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ABSTRACT 

This thesis explores how the average sedimentation velocity u0 of a monodis

perse suspension of spheres depends on the volume fraction of solids c and on 

the application of shear to the suspension and considers how changes in the sedi

mentation velocity reflect changes in the microscale distribution of particles in the 

suspension. For dilute, quiescent, monodisperse suspensions of spheres with radius 

a greater than 2µm, previous experimental measurements of u0 are well-correlated 

by the result 

where Us is the Stokes settling velocity of the spheres (cf. Barn ea, E. and Mizrahi, 

J., Chem. Eng. J. Q, 171-189 (1973)). Although none of the previous theoretical 

predictions are in even rough accord with this result, this type of behavior is shown 

to be consistent with that of a suspension having a pair-probability function chang

ing over a length scale of 0 ( ac- 1/s), which is comparable to the average interparticle 

spacing. A molecular-dynamics··type simulation is employed to show that multipar

ticle hydrodynamic interactions can create this type of microscale "structure" in a 

sedimenting suspension. This thesis also presents the first results for the influence 

of bulk fl.ow on non-flocculating sedimenting suspensions. In a uniaxial extensional 

flow, a dilute suspension which is being sheared sufficiently rapidly for the effect 

of the shear to dominate the effect of multiparticle hydrodynamic interactions is 

shown to settle with velocity 

Uo = u5 (1- 4.52c) + o(c). 

This increase in u0 results because the pair-probability function now changes over 

a length scale of O(a), not of O(ac-113 ). Experimental measurements presented 

here of the sedimentation velocity a.s a function of particle volume fraction and 

dimensionless shear rate in the simple shear fl.ow created by a Couette device agree 

remarkably well with this result. 
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INTRODUCTION 

Flows of suspensions of solid particles in liquids occur in a vast range of prob

lems in both technology and nature. One possible approach for characterizing the 

flows of suspensions is the method of averaged equations. Suspension flows have 

two important length scales: a macroscopic length scale L over which the overall 

suspension flow changes and a microscopic length scale lover which the fl.ow about 

the particles changes. Because L is usually much greater than 1, the equations gov

erning the motion of the particles and the fluid may be averaged over a volume 

comparable to 13 to yield equations governing the locally averaged velocity, temper

ature, and pressure of the suspension (Anderson and Jackson 1967). However, the 

averaged momentum equation together with the suspension and particle continuity 

equations and a balance describing the forces on an average suspension particle do 

not constitute a complete set of equations for describing the isothermal behavior of 

the suspension because the averaging process introduces terms depending upon the 

flow about the particles. 

To make the suspension flow equations complete, constitutive relations must be 

posed for these terms. In particular, constitutive relations must be specified for both 

the average stress in the suspension (the so-called viscosity problem) and the average 

hydrodynamic force on a particle in the suspension (the so-called sedimentation 

velocity problem). When the equations are averaged, information about the details 

of the flow about the particles is lost; therefore, the averaging process cannot serve 

as a basis for developing constitutive relations. 

In neutrally buoyant suspensions the average fluid and average particle veloc

ities are identical, and the suspension can be treated as an effective fluid with the 

principal effect of the particles being to alter the rheological properties from those 

of the pure fluid. However, in many applications the particles settle relative to the 

fluid and this relative motion can often affect immensely the flow of the suspen

sion. For example, inhomogenities in the concentration or the properties of the 

bulk suspension flow of the suspension can in non-neutrally buoyant suspensions 
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drive large-scale convective flows. 

This thesis explores two approaches for developing constitutive relations for 

non-neutrally buoyant suspensions. In the first approach the suspension properties 

are measured experimentally in terms of the relevant physical parameters of the 

problem (e.g., the volume fraction of particles in the suspension, the shear rate 

and flow type describing the bulk flow of the suspension, and the properties of the 

fluid and the solid). In the second approach constitutive relations are developed by 

understanding in detail the flow about the particles on the microscale. Because the 

flow about the particles depends upon on how the particles are arranged relative 

to one another, determining the microscale distribution of particles is important in 

characterizing the suspension properties. One method of describing the microscale 

distribution of particles is in terms of the pair-probability function P (r) (i.e., the 

probability of a particle being at position ~+r given another particle at position~), 

which may be determined either through experimentation or by gaining a detailed 

theoretical understanding of the forces on the particles. 

Since the problem of understanding how the microscale structure affects con

stitutive relations for suspensions is very difficult, this thesis represents only a first 

step toward solving this problem. Because the viscosity problem has previously 

received far more attention than the sedimentation velocity problem (see the re

view in Jeffrey and Acrivos (1976)) and because the sedimentation velocity is a far 

more incisive probe into the microscale structure than the rheological properties 

(because the structure begins to affect the settling velocity in the first correction 

term to the Stokes velocity and the rheological properties in the second correction 

term to the pure fluid viscosity), this thesis considers only the problem of developing 

constitutive relations for the sedimentation velocity. Furthermore, to simplify the 

analysis and to reduce the number of variable parameters, the suspensions treated 

here are assumed to be monodisperse and to consist of an incompressible, Newto

nian suspending fluid and of particles which are rigid spheres small enough so that 

an appropriately defined particle Reynolds number is much less than one. 

Each chapter of this thesis treats a different aspect of the problem of developing 



-3-

constitutive relations for the sedimentation velocity of a monodisperse suspension 

of spheres. Chapter I summarizes the previous theoretical and experimental re

sults for the sedimentation velocity of quiescent suspensions and discusses how the 

current discrepancy between the existing theoretical and experimental results may 

be explained by supposing that suspensions have a pair-probability function which 

varies over a length scale of O(a) for "small"' particles and of O(ac-1/s) for "large" 

particles. A molecular-dynamics-type simulation is then used to demonstrate that 

multiparticle hydrodynamic interactions can give rise to such a pair-probability 

function in the case of "large"' particles. Chapter II explains the method of the 

simulation in a manner which should make apparent how the technique could be 

applied to other problems in suspension mechanics. The calculation of the velocities 

of the particles in the simulation is explained in detail, and results of the simulation 

for small numbers of particles are compared to previous results from the litera

ture. Finally Chapter III considers theoretically and experimentally how the shear 

rate and flow type of the bulk suspension flow affect the microscale arrangement of 

particles and the sedimentation velocity. 
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Sedimentation in Quiescent Suspensions 
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Sedimentation in Quiescent Suspensions 

Edward D. Lynch 
and 

Eric Herbolzheimer 

California Institute of Technology 
Department of Chemical Engineering 

Pasadena, California 91125 

Abstract 

Previous experimental work (Barnea and Mizrahi 1973) has shown that for 

dilute, quiescent, monodisperse suspensions of spheres with radius a greater 

than approximately 2µm, the average sedimentation velocity of the spheres, u0 , 

is equal to us (1 - c1h), in which c is the volume fraction of particles and us 

is their Stokes settling velocity. This result is inconsistent with the 

theoretical predictions both of Hasimoto (1959), who showed that if the spheres 

are positioned at the lattice points of a simple cubic array, u0 = us (1 -

1.76c1
/

3 + O(c)), and of Batchelor (1972), who showed that if the spheres are 

randomly distributed, u0 = us (1 - 6.55c + o(c)). However, the observed O(c1l 3
) 

correction factor to the Stokes velocity can be shown to be consistent with 

Batchelor' s analysis provided the pair-probability function varies over a 

length scale of O(ac- 113
), which is comparable to the average spacing between 

the particles in the suspension. In this paper we employ a molecular-

dynamics-type simulation to show that multiparticle hydrodynamic interactions 

can create this type of rnicroscale "structure" in a settling suspension. 
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1. Introduction 

The theoretical analysis of the bulk flow of a suspension of solid 

particles dispersed in a liquid requires constitutive relations for both the 

rheological properties of the suspension and also the sedimentation velocity of 

the suspension, the physical pr•oblem considered in this paper. In general, 

these constitutive relations depend on the properties of the fluid and 

particles, on the volume fraction of solids in the suspension, and on the local 

characteristics of the bulk flow of the suspension. However, since significant 

disagreement still exists between experimental results and theoretical 

predictions for the sedimentation velocity of uniform, quiescent suspensions 

(i.e., suspensions in which no overall bulk flow occurs) of rigid, identical 

spheres dispersed in an incompressible, Newtonian fluid, we shall restrict our 

attention to this simplified set of conditions and investigate the dependence 

of u0 , the sedimentation velocity, on c, the volume fraction of particles, in 

the dilute limit. 

To begin, if the suspension is sufficiently dilute, to a first 

approximation the particles do not interact, and we can consider each particle 

to be settling in an infinite :fluid which is at rest far from the particle. 

For spherical particles with radius small enough so that the particle Reynolds 

. usa 
number, ~-, is much less than unity, the sedimentation velocity is given by 

\) 

the well-known Stokes law 

2 a2 <Ps - p)g 
9 µ 

(1 ) 
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where us is the Stokes velocity, g is the gravitational acceleration, a and Ps 

are the radius and density of the particles, respectively, and p, µ, and v are 

the fluid density, viscosity, and kinematic viscosity, respectively. 

As the concentration of particles increases, however, the flow of fluid 

around any given particle is significantly disturbed by the other spheres via 

two major mechanisms. First, when a particle settles, it creates in the 

surrounding fluid a velocity field with a component directed downward; 

therefore, any given particle is in the downdraft of the other particles, which 

tends to increase its settling velocity. This effect is more than offset, 

however, by the upward flow of pure fluid which must develop in order to 

maintain overall continuity and which tends to slow the settling of all the 

particles in the suspension. When taken together, these two effects 

substantially hinder the average sedimentation velocity of the suspension even 

at low particle concentrations; e.g., at a particle concentration of only 1 % 

by volume, the measured sedimentation velocity is already reduced to about 

80 % of the Stokes velocity (Barnea and Mizrahi 1973). 

Four different models have previously been employed to predict the effect 

of particle interactions on the settling velocity of quiescent suspensions. A 

common feature all of these methods share for the problem of the 

sedimentation of a quiescent, monodisperse suspension of spheres is that they 

make some ~ priori assumption regarding the relative positions of the particles 

in the suspension. 

In the first of these methods, the cell model, the suspension is conceived 

of as cells containing one particle surrounded by fluid and having a ratio of 

particle volume to cell volume equal to the volume fraction of solids in the 

suspension. The velocity field in the fluid cell and the settling velocity of 
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the particle are calculated by solving the Stokes equations subject to some ad 

hoc boundary condition (e.g., zero vorticity) at the outside surface of the 

cell. Unfortunately no procedure exists for determining the proper boundary 

condition at this surface. Furthermore, the requirement that each cell can 

include only one particle has implicitly restricted the analysis to suspensions 

in which the particles are well·-spaced from each other. In essence, the cell 

model makes the rather strenuous and unphysical assumption that the particle 

interactions can be accounted for by having the particle settle in a fluid 

volume with dimensions of O(ac- 1
/

3
) rather than in an infinite fluid. All cell 

models yield results of the form 

(2) 

where the coefficient ScM depends upon the assumed shape of the cell and on 

the conditions imposed at the outer cell boundary and lies in the range 1.5 to 

2.1 (see the discussion in Happel and Brenner (1965)). Note that the O(c1 l 3
) 

dependence of the correction term follows directly from the assumed length 

scale of the cell. 

The second method of modeling particle interactions assumes that the 

particles are positioned at the lattice points of a regular array. Because of 

the periodic structure of a regular array, the Stokes equations can be solved 

for the flow about the array, and the settling velocity of the array can be 

calculated as a series in increasing powers of c (Hasimoto 1959; Sangani and 

Acrivos 1982). For small concentrations the settling velocity is given by 

u0 Us (1 - SRA c 1 /3 + O(c)) (3) 
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where the constant SRA is 1.760'1 for a simple cubic array (Hasimoto 1959). As 

with the cell model, modeling the suspension as a regular array restricts the 

suspension to one in which the particles are well-separated and in which the 

particle spacing is of O(ac-113
). Again, this scaling of the lattice spacing is 

what causes the c1 l 3 dependence of the first correction to the Stokes velocity. 

Although the third type of calculation, ensemble-averaging, can in 

principle be applied to any suspension, it has only been applied to dilute, 

random suspensions in which all configurations of the particles are equally 

likely, provided no particles overlap. After making this assumption, using the 

diluteness of the suspension to justify ignoring three-particle interactions, 

and circumventing the well-known problem of divergent integrals, Batchelor 

(1972) predicted the average sedimentation velocity should be given by 

u0 Us (1 - 6.55c + O(c2
)). (4) 

The final type of calculation allowing for the effect of particle 

interactions replaces each particle by a multipole distribution of forces 

located at its center. By using the diluteness of the suspension to show that 

only the force monopole was needed to leading order, Saffman (1973) calculated 

that the settling velocity for both regular arrays and random suspensions was 

u0 us (1 - SME c1l 3 + O(c)) 

where the constant SME was 1.76 for simple cubic arrays but 0 for random 

suspensions. Mazaika ( 197 4) later extended this approximation to include 

higher-order multi poles and rederi ved the results of both Hasimoto and 

(5) 
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Batchelor. Furthermore, both Saffman and Mazaika recognized that the O(c 1l 3) 

dependence of the first correction to the Stokes velocity was a consequence of 

assuming that the pair-probability function (i.e., the probability P(r) of a 

particle being at position :o + : given another particle at position : 0 ) for 

the suspension varied over a length scale of O(ac-1 h). 

Experimental measurements of the average sedimentation velocity in 

quiescent suspensions separate into two groups depending on the size of the 

particles. For large particles (a > 2µm) settling in a quiescent suspension 

with the particle Reynolds number much less than unity, Barnea and Mizrahi 

(1973) have correlated the results of many investigators and proposed a 

correlation of the form 

( 1-c) 2 

(1 +cih)(exp 5 c ) 3 1-c 

(6) 

where u0 is measured in the reference frame of zero volume flux of fluid plus 

particles. In the dilute limit this expression becomes 

u0 Us (1 - c1 /3 + c2 /3 + O(c)). (7) 

Note that the coefficient of the c1 /3 term is only 1.0 as opposed to 1.76 as 

predicted for a simple cubic array. 

On the other hand, for small spherical particles (a < 2µm) four different 

sets of measurements of the average settling velocity have appeared in the 

literature. Cheng and Schachman ( 1955), using polystyrene latex spheres of 

radius 0.13µm and equating the settling velocity with the measured rate of 
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fall of the suspension-clear fluid interface, determined that 

u0 us (1 - 5.1c) (8) 

whereas Buscall, et al. (1982), repeating Cheng and Schachman's technique with 

1.55µm particles, found that 

u0 us (1 - 5.4c). (9) 

Tackie, Bowen, and Epstein (1983) fit their data on the settling velocity of 

0.6µm silica spheres to an empirical equation reducing to 

u0 Us (1 - 4.44c + 7 .54c2
) (10) 

for small c. Finally, the settling velocity measurements of Kops-Werkhoven 

and Fijnaut (1981) for spherical particles of radius 0.021µm show that 

u0 Us (1-(6 + 1 )c). (11) 

In summary, all of the methods for calculating the average sedimentation 

velocity of dilute, quiescent, monodisperse suspensions of spheres predict 

different results, and none of these predictions is in agreement with all of 

the experimental measurements.. Furthermore, the experiments indicate a 

different behavior for small (a ~ 2µm) particles than for larger particles. 

For the small particles the correction to Stokes velocity is proportional to c, 

whereas for the larger particles it is proportional to c1 /3. Based on the 
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methods of Batchelor and of Saffman and Mazaika, the observed behavior of u0 

implies that the pair-probability function in a settling suspension varies over 

a length scale of O(a) for small particles and over a length scale of O(ac-1 /3) 

for larger particles. 
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2. Interpretation 

Verifying the hypothesis that the pair-probability function of a 

sedimenting suspension of large (radius greater than approximately 2µm) 

particles varies over a length scale of O(ac-113
) is possible in two ways. The 

most direct approach, which was attempted by Smith (1968), is to determine the 

relative particle positions experimentally. Smith photographed a sedimenting 

suspension composed of l.!mm spheres in silicone oil from two perpendicular 

planes. He then divided the domain into cubes and counted the number of 

particles in each cube thereby creating a distribution of the number of boxes 

containing a given number of particles. This distribution was then compared 

with that one would predict i.f the suspension were completely random. 

Unfortunately, because the pictures were not used to measure the relative 

particle positions and hence the pair-probability distribution directly, the 

method of data analysis of Smith allows one to infer from the experimental 

results that the pair-probability function was either random or varied on a 

length scale of O(ac- 113
). Thus, definitive conclusions cannot be drawn from 

these experiments. 

The second approach is to examine theoretically why and how this type of 

microscale "structure" might develop in sedimenting suspensions. Of course, 

because of the reversibility property of the equations of motion at zero 

Reynolds number, two-particle hydrodynamic interactions cannot produce 

relative motion between the spheres in a settling suspension and therefore can 

be ruled out as an explanation. However, several other possible mechanisms 

can be proposed. 
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An obvious possibility is m:icroinertial effects which are known to cause 

close particles to drift apart from each other as the pair settles in an 

infinite fluid. These effects can be shown to be much too weak, however, by 

considering the time scale they require to cause a rearrangement of the 

particles. Since the velocity at which the particles drift apart is 

proportional to UoRe, the time needed for a particle to migrate a distance 

comparable to the interparticle spacing, ac-1
/

3
, by microinertia is 

30 hours 
K 

where the final estimate is for the values of c, v, and us used in the 

(12) 

experiments of Lynch and Herbolzheimer (1985a). (Here K is an 0(1) constant). 

However, in these experiments the settling velocity was steady after no more 

than 30 seconds (the first time at which a measurement could be made) and did 

not vary from experiment to experiment. 

Nonhydrodynamic interactions, such as London-Van der Waals interactions, 

are also a possibility, but these should be negligibly small for the relatively 

large particles used in the experiments cited by Barnea and Mizrahi (1973). 

The only remaining possibilities are Brownian motion and mul tiparticle 

hydrodynamic interactions. The dimensionless group measuring the effect of 

rnultiparticle hydrodynamic interactions compared to the effect of Brownian 

VRa 
motion is the Brownian-motion Peclet number Pe = --0-- where D is the relative 

Brownian-motion diffusion coefficient and VR measures the relative velocity 

between some test particle in the suspension and its neighbors. The diffusion 

coefficient D for a monodisperse suspension of spheres should be approximately 
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kT/6nµa where k is Boltzmann's constant and T is the absolute temperature. 

Making a reasonable approximation of VR is more difficult. Batchelor (1982) 

suggests that, because two identical spheres settling in an infinite fluid do 

not move relative to one another, VR and Pe should be identically zero. 

Particles do, however, move relative to one another in a real suspension as a 

result of multiparticle hydrodynamic interactions. 

To estimate the magnitude of the resulting relative velocity, let us 

consider a pair of particles being influenced by one of its nearest neighbors. 

To a first approximation we can treat this pair as being immersed in a linear 

shear flow generated by the third particle. Then, the relative velocity 

between the particles should be proportional to 1~ · V ~1 where R is the 

vector joining the particle centers and where the velocity gradient generated 

by the third particle, V v, is evaluated at the center of one of the particles 

in the pair. 
a usa 

In creeping flow, ~ _ O(us r) for large a/r so V~ - O(r;r-) where 

r is the distance from the third particle to the pair. On the average the 

particle spacing is O(ac- 1 13
) so taking this as the estimate for both R and r, 

we find 

a 
K Us"? R (13) 

where K is an 0(1) constant accounting for the crudeness of the above 

approximations and the fact that many more than one additional particle 

influence the relative motion of the pair being considered. After substituting 

for D and VR, the Peclet number becomes 



Pe 
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4ira"( Ps-p)gc1 
/

3 

3kT K • (1 4) 

Table 1 presents results for the Peclet number calculated using this 

choice of VR for a variety of published sedimentation experiments. The values 

of the Peclet number in the three sets of experiments with particles smaller 

than 2µm indicate that in these experiments Brownian motion played the 

dominant role in determining the relative positions of the particles. 

Coincidentally, these were also the sets of experiments for which the first 

correction to the Stokes velocity was proportional to O(c), not O(c1 /3), which 

is consistent with the expectation that Brownian motion would insure that the 

pair-probability function was random. The results of these three sets of 

experiments do differ in the coefficient of the O(c) term; Batchelor and Wen 

(1982) have ascribed this difference in the O(c) coefficient between the various 

experiments using small particles and that predicted by Batchelor (1972) to 

Van der Waals attractive forces, which cause an excess of close pairs beyond 

that in a random suspension. 

On the other hand, for the experiments listed in Table 1 with a > 2µm, 

the large values of Pe suggest that the influence of multiparticle 

hydrodynamic interactions domjnated the influence of Brownian motion. Since 

these were also the experiments in which the sedimentation velocity was found 

to be proportional to O(c1 l 3
), a logical hypothesis might be that multiparticle 

hydrodynamic interactions caused the particles, as they settled, to change 

their relative positions in such a way as to make the pair-probability function 

vary over a length scale of O(ac-1 13
). Since the relative velocity between two 

particles as a result of inter.actions with a third particle is proportional to 
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usa/r, for the values of a, c, and Us used in the experiments of Lynch and 

Herbolzheimer (1985a), the time required for multiparticle hydrodynamic 

interactions to cause a migration comparable to the interparticle spacing is 

approximately 

5 seconds 
Ki ( 15) 

in which r is a distance representative of the distance between two nearby 

particles, ac-i/ 3
, and Ki is another 0(1) constant. Multiparticle hydrodynamic 

interactions are thus a reasonable possibility for the cause of the tendency of 

close pairs to be less likely to persist in a sedimenting suspension. 
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3. Simulation Method 

To test the hypothesis that multiparticle hydrodynamic interactions 

result in a pair-probability function changing over a length scale of O(ac- 113
) 

and in close pairs being less likely to persist, we have developed a 

molecular-dynamics-type simulation of a sub-ensemble (between 27 and 125 

identical spheres inside a cube) of a sedimenting suspension. In the simulation 

the particles are allowed to settle under the influence of gravity until they 

reach an asymptotic "long-time" configuration from a statistical standpoint. 

The details for implementing this simulation are described elsewhere (Lynch 

and Herbolzheimer 1985b), but a brief synopsis of the simulation procedure is 

afforded here. 

In the simulation the N spheres of radius a are initially placed in a cube 

with sides of length L in one of two types of initial configurations. In order 

to demonstrate how a suspension which initially has no close pairs would 

behave, we let the spheres take random perturbations about the lattice points 

of a simple cubic array. In other runs, in order to demonstrate the behavior 

of a suspension with an initial pair-probability function similar to a random 

suspension, we place the particles in the cube randomly with the restriction 

that the particles may not overlap. 

The trajectories of the spheres are calculated from the initial positions 

by integrating the particle velocities (which are functions of the 

instantaneous particle positions only) forward in time using the fourth-order 

Adams-Moulton predictor-corrector method. To observe how the suspension 

evolves, the pair-probability function and the settling velocity averaged over 

the particles in the cube are calculated as functions of time. Since only a 
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relatively small number of particles can be handled in the simulation, periodic 

boundary conditions are applied at the sides of the cube in order to 

approximate the behavior of an effectively infinite suspension. 

The velocity of a sphere having no near neighbors consists of three 

distinct parts. First, at each sphere in the cube a velocity is induced 

directly by the presence of all of the spheres in the cube. For a particle a 

which has no close neighbors (i.e., particles within a few particle radii of a), 

we calculate this induced velocity by multiplying the translational mobility 

tensor for the problem of N identical spheres moving in a zero-Reynolds-number 

fluid (Mazur and Van Saarloos 1982) by the gravitational force acting on each 

sphere and by then using the first three terms of the resulting series in ~. 
ras 

(Here ras is the distance between particle a and another particle in the 

suspension S.) The first term in this expansion is the Stokes velocity, the 

second term approximates the other particles in the suspension as point 

forces, and the third, which consists of a potential-dipole singularity 

situated at the center of each of the other particles, is the (~)3 term in 
ras 

the fluid velocity field induced by the other particles plus the Faxen's law 

correction of the point-force velocity field to account for the finite size of 

particle a. 

This contribution to the velocity of particle a cannot be the only 

contribution, however, because the particle interactions between two particles 

a and S in zero-Reynolds-number flow decay like _l_ as ras ~ m; hence, 
ras 

increasing the size of the cube to .., (i.e., using an infinite number of 

particles) results in the velocities of all the particles becoming unbounded. 
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This divergence arises because we have ignored the effect of the backflow of 

fluid which is necessary to preserve continuity. With error O(c) we may 

calculate the effect of the backflow from particles inside the cube and 

thereby alleviate the problem of divergent integrals by "smearing-out" the sum 

of the point-force interactions over the entire cube (see Saffman (1973)). 

A third contribution to the velocity of any chosen particle without close 

neighbors is the influence of suspension particles outside the cube. Far from 

the particle, we assume that the suspension becomes essentially random since 

we do not expect any long-range order to develop. The net result of this 

approximation is to make the direct effect of the particles outside the cube 

cancel the effect of the backflow due to the particles outside the cube. 

If we now make all lengths dimensionless by using the length of the side 

of the cube and choose as the dimensionless time T, a time comparable to that 

needed for a typical suspension particle to migrate laterally a distance equal 

to the interparticle spacing, then in dimensionless form the velocity of any 

given test particle a is 

[:a t:J 
N e 

N2h d UsT L [(1 + ~ (~)') dt r:;- ra8 8=l~a1' 8 a8 

2 ( ~)2) 
<~ '. :.al:.e] 

+ (1 - r&sJ - 3.17343 N~ r~s L 

in which T equals .:!.
3 

(-
3
4 

1T) 1h c-1 /3 N- 1
/

3 .l!.. e is the unit vector in the 
Us ' -

(16) 

direction of gravity, :a is the dimensionless position of particle a, EaB is :a 
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minus : 8, and Cf) equals c.Jn ~)1/3. (The first term is due to direct particle 

interactions, and the second represents the backflow.) 

For particles having close neighbors, we need to include, in addition to 

these three effects, higher-order reflections due to the close spheres. For 

particles having one close neighbor, we include these by considering this pair 

of particles to be settling in a shear flow generated by the settling of the 

other N-2 particles. The exact solution is known for this two-particle 

problem, and it can be decomposed into the sum of the velocity attained by a 

pair settling in an infinite fluid at rest far from the pair (see Batchelor 

( 1972)) and the relative velocity between two force-free, torque-free spheres 

moving in the approximately linear flow field generated by the other particles 

(see Batchelor and Green (1972)). This procedure is generalized for particles 

having more than one close neighbor by balancing the forces and torques on 

each of the close particles and considering the resistance and shear forces 

(i.e., the translational-rotational and shear resistance tensors) due to the 

other close particles to be pairwise-additive (for details see Lynch and 

Herbolzheimer (1985b)). 
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4. Results and Discussion 

Results from the simulations shall be presented in terms of the pair-

probability function and the settling velocity, each averaged over the 

particles in the cube. In the limit as c -+ 0, the coefficient of the O(c1 h) 

term in the expansion for the settling velocity may be obtained by subtracting 

Us from u0 and dividing this result by usc 1 l 3
• Since the particle velocities in 

the simulation do not include the Stokes velocity and are made dimensionless 

by the velocity L/1, we only need to multiply the averaged settling velocity 

L 3 i/3 

by / = ,, (3/4TI) N1 /3 to obtain the O(c1h) coefficient. Because the 
Us1Cl 3 4t 

average sedimentation velocity is only proportional to c1 /3 with error O(c), 

this procedure introduces an error of O(c2 l 3
) into the O(c1 l 3

) coefficient; 

however, for the small concentrations used in the simulation (e.g., c = 0.005), 

the error should be small enough so that this is still a useful way of 

illustrating how the value of the O(c1 h) term changes over time. (For 

example, at c = .005 the error in the 0( c1 h) coefficient would be -( .005) 
2
/3 

.029 for a simple cubic array and 6.55(.005)
213 

= • 192 for a random suspension.) 

In a real suspension the rate of fall of the suspension--clear fluid 

interface (i.e., the generally used measure of u0) corresponds to some average 

of the settling velocities of the spheres over some small volume of suspension 

and some sufficiently short tlme. Hence, we average the estimate of the 

O(c 1h) coefficient over time once the sub-ensemble of particles has reached a 

long-time asymptotic state from a statistical standpoint and thereby obtain a 

prediction of what the first correction to the Stokes velocity (i.e., (1-

u0 "'/usc1h) where u0 "' is the asymptotic value of u0) should be in a real 

suspension. This time-averaged estimate of the O(c1 l 3
) coefficient is presented 
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in Table 2, which gives a list of the completed simulation runs. 

The pair-probability function is calculated in the simulation by dividing 

the region around each particle into concentric spherical shells, counting the 

number of particles whose centers lie in each shell, and dividing this count by 

the volume of the shell. This result is then normalized by the number of 

particles per unit volume of suspension, n. For simulation runs with 27, 64, 

and 125 particles, the shells used are, respectively, of width L/16, L/20, and 

L/24.* This procedure yields a pair-probability function g(r) averaged over 

all angles and over the width of the shell. We present in Figure 1 the pair

probabili ty function calculated at intervals of .4 in dimensionless time for 

simulation run 6, a run with an initially random distribution of 64 particles 

at c = .005 and with a time step 6t of .001T. (The vertical lines at r = 2a 

and r = 4a in Figure 1 indicate respectively the radius inside of which no 

particles are present because of the inpenetrability of the particles and the 

radius inside of which neighboring particles are treated as close neighbors.) 

Because the pair-probability function averaged over the particles fluctuates 

markedly in time (see Figure 1), we have averaged g(r) over time steps .4 

dimensionless time units apart in order to remove most of these fluctuations. 

(More frequent averaging was found not to increase the precision of the pair

probabili ty function noticeably.) In all subsequent discussions we present 

results for the time-averaged g(r). Besides the pair-probability function and 

average settling velocity, the simulation also produces at regular time 

*To avoid including any effects of volume exclusion due to the finite size of 

the particles, we adjust the width of the first shell with its outer radius 

greater than 2a by changing its inner radius to 2a. 
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intervals statistics of the particle velocities and a picture of the particle 

positions; however, presentation of this material would be rather cumbersome 

and is not attempted here. 

When in run 6 the particli~s are placed in the box randomly in order to 

simulate the behavior of an initially random suspension, the long-time results 

are similar to the results of sedimentation experiments on dilute, quiescent, 

monodisperse suspensions. In Figure 2 we see that the coefficient of the 

O(c1 l 3
) term in the expansion for the settling velocity asymptotes to a value 

of .778, which, although less than 1.0, is greater than that which would be 

expected for a random suspension (viz., 0.0). Moreover, at c = .005 any 

volume-exclusion effect of higher-order in c could not possibly produce this 

large a correction to the Stokes velocity. To examine how the pair-probability 

function progresses toward a long-time distribution, we have divided the 

evolution of simulation run 6 (as seen in Figure 1) into three periods: an 

initial period from t = O to 2.4 when very little happens, a period from t 

2.8 to 4.8 when the suspension evolves, and a final period from t = 5.2 to 8.0 

when a long-time pair-probability function exists. Figures 3, ~. and 5 show 

the pair-probability function averaged over each of these three time periods. 

Obviously the initial distribution of particles changes into one with a pair

probabili ty function varying over a length scale comparable to the 

interparticle spacing (about .25L in this case). The final pair-probability 

function shows fewer close pairs than in a random suspension but becomes 

essentially random as r ~ ~. 

When the particles are initially allowed to take random perturbations 

about the lattice points of a simple cubic array, the long-time results are 

similar, but not identical, to those for the initial configuration of a random 
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suspension. In Figure 6 we plot the O( c1 h) coefficient versus time for 

simulation run 1, which has an initial configuration of 64 particles in a 

randomized simple cubic array with a concentration of .005; the time step is 

.0011 as in run 6. For long-time the O(c1 h) coefficient seems to level off at 

• 785, i.e., about the same value as for run 6. However, unlike run 6 the 

suspension begins to evolve immediately and essentially reaches its final 

distribution by t = 1.2. Figures 7 and 8 compare the initial pair-probability 

function to that averaged from t = 1.2 to 8.0. The long-time pair-probability 

function is much smoother than for the initially random suspension and again 

shows structure on a length scale of O(ac- 1h). 

To test the effect of step size on the simulation, we repeated run 6 with 

time steps of .002 and .0005. In each of these three runs, a group of four 

close particles forms when the dimensionless time reaches about .15. Because 

extremely small errors in the positions of the particles in the quadruple can 

cause large errors in their relative velocities, the motion of the quadruple is 

calculated differently in each case and consequently the trajectories of the 

particles in these three runs quickly diverge; however, the long-time behavior 

of the average settling velocity is quite similar for the runs (see Figures 2, 

9 and 10). As the time step is decreased, the average settling velocity 

becomes a smoother function of time. We observe from the pictures of the 

particle positions and the statistics of the particle velocities that this is 

the result of clusters of particles moving fast enough to come close to other 

particles and thereby forming larger clusters. When a cluster forms, the 

settling velocity of each of the particles inside the cluster increases 

substantially and the value of the average settling velocity "jumps" as a 

function of time. Hence, because clusters form far more readily at the larger 
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time steps, the plot of the 0(01 13
) coefficient versus time appears more 

jagged. The only other noticeable effect of changing the time step is that the 

number of particles which overlap is reduced significantly. 

When N is increased to 125 in run 12, the long-time results are again 

similar to runs 1, 6, 7, and 8, although the asymptotic value of the O(c1 h) 

coefficient is slightly lower in this case. The explanation for this anomaly 

is that at about t = 6.0 several particles come together to form a quadruple; 

the suspension becomes momentarily more random and the value of the O(c1 h) 

coefficient is correspondingly reduced (see Figure 11). Because we observed 

that quadruples were less likely to form for smaller time steps, this problem 

might not occur if the time step were reduced. In Figures 12 and 13 we 

compare the pair-probability function for run 12 averaged from t =Oto 1.2 to 

that averaged from t = 1.6 to 8.0. The initial pair-probability distribution, 

despite having fewer very close pairs than the final distribution, has many 

more moderately close pairs (i.e., pairs closer than the interparticle spacing, 

.2L). 

Comparing the long-time pair-probability function for run 1 2 with 125 

particles (Figure 13) to that for run 6 with 64 particles (Figure 8) and to 

that for run 13 with 27 particles (Figure 14), we see that for large r the 

pair-probability function more closely approximates a random suspension as N 

is.increased. This is presumably due to the better statistics for larger N 

rather than to any effect of the periodic boundary conditions because the 

long-time result for the average settling velocity shows little change as N is 

increased. For N = 27, although fewer moderately close pairs are present than 

in a random suspension, an extra number of very close pairs appear; several of 

the other runs show similar behavior, but in none is it as pronounced as here. 
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Five simulation runs were completed at concentrations other than .005. 

Raising c to .008 and to .02 seems to have little impact on the long-time 

behavior of a simulation run; in run 9 with c = .008 and in run 3 with c = .02, 

the long-time pair-probability function is again one which varies over a length 

scale of O(ac-1 /3) (see Figure 15). The estimate of the O(c1h) coefficient at c 

= .008 is .764, a value in close accord with the results for the runs at c = 

.005. Because at c = .02 the O(c) correction term is important in the settling 

velocity expansion, the estimated O(c1 h) coefficient asymptotes to a value, 

.965, which is slightly larger than that found at c = .005. 

However, several changes worth noting do occur. First, because the 

particles are now larger relative to the size of the box, they overlap more 

frequently. Also, the variance in the velocity distribution of the particles 

decreases significantly as c is increased. Finally, because at this larger 

concentration clusters of particles are constantly forming and breaking up, 

the plot of the O(c1 /3) coefficient versus time becomes increasingly more 

jagged as c is increased (see Figure 16). 

At c = .02 the simulation method shows some signs of breaking down. For 

computational considerations, in the simulation we can consider a maximum of 3 

particles as close neighbors of a given particle a. However, for c = .02 at 

times more than 3 particles come close to a given particle a, and the 

simulation must consider the particles furthest from a to be "far away". A 

more difficult problem with the simulation procedure is that at t = 3,731 

a quadruple of particles comes so close together that the matrix we must 

invert to determine the velocities of the quadruple is algorithmically 

singular. Because of this difficulty, we end the simulation at this point. 
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Surprisingly, in two of the three simulation runs with c = .001, the 

smallest concentration used in the simulations, the long-time behavior is 

profoundly different. For run 2 with an initial configuration of a randomized 

simple cubic array, the average settling velocity asymptotes to about 

Us(1-.855c1 h) (see Figure 17) and the long-time pair-probability function again 

shows the expected deficiency of close pairs. In neither of the runs for which 

the particles are placed in the cube randomly, however, does the distribution 

evolve in the expected pat tern. In run 1 0, the simulation results show a 

strong tendency toward creation, and subsequent destruction, of close pairs, 

and the sub-ensemble does not approach any asymptotic state monotonically; 

nevertheless, the average settling velocity eventually does seem to level off 

to an asymptote from t = 9.6 to 12.0. (The asymptotic value of the O(c1h) 

coefficient for this run is listed in Table 2 as inconclusive.) Run 11 shows 

even more interesting results. In this run,despite the fact that the particles 

are initially placed in the cube randomly, the initial particle distribution has 

few close pairs. Hence, we see in Figure 18 that the initial settling velocity 

is very close to the expected asymptotic value and that the O(c1 l 3
) coefficient 

remains at this level (viz., .835) until t = 2.4. At this point close pairs 

begin to appear, and eventually the sub-ensemble develops into a collection of 

particles with even more close pairs than a random suspension (see Figure 19). 

Two other characteristics which make the runs for c = .001 different from the 

other simulation runs are the absence of any close triples and the large 

variance in the distribution of the particle velocities. 
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5. Conclusions 

Despite the aberrant behavior of the simulation runs at c = .001, the 

universally similar long-time behavior of the runs with c • .005, .008, and .02 

suggest that multiparticle hydrodynamic interactions can produce a microscale 

suspension structure changing over a length scale of O(ac-1 /3) and that this 

structure yields a first correction to the Stokes velocity proportional to 

O(c1 h). The value of the O(c1 h) term determined by averaging the long-time 

values obtained from all the runs with c = .005 (viz., ca •• 752) is slightly 

lower than that expected from the correlation of Barnea and Mizrahi (viz., 

1 .O). One (probably small) contribution to this discrepancy is that force 

pairwise additivity, used to calculate the velocities of close triples and 

quadruples, consistently overestimates their absolute velocities. Another 

explanation is that in calculating the average settling velocity we have not 

calculated correctly the effects of higher-order terms in c (e.g., the term in 

the settling velocity expansion of O(c"h)) which are not completely negligible 

for c = .005. The fact that the O(c1 l 3
) coefficient for simulation run 2 with c 

.001 asymptotes to about .85, not .75, lends some support to this contention. 

However, most likely this discrepancy is simply due to the error inherent 

in the correlation. As we see in Figure 20, our result for the settling 

velocity at each of the four eoncentrations used agrees significantly better 

with the correlation than either the result for a random suspension or a 

simple cubic array. (The value of u0 for c = .001 is that of run 2.) 

Furthermore, the agreement is probably within the experimental accuracy of the 

correlation. Why our simulation yields the result 
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(16) 

for small c, rather than 

O(c)) (7) 

can be explained by observing that for small c the third term in the 

correlation is 1 .O c2 /3. However, because the velocity induced at some 

particle a by N other particles far away has no term proportional to (a/r) 2 

where r is a measure of the distance between a and the other particles, the 

expansion for the settling velocity can have no term proportional to c2 h. 

Since the correlation includes a spurious c2 /3 term, it overestimates the 

coefficient of the c1
/

3 term. Indeed we see in Figure 20 that for c = .005 the 

predictions of equations 16 and 7 are essentially identical. 

One possible explanation for why close pairs break up in a settling 

suspension relies on the following observation: since close pairs settle faster 

than particles without close neighbors, they tend to overtake single isolated 

particles. Suppose we consider a pair behind and slightly to the right of a 

single particle (see Figure 21a). The single particle induces a velocity field 

at the pair tending to make the particle closer to the single settle faster 

relative to the other member of the pair and thus tending to make the pair 

break apart. Eventually the pair moves even with the single (Figure 21b), 

creating a close triple; the middle particle in the triple settles faster than 

the other two, and the pair degenerates to the point where the effects of 

other particles become important enough to effectively destroy the pair 

(Figure 21 c). 
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The rapid settling of close pairs can also have another important 

influence on the evolution of the suspension. Suppose a pair is about to 

overtake an isolated particle separated from the pair by a distance R 

sufficiently large so that the isolated particle has little effect on the 

relative velocity of the pair (which decays like (a/R) 2
) but an important 

effect on the settling velocity of the pair (which decays like (a/R)). Then, as 

the close pair moves past the isolated particle, it is dragged down with the 

pair and the radial pair-probability function for each of these particles 

changes to one with more moderately close pairs. Since the isolated particle 

now moves faster, it also encow1ters other particles and the pair-probability 

function changes further toward one with an excess of moderately close pairs. 

Because for c = .001 close triples are a rare occurrence, the most 

important effect of encounters between close pairs and isolated particles may 

be to change the pair-probability function, not to produce relative motion 

between the particles in the pair. Under this scenario the long-time pair

probabili ty function should show three features: a spike near r = 2a due to 

close pairs locked in lubrication layers, a dip below 1.0 due to the absence of 

close triples, and a substantial excess of moderately close pairs. As we see 

in Figure 19, the long-time pair-probability function shows this type of 

distribution. (In Figure 19 we have used spherical shells of width L/40, 

instead of L/20, in order to resolve these features.) Thus this scenario might 

serve as a rationale for the anomalous behavior of the runs with c = .001. 
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Table 1 

Values of the Peclet Number for Several Sets of Sedimentation Experiments 

amean(µm) Ps<c~3) p( c~3) c Pe 

Kops-Werkhoven .021 1.28 .78 .0078-.117 Ca. 4x10- 7 K 
and Fijnaut 
( 1981 ) 

Cheng and . 13 1.052 1.0 .005-.075 ca. 5X10-5 K 
Schachman 
(1955) 

Buscall, et al. 1.55 1.054 1 .0 .005-.085+ ca. .5K-1.4K 
( 1982) 

Steinour (1944) 6.8 2.32 1. 0 .15-.5 ca. 1.9X10"K 
(glass spheres) 

Oliver (1961) 80 1. 191 1.05 .0033-.35 ca . 2x107 K 

Lynch and 51 2.8 1 .04 . 04-.25 ca. 5x107 K 
Herbolzheimer 
(1985a) 

+ Largest concentration for which the correction factor to the Stokes velocity 
was proportional to c. 



Type of Initial 
Run Configuration N 

Randomized 
Simple Cubic 
Array 

2 Randomized 
Simple Cubic 
Array 

3 Randomized 
Simple Cubic 
Array 

4 Randomized 
Simple Cubic 
Array 

5 Random 
Suspension 

6 Random 
Suspension 

7 Random 
Suspension 

8 Random 
Suspension 

9 Random 
Suspension 

10 Random 
Suspension 

11 Random 
Suspension 

64 

64 

64 

27 

64 

64 

64 

64 

64 

64 

64 

12 Random 125 
Suspension 

13 Random 27 
Suspension 
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Table 2. 

List of Simulation Runs 

c a 
L tit tnnal 

.005 .0265 .001 8.0 .785 

.001 .0155 .0005 6.0 .855 

.02 .0421 .001 3. 731 .965 

.005 .0354 .001 8.0 .854 

.005 .0265 .001 12.0 .684 

.005 .0265 .001 8.0 .778 

.005 .0265 .002 8.0 .701 

.005 .0265 .0005 8.0 .738 

.008 .0310 .001 8.0 .764 

.001 .0155 .0005 12.0 

.001 .0155 .0005 8.0 .008 

.005 .0212 .001 8.0 .627 

.005 .0354 .001 8.0 .852 
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Figure 1. Volume-averaged pair-probability function at intervals of .4 in 
dimensionless time for simulation run 6: initial configuration of a 
random suspension; N-64, c•.005, 6t•.001. 
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Figure 1 (g) 

1.00t---+---+-----".I!~----~-.---------------

0. 50 ~ 

0.00 
0.00 

2. 00 .... 

1. 50 -

g(r) 

"' I I 

0. 10 0.20 
I I I 

0.30 0. 40 0.50 
r/L 

t = 2.400 

( h) 

1.00..__-+---+-------------------------~ 

0. 50 .... 

0.00.__."'~--~·------~·------~·--------·----~· 
0.00 0. 10 0.20 0.30 0. 40 0.50 

r/L 

t = 2.800 



2. 00 -

1. 50 -

g(r) 
A 

-42-

Figure 1 (i} 
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Figure 20. u0 /us versus c for various theoretical and experimental results: a 
- correlation of Barnea and Mizrahi (1973) (equation 6), b - first 
three terms of Barnea and Mizrahi 's correlation (equation 7), c -
first two terms of theoretical result for simple cubic array 
(equation 3), d - theoretical result of Batchelor (1972) for random 
suspensions (equation 4), e - two-term result of our simulation 
( equation 16). The squares indicate the settling velocity 
determined from our simulation at various concentrations. 
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A Method for the Simulation of Sedimenting Suspensions 

Edward D. Lynch and Eric Herbolzheimer 
California Institute of Technology 

Pasadena, California 91125 

Abstract 

This paper presents one method for implementing a molecular-dynamics-

type simulation for a three-dimensional, sedimenting suspension. Although we 

are primarily interested in applying this method to the calculation of the 

average sedimentation velocity in dilute, quiescent suspensions (see Lynch and 

Herbolzheimer (1985)), the method should have application in other physical 

situations. The simulation follows the trajectories of a sub-ensemble (27 to 

125 identical spheres inside a cube) of the suspension by imposing periodic 

boundary conditions at the sides of the cube. The velocity of each of the 

particles at each time step is decomposed into contributions due to 

interactions with particles far from the specified particle, to interactions 

with particles close to the specified particle, to interactions with particles 

outside the cube, and to the pure-fluid return flow. This procedure both 

preserves the lubrication forces which restrain particles from overlapping and 

calculates accurately the relative velocities between N well-separated spheres 

settling under low-Reynolds-number conditions. Trajectories for three 

interacting particles computed u:sing this method agree remarkably well with 

those computed by Ganatos, Pfeffer, and Weinbaum (1978) using a collocation 

technique. 
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1. Introduction 

Al though the properties of <iilute suspensions have been studied for 

nearly a hundred years, only recently have systematic methods been developed 

for treating the particle interaction effects which are important in more 

concentrated systems. To date, these hydrodynamic particle interactions have 

been incorporated into the calc~ulation of cons ti tu ti ve relations for 

suspensions by one of four methods: cell models, regular arrays, ensemble 

averaging, or multipole expansions (see the discussion in Lynch and 

Herbolzheirner (1985)). All of these methods except ensemble averaging share 

one common feature: they require .~ priori knowledge of how the particles are 

arranged on the rnicroscale. Of course, the particles in a suspension are free 

to move in response to the forces applied on them by the fluid, and since 

their relative positions ca'1 have important effects on the suspension 

properties, determining the microscale particle distribution is an important 

part of the calculation of any suspension property. In the ensemble-averaging 

approach, the relative particle positions are determined as part of the 

calculation, but with the restriction of considering the interaction of only a 

pair of particles in the suspension. Although this technique is adequate for 

calculating the stress in a dilute suspension undergoing pure straining motion, 

the limitation of considering only pair interactions leads to indeterminacies in 

the particle distributions for other shear flows and for the important pr'oblem 

of calculating the average sedimentation velocity of a monodisperse suspension 

of spheres. In this paper we describe a method which accounts for 

mul tiparticle hydrodynamic interactions in determining the motion and the 

positions of the particles. In particular, the pair-probability function P(r) 
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(i.e., the probability of a particle being at position !o + r given a particle 

at position ~0 ) can be determined as part of the calculation even in the case 

of sedimentation. 

The procedure explained in this paper involves simulating the behavior of 

a sub-ensemble of the sedimenting suspension in a manner similar to that used 

in molecular dynamics to study the macroscopic properties and pair-probability 

functions of dense gases and liquids. Despite their extensive use in molecular 

dynamics, these type of simulations have received rather limited use in 

studying the interaction between the hydrodynamic and nonhydroclynamic forces 

present in suspensions. Several authors (cf. Ermak and McCammon 1978; Bacon, 

et al. 1983; and Dickinson and Parker 1984) have employed Brownian-dynamics 

simulations which include the effects of hydrodynamic interactions to study 

the behavior of close pairs and triples of particles in colloidal suspensions. 

Although the Brownian-dynamics algorithm described by Ermak and McCammon has 

some similarities to the method presented here and al though these references 

give some insight into how pairs and triples behave under the influence of 

Brownian motion, DLVO-type colloidal forces, and two-particle and three

particle hydrodynamic interactions, they do not treat the multiparticle 

hydrodynamic interactions important in suspensions. In their study of 

coag~lation, Valioulis, List, and Pearson (Valioulis, List, and Pearson 1984; 

Pearson, Valioulis, and List 1984) simulated the behavior of many particles 

moving under the effects of Browruan motion, shear, Van der Waals forces, and 

hydrodynamic interactions. Howev1er, in treating the hydrodynamic interactions, 

they only considered at most two-particle. interactions. The only previous 

molecular-dynamics-type simulation which treats the effects of multiparticle 

interactions is the work of Bossi:s and Brady (Bossis and Brady 1985; Brady and 
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Bossis 1984). They investigated the effects of multiparticle hydrodynamic 

forces, shearing forces, and DLVO-·type colloidal forces on a suspension in a 

sheared monolayer by approximating the multiparticle hydrodynamic interactions 

using the assumption of pairwise additivity of either the velocities of the 

particles or the hydrodynamic forces on the particles. 

In this paper we propose a simulation procedure which calculates the 

hydrodynamic interactions using-a method similar to pairwise additivity of the 

velocities for particles which are well-spaced from each other and using 

pairwise additivity of the forces for particles which are close together. This 

hybrid method both preserves the important lubrication forces between close 

pairs of particles and calculates the velocities of the particles which are far 

from each other in a manner which agrees with exact asymptotic results for 

the problem of N particles settling in a quiescent fluid. The other important 

difference between this and previous work is that we are mainly interested in 

the interplay between these interactions and gravity, not DLVO-type forces or 

shearing forces (although the method is explained in a way which makes obvious 

how other types of forces could be included). 
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2. General Method 

In the next three sections, we explain a general procedure for 

calculating the macroscopic properties of a suspension via a molecular

dynamics-type simulation; parenthetically the special features of the 

calculation particular to our application are noted. In order to reduce the 

number of variable parameters, ·we have assumed the particles in the simulation 

are identical spheres of radius a and density Ps. but the extension of the 

method to other cases should be obvious. 

Although a real suspension has an extremely large number (typically 

millions) of particles, for reasons of computing speed, memory, and cost a 

molecular-dynamics-type simulatl.on is capable of handling at most hundreds of 

particles. Hence, we assume th~= suspension can be replaced by a N-particle 

sub-enserr.ble, contained within a cube with side of length L, with periodic 

boundary conditions. Periodic boundary conditions mean first that the cube 

containing the N particles is repeated periodically throughout space. In this 

implementation we assume each of the N particles is affected by only the 

closest image of each of the other particles. Periodic boundary conditions 

also mean in our application that wall effects are assumed unimportant, that 

the actual side walls of the container are moved to infinity, and that 

particles leaving through one slde of the cube reenter from the point directly 

opposite on the other side of the cube. The assumption of periodic boundary 

conditions is justifiable because we expect no long-range structure or long

range forces to be present in a sedimenting suspension. (We consider this 

point in more detail later.) 
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Hence, to begin the simulation, N particles are placed in a cube in any 

desired configuration. We are interested in two types of initial conditions. 

First, to simulate the behavior of suspensions in which the particles are 

initially well-spaced, the particl,es are allowed to take random perturbations 

within a specified distance about the lattice points of a cubic array. In 

other situations where determining the behavior of suspensions with initial 

close pairs is important, the initial configuration of particles is prescribed 

by placing the particles randomly within the cube with the restriction that 

they may not overlap. 

From the specified initial configuration, we determine the trajectories of 

the particles by numerically integrating the velocities of the particles 

forward in time. The evolution of the suspension is observed by calculating 

the pair-probability function and the average settling velocity as functions of 

time. The pair-probability function is computed by counting the number of 

particles in spherical shells centered on each particle, dividing by the volume 

of the shell, and then averaging this result over the N particles. This 

volume-averaged pair-probability function is then time averaged over time 

steps 400 time steps apart once the suspension reaches a long-time asymptotic 

state from a statistical standpoint. The average settling velocity is 

similarly determined by first averaging the settling velocities of the N 

particles and then time averaging this result once the suspension reaches a 

long-time asymptotic configuration. 

To explain the method used for determining the velocities of the N 

particles, let us focus on our application, the sedimentation of a semi-dilute 

suspension of identical spheres under conditions of small particle Reynolds 

number. First, since the suspension is dilute, most of the particles are 
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separated from each other by a distance large compared with the particle 

radius, a. Specifically, by definition of the volume fraction we have 

c -
N 4 
V3 'TTa3. (1) 

Hence, the average particle spacing (which is proportional to L/N 1
/

5
) divided by 

a is proportional to c- 113
• For the moment, let us assume that the particle 

we are calculating the velocity of (particle a, say) does not have any close 

neighbors (i.e., all of its neighbors are a distance of O(ac- 1h) away). 

Now, the velocity field induced at a can be decomposed into three distinct 

parts. First, a portion of the velocity of particle a is the velocity with 

which a would move in the presence of the other N-1 particles in the cube (or 

their closest image). Since the Reynolds number is assumed to be small, we 

may app~oximate this velocity to O(c) as the sum of three contributions. The 

first ter~ is the Stokes settling velocity of particle a 

!:!s "' (2) 

and is the velocity with which a would settle in an infinite fluid at rest far 

from a. (Here g is the gravitational acceleration, ~ is the unit vector in the 

direction of gravity, and p, ii, and \I are the fluid density, viscosity and 

kinematic viscosity, respectively.) The second contribution is the fluid 

velocity induced at sphere a by the other N-1 spheres and consists, to O(c), of 

a Stokeslet and a potential-dipole singularity at the centers of each of the 

N-1 other particles. The final term is the Faxen's law modification of the 
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Stokeslet velocity field at particle a to account for the presence of a. The 

next higher-order term comes from the first reflection of the Stokeslet 

velocity field of each of the N particles off e>f the N-1 particles other than 

a and is O(c"/ 3
). Since this term is a three-bc>dy interaction and evaluating it 

requires O(N 2
) operations, whereas the first three terms are one-body and two-

body interactions and require only O(N) operations to evaluate them, for 

computational efficiency we restrict our expression for the velocity V' - a 

particle a attains due to direct particle interactions to the first three 

terms. After combining these three terms tog~?ther, we find 

N 

r (3) 

in which ras is the vector from the position of particle 8 to the position of 

paiticle a, and ras is the magnitude of ras· 

This induced velocity cannot be the only contribution to the velocity of 

paiticle a, however, since the particle interactions in zero-Reynolds-number 

flo...., decay so slowly (like - 1- for two particles a: and 8) as the particles 
. ras 

get far apart that increasing the number of particles in the simulation would 

increase \olithout bound the result for the velocity of particle a. The problem 

is that this analysis has not included some of the essential physics. When 

particles settle downward, they carry their own volume and some volume of 

fluid with them. Hence to pre.serve overall continuity, a backflow of fluid 
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arises and must be accounted for in the simulation. This backflow can be 

computed with error O(c) by "smearing-out" the sum of the point-force 

interactions over the entire cube (i.e., multiplying the Stokeslet velocity 

field by the number of particles per unit volume n and integrating this result 

over the cube) (Saffman 1973). This procedure introduces the same error of 

O(c) into the velocity of each of the particles; however, for dilute 

suspensions this term is small compared with the leading term of O(c1h) in the 

particle interactions. The effect of the backflow due to the particles in the 

cube is thus 

(4) 

The final influence on the velocity of a particle a without close 

neighbors is the effect of part:icles outside the cube. If no long-range order 

exists in the suspension, far from particle a the particle positions become 

random so the pair-probability function equals n independent of radius and 

angle. Hence, because the distribution of particles outside the cube is 

unknow;i in our simulation, it is replaced by a random distribution. To 

determine the effect of this approximation on the velocity of particle a, we 

observe that with error O(c), the velocity of particle a is given by the sum of 

the point-force interactions due to the other particles in the suspension minus 

the back flow: 



-80-

(5) 

1n which the integral is taken over the entire suspension volume. Assuming 

that the distribution of particle~s is random far from particle a is equivalent 

to replacing the actual distribution of particles outside the cube (represented 

in equation 5 by the sum of delta functions at the centers of all the other 

particles) by its ensemble-averaged value, n. Thus, with an error of O(c), 

this replacement eliminates the effects of the particles outside the cube, for 

their contribution to the backf1ow exactly cancels their direct influence as 

point forces (Saffman 1973). 

Because the particle interactions in zero-Reynolds-number flow decay so 

slowly, any deviation in the actual distribution of particles outside the cube 

from a random distribution can cause substantial changes in the velocities of 

the particles in the cube; ther·efore, for our assumption to be valid, very 

little structure should be present in the pair-probability function at a 

distance of L/2 from a given test particle. Certainly this premise is true if 

the edge of the cube is very far from the test particle (i.e., if N is very 

large). However, if N is small, then the assumption of a random distribution 

may only be approximately corrE~ct, and the effect of the particles outside the 

cube on the macroscopic properties cannot be proved to be negligible. 

Nevertheless, for simulation n.ins with numbers of particles ranging from 27 to 

125, the pair-probability function far from a test particle seemed to converge 

to the constant n as the numbi~r of particles was increased. Moreover, the 

long-time asymptotic value for the average settling velocity for the particles 
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in the cube remained relatively constant over this range of N (Lynch and 

Herbolzheimer 1985); thus, the ~:isumption of a random suspension outside the 

cube appears to be a reasonable i0ne. 

To determine the dimensionless velocity of a settling sphere a without 

close neighbors, we combine the velocity fields induced by the direct particle 

interactions and the backflow, ~nd then nondimensionalize lengths with respect 

to the length of the cube and· time with respect to 1, a time comparable to 

that needed for a particle to migrate an average particle spacing: 

1 "' (6) 

Finally, we find that the dimensionless velocity of particle a is given by 

[ro 
N 

l~ + (£/) 
§ 

wf 3 
d u5 t J ~ 2 
dt - - te 

3ra~ - + 
L -

8=1,ailS ras 

~- 2 (~)t · ~~elf oe J _ 
3. 17343 N§ + O(c) (7) 

r~s ras 

-in which r a is the dimensionle:ss position of particle a, r aB is r a - r B, and 

( 
3 )1/3 (t) = 4TICN • 
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3. Refinement of Velocity Calcu1ation 

Equation 7 is accurate o~ly to O(c2 h) because of the method of 

calculating the back flow; however, in order to increase the accuracy of the 

particle trajectories, we may wish to refine the calculation of the relative 

velocities between the particles,, which are, of course, independent of the 

backflow since this contribution is the same for all the particles. The 

principal problem with the method presented in section 2 is that the 

approximations made in calculating the particle interaction terms breakdown 

when particle a has one or more close neighbors. For example, if the distance 

between particles a and 'Y becomes O(a), ro,-yla becomes 0(1) instead of O(c- 1 /s) 

as was assumed above. Hence, the higher-order reflection terms between o. and 

-Y no longer become negligible as the concentration becomes small. This 

difficulty does not arise with the remaining particles, which are well

separated from o., so we seek to develop a technique for incorporating the 

influence of close particles within the context of the scheme outlined in 

section 2. This modification is crucial to the success of the simulation since 

these higher-order interactions and the corresponding lubrication forces for 

very closely spaced particles are responsible for preventing the particles 

from overlapping each other. Hence, an accurate representation of the 

dynamics of close pairs of particles is needed to obtain a reasonable 

representation of the pair-probability distribution. 
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To start, let us reconsider :ln a more systematic and more general way the 

problem of determining the effect of the direct particle interactions on 

particle a. The essence of this problem is to calculate the motion of N 

particles moving in an incompressible, Newtonian fluid given some known 

external forces on the particles. 

This N-particle problem may be described in terms of the multiparticle 

resistance tensor formalism explained by Brenner and O'Neill (1972). To use 

this formalism, we need to make some assumptions. We assume that the fluid is 

being sheared at a uniform, stea1dy rate and that the motion of the particles 

is pseudosteady. 
aus 

Assuming the appropriate particle Reynolds number (viz., --
. \) 

in our application) is much less than unity and that the ratio of the densities 

of the particles and the fluid is 0(1) allows us to neglect particle inertial 

effects. Finally, since in suspensions of interest to us the relative velocity 

due to mul tiparticle hydrodynamk interactions, VR, is much greater than the 

Brownian-motion diffusion coefficient divided by the particle radius, ~· (i.e., 

VRa . 
the Brownian-motion Peclet number Pe = --0- is much greater than unity (Lynch 

and Herbolzheimer 1985)), we assume Brownian-motion effects are negligible. 

Under these assumptions the forces and torques on the particles are 

linearly related to the transJ.ational and rotational velocities of the 

particles. Hence we can write 6N equations balancing the forces and torques 

on each of the particles (see Br·enner and 0' Neill ( 197 2)): 

(8) 
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in which I is the force-torque vector, a 6N-component vector containing the 

sum of the external forces and the sum of the external torques on each of the 

N particles; R is the N-particle grand resistance tensor, a 6Nx6N-component 

tensor describing the translational and rotational hydrodynamic resistance 

forces on the particles; Q_ is the velocity-spin vector, a 6N-cornponent vector 

containing the difference between the particle velocities and the undisturbed 

fluid velocity at each of the· particles and the difference between the 

particle rotational velocities and one-half the undisturbed fluid vorticity at 

each of the particles; .! is the :shear resistance triadic, a 6Nx3x3 third-order 
.Qf 

tensor describing the shear resi:stance forces on the particles; and ~ is the 

local fluid rate-of-strain tensor, ~ (V~ + v~T), where ~ is the undisturbed 

fluid velocity in the system of N particles (i.e., the fluid velocity in the 

absence of the N particles). Alternatively, these 6N equations can be solved 

for the velocity-spin vector to yield 

(9) 

where R- 1 is the N-particle grand mobility tensor and is the inverse of the N-

particle grand resistance tensor. 

Calculating the velocities of the particles (i.e., the velocity-spin 

vector) given the external forces on the particles (i.e., the force-torque 

vector) requires knowing either the grand resistance tensor R or the grand -
mobility tensor R- 1 and also the shear resistance forces .! : ~· One 

r:ti! 

possibility for determining these tensors is to assume that the shear 

resistance triadic and either the grand resistance or the grand mobility tensor 
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are pairwise-additive. Bossis and Brady ( 1985) explored both of these 

possibilities for fairly concentrated suspensions and found that assuming the 

hydrodynamic forces and torques to be pairwise-additive was the best approach 

because it preserved the lub!"ication forces between the particles and 

restrained the particles from overlapping. However, for fairly dilute 

suspensions where the particles are widely separated, this method has two 

serious disadvantages. It does ·not accurately predict the particle velocities 

because for a collection of particles all separated by distances of O(ac-113 ), 

whereas the velocities of the particles are pairwise-additive with error 

O(c~l 3 ), the farfield expansion for the hyd!"odynamic forces upon the particles 

contains terms at O(c2 l 3
) which are three-body interactions and are not 

pair'wise-additive (Mazur 1982). Furthermore, using the force equations is 

com;::mtationally inefficient because it unnecessarily requires inverting very 

large matrices in order to determine the velocities of the particles. 

Therefore, we take a hybrid approach, in which the velocity of particle a 

is calcJlated differently depending upon whether zero, one, or mo!"e than one 

particle is within a few particle radii of a. If a has no close neighbors, 

then we may find its velocity from the farfield solution for the N-particle 

rnobili ty tensors and the force-torque vector' for the N-particle system. For 

the case of N spheres, Mazur and Van Saarloos have calculated the grand 

mobility tensor when no bounding walls are present (Mazur' and Van Saarloos 

1982) and when a bounding wall ls present (Beenakker, Van Saarloos, and Mazur 

1984) and have shown how to caJ.culate the shear resistance triadic when no 

bounding walls are present (Mazur and Van Saarloos 1982). These equations 

simplify considerably in our application since no bounding walls or external 

flow field are present, the only force acting on the particles is gravity, no 
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body torques act on the particles, and the particles are all identical spheres; 

therefore, the first 3N terms of' the force-torque vector consist of N 

repetitions of (0, O, 1 ira3 (ps-p)g) and the remaining terms equal 0, and the N

sphere shear resistance triadic is not needed. By multiplying the appropriate 

row of the N-sphere grand mobility tensor for an unbounded fluid by the force

torque vector, we find that the ve~locity of particle a is given, with an error 

O(c"l 3
), by equation 3, which was previously developed based on physical 

arguments. 

If the test particle a is within a few particle radii of another particle 

(let us call it "Y), then the farfield solution of Mazur and Van Saarloos does 

not give an accurate representation of the velocities of particles a and "Y 

because of the neglect of higher-order reflections between these two 

particles. Therefore, when two particles a and "Y are sufficiently close 

together (viz., their centers are within ~a in our implementation), we treat 

them as a pair moving under the prescribed external forces in the velocity 

field created by the remaining N-·2 particles in the cube (or by the nearest 

image of a particle). (To simplify the discussion at this point, we restrict 

our at tent ion to the case of identical spheres which are far away from any 

bounding walls and not situated in any external flow field.) 

The hydrodynamic interactions between the particles a and "Y in the close 

pair and the remaining particles in the suspension separate physically into 

several different types. First, we can analyze the effect of a and Y upon 

each other as the problem of two particles moving under prescribed external 

forces and torques in the flow field (i.e., the undisturbed fluid velocity field 

minus the undisturbed fluid velocity at the midpoint between a and "Y) 
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generated by the other N-2 particles. Because the equations of motion at zero 

Reynolds number are linear, we may decompose this problem into that of two 

particles moving under imposed external forces and torques in an infinite fluid 

at rest far from the particles and that of two force-free, torque-free 

particles moving in the flow field generated by the other N-2 particles. Note 

that in making this decomposition we have neglected the reflections of the 

velocity field generated by part:lcles a and )' off of the remaining N-2 

particles. Since a and "'f' are we11-separated from the other particles, this 

approximation introduces an error of occ~l 3 ) into the velocities of a and )'. 

To calculate the velocities of the two particles moving in an infinite, 

quiescent fluid, we multiply the two-particle grand mobility tensor by the 

vector containing the external forces and torques imposed on the particles. 

Since no body torques act on the particles and gravity is the only external 

force acting on them, the velocity of both a and "'f' is that attained by two 

spheres settling in an infinite, quiescent fluid and can be computed by knowing 

how the velocity of two particles settling parallel to the line joining their 

centers anj the velocity of two particles settling perpendicular to the line 

joining their centers depend upon the separation distance ray between the 

particles. Both of these problems have been solved for almost touching 

spheres, for spheres very far apart, and for separations in between these two 

extremes (Wakiya 1967; Goldman, Cox and Brenner 1966; Happel and Brenner 1965; 

Batchelor 1972; and O'Neill 1969). 

The remaining problem of ,jetermining the motion of two force-free, 

torque-free particles immersed in the flow field generated by the remaining N-

2 particles simplifies considerat)ly by noting that within an error of O(c) this 

flow field is a linear shear centered at the midpoint between a and "'f', that 
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within an additional error of O(c) the rate-of-strain tensor E and vorticity n 
= 

of this shear at the midpoint ma:y' be approximated by their values at particle 

a, and that within an error of O(c"h) ~ and ~ can be calculated by treating 

the N-2 remaining particles as point forces. Recalling that both E and o must - -
be made dimensionless by t• we find after making these approximations that 

N c~'.ras) ~ - 3 
rasrosj N2/3 E = L 

r&s 
+ O(c2h) ( 1 0) 

:;; 
S=1,S~a,Y (r2as) 

and 

N 
N2h rl L:' 2 

(~ x ras) + O(c2/3). (11) = -
8=1,Sito.,Y r&s 

Fortunately, the motion of two force-free, torque-free particles immersed 

in a linear shear field has been determined by Batchelor and Green (1972). 

Their result for the relative motion between a and Y is comprised of two 

terms: a term resulting from particle interactions between a and Y and a term 

representing the difference between the undisturbed fluid velocity field 

created by the N-2 other particles at a and that created at Y. The term due 

to particle interactions may be included without modification in calculating 

the velocities of a and Y; however, the difference in the fluid velocity field 

is not included here. 

It instead is incorporated :Lnto the final influence on the velocities of a 

and Y: the effect of the N-2 other particles. With error O(c"/ 3
) we may 

approximate this effect at either of the particles a or Y (choose particle a, 

say) as the sum of the undisturbed fluid velocity field at a produced by the 
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particles other than a and Y ancl of the Faxen's law correction or this 

velocity to reflect the finite si~~e of a. In other words, the effect of the 

remaining N-2 particles is identical to their effect in the case where a had no 

close neighbors (cf. equation 3),, and therefore the velocity induced at 

particle a by these particles in climensional form is: 

(12) 

Because we treat the effect of the particles far away in the same way in both 

cases, particles a and Y do not suffer a change in velocity when their centers 

come within 4a. 

After combining the results for the settling motion of a and Y with that 

for the relative motion between a and Y in the created linear flow field and 

after incorporating the backflow and equation 12, the velocities of particles a 

and Y are given in dimensionless form by 

N ['1. 2 ~ 
N2h d [- U5T ] ~ 2 (a) ) 

dt ra - T ~t • - - + 
S•1 ,8,la,Y 3r& 8 

t ras 

2 
2 (~ '. faefraeJ (1- =--- (!) ) . r&s - 3. 17343 Ne + 

rJs L 

-
ray (raY • 

- A:t<ray )) 
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and 

[~ '( -~ ~tl ·~ f [ ( 1 + J 6·1,B"'a,r 
-+ 

(1 4) 

in which E is given by equation 10. The functions A1(r0 r) and A2(r0 r) and the 

functions A( ra. y) and BCra. y) are coefficients determining respectively the 

settling motion of two spheres parallel and perpendicular to the line joining 

their centers and the motion of two spheres in a linear flow field. They are 

functions only of rar• the distance between a and r, and in the simulation are 

calculated by using the lubricat:Lon and farfield results when the spheres are 

close together or far apart, respectively, and by using Akima' s method (Akima 

1970) to fit an interpolant through the known numerical values of the 

coefficients when the spheres a.re neither close together nor far apart. 

Because the accuracy of the available farf ield and nearfield forms differs for 

the various coefficients, the ranges of r 0 y over which the nearfield and 

farfield forms are used also differs. In equations 13 and 14 the first term is 

the effect of the other N-2 particles, the second term is the backflow, the 
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third term arises because of the settling of the pair in an infinite, quiescent 

fluid, and the fourth represents the relative motion of a and l in the linear 

flow field created by the other l~-2 particles. 

In addition to being justifiable on physical grounds, equations 13 and 14 

can be derived from the farfiel(j result for the N-sphere mobility tensor 

(Mazur and Van Saarloos 1982). If the pair a and l have a separation distance 

of O(a) whereas the other particles in the suspension are separated from a and 

Y by a length of O(ac- 113
), then the result of multiplying the farfield form of 

the mobility tensor by the gravitational force on each particle is the 

velocities of a and Y in the for·m of a sum of terms in increasing powers of 

(-
8
-) and c. 

ray 
With error of at most 0( ( ra )c), this sum is the combination of 

aY 

terms in equations 13 and 14 due to direct particle interactions if the 

accurate to 0( ~) 
7 

(which is the same order as the smallest terms in the 
rc.t'f 

exact N-sphere solution). 

When more than one particle comes with 4a of particle a, we generalize 

the procedure used for a close pair by considering the M close particles 

(where we are interested in the cases of M .. 3 or 4, i.e., close triples and 

quadruples) to be settling in the linear flow field generated by the other N-M 

particles. The motion of thesE~ M particles may thus be described by 6M 

equations balancing the forces and torques on each of the close spheres 

(Brenner and O'Neill 1972): 

- U5L * 
(U + -r:- ~ ) + ¢> E 

"*-
(15) 

~ 
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where e* is the 6M-component veotor with M repetitions of (0, 0, 1) as its 

first 3M components and with O f<:>r' all its other components and where F, B_, 
- -U , ! , and ~ have the same interpretation as their counterparts in equation 8 

except that now all the tensors are 6Mx6M-component tensors, all the vectors 

-are 6M-component vectors, and f. 11 ~ , U , ! , and £_ are now in dimensionless 
::::,.. 

form. 

To calculate the velocities of the particles, we observe that the first 

3M components of .Q' contain the dimensionless velocities of the particles minus 

the dimensionless undisturbed fluid velocity at each of the particles and that 

the undisturbed fluid velocity may be approximated with error O(c) by the 

velocity induced by the N-M part:Lcles far away at each of the close particles 

(i.e., by treating the other particles in the same fashion as when only two 

particles are close together). TI1erefore, calculating the velocities of the 

particles requires only determin:~ng f., ~, ¢, and ~ and inverting the matrix ~. 
- ~ 

In the situation where no body torques act on the particles and the only 

Us1 * external force acting on the particles is gravity, F is the vector r:;- e 

defined above. Equation 10 gives the rate-of-strain tensor ~- at particle a as 

in the two-particle case except that the sum is now over only N-M particles. 

Thus, the main difficulty in determining the velocities of a close triple 

- -or quadruple is in calculating ~ and ! , the grand and shear resistance tensors 

made dimensionless by 6TIJ.Ja. Bec!ause the mult1particle problem for determining 

and ~ has not been solved for particles close together, we choose to 

approximate ~ and R by assuming the forces and torques on the particles are 
~ -

pairwise-additive; this proceduI"e preserves the lubI"ication forces which 
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restrain the particles from overlapping. (For a triple of particles a, Yu and 

Y :u pairwise ad di ti vi ty means that the force on particle a w1 th particles Y 1 

and Y 2 nearby is the force on a with only Y 1 nearby plus the force on a with 

only Y 2 nearby minus the force on a w1 th neither Y 1 nor Y 2 nearby.) 

This procedure necessitates knowing the complete set of two-sphere 

resistance tensors as a function of the separation distance between the 

spheres. Although Jeffrey and Onishi (1984) have recently tabulated this 

information in one reference, this tabulation was not available at the time the 

simu.lation was prepared; therefore, the resistance tensors are computed from 

the solutions (tabulated in terms of 13 scalar parameters) to the variety of 

two-sphere motion problems (cf. Batchelor 1976; Cooley and O'Neill 1969; 

Happel and Brenner 1965; Hansford 1970; Arp and Mason 1977; Majumdar 1967; 

Takagi 1974; Reuland, Felderhof, and Jones 1978; Jeffery 1915; Davis 1969; 

O'Neill and Majumdar 1970; Brenner and O'Neill 1972; Brenner 1964; and 

Wacholder and Sather 1974). For large and small values of the separation 

distance between the particles, the farfield and lubrication results, 

respectively, are used to calculate the resistance coefficients in the 

simulation; at intermediate separation distances Akima's method (Akima 1970) is 

used to interpolate between the known numerical values of the resistance 

coefficients. As before, because the accuracy of the nearfield and farfield 

forms varies for the 13 coefficients, the range of separation distances over 

which these forms are used also varies. 
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~. Numerical Implementation 

The net result of sections 2 and 3 is a, set of equations for the velocity 

of each of the N particles in the cube given the instantaneous particle 

pos::.tions. The trajectories of the particles are determined by integrating 

these equations forward in time using a fixed-time-step predictor-corrector 

method. The fourth-order Adams·-Bashforth method is the predictor, and the 

fourth-order Admas-Moulton method is the corrector. The fourth-order Runge-

Kutta method starts the calculation for the first few time steps. The method 

has several advantages: it requires only two function evaluations per time 

step, it has good stability properties, and it is reasonably low-order. The 

order of the method should be re~asonably low since, as we explain below, the 

time step must be set fairly small. 

In order to capture most of the details of the motion of the particles, 

we must select a time step less than the smallest of the four time scales of 

the problem. When the particles are well-separated, their motion changes over 

th€ time scale of the interparticle spacing divided by the relative velocity 

between two well-separated particles 

( 16) 
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This time scale is roughly 1/3 of the dimensionless time for the simulation, 

which is the time scale over which the suspension rearranges due to settling 

and the time scale which determines the final time of the simulation. If this 

were the only important time scale, then a time step of approximately .011 to 

.0051 would probably suffice. However, when two particles come close 

together, they move with a velocity of approximately Us relative to the other 

particles in the suspension (which are separated from the pair by a distance of 

O(ac- 1
/

3
)). Thus, another important time scale is 

( 17) 

Since the concentration is small, T1>T 2 • In particular, for the typical value 

of c= .5 % , T 2 = .17T 1 • The relative motion between a pair of particles proceeds 

over the time scale of the particle radius divided by the relative velocity of 

the p2ir. Hence, because the relative velocity is proportional to the radius 

of the particles and to the rate-of-strain tensor of the linear shear flow 

created by the other N-2 particles and because the rate-of-strain tensor is 

proportional to Us a / , 
(ac-1 3)2 

( 18) 

The final important time sc:ale occurs when two particles come close 

enough so that the important len~th scale is the gap distance 6 between the 

particles. Then, the relative velocity along the lines of centers of the 
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particles is approximately (A(r)-·1 )a I~ I where A(r) is given in Batchelor and 

Green (1972). For .§.<<l, A(r); (1-4.0 i) and thus a . a 

T.,; 

Of these four time scales, the smallest is T2 , which is approximately 2~. The 

results of simulation runs with a time step of .02T2 or .0011 (Lynch and 

Herbolzheimer 1985) suggest this time step is sufficiently small for most 

physical situations. 

Because of the approximations made in calculating the velocities of the 

particles and because the time scale of the relative motion between two very 

close particles is small, the lubrication forces between the particles are not 

always strong enough to prevent the particles from overlapping. Although 

reducing the time step reduces significantly the number of overlapping 

particles, setting a time step small enough to eliminate overlapping particles 

would be prohi~itively costly. Therefore, this problem is corrected in the 

simulation by moving the parUcles apart a small distance (viz., .008a) 

whenever they overlap. 

Another numerical aspect of the simulation is that when more than one 

particle is close to a given particle ex, determining the velocities of the 

close particles requires inverting R, the grand resistance tensor describing -
the translational and rotational forces between the close particles. Because 

many of the resistance coefficients become infinite as the gap between the 

close particles shrinks to zero, a large difference may exist in the magnitude 
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of the matrix elements of R. To prevent this from affecting the accuracy of --
the matrix inversion and of the relative velocities between the close 

particles, the simulation uses equilibration and partial pivoting 1n inverting R 

and if the initial result is not sufficiently accurate corrects it through 

iterative improvement. Because oif the symmetry of the resistance tensor (as 

required by the reciprocal theorem for Stokes flow), we may enhance 

computation speed by inverting R using the method of Bunch for indefinite 

symmetric matrices (Bunch and Parlett 1971; Bunch 1971). 

A possible difficulty in the simulation might arise because we calculate 

the velocity of a given particle differently depending upon how close its 

nearest neighbor is. We have assumed that the change in the computed velocity 

of a particle when it comes with:Ln 4a of another particle has little effect on 

the overall behavior of the particle trajectories. When a set of two isolated 

particles becomes a pair, the velocities of the pair remain essentially 

unchangej; however, when three particles form a triple their velocities change 

because of the difference between the predictions of force pairwise additivity 

and of the farfield result for the velocities, which is similar to the result 

of velocity pairwise additivity. In test runs with small numbers of particles 

(see section 5), the particle trajectories showed no unphysical behavior 

obviously attributable to this vE~locity jump. 
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5. Results and Discussion 

To study how the approximat:Lons made in determining the velocities of the 

spheres might affect the behavior of the simulation, we have examined how well 

our simulation predicts the trajE!ctories of three settling spheres which are 

initially placed in a horizontal line. The trajectories of the spheres in this 

problem, first examined theoretically by Hocking ( 1964) who approximated the 

spheres as point forces, have been calculated numerically by Ganatos, Pfeffer, 

and Weinbaum (1978) using a four-·point collocation scheme. 

Ganatos, et al. present their results in the form of scale drawings of 

the sphere trajectories for an initial sphere configuration where the centers 

of the outer spheres are separated by 12a and where x (called C by Ganatos, et 

al.), the ratio of the distance !between the central and rightmost sphere to 

the distance between the central and leftmost sphere, varies from 1.0 to 2.0. 

We present in Figures 1a through Ba the sphere trajectories under these initial 

conditions calculated by our me~thod for determining the velocities and in 

Figures 1b through Sb those calculated by the alternative method of assuming 

the forces on the particles are pairwise-additive. (Calculating the velocities 

using force pairwise additivity is possible in our program by changing the 

distance at which the particles start to interact as near neighbors from 4a to 

infinity.) The vertical distanc1e in sphere radii travelled by the uppermost 

sphere, d, and t, the time made dimensionless by the characteristic time : 
. s 

appear at the left of each diagram of the particle positions. In these three-

particle calculations the time step is approximately .74 ~ or approximately 6 
Us 

times larger than in the simulation with many particles. With the exception of 
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this change, the procedure for de~tennining the trajectories is essentially 

identical to that in the simulation. When the velocities were computed by our 

method, all of these three-particle calculations required less than 15 seconds 

of time for calculations in single precision on the VAX 11/780 computer. (By 

contrast, a simulation run with 64 particles and 8000 time steps required 

approximately 5 hours of CPU time.) 

Comparing the diagrams of th,e trajectories to those of Ganatos, et al. 

reveals that, although both methods predict the qualitative features of the 

trajectories relatively well, the results of Ganatos, et al. are noticeably 

closer to the trajectories calculated from our method than those calculated 

from force pairwise additivity. F1::>r example, for x-1. 1 and x·1.5 the long-time 

behavior of the trajectories of Ganatos, et al. is similar to our results, but 

not to those of force pairwise additivity, and for x•1.4 our method reproduces 

many more of the details in the trajectories of the numerical solution than 

force pairwise additivity does. 

However, even when both methods produce results qualitatively similar to 

the exact solution, our method yields better quantitative results because it 
3 

is, as explained earlier, accurate to 0( ra ) for two well-separated spheres a 
aB 

and B whereas the forces on the particles are pairwise-additive only to 

O( r a ) . For example for x .. 1 .6, al though the trajectories for both methods 
a.B 

agree qualitatively well with the numerical solution, the distance settled by 

the uppermost sphere at t .. 400, the final time of the calculation, is 489.7 for 

the numerical solution, 489.9 for our method, and 505.0 for force pairwise 

additivity. Similarly, for x=1.0, the time at which all three spheres settle 

with equal velocities in the numerical solution, t-107 .8, is far better 
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predicted by our method (for whieh t•105.8) than by force pairwise additivity 

(for which t•132.7). 

The main qualitative differences in the trajectories of Ganatos, et al. 

and our trajectories generally r~asul t from instances when two particles pass 

close to each other (e.g., see the diagram of i .. 350 for x·1.li). Because in the 

lubrication layers around the particles, the relative velocity between the 

particles changes quite rapidly as a function of separation distance, initially 

small differences in the comput1ed positions of the particles can grow into 

large differences between the two sets of trajectories. 

The trajectories produced by our method for the case of equally spaced 

spheres show two unphysical features which deserve further elaboration. For 

reasons of efficiency, in the simulation the rate-of-strain tensor E due to 
~ 

the particles far away is evaluated on one of the particles; for this three-

particle calculation, however, this procedure adds a perturbation which is 

unsymmetric about the centerline to an otherwise symmetric problem and 

eventually causes the result to be unsymmetric (see the diagrams for ts158.3 

and t=175 in Figure 1a1 ). For this reason the result of evaluating~ as the 

average of the values of.§ at the centers of the close particles (i.e., an 

estimate of E at the midpoint between the particles) is shown in the diagrams 
~ 

for t=158. 3 and t=175 in Figure 1 a2 and is observed to be symmetric about the 

centerline. (Until ts158.3 the results of the two procedures are identical.) 

The case x=1.0 is the only case where the position at which§ was evaluated -
had a significant impact on th1e trajectories. For the case in which the 

average value of E is used, the particles overlap at t-162.9; the particles 
IV 

overlap, as they do in the numerical solution of Ganatos, et al., because the 

time step is too large and because of the approximations made in calculating 
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the particle velocities, not because of neglect of the lubrication forces 

between the particles. After t-158.3 Ganatos, et al. separate particles 1 and 

3 and restrain them from rotating or moving laterally, so their results for 

t•175 must be regarded as somewhat questionable. 

Obviously for these three-sphere problems the trajectories generated by 

our simulation agree extremely well with those calculated by Ganatos, et al. 

Because of this result, we can likewise be confident that our hybrid method 

for calculating the velocities of the particles will yield reasonable results 

in simulation runs with many particles. 
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- · horizontal line, x-1.0; predictions of: our method - (a), force 
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additivity - (b). 
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Sedimentation in Sheared Suspensions 

Edward D. Lynch and Eric Herbolzheimer 
California Institute of Technology 

Pasadena, California 91125 

Abstract 

When a suspension of identieal sedimenting rigid spheres in an 

incompressible, Newtonian fluid is sheared, the sedimentation velocity should 

depend not only on the volume fraction of solids in the suspension, but also 

on the shear rate and flow type. Although the sedimentation velocity has been 

studied both experimentally and theoretically for quiescent suspensions (cf. 

Lynch and Herbolzheimer 1985), sheared suspensions of non-flocculating 

particles have not received such attention; consequently, the effect of bulk 

flow on the settling velocity remains unknown. 

In this paper we first calculate that for a suspension undergoing "rapid" 

shearing in a uniaxial extensional flow the settling velocity is given by 

Us(1-4.52c + O(c 2
)) where us is the Stokes velocity and c is the volume 

fraction of particles. This result agrees very well with our experimental 

measurements made for a suspension undergoing "rapid" simple shear in a 

cylindrical Couette device. We also examine experimentally the effects of 

shear rates which are not asymptotically large as well as what the proper 

dimensionless shear rate should be for use in constitutive relations for the 

sedimentation velocity. 
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1 . Introduction 

Calculating macroscopic flows of suspensions requires cons ti tu ti ve 

reiations for the sedimentation velocity and the stress of the suspension as a 

function of c, the volume fraction of particles in the suspension, and of the 

local bulk flow conditions of the suspension. Until now studies of the 

sedimentation velocity in suspemsions have only considered quiescent 

suspensions (i.e., suspensions for which no overall bulk motion occurs). 

However, because the bulk flow affects the microscale distribution of 

particles in the suspension, it can play a significant role in determining the 

suspension sedimentation velocity, even in non-flocculating suspensions. In 

this paper we shall use both theoretical and experimental techniques to 

investigate the effect shear has on the sedimentation velocity. 

The results for the quiescent sedimentation problem, reviewed in Lynch 

and Herbolzheimer (1985), may be summarized briefly as follows. If the 

particles in the suspension are randomly arranged (i.e., all positions of the 

particles are equally likely given the particles do not overlap), then the 

sedimentation velocity of a monodisperse suspension (with respect to axes 

situated so that the mean flux of fluid plus particles is zero) is 

u0 Us (1 - 6.55c + O(c2
)) ( 1 ) 

(cf. Batchelor 1972). Here us is the Stokes velocity, ~ a2 (p 8 - p) ~' a is the 

sphere radius, Ps is the particle density, p is the fluid density, g is the 

gravitational acceleration, andµ is the fluid viscosity. On the other hand, if 
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the particles are positioned at the lattice points of a cubic array, then the 

settling velocity is 

u0 us('l - 1.7601c1 /3 + O(c)) (2) 

(cf. Hasimoto 1959; Sangani and Acrivos 1982). Both of these results are 

inconsistent with the correlation developed by Barnea and Mizrahi (1973) from 

previous experimental work for quiescent, monodisperse suspensions of spheres 

with radius greater than 2µm; they found that 

( 1-c) 2 

Us 5 C ' 
(1+cih)(exp(- 1-c)) 
- 3 

(3a) 

which for dilute suspensions asymptotes to 

u0 us (1-c1 /3 + c2
/

3 + O(c)) • (3b) 

We have explained in a prev:lous paper (Lynch and Herbolzheimer 1985) that 

previous experimental work can be shown to be consistent with a suspension 

having a pair-probability function (i.e., the probability P(r) of a particle 

being at position 2So + r given another particle at position 2fo) changing over a 

length scale of O(ac- 1 h) and have shown that a molecular-dynamics-type 

simulation of a sedimenting suspension can be used to predict such a pair-

probability function. Apparently, in a quiescent settling suspension as a 

result of multiparticle hydrodynamic interactions close pairs of particles are 

less likely to persist, and instead most particles are separated from their 
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nearest neighbors by a distance comparable to the average particle spacing; 

i.e., by a distance of O(ac-1h). Consequently, the first correction to the 

Stokes velocity is proportional to c 1 /3. Specifically, we find from the 

simulations in Lynch and HerbolzhE~imer ( 1985) that 

u0 = Us (1 - .75c1h + O(c)) (4) 

and that the c2
/

3 term in (3b) is an artifact of Barnea and Mizrahi's assumed 

form for the correlation. We might point out that this concentration 

dependence is very strong with the settling velocity being only 79% of the 

Stokes velocity when the volume fraction is only .01 rather than 94 % of Us as 

predicted by Batchelor's (1972) thi=ory. 

Let us now suppose the sedimE:mting suspension is sheared by some external 

means. We now have on the one hand the multiparticle hydrodynamic 

interactions which in a quiescent settling suspension tend to make the 

particles become "well-spaced" competing against the imposed shear flow which 

carries at least some of the particles into close proximity to their neighbors. 

Hence, shearing the suspension should produce more close pairs thereby 

changing the pair-probability function. In fact, if the shear is fast enough 

for the effects of shearing to dominate those of sedimentation, the pair

probability function should become identical to that calculated by Batchelor 

and Green (1972b) and should change over a length scale of O(a), not of 

O(ac- 1 13
). Consequently, in this case the sedimentation velocity should be of 

the form 

u0 us (1 - Bsc + O(c2
)). (5) 
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where Bs is an 0(1) constant. In the next three sections, we examine this 

hypothesis in greater detail both theoretically and experimentally. 
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2. Theory 

Let us begin by extending Batchelor's (1972) calculation for the 

sedimentation velocity in a dilutE~, quiescent suspension to include the effects 

of an imposed linear shear flow. First, we note that the shear does not alter 

Batchelor's technique for overcoming the well-known divergence problems which 

arise in calculating the sedimentation velocity when the full multiparticle 

hydrodynamics problem is reduced (via the assumed diluteness of the 

suspension) to a two-particle problem. Specifically, his equations (3.3), (3.4), 

(3.9), and (3.13) still apply, but the pair-probability function, the flow field 

around a single particle, and the velocity of a particle in the presence of one 

neighbor are all altered by the shear. 

The pair-probability distribution in a sheared suspension of neutrally 

buoyant particles has already been found by Batchelor and Green (1972b). Since 

the particles cannot overlap and since for large separations the pair-

probability function should asymptote to n, the average number of particles 

per unit volume in the suspension, let us define 

{ (6) 
O for r < 2a 

np(£) for r > 2a 

The function p( r) can be found from the conservation equation for particle 

pairs, 

(7) 
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where YR is the relative velocity between the centers of the particles in the 

pair. If the suspension is suffic:iently dilute, then the relative motion of any 

pair is not significantly affectecl by the other particles in the suspension . 

. Under this assumption YR can be di~termined from the relative motion of a pair 

of particles immersed in an infinite fluid undergoing the prescribed shear 

motion. Batchelor and Green ( 197~~a, b) have compiled the known results for YR 

for neutrally buoyant particles tn a linear shear flow and have solved for 

p(r ). Of course, in the limit of pair interactions, the sedimentation of 

identical particles has no effect on the relative motion of the particles so 

Batchelor and Green's results apply to sheared sedimenting suspensions as 

well. As pointed out by Batchelor and Green (1972b), in some cases the 

particles can execute closed trajectories about one another resulting in an 

indeterminacy in p(£). This problem does not arise in pure extensional flow, 

however, since all particle trajectories start from and pass to infinity. In 

this case Batchelor and Green (1972b) have shown that p(r) is independent of 

direction so 

q(r) (8) 

where q(r) is shown in their Figure 1 and Table 1. 

All that remains now is to eivaluate the integrals in Batchelor's (1972) 

equations (3 .4), (3 .9), and (3. 13)., Since the unconditioned probability of 

finding a particle at ~o + r equals n, these integrals become 

~o ~s + V 1 + Vn + 'W - - - (9) 

with 
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V' = n J 1d(~0 , ~0+r)(q(r)-l)dr - n J JJ(~0 ,~0+r)dr (10) 
r>2a r<2a 

and 

w n J' b1(~0 ,~0+r)q(r)dr 
r>2a 

(12) 

where 

(The definitions of the various symbols are as in Batchelor ( 1972) with the 

exceptions that the symbol for the average settling velocity is now ~o and 

Batchelor's symbol for the settl:ing velocity of an isolated particle, 1fo, is 

replaced by 1ds' the Stokes velocity times §, the vector in the direction of 

gravity.) For a particle immersed in a pure straining flow, we have 

( 14) 

and 
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!ds ~:3 -Hs • ~ ~? + 1 o ~ ~ · r 

(15) 

where E is the rate of strain tensor which is symmetric for a pure straining 
"' 

flow. When these expressions, which are identical to those in sedimentation 

except for the terms proportional to E, are substituted into the expressions 
"' 

for Y,'and !" above, the terms arising from the shear are proportional to either 

f[dS or ~:JrrrdS evaluated over the surface of a sphere with radius r. Since 

both of these integrals vanish, the terms proportional to E do not contribute 
"' 

to the sedimentation velocity. Although the details will not be given, the 

same argument applies to the integral for R. 
Hence, the only effect of the shear is to alter the pair-probability 

distribution. Since Batchelor (1972) assumed that q(r) = 1 in a quiescent 

suspension, the difference between his result and that for a suspension 

undergoing pure straining motion is given by 

V' h + V" h + W_sh ~-S -S (16) 

where 

~'sh n J Jd(?fo,~fo+£)(q(r)-l)d£ 
r>2a 

(17) 
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(18) 

°Rsh n J t!C?So, ~fo+£) (q(r)-1 )ctr 
r>2a 

(19) 

and where h'(fo,:zo+r) and Jd(?S0 ,?S0 +r) are as given in Batchelor (1972). Noting 

that L rr ?° dS 
4 
3 ;rr2~ and using Batchelor's (1972) 

YC:z0 ,:z0 +r), these expressions become 

°Wsh 

~'sh Jdsc J~ 3r(q(r)-1 )ctr 
r=2 

V" h o -S 

equation (5.6) for 

(20) 

(21) 

(22) 

where r = r /a. The functions q(r~), >. /r), and >. ir) are known analytically for 

small separations (lubrication theory) and large r (method of reflections) and 

are tabulated in Batchelor and Green (1972b) and Batchelor ( 1972) for 

intermediate values of F. Evaluating the integrals analytically for 2 .s_ F < 

2.0025 and for r > 8 and numerically using Simpson's rule for the intermediate 
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values of r, we find that Ysh = 2.27 CHs and ~sh = -0.24 CHs· Combining this 

with the result for quiescent sedimentation, we have 

Ho Hs(1-c(6.55-2.03) + O(c2
)). (23) 

or 

~o ~s(1-4.52c + O(c2
)). (24) 

Hence, the pure extensional flow increases the sedimentation velocity. 

This effect occurs because as the shear forces the particles to flow past each 

other, their relative velocity d1ecreases when they are close together. Thus, 

on the average the shear causes the particles to spend a greater fraction of 

their time close to a neighbor, and since the settling velocity of the pair is 

greater when the particle spacing is small, the average sedimentation velocity 

increases. 

Two major problems are apparent with this approach. First, in 

determining YR• the relative velocity between the centers of two particles, we 

have neglected the effects of all the other particles in the suspension. As 

mentioned earlier, however, in the limit of no shear multiparticle hydrodynamic 

interactions result in the part:Lcles becoming "well-spaced" with q(r) varying 

over a length scale of O(ac-1 /3) rather than of O(a) as we find above for a 

sheared suspension. Since the present method cannot easily be extended to 

include multiparticle interactions, the particle arrangement is controlled 

solely by the shear, i.e., the shear is on or it is off, and the settling 

velocity is independent of the shear rate. In reality one would expect a 

competition between these effects with their relative importance being given 

* by the dimensionless shear rate Y =Ya/us· When this parameter is small, we 
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should have ~o=~sC1-0.75c 1 /3 + o(c))) (cf. Lynch and Herbolzheimer 1985a), and 

when it is asymptotically large,, J:!o=~sC1-4.5c + o(c)). Unfortunately, the 

intermediate range of y* cannot be treated using the present technique. We 

note that the importance of multiparticle interactions greatly amplifies the 

significance of the increase in the sedimentation velocity at small 

concentration caused by the shear. 

Another problem with this approach is that it is difficult to apply when 

some particle streamlines are closed as they are in the physically important 

case of a simple shear flow. In this case, if only pair interactions are 

considered in determining ~R, p(r) always depends on the initial conditions in 

the suspension and never reaches a steady state. Modifying the method to 

eliminate these unphysical results would require including some other effect 

(e.g., Brownian motion or multiparticle hydrodynamic interactions), which 

although possibly small compared to the effect of the shear, could cause 

migration across particle streamlines. In suspensions of relatively large 

particles (greater than 5µm), the multiparticle hydrodynamic interactions would 

most likely be the important effect. Since this effect is again hard to 

include in the calculations, let us turn to experiments. 
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3. Experimental 

Because of the difficulties involved in extending the theory to determine 

the dependence of the sedimentation velocity on dimensionless shear rate and 

shear type, we have investigated the importance of these effects by measuring 

the sedimentation velocity of a suspension of spheres in the simple shear flow 

created by a Couette device. Tihese experiments had four goals: to confirm 

that the sedimentation velocity did increase with shear; to determine the 

dependence of the sedimentation velocity on the volume fraction of particles 

and the dimensionless shear rate; to check whether the result which holds for 

asymptotically large shear rates in a pure straining flow also holds for 

asymptotically large shear rates in a simple shear flow; and to determine 

whether the dimensionless group Ya representing the time scale for settling 
Us 

to the time scale for shearing is the correct dimensionless shear rate for use 

in constitutive relations for u0 • 

The experiments were conducted in a cylindrical Couette device (see Figure 

1) in which the outer cylinder (a precision-bore glass tube with an inner 

diameter of 4.5 in) was rotated while the inner cylinder (a solid anodized 

aluminum rod with a diameter of' 3.98 in) was held fixed. With these inner and 

outer radii, the shear rate varied across the gap by about ~12 % from the 

average shear rate. The inner cylinder was held stationary to prevent the 

formation of clear fluid there due to radial settling of the particles 

resulting from the centrifugal force. If pure fluid were formed at the inner 

cylinder, it would rapidly rise creating a convection current which would 

enhance the sedimentation rate much as in a vessel with inclined walls (see, 
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for example, Acrivos and Herbolzheimer (1979)). A teflon ring attached to the 

bottom of the inner cylinder precluded the formation of clear fluid under the 

rotor. Eliminating the formation of clear fluid at the inner cylinder and 

underneath the rotor was important because the sedimentation velocity was 

measured by observing the rate of fall of the suspension-clear fluid 

interface with a cathetometer; therefore, clear fluid formed at the inner 

cylinder would have erroneously enhanced the observed settling velocity of the 

suspension. Also to prevent the introduction of inclined-settling effects, the 

walls of the device were very carefully aligned parallel to the direction of 

gravity; the alignment was then tested in quiescent settling experiments. 

The suspension consisted of glass spheres in UCON oils LB-385 (µ=1.78P, 

p=.99 ~ at T=220C) and 50-HB-400 (µ=1.85P, p=1.04 b at 22oc) and in a cm _ cm 

mixture of UCON oils 50-HB-400 and 50-HB-2000 (µ=3.82P, p=1.04 b at 22oc). _ cm . 

Two different types of glass spheres were used for different experiments. The 

first set of particles had a density of 2.69 b and an effective particle . cm 

* radius of 52.5µm . The second set of particles, filtered in an air-fluidized 

bed to narrow the range of size differences between the particles, had a 

density of 2.80 b and an effective particle radius of 51 µm. The ratio of cm 

the particle radius to the gap width in the experiments was approximately 120; 

in test experiments with different gap-to-radius ratios, this ratio resulted in 

*The effective particle radius, obtained by extrapolating the results for the 

settling velocity in a large beaker back to infinite dilution, matched within a 

few microns the mean radius obtained from a photograph of the particles. 
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no observable difference in the rate of fall of the interface from experiments 

with much larger ratios. 

Two secondary effects could have influenced the results of the 

experiments if we had not been careful to minimize their importance. First, 

since the no-slip boundary condition at the bottom of the device is not 

equivalent to the free-surface condition at the top of the device, a small 

secondary flow appears. Because the effect of this secondary flow is assumed 

small at fluid points whose height above the bottom of the device is 

sufficiently large when compared to the gap size, we filled the device with 

suspension to an initial height of 10 in and only allowed the suspension to 

settle approximately halfway down the device. 

Another potential problem is that under sufficiently rapid shearing the 

centrifugal force on the particles can be strong enough to change the particle 

volume fraction in the suspension; consequently, we must fix a maximum shear 

rate for the experiments below which the concentration changes only a few 

percent from the initial concentration. Otherwise, the measured sedimentation 

velocity would not reflect the actual sedimentation velocity at the initial 

volume fraction and shear rate. By using the particle continuity equation to 

calculate the concentration profiles in the device as a function of time (see 

Appendix 1), we may estimate the magnitude of the concentration change for a 

given shear rate and decide upon a maximum shear rate for the experiments. 

From Appendix an estimate of the maximum dimensionless shear rate is 

y* Ya < 16.2. 
Us 

(25) 
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The procedure of the experiments was as follows. The suspension was 

mixed thoroughly in a large beaker, and the settling velocity was measured in 

the beaker. After the suspension had settled 2-2.5cm, the suspension was 

remixed and poured into the de~vice. The sedimentation velocity of the 

suspension was then measured w1 th the shear off until the suspension had 

settled a distance of about 2cm. The shear was then turned on, and the 

settling velocity was observed for an additional 2-2.5cm. Finally the shear 

was turned off, and the quiescent settling velocity in the device was 

remeasured. The temperature of the suspension was measured at the beginning 

and end of each of these four steps in the procedure. Although for a truly 

monodisperse suspension the three measurements of the settling velocity 

without shear would all be identical, in the slightly polydisperse suspensions 

of these experiments this result was not necessarily true. A detailed 

explanation for why this occurs is furnished in Appendix 2. 
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4. Results and Discussion 

Let us first consider the results for the effect of the volume fraction 

of particles upon the sedimentation velocity at asymptotically large shear 

rates. Since the filtered particles were less polydisperse than the unfiltered 

particles, the experiments with filtered particles showed less spreading of 

the interface at lower volume fr-action (for an explanation see Appendix 2) and 

thus could be performed over a wider range of c. Hence, when examining the 

effect of c on the settling velocity at asymptotically large shear rates, we 

present only the results of the experiments with the filtered particles; 

however, the behavior of the settling velocity in the experiments with 

unfiltered particles was very similar. 

In Figure 2 we plot the sedimentation velocity as a function of particle 

volume fraction for shear rates which are asymptotically large. Obviously the 

measurements of the settling velocity in a sheared suspension seem to follow 

the theoretical result for a pure straining flow for c < • 14 and the 

correlation of Barnea and Mizrahi (1973) for quiescent suspensions for c > .14. 

The measurements of the settling velocity in a quiescent suspension follow the 

quiescent correlation except for small c where the effects of polydispersity 

are important. The result that the first correction to the Stokes settling 

velocity is proportional to O(c) for dilute, sheared suspensions is quite 

significant because it implies l)oth a dramatic increase in the sedimentation 

velocity from the quiescent result and a pair-probability function dependent on 

a length scale of O(a), not a length scale of O(ac-1h). 

Next we consider the behavior of the settling velocity at constant c and 

shear rates less than the asymptotic limit. In Figure 3 we present results 

for the sheared sedimentation velocity divided by the sedimentation velocity in 

the device before shearing as a function of dimensionless shear rate at three 
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different volume fractions: c = .08, .10, and .14. The value of the shear 

rate used is that of the bulk average shear rate in the device. The 1 O % 

- suspension consisted of unfiltered particles whereas the 8 % and 14 % 

suspensions consisted of filtered particles. (Normalizing the sheared 

sedimentation velocity by the quiescent sedimentation velocity in the device 

partially eliminates from the results the effect of variation in the particle 

size distribution between experiments and in the initial volume fraction 

between experiments and between different parts of the suspension.) Because 

of the polydispersity of the particles, the interface became very diffuse as 

the experiments proceeded, and the measurements of u0 show a large degree of 

scatter. However, the measurements of u0 at c = .08 and .10 are of sufficient 

accuracy to show a definite decline in the settling velocity as the shear rate 

is decreased to zero. At c = .14 apparently u0 is independent of the shear 

rate. Thus for dilute suspensions some competition does seem to exist between 

the effects of shear and sedimentation; however, we could not establish a 

constitutive relation for u0 = usf (c, y*) because of the scatter in the data 

and because of the difficulty in producing a steady shear rate with the 

present Couette device with y* < .5 . 

To examine whether y* = Ya is the appropriate dimensionless shear rate 
Us 

for use in constitutive relations for u0 , we have plotted in Figure 4 u0 versus 

* Us 'Y for two different suspensions with c = .08, one with a value of a:- of 1.14 

sec-1 and one with a value of uas of .55 sec-1
• Although the settling velocity 

at the same value of y* for the two suspensions is roughly equal, the large 

amount of scatter in the data makes any substantive conclusions impossible. 
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Furthermore, the data seem to indicate that the degree of experimental 

accuracy required to establish what the appropriate dimensionless shear rate 

is may well be above the degree of accuracy which can be attained through the 

present experimental method. 
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5. Conclusions 

Shear indeed does increase the sedimentation velocity of dilute, 

monodisperse suspensions of spheres; in fact, under conditions of sufficiently 

rapid shearing, the sedimentation velocity measured in a simple shear flow is 

that calculated for a pure stra:Lning flow. For a suspension with c;;; .1 in a 

simple shear flow, reaching the condition of asymptotically large shear rate 

within 5 % requires a dimensionless shear rate y* = Ya of about 9. Translated 
Us -

into dimensional terms for partieles of radius 50µm and of Stokes velocity .34 

cm/min, Y is about 10 radians/sec. The experiments described here are rather 

tedious and difficult, and a large degree of scatter exists in the measured 

sedimentation velocities; however, because they demonstrate that shear has an 

effect on the microscale structure of sedimenting suspensions, they can serve 

as a basis for more exact light-scattering experiments. 

Acknowledgement The authors wish to recognize the help of Thomas Remmers, 

who helped carry out many of the experiments described here. 
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Calculation of the concentration change during a typical 

experiment 

To estimate the concentratlon change in the Couette device due to the 

centrifugal force on the particles in the suspension, we use the particle 

continuity equation 

Cle 
at + Yp . vc -er; • Ys (26) 

in which Yp is the velocity of an average particle in the suspension, and Ys is 

the slip velocity, the difference bet ween the average particle velocity and 

average bulk velocity of the suspension. We assume that the slip velocity is 

in the local direction of the body force and is a function of the local volume 

concentration and shear rate (i.e., 

Ys usf(c(R),Y*(R))~ (27) 

l- w2 (gR)R o~ A A where g is the vector -1, j in a cylindrical coordinate system (z, R, 

e) aligned with the cylinder axis, R is the radial distance from the center of 

the device, w(R) is the angular ve·locity of the suspension at some radius R, 

and y*(R) is the dimensionless shear rate, Y(R)a/us, at some radius R.) 

Furthermore, we assume that no SE!condary flows occur in the device and that 

no bulk suspension flow occurs in either the radial or the vertical directions; 

therefore, the slip velocity and particle velocity are identical in these 

directions. 
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After substitution for the well-known profiles for w(R) and y*(R) in an 

infinite-length Couette device, the particle continuity equation becomes 

(28) 

. tus 
in which t is the dimensionless time, --i- , i is 2cm, the vertical distance 

.. n2 i . 
travelled by particles during an experiment; A is (xf_1)2 -g-• the ratio of the 

lateral acceleration of the parUcles to the vertical acceleration; n is the 

rotation speed of the outer cylinder in radians per second; R is R divided by 

R11 the radius of the inner cylinder; x is 1 .13, the ratio of the outer-cylinder 

radius to the inner-cylinder radius; and r: is 2/
2

1 
na, the dimensionless 

X - Us 

shear rate at the inner cylinder. The left-hand side of equation 28 represents 

the change in c along a particle streamline whereas the right-hand side 

consists of forcing terms, which arise because in a rotating fluid the slip 

velocity is not independent of position. The sum of the first two terms on 

the right-hand side represents how the slip velocity changes due to 

concentration and shear rate changes in the radial direction. The third term 

is the result of the change in th1e direction of the body force as a function of 

R. 

We have solved equation 213 for c(R, n(t,R)) by the method of 

characteristics. The characteristics are given in terms of the characteristic 

variable t.; by 
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( dR) = A 
d~ n (29) 

(30) 

The differential equation in characteristic variables is therefore 

Al--2fc R~- 1 
R,. 

CR2
-1 )

2 c af ] 
R6 3-i* 

c 

(31) 

If the initial concentration is uniform for 1 ~ R ~ 1.13 and equal to c0 , then 

an appropriate initial condition is specifying c = c0 along the parametric 

curve t = 0, R = n, 1 < n ~ 1.13. Since the inner cylinder does not rotate, 

the wall of the inner cylinder is a characteristic, and no boundary condition 

is needed at R = 1. The general solution to this problem is 

t 

f cc, -y* CR) )c 

f(c0 ,-Y*(R))c0 

' c c(R,n) (32) 

(33) 

Determining c (R,t) in more detail requires specifying f, the constitutive 

relation for the slip velocity. If the suspension is dilute and is being 
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sheared extremely rapidly, then :f is approximately 1 - 4.52c. (Rapid shearing 

of the suspension causes the langest possible body force changes, and thus the 

largest concentration changes possible in the device.) If c0 is small, then 

equations 16 and 17 simplify in the case of rapid shearing to 

(34) 

At + ln 
R2-1 n2-1 ns Rs 
n'-1 + 1.51co (Tl) (n'-1)' - cii•-1)' [- -J] [ zl - - -Jl 

(35) 

For the typical experimental value of . 08 for c0 , Figure 5 shows the 

isoconcentration curves as a function of At and R. If we require that the 

average volume concentration at the conclusion of the experiment differ by at 

most 1 O % from the initial concentration (so that the average settling velocity 

at the conclusion of the experiment differs by at most 6 % from the initial 

settling velocity), then from Figure 5 

At x" 
(x2-1)2 

i where tr, the time required for an experiment is 
Uo 

(36) 

Since we measure the 

shear rate in the experiments by the bulk average shear rate in a very long 

Couette device (i.e., 
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(37) 

we find, after rearranging terms, that equation 36 becomes 

(38) 

Choosing a= 51µm, Ps - p = 1.76 c~3, µ 1.85 P, and c0 .08 as typical 

values of these parameters, we have 

y* Ya < 16.2 • (39) 
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Effect of polydispersi ty upon measurement of the settling 

velocity 

For a monodisperse sedimenting suspension, a sharp interface forms 

between the suspension and the clear fluid above it because particles which 

"fall behind" the interface find themselves in a region with out other particles 

and therefore settle faster. On the other hand, in a polydisperse suspension 

smaller particles with smaller Stokes velocities can settle slower than a 

typical particle in the suspension, altering the sharp interface of a 

monodisperse suspension into a broad band in which the concentration changes 

from the bulk suspension concentration to zero. This effect is more apparent 

for smaller concentrations, where the difference between the observed settling 

velocity of the suspension and the Stokes settling velocity of a typical 

particle is very small. 

In the experiments the settling velocity was measured by making the 

particles appear light against a dark background and observing as a function of 

time the point in this band at which the suspension became visually opaque. 

Two different people carried out the experiments described here, and their 

judgments about where the suspension became visually opaque did not always 

agree; however, because the effective radius of the particles was determined 

from the experiments and because measuring different points on the interface 

corresponds roughly to measuring the settling velocity of different size 

particles, this should not be a major difficulty. Because the radius of the 

beaker was much greater than the gap size, viewing the suspension in the 

beaker meant peering through many more particles than in the device; 

consequently, in the device the point of visual opacity was different, slightly 

larger particles seemed to define the interface, and the measured settling 
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velocity was slightly greater than in the beaker. This problem was alleviated 

by assuming the particles in the device had a slightly larger effective radius 

_ and correspondingly larger Stokes velocity than the particles in the beaker. 

This explanation for why the settling velocity in the beaker was different was 

confirmed by measuring the settling velocity in the beaker with and without a 

black plate inserted vertically into the suspension in order to simulate the 

effect of the small gap of the device. 

The fact that the settling velocity in the device was not always the same 

after shearing as it was before shearing can be explained as follows. Because 

shearing the suspension made the difference between the suspension settling 

velocity and the Stokes velocity of a typical suspension particle smaller, the 

interface generally became more diffuse upon shearing. After the shear was 

turned off, this difference increased, and the interface became less diffuse as 

it readjusted to the new conditions; because the interface position was 

difficult to measure during this transient readjustment period, a corresponding 

error was made in determining the settling velocity after shearing. 
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Figure 1. Couette device for sedimentation experiments. 
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APPENDIX 1: Additional plots of the 0( c118 ) coefficient in the expansion for 

the average sedimentation velocity versus time. 

Appendix 1 shows how the 0( c1/s) coefficient varies with time for the five 

simulation runs for which results were not presented in Chapter 1. The method of 

calculating the 0( c118 ) coefficient is identical to that in Chapter 1. 
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APPENDIX 2: Additional plots of the time-averaged pair-probability function 

Appendix 2 presents additional results for the time-averaged pair-probability 

function. The meaning of the plots and the method of calculating g(r) are both 

identical to those in Chapter 1 except that now two sets of spherical shells are used 

to calculate g(r). The second set of shells, represented in the plots by squares, has 

a gap distance exactly half that of the original set of shells. 
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APPENDIX S: Example distributions of the particle velocities 

Appendix 3 shows an example (viz., that of run 3) of how the distribution 

of particle velocities develops over time. The number of particles with a velocity 

within a given range is plotted a1~inst the O(c118 ) coefficient in the expansion for 

the settling velocity (which is a measure of the velocity of a particle). Although the 

distribution of particle velocities is initially very narrow, it eventually develops into 

a very wide distribution which is skewed toward one end. 
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APPENDIX 4: Plots of the volume-averaged pair-probability function at different 

instants in time 

Appendix 4 presents results for the pair-probability function, averaged over the 

particles in the cube, as a function of time. The method of calculation of the pair

probability function is identical to that in Chapter 1 except that the first interval no 

longer has its inside radius adjusted to eliminate any effects of volume exclusion. In 

the plots the axes have the same meaning as in Figure 1 of Chapter 1. For simulation 

run 12 two sets of intervals are used; the second set of intervals, represented in the 

plots by squares, has a gap distance exactly half that of the original set of intervals. 
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.. 

I o.so 

I 
0.50 



0 
0 ·-(\J 

0 
&n ·--
0 
0 

0 
Lil ·-0 

0 
0 . 
cn.oo 

0 
0 ·-N 

0 
Lil ·--
0 
0 

0 
Lil ·-0 

0 
0 

I 

cn.oo 

• 
• 

0
1

• llO 

• 

• 

o'. to 

-193-

-

• 

o'. 20 o'. 30 o'. 40 o'. so 

T= a.son 

• 

• • -
• 

• 

' o·. 30 o'. YO o'. so 0.20 

T= 1.200 



0 
0 

·-C\J 

0 
If) 

·--
0 
0 

0 
Ill ·-0 

0 
0 . 
9J.oo 

0 
Cl ·-C\J 

0 
LJ") 

·--
0 
Cl 

0 
111 ·-0 

0 
Cl 

• 
... 

• 

I 0.10 

.. 

-194-

.. 
... ... 

• 6 • 

I o'. 30 o'. LI a o'. so 0.20 

T= 1. 600 

.. • • • 
6 

c:b~.-o~o..__.._~o~~·.-1-o------oT'.-2-o------or,.-3-0-------.0·~.l.l-O-------.o~so 

T= 2.000 



·-
0 
0 -
0 
Ill 

·-0 

0 
0 . 

• 

9J.oo 

0 
0 

·-N 

0 
Ill 

·-.... 

0 
'0 -

0 
Ill 

·-0 

0 
0 

• 

• 

T o. 10 

.. 

-195-

.. • 
.. .. .. 

• 

o'. 20 o'. 30 
T o'. so O.YO 

T= 2.llOO 

... ... 
• • .. .. 

c:i..'~--1--....L...--~.----------.,-----------.----------------...... , 
u. 00 0.10 0. 20 ·o. 30 O. YO O. 50 

T= 2.800 



0 
I() 

...:-

0 

-196-

0 • 
·-+--+~-+--~~·~~~~--,.r-~~~-..-_~-=~~~~~-

• 

0 
ll'J ·-0 

0 
c . 
9l.oo 

a 
0 ·-C\J 

a 
ll'J 

•. -
0 

·o 

0 
0 

I A 

9l.oo 

o'.1.0 

• 

o'. 10 

o'. 20 

T= 

I 
0.20 

• 

o'. 90 

3.200 

-

I 
0.30 

T= 3.600 

• 

o'. 110 

• 

I 
0.1.10 

o'. 50 

I 
0.50 



0 
Lfl ·--

0 
0 . 
~.OD 

0 
0 

ru-

a 
U1 ·--
a 
0 -

0 
0 

o'.1lo 

.. 

-197-

o'. 20 o'. 30 o'. 4o 0.50 

T= ij.000 

.. .. .. - .. 
.. 

ci..----~....._~~.-~~~--.,~~~~---.~~~---.~~~~--. 

u.00 0.10 0.20 0.30 0.40 0.50 

T= ij.4:00 



0 
Ln -
0 
0 

0 
If) 

·-0 

0 
0 . 
9l.oo 
0 
0 

·-C\J 

0 
If) 

·--
0 

, .. 

0 • 

0 
If) 

·-0 

0 
0 

• & 

9J. 00 

-198-

• 

o'. lo 

.. 
• 

I 
0. 10 

o'. 20 

T= 

.6 

I 
0.20 

o'. 30 

LL BOO 

I 
0.30 

T= 5.200 

.. 

o'.1.jo 

• • 

I o. •rn 

o'. 50 

I 
0.50 



0 
0 

N-

0 
U"I ·--
0 
0 

0 
Ill 

c)· 

0 
0 

.. 

.. 

-199-

• .. - -.. • • 

Q..+-__. __ ...._ __ o'·.-1·.-0------,,---------r-,------_,.,------~.--,. 
u.00 0.20 0.30 o.•rn a.so 

0 
0 . 
(\J 

0 
Ill 

.... 

c 
0 

0 
0 

T= 5.600 
• 

2.8 

"4---'---1---..---------,---------,---------..---------, 
9l'. oo o'. 1 o o'. 20 o'. so o'. 110 o'. so 

T= 6.001 



0 
Ui 

·-....... 

0 
Cl 

0 
Ui 

a 

0 
Cl 

~.DO 

0 
Cl 

ru-

0 
Ui 

·-

0 
Cl 

0 
Ui 

c:i-

0 
Cl 

~.00 

• 

,, 

0. l!J 

A 

·~ 

" 
o'. 1 o 

-200-

• 
A • 

• 

I I I o'. so 0.20 0.30 0.40 

T= 0.000 

• 
A 

• 

o'. 20 
I o'. liO 0.30 o'. so 

T= 0. l.J:OO 

Figure SO. Pair-probability function for simulation run 3. 



0 
0 ·-(\J 

0 
IJ"l 

·-...... 

0 
Cl 

0 
IJ"l ·-0 

0 
0 . 
9:i. 00 

0 
0 

·-(\J 

0 
i.n ·__, 

0 
Cl 

0 
i.n ·-0 

0 
Cl 

9:l.oo 

• 

o'. 1 o 

• A 

o'. 1 o 

-201-

• • 
-• • • 

o'. 20 
I I o'. so 0.30 0. 1.:10 

0.800 

• ... ... 
• 

o'. 1.:10 
I 

0.20 o'. 30 o'. so 

T= 1. 200 



0 
0 ·-C\J 

0 
U"l 

·-.... 

0 
0 

0 
U"l ·-0 

0 
0 . 
9J. DO 

a 
o ·-C\J 

0 
lJ') 

·.... 

0 
0 

0 
U"l ·-0 

0 
0 

9:i.oo 

... 

~~ 

... 

l 

0. 1 CJ 

I 

0. 10 

-202-

... • - A .. 

I I I 

0.20 0.30 0.40 0.50 

T= 1.600 

• 

o'. 50 
I 

0.30 
I 

0.40 
I 

0.20 

T= 2.000 



0 
l/'l 

·--

0 
0 

0 
l/'l 

c:i-

0 
CJ . 
9l. 00 

0 
CJ 

·-(\J 

0 
Lfl ·--
0 
CJ 

0 
Lfl ·-0 

0 
0 

9l.oo 

• 

I 

0. 10 

• 

o'. 1 o 

-203-

A 
A 

.e. • 
A 

• 

I I I I 

0.20 0.30 0.40 0.50 

T;; 2.~00 

• 
• • • • 

I 

0.30 0.40 
I 

0.20 o'. 50 

T= 2.800 



0 
If) 

·--
0 
0 

0 
lfl 

·-0 

0 
0 

'1l. 00 

0 
Ll1 

·-..... 

0 
Cl 

0 
If) 

·-0 

0 
Cl 

'1l. 00 

A 

I 

0 .. 10 

A 

II 

0. 10 

-204-

• .. 
-.. 

• 

o'. so I 

0. 20 
I 

0.30 o'. ijO 

T= 3.200 

• • 
A • 

I I I 

0.20 0.30 a.so 

T= 3.600 



0 
If> ·-
0 
0 

-205-

• 
• 

'+-~~-t-~~--+~~~~~~.,.--~~~~~~~~~ 

0 
Ill . 
0 

0 
0 

• 

ci_+-o-o,,.__~.__,o~'.-1-0--L....._~o~'r.2-o~~~-..-,~~~-.....-1 ~~~~1 
u. 0.30 O.YO 0.50 

0 
0 ·-C\J 

0 
Ill 

·-.... 

0 
c:> 

0 
in ·-0 

0 
0 

T= 0.000 

• 

• • 

• 

.. 
ci_+---.~-'--o•,-.-1c.-l~~~,.--~~~-.--,~~~-.....-,~~~ ...... 1 

u.00 0.20 0.30 O.YO 0.50 

T= O.liOO 
Figure 31. Pair·-probability function for simulation run 4. 



0 
If) .. -
0 
C> 

0 
If) .. 
0 

0 
0 

-206-

• .. 
" • 

.. 

'-+-___.,____.___.,.....--~.._,,.~----.,~~~~-...-,~~~--..,~~~~~, 

'b.oo 0.10 0.20 0.30 o.40 o.so 

0 
CJ 

ru-

0 
Lf'I 

'· -
0 
0 

0 
0 

T== 0.800 

• 
• .. 

• 

• ...J____.,__-1-.1..--~1-4&..---,,-~~~-y-~~~~ •• r-~~~..., 

9:i.oo o'.10 o'.20 o'.30 o.40 o'.so 

T= 1. 200 



0 
CJ ·-N 

0 
Lil 

·--
0 
0 

-
0 
Lil ·-0 

0 
0 

-207-

• 

• 

• 

'-'--.ii---_.... __ ..-, __ .._ __ __, ________ -.-________ _,_ ______ __, 

9:>. oo- o'. 1.0 o'. 20 o'. 30 o'. ijQ o'. 50 

0 
Ln ·--
0 
CJ 

0 
Ln ·-0 

0 
CJ 

T= 1. 600 

• • 

• • 
• 

Q..+-_._.___.........,..,..,_. __ ..__ ___ o~'.-2-o-------or'.-3-0-------.• ---------. .• 
u. 00 o. 1:0 0. ijO 0. 50 

T= 2.000 



0 
Ill ·-
0 
0 

0 
Ill ·-0 

0 
0 

-208-

• 

• • 
• 

Q.-+-....... .---'-~..-,-~..._~--.,~~~~-o~'.-3-0~~~~,~~~~-., 
u.00 0.10 0.20 o.~o 0.50 

0 
lll ·-.... 

0 
0 

0 
Ill 

a· 

0 
0 

• & 

<=t. 00-

.. 
A 

I 

0. 10 

T= 2.1.!00 

.. .. .. 
.. 

o'. 20 o'. 30 o'. ~o o'. so 

T= 2.800 



0 

"' ·--
0 
0 

0 

"' c:i-

0 
0 

-209-

.. 
.. 

.. 
... 

c:::b~.-o-o.,___. __ oT~-1-o......_ ____ or'.-2-o ______ o'r.-30 ______ 0~~-4-0-------.o~so 

0 

"' ·--
0 
0 

0 

"' ·-0 

0 
0 

T= 3. 200 

... 
.. 

.. 

'+---...--'-~-r---~"--~--.~~~~--.-~~~~.....-~~~---. 

9l. oo o'. i. o o'. 20 o'. 30 o'. 40 o'. so 

T= 3.600 



0 
U'I ·-
0 
0 

.... 

0 
11'1 

ci" 

0 
0 

-210-

• 
• 

• 

• ....___.~......1..~....-,-~L.-~---.,~~~~-T--,~~~--.,~~~~-,, 
'li.oo 0.10 0.20 0.30 o.1rn o.so 

0 
11'1 ·-.... 

0 
0 

0 
11'1 

·-0 

0 
0 

T= LL ODO 

• • • ... .. 
.. 

c::i..-+-_...,.,....__....~~,-~...__~~,~~~~-~,~~~~T~~~~~l 

u.00 0.10 0.20 0.30 0.ijO 0.50 



0 
If) 

·-.... 

0 
0 

.... 

0 
Ln ·-0 

0 
0 

-211-

A A 

A 

··~--4i.---L--,-.~"'----,---------r--------,.----------., 
91. oo o'. 1 o o'. 20 o'. 30 o'. ijO o'. so 

0 
Lt1 ·-.... 

0 
0 

0 
Lt1 ·-0 

0 
0 . -

A 

A 

o'. to 

T= LL BOO 

A 

A 

• 

6'. 20 o'. 30 o'. so 

T= 5.200 



0 
0 .. 
(\J 

0 
l/'l .. -
0 
0 

-
0 
If') 

·-0 

0 
0 . 
93. 00 

0 
0 ·-(\J 

0 
11'1 

•. -
0 
0 

0 
If') 

·-0 

0 
0 . . 
93.oo 

• 

o'. to 

• 

0. 10 

-212-

... 

A 

I o'. 30 o'. 40 
I 0.20 0.50 

T= 5.600 

• 

• • 

I 

0.20 
T 

0.30 
T 

0.40 
I 

0.50 

T= 6.000 



c 
If) ·-
0 
0 -
0 
Ill 

ci-

0 
0 

-213-

.. 
.. 

·..+---6..----'---.r--___.~~~~~~~.--~~~~~~~---. 

CU. 00 0
1

• I. 0 0
1

• 20 o'. 30 0
1

• ijQ o'. 50 

0 
0 

0 
Ill ·-
0 
0 

0 
Ill 

c)-

0 
0 

9l.oo 

• 

I 

0.10 

T= 6.l!OO 

• 

• 

o'. 20 o'. 30 o'. ijQ o'. 50 

T= 6.800 



c 
C> ·-(\I 

0 
Ill .. -
0 
c . .... 

0 
Ill ·-0 

0 
c 

-214-

• • 
• A 

••..+---t~--L---~.---..L--____ r--_______ _,. ________ -,-______ ___, 

o... ' ' ' o' 11 0 o'. so u.00 O.l~O 0.20 0.30 .ot 

0 
0 

ru-

0 
U'l ·-.... 

0 
0 

.... 

0 
Ill ·-0 

0 
0 . 
9l. 00-

• 

• 

I 

0.10 

T= 7.200 

• 

• 

• 

I I I I 0 .. 20 0.30 0.1!0 0.50 

T= 7.600 



0 
I/') ·--
0 
0 -
0 
I/') ·-0 

0 
0 

-215-

• • 

• 
• 

Q.-+-...... .__--'-~..-,·~.._~--.,~~~~-.-.~~~~~ • ....-~~~~. 
u.00 0. 10 0.20 0.30 0.40 0.50 

T= B.000 



0 
In .. -
0 
0 . -
0 
In 

c:i" 

0 
0 

-216-

·~ 
• 

• • 
• 

·+-~At.--J.....&-A..,.L~~~-.-~~~-..,r-:--~~::r-~~~""'.:1,1 
9>. oo a·. ta o'. 20 o·. 30 a·. 110 o. so 

0 
0 

0 

"' •. - . 
0 
0 

T= O. 000 

• ·-+-~-+~-...1--~----..._~~~ •• :--~~~~~~~~~ 

0 

"' . 0 

0 
0 

• ..,... ____ ~_,......._~~~r-~~~,..~~~--,~~~--., 
9>. oo o'.10 o'. 20 a·. 30 a·. qo o'. so 

T= o.qoo 
Figure 32. Pair-probability function for simulation run 5. 



0 
&n ·-
0 
0 

-217-

• '-+-----t,.._---+--~-------------..----.-----------------_, . . .. 

0 
ll'l 

ci" 

0 
0 . -
9l.oo 

0 
0 ·-N 

0 
ll'l 

•. -
0 
0 

0 
ll'l ·-0 

0 
0 

.. 

o'. so 
I 

0. 10 o'. 20 o'. so I o.1rn 

T= 0.800 

... 

.. 
• .. 

·-i-~t..--·...L..---.JL---------..---------..---------,r--------, 
9l. oo o'. 1 o o'. 20 o'. 30 o'. YD o'. so 

T= 1. 200 



c 
Ill ·-

c 
Ill 

ci• 

c 
c . 
't.oo 

0 
c 
ru· 

0 
Lfl 

·--
0 
0 

c 
&n 

ci• 

0 
0 

... 

a·. io 

-218-

... 

... ... 
... 

o'. 20 o'. so o'.1rn a·. 50 

T= 1. 600 

... - -

·;---.....&.~--,r'--~~~.,..~~~~r-~~~ ........ ~~~--. 
't. oo o'. 1. o o'. 20 o'. so o'. i,o o'. 50 

T= 2.000 



0 
c ·-"' 

0 
0 . 
't.oo 

0 
0 ·-N 

0 
11'1 ·--
0 
0 

0 
11'1 

·-0 

0 
0 

-219-

T o'. 20 o. 10 

T= 

.. 

.. 

I I o'. so 0.30 0.110 

2.l!OO 

.. .. - .. .. 

a..·-+-_....---11....-~,~. L---~~~~.~~~~-..--,~~--~ • ..--------., 
u.00 0.10 0.20 0.30 0.110 0.50 

T= 2.BOO 



0 
U"l ·--
0 
0 

-220-

'4----+----+-~-----------r----.----&-·-------=-.----.;--

0 
0 

• 

·-+-----L----..l-----------------.----------,...---------. ~. oo o'. 1. o o'. 20 o'. 30 o'. 1rn o'. 50 

0 
ll'l ·-.... 

0 
0 

0 
ll'l 

·-0 

0 
0 

T= 3.200 

-
• 

c:i._+-----1.-----.,,..i---------r-,-------r-,-------T-,----~---., 
u.00 0.10 0.20 0.30 o.~o 0.50 

T= 3.600 



0 
&n ·--
0 
0 

-221-

·-+-~--1,__..~-+--~~----~~·=-~~·---~~~---·~-.~~-.~ 

0 
&n ·-0 

0 
0 
'4--.....___..__~.,..,_r~~~--.,~~~---...-,~--~--.,~----~-., 

'll.oo 0.10 0.20 0.3o O.ijO o.so 

0 
0 ·-N 

0 
Lil ·--
0 
0 

0 
&n ·-0 

0 
0 

T= lL 000 

• • 
• • 

c:i..'-+--~-~ ........ ~-~,~~~~-o-.~.2-o~~---o~'.-3-0----~-.~~~~--. 
u.00 0.10 O.ijO 0.50 

T= lL LlOO 



c 

"' ·--

0 
c . 
93.oo 

0 
0 

N-

·--
0 
c 

0 
Lfl 

c:i· 

0 
c 

o'. 10 

• 
• 

-222-

I o'. so o'.1rn o'.so 0.20 

T= ij.800 

. 
• - • • 

'-+-...... --'-~--.~-~~~--~~~~T"-~~~.....,..~~~---, 
93. oo o'. i o o'. 20 o'. so o'.1rn o'. so 

T= 5.200 



0 
C> ·-N 

0 
U'l ·--
0 
0 

0 
U'l ·-0 

0 
0 

-223-

• 
• • 

• • .. 

c:b~.-04~__..___o_ .• 1·-a------01~.2-o ______ o_~-90 ______ 0~~-ij-O------.o~so 

0 
0 

·-N 

0 
Lf') 

·--
0 

T= 5. 600 

• • 0 A 6 • -4----+-----4-------------------'---------=------

0 
Lf') 

·-0 

0 
0 

• 

.,.J__ . .__...L __ -.J.--------,.---------r---------r--------,~ 
9l.oo o'.10 o'.20 o'.so o'.arn a.so 

T= 6.000 



0 
If) 

·-
0 
::> 

c 
If) 

·-0 

0 
0 

-224-

• .. 
.. • • 

• 

Q..-+-~-.,_...._ ___ o~'.,~1-o------~,---------o~ .. -3-0-------.--------~. 
u.00 0.20 o.•rn 0.50 

0 
ll'l ·--
c 
0 

0 
c . . 
9l.oo 

• 

• • 

o'. 10 

T= 6.llOO 

• - . • .. 

o'.20 o'. 30 o·.~o o'. 50 

T: 6. 800 



0 
U"I ·-
0 
0 . 

0 
U"I ·-0 

0 
0 

... 

-225-

... 
& • • 

A ... 

cb~_-o~~__,~-0~~~1.o ______ o~~-2-o _____ o~~-s-0-----0~~-ij-O~~-o~so 

0 
0 

·-C\J 

0 
Ltl 

'· -
0 
0 

0 
U"I 

·-0 

0 
0 

91.oo 

• 

T= 7.200 

-- • 
• 

o'. so 
I 

0. 10 o'. 20 o'. 30 

T= 7. 600 



0 
0 ·-C\I 

0 
&fl 

·-- .. 
0 
0 

0 
&fl 

c)-

0 
0 

-226-

.. .. . 

.. .. 
.. 

~~.-o~o---~--0~~~1._o ______ o~~-2-0 ______ 0~~-30 ______ 0_~-ij-O _______ o~so 

0 
0 
N. 

0 

"' ·--
0 
::i . 

0 

"' ·-0 

0 
0 

.. 

T= 8.000 

• .. • & .. 
• • 

'"""-~-.,_..L..__,-.J. ______ __,,__ ______ ~--------..-------..... 

9l. oo o'. rn 0
1

• 20 o'. so o'. "o o'. so 

Tz: B.1100 



0 
Ill ·-
0 
0 -
c 
Ill 

a· 

0 
0 

6 

-227-

6 6 

6 6 

6 6 

'4-....... ......L~-~-L-~~~.....-~~~~r-~~~-.-~~~---. en. 00 o'.10 o'. 20 o'. 30 o'.1rn o'. 50 

0 
Ill ·-
0 
0 

0 
Ill ·-0 

0 
0 

T= B.BOO 

6 

6 

•-;-..... _....~-~rL-~~~.....,....~~~~~~~~-.-~~~--. en. 00 o'. 10 o'. 20 o'. 30 o'. 110 o'. 50 

T= 9.200 



c 
&n ·-
0 
0 

c 
0 

-228-

-

Q..-+----"'----.,,.._-------.--,-------o~'.-G-0-------,---------., 
u.00 Ol.10 0.20 ;;J o.~o o.so 

0 
U'l ·-
0 

T= 9.600 

0 • 
'4-----+---~·+------.---------.----*--------~.---• .,....-

0 
0 . -
'b.oo I 

0.10 o'.20 o'. so o'. ~o o'. so 

T= 10. 000 



0 
lt'I ·-
0 
0 

c 
lt'I 

c:i• 

0 
0 . . 
9l.oo 

0 
Cl 

C\i-

c 
in ·-
c 
0 

c 
0 

.. .. 

o'. 10 

.. 

-229-

• .. 
• • • 

o'. 20 o'. so a'. am o'.so 

T= 10.llOl 

- • .. -• 

•. ....__.._......_~......,...~~~~,..-~~~-.-~~~~~~~~--. 
9l.oo o'.10 o'.20 o'.so o'.arn o'.so 

T= 10. 801 



0 
U") 

·-

0 
0 . . 
«=t>.oo 

0 
Lf'l ·--
0 
0 -
0 
Ln 

0-

0 
0 

o'. io 

• 

-230-

o'. so o'. 20 
I 

0.30 o'.110 

T= 11.201 

• • 
-• • • 

"-+-...... __.~___,,..._~~~--~~~~...-~~~ ...... ~~~--. 
«=t>. oo o'. lo o'. 20 o'. 30 o'. 110 o'. so 

T= 11.601 



0 
0 

t\i• 

0 
in ·... 

c 
0 -

c 
0 

-231-

.. .. .. .. 

c:i..-+----'----o~.~.1-0------~,.---------or-,--------r-,-------.., 
u.00 0.20 .30 o.1rn 0.50 

T= 12.001 



c 
0 ·-N 

0 
In ·-
0 
a 
..... 

0 
Ill ·-0 

-232-

• • A 

• 

0 

~j_......_-1.~--.L-~~~..,-~~~~,.-:--~~~,T"7.:-~~-:::1, 
91. oo o'. 1.0 o'. 20 o. 30 o.1rn a. so 

0 
0 

·-(\J 

0 
Ill 

0 
Ill 

·-0 

CJ 

T= 0.000 

• 

A 

~..J_ ........ -1~--..L..~~~....,...~~~~r-,~~~~.-.=--~~-=1, 
91.oo 0~10 0.20 o.3o o.~o o.so 

T= 0.800 

Figure 38. Pair-probability function for simulation run 7. 



0 
c .. 
N 

0 
If) 

'· -
0 
0 

0 
If) 

·-0 

0 
U1 

·--
0 
0 

.... 

0 
in ·-0 

0 
0 

• 

-233-

• • .. • * .. • 

• 

T= 1.600 

& • 

• • 
• 

• 

c:i...-+-..... --''--~..-'-,~~~--.,,..-~~~---~~~~~1,...-~~~--.~ 
u.00 0. 10 0.20 0.30 o.~o 0.50 

T= 2.l!OO 



c 
U1 ·-... 

0 
0 

0 
ltl ·-c 

0 
c 

-234-

• 
• 

• • • • • 

'-+-_..__. ____ ,...._ ______ _, ________ --.-________ ...---------, 

9:i. oo o'. i o o'. 20 o'. 30 o'. 1rn o'. so 

0 
Ill 

·--
0 
0 

0 
Ill ·-0 

0 
0 

T= 3.200 

• .. -

'-+-....... --''----~--------.----------..------------------. 9:1.oo o'.10 o'.20 o'.30 o'.ijo o'.so 

T= Y. 000 



0 
Lf) 

·--
0 
0 

-
0 
Lf) 

·-c 

0 
0 

0 
Lf) 

·--
0 
0 

0 
Lf) 

·-0 

0 
0 

-235-

• 
... • • • 

• 

T= LL 800 

• 
• 

• • -
• 

A 

c::i..-+-_,.___.~~r,'-~~~~,~~~~-Or1.-3-0~~~~,~~~~-., 
u.00 0.10 0.20 0.40 0.50 

T= 5.600 



0 
0 ·-N 

0 
Lfl 

·--
0 
Cl 

0 
Lfl 

c:i" 

0 
Cl . ~ 

~). 00 

0 
0 

C\J 

0 
Lf1 ·--
0 
0 

0 
Lf1 

c:i• 

CJ 
0 

• 

-236-

• • .. .. 
• 

o'. to o'. 20 
I 

o'. so 0.30 0.1!0 

T= 6.l!OO 

A • 

cb,.-o~o--....__ __ o~'.~1--o----~o~~-2-0------0~~-3-o~~ ....... o'~.Y-o------..o~so 

T= 7.200 



0 
If> ·--
0 
0 

0 
0 

• £ 

9J.oo 

-

I 

0. 10 

-237-

.. 
A 

.. 
A .. 

.. 

I I I I 

0.20 0.30 0.40 0.50 

T= 8.000 



0 
If') 

·--
0 

-238-

0 • • 
"+-~-t~~+-'~-~~~--~~~~~~-:-~~~--.i·--- . • 

0 
If') . 
0 

0 
0 . ~ 

9:1.oo 

0 
0 

·-C\J 

0 
If') 

·..... 

0 
0 . -
0 
If') ·-0 

0 
0 

a'. io 

• 
• 

0.20 o'. 30 o'. 110 o'. so 

T= 0.000 

• - D • • • 

•:-t-----'"~--,r--~~~-,-~~~~r-~~~--.-~~~~ 
9:i. oo a·. 1 o o'. 20 o'. 30 o'.110 a·. so 

T= 0.200 

Figure 34. Pair-probability function for simulation run ·s. 



0 
0 ·-N 

0 
U"I ·--
0 
0 -
0 
11'1 ·-0 

0 
0 

-239-

•• 

.. 
• .. 

ci...'4-...... ---1'--~~.I-..~~~~.~~~~-.-~~~~..,....~~~--., 
u.oo 0.10 0.20 0.30 O.ijO a.so 

0 
0 

'• 
C\J 

0 
U"I ·--
0 
0 

.... 

0 
U"I ·-0 

0 
0 . . 
9J.oo 

.. 
•• 

.. 

1 o. 10 

T= O.llOO 

• • • .. 

o'. so o'. 20 
I 

0.30 
I 

Q.ijO 

T= 0.600 



0 
Ill ·--
0 
0 • 

0 
Ill ·-0 

0 
0 

-240-

• 
• 

ci...-+-...... ---'~~.,..._,~-~~--.~~~~-...--,~~~--..,~~~~-., 
u.oo 0.10 0.20 0.30 O.ijO a.so 

0 
0 

ru-

0 
Lfl ·--
0 
0 

0 
Ill 

·-0 

0 
0 

T= 0.800 

• • -
• 

ci...'-'-...... --ll..--~..,..1-,~-~~----.~~~~-...--,~~~--.l~~~~-..., 
u.00 0.10 0.20 0.30 Q.ijQ a.so 

T= 1. 000 



0 
U"I ·--
0 
0 -
0 
U"I . 
0 

0 
0 

-241-

• ... .. 
... ... ... ... 

... ... 

·+-....... --'----.,..1--------,.--------.,---------.,---------, 
9J. oo o'. io o'. 2ri o. 30 o'. 40 o'. so 

0 
U"I -
0 
0 -
0 
U"I . 
0 

0 
0 

• & 

9J. 00 

• 6 

I 

0 .. 10 

T= l. 200 

... ... 
... . 

... 

o'. 20 o'. 30 o'.4o o'. so 

T= l. llOO 



0 
Cl 

·-(\J 

0 
Vl ·--

-242-

0 • 

c,..l---~-----+-,.-0-----------------A--------,.r---......._
• • 

• • 

0 

~..!-....... -l---o~'.L1-·a-------r---------o,r.-3o _______ or'_-ij-O------,o'.so 9l.oo 0.20 

0 
U"l ·--
0 
0 

0 
CJ 

.. 
• 

T= 1.600 

• • 
• .. 

• 

9:J•~_-o~o,_.1..___o~~~-1-o--~-o~~-2-o~~-o~~-3-o-----o~~-~-o-----o~so 

T= 1.800 



0 
CJ .. 
N 

0 
In .. -
0 
,0 

0 
In ·-0 

0 
0 . . 
93.oo 

0 
0 .. 
(\I 

0 
U1 ·--
0 
0 -
0 
U1 ·-0 

0 
0 

• -

I 

0.10 

• 

-243-

. -• • • 

' l l I 0.20 0.30 0.40 a.so 

T= 2.000 

• • ... 
• • 

9J~.-o~o~...__~o-r~~1-o~----o~'.-2-o--~--o.~.-90------o~~-ij-O~~---.o~so 

T= 2.1.100 



0 
0 ·-(\J 

0 
ll'l 

•. -
0 
0 

' 

0 
ll'l ·-0 

0 
0 . 
9l.oo 

Cl 
0 

C\J 

0 
ll'l 

·--
0 
0 -
0 
ll'l ·-0 

0 
0 

• 

' o. 10 

• • 

-244-

• 

• .. • A .. • 

o'. 20 o'. 30 o'. iiO o'. so 

T= 2.800 

• -• • 

cb·~.-o~o.,_...__~o~'.~1._o~~~oT'.-2-0~~~0~~-3-o~~-o~'~.q-o~~---o~so 

T= 3.200 



0 
0 

ru· 

Q 
111 ·-
0 
0 . -
Q 
111 

ci• 

0 
0 . . 
91.oo 

0 
0 ·-N 

0 
If) 

·--
0 
0 -
0 
If) 

ci" 

0 
0 

.. 

.. 

-245-

.. .. .. .. .. • • 

I o'. 20 
I I I 

0.10 0.30 O.YO 0.50 

T= 3.600 

.. .. ... 
• • ... 

•-1---A---L----.,.1.--------.---------.---------r--------, 
9J. oo o'. i o o'. 20 o'. 30 o'. Yo o. so 

T= L!.000 



0 
0 

·-(\I 

0 
If> ·--
0 
0 

-
0 
If> ·-0 

0 
0 

-246-

. -• • 

cb~.-o~oi.-......_ __ 0_~~1-o ______ o~'.-2-0 ______ 0_'.-30 ______ 0~,-.ij-O----~o~so 

0 
0 ·-C\J 

0 
ltl ·-
0 
0 -
0 
If> 

a· 

0 
0 

T= ij. 1!00 

• • 
• • .. 

•• 

• 

•·.+-....,.__... ____ ,..._ _______ .....,..... ________ T-______ -r-______ __, 

9:>.oo o'.10 o'.20 o'.30 o'.1rn o'.so 

T= L!.800 



0 
c .. 
N 

0 
Lr> ·--
0 
c -
0 
Lt"> ·-0 

0 
c . 
9l.oo 

0 
c 
·-N 

0 
Lr> ·-
0 
c -
0 
Lr> . 
0 

0 
c 

• 

.. 

-247-

~k 

• .... - .. 

' o'. 20 o'. 30 ' o'. so 0.10 0.40 

T= S.200 

• .. .. .. .. 

• 

o..:+-........ --1'----~T'---------.,,__-------....-,-------o~'.-.. -o--------., 
u.00 0.10 0.20 0.30 .. 0.50 

T= 5.600 



0 
0 ·-C\I 

0 
ll'l ·--

-248-

0 

o..L..~--1'--~-+-~~-=•~~~~~~--:~~--·~-•~~--• -
0 
ll'l ·-0 

0 
0 . 
9:l.oo 

a 
Cl 

·-C\J 

a 
Ln 

·-..... 

CJ 
Cl 

CJ 
Ln 

\ 

·-0 

a 
Cl 

• 

• 

• • 

• 

o'. to o'. 20 
I T o'. 50 0.30 o.1rn 

T= 6.001 

• 
A 

• • 

0...-+------'~---r.1-,~~~--.,~~~~-....1~~~~~1~~~~-.l 

u.00 0.10 0.20 0.30 0.ijO 0.50 

T= 6. 201 



CJ 
CJ ·-(\J 

CJ 
IJl ·-..... 

CJ 
CJ 

..... 

CJ 
IJl ·-0 

CJ 
CJ 

9J. 00 

CJ 
CJ 
·~ C\J 

CJ 
in ·--
CJ 
CJ 

0 
LO 

·-CJ 

0 
0 

-249-

• 
• 

• • 

I 

0.20 o'.10 

T= 

• A 

• 

• • • • 

a.so 
I 

0.30 
I 

0.40 

6. l!Ol 

• ~ 

• .. ... 

'4-...... --1~~,..&-,~--~--.,~--~~-.--,~~~.....,.,~--~---, 
9J.oo o. 10 0.20 o.3o D.40 a.so 

T= 6.601 



0 
0 

ru-

0 
tn ·--
0 
0 

0 
l.I1 ·-0 

0 
0 . 
93.oo 

0 
Cl ·-C\l 

0 
l.I1 ·--
0 
0 

0 
l.I1 

·-0 

-250-

-

o'. 1 o ' I I I 

0.20 0.30 o.1rn a.so 

T= 6.801 

.. 
A 

A A 
A A 

T= 7. 001 



0 
If) 

·--
0 
0 -
0 
If) 

·-0 

0 
0 

-251-

• 

• 

•-1-....... --1~~.,.L~~~--.~~~~-..-~~--~-r--~~~---, 
0.. r r ' r o'. 50 u.00 0.10 0.20 0.30 0.40 

0 
0 ·-C\l 

0 
If) 

·--
0 
0 -
0 
If) 

·-0 

0 
0 . -
9l. 00 

6 
& 

r 
0. 10 

T= 7.201 

• • 
• 

0.20 ' 0.30 ' o.1rn 

T= 7.4:01 

• 

o'. 50 



0 
Ln 

·--
0 
0 

-
0 
Ln 

·-0 

0 
0 

-252-

.. 
A .. • A .. 

0..-1--........ __.'----o~'.~1-o·------~,r---------r--------~,r---------,, 
u. 00 o. 20 0. 30 0.110 o. so 

a 
Ln 

·--
0 
0 

0 
a . . 
't.oo 

.. 

' 0. 10 

T= 7.601 

A 

• 

o'. so o'. 20 o'. 30 ' 0.110 

T= 7.801 



CJ 
U"1 ·-
- A 

CJ 
CJ 

.... 

CJ 
U"1 ·-CJ 

CJ 
CJ 

• & 

9J.o6 

a 

0.10 

-253-

• A .. 
• 

' a.so ' O.LIO 0.20 0.30 

T= B. 001 



0 
0 

·-C\J 

0 
U"l ·--
0 
0 

0 
U"l ·-0 

0 
0 . 
9:i.oo 

0 
CJ ·-C\J 

0 
Ill ·-

0 
0 

0 
U"l 

·-0 

Cl 
0 

I 

0. 10 

-254-

• 
• A 

• 

I I I I 

0.20 0.30 0. ijQ o.so 

T= 0.000 

• 
• 

• • 

ci._+--0~0.._-L..~O~ .• --l~OL--~~~,~~~~~,~~~~-~,~~~~, 
u. 0. 20 o. 30 o. ijQ o. so 

T= 0.4:00 

Figure 35. Pair-probability function for simulation run 9. 



0 
Ill ·--
0 
0 . -
0 
Ill ·-0 

0 
0 . 
9:l.oo 

0 
0 ·-(\J 

0 
Vl ·-

• 

- . 
0 
0 

0 
Ill ·-0 

0 
0 

-255-

• 

l o'. 20 0. 10 

T= 

·~ . 

• • 
• -• 

0.30 a·. 110 o'. so 

O.BOO 

• 
• -

'4-_..~...._~ ....... ...._~~--.~~~~~~~~~--~~~---
9:l. o o o'.10 o'.20 o'.30 o'.110 o'.so 

T= 1. 200 



0 
Lil 

·--
0 
0 

0 
ltl ·-0 

0 
0 . 
9:1.oo 

0 
0 

·-(\J 

0 
I.fl 

·-.... 

0 
CJ 

0 
I.fl 

·-0 

0 
0 

• 

.. 

I 

0.10 

• 

-256-

.. 
.. 

I I I I 0.20 0.30 o.1rn 0.50 

T= 1. 600 

.. 
... 

• -• ... 

··4-~~·--'~--.-·-'~~~-.-~~~-------------.~~--~-. °' I I I 0
1
• llO o'. 50 u.00 0.10 0.20 0.30 

T= 2.000 



0 
0 ·-N 

0 
U'l ·-.... 

0 
0 ... 

0 
Ill ·-0 

0 
0 

-257-

.. 
.... .. ... .. ,. 

c:ii'~.-o~ok--_._ __ o~~-1-~o~----oT'.-2-0------0~'.-30----~o~.~.ij-O-------.o~so 

0 
Lfl ·.... 

0 
0 

0 
U"l ·-0 

0 
0 

• 

T= 

•• 

• 

2.1!00 

& • 
... • .. 

·-+-~&,__--1, __ ""T_....1. ______ ""T"" ________ r--------,.---------, 
9:J. oo a'. 1 o oT. 20 o'. 30 o'. ijQ o'. so 

T= 2.800 



·--
0 
C> 

0 
Lfl 

·-0 

0 
0 . -
9J.oo 

0 
0 

ru-

0 
I/') 

...... 

0 
0 

0 
Lfl 

ci• 

0 
0 

I 

0.10 

·~ 

• 

-258-

• 
• 

• 

o'.20 
I 

o'. 40 o'. so 0.30 

T= 3.200 

• .. - • A 

• • 

•.+-....... ~..1....~..--..1....~.~--.~~~~-r~~~~~~~~--, 
9J. oo o'. 1 o o'. 20 o'. 30 o'.110 o'. so 

T= 3.600 



0 
0 

N-

0 
U1 .. -
0 
c -
0 
U1 

·-0 

0 
0 

'b.oo 

0 
0 

·-C\J 

0 
U1 

·--
0 
0 

0 
U1 

·-0 

0 
0 

• ~ 

I 

0.10 

-259-

• 
• . 

• • .. 

I I I I 0.20 0.30 o.1rn 0.50 

T== lL DOD 

.. 
• 

a..~ ...... ~-'-~-r-,..._~~--.,~~~~-T"-.~~~--~~~~~-. 
u.00 0. 10 0.20 0.30 O.ijO 0.50 

T= Y.1!00 



0 
0 ·-(\I 

0 
Ill ·-... 

0 
0 ... 

0 
Ill ·-0 

0 
0 -c:b: 00 

0 
0 ·-N 

0 
Ill ·-
0 
0 

0 
Ill ·-0 

0 
0 

• '" 

I 

o. 10 

.. 

.. 

-260-

. .. .. .. .. .. • 

o'. 20 o'. 30 
-i 

o'. so 0.40 

T= tL 800 

• • • • • 

Q.-+-....... ~-'----..-,-...._ _____ o~'-.2-o-------,__,--------.1---------., 
u. 00 o. 10 0. 30 0. 40 0. so 

T= 5. 200 



0 
0 ·-N 

0 
Ill . -
0 
0 

0 
Ill . 
0 

0 
0 . 
9l.oo 

a 
0 

·-N 

0 
Ill ·-
0 
0 

...... 

0 
Ill . 
0 

a 
0 

I o. 10 

~~ 

-261-

I I I 0.20 0.30 o.1rn 0.50 

T= 5.600 

• & • • -
• 

a.·-+----------0~·.-1~0------~.r--------~--------~.---------., u.oo 0.20 0.30 o.~o o.so 

T= 6.000 



0 
Ill ·--
0 
0 

·-
0 
Ln 

o· 

0 
0 . 
9l.oo 

0 
0 ·-(\J 

0 
Ill ·--

0 
Ill ·-0 

.. 

• 

-262-

.. 
• -.. 

o'. 10 a'. 20 a'. 30 a'. LlO a'. so 

T= 6.ijQQ 

.. • 

0 
c 
·-l.-~·..._--1 __ _,......J.~-----,---------.-----~--,r-:---........ -:-i. 

9l.oo o'.10 0.20 o.3o o'.ito o.so 

T= 6.800 



0 
I/) ·--
0 
0 

-263-

+-----+-----+-------------.-.------------,_.------- . 
0 
I/) 

c:i" 

0 
0 . 
9J.oo 

0 
0 

N-

0 
Lil ·-.... 

0 
0 

0 
0 

•• • • 

o'.10 

• 

• 

o'. 20 o'. 30 o'. ijQ a·. so 

T= 7.200 

a 
a 

• • 

c:b1.-o~o~_.._--o~~-1~0. ______ 0T~-2-o------o·~-3-o-----o~'~.ij-o-------,o~so 

T= 7.600 



0 
Ill ·--
0 
CJ 

.... 

0 
U'I . 
0 

0 
CJ 

• 

-264-

• 
• 

• • • • 

c:L-------....__--,__,......._ _____ o~'.-2-0-------..--,-------0~ •. - .. -o------....... , 
u.00 0.10 0.30 .. 0.50 

T= 8.000 



0 
Lf) .. -

0 
0 . 
<=tl.oo 
0 
0 

N-

0 
Ln -
0 
0 . -
0 
Lf) 

c:)• 

0 
0 

• 

-265-

o'. 1 o 

A 

A. 

o'. 20 o'. 30 o'. l!O o'. so 

T= 0.000 

" • • 
• • 

'4---L~..l.--,~~~~-,-~~~~r--~~~""T"~~~--, 

<=tJ. oo o'. 1 o o'. 20 o'. 30 o'.110 a·. so 

T= O.llOO 

Figure 36. Pair-probability function for simulation run 10. 
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APPENDIX 5: Ranges over which the nearfield and farfield forms of the two

particle resistance and mobility coefficients are used 

As mentioned in Chapter 2, the accuracy of the available nearfield and farfield 

forms is different for each of the various two-particle resistance and mobility coef

ficients. Therefore, the ranges over which the nearfield and farfield forms are used 

is also different depending on the coefficient. We now list for each coefficient these 

ranges in terms of the separation distance ra/3 between the particles. (The references 

in this appendix refer to the reference list in Chapter 2.) 

Ai ( ra.8), A2 ( ra,e) (the coefficients describing the settling velocity of two particles 

parallel and perpendicular to the line joining their centers)-

farfield forms- ra13/a > 8.0 

(Wakiya 1967; Happel and Brenner 1965) 

nearfield forms (only A2 )- ra13/a < 2.0049 

(O'Neill 1969) 

intermediate field results- 2.0049 < ra,e/a < 8.0 

(Goldman, Cox, and Brenner 1966; Batchelor 1972) 

A(ra13), B(ra13) (the coefficients describing the translational motion of the two par

ticles in a linear flow field)-

farfield forms- rafi /a > 2.8662 

(Batchelor and Green 1972) 

nearfield forms- rafi /a < 2.0025 

(Batchelor and Green 1972) 

intermediate field results- 2.0025 < ra13/a < 2.8662 

(Batchelor and Green 1972) 

The coefficients describing the forces on two particles translating parallel to the line 

joining their centers-

farfield forms- r0~ /a > 4.0 

(Happel and Brenner 1965) 
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nearfield forms- ro:f3 /a < 2.01 

(Arp and Mason 1977; Hansford 1970) 

intermediate field results- 2.01 < ra:f3/a < 4.0 

(Batchelor 1976; Cooley and O'Neill 1969) 

The coefficients describing the torques on two particles rotating about the axis of 

the line joining their centers-

farfield forms- ro:f3 /a > 4.0 

(Reuland, Felderhof, and Jones 1978) 

touching forms- ra:f3/a = 2.0 

(Takagi 1974; Majumdar 1967) 

intermediate field results- 2.0 < ro:I' /a < 4.0 

(Jeffery 1915; Arp and Mason 1977) 

The coefficients describing the forces and torques on two particles moving perpen

dicular to the line joining their centers-

farfield forms- ra:f' /a > 7.0 

(Arp and Mason 1977; Brenner and O'Neill 1972; Brenner 1964) 

nearfield forms- ra:f'/a < 2.001 

(Wacholder and Sather 1974) 

intermediate field results- 2.001 < ra:f'/a < 7.0 

(Davis 1969; O'Neill and Majumdar 1970) 

The coefficients describing the forces and torques on two particles in a linear flow 

field-

farfield forms- ro:f3 /a > 10.0 

(Arp and Mason 1977; Brenner and O'Neill 1972) 

nearfield forms- ra:f'/a < 2.006 for F(ra:f')i ra:f'/a < 2.0006 for G(ra:f') and 

H(ra:f') (see the notation in Arp and Mason) 

(Arp and Mason 1977) 

intermediate field results-alJ. other values of ro:f' 

(Arp and Mason 1977) 


