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ABSTRACT

The first part of this work describes theoretical and experimen-
tal studies of some corrugated waveguide devices for use in optical
communications and integrated optics. These devices include wave-
length demultiplexers and broad-band optical filters using chirped
corrugations, and optical scanners using the electrooptic effect in
the corrugations.

The theory of corrugated waveguides is well described by the
coupled mode formalism. The problem is also treated phenomenologi-
cally by picturing the incident waveguide mode as a zig-zag ray which
is diffracted by the grating surface at every bounce. Principles of
the devices are given, and the parameters which characterize the de-
vices are derived.

Experimental results on fabrication and evaluation of the
devices are presented and compared with the design theory. Various
techniques which have been developed during the course of this inves-
tigation are described in some detail.

The second part of this work describes the propagation of elec-
tromagnetic waves in periodic layered structures.

A diagonalization of the unit cell translation operator of a
periodic medium is used to obtain exact solutions for the Bloch waves,
the dispersion relations, and the band structure of the medium. The
general formalism is then applied to deal with such problems as Bragg
reflectors, periodic multichannel waveguides, and electromagnetic

surface waves.
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Chapter 1
INTRODUCTION

1.1 Optical Communications and Integrated Optics

The invention of the laser as an optical oscillator almost twenty
years ago introduced the possibility of optical communications. Optical
communications, however, did not, initially, receive serious attention,
since the transmission of light in the atmosphere suffered from high
attenuation, and low loss optical wavequides were not available then.
It was not until a few years ago with the advent of very low loss
fiber waveguides that the interest in optical communications was stimu-

lated once again.

There are a number of potential advantages in an envisioned cp-
tical communications system. The first is its huge capability for
carrying information by optical waves. In addition, the decrease in
the carrier wavelength allows a reduction in the size of the transmis-
sion system. For example, optical waves are transmitted in small
waveguides such as glass fibers, instead of the bulky copper cables used
for radio waves. Besides their small size and 1ight weight, fiber wave-
guides have a large bandwidth and are free from any electromagnetic
interference. Low loss fibers with transmission losses of 1 dB/km in
the spectral range of 0.8-1.6 um are currently available [1]. Fiber
waveguides will become more promising for high data density and long
distance communication as less dispersive, less lossy, and much stronger

fibers are made.
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A fiber optic communications link ¢onsists, basically, of

a light source, an optical fiber, and a detector. A block diagram of
such a Tink is shown in Fig. 1.1a. At the transmitting terminals, 1light
is generated and modulated into signals for transmitting. In repeaters,
the attenuated signals are detected and regenerated (i.e., amplified)
for the next leg of the journey. At the receiving terminals the sig-
nals are detected and demodulated for processing. It is essential
that all these terminals and stations be reliable and have dimensions
comparable to those of fibers. However, most of the conventional
optical systems in use today consist of components which are bulky and
heavy, and require careful alignment and protection. In an effort to
reduce the size of each optical component, there has evolved a new
field called "thin-film guided wave optics" [2].

The structures of fiber and thin-film waveguides are shown in Fig.
1.1b and c¢. In a thin-film waveguide, light is transversely confined
by total internal reflection in the thin film, and is easily affected
from the surface. Thus, optical components which are used with such
waveguides can be fabricated directly on top of the waveguides. It is
conceivable that a large number of components, interconnected by thin-
film waveguides, could be fabricated on a common substrate. These
planar optical "circuits" would be similar to conventional electronic
integrated circuits. This defines the eventual goal of a growing tech-
nology called "integrated optics" [3,4.5,6,7]. The resulting integrated
optical circuits, which will be compact, rigid, reliable, and free of

the problems of vibration and alignment, will accelerate the coming of

a new era in optical communications.



"SapLnbaAem W L4-uLyl JOo S94NIONULS (D)

"sepLnbaAem uaqLy 4O saun1onuls (9)

"4UL] SuOL3edLUNWWOd 43qL} |edL3do ue jC wedbeip yoo[g (e) | ‘bL4

indinQ
uoljpwJiojut

A

1apooa(

(9) (9)
2IDAISANS ;L Wiy
ajpaisqns mc_vnc_oc
.wN_w”wﬂm:ﬁwmm, » 8409,
(D)

jndug
uoljpwaojur

|DUIWIB | uol4njs | DUIWAD |

Buinieoay sJ9q! 4 Jajpaday s49qi4 Buljjwsupa]
— 10}33}2Q Jayjdwy i f@—{ 49p0D

wr

1ybi Azﬁﬂﬁ




o

1.2 Periodic Structures in Optical Waveguides

The development of integrated optics started with the study of
thin-film dielectric waveguides and individual components made using
such waveguides. Many different materials with good optical quality
have been used as bases for fabricating waveguide components. Each
particular component requires the optimization of certain parameters
which dictates the choice of material. Among these materials, glass or
glass-like waveguides are frequently used to demonstrate the fabrication
of various passive components such as couplers, lenses, prisms, polari-
zers, beam-splitters, reflectors, and filters, while Nd+3 doped glass
may act as an amplification medium [8]. L1'Nb03 or LiTaO3 crystals have
long been recognized as the best electrooptic and photoelastic material
to be used for light modulation, switching, and scanning. GaAs or other
IT1I-V compounds with direct bandgaps are believed to be the top candi-
dates for thin-film lasers and detectors.

The design of a waveguide component or the understanding of its
operation requires the knowledge of electromagnetic propagation
in plain waveguides. This will be addressed in the beginning of
Chapter 2. There may exist several different approaches in design which
will give a similar function. But there is an approach which is
able to perform many functions, namely, the approach using periodic
structures [9].

We shall use the term "periodic waveguide" to refer to a wave-
guide with parameters which are periodically perturbed along the surface

of the waveguide. These parameters can be the film index



or the film thickness. For example, a spatially periodic modulation

of the film index can be produced photoelastically by a surface acoustic
wave as shown in Fig. 1.2a. The film index can also be modulated elec-
trooptically by a pattern of interdigital electrodes deposited on top
of the waveguide (Fig. 1.2b). A surface corrugation which modulates the
film thickness as shoﬁn in Fig. 1.2c is another example of a periodic
waveguide. If a waveguide mode can be viewed as a wave which propagates
in an equivalent medium of index Naff which will be defined in Chapter
2, then the periodic waveguide has an effect of modulating this Naff
along the periodicity. Much as x-rays are scattered by atomic planes in
a crystal, incident light is scattered by dielectric discontinuities.
Constructive interference then takes place in a direction where the
Bragg condition is satisfied. The use of periodic waveguides thus has
the inherent merits of wavelength or directional sensitivity and high
efficiency as a result of Bragg diffraction. Figure 1.3 shows three
possible applications using periodic waveguides, namely retroreflection,
in-plane deflection, and output coupling. The analysis of these prob-
lems will comprise the main body of Chapter 2.

Surface acoustic waves and interdigital electrodes have been
used extensively for light-beam deflection [10,11] in which the effici-
ency depends on the electric driving power. Thus, they work as a switch
or modulator. Moreover, the deflection of Tight from a tunable wave-
length acoustic wave can be used for scanning the 1ight beam [12]. Due
to the feasibility of fabricating submicron periods, corrugated wave-

guides have found unique applications in such cases as backward
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reflection, large-angle deflection, and broadside coupling. In the
former case, the distributed feedback (DFB) [13,14] or Bragg reflector
(BR) [15,16] GaAs lasers and narrow band filters [17] are important ap-
plications of these waveguides. Such lasers eliminate the need for

terminating the Taser cavity at one of the cleavage planes of the
GaAs substrate, and thus they become the only laser structures which can
be incorporated with other optical components into thin-film waveguides.
The corrugations (or gratings) also provide wavelength selectivity and
stability for such lasers.

As can be seen from the above survey, periodic waveguides play an
important role in a number of applications of guided wave optics. It is
the purpose of part of this work to explore the possibility of using the
electrooptic effect in corrugated waveguides and thus make their valuable
operations electrically controllable. The new optical devices using the
above idea are air-side scanners, large-angle switches, and tunable fil-
ters as sketched in Fig. 1.4. Large-angle switches have been studied by
Kotani and coworkers [18]. A switch between two optical channels which
have an angular separation up to 10° has been achieved in their work. In
tunable filters, the spectral tunability is proportional to the electro-
optic index change. The tuning range of these filters is considerably
smaller than that which can be obtained from another electrooptic device
[19] which uses a directional coupler. We will concentrate on air-side

scanners and present the result in Chapter 3.
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Fig. 1.4 Schematic diagram of (a) a beam scanner (b) a large-
angle switch (c) a modulator / tunable filter.
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1.3 Applications of Chirped Gratings

In a fiber communications system it is likely that optical car-
riers of several wavelengths will be multiplexed into a single fiber to
increase its information carrying capability. Optical devices which
are compatible with such a wide-band operation as wavelength multiplex-
ing, demultiplexing, or broad-band filtering are thus necessary. These
can be accomplished by a "chirped" grating. A chirped grating has a
monotonic variation in period along the grating length so that each por-
tion of the length responds to one wavelength. Before describing this
aspect of applications, let us review some of the previous uses of
chirped gratings.

A chirped grating zone plate can be used to compress a laser
pulse [20]. 1In Fig. 1.5a a rapidly rotating plane mirror scans the
incoming pulse across the whole plate. The diffracted waves which have
a tendency to focus can be made to arrive at the focal point at approxi-
mately the same time by matching the rotational motion of the mirror with
the traveling times of various portions of the pulse. Thus, the pulse
is compressed. A chirped grating corrugation has also been used to re-
flect surface acoustic waves in which the round-trip traveling distance
or delay of a wave is proportional to its wavelength [21]. Such a dis-
persive delay line (Fig. 1.5b) can be used to compress a frequency
modulated (FM) pulse signal which is applied to the input transducer. In
the optical regime, a similar delay line to Fig. 1.5b is no longer prac-
tical for compressing an FM optical pulse due to the extremely small
amount of delay which can be obtained by light in a 1 cm length of wave-

guide. However, several other interesting applications which use
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chirped gratings on top of the waveguides have been proposed and de-
veloped. For example, some possible structures for 1ight focusing are
shown in Fig. 1.6. Assume we can divide the length of our chirped
grating into N subgratings which have uniform periods of A1,A2,---,AN.
Then the prediction of focusing simply follows the Bragg diffraction,
since each subgrating diffracts along a different direction. Both
processes have been demonstrated in glass waveguides [22,23]. Their
practical applications are illustrated in Fig. 1.7a and b which are a
diode laser-waveguide coupler and a radio-frequency spectrum analyzer
[24], respectively. In the latter case we present a chirped-grating lens
in comparison with Luneburg [25], geodesic [26], and Fresnel [27] lenses.
As mentioned earlier, the main purpose of this investigation on
chirped gratings is to demonstrate optical broad-band devices. Bearing
this in mind, we propose a couple of ideas as sketched in Fig. 1.8a and
b. They are broad-band optical filters and wavelength demultiplexers,
respectively. The principles of these devices can easily be seen from
the illustrations. Details of these devices will be given in Chapter
4. A possible application of the wavelength demultiplexer is depicted

in Fig. 1.8c.



Focus Point
P(\)

Focus Point
P(X)

. Y S T
sin ag+ sin ai'neffAi""’ N
(b)

Fig. 1.6 Schematic diagram of (a) a focusing grating coupler
(b) a grating lens.
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Chapter 2
THEORY OF CORRUGATED WAVEGUIDES

2.1 Introduction

The phenomenon of wave propagation in periodic structures is of
Tong standing research interest in many branches of physics and tech-
nology. In integrated optics, periodic structures such as corrugated
waveguides have been used in a variety of applications (see Fig. 2.1).
Some of the devices making use of these corrugated waveguides include
reflectors, filters, distributed feedback (DFB) lasers, Bragg reflector
(BR) lasers, and input and output waveguide couplers.

This chapter attempts to describe the theory and principle of
those corrugated waveguide devices with an effort devoted to bringing

out the underlying concepts and introducing the theoretical background
for my experimental work. Both a coupied-mode formalism and a zig-zag
ray picture are used to analyze problems such as refiection and output
coupling. The parameters which are used to characterize the processes

are derived.

2.2 Optical Waveguide Modes

Before giving an analysis of corrugated waveguide devices, it is
important to understand the basic modes which can be supported in an un-
corrugated waveguide [1]. A planar thin-film waveguide is sketched in
Fig. 2.2a. It consists of a film of thickness t and index of refraction
Ny sandwiched between two media with indices n and ns. We are interested

in finding the electromagnetic modes which propagate along the waveguide

axis.
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The structure has the transverse index profile

n.l x>0
n(x) = N, -t <x<0 (2.1)
n3 x < -t

with n, > ny z_n] and 3/3y = 0. Using a plane wave analysis, the elec-
tric and magnetic fields in each medium obey the equations (see Appendix
A)

(v2 + kznf) E(r) = 0 (2.2)

(v2 + kznf) HF) =0, 1=1,2, or 3 (2.3)

where k = 2n/X and A is the vacuum wavelength. The soiutions are subject
to the continuity of the tangential components of E>and ﬁ at the dielec-
tric interfaces. By matching these boundary conditions, there exist two
independent sets of solutions : TE modes with field components Ey,

Hz’ and Hx’ and TM modes with components Hy, Ez, and Ex.

(a) TE modes

Putting 3/d9y = 0 1in (2.2), and taking the form of the field Ey

as
E,(F) = £(x) o182 (2.4)
we obtain
2
[+ k%n? - @81 F(x) = 0 (2.5)
dx

HZ and HX can be expressed in terms of Ey:



. .

e o
]
l

and

The boundary conditions require that f and df/dx be continuous.

Before embarking on a formal solution of (2.5), it is useful to
consider some of physical nature of the sclutions by simple arguments.
Let us consider the character of the solutions as a function of the
propagation constant g at a fixed wavelength X. For B>kn2, it follows
directly from (2.5) that f(x) is exponential in all three regions of
the waveguide. Because of the need to match both f(x) and its derivative
at the two interfaces, the resulting field increases without bound in
region 3 if it is evanescent in region 1, and vice versa. Such a
mode cannot exist. For kn3 < B < kn2, f(x) is sinusoidal in region 2,
but is exponential in regions 1 and 3. This makes it possible to have
a solution that satisfies the boundary conditions while being evanes-
cent in both regions 1 and 3. The energy carried by these modes is
thus confined to the vicinity of the thin film; consequently, we will
refer to them as confined or guided modes. Solutions for kn1 < B < kn3
correspond to evanescent behavior in region 1 and to sinusoidal behavior
in regions 2 and 3. We will refer to these modes as substrate radiation
modes. For 0 < B < kn], the solution becomes sinusoidal in all three
regions. These are the radiation modes of the waveguide. The guided
modes have discrete B values while the g values of the radiation modes
form a continuum. The guided and radiation modes comprise a complete
set of solutions.

We are now ready to derive the formal solutions for the waveguide



. "
structure shown in Fig. 2.2a. We limit our derivation to the confined

modes, namely the modes which have propagation constants B satisfying
kn3 < B < knz. In this case f(x) is taken as

-

A eI x>0
f(x) = ¢ Alcos hx - & sin hx) t<x<0 (2.6)
A(cos ht + %—sin ht) ep(X+t) X < -t
where
h = Jkons - g
p = 82 - kzng (2.7)
o - VR

tan ht =-§§liiﬁ- (2.8)
h™ - pq
or
ht -y - ¢ =mnm , m=0,1,2,°"" (2.9)
where
Y = tan”! %
and r (2.10)
¢ = tan %

The last equation, in conjunction with (2.7), is used to determine the

eigenvalues B which are discrete: Bm‘ Typical field distributions for

the Tower order modes are shown in Fig. 2.2b. |
Because of the use of plane waves and the assumption of 3/3y = 0,

a mode power is defined as an energy flow per unit time through an area
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n

B Z

thin-film N2

N3

(a)
\ \
() .
TEqg TE,
(b)
Fig. 2.2 (a) Structure of a planar ( %y =0 ) thin-film wave-

guide. N, > ng 2 n,.
(b) Typical field distributions for the first two order

confined modes.
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with a unit length in the y direction, i.e.,

1 *
Power flow = - 5 f Re(EyHX) dx

B 2
5558 f |Ey| dx

251 J [£(x)1° dx, assuming (x) is real (2.11)
0

The above integration can be simplified by using a convenient representa-

tion for f(x). Using (2.10), (2.6) is rewritten as

C cos ¢ e I x>0
f(x) = C cos (hx + ¢) -t <x<0 (2.12)
c(-1)™ cos Y ep(X+t) X < -t
After a straightforward calculation,
[ 2 g 1,1
[ r0? e =S el ) (2.13)
If we define
B = kneff (2.14)

where neff is referred to as the effective index of refraction of the

waveguide, then

Power flow = ———?————7?-(t + =+

(2.15)

= (average energy density)(velocity)(effective cross section)
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According to the above interpretation, we define the effective thickness

of the waveguide by

t

L
eff ST

1
q

(2.16)

which is the geometrical film thickness plus the evanescent distances in

both cladding media.
The constant C can be normalized in a manner so that

Power flow = 1 unit, or

0

8 J [F()72 dx = 1

Zwuo

=00

we
¢= Zw/Bto
eff

The orthogonality can be derived directly form (2.5).

is
2 2 _
(Bq = B [mfm,fmdx = 0
i.e., ©
J fm' fmdx = 0 m' #m

=00

Combining with (2.17) we obtain

~ Zwuo
me.fmdx = —'B;n— (Sm,m

~-=00

(b) TM modes

The field components are

(2.37)

(2.18)

The result

(2.19)

(2.20)



-27-

Hy = g(x) g2
. oH
1 1 dg
E o= Y o st (2.21)
Z (.OEO nZ(X) X n2(x) dX
. T L
X Q)EO n (X) ot LL‘€0 n2(x)
For confined modes g(x) is taken as
(A e x >0
n2
A(cos hx - %—~% sin hx) -t <x<0
a(x) = ¢ n’ (2.22)
n2
L A(cos ht + %—~%'sin ht) ep(X+t) X < -t
n
1

where h, p, and g have the same expressions as in (2.7). Similarly, the
continuity requirement gives an eigenvalue equation which can be reduced

to the same form as (2.8) by defining

g _
P=—7P and 9554 (2.23)
3 L
and has the form
tan ht = NP+ 9) (2.24)
h™- p q

The expressions of Y and ¢ for TM modes are obtained by replacing p and

q by p and q; (2.9) and (2.12) are still formally true for TM modes.
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21 *
Power flow = 5 J Re(ExHy) dx
2
H
- _B [ IZY! dx
2w€o n (X)
8 [ [gx)7°
=3 ( 3 dx, assuming g(x) is real
we J
0o’ n“(x)
and
2
- - e
2 2 2 2
Jfg___éx)] =Sl Bk Tk e
o M(x) 2 "P B MY g
h h

The corresponding formula to (2.15) is

UN o.C A2
Power flow = ~9—%ff— '%T (-]
U A2
C c
= (> S) (=) (t o)
2 2 neff eff
which Teads to
_ 2
tore = Nets Lewe]

We can also establish the orthonormality for TM modes:

®a.9 2we
J mm 0
n m

=00

(2.25)

(2.26)

(2.27)

(2.28)

(2.29)

A plot of the waveguide dispersion (B/k vs t) for TE and TM modes

is shown in Fig. 2.3.
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A >\:!,O‘6/J.,§ '

Fig. 2.3 Dispersion curves (8/k vs t) for the confined modes
in a dielectric waveguide. ny, = 1.
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2.3 Coupled-Mode Formalism for Corrugated Waveguides

Electromagnetic wave propagation in periodic structures has been
studied in a variety of applications [2]. One of the most common
methods used in solving these problems is the coupled-mode formalism
[3]. 1In this section we shall outline the procedures used in obtaining
the coupled-mode equations and the coupling coefficient for a corrugated
waveguide [4].

(a) Derivation of coupled-mode equations

For TE modes, Ey obeys the equation (see Appendix A)

2 2
By + 25+ (2] E, = 0 (2.30)
0z ax

In a corrugated waveguide as shown in Fig.2.4a, n2(z,x) can be expressed

as
2 2
n“(z,x) = n"(x) + &n“(z,x) (2.31)
with
#
n% x>0
n°(x) = { nf £ <x<0 (2.32)
2
n x < -t
¢ 3

as the squared index function of the uncorrugated waveguide, and

ny - ng in the corrugation
Z,X) = (2.33)
0 elsewhere

A n2(

In general, the corrugation has a profile x = p(z). We will use,

instead, the width function z = w(x),which is the inverse of the profile
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function, and define the single-valued function w](x) and wz(x) as shown
in Fig. 2.4a. Since the corrugation is periodic in z, we can expand
2 y ;
m~(z,x) as a Fourier series
2 =1k =~ 2
(n% - n?) ] a & -d<x<0
Z,X) = (2.34)
0 elsewhere

A nz(

(In this expression, a positive £ indicates that the grating will retard

the +z wave vector by an amount of % %g; A is the period of the grating)

where the Fourier coefficient az(x) is

WZ(X) 12-25 7
az(x) = %— J e Mgz (2.35)
wy (x)
Hence
i wz(x) - w](x)
ao(x) A
and
i %F—wz(x) ig %g-w](x)
ag#0(x) = : 23 M—e (2.36)

After replacing nz(z,x) in (2.30) by (2.31), (2.30) becomes

2 2 '
B+ &4 k20211 £ = k% anP(z,x) E (2.37)
822 8x2 Y Y

The field of the corrugated waveguide can be expanded in terms of the
modes of the uncorrugated smooth waveguide
iB z

) A(z) e al f (x) + complex conjugate (2.38)
m

<
noy —
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For simplicity we 1imit ourselves to the case of coupling be-

tween the positive and negative going modes with the same propagation

constant
21 1Bz -igz
Ey 5 [e(z)e \t B(z)e 4}] f(x) + c.c. (2.39)
E(z)

with f(x) satisfying (2.5). Substituting (2.34) and (2.39) into (2.37)

and using the slow-varying approximations

2 2
S ol e (Y ol
dz dz
we obtain
: %%’ = KA e12ABz
\L dA 12087 230}
= = K*Be
dz

They are the coupled-mode equations, where
AB =B~ 4 5 (2.41)

which is a phase mismatch factor, and

. 2 (n2- n2)<fla (x)| >

B = ”2(5 2 1 % (2.42)
<f|f>

which is the coupling coefficient. The Dirac bracket in (2.42) means
an integral over all x.

It can easily be proved from (2.40) that %E{IA(Z)IZ- IB(z)lz) =0
which describes the conservation of energy in this contradirectional

coupling process.
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For TM modes, the results are presented in Appendix B.

(b) Calculation of the coupling coefficient

The coupling coefficient, which is defined in (2.42), is an im-
portant parameter in estimating the strength of coupling. The expres-

sions for some interesting special corrugation profiles are calculated

directly.
For a rectangular profile, w](x) = -w/2, wz(x) = w/2, and
_ sin(2mw/A)
. Amw 2 2 J
- ik sin = (n;-n3) _4) [F(x)]" dx
28 4w o
[ 10 ex
.. mw
isin —/— 2
_ K hd Ve 2y 2
= T Bt . [1+qd - 3(h -q7) d ] (2.43)

where tores h, and q were defined previously in (2.16) and (2. 7). Note
that K = 0 for w/A = integer.

For a square profile, which is a special case of w = A/2,

K=20 for % = even
-1

K = ("1)2 i hzd [1+ d-J—( 2_ 2) dz_ e ], 2=1,3, -
Qm Bteff q 3 q i 272

(2.44)

; ; : A =1, 4 _ 2%
For a sinusoidal profile, w2(x) 5 cos (-1 d)’

w](x) = -wz(x), and
sin[2 cos'](—1-%%)]
aQ#O(x) - L
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0
2 (- [ il eos™ (1 - BT ax
i -d

K=o —7s
28 am J [£(x)]° dx

d
= i —4—6'{'—}—1; [] + "'], for & = 1 (245)
e

In the above calculation, the full guide thickness was employed
to compute the unperturbed mode field f(x), but, as shown in [5], this
could lead to overestimates of the coupling coefficient. The optimal
unperturbed mode is that of a relevant four-layer structure. However,
Streifer et al. [6] found that one could obtain adequate accuracy without
excessive complexity by judiciously choosing the unperturbed guide bound-
ary. They chose t' such that the volume of N material extending into re-
gion 2 just equalled the volume of Ny material extending into region 1,
as shown in Fig. 2.4b, i.e.,

Anz(z,x) =

2 .
- N, in area A
(2.46)
2
1

in area B, area A=area B

In this modification the single-valued width functions are w](x),

wz(x), w3(x), and w4(x). The Fourier expansion of Anz(z,x) is

A
ond) Tayx) e B 4 <x<d
n,-n a,(x ~
Anz(z,x) = z 1 g % 2 ! (2.47)
0 elsewhere
. wz(x) - w1(x)
with ao(x) = - %
. 2 .
i 7g-w2(x) if 79 1(x)
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n
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(b)

Fig. 2.4 Definition of single-valued width functions wi(x) which
describe the corrugation profile. In (b), x=0 is deter-
mined by equalizing areas A and B.
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and a (x) = w4(x) _ w3(x)

0 (2.48)
s T s 20
e'lﬂ, TW4(X) i eTQ TWB(X)

agg(x) = o 0<x<d

The corresponding coupling coefficient is

2 (n-n?) <fla,(x)|F>
= =1k 2 1 2 (2.49)
28 SHES .

For a rectangular profile, w](x) = -w/2, wz(x) = w/2, w3(x) = w/2,

Wp(x) = A-w/2, dy =(w/N)d, d, = d-d; = (1 - w/A)d, and

. Lmw
g Ax] = = R
2#0 om
dq
2
2 sin k0 (ng-nD) 4 f [£{x)]" dx
K = ik A 2
28 Lm = 2
[f(x)]" dx
. . Lmw
i sin —/— .2 3
A h™d 2w 1 w 2 2.2
= [1+(1 - 59)qd - %(1 - 5) (h"-q")d
om Bteff A 3 A
2 WS 2.2
+ §'(K9 qd” - -] (2.50)

where B8, h, g, and teff are quantities corresponding to the wavegquide
with a thickness t - %-d. Note that K = 0 when 2w/A = integer. For

a square profile, which is a special case of w = A/2

K=20 for 2 = even

2-1 (2.51)

g o 2
(1" i hd 1h23¢8 (92 - .., 0e1,3, -




w87~

; : . A -1 2
For a sinusoidal profile, w2(x) = - COS (- 7%), Wy = —wz(x), w3(x) =

%%—cos'](- %fo, Wy (x) = A-wy(x), dy = d, = d/2, and

2
sin[% cos™' (- 2x/d)]

aga0(x) = - o
d/2
; <"§ -ni) J sin[2 cos'](- %%)][f(x)]z dx
¢ BB 1 ~d/2
28 o o0
J [F(x)]2 dx
= 4 _DEQ__.[1 + ool for g = 1 (2.52)
4Bteff

As can be seen, the improved analysis corrects second and higher order
terms only.

The derivation of the coupling coefficient for a sinusoidal cor-
rugation is easier by the method of a zig-zag ray picture which will be
introduced in Section 2.6.

Alternatively, the coupling coefficients can be derived by a dif-
ferent approach which will help us better understand the origin of the
coupling. From the coupled-mode equation (2.40), if we set AB = 0, then

K| = 1%-%§w (2.53)

so physically |K| is the fractional reflection of the incident amplitude
per unit length in the corrugation. Let us apply this simple idea to
the estimation of |K| in a square corrugation. Because of waveguide dis-
persion (2.8), the propagation constant of the mode is B8 in the uncor-

rugated portion and is B-8B in the corrugated portion of the waveguide.
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Each propagation discontinuity will cause a partial reflection (i.e.,
coupling). Within each period we have two reflections. Although
these two reflection coefficients have opposite sign, the propagation
phase delay between these two reflected waves is exactly &m at the

Bragg wavelength (A8 = 0), hence they add up in phase, i.e.,

k| = 2rl (2.54)

A

where, to a first-order approximation,

- 88
Irl = 28
Since A = 4w/B, we obtain
_ 8B
K| = o (2.55)

The next step is to find a relation between 88 and d. From (2.8),

% _
sg = B 4 - h’d (2.56)
ot Btoss
thus |K| i Qﬂgid
eff

which is exactly the same as (2.44) to the first order in d.
In some applications, a corrugated waveguide is used in the in-
plane deflection of the guided beam. The magnitude of the coupling

coefficient can also be estimated for this case by this simple concept.
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The coupled-mode equations for this case are formally similar
to those in (2.40) when a coordinate ¢ (see Fig. 2.5) is used.

Hence

K| = iJ g%w = 2lr| (2.57)

=i

where |r| is given by the Fresnel formula

_ B sin a - (B-68) sin(a-6a)
B sin a + (B-68) sin(a-8a)

|r|

To a first-order approximation,

_ B cos o 8o + 88 sin o
Irl = 28 sin o (2.58)

The relation between Sa and S8 can be derived from Snell's law:

B cos a = (B-8B) cos(a-6a), and is

_ 8B cos a
= T5ina
Then (2.58) becomes

lY‘l =—§B—2 (2.59)
2B sin"o

The Bragg condition for this case is

_ Lm
A =gsma (2.60)

After substituting (2.59) and (2.60) in (2.57), we obtain

_ _ OB
K] = 2 sin o
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2.4 Solutions of the Coupled-Mode Equations

The coupled-mode equations can be solved once the boundary condi-
tions are specified. In this derivation, the boundary values are given
in a coordinate system as shown in Fig. 2.6a for a square corrugation.
Compared with that used to calculate K in the last section, this coor-
dinate is shifted by A/2 in the z-direction. Although the phase of K is
not important (because the physically measured quantities are all re-
lated to the absolute value of K), we still prefer a mathematically
proper K in our new coordinate. Hence, in what follows, K is (-1) times
that obtained in the last section. For clarity, setting 2 =1, and to a

first-order approximation

After making the following substitutions

K = -ik , k = |K]
A(z) = a(z) e 1882 (2.61)

B(z) = b(z) e'26Z

the E(z) in (2.39) becomes

B2) = a(e) e @ 4 bl e O 8 = m/h (2.62)
z) = a(z) e z) e , = X
;‘\/—‘"‘J s 0
E,(2) - E (z)

and the coupled-mode equations in (2.40) become



Wi

D+ 88 b = -ica

(2.63)
da . .
E-TAB a = ixkb

Equations in (2.63) can be combined to give second-order differential

equations for the incident wave a and the reflected wave b.

2
g—‘-zb—-Y2b=0 g Y='<2-(AB

dz

i (2.64)
Boundary conditions are b(L) = 0 and a(0) = 1. Under phase-matching

conditions AR = 0, we obtain

_ . sinh k(L-2)
b(z) = cosh «L

cosh k(L-z)
cosh «L

A plot of the behavior of |a(z)l2 and |b(z)|2 for this case is shown
in Fig. 2.6b.
If AR # 0, then

bzl = ik sinh y(L-z)
y cosh yL - 1AB sinh yL

(2.65)

a(z) = X cosh y(L-z) - iAB sinh y(L-z)
y cosh yL - iAB sinh yL

The reflection and transmission coefficients are

_E _ ik sinh yL
= E.(0) ~ b(0) = vy cosh yL - iAB sinh yL

and
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Fig. 2.6 (a) Corrugated section of a dielectric waveguide.
(b) Transfer of power from an incident to a reflected
wave at the Bragg frequency.
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E, (L) ig,L , e 0"
T g0y T BlLl & © ® e = e S L (2.66)

Both rand t can be written as

i
r=|r|le £
and i¢t
By straightforward calculation, one can show that
R = IYIZ - KzsinhzyL
Y2 # KZS'inh2 yL
-7 -148
¢, = 7 * tan (‘Y tanh yL) + nm (2.68)
and
2
2 ¥
T = ,tl =
Y2+ KzsinhzyL
(2.69)
- -1.08
oy BOL + tan (_Y tanh yL) + nm

where n is an integer. Note R+T =1 which is a statement of the con-

servation of energy.

(a) Reflection characteristics

Using k as a parameter, R is a symmetric function, and ¢r-%-is
an antisymmetric function of AB. For clarity, we discuss the character-
istics of R and ¢ only in the domain AR > 0.

In AB < k, the effective propagation constant is a complex num-

ber which corresponds to the forbidden gap of propagation in the corrugated
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waveguide. The expressions for R and ¢_ are given by (2.68). In the
r

band edge, AB =k, Yy = 0

R o (kL)?
1@ (el
and (2.70)
¢, = %-+ tan-](KL) + nm

In the allowed band, AB > k, y = iy, where

v = J(a8)% - P
R = Csin® 7L
?2-+K251n2§1
and
¢, = %—+ tan-l(%g-tan vL) + nm (2.71)
Y

To express ¢r as a continuous function of ABL, we set

n=20 when ABL <1/(g)2 + (KL)2

and

0 when \/IEITZ, ()2 ¢ g < AR, ()2

with n=1,2,---

Typical plots of R(ABL) and ¢r(ABL) are shown in Fig. 2.7

The maximum reflectivity R0 is at ABL = 0.

R, = tanh® kL (2.72)
The zeros of reflectivity R = 0 are at yL = nm or ABL = #n n2+ (é%& "
n=1,2,---. The locations of secondary maxima of reflectivity are deter-

‘-

mined by finding the local minima of (g?%%$f) . The first few roots are
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Fig. 2.7 Plot of (a) reflectivity (b) phase delay of a grating
reflector as a function of the detuning ARL.
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vL = 4.493, 7.725, 10.904, etc. For example, the first side lobe has

the maximum reflectivity of

R 5 2
R, = —TT at AL = # J@o.187 + (kL)

(kL)

To estimate the bandwidth of the reflectivity spectrum, we use the

relation

A A(ABL)
>\ e 1TN (2.73)

where N is the number of the participating grating period. The band-

width between the first two reflection zero points is

) 02 A
My = 2Y1+ (597 ()

The 3-db bandwidth is

MOBL) 2 - 172
Meynm = = (§)

For example, in terms of (A/N),

L=m ., k. .= 2.828, Mo = 2.486
n/2 0-0 57936, FWHM 17519
/4 2.062. 1.076

At first glance, it seems that ¢r = /2 at the Bragg frequency
(AR = 0) is a peculiar result [7]. However, after a careful inspection
we find it depends on the location of the coordinate origin ysed in calcu-
lating the coefficient K. Corrugations have been used extensively in
distributed feedback (DFB) lasers. Using the above analysis, we will give

a simple explanation of an interesting fact regarding DFB lasers which
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states that the oscillation of a DFB laser does not start at the Bragg
frequency where the corrugation provides the maximum feedback [8].
First, we arbitrarily choose a reference plane in the corrugation as

in Fig. 2.8 . Using a self-consistent method, the oscillation thresh-
old will depend on the phase of ryro- The frequency at which this
phase is 2mm has the low threshold. At the Bragg frequency,

if ry ei¢, then it can be proved that ro = ei(“'¢). Thus

riry « eiTr = -1 (destructive interference) which may exclude the possi-

bility of oscillation at the Bragg frequency in a DFB laser.

If the waveguide medium has a gain or loss constant o we simply

b

5 where a is positive for loss and

replace B in the solutions by B+i
negative for qain.

(b) Normal-mode solutions

Although the solutions E+(z) and E (z) 1in (2.62) are complete
solutions of the wave equation, they are not expressed in terms of the
normal modes, or Floquet modes, of a periodic structure. A Floquet mode
should be a superposition of the fundamental wave function and its spa-
tial harmonics in the structure. In the following, we will prove that
E(z) can be rewritten in the Floquet modes, thus demonstrating the equiv-
alence of the coupled-mode solution to the normal-mode solution in a
corrugated waveguide.

From (2.62),

E(z)

1]
m
b
—~
N
S
<+
m
—~
N
SN

a(z) and b(z) satisfy the equations
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Fig. 2.8 IlJustration of a round-trip phase lag in the "cavity"
of a distributed feedback (DFB) Tlaser.



Bl

2
(i—2'+ 72) g} =0 4 Y = (AB)2 - K2
z

The general solutions are

b(z) = b] eiYZ + b2 e'iYZ

alz) = 3 el Y2 4 a, e 1YZ

If we choose two independent constants as a, and b,, then> from (2.63),

2)
by = oa; and a, = ob,, where o = (y-AB)/k. Hence
~i(y+8 )z i[(y+8 )z - 28 _z]
E (z) = b,e " 4+ sa,e © °
2 1
i(y+8 )z ~il(y+8 )z - 28 _z]
a,e 0 + sze e °

m

—
N

~
1]

3 and b2 are determined by the boundary conditions. If we combine the

£ s s d 3eni 45 Lo {F”(Z)
irst term in and the second term in as , i.e.,
E_(2) - E, (2] F_(z)
i(y+8,)z il(y+8,)z - 28,2]
Folz] = a,e o+ oa,e e ¢
- _ (2.74)
-1(y+8,)z -i[(v+8,)z - 28 2]
F_(z) = boe +ob,e
then
E(z) = F (z) + F_(2) (2.75)

and Fi(z) are the Floquet modes (280 = 2m/N in this case) which repre-
sent the forward and backward waves, respectively.

Several interesting characteristics have to be mentioned. First,
the forward and backward waves contain identical amounts of the har-

monic due to the translational symmetry of the corrugated waveguide in
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the z direction. Second, the group velocities * dw /d(?#Bo) of the
fundamental and + dw /d(?lBO) of the harmonic in Fi(z) are the same,
and they depend on the parameter y. Thus, in the normal-mode formal-
ism, waves of similar group velocity are grouped together, while in
the coupled-mode formalism, waves are grouped according to their

phase velocity.

2.5 Radiation Coupled from a Corrugated Waveguide

Surface corrugations in a waveguide not only couple the forward
going guided modes to the backward going guided modes, but also couple
the guided modes to the radiation modes. Our theoretical approach for
the latter case still uses the coupled-mode formalism. We express the
total field in terms of the Floquet modes of the corrugated structure.
A perturbation method will be described to solve the coupled-mode
equations. The attenuation constant for the guided mode due to the
coupled-radiation loss will be derived.

Consider TE modes. Ey satisfies

2 2

9%E 5 o 5
—5;%-+ —5;%-+ k“n“(z,x) E, = 0 (2.76)

Now we express Ey as a summation of partial waves in a form dictated
by the Floquet theorem. ig 2

E, % E.(x) e = (2.77)

with
g =g - =20 (2.78)
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If no corrugation were present, then all Em(x) with m # 0 would be
zero, so that Eo(x) would be the only mode—the incoming guided mode

in the waveguide. In addition, n2(z,x) is expressed as

.o 2T
g &L z
n?(z,x) = n'2(x) + (6 -nd) T ag(x)e 1 (2.79)
L£0
Compared with (2.31) and (2.34),
n'z(x) = nz(x) + (n]-ng) ao(x)

which describes a four-layer structure. Substituting (2.77) and (2.79)
in (2.76), we obtain

2
2

m 2 2 2 "
+ [ 200 - 821 £, = K

2 ) T oa o (x) E,  vm (2.80)

dx

The coupled-mode equations given in (2.80) can be solved by the pertur-
bation method [ 9]. We first assume that all the partial waves Em(x)

with m # 0 are small. Consequently Eo(x) can be approximately solved

by

2
d Eo

o+ IkKn'?(x) - 851 E, = 0 (2.81)

dx

which, subject to the continuity conditions at x = 0, -d, and -t, deter-
mines B, and Eo(x). Then the resulting Eo(x) is used on the right hand

side of (2.g8p) to drive the other partial waves Em(x) for m # O:

2
¢ + [kzn'z( )-32] E =k ) a (x) E (2.82;
de X m* “m =R
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Thus we obtain a first-order perturbation solution for Em. An iter-
ative procedure may be taken to obtain more acturate solutions. For
details of this analysis, interested readers are referred to Ref. 9.
The value of Bs determined by (2.81) is a real number which does
not reveal the fact that the incident mode EO is attenuated. This attenuation

tan be evaluated by calculating the power carried by the partial waves Em

whose |g | < kn, (radiation modes). The time-averaged Poynting vec-
tor is P = %-Re(? X B*). It can be shown that the power radiated

per unit waveguide length by a TE wave is

. oF
- =_]_ * :_-'_.‘.__-—-Y-
P! = E. =5 Re(EyHZ), where H, o 3% (2.83)
1Bmz
For a partial wave, Ey = Em(x) e and Em(x) is taken as
ik ny - B~ X

E (0) e 1 u x >0
m

E {x) =

m -1 \/k ng - Bm X
Em(-t) e x < ~t

Thus the power radiated per unit waveguide length by a partial wave

is
{ ] 2 _ g 2
Pn = Zur <+ [kng - L JE (-t)]) (2.84)

Re( [k"nj - 8 |E (0)

Usually, an output coupler uses only one part of the radiated power

expressed above. If Bi exceeds k2

n? 3 imaginary terms occur in
(2.84); there will be no radiation contribution from such a partial

wave. From (2.78) and kn3 2B, < kn2, P& =0 for m < 0 and for
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large positive m (this, of course, will depend on the magnitude of the
grating period A). Since the radiated power is proportional to the

guided power, then

I = __g.z 1 = 0 2
TRL&soe=s gf with P e IEOI dx
m 0
The attenuation constant o is thus given by
5 W
i Zwuo mom
Bo J {Eolzdx (2.85)

We are also concerned with the direction at which a partial wave will

be coupled out. This is given by
= epe™lg M —
¢-i = cos ( kn )9 i=1,3 (2.86)
which is an angle measured from the waveguide axis.

2.6 Zig-Zag Ray Analysis for Corrugated Waveguides

Coupling parameters for reflection and output coupling in corru-
gated wavegquide devices can also be calculated using a zig-zag ray
picture [10]. 1Its first-order results are in good agreement with
those from coupled-mode theory. This approach is especially useful
in the case where the coupled-mode analysis is hindered by excessive
computation, for example, in sinusoidal corrugations.

“In a thin-film dielectric waveguide, light is guided by total
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internal reflections at both interfaces between the film and the
cladding media; thus a guided mode can be described by a zig-zag

ray bouncing back and forth as shown in Fig. 2.9 a. We divide the
incident power on the corrugated interface into sections whose widths
are equal to the mode bounce distance (see Fig. 2.9 a). Then, in out-
put coupling, the normalized measure of radiated power, o (cm']) in

(2.85), can be expressed as

o = Nn (2.87)

where N is the number of sections in a unit length (1 cm) and n is

the diffraction efficiency of the surface grating (corrugation). We

add up the efficiency (or more correctly,the diffracted power) of each
section because the coupled waves from different sections do not overlap
or interfere with each other (Fig. 2.9b). However, we should take

into account the interference in the case of reflection of the guided
mode. The magnitude of the coupling coefficient, « (cm']), is de-

fined as

<=NJm (2.88)

This is the optimum estimation, since we add up the diffracted ampli-
tude coherently from different sections of incident wave (Fig. 2.9 c).
This may not be exactly true.

The whole problem can be separated into two independent sub-
problems: one is the calculation of the diffraction efficiency n of
the surface grating, and the other is the estimate of N (cm'1) which

is the bounce rate of the incident mode.
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Mode Bounce
n
| le—Distance

Fig. 2.9 Zig—zag ray picture 111ustratin? (a) mode bounce distance
c

(b) process of output coupling (c) process of reflection
(feedback) in a corrugated waveguide.
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(a) Diffraction efficiency n

The phenomenon of diffraction at a corrugated interface between
two dielectric media has been a subject of interest for many years.
The geometry is sketched in Fig. 2.10. In electromagnetic theory,
the field amplitudes of different diffraction orders can be solved,
in principle, by matching the boundary conditions on the corrugated
interface. In the case of a small sinusoidal corrugation, we can de-
rive, to some order of approximation, the diffraction efficiency of a
given order in closed form.

For TE waves (see Fig. 2.10),

i(o.x + B 2z) i(-p,x + B,2)
tpe © 4y b, e & & in n, medium
2
E. = (2.89)
Y 1(T2x + 622)
Lcye in n, medium
&
- = O
where By = By * 2K, K=
A 2 . e € 2 -
% Jk g = Bp » P~ Jk Ny =By » Po =%
and Ty = kznﬁ - Si

The boundary conditions are that Ey and Ht are continuous on the corru-
gated surface described by x = f(z). The tangential magnetic field
is
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Fig. 2.10 Incident and diffracted waves at both sides of a surface
grating. The coordinate and grating parameters used in
the analysis are also shown.
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where f' = df/dz,
;9 . oF
H =21 _Y and T N 4
Z Wi, X X wuo oz

If f(z) = a sin Kz, where a is the grating amplitude and thus half of
the corrugation depth d, namely, a = d/2, then imposing the continuity

requirement leads to a pair of equations [11]

Y [-b (o) e o, a)l = AJ (o)
and ) (2.91)
pu--\)KBU T +\)KBU :
SO
é [ pu+v u+vJv(pp+va) TU-V Cu—v v(Tu-va)]
Og '1JK60
2 witeee. B (g a)
% u'-o

where Jv are Bessel functions.
Assume a small perturbation ka << 1. Then for a zero-order ap-

proximation, u = 0, we obtain

b =0 "o
0 oo+ TO
20 (2.92)
0
c. = A
0 oo+ TO

For a first-order approximation, u = -1 (as mentioned previously, we are
interested only in the negative order of the diffraction), we have equa-
tions which involve both b;T’ ¢ and bo’ €y After using the result
(2.92), we obtain

Cq1°7 b_]
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b-l Go(Oo- To)

. (2.93)
A f_1 + T_1

It is apparent that each order of approximation follows from the preced-
ing orders. Each time we need to solve only two unknowns from two equa-

tions in (2.971). For a second-order approximation p = -2, we obtain

b_2 a2 o (o -1)

-4 00 -
R o, Lot Tt e )l
: ) (2.94
C 2o (o0 -1
-2 _a 00 o0 -
AT o1, [rg- gt 2(e 4= 74)]
For a third-order approximation u = -3, we obtain
b 3 o (0.-1)
-3 _ a 0o 0o’ fl
R T8 ot [3 (g +1g) - (oy P g1y Ty ) +o 57,
L (p Z-T-Z)(T + 20 ]' 2T_]) T 3(3 T + p ] T_])]
(2.95)
o 3 0(o-t)
-3 _ a” 0vo o' rl 2 2
s B 3;-5tg;—;tg—-[§-(oo-+r ) -(p_] P_qT_q* T ]) + 0T,
+ (0_2‘ T 2)([ + Zp ]' 2T_1) - p 3(§'T + D_] T ])]
The diffraction efficiencies are defined by
Gy 08 T, 1C412
ng = Re(a& |T’l| + = HL. ) (2. 96)
0 0

where ¢ indicates a diffraction order. Note, 80 = R, Go = h, and

Yy & iq for the incident condition equivalent to a guided mode, where h

and g are defined in (2.7).
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(b) Bounce rate N

The bounce rate N is the number of bounces per unit length. At
first glance, it would seem that N = 1/(2t cot 6), where t is the wave-
guide thickness and 6 is the incident angle of the mode whose B= knzcos 8.
However, to treat the problem accurately, the Goos-Hanchen shift [12] at
the interfaces (or dielectric discontinuities) should be taken into ac-
count. The Goos-Hanchen shift is a phenomenon associated with the total
internal reflection of a ray (which can be the axis of a finite uniform
beam or a Gaussian beam, for example). It is a lateral displacement
between the incident and reflected rays at the interfaces, as illustrated
in Fig. 2.11, so the distance between two consecutive bounces at the

same interface is

Lg = 2(t cot 6 + s, + 55)
It can be proved that
- cot 6 - cot 6
S 3 and S3 0

where q and p are defined in (2.7). The bounce distance is then expres-

sed as

Lg = 2t oz cO% (2.97)

where teff is exactly the effective thickness of the waveguide as de-

fined in (2.16). The bounce rate is then

N = (2.98)

1 1 _ _h
bp Shgppomk S
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Fig. 2.11 Goos-Hanchen shifts and resulting bounce distance of a

zig-zag ray which is totally reflected at both inter-
faces in a waveguide structure.
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(c) Derivation of the coupling parameters

Now we are ready to derive the coupling parameters using the above-
described zig-zag ray theory. The results should provide direct
evidence of the equivalence between this ray formalism and coupled-mode
or other first-order perturbation theories.

As a first example, consider the coupling coefficient (2.88). In
this case, -2K=28, B;f'B’ p2=00=h, and T£='ro=1°q. Thus,

_ 2
n, = Iby/A|%, and

_ h l zl (
B, & peseen [ 2.99)
4 zeteff

For £=-1 (Fig. 2.12a), it can be shown from (2.93) that Ib_]/A|= ha.

Thus
h“a (2.100)
K = 2

which is exactly the same as (2.52) derived from coupled-mode theory.

Similarly, for &=-2 (Fig. 2.12b),

2.2
h~a ‘/ 2 2 2
B oy = k“(n,-n, )+ q (2.101)
-2 4Bteff \ 2 1
and for 2=-3 (Fig. 2.12¢),
2.3 2 2 2
_ n%a 2.2 .99 Bo V/ 29 g |22 pho
.3 ° gt [3 0% (Kony -g-) - ykng - N/k ny -5
eff
T
2 2 o
2 v/2 2 jrz 2 8
¢ QU i (2.102)

Fig. 2.13 is a plot of coupling coefficients Ko Versus corrugation

depth d =2a using (2.100), (2.101) and (2.102). Also shown in the
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figure are the results in Ref. 6 which uses coupled-mode theory. They are
in good agreement with each other when ka < 1.
Next, consider (2.87)- a measure of radiated power in output

coupling. After substituting (2.96) and (2.98 ) in (2.87), we obtain

Cy|2
TZ' ) (2.103)

1 Re( \bﬁlz +
O, = FHor= RE\p, I T
) ZBteff 2| A [}

As usual, this result of ray optics can be interpreted in terms of elec-

tromagnetic plane waves. The guided power in the waveguide is
- 2
PO Zwuo 2|A| teff

and the radiated power per unit waveguide length is

poo 2 2
PQ = 2wuo Re(pz\bzl + T£1C2| )

Thus expression (2.103) can be rewritten as

]

Q = __Q_/.
2 PO

which is similar to the definition of attenuation constant in (2.85).
More importantly, our ray-picture approximation is able to give analytic

expressions for o For example, consider second-order feedback (Fig.

I
2.12b), in which the first-order diffracted waves are coupled out normal

to the surface. It can be calculated immediately that

h2a2
OL_-I = ZBt k(nz‘n]) (2°.104)
eff

Similarly, for the third-order feedback case (Fig. 2.12c), the first- and
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N
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b--I b()
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(a)
€

Fig. 2.12 Schematic diagram showing the related diffraction com-
ponents in (a? 1st-order (b) 2nd-order (c) 3rd-order
feedback configurations. The evanescent components
are not shown.
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Fig. 2.13 Coupling coefficient versus corrugation depth for 1st-,

2nd-, and 3rd-order feedbacks. Dashed lines are results
of ray-picture approximation. Solid lines are results
of coupled-mode analysis (After [6]).
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second-order diffracted waves are radiated out of the waveguide, which

results in attenuation constants

2.2 2
W22 k™(ny - n7)
a -
-1 2Bt ep T V/‘E‘E‘“g?
Y kg =S + kg -5
and (2.105)
2,2 2
_ hét k=(ny - ny) 22 g2
N o = [4(k"n; - )
22 © ot 2779
eff 2 2
k2n2—8—+/k2n2-8—
277 179

N

+ 4(k2n$-%—) + q2—7/k2n§-% \/kznf—%—]

Fig. 2.14 is a plot of (2.104) versus corrugation depth, d. Compared
with the result from coupled-mode analysis, the agreement is good only
for small d such that ka < 1. Fig. 2.15 is a plot of (2.103) versus
corrugation period for two partial waves ¢ = -1 and -2, given d= 5008

(ka < 1). Also shown in the figure are results from coupled-mode analy-
sis [9]. As can be seen, they are in good agreement and Gy >> 0o,
since ka < 1 is fulfilled. To summarize, the ray-picture approximation
is simple and gives the analytic results which are good when the corruga-

tion depths are small.



-68-

10 T x | | 1 i |
>\=O-88/u.m N\/\
A i A= 0.25um, =90°
o n2=3.6
1. 8 TEo / _
& n3=3.4 /
3 T=|.O'LLm /
< TR _
v //
(O]
E -
g o / .
/
©
o /
e I / n
© /
€ 4 / .
- /
s
b= |
(2]
o
s 2
0 l | 1

0 500 1000 1500 2000
Corrugation Depth d ()

Fig. 2.14 Radiated power versus corrugation depth. Dashed line is
obtained from ray-picture approximation. Solid line is obtained
from coupled-mode analysis (After [9]). They are in good agreement
only for small corrugation depths.
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2.15 Radiated power versus corrugation period for two partial
waves 2=-1 and 2=-2. Results of ray-picture approximation
(dashed 1ines) and coupled-mode analysis (solid lines,
after [9]) are compared. Dotted lines are the correspond-
ing direction of radiation.
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Chapter 3

ELECTROOPTIC SCANNING OF LIGHT COUPLED FROM A CORRUGATED L1'Nb03 WAVEGUIDE

3.1 Introduction

In this chapter, we describe a method of beam scanning in which the
direction of light radiated from a grating output coupler in a dielectric
waveguide is controlled, via the electrooptic effect, by an applied elec-
tric field. Bragg diffraction (either output coupling [1] or in-plane
deflection [2]) from a variable wavelength acoustic wave has been used
for optical scanning. The advantages of our proposed method over the
above technique will be the capabilities of (1) high speed scanning (or
switching), and (2) broadside coupling to air.

Details of some experimental techniques will be presented in
Chapter 5. The principle and theory of the device are given. Experimen-
tal results are compared with theory. The prospect and further consider-

ations of the device are discussed.

3.2 Device Theory

The principle of the device can be described using a LiNbO3 wave-
guide in the manner sketched in Fig. 3.1 where x, y, and z are the
crystal axes. Consider a guided mode with a propagation constant 8 along
the x-axis, incident upon a grating coupler with a period A . The wave
will be diffracted into air (radiated) with an angle ¢ with respect to
the x-axis. The angle ¢ is determined by (2.86) or the phase-matching

diagram in Fig. 3.1,
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T -
2m _
B=5r= k cos ¢ (3.1)

where k = 2n/) and X is the vacuum wavelength. If we replace B by

kneff as in (2.14), then (3.1) becomes

Neff - %—= cos ¢ [3.2)

For a given A and A, the angle ¢ depends on the index Noff The angle
of deflection (scanning) corresponding to a small change of index is
then

Anag;

(2 1)
1»'},‘\))

The number of resolvable spots N in the angle of deflection is obtained
by dividing the magnitude of A¢ by the angular divergence 8¢ of the
coupled wave.

This angular divergence is determined by several factors. The
first is nonuniformity of the film thickness in the coupling region.
As a matter of fact, we have local variations of Naff due to waveguide

dispersion. By differentiating (3.1), this factor is

on
56 = - 98 . ;__S_:_f___éi (3.4)
¢ k sin ¢ sin ¢ ’

The angular divergence is alsodiffraction limited by the finite coupl-

ing length L, and is

_ A
% = = ¢ (3.5)

where L is the shorter of the grating lengths or the 1/e folding
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distance for the guided mode intensity along the grating. Note, an op-
timum coupling length is reached when (3.5) is equal to (3.4), and no
improvement in resolution will be gained by further increasing the

coupling length: L = A/Gneff. In a structure with uniform wave-

optimum
guide and grating parameters, (3.5) is the main term to be considered.

From (3.3) and (3.5), we obtain

|an . .|L
N = —e—’;i-— (3.6)

The number of resolvable spots is thus independent of the choice of ¢
or A. To estimate Aneff’ we choose both the direction of the applied
electric field and that of the mode polarization as parallel to the z
(optic) axis of LiNbO3. Strictly speaking, to evaluate An .. we have
to know the applied electric field distribution first, and then calcu-
late the electrooptically induced index change to obtain the new index
profile of the waveguide and new N However, if the optical field
of the guided mode is well confined so that the applied electric field
is almost uniform across it, then we can approximate Aneff by the electro-
optic index change at the waveguide axis. This change is given by [3]
3
e

E (3.7)

= _ 1
Ane =-3

with E_ given by [4]

2V (3.8)
T a

where V and a are the applied voltage and separation between the two

electrodes, respectively.
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3.3 Holographic Gratings

An important step in the fabrication of corrugated waveguide
devices is that of corrugating a waveguide surface. Since the period
of the corrugations required in this application is of the order of a
micron or less, classical ruling and conventional photolithographic
techniques cannot be used for writing the grating lines. Instead,
the grating masks have to be generated either by electron-beam 1itho-
graphy or holographic interference techniques. The latter, which
records the interference fringes of two collimated intersecting Taser
beams, will be used in our work.

In the holographic interference technique, the surface to be
corrugated is spin-coated with a Tayer of photoresist. Two plane
waves of the same wavelength X are incident upon the photoresist sur-
face at an angle26 as shown in Fig. 3.2a. The total field on the

surface is

E|x=0 = A glkz sind oA e-1kz siné + ¢

where p and ¢ are the amplitude ratio and the phase difference between
the two beams, respectively. The corresponding intensity distribution

i ]E|i=0 = {Al2 [+ p2 + 20 cos(2kz sing - ¢)] (3.9)

which is modulated in the z direction with a period A = )/(2sin6).

When o = 1, we have the extremes of 0 and 4|A|2 in (3.9); so the
intensity contrast is maximum if the intensity of the two beams is
equal over the surface. In addition, as long as ¢ is constant in time,
the interference pattern will remain stationary in space. Fig. 3.2b

shows a resulting photoresist pattern after development.
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Fig. 3.2 (a) Exposure of photoresist by two interfering laser beams.
(b) Photoresist pattern after development.
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3.4 Experimental Results

In our first experiment, we used a planar Ti-diffused L1‘Nb03
waveguide. The waveguide was formed by diffusing a 200 X Ti metal

film into a Y-cut LiNbO, substrate at 975°C for 5 hours [5]. The result-

3
ing waveguide supported a TE0 mode with an index Neff = 2.212 at

A = 6328 R. The surface corrugation was then fabricated by ion-beam
etching through a photoresist mask generated by a holographic inter-
ference technique. The period of the corrugation was determined to be
5180 R. We chose a shallow corrugation to ensure that the coupling
length L was the geometrical length of the grating.

A TEO mode at A = 6328 R was excited in the waveguide by a
rutile prism coupler and diffracted out to air by the corrugation
grating. The diffraction angle ¢ was calculated and measured to be 8°.
A typical far-field diffraction pattern for the coupled wave is shown
in Fig. 3.3. Also shown in this figure is a plot of the measured
angular divergence 8¢ versus the grating length L. For L = 2.5 mm,

8¢ v 0.15°, which was larger than the calculated value &¢ =0.10°.

“ideal
The electrooptically induced index change was produced by apply-

ing a voltage to a pair of parallel Al electrodes deposited photolitho-

graphically on top of the waveguide. The separation between the

two electrodes was a = 33 um. The scanning of the coupled beam is

shown in Fig. 3.4. This double exposure shows two states: without

an applied voltage and with an applied voltage of 500 volts, which

corresponds to a field of 10 volts/um. The measured number of

resolvable spots was 3, while the number predicted by (3.6) was 6.
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Fig. 3.4 Photograph of the resolved spots corresponding to the

OO volts

applied voltages as indicated. The device has L=2.5mm
and a=33um.
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The discrepancies between the measured and the calculated values were
partly due to an overestimate of ANggfs and partly due to imperfec-
tions in the structure.

To achieve a better electrooptic interaction, we performed the
second experiment on a channel waveguide. A channel waveguide on a
L1'Nb03 substrate was formed by the oxidation of a 4 um wide, 200 R
thick Ti film at 600°C for 4 hours, and then the diffusion of the
resulting oxide at 950°C for 5 hours [6]. It supported a single mode
(n = 2.210) with a Toss constant of 1 db/cm. The grating parameters

eff
were A = 42002 and L = 2.5 mm, so ¢ v 45° and 5¢'dea1 N 0.02°. A

3
typical far-field diffraction pattern of the coupled wave from the
channel waveguide is shown in Fig. 3.5a. Fig. 3.5b shows the scanning
of the coupled beam. The voltage of 150 volts is applied to electrodes
with a spacing of 10 um (EZ = 10 volts/um). The photograph in Fig. 3.5c
shows three well resolved spots corresponding to voltages of 0, 100,
and 200 volts, respectively. From the measurement, N = 5 when
V = 200 volts. The theoretical number is 8.

In this application we have used an electrooptically induced

index change b, = (1-2) x 10'3.

A further reduction of the voltages
required can be made by decreasing the separation between the two
electrodes. The resolution can be improved by increasing the coupling
length in the grating with a corresponding penalty in the switching
speed. This will be discussed in a later section.

To summarize, we have demonstrated angular scanning of a beam

coupled from a corrugated LiNbO3 waveguide. This was done by using
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the electrooptic effect to modulate the index of refraction in the
corrugated section of the waveguide. The number of resolution ele-
ments is limited by the dielectric breakdown of the waveguide material.
We have demonstrated the capability of producing one resolved spot per
3 volts/um applied field. In principle, by using a grating of 1 cm
length and an applied field of 40 volts/um in the system of Fig. 3.1,

the number of resolution elements should be ~100.

3.5 Coupling Efficiency

In a previous section, we investigated the number of resolvable
spots obtainable from the described electrooptic scanner. It is also
important to consider other pertinent device parameters such as cou-
pling efficiency and switching speed. The efficiency of a grating
coupler in a diffused waveguide can be calculated using the method of
a zig-zag ray approximation described in Section 2.6. The character-
istics of guided modes in such waveguides are, of course, prerequisite
in this consideration.

(a) Modes in a diffused waveguide

The diffused waveguide used in our experiment has a graded index
of refraction in the film. According to Ref. 5, the small increase of
index in the substrate has a Gaussian distribution. Thus the index

profile for this waveguide structure (Fig. 3.6a) is

n] x <0

n(x) = (3.10)

24 2

ny + An e X /o » AN << ng x>0

where An is the increment at the surface, and o is the 1/e folding
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depth. Consider TE modes, Ey = f(x) eiBZ where f(x) satisfies

2
9F+ [kn(x) - 82F = 0 (3.11)

dx

Closed-form solutions of (3.11) with n(x) given by (3.10) do not exist.
If we approximate the Gaussian function in (3.10) by a parabola:
exp(-x2/02) =1 - xz/oz, (3.11) will become similar to a simple harmonic
oscillator (SHO) equation in x < 0. We further assume that f(0) = O
which is a good approximation for the large dielectric discontinuity at
the waveguide surface. Then, the guided modes of interest have a formal
similarity to the odd order modes (which are antisymmetric with respect
to x = 0) of a SHO. This approximation method has been justified by
comparing the measured and calculated 8 values [71.

After the following substitutions:

&
E=0aX , 0 = _/k(2n3An)]/2/o , and u = 5 3 R
Q

k2(n32 + 2n,An) - B

(3.11) becomes

2¢

o

s (u-£€°)F=0 , fl0)=0

a¥

The solutions require
u=4am+ 3

oF B2 - g 2 _ k2(n32

. + 2n,8n) - (4n + 3) (2n3An)]/2/o (3.12)

with m = 0,1,2,...(mode index). The corresponding eigenfunctions are
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given by

2
&) = Hopq (€) e 872 (3.13)

where H2m+1 are the Hermite polynomials. Typical field distributions

for the first few modes are shown in Fig. 3.6b. Putting m = 0 in

(3.12), we obtain the expression for Noge of TEO mode .
2 .2 172 A
Nagp = Ng * 2n3An - 3(2n3An) Vi (3.14)

The waveguide used in the experiment has the following data:

A =0.6328 ym, o = 2 um, =2.2, and An = 0.02

By
Hence Nags = 2.210. Compare this to the observed value of 2.212.

To improve the above approximation, we can include a quartic term
with an adjustable coefficient in the approach to a true Gaussian
function and use this term as a first-order perturbation source [8] to
the zero-order solutions described above.

(b) Coupling efficiency

For a grating coupler,
the coupling efficiency = o_y L (3.15)
where L is the grating length, and oy = Nn_] as defined in (2.87).
N is the mode bounce rate (cm']), and n_ is the diffraction efficiency.
In a diffused waveguide, the zig-zag ray model of a guided mode
can be described in a manner shown in Fig. 3.6c. The mode bounce rate

is thus

N = E—B— with Ly = 2(r + s]) (3.16)
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(x)u

<@

Fig. 3.6 (a) Index profile of a diffused waveguide. Curve A is the
true Gaussian function. Parabola curve B is an approximate
profile. (b) Approximate field distributions for the first
two order TE modes. (c) Zig-zag ray model in a diffused wave-
guide and the relevant coordinates and parameters.
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where the correction for the Goos-Hanchen shift 251 is necessary only
at the dielectric discontinuity at x = 0. 2r is the distance between
the entering and emerging points of the ray at the waveguide surface.
It is determined by solving the (eikonal) ray equation. The ray
equation [9] is written as (Fig. 3.6c)

>

4 (n ) = (3.17)

For a very confined mode, ds = dz, and the x-component of (3.17) is
reduced to
Z

g—g= Lan (3.18)
ra

Using the approximate n(x)

2
n(x) = Ny + An - An 52- x>0
o

Then, to first-order in An, (3.18) becomes

where the prime indicates a derivative with respect to z. The boundary

conditions are

tanbd

N
]
1
-
-
b3
1]
o
v
x
1)

where + tan6 is the slope of the trajectory at the surface,

_ -1, "eff . . . . v i
6 = cos cﬁg:lﬁ)’ and X, 1s the turning point. r in (3.16) is
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determined as follows:

e
x' = tan 6, x=0 = x' =/tan29 _ 20n x£
x'=0 , x=x  determines ?§-= fan g
280
3
-1 x T
z=0, x=x — z=—2 _(sin”' 2 _T
0 2n X ¢
g
z=-r, x=0 determines r=—"0 (3.19)

Note that r is independent of 6, which is not generally true. This is
an artifact of the parabolic approximation used in the above derivation.

The Goos-Hanchen shift is given by

« 80 (3.20)

where
_ 2 2
Q= K fNgpp = N

Applying the same data used to calculate n in (3.14), we obtain

eff
6 = 5.4° , r =23.3 um, and sy = 0.5 um

Thus N = 1/Lg = 210 Y.

Next, we calculate the diffraction efficiency of the surface
grating. We are only interested in the diffraction to the air side.

From (2.96)
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C__1 0 =
Mg =2 with B e (3.21)

« L [P
o‘O

3 72 IR o sy
where o = k‘/(n3+-An) - Nege 5 Ty = 10 = ik Nege ™ M

2 Ay 2 2 A 2
k/(”3+A”) LN A k\/ Neff ")

Using the values a = ZOOR (or d = 400 R), A

P

4200 R, and the previous
data, we obtain Nay = 0.29%.

1

Thus @y = Nn , = 0.61 cm ', and the coupling efficiency (3.15) is

-1
15% for L = 2.5 mm.
The coupling efficiency can be increased by using a blazed grating.
A result of such a consideration is shown in Fig. 3.7a [10]. The curve
shown is for propagation from left to right. For the opposite direction
of propagation the same curve is obtained when the abscissa is replaced
with 1 - %u From Fig. 3.7b it follows that the radiated power exercised
by modes traveling in opposite directions is not equal and can differ by
a large factor. This is analogous to the blazing effect in conventional
spectroscopic gratings. For A/A = 0, the power radiated into region 1
is approximately 10 times that radiated into region 3, and conversely
for A/A=1.0 (or 1 - %—= 0). In the former case, the guide appears to
widen as the wave passes under each sawtooth. Thus power is allowed to
leak out to the superstrate. In the latter case, a wave traveling in
the opposite direction sees a contracting guide under each sawtooth, and

power is forced toward the substrate in a manner similar to that of a

tapered coupler. Alternatively, this can be explained using a ray
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picture as in Fig. 3.7c. The direction of the beam coupled into the

substrate is determined by the phase-matching condition
n,cos ¢, = n . (3.22)
3 3 eff A )

The radiation that is coupled out will be enhanced if the face of the
grating is inclined at such an angle that the guided wave is reflected
and then refracted into the direction specified by (3.22). In Fig.
3.7¢c, this implies 63 = ¢3. 63 is related to the Noff of the waveguide

and the blazing angle ¢ by the following equations from geometric optics

considerations:
n
6] =9+ - 8 = COS-]( eff)
N2
o = by 0
N,COS 65 = N,COS 6, (3.23)

Experimentally, a high-efficiency blazed grating coupler has been
demonstratedi1] The technique used for fabricating such gratings and some

preliminary results will be discussed in Chapter 5.

3.6 Switching Speed and Power Consumption

The switching speed of an acousto-optic device is limited by the
finite transit time of the acoustic wave across the optical beam.
However, this drawback does not exist in an electrooptic device in
which the transit time of 1light across the device (say, the grating
length in our case) is very short compared with the RC time-constant

of the device.
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The capacitance C for an electrode configuration in Fig. 3.1

is given by [12]

C=gcl (3.24)
where ¢ is a composite dielectric constant to be discussed later. K
and K' are the complete elliptic integrals: K = K(k), K' = K(k'),
k! = 1-k2, and k = a/b. Parameters a, b, and L are all shown in Fig.

3.1. Assume b >> a, then (3.24) 1is reduced to

c =%2n(%tl)eL (3.25)

For example, if a/b = 1/5, (3.25) gives C = 1.91eL. Compare this to

the value of 1.90 €L obtained from (3.24) using polynomial expansions of
the complete elliptical integrals. The electrodes are deposited on the
surface of a LiNbO3 crystal. We can approximate [13] the composite di-

electric constant of this structure by

€ = 12- (eo + v ) (3.26)

eysz
where ey and e, are the relevant dielectric constants of LiNb03.
Ey = 43 €2 €5 © 28 €0 and €, s the vacuum permittivity. Thus, in the
case of a/b = 1/5, the device capacitance is C(pf) = 3.0 L(cm).
If a load resistance R is placed in shunt with C, and the com-

bination is driven by a matched [14] voltage generator, the operational

bandwidth is given by

- _
B = —=¢ (3.27)

The power dissipated is
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ael
n

N <

P ERRS)

(3.28)

where the peak voltage Vm is determined by the desired number of re-
solvable spots N. In terms of (3.27), we obtain the expression for the

power per bandwidth:

= T ¢ y2
= C Vm

5 (3.29)

w| o

For example, using a grating length L = 1 cm and a separation between
the two electrodes a = 5 um, it requires m volts to produce a resolvable
spot. If we choose N = 5, then Vm = 15 volts, which still can be gen-
erated by a high-speed transistor circuitry. The device capacitance is
3.0 pf. The maximum switching speed (or operational bandwidth) could

be as high as 2 GHz for R = 50p. The power required per unit bandwidth
is thus 1 mW/MHz.
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Chapter 4
WAVELENGTH DEMULTIPLEXERS AND BROAD-BAND OPTICAL FILTERS

4.1 Introduction

In this chapter, we describe the fabrication of multifrequency
waveguide devices which include wavelength demultiplexers and broad-band
filters. These ideas are illustrated in Fig. 4.1, showing devices in
which chirped gratings are used. A chirped grating has a monotonic vari-
ation in period along the grating length. In a chirped-grating deflector
different wavelengths are deflected from different locations of the grat-
ing, and are separated spatially. Similarly, in a chirped-grating
reflector, different wavelengths are reflected at different points along
the grating. Thus the "“chirp" in the grating has the effect of deflect-
ing or reflecting a broad band of wavelengths.

The coupled-mode theory developed in Chapter 2 will be extended to
study the characteristics of these two devices. Experimental results are
discussed and compared with theory. For details of some experimental

techniques, the interested reader is referred to Chapter 5.

4.2 Chirped Gratings

In fabricating a chirped-grating mask, we again use a holographic
interference technique. The sample is exposed to the pattern produced
by the interference of a collimated beam and a cylindrically focused beam
derived from the same laser. In this case, the total field on the<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>