
Enhanced Algorithms for Analysis and Design of Nucleic Acid Reaction
Pathways

Thesis by
Nicholas James Porubsky

In Partial Fulfillment of the Requirements for the
Degree of

Doctor of Philosophy

CALIFORNIA INSTITUTE OF TECHNOLOGY
Pasadena, California

2020
Defended September 16, 2019

ii

© 2020

Nicholas James Porubsky
ORCID: 0000-0001-6330-2645

All rights reserved

iii

Acknowledgements

First, I would like to thank my advisor, Niles Pierce. Time and again he has helped me realize that
research is failure punctuated by success and therefore persistence and pivoting to alternatives pay
off. I would like to thank my committee chair, Erik Winfree, for his expert knowledge in algorithms
adjacent to those of our lab as well as his role in starting and sending off the Molecular Programming
Project, of which I’ve been proud to be a small part. I would like to thank my remaining committee
members, Rustem Ismagilov and Zhen-Gang Wang, for pushing me to take responsbility for seeking
out the prerequisite knowledge necessary to work on the algorithms in this thesis and to develop a
physical intuition for the systems I work on.

I thank the members of the Pierce lab who I’ve worked with over the years. First and foremost,
I thank Mark Fornace, for being my longest collaborator and co-author on our algorithmic and
model improvements paper. He is both an excellent scientist as well as an excellent software
engineer, a rare breed to be sure. Without his initiative in beginning our rewrite of the NUPACK
thermodynamics code, crafting the algorithm in the last chapter of this thesis would not have been
possible. Secondly, I’d like to thank Brian Wolfe, my predecessor in the lineage of nucleic acid
design algorithm developers. His work with Niles enabled design of test tubes of nucleic acid
systems (a game-changing improvement to sequence design) as well as much of the algorithmic and
software work necessary for the multitube design project which we published together. I would also
like to thank the members of the lab who used the design software during development: Maayan,
Lisa, Mikhail, Jining, and Zhewei. You all helped me find many bugs (fixed now!) and improve the
documentation to the benefit of researchers around the world.

I would like to thank some of my classmates who became close friends: Ahmad, Mikey, and Jordan.
Ahmad’s ability to take the long view and laugh at the ridiculousness of it all have given me better
perspective on the transient stresses in life. Mikey is quite possibly the most buoyant person I’ve
met and his relentless enthusiasm for life has and continues to lift me up. Jordan can reliably sense
stagnation and suggest a web of movies and video games to take your mind off things.

I would also like to thank two of my friends from back in Wisconsin, Becki and Lee, for their
remote support through online gaming sessions and visits during trips back home. They helped
me repeatedly wake up to the fact that despite the PhD process feeling all-encompassing at times
(or even most of the time), there is indeed an outside world that complements the experiences of
research.

I would like to thank my family. My parents, James and Andrea, stressed throughout my life the
importance of striving for excellence in academic pursuits, and the mindset that engendered within
me has led me to and through my PhD experience. Without direct experience, they intuited the
need for higher education and, through the examples of their life, succeeded in instilling a strong
work ethic in their three children and saw them successfully graduate from college. I also thank my

iv

siblings, Veronica and Dominic, for their patient ears and empathetic words while I’ve been pursuing
my PhD. Having siblings who shared formative early life experiences to reminisce about has helped
in dispelling solipsistic tendencies that emerged during the more stressful episodes of grad school.

Finally, I would like to thank my girlfriend, Rachel, who has been both consistently encouraging
and understanding during the trials and tribulations of grad school (especially the last few months).
Now that we’re both moving on to new and exciting things, I look forward to having a partner to
explore new horizons with and reminisce about the many good times we shared while at Caltech.

v

Abstract

Nucleic acids provide a powerful platform for programming at the molecular level. This is possible
because the free energy of nucleic acid structures is dominated by the local interactions of base
pairing and base pair stacking. The nearest neighbor secondary structure model implied by these
energetics has enabled development of a set of algorithms for calculating thermodynamic quantities
of nucleic acid sequences. Molecular programmers and synthetic biologists continue to extend their
reach to larger, more complicated nucleic acid complexes, reaction pathways, and systems. This
necessitates a focus on new algorithm development and efficient implementations to enable analysis
and design of such systems.

Concerning analysis of nucleic acids, we collect seemingly diverse algorithms under a unified
three-component dynamic programming framework consisting of: 1) recursions that specify the
dependencies between subproblems and incorporate the details of the structural ensemble and the
free energy model, 2) evaluation algebras that define the mathematical form of each subproblem,
3) operation orders that specify the computational trajectory through the dependency graph of
subproblems. Changes to the set of recursions allows operation over the complex ensemble including
coaxial and dangle stacking states, affecting all thermodynamic quantities. An updated operation
order for structure sampling allows simultaneous generation of a set of structures sampled from the
Boltzmann distribution in time that scales empirically sublinearly in the number of samples and
leads to an order of magnitude or more speedup over repeated single-structure sampling.

For the problem of sequence design for reaction pathway engineering, we introduce an optimization
algorithm to minimize the multitstate test tube ensemble defect, which simultaneously designs for
reactant, intermediate, and product states along the reaction pathway (positive design) and against
crosstalk interactions (negative design). Each of these on-pathway or crosstalk states is represented
as a target test tube ensemble containing arbitrary numbers of on-target complexes, each with a target
secondary structure and target concentration, and arbitrary numbers of off-target complexes, each
with vanishing target concentration. Our test tube specification formalism enables conversion of a
reaction pathway specification into a set of target test tubes. Sequences are designed subject to a
set of hard constraints allowing specification of properties such as sequence composition, sequence
complementarity, prevention of unwanted sequence patterns, and inclusion of biological sequences.
We then extend this algorithm with soft constraints, enhancing flexibility through new constraint
types and reducing design cost by up to two orders of magnitude in the most highly constrained
cases. These soft constraints enable multiobjective design of the multitstate test tube ensemble defect
simultaneously with heuristics for avoiding kinetic traps and equalizing reaction rates to further aid
reaction pathway engineering.

vi

Published Content and Contributions

[1] B. R. Wolfe∗, N. J. Porubsky∗, J. N. Zadeh, R. M. Dirks, and N. A. Pierce. “Constrained
Multistate Sequence Design for Nucleic Acid Reaction Pathway Engineering”. In: Journal
of the American Chemical Society 139.8 (2017), pp. 3134–3144. issn: 15205126. doi: 10.
1021/jacs.6b12693.
∗These authors contributed equally. Algorithm development was begun by BRW and NAP
following earlier work started by RMD and JNZ. BRW implemented the multitube framework
and constraint satisfaction algorithm. The algorithm was further developed by BRW, NAP,
and NJP. The general target test tube specification was developed by NAP and NJP. NJP
implemented functionality to specify designswith target tube ensembles consisting of arbitrary
sets of on-targets and off-targets to enable use of the target test tube specification. NJP
formulated the target test tubes of the case study reaction pathways. Computational resultswere
obtained by NJP. BRW, NJP, and NAP wrote the manuscript and supplementary information.

[2] M. E. Fornace∗, N. J. Porubsky∗ and N. A. Pierce. “A Unified Dynamic Programming Frame-
work for the Analysis of Interacting Nucleic Acid Strands: Enhanced Models, Robustness,
and Speed”. In: (2019, in preparation).
∗These authors contributed equally. NJP developed the recursions necessary to capture coax-
ial and dangle stacking states. MEF and NJP implemented the recursions. NJP developed
and implemented the simultaneous sampling algorithm. NJP implemented the suboptimal
structure generation algorithm. MEF developed and implemented the blockwise operation
order, including the backtrack-free pair probability algorithm. MEF developed the evaluation
algebra framework, and NJP and MEF programmed the evaluation algebras. NJP generated
all designed sequences used in the benchmarks, and MEF ran analysis benchmarking calcu-
lations. NJP wrote the initial draft of the manuscript, and MEF, NJP, and NAP wrote the final
manuscript and supplementary information.

https://doi.org/10.1021/jacs.6b12693
https://doi.org/10.1021/jacs.6b12693

vii

Table of Contents

Acknowledgements . iii
Abstract . v
Published Content and Contributions . vi
Table of Contents . vii
List of Figures . xii
List of Tables . xvi
Chapter I: Introduction . 1
Bibliography . 4
Chapter II: A Unified Dynamic Programming Framework for The Analysis of Interacting

Nucleic Acid Strands: Enhanced Models, Robustness, and Speed 7
2.1 Introduction . 8
2.2 Physical Model . 9

2.2.1 Complex Ensemble and Test Tube Ensembles 9
2.2.2 Loop-Based Free Energy Model . 10
2.2.3 Coaxial and Dangle Stacking Subensembles within Complex Ensembles . . 11
2.2.4 Symmetry Correction . 13
2.2.5 Free Energy Parameters . 13

2.3 Algorithms . 13
2.3.1 Physical Quantities . 13
2.3.2 Existing Dynamic Programs . 17
2.3.3 Unified Dynamic Programming Framework 18
2.3.4 Recursions for the Complex Ensemble with Coaxial and Dangle Stacking . 19
2.3.5 Evaluation Algebras for Partition Function, Minimum Free Energy, and

Ensemble Size . 19
2.3.6 Overflow-Safe Evaluation Algebra for Large Partition Function Calculations. 20
2.3.7 Efficient Blockwise Dynamic Programs over Subcomplexes Using Caching

and Vectorization . 21
2.3.8 Enhanced Efficiency and Robustness of the Partition Function Algorithm

for Complex Ensembles Including Very Large Complexes 22
2.3.9 Enhanced Efficiency of the Partition Function Algorithm for Sets of Com-

plexes in Test Tube Ensembles . 23
2.3.10 Backtrack-Free Base-Pairing Probability Matrices 24
2.3.11 Evaluation Algebras and Backtracking Operation Orders for Simultaneous

Structure Sampling, MFE Structure Determination, and Suboptimal Struc-
ture Determination . 25

2.4 Conclusions . 27
2.5 Methods Summary . 27

2.5.1 Implementation. 27
2.5.2 Trials . 28

2.6 Resources . 28
2.6.1 NUPACK Source Code . 28

viii

2.6.2 NUPACK Python Module . 28
2.6.3 Support . 28

2.7 Author Information . 28
2.8 Acknowledgments . 28

Bibliography . 30
Chapter III: Constrained Multistate Sequence Design for Nucleic Acid Reaction Pathway

Engineering . 33
3.1 Introduction . 34
3.2 Design Formulation . 35

3.2.1 Reaction Pathway Specification . 35
3.2.2 Multistate Test Tube Design Ensemble . 35
3.2.3 Specification of Target Test Tubes . 36
3.2.4 Design Objective Function . 41
3.2.5 Sequence Constraints . 44
3.2.6 Constrained Multistate Test Tube Design Problem 45

3.3 Methods . 45
3.3.1 Algorithm Overview . 45
3.3.2 Implementation . 47
3.3.3 Sequence Design Trials . 47

3.4 Results . 47
3.4.1 Reaction Pathway Engineering Case Studies 47
3.4.2 Algorithm Performance for Constrained Multistate Test Tube Design 48
3.4.3 Importance of Negative Design in Reducing Crosstalk 49
3.4.4 Effect of Sequence Constraints . 49
3.4.5 Robustness of Predictions to Model Perturbations 50

3.5 Discussion . 50
3.5.1 Complex Design . 51
3.5.2 Multistate Complex Design . 52
3.5.3 Test Tube Design . 52
3.5.4 Multistate Test Tube Design . 54

3.6 Conclusions . 54
3.7 Associated Content . 56
3.8 Author Information . 56
3.9 Acknowledgments . 56

Bibliography . 57
Chapter IV: Next-Generation Sequence Design for Nucleic Acid Reaction Pathway Engineer-

ing: Enhanced Models, Flexibility, and Speed . 62
4.1 Introduction . 62
4.2 Formulation . 63

4.2.1 Ensemble . 63
4.2.2 Multiobjective Optimization Problem Formulation 63
4.2.3 Hard Constraints . 64
4.2.4 Soft Constraints . 65

4.3 Algorithm . 70
4.3.1 Thermodynamics Backend . 71
4.3.2 Constraint Satisfaction Problem Solver 71
4.3.3 Hierarchical Ensemble Decomposition . 73
4.3.4 Modifications to the Hierarchical Ensemble Decomposition Procedure . . . 78

ix

4.3.5 Leaf Optimization . 82
4.3.6 Merging and Redecomposing . 83
4.3.7 Full Ensemble Evaluation . 83
4.3.8 Defect Weights . 84

4.4 Results and Discussion . 84
4.4.1 Trials . 84
4.4.2 Model and Recursions Used . 84
4.4.3 Hierarchical Ensemble Decomposition Performance Comparison 84
4.4.4 Constraint Satisfaction Solver Performance 88
4.4.5 Complex Design Performance . 91
4.4.6 Test Tube Design Performance . 97
4.4.7 Reaction Pathway Case Studies . 98
4.4.8 Orthogonal Reaction Pathway Design . 98
4.4.9 Reaction Pathway Design with Hard Constraints 98
4.4.10 Reaction Pathway Design with Hard and Soft Constraints 102
4.4.11 Importance of Negative Design in Reducing Crosstalk 106
4.4.12 Implementation . 108

4.5 Future Directions . 108
4.6 Conclusion . 109

Bibliography . 111
Appendix A: A Unified Dynamic Programming Framework for The Analysis of Interacting

Nucleic Acid Strands: Supplementary Information . 114
A.1 Additional model details . 114

A.1.1 Strand association penalty . 114
A.1.2 Salt corrections for DNA complexes . 114
A.1.3 Temperature dependence . 116
A.1.4 Treatment of constant free energy terms for calculations on complex ensem-

bles . 116
A.2 Recursion diagrams and equations overview . 117

A.2.1 Recursions across intrastrand and interstrand blocks 117
A.2.2 Recursion conventions . 118

A.3 Recursions excluding coaxial stacking and dangles 119
A.3.1 Intrastrand dynamic programming recursions 119
A.3.2 Interstrand dynamic programming recursions 123
A.3.3 Recursion contributions for interior loop contributions 129

A.4 Recursions including coaxial stacking and dangles 134
A.4.1 Intrastrand dynamic programming recursions 134
A.4.2 Interstrand dynamic programming recursions 143

A.5 Evaluation algebras for each physical quantity . 153
A.5.1 Evaluation algebras for scalar outputs . 154
A.5.2 Evaluation algebras for structure generation 157

A.6 Operation orders for each physical quantity . 162
A.6.1 A partial order on recursion elements . 162
A.6.2 Partition function, structure count, and MFE 163
A.6.3 Overflow-safe partition function . 166
A.6.4 Pair probability matrix . 167
A.6.5 Sampled structure generation . 169
A.6.6 Suboptimal structure generation . 173

x

A.7 Distinguishability Issues . 175
A.7.1 Partition function . 175
A.7.2 Equilibrium secondary structure probability 178
A.7.3 Equilibrium base-pairing probabilities 178
A.7.4 Structure sampling . 179
A.7.5 Equilibrium complex concentrations . 180
A.7.6 Ensemble pair fractions . 180
A.7.7 MFE free energy and secondary structure 181

A.8 Additional studies . 184
A.8.1 Empirical dependence of ensemble size on complex size 184
A.8.2 Empirical dependence of partition function on complex size 184
A.8.3 Relative cost of partition function, pair probability, and MFE calculations . 185
A.8.4 Robustness and speed of partition function calculations with different data

types . 186
A.8.5 Performance of simultaneous vs serial structure sampling 186
A.8.6 Different approaches for approximating the MFE structure 192

A.9 Validation test suite . 194
A.9.1 Exhaustive enumeration algorithms . 194
A.9.2 Unit tests . 198
A.9.3 Regression tests . 199

Bibliography . 201
Appendix B: Constrained Multistate Sequence Design for Nucleic Acid Reaction Pathway

Engineering: Supplementary Information . 203
B.1 Algorithm . 203

B.1.1 Secondary Structure Model . 203
B.1.2 Analyzing Equilibrium Base-Pairing in the Multistate Test Tube Ensemble . 204
B.1.3 Test Tube Ensemble Focusing . 205
B.1.4 Hierarchical Ensemble Decomposition 205
B.1.5 Efficient Estimation of Test Tube Ensemble Properties 206
B.1.6 Adjusting Design Priorities using Defect Weights 208
B.1.7 Sequence Optimization at the Leaves of the Decomposition Forest 208
B.1.8 Subsequence Merging, Redecomposition, and Reoptimization 210
B.1.9 Test Tube Evaluation, Refocusing, and Reoptimization 211
B.1.10 Hierarchical Ensemble Decomposition Using Multiple Exclusive Split-Points 211
B.1.11 Generation of Feasible Sequences . 212
B.1.12 Pseudocode . 216
B.1.13 Default Algorithm Parameters . 217

B.2 Engineering Case Studies . 218
B.2.1 Reaction Pathways . 218
B.2.2 Algorithm Performance . 238
B.2.3 Residual Defects . 240
B.2.4 Importance of Negative Design in Reducing Crosstalk 246
B.2.5 Effect of Sequence Constraints . 247
B.2.6 Robustness of Predictions to Model Perturbations 252

B.3 Additional Design Studies . 253
B.3.1 Performance for Test Tube Design . 253
B.3.2 Performance for Complex Design . 255

Bibliography . 256

xi

Appendix C: Design Visualization Utilities . 260
C.1 Realtime Design Trajectory Visualization . 260
C.2 Interactive Design Results Visualization . 262
C.3 Hierarchical Decomposition Visualization . 269

Bibliography . 272

xii

List of Figures

Number Page
2.1 Complex and test tube ensembles . 9
2.2 Loop-based free energy model for a complex . 11
2.3 Coaxial and dangle stacking states for multiloops and exterior loops 12
2.4 Partition function dynamic program recursion diagrams and recursion equations . . 15
2.5 Operation order for partition function dynamic program over a complex ensemble

with N nucleotides . 16
2.6 Unified dynamic programming framework . 18
2.7 Representative recursion diagrams and equations including coaxial and dangle stacking 18
2.8 Blockwise operation order for dynamic programs operating on complex and test tube

ensembles . 21
2.9 Conceptual interplay between three dynamic program ingredients 22

2.10 Enhanced efficiency and robustness for partition function calculations on complex
ensembles including very large complexes . 23

2.11 Enhanced efficiency of the partition function algorithm for sets of complexes in test
tube ensembles . 23

2.12 Equilibrium test tube analysis in under 1 minute 24
2.13 Backtrack-free calculation of the equilibrium base-pairing probability matrix 25
2.14 Enhanced efficiency for sampling multiple structures through simultaneous sampling 26
3.1 Reaction pathway for conditional Dicer substrate formation via shape and sequence

transduction with small conditional RNAs (scRNAs) 35
3.2 Target test tubes for conditional Dicer substrate formation via shape and sequence

transduction with scRNAs . 41
3.3 Algorithm performance for simultaneous design of 1, 2, 4, or 8 orthogonal systems . 46
3.4 Importance of negative design in reducing crosstalk 48
3.5 Algorithm performance including explicit sequence constraints 49
3.6 Robustness of design quality assessments to perturbations in model parameters . . . 50
4.1 Single and multiple split-point ensemble decomposition with flanking base pairs . . 74
4.2 Single split-point ensemble decomposition along a base pair 79
4.3 Comparison between decomposition efficiency for 3.2 and 4.0 methods 86
4.4 Example efficient decomposition of 3200 nt structure 87
4.5 Example inefficient decomposition of 3200 nt structure 89
4.6 Scaling of mutation cost with size of sequence for both in-house and hybrid CSP solvers 90
4.7 Engineered complex design performance . 92
4.8 CSP solving effects on complex design including composition constraints 94

xiii

4.9 CSP solving effects on complex design including pattern constraints 96
4.10 Performance of 4.0 design algorithm on engineered test tube design 97
4.11 Multiobjective reaction pathway design performance for 1, 2, 4, or 8 orthogonal systems 99
4.12 Algorithm statistics for orthogonal reaction pathway design 100
4.13 Reaction pathway design performance with hard sequence constraints 101
4.14 Algorithm statistics for reaction pathway design with hard constraints 103
4.15 Multiobjective reaction pathway design performance with hard and soft sequence

constraints . 104
4.16 Algorithm statistics for reaction pathway design with hard and soft constraints . . . 105
4.17 Toehold structure free energy equalization . 106
4.18 Importance of designing against off-targets . 107
A.1 Blockwise approach to intrastrand and interstrand recursions 117
A.2 Intrastrand R∅ recursion without coaxial and dangle stacking 120
A.3 Intrastrand Rs recursion without coaxial and dangle stacking 120
A.4 Intrastrand Rb recursion without coaxial and dangle stacking 121
A.5 Intrastrand Rms recursion without coaxial and dangle stacking 122
A.6 Intrastrand Rm recursion without coaxial and dangle stacking 123
A.7 Interstrand R∅ recursion without coaxial and dangle stacking 125
A.8 Interstrand Rs recursion without coaxial and dangle stacking 125
A.9 Interstrand Rb recursion without coaxial and dangle stacking 127

A.10 Interstrand Rms recursion without coaxial and dangle stacking 128
A.11 Interstrand Rm recursion without coaxial and dangle stacking 129
A.12 Intrastrand R recursion with coaxial and dangle stacking 135
A.13 Intrastrand Rs recursion with coaxial and dangle stacking 135
A.14 Intrastrand Rc recursion with coaxial and dangle stacking 136
A.15 Intrastrand Rcm recursion with coaxial and dangle stacking 137
A.16 Intrastrand Rcs recursion with coaxial and dangle stacking 138
A.17 Intrastrand Rb recursion with coaxial and dangle stacking 139
A.18 Intrastrand Rcss recursion with coaxial and dangle stacking 141
A.19 Intrastrand Rcbs recursion with coaxial and dangle stacking 142
A.20 Intrastrand Rm recursion with coaxial and dangle stacking 142
A.21 Interstrand R recursion with coaxial and dangle stacking 143
A.22 Interstrand Rs recursion with coaxial and dangle stacking 144
A.23 Interstrand Rc recursion with coaxial and dangle stacking 145
A.24 Interstrand Rcm recursion with coaxial and dangle stacking 146
A.25 Interstrand Rcs recursion with coaxial and dangle stacking 146
A.26 Interstrand Rb recursion with coaxial and dangle stacking 147
A.27 Interstrand Rn recursion with coaxial and dangle stacking 151
A.28 Interstrand Rcss recursion with coaxial and dangle stacking 152

xiv

A.29 Interstrand Rcbs recursion with coaxial and dangle stacking 152
A.30 Interstrand Rm recursion with coaxial and dangle stacking 153
A.31 Blockwise operation order . 162
A.32 Illustration of multisampling operation order . 169
A.33 Example secondary structures and polymer graphs for a complex with strand ordering

π =AAAA . 176
A.34 Calculated ensemble sizes for random sequences. 184
A.35 Calculated log partition functions for random complexes and engineered duplexes. . 185
A.36 Comparison of partition function, MFE and pair probabilities algorithm costs 186
A.37 Comparison of partition function computation times vs the underlying precision used 186
A.38 Sampling computation times for random complexes 187
A.39 Mean sampling times for random complexes vs N 187
A.40 Mean sampling times for random complexes vs J 188
A.41 Sampling computation times for designed complexes 189
A.42 Mean sampling times for designed complexes vs N 189
A.43 Mean sampling times for designed complexes vs J 190
A.44 Suboptimal structure measurements . 193
B.1 Reaction pathway for conditional self-assembly via hybridization chain reaction (HCR)218
B.2 Reaction pathway for Boolean logic AND using toehold sequestration gates 219
B.3 Reaction pathway for self-assembly of a 3-arm junction via catalytic hairpin assembly

(CHA) . 220
B.4 Reaction pathway for Boolean logic AND using a cooperative hybridization gate . . 221
B.5 Reaction pathway for conditional Dicer substrate formation via shape and sequence

transduction with small conditional RNAs (scRNAs) 222
B.6 Target test tubes for conditional self-assembly via HCR 225
B.7 Target test tubes for Boolean logic AND using toehold sequestration gates 228
B.8 Target test tubes for self-assembly of a 3-arm junction via CHA. 231
B.9 Target test tubes for Boolean logic AND using a cooperative hybridization gate . . . 234
B.10 Target test tubes for conditional Dicer substrate formation via shape and sequence

transduction with scRNAs . 237
B.11 Algorithm performance for design of 1, 2, 4, or 8 orthogonal systems 238
B.12 Reduced design cost and quality using fstop = 0.05 instead of fstop = 0.02 239
B.13 Residual defects for conditional self-assembly via HCR 241
B.14 Residual defects for Boolean logic AND using toehold sequestration gates 242
B.15 Residual defects for self-assembly of a 3-arm junction via CHA 243
B.16 Residual defects for Boolean logic AND using a cooperative hybridization gate . . . 244
B.17 Residual defects for conditional Dicer substrate formation via shape and sequence

transduction with scRNAs . 245
B.18 Importance of negative design in reducing crosstalk 246

xv

B.19 Algorithm performance including explicit sequence constraints 247
B.20 Robustness of design quality predictions to perturbations in model parameters . . . 252
B.21 Algorithm performance for test tube design on the engineered test set 254
B.22 Algorithm performance for test tube design on the random test set 254
B.23 Algorithm performance for complex design using on-target structures from the engi-

neered test set . 255
B.24 Algorithm performance for complex design using on-target structures from the ran-

dom test set . 255
C.1 Design trajectory visualization . 261
C.2 Linear scale test tube residuals . 262
C.3 Logarithmic scale test tube residuals . 263
C.4 Linear scale on-target residuals in a test tube and concentration histogram 265
C.5 Logarithmic scale on-target residuals in a test tube and concentration histogram . . . 266
C.6 Linear scale on-target ensemble defects and normalized ensemble defects 267
C.7 Logarithmic scale on-target ensemble defects and normalized ensemble defects . . . 268
C.8 An efficient decomposition of a 1600 nt structure 270
C.9 An inefficient decomposition of a 1600 nt structure 271

xvi

List of Tables

Number Page
2.1 Algorithmic ingredients for calculating diverse physical quantities 17
2.2 Evaluation algebras for dynamic programming algorithms 19
3.1 Sequence Constraints. 43
3.2 Reaction pathway engineering case studies. 45
3.3 Nucleic acid sequence design ensembles. 51
3.4 Nucleic acid sequence design paradigms. 53
A.1 Bivariate least-squares linear regression of sampling complexity 190
A.2 Univariate least-squares linear regression of sampling complexity in J 191
A.3 Univariate least-squares linear regression of sampling complexity in N 192
B.1 IUPAC degenerate nucleotide codes . 213
B.2 Default algorithm parameters for constrained multistate test tube ensemble defect

optimization . 217
B.3 Window constraints for each reaction pathway . 251

xvii

List of Algorithms

A.1 Generalized dot product over multiple equal length vectors 119
A.2 Enumerate valid positions for vectorization in interstrand blocks 124
A.3 Check nucleotides stride from first to last strand 143
A.4 Blockwise operation order over subcomplexes . 164
A.5 Operation order for single stranded blocks . 165
A.6 Operation order for multistranded blocks . 165
A.7 Operation order for backtrack-free pair probabilities. 168
A.8 Secondary structure enumeration for sequence . 195
A.9 Stacking state enumeration for given structure . 196
A.10 Stacking state enumeration for given loop . 197
A.11 Coaxial stacking state enumeration for given loop 197
A.12 Stacking state enumeration for given loop and coaxial stacking state 198
A.13 Stacking state enumeration for sequence . 198
B.1 Pseudocode for constrained multistate test tube ensemble defect optimization . . . 216

1

C h a p t e r 1

Introduction

As a class of programmablemolecularmaterials, nucleic acids have long interested both bioengineers
and computer scientists with their promise of computing in solution. Cross-pollination between
these fields produced the interdisciplinary subfield of molecular programming, which seeks to
provide architectures and interfaces for embedding software in biology and chemistry. Molecular
programs introduced to a cellular environment can modulate, co-opt, and integrate diverse cellular
pathways. Forays in this area have produced actuators1,2, logic gates (based on strand displacement3

or cooperative hybridization4), signal transduction in biological contexts5,6, and fluorescent-imaging
signal amplification via hybridization chain reaction for use in situ7–9. These engineered systems
rely on relatively small numbers of component strands (fewer than 10, and frequently fewer than 4)
in their target reaction pathways, and each of these components is typically small (fewer than 100
nucleotides). Other work has pushed the size boundaries by looking at biologically-sized structures
(hundreds to thousands of nucleotides), such as DNA origami10 and cotranscriptionally-folded RNA
origami11, or constructing reaction pathways with large numbers of components (130 strands for a
square-root gate based on the see-saw motif12 or 168 toehold-switches13). With each past success
spurring on increasingly ambitious projects, demand has increased for performant and accurate
algorithms and software tools for analyzing and designing nucleic acid systems.

The development of algorithms for the analysis of thermodynamic properties of nucleic acids has
spanned nearly four decades of research. We focus on algorithms using the nearest-neighbor energy
model, which assigns free energies to a secondary structure by decomposing the structure into its
component loops, each of which has a free energy functional form in the model (Chapter 2). The
first of these algorithms used a dynamic programming algorithm to compute the minimum free
energy (MFE) and MFE structure of a single strand of RNA14. Another dynamic programming
algorithm, using a set of recursions that encounter each subsequence contribution uniquely, allowed
computation of the partition function and base pairing probabilities of a single strand of RNA15.
This type of dynamic program was extended to compute partition functions of complexes of two
interacting strands, excluding intrastrand base pairs16. These partition functions could then be used
to determine the equilibrium concentration of monomer and dimer species, assuming complexes of
3 or more strands do not form. The restriction to interstrand base pairs was lifted in later algorithm
development17. The algorithms for computing MFE structures were then extended to complexes of
two or more interacting strands18. Most recently, dynamic programming algorithms were developed
to compute the partition function, base pairing probabilities, and MFE for the unpseudoknotted
complex ensemble consisting of arbitrary numbers of interacting strands19. This was paired with a
convex optimization algorithm to solve the coupled equilibria problem necessary to determine the
partitioning of strands into complexes in a test tube ensemble. Together, this allows the analysis

2

of concentration and base pairing properties of a test tube containing arbitrary concentrations of
arbitrary types of strands forming arbitrary complexes19.

The majority of work on nucleic acid design has focused on designing single nucleic acid complexes
to adopt a target secondary structure20–39. These algorithms can be roughly classified by their
energy models and objective functions. The first design algorithms developed involved the non-
thermodynamic objective function of sequence symmetry minimization20,21. This objective function
performs pure negative design by minimizing the number of off-target binding sites above a certain
size within a complex. By far, the largest number of algorithms have focused on the MFE structure
of a complex22–26,28–33,35,36. Generally, two possible objective functions are possible: minimization
of the energy of the target structure, a form of positive design, and minimization of the base pair
hamming distance from the MFE structure to the target structure, a form of negative design. There
have been other complex design algorithms that used the thermodynamic energy model to consider
the properties of the ensemble of sequences consistent with a given target structure rather than
iteratively considering the structural ensemble of single sequences27,34. Finally the complex design
algorithms from our lab37–39 have focused on minimizing the ensemble defect, or average number of
unpaired bases over the Boltzmann weighted ensemble of structures. This approach simultaneously
implements a positive and negative design paradigm. Design efficiency is enhanced through the
process of hierarchical ensemble decomposition, allowing the bulk of the optimization to happen on
small segments of structures before evaluating the costly objective function in full40. This has been
extended to the simultaneous design of multiple complexes which share sequence information in
order to facilitate reaction pathway engineering41. Effective complex design ensures that given that
individual strands associate into a complex, the target structure will be well-formed as determined
by whatever objective function metric was used for design. Regardless of objective function, this is a
necessary but insufficient condition to ensure that complex forms well in experimental dilute solution
conditions. This is because the partitioning of strand species amongst complex species is determined
by the relative free energies of the complexes, a scalar quantity which sums over the intracomplex
secondary structure states19. As such, to ensure sequences form at the correct concentration in the
correct target structure in a test tube ensemble, the test tube design algorithm42 explicitly accounts
for and designs against the formation of off-target complexes that, by conservation of mass, lead to
deficiencies in on-target concentration while simultaneously reducing the complex ensemble defect.
This allows minimization of the average concentration of incorrectly paired nucleotides over the
ensemble of the target test tube, or test tube ensemble defect.

The work in this thesis continues these two lines of algorithm development. Chapter 2 introduces
a new tripartite framework composed of recursions, evaluation algebras, and operations orders that
unifies computation of thermodynamic quantities; the implementation allows for orders ofmagnitude
increases in performance, computation over the complex and test tube ensembles including coaxial
and dangle stacking states, and robustness to floating point overflow. In Chapter 3, we introduce an
algorithm for simultaneous sequence design of multiple test tube ensembles through minimization
of the multistate test tube ensemble defect subject to diverse user-specified hard sequence constraints

3

in the service of reaction pathway engineering. Finally, the algorithm of Chapter 4 extends the
algorithm of Chapter 3 by building on top of the framework for Chapter 2 and by adding soft
constraints, which increase flexibility through new constraint types and improve performance for
design of highly constrained reaction pathways. Taken together, the algorithms of Chapters 2 and 4
represent NUPACK 4.0, the next generation of software tools for the design and analysis of nucleic
acid systems and reaction pathways.

4

Bibliography

[1] B. Yurke, A. J. Turberfield, A. P. Mills Jr, F. C. Simmel, and J. L. Neumann. “A DNA-fuelled
molecular machine made of DNA”. In: Nature 406.6796 (2000), p. 605.

[2] P. Yin, H. M. T. Choi, C. R. Calvert, and N. A. Pierce. “Programming biomolecular self-
assembly pathways.” In: Nature 451.7176 (2008), pp. 318–322. issn: 0028-0836. doi: 10.
1038/nature06451.

[3] G. Seelig, D. Soloveichik, D. Y. Zhang, and E. Winfree. “Enzyme-free nucleic acid logic
circuits.” In: Science (New York, N.Y.) 314.5805 (2006), pp. 1585–1588. issn: 0036-8075.
doi: 10.1126/science.1132493.

[4] D. Y. Zhang. “Cooperative hybridization of oligonucleotides”. In: Journal of the American
Chemical Society 133.4 (2011), pp. 1077–1086. issn: 00027863. doi: 10.1021/ja109089q.

[5] L. M. Hochrein, M. Schwarzkopf, M. Shahgholi, P. Yin, and N. a. Pierce. “Conditional Dicer
substrate formation via shape and sequence transduction with small conditional RNAs”. In:
Journal of the American Chemical Society 135.46 (2013), pp. 17322–17330. issn: 00027863.
doi: 10.1021/ja404676x.

[6] M. H. Hanewich-Hollatz, Z. Chen, L. M. Hochrein, J. Huang, and N. A. Pierce. “Conditional
Guide RNAs: Programmable Conditional Regulation of CRISPR/Cas Function in Bacterial
and Mammalian Cells via Dynamic RNA Nanotechnology”. In: ACS Central Science (2019).

[7] R. M. Dirks and N. A. Pierce. “Triggered amplification by hybridization chain reaction.” In:
Proceedings of the National Academy of Sciences of the United States of America 101.43
(2004), pp. 15275–15278. issn: 0027-8424. doi: 10.1073/pnas.0407024101.

[8] H. M. T. Choi, J. Y. Chang, L. a. Trinh, J. E. Padilla, S. E. Fraser, and N. A. Pierce.
“Programmable in situ amplification for multiplexed imaging of mRNA expression.” In:
Nature biotechnology 28.11 (2010), pp. 1208–1212. issn: 1087-0156. doi: 10.1038/nbt.
1692.

[9] H. M. T. Choi, V. a. Beck, and N. A. Pierce. “Next-generation in situ hybridization chain
reaction: Higher gain, lower cost, greater durability”. In: ACS Nano 8.5 (2014), pp. 4284–
4294. issn: 1936086X. doi: 10.1021/nn405717p.

[10] P. W. Rothemund. “Folding DNA to create nanoscale shapes and patterns”. In: Nature
440.7082 (2006), p. 297.

[11] C. Geary, P. W. K. Rothemund, and E. S. Andersen. “A single-stranded architecture for
cotranscriptional folding of RNA nanostructures”. In: Science 345.6198 (2014), pp. 799–804.
issn: 0036-8075. doi: 10.1126/science.1253920. url: http://www.sciencemag.
org/content/345/6198/799.short.

[12] L. Qian andE.Winfree. “Scaling up digital circuit computationwithDNA strand displacement
cascades”. In: Science 332.June (2011), pp. 1196–1201.

[13] A. A. Green, P. A. Silver, J. J. Collins, and P. Yin. “Toehold switches: de-novo-designed
regulators of gene expression”. In: Cell 159.4 (2014), pp. 925–939.

https://doi.org/10.1038/nature06451
https://doi.org/10.1038/nature06451
https://doi.org/10.1126/science.1132493
https://doi.org/10.1021/ja109089q
https://doi.org/10.1021/ja404676x
https://doi.org/10.1073/pnas.0407024101
https://doi.org/10.1038/nbt.1692
https://doi.org/10.1038/nbt.1692
https://doi.org/10.1021/nn405717p
https://doi.org/10.1126/science.1253920
http://www.sciencemag.org/content/345/6198/799.short
http://www.sciencemag.org/content/345/6198/799.short

5

[14] M. Zuker and P. Stiegler. “Optimal computer folding of large RNA sequences using thermo-
dynamics and auxiliary information”. In: Nucleic Acids Research 9.1 (1981), pp. 133–148.
issn: 03051048. doi: 10.1093/nar/9.1.133.

[15] J. McCaskill. “The equilibrium partition function and base pair binding probabilities for RNA
secondary structure”. In: Biopolymers 29 (1990), pp. 1105–1119.

[16] R. Dimitrov and M. Zuker. “Prediction of hybridization and melting for double-stranded
nucleic acids”. In: Biophys. J. 87.1 (2004), pp. 215–226.

[17] S. Bernhart, H. Tafer, U. Muckstein, C. Flamm, P. Stadler, and I. Hofacker. “Partition function
and base pairing probabilities of RNA heterodimers”. In: Algorithms Mol. Biol. 1.3 (2006).

[18] M. Andronescu, Z. Zhang, and A. Condon. “Secondary structure prediction of interacting
RNA molecules”. In: J. Mol. Biol. 345 (2005), pp. 987–1001.

[19] R. M. Dirks, J. S. Bois, J. M. Schaeffer, E. Winfree, and N. A. Pierce. “Thermodynamic
Analysis of Interacting Nucleic Acid Strands”. In: SIAM Rev. 49.1 (2007), pp. 65–88.

[20] N. Seeman and N. Kallenbach. “Design of immobile nucleic acid junctions”. In: Biophys-
ical Journal 44.2 (Nov. 1983), pp. 201–209. issn: 00063495. doi: 10 . 1016 / S0006 -
3495(83)84292- 1. url: https://linkinghub.elsevier.com/retrieve/pii/
S0006349583842921.

[21] N. C. Seeman. “De novo design of sequences for nucleic acid structural engineering”. In:
Journal of Biomolecular Structure and Dynamics 8.3 (1990), pp. 573–581. issn: 15380254.
doi: 10.1080/07391102.1990.10507829.

[22] I. Hofacker, W. Fontana, P. Stadler, L. Bonhoeffer, M. Tacker, and P. Schuster. “Fast folding
and comparison of RNA secondary structures”. In: Chem. Mon. 125 (1994), pp. 167–188.

[23] C. Flamm, I. Hofacker, S. Maurer-Stroh, P. Stadler, and M. Zehl. “Design of multistable RNA
molecules”. In: RNA 7 (2001), pp. 254–265.

[24] M. Andronescu, A. Fejes, F. Hutter, H. Hoos, and A. Condon. “A new algorithm for RNA
secondary structure design”. In: J. Mol. Biol. 336.3 (2004), pp. 607–624.

[25] A. Busch and R. Backofen. “INFO-RNA–a fast approach to inverse RNA folding”. In: Bioin-
formatics 22.15 (2006), pp. 1823–1831.

[26] R. Aguirre-Hernández, H. Hoos, and A. Condon. “Computational RNA secondary structure
design: empirical complexity and improved methods”. In: BMC Bioinformatics 8 (2007),
Article 34.

[27] B. Burghardt and A. Hartmann. “RNA secondary structure design”. In: Phys. Rev. E 75
(2007), p. 021920.

[28] J. Z. M. Gao, L. Y. M. Li, and C. M. Reidys. “Inverse folding of RNA pseudoknot structures”.
In: Algorithms Mol. Biol. 5 (2010), p. 27.

[29] W. J. Shu, M. Liu, H. B. Chen, X. C. Bo, and S. Q. Wang. “ARDesigner: A web-based system
for allosteric RNA design”. In: J. Biotechnol. 150.4 (2010), pp. 466–473.

[30] A. Avihoo, A. Churkin, and D. Barash. “RNAexinv: An extended inverse RNA folding from
shape and physical attributes to sequences”. In: BMC Bioinformatics 12 (2011), p. 319.

https://doi.org/10.1093/nar/9.1.133
https://doi.org/10.1016/S0006-3495(83)84292-1
https://doi.org/10.1016/S0006-3495(83)84292-1
https://linkinghub.elsevier.com/retrieve/pii/S0006349583842921
https://linkinghub.elsevier.com/retrieve/pii/S0006349583842921
https://doi.org/10.1080/07391102.1990.10507829

6

[31] E. I. Ramlan and K. P. Zauner. “Design of interacting multi-stable nucleic acids for molecular
information processing”. In: Biosystems 105.1 (2011), pp. 14–24.

[32] A. Taneda. “MODENA: a multi-objective RNA inverse folding”. In: Adv. Appl. Bioinforma.
Chem. 4 (2011), pp. 1–12.

[33] A. Levin, M. Lis, Y. Ponty, C. W. O’Donnell, S. Devadas, B. Berger, and J. Waldispühl. “A
global sampling approach to designing and reengineering RNA secondary structures”. In:
Nucleic Acids Res. 40.20 (2012), pp. 10041–10052.

[34] M.C.Matthies, S. Bienert, andA. E. Torda. “Dynamics in Sequence Space forRNASecondary
Structure Design”. In: J. Chem. Theory Comput. 8.10 (2012), pp. 3663–3670.

[35] A. Taneda. “Multi-objective genetic algorithm for pseudoknotted RNA sequence design”. In:
Front. Genet. 3 (2012), p. 36.

[36] R.B. Lyngsø, J.W. J.Anderson, E. Sizikova,A.Badugu, T.Hyland, and J.Hein. “Frnakenstein:
multiple target inverse RNA folding”. In: BMC Bioinformatics 13 (2012), p. 260.

[37] R. M. Dirks and N. A. Pierce. “A partition function algorithm for nucleic acid secondary
structure including pseudoknots”. In: Journal of Computational Chemistry 24.13 (2003),
pp. 1664–1677. issn: 01928651. doi: 10.1002/jcc.10296.

[38] R. M. Dirks, M. Lin, E. Winfree, and N. A. Pierce. “Paradigms for computational nucleic
acid design”. In: Nucleic Acids Research 32.4 (2004), pp. 1392–1403. issn: 03051048. doi:
10.1093/nar/gkh291.

[39] J. N. Zadeh, B. R. Wolfe, and N. A. Pierce. “Nucleic acid sequence design via efficient
ensemble defect optimization”. In: Journal of Computational Chemistry 32.3 (2011), pp. 439–
452. doi: 10.1002/jcc.21633. eprint: https://onlinelibrary.wiley.com/doi/
pdf/10.1002/jcc.21633. url: https://onlinelibrary.wiley.com/doi/abs/10.
1002/jcc.21633.

[40] J. N. Zadeh, C. D. Steenberg, J. S. Bois, B. R. Wolfe, M. B. Pierce, A. R. Khan, R. M. Dirks,
and N. A. Pierce. “NUPACK: Analysis and design of nucleic acid systems”. In: Journal of
Computational Chemistry 32.1 (Jan. 2011), pp. 170–173. issn: 01928651. doi: 10.1002/
jcc.21596. arXiv: NIHMS150003. url: http://doi.wiley.com/10.1002/jcc.21596.

[41] J. N. Zadeh. “Algorithms for Nucleic Acid Sequence Design”. PhD thesis. 2010.

[42] B. R. Wolfe and N. A. Pierce. “Sequence Design for a Test Tube of Interacting Nucleic Acid
Strands”. In: ACS Synthetic Biology (2014), p. 141020092749006. issn: 2161-5063. doi: 10.
1021/sb5002196. url: http://pubs.acs.org/doi/pdfplus/10.1021/sb5002196.

https://doi.org/10.1002/jcc.10296
https://doi.org/10.1093/nar/gkh291
https://doi.org/10.1002/jcc.21633
https://onlinelibrary.wiley.com/doi/pdf/10.1002/jcc.21633
https://onlinelibrary.wiley.com/doi/pdf/10.1002/jcc.21633
https://onlinelibrary.wiley.com/doi/abs/10.1002/jcc.21633
https://onlinelibrary.wiley.com/doi/abs/10.1002/jcc.21633
https://doi.org/10.1002/jcc.21596
https://doi.org/10.1002/jcc.21596
https://arxiv.org/abs/NIHMS150003
http://doi.wiley.com/10.1002/jcc.21596
https://doi.org/10.1021/sb5002196
https://doi.org/10.1021/sb5002196
http://pubs.acs.org/doi/pdfplus/10.1021/sb5002196

7

C h a p t e r 2

A Unified Dynamic Programming Framework for The Analysis of Interacting Nucleic
Acid Strands: Enhanced Models, Robustness, and Speed

This chapter was adapted from material in M. E. Fornace∗, N. J. Porubsky∗ and N. A. Pierce. “A
Unified Dynamic Programming Framework for the Analysis of Interacting Nucleic Acid Strands:
Enhanced Models, Robustness, and Speed”. In: (2019, in preparation).

Complex ABC

A

B
C

Test tube

A B CStrands

BBC
BC AAA

ACB
BBB

CCCCA
CCB

ABC

AAC

AB A

BBABB

AABB
CC

CCA
AA

C

Complexes

NUPACK algorithms enable analysis of nucleic acid sequences over complex and test tube ensembles
containing arbitrary numbers of interacting strand species, serving the needs of researchers in
molecular programming, nucleic acid nanotechnology, synthetic biology, and across the life sciences.
Here, to enhance the underlying physical model, ensure robustness for large calculations, and
achieve dramatic speedups when calculating diverse physical quantities over complex and test tube
ensembles, we introduce a unified dynamic programming framework that combines three ingredients:
1) recursions that specify the dependencies between subproblems and incorporate the details of the
structural ensemble and the free energy model, 2) evaluation algebras that define the mathematical
form of each subproblem, 3) operation orders that specify the computational trajectory through the
dependency graph of subproblems. The physicalmodel is enhanced using new recursions that operate
over the complex ensemble including coaxial and dangle stacking subensembles. The recursions are
coded generically and then compiled with a quantity-specific evaluation algebra and operation order
to generate an executable for each physical quantity: partition function, equilibriumpair probabilities,
MFE energy, MFE structure(s), suboptimal structures, and Boltzmann sampled structures. For
large complexes (e.g., 30,000 nt), robustness is achieved for partition function calculations using
an overflow-safe evaluation algebra, and for equilibrium pair probabilities using a backtrack-free
operation order. A new blockwise operation order that treats subcomplex blocks for the complex
species in a test tube ensemble enables dramatic speedups (e.g., 20–120×) using vectorization
and caching. With these performance enhancements, equilibrium analysis of substantial test tube
ensembles can be performed in ≤ 1 minute on a single computational core (e.g., partition function
and equilibrium concentration for all complex species of up to 6 strands formed from 2 strand species

8

of 300 nt each, or for all complex species of up to 2 strands formed from 80 strand species of 100
nt each). A new sampling algorithm simultaneously samples multiple structures from the complex
ensemble to yield speedups of an order of magnitude or more as the number of structures increases
above ≈103. These advances are available within the NUPACK 4.0 code base (www.nupack.org)
which can be scripted using library calls to the all-new NUPACK Python module.

2.1 Introduction
NUPACK (Nucleic Acid Package) is a growing software suite for the analysis and design of nucleic
acid structures, devices, and systems1. Algorithms are formulated in terms of nucleic acid secondary
structure (i.e., the base pairs of a set of DNA or RNA strands), employing empirical free energy
models2–11. NUPACK algorithms are unique in treating complex and test tube ensembles containing
arbitrary numbers of interacting strand species, providing crucial tools for capturing concentration
effects essential to analyzing and designing the intermolecular interactions that are a hallmark of
molecular programming, nucleic acid nanotechnology, and synthetic biology.

Here, following 15 years of NUPACK algorithm development (NUPACK 1.0 to 3.2)1,12–18, we re-
considered every algorithm, arriving at a new unified dynamic programming framework that leads
to major improvements of five varieties:

• Elucidation: diverse physical quantities are calculated using dynamic programs each combin-
ing three ingredients: model-specific recursions, a quantity-specific evaluation algebra, and a
quantity-specific operation order.

• Model: new recursions capture the structural and energetic details of coaxial and dangle
stacking subensembles in the complex ensemble.

• Robustness: over-flow safe evaluation algebras and backtrack-free operation orders enable
robust partition function and pair probability calculations for large complexes.

• Speed: new blockwise operation orders yield dramatic speedups of 1–2 orders of magnitude
for equilibrium analysis of test tube ensembles.

• Brevity: use of a generic programming paradigm and compile-time polymorphism dramati-
cally reduce the size of the code base.

We begin by defining the underlying physical model, including definitions of the complex and test
tube structural ensembles, and specification of the free energy model for a complex ensemble includ-
ing coaxial and dangle stacking subensembles. We then describe the unified dynamic programming
framework, describing new recursions that capture the details of the enhanced physical model, and
new evaluation algebras and operation orders that enable calculation of diverse physical quantities
for complex and test tube ensembles of interacting DNA or RNA strands. The resulting suite of algo-
rithms comprise the all-new NUPACK 4.0 analysis code base19. Enhanced models, robustness, and

www.nupack.org

9

a b

c

d

e

f

D

E

D

E

Complex DEA

A

C

C

B

B

Complex ABC

A

B
C

Test tube

A B CStrands

BBC
BC AAA

ACB
BBB

CCCCA
CCB

ABC

AAC

AB A

BBABB

AABB
CC

CCA
AA

C

Complexes

Figure 2.1: Complex and test tube ensembles. (a) A connected unpseudoknotted secondary structure for complex with
strand ordering π = ABC. An arrowhead denotes the 3′ end of each strand. (b) Polymer graph representation of the same
secondary structure showing no crossing lines for strand ordering π = ABC. (c) Alternative strand ordering π = ACB
yields a polymer graph with crossing lines. (c) A pseudoknotted secondary structure with base pairs i · j and d ·e (with
i < d) that fail to satisfy the nesting property i < d < e < j, yielding crossing lines in the corresponding polymer graph
(e) for the sole strand ordering π = DE. (f) A test tube ensemble containing strand species Ψ0 = {A,B,C} interacting to
form all complex species Ψ of up to Lmax = 3 strands.

speed will benefit researchers in molecular programming, nucleic acid nanotechnology, synthetic
biology, and across the life sciences.

2.2 Physical Model
2.2.1 Complex Ensemble and Test Tube Ensembles
NUPACK algorithms operate over two fundamental ensembles:

• Complex ensemble: The ensemble of all (unpseudoknotted connected) secondary structures
for an arbitrary number of interacting DNA or RNA strands.

• Test tube ensemble: The ensemble of a dilute solution containing an arbitrary number of DNA
or RNA strand species (introduced at user-specified concentrations) interacting to form an
arbitrary number of complex species.

Furthermore, to enable reaction pathway engineering of dynamic hybridization cascades (e.g., shape
and sequence transduction using small conditional RNAs20) or large-scale structural engineering
including pseudoknots (e.g., RNA origamis21), NUPACK generalizes sequence analysis and design
to multi-complex and multi-tube ensembles18.

The sequence, φ, of one or more interacting RNA strands is specified as a list of bases φa ∈
{A,C,G,U} for a = 1, . . . , |φ|. (Throughout our presentation, the situation for DNA is analogous to
that for RNA, with T replacing U). A secondary structure, s, of one or more interacting RNA strands
is defined by a set of base pairs (each a Watson–Crick pair [A·U or C·G] or a wobble pair [G·U]). For
example, see the secondary structures of Figures 2.1ad.

10

For algorithmic purposes, it is convenient to describe secondary structures using a polymer graph
representation, constructed by ordering the strands around a circle, drawing the backbones in suc-
cession from 5′ to 3′ around the circumference with a nick between each strand, and drawing straight
lines connecting paired bases (Figure 2.2bc). A secondary structure is unpseudoknotted if there
exists a strand ordering for which the polymer graph has no crossing lines (Figure 2.2b), or pseu-
doknotted if all strand orderings contain crossing lines (e.g., the kissing loops of Figure 2.2de).
A secondary structure is connected if no subset of the strands is free of the others. Consider a
complex of L distinct strands (e.g., each with a unique identifier in {1, . . . , L}) corresponding to
strand ordering π. The complex ensemble Γ contains all connected polymer graphs with no crossing
lines for strand ordering π (i.e., all unpseudoknotted secondary structures)15. (We dispense with our
prior convention1,15,16 of calling this entity an ordered complex.)

As a matter of algorithmic necessity, all of the dynamic programs developed in the present work
operate on complex ensemble Γ treating all strands as distinct. However, in the laboratory, strands
with the same sequence are typically indistinguishable with respect to experimental observables.
Hence, for comparison to experimental data, physical quantities calculated over ensemble Γ can be
post-processed to obtain the corresponding quantities calculated over ensemble Γ in which strands
with the same sequence are treated as indistinguishable (see Section A.7 for details). The ensemble
Γ ⊆ Γ is a maximal subset of distinct secondary structures for strand ordering π. Two secondary
structures are indistinguishable if their polymer graphs can be rotated so that all strands are mapped
onto indistinguishable strands, all base pairs are mapped onto base pairs, and all unpaired bases are
mapped onto unpaired bases; otherwise the structures are distinct15.

A test tube ensemble is a dilute solution containing a set of strand species, Ψ0, introduced at user-
specified concentrations, that interact to form a set of complex species, Ψ, each corresponding to a
different strand ordering treating strands with the same sequence as indistinguishable. For L strands,
there are (L − 1)! strand orderings if all strands are different species (e.g., complexes ABC and ACB
for L = 3 and strands A, B, C), but fewer than (L − 1)! strand orderings if some strands are of the
same species (e.g., complex AAA for L = 3 for three A strands). By the Representation Theorem
of Dirks et al.15, a secondary structure in the complex ensemble for one strand ordering does not
appear in the complex ensemble for any other strand ordering. It is often convenient to define Ψ to
contain all complex species of up to Lmax strands (e.g., Figure 2.2f), although Ψ can be defined to
contain arbitrary complex species formed from strand species Ψ0.

2.2.2 Loop-Based Free Energy Model
For each (unpseudoknotted) secondary structure s ∈ Γ, the free energy, ∆G(φ, s), is estimated as
the sum of the empirically determined free energies of the constituent loops4–6,10,22,23 plus a strand
association penalty24, ∆Gassoc, applied L − 1 times for a complex of L strands:

∆G(φ, s) = (L − 1)∆Gassoc +
∑

loop∈s
∆G(loop). (2.1)

11

a b

hairpin stack bulge interior multi exterior

C

C

B

BA
A

Figure 2.2: Loop-based free energy model for a complex. (a) Canonical loop types for complex with strand ordering π =
ABC. (b) Equivalent polymer graph representation. An arrowhead denotes the 3′ end of each strand.

The secondary structure and polymer graph of Figure 2.2 illustrate the different loop types, with free
energies modeled as follows4–6,10,22,25:

• A hairpin loop is closed by a single base-pair i · j. The loop free energy, ∆Ghairpin
i, j , depends

on sequence and loop size.

• An interior loop is closed by two base pairs (i · j and d · e with i < d < e < j). The loop free
energy, ∆Ginterior

i,d,e, j
depends on sequence, loop size, and loop asymmetry. Bulge loops (where

either d = i+1 or e = j −1) and stacked pairs (where both d = i+1 and e = j −1) are treated
as special cases of interior loops.

• A multiloop is closed by three or more base pairs. The loop free energy is modeled as the sum
of three sequence-independent penalties: (1) ∆Gmulti

init for formation of a multiloop, (2) ∆Gmulti
bp

for each closing base pair, (3) ∆Gmulti
nt for each unpaired nucleotide inside the multiloop, plus

a sequence-dependent penalty: (4) ∆Gterminal
i, j for each closing pair i · j.

• An exterior loop contains a strand break and any number of closing base pairs. The exterior
loop free energy is the sum of ∆Gterminal

i, j over all closing base pairs i · j, so an unpaired strand
has a free energy of zero15.

2.2.3 Coaxial and Dangle Stacking Subensembles within Complex Ensembles
Within a multiloop or an exterior loop, there is a subensemble of coaxial stacking states between
adjacent closing base pairs and dangle stacking states between closing base pairs and adjacent
unpaired bases. The physical model for multiloops and exterior loops has previously been enhanced
for the ensemble of a single strand8 by incorporating coaxial stacking5,25,26 and dangle stacking3,6,25,27

terms into the multiloop and exterior loop free energies. For the complex ensemble, we have

12
a

0 coaxial stacks
0 dangle stacks

0 coaxial stacks, 1 dangle stack 0 coaxial stacks, 2 dangle stacks

1 coaxial stack
0 dangle stacks

1 coaxial stack, 1 dangle stack

1 coaxial stack, 2 dangle stacks

b

1 dangle stack

2 dangle stacks

0 coaxial stacks 1 coaxial stack

0 dangle stacks

c

multiloop coaxial stackmultiloop dangle stackmultiloop exterior loop coaxial stack

exterior loop dangle stack

exterior loop

Multiloop stacking states Exterior loop stacking states

Exterior loop stacking states

Figure 2.3: Coaxial and dangle stacking states for multiloops and exterior loops. (a) Stacking subensemble for the
multiloop of Figure 2.2a. (b,c) Stacking subensembes for two external loops from Figure 2.2a.

previously neglected coaxial stacking and incorporated a heuristic dangle stacking state15. Here,
we exactly incorporate all coaxial and dangle stacking states in the complex ensemble. Within a
multiloop or exterior loop, a base pair can form one coaxial stack with an adjacent base pair, or
can form a dangle stack with at most two adjacent unpaired bases; unpaired bases can either form
no stack, or can form a dangle stack with at most one adjacent base pair. See Figure 2.3 for an
illustration of the valid stacking states for a multiloop (panel a) or two exterior loops (panels b and
c).

For a given multiloop or exterior loop, the energetic contributions of all possible coaxial and dangle
stacking states are enumerated so as to calculate the free energy:

∆Gstacking = −kT log
∑

ω∈loop

∏
x∈ω

e−∆Gx/kT (2.2)

where ω indexes the possible stacking states within the loop and x indexes the individual stacks
(coaxial or dangle) within a stacking state. The free energy of a multiloop or exterior loop is
augmented by the corresponding ∆Gstacking bonus. Hence, a secondary structure s continues to be
defined as a set of base pairs, and the stacking states within a given multiloop or exterior loop are
treated as a structural subensemble that contributes in a Boltzmann-weighted fashion to the free
energy model for the loop. Let sq ∈ s denote a stacking state of the paired and unpaired bases in s.
We may equivalently define the free energy of secondary structure s in terms of the free energies for
all stacking states sq ∈ s:

∆G(φ, s) = −kT log
∑
sq∈s

e−∆G(φ,s
q)/kT (2.3)

Let Γq denote the ensemble of stacking states corresponding to the complex ensemble of secondary
structures Γ.

13

2.2.4 Symmetry Correction
For a secondary structure s ∈ Γ with an R-fold rotational symmetry there is in R-fold reduction in
distinguishable conformational space, so the free energy (2.1) must be adjusted15 by a symmetry
correction:

∆G(φ, s) = ∆G(φ, s) + ∆Gsym(φ, s). (2.4)

where

∆Gsym(φ, s) = kT log R(φ, s). (2.5)

Because the symmetry factor R(φ, s) is a global property of each secondary structure s ∈ Γ, it is
not suitable for use with dynamic programs that treat multiple subproblems simultaneously without
access to global structural information. As a result, dynamic programs operate on ensemble Γ using
physical model (2.1) and then the Distinguishability Correction Theorem of Dirks et al.15 enables
exact conversion of physical quantities to ensemble Γ using physical model (2.4). Interestingly,
ensembles Γ and Γ both have utility when examining the physical properties of a complex as
they provide related but different perspectives, akin to complementary thought experiments (see
Section A.7).

2.2.5 Free Energy Parameters
For RNA, we employ temperature-dependent parameters5,6,10,22,25 including coaxial5,25 and dan-
gle3,6,25 parameters in 1M Na+. For DNA, we employ temperature-dependent parameters4,6 includ-
ing coaxial26 and dangle6,27 parameters in user-specified concentrations of Na+ and Mg++4,7,26 (see
Section A.1.2 for details on implementation of the salt corrections).

2.3 Algorithms
2.3.1 Physical Quantities
Consider a complex with sequence φ. We provide dynamic programs to calculate:

• the partition function,

Q(φ) =
∑
s∈Γ

e−∆G(φ,s)/kT , (2.6)

over ensemble Γ treating all strands as distinct. Post-processing then yields the partition
function Q(φ) over ensemble Γ treating strands with the same sequence as indistinguishable15.
The equilibrium probability of any secondary structure s ∈ Γ is then

p(φ, s) = e−∆G(φ,s)/kT/Q(φ). (2.7)

• the base-pairing probability matrix P(φ) with entries Pi, j(φ) ∈ [0, 1] corresponding to the
probability

Pi, j(φ) =
∑
s∈Γ

p(φ, s)Si, j(s) (2.8)

14

that base pair i · j forms at equilibrium within ensemble Γ, treating all strands as distinct.
Here, S(s) is a structure matrixwith entries Si, j(s) = 1 if structure s contains base pair i · j and
Si, j(s) = 0 otherwise. Abusing notation, the entry Si,i(s) is 1 if base i is unpaired in structure
s and 0 otherwise; the entry Pi,i(φ) ∈ [0, 1] denotes the equilibrium probability that base i is
unpaired over ensemble Γ. Hence S(s) and P(φ) are symmetric matrices with row and column
sums of 1.

• the free energy of the minimum free energy (MFE) stacking state sqMFE(φ) ∈ Γ
q treating all

strands as distinct:

∆G(φ, sqMFE) = min
sq∈Γ

q
∆G(φ, sq). (2.9)

• the MFE proxy structure

sMFE′ = {s ∈ Γ|sqMFE ∈ s, sqMFE(φ) = arg min
sq∈Γ

q
∆G(φ, sq)}. (2.10)

defined as the secondary structure containing the MFE stacking state within its subensemble.
If there is more than one MFE stacking state, the algorithm returns all corresponding MFE
proxy structures.

• the set of suboptimal secondary structures

Γsubopt(φ,∆Ggap) =

{s ∈ Γ|sq ∈ s,∆G(φ, sq) ≤ ∆G(φ, sqMFE) + ∆Ggap} (2.11)

with stacking states within a specified ∆Ggap ≥ 0 of the MFE stacking state.

• a set of J secondary structures Boltzmann sampled from ensemble Γ treating all strands as
distinct:

Γsample(φ, J) ∈ Γ (2.12)

Post-processing then yields the set of J secondary structures Boltzmann sampled from en-
semble Γ treating strands with the same sequence as indistinguishable:

Γsample(φ, J) ∈ Γ. (2.13)

15

+

H
ai

rp
in

 lo
op

In
te

rio
r l

oo
p

M
ul

til
oo

p

Em
pt

y
At

 le
as

t o
ne

 p
ai

r

O
ne

 p
ai

r
M

or
e

th
an

 o
ne

 p
ai

r

Q
i,j

Q
i,j

Q
i,jb m

Ex
te

rio
r l

oo
p

re
cu

rs
io

n

re
cu

rs
io

n

re
cu

rs
io

n

= =
+ +

+
+

b
i j

d

e

b
i j

d

e

i j

=

i ji j

i ji j

b m

i j

c

m

b

i j

d

e

i j

d

e

b

i j

d

e

b

m

in
te

rio
r l

oo
p

m
ul

ti
lo

op
ex

te
rio

r l
oo

p

ha
irp

in
 lo

op

a b c

Q
i,
j

=
1

+
∑

i≤
d
<
e
≤
jQ

i,
d
−
1
Q

b d
,e

Q
b i,
j

=
ex

p
{−

∆
G

h
a
ir
p
in

i,
j

/k
T
}+

∑

i<
d
<
e
<
jQ
b d
,e

ex
p
{−

∆
G

in
te
ri
o
r

i,
d
,e
,j

/k
T
}

+
∑

i<
d
<
e
<
jQ
m i+

1
,d
−
1
Q

b d
,e

ex
p
{ −

[∆
G

m
u
lt
i

in
it

+
2∆

G
m
u
lt
i

b
p

+
n
e
+
1
,j
−
1
∆
G

m
u
lt
i

n
t

]/
k
T
}

+
∑

i
≤

c
<

j
s.
t.

c
+

1 2
is

a
n
ic
k

Q
i+

1
,c
Q

c
+
1
,j
−
1

Q
m i,
j

=
∑

i≤
d
<
e
≤
jQ
b d
,e

ex
p
{ −

[∆
G

m
u
lt
i

b
p

+
(n

i,
d
−
1
+
n
e
+
1
,j

)∆
G

m
u
lt
i

n
t

]/
k
T
}

+
∑

i≤
d
<
e
≤
jQ
m i,
d
−
1
Q

b d
,e

ex
p
{ −

[∆
G

m
u
lt
i

b
p

+
n
e
+
1
,j

∆
G

m
u
lt
i

n
t

]/
k
T
}

1

Fi
gu

re
2.
4:

Pa
rti
tio

n
fu
nc
tio

n
dy

na
m
ic
pr
og

ra
m

re
cu
rs
io
n
di
ag
ra
m
s(
le
ft)

an
d
re
cu
rs
io
n
eq
ua
tio

ns
(r
ig
ht
)1
5 .

A
so
lid

str
ai
gh

tl
in
e
in
di
ca
te
sa

ba
se

pa
ir
an
d
a
da
sh
ed

lin
e
de
m
ar
ca
te
sa

re
gi
on

w
ith

ou
ti
m
pl
yi
ng

th
at
th
e
co
nn

ec
te
d
ba
se
sa

re
pa
ire

d.
Sh

ad
ed

re
gi
on

sc
or
re
sp
on

d
to

lo
op

fr
ee

en
er
gi
es

th
at
ar
e
ex
pl
ic
itl
y
in
co
rp
or
at
ed

at
th
e
cu
rr
en
tl
ev
el
of

re
cu
rs
io
n
(c
ol
or
s

co
rr
es
po

nd
to

th
e
lo
op

ty
pe
s
of

Fi
gu

re
2.
2)
.
(a
)Q

i,
j
re
pr
es
en
ts
th
e
pa
rti
tio

n
fu
nc
tio

n
fo
rs

ub
se
qu
en
ce
[i,

j]
.
Th

er
e
ar
e
tw
o
ca
se
s:

ei
th
er

th
er
e
ar
e
no

ba
se

pa
irs

(c
or
re
sp
on

di
ng

to
th
e
re
fe
re
nc
e
sta

te
0
an
d
pa
rti
tio

n
fu
nc
tio

n
co
nt
rib

ut
io
n

1)
or

th
er
e
is
a

3′
-m

os
tb

as
e
pa
ir

d
·

e.
In

th
e
la
tte

rc
as
e,
de
te
rm

in
at
io
n
of

th
e
pa
rti
tio

n
fu
nc
tio

n
co
nt
rib

ut
io
n
m
ak
es

us
e
of

pr
ev
io
us
ly

co
m
pu

te
d
su
bs
eq
ue
nc
e
pa
rti
tio

n
fu
nc
tio

ns
Q
b d
,e

an
d

Q
i,
d−

1.
B
y
th
e
di
str

ib
ut
iv
e
la
w,

m
ul
tip

lic
at
io
n
of

th
es
e
su
bs
eq
ue
nc
e
pa
rti
tio

n
fu
nc
tio

ns
(e
ac
h
re
pr
es
en
tin

g
a
su
m

ov
er

su
bs
tru

ct
ur
es
)i
m
pl
ic
itl
y
su
m
s
ov
er

al
lp

ai
rw

is
e
co
m
bi
na
tio

ns
of

su
bs
tru

ct
ur
es
.
Th

e
in
de
pe
nd

en
ce

of
th
e
lo
op

co
nt
rib

ut
io
ns

in
th
e
en
er
gy

m
od

el
(2
.1
)i
m
pl
ie
s
th
at

th
es
e
pr
od

uc
ts

ap
pr
op

ria
te
ly

ad
d
th
e
fr
ee

en
er
gi
es

in
th
e
ex
po

ne
nt
s.

(b
)Q

b i,
j
is
th
e
pa
rti
tio

n
fu
nc
tio

n
fo
rs

ub
se
qu
en
ce
[i,

j]
w
ith

th
e
re
str

ic
tio

n
th
at

ba
se
si

an
d

j
ar
e
pa
ire

d.
Th

er
e
ar
e
fo
ur

ca
se
s:

ei
th
er

th
er
e
ar
e
no

ad
di
tio

na
lb

as
e
pa
irs

(c
or
re
sp
on

di
ng

to
a
ha
irp

in
lo
op

),
th
er
e
is
ex
ac
tly

on
e
ad
di
tio

na
lb

as
e
pa
ir

d
·

e
(c
or
re
sp
on

di
ng

to
an

in
te
rio

rl
oo

p)
,t
he
re

is
m
or
e
th
an

on
e

ad
di
tio

na
lb

as
e
pa
ir
(c
or
re
sp
on

di
ng

to
a
m
ul
til
oo

p)
w
ith

3′
-m

os
tp

ai
rd
·
e
an
d
at
le
as
to

ne
ad
di
tio

na
lp

ai
rs
pe
ci
fie

d
in

a
pr
ev
io
us
ly
co
m
pu

te
d
su
bs
eq
ue
nc
e
pa
rti
tio

n
fu
nc
tio

n
Q
m i,
d−

1,
or

th
er
e
is
an

ex
te
rio

rl
oo

p
co
nt
ai
ni
ng

a
ni
ck

at
c
+

1 2.
n i
,j
≡

j−
i+

1
de
no

te
st
he

nu
m
be
ro

fn
uc
le
ot
id
es

be
tw
ee
n

ia
nd

ji
nc
lu
si
ve
.(
c)

Q
m i,
j
is
th
e
pa
rti
tio

n
fu
nc
tio

n
fo
rs
ub

se
qu
en
ce
[i,

j]
w
ith

th
e
re
str

ic
tio

ns
th
at
th
e
su
bs
eq
ue
nc
e
is
in
si
de

a
m
ul
til
oo

p
an
d
co
nt
ai
ns

at
le
as
to

ne
ba
se

pa
ir.

Th
er
e
ar
e
tw
o
ca
se
s:

ei
th
er

th
er
e
is
ex
ac
tly

on
e
ad
di
tio

na
lb

as
e
pa
ir

d
·

e
de
fin

in
g

th
e
m
ul
til
oo

p,
or

th
er
e
is
m
or
e
th
an

on
e
ad
di
tio

na
lb

as
e
pa
ir
de
fin

in
g
th
e
m
ul
til
oo

p
(w

ith
3′
-m

os
tp

ai
rd
·

e)
.
Th

e
tim

e
co
m
pl
ex
ity

is
O
(N

4)
(in

di
ce
si
,d
,e
,

j
on

th
e
rig

ht
ha
nd

si
de
)

an
d
th
e
sp
ac
e
co
m
pl
ex
ity

is
O
(N

2)
(in

di
ce
si
,

j
on

th
e
le
ft
ha
nd

si
de
).

16

Now consider a test tube ensemble containing an arbitrary set of strand species Ψ0 interacting to
form an arbitrary set of complex species Ψ. We provide algorithms to calculate:

• the set of equilibrium concentrations xΨ ≡ xc ∀c ∈ Ψ, (specified as mole fractions) that are
the unique solution to the strictly convex optimization problem15:

min
xΨ

∑
c∈Ψ

xc(log xc − log Qc − 1) (2.14a)

subject to
∑
c∈Ψ

Ai,cxc = x0
i ∀i ∈ Ψ0, (2.14b)

expressed in terms of the previously calculated set of partition functions QΨ. The constraints
impose conservation of mass: A is the stoichiometry matrix such that Ai,c is the number of
strands of type i in complex c, and x0

i is the total concentration of strand i present in the
test tube. Based on dimensional analysis15, the algorithm operates on mole fractions, but for
convenience, accepts molar strand concentrations [i]0 = x0

i ρH2O as inputs and returns molar
complex concentrations [c] = xcρH2O as outputs, where ρH2O is the molarity of water.

• the ensemble pair fractions for the test tube ensemble, for example

fA(iA · jB) (2.15)

denotes the fraction of A strands that form base pair iA · jB (correspondingly fB(iA · jB) fraction
of B strands with base pair iA · jB). In order to calculate these base-pairing observables, it is
first necessary to calculate the set of equilibrium concentrations xΨ and the set of base-pairing
probability matrices PΨ.

Complex ABC

final answer:

1-nt subsequences
2-nt subsequences
3-nt subsequences

...

a

Operation order

A

A

B

B

C

C

Q1,N

Q1,1

QN,NQ1,N

Figure 2.5: Operation order for partition function dynamic program over a complex ensemble with N nucleotides.

17

Table 2.1: Algorithmic ingredients for calculating diverse physical quantities.

Quantity Symbol Recursions Evaluation Algebra Dependency Operation Order

Partition function Q(φ) Stacking Pfunc, Overflow – Blockwise forward sweep
MFE ∆G(φ, sqMFE) Stacking MFE – Blockwise forward sweep
Complex ensemble size |Γ | No stacking Count – Blockwise forward sweep
Pair probability matrix P(φ) Stacking Pfunc, Overflow – Blockwise forward sweep
MFE structure proxy sMFE′ (φ) Stacking MFEstruc ∆G(φ, sqMFE) Backtracking, stack
Suboptimal ensemble Γsubopt(φ, ∆Ggap) Stacking Subopt ∆G(φ, sqMFE) Backtracking, stack
Sampled ensemble Γsample(φ, J) Stacking Sample Q(φ) Backtracking, priority queue

Concentrations xΨ – – QΨ Convex optimization
Ensemble pair fractions fA(iA · jB) – – xΨ, PΨ –

2.3.2 Existing Dynamic Programs
Before describing the new unified dynamic programming framework, it is helpful to briefly summa-
rize existing algorithms that operate on complex ensemble Γ using a simplified free energy model
that neglects coaxial stacking and approximates dangle stacking15. The complex ensemble size, |Γ|,
grows exponentially with the number of nucleotides (Figure A.34), N ≡ |φ|, but the partition func-
tion can be calculated in O(N3) time and O(N2) space using a dynamic program15,28. The algorithm
calculates the subsequence partition function Qi, j for each subsequence [i, j] via a forward sweep
from short subsequences to the full sequence (Figure 2.5), finally yielding the partition function of
the full sequence, Q1,N . The recursions used to calculate Qi, j from previously calculated subse-
quence partition functions can be depicted as recursion diagrams (Figure 2.4 left; with free energy
contributions colored tomatch the loop types of Figure 2.2) or equivalently using recursion equations
(Figure 2.4 right). The Q recursion relies on additional restricted partition functions Qb and Qm

that are also calculated recursively. Collectively, the Q, Qb, and Qm recursions yield Q(φ) = Q1,N ,
incorporating the partition function contributions of every structure s ∈ Γ based on free energy
model (2.1) treating all strands as distinct. The Distinguishability Correction Theorem of Dirks et
al.15 then enables straightforward calculation of the partition function, Q(φ), over ensemble Γ using
free energy model (2.4), treating strands with the same sequence as indistinguishable (see Section
A.7). After calculating the partition function with a forward sweep from short to long sequences,
dynamic programs that backtrack through the matrix of subsequence partition functions from long
to short subsequences can be used to calculate the matrix of equilibrium base-pairing probabilities,
P(φ),14,15,28 or to Boltzmann sample a structure from ensemble Γ15,29.

The partition function dynamic program can be converted into an MFE dynamic program in a
straightforward way by replacing every product of exponentiated free energies with a sum of free
energies and every sum of alternative partition function contributions with a minimization over
alternative free energy contributions, yielding theMFEof the full sequence,∆G(φ, sMFE) = F1,N

15,30.
After calculating theMFEwith a forward sweep from short to long subsequences, dynamic programs
that backtrack through the matrix of subsequence MFEs from long to short subsequences can be
used to determine the MFE secondary structure(s), sMFE(φ) ∈ Γ, or the ensemble of suboptimal
structures, Γsubopt(φ,∆Ggap). At the heart of the improvements in the present work is a new unified

18

treatment of this suite of dynamic programs for calculating diverse physical quantities.

Dynamic program

Structural ensemble
+

Free energy model

Physical quantity

Recursions

Operation order

Evaluation algebra
+

+

Figure 2.6: Unified dynamic programming framework. To calculate a physical quantity of interest based on a physical
model comprising a structural ensemble and a free energy model, each dynamic program combines three ingredients:
model-specific recursions, a quantity-specific evaluation algebra, and a quantity-specific operation order.

2.3.3 Unified Dynamic Programming Framework
In the new unified framework, each dynamic program combines three ingredients (Figure 2.6): a
set of recursions, an evaluation algebra, and an operation order. A set of recursions specifies the
dependencies of each subproblem, capturing the structural details of the complex ensemble and the
energetic details of the loop-based free energy model. An evaluation algebra yields the mathematical
form of each subproblem, allowing recursions to be generically extended to each physical quantity
of interest. An operation order defines the computational trajectory through the dependency graph
of subproblems, yielding dramatic speedups using appropriate data structures. In the following
sections, we first introduce a new set of recursions that treat the enhanced physical model including
coaxial and dangle stacking, and then describe evaluation algebras and operation orders that enable
calculation of diverse physical quantities for complex and test tube ensembles (Table 2.1).

=b

a Multistranded Qb recursion diagrams b Multistranded Qb recursion equations for exterior loop terms

interior
multi loop
multi stack
multi dangle
exterior loop
exterior stack
exterior dangle

i

j

Multiloop
5′ coaxial stack

b

m

i

j

d

Multiloop
3′ coaxial stack

b

mi

j
d

Multiloop
dangle stack

1 coaxial stack

cs

i

j

d

e
Multiloop

dangle stack
all other stacks

m

cs,cm

i

j

d

e

Interior loop

b
i

j

d

e

Exterior loop
dangle stack

i

j
n

Exterior loop dangle stack

Exterior loop 5′ coaxial stack

Exterior loop 3′ coaxial stackExterior loop
3′ coaxial stack

b

i

j d

n

Exterior loop
5′ coaxial stack

bi

j

d

n
i+2<d<j

d/∈η
i+1<n<d

n∈η

W (∆Gcoax
d,j−1,i(φ))⊗Qi+1,n−1Qn,d−1 ⊗Qb

d,j−1

⊕
i+1<d<j−1
(d+1)/∈η

d+1<n<j
n∈η

W (∆Gcoax
j,i,d (φ))⊗Qb

i+1,d ⊗Qd+1,n−1Qn,j−1

⊕
k,l∈{0,1} i+k+1<n<j−l

n∈η

W (∆Gdangle
j−l,j,i,i+k)⊗Qi+k+1,n−1 ⊗Qn,j−l−1

Figure 2.7: Representative recursion diagrams and equations operating over coaxial and dangle stacking subensembles
within the complex ensemble. (a) Qb recursion diagrams (cf. Qb recursion diagrams of Figure 2.4b for the case without
coaxial and dangle stacking). (b) Recursion equations corresponding to the exterior loop diagrams in the top row of
panel (a) (cf. the exterior loop term in the Qb recursion equation of Figure 2.4b for the case without coaxial and dangle
stacking). Recursion equations use evaluation algebra operators ⊕ and ⊗, which for the partition function denote standard
addition and multiplication (see Table 2.2 for evaluation algebras corresponding to other physical quantities).

19

Algebra Algorithm Output 0 1 a ⊕ b a ⊗ b W(g)

a SumProduct Partition function 0 1 a + b a · b exp
(
−g
kBT

)
StructureCount Ensemble size 0 1 a + b a · b 1
MinSum MFE ∞ 0 min(a, b) a + b g

b SplitExponent Partition function
Mantissa 0 1 am · 2ae+γ + bm · 2be+γ am · bm exp

(
−g
kBT

)
Exponent 0 γ 0 ae + be + γ γ

c ArgRandom Sampled structure
Value 0 1 av + bv av · bv exp

(
−g
kBT

)
Elements ∅ ∅ arg random(av, bv) aλ ∪ bλ ∅

d ArgMin MFE structure
Value ∞ 0 min(av, bv) av + bv g

Elements ∅ ∅ arg min(av, bv) aλ ∪ bλ ∅

Table 2.2: Evaluation algebras for dynamic programming algorithms. a and b are elements within the evaluation algebra
domain. SumProduct yields the partition function of the complex ensemble. StructureCount yields the number
of secondary structures in the complex ensemble. MinSum yields the free energy of the minimum free energy (MFE)
stacking state in the complex ensemble. SplitExponent yields the partition function in split mantissa/exponent form
using a given exponent shift γ in order to avoid overflow. ArgRandom yields a Boltzmann sampled structure associated
with recursion elements xλ from the complex ensemble with partition function xv. ArgMin yields the secondary structure
associated with recursion elements xλ which contains the MFE stacking state with free energy xv. See Section A.5 for
details.

2.3.4 Recursions for the Complex Ensemble with Coaxial and Dangle Stacking
To treat the enhanced physical model including coaxial and dangle stacking contributions for all
multiloops and exterior loops, we require a new set of recursions that incorporate the subensemble
of stacking states and free energies defined by equation (2.2) and illustrated in Figure 2.3. To
illustrate the nature of the changes to the recursion diagrams, Figure 2.7a displays O(N4) recursions
for calculating interstrand contributions to Qb

i, j (the partition function for subsequence [i, j] with
i paired to j) including coaxial and dangle stacking; recursion energies incorporated by a given
recursion are shaded according to the loop types of Figure 2.2 and stacking types of Figure 2.3.
The full set of O(N4) recursions and more efficient O(N3) variants are provided in Section A.4. In
the following sections, we describe how diverse physical quantities can be calculated using these
recursions in combination with different evaluation algebras and operation orders.

2.3.5 Evaluation Algebras for Partition Function, MinimumFree Energy, and Ensemble Size
As previously noted for the complex ensemble without coaxial and dangle stacking, the partition
function recursion diagrams of Figure 2.4a can alternatively be expressed as the partition function
recursion equations of Figure 2.4b, and these in turn can be systematically transformed into recursion
equations to calculate theMFE. Alternatively, wemay view the partition function andMFE recursion

20

equations as the results of applying two different evaluation algebras to a generic set of recursion
diagrams and equations that capture the details of a given physical model (comprising a structural
ensemble and a free energy model). Here, we formalize an evaluation algebra as an algebraic
structure composed of (1) a semiring R equipped with commutative binary operators ⊕ and ⊗ and
associated identity elements 0 and 1, (2) a mapW from free energy parameters to R, and (3) a map Q

from recursion indices to R. Table 2.2a defines the evaluation algebras for the partition function and
MFE algorithms, as well as the evaluation algebra for calculating the size of the complex ensemble,
|Γ|. For example, for the partition function, (1) ⊕ is standard addition, ⊗ is standard multiplication,
0 is 0, 1 is 1, (2) W(g) is the Boltzmann factor exp(−∆G/kT), and (3) Q is the trivial matrix lookup
operatorQ(n, i, j) 7→ Qn

i, j , where n denotes the type of recursion (e.g., n = b for aQb recursion). The
evaluation algebras for the partition function, MFE, and ensemble size can be applied to recursions
that operate over the complex ensemble without or with coaxial and dangle stacking subensembles.

This paradigm of applying a quantity-specific evaluation algebra to a model-specific set of recursions
extends to diverse physical quantities, as we describe in the sections that follow. This generic
programming abstraction dramatically reduces the size of the code base and enforces implementation
correctness. Instead of writing separate code to upgrade the recursion equations to the new physical
model for each physical quantity, a single set of recursion equations is coded and compiled using
C++ expression templates for each of the evaluation algebras in Table 2.2 to produce a suite of
executables for calculating the corresponding physical quantities.

2.3.6 Overflow-Safe Evaluation Algebra for Large Partition Function Calculations.
One of the challenges with calculating the partition function is the prevention of overflow as the
size of the complex, N ≡ |φ|, increases. Using double-precision (64-bit) arithmetic, the maximum
expressible number is ≈10308, enabling calculation of partition functions for complexes of ≈1400
nt for random sequences and ≈450 nt for designed sequences (with a deep well on the free energy
landscape). Using quadruple-precision (128-bit) arithmetic, the maximum expressible number
is increased to ≈104932 (platform-dependent), which enables partition function calculations for
complexes of up to ≈22,000 nt for random sequences and ≈7000 nt for designed sequences (at the
cost of doubled storage)15.

Here, to enable partition function calculations for even larger complexes, we define an overflow safe
evaluation algebra that operates separately on the mantissa and exponent for the partition function
calculation (Table 2.2b). The elements of the partition function recursion matrix are represented as
a = am2ae , where am is a single-precision (32-bit) floating point and ae is a 32-bit integer, so the
maximum expressible number is ≈10646457031.

For exposition, we assume in Table 2.2 that any expression is to be calculated with respect to a
known reference exponent shift, γ, to which the expression is aligned. For instance, consider the
expression a ⊗ b where a = 40 (am = 10, ae = 2), b = 96 (bm = 3, be = 5), and γ = −6,
then xm = am · bm = 10 · 3 = 30 and xe = ae + be + γ = 2 + 5 − 6 = 1 corresponding to

21

a c

C
block

B
block BC

block

ABC
block

AB
block

A
block

Vectorized operations

Qi,j

B C

AB
BC

ABC

A

bComplex ABC Dependency graph

Ev
al

ua
tio

n
or

de
r

Caching
Caching

Caching

Caching

Caching

CachingB
block

AB
block

A
block

Complex AB

Subcomplex blocks

Figure 2.8: Blockwise operation order for dynamic programs operating on complex and test tube ensembles. (a)
Subcomplex blocks within dynamic programming matrices (cf. Figure 2.5): triangular intrastrand and rectangular
interstrand blocks. (b) Dependency graph for block evaluation: bottom to top for forward algorithms (depicted), top to
bottom for backtracking algorithms. (c) Illustration of dot products from a representative step in a dynamic program
(Qi, j ←

∑
i≤d< j Qi,dQd+1, j). Each combination of blocks gives a vectorizable dot product contribution; the case of

(d, d+1) spanning a strand break is skipped as it corresponds to a disconnected structure.

a ⊗ b = xm · 2xe · 2−γ = 30 · 21 · 26 = 3840. See Section A.6.3 for a full description of the evaluation
algebra including selection of an appropriate γ for each expression.

With this construction, the storage cost is thus identical to using double precision but overflow
is no longer limiting, and the space and time complexity of the algorithm become the limiting
factors. Empirically, we observe a ≈2–2.5× increase in cost for the overflow-safe evaluation algebra
relative to a double-precision floating point evaluation algebra (Figure A.37). In practice, we use a
blended approach by switching between the single-precision Pfunc, double-precision Pfunc, and
single-precision OverflowSafe evaluation algebras as overflow occurs within a given complex
(Section A.8.4).

2.3.7 Efficient Blockwise Dynamic Programs over Subcomplexes Using Caching and Vector-
ization

To this point, we have considered dynamic programs that operate on a complex of L strands. We now
re-examine that goal in the more general context of a test tube ensemble containing the set of strand
species Ψ0 interacting to form the set of complex species Ψ. For example, suppose Ψ0 contains M

strand species and Ψ is defined to contain all complexes of up to Lmax strands. The simplest option
is to calculate the partition function for each complex c ∈ Ψ independently15. With this approach, as
described previously, the partition function Q1,N for a complex with N nucleotides is calculated with
a dynamic program that builds up from short subsequences to the full-length sequence, sweeping
along each diagonal of the matrix of subsequence partition functions (Figure 2.5). When multiple
copies of the same strand species appear in a complex, intermediate results appear in multiple
locations within the matrix. Moreover, when the same strand species appears in multiple complexes,
intermediate results appear in multiple matrices.

22

Recursions
Evaluation algebra

Forward sweep
Backtracking

Operation order

W (∆Gcoax
d,j−1,i)

W (∆Gmulti
init +∆Gmulti

bp)

Q(b, d, j

Q(m, i+ 1, d

Q(b, i, j)

Figure 2.9: Conceptual interplay between three dynamic program ingredients: recursions, evaluation algebra, and
operation order. Recursions specify the dependencies between subproblems and incorporate the details of the structural
ensemble and free energy model. Evaluation algebras define the mathematical form of each subproblem. Operation orders
specify the computational trajectory through the dependency graph of subproblems.

Here, we reduce the cost of calculating the partition functions for the set of complexes Ψ by
decomposing each matrix into two types of subcomplex blocks (Figure 2.8a): triangular intrastrand
blocks (e.g., blocks A, B, C) and rectangular interstrand blocks (e.g., blocks AB, BC, ABC).
Blocks are computed in ascending order of the number of strands per block (blocks with the same
number of strands can be calculated independently) and cached such that blocks arising in multiple
locations within a complex or test tube ensemble are not recomputed. Section A.6.2 provides
pseudocode for a blockwise operation order that is O(N3) for a complex of N nucleotides, including
exact calculation of interior loop contributions12,31. Moreover, with this blockwise operation order,
recursions (Figure 2.7) can be coded using vectorized dot products (Figure 2.8b) within triangular
intrastrand blocks and rectangular interstrand blocks such that compilation with the appropriate
evaluation algebra (Table 2.2) yields an efficient vectorized dynamic program for calculating the
corresponding physical quantity. The interplay between the three dynamic programming ingredients
(recursions, evaluation algebra, and operation order) is illustrated conceptually in Figure 2.9.

2.3.8 Enhanced Efficiency and Robustness of the Partition Function Algorithm for Complex
Ensembles Including Very Large Complexes

Figure 2.10 highlights efficiency and robustness gains for partition function calculations on complex
ensembles. Compared using the same physical model (without coaxial and dangle stacking), the
vectorized NUPACK 4.0 implementation yields ≈30–90× speedups depending on the complex size.
Furthermore, the overflow-safe evaluation algebra enablesNUPACK4.0 to performpartition function
calculations on complexes containing 30,000 nt, while NUPACK 3.2 (using quadruple-precision)
fails on the largest complex sizes due to overflow. Using the enhanced physical model that includes
coaxial and dangle stacking subensembles, NUPACK 4.0 continues to achieve speedups of ≈13–45×
over NUPACK 3.2 operating on the simpler physical model that neglects these terms.

23

NUPACK 4.0

A

C

B

b

Complex ensemble No stacking
Stacking

No stacking

a

NUPACK 3.2

10
1

10
2

10
3

10
4

Complex size (nt)

10
-6

10
-4

10
-2

10
0

10
2

10
4

10
6

W
al

l c
lo

ck
 ti

m
e

(s
)

Partition Function Timing

10
1

10
2

10
3

10
4

Complex size (nt)

0

20

40

60

80

100

S
pe

ed
up

NUPACK 4.0 vs NUPACK 3.2

0 5000 10000 15000 20000 25000 30000

Complex size (nt)

100

105000

1010000

1015000

1020000

P
ar

tit
io

n
fu

nc
tio

n

c

Partition function
Random
Duplex
32 bit
64 bit
128 bit

Partition Function Values

Figure 2.10: Enhanced efficiency and robustness for partition function calculations on complex ensembles including
very large complexes. Calculation of the partition function for a complex of 3 strands, each with a different random
sequence of uniform length. NUPACK 4.0 (vectorized, overflow-safe implementation, physical model with or without
coaxial and dangle stacking) vs NUPACK 3.2 (not vectorized, quadruple-precision arithmetic, physical model with no
coaxial or dangle stacking). (a) Computational cost. (b) Computational speedup (ratio of mean wall clock times). (c)
Partition function values with coaxial and dangle stacking for random sequences and designed duplexes, with floating
point overflow limits shown for reference (see Figure A.35). Means were taken over 5 sets of random sequences per
ensemble size (results not available for largest complex size using NUPACK 3.0 due to overflow).

All complex
species of
up to Lmax

strands

a b

Number of strand species M

NUPACK 4.0 w/wout blockwise

Number of strand species M

Maximum
complex
size LmaxM strand

species

Test tube ensemble

NUPACK 4.0 vs NUPACK 3.2

1 2 3 4 5 6 7 8

20

40

60

80

100

120

1 2 3 4 5 6 7 8
1

2

3

4

5

6

Sp
ee

du
p

Sp
ee

du
p

2
3
4
5
6

Figure 2.11: Enhanced efficiency of the partition function algorithm for sets of complexes in test tube ensembles.
Calculation of the partition function for all complexes of up to Lmax strands for a test tube ensemble containing |Ψ0 |
strand species, each with a different random 50 nt sequence. (a) Speedup with vs without blockwise caching for NUPACK
4.0 (Figure 2.8). (b) Speedup using NUPACK 4.0 (vectorized, blockwise caching, enhanced physical model with coaxial
and dangle stacking) vs NUPACK 3.2 (no blockwise caching, not vectorized, physical model with no coaxial or dangle
stacking). Mean wall clock times calculated over 10 sets of random sequences per ensemble size.

2.3.9 Enhanced Efficiency of the Partition Function Algorithm for Sets of Complexes in Test
Tube Ensembles

Figure 2.11 highlights efficiency gains for partition function calculations for sets of complexes in test
tube ensembles. Blockwise caching yields an empirical speedup of ≈(Lmax − 1) for a range of test
tube ensembles containing M strand species interacting to form all complexes of up to Lmax strands
(Figure 2.11a). Comparing the performance of NUPACK 4.0 (with the benefits of vectorization and
block caching but the added cost of an enhanced physical model with coaxial and dangle stacking)
to NUPACK 3.2 (without these features) reveals speedups of ≈20× for test tubes containing all
complexes of up to Lmax = 2 strands and ≈100× for test tubes containing all complexes up to Lmax

= 6 strands. With NUPACK 4.0, Figure 2.12 illustrates the size of test tube ensembles for which
equilibrium analysis can be performed in ≤ 1 minute on a single computational core (e.g., M = 80

24

M
ax

im
um

 c
om

pl
ex

 s
iz

e
L m

ax

Number of strand species M

Test tube analysis in ≤ 1 minute

1 2 3 4 5 6 7 8 10 15 20 30 40 60 80 100

1

2

3

4

5

6

7

8

9

10
Strand length (nt)

30
100
300

Figure 2.12: Equilibrium test tube analysis in under 1 minute. Calculation of the partition function and equilibrium
complex concentration for a test tube ensemble containing M strand species that form all complexes of up to Lmax strands.
Symbols denote test tube ensembles for which the wall clock time ≤ 1 minute. After calculating the set of partition
functions QΨ for a given test tube ensemble Ψ, the set of equilibrium concentrations xΨ is obtained by solving the
convex optimization problem (B.1). Mean wall clock time over 5 sets of random sequences per test tube ensemble size.
Conditions: RNA, 37 ◦C, 1M Na+, each strand introduced at 10 nM.

strand species of 100 nt each interacting to form all complex species of up to Lmax = 2 strands,
or M = 2 strand species of 300 nt each interacting to form all complex species of up to Lmax = 6
strands).

2.3.10 Backtrack-Free Base-Pairing Probability Matrices
Historically, equilibrium base-pairing probabilities for a single strand13,28 or a complex15 are calcu-
lated using a dynamic program that backtracks through thematrix of subsequence partition functions.
This backtracking process involves subtraction of intermediate partition function quantities, creating
the risk of losing precision due to subtraction of large numbers differing by a small amount. To
eliminate this concern, here we calculate equilibrium base-pairing probabilities without backtracking
using the partition function evaluation algebra and a modification of the blockwise operation order.

To see how this is possible, consider a complex with strand ordering π = ABC and a total of
N nucleotides. As an intermediate result, the partition function algorithm calculates Qb

i, j , the
conditional partition function for subsequence i, . . . , j subject to the constraint that i is paired to j.
We may similarly calculate the conditional partition function, Qbext

i, j , for the remaining nucleotides
external to subsequence i, . . . , j, namely nucleotides j +1, . . . , N, 1, . . . , i−1. Because the structural
ensemble Γ excludes pseudoknots, the base pair i · j partitions the structural ensemble into non-
interacting internal and external ensembles, so the partition function of all structures containing
base pair i · j is the product Qb

i, jQ
bext
i, j . As a result, the equilibrium probability of base pair i · j over

ensemble Γ̄ is given by

Pi, j(φ) = Qb
i, j(φ)Q

bext
i, j (φ)/Q1,N (φ). (2.16)

Mathews employed this approach using new recursions to calculate the external conditional partition

25

N

N + i

A B C

A

B

C

A B C

CC

A B C

A

A

B

B

Original complex ABC
with sequence

Doubled complex ABCABC
with sequence

A

B

C

A

B

C

a b

bext

b

b

b

Qb
i,j(φ)

φ φ′

i

i

j

j

Qb
j,N+i(φ

′)

1

1

N

2N

Q1,N (φ)

Qb
i,j(φ)

Figure 2.13: Backtrack-free calculation of the equilibrium base-pairing probability Pi, j (φ) for a complex ABC of N
nucleotides with sequence φ using (2.17) and the conditional partition functions Qb

i, j
(φ) and Qb

j,N+i
(φ′). The latter is

calculated by considering the “doubled” complex ABCABC of 2N nucleotides with sequence φ′.

function Qbext
i, j for a single strand8. Here, treating the general case of a complex of L strands, we

observe thatQbext
i, j can be calculated in a straightforwardwaywithout new recursions by replicating the

strands to form a “doubled” complex with sequence φ′ (e.g., ABCABC) containing 2N nucleotides
and calculating Qb

i, j using the standard recursions for all subsequences of up to N nucleotides
(Figure 2.13b). The external subsequence j + 1, . . . , N, 1, . . . , i − 1 for the original complex with
sequence φ is simply the internal subsequence j, N + i for the doubled complex with sequence
φ′. Hence, using the generic dynamic programming algorithm with the standard partition function
evaluation algebra, we have:

Pi, j(φ) = Qb
i, j(φ)Q

b
j,N+i(φ

′)/Q1,N (φ). (2.17)

In Figure 2.13, the yellow blocks are previously cached from the partition function calculation.
The orange entries correspond to calculation of Qb

j,N+i(φ
′). The cost of evaluating each entry is

proportional to subsequence length (the horizontal or vertical distance from the diagonal), so the
average cost per entry in the orange block is higher than for the yellow blocks. Empirically, after
calculating the partition function Q at a cost CQ, calculation of the pair probability matrix P costs
an additional CP ≈1.5–3CQ (Figure A.36).

2.3.11 Evaluation Algebras and Backtracking Operation Orders for Simultaneous Structure
Sampling, MFE Structure Determination, and Suboptimal Structure Determination

After calculating the partition function Q for a strand29 or a complex15, a structure ssample can be
randomly sampled from the structural ensemble Γ by backtracking through thematrix of subsequence
partition functions. Likewise, after calculating the minimum free energy ∆G(φ, sqMFE) for a strand

30

or a complex15, the corresponding MFE structure proxy sMFE′(φ) can be determined by backtracking
through the matrix of subsequence MFEs. These dynamic programs can be expressed in our unified
dynamic programming framework (Figure 2.6) using the same set of recursion diagrams/equations
(e.g., Figure 2.7) as the forward algorithms, but with the operation order reversed so the blockwise

26

Sampling Simultaneous vs serial sampling
Number of
samples (J)

101

102

103

104

105

106

10
2

10
3

10
4

Complex size (nt)

10
-4

10
-2

10
0

10
2

10
4

W
al

l c
lo

ck
 ti

m
e

(s
)

10
2

10
3

10
4

Complex size (nt)

0

5

10

15

20

25

30

35

40

S
pe

ed
up

Simultaneous
Serial

Figure 2.14: Enhanced efficiency for sampling multiple structures from complex ensembles using simultaneous rather
than serial sampling. Comparison of runtimes for sequential sampling and simultaneous sampling. Sequences used range
in length from 10 to 104 nucleotides, and between 10 and 106 samples were taken per sequence. Each data point represents
an average over 10 sets of random sequences. See Section A.8.5 for additional data.

dependency tree (Figure 2.8b) is traversed top to bottom, and employing new evaluation algebras
(Table 2.2cd).

For structure sampling, backtracking starts from the recursion for Q1,N and for MFE structure
determination, backtracking starts from the recursion for F1,N . In either case, backtracking is
used to “choose” between competing recursion elements when a ⊕ operator is encountered and
to “join” compatible recursions elements when a ⊗ operator is encountered; the mathematical
implementations of these operators are described by quantity-specific evaluation algebras. For
sampling, ⊕ corresponds to randomly choosing between competing (Boltzmann-weighted) recursion
elements, while for MFE structure determination, ⊕ corresponds to choosing the MFE of competing
recursion elements. For both structure sampling and MFE structure determination, ⊗ corresponds
to the set union ∪ of compatible recursion elements.

The MFE structure determination algorithm can be generalized to calculate the set of suboptimal
structures Γ(φ,∆Ggap) within a specified free energy gap ∆Ggap ≥ 0 of the MFE using generalized
evaluation operators for ⊕ and ⊗ (see Section A.5.2). In practice, we implement this more general
algorithm and then apply it with ∆Ggap = 0 if the MFE structure is requested. The number of
suboptimal structures can grow rapidly with ∆Ggap and N (Figure A.44) so we perform backtracking
using a stack data structure that reduces memory usage by generating complete structures at the
earliest opportunity, enabling these structures to be emitted in a streaming fashion while additional
structures are determined (see Section A.6.6).

While the pair probability matrix P provides the equilibrium probability of each base pair over
the complex ensemble, it does not reveal correlation information between different base pairs. By
sampling a set of J secondary structures and averaging or clustering over this set, it is possible
to address questions like “what is the probability that a set of adjacent bases are simultaneously
unpaired?”29 or “is the free energy landscape dominated by multiple deep basins each defined by a

27

set of related secondary structures?”32. Existing algorithms perform serial sampling of J structures
for a strand29 (O(JN2) excluding long interior loops) or a complex15 (O(JN3)with exact treatment of
interior loops). Motivated by the central use case where a set of J structures is needed for averaging
or clustering, here we develop a simultaneous sampling approach that samples J structures all at
once (O(JN2) with exact treatment of interior loops). A given recursion element may contribute to
a large number of sampled structures (a circumstance that is augmented for designed free energy
landscapes containing deep wells), so we perform backtracking using a priority queue data structure
that reduces computational effort by ensuring that all samples of any given recursion element are
performed during a single visit to that recursion element (Section A.6.5). With the simultaneous
sampling algorithm, we observe order of magnitude speedups over serial sampling as J increases
above≈ 103 (Figure 2.14), and empirical complexity∼J0.8N1 for J samples from a complex ensemble
with N nucleotides (Section A.8.5).

2.4 Conclusions
The new unified dynamic programming framework combines recursions capturing the details of the
physical model with quantity-specific evaluation algebras and operation orders to enable efficient and
robust calculation of diverse physical quantities over complex and test tube ensembles of interacting
DNA or RNA strands. The physical model was upgraded by deriving recursions for the complex
ensemble that include coaxial and dangle stacking subensembles for multiloops and exterior loops.
The recursions are coded generically and then compiled with a quantity-specific evaluation algebra
and operation order to generate an executable for each physical quantity. As a result, future upgrades
to the physical model can be implemented by updating the generic recursions rather than by updating
code for each physical quantity. For large complexes, robustness is achieved for partition function
calculations using an overflow-safe evaluation algebra, and for equilibrium pair probabilities by using
a backtrack-free operation order, enabling calculations on complexes containing 30,000 nt. For test
tube ensembles, dramatic efficiency gains of 1–2 orders of magnitude are achieved using a new
blockwise operation order that facilitates vectorization and caching. Recognizing that Boltzmann
sampling is most useful for averaging or clustering information calculated on large set of structures,
a new sampling algorithm yields order-of-magnitude speedups by sampling all requested structures
simultaneously. These enhancements to the physical model, algorithm robustness, and algorithm
speed, are directly applicable to sequence design over complex and test tube ensembles16–18 as
sequence analysis is the foremost computational cost of sequence design; work is underway to
integrate these advances into the NUPACK 4.0 sequence design algorithms.

2.5 Methods Summary
2.5.1 Implementation.
NUPACK algorithms are programmed in the C++17 programming language. Dynamic programs
are implemented using a generic programming paradigm33 employing expression templates and
compile-time polymorphism; generic recursion equations capturing the details of the structural

28

ensemble and free energy model are translated via template metaprogramming into a separate
vectorized executable for calculating each physical quantity in Table 2.2. Single-threaded single
instruction multiple data (SIMD) vectorization is implemented using the Boost.SIMD library34. The
convex optimization problem (B.1) is solved in the dual form using an efficient trust region method15

using the Armadillo linear algebra library for matrix operations35.

2.5.2 Trials
All benchmarks were run on AWS EC2 C5 instances (3.0 GHz Intel Xeon Platinum processors) with
72 GB of memory (except 144 GB for Figure 2.10).

2.6 Resources
2.6.1 NUPACK Source Code
The NUPACK source code can be downloaded for non-commercial academic use subject to the
NUPACK License (nupack.org). NUPACK documentation includes a detailed User Guide and a
directory containing example analysis and design jobs.

2.6.2 NUPACK Python Module
The all-new NUPACK Python interface allows streamlined and flexible in-memory scripting of
NUPACK jobs, reducing file I/O and increasing the convenience of developing workflows composing
multiple NUPACK commands. For backward compatibility, Python scripts are provided that can
be integrated into existing workflows in place of previous releases of NUPACK executables, taking
advantage of the dramatically improved performance of NUPACK 4.0 implementations.

2.6.3 Support
Please direct questions, comments, feature requests, and bug reports to support@nupack.org.

2.7 Author Information
Corresponding Author
E-mail: niles@caltech.edu

Author Contributions
∗M.E.F and N.J.P. contributed equally.

Notes
The authors declare no competing financial interests.

2.8 Acknowledgments
We thank all the NUPACKusers that have helped out as beta testers over the years, as well as themany
NUPACK users that have emailed support@nupack.org to request features or report bugs. We
thank J.S. Bois for helpful discussions. This work was funded by the National Science Foundation
(Software Elements NSF-OAC-1835414, INSPIRE NSF-CHE-1643606, Molecular Programming

nupack.org
support@nupack.org

29

Project NSF-CCF-1317694), by the Programmable Molecular Technology Center (PMTC) within
the Beckman Institute at Caltech, by the AWS/IST Cloud Credit Program at Caltech, by a Microsoft
Azure sponsorship, by the National Institutes of Health (National Research Service Award T32
GM007616), by a Professorial Fellowship at Balliol College, University of Oxford, and by the
Eastman Visiting Professorship at the University of Oxford.

30

Bibliography

[1] J. N. Zadeh, C. D. Steenberg, J. S. Bois, B. R. Wolfe, M. B. Pierce, A. R. Khan, R. M. Dirks,
and N. A. Pierce. “NUPACK: Analysis and Design of Nucleic Acid Systems”. In: J. Comput.
Chem. 32.1 (2011), pp. 170–173. doi: 10.1002/jcc.21596.

[2] I. Tinoco Jr., O.Uhlenbeck, andM. Levine. “Estimation of Secondary Structure in Ribonucleic
Acids”. In: Nature 230 (1971), pp. 362–367.

[3] M. J. Serra and D. H. Turner. “Predicting Thermodynamic Properties of RNA”. In: Methods
Enzymol. 259 (1995), pp. 242–261.

[4] J. SantaLucia Jr. “A Unified View of Polymer, Dumbbell, and Oligonucleotide DNA Nearest-
Neighbor Thermodynamics”. In: Proc. Natl. Acad. Sci. U. S. A. 95.4 (1998), pp. 1460–1465.

[5] D. H. Mathews, J. Sabina, M. Zuker, and D. H. Turner. “Expanded Sequence Dependence of
Thermodynamic Parameters Improves Prediction of RNA Secondary Structure”. In: J. Mol.
Biol. 288 (1999), pp. 911–940.

[6] M. Zuker. “Mfold Web Server for Nucleic Acid Folding and Hybridization Prediction”. In:
Nucleic Acids Res. 31.13 (2003), pp. 3406–3415.

[7] J. SantaLucia Jr. and D. Hicks. “The Thermodynamics of DNA Structural Motifs”. In: Annu.
Rev. Biophys. Biomol. Struct. 33 (2004), pp. 415–440. issn: 1056-8700.

[8] D. H. Mathews, M. D. Disney, J. L. Childs, S. J. Schroeder, M. Zuker, and D. H. Turner.
“Incorporating Chemical Modification Constraints into a Dynamic Programming Algorithm
for Prediction of RNA Secondary Structure”. In: Proc. Natl. Acad. Sci. U. S. A. 101.19 (2004),
pp. 7287–7292. issn: 0027-8424. doi: 10.1073/pnas.0401799101.

[9] R. T. Koehler and N. Peyret. “Thermodynamic Properties of DNA Sequences: Characteristic
Values for the Human Genome”. In: Bioinformatics 21.16 (2005), pp. 3333–3339. issn:
1367-4803. doi: Doi10.1093/Bioinformatics/Bti530.

[10] Z. J. Lu, D. H. Turner, and D. H. Mathews. “A Set of Nearest Neighbor Parameters for
Predicting the Enthalpy Change of RNA Secondary Structure Formation”. In: Nucleic Acids
Res. 34.17 (2006), pp. 4912–4924. issn: 0305-1048. doi: 10.1093/nar/gkl472.

[11] R. Tyagi and D. H. Mathews. “Predicting Helical Coaxial Stacking in RNA Multibranch
Loops”. In: RNA 13.7 (2007), pp. 939–951. issn: 1355-8382. doi: 10.1261/rna.305307.

[12] R. M. Dirks and N. A. Pierce. “A Partition Function Algorithm for Nucleic Acid Secondary
Structure Including Pseudoknots”. In: J. Comput. Chem. 24 (2003), pp. 1664–1677.

[13] R. M. Dirks, M. Lin, E. Winfree, and N. A. Pierce. “Paradigms for Computational Nucleic
Acid Design”. In: Nucleic Acids Res. 32.4 (2004), pp. 1392–1403.

[14] R. M. Dirks and N. A. Pierce. “An Algorithm for Computing Nucleic Acid Base-Pairing
Probabilities Including Pseudoknots”. In: J. Comput. Chem. 25 (2004), pp. 1295–1304.

[15] R. M. Dirks, J. S. Bois, J. M. Schaeffer, E. Winfree, and N. A. Pierce. “Thermodynamic
Analysis of Interacting Nucleic Acid Strands”. In: SIAM Rev. 49.1 (2007), pp. 65–88.

https://doi.org/10.1002/jcc.21596
https://doi.org/10.1073/pnas.0401799101
https://doi.org/Doi 10.1093/Bioinformatics/Bti530
https://doi.org/10.1093/nar/gkl472
https://doi.org/10.1261/rna.305307

31

[16] J. N. Zadeh, B. R. Wolfe, and N. A. Pierce. “Nucleic Acid Sequence Design via Efficient
Ensemble Defect Optimization”. In: J. Comput. Chem. 32 (2011), pp. 439–452. doi: 10.
1002/jcc.21633.

[17] B. R. Wolfe and N. A. Pierce. “Nucleic Acid Sequence Design for a Test Tube of Interacting
Nucleic Acid Strands”. In: ACS Synth. Biol. 4.10 (2015), pp. 1086–1100.

[18] B. R. Wolfe, N. J. Porubsky, J. N. Zadeh, R. M. Dirks, and N. A. Pierce. “Constrained
Multistate Sequence Design for Nucleic Acid Reaction Pathway Engineering”. In: J. Am.
Chem. Soc. 139 (2017), pp. 3134–3144.

[19] N. J. Porubsky, M. E. Fornace, and N. A. Pierce. “NUPACK 4.0: Analysis and Design of
Nucleic Acid Structures, Devices, and Systems”. In: Submitted ().

[20] L. M. Hochrein, M. Schwarzkopf, M. Shahgholi, P. Yin, and N. A. Pierce. “Conditional Dicer
Substrate Formation via Shape and Sequence Transduction with Small Conditional RNAs”.
In: J. Am. Chem. Soc. 135.46 (2013), pp. 17322–17330.

[21] C. Geary, P. W. K. Rothemund, and E. S. Andersen. “A Single-Stranded Architecture for
Cotranscriptional Folding of RNA Nanostructures”. In: Science 345.6198 (2014), pp. 799–
804.

[22] T. Xia, J. SantaLucia Jr., M. Burkard, R. Kierzek, S. Schroeder, X. Jiao, C. Cox, and D. Turner.
“Thermodynamic Parameters for an Expanded Nearest-Neighbor Model for Formation of
RNA Duplexes with Watson-Crick Base Pairs”. In: Biochemistry 37.42 (1998), pp. 14719–
14735.

[23] D. H. Turner and D. H. Mathews. “NNDB: The Nearest Neighbor Parameter Database for
Predicting Stability of Nucleic Acid Secondary Structure”. In: Nucleic Acids Res. 38 (2010),
pp. D280–D282. issn: 0305-1048. doi: 10.1093/nar/gkp892.

[24] V. Bloomfield, D. Crothers, and I. Tinoco Jr. Nucleic Acids: Structures, Properties, and
Functions. Sausalito, CA: University Science Books, 2000.

[25] D. H. Turner and D. H. Mathews. “NNDB: the nearest neighbor parameter database for
predicting stability of nucleic acid secondary structure”. In: Nucleic Acids Res. 38 (2010),
pp. D280–D282.

[26] N. Peyret. “Prediction of Nucleic Acid Hybridization: Parameters and Algorithms”. Thesis.
2000.

[27] S. Bommarito, N. Peyret, and J. SantaLucia. “Thermodynamic Parameters forDNASequences
with Dangling Ends”. In: Nucleic Acids Res. 28.9 (2000), pp. 1929–1934. issn: 0305-1048.
doi: DOI10.1093/nar/28.9.1929.

[28] J. McCaskill. “The Equilibrium Partition Function and Base Pair Binding Probabilities for
RNA Secondary Structure”. In: Biopolymers 29 (1990), pp. 1105–1119.

[29] Y. Ding and C. Lawrence. “A Statistical Sampling Algorithm for RNA Secondary Structure
Prediction”. In: Nucleic Acids Res. 31.24 (2003), pp. 7280–7301.

[30] M. Zuker and P. Stiegler. “Optimal Computer Folding of Large RNA Sequences Using
Thermodynamics and Auxiliary Information”. In: Nucleic Acids Res. 9.1 (1981), pp. 133–
147.

https://doi.org/10.1002/jcc.21633
https://doi.org/10.1002/jcc.21633
https://doi.org/10.1093/nar/gkp892
https://doi.org/DOI 10.1093/nar/28.9.1929

32

[31] R. B. Lyngsø, M. Zuker, and C. N. S. Pedersen. “Fast Evaluation of Internal Loops in RNA
Secondary Structure Prediction”. In: Bioinformatics 15.6 (1999), pp. 440–445.

[32] Y. Ding, C. Chan, and C. Lawrence. “RNA Secondary Structure Prediction by Centroids in a
Boltzmann Weighted Ensemble”. In: RNA 11 (2005), pp. 1157–1166.

[33] A. A. Stepanov and D. E. Rose. FromMathematics to Generic Programming. Crawfordsville,
Indiana: Pearson Education, 2014.

[34] P. Esterie, J. Falcou, M. Gaunard, and J.-T. Lapreste. “Boost.SIMD: Generic Programming
for Portable SIMDization”. In: Proceedings of the 2014 Workshop on Programming Mod-
les for SIMD/Vector Processing. Bh0krTimes Cited:3Cited References Count:4International
Conference on Parallel Architectures and Compilation Techniques. New York: ACM, 2012,
pp. 1–8. isbn: 1089-795x.

[35] C. Sanderson and R. Curtin. “Armadillo: A Template-Based C++ Library for Linear Algebra”.
In: J. Open Source Softw. 1 (2016), p. 26.

33

C h a p t e r 3

Constrained Multistate Sequence Design for Nucleic Acid Reaction Pathway Engineering

This chapter was adapted from material in B. R. Wolfe∗, N. J. Porubsky∗, J. N. Zadeh, R. M. Dirks,
and N. A. Pierce. “Constrained Multistate Sequence Design for Nucleic Acid Reaction Pathway
Engineering”. In: Journal of the American Chemical Society 139.8 (2017), pp. 3134–3144. issn:
15205126. doi: 10.1021/jacs.6b12693. and the supplementary information thereof.

Crosstalk
Products

10 nM

10 nM

10 nM

Intermediates

CUGGACAUCACCUCCCACAACGAGGACUAGUU-
GUGGGAGGUGAUGUCGGGUGUU-
CACUACCAGCAGAACACCCGACAUCACCUACCACU
ACCAGCAGAACAAGGUAGAUGUCGGGUGUUCUGCU
GGUAGUGGUCUGGACAUCACCUCCCACAACGAGGA
CUAGUUGUGGGAGGUGAUGUCGGGUGUUCACUACC
AGCAGAACACCCGACAUCACCUACCACUACCAGCA
GAACAAGGUAGAUGUCGGGUGUUCUGCUGGUAGUG
GUCUGGACAUCACCUCCCACAACGAGGACUAGUUG
UGGGAGGUGAUGUCGGGUGUUCACUACCAGCAGAA
CACCCGACAUCACCUACCACUACCAGCAGAACAAG
GUAGAUGUCGGGUGUUCUGCUGGUAGUGGUCUGGA
CAUCACCUCCCACAACGAGGACUAGUUGUGGGAGG
UGAUGUCGGGUGUUCACUACCAGCAGAACACCCGA
CAUCACCUACCACUACCAGCAGAACAAGGUAGAUG
UCGGGUGUUCUGCUGGUAGUGGU

Design

Reactants

10 nM
10 nM

10 nM

All 10 nM

We describe a framework for designing the sequences of multiple nucleic acid strands intended to
hybridize in solution via a prescribed reaction pathway. Sequence design is formulated as amultistate
optimization problem using a set of target test tubes to represent reactant, intermediate, and product
states of the system, as well as to model crosstalk between components. Each target test tube contains
a set of desired “on-target” complexes, eachwith a target secondary structure and target concentration,
and a set of undesired “off-target” complexes, eachwith vanishing target concentration. Optimization
of the equilibrium ensemble properties of the target test tubes implements both a positive design
paradigm, explicitly designing for on-pathway elementary steps, and a negative design paradigm,
explicitly designing against off-pathway crosstalk. Sequence design is performed subject to diverse
user-specified sequence constraints including composition constraints, complementarity constraints,
pattern constraints, and biological constraints. Constrained multistate sequence design facilitates
nucleic acid reaction pathway engineering for diverse applications in molecular programming and
synthetic biology. Design jobs can be run online via the NUPACK web application.

https://doi.org/10.1021/jacs.6b12693

34

3.1 Introduction
Life is orchestrated by programmable biopolymers – DNA, RNA, and proteins – that execute
complex self-assembly and disassembly processes to grow, regulate, and repair organisms. The
emerging discipline of molecular programming is inspired by these biological proofs of principle
and seeks to establish sequence design principles and algorithms that enable robust encoding of
a desired molecular function into biopolymer sequences. To engineer dynamic self-assembly and
disassembly processes, it is necessary to control not just equilibrium properties, but the kinetic
pathways by which molecules interact. During the last decade, the programmable chemistry of
nucleic acid base pairing has provided a fertile design space for engineering pathway-controlled
self-assembly and disassembly processes1,2.

Molecular programmers engineer nucleic acid reaction pathways using an ever-increasing variety of
small conditional DNA and RNAmotifs (scDNAs and scRNAs) that exploit diverse design elements
to interact and change conformation via prescribed hybridization cascades1,2. Modes of nucleating
interactions include toehold/toehold3–10, loop/toehold11,12, loop/loop13,14, and template/toehold12

hybridization. Modes of strand displacement include 3-way branch migration3–5,7–11, 4-way branch
migration6,12,14,15, and spontaneous dissociation7,10,12. To exert control over the order of self-
assembly and disassembly events, scDNAs are designed to co-exist metastably (i.e., the molecules
are kinetically trapped) or stably (i.e., the molecules are thermodynamically trapped), with the next
step in the reaction pathway triggered either by a cognate molecular input detected from the environ-
ment or by a molecular output of a previous step in the reaction pathway. Principles for engineering
conditional metastability include nucleation barriers4,8, topological constraints13,14, toehold seques-
tration5,7,8,10,12, and template unavailability12, while principles for engineering conditional stability
include cooperativity16 and sequence transduction12. These pathway-controlled self-assembly and
disassembly reactions have been driven by the enthalpy of base pairing3–6,8,10–13 and the entropy
of mixing super7,8,10,12. These design elements have enabled the rational design and construction
of scDNAs executing diverse dynamic functions, including catalysis, signal amplification, sequence
transduction, shape transduction, Boolean logic, and locomotion1,2.

Devising a new reaction pathway is akin to molecular choreography, requiring conception of both
the scRNA participants (or equivalently scDNA participants) and the dance that they will execute
via pathway-controlled self-assembly and disassembly operations. Owing to the modularity of
scRNA function, new reaction pathways representing complex dynamic functions can often be
fruitfully sketched by hand. Once a new reaction pathway has been choreographed, the task
remains of encoding the intended pathway-controlled interactions and conformational changes into
the sequences of the constituent scRNAs. To program this dynamic function, the nucleic acid
sequences must be designed so that the molecules predominantly execute the desired on-pathway
interactions while avoiding off-pathway alternatives. Here, we address the dual challenges of
formulating and solving the sequence design problem for nucleic acid reaction pathway engineering.

35

Step 1
Step 2

C

a b c

a*

y*

z*
b* c*

X·A B·C

B

a

b

c

y

x

z

a

b

y
s

x w

y*
z*

a*
x* w*

x y z a

x*
w*

y* z* a*

b

w

x

y
s

A·B
y

x

z a b

y* z* a* b*

c*X

Figure 3.1: Reaction pathway for conditional Dicer substrate formation via shape and sequence transduction with small
conditional RNAs (scRNAs)12. scRNA A·B detects input X (comprising sequence ‘a-b-c’), leading to production of
Dicer substrate B·C (targeting independent sequence ‘w-x-y-z’). Step 1: X displaces A from B via toehold-mediated
3-way branch migration and spontaneous dissociation. Step 2: B assembles with C via loop/toehold nucleation and 3-way
branch migration to form Dicer substrate B·C. See reaction pathways for additional case studies in Section B.2.1.

3.2 Design Formulation
3.2.1 Reaction Pathway Specification
Consider a set of nucleic acid molecules intended to execute a prescribed hybridization cascade. For
example, the reaction pathway of Figure 3.1 describes scRNAs that upon binding to input X, perform
shape and sequence transduction to form a Dicer substrate targeting an independent output Y for
silencing12. A reaction pathway specifies the elementary steps (each a self-assembly or disassembly
operation in which complexes form or break) by which the molecules are intended to interact, the
desired secondary structure for each on-pathway complex, and the complementarity relationships
between sequence domains in the molecules. For example, in the reaction pathway of Figure 3.1,
there are two elementary steps (Step 1: X + A·B→X·A +B, Step 2: B + C→B·C) involving six on-
pathway complexes (X, A·B, X·A, B, C, B·C) and numerous sequence domains (‘a*’ complementary
to ‘a’, ‘b*’ complementary to ‘b’, and so on).

In addition to specifying a set of desired on-pathway elementary steps, each reaction pathway
also implicitly specifies a much larger set of off-pathway interactions, corresponding to undesired
crosstalk between components within the pathway or with components from other unrelated re-
action pathways. To perform sequence design for reaction pathway engineering, we formulate a
multistate optimization problem to explicitly design for on-pathway elementary steps (a positive
design paradigm) and against off-pathway crosstalk (a negative design paradigm).

3.2.2 Multistate Test Tube Design Ensemble
A multistate test tube design problem is specified as a set of target test tubes, Ω. Each tube, h ∈ Ω,
contains a set of desired on-target complexes, Ψon

h
, and a set of undesired off-target complexes,

Ψoff
h
. For each on-target complex, j ∈ Ψon

h
, the user specifies a target secondary structure, sj ,

and a target concentration, yh, j . For each off-target complex, j ∈ Ψoff
h
, the target concentration is

vanishing (yh, j = 0) and there is no target structure (sj = ∅). The set of complexes in tube h is then

36

Ψh ≡ Ψ
on
h
∪ Ψoff

h
and the set of all complexes in multistate test tube ensemble Ω is Ψ ≡ ∪h∈ΩΨh.

Consider specification of the multistate test tube ensemble, Ω, for the design of N orthogonal
systems for a reaction pathway of M elementary steps. One elementary step tube is specified for
each step m = 0, . . . , M for each system n = 1, . . . , N (treating formation of the initial reactants as a
precursor “Step 0”). Additionally, a single global crosstalk tube is specified to minimize off-pathway
interactions between the reactive species generated during all elementary steps of all systems. The
total number of target test tubes is then |Ω| = N ∗ (M + 1) + 1.

A detailed description of our approach for specifying target test tubes is provided in Section 3.2.3.

3.2.3 Specification of Target Test Tubes
General Formulation

Consider specification of the multistate test tube ensemble,Ω, for the design of N orthogonal systems
for a reaction pathay of M elementary steps, each corresponding to a self-assembly or disassembly
operation in which complexes form or break. One elementary step tube is specified for each step
m = 0, 1, . . . , M for each system n = 1, . . . , N (treating formation of the initial reactants as a
precursor “Step 0”). Additionally, a single global crosstalk tube is specified to minimize off-pathway
interactions between the reactive species generated during all elementary steps of all systems. The
total number of target test tubes is then |Ω| = (M + 1) × N + 1.

Elementary Step Tubes

Consider elementary step m for orthogonal system n with on-pathway products Ψproducts
mn

that are
intended to form at non-zero concentrations at equilibrium, and reactants Ψreactants

mn
that are intended

to fully convert into the on-pathway products at equilibrium. Furthermore, consider the set of off-
pathway products, Ψcrosstalk

mn
, corresponding to unintended interactions between these same reactants.

The elementary step tube for step m of system n is then:

Step mn tube: Ψon
h
≡ Ψ

products
mn

, Ψoff
h
≡ Ψreactants

mn
∪ Ψcrosstalk

mn

where the on-targets are the on-pathway products, and the off-targets are the reactants and off-pathway
crosstalk products. For step m of system n, this tube designs for full conversion of cognate reactants
into cognate products and against local crosstalk between these same reactants. One elementary step
tube is specified for each elementary step m = 0, 1, . . . , M for each system n = 1, . . . , N .

The off-pathway crosstalk products for step m of system n are defined as:

Ψcrosstalk
mn

= Ψ
L≤Lmax
mn

− Ψexclude
mn

where the set ΨL≤Lmax
mn

denotes the set of all complexes of up to Lmax strands (that are not already
on-targets in the Step mn tube). The set Ψexclude

mn
contains energetically favorable complexes that we

37

wish to exclude from the ensemble for the current elementary step (e.g., downstream on-pathway
products, or off-pathway products that are inhibited kinetically rather than thermodynamically, and
hence are not suitable for inclusion in the equilibrium optimization ensemble).

Global Crosstalk Tube

To actively design against global crosstalk, we additionally specify a single global crosstalk tub:

Global crosstalk tube: Ψon
h
≡ Ψreactive

global , Ψoff
h
≡ Ψcrosstalk

global

where Ψreactive
global denotes the set of all reactive species generated during all elementary steps for all

systems and Ψcrosstalk
global denotes the set of undesired crosstalk products resulting from interactions

between these species.

For the global crosstalk tube, we exploit motif simplification to enable specification of the on-target
and off-target complexes using using only monomers and dimers. The presumption is that motif
complexity will typically decrease rather than increase crosstalk between reactive species, so that for
the global crosstalk tube, motif simplification is justified in the service of efficiency and simplicity.
By contrast, for the elementary step tubes, reactant and product complexes are treated without
motif simplification, ensuring that any energetic effects associated with the full complexes (either
unfavorable [e.g., 3-arm junction for CHA product] or favorable [e.g., nick stack for HCR]) are taken
into consideration.

To define various forms of motif simplification, it is helpful to define input and output domains that
participate in the elementary steps. Each scRNA or scDNA motif (monomer, dimer, trimer, etc)
has one or more input domains that control the state of one or more output domains. An inactive
output domain is toggled to the active state when sequestering input domains hybridize to active
output domains generated by earlier elementary steps in the reaction pathway. Nucleation with an
input domain occurs via hybridization to an accessible loop or toehold. Targets that serve as inputs
to a reaction pathway may be viewed as unconditionally active output domains that are available to
hybridize to complementary input domains at any step in a reaction pathway.

Using motif simplification, we specify the reactive species and cognate products for system n as
follows:

• λ
simple
n : scRNA and scDNAmotifs with multiple input or output domains are simplified so that

only the input and output domains for a single elementary step are present in each simplified
motif.

• λss-outn : single-stranded output domains are specified for each elementary step, removing
other concatenated or hybridized domains that represent the history or future of the reaction
(participating in previous or future elementary steps).

38

• λss-inn : single-stranded nucleation sites within input domains (toeholds or loops) are specified
isolated from the surrounding domains representing the history or future of the reaction.∗

• λreactive
n ≡ {λsimple∪simpλ

ss-out∪simpλ
ss-in}n: the set of reactive species for system n is specified

using a union operator ∪simp that eliminates redundancies when one monomer species is an
accessible subsequence of another monomer species.

• λ
cognate
n : cognate products expected to form from reactive species in λreactive

n based on sequence
complementarity imposed by the reaction pathway (e.g., an input domain within a motif in
λ

simple
n is expected to hybridize to a complementary output domain in λss-outn).

These definitions for λreactive
n and λcognate

n are then used to define the on-targets for the global crosstalk
tube:

Ψreactive
global ≡ ∪n=1,...,N {λ

reactive
n }

and the off-targets for the global crosstalk tube:

Ψcrosstalk
global ≡ Ψ

L≤Lmax
global − ∪n=1,...,N {λ

cognate
n }

Here, ΨL≤Lmax
global denotes the set of all complexes of up to Lmax strands (that are not already on-

targets in the global crosstalk tube). The set ∪n=1,...,N {λ
cognate
n } contains all the cognate products

that the reactive species in the N orthogonal systems are expected to form based on sequence
complementarity. Crucially, by excluding these cognate products from Ψcrosstalk

global , they do not appear
in the global crosstalk tube as either on-targets or off-targets. Hence, all reactive species in the
global crosstalk tube are forced to perform either no reaction (remaining as desired on-targets) or to
undergo a crosstalk reaction (forming undesired off-targets), providing the basis for minimization of
global crosstalk during sequence optimization.

Target Test Tube Specification for Conditional Dicer Substrate Formation via Shape and
Sequence Transduction with scRNAs

Target test tubes are defined using the specification of Section 3.2.3 with the following definitions.
The total number of target test tubes is |Ω| =

∑
n=1,...,N {Step 0, Step 1, Step 2}n + Crosstalk =

3N +1; the target test tubes in the multistate test tube ensemble,Ω, are indexed by h = 1, . . . , 3N +1.
Lmax = 2 for all tubes.

∗The role of λss-inn is to enable Ψcrosstalk
global (the off-targets for the global crosstalk tube) to be specified without requiring

any complexes larger than dimers. For example, consider a dimer motif with an exposed toehold. Crosstalk via kissing
of this toehold with that of another dimer motif would yield a tetramer off-target; including these toeholds as isolated
monomers in λss-inn allows this crosstalk interaction to be described by an off-target dimer, which is automatically included
in Ψcrosstalk

global by considering all off-targets of up to Lmax = 2 strands. Further, inclusion of loop nucleation sites in λss-inn

enables designing against pseudoknotted toehold/loop and loop/loop crosstalk interactions without needing to explicitly
include pseudoknots in the structural ensemble of any complex.

39

Reactants for System n

• Target: Xn

• scRNAs: {A·B, C}n

Elementary Step Tubes for System n

• Step 0n: Ψproducts
0n ≡ {X, A·B, C}n; Ψreactants

0n ≡ {A, B·C}n; Ψexclude
0n ≡ {X·A}

• Step 1n: Ψproducts
1n ≡ {X·A, B}n; Ψreactants

1n ≡ {X, A·B}n; Ψexclude
1n ≡ ∅

• Step 2n: Ψproducts
2n ≡ {B·C}n; Ψreactants

2n ≡ {B, C}n; Ψexclude
2n ≡ ∅

Crosstalk Tube

• Crosstalk tube: Ψreactive
global ≡ ∪n=1,...,N {λ

reactive
n }; Ψcrosstalk

global ≡ Ψ
L≤Lmax
global − ∪n=1,...,N {λ

cognate
n }

The reactive species and cognate products for system n are:

• λ
simple
n = {A·B, C}n

• λss-outn = {X, B, Cout}n

• λss-inn = {Atoe, Cloop}n

• λreactive
n = {A·B, C, X, B, Cout, Atoe, Cloop}n

• λ
cognate
n = {X·A, B·C, X·Atoe, B·Cloop}n

based on the definitions (listed 5′ to 3′ using the sequence domain notation of Figure B.5):

• A ≡ c*-b*-a*-z*-y*

• Atoe ≡ c*

• B ≡ x-y-z-a-b

• C ≡ Cout-Cin

• Cloop ≡ s-a*-z*

• Cin ≡ a*-z*-y*-x*-w*

• Cout ≡ w-x-y-s

• X ≡ a-b-c

40

Note: Cloop
n includes portions of both Cin

n and Cout
n . Including Cloop

n in λreactive
n is not redundant with

inclusion of Cn because pairing to the loop would cause a pseudoknot and hence will not be checked
by the ensemble except if the interaction opens the hairpin. We want to be able to check nucleation
with the loop even when the hairpin remains closed, so we include Cloop

n in λreactive
n .

To illustrate this approach, Figure 3.2a depicts target test tubes for the reaction pathway of Figure 3.1.
There are three elementary step tubes, each containing on-target complexes corresponding to the
products of the corresponding step: the Reactants tube (Step 0) contains on-targets X, A·B, and
C; the Step 1 tube contains on-targets X·A and B; the Step 2 tube contains on-target B·C. Within
each target test tube, each on-target complex is depicted by its target secondary structure labeled
with its target concentration. Each elementary step tube also contains off-targets (with vanishing
target concentration) of two varieties: reactants that are intended to fully convert into the on-pathway
products, and off-pathway crosstalk products between these same reactants. Hence, these elementary
step tubes design for full conversion of cognate reactants into cognate products and against local
crosstalk between these same reactants.

To simultaneously design N orthogonal systems, three elementary step tubes of the type shown in
Figure 3.2a are specified for each system. Furthermore, to design against off-pathway interactions
within and between systems, a single global crosstalk tube is specified in Figure 3.2b. In the
global crosstalk tube, the on-target complexes correspond to all reactive species generated during
all elementary steps (m = 0, 1, 2) for all systems (n = 1, . . . , N); the off-target complexes correspond
to non-cognate interactions between these reactive species (see Section 3.2.3 for details on defining
reactive species for a given reaction pathway). Crucially, the global crosstalk tube ensemble omits
the cognate products that the reactive species are intended to form (they appear as neither on-targets
nor off-targets). Hence, all reactive species in the global crosstalk tube are forced to perform either
no reaction (remaining as desired on-targets) or to undergo a crosstalk reaction (forming undesired
off-targets), providing the basis for minimization of global crosstalk during sequence optimization.
To design 8 orthogonal systems for this reaction pathway, the total number of target test tubes is then
|Ω| = 3 ∗ 8 + 1 = 25.

These computational test tube ensembles have two conceptually interesting and practically significant
properties. First, each target test tube isolates a different subset of the system components in local
equilibrium, enabling optimization of kinetically significant states that would appear insignificant
if all components were allowed to interact in a single ensemble. For example, the Step 1 tube of
Figure 3.2a simultaneously optimizes for high-yield production of unstructured intermediate B and
against appreciable formation of off-target dimer B·B, promoting rapid nucleation of the unstructured
toehold in B with the loop of hairpin C during the next step of the reaction pathway. Second, for a
tube containing a given set of system components, the cognate products of their interactions can be
excluded from the ensemble (appearing as neither on-targets nor off-targets), enabling optimization
for high-yield well-structured reactants and against crosstalk. For example, the Reactants tube of
Figure 3.2a excludes the cognate product of Step 1 from the ensemble in order to optimize formation

41

of initial reactants X, A·B, and C and discourage competing crosstalk interactions (e.g., X·X, A·A,
X·C).

Reactants
(Step 0)

Intermediates
(Step 1)

Product
(Step 2)

Global Crosstalk Tube

 all 10 nM

 10 nM
 10 nM

 10 nM

 10 nM

 10 nM
X·A

B

 10 nM

B·C Atoe

Cloop

Cout

Cn

An·Bn

Xn

Bn

X

A·B

C

Elementary Step Tubesa b

n

n

n

 n = 1,…,N

Tube On-targets (Ψon
h
) Off-targets (Ψoff

h
)

Step 0n {X, A·B, C}n {A, B·C}n ∪ ΨL≤Lmax
0n

− {X·A}

Step 1n {X·A, B}n {X, A·B}n ∪ ΨL≤Lmax
1n

Step 2n {B·C}n {B, C}n ∪ ΨL≤Lmax
2n

Crosstalk ∪n=1,...,N {λ
reactive
n } Ψ

L≤Lmax
global − ∪n=1,...,N {λ

cognate
n }

Figure 3.2: Target test tubes for conditional Dicer substrate formation via shape and sequence transduction with scRNAs
(reaction pathway of Figure B.5). Top: Target test tube schematics. Bottom: Target test tube details. Each target test tube
contains the depicted on-target complexes (each with the depicted target structure and a target concentration of 10 nM)
and the off-target complexes listed in the table (each with vanishing target concentration). To simultaneously design N
orthogonal systems, the total number of target test tubes is |Ω| = 3N + 1. Lmax = 2 for all tubes. Design conditions: RNA
in 1 M Na+ at 37 ◦C.

3.2.4 Design Objective Function
To provide a physically meaningful objective function for optimizing the equilibrium base-pairing
properties of a single test tube of interacting nucleic acid strands, we previously derived the test tube
ensemble defect17, Ch, quantifying the equilibrium concentration of incorrectly paired nucleotides
over the ensemble of test tube h. Let

Mh ≡ Ch/y
nt
h ∈ (0, 1) (3.1)

denote the equilibrium fraction of incorrectly paired nucleotides in tube h. Here,

ynt
h ≡

∑
j∈Ψon

h

|φ j |yh, j

42

is the total concentration of nucleotides in tube h, where φ j denotes the sequence of complex j. As
Mh approaches zero, each on-target complex, j ∈ Ψon

h
, approaches its target concentration, yh, j , and

is dominated by its target structure, sj , and each off-target complex, j ∈ Ψoff
h
, forms with vanishing

target concentration.

Generalizing to the multistate test tube ensemble, the multistate test tube ensemble defect,

M ≡
1
|Ω|

∑
h∈Ω

Mh ∈ (0, 1) (3.2)

quantifies the average equilibrium fraction of incorrectly paired nucleotides over the test tubes h ∈ Ω.
The goal is to design a set of sequences such that themultistate test tube ensemble defect,M, satisfies
the stop condition,

M ≤ fstop, (3.3)

for a user-specified value of fstop ∈ (0, 1).

In some cases, the user may wish to alter the relative weighting of defect contributions withinM to
prioritize or deprioritize design quality for a portion of the design ensemble. To provide flexibility,
we permit the user to define custom defect weights for the contribution of each nucleotide, complex,
and test tube toM (see Section B.1.6). With the default value of unity for all weights, this objective
function is simply the multistate test tube ensemble defect (3.2). With custom weights, the physical
meaning of the objective function is distorted in the service of adjusting design priorities.

43

Ta
bl
e
3.
1:

Se
qu
en
ce

C
on

str
ai
nt
s.

C
on
str
ai
nt

ty
pe

C
on
str
ai
nt

re
la
tio

n∗
N
uc
le
ot
id
es

A
ss
ig
nm

en
t

(φ
a
)
∈

R
as

si
gn

m
en

t
a

≡
{
(q

1)
}

1
M
at
ch

(φ
a
,φ

b
)
∈

R
m

at
ch

a
,b

≡
{
(A
,A
),
(C
,C
),
(G
,G
),
(U
,U
)}

2
W
at
so
n–
C
ric

k
(φ

a
,φ

b
)
∈

R
W

C
a
,b

≡
{
(A
,U
),
(C
,G
),
(G
,C
),
(U
,A
)}

2
C
om

pl
em

en
ta
rit
y

(φ
a
,φ

b
)
∈

R
co

m
pl

em
en

t
a
,b

≡
{
(A
,U
),
(C
,G
),
(G
,C
),
(U
,A
),
(G
,U
),
(U
,G
)}

2
C
om

po
si
tio

n
(φ

a
,.
..
,φ

b
)
∈

R
co

m
po

si
tio

n
a
,.
..
,b

≡
{
(φ

a
,.
..
,φ

b
)|

fm
in
≤

∑ i=
a
,.
..
,b

d(
φ
i ,

q1)
/
n
≤

fm
ax
}

b
−

a
+

1
=

n
Si
m
ila
rit
y

(φ
a
,.
..
,φ

b
)
∈

R
si

m
ila

rit
y

a
,.
..
,b

≡
{
(φ

a
,.
..
,φ

b
)|

fm
in
≤

d(
(φ

a
,.
..
,φ

b
),
(q

1 ,
..
.,

qn
))
/
n
≤

fm
ax
}

b
−

a
+

1
=

n
Pa
tte
rn

pr
ev
en
tio

n
(φ

a
,.
..
,φ

b
)
∈

R
pa

tte
rn

a
,.
..
,b

≡
{
(φ

a
,.
..
,φ

b
)|
(q

1 ,
..
.,

qn
)
is
no
ta

su
bs
eq
ue
nc
e
of
(φ

a
,.
..
,φ

b
)}

b
−

a
+

1
≥

n
Li
br
ar
y

(φ
a
,.
..
,φ

b
)
∈

R
lib

ra
ry

a
,.
..
,b

≡
{
(q

1 1,
..
.,

qn 1
),
..
.,
(q

1 m
,.
..
,q

n m
)}

b
−

a
+

1
=

n
W
in
do
w

(φ
a
,.
..
,φ

b
)
∈

R
w

in
do

w
a
,.
..
,b

≡
{
(φ

a
,.
..
,φ

b
)|
(φ

a
,.
..
,φ

b
)
is
a
su
bs
eq
ue
nc
e
of
(q

1 ,
..
.,

qn
)}

b
−

a
+

1
≤

n
∗
Fo

ru
se
r-s

pe
ci
fie
d

qi
∈
{
A,
C,
G,
U,
M,
R,
W,
S,
Y,
K,
V,
H,
D,
B,
N
}
.

44

3.2.5 Sequence Constraints
A nucleic acid reaction pathway imposes sequence constraints on its reactants (e.g., the complemen-
tary sequence domains ‘a’ and ‘a*’ in the reaction pathway of Figure 3.1). Furthermore, a molecular
engineer may wish to impose a variety of additional sequence constraints (e.g., constraining GC
content to optimize synthesis, or constraining input X, comprising sequence domains ‘a-b-c’ in
Figure 3.1, to be a subsequence of a particular mRNA).

We provide a unified and extensible framework for imposing diverse types of sequence constraints
on the design problem:

• Assignment Constraint. Nucleotide a is constrained to have a specified sequence (e.g., A, C, G, U
or any of the IUPAC degenerate nucleotide codes; see Table B.1).

• Match Constraint. Two nucleotides a and b are constrained to be identical (e.g., if a strand
species appears inmore than one on-target complex, corresponding nucleotides are constrained
to have the same sequence in all complexes).

• Watson–Crick Constraint. Two nucleotides a and b are constrained to be Watson-Crick
complements (by default, Watson–Crick constraints are implied for all base pairs present in
on-target structures).

• Complementarity Constraint. Two nucleotides a and b are constrained to be Watson–Crick or
wobble complements.

• Composition Constraint. Consecutive nucleotides a, . . . , b are constrained to have a sequence
composition in a specified range (e.g., a desired GC content can be achieved by constraining
the fraction of S nucleotides to fall in the range [f min, f max]).

• Similarity Constraint. Consecutive nucleotides a, . . . , b are constrained to be similar to a
specified sequence of length n = b−a+1 to a specified degree (e.g., the fraction of nucleotides
matching an mRNA sequence can be constrained to fall in the range [f min, f max]).

• Pattern Prevention Constraint. Consecutive nucleotides a, . . . , b are constrained not to contain
a specified subsequence of length n ≤ b − a + 1 (e.g., prevention of GGGG, which is prone to
forming G-quadruplexes18 that are not accounted for in nearest-neighbor free energy models
super19,20).

• Library Constraint. Consecutive nucleotides a, . . . , b are constrained to be selected from a
specified library of m sequences of length n = b − a + 1 (e.g., a library of toehold sequences
or a library of codons).

• Window Constraint. Consecutive nucleotides a, . . . , b are constrained to be a subsequence of
a specified source sequence of length n ≥ b − a + 1 (e.g., the source sequence is an mRNA),
or more generally, a subsequence of one of multiple specified source sequences.

45

Table 3.2: Reaction pathway engineering case studies.

Reaction Orthogonal Tubes On-targets Off-targets
pathway systems |Ω| |Ψon | |Ψoff |

Conditional self-assembly via 1 5 7 9
hybridization chain reaction (HCR) 8 33 56 520

Boolean logic AND using 1 5 14 52
toehold sequestration gates 8 33 112 3216

Self-assembly of a 3-arm junction via 1 6 11 27
catalytic hairpin assembly (CHA) 8 41 88 1588

Boolean logic AND using 1 3 9 51
a cooperative hybridization gate 8 17 72 2676

Conditional Dicer substrate formation 1 4 9 26
via shape and sequence transduction 8 25 72 1580

Within this framework, each constraint is expressed as a constraint relation (Table 3.1). For some
constraint relations, it is convenient to make use of the sequence distance function,

d(φ, q) ≡
∑

a∈1,..., |φ |

{
0 : φa ∈ qa

1 : φa < qa
,

between sequence φ and the constraint sequence q of equal length, which may contain degenerate
IUPAC nucleotide codes (see Table B.1). For example, d(ACGU, SSWW) = 2. Additional types of
sequence constraints can be supported by specifying new constraint relations.

3.2.6 Constrained Multistate Test Tube Design Problem
Let φΨ ≡ φ j ∀ j ∈ Ψ denote the set of sequences for the complexes in Ψ and let R denote the set
of user-specified sequence constraints. To design a set of sequences, ΦΨ, for a given a nucleic acid
reaction pathway, we specify on-target and off-target complexes within the set of target test tubes,
Ω, to represent on-pathway elementary steps and off-pathway crosstalk. The constrained multistate
test tube design problem is then:

min
φΨ
M subject to R, (3.4)

whereM is the multistate test tube ensemble defect overΩ. The sequence design algorithm seeks to
iteratively reduceM while satisfying the constraints in R, terminating sequence optimization upon
satisfaction of the stop condition (3.3).

3.3 Methods
3.3.1 Algorithm Overview
Our constrained multistate test tube design algorithm generalizes the test tube design algorithm of
Wolfe and Pierce17 to perform sequence design over an ensemble of an arbitrary number of target test

46

10−2 10−1

Ensemble defect (M)

0.0
0.2
0.4
0.6
0.8
1.0

Fr
ac

tio
n

of
 tr

ial
s

stop condition

a Design quality

100 101 102 103 104

Costdes (s)

0.0
0.2
0.4
0.6
0.8
1.0

Fr
ac

tio
n

of
 tr

ial
s

b Design cost

100 101 102 103

Costdes/Costeval

0.0
0.2
0.4
0.6
0.8
1.0

Fr
ac

tio
n

of
 tr

ial
s

c Relative design cost

Orthogonal systems
1
2
4
8

Figure 3.3: Algorithm performance for simultaneous design of N = 1, 2, 4, or 8 orthogonal systems using the target test
tubes of Figure 3.2. (a) Design quality. The stop condition is depicted as a dashed black line. (b) Design cost. (c)
Cost of sequence design relative to a single evaluation of the objective function. Case study: conditional Dicer substrate
formation via shape and sequence transduction with scRNAs. See Figure B.11 for comparison of all case studies.

tubes subject to diverse user-specified sequence constraints. The underlying physical model is based
on nucleic acid secondary structure and nearest-neighbor free energy parameters (Section B.1.1).
The objective function,M, is reduced via iterative mutation of a random initial sequence. Because
of the high computational cost of calculating the objective function (Section B.1.2), it is important to
avoid direct recalculation ofM in evaluating each candidate mutation. We exploit three concepts to
enable efficient calculation of the objective function estimate, M̃: using test tube ensemble focusing,
sequence optimization initially focuses on only the on-target portion of each test tube ensemble
(Section B.1.3); using hierarchical ensemble decomposition, the structural ensemble of each on-
target complex is hierarchically decomposed into a tree of conditional subensembles, yielding a
forest of decomposition trees (Section B.1.4); by calculating conditional physical properties over
the conditional structural ensembles at any level within the decomposition forest, it is possible
to efficiently estimate the equilibrium base-pairing properties of the multistate test tube ensemble
(Section B.1.5). Optional defect weights enable the user to adjust design priorities within this
ensemble (Section B.1.6). To minimize computational cost, candidate mutations are evaluated at
the leaf level of the decomposition forest (Section B.1.7). As optimized subsequences are merged
toward the root level of the forest, any emergent defects are eliminated via ensemble redecomposition
from the parent level on down and sequence reoptimization from the leaf level on up (Section B.1.8).
After subsequences are successfully merged to the root level, the exact objective function, M,
is calculated for the first time, explicitly checking for the effect of the previously neglected off-
target complexes. Any off-target complexes observed to form at appreciable concentration are
hierarchically decomposed, added to the decomposition forest, and actively destabilized during
subsequent forest reoptimization (Section B.1.9). When decomposition or focusing defects are
encountered, hierarchical ensemble decomposition is performed using multiple exclusive split-
points (Section B.1.10). Throughout the sequence optimization process, whenever the sequence is
initialized, mutated, or reseeded, we solve a constraint satisfaction problem to obtain valid sequences
satisfying all constraints in R (Section B.1.11). The algorithm flow is detailed in the pseudocode of
Algorithm B.1.

47

3.3.2 Implementation
The constrained multistate test tube design algorithm is coded in the C and C++ programming
languages. The algorithm is available for non-commercial academic use as part of the NUPACK
web application and source code (www.nupack.org)21.

3.3.3 Sequence Design Trials
For each design problem, 30 independent design trials were performed. Design trials were run on
a cluster of 2.53 GHz Intel E5540 Xeon dual-processor/quad-core nodes with 24 GB of memory
per node. Each trial was run on one computational core using the default algorithm parameters of
Table B.2. Design quality is quantified by the multistate test tube ensemble defectM. To design
N orthogonal systems, all nucleotide, complex, and tube weights are left at the default value of 1
except for the global crosstalk tube which is assigned a weight of N to prevent the effect of crosstalk
from being diluted in the design objective function as the number of orthogonal systems increases.
Data are typically plotted22 as cumulative histograms over design trials. Relative design cost is
quantified by dividing the cost of sequence design (costdes) by the cost of a single evaluation of the
multistate test tube ensemble defect (costeval). Designs are performed in 1M Na+ at 37 ◦C for RNA
(conditional Dicer substrate formation case study) and 25 ◦C for DNA (all other case studies). For
each design trial, the stop condition is fstop = 0.02 (i.e., no more than 2% of nucleotides incorrectly
paired at equilibrium over the multistate test tube ensemble, Ω).

3.4 Results
3.4.1 Reaction Pathway Engineering Case Studies
To examine algorithm performance, we consider a selection of reaction pathways from the molecular
programming literature (Section B.2.1):

• Conditional self-assembly via hybridization chain reaction (HCR). A single-stranded input X
triggers self-assembly of metastable hairpins into a nicked double-stranded polymer4.

• Boolean logic AND using toehold sequestration gates. Detection of two independent single-
stranded inputs X and Y triggers release of a single-stranded output5.

• Self-assembly of a 3-arm junction via catalytic hairpin assembly (CHA). A single-stranded
input X catalyzes self-assembly of a 3-arm branched junction from metastable hairpins8.

• Boolean logic AND using a cooperative hybridization gate. Two independent single-stranded
inputs X and Y cooperatively displace a single-stranded output16.

• Conditional Dicer substrate formation via shape and sequence transduction. Detection of a
single-stranded input X leads to formation of a double-stranded Dicer substrate targeting an
independent output sequence Y for silencing12.

48

10−2 10−1 100

Ensemble defect (M)

0.0
0.2
0.4
0.6
0.8
1.0

Fr
ac

tio
n

of
 tr

ial
s

stop condition

a Design quality

100 101 102 103 104

Costdes (s)

0.0
0.2
0.4
0.6
0.8
1.0

Fr
ac

tio
n

of
 tr

ial
s

b Design cost

Off-targets
With
Without

Figure 3.4: Importance of negative design in reducing crosstalk. Comparison of designs performed with or without
off-targets in the design ensemble. (a) Design quality evaluated by calculating the multistate test tube ensemble defect
(M) over the ensemble containing off-targets. The stop condition is depicted as a dashed black line. (b) Design cost.
Case study: conditional Dicer substrate formation via shape and sequence transduction with scRNAs (N = 8 orthogonal
systems). See Figure B.18 for comparison of all case studies.

For each reaction pathway, we define a set of target test tubes specifying 1, 2, 4, or 8 orthogonal
systems intended to operate independently in the same sample (Section 3.2.3). These constrained
multistate test tube design problems involve up to dozens of test tubes, dozens of on-target complexes,
and thousands of off-target complexes (Table 3.2).

3.4.2 Algorithm Performance for Constrained Multistate Test Tube Design
Figure 3.3 demonstrates the performance of the constrained multistate test tube design algorithm for
the target test tubes of Figure 3.2, corresponding to conditional Dicer substrate formation via shape
and sequence transduction with scRNAs. For each target test tube, the algorithm designs for the
depicted on-target complexes (each with a target secondary structure and target concentration) and
against all off-target complexes. The size of the design ensemble ranges from 4 tubes containing
a total of 9 on-target and 26 off-target complexes for design of 1 system to 25 tubes containing a
total of 72 on-target and 1580 off-target complexes for design of 8 orthogonal systems (Table 3.2).
Sequences are designed subject only to implicit sequence constraints inherent to the sequence domain
specification for each strand (e.g., match constraints for domain “a" appearing in multiple complexes,
Watson-Crick constraints for complementary domains “a" and “a*"). Typical design trials achieve
the desired design quality (stop conditionM ≤ 0.02; panel a) and typical design costs range from
seconds for the design of 1 system to minutes for simultaneous design of 8 orthogonal systems (panel
b). The typical cost of design relative to the cost of analysis ranges from approximately 10 to 60 as
the number of orthogonal systems increases from 1 to 8 (panel c). These rising relative design costs
reflect the increasing challenge of designing against crosstalk as the number of orthogonal systems
increases.

For the five engineering case studies of Table 3.2, typical design trials achieve the 2% stop condition
(Figure B.11). For simultaneous design of 8 orthogonal systems, the typical cost of design relative to
the cost of analysis ranges from a factor of 60 to 1300. If desired, the design cost can be reduced by
relaxing the design quality requirements; using fstop = 0.05 instead of 0.02, the desired design quality
is typically achieved with a relative design cost ranging from a factor of 30 to 300 (Figure B.12).

49

10−2 10−1

Ensemble defect (M)

0.0
0.2
0.4
0.6
0.8
1.0

Fr
ac

tio
n

of
 tr

ial
s

stop condition

a Design quality

100 101 102 103 104

Costdes (s)

0.0
0.2
0.4
0.6
0.8
1.0

Fr
ac

tio
n

of
 tr

ial
s

b Design cost

100 101 102 103 104

Costdes/Costeval

0.0
0.2
0.4
0.6
0.8
1.0

Fr
ac

tio
n

of
 tr

ial
s

c Relative design cost

Constraint type
Default
Composition
Pattern
Window
All

Figure 3.5: Algorithm performance including explicit sequence constraints. Default: implicit sequence constraints
inherent to the reaction pathway (these constraints are also present in the other cases that follow). Composition constraint:
fraction of S ∈ [0.45, 0.55]. Pattern constraint: prevent {AAAA, CCCC, GGGG, UUUU, KKKKKK, MMMMMM, RRRRRR, SSSSSS,
WWWWWW, YYYYYY}. Window constraints: input X and output Y constrained to be subsequences of two different mRNAs
(i.e., biological sequence constraints; see Section B.2.5). All: all of the above constraints. (a) Design quality. The stop
condition is depicted as a dashed black line. (b) Design cost. (c) Cost of sequence design relative to a single evaluation
of the objective function. Case study: conditional Dicer substrate formation via shape and sequence transduction with
scRNAs (N = 1 system). See Figure B.19 for comparison of all case studies.

At the conclusion of sequence design, the distribution of residual defects across target test tubes and
across complexes within each target test tube depends on the idiosyncrasies of each case study (see
Section B.2.3), with the more challenging tubes and complexes retaining higher defects. If desired,
nucleotide, complex, or tube defect weights can be adjusted from their default values of unity to
prioritize or deprioritize reduction of the corresponding defect contributions to the design objective
function,M.

3.4.3 Importance of Negative Design in Reducing Crosstalk
The target test tubes summarized in Table 3.2 and detailed in Section 3.2.3 contain both on-
target and off-target complexes, implementing both a positive design paradigm (designing for the
target concentration of on-target complexes) and a negative design paradigm (designing against the
formation of off-target complexes). Is it important to include off-targets in the design ensemble and
explicitly destabilize these off-pathway interactions in order to arrive at sequence designs with low
crosstalk? To examine this question, Figure 3.4 re-examines the simultaneous design of 8 orthogonal
systems using either the full design ensemble (a total of 72 on-target and 1580 off-target complexes)
or a reduced design ensemble that omits all off-target complexes, evaluating the quality of the
resulting designs over the full ensemble. If the design ensemble contains no off-targets, the typical
ensemble defect of the final sequence designs increases by an order of magnitude (from 2% to over
20%), emphasizing the importance of explicitly destabilizing off-targets. The other engineering case
studies similarly emphasize the importance of negative design in reducing crosstalk (Figure B.18).

3.4.4 Effect of Sequence Constraints
Figure 3.5 illustrates the effects of imposing explicit sequence constraints (composition: constraining
GC content, pattern: preventing 4-nt stretches of any one nucleotide and 6-nt stretches of any two
nucleotides, window: constraining input X and output Y to be subsequences of different mRNAs)
on the design of a single system. Using any of these constraint types alone, typical design trials
satisfy the 2% stop condition (panel a). For composition and pattern constraints, the cost of design is

50

10−2 10−1 100

Ensemble defect (M)

0.0
0.2
0.4
0.6
0.8
1.0

Fr
ac

tio
n

of
 tr

ial
s

stop condition

Perturbed defect

Perturbation
0%
1%
3%
10%
30%

Figure 3.6: Robustness of design quality assessments to perturbations in model parameters. For each design trial, the
median multistate test tube ensemble defect was calculated over 100 perturbed physical models (each parameter perturbed
by Gaussian noise with a standard deviation of 0, 1, 3, 10, or 30% of the parameter modulus). The stop condition is
depicted as a dashed black line. Case study: conditional Dicer substrate formation via shape and sequence transduction
with scRNAs (N = 8 orthogonal systems). See Figure B.20 for comparison of all case studies.

approximately one order of magnitude higher than the cost of analysis (panel c), while using window
constraints to impose biological compatibility, the relative design cost increases to two orders of
magnitude. Imposing all three constraint types simultaneously, the algorithm is typically unable to
reduce the multistate ensemble defect below 5%, and the relative design cost increases to three orders
of magnitude. It is noteworthy that imposing biological sequence constraints dramatically reduces
the size of the design space: for the 39 nucleotides constrained by mRNAs X and Y, the number of
feasible candidate sequences decreases from 3× 1023 to 4× 106; additionally imposing composition
and pattern constraints decreases this number to 3×104 (see Section B.2.5). This dramatic reduction
in sequence space increases both the challenge of jumping between feasible candidate sequences
during the search process and the challenge of achieving a low multistate ensemble defect for the
final design. Sequence-constrained versions of the other engineering case studies reveal similar
trends (Figure B.19), illustrating that sequence constraints increase the degree of difficulty both in
terms of design quality and design cost, and emphasizing the desirability of constraining the design
space only to the extent necessary.

3.4.5 Robustness of Predictions to Model Perturbations
As the empirical parameter sets underlying nucleic acid secondary structure models19,20,23–25 are
further refined going forward, it is important that the predicted design quality is robust to perturba-
tions in the parameters. Figure 3.6 demonstrates that the predicted quality is typically robust to 3%
parameter perturbations (with typical ensemble defect comparable to the 2% stop condition), and
even to 10% parameter perturbations (with the typical defect increasing to only 3%), but not to 30%
parameter perturbations (with the typical defect increasing to 14%). Qualitatively similar trends are
seen for the other case studies (Figure B.20).

3.5 Discussion
To enable sequence design for reaction pathway engineering, the multistate test tube design problem
builds on three subsidiary design problems: complex design, multistate complex design, and test
tube design. For each subsidiary design problem, we describe the design ensemble, define an

51

Table 3.3: Nucleic acid sequence design ensembles.

Per test tube h ∈ Ω

Design problem
Test
tubes |Ω|

On-target
complexes
|Ψon

h
|

Off-target
complexes
|Ψoff

h
|

Complex design 1 1 0
Multistate complex design Arbitrary 1 0

Test tube design 1 Arbitrary Arbitrary
Multistate test tube design Arbitrary Arbitrary Arbitrary

ensemble defect that provides a physically meaningful objective function for optimizing sequence
quality over this ensemble, and examine the extent to which the resulting formulation implements
a positive design paradigm (stabilize on-targets) and a negative design paradigm (destabilize off-
targets). These comparisons illuminate the conceptual properties of the current formulation and the
manner in which it extends existing design capabilities.

3.5.1 Complex Design
For complex design, the goal is to design the equilibrium base pairing properties of a complex of
(one or more) interacting nucleic acid strands. This subsidiary design problem is the foundation on
which the other three design problems build, and has attracted the most algorithm development to
date26–43.

Design Ensemble. For complex design, the user specifies an on-target complex, j, with on-target
secondary structure, sj . We may view complex design as a special case of multistate test tube design
where the design ensemble comprises a single target test tube containing a single on-target complex
and no off-target complexes (Table 3.3).

Design Objective Function. The complex ensemble defect,

n(φ j, sj) = |φ j | −
∑

1≤a≤ |φ j |

1≤b≤ |φ j |+1

Pa,b(φ j)Sa,b(sj),

quantifies the equilibrium number of incorrectly paired nucleotides over the ensemble of complex
j29,36. Here, P(φ j) is the equilibrium base-pairing probability matrix and S(sj) is the target structure
matrix for complex j (see Section B.1.2). Let

Nj ≡ n(φ j, sj)/|φ j | ∈ (0, 1)

denote the equilibrium fraction of incorrectly paired nucleotides in the ensemble of complex j. The
goal is to design a sequence, φ j , that satisfies the stop condition,

Nj ≤ fstop,

for a user-specified value of fstop ∈ (0, 1).

52

Design Paradigms. Optimization of the complex ensemble defect implements a positive design
paradigm (designing for the on-target structure) and a negative design paradigm (designing against
all off-target structures) within the ensemble of the on-target complex29,36. Both paradigms are
crucial to achieve high-quality sequence designs with low complex ensemble defect29,36. Because
the complex design ensemble is equivalent to a target test tube containing a single on-target complex
and no off-target complexes, complex design implements only a positive design paradigm (designing
for the on-target complex) within the ensemble of the target test tube (Table 3.4).

3.5.2 Multistate Complex Design
The complex design ensemble comprises a single on-target complex, and hence does not address
the multistate challenges inherent in reaction pathway engineering. To address this need, multistate
complex design expands the design ensemble to include multiple on-target complexes44. For multi-
state complex design, the goal is to engineer the equilibrium base pairing properties of an arbitrary
number of on-target complexes, each representing a reactant, intermediate, or product state along
the reaction pathway.

Design Ensemble. For multistate complex design, the user specifies a set of on-target complexes,
Ψ. For each on-target complex, j ∈ Ψ, the user specifies a target secondary structure, sj44. We
may view multistate complex design as a special case of multistate test tube design where the design
ensemble contains an arbitrary number of target test tubes each containing a single on-target complex
and no off-target complexes (Table 3.3).

Design Objective Function. The multistate complex ensemble defect,

N ≡
1
|Ψ|

∑
j∈Ψ

Nj ∈ (0, 1),

quantifies the average equilibrium fraction of incorrectly paired nucleotides over the complexes
j ∈ Ψ. The goal is to design a set of sequences, φΨ, that satisfy the stop condition

N ≤ fstop,

for a user-specified value of fstop ∈ (0, 1).

Design Paradigms. Multistate complex design inherits the benefits and shortcomings of complex
design for each reactant, intermediate, or product state along the reaction pathway, implementing
positive and negative design paradigms within the ensemble of each on-target complex, but only a
positive design paradigm within the ensemble of each target test tube (Table 3.4).

3.5.3 Test Tube Design
With complex design and multistate complex design, neither the concentration of the desired on-
target complex, nor the concentrations of undesired off-target complexes are considered. As a result,

53

Table 3.4: Nucleic acid sequence design paradigms.

Paradigms within complex Paradigms within test tube

Ensemble defect Positive Negative Positive Negative States

Complex X X X 1
Multistate complex X X X Arbitrary

Test tube X X X X 1
Multistate test tube X X X X Arbitrary

sequences that are successfully optimized to stabilize a target secondary structure in the context
of an on-target complex, may nonetheless fail to ensure that this complex forms at appreciable
concentration when the strands are introduced into a test tube17. To address this critical shortcoming,
test tube design expands the complex design ensemble to include off-target complexes17. For test
tube design, the goal is to engineer the equilibrium base-pairing properties of a test tube of interacting
nucleic acid strands.

Design Ensemble. For test tube design17, the user specifies a target test tube h containing a set
of on-target complexes, Ψon

h
, and a set of off-target complexes, Ψoff

h
. For each on-target complex,

j ∈ Ψon
h
, the user specifies a target secondary structure, sj , and a target concentration, yh, j . For each

off-target complex, j ∈ Ψoff
h
, the target concentration is vanishing (yh, j = 0) and there is no target

structure (sj = ∅). We may view test tube design as a special case of multistate test tube design
where the design ensemble contains a single target test tube containing arbitrary numbers of on- and
off-target complexes (Table 3.3).

Design Objective Function. The test tube ensemble defect,

C(φΨh
, sΨh

, yh,Ψh
) =

∑
j∈Ψon

h

[
n(φ j, sj)min(xh, j, yh, j) + |φ j |max(yh, j − xh, j, 0)

]
(3.5)

quantifies the equilibrium concentration of incorrectly paired nucleotides over the ensemble of test
tube h17. Here, xh, j is the equilibrium concentration of complex j in tube h (see Section B.1.2). For
each on-target complex, j ∈ Ψon

h
, the first term in the sum represents the structural defect, quantifying

the concentration of nucleotides that are in an incorrect base-pairing state within the ensemble of
complex j, and the second term in the sum represents the concentration defect, quantifying the
concentration of nucleotides that are in an incorrect base-pairing state because there is a deficiency
in the concentration of complex j. For each off-target complex, j ∈ Ψoff

h
, the structural and

concentration defects are identically zero, since yh, j = 0. This does not mean that the defects
associated with off-targets are ignored. By conservation of mass, non-zero off-target concentrations
imply deficiencies in on-target concentrations, and these concentration defects are quantified by
(3.5)17. Using (3.1) to define the normalized test tube ensemble defect, Mh, in terms of Ch ≡

54

C(φΨh
, sΨh

, yh,Ψh
), the goal is to design a set of sequences, φΨh

, that satisfy the stop condition,

Mh ≤ fstop,

for a user-specified value of fstop ∈ (0, 1).

Design Paradigms. Optimization of the test tube ensemble defect implements a positive design
paradigm and a negative design paradigm at two levels (Table 3.4): 1) within the ensemble of each
on-target complex (designing for the on-target structure and against all off-target structures)29,36, and
2) within the ensemble of the target test tube (designing for the target concentration of each on-target
complex and against the formation of all off-target complexes)17. Both paradigms are crucial at both
levels in order to achieve high-quality sequence designs with low test tube ensemble defect17,29,36.

3.5.4 Multistate Test Tube Design
The presentwork extends the conceptual benefits of test tube design to address themultistate demands
of reaction pathway engineering.

DesignEnsemble. Themultistate test tube design ensemble generalizes each of the three subsidiary
design ensembles, encompassing an arbitrary number of target test tubes, each containing arbitrary
numbers of on- and off-target complexes (Table 3.3).

Design Objective Function. Likewise, the multistate test tube ensemble defect, M, generalizes
each of the three subsidiary ensemble defects. When the design ensemble comprises a single target
test tube containing a single on-target complex and no off-target complexes,M reduces to Nj , the
normalized complex ensemble defect29,36. When the design ensemble comprises multiple target test
tubes, each containing a single on-target complex and no off-target complexes,M reduces toN , the
multistate complex ensemble defect. When the design ensemble comprises a single target test tube
containing arbitrary numbers of on- and off-target complexes, M reduces toMh, the normalized
test tube ensemble defect17.

Design Paradigms. Multistate test tube design inherits the conceptual benefits of test tube design
for each target test tube (reactant, intermediate, product, and global crosstalk), implementing positive
and negative design paradigms both within the ensemble of each on-target complex and within the
ensemble of each target test tube (Table 3.4).

3.6 Conclusions
Summary. Constrained multistate test tube design enables sequence design for nucleic acid reac-
tion pathway engineering. The design ensemble uses a set of target test tubes to represent reactant,
intermediate, and product states along the reaction pathway, as well as to model crosstalk between
components. Each target test tube contains a set of desired on-target complexes (each with a target
secondary structure and target concentration) and a set of undesired off-target complexes (each with

55

vanishing target concentration). Sequence quality is quantified by the ensemble defect, representing
the average equilibrium fraction of incorrectly paired nucleotides over the test tubes in the ensemble.
Sequence optimization is performed by reducing the ensemble defect subject to user-specified se-
quence constraints. These sequence constraints can dramatically reduce the size of the design space
(e.g., by constraining a sequence domain to be a subsequence of an mRNA). To effectively navigate
the available sequence space, each valid candidate sequence is generated by solving a constraint
satisfaction problem. The candidate sequence is then accepted or rejected based on an estimate of
the ensemble defect calculated efficiently via hierarchical ensemble decomposition17.

Design Paradigms. Optimization of the ensemble defect implements a positive design paradigm
and a negative design paradigm to optimize for on-pathway interactions and against off-pathway
interactions at two levels: within the ensemble of each on-target complex (designing for the on-
target structure and against all off-target structures)29,36, and within the ensemble of each target test
tube (designing for the target concentration of each on-target complex and against the formation of
all off-target complexes)17. Both paradigms are critical at both levels in order to robustly optimize
ensemble properties over the design ensemble17,29,36.

NUPACK Software Suite. This work unifies and generalizes the complex design36, multistate
complex design super44, test tube design17, and (pre-publication) multistate test tube design tools
provided by the NUPACK software suite (nupack.org), which have been used to engineer diverse
nucleic acid structures, devices, and systems4,6,8,12,45–72.

Towards a Compiler for Molecular Programming. By enabling systematic reaction pathway
engineering, constrained multistate test tube design takes an important step toward our long-term
goal of developing a compiler for programming molecular function. Such a compiler would accept
as input a reaction pathway specification and produce as output a set of nucleic acid sequences that
implement the desired function.

FutureWork. To achieve the goal ofmolecular compilation, additional work is needed to automate
the specification of target test tubes given a desired reaction pathway. To engineer synthetic systems
that operate in a biological context, where most of the nucleotides are native to a host organism
rather than designed by the engineer, it may prove important to actively design against crosstalk with
some or all of the native transcriptome, potentially requiring further advances to the sequence design
formulation and algorithm. In situations where researchers are designing nucleic acid components
intended to interact with proteins or small molecules, it may be desirable to incorporate user-specified
energetic penalties or rewards into the design objective function in order to approximate molecular
interactions that fall outside the scope of nucleic acid secondary structure models.

56

3.7 Associated Content
Supporting Information

Algorithm details, pseudocode, default algorithm parameters. Engineering case studies: reaction
pathways, specification of target test tubes, algorithm performance, residual defects, importance of
negative design in reducing crosstalk, effect of sequence constraints, robustness of predictions to
model perturbations. Additional design studies: performance for test tube design, performance for
complex design. This material is available free of charge via the Internet at http://pubs.acs.org.

3.8 Author Information
Corresponding Author
E-mail: niles@caltech.edu

Author Contributions
*These authors contributed equally.

Notes
The authors declare competing financial interests in the form of patents and pending patent applica-
tions.

3.9 Acknowledgments
This work was funded by the National Science Foundation via the Molecular Programming Project
(NSF-CCF-0832824 and NSF-CCF-1317694), by the Gordon and Betty Moore Foundation
(GBMF2809), by the Beckman Institute at Caltech (PMTC), by a Christensen Fellowship at St
Catherine’s College, University of Oxford, by the John Simon Guggenheim Memorial Foundation,
by a Professorial Fellowship at Balliol College, University of Oxford, and by the Eastman Visiting
Professorship at the University of Oxford.

57

Bibliography

[1] J. Bath and A. J. Turberfield. “DNA nanomachines”. In: Nat. Nanotechnol. 2 (2007), pp. 275–
284.

[2] D. Y. Zhang and G. Seelig. “Dynamic DNA Nanotechnology Using Strand-Displacement
Reactions”. In: Nature Chem. 3.2 (2011), pp. 103–113.

[3] B. Yurke, A. J. Turberfield, A. P. Mills Jr., F. C. Simmel, and J. L. Neumann. “A DNA-Fuelled
Molecular Machine Made of DNA”. In: Nature 406.6796 (2000), pp. 605–608.

[4] R. M. Dirks and N. A. Pierce. “Triggered Amplification by Hybridization Chain Reaction”.
In: Proc. Natl. Acad. Sci. USA 101.43 (2004), pp. 15275–15278.

[5] G. Seelig, D. Soloveichik, D. Zhang, and E. Winfree. “Enzyme-free nucleic acid logic cir-
cuits”. In: Science 314.5805 (2006), pp. 1585–1588.

[6] S. Venkataraman, R. M. Dirks, P. W. K. Rothemund, E. Winfree, and N. A. Pierce. “An
autonomous polymerization motor powered by DNA hybridization”. In: Nat. Nanotechnol. 2
(2007), pp. 490–494.

[7] D. Zhang, A. Turberfield, B. Yurke, and E. Winfree. “Engineering entropy-driven reactions
and networks catalyzed by DNA”. In: Science 318.5853 (2007), pp. 1121–1125.

[8] P. Yin, H. M. T. Choi, C. R. Calvert, and N. A. Pierce. “Programming biomolecular self-
assembly pathways”. In: Nature 451.7176 (2008), pp. 318–322.

[9] D. Zhang and E. Winfree. “Control of DNA strand displacement kinetics using toehold
exchange”. In: J. Am. Chem. Soc. 131 (2009), pp. 17303–17314.

[10] L. Qian and E.Winfree. “Scaling Up Digital Circuit Computation with DNA Strand Displace-
ment Cascades”. In: Science 332.6034 (2011), pp. 1196–1201.

[11] A. Turberfield, J. Mitchell, B. Yurke, A. Mills Jr., M. Blakey, and F. Simmel. “DNA fuel for
free-running nanomachines”. In: Phys. Rev. Lett. 90.11 (2003), p. 118102.

[12] L. M. Hochrein, M. Schwarzkopf, M. Shahgholi, P. Yin, and N. A. Pierce. “Conditional Dicer
substrate formation via shape and sequence transduction with small conditional RNAs”. In:
J. Am. Chem. Soc. 135.46 (2013), pp. 17322–17330.

[13] J. Bois, S. Venkataraman, H. Choi, A. Spakowitz, Z.-G. Wang, and N. Pierce. “Topologi-
cal constraints in nucleic acid hybridization kinetics.” In: Nucleic Acids Res. 33.13 (2005),
pp. 4090–4095.

[14] G. Seelig, B. Yurke, and E. Winfree. “Catalyzed relaxation of a metastable DNA fuel.” In: J.
Am. Chem. Soc. 128.37 (2006), pp. 12211–12220.

[15] N. L. Dabby. “Synthetic molecular machines for active self-assembly: prototype algorithms,
designs, and experimental study”. Ph.D. Thesis. 2013.

[16] D. Y. Zhang. “Cooperative Hybridization of Oligonucleotides”. In: J. Am. Chem. Soc. 133.4
(2011), pp. 1077–1086.

[17] B. R. Wolfe and N. A. Pierce. “Nucleic acid sequence design for a test tube of interacting
nucleic acid strands”. In: ACS Synth. Biol. 4.10 (2015), pp. 1086–1100.

58

[18] N. Saini, Y. Zhang, K. Usdin, and K. S. Lobachev. “When secondary comes first – The
importance of non-canonical DNA structures”. In: Biochimie 95.2 (2013), pp. 117–123.

[19] D. H. Mathews, J. Sabina, M. Zuker, and D. H. Turner. “Expanded sequence dependence
of thermodynamic parameters improves prediction of RNA secondary structure”. In: J. Mol.
Biol. 288 (1999), pp. 911–940.

[20] J. SantaLucia Jr. and D. Hicks. “The thermodynamics of DNA structural motifs”. In: Annu.
Rev. Biophys. Biomol. Struct. 33 (2004), pp. 415–440.

[21] J. N. Zadeh, C. D. Steenberg, J. S. Bois, B. R. Wolfe, M. B. Pierce, A. R. Khan, R. M. Dirks,
and N. A. Pierce. “NUPACK: Analysis and Design of Nucleic Acid Systems”. In: J. Comput.
Chem. 32.1 (2011), pp. 170–173.

[22] J. D. Hunter. “Matplotlib: A 2D graphics environment”. In: Comput. Sci. Eng. 9.3 (2007),
pp. 90–95.

[23] M. J. Serra and D. H. Turner. “Predicting thermodynamic properties of RNA”. In: Methods
Enzymol. 259 (1995), pp. 242–261.

[24] J. SantaLucia Jr. “A Unified View of Polymer, Dumbbell, and Oligonucleotide DNA Nearest-
Neighbor Thermodynamics”. In: Proc. Natl. Acad. Sci. USA 95.4 (1998), pp. 1460–1465.

[25] R. T. Koehler and N. Peyret. “Thermodynamic Properties of DNA Sequences: Characteristic
Values for the Human Genome”. In: Bioinformatics 21.16 (2005), pp. 3333–3339.

[26] I. Hofacker, W. Fontana, P. Stadler, L. Bonhoeffer, M. Tacker, and P. Schuster. “Fast folding
and comparison of RNA secondary structures”. In: Chem. Mon. 125 (1994), pp. 167–188.

[27] C. Flamm, I. Hofacker, S. Maurer-Stroh, P. Stadler, and M. Zehl. “Design of multistable RNA
molecules”. In: RNA 7 (2001), pp. 254–265.

[28] R. M. Dirks and N. A. Pierce. “A partition function algorithm for nucleic acid secondary
structure including pseudoknots”. In: J. Comput. Chem. 24 (2003), pp. 1664–1677.

[29] R. M. Dirks, M. Lin, E. Winfree, and N. A. Pierce. “Paradigms for Computational Nucleic
Acid Design”. In: Nucleic Acids Res. 32.4 (2004), pp. 1392–1403.

[30] M. Andronescu, A. Fejes, F. Hutter, H. Hoos, and A. Condon. “A new algorithm for RNA
secondary structure design”. In: J. Mol. Biol. 336.3 (2004), pp. 607–624.

[31] A. Busch and R. Backofen. “INFO-RNA–a fast approach to inverse RNA folding”. In: Bioin-
formatics 22.15 (2006), pp. 1823–1831.

[32] R. Aguirre-Hernandez, H. Hoos, and A. Condon. “Computational RNA secondary structure
design: empirical complexity and improved methods”. In: BMC Bioinformatics 8 (2007),
Article 34.

[33] B. Burghardt and A. Hartmann. “RNA secondary structure design”. In: Phys. Rev. E 75
(2007), p. 021920.

[34] J. Z. M. Gao, L. Y. M. Li, and C. M. Reidys. “Inverse folding of RNA pseudoknot structures”.
In: Algorithm Mol. Biol. 5 (2010), p. 27.

[35] W. J. Shu, M. Liu, H. B. Chen, X. C. Bo, and S. Q. Wang. “ARDesigner: A web-based system
for allosteric RNA design”. In: J. Biotechnol. 150.4 (2010), pp. 466–473.

59

[36] J. N. Zadeh, B. R. Wolfe, and N. A. Pierce. “Nucleic Acid Sequence Design via Efficient
Ensemble Defect Optimization”. In: J. Comput. Chem. 32 (2011), pp. 439–452.

[37] A. Avihoo, A. Churkin, and D. Barash. “RNAexinv: An extended inverse RNA folding from
shape and physical attributes to sequences”. In: BMC Bioinformatics 12 (2011), p. 319.

[38] E. I. Ramlan and K. P. Zauner. “Design of interacting multi-stable nucleic acids for molecular
information processing”. In: Biosystems 105.1 (2011), pp. 14–24.

[39] A. Taneda. “MODENA: a multi-objective RNA inverse folding”. In: Adv. Appl. Bioinforma.
Chem. 4 (2011), pp. 1–12.

[40] A. Levin, M. Lis, Y. Ponty, C. W. O’Donnell, S. Devadas, B. Berger, and J. Waldispuhl. “A
global sampling approach to designing and reengineering RNA secondary structures”. In:
Nucleic Acids Res. 40.20 (2012), pp. 10041–10052.

[41] M.C.Matthies, S. Bienert, andA. E. Torda. “Dynamics in Sequence Space forRNASecondary
Structure Design”. In: J. Chem. Theory Comput. 8.10 (2012), pp. 3663–3670.

[42] A. Taneda. “Multi-objective genetic algorithm for pseudoknotted RNA sequence design”. In:
Front. Genet. 3 (2012), p. 36.

[43] R.B. Lyngso, J.W. J.Anderson, E. Sizikova,A.Badugu, T.Hyland, and J.Hein. “Frnakenstein:
multiple target inverse RNA folding”. In: BMC Bioinformatics 13 (2012), p. 260.

[44] J. N. Zadeh. “Algorithms for Nucleic Acid Sequence Design”. PhD thesis. 2010.

[45] V. Patzel, S. Rutz, I. Dietrich, C. Köberle, A. Sheffold, and S. Kaufmann. “Design of siRNAs
producing unstructured guide-RNAs results in improved RNA interference efficiency”. In:
Nat. Biotechnol. 23.11 (2005), pp. 1440–1444.

[46] R. Penchovsky andR.Breaker. “Computational design and experimental validation of oligonucleotide-
sensing allosteric ribozymes”. In: Nat. Biotechnol. 23.11 (2005), pp. 1424–1433.

[47] H. M. Salis, E. A. Mirsky, and C. A. Voigt. “Automated design of synthetic ribosome binding
sites to control protein expression”. In: Nat. Biotechnol. 27.10 (2009), pp. 946–950.

[48] H. M. T. Choi, J. Y. Chang, L. A. Trinh, J. E. Padilla, S. E. Fraser, and N. A. Pierce.
“Programmable in situ amplification for multiplexed imaging of mRNA expression”. In: Nat.
Biotechnol. 28.11 (2010), pp. 1208–12.

[49] B. L. Li, A. D. Ellington, and X. Chen. “Rational, modular adaptation of enzyme-free DNA
circuits to multiple detection methods”. In: Nucleic Acids Res. 39.16 (2011), e110.

[50] A. J. Genot, D. Y. Zhang, J. Bath, and A. J. Turberfield. “Remote Toehold: A Mechanism
for Flexible Control of DNA Hybridization Kinetics”. In: J. Am. Chem. Soc. 133.7 (2011),
pp. 2177–2182.

[51] A. J. Genot, J. Bath, and A. J. Turberfield. “Reversible Logic Circuits Made of DNA”. In: J.
Am. Chem. Soc. 133.50 (2011), pp. 20080–20083.

[52] J. Choi, K. R. Love, Y. Gong, T. M. Gierahn, and J. C. Love. “Immuno-Hybridization
Chain Reaction for Enhancing Detection of Individual Cytokine-Secreting Human Peripheral
Mononuclear Cells”. In: Anal. Chem. 83.17 (2011), pp. 6890–6895.

[53] J. Dong,X. Cui, Y.Deng, andZ. Tang. “AmplifiedDetection ofNucleicAcid byG-Quadruplex
Based Hybridization Chain Reaction”. In: Biosens. Bioelectron. 38.1 (2012), pp. 258–263.

60

[54] T. Nishimura, Y. Ogura, and J. Tanida. “Fluorescence resonance energy transfer-based molec-
ular logic circuit using a DNA scaffold”. In: Appl. Phys. Lett. 101 (2012), p. 233703.

[55] M. Schade, A. Knoll, A. Vogel, O. Seitz, J. Liebscher, D. Huster, A. Herrmann, and A.
Arbuzova. “Remote Control of Lipophilic Nucleic Acids Domain Partitioning by DNA Hy-
bridization and Enzymatic Cleavage”. In: J. Am. Chem. Soc. 134.50 (2012), pp. 20490–20497.

[56] J. R. Vieregg, H. M. Nelson, B. M. Stoltz, and N. A. Pierce. “Selective nucleic acid capture
with shielded covalent probes”. In: J. Am. Chem. Soc. 135.26 (2013), pp. 9691–9699.

[57] A. J. Genot, J. Bath, and A. J. Turberfield. “Combinatorial Displacement of DNA Strands:
Application to Matrix Multiplication and Weighted Sums”. In: Angew. Chem., Int. Ed. 52.4
(2013), pp. 1189–1192.

[58] G. D. Hamblin, A. A. Hariri, K. M. M. Carneiro, K. L. Lau, G. Cosa, and H. F. Sleiman.
“Simple Design for DNA Nanotubes from a Minimal Set of Unmodified Strands: Rapid,
Room-Temperature Assembly and Readily Tunable Structure”. In: ACS Nano 7.4 (2013),
pp. 3022–3028.

[59] C. C. Santini, J. Bath, A. M. Tyrrell, and A. J. Turberfield. “A clocked finite state machine
built from DNA”. In: Chem. Commun. 49.3 (2013), pp. 237–239.

[60] H. M. T. Choi, V. A. Beck, and N. A. Pierce. “Next-generation in situ hybridization chain
reaction: higher gain, lower cost, greater durability”. In:ACSNano 8.5 (2014), pp. 4284–4294.

[61] Y. S. Jiang, S. Bhadra, B. L. Li, and A. D. Ellington. “Mismatches Improve the Performance
of Strand-Displacement Nucleic Acid Circuits”. In: Angew. Chem., Int. Ed. 53.7 (2014),
pp. 1845–1848.

[62] C. Geary, P. W. K. Rothemund, and E. S. Andersen. “A single-stranded architecture for
cotranscriptional folding of RNA nanostructures”. In: Science 345.6198 (2014), pp. 799–804.

[63] A. A. Green, P. A. Silver, J. J. Collins, and P. Yin. “Toehold Switches: De-Novo-Designed
Regulators of Gene Expression”. In: Cell 159.4 (2014), pp. 925–939.

[64] J. M. Hu, Y. J. Yu, J. C. Brooks, L. A. Godwin, S. Somasundaram, F. Torabinejad, J. Kim,
C. Shannon, and C. J. Easley. “A Reusable Electrochemical Proximity Assay for Highly
Selective, Real-Time Protein Quantitation in Biological Matrices”. In: J. Am. Chem. Soc.
136.23 (2014), pp. 8467–8474.

[65] R. R. F. Machinek, T. E. Ouldridge, N. E. C. Haley, J. Bath, and A. J. Turberfield. “Pro-
grammable energy landscapes for kinetic control of DNA strand displacement”. In: Nat
Commun 5 (2014), p. 5324.

[66] E. Franco, G. Giordano, P. O. Forsberg, and R.M.Murray. “Negative AutoregulationMatches
Production and Demand in Synthetic Transcriptional Networks”. In: ACS Synth. Biol. 3.8
(2014), pp. 589–599.

[67] B. Koos, G. Cane, K. Grannas, L. Lof, L. Arngarden, J. Heldin, C. M. Clausson, A. Klaesson,
M. K. Hirvonen, F. M. S. de Oliveira, V. O. Talibov, N. T. Pham, M. Auer, U. H. Danielson,
J. Haybaeck, M. Kamali-Moghaddam, and O. Soderberg. “Proximity-dependent initiation of
hybridization chain reaction”. In: Nat Commun 6 (2015), p. 7294.

61

[68] J. G. Zalatan, M. E. Lee, R. Almeida, L. A. Gilbert, E. H. Whitehead, M. La Russa, J. C. Tsai,
J. S. Weissman, J. E. Dueber, L. S. Qi, and W. A. Lim. “Engineering Complex Synthetic
Transcriptional Programs with CRISPR RNA Scaffolds”. In: Cell 160.1-2 (2015), pp. 339–
350.

[69] R. P. Galimidi, J. S. Klein, M. S. Politzer, S. Y. Bai, M. S. Seaman, M. C. Nussenzweig,
A. P. West, and P. J. Bjorkman. “Intra-Spike Crosslinking Overcomes Antibody Evasion by
HIV-1”. In: Cell 160.3 (2015), pp. 433–446.

[70] T.Raschle, C.X. Lin, R. Jungmann,W.M. Shih, andG.Wagner. “ControlledCo-reconstitution
of Multiple Membrane Proteins in Lipid Bilayer Nanodiscs Using DNA as a Scaffold”. In:
ACS Chem. Biol. 10.11 (2015), pp. 2448–2454.

[71] M. K. Takahashi, K. E. Watters, P. M. Gasper, T. R. Abbott, P. D. Carlson, A. A. Chen, and
J. B. Lucks. “Using in-cell SHAPE-Seq and simulations to probe structure-function design
principles of RNA transcriptional regulators”. In: RNA 22.6 (2016), pp. 920–933.

[72] Y. J. Lee, A. Hoynes-O’Connor, M. C. Leong, and T. S. Moon. “Programmable control of
bacterial gene expression with the combined CRISPR and antisense RNA system”. In:Nucleic
Acids Res. 44.5 (2016), pp. 2462–2473.

62

C h a p t e r 4

Next-Generation Sequence Design for Nucleic Acid Reaction Pathway Engineering:
Enhanced Models, Flexibility, and Speed

Molecular programmers are faced with the challenge of translating a conceptual program into a set
of molecules to interface with the real world. Based on our work in Chapter 3, optimization of a
set of target test tubes formulated to capture important reactant, intermediate, product and crosstalk
states through the multistate test tube ensemble defect has been an effective way to obtain nucleic
acid sequences implementing these molecular programs. We have shown that finding sequences that
are both of high quality and highly constrained is achievable. Empirically, designs with stringent
constraint sets require more computational time and achieve lower design quality relative to less
constrained designs.

We introduce an enhanced algorithm that solves multistate sequence design problems more effec-
tively. The design algorithm inherits the algorithmic and implementation improvements of the
underlying thermodynamic calculations from Chapter 2 to give a baseline performance boost and
more accurate modeling of coaxial and dangle stacking states. We introduce a soft constraint frame-
work for multiobjective design to provide users with additional flexibility through new constraint
types and lowered design cost when replacing hard constraints with their soft constraint variants in
highly constrained designs. We introduce a new meta constraint satisfaction problem (CSP) solver
using restart-based search to increase constraint solving speed in most cases and to robustly find
feasible sequences in highly constrained cases. The hard constraint solving framework is augmented
with a new diversity constraint, allowing easier and clearer specification of a common constraint set
as well as better solver performance. These enhancements frequently lead to order of magnitude
reductions in design cost relative to the algorithm and implementation of Chapter 3, and even greater
reductions when switching to soft constraints in the most constrained designs.

4.1 Introduction
The design algorithm presented in Chapter 3 showcases the ability to design the thermodynamics
of several local equilibrium states simultaneously all while using sequences that meet user-specified
constraints, with design priorities modulated through user-defined defect weights. This is an im-
portant contribution because real world reaction pathway design problems often require all of these
components, motivating their inclusion in the multistate test tube design algorithm. This formulation
and functionality have been instrumental in designing new reaction pathway mechanisms1–5 in test
tubes, cell lystate, bacterial cells, and mammalian cells.

However, adding constraints had two general effects on the quality and cost of design. First, adding
a single set of constraints to the design specification caused a deterioration in speed by up to two
orders of magnitude. Second, adding all of the individual constraint sets simultaneously led to such

63

stringent design conditions that design cost increased by up to four orders of magnitude and the target
stop condition forM, fstop = 0.02, was no longer achieved. In practice these two effects are not
necessarily rate limiting due to downstream experimental validation beingmore costly. Furthermore,
principled design is still preferable to heuristic design followed by experimental filtering. So, we
sought new methods to improve the computational performance of multistate test tube design.

From a new methodological standpoint, we implement soft constraints to complement the existing
hard constraints of the multistate test tube design algorithm. One subset of these soft constraints is
analogous to the pattern prevention and similarity hard constraints. For highly constrained designs,
replacing hard constraints with soft constraints results in significantly lower design cost. The
other subset of soft constraints allows for additional flexibility in design specification. These soft
constraints introduce new functionality to design by allowing sequence symmetry minimization and
equalization of the free energy of structures. These soft constraints fulfill common user requests for
optimizing additional heuristic quantities for avoiding kinetic traps and balancing reactions rates of
nucleic acid reaction pathways6,7.

Another large boost to performance is inherited by switching to the new thermodynamics back-
end implementation of Chapter 2. Such drastic increases in analysis speed shone light on other
components of the design algorithm that were previously insignificant relative to the expensive
thermodynamics calculations. This led to an investigation of the constraint satisfaction problem
(CSP) solver algorithm we were using as well as development of a new meta solver to improve this
performance bottleneck.

Finally, our reimplemented version of the multistate test tube design algorithm with the algorithm
changes of this chapter reduced source code size by about 50%. This algorithm is packaged with a
Python API, replacing the previous custom scripting interface and making the algorithm accessible
within the wider Python scientific computing community as well as embeddable as a library inside
other projects.

4.2 Formulation
4.2.1 Ensemble
Our physical design ensemble is defined the same way as in Section 3.2.2.

4.2.2 Multiobjective Optimization Problem Formulation
We define our objective function for multiobjective design as:

M +
∑
k∈S

wk fk(φΨ). (4.1)

Here,M is the multistate test tube ensemble defect defined in Section 3.2.4, and S is the set of soft
constraints discussed in Section 4.2.4. The design problem formulated as a minimization problem
then becomes

min
φΨ

[
M +

∑
k∈S

wk fk(φΨ)

]
subject to R, (4.2)

64

where R is the set of hard constraints discussed in Sections 3.2.5 and 4.2.3. As with the multistate
test tube design algorithm, we do no seek a true minimizer of the objective function, but rather seek
to find a satisficing8 sequence φ∗

Ψ
such that

M +
∑
k∈S

wk fk(φ∗Ψ) ≤ fstop , (4.3)

i.e. a sequence with a corresponding objective function value that “good enough” relative to the
fstop ∈ (0, 1) threshold.

This type of optimization problem is refered to as a multiobjective combinatorial optimization
problem in the optimization literature9. Our objective function is a scalarized acceptance criterion.
This means that while we are ultimately trying to lower the M and the various f

k
(φΨ) values as

much as possible, we select the sum of the individual defects as our proxy for “as much as possible.”
Other possible scalarized acceptance criteria include minimization based on the worst objective or
based on some other norm (e.g. sum of squared defects)10. Scalarized acceptance criteria constrast
with component-wise acceptance criteria, which compare solutions by looking at the individual
objectives (M and the soft constraint f

k
(φΨ) values) and finding a set of solutions that is a mutually

non-dominated approximation to the Pareto front9. Development effort started along the component-
wise path; the output of such an algorithm is a set of solutions that have to be selected amongst by
the user a posteriori. The generation of this set of solutions is also expected to take longer than
producing a single satisficing sequence. Ultimately we changed to the above scalarized objective
function and allow users to specify weights on the objectives (soft constraints) to bias the search
toward a desired balance of the objectives a priori.

4.2.3 Hard Constraints
The algorithm continues to use a constraint satisfaction framework for sequence initialization and
mutation. We continue to use the same set of sequence constraints described in Section 3.2.5.
We now refer to the constraints defining the set R as hard constraints to distinguish from soft
constraints, which are discussed in the next section. Specifically, hard constraints must be met
exactly at every step during design, from sequence initialization through sequence mutation and
reseeding. For comparison with the typical specification of an optimization problem, we write
the objective function (Section 4.2.2) as a minimization over the sequence space φΨ subject to R.
However, it is useful to think of R itself as uniquely defining the sequence space for the problem.
When thought about this way, there is no sense of degree of violation of a constraint: a sequence is
either in the search space or it is not. Furthermore, R and the CSP solver used to find valid sequences
can be thought of as the sequence generator for the design algorithm.

In addition to the constraints of Section 3.2.5, we introduce the new diversity constraint, which allows
for succint specification as well as efficient solution of a common constraint case, as discussed below.

Diversity Constraint. A diversity constraint ensures that for a given string of nucleotide variables
(a domain or strand) every window of a given length has a certain mininum number of distinct

65

nucleotide types. It is specified by the sequence, φ, which sets the scope of the constraint, and
then two integer parameters: lwindow and nmin. The parameter lwindow sets the size of the substring
windows of φ to apply the constraint to. The parameter nmin sets the minimum number of distinct
nucleotide types (A, C, G, T, or U) that must appear in each length lwindow substring of φ.

The pattern prevention constraint, introduced in Section 3.2.5, could be used to specify a diversity
constraint indirectly. For example, for the case studies of Section 3.4.1, the constraint set referred
to as “pattern” in Figure B.19, was imposed by disallowing any four consecutive nucleotides from
matching the patterns AAAA, CCCC, GGGG, UUUU, and any six consecutive nucleotides from matching
the patterns RRRRRR, YYYYYY, MMMMMM, KKKKKK, WWWWWW, SSSSSS. The set of sequences meeting
the above set of constraints is exactly equivalent to the set meeting two diversity constraints, the
first with lwindow = 4 and nmin = 2 and the second with lwindow = 6 and nmin = 3. Specifying
this set of sequences via diversity constraints instead of pattern constraints is simpler, the intent of
the constraint is clearer, and, as shown in Section 4.4.4, the constraint solver can find satisfying
sequences in less time.

4.2.4 Soft Constraints
We now introduce the concept of soft constraints. Unlike hard constraints which must be met exactly
for every sequence considered during the design, soft constraints can be violated during design. For
each soft constraint, one can also compute a degree of violation, which measures the extent to which
a constraint has been violated. We also refer to this as the defect of the soft constraint by analogy
to the multistate test tube ensemble defect,M. This allows numerical comparison of the quality of
sequences that violate the soft constraint. This constrasts with hard constraints where all violation
leads to indistinguishably infeasible sequences. In this sense, soft constraints are auxiliary objective
functions that it is the goal of our design algorithm to minimize alongsideM.

Generic Definition and Properties. We denote the set of soft constraints as S. For each k ∈ S,
we define a function F

k
(φΨ) that evaluates the degree of violation for the constraint. This degree of

violation is then normalized in a constraint-dependent fashion to be in [0, 1]. The function f
k
(φΨ)

returns this normalized degree of violation. The normalized degree of violation is used during
design instead of the raw degree of violation so that each soft constraint may be weighted relative
toM. These weights, wk , fall in the range [0,∞) with a default of unity. Finally, for each nuleotide
a in the scope of soft constraint k, we can calculate f a

k
(φΨ), the contribution of this nucleotide to

f
k
(φΨ). The values of f a

k
(φΨ) are used during multiobjective defect weighted mutation sampling

(Section 4.3.5). Many of these functions involve indicator functions, for which we use the Iverson
bracket notation,

[S] ≡


0, if S is false

1, if S is true
, (4.4)

where S is any mathematical statement.

66

We now discuss the individual soft constraint types. For each type, we describe the parameters
necessary to define the constraint and show how f

k
(φΨ) and f a

k
(φΨ) are calculated.

Soft Pattern Prevention Constraint. The soft pattern prevention constraint is specified using the
same information as the hard pattern prevention constraint. Two pieces of information are needed
to specify a soft pattern prevention constraint k: a pattern sequence r to prevent in a contiguous
sequence of nucleotides φ, where |φ| = m, |r | = n, and m ≤ n. Together these implicitly specify a
set of n − m + 1 subsequence windows, φk , each of length m. The value of the function F

k
(φΨ) is

the number of these windows that match r . The number of windows, n−m+ 1, is the normalization
factor. Therefore, the normalized degree of violation is

fk(φΨ) =
1

n − m + 1

∑
w∈φk

[w = r] , (4.5)

where [w = r] is an indicator function that is one if the window w matches the pattern and the sum
runs over all windows in φk .

This value of f
k
(φΨ) can be attributed to the individual windows in φk , with each window receiving

a contribution of [w=r]n−m+1 . This contribution is then divided equally among the nucleotides in the
window. This translates to

f ak (φΨ) =
1

m(n − m + 1)

∑
w∈φk

[a ∈ w] [w = r] (4.6)

for the contribution of nucleotide a to f
k
(φΨ).

Soft Similarity Constraint. Specifying the soft similiarity constraint requires the same informa-
tion as the hard similiarity constraint. Specifically, it requires a chosen sequence of nucleotide
variables, φ, a reference sequence of degenerate nucleotide codes of length |φ| = N , q, and finally
upper and lower limits on the number of nucleotides in φ matching q, u and l, respectively. The
limits must be such that 0 ≤ l ≤ u ≤ N . The main quantity that is used for evaluation of the soft
constraint is the generalized hamming distance,

d(φ, q) =
∑

a∈1,..., |φ |

{
0 : φa ∈ qa

1 : φa < qa
. (4.7)

We work instead with the number of nucleotides matching the reference sequence, x = N − d(φ, q).
The degree of violation is simply the number of nucleotides additionally matching when x > u

or the deficiency in matching nucleotides when x < l. The normalization factor is defined as
c = max(l, N − u). This ensures that the number of additional nucleotides matching or nucleotides
not matching the reference sequence are treated equivalently. Additionally, in the case of either
x = N or x = 0, whichever involves more violations, f

k
(φΨ) = 1. With this, the normalized degree

67

of violation is
fk(φΨ) =

1
c

Fk(φΨ)

Fk(φΨ) =


x − u, x > u

l − x, x < l

0, l ≤ x ≤ u

.

(4.8)

When mapping down to the individual nucleotides, which nucleotides contribute defect depends on
whether x > u or x < l. When x > u, although only x − u nucleotides are outside of the match
range, every matching nucleotide is contributing to the defect because mutating any of them to a
non-matching nucleotide would reduce f

k
(φΨ). Thus all of the matching nucleotides effectively

share the constraint violation equally. Likewise for the non-matching nucleotides when x < l. This
leads to the per nucleotide contribution to f

k
(φΨ) of

f ak (φΨ) =
f
k
(φΨ)

x
[φa ∈ qa] , (4.9)

where qa is the reference sequence position that matches the position of a in φ.

Sequence Symmetry. Sequence symmetry11 was one of the first objective functions used for
nucleic acid design, through sequence symmetry minimization (SSM)12,13. SSM is still used as a
heuristic to avoid potential kinetic traps in the nucleic acid folding pathway7. More broadly, SSM
is a heuristic method that implements a negative design paradigm by reducing the types of possible
off-target structures that can form14.

SSM was formulated for use in designing single nucleic acid complexes. The only defining param-
eters are the target sequence, s, and a word length, lwindow. In this ensemble of the complex, perfect
sequence symmetry is achieved by meeting 3 rules11:

1. Every subsequence window of length lwindow must contain a unique sequence.

2. If w is a length lwindow window, then its reverse complement window, w∗, can only appear if
w and w∗ are paired within a duplex in s.

3. Self-complementary sequences of length lwindow cannot appear in any window.

Taken together, these ensure that any off-target binding results from either perfect matches of length
less than lwindow or involves interior loop or bulge loop structures, which are generally less favorable
than perfect stack loops.

In the multi test tube ensemble, sequence symmetry continues to be a complex-level objective
function. However, as the general design problem has multiple on-target complexes, the sequence

68

symmetry soft constraint allows a scope of multiple complexes, a set Ψk ⊆ Ψ
on. These complexes

in general have sequence domains that are constrained to have the same sequence or complementary
sequences. As such, the above rules need to be generalized to this situation where some sequence
repetition is unavoidable due to constraints while other repetition is spurious and should be penalized.
In this expanded environment, where the set of all windows is Wk , the rules for perfect sequence
symmetry become:

1. Every subset ofWk is constrained to be identical across all complexes j ∈ Ψk must be the only
subset of Wk with this sequence.

2. If any member of a subset c of Wk that is constrained to be identical across all complexes
j ∈ Ψk appears in a non-duplexed motif for some sj , the reverse complement to the sequence
of this window cannot appear anywhere except in the subset of Wk that is constrained to be
complementary to the windows in c.

3. Self-complementary sequences of length lwindow are not allowed, unless required to form by
complementarity.

Ultimately, with the types of hard constraints allowed in R, one would have to fully marginalize
over all other variables to determine if two nucleotides are constrained to be either identical or
complementary in all feasible sequences. That is, propagating explicit identity and complementarity
constraints alone will not discover all implied identity and complementarity constraints because
they interact with all other constraint types. This marginalization procedure is not computationally
tractable, so instead, during evaluation of the constraint we consider the restriction of these rules
to explicitly specified identity and complementarity constraints. The effect of this choice is to
potentially set a non-zero lower bound on f

k
(φΨ) corresponding to windows that appear to be

spuriously identical or complementary but are in fact constrained to be so.

For each nucleotide variable a in at least one of the windows in Wk , we maintain the lists Ia and
Ca. These lists contain other variables that are constrained to be identical to or complementary to
a, respectively. The target secondary structures sj for j ∈ Ψk are processed to find windows that are
not wholly in a duplex motif. For these windows, their reverse complement must be prevented to
minimize rule 2 violations. These windows are stored in RC.

Windows in Wk can be aliased: two distinct windows within a single complex or from separate
complexes contain the same sequence of nucleotide variables (e.g. domain a appearing in complex
j and in complex j ′). In this sense, Wk is a multiset of the unique windows of sequence variables,
and we define the set W ′

k
to contain this underlying set of sequence variable windows. Bookkeeping

is done at the level of sequences (and their reverse complements) that appear in the windows of
Wk . Specifically, for a sequence φ that appears in some element of Wk , wφ is a set of windows
from Wk containing all windows that have the sequence φ as well as windows in RC whose reverse
complement is φ. The set wφ can be partitioned such that each disjoint subset contains windows

69

constrained to be identical to or complementary to every other member in the subset, determined
via Ia and Ca. The function c(wφ) counts the number of subsets generated by this partition. So, for
wφ = {a, b, c, d, e}, if a = d, b = c∗, and d = e, then c(wφ) = 2. We can thus define the normalized
degree of violation as:

fk(φΨ) =
1
|W ′

k
|

∑
φ |

∃w∈Wk
w=φ

c(wφ) − 1 + [φ = φ∗] , (4.10)

where [φ = φ∗] is an indicator function checking if φ is its own reverse complement, adding a penalty
if rule 3 is violated. The −1 is necessary because rule 1 is only violated if there is more than one
disjoint subset in the partition of wφ.

This can be mapped down to individual nucleotide variables as:

f ak (φΨ) =
1
|W ′

k
|

∑
φ |

∃w∈Wk
w=φ
a∈w

∑
w∈wφ |a∈w

∑
i∈w |i=a

c(wφ) − 1 + [φ = φ∗]
lwindow |wφ |

. (4.11)

This is ultimately the purpose of wφ containing windows from Wk instead of W ′
k
. The largest of the

disjoint subsets in wφ corresponds to most appearances of the window in the physical ensemble and
so should be penalized proportionally more. In this way, defect-weighted mutation sampling will
preferentially mutate the underlying variables that appear most frequently.

Structure FreeEnergyEqualization. The preceeding soft constraints have all been defined purely
at the sequence level, without using the thermodynamic model. This parallels the hard constraints
which are also non-thermodynamic. We now introduce the structure free energy equalization soft
constraint which does make use of the thermodynamic model. This soft constraint is defined by
a set of sequences φk , a corresponding set of structures sk , and a reference free energy ∆Gref.
The sequences and structures do not need to correspond to the complexes in Ψon. The reference
free energy can be either a fixed user-defined constant when one or more complexes are in the
soft constraint scope, or it can be the median free energy of the sequence-structure pairs when
|φk | = |sk | > 1:

∆Gref =


∆Gexternal

median
(φi,si)∈φk ⊕sk

(∆G(φi, si))
,

where ⊕ represents the direct sum of sets. In the latter case, the soft constraint biases the design
toward sequences which minimized the variance of the set {∆G(φi, si)} A motivating use case for
this soft constraint is to equalize the toehold binding energy across analogous complexes in several
orthogonal reaction pathways as a proxy for the reaction rate of the initial unbinding step (typically
rate-limiting),6 with the goal of all orthogonal pathways performing with comparable rates15. This
case highlights that φi need not be drawn from the complexes in Ψon as toehold sequences are
typically only subsequences of complexes in Ψon and do not appear alone as on-targets.

70

Because free energies are unbounded real-valued quantities, naively measuring differences between
∆G(φi, si) and ∆Gref leads to an unbounded value for the degree of violation. Thus, we use
a function which approaches unity as |∆G(φi, si) − ∆Gref | → ∞ and is identically zero when
|∆G(φi, si) − ∆Gref | = 0:

f ik (φΨ) = 1 − exp
(
−

����∆G(φi, si) − ∆Gref
∆Gscale

����) ,
where ∆Gscale is a global algorithm parameter that ensures the unweighted degrees of violation of
all structure free energy equalization soft constraints are comparable and makes the total argument
to the exponential function dimensionless. Empirically, we use ∆Gscale = 10 kcal/mol. From this
we can define our normalized degree of violation,

fk(φΨ) =
1
|φk |

∑
i

f ik (φΨ), (4.12)

where the normalization constant is the number of sequences/structures, |φk | = |sk |.

When mapping down to the individual nucleotides in the sequences in φk , the contribution from each
pair (φi, si) is divided uniformly amongst the nucleotides in φi. Mathematically, this is expessed as

f ak (φΨ) =
1
|φk |

∑
i

∑
m∈φi |m=a

1
|φi |

f ik (φΨ), (4.13)

with the sums necessary because the same nucleotide could appear in several sequences and multiple
times per sequence. Note that this will lead defect-weighted mutation sampling to preferentially
target the sequences in φk that contribute themost to the degree of violation, but will not preferentially
bias mutations toward particular nucleotides in a given φi.

A Note on Soft Constraints and Estimates. One of the satisfying features of the soft constraints
introduced in this chapter is that they are not approximated during design to decrease design cost
(as must be done withM). In fact, it is not even clear how one would estimate these degrees of
violation in an analogous way to hierarchical ensemble decomposition. The cost of evaluating these
constraints is at most O(N), which will be dwarfed by the O(N3) cost to evaluate estimates M̃d. The
immediate implication of this lack of approximation is that once the f

k
(φΨ) values are evaluated at

the leaves, they will not change during the remainder of steps leading to the evaluation ofM. This
simplifies the changes necessary for the remainder of the algorithm: as soft constraints do not change
with refocusing or redecomposition, they are not necessary for these processes, which continue on
exactly as in the algorithm of Chapter 3.

4.3 Algorithm
The algorithm described in Section 3.3.1 and the algorithm of this chapter share much of their
basic framework. The subroutine call graph implied by Algorithm B.1 is left unchanged. However,
the logic of each subroutine is modified to greater or lesser extents. As such, we describe here
changes relative to Section 3.3.1 and note when components of that algorithm are reused without
modification.

71

4.3.1 Thermodynamics Backend
This algorithm piggybacks off of the thermodynamics algorithms discussed in Chapter 2. This
contrasts with the algorithm of Chapter 3, which was developed and published prior to the work of
Chapter 2. It benefits from the enhanced speed of our vectorized implementation (Figure 2.10). The
additional speedups due to block caching and reuse across complexes (Figure 2.11) are irrelevant
during non-root computation as the blocks within interior nodes are not generally repeated across
complexes due to independent decompositions. Finally, the extended model including coaxial and
dangle stacking (Section 2.2.3) is accessible, allowing for design over a more physically accurate
state space. This last point is of particular importance due to the frequency of structures with nicked
helix motifs, which are unduly penalized in the secondary structure model excluding coaxial and
dangle stacking16–22.

4.3.2 Constraint Satisfaction Problem Solver
The CSP solving algorithms for sequence initialization, mutation, and reseeding described in Sec-
tion B.1.11 were built in-house23 using only the C++ standard library. The original software author
notes that this implementation was not optimized with additional data structures and caching for
fast performance24. When using the old thermodynamics backend in conjunction with this in-house
CSP solver, the thermodynamics subroutines were slow enough that overhead from solving the CSP
was not noticeable in the benchmark case of complex design of structures from an engineered test
set. However, when used in conjunction with early versions of this algorithm, which used the
new thermodynamics backend, CSP solving overhead was noticeable in overall design performance,
motivating investigation into alternative solvers.

Gecode Constraint Solver. There exist a number of general purpose constraint solver libraries
compatible with the C++ language. Preliminary investigation indicated that the Gecode library25

could serve the needs of our algorithm for a CSP solver with better speed. During assignment,
the library stores the path of commits necessary to get from a partial solution with fewer assigned
variables to one with more assigned variables, i.e. from closer to the root to closer to the leaves
in the search tree. Then during backtracking, new partial solutions are generated by applying the
commits along the path shared between the current and next node, only doing constraint propagation
once at the final step. The algorithm also bisects long paths with an explicit caching of the state in
the middle of the path, making repeated backtracking less costly.

Additionally, when propagating constraints, the Gecode propagation scheduler is able to determine
the cost of propagating each constraint and schedule the constraints with a priority queue. This
minimizes the number of times the most expensive constraints are propagated if variable domains
change multiple times during propagation of less expensive constraints. Most of the constraint types
in Section 3.2.5 can be efficiently implemented by chaining together simpler constraint types in
Gecode. For the pattern prevention, window, and library constraints, efficient custom propagators
were developed and added to the framework using Gecode’s object oriented propagator interface.

72

All of these features contribute to a generally faster implementation (as shown in Figure 4.6) and so
we use Gecode as the primary constraint solver framework during design.

Hybrid Heuristic Constraint Solver. Solving a CSP is typically done through a search process
involving assignment of a valid value from the domain of an unassigned variable followed by
propagation of the implications for this selection on the remaining unassigned variables26. This
entails using heuristics for variable selection (i.e. which variable to assign next) and value selection
(i.e. for this variable which value should be assigned). Additionally, it is common when doing
search to use several heuristics in a process called restart-based search (RBS),25 where search is
terminated by a cutoff condition if a solution is not found using the first heuristic, and then the next
heuristic is tried, etc. We make use of all of these components for our implementation of a constraint
solving framework.

In our previous in-house solver, the heuristic used for value selection required a tentative assignment
step followed by constraint propagation for each value in the current variable’s domain. The number
of additional required mutations as a result of each of these tentative changes is used to rank the
changes and preferentially explore sequences with fewer additional necessary mutations. This sort
of heuristic method conflicts with the optimizations in Gecode that make it efficient. Specifically,
whereas the tentative assignments and propagations can be cached in the in-house solver, this cannot
be done in Gecode, thus requiring recomputation of the expensive propagation step. Empirically,
however, there are highly constrained cases where the heuristics in Gecode that are more efficient in
the average case lead to longer search times than the in-house implementation.

Thus, rather than using multiple heuristics within the Gecode RBS framework, we build a custom
RBS framework melding both Gecode and the in-house solver. First, the time limit for Gecode to
run per CSP solve operation, tmax, is initialized, by default to 1 second. During each call to the CSP
solver (for initialization or mutation), the Gecode solver is used to search for a solution until one
is found or until tsearch > tmax, in which case the Gecode solver is stopped. If the Gecode solver is
stopped due to timeout, the in-house solver is then used to find a solution. A running average of the
times per in-house CSP solve is stored during design as tavg. After each use of the in-house solver,
tmax is updated to 0.1tavg. In this way, anytime the Gecode solver finishes faster than tmax, we have
achieved at least a 10× speedup on CSP solving relative to the in-house solver alone, and anytime
Gecode is stopped due to timeout, we only incur a 10% penalty relative to using the in-house solver
alone. This leads to a massive upside for easy CSPs while bounding the downside for difficult CSPs.
In the following sections we describe the heuristics each solver uses for variable and value selection.

Sequence Initialization. For Gecode variable selection, we select the next unassigned variable.
For Gecode value selection, we select a value uniformly at random from the domain of the variable.
For in-house variable selection, we select the next variable uniformly at random from the unassigned
variables. For in-house value selection, we select a value uniformly at random from the domain of
the variable.

73

Sequence Mutation. During sequence mutation, the current sequence to mutate from, φ, is used
in the heuristics. For Gecode variable selection, we select the next unassigned variable. For Gecode
value selection, for selected variable b, we choose the value b has in φ if this value is still in the
domain of b, otherwise we select a value uniformly at random from the domain of b. For in-house
variable selection, we select the next variable randomly with probability proportional to its weight,
which changes dynamically during search in the manner described in Section B.1.11. For in-house
value selection, we select the value which causes the fewest additional variables to no longer be able
to match their value in φ, determined using trial assignment and constraint propagation.

Sequence Reseeding. As described in Section B.1.11, sequence reseeding is simply iterated
sequence mutation with a predefined set of positions to mutate. Therefore, for each position, the
RBS method of sequence mutation is used.

4.3.3 Hierarchical Ensemble Decomposition
Here we detail the hierarchical ensemble decomposition algorithm27 of Chapter 3 in anticipation of
changes for the algorithm of this chapter.

The partition function for each complex j ∈ Ψ can be calculated in O(|φ j |
3). However, as the algo-

rithmmakes mutations in the strand sequences in an attempt to minimizeM, a naive implementation
would require recalculation of the partition functions of all complexes which contained the strand(s)
for which the sequence changed. Instead, the algorithm uses an effective estimation method called
hierarchical ensemble decomposition27.

Hierarchical ensemble decomposition recursively splits a complex ensemble into pairs of independent
child ensembles with an enforced base pair flanking the split-point position in each child ensemble.
The first level of decomposition can be seen graphically in Figure 4.1. Because pseudoknotted
structures have been excluded from consideration, if the base pairs flanking the split-point form with
high probability, then the ensembles of the children would be nearly disjoint Thus, their individual
conditional partition functions are good predictors of the full parent partition function, but can be
evaluated at lower cost. In cases for which no single split-point has high probability flanking base
pairs, a set of exclusive split-points (read: mutually crossing) with a corresponding set of flanking
base pairs whose summed probabilities approach unity can be used for the same effect. The process
is recursive in the sense that each child containing an eligible split-point can be further decomposed
using the same method.

We discuss the multiple split-point case for generality27. We use F to denote a single split-point and
{F} to denote a set of exclusive split-points. A conditional partition function contribution for each
node k and each split-point Fi ∈ {F} is calculated given that the base pairs flanking the split-point
form with probability unity, resulting in a nodal partition function contribution Q̃ki . For split-point
Fi with child nodes kli and kri , the estimate for this conditional ensemble’s contribution to the

74

Figure 4.1: Polymer graph representation of ensemble decomposition with left: a single split-point and right: two
exclusive split-points. The red lines are the split-points, the blue lines are base pairs forming with high probability, and
the green lines are the same base pairs from the parent ensemble which are forced to form in the children27. Image from
Reference 27.

estimate Q̃k can be calculated as

Q̃ki = Q̃kli
Q̃kri

exp(∆Ginterior
Fi

/kT), (4.14)

where ∆Ginterior
F is the free energy of the interior loop through which the split-point divides the

complex. The total partition function estimate for k is just the sum of the contributions for each
mutually exclusive subensemble:

Q̃k =
∑

Fi ∈{F }

Q̃ki . (4.15)

From these nodal conditional partition functions, one can obtain an estimate for the complex partition
function, Q̃ j by applying the formula recursively until the root node is reached.

Additionally, the pair probability estimates for each pair of child nodes, P̃kli
and P̃kri

, are combined
into an estimate of the pair probabilities in the ensemble where the two base pairs flanking Fi are
constrained to form. This is done by simply translating the entries from P̃kli

and P̃kri
to P̃ki where

they match the indexing nucleotides in node k. The contributions from the exclusive ensembles
implied by {F} are then combined by Boltzmann weighting in the following way:

P̃k =
∑

Fi ∈{F }

P̃ki

Q̃ki

Q̃k

(4.16)

The estimate P̃k is then recursively propagated up to the root level estimate, P̃j .

Finally, for each tube h ∈ Ω the Q̃ j for each j ∈ Ψh combined with the implied strand concentrations
from the specification of yh, j for j ∈ Ψon

h
can be used to calculate estimates of the concentrations,

x̃h, j .

We now turn to the three possible scenarios for hierarchical ensemble decomposition27.

75

Structure-Guided Decomposition with a Single Split-Point. Before sequence initialization be-
gins, none of the complexes in Ψactive have any pair probability information. However, at this point
Ψactive = Ψon, and each complex j ∈ Ψon has a secondary structure, sj . Thus, only this target
structure information will be used to decompose the complex.

Given a target structure matrix Sk for some node to be decomposed, the set B(Sk) contains all valid
split-points F, the conditions for which are shown in (4.17). In this equation, F±, represents the
set of Hsplit base pairs on either side of the split-point. The top condition means that any potential
split-point must have all base pairs in F± in Sk . The symbols φkl and φkr indicate the sequences
of the parent node k that are divided into the left and right child nodes, respectively. The second
condition requires that both child nodes contain at least Nsplit nucleotides. Since target structures
do not have any pseudoknots, there is no possibility of multiple exclusive split-points meeting the
requirements in (4.17), hence only the single split-point set.

B(Sk) ≡
F:

min
a ·b∈F±

Sa,b
k
= 1

min(|φkl |, |φkr |) ≥ Nsplit

 (4.17)

Of these split-points consistent with the structure, we are interested in the lowest cost split-point,

F∗ ≡ arg min
F ∈B(Sk)

(|φkl |
3 + |φkr |

3).

This procedure can be applied recursively on each new child node. Each new child node receives
the truncated version of its parent’s structure matrix that corresponds to its fragment of the complex.
The recursive splitting continues until B(Sk) = ∅ for some node k, at which point k is a leaf node
and decomposition stops for that branch of the tree.

Probability-Guided Decomposition with Multiple Exclusive Split-Points. Off-targets are first
decomposed if they have been added to Ψactive following ensemble refocusing (Section B.1.9).
Because off-targets have no target structure, only probability information is used to decompose the
ensemble. Additionally, because we are using the pair probability matrix of a node, Pk , we will
generally need more than one exclusive split-point to capture fsplitQk . Thus, we are interested in
sets of split-points {F} falling in the set B(Pk), described in (4.18). The top condition says that
the collective probability captured by a valid set must exceed fsplit. The middle condition is the
same as in (4.17), regarding child nodes being large enough. The bottom condition requires that all
split-points in a given set be mutually exclusive.

B(Pk) ≡


{F}:

fsplit ≤
∑

Fi ∈{F }

min
a ·b∈F±i

Pa,b
k

min
Fi ∈{F }

(|φkli |, |φkri |) ≥ Nsplit

Fi ⊗ Fj ∀Fi , Fj ∈ {F}


(4.18)

76

Of these sets of exclusive split-points, we are interested in the lowest cost set,

{F}∗ ≡ arg min
{F }∈B(Pk)

∑
Fi ∈{F }

(|φkli |
3 + |φkri |

3).

While generally |{F}∗ | > 1, it is possible that a single split-point will meet the collective probability
requirement.

This procedure can be applied recursively on each new child node. The pair probabilities are
recomputed in the child ensembles to generate Pkli

and Pkri
conditioned upon the enforced base

pairs flanking the split-points. The recursive splitting continues until B(Pk) = ∅ for some node k,
at which point k is a leaf node and decomposition stops for that branch of the tree.

Structure- and Probability-Guided Decomposition withMultiple Exclusive Split-Points. Dur-
ing redecomposition of on-target complexes (Section B.1.8), both pair probability and structure
information are available to use for decomposition.

B̂(Sk, Pk) ≡

{
{F}:

{F} = Gi ∪ {G}j,Gi ∈ B(Sk), {G}j ∈ B(Pk)

Fi ⊗ Fj ∀Fi , Fj ∈ {F}

}
(4.19)

Of these sets of exclusive split-points with one split-point consistent with the structure, we are
interested in the lowest cost set,

{F}∗ ≡ arg min
{F }∈B̂(Sk,Pk)

∑
Fi ∈{F }

(|φkli |
3 + |φkri |

3).

This procedure can be applied recursively on each new child node. The new child node receives the
truncated version of its parent’s structure matrix that corresponds to its fragment of the complex.
The pair probabilities are recomputed in the child ensembles to generate Pkli

and Pkri
conditioned

upon the enforced base pairs flanking the split-points. In the nodes generated from the probability-
guided component, further decomposition is done using probability-guided decomposition only. The
recursive splitting continues until B̂(Sk, Pk) = ∅ for some node k, at which point k is a leaf node
and decomposition stops for that branch of the tree.

Branch and Bound Algorithm. In the above three cases, a branch and bound procedure is used
to find the minimum cost split-point, F∗, or set of split-points, {F}∗. In the structure-guided, single
split-point case, this algorithm reduces to linear search through all of the valid split-points in the
fully enumerated B(Sk) to find the minimum cost split-point.

In the probability-guided, multiple split-point case, the procedure starts by determining all split-point
positions that are at least Hsplit away from the first and last index and resulting in children with more
than Nsplit nucleotides. For each F, the quantity

min
a ·b∈F±

Pa,b
k

77

is calculated to represent the fraction of the probability this split captures. All of these potential
splits are ranked in descending order of this value. The trial set {F} is initialized to ∅. From
here, {F} is expanded by adding the next highest probability split-point that is consistent with those
already in {F} This is done until

fsplit ≤
∑

Fi ∈{F }

min
a ·b∈F±i

Pa,b
k
,

at which point {F} ∈ B(Pk). The cost of this first valid set of split-points then becomes the upper
bound for pruning branches in the remainder of the search tree. The search proceeds in this way:
popping the last added split-point when no other valid and unpruned split-points are consistent with
the current set and attempting to add new consistent split-points when they do not cause the cost of
{F} to exceed the current best cost. Anytime during the search that a new split-point Fi would cause
the cost of {F} to exceed the cost of the current best, it is skipped and the next mutually-exclusive
split-point is considered. This is valid because adding split-points only increases the cost, so if that
split-point would cause the cost to exceed the current best, so would any superset. Anytime during
the search where {F} ∈ B(Pk), if the cost of this valid set is lower than the current best cost, the
best cost is changed to this value. At the end, the minimum cost {F}∗ will be found while many
potentially valid but high-cost

The structure- and probability-guided, multiple split-point case is similar to the probability-guided
case. However, the first split-point added to the trial {F} is taken from B(Sk). Anytime during the
search that {F} = ∅, the next value from B(Sk) is considered. The behavior when |{F}| > 1 is
exactly as described for the probability-guided case. The search ends when {F} = ∅ and there are
no more splits in B(Sk) to consider.

Use in Design Initialization. At the start of design, no thermodynamic quantities have been
computed. Thus, only structure-guided, single split-point ensemble decomposition is available.
Applying this method recursively to all j ∈ Ψactive, one is left with a decomposition forest, where
each tree corresponds to one on-target complex. Each node in each tree has a depth d, and the
deepest depth of any node across all forest is D. We call the set of all nodes Λ and the set of nodes at
depth d (including these copied nodes) Λd. Since these trees can in general be unbalanced and the
deepest node in each tree will be a different d, leaf nodes in Λd are copied as children recursively
until all paths to a leaf node are length D. This makes discussion of computing at a given depth d

always have the property that conditional quantities can be computed by looking solely at nodes in
Λd.

As it is expected that the decompositionwill introduce false negatives (i.e. high probability structures
that are excluded in the child ensembles), we build in a tolerance for thesemissed structures by setting
a per-depth stop condition f stop

d
according to the formula

f stop
d
≡ fstop(fstringent)d−1 ∀d ∈ {1, . . . ,D},

78

where f stringent ∈ (0, 1). The intent is that over-designing the leaf nodes relative to fstop will
offset emerged defects that occur during merging (Section B.1.8) and full ensemble evaluation
(Section B.1.9).

Asymptotic Optimality Lower Bound for Design. In the best case for complex design, the
hierarchical ensemble decomposition above results in a balanced binary decomposition tree (i.e. no
multiple split points and all nodes at any given depth have the same sequence length). In the optimal
case, the initial sequence meets the leaf stop condition (B.11). Furthermore, during subsequence
merging, each parent stop condition (B.13) is met, allowing the sequences to merge from the leaves
to the root without any redecomposition and reoptimization. This means that the minimum cost
of design is bounded below by the cost of evaluating the thermodynamic properties at each node.
The cost to evaluate the partition function, pair probabilities, and ensemble defect has complexity
Θ(N3)28. Therefore, if the root has a sequence φ of length N , these properties cost cN3 to evaluate,
where c is a scale factor. For this minimal cost case, each child has half the sequence length of its
parent. The cost of evaluating every node in the tree of depth D is then28:

D∑
d=1

2d−1c
(

N
2d−1

)3
=

D−1∑
d′=0

2d′c
(

N
2d′

)3

= cN3
D−1∑
d′

1
4d′

< cN3
∞∑
d′

1
4d′

=
4
3

cN3.

(4.20)

Or, in other words, the minimal cost for complex design is 4/3 the cost of evaluating the ther-
modynamic properties of the root node. This is a striking result given the perceived difficulty of
design relative to analysis in most engineering disciplines. Even more amazing is that this bound is
approached in practice when using our previous design algorithm implementations23,27,28 to design
complexes of increasing size. Therefore, we sought for the algorithm of this chapter to continue to
produce this pleasing result.

4.3.4 Modifications to the Hierarchical Ensemble Decomposition Procedure
The preceding section detailed the components of the hierarchical decomposition used in Chap-
ter 3 and Reference 27. This chapter’s algorithm makes several changes to components of the
decomposition subroutine of Section 4.3.3 for simplicity and efficiency.

Split-Points Coincident with Base Pairs. The first change relative to Section 4.3.3 is in the
definition of a split-point and the resultant change in computing partition function estimates. In the
previous discussion, split-points are conceived as dividing a node such that the sequences of both
child nodes were disjoint. This leads to two child ensembles each with their own base pair that is

79

enforced to form with probability 1. Additionally, in computing the contribution of one split-point’s
child nodes to the parent node partition function using (4.14), the free energy of the implied stack
loop between the enforced base pairs is needed. We aimed to make the description and the algorithm
simpler at the cost of a small increase to computational cost during evaluation.

The key requirement for child ensembles is that they are independent. This is clearly the case
when their sequences are independent. However, as discussed in the description of the backtrack-
free base-pairing probabilities matrix algorithm in Section 2.3.10, an unpseudoknotted secondary
structure ensemble is partitioned into disjoint subensembles by a base pair i · j with probability 1.
The sequences of both the left and right ensembles both include the two nucleotides i and j. This
repeated sequence does not lead to overlapping structures, however, because the loops that can form
on either side of the base pair are disjoint.

Leveraging the above discussion, the algorithm now uses split-points which are coincident with base
pairs. An example single-level, single split-point decomposition of this type is shown in Figure 4.2.
As this eliminates the implied stack loop between the two base pairs flanking the split-point in the
previous definition, (4.14) is simplified to

Q̃ki = Q̃kli
Q̃kri

, (4.21)

which is the inverse of (2.16) where Pi, j = 1. In assigning the base pairs in P̃kli
and P̃kri

to P̃ki , the
only change is that the value of 1 for the split-point base pair a · b will be transfered twice, once from
each child matrix. In the code, this is implemented as plain assignment, so the second 1 overwrites
the first 1 and the value remains correct. The relations in (4.15) and (4.16) remain the same.

k

kl
kr

F

Figure 4.2: Polymer graph representation of ensemble decomposition with a split point along a base pair. The split point,
which is also the base pair being split along, is shown as a red and blue dashed line. The green lines are the same base
pair from the parent ensemble which are forced to form in the children.

As mentioned, these changes to the algorithm come at a slight computational cost increase. If a node
k has N nucleotides and is split using the split-point generation from Section 4.3.3 so that one child

80

has l nucleotides, then the total cost of computing the two child ensembles would be (N − l)3 + l3.
With this section’s algorithm, if one of the child nodes has length N − l, the other has length l + 2
for a cost of (N − l)3 + (l + 2)3. The difference in costs is O(N2). In Section 4.4.3, we show that this
difference is only noticeable for small sequences and negligible for larger sequences.

Cost Bounding for Probability-Guided and Structure- and Probability-Guided Decomposi-
tion. With the branch and bound procedures discussed in Section 4.3.3 for probability-guided and
structure- and probability-guided hierarchical ensemble decomposition, it is possible to generate a
set of child nodes that is more expensive to compute than its parent. In fact, any decomposition with
4 split-points is guaranteed to be at least as expensive as evaluating the parent, and a decomposition
with 5 or more split-points will always be more expensive. To see this, note that the least costly
split points divide the N nucleotides into two children with N/2 nucleotides each. The cost of one
of these pairs is then

2
(

N
2

)3
=

N3

4
.

Thus, 4minimumcost split-points will yield a collective evaluation cost of N3 for children, equivalent
to the parent.

As noted in the description of the branch and bound algorithm, the procedure is guaranteed to find
a non-empty set of split-points that meets the collective probability requirement if such a set exists.
The cost of this first discovered decomposition then is used to exclude exploration of more costly
solutions. However, since this first decomposition was not itself bounded, its cost could exceed the
parent cost. The implementation of the branch and bound procedure23, imposed a limit on the depth
of the search tree to 6 pairs of nodes, but, as discussed above, this is too permissive.

Instead of bounding the depth of the branch and bound search tree directly, we use the parent node
k itself (the case of no further decomposition) as the first explored solution. This solution has cost
N3, which is then used as the minimum cost bound for all further solutions. This naturally bounds
the depth of the search tree and ensures that only decompositions that are less expensive than the
parent (and meet the collective probability requirement) are considered. Otherwise, decomposition
terminates on the branch ending in k as a leaf node.

Given the discussion in the previous section about the increased cost of child ensemble calculation
due to the base pairs repeated in both children, how does this interact with the more aggressive
bounding used here? When splitting along a base pair, the minimum cost to evaluate both children
resulting from a single split-point exceeds N3

4 , so the maximum number of pairs of children is 3.
However, in the analysis for split-points without repeated pairs, any non-minimal cost split-points
lowers the maximum number of split points to at most 3. Thus, in typical cases both algorithms have
the same effective maximum depth bound of 3.

81

Sparse Pair Probabilities Matrix. One component of the algorithm of Chapter 3 whose me-
chanics were not discussed in depth is how the conditional pair probabilities matrices are stored
and manipulated. In the previous multistate test tube design algorithm implementation23, the ther-
modynamics backend29 call to compute pair probabilities returns the dense upper triangle of the
symmetric pair probabilities matrix. The design algorithm implementation then filters this sparse
matrix into a coordinate list sparse matrix format. We now examine why, for efficiency purposes, it
is important to use sparse matrices during design.

For a complex j with N nucleotides and a decomposition tree Λj , we can define the quantity

EΛ j =

N∑
a=1

N∑
b=1

[
P̃a,b
j > 0

]
,

which is the number of non-zero elements in the root estimate P̃j . For a sparse matrix, we need
store only these EΛ j elements. In our implementation, we further reduce the entries stored in the
sparse matrix by thresholding out probabilities that are too low, by default less than 10−5. We will
continue to use the number of non-zero elements as an upper bound of the cost. For the ideal case
of a balanced binary decomposition where the leaf nodes all have Nsplit nucleotides, each leaf can
contribute at most N2

split non-zero elements to P̃j . This leads to an upper bound on the smallest EΛ j

of

min
Λ j

(EΛ j) ≤ (Nsplit)
2 N

Nsplit

≤ NNsplit.

Because each leaf node entry is copied once per level and Λj has depth log2(N/Nsplit), the total cost
for transfering the entries from leaf to root is log2(N/Nsplit)NNsplit The cost of computing the leaf
node partition functions is

(Nsplit)
3 N

Nsplit
= NN2

split.

Therefore, the asymptotic ratio of the time to copy the matrices to the time to compute the partition
functions is

log2(N/Nsplit)NNsplit

NN2
split

=
log2(N/Nsplit)

Nsplit
,

or O(log(N)), since Nsplit is constant.

This is in contrast to using dense matrices for the same decomposition, where the time necessary
to copy from leaf to root is equal to the storage of all intermediate matrices (since they must all be

82

copied one time into their parent matrix). This has an asymptotic limit of

∞∑
i=1

2i
(

N
2i

)2
= N2

∞∑
i=1

(
1
2

) i
=

N2

2

∞∑
i=0

(
1
2

) i
=

N2

2
(2)

= N2.

As the cost of computing the leaf node partition functions is the same, the asymptotic ratio of the
time to copy the matrices to the time to compute the partition functions is

N2

NN2
split
=

N
N2
split

,

or O(N), since Nsplit is constant. Empirically, in earlier prototype versions of the implementation,
dense matrices were used for pair probabilities merging and the effects of the asymptotic scaling
were visible in design runtime results.

Our implementation makes explicit use of the Armadillo matrix library30 to handle sparse matrix
operations through its underlying compressed sparse column storage format. Using a third party
library alleviates the need to program a matrix framework by hand, which is an enteprise fraught
with the potential for introducing bugs. Additionally, the library provides idiomatic and efficient
ways of performing transforms on sparse matrices, including expansion to a dense matrix when
needed. This leaves the appearance of our implementation of the mathematical operations closer to
the math itself.

4.3.5 Leaf Optimization
The initial leaf sequence is found through the methods of Section 4.3.2. Evaluation of the leaf level
estimate, M̃D , follows the treatment of Section B.1.7. The logic based on the parameters Mbad,
Mreopt, and Mreseed has the same structure, except sequences are compared based on the modified
objective function estimate described in the next section. Sequence mutation and sequence reseeding
use themethods of Section 4.3.2 alongwith an updated defect-weightedmutation sampling procedure
described two sections hence.

Soft Constraint Evaluation. After each mutation, the defects of the soft constraints in S are
calculated using (4.5), (4.8), (4.10), and (4.12). Combined with M̃D this allows us to calculate the
leaf level estimate of the objective function:

M̃D +
∑
k∈S

wk fk(φΨ). (4.22)

83

This the allows us to define the updated leaf level stop condition as:

M̃D +
∑
k∈S

wk fk(φΨ) ≤ f stopD . (4.23)

It is important to note that all of the soft constraints are evaluated exactly at the leaves. Therefore,
when more precise estimates include the term

∑
k∈S wk f

k
(φΨ), it should be understood that these

values have been cached at the leaf level and are simply referenced in the other estimates instead of
being recomputed.

Multiobjective Defect-Weighted Mutation Sampling. Mutations continue to be targeted prefer-
entially toward nucleotides contributing the most to the objective function. However, we must now
consider the defects of the soft constraints in addition to M̃D . Instead of sampling a nucleotide a

with probability (B.12), we use (4.6), (4.9), (4.11), and (4.13) to define the following probability:

M̃a +
∑

k∈S wk f a
k
(φΨ)

M̃D +
∑

k∈S wk f
k
(φΨ)

, (4.24)

where

M̃a =
∑
h∈Ω

∑
j∈Ψon

h

M̃a
h, j

marginalizes over all on-target complexes containing nucleotide a in all target test tubes in which
these on-target complexes appear. This captures both soft constraint and M̃D contributions.

4.3.6 Merging and Redecomposing
During subsequence merging of sequences at level d+1 to level d, Equation(B.13 now incorporates
soft constraints and becomes:

M̃d +
∑
k∈S

wk fk(φΨ) ≤ max(f stop
d

,
1

fstringent
(M̃d+1 +

∑
k∈S

wk fk(φΨ))). (4.25)

When failing to meet this condition at any level d, redecomposition ensues, followed by additional
leaf optimization.

Redecomposition Based on M̃d. As the values of f
k
(φΨ), k ∈ S do not change as one merges

up the decomposition forest, we use precisely the same redecomposition procedure as described in
Section B.1.8.

4.3.7 Full Ensemble Evaluation
Similar to the changes made for subsequence merging, in evaluating the full objective function and
checking the assumptions behind ensemble focusing our termination stop condition is modified from
(B.14) to be:

M +
∑
k∈S

wk fk(φΨ) ≤ max(fstop, M̃1 +
∑
k∈S

wk fk(φΨ)). (4.26)

If this condition is not met, the ensemble must be refocused.

84

Refocusing Based onM. As the values of f
k
(φΨ), k ∈ S do not change between the approximation

by Ψactive and the full ensemble, we use precisely the same refocusing procedure as described in
Section B.1.9.

4.3.8 Defect Weights
Defect weights forM are handled in the same way as in Section B.1.6.

As mentioned in Section 4.2.4, each soft constraint is associated with a weight upon specification.
UnlikeM, which is a hierarchical and global quantity for the design, each soft constraint has a user-
specified scope. For this reason, there are no weights of the type used withinM to prioritize within
a soft constraint. Such a use case can be replicated by instead applying two separate soft constraints
to disjoint subsets of the original soft constraint and giving each soft constraint a different weight.
The intention is that increasing wk will cause the design to prioritize nucleotides contributing to
f
k
(φΨ), thereby leading to a lower final value.

4.4 Results and Discussion
4.4.1 Trials
All benchmarks were run using a single computational core on AWS EC2 C5 instances (3.0 GHz
Intel Xeon Platinum processors) with 72 GB of memory for the complex design cases and 8 GB
memory for the reaction pathway design test cases.

4.4.2 Model and Recursions Used
Many of the following results are generated using the same specifications as previous results shown
in Chapter 3 or Appendix B. The “some” dangles heuristic used in NUPACK 3.2 design algorithm
to produce the previous results was also used in the following results generated with the NUPACK
4.0 design algorithm. This was done to allow a fair comparison in terms of the structural ensemble
used. Thus, although the design algorithm of this chapter inherits the ability to compute over the
full secondary structure model including dangle and coaxial stacking states, the results that follow
do not showcase this capability.

4.4.3 Hierarchical Ensemble Decomposition Performance Comparison
We sought to examine the effects of our changes to the hierarchical ensemble decomposition algo-
rithm, discussed in Section 4.3.4. To do this, we used two test sets. The first test set is the engineered
dimer test set consisting of structures of two equal length strands totalling 50, 100, 200, and 400 nt.
For each size, there are 50 unique structures. The second test set is the engineered single-stranded
test set consisting of structures of one strand of length 100, 200, 400, 800, 1600, and 3200 nt. For
each size, there are 30 unique structures. Five design trials were run for each structure in both test
sets using stop condition fstop = 0.01, using RNA at 1 M Na+ at 37 ◦C. For each trial, the ensemble
consists of a single test tube with only the heteroduplex or single strand present as an on-target and
no off-target complexes (|Ψ| = |Ψon | = 1). For both of these test sets, structures were generated to

85

have helix lengths, loop sizes, and numbers of branches per loop that are characteristic of engineered
structures from the nucleic acid nanotechnology and dynamic programming literature27.

During design with the new algorithm, the process emitted serialized representations of the de-
composition tree of the on-target complex after initial structure-guided decomposition and after
any structure- and probability-guided redecomposition. These serialized representations were then
processed by a separate program to compute the relative cost of computing the entire decomposition
tree to the cost of computing the root node:

©­«
∑
k∈Λ j

|φk |
3ª®¬ /|φ j |

3,

where |φ j | is the number of nucleotides in complex j and |φk | is the number of nucleotides in a node
k of the decomposition tree for j, Λj . During the design with the old algorithm, the process emitted
only these relative costs after each decomposition or redecomposition event. This cost assumes
perfect cubic scaling, which is approximately true over the relevant range of lengths (Figure 2.10).
In reality, the cost gets proportionally larger for longer sequences because of switching to overflow-
safe code (Sections 2.3.6 and 2.3.8). So this function is actually an upper bound on the relative cost.
It is also useful in its own right as an implementation invariant way to compare two decompositions.

The results are shown in Figure 4.3. For consistency with Chapter 2, we refer to the algorithms by
the version of NUPACK they are a part of, so 3.2 for the previous algorithm and 4.0 for the new
algorithm. While there may be more than one decomposition during design, we consider only the
costs to evaluate the initial and final decompositions. Also, in cases not requiring redecomposition,
these will be the same. The initial cost allows us to comment purely on interactions between the
structures and the algorithms as no thermodynamic or randomized information is involved. The
final cost allows us to place a lower bound on the total cost of design, as we know every node in this
tree was evaluated for design to exit. In examining the results, comparing the shapes of the initial
decomposition distributions for the old and new methods shows little difference. As discussed in
Section 4.3.4, the costs are slightly higher for the new method due to repeated nucleotides in sibling
nodes resulting in a rightward stretching of the distributions. Also, as expected, this stretching
becomes negligible as complex size increases.

Note that in the results for the 3200 nt complexes in the single stranded test set using the previous
algorithm, only 7 data points are displayed. These represent the trials which finished in time to
submit this document. They are shown here to corroborate the claim that some members of the set of
3200 nt target structures have a lower bound, even when using the previous decomposition algorithm.
This is clear from the points in the initial decomposition panel which have costs exceeding 2× the
root.

Ultimately, it is difficult to reason deeply about how the recursive decomposition algorithm will
interact with a given structure a priori. Thus, we used the above analysis to characterize the
efficiency over test sets of representative engineered complexes. Additionally, we can get a sense of

86

1.0 1.5 2.0 2.5 3.0

(k j

| k|3)/| j|3

0.00
0.25
0.50
0.75
1.00

Initial decomposition cost

1.0 1.5 2.0 2.5 3.0

(k j

| k|3)/| j|3

Final decomposition cost

Size (nt)
50
100
200
400

1.0 1.5 2.0 2.5 3.0

(k j

| k|3)/| j|3

0.00
0.25
0.50
0.75
1.00

Initial decomposition cost

1.0 1.5 2.0 2.5 3.0

(k j

| k|3)/| j|3

Final decomposition cost

Size (nt)
50
100
200
400

1.0 1.5 2.0 2.5 3.0

(k j

| k|3)/| j|3

0.00
0.25
0.50
0.75
1.00

Initial decomposition cost

1.0 1.5 2.0 2.5 3.0

(k j

| k|3)/| j|3

Final decomposition cost
Size (nt)

100
200
400
800
1600
3200

1.0 1.5 2.0 2.5 3.0

(k j

| k|3)/| j|3

0.00
0.25
0.50
0.75
1.00

Initial decomposition cost

1.0 1.5 2.0 2.5 3.0

(k j

| k|3)/| j|3

Final decomposition cost
Size (nt)

100
200
400
800
1600
3200

Figure 4.3: Comparison betweenNUPACK3.2 andNUPACK4.0 hierarchical decomposition algorithms on the engineered
complex test sets. For each test set and algorithm pairing, two quantites are computed. Left panel: Idealized cost of
computing every node in the initial structure-guided hierarchical ensemble decomposition relative to the root. Right panel:
Idealized cost of computing every node in the final structure- and probability-guided hierarchical ensemble decomposition
relative to the root. Each test set and algorithm pairing are shown on their own rows. First row: performance of the
3.2 algorithm on the engineered heterodimer complex test set. Second row: performance of the 4.0 algorithm on the
engineered heterodimer complex test set. Third row: performance of the 3.2 algorithm on the engineered single-stranded
complex test set. Fourth row: performance of the 4.0 algorithm on the engineered single-stranded complex test set.

87

the types of issues causing expensive decompositions using our decomposition visualization utility
(Appendix C), by which we are able to see the decomposition trees for any complex. There is
essentially one way that a decomposition can be efficient (i.e. approach the 4/3 lower bound (4.20)):
if it is binary (no multiple split points) and balanced (each parent is divided directly in half). A
visualization corresponding to the final decomposition tree of the most efficiently decomposed 3200
nt complex is shown in Figure 4.4. While the tree is not perfectly balanced, it is nearly so, especially
closest to the root node, where this is most important.

Figure 4.4: Example efficient decomposition of 3200 nt structure. Assuming perfect cubic scaling, evaluating the entire
tree costs 1.34× the amount of time it takes to evaluate the root node. Nodes are labeled by their number of nucleotides,
|φk |. Nodes are colored with a perceptually uniform scale by log |φk | to make use of the color scale’s dynamic range.

The two ways a decomposition can be inefficient are failures of the requirements for efficiency: there
are competing structural ensembles that must be captured with multiple exclusive split points or

88

the least costly base pairs to decompose along do no neatly bisect the sequence into equal length
subsequences leading to an unbalanced tree. From Figure 4.3 we can already see that the second
type of inefficiency is predominant because the initial decomposition distributions (which do not
use thermodynamic information) show inefficiency, which is especially pronounced for the 3200 nt
structures. Figure 4.5 shows the final decomposition tree of the most inefficiently decomposed 3200
nt complex. This example decomposition was particularly egregious in that there is a central “trunk”
in the tree with branches that peel off asymmetrically all the way down to the leaves. The features
of this tree are representative of the other expensive decompositions, namely asymmetric splits at
depth 1 or 2 in the tree. This was the typical failure mode observed in the most expensive final
decompositions for every length. Inefficiency due to multiple split points in these test sets appeared
negligible, with multiply-decomposed nodes typically appearing nearer to the leaves than the root.

It is likely that the particular causes of expensive decompositions will vary across test sets and target
structures. However, users interested in causes of expensive decompositions for their particular
design can introspect the causes by visualizing the trees in their design’s decomposition forest.

4.4.4 Constraint Satisfaction Solver Performance
Wenow examine the effects of our change in CSP solving algorithm described in Section 4.3.2. Here,
we examine raw CSP solving speed, without confounding thermodynamics calculations. Later, we
examine the effects of CSP solving speed in the context of overall design cost for complex design
and multistate test tube design.

To examine pure CSP solver mutation cost, for increasing domain lengths, we created a domain of
that length and associated it with another domain constrained to be its reverse complement. We refer
to these domains as a and a∗. Without any other constraints, this is the “complementarity” constraint
set. For the “composition” constraint set, we add to the complementarity specification that domain
a must have 45-55% GC content. For the “pattern” constraint set, we add to the complementarity
specification that the patterns AAAA, CCCC, GGGG, UUUU, RRRRRR, YYYYYY, MMMMMM, KKKKKK, WWWWWW,
and SSSSSS must not appear in domain a. For the “diversity” constraint set (only implemented in
the hybrid solver), we impose the same effective constraint set as the pattern constraint, but using
diversity constraints. For the “window” constraint set, we add to the complementarity specification
that the first 50 nucleotides of a are constrained to be a subsequence of the 1798 nt desma mRNA
sequence from Danio rerio31. Results for these different constraint sets and implementations are
shown in Figure 4.6.

We see two major trends. First, the scaling of the in-house solver algorithm is asymptotically worse
than the hybrid solver. Second, the absolute mutation times for the in-house solver are between 1
and 3 orders of magnitudes slower than their hybrid counterparts. The only exceptions to this are for
the hybrid pattern and hybrid window constraints sets for shorter domain lengths. We expect that the
diversity constraint would be used to implement the equivalent pattern constraint set, and so hybrid
pattern performance is not a problem for smaller sequences in practice. The window constraint set

89

Figure 4.5: Example inefficient decomposition of 3200 nt structure. Assuming perfect cubic scaling, evaluating the entire
tree costs 2.39× the amount of time it takes to evaluate the root node. Nodes are labeled by their number of nucleotides,
|φk |. Nodes are colored with a perceptually uniform scale by log |φk | to make use of the color scale’s dynamic range.

90

10
1

10
2

10
3

10
4

size (nt)

10
5

10
4

10
3

10
2

10
1

10
0

10
1

10
2

tim
e

(s
)

Implementation, constraint set
Hybrid, complementarity
Hybrid, composition
Hybrid, diversity
Hybrid, pattern
Hybrid, window
In-house, complementarity
In-house, composition
In-house, pattern
In-house, window

Implementation Contraint set Complexity in N Prefactor (s)

Hybrid

complementarity 1.08 3.12 ×107

composition 1.20 2.74 ×107

diversity 1.09 1.44 ×106

pattern 1.04 1.55 ×105

window 0.32 6.54 ×104

In-house

complementarity 1.71 2.67 ×107

composition 1.99 1.67 ×107

pattern 1.57 1.23 ×106

window 1.51 1.86 ×106

Figure 4.6: Scaling of CSP mutation cost with size of sequence (in nucleotides) for both in-house and hybrid CSP solvers.
Dots represent mean times over 5 mutations, where the mutations for each point started from the same constraint-satisfying
sequence. Lines represent power law fits for each constraint/implementation pairing for points with > 100 nt. Data for
the “window” series only include sequences longer than 50 nt.

91

is particularly expensive for both solvers, but adds only a fixed cost, not changing the asymptotic
scaling relative to the default.

4.4.5 Complex Design Performance
We now consider benchmark results for complex design of engineered target structures. In Sec-
tion 4.4.3 we discussed running designs to investigate the quality of decompositions generated with
the previous and new decompositions. We now examine the final outputs of those design trials,
allowing performance comparison between the previous and new design algorithms.

The results are shown in Figure 4.7. First, the design quality for all trials was lower than fstop = 0.01
stop condition. Additionally, for a given test set, the distributions of design quality for each size are
visually similar between the two algorithms. In terms of raw performance, we consider the evaluation
cost. We see speedups from 10-30× coming from the improvements of Chapter 2. This contributes
to speedups of total design cost in the range of 2-25×. This differential speedup between design
time and analysis time means when examining relative design cost, we see that the 4.0 algorithm
has worse relative design costs, despite faster absolute times. This is due to overhead from the
non-thermodynamic design code becoming apparent as the thermodynamic code has been sped up.
However, the differences become inconsequential for complexes of 800 nt or larger, and indeed we
see asymptotic approach to the 4/3 lower bound (4.20).

92

10
3

10
2

10
1

E
ns

em
bl

e
de

fe
ct

 (
)

0.
00

0.
25

0.
50

0.
75

1.
00

D
es

ig
n

qu
al

ity

10
3

10
2

10
1

10
0

10
1

10
2

10
3

C
os

t d
es

 (s
)

D
es

ig
n

co
st

10
0

10
1

10
2

10
3

C
os

t d
es

 /
C

os
t e

va
l

R
el

at
iv

e
de

si
gn

 c
os

t

10
4

10
3

10
2

10
1

10
0

10
1

C
os

t e
va

l (
s)

E
va

lu
at

io
n

co
st

S
iz

e
(n

t)
50 10

0
20

0
40

0

10
3

10
2

10
1

E
ns

em
bl

e
de

fe
ct

 (
)

0.
00

0.
25

0.
50

0.
75

1.
00

D
es

ig
n

qu
al

ity

10
3

10
2

10
1

10
0

10
1

10
2

10
3

C
os

t d
es

 (s
)

D
es

ig
n

co
st

10
0

10
1

10
2

10
3

C
os

t d
es

 /
C

os
t e

va
l

R
el

at
iv

e
de

si
gn

 c
os

t

10
4

10
3

10
2

10
1

10
0

10
1

C
os

t e
va

l (
s)

E
va

lu
at

io
n

co
st

S
iz

e
(n

t)
50 10

0
20

0
40

0

10
3

10
2

10
1

E
ns

em
bl

e
de

fe
ct

 (
)

0.
00

0.
25

0.
50

0.
75

1.
00

D
es

ig
n

qu
al

ity

10
2

10
1

10
0

10
1

10
2

10
3

10
4

10
5

C
os

t d
es

 (s
)

D
es

ig
n

co
st

10
0

10
1

10
2

10
3

C
os

t d
es

 /
C

os
t e

va
l

R
el

at
iv

e
de

si
gn

 c
os

t

10
3

10
2

10
1

10
0

10
1

10
2

10
3

10
4

C
os

t e
va

l (
s)

E
va

lu
at

io
n

co
st

S
iz

e
(n

t)
10

0
20

0
40

0
80

0
16

00
32

00

10
3

10
2

10
1

E
ns

em
bl

e
de

fe
ct

 (
)

0.
00

0.
25

0.
50

0.
75

1.
00

D
es

ig
n

qu
al

ity

10
2

10
1

10
0

10
1

10
2

10
3

10
4

10
5

C
os

t d
es

 (s
)

D
es

ig
n

co
st

10
0

10
1

10
2

10
3

C
os

t d
es

 /
C

os
t e

va
l

R
el

at
iv

e
de

si
gn

 c
os

t

10
3

10
2

10
1

10
0

10
1

10
2

10
3

10
4

C
os

t e
va

l (
s)

E
va

lu
at

io
n

co
st

S
iz

e
(n

t)
10

0
20

0
40

0
80

0
16

00
32

00

Fi
gu

re
4.
7:

Pe
rfo

rm
an
ce

of
th
e
N
U
PA

C
K
3.
2
an
d
N
U
PA

C
K
4.
0
de
si
gn

al
go

rit
hm

so
n
th
e
en
gi
ne
er
ed

co
m
pl
ex

te
st
se
ts
.
Fo

re
ac
h
co
m
bi
na
tio

n
of

al
go

rit
hm

an
d
te
st
se
t,
fo
ur

qu
an
tit
ie
sw

er
e
m
ea
su
re
d.

Fi
rs
tp

an
el
:
D
es
ig
n
qu
al
ity
.
Se

co
nd

pa
ne
l:

D
es
ig
n
co
st.

Th
ird

pa
ne
l:

C
os
to

fs
eq
ue
nc
e
de
si
gn

re
la
tiv

e
to

a
si
ng

le
ev
al
ua
tio

n
of

th
e
ob

je
ct
iv
e
fu
nc
tio

n.
Fo

ur
th

pa
ne
l:

C
os
to

fa
si
ng

le
ev
al
ua
tio

n
of

th
e

ob
je
ct
iv
e
fu
nc
tio

n.
Ea

ch
te
st
se
ta
nd

al
go

rit
hm

pa
iri
ng

ar
e
sh
ow

n
on

th
ei
ro

w
n
ro
w
s.
Fi
rs
tr
ow

:P
er
fo
rm

an
ce

of
th
e
3.
2
al
go

rit
hm

on
th
e
en
gi
ne
er
ed

he
te
ro
di
m
er

co
m
pl
ex

te
st
se
t.
Se

co
nd

ro
w
:P

er
fo
rm

an
ce

of
th
e
4.
0
al
go

rit
hm

on
th
e
en
gi
ne
er
ed

he
te
ro
di
m
er

co
m
pl
ex

te
st
se
t.
Th

ird
ro
w
:
Pe
rfo

rm
an
ce

of
th
e
3.
2
al
go

rit
hm

on
th
e
en
gi
ne
er
ed

si
ng

le
-s
tra

nd
ed

co
m
pl
ex

te
st
se
t.
Fo

ur
th

ro
w
:
Pe
rfo

rm
an
ce

of
th
e
4.
0

al
go

rit
hm

on
th
e
en
gi
ne
er
ed

si
ng

le
-s
tra

nd
ed

co
m
pl
ex

te
st
se
t.
N
ot
e
th
at
in

th
e
re
su
lts

fo
rt
he

32
00

nt
co
m
pl
ex
es

in
th
e
si
ng

le
str
an
de
d
te
st
se
tu

si
ng

th
e
3.
2
al
go

rit
hm

,o
nl
y
7
da
ta
po

in
ts
ar
e
di
sp
la
ye
d.

93

Effect of Constraint Performance On Design Cost for Complex Design. Now we consider
the downstream effects of CSP solving on overall design performance. During development when
using only the in-house constraint implementation, representative 3200 nt test cases were profiled
to determine the fraction of time spent solving the CSP to initialize or mutate the sequence. For
the first case, profiling a design with only structural constraints showed that 15% of the total design
time was spent solving the CSP. For the second case, profiling a design with structural constraints
and an imposed GC content of 45-55% showed that an astounding 63% of the total design time was
spent solving the CSP. If we assume a median value of 30 for the speedup on the thermodynamic
backend due to the improvements of Chapter 2 and consistent with Figure 4.7, then the equivalent
fractions using the previous thermodynamics backend would have been 0.6% and 5.4%, respectively.
The fraction of time spent solving the CSP during mutation was 91.8% and 99.2%, respectively,
meaning that only at most 8.2% and 0.8% were spent on the thermodynamics calls during mutation.
The equivalent fractions with the previous thermodynamics implementation would have been 27%
and 81%, respectively. Thus, the improvements in performance for computing thermodynamic
quantities were so successful that the fractional contribution of solving the CSP went from negligible
to appreciable. Nevertheless, the fractions of time spent solving the CSP at the mutation level went
from appreciable to dominant. These two points acted as strong motivation for finding and using a
more efficient constraint solver.

We expanded the above analysis across the test sets of Section 4.4.3 and 4.4.5. While we produced
data for the complete test set, we show here only the data for the 3200 nt test cases. From a
decomposition perspective, these cases should be the most efficient in terms of relative design cost.
Based on the results in Figure 4.6, however, CSP solving cost scales superlinearly with number of
nucleotide variables for the in-house solver. We therefore sought to discover which of these effects
dominated when using either the in-house or hybrid solver variants.

94

10
3

10
2

10
1

E
ns

em
bl

e
de

fe
ct

 (
)

0.
00

0.
25

0.
50

0.
75

1.
00

D
es

ig
n

qu
al

ity

10
4

10
3

10
2

10
1

f k
(

)

G
C

 c
on

st
ra

in
t q

ua
lit

y

10
2

10
3

10
4

C
os

t d
es

 (s
)

D
es

ig
n

co
st

10
0

10
1

2
×

10
0

3
×

10
0 4

×
10

0
6

×
10

0

C
os

t d
es

 /
C

os
t e

va
l

R
el

at
iv

e
de

si
gn

 c
os

t

C
on

st
ra

in
t t

yp
e

D
ef

au
lt

C
om

po
si

tio
n,

 s
of

t,
w

k
=

0.
05

C
om

po
si

tio
n,

 s
of

t,
w

k
=

0.
1

C
om

po
si

tio
n,

 s
of

t,
w

k
=

0.
25

C
om

po
si

tio
n,

 h
ar

d

10
3

10
2

10
1

E
ns

em
bl

e
de

fe
ct

 (
)

0.
00

0.
25

0.
50

0.
75

1.
00

D
es

ig
n

qu
al

ity

10
4

10
3

10
2

10
1

f k
(

)

G
C

 c
on

st
ra

in
t q

ua
lit

y

10
2

10
3

10
4

C
os

t d
es

 (s
)

D
es

ig
n

co
st

10
0

10
1

2
×

10
0

3
×

10
0 4

×
10

0
6

×
10

0

C
os

t d
es

 /
C

os
t e

va
l

R
el

at
iv

e
de

si
gn

 c
os

t

C
on

st
ra

in
t t

yp
e

D
ef

au
lt

C
om

po
si

tio
n,

 s
of

t,
w

k
=

0.
05

C
om

po
si

tio
n,

 s
of

t,
w

k
=

0.
1

C
om

po
si

tio
n,

 s
of

t,
w

k
=

0.
25

C
om

po
si

tio
n,

 h
ar

d

Fi
gu

re
4.
8:

C
om

pa
ris

on
of

de
si
gn

co
st
w
ith

th
e
in
-h
ou

se
C
SP

so
lv
er

vs
.
th
e
ne
w

hy
br
id

C
SP

so
lv
er

on
32

00
nt

te
st
ca
se
s
w
ith

di
ffe

rin
g
le
ve
ls
of

co
m
po

si
tio

n
co
ns
tra

in
t.
Fo

re
ac
h

so
lv
er

va
ria

nt
,d

ist
rib

ut
io
ns

of
fo
ur

qu
an
tit
ie
s
w
er
e
de
te
rm

in
ed

ac
ro
ss

th
e
de
si
gn

tri
al
s.

Fi
rs
tp

an
el
:
D
es
ig
n
qu
al
ity
.
Se

co
nd

pa
ne
l:

Q
ua
lit
y
w
ith

re
sp
ec
tt
o
th
e
so
ft
co
m
po

si
tio

n
co
ns
tra

in
t(
no

rm
al
iz
ed

de
gr
ee

of
vi
ol
at
io
n)
.
Th

ird
pa
ne
l:

D
es
ig
n
co
st.

Fo
ur
th

pa
ne
l:

C
os
to

fs
eq
ue
nc
e
de
si
gn

re
la
tiv

e
to

a
si
ng

le
ev
al
ua
tio

n
of

th
e
ob

je
ct
iv
e
fu
nc
tio

n.
Ea

ch
ro
w

co
nt
ai
ns

th
e
re
su
lts

fo
ro

ne
so
lv
er

va
ria

nt
.
To

p:
Re

su
lts

w
ith

th
e
4.
0
al
go

rit
hm

us
in
g
on

ly
th
e
in
-h
ou

se
C
SP

so
lv
er
.
B
ot
to
m
:
Re

su
lts

w
ith

th
e
4.
0
al
go

rit
hm

us
in
g
th
e
hy
br
id

C
SP

so
lv
er
.

95

Figure 4.8 compares overall design performance using the in-house CSP to that using the hybrid
CSP solver on cases involving composition constraints. The default series corresponds to only
structure-based constraints, as in Figure 4.7. The other series correspond to constraining GC content
to 45-55%, either through a hard constraint or a soft constraint with one of three different weights.
Considering first the results using the in-house solver, we see that even the lowest relative design costs
for the default series do not approach the 4/3 lower bound (4.20). Additionally, the distributions for the
default series and all three soft constraint series are visually identical. However, there is a roughly
3-fold increase in design cost when using the hard composition constraints. This is unattractive
because the default series is mostly meeting the requirement, as shown by the distributions in the
second panels. Turning to the results with the hybrid solver, we first notice that absolute design
cost has shifted lower for all series relative to those associated with the in-house solver. We also
see asymptotic approach of the default series to the 4/3 lower bound. In fact, the distributions of
design cost and relative design cost are mostly overlapping for all of the series. This better coincides
with the aforementioned point that most trials in the default series meet the composition constraint
without enforcement.

96

10
3

10
2

10
1

E
ns

em
bl

e
de

fe
ct

 (
)

0.
00

0.
25

0.
50

0.
75

1.
00

D
es

ig
n

qu
al

ity

10
4

10
3

10
2

10
1

f k
(

)

P
at

te
rn

 c
on

st
ra

in
t q

ua
lit

y

10
2

10
3

10
4

C
os

t d
es

 (s
)

D
es

ig
n

co
st

10
0

10
1

2
×

10
0

3
×

10
0 4

×
10

0
6

×
10

0

C
os

t d
es

 /
C

os
t e

va
l

R
el

at
iv

e
de

si
gn

 c
os

t

C
on

st
ra

in
t t

yp
e

D
ef

au
lt

P
at

te
rn

, w
k
=

0.
25

P
at

te
rn

, w
k
=

0.
5

P
at

te
rn

, h
ar

d

10
3

10
2

10
1

E
ns

em
bl

e
de

fe
ct

 (
)

0.
00

0.
25

0.
50

0.
75

1.
00

D
es

ig
n

qu
al

ity

10
4

10
3

10
2

10
1

f k
(

)

P
at

te
rn

 c
on

st
ra

in
t q

ua
lit

y

10
2

10
3

10
4

C
os

t d
es

 (s
)

D
es

ig
n

co
st

10
0

10
1

2
×

10
0

3
×

10
0 4

×
10

0
6

×
10

0

C
os

t d
es

 /
C

os
t e

va
l

R
el

at
iv

e
de

si
gn

 c
os

t

C
on

st
ra

in
t t

yp
e

D
ef

au
lt

P
at

te
rn

, w
k
=

0.
25

P
at

te
rn

, w
k
=

0.
5

P
at

te
rn

, h
ar

d
D

iv
er

si
ty

, h
ar

d

Fi
gu

re
4.
9:

C
om

pa
ris

on
of

de
si
gn

co
st
w
ith

th
ei
n-
ho

us
eC

SP
so
lv
er
vs
.t
he

ne
w
hy
br
id
C
SP

so
lv
er
on

32
00

nt
te
st
ca
se
sw

ith
di
ffe

rin
g
le
ve
ls
of

pa
tte

rn
pr
ev
en
tio

n
co
ns
tra

in
t.
Fo

re
ac
h

so
lv
er

va
ria

nt
,d

ist
rib

ut
io
ns

of
fo
ur

qu
an
tit
ie
sw

er
e
de
te
rm

in
ed

ac
ro
ss

th
e
de
si
gn

tri
al
s.

Fi
rs
tp

an
el
:
D
es
ig
n
qu
al
ity
.S

ec
on

d
pa
ne
l:
Q
ua
lit
y
w
ith

re
sp
ec
tt
o
th
e
so
ft
pa
tte

rn
co
ns
tra

in
t

(n
or
m
al
iz
ed

de
gr
ee

of
vi
ol
at
io
n)
.
Th

ird
pa
ne
l:
D
es
ig
n
co
st.

Fo
ur
th

pa
ne
l:
C
os
to

fs
eq
ue
nc
e
de
si
gn

re
la
tiv

e
to

a
si
ng

le
ev
al
ua
tio

n
of

th
e
ob

je
ct
iv
e
fu
nc
tio

n.
Ea

ch
ro
w

co
nt
ai
ns

th
e

re
su
lts

fo
ro

ne
so
lv
er

va
ria

nt
.T

op
:R

es
ul
ts
w
ith

th
e
4.
0
al
go

rit
hm

us
in
g
on

ly
th
e
in
-h
ou

se
C
SP

so
lv
er
.B

ot
to
m
:R

es
ul
ts
w
ith

th
e
4.
0
al
go

rit
hm

us
in
g
th
e
hy
br
id

C
SP

so
lv
er
.

97

Figure 4.9 compares overall design performance using the in-house CSP to that using the hybrid
CSP solver on cases involving pattern constraints. The data for the default cases is the same as in
Figure 4.8. The other series correspond to preventing the patterns AAAA, CCCC, GGGG, UUUU, RRRRRR,
YYYYYY, MMMMMM, KKKKKK, WWWWWW, and SSSSSS, either through a hard pattern constraint, a hard
diversity constraints, or a soft pattern constraint with one of two different weights. First, consider
the second panels for each row, showing the degree of violation of the pattern constraints. We see
immediately this is a different regime from the composition constraint: in the default series there
is between 5-10% normalized degree of violation. Also, there appears to be no difference in these
distributions for the two different CSP solvers. From this we can expect that there will be additional
design cost due to imposing the constraints. When examining the results for the in-house solver, we
see again the lack of approach to the 4/3 bound. However, the design cost reflects the stringency
of the applied constraints, with the hard constraint having the highest cost and the lowest-weighted
soft constraint having the lowest cost. Also, the two soft constraints reduce the degree of violation
of the pattern constraint in the final sequences such that the higher weighted soft constraint leads to
a lower degree of violation, as desired. Looking then at the results from the hybrid solver, we see
that the design costs of all series have shifted lower relative to the in-house solver results. There is
a different behavior for relative design cost: rather than there being a strict tradeoff between degree
of violation and design cost, we are able to achieve perfect satisfaction of the constraint using the
diversity constraint implementation at the same cost as when using the soft constraints. The pattern
constraint implementation continues to be more costly than the other series, but less so relative to
the in-house solver results.

4.4.6 Test Tube Design Performance
We now consider the benchmark results for test tube design of the engineered test set. The results for
using the NUPACK 4.0 design algorithm on this test set are shown in Figure 4.10. These results are
directly comparable to those in Figure B.21. For design quality, the algorithm continues to meet the
1% stop condition. In terms of raw design performance, we see speedups of up to 10×, with some
of the slowest trials for the 400 nt cases approaching the results in Figure B.21. Relative design cost
has increased relative to the 3.2 algorithm, pointing to the increased effect of non-thermodynamic
algorithm overhead.

Figure 4.10: Performance of the NUPACK 4.0 design algorithm on the engineered test tube test set. First panel: Design
quality. Second panel: Design cost. Third panel: Cost of sequence design relative to a single evaluation of the objective
function. Fourth panel: Cost of a single evaluation of the objective function.

98

4.4.7 Reaction Pathway Case Studies
We now examine the performance of algorithm on reaction pathways from the nucleic acid design
literature. We continue to use the five reaction pathway case studies described in Section 3.4.1.

4.4.8 Orthogonal Reaction Pathway Design
We begin by examining the performance as a function of increasing numbers of systems. The results
shown in Figure 4.11 were generated by running the 4.0 algorithm over the same set of design
specifications used to produce Figure B.11. The design algorithm reduced the objective function
beneath fstop = 0.02 for all trials. Additionally, we continue to see approximately an order of
magnitude increase in design cost as the number of orthogonal systems doubles. However, this is
moderated by an order of magnitude decrease in design time relative to the equivalent trials using
the 3.2 algorithm. Thus, we can expect to be able to design twice as many orthogonal systems with
the 4.0 algorithm as the 3.2 algorithm in the same amount of time. Relative design cost continues
to increase with the number of systems, reflecting the increased effort spent on designing against
off-targets. Relative to the 3.2 results, relative design cost is approximately the same.

We also tracked statistics on the number of times the design algorithm made use of its important
subroutines. These results are shown in Figure 4.12. These data are consistent with the idea
that more difficult designs, in this case corresponding to more orthogonal systems, require more
frequent uses of the mechanisms of mutation, reseeding, redecomposing, and refocusing to achieve
proportionately high quality designs. Indeed, we see the distributions shifting rightward as the
number of orthogonal systems increases. These results also help to explain the variations we see in
the results in Figure 4.11 across reaction pathways.

4.4.9 Reaction Pathway Design with Hard Constraints
We now turn to performance results for constrained design of reaction pathways. These results were
generated using the constraint sets imposed on the results in Figure B.19. The results for the 4.0
algorithm are shown in Figure 4.13. We see that relative to the 3.2 results, many of the design
costs have shifted downward approximately an order of magnitude. Some have shifted downward
in cost at the low end of the distribution, but not the high end, indicating perhaps that these design
trajectories are dominated by non-thermodynamic overhead. Also of note, the “diversity” series,
which has the same set of feasible sequences as the “pattern, hard” series, achieves a lower design
cost. There are also some series which have become more expensive, namely the “all, hard” series
for the Boolean logic AND using toehold sequestration gates and window constraints for conditional
self-assembly via HCR. The reason for this degradation in time is not understood. Additionally, the
quality of the window constraints test set seems to have decreased slightly in some cases, relative to
the 3.2 results.

Figure 4.14 shows the measurements of subroutine use during the design trials. Unlike Figure 4.12,
where all components of the design were used more frequently in a monotonically increasing
fashion with number of orthogonal systems, we cannot make such broad observations based on

99

10
2

10
1

Ensemble defect ()

0.00

0.25

0.50

0.75

1.00
fra

ct
io

n
of

 tr
ia

ls
Design quality

10
0

10
1

10
2

10
3

10
4

10
5

10
6

Costdes (s)

Design cost

10
0

10
1

10
2

10
3

10
4

Costdes / Costeval

Relative design cost

10
2

10
1

Ensemble defect ()

0.00

0.25

0.50

0.75

1.00

fra
ct

io
n

of
 tr

ia
ls

Design quality

10
0

10
1

10
2

10
3

10
4

10
5

10
6

Costdes (s)

Design cost

10
0

10
1

10
2

10
3

10
4

Costdes / Costeval

Relative design cost

10
2

10
1

Ensemble defect ()

0.00

0.25

0.50

0.75

1.00

fra
ct

io
n

of
 tr

ia
ls

Design quality

10
0

10
1

10
2

10
3

10
4

10
5

10
6

Costdes (s)

Design cost

10
0

10
1

10
2

10
3

10
4

Costdes / Costeval

Relative design cost

10
2

10
1

Ensemble defect ()

0.00

0.25

0.50

0.75

1.00

fra
ct

io
n

of
 tr

ia
ls

Design quality

10
0

10
1

10
2

10
3

10
4

10
5

10
6

Costdes (s)

Design cost

10
0

10
1

10
2

10
3

10
4

Costdes / Costeval

Relative design cost

10
2

10
1

Ensemble defect ()

0.00

0.25

0.50

0.75

1.00

fra
ct

io
n

of
 tr

ia
ls

Design quality

10
0

10
1

10
2

10
3

10
4

10
5

10
6

Costdes (s)

Design cost

10
0

10
1

10
2

10
3

10
4

Costdes / Costeval

Relative design cost

Conditional self-assembly via HCR

Boolean logic AND using toehold sequestration gates

Self-assembly of 3-arm junction via CHA

Boolean logic AND using a cooperative hybridization gate

Conditional Dicer substrate formation via shape and sequence transduction with scRNAs

Orthogonal systems
1
2
4
8

Figure 4.11: Reaction pathway design performance for 1, 2, 4, or 8 orthogonal systems. Left: Design quality. Middle:
Design cost. Right: Cost of sequence design relative to a single evaluation of the objective function.

100

10
1

10
2

10
3

10
4

10
5

mutations

0.00

0.25

0.50

0.75

1.00

fra
ct

io
n

of
 tr

ia
ls

mutations

10
0

10
1

10
2

10
3

reseeds

reseeds

10
0

10
1

10
2

10
3

redecompositions

redecompositions

10
0

10
1

10
2

10
3

off active

Offtargets added

10
1

10
2

10
3

10
4

10
5

mutations

0.00

0.25

0.50

0.75

1.00

fra
ct

io
n

of
 tr

ia
ls

mutations

10
0

10
1

10
2

10
3

reseeds

reseeds

10
0

10
1

10
2

10
3

redecompositions

redecompositions

10
0

10
1

10
2

10
3

off active

Offtargets added

10
1

10
2

10
3

10
4

10
5

mutations

0.00

0.25

0.50

0.75

1.00

fra
ct

io
n

of
 tr

ia
ls

mutations

10
0

10
1

10
2

10
3

reseeds

reseeds

10
0

10
1

10
2

10
3

redecompositions

redecompositions

10
0

10
1

10
2

10
3

off active

Offtargets added

10
1

10
2

10
3

10
4

10
5

mutations

0.00

0.25

0.50

0.75

1.00

fra
ct

io
n

of
 tr

ia
ls

mutations

10
0

10
1

10
2

10
3

reseeds

reseeds

10
0

10
1

10
2

10
3

redecompositions

redecompositions

10
0

10
1

10
2

10
3

off active

Offtargets added

10
1

10
2

10
3

10
4

10
5

mutations

0.00

0.25

0.50

0.75

1.00

fra
ct

io
n

of
 tr

ia
ls

mutations

10
0

10
1

10
2

10
3

reseeds

reseeds

10
0

10
1

10
2

10
3

redecompositions

redecompositions

10
0

10
1

10
2

10
3

off active

Offtargets added

Conditional self-assembly via HCR

Boolean logic AND using toehold sequestration gates

Self-assembly of 3-arm junction via CHA

Boolean logic AND using a cooperative hybridization gate

Conditional Dicer substrate formation via shape and sequence transduction with scRNAs

Orthogonal systems
1
2
4
8

Figure 4.12: Algorithm statistics for orthogonal reaction pathway design. First panel: Number of mutations during design.
Second panel: Number of times sequences were reseeded during design. Third panel: Number of times subsequence
merging stopped and complexes were redecomposed during design. Fourth panel: Total number of off-targets moved
from Ψpassive to Ψactive during refocusing in the design

101

10
2

10
1

10
0

Ensemble defect ()

0.00

0.25

0.50

0.75

1.00
fra

ct
io

n
of

 tr
ia

ls

Design quality

10
0

10
1

10
2

10
3

10
4

10
5

10
6

Costdes (s)

Design cost

10
0

10
1

10
2

10
3

10
4

Costdes / Costeval

Relative design cost

10
2

10
1

10
0

Ensemble defect ()

0.00

0.25

0.50

0.75

1.00

fra
ct

io
n

of
 tr

ia
ls

Design quality

10
0

10
1

10
2

10
3

10
4

10
5

10
6

Costdes (s)

Design cost

10
0

10
1

10
2

10
3

10
4

Costdes / Costeval

Relative design cost

10
2

10
1

10
0

Ensemble defect ()

0.00

0.25

0.50

0.75

1.00

fra
ct

io
n

of
 tr

ia
ls

Design quality

10
0

10
1

10
2

10
3

10
4

10
5

10
6

Costdes (s)

Design cost

10
0

10
1

10
2

10
3

10
4

Costdes / Costeval

Relative design cost

10
2

10
1

10
0

Ensemble defect ()

0.00

0.25

0.50

0.75

1.00

fra
ct

io
n

of
 tr

ia
ls

Design quality

10
0

10
1

10
2

10
3

10
4

10
5

10
6

Costdes (s)

Design cost

10
0

10
1

10
2

10
3

10
4

Costdes / Costeval

Relative design cost

10
2

10
1

10
0

Ensemble defect ()

0.00

0.25

0.50

0.75

1.00

fra
ct

io
n

of
 tr

ia
ls

Design quality

10
0

10
1

10
2

10
3

10
4

10
5

10
6

Costdes (s)

Design cost

10
0

10
1

10
2

10
3

10
4

Costdes / Costeval

Relative design cost

Conditional self-assembly via HCR

Boolean logic AND using toehold sequestration gates

Self-assembly of 3-arm junction via CHA

Boolean logic AND using a cooperative hybridization gate

Conditional Dicer substrate formation via shape and sequence transduction with scRNAs

Constraint type
Default
Composition, hard
Pattern, hard
Window
All, hard
Diversity

Figure 4.13: Reaction pathway design performance with sequence constraints. Left: Design quality. Middle: Design cost.
Right: Cost of sequence design relative to a single evaluation of the objective function. Axes limits have been explicitly
chosen to allow direct comparison with Figure B.19. Some series are partially occluded as a result. Additionally, the
“default” series for the Boolean logic AND using a cooperative hybridization gate case study is not visible because all
trials finish in less that 1 second.

102

these additional data. For instance, in Figure 4.13, the all constraints set almost always has the most
expensive design cost. However, in terms of mutations, reseeds, and redecompositions, it almost
always has less of these than the window constraint set. There are several possible explanations
for this. First, a design trajectory with fewer redecompositions occurring close to the root will
be more expensive than one with many redecompositions happening nearer to the leaves. We do
not account for these differences in the data in Figure 4.14. The same can be said for refocusing
more total times with fewer off-targets transfered per refocus, as each refocus corresponds to a root
evaluation. Another possibility, based on the results in Section 4.4.4, is that each mutation is more
costly. If during the trials with the “all, hard” constraint set the hybrid CSP solver ends up falling
back on the in-house solver, then this will lead to more expensive mutations. Additionally, we expect
multiple constraint types to cause the hamming distance between successive mutations to increase,
especially when window constraints are present. This will lead to many more leaves being evaluated
as their sequences change compared to a less stringent constraint set that changes fewer variables
on average per mutation. A final contributing factor to more expensive mutations is if they occur
after refocusing, when there are more nodes in the evaluation forest. It seems unlikely that a single
summary statistic will capture these differences in all cases and instead individual design trajectories
can be examined in detail with the software described in Appendix C.

4.4.10 Reaction Pathway Design with Hard and Soft Constraints
We now compare the performance of using hard constraints with their soft constraint counterparts.
The results from Figure 4.13 are reproduced here for comparison (with series having the same
colors as in that figure). In addition we show results for soft constraint versions of the composition
and pattern constraints. In each of these cases, the soft constraint has weight wk = 0.25. Finally,
the constraint set “All, soft” uses both the preceeding soft composition constraint and soft pattern
constraint along with the hard window constraint, with each soft constraint having wk = 0.25. Per
soft constraint type, all relevant strand sequences are within a single soft constraint scope, so that
pathways with different numbers of strands still have the same number of soft constraints specified.
In practice, different weights could be specified for each strand to more precisely modulate the
objective function.

These results are shown in Figure 4.15. In addition to the information types shown in Figures 4.11
and 4.13, we also show the average normalized degree of violation for the soft constraints if relevant
to a series. We include these values for the default case as well. Focusing on these values, we notice
first that adding soft constraints to the design does lead to a reduction of the corresponding degree
of violation relative to the default case. Typically this reduction is at least an order of magnitude
for the “all, soft” series and more for the single soft constraint series. In the comparison between
the hard and soft composition and pattern constraints, there is not a clear winner in terms of design
cost. Most of the time they are approximately the same distribution and there are cases where hard
dominates soft and soft dominates hard. Comparing the hard and soft versions of the all constraint
set, we do see a striking difference in performance, with the soft constraint version costing 5-100×

103

10
1

10
2

10
3

10
4

10
5

mutations

0.00

0.25

0.50

0.75

1.00

fra
ct

io
n

of
 tr

ia
ls

mutations

10
0

10
1

10
2

10
3

reseeds

reseeds

10
0

10
1

10
2

10
3

redecompositions

redecompositions

10
0

10
1

10
2

10
3

off active

Offtargets added

10
1

10
2

10
3

10
4

10
5

mutations

0.00

0.25

0.50

0.75

1.00

fra
ct

io
n

of
 tr

ia
ls

mutations

10
0

10
1

10
2

10
3

reseeds

reseeds

10
0

10
1

10
2

10
3

redecompositions

redecompositions

10
0

10
1

10
2

10
3

off active

Offtargets added

10
1

10
2

10
3

10
4

10
5

mutations

0.00

0.25

0.50

0.75

1.00

fra
ct

io
n

of
 tr

ia
ls

mutations

10
0

10
1

10
2

10
3

reseeds

reseeds

10
0

10
1

10
2

10
3

redecompositions

redecompositions

10
0

10
1

10
2

10
3

off active

Offtargets added

10
1

10
2

10
3

10
4

10
5

mutations

0.00

0.25

0.50

0.75

1.00

fra
ct

io
n

of
 tr

ia
ls

mutations

10
0

10
1

10
2

10
3

reseeds

reseeds

10
0

10
1

10
2

10
3

redecompositions

redecompositions

10
0

10
1

10
2

10
3

off active

Offtargets added

10
1

10
2

10
3

10
4

10
5

mutations

0.00

0.25

0.50

0.75

1.00

fra
ct

io
n

of
 tr

ia
ls

mutations

10
0

10
1

10
2

10
3

reseeds

reseeds

10
0

10
1

10
2

10
3

redecompositions

redecompositions

10
0

10
1

10
2

10
3

off active

Offtargets added

Conditional self-assembly via HCR

Boolean logic AND using toehold sequestration gates

Self-assembly of 3-arm junction via CHA

Boolean logic AND using a cooperative hybridization gate

Conditional Dicer substrate formation via shape and sequence transduction with scRNAs

Constraint type
Default
Composition, hard
Pattern, hard
Window
All, hard
Diversity

Figure 4.14: Algorithm statistics for reaction pathway design with hard constraints. First panel: Number of mutations
during design. Second panel: Number of times sequences were reseeded during design. Third panel: Number of times
subsequencemerging stopped and complexes were redecomposed during design. Fourth panel: Total number of off-targets
moved from Ψpassive to Ψactive during refocusing in the design

104

less in design cost and typically producing at least as good sequences as ranked byM. Thus, soft
constraints are expected to significantly increase design throughput on problems that do not require
perfect adherence to the hard constraints.

Figure 4.15: Reaction pathway design performance with hard and soft sequence constraints. First panel: Thermodynamic
design quality. Second panel: Quality of soft constraints. Third panel: Design cost. Fourth panel: Cost of sequence
design relative to a single evaluation of the objective function.

Figure 4.16 shows the measurements of subroutine use during the design trials with soft and hard
constraints. The results include those of Figure 4.14. The discussion is similar as well: there is not a
strict correlation with the quality and cost performance metrics of Figure 4.15 and these subroutine
metrics. However, we can now compare between soft and hard constraints. For instance, the “all,
soft” series sometimes has fewer invocations of subroutines than the “all, hard” series. Frequently,

105

10
1

10
2

10
3

10
4

10
5

mutations

0.00

0.25

0.50

0.75

1.00

fra
ct

io
n

of
 tr

ia
ls

mutations

10
0

10
1

10
2

10
3

reseeds

reseeds

10
0

10
1

10
2

10
3

redecompositions

redecompositions

10
0

10
1

10
2

10
3

off active

Offtargets added

10
1

10
2

10
3

10
4

10
5

mutations

0.00

0.25

0.50

0.75

1.00

fra
ct

io
n

of
 tr

ia
ls

mutations

10
0

10
1

10
2

10
3

reseeds

reseeds

10
0

10
1

10
2

10
3

redecompositions

redecompositions

10
0

10
1

10
2

10
3

off active

Offtargets added

10
1

10
2

10
3

10
4

10
5

mutations

0.00

0.25

0.50

0.75

1.00

fra
ct

io
n

of
 tr

ia
ls

mutations

10
0

10
1

10
2

10
3

reseeds

reseeds

10
0

10
1

10
2

10
3

redecompositions

redecompositions

10
0

10
1

10
2

10
3

off active

Offtargets added

10
1

10
2

10
3

10
4

10
5

mutations

0.00

0.25

0.50

0.75

1.00

fra
ct

io
n

of
 tr

ia
ls

mutations

10
0

10
1

10
2

10
3

reseeds

reseeds

10
0

10
1

10
2

10
3

redecompositions

redecompositions

10
0

10
1

10
2

10
3

off active

Offtargets added

10
1

10
2

10
3

10
4

10
5

mutations

0.00

0.25

0.50

0.75

1.00

fra
ct

io
n

of
 tr

ia
ls

mutations

10
0

10
1

10
2

10
3

reseeds

reseeds

10
0

10
1

10
2

10
3

redecompositions

redecompositions

10
0

10
1

10
2

10
3

off active

Offtargets added

Conditional self-assembly via HCR

Boolean logic AND using toehold sequestration gates

Self-assembly of 3-arm junction via CHA

Boolean logic AND using a cooperative hybridization gate

Conditional Dicer substrate formation via shape and sequence transduction with scRNAs

Constraint type
Default
Composition, hard
Pattern, hard
Window
All, hard
Diversity
Composition, soft
Pattern, soft
All, soft

Figure 4.16: Algorithm statistics for reaction pathway design with hard and soft constraints. First panel: Number of
mutations during design. Second panel: Number of times sequences were reseeded during design. Third panel: Number
of times subsequence merging stopped and complexes were redecomposed during design. Fourth panel: Total number of
off-targets moved from Ψpassive to Ψactive during refocusing in the design.

106

however, the distributions are very nearly identical. There is also sometimes an inversion where “all,
hard” uses fewer invocations than “all, soft” This seems to corroborate the hypothesis that it is the
cost per mutation of the “all, hard” constraint set that is leading to the large decreases in design cost
we see when switching to the “all, soft” set.

While the foregoing results for soft-constraints have focused on comparisons of soft constraint types
with analogous hard constraints, we also investigated a soft constraint without an analogue: the
structure free energy equalization soft constraint. To do so, for each reaction pathway case study,
we began with the specification for designing 8 orthogonal systems from Section 4.4.8. To this, we
added structure free energy equalization soft constraints for important toeholds across the pathways.
For example, this involves all domains a and separately all domains c for the HCRmechanism across
the 8 pathways (see Figure B.1). Specifically, the free energies for duplex structures with each
toehold and its reverse complement as their sequences are constrained to approach the median across
all 8 orthogonal pathways, i.e. not a fixed external reference free energy. The results for two trials
are shown in Figure 4.17. We can see that the variances of the distributions with the soft-constraint
present are lower than those without. Thus structure free energy equalization does not generally
come for free by minimizingM and can be improved through applying the soft constraint.

Cooperative AND domain aHCR domain c

System numberSystem number

St
ru

ct
ur

e
fr

ee
 e

ne
rg

y
kc

al
 /

m
ol

Energy equalization objective No energy equalization objective

Figure 4.17: Toehold structure free energy equalization from a single trial each of two separate reaction pathways relative
to the trials for the default case. The structure free energy for the duplex of the named toehold

4.4.11 Importance of Negative Design in Reducing Crosstalk
As a final performance comparison, we reproduced the methodology from Section B.2.4, using our
new algorithm. The results are shown in Figure 4.18. While there are speedups for both sets of
designs (with and without off-targets), the same main message holds. There is no overlap between
the design quality distributions for sequences designed with and without off-target considerations;
negative design against off-target complexes is necessary for high quality sequences.

107

Figure 4.18: Importance of negative design in reducing crosstalk (N = 8 orthogonal systems). Comparison of designs
performed with or without off-targets in the design ensemble. Left: Design quality evaluated by calculating the multistate
test tube ensemble defect (M) over the ensemble containing off-targets. Right: Design cost.

108

4.4.12 Implementation
The design algorithm of this chapter is a complete reimplementation of the algorithm, excluding
reuse of the in-house constraint solver code of Chapter 3. The core design algorithm is written in
the C++17 programming language. It uses the code of Chapter 2 to evaluate all thermodynamic
quantities. We use the Gecode constraint solver library25 as one half of our hybrid CSP solver
algorithm. A Python API is provided for specifying and running designs, replacing the custom
scripting language of Chapter 3. Design specifications and compoments of running designs are
serialized in and out of C++ using the JSON for Modern C++ library32

4.5 Future Directions
The set of soft constraints discussed in Section 4.2.4 is by no means exhaustive. In fact, there are
two additional soft constraints that are related to the structure free energy equalization constraints.
First, we can imagine a soft constraint that equalizes the complex free energy, ∆G(φi), across a set
of sequences {φi}. Second, we can extend this reasoning to equalize the free energy differences
between sets of complexes, or,

∆∆Gi =
©­«

∑
φe ∈φei

∆G(φe)
ª®¬ − ©­«

∑
φb ∈φbi

∆G(φb)
ª®¬ ,

where φbi and φei are sets of sequences at the beginning and end of a state change. The second of
these types of soft constraints would more accurately equalize toehold binding energies, which are
only approximated by theirmost stable secondary structurewith the structure free energy equalization
constraint.

While such soft constraints are desirable, adding them to the design framework hasmore implications
than the soft constraints already present. This stems from the costs of computing these quantities,
∆G(φi) and ∆∆Gi, scaling as O(N3) with the length N of the constrained sequences. This contrasts
with the existing soft constraints which cost O(N) to evaluate. To improve naive performance,
we would likely use the hierarchical ensemble decomposition and merging paradigms to create
estimates for these soft constraints during design. As the sequences involved are not necessarily
on-targets or off-targets present elsewhere, this decomposition would require an initial root level
evaluation to decompose the complexes. It would also necessitate changing how redecomposition
works; it is currently able to ignore the soft constraints because they do not change with depth in the
decomposition forest. Both of these soft constraints share the problem with the structure free energy
equalization soft constraint that assignment of defect to specific sequence elements is at a very coarse
level. Thus, the designer is able to tell which set of sequences i is worst, but which nucleotides
within those sequences are mutated is chosen uniformly at random. This is expected to lead to
more mutations on average, similar to the case of using uniform random sampling during complex
design by ensemble defect minimization28. Another potential issue for sequences not corresponding
to on-targets is that we expect the need for more frequent redecomposition, due to the potential for
more extreme changes in sequence when no auxiliary structure is used to inform the decomposition.

109

Another area for potential investigation involves approximating the Pareto optimal set of solutions.
We briefly touched on this in Section 4.2.2 when describing our objective function formulation. The
Pareto optimal set contains all solutions which are not dominated by any other solution33. Here
domination means the objective vector for one solution is less than another at every paired position
along the vectors. Much like we do not seek the minimal M sequence in our previous design
algorithm, we would seek only an approximation to this set. We already encourage our users to
seek such an approximation by running multiple independent trials of the same design specification.
These sequences can then be filtered either computationally or experimentally. The independence of
these trials, however, means that there is nothing preventing clustering of solutions in one region of
sequence space. In related problems in optimization using evolutionary algorithms, it is found that
active diversity promotion mechanisms are necessary to avoid algorithmic genetic drift converging
to a small region of solution space34. Additionally, they note that finding a set of solutions that is both
a diverse and close approximation to the Pareto optimal set as the number of objectives increases
is a difficult and active area of study in the multiobjective combinatorial optimization (MOCO)
community. Changing design to this sort of framework would require an in-depth reexamination of
all components of the present algorithm from the ground up to integrate both the general properties
of MOCO solvers with the idiosyncratic estimation techniques for multistate test tube design.

4.6 Conclusion
The design algorithm of this chapter sought to improve upon the performance and extend the func-
tionality of the multistate test tube design algorithm of Chapter 3. Implementing this algorithm atop
that of the thermodynamic analysis algorithms of Chapter 2 enabled increases in raw performance, as
well as access to the comprehensive dangle and coaxial stacking model and robustness to overflow
for the design of large complexes. The examination of our in-house constraint solver revealed a
performance bottleneck which was only visible in light of improvements in thermodynamic analysis
performance. This was rectified by the introduction of our meta constraint engine, which aims to
maximize performance on the easy sets of constraints while minimally impacting performance when
more idiosyncratic solver heuristics are necessary. The introduction of soft constraints allows for
a reduction in total design cost by up to two orders of magnitude when replacing hard constraints
in the most constrained multistate test tube designs. For less stringent constraints sets (only pattern
constraints or only GC-content constraints), soft constraints do not measurably reduce design cost.
The soft constraint framework also allows additional flexibility in design specification through si-
multaneous optimization of sequence symmetry as a heuristic to avoid kinetic traps and equalization
of toehold free energies to equalize rates. The degree of violation of the soft constraints maps down
to the underlying nucleotide variables, as with the mulitstate test tube ensemble defect, which allows
efficient defect-weighted mutation sampling. Our investigation into a simpler but nominally more
expensive hierarchical decomposition method showed minimal cost differences in the asymptotic
limit and led to development of a useful visualization tool for decomposition trees. Taken together,
these changes make sequence design for reaction pathway engineering faster, more flexible, and

110

more physically accurate.

111

Bibliography

[1] L.M.Hochrein, T. J. Ge,M. Schwarzkopf, andN.A. Pierce. “Signal transduction in human cell
lysate via dynamic RNA nanotechnology”. In: ACS synthetic biology 7.12 (2018), pp. 2796–
2802.

[2] M. H. Hanewich-Hollatz, Z. Chen, L. M. Hochrein, J. Huang, and N. A. Pierce. “Conditional
Guide RNAs: Programmable Conditional Regulation of CRISPR/Cas Function in Bacterial
and Mammalian Cells via Dynamic RNA Nanotechnology”. In: ACS Central Science (2019).

[3] J. Chappell, A. Westbrook, M. Verosloff, and J. B. Lucks. “Computational design of small
transcription activating RNAs for versatile and dynamic gene regulation”. In: Nature commu-
nications 8.1 (2017), p. 1051.

[4] S. Pallikkuth, C. Martin, F. Farzam, J. S. Edwards, M. R. Lakin, D. S. Lidke, and K. A. Lidke.
“Sequential super-resolution imaging using DNA strand displacement”. In: PloS one 13.8
(2018), e0203291.

[5] L. Oesinghaus and F. C. Simmel. “Switching the activity of Cas12a using guide RNA strand
displacement circuits”. In: Nature communications 10.1 (2019), p. 2092.

[6] D. Zhang and E. Winfree. “Control of DNA strand displacement kinetics using toehold
exchange”. In: J. Am. Chem. Soc. 131 (2009), pp. 17303–17314.

[7] N. Srinivas, J. Parkin, G. Seelig, E. Winfree, and D. Soloveichik. “Enzyme-free nucleic acid
dynamical systems”. In: Science 358.6369 (2017), eaal2052.

[8] H. A. Simon. “Rational choice and the structure of the environment.” In: Psychological review
63.2 (1956), p. 129.

[9] T. F. Gonzalez. Handbook of Approximation Algorithms and Metaheuristics, Second Edition
(Chapman & Hall/Crc Computer & Information Science Series). Chapman & Hall/CRC,
2018. isbn: 78-1-4987-7011-8.

[10] M. Ehrgott. “A discussion of scalarization techniques for multiple objective integer program-
ming”. In: Annals of Operations Research 147.1 (2006), pp. 343–360. issn: 02545330. doi:
10.1007/s10479-006-0074-z.

[11] N. C. Seeman. “Nucleic acid junctions and lattices”. In: Journal of Theoretical Biology 99.2
(Nov. 1982), pp. 237–247. issn: 00225193. doi: 10.1016/0022-5193(82)90002-9. url:
https://linkinghub.elsevier.com/retrieve/pii/0022519382900029.

[12] N. Seeman and N. Kallenbach. “Design of immobile nucleic acid junctions”. In: Biophys-
ical Journal 44.2 (Nov. 1983), pp. 201–209. issn: 00063495. doi: 10 . 1016 / S0006 -
3495(83)84292- 1. url: https://linkinghub.elsevier.com/retrieve/pii/
S0006349583842921.

[13] N. C. Seeman. “De novo design of sequences for nucleic acid structural engineering”. In:
Journal of Biomolecular Structure and Dynamics 8.3 (1990), pp. 573–581. issn: 15380254.
doi: 10.1080/07391102.1990.10507829.

[14] R. M. Dirks, M. Lin, E. Winfree, and N. A. Pierce. “Paradigms for computational nucleic
acid design”. In: Nucleic Acids Research 32.4 (2004), pp. 1392–1403. issn: 03051048. doi:
10.1093/nar/gkh291.

https://doi.org/10.1007/s10479-006-0074-z
https://doi.org/10.1016/0022-5193(82)90002-9
https://linkinghub.elsevier.com/retrieve/pii/0022519382900029
https://doi.org/10.1016/S0006-3495(83)84292-1
https://doi.org/10.1016/S0006-3495(83)84292-1
https://linkinghub.elsevier.com/retrieve/pii/S0006349583842921
https://linkinghub.elsevier.com/retrieve/pii/S0006349583842921
https://doi.org/10.1080/07391102.1990.10507829
https://doi.org/10.1093/nar/gkh291

112

[15] D. Soloveichik, G. Seelig, and E. Winfree. “DNA as a universal substrate for chemical
kinetics”. In: Proceedings of the National Academy of Sciences 107.12 (2010), pp. 5393–
5398.

[16] M. J. Serra and D. H. Turner. “Predicting Thermodynamic Properties of RNA”. In: Methods
Enzymol. 259 (1995), pp. 242–261.

[17] D. H. Mathews, J. Sabina, M. Zuker, and D. H. Turner. “Expanded Sequence Dependence of
Thermodynamic Parameters Improves Prediction of RNA Secondary Structure”. In: J. Mol.
Biol. 288 (1999), pp. 911–940.

[18] S. Bommarito, N. Peyret, and J. SantaLucia. “Thermodynamic Parameters forDNASequences
with Dangling Ends”. In: Nucleic Acids Res. 28.9 (2000), pp. 1929–1934. issn: 0305-1048.
doi: DOI10.1093/nar/28.9.1929.

[19] N. Peyret. “Prediction of Nucleic Acid Hybridization: Parameters and Algorithms”. Thesis.
2000.

[20] M. Zuker. “Mfold Web Server for Nucleic Acid Folding and Hybridization Prediction”. In:
Nucleic Acids Res. 31.13 (2003), pp. 3406–3415.

[21] D.H.Mathews. “Using anRNAsecondary structure partition function to determine confidence
in base pairs predicted by free energy minimization”. In: Rna 10.8 (2004), pp. 1178–1190.

[22] D. H. Turner and D. H. Mathews. “NNDB: the nearest neighbor parameter database for
predicting stability of nucleic acid secondary structure”. In: Nucleic Acids Res. 38 (2010),
pp. D280–D282.

[23] B. R. Wolfe, N. J. Porubsky, J. N. Zadeh, R. M. Dirks, and N. A. Pierce. “Constrained
Multistate Sequence Design for Nucleic Acid Reaction Pathway Engineering”. In: Journal
of the American Chemical Society 139.8 (2017), pp. 3134–3144. issn: 15205126. doi: 10.
1021/jacs.6b12693.

[24] B. R.Wolfe. “Design andAnalysis of NucleicAcidReaction Pathways”. PhD thesis. California
Institute of Technology, 2014.

[25] C. Schulte, G. Tack, and M. Z. Lagerkvist. Modeling and programming with gecode. 2010.

[26] R. Dechter and D. Cohen. Constraint processing. Morgan Kaufmann, 2003.

[27] B. R. Wolfe and N. A. Pierce. “Sequence Design for a Test Tube of Interacting Nucleic Acid
Strands”. In: ACS Synthetic Biology (2014), p. 141020092749006. issn: 2161-5063. doi: 10.
1021/sb5002196. url: http://pubs.acs.org/doi/pdfplus/10.1021/sb5002196.

[28] J. N. Zadeh, B. R. Wolfe, and N. A. Pierce. “Nucleic acid sequence design via efficient
ensemble defect optimization”. In: Journal of Computational Chemistry 32.3 (2011), pp. 439–
452. doi: 10.1002/jcc.21633. eprint: https://onlinelibrary.wiley.com/doi/
pdf/10.1002/jcc.21633. url: https://onlinelibrary.wiley.com/doi/abs/10.
1002/jcc.21633.

[29] R. M. Dirks, J. S. Bois, J. M. Schaeffer, E. Winfree, and N. A. Pierce. “Thermodynamic
Analysis of Interacting Nucleic Acid Strands”. In: SIAM Rev. 49.1 (2007), pp. 65–88.

[30] C. Sanderson. “Armadillo: An open source C++ linear algebra library for fast prototyping
and computationally intensive experiments”. In: (2010).

https://doi.org/DOI 10.1093/nar/28.9.1929
https://doi.org/10.1021/jacs.6b12693
https://doi.org/10.1021/jacs.6b12693
https://doi.org/10.1021/sb5002196
https://doi.org/10.1021/sb5002196
http://pubs.acs.org/doi/pdfplus/10.1021/sb5002196
https://doi.org/10.1002/jcc.21633
https://onlinelibrary.wiley.com/doi/pdf/10.1002/jcc.21633
https://onlinelibrary.wiley.com/doi/pdf/10.1002/jcc.21633
https://onlinelibrary.wiley.com/doi/abs/10.1002/jcc.21633
https://onlinelibrary.wiley.com/doi/abs/10.1002/jcc.21633

113

[31] J. McEntyre and J. Ostell. The NCBI Handbook [Internet]. Bethesda, MD: National Center
for Biotechnology Information (US), 2002.

[32] N. Lohmann. JSON for Modern C++. Aug. 2019. url: https://github.com/nlohmann/
json.

[33] B. Li, J. Li, K. Tang, and X. Yao. “Many-objective evolutionary algorithms: A survey”. In:
ACM Computing Surveys (CSUR) 48.1 (2015), p. 13.

[34] R. C. Purshouse and P. J. Fleming. “On the evolutionary optimization of many conflicting
objectives”. In: IEEE Transactions on Evolutionary Computation 11.6 (Dec. 2007), pp. 770–
784. issn: 1089778X. doi: 10.1109/TEVC.2007.910138. url: http://ieeexplore.
ieee.org/document/4384508/.

https://github.com/nlohmann/json
https://github.com/nlohmann/json
https://doi.org/10.1109/TEVC.2007.910138
http://ieeexplore.ieee.org/document/4384508/
http://ieeexplore.ieee.org/document/4384508/

114

A p p e n d i x A

A Unified Dynamic Programming Framework for The Analysis of Interacting Nucleic
Acid Strands: Supplementary Information

This appendix was adapted from material in the supplementary info of M. E. Fornace∗, N. J.
Porubsky∗ and N. A. Pierce. “A Unified Dynamic Programming Framework for the Analysis
of Interacting Nucleic Acid Strands: Enhanced Models, Robustness, and Speed”. In: (2019, in
preparation).

A.1 Additional model details
A.1.1 Strand association penalty
Based on dimensional analysis, we define the complex concentrations xΨ for a test tube containing
the set of complexes Ψ as mole fraction rather than molarities (see (B.1)). Therefore, we adjust the
strand association penalty

∆Gassoc = ∆Gassoc
pub − kT log[ρH2O/(1 mol/liter)] (A.1)

where ∆Gassoc
pub is the published value for two strands associating1 and ρH2O is the molarity of water

(e.g., ρH2O = 55.14 mol/liter at 37 ◦C).2 The strand association penalty for a complex of L strands
(see (2.1)) is then

(L − 1)∆Gassoc. (A.2)

A.1.2 Salt corrections for DNA complexes
The default salt conditions for RNA3–8 and DNA6,9–11 parameter sets are [NaCl] = 1 M. Salt
corrections are available for DNA parameters9,10,12,13 to permit calculations for sodium, potassium,
and ammonium ion concentrations ([Na+] + [K+] + [NH+4]) in the range 0.05 to 1.0M andmagnesium
ion concentrations [Mg++] in the range 0.0 to 0.2 M.

The free energy of a DNA duplex at 37◦ is augmented by

−0.114
N
2

log[Na+], (A.3)

for user-specified 0.05 M ≤ [Na+] ≤ 1.0 M, where N is the number of phosphates in the duplex
and it is assumed that ∆H is independent of [Na+], which is valid for this salt regime9,12. This salt
correction was derived using duplexes with 16 bp or less and the accuracy decreases as duplex length
increases further9,12. The expression can be generalized to monovalent sodium and potassium ions12

as well to divalent magnesium cations10,13:

−0.114
N
2

log
(
[Na+] + [K+] + [NH+4] + 3.3 [Mg++]1/2

)
, (A.4)

115

for user-specified for 0.05 M ≤ [Na+] + [K+] + [NH+4] ≤ 1.0 M and 0.0 M ≤ [Mg++] ≤ 0.2 M.

To apply this salt correction to a complex of L strands at temperature T , consider a secondary
structure s containing one or more duplexes. We assume that strands are synthesized with one
phosphate per base so that N/2 = nbp(φ, s) where N is the total number of phosphates in duplexes
and nbp(s) is the total number of base pairs in s. We further assume that ∆H is independent of cation
concentration in this regime. The secondary structure free energy ∆G(φ, s) is then augmented by

nbp(s)∆Gsalt (A.5)

with

∆Gsalt = −0.114 log
(
[Na+] + [K+] + [NH+4] + 3.3 [Mg++]1/2

) T
T37

(A.6)

for user-specified

0.05 M ≤ [Na+] + [K+] + [NH+4] ≤ 1.0 M, (A.7)

0.0 M ≤ [Mg++] ≤ 0.2 M, (A.8)

with T37 = 310.15 K. In order to incorporate this salt correction in dynamic programs without
explicitly calculating nbp(s), note that for a complex of L strands, the total number of loops in each
secondary structure is

nloop(s) = nbp(s) + 1. (A.9)

This may be seen, for example, by starting with a single strand with no base pairs (corresponding to
a single exterior loop). Each addition of a base pair adds one loop. Once all base pairs in s have
been added, each addition of a nick increases the number of strands by one without changing the
number of loops (all secondary structures in the complex ensemble are connected so introduction of
each nick converts a loop from another type to an exterior loop). Let nother

loop denote the total number
of non-exterior loops and nexterior

loop the total number of exterior loops, so we have

nloop(s) = nexterior
loop (s) + nother

loop (s). (A.10)

For a complex of L strands, nexterior
loop (s) = L. Thus, the salt correction (A.6) becomes

nbp(s)∆Gsalt = (L − 1)∆Gsalt + nother
loop (s)∆Gsalt. (A.11)

Hence, the salt correction can be implemented by adding∆Gsalt to every∆G(loop) except for exterior
loops as a pre-processing step, using our suite of dynamic programs without modification, and then
treating the constant term (L − 1)∆Gsalt in a post-processing step (see Section A.1.4).∗

∗A bulge loop of size one is a special case because it is treated in the model as the sum of two loop free energies that
are used separately elsewhere in the model. Hence, for bulges of size one, one salt correction must be removed to avoid
doubling the salt correction in this case.

116

A.1.3 Temperature dependence
The loop-based free energymodel (2.1) is temperature dependent. Each loop free energy is calculated
using

∆G(loop) = ∆H(loop) − T∆S(loop) (A.12)

where T is in Kelvin and ∆H(loop) and ∆S(loop) are assumed to be temperature independent12.
Model parameters are provided for RNA3–8 and DNA6,9–11 in the form of ∆G37(loop) and ∆H(loop)
which can be used to calculate

∆S(loop) =
1

T37
[∆H(loop) − ∆G37(loop)] (A.13)

with T37 = 310.15 K, so (A.12) becomes

∆G(loop) = ∆H(loop) −
T

T37
[∆H(loop) − ∆G37(loop)]. (A.14)

Similarly, for the strand association penalty (A.1):

∆Gassoc
pub = ∆Hassoc

pub − T∆Sassoc
pub . (A.15)

and the provided parameters ∆Gassoc
37,pub and ∆Hassoc

pub yield

∆Gassoc
pub = ∆Hassoc

pub −
T

T37
[∆Hassoc

pub − ∆Gassoc
37,pub]. (A.16)

The temperature dependence is explicit in the form of the symmetry correction (2.5) and salt
correction (A.6).

A.1.4 Treatment of constant free energy terms for calculations on complex ensembles

• Partition function

Q(φ) = exp{−(L − 1)[∆Gsalt + ∆Gassoc]/kT}Q1,N (A.17)

where Q1,N is the partition function value returned by the dynamic program for a complex of
N nucleotides.

117

A.2 Recursion diagrams and equations overview
Recursions are the bedrock of dynamic programming algorithms that specify the the relations
between subproblems. In the case of nucleic acid structural ensembles, each recursion corresponds
to an efficient iteration through a conditional ensemble of subtructures within a given subsequence
that are compatible with a specified set of constraints. For a given recursion, a conditional ensemble
might include an explicit structural element, which can be considered the base case of the recursion,
or a reference to the result of another recursion.

A.2.1 Recursions across intrastrand and interstrand blocks
Webegin by detailing the full set of recursionswith andwithout coaxial and dangle stacking included.
Reference 2 outlined dynamic programming algorithms within a multistranded ensemble which used
recursions containing persistent, repeated checks of strand breaks next to each considered nucleotide.
Such an approach yielded one set of recursions for both single and multistranded ensembles, but
(1) sometimes yielded unnecessary complications and computations in the pseudocode and (2)
eliminated any possibility of vectorization due to the conditional checks within every for-loop
present.

In contrast, in keeping with the blockwise approach to calculation of multistranded ensembles, we
developed separate sets of recursions for intrastrand and interstrand blocks (Figure A.1). In doing
so, the intrastrand recursions are kept as simple as possible, while the interstrand recursions may
still be efficiently vectorized.

Complex ABC
C

block

B
block BC

block

ABC
block

AB
block

A
block

A recursions: intrastrand
interactions within A

A

ABC recursions: interstrand
interactions between
A and C, mediated by B

ABC

a b c Intrastrand vector
operation

d Interstrand vector
 operation

Figure A.1: (a) Depiction of the blockwise approach. (b) Illustration of intrastrand vs interstrand recursion types.
Intrastrand recursions are used to calculate triangular blocks representing conditional ensembles formed within a single
strand. Interstrand recursions are used to calculate rectangular blocks representing conditional ensembles formed between
two separate strands (with any number of intervening strands between them in the strand ordering). (c) Illustration of
the common dot product appearing in computations of elements within an intrastrand block. Such a dot product can be
straightforwardly vectorized. (d) Illustration of the common dot products appearing in computations of elements within an
interstrand block. Select elements are commonly excluded from these dot products which would introduce disconnected
secondary structures into the complex ensemble. These dot products can be individually vectorized with recursions that
explicitly work over the strand breaks that are present.

118

A.2.2 Recursion conventions
In the following sections we will describe the specifics of the recursions necessary to compute
thermodynamic quantities either with or without coaxial and dangle stacking. Each recursion is
designed to accomplish an efficient, unique iteration through all conditional ensembles compatible
with a given set of defined constraints. In addition to the change to separate interstrand and
intrastrand recursions mentioned above, previous presentations2,14 have shown O(N4) and O(N3)

implementations that differ in number ofmatrices. Herewemaintain the number ofmatrices between
the implementations of the two complexities. The handling of interior loop contributions is the only
place in the implementation that determines whether the scaling isO(N4) andO(N3) and the relevant
differences are discussed in Section A.3.3.

Each recursion is represented in two ways: graphically, as a set of polymer graph recursion diagrams,
and algebraically, as an equation defining the recursion as a specific combination of contributions.
The polymer graph recursion diagrams have a number of general features. First, the solid circular
arcs represent the backbone of the nucleic acid polymer, with the 3′ end indicated by an arrowhead.
Second, dots indicate particular nucleotide positions that define the bounds of recursive contributions.
These dots are labeled with indices corresponding to the recursion equation. In cases where a dot is
unlabeled, it may be assumed that the label is either i+1 or i−1, where i is the nearest label (indices
increase from 5′ to 3′). Third, straight lines delimit boundaries within a given contribution. Solid
straight lines indicate that the connected nucleotides are base pairing. Dashed straight lines indicate
that the connected nucleotides may or may not be base pairing. Half-solid, half-dashed lines indicate
that the nucleotide connected on the solid side is involved in a base pair with another nucleotide in
the demarcated region. Dotted lines indicate the connected nucleotides are involved in either dangle
stacking on an adjacent explicit base pair or are in two explicit base pairs that are coaxially stacking
on each other. Finally, colored shading indicates that all nucleotides on the perimeter of the shaded
region are contributing to an explicit energy term, whose type maps to the color.

All of the following recursion equations implicitly use one of the evaluation algebras mentioned in
A.5 for the definitions of 0, 1, ⊕, ⊗, W , and Q. Due to our choice of symbols, a recursion can
be understood on first reading as computing a partition function (e.g. with 0 → 0, 1 → 1, ⊕ →
+, ⊗ → ×,W(∆G) → exp(−∆GkT)). Each equation is presented here as a formula Ra

s (i, j, φ), where a

is a recursion type, s denotes whether the recursion is for an interstrand (s = Multi) or intrastrand
(s = Single) block, φ is the sequence of the analyzed complex, and i, j are indices of φ. After it is
evaluated for the first time, Ra

s (i, j, φ) is used to yield Qa
i, j in subsequent recursions.

Finally, we make clear in our pseudocode which operations may be vectorized via SIMD operations
on contiguous arrays via the function dot, which represents a dot product generalized to a variadic
number of arguments, each of which is vector of a common length n:

119

dot(vectors)

n← Length(vectors1)

x ← 0

for i ∈ [1 : n]

t ← 1

for a ∈ vectors
t ← t ⊗ ai

x ← x ⊕ t

return x

Algorithm A.1: Generalized dot product over multiple equal length vectors.

The vectors argument to this subroutine is frequently composed of contiguous subvectors of the rows
and columns of the matrices storing the result of previous recursion evaluations, e.g. the matrix Qb.
These are denoted by replacing the typical scalar index with a range for either their row or column
indices. These ranges are written such that [i : j] yields i, i + 1, . . . , j − 1, j. The ranges can also be
used to create a vector of free energy values. When there are multiple ranges, the elements match
with each other such that a + b[i : j] + c[d : e] yields a + bi + cd, a + b(i + 1) + c(d + 1), . . . , a +
b(j − 1)+ c(e − 1), a + bj + ce. Also, sometimes to match up the values in the vectors correctly, two
ranges must proceed in opposite directions (ascending and descending). A descending, or reversed,
range is written such that [i : j]r yields j, j − 1, . . . , i + 1, i.

A.3 Recursions excluding coaxial stacking and dangles
The following sections describe the specific recursions derived to match the secondary structure
model ignoring dangle stacking and coaxial stacking. Relative to the previous implementation2, the
two heuristics used to incorporate a subset of dangle stacking states are not discussed. These heuristic
options for dangles are implemented and usable in the code to maintain backwards compatibility.

A.3.1 Intrastrand dynamic programming recursions
We begin with the recursion R∅

Single(i, j, φ) shown in Figure A.2 and Equation A.18. In the partition
function calculation, this recursion computes the unconstrained partition function for subsequence
[i, j]. This recursion distinguishes two cases: those that have at least one top level base pair, i.e. a
base pair in an exterior loop context, and the empty case where there are no base pairs in [i, j]. The
empty case has contribution 1 because a secondary structure with no base pairs is defined to be the
reference state with free energy 0. In cases with at least one top level base pair, there is a 3′−most
base pair which begins at d + 1 and ends in the interval [d + 2, j] and is incorporated through Qs

d+1, j .
The subsequence [i, d] is incorporated through recursive access of the dependent value Q∅

i,d
. The

limiting case where the index d+1 = i is shown explicitly to indicate that noQ∅ element is accessed.

120

s

s

i

j

i

j

i i

j

d

j

=

exterior loop

R∅
Single(i, j, φ) ≡ 1 ⊕


Qs

i, j ⊕ dot({Q∅
i,[i:j−5],Q

s
[i+1:j−4], j}), j − i > 4

Qs
i, j, j − i = 4

0, otherwise

(A.18)

Figure A.2: Polymer graph recursion diagram and recursion equation for the intrastrand R∅ recursion.

Next, elements of the type Qs
i, j are computed using the recursion Rs

Single(i, j, φ), shown in Figure A.3
and Equation A.19. This recursion collects contributions from all top level base pairs starting at i

and ending in [i + 1, j]. The contribution from each base pair i · d is incorporated through Qb
i,d
.

There is no need to account for any additional energy contributions as all these states are in exterior
loops with no dangle or coaxial stacking. The index limits are determined by the sterically-imposed
minimum hairpin size of 3 unpaired nucleotides.

=

i

j

i

j

d

b

s

exterior loop

Rs
Single(i, j, φ) ≡


⊕j

d=1+4 Qb
i,d
, j − i > 4

Qb
i, j, j − i = 4

0, otherwise

(A.19)

Figure A.3: Polymer graph recursion diagram and recursion equation for the intrastrand Rs recursion.

Elements of the type Qb
i, j are computed using the recursion Rb

Single(i, j, φ), shown in Figure A.4
and Equation A.20. In the partition function calculation, this recursion computes the conditional
partition function for subsequence [i, j] given that i and j are base paired. The function Pairable
checks if two nucleotides can form a Watson–Crick or wobble base pair based only on nucleotide

121

type without considering sterics. In each contribution to Qb
i, j , base pair i · j bounds one of three types

of loop: a multiloop, and interior loop, or a hairpin loop. In the multiloop cases, there are at least
two other base pairs bounding the remainder of the multiloop. We recursively and uniquely consider
all multiloop cases by obtaining the contribution from all 3′−most base pairs starting at d and ending
in [d + 1, j] from Qms

d, j−1 and all possible other states of one or more base pairs in [i + 1, d − 1] from
Qm

i+1,d−1. At this level of recursion, we account for the multiloop formation penalty, ∆Gmulti
init , as well

as the branch penalty for base pair i · j, ∆Gmulti
bp . The multiloop cases need only be considered when

it is sterically possible for two additional base pairs to form in [i+1, j−1]. For the interior loop case,
we defer discussion until Section A.3.3 where the two alternatives Single O(N4) Interior(i, j, φ)

and Single O(N3) Interior(i, j, φ) are discussed. Finally, for the hairpin case, as long as i and j

exceed the minimum hairpin size, there is one contribution with recursion energy equal to hairpin
energy ∆Ghairpin

i, j (φ).

=

i

j

b

m

ms

d

i

j
b

d

e

i

j

i

j

hairpininteriormulti loop

Rb
Single(i, j, φ) ≡


C1, Pairable(φi, φ j)

0, otherwise

where C1 ≡


dot({Qm

i+1,[i+5:j−6],Q
ms
[i+6:j−5], j−1}) ⊗W(∆Gmulti

init + ∆Gmulti
bp), j − i > 10

0, otherwise

⊕ Single Interior(i, j, φ)

⊕W(∆Ghairpin
i, j (φ))

(A.20)

Figure A.4: Polymer graph recursion diagram and recursion equation for the intrastrand Rb recursion.

Analogous to the recursion Rs
Single(i, j, φ), Rms

Single(i, j, φ), shown in Figure A.5 and Equation A.21,
collects contributions from all base pairs starting at i and ending in [i + 1, j]. However, in this
recursion, each base pair and set of unpaired bases are in a multiloop context. We obtain the
contribution of the base-paired region from Qb

i,d
. This is combined with the branch penalty for base

pair i · d, ∆Gmulti
bp , as well as the contribution from the unpaired bases, ∆Gmulti

nt (j − d). Note that in
the dot product the range multiplying ∆Gmulti

nt runs in reverse order because j − d decreases in size
as d − i increases in size.

122

=

i

j

i

j

d

b

ms

multi loop

Rms
Single(i, j, φ) ≡


Qb

i, j ⊗W(∆Gmulti
bp) ⊕ C1, j − i > 4

Qb
i, j ⊗W(∆Gmulti

bp), j − i = 4

0, otherwise

where C1 ≡ dot({Qb
i,[i+4:j−1],W(∆Gmulti

bp + ∆Gmulti
nt [1 : j − i − 4]r)})

(A.21)

Figure A.5: Polymer graph recursion diagram and recursion equation for the intrastrand Rms recursion.

To finish the discussion of multiloop contributions, we turn to recursion Rm
Single(i, j, φ), shown in

Figure A.6 and Equation A.22. There are two types of contributions: those with exactly one base
pair and those with more than one base pair. The single base pair case is handled by collecting all
states with base pairs starting at d and ending in [d+1, j] throughQms

d, j
. As the Rms recursion handles

the penalty for the base pairs it accumulates, only the penalty for the remaining unpaired bases are
considered here: ∆Gmulti

nt (d − i). The multiple base pair case is handled by obtaining information
about the 3′−most base pair through Qms

d+1, j and the remaining subsequence is handled by a recursive
access of the dependent value Qm

i,d
. In this case, the subsidiary recursions have handled all explicit

multiloop energies.

123

i

j

i

j

i

j

d
d=

ms ms

m

m

multi loop

Rm
Single(i, j, φ) ≡


Qms

i, j ⊕ C1, j − i > 4

Qms
i, j , j − i = 4

0, otherwise

where C1 ≡ dot({Qm
i,[i:j−5],Q

ms
[i+1:j−4], j})

⊕ dot({Qms
[i+1:j−4], j,W(∆Gmulti

nt [1 : j − i − 4])})

(A.22)

Figure A.6: Polymer graph recursion diagram and recursion equation for the intrastrand Rm recursion.

A.3.2 Interstrand dynamic programming recursions
A frequent type of dot product that appears in intrastrand recursions has the form

dot({Mi,[a:b], N[a+1:b+1], j}).

In words, it is the dot product of a sub-row of one matrix with a sub-column of a second matrix where
the column indices of the first are one less than the matching row indices of the second. In interstrand
blocks, the analogous types of contribution are more complicated because ranges of elements that are
multiplied together typically must be on the same strand, either to ensure the complex is connected or
to avoid exterior loops in the wrong contexts. Therefore, we need a method for finding the equivalent
sub-rows and sub-columns for interstrand blocks. The following subroutine, VP standing for valid
positions, does exactly that. It returns two arrays L and R, each of which contain the same number
of arrays of indices. Thus, for instance, the first element of L, L1, is an array of indices. For a given
index a, the two arrays of indices La and Ra are equivalent to [a : b] and [a + 1 : b + 1] in the
above example. Each pair La and Ra corresponds to an equal length pair of red sub-row and green
sub-column in the bottom of Figure A.1 (d). Each index a into L and R corresponds to a region of
a single strand. There is at most one such index per strand, and there may be none for a strand that
is too short or for the first or last strand if i or j, respectively, is too close to a strand break.

124

VP(i, j, φ)

L← []
R← []
b← η // list of base indices following strand breaks; ascending order
m← First(b)
n← Last(b)
if i + 1 < m and j ≥ n

Append(L, [i,m − 2])
Append(R, [i + 1,m − 1])

if i < m and j − 1 ≥ n

Append(L, [n, j − 1])
Append(R, [n + 1, j])

if i < m and j ≥ n

for d ∈ [1 : Length(b) − 1]
if bd+1 − bd > 1

Append(L, [bd, bd+1 − 2])
Append(R, [bd + 1, bd+1 − 1])

return L, R

Algorithm A.2: Enumerate valid positions for vectorization in interstrand blocks.

The symbol η referenced in VP is used differently than the description of the multistranded partition
function algorithms in Reference 2, where it was a function used to count the number of nicks in
a given subsequence. Here, η is an array of the indices of the 5′−most nucleotide of each strand
in the interstrand block being considered, which are the positions following nicks. It is used in
the interstrand recursions to ensure that states are not disconnected and that exterior loops only
appear when they are being explicitly considered. This is one of the main innovations of the
interstrand/intrastrand recursion split: considering only those indices that are on valid strands for
the given contribution using η.

For the interstrand recursions, we begin with R∅
Multi(i, j, φ) shown in Figure A.7 and Equation A.23.

In the partition function calculation, this recursion computes the unconstrained partition function
for subsequence [i, j]. Unlike R∅

Single(i, j, φ), there is no empty case because this would correspond
to a disconnected structure, which is not in the multistranded ensemble. Thus, there is only one
contribution type: cases having at least one top level base pair, i.e. a base pair in an exterior
loop context. In these cases, there is a 3′−most base pair which begins at d + 1 and ends in the
interval [d+2, j] and is incorporated through Qs

d+1, j . The subsequence [i, d] is incorporated through
recursive access of the dependent value Q∅

i,d
. The limiting case where the index d + 1 = i is shown

125

explicitly to indicate that no Q∅ element is accessed. Additionally, to ensure connected states, only
positions with d and d + 1 on the same strand are included.

i

j

=
s

s

i i

j

d

j

exterior loop

R∅
Multi(i, j, φ) ≡ Qs

i, j ⊕
⊕

L,R∈VP(i,max(j−4,n),φ)
dot({Q∅

i,L,Q
s
R, j})

where n = Last(η)

(A.23)

Figure A.7: Polymer graph recursion diagram and recursion equation for the interstrand R∅ recursion.

Next, elements of the type Qs
i, j are computed using the recursion Rs

Multi(i, j, φ), shown in Figure A.8
and Equation A.24. This recursion collects contributions from all top level base pairs starting at i

and ending in [i + 1, j]. The contribution from each base pair i · d is incorporated through Qb
i,d
.

No additional energy contribution is added as all these states are in exterior loops with no dangle or
coaxial stacking. The index d must always be on the last strand to ensure there are no strand breaks
in the subsequence [d, j], which would lead to a disconnected state. The limiting case where d = j

is not depicted separately.

=

i

j

i

j

d

b

s

exterior loop

Rs
Multi(i, j, φ) ≡ Qb

i, j ⊕


⊕j−1

d=n
Qb

i,d
, n < j

0, otherwise

where n = Last(η)

(A.24)

Figure A.8: Polymer graph recursion diagram and recursion equation for the interstrand Rs recursion.

126

Elements of the type Qb
i, j are computed using the recursion Rb

Multi(i, j, φ), shown in Figure A.9
and Equation A.25. In the partition function calculation, this recursion computes the conditional
partition function for subsequence [i, j] given that i and j are base paired. In each contribution toQb

i, j ,
base pair i · j bounds one of three types of loop: a multiloop, and interior loop, or an exterior loop.
Notably, there is no hairpin loop contribution in the interstrand recursion. If i · j were the only base
pair in [i, j] (the equivalent condition for a hairpin in the intrastrand recursion), then because there
is at least one strand break in [i, j], this would result in either an exterior loop (discussed below) or a
disconnected structure, which is disallowed. In the multiloop cases, there are at least two other base
pairs bounding the remainder of the multiloop. We recursively and uniquely consider all multiloop
cases by obtaining the contribution from all 3′−most base pairs starting at d and ending in [d + 1, j]

from Qms
d, j−1 and all possible other states of one or more base pairs in [i + 1, d − 1] from Qm

i+1,d−1. At
this level of recursion, we account for the multiloop formation penalty, ∆Gmulti

init , as well as the branch
penalty for base pair i · j, ∆Gmulti

bp . To ensure all of these states are multiloops, there must never be a
strand break between d − 1 and d. For the interior loop case, we defer discussion until Section A.3.3
where the two alternatives Multi O(N4) Interior(i, j, φ) and Multi O(N3) Interior(i, j, φ) are
discussed. Finally, exterior loop cases are added by considering all positions c such that a strand
break exists between c − 1 and c and incorporating the remaining sequence through Q∅

i+1,c−1 and
Q∅

c, j−1. There is no explicit energy added for the exterior loop because coaxial and dangle stacking
are not considered in this recursion.

127

=

i

j

b

interiormulti loopexterior loop

i

j
c b

d

e

i

j

m

ms

d

i

j

Rb
Multi(i, j, φ) ≡


C1, Pairable(φi, φ j)

0, otherwise

where m = First(η)

n = Last(η)

C1 ≡



⊕
c∈η Q∅

i+1,c−1 ⊗ Q∅
c, j−1, j , n and i + 1 , m

Q∅
m, j−1, j , n and i + 1 = m

Q∅
i+1,n−1, j = n and i + 1 , m

1, i + 1 = j

⊕
⊕

L,R∈VP(i+1, j−1,φ)
dot({Qm

i+1,L,Q
ms
R, j−1}) ⊗W(∆Gmulti

init + ∆Gmulti
bp)

⊕Multi Interior(i, j, φ)

(A.25)

Figure A.9: Polymer graph recursion diagram and recursion equation for the interstrand Rb recursion.

Analogous to the recursion Rs
Multi(i, j, φ), Rms

Multi(i, j, φ), shown in Figure A.10 and Equation A.26,
collects contributions from all base pairs starting at i and ending in [i + 1, j]. However, in this
recursion, each base pair and set of unpaired bases are in a multiloop context. Thus, we obtain the
contribution of the base-paired region from Qb

i,d
. This is combined with the branch penalty for base

pair i · d, ∆Gmulti
bp , as well as the contribution from the unpaired bases, ∆Gmulti

nt (j − d). Note that in
the dot product the range multiplying ∆Gmulti

nt runs in reverse order because j − d decreases in size
as d − i increases in size. The index d must always be on the last strand to ensure there are no strand
breaks in the subsequence [d, j], which would lead to either a disconnected or exterior loop state,
which this recursion does not handle.

128

=

i

j

i

j

d

b

ms

multi loop

Rms
Multi(i, j, φ) ≡ Qb

i, j ⊗W(∆Gmulti
bp)

⊕


dot({Qb

i,[n:j−1],W(∆Gmulti
bp + ∆Gmulti

nt [1 : j − n]r)}), n < j

0, otherwise

where n = Last(η)

(A.26)

Figure A.10: Polymer graph recursion diagram and recursion equation for the interstrand Rms recursion.

To finish the discussion of multiloop contributions, we turn to recursion Rm
Multi(i, j, φ), shown in

Figure A.11 and Equation A.27. There are two types of contributions: those with exactly one base
pair and those with more than one base pair. The single base pair case is handled by collecting all
states with base pairs starting at d and ending in [d+1, j] throughQms

d, j
. Relative to the Rm

Single(i, j, φ),
the additional requirement that d be on the first strand prevents this recursion from including exterior
loop or disconnected states. As the Qms

d, j
recursion contains the penalty for the base pairs it wraps,

only the penalty for the unpaired bases is considered here: ∆Gmulti
nt (d − i). The multiple base pair

case is handled by obtaining information about the 3′−most base pair through Qms
d+1, j and a recursive

reference to a smaller subsequence value of Qm
i,d
. The indices d and d + 1 must be on the same

strand to prevent including exterior loop states, which this recursion does not handle. In this case,
the subsidiary recursions have handled all explicit multiloop energies.

129

i

j

i

j

i

j

d
d=

ms ms

m

m

multi loop

Rm
Multi(i, j, φ) ≡ Qms

i, j ⊕
⊕

L,R∈VP(i, j,φ)
dot({Qm

i,L,Q
ms
R, j})

⊕


dot({Qms

[i+1:m−1], j,W(∆Gmulti
nt [1 : m − i − 1])}), i + 1 < m

0, otherwise

where m = First(η)

(A.27)

Figure A.11: Polymer graph recursion diagram and recursion equation for the interstrand Rm recursion.

A.3.3 Recursion contributions for interior loop contributions
Interior loop contributions to the recursions Rb

Single(i, j, φ) and Rb
Multi(i, j, φ) run naively in O(N4)

time. This can be seen in the interior loop recursion diagrams in Figures A.4 and A.9, in which there
are two free indices, d and e. This leads to O(N2) interior loop contributions per each of O(N2) base
pairs i · j, for an overall O(N4) complexity.

The intrastrand O(N4) interior loop contribution (Equation A.28) considers interior loops through
a nested iteration, first over d in a 5′ to 3′ direction and for each d over e in a 5′ to 3′ direction.
The index limits for d and e ensure d − e ≥ 4, which corresponds to the minimum hairpin size
of 3 unpaired nucleotides. The function ∆Ginterior

i,d,e, j
(φ) accounts for the free energy of the loop with

bouding base pairs i · j and d · e. Depending on the indices, it substitutes in the correct energy form
for a stack loop, bulge loop, or interior loop.

Single O(N4) Interior(i, j, φ) ≡
j−5⊕

d=i+1

j−1⊕
e=d+4

{Qb
d,e ⊗W(∆Ginterior

i,d,e, j (φ))} (A.28)

The interstrand O(N4) interior loop contribution (Equation A.29) proceeds in the same general
manner, considering interior loops in order of ascending d then e indices. However, d is restricted
to be on the first strand and e is restricted to be on the last strand. This is reflected in the upper limit
for d and the lower limit for e. These two requirements ensure that no strand breaks occur between
i and d and between e and j, which would lead to an exterior loop or disconnected structure.

130

Multi O(N4) Interior(i, j, φ) ≡
m−1⊕
d=i+1

j−1⊕
e=n

{Qb
d,e ⊗W(∆Ginterior

i,d,e, j (φ))}

where m = First(η)

n = Last(η)

(A.29)

To reduce the complexity of computing all interior loop contributions from O(N4) to O(N3), we
take advantage of the specific energy form for large interior loops. In a previous discussion14, this
optimization was referred to as the “fastiloops” or “fast interior loops” function. Interior loops,
defined by two bounding base pairs i · j and d · e, can be classified by the distances L1 = d − i − 1
and L2 = j − e − 1. In cases where L1 < 4 or L2 < 4, the energy functions generally depend on
terms that are non-linear with respect to L1 and L2. These include the special case energy functions
for stack loops and bulge loops, as well as length dependent asymmetry and size penalties for other
interior loops. We term these the inextensible interior loops because there is not a general purpose
way to reuse previously computed information. There are only O(N) of these contributions per
subsequence (because of the constant upper bounds for L1 and L2), and so they do not contribute to
the O(N4) complexity.

The remaining interior loops in which L1 ≥ 4 and L2 ≥ 4 are referred to as extensible interior loops.
The number of such cases scales as O(N2): these are the cases that we must deal with efficiently to
achieve an overall O(N3) runtime. For these cases, though, the free energy reduces to the following
equation:

∆Ginterior
i,d,e, j (φ) = γ

size
L1+L2

+ γ
asymm
|L1−L2 |

+ γmm
j−1, j,i,i+1(φ) + γ

mm
d−1,d,e,e+1(φ). (A.30)

Here, the quantity γsizeL1+L2
is a sequence-independent free energy contribution due to the size of

interior loop, L1 + L2. The quantity γasymm
|L1−L2 |

is a sequence-independent free energy contribution due
to the asymmetry of the loop, the difference in the two side lengths, |L1 − L2 |. Finally, the two terms
γmm
j−1, j,i,i+1(φ) and γ

mm
d−1,d,e,e+1(φ) are sequence-dependent free energy contributions due to mismatch

stacking on the base pairs i · j and d · e, respectively.

Two key insights from Equation A.30 allow us to use this functional form to reduce complexity. First,
for every base pair i · j, the mismatch term for that base pair is independent of the other quantities and
can be factored out. Second, every extensible loop bound by i · j can be converted to an extensible
loop bound by i − 1 · j + 1 by updating γsizes to γsize

s+2 and replacing γ
mm
j−1, j,i,i+1(φ) with γ

mm
j, j+1,i−1,i(φ).

Thus, we can cache the information specific to the base pair d · e for each given asymmetry the first
time it is encountered in an extensible interior loop and then modify only the size information each
time it is encountered.

Equation A.31 combines the above ideas into a subroutine for computing the interior loop contri-
butions to Rb

Single(i, j, φ). The first three lines handle the inextensible interior loop cases. In order,

131

these are cases where both L1 < 4 and L2 < 4, cases where L1 < 4 and L2 ≥ 4, and cases where
L1 ≥ 4 and L2 < 4. They all use previously computed Qb values and account for the interior loop
free energy using the same function ∆Ginterior

i,d,e, j
(φ) as in the O(N4) intrastrand recursion. Then, the

extensible cases are handled by combining the already computed Qx
i, j,s for each loop size s with the

mismatch contribution of base pair i · j. The upper limit on s is set such that the minimum distance
between d and e is 4, which corresponds to the minimum hairpin size of 3 unpaired nucleotides.

Single O(N3) Interior(i, j, φ) ≡
i+4⊕

d=i+1

j−1⊕
e=j−4

Qb
d,e ⊗W(∆Ginterior

i,d,e, j (φ))

⊕

i+4⊕
d=i+1

j−5⊕
e=d+4

Qb
d,e ⊗W(∆Ginterior

i,d,e, j (φ))

⊕

j−1⊕
e=j−4

e−4⊕
d=i+5

Qb
d,e ⊗W(∆Ginterior

i,d,e, j (φ))

⊕ Single Extensible(i, j, φ)

where Single Extensible(i, j, φ) ≡
j−i−6⊕
s=8

Qx
i, j,s ⊗W(γmm

j−1, j,i,i+1(φ))

(A.31)

The recursion Rx
Single(i, j, s, φ) (Equation A.32) fills in the three dimensional tensor Qx referred to

in Equation A.31. The indices i and j refer to the closing base pair i · j while the index s refers to the
size of the extensible loops collected in Qx

i, j,s. The contributions can be divided into two classes:
previously encountered loops and new loops. The previously encountered loops are incorporated
by accessing the previously computed element Qx

i+1, j−1,s−2 and replacing γsize
s−2 with γsizes . This is

the key operation that reduces the complexity of the interior loop recursion to O(N) by capturing
all previous loops in O(1). This component of the recursion is shown as the first term in the sum
that defines C1. All of the remaining contributions are from the new extensible loops that are first
encountered for the indices i, j, s. These are the elements that have exactly L1 = 4 or L2 = 4 (or
both).

Note that for each diagonal length l = j − i + 1, only elements of the form Qx
i+1, j−1,s−2 are accessed

for O(N) values of s. Therefore, we only need to store elements of Qx for diagonals l, l −1, and l −2.
In other words, only Qx values corresponding to Qb values from the current and last 2 diagonals
need to exist in memory during the forward pass. In moving to the next diagonal l+1, we can simply
delete all Qx

i, j,s values for diagonal l − 2 as they will not be accessed again. As the number of Qb

elements per diagonal scales as O(N) and the number of Qx elements needed for each Qb element
scales asO(N), onlyO(N2) space is necessary to store the necessary elements ofQx . Naively storing
all of Qx

i, j,s scales as O(N3), which would increase the space complexity of the presented algorithms
from O(N2).

132

Rx
Single(i, j, s, φ) ≡



C1, j − i > 15 and 10 ≤ s ≤ j − i − 6

C2 + C3, j − i > 14 and s = 9

C3, j − i = 14 and s = 9

C4, j − i > 13 and s = 8

0, otherwise

where C1 ≡ W(γsizes − γsizes−2) ⊗ Qx
i+1, j−1,s−2

⊕W(γsizes + γ
asymm
s−8 + γmm

i+4,i+5, j+3−s, j+4−s(φ)) ⊗ Qb
i+5, j+3−s

⊕W(γsizes + γ
asymm
s−8 + γmm

s+i−4,s+i−3, j−5, j−4(φ)) ⊗ Qb
s+i−3, j−5

C2 ≡ W(γsizes + γ
asymm
s−8 + γmm

i+4,i+5, j−6, j−5(φ)) ⊗ Qb
i+5, j−6

C3 ≡ W(γsizes + γ
asymm
s−8 + γmm

i+5,i+6, j−5, j−4(φ)) ⊗ Qb
i+6, j−5

C4 ≡ W(γsizes + γ
asymm
s−8 + γmm

i+4,i+5, j−5, j−4(φ)) ⊗ Qb
i+5, j−5

(A.32)

The subroutine for computing all interior loop contributions in O(N3) time for interstrand blocks is
shown in Equation A.33. It follows an analogous structure to Equation A.31. The only differences
are in the iteration limits which are all modified such that the invariants “d is on the same strand as
i” and “e is on the same strand as j” are obeyed. Disobeying at least one of these invariants results
in either an exterior loop or a disconnected structure.

Multi O(N3) Interior(i, j, φ) ≡
min(i+4,m−1)⊕

d=i+1

j−1⊕
e=max(n, j−4)

Qb
d,e ⊗W(∆Ginterior

i,d,e, j (φ))

⊕

min(i+4,m−1)⊕
d=i+1

j−5⊕
e=n

Qb
d,e ⊗W(∆Ginterior

i,d,e, j (φ))

⊕

m−1⊕
d=i+5

j−1⊕
e=max(n, j−4)

Qb
d,e ⊗W(∆Ginterior

i,d,e, j (φ))

⊕Multi Extensible(i, j, φ)

where m = First(η)

n = Last(η)

Multi Extensible(i, j, φ) ≡
j−n+m−i−2⊕

s=8
Qx

i, j,s ⊗W(γmm
j−1, j,i,i+1(φ))

(A.33)

The recursion Rx
multi(i, j, s, φ) (Equation A.34) is also a slight modification of its single stranded

counterpart. The recursive component that extends previously encountered extensible loops is
shown in C5. The remainder of contributions are the newly encountered extensible loops. The
increase in the number of cases results from the checks necessary to ensure that no exterior loops
are spuriously included.

133

Rx
Multi(i, j, s, φ) ≡



C1, i + 6 < m and n + 6 ≤ j

C2, i + 6 = m and n + 6 ≤ j and 9 ≤ s < j + 4 − n

C3, i + 6 < m and n + 5 = j and 9 ≤ s < m − i + 3

C4, i + 5 < m and n + 5 ≤ j and s = 8

0, otherwise

where m = First(η)

n = Last(η)

r = j + 4 − n

t = m − i + 3

p = j − n + m − i − 2

C1 ≡



C5 + C6 + C7, 10 ≤ s < min(r, t)

C5, max(r, t) < s ≤ p

C6, r < s ≤ t

C7, t < s ≤ r

C8, s = 9

0, otherwise

C2 ≡ W(γsizes + γ
asymm
s−8 + γmm

i+4,i+5, j+3−s, j+4−s(φ)) ⊗ Qb
i+5, j+3−s

C3 ≡ W(γsizes + γ
asymm
s−8 + γmm

s+i−4,s+i−3, j−5, j−4(φ)) ⊗ Qb
s+i−3, j−5

C4 ≡ W(γsizes + γ
asymm
s−8 + γmm

i+4,i+5, j−5, j−4(φ)) ⊗ Qb
i+5, j−5

C5 ≡ W(γsizes − γsizes−2) ⊗ Qx
i+1, j−1,s−2

C6 ≡ W(γsizes + γ
asymm
s−8 + γmm

i+4,i+5, j+3−s, j+4−s(φ)) ⊗ Qb
i+5, j+3−s

C7 ≡ W(γsizes + γ
asymm
s−8 + γmm

s+i−4,s+i−3, j−5, j−4(φ)) ⊗ Qb
s+i−3, j−5

C8 ≡ W(γsizes + γ
asymm
s−8 + γmm

i+5,i+6, j−5, j−4(φ)) ⊗ Qb
i+6, j−5

⊕W(γsizes + γ
asymm
s−8 + γmm

i+4,i+5, j−6, j−5(φ)) ⊗ Qb
i+5, j−6

(A.34)

Given the preceding discussion of the work necessary to reduce the time complexity of the interior
loop recursions to O(N3) while maintaining O(N2) storage, is there any use case for the O(N4)

recursions? During algorithms using a forward sweep operation order, the only useful case is as
an internal consistency check for the O(N3) recursions. However, the backtracking algorithms do
require the O(N4) interior loop recursions. Unlike the forward sweep in which all recursion types
for all i and j are evaluated, backtracking generally requires reevaluation of only a subset of all
possible recursions. This is incompatible with the optimization of throwing away Qx values that are
no longer necessary during the forward pass. However, as discussed in Section A.6.5, this does not

134

impact the worst-case time complexity for backtracking.

A.4 Recursions including coaxial stacking and dangles
Deriving recursions for the the full secondary structure model including coaxial stacking and dangle
stacking resulted in several changes to the recursions in Section A.3. In general, the naming,
renaming, and introduction of new recursions was balanced to limit proliferation of new names and
reduce confusion with the non-stacking, non-dangling recursions. Some existing recursions, such as
Rb and R∅, that can be thought of as conditional partition functions of a succintly described structural
ensemble continue to have this samemeaning. In the case of R∅, the form of the recursion is precisely
the same. For Rb, the contributions defining the recursion were changed to handle contributions
coming from coaxial stacking in multiloops. Nevertheless, Rb still collects all contributions from
states where the endpoints are paired. The recursion Rm functions as a collector for “the rest of”
a multiloop state, but is now defined in terms of recursions that account for multiloop coaxial
and dangle stacking. The recursion Rs retains the same name because it acts in a conceptually
similar way. Specifically, it reduces a naively O(N4) set of contributions to O(N3) by collecting all
contributions with a fixed 5′−most nucleotide. In this set of recursions, it wraps contributions from
Rc analogously to it wrapping contributions from Rb in the non-stacking, non-dangle recursions.

Additional recursion types are added to deal specifically with contributions coming from dangle and
coaxial stacking states. All of these recursions have identifiers starting with “c” (Rc, Rcs, Rcm, Rcss,
and Rcbs), which can be thought of as standing for “coaxial”. The recursion Rc in the exterior loop
context is analogous to the sum of the two recursions Rcm and Rcs in the multiloop context. The
dangle (Rcm) and coaxial (Rcs) stacking contributions inmultiloop contexts are computed separately,
so that an edge case can be dealt with correctly. The recursion Rcbs functions analogously to Rs,
but in a multiloop context instead of an exterior loop one. Finally, the recursion Rcss wraps only the
coaxial stacking contributions in a multiloop context (for the same edge case mentioned above). We
generically refer to states that involve either a dangle or coaxial stacking state as stacking states.

A.4.1 Intrastrand dynamic programming recursions
We begin with the recursion R∅

Single(i, j, φ) shown in Figure A.12 and Equation A.35. In the partition
function calculation, this recursion computes the unconstrained partition function for subsequence
[i, j]. This recursion distinguishes two cases: those that have at least one top level stacking state
(i.e. a stacking state in an exterior loop context) and the empty case where there are no stacking
states in [i, j]. The empty case is 1 because a secondary structure with no base pairs is defined to be
the reference state with free energy 0. In cases with at least one top level stacking state, there is a
3′−most stacking state which begins at d + 1 and ends in the interval [d + 2, j] and is incorporated
through Qs

d+1, j . The subsequence [i, d] is incorporated through recursive access of the dependent
value Q∅

i,d
. The limiting case where the index d + 1 = i is shown explicitly to indicate that no Q∅

element is accessed.

135

s

s

i

j

i

j

i i

j

d

j

=

exterior loop

R∅
Single(i, j, φ) ≡ 1 ⊕


Qs

i, j ⊕ dot({Q∅
i,[i:j−5],Q

s
[i+1:j−4], j}), j − i > 4

Qs
i, j, j − i = 4

0, otherwise

(A.35)

Figure A.12: Polymer graph recursion diagram and recursion equation for the intrastrand R recursion.

Following the recursion to the only subsidiary recursion type accessed in R∅, elements of the type
Qs

i, j are computed using the recursion Rs
Single(i, j, φ), shown in Figure A.13 and Equation A.36. This

recursion collects contributions from all top level stacking states starting at i and ending in [i + 1, j].
The contribution from each stacking state over subsequence φi,d is incorporated through Qc

i,d
. This

generalized “summing” is the reason for the s name. No additional energy contribution is added as
it was already handled during Rc. The explicit lower index bound of the non-dangling, non-stacking
recursions is omitted as the dependent recursions will return 0 for subsequences too small to have a
stacking state.

=

i

j

i

j

d

c

s

exterior loop

Rs
Single(i, j, φ) ≡

j⊕
d=i

Qc
i,d (A.36)

Figure A.13: Polymer graph recursion diagram and recursion equation for the intrastrand Rs recursion.

The recursion Rs is a simple efficiency wrapper on Rc
Single(i, j, φ), shown in Figure A.14 and

Equation A.37. This recursion captures dangle and stacking states in exterior loop contexts and
accounts for the free energy contributions of these states. For dangle stacking states, four possible
base pairs are considered of the form i + k · j − l, where k and l can be either 0 or 1. When k = 0

136

and l = 0, we have the no-dangle case for base pair i · j. When k = 1 and l = 0, we have nucleotide
i dangling on base pair i + 1 · j. When k = 0 and l = 1, we have nucleotide j dangling on base pair
i · j − 1. When k = 1 and l = 1, we have nucleotides i and j simultaneously dangling on base pair
i + 1 · j − 1 in a terminal mismatch state. The details of the free energy contributions are abstracted
by the function ∆Gdangle

i,i+k, j−l, j
(φ) which redirects to the correct free energy function based on context.

These states are all summarized by the first contribution recursion diagram in Figure A.14. The
second contribution recursion diagram summarizes how the coaxial stacking states are considered.
Every pair of adjacent valid base pairs i · d and d + 1 · j are added in states where they coaxially
stack on each other. The free energy of this contribution is added through the function ∆Gcoax

i,d, j
(φ),

which only requires 3 indices as d + 1 is implied by d. In all of these cases, the contribution of the
subsequence(s) within the base-paired subsequence is incorporated through the Qb element(s).

=

i

j

i

j

i+k

j-l

i

j

dc b

b

b

exterior stackexterior dangle

Rc
Single(i, j, φ) ≡

⊕
k∈{0,1}
l∈{0,1}


Qb

i+k, j−l
⊗W(∆Gdangle

i,i+k, j−l, j
(φ)), i + k < j − l

0, otherwise

⊕


dot({Qb

i,[i:j−1],Q
b
[i+1:j], j,W(∆Gcoax

i,[i:j−1], j(φ))}), i < j

0, otherwise

(A.37)

Figure A.14: Polymer graph recursion diagram and recursion equation for the intrastrand Rc recursion.

These same two types of stacking states appear within multiloop contexts, albeit with additional
multiloop-specific energy contributions. However, the requirement that multiloops have at least
three bounding base pairs creates edge cases where coaxial stacking states need to be distinguishable
from dangle stacking states when refered to by Rb. So, the multiloop equivalent of Rc is split into
two separate recursions: Rcm , which handles the dangle states, and Rcs , which handles the coaxial
stacking states. The recursion for Rcm

Single(i, j, φ) is shown in Figure A.15 and Equation A.38. The
free energy contribution from the dangle state is handled in the same way as the analogous states
included in Rc. The subscript m in the recursion name can be thought of as standing for “multiloop
dangle” contributions (with d not being used to avoid confusion with its frequent use as an index).
Because the dangling is occuring in a multiloop context, we also account for the multiloop branch
penalty for base pair i+ k · j − l with ∆Gmulti

bp . Additionally, for whichever nucleotides are dangling in

137

each state, these unpaired nucleotides are penalized appropriately with an equal number of ∆Gmulti
nt

terms.

=

i

j

i

j

i+k

j-l

bcm

multi dangle

Rcm
Single(i, j, φ) ≡

⊕
k∈{0,1}
l∈{0,1}


Qb

i+k, j−l
⊗W(∆Gdangle

i,i+k, j−l, j
(φ) + ∆Gmulti

bp + (k + l)∆Gmulti
nt) i + k < j − l

0, otherwise

(A.38)

Figure A.15: Polymer graph recursion diagram and recursion equation for the intrastrand Rcm recursion.

The recursion Rcs
Single(i, j, φ), shown in Figure A.16 and Equation A.39, handles the coaxial stacks in

multiloops in an analogous way to Rc handling these states in exterior loops. The subscript s in the
recursion name can be thought of as standing for “multiloop coaxial stack” contributions. The same
function ∆Gcoax

i,d, j
(φ) is used to look up the appropriate coaxial stack free energy to include. The only

difference is that Rcs accounts for the multiloop branch penalties for base pairs i · d and d + 1 · j

with two counts of ∆Gmulti
bp . As the base pairs i · d and d + 1 · j perfectly bisect the sequence [i, j]

into Qb elements, no ∆Gmulti
nt terms are needed to account for unpaired bases.

Finally, there is one point to note about the appearance of the recursion diagram for Rcs . We are not
perfectly consistent in our use of the dashed line because we know for every state captured in Rcs ,
both nucleotides i and j are in a base pair. If we were to use the half-solid, half-dashed convention,
we would need two half-solid lines which is just a solid line. That would imply incorrectly that i and
j are base paired. To avoid this confusion, we drop use of the half-solid, half-dashed convention for
Figures A.16, A.18, A.25, and A.28 and allow the recursion definitions to indicate where base pairs
may exist.

138

=

i

j

i

j

d

b

b

cs

multi stack

Rcs
Single(i, j, φ) ≡


dot({Qb

i,[i:j−1],Q
b
[i+1:j], j,W(∆Gcoax

i,[i:j−1], j(φ))}) ⊗W(2∆Gmulti
bp), i < j

0, otherwise
(A.39)

Figure A.16: Polymer graph recursion diagram and recursion equation for the intrastrand Rcs recursion.

In the non-dangling, non-stacking recursions, Rb had the most complicated set of recursion con-
tributions. This recursion is further complicated by the addition of multiloop coaxial and dangle
stacking contributions, as shown for Rb

Single(i, j, φ) in Figure A.17 and Equation A.40. The re-
cursion is unchanged for interior loop and hairpin loop contributions. For interior loops, it uses
the same functions Single O(N4) Interior(i, j, φ) and Single O(N3) Interior(i, j, φ) discussed in
Section A.3.3. The hairpin loop contribution is precisely the same as in Equation A.20. Multi-
loop contributions are complicated enough that they have been split off into their own subroutines,
Single Closing Pair Stacking and Single Closing Pair Dangles.

139

=

i

j

b

m m b

b m

b
css

cbs

d d

d

d

e

d

i

j

i

j

i

j

i

j

i

j

i

j

i+k

j-l

i+k

j-l

hairpininteriormulti loop multi stackmulti dangle

Rb
Single(i, j, φ) ≡ Single Closing Pair Stacking(i, j, φ)

⊕ Single Closing Pair Dangles(i, j, φ)

⊕ Single Interior(i, j, φ)

⊕W(Ghairpin(i, j, φ))

(A.40)

Figure A.17: Polymer graph recursion diagram and recursion equation for the intrastrand Rb recursion.

The subroutine Single Closing Pair Stacking, shown in Equation A.41, handles the states where
a base pair adjacent to i · j in [i + 1, j − 1] (either i + 1 or j − 1 base paired) stacks on i · j. These
cases are depicted in Figure A.17 by the rightmost two recursion diagrams in the first row. These
cases must be considered in Rb

Single(i, j, φ) separately from coaxial stacks occurring wholly in the
sequence [i + 1, j − 1] as this is the first time i · j is encountered. As the recursion collects the
free energy of the coaxial stack between i · j and the adjacent base pair, the contribution from the
sequence within the adjacent base pair is incorporated through the dependent Qb

i+1,d−1 or Qb
d, j−1

element and the remainder of the multiloop contributions through the Qm
d, j−1 or Qm

i+1,d−1 element,
respectively. The explicit coaxial stack energy is calculated with the function calls ∆Gcoax

j,i,d−1(φ) or
∆Gcoax

d, j−1,i(φ), respectively. Additionally, as we are in a multiloop and explicitly considering one
closing base pair and one other pair, we account for the multiloop formation penalty, ∆Gmulti

init , and a
branch penalty, ∆Gmulti

bp , for each pair. Every nucleotide position is either base paired or handled by
a previous recursion, and so no ∆Gmulti

nt terms are needed to account for unpaired bases.

140

Single Closing Pair Stacking(i, j, φ) ≡


C1, j − i > 2

0, otherwise

where C1 ≡ dot({Qb
i+1,[i+1:j−2],Q

m
[i+2:j−1], j−1,W(∆Gcoax

j,i,[i+1:j−2](φ))}) ⊗W(∆Gmulti
init + 2∆Gmulti

bp)

⊕ dot({Qm
i+1,[i+1:j−2],Q

b
[i+2:j−1], j−1,W(∆Gcoax

[i+2:j−1], j−1,i(φ))}) ⊗W(∆Gmulti
init + 2∆Gmulti

bp)

(A.41)

The subroutine Single Closing Pair Dangles, shown in Equation A.42, handles the remaining
multiloop states in which the base pair i · j does not coaxially stack with other other base pairs within
the multiloop it bounds. Unpaired nucleotides in the multiloop may, however, dangle stack on base
pair i · j. Figure A.17 depicts these cases in the contribution recursion diagrams in the first column.
The top diagram is roughly analogous to the way multiloop contributions are handled in Figure A.4.
However, instead of splitting off all 3′−most base pairs, this recursion splits off all 3′−most multiloop
stacking states with contributionQcbs

d, j−l−1. The Rcbs recursion, discussed below, captures both single
base pairs as well as coaxial stacking states (two base pairs) in a multiloop context. The remainder
of the multiloop contribution is accounted for through the element Qm

i+k+1,d−1. The bottom diagram
depicts all states in an edge case where the are exactly three base pairs and the two subsequence base
pairs coaxially stack on each other. This case is not captured in the cases in the top diagram. States in
the top diagram with exactly three base pairs cannot impose coaxial stacking between the two inner
pairs, as the two base pairs are incorporated independently through two separate prior recursions.
This requires accumulating the explicitly coaxial stack information in Qcss and accessing it here
instead of accessing Qcbs, which has both coaxial and dangle stacking information. In both sets
of cases, dangle stacking on base pair i · j is handled in the same way discussed for the recursion
Rc. The only difference for these states is that the base pair itself is fixed while k and l determine
whether the adjacent nucleotides stack or not. Any dangling nucleotides and all of the explicitly
unpaired nucleotides in the latter type of contribution are accounted for by the correct number of
multiloop unpaired nucleotide penalties, ∆Gmulti

nt .

141

Single Closing Pair Dangles(i, j, φ) ≡
⊕

k∈{0,1}
l∈{0,1}


C1, i + k + 1 = j − l − 1

C1 ⊕ C2, i + k + 1 < j − l − 1

0, otherwise

where ∆Gmulti
closing ≡ ∆Gmulti

init + ∆Gmulti
bp

C1 ≡ dot({Qcss
[i+k+1:j−l−1], j−l−1,W(∆Gmulti

closing + ∆Gmulti
nt [k + 1 : j − i + l − 2])})

⊗W(∆Gdangle
j−l, j,i,i+k

(φ))

C2 ≡ dot({Qm
i+k+1,[i+k+1:j−l−2],Q

cbs
[i+k+2:j−l−1], j−l−1})

⊗W(∆Gdangle
j−l, j,i,i+k

(φ) + ∆Gmulti
closing + ∆Gmulti

nt (k + l))
(A.42)

The multiloop contributions for the recursion Rb are dependent on three new recursions, Rcss, Rcbs,
and Rm, which have not yet been discussed. We describe them in the above order, which is from
least to most dependent. The recursion Rcss

Single(i, j, φ), shown in Figure A.18 and Equation A.43, acts
as an efficiency wrapper for elements of Qcs . It collects contributions from all multiloop coaxial
stacking states starting at i and ending in [i + 1, j]. The contributions from the individual coaxial
stacks are incorporated from Qcs

i,d
. This is combined with the contribution from the unpaired bases,

∆Gmulti
nt (j − d). No branch penalties are applied because they have been handled already in Rcs .

css

cs

=

i

j

i

j

d

multi loop

Rcss
Single(i, j, φ) ≡ dot({Qcs

i,[i:j],W(∆Gmulti
nt [0 : j − i]r }) (A.43)

Figure A.18: Polymer graph recursion diagram and recursion equation for the intrastrand Rcs s recursion. The Rcs s

recursion contains all contributions in which a multiloop coaxial stacking state begins at base i. There are contributions
from the coaxial stacking states ending at each of the possible bases d in the subsequence, obtained from the Rcs recursion.

The recursion Rcbs
Single(i, j, φ), shown in Figure A.19 and Equation A.44, acts as an efficiency wrapper

for elements of both Qcs and Qcm . That is, it captures multiloop stacking states starting at i and
ending in [i + 1, j]. The subscript b in the identifier for the recursion can be thought of as meaning
“both” coaxial and dangle stacking states in a multiloop context. Because the contributions from
the multiloop coaxial stacking states have already been accumulated in Qcss

i, j , they are captured in
this recursion through that element. Then the dangle states starting at i and ending in [i + 1, j] are

142

handled in an analogous way. The contributions from the individual dangle states are incorporated
from Qcm

i,d
. This is combined with the contribution from the unpaired bases, ∆Gmulti

nt (j − d). No
branch penalties are applied because they have already been handled in Rcm .

i

j

= css

cm

cbs

i i

j

d

j

multi loop

Rcbs
Single(i, j, φ) ≡ Qcss

i, j ⊕ dot({Qcm
i,[i:j],W(∆Gmulti

nt [0 : j − i]r }) (A.44)

Figure A.19: Polymer graph recursion diagram and recursion equation for the intrastrand Rcb s recursion.

Finally the recursion Rm
Single(i, j, φ), shown in Figure A.20 and Equation A.45, captures the recursive

“remainder” of the multiloop contribution for use in Rb. There are two cases for how this remainder
can look: one additional multiloop stacking state or more than one of these multiloop stacking states.
For multiple stacking states, the 3′−most stacking state is incorporated explicitly through the Qcbs

d+1, j
while the remainder is handled through a recursive reference to a smaller subsequence value of Qm

i,d
.

No explicit multiloop, dangle, or coaxial stack free energies need be considered because they have
been handled in the dependent elements. Otherwise, there is exactly one additional stacking state in
the multiloop, which is incorporated here through Qcbs

d, j
along with multiloop unpaired nucelotide

penalties for the explicitly unpaired nucleotides in [i, d − 1].

i

j

i

j

i

j

d
d=

cbs cbs

m

m

multi loop

Rm
Single(i, j, φ) ≡ dot({Qcbs

[i:j], j),W(∆Gmulti
nt [0 : j − i]})

⊕


dot({Qm

i,[i:j−1],Q
cbs
[i+1:j], j}), i < j

0, otherwise

(A.45)

Figure A.20: Polymer graph recursion diagram and recursion equation for the intrastrand Rm recursion.

143

A.4.2 Interstrand dynamic programming recursions
The following subroutine, FS standing for full stride, is used in several of themultistranded recursions.
It checks that index i is on the first strand and index j is on the last strand. Generally it is used to
exclude states that would include an exterior loop incorrectly.

FS(i, j, φ)

b← η

m← First(b) // index of first base on second strand
n← Last(b) // index of first base on last strand
return i < m and j ≥ n

Algorithm A.3: Procedure to determine if a pair of nucleotide indices are on the first and last strands in an interstrand
block.

We begin with the recursion R∅
Multi(i, j, φ) shown in Figure A.21 and Equation A.46. In the partition

function calculation, this recursion computes the unconstrained partition function for subsequence
[i, j]. Unlike R∅

Single(i, j, φ), there is no empty case because this would correspond to a disconnected
structure, which is not in the multistranded ensemble. Thus, there are only cases with one top level
stacking state. These are collected by considering all 3′−most stacking states beginning at d + 1
and ends in the interval [d + 2, j] and is incorporated through Qs

d+1, j . The subsequence [i, d] is
incorporated through recursive access of the dependent value Q∅

i,d
. The limiting case where the

index d + 1 = i is shown explicitly to indicate that no Q∅ element is accessed.

i

j

=
s

s

i i

j

d

j

exterior loop

R∅
Multi(i, j, φ) ≡ Qs

i, j ⊕
⊕

L,R∈VP(i,max(j−4,n),φ)
dot({Q∅

i,L,Q
s
R, j})

where n = Last(η)

(A.46)

Figure A.21: Polymer graph recursion diagram and recursion equation for the interstrand R recursion.

144

Following the recursion to the only type used in R∅, elements of the type Qs
i, j are computed using

the recursion Rs
Multi(i, j, φ), shown in Figure A.22 and Equation A.47. This recursion collects

contributions from all top level stacking states starting at i and ending in [n, j]. The lower bound on
d ensures there are no strand breaks in the subsequence [d, j], which would lead to a disconnected
state. The contribution from each stacking state over subsequence φi,d is incorporated through Qc

i,d
.

This generalized “summing” is the reason for the s name. No additional energy contribution is added
as it was already handled during Rc.

=

i

j

i

j

d

c

s

exterior loop

Rs
Multi(i, j, φ) ≡

j⊕
d=n

Qc
i,d

where n = Last(η)

(A.47)

Figure A.22: Polymer graph recursion diagram and recursion equation for the interstrand Rs recursion.

The recursion Rs wraps Rc
Multi(i, j, φ), shown in Figure A.23 and Equation A.48. This recursion

captures dangle and stacking states in exterior loop contexts and accounts for the free energy
contributions of these states. For dangle stacking states, four possible base pairs are considered
of the form i + k · j − l, where k and l can be either 0 or 1. These are the same states as in
the Rc

Single(i, j, φ), and are handled analogously. In this multistraned setting, however, there is the
additional requirement that the dangling nucleotides be on the same strand, as otherwise there would
be a disconnected structure. These states are all summarized by the first contribution recursion
diagram in Figure A.23. The second contribution recursion diagram summarizes how the coaxial
stacking states are considered. The coaxial stacking state for every pair of adjacent valid base pairs
i · d and d + 1 · j is accumulated. The free energy of this contribution is added through the function
∆Gcoax

i,d, j
(φ), which only requires 3 indices as d + 1 is implied by d. These states are only valid if

d and d + 1 are on the same strand, which is enforced by using the VP function to generate the
possible indices. In all of these cases, the contribution of the subsequence(s) within the base-paired
subsequence is incorporated through the Qb element(s).

145

=

i

j

i

j

i+k

j-l

i

j

dc b

b

b

exterior stackexterior dangle

Rc
Multi(i, j, φ) ≡

⊕
L,R∈VP(i, j,φ)

dot({Qb
i,L,Q

b
R, j,W(∆Gcoax

i,L, j(φ))})

⊕
⊕

k∈{0,1}
l∈{0,1}


Qb

i+k, j−l
⊗W(∆Gdangle

i,i+k, j−l, j
(φ), FS(i + k, j − l, φ)

0, otherwise

(A.48)

Figure A.23: Polymer graph recursion diagram and recursion equation for the interstrand Rc recursion.

Both dangle and coaxial stacking states appear within multiloop contexts, albeit with additional
multiloop-specific energy contributions. The multiloop equivalent of Rc is split into two separate
recursions: Rcm , which handles the dangle states, and Rcs , which handles the coaxial stacking
states. The recursion for Rcm

Multi(i, j, φ) is shown in Figure A.24 and Equation A.49. The free energy
contribution from the dangle state is handled in the same way as the analogous states included in Rc.
Because the dangling is occuring in a multiloop context, we also account for the multiloop branch
penalty for base pair i+ k · j − l with ∆Gmulti

bp . Additionally, for whichever nucleotides are dangling in
each state, these unpaired nucleotides are penalized appropriately with an equal number of ∆Gmulti

nt

terms. The dangling nucleotides i + k and j − l are required to be on the same strands as i and j

respectively are required here to prevent exterior loop contributions in this multiloop context.

146

=

i

j

i

j

i+k

j-l

bcm

multi dangle

Rcm
Multi(i, j, φ) ≡

⊕
k∈{0,1}
l∈{0,1}


C1, FS(i + k, j − l, φ)

0, otherwise

where C1 ≡ Qb
i+k, j−l ⊗W(∆Gdangle

i,i+k, j−l, j
(φ) + ∆Gmulti

bp + (k + l)∆Gmulti
nt)

(A.49)

Figure A.24: Polymer graph recursion diagram and recursion equation for the interstrand Rcm recursion.

The recursion Rcs
Multi(i, j, φ), shown in Figure A.25 and Equation A.50, handles the coaxial stacks

in multiloops in an analogous way to Rc handling these states in exterior loops. The same function
∆Gcoax

i,d, j
(φ) is used to look up the appropriate coaxial stack free energy to include. The only difference

is that Rcs accounts for the multiloop branch penalties for base pairs i · d and d+1 · j with two counts
of ∆Gmulti

bp . As the base pairs i · d and d + 1 · j perfectly bisect the sequence [i, j] into Qb elements,
no ∆Gmulti

nt terms are needed to account for unpaired bases. Again, d and d + 1 are required to be on
the same strand to avoid exterior loops in this multiloop-contribution recursion.

=

i

j

i

j

d

b

b

cs

multi stack

Rcs
Multi(i, j, φ) ≡

⊕
L,R∈VP(i, j,φ)

dot({Qb
i,L,Q

b
R, j,W(∆Gcoax

i,L, j(φ))}) ⊗W(2∆Gmulti
bp) (A.50)

Figure A.25: Polymer graph recursion diagram and recursion equation for the interstrand Rcs recursion.

The recursion Rb
Multi(i, j, φ), shown in Figure A.26 and Equation A.51, is the most complex re-

cusion: it handles interior loop contributions as well as multiloop and exterior loop coaxial
and dangle stacking contributions. For interior loops, this recursion uses the same functions

147

Multi O(N4) Interior(i, j, φ) and Multi O(N3) Interior(i, j, φ) discussed in Section A.3.3. Be-
cause of the similarity of some of the recursion contributions for multiloop stacking states to exterior
loop stacking states, they have been grouped in the subroutines Multi Closing Pair Stacking and
Multi Closing Pair Dangles.

=

i

j

m m

n

b

b

b

b

m

n

b

b

n

css

cbs

d

d

d

d

d

e

d

d

i

j

i

j

i

j

i

j

i

j

i

j

i

j

i

j

i+k

j-l

i+k

j-l

i+k

j-l

interiormulti loop multi stackmulti dangle
exterior loop exterior stackexterior dangle

Rb
Multi(i, j, φ) ≡ Multi Closing Pair Stacking(i, j, φ)

⊕Multi Closing Pair Dangles(i, j, φ)

⊕Multi Interior(i, j, φ)

(A.51)

Figure A.26: Polymer graph recursion diagram and recursion equation for the interstrand Rb recursion.

The subroutine Multi Closing Pair Stacking, shown in Equation A.52, handles the states where
a base pair adjacent to i · j in [i + 1, j − 1] (either i + 1 or j − 1 base paired) stacks on i · j. These
cases are depicted in Figure A.51 by the rightmost two recursion diagrams in the each of the first
two rows. Of these, the recursion diagrams in the top row show this closing pair stacking in an
exterior loop context, while the second row shows the stacking in a multiloop context. These cases
must be considered in Rb

Multi(i, j, φ) separately from coaxial stacks occurring wholly in the sequence
[i+1, j −1] as this is the first time i · j is encountered. As the recursion collects the free energy of the
coaxial stack between i · j and the adjacent base pair, the contribution from the sequence within the

148

adjacent base pair is incorporated through the dependent Qb
i+1,d−1 or Qb

d, j−1 element. For multiloop
contexts, the remainder of the contribution is incorporated through the Qm

d, j−1 or Qm
i+1,d−1 elements,

respectively. For exterior loop contexts, the remainder of the contribution is incorporated through
the Qn

d, j−1 or Qn
i+1,d−1 elements, respectively. The explicit coaxial stack energy is calculated with

the functions ∆Gcoax
j,i,d−1(φ) or ∆Gcoax

d, j−1,i(φ), respectively. For the multiloop context, we are explicitly
considering one closing base pair and one other pair, we account for the multiloop formation penalty,
∆Gmulti

init , and a branch penalty, ∆Gmulti
bp , for each pair. There is no equivalent of this in the exterior loop

context. For both contexts, d and d +1 must be on the same strand. If this were not so, the multiloop
states would degenerate to exterior loop states, and the exterior loop states would degenerate to
disconnected states. Finally, there are cases, where Qn elements cannot be used because the nick is
adjacent to the inner base pair (d is at the 5′ end of a strand or d − 1 is at the 3′ end), adjacent to i, or
adjacent to j. These are handled in the contributions C1, C2, and C3 in Equation A.52, respectively,
which all useQ∅ elements in place ofQn, because the nick is being handled at this level of recursion.
The contributions C2 and C3 also include limiting states where no Q∅ element is accessed because
the second base pair is i + 1 · j − 1, leaving no extra subsequence to account for. As these states
are all limiting cases of the last two diagrams in the first row of Figure A.26, their explicit polymer
graph recursion diagrams were excluded for brevity.

149

Multi Closing Pair Stacking(i, j, φ) ≡
⊕

L,R∈VP(i+1, j−1,φ)
C0(L, R)

⊕



C1, FS(i + 1, j − 1, φ)

C2, i + 1 = m and j − 1 ≥ n

C3, j = n and i + 1 < m

0, otherwise

where m = First(η)

n = Last(η)

C0(L, R) ≡ dot({Qb
i+1,L,Q

m
R, j−1,W(∆Gcoax

j,i,L(φ))}) ⊗W(∆Gmulti
init + 2∆Gmulti

bp)

⊕ dot({Qm
i+1,L,Q

b
R, j−1,W(∆Gcoax

R, j−1,i(φ))}) ⊗W(∆Gmulti
init + 2∆Gmulti

bp)

⊕ dot({W(∆Gcoax
j,i,L(φ)),Q

b
i+1,L,Q

n
R, j−1})

⊕ dot({W(∆Gcoax
R, j−1,i(φ)),Q

n
i+1,L,Q

b
R, j−1})

C1 ≡
⊕
d∈η

(
W(∆Gcoax

j,i,d−1(φ)) ⊗ Qb
i+1,d−1 ⊗ Q∅

d, j−1 ⊕W(∆Gcoax
d, j−1,i(φ)) ⊗ Q∅

i+1,d−1 ⊗ Qb
d, j−1

)
C2 ≡ W(∆Gcoax

i+1, j−1,i(φ)) ⊗ Qb
i+1, j−1

⊕
⊕

L,R∈VP(i, j−1,φ)
dot({W(∆Gcoax

R, j−1,i(φ)),Q
∅
i+1,L,Q

b
R, j−1})

C3 ≡ W(∆Gcoax
j,i, j−1(φ)) ⊗ Qb

i+1, j−1

⊕
⊕

L,R∈VP(i+1, j,φ)
dot({W(∆Gcoax

j,i,L(φ)),Q
b
i+1,L,Q

∅
R, j−1})

(A.52)

The subroutine Multi Closing Pair Dangles, shown in Equation A.53, handles the remaining
multiloop states in which the base pair i · j does not coaxially stack with other other base pairs
within the multiloop or exterior loop it bounds. Unpaired nucleotides in the loop may, however,
dangle stack on base pair i · j. For all these cases, Figure A.51 depicts these cases in the first column
of contribution recursion diagrams. The top diagram reflects exterior loop states involving dangle
stacking on i · j. In all of these cases, the dangling nucleotides must be on the same strand as the
adjacent base pair nucleotide to be valid. Generally, these cases incorporate the remaining sequence
information Qn

i+k+1, j−l−1, as depicted and shown as the last contribution of C1 in Equation A.53.
However, in cases where one of i + k or j − l is at the end of a strand, a Qn cannot account for this
nick and the form of the contribution is modified. These cases are handled by the contribution C2,
which uses Q∅

i+k+1, j−l−1 because the nick is explicitly known at this level of recursion. In the limiting
case of this, there is only one nick such that i + k + 1 = j − l, and in this case the entire subsequence
is accounted for an no Q∅ element is accessed, as in contribution C3. These limiting cases are not
depicted in Figure A.26

150

Multi Closing Pair Dangles(i, j, φ) ≡
⊕

k∈{0,1}
l∈{0,1}



C1, FS(i + k + 1, j − l − 1, φ)

C2, FS(i + k, j − l − 1, φ) and i + k + 1 = m

C2, FS(i + k + 1, j − l, φ) and j − l = n

C3, i + k + 1 = m and j − l = n and m = n

0, otherwise

where b = η

m = First(b)

n = Last(b)

∆G ≡ ∆Gdangle
j−l, j,i,i+k

(φ)

∆Gmulti
closing ≡ ∆Gmulti

init + ∆Gmulti
bp

C1 ≡ dot({Qcss
[i+k+1:m−1], j−l−1,W(∆Gmulti

closing + ∆Gmulti
nt [k + l : m − i + l − 2])}) ⊗W(∆G)

⊕
⊕

L,R∈VP(i+k+1, j−l−1,φ)
dot({Qm

i+k+1,L,Q
cbs
R, j−l−1}) ⊗W(∆Gmulti

closing + (k + l)∆Gmulti
nt + ∆G)

⊕W(∆G) ⊗ Qn
i+k+1, j−l−1

C2 ≡ Q∅
i+k+1, j−l−1 ⊗W(∆G)

C3 ≡ W(∆G)
(A.53)

The multiloop contributions are handled in much the same way as in the single stranded recursion
Rb. The middle diagram is roughly analogous to the way multiloop contributions are handled
in Figure A.9. However, instead of splitting off all 3′−most base pairs, this recursion splits off
all 3′−most multiloop stacking states with contribution Qcbs

d, j−l−1. The Rcbs recursion, discussed
below, captures both single base pairs as well as coaxial stacking states (two base pairs) in a
multiloop context. The remainder of the multiloop contribution is accounted for through the element
Qm

i+k+1,d−1. Only positions of d and d − 1 on the same strand are valid to ensure the multiloop does
not become an exterior loop. The bottom diagram depicts all states in an edge case where the are
exactly three base pairs and the two subsequence base pairs coaxially stack on each other. This
is reflected in needing to accumulate the explicitly coaxial stack information from Qcss instead of
Qcbs, which has both coaxial and dangle stacking information. In both sets of cases, dangle stacking
on base pair i · j is handled in the same way discussed for the recursion Rc. The only difference
for these states is that the base pair itself is fixed while k and l determine whether the adjacent
nucleotides stack or not. Any dangling nucleotides and all of the explicitly unpaired nucleotides
in the latter type of contribution are accounted for by the correct number of multiloop unpaired
nucleotide penalties, ∆Gmulti

nt . Additionally, the requirement that d be on the first strand prevents the
multiloop state from degenerating into an exterior loop state handled elsewhere.

151

The recursion Rn
Multi(i, j, φ), shown in FigureA.27 andEquationA.54, caches the stateswhere exactly

one nick is explicitly exposed. The n can be thought of as standing for “nicked” contributions. It
considers every nucleotide c ∈ η that is 3′ to a nick and incorporates the contributions for the two
subsequences bisected by c through Q∅

i,c−1 and Q∅
c, j . On its own, all of the states it includes are

disconnected because there is the nick c within the subsequence and no base pairs between the first
and last strands in the block. However, when used in the Rb

Multi(i, j, φ) recursion where i and j are
base paired and the other conditions of the contributions prevent other nicks from appearing, the
state is connected with exactly one nick in [i, j].

i

j

i

j

n = c

exterior loop

Rn
Multi(i, j, φ) ≡

⊕
c∈η

Q∅
i,c−1 ⊗ Q∅

c, j (A.54)

Figure A.27: Polymer graph recursion diagram and recursion equation for the Rn recursion.

The multiloop contributions for the recursion Rb are dependent on three recursions, Rcss, Rcbs, and
Rm, which have not yet been discussed. We describe them in the above order, which is from least
to most dependent. The recursion Rcss

Multi(i, j, φ), shown in Figure A.28 and Equation A.55, acts as
an efficiency wrapper for elements of Qcs . It collects contributions from all coaxial stacking states
starting at i and ending in [n, j]. The lower bound on d prevents unaccounted for nicks that would
lead to an exterior loop. The contributions from the individual coaxial stacks are incorporated from
Qcs

i,d
. This is combined with the contribution from the unpaired bases, ∆Gmulti

nt (j − d). No branch
penalties are applied because they have been handled already in Rcs .

152

css

cs

=

i

j

i

j

d

multi loop

Rcss
Multi(i, j, φ) ≡ dot({Qcs

i,[n:j],W(∆Gmulti
nt [0 : j − n]r })

where n = Last(η)

(A.55)

Figure A.28: Polymer graph recursion diagram and recursion equation for the interstrand Rcs s recursion.

The recursion Rcbs
Multi(i, j, φ), shown in Figure A.29 and Equation A.56, acts as an efficiency wrapper

for elements of both Qcs and Qcm . That is, it captures multiloop stacking states starting at i and
ending in [n, j]. Since the contributions from the multiloop coaxial stacking states have already been
accumulated in Qcss

i, j , they are captured here through that element. Then the dangle states starting at
i and ending in [n, j] are handled in an analogous way. The contributions from the individual dangle
states are incorporated from Qcm

i,d
. This is combined with the contribution from the unpaired bases,

∆Gmulti
nt (j − d). No branch penalties are applied because they have already been handled in Rcm . In

both cases, the lower bound on d prevents nicks in [d : j] that would lead to an exterior loop.

i

j

= css

cm

cbs

i i

j

d

j

multi loop

Rcbs
Multi(i, j, φ) ≡ Qcss

i, j ⊕ dot({Qcm
i,[n:j],W(∆Gmulti

nt [0 : j − n]r })

where n = Last(η)

(A.56)

Figure A.29: Polymer graph recursion diagram and recursion equation for the interstrand Rcb s recursion.

The recursion Rm
Multi(i, j, φ), shown in Figure A.30 and Equation A.57, captures the recursive

“remainder” of the multiloop contribution for use in Rb. There are two cases for how this remainder
can look: one additional multiloop stacking state or more than one of these multiloop stacking states.

153

For multiple stacking states, the 3′−most stacking state is incorporated explicitly through the Qcbs
d+1, j

while the remainder is handled through a recursive reference to a smaller subsequence value of Qm
i,d
.

No explicit multiloop, dangle, or coaxial stack free energies need be considered because they have
been handled in the dependent elements. Otherwise, there is exactly one additional stacking state in
the multiloop, which is incorporated here through Qcbs

d, j
along with multiloop unpaired nucelotide

penalties for the explicitly unpaired nucleotides in [i, d − 1]. Here, the upper bound of m for d

ensures d is always on the first strand, as otherwise there would be an exterior loop.

i

j

i

j

i

j

d
d=

cbs cbs

m

m

multi loop

Rm
Multi(i, j, φ) ≡

⊕
L,R∈VP(i, j,φ)

dot({Qm
i,L,Q

cbs
R, j })

⊕ dot({Qcbs
[i:m], j,W(∆Gmulti

nt [0 : m − i − 1])})

where m = First(η)

(A.57)

Figure A.30: Polymer graph recursion diagram and recursion equation for the interstrand Rm recursion.

A.5 Evaluation algebras for each physical quantity
As discussed in the main text, we abstract the uses of recursions for different quantities using the
concept of an evaluation algebra. An evaluation algebra A possesses the following concepts:

1. DA is the domain of values in the evaluation algebra.

2. ⊕A is an operation yielding a combination of alternative conditional ensembles. Thus,
c = a ⊕A b reflects the notion of “c contains either conditional ensemble a or b”.

3. ⊗A is an operation which yields a composition of conditional ensembles. Thus, c = a ⊗A b

reflects the notion of “c contains both conditional ensembles a and b”.

4. 0A is a value in DA which satisfies the concept of additive identity. Physically, 0A represents
an impossible structure.

5. 1A is a value in DA which satisfies the concept of multiplicative identity. Physically, 1A
represents a structure in the free energy reference state.

154

6. WA is an operation which yields a value in DA from a secondary structure model free energy.
Physically, WA represents the Boltzmann weight on an individual substructure.

7. QA is an operation which yields a value in DA from an recursion element in the set of all
recursion elements Λ. QA is used to give the prior-calculated result over a given conditional
ensemble.

As such, an evaluation algebra may be classified as an algebraic semiring equipped with two
additional unary operators W and Q. As in the main text, we elide the dependence on A below for
clarity when A is either given or interchangeable.

A.5.1 Evaluation algebras for scalar outputs
For completeness, we expand upon Table 2.2 by defining each evaluation algebra concept below. We
catalogue the operation definitions used for each physical quantity which satisfy the requirements of
an evaluation algbera. For the cases of secondary structure calculation (from Boltzmann sampling
or the suboptimal structure ensemble), we elaborate our discussion below in Section A.5.2.

SumProduct: sum product evaluation algebra. Within evaluation algebraA = SumProduct,
the partition function of an ensemble is computed by taking the sum over products of Boltzmann
factors. Each expression in the algebra represents a Boltzmann factor, which is necessarily a non-
negative real number. An impossible structure maps to a Boltzmann factor of 0, whereas a zero
free energy structure (commensurate with the reference state adopted in the ensemble) maps to a
Boltzmann factor of 1.

D = R≥0

a ⊕ b = a + b

a ⊗ b = a · b

0 = 0

1 = 1

W(g) = exp
(
−g

kBT

)
Q(λ) = Ai, j where λ = (A, i, j) and A is the stored recursion matrix

(A.58)

Count: structure count evaluation algebra. Within evaluation algebraA = StructureCount,
the number of structures within an ensemble is computed by taking the sum over products of
subensemble counts. It may be easily seen that StructureCount is equivalent to SumProduct
with the replacement of W . The domain of StructureCount is theoretically non-negative integers,
but it is still implemented using floating point types to avoid integer overflow.

155

D = Z≥0

a ⊕ b = a + b

a ⊗ b = a · b

0 = 0

1 = 1

W(g) = 1

Q(λ) = Ai, j where λ = (A, i, j) and A is the stored recursion matrix

(A.59)

MinSum: minimum sum evaluation algebra. Within evaluation algebra A = MinSum, the
minimum free energy of an ensemble is the minimum over sums of conditional ensemble free
energies. This evaluation algebra builds on the operations of the tropical semiring found in other
contexts. The possibility of an impossible structure is included by assigning it a free energy of∞.

D = R ∪ {∞}

a ⊕ b = min(a, b)

a ⊗ b = a + b

0 = ∞

1 = 0

W(g) = v

Q(λ) = Ai, j where λ = (A, i, j) and A is the stored recursion matrix

(A.60)

SplitExponent: overflow-safe evaluation algebra. We now expand our description in Table 2.2
of the overflow-safe evaluation algebra A = SplitExponent that we implemented. For exposition,
that description included a free parameter γ representing the negative exponent of the output variable.
Each Boltzmann factor is then evaluated relative to γ. To factor out γ, we lift our evaluation algebra
into a set of higher order functions. Thus, instead of each expression being a pair of numbers, each
expression is itself a function returning its associated mantissa value and its offset exponent relative
to the input γ. We use the anonymous form of function notation x 7→ y to notate a function taking
x and returning y.

An element a returns, as a function of γ, a pair of mantissa and exponent values, expressed
respectively as am(γ) and ae(γ) below. An element amaybe converted to the domain of SumProduct
using the transformation am(γ)2ae(γ)−γ. Theoretically, we can plug in any value of γ = γ0 to calculate
a desired result. Numerically, however, γmust be judiciously chosen to avoid floating point overflow.
This choice of γ0 is described in Section A.6.3.

156

D = Z 7→ R≥0 × Z

a ⊕ b = γ 7→
(
am(γ) · 2ae(γ) + bm(γ) · 2be(γ), 0

)
a ⊗ b = γ 7→ (am(be(γ)) · bm(γ), ae(be(γ)))

0 = γ 7→ (0, 0)

1 = γ 7→ (1, γ)

W(g) = γ 7→
(
exp

(
−g

kBT

)
, γ

)
Q(λ) = γ 7→

(
Mi, j, Ei, j + γ

)
where λ = (A, i, j) and M, E are the

stored recursion matrices for A of mantissas and exponents, respectively

(A.61)

In the above, addition works by aligning both expressions to the output exponent γ and then adding
the resultant mantissas. As the output mantissa has been aligned to γ, the output shift exponent is 0.
For example, take a = 1, b = W(g0). Then

a + b = (am(γ) · 2ae(γ) + bm(γ) · 2be(γ), 0)

=

(
1 · 2γ + exp

(
−g0
kBT

)
· 2γ, 0

)
=

(
2γ

(
1 + exp

(
−g0
kBT

))
, 0

) (A.62)

Meanwhile, multiplication works by multiplying the mantissas and adding the exponents. The
exponent shift must be applied only to one quantity; therefore, the shift is applied directly to b, the
result of which is propagated to a. For example, take a = Qb

p,q, b = Qm
r,s. Then

a · b = (am(γ) · bm(γ) · Mm
r,s, ae(Em

r,s + γ))

= (Mb
p,q · M

m
r,s, E

b
p,q + Em

r,s + γ)
(A.63)

LogSum: log semiring evaluation algebra. For completeness, we outline the possibility of using
the log semiring LogSum to avoid overflow in partition function computation. In this evaluation
algebra, each quantity x corresponds quantity 2x in SumProduct (the base-2 logarithm is used for
computational convenience.)

157

DLogSum = R ∪ {−∞}

⊕LogSum(a, b) = log2(2
a + 2b) = max(a, b) + log2(2

a−max(a,b) + 2b−max(a,b))

⊗LogSum(a, b) = a + b

0LogSum(a, b) = −∞

1LogSum = 0

WLogSum(g) = −(kT log 2)−1g

Q(λ) = Ai, j where λ = (A, i, j) and A is the stored recursion matrix

(A.64)

In practice, this evaluation algebra proved to be simpler but less efficient than SplitExponent.
Within a given dot product of many contributions, 1) the maximum contribution must be computed
beforehand across all contributions, then 2) the adjusted exponentiations of each contribution must
be calculated, then 3) the exponentiations must be summed. Even after optimization and vectoriza-
tion, we found that LogSum was > 2× more expensive than SplitExponent in partition function
computations due to the needs for floating point exponentiation and two separate scans through the
arrays of contributions.

A.5.2 Evaluation algebras for structure generation
Structure generation conceptually yields specific secondary structures from a given weighting on the
ensemble Γ. In this case, because any given structure depends only on a sparse subset of recursion
matrix elements, a backtracking operation order is in general more efficient than a forward pass
iteration. Such an operation order jumps between recursion elements in an opposite direction to that
in the forward pass. To enable such an approach, the recursion matrices in the forward pass must be
computed beforehand: i.e. the minimum free energy before suboptimal structure generation and the
partition function before sampling.

Here, we correspondingly distinguish between a forward evaluation algebra and a backtracking
evaluation algebra. Whereas a forward evaluation algebra like SumProduct operates on a subset
of R, we define a backtracking evaluation algebra to operate on a domain of conditional ensembles
which may be queried for a set of dependent recursion elements. This ordering may be viewed
as equivalent to the topological ordering of the directed acyclic graph of computed quantities in a
forward dynamic program (e.g. in Figure 2.8). In all cases, any conditional ensemble s containing
an recursion element (b, i, j) indicates that i · j is a base pair in s, a feature which is used to output
final structures from the algorithm. We next illustrate how a backtracking evaluation algebra may
be defined with respect to the associated forward evaluation algebra.

Generic approach to structure generation. We start with a consideration of the simplest structure
generation evaluation algebras. For conceptualization, in Table 2.2 we defined evaluation algebras
ArgRandom to calculate a single randomly sampled structure and ArgMin to determine the MFE

158

structure sqMFE, assuming it is unique. For a given element a, each evaluation algebra was defined
such that a was a pair of scalar value av and recursion element set aλ.

As is clearly seen in Table 2.2, the operations on av and bv in ArgRandom duplicate the operations of
SumProduct, whereas the operations on av and bv in ArgMin duplicate the operations of MinSum.
Meanwhile, the operations on aλ and bλ within ArgRandom and ArgMin are almost identical. For
instance, in both cases ⊗ represents the set union ∪ of recursion elements which occur in the same
conditional ensemble.

The operations on aλ and bλ only diverge in the choice operator ⊕, which is responsible for attributing
the scalar contribution av ⊕ bv to an individual conditional ensemble aλ or bλ. In ArgRandom, ⊕
yields a random weighted choice via

arg rand(a, b) ≡ (aλ if U(0, av + bv) < av else bλ) (A.65)

whereU is the randomuniformdistribution function. In contrast, inArgMin, ⊕ yields the conditional
ensemble which is lower in free energy via

arg min(a, b) ≡ (aλ if av < bv else bλ) . (A.66)

Thus we can see that an intuitive approach for constructing a backtracking evaluation algebra is
to augment a corresponding forward evaluation algebra with customized operations for structure
attribution. We catalogue the resultant definitions of ArgRandom and ArgMin below.

ArgRandom: single Boltzmann sample evaluation algebra. Within evaluation algebra A =
ArgRandom, each element x is a pair of partition function value xv and set of recursion elements
xλ. Operations on the first element xv are defined using SumProduct. The second element xλ is a
set of recursion elements defining a restricted ensemble of conditional ensemble compositions (the
set of all possible sets of recursion elements λ is denoted as P (Λ)). Any quantity which does not
depend on the output of another recursion is thus assigned xλ = ∅.

D = R≥0 × P (Λ)

a ⊕ b = (av + bv, arg rand(a, b))

a ⊗ b = (av · bv, aλ ∪ bλ)

0 = (0,∅)

1 = (1,∅)

W(g) =
(
exp

(
−g

kBT

)
,∅

)
Q(λ) = (QSumProduct(λ), {λ})

(A.67)

159

ArgMin: unique MFE structure evaluation algebra. Within evaluation algebraA = ArgMin,
each element x is a pair of value xv and set of recursion elements xλ. Operations on the first element
xv are defined using MinSum. The second element xλ is a set of recursion elements defining a
restricted ensemble of conditional ensemble compositions (the set of all possible sets of recursion
elements λ is denoted as P (Λ)). Any quantity which does not depend on the output of another
recursion is thus assigned xλ = ∅.

D = R ∪ {∞} × P (Λ)

a ⊕ b = (min(av, bv), arg min(a, b))

a ⊗ b = (av + bv, aλ ∪ bλ)

0 = (0,∅)

1 = (1,∅)

W(g) =
(
exp

(
−g

kBT

)
,∅

)
Q(λ) = (QMinSum(λ), {λ})

(A.68)

Efficient structure generation via lazy evaluation. We derived more programmatically efficient
evaluation algebras for Boltzmann sampling, MFE structure, and suboptimal structure generation. In
the following subsections, we describe efficient evaluation algebras for ArgRandomN and ArgGap
which build upon ArgRandom and ArgMin.

The simpler but less efficient algebras ArgRandom and ArgMin yield full representations of
the chosen conditional ensembles, which are then enqueued by the respective operation order
algorithms. Our more efficient algorithms work by backtracking through a given recursion element
and enqueueing any combinations of recursion elements in conditional ensembles that match a given
criterion. The matching evaluation algebras incorporate the enqueueing operation κ directly such
that each piece of a conditional ensemble is enqueued immediately as it is encountered. These
evaluation algebras are similarly generic but operate lazily on recursion elements (obviating storage
of intermediate structures which might not affect the final results).

We describe the ArgRandomN and ArgGap evaluations using a generic framework defined with
respect to a given forward algebra (SumProduct and MinSum respectively). As in Section A.5.1,
we make use of the anonymous form of function notation x 7→ y to notate a function taking
x and returning y. Formally, we define the enqueueing operation κ recursively as a function
in Dκ ≡ (R,P (Λ)) 7→ Dκ ; effectively, it may be viewed as an iterator across each alternative
conditional ensemble. Let B be the backward algebra andA the forward algebra. Then we classify
each expression in the evaluation algebra as a closure within DA ≡ Dκ 7→ Dκ and denote a set of
recursion elements as Λi ∈ P (Λ) below.

160

Within the evaluation algebra, addition of a and b intuitively represents the successive iteration
through multiple alternative structures a and b. It may be defined formally as the higher-order
function:

⊕B(a, b) = κ 7→ b(a(κ)) (A.69)

Multiplication of a and b represents the independent combinations of conditional ensembles from
a and being composed together–in effect, a lazily evaluated outer product of conditional ensembles
within a and b. It may be defined formally as the higher-order function:

⊗B(a, b) = κ 7→ a
(
(x1,Λ1) 7→ b

(
(x2,Λ2) 7→ κ

(
x1 ⊗A x2,Λ1 ∪ Λ2

)))
(A.70)

The properties of commutativity and associativity are preserved for ⊕B and ⊗B so long as κ is
independent of the order of evaluation (i.e. κ(x1,Λ1)(x2,Λ2) = κ(x2,Λ2)(x1,Λ1)), a property which
is satisfied by all algorithms discussed here. The multiplicative identity corresponds to a zero free
energy structure, which is not dependent on any recursion elements:

1B = κ 7→ κ(1A,∅) (A.71)

The additive identity is defined as the identity function, reflecting an impossible structure by doing
nothing:

0B = κ 7→ κ (A.72)

WB brings a free energy parameter into the evaluation algebra domain. It is not dependent on any
recursion elements either:

WB(g) = κ 7→ κ (WA(g),∅) (A.73)

Finally, the recursionmatrix operator yields the forward algebra value and a singleton of its associated
recursion element:

QB(λ) = κ 7→ κ (QA(λ), {λ}) (A.74)

See Sections A.6.5 and A.6.6 for specifications of the enqueing function κ used in Boltzmann
sampling and suboptimal structure generation, respectively.

161

ArgRandomN: simultaneous Boltzmann sample evaluation algebra. We here define the im-
plemented evaluation algebraA = ArgRandomN which uses higher order functions to accomplish
lazy evaluation as explained more fully in Section A.5.2. The below is simply a specialization of the
generic structure generation algebra for the associated forward evaluation algebra SumProduct.

D = Dκ 7→ Dκ

a ⊕ b = κ 7→ b(a(κ))

a ⊗ b = κ 7→ a
(
(x1,Λ1) 7→ b

(
(x2,Λ2) 7→ κ

(
x1 · x2,Λ1 ∪ Λ2

)))
0 = κ 7→ κ

1 = κ 7→ κ(1,∅)

W(g) = κ 7→ κ

(
exp

(
−g

kBT

)
,∅

)
Q(λ) = κ 7→ κ(QSumProduct(λ), {λ})

(A.75)

To avoid overflow issues on large sequences, we also extended the evaluation algebra above in a
similar fashion to that described in Section A.5.1.

ArgGap: suboptimal structure evaluation algebra. We here define the implemented evaluation
algebraA = ArgGap which uses higher order functions to accomplish lazy evaluation as explained
more fully in Section A.5.2. The below is simply a specialization of the generic structure generation
algebra for the associated forward evaluation algebra MinSum.

D = Dκ 7→ Dκ

a ⊕ b = κ 7→ b(a(κ))

a ⊗ b = κ 7→ a
(
(x1,Λ1) 7→ b

(
(x2,Λ2) 7→ κ

(
x1 + x2,Λ1 ∪ Λ2

)))
0 = κ 7→ κ

1 = κ 7→ κ(0,∅)

W(g) = κ 7→ κ(g,∅)

Q(λ) = κ 7→ κ(QMinSum(λ), {λ})

(A.76)

162

A.6 Operation orders for each physical quantity
A.6.1 A partial order on recursion elements
We developed novel dynamic programming algorithms to take advantage of the blockwise approach
to calculations in themultistranded ensemble. The resultant dependency graph of recursions provides
the main constraints in correctly handling calculations of a given physical quantity. To formalize
this dependency structure, we define a partial order on recursions λp, λq such that if (and only if)
λp < λq, then the definition of recursion λq is dependent on that for λp. We define this partial order
as a lexicographical order on (1) the strand indices of the recursions, (2) the subsequence indices of
the recursions, and (3) the recursion types. In other words, two recursions are to be compared based
on their associated strand indices, then their subsequence indices, then their recursion types.

Ordering on strand indices. We developed dynamic programming algorithms working over
subsequences of strands within a multistranded complex. Thus, we implement a partial order on
the strand indices a, b of two recursions by defining that λp < λq if (aq < ap and bp ≤ bq) or
(aq < ap and bp ≤ bq). (We adopt the convention that the indices are sorted such that a ≤ b for any
recursion.) Figure A.31 illustrates the dependency structure induced by recursion strand indices and
its effect on the operation order used in our dynamic programs.

Complex ABC
C

block

B
block BC

block

ABC
block

AB
block

A
block

B C

AB
BC

ABC

A

a b

Figure A.31: Blockwise operation order. (a) Depiction of the blockwise approach. (b) Illustration of the induced
dependency structure. Analogous to a single stranded dynamic program, which uses subproblems on subsequences of
nucleotides, the multistranded dynamic program uses subproblems on subsequences of strands. Panel (a) gives examples
of strand indices a and b used in the pseudocode of Sections A.6.2 and A.6.4. Panel (b) shows an example dependency
graph between blocks, with the dependency direction depending on whether a forward or backtracking operation is being
used. Black circles denote locations in the forward algorithms where block results may be cached to avoid recomputation.

Ordering on subsequence indices. Next we incorporate a partial order on subsequence indices
by additionally defining that, if the strand indices of λp, λq are identical, then λp < λq if (iq < ip
and jp ≤ jq) or (iq < ip and jp ≤ jq). (We adopt the convention that the indices are sorted such
that i ≤ j for any recursion.) This mirrors the structure encountered with strand indices and is

163

the historical order implicit in dynamic programming algorithms working within a single-stranded
ensemble.

Ordering on recursion types. Finally, we define a partial order on recursion types for when the
strand and subsequence indices of λp and λq are identical. LetT be an ordered sequence of recursion
types in a given set of recursions such that if for any integers i, j, p, q, if p < q and λp ≡ (Tp, i, j) and
λq ≡ (Tq, i, j) then λp < λq. In other words, for a given i, j, the recursion (Tp, i, j) is not dependent
on that for (Tq, i, j). There are multiple logically consistent recursion type sequences T, but we
implemented the following ones:

Tno stacking ≡ [X,MB,B,T,D,YA,YB,MS,M, S,∅]

Tstacking ≡ [X,B,T,D,YA,YB,CM,CS,CSS,CBS,C, S,M,∅,N]
(A.77)

A.6.2 Partition function, structure count, and MFE
We give the following algorithm for the block-based dynamic program over subcomplexes used for
partition function, structure count, and MFE. It relies on separate subroutines to calculate triangular
intrastrand blocks and rectangular interstrand blocks.

ComplexDynamicProgram takes parameters φ, the sequence of the complex for which to compute
the partition function, andC, a map from sequences to blocks in which to store and retrieve computed
blocks. It returns the complete block of dynamic program results FullQ.

164

ComplexDynamicProgram(A, φ,C)

L = Number of Sequences(φ)
FullQ← EmptyBlock(Length(φ)) // Initialize all matrix storage

for l ∈ [0 : L]

for a ∈ [1 : L − l]

b← a + l

if φa,b ∈ C

// Take result for block from cache
FullQa,b ← C[φa,b]

else
if a = b

// Calculate intrastrand block
FullQa,a ← IntraStrandDynamicProgram(A, φa,a)

else
// Calculate interstrand block
InterStrandDynamicProgram(A, φa,b, FullQ[a:b],[a:b])

// Put result for block into cache
C[φa,b] ← FullQa,b

return FullQ

Algorithm A.4: Blockwise operation order over subcomplexes

The outermost element of FullQ corresponding to Q1,N may be post-processed into the target
physical quantity as described in Section A.7 and Reference 2.

Operation order for intrastrand blocks. We define the subsidiary operation order as follows for
a single strand sub-complex to return a fresh block Q. No prior information from other blocks is
necessary. Iteration proceeds as in Figure 2.5.

165

IntraStrandDynamicProgram(A, φ)

N ← Length(φ)
for l ∈ [1 : N]

for i ∈ [1 : N − l]

j ← i + l − 1
for T ∈ T
// Calculate and store recursion output for QT

i, j

λ← (T, i, j)

Q(λ) ← RSingle(λ, φ)

return Q

Algorithm A.5: Operation order for single stranded blocks

Operation order for interstrand blocks. We define the subsidiary operation order for a multi-
strand sub-complex to update the parameter Q with the outermost block, given that all dependent
blocks are already calculated. For instance, in Figure A.31(a), InterStrandDynamicProgram
would calculate the top-right block ABC using the prior calculations of blocks A, B, C, AB, and BC.

InterStrandDynamicProgram(A, φ,Q)

N ← Length(φ)
b← Nicks(φ)
m← First(b) // index of first base on second strand
n← Last(b) // index of first base on last strand

// Iteration proceeds from lowest to highest l ≡ j − i + 1
for l ∈ [n − m + 1 : N]

for i ∈ [max(l, n) − l + 1 : min(m, N − l)]

j ← i + l − 1
for T ∈ T
// Calculate and store recursion output for QT

i, j

λ← (T, i, j)

Q(λ) ← RMulti(λ, φ)

Algorithm A.6: Operation order for multistranded blocks

166

A.6.3 Overflow-safe partition function
As described in Section A.5.1, overflow prevention during partition function or structure count
computation can be acccomplished using a split representation of all quantities in terms of separate
mantissas and exponents. Our overflow-safe algorithm uses the same operation order as A.6.2, just
with a different evaluation algebra to calculate and store recursion element matrices.

Any expression within the SplitExponent evaluation algebra is a function of γ which returns the
1) mantissa xm and 2) exponent xe relative to that given exponent shift such that the value of the
expression is xm2xe−γ for any choice of γ. For each recursion matrix, mantissa and exponent values
of the same bit width are held in separate arrays M and E . Single-precision floating point and signed
integers are used, such that the total storage cost of this method is identical to running SumProduct
in double precision. From the output expression of a given recursion R in SplitExponent, the
respective entry in the recursion matrix is set via the following procedure:

M(λ) ← Rm(λ, φ)(γ0(λ))

E(λ) ← γ0(λ, φ) + Re(λ)(γ0(λ))
(A.78)

As described in Section A.5.1, γ0 must be chosen judiciously for a given computation. If an
expression has a theoretical value of q, γ0 should be relatively close to − log2 q to prevent overflow
from occurring. For recursion element λ = (A, i, j), we choose γ0 as follows from the matrix E

containing the exponents of A:

γ0(λ) ≡ min
i≤d≤e≤ j
(d,e),(i, j)

−Ed,e

=


min

(
−Ei+1, j,−Ei, j−1

)
i < j

0 otherwise

(A.79)

Although it possible to try multiple choices of γ0 as a failsafe, in practice the single definition of γ0

above is sufficient to avoid overflow in the entries of M .

167

A.6.4 Pair probability matrix
We present pseudocode for a backtrack-free multistranded pair probabilities algorithm below. Sym-
bols have the samemeanings as in Section A.6.2, except FullQ is the block for the doubled sequence
φ′ instead of the input φ. Similarily, the Q and Qb matrices in line 0 refer to the recursion matrices
for φ′. After the dynamic programming algorithm the resultant Q and Qb entries are post-processed
into the pair probabilities matrix as in Equation 2.17.

The subroutine PartialInterStrandDynamicProgram behaves identically to
InterStrandDynamicProgram but stops once l in its outer recursion reaches N ≡ Length(φ).
This savings can take place because the backtrack-free pair probabilities methodology (Figure 2.13)
only requires results from element indices (i, j) such that i ≤ j ≤ i + N .

168

PairProbabilities(A, φ, FullQ,C)

N = Length(φ)
φ′ = φ + φ

Initialize FullQ to 0

L = Number of Sequences(φ)
for l ∈ [0 : L]

for a ∈ [1 : 2L − l]

b← a + l

if φ′a,b ∈ C

// Take result from cache
FullQa,b ← C[φ′a,b]

else
if a = b

// Calculate intrastrand block
FullQa,a ← IntraStrandDynamicProgram(A, φ′a)

elseif l < L

// Calculate interstrand block
InterStrandDynamicProgram(A, φ′a,b, FullQ[a:b],[a:b])

else
// Calculate lower triangle of interstrand block
PartialInterStrandDynamicProgram(A, φ′a,b, FullQ[a:b],[a:b], N)

// Put results in cache
C[φ′a,b] ← FullQa,b

Initialize N × N matrix P

for i ∈ [1 : N]

for j ∈ [1 : N] and j , i

Pi, j = Qb
i, jQ

b
j,N+iQ

−1
1,N // same as Equation 2.17

Pi,i = 1 −
∑

1≤ j≤N, j,i Pi, j

return P

Algorithm A.7: Operation order for backtrack-free pair probabilities.

169

A.6.5 Sampled structure generation
While the pair probability P and partition function Q of a given complex ensemble yield exact
and important equilibrium statistics, other statistics must be estimated in a randomized fashion via
sampled structures from the Boltzmann ensemble. Doing so enables determination of higher-order
statistics including conditional base pairing information (e.g. in what fraction of structures do two
regions of a complex appear as duplexes simultaneously?). Motivated by the central use-case of
estimating equilibrium averages over Γ, we develop here novel methods generating J independently
sampled structures from the same ensemble at a reduced runtime complexity. Previous algorithms
have provided the ability to sample a single structure from the Boltzmann distribution for a complex,
i.e. structure s sampled with probability p(φ, s). An algorithm from Ding and Lawrence15 achieved
a worst-case O(JN2) runtime for sampling single-stranded structures, beyond the O(N3) cost of
computing the partition function. In this case, both complexity results were achieved by excluding
interior loops with more than 30 unpaired nucleotides. NUPACK 3 included an algorithm for
interstrand complexes based on a full backtrack through each element of the recursion matrices,
incurring an O(JN3) runtime complexity without excluding any interior loops.

In contrast, by adapting the iteration order of the Qb recursion such that interior loop contributions
are considered in order from fewest to most unpaired bases, we first achieve a worst-case runtime
of O(JN2) without exclusion of any interior loop states for sequential sampling. This complexity
is roughly due to performing a scan of at most O(N) contributions to each of the O(N) recursion
elements within each of the J structures. We improve upon this result by developing an exact,
efficient algorithm for simultaneous sampling.

...

...

...

...

c

a

d

b

Figure A.32: Illustration of multisampling operation order. (a) The top recursion element is popped off the priority queue
along with its associated structures 1,2,3. (b) If the popped element is of type Qb

d,e
, a base pair between d and e is added

to each associated structure 1,2,3. (c) The evaluation algebra is invoked with n = 3, randomly assigning conditional
ensembles to structures 1,2,3. (d) The recursion elements corresponding to each conditional ensemble is added to the
priority queue along with its associated structures.

170

Algorithm overview. We developed a simultaneous sampling algorithm using a new operation
order that eliminates any recomputations of the same recursion (Figure A.32). The priority queue is
defined via the partial order on recursion element λ from Section A.6.1 via the recursion type, strand
indices, and sequence indices of λ. The queue is initialized with the single recursion element Q1,N

and the indices of the associated sampled structures 1, . . . , J (i.e., all J sampled structures that are to
be generated). When an element is popped from the priority queue, if Jλ of the sampled structures
include this element, Jλ random numbers are drawn and sorted. Next, each of Nλ conditional
ensembles is traversed exactly once, and each matching contribution is enqueued along with every
index of a matched structure. This procedure yields a subproblem complexity of O(Nλ + Jλ log Jλ)

compared to O(JλNλ).

The resultant performance of the entire sampling algorithm is worst-case bounded O(JN2) but
otherwise sequence-dependent. The speedup from simultaneous sampling is expected to be great-
est when the Boltzmann ensemble is dominated by only a few conditional ensembles. Still, the
method achieves order-of-magnitude speedups across benchmark ensembles of random sequences
(Figure 2.14, Section A.8.5) and designed sequences (Section A.8.5). Empirically, we observe
near-best case performance across these ensembles with an empirical linear complexity in N and a
sublinear complexity in J (around O(J0.8)). More performance details are given in Section A.8.5.

Operation order. Below we give an algorithm for simultaneously generating J secondary struc-
tures randomly from the Boltzmann distribution for a complex of sequence φ with N ≡ |φ|.

1. Initialize an array L of J secondary structures with no base pairs.

2. Initialize an empty priority queue P of pairs of recursion recursion element λ and vector of
ordered structure indices ®v.

3. Enqueue a pair of λ = (∅, 1, N) and ®v = [1 : J] into P.

4. While P is not empty:

a) Dequeue the highest priority element λ and its respective indices ®v from P (Fig-
ure A.32(a)).

b) If λ denotes any element Qb
i, j , add a base pair i · j in each structure sl for l ∈ ®v

(Figure A.32(b)).

c) Let Jλ be the length of ®v. Initialize an array ®w of Jλ random numbers uniformly
distributed between 0 and QSumProduct(λ).

d) Sort ®w, incurring O(Jλ log Jλ) cost and reorder ®v by the same permutation.

e) Initialize q = 0 as the running sum of contributions and k = 1 as the running index.

f) Calculate the generatorG = RArgRandomN(λ)(κ) in order to attribute conditional ensemble
contributions to the output structure indices ®v (Figure A.32(c)). For exposition, this may

171

be achieved with the coroutine κ(x,Λ) which yields (x,Λ) and returns κ. In practice, the
loop below was programmatically implemented via a callback function.

g) For each of Nλ contributions (x,Λ) in G until k > Jλ:

i. Increment the accumulator q← q + x.

ii. Find the remaining weights below q by calculating k ′← UpperBound(®w[k : j], q).
This may be done via binary search; the yielded subproblem complexity from this
step is still within O(Jλ + Nλ).

iii. For each element λ in Λ, enqueue (λ, ®v[k : k ′ − 1]) into P (Figure A.32(d)). If λ
was already present in P, concatenate the indices ®v of the two items.

iv. Update the running index k ← k ′.

5. Return L.

We achieve an O(Nλ + Jλ log Jλ) in the subproblem of backtracking through a given recursion
element λ (see the complexity annotations in Step 4 above). Empirical measurements of the
complete algorithm complexity are given in Sections A.8.5 and A.8.5.

Recursion iteration order for interior loops in backtracking algorithms. We sample from the
structural ensemble containing all interior loop states while achieving an asymptotic upper bound
of O(N2) for a single sample. This is made possible by iterating through the interior loop states in
order from fewest to most unpaired nucleotides, as discussed below. This iteration order is shown for
intrastrand and interstrand recursions in Equations A.80 and A.81, respectively. This contrasts with
the historical iteration order for interior loops, which considers all 5′ inner bases d in ascending and
then all 3′ inner bases e compatible with each d, again in ascending order, shown in Equations A.28
and A.29.

Note that the iteration orders (A.80) and (A.81) result inO(N4) forward pass algorithms, as discussed
in Section A.3.3 for (A.28) and (A.29). This occurs because for each closing pair i · j, we consider
all O(n2) possible second base pairs d · e, where n = j − i + 1. However, as we will show below, this
does not affect the O(N2) single sample performance we are claiming.

Single Sampling Interior(i, j, φ) ≡
j−i−4⊕
z=10

z−5⊕
s=5
{Qb

d,e ⊗W(∆Ginterior
i,d,e, j (φ))}

where d = i + z − s

e = j − s

(A.80)

172

Multi Sampling Interior(i, j, φ) ≡
j−n+m−i⊕
z=10

min(z−5,m−i−1)⊕
r=max(5,z−j+n)

{Qb
d,e ⊗W(∆Ginterior

i,d,e, j (φ))}

where d = i + r

e = j + r − z

m = First(η)

n = Last(η)

(A.81)

We proceed to show that iterating through extensible interior loops in order from fewest to most
unpaired bases results in an overall asymptotic upper bound ofO(N2). In the recursions for sampling
the contributions to an element Qb

i, j , hairpin loops, exterior loops, multiloops, and inextensible
interior loops (including all bulge loops and stack loops) are all sampled first. From the Rb

recursions in Figures A.4, A.9, A.17, A.26, one can see there are either O(1) or O(n) of these
contribution types for a subsequence of length n. There is only one hairpin loop, one stack loop, and
O(n) bulge and inextensible interior loops. While there are potentially more than O(n) multiloops
consistent with i · j, they are handled recursively and there are only O(n) contributions coming
through Qm elements. Therefore, if only these states are sampled, the algorithm will only recurse
into at most O(N) Qb elements each costing at most O(N) for an over all complexity of O(N2) and
we would already have our bound.

So we can limit ourselves to cases where at least one extensible interior loop is sampled. If iteration
proceeds through these interior loops in ascending order of number of unpaired bases, each inner
base pair d · e will be encountered at most once. To see this, assume the extensible interior loop
with base pair d · e is sampled. Then every previous base pair d ′ · e′ iterated through in order to
reach d · e will meet one of the following conditions: e′ − d ′ > e − d or d ′ < d < e′ < e. The first
case occurs for all interior loops with fewer unpaired nucleotides than the loop bounded by base pair
d · e. The second case occurs for all interior loops with the same number of unpaired nucleotides
as the loop bounded by base pair d · e. In both cases, φd′,e′ is not a subsequence of φd,e and the
base pair d ′ · e′ cannot appear in φd,e. Therefore, because (1) extensible interior loop contributions
are only considered after contributions that lead to an overall asymptotic upper bound of O(N2), (2)
base pairs bounding extensible loops are not considered more than once, and (3) there are a total of
O(N2) possible base pairs bounding extensible loops in a sequence of length N , the overall sampling
algorithm scales as O(N2). This matches the asymptotic scaling of Ding and Lawrence15, while
including the complete class of large interior loops, some of which they exclude.

173

A.6.6 Suboptimal structure generation
In many cases, the core features of a complex ensemble may be summarized by its MFE proxy
structure(s) (Equation 2.10), sMFE′, or the set of all stacking states below a given free energy gap
Γsubopt(φ,∆Ggap) (Equation 2.11). The set Γsubopt(φ,∆Ggap) can be equivalently viewed as the set
of structures corresponding to stacking states sq whose equilibrium probability p(φ, sq) is at least
pgap ≡ exp(−(∆G(φ, sqMFE)+∆Ggap)/kT)(Q(φ))−1. Γsubopt(φ,∆Ggap) is necessarily just a set of sMFE′

when ∆Ggap = 0, and algorithmically we therefore focus on calculation of Γsubopt(φ,∆Ggap).

The program flow for determining suboptimal structures is controlled by a stack data structure
containing partial structures {s}. Each partial structure s represents all structures consistent with a
given set of elements that have energies below an energy gap. It is defined as a tuple of 1) a priority
queue of recursion elements, 2) a free energy and 3) a list of base pairs.

Structure generation proceeds by popping the highest priority element λ from the top partial structure
s on the stack. The appropriate recursion for the element is used to iterate through the set of all
alternate conditional ensemble contributions. For each alternate contribution falling below the given
energy gap, a new partial structure s′ is generated from s. If a given contribution contained no
elements and the priority queue of s′ is empty, s′ is output as a complete structure; otherwise, s′

is pushed on the stack. The algorithm begins by pushing a partial structure corresponding to Q1,N

onto the stack and proceeds until the stack is empty.

Using a stack data structure, the algorithm runs in a depth first manner to discover completed
structures as early as possible. This allows emitting completed structures in a streaming fashion
while additional structures are determined. Here we give an algorithmwhich yields Γsubopt(φ,∆Ggap)

from sequence φ of length N ≡ |φ|:

1. Initialize empty stack S of partial structures and empty multiset L of complete structures.

2. Create parent partial structure s containing just the element λ = (∅, 1, N) and push it onto S.

3. While S is not empty:

a) Pop the first partial structure s off of the stack S.

b) If there are no elements in s, it is complete, so add it to L and continue the while loop.

c) Otherwise, dequeue the first element λ from s.

d) Update the free energy of s via senergy ← senergy −QMinSum(λ).

e) If λ denotes any element Qb
i, j , add a base pair i · j in structure s.

f) Calculate the generator G = RArgGap(λ)(κ). For exposition, this may be achieved with
the coroutine κ(x,Λ) which yields (x,Λ) and returns κ. In practice, the loop below was
programmatically implemented via a callback function.

g) For each contribution (x,Λ) in G where senergy + x ≤ ∆Ggap + ∆G(φ, sqMFE):

174

i. Initialize a new partial structure s′ from s by copying the priority queue and list of
base pairs from s and energy s′energy = senergy + x.

ii. For each element λ′ ∈ Λ, enqueue λ′ into the priority queue of partial structure s′.

iii. Push s′ onto the stack S.

4. Return L.

The resultant algorithm complexity is within O(|L |N2). This bound reflects the worst-case of a
set of L structures which contain no common recursion elements. Each structure must then be
independently backtracked, incurring the worst-case O(N2) complexity bound of Section A.6.5.
Because the number of structures returned |L | is sequence-dependent and potentially exponential in
N , we did not attempt to bound the complexity further.

175

A.7 Distinguishability Issues
For a complex of L strands, the ensemble Γ treats each strand as distinct while the ensemble Γ treats
strands with the same sequence as indistinguishable. Both ensembles have conceptual utility as they
provide different perspectives when examining the physical properties of a complex. In laboratory
experiments, strands with the same sequence are typically indistinguishable, so calculations over
ensemble Γ are crucial for comparison to experimental data (e.g., equilibrium secondary structure
probabilities and equilibrium complex concentrations). On the other hand, calculations over ensem-
ble Γ can sometimes provide information that is valuable precisely because it cannot be measured
experimentally (e.g., equilibrium base-pairing probability matrix).

All of the dynamic programs described in the present work operate on ensemble Γ using free energy
model (2.1) where each strand is treated as distinct. This is a matter of algorithmic necessity, as
the free energy model (2.4) used for ensemble Γ contains a symmetry correction that depends on
the global rotational symmetry R of each secondary structure s ∈ Γ. For efficiency reasons, the
dynamic programs avoid explicitly enumerating each structure, instead operating on local loop free
energies to incorporating information for multiple structures simultaneously while operating only
on local loop free energies. As a result, the dynamic programs cannot incorporate a different global
rotational symmetry correction for each structure because they never have access to global structural
information. However, to facilitate comparisons to experimental data, physical quantities calculated
using a dynamic program over ensemble Γ using physical model (2.1) can be post-processed to
obtain the corresponding physical quantities over ensemble Γ using physical model (2.4). In the
following sections, we outline the situation for each physical quantity treated in the present work.

A.7.1 Partition function
The partition function dynamic program calculates Q(φ) = Q1,N (for a complex with N nucleotides)
over ensemble Γ using free energy model (2.1) treating all strands as distinct. The Distinguishability
Correction Theorem of Dirks et al.2 shows that this quantity can be used to calculate the partition
functionQ(φ) over ensemble Γ using physical model (2.4) treating strands with the same sequence as
indistinguishable. For convenience, we include the associated definitions and proof2 here to enable
extension of this analysis to other physical quantities.

Consider a complex of L strandswith ordering π, where some of the strandsmay be indistinguishable.
Let G be the group of v(π) cyclic permutations mapping each strand to a strand of the same species.
For example, v(π) = 4 for π = AAAA, v(π) = 3 for π = ABABAB, and v(π) = 2 for π = ABAABA,
v(π) = 1 for π = AAB, where the elements of G correspond to all rotations of a polymer graph that
map strands of type A→A and strands of type B→B. We term v(π) the periodic strand repeat of the
complex with ordering π.

For complexes in which all strands are distinct, v(π) = 1. Complexes containing multiple copies
of the same strand species may have v(π) > 1, in which case the calculated partition function will
be incorrect for ensemble Γ and free energy model (2.4) due to symmetry and redundancy errors

176

a b c

Figure A.33: Example secondary structures and polymer graphs for a complex with strand ordering π =AAAA. The
four strands have the same sequence and are distinct in ensemble Γ (each with a unique identifier in {1,2,3,4}) but
indistinguishable in ensemble Γ. The partition function dynamic program operates on ensemble Γ. After completing a
calculation, if the strand identifiers are conceptually removed with the goal of converting the partition function Q(φ) from
ensemble Γ to the partition function Q(φ) in ensemble Γ, different structures in Γ have different rotational symmetries and
different redundancies in Γ. Structures with an R-fold rotational symmetry are missing a penalty of +kT log R to the free
energy model and hence are overweighted in the partition function by a factor of R. Structures with an S-fold redundancy
are overcounted in the partition function by a factor of S. (a) 1-fold (i.e., no) rotational symmetry; 4-fold redundancy (4
indistinguishable structures as each stem plays the role of having 2 base pairs). (b) 2-fold rotational symmetry; 2-fold
redundancy (2 indistinguishable structures as each opposing pair of stems plays the role of having 2 base pairs). (c) 4-fold
rotational symmetry; 1-fold (i.e., no) redundancy.

that are different for different structures in the ensemble. For example, consider a complex with
strand ordering π = AAAA (Figure A.33), that contains structures with either a 1-fold (i.e., no
symmetry), 2-fold, or 4-fold rotational symmetry. Each of these cases will be treated incorrectly
from the perspective of ensemble Γ and physical model (2.4). Dirks et al.2 show that the symmetry
and redundancy errors interact in such a way that they can be exactly and simultaneously corrected.

Consider an arbitrary secondary structure s ∈ Γ. A permutation g ∈ G acts on a secondary
structure s by relabeling strand identifiers: g(s) = {ig(m) · jg(n) : im · jn ∈ s}. The stabilizer of s,
Gs = {g ∈ G : g(s) = s}, is the set of cyclic permutations of strand identifiers (rotations of the
polymer graph) that map s onto itself. The order of the rotational symmetry of the physical complex
with secondary structure s is given by |Gs |, requiring a correction of +kT log |Gs | to the standard
loop-based free energy.

The orbit of s in G, G(s) = {g(s) ∈ Γ : g ∈ G}, is the subset of Γ corresponding to the images
of s under the permutations of the group G. Note that the members of G(s) represent secondary
structures within Γ that would be indistinguishable if the unique identifiers were removed from
strands of the same species. Consequently, the partition function contribution of secondary structure
s ∈ Γ will be overcounted by a factor of |G(s)| because the dynamic program treats elements of the
orbit as algorithmically distinct even though they are physically indistinguishable.

177

The orbit-stabilizer theorem of group theory16 provides the useful relationship

|Gs | |G(s)| = |G| = v(π), ∀ s ∈ Γ

linking the symmetry and redundancy effects. Crucially, the product |Gs | |G(s)| depends only on the
strand ordering π and is independent of the specific secondary structure s ∈ Γ.

Theorem 1 (Partition Function Distinguishability Correction) For a complex with strand order-
ing π, if the partition function dynamic program yields Q(φ) for ensemble Γ, then the partition func-
tion for ensemble Γ accounting for both symmetry and redundancy corrections is Q(φ) = Q(φ)/v(π).

Proof. The partition function algorithm applied to ensemble Γ yields

Q(φ) =
∑
s∈Γ

exp{−∆G(φ, s)/kT}. (A.82)

The partition function for ensemble Γ is then

Q(φ) =
∑
s ∈ Γ

exp{−∆G(φ, s)/kT}

=
∑
s ∈ Γ

exp{−(∆G(φ, s) + kT log |Gs |)/kT} (A.83)

=
∑
s ∈ Γ

∑
σ∈G(s)

1
|G(σ)|

exp{−(∆G(φ, σ) + kT log |Gσ |)/kT} (A.84)

=
∑
s ∈ Γ

1
|G(s)|

exp{−(∆G(φ, s) + kT log |Gs |)/kT} (A.85)

=
1

v(π)

∑
s ∈ Γ

exp{−∆G(φ, s)/kT} (A.86)

=
Q(φ)
v(π)

. (A.87)

Thus, the symmetry and redundancy corrections combine to give a uniform factor v(π)−1 that is
independent of the structure s ∈ Γ, enabling exact conversion of Q(φ) into Q(φ).

The partition function Q(φ) for ensemble Γ is suitable for calculating physical quantities that will be
compared to experimental measurements in which strands of the same species are indistinguishable
(e.g., equilibrium secondary structure probabilities p(φ, s) or equilibrium complex concentrations
x). The corresponding complex free energy is

∆G(φ) = −kT log Q(φ), (A.88)

which should not be confused with ∆G(φ, s), the free energy of a single secondary structure s ∈ Γ.

178

A.7.2 Equilibrium secondary structure probability
In ensemble Γ treating all strands as distinct, the equilibrium probability of any secondary structure
s ∈ Γ is:

p(φ, s) =
1

Q(φ)
exp{−∆G(φ, s)/kT} (A.89)

where Q(φ) is the partition function over ensemble Γ treating all strands as distinct and ∆G(φ, s) is
calculated using (2.1).

In ensemble Γ treating strands with the same sequence as indistinguishable, the equilibrium proba-
bility of any secondary structure s ∈ Γ is:

p(φ, s) =
1

Q(φ)
exp{−∆G(φ, s)/kT} (A.90)

where Q(φ) is calculated using (A.87) and ∆G(φ, s) is calculated using (2.4).

The relationship between the probabilities in the two ensembles is given by:

p(φ, s) =
1

Q(φ)
exp{−∆G(φ, s)/kT} (A.91)

=
v(π)

Q(φ)
exp{−[∆G(φ, s) + kT log |Gs |]/kT} (A.92)

=
v(π)

Q(φ)

∑
σ∈G(s)

1
|G(σ)|

exp{−[∆G(φ, σ) + kT log |Gσ |]/kT} (A.93)

=
1

Q(φ)

∑
σ∈G(s)

exp{−∆G(φ, σ)/kT} (A.94)

=
∑

σ∈G(s)

p(φ, σ) (A.95)

(A.96)

where the structures in the set G(s) for s ∈ Γ become redundant if the distinct identifiers are removed
from strands of the same species. Hence, p(φ, s) is the sum of the (identical) probabilities p(φ, s) of
these redundant structures.

A.7.3 Equilibrium base-pairing probabilities
Using a bactrack-free dynamic program, the matrix of equilibrium base-pairing probabilities P(φ)

is calculated over ensemble Γ using free energy model (2.1) treating all strands as distinct. One
may visualize a thought experiment in which all strands, all nucleotides, and all base-pairs are
distinct, with equilibrium base-pairing probabilities available for each of these distinct base pairs.
The probabilities in this matrix are not directly comparable to experimental measurements in which
strands of the same sequence are indistinguishable, but nonetheless provide a valuable and detailed
window into the complex ensemble.

179

Let

p(i1 · j2) (A.97)

denote the equilibrium probability for base-pair (i1 · j2) with nucleotide i of a strand with identifier
1 pairing to nucleotide j of a strand with identifier 2. Let

p(i1) (A.98)

denote the equilibrium probability that base i of a strand with identifier 1 is unpaired.

A.7.4 Structure sampling
The simultaneous sampling algorithm Boltzmann samples a set of J secondary structures

Γsample(φ, J) (A.99)

from ensemble Γ using free energy model (2.1) treating all strands as distinct. Unlike the equilibrium
base-pairing probability matrix P(φ), by averaging or clustering the sampled structures, it is possible
to examine correlations between base pairs. As the number of sampled structures increases, the
average structural properties over the sampled set recover the equilibrium base-pairing probability
matrix:

P(φ) = lim
J→∞

1
J

∑
s∈Γsample

S(s) (A.100)

A set of J structures Γsample(φ, J) sampled from ensemble Γ where all strands are distinct can be
post-processed to generate a set of structures Γsample(φ, J) sampled from ensemble Γ where strands
with the same sequence are indistinguishable.

For ensemble Γwith free energymodel (2.1), a structure s ∈ Γ is Boltzmann sampledwith probability
p(φ, s) by the sampling dynamic program, yielding an integer number of samples nsample(φ, s) ∈

{0, . . . , J}. Conceptually, for ensemble Γ with free energy model (2.4), a structure s ∈ Γ would be
Boltzmann sampled with probability p(φ, s). We have previously derived the relationship (A.95)
between the equilibrium probabilities in the two ensembles:

p(φ, s) =
∑

σ∈G(s)

p(φ, σ) (A.101)

The equilibrium probability of a structure s ∈ Γ is simply the sum of the equilibrium probabilities of
the structures σ ∈ G(s) that are indistinguishable in ensemble Γ upon removal of their unique iden-
tifiers. Hence, the sample count for Boltzmann sampling from ensemble Γ with free energy model
(2.1) is obtained by summing the sample counts for the structures σ ∈ G(s) that are indistinguishable
in ensemble Γ upon removal of their unique identifiers:

nsample(φ, s) =
∑

σ∈G(s)

nsample(φ, σ). (A.102)

180

A.7.5 Equilibrium complex concentrations
Consider a test tube ensemble containing a set of strand species Ψ0 interacting to form the set of
complex species Ψ. To calculate the set of equilibrium concentrations xΨ ≡ xc ∀c ∈ Ψ, we first
calculate the set of partition functions QΨ using (A.87). The complex concentrations xΨ are then
the unique solution to the strictly convex optimization problem2:

min
xΨ

∑
c∈Ψ

xc(log xc − log Qc − 1) (A.103a)

subject to
∑
c∈Ψ

Ai,cxc = x0
i ∀i ∈ Ψ0. (A.103b)

Here, A is the stoichiometry matrix such that Ai,c is the number of strands of type i in complex c

and x0
i denotes the total concentration of strand species i in the test tube. Following Dirks et al.,2,

this problem is solved efficiently in the dual form as an unconstrained convex optimization problem
using a trust-region method with a Newton dog-leg step17 using Cholesky decomposition for the
Newton matrix inversions.

A.7.6 Ensemble pair fractions
If a complex contains some indistinguishable strands, distinguishability effects arise at the secondary
structure level in the form of rotational symmetry corrections and algorithmic overcounting correc-
tions (Section A.7.1). New distinguishability issues arise when examining individual base pairs
within these secondary structures2. For example, consider a complex π = AAB involving two indis-
tinguishable copies of strand A (with identifiers 1 and 2) and one copy of strand B (with identifier 3).
Periodic strand repeat v(π) = 1 so no symmetry and overcounting corrections are required for any
structure s ∈ Γ. However, base pairs (i1 · j3) and (i2 · j3) are indistinguishable since strands 1 and 2 are
both of type A. Likewise, without the global structural context, the inter- and intra-strand base pairs
(i1 · j2) and (i1 · j1) are also indistinguishable. Fortunately, the equilibrium base-pairing probabilities
calculated over ensemble Γ (Section A.7.3) can be used to calculate base-pairing observables that
account for this indistinguishability.

First, consider a complex in which strands with the same sequence are indistinguishable. LetΘ be the
set of strand species in the complex and {θ} be the set of all strand identifiers corresponding to strands
of type θ ∈ Θ (hence L =

∑
θ∈Θ |{θ}|). We define the expected number of base pairs between base i on

strands of type A ∈ Θ and base j on strands of type B ∈ Θ to be E(i{A} · j{B}) ∈ [0,min(|{A}|, |{B}|)].
For a given complex,

E(i{A} · j{B}) =
∑

lA∈{A}

∑
lB ∈{B}

p(ilA · jlB)

represents a sum over the contributions of each type of distinct base pair, where each term p(ilA · jlB)

is an equilibrium base-pairing probability (A.97).

Now consider a test tube in which strands with the same sequence are indistinguishable. Let Ψ0

denote the set of strand species that interact to form the set of complex species Ψ. For a complex

181

k ∈ Ψ, let Ek(i{A} · j{B}) denote the expectation value that base i of strand species A ∈ Θk pairs
to base j of strand species B ∈ Θk , where Θk ⊆ Ψ

0 denotes the set of strand species that appear
in complex k. For a test tube ensemble at equilibrium, the expected concentration of base pairs
between base i of strands of type A and base j of strands of type B is

x(iA · jB) =
∑
k∈Ψ

xkEk(i{A} · j{B}).

For experimental studies, it is usually more convenient to measure the expected fraction of A strands
or B strands that form this base pair:

fA(iA · jB) = x(iA · jB)/x0
A (A.104)

fB(iA · jB) = x(iA · jB)/x0
B, (A.105)

respectively. These ensemble pair fractions are conceptually suitable for comparison to a FRET
experiment designed to measure formation of a base-pair between base i of strands of type A with
base j of strands of type B.

Similarly, the concentration x(iA) of strand species A ∈ Ψ0 with base i unpaired is

x(iA) = 1 −
∑
B∈Ψ0

NB∑
j=1

x(iA · jB),

and the fraction of A strands that have base i unpaired is

fA(iA) = x(iA)/x0
A. (A.106)

The total concentration of unpaired bases in solution is

xunpaired =
∑
A∈Ψ0

x(iA) =
∑
k∈Ψ

xk
Nk∑
j=1

P j, j(φk) (A.107)

and the total fraction of unpaired bases in solution is

funpaired = xunpaired/
∑
A∈Ψ0

x0
ANA (A.108)

The total fraction unpaired is conceptually suitable for comparison to an absorbance measurement.

A.7.7 MFE free energy and secondary structure
The MFE dynamic program returns the free energy of the MFE stacking state in ensemble Γ using
free energy model (2.1):

∆G(φ, sqMFE). (A.109)

Note that the MFE algorithm does not return the free energy of the MFE secondary structure sMFE

but rather the free energy of the MFE stacking state sqMFE. This is a consequence of the recursions

182

operating on stacking state as the elementary state. The backtracking dynamic program then returns
the secondary structure

sMFE′ = {s ∈ Γ|sqMFE ∈ s, sqMFE(φ) = arg min
sq∈Γ

q
∆G(φ, sq)}. (A.110)

that contains sqMFE within its subensemble. Note that this is not the MFE secondary structure, sMFE,
but rather a proxy sMFE′ that contains sqMFE within its subensemble. This is a consequence of ??.
The free energy of this secondary structure can be evaluated in ensemble Γ using (2.1) to yield
∆G(φ, sMFE′) or in ensemble Γ using (2.4) to yield ∆G(φ, sMFE′).

Because the recursions operate on stacking states as the elementary state, it is not clear how to
calculate the MFE free energy ∆G(φ, sMFE) and secondary structure sMFE for ensemble Γ. As a
result, there is also no starting point for post-processing these results to calculate ∆G(φ, sMFE) or
sMFE for ensemble Γ.

This situation is not entirely satisfactory. By definition, an MFE secondary structure has the highest
equilibrium probability, p(φ, sMFE), in structural ensemble Γ. However, p(φ, sMFE) can nonetheless
be arbitrarily small due to competition from other structures in Γ. For ensembles where p(φ, sMFE) is
non-negligible, an attractive alternative to the deterministic approach is to use Boltzmann sampling
to discover theMFE secondary structure. One advantage of the random approach is that it determines
MFE status based on secondary structure s rather than subensemble stacking state sq ∈ s.

Sampling is performed for ensemble Γ treating all strands as distinct. Suppose that the identity of
sMFE is unknown, as is its free energy ∆G(φ, sMFE) and its equilibrium probability p(φ, sMFE). The
probability, pfail, that a sample of J structures does not include a structure sMFE that has probability
p(φ, sMFE) ≥ pmin is

pfail ≤ (1 − pmin)
J . (A.111)

Inverting this relationship, for a given pmin, we can calculate the number of samples, J, required to
assure a failure probability no higher than pfail:

J ≥
log pfail

log(1 − pmin)
≈

log pfail
−pmin

(A.112)

Because the dependence of J on pfail is logarithmic, it is inexpensive to reduce pfail for fixed pmin. For
example, for pmin = 0.01, we have J ≥ 688 for pfail = 10−3 and J ≥ 2750 for pfail = 10−12. However,
the required number of samples is sensitive to the value of pmin (the assumed lower bound in the
MFE probability). For example, holding pfail = 10−12 fixed, we require J ≥ 27, 618 samples for
pmin = 0.001 and J ≥ 276, 297 samples for pmin = 0.0001. While that number of samples remains
affordable using the new simultaneous sampling algorithm (Figure 2.14), if the MFE probability
becomes vanishingly small, the required number of samples would grow too large to be practical.
On the other hand, if the MFE probability is vanishingly small, the MFE structure may not provide
a useful summary of the equilibrium base-pairing properties of the ensemble (in which case the
equilibrium base-pairing probability matrix P(φ) will continue to provide such a summary).

183

After sampling J structures using the new simultaneous sampling method, let pMFE′ denote the
highest probability of the sampled structures. The probability that there exists an (undiscovered)
MFE structure with pMFE ≥ pMFE′ is bounded by

pfail ≤ [1 − p(φ, sMFE′)]
J . (A.113)

Hence, after sampling J structures, it is straightforward calculate the probability that the true MFE
structurewas not identified. If desired, additional samples can be performed to increase J (potentially
identifying a higher pMFE′) and further reduce the failure rate.

One of the drawbacks of the deterministic approach of (2.9) and (2.10) is that it does not treat
ensemble Γ where strands with the same sequence are indistinguishable, which is the circumstance
for typical experimental measurements. However, the random MFE algorithm can be applied using
samples from ensemble Γ, in which case the a posteriori failure bound (A.113) is replaced by

pfail ≤ [1 − p(φ, sMFE′)]
J . (A.114)

The MFE free energy ∆G(φ, sMFE′) is then directly comparable to the complex free energy ∆G(φ)

(A.88) for ensemble Γ with

∆G(φ) ≤ ∆G(φ, sMFE′). (A.115)

See Section A.8.6 for an empirical comparison of deterministic and random algorithms in calculating
the MFE free energy and secondary structure.

184

A.8 Additional studies
A number of empirical studies of algorithm outputs and efficiency are presented in this section. All
such studies, as in the main text, were done using default NUPACK parameters (RNA sequences at
37 °C, 1 M Na+, 0 M Mg2+, allowing wobble (GU) pairs). Unless otherwise noted, the recursions
with full coaxial and dangle stacking were used. All computations were run on AWS EC2 C5
instances in serial.

A.8.1 Empirical dependence of ensemble size on complex size
We performed calculations to measure the number of secondary structures, |Γ|, and stacking states,
|Γ

q
|, for a set of randomly generated complexes. The results demonstrate empirically that both |Γ|

and |Γq | grow exponentially with the number of nucleotides. Least-squares linear regressions were
performed on the log-linear data and are plotted as lines below. The fits were |Γ| = 0.00156 ·1.770N

(r = 0.9999994) and |Γq | = 0.00650 · 2.023N (r = 0.9999996). These results are sequence-
dependent and are not generalizable across different classes of complexes.

Figure A.34: Calculated ensemble sizes for random sequences (3 RNA strands of equal length).

A.8.2 Empirical dependence of partition function on complex size
Wemeasured the partition functions at default parameters for both random complexes and engineered
duplexes to benchmark when overflow is predicted to occur using traditional approaches in varying
floating point formats. The duplexes are stabilized and overflow at smaller complex sizes than the
random complexes, which generally have higher free energies. These results are sequence-dependent
and are not generalizable across different classes of complexes. For example, without the overflow-
safe evaluation algebra, edge-case sequences such as the repeating sequence GGG...CCC... have
been observed to cause overflow at sequence sizes as low as 4,500 nt in quadruple precision.

For the designed duplexes, NUPACKdesignwas used to design helices composed of two equal length
strands constrained to be reverse complements of each other. The normalized complex ensemble
defect18 was reduced below 1%. Linear regressions of log Q gave fits of log Q = 0.515N − 7.31

185

(r = 0.999986) for the random sequences and log Q = 1.56N−1.68 (r = 0.999993) for the duplexes.
Respectively for single, double, and quadruple precision, the random complexes are predicted to
overflow at 187 nt, 1,393 nt, and 22,080 nt, while the designed duplexes are predicted to overflow at
58 nt, 456 nt, and 7,275 nt.

random
random best fit
duplex
duplex best fit
32 bit
64 bit
128 bit

0 5000 10000 15000 20000 25000 30000
Complex size (nt)

100

105000

1010000

1015000

1020000

P
ar

tit
io

n
fu

nc
tio

n

10
1

10
2

10
3

10
4

Complex size (nt)

10
0

10
1

10
2

10
3

10
4

10
5

Lo
ga

rit
hm

 o
f p

ar
tit

io
n

fu
nc

tio
n

a b

Figure A.35: (a) Partition functions for random complexes and engineered duplexes using the coaxial stacking recursions
(reproduction of Figure 2.10(c)). (b) Same data, plotted in terms of the logarithm of the partition function. Equally
sized complexes of 3 RNA strands were generated for the random complexes. Means across 5 replicates are plotted. The
thresholds for overflow to occur using different precisions are also plotted, demonstrating that the overflow-safe algebra
allows for calculations of larger complex sizes.

A.8.3 Relative cost of partition function, pair probability, and MFE calculations
We also benchmarked the relative performance of the O(N3) analysis calculations for partition
function, pair probabilities, and minimum free energy (MFE). The MFE algorithm is the fastest
algorithm in general. The partition function algorithm is slightly slower, especially at larger complex
sizes as overflow-safe computation must be used. The pair probabilities algorithm is roughly 2×
the cost of the partition function algorithm, except for a spike to ≈ 3× at complex sizes around the
threshold for when overflow-safe computation starts to be used.

186

10
1

10
2

10
3

10
4

Total sequence length (nt)

10
-5

10
-3

10
-1

10
1

10
3

W
al

l c
lo

ck
 ti

m
e

(s
)

Quantity
Partition function
MFE
Pair probability

10
1

10
2

10
3

10
4

Total sequence length (nt)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

R
at

io
 in

 ti
m

e
ov

er
 p

ar
tit

io
n

fu
nc

tio
n

Quantity
MFE
Pair probability

a b

Figure A.36: (a) Partition function, MFE and pair probabilities algorithm costs. (b) Ratio in cost over partition function.
Results are for complexes of 3 equally sized random RNA sequences. Each algorithm has an O(N3) complexity. Means
across 5 replicates are plotted.

A.8.4 Robustness and speed of partition function calculations with different data types
We compared the costs of performing traditional partition function computation in single precision,
double precision, and overflow-safe single precision computation. The production algorithm is also
shown, which dynamically switches from single precision to double precision to the overflow-safe
evaluation algebra in single precision as is required by the sequence considered. We see that the
overflow-safe evaluation algebra is around 2× slower than the others, but it enables calculation of
larger complexes.

10
2

10
3

10
4

Complex size (nt)

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

W
al

l c
lo

ck
 ti

m
e

(s
)

Data type comparison

Production
32-bit precision
64-bit precision
Overflow-safe

10
2

10
3

10
4

Complex size (nt)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

R
at

io
 o

f w
al

l c
lo

ck
 ti

m
e

Comparison to production algorithmba

Figure A.37: (a) Comparison of partition function computation times vs the underlying precision used. Using the non-
overflow safe evaluation algebra necessitates larger floating point formats for longer sequences as shown in Section A.8.2
(b) Ratios of computation time divided by that for the production algorithm. The same sequences were used as in
Section A.8.3. Means across 5 replicates are plotted.

A.8.5 Performance of simultaneous vs serial structure sampling
Structure sampling for random complexes. We studied the performance of sampling algorithms
on random complexes, which are expected to favor the simultaneous algorithm the least due to the

187

lack of stabilized structures with low free energy. For each replicate, three equally sized random
RNA sequences were generated, ranging in length from 10 to 3000 nucleotides each, and between
101 and 106 samples were taken per sequence. Five replicates were used for each sequence size.

a b c

d e f

Figure A.38: (a-f) Sampling computation times for each individual complex considered. Univariate regressions (Sec-
tion A.8.5) for each J are also plotted.

Sampling computation time Simultaneous sampling speedupa b

Figure A.39: Mean sampling computation times for all replicates of equal N , plotted with respect to N . (a) Comparison
of simultaneous (solid) and sequential (dashed) algorithms. (b) Speedup of simultaneous algorithm.

188

Sampling computation time Simultaneous sampling speedupa b

Figure A.40: Mean sampling computation times for all replicates of equal N , plotted with respect to J. (a) Comparison
of simultaneous (solid) and sequential (dashed) algorithms. (b) Speedup of simultaneous algorithm.

Structure sampling for designed complexes. We studied the performance of sampling algo-
rithms on designed complexes, which are expected to favor the simultaneous algorithm more than
random complexes. Sequences used ranged in length from 10 to 3000 nucleotides, and between 101

and 106 samples were taken per complex. For each sequence length, designed complexes consisted of
3 strands of that sequence length. Each complex was designed in two steps. First, the MFE structure
was computed for a set of 3 random strands of the same length as the complex to design. Second,
this MFE structure was used as the target structure for sequence design via complex ensemble defect
minimization18. Complexes were designed to have a normalized complex ensemble defect less that
1%. For each sequence length, 10 unique 3-stranded complexes were designed and then sampled
from.

189

a b c

d e f

Figure A.41: (a-f) Sampling computation times for each individual complex considered. Univariate regressions (Sec-
tion A.8.5) for each J are also plotted.

Sampling computation time Simultaneous sampling speedupa b

Figure A.42: Mean sampling computation times for all replicates of equal N , plotted with respect to N . (a) Comparison
of simultaneous (solid) and sequential (dashed) algorithms. (b) Speedup of simultaneous algorithm.

190

a bSampling computation time Simultaneous sampling speedup

Figure A.43: Mean sampling computation times for all replicates of equal N , plotted with respect to J. (a) Comparison
of simultaneous (solid) and sequential (dashed) algorithms. (b) Speedup of simultaneous algorithm. At extremely high
sample numbers J, the cost of sorting begins to be observed, lessening the speedup of the simultaneous approach.

Empirical complexity estimates. In this sectionwe report empirical measures of the complexities
of the sequential and simultaneous Boltzmann sampling algorithms over the random and designed
complexes from Sections A.8.5 and A.8.5.

Sequences Method Complexity in N Complexity in J Prefactor (s) r-value

Designed Sequential 1.011 0.994 6.003-07 0.996
Designed Simultaneous 0.776 0.791 1.339-06 0.973
Random Sequential 1.040 0.992 5.570-07 0.998
Random Simultaneous 0.934 0.773 1.014-06 0.987

Table A.1: Bivariate least-squares linear regression of the fit log T ≈ αN log N+αJ log J+log P such thatT ≈ PNαN JαJ ,
withT the computation time, αN the complexity in N , αJ the complexity in J, and P the prefactor. For sequential sampling,
αJ is extremely close to 1 because the calculation is simply a repetition of a single sample J times.

191

Complexes Method N Complexity in J Prefactor (s) r-value

Designed Sequential 30 0.988 0.000023 0.999
Designed Simultaneous 30 0.827 0.000016 0.976
Designed Sequential 90 0.997 0.000058 0.999
Designed Simultaneous 90 0.860 0.000028 0.988
Designed Sequential 300 0.995 0.000153 0.995
Designed Simultaneous 300 0.832 0.000068 0.968
Designed Sequential 900 1.002 0.000412 0.994
Designed Simultaneous 900 0.811 0.000210 0.968
Designed Sequential 3000 0.991 0.002341 0.997
Designed Simultaneous 3000 0.738 0.001123 0.964
Designed Sequential 9000 0.991 0.007035 0.992
Designed Simultaneous 9000 0.678 0.003485 0.961
Random Sequential 30 0.988 0.000023 0.999
Random Simultaneous 30 0.791 0.000025 0.978
Random Sequential 90 1.002 0.000053 0.999
Random Simultaneous 90 0.830 0.000041 0.992
Random Sequential 300 0.993 0.000194 0.999
Random Simultaneous 300 0.817 0.000149 0.990
Random Sequential 900 0.990 0.000486 0.996
Random Simultaneous 900 0.796 0.000386 0.984
Random Sequential 3000 0.984 0.002962 0.997
Random Simultaneous 3000 0.723 0.003144 0.990
Random Sequential 9000 0.994 0.007752 0.998
Random Simultaneous 9000 0.681 0.009725 0.991

Table A.2: Univariate least-squares linear regressions of the fit log T ≈ αJ log J + log P for fixed values of N such that
T ≈ PJαJ , with T the computation time, αJ the complexity in J, and P the prefactor. For sequential sampling, αJ is
extremely close to 1 because the calculation is simply a repetition of a single sample J times.

192

Complexes Method J Complexity in N Prefactor (s) r-value

Designed Sequential 10 1.001 0.000006 0.978
Designed Simultaneous 10 0.978 0.000002 0.955
Designed Sequential 100 1.009 0.000058 0.979
Designed Simultaneous 100 0.900 0.000013 0.949
Designed Sequential 1000 1.012 0.000567 0.980
Designed Simultaneous 1000 0.743 0.000193 0.934
Designed Sequential 10000 1.012 0.005639 0.980
Designed Simultaneous 10000 0.662 0.002377 0.919
Designed Sequential 100000 1.013 0.056201 0.980
Designed Simultaneous 100000 0.612 0.035748 0.903
Designed Sequential 1000000 1.013 0.562028 0.980
Designed Simultaneous 1000000 0.627 0.466401 0.893
Random Sequential 10 1.053 0.000005 0.988
Random Simultaneous 10 1.088 0.000002 0.982
Random Sequential 100 1.038 0.000052 0.990
Random Simultaneous 100 1.093 0.000011 0.987
Random Sequential 1000 1.037 0.000525 0.991
Random Simultaneous 1000 1.024 0.000079 0.987
Random Sequential 10000 1.037 0.005242 0.991
Random Simultaneous 10000 0.907 0.000960 0.986
Random Sequential 100000 1.038 0.052318 0.991
Random Simultaneous 100000 0.773 0.018521 0.980
Random Sequential 1000000 1.037 0.524730 0.991
Random Simultaneous 1000000 0.724 0.319781 0.967

Table A.3: Univariate least-squares linear regressions of the fit log T ≈ αN log N + log P for fixed values of J such that
T ≈ PNαN , with T the computation time, αN the complexity in N , and P the prefactor.

A.8.6 Different approaches for approximating the MFE structure
In this section we report empirical comparisons between different approaches for determining
the minimum free energy secondary structure in a complex ensemble using the coaxial stacking
recursions. In the simplest approach, we ran the suboptimal structure algorithm to determine the
minimum free energy stacking state and its associated secondary structure. We also investigated
using the Boltzmann sampling algorithm by taking the lowest free energy secondary structure from a
set of 100,000 samples. These benchmarks were run using RNA, default parameters, and sequences
designed for structures from the multistranded engineered test set from Reference 19.

For small complexes, we observe that the sampling approach sometimes yields slightly more stable
secondary structures. For large complexes, the suboptimal structure approach usually yields a more

193

stable structure. Each approach produces relatively similar secondary structures in terms of base
pairing. Overall, the secondary structure corresponding to the minimum free energy stacking state
seems to be a reasonable approximation of the minimum free energy secondary structure.

0 1000 2000 3000
Complex size (nt)

−2000

−1750

−1500

−1250

−1000

−750

−500

−250

0

S
tru

ct
ur

e
fre

e
en

er
gy

 (k
ca

l/m
ol

)

Structure free energy

subopt stack
sampled

0 500 1000 1500 2000 2500 3000
Complex size (nt)

−12

−10

−8

−6

−4

−2

0

2

¢
G

M
F
E
¡
¢
G

sa
m
pl
e (

kc
al

/m
ol

)

Stacking state vs sampling

0 500 1000 1500 2000 2500 3000
Complex size (nt)

−20

−15

−10

−5

0

¢
G

M
F
E
¡
¢
G

st
ac
k
 (k

ca
l/m

ol
)

Stack energy vs structure energy

0 500 1000 1500 2000 2500 3000
Complex size (nt)

0.00

0.05

0.10

0.15

0.20

B
as

e
pa

ir
di

st
an

ce

Base pair distance

0 500 1000 1500 2000 2500 3000
Complex size (nt)

10
-25

10
-22

10
-19

10
-16

10
-13

10
-10

10
-7

10
-4

10
-1

S
tru

ct
ur

e
pr

ob
ab

ili
ty

Structure probability (MFE)

0 500 1000 1500 2000 2500 3000
Complex size (nt)

10
-25

10
-22

10
-19

10
-16

10
-13

10
-10

10
-7

10
-4

10
-1

S
tru

ct
ur

e
pr

ob
ab

ili
ty

Structure probability (sampled)

a b c

d e f

Figure A.44: (a) Comparison ofmean structure free energies discovered by theMFE algorithm and the sampling algorithm
(respectively ∆G(φ, sMFE′) and mins∈Γsample(φ,105) ∆G(φ, s)). Markers are visually coincident. (b) Residuals from plot
(a). (c) Comparison of structure free energy ∆G(φ, sMFE′) and stacking state free energy ∆G(φ, sqMFE) discovered by the
MFE algorithm. (d) Fraction of differently paired nucleotides between the MFE algorithm and the sampling algorithm.
(e) Equilibrium probability of the secondary structure discovered by the MFE algorithm. (f) Equilibrium probability of
the secondary structure discovered by the sampling algorithm.

194

A.9 Validation test suite
Listed below is a subset of unit and regression tests used to validate the implementation of these
algorithms. Over 100 unit tests were run via continuous integration on a dedicated JetBrains
TeamCity server, comprising O(107) test case assertions in total. Since thermodynamic algorithms
were implemented generically with respect to model recursions, we focused on partition function
and structure count to verify correctness for different model recursions.

A.9.1 Exhaustive enumeration algorithms
Enumeration of complex ensemble without coaxial and dangle stacking subensembles. For
validation purposes, we provide pseudocode to enumerate all possible secondary structures for a
given complex ensemble (strand ordering) in a recursive manner below. This implementation is
chosen for its simplicity (rather than efficiency), and relies on imposing a total ordering on base pair
indices (i, j) via the function CompareBasePair. EnumerateSecondaryStructures is a generator
function which yields all possible secondary structures by delegating to the inner generator function
EnumerateHigherStructures.

EnumerateSecondaryStructures yields all possible secondary structures, which may include
disconnected complexes. For a single-complex ensemble, any disconnected structures may be easily
removed in post-processing.

195

CompareBasePair(p, p′)

i, j ← p

i′, j ′← p′

return i < i′ or (i = i′ and j < j ′)

EnumerateSecondaryStructures(φ)

N ← Length(φ)
s← UnpairedStructure(N)
p← (0, 0)
EnumerateHigherStructures(φ, s, p)

EnumerateHigherStructures(φ, s, p)

N ← Length(φ)
for i ∈ [1 : N]

for j ∈ [i + 1 : N]

p′← (i, j)

if CanPair(φ, i, j) and CompareBasePair(p, p′)

s′← AddBasePair(s, p′)

EnumerateHigherStructures(φ, s′, p′)

Yield s

Algorithm A.8: Enumeration of secondary structures consistent with sequence φ

Enumeration of coaxial and dangle stacking subensemble for a single secondary structure.
Stacking states are constructed hierarchically from a given secondary structure by first finding all
coaxial stacking states (without dangles) for each loop and then finding all dangle stacking states
consistent with each coaxial stacking state. The top-level function EnumerateStackingStates-
ForStructure is a generator function that which yields all possible stacking states for a given
secondary structure and sequence. It does this by delegating to the function EnumerateLoop-
StackingStates, which yields all stacking states for a given loop within the secondary structure.
This relies on the function GetValidMasks which returns a list of all possible coaxial stacking
states within the loop (neglecting dangles) and the function GetLoopStackingStates, which yields
all stacking states for a loop consistent with a given coaxial stacking state.

The function Product takes a list of generators (or lists), G, and returns a tuple of elements, one
from each generator (or list). This lazily generates all tuples from the cartesian product of the sets
generated by each generator in G. This is equivalent to a nested for loop with |G | levels of nesting.

196

The function Regions splits the sequences of the loop into subsequences between the base pairs and
nicks. For example, in a multiloop with base pairs i · j, d ·e, and f ·g with i < d < e < f < g < j, the
function returns the list of sequences [φ[i:d], φ[e: f], φ[g:j]]. In an exterior loop with a on the 3′ side of
the nick and b on the 5′ side of the nick and base pairs i · j and d · e with a < i < j < d < e < b, the
function returns the list of sequences [φ[a:i], φ[j:d], φ[e:b]]. For each region of the loop, its stacking
state is indicated with a number: 0 for no nucleotides stacking, 1 for a coaxial stack between the
two adjacent base pairs, 3 for the 3′−most nucleotide stacking on the 3′ base pair, 5 for the 5′−most
nucleotide stacking on the 5′ base pair, and 8 for the 3′−most nucleotide stacking on the 3′ base pair
and the 5′−most nucleotide stacking on the 5′ base pair (if these are distinct nucleotides).

The functions Left and Right return true if the regions to the left or right of the given region are
involved in a coaxial stacking interaction and false if not. This prevents dangle stacking on a base
pair already in a coaxial stack. In exterior loops, if a is the nucleotide that is on the 3′ side of
the nick and b is the nucleotide that is on the 5′ side of the nick, then Left returns true for the
region containing a and Right returns true for the region containing b. This prevents a and b from
erroneously being included in invalid dangle states. The function LeftNick returns true if there is
a nick 5′ to the region. The function RightNick returns true if there is a nick 3′ to the region. The
function AtNick returns true if either LeftNick or RightNick returns true.

The function BinaryVector(number, width) produces a vector of 1s and 0s that is the binary
representation of the input number with zero-padding up to the input width.

The function Type returns the type of loop, i.e. “hairpin”, “stack”, “bulge”, “interior”, “multi” or
“exterior”. The function NoStacking returns an object indicating that this loop does not having
fine-grained stacking states.

EnumerateStackingStatesForStructure(φ, s)

G← []

for l ∈ Loops(s)
Append(G,EnumerateLoopStackingStates(φ, l))

for [ω] ∈ Product(G)
sq ← StackingState(s, [ω])
Yield(sq)

Algorithm A.9: Enumeration of stacking states for a given structure s and sequence φ

197

EnumerateLoopStackingStates(φ, l)

φR ← Regions(φ, l)
Vmask ← GetValidMasks(φR, l)
if Vmask = []

Yield NoStacking()
for vmask ∈ Vmask

GetLoopStackingStates(φR, vmask)

Algorithm A.10: Enumeration of stacking state for a given loop l in sequence φ

GetValidMasks(φR, l)

if ¬(Type(l) = “multi” or Type(l) = “exterior”)
return []

vindices ← []

for i ∈ [1 : |φR |]
if |φRi | = 2

Append(vindices, i)
Vmask ← []

for i ∈ [0 : 2 |vindices |]
tmask ← BinaryVector(i, |vindices |)
vmask ← []

for i ∈ [1 : |φR |]
if i ∈ vindices

Append(vmask, tmask
i)

else
Append(vmask, 0)

c← true
for i ∈ [1 : |φR |]

if vmask
i = 1 and ((Right(φRi , v

mask, l) and ¬(RightNick(φRi , v
mask, l)) or

(Left(φRi , v
mask, l) and ¬(LeftNick(φRi , v

mask, l)))

c← false
if c = true

Append(Vmask, vmask)

return Vmask

Algorithm A.11: Enumeration of coaxial stacking states for given loop l containing sequence regions φR

198

GetLoopStackingStates(φR, l, vmask)

GR ← []

for i ∈ |φR |

if |φRi | ≥ 3 or (|φRi | ≥ 2 and AtNick(φRi))
if Right(φRi , v

mask, l) and ¬Left(φRi , v
mask, l)

Append(GR, [0, 5])
elseif Left(φRi , v

mask, l) and ¬Right(φRi , v
mask, l)

Append(GR, [0, 3])
elseif ¬(Left(φRi , v

mask, l) or Right(φRi , v
mask, l))

if |φRi | = 3
Append(GR, [0, 3, 5])

elseif |φRi | > 3
Append(GR, [0, 3, 5, 8])

else
Append(GR, [vmask

i])

for [x] ∈ Product(GR)

ω← LoopStackingState(l, [x])
Yield(ω)

Algorithm A.12: Enumeration of stacking states for given loop l containing sequence regions φR with fixed coaxial
stacking state vmask

Enumeration of complex ensemble with coaxial and dangle stacking subensembles. To obtain
all the stacking states for the complex, the above functions EnumerateSecondaryStructures and
EnumerateStackingStatesForStructure are composed.

EnumerateStackingStates(φ)

for s← EnumerateSecondaryStructures(φ)
EnumerateStackingStatesForStructure(φ, s)

Algorithm A.13: Enumeration of stacking states consistent with sequence φ

A.9.2 Unit tests
Individual loop free energies. Test loop free energies for all loop types vs manual calculations,
including contributions from dangles and coaxial stacking.

199

Secondary structure enumeration. Check structure counts, partition functions, and MFEs vs
enumerated calculation for the O(N3) algorithm, with wobble pairs on and off, on RNA and DNA,
with each possible dangle setting (“none", “some", “all", “coax").

Partition functions and counts with coaxial stacking. Check that coaxial stacking algorithm
matches vectorized and unvectorized reference implementations based on literal translation of the
pseudocode for partition function and count, single and multiple strands.

Overflow-safe evaluation algebra. Check that partition functions agree with non-overflow vari-
ants for each dangle type (“none", “some", “all", “coax"), for single and multiple strand complexes,
for 500 random sequences of RNA and DNA.

Consistency between all possible data types. Verify that all results are equal for partition function
calculations on complexes up to 4 strands, using both O(N4) and O(N3) algorithms, for (1) 32 bit
non-overflow, 32 bit overflow, (2) 32 bit non-overflow, 64 bit overflow, (3) 64 bit non-overflow, 32
bit overflow, and (4) 32 bit non-overflow, 64 bit non-overflow, 32 bit overflow data types.

Consistency when using caching methodology for multistranded calculations. Verify consis-
tency of caching used in multistranded algorithm for pair probability and partition function, O(N3)

and O(N4) algorithms, caching on and off, different orders of evaluations of requested complexes,
on random sequences and edge cases we found during development.

Boltzmann sampled structure generation. Check that structures are generated at around the right
probability in the limit of a large number of samples. Check that the sample pair probability matrix
approaches that given by the dynamic program as the number of samples is increased.

Comparisons of different complexity algorithms. Check that O(N3) and O(N4) structure counts
and partition functions agree for each dangle type (“none", “some", “all", “coax"), for single strand
and 3-strand complexes, for 500 sets of random RNA sequences.

A.9.3 Regression tests
Individual secondary structure free energies. Test structure free energies vsNUPACK3 for RNA
and DNA, single and multiple strand complexes, wobble pairs on and off, random temperatures, and
each dangle stacking heuristic that was possible in NUPACK 3 (“none", “some", “all").

Necklace generation. Test example necklace generation up to (|Ψ0 | = 10, Lmax = 4) vs NUPACK
3. Check that the number of free energies returned via dynamic programs is equal to the number of
necklaces requested.

200

Partition functions and counts compared to NUPACK 3. Check that structure counts and
partition functions agree with NUPACK 3, for each dangle type (“none", “some", “all"), for wobble
pairs on and off, for single and multiple strand complexes, for random sequences of RNA and DNA.

Comparison with NUPACK 3 for different parameter sets. Check that structure counts and
partition functions agree with NUPACK 3 for random temperatures, random choices of parameter
set, random concentrations of Na+ and Mg++, for single and multiple strands of RNA and DNA.

Minimum free energy structures. Check agreement with NUPACK 3 with wobble pairs on and
off, single and multiple strands, for random RNA and DNA sequences.

Pair probabilitymatrices. Checkmatrices vs. NUPACK3 for RNA andDNA, single andmultiple
strands, wobble pairs on and off, random sequences and historical edge case sequences.

Suboptimal and MFE structures. Check that generated structures are identical to NUPACK 3
for DNA and RNA, 0 and 0.4 kcal/mol energy gaps, wobble pairs on and off, single and multiple
strands, random sequences and historical edge cases.

Equilibrium concentrations. Check convergence solution accuracy vs implementation in NU-
PACK 3 for concentration solver for free energies of random RNA complexes, free energies of
random DNA complexes, and free energies of isolated edge cases which we found to not converge
well in earlier versions of the code.

201

Bibliography

[1] I. Tinoco Jr., O.Uhlenbeck, andM. Levine. “Estimation of Secondary Structure in Ribonucleic
Acids”. In: Nature 230 (1971), pp. 362–367.

[2] R. M. Dirks, J. S. Bois, J. M. Schaeffer, E. Winfree, and N. A. Pierce. “Thermodynamic
Analysis of Interacting Nucleic Acid Strands”. In: SIAM Rev. 49.1 (2007), pp. 65–88.

[3] M. J. Serra and D. H. Turner. “Predicting Thermodynamic Properties of RNA”. In: Methods
Enzymol. 259 (1995), pp. 242–261.

[4] T. Xia, J. SantaLucia Jr., M. Burkard, R. Kierzek, S. Schroeder, X. Jiao, C. Cox, and D. Turner.
“Thermodynamic Parameters for an Expanded Nearest-Neighbor Model for Formation of
RNA Duplexes with Watson-Crick Base Pairs”. In: Biochemistry 37.42 (1998), pp. 14719–
14735.

[5] D. H. Mathews, J. Sabina, M. Zuker, and D. H. Turner. “Expanded Sequence Dependence of
Thermodynamic Parameters Improves Prediction of RNA Secondary Structure”. In: J. Mol.
Biol. 288 (1999), pp. 911–940.

[6] M. Zuker. “Mfold Web Server for Nucleic Acid Folding and Hybridization Prediction”. In:
Nucleic Acids Res. 31.13 (2003), pp. 3406–3415.

[7] Z. J. Lu, D. H. Turner, and D. H. Mathews. “A Set of Nearest Neighbor Parameters for
Predicting the Enthalpy Change of RNA Secondary Structure Formation”. In: Nucleic Acids
Res. 34.17 (2006), pp. 4912–4924. issn: 0305-1048. doi: 10.1093/nar/gkl472.

[8] D. H. Turner and D. H. Mathews. “NNDB: the nearest neighbor parameter database for
predicting stability of nucleic acid secondary structure”. In: Nucleic Acids Res. 38 (2010),
pp. D280–D282.

[9] J. SantaLucia Jr. “A Unified View of Polymer, Dumbbell, and Oligonucleotide DNA Nearest-
Neighbor Thermodynamics”. In: Proc. Natl. Acad. Sci. U. S. A. 95.4 (1998), pp. 1460–1465.

[10] N. Peyret. “Prediction of Nucleic Acid Hybridization: Parameters and Algorithms”. Thesis.
2000.

[11] S. Bommarito, N. Peyret, and J. SantaLucia. “Thermodynamic Parameters forDNASequences
with Dangling Ends”. In: Nucleic Acids Res. 28.9 (2000), pp. 1929–1934. issn: 0305-1048.
doi: DOI10.1093/nar/28.9.1929.

[12] J. SantaLucia Jr. and D. Hicks. “The Thermodynamics of DNA Structural Motifs”. In: Annu.
Rev. Biophys. Biomol. Struct. 33 (2004), pp. 415–440. issn: 1056-8700.

[13] R. T. Koehler and N. Peyret. “Thermodynamic Properties of DNA Sequences: Characteristic
Values for the Human Genome”. In: Bioinformatics 21.16 (2005), pp. 3333–3339. issn:
1367-4803. doi: Doi10.1093/Bioinformatics/Bti530.

[14] R. M. Dirks and N. A. Pierce. “A Partition Function Algorithm for Nucleic Acid Secondary
Structure Including Pseudoknots”. In: J. Comput. Chem. 24 (2003), pp. 1664–1677.

[15] Y. Ding and C. Lawrence. “A Statistical Sampling Algorithm for RNA Secondary Structure
Prediction”. In: Nucleic Acids Res. 31.24 (2003), pp. 7280–7301.

https://doi.org/10.1093/nar/gkl472
https://doi.org/DOI 10.1093/nar/28.9.1929
https://doi.org/Doi 10.1093/Bioinformatics/Bti530

202

[16] J. Gallian. Contemporary Abstract Algebra. New York: Houghton Mifflin, 2002.

[17] J. Nocedal and S. Wright. Numerical Optimization. New York: Springer, 1999.

[18] B. R. Wolfe, N. J. Porubsky, J. N. Zadeh, R. M. Dirks, and N. A. Pierce. “Constrained
Multistate Sequence Design for Nucleic Acid Reaction Pathway Engineering”. In: J. Am.
Chem. Soc. 139 (2017), pp. 3134–3144.

[19] J. N. Zadeh, B. R. Wolfe, and N. A. Pierce. “Nucleic Acid Sequence Design via Efficient
Ensemble Defect Optimization”. In: J. Comput. Chem. 32 (2011), pp. 439–452. doi: 10.
1002/jcc.21633.

https://doi.org/10.1002/jcc.21633
https://doi.org/10.1002/jcc.21633

203

A p p e n d i x B

Constrained Multistate Sequence Design for Nucleic Acid Reaction Pathway Engineering:
Supplementary Information

This appendix was adapted from material in the supplementary info of B. R. Wolfe∗, N. J.
Porubsky∗, J. N. Zadeh, R. M. Dirks, and N. A. Pierce. “Constrained Multistate Sequence Design
for Nucleic Acid Reaction Pathway Engineering”. In: Journal of the American Chemical Society
139.8 (2017), pp. 3134–3144. issn: 15205126. doi: 10.1021/jacs.6b12693.

B.1 Algorithm
The constrained multistate test tube design algorithm described in the present work builds on the
test tube design algorithm described by Wolfe and Pierce1. The two algorithms were developed
concurrently so that the notation and concepts employed for sequence design over the ensemble of
a single test tube would generalize naturally to performing sequence design over the ensemble of an
arbitrary number of test tubes subject to user-specified sequence constraints. Readers interested in a
detailed understanding of the present algorithm will benefit from reading the Algorithm section of
Reference 1, which contains thorough descriptions of a subset of the algorithmic ingredients used in
the present work. For conciseness, if an algorithmic ingredient requires no or minimal generalization
and there is little risk of confusion, we simply refer to Reference 1 for details (using the same section
heading for clarity). If some generalization in notation or concept is required and there is a risk
of confusion, we restate the description of Reference 1 with updated details below (again using the
same section heading for clarity). If a new algorithmic ingredient is required in the present setting,
we provide full details below.

B.1.1 Secondary Structure Model
The secondary structure, s, of one or more interacting nucleic acid strands is defined by a set of
base pairs2. A polymer graph representation of a secondary structure is constructed by ordering the
strands around a circle, drawing the backbones in succession from 5′ to 3′ around the circumference
with a nick between each strand, and drawing straight lines connecting paired bases. A secondary
structure is unpseudoknotted if there exists a strand ordering for which the polymer graph has no
crossing lines. A secondary structure is connected if no subset of the strands is free of the others.
A complex of interacting strands is specified as a strand ordering, π, corresponding to the structural
ensemble, Γ, containing all connected polymer graphs with no crossing lines.1. (We dispense with
our prior convention2–4 of calling this entity an ordered complex.) See Section S1.3 of Reference 1
for a discussion of distinguishability issues. A test tube may contain an arbitrary number of strand
species interacting to form an arbitrary number of complex species in a dilute solution.

The sequence, φ, of a complex is specified as a list of bases φa ∈ {A,C,G,U} for a = 1, . . . , |φ| (T

https://doi.org/10.1021/jacs.6b12693

204

replaces U for DNA). Each base pair in a secondary structure is a Watson–Crick pair (A·U or C·G)
or a wobble pair (G·U). For sequence φ and secondary structure s ∈ Γ, the free energy, ∆G(φ, s),
is calculated using nearest-neighbor empirical parameters for RNA5–7 in 1M Na+ or for DNA
supercitesantalucia98,zuker03 in user-specified concentrations of Na+ and Mg++8,9. These physical
models have practical utility for the analysis10–18 and design10,11,19–48 of functional nucleic acid
systems, and provide the basis for rational analysis and design of equilibrium base-pairing in test
tube ensembles for reaction pathway engineering.

B.1.2 Analyzing Equilibrium Base-Pairing in the Multistate Test Tube Ensemble
Let Ψ0

h
denote the set of strand species that interact in test tube h ∈ Ω to form the set of complex

speciesΨh. For complex j ∈ Ψh, with sequence φ j and structural ensemble Γj , the partition function

Q(φ j) =
∑
s∈Γj

exp
[
−∆G(φ j, s)/kBT

]
can be used to calculate the equilibrium probability of any secondary structure s ∈ Γj :

p(φ j, s) = exp
[
−∆G(φ j, s)/kBT

]
/Q(φ j).

Here, kB is the Boltzmann constant and T is temperature. The equilibrium base-pairing properties
of complex j are characterized by the base-pairing probability matrix P(φ j), with entries Pa,b(φ j) ∈

[0, 1] corresponding to the probability,

Pa,b(φ j) =
∑
s∈Γj

p(φ j, s)Sa,b(s),

that base pair a · b forms at equilibrium within ensemble Γj . Here, S(s) is a structure matrix with
entries Sa,b(s) = 1 if structure s contains base pair a · b and Sa,b(s) = 0 otherwise. For convenience,
the structure and probability matrices are augmented with an extra column to describe unpaired
bases. The entry Sa, |s |+1(s) is unity if base a is unpaired in structure s and zero otherwise; the entry
Pa, |φ j |+1(φ j) ∈ [0, 1] denotes the equilibrium probability that base a is unpaired over ensemble Γj .
Hence the row sums of the augmented S(s) and P(φ j) matrices are unity.

Let QΨh
≡ Q j ∀ j ∈ Ψh denote the set of partition functions for the complexes in tube h. The set of

equilibrium concentrations, xh,Ψh
, (specified as mole fractions) are the unique solution to the strictly

convex optimization problem2:

min
xh,Ψh

∑
j∈Ψh

xh, j(log xh, j − log Q j − 1) (B.1a)

subject to Ai, j xh, j = x0
h,i ∀i ∈ Ψ0

h, (B.1b)

where the constraints impose conservation of mass. A is the stoichiometry matrix with entries Ai, j

corresponding to the number of strands of type i in complex j, and x0
h,i

is the total concentration of
strand i introduced to test tube h.

205

To analyze the equilibrium base-pairing properties of all test tubes h ∈ Ω, the partition function,
Q j , and equilibrium pair probability matrix, Pj , must be calculated for each complex j ∈ Ψ using
Θ(|φ j |

3) dynamic programs2,49–56. The equilibrium concentrations, xh,Ψh
∀h ∈ Ω, are calculated

by solving a convex programming problem using an efficient trust region method at a cost that is
typically negligible by comparison2. The overall time complexity to analyze the test tubes in Ω is
then O(|Ψ| |φ|3max), where |φ|max is the size of the largest complex.

Evaluation of the multistate test tube ensemble defect, M, requires calculation of the complex
partition functions, QΨ, which are used to calculate the equilibrium concentrations, xh,Ψh

∀h ∈ Ω,
as well as the equilibrium pair probability matrices, PΨon , which are used to calculate the complex
ensemble defects, nΨon , and the normalized test tube ensemble defects, MΩ. Hence, the time
complexity to evaluate the design objective function over the set of target test tubes, Ω, is the same
as the time complexity to analyze equilibrium base-pairing in Ω.

B.1.3 Test Tube Ensemble Focusing
To reduce the cost of sequence optimization, the set of complexes, Ψ, is partitioned into two disjoint
sets:

Ψ = Ψactive ∪ Ψpassive,

where Ψactive denotes complexes that will be actively designed and Ψpassive denotes complexes that
will inherit sequence information from Ψactive. Only the complexes in Ψactive are directly accounted
for in the focused test tube ensembles that are used to evaluate candidate sequences. Initially, we set

Ψ
active = Ψon, Ψpassive = Ψoff, (B.2)

where
Ψ

on ≡ ∪h∈ΩΨ
on
h

is the set of complexes that appear as on-targets in at least one test tube, and

Ψ
off ≡ Ψ − Ψon

is the set of complexes that appear as off-targets in at least one test tube and do not appear as on-
targets in any test tube. Hence, with test tube ensemble focusing, only complexes that are on-targets
in at least one test tube are actively designed at the outset of sequence design.

B.1.4 Hierarchical Ensemble Decomposition
To enable efficient estimation of test tube ensemble properties, the structural ensemble Γj of each
complex j ∈ Ψactive is hierarchically decomposed into a (possibly unbalanced) binary tree of
conditional subensembles, yielding a forest of decomposition trees. Each complex j ∈ Ψactive

contributes a single tree to the decomposition forest whether it is contained in one or more tubes
h ∈ Ω. The structural ensemble of each parent node within the forest is decomposed using one or

206

more exclusive split-points to partition the parent nucleotides to its children. See Reference 1 for
details on hierarchical ensemble decomposition. Let Λ denote the set of all nodes in the forest. Let
Λd denote the set of all nodes at depth d.

Structure-Guided Decomposition of On-Target Complexes

At the outset of sequence design, equilibrium base-pairing probabilities are not yet available to
guide ensemble decomposition. Instead, structure-guided hierarchical ensemble decomposition is
performed (using a single split-point per parent) for each on-target complex j ∈ Ψactive, yielding a
forest of |Ψon | decomposition trees. See Reference 1 for details on structure-guided decomposition.

Stop Condition Stringency

In order to build in a tolerance for a basal level of decomposition defect as subsequences are merged
moving up the decomposition forest, the stringency of the stop condition (3.3) is increased by a
factor of fstringent ∈ (0, 1) at each level moving down the decomposition forest:

f stop
d
≡ fstop(fstringent)

d−1 ∀d ∈ {1, . . . ,D}.

B.1.5 Efficient Estimation of Test Tube Ensemble Properties
During sequence optimization, the design objective function is estimated based on physical quantities
calculated efficiently at any depth d ∈ {1, . . . ,D} in the decomposition forest.

Complex Partition Function Estimate

For each complex j ∈ Ψactive, the complex partition function estimate, Q̃ j , is calculated from
conditional partition functions evaluated efficiently at any depth d ∈ {1, . . . ,D} as described in
Reference 1.

Complex Pair Probability Matrix Estimate

For each complex j ∈ Ψactive, the complex pair probability matrix estimate, P̃j , is calculated from
conditional pair probability matrices evaluated efficiently at any depth d ∈ {1, . . . ,D} as described
in Reference 1.

Complex Concentration Estimate using Deflated Mass Constraints

For each tube h ∈ Ω, the complex concentration estimates, x̃h,Ψactive
h

, are calculated using the complex
partition function estimates Q̃Ψactive

h
previously evaluated at any depth d ∈ {1, . . . ,D} as described

in Reference 1. Deflated mass constraints are used to model the effect of the neglected off-target
complexes in Ψpassive

h
.

207

Complex Ensemble Defect Estimate

For each complex j ∈ Ψon, the complex ensemble defect estimate, ñj , is calculated using the complex
pair probability matrix estimate P̃j previously evaluated at any depth d ∈ {1, . . . ,D} as described
in Reference 1. For complex j, the contribution of nucleotide a to the complex ensemble defect
estimate is given by:

ña
j = 1 −

∑
1≤b≤ |φ j |+1

P̃a,b
j Sa,b

j

and the complex ensemble defect estimate is then:

ñj =
∑

1≤a≤ |φ j |

ña
j . (B.3)

Test Tube Ensemble Defect Estimate

For each tube h ∈ Ω, the test tube ensemble defect estimate based on x̃h,Ψactive
h

and ñΨon
h
calculated at

any depth d ∈ {1, . . . ,D}, is:
C̃h =

∑
j∈Ψon

h

c̃h, j, (B.4)

where

c̃h, j = ñj min
(
x̃h, j, yh, j

)
+ |φ j |max

(
yh, j − x̃h, j, 0

)
(B.5)

is the contribution of complex j. The normalized test tube ensemble defect estimate for tube h ∈ Ω

at depth d ∈ {1, . . . ,D} is then:
M̃h = C̃h/y

nt
h , (B.6)

where
ynt
h =

∑
j∈Ψon

h

|φ j |yh, j

is the total concentration of nucleotides in tube h.

Multistate Test Tube Ensemble Defect Estimate

For the set of target test tubesΩ, the objective function estimate based on M̃Ω evaluated at any depth
d ∈ {1, . . . ,D} is then:

M̃ =
1
|Ω|

∑
h∈Ω

M̃h . (B.7)

Wewrite M̃d in subsequent equations where it is helpful note the depth d at which M̃ was calculated.

Note that equations (B.3)–(B.7) may be collected into the single equation:

M̃ =
∑
h∈Ω

∑
j∈Ψon

h

∑
1≤a≤ |φ j |

M̃a
h, j (B.8)

208

where
M̃a

h, j ≡
1
|Ω|ynt

h

[
ña
j min(x̃h, j, yh, j) +max(yh, j − x̃h, j, 0)

]
, (B.9)

is the contribution of nucleotide a in complex j ∈ Ψon
h

in tube h ∈ Ω to the multistate test tube
ensemble defect estimate, M̃, evaluated at any depth d ∈ {1, . . . ,D}. This representation is conve-
nient when defining objective function weights (Section B.1.6) and when defining defect-weighted
mutation sampling during leaf mutation and defect-weighted reseeding during leaf reoptimization
(Sections B.1.7 and B.1.7).

B.1.6 Adjusting Design Priorities using Defect Weights
The user may adjust design priorities by specifying weights for contributions to the multistate test
tube ensemble defect estimate, M̃:

• Nucleotide weight: wa
h, j

weights the contribution of nucleotide a in complex j ∈ Ψon
h

in tube
h ∈ Ω.

• Complex weight: wh, j weights the contribution of complex j ∈ Ψon
h

in tube h ∈ Ω (equivalent
to setting wa

h, j
for all nucleotides 1 ≤ a ≤ |φ j |).

• Test tube weight: wh weights the contribution of tube h ∈ Ω (equivalent to setting wh, j for
all complexes j ∈ Ψon

h
).

Each weight takes a value in the interval [0,∞). By default, all weights are unity. Increasing the
weight for a nucleotide, complex, or test tube will lead to a corresponding increase in the allocation of
effort to designing this entity, typically leading to a corresponding reduction in the defect contribution
of the entity. Likewise, decreasing the weight for a nucleotide, complex, or test tube will lead to
a corresponding decrease in the allocation of effort to designing this entity, typically leading to a
corresponding increase in the defect contribution of the entity.

Weights are incorporated into the objective function by replacing the defect contribution (B.9) with
the weighted defect contribution

M̃a
h, j ≡

whwh, jw
a
h, j

|Ω|ynt
h

[
ña
j min(x̃h, j, yh, j) +max(yh, j − x̃h, j, 0)

]
, (B.10)

and summing using (B.8) as before. If desired, the user can set weights at all three levels, leading to
a multiplicative effect. The complex weights and test tube weights exist purely for convenience, as
their effects can always be replicated by appropriately setting nucleotide weights (more tediously).

B.1.7 Sequence Optimization at the Leaves of the Decomposition Forest
Initialization

At the outset of sequence optimization, sequences are randomly initialized subject to the con-
straints in R by solving a constraint satisfaction problem using a branch and propagate algorithm
(Section B.1.11).

209

Leaf Mutation

To minimize computational cost, all candidate mutation sets are evaluated at the leaf nodes, k ∈ ΛD ,
of the decomposition forest. Leaf mutation terminates if the leaf stop condition,

M̃D ≤ f stop
D , (B.11)

is satisfied. Here, M̃D denotes the objective function estimated at level D. A candidate mutation
set is accepted if it decreases the objective function estimate (B.8) and rejected otherwise.

We perform defect weighted mutation sampling by selecting nucleotide a in complex j ∈ Ψon
h

in
tube h ∈ Ω for mutation with probability,

M̃a
h, j/M̃D, (B.12)

proportional to its contribution to the objective function. After selecting a candidate mutation
position, a candidate mutation is randomly selected from the set of permitted nucleotides at that
position. If the resulting sequence is infeasible (due to constraint violations caused by the candidate
mutation), a feasible candidate sequence, φ̂ΛD , is generated by solving a constraint satisfaction
problem using a branch and propagate algorithm (Section B.1.11).

A feasible candidate sequence, φ̂ΛD , is evaluated via calculation of the objective function estimate,
M̃D , if the candidate mutation set, ξ, is not in the set of previously rejected mutation sets, γbad. The
set, γbad, is updated after each unsuccessful mutation and cleared after each successful mutation.
The counter mbad is used to keep track of the number of consecutive failed mutation attempts; it is
incremented after each unsuccessful mutation and reset to zero after each successful mutation. Leaf
mutation terminates unsuccessfully if mbad ≥ Mbad. The outcome of leaf mutation is the feasible
sequence, φΛD , corresponding to the lowest encountered M̃D .

Leaf Reoptimization

After leaf mutation terminates, if the leaf stop condition (B.11) is not satisfied, leaf reoptimization
commences. At the outset of each round of leaf reoptimization, we perform defect-weighted reseeding
of Mreseed positions by selecting nucleotide a for reseeding (with a new random initial sequence)
with probability (B.12). Following reseeding, a feasible candidate sequence, φ̂ΛD , is generated by
solving a constraint satisfaction problem using a branch and propagate algorithm (Section B.1.11).
After a new round of leaf mutation starting from this reseeded feasible sequence, the reoptimized
candidate sequence, φ̂ΛD , is accepted if it decreases M̃D and rejected otherwise. The counter mreopt

is used to keep track of the number of rounds of leaf reoptimization; mreopt is incremented after
each rejection and reset to zero after each acceptance. Leaf reoptimization terminates successfully
if the leaf stop condition is satisfied and unsuccessfully if mreopt ≥ Mreopt. The outcome of leaf
reoptimization is the feasible sequence, φΛD , corresponding to the lowest encountered M̃D .

210

B.1.8 Subsequence Merging, Redecomposition, and Reoptimization
Moving down the decomposition forest, hierarchical ensemble decomposition makes the assumption
that base pairs sandwiching parental split-points form with probability approaching unity. Condi-
tional child ensembles enforce these sandwiching base pairs at all levels in the decomposition forest
in accordance with the decomposition assumption. As subsequences are merged moving up the
decomposition forest, the accuracy of the decomposition assumption is checked. If the assumption
is correct, the child-estimated defect will accurately predict the parent-estimated defect. If the
assumption is incorrect, the child-estimated defect will not accurately predict the parent-estimated
defect since the conditional child ensembles neglect the contributions of structures that lack the
sandwiching base pairs. During subsequence merging, if the decomposition assumption is dis-
covered to be incorrect, hierarchical ensemble redecomposition is performed based on the newly
available parental base-pairing information. The details of subsequence merging, redecomposition,
and reoptimization are as follows.

After leaf reoptimization terminates, parent nodes at depth d = D−1 merge their left and right child
sequences to create the candidate sequence φ̂Λd

. The parental objective function estimate, M̃d, is
calculated and the candidate sequence, φ̂Λd

, is accepted if it decreases M̃d and rejected otherwise.
If the parental stop condition

M̃d ≤ max(f stop
d

, M̃d+1/ fstringent) (B.13)

is satisfied, merging continues up to the next level in the forest. Otherwise, failure to satisfy the
parental stop condition indicates the existence of the decomposition defect,

M̃d − M̃d+1/ fstringent > 0,

exceeding the basal level permitted by the parameter fstringent. The parent node at depth d whose
replacement by its children results in the greatest underestimate of the objective function at level d is
subjected to structure- and probability-guided hierarchical ensemble decomposition (SectionB.1.10).
Additional parents are redecomposed until

M̃d − M̃
∗
d+1/ fstringent ≤ fredecomp(M̃d − M̃d+1/ fstringent)

where M̃d+1 is the child defect estimate before any redecomposition, M̃∗
d+1 is the child defect

estimate after redecomposition, and fredecomp ∈ (0, 1).

After redecomposition, the current sequences at depth d are pushed to level D, the lowest encountered
defect estimate is reset for all levels below d, and a new round of leaf mutation and leaf reoptimization
is performed. Following leaf reoptimization, merging begins again. Subsequence merging and
reoptimization terminate successfully if the parental stop condition (B.13) is satisfied at depth d = 1.
The outcome of subsequence merging, redecomposition, and reoptimization is the feasible sequence,
φΛ1 , corresponding to the lowest encountered M̃1.

211

B.1.9 Test Tube Evaluation, Refocusing, and Reoptimization
Using test tube ensemble focusing, initial sequence optimization is performed for the on-target
complexes in Ψactive, neglecting the off-target complexes in Ψpassive. At the termination of initial
forest optimization, the estimated design objective function is M̃1, calculated using (B.8). The
estimated contributions for each tube h ∈ Ω are based on complex concentration estimates, x̃h,Ψactive

h
,

calculated using deflated total strand concentrations (equation (10) of Reference 1) to create a built-in
defect allowance for the effect of the neglected off-targets in Ψpassive

h
. The exact design objective

function,M, is then evaluated for the first time over the full ensemble Ψ. For this exact calculation,
the objective function,M, is based on complex concentrations, xh,Ψh

, calculated using the full strand
concentrations (equation (9) of Reference 1).

If the objective function satisfies the termination stop condition,

M ≤ max(fstop, M̃1), (B.14)

sequence design terminates successfully. Otherwise, failure to satisfy the termination stop condition
indicates the existence of the focusing defect,

M − M̃1 > 0. (B.15)

The multistate test tube ensemble is refocused by transferring the highest-concentration off-target in
Ψpassive to Ψactive. Additional off-targets are transferred from Ψpassive to Ψactive until

M − M̃∗1 ≤ frefocus(M − M̃1), (B.16)

where M̃1 is the forest-estimated defect before any refocusing, M̃∗1 is the forest-estimated defect
after refocusing (calculated using deflated total strand concentrations (equation (10) of Reference 1)
if Ψpassive , ∅), and frefocus ∈ (0, 1).

The new off-targets in Ψactive are then decomposed using probability-guided hierarchical ensemble
decomposition (Section B.1.10), the decomposition forest is augmented with new nodes at all depths,
and forest reoptimization commences starting from the final sequences from the previous round of
forest optimization. During forest reoptimization, the algorithm actively attempts to destabilize
the off-targets that were added to Ψactive. This process of test tube ensemble refocusing and forest
reoptimization is repeated until the termination stop condition (B.14) is satisfied, which is guaranteed
to occur in the event that all off-targets are eventually added to Ψactive. At the conclusion of sequence
design, the algorithm returns the feasible sequence set, φΨ, that yielded the lowest encountered
objective function,M.

B.1.10 Hierarchical Ensemble Decomposition Using Multiple Exclusive Split-Points
Prior to sequence optimization, in the absence of base-pairing probability information, hierarchical
ensemble decomposition is performed for each complex j ∈ Ψactive based on user-specified target
structures. During subsequence merging, if decomposition defects are encountered, or during test

212

tube evaluation, if focusing defects are encountered, subsequent hierarchical ensemble decompo-
sition takes advantage of the newly available parental base-pairing probabilities. In either case,
selection of the optimal set of exclusive split-points is determined using a branch and bound algo-
rithm to minimize the cost of evaluating the child nodes (see Section S1.4 of Reference 1).

Probability-Guided Decomposition using Multiple Exclusive Split-Points

During redecomposition (Section B.1.8) and refocusing (Section B.1.9), parent nodes that lack
a target structure are decomposed via probability-guided decomposition using multiple exclusive
split-points. See Reference 1 for details on probability-guided decomposition.

Structure- and Probability-Guided Decomposition using Multiple Exclusive Split-Points

During redecomposition (Section B.1.8), parent nodes that have a target structure are decomposed
via structure- and probability-guided decomposition using multiple exclusive split-points. See
Reference 1 for details on structure- and probability-guided decomposition.

Multistate Test Tube Ensemble Defect Estimate Using Multiple Exclusive Decompositions

Because exclusive split-points lead to exclusive structural ensembles, the expressions used to estimate
ensemble properties over Ω (Section B.1.5) can be generalized to account for the possibility of
multiple exclusive split-points within any parent in the decomposition forest. See Reference 1 for
details.

B.1.11 Generation of Feasible Sequences
Each time the sequence is initialized, mutated, or reseeded, a feasible sequence is generated by
solving a constraint satisfaction problem based on the user-specified constraints in R.

Constraint Satisfaction Problem

A constraint satisfaction problem (CSP)57 is specified as:

• a set of variables,

• a set of domains, each listing the possible values for the corresponding variable,

• a set of constraints, each defined by a constraint relation operating on a subset of the variables.

In the present setting, each variable is the sequence, φa, of a nucleotide, a. For RNA, the domain
for each variable is {A, C, G, U}. Each constraint in R is specified using one of the constraint relations
in Table 3.1 applied to one or more nucleotides (e.g., specification of constraint Rmatch

a,b
requires that

φa = φb for nucleotides a and b).

213

Table B.1: IUPAC degenerate nucleotide codes for RNA.

Code Nucleotides
M A or C
R A or G
W A or U
S C or G
Y C or U
K G or U
V A, C, or G
H A, C, or U
D A, G, or U
B C, G, or U
N A, C, G, or U
T replaces U for DNA.

In general, constraint satisfaction problems are NP-complete, so general-purpose polynomial-time
algorithms are unavailable57. Empirically, we find that CSPs arising in the context of nucleic acid
reaction pathway engineering specified in terms of the diverse constraint relations of Table 3.1 can
typically be solved efficiently using the branch and propagate algorithm described below.

Branch and Propagate Algorithm

We solve the CSP using a branch and propagate algorithm that returns a solution if one exists and
returns a warning if no solution exists. Initially, the domain for each variable is {A, C, G, U}. We
first pre-process the CSP by trivially removing any value from the domain of a variable a that is
inconsistent with a constraint (e.g., an assignment or library constraint). We further pre-process the
CSP using constraint propagation to impose arc consistency as described below.

The branch and propagate algorithm involves iterated application of two ingredients:

• constraint propagation is used to narrow the search space by imposing arc consistency on each
pair of variables: for any value in the domain of variable a there must be a consistent value
in the domain of every other variable b, otherwise that value of variable a is inconsistent and
can be removed from the domain of a (see “Chapter 3: Consistency-Enforcing and Constraint
Propagation” of Reference 57).

• depth-first branching is used to extend a candidate partial solution by assigning a consistent
value to one additional variable a, followed by backtracking to reassign the value of the
most-recently assigned variable if no value in the domain of a is consistent with previous
assignments (see “Chapter 5: General Search Strategies: Look-Ahead" of Reference 57).

214

Feasible Sequence Inititialization

Sequence initialization (Section B.1.7) commences with constraint propagation to impose arc con-
sistency and then a first branching step in which a variable, a, is randomly selected and randomly
assigned a value from the domain of a. Constraint propagation is then used to impose arc consistency
and the next branching step is taken by randomly selecting an unassigned variable, b, and assigning
a consistent value from the domain of b. Backtracking is performed if no consistent value for b

exists. The branch and propagate algorithm returns a feasible set of initial sequences, φΨactive , if one
exists, and a warning otherwise.

Feasible Sequence Mutation

During leaf mutation (Section B.1.7), a feasible candidate sequence is generated by mutating the
current leaf sequence, φΛD . This process begins with the sequence design algorithm randomly
selecting a nucleotide a for mutation with probability (B.12) and randomly assigning a new value
from the domain of a. We then solve a CSP to obtain a valid candidate sequence consistent with
the new value of a. Constraint propagation is used to impose arc consistency with the new value of
a and any variables that require reassignment are added to the candidate mutation set, ξa. Initially,
branching is performed by randomly selecting an unassigned variable b from ξa with probability
proportional to the size of the domain of b (i.e., using weight

wb = |domain(b)| (B.17)

to calculate the probability of selecting b). For each value φb in the domain of b, we check the
implications of arc consistency on the size of the candidate mutation set, ξa,b, and create a priority
queue based on the minimum increase in |ξa,b | relative to |ξa |. Let |ξa,b1 | denote the minimum
increase, |ξa,b2 | denote the next largest increase, and so on. Branching is performed by exploring
the values of b according to their rank order in this priority queue. If no consistent value of b exists,
backtracking is performed and the selection weight for variable b (B.17) is updated using

wb = εwb + (1 − ε)(|ξa,b1 | − |ξa |). (B.18)

where ε = 0.5 is a decay constant. The heuristics (B.17) and (B.18) seek to preferentially select
highly constrained variables early in the branching process to avoid excessive backtracking. The
initial weights (B.17) assume that each variable b will imply a mutation set ξa,b that increases in size
with the size of domain(b), preferentially selecting variables with larger domains. With (B.18), as
we explore different variables b in ξa, we explicitly calculate the implied increase in ξa,b due to each
branching decision, and update the weights to bias future searching toward selection of b variables
that cause the highest minimal increase in the size of the mutation set ξa.

The branch and propagate algorithm returns a feasible candidate sequence, φ̂ΛD , if one exists.
Otherwise, the new value of a is invalid and is removed from the domain of a; a new value of a is
randomly selected from the domain of a, and branch and propagate is applied again. If the only valid

215

value of a is the current value, then mbad is incremented and the leaf mutation procedure selects a
new nucleotide for mutation with probability (B.12).

Feasible Sequence Reseeding

During leaf reoptimization (SectionB.1.7), a feasible candidate reseeded sequence, φ̂ΛD , is generated
by introducing Mreseed feasible sequence mutations to the current leaf sequence, φΛD , via Mreseed

consecutive calls to the branch and propagate algorithm of Section B.1.11 (selecting nucleotide a

for mutation without replacement with probability (B.12)).

216

B.1.12 Pseudocode

OptimizeTubes(Ω, Ψon
Ω
, Ψoff
Ω
, Ψ, sΨ, yΩ,Ψ, R)

Ψactive, Ψpassive ← Ψon, Ψoff

φΨactive ← InitSeq(sΨactive, R)
Λ, D ← MakeForest(sΨactive)

φΛ, M̃1 ← OptimizeForest(φΛ, D)
M ← EvaluateDefect(φΨ)
φ̂Ψ, M̂ ← φΨ,M

while M̂ > max(fstop, M̃1)
Ψactive, Ψpassive ← RefocusTubes(

Ψactive, Ψpassive, {x̂
h,Ψ

passive
h

})

Λ, D ← AugmentForest(Λ, D, P̂Ψactive)

φ̂Λ, M̃1 ← OptimizeForest(φ̂Λ, D)
M̂ ← EvaluateDefect(φ̂Ψ)
if M̂ < M

φΨ,M ← φ̂Ψ, M̂
return φΨ

OptimizeForest(φΛ, D)
M̃d ←∞ ∀d ∈ {1, . . . , D }
βmerge ← false
while ¬βmerge

φΛD , M̃D ← OptimizeLeaves(φΛD , D)
d ← D − 1
βmerge ← true
while d ≥ 1 and βmerge

φ̂Λd ← MergeSeq(φΛd+1)

M̂d ← EstimateDefect(φ̂Λd)
if M̂d < M̃d

φΛd , M̃d ← φ̂Λd , M̂d

if M̂d > max(f stop
d

, M̃d+1/ fstringent)
βmerge ←false
Λ, D ← RedecomposeForest(

Λ, D, sΛd , P̂Λd)

φΛD ← SplitSeq(φ̂Λd)
M̃d′ ←∞ ∀d′ ∈ {d + 1, . . . , D }

d ← d − 1
return φΛ1, M̃1

OptimizeLeaves(φΛD , D)
φΛD , M̃D ← MutateLeaves(φΛD , D)
mreopt ← 0
while M̃D > f

stop
D and mreopt < Mreopt

φ̂ΛD ← ReseedSeq(φΛD , {M̃
a
h, j
}, R)

φ̂ΛD , M̂D ← MutateLeaves(φ̂ΛD , D)
if M̂D < M̃D

φΛD , M̃D ← φ̂ΛD , M̂D

mreopt ← 0
else

mreopt ← mreopt + 1
return φΛD , M̃D

MutateLeaves(φΛD , D)
M̃D ← EstimateDefect(φΛD)
γbad ← ∅, mbad ← 0
while M̃D > f

stop
D and mbad < Mbad

ξ, φ̂ΛD ← SampleMutation(φΛD , {M̃
a
h, j
}, R)

if ξ ∈ γbad
mbad ← mbad + 1

else
M̂D ← EstimateDefect(φ̂ΛD)
if M̂D < M̃D

φΛD , M̃D ← φ̂ΛD , M̂D

γbad ← ∅, mbad ← 0
else

γbad ← γbad ∪ ξ, mbad ← mbad + 1
return φΛD , M̃D

EstimateDefect(φΛd)
Q̃Λd , P̃Λd ← ConditionalNodalProperties(φΛd)
Q̃Ψactive ← EstimateComplexPfuncs(Q̃Λd)
P̃Ψactive ← EstimateComplexPairProbs(P̃Λd)
for h ∈ Ω

x̃0
h,Ψ0

h

← DeflateMassConstraints(x0
h,Ψ0

h

)

x̃h,Ψactive
h
← EstimateComplexConcs(Q̃

Ψactive
h

, x̃0
h,Ψ0

h

)

{M̃a
h, j
} ← EstimateContribs(P̃Ψon

h
, sΨon

h
, x̃h,Ψon

h
, yh,Ψon

h
)

M̃d ←
∑

h∈Ω
∑

j∈Ψon
h

∑
1≤a≤|φ j |

M̃a
h, j

return M̃d

Algorithm B.1: Pseudocode for constrained multistate test tube ensemble defect optimization. Consider the set of
target test tubes, Ω, collectively containing the set of complexes Ψ (comprising the sets of on-target complexes Ψon

Ω

and off-target complexes Ψoff
Ω

) with target secondary structures sΨ and target concentrations yΩ,Ψ. The function call
OptimizeTubes(Ω,Ψon

Ω
,Ψoff
Ω
,Ψ, sΨ, yΩ,Ψ,R) returns the set of designed sequences, φΨ, satisfying the sequence constraints

in R.

217

B.1.13 Default Algorithm Parameters
Default algorithm parameters are shown in Table B.2.

Table B.2: RNA design: default algorithm parameters for constrained multistate test tube ensemble defect optimization.

Parameter Value

fstop 0.02
fpassive 0.01
Hsplit 2
Nsplit 12
fsplit 0.99
fstringent 0.99
∆Gclamp −25 kcal/mol
Mbad 300
Mreseed 50
Mreopt 3
fredecomp 0.03
frefocus 0.03

For DNA design, Hsplit = 3.

218

B.2 Engineering Case Studies
B.2.1 Reaction Pathways
Conditional Self-Assembly via Hybridization Chain Reaction (HCR)

A

c*

b*

b

a

A

c*

b*

b

a

b*

a*

X

B

a*

b

b*

c

X·A

c*

b*

b

a

b*

a*

X·A·B

b*

b*

c*

c

b

b

b*

a*

a*

a

X·A·A·B

a*

a

b

b*

c*

c

b*

b

b*

a*
a

b

b*

c*

Step 2

Step 1
Step 3

Step Reaction Function Mechanism

1 X + A→ X·A detect target, first A polymerization
step

toehold/toehold nucleation, 3-
way branch migration

2 X·A + B→ X·A·B first B polymerization step, regener-
ate target sequence

toehold/toehold nucleation, 3-
way branch migration

2k+1 X·(A)k ·(B)k + A→ X·(A)k+1 ·(B)k generic A polymerization step, k =
1, 2, . . .

toehold/toehold nucleation, 3-
way branch migration

2k+2 X·(A)k+1 ·(B)k + B→ X·(A)k+1 ·(B)k+1 generic B polymerization step, k =
1, 2, . . .

toehold/toehold nucleation, 3-
way branch migration

Figure B.1: Reaction pathway for conditional self-assembly via hybridization chain reaction (HCR)19. Target X triggers
self-assembly of metastable hairpins A and B into a long nicked dsDNA polymer via a chain reaction of alternating A and
B polymerization steps. Top: Reaction pathway schematic. Bottom: Elementary step details.

219

Boolean Logic AND using Toehold Sequestration Gates

Step 1

Step 2
Step 3

a* e* f*

e f

h*

g
A·B

X·A

B·C
Y·D

B

X

Y

e f g

a b

a

a* e* f* h*

b

C·D·E

D·E

E

i

d*
g*

f*

z y

c*

w

x

w

x

y

z

dc

g* f*

g f

e

d*c*

d

i

c

d*

i
z y

c*

w

x

Step Reaction Function Mechanism

1 X + A·B→ X·A + B translate X target sequence toehold/toehold nucleation, 3-
way branch migration

2 B + C·D·E→ B·C + D·E detect translated first target toehold/toehold nucleation, 3-
way branch migration, expose
toehold

3 Y + D·E→ Y·D + E detect second target toehold/toehold nucleation, 3-
way branch migration

Figure B.2: Reaction pathway for Boolean logic AND using toehold sequestration gates58. Gates implement the logical
operation “if targets X AND Y are detected, generate output E”. Top: Reaction pathway schematic. Bottom: Elementary
step details.

220

Self-Assembly of a 3-Arm Junction via Catalytic Hairpin Assembly (CHA)

X

Step 1 Step 2

Step 3b Step 3a

A·B·C

X·A

X·A·B

X·A·B·C

A

B

C

Step Reaction Function Mechanism

1 X + A→ X·A assemble with catalyst X toehold/toehold nucleation, 3-way
branch migration

2 X·A + B→ X·A·B assemble toehold/toehold nucleation, 3-way
branch migration

3a X·A·B + C→ X·A·B·C assemble toehold/toehold nucleation, 3-way
branch migration

3b X·A·B·C→ X + A·B·C disassemble from catalyst X and
assemble 3-arm junction

intracomplex blunt-end strand inva-
sion, 3-way branch migration

Figure B.3: Reaction pathway for self-assembly of a 3-arm junction via catalytic hairpin assembly (CHA)23. Target X
catalyzes self-assembly of metastable hairpins A, B, and C into 3-arm junction A·B·C. Top: Reaction pathway schematic.
Bottom: Elementary step details.

221

Boolean Logic AND using a Cooperative Hybridization Gate

cbB

a
b c

d

a*

b* c*

d*

Y·A·X

a b
X

c dY

a

b

b* c*

c d*
A·B

Step 1

Step Reaction Function Mechanism

1 X + Y + A·B→ Y·A·X + B cooperative detection of X and Y to
generate output B

toehold/toehold nucleation, 3-
way branch migration

Figure B.4: Reaction pathway for Boolean logic AND using a cooperative hybridization gate59. Gate implements the
logical operation “if targets X AND Y are detected, cooperatively generate output B”. Top: Reaction pathway schematic.
Bottom: Elementary step details.

222

Conditional Dicer Substrate Formation via Shape and Sequence Transduction with Small
Conditional RNAs (scRNAs)

Step 1
Step 2

C

a b c

a*

y*

z*
b* c*

X·A B·C

B

a

b

c

y

x

z

a

b

y
s

x w

y*
z*

a*
x* w*

x y z a

x*
w*

y* z* a*

b

w

x

y
s

A·B
y

x

z a b

y* z* a* b*

c*X

Step Reaction Function Mechanism

1 X + A·B→ X·A + B detect target X (sequence ‘a-b-c’) toehold/toehold nucleation, 3-way branch migration,
spontaneous dissociation

2 B + C→ B·C form Dicer substrate targeting independent target
Y (sequence ‘w-x-y-z’)

toehold/loop nucleation, 3-way branch migration

Figure B.5: Reaction pathway for conditional Dicer substrate formation via shape and sequence transduction with small
conditional RNAs (scRNAs)32. scRNA A·B detects target X (comprising sequence ‘a-b-c’), generating intermediate B
that assembles with scRNA C to generate Dicer substrate B·C (targeting independent sequence ‘w-x-y-z’ for silencing).
Top: Reaction pathway schematic. Bottom: Elementary step details.

223

Conditional Self-Assembly via HCR

Target test tubes are defined using the specification of Section 3.2.3 with the following definitions.
The total number of target test tubes is |Ω| =

∑
n=1,...,N {Step 0, Step 1, Step 2, Step 3}n+Crosstalk =

4N +1; the target test tubes in the multistate test tube ensemble,Ω, are indexed by h = 1, . . . , 4N +1.
Lmax = 2 for all tubes.

Reactants for system n

• Target: Xn

• Hairpins: {A, B}n

Elementary step tubes for system n

• Step 0n tube: Ψproducts
0n ≡ {X, A, B}n;Ψreactants

0n ≡ {A·B}n (dimer nucleus that inhibits leakage);
Ψexclude

0n ≡ {X·A}n (downstream on-pathway product)

• Step 1n tube: Ψproducts
1n ≡ {X·A}n; Ψreactants

1n ≡ {X, A}n; Ψexclude
1n ≡ ∅

• Step 2n tube: Ψproducts
2n ≡ {X·A·B}n; Ψreactants

2n ≡ {X·A, B}n; Ψexclude
2n ≡ ∅

• Step 3n tube: Ψproducts
3n ≡ {X·A·A·B}n; Ψreactants

3n ≡ {X·A·B, A}n; Ψexclude
3n ≡ ∅

Global crosstalk tube

• Crosstalk tube: Ψreactive
global ≡ ∪n=1,...,N {λ

reactive
n }; Ψcrosstalk

global ≡ Ψ
L≤Lmax
global − ∪n=1,...,N {λ

cognate
n }

The reactive species and cognate products for system n are:

• λ
simple
n ≡ {A, B}n

• λss-outn ≡ {X, Aout, Bout}n

• λss-inn ≡ {Atoe, Btoe}n

• λreactive
n ≡ {A, B, Aout, Bout}n

• λ
cognate
n ≡ {Aout·B, Bout·A}n

based on the definitions (listed 5′ to 3′ using the sequence domain notation of Figure B.1):

• A ≡ Ain-Aout

• Atoe ≡ a

224

• Ain ≡ a-b

• Aout ≡ c*-b*

• B ≡ Bout-Bin

• Btoe ≡ c

• Bin ≡ b-c

• Bout ≡ b*-a*

• X ≡ b*-a*

Note: Xn is identical to Bout
n , so it is implicitly included in the definition of λreactive

n . To avoid
redundancy, the toeholds of λss-inn are not included in the definition of λreactive

n ; these toeholds are
already available to form dimer crosstalk products in the hairpin monomers of λsimple

n .

225

Step 0 Step 1 Step 2 Step 3 Crosstalk

Aout

X ·A ·B

X ·A ·A ·B

 10 nM

 10 nM

 10 nM

 10 nM 10 nM 10 nM

A

B

X
 10 nM

 10 nM

X

X ·A

n = 1,...,N

n
n n n n

n

 10 nM
An

 10 nM

Bn

nnnn

n n n

n n

n

n

n

Tube On-targets (Ψon
h
) Off-targets (Ψoff

h
)

Step 0n {X, A, B}n {A·B}n ∪ ΨL≤Lmax
0n

− {X·A}n

Step 1n {X·A}n {X, A}n ∪ ΨL≤Lmax
1n

Step 2n {X·A·B}n {X·A, B}n ∪ ΨL≤Lmax
2n

Step 3n {X·A·A·B}n {X·A·B, A}n ∪ ΨL≤Lmax
3n

Crosstalk ∪n=1,...,N {λ
reactive
n } Ψ

L≤Lmax
global − ∪n=1,...,N {λ

cognate
n }

Figure B.6: Target test tubes for conditional self-assembly via HCR (reaction pathway of Figure B.1). Top: Target test
tube schematics. Bottom: Target test tube details. Each target test tube contains the depicted on-target complexes (each
with the depicted target structure and a target concentration of 10 nM) and the off-target complexes listed in the table
(each with vanishing target concentration). To simultaneously design N orthogonal systems, the total number of target
test tubes is |Ω| = 4N + 1. Lmax = 2 for all tubes. Design conditions: DNA in 1 M Na+ at 25 ◦C.

226

Boolean Logic AND using Toehold Sequestration Gates

Target test tubes are defined using the specification of Section 3.2.3 with the following definitions.
The total number of target test tubes is |Ω| =

∑
n=1,...,N {Step 0, Step 1, Step 2, Step 3}n +Crosstalk =

4N +1; the target test tubes in the multistate test tube ensemble,Ω, are indexed by h = 1, . . . , 4N +1.
Lmax = 2 for all tubes.

Reactants for system n

• Targets: {X, Y}n

• Translator gate: {A·B}n

• AND gate: {C·D·E}n

Elementary step tubes for system n

• Step 0n: Ψproducts
0n ≡ {X, Y, A·B, C·D·E}n; Ψreactants

0n ≡ {A, B, C, D, E, C·D, D·E}n; Ψexclude
0n ≡

{X·A}n

• Step 1n: Ψproducts
1n ≡ {X·A, B}n; Ψreactants

1n ≡ {X, A·B}n; Ψexclude
1n ≡ ∅

• Step 2n: Ψproducts
2n ≡ {B·C, D·E}n; Ψreactants

2n ≡ {B, C·D·E}n; Ψexclude
2n ≡ ∅

• Step 3n: Ψproducts
3n ≡ {Y·D, E}n; Ψreactants

3n ≡ {Y, D·E}n; Ψexclude
3n ≡ ∅

Global crosstalk tube

• Crosstalk tube: Ψreactive
global ≡ ∪n=1,...,N {λ

reactive
n }; Ψcrosstalk

global ≡ Ψ
L≤Lmax
global − ∪n=1,...,N {λ

cognate
n }

The reactive species and cognate products for system n are:

• λ
simple
n ≡ {A·B, C·Dout, D·E}n

• λss-outn ≡{X, Y, B, Dout, E}n

• λss-inn ≡ {Atoe, Ctoe, Dtoe}n

• λreactive
n ≡ {A·B, C·Dout, D·E, X, Y, B, Dout, E, Atoe, Ctoe}n

• λ
cognate
n ≡ {X·A, B·C, Y·D, X·Atoe, B·Ctoe, Y·Dout}n

based on the definitions (listed 5′ to 3′ using the sequence domain notation of Figure B.2):

• A ≡ h*-f*-e*-a*

227

• Atoe ≡ a*

• B ≡ e-f-g

• C ≡ g*-f*

• Ctoe ≡ f*

• D ≡ Dout-Din

• Dtoe ≡ d*

• Din ≡ c*

• Dout ≡ i-d*

• E ≡ w-x-y-z

• X ≡ a-b

• Y ≡ c-d

Note: Dtoe
n is contained in Dout

n , providing a toehold adjacent to Din
n . To avoid redundancy, we omit

Dtoe
n from λreactive

n because it is a subsequence of Dout
n in λss-outn .

228

Step 0 Step 3Step 2Step 1 Crosstalk

 all 10 nM

 10 nM

 10 nM

 10 nM 10 nM
 10 nM

 10 nM

 10 nM

 10 nM

 10 nM

 10 nM

A ·B

A ·B

X ·A
B

B
X

Y

X

Y

C ·D ·E

C ·Dout

Atoe

Ctoe

Dout

D ·E

B ·C

D ·E

E

Y ·D

E

n = 1,...,N

n

n

n

n

n
n

n

nn

n

nn

n

n

n

n n

n n n

n n

n

n n

n
nn

n n

n n n n

Tube On-targets (Ψon
h
) Off-targets (Ψoff

h
)

Step 0n {X, Y, A·B, C·D·E}n {A, B, C, D, E, C·D, D·E}n ∪ ΨL≤Lmax
0n

− {X·A}n

Step 1n {X·A, B}n {X, A·B}n ∪ ΨL≤Lmax
1n

Step 2n {B·C, D·E}n {B, C·D·E}n ∪ ΨL≤Lmax
2n

Step 3n {Y·D, E}n {Y, D·E}n ∪ ΨL≤Lmax
3n

Crosstalk ∪n=1,...,N {λ
reactive
n } Ψ

L≤Lmax
global − ∪n=1,...,N {λ

cognate
n }

Figure B.7: Target test tubes for Boolean logic AND using toehold sequestration gates (reaction pathway of Figure B.2).
Top: Target test tube schematics. Bottom: Target test tube details. Each target test tube contains the depicted on-target
complexes (each with the depicted target structure and a target concentration of 10 nM) and the off-target complexes listed
in the table (each with vanishing target concentration). To simultaneously design N orthogonal systems, the total number
of target test tubes is |Ω| = 4N + 1. Lmax = 2 for all tubes. Design conditions: DNA in 1 M Na+ at 25 ◦C.

229

Self-Assembly of a 3-Arm Junction via CHA

Target test tubes are defined using the specification of Section 3.2.3 with the following definitions.
The total number of target test tubes is |Ω| =

∑
n=1,...,N {Step 0, Step 1, Step 2, Step 3a, Step 3b}n

+ Crosstalk = 5N + 1; the target test tubes in the multistate test tube ensemble, Ω, are indexed by
h = 1, . . . , 5N + 1. Lmax = 2 for all tubes.

Reactants for system n

• Target: Xn

• Hairpins: {A, B, C}n

Elementary step tubes for system n

• Step 0n: Ψproducts
0n ≡ {X, A, B, C}n; Ψreactants

0n ≡ ∅; Ψexclude
0n ≡ {X·A, X·B}n

• Step 1n: Ψproducts
1n ≡ {X·A}n; Ψreactants

1n ≡ {X, A}n; Ψexclude
1n ≡ ∅

• Step 2n: Ψproducts
2n ≡ {X·A·B}n; Ψreactants

2n ≡ {X·A, B}n; Ψexclude
2n ≡ ∅

• Step 3an: Ψproducts
3an ≡ {X·A·B·C}n; Ψreactants

3an ≡ {X·A·B, C}n; Ψexclude
3an ≡ ∅

• Step 3bn: Ψproducts
3bn ≡ {X, A·B·C}n; Ψreactants

3bn ≡ {X·A·B·C}n; Ψexclude
3bn ≡ ∅

Note: Step 3 combining an assembly operation (Step 3a; addition of C) with a disassembly operation
(Step 3b; removal of X) is described using two target test tubes; the Step 3a tube prevents completion
of the full operation by excluding the final product A·B·C from the ensemble (Lmax = 2 includes all
off-targets up to dimers).

Crosstalk tube

• Crosstalk tube: Ψreactive
global ≡ ∪n=1,...,N {λ

reactive
n }; Ψcrosstalk

global ≡ Ψ
L≤Lmax
global − ∪n=1,...,N {λ

cognate
n }

The reactive species and cognate products for system n are:

• λ
simple
n ≡ {A, B, C}n

• λss-outn ≡ {X, Aout, Bout, Cout}n

• λss-inn ≡ {Atoe, Btoe, Ctoe}n

• λreactive
n ≡ {A, B, C, X, Aout, Bout, Cout}n

• λ
cognate
n ≡ {X·A, X·B, Aout·B, Bout·C, Cout·A, Cout·B, Bout·A, Aout·C}n

230

based on the definitions (listed 5′ to 3′ using the sequence domain notation of Figure B.3):

• A ≡ Ain-Aout

• Atoe ≡ a

• Ain ≡ a-x-b-y

• Aout ≡ z*-c*-y*-b*-x*

• B ≡ Bin-Bout

• Btoe ≡ b

• Bin ≡ b-y-c-z

• Bout ≡ x*-a*-z*-c*-y*

• C ≡ Cin-Cout

• Ctoe ≡ c

• Cin ≡ c-z-a-x

• Cout ≡ y*-b*-x*-a*-z*

• X ≡ y*-b*-x*-a*

231

CrosstalkStep 3bStep 0 Step 1 Step 2 Step 3a

 10 nM

 10 nM

 10 nM

 10 nM

 10 nM
 10 nM

 10 nM 10 nM

 all 10 nM

 10 nM

A

Aout

X

Bout Cout

B

C

A

X X

B

C

A ·B ·C

X ·A X ·A ·B X ·A ·B ·C

n = 1,...,N

n

n n n

nn nnnnn

n

n

n

n

n n

n

n n

n

n

n

n

nnnnn

Tube On-targets (Ψon
h
) Off-targets (Ψoff

h
)

Step 0n {X, A, B, C}n Ψ
L≤Lmax
0n

− {X·A, X·B}n

Step 1n {X·A}n {X, A}n ∪ ΨL≤Lmax
1n

Step 2n {X·A·B}n {X·A, B}n ∪ ΨL≤Lmax
2n

Step 3an {X·A·B·C}n {X·A·B, C}n ∪ ΨL≤Lmax
3an

Step 3bn {X, A·B·C}n {X·A·B·C}n ∪ ΨL≤Lmax
3bn

Crosstalk ∪n=1,...,N {λ
reactive
n } Ψ

L≤Lmax
global − ∪n=1,...,N {λ

cognate
n }

Figure B.8: Target test tubes for self-assembly of a 3-arm junction via CHA (reaction pathway of Figure B.3). Top: Target
test tube schematics. Bottom: Target test tube details. Each target test tube contains the depicted on-target complexes
(each with the depicted target structure and a target concentration of 10 nM) and the off-target complexes listed in the
table (each with vanishing target concentration). To simultaneously design N orthogonal systems, the total number of
target test tubes is |Ω| = 5N + 1. Lmax = 2 for all tubes. Design conditions: DNA in 1 M Na+ at 25 ◦C.

232

Boolean Logic AND using a Cooperative Hybridization Gate

Target test tubes are defined using the specification of Section 3.2.3 with the following definitions.
The total number of target test tubes is |Ω| =

∑
n=1,...,N {Step 0, Step 1}n + Crosstalk = 2N + 1; the

target test tubes in the multistate test tube ensemble, Ω, are indexed by h = 1, . . . , 2N + 1. Lmax = 2
for all tubes.

Reactants for system n

• Targets: {X, Y}n

• Cooperative gate: {A·B}n

Elementary step tubes for system n

• Step 0n: Ψproducts
0n ≡ {X, Y, A·B}n; Ψreactants

0n ≡ {A, B}n; Ψexclude
0n ≡ ∅

• Step 1n: Ψproducts
1n ≡ {Y·A·X, B}n; Ψreactants

1n ≡ {X, Y, A·B}n; Ψexclude
1n ≡ ∅

Note: In the Step 0n tube, the reactants are prevented from generating the product Y·A·X, because
this trimer is excluded from the test tube ensemble (Lmax = 2 includes all off-targets up to dimers).

Crosstalk tube

• Crosstalk tube: Ψreactive
global ≡ ∪n=1,...,N {λ

reactive
n }; Ψcrosstalk

global ≡ Ψ
L≤Lmax
global − ∪n=1,...,N {λ

cognate
n }

The reactive species and cognate products for system n are:

• λ
simple
n ≡ {Aleft·Bleft, Aright·Bright}n

• λss-outn ≡ {X, Y, B}n

• λss-inn ≡ {Aleft-toe, Aright-toe}n

• λreactive
n ≡ {Aleft·Bleft, Aright·Bright, X, Y, B, Aleft-toe, Aright-toe}n

• λ
cognate
n ≡ {X·Aleft, Y·Aright, X·Aleft-toe, Y·Aright-toe, Aleft·B, Aright·B}n

based on the definitions (listed 5′ to 3′ using the sequence domain notation of Figure B.4):

• A ≡ Aright-Aleft

• Aleft-toe ≡ a*

• Aleft ≡ b*-a*

233

• Aright-toe ≡ d*

• Aright ≡ d*-c*

• B ≡ Bleft-Bright

• Bleft ≡ b

• Bright ≡ c

• X ≡ a-b

• Y ≡ c-d

234

Step 0 Step 1 Crosstalk

10 nM

10 nM

10 nM

10 nM

10 nM

10 nM

10 nM

10 nM 10 nM

10 nM

10 nM

10 nM

A ·B

Y ·A ·X

BB

X X Y

Y

Aleft-toe

Aright-toe

Aleft ·Bleft

Aright ·Bright

n = 1,...,N

n

n

n

n

n

n

n n

n n

n

n

n

n

n

n n

n n

Tube On-targets (Ψon
h
) Off-targets (Ψoff

h
)

Step 0n {X, Y, A·B}n {A, B}n ∪ ΨL≤Lmax
0n

Step 1n {Y·A·X, B}n {X, Y, A·B}n ∪ ΨL≤Lmax
1n

Crosstalk ∪n=1,...,N {λ
reactive
n } Ψ

L≤Lmax
global − ∪n=1,...,N {λ

cognate
n }

Figure B.9: Target test tubes for Boolean logic AND using a cooperative hybridization gate (reaction pathway of
Figure B.4). Top: Target test tube schematics. Bottom: Target test tube details. Each target test tube contains the depicted
on-target complexes (each with the depicted target structure and a target concentration of 10 nM) and the off-target
complexes listed in the table (each with vanishing target concentration). To simultaneously design N orthogonal systems,
the total number of target test tubes is |Ω| = 2N + 1. Lmax = 2 for all tubes. Design conditions: DNA in 1 M Na+ at 25
◦C.

235

Conditional Dicer Substrate Formation via Shape and Sequence Transduction with scRNAs

Target test tubes are defined using the specification of Section 3.2.3 with the following definitions.
The total number of target test tubes is |Ω| =

∑
n=1,...,N {Step 0, Step 1, Step 2}n + Crosstalk =

3N +1; the target test tubes in the multistate test tube ensemble,Ω, are indexed by h = 1, . . . , 3N +1.
Lmax = 2 for all tubes.

Reactants for system n

• Target: Xn

• scRNAs: {A·B, C}n

Elementary step tubes for system n

• Step 0n: Ψproducts
0n ≡ {X, A·B, C}n; Ψreactants

0n ≡ {A, B·C}n; Ψexclude
0n ≡ {X·A}

• Step 1n: Ψproducts
1n ≡ {X·A, B}n; Ψreactants

1n ≡ {X, A·B}n; Ψexclude
1n ≡ ∅

• Step 2n: Ψproducts
2n ≡ {B·C}n; Ψreactants

2n ≡ {B, C}n; Ψexclude
2n ≡ ∅

Crosstalk tube

• Crosstalk tube: Ψreactive
global ≡ ∪n=1,...,N {λ

reactive
n }; Ψcrosstalk

global ≡ Ψ
L≤Lmax
global − ∪n=1,...,N {λ

cognate
n }

The reactive species and cognate products for system n are:

• λ
simple
n = {A·B, C}n

• λss-outn = {X, B, Cout}n

• λss-inn = {Atoe, Cloop}n

• λreactive
n = {A·B, C, X, B, Cout, Atoe, Cloop}n

• λ
cognate
n = {X·A, B·C, X·Atoe, B·Cloop}n

based on the definitions (listed 5′ to 3′ using the sequence domain notation of Figure B.5):

• A ≡ c*-b*-a*-z*-y*

• Atoe ≡ c*

• B ≡ x-y-z-a-b

236

• C ≡ Cout-Cin

• Cloop ≡ s-a*-z*

• Cin ≡ a*-z*-y*-x*-w*

• Cout ≡ w-x-y-s

• X ≡ a-b-c

Note: Cloop
n includes portions of both Cin

n and Cout
n . Including Cloop

n in λreactive
n is not redundant with

inclusion of Cn because pairing to the loop would cause a pseudoknot and hence will not be checked
by the ensemble except if the interaction opens the hairpin. We want to be able to check nucleation
with the loop even when the hairpin remains closed, so we include Cloop

n in λreactive
n .

237

Reactants
(Step 0)

Intermediates
(Step 1)

Product
(Step 2)

Global Crosstalk Tube

 all 10 nM

 10 nM
 10 nM

 10 nM

 10 nM

 10 nM
X·A

B

 10 nM

B·C Atoe

Cloop

Cout

Cn

An·Bn

Xn

Bn

X

A·B

C

Elementary Step Tubesa b

n

n

n

 n = 1,…,N

Tube On-targets (Ψon
h
) Off-targets (Ψoff

h
)

Step 0n {X, A·B, C}n {A, B·C}n ∪ ΨL≤Lmax
0n

− {X·A}

Step 1n {X·A, B}n {X, A·B}n ∪ ΨL≤Lmax
1n

Step 2n {B·C}n {B, C}n ∪ ΨL≤Lmax
2n

Crosstalk ∪n=1,...,N {λ
reactive
n } Ψ

L≤Lmax
global − ∪n=1,...,N {λ

cognate
n }

Figure B.10: Target test tubes for conditional Dicer substrate formation via shape and sequence transduction with scRNAs
(reaction pathway of Figure B.5). Top: Target test tube schematics. Bottom: Target test tube details. Each target test tube
contains the depicted on-target complexes (each with the depicted target structure and a target concentration of 10 nM)
and the off-target complexes listed in the table (each with vanishing target concentration). To simultaneously design N
orthogonal systems, the total number of target test tubes is |Ω| = 3N + 1. Lmax = 2 for all tubes. Design conditions: RNA
in 1 M Na+ at 37 ◦C.

238

B.2.2 Algorithm Performance

10−2 10−1
Ensemble defect (M)

0.0
0.2
0.4
0.6
0.8
1.0

Fr
ac

tio
n

of
 tr

ial
s

stop condition

a
Design quality

100 101 102 103 104 105 106
Costdes (s)

0.0
0.2
0.4
0.6
0.8
1.0

Fr
ac

tio
n

of
 tr

ial
s

Design cost

100 101 102 103 104
Costdes/Costeval

0.0
0.2
0.4
0.6
0.8
1.0

Fr
ac

tio
n

of
 tr

ial
s

Relative design cost

10−2 10−1
Ensemble defect (M)

0.0
0.2
0.4
0.6
0.8
1.0

Fr
ac

tio
n

of
 tr

ial
s

stop condition

b
Design quality

100 101 102 103 104 105 106
Costdes (s)

0.0
0.2
0.4
0.6
0.8
1.0

Fr
ac

tio
n

of
 tr

ial
s

Design cost

100 101 102 103 104
Costdes/Costeval

0.0
0.2
0.4
0.6
0.8
1.0

Fr
ac

tio
n

of
 tr

ial
s

Relative design cost

10−2 10−1
Ensemble defect (M)

0.0
0.2
0.4
0.6
0.8
1.0

Fr
ac

tio
n

of
 tr

ial
s

stop condition

c
Design quality

100 101 102 103 104 105 106
Costdes (s)

0.0
0.2
0.4
0.6
0.8
1.0

Fr
ac

tio
n

of
 tr

ial
s

Design cost

100 101 102 103 104
Costdes/Costeval

0.0
0.2
0.4
0.6
0.8
1.0

Fr
ac

tio
n

of
 tr

ial
s

Relative design cost

10−2 10−1
Ensemble defect (M)

0.0
0.2
0.4
0.6
0.8
1.0

Fr
ac

tio
n

of
 tr

ial
s

stop condition

d
Design quality

100 101 102 103 104 105 106
Costdes (s)

0.0
0.2
0.4
0.6
0.8
1.0

Fr
ac

tio
n

of
 tr

ial
s

Design cost

100 101 102 103 104
Costdes/Costeval

0.0
0.2
0.4
0.6
0.8
1.0

Fr
ac

tio
n

of
 tr

ial
s

Relative design cost

10−2 10−1
Ensemble defect (M)

0.0
0.2
0.4
0.6
0.8
1.0

Fr
ac

tio
n

of
 tr

ial
s

stop condition

e
Design quality

100 101 102 103 104 105 106
Costdes (s)

0.0
0.2
0.4
0.6
0.8
1.0

Fr
ac

tio
n

of
 tr

ial
s

Design cost

100 101 102 103 104
Costdes/Costeval

0.0
0.2
0.4
0.6
0.8
1.0

Fr
ac

tio
n

of
 tr

ial
s

Relative design cost

Conditional self-assembly via HCR

Boolean logic AND using toehold sequestration gates

Self-assembly of 3-arm junction via CHA

Boolean logic AND using a cooperative hybridization gate

Conditional Dicer substrate formation via shape and sequence transduction with scRNAs

Orthogonal systems
1
2
4
8

Figure B.11: Algorithm performance for design of 1, 2, 4, or 8 orthogonal systems based on the target test tubes of
Section 3.2.3. Left: Design quality. The stop condition is depicted as a dashed black line. Middle: Design cost. Right:
Cost of sequence design relative to a single evaluation of the objective function. (a) Conditional self-assembly via HCR.
(b) Boolean logic AND using toehold sequestration gates. (c) Self-assembly of 3-arm junction via CHA. (d) Boolean
logic AND using a cooperative hybridization gate. (e) Conditional Dicer substrate formation via shape and sequence
transduction with scRNAs.

239

10−2 10−1
Ensemble defect (M)

0.0
0.2
0.4
0.6
0.8
1.0

Fr
ac

tio
n

of
 tr

ial
s

2.0% 5.0%

a
Design quality

100 101 102 103 104 105 106
Costdes (s)

0.0
0.2
0.4
0.6
0.8
1.0

Fr
ac

tio
n

of
 tr

ial
s

Design cost

100 101 102 103 104
Costdes/Costeval

0.0
0.2
0.4
0.6
0.8
1.0

Fr
ac

tio
n

of
 tr

ial
s

Relative design cost

10−2 10−1
Ensemble defect (M)

0.0
0.2
0.4
0.6
0.8
1.0

Fr
ac

tio
n

of
 tr

ial
s

2.0% 5.0%

b
Design quality

100 101 102 103 104 105 106
Costdes (s)

0.0
0.2
0.4
0.6
0.8
1.0

Fr
ac

tio
n

of
 tr

ial
s

Design cost

100 101 102 103 104
Costdes/Costeval

0.0
0.2
0.4
0.6
0.8
1.0

Fr
ac

tio
n

of
 tr

ial
s

Relative design cost

10−2 10−1
Ensemble defect (M)

0.0
0.2
0.4
0.6
0.8
1.0

Fr
ac

tio
n

of
 tr

ial
s

2.0% 5.0%

c
Design quality

100 101 102 103 104 105 106
Costdes (s)

0.0
0.2
0.4
0.6
0.8
1.0

Fr
ac

tio
n

of
 tr

ial
s

Design cost

100 101 102 103 104
Costdes/Costeval

0.0
0.2
0.4
0.6
0.8
1.0

Fr
ac

tio
n

of
 tr

ial
s

Relative design cost

10−2 10−1
Ensemble defect (M)

0.0
0.2
0.4
0.6
0.8
1.0

Fr
ac

tio
n

of
 tr

ial
s

2.0% 5.0%

d
Design quality

100 101 102 103 104 105 106
Costdes (s)

0.0
0.2
0.4
0.6
0.8
1.0

Fr
ac

tio
n

of
 tr

ial
s

Design cost

100 101 102 103 104
Costdes/Costeval

0.0
0.2
0.4
0.6
0.8
1.0

Fr
ac

tio
n

of
 tr

ial
s

Relative design cost

10−2 10−1
Ensemble defect (M)

0.0
0.2
0.4
0.6
0.8
1.0

Fr
ac

tio
n

of
 tr

ial
s

2.0% 5.0%

e
Design quality

100 101 102 103 104 105 106
Costdes (s)

0.0
0.2
0.4
0.6
0.8
1.0

Fr
ac

tio
n

of
 tr

ial
s

Design cost

100 101 102 103 104
Costdes/Costeval

0.0
0.2
0.4
0.6
0.8
1.0

Fr
ac

tio
n

of
 tr

ial
s

Relative design cost

Conditional self-assembly via HCR

Boolean logic AND using toehold sequestration gates

Self-assembly of 3-arm junction via CHA

Boolean logic AND using a cooperative hybridization gate

Conditional Dicer substrate formation via shape and sequence transduction with scRNAs

Orthogonal systems
1
8

Figure B.12: Reduced design cost and quality using fstop = 0.05 (dotted lines) instead of fstop = 0.02 (solid lines)
for design of 1 or 8 orthogonal systems based on the target test tubes of Section 3.2.3. Left: Design quality. The
stop conditions are depicted as dashed black lines. Middle: Design cost. Right: Cost of sequence design relative to
a single evaluation of the objective function. (a) Conditional self-assembly via HCR. (b) Boolean logic AND using
toehold sequestration gates. (c) Self-assembly of 3-arm junction via CHA. (d) Boolean logic AND using a cooperative
hybridization gate. (e) Conditional Dicer substrate formation via shape and sequence transduction with scRNAs.

240

B.2.3 Residual Defects
For each case study, the residual defect plots that follow display for each target test tube h ∈ Ω:

• The structural defect and concentration defect contributions of each on-target complex to the
test tube ensemble defect,Mh. The fact that bars are not depicted for off-targets does not mean
that the defects associated with off-targets are neglected. By conservation of mass, nonzero
off-target concentrations imply deficiencies in on-target concentrations, and these on-target
concentration defects are depicted in the bar graphs and incorporated in Mh via (3.1) and
(3.5).

• The total structural defect and total concentration defect contributions of the tube to the
multistate test tube ensemble defect,M.

241

Conditional Self-Assembly via HCR

A 1 B 1 X 1 to
ta

l0.00
0.02
0.04
0.06
0.08
0.10

Co
nt

rib
ut

ion
 to

 M
h

Step 01

X⋅
A 1 to
ta

l0.00
0.02
0.04
0.06
0.08
0.10

Co
nt

rib
ut

ion
 to

 M
h

Step 11

X⋅
A⋅

B 1 to
ta

l0.00
0.02
0.04
0.06
0.08
0.10

Co
nt

rib
ut

ion
 to

 M
h

Step 21

X⋅
A⋅

A⋅
B 1 to
ta

l0.00
0.02
0.04
0.06
0.08
0.10

Co
nt

rib
ut

ion
 to

 M
h

Step 31

A 2 B 2 X 2 to
ta

l0.00
0.02
0.04
0.06
0.08
0.10

Co
nt

rib
ut

ion
 to

 M
h

Step 02

X⋅
A 2 to
ta

l0.00
0.02
0.04
0.06
0.08
0.10

Co
nt

rib
ut

ion
 to

 M
h

Step 12

X⋅
A⋅

B 2 to
ta

l0.00
0.02
0.04
0.06
0.08
0.10

Co
nt

rib
ut

ion
 to

 M
h

Step 22

X⋅
A⋅

A⋅
B 2 to
ta

l0.00
0.02
0.04
0.06
0.08
0.10

Co
nt

rib
ut

ion
 to

 M
h

Step 32

A 3 B 3 X 3 to
ta

l0.00
0.02
0.04
0.06
0.08
0.10

Co
nt

rib
ut

ion
 to

 M
h

Step 03

X⋅
A 3 to
ta

l0.00
0.02
0.04
0.06
0.08
0.10

Co
nt

rib
ut

ion
 to

 M
h

Step 13

X⋅
A⋅

B 3 to
ta

l0.00
0.02
0.04
0.06
0.08
0.10

Co
nt

rib
ut

ion
 to

 M
h

Step 23

X⋅
A⋅

A⋅
B 3 to
ta

l0.00
0.02
0.04
0.06
0.08
0.10

Co
nt

rib
ut

ion
 to

 M
h

Step 33

A 4 B 4 X 4 to
ta

l0.00
0.02
0.04
0.06
0.08
0.10

Co
nt

rib
ut

ion
 to

 M
h

Step 04

X⋅
A 4 to
ta

l0.00
0.02
0.04
0.06
0.08
0.10

Co
nt

rib
ut

ion
 to

 M
h

Step 14

X⋅
A⋅

B 4 to
ta

l0.00
0.02
0.04
0.06
0.08
0.10

Co
nt

rib
ut

ion
 to

 M
h

Step 24

X⋅
A⋅

A⋅
B 4 to
ta

l0.00
0.02
0.04
0.06
0.08
0.10

Co
nt

rib
ut

ion
 to

 M
h

Step 34

A 1

Ao
ut

1 B 1 X 1 A 2

Ao
ut

2 B 2 X 2 A 3

Ao
ut

3 B 3 X 3 A 4

Ao
ut

4 B 4 X 4 to
ta

l0.00
0.02
0.04
0.06
0.08
0.10

Co
nt

rib
ut

ion
 to

 M
h

Crosstalk

Structural defect
Concentration defect

Figure B.13: Residual defects for conditional self-assembly via HCR (N = 4 orthogonal systems for target test tubes of
Figure B.6). Each panel corresponds to a different tube h ∈ {1, . . . , 4N + 1}. For each tube h, the structural defect and
concentration defect contributions to the tube ensemble defect, Mh , are depicted for each complex (pale shaded bars).
The total structural defect and total concentration defect contributions to the multistate test tube ensemble defect,M, are
also depicted for each tube (dark shaded bars). Each bar represents the mean over 30 independent design trials with stop
conditionM ≤ 0.02. All nucleotide, complex, and tube weights are left at the default value of 1 except for the global
crosstalk tube which is assigned a weight of N to prevent the effect of crosstalk from being diluted in the design objective
function as the number of orthogonal systems increases.

242

Boolean Logic AND using Toehold Sequestration Gates

A⋅
B 1

C⋅
D⋅

E 1 X 1 Y 1 to
ta

l0.00
0.02
0.04
0.06
0.08
0.10

Co
nt

rib
ut

ion
 to

 M
h

Step 01

B 1

X⋅
A 1 to
ta

l0.00
0.02
0.04
0.06
0.08
0.10

Co
nt

rib
ut

ion
 to

 M
h

Step 11

B⋅
C 1

D⋅
E 1 to
ta

l0.00
0.02
0.04
0.06
0.08
0.10

Co
nt

rib
ut

ion
 to

 M
h

Step 21

E 1

Y⋅
D 1 to
ta

l0.00
0.02
0.04
0.06
0.08
0.10

Co
nt

rib
ut

ion
 to

 M
h

Step 31

A⋅
B 2

C⋅
D⋅

E 2 X 2 Y 2 to
ta

l0.00
0.02
0.04
0.06
0.08
0.10

Co
nt

rib
ut

ion
 to

 M
h

Step 02

B 2

X⋅
A 2 to
ta

l0.00
0.02
0.04
0.06
0.08
0.10

Co
nt

rib
ut

ion
 to

 M
h

Step 12

B⋅
C 2

D⋅
E 2 to
ta

l0.00
0.02
0.04
0.06
0.08
0.10

Co
nt

rib
ut

ion
 to

 M
h

Step 22

E 2

Y⋅
D 2 to
ta

l0.00
0.02
0.04
0.06
0.08
0.10

Co
nt

rib
ut

ion
 to

 M
h

Step 32

A⋅
B 3

C⋅
D⋅

E 3 X 3 Y 3 to
ta

l0.00
0.02
0.04
0.06
0.08
0.10

Co
nt

rib
ut

ion
 to

 M
h

Step 03

B 3

X⋅
A 3 to
ta

l0.00
0.02
0.04
0.06
0.08
0.10

Co
nt

rib
ut

ion
 to

 M
h

Step 13

B⋅
C 3

D⋅
E 3 to
ta

l0.00
0.02
0.04
0.06
0.08
0.10

Co
nt

rib
ut

ion
 to

 M
h

Step 23

E 3

Y⋅
D 3 to
ta

l0.00
0.02
0.04
0.06
0.08
0.10

Co
nt

rib
ut

ion
 to

 M
h

Step 33

A⋅
B 4

C⋅
D⋅

E 4 X 4 Y 4 to
ta

l0.00
0.02
0.04
0.06
0.08
0.10

Co
nt

rib
ut

ion
 to

 M
h

Step 04

B 4

X⋅
A 4 to
ta

l0.00
0.02
0.04
0.06
0.08
0.10

Co
nt

rib
ut

ion
 to

 M
h

Step 14
B⋅

C 4

D⋅
E 4 to
ta

l0.00
0.02
0.04
0.06
0.08
0.10

Co
nt

rib
ut

ion
 to

 M
h

Step 24

E 4

Y⋅
D 4 to
ta

l0.00
0.02
0.04
0.06
0.08
0.10

Co
nt

rib
ut

ion
 to

 M
h

Step 34

A⋅
B 1

At
oe

1 B 1
C⋅

Do
ut

1

Ct
oe

1

D⋅
E 1

Do
ut

1 E 1 X 1 Y 1
A⋅

B 2
At

oe
2 B 2

C⋅
Do

ut
2

Ct
oe

2

D⋅
E 2

Do
ut

2 E 2 X 2 Y 2
A⋅

B 3
At

oe
3 B 3

C⋅
Do

ut
3

Ct
oe

3

D⋅
E 3

Do
ut

3 E 3 X 3 Y 3
A⋅

B 4
At

oe
4 B 4

C⋅
Do

ut
4

Ct
oe

4

D⋅
E 4

Do
ut

4 E 4 X 4 Y 4 to
ta

l0.00
0.02
0.04
0.06
0.08
0.10

Co
nt

rib
ut

ion
 to

 M
h

Crosstalk

Structural defect
Concentration defect

Figure B.14: Residual defects for Boolean logic AND using toehold sequestration gates (N = 4 orthogonal systems for
target test tubes of Figure B.7). Each panel corresponds to a different tube h ∈ {1, . . . , 4N + 1}. For each tube h, the
structural defect and concentration defect contributions to the tube ensemble defect,Mh , are depicted for each complex
(pale shaded bars). The total structural defect and total concentration defect contributions to the multistate test tube
ensemble defect,M, are also depicted for each tube (dark shaded bars). Each bar represents the mean over 30 independent
design trials with stop conditionM ≤ 0.02. All nucleotide, complex, and tube weights are left at the default value of 1
except for the global crosstalk tube which is assigned a weight of N to prevent the effect of crosstalk from being diluted
in the design objective function as the number of orthogonal systems increases.

243

Self-Assembly of a 3-Arm Junction via CHA

A 1 B 1 C 1 X 1 to
ta

l0.00
0.02
0.04
0.06
0.08
0.10

Co
nt

rib
ut

ion
 to

 M
h

Step 01

X⋅
A 1 to
ta

l0.00
0.02
0.04
0.06
0.08
0.10

Co
nt

rib
ut

ion
 to

 M
h

Step 11

X⋅
A⋅

B 1 to
ta

l0.00
0.02
0.04
0.06
0.08
0.10

Co
nt

rib
ut

ion
 to

 M
h

Step 21

X⋅
A⋅

B⋅
C 1 to
ta

l0.00
0.02
0.04
0.06
0.08
0.10

Co
nt

rib
ut

ion
 to

 M
h

Step 3a1

A⋅
B⋅

C 1 X 1 to
ta

l0.00
0.02
0.04
0.06
0.08
0.10

Co
nt

rib
ut

ion
 to

 M
h

Step 3b1

A 2 B 2 C 2 X 2 to
ta

l0.00
0.02
0.04
0.06
0.08
0.10

Co
nt

rib
ut

ion
 to

 M
h

Step 02

X⋅
A 2 to
ta

l0.00
0.02
0.04
0.06
0.08
0.10

Co
nt

rib
ut

ion
 to

 M
h

Step 12

X⋅
A⋅

B 2 to
ta

l0.00
0.02
0.04
0.06
0.08
0.10

Co
nt

rib
ut

ion
 to

 M
h

Step 22

X⋅
A⋅

B⋅
C 2 to
ta

l0.00
0.02
0.04
0.06
0.08
0.10

Co
nt

rib
ut

ion
 to

 M
h

Step 3a2

A⋅
B⋅

C 2 X 2 to
ta

l0.00
0.02
0.04
0.06
0.08
0.10

Co
nt

rib
ut

ion
 to

 M
h

Step 3b2

A 3 B 3 C 3 X 3 to
ta

l0.00
0.02
0.04
0.06
0.08
0.10

Co
nt

rib
ut

ion
 to

 M
h

Step 03

X⋅
A 3 to
ta

l0.00
0.02
0.04
0.06
0.08
0.10

Co
nt

rib
ut

ion
 to

 M
h

Step 13

X⋅
A⋅

B 3 to
ta

l0.00
0.02
0.04
0.06
0.08
0.10

Co
nt

rib
ut

ion
 to

 M
h

Step 23

X⋅
A⋅

B⋅
C 3 to
ta

l0.00
0.02
0.04
0.06
0.08
0.10

Co
nt

rib
ut

ion
 to

 M
h

Step 3a3

A⋅
B⋅

C 3 X 3 to
ta

l0.00
0.02
0.04
0.06
0.08
0.10

Co
nt

rib
ut

ion
 to

 M
h

Step 3b3

A 4 B 4 C 4 X 4 to
ta

l0.00
0.02
0.04
0.06
0.08
0.10

Co
nt

rib
ut

ion
 to

 M
h

Step 04

X⋅
A 4 to
ta

l0.00
0.02
0.04
0.06
0.08
0.10

Co
nt

rib
ut

ion
 to

 M
h

Step 14
X⋅

A⋅
B 4 to
ta

l0.00
0.02
0.04
0.06
0.08
0.10

Co
nt

rib
ut

ion
 to

 M
h

Step 24

X⋅
A⋅

B⋅
C 4 to
ta

l0.00
0.02
0.04
0.06
0.08
0.10

Co
nt

rib
ut

ion
 to

 M
h

Step 3a4

A⋅
B⋅

C 4 X 4 to
ta

l0.00
0.02
0.04
0.06
0.08
0.10

Co
nt

rib
ut

ion
 to

 M
h

Step 3b4

A 1

Ao
ut

1 B 1

Bo
ut

1

C 1

Co
ut

1 X 1 A 2

Ao
ut

2 B 2

Bo
ut

2

C 2

Co
ut

2 X 2 A 3

Ao
ut

3 B 3

Bo
ut

3

C 3

Co
ut

3 X 3 A 4

Ao
ut

4 B 4

Bo
ut

4

C 4

Co
ut

4 X 4 to
ta

l0.00
0.02
0.04
0.06
0.08
0.10

Co
nt

rib
ut

ion
 to

 M
h

Crosstalk

Structural defect
Concentration defect

Figure B.15: Residual defects for self-assembly of a 3-arm junction via CHA (N = 4 orthogonal systems for target test
tubes of Figure B.8). Each panel corresponds to a different tube h ∈ {1, . . . , 5N +1}. For each tube h, the structural defect
and concentration defect contributions to the tube ensemble defect,Mh , are depicted for each complex (pale shaded bars).
The total structural defect and total concentration defect contributions to the multistate test tube ensemble defect,M, are
also depicted for each tube (dark shaded bars). Each bar represents the mean over 30 independent design trials with stop
conditionM ≤ 0.02. All nucleotide, complex, and tube weights are left at the default value of 1 except for the global
crosstalk tube which is assigned a weight of N to prevent the effect of crosstalk from being diluted in the design objective
function as the number of orthogonal systems increases.

244

Boolean Logic AND using a Cooperative Hybridization Gate

A⋅
B 1 X 1 Y 1 to
ta

l0.00

0.02

0.04

0.06

0.08

0.10

Co
nt

rib
ut

ion
 to

 M
h

Step 01

B 1

Y⋅
A⋅

X 1 to
ta

l0.00

0.02

0.04

0.06

0.08

0.10

Co
nt

rib
ut

ion
 to

 M
h

Step 11

A⋅
B 2 X 2 Y 2 to
ta

l0.00

0.02

0.04

0.06

0.08

0.10
Co

nt
rib

ut
ion

 to
 M

h

Step 02

B 2

Y⋅
A⋅

X 2 to
ta

l0.00

0.02

0.04

0.06

0.08

0.10

Co
nt

rib
ut

ion
 to

 M
h

Step 12

A⋅
B 3 X 3 Y 3 to
ta

l0.00

0.02

0.04

0.06

0.08

0.10

Co
nt

rib
ut

ion
 to

 M
h

Step 03

B 3

Y⋅
A⋅

X 3 to
ta

l0.00

0.02

0.04

0.06

0.08

0.10

Co
nt

rib
ut

ion
 to

 M
h

Step 13

A⋅
B 4 X 4 Y 4 to
ta

l0.00

0.02

0.04

0.06

0.08

0.10

Co
nt

rib
ut

ion
 to

 M
h

Step 04

B 4

Y⋅
A⋅

X 4 to
ta

l0.00

0.02

0.04

0.06

0.08

0.10

Co
nt

rib
ut

ion
 to

 M
h

Step 14

Al
ef

t ⋅B
lef

t 1
Al

ef
t−

to
e 1

Ar
igh

t ⋅B
rig

ht
1

Ar
igh

t−
to

e 1 B 1 X 1 Y 1
Al

ef
t ⋅B

lef
t 2

Al
ef

t−
to

e 2
Ar

igh
t ⋅B

rig
ht

2
Ar

igh
t−

to
e 2 B 2 X 2 Y 2

Al
ef

t ⋅B
lef

t 3
Al

ef
t−

to
e 3

Ar
igh

t ⋅B
rig

ht
3

Ar
igh

t−
to

e 3 B 3 X 3 Y 3
Al

ef
t ⋅B

lef
t 4

Al
ef

t−
to

e 4
Ar

igh
t ⋅B

rig
ht

4
Ar

igh
t−

to
e 4 B 4 X 4 Y 4 to
ta

l0.00

0.02

0.04

0.06

0.08

0.10

Co
nt

rib
ut

ion
 to

 M
h

Crosstalk

Structural defect
Concentration defect

Figure B.16: Residual defects for Boolean logic AND using a cooperative hybridization gate (N = 4 orthogonal systems
for target test tubes of Figure B.9). Each panel corresponds to a different tube h ∈ {1, . . . , 2N + 1}. For each tube h, the
structural defect and concentration defect contributions to the tube ensemble defect,Mh , are depicted for each complex
(pale shaded bars). The total structural defect and total concentration defect contributions to the multistate test tube
ensemble defect,M, are also depicted for each tube (dark shaded bars). Each bar represents the mean over 30 independent
design trials with stop conditionM ≤ 0.02. All nucleotide, complex, and tube weights are left at the default value of 1
except for the global crosstalk tube which is assigned a weight of N to prevent the effect of crosstalk from being diluted
in the design objective function as the number of orthogonal systems increases.

245

Conditional Dicer Substrate Formation via Shape and Sequence Transduction with scRNAs

A⋅
B 1 C 1 X 1 to
ta

l0.00
0.02
0.04
0.06
0.08
0.10

Co
nt

rib
ut

ion
 to

 M
h

Step 01

B 1

X⋅
A 1 to
ta

l0.00
0.02
0.04
0.06
0.08
0.10

Co
nt

rib
ut

ion
 to

 M
h

Step 11

B⋅
C 1 to
ta

l0.00
0.02
0.04
0.06
0.08
0.10

Co
nt

rib
ut

ion
 to

 M
h

Step 21

A⋅
B 2 C 2 X 2 to
ta

l0.00
0.02
0.04
0.06
0.08
0.10

Co
nt

rib
ut

ion
 to

 M
h

Step 02

B 2

X⋅
A 2 to
ta

l0.00
0.02
0.04
0.06
0.08
0.10

Co
nt

rib
ut

ion
 to

 M
h

Step 12

B⋅
C 2 to
ta

l0.00
0.02
0.04
0.06
0.08
0.10

Co
nt

rib
ut

ion
 to

 M
h

Step 22

A⋅
B 3 C 3 X 3 to
ta

l0.00
0.02
0.04
0.06
0.08
0.10

Co
nt

rib
ut

ion
 to

 M
h

Step 03

B 3

X⋅
A 3 to
ta

l0.00
0.02
0.04
0.06
0.08
0.10

Co
nt

rib
ut

ion
 to

 M
h

Step 13

B⋅
C 3 to
ta

l0.00
0.02
0.04
0.06
0.08
0.10

Co
nt

rib
ut

ion
 to

 M
h

Step 23

A⋅
B 4 C 4 X 4 to
ta

l0.00
0.02
0.04
0.06
0.08
0.10

Co
nt

rib
ut

ion
 to

 M
h

Step 04

B 4

X⋅
A 4 to
ta

l0.00
0.02
0.04
0.06
0.08
0.10

Co
nt

rib
ut

ion
 to

 M
h

Step 14

B⋅
C 4 to
ta

l0.00
0.02
0.04
0.06
0.08
0.10

Co
nt

rib
ut

ion
 to

 M
h

Step 24

A⋅
B 1

At
oe

1 B 1 C 1
Cl

oo
p 1

Co
ut

1 X 1
A⋅

B 2
At

oe
2 B 2 C 2

Cl
oo

p 2

Co
ut

2 X 2
A⋅

B 3
At

oe
3 B 3 C 3

Cl
oo

p 3

Co
ut

3 X 3
A⋅

B 4
At

oe
4 B 4 C 4

Cl
oo

p 4

Co
ut

4 X 4 to
ta

l0.00
0.02
0.04
0.06
0.08
0.10

Co
nt

rib
ut

ion
 to

 M
h

Crosstalk

Structural defect
Concentration defect

Figure B.17: Residual defects for conditional Dicer substrate formation via shape and sequence transduction with
scRNAs (N = 4 orthogonal systems for target test tubes of Figure B.10). Each panel corresponds to a different tube
h ∈ {1, . . . , 3N + 1}. For each tube h, the structural defect and concentration defect contributions to the tube ensemble
defect,Mh , are depicted for each complex (pale shaded bars). The total structural defect and total concentration defect
contributions to the multistate test tube ensemble defect,M, are also depicted for each tube (dark shaded bars). Each bar
represents the mean over 30 independent design trials with stop conditionM ≤ 0.02. All nucleotide, complex, and tube
weights are left at the default value of 1 except for the global crosstalk tube which is assigned a weight of N to prevent the
effect of crosstalk from being diluted in the design objective function as the number of orthogonal systems increases.

246

B.2.4 Importance of Negative Design in Reducing Crosstalk

10−2 10−1 100
Ensemble defect (M)

0.0
0.2
0.4
0.6
0.8
1.0

Fr
ac

tio
n

of
 tr

ial
s

stop condition

a
Design quality

100 101 102 103 104 105 106
Costdes (s)

0.0
0.2
0.4
0.6
0.8
1.0

Fr
ac

tio
n

of
 tr

ial
s

Design cost

10−2 10−1 100
Ensemble defect (M)

0.0
0.2
0.4
0.6
0.8
1.0

Fr
ac

tio
n

of
 tr

ial
s

stop condition

b
Design quality

100 101 102 103 104 105 106
Costdes (s)

0.0
0.2
0.4
0.6
0.8
1.0

Fr
ac

tio
n

of
 tr

ial
s

Design cost

10−2 10−1 100
Ensemble defect (M)

0.0
0.2
0.4
0.6
0.8
1.0

Fr
ac

tio
n

of
 tr

ial
s

stop condition

c
Design quality

100 101 102 103 104 105 106
Costdes (s)

0.0
0.2
0.4
0.6
0.8
1.0

Fr
ac

tio
n

of
 tr

ial
s

Design cost

10−2 10−1 100
Ensemble defect (M)

0.0
0.2
0.4
0.6
0.8
1.0

Fr
ac

tio
n

of
 tr

ial
s

stop condition

d
Design quality

100 101 102 103 104 105 106
Costdes (s)

0.0
0.2
0.4
0.6
0.8
1.0

Fr
ac

tio
n

of
 tr

ial
s

Design cost

10−2 10−1 100
Ensemble defect (M)

0.0
0.2
0.4
0.6
0.8
1.0

Fr
ac

tio
n

of
 tr

ial
s

stop condition

e
Design quality

100 101 102 103 104 105 106
Costdes (s)

0.0
0.2
0.4
0.6
0.8
1.0

Fr
ac

tio
n

of
 tr

ial
s

Design cost

Conditional self-assembly via HCR

Boolean logic AND using toehold sequestration gates

Self-assembly of 3-arm junction via CHA

Boolean logic AND using a cooperative hybridization gate

Conditional Dicer substrate formation via shape and sequence transduction with scRNAs

Off-targets
With
Without

Figure B.18: Importance of negative design in reducing crosstalk (N = 8 orthogonal systems). Comparison of designs
performed with or without off-targets in the design ensemble. Left: Design quality evaluated by calculating the multistate
test tube ensemble defect (M) over the ensemble containing off-targets. The stop condition is depicted as a dashed black
line. Right: Design cost. (a) Conditional self-assembly via HCR. (b) Boolean logic AND using toehold sequestration
gates. (c) Self-assembly of 3-arm junction via CHA. (d) Boolean logic AND using a cooperative hybridization gate. (e)
Conditional Dicer substrate formation via shape and sequence transduction with scRNAs.

247

B.2.5 Effect of Sequence Constraints

10−2 10−1 100
Ensemble defect (M)

0.0
0.2
0.4
0.6
0.8
1.0

Fr
ac

tio
n

of
 tr

ial
s

stop condition

a
Design quality

100 101 102 103 104 105 106
Costdes (s)

0.0
0.2
0.4
0.6
0.8
1.0

Fr
ac

tio
n

of
 tr

ial
s

Design cost

100 101 102 103 104
Costdes/Costeval

0.0
0.2
0.4
0.6
0.8
1.0

Fr
ac

tio
n

of
 tr

ial
s

Relative design cost

10−2 10−1 100
Ensemble defect (M)

0.0
0.2
0.4
0.6
0.8
1.0

Fr
ac

tio
n

of
 tr

ial
s

stop condition

b
Design quality

100 101 102 103 104 105 106
Costdes (s)

0.0
0.2
0.4
0.6
0.8
1.0

Fr
ac

tio
n

of
 tr

ial
s

Design cost

100 101 102 103 104
Costdes/Costeval

0.0
0.2
0.4
0.6
0.8
1.0

Fr
ac

tio
n

of
 tr

ial
s

Relative design cost

10−2 10−1 100
Ensemble defect (M)

0.0
0.2
0.4
0.6
0.8
1.0

Fr
ac

tio
n

of
 tr

ial
s

stop condition

c
Design quality

100 101 102 103 104 105 106
Costdes (s)

0.0
0.2
0.4
0.6
0.8
1.0

Fr
ac

tio
n

of
 tr

ial
s

Design cost

100 101 102 103 104
Costdes/Costeval

0.0
0.2
0.4
0.6
0.8
1.0

Fr
ac

tio
n

of
 tr

ial
s

Relative design cost

10−2 10−1 100
Ensemble defect (M)

0.0
0.2
0.4
0.6
0.8
1.0

Fr
ac

tio
n

of
 tr

ial
s

stop condition

d
Design quality

100 101 102 103 104 105 106
Costdes (s)

0.0
0.2
0.4
0.6
0.8
1.0

Fr
ac

tio
n

of
 tr

ial
s

Design cost

100 101 102 103 104
Costdes/Costeval

0.0
0.2
0.4
0.6
0.8
1.0

Fr
ac

tio
n

of
 tr

ial
s

Relative design cost

10−2 10−1 100
Ensemble defect (M)

0.0
0.2
0.4
0.6
0.8
1.0

Fr
ac

tio
n

of
 tr

ial
s

stop condition

e
Design quality

100 101 102 103 104 105 106
Costdes (s)

0.0
0.2
0.4
0.6
0.8
1.0

Fr
ac

tio
n

of
 tr

ial
s

Design cost

100 101 102 103 104
Costdes/Costeval

0.0
0.2
0.4
0.6
0.8
1.0

Fr
ac

tio
n

of
 tr

ial
s

Relative design cost

Conditional self-assembly via HCR

Boolean logic AND using toehold sequestration gates

Self-assembly of 3-arm junction via CHA

Boolean logic AND using a cooperative hybridization gate

Conditional Dicer substrate formation via shape and sequence transduction with scRNAs

Constraint type
Default
Composition
Pattern
Window
All

Figure B.19: Algorithm performance including explicit sequence constraints (N = 1 system). Default: implicit sequence
constraints inherent to the reaction pathway (these constraints are also present in the other cases that follow). Composition
constraint: fraction of S ∈ [0.45, 0.55]. Pattern constraint: prevent {AAAA, CCCC, GGGG, UUUU, KKKKKK, MMMMMM, RRRRRR,
SSSSSS, WWWWWW, YYYYYY}. Window constraints: targets X and Y constrained to be subsequences of two different
mRNAs (i.e., biological sequence constraints; see Section B.2.5). All: all of the above constraints. Left: Design quality.
The stop condition is depicted as a dashed black line. Middle: Design cost. Right: Cost of sequence design relative
to a single evaluation of the objective function. (a) Conditional self-assembly via HCR. (b) Boolean logic AND using
toehold sequestration gates. (c) Self-assembly of 3-arm junction via CHA. (d) Boolean logic AND using a cooperative
hybridization gate. (e) Conditional Dicer substrate formation via shape and sequence transduction with scRNAs. Note:
for panel (c) with “All constraints”, only 1 out of 30 independent design trials terminates within the depicted time frame.

248

mRNA Sequences used for Window Constraints

The window constraints used for the studies of Figures 3.5 and B.19 constrain targets X and Y to
be subsequences of zebrafish mRNA sequences tpm3 (2175 nt) and desma (1798 nt), respectively.
Zebrafish mRNA sequences were obtained from the National Center for Biotechnology Information
(NCBI) supercitemcentyre02. Sequences are listed below 5′ to 3′. Table B.3 lists the sequence
domains constrained by window constraints for each reaction pathway, the number of candidate
windows within each mRNA, and the number of these candidate windows that also satisfy the
composition constraints, the pattern prevention constraints, or both the composition and pattern
prevention constraints.

249

mRNA: tropomyosin 3 (tpm3)

Sequence: gAACACUAUUAgCUAUUUgUAgUACUCUAAAgAggACUgCAgAACgCAUCgCAgUAgUggUgAAAAgCCgUgCgUgCgCgUgAAACAUCUg
AUCCUCACgUUACUUCCACUCgCUCUgCgUUUgACUUgUUggCggggCgUUggUgCCUUggACUUUUUUUUCCUCCUUCUCUUCUUCgCggCUCggUCCACUA

CgCUgCUCgAgAggAAUCUgCUUUAUUCgACCACACUACUCCUAAAgUAACACAUUAAAAUggCCggAUCAAACAgCAUCgAUgCAgUUAAgAgAAAAAUCAA

AgUUUUACAACAgCAAgCAgAUgAggCAgAAgAAAgAgCCgAgAUUUUgCAgAgACAggUCgAggAggAgAAgCgUgCCAgggAgCAggCUgAggCAgAggUg

gCUUCUCUgAACAggCgUAUCCAgCUggUUgAggAggAgUUggAUCgUgCUCAggAgAgACUggCCACAgCCCUgCAAAAgCUggAggAAgCCgAgAAggCCg

CAgAUgAgAgCgAgAgAgggAUgAAggUgAUUgAgAACAgggCUCUgAAggAUgAggAgAAgAUggAgCUgCAggAgAUCCAgCUUAAggAggCCAAgCACAU

UgCUgAggAggCUgACCgCAAAUAUgAAgAggUggCUCgUAAgCUggUgAUCgUUgAgggAgAgUUggAgCgUACAgAggAgAgAgCAgAgCUUgCAgAgAgC

CAUgUCAAgCAgAUggAggAggAgCUgAgAgCUCUUgACCAgACACUgAAgACUCUUCAggCCUCAgAggAgAAgUAUUCCCAgAAggAggACAAgUAUgAgg

AAgAAAUCAAgAUCCUCACUgAUAAgCUgAAggAggCUgAgACCCgUgCAgAgUUUgCUgAgAggUCUgUggCCAAACUggAgAAAACCAUUgAUgAUUUggA

AgAgAAACUgAgAgAUgCUAAAgAggAgAACAUCAAgAUCCAUgCUACUUUggACCAgACCCUgAgCgAgCUCAAUAgUUUCUAAAgAAgACCUggAgCAgAA

AAAAggCCUUUUCUUCCCUUCUUgACUCCCUCAUCUCAUUUUggUUUCUUUgUCUCUgCACAUCUgAUUCUCCCCCUUUUUUUUUCUUCUCUUCUUCUgCUgg

AggAUAAgCUCACCAAgCCAACCAgCAAAAAUgUggUgCCUCUCAAUUUUUCCAAACUACUAUUCCAAgUgAUUUgAgAAAUgAUCUACUACgAUACUCCUCA

AgAgUCAAAUgUUgACCUCggggAgCCUUUUUUggUAUUgCUCCAUgAUCAgAgCUUUACgAgCUAgUgUUUUUUCUgCAUAUCAgCCCAAACUCUCAAUgAU

AAUUUUACUggAggCUgAUUUUUgUAAAAUUUUgUgCCAUAAAAgCCUUgUUggCUUgUCUCUUgCUUggCUUUAgAUCAUUCUCAAgCCAUUUUUUUCCUgC

UgUUgCUCUgACACAggUUgUUUUUgCUggUCUUgUUggUgCCUgAUCCACUgCUAUCCUUUUCACACCUCUUUUUUUUUUUUCUUCAUCCUgCACAAgUUUC

UgCUgCCUgUUAgUCggCAUCACCggUUUUgggACCAAAACCACAUCAUgUggUCUgUAACAgUAUgCACAACCAUgCCgUgAggACCAAAUUUgUUUUAUUA

UUgUUAUUAUUAUUAAAAgCCUUUgCUUCCAUUCggAgUUUgUUUUUUUgAgUAAUAUAUgUAUUCAUUgUUUgggUCgAAUCCCCUUgCUUUUUUAACACAA

AUgUUUUgCAAACCACUAUUUgAAAUggUgCACUgUUAUgggCUUAUggUgAgCAgAUgAggCCAAgUCAUggUUUCUUCAUUAUAAUUUUCUUUUCAUUUgC

UUUAAAgAgCCAUAUUCUACCCAgggAAgAAAggUUgAAgUUgUUUUgUUUUUUUACCgUgAgUUCAAAgCAgUggCACUgCCAgAUUUAAAAggUUCAAAAg

CCgUgCAgAUCUAAAAUAUgUAUUAUgAACACAgUAAUgggAgCgAAUUgUAACACUUAAUAgUAUACAAAUUUAAgAAACAggggUgAACACAUAgUUUUAA

CUggAAAAAgCCCACAAUgAUgUgUAAUCACUUUgUUACUgUCUgUAUCUUgUgUAAUgAUACCUAAAUUCUUUUUUUAAAUAAAAACCAUgAUUUUUACUgU

CACUgAAAAAAAAAAAAAAAAAAA

250

mRNA: desmin a (desma)

Sequence: CAUUUACACAgCgUACAAACCCAACAggCCCAgUCAUgAgCACgAAAUAUUCAgCCUCCgCCgAgUCggCgUCCUCUUACCgCCgCACCUU
UggCUCAggUUUgggCUCCUCUAUUUUCgCCggCCACggUUCCUCAggUUCCUCUggCUCCUCAAgACUgACCUCCAgAgUUUACgAggUgACCAAgAgCUCC

gCUUCUCCCCAUUUUUCCAgCCACCgUgCgUCCggCUCUUUCggAggUggCUCggUggUCCgUUCCUACgCUggCCUUggUgAgAAgCUggAUUUCAAUCUgg

CUgAUgCCAUAAACCAggACUUCCUCAACACgCgUACUAAUgAgAAggCCgAgCUCCAgCACCUCAAUgACCgCUUCgCCAgCUACAUCgAgAAggUgCgCUU

CCUCgAgCAgCAgAACUCUgCCCUgACggUggAgAUUgAgCgUCUgCggggUCgCgAgCCCACCCgUAUUgCAgAgCUgUACgAggAggAgAUgAgAgAgCUg

CgCggACAggUggAggCACUgACCAAUCAgAgAUCCCgUgUggAgAUCgAgAgggACAACCUAgUCgAUgACCUACAgAAACUAAAgCUCAgACUUCAAgAgg

AgAUCCACCAgAAAgAggAAgCUgAAAACAACCUUUCUgCUUUCAgAgCUgAUgUCgAUgCUgCCACUCUggCCAggCUggACCUggAAAgACgUAUCgAggg

UCUUCACgAAgAgAUUgCAUUCCUCAggAAgAUUCAUgAggAggAgAUCCgUgAgCUgCAgAACCAgAUgCAggAgAgUCAggUgCAgAUCCAAAUggACAUg

UCCAAACCAgACCUgACUgCggCCCUCAgAgACAUUCgCCUgCAgUACgAggCUAUCgCUgCCAAgAAUAUCAgCgAggCCgAggACUggUAUAAgUCUAAgg

UUUCAgAUUUgAACCAggCAgUgAACAAgAAUAACgAggCUCUCAgAgAAgCCAAgCAggAgACCAUgCAgUUCCgUCACCAgCUCCAgUCCUACACCUgCgA

gAUUgACUCUCUCAAgggCACCAAUgAgUCUCUgAggAggCAAAUgAgUgAgAUggAggAgCggCUgggACgUgAggCCggUggUUAUCAggACACUAUCgCC

CgUCUCgAggCUgAgAUCgCAAAAAUgAAAgACgAgAUggCCCgCCACCUCCgCgAgUACCAggAUCUgCUgAAUgUgAAgAUggCUCUggAUgUggAgAUCg

CCACCUACAggAAgCUUUUggAAggAgAggAgAgCAggAUCUCgCUgCCCgUgCAgUCCUUUUCAUCCCUgAgUUUCAgAgAgAgCAgUCCAgAgCAgCACCA

CCACCAgCAgCAgCAACCACAACgCUCAUCUgAAgUCCACUCCAAgAAAACAgUCCUgAUCAAgACCAUCgAgACCCgCgAUggCgAggUCgUCAgCgAgUCC

ACACAgCACCAgCAggACgUCAUgUAAAgCUUgAgAAACAgAUCgAgUUUCACAgAAUgCCUUgCAUUUUCACUgAUggCCUCAggCUUUUUUAAgCACACAC

CCAgUAUUgCCgUgACCCAUUACCgCAUgUggAUgACgCAUggAgACAAAAggAAAgUgAgCUgAAAAACCAgAgggAggAAAAgUggAAUggUgUgAUgCUg

AgCgUUCAgAAAgUggCCAgAUgAgCUCAgAgUUUCUgAUUUAAUgAAUgUAUgUgUgCgUgUgUgUgUggUUgggUCAUAUCUgAgACACUgUUCCACAgCA

ACAAAAACAAUAAAAUUCACUgUAUUUUCUCCUAAAAAAAAAAAAAAAAAAAAAAAAAA

251

C
on

str
ai
ne
d

Ta
rg
et

W
in
do
w

So
ur
ce

C
an
di
da
te

Sa
tis
fy
in
g
co
m
po

si
tio

n
Sa

tis
fy
in
g
pa
tte

rn
Sa

tis
fy
in
g
co
m
po

si
tio

n
Re

ac
tio

n
pa
th
w
ay

se
qu
en
ce

do
m
ai
ns

fu
nc
tio

n
le
ng

th
(n
t)

m
R
N
A

w
in
do
w
s

co
ns
tra

in
ts

co
ns
tra

in
ts

an
d
pa
tte

rn
co
ns
tra

in
ts

C
on

di
tio

na
ls
el
f-
as
se
m
bl
y
vi
a

b*
-a
*

in
pu

tX
36

tp
m
3

21
40

56
5
(2

6%
)

11
6
(5
.4

%
)

89
(4
.2

%
)

hy
br
id
iz
at
io
n
ch
ai
n
re
ac
tio

n
(H

C
R
)

B
oo

le
an

lo
gi
c
A
N
D
us
in
g

a-
b

in
pu

tX
30

tp
m
3

21
46

64
1
(3

0%
)

19
0
(8
.9

%
)

11
4
(5
.3

%
)

to
eh
ol
d
se
qu
es
tra

tio
n
ga
te
s

c-
d

in
pu

tY
30

de
sm

a
17

69
69

5
(3

9%
)

37
7
(2

1%
)

15
1
(8
.5

%
)

Se
lf-
as
se
m
bl
y
of

a
3-
ar
m

ju
nc
tio

n
vi
a

y*
-b
*-
x*

-a
*

in
pu

tX
36

tp
m
3

21
40

56
5
(2

6%
)

11
6
(5
.4

%
)

89
(4
.2

%
)

ca
ta
ly
tic

ha
irp

in
as
se
m
bl
y
(C

H
A
)

B
oo

le
an

lo
gi
c
A
N
D
us
in
g

a-
b

in
pu

tX
25

tp
m
3

21
51

51
0
(2

4%
)

29
8
(1

4%
)

11
5
(5
.4

%
)

a
co
op

er
at
iv
e
hy
br
id
iz
at
io
n
ga
te

c-
d

in
pu

tY
25

de
sm

a
17

74
52

6
(3

0%
)

50
1
(2

8%
)

15
4
(8
.7

%
)

C
on

di
tio

na
lD

ic
er

su
bs
tra

te
fo
rm

at
io
n

a-
b-
c

in
pu

tX
18

tp
m
3

21
58

31
7
(1

5%
)

57
6
(2

7%
)

11
7
(5
.4

%
)

vi
a
sh
ap
e
an
d
se
qu
en
ce

tra
ns
du

ct
io
n

w
-x
-y
-z

ou
tp
ut

Y
21

de
sm

a
17

78
58

6
(3

3%
)

63
4
(3

6%
)

21
9
(1

2%
)

Ta
bl
e
B
.3
:W

in
do
w
co
ns
tra

in
ts
fo
re

ac
h
re
ac
tio

n
pa
th
w
ay

ba
se
d
on

m
R
N
A
sX

an
d
Y,

as
w
el
la
sn

um
be
ro

fc
an
di
da
te
w
in
do
w
ss

at
is
fy
in
g:

co
m
po

si
tio

n
co
ns
tra

in
ts
(S
∈
[0
.4

5,
0.

55
])
,

pa
tte

rn
co
ns
tra

in
ts
(p
re
ve
nt
{
A
A
A
A
,C
C
C
C
,G
G
G
G
,U
U
U
U
,K
K
K
K
K
K
,M
M
M
M
M
M
,R
R
R
R
R
R
,S
S
S
S
S
S
,W
W
W
W
W
W
,Y
Y
Y
Y
Y
Y
}
),
or

bo
th
.

252

B.2.6 Robustness of Predictions to Model Perturbations

10−2 10−1 100
Ensemble defect (M)

0.0
0.2
0.4
0.6
0.8
1.0

Fr
ac

tio
n

of
 tr

ial
s

stop condition

a
Perturbed defect

10−2 10−1 100
Ensemble defect (M)

0.0
0.2
0.4
0.6
0.8
1.0

Fr
ac

tio
n

of
 tr

ial
s

stop condition

b
Perturbed defect

10−2 10−1 100
Ensemble defect (M)

0.0
0.2
0.4
0.6
0.8
1.0

Fr
ac

tio
n

of
 tr

ial
s

stop condition

c
Perturbed defect

10−2 10−1 100
Ensemble defect (M)

0.0
0.2
0.4
0.6
0.8
1.0

Fr
ac

tio
n

of
 tr

ial
s

stop condition

d
Perturbed defect

10−2 10−1 100
Ensemble defect (M)

0.0
0.2
0.4
0.6
0.8
1.0

Fr
ac

tio
n

of
 tr

ial
s

stop condition

e
Perturbed defect

Conditional self-assembly via HCR

Boolean logic AND using toehold sequestration gates

Self-assembly of 3-arm junction via CHA

Boolean logic AND using a cooperative hybridization gate

Conditional Dicer substrate formation via shape and sequence transduction with scRNAs

Perturbation
0%
1%
3%
10%
30%

Figure B.20: Robustness of design quality predictions to perturbations in model parameters (N = 8 orthogonal systems).
For each design trial, the median multistate test tube ensemble defect was calculated over 100 perturbed physical models
(each parameter perturbed by Gaussian noise with a standard deviation of 0, 1, 3, 10, or 30% of the parameter modulus).
The stop condition is depicted as a dashed black line. (a) Conditional self-assembly via HCR. (b) Boolean logic ANDusing
toehold sequestration gates. (c) Self-assembly of 3-arm junction via CHA. (d) Boolean logic AND using a cooperative
hybridization gate. (e) Conditional Dicer substrate formation via shape and sequence transduction with scRNAs.

253

B.3 Additional Design Studies
Here, we compare the performance of the current constrained multistate test tube design algorithm
to that of the previously published test tube design algorithm1 on the subsidiary design problems of
test tube design and complex design (see Table 3.3 for a comparison of the design ensembles).

B.3.1 Performance for Test Tube Design
Test tube design is a special case of multistate test tube design in which the design ensemble contains
only one target test tube containing an arbitrary number of on-target and off-target complexes
(Table 3.3). For test tube design comparisons, we use the engineered test set and random test set
of target test tubes provided with Reference 1. For the engineered test set, each on-target structure
was randomly generated with stem and loop sizes randomly selected from a distribution of sizes
representative of the nucleic acid engineering literature. For the random test set, each on-target
structure was generated by calculating the minimum free energy structure of a different random
RNA sequence in 1 M Na+ at 37 ◦C. Within each target test tube, there are two on-target dimers
(eachwith a target concentration of 1 µM) and a total of 106 off-target monomers, dimers, trimers and
tetramers (each with vanishing target concentration), representing all complexes of up to Lmax = 4
strands (excluding the two on-target dimers). For each test set, 50 target test tubes were generated
for each on-target dimer size, {50, 100, 200, 400} nt, with all strands the same length in each target
test tube. The structural properties of the on-target structures in the engineered and random test sets
are summarized in Supplementary Section S3 of Reference 1. Five design trials were run for each
test case using stop condition fstop = 0.01 (i.e., no more than 1% of nucleotides incorrectly paired
at equilibrium). For test tube design, Figures B.21 and B.22 demonstrate that the performance of
the current algorithm and the previously published test tube design algorithm1 is similar on the
engineered and random test sets.

254

10−3 10−2 10−1 100

Ensemble defect (M)

0.0
0.2
0.4
0.6
0.8
1.0

Fr
ac

tio
n

of
 tr

ial
s

stop condition

a Design quality

100 101 102 103 104 105

Costdes (s)

0.0
0.2
0.4
0.6
0.8
1.0

Fr
ac

tio
n

of
 tr

ial
s

b Design cost

100 101 102 103

Costdes/Costeval

0.0
0.2
0.4
0.6
0.8
1.0

Fr
ac

tio
n

of
 tr

ial
s

c Relative design cost

On-target size
50
100
200
400

Figure B.21: Algorithm performance for test tube design on the engineered test set. Comparison of the current multistate
test tube design algorithm (solid lines) to the previously published test tube design algorithm1 (dotted lines). (a) Design
quality. The stop condition is depicted as a dashed black line. (b) Design cost. (c) Cost of sequence design relative to a
single evaluation of the objective function. Design conditions: RNA in 1 M Na+ at 37 ◦C.

10−3 10−2 10−1 100

Ensemble defect (M)

0.0
0.2
0.4
0.6
0.8
1.0

Fr
ac

tio
n

of
 tr

ial
s

stop condition

a Design quality

100 101 102 103 104 105

Costdes (s)

0.0
0.2
0.4
0.6
0.8
1.0

Fr
ac

tio
n

of
 tr

ial
s

b Design cost

100 101 102 103

Costdes/Costeval

0.0
0.2
0.4
0.6
0.8
1.0

Fr
ac

tio
n

of
 tr

ial
s

c Relative design cost

On-target size
50
100
200
400

Figure B.22: Algorithm performance for test tube design on the random test set. Comparison of the current multistate
test tube design algorithm (solid lines) to the previously published test tube design algorithm1 (dotted lines). (a) Design
quality. The stop condition is depicted as a dashed black line. (b) Design cost. (c) Cost of sequence design relative to a
single evaluation of the objective function. Design conditions: RNA in 1 M Na+ at 37 ◦C.

255

B.3.2 Performance for Complex Design
Complex design is a special case of multistate test tube design in which the design ensemble contains
one target test tube containing one on-target complex and no off-target complexes (Table 3.3). For
complex design comparisons, we use the (dimer) on-target structures from the target test tubes in
the engineered and random test sets described above. Hence, for the studies, each target test tube
contains a single on-target dimer and no off-targets; there are 50 on-target structures of each size
{50, 100, 200, 400} nt (using the first-listed on-target dimer in each of the 50 target test tubes of
Section B.3.1). Five design trials were run for each test case using stop condition fstop = 0.01 (i.e.,
no more than 1% of nucleotides incorrectly paired at equilibrium). For complex design, Figures B.23
and B.24 demonstrate that the performance of the current algorithm and the previously published
test tube design algorithm1 is similar for the on-target structures in the engineered and random test
sets.

10−3 10−2 10−1 100

Ensemble defect (M)

0.0
0.2
0.4
0.6
0.8
1.0

Fr
ac

tio
n

of
 tr

ial
s

stop condition

a Design quality

10−2 10−1 100 101 102 103

Costdes (s)

0.0
0.2
0.4
0.6
0.8
1.0

Fr
ac

tio
n

of
 tr

ial
s

b Design cost

100 101 102 103

Costdes/Costeval

0.0
0.2
0.4
0.6
0.8
1.0

Fr
ac

tio
n

of
 tr

ial
s

optimality bound

c Relative design cost

On-target size
50
100
200
400

Figure B.23: Algorithm performance for complex design using on-target structures from the engineered test set. Compar-
ison of the current multistate test tube design algorithm (solid lines) to the previously published test tube design algorithm1

(dotted lines). (a) Design quality. The stop condition is depicted as a dashed black line. (b) Design cost. (c) Cost of
sequence design relative to a single evaluation of the objective function. The optimality bound4 is depicted as a dashed
black line. Design conditions: RNA in 1 M Na+ at 37 ◦C.

10−3 10−2 10−1 100

Ensemble defect (M)

0.0
0.2
0.4
0.6
0.8
1.0

Fr
ac

tio
n

of
 tr

ial
s

stop condition

a Design quality

10−2 10−1 100 101 102 103

Costdes (s)

0.0
0.2
0.4
0.6
0.8
1.0

Fr
ac

tio
n

of
 tr

ial
s

b Design cost

100 101 102 103

Costdes/Costeval

0.0
0.2
0.4
0.6
0.8
1.0

Fr
ac

tio
n

of
 tr

ial
s

optimality bound

c Relative design cost

On-target size
50
100
200
400

Figure B.24: Algorithm performance for complex design using on-target structures from the random test set. Comparison
of the current multistate test tube design algorithm (solid lines) to the previously published test tube design algorithm1

(dotted lines). (a) Design quality. The stop condition is depicted as a dashed line. (b) Design cost. (c) Cost of sequence
design relative to a single evaluation of the objective function. The optimality bound4 is depicted as a dashed black line.
Design conditions: RNA in 1 M Na+ at 37 ◦C.

256

Bibliography

[1] B. R. Wolfe and N. A. Pierce. “Nucleic acid sequence design for a test tube of interacting
nucleic acid strands”. In: ACS Synth. Biol. 4.10 (2015), pp. 1086–1100.

[2] R. M. Dirks, J. S. Bois, J. M. Schaeffer, E. Winfree, and N. A. Pierce. “Thermodynamic
Analysis of Interacting Nucleic Acid Strands”. In: SIAM Rev. 49.1 (2007), pp. 65–88.

[3] J. N. Zadeh, C. D. Steenberg, J. S. Bois, B. R. Wolfe, M. B. Pierce, A. R. Khan, R. M. Dirks,
and N. A. Pierce. “NUPACK: Analysis and Design of Nucleic Acid Systems”. In: J. Comput.
Chem. 32.1 (2011), pp. 170–173.

[4] J. N. Zadeh, B. R. Wolfe, and N. A. Pierce. “Nucleic Acid Sequence Design via Efficient
Ensemble Defect Optimization”. In: J. Comput. Chem. 32 (2011), pp. 439–452.

[5] M. J. Serra and D. H. Turner. “Predicting thermodynamic properties of RNA”. In: Methods
Enzymol. 259 (1995), pp. 242–261.

[6] D. H. Mathews, J. Sabina, M. Zuker, and D. H. Turner. “Expanded sequence dependence
of thermodynamic parameters improves prediction of RNA secondary structure”. In: J. Mol.
Biol. 288 (1999), pp. 911–940.

[7] M. Zuker. “Mfold web server for nucleic acid folding and hybridization prediction”. In:
Nucleic Acids Res. 31.13 (2003), pp. 3406–3415.

[8] J. SantaLucia Jr. and D. Hicks. “The thermodynamics of DNA structural motifs”. In: Annu.
Rev. Biophys. Biomol. Struct. 33 (2004), pp. 415–440.

[9] R. T. Koehler and N. Peyret. “Thermodynamic Properties of DNA Sequences: Characteristic
Values for the Human Genome”. In: Bioinformatics 21.16 (2005), pp. 3333–3339.

[10] A. J. Genot, D. Y. Zhang, J. Bath, and A. J. Turberfield. “Remote Toehold: A Mechanism
for Flexible Control of DNA Hybridization Kinetics”. In: J. Am. Chem. Soc. 133.7 (2011),
pp. 2177–2182.

[11] A. J. Genot, J. Bath, and A. J. Turberfield. “Reversible Logic Circuits Made of DNA”. In: J.
Am. Chem. Soc. 133.50 (2011), pp. 20080–20083.

[12] C. J. Delebecque, P. A. Silver, and A. B. Lindner. “Designing and using RNA scaffolds to
assemble proteins in vivo”. In: Nat. Protoc. 7.10 (2012), pp. 1797–1807.

[13] D. G. Greene, J. W. Keum, and H. Bermudez. “The Role of Defects on the Assembly and
Stability of DNA Nanostructures”. In: Small 8.9 (2012), pp. 1320–1325.

[14] A. Padirac, T. Fujii, andY. Rondelez. “Quencher-freemultiplexedmonitoring ofDNA reaction
circuits”. In: Nucleic Acids Res. 40.15 (2012).

[15] H. Tang, R. Deschner, P. Allen, Y. J. Cho, P. Sermas, A. Maurer, A. D. Ellington, and C. G.
Willson. “Analysis of DNA-Guided Self-Assembly of Microspheres Using Imaging Flow
Cytometry”. In: J. Am. Chem. Soc. 134.37 (2012), pp. 15245–15248.

[16] X. J. Zhang and V. K. Yadavalli. “Functional self-assembled DNA nanostructures for molec-
ular recognition”. In: Nanoscale 4.7 (2012), pp. 2439–2446.

257

[17] D. B. Goodman, G. M. Church, and S. Kosuri. “Causes and Effects of N-Terminal Codon
Bias in Bacterial Genes”. In: Science 342.6157 (2013), pp. 475–479.

[18] X. W. Xu and X. R. Yang. “Reversion of DNA strand displacement using functional nucleic
acids as toeholds”. In: Chem. Commun. 50.7 (2014), pp. 805–807.

[19] R. M. Dirks and N. A. Pierce. “Triggered Amplification by Hybridization Chain Reaction”.
In: Proc. Natl. Acad. Sci. USA 101.43 (2004), pp. 15275–15278.

[20] V. Patzel, S. Rutz, I. Dietrich, C. Köberle, A. Sheffold, and S. Kaufmann. “Design of siRNAs
producing unstructured guide-RNAs results in improved RNA interference efficiency”. In:
Nat. Biotechnol. 23.11 (2005), pp. 1440–1444.

[21] R. Penchovsky andR.Breaker. “Computational design and experimental validation of oligonucleotide-
sensing allosteric ribozymes”. In: Nat. Biotechnol. 23.11 (2005), pp. 1424–1433.

[22] S. Venkataraman, R. M. Dirks, P. W. K. Rothemund, E. Winfree, and N. A. Pierce. “An
autonomous polymerization motor powered by DNA hybridization”. In: Nat. Nanotechnol. 2
(2007), pp. 490–494.

[23] P. Yin, H. M. T. Choi, C. R. Calvert, and N. A. Pierce. “Programming biomolecular self-
assembly pathways”. In: Nature 451.7176 (2008), pp. 318–322.

[24] H. M. Salis, E. A. Mirsky, and C. A. Voigt. “Automated design of synthetic ribosome binding
sites to control protein expression”. In: Nat. Biotechnol. 27.10 (2009), pp. 946–950.

[25] H. M. T. Choi, J. Y. Chang, L. A. Trinh, J. E. Padilla, S. E. Fraser, and N. A. Pierce.
“Programmable in situ amplification for multiplexed imaging of mRNA expression”. In: Nat.
Biotechnol. 28.11 (2010), pp. 1208–12.

[26] B. L. Li, A. D. Ellington, and X. Chen. “Rational, modular adaptation of enzyme-free DNA
circuits to multiple detection methods”. In: Nucleic Acids Res. 39.16 (2011), e110.

[27] J. Choi, K. R. Love, Y. Gong, T. M. Gierahn, and J. C. Love. “Immuno-Hybridization
Chain Reaction for Enhancing Detection of Individual Cytokine-Secreting Human Peripheral
Mononuclear Cells”. In: Anal. Chem. 83.17 (2011), pp. 6890–6895.

[28] J. Dong,X. Cui, Y.Deng, andZ. Tang. “AmplifiedDetection ofNucleicAcid byG-Quadruplex
Based Hybridization Chain Reaction”. In: Biosens. Bioelectron. 38.1 (2012), pp. 258–263.

[29] T. Nishimura, Y. Ogura, and J. Tanida. “Fluorescence resonance energy transfer-based molec-
ular logic circuit using a DNA scaffold”. In: Appl. Phys. Lett. 101 (2012), p. 233703.

[30] M. Schade, A. Knoll, A. Vogel, O. Seitz, J. Liebscher, D. Huster, A. Herrmann, and A.
Arbuzova. “Remote Control of Lipophilic Nucleic Acids Domain Partitioning by DNA Hy-
bridization and Enzymatic Cleavage”. In: J. Am. Chem. Soc. 134.50 (2012), pp. 20490–20497.

[31] J. R. Vieregg, H. M. Nelson, B. M. Stoltz, and N. A. Pierce. “Selective nucleic acid capture
with shielded covalent probes”. In: J. Am. Chem. Soc. 135.26 (2013), pp. 9691–9699.

[32] L. M. Hochrein, M. Schwarzkopf, M. Shahgholi, P. Yin, and N. A. Pierce. “Conditional Dicer
substrate formation via shape and sequence transduction with small conditional RNAs”. In:
J. Am. Chem. Soc. 135.46 (2013), pp. 17322–17330.

[33] A. J. Genot, J. Bath, and A. J. Turberfield. “Combinatorial Displacement of DNA Strands:
Application to Matrix Multiplication and Weighted Sums”. In: Angew. Chem., Int. Ed. 52.4
(2013), pp. 1189–1192.

258

[34] G. D. Hamblin, A. A. Hariri, K. M. M. Carneiro, K. L. Lau, G. Cosa, and H. F. Sleiman.
“Simple Design for DNA Nanotubes from a Minimal Set of Unmodified Strands: Rapid,
Room-Temperature Assembly and Readily Tunable Structure”. In: ACS Nano 7.4 (2013),
pp. 3022–3028.

[35] C. C. Santini, J. Bath, A. M. Tyrrell, and A. J. Turberfield. “A clocked finite state machine
built from DNA”. In: Chem. Commun. 49.3 (2013), pp. 237–239.

[36] H. M. T. Choi, V. A. Beck, and N. A. Pierce. “Next-generation in situ hybridization chain
reaction: higher gain, lower cost, greater durability”. In:ACSNano 8.5 (2014), pp. 4284–4294.

[37] Y. S. Jiang, S. Bhadra, B. L. Li, and A. D. Ellington. “Mismatches Improve the Performance
of Strand-Displacement Nucleic Acid Circuits”. In: Angew. Chem., Int. Ed. 53.7 (2014),
pp. 1845–1848.

[38] C. Geary, P. W. K. Rothemund, and E. S. Andersen. “A single-stranded architecture for
cotranscriptional folding of RNA nanostructures”. In: Science 345.6198 (2014), pp. 799–804.

[39] A. A. Green, P. A. Silver, J. J. Collins, and P. Yin. “Toehold Switches: De-Novo-Designed
Regulators of Gene Expression”. In: Cell 159.4 (2014), pp. 925–939.

[40] J. M. Hu, Y. J. Yu, J. C. Brooks, L. A. Godwin, S. Somasundaram, F. Torabinejad, J. Kim,
C. Shannon, and C. J. Easley. “A Reusable Electrochemical Proximity Assay for Highly
Selective, Real-Time Protein Quantitation in Biological Matrices”. In: J. Am. Chem. Soc.
136.23 (2014), pp. 8467–8474.

[41] R. R. F. Machinek, T. E. Ouldridge, N. E. C. Haley, J. Bath, and A. J. Turberfield. “Pro-
grammable energy landscapes for kinetic control of DNA strand displacement”. In: Nat
Commun 5 (2014), p. 5324.

[42] E. Franco, G. Giordano, P. O. Forsberg, and R.M.Murray. “Negative AutoregulationMatches
Production and Demand in Synthetic Transcriptional Networks”. In: ACS Synth. Biol. 3.8
(2014), pp. 589–599.

[43] B. Koos, G. Cane, K. Grannas, L. Lof, L. Arngarden, J. Heldin, C. M. Clausson, A. Klaesson,
M. K. Hirvonen, F. M. S. de Oliveira, V. O. Talibov, N. T. Pham, M. Auer, U. H. Danielson,
J. Haybaeck, M. Kamali-Moghaddam, and O. Soderberg. “Proximity-dependent initiation of
hybridization chain reaction”. In: Nat Commun 6 (2015), p. 7294.

[44] J. G. Zalatan, M. E. Lee, R. Almeida, L. A. Gilbert, E. H. Whitehead, M. La Russa, J. C. Tsai,
J. S. Weissman, J. E. Dueber, L. S. Qi, and W. A. Lim. “Engineering Complex Synthetic
Transcriptional Programs with CRISPR RNA Scaffolds”. In: Cell 160.1-2 (2015), pp. 339–
350.

[45] R. P. Galimidi, J. S. Klein, M. S. Politzer, S. Y. Bai, M. S. Seaman, M. C. Nussenzweig,
A. P. West, and P. J. Bjorkman. “Intra-Spike Crosslinking Overcomes Antibody Evasion by
HIV-1”. In: Cell 160.3 (2015), pp. 433–446.

[46] T.Raschle, C.X. Lin, R. Jungmann,W.M. Shih, andG.Wagner. “ControlledCo-reconstitution
of Multiple Membrane Proteins in Lipid Bilayer Nanodiscs Using DNA as a Scaffold”. In:
ACS Chem. Biol. 10.11 (2015), pp. 2448–2454.

[47] M. K. Takahashi, K. E. Watters, P. M. Gasper, T. R. Abbott, P. D. Carlson, A. A. Chen, and
J. B. Lucks. “Using in-cell SHAPE-Seq and simulations to probe structure-function design
principles of RNA transcriptional regulators”. In: RNA 22.6 (2016), pp. 920–933.

259

[48] Y. J. Lee, A. Hoynes-O’Connor, M. C. Leong, and T. S. Moon. “Programmable control of
bacterial gene expression with the combined CRISPR and antisense RNA system”. In:Nucleic
Acids Res. 44.5 (2016), pp. 2462–2473.

[49] M. Zuker and P. Stiegler. “Optimal computer folding of large RNA sequences using thermo-
dynamics and auxiliary information”. In: Nucleic Acids Res. 9.1 (1981), pp. 133–147.

[50] J. McCaskill. “The equilibrium partition function and base pair binding probabilities for RNA
secondary structure”. In: Biopolymers 29 (1990), pp. 1105–1119.

[51] I. Hofacker, W. Fontana, P. Stadler, L. Bonhoeffer, M. Tacker, and P. Schuster. “Fast folding
and comparison of RNA secondary structures”. In: Chem. Mon. 125 (1994), pp. 167–188.

[52] R. B. Lyngso, M. Zuker, and C. N. S. Pedersen. “Fast evaluation of internal loops in RNA
secondary structure prediction”. In: Bioinformatics 15.6 (1999), pp. 440–445.

[53] R. M. Dirks and N. A. Pierce. “An algorithm for computing nucleic acid base-pairing proba-
bilities including pseudoknots”. In: J. Comput. Chem. 25 (2004), pp. 1295–1304.

[54] R. Dimitrov and M. Zuker. “Prediction of hybridization and melting for double-stranded
nucleic acids”. In: Biophys. J. 87.1 (2004), pp. 215–226.

[55] M. Andronescu, Z. Zhang, and A. Condon. “Secondary structure prediction of interacting
RNA molecules”. In: J. Mol. Biol. 345 (2005), pp. 987–1001.

[56] S. Bernhart, H. Tafer, U. Muckstein, C. Flamm, P. Stadler, and I. Hofacker. “Partition function
and base pairing probabilities of RNA heterodimers”. In: Algorithm Mol. Biol. 1.3 (2006).

[57] R. Dechter. Constraint Processing. New York: Morgan Kaufmann, 2003.

[58] G. Seelig, D. Soloveichik, D. Zhang, and E. Winfree. “Enzyme-free nucleic acid logic cir-
cuits”. In: Science 314.5805 (2006), pp. 1585–1588.

[59] D. Y. Zhang. “Cooperative Hybridization of Oligonucleotides”. In: J. Am. Chem. Soc. 133.4
(2011), pp. 1077–1086.

260

A p p e n d i x C

Design Visualization Utilities

This appendix describes two visualization utilies built using the Python Bokeh library1 and one built
using the Python NetworkX library2.

C.1 Realtime Design Trajectory Visualization
When using the multiobjective design algorithm of Chapter 4, a user may set a filepath to act as a
log file. Information is then logged after the following set of algorithm states is reached:

• A mutation is accepted.

• A mutation is rejected.

• Leaf sequences are reseeded.

• Sequence merging is successful.

• Sequence merging is unsuccessful.

• The current successfully merged sequence is better than the previous best sequence at a given
depth in the decomposition forest.

• Complexes in Ψactive are redecomposed.

• The current sequence is the best encountered sequence when evaluated over the full ensemble.

• The current sequence is worse than a previously sequence when evaluated over the full
ensemble.

• An off-target is transferred to Ψactive during ensemble refocusing.

Information is logged about the identity of the state, the current position in the tree (depth), the sizes
of the setsΨactive andΨpassive, the time since the start of design, and the current objective function (or
estimate). Additionally the sequence is logged as a JSON string representing a map of each domain
to its sequence. Results are displayed in realtime using Bokeh1 and data is parsed from the log file
using Pandas3. Each of the above states corresponds to a different colored series of connected dots
on a plot of the objective function (or estimate) vs. time since the beginning of design. Hovering
over any of the dots produces a floating tooltip detailing the remainder of the logged information,
sans the sequences (which can be read from the log file more easily). An example is shown in
Figure C.1.

261

Figure C.1: Example trajectory for design of the conditional Dicer substrate formation via shape and sequence transduction
reaction pathway. Each colored series corresponds to each time the design algorithm enters a particular state: dark blue
for an accepted mutation, light blue for a rejected mutation, red for successful sequence merging, pink for unsuccessful
sequence merging, light orange for redecomposition, dark orange for ensemble refocusing, and green for encountering the
best sequence over the full ensemble.

We expect this to allow future developers of the design algorithm to visually inspect the effect of
algorithm changes on the trajectory of benchmarking designs. Furthermore, it can act as as useful
tool for users wishing to either examine the effects of changing constraints or tube specifications as
well as allow preemption when a long running design is determined to be “good enough”.

262

C.2 Interactive Design Results Visualization
After a design job has finished, a vast amount of information about the final design state is returned
as a Python object. This object can be explored directly in an interactive session or serialized to
JSON and saved in a file. For designs with many complexes and test tubes, obtaining a gestalt view
of the design by exploring the text in this file can be difficult (while still very useful for collecting
the designed sequences). The JSON file can be read into our program for visualizing the results in
an interactive and intuitive way. This program is built using Bokeh1.

After entering the filename of their JSON output file, the user is presented with a test tube summary
page containing a series of bar plots corresponding to the set of target test tubes Ω. The total height
of each pair of stacked bars shows the normalized test tube defectMh for each test tube h. This is
partitioned into defect attributed to incorrect nucleotides in the ensemble of an on-target complex
(structural defect) and nucleotides that have formed off-target complexes (concentration defect).
This is shown in Figure C.2. A toggle switch allows redisplay of the data on a logarithmic y-axis,
with bars replaced with circles, as shown in Figure C.3. Note that in the logarithmic case, the circles
independently represent the structural and concentration defects, so they do not “stack”. Hovering
over any of the bars or circles reveals a tooltip with the numeric information and name of the tube.

Figure C.2: The residuals of target test tubes on a linear scale. Structural defect shown in blue; concentration defect
shown in green.

263

Figure C.3: The residuals of target test tubes on a linear scale. Structural defect shown in blue; concentration defect
shown in green. Note: the hover tool shows numerical values for both structural and concentration defect components
even if the circles occlude one another.

264

By clicking on either a bar or circle corresponding to a given test tube, the test tube summary is
replaced with a test tube details page containing information about the complexes of the clicked
test tube. The upper panel shows residual defects, divided into structural and concentration defect
components for each of the on-targets in the test tube. The rightmost bar, labeled “total”, shows the
sum of the structural and concentration components over all on-targets in the tube. The height of the
stacked total bar is equivalent to the normalized test tube ensemble defect,Mh, for this tube. The
lower panel contains a second set of bar graphs depicting the target and actual concentrations of all
on-targets and off-targets in the test tube. This is shown in Figure C.4. The results can be redisplayed
on logarithmic scales as shown in Figure C.5. A user can threshold the results using the box zoom
feature of the interactive concentration plot, which becomes important for test tubes with thousands
of off-targets. This can be especially helpful for comparing the concentrations of off-targets in a
test tube with very low concentration defect. Hovering over any of the bars, circles, or x’s reveals a
tooltip with the numeric information and name of the complex. The results in a different test tube
can be explored by selecting the other test tube’s name from a dropdown list, or by navigating back
to the test tube summary page and clicking a different bar/circle.

Finally, a user can compare the ensemble defects n(φ j, sj) of all on-targets in Ψon simultaneously by
moving to the on-targets page. Both the ensemble defect in nucleotides and the normalized ensemble
defect are shown to allow absolute and relative comparison. On-targets are sorted in both sets of
bars in descending order of normalized complex ensemble defect. This is shown in Figure C.6. As
before, the data can be simultaneously redisplayed on logarithmic axes, as shown in Figure C.7.
Hovering over any of the bars or circles reveals a tooltip with the numeric information and name of
the on-target complex.

265

Figure C.4: Detailed information about a target test tube on linear scales. Top: Structural defect (shown in blue) and
concentration defect (shown in green) contributions of each on-target to the overall test tube ensemble defect. Bottom:
Target concentration (shown in purple) and actual concentration (shown in red) of each complex in the test tube, partitioned
into on-targets and off-targets and sorted within each subset in descending order of actual concentration.

266

Figure C.5: Detailed information about a target test tube on logarithmic scales. Top: Structural defect (shown in blue)
and concentration defect (shown in green) contributions of each on-target to the overall test tube ensemble defect. Note:
the hover tool shows numerical values for both structural and concentration defect components even if the circles occlude
one another. Bottom: Target concentration (shown as purple circles) and actual concentration (shown as red x’s) of each
complex in the test tube, partitioned into on-targets and off-targets and sorted within each subset in descending order of
actual concentration.

267

Figure C.6: Ensemble defects of all on-targets in the design on a linear scale. Top: Ensemble defect in nucleotides.
Bottom: Ensemble defect normalized as a fraction of the nucleotides in the on-target.

268

Figure C.7: Ensemble defects of all on-targets in the design on a logarithmic scale. Top: Ensemble defect in nucleotides.
Bottom: Ensemble defect normalized as a fraction of the nucleotides in the on-target.

269

C.3 Hierarchical Decomposition Visualization
Addtionally, as both a debugging tool and exploratory analysis tool, we developed a software pipeline
for visualizing the decomposition cost tree of a hierarchically decomposed complex. By setting an
output file path, the multiobjective design algorithm emits textually serialized representations of
the decomposition trees of complexes in Ψactive during design. This is then read-in to Python with
Pandas3. This data is then post-processed in Python to recreate the structure of the decomposition tree
tagged with nodal information out of nested built-in Python types. This object can be explored with
a depth-first search algorithm to compute the cost of the tree and then processed into a NetworkX2

graph. NetworkX provides visualization functionality used to lay out the nodes in a force-directed
fashion. Because it is a decomposition tree, it is possible to use a planar layout, but the options in
NetworkX to do this lead to asymmetric representations of the tree, which is less desirable. Nodes
are colored by the log of the number of nucleotides in the node and labeled with this number.

Examples of an efficient (Figure C.8) and inefficient (Figure C.9) decomposition are shown. We
expect this will be a useful utility for developers to ensure that changes to the decomposition
algorithm have not introduced bugs. Also, it should be useful for users to discover if the interplay
between base pairing and sequence constraints is leading to expensive decompositions, which could
either indicate a logical error in a design script or a particularly difficult design problem (e.g. a
complex containing repeated complementary domains targeted to form one of multiple alternative
domain-level structures).

270

Figure C.8: Example of an efficient decomposition of a 1600 nt structure. The cost to compute the entire tree is 1.34× the
cost to compute the root node.

271

Figure C.9: Example of an inefficient decomposition of a 1600 nt structure. The cost to compute the entire tree is 2.00×
the cost to compute the root node.

272

Bibliography

[1] Bokeh Development Team. Bokeh: Python library for interactive visualization. 2018. url:
https://bokeh.pydata.org/en/latest/.

[2] A. Hagberg, P. Swart, and D. S Chult. Exploring network structure, dynamics, and function
using NetworkX. Tech. rep. Los Alamos National Lab.(LANL), Los Alamos, NM (United
States), 2008.

[3] W. McKinney. “Data Structures for Statistical Computing in Python”. In: Proceedings of the
9th Python in Science Conference. Ed. by S. van der Walt and J. Millman. 2010, pp. 51–56.

https://bokeh.pydata.org/en/latest/

	Acknowledgements
	Abstract
	Published Content and Contributions
	Table of Contents
	List of Figures
	List of Tables
	Introduction
	Bibliography
	A Unified Dynamic Programming Framework for The Analysis of Interacting Nucleic Acid Strands: Enhanced Models, Robustness, and Speed
	Introduction
	Physical Model
	Complex Ensemble and Test Tube Ensembles
	Loop-Based Free Energy Model
	Coaxial and Dangle Stacking Subensembles within Complex Ensembles
	Symmetry Correction
	Free Energy Parameters

	Algorithms
	Physical Quantities
	Existing Dynamic Programs
	Unified Dynamic Programming Framework
	Recursions for the Complex Ensemble with Coaxial and Dangle Stacking
	Evaluation Algebras for Partition Function, Minimum Free Energy, and Ensemble Size
	Overflow-Safe Evaluation Algebra for Large Partition Function Calculations.
	Efficient Blockwise Dynamic Programs over Subcomplexes Using Caching and Vectorization
	Enhanced Efficiency and Robustness of the Partition Function Algorithm for Complex Ensembles Including Very Large Complexes
	Enhanced Efficiency of the Partition Function Algorithm for Sets of Complexes in Test Tube Ensembles
	Backtrack-Free Base-Pairing Probability Matrices
	Evaluation Algebras and Backtracking Operation Orders for Simultaneous Structure Sampling, MFE Structure Determination, and Suboptimal Structure Determination

	Conclusions
	Methods Summary
	Implementation.
	Trials

	Resources
	NUPACK Source Code
	NUPACK Python Module
	Support

	Author Information
	Acknowledgments

	Bibliography
	Constrained Multistate Sequence Design for Nucleic Acid Reaction Pathway Engineering
	Introduction
	Design Formulation
	Reaction Pathway Specification
	Multistate Test Tube Design Ensemble
	Specification of Target Test Tubes
	Design Objective Function
	Sequence Constraints
	Constrained Multistate Test Tube Design Problem

	Methods
	Algorithm Overview
	Implementation
	Sequence Design Trials

	Results
	Reaction Pathway Engineering Case Studies
	Algorithm Performance for Constrained Multistate Test Tube Design
	Importance of Negative Design in Reducing Crosstalk
	Effect of Sequence Constraints
	Robustness of Predictions to Model Perturbations

	Discussion
	Complex Design
	Multistate Complex Design
	Test Tube Design
	Multistate Test Tube Design

	Conclusions
	Associated Content
	Author Information
	Acknowledgments

	Bibliography
	Next-Generation Sequence Design for Nucleic Acid Reaction Pathway Engineering: Enhanced Models, Flexibility, and Speed
	Introduction
	Formulation
	Ensemble
	Multiobjective Optimization Problem Formulation
	Hard Constraints
	Soft Constraints

	Algorithm
	Thermodynamics Backend
	Constraint Satisfaction Problem Solver
	Hierarchical Ensemble Decomposition
	Modifications to the Hierarchical Ensemble Decomposition Procedure
	Leaf Optimization
	Merging and Redecomposing
	Full Ensemble Evaluation
	Defect Weights

	Results and Discussion
	Trials
	Model and Recursions Used
	Hierarchical Ensemble Decomposition Performance Comparison
	Constraint Satisfaction Solver Performance
	Complex Design Performance
	Test Tube Design Performance
	Reaction Pathway Case Studies
	Orthogonal Reaction Pathway Design
	Reaction Pathway Design with Hard Constraints
	Reaction Pathway Design with Hard and Soft Constraints
	Importance of Negative Design in Reducing Crosstalk
	Implementation

	Future Directions
	Conclusion

	Bibliography
	A Unified Dynamic Programming Framework for The Analysis of Interacting Nucleic Acid Strands: Supplementary Information
	Additional model details
	Strand association penalty
	Salt corrections for DNA complexes
	Temperature dependence
	Treatment of constant free energy terms for calculations on complex ensembles

	Recursion diagrams and equations overview
	Recursions across intrastrand and interstrand blocks
	Recursion conventions

	Recursions excluding coaxial stacking and dangles
	Intrastrand dynamic programming recursions
	Interstrand dynamic programming recursions
	Recursion contributions for interior loop contributions

	Recursions including coaxial stacking and dangles
	Intrastrand dynamic programming recursions
	Interstrand dynamic programming recursions

	Evaluation algebras for each physical quantity
	Evaluation algebras for scalar outputs
	Evaluation algebras for structure generation

	Operation orders for each physical quantity
	A partial order on recursion elements
	Partition function, structure count, and MFE
	Overflow-safe partition function
	Pair probability matrix
	Sampled structure generation
	Suboptimal structure generation

	Distinguishability Issues
	Partition function
	Equilibrium secondary structure probability
	Equilibrium base-pairing probabilities
	Structure sampling
	Equilibrium complex concentrations
	Ensemble pair fractions
	MFE free energy and secondary structure

	Additional studies
	Empirical dependence of ensemble size on complex size
	Empirical dependence of partition function on complex size
	Relative cost of partition function, pair probability, and MFE calculations
	Robustness and speed of partition function calculations with different data types
	Performance of simultaneous vs serial structure sampling
	Different approaches for approximating the MFE structure

	Validation test suite
	Exhaustive enumeration algorithms
	Unit tests
	Regression tests

	Bibliography
	Constrained Multistate Sequence Design for Nucleic Acid Reaction Pathway Engineering: Supplementary Information
	Algorithm
	Secondary Structure Model
	Analyzing Equilibrium Base-Pairing in the Multistate Test Tube Ensemble
	Test Tube Ensemble Focusing
	Hierarchical Ensemble Decomposition
	Efficient Estimation of Test Tube Ensemble Properties
	Adjusting Design Priorities using Defect Weights
	Sequence Optimization at the Leaves of the Decomposition Forest
	Subsequence Merging, Redecomposition, and Reoptimization
	Test Tube Evaluation, Refocusing, and Reoptimization
	Hierarchical Ensemble Decomposition Using Multiple Exclusive Split-Points
	Generation of Feasible Sequences
	Pseudocode
	Default Algorithm Parameters

	Engineering Case Studies
	Reaction Pathways
	Algorithm Performance
	Residual Defects
	Importance of Negative Design in Reducing Crosstalk
	Effect of Sequence Constraints
	Robustness of Predictions to Model Perturbations

	Additional Design Studies
	Performance for Test Tube Design
	Performance for Complex Design

	Bibliography
	Design Visualization Utilities
	Realtime Design Trajectory Visualization
	Interactive Design Results Visualization
	Hierarchical Decomposition Visualization

	Bibliography

