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ABSTRACT

An investigation is made of the static and dynamic response of
simple cable systems to applied load. Both the single, suspended
cable and the counterstressed double cable system (the cable truss)
are treated. More complicated systems, such as cable nets, are not
treated. The geometry of the simple cable systems is such that the
cable slopes are, and remain, small. For example, the ratio of sag
to span of the suspended cable must be about 1:8, or less.

Closed form solutions are given to a variety of cable problems
which have important applications in practice. The work is divided
into two chapters.

In the first chapter solutions are given for the response of a
single, suspended cable to static loading, and a comprehensive theory
is presented for the free, linear vibrations of the suspended cable.
Where necessary, in the static analyses, the solutions are given
accurate to the second order of small quantities. The results of
simple experiments are reported.

The second chapter deals with the cable truss and, again, static
analyses are given and a theory is preseated for the free, linear
vibrations of the cable truss. The possible lateral instability of the
cable truss under applied load is investigated.

An attempt is made to give static solutions which are of general
significance. In the past this has rarely been done. It is shown that
a parameter which involves cable elasticity and geometry has a very

important bearing on several of the theories presented. The param-
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eter does not appear to have been given before and, for this reason,
most previous works are of limited applicability and in some cases
they are wrong. For example, the linear in-plane vibratiohs of these
simple cable systems can be analyzed correctly only if this parameter
is included. The lateral instability of the cable truss is important,
not only because previously it appears that it has been ignored, but
also beg:a,usé it opens up a new field of buckling problems which are

unlike any others.
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GENERAL INTRODUCTION

The thesis is divided into two chapters and each chapter is
further divided into several sections and sub-sections. Each chapter,
and many of the sections, have their own introductions where a brief
account is given of the historical development of the particular subject
under investigation. The historical information has been collected
from many sources; in some cases the original works have been
referred to, in others, where source material is difficult to obtain,
the reader is directed to treatises which list the references.

The first chapter contains analyses of the single, suspended
cable which are valid provided that the ratio of sag to span is about
1:8, or less. The use of such cable systems is widespread, trans-
mission lines of various sorts and suspension bridges being two
cases in point. In the first section topics which receive attention
are the free-hanging, inextensible parabolic cable, the elastic
parabola and the response of a parabolic cable to various forms of
applied static loading. The second section contains a detailed treat-
ment of the linear theory of free vibrations of a suspended cable.
Both the in-plane and out-of-plane modes are investigated. In each
section examples are given, both .nurnerical and theoretical, which
illustrate and augment the theories,and the results of simple experi-
ments, conducted on model cables, are presented.

The second chapter is concerned with analyses of the cable
truss. The cable truss is a counterstressed system consisting of

two pretensioned cables, anchored off between rigid supports, which



form the chords of the truss and between which numerous spacers
are placed to provide the web members. Cable trusses have been
‘used in arrays to support the roofs of large-span buildings. In the
first section static analyses are given for those types of loadings
which will be commonly encountered in practice. The second section
contains a brief discussion of the dynamic analysis of the cable truss
and, in the third section, a detailed presentation is made of the
lateral instability which may be exhibited by the truss in resisting

applied loading. Once again, several examples are given.
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Chapter I

THE PARABOLIC CABLE

The Bosporus bridge, Istanbul (main span 1074m)
‘opened 30 October 1973,



A

An investigation is made of the response of a suspended para-
bolic cable to various types of static and dynamic loadings. The studyr
-is primarily theoretical, althbugh the results of some simple experi-
ments are reported and ill\istrative examples are presented.

The cable is assumed to be of uniform cross section and is
made from a material of uniform density which obeys Hooke's Law.
Expansions and contractions of the cross section, associated with
changes in the length of the cable and the effects of Poisson's Ratio,
are considered negligible. The flexural rigidity of the cable is
ignored (see Appendix I). It is assumed that the cable is perfectly
flexible and, consequently, resists applied load by developing direct
stresses only. It follows, therefore, that at any cross section the
resultant cable force is tangential to the cable profile at that point,
and it acts through the centroid of the cross section. For\simplicity,
each end of the cable is assumed to be anchored on rigid supports
which are at the same level.

The assumption of a parabolic profile for a free-hanging, uni-
form cable, rather than the exact solution of the catenafy, requires
that the ratio of the sag to span be kept relatively small. The
analyses to be presented are valid provided that the ratio of sag to
span is 1:8, or less. Usually, uniform cables whose geometry does
not satisfy the above requirement are inaccurately described by para-
bolic profiles. However, such cables are rarely used as structural

members supporting transverse loading.



A. RESPONSE TO TRANSVERSE STATIC LOADING
1. Parabolic Cable Hanging Under Its Own Weight

Following a brief historical note, and in order to lay a
foundation from which later work is developed, two fundamental
results are given for the free-hanging, parabolic cable.

a. Historical background
It appears that Galileo(ls), in the early seventeenth
century, was the first to investigate the form of the curve adopted
by a uniform, inextensible cable or chain®¥, which is fixed at each
end and hangs under its own weight. Apparently, he went no further
than to notice the similarity between this curve and the parabola.

It is now known, of course, that the curve adopted by.

such a cable is the catenary. The solution was first published in 1691
by an eminent group of geometers consisting of James Bernoulli, his
brother John, Leibnitz and Huygens''?). Later, in 1697, David
(15)

Gregory obtained a solution. Several other ''catenary' problems
were pursued by James Bernoulli (including the first attempt to allow
for the effects of cable stretch). Subsequently, the investigations
were taken up by others. Perhaps the most interesting of these other

investigations is the catenary of uniform strength, in which the area

of the cable is varied to allow the stress to remain constant along the

*Hereinafter, ''cable' will be used in lieu of "chain', although it was
not until the mid-nineteenth century that metal cables (i. e., iron and,
later, steel) became common.
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cable. The solution was obtained by Gilbert(ls), in 1826, in connec-
tion with Telford's design of the Menai Straits suspension bridge.

In spite of Galileo's early musings on the subject, it is
surprising that more than one hundred years elapsed after the dis-
covery of the catenary before the simpler, parabolic cable was dis-
covered. In 1794, again in connection with the design of a proposed
suspension bridge, this time in Leningrad, the engineer Fuss(ls)
(Euler's son-in-law) found that, if the cable's weight was assumed to
be uniformly distributed along the span rather than along the cable,
the cable hung in a parabolic profile. The parabolic cable has since
received considerable attention, not only because of its simplicity,
but also because in many situations (such as suspension bridges), a
substantial part of the load is uniformly distributed along the span.

However, in all work prior to the mid-nineteenth
century, apart from that mentioned in connection with James
Bernoulli's researches, no allowance was made for the finite, but
usually small, extensibility which such cable systems possess. As
a result, the concept of cable elasticity received little recognition
until 1858 when Rankine(lo) gave an approximate solution for the
increase in sag obtained when an inextensible, free-hanging parabolic

cable is allowed to stretch. This was followed in 1891 by Routh's(ls)

gsolution of the more difficult elastic catenary.
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b. The inextensible parabola

High pressure gas line Ventura County, California
{(span 135m, pipe diameter 40cm),

X I/ z2

{a) Definition Diagram

dy
Ay ax /T
__. ds ds
wAs

sy

(b) Equilibrium of an element

Figure 1
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The first result given concerns the profile adopted by,
and associated properties of, a uniform inextensiﬁle cable hanging
under its own weight. Because the ratip of sag to span is 1:8, or
less, the load may be assumed uniformly distributed along the span.

Vertical equilibrium of an element of the cable, shown

in Fig. 1, requires that
d dy\ _
ds <T ds) T (1.1)

where T is the tension in the cable, w is the weight of the cable
per unit length and %}é’ is the sine of the angle of inclination.
The horizontal component of cable te.nsion,‘ H, is

constant since no longitudinal components of load are acting.
H=T dx _ Constant : (1 2)‘
ds ' ' : '

where -g—}ss is the cosine of the angle of inclination. Consequently,

Eq. 1.1 is reduced to

o
%
i

%
|

_ ds
dx= dx

or , (1.3)

H—d—g}i = —w{l + (%}%)2 }%

When w is constant the solution of Eq. 1.3 gives the catenary. When
w g—; is constant the profile of the cable is a parabola (which is the

essence of the discovery made by Fuss).
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However, for flat-sag cables of constant weight per
unit length, the slope of the cable profile is everywhere small and,

therefore

ds =2 dx
The equilibrium of an element of such a cable is then accurately
specified by

&y _

HiZ = -w (1. 4)

The solution of this differential equation, for the

coordinate system shown in Fig. 1, is the parabola

= 3a{E- () 02

The cable deflection at mid-span (x = %) is the sag, d, and the

horizontal component of cable tension is

8d *

The tension at any point in the cable is

L
T =H{l+ (%}2}2 | (1.7)

which is little different from H. With the aid of Eq. 1.6, Eq. 1.5 is

more conveniently written as

y=4d{

=N
=M

-( )2} (1.8)
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But the solution is not yet complete. For example, if
only w and{ are known, H cannot be determined until d is known.
In such a situation the length of the cable, 1., must be known a
priori, and then the sag may be found. In calculating the sag it is
imperative to include the quadratic term, (%}%)2 » otherwise the sag
is zero.

Now
] oL
L=[ {1+(%XX> }2 dx
0
and because
E-2{-2(0)

it follows that

e[l @) e o

(7)

The above integral may be evaluated exactly' '« However, it is con-
venient, and sufficiently accurate, to expand the integrand of Eq. 1.9
in a binomial series and then to carry out the integration term by

term. If this is done it is found that

L=1{1+—?8’—(%)2-%?1(%>4+...} (1.10)

Fromthe first three terms of the series

@ {2 &) ) e
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Therefore, in general, if w and{ are known it is
necessary to specify only one of the three remaining variables
(H, d, L) in order to obtain a complete solution.

c. The elastic parabola

In many situations the increase in sag owing to the
stretching of the cable in its free-hanging position is of little
importance. Indeed, for steel cables spanning distances of 100 m,
the increase in sag may be safely ignored and the classical, inex-
tensible theory of the previous section may be used with confidence.

For long-span cables, with spans of the order of
1000 m, the situation is different. While the fractional increase in
the sag, owing to cable stretch, may be much the same as in shorter
spans, the absolute increase in sag is many times greater. Sag
increases of 1 m or more are possible for long-span steel cables,
such as occur in construction of suspension bridges when the cables
are in their free-hanging positions. In such situations it is imperative
to be able to calculate the sag accurately.

Rankine's work represented the first serious attempt
to solve this problem and this was followed by Routh's exact solution.
However, Rankine's solution contains unnecessary approximations
and, unfortunately, Routh's solution is inconvenient on account of the
coordinate system used. The following is an attempt to bridge the
gap betweeh these two previous approaches.

Fof a given inextensible sag d, an unstressed length

of cable L is laid out (see Eq. 1.10). When this cable is hung
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between the two supports, a distance f (< L) apart, stretchingoccurs;
the sag increases to (d + Ad) and the horizontal component of tension
reduces from its inexte.nsiblevvalue (see Eq. 1.6) to (H - AH).

It can be seen from Fig. 2 that ah element at point P
in the inextensible profile, with coordinates (x,y), moves to a new
position at P’ in the stretched profile, with coordinates (x + u,

y + v). The quantities u and v are the longitudinal and vertical
movements of the cable element respectively.

Provided that these movements are small, vertical

equilibrium of the element in the stretched configuration is given by

(H - AH)—5 (y+v) = -w (1. 12)

which can be integrated directly to give the parabola

_ 1 wi® [ x x\°
Y4V TTEY o f'(z‘)} (1.13)
where H, = -Aﬁ- . After Eq. 1.5 is substituted into Eq. 1.13, the
parabola for the additional deflection is found to be |
H, e
= oW Ix (XY
VEUTH) 2= {1‘(11)} (1.14)

Hence, the fractional increase in sag owing to cable stretch is

H,

'A‘

=T THEy

(1.15)

_Ad
where d*— T -
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Inextensible cable

Extensible cable

Figure 2 Definition diagram for elastic parabola,

2k )‘2
y= 57 (2Hy - Hy2)

Figure 3 Graphical solution of H, for elastic parabola,
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In order to evaluate H,, recourse must be made to
the cable equation which relates the stretching of the cable element
to the geometric displacements which it undergoes. In the present

context the equation reads

(H - AH) (%—fz)a
EAc dx

+ T2 (%}2 (1. 16)
where E. is Young's modulus and Ac is the area of the cable. This
equation is of fundamental importance and is accurate to the second
order of small quantities. A derivation of the general cable equation
can be found in Appendix II.

The displacements u and v are zero at each end of
the cable, dy and dv are continuous along the span, and so integra-

dx dx
tion by parts of Eq. 1.16 yields

b
(H-80H)Le 420 1 4%
—ECA—C-—"—-<'&-;2- -z—a—— v dx (1.17)
0

where Le is a virtual length of the cable defined by

- [ (&) st 0 (2

After substitution, integration and rearrangement the

following cubic is obtained from Eq. 1.17

a_ A®
(1 - H,)®= 57 QH,-H}) (1.18)
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where

2 = (ﬂ)z L
X H Hlg
ECAC
The dimensionless variable, 32, is the fundamental
parameter of the extensible cable. It takes account of the effects of
initial cable geometry and cable elasticity and will arise repeatedly
throughout this thesis.
Equation 1. 18 can be solved in standard ways, but a

graphical solution is convenient here. Figure 3 shows that H, must

lie between
0<H, <1
an intuitively obvious result. Consider now the two limits for »2:
(i) 32 large (i.e. »2 > 100)
This covers most freely hanging cables which have

small, although appreciable, sag to span ratios. To sufficient

accuracy Eq. 1.18 thea becomes

from which

(1.19)
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The corresponding result from Rankine's approximate theory (as

reported by Pugsley(lo)), may be rearranged to

which is somewhat larger.
Coansider the following example which could apply to

a free-hanging cable of a long-span suspension bridge.

Example 1
= 4,4 kN/m

Cable properties: £ = 915 m (3000 ft); w

(300 1b/ft); Ec = 180 X 10° kN/m2 (26 X 108 psi); A = 0.161 m2

(250 in? ); sag ratio (initial geometry) = 1:12.

Hence

A2 =2 X 10°>>100

and consequently

1
170

!
3%
R

1

169

3
*
R

from which
Ad = 0.455 m (1. 49 ft)

Rankine's theory gives
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In a more realistic example attention would have to be paid to the
possible influence of the towers and side-spans.
(i) )2 small (i.e. )2 << 1)
Cables for which )2 1is small may be flat (in which
case Wﬁl is small) and/or they may be very extensible (in which case

E. is small). Some care has to be exercised in taking the limits of

Eqgs. 1.13 (or 1.14) and 1.18 as )? approaches zero. In such cases

(1.20)

atod 7 [y (B ) (50}

Three separate situations may be isolated, in each of
which )2 1is small. When (%) is small and Ec is large, as in a
taut, flat steel cable, it is seen that Ad - 0, as expected. Ii, for
some cable, both (%) and Ec are small, then Ad is finite.
Alternatively, if (%) is of order unity and E; is small, Ad - oo.

Th¢ last two situations are of little practical impor-
tance. Indeed, the third case can be correct only in a qualitative
sense since the assumption of small additional deflections, on which
the analysis is based, is clearly violated.

It is noticed from Eq. 1. 20 that a substantial change in
tension occurs when )2 is very small. This could be important in a

practical situation involving taut, flat steel cables if a procedure was

followed whereby the cable was cut and then hung in position.
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However, this procedure is usually impracticable since the unstressed
length of such a cable is only a minute fraction longer than the span
and problems of accurate measurement and construction would cer-
tainly arise. Normally, the construction of such a cable would be
effected by placing it in jacks, prestressing the cable to a given pre-
tension, and then anchoring it off. Since the weight and span of the
cable are known, the sag in the free-hanging position is found directly

from the inextensible theory, Eq. 1.6.

It may be concluded that the theory of the elastic parabola
will find an application primarily in the construction of the cables of
suspension bridges and possibly in the construction of large, overhead
electric power lines. The approximate results given by Eq. 1.19 may
be used with confidence for such problems. In most other practical
situations, the stretching of the cable in its free-hanging position may

be ignored.
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2. Parabolic Cable Under Applied Loads

Erection of first segment of deck of the Bosporus bridge.
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After the discovery of the catenary, the first work which
considered the behavior of a free-hanging cable under the action of an

(15)

~applied load was that of James Bernoulli at the end of the seven-
teenth century. Using geometrical principles, as was common at
that time, he investigated the response of a catenary to a central
force.

It was not until 1796 that Fuss(15) derived the general
equations of equilibrium, in Cartesian coordinates, for a cable
element under any type of force.

Later, around the middle of the nineteenth century, several
papers appeared in connection with the design of suspensibn bridges in
which analyses were presented for the behavior of a heavy, parabolic
cable under various types of applied loading. These theories were

(10), but mainly by an anonymous

developed partly by Rankine in 1858
writer in 1860 and 1862(10), It was realized at this time that the
response of the cable was non-linear. Successive equal increments of
load were seen to cause successive increments in the corresponding
deflection, each smaller than the last. T};is non-linear stiffening

effect was later discussed in some detail by Pugsley(lo). These later

theories have been presented in book form by Pugsley(lo).

More recently, with the advent of the digital computer,
numerical solutions have been presented. For example, O'Brien(g)
has shown how numerical techniques may be employed to obtain gen-

eral solutions to suspended cable problems. B'ucha..nan(l) has pre-

sented a brief analysis of two-dimensional cable systems using
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perturbation methods, The digital computer is sometimes an
essential tool in analyzing complicated problems, however, its use
is not required to solve the problem at hand,

In the analyses to be presented here, the equations of equilib-
rium are solved in a straightforward and physically meaningful man-
ner., Compatibility of displacements will be satisfied by a cable
equation which, in general, will allow for terms up to and including
the second order of small quantities, Thus, general results are
derived which are accurate to the second order of small quantities,
Simplifications are then made to the general theory; the solutions are
linearized and they are also adapted to apply to cables which are
initially taut and flat,

a. Point load on cable

To begin with, it is assumed that the shape of the cable,

in its free-hanging position, is given by the parabola

_wi® 5_(§)2
Y=20 11 [}

where any initial effects, owing to cable elasticity, have been ac-
counted for,

Consider a point load P acting at a distance x; from
the left-hand support (see Fig, 4), Provided that the additional move-
ments of the cable are small, so that the slope of the cable remains
small, vertical equilibrium at a cross section of the cable requires

that
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Figure 4 Definition diagram for point load oncable,

(i) for 0< 1§<T ,

a i Xy, oWl () | 2x
(H+h)§(y+v)—P(l-£ +2(1-£)

where v is the additional vertical cable deflection and h is the

increment in the horizontal component of cable tension owing to the
point load. The right-hand side of the above equation is analogous
to the shear force in a simply supported beam of uniform weight under

the action of a point load. Hence,
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(H+h)%=P(1_ﬁ)-h91 (1.21)

Similarly it is found that
.. X1 x
—_—< e L
(ii) for 7 T s 1,

dv_ Px o, dy (1.22)

(H+h) 3o 7 ax

Equations 1. 21 and 1. 22 are then integrated and, after
the boundary conditions have been satisfied, the dimensionless

equations for the additional vertical cable deflection are found to be:

where

0,
1

The non-linear nature of the response of the cable to the applied

loading is apparent from these two equations.
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In order to éomplete the solution, h, must now be
evaluated. Use is made of the cable equation, where terms up to
and including the second order of small quantities have been retained

(see Appendix II).

2 yi
hLe
—_ dy dv 1
B Ac ldu+‘/0 e Xdx+2

Since g—};— is continuous along the span and u and v are zero at

each support, this equation reduces to

hLe . 1 £ dv \?
ECAC=-I_T[de+E (a—g) dx (1.25)
0 0 . |

Under point loading (%;9 is discontinuous at the
position of load application and the last integral above, when inte-

grated by parts, gives

1 Xy % /]

1 dv 2 _ 1 dv dzv dzv

7 dX) dX-——Z{a;V +'(§ de+d—x2 v dx
0 X1 0 ‘ X3

This result may now be substituted into Eq. 1.25. After Eqs. 1.23
, ,

and 1. 24 have been substituted into Eq. 1.25 and the integration has

been performed, the following dimensionless cubic équatio‘n for h,,

is derived
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om0 { () () e+ P -Treony }

This equation may be rearranged to the standard form for a cubic

s A N\.s A2 RN _
h*+(2+2-4->h*+(1+—1—2—>h*- > (D(i) P.(l+P,)=0
' (1. 26)

This cubic is of the form
zZ2+ az?2 +bz-c=0

where a,b,c are positive, real quantities. Accordingly, from
Descartes' ''rule of signs", there is just one, positive real root of

Eq. 1.26. This root is the required value of h,.

The cubic can be solved exactly using the requisite

forms of Cardan's equations (see, for example, Uspensky(zo)).
For a given problem it is clear that h, depends not
only on P, and %, but also on )2 — the parameter which allows
for cable geometry and elasticity. Also, it may easily be shown
that, for given va_lues of P, and }?, h,is a maximum when x, :% .
The variables P, and »*® may take on any value, large or small,

b

provided that the slope of the cable remains small.
A knowledge of the small, longitudinal cable move-
ment induced by the loading, may be important in some applications.

These movements may be calculated from the cable equation and in

dimensionless form they read:



(i) for 0= F <2,
h Lx
% Le 2+ h, <]_ §\+ P’l‘ <1 _ﬁ\ Vo
Y% T 2P, T+h,) \2 I,/ T+hy 1/)(2
2+ h, fiﬁ Vg X)
- = d(— (1.27)
T+h)J, 2 T

h\b L 2+ h>-» l X) P:'.< (ﬁ\ Zf
%% T 52D, T +1h,) (z T) " T+n) \T/(Z
X .
2+ h* «e_ V* X P>:< V:}:l
'(1+h*)_/0‘ Td(,a“> “T+hy,) (1.28)

where A is the value of v, at x,,
%

| Lx:,e[(%)-k 24 (%)2{(\1’5)-2(%{')2’*%(%)3}]

The above results are general and will provide
accurate solutions for practical problems in which the effects of a
point load on a parabolic cable have to be assessed.

Two useful simplifications are possible for the general
theory. In the first the solutions are linearized, in the second the
solutions are simplified to provide results for cables which are

initially straight (as in the taut string).
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(1) Linearized theory

The problem is linearized by neglecting all
second order terms which appear in the differential equations of
equilibrium and in the cable equation. This requires that the term

L 2
1
h%‘é be left out of Eqs. 1.21 and 1.22. The term 7.4 (g—;) dx

must also be removed from Eq. 1.25. As a consequence, the

equations for v, read:
| . x X1
(i) for 0O0sx i < T

w0 PEEGEOE)) ew

W BOREGELE)) o

The cable equation is reduced to

hLe o (%
m—ﬁ—fvdx (1.31)
-0

and after substitution, integration and rearrangement the following

linearized expression is obtained for h,

h, = -———-—T-_z— 6P* { T)- T) } (1.32)
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Usually these linearized solutions will be accu-
rate only as long as P, remains small. In fact, when )® is large
- B, should not be greater than about 107 if the equations are to be
accurate to within 10%. However, when )® 1is small, larger values
of P, are admissible. In préctice, steel cables are invariably used
for structural purposes. Thus, changes in ) are brought about
mainly by changes in the cable geometfy. Small values of )?®
correspond to very flat-sag cables, while large values of »Z ,
reflecting the relatively inextensible nature of the steel matérial,
correspond to more appreciable sag ratios (<1:8).

For taut, flat cables )® << 1, and it can be seen
from Eq. 1.32 that h, - 0. Hence Egs. 1.29 and 1. 30 reduce to
those of the classical linear theory of the taut string.

For cables, such as those of the suspension

bridge, where the sag ratio is of the order of 1:10, »® >>1 and

2
e om{ () ()
This result is reported by Pugsley(lo).

One final point, which is of interest for the
linear cable, concerns the overall maximum additional deflection
under a point load. For a given value of zﬁ the maximum additional
deflection occurs at x,. Since 3} may take on any value between 0

and 1, the overall maximum depends on position. To locate this

overall maximum, x is set equalto x; and Eq. l.32 is substituted
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in either Eq. 1.29 or Eq. 1.30 to give

V:f( { <1+12)< ) (Xl) )} (1.33)

Setting the derivative, with respect to 3;—1 » of this equation equal to

zero indicates that possible turning points exist at

., X 1
@ =3

(ii) ?:%{H: <1 -§(1+%)) }

For real roots (which are equally spaced about mid-span), it is
necessary that

Az 2> 24

This is an important criterion and leads to the following observations:
(i) If )= > 24,

then V. has an overall maximum when

-}{-1-:%-{1:4: (1_% (1+i—2,§))%} (1. 34)

When )2 >>» 24 (i.e. the cable is "inextensible!’)

El-.—>l(1:F—1—>=0211 0. 789
T Tz\!'7 7 . 211, 0.

This latter result is reported by Pugsley(lO). The overall maximum

is

value of Vi
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1 12
_ fadld .35
Ve =12 <‘1 + )\2> (1. 35)

and when )2>> 24

(i) If )2 <24,

then Ve has an overall maximum when

x_1
7T ~ 2 (1.36)

and this overall maximum wvalue of Vi is

1 3
V*:Z{l 2 } | (1.37)
+(1+5%)

When )2 << 24 (i.e. a taut string)

Therefore, for the linear parabolic cable, the
overall maximum value of v, , owing to a point load, occurs at the

point of loading and lies between

The location of the maximum occurs at
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It may be concluded for the linear cable that
both the overall maximum value of v,, and the associated value of
3-;}- , depend on the value of )2 . It is emphasized that these results
refer only to a linear cable. It is difficult to solve the more useful
non-linear problem since the solutions will depend on F, as well as
22

The linearized solutions presented here will be
accurate provided that B, ~ 107, If P, is larger, as it will often
be, then second order effects must usually be considered. There is
some difference of opinion on what second order terms must be
retained. In the general theory of this thesis, all second order terms

(10)

are retained. However, Pugsley allows for second order terms in
the equations for cable deflection, but both second order effects and
the effects of cable elasticity are removed from the cable equation.
While this appears a reasonable assumption for such problems as the
response of a suspension bridge cable to a point load (see Example 2),
it is somewhat inconsistent and will lead to inaccuracies in other
situations (see Example 3). Incidentally, if the cable is assumed
inextensible from the outset (as Pugsley has done), there is no way

that the linear theory can give the correct result as the initial cable

profile approaches that of the classical taut string.
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(2) Taut, flat cable
Since in this situation the cable is initially flat
o (or, in reality, nearly so), ya 0. Therefore, the equations for the

vertical cable deflection are:

- x _ %
(i) for 0< T <7 s
¥~ 1T+ hy) 1)1 )

v>k=m];-}_l-;)—{i;l (]. —%)} ‘ (1. 39)

The cable equation becomes

1
ht 1 dv \*
E A ’E_/ (&) (1. 40)
0
Since a—}—{% = 0, the cable equation may be reduced, after integration

by parts, to

ht 1 dv | ’
EA. "2 Vax | + (1. 41)
c**¢c -Xl

and differentiation and substitution of Eqs. 1.38 and 1.39 in Eq. 1.41

and rearrangement gives

hy(l + hy? =X {(%) - (-’fl—)z}Pz (1. 42)
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In this situation )? 1is always very small since (%)2 is very small
for a flat cable. However, F, is usually large so that the product
)\QP*2 is not .necessarilby small. If P, is small, then h, -~ 0, and
the classical results for the linear taut string are obtained.

Equation 1. 42 has an exact solution of the form

1 1)?
h*zf-/g{% _-3-} (1.43)

where
2 3
-_9 a_ , p_
A=-st G T37
and

o]
il
1
W]
Q
it
]
W)
Nl
1
S b
—
P
hl'_.‘;d
~—r
I
N
hl'gc
~
—
%

As expected, it can be shown that f/’Az %— , and f/A = -:1,7 only when
P, =0, or 7+=0,1.
The results given by Egs. 1.38, 1.39 and 1. 42

may be rearranged to give a standard, classical form. If the value

of v at x=x; is written as §, then it is found that

h, :%<EcAA >{ Xl\ }(ﬂ (1. 44)

and
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3 (5= ){(X1\ (X1>} {®-® }‘(1.45)

When x; =-% » Egqs. 1.44 and 1.45 are those reported by I.nglis(3).

These two latter solutions are particularlybuseful
if § , rather than P, is the independent variable; otherwise, the
previous formulation is of most use. The classical formulation, as
given by Inglis, is obtained by considering equilibrium at the position
of load application and then applying a binomial series expansion to
Pythagoras' theorem in order to estimate the rela.tio.nship between
the deflection and the stretching which the inclined cable components
undergo. This method of solution is straightforward only when a point
load is applied to a flat cable. By comparison, the other approach
outlined here is a particular adaptation of the general theory which
can be used readily in other situations where the classical formulation
would be extremely difficult to apply.

b. Examples

As a means of illustrating the theories derived svovfar,
consider the following examples.
Example 2

The first segment of the deck of a long-span suspension
bridge is to be lifted into place at mid-span (for example, see the
photograph on p. 19). Itis required to find the additional deflection
at mid-span and the increment in the horizontal component of cable

tension. The following properties refer to the cables in their free-
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hanging position.

£ =915 m (3000 ft); w= 4.4 kN/m (300 1b/ft); E_. =180 X 10°

kN/m2 (26 X 10° psi); A; = 0.161 m® (250 in? ); sag ratio (in

free-hanging position) = 1:12
The weight of the segment, per cable, is

P = 890 kN (200, 000 1bs)
Hence, 3?=2 X10°, 72=0.5, B, =0.22l. The cubic to be solved
becomes (Eq. 1.26)
b + 85.5 h3 + 168 hy - 67.5 = 0
and the solution is found to be
h, = 0.343

This may be compared with the linear theory (Eq. 1.32) which gives

h, = 0.33

Although this is little different from the more exact theory, the close
agreement is misleading. For this problem the relationship between
additional cable tension and applied loads appears essentially linear,
but the relationship between additional deflection and applied load is
not linear.

The additional deflection at mid-span is, (Eq. 1.23)
vy = 0.0415
from which

v=>5,6m (18.4 ft)
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In a more realistic example the possible influence of the towers and
sidespans would have to be assessed.

Example 3
A "'flying fox' is used to transport materials across a
ravine. In its free-hanging position the cable spans 91.5 m (300 ft)
with a ratio of sag to span of 1:50. It is required to find the additional
horizontal component of cable tension and the additional cable deflec-
tion when a point load of 17.8 kN (4000 1lbs) is carried at mid-span.
Properties of the cable are: w = 38.8 N/m (2.66 1b/ft); E. =
104 X10° kN/m?2 (15 X 10° psi); Ac = 5.06 X 104 m? (0. 785 in2 ).
Hence, )?=60.2, o = 0.5, B, =5.0.
From the general theory (Eq. 1.26) the cubic for h,

F3

becomes
hy + 4.5 h% + 6 hy, - 226 = 0
and the solution is
h, = 4.65

If the theory of the taut, flat cable is applied, tl.rle‘ cubic
for h, becomes (Eq. 1.42)
h,(1 + h,)° = 189
from which
h,=5.1

On the other hand, the linear theory (Eq. l.32) gives

h, = 6.25
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In this problem the general theory is indispensible if the correct solu-
tion is to be obtained.
The additional cable deflection at mid-span is

(Eq. 1.23)
vy = 0.0237
from which
v =1.73m (5.68 ft)

Under this loading the sag of the cable has almost doubled but, since
the cable slope is still small, the result is reliable.
(c) Experiments on a taut cable

In order to check the accuracy of the theories presented
for the response of a cable to a point load, it was decided to carry out
a short experimental program. A flat, taut cable was chosen since it
is the easiest to experiment on. Also, it was felt that, since the
theory for the taut cable is closely related to the general theory, good
agreement here between the theory and experiment could reasonably
be construed as verification for the general theory.

Consequently, a small rigid test rig was constructed
which had a clear span of 91.5 cm (3 ft). See Fig. 5. The cable
was anchored at one end and passed over two rigid uprights before
being anchored in a nut and bolt device at the other end. The initial
cable tension was adjusted by this device.

Two types of cables were tested. One consisted of

multiple twisted strands, the other was a piano wire.
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In each case the experimeqtal procedure employed was
as follows. The cable was placed in the rig and pretensioned to some
’ valﬁe H. This initial pretension was calculated by nﬁeasuririg the
deflection caused by hanging a small Weight from the mid-span point.
The linear theory was then applied to determine H. Successively
larger weights were then hung frorﬁ the mid-span point and the
corresponding deflections were measured.

The equation governing load and deflection at mid-span

is (see Eq. 1. 38)

1 P

Ve {O+h, 4H

where h, is determined from Eq. 1.43. When P is small, h,~ 0,

Al
-

and the initial pretension can be found from

_ P!
H~4V

The results have been tabulated and also presented in
graphical form to facilitate comparison with the linear theory and fhe
second order, non-linear theory.

(i) Multistrand cable

The cable used was a Bethlehem steel aircraft cord
of diameter 0.12 cm (3/64 in) and properties: E. = 104 X 10°
kN/m2 (15 X 10° psi); w = 0.0553 N/m (0. 0038 1b/ft). Because the
cable corﬁprised numerous twisted strands it did not kink at the
uprights and was able to move freely over them. Consequently, the

virtual cable length, Le, was greater than 91.5 cm being
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approximately
Le=2 91.5 + 2 X 15.25 X sec® 45°
~ 177 ¢cm (69.9 in)
The initial pretension was
H =182 N (41 1lbs)
Hence
A% =2.51 X108

and the cubic from which h is found becomes

2
hy(l + hy)® = "—8- P2=3.14 X107 B2

Increments in load of 4.45 N (1 1b) were applied from
4.45 N (1 ib) up to 40. 05 N (9 1b) and the corresponding deflections
were measured. At higher loads the modulus of elasticity of a twisted
strand cable is load dependent and, therefore, the cable stress was
kept well below the elastic limit to avoid any unnecessary complica-
tions.

Table 1 lists the experimental results and the results
from the linear and non-linear theories. Figure 6 shows dimensional
plots of the experimental results and the theories.

It is clear that there exists excellent agreement between
the experimental results and the non-linear theory., Agreement
betweeh the linear theory and the experimental results is poor at all
but the smallest loads. The linear theory does not allow for additional

cable tension and therefore predicts deflections which are too high. It
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Table 1

Comparison of theory and experiment
for the twisted strand cable

Experiment Non-linear theory Linear theory

P v H+h v H+h v H

P
(N)  (em) = (cm)  (N) (em)  (N)
(N)

0 0 182 0 182 0 182
4.45 0.56 182 0.56 182 0.56 182
8.90 1.03 197 1.03 197 1.12 182

13.35 1.43 214 1.44 212 1.68 182

17.890 1.78 229 1.79 227 2.24 182

22.25 2.06 247 2.07 244 2.80 182

26,70 2.34 261 2.35 260 3.36 182

40.05 2.65 345 2.97 308 5.04 182
Table 2

Comparison of theory and experiment
for the piano wire

Experiment Non-linear theory linear theory

P v H+h v H+h v H

P
(N) (em) =7= (cm) (N) (cm) (N)
(N)

0 0 116 0 116 0 116
4,45 0.88 116 0.88 116 0. 88 116
8.90 1.59 127 1.61 126 1.76 116

13,35 2.19 140 2.19 139 2.64 116
17.80 2.66 153 2,70 152 3.52 116

22,25 3.10 164 3.10 164 4.40 116
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Figure 5 Test rig,
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Figure 6 Comparison of theories and experiments,
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will be noticed that the non-linear theory overestimates the actual
deflection for the 40. 05 N (9 1b) load. It is concluded that at this
- load, the helical strands of the cable are starting to straighten out,
with a consequent rise in the modulus of elasticity of the cable.
(ii) Piano wire
The cable used here was a single strand of Malin's
Musical Wire (#5) of diameter 0. 0355 cm (0.012 in) and properties:
E. = 207 X 10° kN/m2 (30 X 10°® psi); w=7.63 X 107 N/m
(5.22 X 10-* 1b/ft). It was noticed that this piano wire formed kinks
where it passed over each upright. Under load there was no cable
movement past the uprights and consequently the virtual cable length

Lo was taken to be just the clear span
Le = 91.5 cm (3 ft)
The initial pretension was 116 N (26.2 lbs). Hence
2\° = 6.33X10"°
and the cubic from which h is found becomes

2
hy(l + hy)? = % P2=17.92x 107 p2

Increments in load of 4.45 N (1 1b) were applied from
-4.45 N up to 22.25 N (51b), and the corresponding deflections were
measured. The cable stress was always well below the elastic limit.

Table 2 lists the experimental results and the results
from the linear and non-linear theories. Figure 6 shows dimensional

plots of the experimental results and the theories.
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As in the previous experiment, there exists excellent
agreement between the experimental results and the non-linear theory.
Again, the linear theory, which does not allow for additional cable

tension, predicts deflections which are too high.

Conclusions

Excellent agreement was obtained between the non-
linear theory and the experimental results. The experimental results
confirm the theory as applied to the case of the initially taut, flat
cable and lend credence to the applicability and accuracy of the

general theory.

d. Uniformly distributed load on part of cable
Consider a uniformly distributed load of intensity p
per unit length applied along the span from x=x; to x = x3. (see

Fig. 7.)

T*{***+**{* p per unit length

X ‘Xz |

' Figure 7 Definition diagram for uniformly distributed
load on cable,
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By again exploiting the analogy which exists with the

simply supported beam, vertical equilibrium at a cross section

requires that:
(i) for 0sE<P2,
mem oG- D-F(ET- @)} 8 0
(ii) for 32X <2,
memEoo (251G - @)} -eg aw
(iii) for = s F =<1,
(1. 48)

mom e 3G @) n

After integration and adjustment for the requisite boundary conditions,

the following dimensionless equations are obtained for the additional

vertical cable deflection:

(i) for 05555

L (6916 N0 2 o))

Ve T T+ hy)
(1. 49)

X2
1

H

hl‘gc

T X2 X
(ii) for 7 S.e <
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(iii) for 3

ey | HE @ 0D - 2EE-3E)] e

where Vg =

v h = b _B
pe\ * T H PxTwc
H )/

The increment in the horizontal component of cable

tension, h, is found from the cable equation (see Appendix II) which,

d

since both Ez_ and d—:: are continuous along the span, is of the form

hLe £ d2y 1 &
ECAC=—'[(&E +ZEX—2>VdX (1.52)

After substitution of Egs. 1.49, 1.50, 1.51 into Eq. 1.52, integration

and rearrangement, the following dimensionless cubic for h, is
%

obtained

2 h} + ( >‘—4)h2+(1+12>h
{3 (@ - @) 3@ @)
@ -HE - G) e

=0 (1.53)
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This general cubic is of the form
z2+az2 +bz-c=0

where a, b, ¢ are positive real quantitiés. From Descartes' ''rule
of signs' there is just one, positive root to the above equation. This
root is the required value of hg.

As before, the general solution for h*b can be obtained
using the requisite form of Cardan's equations.

It will be noted that there is a symmetry in the co-
efficient of the cubic involving x, and x;. As is to be expected,
the solution of the cubic is the same if x3=1.014, x,=0.91{ as if
xe = 0.14, x,=0, etc.

If the loaded length (xz - x;) is allowed to become
very small, while plxs - x3) remains finite, it is easily shown that
Eq. 1.53 reduces to Eq. 1. 26, the result previously obtained for a
point load on the cable.

It can also be shown that when p, and )2 are give‘n,
h, is a maximum when the loading is placed symmetrically about
mid-span. |

Equations from which the longitudinal cable movements
can be found will not be given here. These small movements can
be calculated from the cable equation by employing the same procedure
as was used to obtain Eqs. 1.27, 1.28.

The above solutions are accurate to the second order
of small quantities. They will find particular application in the calcu-

lations involved in the construction of suspension bri,d\ges, when the
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deck is being hung in position. Here, use of the general non-linear
theory is essential since the deck load is usually many times greater
than the weight of the cables and )® is large. At this stage the stiff-
ness of the deck is negligible since, in order to eliminate flexural
stresses owing to dead load, continuity of rotations is rarely provided
between adjacent segments of the deck until near the end of the con-
struction of the deck.
In certain situations the theory can be simplified and
these are now briefly considered.
(1) Linearized theory
In keeping with the approach given in the section
on the point load on a cable, all second order terms are dropped from
the cable equation and the deflection equations. Consequently, the
equations for additional, vertical cable deflection are:
(i) for 0= X <32
W {92 (@ @) (:0)-10)]
* [ I 2 £ £ £ Pe \ 2 ! 2 \4

(1.54)
(ii) for -}f’f—s z < -!lxi

W[ FE @13 e)
(2 @-307)]
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[{ ((Xs> (Xa> (1‘ )} p\b 3-%(%)2)] (1. 56)

The cable equation is reduced to

hL, »
_w
” _H[ v dx (1.57)

and after substitution, integration and rearrangement the following

linearized, dimensionless expression is obtained for h,

oo {2 (G- GT) -3 (6@ - 6)}
(1 + 12) 3 £
(1.58)

Because of the linearity of the problem, this result could also have
been obtained by integrating Eq. 1.32 directly.

These solutions will be accurate for all )»®
provided Py is small, near 1071,

Again, if )® << 1, as in taut, flat cables, h, - 0
and the classical results of the linear, taut string are obtained.

For cables, such as those of the suspension

bridge, where the ratio of sag to span is of order 1:10, »®>>1 and

ne- sm 3 (G - () - 1@ - )

which is the result obtained if the cable is assumed inextensible, and

second order effects are neglected.
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(2) Taut, flat cable

A considerable simplification results here since

y = 0. The deflection equations become:

; x.%
(1)for0$152 ,

o (G2 1@ -] o

e 46T @) 6567 HE 696

(1.60)
(iii) for T SI- <1 ,
-1 11 /%y X\ x
Ve =TT By) [2((1*3(1_) (r-7) (1.61)
The cable equation may here be reduced to
M p *a
E A, - 2(H + B ./}; v dx (1.62)
X2

and substitution, integration and rearrangement gives
2 2 |1 Xg\® Xa\3 X3\ /Xa¥V
n (1n 3G () - @)
2
1 X3 2 XB 2
"Z((T> - (T)) }p;; (1.63)
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where here

H H
This is a cubic of the same form as Eq. 1.42. The parameter )=
is always very small since (%)2 is very small for a flat cable.
However, p, is usually large so that the product pZ A? is not
necessarily small. If p, is small then h, - 0, and the classical
re sulté for the linear, taut string are obtained.

This cubic has an exact solution of the form

h,, = —3}_}; (f/—B - %)2 (1. 64)

where

and

It can also be shown that 3§ =
e |

or TZO,I-

and 2B = %— only when p, = 0

This theory will find an application in the
analysis and design of cable roof structures which are rectangular
in plan. If one side is much larger than the other side then it is

practicable to use cables which span only the short side. If these
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cables are initially taut and flat (as will often be the case), it is a
simple matter to calculate the additional deflections and tensions
developed after the (usually) light and flexible roof is hung from, or
made continuous with, the cable system.
e. Examples
Consider the following examples which illustrate the

results obtained for the response of cables to distributed loads.

Example 4

It is required to calculate the additional tensions and
deflections induced in the cables of the long-span suspension bridge
of Example 2 (p. 34) as construction of the deck proceeds. In
particular, the additional horizontal component of cable tension aqd
the additional vertical cable deflection at mid-span are to be evaluated
for:

(i) deck in place over the central half of the span,

(i) deck in place over all the span.
The distributed weight of the deck is

p= 584 x10* N/m (4000 1b/ft), per cable

and it is assumed that during construction the deck has no flexural
stiffness. Other properties are as given in Example 2.

(i) deck in place over central half of the span

Here
2=2 x10°, B =0.25, £ =075, p,=13.3

The cubic from which h, is found (Eq. 1.53) becomes



-52 =~

h3 +85.5h§+168h*-8,950=0

from which

hy = 8.9

The additional deflection at mid-span is (Eq. 1.50)

vy = 0.00102
v=28.3m (27.2 ft)
If the cables were assumed inextensible, and the second
order term was left out of the cable equation, then h, would have a

value given by (see p. 48)
hy = 9.17

which is quite close to the value given by the general theory.
However, the cables are not inextensible. In fact,

under this loading, the cable length has increased by an amount

HY 16 (d¥)_
AL = by g (1 + 3 (1—)>_ 1.75 m (5. 75 £t)

which is far from negligible. The "inextensible'" theory gives a good

result because two terms in the cable equation, namely
hL, L 2
e 1 dv
EoAc 2nd i_é (§) o=

are approximately equal in this case. Consequently, the value of h,

found from the equation

i
dy dv 4y =
/o gy dx=0
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is close to the value given by the general theory.
(ii) deck in place over all the span

Here

2 a  Xa _ il
2z =2 X107 , =0, 3

; =1.0 , p,=13.3

The cubic to be solved is
hi + 85.5 h2+ 168 h, - 17,000 = 0

from which

h, = 12.35

This may be compared with the result from the "inextensible'! theory,

namely

The additional deflection at mid-span is
vy = 0. 000670

from which

v=5.43m (17.8 ft)

Therefore, in placing the deck on the mainspan, the cable sag has
increased from 76.2 m (250 ft) to 81.7 m (267. 8 ft). Each cable has
increased in length (from its length in the free-hanging position) an

amount
AL =~ 2,42 m (7.95 ft)

The fractional increase in cable length is

AL _
5 = 0. 0026
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which is much smaller than the fractional increase in sag of

Ad _ :
—a———0.071.

Example 5

A factory, the roof of which has plan dimensions
of 91.5m X 30.5 m (300 ft x 100 ft), is to have its roof supported
by, and made continuous with, a parallel network of cables which
span the shorter side at a spacing of 6.1 m (20 ft). The cables

are anchored into rigid supporting frames as shown in Fig. 8.

/ Cables and roof

Support frames

Figure 8

As a part of the preliminary design of the roof
structure, consider the following possible structural solution:
Steel cables, 3.8 ¢cm (1.5 in) in diameter, are

connected to the supporting frames and pretensioned to 111 kN
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(25, 000 1b). Using formwork to support its weight, the roof is then
built around the cable network. The roof material has a total weight
(excluding cables) of 470 N/m2 (10 1b/ft?). The formwork is then
removed and it is required to find the additional cable tension and the
sag of the roof in the new position of equilibrium. Cable properties
are: w=87.5 N/m (6.0 lb/ft), E. =104 X 10° kN/m2 (15 X 10° psi);
Ac=1.14 x 107 m2 (1,77 in2 ).

To a good first approximation, the pretensioned cables
may be considered flat initially. The theory of the taut, flat cable
under distributed loading may be applied.

For this problem )®=0.61, 72 =0, 32 =1, p, = 33.3.
The additional cable tension is found from (Eq. 1.63)

hy (1 + h,)® = 28.1
from which

h, = 2. 41
Consequently, the new horizontal component of cable tension is
H = 380 kN (85, 200 1bs)
and the deflection at mid-span is

Vg = 0. 0367

v = 0.89 m (2. 92 ft)

A more refined analysis using the general theory,
which allows for the small initial sag of 0. 091 m which the pre-
tensioned cables possess before the roof is hung, shows that in the

new equilibrium position the total sag is
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d = 0.905 m (2.97 ft)
and the horizontal component of the cable tension is

H = 386 kN (86, 700 1bs) .
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B. THE LINEAR THEORY OF FREE VIBRATIONS OF A
PARABOLIC CABLE

The theory of the vibrations of suspended cables, which are
supported at one or at both ends, has been increasingly refined during
its development. There is, however, an inadequacy in part of the
theory which has apparently gone unnoticed or unsolved until now.

Stated briefly, the inadequacy has arisen because practically
all previous theories which are valid for cables with ratios of sag to
span of about 1:8 (and one of which tends to the theory for the vibra-
tions of a vertical cable as the ratio of sag to span becomes very
great), cannot be reconciled with the theory of the vibrations of a
taut string when the ratio of sag to span becomes very small.

When cables, which are fixed at each end, are used to support
transverse loads, structural efficiency requires that the profiles of
the cables be relatively flat. It appears that a correct linear theory
of vibration is missing for cables of this sort, where the ratio of sag
to span is about 1:8, or less.

Consequently, attention is confined in this section to uniform
cables, supported at each end, for which the sags are sufficiently
small for parabolic profiles to describe accurately their static
geometry. The theories to be presented, for which experimental
confirmation has been.obtained, are of considerable practical

importance.
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1. Historical Background
During the first half of the eighteenth century elements of
the theory of vibration of a taut string, which was fixed at each end,

were presented by Brook Taylor, D'Alembert, Euler and Daniel

Bernoulli(23). In 1732 Daniel Bernoulli(zz)

investigated the trans-

verse oscillations of a uniform cable, supported at one end and

hanging under gravity. The same problem was also discussed by

Euler(zz), nearly fifty years later, in 1781. Both Bernoulli and

Euler gave the solution for the frequencies of vibration in the form

of an infinite series. This series is now represented by a zero

order Bessel function of the first kind, and so their work on this

mechanical problem was a forerunner of the theory of Bessel functions.
At this time, however, the theory of partial differential

equations was still in its infancy and considerable work had centered

around the analysis of discrete, rather than continuous, systems. For

(16)

example, by 1788 Lagrange » and others before him, had obtained
solutions of varying degrees of completeness for the vibrations of an
inextensible, massless string, fixed at each end, from which numerous
weights were hung. The general equations of motion of discrete sys-
tems were first given by Lagrange in 1760 and appeared later in
Meécanique Analytique in 1788(23),

The most important contribution to the theory of cable
vibrations came in 1820 when Poisson(lb) published a paper which

gave the general Cartesian partial differential equations of the motion

of a cable element under the action of a general force system. These
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equations were the dynamic analogue Of, the static equations given by
Fuss(ls) in 1796. Poisson used these equations to improve the solu-
tions previously obtained for the vertical cable and the taut string.

Thus by 1820 correct solutions had been given for the
linear, free vibrations of uniform cables the geometries of which
were the limiting forms of the catenary. Apart from Lagrange's work
on the equivalent discrete system, no results had been given for the
free vibrations of cables where the sag to span ratio was not either
zero orinfinite.

In 1851 Rohrs(14), in collaboration with Stokes, obtained an
approximate solution for the symmetric vertical vibrations of a uni-
form suspen&ed cable where the sa.g to span ratio was small, although
appreciable. He arrived at his solution using a form of Poisson's
general equations, correct to the first order and, in addition, used
another equation which he termed, ""the equation of continuity of the
chain.!'"" He assumed the chain to be inextensible so this continuity
equation related only to geometric compatibility.

In 1868 Routh(lé) gave an exact solution for the symmetric
vertical vibrations (and associated longitudinal motion) of a hetero-
geneous cable which hung in a cycloid. Like Rohrs, he also assum‘ed
that the cable was inextenéible. He showed that the result for the
cycloidal cable reduced to Rohfs' solution for the uniform cable when
the ratio of sag to span was small. Routh also obtained an exact
solution for the antisymmetric, vértical vibrations (and associated

longitudinal motion) of the cycloidal cable.
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At this point the subject appears to have been laid to rest
until 1941 when Rannie and von Ka’.rmén(lz’ 13) independently derived
results for both the symmetric and antisymmetric vertical vibrations
of an inextensible, three-span cable. In work done in 1945, Vincent(24)
extended Rannie and von Karmdn's analysis to allow for the effects
of cable elasticity in the calculation of the symmetric vertical motion
of the three-span cable., However, he did not explore the nature of
the solution so obtained and, therefore, he appears to have been
unaware of the substantial effect which the inclusion of cable elasticity
can have on the analysis. These works were prompted by the aero-
dynamic failure of the Tacoma Narrows suspension bridge.

A semi-empirical theory for the natural frequencies of the
first three in-plane modes of a uniform suspended cable was put
forward by Pugsley(ll) in 1949. He demonstrated the applicability of
the results by conducting experiments on cables in which the ratio of
sag to span ranged from 1:10 up to approximately 1:4.

By assuming again that the uniform cable was inextensible,

Saxon and Cahn(17)

made a major contribution to the theory of the in-
plane vibrations in 1953. They obtained solutions which effectively
reduced to the previously known results for inextensible cables of
small sag to span ratios, and for which asymptotic solutions gave
extremely good results for large ratios of sag to span. The accuracy
of their theory was demonstrated by comparing it with the experiments

of Rudnick, Leonard and Saxon; Cahn and Saxon; and Pugsley. In all

these experiments the ratio of sag to span was 1:10, or greater.
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One of the most interesting aspects of the latter develop-
ment of the theory of symmetric, vertical vibrations of a suspended
cable is that there have been neither theories nor experiments which
have sought to explain a discrepancy that arises as the ratio of sag to
span reduces to zero. For small sag to span ratios previous theories,
which have been derived assuming the cable to be inextensible, show
that the first symmetric in-plane mode, primarily involving vertical
motion, occurs at a frequency which is contained in the first non-zero

root of (as will be shown)

o (8 = (5)

/

namely
(Bl)y == 2.86 «

m >
H

where B = ( )% » and m is the mass per unit length of the cable,

H is the horizontal component of cable tension (static), w is the

natural circular frequency of vibration and { is the span of the cable,
However, it has long been known that the frequency of the

first symmetric mode of the transverse vibration of a taut string is

contained in the first root of

namely

(BL)y =

This discrepancy, which amounts to almost 300%, cannot be resolved

by the previous analyses of inextensible cables.
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Inextensibility is a concept which needs to be used with great
care. No real cables or chai.ns are ever inextensible. Clearly, a
taut string must stretch when vibrating in a symmetric mode, although
standard analyses often overlook this point. Likewise, a cable which
has a very small sag to span ratio must stretch when vibrating with
symmetric vertical motion. However, if the concept of i.nexte.nsibilitjr
is adhered to, it must be concluded from the previous analyses that the
classical first symmetric vertical mode does not exist if even the
slightest sag is present. This is at odds with reality and the matter
is resolved in the following paragraphs.
2. The Linear Theory
Consider a uniform cable, which hangs in static equilibrium
in a vertical plane through supports located at the same level, the

profile of which is given by

W2 fx  (x¥
Y= 32H 1‘(1)

The cable is then given a small, arbitrary displacement from its
position of static equilibrium. In general, the resulting small, free
vibrations have three components (see Fig. 9):

(i) longitudinal motion wu,

(ii) transverse vertical motion v,

(iii) transverse horizontal motion w.

Subsequently, the equilibrium of an element of the cable requires that

au _ 9”u
{(T+ Bs)} BT
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Figure 9 Definition diagram for cable vibrations.

(ii) gs {(T + T) ds )} - mg

(111)a {']:‘+1')a }

where u and v are the in-plane components of the motion, w isthe
component of motion perpendicular to the vertical plane through the
supports, m is the mass per unit length of the cable, g is the
acceleration due to gravity and T is the additional cable tension
caused by the motion, The components of motion u, v and w and
the additional tension 7 are functions of both position and time,
These equations may be simplified for the problem at hand,
Each equation is expanded, the equations of static equilibrium are

substituted for, and terms of the second order are neglected. In
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addition, since the analyses are to be valid only for cables with ratios
of sag to span of about 1:8, or less, the longitudinal component of the
equations of motion is unimportant and may be ignored. Consequently,

the equations of motion reduce to

% éfz = 8_2_‘.’_ 1. 65

Heyzs this “™M3@ | (1.65)
9w 9w

_— = 1. 66

H 02 m ° ( )

where h is defined as the additional horizontal component of cable
tension and is a function of time alone.
The linearized cable equation, which provides for the elastic

and geometric compatibility of the cable element (Appendix 1I), reads

h(52)
ax) _ou , dydv

E.A.  Ox | dx Ox (1. 67)

C

The cable equation gives the closure condition for the symmetric
vertical motion. It also allows for the calculation of the longitudinal
motion. Thus, Egs. 1.65, 1.66 and 1. 67 are the linearized equations
which govern the problem.

It will be noted that the transverse horizontal motion has
uncoupled from the in-plane motion because, to first order, the trans-
verse horizontal motion involves no additional cable tension. This is
consistent with experience since, for a chain hanging across a drive-
way, the only mode of vibration easily excited is its first, swinging

mode. Therefore, to first order, a disturbance which has no in-plane
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components will induce only transverse horizontal motion, and
vice-versa.

Under the restrictions placed here on cable geometry, it
is the vertical component of the motion which is most apparent when
the cable vibrates in an in-plane mode. The amplitude of the corre-
sponding longitudinal modal component is always substantially less
than the amplitude of the vertical motion. Consequently, a symmaetric
in~plane mode is defined as one in which the vertical component of the
mode is symmetric, and vice-versa. In many situations the longi-
tudinal modal components are of no importance and, as a result, the
vertical modal components could be called the in-plane modes.
However, for completeness, and in order to emphasize that an in-
plane mode consists of two components, the more accurate nomen-
clature will be used.

Because the transverse horizontal motion is the easiest to
analyze it will be considered first.

a. The transverse horizontal motion

By writing w(x, t) = %(x)eiwt , where @ is the natural
circular frequency of vibration, Eq. 1l.66 is reduced to
d*w

H 3% + mww = 0 (1.68)

The generall solution of Eq. 1.68 is

w = A sinBx+ B cos Bx
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where @° = m}‘fa and A, B are constants. The boundary conditions

are.

from which it is found that the natural frequencies of the vibration are

given by
’(”n:'z—nl\ I-HYI- n=1,2,3...
(1.69)
The modes are given by
Fa(x) = Ay sin (57F) n=1,2,3...
(1. 70)

where n=1,2, 3 .. signifies the first, second, third, etc. modes,
respectively.

The frequency of the first transverse horizontal mode |
(i.e. n=1) is the lowest natural frequency of any given parabolic
cable.

b. The in-plane motion

As defined previously, antisymmetric in-plane modes
consist of antisymmetric vertical components and (as will be shown)
symmetric longitudinal components, while symmetric in-plane modes
consist of symmetric vertical components and antisymmetric longi-
tudinal components. In the former case, to first order, no additional
cable tension is induced by the motion, however, additional cable

tension is induced by the motion in the latter case.
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(i) Antisymmetric in-plane modes
Since, to first order, the additional horizontal

component of cable tension is zero, Egq. 1. 65 becomes

2
d°¥

o=t mw2v = 0 (1.71)

H

where the substitution, v(x,t) = V(x)elwt ; has been made. The cable
equation (Eq. 1.67) becomes just a statement of geometric compati-
bility

=0 (1.72)

where the substitution, u(x,t) = u(x)e. s has also been made. Together

with the boundary conditions

v(0)= ¥ (3)= 0
Egs. 1.71 and 1. 72 are sufficient to obtain the natural frequencies
and modal components of the antisymmetric in-plane modes.

It is easily shown that the natural frequencies

are given by

Wy = 28T (.Ii n=1,2,3...
(1.73)
where W, wg, Ws... are the natural frequencies of the first, second,
third, etc. antisymmetric in-plane modes, respectively.

The antisymmetric vertical modal components

are given by
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2nmx

(x)—Ans1n( a=1,2,3...

(1. 74)
The longitudinal components of motion in these

modes are found from Eq. 1l.72, and it is seen that these components
are symmetric, since (%}%) is zero at mid-span. The symmetric

longitudinal modal components are thus given by

X
Un(x) = - L Volx) - F / ¥ (x) dx (1. 75)
0

After substitution of Eq. l.74, integration and rearrangement it is found

that

9= 3 () a0 {(1-2 @) o @) 5 (2 -con (37

n=1,2,3... (1.76)

where, as before, Ap is the amplitude of the nth antisymmetric
vertical component of the mode.

It is clear that the amplitudes of the longitudinal
components become very small as the cable becomes flatter. However,
these longitudinal components have some peculiar properties. The
maximum displacement of the first component occurs at the quarter-
span points and not at mid-span. The displacement is a local
minimum at mid-span (see Fig. 10 (a) ). Also, both the slope and
displacement are zero at mid-span for the second component (see
Fig. 10 (b} ). This pattern repeats itself for the higher longitudinal

components.
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Figure 10 Longitudinal components and associated
vertical components of first two antisymmetric
in-plane modes (vertical scale arbitrary).
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Figure 11 Graphical solution for first non-zero root of ‘Eq. 1, 81,
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Equations 1.73, 1.74 and 1. 76 are similar to
(16)

those given by Routh » which he deduced from an exact analysis of
 the inextensible, cycloidal cable by allowing the ratio of sa.g to span
to become small.

A more exact analysis of the antisymmetric in-
plane modes of a parabolic cable, done concurrently by Caughey(z) s
has shown that the assumption, h= 0, is a very good one. For a
cable with a ratio of sag to span of 1:8, this assumption results in
an error of less than 4% in the determination of the natural frequencies
and modal components. The error may be attributed to the longitudinal
component of the equations of motion which has been negleéted. When
this is accounted for small, second order changes in cable tension do
occur.

(ii) Symmetric in-plane modes

Here, additional cable tension is induced by the

motion and Eq. 1.65 becomes

d? ¥
dx=

met

H +myrv = w (1. 77)

where the substitutions, v(x,t) = 'ir'(x)eiwt » h(t) = Fel¥t and

%x_% = - % » have been made. The cable equation (Eq. 1.67) becomes

% (E)
dx,/, _dT. dy d¥
E.A.  ~dx | dxdx (1.78)

where, again, the substitution, u(x,t) = ﬁ(x)eiwt » has been made.

Together with the boundary conditions
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TO)=T@W) =0, ¥(0)=F()=0

Eqs. 1.77 and 1. 78 are sufficient to obtain the natural frequencies and

modal components of the symmetric in-plane modes.

It proves convenient to proceed with a detailed
discussion of the natural frequencies and the vertical components. A
discussion of the longitudinal components will be given later.

The solution of Eq. 1.77, with the given boundary

conditions, is

Zwi )> :% (52)2 {1 - tan (pz_z> sin px - cos px} (1.79)
H

where the value of (Bf) specifies the particular (symmetric) vertical

modal component.
Use is now made of the cable equation (Eq. 1.78),

which becomes
ELe w [
TE—(:_K::E/ V(x) dx (1. 80)
0

to eliminate h and obtain the following transcendental equation from
which the natural frequencies of the symmetric in-plane modes may be

found
tan (%’“—) - (%‘“—) -f—e (%)3 - (1.81)
where, as before

- (%) (HL)

ECAC
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This equation is of fundamental importance in
the theory of cable vibrations. It is seen that )%, thé parameter
involving cable geometry and .ela,sticity, governs the nature. of the
roots of the equation. The eigenvalue problem specified by Eq. 1. 81
is strongly non-linear with respect to this parameter.

In order to illustrate the following discussion,
reference should be made to Fig. 11 where a graphical solution of
Eq. 1.8l is presented.

When )\2 is very large, the cable may be

assumed inextensible and Eq. l.81 is reduced to

£ £
tan (%) = (%) (1. 82)
This is the transcendental equation first given by Rohrs(14), and

later by R.outh(lé). The equation appears in other branches of
mechanics; for example, it arises in the flexural buckling of a strut
pinned at one end and fixed at the other, and it also arises in the
torsional buckling of a strut fully fixed at each end.

(2)

Using a more exact analysis, Caughey' / has

shown that Eq. 1.82 is in error by less than 0.2% for an inextensible
cable with a ratio of sag to span of 1:8.

The first two roots of Eq. 1. 82 are
and higher roots are quite accurately given by

(B 2o+ 1) = n=3,4,5... (l.84)
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where (Bf), contains the frequency of the nth symmetric in-plane
mode of an inextensible cable.

The other limiting value of )2 -occurs when the
ratio of sag to span becomes very small. The cable approaches a
taut string and )2 is very small. The general transcendental equation

is then reduced to
tan(p—z'ﬂ->= - © (1. 85)

and the roots of this equation correspond to those of the symmetric

modes of the taut string, namely
Pa=0Cn-1)m n=1,2,3... (1.86)

A comparison of Eqs. 1.86 and 1. 84 shows that
the conditi’on of inextensibility causes a shift of almost 27 in the
roots obtained from the transcendental equation governing the sym-
metric rnodés of the taut string.

Therefore, for a general parabolic cable, the
natural frequency of the first symmetric in-plane mode is contained

in the first non-zero root of Eq. 1. 81, and this root lies between
< (Bl)y < 2.86 7

The second sy‘minetric natural frequency is contained in the second

non-zero root which lies betweAen
3m < (Pl)g < 4.92 7

and so on. The actual values of the roots depend on the value of )®.

Three important cases are now considered:
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(i) If \®< 4n2,
then the frequency of the first symmetric in-plane mode is less than
the frequency of the first antisymmetric in-plane mode. The first
symmetric vertical modal component has no internal nodes along the
span (see Fig. 12(a) ).

(i) If 2= 4w2,
then the frequency of the first symmetric in-plane mode is equal to
the frequency of the first antisymmetric in-plane mode. This value
of )2 gives the first "cross-over' point. The first symmetric
vertical modal component is tangential to the static cable profile at
each support (see Fig. 12(b) ).

(iii) If 2> 4n= ,
then the frequency of the first symmetric in-plane mode is greater
than the frequency of the first antisymmetric in-plane mode. The
first symmetric vertical modal component has two internal nodes
along the span (see Fig. 12(c) ).

It may also be noted that if
412 < )2 < 1672

both the first and second symmetric vertical modal components have

two internal nodes along the span. If
XQ = 161-|-é

then the frequency of the second symmetric in-plane mode is equal
to the frequency of the second antisymmetric in-plane mode. This

value of )2 gives the second '"cross-over' point. And so on.
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It is obvious from.the above discussion that solutions of
Eq. 1.81 are strongly influenced by the value of the characteristic
parameter, )2. This parameter can appear in the analysis only if
the full first order cable equation is used. If the cable is assumed
inextensible from the outset, the correct solution cannot be found. In
most practical problems it is the cable geometry term, (%)2 s
rather than the cable elasticity term

i

EcAc
which dictates the size of 32 . By assuming the cable to be inexten-

(17)

sible Saxon and Cahn » and others, were led to the wrong conclu-
sion regarding the symmetric in-plane modes as the ratio of sag to
span becomes small.

The longitudinal modal components are found from

Eq. 1.78, namely

a

'}‘1‘ ds)

du + dy d¥ _ dx
dx dx dx EcAc

and therefore

. .

~ h ds\? dy ~ %

u(x):EcAc,/(; (Ef;) dx-g)%v(x)-‘—g-/ ¥(x)dx  (1.87)
0

These longitudinal components are antisymmetric since the two above

equations show that the longitudinal displacement and slope are always
zero and non-zero at mid-span, respectively. After Eq. 1.79 is sub-
stituted into Eq. 1.87 and the integration is performed, the following

equation is obtained
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Figure 12 Possible forms of the first symmetric vertical
modal component.
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where Lyx is as defined by Eq. 1.28. Like the symmetric vertical
modal components, the nature of the antisymmetric longitudinal modal
components depends on the value of the characteristic parameter, \° -
c. Examples |

Several examples are now given in order to illustrate
and augment the theories which have been developed. The examples
generally relate to the vertical components of vibration since these
are encountered most often in pracfice.
Example 6-

The use of Fourier series permits the analysis of the
vertical components of the symmetric modes of vibration of a suspended
parabolic cable to be approached from a different viewpoint. The

differential equation governing the motion is

o~

wh

d2~ ~7
A

d=x2

The non-homogeneous term is expanded in a Fourier series as

wh _ wh . 4 nmx
T B om oo ( 1
n,odd

and ¥V (x) is expanded in a Fourier series as
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¥(x) = Z Ay sin (2

n,odd ‘
 After the required substitutions are made in the differential equation,

it is found that

_ (W h 4 1
Ap = (‘ﬁ‘) Tnr [PLE - 2v? ]

Hence

(%z—.éX):TlH; Z n'rr{(ﬁﬂ)g-nz'rra} sin (n;l'x>

and the vertical component of each mode is specified by a value of (B1).

The cable equation is

R,

£
c ¥ g
EcAc_H‘O/ v (x) dx

and after the substitution is made and the integration is performed,

the following transcendental equation is obtained

1 1
e e

n,odd

where

A2 = (Wi
> HLe
E.A )

When )2 is very small, the right hand side of the above
equation becomes very large and the solutions of the transcendental
equation tend to those of the taut string, namely

BL = amw n=1,3,5...
On the other hand, when )2 is very large, the cable may be assumed

inextensible, and the transcendental equation reduces to
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I
n2w2 {(BL)? - n2n2}
n,odd

(14)

This infinite series for the inextensible cable was given by Rohrs s
although his method of solution was less direct than that given here.
A very good‘ approximation to the first root may be had by setting the

sum of the first two terms equal to zero. For example,
10(pL)e =~ 82w=
(BL), == 2. 86

For intermediate values of )2, reference may be made
to Fig. 13(a) where a graphical solution is presented. As expected,
the "cross-over'' points occur at )2 = 4n2, 16m2, 3672, etc. If )=
is ‘1arge it will be difficult to obtain accurate values of the roots from
Fig. 13(a). The graphical solution presented in Fig. 11 should always
be used in practical cases.

A final point concerns the construction of an infinite
series for the tangent function. Since two different transcendental

equations have been obtained for the same problem, it follows that

_ 5 x2
tan x = x + 2x . B T -
n,odd ~ 4 ¢ °F }

By expanding the right hand side into partial fractions and noting that

=
8

1 _
@
n,odd

the above series for tan x may be reduced to the standard form
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1
tan x = 2x E - 5
n?
{ -Xe}

n,odd 4

The former series for tan x is more rapidly convergent than is the
latter series.
Example 7

Suppose a steady, non-inertial loading (e. g. pressure)

is applied to a uniform cable so that the static deflection is given by

N . % d 1
y(x)—d51n<£> where T °3
The free, symmetric vertical vibrations of this cable are to be
investigated.

The governing differential equation is

d=v 2w _h w2d . (7x
P + BV _H.-—F snn(T

The solution is, directly

¥ (x) h w2

& & T~ o (T)

and from the cable equation it is found that

1 _2

[P -m7 ~ %
or

(B2 = e+ &

where, here

dV¥ 1
A2 = (I‘) I,
ECAC

Under this particular non-inertial static loading, only the first

symmetric mode involves additional cable tension. Also, if A2~ o,
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(BL)y =~ c0; if 32- 0, (BL), » 7 (see Fig. 13(b).
All other symmetric modes do not involve additional
cable tension and the frequencies at which these higher modes occur

are contained in the classical formula

B)p=@n-1)m n=2,34...
and the modal components are given by
Vn(x)=Ansin{(Zn-l)%;§} n=2,34...

It is obvious that the general form of the solution for the antislymmetric
modes is unaffected by this choice of static loading.
Example 8

A proof of orthogonality

The linearized equations governing the vibrations of a

parabolic cable have been shown to be

dzﬂvl 2~_W’i:ll
& TPVTHH
dz?ﬁ} 2~

and
® gd_SF
E.A. dx dx< d

The transverse horizontal motion, W, separates out from the in-plane
motion (i.e. W, ¥), and so it is a trivial matter to prove orthogonality
for the transverse horizo.ntai modes.

Consider, therefore, the vertical motion (i.e. ¥).

Since
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A = vdx
cLic 0

the equation of motion for the ith mode may be writtea in the dimen-

sionless form

d*Vys
dx2 + (B‘e ) ES AQ qi

where ‘
1
= (wﬁ) = > g3 :-/0‘ V*idx*

This is a general representation since, if ?’;'ri is an antisymmetric
modal component, q; is zero.
Similarly, the dimensionless equation of motion for the

jth component reads

% s o

< ~ _ 3

Premultiply this equation by v*1 integrate the result term byterm,
and premultiply the previous equation by ’x‘f",,j and integrate the result

term by term. This gives

l d~
/ V* 'PJ
", g Ty St (BY); f Ty % Dok = N2aq,

/1 d¥,. d¥; 1
'r] 2 ~
- 0 dX* dx dX + ([31) ‘/O\ v*_] i dX., )\2 qjqi

Since the order of integration is immaterial, the desired result is

obtained by subtracting one equation from the other, namely
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1
{((312)? - (ﬁl)?}J Vigi Vae; dxy = O
), J

When »2= 472, 1672, 3672 ... the frequency of the
first symmetric in-plane mode is the same as the frequency of the
first antisymmetric in-plane mode, etc. That is

(B2); = (BD);

It is easily shown that, in this situation

1
f V>,’:j_ V*j dX* =0
0

This is a property which all self-adjoint systems
possess.

Orthogonality of the longitudinal components (i. e., U)
follows from the orthogonality of the vertical components.

It is worth noting that orthogonality ;ould also have
been proved directly from the general equations of motion.

The way is now clear to obtain solutions, in terms of
the eigenfunctions of the problem, for the dynamic response of
parabolic cables under the influence of various forcing functions which
may be of interest.

Example 9

It is required to find the periods of the first two
symmetric in-plane modes of vibration of the long-span suspension
bridge (span, 915 m) given in Example 2 (p. 34). Two cases are to
be considered:

(1) cables in free-hanging position,
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(2) when construction of deck is complete.
(1) Cables in free-hanging position -
Here, )2>>4w2=2 X 10° (see Example 2), and the transcendental
equation to be solved becomes |
3
n (3) = (5) - 500 (%)
The first two roots are found to differ only by an infinitesimal amount
from those obtaining for the inextensible cable. Hence
(Bl),,, = 2. 86w, 4.92w
The periods of the first two symmetric in-plane modes are
T,,5 = 5.5 secs, 3.2 secs.
The first in-plane mode is the first antisymmetric mode, with period
7. 9 secs.
(2) When construction of the deck is complete
Here, )2>4n2 = 187 (see end of Example 4), and the transcendental
equation to be solved becomes
3
wn () - (8)- 5 &
from which
([‘31)1’a = 2.86m, 4.24m
The first root has changed hardly at all from that given by the inexten-
sible theory, but the second and higher roots are changed appreciably
The periods of the first two symmetric modes are now
Ty, = 5.7 secs, 3.85 secs.
The period of the first mode has risen slightly because, with the deck
in place; the sag has increased by 5.43 m. Again, the first in-plane

mode is the first antisymmetric mode with period 8.16 secs.



-85~

The flexural stiffness of the deck has been
ignored, which is a good assumption at this stage of construction,
since full flexural continuity is rarely provided until after the whole
deck is in position.

At present the decks of long-span suspension
bridges are often made from streamlined boxgirder sections. These
boxgirders usually have relatively little flexural stiffness although
their torsional stiffness is often high. A reasonable approximation
to the first few flexural modes of vibration can be found using the
theory presented here, however, the analysis of the torsional modes
requires more refined tech.niques(4).

Once again, the possible influence of the towers
has been ignored in the analysis. Where necessary, an allowance for
these effects may be made by adapting a procedure given by Irvine(S).
Example 10 |

It is required to find the period of the first symmetric
in-plane mode of vibration of the "flying-fox'' (span, 91.5 m) given in
Example 3. The cable, which has a ratio of sag to span of 1:50, is in
the free-hanging position.

Here, )2> 4m2 = 60.2 and the transcendental equation
becomes

: 3

e (7)< () 15005 (2)

from which the first non-zero root is found to be
(BL), = 2. 34

This is substantially different from that which the inextensible theory
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would give., The period of this mode is
T, = 1.04 secs

The firet in-plane mode of the "flying—fex” is the first antisymmetric
mode, with period 1.22 secs. |
Example 11

It is desired to calculate the period of the first sym-
metric in-plane mode of vibration of the‘ 91.5 m by 30.5 m cable roof
structure given in Example 5 (p. 54). Only vibrations in which the
nodal lines are parallel to the longer side are to be considered.

Since the cables span only the shorter side, the strip
of roof structure associated with one cable is representative of the
whole roof structure. As was shown in Example 5, the equilibrium
position, after the roof is in position, is specified by

d=0.905m, H= 386 kN
and so
3= 17.2 < 4m=
The transcendental equation to be solved is
3
o (B)- &) 25 ¢
and the first root is found to be
(BL), = 1. 54w
The period of this mode is
T, =1.12 secs

The first in-plane mode of this roof structure is the first symmetric

mode; the period of the first antisymmetric mode is 0. 86 secs.
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These last three examples show how important it is to
include the effects of cable geometry and elasticity in the dynamic
at;lalysis.

3. Cable Vibration Experiments
Vibration experiments were conducted on a model cable in
order to test the linear theory presented in the preceding sections.
The experiments were made very simple because only a qualitative
verfication of the theory seemed necesséry. It was felt that, if the
first '""cross-over''point of the in-plane modes of vibration could be
shown to exist, the validity of the theory would be established.
a. Experimental procedure
A fine copper wire was fastened between two supports
which were a,f the same level, and about 2 m apart. One support was
a burette stand which was bolted to the table, the other support was a
vice, by mea‘ns of which the sag of the cable could be adjusted.

The cable was placed between the poles of a magnetron
magnet,and an amplifier, connected to an oscillator, was used to pass
a small alternating current along the cable. The interaction of the
alternating current and the magnetic field caused a small, alternating
(substantially) vertical force to be exerted on the cable. In this way,
(substantially) in-plane vibrations were excited in the cable (see
Fig. 14(a) ).

| Modes of vibration were found by tuning the oscillator
so that the frequeﬁcy of the alternating current coincided with the

natural frequency of the required mode. By ensuring that the gain of
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Figure 14(a) Experimental set up.

Figure 14(b) Possible forms of the first in-plane
mode (left-hand edge is at mid-span),



-89-

the amplifier was kept low, a steady-state situation was achieved in
which the small damping forces in the cable were sufficient to prevent
the occurrence of large amplitudes of vibration. The magnet was
placed at a quarter-span point to excite an antisymmetric mode, and
it was placed at mid-span to excite a symmetric mode.

When a mode had been isolated, a long-exposure photo-
graph was taken to capture the envelope of the vibration. The cable
was painted white, strong overhead lighting was used, and the photo-
graphs were taken against a black background to ensure that high
contrast was achieved. Photographs were taken (at £16 and 16 seconds
exposure) on High Contrast Copy Film, using an ordinary 35 mm
camera supp“orted by a tripod (see Fig. 14(b) ).

b. Experimental results

The experimental results are shown in Fig. 14(b), and
enlarged versions (in the same order) are shown in Fig. 15. Only the
first in-plane modes of the suspended cable appear. Since the form of
the first antisymmetric in-plane mode was found to be constant for the
parabolic cable (as predicted by the theory), only one such mode has
been shown. The other modes are various forms of the first symmet-
ric in-plane mode.

- Itis clear that changes inthe value of the characteristic
parameter, )2, caused substan‘ti.al changes inthe first symmetric in-
plane mode, | Changes in \° were brought about by varying the sag of the
cable, Withthe cab‘le pulledtaut, »® was very small, and the first mode

was that of the classicaltaut string(see Fig. 15(a)). Inorderto searchfor
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i < X (9)

N.F..V >> NK A.m

14(b).

Figure 15 Enlarged versions of Fig.
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the first ""cross-over' point (i.e. )2 = 472), the cable was gradually
slackened off until a point was reached where the natural frequencies
of the first symmetric and first antisymmetric in-plane modes were
substantially equal (see Fig. 15(b) ). With a further increase in sag,
the frequencies of the first symmetric and first antisymmetric in-
plane modes diverged again. However, here the frequency of the first
symmetrié mode was greater than the frequency of the first anti-
symmetric mode. Only a very small increase in sag was necessary
before the ratio of the natural frequencies settled down to a value of
about 1.4:1, as required by the inextensible éheo_ry (see Fig. 15(c) ).

It will be noticed from the photographs in Figs. 14(b)
and 15 that the first ""cross-over'' point occurred at a very small
value of the sag to span ratio; the ratio was about 1:50. It should not
be inferred from this that such a value of the ratio of sag to span is
typical of parabolic cables in general. It is not. For example, if the
same copper wire had spanned 200 m instead of 2 m then, provided
that it did not break under its own weight, it can easily be shown that
the first '"cross-over! point would occur at a ratio of sag to span of
about 1:11.

It would have been ideal to be able to experiment on a
cable of appreciable span. In that situation the determination of the
first Ycross-over'" point would have been easier in many respects.
However, the desire to photograph the envelopes of the modes neces-
sitated the use of a cable of small span. As a result, the determination
of the '"cross-over'" point was a tedious and time-consuming exercise.

It proved very difficult to adjust the length of the cable so that the sag
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of the cable was just right. As it was, equality of the frequencies
of the first symmetric and first antisymmetric in-plane modes was
achieved to within 5%.

Another problem which arose was the tendency for the
cable to vibrate in a transverse horizontal mode as well as in the in-
plane mode. This behavior was an unavoidable result of small imper-
fections in the cable and in the direction of the electromagnetic
exciting force.

When the cable was taut, whirling modes were observed.
This was of no importance since the whirling frequency was the same
as the frequencies of the two planar components. At the first '"cross-
over' point there were three modes of vibration which had the same
natural frequency. These were the first antisymmetric transverse
horizontal mode, the first antisymmetric in-plane mode and the first
symmetric in-plane mode. Only by very careful tuning could the
required in-plane mode be isolated. Even then, the isolated mode was
observed to jump to one of the other two modes and then to jump back
again., Such behavior gave striking visual proof of the existence of
the "cross-over'' point. For larger values of the sag the influence of
the transverse horizontal motion was minimized by carefully tuning

the oscillator.

Conclusion
In view of the excellent agreement observed between experi-
ment and theory, the validity of the linear theory of vibration of a

parabolic cable, presented here, has been established.
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Chapter II

THE CABLE TRUSS

The Municipal Auditorium,
Utica, New York (span 76 m) opened 1959,
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The last part of this study of simple cable systems is concerned
with the static and dynamic analyses of cable trusses; where the top
and bottom chords consist of continuous prestressed cable s‘, which are
anchored at each end, and between which numerous vertical light,
rigid spacers are placed. Since the initial cable prestress is usually
high, the geometry of the truss is determined, in large part, by the

span and by the lengths of the spacers. A few possible geometries

[
|

are shown in Fig. l6.

Figure 16

As a means of supporting the roofs of buildings of large span,
the cable truss has many advantages. Because of the structural

efficiency of the truss, the roof is light yet it possesses considerable
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rigidity. For this reason, the problem posed by the poséible aero-
dynamic instability of the roof is often rendered insignificant.

Although it appears to be a relatively recent invention, there
is a growing body of technical literature on the subject. A recent
report(lg), by the Subcommittee on Cable-Suspended Structures of
the American Society of Civil Engineers, includes a section on the
cable truss. The report also cites references to recent work on the
analysis, design and const;'uction of cable trusses.

One of the first structures where cable trusses were utilized
was the Municipal Auditorium in Utica, New York(ZS). This structure,
which was completed in 1959, is circular in plan and the roof is sup-
ported by rac’iial cable trusses which span a distance of 76 m (250 ft),
Since then, many other structures have been built which incorporate
the cable truss.

As occésionally happens in engineering practice, it appears
that the art of construction of cable truss roofs is more advanced
than is the knowledge of the way in which these structures behave., A
review of the literature, cited by the Subcommittee on Cable-Suspended
Structures, reveals a lack of adequate theories on which design can be
based. A discussion of the engineering principles upon which design

(25)

is based has been given by Zetlin » who was one of the first to

develop the cable truss. The most comprehensive analytical treat-
ment is that given by Schleyer(ls).

In the analysis of the cable truss presented here, heavy

reliance will be placed on the principles outlined in the first chapter
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of this study, which relate to the analysis of the single, suspended
cable. The behavior of certain forms of the éable trﬁss differs from
the behavior of the single cable and, as a consequence, useful simpli-
fications may be made.

The cable truss will be analysed as a single entity and its
structural uses, which are primarily to support vertical loads, will
be illustrated by examples. The static analyses will include the
response to various vertical loadings including a point load, a uni-
formly distributed load and a triangular loading block. In the dynamic
analyses an investigation will be made of the natural frequencies and
modes of vibration. Also, a detailed discussion will be given of the
possible lateral instability of such truss systems under the effects

of applied load.
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A. RESPONSE TO TRANSVERSE STATIC LOADING
1. General Theory

The analysis will proceed on the as sumption that the top and
bottom chords of the truss are either bi-convex or bi-concave (see
Fig. 16). Of course, other geometrical possibilities exist, although
some of these will not be structurally useful. In the case where both
top and bottom chords are initially straight and parallel, the analyses
presented in Chapter I, for the taut cable, may be readily adapted.

The relatively small weight of the spacers and the cables |
will be ignored so that the initial, free-hanging geometry of the truss
will be specified by the initial cable pretensions, the lengths of the
spacers and the span. In the analy‘sis, the spacers will be replaced
by a continuous diaphragm in which adjacent vertical elements may
slide freely with respect to each other. Each vertical element of the
diaphragm is considered inextensible.

The analyses to be presented will be accurate provided that
the slopes of the chords are, and remain, small. As a rule of thumb,
the maximum difference between spacer length and the vertical
spacing of the chords at a support should be less than one quarter of
the span. In practical situations this requirement will almost always
be met.

The small longitudiné.l movements of the chords, associated
with the vertical movements of the truss under load, must be allowed
to occur freely. The analyses will not hold for bi-concave systems

(under loads which are not symmetrical about mid-span) if, for
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example, the chords are clamped together at mid-span.

Finally, only trusses in which the spacers .are vertical will
be considered. The use of inclined spacers leads to a.nalys‘es which
are exceedingly complicated. Inclined spacers may stiffen the truss
considerably, but there are sometimes problems associated with
connecting spacers of this type to the chords.

Consider a bi-convex cable truss, anchored on rigid sup-
ports, as shown in Fig. 17(a). Suppose that, under applied vertical
loading, the shear force at some cross section x, along the span, is
S. Then, from vertical equilibrium at this cross section, it is clear

that (see Fig. 17(b) )
(H1+h1)§—x(y1+V)-(Hz—hg)(?—x(ye—vhs (2.1)

where H; and H; are the horizontal components of the f)i'etensions
in the cables, h; and h;, are the additional horizontal components of
cable tension owing to applied load, y, andy, are the initial shapes
of the bottom and top chords, respectively, and v is the vertical
deflection of the cross section. |

The internal equilibrium of the’ unloaded truss is given by

dy dy,

1
H, I - Hy = (2. 2)

This allows for the calculation of the axial forces which the spacers
must resist in the initial geometry.

Therefore, Eq. 2.1 may be reduced to

dv dy
(H1+Ha)g§+(h1'ha)a;+h1‘&‘+hg‘a—£=s (2.‘3)
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