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ABSTRACT 

The results of several numerical simulations of QCD by Monte Carlo lattice gauge 

theory are presented. Studying the mesonic potential on a 204 lattice, we conclude that 

asymptotic scaling does not hold over the range 6.1 ~ f3 ~ 6. 7, although we are not able to 

quantify the discrepencies. The effect of discrete rotational symmetry on physical param

eters is examined and seems to modify the string tension by 15 % at f3 = 6.1, while at 

f3 = 6.3 the change was less than 1 %. The potential between three charges is studied and 

yields a string tension of .18 Ge V2, consistent with mesonic calculations and relativised 

potential models. Contributions to the potential from low-energy string vibrations appear 

small in the range x .:S .5 fm. We perform energy density measurements in the colour fields 

surrounding both mesons and baryons, which provide strong evidence in favour of the 

dual superconductor picture of confinement. It is also suggested that the confining strings 

in the baryon meet at a central point rather than joining the quarks pairwise. 

Several algorithms are explored in an attempt to develop simulation methods which 

are able to directly account for the currents generated by colour sources. The extension of 

the Langevin equation to complex degrees of freedom is derived leading to a Fokker

Planck equation for a complex 'Probability distribution'. Using this technique we are then 

able to calculate energy densities in U( 1) gauge theory at-large charge separations. The 

extension of the method to non-Abelian theories comes up against an unresolved problem 

in segregation for certain types of observable. 
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We discuss methods for the simulation of full QCD, including the effects of dynami

cal fermions. The Langevin approach is analysed in detail, and the systematic error associ

ated with the discretisation of the equations of motion is derived. We propose a mixed 

Langevin/Metropolis algorithm and explore its properties on a small lattice. Finally, the 

method is tested on the finite temperature deconfinement transition and applied to the 

mesonic potential. It is found that shielding effects lead to deconfinement at /3 = 6.1 on a 

lattice of size 122 x 162• 
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CHAPTER 1 

Introductory Remarks 

The world in which we live seems to be dominated by the gauge principle. Each of 

the four fundamental interactions, strong, weak, electromagnetic and gravitational forces, 

seems to be well described by a theory with a local gauge symmetry and obviously the 

study and understanding of such theories is of vital importance. Despite the unifying con

cept upon which all of these theories are built, however, the extent to which we can be 

said to have 'solved' their problems varies markedly. For example, the weak coupling of 

the electron and photon allows perturbative calculations in quantum electrodynamics 

whose successes are quite spectacular [e.g., l]. Similarly, the prediction of the existence of 

the intermediate weak vector bosons from the unified the01:y of the weak and electromag

netic interactions [2] and their subsequent discovery [3] is well known. In contrast, the 

properties of the strong interactions are much less well understood theoretically and few 

quantitative predictions have been made. 
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Quantum Chromodynamics (QCD) is the theory most often associated with the 

strong interactions. It describes the interaction of massive spin * particles known as 

quarks and massless vector quanta known as gluons in a manner exactly analogous to that 

between electrons and photons. However, perturbative calculations in QCD are hampered 

by the fact that the quark-gluon coupling is not small except at very high energies, a pro

perty known as 'asymptotic freedom' [4]. Non-perturbative techniques do exist, such as 

the large N expansion [5], mean field methods [6] and instanton calculations [7] which 

have led to qualitative understanding of certain aspects of the theory, but it seems that our 

best chance of directly extracting quantitative predictions which can be compared with 

experiment is by numerical simulation. 

One approach which has attracted much attention is the method of Wilson [8]. By 

constructing the theory on a discrete space-time lattice it was hoped to render QCD tract

able to calculational methods in which the various approximations could be monitored and 

controlled, and which would yield results appropriate to both the high- and low-energy 

regimes. At large distance scales, for example, the latticised theory allows a particularly 

elegant perturbative expansion in inverse powers of the coupling strength and such calcu

lations predict confinement. At smaller distance scales the major computational tool has 

been numerical investigation via Monte Carlo. Early results in the field showed that 

approximate quantitative results could indeed be obtained, albeit with the expenditure of 

great computational effort, which were not inconsistent with the data to be found in the 

particle tables. 

This work investigates further the features of QCD as revealed in Monte Carlo cal

culations and develops techniques which may be of use in the next generation of numeri

cal simulations. 

In Chapter 2 are discussed, mainly for notational purposes, the conventional con

cepts upon which numerical lattice calculations are typically based. Chapter 3 then utilises 
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these methods in an extensive study of the properties of systems containing heavy quarks. 

Among the questions to be addressed are the degree to which Monte Carlo simulations are 

able to extract quantitative information and to what extent the lattice itself distorts the 

calculated parameters. Of more physical interest is the examination of the origin of the 

short and long range interquark forces, particular attention being paid to the question of 

the mechanism responsible for confinement. This chapter concludes with a discussion of 

the contact areas between experimental, phenomenological and numerical work. Chapter 4 

presents a new and novel algorithm for determining path integrals. While derived in the 

context of enhancing signal/noise ratios in the calculation of exponentially small lattice 

correlation functions it is believed to be applicable to other physical domains. Chapter 5 is 

devoted to the long standing problems posed by the study of systems including light, 

dynamical fermions. An approximate algorithm is introduced and some of its systematic 

errors calculated explicitly. After demonstrating its effectiveness on a problem whose solu

tion is well known we study the interquark potential. Finally, in Chapter 6, are discussed 

our conclusions and also the next generation of lattice calculations as prompted by this 

work. Some effort is made to assess the required computational resources. 
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CHAPTER 2 

Fundamentals of Lattice Gauge Theory 

2.1 - Yang-Mills Theory on the Lattice 

In this section the construction and properties of a gauge theory on the lattice will be 

considered. Since the aim here is to merely introduce the principles and notation, our dis

cussion will be brief and will centre on the pure Yang-Mills theory [9]. Excellent reviews 

of the subject are available in the literature [10,11]. 

The lattice itself is merely a construction which allows us to make sense of the path 

integral formulation of the theory. We start with a regular four-dimensional hypercubic 

mesh and associate gauge degrees of freedom with each link by the prescription 

(2.1) 

where g is the coupling constant, A;: (x) are the gauge fields and P•a ; a = 1, · · · , N 2
- l} 

are the generators of SU(N). The index µ denotes a direction in four-dimensional 

Euclidean space. From the properties of the exponential map it is trivial to see that the U 

matrices so defined are elements of SU(N). They represent the colour rotation involved in 

the transport between adjacent lattice sites denoted by x and x + µ and in order for the 

return path to leave physical quantities unchanged it is natural to impose the constraint 

that 
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U = u-1 z+a.-µ :i;, µ (2.2) 

In order to see the effect of a local gauge transformation, G (x ), on the theory 

defined in this way it is instructive to consider the continuum case where, for compact-

ness, we define A,,. = :E g A;: Aa 
a 

A,,.(x)-+ A,,.'(x) = -ii:/..G(x) G-1(x) + G(x) A,,.(x) G-1(x) (2.3) 

To discretise this expression expand the exponential factor in Eq. (2.1) assuming that the 

lattice spacing is small 

1 + iA,_.dx,,. -+ (2.4) 

~ G(x + dx) (1 + iA,_.dx,,.) G-1(x) 

i.e., a link variable transforms bilinearly 

U.,,,,. -+ G(x+µ) U.,,,,. G-1(x) (2.5) 

Next consider the transformation properties of a product of consecutive links taken 

along a path, C, of M lattice sites, {x 1,x 2, • • • ,xM} 

(2.6) 
"'i EC "'i EC 

where the gauge transformations at the intermediate points, {x; ; 1 < i <M}, have can-

celled in pairs as a consequence of the bilinear nature of the transformation. 
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We can thus define the quantity 

W(C) = tr IT Uz
1
,,.. (2.7) 

Zj E c 

which is seen to be invariant under gauge transformations as long as the loop C is closed. 

This is an extremely important feature of the lattice scheme since the invariance of physi-

cal quantities under local gauge transformations is a fundamental property of gauge 

theories. 

Having thus discretised space-time and introduced the link variables Uz,,.. we define 

the lattice gauge theory by a partition function 

Z = J IT [dU,] e-flS(U) (2.8) 
linlc1 I 

where S(U) is the gauge invariant action for the fields Uz , ,.. and f3 is the analogue of the 

inverse temperature. The particular action which we will use almost exclusively in this 

work is the 'Wilson Action', which takes the form 

S(U) (2.9) 

where UP denotes the ordered product of links around an elementary square (Plaquette) of 

the lattice (Fig. 1) 

(2.10) 

This action has the virtue that if one identifies f3 = 2N and expands in powers of 
g2 

the lattice spacing, denoted hereafter by a , then 

(2.11) 
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and 

(2.12) 

with f atrt the structure constants of SU(N). Thus the lattice formalism, in the limit of small 

lattice spacing, reproduces the continuum path integral of the Yang-Mills theory in 

Euclidean space. That this is true should, however, come as little surprise since the origi

nal derivation of the path integral formalism was based on a discretisation of space-time 

[12). The only really new feature is the clever choice of variables which resulted in our 

being able to exhibit local gauge invariance in such a neat manner. 

Having said that the limit a -+ 0 reproduces the required path integral, however, 

raises an important question. How exactly is the continuum limit to be realised and what 

are the systematic effects of a finite lattice spacing ? 

Particularly obvious is the fact that the continuous translational and rotational sym

metries of the continuum have been replaced by the discrete symmetries of the lattice. 

However, one might hope that if l/a is significantly smaller than all momenta involved in 

a given process, then the distortions due to the lattice will be small. In a section 3.3 we 

will in fact attempt to quantify one such effect, namely that due to the discrete rotational 

symmetry. 

At the opposite extreme one can ask whether there are effects due to the finite lat

tice volume. In particular the cost of computer simulations typically increases as some 

power of the number of degrees of freedom modelled rather than any bulk physical scale 

and this often imposes an upper limit on the number of lattice sites which can be studied. 

Thus, by reducing the lattice spacing we are typically forced to consider a smaller physical 

volume. At some point, for example when the total lattice diameter is only a small fraction 

of the proton radius, we will lose contact with reality and the physical quantities extracted 

will become meaningless. 



- 8 -

In order to obtain an idea of the lattice sizes required we note that all physical quan-

tities with dimensions of mass must be expressible in units of 1 /a. Furthermore two loop 

perturbation theory for SU(N) Yang-Mills theories yields the result that a is related to the 

coupling, g, via [ 13] 

a = (g210 )'711(
2

"16) exp (-1/(21~2)) 
AL 

(2.13) 

where 

llN 34N2 
lo = 11 

48~ 768'11'"4 
(2.14) 

In these expressions AL is a constant which can be related to AMS in perturbation 

theory [14]. To the extent that perturbation theory holds in the regime where lattice calcu-

lations are executed we can thus calculate the lattice spacing directly from a knowledge of 

AMS. We shall return to this approach later when we attempt to compare lattice results 

with experimental data. 

In connection with the realisation of the continuum limit it is important to note that 

Eq. (2.9) is not the only lattice action which has the property, Eq. (2.11), of yielding the 

Yang-Mills theory in the limit a --+ 0. A possibility which has provoked considerable 

research is to add to Eq. (2.9) terms containing higher representations of SU(N) than the 

fundamental, each with its own coupling, {3,. The Symanzik improvement scheme [15] then 

consists of selecting these couplings so as to remove high-order dependencies on the lat-

tice spacing. (For example, the mixed fundamental-adjoint action with f3F / f3A = -6 

removes the term of order a 8 from the expansion of the expression analogous to Eq. (2.9).) 

The hope is that by doing so the approach of the continuum limit is accelerated. 

An even more advanced scheme, that of the Monte Carlo Renormalisation Group 

[16], is to attempt to calculate the trajectory in coupling space {{3,} along which the 
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continuum limit is approached most quickly. In this approach one chooses an initial set of 

couplings, {3~0l, for a lattice of spacing /(o) and then, by local averaging over the degrees of 

freedom, constructs a new lattice with spacing /(1) > /(o) on which the same physics can be 

measured, albeit at new couplings /3~ 1l. Proceeding in this way one hopes to find a limiting 

set of couplings at which one measures continuum physics on a coarse lattice. 

These studies will probably be of crucial importance in developing good numerical 

approximations to QCD but since neither has yet yielded conclusive results we will let 

computational simplicity be our guide and henceforth consider only the Wilson form of the 

action, Eq. (2.9). 

2.2 - Computational Lattice Gauge Theory 

The lattice version of the partition function, Eq. (2.8), can readily be seen to 

correspond to a statistical mechanics problem in four dimensions. As such there are sim

ple diagrammatic methods which allow a consistent expansion to be made in the f3 - 0 

limit. This has been thoroughly explored to high orders [ 17] and predicts that quarks are 

permanently confined into hadrons by a potential which increases linearly with separation. 

Unfortunately this limit is far from the continuum which, as can be seen from Eq. (2.13) 

corresponds to the opposite f3 - oo limit. 

In this large f3 limit weak coupling perturbation theory may be valid since the cou

pling strength a.8 = g 2 / 41f decreases at high energies. However it is an experimentally 

observed fact that a.8 = 0(1) at hadronic energies [18,19] rendering conclusions drawn 

from perturbation theory somewhat questionable. As a last resort then, we turn to numeri

cal simulations. 
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Initially the prospects for even this solution do not look bright. Examination of Eq. 

(2.8) shows that for a lattice with 204 sites the partition function involves integration over 

approximately 5x 106 coupled degrees of freedom. Obviously such a task is beyond even 

the fastest of supercomputers. However, alternative Monte Carlo techniques are available 

which make the problem tractable although the demands made upon computational 

resources, both memory and raw CPU power, are still large. 

In this section we will describe some aspects of the implementation of lattice gauge 

theory on the concurrent computer designed and built at Caltech. This work has been 

extensively described elsewhere [20] and so we shall restrict ourselves to a few salient 

points. 

The Caltech/ JPL hypercubes are parallel computers of the MIMD type (Multiple 

Instructions, Multiple Data). This means that they can be thought of as a network of 

independent processors each executing its own programme and possessing its own data. In 

order to communicate with other processors messages must be sent along fixed communi

cation paths which are built into the machine such that the processors are connected with 

the topology of a hypercube in d dimensions. (See Fig. 2). 

The decomposition of the lattice gauge theory problem onto such a computer is par

ticularly simple. One takes a lattice with M x 24 sites and splits it up into sublattices each 

containing M sites, of which one is placed in each processor. Due to the locality of the 

action, Eq. (2.9), it is possible to assign the sublattices so that each processor needs only to 

communicate with others to which it is directly connected in hardware. As a result of this 

fact the characteristic timescale of the communication, tcamm• is minimal and corresponds 

to roughly the time taken to transfer a single SU(N) matrix from one processor to its 

neighbour. Conversely we can characterise the calculational part of the algorithm by a 

timescale, tcalc, which is roughly the time taken to multiply together two SU(N) matrices. 
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Given the nature of the hardware we have 

(2.15) 

and hence the gauge theory simulations are extremely 'efficient', where efficiency is 

defined by the relation 

€ = (2.16) 

and T,. is the time taken for k processors to perform the given calculation. Typically our 

calculations have efficiencies in the range € ~ .90 which means they are ideally suited to 

this type of computation since doubling the number of processors approximately halves 

the total computational time required for solution. 

A further important property of the problem is its homogeneity - no sites in the lat-

tice are distinguished from any other. This results in extremely easy coding of the problem 

- with the insertion of a few well chosen boundary conditions a programme that runs on a 

conventional sequential machine can be parallelised. In order to understand this claim 

better, however, we must first discuss the basic computational technique. 

The measurement of physical quantities on the lattice is typically a two-part pro-

cedure, the generation of lattice configurations and the measurement of lattice operators 

O(U). Since all physical observables correspond to gauge invariant quantities the operator 

0 must be of the type discussed earlier, Eq. (2.7), i.e., the trace of an ordered product of 

lattice links forming a closed path in the lattice. The calculation proceeds, therefore, by 

generating a sequence of field configurations {Ui},{U2}, • • • by some method and then 

measuring the quantity 

( 0) = ~ f O({U.}) 
i=l 

(2.17) 
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which quantity reproduces the required physical measurement in the limit N --+ oo. 

In carrying out this procedure we are considerably aided by the homogeneity of the 

lattice formulation. If the lattice were inhomogeneous the observable 0 might be calcul

able only once per generated configuration {Ud. However in the homogeneous case there 

are many equivalent orientations of 0 which all contain equivalent physics. (For example, 

there are 960,000 different Ix 2 rectangular loops in a 204 lattice). Thus we can obtain a 

huge increase in statistics by measuring all orientations. The exact improvement is obvi

ously somewhat less then the counting factor of 106 since the measurements are extremely 

correlated but remains extremely important. For example, in Chapter 4 we will discuss 

algorithms which spoil the homogeneity of the lattice and in most cases the associated 

drop in statistics is crucial in determining their success or failure. 

Having thus said that we wish to calculate all possible orientations of observables 0 

on the lattice, one is left with another tricky problem in the organisation of such a task. 

This would be hard enough in three dimensions but with the fourth dimension making 

ones intuition somewhat less reliable and with the extra complication of the boundaries 

between the processors it becomes particularly difficult. However, an elegant and simple 

solution to this problem is available [21 ]. 

Take, for example, the measurement of a rectangular Wilson loop with extents 2 and 

3 units in orthogonal lattice directions. This loop is shown in a uniprocessor environment 

in Fig. 3. Note that we assume periodic boundary conditions so that the loop is allowed to 

wrap around the edge of the lattice. A particularly simple explanation of the adopted algo

rithm is to introduce some fictitious creature, 'Fred, the mathematical fly' who will per

form the operations leading to the required result. We start off by placing Fred at point A 

in the lattice, carrying an identity matrix. We then issue simple instructions such as 'Move 

in the positive x-direction' or 'Move in the negative z-direction'. On each command Fred 

flies to the appropriate lattice site picking up the matrix over which he flies and 
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multiplying it into his current product. Obviously we have to build in the boundary condi

tions by having Fred fly, for example, from B to C upon encountering a boundary, but this 

is essentially trivial. Finally when Fred reaches point A again, his accumulated product is 

the required matrix. 

The extension of this algorithm to a parallel environment is also easy. As emphasised 

before, the homogeneity of the lattice allows all processors to carry out the same calcula

tion on their own private data. Thus one simultaneously calculates the equivalent loop in 

all processors as shown in Fig. 4. In order to achieve this we merely have to modify Fred's 

behaviour upon reaching a sublattice boundary such as point B. Whereas in the sequential 

case we would have Fred fly to point C' and continue, we now have him fly into the com

munication channel connecting the processors, emerging at point C. The process then car

ries on as before with Fred in a different processor. Finally, since all paths must be closed, 

Fred will return to his starting point in his own processor carrying the desired result. 

While the above example might seem rather 'silly' it does serve to show how simply 

one can modify sequential code in order to take advantage of the parallel machine. It also 

shows how the lattice gauge simulations are more or less ideally suited to these machines. 

(Indeed, in some sense they may be said to have promoted their development.) However, 

various technical difficulties remain. As new algorithms are developed care must be taken 

that they do not conceal features which reduce the 'efficiency' of the computation. It 

would be disastrous, for example, to build a machine with ten times the number of proces

sors and then find that a speed-up of only two were possible. Also attention must be paid 

to the locality and homogeneity of the algorithms. As stated above the lattice theory 

described here is almost ideal for our machines although we shall discuss a minor source 

of inefficiency in Section 3.1 and Appendix A. 
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2.3 - Generation of Lattice Configurations 

In this section will be discussed the methods used to generate configurations of link 

variables. This is one of the more complicated questions in lattice gauge theory and in 

keeping with the introductory nature of this chapter we will merely explain the principle 

of each of the more popular methods leaving the details for later chapters. 

2.3.1 The Monte Carlo Method and Markov Chains 

This particular approach to lattice QCD was the first used and is inspired by the 

observation that physical quantities, measured in terms of a lattice observable, 0, require 

the evaluations of integrals of the form 

(0) = 
f[dU] O(U) e-PS(U) 

f[dU] e-f3S(U) 
(2.18) 

For the Wilson action, Eq. (2.9), S(U) ~ 0 for all possible gauge configurations and 

hence e-f3S(U) can be treated as a probability density. Then Eq. (2.18) takes the simple 

form of the normalised expectation value of O(U) in a set of gauge fields with the 

Boltzmann distribution e-Ps(u). It can thus be calculated by constructing a set of appropri-

ately distributed gauge configurations {U i},{U 2},{U 3 }, • • • and evaluating the quantity 

(0) lim 
N-oo 

l N 
N ~ O((U;}) 

i=l 

(2.19) 

which is exactly of the form Eq. (2.1 7). 

The non-trivial task at hand is the construction of the sequence of gauge configura-

tions. To do this we appeal to the Markov chain procedure [22]. 

Given a configuration {U;} we generate another, {U;} with probability W;;- Following 

this procedure guarantees that the asymptotic distribution of the configurations will be the 
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correct Boltzmann as long as the transition probabilities satisfy the condition of 'Detailed 

Balance' 

e-PS(Uj} 

e-PS(Ui) 
(2.20) 

Less formally stated this condition simply requires that in equilibrium the rate of transi-

ti on from { Ui} --+ { UiJ is equal to that from { UiJ --+ { Ui }. 

Two simple methods of satisfying this constraint are commonly used. In the Metrop-

olis method [23] a 'trial move' is made from the current configuration {U} to a new one 

{U'}. One then calculates the quantity 

tl.S = S({U'}) - S({U}) (2.21) 

and allows the move to stand if tl.S < 0. If this is not the case the move is rejected with 

probability 

(2.22) 

It is simple to show that this strategy indeed fulfills the detailed balance condition. 

Its weakness, however, lies in the fact that if {U} and {U'} are totally uncorrelated then the 

probability of rejecting {U'} becomes large and as a result the fields evolve slowly. The 

common way of avoiding this problem is to chose {U'} = (U + tl.U} with tl.U small in 

some appropriate sense. Unfortunately this results in field configurations which are 

strongly correlated. 

The second method of satisfying detailed balance is the heat bath in which one 

choses the new configuration {U'} with probability ePS(U'>independent of the old confi-

guration {U}. Using this method, which trivially satisfies the detailed balance requirement, 

successive configurations are completely independent and the simulation can explore its 
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phase space considerably faster than in the Metropolis method. The difficulty with this 

method is that it is typically very hard to invert the density function e-f3s(u) and in fact 

the only genuine heat bath in use in lattice gauge theory is for the gauge group SU(2). We 

will return to this in more detail when we discuss the 'pseudo' heat bath in Section 3.1. 

2.3.2 - The Langevin Algorithm 

The Langevin equation was first studied in the context of Brownian motion [24,25] 

and its range of application is extremely wide, from the abstract study of diffusive 

processes on arbitrary manifolds to the study of emissions from lasers [26]. Since we will 

be discussing this algorithm in great detail in Chapter 4 we merely exhibit at this point the 

relationship between the simple Langevin equation and the condition of detailed balance 

stated in the last section. 

The Langevin equation for a field q, described by an action S ( q,) is given by 

as 
aq, + ,, (2.23) 

where ,, is a Gaussian fluctuation normalised by the condition 

((rJ(t) rJ(l '))) = o(t-t ') (2.24) 

in which the angle brackets denote averages over the fluctuations. In order to best show 

the above mentioned relationship we discretise time r in Eq. (2.23) leading to 

t/i(r + or) = t/i(r) - OT as + ~ w 
aq, 

where w is now a Gaussian random number with zero mean and unit width. 

Using the fact that w has the distribution function 

P(w) dw 

(2.25) 

(2.26) 



- 17 -

it is easy to show that the probability of transition </>(r) --+ <f>(r'), P.,_,.. satisfies (with 

or= r' - r) 

(2.27) 

Detailed balance is indeed satisfied to first order in ./Sr and hence the sequence 

</>(r), </>(r+or),</> (r+2or), · · · is Markovian and the conclusions of the previous section apply. 

We finally note in this respect that the condition of detailed balance is sufficient but 

not necessary for the asymptotic fields to have the correct Boltzmann distribution. In fact 

the Langevin equation discussed here describes a process which, in general, does not 

satisfy this condition but which still generates the correctly weighted ensemble averages in 

the limit T --+ oo. 

2.3.3 - The Micro-Canonical Method. 

The above methods are distinguished by the fact that they operate in the classical 

canonical ensemble of statistical mechanics, i.e., we calculate directly the path integral 

with Boltzmann factor e-fJS(U). In considering the microcanonical approach [27] we intro-

duce a fictitious time, r, as in the Langevin procedure, and a Hamiltonian, H, defined by 

H p 2 + S(U) p - ar 
au (2.28) 

If we were to use this definition of H and evaluate the partition function over the 

phase space [ dp dU] with weighting e-PH we would simply recover Eq. (2.8) since the 

integral over p is quadratic. This is again the conventional canonical ensemble. To pass to 

the microcanonical formalism one fixes the total energy of the system to be a constant, E, 

and integrates instead over the phase space [dpdU] o(H-E). It is easy to show that long 

time averages 
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T 

< 0) = T I 0 O(t) dt (2.29) 

evaluated in the canonical and microcanonical ensembles differ only by corrections of 

order 1 /V, where V is the lattice volume [28]. 

The advantage of the microcanonical approach is that the system is conservative and 

hence Hamilton's equations can be solved 

p = aH 
au u = 

ap 
aH (2.30) 

to study the dynamical behaviour. Being fully deterministic these equations are more 

easily solved numerically than the equivalent Langevin equations. 

Unfortunately, as it stands this scenario has two disadvantages. Firstly the tempera-

ture f3 is only determined empirically by appealing to the equipartition theorem. Recent 

research has provided a possible resolution to this problem by introducing additional 

degrees of freedom which act as a heat sink and thus allow the temperature to be exter-

nally adjusted [29]. 

The second problem is as yet unresolved and is rather more serious. The expression 

for the long-term average given in Eq. (2.29) relies upon the assumption of ergodicity, i.e., 

that the system in time explores its entire phase space. Unfortunately, given the deter-

ministic nature of the microcanonical equations this can no longer be guaranteed and 

hence one must be slightly wary of these simulations. A recent development is the 'hybrid' 

scheme [30] which is a cross between the Langevin and microcanonical approaches and is 

explicitly ergodic. 

Briefly then, these are the approaches most often used in lattice gauge theory simula-

tions. Each has advantages and disadvantages and is most appropriate for a particular kind 

of problem. All however suffer from a particular weakness of the Monte Carlo method 
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first noticed by Binder [31]. In the vicinity of phase transitions the dynamics of the Monte 

Carlo process itself become very slow, independent of the particular method being used, a 

process known as 'critical slowing down'. Its relevance to QCD can most easily be seen by 

considering some physical quantity such as the pion mass, m,.. In our simulations such 

physical quantities are typically extracted from two point functions of some operator, 0, 

as 

(0 IO(T) O(T+oT) IO) ~ em,,liT (2.31) 

Given the fact that T = ta in terms of the lattice spacing, it is clear that the dimen

sionless quantity ma plays a role similar to the inverse correlation length, e-1, of the 

equivalent statistical system. However, we know that the continuum limit is a -+ 0 and 

that the pion mass, m" = 140 MeV, is in fact finite. Thus we must conclude that in the 

continuum limit e -+ oo, i.e., we are at a phase transition of the statistical system and the 

problem of 'critical slowing' is very real. An interesting scheme which has some chance of 

reducing this problem will be discussed in Section 5.0. 

This chapter has attempted to provide a fairly swift introduction to the methodology 

of lattice gauge theory. As the field is still developing, with new techniques to combat 

problems of one kind or another, it is quite difficult to present 'best' algorithms or results. 

In the following chapters, therefore, we concentrate on specific details and results which 

seem interesting. Some of the work presented here is thus of an exploratory nature rather 

than being definitive, the exception to this being the next chapter where we present a set 

of state-of-the-art calculations into the properties of heavy quarks. 
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CHAPTER 3 

Heavy Quarks in the Quenched Approximation 

Quantum Chromodynamics (QCD) is the gauge theory that is applied to the study of 

the strong interactions. Its fundamental constituents, at the most elementary level, are an 

exact SU(3) colour symmetry and a badly broken SU(6) flavour symmetry from which it is 

hoped that the properties of the physical world will emerge. Although the theory is, for the 

most part, analytically intractable it has already met with considerable success in various 

approximations. At high energies, for example, the property of asymptotic freedom [4] 

reduces the quark-gluon coupling to a value where perturbation theory should hold and in 

this case the three colours of quarks neatly explain the rate for the decay ?r
0 --+ 21 [32]. 

Furthermore, the charges and masses of the quarks in the broken flavour symmetry 

account for the regular structure seen in the ratio of total cross sections [33] 

R 
u (e+e- --+ hadrons) 

u (e+e- --+ µ+µ-l 
(3.1) 
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At the opposite extreme, strong coupling expansions in lattice gauge theory [17] predict 

that quarks are permanently confined into hadrons by a potential which increases linearly 

with the interquark separation. 

In this chapter we attempt to extract some of the properties of QCD at intermediate 

couplings. Important questions to be addressed involve the existence of a confining inter

quark potential in mesons and baryons, and the mechanism generating such a potential. 

Also to be discussed is the origin of the Coulombic force between quarks and the detailed 

structure of the baryon. From the standpoint of the lattice method itself we examine the 

question of the continuum limit and the restoration of continuous rotational symmetry at 

finite lattice spacings. 

In order to perform these calculations we make two initial restrictions. Firstly, atten

tion is restricted to heavy quark systems in non-relativistic motion. Since the vast majority 

of known hadrons are made of light quarks (u, d, s) this might at first sight seem to be a 

significant error. However, the discovery in 1974, of the JN [34] and later of the T [35] 

provided a perfect setting in which to test the predictions of such lattice gauge theory cal

culations. These particles are supposedly bound states of very heavy charmed and bottom 

quarks, systems entirely analogous to positronium and the hydrogen atom. It is thus rea

sonable to assume that they may be modeled by a simple non-relativistic potential. Typi

cally in such calculations a functional form is assumed for the potential and then parame

ters are adjusted to fit experimental data. In this chapter, however, we will be able to cal

culate directly from the Lagrangian some of the properties of such models. The lattice 

forms a natural environment in which to perform an expansion in inverse powers of m, 

the heavy quark mass [36], and we concentrate mainly on the leading (spin independent) 

term. Higher order corrections yielding spin-orbit and spin-spin effects have also been 

attempted and are discussed in Section 3.6. 
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The second major departure from the full theory of QCD lies in the adoption of the 

quenched approximation. In order to more fully understand this simplification we intro-

duce the QCD Lagrangian density 

NI 
L F ,,.,F",..,, + E ,P; (If' + m;) t/J; (3.2) 

i=l 

where F,..,, is the gauge field energy density introduced in the previous chapter and N1 is 

the number of flavours of quarks, with masses m;, which are described by four component 

Dirac spinors ,P;. fJ is the covariant derivative and so depends directly on the gauge fields 

themselves. 

Now consider some physical quantity described by a lattice operator 0 and thus 

measured by 

(0) = 
J [dUJ [d,P] [def;] O(U) ef-fJF,J,,..+~(Il+m)t/J 

J [dUJ [d,P] [def;] ef -fJF ,..J',,.. + ~ (B + m)"' 

(3.3) 

Since the integration over the (Grassman) variables ,µ,ef; is Gaussian it can be calculated 

exactly yielding 

(0) = 
f[dUJ Det (If'+ m) O(U) e-~ f F ,..J',,.. 

f[dUJ Det (If' + m) e -~ f F ,..J',,.. 
(3.4) 

The "quenched" approximation is then to take the determinant in Eq. (3.4) as a constant 

dividing out of numerator and denominator and leaving the path integral of the pure 

Yang-Mills theory discussed previously, Eq. (2.8). 

The numerical motivation for such a procedure is very strong. The determinant 

represents an extremely complicated function of the gauge fields and renders simulations 

at least an order of magnitude more difficult. Its inclusion in a dynamical way is an area of 
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active research about which we will have more to say in Chapter 5. Attempts to include 

the effects of the determinant by redefining the operator O(U) are also possible but typi

cally unsuccessful. (See Chapter 4.) 

Fortunately, our neglect of the determinant in Eq. (3.4) can also be justified on phy

sical grounds. The particular effect of including this term is to generate vacuum polarisa

tion - i.e., internal light quark loops. Our neglect of these effects can be seen to be ade

quate by considering the huge success of the static quark picture of hadrons. In this model 

hadrons are composed of two (mesons) or three (baryons) 'valence' quarks and an 

undetermined number of pairs of light 'sea' quarks. Nearly all of the properties of the 

hadrons are then explainable in terms of the interactions of the 'valence' quarks. For 

example, while it is true that QCD explains very accurately the deviations from scaling in 

deep inelastic scattering experiments, a phenomenon associated with the 'sea' quarks, it is 

also true that over a vast energy range (roughly 2 Ge V2 < q2 < 200 Ge V2) the scaling 

functions behave as though only the 'valence' quarks were present. 

A second motivation comes from consideration of the string models of hadrons [37] 

wherein quarks are bound together by 'flux tubes' of constant tension. This picture leads 

simply to the prediction of linearly rising Regge trajectories with a universal slope for 

both mesons and baryons. The effect of vacuum polarisation would be to enhance the 

string's tendency to break leading to irregularities in the Regge paths. That such effects 

are not observed is evidence in favour of our approximation. 

Finally we consider what effects this assumption might have on the questions that we 

sought to answer concerning the Coulombic and confining parts of the interquark poten

tial. The former is supposedly dominated by single gluon exchange whilst the latter is 

probably the result of multiple gluon exchanges (See Fig. 5) both (presumably) qualita

tively accounted for by the Yang-Mills theory. We might expect that charge renormalisa

tion due to vacuum polarisation might have a quantitative effect on the single gluon 
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exchange and we shall discuss this point more in Section 3.7 when we compare the lattice 

parameters with experimental results. 

Having thus introduced the questions we wish to address and having justified our 

approach we turn to the details of the calculations themselves. The rest of this chapter is 

then arranged as follows. In Section I the specific details of the lattice calculation are 

presented. Then in Sections 2 and 3 properties of mesonic systems are investigated with an 

eye on the scaling behaviour of the quark potential and the restoration of rotational sym-

metry. In Section 4 these calculations are extended to the baryonic sector and a com-

parison of two common string models is undertaken. In Section 5 the energy density in 

both mesonic and hadronic systems is investigated with a view to understanding the 

mechanism which confines the quarks. In Section 6 higher order corrections to the poten-

tial are introduced and in Section 7 the relevance of these calculations is discussed in the 

light of experimental data. 

3.1 The Lattice Calculation 

Most of the calculations in this chapter are made by measuring different observables 

on the same set of lattice configurations, so it makes sense at this point to discuss the 

parameters and methods by which these were generated. 

The particular lattice size chosen is 204 which is the largest which fits within the 

physical memory of our computer. As such it may be considered a large lattice in the 

sense that it contains many lattice sites. The physical size of the space-time volume is, 

however, dependent on the coupling (3 according to some renormalisation function. In 

practice we will assume that the two loop perturbative result holds (c.f. Eq. (2.13)) 

e = ca S7r2§ exp ~ = £_ 
[ ]

- 51/121 [ 7r2 l 
33 33 AL 

(3.5) 
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AL constant. 

although one of our goals is to provide a consistency check on the range of validity of this 

expression. 

Given that we wish to model real physical processes on this lattice, the range of cou

plings at which calculations can be made is restricted. At low coupling the lattice is very 

coarse and continuum symmetries are badly broken. Conversely at high coupling the lat

tice models only a small piece of physical space and large finite size effects are encoun

tered. In particular the system undergoes a phase transition at finite f3 in which quarks 

become deconfined and a quark-gluon plasma results. Given that one of our goals is to 

study the confinement mechanism it is obviously important that one stay below this transi

tion. Previous studies have shown that lattice artifacts begin to disappear at couplings 

f3 ~ 5.7. In particular the discrete rotational symmetry of the lattice becomes less notice

able [38] and approximate scaling of the deconfinement transition [39] set in, although this 

does not satisfy the asymptotic form, Eq. (3.5), until f3 ~ 6.1 [40]. This last criteria is, how

ever, somewhat unreliable since it is extremely difficult to locate the first order phase 

transition especially in the light of earlier comments about the performance of Monte 

Carlo algorithms near phase transitions. (For a discussion of two major efforts in this 

direction see [ 41].) 

In order to avoid the worst of these effects we choose to work at couplings signifi

cantly higher than f3 = 5.7. In order to avoid the deconfinement transition, however, we 

have to extrapolate the data from smaller lattices to our 204 lattice using the perturbative 

scaling function, Eq. (3.5). This leads us to believe that a 'safe' upper coupling limit is 

f3 = 6. 7 and as a result we have chosen to calculate at the -four couplings /3 = 6.1, 6.3, 6.5 

and 6.7. 
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At each coupling we generated lattice configurations by the 'pseudo' heat bath algo

rithm. As mentioned in the previous chapter the only genuine heat bath is for gauge group 

SU(2) but Cabibbo and Marinari [42] devised a scheme by which this algorithm could be 

applied to arbitrary SU(N), N 2: 2. Briefly the method is as follows. 

Consider M SU(2) subgroups of SU(N) defined by deleting all but two rows and 

columns of the SU(N) matrix. Then consider the update move U -+ U' where 

U' (3.6) 

and the { u,. ; k=l, · · · ,M} are matrices, generated by the SU(2) heat bath which act in 

the relevant subgroup of SU(N) . This algorithm defines a single link 'hit', i.e., the process 

by which each link in a given configuration is updated. The process in which each link in 

the lattice is updated once is termed a 'sweep'. Note that this algorithm is not a true heat 

bath since the new matrix U' does in fact depend on the old value U. It does, however, 

have a significantly smaller sweep to sweep correlation than the Metropolis method. As a 

final point in this regard it should be noted that the conventionally applied SU(2) heat 

bath has a weakness when used on massively parallel computers of the type described in 

Section 2.2. This yields some inefficiency and is discussed more fully, together with some 

simple solutions, in Appendix A. 

The lattices used in our calculations were generated from approximately 850 full 

sweeps using the above heat bath with hits in all three SU(2) subgroups. The first 350 

sweeps were discarded for thermalisation purposes. (At each value of /3 we derived the 

new set of lattices from the previous {3-value, except that the lattices with /3 = 6.3 were 

derived from a cold start - i.e., all link matrices equal to the identity). Over the next 500 

sweeps each 25th lattice was saved yielding 20 independent configurations at each value of 

{3. In order to check that equilibrium had indeed been reached at each {3-value we checked 

for a systematic trend in Wilson loop values and found none. 
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In order to reduce statistical errors in the measured observables we also applied the 

variance reduction technique of Parisi et al. [ 43]. Basically this method involves averaging 

the gauge variables over several 'hits' when measuring observables. This has the effect of 

integrating out certain degrees of freedom. For example if we were calculating the trace of 

the path ordered product of links 

(3.7) 

then we would replace some of the links U; by averages obtained over several heat bath 

'hits' at that site with all its neighbouring links held fixed. 

where 

U; = 1 " ~ ij(i) 
k LI J 

i=l 

u,,, (3.8) 

(3.9) 

with the superscript (i) denoting 'hits'. This process might seem strange since the U 

matrices are not even elements of SU(N) but expansion of the sum, Eq. (3.8), yields a set 

of terms each of which corresponds to a configuration which could have been reached 

without violating the detailed balance condition, and thus the algorithm is actually exact. 

Naively one might imagine that the reduction in statistical errors be by a factor of VP 

due to the number of terms in the expanded sum. Unfortunately there are significant 

correlations among the terms but typically one is still able to achieve an improvement by 

an order of magnitude using this technique. 

Note that above we said that only some of the links would be replaced by their aver-

ages. In implementing this technique one has to be careful not to 'bar' links which are cou-

pied directly by the action, S, since to do so would generate terms in the expansion, Eq. 

(3.8) which could not be reached without violating detailed balance. For the Wilson 
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action this means that all the links along the sides of a rectangular loop can be barred 

except those at the corners. If we had chosen to include larger loops than simple plaquettes 

in our action then the application of the Parisi trick would be more complicated. 

3.2 The Mesonic Potential 

As a first calculation on these lattices we looked at the mesonic qq potential. This 

quantity has been extensively studied in the literature, both in strong coupling [17,44] and 

Monte Carlo calculations [ 45], and as such it provides a useful benchmark and testing 

ground. A further possibility is that we might be able to examine the scaling behaviour of 

the theory on a large lattice [ 46]. This is especially important since it has been suggested 

that the scaling limits discussed in the previous chapter might be too low and that asymp-

totic scaling is not realised until fl= 7.2 [47]. 

In order to understand the potential observable consider the following process. At 

T = 0 two quarks are created and instantaneously separated to a distance of R lattice 

spacings. They are then allowed to evolve for a time T, without moving, and then come 

together and annihilate. The world lines of the two quarks are shown in Fig. 6. Note that 

we have to arrange that the quarks are created and destroyed in a gauge invariant manner 

consistent with being colour singlet states. The simplest way to do this is to form the Wil-

son loop operator 

-
W(R ,T) = Re 6i;6pq Uf,, UJq (3.10) 

In this expression the real part is taken because the two quarks can be interchanged lead-

ing to a term the complex conjugate of the original. 
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We can connect this object with the static quark potential by appealing to the Hamil-

tonian form of the theory in which the transition matrix evolving the system from time T 

to T + ST is just 

T = eHoT (3.11) 

Noting that H = p2 /2m + V is the non-relativistic Hamiltonian relevant to heavy 

quarks yields the simple result that 

W(R,T) = e-v(R) T (3.12) 

in the limit m --+ oo. 

We thus see that the potential is measured by calculating the expectation values of 

many Wilson loops and fitting to the functional form, Eq. (3.12). This is to be contrasted 

with the alternative approach in which the world lines of the quarks are taken to be 

Polyakov lines closed by means of the periodic boundary conditions. In this approach one 

obtains only one data value for each value of the temporal lattice size T which leads to 

greater difficulty in assessing statistical errors than the above approach in which these can 

be estimated by assessing the degree to which the data fits Eq. (3.12). 

The restrictions on the loops which can be used in these measurements can be 

deduced by considering the quantity 

(OIW(R,T)IO) = (Ole-v(R)TIO) (3.13) 

= E (Ole-V(R)TlnXn IO) 
n 

where { In) } is a complete set of energy eigenstates. 
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Thus we can see that excited states also enter into the measured quantity but are 

suppressed by at least e-evr where 5V is the energy gap between the ground state and first 

excited state. We thus expect that in the T-+oo limit the Wilson loop measures the static 

potential between a qq pair in their ground state. It is typically observed, however, that in 

lattice calculations the above condition on T can be relaxed to T ;:::: R and this is indeed 

true in our case. 

The adopted procedure then, is to measure expectation values of Wilson loops and 

then extract lattice potentials Vj (R) according to Eq. (3.12). The subscript I here is to 

denote that these potentials are still specific to a certain lattice spacing a. Results of this 

process at each of the four couplings considered are shown in Table 1. 

The next stage is to combine the data from individual ,8-values by rescaling. A con

venient method of performing this calculation is to introduce a lattice correlation length, e, 
defined by Eq. (3.5). In this expression we chose the value c = .011 which has the virtue 

that it leads to a correlation length that takes reasonable values when expressed in terms 

of the string tension K. Now introduce dimensionless potentials V(x) defined by 

ev(R) = V(x)/x where x = R/e (3.14) 

This is the point at which we can test the perturbative scaling relation. If this were 

correct the rescaled data would now lie on a smooth curve when plotted against the scal

ing variable x. Our data yields the curves shown in Fig. 7. The point that has been over

looked is the quark self-energy contribution to the potential. Each lattice potential V, con

tains a lattice spacing dependent additive self-energy contribution which should be sub

tracted out. 

One way of performing such a subtraction is to note that since this effect is constant 

for each lattice spacing it has no effect on the interquark force av /ax. We could thus cal

culate the forces at each ,8-value and integrate back to obtain the potential. This approach 
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was successfully used in a previous calculation [48]. A simpler method, however, is to 

merely manipulate the vertical offsets of the various data-sets until a smooth curve is 

obtained. In order to quantify this 'smoothness', however, we must turn to a phenomeno

logical model of the potential. 

At large distances it is supposed that quarks are confined into hadrons by a linearly 

rising potential. Conversely at short distances the leading contribution is expected to be 

from single gluon exchange. As a result one expects the potential to follow the form 

V(x) = a/x + V0 + Kx (3.15) 

We can thus quantify 'smoothness' by adjusting the subtractions until our potential is 

best fit to this form. This procedure results in the curve shown as Fig. 8. 

At first glance this data looks quite reasonable. The points do in fact lie upon a rela

tively smooth curve. This is not surprising and merely confirms once again the conclusions 

of earlier studies. However closer inspection of the data reveals some interesting points. 

In Table 2 are shown the x2 values for the fits of various combinations of data sets to Eq. 

(3.15). Along the diagonal are the values for individual fits to this form and as can be seen 

the agreement is excellent. However, in the off-diagonal elements are shown the results of 

pairwise fits. These values are rather large considering the numbers of degrees of freedom 

involved and the situation deteriorates dramatically when further f3 values are included. 

The final x2 for all four sets is over 50 - a totally unreasonable value. 

The resolution of this disaster is hinted at by Fig. 9. There we take the data sets and 

show their individual best fits to Eq. (3.l 5). As can be clearly seen each data set shows 

slightly more curvature than would be required to form a smooth curve, the effect becom

ing more pronounced as {3 increases. This, however, is just the effect which might be 

expected as the deconfining transition approaches. The string tension is decreasing, finally 

becoming zero at the transition itself, making the curves roll over faster at large distances. 



- 32 -

This is indicative that the asymptotic scaling assumption, Eq. (3.5) is breaking down at 

these f3 values - we are not entirely within the continuum limit. 

The implications of this fact for lattice gauge theories are quite significant. In partic

ular it means that we are not able to reliably extract quantitative results from our calcula

tions on such small lattices at these intermediate couplings. However, it does point the 

way to future detailed calculations. If one could generate extremely accurate data for the 

potential then there would be the possibility of deriving the real scaling behaviour of the 

lattice at these couplings. Specifically one could define a correction factor 1(/3) such that 

x' = 1(/3) x (3.16) 

and then try to fit the function V (x '). In this way the factor 1(/3) should be calculable and 

hence real quantitative results extracted. This calculation was in fact attempted on the 

data presented here but without success - the f3 values at which we have measurements are 

too widely spaced and the statistical errors too large to allow reliable calculations. 

Having made the point that quantitative predictions from lattice QCD seem to elude 

us, it must be stressed that valuable lessons can still be learned from these calculations. 

Since the deviations from scaling behaviour seem to be small it is certainly true that 

approximate physical quantities can be measured albeit with rather uncertain errors. We 

can also obtain important qualitative results. For example, the fact that the string tension 

is measurably non-zero lends support to the idea that quenched QCD confines quarks. 

One can also make useful comparisons between different lattice systems, such as the 

meson and baryon, and we shall make extensive use of this in future sections. 

One particularly intersting parameter is a, the coefficient of the Coulombic force in 

Eq. (3.15). The origin of this term is somewhat controversial. While at high energies it is 

expected that the dominant contribution will be from single gluon exchange yielding a 

contribution (as is the running coupling constant) 
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v -
4a8 ---
3R 

(3.17) 

at lower energies the theory is supposedly described by a simple vibrating string model 

[ 49] in which transverse oscillations generate a potential [50] 

v -
1r ---

I2R 
(3.18) 

independent of the gauge group. Since a is a dimensionless number it is modified from our 

lattice calculations only by the correction factor -y(ft) and so we might hope to address this 

question with some degree of confidence. The best fits to the data yield the value 

a = - .29 ± .04 (3.19) 

remarkably close to the value -7r/ 12 = -.26. The exact status of this parameter and the 

applicability of the string models is, however, in some question [51] and we shall return to 

this point after looking at the baryonic potential. 

As a final point in this discussion we examine the form of the chosen fit. Given the 

ansatz, Eq. (3.15), for the overall form of the potential the exponent of Eq. (3.12) is seen to 

be 

V(R)T = aT/R + V0T + K RT (3.20) 

which is asymmetric in R and T despite the fact that the lattice is completely invariant 

under the interchange T +-+ R and thus distinguishes no particular directions. It has been 

suggested therefore [52] that one should fit instead to the symmetrised form 

a(T/R +R/T) + V0 (R +T) + K RT (3.21) 

leading to the Wilson loop value 
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W(R,T) = e-V(R)T + f(R)/T (3.22) 

with f an arbitrary function of R only. 

We examined this procedure and found that in all cases it yielded worse fits to our 

data than the simpler alternative, Eq. (3.12). This approach is also somewhat questionable 

theoretically since it involves an assumption about the exact form of the potential while 

the earlier method is based merely on the analogy with the Hamiltonian system. For such 

reasons we will not consider it further. 

3.3 Restoration of Rotational Symmetry. 

One of the primary goals of this chapter is to compare the properties of mesons and 

baryons as determined in lattice gauge theory. However in doing so one comes across one 

of the fundamental problems of the lattice regulator - namely that of discrete symmetries. 

The mesonic potential discussed in the previous section seemed to pose no problems since 

the Wilson loop observable corresponding to the potential lay nicely in a lattice plane and 

the only requirement was that the latticised theory be insensitive to details at the scale of 

the lattice spacing, a. In treating baryons, however, another problem arises since the 

observable used to measure the three quark potential is no longer planar and hence the 

discrete rotational symmetry of the lattice must be considered. Previous calculations have 

shown [38,52] that continuous rotational symmetry is approximately restored at f3 ~ 5.7 

and indeed this was one of our criteria for choosing the couplings at which to carry out 

these calculations. However, since we wish to carry out a quantitative comparison 

between the latticised mesonic and baryonic systems we need to calculate the systematic 
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errors associated with the discrete symmetry at our higher couplings, verifying that such 

effects are indeed small [53]. 

In order to achieve this we return to the mesonic calculation of the last section but 

consider the so called 'off-axis' Wilson loops W(R l,R 2; T) such as the one shown in Fig. 

l 0. In principle the potential should be insensitive to the details of the loops at the scale of 

the lattice spacing and one should be able to extract quantities whose dependence on the 

quark separation is determined solely by the distance between temporal world lines rather 

than the path length used to join them. 

Note that care must be taken in applying the Parisi trick to configurations such as 

these. Specifically, links can be barred in only one of the two spatial directions. There are 

thus more unbarred links in these observables than in the planar observable of 

corresponding size and statistical errors are larger. 

The results of calculating various 'off-axis' lattice potentials are shown in Table 3. 

These have been extracted using Eq. (3.12) and scaled according to Eqs. (3.5) and (3.14) 

with c = .011 as before, but no self-energy subtractions have been done. This is because 

we are predominantly interested in seeing how the distortions due to discrete symmetry 

behave as f3 increases and the lattice spacing, a, decreases. Furthermore attention has been 

restricted to the two lower (3-values, f3 = 6.1,6.3, which suffered from less severe finite 

volume effects in the previous section. 

In order to quantify the systematic errors the calculated potentials are fitted to two 

differing functional forms. If the lattice calculation is indeed insensitive to the lattice spac-

ing then we expect that the potential will be given by Eq. (3.15) with x the actual quark 

separation neglecting the lattice. 

x - xwth (3.23) 
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Effects due to the discrete symmetry are expected to contribute a term to the potential 

derivable in strong coupling as 

oV = K' x' (3.24) 

where 

x' - ~i 
1 

= - (R 1 + R2) e (3.25) 

is the 'taxi-cab' metric corresponding to the strong coupling force where the confining flux 

tubes are constrained to lie along lattice links. By fitting the data to forms both with and 

without the strong coupling piece, Eq. (3.24), one can then assess the quantitative effect of 

the lattice's discrete symmetry on the physical string tension, K. 

The results of such a comparison are shown in Table 4. As can be seen the string 

tension suffers modifications of around 15 % at f3 = 6.1 but is apparently insensitive at the 

higher coupling f3 = 6.3. The overall conclusions to be drawn from this study, therefore, 

are quite encouraging. As expected, the deviations in physical parameters due to discrete 

rotational symmetry are quite small and in particular the systematic error in the string ten

sion is less than 1 % at f3 = 6.3. This fact will enable us to directly compare mesonic and 

baryonic properties in the next section. 

3.4 The Baryonic Potential 

The calculation of the heavy baryonic potential [54] might at first seem to be a 

wasted effort since heavy baryons analogous to charmonium have not been detected 

experimentally. However the calculation is important for several other reasons. Firstly, it 

is crucial to know if the lattice theory is consistent in pr_edicting similar properties for 

both types of hadron. In particular one expects the string tensions to be the same in both 



- 37 -

systems, given a sensible picture of the internal string configuration in the baryon. This 

question leads directly to the second point - namely that potential models of baryons, both 

non-relativistic [55,56] and more recently relativised [57,58], are extremely successful in 

predicting the spectrum of known states, even in mass ranges where it might be expected 

that such models are inappropriate. It is thus important to see if the physical parameters 

extracted from the lattice calculation bare any resemblance to those used in these models. 

Obviously such a calculation can at best be approximate given that the scaling behaviour 

of the lattice theory is unclear but reasonable agreement can hopefully be reached. We 

consider this last question in more detail in a later section, restricting attention here to a 

comparison of mesonic and baryonic parameters as deduced from the lattice. 

To construct the lattice operator, analogous to the Wilson loop, from which we may 

extract the baryonic potential an obvious generalisation is made. Consider the products 

(3.26) 

where the matrices U1 lie along the world lines Ci of the ;u.. quark (i = l, 2, 3). As before, 

the leading term in the l/m expansion requires these world lines to be straight. Finally the 

ends have to be closed off in a manner consistent with the colour singlet constraint yield-

ing the observable 

(3.27) 

The particular directions in which the world lines are chosen to come together is 

obviously irrelevant in the continuum limit but the discreteness of the lattice could play a 

role here. However, in the last section we saw that the systematic errors associated with 

the lattice's discrete rotational symmetry are fairly small at the couplings which were used 

and so we adopt the simplest policy in this regard, shown in Fig. 11. Two of the quarks are 

chosen to lie in a particular lattice plane with the third displaced perpendicularly. For 
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further simplicity attention was restricted to the case where all three quarks lay in a single 

space-like plane (e.g., the x-z plane, y=constant). 

The calculation then proceeds in a manner analogous to that used in the mesonic 

case. The observable Q is measured for several sets of parameters (R l,R 2,R 3,T) and lat-

tice potentials are extracted from the exponential behaviour, Eq. (3.12). As in the previous 

section (and for the same reasons) we concentrated on the two lower {3 values, {3 = 6.1, 6.3. 

The results of this procedure are shown in Table 5 where the values have been rescaled 

by the perturbative prescription, Eqs. (3.5) and (3.14). 

As in the mesonic case, further progress is made by examining models. In judging 

which models to consider we will again be guided by the predicted high- and low-energy 

behaviour which led to the mesonic form 

(3.28) 

where the superscripts denote that these parameters are specific to the mesonic model. 

As previously remarked the exact source of the Coulombic term is somewhat 

unclear. Single gluon exchange in the baryonic sector between pairs of quarks would lead 

to a term of the form 

V CoW = I; o:qqq /ri; 
i<J 

(3.29) 

where ri; is the separation of the ith and jth quarks. In supplement of this term however, 

there is presumably a contribution from the zero point fluctuations of the effective low 

energy string model. Since no (full) quantised solution to the problem of three strings yet 

exists (although for progress see [59]) we will neglect this effect and let the quality of the 

associated fits attest the degree to which this assumption is justified t. 

t Physically one might expect that since the quarks are infinitely heavy in this approximation the low 
energy modes might decouple in the 'A' model yielding an expression of exactly the form Eq. (3.29) with 
coefficient -7r /12 just as in the mesonic sector. 
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The form of the confining term is also model dependent and relies on the assump-

tions made about the configuration of the confining strings [60]. Phenomenological models 

typically make the assumption that the strings form between pairs of quarks, often for no 

better reason than this makes the harmonic oscillator potential exactly soluble for three 

charges. This assumption does have some justification, however, in that the quark-diquark 

picture of the baryon is quite reasonable in the limit where one charge is displaced far 

from its partners. We will denote this model by the subscript '!:l.' since the strings typically 

form in the configuration shown in Fig. l 2a). The contribution to the potential from this 

type of model is expected to be 

V~"" = 1fJ K'j1q E r;; 
i<J' 

(3.30) 

Note that the factor of 1fJ inserted here normalises the string tension to be equal to that of 

the mesonic strings in the case where one quark is pulled far from the other pair (61]. 

The second popular model is that of (62] which minimises the total length of the 

string. It can easily be shown that this leads to configurations in which the strings meet 

mutually at 120°, the so called 'Toricelli' point [56,63]. This configuration, denoted by the 

subscript 'Y', is shown in Fig. l 2b) and its contribution to the potential is given by 

(3.31) 

where r;r is the distance of the ith quark from the central point. 

Thus the two baryonic models which we wish to examine are characterised by the 

potentials 

V 1::,. = am E 1/r;; + V 0 + 1fi K'j1q E r;; (3.32) 
i<j i<J' 

and 
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3 

Vy = aqqq E l/ri; + Vo + Kpq E riT (3.33) 
i<.j i=l 

The results of these fits, together with the corresponding data from the mesonic cal-

culation of Section 3.2 are shown in Table 6. It should be noted that the errors shown here 

are purely statistical in nature and as was shown in the previous section there is an 

approximately 15 % systematic error in the parameters at fJ = 6.1 due to the deviations 

from continuous rotational symmetry. 

Since this data represents a function of three independent variables it is quite diffi-

cult to plot in any meaningful way so in Table 7 are shown the fitted points obtained from 

the parameters of Table 6 for the data obtained at fJ = 6.3. As can be seen the agreement 

is quite excellent with values of x2 around 1.0 - 1.5 per degree of freedom. From this fact 

we deduce that the low energy string vibrations neglected earlier either contribute little to 

the static potential or else yield a potential of exactly the same functional form as the reg-

ular Coulombic contribution, Eq. (3.29). 

It is interesting to note that the string tensions obtained in both 'Y' and 'fl.' models 

are roughly the same. Also the quality of fit shown in Table 7 is roughly model indepen-

dent. This is a simple consequence of the geometric fact that [64] 

1 
2 

Ly 

L.c. 
1 

v'3 
(3.34) 

where Ly,.c. is the length of the string in the two models. As a result this calculation is 

unable to differentiate conclusively between the two string configurations. It is, however, 

interesting to note that the string tension obtained from the 'Y' configuration is closer to 

that obtained from the mesonic sector. We shall return to the question of which string 

model is most appropriate in the next section. 
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Finally as regards the comparison between bare lattice parameters we turn to the 

coefficient of the Coulombic term, a. If this interaction were purely gluonic with no con

tribution from string vibrations we would expect the trivial result that 

(3.35) 

which follows simply from the algebra of the SU(3) generators in the qq and qq channels. 

Examination of Table 6 shows that this relation holds to a fair accuracy and may thus be 

indicative of the fact the string vibrations play little part in the potential at the length 

scales accessible to this calculation, ;::; .5 fm. 

In conclusion this calculation has answered several questions. Firstly, the lattice cal

culations are consistent in that the physical parameters associated with mesonic and 

baryonic systems are similar. Secondly it has suggested a resolution of the puzzling '7r / 12' 

factor in the Coulombic term. Unfortunately geometry and statistics prevent us from mak

ing a definitive statement about the detailed structure of the confining strings in the 

baryon, but more will be said about this when we have calculated the energy density in 

the colour fields in the next section. 

3.5 Energy Density Distributions 

In studying the hadronic energy density distributions our main goal is to examine the 

mechanism which leads to confinement. Quantitatively this is understood to be due to the 

linearly increasing potential between the charges, but qualitatively it is not known how 

this potential arises. Two popular theories concerning this are the 'colour dielectric' and 

'dual superconductor' models and we shall discuss each in turn. 



- 42 -

Consider, for simplicity, classical electromagnetism. In a medium with dielectric con

stant 1C > l a small positive charge distribution is screened by negative charges (Fig. 13a)). 

Conversely, if 1C < l the medium is antiscreening meaning that the introduction of a small 

charge distribution into the vacuum leads to the formation of a 'hole' on the inside of 

which are charges of similar sign (Fig. 13b )). Since these charges repel the test charge it 

requires work to reduce the size of the hole and it can easily be shown [65] that the system 

has energy proportional to 1C-3/4 so that E -+ oo as IC -+ 0. Next consider a dipole distribu

tion. Again it is easy to show that a 'hole' forms around the charges but in this case the 

electric field lines are tangential to the inner surface. As a result the energy contained 

within the system, and hence its mass, stays finite as one takes the limit 1C -+ 0. 

Converting this model to the environment of QCD is simple. One assumes that the 

physical vacuum is a colour dielectric with IC !:::: 0 in which hadrons are formed from 

coloured quarks. By analogy with the electrodynamic case one sees that coloured states 

are forbidden since they have infinite mass while colour singelts such as mesons and 

baryons have finite mass. Furthermore it is easy to show that since the energy density of 

the 'hole' grows as l/r2 [66], the system is confining. This model is very similar to the 'bag' 

model of QCD in which the hadrons are constrained to regions typically characterised as 

the soliton solutions of the equations of motion [67]. The chief characteristic of this model, 

for our purposes, is that it is essentially Abelian in nature and there are no chromomag

netic fields in the rest frame of the quarks [68]. 

An alternative picture of the confining mechanism is the 'dual-superconductor' 

model [69] where again an Abelian analogy is most convenient. We consider the Nielson

Olesen string model [70] in two dimensions in which a charged scalar field <P is coupled to 

the gauge field with Lagrangian density 

L (3.36) 



- 43 -

and 

D,.. ::::: a,.. - ieA,.. (3.37) 

is the (Abelian) gauge covariant derivative. 

If we allow the scalar field to acquire a non-zero vacuum expectation value such that 

(0 I <PI 0) = ~o ~ 0 then it is easy to show that magnetic vortices of radius re form which 

contain most of the energy density and in which the <P field has values reduced from its 

vacuum value (Fig. 14). These vortices are stabilised by the competing effects of the mag-

netic field trying to spread out and the scalar ('Higgs') field trying to eliminate the vortex 

entirely. In three dimensions it is easy to see that the simple vortices become strings which 

can end on monopoles and the model becomes a simple example of a type II superconduc-

tor. The Meissner effect squeezes the magnetic flux into thin regions driven by the con-

densation of the Cooper pairs which endow the non-zero vacuum expectation value to the 

scalar field. 

The dual superconductor model is obtained by exchanging the roles of the magnetic 

and electric fields [71 ]. One thus expects the formation of chromoelectric flux tubes which 

terminate on the charges and give rise to a linearly increasing potential due to the constant 

string tension. The role of the Cooper pairs in this scenario will be seen to be played by 

the chromomagnetic field which circulates around the tube squeezing the electric flux dis-

tribution. This model is thus characterised by a non-zero transverse magnetic field which 

is excluded from the region containing the electric string. 

In lattice gauge theory these phenomena can be explored by use of the correlation 

function [72, 73] 

P,,,,, 
(trW trS,,,,,) 

(trW) 
(trS ,,,,,) (3.38) 



- 44 -

where W is a rectangular Wilson lop and S /.Ill is a single plaquette with orientation µv rela

tive to the axes defined by W. Expansion of this operator in weak coupling shows that 

(3.39) 

i.e., P /.Ill measures the squared energy density generated by the qq pair relative to the 

vacuum. This expression also explains how the various field components are to be 

extracted. If the large loop, W, is taken to define the z -t plane then timelike plaquettes 

measure chromoelectric densities while spacelike ones measure magnetic contributions 

(See Fig. 15). 

The numerical technique adopted might be described as 'brute force' in that we 

measure directly the correlation function P /.Ill" This method is, however, fairly inadequate 

when applied to correlation functions of this type since the signals fall very rapidly as loop 

and test probe are separated leading to extremely noisy data. Furthermore, the effect 

being sought is an extremely delicate property of a mesonic system whilst the Monte Carlo 

configurations generated are typical of the vacuum. As a result of these problems it proved 

impossible to measure correlations with loops larger than 4x 5. 

A further difficulty with quantitative measurements is due to the contributions from 

higher energy states. In the case of the static potential we required only the constraint 

T ;;::: R in order to suppress the higher energy levels. However, the effect of dividing the 

correlation function by the bare loop value in Eq. (3.38) has the effect of reducing the fac

tor by which the contributions from higher energy states are suppressed [74] and thus one 

expects to see signals which depend strongly on T. This is not really too surprising physi

cally since the confinement mechanism is a low energy phenomenon and might thus be 

expected to be similar in all states. 

The combined effect of the problems discussed in the previous two paragraphs is to 

make quantitative results impossible. Consider, for example, the data in Table 8 where we 
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show the peak and midpoint contributions to the squared electric field parallel to the qq 

axis. As can be seen the results depend strongly on the temporal extent of the Wilson loop. 

However, also shown are the ratios of the two quantities which characterise the shape of 

the flux distribution and as can be seen this ratio is fairly insensitive to T. For this reason 

we are confident that qualitative results can still be extracted. 

With this in mind we consider in detail the energy density distributions extracted 

from correlations with a 4x4 Wilson loop. The contributions (E1f), (E1
2 ) and (-B1

2 ) are 

shown in Figs. 16a)-c) (The negative sign in the magnetic case is due to the Wick rotation 

to Euclidean space t ). The measured values of (-B1f) were consistent with zero and so 

are not presented. The characteristic statistical error associated with these measurements 

is around 10%. 

These results are quite exciting. (E
1
f) clearly shows that an electric flux tube has 

formed between the charges with a width of approximately one lattice spacing. Further

more both (Ei2) and (Bi2) are measurably non-zero and of similar magnitude. This latter 

point provides a useful check on the correctness of the measurements since it is a simple 

consequence of the choice Eq. (3.38). Consider, for example, the correlation with a 3x 3 

Wilson loop which measures (Ei2), shown in Fig. 17. Making use of the discrete rotational 

symmetry (z -t, t--z) of the lattice we can transform this observable into one which 

measures (Bi2). Thus we expect that (Ei2) ~ (Bi2) in the vicinity of the centre of the flux 

tube. That this is so is a heartening feature of our results. 

The most interesting feature of our data is the contribution of (B1
2 ). This shows 

exactly the features predicted by the Nielsen-Olesen string model, viz., the exclusion of 

the magnetic field from the region between the quarks containing the flux tube. This is 

strong evidence in favour of the 'dual-superconductor' picture. 

t This point was neglected in Ref. [73] and led to an erroneous interpretation of the results. 
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The existence of (E1
2

) is also quite interesting. If we consider the effective low

energy string model then at strong coupling we expect the string to be rigid and to lie 

along lattice links. As the coupling decreases kinks develop (See Fig. 18) that eventually, 

at the so-called 'roughening' point, delocalise the string entirely [75]. It is not unreason

able, therefore, to see non zero transverse components in the electric field. An interesting 

quantity to measure in connection with this model is the transverse width of the flux dis

tribution which is expected to increase logarithmically as the quark separation is 

increased. Such a study, however, would require much better data than we have available 

and is probably beyond the capabilities of the 'brute force' technique. 

This calculation has also been extended to the baryonic sector [76]. Our motivations 

for doing so are twofold. Firstly, it is important to see whether the evidence supporting the 

'dual-superconductor' model is again apparent in this different context. Secondly, by exa

mining the field distributions it may be possible to distinguish between the two baryonic 

string models discussed in the previous section. 

The baryonic operator analogous to Eq. (3.38) is shown in Fig. 19. As before it is the 

correlation between the operator used to measure the potential and a single test plaquette. 

The relative orientations of Q and the test probe again determine the measured field com

ponent. As in the mesonic sector it proved impossible to measure correlations with large 

Q observables and so our detailed results are only presented for the case Q(2,2,3 ; 4). At 

these separations the statistical errors are in the range 20-40%, but we have checked that 

the qualitative features of the distributions at these scales are consistent with those 

obtained with better statistical accuracy at smaller distances. 

In Figs. 20a),b) are presented the electric and magnetic energy distributions derived 

from our data. From these plots it is clear that the support for the Nielsen-Olesen picture 

is also present in the baryonic sector. Furthermore the magnetic field distributions lend 

considerable support to the 'Y' picture of the confining strings (Fig. I 2b) ). The area of 
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maximum exclusion of the magnetic field is clearly seen to be towards the centroid of the 

three quarks where the Toricelli point lies rather than along the lines joining the charges 

as would be the case in the 'l:l.' model. 

In conclusion, the energy densities have proved very informative. While quantitative 

data are impossible to extract with the simplistic 'brute force' methods the qualitative 

results support strongly the idea that the linearly confining potential is due to the forma

tion of narrow electric 'flux tubes' which are themselves a consequence of the dual Meiss

ner effect. The 'flux tubes' are stabilised by the circulating chromomagnetic fields which 

play the role of the Cooper pair condensate in the 'dual superconductor'. The internal 

structure of the flux tube is not inconsistent with the 'roughening' behaviour of the eff ec

tive string model but detailed analysis of this effect will require much better data than is 

currently available. In the baryonic sector the calculated energy densities strongly support 

the model in which the confining strings meet at the Toricelli point leading to a potential 

which is essentially three body, rather than the superposition of two body pieces as is 

often assumed. 

3.6 Beyond First Order - Spin Dependent Potentials 

So far all the calculations we have performed have been to first order in powers of 

l/m (or equivalently v2/c 2 , where v is the relative quark velocity). While this has painted 

an interesting picture of static quark Systems it is not the whole story. For example, in this 

first-order approximation the nucleon and l:l. are degenerate since their mass splitting is a 

spin-spin effect which would only appear in second order. 
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Corrections to this first-order approximation come from two sources. Firstly one has 

to treat the quark spins, which requires solving the Dirac equation, and secondly there are 

finite velocity effects due to the relative motion of quark and anti-quark. As mentioned 

earlier the lattice provides a natural setting in which to systematically account for these 

various effects and as an example we consider the finite velocity effect. 

One would naively imagine that the effect of finite velocities on the lattice is to 

necessitate the inclusion of quark world lines which are not entirely straight. In order to 

see this consider the outlined argument shown in Fig. 21. The derivative acting on the 

zero velocity quark world line is represented by a sum of terms each corresponding to a 

line with a single kink at some temporal value. However, to first order in the lattice spac-

ing the gauge field can be treated as Abelian so that path ordering makes no difference. It 

is then easy to see that the relations shown in the second line of the figure hold and that 

the effect of finite quark velocity is incorporated by the inclusion of 'electric' plaquette 

insertions at all points on the quark line. ('Electric', in the sense of the previous section, 

means timelike ). 

Detailed calculations of the remaining spin-dependent corrections have been made 

[77,78] although early attempts mistakenly assumed that the electric confinement mechan-

ism at long range implied that there was no long range magnetic field. (This assumption is 

reasonable in the static limit but the motion of the quarks must generate a magnetic field 

[78]). The expression for the interquark potential correct to second order in l/m is then 

(3.40) 

where the various components are given by 

= [ L1·S1 _ ~·Si l 
2m'f 2m:} 

(3.41) 
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L2·S1 l V2 ' 

m 1m 2 r 

V epin-epin 
S1 ·~ 

V4 = 
3m 1m 2 

(3.42) 

Vi..,..or = 
_l _ [ r·S1r·~ - S1~~ l Va 
m1m2 ,2 

(3.43) 

and primes denote derivatives with respect to r. 

On the lattice these potentials are given by 

le 
!_v' = lim 
r 1 

T-+00 
(3.44) 

(3.45) 

[ '::' - ~ l v, + ~ v, (3.46) 

Note that in these expressions the subscripts 1 and 2 refer to the quark and anti-quark 

lines, and the subscript C denotes that the expectation values are to be calculated as 

insertions into regular Wilson loops, the trace of which, with no insertions, is denoted by 

(l)c· 

It is immediately obvious from these expressions that this lattice calculation will be 

extraordinarily difficult. In the previous section it was found to be difficult to measure the 

correlation between a loop and a single plaquette - these expressions are essentially the 

correlation between a loop and two plaquettes. Not only that but the resulting integrals 

over relative times involve cancellation among terms of similar magnitudes. 
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These predictions are rather sadly borne out by the data shown in Fig. 22. This 

represents the off diagonal contribution to the tensor term, V 4, at separations of R = l, 2, 3 

lattice spacings. These trial measurements were made on a small lattice ( 102 x 122 ) at 

f3 = 6.0. As can be seen the statistical errors for R > 1 are extremely large and further

more no clear limit is seen as T increases, even at R = 1. This latter point is not so 

surprising since the division by the bare loop value in Eqs. (3.44)-(3.46) heralds the same 

problems as were seen in the energy density calculation due to excited states. Recently 

[79] mammoth computational effort has been devoted to this problem with mediocre suc

cess. Results have been extracted for the range 1 ~ R ~ 4 which are approximately con

sistent with expectations. In particular the relation deduced in [78] solely on the basis of 

Lorentz invariance, that 

0 (3.47) 

seems to be satisfied. This result is extremely important phenomenologically since it 

implies the existence of a long range spin-orbit interaction which will be discussed further 

in the next section. 

3. 7 Comparison with Experiment 

Before the picture developed in this chapter can sensibly be compared to experimen

tal data a fundamental question must be answered, namely that of the physical lattice size. 

The fact that the lattice spacing, a, is an undetermined parameter is both a strength and a 

weakness of the Monte Carlo method. On the one hand it allows direct simulation of the 

theory at all length scales with no modifications. On the other one has to pin down the 

exact numerical value of this parameter at some coupling in order to make contact with 
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experiment. 

There are several ways in which this might be achieved of which the simplest is just 

to assume that the relation between AL and AMS derived in perturbation theory holds [14] 

allowing us to use experimentally determined values of AMS to set scales. Alternatively one 

could take a physical quantity such as the string tension calculated in Sections 3.2 and 3.4 

and fit it to some phenomenological model. The former method suffers from an excessive 

reliance on perturbation theory and scaling behaviour while the latter requires assump

tions which one of our goals was to test. A third method exists, however, in that we can 

use parameters extracted from other lattice gauge calculations. Since we are far from hav

ing solved all the problems associated with full QCD simulations on the lattice it might 

seem that such an approach is unjustified. It does, however, have some virtue in that 

whatever approximations are contained in our calculations are presumably also present in 

other lattice calculations and so the value obtained is, in some sense, consistent. 

As our scale setting calculation then, we choose quenched mass spectrum calcula

tions which incorporate the same assumptions as were made in earlier sections. These cal

culations are typically hampered by fairly large statistical errors but should serve to set 

our scales in an internally consistent manner. From these calculations [80] can be derived 

the result that 

l/a ~ 2.1 GeV at {j = 6.0 (3.48) 

i.e., the lattice spacing is approximately .1 fm. 

Initially this result seems very disappointing since it implies that we have been able 

to study objects whose size is considerably smaller than the proton radius <~ .8 fm). The 

question then arises as to exactly how much real physics can have been observed. In order 

to answer this question we appeal to the known fact that lattice QCD has no phase transi

tion going from strong to weak coupling. Furthermore, we already see phenomena in our 
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potentials associated with both high- and low-energy regimes and so have good reason to 

believe that our results are correct. Indeed, in the absence of any externally imposed 

length scale, it is reasonable to suppose that our quantitative results (modulo, of course, 

the scaling behaviour seen in Section 3.2) are also representative of the true physical situa-

ti on. 

Having thus justified the extraction of quantitative information from our observables 

we turn to more careful examination of heavy quark spectroscopy [81]. As previously 

noted, the discovery of charmonium generated an enormous interest in potential models 

[82,83], many of which accounted quite reasonably for many features of the experimental 

data The functional forms of these potentials also varied quite substantially from the 

form assumed in Eq. (3.15). Two reasonable alternatives, for example, are logarithmic [84] 

and (small) power law [85] behaviour, both of which are also consistent with our data 

However the form which we have used was derived in a way that was deliberately chosen 

to be consistent with expected strong and weak coupling behaviour and so we shall hen-

ceforth concentrate on this model. 

Given that the mesonic potential is, in our approximation, entirely non-relativistic 

the most comparable model is that contained in the classic work of Eichten et al. [82] 

whose model potential took the form (with a rather unfortunate clash of notation) 

V(r) = 
K, 

r 
+ 

r 
a2 

(3.49) 

which is exactly that assumed throughout the previous sections. To proceed from this 

potential to predictions it is necessary to fit the parameters "" and a. The choice of physi-

cal quantities to use in performing this fit is very wide and often the choice is to fit the 

2S - IS mass difference and the leptonic widths r(2S -+ e+e-), r(IS -+ e+e-). However, 

As shown in [82], this procedure is flawed if one assumes the usual Van Royen Weisskopf 

formula for the leptonic width [86] 
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161re~a2 
= 

M2 
11/;(0)1 2 (3.50) 

since it leads to relativistic motion for the quarks, explicitly violating one of the assump-

tions of the model. Instead the parameters in [82] were extracted by fitting to the 1/J - 1/J. 

mass difference and the centre of mass of the triplet P states. This process yields values 

which, cast into the notation applicable to our calculation, are 

me = 1.84 GeV 

a = -.52 (3.51) 

K = 0.18 GeV2 

with quark velocities v2 / c2 ~ .2, a quite acceptable non-relativistic value. 

The successes of this model are well known. It accurately predicts the masses of the 

excited charmonium states even above DD threshold and also accounts for the leptonic 

widths once QCD corrections to Eq. (3.50) are made [87]. Given the experimental mass 

differences between the triplet and singlet S states it reproduces the Ml transition rates 

and branching ratios. Further, given a mass for the bottom quark, mb = 5.17 GeV, it also 

accounts for the large scale structure of the bottomonium potential. 

Given these facts the crucial question is how well do our parameters agree with 

those quoted above. As indicated before the scaling behaviour of the lattice spacing is 

taken from mass spectrum calculations and the potential of Section 3.2 then yields the 

values 
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a = -.31 ± .04 (3.52) 

K = .18 ± .04 Gev2 

While the string tension is in remarkable agreement we see that the Coulomb strength is 

appreciably too small. This leads, for example, to significant overestimation of quantities 

which are sensitive to the wavefunction near the origin such as the leptonic width and 

2S - 1 S mass difference [88]. The resolution of this difficulty seems to lie in the neglect 

of vacuum polarisation effects - i.e., in the quenched approximation itself. It can be shown 

[89] that in the case where the confining potential transforms as a Lorentz scalar the effect 

of internal quark loops is to modify the form Eq. (3.15) to 

V'(r) = a + a' + K r 
r 

(3.53) 

where a'~ - .16. With this correction it is obvious that the lattice potential is in excellent 

agreement with the work of Eichten. 

In passing here it should be noted that the resolution of the different types of poten-

tial models will be greatly facilitated by the discovery of the top quark. With a mass of 

around 80 Ge V it is expected that the toponium spectrum should be sensitive to the 

potential at length scales of around .05 fm in which region the different models are easily 

distinguishable [90]. 

It is important to note that the correction to the Coulombic term used above to 

account for the discrepancy between the lattice and phenomenological models required 

the long range confining potential to transform as a Lorentz scalar. The validity of this 

assumption is, in itself, an interesting question about which lattice gauge theory may be 

able to make a statement. The question of the Lorentz nature of the confining potential is 

best addressed by examining the level splittings in the triplet P states, x, which are due to 
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spin-orbit interactions. Early models which fit only to the charmonium spectrum [91] 

found that the relevant spin-orbit term could be generated if the potential was almost 

exclusively scalar, although a large anomalous moment for the quarks was also required. 

Recent data from ARGUS [92] and Crystal Ball [93] has accurately located the equivalent 

states, Xb, in the considerably less relativistic environment of bottomonium and these con

firm the scalar nature of the confining potential. It should be noted, however, that the 

spin-dependent corrections used in these calculations are exactly those which we 

attempted to study in the previous section. As mentioned there, the most recent lattice cal

culations on this topic are consistent with the existence of a long range spin-orbit coupling 

and hence also lend credence to the idea of scalar confinement. 

Given that the model Eq. (3.49) with spin-dependent corrections can so ably predict 

the properties of heavy quarkonia, it is natural to inquire as to whether a treatment of 

light mesons is possible. A recent calculation [94] by Godfrey and Isgur seems to indicate 

that this is so. Starting solely from this model they incorporate spin-dependent effects in a 

way consistent with scalar confinement and finally make relativistic corrections to the 

wavefunctions by applying smearing operators and in this way they are able to fit the 

masses, couplings and decays of the meson spectrum over the entire range from . l to l 0 

Ge V in terms of a handful of parameters. This seems to be substantial evidence indeed 

that the linear + Coulomb form of the potential observed in lattice gauge theory is correct. 

Having thus disposed of the mesonic spectrum in toto we turn to baryons. In this case 

we have no immediately obvious starting place since 'heavy' baryons have not been 

detected. Indeed this situation is likely to prevail for some time for two reasons. Firstly, 

the production rate of baryons such as ll.;!1 and o,;;,b in e+e- experiments is extremely 

small. Secondly, even if such species were to be created their detection is an horrendous 

problem. Consider, for example, the decay mode 
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o.t.; 

(D.C = l)L 
o,t + 11"+ 

(-1.C= l)L 
oc + ""+ 

(D.C= l)L 
o- + 11"+ 

cas~ I)LE' 

The final state contains eight assorted particles and would thus render reconstruction 

extremely difficult. 

We must, therefore, immediately go on to the question of whether or not potential 

models can explain the properties of lighter baryons. Extensive work analogous to that 

performed in the mesonic case [57] shows that this is indeed possible. Working with a 

potential which is essentially a superposition of two body potentials of the type Eq. (3.15) 

and treating the three body effects such as those mentioned in Section 3.4 in perturbation 

theory, most of the features of the known baryonic spectrum have been reproduced. An 

interesting difference, however, is found in the spin-orbit couplings. In the mesonic sector 

the scalar confinement mechanism was responsible for a long range spin-orbit force which 

explained the splitting of the triplet P states. In contrast, baryonic models seem to show 

that the equivalent long range term is almost exactly cancelled by the Breit-Fermi contri-

bution arising from the single gluon exchange. Thus the mass splittings in baryons seem to 
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be predominantly spin-spin effects. 

It would be extremely interesting to see if such cancellation is a feature of the lattice 

model. The formulation of this problem is in principle a straightforward extension of that 

shown in Section 3.6 and requires the correlation of two plaquettes and the three quark 

observable, Q. In the light of our difficulty with the baryonic energy density, however, it 

seems that such calculations are likely to be beyond the capability of the 'brute force' 

algorithm even on the most powerful of supercomputers. For this reason, among others, we 

turn in the next chapter to the development of alternative Monte Carlo algorithms. 
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CHAPTER 4 

The Complex Langevin Equation 

In order to perform detailed lattice gauge calculations deep into the scaling region it 

is necessary, as we have seen in the previous chapter, to work at weak couplings, g . 

Unfortunately this means that larger lattices will also be required, since increasing f3 

decreases the physical lattice spacing exponentially. This in turn means that lattice observ

ables will have to extend over more lattice spacings to be probing physics at the same 

length scale. 

Current constraints on lattice sizes come predominantly from the available computer 

architectures. Supercomputers tend to gain speed at the expense of physical memory, 

which results in our ability to calculate with small statistical errors on lattices with some

where on the order of twenty lattice spacings in each direction. However, future genera

tions of computers will probably see this restriction lifted and lattices with forty sites per 

direction will not be impossible. 
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It is not clear, however, that this will solve all of the problems. As we saw in the last 

chapter, quantitative results are difficult to obtain. Even in the relatively simple static 

potential calculation we saw that perturbative scaling behaviour was not obeyed, and in 

the more complicated correlation function measurements of the energy density and spin 

dependence quantitative results were unobtainable at even quite modest lattice separa

tions. Thus, while larger lattices will allow calculation at higher fJ where convergence 

tends to be enhanced, one is still faced with the problem of measuring small correlations 

over many lattice spacings, a formidable problem for the 'brute force' algorithms previ

ously described. 

The main reason for our failure to accurately measure these observables is easily 

traced to their correlative nature. In the static potential calculations, the aim is to calculate 

a property of the first excited qq state relative to the vacuum whereas in the energy den

sity and spin-dependent calculations one is examining the properties of the qq system in 

the presence of certain 'test' probes relative to the bare qq system. However, our field 

configurations are all generated from the pure gauge action 

( 4.1) 

and hence contain no explicit knowledge about the charges themselves. Our ability to 

measure a static potential is evidence that some of the configurations generated from Eq. 

( 4.1) do have overlap with the qq states, but it is an entirely different matter to expect to 

take these few states and then extract a subtle expectation value such as the loop-plaquette 

correlation. It is thus no real surprise that the measurements of such correlation functions 

are fraught with large statistical errors and deteriorate rapidly with increasing quark 

separation. 

The particularly simple idea that will be explored in this chapter, is to include the 

effects of the static quark pair in the action used to generate field configurations. Then we 
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would, hopefully, be in the same position as in the static potential calculation in that 

loop-plaquette correlations would be measured against a background which explicitly con-

tained the effects of the loop. In the first section will be discussed the most naive attempts 

to fulfill this aim and in subsequent sections we will go on to discuss the application of the 

Langevin equation in this context. 

4.1 - Simple-Minded Algorithms 

Typically our problem requires the measurement of the correlation between a Wilson 

loop, W, and some other observable, P. For the purposes of this and further sections we 

will consider only the problem of measuring 

(0) = 
f [dU] W·P ef18 

f [dU] W ef1S 
(4.2) 

which is of the same form as that used in both the energy density and spin-dependent cal-

culations. (Note that the path integral including the fermionic determinant, Eq. (3.4), can 

be cast into this form by the identification W - Det(J}+m ).) Our attempts to include 

directly the effects of the qq pair stem from the replacement (in somewhat schematic nota-

ti on) 

1 
S * = S + "'j log W (4.3) 

in which case ( 0 ) = ( P )*, where the star denotes that the operator P is to be averaged in 

the ensemble generated from action S*. 

For definiteness, consider a simple model integral 

2'11" 

J de cose e i (t e {1coa(t 

0 

J d& ei(t ef1coaft 

0 

(4.4) 
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which is of exactly the form encountered in Abelian lattice gauge theory. (To be dis-

cussed in more detail in the next section.) In the notation of Eq. ( 4.2) we then have 

P ,..., cosO, W,..., eie and 

iO S* = cosO + 
{3 

(4.5) 

The problem with this action is immediately apparent - s• is not real so eP8 * is not posi-

tive definite which means that standard probabilistic algorithms such as the Metropolis 

and heat bath techniques are not applicable. 

A straightforward method which avoids this problem is the 'phases' method. One 

defines two real functions by 

W iew _ rwe rw, 0 w real 

and writes ( 0 ) in the form 

(0) 
·e 

f[dU] Pe' w rwePB 

f[dU] rwePB 

f[dU] rwePB 

j[dU] W ePB 

(4.6) 

(4.7) 

where the prime denotes the average in the ensemble with weighting rw eP8 . Since this is 

positive by construction, the standard Monte Carlo algorithms can be applied and the 

problem is reduced to the calculation of separate expectation values in ensembles charac-

terised by different actions. 

Unfortunately, problems with this method are not hard to find. Firstly, the factor 

e;e w which multiplies P leads to large cancellations amongst the measured values of P 

and as a result it is extremely hard to obtain reasonable statistical accuracy. This problem 
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is directly analogous to the well known difficulty encountered when numerically adding 

two numbers which are very similar in magnitude but with opposing signs - large loss of 

significant figures can result. A second problem with this technique is due to the fact that 

in the primed ensemble an inhomogeneity has been introduced into the lattice by virtue of 

selecting specific links to lie in the Wilson loop, W. These links are then updated dif-

ferently from the others and hence translational invariance has been lost. We can no longer 

average over all plaquettes in calculating P since each individual plaquette now has a 

specific position and orientation relative to the large loop and the large counting factor 

discussed in section 2.2 ·is of no account. 

These problems might not be so serious if we had indeed managed to incorporate the 

effect of the charges into the effective action, S ·, but it is obvious that this is not the case 

since the phase information e i 8 w is missing. Indeed, in the simplest case of the energy 

density in U( 1) lattice gauge theory rw = 1 and this algorithm reduces to the 'brute force' 

method! 

A second possible approach to the problem lies in the construction of 'biased' algo-

rithms. Using this technique one attempts to increase the overlap between states generated 

by the action S • and the test probes by applying physical intuition in modifying the lattice 

action. 

As a specific example consider the measurement of the squared electric field distri-

bution parallel to the qq axis given by (see Fig. 23) 

J [dU] W·P 11 efl8 

J [dU] W eflS 
(4.8) 

where P
11
is a plaquette lying in the plane of the rectangular Wilson loop, W. The physical 

insight we attempt to use is the fact that an electric flux tube is expected to form between 

the charges leading to enhanced expectation values of the operator W·P. In order to bias 
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configurations towards this effect we therefore define an action 

S' = ~ E f3(p) tr (UP+ UJ) 
p 

(4.9) 

where the sum is over all plaquettes UP. Note that this form differs from the Wilson action, 

Eq. (2.9), only in that the coupling f3 is now a function of position. Furthermore, we con-

sider the simple form 

( 4.10) 

where the delta function selects only plaquettes contained in a set R. The required opera-

tor is then measured by 

f[dU] W·P eflS' 

f[dU] W eflS' 

.t..BE s 
= (W·P)'(W e PER ) 

(W)' (W) 

.t..BE s 
J [dU] W e PER eflS 

f[dU] W eflS 
(4.11) 

where ( · · · )' denotes an average in the ensemble S' and E is the plaquette sum res
pER 

tricted to the set R . 

Note that in this form all positional information about the flux tube lies in the ( W ·P )' 

factor while the other terms serve only to normalise the values. Unfortunately this method 

again spoils the homogeneity of the lattice and means that the 'biasing' procedure must be 

extremely efficient if it is to overcome the loss of translational invariance. We attempted to 

calculate the position dependent factor in SU(3) lattice gauge theory by choosing the set R 

to be those plaquettes lying inside the Wilson loop. Choosing l:l./3 > 0 on these plaquettes 

was hoped to stimulate the growth of the flux tube leading to larger and more consistent 
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signals but we were unable to observe any significant enhancements for several values of 

tl.{3 and were thus forced to conclude that this method cannot, in fact, overcome the loss 

of the homogeneous lattice counting factor. 

4.2 - Langevin and Fokker-Planck Equations 

In the previous section algorithms were discussed which attempted to directly 

include the effects of current loops in generating lattice configurations. This led to the 

introduction of modified actions which were in general complex. In this section we will 

discuss an algorithm which is capable of simulating such actions and hence generating a 

'complex probability distribution'. Before discussing the exact meaning of this last phrase 

we must first examine the connection between the Langevin (stochastic differential) equa

tion which describes the motion of an individual degree of freedom and the associated 

Fokker-Planck equation for the probability density of sample paths. 

In order to introduce this connection it is instructive to consider a treatment of 

Brownian motion in one dimension first proposed by Langevin [25]. We consider a single 

particle with velocity v. There are two basic forces acting on this particle: a viscous force 

1 due to the medium in which it travels and a fluctuating force due to impacts with other 

particles. On average this fluctuating force is equally likely to be positive or negative and 

if the particle density is not too high then successive impacts can be considered to be sta

tistically independent events. 

A simple model of the dynamics of such a system is, therefore, given by the stochas

tic differential equation 
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V + "(V = ri(t) (4.12) 

where ri(t) represents the fluctuating force, which we take to be a Gaussian normalised by 

( ri(t) ri(t ')) = q o(t -t ') (4.13) 

If we assume the boundary condition that v = v0 at t = 0 then this equation can be 

immediately integrated to give 

t 

V(t) = Voe 4 t + f dt' er(t-t')ri(t') 
0 

(4.14) 

whence the velocity correlation function is obtained from the normalisation condition, Eq. 

(4.13) 

ti t2 
( v(t1) v(t2)) = vJ e 4 (ti+t!ll + f dt 1'f dt 2' q5(t1'-t2') e4 (ti+t2-t 1 ·-~·) 

0 0 
( 4.15) 

If we now take the limit t i.t 2 -+ oo, then we can evaluate the average particle kinetic 

energy 

E = 1hm (v2) 

and by appealing to the equipartition theorem one obtains the normalisation 

E 1hkT = 1hm ..!L => q = 
21 

( 4.16) 

( 4.17) 

We can do more than this by calculating all of the moments of the velocity. In order 

to accomplish this note that the Gaussian distribution has the property that 
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( 4.18) 

( ,,(t 1) rJ(t 2) . . . rJ(t 2,.) ) = :E 5(t; 1-t;,) 5(t;8 -t;..) . . . 5(t;'ln-l -t;'l,,,) 
pem.. 

which leads to the fact that 

( 4.19) 

In the stationary limit, t -+ oo, we can thus define a moment generating function for v 

00 

C(u) = 1 + :E (iu)"' ( v"' )/n! (4.20) 
n=l 

00 

= 1 + :E (iu )2
"' ( v2

"' )/2n ! 
n=O 

= exp -[ u4~q] 

This in turn leads to a stationary probability distribution for the velocity v 

00 

F(v) = ( 5(v(t)-v)) _21 J du C(u) e-;.., 
7r -00 

( 4.21) 

= [ .:L l 1/2 exp - ~ 
?rq q 

m mv [ l 
1/2 2 

= 27rkT exp - 2kT 

This last expression is immediately familiar as the solution of the diffusion equation 
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= --- (4.22) 
BT 2m av 2 

and we have linked the distribution function for velocities, given by solutions of the above 

equation, to the Langevin equation describing the time evolution of a single particle's tra-

jectory, Eq. (4.12). An extremely important point is that the initial particle velocity v0 

which appeared in the Langevin solution has vanished from the stationary probability dis-

tribution. This is the property of ergodicity whereby the final velocity distribution 

assumes the Maxwellian form, Eq. ( 4.21 ), independent of initial conditions. 

The crucial question, however, is whether or not this apparent link between diffu-

sion equation and Langevin equation can be made rigorous. In Appendix B we show that 

to the Langevin equation 

x = -/3 :~ + '1 (4.23) 

where ( 11(t )rJ(t ')) 26(t-t ')there corresponds a Fokker-Planck equation 

(4.24) 

and an eigenvalue expansion yields 

F(x ,t) e-PS + :E f n(X) e->.nt (4.25) 
n=l 

If S is positive definite it can be shown that >.n > 0 for all n ~ 1 and thus F (x, t) con-

verges exponentially to the Boltzmann distribution [95]. The vital point for our calcula-

tions is that Eqs. ( 4.23)-( 4.25) still hold for complex S [96,97], albeit that the condition on 

the eigenvalues, >.n is unknown [98]. This means that we may indeed be able to generate 

configurations with 'complex probability density' e-PS from the associated Langevin 
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equation. 

This brings to light an interesting question. In our example, Eq. ( 4.5), we find a 

Langevin equation 

ae 
= -~sine + at + ,, (4.26) 

which evolves real values of e into complex ones. However, Eq. (4.4) involves integrals 

over real values of e only. How is the integral evaluated over complex values of e by the 

procedure, Eq. (2.19), related to that from which we began? This problem is not restricted 

to our simple model. In SU(N) gauge theories, for example, the Wilson loop operator takes 

values in the range [-1,l] and hence its logarithm is not real. Further, the gauge integration 

measure, [dU], is not over the N2 complex components of the matrix but the N2 - 1 real 

parameters, the gauge field components which become complex under the action of the 

complex Langevin procedure. We shall have more to say about this in Section 4.4. In 

order to reconcile the real and complex integrals consider the following simple contour 

integral argument [99]. 

Let g (z) be an entire function with the property that 

g(z + 211") = g(z) for all z E C ( 4.27) 

Define I (y ) to be the integral taken along a contour parallel to the real axis 

:t +2..-+iy 

!(y) J dz g(z) (4.28) 
:e-+111 

Then consider the contour r shown in Fig. 24. By the assumed periodicity of g (z) 

c D 

J dz g(z) J dz g(z) ( 4.29) 
B A 
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and hence by Cauchy's theorem 

.. +2 ... ..+2..-+111 

J dx g(x+iy) J dx g(x+iy) (4.30) 
2'-ti!/ 

We have thus shown that I (y) is independent of y. 

Now take two functions f (z) and P(z) which satisfy the analyticity and periodicity 

requirements. Then for any Y 

211' y 211' 

J dx f (x) P(x) J dy J dx f (x) P(x) 
0 -Y O 

y 211' ( 4.31) = 

f dx P(x) f dy f dx P(x) 
0 -Y O 

and hence taking the limit Y --+ oo we have that 

211' 

J dx f (x) P(x) J dz f (z) P(z) 
0 s 

J dx P(x) 
J dz P(z) 
s 

(4.32) 

0 

where S is any strip of width 211" extending to ±oo in the imaginary direction. Now cover 

the complex plane with such strips and it follows that 

211' 

J dx f (x) P(x) 
0 

211' 

J dx P(x) 
0 

= 

J dz f (z) P(z) 
c 

J dz P(z) 
~ 

(4.33) 

and the mysterious question of how the real and complex integrals are related is solved for 

periodic functions - both give the same value. 

In conclusion, we have seen in this section how it may be possible to calculate 

moments of complex 'probability distributions' by use of the associated (complex) 
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Langevin equation. Further, for periodic functions it has been shown that correlations can 

be measured in the complex plane by direct analytic continuation. The only open question 

is whether the exponential convergence of the real Langevin equation still holds. This 

question should be easily resolved by numerical simulation since the alternative is 

exponential divergence. 

4.3 - Abelian Lattice Gauge Theory 

As a first step in understanding and implementing these techniques we will study 

U(l) lattice gauge theory in two and three dimensions [99). Although extremely powerful 

techniques already exist for Abelian models [100], we begin our investigation here since 

the exact solubility of the U(l) theory in two dimensions is extremely helpful allowing 

direct comparison of Monte Carlo results with those obtained analytically. 

The particular correlation function to be measured is that introduced earlier, namely 

the correlation between a Wilson loop, W, and a test plaquette, P. As discussed in Section 

3.5 this corresponds to the squared electric field. The relevant path integral is 

(W·P) = 
J [de] eitt161eP /8m6mew ePS 

I [de] /8 m6mew ePS 
(4.34) 

where SmEW and S1EP are used to pick out the links occurring in the loop and plaquette 

respectively. The action S is the conventional Wilson action 

s = cose µJn) (4.35) 
p1aq.,,tte1 ... 
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and (} "" is the path ordered plaquette angle 

(} µv = (} µ(n) + (} 11 (n+;1 )- (} µ(n+i/)- (} 11(n) (4.36) 

Thus the Langevin equation that must be solved is for the 'probability distribution' 

:l(d-1) 

{J ~ c011(8 m+E;) + i6mew8 m 
P((} m) d(} m = e J=l d(} m 

(ind dimensions) where E; is the jth 'environment' t associated with link m. 

which leads to the Langevin equation 

= 

2(d-l) 
E cos((} m+E;) 

-/3 -'2('"""~=-~1-)----- + iomew + VlrJ(l) 

E sin((} m+E;) 
j=l 

(4.37) 

(4.38) 

As has been observed elsewhere [IOI] there are numerical problems with this sort of 

equation. In particular the trigonometric functions grow exponentially as distance from the 

real axis increases causing numerical overflows. Previous authors [96,102] have just trun-

cated paths which wandered too far from the real axis but this approach is unsuitable in 

lattice gauge calculations where considerable computation is required to generate lattice 

configurations - discarding an entire system when the imaginary part of one of the links 

becomes too large would be unworkable. 

Consider, however, a generalised Langevin equation 

h(€,t) + g(€,t) rJ(l) (4.39) 

with the first-order discretisation 

t The 'envirorunents' of link m are defined to be the plaquette angles of the 2(d- l) plaquettes containing 
that link with fJ m subtracted out. 
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(4.40) 

The criterion for accurate numerical simulation of this equation is that the time step 

St must be chosen to satisfy 

(4.41) 

i.e., the deterministic 'drift' force must be smaller than the stochastic force. 

In our numerical simulations, therefore, the time step is dynamically chosen to 

satisfy this constraint. Paths still exist which travel far into the complex plane, since the 

system is ergodic, but they are now evolved in a controlled manner and remain within a 

bounded area rather than heading off to infinity. 

The dynamical time-stepping algorithm is as follows. Say that we wish to evolve the 

system from Langevin time T to T +ST. Denote by T; E [T,T +ST] the Langevin time 

to which variable i has evolved. Then a lattice update is a series of sweeps through all the 

sites updating by St; chosen according to 

St;= min( T+ST-T;, le,.) 

where t e,. is defined by (.6. is some predefined value, let us say 0.1) 

I g ({(t )) I 2 .6.2 

lh({(t))l 2 

(4.42) 

(4.43) 

This constrains the individual links to evolve according to the constraint, Eq. ( 4.41 ). The 

procedure is repeated until all variables have been evolved to T + ST. 

This raises an interesting issue for the execution of this algorithm on parallel com-

puters. A concurrent implementation could have load balancing difficulties since some of 

the links require more updating 'hits' than others. Our experience, however, shows that the 
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areas where this is the case are few in number and small in size. Thus the extra calculation 

required is small by comparison with the total amount of work on any update. It is also 

possible, by suitable choice of the input parameters 6T and .6.., to make small the number 

of extra 'hits' required. Furthermore, the areas where extra cycles must be spent tend to 

move fairly slowly through the lattice and so we expect that 'dynamic load-balancing' 

algorithms [103] should be reasonably effective. 

The results of simulations in two dimensions are shown in Fig. 25a) and b ). They 

represent the correlation of a plaquette with a 5 x 5 Wilson loop. The theory is analytically 

soluble in two dimensions, yielding the following values depending on whether or not the 

test plaquette is inside or outside the current loop. 

( W.P )iruide 
lo(.8) l 

= 
11(.8) f3 

(4.44) 

( W.P )a.uide 
11 (.8) 

= 
lo(.8) 

(4.45) 

A periodic 10 x 10 lattice was used, with 6T = .01, .l:l. = .l. At each value of f3 about 

3000 sweeps were carried out for a total evolved Langevin time of 30. This calculation 

was previously carried out (by a similar method) [104] for large values of f3 and our agree-

ment with those results is good. At these larger values it is observed that the configura-

tions depart only slightly from the real axis (i.e., the links values 0 i have only small ima-

ginary parts) but as f3 decreases these excursions become larger and larger, thus necessitat-

ing the use of the algorithm described above. 

In Figs. 26a) and b) are shown the results of simulations in three dimensions. This 

theory is confining for all values of f3 [105] and we chose to calculate at f3 = 2.0, where the 

string tension has a significant value [ l 06] and one might expect to find a non-trivial flux 

tube. The values shown are for the squared parallel electric field density - i.e., for 
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plaquettes lying in the plane of the current loop and we do indeed see an electric flux 

tube. Again we work with ST= 0.01 and t::,,. = 0.1. The data for the 5x5 loop corresponds 

to about 5000 sweeps through the system or a total elapseq Langevin time T = 50 while 

the data for the 7x7 loop has slightly fewer sweeps, around T = 40. In both cases the rela-

tive errors are around 1-2 % and it is encouraging that the Langevin time required for 

equilibration is fairly insensitive to the size of the current loop involved since this means 

that with only modest computer resources one might hope to study the behaviour of the 

theory at quite large distances. 

4.4 - Non Abelian Lattice Gauge Theory 

Having discussed in the previous section the application of the complex Langevin 

equation to Abelian theories, we tum in this section to the more interesting non-Abelian 

cases. Obviously it is crucial to discover whether or not the success of the technique in the 

U(l) theory extends to other cases. 

As a guide to understanding the problems involved we study SU(2) and the integral 

L(fi) = 

4(u+u-1) 

f[dU] (tr U)2 e 4 

which leads to the probability distribution 

U E SU(2) 

P(U) [dU] 
4(U+u-1) 

tr U e 4 [dU] 

(4.46) 

(4.47) 

This is of similar form to the loop-plaquette correlation dis_cussed in Sections 3.5 and 4.1, 

but restricted to the case where the lattice has been replaced by a single link. (Analogous 
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to our model problem, Eq. (4.4).) 

Using the identity 

xJ. (U) = XA (U) + 1 (4.48) 

for the traces of group elements in the fundamental (F) and adjoint (A) representations 

one can calculate 

L(/3) = (4.49) 

To address the problem of the distribution function (4.2) one first constructs the 

Fokker-Planck equation restricted to the SU(2) group manifold. To do this introduce 

covariant derivatives, V,., which satisfy the same commutation relations as the group gen-

era tors 

( 4.50) 

and which can be defined in terms of Pauli matrices, a,., by 

U E SU(2) ( 4.51) 

In terms of these derivatives the Fokker-Planck equation corresponding to the distri-

bution P(U) = e-Ps(u) is 

ap(~,t) ~ v.v.p(U,1) - v. {-p(U,t)PV.S(U)} (4.52) 

and following [ l 07], this equation is solved by introducing a discretised Langevin equation 

for the group elements 



- 76 -

U(t+St) = U(t) exp( St p. + ../26i E) (4.53) 

where, to first order in St, 

(4.54) 

and f'/a is a vector of independent normal random numbers with mean zero and unit vari-

ance. 

In the case where S(U) is real, both p. and E are traceless and anti-hermitian which is 

sufficient to guarantee that elements evolving according to Eq. (4.53) remain on the SU(2) 

manifold. However, when S(U) is complex, the matrices p. and E remain traceless, but are 

no longer anti-hermitian. This results in the extension of the SU(2) manifold to SL(2,C). 

The inverse of a matrix is still a well defined quantity since all have unit determinant and 

the first two relations of Eq. (2.2) still make sense, but it is no longer possible to identify 

u-1 with ut. (This is the reason for specifying the inverse explicitly in Eq. ( 4.46).) 

Taking these factors into account we can write the discretised Langevin equation 

corresponding to the distribution Eq. ( 4.4 7) 

U (t +St) = U (t) exp {-1h i t5t x(ft)·q + ./6tf2 i f'/"<:1} (4.55) 

where 

= {f.
4 

+ l } tr ((u - u-1
) C1a] 

tr(U + u-1) 
(4.56) 

In Fig. 27 are shown the results of simulations of this equation. Obviously the 

dynamics are faulty at low values of {3. Comparing the distributions Eqs. ( 4.3 7) and ( 4.4 7) 
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the most obvious difference is that the latter has a zero corresponding to a non-analyticity 

in the complex action, S(U). To study the effect of this zero consider a much simpler 

integral which again admits a simple analytic value. 

,,. 
fdo cos20 efJcoefJ 

K(/3) 0 
,,. 
f dO cosO efJcoee 
0 

We thus attempt to model the distribution function 

P(O ) dO = cosO efJcoefJ dO 

1 
{3 

( 4.57) 

(4.58) 

Since 0 is at this point a purely real variable the conditions of the segregation 

theorem apply [108, appendix C] which means that the interval [0,11"] is divided up into 

two non-communicating regions [0,1h1r) and (lh1r,1r]. This in tum means that solutions of 

the associated Langevin equation 

ao 
at -(13 sinO + tanO ) + v'2 11(t) (4.59) 

move on trajectories which are confined to whichever of the pieces contains the starting 

value. On these regions the motion is still ergodic and so time averages of 0 (t) generate 

results which correspond to the restriction of the integrals to the appropriate interval. 

However, we can try to defeat the segregation theorem by making an analytic con-

tinuation of the variable 0 to the complex plane as previously. This is trivial since the 

range of integrals in Eq. ( 4.57) can be extended to [0,211"] and then the construction of Eqs. 

( 4.31)-(4.33) holds. Having done this one finds the complex Langevin equation to be 

solved is 

az 
at -(13 sinz + tanz) + v'2 11(t) (4.60) 
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which has the same form as Eq. ( 4.59) but for complex z. The conditions of the segrega-

tion theorem do not now strictly apply but another problem exists. In Fig. 28 are shown 

the trajectories of the deterministic part of Eq. ( 4.60) obtained by setting 11(t) to zero. As 

can be seen the paths are strongly attracted to the real axis and it is simple to show that 

once there they never leave. Numerically this means that our trajectories are drawn 

towards the real axis and eventually when the resolution of the floating point numbers is 

exceeded the paths collapse to the real axis, never to leave. The conditions of the segrega-

tion theorem then take effect and the situation discussed in connection with Eq. ( 4.60) 

holds. 

To see this in practice we have plotted, in Fig. 29, the results of our simulations with 

Eq. ( 4.60) together with the analytic result, Eq. ( 4.57), and a numerical estimate of the 

integral 

rr/2 

I d (} cos2(J e/Jcoafl 

0 

rr/2 

I d (} cos(} e {Jco•fl 

0 

which is the predicted outcome according to the segregation theorem. 

( 4.61) 

As can be seen our results are in agreement with the segregation theorem and exami-

nation of the complex parts of the variable z show that it rapidly becomes zero as the 

simulation proceeds. 
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4.5 - Conclusions and Prospects 

In the previous section we tested Complex Langevin methods on several non-trivial 

theories, meeting with great success in the U(l) problems but less in the non-Abelian 

models. Before discarding the method as "Just another technique which only works in the 

Abelian case" we should examine carefully the reason for the failure. 

In the Abelian case the Langevin force due to the Wilson loop was of constant mag

nitude independent of the actual link value, and so had some effect at every update. In the 

non-Abelian case, however, the Langevin force due to the loop was zero along a certain 

path which we shall call the "critical trajectory", and to which the links were strongly 

attracted. Furthermore, along this critical trajectory the 'probability density' W e-flS, had 

zeros. 

If we consider the simple case where the links are constrained to evolve only along 

the critical trajectory then the segregation theorem holds rigorously and predicts the parti

tioning of the space into non-communicating disjoint sectors upon which, individually, the 

motion is ergodic. 

If we were to consider the continuum time evolution of the Langevin paths, with the 

initial position chosen to lie off the critical trajectory then all would be well. In particular 

it is possible to prove that the links reach the critical trajectory with probability zero. This 

is reasonable since the path is attractive for less than its entire length and the strength of 

the attraction becomes arbitrarily weak as one approaches thus allowing the fluctuating 

force to kick the link into a region where the critical trajectory is (strongly) repulsive. 

Thus the segregation theorem can be defeated and the Complex Langevin sample paths 

are ergodic, over the entire complex plane. 

Unfortunately our numerical studies cannot be performed in the continuum and as a 

result our paths are indeed attracted arbitrarily close to the critical trajectory. When there, 

the limited resolution of the standard representation of floating point numbers limits the 
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length of time within which the fluctuating force can 'kick' the path away since the ima

ginary parts of the variables become zero after a fairly short while. As a result we 'fall' 

into a situation where the segregation theorem effectively holds and our simulations are 

spoilt. 

However, there still remain encouraging features of our calculations. While it is true 

that the correlation we set out to measure suffers from the above described malaise, this is 

not necessarily true for all lattice observables. In particular; 'probability densities' without 

zeros will be immune from segregation, as will those whose stable paths do not correspond 

to the restriction to the real Langevin manifold. As examples of problems which have 

actually been solved with the Complex Langevin technique we can cite the chiral SU(2) 

model in an external field [ 109] and the extremely interesting finite baryon number simu

lations [ 11 O] both of which have yielded interesting results. It is also true, of course, that 

the Abelian models do not seem to suffer from segregation at all, and so are amenable to 

this treatment. 

As a final comment we consider a possible way of def eating segregation for our flux 

tube observables. As stated, in the continuum, paths collapse to the critical trajectory with 

zero probability, so it has been suggested [111] that one might perform extremely accurate 

simulations of paths which approach this trajectory in the hope that it may be possible to 

find examples which do evade the segregation problem by tunneling into another sector. 

These paths could then be 'tacked' onto more realistic simulations whenever a variable 

came too close to the critical trajectory hopefully restoring the ergodicity property. 

In conclusion the complex Langevin equation is a potentially very powerful tool 

which may allow observables to be measured at considerable lattice separations. Its viabil

ity in several circumstances has already been demonstrated, and while there appear to be 

numerical difficulties in some cases, it may ultimately prove possible to circumvent even 

these. 
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CHAPTER 5 

Heavy Quarks and Dynamical Fermions 

In previous chapters the quenched approximation to full QCD has been discussed, in 

which the effects of light quark pairs are neglected. In this chapter we presented a prelim

inary case study of an algorithm which includes such effects. 

The first question to be answered is why bother with the full theory when the 

quenched approximation apparently works so well ? In particular, a powerful argument 

was outlined at the beginning of Chapter 3 supporting the use of this approximation. 

Furthermore our heavy quark potential and energy densities provided excellent qualitative 

understanding of heavy quark systems and several calculations of the quenched mass spec

trum [80,112] have yielded quite good agreement with experimental data. Obviously the 

relevant question is whether or not the full theory can make up for the small discrepencies 

between the quenched approximation and experiment. For example, it was suggested in 

Section 3.7 that vacuum polarisation effects might account for the apparent discrepency 

between the Coulombic strength of our heavy quark potential and that required 
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phenomenologically. A second effect we might expect to see is the weakening of the string 

tension at large separations due to string breaking and meson pair creation. 

A further motivation for the study of dynamical fermions comes from other areas of 

QCD beyond the interquark potential. For example the quenched theory has a first-order 

deconfinement transition at finite temperature due to the breaking of the Z3 symmetry on 

the timelike links of the lattice [ 113]. The inclusion of dynamical fermions breaks this 

symmetry explicitly and the transition becomes that from the hadronic confined phase to a 

high temperature quark-gluon plasma [114]. The study of the order and temperature of 

this transition are of central importance in the evolution of the early universe and accurate 

calculations of the deconfining temperature are becoming especially important since prel

iminary simulations suggest that the critical temperature might be attainable in heavy ion 

collisions. 

Having discussed the importance of these calculations the next question is how they 

are to be realised. The problems encountered in simulating the f ermionic action are well 

known. In particular the derivative appearing in the Dirac equation leads to species dou

bling such that the naive action for a single flavour becomes, on the lattice, 2d flavours (in 

d dimensions). The two common solutions to this problem both have weaknesses. The Wil

son prescription [8, 115] adds to the action a term which breaks the degeneracy of the dou

bled flavours, with all but one becoming infinitely massive when the continuum limit is 

taken. Unfortunately the extra term breaks all continuum chiral symmetries. The Kogut

Susskind scenario [ 116] thins out the flavours by putting different spinor components at 

different lattice sites. This approach maintains a continuum chiral symmetry, but only 

reduces the number of flavours by a factor of 2d/2 • 

The deficiencies of the two methods exhibit the Nielsen-Ninomiya [117] 'no-go' 

theorem which effectively prohibits both a single flavour and continuous chiral sym

metries in a local lattice theory. Methods by which this theorem can be circumvented are 
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currently under active study since it is expected that unified theories will be chiral. Two 

possible solutions are the non-local SLAC derivative (118] and the more recent suggestion 

[119] which involves a long range sum over string configurations in the Hamiltonian. At 

this point the former solution seems to be intractable numerically and little investigation of 

the second has been performed. We view this field as one currently developing and shall 

have no more to say about it. 

A second difficulty with dynamical fermion simulations is best seen by examining 

the full QCD partition function after integration over the fermionic degrees of freedom 

and application of the result ( 120] 

Det M = J [d</>][d;p] e~~1 <1> (5.1) 

to replace the Grassman fermionic fields by bosonic 'pseudo-fermions', </>. 

Z = f £d </>] [d ;p] [dU] exp (.BF µv FJJV ~ fQ-1</>) (5.2) 

(Q is some lattice representation of the Dirac operator /?) + m .) The problem lies in the 

fact that the matrix Q is not positive definite and so a simple probabilistic treatment is not 

possible. This situation is exactly analogous to that examined in Chapter 4 and suggests 

the use of the Complex Langevin equation. However, rather than fence again with the 

segregation theorem, we can make use of a simple property of the Q matrix to replace Eq. 

(5.2) with 

z (5.3) 

in which we have made the action positive definite at the expense of a further doubling of 

the number of fermionic species. This turns out to be evanescent, however, since Q is a 

local operator coupling only nearest neighbour lattice sites which means that QtQ couples 

only second nearest neighbour sites. We make the particular choice (121] 
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Q:t' (5.4) 

where x ,y denote sites in the lattice, A ,B are colour indices and the factors a.,,.(x) are the 

spin diagonalised gamma matrices defined by 

a.o(X) = (-1)"'0 (5.5) 

a.1(X) (-1)"'0-k1 

a.2(X) = (-1 )"'o-k i-k2 

a3(X) = (-1 )"'o-k i-k2-ks 

For this particular representation it can be shown [122] that no nearest neighbour cou-

plings remain and the number of flavours can be halved by setting 4> = 0 on the odd parity 

sites, defined by the sign of (-1)"' 1-k:i+zs-k'. 

Having thus decided on a f ermionic representation with requisite symmetries and 

species, it remains to decide upon an algorithm by which field configurations will be gen-

erated. Several 'exact' algorithms exist [123,124] in the sense that they involve no sys-

tematic error in the limit of infinite CPU power, but the time taken to perform calcula-

tions with these methods typically grows as some large power of the lattice volume. This 

renders them effectively useless on the large lattices required to reproduce continuum 

physics. 

There do exist, however, several 'approximate' algorithms which are computationally 

more attractive but involve systematic errors even in the infinite CPU limit. A question of 

crucial importance, therefore, is the quantification of these errors. Zwanziger has theoreti-

cally derived the systematic error of a particular algorithm [ 125] and numerical evidence 

[ 126] suggests that plausible arguments regarding the error of the pseudof ermion algorithm 
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may be correct. A careful study of some of these questions has been performed by 

Weingarten [127]. In the first section of this chapter we discuss in detail the systematic 

errors associated with the discretisation of the Langevin equation which is then used in 

Sections 2 and 3 to simulate the full theory, QCD with dynamical fermions. 

5.1 Systematic Errors 

The question of which f ermionic algorithm to use is by no means clear-cut and in 

choosing the Langevin method one has passed over two common alternatives. The 

pseudo-fermion method [128] has been widely applied to all aspects of QCD [129,130] 

with reasonable quantitative success. Basically the method is a Metropolis update with 

matrix elements of the inverse Q-1 calculated by means of a second Monte Carlo. It is this 

which makes the method unappealing for while the systematic errors associated with the 

Metropolis algorithm are calculable, the errors due to the finite execution of the second 

Monte Carlo are uncalculable and quite hard to estimate. The microcanonical method, dis

cussed briefly in 2.3 is currently quite popular but its lack of explicit ergodicity represents 

a worrying question. The 'hybrid' algorithms, which are explicitly ergodic variants, have 

been shown by Duane [30] to be closely related to the Langevin process and so we expect 

that lessons learned from the latter will be of relevance in their study. 

As further motivation for studying the Langevin equation, recent work [ 131] suggests 

that additional computational acceleration can be achieved by solving the equations of 

motion in momentum space where separate time steps can be assigned to the high and low 

frequency components. The exact status of these results is unclear since the gauge degree 

of freedom typically mixes high and low frequencies but preliminary experiments in which 

the gauge is fixed are quite interesting [ 132]. 
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In order to assess the systematic error of the Langevin equations [133] we first con-

sider the simplest case of a quadratic action among real scalar fields ¢1• 

S (¢) = 1h ~ ¢1 M1; <P; 
i,; 

to which there corresponds the Langevin equation 

as --- + ,,, a¢, 

(5.6) 

(5.7) 

in which the ,,,(t) are independent Gaussian random variables. This equation can be 

solved exactly, yielding 

1' 

<P(r) = e_,,M ¢(0) + J ds e-<r-•)M 11(s) (5.8) 
0 

in an obvious vector notation. Since we are interested only in the long time equilibrium 

distribution we can take the origin of r time to -oo,, giving 

1' 

(5.9) 
-00 

Any equilibrium correlation function can now be computed. For instance 

( ¢1¢; ) = ¢1(r)¢;(r) (5.10) 

1' T 

= ~ J ds 1 J ds2 [e-(r-•i)Mla [e-(r-•..JM];.1: '71(s1)'7.1:(s 2) 
A:,I -oo -oo 

1' 

2 ~ J ds [e-(r-•)M]il: [e-(r-•)M];.1: 
A: -00 

1' 

= 2 J ds [e-(r-•)2M]1; 
-00 
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where the bar denotes averages over realisations of the noise f'/. It is not difficult to show 

that all correlation functions are reproduced exactly. A proof for general (i.e., non-

quadratic) actions is given to all orders of perturbation theory in [134]. 

To implement the Langevin equation numerically, one discretises r, and this intro-

duces a systematic error which we now determine. The simplest discretisation of Eq. (5.7) 

is 

as . ~ 
¢i(n+l) = ¢i(n)- Sr a¢i + v26rri(n) (5.11) 

(5.12) 

where n labels the step number. By direct analogy to Eq. (5.9) the solution of this equation 

is 

¢(n) 
n-1 

I; (1 - SrM)"-1-• ~r(s) (5.13) 
•=-oo 

and hence the discrete two-point function is 

( ¢i¢;) = ¢i(r)¢;(r) (5.14) 

n-1 n-1 n-1-• n-1-• 
= I; I; (l-6rM) 11 

1 (l-6rM);1o 1 2 6rr1(s 1) r1o (s 2) 

•1=-00 •1=-00 
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Thus the relative error of the two-point function for finite time step or goes at worst 

as 1h6r>..max where >.max is the maximum eigenvalue of M. This same result holds for all the 

n -point functions. In addition this holds for arbitrary matrices M, e.g., for long or infinite 

ranged interactions. The particular example of a quadratic interaction which interests us 

is, of course, the f ermionic interaction discussed previously 

M = [ (/}+m) (/}+m )t i-1 (5.15) 

whose eigenvalues are of the form 

p m2a2 + 1t2 (5.16) 

where the lattice spacing a appears explicitly so that the bare quark mass is measured in 

fixed physical units. it
2 is a positive quantity which depends upon the particular gauge 

fields since /} is a covariant derivative. As we approach the continuum limit, taking 

a ..__. 0, the relation between a and the correlation length, measured in lattice units is 

1 e,.., -,,. a (5.17) 

where the subscript refers to the lightest particle in the theory - for QCD this is the pion. 

Thus the minimum eigenvalue of (/}+m )(/}+m )f varies with the lattice correlation 

length as 

1 
Pmin,.., e: (5.18) 

up to logarithms (The bare mass in Eq. (5.16) moves logarithmically as a ..__. 0). Our bound 

for the relative error of discretising the Langevin equation is then 

(5.19) 
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and so, as the continuum limit is taken, Sr must also approach zero as e;-2 or v-1/ 2 where 

V is the total lattice volume. This means that the overall speed of the algorithm scales as 

v-3/2 since there is a trivial linear dependence on the volume arising from the necessity of 

updating each degree of freedom once per update. It is also important to note that higher 

order discretisations of the Langevin equation lead to higher order errors, i.e., an nth order 

discretisation leads to errors of order f". 

At this point we should note that all the measures calculated so far have been for 

quadratic actions and that while the fermionic contribution to the QCD path integral is of 

this form, the pure gauge action is not. In order to study this we must therefore examine 

the behaviour of f in perturbation theory about the quadratic case. Since the algorithm 

which we will eventually adopt does not require this, however, we will relegate its discus

sion to the appendix. 

5.2 A Mixed Algorithm and Finite Temperature QCD 

Having, in the previous section, discussed the systematic errors introduced by the 

discretisation of the Langevin equation we proceed in this section to test its performance 

on a much studied problem, that of the deconfining temperature of QCD in the presence 

of four flavours of light fermions. In studying this problem our goal is not a super accurate 

determination of the transition point, nor is it a comprehensive analysis of the order of the 

transition both of which have been discussed elsewhere [ 135, 136]. Rather we aim to study 

the feasibility of studying the full theory with our algorithm. 

The conventional Langevin approach to this problem would be to take the action 
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s f3 F,,,,, F'"' + ~ (QtQ )-1 <fi (5.20) 

and simulate to first order in the timestep Sr the Langevin equations for the gauge fields, 

U, and the pseudo fermion field </J. This is the approach taken successfully in [ 136] and 

which the analysis of the preceding section tells us has a systematic error proportional to 

Sr. 

We prefer to work to second order in Sr using the algorithm of [137] which yields the 

discretised equation of motion for the <P fields 

(5.21) 

where ,., is a vector of Gaussian random numbers with zero mean and unit variance and 

</J 1
•
2 are defined by 

</J1 = 2 Re (Q Qt)-1 </J(t) 

q,2 = 2 Re (Q Qt)-1 (</J(t) + St q,1 + ./25i '1) 

(5.22a) 

(5.22b) 

Since this requires the inversion of QtQ twice per iteration the method runs approxi

mately twice as slowly as the first-order method. (The matrix inversion is the dominant 

part of the calculation.) For consistency we should also work to second order for the 

gauge field evolution but do not take this approach for two reasons. Firstly there is little 

agreement in the literature as to the exact form of the second order equations for the 

gauge fields. For example the analysis of Drummond et al. [107] differs in detail from that 

used in [ 131] and also the author's derivation. Secondly the algorithm is rather slow -

requiring the exponentiation of 3x 3 complex matrices. As-a result of these problems we 

make the novel step of replacing the Langevin evolution of the gauge fields with a Metrop

olis update. 
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At first sight this might seem a strange approach but it has been shown that for small 

hitsizes, 5U, the Markov process of the Metropolis algorithm converges to that of the 

Langevin process with stepsize or via the identification [ 138] 

6 5r ,.., (5U)2 (5.23) 

Thus the important question becomes the tuning of the relative evolution rates of the 

gauge and fermionic fields so that approximate equilibrium is maintained. We will return 

to this point later in this section. 

So far all the approximations made have, in principle, calculable systematic errors. 

For computational simplicity, however, we make one further approximation most easily 

envisioned by considering the linearised change in the gauge action due to a gauge field 

trial move U -+ U + 5U 

(5.24) 

This quantity involves the fermionic propagator (QtQ>-1 ¢>(t). Since Q = Q(U) this quan-

tity varies as the gauge fields themselves evolve during the sweep. However, we chose to 

evaluate it once at the beginning of each sweep and to treat it as a constant for the entire 

update cycle. This unfortunately leads to a violation of the detailed balance constraint and 

will lead to a systematic error in the Monte Carlo of which we have little a priori quantita-

tive understanding. We know, however, that the error introduced is of order (5U) and 

could thus repair some of the damage by updating the propagator to this order at each 

gauge update, a procedure analogous to that employed in [ 123 ]. Instead we chose to 

merely monitor the size of the error by calculating the quantity 

K = 'E ef>(n )* ef>(n) (5.25) 
.;u, n 
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for which we can trivially obtain the identity (For thinned Kogut-Susskind fermions) 

K _ tr (QtQ) = 3(2 + m2 ) (5.26) 

where m is the bare fermion mass and the factor of 3 arises from the colour trace. The 

deviations of this parameter thus allow us to monitor the approximate magnitude of the 

errors incurred due to detailed balance violations in the gauge field update. 

Our first priority is to find a suitable range of parameters for our 'mixed' algorithm. 

In order to facilitate this we studied the theory on a small, 44
, lattice at a bare mass of 

m = .1 which is the value at which we are predominantly interested in working. Further

more we fix er to be .01 which value was successfully used in the previous (first-order) 

approach [ 136] and concentrate on the value f3 = 6.1 chosen for comparison with the 

quenched calculations of Chapter 2. The remaining free parameters, therefore, are the 

gauge field hitsize and the accuracy to which we invert the matrix QtQ (and hence calcu

late the propagator) which is controlled by the number of iterations of the conjugate gra

dient solver employed [ 139]. The hitsize is quantified by making gauge hits of the form 

u - u· = g u (5.27) 

where g is an SU(2) group element chosen to lie in one of the SU(2) subgroups of SU(3) 

(Compare section 3.1) and which are weighted towards the identity by the factor 

e 1/2 atr (/ (5.28) 

Large values of a thus favour matrices close to the identity and slow down the evolution 

process according to Eq. (5.27). Our measure of the success of each choice is taken to be 

the parameter K introduced above. 

The results of these simulations are shown in Figs. 30a) and b) where each parameter 

in tum is held fixed and the other varied. Also shown is the value K = 6.03 which is the 
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correct value for this mass. The lattice for which we performed 50 conjugate gradient 

iterations at a = 150 was thermalised for a total Langevin time of r = I 0, i.e., I 000 sweeps 

and then each subsequent lattice was derived from this one. In each case 200 sweeps were 

performed for thermalisation and then measurements were made on every sweep for 

another I 00 cycles. From this experiment we see that a = 150 together with 50 conjugate 

gradient sweeps seems to give reasonably good agreement with the required result. We 

must note, however, that the lattice volume is obviously going to play a role in scaling 

these parameters as predicted in the previous section. 

As stated previously, our first goal is to study the performance of this algorithm in 

calculating the deconfinement transition with light fermions. To this end we worked on 

an asymmetric 83 x 4 lattice using the thermal Wilson line as the order parameter for the 

transition. The results are shown in Fig. 31. The system was thermalised at f3 = 5.2 by per

forming 1000 sweeps with parameters chosen as above. 500 sweeps were then performed 

at each of the measured f3 values with 200 discarded for thermalisation and subsequently 

measurements made every tenth sweep. 

As can clearly be seen there is a swift crossover from the low temperature confined 

phase to the higher temperature quark-gluon plasma. This picture is consistent with that 

obtained by several other calculations and validates the correctness of our algorithm. 

Note that the errors shown are purely statistical in nature and no estimate has been made 

of the systematic errors introduced by our calculation. These are actually quite significant 

- for example the values of ( ~<P) measured are typically around 5.0 - 5.5 rather than the 

expected 6.03 for fermions of mass 0.1. In order to examine the origin of this effect we 

increased to 120 the number of conjugate gradient cycles used to form the propagator and 

repeated the calculation at f3 = 5.15. The observed change was negligible and leads us to 

suspect that the major source of inaccuracy is caused by the detailed balance violations 

associated with the assumption that the f ermionic propagator is constant throughout a 
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single lattice update. 

In this section we have introduced a new type of mixed Langevin/Metropolis algo

rithm for the study of the properties of dynamical fermions on the lattice. The major 

sources of error have been discussed and some of these effects have been quantified by 

trial simulations on small lattices. Finally we have verified our method by repeating a stan

dard calculation - that of the deconfinement temperature. With these facts in hand we turn 

in the next section to a more interesting calculation of the interquark potential in the pres

ence of light fermions. 

5.3 The Mesonic Potential Revisited 

In this section we would like to conclude our preliminary investigation of our algo

rithm by reexamining the static quark potential. In doing this we are initially interested in 

observing qualitative effects such as the tendency for the flux tube to break. This reduces 

the value of f3 at which deconfinement occurs although it does not necessarily imply that 

the physical temperature also decreases since there is no reason to expect that the AL 

parameters both with and without dynamical fermions should be the same. In fact mass 

spectrum calculations seem to indicate that these values dfff er by as much as a factor of 

two [ 130]. An alternative encouraging sign would be to find the changes discussed in sec

tion 3.7, viz., the modification in the Coulomb interaction strength towards the value 

predicted from Charmonium experiments, the string tension remaining approximately con

stant. Unfortunately these two indicators that our method correctly accounts for the fer

mion pairs are mutually exclusive - either the string tension remains constant at around .18 

Ge V2 or one finds that deconfinement has occurred and the string tension vanishes. 

The calculation we have attempted can not be said to be definitive. Due to the 

extensive computational requirements of these calculations we have made no attempt to 
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extrapolate to zero quark mass but have taken the value m = .1 commonly used in fer-

mionic calculations. (On the basis of the quenched approximation this yields quarks with 

masses around 200 MeV at (3 = 6.0). The second constraint, that of computer memory, res-

tricted us to a medium size lattice, 122 x 162 t. As a result we cannot consider our results 

conclusive, but rather indicative of the response of the qq system to the dynamical fer-

mions. We do expect, however, that a new generation of supercomputers will be able to 

perform accurate numerical simulations. This point is considered again in the next 

chapter. 

As for the calculation that was carried out, we worked at (3 = 6.1, the lowest value 

for which we have data in the quenched approximation. The choice of this value, rather 

than (3 = 6.3 which was preferred in the baryonic calculations due to less contamination 

by discrete rotational symmetry, was motivated by our smaller lattice volume. If one takes 

the deconfinement temperature from the 83 x 4 lattice used in the previous section and 

scales it according to the two loop perturbation theory result for four flavours of quarks 

8i2(3 4i2(3 [ l 231/625 [ l 
AL = a 25 exp - 25 (5.29) 

it is found that the critical temperature on our 122 x 162 lattice should be (3 ~ 6.2. Obvi-

ously there is some question as to the validity of this asymptotic formula over the large 

range of (3 involved, but the best we can do (and still hope to compare to our previous 

data) is to chose the lowest value. 

As mentioned above the quark mass was taken to be m = .1 and the Langevin step-

size 6r = .01. On the basis of the previous calculations the Metropolis hitsize parameter 

was taken to be a = 150 and 80 conjugate gradient iterations were performed in the 

t These rather unusual dimensions result from a combination of two factors. Our machine has 128 
processors and the thinning algorithm requires that each processors sublattice have 'even' size in each 
dimension. 
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calculation of the f ermionic propagator. This value of a is obviously too small for accurate 

quantitative results given the larger lattice volume used in this calculation but in the spirit 

of the exploratory nature of this study we pref er to monitor systematic errors by looking at 

the parameter K, Eq. (5.25). 

With the above set of parameters the lattice was thermalised from a cold start for 500 

cycles with or = .02, and a further 500 sweeps with or = .0 l, for a total elapsed Langevin 

time of 15. We then carried out a further 700 sweeps measuring Wilson loops of sizes l x 1 

to 6 x 12 after every tenth. Since the fermion propagator couples, in principle, all degrees 

of freedom the variance reducing trick employed in the quenched calculations (Section 3.1 

and Ref. [43]) cannot be applied and as a result we were unable to extract any significance 

from the data at R = 6. The lattice potentials extracted at the remaining R values are 

shown in Fig. 32 together with the equivalent values for the quenched approximation. The 

errors shown here are purely statistical in nature and make no account of the detailed bal

ance violations. The typical values of the parameter K are of order 5.8 rather than the 

exact value 6.03 and so we estimate a further 5 % systematic error from this source. 

The expected 'rolling over' of the potential at large R due to screening is clearly 

observed. Fitting to the conventional linear + Coulomb form, Eq. (3.15) one finds that 

Q(4) = - .26 ± .02 

vJ4l = .64 ± .02 (5.30) 

K(4l = - .002 ± .005 

where the superscript denotes the number of flavours. Since the scaling properties of these 

quantities is less well known than in the quenched case we have not cast them into dimen

sionless form but merely extracted them from the bare lattice potentials. That we have 

crossed over into the deconfined phase is clear from the value of the string tension. Given 
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our earlier comments this is not entirely unexpected and obviously renders interpretation 

of the Coulomb strength somewhat unclear. 

In conclusion, we can claim that this algorithm has proven quite successful in simu

lating the properties of dynamical quarks. Obviously much work remains to be done both 

in assessing the systematic errors associated with the violations of detailed balance and in 

extending the range of problems examined. The former is an interesting project in its own 

right and is certainly within the scope of current machines. As for the latter, a useful task 

would be to pin down the exact deconfinement transition on a lattice of our size and it is 

interesting to note in this context the clarity of the deconfinement signal given by our 

string tension measurement. Conventionally, as in the previous section, one searches for 

this transition using the thermal Wilson line as order parameter but given the fact that the 

fermionic action automatically breaks the associated symmetry it might indeed be sensible 

to use the string tension in this search. As for detailed quantitative results from calcula

tions with really light( ...... 10 MeV) fermions in the continuum scaling regime, it seems that 

larger computers than our current models must be brought to bear. 
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CHAPTER 6 

Concluding Remarks 

Over the past decade the lattice regularisation scheme has shown itself to be the 

most powerful technique available in our efforts to understand QCD. The work in this 

thesis has been concerned with a detailed examination of heavy quark systems using old 

and established techniques and the development of new methods for attacking some of the 

outstanding problems. 

In studying the heavy quark systems we have results of both a positive and negative 

nature. The rather unhappy conclusion to be drawn from the quenched potential calcula

tion is that extremely accurate quantitative predictions remain elusive. Early suggestions 

that continuum physics could be extracted from small lattices at modest couplings must be 

tempered by our discovery that asymptotic scaling behaviour is not observed even on our 

rather large lattice. Conversely, we have seen that interesting qualitative physical results 

can be obtained on the lattice. Our energy density calculations provide compelling evi

dence in favour of the dual superconductor model of confinement and the comparison 
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between mesonic and baryonic systems points towards a resolution of the questions sur

rounding the origin of the Coulombic interaction as well as the interior string configura

tions of the hadrons. 

In the second major part of this thesis two new algorithms have been suggested, the 

complex Langevin and mixed Metropolis/Langevin methods. The study of spin-dependent 

corrections to the static quark potential is extremely interesting and again qualitative lat

tice results might be of great value. In this regard we have high hopes for the complex 

Langevin algorithm assuming that the segregation problem can be overcome. Other 

interesting calculations such as the finite baryon density simulations are already under 

study by this method. 

Probably the most significant questions still remaining in the field are concerned 

with the simulation of full QCD with dynamical fermions. Even after several years of 

effort it remains unclear whether one can, starting from the bare Lagrangian, derive all the 

observed features of QCD through lattice simulations. Furthermore, given current limita

tions on available computing power it is unlikely that any of the 'exact' fermionic algo

rithms will become feasible on the large lattices required to reproduce continuum physics, 

especially in the near term. For this reason the 'approximate' algorithms with their sys

tematic errors will presumably be our best means of attack on the full theory. It is thus of 

crucial importance that the methods in use are fully understood and their approximations 

made in a controlled manner. To this end we have introduced a 'mixed' 

Langevin/Metropolis algorithm and analysed some of its systematic sources of error. Hav

ing tested its behaviour on moderately simple problems it remains to be seen whether the 

larger picture will be within its grasp. 

Concerning the future it is natural to examine which calculations seem to be indi

cated on the basis of those studied in this work. 
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It is obviously of vital importance that the lattice be able to produce quantitative as 

well as qualitative results. Two avenues suggest themselves. The first would be to push 

higher the values of /3 used. At some value one would presumably have reduced the lattice 

spacing to a point where perturbative scaling holds and physical quantities could be 

extracted directly. Unfortunately, finite size effects dictate that the lattice volume must 

grow exponentially as f3 increases which makes this approach extremely expensive. The 

second approach would be to take a fixed size lattice and to calculate the appropriate /3-

function by performing an extremely accurate calculation of the quenched quark potential 

at many values of the coupling. This is the scheme which was discussed briefly in Chapter 

3 and proved impossible to implement given the size of our statistical errors and the large 

spacing between values of f3 at which we had data. 

In order to estimate the computational requirements of such a programme we first 

consider the calculation previously carried out. If one rates each node of the mark II 

hypercube at 1 / 20M.flops-1 then one has a total distributed CPU power of around 6 

Mflops-1. At each value of f3 we computed for roughly 2000 hours and hence our total 

CPU usage (Per f3 value) is around 4.3 x 107 M.flop. Assuming, therefore, a lattice of size 

204 and a wish to reduce by a factor of ten the statistical errors indicates a computing 

requirement of around 5 x 109 Mflop per f3 value. As for !llemory, our machine has 256 

Kbytes per node for a distributed total of 32 Mbytes giving an upper limit of around 150 

bytes per lattice site after subtracting space for the code itself. The four 3x3 complex 

matrices at a given site require, however, nearly 300 bytes if maintained as 32 bit floating 

point numbers which is why CPU cycles had to be wasted in our calculation to store the 

matrices in two column form as fixed precision 16 bit numbers. Obviously this time could 

be saved given sufficient memory per node and further use of the variance reduction 

method could be considered given the space to store intermediate values. Overall a 

memory size of 500 bytes per site would probably be adequate to speed up the calculation 
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by a factor between 2 and 10. 

In summary, therefore, the proposed calculation, carried out at 20 fJ values would 

require ...., x 1010 Mflop and 80 Mbytes of distributed memory. On a machine such as the 

proposed Mark III hypercube with floating point accelerator, capable of perhaps 10 

Mflops-1 per node, a 128 processor system would require less than six months, the 

memory requirement being easily satisfied. 

Moving on to the newer algorithms the requirements are more difficult to assess 

since less is known about their performance. The crucial question to be addressed con

cerning the complex Langevin method and segregation is whether or not there exist trajec

tories that can tunnel between sectors of the complex plane. Our failure to find such a 

path using the standard 64 bit representation of floating point numbers is obviously incon

clusive and further careful work needs to be done. In connection with this algorithm, how

ever, we can make a useful point concerning machine architecture. The conventional heat 

bath/Metropolis Monte Carlo procedures are extremely synchronous in nature. This was 

the feature discussed in Chapter 2 which made the parallelisation of the sequential code so 

straightforward. Another consequence is that the simulations are more or less equally 

suited to MIMD machines, such as the hypercubes, and SIMD machines such as the Crays 

and Connection Machine. This is not true, however, for the dynamical timestepping algo

rithm developed for use with the Complex Langevin equation. 

In order to clarify this claim consider an extreme example in which each processor 

has only one degree of freedom left to update. In the conventional algorithms this is 

guaranteed to occupy the same relative position in each processors sublattice and there are 

no problems since the lockstep processing of the SIMD machine enables all processors to 

simultaneously update the variable. Conversely, in the dynamical timestepping scenario 

this is usually not true and one can imagine the worst case where each processor's variable 

is in a different relative position. The SIMD machine now suffers a huge penalty since 
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each processor has to either process or ignore a given instruction. Given the most obvious 

decomposition of the data this means that while each processor updates its remaining vari

able all the others must be in the idle state ignoring the instructions to update their 

equivalent variable. In this case all parallelism would be lost. 

Obviously this example represents an extreme case, and considers only a naive pro

gramming technique. However, it is easy to see that more realistic dispositions of work do 

not significantly improve matters and given the data dependent origin of the imbalance it 

is hard to construct more effective programming methods. For this reason, therefore, we 

believe that MIMD machines will be of significantly higher performance in implementing 

this algorithm. 

In considering the future of the f ermionic algorithms, one is on much less secure 

ground, since the full systematic errors are unknown. In this regard, therefore, it is impera

tive that one discover the exact errors associated with the detailed balance violations in 

the algorithm discussed in Chapter 5. In order to accomplish this one needs to simulate the 

theory on several different though not necessarily large lattice volumes, using the results of 

our work to keep the error due to the discretisation of the equations of motion fixed. In 

this way one can hope to isolate the contributions due solely to the loss of detailed bal

ance. This calculation is certainly within the scope of the 128 node Mark III hypercube 

discussed earlier in this chapter. 

In more hypothetical vein, it is interesting to consider the possibilities of the next 

generations of supercomputers. In the next few years it is almost certain that machines 

with performances in the range of Gflops-1 will become available and it is not too unrea

sonable to expect that machines capable of Tflops-1 will be built around current ideas in 

the next couple of decades. 

To see the impact of these machines we must consider the requirements which one 

might make of an 'ultimate' fermionic calculation. Two significant criteria suggest 
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themselves. Firstly one would wish to calculate on a larger physical volume - at least a 

couple of proton diameters across. For definiteness we will take 5 fm as a suitable dimen

sion. Given the success of potential models such as those discussed in this thesis; however, 

it seems unlikely that one need be concerned with very short distance scales. Again for 

definiteness we assume that a lattice spacing of .1 fm will be sufficiently small to extract 

most physical quantities. The second simulation parameter which needs attention is the 

light quark mass. Current simulations work with masses of order 200 Me V and extrapolate 

to smaller values. Obviously it would be nice if one could directly simulate the theory 

with light quark masses of order 10 MeV. 

Given these requirements, what are the consequences for the Monte Carlo pro

cedures ? The major impact of the increased lattice volume is to necessitate the use of 

smaller timesteps/hitsizes. This is the area where one needs to know and quantify the 

sources of systematic error. If we make the assumption that the detailed balance violations 

require a volume dependence no worse than the V3/2 derived for the discretisation of the 

Langevin equation then a change in lattice volume from ,..., 164 to ,..., 504 requires an 

increase in computational power of approximately 1000. 

The variation in the bare quark mass has its largest effect in inverting the Dirac 

operator and calculating the fermion propagator. The eigenvalues of this operator decrease 

with quark mass as m2 and so the convergence speed of the inversion method, say the 

conjugate gradient technique, decreases as m2 [140]. For the more physical quark masses, 

therefore, this involves increased computational speed by a factor of approximately 500. 

From these sketchy calculations it thus seems that to incorporate either of these 

improvements individually would require power on the order of Gflops-1 but both 

together will have to wait for machines whose computing speed is measured in Tflops-1
. 

Given the developments in parallel computing made over the past decade we confidently 

expect that realistic numerical simulations of QCD will become possible in the next twenty 
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to thirty years. 
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APPENDICES 

Appendix A - Heat Baths and Parallel Computers 

One avenue along which computing power can be vastly enhanced is in the realm of 

parallel computers, which is the particular direction that has been explored at 

Caltech/JPL [20], and as explained in Section 2.2, the machine on which most of these cal

culations were performed is of this type with 128 identical processors. Already commer

cially available is a machine with 1024 processors and further developments of the genre 

are expected. It is entirely likely, then, that such machines will, in the near future, become 

competitive with computers of more standard architecture and it is thus vital that algo

rithms for the efficient usage of such a computer be developed. By efficiency here one 

means that doubling the number of processors should approximately halve the time taken 

to perform a given calculation. 

In this appendix, however, we will show that the conventional heat bath algorithm 

for generating quenched gauge field configurations contains a significant inefficiency for 

massively parallel architectures. 
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The essential ingredient of the algorithm is the generation of the SU(2) matrices by 

the explicit SU(2) heat bath. This step requires the generation of random numbers distri-

buted according to 

P(x) dx (A.l) 

-1 ~ x ~ 1 k > 0 

where N is the normalisation constant expressed in terms of the modified Bessel function 

1 

N = J dx (I - x 2 ) 112 e" 
-1 

(A.2) 

The conventional method of solving this problem [ 141] is to generate a random 

number y with distribution 

P(y) dy = eky dy (A.3) 

and then to fix up the square root factor by an accept/reject procedure. In these expres-

sions k is a variable representing the effect of neighbouring gauge links on the one which 

we are updating and varies, in an average sense, with the coupling (3. In Table 9 are shown 

average values of k at various couplings, (3, in typical use in lattice gauge calculations. 

Also shown are extrapolations to values of f3 which might be accessible to future genera-

tions of supercomputers. Also shown in this table is the average acceptance probability of 

the accept/reject step discussed above. 

For a conventional sequential computer these figures are harmless enough and indi-

cate that the accept/reject cycle is typically performed ii,0 q = I/Pace ~ 3-5 times. On a 

parallel computer, however, this can lead to enormous loss of efficiency as is shown by 

considering a simple model [ 142]. 
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Assume that the acceptance probability for any given accept/reject cycle takes a 

constant value, p, dependent only on the coupling, /3. The accept/reject process is then a 

simple binomial trial. Consider further that N processors execute this process indepen-

dently. The probability that a single processor rejects every one of n times is q"', where 

q = 1-p. Thus the probability that a single processor accepts at least once in the first n 

attempts is 1 - q"' and the probability that every processor has accepted at least once in 

the first n trials is ( 1 - q "')N. From this it it simple to see that the expected number of tri-

als needed by the slowest processor is given by 

(A.4) 

That this is a disaster for massively parallel machines (N --+ oo) is shown in Fig. 33 

where the value of the 'wastage', iipar - ii,eq is plotted for several values of Pace against the 

variable doc = log2N. Note that the source of inefficiency discussed here is of an entirely 

different nature to that described by Eq. (2.16), which is due to the communication 

between processors. 

For the machine used in these calculations doc = 7 and so the expected wastage fac-

tor is around 12 cycles. While this is not optimal it is tolerable since the updating algo-

rithm involves more than just the generation of x according to Eq. (A.I). In fact the other 

operations, which are essentially 3 x 3 matrix multiplications typically take an order of 

magnitude longer than a single accept/reject cycle so the overall inefficiency is small. 

However future machines will suffer more since these matrix operations are exactly the 

ones which can be optimally pipelined or vectorised. Conversely the accept/reject cycle 

requires the evaluation of exponentials and logarithms and while the former can be effec-

tively tabulated the latter is a quite significant problem. Indeed it is not at all inconceiv-

able that in a fully vectorised conventional heat bath algorithm a single accept/reject cycle 



- 108 -

could take as long, if not longer, than the matrix manipulations in which case the ineffi-

ciency would become enormous. 

The reason for this problem is, however, easy to identify, and thus to at least par-

tially correct. For large k the distribution Eq. (A.I) is sharply peaked near x = I, which is 

the region in which the square root factor is small, and hence the rejection probability 

large. A simple solution to the problem is, therefore, to arrange that the analytically 

inverted part of the distribution generates values further away from this point. For exam-

pie, we can write Eq. (A.I) as 

P(x)dx = I e.m (I - x2)1/2 e(1-a)b dx 
N 

(A.5) 

generating the distribution e.m analytically and using the second factor to accept/reject. 

For k = 15, the value a = .90 increases the acceptance rate from .32 to .90. However this 

method has the disadvantage that at high values of k, typical near f3 ~ 8.0, the acceptance 

rate is extremely sensitive to changes in a which makes the method quite unstable. 

An alternative solution [143] is to make the change of variable y = (I - x 2 ) 112 which 

leads to the expression 

P'(y) dy = l.. (I -y2)1/2 y2 e-k112 dy 
N 

(A.6) 

The subexpression y2 e-k11
2 

is strongly peaked towards y = 0 for large k which is 

where the compensating factor (I - y 2 ) 112 is large giving hope that this method will 

succeed. The generation of random numbers according to the distribution y 2 e-k
112 is 

surprisingly simple requiring only the evaluation of a logarithm and a couple of tri-

gonometric functions so the method is quite fast. A further beneficial feature of this new 

algorithm is its acceptance of Pace = .98 at k = 16 and the e_xtremely desirable feature that 

this increases as k increases. While the algorithm is yet to be tested in any significant 
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lattice gauge calculation it thus seems that a viable alternative exists for use in massively 

parallel architectures. 

Appendix B - The Kramers-Moyal Expansion 

In this appendix the connection between the Fokker-Planck and Langevin equations 

is shown by deriving the Kramers-Moyal expansion [144]. 

Consider a two-time (Markovian) transition probability ,P, which relates the proba-

bility density, F, at two times via 

F(x,t+r) = f dx' P(x,t+rlx',t) F(x',t) (B.1) 

Furthermore define moments of the distribution P by 

M,.(x',t,r) =(Wt+r)-e(t)]")le(t)=z'= fdx (x-x')"P(x,t+rlx',t) (B.2) 

where e is a stochastic process constrained such that e(t) = x '. Now consider the moment 

generating function, defined by 

00 

C(u,x',t,r) = J dx ei•(z-z')P(x,t+rlx',t) (B.3) 
-00 

00 

= I + E (iu)" M,.(x',t,r)/n! 
n=l 

By definition, C is the Fourier transform of P, and so we can invert to find 
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P(x, t+rlx ',t) ~ 2~ ldu e--'•I•-<') [I + E, (iu )" M.(x ',t, ,)/n ! ] (B.4) 

Taking the delta function representation 

it can be seen that 

00 

5(x-x') = - 1- J du e-t•(z-z') 
211" -QC) 

(B.5) 

P(x,t+rlx',t) = [1 + ~ J, [-..E_]"M,.(x,t,r)] 5(x-x') (B.6) 
n=l n. ax 

Finally assume that, for small r, M,. can be expanded in a Taylor series such that 

M,.(x,t,r)/n! = rD"(x,t) + O(r 2
) (B.7) 

(The constant term vanishes since P(x, t Ix', t) = 5(x-x ')). Thus, to first order in r, insert 

Eqs. (B.6) and (B. 7) in Eq. (B. l) to obtain 

[ l" aF 00 a 
-
8 

= ~ --
8 

D"(x,t) F(x,t) 
l n=l X 

(B.8) 

which is known as the Kramers-Moyal expansion. 

In order to calculate the expansion coefficients, D ", consider the general Langevin 

equation 

e = h ce,t) + g ce,t) ,.,u) (B.9) 

where the stochastic term has the specific normalisation 

( rJ(l) ,.,(t ')) = 25(t-t ') (B.10) 
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First write Eq. (B.9) as an integral equation 

t+r 

eU+r)- x = f dt' [h<e<t'),t') + g(e(t'),t'),,(t')) 
t 

(B.11) 

where we have used the boundary condition that e(t) = x . Next expand h and g in Tay-

lor series 

h (e(t '),t ') = h (x ,t ') + h '(x ,t ')(e(t ')-x) + (B.12) 

g(e(t'),t') = g(x,t')+g'(x,t')(e(t')-x) + .. · 

where primes denote derivatives with respect to the first argument, x. Substitution in Eq. 

(B.11) yields 

t+r t+r 

e(t+r)- x = l dt' h(x,t') + l dt' h'(x,t')(e(t')-x) + ... (B.13) 

t+r t+r 

+ J dt' g(x ,t ') rJ(t ') + J dt' g '(x ,t ') ((e(t ')-x )rJ(t ') + · · · 
t 

Proceeding by iteration, one inserts this expression for the W ')-x factors in the second 

and fourth terms. Finally, taking averages over the stochastic variable '7 leads to the 

expression 

t+r t+r t' 

( rJ(/ +r)-x ) = J dt' h (x ,t ') + J dt 'J dt" h '(x ,t ') h (x ,t ") (B.14) 
t t t 

t+r 

+ J dt' g'(x,t')g(x,t') + · · · 

In the limit r - 0 therefore one finds that 

D 1(x,t) = h(x,t) + g'(x,t)g(x,t) (B.15) 
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and proceeding in a similar manner yields 

D2(x ,t) = g 2(x ,t) (B.16) 

for all n ~ 3 

The remarkable fact that coefficients with n ~ 3 vanish identically leads to a signifi-

cant simplification in the Kramers-Moyal expansion, Eq. (B.8). In fact this expression 

reduces to the Fokker-Planck equation 

and in order to make contact with lattice gauge theory calculations, make the ansatz 

g -
h __ 

/3 
as 
ax 

in which case the associated Langevin and Fokker-Planck equations become 

aF 
at -2__ [F/3 as] + a

2 
F 

ax ax ax 2 

(B.17) 

(B.18) 

(B.19) 

(B.20) 
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Appendix C - The Segregation Theorem 

For the sake of completeness we present here a formal definition of the segregation 

theorem as it is used in Chapter 4. The notation used is copied from the original proof of 

Nagasawa [108]. 

Let n be a connected domain in Rd with a piecewise smooth boundary an defined 

by 

an = { x e Rd ; P(x) = o } (C.l) 

Also define Xt, the diffusion process on n nan, and T, the first exit time for the process 

from n. Then the segregation theorem states that given a time, t 0 , and a neighbourhood, 

U, of the boundary 

P[T<oo, or XtEUfor all t >t0 ] = 0 (C.2) 

In other words, the probability that the process exits n in a finite time, or that it 

stays permanently 'near' the boundary of the domain are both zero. 

Appendix D - Systematic Errors for Non-Quadratic Actions 

In this appendix we consider systematic errors introduced by the discretisation of 

the Langevin equation in cases where the action, S, is not quadratic. We shall achieve this 

by studying perturbation theory around the quadratic case and for simplicity of presenta

tion will restrict ourselves to the simple case of a 4'3 scalar field theory defined by the 
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action 

(D.l) 

The Langevin dynamics are described by 

(D.2) 

which expression can be rewritten as an integral equation 

r 

</>(r) = J ds e-(r-•)M[rJ(S) - g</>2(s )] (D.3) 
-QC) 

By treating the g </>2 as a perturbation, a series expansion for </>(r) can easily be 

obtained [145]. The graphical rules in momentum space are summarised in Fig. 34 - each 

graph for </>(r) contains 

b) Crosses with weight ,,(s ). 

c) Vertices with weight -g 

Furthermore, the total momentum flowing into any vertex is zero. 

From these relations one easily obtains the equilibrium correlation functions. For 

example, the two-point function is given by the diagrams shown in Fig. 35 (Neglecting 

tadpoles). Note that the crosses always have two propagators due to the normalisation of 

the noise. As an example the second graph of the set is given by 
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where we have set 

00 

(D.5) 
-00 

To each graph in the standard Feynman expansion of a Green function there 

corresponds a sum over Langevin diagrams of the same topology. These Langevin 

diagrams involve integrations over the fictitious times at the vertices. Each line carries a 

factor Gk or Dk and thus all the integrals are of the form 

(D.6) 

with possible theta functions, e.g., () (r;-r; ). This leads to terms of the form 

II l 
(Mk ±Mk±···) 

1 '.l 

(D.7) 

whose sum leads to the standard Feynman result. 

We now show that each of these diagrams is obtained with a relative accuracy of 

5rE~ when a discretisation with stepsize 5r is used. E2 is an eigenvalue of the matrix M 

for free fields and in the case of Eq. (D.1) is 

E~ = 4 E sin2(1hkµa) + m 2a 2 (D.8) 
µ 

The discrete version of Eq. (D.2) is given by 

n-1 

</>(n) = E (1-5rMr-1-• [v'25rr(s) - 5rg </>
2(s)] (D.9) 

• =--ex:> 
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which leads to diagrammatic rules similar to the 5r = 0 case. Time is labeled by integers, 

and the weights are slightly changed 

G ( )•1-·~-1 ( 
1o -+ 1-SrM,. (} S1-S2-l) (D.IOa) 

(D.lOb) 

g -+ G Sr at each vertex (D.lOc) 

The Sr at each vertex provides for the summation over the locations of the vertex. 

Consider now a graph with fixed momenta on each line. The sum over Langevin 

time for the vertex of Fig. 36 is of the form 

(D.11) 

where we have included only those factors which are explicitly r dependent and the range 

of the sum is from s 2+ 1 to s 3-1 (Without loss of generality, we are taking s 1 ::; s 2 ::::; s 3 - 2 ). 

Summing the expression leads to 

(D.12) 

with 

1 - SrM,. 
3 

(D.13) 

After having integrated over all locations in time of the vertices, the final expression 

for a correlation function, before the momentum integrations are done, is a sum of pro-

ducts of terms of the form 
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(1 - SrM,.
1
)"' 

II (1 - SrM,..),,, . . (D.14) 

• 

times powers of Sr (from the vertices) and factors of 

M,. ( l - 1h.SrM,.) 
(D.15) 

coming from the D,. lines. The constants n1, mi are integers, independent of Sr. This shows 

that only SrM,. terms appear in the relative error as Sr --.o. 

In conclusion, then, the error due to the Sr discretisation in any particular Langevin 

graph is of order SrE~ The last remaining question is what happens when the Langevin 

graphs are combined to give Green functions. For theories with symmetries, for example 

gauge symmetries, there will in general be much cancellation between the divergences of 

the Feynman graphs. A possible problem now presents itself: If the discrete time Langevin 

dynamics doesn't exactly respect these symmetries, then error terms, which are down by 

Sr, can be multiplied by divergences which don't quite cancel. This would lead to large 

errors in the Langevin evolution, and our estimates would not apply. Fortunately, it is not 

hard to ensure that the discrete time Langevin dynamics are exactly gauge invariant and 

also respect all other appropriate symmetries. 
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Table Captions 

1. Dimensionless lattice potentials in the mesonic sector at f3 = 6.1,6.3,6.5,6.7. 

2. x2 values for pairwise fits of the mesonic lattice potentials at separate /3 values to 

the linear+ Coulomb form. Eq. (3.15), assuming asymptotic scaling. 

3. Dimensionless lattice potentials from off-axis Wilson loops in the mesonic sector 

at /3 = 6.1, 6.3 

4. Parameters of the mesonic potential as extracted from the off-axis loops. Calcu

lated both with and without contribution from strong coupling. 

5. Dimensionless lattice potentials in the baryonic sector at /3 = 6.1, 6.3. 

6. Parameters of the linear + Coulomb fit to .the potentials 

a) Mesonic sector. 

b) Baryonic sector, assuming '!:i' configuration for the confining strings. 

c) Baryonic sector, assuming 'Y' configuration for the confining strings. 

7. Monte Carlo and fitted data values for the baryonic potential. 

8. Peak and mid-point values of the squared chromoelectric field in the qq system. 

9. Heat bath acceptance probability Pace and inverse coupling /3. 
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Figure Captions 

I. Showing the notation for lattice links and a sample plaquette. 

2. The topology of the hypercube in doc = 2,3,4 dimensions. 

3. Calculating 2 x 3 Wilson loops on a sequential uniprocessor. 

4. Calculating I x 3 Wilson loops in parallel. Each -5 x 5 block represents a two 

dimensional sublattice contained within a single processor. 

5. Single and multiple gluon exchanges between quarks possibly responsible for the 

Coulombic and confining terms in the potential respectively. 

6. The lattice world lines of a qq pair showing the 5-function contractions necessary 

to ensure that the meson is a colour singlet. 

7. Mesonic lattice potentials, V, plotted against the dimensionless length variable, x, 

before self-energy subtractions. 

8. Mesonic lattice potentials, V, plotted against the dimensionless length variable, x, 

after self-energy subtractions. 

9. Mesonic lattice potentials for the four f3 values fitted single to the Coulomb plus 

linear form. 
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10. The off-axis Wilson loop observable W(3,2; 4). 

11. The baryonic potential observable Q (3,2,4; 3). 

12. Alternative string configurations inside a baryon 

a) The '6.' configuration. 

b) The 'Y' configuration. 

13. Screening of charges in media with dielectric constants 

a) it > 1. 

b) It <! 1. 

14. Energy density and Higgs field in the Nielsen-Olesen string model. 

15. Relative orientations of Wilson loop, W, and plaquette, P, used to measure the 

squared chromoelectric energy densities. 

16. Squared energy densities in the qq system 

a) (E1n 

b) (Fl)· 

c) (-1\2). 

l 7. Showing the relation between ( Ei._2 ) and ( -Bi.2 ) due to the discrete rotational sym

metry of the lattice. 

18. Showing the progressive delocalisation of the strong coupling string due to the 

formation of 'kinks'. 

19. The operator used to measure the baryonic energy density. Pz 11 measures the 

magnetic and P zt the electric fields. 
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20. Energy densities inside the baryon with quark locations indicated by*· 

a) Squared electric field. 

b) Squared magnetic field perpendicular to the plane containing the 

charges. 

21. Showing the correspondence between finite velocity second order corrections 

and the insertion of 'electric field' operators. 

22. Spin-dependent loop operators corresponding to the off-diagonal spin-spin force, 

Eq. (3.46), at R = 1,2,3. 

23. Showing the loop-plaquette correlation corresponding to the measurement of the 

squared parallel electric field in two dimensions. 

24. Contour used in proof of Eq. (4.33) 

25. Squared parallel electric field in two dimensions. Solid curves show theoretical 

results. 

a) Test probe inside 5 x 5 loop, Eq. ( 4.44) 

b) Test probe outside 5 x 5 loop, Eq. ( 4.45) 

26. Squared parallel electric field in three dimensions at f3 = 2.0. 

a) 5 x 5 loop. 

b) 7 x 7 loop. 

27. Results of simulations in SU(2) by complex Langevin. Dashed curve is theoretical 

value of integral L(f3), Eq. ( 4.46), and data shown are from simulations of Eq. 

(4.55). 
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28. Trajectories in the complex plane of the deterministic parts of the Langevin 

equation of motion for the model case P (x) ex cosx, Eq. ( 4.60). 

29. Estimates of K (/3), Eq. ( 4.57), according to numerical Langevin simulation, Eq. 

( 4.60), analytic result (Dashed, Eq. ( 4.57)) and segregation theorem prediction 

(Solid, Eq. (4.61)) for the model case P(x) ex cosx. 

30. ( '(f<J>) in simulations on a 44 lattice. 

a) Fixed Metropolis hitsize 

b) Fixed number of conjugate gradient iterations. 

31. The thermal Wilson line as order parameter for the finite temperature deconfine

ment transition on an 83 x 4 lattice. 

32. Dimensionless lattice potentials derived at f3 = 6.1 both in the quenched approxi

mation (Upper curve) and also with four flavours of dynamical fermions (Lower 

curve). 

33. The load imbalance, Eq. (A.4), in the Creutz heat bath as a function of hypercube 

dimension. 

34. Diagrammatic rules for stochastic quantisation. Scalar fields with cubic interac

tion, Eq. (D. l ). 

35. Diagrams contributing to the two point function, ( 4'i ¢>; ). 

36. Three particle interaction vertex. 
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R /3 = 6.1 /3 = 6.3 /3 = 6.5 /3 = 6.7 

2 0.5661 (0.0009) 0.5144 (0.0006) 0.4748 (0.0003) 0.4436 (0.0003) 

3 0.6532 (0.0018) 0.5845 (0.0011) 0.5360 (0.0007) 0.4970 (0.0006) 

4 0.7108 (0.0028) 0.6285 (0.0026) 0.5708 (0.0012) 0.5284 (0.0011) 

5 0.7537 (0.0058) 0.6659 (0.0049) 0.5954 (0.0019) 0.5490 (0.0016) 

6 0.784 (0.011) 0.6956 (0.0062) 0.6130 (0.0036) 0.5605 (0.0023) 

7 0.798 (0.066) 0.726 (0.024) 0.6411 (0.0052) 0.5779 (0.0030) 

8 0.757 (0.071) 0.758 (0.035) 0.656 (0.011) 0.5847 (0.0055) 

Table 1 
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6.1 6.3 6.5 6.7 

6.1 0.26 2.92 7.31 8.83 

6.3 0.12 4.73 7.06 

6.5 0.05 14.04 

6.7 1.71 

Table 2 
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(R1,R2) V(x),f1= 6.1 V(x ), f1 = 6.3 

-
(0,2) 2.971 (0.003) 3.385 (0.003) 

(0,3) 3.426 (0.007) 3.846 (0.006) 

(0,4) 3.724 (0.013) 4.135 (0.013) 

(0,5) 3.934 (0.024) 4.380 (0.026) 

(0,6) 3.896 (0.056) 4.572 (0.037) 

(1,1) 2.642 (0.001) 3.035 (0.001) 

(1,2) 3.131 (0.006) 3.551 (0.007) 

(1,3) 3.504 (0.008) 3.927 (0.009) 

(1,4) 3.787 (0.011) 4.179 (0.011) 

(1,5) 3.989 (0.020) 4.416 (0.017) 

(2,2) 3.407 (0.003) 3.831 (0.004) 

(2,3) 3.632 (0.009) 4.042 (0.010) 

(2,4) 3.855 (0.015) 4.253 (0.015) 

(2,5) 4.071 (0.035) 4.445 (0.024) 

(3,3) 3.791 (0.014) 4.194 (0.012) 

(3,4) 3.972 (0.023) 4.313 (0.018) 

Table 3 
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f3 = 6.1 f3 = 6.3 

Parameters Conventional Conventional Conventional Conventional 

+ Strong Coupling + Strong Coupling 
-

Eq. (3.15) Eq. (3.24) Eq. (3.15) Eq. (3.24) 

a - .292 ± 0.010 -.285 ± 0.009 -.246 ± 0.008 -.246 ± 0.006 

Vo 3.47 ± 0.12 3.44 ± 0.12 3.95 ± 0.06 3.95 ± 0.05 

K 0.837 ± 0.015 0.724 ± 0.028 0.977 ± 0.010 0.986 ± 0.014 

K' -- 0.12 ± 0.02 -- 0.011 ± 0.007 

Reduced x2 3.5 1.9 2.1 2.1 

Table 4 
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(R l,R2,R3) v, f3 = 6.1 v, f3 = 6.3 

(I,0,1) 3.4205 (0.0012) 3.9574 (0.0017) 

(I,1,1) 4.1396 (0.0029) 4.7390 (0.0038) 

(2,0, 1) 4.1120 (0.0036) 4.6949 (0.0049) 

(2,0,2) 4.7027 (0.0058) 5.3361 (0.0073) 

(2,1,1) 4.6386 (0.0036) 5.2589 (0.0049) 

-
(2,2, 1) 5.0755 (0.0058) 5.6786 (0.0057) 

(2,2,2) 5.3184 (0.0147) 5.9059 (0.0091) 

(3,2,2) 5.5056 (0.0522) 6.0999 (0.0300) 

(3,3,2) 5.734 (0.126) 6.4350 (0.0609) 

(3,3,3) 5.838 (0.245) 6.647 (0.112) 

Table 5 
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a) 

qq /3 = 6.1 /3 = 6.3 

aqi - 0.366 (.029) - 0.287 (.019) 

Vo 3.66 (.11) 4.03 (.10) 

Kqi 0.71 (.10) 0.95 (.10) 

b) 

qqqt:. /3 = 6.1 /3 = 6.3 

aqqq - 0.147 (.008) - 0.127 (.006) 

Vo 5.20 (.16) 5.94 (.04) 

K'}lq 0.90 (.15) 1.07 (.08) 

c) 

qqqy /3 = 6.1 /3 = 6.3 

aqqq - 0.153 (.008) - 0.129 (.007) 

Vo 5.30 (.16) 5.97 (.05) 

Kpq 0.74 (.14) 0.94 (.04) 

Table 6 
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(R l,R2,R3) Monte Carlo 'l:l.' fit 'Y' fit 

(1,0,1) 3.9574 3.9567 3.9561 

(1 ,1,1) 4.7390 4.7314 4.7406 

(2,0,1) 4.6949 4.7366 4.7380 

(2,0,2) 5.3361 5.3600 5.3771 

(2,1,1) 5.2589 5.2338 5.2305 

(2,2, 1) 5.6786 5.6671 5.6408 

(2,2,2) 5.9059 5.9190 5.9420 

(3,2,2) 6.0999 6.1676 6.1755 

(3,3,2) 6.4350 6.4023 6.3898 

(3,3,3) 6.6470 6.5750 6.6040 

Table 7 
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Loop size (trE1f,,,.,ak) (trE1f,mi4) (tr E if.peak)/ (tr E 1T. mid) 

3 x 3 605 ± 18 345 ± 20 1.75 ± 0.11 

3x4 534 ± 18 286 ± 21 1.85 ± 0.18 

3 x 5 440 ± 38 252 ± 40 1.75 ± 0.32 

3x6 353 ± 37 228 ± 68 1.55 ± 0.49 

Table 8 
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f3 ka• Pace 

5.6 14.7 .32 

6.0 15.9 .31 

6.4 18.0 .29 

6.8 19.5 .27 

8.0 24.7 .25 

10.0 32.9 .21 

Table 9 
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