,2)+imm(j,3)-imm(j.4) 

tfunm(j) =tfimm(j) +fimm(j) 

sfunm(j)=sfunm(j)+fimm(j)•fimm(j) 

380 continue 

cx=cx+l 

if (cx.eq.bx) then 

print •,ix 



do 340 k=l,4 

print •,(trem(j,k),j=1,ns) 

print •,(timm(j,k),j=l.ns) 

340 continue 

print •,(tfrem(j),j=1,ns) 

print •,(sfrem(j),j=l,ns) 

print •,(tfimm(j),j=1,ns) 

print •,(sfimm(j),j=1,ns) 

cx=O 

end if 

390 continue 

print 400,tpn,grn,dgn,tmn 

400 format ( 1x,4i5) 

print 395,seed,mx,lz,lrz,lsz,tdeg 
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395 format (1(4x,i10,5x,i8,5x,f4.1,2x,f4.1,2x,f4.1,5x,f5.1)) 

c • the integrated answer and its formal error • 

read(5, •) cfac 

rmx=real(mx) 

print 405, 'REAL' 

405 format (1x,a4) 



do 430 j=l,ns 

do 410 k=l,4 

rei(j,k)=(trem(j,k)*cfac) /rmx 

410 continue 

frei(j) = ( tfrem(j) *cfac) /rmx 
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fres(j) =(sfrem(j)*cfac *cfac) /rmx 

free(j)=sqrt( (fres(j)-(frei(j) *frei(j))) /rmx) 

print 420,sz(j), (rei(j.k),k= 1,4),frei(j),free(j) 

420 format (1x,f8.1,5x,4e12.3,5x,e10.3,5x,e10.3) 

430 continue 

print 435, 'IMAGINARY' 

435 format ( 1x,a9) 

do 460 j=l,ns 

do 440 k=l,4 

imi(j,k)=(timm(j,k)*cfac) /rmx 

440 continue 

funi(j) = ( tfimm(j) *cfac) /rmx 

funs(j) = ( sfimm(j) *cfac *cf ac) /rmx 

fime(j)=sqrt( (fims(j)-(fimi(j) *fimi(j))) /rmx) 

print 450,sz(j), (imi(j,k) ,k= 1,4),fimi(j),fime(j) 

450 format (lx,f8.1,5x,4e12.3,5x,e10.3,5x,e10.3) 

460 continue 

stop 

end 



subroutine comptl ( q) 

c "' components of tl • 

integer q 

real gee(4,4),eps(4.4,4.4) 

integer fm(4) ,dr(4) 

real az(-1: 1,-1: 1,4) 
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real tl ( 4,-1: 1,4), t2( 4,-1: 1,4,4), t3( 4,-1: 1,4,4.4) 

real t3g(6,4,4,4),t4g(6,4,4,4,4) 

common/compt/ gee ,eps,fm,dr,az 

common/tensor I t1,t2,t3,t3g,t4g 

do 415 ih=-1,1 ,2 

do 410 i=l,4 

tl ( q,ih, i) =az( dr( q) ,ih,i) •real(fm( q)) 

410 continue 

415 continue 

return 

end 

subroutine compt2(q,nqp,pb) 

c • components of t2 • 

integer q, nqp 

real pb(5.4) 



real a(4),b(4),p(4) 

real c1 ,c2(4,4) 

real gee(4,4),eps(4,4,4,4) 

integer fm(4),dr(4) 

real az(-1: 1.-1: 1,4) 
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real tl ( 4,-1: 1,4), t2( 4,-1: 1,4,4), t3( 4,-1: 1,4,4,4) 

real t3g(6,4,4,4),t4g(6,4,4,4,4) 

common/compt/ gee,eps,fm,dr,az 

common.ltensor I t1,t2,t3,t3g ,t4g 

do 460 ih=-1,1,2 

do 420 i=l,4 

a(i) =az( dr( q),ih,i) 

b(i) =az( dr( q) ,ih,i) *real(ih) 

p(i)=pb(nqp,i) 

420 continue 

cl=O. 

do 430 i=l,4 

cl=c 1 +gee(i,i)*p(i)*a(i) 

430 continue 

do 450 i=l.4 

do 450 j=l,4 

c2(i,j)=O. 

do 440 k=l,4 
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do 440 l=l,4 

c2( i,j) =c2 (i,j) +gee (k, k) *gee (l,l) *eps(i, k,j, 1) *p(k) *b (1) 

440 continue 

t2( q,ih,i,j)=p(i) *a(j) +a(i) *p(j)-c 1 *gee(i,j)+c2(i,j) 

450 continue 

460 continue 

nqp=nqp+l 

return 

end 

subroutine compt3(q,nqp,pb) 

c * components of t3 * 

integer q,nqp 

real pb(5.4) 

real a(4),b(4),p1(4),p2(4) 

real al ,a2,a3, bl ( 4) ,c 1 ( 4,4) ,c2(4,4),c3( 4.4).dl ( 4,4,4) 

real z1,z2,z3,z4,z5,z6,z7,z8 

real gee(4,4),eps(4,4,4,4) 

integer fm(4) ,dr(4) 

real az(-1: 1,-1: 1,4) 

real t1 ( 4,-1: 1,4), t2( 4,-1: 1,4.4). t3( 4,-1: 1,4.4.4) 

real t3g(6,4,4.4),t4g(6,4,4,4,4) 
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common/compt/ gee,eps,fm,dr,az 

common/tensor/ t1,t2,t3,t3g,t4g 

do 490 ih=-1,1,2 

do 460 i=1,4 

a(i)=az( dr( q),ih,i) 

b(i)=az( dr( q),ih,i) *real(ih) 

p1(i)=pb((nqp+1),i) 

p2(i)=pb(nqp,i) 

460 continue 

a1=0. 

a2=0. 

a3=0. 

do 465 i=1,4 

a1 =a1 +gee(i,i)*pl (i)*a(i) 

a2=a2+gee (i,i) *p2(i) *a(i) 

a3=a3+gee (i,i) *p 1 (i) *p2(i) 

465 continue 

do 470 i=l,4 

bl(i)=O. 

do 470 j=l,4 

cl(i,j)=O. 

c2(i,j)=O. 

c3(i,j)=O. 



do 470 k=l,4 

d1(i,j ,k)=O. 

do 4701=1.4 
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b1(i)=b1 (i) +gee(j ,j) *gee(k,k) *gee(l.l) *eps(j.i.k.l) 

1 •p 1 (j) *p2(k) *b(l) 

c 1 (i.j) =c 1 (i.j) +gee (k,k) *gee(l.l)*eps(i.k.j.l) *p 1 (k) *b(l) 

c2(i,j) = c2( i,j) +gee (k, k) •gee (l, l) *eps(i, k,j ,l) *p2 (k) •b(l) 

c3(i,j) =c3( i,j) +gee (k,k) *gee (L 1) *eps (k, i, Lj) 

1 •p 1 (k) *p2(1) 

d1 (i.j.k) =dl (i,j,k) +gee(l.l) •eps(i,j ,k,l) *b(l) 

4 70 continue 

do 480 i=1.4 

do 480 j=l,4 

do 480 k=l,4 

zl =a(i)*(pl (j)*p2(k) +p2(j)*p1(k)) 

z2=a(j) *(p 1 (i)*p2(k)-p2(i) *p 1 (k)) 

z3=a(k) *(p 1 (i) *p2(j) +p2(i) *p 1 (j)) 

z4=a1 •(-gee(i,j) *p2(k) +gee(j .k) *p2(i)-gee (i.k) *p2(j)) 

z5=a2*( gee(i,j)*p 1(k)-gee(j,k)*p1(i)-gee(i,k)*p1 (j)) 

z6=a3*( gee(i,j) •a(k) +gee(j ,k) *a(i)-gee(i,k) *a(j)) 

z7=c1 (i,k)*p2(j)+c2(i,k)*p1(j)-a3*dl (i,j ,k) 

z8=c3(j,i) *b(k) +c3(j ,k) *b(i)-gee (i,k) *b1 (j) 

t3( q,ih,i,j,k)=(zl +z2+z3+z4+z5-z6+z7-z8) *real(fm( q)) 

480 continue 

490 continue 



nqp=nqp+2 

return 

end 

subroutine cmpt3g(q,pb) 

c • components of t3g • 

integer q 

real pb(5,4) 

real p1(4),p2(4),p3(4) 

real gee(4,4),eps(4,4.4.4) 

integer fm(4),dr(4) 

real az(-1: 1,-1 : 1,4) 

integer ng(6,4),sg(6.4) 
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real tl (4,-1: 1,4), t2( 4,-1: 1;4,4), t3( 4,-1: 1,4,4.4) 

real t3g(6,4,4,4),t4g(6,4,4,4,4) 

common/compt/ gee,eps,fm,dr,az 

common/ngsg/ ng,sg 

common/tensor I t1,t2,t3,t3g,t4g 

do 485 i=l,4 

pl(i)=pb(ng(q, l),i)*sg(q, 1) 

p2(i) =pb(ng( q, 2) ,i) •sg ( q, 2) 

p3(i) =pb(ng( q, 3) ,i) •sg ( q, 3) 

485 continue 



do490i=l,4 

do 490 j=l.4 

do 490 k=l,4 
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t3g( q,i,j,k)= (pl (k)-p2(k))*gee(i,j) 

1 +(p2(i)-p3(i))*gee(j,k) 

2 +(p3(j)-pl(j))*gee(i,k) 

490 continue 

return 

end 

subroutine cmpt4g ( q) 

c * components of t4g * 

integer q 

real gee(4,4),eps(4,4.4,4) 

integer fm(4),dr(4) 

real az(-1:1,-1:1,4) 

real t1 ( 4,-1 : 1.4), t2( 4,-1 : 1,4,4) ,t3( 4, -1: 1,4,4,4) 

real t3g(6,4,4,4),t4g(6,4,4,4,4) 

common/compt/ gee,eps,fm,dr,az 

common/tensor/ tl,t2,t3,t3g,t4g 

do 490 i=l,4 

do 490 j=l,4 

do 490 k=l,4 
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do 4901=1.4 

t4g( q,i,j ,k.1) =gee(i,k) *gee (j .1)-gee(i,l)*gee(j ,k) 

490 continue 

return 

end 

subroutine cont3(gee,num) 

c • contraction of quark-line tensor-amplitudes • 

real gee(4,4),num 

integer id(6,4),q,ih 

real tc( 4,-1: 1), tcx(6) 

real sgn,term1,term2,term3,term 

real tl ( 4,-1: 1,4), t2( 4,-1: 1,4,4), t3( 4, -1: 1,4,4,4) 

real t3g(6,4,4,4),t4g(6,4,4,4,4) 

integer nq(5,-1: 1),nv(5,-1: 1), tv(6), tq, tqx 

common/tensor I tl.t2,t3,t3g,t4g 

common/nqnv I nq,nv, tv, tq, tqx 

num=O. 

do 551 il = 1,4 

id(nq( 1, + 1) ,nv( 1, + l))=il 

id(nq( 1, -1) ,nv( 1, -1)) =i 1 

do 552 i2=1.4 

id(nq(2, + l),nv(2, + l))=i2 



id(nq(2,-1 ),nv(2, -1)) =i2 

do 553i3=1,4 

id(nq(3, + 1) ,nv(3, + l))=i3 

id(nq(3, -1) ,nv(3, -1)) =i3 

do 530 q=l,tq 

do 520 ih=-1.1,2 
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if (tv( q) .eq.1) tc( q,ih)=tl ( q,ih,id( q, 1)) 

if (tv(q).eq.2) tc(q,ih)=t2(q,ih,id(q,2),id(q, 1)) 

if (tv( q).eq. 3) tc( q,ih)=t3( q,ih,id( q,3),id( q,2),id( q, 1 )) 

520 continue 

530 continue 

do 531 q=(tq+l) ,tqx 

if (tv(q).eq.3) tcx(q)=t3g(q,id(q, 1),id(q,2),id(q,3)) 

if (tv(q).eq.4) tcx(q)=t4g(q,id(q, 1),id(q,2),id(q,3), 

1 id(q.4)) 

531 continue 

sgn=gee (il ,il)*gee (i2,i2) *gee (i3,i3) 

terml =tc( 1, + 1) •tc(2,-l)+tc( 1,-l)*tc(2, + 1) 

term2=tc(3, + 1) •tc( 4,-l)+tc(3,-l)*tc( 4, + 1) 

term3=1 . 

do 535 q=(tq+l),tqx 

term3 = term3 •tcx( q) 

535 continue 

terrn=sgn•terml •term2*terrn.3 



nurn=num+term 

553 continue 

552 continue 

551 continue 

return 

end 

subroutine cont4(gee,num) 
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c •contraction of quark-line tensor-amplitudes • 

real gee(4,4) ,num 

integer id(6 ,4),q, ih 

real tc(4,-1:1),tcx(6) 

real sgn,term1,term2,term3,term 

real t1 ( 4,-1: 1.4), t2( 4,-1: 1,4,4), t3( 4,-1: 1,4,4,4) 

real t3g(6,4,4,4),t4g(6,4,4,4.4) 

integer nq(5, -1: 1) ,nv(5,-1 : 1), tv(6), tq, tqx 

common/tensor/ t1,t2,t3,t3g ,t4g 

common/nqnv I nq,nv, tv, tq, tqx 

nurn=O. 

do 551 i1=1,4 

id(nq(1, + 1),nv( 1, + 1))=i1 

id(nq( 1,-1) ,nv( 1, -1) )=i1 



do 552 i2=1,4 

id(nq(2,+ 1),nv(2, + 1))=i2 

id(nq(2, -1) ,nv(2,-1)) =i2 

do 553i3=1,4 

id(nq(3, + 1),nv(3, + 1))=i3 

id(nq(3, -1) ,nv(3, -1) )=i3 

do 554 i4=1,4 

id(nq( 4, + 1),nv( 4, + 1))=i4 

id(nq( 4,-1),nv( 4,-1))=i4 

do 530 q=l.tq 

do 520 ih=-1,1,2 
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if (tv(q) .eq.1) tc( q,ih)=tl ( q,ih,id( q, 1)) 

if (tv(q) .eq.2) tc( q,ih)=t2( q,ih,id( q, 2),id( q, 1 )) 

if (tv( q).eq.3) tc( q,ih)=t3( q,ih.id( q,3) ,id( q,2).id( q, 1 )) 

520 continue 

530 continue 

do 531 q=(tq+l),tqx 

if (tv(q) .eq.3) tcx(q)=t3g( q,id(q, 1) ,id( q,2),id( q,3)) 

if (tv(q) .eq.4) tcx( q)=t4g( q,id( q, 1),id( q,2),id( q,3), 

1 id(q.4)) 

531 continue 

sgn=g ee ( i 1,i 1) •gee (i2,i2) •gee (i3, i3) • gee(i 4,i 4) 

terml=tc( 1, + 1)*tc(2,-1)+tc( 1,-1)*tc(2, + 1) 

term2=tc(3, + 1)•tc(4,-1)+tc(3,-1)•tc(4, + 1) 

term3=1. 



do 535 q=(tq+l),tqx 

term3=term3*tcx( q) 

535 continue 

term=sgn*terml*term2*term3 

num=num+term 

554 continue 

553 continue 

552 continue 

551 continue 

return 

end 

subroutine cont5(g ee ,num) 
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c * contraction of quark-line tensor-amplitudes * 

real gee(4,4),num 

integer id(6,4),q,ih 

real tc( 4,-1: 1), tcx(6) 

real sgn,term1,term2,term3,term 

real t1 ( 4,-1: 1.4), t2( 4,-1 : 1,4,4), t3( 4,-1: 1,4,4,4) 

real t3g(6,4,4,4),t4g(6,4,4,4,4) 

integer nq(5,-1: 1),nv(5,-1 : 1) ,tv(6) , tq,tqx 

common/tensor/ t1,t2,t3,t3g,t4g 



common/nqnv I nq,nv, tv, tq, tqx 

num=O. 

do 551 i1=1.4 

id(nq( 1. + 1),nv( 1, + 1))=i1 

id(nq( 1,-1),nv( 1,-1))=i1 

do 552 i2=1,4 

id(nq(2, +1),nv(2,+ 1))=i2 

id(nq(2,-1) ,nv(2, -1)) =i2 

do 553 i3=1.4 

id(nq(3, + 1),nv(3, +1))=i3 

id(nq(3,-1) ,nv(3,-1))=i3 

do 554 i4= 1,4 

id(nq( 4, +1),nv( 4, + 1))=i4 

id(nq( 4,-1),nv(4,-1))=i4 

do 555 i5=1,4 

id(nq(5, + 1) ,nv(5, + 1))=i5 

id(nq(5,-1) ,nv(5,-1 ))=i5 

do 530 q=l,tq 

do 520 ih=-1,1,2 
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if (tv(q) .eq.1) tc( q.ih)=tl (q,ih,id( q, 1)) 

if (tv(q) .eq.2) tc(q,ih)=t2(q,ih,id(q,2),id(q, 1)) 

if (tv(q). eq.3) tc( q,ih)=t3( q,ih,id( q,3),id( q,2),id( q, 1)) 

520 continue 

530 continue 

do 531 q=(tq+l),tqx 
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if (tv(q) .eq.3) tcx(q)=t3g(q.id(q, l),id(q,2),id(q,3)) 

if (tv(q).eq.4) tcx(q)=t4g(q,id(q, 1),id(q,2),id(q,3), 

1 id(q,4)) 

531 continue 

sgn=g ee (i 1, i 1) *gee (i2,i2) *gee (i3,i3) * ge e(i 4, i 4) *gee ( i5,i5) 

terml=tc( 1, + 1) *tc(2,-l)+tc( 1,-1)*tc(2, + 1) 

term2=tc(3, + l)*tc( 4,-1)+tc(3, -1)*tc( 4, + 1) 

term3=1. 

do 535 q=(tq+l),tqx 

term3=term3*tcx( q) 

535 continue 

term=sgn*terml *term2*term3 

num=num+term 

555 continue 

554 continue 

553 continue 

552 continue 

551 continue 

return 

end 

subroutine fmdr(fm,dr) 
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c •fermion no. and direction of quark lines * 

integer fm(4),dr(4) 

fm(l)=+l 

fm(2)=-1 

fm(3)=+1 

fm(4)=-1 

dr(1)=+1 

dr(2)=+1 

dr(3)=-1 

dr(4)=-1 

return 

end 

subroutine hadmom(trad,pli,plf,p2i,p2f) 

c • initial and final values of hadron mom. * 

real trad,sn,cs 

real p li( 4) ,p 1f( 4),p2i( 4),p2f( 4) 

sn=sin(trad) 

cs=cos(trad) 



pli(l)= 1.0 

pli(2)= 0.0 

pli(3)= 0.0 

pli(4)= 1.0 

plf(l)= 1.0 

plf(2)= sn 

plf(3)= 0.0 

plf(4)= cs 

p2i(l)= 1.0 

p2i(2)=-0.0 

p2i(3)=-0.0 

p2i(4)=-1.0 

p2f(1)= 1.0 

p2f(2)=-sn 

p2f(3)=-0.0 

p2f(4)=-cs 

return 

end 

subroutine levciv(eps) 
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c • specification of levi-civita tensor * 

real ex,ey,eps(4,4,4,4) 



logical lg 

ex=-1. 

ey=l. 

do 320i=1,4 

do 320 j=l,4 

do 320 k=l,4 

do 320 1=1,4 
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lg=(i.eq.j) .or. (i.eq.k).or. (i.eq.l) .or .(j .eq.k).or. 

1 (j .eq.l).or.(k.eq.l) 

if (lg) then 

eps(i,j,k,l)=O. 

else 

ex=ex*-1. 

ey=ey•ex 

eps(i,j,k,l)=ey 

end if 

320 continue 

return 

end 

subroutine metric (gee) 

c • specification of metric tensor • 

real gee(4.4) 



gee(l,1)= 1. 

gee(2,2)=-1. 

gee(3,3)= 1. 

gee( 4,4)=-1. 

do 310 i=l.4 

do 310 j=l,4 

if (i.ne.j) gee(i,j)=O. 

310 continue 

return 

end 

subroutine setp3g(i,q) 

c • three-gluon vertex * 

integer i,q 

- 193 -

integer ng(6,4),sg(6.4),tp 

real pa(5,5) ,pb(5.4) ,pi( 4,4),pf( 4.4) 

common/setup/ pa,pb,pi,pf,tp 

common/ngsg/ ng,sg 

if (i.gt . tp) return 

do 14 j=l,tp 

if (j .eq.ng(q, 1)) then 

pa(i,j)=sg(q, 1) 

else if (j .eq.ng(q,2)) then 



pa(i,j)=sg(q,2) 

else if (j.eq.ng(q,3)) then 

pa(i,j)=sg(q,3) 

else 

pa(i,j)=O 

end if 

14 continue 

do 24 j=l.4 

pb(i,j)=O 

24 continue 

i=i+l 

return 

end 

subroutine setp4g(i.q) 

c • four-gluon vertex • 

integer i,q 

integer ng(6,4),sg(6,4),tp 
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real pa(5,5) ,pb(5,4) ,pi( 4,4),pf( 4,4) 

comm.on/setup/ pa,pb,pi,pf,tp 

coinrn.on/ngsg/ ng,sg 

if (Lgt.tp) return 



do 14 j=l,tp 

if (j.eq.ng(q,1)) then 

pa(i,j)=sg(q, 1) 

else if (j.eq.ng(q,2)) then 

pa(i,j)=sg(q,2) 

else if (j .eq.ng(q,3)) then 

pa(i,j)=sg(q,3) 

else if (j.eq.ng(q,4)) then 

pa(i,j)=sg(q,4) 

else 

pa(i,j)=O 

end if 

14 continue 

do 24 j=l.4 

pb(i,j)=O 

24 continue 

i=i+l 

return 

end 

subroutine setupl(i,nqp,q,v) 

c • left vertex • 

integer i,nqp,q,v 
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integer ng(6,4),sg(6,4),tp 

real pa(5,5),pb(5,4),pi( 4.4).pf( 4,4) 

common/setup/ pa,pb,pi,pf,tp 

common/ngsg/ ng ,sg 

if (i.gt.tp) return 

do 11 j=l,tp 

if (j.eq.ng(q,v)) then 

pa(i,j)=sg(q,v) 

else if (j.eq.nqp) then 

pa(i,j)=+l 

else 

pa(i,j)=O 

end if 

11 continue 

do 21j=1,4 

pb(i.j)=pi( q,j) 

21 continue 

i=i+l 

return 

end 

subroutine setupr(i,nqp,q,v) 
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c • right vertex • 

integer i,nqp,q,v 

integer ng(6,4) ,sg(6,4),tp 

real pa(5,5),pb(5,4),pi( 4,4),pf( 4.4) 

common/setup/ pa,pb,pi,pf,tp 

common/ngsg I ng, sg 

if (i.gt . tp) return 

do 12 j=l,tp 

if (j .eq.ng(q,v)) then 

pa(i,j)=sg(q,v) 

else if (j.eq.nqp) then 

pa(i.j)=-1 

else 

pa(i,j)=O 

end if 

12 continue 

do22j=l.4 

pb(i,j) =-pf( q,j) 

22 continue 

i=i+l 

nqp=nqp+1 
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return 

end 

subroutine setupm(i,nqp,q,v) 

c • middie vertex • 

integer i,nqp,q,v 

integer ng(6,4),sg(6.4).tp 

real pa(5,5),ph(5,4),pi(4,4),pf(4,4) 

common/setup/ pa,pb,pi,pf,tp 

common/ngsg/ ng,sg 

if (i.gt. tp) return 

do 13 j=l,tp 

if (j.eq.ng(q,v)) then 

pa(i,j)=sg(q,v) 

else if (j.eq.nqp) then 

pa(i.j)=-1 

else if (j.eq.(nqp+l)) then 

pa(i,j)=+l 

else 

pa(i,j)=O 

end if 

13 continue 

do 23 j=l.4 



pb(i,j)=O 

23 continue 

i=i+l 

nqp=nqp+l 

return 

end 

subroutine setupx(i,q) 

c • single vertex * 

integer i,q 

integer ng(6.4),sg(6,4),tp 
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real pa(5,5),pb(5.4),pi( 4,4),pf( 4.4) 

common/setup/ pa,pb,pi,pf,tp 

common/ngsg/ ng ,sg 

if (i.gt .tp) return 

do 10 j=l.tp 

if (j .eq.ng(q, 1)) then 

pa(i,j)=sg(q, 1) 

else 

pa(i,j)=O 

end if 

10 continue 



do 20 j=l.4 

pb(i,j) =pi( q,j)-pf( q,j) 

20 continue 

i=i+l 

return 

end 

subroutine vecamp(trad,az) 
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c • specification of quark-line vector-amplitudes • 

real trad,s,c 

re al az ( -1 : 1, -1 : 1, 4) 

s=sin(trad/2.) 

c=cos(trad/2.) 

az(+l.+1.1)= c 

az(+l,+1,2)= s 

az(+l.+1.3)= s 

az( +1,+1.4)= c 

az( +1,-1, 1)= c 

az(+l,-1 ,2)= s 

az(+l,-1 ,3)=-s 

az( + 1,-1,4)= c 



az(-1,+1, 1)= c 

az(-1,+1.2)=-s 

az(-1.+1,3)= s 

az(-1,+1.4)=-c 

az(-1,-1,1)= c 

az(-1,-1,2)=-s 

az(-1.-1,3)=-s 

az(-1,-1,4)=-c 

return 

end 
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