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ABSTRACT 

The earthquake-induced pressures on soil-retaining structures 

are investigated. The study was motivated by the lack of suitable 

earthquake design data for relatively rigid structures on firm 

foundations in situations where the foundation, structure and 

retained soil remain essentially elastic. 

Pressures and forces on the walls of a number of idealized 

wall- soil problems are analyzed. The solutions obtained are 

evaluated for a range of the important parameters to give results 

useful for design. In the idealized problems the soil is represented 

by an elastic layer of finite length bonded to a rigid foundation or 

rock layer. The wall or structure is represented by a rigid 

element resting on the rock layer and is permitted to undergo 

rotational deformation about the base. The mass or moment of 

inertia of the structure and its rotational stiffness are included 

as parameters in the idealization. Static and dynamic solutions 

are obtained using both analytical and finite element methods. 

Solutions are evaluated for the assumption of perfectly rigid 

behavior of the wall. The general solution for the deformable 

wall case was developed by superposition of the solution for 

the perfectly rigid case and solutions derived for displacement 

forcing of the wall structure. 

The assumption of linear elastic behavior of the wall- soil 

system is likely to be approximately satisfied in situations where 

a building or other large civil engineering structure is founded on 
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firm soil or rock strata. In contrast to the linearly elastic 

assumption made in this study, the commonly used Mononobe-

Okabe method employs the assumption of sufficiently large wall 

deformations to induce a fully plastic stress condition in the soil. 

It was concluded that both the elastic theory and the Mononobe

Okabe method have valid applications in the design of wall structures 

subjected to earthquake motions, but that because of significant 

differences in the solutions obtained from each method, care is 

required in selecting the most appropriate method for a particular 

situation. 
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1. INTRODUCTION 

In this investigation a study is made of the earthquake-induced 

pressures on the vertical or nearly vertical walls of structures 

embedded in, or supporting a soil layer, and results are presented 

that have application in the design of these structures. 

The behavior of wall structures during earthquakes can be 

broadly classified into three categories, which can be defined by the 

maximum stress condition that develops in the soil near the wall. 

For earthquake and gravity load-induced displacements of the 

structure that are small, measured relative to a point in the soil at a 

moderate distance from the structure, the soil near the wall will 

respond in an essentially linearly elastic manner. In the second 

category the induced wall displacements are sufficiently large to 

produce significant nonlinear soil response. With increasing relative 

displacement of the wall the third category, a fully plastic stress 

state in the soil, develops. It should be noted that these definitions 

are to some extent over-simplifications since in general the stress 

condition in the soil will be influenced by other factors in addition to 

the load- induced displacements of the structure. For example, very 

strong earthquake ground motions may induce a nonlinear or even a 

fully plastic condition in the soil for the case of a perfectly rigid wall 

supporting a weak soil. It should also be mentioned that gravity 

loads acting alone may produce a fully plastic stress state in the soil. 

This is frequently the case for cantilever retaining walls which in 

general are very flexible structures. The method used to estimate 

the earthquake-induced wall pressures should depend on the category 
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of the predominant behavior duTing the earthquake. In general the 

stress state that develops will be basically a function of the 

structure stiffness, structure dynamic properties, foundation 

stiffness, soil stiffness, soil strength and magnitude of the earth

quake motions. A discussion is given in Section 1. 2 of the likely 

deformational characteristics of a number of wall types and some 

indications are given as to their likely classification. Because of 

the large number of possible wall types and configurations it is 

not possible to make precise statements regarding wall classifica

tions and frequently preliminary estimates of earthquake behavior 

may be necessary. 

This study was motivated by the lack of well defined design 

procedures and design data for evaluating earthquake pressures 

on structures supporting a soil which remains in an essentially 

elastic state during an earthquake. A problem that was con

sidered to be of practical interest was the analysis of earthquake

induced soil pressures on soil- supporting walls in large power 

stations founded on rock strata. The analysis methods given 

in this study have been developed with this particular problem 

in mind; however, it is likely that the results will be useful for 

other wall types in which predominantly elastic soil behavior is 

expected. At the present time the most generally accepted method 

of computing the earthquake-induced pressures on walls is based 

on an approximate plasticity theory and is known as the Mononobe

Okabe method. Although this method has a number of limitations, 

which are discussed in more detail later, it appears to be reasonably 
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satisfactory for most cases in which the basic underlying assumptions 

of the method are approximately satisfied, One of the most impor

tant assumptions made in the Mononobe-Okabe method is that the 

wall str"1cture displaces a sufficient amount to develop a fully plastic 

stress state in the soil near the wall. For the case of basement or 

soil-retaining walls in buildings or other large civil engineering 

structures, that are founded on a firm soil or rock stratum, this 

assumption is unlikely to be satisfied and the method is considered 

by the writer to be unsuitable for many walls of this type. A 

detailed comparison between the Mononobe-Okabe method and the 

elastic theory is presented later but it is worthy of mention here 

that the Mononobe-Okabe method will give, for certain cases, wall 

pressures that are significantly less than computed by elastic theory. 

No relatively simple analysis methods can be suggested at the present 

time for cases in which the soil stresses reach values intermediate 

between the essentially elastic and fully plastic conditions. Numeri

cal methods, such as the finite element method, can be employed 

or alternatively bounds for the pressure distribution can be found 

by using both elastic theory and an approximate plasticity theory. 

Relatively small wall displacements can result in appreciable 

modification of the wall pressure distribution computed on the basis 

of perfect rigidity of the wall. Even displacements sufficiently small 

to satisfy the essentially elastic stress condition in the soil may 

result in significant changes from the perfectly rigid case. In some 

applications the perfectly rigid wall assumption may be satisfactory 

but in general an estimate of the effect of wall deformation should 
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be made. In studying earthquake-induced deformations of a wall 

structure it is informative to consider two limiting types of behavior. 

For a wall having a small mass in comparison to the mass of the 

soil retained in the vicinity of the wall, deformation of the wall will 

result essentially from the lateral soil pressure distribution pro

duced by the soil inertia forces, and the deformation may be due to 

both strains in the wall structure and strains in the soil or rock 

foundation of the wall. In the other limiting type of behavior, the 

wall structure is considered to be massive with respect to the 

retained soil and in this case the dynamic properties of the structure 

(mass and stiffness) will become important parameters in deter

mining the wall displacements. Behavior intermediate between the 

cases may occur and frequently can be satisfactorily analyzed by 

superimposing solutions based on the limiting cases. 

An essentially exact formulation of the interaction of wall 

structures and the supported soil during earthquakes yields a highly 

interactable problem governed by nonlinear three-dimensional 

wave equations for an inhomogeneous medium. Even if the problem 

is simplified by assuming that the soil medium is homogeneous and 

responds in a linearly elastic manner, exact analytical solutions of 

the wave equations are only possible for a very limited number of 

simple boundary conditions that have little relevance to the analysis 

of wall problems. In many cases the soil properties will not be 

accurately known. This is because in most practical situations it is 

considered uneconomic to carry out soil investigations that are 

sufficiently detailed to give a good prediction of the soil behavior 
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during dynamic loading. Furthermore, quite a large number of 

soil-retaining structures are of insufficient importance to warrant 

more than a very basic soil study. Even if a very detailed investi

gation were undertaken, because of the inherent differences between 

the soil in laboratory simulated conditions and in the field at the time 

of the earthquake, it is unlikely that the dynamic soil properties 

could be precisely defined. Because the soil properties are not 

accurately known and also because of the uncertainty in predicting 

both the magnitude and frequency composition of the incoming earth

quake waves a precise statement of the practical problem to be 

solved is not possible. Thus , even if a method we re developed to 

give an essentially exact solution of the governing wave equations, 

the solution would be bounded by a significant range of uncertainty, 

or alternatively extensive computations would be required to define 

the sensitivity of the solution to the inexactly defined input param

eters. 

With the recent advances made in the application of numeri

cal techniques, such as the finite element method, the solution of 

very complex dynamic continuum problems is feasible. Com

plexities such as irregular boundary configurations, material 

inhomogeneity and material nonlinearity can be handled by the 

finite element method. Although these complexities can be treated 

in an almost routine manner by standard programs, their inclusion 

generally results in an increase in computational effort for the user 

and an increase in computer running times. In particular, the 

inclusion of nonlinear material behavior may considerably increase 
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the machine time required to compute a solution, and in view of this 

increase in cost of the analysis and the inherent uncertainty in 

specifying the soil properties and the character of the earthquake 

ground motion, such refinements may seldom be justifiable. 

In this study, solutions are obtained for certain idealized 

wall-soil problems that have been sufficiently simplified to enable 

analytical methods to be employed. The finite element method has 

been used to extend the range of applicability of the solutions. By 

considering readily solvable idealized problems it was found possible 

to identify the parameters that significantly influence the wall pres

sures and to vary these over a relatively wide range of values. 

Although in most practical cases the wall-soil system will be more 

complex than the relatively simple problems studied, it is believed 

that the results will be informative in the design of many firmly

founded wall structures. The results given are suitable for direct 

application in cases that approximately satisfy the basic assumptions 

made in this study. For complex structures or for structures of 

particular importance a finite element study may be warranted, 

but even for these cases the results of simplified studies are of use 

for preliminary design and can also assist the interpretation of the 

results of the more sophisticated analysis. Because of the uncer

tainties in the inputs mentioned above, the application of the results 

of the simplified problems to the design of more complex cases can 

probably be justified in many situations. 

It is convenient to present the results of this investigation in 

three parts. Firstly solutions are presented for the case of a 
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perfectly rigid wall. In this case the earthquake-induced pressures 

are the result of inertia body forces within the soil layer. In 

the second part of the study solutions are given for the pressures 

resulting from the earthquake-induced displacements of the structure. 

Finally the solutions of the first and second cases are combined by 

using superposition in the frequency domain to give a general solu

tion for the total earthquake-induced pressures on a deformable 

structure, Using this approach solutions are presented in a form 

that have general applicability for many practical cases. Quite 

a significant part of this investigation was devoted to the derivation 

of equivalent static solutions for the dynamic problems of interest. 

In general, static solutions are more readily obtainable than 

dynamic solutions and frequently the static solution can be used 

to give a good approximation to the maximum dynamic response 

to earthquake excitation. Also, the static solutions were found to 

have application in extending and simplifying the dynamic solutions. 

The rigid-wall solutions presented are for the case of a 

rigidly-founded structure supporting a soil layer of finite length 

that is bonded to a rigid base. Both static and dynamic analytical 

solutions are derived for a homogeneous linearly elastic soil in 

smooth contact with the wall structure. In the static solutions, the 

wall pressures are given for the case of a uniform horizontal body 

force in the soil. The dynamic solutions are presented in terms of 

the natural frequencies and normal modes of the soil body. Expres

sions are derived that demonstrate the method of using the normal 
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mode solutions to compute the wall pressures resulting from an 

arbitrarily time-varying horizontal acceleration applied at the base 

of the soil. The steady- state solutions for the wall moment and 

forces are derived for the case of harmonic forcing at the base of 

the soil layer and it is shown how random vibration theory enables 

these results to be used to compute statistical estimates of the 

forces and moments induced by earthquake forcing. The effects 

of a bonded assumption for the soil-wall interface and a nonuniform 

soil on both the static and dynamic solutions were investigated using 

the finite element method. 

The influence of the displacement of the structure on the 

rigid-wall pressures was studied by using an idealized soil-wall 

system similar to that described for the rigid-wall solutions. The 

system was modified for this case by allowing a specified displace

ment of the wall boundary. Analytical solutions were derived for 

both static and harmonic forcing of the wall boundary. Solutions 

were evaluated for the case of a rotational deformation of the wall 

about its base. Static solutions for other types of wall deformation 

were computed using the finite element method. Finite element 

solutions were also computed to investigate the influence of a bonded 

wall-soil interface and nonuniform soil properties on the pressure 

distributions. 

Expressions for the total wall forces and moments on a 

deformable wall structure, forced by a horizontal earthquake motion 

at its base, were derived by superposition of the rigid-wall and 

forced-wall solutions in the frequency domain. The application of 
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the solutions presented is demonstrated by an analysis of the 

earthquake-induced pressures on a soil-supporting wall in a large 

power-generating plant constructed on a rock foundation. 

1. 1. BASIC ASSUMPTIONS 

The basic assumptions made throughout this investigation 

are discussed in this section. In the derivation of particular solu

tions and results it was necessary to make other assumptions and 

these are discussed in the relevant sections of the text. 

1. 1. 1. Earthquake Ground Motion 

In an earthquake, strains are produced in the soil by the 

passage of a complex wave function that propagates from the causa

tive fault through or along the surfaces of the soil and the bedwork 

strata. Stresses develop at the soil-structure boundaries as a 

result of wave reflection and transmission into and out of the 

structure. Strong ground- shaking in the vicinity of structures located 

essentially on top of soil or rock surfaces consist of a super-

position of body (shear and compressional) and surface waves that 

have propagated a significant distance through an inhomogeneous 

nonlinear medium and that impinge on the structure from a wide 

range of directions. The detailed nature of the mechanism 

generating the waves at the source is not known and only a limited 

amount of information is available regarding the influence on the 

propagating waves of the generally complex geology between the 
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source and the site of the structure. 

In this investigation it is assumed that the earthquake ground 

shaking can be represented by an arbitrarily time-varying horizontal 

acceleration applied at the base of the structure or at some con

venient horizontal plane below the structure. It is further assumed 

that this motion is spatially constant over a horizontal length at 

least several times greater than the wall height. The time-depen

dence or the frequency components of this acceleration are taken to 

be similar to existing strong- motion earthquake re cords. The above 

assumptions are essentially equivalent to assuming that the incoming 

waves are vertically propagating plane shear waves. However, 

the assumptions made are approximately satisfied by shear waves 

at a moderate angle of incidence and surface waves,provided the wave 

lengths are at least 10 times longer than the wall height. 

1.1.2, Soil-Wall Systems 

The soil-wall systems studied are assumed to satisfy the 

usual conditions of the theory of elasticity. This assumption is 

likely to be satisfied or approximately satisfied by relatively rigid 

wall structures, and in particular when significant translation or 

rotation of the structure in the soil is prevented by either the 

structural configuration or the presence of a relatively rigid founda

tion. 

The soil is assumed to be in an unsaturated condition and no 

account of water pressures has been made in this study. Saturated 

conditions and water pressures on walls have been investigated by 
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(32 33) * Matuo and Ohara ' • 

The soil is assumed to be an isotrop~cc material. Anisotropic 

behavior can be readily handled by the finite element method; how-

ever, in general the soil properties will not be sufficiently well deter-

mined to warrant this refinement. 

The problems investigated are assumed to satisfy the con-

ditions of plane strain. That is, the wall is assumed to be long in 

comparison to its height. Many building basement walls will only 

approximately satisfy this condition; however, the considerable 

increase in complexity and computational effort introduced by a 

three-dimensional approach severely restricts the possibility of 

more refined studies. The limitations of the plane strain ass ump-

tion are discussed in further detail in Section 9 .1. 

1.2. WALL TYPES 

A large variety of types of soil-supporting wall structures 

are employed in civil engineering works. Some of the more com-

mon types of wall structures are shown schematically in Fig. 1.1. 

A brief description of the basic behavior of these structures under 

the action of horizontal earthquake motions is given below. 

TYPE I. Cantilever Retaining Wall 

Many relatively low retaining walls are of cantilever type 

construction. Lateral stresses resulting from vertical gravity and 

horizontal earthquake body forces in the soil generally produce 

* Numbers in parenthesis designate references listed on page 259 
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WALL TYPES 

Figure 1. 1 
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significant horizontal displacement of the wall. This displacement 

is primarily due to translation and rotation of the wall foundation and 

flexural deformation in the wall stem. The displacement of the wall 

is generally sufficiently large to cause the soil to have significant 

nonlinear properties or even to cause the development of a fully plas

tic state of stress in the soil mass behind the wall. To accurately 

determine the pressure distribution on the wall it is generally neces

sary to use nonlinear theory or the theory of soil plastic equilibrium. 

TYPE II. Gravity or Counterfort Wall 

Walls that have significantly more rigid soil-retaining 

elements than the simple cantilever slab may be used. Many quay 

walls are in this category. Under the action of gravity and earth

quake loads, horizontal displacement of the wall results mainly from 

the rotation and translation of the foundation. Frequently the earth

quake- induced displacements of relatively high structures of this 

type will be sufficiently large to produce significant nonlinear be

havior of the soil. Because of the difficulty in performing an exact 

analysis for this case, a useful design approach is to evaluate pres

sure distribution bounds by using both elastic theory and an approxi

mate plasticity method. Gravity type walls may have appreciable 

mass and if this is the case the wall inertia force should be considered 

in the analysis. 

TYPE III. Open Hydraulic Structures 

Frequently hydraulic structures associated with flood control 

and power generation are embedded in the soil. Lateral soil 
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pressures are developed on the vertical cantilever walls by gravity 

and earthquake loads. The walls are significantly stiffer than the 

conventional cantilever type wall owing to the presence of the 

interconnecting slab that reduces the translation and rotation at the 

foundation level. If the wall is relatively low the soil response may 

be essentially elastic and analyses based on elastic theory may often 

be appropriate. 

TYPE IV. Closed Hydraulic Structures 

In some applications hydraulic structures are covered by the 

construction of a slab across the tops of the vertical wall elements. 

Underground reservoirs are frequently of this type. The top slab 

imposes additional rigidity on the wall elements by preventing hori

zontal displacement at the top of the walls, Flexural deformations 

occur on the wall segments between the top and bottom slabs, but 

in general the displacements may be sufficiently small to enable a 

satisfactory analysis by elastic theory. 

TYPE V. Bridge Structures 

Many bridge abutment structures have soil-retaining 

elements. The dynamic soil pressures on the abutment walls will 

be strongly dependent on the type of connection made between the 

bridge superstructure and the abutment. If the bridge is rigidly 

connected to an abutment, the earthquake soil pressures will be 

significantly influenced by the dynamic properties of the bridge, 

With an unrestraining connection, the abutment wall may act in a 

manner similar to one of the types described above. 
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TYPE VI. Building on Rock Foundation 

Buildings and other structures may be founded directly on a 

relatively rigid rock strata, and in particular this may be the case 

if the overlying soil layer is shallow. For large structures, 

such as power generation plants, extensive excavation may be under

taken to achieve a rock foundation. 

Earthquake-induced inertia forces in the building produce 

both structural strains and foundation deformations that result in a 

horizontal displacement of the structure relative to the soil. The 

earthquake pressure distribution on the wall can be conveniently 

taken as the superposition of the stresses resulting from the dis

placement of the structure and the earthquake-generated body forces 

in the soil layer. Frequently the soil- retaining elements in buildings 

are continuous slabs stiffened by the main columns, and flexural 

deformation of the slab between the columns may add additional com

plexity to the analysis of these systems. In general, significant 

nonlinear behavior of the soil is unlikely for walls of this type. 

Most of the investigations in this study were made with this classifi

cation in mind. 

TYPE VII. Building Embedded in a Soil Layer 

The embedded building may be founded on piles that extend 

to a rock or a strong soil stratum. Alternatively the building may 

rest on a spread or raft foundation. In either case, if the soil is 

relatively soft, significant relative translation of the base of the 

building may occur making the analysis considerably more difficult 

than for the previous wall type. It is not possible to make any 
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general comment regarding the applicability of the elastic or plastic 

theory and each problem of this type requires a preliminary study 

to determine the most suitable method of analysis. It is important 

to note that if relative displacement of the foundation of the structure 

is sufficient to produce a plastic stress state on the walls, the 

maximum pressure distribution will probably be controlled by the 

passive earth pressure state rather than the active state normally 

assumed in the Mononobe-Okabe method. The forces on the wall 

under passive pressure conditions will be approximately 10 times 

greater than for the active pressure state. 

1.3. EARTHQUAKE DAMAGE 

Seed and Whitman(SO) have presented an interesting summary 

of reported damage to wall structures during earthquakes. Hayashi 

and Katayama <13 l give an account of the damage to quay wall 

structures in the more recent Tokachioki (1968) earthquake. From 

these reports it is apparent that extensive damage to quay walls has 

frequently occurred. Damage to soil-supporting bridge abutment 

structures has also been reported on a number of occasions. In 

general few reports exist of damage to other wall structures, 

although as Seed and Whitman point out, this may be because in 

general wall damage is often considered to be of minor significance 

in relation to other damage and so has not always been documented. 

A number of soil-supporting structures were extensively 

damaged in the San Fernando, 1971, earthquake. The walls of a 

large reinforced concrete underground reservoir at the Balboa Water 
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Treatment Plant failed as a result of increased earth pressures 

during the earthquake. Details of the reservoir and the damage are 

given by Housner, Jennings and Brady in Reference (21). The 

reservoir was located in fairly soft filled ground. The vertical 

walls were approximately 20 ft high and were restrained by top and 

bottom slabs resulting in relatively rigid wall behavior. It is 

thought that the increase in pressure was mainly the result of 

strong ground shaking; however, permanent ground displacements 

were observed at the site and may have been a contributing factor. 

Hradilek(
1 

S) has undertaken a comprehensive study of a 

number of underground reinforced concrete box-type flood control 

conduits extensively damaged by the earthquake. He concluded that 

most of the damage resulted from permanent ground displacements 

that generated passive soil pressures on the vertical walls con-

siderably in excess of the active pressure state assumed in design. 

Quite extensive lengths of open reinforced concrete flood 

control channel were also damaged and brief descriptions of some 

of this damage are given by Scott in Reference (21) and by Lew, 

Leyendecker and Dikkers( 28). Details of two of the damaged 

channels are given in Figs. 1. 2, 1. 3, 1. 4 and 1. 5. Complete wall 

failure occurred on sections of the Lopez Canyon channel but the 

failed sections were close to a surface expression of the faulting 

associated with the earthquake and probably permanent ground 

displacements contributed significantly to the damage. The 

damaged sections of the Wilson Canyon channel were close to the 

Olive View Hospital. It is thought that no significant permanent 
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Figure 1. 2 Wilson Canyon Channel. The wall top 
displaced 4 in with respect to bridge 
abutment at left. 
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7' 

Figure 1. 4 Wilson Canyon Channel. Cracking in soil as 
a result of wall displacements. Fine cracking 
was detected a distance of 15 ft behind wall. 

Figure 1. 5 Lopez Canyon Channel. Temporary supports 
on failed section of wall. 
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ground displacements occurred in this locality and so the damage 

can probably be attributed to an increase of wall pressure due to 

the ground shaking. Inward displacement of both channel walls 

was observed and a maximum displacement at the wall top of 

about 6 in. was measured (Askilsrud(Z)). The ultimate moment 

capacity of the channel walls was compared with an estimate of the 

soil-pressure moment during the earthquake. The following details 

summarize the basis of the comparison and the moments obtained: 

Ultimate Capacity of Wall: 

Steel yield stress 

Concrete compressive strength 

Capacity reduction factor 

Ultimate Moment 

Soil Gravity Moment: 

Angle of internal friction 

Cohesion 

Unit weight of soil 

Gravity Moment 

Soil Earthquake Moment: 

f = 40,000 lb/in
2

} d y assume 

f~ = 3, 000 lb/in2 values 

= 1. 0 

M = 15. 1 kip ft 
u 

"' = 3 5° 

= 0 

= 110 lb/ft3 

M = 4. 5 kip ft 
g 

Horizontal earthquake coefficient ~ = 0.4 

Vertical earthquake coefficient 

Height of center of pressure above base 

Earthquake moment 

k = 0 
v 

= O. 6 H 

ME= 10.0 kip ft 

-- from Mononobe-Okabe (see Section 1.4.1) 



-22-

Total Soil Moment: 

Mg + ME = 14. 5 kip ft 

It is likely that in the vicinity of the Olive View Hospital a 

nU!!lber of peaks of acceleration exceeded O. 4 g and thus on the 

basis of the Mononobe-Okabe method significant yielding of the wall 

would be expected. (Peak moments larger than the Mononobe-

Okabe value would be expected when the outward movement of the 

top of the wall was less than about O. 5 in. This condition would 

exist during the early part of the earthquake.) 

It is relevant to note that the failure of the flood control 

conduits and channels did not create any hazard to human life and 

since in the Los Angeles region these channels carry only very 

infrequent flood flows the question of the need to provide earthquake 

resistance arises. For these walls and similar walls of lesser 

importance the degree of earthquake resistance provided should be 

based on an economic decision involving consideration of the initial 

cost of earthquake resistance and the likely cost of repairs obtained 

from earthquake probability studies. 

1.4. PREVIOUS RESEARCH 

1. 4.1. Mononobe-Okabe Method 

Probably the earliest research related to earthquake pressures 

on walls was presented by Okabe (1926)(42), and Mononobe and Matsuo 

(1929)(37l. They developed a design method based essentially on 

the well known Coulomb method used to compute the approximate 
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magnitude of the lateral force acting on a wall as a result of gravity 

body forces in the soil. Much of the research undertaken following 

the development of what is now known as the Mononobe-Okabe 

method has been concerned with refinement of the method or tests 

of its validity by model studies. Only a few countries have building 

codes that specify earthquake provisions for wall structures, but 

in general when specified, these provisions are based on the 

* Mononobe-Okabe method. Even in localities where no specific 

code requirements exist it appears that the Mononobe -Okabe 

method is widely used in design. 

Details of the Mononobe-Okabe method and suggestions 

regarding its application to design problems are given by Seed and 

Whitman(SO). In order to facilitate a comparison of the Mononobe-

Okabe method with the work reported in this study a brief descrip-

tion of the method is given here. The method employs the following 

basic assumptions. 

(1) The wall is assumed to displace laterally a sufficient 

amount to produce a state of plastic equilibrium behind the wall. 

(2) The soil is assumed to satisfy the Mohr-Coulomb failure 

criterion. 

(3) Failure in the soil is assumed to occur along a plane 

surface through the toe of the wall and inclined at some angle to the 

horizontal. 

*The code requirements of countries in seismic regions are given 
in Reference {20). 



-24-

( 4) The wedge of soil between the wall and the failure plane 

is assumed to be in equilibrium at the point of incipient failure, 

under gravity, earthquake and the boundary forces along the wall 

and failure surface. The forces acting on the soil wedge of weight 

W are shown in Fig. 1. 6 for the case of a cohesionless soil. 

(5) The effect of the earthquake is represented by equivalent 

static horizontal and vertical forces kh W and kv W applied at the 

center of gravity of the wedge. 

(6) The method gives the magnitude of the total force acting 

on the wall but does not give its point of application or the pressure 

distribution. In the initial development of the method it was 

apparently assumed that the total force acted at a point j H above 

the base of the wall of height H. In view of model test results 

and more recent refinements of the method, Seed and Whitman(SO) 

have recommended that the force increment on the wall due to the 

earthquake load be assumed to act 0.6H above the base. 

The total active wall force (gravity and earthquake) 

is determined by considering the force and moment equilibrium of 

the soil wedge shown in Fig. 1. 6. The angle of the failure plane 

is varied to give a maximum value of the wall force PAE' and under 

the critical condition it can be shown that 

(1. 1) 

in which 

2 
K AE = ----::--___ c...;..o""'"s -'( ..... <j>-;:-0_-_,_J3_,_)-;===;::;::::::;:::::==;::;:::::=.~ 

cos a cos 2 J3 cos (o+J3+0) [ 1 + 
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<f> = angle of internal friction of soil 

Ii = angle of wall friction 

i = angle of soil slope (see Fig. 1. 6) 

f3 = angle of wall slope {see Fig. 1. 6) 

~ = horizontal earthquake coefficient 

k =vertical earthquake coefficient 
v 

Seed and Whitman( 50) give convenient graphical solutions 

for expression (1.1), and give an approximate solution for zero 

vertical acceleration, a vertical wall, horizontal backfill slope and 

cfi"' 35°. Their approximation can be expressed as 

in which 

t.P AE = active wall force increment due to horizontal 

earthquake load 

(1. 2) 

The approximation is in close agreement with the more exact solu-

tionfor ~<0.35. 

The Mononobe-Okabe method can be readily extended to 

include soil cohesion by considering the equilibrium of the wedge 

with the addition of cohesive forces acting along the wall boundary 

and the failure surface. It is relevant to discuss here some of 

the limitations of the method. 
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(1) For a plastic state to fully develop in the soil behind the 

wall it is necessary for the top of the wall to deflect laterally about 

O. 5% of the wall height. Although this condition may be frequently 

satisfied by type I and II walls of Fig. 1.1 this may not be the case 

for types IV, VI or VII. 

It is shown later that the earthquake-induced force on a 

relatively rigid wall computed by elastic theory is significantly 

greater than the force obtained by the Mononobe-Okabe method (on 

* the assumption of a similar earthquake for each case). Thus, if the 

structural elements of a relatively rigid wall structure are designed 

in accordance with the Mononobe-Okabe force it is likely that during 

peak earthquake pressures yielding of the structure will occur. 

As the yielding of the structural elements progresses, large strains 

will develop in the soil, and eventually a fully plastic stress con-

dition may develop in the soil. With the onset of this plastic stress 

condition the peak forces will be reduced to approximately the 

Mononobe-Okabe force levels that are consistent with the peak 

accelerations at this stage. Further yielding will occur if these 

peak levels are sufficiently large. If the structural elements are 

insufficiently ductile to withstand the strains required to develop 

a fully plastic condition in the soil and any subsequent yielding , 

collapse of the structure may occur. Although it is common design 

*It is assumed here that the Mononobe-Okabe force from the active 
pressure state would be used. The passive pressure state will give 
a force generally in excess of the elastic theory results; however, 
it is unlikely that the passive pressure state would be appropriate 
except for the case of a massive structure on a soft foundation. 
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procedure to permit yielding of structural members of building 

frames during strong earthquake motion it may be undesirable to 

design for yielding in wall systems. This is because yielding of a 

wall during earthquake motions tends to occur only in a direction 

away from the retained soil owing to the presence of the lateral 

gravity stresses. Uni-directional yielding during an earthquake may 

lead to excessive permanent displacements with severe cracking 

that could lead to the deterioration of the reinforcement if moisture 

is present. If it is considered desirable to prevent yielding in the 

structural elements of the wall, and if the soil does not develop a 

plastic state over a significant region before the onset of yielding 

in the structural elements, the Mononobe-Okabe method is unsuitable 

and wall design pressures should be computed using an elastic or 

nonlinear theory. 

(2) Although the assumption of a plane failure surface 

appears reasonable, its validity has been based on a very limited 

number of test and field observations. For the case of vertical 

gravity loading, the solutions of Sokolovski<52l obtained by solving 

the equilibrium and failure criterion equations by numerical methods, 

are in good agreement with values obtained by the Coulomb plane 

failure surface approximation. (A comparison of wall forces 

obtained using both methods is given by Scott(46l.) Apparently 

Sokolovski's method has not been applied for the case of horizontal 

body forces, Computer programs have been developed to evaluate 

solutions using this method (Ko and Scott( 24)) and this approach 

could easily be applied to develop more exact plasticity solutions 
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for earthquake-induced wall pressures. Alternatively, plasticity 

solutions can be obtained by the finite element method. Baligh(3) 

has developed a suitable finite element program based on the Mohr-

Coulomb criterion. More research using these numerical methods 

should be undertaken to check the validity of the failure surface and 

pressure distribution assumptions. 

(3) The Mononobe-Okabe method is essentially a static 

method, requiring the selection of suitable earthquake coefficients 

~ and kv which are used to determine equivalent static inertia 

forces on the wedge. In general coefficients are chosen that are 

significantly less than the peak accelerations to be expected in a 

suitable design earthquake, apparently on the assumption that some 

permanent outward movement of the wall can be tolerated. There appears to 

be no rational bas is for the magnitude of the reduction made. 

Reasonably exact solutions of dynamic plasticity problems are 

undoubtedly difficult but nevertheless it would seem desirable to 

improve the Mononobe-Okabe approach by accounting for dynamic 

effects in an approximate manner. The method used by Newmark( 39l 

to study the stability of dams and embankments during earthquakes 

could be easily applied in the study of wall problems and would be a 

convenient way of extending the Mononobe-Okabe method to include 

basic plastic-dynamic behavior. In Newmark's method the sliding 

displacement of a soil mass resulting from peak inertia forces 

exceeding the sliding resistance, is computed by using a simplified 

form of acceleration pulse. If this approach is used the design 

would be based on choosing an acceptable limit for the permanent 
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displacement of the wall rather than the selection of an earthquake 

force coefficient. Newmark's results demonstrate that if the peak 

accelerations in the design earthquake are significantly greater than 

the earthquake coefficients used to compute the Mononobe-Okabe 

force, appreciable displacement of the wall may occur. Therefore, 

it is apparent that for some wall types the conventional arbitrary 

reduction of the Mononobe-Okabe earthquake coefficients may be 

undesirable. To illustrate this point it is helpful to consider an 

open hydraulic structure (Type III in Fig. 1. 1) for which the wall 

is sufficiently flexible to give essentially a fully plastic stress state 

in the soil. For this particular example, significant displacement 

of the wall and the soil wedge can only occur as a result of yielding 

in the structure. In order to prevent significant structural yielding 

in this type of wall, the Mononobe-Okabe earthquake coefficients 

should be based on the peak accelerations in the design earthquake. 

In contrast to this case, the conventional cantilever, counter fort and 

gravity walls (Types I and II in Fig. 1. 1) can displace by sliding on 

failure surfaces within the soil. Thus, if adequate strength is given 

to the structural elements, appreciable displacement can take place 

without damage to the wall structure. For these types the amount of 

sliding displacement that can be tolerated may be governed by 

aesthetic considerations or the clearance between the wall and 

adjacent structures. 

(4) In the Mononobe-Okabe method no account is taken of 

resonance effects or the amplification of earthquake motions that 

might occur as the result of the propagation of the motion through 
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a relatively soft soil layer behind the wall. If the soil is in a plastic 

state this effect is difficult to consider and in fact may not be very 

pronounced. It is also usual in the Mononobe-Okabe method to 

neglect the influence of the dynamic behavior of the structure on the 

pressures. In contrast, the effects of ground motion amplification 

and the dynamic behavior of the wall structure can be readily 

included in the elastic theory approach and details of the influence 

of these effects on the wall pressure distributions are given in this 

study. 

1. 4. 2. Experimental Studies 

Mononobe andMatsuo(1929)(37) made an experimental study 

of wall pressures using a 4 ft deep, 4 ft wide and 9 ft long sand filled 

box subjected to horizontal harmonic forcing with a period of 

vibration varied between 0.42 and 0.48 sec. They measured the 

total end-wall forces and concluded that they were in reasonable 

agreement with the values computed from the Mononobe-Okabe 

method. The end-walls were hinged at their base and restrained 

by pressure measuring devices at their tops. No details were 

given regarding the rotational displacements of the walls during the 

experiments (or the characteristics of the pressure devices) but 

presumably the displacement was sufficient to develop a plastic 

stress condition. 

Experimental work by Jacobsen (1939) is reported in 

Reference (57) prepared by the Tennessee Valley Authority. He 

conducted sand box tests using a shaking table and a 3 ft high layer 
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of sand. Details regarding the other dimensions of the box, the 

period of vibration and the flexibility of the wall are not given. The 

authors 1 of Reference (57) concluded that Jacobsen 1s experiments 

were in reasonable agreement with the Mononobe-Okabe force and 

that the dynamic force component acted at about two-thirds of the 

height of the sand layer above the base. 

Ishii, Arai and Tsuchida( 19l conducted an extensive series 

of tests using both a sand box with fixed and movable end-walls and 

model gravity walls resting on the surface of a sand layer. A 70 cm 

(2. 3 ft) depth of sand was used behind the walls. The walls were 

subjected to a harmonic motion of period approximately O. 3 sec with 

an acceleration amplitude increased from O. 1 g to 0. 7 g in 0.1 g 

steps. Two minutes of vibration was applied at each step. Inter-

esting observations were made regarding sand settlements and 

movement, residual wall pressures and phase relationships 

between the wall pressures and the base motion. The type of 

forcing used was not representative of earthquake ground shaking, 

and because of this and the influence of scale effects the validity of 

these results for wall design is questionable. The conclusion was 

made by Ishii et al. that in general their results were consistent 

with the forces obtained by the Mononobe-Okabe method. 

(32) 
Matuo and Ohara conducted tests on dry and water satu-

rated sands in a harmonically forced box 40 cm (1. 3 ft) deep and 

100 cm long. The saturated sand study is relevant to the design of 

gravity type quay walls that are common in Japan. They conducted 

tests for both a fixed end-wall (essentially rigid) and a movable 
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end-wall that was permitted to rotate about its base. Harmonic 

forcing having a period of vibration 0. 3 sec was used. Each test 

was run for about 24 seconds with a gradual build up and decrease of 

acceleration. The maximum acceleration was varied from test to 

test and had a range of about 0.1 - 0.4 g. Matuo and Ohara also 

derived analytical expressions for the fixed and rotating wall 

pressure distributions based on an approximate solution of the 

equations of elasticity. The experimental pressures for the rigid 

wall were significantly less than the theoretical values but Matuo 

and Ohara attribute this difference to the influence of the side walls 

of the box and the elasticity of the pressure cells. Evaluation of 

their theoretical solution for the rigid wall gives wall forces that 

are significantly higher than obtained by the Mononobe-Okabe method 

and also shows significant departure from the triangular pressure 

distribution commonly assumed. 

Murphy(3 B) conducted dynamic tests on a 1 /64 scale model 

gravity wall supporting a sand layer. The model was subjected to 

harmonic forcing having a period of 0. 185 sec and a maximum 

acceleration of O. 25 g. Wall pressures and forces were not 

measured but instead the tests were conducted to determine the mode 

of failure. It was found that failure occurred by outward rotation of 

the wall about the toe, with the development of an almost plane 

failure surface in the soil inclined at 35° to the horizontal. This 

behavior is consistent with the basic assumptions made regarding 

the failure plane in the Mononobe-Okabe method. 

Ohara(4 0) conducted experiments on movable walls by 
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harmonically forcing a sand box 30 cm (1. 0 ft) deep, 56 cm wide 

and 100 cm long with maximum accelerations up to O. 4 g. In most 

of the testing various controlled displacements were given to the 

end-wall during the shaking. In one series of tests the wall was 

elastically supported and allowed to rotate about its base. Ohara 

concluded that his results were reasonably consistent with the wall 

forces computed by the Mononobe-Okabe method. However, it 

would appear that the procedure adopted in the controlled displace -

ment tests did not entirely satisfy the assumptions made in the 

Mononobe-Okabe analysis. The controlled displacements were 

applied during the shaking but the dynamic pres sure distributions 

were measured after the walls were rigidly fixed and steady-state 

conditions reached, Thus, the measured dynamic pressure distri

bution would be expected to be equal to the sum of the usual passive 

or active pressure distributions resulting from gravity loads, 

and a dynamic component that probably would be similar to the 

elastic pressure distribution on a rigid wall. (It is possible that 

some modification of the usual active and passive gravity load 

distributions may have occurred in these tests because of the 

presence of the vibrations during the wall displacement phase,) 

The experimental tests described have contributed to the 

understanding of wall behavior during earthquakes; however, there 

are a number of difficulties in applying the experimental results to 

prototype walls and many of these details have received inadequate 
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attention in previous literature. The basic limitations are discussed 

below. 

(1) In general the experimental errors that may result from 

the flexibility of the pressure measuring devices and from the 

restraining effects of the sand box side and far-end walls tend to 

give an underestimation of the wall force. To ensure that the box 

represents a long layer acting in plane strain it is probably neces-

sary to use a box with width and length dimensions at least four 

times greater than the height of the soil layer. Most of the boxes 

used have not satisfied this requirement and in general inadequate 

attention appears to have been given to estimating or eliminating 

these errors. 

(2) In all the reported tests harmonic forcing with very 

limited frequency ranges has been used and this type of forcing is 

not very representative of strong earthquake ground shaking. Even 

if testing were to be conducted using a variable frequency harmonic 

forcing or some more random motion, care would still be required 

to ensure that similarity relations were satisfied between the model 

and prototype. For an elastic soil and rigid wall the frequency 

similarity condition obtained on the assumption of the same 

Poisson's ratio in model and prototype is given by 

= ( 1. 3) 

in which 
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f ,f = frequency of vibration in model and prototype m p 
re spe cti vel y 

pm, pp = mass density in model and prototype respectively 

H ,H =height of model and prototype walls respectively 
m p 

G , G = shear moduli of model and prototype respectively m p 

The shear modulus of a sand material is strongly influenced 

by the confining pressure, the strain amplitude and the void ratio. 

Seed and Idriss !49 l give the following relationship between the shear 

modulus and confining pressure 

in which 

G = 100 K (IT' )l/Z 
2 m 

G = shear modulus of soil 

IT
1 =mean principal effective stress 
m 

( 1. 4) 

K 2 = a parameter which is primarily a function of void ratio 

and strain amplitude 

If the same horizontal accelerations are applied to both the 

model and prototype, then the stress similarity relation is 

in which 

IT 
m = 

" H 'mm 

IT ,IT = stresses in model and prototype respectively 
m p 

'Ym•'Yp =unit weight of model and prototype respectively 

(1. 5) 
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Equations (1. 3), (1. 4) and (1, 5) enable the correct frequency 

or time scale to be computed. It is clear that if relatively low 

model walls are used, the frequencies in the model excitation will 

need to be significantly greater than in the prototype earthquake 

motion. 

(3) The periods of vibration of the harmonic forcing have 

apparently always been significantly greater than the lowest natural 

period of the model wall-soil system and so the possibility 

of dynamic amplification of the base motion has not been considered 

in the tests. Amplification of the earthquake base motion may occur 

in prototype wall systems having relatively high walls supporting 

relatively soft soils. 

(4) If the results of movable or flexible wall tests are to be 

applied in the design of prototype walls it is necessary to satisfy 

very involved similarity relationships. In addition to the parameters 

mentioned above, the wall flexibility and the soil failure criterion 

need consideration. The stress state in the soil at failure is strongly 

influenced by the confining pressure. In view of the difficulties in 

satisfying these conditions and the considerable amount of work 

required to undertake a comprehensive parameter study it appears 

that a study employing computer models would be a viable alternative 

for this class of wall. 

1.4.3. Other Research 

By considering the equilibrium of soil slices within the 

sliding wedge Prakash and BasavannaC
44l have extended the Mononobe-
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Okabe method to enable approximate wall pressure distributions to 

be computed. They found that the pressure distribution varied in 

a nonlinear manner with depth and that the point of application of 

the total wall force was greater than one-third the height of the 

wall above the base. 

Tajimi(SS) has used the theory of elasticity to compute the 

earthquake-induced soil pressures on a cylindrical structure 

embedded in an elastic stratum. He has also obtained a solution 

for the harmonically forced wall problem of Fig. 1. 7 using two

dimensional elastic wave propagation theory<
53

' 54l. Although the 

boundary conditions of this problem are unlikely to be encountered 

in practice the solution is a useful approximation for a number of 

dynamic wall problems. In particular the solution appears relevant 

for the case when a building is embedded in a relatively soft soil. 

Scott(48) has used a simple one-dimensional elastic shear 

beam to model the soil layer in dynamic studies of both rigid and 

deformable walls. A Winkler spring foundation is used to connect 

the shear beam to the wall. Details of the model as applied to the 

rigid-wall problem are shown in Fig. 1. 8. One advantage of this 

simple model approach is that closed form solutions can be obtained 

for certain cases that include variations of the elastic constants with 

depth and certain types of wall deformation. These solutions, 

because of their relatively simple form in comparison with more exact 

solutions, and because of their generality with respect to the basic 

soil and wall parameters, are useful for design applications. 
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2. RIGID WALL: STATIC SOLUTIONS 

2. 1. ANALYTICAL SOLUTION 

In this section the analytical solution of the problem shown 

in Fig. 2.1 is presented. The vertical end boundaries are taken to 

represent rigid walls and the contact between the homogeneous 

linearly elastic soil and the wall is assumed to be smooth; that is, 

the vertical boundaries are assumed to be free from shear stresses. 

The lower horizontal boundary represents a rigid rock layer on 

which no displacement is permitted. A uniform horizontal body 

force is assumed to act throughout the soil layer. For convenience 

the magnitude of this body force is taken as '{, the unit weight of 

the soil, and so represents the application of a static horizontal 

acceleration of one g. The method of solution follows the approach 

of Marguerre(Jl) and Pickett!43> who obtained solutions for an 

infinite elastic stratum resting on a rigid foundation with vertical 

loading on the surface. 

Under the assumption of plane strain, the equilibrium 

equations for a homogeneous, linearly elastic, isotropic medium 

are 

a.,. BT x +~+F 0 ax = ay x 
(2. 1) 

a a- BT 
_J_ +~ +F = 0 lly ax y 

in which 
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•xy=O 

y.....g___Uniform body 
force 

Rigid boundary 
L 

RIGID WALL PROBLEM 

Figure 2. l 

~I 
x,u 



-43-

<T ,<T =normal stresses in the x- and y-directions 
x y 

respectively 

T = shear stress in the x- and y-directions 
xy 

F ,F =body forces per unit volume in the x- and y
x y 

directions respectively 

The stress-strain relations may be expressed as 

in which 

T 
~-au 

G - iJY +av 
&x 

G = shear modulus 

y2 
d 

v2 
s 

= 
2( 1 - v) 
(1 - 2v) 

V d = dilitational wave speed 

V = shear wave speed 
s 

v =Poisson's ratio 

(2. 2) 

Substitution of expressions (2. 2) into (2.1) gives the equilibrium 

equations for the problem in terms of the displacements . For the 

case of no vertical body force these equations are 
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(2. 3) 

for 

O<x<L; O<y<H 

The problem boundary conditions are defined in Fig. 2.1. The 

constant forcing term J can be expanded in a Fourier series to 

give 

n=1,3,5, .. o 

'I 4 ( . 1rX + 1 . 31rx + 1 . 51rx 
= G 1T sin T 3 sin -r:- 5 sin --y:- + • • • ) 

The solution of equations (2. 3) can be expressed as 

u(x,y) = 

v(x,y) = 

in which 

n" r = T 

00 

l 
n=i,3,5, ... 

00 

l 
n= 1 , 3 , 5 , ..• 

u (y) sin rx 
n 

v (y) cos rx 
n 

n=i,3,5, ... 

(2. 4) 

(2. 5) 

A solution of this form clearly satisfies the boundary conditions at 

x = 0 and x = L, independently of the functions u (y) , v (y). 
n n 
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Substitution of expressions (2.4) and (2. 5) into (2. 3) gives a 

coupled pair of equations for each of the terms in the series form of 

the solution. The equations for the nth term are 

in which 

a2u 
n 

ay2 -

2 8vn 
(k-1)r..,,--=a 

oy n 

2 (2)au 
_ .!.__ v + k -1 r ~ 

k2 n k2 oy 
= 0 

- 4)' 
an - mrG ' n=!,3,5, .. o 

(2. 6) 

It can be shown by substitution that equations (2. 6) are satisfied by 

the displacement functions 

a 
un(y) = rz:2 {Bncoshry + Cn(ry+k')ery 

+Dn(ry-k')e-ry - 1} (2. 7) 

a 
= __ n_ {-B sinh ry -

r2k2 n 
Cnryery + Dnrye-ry} 

in which 

k' = 3 - 4v 

B , C , D = constants that can be determined by satisfying 
n n n 

the boundary conditions at y = 0 and y = H 

The condition that v = 0 at y = 0 is satisfied directly by the 
n 

second equation. The condition u = 0 at y = 0 gives 
n 
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B = k'(D - e ) + 1 n n n 

The boundary conditions at y = H are 7 = 0, rr = 0. From xy y 

equations (2. 2) and (2. 5) it can be shown that this stress-free 

surface condition is satisfied if 

rv = 0 
n 

2 - 2 avn 
(k -2)ru + k -

8
- = 0 

n y 

} at y = H 

(2. 8) 

(2. 9) 

Substitution of equations (2. 8) and (2. 7) into expressions (2. 9) gives 

the following linear algebraic equations for the constants e and D 
n n 

e [ (2rH+k'+1)erH_2k'sinh rH] 
n 

+ D [ (-2rH+k'+1)e-rH+2k'sinh rH] = -2 sinh rH 
n 

e [ (2rH+k'-1)erH_2k'cosh rH] 
n 

(2. 10) 

+D ((2rH-k'+1)e-rH+2k'coshrH] = 
n 

2 - (k - 2 +.2cosh rH) 

Solving for en and Dn gives 

1 [ - rH J 1 2 en= - t:. e (2rH-k -1)(k -2+2 co sh rH) 

+ (2rH-k'+1)(2sinhrHlf - 2(k2 -2)k'sinhrH] 

1 [ rH l 2 Dn = - t:. e (2rH+k' +1)(k -2+2 cosh rH) 
(2. 11) 

- (2rH+k'-1)(2 sinh rH)f - 2(k2-2)k' sinh rH] 
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in which 

l 2 2 .2 2 I A = 2 1 + (2rH) + k' + 2k'(smh rH + cash rH) I• 

the determinant of the coefficients of the unknowns 

Hence from expression (2. 8) 

Bn = - i [ (k
2

-2)k' {2rH sinh rH + (k'+1) cash rH} 

- { 1 + (2rH) 2 - k' 2 }] (2.12) 

The complete displacement solution can be expressed in the following 

dimensionless form 

00 

l 

00 

l 
n=i,3,5, ..• 

1 
3 
n 

1 
3 
n 

lB coshry+C (ry+k'}ery 
n n 

+ D n ( ry - k 1) e - ry - 1 f sin rx 

l -B sinh ry - C ryery 
n n 

+Dnrye-ry}cos rx 

mr 
in which r = L The complete solutions for dimensionless 

stresses are 

00 

~ = ik2 ~ l ~ j2Bncoshry+ Cn(2ry+k' +3)ery 

'ft' n=i,3,5, ... n 

(2. 13) 

(2.14) 
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OJ 

£k2 ~ I -~~2Bncoshry + Cn(2ry +k'- i)ery 
.,,. n 

n=i,3,5,o •. 

OJ .,. . 

y'ff = £k2 ~ 2, ~ \ 2Bnsinh ry +Cn(2ry+k'+1)ery 
.,,. n 

n= 1 , 3, 5, ..... 

(2. 16) 

2 It should be noted that as v-0.5, k -OJ. The solution 

for v = 0, 5 can be readily obtained from the above expressions by 

taking their limits as k 2 - OJ. 

The normal stress distribution on the wall boundary can be 

found by setting x = 0 in expression (2.14). The force on the wall 

per unit length of wall F , and the moment on the wall about the sr 

base per unit length of wall M sr are given by 

F =SH IT (O,y) dy 
sr 0 x 

M = ('H ycr (0, y) dy 
sr J0 x 

Performing the integration in expressions (2.1 7) gives 

(2. 1 7) 

+D (-2rH+k'+1)e-rJ.!cc +D )(k'+1)-k2rHI n n n 5 
(2. 18) 
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0) 

-1-[2B (rHsinhrH-coshrH+i) 
n4 n 

n=i,3,5, ••• 
l 

+ DnJ-2r 2H 2 - 4rH - 4 + (rH+1)(k'+3) f e -rH 

2 
+ (C - D )(k'- 1) - (rHk) ] 

n n 2 
(2.19) 

The normal stress, force and moment on the wall were evalu-

L 
ated from the above solutions for a range of H values between 0. 5 

and 10, and for v between 0.2 and 0.5. Plots of the wall pressure 

* distributions are given in Figs. 2. 2 to 2. 5 inclusive and the wall 

forces and moments are shown in Fig. 2. 6. The pressure and force 

solutions for ~ values greater than 10 probably do not exceed the 

L 
H = 10 solutions by more than a few percent. 

Because convergence of the solutions was found to be 

relatively slow the presented results were numerically evaluated 

on the digital computer. The degree of convergence was estimated 

by comparing the value from the integration of the horizontal com-

ponent of the boundary stress solution around the boundaries with the 

value of the integration of the body force over the volume. Terms in 

the series solutions were summed until this horizontal equilibrium 

L 
check gave an error of less than 2%. For H = 5.0 it was found 

*rn the results of this study compressive pressures on the wall are 
plotted positively. The usual sign convention is used in the mathe
matical formulation of the analytical solutions; that is, a tensile 
stress has a positive sign and a compressive stress a negative 
sign. 
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necessary to sum about 20 terms t 0 achieve this accuracy. (A 

smaller number of terms were required for ~ < 5. 0 and a larger 

L 
number for H > 5.0. Numerical values from one of pressure 

distribution solutions are compared with a finite element solution 

in Section 2. 2. 1.) 

It is of interest to note that the first terms in the static 

series solution give a reasonably good approximation to the first 

mode shape and associated stress field of the equivalent free vibra-

tion problem. Details of the free vibration solution are given in 

Section 3.1. In both the static and free vibration solutions the dis-

placements have the same trigonometric variations in the x-direction. 

By using an approach similar to that used by Lemcoe (2 ?) 

for the analysis of a horizontally layered half-space subjected to 

surface loads, it would be possible to extend the solution given here 

to the case of a horizontally layered soil. However, it would not be 

possible to write the solution from this method in a relatively simple 

form and although numerical results can be readily evaluated by 

solving a set of linear algebraic equations, it is doubtful whether 

this type of approach has any significant advantage over the more 

general finite element method. 

2.2. FINITE ELEMENT SOLUTIONS 

A comparison was made between the analytical solution of 

the previous section and a solution of the same problem computed by 

the finite element method. The finite element method was then used 

to compute the solutions of related problems that were not convenient-
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ly handled by analytical methods. Details of the finite element method 

and its application to solve elasticity problems 

in numerous papers and texts (for example see 

Przemieniecki <45l and Clough (61 )) and there is 

have been presented 

Z . k" . (60) ien 1ew1cz , 

no need to describe 

the method here. Two different elements, a first-order rectangle 

and a second-order quadrilateral were used for this investigation 

and details of these elements and the method used are given in 

Appendix II. 

2. 2.1. Smooth Wall 

Finite element solutions were computed for the problem of 

the previous section (Fig. 2, 1) using a number of different values of the 

L 
parameters H and v. The finite element mesh used for these solu-

tions is shown in Fig. 2. 7. The antisymmetry of the problem was used 

to reduce the mesh length by one-half. Very good agreement was 

found between the finite element and the analytical solutions, and the 

differences in the wall pressure distributions were hardly detectable 

on the scale of the plots of the analytical solutions given in 

Section 2.1. A typical comparison of the wall pressure solutions 

is given in Table 2. 1, 

Except for a minor irregularity in the finite element solu-

tion near the bottom boundary (where the strain gradient is high), 

agreement between the two methods is better than 1 %. Since the 

analytical solution is expected to have an order of accuracy of 

about 1%,the finite element method at this mesh size can be 

expected to give results to about 2% accuracy. (A mesh size of 
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TABLE 2.1 

Comparison of Analytical and Finite Element Solutions 

L H=5.0, v=0.3 

y 
H 

1. 00 

0.95 

0.90 

0.85 

0.80 

0.75 

0.70 

0.65 

0.60 

0.55 

0.50 

0.45 

0.40 

0.35 

0.30 

0.25 

0.20 

o. 15 

0.10 

0.05 

o.oo 

Dimensionless Wall Stress 
o-o /yH 

x 

Analytical Finite Element 

-1. 076 -1. 069 

-1. 128 -1.127 

-1.154 -1.150 

-1. 165 -1. 161 

-1. 166 -1.162 

-1 • 1 59 -1.155 

-1. 146 -1. 142 

-1. 127 -1. 123 

-1. 102 -1. 098 

-1.071 -1. 067 

-1.035 -1. 031 

-0.9924 -0.9888 

-0.9439 -0.9405 

-0.8890 -0.8857 

-0.8268 -0.8238 

-0.7566 -0. 7539 

-0.6773 -0.6750 

-0.5868 -0. 5854 

-0.4822 -0.4821 

-0. 3574 -0.3623 

-0.1978 -0.1629 
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about twice that used here would probably be satisfactory for 

practical applications involving similar problems.) The finite 

element results given in Table 2. 1 were computed using the second

order quadrilateral element. Results obtained using the first-order 

rectangular element were almost identical. (The quadrilateral 

element was preferred for subsequent work in which wall flexure 

was significant.) 

2. 2. 2. Bonded Wall 

In practice the boundary condition on a soil-supporting rigid 

wall would be expected to be between the smooth case previously 

analyzed and a fully bonded condition in which both components of 

displacement (u and v) are zero. No attempt has been made in 

this investigation to obtain an analytical solution for the bonded 

contact case but it seems likely that if a solution were possible a 

considerable amount of numerical work would be required for its 

evaluation. In view of the excellent results obtained by the finite 

element method for the smooth rigid-wall problem it appears 

reasonable to expect that this method will give satisfactory results 

for related problems such as the bonded-contact rigid wall. 

A number of bonded contact solutions were computed for a 

one-g horizontal body force using essentially the same mesh 

(Fig. 2. 7) as used previously for the smooth contact solutions. 

The wall boundary condition was taken as u = 0, v = 0. The solu

tions for the bonded-contact normal stresses are compared with the 

analytical smooth wall values in Fig. 2. 8. For the bonded contact 
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case a stress singularity exists at the top of the wall and in order to 

compute details of the singularity to a reasonable degree of accuracy 

the me sh was modified for some of the solutions. To compute the 

results shown for the ll = O. 4 solutions, the elements shown 

as top elements in Fig. 2. 7 were each horizontally 

subdivided into two elements. 

The finite element normal and shear stresses on the bonded

contact wall boundary are given in Table Z.2 for the t = 10 

0 0 a- and .,. are the normal and shear stress respectively 
x xy 

solutions. 

on the wall boundary. Inspection of these stresses shows that a 

horizontal body force loading is unlikely to produce sliding on the 

~~ 

rigid-wall interface, thus indicating bonded contact behavior. (The 

exact nature of the stress distribution on the wall boundary for the 

case of vertical gravity loads is difficult to compute because the 

stresses are dependent on the manner in which the soil is placed 

behind the wall during construction. In general some slipping on 

the interface would be expected for this case, Clough and Duncan(?' 9) 

have computed pressure distributions for deformable walls subjected 

to gravity loads by using a nonlinear finite element technique and 

special interface elements.) 

Most unsaturated soils have a Poisson's ratio between 0, 25 

and 0,4 and it is evident from the wall normal stress distributions 

that except near the top of the wall (~ > O. 8) quite good agreement 

exists between the bonded and smooth wall solutions for this range 

of Poisson's ratio. Solutions for Poisson's ratio greater than 0,4 

have not been fully investigated, but it appears that as Poisson's 

':'Because of the presence of the singularity, the behavior on the 
contact near the top of the wall is uncertain. 
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TABLE 2. 2 

Finite Element Stresses. One-g Horizontal Body Force 

Bonded Contact. L 
H = 10 

v = o. 3 v = o. 4 

0 TO 0 TO 

" " y x ~ x ~ 
H 'VH vH vH 'VH 

1.0 -2.07 0.33 -3.91 o. 54 

0.95 -1. 35 0.30 -1. 92 0.55 

0.9 -1.28 0.23 -1. 59 0.42 

0.8 -1.20 0.13 -1. 40 0.28 

0.7 -1.15 0.05 -1.34 0.16 

0.6 -1.10 -0.008 -1.28 0.08 

0.5 -1.04 -0.05 -1.20 0.01 

0.4 -0.95 -0.09 -1.11 -0.04 

0.3 -0.84 -0. 12 -1.00 -0.08 

0.2 -0.69 -0.13 -0.85 -0. 11 

0.1 -0.48 -0. 12 -0.63 -0. 10 
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ratio is increased the area under the stress singularity tends to 

increase resulting in an increasing lack of agreement between the 

stress distributions for the two boundary conditions. 

Because of variations in the elastic moduli near the soil 

surface and the relatively low stress levels at which nonlinear 

behavior or yield occurs in soils, the stress singularity is unlikely 

to develop to any appreciable degree. In a cohesionless soil, the 

absence of significant confining stresses near the top of the wall 

will result in yielding at very low stress levels. For this case the 

normal pressure at the top of the wall will be essentially zero 

irrespective of the boundary condition on the wall. The following 

investigations were made to establish approximately the extent to 

which the elastic theory pressure distributions would be modified 

by the nonlinear behavior of typical soils. 

Cohesionless Soil. It is informative to consider the solution 

of a simple plasticity problem that represents approximately the 

stress conditions near the top of a smooth rigid wall. In Fig. 2. 9 

a smooth rigid wall supports a cohesionless soil which is loaded 

by gravity and the horizontal displacement of a smooth rigid plate. 

On the assumption of the Mohr-Coulomb failure criterion it is 

easily shown that the limiting pressure on the wall is given by 

in which 

0 
IT 

x max= K (i _ y) 
)'H p H 

(2. 20) 
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Figure 2. 9 
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K = 1 +sin P , the passive earth-pressure coefficient 
p 1 - sin cp 

It is expected that expression (2. 20) will give approximately 

the limiting pressure near the top of a smooth rigid wall supporting 

a cohesionless soil loaded by gravity and horizontal body forces. 

This result may also be a reasonable approximation for the bonded 

contact condition. 

Expression (2. 20) is superimposed in Fig. 2.10 on the wall 

pressure distributions computed by elastic theory for a combined 

vertical gravity and a one-third-g horizontal body force. It can be 

seen that failure of the cohesionless soil significantly reduces the 

elastic pressure distributions in the region fr> O. 8. A more exact 

analysis of the wall problem would be required to show the influence 

of failure on the pressures below the region of failure; however, it 

appears likely that the lower pressures are increased to some extent. 

Bilinear Soil. Problems involving soils with any general 

nonlinear stress-strain relationship can be analyzed by the finite 

element method. A common approach is to use an iterative tech-

nique solving successive infinitesimal elasticity problems, The 

full load is applied for the first solution and at each successive 

step the element elastic moduli are adjusted in an appropriate manner 

so that with successive solutions the stress- strain relationship in 

each element converges to the desired nonlinear behavior, (Baligh(3 ) 

has studied various methods of selecting the material properties for 

the successive approximations and found that to optimize the process 
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different methods should be used for different types of problems.) 

To show the influence of nonlinear soil behavior on the stress 

singularity a finite element analysis was preformed for the bonded-

contact rigid wall using the bilinear material properties shown in 

Fig. 2.11a. The soil properties are defined in terms of the devia-

toric stress-strain relation. For plane strain the deviatoric stress 

is related to the principal stresses by 

(2. 21) 

in which 

7 d = deviatoric stress 

0"
1 

,cr
2 

=principal stresses in the x-y plane 

The mesh and the elements described for the previous bonded 

contact solutions were again used. The nonlinear pressure distri-

bution computed for a one-g horizontal body force with parameters 

L H = 3. 0 and v = O. 4 is compared in Fig. 2. 11 b with the solution 

for the linearly elastic soil properties. The elements that yield 

under the specified loading are also identified in Fig. 2. 11 b. It 

can be seen that the overall effect of the nonlinear behavior on the 

wall pres sure distribution is not very pronounced. The stresses in 

the three top elements are reduced by the yielding but this reduction 

is offset by an increase in the stresses below the region of yield. 

In the example presented here the soil has been assumed to 

have uniform properties. In the following section the influence of a 

variation of the elastic constants with depth is studied and it is 
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found that this effect can produce quite a significant change in the 

pressure distribution. It appears that in practice the influence of 

both nonlinear behavior and variation of properties with depth will 

effectively diminish the importance of the singularity. (In theory, 

if the soil possesses cohesion the singularity will always be 

present,) 

2. 2. 3, Nonuniform Soil 

Typical soil moduli and details of the influence of various 

parameters on their magnitude are given in References (11, 12, 26 

and 49). In a cohesionless soil, the elastic moduli (Young's modulus 

and the shear modulus) are strongly dependent on the confining 

pressure and the strain amplitude. For most soils the moduli 

increase with depth below the soil surface, A satisfactory approxi-

mation, suitable for practical applications, is to assume a linear 

increase of the moduli with depth. 

Wall pressure distributions were computed by the finite 

element for two linear variations of Young's modulus with depth; 

an increase from 0.1 at the surface to 1. 0 at the rigid boundary, 

and an increase from O. 5 to 1. O. In the finite element representa-

tion of these variations 10 equal depth homogeneous horizontal layers 

were used. The soil was assumed to have uniform density and 

Poisson's ratio. The mesh used for the previous problems was 

employed (Fig. 2. 7). Solutions were computed for a one-g horizontal 

L 
body force with the parameters H = 10 and v = O. 3. Both the 

smooth and bonded contact conditions were analyzed, 



-70-

The finite element data points for the wall pressure and a 

hand smoothed interpretation of the results are plotted in Fig. 2. 12. 

Lack of smoothness in the data results from high strain gradients 

and the discrete steps in the material properties. The smoothness 

of the computed values could be improved by reducing the mesh size, 

but since the irregularities were mainly at the top of the wall where 

the elastic theory is of doubtful applicability for soils, the solutions 

obtained were considered satisfactory. The linear variation in 

properties reduces the normal stresses on the top half of the wall 

and produces a slight increase in these stresses on the lower half. 

As the linear variation becomes more pronounced the bonded

contact stress singularity tends to move closer to the top of the 

wall with an apparently diminished contribution to the total force. 

Except in the region for ff > 0. 8, good agreement is again 

demonstrated between the bonded and smooth contact results. 
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3. RIGID WALL: DYNAMIC SOLUTIONS 

3.1. ANALYTICAL SOLUTION 

In this section the analytical solution is presented for the 

free vibrations of the homogeneous elastic solid shown in Fig. 3. 1. 

The boundary conditions are identical with those of the static prob

lem studied in Section 2.1 and the vertical end boundaries are again 

taken to represent smooth rigid walls. The free vibration solution 

may be used to compute the wall pressure distribution response to a 

time-dependent acceleration of the rigid boundaries, Details of the 

application of the free vibration solutions for this computation are 

presented in Section 3. 2. 

The displacement equations of motion for the homogeneous 

linearly elastic isotropic medium can be readily derived from the 

equilibrium equations and the stress-strain relations (equations (2.1) 

and (2. 2)) by the addition of appropriate inertia terms to the equili

brium equations. Because of the linear nature of the problem the 

solution for static body forces may be superimposed with the 

dynamic solution. For the purpose of deriving the dynamic solution 

it is convenient to set the static body forces to zero. The displace

ment equations of motion for the problem can then be expressed as 
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2 2 + (k -1) a v(x,y,t) 
k2 llxlly 

2 + _1_ ll u(x,y,t) 

k2 lly2 

2 
= _1_ a u(x,y,t) 

v 2 at2 
d 

2 + (kz_ 1) ll u(x,y,t) 
llxlly 

2 + k2 a v(x,y,t) 

lly2 

1 
= 

2 a v(x' y' t) 
vz 

s 
llt 

O<x<L O<y<H; t > 0 

in which 

t =time 

vz 
d 

vz 
s 

The problem boundary conditions are shown in Fig. 3, 1, 

(3. 1) 

For free vibrations the solutions of equations (3.1) can be 

expressed as 

iw t 
( ) -( nm u x, y, t = sin rx u y) e ' n,m 

iw t 
(3. 2) 

( ) -( nm v x,y,t =cosrxvy)e ' 
n,m 

in which 

u = displacement in x-direction of mode n,m 
n,m 

v = displacement in y-direction of mode n,m 
n,m 
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w =natural angular frequency of mode n,m n,m 

mr 
r = T 

n = 1 , 2 , 3 , , •• , mode type integer 

m = 1,2,3, ••. , mode order integer 

i = .r::i. 

By inspection it can be seen that expressions (3. 2) satisfy the boundary 

conditions (u = 0, .,. = 0) at x = 0 and x = L. Substitution of 
xy 

expressions (3. 2) into (3.1) gives 

in which 

2-
a u(y) - k 2a2u(y) - r(k2 - 1) a;y(y) = 0 

ayz 

2- 2 (2)-( 
a v!yl _ L v!yl + r k -1 ~ = 0 

ay2 k2 k2 ----ay-

2 2 
13 = r -

2 
w n,m 

v2 
d 

2 
w n,m 
v2 

s 

(3. 3) 

(<> and 13 have particular values for each mode.) A solution of 

equations (3. 3) that satisfies the boundary condition at y = 0 

(u = 0, v = 0) was found to be 

u(y) = C (.! sinh <>y - ~ sinh fly) + D (cosh <>y - cosh fly) n,m a r n,m 

(3. 4) 

v(y) = C (-cosh<>y +coshfly) + D (- ~sinh<>y +{ sinhfly} 
n,m n,m r t' 
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in which 

C ,D =constants for mode n,m, that can be evaluated 
n,rn n,m 

by satisfying the boundary conditions at 

y=H 

From the stress-strain relations (equations (2. 2)) 

7" 
xy _ Bu+ Bv 

""""('.; - -ay ax 

rr 
__:t._ = 
G 

Thus, the boundary conditions at y = H require that 

rv = 0 

2 - 2 av 
r(k -2)u +k By= 0 

Substitution of expressions (3.4) into (3.5) gives 

Cn,m { 2 cash <>H - ( 1 + fl~)cosh flH} 
r 

C {(E (k2-2) - <>k
2
)sinh <>H + 2 ~ sinh flH} n,m a r r 

+ D {((k
2

-2) n,m 
2k2 } 

- ~)cash <>H + 2 cash f3H = 0 
r 

(3. 5) 

(3. 6) 

For non-trivial solutions of equations (3. 6) the determinant of the 

coefficients of C and D must vanish. Evaluating the 
n,m n,m 

determinant and equating it to zero gives 
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f 2 ( 2 +" 2) 2 } 2 2 
- ) 4r t r " co sh <>H co sh 13H + 4(r +fl ) = 0 

r' 
(3. 7) 

. * Equation (3. 7) is the frequency equat10n for the problem. 

This equation was derived by Bycroft(S) in a study of the forced vi-

brations of a rigid disc resting on an infinite elastic stratum but was 

not used in the development of his main results and apparently has 

not been previously evaluated. 

The solutions of the frequency equation give the natural 

frequencies of the system. The ratio of the constants C and 
n,m 

D can be found from equations (3. 6) for each frequency equation 
n,m 

solution and thus the modal displacement functions, expressions (3.4), 

can be determined to within an arbitrary constant. 

A degenerate form of the solution exists which has displace-

ments constant with respect to the x-direction. This solution repre-

sents the pure vertical-dilitation modes. 

The degenerate solution is of the form 

u 0 (y,t) = 0 ,m 
WO y 

v
0 

(y,t) = A
0 

sin ,m 
,m ,m d 

iw
0 

t ,m 
e 

(3. 8) 

*It is readily shown that this equation is the frequency equation for 
elastic wave propagation in an infinite elastic stratum bonded to a 
rigid foundation. The equation is analogous to the well known 
Rayleigh-La.i;nb frequency equation for plates. In a form used by 
Miklowitz\3b), the Rayleigh-Lamb equation for a plate of thickness 
2h is 

(r2 +fl 2) 2cosh <>h sinh (3h - 4r
2

<>!l cosh J3h sinh <>h = 0 
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in which 

A isaconstantformode 0,m 
O,m 

Expressions (3.8) satisfy the boundary conditions at x = 0, x = L, 

and at y = O. To satisfy the boundary conditions at y = H it is 

necessary that 

(Zm-1),,.vd 
w = 0,m ZH 

m=i,2,3, ... 

Equation (3. 9) gives the natural frequencies for this form of the 

solution. The modal displacements can be expressed as 

u = 0 
0,m 

_ . (Zm-1)"¥ 
vO,m - AO,m sm ZH 

iw0 t 
,m 

e 

(3. 9) 

(3. 10) 

The complete set of natural frequencies for the problem are 

given by the solutions of expressions (3. 7) and (3. 9) and the cor-

responding mode shapes are given by the appropriate evaluations of 

expressions (3. 2) and (3. 1 O). 

3. 1. 1. Numerical Evaluation of Solution 

The frequency equation, (3. 7), and the displacement 

functions, (3. 4), are even in "' and p and so it is immaterial 

whether these parameters are assigned the positive or negative root. 

"' and p can be either real or imaginary, and thus to facilitate the 

numerical solution of the frequency equation and the numerical evalu-

ation of the mode shapes, it is convenient for cases when the hyper-

bolic functions have imaginary arguments to express them as 
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trigonometric functions, and to write the frequency equation and the 

displacement solutions in three different forms. It is also con-

venient to express the solutions in terms of the following dimension-

less parameters, 

where 

n = n,m 

w n,m 
w 

s 

R _ mrH 
- """L" 

dimensionless natural frequency for 

mode n,m 

,,.ys 
ws = ZH , natural angular frequency of the fundamental 

horizontal-shear mode of an infinite elastic 

stratum 

/('~H)z 
nz 

Q! I = ,,. n,m 

4k2 

j(~)2 
nz 

(3 I = 'If ~·m I 

The displacement solutions and the frequency equation can then be 

expressed in the following forms: 

( nH)
2 

for y > 

u n,m 

g2 
n,m 
4 

I (3 I } iW t 
+Dn,m(cosh~y- cosh~) e n,m 

(3. 11) 
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n.,,.x { a 1v j3'v) 
vn,m = cos--y:-- cn,m(-coshlf"+cosh1:J" 

1 1 R "' } iw t 
+ Dn,m (-; sinh .;f +'If' sinh Pi:f) e n,m 

frequency equation: 

{ 
2 (R2_,_,. 12)2} 

- 4R + ~z cosha'coshj3 1 + 4(R 2 -tfl 12) = 0 

2 
~n,:z:n 

4 

2 

> ( ~) > 

n11'X { (R a'v 13' 13' ) u = sin -L C = sinh --'-H +-R sin ~H n,m n,m a 

( a' a'v R fl'v)} iwn mt + Dn,m - R sinh!f + ~ sin1:J" e ' 

frequency equation: 

{ 
(R2_,.,2)2} 

- 4" 'a' + ,.. sinh a 1 sin '" t" a•p • t-"' 

= 0 

(3. 12) 

(3. 13) 

(3.14) 



-81-

for 
2 

> (nJ!) 

u = sin nL'll'X {c ( ~ sin "H'y + {:lR' sin {:lH'y) 
n,m n,m a 

I {:l' } iW t 
+D (cos~- cos.U) e n,m 

n,m H H 

(3.15) 

vn,m = cos n;::- { cn,m(- cos ~y +cos ~y) 

( 
r r R " 1 } iw t + D a · ~ + . .U) n,m 

n,m R sm H 1J' sm H e 

frequency equation: 

sin {:l' 

The 

o 2 
/4k

2 

2 
special cases of a 1 = 0 and {:l' = 0 (that is, (nH/L) = 

n,m ' 
and (nH/L) 2 = o2 /4 ) can be readily derived from the n,m 

above expressions by taking the limits, a' - 0 and {:l' - O. 

. 2 2(1-v) 
Recalling that k = (

1
_2y), it can be seen that the frequency 

equation, written in terms of the dimensionless parameters, has 

solutions dependent on the value of Poisson's ratio v and inde-

pendent of the other elastic constants. (The natural frequencies, 

expressed in dimensional form, depend on E or G because of the 

dependence of w on E or G.) The roots of the frequency 
s 

equations (3 .12), (3. 14) and (3 .16) were numerically evaluated 
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using Newton's method on the digital computer. The method was 

applied by selecting a particular value of the parameter ;H and 

incrementing the dimensionless frequency through the range 1. 0 

to 12.0, iteratively computing the roots indicated by sign changes 

in the frequency equations. 

Plots of the frequency equation solutions for a range of 

Poisson's ratio between 0.2 and 0.5 are presented in Figs 3.2, 

3,3 and 3.4. As the parameter nir-+ ro, the dimensionless fre-

quencies n become asymptotic to the pure horizontal-shear and n,m 

vertical-dilitation frequencies of the infinite elastic stratum. That 

is, n is asymptotic to the values 1, 3, 5, •••• and k(1,3,5, ••• ). 
n,m 

Numerical values of the frequencies of typical modes, computed for 

a range of ii and v parameters, are given in Appendices III and VI. 

Details of typical mode shapes are tabulated and plotted in 

Appendix III. (Also see Fig. 3.15.) 

3. 2. HORIZONTAL FORCING 

The analytical normal mode solution given in the previous 

section can be conveniently used to compute the wall pressure distri-

bution and force responses to an arbitrarily time-varying horizontal 

acceleration of the rigid boundaries. The forced boundary problem 

is shown in Fig. 3. 5. It is convenient to approach this problem by 

using d'Alembert's principle to replace the boundary forcing by a 

uniform horizontal time-varying body force within the elastic soil. 

With the addition of the d'Alembert forcing, the equations of motion 

become 
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2 
+ (kz-1} a v(x,y, t) 

axay 

2 
= pa u(x,y,t) 

at2 

2 
+ a u(x 'y' t) } 

ayz 

2 G{a v(x,y,t) 

ax
2 

2 2 } + (k2-1) a u(x,y,t) + k2 a v(x,y,t) 
axay ay2 

2 = p a v(x 'y' t) 

at2 

in which 

p = mass density of soil 

(3. 1 7) 

~(t) = displacement in x-direction of rigid boundary 

The effects of dissipation within the system can be approximated 

by the addition of viscous damping terms in the analysis. 

Dissipation will result from nonlinear behavior within the soil 

structure and from the radiation of energy from the system owing 

to the fact that in general the boundaries are not perfectly rigid. 

Damping within the soil structure probably results mainly from 

sliding at the points of contact of the soil grains. Discussions of 

this type of damping and experimentally determined values are given 

by Seed and Idriss <49), Kovacs, Seed and Chan(Z 6), and Hardin and 

. (11 12) 
Drnev1ch ' • Further research regarding the most appropriate 

mathematical formulation of the total damping is required but it 

appears reasonable to expect that the method of representing the 

dissipation will not have a significant influence on the results pre-

sented here. 
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With the addition of viscous damping terms, the equations of 

motion may be written in vector form as 

in which 

L~(x,y,t) = p~(x,y,t) + c;,(x,y,t) + p';ib(t) 

L = linear operator with respect to the spatial 

coordinates 

(3. 18) 

~(x,y, t) 
= { u(x, y, t) } 

v(x, y, t) 
vector of the displacement components 

u and v 

-- { ubo(t)} ' ~b(t) vector of displacements on the rigid 

boundary 

c = damping coefficient 

The dots above the symbols denote differentiation with respect to time. 

Equations (3. 18) may be solved by the standard normal mode 

* expansion technique. Because the normal modes form a complete 

set of functions, the solution can be expressed as 

in which 

co 

~(x,y,t) = l on,m(t) <f>n,m(x,y) 

n=1 
m=1 

(3. 19) 

Q (t) = participation coefficient for mode n, m 
n,m 

-2n,m(x,y) =mode shape for mode n,m 

*Frazier and Roberts(
1

0) give a detailed account of the application 
of this method in a study of the dynamics of soil layers. 
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Substitution of expression (3.19) into (3.18) gives 

co 

\' Q (t)L.!. (x,y) L n,m :.J:n,m 
n=1 
m=1 

=~ 
n=1 
m=1 

{pQ (t) + cQ (tl}.S! (x,y) + pii. (t) n,m n,m n,rn -o 

From the equations of motion for free undamped vibrations 

2 L_i (x,y) = - pw di (x,y) 
n,m n,rn-1-n,m 

For convenience let the damping coefficient be expressed as 

c = 2pw \, n,m n,m 

in which 

\, = fraction of critical damping in mode n,m 
n,m 

Substitution of expressions (3. 21) and (3. 22) into (3. 20) gives 

co 

- p I { ~n, m (t) + 2wn, m \,n,m Qn, m (t) + w!, m Qn,m (tl} <j> n, m (x,y} 

n=1 
m=1 

(3. 20) 

(3. 21) 

(3. 22) 

(3. 23) 

The uncoupled equation of motion for each of the modal participitation 

coefficients can be derived by forming the dot product of equation 

(3. 23) with a particular mode, integrating over the volume and em-

ploying the orthogonal property of the modes. On the assumption of 
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uniform soil density these equations of motion can be expressed as 

.. 
Q (t) + 2w t; Q (t) + w2 Q (t) 

n,m n,m n,m n,m n,m n,rn 

= 
-ii. (tlfv u (x,y) dV 

b n,m (3. 24) 

in which 

u (x,y) = displacement component in x-direction 
n,m 

of mode <l>n,m 

V =volume 

The solution of equation (3. 24) for zero initial conditions is given by 

-fvu (x,y)dV 
Q (t) = ___ n-',_m ____ _ 

n,m fv 1n,m' <l>n,m dV 

Let 

p _-:a_ 
n, m - 2 

w n,m 

P is called "the static-one-g modal participation factor for 
n,m 

mode n,m. 11 Let 

PA (t)=w2 D (t) 
n,m n,rn. n,m 

(3. 25) 

(3. 26) 

(3.27) 
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in which 

D (t) = 
n,m j 2 Is: 

wn,m 1 -i:.n,m 

--- e 
~('T) - ( W (t-T) n,m n,m 

g 

.j 2 I X sin w1-i;, (t-'T) n,m n,m d'T' 

the relative displacement response of a single 

degree-of-freedom oscillator, with undamped 

natural angular frequency w and fraction n,m 
of critical damping i;. , to a base excitation 

n,m 

PA (t) is called "the pseudo-acceleration response for mode 
n,m 

n,m. 11 Thus, the complete solution of equation (3.18) can be ex-

pressed as 

co 

~(x,y,t) = l 
n=1 
m=1 

P PA (t) <f> (x,y) 
n,m n,m ~,m 

(3. 28) 

From the stress-strain relations (equations (2. 2)) the normal stress 

on the wall can be expressed as 

in which 

11' (O,y,t) = L u(x,y,t) 
x p-

L = a linear operator with respect to the spatial 
p 

coordinates 

(3.29) 

Thus the normal pressure distribution on the wall, resulting from an 

arbitrarily time-varying horizontal acceleration of the rigid 

boundaries, can be expressed as 



in which 

er {0,y,t) 
x =~ 

,'._J 

n=1 
m=1 
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= P L «!> {x,y), 
n,m ~n,m 

(3. 30) 

the static-one-g modal wall pressure dis

tribution for mode n,m 

P can be readily evaluated from the modal displacement 
n,m 

functions, expressions (3.11), (3.13) and (3.15), by performing 

the appropriate volume integrations indicated in expression (3. 26). 

It is possible to express the required integrations in closed form 

and details of these expressions are given in Appendix IV. The 

ope rations, L c(i {x,y), 
~n,m 

can be readily evaluated by the 

appropriate differentiations of the modal displacement functions. 

The expressions obtained are given in Appendix V. It is of interest 

to note that for either horizontal or vertical forcing of the rigid 

boundaries the participation factors, P , are zero for the n,m 

symmetrical modes, that is for even values of n. The pure 

vertical-dilitation modes, represented by n = 0, have zero partici-

pation for horizontal forcing of the rigid boundaries but have sig-

nificant contribution in the response to vertical forcing. 

The evaluation of expression (3.30) can be 

carried out by computing by numerical methods the time-history of 

the modal pseudo-accelerations for each significant mode and per-

forming the required summation at suitable time intervals. In view 
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of the uncertainties inherent in the estimation of earthquake-induced 

pressures on walls, computation of the response time-history is 

probably not warranted and approximate evaluations of expression 

(3. 30) may often be satisfactory. The Response Spectrum method of 

obtaining approximate values of the maximum response is discussed 

in Section 3, 7. 

The static solution of the problem studied in Section 2. 1 

can be represented in a different form by using a modal expansion 

technique similar to the method used here for the forced dynamic 

solution. It is informative to show the relationship between this 

representation of the static solution and the forced dynamic solution. 

Equations (2. 3} can be written as 

Lu(x,y) + F = 0 

in which 

F --{FFx}--{-0'{} , the body force vector 

y 

The solution of equation (3. 31) can be expressed as 

in which 

-
u(x,y) = ~ Q' .+. (x y) ~ n,m..:Z::n,m ' 

n=1 
m=1 

(3.31) 

(3.32) 

Q' = static participation coefficient for mode n,m 
n,m 

Substitution of expression (3.32) into (3.31), and elimination of the 

spatial operator L by use of expression (3. 21) gives 
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p I o~,mw~,m1n,m(x,y) = F 

n=1 
m=1 

{3.33) 

By forming the dot product of equation (3. 33) with a particular mode, 

integrating over the volume and employing the orthogonal property of 

the modes, the expressions for the participation coefficients are 

found to be 

JV .!!on, m {x,y) dV 
Q' - --y 

n,m --z
w n,m 

(3. 34) 
J, p<f> {x,y)· <f> (x,y) dV 

V -n,rn -n,m 

Thus for uniform soil density, the static displacement solution can 

be expressed as 

-
u(x,y) = \' !..., p n,m~n,m(x,y) 

n=1 
m=1 

(3. 3 5) 

The normal stress on the wall for the one-g static horizontal body 

force can hence be expressed as 

"x(O,y) = I Pn,m(y) 

n=1 
m=1 

(3.36) 

The simple relationship between the dynamic pressure distribution 

and the static solution can be seen by comparison of expressions 

(3. 30) and (3.36). The modal pressure distribution• p (y), is 
n,m 

called in this study "the static-one-g modal pressure distribution for 

mode n,m. 11 
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The modal summation method of computing the static solution 

was used as a method of checking the analytical normal mode solu-

tion. Although this approach provided a convenient check it was 

L 
found that for H values greater than 5,convergence was relatively 

poor. Static solutions solved by this method require considerably 

more computation time than solutions obtained using the Fourier 

expansion method presented in Section 2.1. 

3.3. STATIC-ONE-g MODAL PRESSURES 

Static-one-g modal pressure distributions were evaluated for 

the smooth rigid wall using the analytical expressions given in 

Appendix V. 
L 

Results were computed for a range of H and v values, 

and typical static-one-g modal pressures are compared with the 

analytical static solutions for a one-g horizontal body force in 

Figs. 3. 6 to 3.12 inclusive. The pressure distributions are plotted 

for all the modes that have force contributions greater than 7 % of 

the static force and in a number of cases modes with a smaller 

contribution are shown. In some of the unplotted higher modes, 

particularly for v values 0.45 and 0.5, relatively large pressure 

values occur but sign changes in the pressure distributions result in 

a low force contribution. The algebraic sums of the plotted modal 

pressure contributions are shown, and it can be seen that for each 

case the modes plotted (five or less) contribute at least 60% of the 

total static fore e. 
L 

For H values greater than 10 the number of 

modes required to give a force summation in reasonable agreement 

with the static solution increases roughly in proportion to the ~ 
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value. Although this would tend to indicate difficulty in computing 

. L 
the dynamic response for large H values, a simplifying approxi-

mation is presented in Section 3. 5 that alleviates this difficulty. 

For Poisson's ratio equal to O. 5 and for ~ values less than 2 the 

lower mode force contributions are small. Apparently for these 

cases a large number of modes contribute to the total static pres-

sure response and a satisfactory approximation for the earthquake-

induced pressures can presumably be obtained by using the static 

solution. The dimensionless natural frequencies, static-one-g 

modal forces and moments for the plotted pressure distributions 

and for some of the higher mode distributions are given in 

Appendix VI. 

3.4. STATIC-ONE-g MODAL FORCES 

The static-one-g modal force per unit length F , and the n,m 

static-one-g modal moment per unit length M are defined by n,m 

(3. 3 7) 

M =SH yp (y) dy n,m 
0 

n,m 

Expressions (3.37) were evaluated for values of Poisson's ratio 

between 0.3 and 0.5. The static-one-g modal force, expressed in 
nF 

the dimensionless form ~· m, is plotted versus the geometric 
yH 

parameter ;H in Figs. 3.13 and 3.14. For comparison the static 

force solution is also plotted. The mode type integer n is included 
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in the dimensionless plot ordinates to indicate that a simple relation-

ship exists between the modal forces of modes having a particular 

m value and any odd value of n. This is best illustrated by stating 

the following relationship: 

L 
[ Static-one-g modal force for H = a; n = b; m = c] 

1 L a ] = b [ Static-one-g modal force for H = b; n = 1; m = c 

In general the plots show only the modal force values that 

exceed 5% of the static wall force for the n = 1 case. 
L 

For -nH 

values less than 2 the forces exhibit a complex behavior that is 

sensitive to changes in both Poisson's ratio and ~ • The influence 

of this behavior on the earthquake-induced wall force is more clearly 

demonstrated by the steady- state solutions for harmonic forcing 

given in the next section. A feature of interest in the plots is the 

crossing point between the m = 1 and the m = 2 modes in the 

· · · f L 2 0 v1c1n1ty o nH = • , Near this point both these modes have 

relatively similar natural frequencies and so will probably give 

approximately equal contributions to the total earthquake-induced 

wall force. In the vicinity of the crossing point the character of 

the two modes is interchanged,with a conversion between a basically 

vertical-dilitation and a basically horizontal-shear character. 

This behavior is illustrated by the mode shapes plotted in Fig. 3.15. 

Figs. 3, 16 and 3. 1 7 show the variation in the location 

of the centers of pressure of the modal pressure distributions and 

can be used to compute the static-one-g modal moments. These 
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curves show only the modes that were previously found to produce 

at least 5% of the static force on the wall for the n = 1 case. By 

the appropriate choice of n in the parameter ;H' the curves can 

be used to obtain the centers of pressure for a mode having a 

plotted m value and any odd n value. 

3, 5. HARMONIC FORCING 

In this section the steady- state solutions are presented for 

horizontal harmonic forcing of the rigid boundaries of the previously 

studied smooth rigid-wall problem (Fig. 3. 5), These solutions are 

required in the method used in Section 7. 2 to evaluate dynamic 

solutions for deformable-wall structures. They also give further 

insight into the dynamic behavior of the rigid-wall problem. A 

study of the steady-state solutions enabled a convenient two-mode 

approximation to be formulated for t values greater than 10. 

These cases were previously found to have a relatively large number 

of modes participating with significant wall force contributions. 

For harmonic forcing ·~ eiwt on the rigid boundaries, the 

equations of motion governing the modal participation coefficients 

are found from equation (3. 24) to be 

Q (t) + 21; w Q (t) + w2 Q (t) 
n,rn n,m n,m n,m n,m n,m 

= 
2 •• iwt 

w P u.. e 
n,m n,m b 

g (3.38) 

The steady- state solution of equation (3. 38) is given by 



Q (t) = 
n,m { 

g 1 
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P iwt u e n,m b 
2 

_w_ + 2i~ 
2 n,m 

w n,m 

(3.39) 

Substitution of expression (3. 39) into (3.19) gives the steady-state 

displacement response to harmonic forcing as 

u(x,y,t) = 

CD iwt 

l P "' (x,y)e n,rn.-In ,m 
2 

n=1 {(1 -~2 ) + 2i~ ~} 
m=1 c.u n,rn wn,m 

n,m 

The wall pressure distribution response is given by 

er (O,y,t) = 
x ;~ 

n=1 
m=1 

( ) iwt 
Pn,m ye 

2 
{ ( 1- -T-) + 2isn, m c;f----} 

w n,m n,m 

(3. 40) 

(3. 41) 

The complex-amplitudes of steady-state wall force and moment for 

a one-g-amplitude harmonic base forcing, F'(w) and M'(w), can 
r r 

be expressed in dimensionless form as 

F' (W) 
co F /F r . ')' n,m sr 

= F 0 2 

w:,m} 
sr 

,;_=1 {(1 - _w __ ) + 2i~ 
2 n,m 

m=1 w n,m 
(3. 42) 

M' (W) 
co 

M /M l r n,m sr 
~ = 2 sr 

n=1 {(1 
__ w_\ + 2i~ _w_} 

m=1 
2 ) n,m w 

w n,m n,m 
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in which 

F M = force and moment respectively on rigid wall for sr' sr 
one- g static horizontal loading 

Plots of the complex-amplitude ratios, expressions {3.42), 

are shown in Figs. 3.18 to 3.23 inclusive for ~ values between 

1. 0 and 50. The real and imaginary parts, and the moduli of both 

the force and moment ratios are plotted against the dimensionless 

frequency 0 = ~ • All the modes satisfying the bounds, 
w 

SL 
0 < 10 and --.-nT 2:: 0.333, were included in the computation of n,m nn 

the complex-amplitudes. These bounds gave all the modes with a 

dimensionless frequency less than 10 that produced a significant con-

tribution to the wall force. Only about 20% of the modes used added 

significant contributions to the forces and moments; however, it was 

computationally convenient to include all modes within the specified 

bounds. The modal forces were summed for each of the solutions 

and in all cases presented this sum exceeded 90% of the static force. 

For fI values less than 10 the sum was about 95% of the static force. 

A correction to account for this discrepancy was applied by taking 

the difference between the summations of the modal forces and 

moments and the respective static solutions, and assuming that this 

difference acted as a "rigid" mode. The "rigid" mode was assumed 

to have a natural frequency large in comparison to the maximum 

forcing frequency. The validity of this correction can be seen by 

inspection of expressions (3.42) for the case when w >> w. The 
n,m 

solutions presented were evaluated using a 10% damping ratio for 
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each mode':' A limited study on the effects of varying the damping 

was made and typical solutions for 5% damping in all modes are 

compared with the 10% damping solutions in Fig. 3. 24. 

L 
For H values less than 5 it can be seen that the force and 

moment solutions become quite sensitive to changes in Poisson's 

ratio. It is also of interest to note that the character of both the 

force and moment solutions are very similar, which suggests that 

the shape of the pressure distribution does not vary significantly 

with changes in frequency. 

From an inspection of the plotted solutions it is apparent 

L that for H values greater than 10 the dynamic behavior of the wall 

force and moment can be represented to a good degree of approxi-

mation by an equivalent two-mode system with a higher modal damp-

ing than in the basic system. The following equivalent parameters 

were found suitable for Poisson's ratio between O. 3 and O. 4: 

Mode 1 Mode 2 

Dimensionless frequency 1. 1 3.0 

Damping ratio 18% 18% 

Static-one-g modal force 0.85 F 0.15 F sr sr 

Static-one-g modal moment 0.85 M 0.15 M 
sr 

The complex-amplitude of force and moment for this two-mode 

L 
system are compared with the exact solutions for H = 10 and 20, 

v = 0.3 and a 10% modal damping in Fig. 3.25. 

sr 

':~ 
This assumption is in contradiction with the form of damping chosen 
in expression (3. 22) to satisfy the conditions for existence of classical 
normal modes. However, practical experience with dynamic systems 
suggests that it is reasonable to assume that the modal damping 
ratios have the same values. 
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3. 6. SPRING-MASS-DASHPOT ANALOGY 

From the steady-state solutions for the wall force and 

moment {expressions (3, 42)) it can be easily shown that the rigid-

wall problem for either static or dynamic forcing can be represented 

by a simple spring-mass-dashpot analogy. Each of the modes that 

contribute significantly to the wall force are represented by a 

spring-mass-dashpot unit, and the higher modes that contribute 

less significantly are represented by a single mass rigidly attached 

* to the wall. This analogy is shown in Fig. 3. 26. The analogue 

parameters can be related to the previously defined prototype modal 

parameters by the following expressions: 

F 
m = n,m 

n,m g 

M (3.43) 

m h = n,m 
n,m n,m g 

N 

1 (F 
\' 

Fn,m) m = ' r g sr /.__, 

N (3. 44) 

1 (M 
,-

m h = - / M ) r r g sr ,~ n,m 

N 

in which 2, represents the sum over the N significant modes. 

k 
n,m :: 2 

w 
n,m m n,m 

c n,m 
m 

n,m 
= 2w ~ n,m n,m 

(3.45) 

*The analogy is essentially equivalent to the one used by Housner(l 6) 
in a study of dynamic pressures on liquid containers. 
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Equations (3.45) express the equivalence between the natural fre

quencies and damping factors of the analogue spring-mass-dashpot 

units and the prototype modes which they represent. 

In most applications the dynamic wall forces and moments 

can be computed directly from the natural frequencies, modal 

forces and modal moments, and no purpose is served by evaluating 

the analogue parameters. The analogue is merely used to illustrate 

the physical interpretation of the previous solutions. 

3. 7. RESPONSE SPECTRUM METHOD 

The number of modes required to give a good dynamic repre

sentation of the rigid-wall systems depends on a number of factors 

including the relationship between the modal natural frequencies and 

the range of predominant frequencies in the forcing. To determine 

this relationship for typical earthquake ground motion it is necessary 

to know the geometric and material properties of the wall system. 

Thus in each application, the degree of exactness achieved by using 

a limited number of modes will vary. However, from the results 

presented in the foregoing sections it can be seen that in general a 

moderately good dynamic representation of the rigid-wall systems 

can be achieved with five or less modes. 

In view of the uncertainties involved in the estimation of 

earthquake-induced wall pressures and the fact that a satisfactory 

dynamic representation of the rigid-wall system can be achieved 

with a limited number of modes, the well known Response Spectrum 

method of evaluating the total earthquake response from the modal 
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properties appears suitable for relatively rigid walls. In the 

application of this method the earthquake responses of the individual 

modes are computed from the modal properties and an earthquake 

response spectrum. The total earthquake response is found by 

combining the individual responses by some approximate method. 

Smoothed earthquake response spectra, suitable for design 

applications, have been presented by Housner(i 4 ,iS) and Skinner(Si). 

Housner's spectra are reproduced in Appendix VIII. The generally 

accepted method of combining the individual modal responses for 

building design is to use the root-mean-square sum. A discussion 

of the errors involved in the application of this approximation to 

buildings and possible refinements of the method have been presented 

by Merchant and Hudson<35l, From the results of the previous 

sections it was found that in general there is a reasonably good 

similarity between the characteristics of the modal pressure distri-

but ions and modal force distributions in buildings. Hence, it appears 

reasonable to expect that the rms method will be satisfactory for 

many wall problems. There are two wall cases for which the rms 

approach may need some modification. One particular difficulty 

arises when two modes that have significant pressure contributions 

have nearly the same frequencies. Since the rms method is based 

on the assumption that the individual modal responses are inde-

pendent random variables there remains some question about the 

validity of the method for this case. A further difficulty arises 

when two modes have nearly equal contributions. For this case the 

rms sum is significantly less than the absolute or algebraic sums, 
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and so if a design is based on the rms sum there exists the possi-

bility (although at low probability) that the design values will be 

exceeded by a considerable margin. For these two cases a 

reasonable design approach is to use pressures or forces computed 

from an average of therms sum and the algebraic sum. Skinner(Si) 

has computed earthquake response spectra for two-mode systems. 

Although these have been prepared with the design of buildings in 

mind they can be applied to give additional refinement to wall prob-

lems. Informative estimates of the likely errors arising from the 

rms method for the case of two modes with relatively close fre-

quencies can be made from Skinner's spectra. 

The application of the Response Spectrum method to compute 

an earthquake-induced pressure distribution is illustrated by the 

example studied in Chapter 5. Modal frequencies, pressure distri-

butions, forces and moments for the rigid wall can be obtained from 

the plots given in the foregoing sections or read from the tables in 

Appendix VI. A rapid application of the Response Spectrum method 

can be made by using only the modal wall forces and assuming that 

the dynamic pressure distribution has similar shape to the static 

solution or the largest modal contribution. In applying the results 

given in this study it is recommended that the static solutions be 

used to compute a "rigid" mode to represent the effect of the higher 

modes that are not otherwise included. The properties of this "rigid" 

mode are defined for the spring-mass-dashpot analogue described 

in the previous section. 
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3.8. RANDOM EXCITATION 

Housner and Jennings( 17l have shown that the important 

properties of recorded strong-motion earthquake accelerograms 

can be modelled with sections of a stationary, Gaussian, random 

process having a power spectral density found from the averaged 

undamped velocity spectrum. (More recently Jennings, Housner 

and Tsai( 22) have refined this model by using an envelope function 

to introduce the changing intensity at the beginning and end of an 

accelerogram.) The earthquake power spectral density given by 

Housner and Jennings<
17l is plotted in Fig. 3.27 and expressed by 

G(w) 

2 
0.01238(1+1~7.8) 

= 2 2 2 
( 1 - ;42) + 14~. 8 

ft/ secZ )2 

rad/sec) (3. 46) 

Their relationship between the relative velocity response spectra 

and the power spectral density is expressed by 

in which 

J ~G(w) (i _ e-21;.wT/2.44) Sy= 1 796 • 2tw 

Sy = relative velocity response spectrum 

G{w} = power spectral density of earthquake 

w = angular frequency 

i;. = damping ratio 

T = accelerogram duration 

(3. 4 7) 
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If T = 18,6 and {;. = O, then SV is approximately equal to 1.0 for 

a 3.0 sec period oscillator. This approximate relationship may be 

used to scale G{w) to the correct value for different velocity 

spectra. 

Statistical estimates of the earthquake wall forces and mo-

ments can be computed from the earthquake power spectral density 

and the steady-state solutions for harmonic forcing by using some of 

the basic results of random vibration theory. The mean-square-

response 

in which 

of a linear system to random excitation is given by 

(3. 48) 

H(w) = system transfer function 

G (w) =power spectral density of input (w = 0 to oo) x 

If the input is normally distributed with zero mean the output will 

also be normally distributed with zero mean. Assuming zero mean 

for the earthquake input and expressing (3.48) in terms of the wall 

problem parameters gives 

in which 

s~ =variance of wall force 

s~ = variance of wall moment 

(3. 49) 
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G(w) =power spectral density of earthquake 

F' (w) and M' (w) are defined in dimensionless form by 
r r 

expressions {3.42). Expressions (3.49) can be numerically evalu-

ated by using expressions (3.42) and the analytical expression for 

the power spectral density; alternatively, an approximate evaluation 

can be made by using the simple graphical interpretation of expres-

sions (3. 49) and the plots given for IF' (w) l/F , r sr IM'(wll/M r sr 

and G(w). Statistical estimates of the maximum forces and 

moments can be found from the mean-square responses by using 

the properties of the normal distribution curve. An example of the 

application of this method is given in Chapter 5. 

Although not widely used the random vibration approach has 

general applicability to many earthquake engineering problems. De

tails of the application of this method to the estimation of responses of 

buildings to earthquakes are given by Tajimi(54 l. The method has 

particular advantage if the system transfer function can be readily 

derived and if classical normal modes do not exist or are difficult 

to evaluate. This is frequently the case for many soil-structure 

interaction problems and in particular the random vibration 

approach was found to be a convenient method for computing the 

response of the deformable-wall structures analyzed in Chapter 7. 
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3. 9. FINITE ELEMENT SOLUTIONS 

The finite element method was used to compute normal mode 

solutions for a number of rigid-wall problems, The purpose of this 

study was to check the accuracy of the finite element method for this 

type of problem by a comparison with the analytical solution for the 

smooth wall, and to investigate the effect of the wall- soil contact 

assumption on the dynamic behavior. 

The normal modes were computed using the second-order 

quadrilateral element and a consistent mass matrix (see Archer(1)). 

Details of this element and the finite element formulation used are 

given in Appendix II. 
L 

Solutions were computed for H equal to 1. 0 

and 3, 0 with a Poisson's ratio of O. 3 for each case. Two different 

meshs were used for each case and these are shown in Fig. 3, 28. 

Both the smooth and bonded contact boundary conditions were 

analyzed. For the smooth wall problem the boundary conditions 

were taken to be the same as used previously for the analytical 

solution (Fig. 3.1). The bonded wall problems were identical in 

detail to their smooth wall counterparts except that the boundary 

condition on the end walls was taken as u z 0 and v = 0. 

Solutions for the natural frequencies of the lower anti-

symmetric modes are compared in Tables 3.1, 3.2, 3.3 and 3,4 

below. The solutions for the static-one-g modal wall pressure 

distributions that contribute significantly to the static wall forces 

are shown in Figs. 3. 29 and 3. 30. 
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Figure 3. 29 Static-one-g modal pressure distributions. 
Smooth and bonded rigid wall. L/H = 1. 0. 
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Figure 3. 30 Static-one-g modal pressure distributions. 
Smooth and bonded rigid wall. L/H = 3. O. 



-135-

TABLE 3.1 

Natural Frequencies, Smooth Contact ~ = 1. 0 

Mode Dimensionless Natural Frequency n n,m 
Type, Order Coarse Fine Analytical 

1 • 1 

1,2 * 
1,3 * 
1, 4 * 
3,1 

3,2 

Mesh Mesh 

2.23 2.19 

3.51 3.45 

4. 81 4.71 

5.33 5.09 

6.65 5.85 

7.62 6.94 

TABLE 3.2 
L 

Natural Frequencies, Bonded Contact H = 1. 0 

2.18 

3.44 

4.67 

5.01 

5.57 

6.72 

Mode Dim. Natural Fre. 52n,m 

Type, Order Coarse Fine 
Mesh Mesh 

1 * 3.70 3.63 

2 3.98 3.79 

3 * 5.07 4.89 

4 * 5.82 5. 50 

5 7. 3 7 6.96 

6 8.51 7.62 

*These modes contribute significantly to the static wall force. 
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TABLE 3.3 
L 

Natural Frequencies, Smooth Contact H = 3.0 

Mode Dimensionless Natural Frequency n n,m 
Type, Order Coarse Fine Analytical 

* 

Mesh Mesh 

1 ' 1 * 1. 521 1. 518 

1,2 1.852 1.844 

3,1 2.24 2.21 

5' 1 3.45 3.33 

1,3 * 3.46 3.36 

3,2 * 3.55 3.49 

3,3 4.89 4.77 

5,2 5.12 4.80 

TABLE 3.4 
L 

Natural Frequencies, Bonded Contact H = 3. 0 

1. 510 

1. 836 

2.18 

3. 1 7 

3.28 

3.44 

4.67 

4.74 

Mode Dim. Natural Fre. n 
n,m 

Type, Order Coarse Fine 
Mesh Mesh 

1 * 1. 537 1.532 

2 2.03 2.01 

3 2. 85 2.78 

4 * 3.45 3.36 

5 * 3.61 3.56 

6 4.27 4.06 

7 4.92 4.80 

8 5.24 5.02 

These modes contribute significantly to the static wall force. 
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The analytical and the fine mesh finite element results, for 

both the frequencies and the pressure distributions, show agreement 

to within 5%. (Agreement for the lowest mode frequencies is better 

than 1 %. ) Agreement between the fine and coarse mesh results is 

generally to about 10%. Thus the coarse mesh would be satisfactory 

for most applications. From these solutions it would appear that 

satisfactory results can be obtained for modes that have at least 

four elements within the modal wave length. It is of interest to note 

that when the ~ = 3. 0 coarse and fine meshes were used in a static 

finite element analysis for horizontal body force they gave pressure 

distributions within 10% and 7% respectively of the static analytical 

results. 

Quite good agreement can be seen between the equivalent 

frequencies and modal pressure distributions of the smooth and 

bonded contact cases. Thus it is unlikely that the wall-soil interface 

condition will have a significant influence on the earthquake-induced 

pressures. 

3.10. NONUNIFORM SOIL 

The effect on the normal mode solutions of a linear increase 

with depth of the soil elastic constants (E and G) was investigated 

using both analytical and finite element methods. 

3. 10.1. Analytical Solution for Infinite Stratum 

It is possible to derive analytical solutions for the pure 

horizontal- shear and ve rtical-dilitation modes of an infinite elastic 
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stratum having certain variations of the shear modulus G (or 

Young 1s modulus) with depth. From the frequency equation solutions 

given in Figs. 3. 2, 3.3 and 3, 4 it can be seen that for ~ values 

greater than 5 all the n = 1 modes have frequencies within 25% of 

the infinite stratum pure horizontal-shear and vertical dilitation fre-

quencies, Hence the natural frequencies of the nonuniform infinite 

layer can be expected to be reasonably good approximations for the 

frequencies of the low n modes of the nonuniform bounded problem 

with relatively large ~ values, In view of this approximation it was 

considered informative to present the frequency solution for an 

infinite stratum which has a linear increase of shear modulus with 

depth, The density and Poisson's ratio are assumed to be uniform, 

Details of the problem and the coordinate system adopted are 

shown in Fig. 3. 31. On the assumption of plane strain and no vari-

ation in the x-direction of the displacements, substitution of the 

stress-strain relations into the equilibrium equations gives the 

equations of motion as 

2 l-{G !lu(y,t)} =Pa u("!,t) 
ay ay at 

~{k2G !lv(y,t)} = 
!ly !ly p 

2 a v(y, t) 

at2 

(3. 50) 

These equations are uncoupled and clearly the solution of the second 

can be obtained directly from the first. The linear variation of the 

shear modulus G can be expressed as 
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O<q:S 1 (3. 51) 

in which 

Gb = shear modulus of soil at bottom of stratum 

q = soil modulus parameter, defined in Fig. 3. 31 

By assuming a solution of the form 

iw t 
- ) m u(y,t) = u(y e 

in which w is the natural angular frequency of mode m, the first 
m 

of equations (3. 50) gives 

2-
c ( 1 - .9Y) 8 u 

b H ay2 

Let y = ( 1 -1f) , then equation (3. 52) can be written as 

2--2 a u\y) 
y -2 

ay 

2 
- au\y) (H)2 

pwm --(-) +y +- c.;-yuy=O 
ay: q b 

(3. 52) 

(3. 53) 

Expression (3. 53) is a standard form of Bessel's equation and has 

the solution 

in which 

(3. 54) 

A,B = constants 

(3= m ...£_ ~ 2Hw ~ 
q ~ 

J 0 ,Y0 =the zero-order Bessel functions of the first and 
second kind respectively. 
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The solution in terms of the variable y is 

(3.55) 

The ratio of the constants A and B can be found from the following 

boundary conditions, 

at y = 0 , 

at y = H, 

u(y) = 0 

au(y) - 0 
ay -

For the special case q = 1, B must be set to zero because of the 

unboundedness of Y
0

(0). For 0 < q < 1 the boundary conditions 

require that 

AJ1 (~~) + BYj_ (~~) 

AJ o<fl> + BY o<f3> = 0 (3. 56) 

use having been made of the relations dJ /dy = -J1 ; dY
0

/dy = -Y. 
0 1 

Setting the determinant of the coefficients of A and B in expression 

(3. 56) to zero gives the frequency equation 

(3.57) 

0 < q < 1 

For q = 1 the frequency equation is 

(3. 58) 
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The roots ~ m, m = 1 , 2, 3,. , • of equations (3. 57) and (3. 58) 

give the natural angular frequencies w of the shear modes of the 
m 

stratum. The roots of equation (3, 57) for q varied from 0 to 1. 0, 

were evaluated by an iterative procedure on the digital computer. 

The dimensionless natural frequencies of the lowest four modes are 

plotted versus the parameter q in Fig. 3,32. The dimensionless 

frequency used here is defined by 

in which 

w s,m 

w 
m 

w s,m 

= (2m-1),,. fG':. 
2H J T 

(3. 59) 

' m =1,2,3, ... 

the natural angular frequency of mode m of 

a uniform infinite elastic stratum with shear 

modulus equal to the average of the nonuniform 

stratum 

the average shear modulus of the nonuniform 

stratum 

Bielak(4) has shown that the normal modes of a cantilever 

shear beam, having a parabolic distribution of shear rigidity, are 

governed by Legendre's equation. From Bielak's solution the 

natural frequencies of a stratum with the parabolic distribution of 

shear modulus shown in Fig, 3,31 are given by 
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Figure 3, 32 Frequency equation solution for infinite stratum 
with linear increase of elastic moduli with depth. 
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w 
m 

w s,m 
(for m = 1,2,3,4) = 1.10, 0.901, 0.853, 0.832 

2 
(For the parabolic distribution Ga was taken to be 3 Gb.) 

3. 10. 2. Finite Element Solutions 

Finite element normal mode solutions were computed for two 

smooth wall problems with linear variations in Young's modulus (and 

the shear modulus) between a value of O. 1 at the top to 1. 0 at the 

L 
bottom of the soil layer. The two cases analyzed were for H = 1. 0 

and t = 3.0 and a uniform soil density. 

The natural frequencies of the six lowest antisymmetric 

modes (in order given by the finite element analyses) are given in 

Tables 3. 5 and 3. 6. The frequencies have been converted to 

dimensionless form by dividing by the finite element frequency of 

the same mode of the equivalent uniform soil problem. The 

equivalent uniform soil problem was taken to have the average of 

the Young's modulus of the nonuniform problem. The significant 

modal pressure contributions are compared with the finite element 

solutions for the equivalent uniform soil problems. in Fig. 3. 33. 

In Table 3. 6 the dimensionless natural frequencies of the n = 1 

modes for t = 3. 0 are compared with the dimensionless natural 

frequencies of the nonuniform infinite layer (linear variation, q = O. 9). 

It is clear that at t v.alues as low as 3. 0 the end boundaries have a 

significant influence on most of the relevant natural frequencies. 

The end boundaries produce only a relatively small change in the 
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Figure 3. 33 Static-one-g modal pressure distributions 
on smooth rigid wall. Comparison between 
uniform and nonuniform soil. 
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TABLE 3. 5 
L_ 

Natural Frequencies, Linear Variation of E, H - 1. 0 

Mode Dim. Natural 

Type, Order Freq. * 

1 '1 0.96 

1 '2 ** 0.72 

3,1 0.68 

1 '3 ** 0.85 

1 '4 ** 0.93 

3,2 0.76 

TABLE 3. 6 

Natural Frequencies, Linear Variation of E, ~ = 3. 0 

Mode Dim. Natural Dim. Freq. Nonunif. 

Type, Order Freq. 

1 ' 1 ** 0.89 

1 '2 1.07 

3,1 0.94 

3,2 ** 0.68 

5,1 o.so 
1 '3 ** 0.85 

See definition given in text above. 

* Inf. Layer, 

1. 09 

1. 09 

0.90 

!) 
m 

These modes contribute significantly to the static wall force. 
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mode 1, 2 frequency and this is because this mode is basically a 

vertical-dilitation type. The dimensionless frequencies of the 

tabulated modes are lower than the infinite layer counterparts, 

which indicates that for these modes the boundaries have a greater 

influence on the uniform problem frequencies than on the nonuniform 

problem values. 

For applications in which precise variations of the soil 

properties with depth are unknown it appears satisfactory to estimate 

the natural frequencies from the uniform soil solutions using average 

soil properties. If average properties are used to compute the 

natural frequencies, the wall pressures should also be computed 

using the uniform soil pressure solutions. Using this approach, 

the uncertainty in the frequencies is to some extent compensated for 

by the fact that if a decrease of soil moduli with depth does exist 

the modal pressure distributions will tend to be overestimated. 

In cases where variations in soil properties with depth have been 

well established a satisfactory analysis can probably be undertaken 

by using the uniform soil solutions and applying corrections to the 

frequencies and pressure distributions in accordance with the 

results of this and the preceeding section. 
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4. RIGID WALL: COMPARISON WITH OTHER RESEARCH 

4. 1. v = 0 Approximate Solutions 

Matuo and Ohara (3 Zl have presented an analytical solution 

for the harmonically forced rigid-wall semi-infinite soil layer prob-

lem shown in Fig. 4. 1. They assume that the vertical displacement 

is zero throughout the soil layer and so their solution is based on 

an approximate formulation of the equations of elasticity. 

The addition of time-dependent body force terms to the plane 

strain equations of motion given by expressions (3.1) yields 

2 2 
k2 a u(x,y,t) + (kz-1) a v(x,y,t) 

ax2 ax&y 

= 1 

vz 
s 

2 a u(x,y,t) 

at 2 

2 +a u(x,y,t) 

ayz 

2 
a v(x 'y 't) 

ax 2 

2 a u(x,y,t) 
axay 

2 + k2 a v(x,y,t) 

ayz 

= 1 
vz 

s 

2 a v(x, y' t) 

at
2 

F (x, y, t) 
+ x 

G 

(4. 1) 

F (x, y, t) 
+ y 

G 

By assuming v and F are zero, expressions (4.1) reduce to 
x 

2 
k 2 a u(x 'y 't) 

ax2 

2 +a u(x,y,t) = 
ayz 

2 
_1_ a u(x 'y 't) 

v2 
at

2 
s 

F (x,y,t) 
+ y 

G 
= 0 

(4. 2) 
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Only the first of equations (4. 2) is used in Matuo and Ohara' s solu-

tion and so in effect this approximation is equivalent to the imposition 

of a vertical body force given by 

F (x,y,t) 
y 

2 = - G(k -1) 
2 IJ u(x, y, t) 
ax ay (4. 3) 

Although this interpretation is informative it appears difficult to 

estimate, without a detailed analysis, the magnitude of the error 

introduced to the wall pressure distribution by the approximation. 

A check on the accuracy of the v = 0 approximation was made by 

comparing the static solution derived from this approximation with 

the exact static solution for the smooth rigid wall. The static 

pressure distribution on the wall of the problem shown in Fig. 4. 1 

can be readily derived by taking the limit of Matuo and Ohara's 

solution as the forcing frequency goes to zero or alternatively by 

expanding the static body force in a Fourier series in the y-direction. 

The pressure distribution for a uniform one-g static body force in 

the negative x-direction is given by 

ITX(O,y) = Bk ~ 1 

--yH=-- - ,.z ~1 (-2-n---1-)2 
sin (2n-1)wy 

ZH 

n=i,2,3, ... 

(4. 4) 

Expression 4.4 was evaluated for a Poisson's ratio of 0.3 and is 

compared with the exact smooth rigid-wall static solution for 

L 
H = 10. 0 and v = 0. 3 in Fig. 4. 2. 

The dynamic solution for the v = 0 problem has not been 
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studied in detail but it seems reasonable to expect that it would also 

give a satisfactory approximation for the wall pressures over the 

frequency range of interest in this study. (The v = 0 assumption 

eliminates one set of characteristic mode types.) 

The normal mode solution for the rigid-wall problem pre-

sented in Section 3.1 can be simplified by using the v = 0 approxi-

mation. Application of the v = 0 assumption to this problem gives 

in effect a bounded soil-layer version of Matuo and Ohara's problem. 

The simplified bounded problem is of interest because it is a simple 

two-dimensional refinement of Scott's shear beam model described 

in Section 1. 4. 3. This refinement enables the effects of the signifi-

cant higher modes to be conveniently included in the solution. The 

v = 0 bounded problem is also of interest because it can probably 

be used to derive analytical solutions for cases when the elastic 

properties are variable with depth and when rotational deformation 

of the wall occurs. Further study of these cases is required. 

The v = 0 bounded problem is shown in Fig. 4. 3. The 

equation of motion for this problem is given by the first of equations 

(4. 2). A solution for the natural frequencies and mode shapes was 

obtained by applying the standard separation of variables method. 

The mode shapes are given by 

u (x,y)=A sin~sin(2m-i)1'y 
n,m n,m L 2H (4. 5) 

in which 

n = 1 , 2, 3, ••. , the mode type 

rn= 1,2,3, ... , the mode order 
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A =a constant for mode n,m 
n,m 

The dimensionless natural frequencies are given by 

n = n,m 

w 
n,m 
w 

s 
(4.6) * 

w = nV /2H). The dimensionless static-one-
s s 

g modal wall pres sure distributions are given by 

Pn m(y) 64 H k 2 
' --~ - ~~ 

'/H - 11'3 L 0 2 
1 . (2m-1)ffY 

(Zm-1) sm 2H (4. 7) * 
n,m 

In expression (4. 7) n should be restricted to the odd values since 

only the antisymmetric modes participate under horizontal forcing 

of the rigid boundaries. 

The frequency equation (4. 6) was numerically evaluated for 

Poisson's ratio equal to 0.3 and the results are compared in Fig. 4.4 

with the exact solution computed from the frequency equations of 

Section 3.1. Static-one-g modal pressure distributions evaluated 

from expression (4. 7) are compared with some of the exact smooth 

wall counterparts in Fig. 4. 5. 

The steady-state solutions for horizontal harmonic forcing 

of the rigid boundaries of the v = 0 problem were computed in a 

manner similar to that described for the exact problem in Section 

3. 5. Typical comparisons of the v = 0 and the exact smooth wall 

complex-amplitudes of wall force are shown in Fig. 4. 6. The v = O 

*These solutions are singular for v = O. 5. 
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approximation tends to increase the natural frequencies, and the 

shift of the response peaks produced by this effect can be seen in 

the ~ = 3. 0 solution. Satisfactory agreement was found between 

the approximate and exact complex-amplitudes for ~ values greater 

than 2.0. This agreement improves with increasing ~ values. 

4. 2. Mononobe-Okabe Method 

Although the Mononobe-Okabe method and the theory of 

elasticity approach should in general be applied to different types of 

problems, it is of interest to make a comparison between the wall 

pressures and forces given by both methods. The Mononobe-Okabe 

pressure distribution, computed using Seed and Whitman's approxi-

mation (equation ( 1. 2)), is compared in Fig. 4. 7 with pressures from 

the static elastic theory solutions for the smooth wall with ~ = 10. 

As well as the analytical rigid-wall elastic theory solutions for hori-

zontal body force loading, two plots are shown to illustrate the effects 

of wall rotation on the rigid-wall pressures. Pressures are shown 

for both an 0.2% and an 0.4% rotational displacement of the wall. 

These pressures are the total pressures resulting from both the 

horizontal body force and the wall rotation. The pressures resulting 

from wall rotation were taken from finite element solutions described 

later in this study. In contrast to the rigid-wall case, deformable 

wall pressures are dependent on the value of Young's modulus (or 

the shear modulus). The rotating wall solutions presented in Fig. 4. 7 

were computed using an E value of 10
6 

lb/£t 2 • For convenience 

both the elastic solutions and the Mononobe-Okabe pressures are 
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shown for a one-g horizontal body force. For the purpose of the 

comparison, the Mononobe-Okabe force was assumed to have a 

triangular pressure distribution with the maximum pressure at the 

base of the wall. However, it should be kept in mind that the 

Mononobe-Okabe force is generally assumed to act at a higher 

center of pressure than indicated by the triangular distribution. 

For rigid or almost rigid walls the pressure distributions 

given in Fig. 4. 7 show that the Mononobe-Okabe wall force will be 

less than one-half of the elastic theory force. The comparison given 

here has been made on the basis of the static elastic theory solutions. 

From experience it is found that the static pressures are often good 

approximations to the maximum earthquake-induced dynamic elastic 

theory pressures. The following general remarks can be made 

regarding static approximations for dynamic wall pressures: 

(a) static solutions are good approximations for low walls 

(less than 20 ft) and relatively firm soils; 

(b) for damping ratios of 10% or higher in the wall-soil 

system, dynamic amplification under earthquake forcing will not be 

pronounced, and in general a static solution will give a conservative 

estimate of the maximum dynamic pressures. 

Wall deformation has a significant influence on the elastic 

pressure distributions; for an E value less than used here (that is 

a softer soil) the effect is less pronounced. 
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5. RIGID WALL: CASTAIC POWER STATION 

To illustrate the application of some of the foregoing solutions, 

the earthquake-induced soil pressures were computed for a soil 

retaining wall which forms part of the main structure of the Castaic 

. . * power-generatmg station. The Castaic power plant is a 1, 250, 000 

kilowatt reversible-turbine hydro-electric facility located approxi-

mately 45 miles northwest of downtown Los Angeles and about 11 miles 

from the San Andreas fault. A typical cross-section of the power-

house, which shows the extent of the soil retaining function of one 

face of the structure, is shown in Fig. 5. 1. Photographs in Figs. 

5. 2 and 5. 3 show details of the structure and the soil being placed 

alongside the building during construction. 

Because of the rock foundation and the rigid nature of the 

structure, a moderately good approximation for the earthquake pres-

sures can be obtained by assuming rigid-wall behavior. The influence 

of the dynamics of the structure and the displacement of the wall have 

been investigated and are discussed in Chapter 8. For the purpose of 

the following illustrative example the wall was assumed rigid. 

The earthquake-induced wall pressures were computed using 

the static finite element method, the normal mode finite element 

method and the exact analytical normal mode solution for the smooth 

rigid wall. In the finite element analyses both smooth and bonded 

*The Castaic power-generating station, which is at the present time 
under construction, is a joint venture of the City of Los Angeles, 
Department of Water and Power and the California State Department 
of Water Resources. 
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wall contacts were used. The other boundary conditions and the mesh 

for the dynamic solutions are shown in Fig. 5.4. A mesh with 

5 ft X 5 ft elements in the vicinity of the wall was used for the 

static solutions. In the application of the analytical solution the soil 

body was represented by an equivalent rectangle having ~ = 1. 67. 

The following soil properties (from Scott! 47l) were used: 

Young's modulus E = 10
6 

lb/ft
2 

Poisson's ratio v = o. 4 

unit weight y = 120 lb/ft2 

The static pressure distributions for a one-g horizontal body 

force and the significant static-one-g modal pressure contributions 

are plotted in Fig. 5.5a. (Gravity pressures are not included in 

these results.) The natural frequencies of the modes that gave 

significant contribution to the wall pressure distributions are given 

in Table 5.1. 

TABLE 5.1 

Natural Frequencies 

F. E. Bonded F. E. Smooth Analytical 

Mode * Freq. hz Mode * Freq. hz Mode Freq. hz 

1 1. 82 1 1. 68 1 , 1 1. 58 

6 3.68 2 2.00 1 , 2 2. 14 

7 3.85 1 , 3 3.42 

* Mode number in order of increasing frequency as given by the finite 
element analyses. 
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Maximum earthquake-induced pressure distributions were 

computed using the Response Spectrum method, and the 10% damped 

* velocity spectrum given in Appendix VIII. The effects of the higher 

modes were included by using a ''rigid" mode having a pressure 

distribution the difference between the appropriate static solution 

and the sum of the two modal contributions for the bonded wall and 

the three contributions for both the smooth wall solutions • This 

"rigid" mode distribut10n was assumed to contribute at an accele ra-

tion of O. 33 g (that is the peak ground acceleration). Plots of the 

pressure distributions obtained by taking the root-mean-square sums 

and the algebraic sums of the modal contributions (including the 

"rigid" mode) are given in Fig. 5 .Sb. The large difference between 

the rms and the algebraic sums of the modal pressures for the 

smooth wall cases is due to the relatively similar magnitude of two 

of the modal contributions. In the bonded contact case most of the 

pressure distribution comes from a single mode and thus the differ-

ence between the pressures summed by the two methods is relatively 

small. Near t values of 2. 0 it was previously found that the 

relative magnitude of the modal pressure contributions of the analyti

cal solution were quite sensitive to the value of the t parameter. 

This type of effect is probably the reason for the difference in 

character of the bonded and smooth contact modal solutions of this 

problem. For cases in which a significant difference occurs between 

* Because of the closeness of this facility to the San Andreas fault 
a response spectrum of higher intensity was used for design. 
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the rms and algebraic sum it would appear reasonable to use for 

design a pressure distribution intermediate between the two results 

or to at least consider the consequence of an unfavorable combina-

tion of the modes. 

In general the agreement between the three different solutions 

is relatively good. Better agreement between the bonded and the 

smooth contact solutions would be expected for values of equivalent 

t greater than 2. 5 and for equivalent t values between O. 5 and 1. 5. 

In these ranges the relative participation of the modal contributions 

becomes less sensitive to changes in the geometry and boundary 

conditions . 

The random vibration theory method, outlined in Section 3. 8, 

was used to compute statistical estimates of the earthquake-induced 

maximum wall force and moment. To obtain approximate equivalence, 

with the velocity response spectra given in Appendix VIII, the power 

spectral density shown in Fig. 3. 27 was increased by a factor of 8. O. 

(Further study is required to establish a more exact equivalence.) 

Mean-square forces and moments were computed using this increased 

power spectral density function and the complex-amplitude response 

functions given in Fig. 3.19 for the ~ = 2.0, v = 0.4 case. (A 

t value of 2. 0 was used for this illustration be cause the complex

amplitude responses had been previously computed for this case.) 

From the properties of the normal distribution curve, a value 2. 5 

times greater than the mean will not be exceeded at a probability of 

0.988. The P = 0.988 values of wall force and moment are given in 

Table 5. 2 below. For comparison the earthquake-induced force and 
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moment were evaluated using the Response Spectrum method. The 

method was applied by using the three largest modal contributions 

from the analytical solution for ~ = 2.0 and v = 0.4 (tabulated in 

Appendix VI), and a "rigid'. mode that was chosen to give a modal 

summation equal to the static solutions. The earthquake modal 

responses were computed from the 10% damped velocity spectrum 

given in Appendix VIII. Absolute and rms sums of the modal 

responses are given in Table 5, 2. The static elastic theory 

(analytical) force and moment, the Mononobe-Okabe force and 

moment and vertical gravity values are also given in Table 5. 2. 

The vertical gravity force and moment were computed from 

the analytical expression for the normal stress on a smooth rigid 

wall given by 

= _v_ (1 - Y) 
1-v H (5. 1) 

where the origin of the coordinate system is assumed at the base of 

the wall. 

The Mononobe-Okabe force and moment are significantly less 

than the values computed by the other methods. Because the soil is 

expected to remain essentially elastic for this problem, the 

Mononobe-Okabe method is not really applicable; however, the values 

from this method are given to show the error that might result if 

the method is used. The force and moment obtained from 

the static theory of elasticity solution are probably conservative and 

this approach appears likely to give a good first approximation for 
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many rigid wall structures, 

TABLE 5. 2 

Rigid 

Castaic Forces and Moments 
L 

wall, Smooth Contact, H = 2. 0, 

Method of 
Computation 

Random Vibration 

Response Spectrum, i;, = 10% 

rms sum 

Response Spectrum, i;, = 10% 

absolute sum 

Static Solution for 11, = 0, 33 g 

(elastic, analytical) 

Mononobe-Okabe for 11, = 0, 33 g 

{triangular pressure distribution) 

Vertical Gravity 

(elastic, analytical) 

2 
Force/'YH 

0,140 

0,130 

0,245 

0.235 

0.124 

0.333 

v = o. 4 

3 Moment/')IH 

0.076 

0,071 

0.130 

0.128 

0.041 

0.111 
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6. FORCED WALL 

It is convenient to evaluate the earthquake-induced pressures 

on deformable wall structures by obtaining the solution in two parts; 

a rigid-wall solution for soil body forcing, and a solution for dis

placement forcing on the wall boundary. If the wall-soil system is 

assumed to be linear, the principle of superposition can be applied 

to combine these two solutions to give the total earthquake-induced 

pressures. To obtain an essentially exact solution it is necessary 

to perform the superposition in the frequency domain using the 

harmonically forced steady-state solutions for the two cases. In 

this chapter solutions are presented for both static and harmonic 

displacement forcing on the wall boundary. In Chapter 7 these solu

tions are superimposed with the rigid-wall solutions to give total 

earthquake forces and moments on the deformable wall. 

In Section 1. 2 wall types and their basic deformational 

behavior under horizontal earthquake loads were discussed. It is 

clearly not possible to consider all types of wall deformation in a 

general investigation and in this study only a rotational deformation 

of the wall about its base is considered in detail. This type of wall 

displacement will probably be a relatively good approximation for 

many cases. The methods used for the rotational deformation can 

be extended to analyze other forms of wall displacement. 
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6.1. STATIC ANALYTICAL SOLUTION 

An analytical solution is presented in this section for the 

pressures on a smooth wall resulting from a static rotational dis-

placement. The soil is· once again as sum e d to be a homogeneous 

linearly elastic medium. The problem and the boundary conditions 

are shown in Fig. 6. 1. From the equilibrium equations and the 

stress-strain relations (expressions (2.1) and (2. 2)) 

(6. 1) 

for O<x<L 0 < y< H 

The solution of equatiora (6.1) can be expressed in the following 

form: 

u(x,y) = 

v(x,y) = 

in which 

00 
0 ) ¥ cos px + u (y) sin rx 

,'--J n 
n=O 

00 

- ~:sin px + l v (y) cos rx n 
n=O 

r = mr 
T ,n=0,1,2, ... 

,,. 
P = 2L 

u0 = displacement in the x-direction at the 

top of the wall 

(6. 2) 
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In this form the solution clearly satisfies the displacement boundary 

conditions at x = 0 and x = L, Substitution of expressions (6.2) 

into the stress-strain relation for shear stress gives 

(6. 3) 

From expression (6, 3) it is evident that the stress boundary condi-

tion (r = 0) at x = 0 and x = L is also satisfied by the assumed 
xy 

solution. Substitution of equations (6. 2) into equations (6.1) gives 

00 2-

I ~ aa u~ 
n=O y 

( 6. 4) 
00 2-

I l 8a :n 
n=O Y 

2 < 2 au: f _ .!_ v + k -1)r ~ 
k2 n k2 8y 

cos rx = 
o(k2 2) 

u - p sin px 
Hk

2 

Fourier series expansiora can be written for sin px and cos px 

as follows 

in which 

sin px = a 0 + ! an cos n;:' 

n=l 

00 

\ cos px = L 
n=1 

4 1 

b 
. n!rX 

n sin~ 

a = 
n -;r(4n2-1) 

n=i,2,3, ... 

( 6. 5) 
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b = 4 n 123 2 ,n=,,, ... 
n ,,. (4n -1) 

Hence for a particular value of n (except the special case of n = 0 

which is treated later) equations (6. 4) give 

a2u 
n 

ay2 -
2 2-

r k u -
n 

,,- ob k2 2 
2 uvn u n p y 

(k -1) r - 0y- = H 

0 2 u a (k -2)p 
n 

(6. 6) 

It can be shown by substitution that a general form of the solution of 

equations (6. 6) is 

0 u a 
n 

= Hp [ B sinh ry + C ryery 
n n 

+ Dnrye -ry + np~y J 
r 

0 u a 
= __ n_ [-B cosh ry -

Hp n 

in which 

k' = 3 - 4v 

C (ry-k')ery + D (ry+k')e-ry 
n n 

(6. 7) 

B , C , D = constants determined by the boundary conditions n n n 
at y = 0 and y = H 

The boundary conditions at y = 0 are u = 0 and v = O, 

Hence from expressions (6. 2) 
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u (0) = 0 
n 

0 u a 
(6. 8) 

v (O) = H n 
n p 

At y = H, er = 0 and T = O. From the stress-strain relations 
y xy 

and expressions (6. 2) it is readily shown that these boundary condi-

tions require 

( 
aun ) 
ay--rvn sinrx=O 

(6. 9) 

2 avn 2 - 0 2 
k --..-- + (k -2)ru = u (k -2)pa 

uy n n 

The first equation of expressions (6. 8) is satisfied directly by 

expressions (6. 7). From the second equations of expressions (6. 7) 

and (6.8) 

2 
B = k'(C +D) - [(P) j(k2-2) - np(k2-1)\ +1] 

n n n r r 
(6. 1 O) 

Substitution of expressions (6. 7) and (6. 10) into (6. 9) gives 

C [ (2rH-k'+i)erH+2k'coshrH] + D [ (-2rH-k'+1)e-rH+ 2k'cosh rH] 
n n 

= 2d cosh rH - f n n 

(6.11) 

C [ (2rH-k'-1 )erH+2k'sinh rH] +D [ (2rH+k' +1)e -rH+ 2k' sinh rH] 
n n 

= 2d sinh rH - rHf 
n n 

in which 
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Solution of the linear algebraic equations (6. 11) gives 

- (2rH+k'-1)(2dnsinhrH-rHfn)t - 2k'fn(sinhrH-rHcoshrHl] 

(6. 12) 

+ (2rH-k'-1)(2d cash rH-f ) I + 2k'f (sinh rH-rH cash rHl] 
n nf n 

in which 

l 22 .2 21 .6 = 2 1 + (2rH) +k' +2k'(smh rH +cash rH)f 

For the special case of n = 0 the partial differential equations 

reduce to a single equation given by 

(6.13) 

A solution of equation (6.13) that satisfies the'appropriate boundary 

conditions at y = 0 and y = H is 

( 6. i 4) 

The complete displacement solution can be expressed in the 
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following dimensionless form, 

CD 

u(x,y) = y_ cos px + 1 \ 
o H Hpi, a jB sinhry +c ryerY+n rye-ry 

n n n n 
u n=1 

v(x,y)= 
0 

u 

3 
+ 7 \sin rx 

r 

a 2 
1 . + o [HZ 2 (k -2) - - sin px - p 

Hp Hp k2 

CD 

2 

~+ii 
2H J 

(6. 15) 

+-1 \ 
Hp L, a [-B cash ry - C (ry-k')ery+ D (ry+k')e-ry 

n n n n 
n=1 

(in which r = mr /L, p = 11' /2L). 

b The normal stress on the wall er (y) is readily derived from 
x 

the displacement solution and the stress-strain relations, and can be 

expressed as 

Gu0 
H 

(k2 -z) 
a p 2 

0 k 

.y 
1T 

+ I a:r j zBnsinh ry + C (2ry-k'+3)ery 
n 

n=1 

2 . 3 
t D (2ry+k'-3)e-ry +k np YI 

n 2 I 
r 

(6. 16) 

The above solution has not been numerically evaluated; how-

ever, it is expected that this can be performed with the aid of a 

simple digital computer program similar to that used in Section 2. 1 
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for the rigid-wall problem, 

Inspection of expression (6.16) shows that the wall pressures 

for this problem are singular for Poisson's ratio equal to 0.5. It is 

of interest to note that the formal solution for the case L - oo is 

readily derived by taking Fourier transforms of equations(6 .1) with 

respect to x. The sine transform is used for the first equation, the 

cosine for the second, and in principle the solution is obtained in a 

manner similar to the bounded problem. It does not appear possible 

to express the Fourier integral of the formal solution in analytical 

form; however, approximate expressions and numerical methods can 

be applied to give solutions. 

Solutions for forcing by a higher-order displacement function 

on the wall boundary can be evaluated by assuming a solution of the 

form 

u(x,y) cos px 

00 

+ '> u (y) 
_'.'-1 n 

n=O 

sin rx 

o {m-1) Ioo 
v(x,y) - - _u'--"y=-- sin px + vn{y) cos rx 

mHp 
n=O 

inwhich m=2,3,4, ... 

6. 2. STATIC FINITE ELEMENT SOLUTIONS 

( 6. 1 7) 

Pressures on the statically rotated wall of the problem shown 

in Fig. 6.1 and studied in the previous section were evaluated using 

the finite element method. The second-order quadrilateral element 

and the mesh described previously for the rigid-wall solutions 
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(Fig. 2. 7) were used. (The previously used antisymmetry is not 

applicable for this problem and so a mesh extending the full length 

of the problem was used.) 

The wall pressures computed for various values of ~ and 

Poisson's ratio are shown in Figs. 6.2 and 6.:f. The wall forces 

and moments (about the base of the wall) were computed by numeri-

cal integration of the finite element pressure distributions and are 

plotted in Fig. 6.4. The wall pressures, forces and moments are 

dependent on the soil elastic moduli (E or G) and the magnitude of 

the rotation 9. Consequently these variables appear in the dimen-

sionless parameters used in the pressure and force plots. (In 

contrast the rigid-wall pressures and forces are independent of the 

soil moduli.) 

The effect of assuming a bonded contact on the wall boundary 

was investigated by computing solutions with the wall boundary con-
o 

ditions taken as u = ~y and v = 0, The bonded contact pressures 

for ~ = 5.0 and Poisson's ratio values of 0.3 and 0.4 are compared 

with the smooth wall counterparts in Fig, 6. S. Except in the region 

at the top of the wall (g > O. 8), where the bonded wall stresses be

come singular, agreement between the smooth and bonded pressure 

distributions is moderately good. In view of the fact that the develop-

ment of the singularity will be limited by the nonuniform and non-

linear properties of a typical soil, the difference between the results 

for the two contact assumptions is unlikely to be of practical sig-

nificance. 

*The pressure distributions shown in this section do not include 
stresses resulting from gravity forces in the soil. 
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The finite element results for the normal and shear stresses 

on the bonded contact wall boundary are given in Table 6.1. To 

determine whether sliding will occur on the wall-soil interface when 

the wall undergoes rotational deformation it is necessary to consider 

the superposition of the stresses given in Table 6. 1 with the stresses 

induced by gravity and horizontal body forces (see Table 2. 2). 

The influence on the pres sure distributions of a variation of 

the soil elastic moduli (E or G) with depth was investigated by com-

puting solutions for the smooth wall case with E varied linearly 

from 0. 1 at the surface to 1. 0 at the base and for E varied linearly 

from 0.5 to 1.0. In the finite element representation of these varia-

tions 10 equal depth homogeneous horizontal layers were used. The 

mesh used for the uniform soil solutions was again employed. The 

L 
wall pressures for the nonuniform soil, computed for H = 5.0 and 

v = O. 3, are compared with the uniform soil counterparts in Fig. 6. 6. 

Solutions for any form of the wall displacement function can 

be conveniently computed by the finite element method. Two further 

cases of practical interest, u(O,y) = u0 (wall translation), and 

u(O,y) = u
0

(y/H)
2 

(parabolic displacement), were analyzed using the 

smooth contact assumption, and the solutions for the wall pressure 

distributions are shown in Fig. 6. 7. 



-187-

TABLE 6.1 

Finite Element Stresses on Wall Boundary 

Bonded Contact L 
H = 5. 0 

v = o. 3 v = 0.4 y 
H 0 0 0 To CT T CT 

x E1 x 2Y 
ES ES ES 

1. 0 -2.44 0.39 -3.68 0.56 

o. 95 -1. 32 0.38 -1.56 0.52 

0.9 -1. 06 0.34 -1. 24 0.43 

0.8 -0.76 0.29 -0.83 0.34 

0.7 -0.60 0.28 -0.64 0.30 

0.6 -0.49 0.27 -0.51 0.28 

0.5 -0.40 0.28 -0.42 0.28 

0.4 -0.32 0.29 -0.35 0.28 

0.3 -0.26 0.30 -0.28 0.29 

0.2 -0.20 0.31 -0.23 0.30 

0.1 -0.13 0.34 -0.17 0.32 



-.so 

Figure 6. 6 

- 188-

LINEAR VARIATIONS EB G. SMOOTH CONTACT. 

LENGTH/HEIGHT = 5.0 

a 

:r: "' '. ,_a 

POISSON'S RATIO = 0.3 

UNIFORM 

E = 0·5 TO l·O 

-.2s a.a o.2s a.so o.75 1-0 
DIMENSIONLESS NORMAL STRESS ~~/EB 

Pressure distributions on statically forced smooth 
rotating walls. Comparison between uniform and 
nonuniform soils. 



-189-

PARABOLIC DISPLACEMENT. SMOOTH CONTACT. 

LENGTH/HEIGHT = 5.0 POISSON"S RATIO = 0.3 

"! -
"! 
0 

Iw '. ,_. 0 

>-

s" UJO 
I 

"! 
0 

Iw '. ,_. 0 

T 

-.25 O·O o.& oa o.~ 1.00 1.& 1a 
DIMENSIONLESS NORMAL STRESS u~H/E u0 

HALL TRANSLATION. SMOOTH CONTACT. 

LENGTH/HEIGHT = 5.0 POISSON'S RATIO 0.3 

"! 
oL..~~.L..~~.L..~~-'-~~~~~--'-~~-'-~~-L~~-' 

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 ij,Q 

DIMENSIONLESS NORMAL STRESS u~H/Eu0 

• 

Figure 6. 7 Pressure distributions on statically forced walls. 
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6.3. HARMONIC FORCING: ANALYTICAL SOLUTION 

An outline is presented in this section of an analytical solu-

tion for the steady- state response of a homogeneous linearly elastic 

soil body forced by a harmonically rotated smooth wall. The problem 

and the assumed boundary conditions are shown in Fig. 6.8. The 

method of solution is analogous to the approach used for the statically 

rotated wall. The dynamic solution is of greater complexity than 

the static solution and appears to be more difficult to evaluate 

numerically. 

The time-varying rotational displacement of the wall can be 

written as 

in which 

u{O,y,t) = 
o iwt 

u ye 
H 

u0 = the amplitude at the top of the wall 

w = angular frequency of the harmonic forcing 

The displacement equations of motion can be expressed as 

2 a u(x,y,t) 

ax 2 

= 

2 a v{x,y,t) 

ax2 

= 

1 

vz 
d 

2 a v(x,y,t) 
axay 

2 a u(x, y, t) 

at2 

2 
+ (k2 -1) a u{x. y. t) 

llxay 

1 

vz 
s 

2 a v(x,y,t) 

at2 

2 a u{x,y,t) 

ayz 

2 2 + k a v{x 'y. t) 
ay2 

O<x<L; O<y<H; t > 0 

(6.18) 

(6. 19) 
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The steady- state solution of equations (6. 19) is of the form 

- iwt u(x,y,t) = u{x,y)e 
(6. 20) 

- iwt v(x,y ,t) = v(x,y)e 

The following expressions for the displacement functions u(x,y) and 

v(x,y) satisfy the displacement and stress boundary conditions at 

x=O and x=L, 

00 

u(x,y) = uoy cos px + '\' ';:;n(y) 
H u sin rx 

n=O 

v(x,y) 
0 ~ -

= - ~ sin px + /, v (y) cos rx 
p "_, n 

in which 

,,. 
p = 2L 

n=O 

n=0,1,2, ... 

Substitution of expressions (6. 20) and (6. 21) into (6.19) gives 

00 2-

l {a un(y) 22-
---.,....- - k a u (y) -a 2 n 

2 av (y) } 
r(k -1) a; 

n=O y 

2-
\ { _a_v-=n~(y_) 
/_, ay2 

n=O 

0 k2 = u y 
H 

2 + r(k -1) 
k2 

2 

sin rx 

rx 

u
0 

{ 2 2 = --2 (k -2)p + 
pHk 

w } • z smpx 
v 

s 

(6.21) 

( 6. 22) 
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in which 

2 
ct = ( 

2 2 
r - w 2) 

vd 

( 
2 2 

r - ~) 
s 

The functions sin px and cos px in equations (6. 22) can be expanded 

in the Fourier series given by expressions (6.5). Hence for a parti-

cular value of n (except the special case of n = 0 which is treated 

later) equations (6. 22) can be expressed as 

2-
a u (y) 

n 

2-
a v (y) 

n 

Let 

-
2 2-

- k ct u (y) -
n 

2 av 
r(k -1) a; = {

p2- 0)2} b 
v2 n 

d 

(6.23) -
+ r(k2 -1) aun 

k 2 ay 
u

0 
{ 2 2 w

2
} =-- (k -2)p +- a 

Hk2 v2 n 
p s 

-u = u + u n n,h n,p 

- - (6. 24) 
v = v + v n n,h n,p 

in which 

v h = solution of the homogeneous equations; that is, the 
n, 

solution of equations (6. 23) with the right-hand 

side set to zero 

By inspection the particular integrals of equations (6. 23) are 



0 
u a 

n 
v - -n,p P+l 

-194-

(6.25) 

The solution of the homogeneous equations may be expressed in the 

general form 

u =A eoty + B ei3y + C e-oty + D e-13y 
n,h n n n n 

( 6. 26) 

v =-A oteoty 
n,h n r 

B r i3y + C ot -oty + D r e-13y 
n13e nre n'j3" 

The constants A , B , C and D are determined by satisfying 
n n n n 

the boundary conditions at y = 0 and y = H. To satisfy these con-

ditions it is necessary to satisfy equations identical to expressions 

(6. 8) and (6. 9) given for the static problem. The expressions for the 

constants cannot be written in a compact form and so they are not 

presented here. The constants have as denominator a determinant that 

has zeros corresponding to the natural frequencies of the soil body 

and consequently the displacements have an infinite number of singu-

larities. (The zeros of the determinant correspond to the zeros of 

the frequency equation (3. 7).) 

For the special case of n = 0 equations (6. 23) reduce to the 

single equation 
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2- 0 

W VO U a0 { 2 2 W2 } +-::z- = --2 (k -2)p +::z 
vd pHk vs 

( 6. 2 7) 

The solution of equation (6. 27) can be written as 

(6. 28) 

A0 and B 0 can be determined from the boundary conditions at y = 0 

and y = H. Satisfying the appropriate conditions gives 

2 
. wH + 0 (k - 2)p sm-y u a 0 2 

d k 
A - ------......-------0 - wH 

cos
vd 

v2 
(k2 -2)p--; 

w 

The general displacement solution is given by substitution of 

(6. 29) 

expressions (6. 25), (6. 26), (6. 28) and (6. 29) into equations (6. 21). 

The case L - oo can be solved by taking the Fourier sine 

transform of the first of equations (6.19) and the Fourier cosine of 

the second. The formal solution is readily derived from the trans-

formed equations by following much the same method as given for 

the bounded problem above. Numerical evaluation of the Fourier 

integral of the formal solution appears difficult and has not been 

fully investigated. The solution of this semi-infinite stratum prob-

lem is however of interest since it can be used to show the influence 

of energy propagating out of the system. 
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6.4. HARMONIC FORCING: ANALYTICAL SOLUTION USING 

STATIC SOLUTION 

A solution for the problem of the previous section can be 

derived from the solution for the equivalent static problem and the 

properties of the normal modes of the smooth rigid-wall problem. 

Details of this method and typical numerical results evaluated from 

the solution are given in this section. 

The problem and the boundary conditions are taken to be 

identical to the problem and boundary conditions of the previous 

section (Fig. 6. 8). In the solution presented here it is convenient 

to introduce dissipation by the inclusion of a viscous damping term 

in the equations of motion. Thus, the displacement equations of 

motion for the homogeneous linearly elastic soil can be expressed in 

vector form as 

Lu(x,y,t) = p~(x,y,t) + c~(x,y,t) (6.30) 

The solution technique developed here is applicable for a 

general form of the horizontal displacement forcing applied at the 

wall boundary. It is informative to firstly consider the general case 

before evaluating the solution for the particular case of harmonic 

rotational forcing of the wall. Consider the wall boundary to be 

forced by a time-varying function satisfying 

0 0 u(O,y,t) = f (y)g (t) 

T (0,y,t)=O 
xy 

(6. 31) 
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in which 

f°(y) = wall displacement function such that f 0 (H) = 1 

The solution of equation (6. 30) for this form of boundary forcing can 

be expressed as 

u(x,y,t) = u
1 
(x,y,t) + uslx,y)g

0
(t) (6. 32) 

in which 

u f(x,y) = solution for static wall-forcing given by -s 

u(O,y) = f°(y) 

r (O, y) = 0 
xy 

(6. 33) 

It can be readily seen that the component of the solution given by 

u
1 
(x,y,t) must satisfy all the boundary conditions of Fig. 6. 8 

except the wall displacement boundary condition. On the wall 

boundary it is necessary that .!!
1 

(O, y, t) = 0. Substitution of 

equation (6. 32) into (6. 30) gives 

. 
Lu

1
(x,y,t) = pu

1
(x,y,t) + C_!!

1
(x,y,t) 

+ u
8
ix,ylj p

0

~0 (t) + cg
0

(tlf ( 6. 34) 

Equation (6. 34) is similar in form to equation (3. 18) which described 

the forced vibrations of the rigid-wall problem. (In equation (6. 34) 

the forcing term !!six, y) J pg 
0

(t) + cg
0

(t) f is spatially variable 

whereas the equivalent forcing term in equation (3.18) p~(t) is 

constant with respect to the spatial coordinates.) The boundary 

conditions to be satisfied by the solution .!!1 (x, y, t) of equation (6. 34) 

are identical to the boundary conditions of the smooth rigid-wall 

problem. Thus the solution of equation (6.34) may be obtained 
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directly from the solutions given in Sections 3.2 and 3.5. For the 

case of harmonic wall-forcing given by u(O,y,t) = £0 (y)eiwt, the 

complete displacement solution of equation (6.30) can be written as 

2 
( w _ Zil; _w_ ) 

co 2 n,mw 
+ \ _! __ w_n~,~m~ ______ n_,_m_ 

/..., n,m 2 ) 
n=1 (1-T- + 2i~ _w_ 

m=i w n,m wn,m 
n,m 

x 
fv u f(x' y) • <f> dV l . t -s -n,m \e1w 

fv1u,m· .!n,m dV 

(6. 35) 

The normal stress on the wall is given by 

IT (O,y,t) = L u(x,y,t) 
x I>-

(6.36) 

(in which L =linear operator with respect to the spatial coordinates.) 
p 

The complex-amplitudes of the steady- state wall force and moment 

for a forcing of unit displacement amplitude at the top of the wall, 

F£(w) and M{(w), can be expressed as 

2 

-, 00 (+-- 2i~ _w_) 
Ff(w) 

n,m w 
k l w n,m 

= 1 n,m n,m 

Fsf 2 Fsf 
n=1 (1 -

w + 2i~ _w_) 
m=1 

2 n,m w 
w n,m n,m 

2 
(6. 3 7) 

( w - 2i~ _w_ ) -, 00 2 
Mf(w) 

n,m w 
k h l 

w n,m 
1 n,m n,m n,m = 

Msf 
(1 

2 
) Msf 

n=1 -+- + 2i~ w 

m=1 
n,m w w n,m n,m 
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in which 

,~H 

F f = J1 
L u f(x, y) dy, force on statically forced wall for s 0 p--s 

unit displacement at wall top 

M f =SH yL u f(x,y) dy, moment on statically forced wall for 
s 0 p--s 

unit displacement at wall top 

H 
k = PS S L j (x, y) dy, analogous spring constant for n,m n,m 

0 
p n,m 

mode n,m 

k h = Ps SHyL di (x,y) dy 
n,m n,m n,m 

0 
p-Ln,m 

h = height of center of pressure for mode n,m n,m 

PS = 
n,m 

fv~f · ~n,m dV 

JV <l>n,m · <f>n,m dV 

From an inspection of the complex-amplitude solutions for the wall 

force and moment it is evident that the forced-wall problem can be 

represented by the spring-mass-dashpot analogy shown in Fig. 6.9. 

The equivalence can be readily shown by deriving the wall force and 

moment responses of the analogue to harmonic forcing. From 

expressions (6. 37) it can be seen that modes having natural fre-

quencies such that w >> w, produce no significant contribution to n,m 

the total wall force or moment. 

The main computational effort in numerically evaluating 

expressions (6. 37) is devoted to the evaluation of the integrals in the 

expression for s 
Pn,m• The denominator of the expression was 
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previously evaluated in the derivation of the modal participation 

factors for the rigid-wall case and the analytical expressions obtained 

are given in Appendix IV. To evaluate the numerator of expression 

(6. 37) it is necessary to integrate the dot product of the static dis-

placement field and the mode shapes over the volume. For the 

rotating wall problem this can be readily accomplished by using the 

analytical static solution given by expressions (6.15) and the mode 

shapes given by expressions (3.10), (3.11), (3.13) and (3.15). The 

dot product of the static solution and the mode shapes produces a 

number of elementary functions which can be integrated exactly. 

In this study the numerator product was evaluated using the static 

displacements computed from finite element analyses and the 

analytical mode shapes. The finite element displacements and the 

product function were evaluated at each of the nodal points of the 

finite element mesh and the integration was performed numerically 

using a double Simpson's rule technique over these points. The 

mesh used for the previous finite element solutions and shown in 

Fig. 2. 7 was again employed. In the computation of solutions by this 

method the maximum frequency of forcing for which a reliable solution 

can be computed is limited by the finite element mesh size. The 

mesh adopted was found to be adequate for the frequency range of 

interest in this study. 

Numerical solutions of expressions (6.37) were computed for 

the smooth rotating wall and typical plots of the results for a range 

L of the H and v parameters are shown in Figs. 6.10 to 6. 14 inclu-

sive. The real parts, imaginary parts and moduli of the complex-
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Figure 6. 10. Complex-amplitudes of force ratio and moment 
ratio on harmonically forced smooth rotating 
wall. L/H = 1. O. 



L/H 

a. 

L/H 

-o 
~· ::; m 

'::::, 
3 

l~q 
~ 

" ;: 
~q 
.,~ 

u 

"' " "-
'l 
N 

0 

0 

0 Im 

a. 

Figure 6. 11 

-203-

FeRCE eN ReTATING HALL 

= 2.0 PeISSeNS RfiT I [J = 0.3 OAMPING = 10% < VELec nn 51 MeDES 
0·4 10 45 

--- . .. , 
II = 0·3 MODULUS , ' ' 
II : 0·4 ·-. 

' 
' 
' 

" 
Re 

Re 

I. 2. 3. "· s. 
DIM. FREQUENCY !l 

MeMENT eN ReTATING HALL 

= 2.0 PeisseNs RATrn = 0.3 DAMPING = 10% c VELec nn 51 MeDES 
El 0·4 10 45 

v = 0·3 

v = 0·4 

---
, 

,' , 
' 

---... 
' ' . 

I. 2. 3. "· s. 
DIM. FREQUENCY n 

Complex-amplitudes of force ratio and moment ratio 
on harmonically forced smooth rotating wall. 
L/H= 2.0. 



':;;I::! " ~ 
" l 
'-a 
I~ W 

"' ~ 
cr .ro 
w,; 
ii' 
"' "-

0 
,; 

o. 

o. 

FORCE ON ROTATING WALL 

L/H = 5.0 PO!SSONS 

-204-

DAMPING= 10t <VELOCITY) 
10 

RATIO = 0.3 
I o·4 

I 0·45 

I 
10 ----

II : 0·3 

II = 0·4 

II :: 0·45 

I. 

,-T 
/ I 

/ I 
I 

2. 3. 
DIM. FREQUENCY .\l 

------

Re 

MOMENT ON ROTATING WALL 

L/H = S.D 

II = 0·3 

v = 0·4 

II::: 0·45 

I. 

POISSONS RATIO = D.3 
0·4 

a o·45 

DAMPING= 10t <VELOCITY! 
10 

10 

MODULUS// - _,... 
,,..- - __ ,, 

Im 

Re 

2. 3. 
DIM. FREQUENCY .\l 

5. 

5. 

101 MODES 
89 

81 

1D1 MODES 
89 

81 

Figure 6. 12 Complex-amplitudes of force ratio and moment ratio 
on harmonically forced smooth rotating wall. 
L/H = 5.0. 



-205-

FORCE ON ROTATING, HARMONICALLY FORCED WALL 

L/H = 10.D POISSONS RATIO = 0.3 DAMPING = 10% (VELOCITY) 200 MODES 

Re 

a. !. 2. 3. s. 
DIM. FREQUENCY fl 

MOMENT ON ROTATING. HARMONICALLY FORCED WALL 

L/H = 10.0 POISSONS RATIO = 0.3 DAMPING = I 0% ( VELOC ITYl 200 MODES 

-a 
~· "m 

'-.. 
l 
l:f~ 

0 
;::: 
cr: 

"'" .,~ 

w 

"' 0 
"-

" N 

0 

" 0 Im 

a. !. 2. 3. "· s. 
DIM. FREQUENCY n 

Figure 6. 13 Complex-amplitudes of force ratio and moment ratio 
on harmonically forced smooth rotating wall. 
L/H = 10. 



-" J!'oo 
;,, 
~ 

lt!""q 
m 

0 

-o 
~· 

" 00 "'-. 
l 
l:r~ 

0 

~ 

"' "'" w~ 

~ 
"-

" N 

0. 

o. 

-206-

FORCE ON ROTATING WALL 

L/H = 2D,D POISSONS RATIO = D.3 DAMPING= 1D% CVELOCITY) 393 MODES 

Re 

I. 2. 3. s. 
DIM. FREQUENCY .0. 

MOMENT ON ROTATING WALL 

L/H = 2D.D POISSONS RATIO = D.3 DAMPING= 1D% CVELOCITY) 393 MODES 

I. 2. 3. s. 
DIM . FREQUENCY .0. 

Figure 6. 14 Complex-amplitudes of force ratio and moment ratio 
on harmonically forced smooth rotating wall. 
L/H = 20. 



- 207.-

amplitudes of the dimensionless wall forces and moments are 

plotted against the forcing frequency which has been converted to 

dimensionless form by dividing by the lowest horizontal- shear mode 

frequency of the infinite elastic stratum. Wall pressure distribu-

tions were also evaluated for a number of values of the dimensionless 

forcing frequency and typical plots of the real parts, imaginary parts 

and moduli of these distributions are shown in Figs. 6.15 to 6.18 

inclusive. In computing the force, moment and pressure solutions all 

the normal modes satisfying the bounds, Q < 10 and LH>0.333, 
n,m n 

were included, The bound chosen for ~ was found to include all 

the modes at a dimensionless frequency less than 10 that gave a 

significant contribution to the wall force. It is of interest to note that 

the degenerate modes (n = 0), symmetric modes (n even) and the 

antisymmetric modes all participate in the solution. The solutions 

shown in Figs. 6.10 to 6.18 inclusive were computed using a 10 % 

damping ratio for all modes. The effect on the complex-amplitude 

of wall force of reducing the modal damping ratios to 5% is shown in 

Fig. 6.19 for the two cases of t = 3.0 and 20 with v = 0.3. 

From the plotted solutions it can be seen that the moduli of the 

wall forces and moments decrease from the static values at zero fre-

quency to about 60% of the static values at a dimensionless forcing 

frequency of 1.0. As the forcing frequency is increased beyond the 

fundamental frequency of the soil body, the moduli increase signifi-

cantly with the force modulus reaching about eight times the static 

value at a dimensionless forcing frequency of 5. O. 
L 

For H values 

less than 5,0, and between dimensionless frequencies 1.0 and 5.0 
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quite large fluctuations occur in the moduli corresponding to 

resonances with the natural frequencies of the soil body. The 

solutions for t = 10.0 were found to be good approximations for 

problems with larger t values. 

L For the H ~ 2. 0 solutions, about 15 modes were found to have 

significant contributions to the wall force over the frequency range 

computed. For larger t values a greater number of modes contri

L 
bute. Hence for H values greater than two it is not possible to 

obtain an accurate representation of the dynamic behavior with a 

relatively small number of modes. 

An approximation employing two modified modes of vibration 

was found to give a moderately good representation of the dynamic 

wall force and moment for t values greater than five. The follow

ing parameters for the two-mode model were found to be suitable for 

a Pois son's ratio of 0. 3, 

dimensionless frequency 

damping ratio 

analogous spring constant k n,m 

k h n,m n,m 

Mode 1 Mode 2 

1. 7 3.0 

18% 18% 

1. 0 F sf 1. 5 F sf 

0.85 Msf 1. 2 Msf 

The complex-amplitudes of the two-mode model are compared in 

Fig. 6.20 with the more exact solution evaluated for t = 20, v = 0.3 

and a 10% damping ratio. 



Ji~ 
':::,, 
~ 

ltLq 
m 

D 

;c 
<I 

"'~ 
w~ 
u 

"' D 
"-

0 

..: 

"' 0 

0 Im 

0. 

0 

0 

o. 

-214-

FORCE ON ROTATING HALL 

TH~-MOOE APPROXIMATION. 

TWO-MOOE APPROX. 

EXACT L/H = ZO, 11=0·3 

/ 

l. 2. 
DIM. FREQUENCY 

MOMENT ON R~TATING HALL 

THO-MOOE APPROXIMATION. 

TWO-MODE APPROX. 

EXACT L/H = 20, V=0·3 

/ 

/ 
/ 

, ----

3. 

l. 2. 3. 

.0. 

DIM. FREQUENCY .0. 

/ 
MODULUS / 

/ --

Im 

'· 5. 

MODULUS --

5. 

Figure 6. 20 Complex-amplitude of force ratio on harmonically 
forced smooth rotating wall. Comparison between 
equivalent two-mode system and exact solutions. 



-215-

6.5. HARMONIC FORCING: FINITE ELEMENT METHOD 

The finite element method can be used to compute solutions 

for harmonically forced problems. Details of the application of the 

finite element method to problems of this type have been presented 

by Lysmer and Kuhlemeyer (30l. The general applicability of the 

method enables problems involving inhomogeneity of material 

properties and complex boundary configurations to be solved. The 

finite element equations of motion for forced vibration may be written 

as 

in which 

M~(t) + C~(t) + Ku(t) = f_(t) 

M = assemblage mass matrix 

C = assemblage damping matrix 

K = assemblage stiffness matrix 

u(t) = nodal displacement vector 

.!,!t) = nodal forcing vector 

( 6. 3 8) 

- iwt 
Let f(t) = f e , then the solution of equation (6. 38) is of the form 

- iwt 
~(t) = ue 

Hence equations (6. 38) can be written as 

Ku= f 

in which 

K = K + iwC - w
2

M 

(6.39) 

(6. 40) 
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The complex linear algebraic equations (6.40) can be solved by 

standard methods to give the complex displacements .!:: and the 

associated stress field. A complete solution of the equations is 

required for each value of forcing frequency and the computational 

effort for each solution is approximately equivalent to that required 

in a static finite element analysis for a single load system. Ii this 

method is used a considerable amount of computation is required to 

define wall force and moment response curves equivalent to those 

presented in the previous section. The numerical evaluation of 

analytical solutions will probably be a computationally more efficient 

approach but obviously the number of problems solvable by analytical 

methods is limited, 
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7. DEFORMABLE WALL 

In this chapter the previously presented rigid-wall and forced-

wall solutions are superimposed to give total earthquake-induced 

forces and moments on a wall structure that undergoes rotational 

deformation. The methods employed can be readily extended to 

other types of wall deformation. 

7.1. STATIC SOLUTION 

The problem studied in this section is shown in Fig. 7. i. 

A deformable wall is loaded by a uniform static horizontal body 

force in the homogeneous linearly elastic soil. The wall deforma-

tion is assumed to be limited to rigid rotation about the base of the 

wall, and the rotational stiffness of the wall per unit length is 

represented by a spring of stiffness k placed at the top of the 
w 

wall. The problem boundary conditions are detailed in Fig. 7. i. 

In terms of the displacements the equilibrium equations for 

the elastic soil can be expressed as 

Lu(x,y) +F=O (7. 1) 

in which 

F= {-:} 
Let u (x,y) be the rigid-wall solution of equation (7.1); that is, -sr 

the solution satisfying u = 0, 'T = 0 on the wall boundary and the 
xy 

other boundary conditions of Fig. 7. i. Let ~/x, y) be the forced-
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wall solution for unit wall rotation; that is, the solution of equation 

(7.1) for zero body force that satisfies the boundary conditions of 

Fig. 7. 1. By superposition the general solution of equations (7 .1) 

can be expressed as 

u(x,y) = u (x,y) +Su f(x,y) - -sr -s (7. 2) 

in which 

e = angle of rotation of wall 

The unknown wall rotation e can be determined from the moment 

equilibrium condition for the wall which can be expressed as 

in which 

M = \) H yL u dy, 
sr . 

0 
p-sr 

(7. 3) 

moment on rigid wall from one-g 

static horizontal body force 

M f =SHyL u fdy, 
S Q p-S 

moment on statically forced wall for 

unit rotation 

(A unit length of structure is implied in these definitions. M and sr 

Msf are positive in the clockwise direction.) Rearrangement of 

equation (7. 3) gives 

-M 
sr e = -----,... 

(M f - k H
2

) s w 

(7. 4) 

Substitution of expression (7. 4) into (7. 2) gives the general displace-

ment solution in terms of the partial solutions u and u f. The -sr -s 
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pressure distribution on the wall can be derived from the general 

displacement solution by applying the stress-strain relations in 

the usual way. 

7. 2. DYNAMIC SOLUTION 

The problem studied in this section is shown in Fig. 7. 2. 

The rigid boundaries are forced by a time-dependent horizontal 

acceleration. Once again the wall deformation is assumed to be 

limited to rigid rotation about the base of the wall. The wall rota-

tional stiffness per unit length is represented by a spring of stiffness 

k and the dissipation associated with the rotational deformation of 
w 

the structure is represented by a dashpot with damping coefficient 

c • By replacing the boundary forcing by d'Alembert body forcing 
w 

the displacement equations of motion of the elastic soil can be written 

in vector form as 

L ,::!(X 'y 't) = p~(x,y, t) + cu(x,y,t) + p"iib (t) (7. 5) 

in which 

~(t) = { ~(t)} vector of displacements on 

rigid boundary 

By superposition it is readily shown that the general solution of 

equation (7. 5) can be expressed as 

,::!{x,y,t) = ur{x,y,t) + uf(x,y,t) {7. 6) 

in which 
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u (x, y, t) = rigid-wall solution; that is, solution for 
-r 

u(O,y,t) = 0 

uf(x, y, t) = forced-wall solution; that is, solution of equation 

(7, 5) with ~(t) = £• for forcing of the 

wall boundary by the horizontal wall 

displacement u(O, y, t) from the general 

solution of equation (7. 5) 

The equation of motion for the wall structure may be written as 

I 
0

S(t) + c H
2

S(t) + k H
2

0(t) + m h 'ub(t) 
w w w w c 

- M (t) - M (t) = 0 
r f 

in which 

I = moment of inertia of wall about the base 
w 

m = mass of wall structure 
w 

k = spring constant for wall structure 
w 

c = damping coefficient for wall structure 
w 

(7. 7) 

h = height of center of gravity of wall structure above the 
c 

M (t) = 
r 

base 

SH yL u (x,y,t) dy, dynamic moment on rigid wall 
0 p-r 

SH yL uf(x,y,t) dy, moment on dynamically forced wall 
0 p-

A unit length of structure is implied in the definitions of all the 

above parameters (except he), Mf and Mr are taken as positive 

in the clockwise direction. 

Let the Fourier transform of the function ·~(t) be defined as 
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·~(w) = Soo ·~(t)e-iwt dt 
-00 

(7. 8) 

Using this definition the Fourier transformation of equation (7. 7) can 

be written as 

(7. 9) 

(A bar over the symbol is used to denote a transformed variable.) 

The transformed moments can be expressed as 

in which 

Let 

.. 
-, ub(w) 

M (w) = M (w) --
r r g 

(7. 1 O) 

- -
Mf(w) = M~(w) 0(w) 

M
1 

(w) = complex-amplitude of steady-state moment on 
r 

rigid-wall for one-g amplitude base forcing 

M~(w) =complex-amplitude of steady-state moment for 

harmonic wall-forcing of unit rotational 

amplitude 

c H 2 
w 

r,w = 2w I 
WW 

(7.11) 

Rearrangement of equation (7. 9) and substitution of equations (7 .10) 
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+ 2i~ ~ -
WW 

w 

(7.12) 

The transformed total wall moment MT(w) can be expressed as 

in which 

M~(w) 
+ M 

sr 

ii (w) 
_g_ 

g 

Msf = moment on statically forced wall for unit rotation 

(7. 13) 

M =moment on rigid wall from one-g static horizontal 
sr 

Let 

body force 

M
1 

(w) 
~~.,,..---- = r

1
(w) +ir2(w) 

sr 

(7. 14) 

The functions r
1

(w) and r 2(w) are the real and imaginary parts of 

the complex-amplitude of moment ratio for harmonic base forcing 

of the rigid-wall problem. The functions f
1 

(w) and f 2(w) are the 

real and imaginary parts of the complex-amplitude of moment ratio 

for the harmonically-forced rotating wall problem. Plots of the 
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functions r 1 , r 2 and f 1 , f
2 

are given in Sections 3. 5 and 6. 4 

respectively. Substitution of expressions (7.12) and (7.14) into 

(7.13)gives 

~(w) = -[ 
sr 

in which 

M 
Md _ sf 
sf-Tr 

WW 

M sr 
m gh w c 

(7.15) 

Separating the numerator and denominator of expression (7.15) into 

real and imaginary parts gives 

x (7.16) 

Let 

( 7. 1 7) 
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Then 

2 2 2 2 

{£ Mr-r (1-~)+2r i;. ~} +{f Mr-r (1-~)-2r i;. ~} 1s1 2 2ww 2s2 2 1ww 
w w w w 

M sr 2 
(1- w2 

w w 

w w 
d 2 

M f ) + (2i;, ~ -sf 1 w w w 

( 7. 18) 

The time-history of the total wall moment can be computed by 

taking the inverse transform of expression (7.17). That is 

Thus to evaluate ~(t) it is necessary to compute the Fourier 

transform of the base acceleration and to compute the inverse 

transform of the product specified in expression (7. 19). The 

Fourier transformation and the inverse transformation can be 

( 7. 1 9) 

readily evaluated using a Fast Fourier Transform computer pro-

gram. Applications of the Fast Fourier Transform algorithm to 

solve structure interaction problems have been previously described 

by Chopra(6), and Liu and Fage1< 29J. 

Frequently an estimate of the maximum earthquake-induced 

wall moment or pressure distribution is sufficient information for 

design purposes. If a suitable earthquake power spectral density 

function is available,it is significantly more efficient to obtain 

statistical estimates of the maximum forces and pressures using 

random vibration theory than to compute the complete time-history 

of these values using the Fourier transform approach. From 
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equation (3. 49) the variance of the total wall moment can be ex-

pressed as 

2 Sao - 2 sM = I M~(w) I G(w) dw 
0 

(7.20) 

in which 

s~ = variance of the total wall moment 

G(w) =power spectral density of earthquake 

IM~(w) I is defined by expression (7.18). A statistical esti

mate of the maximum value of the wall moment can be found from 

the value of s~ and the properties of the normal distribution. 

Details of the application of this method are given in Section 8. 3. 

7.3. BUILDING-BASEMENT STRUCTURE 

The results of the foregoing sections can be applied to the 

study of dynamic wall pressures on structures that may be con-

siderably more complex in their dynamic behaivor than the simple 

rotating wall structure. The application of the results to more 

complex structures is illustrated in this section by developing a 

solution for the dynamic soil moment on the rigid basement of the 

building structure shown in Fig. 7.3. The building consists of a 

flexible superstructure supported on a rigid basement-structure 

which is founded on a rock layer. An elastic soil layer, that is 

assumed to be relatively soft in comparison to the rock, overlies 

the rock layer and is in contact with the basement walls. The 

rock layer is assumed to permit elastic rotational deformation of 
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the basement but prevent significant translation. It is also assumed 

that the displacements of the rock surface resulting from the rotation 

of the basement have no significant influence on the wall pressures. 

The rock foundation is subjected to a horizontal time-varying 

acceleration ~(t). 

The equation of motion describing the rotation of the basement 

can be expressed as 

.. 

(7. 21) 

in which 

0(t) = rotation of the basement structure 

\ = moment of inertia of basement structure about founda

tion 

mb = mass of basement structure 

~ = height of basement structure 

h = height of center of gravity of basement above the 
c 

foundation 

~ = spring constant for rotation of basement on foundation 

c = damping coefficient for rotation of basement on 
b 

foundation 

Sb(t) ,Mb(t) = superstructure base shear and moment respectively 

Mf(t) and Mr(t) are the soil-basement interaction moments and are 



-230-

as defined for equation (7. 7). * Carrying out the Fourier transforma-

tion of equation (7. 21) gives 

( 7. 22) 

The relationship between the transformed superstructure base shear 

and moment, and the transformed accelerations at the base of the 

superstructure (top of the basement) can be written as 

l 8i,(w) l = _ [H11 (w) 

~(w) H 21 (w) 

(7. 23) 

The matrix coefficients H .. (w), i = 1, 2; j = 1, 2, can be derived 
lJ 

from the solution of the equations of motion of the superstructure. 

On the assumption that the superstructure satisfies the conditions 

for the existance of classical normal modes the coefficients can be 

expressed as 

*The interaction moments are assumed to act on two wall faces of 
the basement-structure. Tension will in general exist over part 
of one of the faces at any time during an earthquake. Under tensile 
conditions most soils will separate from the wall and consequently 
the total interaction moment will be less than given by elastic 
theory. For a particular problem an estimate of the extent of the 
tension region can be used to make an arbitrary reduction in the 
total interaction moment. 
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(j~!!!)2Rn(w) 

cj>~Mjn 

(j~ ME:)
2

Rn(w) 

.!n Mjn 

m.h. + 
J J 

(7. 24) 

N = nwnber of lumped story masses of superstructure 

m. = story mass at floor j 
J 

M = diagonal matrix of story masses 

M = vector of story masses 

h. = height of story mass j above base of super
J 

structure 

h = vector of floor heights h. 
J 

..!n = mode shape for mode n 

R (w) = 
n 

1 -

2/ 2 w w 
n 

2 
~ + 2i~ ....'::. 2 nw w n 

n 

w = natural angular frequency for mode n 
n 

~ = damping ratio for mode n 
n 

Rearrangement of equation (7. 22) and substitution from expression 
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(7. 23) gives 

in which 

Wi, = 

t;.b = 

The transformed total wall moment is found by substituting expres-

sion (7.25) into (7.13). The resulting expression can be separated 

into real and imaginary parts to facilitate the solution obtained by 

using either the Fast Fourier Transform or the random vibration 

methods. 

In the above derivation it has been assumed that the equiva-

lent spring stiffness ~ and the equivalent damping factor cb 

for the rotational motion of the basement structure on the rock 

foundation are independent of frequency; however, no additional 

complexity is added by assuming frequency dependence for these 

parameters. Published solutions for the forced vibration of rigid 

foundations resting on an elastic half- space can be used to esti-

mate the frequency dependence of the parameters ~ and cb. 

Solutions for a rigid strip are given by Karasudhi et al. !23l and 

Oien (
4 ll, and solutions for a rigid rectangle are given by Kobori 

et al. <25l. 
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8. DEFORMABLE WALL: CASTAIC POWER STATION 

In Chapter 5 the earthquake-induced soil pressures on the 

Castaic power generating station were computed using the 

assumption of a perfectly rigid wall structure. In this section the 

effects on the wall pressures of the elastic rotation of the structure 

on its foundation are investigated and results are presented to 

illustrate the application of the foregoing theory for deformable-

wall solutions. 

It can be seen from the typical cross-section of the power 

station shown in Fig. 5. 1 that the contact between the structure 

and the rock foundation is effectively below the base of the soil-

retaining wall. In order to simplify the problem for the purpose of 

an illustrative example the foundation of the structure was assumed 

to be at the same level as the base of the wall. The idealization of 

the soil-structure system used in the following analysis is shown 

in Fig. 8 .1. An effective t of about 1. 7 is obtained by taking the 

average length between the wall and sloping far-end boundary. A 

value of ii= 2.0 was used for the analysis presented here because 

analytical solutions had been fully evaluated for this case. 

Approximate estimates of the soil properties and 

structural parameters required for the analysis were obtained 

(47) . (58) 
from Scott and White , and the structural drawings. The 

following values were used: 
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uniform elastic soil: 

E = 10
6 

lb/ft
2 

v = 0.4 

'{ = 120 lb/ft
3 

rigid-body rotation of structure on elastic rock foundation: 

period, T = 0.25 sec w 

damping, ~ = 5. 0% 
w 

weight of structure, 6 
m g = 1. 5 X 10 lb/ft w 

height of center of gravity above base, h = 60 ft c 

moment of inertia about base, I =m X(7,110ft2) w w 

length of structure = 420 ft 

The above elastic soil properties correspond to a soil shear wave 

velocity of 310 ft/ sec. The period of vibration was computed by 

the Los Angeles City Department of Power and Water and exact 

details of the method used are unknown to the writer. The periods 

of vibration of a rigid rectangular body on an elastic half- space can 

be readily computed from solutions given by Whitman and Richart< 59l 

and Kobori et al. <25l. From the solution presented by Whitman and 

Richart the period of O. 25 sec was found to correspond to a rock 

shear wave velocity of 2, 500 ft/ sec, and the damping ratio for the 

rocking mode was found to be approximately 5%. 

Deformation of the soil-retaining wall also results from 

elastic rigid-body translation of the structure on the foundation and 

from strains within the structural elements. In this analysis the 

effects of these deformations on the pressure distributions were 
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considered to be of second order relative to the effects of rotation. 

Because the Castaic facility is designed to pump storage water, 

under normal operating conditions a considerable head of water is 

present on the downstream face of the structure. The influence of 

the hydrodynamic pressures was not included in the following 

analyses of the dynamic behavior of the structure. However, it 

would be of interest to extend the work presented here to include 

this effect and it appears that appropriate hydrodynamic forces 

can be obtained from the work on dam- reservoir interaction 

presented by Chopra{b). 

8.1. STATIC ANALYSIS 

An estimate of the effects of structure rotation on the 

dynamic soil pressures was made by a preliminary static analysis. 

The following static moments were evaluated using the previously 

presented analytical solutions: 

Moment from horizontal one-g 

soil body force {rigid-wall) , 

Moment from horizontal one - g 

force on structure, 

Moment produced by soil pressure 

due to structure rotation, 

M sr 

-yH3 
= 

m gh w c 

)'H3 

0.389 

= 0. 87 5 

= o. 308 

(These moments are for a unit length of structure.) From the 

structure period and moment of inertia the rotational spring-

11 stiffness of the rock foundation was computed to be 2. 1 X 10 

lb. ft/rad. /ft of structure. The one-g rotation of the structure 



-237-

was computed from the above moments and the rotational stiffness 

using expression (7.4). A rotation of 0, 61 xlG- 3 rad. was obtained, which 

corresponds to a horizontal displacement of 0. 70 in. at the top level 

of the soil. This rotation reduces the soil body force moment com-

puted for the rigid-wall assumption (M ) by 4. 2%. 
sr 

Inspection of the plots of the complex-amplitudes of force 

and moment for harmonic rotational forcing given in Section 6. 4 

shows that if the structure has a fundamental frequency signifi-

cantly higher than the lowest natural frequencies of the soil body, 

considerable amplification of the deformation component in the total 

static moment may occur. It is of interest to consider the 

possibility of this amplification effect occurring for the example 

under discussion. The natural angular frequency w of the 
w 

structure rotating as a rigid-body on the rock foundation (without 

the presence of the soil) can be expressed in dimensionless form as 

w 
w 

w 
s 

= 4H 
T V w s 

( 8. 1) 

(in which w = irV /2H; V = shear wave speed of soil,) Evaluating s s s 

expression {8.1) gives w /w = 4. 91. From Fig. 6. 11 it can be w s 

seen that at this value of dimensionless frequency the dynamic 

amplification of the rotational moment component is about 5. 3, 

Consequently it can be expected that for this example the wall 

p.-essures will be modified to a significant extent by the dynamic 

displacements of the structure. 
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8. 2. APPROXIMATE DYNAMIC ANALYSIS 

Approximate dynamic soil pressures on certain relatively 

rigid wall structures may be estimated by decomposing the problem 

into two idealized uncoupled dynamic problems and superimposing 

the maximum pressures computed for each case by taking an rms 

sum. The decomposition into the two separate problems is shown 

diagramatically in Fig. 8. 2. In applying this approximation it is 

assumed that only weak dynamic coupling exists between the wall 

structure and the soil body. This will be the case when the lowest 

natural frequencies of the soil body differ significantly from the 

lowest natural frequencies of the structure. 

Problem I. Only the d'Alembert body forcing of the soil layer is 

considered in this part of the solution. If the structure is relatively 

rigid an acceptable Problem I solution can be derived from rigid

wall dynamic solutions. An improvement to the rigid-wall solution 

can be made by computing the deflection of the structure under the 

maximum rigid-wall dynamic pressure and adjusting the solution 

in accordance with this deflection. 

Problem II, Only the d'Alembert forcing on the structure is con

sidered in this part of the solution. A good approximation for the 

wall pressures can be obtained in many cases by considering the 

participation of the first mode of vibration of the structure, U 

the first mode shape is approximately linear the solutions 

given in this study for the harmonically forced rotating wall may be 
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applied to give a direct solution. In most cases the fundamental 

frequency of the structure will not be significantly modified by the 

restraint imposed by the soil in contact with the walls. 

From Appendix VI the three lowest dimensionless natural 

frequencies of the soil body in the example under discussion 

L 
(H = 2.0, v = 0.4) are 1.85, 2.41 and 3.94. Thus, since signifi-

cant coupling between the structure and the soil body is unlikely the 

approximate method is suitable for this example. 

The static rotational stiffness of the rock foundation was com-

puted to be about 75 times greater than the static rotational restraint 

provided by the soil layer. From the real part of the complex-ampli-

tude of moment plotted in Fig. 6. 11 it can be seen that at the funda-

mental frequency of the structure the effective soil stiffness increases 

by about 2. 3 times the static value. From the results of Kobori 

et al. <25 l it is found that the rotational stiffness of the rock founda-

tion (for the geometry of this problem) does not change significantly 

from the static value over the frequency range of interest. Thus, 

the lowest structure mode has a natural frequency effectively 

governed by the stiffness of the rock foundation and to a good degree 

of approximation this frequency can be computed from the foundation 

static stiffness . (It is assumed in the foregoing discussion that 

structural deformations are negligible.) 

A satisfactory Problem I moment ~ for the present 

example can be evaluated using the rigid-wall assumption. The 

rigid-wall moment computed in Chapter 5 using the Response 

Spectrum method and the rms sum of the modal contributions can 
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be expressed in dimensionless form as MI/ytt3 = 0.071. The 

maximum rotational response of the structure was computed using 

the 5% damped relative-velocity spectrum given in Appendix VIII. 

From this rotation and the complex-amplitude of moment plotted 

in Fig. 6. 11 the Problem II dimensionless moment was evaluated 

3 
to be Mu/yH = O. 031. Using the rms sum of MI and Mu a 

total maximum wall moment of MT/yH3 = O. 078 was obtained; 

that is, a 10% increase in the rigid-wall moment. 

8.3. EXACT DYNAMIC ANALYSIS 

A more exact dynamic analysis may be undertaken by evaluat-

ing the steady-state complex-amplitude response function for total 

moment given by expression (7. 16). This expression was evaluated 

using the soil and structural parameters given above and the complex-

amplitude moment functions plotted in Fig. 3.19 and Fig. 6.11 for 

L 
H = 2. 0 and v = 0. 4. The solution obtained for the modulus of the 

complex-amplitude of total moment is compared in Fig. 8. 3 with the 

modulus of the complex- amplitude of the rigid-wall moment. Rotation 

of the structure reduces the rigid-wall moment in the dimensionless 

frequency range between 0 and 1. 25. At dimensionless frequencies 

between 1. 25 and 5. 5 the total moment is greater than the rigid-wall 

moment and the maximum difference between the moments occurs 

close to the natural frequency of the structure ( n = 4. 9). 

Random vibration theory was used to compute the P = O. 988 

total wall moment in the same manner as described in Chapter 5 

for the rigid-wall assumption. A value of MT/yH
2 = O. 083 was 
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obtained which is 9% higher than the rigid-wall moment previously 

evaluated by random vibration theory. 

The earthquake-induced pressure distribution was not 

evaluated for the example under discussion. Complete details of 

the pressure distributions can be included without difficulty in 

the frequency domain superposition approach used for the wall 

moments; however, this requires quite a considerable increase 

in computational effort. In most cases an approximate pressure 

distribution suitable for design purposes can be evaluated by 

applying the rms superposition principle in the same manner as 

used above to evaluate approximate dynamic wall moments. The 

previously presented plots of the rigid-wall modal pressures and the 

forced-wall dynamic pressures enable this approach to be readily 

applied. The area of the approximate' pressure distribution should 

be adjusted to agree with the force or moment if these are com

puted by the more exact method. 
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9, OTHER WALL SYSTEMS 

9. 1. THREE-DIMENSIONAL EFFECTS 

Although quite a large number of wall structures approxi

mately satisfy the plane strain assumption, the degree of error 

involved in applying the plane strain results to some building 

basement wall problems may be significant. Three-dimensional 

effects can be studied using the finite el.ement method; however, 

in comparison with the two-dimensional case this requires con

siderably more time for both preparation of input data and compu

tation. It is possible to reduce the computing time by performing 

only static analyses. The static three-dimensional results can 

then be used to improve dynamic plane strain solutions. 

The following points are relevant· in estimating some of 

the influences of three-dimensional effects. 

(1) If the wall length is greater than about four times the 

wall height the plane strain solutions for wall pressures are 

expected to be satisfactory. 

(2) If the wall structure is embedded in a soil layer of 

lateral extent large in comparison to the plan dimensions of the 

wall, then the maximum three-dimensional static pressures are 

probably greater than in the idealized plane strain representation, 

The largest pressure increases are probably near either end of 

the wall. 

(3) The presence of a structure embedded in a soil layer of 

lateral extent large in comparison to the plan dimension of the 
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structure is unlikely to produce significant modification of the 

natural frequencies of the soil layer acting alone. 

9. 2. EMBEDDED PROBLEM 

Satisfactory analytical solutions giving the dynamic pres

sures on the embedded building problem shown as Type VII in 

Fig. 1.1 are at the present time unavailable. The results of this 

study may be used as an informative guide when the soil foundation 

is relatively firm. Probably the most satisfactory approach for 

the case of a soft foundation soil is to perform a two-dimensional 

dynamic finite element analysis. A rigid boundary can be 

imposed some distance below the structure and the normal modes 

of the system computed. 

The results from Tajimi's solution for the harmonic dis

placement forcing of the wall of the idealized problem shown in 

Fig. 1. 7 are informative in the study of the embedded building 

problem. However, because of the geometric simplifications 

necessary in the derivation of this analytical solution the results 

do not have direct application. One comparatively simple method 

of making use of these results is to perform a static finite element 

analysis of a reasonably exact model of the embedded structure. An 

approximate dynamic solution can then be obtained by using the 

frequency dependence of Tajimi's results to modify the static finite 

element solution. This approach gives an approximate solution 

for dynamic forcing of the structure but does not give the complete 

solution for the earthquake-induced pressures since the effective 
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body forcing of the soil by the earthquake motions is not included. 

9.3. CANTILEVER WALLS 

A fully plastic stress condition develops in the soil retained 

by most relatively high cantilever walls. For low cantilever walls 

and in cases where the rotation and translation of the cantilever 

foundation is restrained, pressure distributions computed using 

elastic theory may often be satisfactory approximations. Dynamic 

amplification effects are seldom pronounced in earthquake excita

tion of low wall-soil systems. Thus, a pseudo- static elastic 

analysis may be satisfactory for most relatively low cantilever wall 

structures. Pres sure distributions for a number of rigidly-founded 

cantilever walls loaded by vertical gravity and horizontal body 

forces in the soil were computed using tli,e finite element method 

and are presented in Appendix VII. 
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10. SUMMARY AND CONCLUSIONS 

10, 1. SUMMARY 

A study has been made of the earthquake-induced pressures 

on soil-retaining structures using linear elastic theory and idealized 

representations of the wall-soil system. 

Static and dynamic analytical solutions were given for the 

case of a perfectly rigid smooth wall supporting a homogeneous 

elastic soil layer of finite length bonded to a rigid foundation. The 

static solution was presented for the case of a uniform horizontal 

body force, and the wall pressure distributions, forces and 

moments were plotted for a range of the parameters, L 
v and H. 

The wall forces and moments increased with both increasing v and 

t values. For i1 = 6. 0 the force and moment were within about 5% 

of the asymptotic value for t - oo. The natural frequencies and 

normal modes were computed for the dynamic problem and expres-

sions in terms of the modal properties were given for the wall 

pressure and force response to an arbitrarily time-varying forcing 

of the rigid boundaries. Plots of the natural frequeneies, modal 

pressure distributions and modal wall forces were given to show 

the influence of the parameters v and t on the solutions. The 

frequency equation solutions showed that for ;H = 10 the natural 

frequencies were within 10% of the values for LH. - oo. Steady-
.n 

state wall force and moment responses were computed for harmonic 

forcing of the rigid boundaries. These solutions showed that for a 
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L 
10% modal damping ratio the responses for H = 20 were a reasonably 

L 
good approximation for greater H values. The steady- state solu-

tions were used to determine an equivalent two-mode system for 

representing problems with an ~ ratio greater than 10. 

The Response Spectrum method of computing maximum 

earthquake responses from the modal properties was found to be 

satisfactory for the rigid-wall problem and results were given in 

a convenient form for its application. 
L 

For H values greater than 

10 a relatively large number of modes were found to contribute to 

the pressure and force responses; however, for this case the 

equivalent two-mode approximation is satisfactory. It was also 

L 
found that for H < 2. 0 and v > 0. 45 the wall force contributions 

from the lower modes were small. In these cases a satisfactory 

dynamic solution can be evaluated from the static solution. 

The finite element method was used to investigate static 

and normal mode solutions of the rigid-wall problem for the case 

of a bonded contact on the wall- soil interface. Good agreement was 

found between the smooth and bonded pressure distributions except 

over the top 20% of the wall height which is the region of the stress 

singularity for the bonded case. The finite element method was 

also used to investigate the effect of a linear increase in E and 

G with increasing depth from the surface of the soil layer (v 

assumed constant). Over the top half of the wall, the static pressure 

distributions had lower values than the distributions for the uniform 

layer counterparts resulting in lower wall forces and moments for 

the nonuniform soil. This was also generally the case for the modal 
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forces and pressure distributions. The natural frequencies of the 

L significant lower modes, computed for H = 3.0, v = 0.3 and E 

(and G) varied from 0. 1 at the top of the soil to 1. 0 at the base, 

were within 30% of the equivalent frequencies for a uniform soil 

' with elastic properties equal to the average of the nonuniform soil 

properties. From the analytical solutions for a nonuniform infinite 

L stratum it was concluded that for large nH values (greater than 

10) the natural frequencies would be expected to be within about 

25% of the frequencies of the uniform problem with average prop-

erties. The first mode natural frequency of a nonuniform problem 

with a large ,!-H ratio would be expected to be within 10% of the 

frequency of the average uniform problem. 

An analytical solution was derived for static rotational 

forcing of the wall boundary of the idealized smooth deformable wall 

problem. Numerical results were evaluated using the finite element 

method, and the wall pressure distributions, forces and moments 

. L 
were plotted for a range of the parameters v and H . The force 

d f d d 'th . . L al an moment were oun to ecrease w1 increasing H v ues and 

at t = 3. 0 were within about 5% of the asymptotic value for 

L H ..... oo. The pressure distributions, forces and moments showed 

relatively small changes for variations of v from 0.3 to 0.45. 

Solutions were also computed for the bonded contact assumption. 

Differences between the smooth and bonded pressure distributions 

were greater than observed for the rigid-wall problems; however, 

the differences were not sufficiently large to have practical 
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significance. Solutions computed for linear increases of E and G 

with increasing depth showed that the pressures on the top half of 

the wall were lower than for the uniform soil case. 

Two analytical approaches for evaluating the steady-state 

solution of the idealized smooth deformable wall problem, subjected 

to harmonic displacement forcing on the wall boundary, were 

investigated. Numerical results were evaluated for harmonic 

rotational forcing of the wall over a range of dimensionless forcing 

frequency from 0 to 5.0. A 10% modal damping ratio was used 

for most of the solutions. Wall pressures, forces and moments 

were computed for a range of t values from 1. 0 to 20. 0 with 

v = 0.3 and 0.4. The solutions for t = 10.0 were found to be 

reasonably good approximations for problems with greater values 

of the t ratio. The moduli of the wall forces and moments were 

found to decrease from the static values (at zero frequency) to about 

60% of the static values at a dimensionless forcing frequency of 1.0. 

As the forcing frequency was· increased beyond the fundamental 

frequency of the soil body, the moduli were found to increase sig-

nificantly with the force modulus reaching about eight times the 

static value at a dimensionless forcing frequency of 5.0. 
L 

For H 

values less than 5.0 and between dimensionless frequencies 1.0 and 

5. 0, quite large fluctuations occurred in the moduli corresponding 

to resonances with the natural frequencies of the soil body. 

The solution of the idealized deformable-wall problem 

subjected to an arbitrarily time-varying horizontal acceleration of 

the rigid base was obtained by superimposing in the frequency 
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domain the steady- state solutions for the rigid wall and forced wall 

problems, It was found convenient to idealize the earthquake forcing 

as a stationary, Gaussian random process and to evaluate statistical 

estimates of the maximum wall force and moment during the earth

quake from the steady- state frequency domain solution using random 

vibration theory. 

The application of the results and methods presented was 

demonstrated by computing the earthquake-induced pressures on a soil

retaining wall in a large power- generating plant. The structure was 

founded on rock and the soil body in contact with the wall was confined 

by rock boundaries. The structure was assumed to deform by rigid

body rotation on its rock foundation. 

A number of topics related to this study that require further 

research are outlined in the following·discussion. 

The influence of nonlinear soil properties on the wall pressure 

distribution is an aspect of the problem that needs further study, 

especially for the case of large deformations. One approach would be 

to use a nonlinear finite element method to compute solutions to 

simplified problems using idealized stress- strain relations for the 

soil. The normal mode approach is unsuitable if nonlinear behavior is 

significant and dynamic solutions for this case would need to be 

evaluated using a direct numerical integration of the finite element 

equations of motion. 

Further research of a number of possible refinements to the 

Mononobe-Okabe method is desirable. It appears that the Mononobe

Okabe method can be applied in a more rational manner by computing 
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the permanent wall displacement resulting from a prescribed ground 

acceleration rather than basing the analysis on an arbitrary selection of 

a static earthquake coefficient. An analysis to determine the wall 

pressure distribution for static horizontal body force with the soil in 

a fully plastic stress state would be informative. Analyses for these 

conditions can be undertaken by numerical solution of the plastic 

equilibrium equations. 

Investigation is required to determine more exactly the physical 

nature of the dissipation in wall-soil systems subjected to strong 

earthquake ground motions. The testing of large- scale wall- soil 

models on large shaking tables may provide further insight to this 

aspect of the problem. 

The dynamic behavior of embedded wall structures on soft 

deformable foundations (Fig. 1. 1, Type·VII) needs further investigation. 

A finite element study of a number of idealized embedded problems would 

be informative. The influence of three-dimensional effects in this and 

other types of wall problems. also needs to be investigated. To study 

these effects it is probably necessary to resort to a finite element 

approach. 

10. 2 CONCLUSIONS 

(1) It is important to establish the most appropriate method 

of analysis for each particular wall problem. For relatively rigid 

structures on firm foundations the behavior during earthquakes may 

be essentially elastic and the analysis should be based on an elastic 

theory. If large relative displacements of the wall structure are 

induced by the earthquake loads a fully plastic state may develop in 

the soil and maximum pressures should be computed by plastic 
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theory. For cases intermediate between these two limiting conditions 

significant nonlinear behavior of the soil will probably occur. In such 

cases it is often satisfactory to determine pressure bounds by using 

both the elastic and plastic theories. It is commonly assumed that if 

the relative displacement of the top of the wall is great er than O. 5% of 

the wall height a fully plastic stress condition develops. If the soil 

properties have been established by suitable testing it is desirable to 

make a more precise estimate of the soil behavior. (In many cases the 

results given in this study can be used to check whether an analysis 

based on elastic theory is valid). 

For a perfectly rigid wall (that is a rigid structure on a rigid 

foundation) supporting a relatively long layer of soil it was found that the 

earthquake force component computed by elastic theory was likely to be 

greater than twice the force computed by the Mononobe-Okabe method. 

This result is based on the static solution for the elastic case and the 

assumption of identical horizontal earthquake coefficients for each case. 

(2) Throughout this study solutions have been normalized with 

respect to a one-g acceleration. This was for convenience and is not 

intended to imply that an acceleration of this level would be suitable for 

design of wall structures. In general, the earthquake coefficient, 

response spectrum or design accelerograms used for wall design should 

be selected by consideration of a number of factors and in view of the 

large number of circumstances that can arise in practice it is not possible 

to make specific recommendations. The factors that need to be considered 

include the seismicity of the locality, the consequences of damage or 

failure, the economies of seismic resistance versus the cost of damage 

repair, and the magnitude of the resistance provided for other infrequent 
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loads such as water pressures. For walls of minor importance, the 

factors of safety commonly used in gravity load design may provide 

satisfactory resistance against small or moderate earthquakes and the 

possibility of damage or failure in strong earthquakes might well be an 

acceptable risk. 

In most cases the arbitrary reductions to the elastic design 

coefficients, the elastic response spectra or the design accelerograms 

that are normally made because of ductility considerations should not be 

made for wall structures. Wherever possible it is desirable to estimate 

the maximum wall displacements and pressures occurring in the un-

factored design earthquake and base the design on tolerance levels for 

structural damage and per1nanent wall displacements. That is, an ap

proach analogous to the ultimate-load design method should be used. 

Frequently only approximate estimates can be made of the inelastic be-

havior during an earthquake. However, even very approximate solutions 

give insight into the actual behavior that might be overlooked if arbitrary 

reductions are used as a general design procedure. 

(3) The Mononobe-Okabe method can be applied in a more ra

tional manner by computing the magnitude of the outward sliding dis

placement of the soil wedge. The method proposed by Newmark( 39 l for 

the study of earthquake-induced sliding in dams and embankments is 

applicable to most wall structures that satisfy the Mononobe-Okabe 

assumptions. If this approach is used it is unnecessary to make an 

arbitrary reduction to the earthquake coefficient and the acceptable 

limit of outward displacement of the wall becomes the basic design 

criterion. It may often be desirable to insure that outward movement 
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occurs as a result of sliding of the structure on soil failure surfaces 

rather than as a result of a structural yielding in the wall. I£ this is the 

case, then it is important to design the structural elements of the wall 

for at least the force required to produce outward sliding of the wall as 

a result of soil failure. 

(4) Dynamic tests performed on models have assisted the 

understanding of wall behavior during earthquakes. However, it is 

very difficult to adequately satisfy all the similarity conditions 

involved and care is required in applying model results to proto

type walls. Experimental errors from the influence of the soil

supporting side and far-end walls of the test equipment can result 

in an underestimation of the wall force. 

(5) In the analysis of earthquake behavior of wall structures 

imprecision is introduced by the uncertainties in the dynamic soil 

properties and the nature of the earthquake motions. Consequently 

the simplification of complex wall problems to readily solvable 

idealized systems may often be an acceptable approach. In this 

study idealized problems have been solved using the theory of 

elasticity. The solutions given are suitable for application in 

the design of wall structures that approximately satisfy the assump

tions made. The solutions may also be informative for other cases 

that satisfy the basic assumption of linear elastic behavior. 

(6) Results evaluated from the analytical normal mode 

solution of the idealized rigid-wall problem showed that satisfactory 

dynamic solutions for this type of problem can be computed by the 

conventional modal superposition methods. It was found that a good 
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dynamic representation of the rigid-wall problem can be achieved 

with five or less modes. By deriving the appropriate static solution 

it is possible to approximately include the influence of the higher 

modes by using an equivalent "rigid" mode. The Response 

Spectrum method employing an rms summation of the modal 

responses appears suitable for most rigid-wall problems. 

The normal modes of deformable wall structures were not 

computed in this study; however, normal mode solutions can be 

computed for particular problems of this type by the finite element 

method. Although further study is required it appears reasonable 

to expect that modal superposition methods would also be satis

factory for computing earthquake pressures on elastic deformable 

wall problems. 

(7) The natural frequencies of the idealized rigid-wall 

problem for wall heights less than about 15 ft and for moderately 

firm soils tend to be higher than the predominant frequencies in 

typical strong-motion accelerograms. Thus, for many relatively 

rigid low walls a static solution may be a satisfactory approximation. 

If a damping ratio of 10% can be justified for the wall-soil system 

the dynamic amplification resulting from earthquake loading is not 

very pronounced over the entire frequency range of interest and 

static solutions employing the peak acceleration tend to give con

servative approximations for rigid-walls of any height. 

(8) Good agreement was found between the analytical and 

finite element solutions for the smooth rigid-wall problem. This 

agreement justifies confidence in using the finite element method 
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for more complex wall problems. Since at present there is no 

method of determining bounds for the accuracy of finite element 

solutions, the analytical results obtained in this investigation give 

useful information regarding the most economical me sh sizes for 

the study of related problems. It was concluded that the finite 

element method gives reasonable accuracy for the modal properties 

of modes that have at least four elements within the modal wave 

lengths (in both the vertical and horizontal direction). 

(9) Good agreement was found between the solutions of the 

idealized rigid-wall problem using the exact equations of elasticity 

and solutions based on the assumption of no vertical displacement 

in the elastic soil (v = 0 assumption). However, this agreement 

was only investigated for a Poisson's ratio of O. 3 and because the 

v = 0 solutions are singular for Poisson's ratio equal to O. 5 the 

agreement is expected to deteriorate as the ratio is increased 

above O. 3. The v = 0 approximation may be useful for the 

analytical investigation of more complex problems. 

(10) Analytical solutions for wall problems can only be 

readily derived for the case of a smooth contact on the wall-soil 

interface (that is a mixed boundary condition). For the horizontally 

loaded problems considered in this study relatively good agreement 

was found between the pressure distributions computed for both 

smooth and bonded contact assumptions. In theory a stress singu

larity develops near the top of the wall for the bonded case, but in 

practice because of the variation in soil properties with depth and 
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the nonlinear behavior of soils at moderate stress levels the stress 

singularity is unlikely to develop to a significant degree. It is 

concluded that the analytical smooth wall results presented in this 

study are satisfactory for practical applications in which a more 

complex interface condition exists. 

(11) It is concluded that even for the case where the relative 

displacements of the wall structure are sufficiently small to ensure 

essentially elastic response of the soil it is important to check the 

influence of the wall deformation on the pressure distribution. If 

the wall structure has significant mass it is important to include the 

dynamic properties of the structure in the analysis. In cases where 

the wall structure has a fundamental frequency higher than the lowest 

natural frequencies of the retained soil body, significant dynamic 

amplification of the pressure component.due to the structural 

deformation may occur. 

(12) A satisfactory estimate of the maximum earthquake

induced pressures and forces on relatively rigid structures with 

significant mass can often be made by taking an rms sum of the 

values computed for the rigid-wall solution and the values from 

the forced-wall solution evaluated for the response of the first mode 

of vibration of the structure. This approach is probably unsuitable 

for the case where the fundamental frequency of the wall structure is 

close to the lowest natural frequencies of the soil layer. 
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APPENDIX I 

NOTATION 

Symbols are defined where they first appear in the text. 

A summary of the symbols employed is given in this appendix. 

Dots above a symbol denote differentiation with respect to 

time. A bar beneath a symbol denotes a vector quantity. In 

general a bar above a symbol denotes a transformed parameter. 

A unit length of structure is implied in the force and moment 

definitions. 

Lower Case Symbols 

a 
n 

a 0,1,2, ... 

bn 

b 0,1,2, ..• 

c 

c 
n,m 

c 
w 

d 
n 

e 

f' 
c 

Fourier series coefficient for nth term 

Element displacement function coefficient 

Fourier series coefficient for nth term 

Element displacement function coefficient 

Damping coefficient 

Rotational damping coefficient for basement 

structure 

Analogous damping coefficient for mode n,m 

Damping coefficient for wall structure 

p~ [!k
2

-2> _ ;(k
2
-1u + 1 

r 
Exponential constant 

Compressive strength of concrete 

Frequency of vibration in model and prototype 

respectively 



f 
n 

f 
y 

£°{y) 

f 

.!_{t) 

g 

go{t) 

h 

h 
c 

h. 
J 

h n,m 

h 
r 

h 
s 

h 

i 

i 

k 

k' 

k n,m 
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Yield strength of reinforcement 

Displacement function for forced wall -, 
Mf{w) 

Real and Imaginary parts of -- respectively 
Msf 

Nodal load vector 

Nodal forcing vector 

Acceleration due to gravity 

Time function for forced wall 

One-half of plate thickness 

Height of basement structure 

Height of center of gravity of wall or basement 

structure 

Height of story mass j above base of superstructure 

Height of center of pressure for mode n,m 

Height of center of pres sure for "rigid" mode 

Height of center of pressure on statically-forced wall 

Vector of floor heights h. 
J 

Angle of soil slope 

..f-1 

vd 
V , wave speed ratio 

s 

3 - 4v 

Rotational spring constant for basement structure 

Horizontal earthquake coefficient 

Analogous spring constant for mode n, m 



k s 

k 
v 

k w 

m 

m 

m 

m. 
J 

m n,m 

m 
r 

m w 

n 

n 

p 

q 

r 

u 

~ 
-;;: { y) 

n 
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Analogous spring constant for statically forced wall 

Vertical earthquake coefficient 

Spring constant for wall structure 

Integer 

Mode order 

Mass per unit length 

Mass of basement structure 

Story mass at floor j 

Analogous mass for node n,m 

Analogous mass for rigid mode 

Mass of wall structure 

Integer 

mode type 
,,. 
2L 

Static-one-g modal wall pressure distribution for 

mode n,m 

Nonuniform soil parameter 

n1r 

T 
Real and imaginary parts of 

Variance of wall force 

Variance of wall moment 

Time 

M' {w) 
r 

M sr 
respectively 

Displacement in coordinate x-direction 

Displacement in x-direction of rigid boundary 

Displacement function in x-direction for nth term 



u 
w 

u n,m 
0 

u 

u 

e 
u 

uf 

i 
u 

u 
-r 

~sf 

u -sr 

v 

v (y) 
n 

v n,m 

x 

y 

y 
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Wall displacement in x-direction 

Displacement in x-direction of mode n,m 

Displacement in x-direction at top of wall 

Displacement vector 

Vector of displacements on rigid boundary 

Vector of element nodal displacements 

Vector displacement solution for dynamic wall-forcing 

Vector of displacements within element 

Vector displacement solution for dynamic horizontal 

acceleration of rigid-wall problem 

Vector displacement solution for static wall-forcing 

of unit rotational amplitude or unit displacement 

at wall top 

Vector displacement solution for one-g static hori

zontal load on rigid-wall problem 

Partial vector-displacement solution 

Displacement in coordinate y-direction 

Displacement function in y-direction for nth term 

Displacement in y-direction of mode n,m 

Coordinate direction 

Coordinate direction 

(1 - qy ) 
H 

Upper Case Symbols 

A 

A 
n 

Constant 

Displacement function constant for nth term 



A n,m 

B 

B 

B 
n 

B n,m 

c 

c 
n 

c n,m 

D 
n 

D n,m 

D (t) 
n,m 

E 
s 

E w 

F n,m 

F' (w) 
r 
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Constant for mode n,m 

Constant 

Matrix relating strains within element to nodal 

displacements 

Displacement function constant for nth term 

Constant for mode n, m 

Assemblage damping matrix 

Displacement function constant for nth term 

Constant for mode n,m 

Displacement function constant for nth term 

Constant for mode n,m 

Relative displacement response of single-degree-of-

freedom oscillator with parameters 

and ~ n,m 

Young's modulus 

Mean-square-response 

Young's modulus for soil 

Young's modulus for wall 

Horizontal force 

w n,m 

Complex-amplitude of steady- state force for harmonic 

wall-forcing of unit amplitude 

Static-one-g modal force on rigid wall from mode 

n,m 

Complex-amplitude of steady- state force on rigid wall 

for one -g amplitude harmonic base forcing 

Force on statically forced wall for unit rotation or 

unit displacement at wall top 



F 
sr 

F 

G 

G(w) 

G 
a 

Gb 

G ,G 
m p 

G (w) x 

H 

H 

H(w) 

H .. 
lJ 

H ,H m p 

I 

Im 

I 
w 
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Force on rigid wall from one-g static horizontal 

loading 

Body force per unit volume in x- and y-direction 

respectively 

Vector of body forces 

Shear modulus 

Power spectral density of earthquake 

Average shear modulus of soil 

Shear modulus of soil at bottom of stratum 

Shear moduli of soil in model and prototype 

respectively 

Power spectral density of input 

Height of wall 

Height of soil stratum 

System transfer function 

Building transfer matrix 

Height of model and prototype walls respectively 

Unity matrix 

Moment of inertia of basement structure 

S ..S!n,m 0~,m dV 
v 

Imaginary part 

S un,m dV 
v 

Moment of inertia of wall structure 

Zero-order Bessel function of the first kind 

First-order Bessel function of the first kind 



K 

K 

K 

KAE 

K 
e 

L 

L 

M 
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Assemblage stiffness matrix 

L -1i<(L T)-1 

K + iwC - w
2

M 

Active earth-pressure coefficient for combined 

gravity and earthquake loads 

Element stiffness matrix 

Passive earth-pressure coefficient 

Soil modulus parameter 

Length of soil layer 

lower triangular matrix 

Linear operator 

Linear operator 

Assemblage mass matrix 

Diagonal matrix of story masses 

Superstructure base moment 

Element mass matrix 

Earthquake·moment on wall 

Moment on dynamically forced wall 

Complex-amplitude of steady- state moment for 

harmonic wall forcing 

Complex- amplitude of steady- state moment for 

harmonic wall forcing of unit amplitude 

Gravity moment on wall 

Static one-g modal moment on rigid-wall from mode 

n,m 

Dynamic moment on rigid wall 



M (w) 
r 

M' (w) 
r 

M 
sr 

M 
u 

~I 
M 

N 

N 

N 

PAE 

p 
n,m 
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Complex-amplitude of steady- state moment on rigid 

wall for harmonic base forcing 

Complex-amplitude of steady- state moment on rigid 

wall for one- g amplitude harmonic base forcing 

Mome·nt on statically forced wall for unit rotation or 

unit displacement at top of wall 

, dimensionless moment 

Moment on rigid wall from one- g static horizontal 

loading 
M 

sr d" . l t h , imens10n ess momen 
mwg c 

Total wall moment 

Complex-amplitude of total steady-state wall moment 

for harmonic base forcing 

Complex-amplitude of total steady-state wall moment 

for one-g amplitude harmonic base forcing 

Ultimate resisting moment of wall 

Maximum wall moment for problem I 

Maximum wall moment for problem II 

Vector of story masses 

Number of significant modes 

Number of lumped story masses 

Matrix relating displacements within element to 

nodal displacements 

Active wall force for combined gravity and earth

quake loads 

Static-one-g modal participation factor for mode n,m 



PS 
n,m 

PA n,m 

Q (t) 
n,m 

Q' 
n,m 

R 

Re 

R (w) 
n 

s 

T 

T 
w 

v 

w 

1 
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f u • "' dV v-sf ..l:n,m 

Pseudo-acceleration response for single-degree-of-

freedom oscillator with parameters 

and \;.n,m 

Participation coefficient for mode n, m 

w n,m 

Static participation coefficient for mode 11,m 

rH 

Real part 

2 I 2 w w 
n 

2 
1 -~ + 2i\;.n 

w 
w 

w n n 

soil-wall stiffness ratio 

Superstructure base shear 

Relative velocity spectrum 

Accelerogram duration 

Period of vibration of wall structure 

Volume 

Dilitational wave speed 

Shear wave speed 

Weight of soil wedge 

Zero-order Bessel function of the second kind 

First order Bessel function of the second kind 
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Greek Symbols 

C( I 

~· 

'I 

€ ·" x y 

2 
r -

2 
w n,m 

vz 
d 

or Ff d 

.,,. 

Angle of wall slope 

.,,. 

2 
r -

2 
w n,m 
vz 

s 

(~H) z_ 

2Hw fP1 
_q_m_ ./ ~ 

or j r2 - w2' 
vz 

s 

g2 
n,m 
4 

Unit weight of soil 

Unit weight of soil in model and prototype respectively 

Unit weight of soil 

Shear strain for the x- and y-direction 

Angle of wall friction 

Vector of strains within element 

Normal strains in x- and y-direction respectively 

Damping ratio, fraction of critical 

Equivalent damping ratio for rotation of basement 

structure 

Damping ratio for mode n 

Damping ratio for mode n,m 



e 

e 

v 

,,. 

p 

<T '<T m p 

rrx,rry 

0 
<T x 

7 
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Equivalent daniping ratio for rotation of wall 

structure 

Coordinate direction for element 

Angle of rotation 

k 
tan - l ( 

1 
_: ) , direction of total earthquake force 

v 

Poisson's ratio 

Coordinate direction for element 

Numerical constant 

Mass density 

Mass density in model and prototype respectively 

Stresses in model and prototype respectively 

Mean principal effective-stress 

Normal stresses in x- .and y-directions respectively 

Normal stress on wall 

Principal stresses in x-y plane 

Vector of stresses within element 

Time parameter in integration 

Deviatoric stress 

Shear stress in x- and y-directions 

Shear stress on wall 

Angle of internal friction of soil 

Mode shape 

Mode shape for mode n 

Mode shape for mode n,m 

LT_!, transformed mode shape 



w 

w 
n 

w 
m 

w n,m 

w 
s 

w s,m 

w w 

0 n,m 

t;PAE 
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Angular frequency 

Natural angular frequency for rotation of basement 

structure 

Natural angular frequency of mode n 

Natural angular frequency of mode m 

Natural angular frequency of mode n,m 

TrV /ZH, natural angular frequency of lowest pure 
s 

shear mode of an infinite elastic stratum 

(Z~H 1 )1r R , natural angular frequency of mode m 

of a uniform infinite elastic stratum with shear 

modulus equal to the average of the nonuniform 

stratum 

Natural angular frequency for rotation of wall structure 

w/w , dimensionless freq;_,ency 
s 

wm/ws,m' dimensionless natural frequency for mode 

m 

wn, m/ws, dimensionless natural frequency for mode 

n,m 

Value of determinant 

Active wall force increment due to earthquake load 
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APPENDIX II 

FINITE ELEMENT METHOD 

(1) STATIC SOLUTIONS 

The static finite element solutions were computed using a 

conventional direct stiffness method. In this approach an assumed 

element displacement field is chosen and the principle of virtual 

displacements and internal virtual work is used to derive the 

element stiffness matrix. It can be readily shown that the element 

stiffness matrix Ke is given by 

(A. 1) 

where the matrix B is defined by 

(A. 2) 

in which 

~ = l :; ( , a vector of the strains within the element 

yxy~ 
ue = a vector of the element nodal displacements 

and matrix D is defined by 

CT= DE (A. 3) 

in which 

CT - l :x l , a vector of the stresses within the element 

- T:y ~ 
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The forces and displacements at the nodes of the total assemblage 

of elements are related by a set of linear algebraic equations that 

can be expressed as 

f =Ku (A.4) 

in which 

f = a vector of nodal forces 

u = a vector of nodal displacements 

K = the assemblage stiffness matrix 

The assemblage stiffness matrix K is derived from the element 

stiffness matrices by satisfying the equilibrium equations at each 

of the nodal points. 

In this study equations (A. 4) were solved for the unknown 

displacement field u by employing a computational method 

developed by McCormick(34l. This method is efficient for large 

banded-matrices and utilizes an iterative improvement scheme 

which allows any desired degree of accuracy to be obtained in the 

solution. In most finite element programs the stresses at the 

centroid of each element are computed from the nodal displacements 

using expressions (A. 2) and (A. 3). In this study, because the 

evaluation of the boundary stress distributions was the primary 

objective, stresses were computed at the nodal points instead of 

the element centroids. 

Two types of elements were used; a first-order rectangular 

element and a second-order quadrilateral element. These elements 
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are shown in Fig. A.1. 

The rectangular element has an assumed displacement field 

defined by 

(A. 5) 

The element stiffness matrix is derived from these displacement 

functions by determining the constant coefficients a. and b. in 
l l 

terms of the nodal displacements and the nodal coordinates and 

then evaluating expression (A.1). The simple shape of this element 

allows the required integration to be readily undertaken to give a 

closed form expression for the element stiffness matrix. Details 

of this matrix are given by Przemieniecki(45 l. 

The quadrilateral element used was developed by Doherty 

et al. (S) and was called by these investigators the QM5 element. 

It is a refined five-point element having a constant shear strain 

taken as the value of the shear strain at the central point. The 

assumed displacement field for this element is given by 

(A. 6) 

The integration required to evaluate the stiffness matrix was 

carried out numerically by employing a four-point Gaussian quadra-

ture formula. 
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RECTANGULAR ELEMENT 

~ = -I 

7] = -I 

QUADRILATERAL ELEMENT 

Figure A. 1 
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Both the elements used have displacement fields that vary 

in a linear manner along their sides, thus ensuring continuity of 

the displacement field between elements, 

(2) NORMAL MODE SOLUTIONS 

The equations of motion for free undamped vibration of the 

finite element system can be written as 

Mti +Ku= 0 (A. 7) 

in which 

M = the assemblage mass matrix 

The assemblage mass matrix M is derived from the element mass 

matrices by a method analogous to that used to derive the assemblage 

stiffness matrix, The analogy between the mass and stiffness 

matrix derivation is easily demonstrated by using d'Alembert's 

principle to reduce the dynamic problem to an equivalent static 

problem. 

The solutions of equations (A. 7) can be written as 

in which 

.i...iwt 
u = ..r- (A. 8) 

_! = mode shape associated with the natural frequency w 

Substitution of (A. 8) into (A. 7) gives 

2 (K - w M)_! = 0 (A. 9) 
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In this study the standard eigenvalue problem represented by 

expression (A. 9) was transformed to a more convenient form by 

using Cholesky's method to perform a triangular decomposition 

of the mass matrix. Defining the lower triangular matrix L 

such that M = LL T, and letting 

enables equations (A. 9) to be expressed as 

- 2· 
(K - w I).±_= 0 

in which 

K L -1K(LT)-1 . . = , a symmetric matrix 

I = the unity matrix 

(A. 10) 

Equations (A.1 O) can be solved by standard computational methods 

to give the mode shapes and natural frequencies. ln this study a 

library program was used that employed Jacobi's method. 

The normal mode solutions were evaluated using the two 

elements previously described for the static analyses. Element 

mass matrices were derived using the consistent mass approach of 

Archer(1). The consistent element-mass matrix is defined by 

(A.11) 

in which 

Me = element mass matrix 

p = material mass density 
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The interpolation matrix N is defined by 

i 
u = (A. 12) 

in which 

i 
u = a vector of displacements within the element 
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APPENDIX III 

RIGID WALL: DYNAMIC SOLUTION: TYPICAL MODE 

SHAPES AND FREQUENCIES 

The analytical solution presented in Section 3. 1 for the 

natural frequencies and mode shapes of the smooth rigid-wall 

problem was numerically evaluated for various values of the 

L parameters H and v. The ratio D · /C and the dimen-
n,rn n,m 

sionless frequencies 0 of a number of the antisymmetric n,m 
L 

modes for v = 0.3 and H = 2.0, 5.0 and 10.0 are listed in 

Table A. 1 below. The mode shapes can be readily computed by 

substituting the values of D /C and 0 into expressions n,m n,m n,m 

(3.11), (3.13) and (3.15) Typical mode shapes are plotted for 

L H = 5.0 and v = 0.3 in Figs. A.2, A.3 and A.4. 
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TABLE A.1 

Mode Shape Ratio and Natural Frequencies 

L/H = 2.0, 5.0 and 10.0; v = o. 3 

L/H = 2.0 L/H = 5.0 L/H = 10.0 

Mode D D D 
Type, Order n n,m n n,m n n,m 

n,m c n,m c n,m c n,m n,m n,m 

1, 1 1. 805 1.574 1. 211 - o. 33 7 1. 057 -0.179 

1,2 2.01 -9.268 1. 849 5.721 1. 864 10.770 

1,3 3.57 -1. 1 76 3. 11 -0.494 3.03 -0.252 

1,4 4.87 0.853 4.96 0.517 4.99 0.284 

1,5 6.05 -5.382 5.70 -8.145 5.64 -14.618 

3,1 2.90 1.299 1. 849 1. 770 1.429 -0.393 

3,2 4.49 1. 724 2.29 -5.786 1. 837 4. 310 

3,3 5.71 2.382 3.77 -1. 422 3.23 -0.724 

3,4 5.98 -2.285 4.86 0.885 4.93 0.681 

3,5 7.69 -0.0144 6.20 -5.435 5.80 -6. 302 

5,1 4.65 1.181 2.18 1.492 1. 805 1.574 

5,2 5.93 1.288 3.44 5.624 2.01 -9.268 

5,3 7.34 1. 609 4.67 -3.579 3.57 -1. 1 76 

5,4 8.61 2.812 5.01 o. 733 4.87 0.853 

7,1 6.49 1.158 2.74 1. 325 1. 905 1. 713 

7,2 7.58 1. 226 4.33 1. 910 2.58 -9. 002 

7,3 8.76 1.346 5.52 2.566 3.98 -1. 707 

7,4 10.16 1. 586 5.72 -1. 590 4.87 0.892 

9' 1 8.35 1.153 3.40 1. 242 2.07 1. 556 

9,2 9.40 1. 205 4.92 1. 460 3.16 12.896 

9,3 10.35 1. 268 6.27 2.202 4.43 -2.597 

9,4 11. 59 1.379 6.83 -7.154 4.94 0.829 
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Figure A. 2 

MODE 1.4 

Typical mode shapes. L/H 
Poisson's ratio = 0.3. 

s. o. 
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Figure A. 3 

MODE 3,ij 

Typical mode shapes. L/H 
Poisson's ratio = O. 3. 

' ' 

5. o. 
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APPENDIX IV 

RIGID WALL: DYNAMIC SOLUTION: PARTICIPATION 

FACTOR INTEGRALS 

The static-one -g modal participation factor for mode n, m 

is defined in Section 3. 2 by the relationship 

p =-::...£__ fv un,m dV 

n,m wz J do . •.I. dV 
n,m y-"n,m .l:n,m 

(A. 13) 

Let 

IN= s u dV V n,m 

I - s .I. • n. dV D - V ..In,m .In,rn 

(A. 14) 

Closed-form expressions for IN and ID were derived 

for the smooth rigid-wall problem using expressions (A. 14) and 

the modal displacement functions given in Section 3. 1.1. The 

following expressions were obtained. 

2 0 2 

(~H) > ~,m 

ZC H 2 

IN= n,m \-~(1-cosh<>')+.!.(1-coshfl') 
R ( a'Z R 

D + n,m 
c n,m 

( 
sinh <>' _ sinh ~') l 

a p I ~ (A. 15) 
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CZ HL 
I =-n_,,_,m __ 
D 4 [

A ( sinh Z<>' _ 1) +A (sinh Zf'l' _ 1) 
1 Z<> Z Z~ I 

+A ( sinh Za' 
3 Z<> 

z 
+ sinh Zf'l' + z) _ 4 ( D n, m) c h a r si"nh "1 

z~i ~ C OS I' 
n,m 

- ~ sinh <>' cosh 13' - ~n,m ~!~• sinh a' sinh 13' 
n,m 1 

4 ( 1 R ) + R cosh a'Cosh 13' - R + ,,,z cosh Za' 

in which 
R z 

= ( ar) 
D , Z +( n,m ~) 
C R · n,m 

D 
+ ( C n,m 

n,m 

R Z 
~) 

oz 
n,m 
4 

z 
> (~H) > 

ZC Hz 
I = n,m ~ 
N R I - ~(1- cosh<>') + .!.(1- cos f3') ,,,z R 

D + n,m 
c n,m 

(
sinha' _ sinf'l')} 

l> ~I 

(A. 16) 

(A. 1 7) 
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2 
I = cn,mHL [A (sinh 2a' _ 1\ _A (sin 2fl' _ 1) 
D 4 1 2a 'J 2 2P 1 

+ A ( sinh 2a' 
3 2a 

2 

+sin 213' + 2)- 4 (Dn,m) ha' s1"n "' 
2fl' v c cos t' 

n,m 

I = N 

4 • h I i< I 
- - 1 sin a cos I"' - Dn, m ~ 4 R sinh a'sin j3' 

c I arir'" "' n,m 

+ : cash a' cos 13' - (}+ R 2)cosh 2a' 
Cl' I 

- ( .!_ - ..;) cos 2f3 1 + R(~ - ~) + ~ - 4 t J 
R 13''" a' fl' ~ 

2 
> ( ~H} 

2C H 2 

nRm ~ R 
2 

(1 - cos a') + ~ (1 - cos 13') 
I "'I 

D + n,m 
c n,m 

(
sin a' _ sin fl') l 

"' !I' \ 

(A. 18) 

(A.19) 
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c
2 

HL [ 
1 _ n, m . -A ( sin 2a 1 

_ 

D - 4 1 2a 1) _ A (sin 213' _ 1) 
2 2[:! 1 

+A (sin 2a' +sin 213' 
3 20' zp I 

4 • I P. I 
- -:::i sm a cos t' -

"' 
Dn,m ~ 4R sin a' sin 13' c a'lf' n,m 

+ ~cos a' cos fl' - ( ~ - ~2 )cos 2a' 

"' 

( 1 R) I (1 1) - - - - cos 213 - R - + - + 
R 13 ,2 a'2 

13
,2 

Note: IN= 0 for even values of n. 

2 
R- (A, 20) 
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APPENDIX V 

RIGID WALL: DYNAMIC SOLUTION: MODAL PRESSURES 

The static-one-g modal wall pressure distribution for mode 

n,m is given by 

The linear operator L is determined by the stress-strain 
p 

relation 

{A. 21) 

{A. 22) 

Expressions for the static-one-g modal pressure distributions of the 

smooth rigid-wall problem were evaluated using relations {A. 21), 

{A. 22) and the modal displacement functions given in Section 3. 1. 1. 

The following expressions were obtained. 

2 
(~H) > 

n2 
n,m 
4 

P w2 C 
Pn,m = n,m n,m n,m 4nH 

-;rr ~RR . h~ 2f3' "nhfi J c;r sin H - R s1 H -yH 

D + n,m 
c n,m 

- a' f3' ) I (Rcosh;f-2cosh;f { 

in which 

{A. 1 9) 
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S'l L 2 2 
R =( n,m ) + 2(~) 

2nH R 

n2 
n,m 
4 

2 
> ( ~H) > 

P w2 C n,m n,m n,m 

n2 
g n,m 

4nH {RR "nh 2 + 213' si"n 13H'y 
iL ii' Sl H R 

D _ r 

+ n,m(R h~ C cos H -
n,m· 

2 cos 13j)} (A. 20) 

> (~H) 
2 

P w2 C Pn,m = n,m n,m n,m 
yH 0 2 

g n,m 

4nH {RS . ;f' -. - --::-r s 1n 
wL a 

D (- a' + n,m S ~ C cos H (A. 21) 
n,m 

in which 
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APPENDIX VI 

RIGID WALL: DYNAMIC SOL UT ION: 

STATIC-ONE-g MODAL FORCES 

Expressions for the static-one-g modal wall forces and 

moments can be derived by simple integration of the modal 

pressure distributions given in Appendix V. Static-one-g modal 

forces and moments about the wall base were evaluated for a 

L 
number of values of the parameters H and v, and are listed in 

Table A. 2 below. All the modes that had force contributions 

greater than 7% of the one-g static force solutions are listed and 

values for some of the less significant modes are also tabulated. 

For each case the sum of the listed modal forces exceeds 65% 

of the static force solution. 
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TABLE A.2 

Static-one-g Modal Forces and Moments 

Sign Convention: + = Net Compression 
- = Net Tension 
Signs of moments are consistent with forces 

L 
H = o. 5 

Poisson's Mode Dim. Freq, Dim, Force Dim. Mom, 

Ratio Type, Order n F I Hz M I H3 
n,m n,m Y n,m 'I 

0.2 1,2 5.17 0.016 0.012 

1,4 6.69 0.157 0.088 

1,6 8.1 7 0.008 0,003 

Static 0.226 0.120 

0,3 1,2 5.20 0.014 0.011 

1,4 7.40 0.127 0,069 

1,5 8.58 0.030 0.006 

1,6 8.74 0.013 0.012 

Static 0.230 0.120 

0.4 1,2 5.24 0.012 0.009 

1,4 8.02 0.038 0.022 

1,6 10,24 0.113 0,051 

1,7 11. 72 0.018 0.008 

Static 0.235 0.119 

0,45 1,2 5,26 0.010 0,009 

1,4 8.19 0.018 0.011 

1,6 11.39 0.020 0,009 

1,7 13. 11 0.017 0.003 

1,8 13.97 0.096 0,041 

Static 0.239 0.118 
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L = 1. 0 
H 

Poisson's Mode 
Dim. Freq, Dim, Force Dim. Mom. 

Ratio Type,Order S'2 F / H
2 M I H3 

n,m n,m 'I n,m '{ 

0,2 1,2 3,24 0.281 0.1 75 

1,3 4.42 0.025 o.ooo 
1,4 4.72 0.025 0.016 

3,5 10.07 0.022 0.015 

Static 0.414 0.229 

0.3 1,2 3.43 0.242 0.154 

1,3 4.67 0.048 0.008 

1. 4 5.01 0,049 0.030 

3,6 11. 36 0.032 0,033 

Static o. 423 0.227 

0.4 1,2 3.68 0.156 0.103 

1,4 5.62 0.167 0.072 

1,5 7.41 0.014 0.003 

1,6 8.41 0.010 0.011 

3,8 14.95 0.027 0.012 

Static 0.436 0.224 

0.45 1,2 3.79 0.107 0.074 

1,4 6.63 0.113 0,047 

1,5 7.97 0.094 0,031 

1. 6 9.12 0.023 0.014 

Static 0.446 0.221 
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L 
H = 2. 0 

Poisson's Mode 
Dim. Freq. Dim. Force Dim. Mom. 

Ratio Type,Order n F I H2 M /yH3 
n,m n,m y n,m 

0.2 1, 1 1. 671 0.048 0.031 

1, 2 1. 874 0.432 0.267 

1,3 3.46 0.019 -0.001 

3,2 4.41 0.031 0.021 

3,3 5, 37 0.042 0.025 

5,4 8. 14 0.023 0.013 

Static o.664 0.384 

0.3 1'1 1.805 0,018 0.016 

1,2 2.01 0.462 0.277 

1,3 3.57 0.035 0.004 

3,2 4.49 0.021 0.014 

3,4 5.98 0.053 0.025 

Static 0.687 o. 387 

0,4 1 ' 1 1. 852 0.151 0.107 

1,2 2.41 0.276 0.155 

1,3 3.94 0.097 0.028 

1 ,4 5. 02 0.019 0.011 

3,4 7.01 0,035 0.017 

Static 0.714 0.389 

0.45 1 ' 1 1. 867 0.183 0.131 

1,2 2.71 0.158 0.089 

1,3 4.67 0. 111 0,036 

1,4 5.16 0.092 0.039 

3,4 7.43 0.011 0.006 

Static 0.734 0.391 
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L 
H = 3. 0 

Poisson's Mode 
Dim. Freq. Dim. Force Dim. Mom. 

Ratio Type,Order n F I H2 M I H3 
n,m n,m Y n,m Y 

0.2 1' 1 1.438 0.548 0.337 

1,3 3.22 0.015 -0.001 

3,2 3.24 0.094 0.059 

5,3 5.76 0.027 0.017 

7,4 7.66 0.019 0.011 

Static 0.788 0.460 

0.3 1 ' 1 1. 510 0.534 0.330 

1,2 1. 836 0.027 0.013 

1,3 3.28 0.028 0.003 

3,2 3.44 0.081 0,051 

5,4 6.44 0.032 0.016 

Static 0.829 0.474 

0.4 1, 1 1.548 0.460 0.295 

1,2 2.28 0.082 0.039 

1,3 3.51 0.081 0.023 

3,2 3.67 0.052 0.034 

3,4 5. 62 0.056 0.024 

5,4 7.36 0.015 0,008 

Static 0.996 0.560 

0.45 1, 1 1.562 0.437 0.286 

1,2 2.64 0.029 0.014 

1,3 4.15 0.160 0.055 

3,2 3.79 0.036 0.025 

3,4 6.63 0.038 0.016 

3,5 7.97 0.031 0.010 

Static 0.910 0.497 
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it= 5. 0 

Poisson's Mode 
Dim. Freq. Dim. Force Dim. Mom. 

Ratio Type,Order n F I Hz M /yH3 
n,m n,m y n,m 

0.2 1 '1 1. 1 79 0.504 0.309 

3,2 2.13 0.142 0.088 

5,2 3.24 0.056 0.036 

7,2 4.22 0.018 0.012 

Static 0,854 0,502 

0.3 1 ' 1 1. 211 0.535 0.328 

1,3 3. 11 0.019 0.002 

3,2 2.28 0.147 0.089 

5,2 3.44 0.049 0.031 

7,4 5.72 0.022 0.010 

Static 0.918 0.529 

0,4 1 ' 1 1. 241 0.543 0.337 

1,3 3.22 0.061 0,018 

3,2 2.63 0.105 0.062 

3,3 4.21 0.033 0.010 

5,4 5.62 0,033 0.014 

Static 0.996 0.560 

0,45 1, 1 1. 255 0,541 0,341 

1,2 2.75 -0.041 -0,018 

1,3 3.73 0.146 0,051 

3,2 2.88 0,065 0,039 

3,4 5.38 0.057 0.023 

Static 1,048 0.581 
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Poisson's Mode Dim. Freq. Dim. Force Dim. Mom. 

Ratio Type,Order n F I Hz M I H3 
n,m n,m Y n,m y 

0.2 1'1 1. 048 0.320 0.196 

3,1 1.368 o. 185 0.113 

5,2 1. 874 0.087 0.054 

7,2 2.41 0.056 0.035 

Static 0.867 o. 509 

0.3 1, 1 1. 057 0.357 0.218 

3, 1 1.429 o. 184 0.114 

5,2 2.01 0.092 0.055 

7,2 2.58 0.055 0.034 

9,2 3. 16 0.032 0.020 

Static 0.939 0.541 

0.4 1' 1 1. 067 0.391 0.241 

1'3 3.07 0.038 o. 011 

3,1 1.469 0.167 0.011 

5,1 1. 852 0.030 0.021 

5,2 2.41 0.055 0,031 

7,2 2. 90 0.041 0.025 

Static 1. 029 0.580 

0.45 1 ' 1 1.072 0.408 0.253 

1,2 2.90 -0.063 -0.026 

1,3 3.46 0.115 0.041 

3,1 1.485 0.159 o. 103 

3,3 4.04 0.053 0.018 

5,1 1. 867 o. 037 0.026 

5,2 2.71 o. 032 0.018 

Static 1. 085 0.603 
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L 
H = 20. 0 

Poisson's Mode Dim. Freq. Dim. Force Dim. Mom. 

Ratio Type,Order n F I Hz M I H3 
n,m n,m Y n,m y 

0.3 1'1 1. 014 0.194 0.119 

3,1 1.124 0.157 0.096 

5,1 1. 314 0.112 0.069 

7,1 1. 551 0.074 0.046 

9,2 1. 896 o. 037 0.022 

11,2 2. 141 0.042 0.025 

0,4 1 '1 1. 017 0.218 0.134 

1'3 3.02 0.021 0.006 

3,1 1.144 0 .166 0.103 

5,1 1. 352 0.108 0.068 

7,1 1.243 0.062 0.040 

9,1 1. 784 0,027 0.019 

9,2 2.34 0.024 0.013 

11 '2 2.51 0.028 0.016 

13,2 2.76 0.023 0.014 

0.45 1,1 1. 018 0.231 o. 143 

1'2 2.97 -0.053 -0.021 

1,3 3.36 0.078 0.028 

3,1 1.153 0.170 0.106 

3,3 3.59 0,045 0.016 

5,1 1. 368 0.105 0.067 

5,3 3.88 0.031 o. 011 

7,1 1. 60 0.059 0.039 

7,3 4.20 0.023 0.008 

9,1 1.794 0.029 0.020 

11,2 2.79 0.017 0.015 
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APPENDIX VII 

CANTILEVER WALLS: STATIC PRESSURE DISTRIBUTIONS 

The finite element method was used to compute the pressure 

distributions on a slender rigidly-founded vertical cantilever wall for 

static body force loading and elastic behavior. Details of the prob-

lem investigated are shown in Fig. A. 5. Because of the relatively 

slender dimensions of the wall its flexural deformational behavior 

predominates. The QM5 quadrilateral element described in 

Appendix II was adopted for this investigation. A mesh similar in 

detail to that shown in Fig. 2. 7 was used to model the soil and the 

wall was modelled with the mesh shown in Fig. A. 5. Pressure 

distributions were computed for a one-g vertical body force using a 

smooth wall contact and for a one-g horizontal body force using both 

smooth and bonded wall contacts. Solutions were obtained for a 

range of relative wall to soil stiffnesses. Poisson's ratio was taken 

as 0. 3 for both the wall and the soil in all solutions. Plots of the 

dimensionless wall pressures and displacements are shown in 

Figs. A.6, A.7 and A.8. The symbols used in these figures are 

defined as follows: 

E H3 
s S = ET = soil-wall stiffness ratio 
WW 

E = Young's modulus for soil s 

E = Young's modulus for wall 
w 
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I = second moment of area of the wall section 
w 

for unit length of wall 

y = unit weight of soil 
s 

u = wall displacement in x-direction w 

As the wall stiffness is decreased tension develops at the top 

of the wall and progresses downwards. In most practical cases no 

appreciable tensile stress will develop between the wall and soil and 

so in the region of the tensile pressures the wall will separate from 

the soil. The solutions given are not exact for cases when wall 

separation occurs. These cases can be analyzed by using an itera-

tive or nonlinear finite element approach. The possibility that 

appreciable yielding will develop in the soil as the wall stiffness is 

decreased imposes a further restriction on the applicability of the 

elastic solutions. The solutions shown can be used directly for 

relatively stiff walls and also provide useful information concerning 

the applicability of linear elastic solutions for more flexible walls. 

The solutions for the smooth horizontally loaded walls were 

checked using a finite element technique in which the wall was 

modelled with a single flexural beam element. The contact 

between the soil and wall for this case was approximated by 

assuming smooth "point" contacts at each of the nodes on the 

interface. The stiffness of the wall element was computed using 

the conventional Euler beam equations (Shearing deformation was 

not considered.) Good agreement was found between the solutions 

obtained by both methods. 
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APPENDIX VIII 

RESPONSE SPECTRA 

Reproductions from Reference (15) of Housner's smoothed 

average velocity and acceleration spectra are shown in Fig. A. 9 and 

A. 1 O. These spectra were computed by taking the average of the 

values obtained from both components of the four strong-motion 

accelerograms: El Centro, Calif. , Dec. 30, 1934; El Centro, 

Calif., May 18, 1940; Olympia, Wash., Apr. 13, 1949; and Taft, 

Calif., July 21, 1952. The average values were smoothed and 

scaled so that the velocity spectrum was equivalent to the average 

spectrum obtained from the two components of the El Centro 1940 

record. The zero period acceleration spectrum value was taken 

as the maximum value of the ground acceleration in the El Centro, 

1940 records and not the average of the maximum values. The 

smoothed average spectra are suitable for design applications 

within moderate distances of the epicenters of large earthquakes. 
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