
NEW OPTICAL WAVEGUIDE DEVICES USING 
PERIODIC AND CHIRPED SURFACE CORRUGATIONS 

and 

OPTICAL WAVES IN PERIODIC LAYERED STRUCTURES 

Thesis by 

Chi-Shain Hong 

In Partial Fulfillment of the Requirements 

for the Degree of 

Doctor of Philosophy 

California Institute of Technology 

Pasadena, California 

1979 

(Submitted October 17, 1978) 



-ii-



-iii-

ACKNOWLEDGMENTS 

I would like to express my sincere gratitude to my advisor, 

Professor Amnon Yariv, for his support and excellent guidance during 

the course of this work. The last four years in his group have been 

a most educational and fruitful experience for me. 

I would like to thank Drs . Huan-Wun Yen and Alexis Livanos for 

introducing me to laboratory work as well as interesting experiments, 

and Dr. Bor-Uei Chen of Hughes Research Laboratories for his technical 

advice and cooperation. Stimulating discussions with Chun-Ching Shih, 

Pochi Yeh, and Willie Ng have also been most helpful. It is also a 

pleasure to acknowledge the skillful assistance of Desmond Armstrong 

with the experimental apparatus. 

My special thanks go to Richard Moyer for his diligent and care­

ful assistance with English usage in the writing of my thesis, and 

Mrs. Ruth Stratton for doing such a wonderful job of typing the manu­

script. 

The financial support received from the Air Force Office of Scien­

tific Research, the National Science Foundation, and the California 

Institute of Technology is greatly appreciated. 

Finally, I wish to thank my wife, Sui-Shin, and our parents for 

their encouragement and moral support over the past five years. 



-iv-

ABSTRACT 

The first part of this work describes theoretical and experimen­

tal studies of some corrugated waveguide devices for use in optical 

communications and integrated optics. These devices include wave­

length demultiplexers and broad-band optical filters using chirped 

corrugations, and optical scanners using the electrooptic effect in 

the corrugations. 

The theory of corrugated waveguides is well described by the 

coupled mode formalism. The problem is also treated phenomenologi­

cally by picturing the incident waveguide mode as a zig-zag ray which 

is diffracted by the grating surface at every bounce. Principles of 

the devices are given, and the parameters which characterize the de­

vices are derived. 

Experimental results on fabrication and evaluation of the 

devices are presented and compared with the design theory. Various 

techniques which have been developed during the course of this inves­

tigation are described in some detail. 

The second part of this work describes the propagation of elec­

tromagnetic waves in periodic layered str uctures. 

A diagonalization of the unit cell translation operator of a 

periodic medium is used to obtain exact solutions for the Bloch waves, 

the dispersion relations, and the band structure of the medium. The 

general formalism is then applied to deal with such problems as Bragg 

reflectors, periodic multichannel waveguides, and electromagnetic 

surface waves. 
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Chapter 1 

INTRODUCTION 

1.1 Optical Communications and Integrated Optics 

The invention of the laser as an optfcal oscillator almost twenty 

years ago introduced the possibility of optical communications. Optical 

communications, however, did not, initially, receive serious attention, 

since the transmission of light in the atmosphere suffered from high 

attenuation, and low loss optical wav2guides were not available then. 

It was not until a few years ago with the advent of very low loss 

fiber waveguides that the interest in optical communications was stimu­

lated once again. 

There are a number of potential advantages in an envisioned op-

tical communications system. The first is its huge capability for 

carrying information by optical waves. In addition, the decrease in 

the carrier wavelength allows a reduction in the size of the transmi s­

sion system. For example, optical waves are transmitted in small 

waveguides such as glass fibers, instead of the bulky copper cables used 

for radio waves. Besides their small size and light weight, fiber wave­

guides have a large bandwidth and are free from any electromagnetic 

interference. Low loss fibers with transmission losses of 1 dB/km in 

the spectral range of 0.8-1.6 ~mare currently available [1]. Fiber 

waveguides will become more promising for high data density and long 

distance communication as less dispersive, less lossy, and much stronger 

fibers are made. 
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A fiber optic communications link consists, basically, of 

a light source, an optical fiber, and a detector. A block diagram of 

such a link is shown in Fig. l.la. At the transmitting terminals, light 

is generated and modulated into signals for transmitting. In repeaters, 

the attenuated signals are detected and regenerated (i.e., amplified) 

for the next leg of the journey. At the receiving terminals the sig­

nals are detected and demodulated for processing. It is essential 

that all these terminals and stations be reliable and have dimensions 

comparable to those of fibers. However, most of the conventional 

optical systems in use today consist of components which are bulky and 

heavy, and require careful alignment and protection. In an effort to 

reduce the size of each optical component, there has evolved a new 

field called "thin-film guided wave optics" [2]. 

The structures of fiber and thin-film waveguides are shown in Fig. 

l.lb and c. In a thin-film waveguide, light is transversely confined 

by total internal reflection in the thin film, and is easily affected 

from the surface. Thus, optical components which are used with such 

waveguides can be fabricated directly on top of the waveguides. It is 

conceivable that a large number of components, interconnected by thin­

film waveguides, could be fabricated on a common substrate. These 

planar optical "circuits" would be similar to conventional electronic 

integrated circuits. This defines the eventual goal of a growing tech­

nology called "integrated optics" [3,4,5,6,7]. The resulting integrated 

optical circuits, which will be compact, rigid, reliable, and free of 

the problems of vibration and alignment, will accelerate the coming of 

a new era in optical communications. 
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1.2 Periodic Structure~_in Opti~al Waveguides 

The development of integrated optics started with the study of 

thin-film dielectric waveguides and individual components made using 

such waveguides. Many different materials with good optical quality 

have been used as bases for fabricating waveguide components. Each 

particular component requires the optimization of certain parameters 

which dictates the choice of material. Among these materials, glass or 

glass-like waveguides are frequently used to demonstrate the fabrication 

of various passive components such as couplers, lenses, prisms, polari­

zers, beam-splitters, reflectors, and filters, while Nd+3 doped glass 

may act as an amplification medium [8]. LiNb03 or LiTa03 crystals have 

long been recognized as the best electrooptic and photoelastic material 

to be used for light modulation, switching, and scanning. GaAs or other 

III-V compounds with direct bandgaps are believed to be the top candi­

dates for thin-film lasers and detectors. 

The design of a waveguide component or the understanding of its 

operation requires the knowledge of electromagnetic propagation 

in plain waveguides. This will be addressed in the beginning of 

Chapter 2·. There may exist several different approaches in design which 

will give a similar function. But there is an approach which is 

able to perform many functions, namely, the approach using periodic 

structures [9]. 

We shall use the term "periodic waveguide" to refer to a wave­

guide with parameters which are periodically perturbed along the surface 

of the waveguide. These parameters can be the film index 
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or the film thickness. For example, a spatially periodic modulation 

of the film index can be produced photoelastically by a surface acoustic 

wave as shown in Fig. l.2a. The film index can also be modulated elec­

trooptically by a pattern of interdigital electrodes deposited on top 

of the waveguide (Fig. l.2b). A surface corrugation which modulates the 

film thickness as shown in Fig. 1.2c is another example of a periodic 

waveguide. If a ·~aveguide mode can be viewed as a wave which propagates 

in an equivalent medium of index neff' wh i ch will be defined in Chapter 

2, then the periodic waveguide has an effect of modulating this neff 

along the periodicity. Much as x~rays are scattered by atomic planes in 

a crystal, incident light is scattered by dielectric discontinuities. 

Constructive interference then takes place in a direction where the 

Bragg condition is satisfied. The use of periodic waveguides thus has 

the inherent merits of wavelength or directional sensitivity and high 

efficiency as a result of Bragg diffraction. Figure 1.3 shows three 

possible applications using periodic waveguides, namely retroreflection, 

in-plane deflection, and output coupling. The analysis of these prob­

lems will comprise the main body of Chapter 2. 

Surface acoustic waves and interdigital electrodes have been 

used extensively for light-beam deflection [10,11] in which the effici­

ency depends on the electric driving power. Thus, they work as a switch 

or modulator. Moreover, the deflection of light from a tunable wave­

length acoustic wave can be used for scanning the light beam [12]. Due 

to the feasibility of fabricating submicron periods, corrugated wave­

guides have found unique applications in such cases as backward 



(a) 

(b) 

Film 

Substrate 

(c) 

-6-

DepQsited 
lnterdigital Electrodes 

~~ L.:-~--!1..--'---' 

~at ian 

............. 

Fig. 1.2 Structures of periodic waveguides using (a) surface acoustic 

waves (b) deposited interdigital electrodes (c) surface 
corrugations. 
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reflection, large-angle deflection, and broadside coupling . In the 

former case, the distributed feedback (DFB) [13,14] or Bragg reflector 

(BR) [15,16] GaAs lasers and narrow band filters [17] are important ap­

plications of these waveguides. Such lasers eliminate the need for 

terminating the laser cavity at one of the cleavage planes of the 

GaAs substrate, and thus they become the only laser structures which can 

be incorporated with other optical components into thin-film waveguides . 

The corrugations (or gratings) also provi de wavelength selectivity and 

stability for such lasers. 

As can be seen from the above survey, periodic waveguides play an 

important role in a number of applications of guided wave optics. It is 

the purpose of part of this work to explore the possibility of using the 

electrooptic effect in corrugated waveguides and thus make their valuable 

operations electrically controllable. The new optical devices using the 

above idea are air-side scanners, large-angle switches, and tunable fil­

ters as sketched in Fig . 1.4. Large-angle switches have been studied by 

Kotani and coworkers [18]. A switch between two optical channels which 

have an angular separation up to 10° has been achieved in their work . In 

tunable filters, the spectral tunability is proportional to the electro­

optic index change. The tuning range of t hese filters is considerably 

smaller than that which can be obtained from another electrooptic device 

[19] which uses a directional coupler. We will concentrate on air-side 

scanners and present the result in Chapter 3. 
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"'+----------..;.._~-Film 
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(a) 

(b) 

(c) 

Fig. 1.4 Schematic diagram of (a) a beam scanner (b) a large­

angle switch (c) a modulator I tunable filter. 
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1.3 Applications of Chirped Gratings 

In a fiber communications system it is likely that optical car­

riers of several wavelengths will be multiplexed into a single fiber to 

increase its information carrying capability. Optical devices which 

are compatible with such a wide-band operation as wavelength multiplex­

ing, demultiplexing, or broad-band filtering are thus necessary. These 

can be accomplished by a "chirped" grating ~ A chirped grating has a 

monotonic variation in period along the grating length so that each por­

tion of the length responds to one wavelength. Before describing this 

aspect of applications, let us review some of the previous uses of 

chirped gratings. 

A chirped grating zone plate can be used to compress a laser 

pulse [20]. In Fig. 1.5a a rapidly rotating plane mirror scans the 

incoming pulse across the whole plate. The diffracted waves which have 

a tendency to focus can be made to arrive at the focal point at approxi­

mately the same time by matching the rotational motion of the mirror with 

the traveling times of various portions of the pulse. Thus, the pulse 

is compressed. A chirped grating corrugation has also been used to re­

flect surface acoustic waves in which the round-trip traveling distance 

or delay of a wave is proportional to its wavelength [21]. Such a dis­

persive delay line (Fig. 1.5b) can be used to compress a frequency 

modulated (FM) pulse signal which is applied to the input transducer. In 

the optical regime, a similar delay line to Fig. 1.5b is no longer prac­

tical for compressing an FM optical pulse due to the extremely small 

amount of delay which can be obtained by light in a 1 em length of wave­

guide. However, several other interesting applications which use 
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Fig. 1.5 Schematic diagram of (a) a laser pulse compressor (After 

[20]) (b) an acoustic wave pulse compressor (After [21]). 
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chirped gratings on top of the waveguides have been proposed and de­

veloped. For example, some possible structures for light focusing are 

shown in Fig. 1.6. Assume we can divide the length of our chirped 

grating into N subgratings which have uniform periods of A1 ,A2,···,AN. 

Then the prediction of focusing simply follows the Bragg diffraction, 

since each subgrating diffracts along a different direction. Both 

processes have been demonstrated in glass waveguides [22,23]. Their 

practical applications are illustrated in Fig. 1.7a and b which are a 

diode laser-waveguide coupler and a radio-frequency spectrum analyzer 

[24], respectively. In the latter case we present a chirped-grating lens 

in comparison with Luneburg [25], geodesic [26], and Fresnel [27] lenses. 

As mentioned earlier, the main purpose of this investigation on 

chirped gratings is to demonstrate optical broad-band devices. Bearing 

this in mind, we propose a couple of ideas as sketched in Fig. 1 .8a and 

b. They are broad-band optical filters and wavelength demultiplexers, 

respectively. The principles of these devices can easily be seen from 

the illustrations. Details of these devices will be given in Chapter 

4. A possible application of the wavelength demultiplexer is depicted 

in Fig. 1.8c. 
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(a) 

(b) 

Focus Point 
P(A) 

Focus Point 
P(A) 

Fig. 1.6 Schematic diagram of (a) a focusing grating coupler 
(b) a grating lens. 
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Chapter 2 

THEORY OF CORRUGATED WAVEGUIDES 

2.1 Introduction 

The phenomenon of wave propagation in periodic structures is of 

long standing research interest in many branches of physics and tech­

nology. In integrated optics, periodic structures such as corrugated 

waveguides have been used in a variety of applications (see Fig. 2.1) . 

Some of the devices making use of these corrugated waveguides include 

reflectors, filters, distributed feedback (DFB) lasers, Bragg reflector 

(BR) lasers, and input and output waveguide couplers. 

This chapter attempts to describe the theory and principle of 

those corrugated waveguide devices with an effort devoted to bringing 

out the underlying concepts and introducing the theoretical background 

for my experimental work. Both a coup-led-mode formalism and a zig-zag 

ray picture are used to analyze problems such as refl ection and output 

coupling. The parameters which are used to character i ze the processes 

are derived. 

2. 2 Optical Waveguide Modes 

Before giving an analysis of corrugated waveguide dev i ces, it is 

important to understand the basic modes which can be supported in an un­

corrugated waveguide [1]. A planar thin-film waveguide is sketched in 

Fig. 2.2a. It consists of a film of thickness t and index of refraction 

n2 sandwiched between two media with indices n1 and n3. We are interested 

in finding the electromagnetic modes which propagate along the waveguide 

axis. 
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The structure has the transverse index profile 

X > 0 

n(x) = -t < X < 0 (2 .1) 

with n2 > n3 ~ n1 and a;ay = 0. Us i ng a plane wave analysis, the elec­

tric and magnetic fields in each medium obey the equations (see Appendix 

A) 

(2.2) 

(2.:)) 

where k = 2n/A and \ is the vacuum .wavelength. The solutions are subject 
-+ -+ 

to the continuity of the tangential components of E and H at the dielec-

tric interfaces. By matching these boundary conditions, there exist two 

independent sets of solutions : TE modes with field components EY, 

Hz, and Hx, and TM modes with components Hy' Ez' and Ex. 

(a) TE modes 

Putting a;ay = 0 in (2.2), and taking the form of the field EY 

as 

(2.4) 

we obtain 

(2.5) 

Hz and Hx can be expressed in terms of EY: 



and 
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. aE B 
Hx = - 1

- --!- = --- E 
w~0 aZ w~0 y 

The boundary conditions require that f and df/dx be continuous. 

Before embarking on a formal solution of (2.5), it is useful to 

consider some of physical nature of the solutions by simple arguments. 

Let us consider the character of the solutions as a function of the 

propagation constant Bat a fixed wave length \. For B>kn2, it follows 

directly from (2.5) that f(x) is exponential in all three regions of 

the waveguide. Because of the need to match both f(x) and its derivat1 ve 

at the two interfaces, the resulting fiel d increases without bound in 

region 3 if it is evanescent in region 1, and vice versa. Such a 

mode cannot exist. For kn 3 < B < kn 2, f(x) is sinusoidal in region 2, 

but is exponential in regions 1 and 3. This makes it possible to have 

a solution that satisfies the boundary conditions while being evanes-

cent in both regions 1 and 3. The energy carried by these modes is 

thus confined to the vicinity of the thin film; consequently, we will 

refer to them as confined or guided modes. Solutions for kn1 < B < kn3 
correspond to evanescent behavior in region 1 and to sinusoidal behavior 

in regions 2 and 3. We will refer to these modes as substrate radiation 

modes. For 0 < 8 < kn1, the solution becomes sinusoidal in all three 

regions. These are the radiation modes of the waveguide. The guided 

modes have discrete 8 values while the 8 values of the radiation modes 

form a continuum. The guided and radiation modes comprise a complete 

set of solutions . 

We are now ready to derive the formal solutions for the waveguide 
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structure shown in Fig. 2.2a. We limit our derivation to the confined 

modes, namely the modes which have propagation constants B satisfying 

kn3 < B < kn 2. In this case f(x) is taken as 

A e-qx X > 0 

f(x) = A(cos hx - t sin hx) -t < X < 0 

A(cos ht + t sin ht) ep(x+t) X < -t 

where 

h = Jk2n~ - B2 

p = /s2 - k2 2 n3 

q = Js2 - k2 2 
nl 

The continuity conditions lead to the eigenvalue equation 

or 

where 

and 

tan ht = h(p+g) 
h2- pq 

ht - IJ; - ¢ = rmr 

-1 .P_ IJ; = tan h 

-1 g_ ¢ = tan h 

m=O, 1 ,2, · · · 

(2.6) 

(2. 7) 

(2.8) 

(2.9) 

(2.10) 

The last equation, in conjunction with (2.7), is used to determine the 

eigenvalues B which are discrete: B . Typical field distributions for m 

the lower order modes are shown in Fig. 2.2b. 

Because of the use of plane waves and the assumption of a;ay = 0, 

a mode power is defined as an energy flow per unit time through an area 
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X 

______________ .___ __ _. z 

thin-film "2 

----------------x=-t 

(a) 

(b) 

Fig. 2.2 (a) Structure of a planar ( ~Y = 0 ) thin-film wave­
guide. n2 > n3 ~ n1. 

(b) Typical field distributions for the first two order 
confined modes. 
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with a unit length in they direction, i.e., 

Power flow = - } J Re(EYH~) dx 

= __ s __ J IE !2 dx 
2w11

0 
y 

= ~ J [f(x)]2 dx, assuming f(x) is real w11
0 

(2.11) 

The above integration can be simplified by using a convenient representa-

tion for f(x). Using (2.10), (2.6) is rewritten as 

c cos <P e -qx X > 0 

f(x) = c cos (hx + ¢) -t < X < 0 (2.12) 

C(-l)m cos~ ep(x+t) X < -t 

After a straightforward calculation, 

co 

f 
2 c2 1 1 [f(x)] dx = -- (t +- + -) 2 p q (2.13) 

If we define 

(2.14) 

where neff is referred to as the effective index of refraction of the 

waveguide, then 

- soneffc c2 1 1 
Power flow - --2-- 2 (t + P + q-) 

s n2 2 
= ( o eff f_) (-c-)( t ) 

2 2 neff eff 
(2.15) 

= (average energy density)(velocity)(effective cross section) 



-26-

According to the above interpretation, we define the effective thickness 

of the waveguide by 

(2.16) 

which is the geometrical film thickness plus the evanescent distances in 

both cladding media. 

The constant C can be normalized in a manner so that 

Power flow = 1 unit, or 
:JO 

2
;

110 
J [ f ( x) ] 2 dx = 1 ( 2. 17) 

-oo 
---

c = 2 JWJ.lo ( 2.18) 
Steff 

The orthogonality can be derived directly form (2.5). The result 

is 
00 

(B~- B~,) loofm,fmdx = 0 

i . e. , 

-oo 

Combining with (2.17) we obtain 

(b) TM modes 

00 

f f ,f dx = m m 
-oo 

The field components are 

m' t m (2.19) 

(2.20) 
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H = g(x) eiSz 
y 

i 1 aH 1 dg 
Ez __1 ex: (2.21) 

- wE:o n2(x) ax 2 dx n ( x) 

E -i 1 ~ s Hy 
- wE:o n2(x) 

= 
X at LLE: n2(x) 0 

For confined modes g(x) is taken as 

A e-qx X > 0 
2 

g (x) = 
n2 -t 2 sin 
nl 

hx) -t < X < 0 
(2.22) 

A(cos hx 

n2 
A(cos ht + t -i sin ht) ep(x+t) x < -t 

nl 

where h, p, and q have the same expressions as in (2.7). Similarly, the 

continuity requirement gives an eigenvalue equation which can be reduced 

to the same form as (2.8) by defining 

and has the form 

and 

tan ht = h(p + g) 
h2- p q 

(2.23) 

(2.24) 

The expressions of ~ and ¢ for TM modes are obtained by replacing p and 

q by p and q; (2 . 9) and (2.12) are still formally true for TM modes. 



-28-

= _B_ r [g(x)]
2 

dx, assuming g(x) is real 
2we:0 J n2(x) 

and 
2 

00 [ 1 + £ 

J 
[g(x)]2 dx = ~ .L + _1_ - h2 

2 2 2 2 -2 
-oo n (x) n2 n3p 1 + e._ 

,2 
n 

The corresponding formula to (2. 15) is 

)..l n c 2 
Power flow= 0 eff f_ [···] 

2 2 

which leads to 

2 
teff = neff [ · · ·] 

2 

1 + ~l 

+~ J 
h 

We can a 1 so es tab 1 ish the orthonorma 1 ity for n~ modes: 

(2.25) 

(2.26) 

(2. 27) 

(2.28) 

(2 . 29) 

A plot of the waveguide dispersion (B/k vs t) for TE and TM modes 

is shown in Fig. 2.3. 
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/ 
/ 

/ 
I 

I I TE, 

lrMo 

,.,...----

I '™' I I ,'rM2 
I I I 

I j/ / 
I l.' I I I 

1.5 iJL)l _______ _ 
n3 = 1.504 

0 0.5 1.0 !. 5 2.0 

t (fLm) 

Fig. 2.3 Dispersion curves (S/k vs t) for the confined modes 

in a dielectric waveguide. n1 = 1. 
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2.3 Coupled-Mode Formalism for Corr~at~~ Waveguides 

Electromagnetic wave propagation in periodic structures has been 

studied in a variety of applications [2 ] . One of the most common 

methods used in solving these problems is the coupled-mode formalism 

[3] . In this sect i on we shall outline the procedures used in obtaining 

the coupled-mode equations and the co upl i ng coefficient for a corrugated 

waveguide [4]. 

(a) Derivation of coupled-mode equations 

ForTE modes, EY obeys the equation (see Appendix A) 

a2 a2 2 2 
[-2 + -::---7 + k n ( Z , X ) ] E y = 0 

az ax 
(2.30) 

In a corrugated waveguide as shown in Fig . 2.4a, n2(z,x) can be expressed 

as 
2 n2(x) + lln2(z,x) n (z ,x) = ( 2. 31 ) 

with 
2 X > 0 nl 

2 2 n (x) = n2 - t < X < 0 (2.32) 

2 
X < -t n3 

as the squared index function of the uncorrugated waveguide, and 

{ 

n

0
~ - n~ 

lln2(z ,x) = 
in the corrugation 

(2.33) 

elsewhere 

In general, the corrugation has a profile x = p(z). We will use , 

instead, the width function z = w(x),which is the inverse of the profi le 
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function, and define the single-valued function w1(x) and w2(x) as shown 

in Fig. 2.4a. Since the corrugation is periodic in z, we can expand 

~n2 (z,x) as a Fourier series 

2 
~ n (z,x) = 

e 

• n 27T 
-lx, T z 

-d < X < 0 

(2.34) 
elsewhere 

(In this expression, a positive £ indicates that the grating will retard 

the +z wave vector by an amount of£ ~TI ; fl. is the period of the grating) 

where the Fourier coefficient a
2
(x) is 

Hence 

and 

a ( x) 
0 

• 0 27T 
lx,- z 

e fl. dz 

After replacing n2(z,x) in (2.30) by (2.31), (2.30) becomes 

2 2 
-k lm (z ,x) EY 

(2.35) 

(2.36) 

(2.37) 

The field of the corrugated waveguide can be expanded in terms of the 

modes of the uncorrugated smooth waveguide 

l is z 
Ey = 2 ~ Am(z) e m fm(x) + complex conjugate (2.38) 
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For simplicity we limit ourselves to the case of coupling be­

tween the positive and negative going modes with the same propagation 

constant 

E = ~ [A(z)eiBz + B(z)e-iBz] f(x) + c.c. y \ , _______ ___; (2.39) 

E(z) 

with f(x) satisfying (2.5). Substituting (2.34) and (2.39) into (2 . 37) 

and using the slow-varying approximations 

we obtain 

and 

I dB = K A ei26Bz 1 
dz 

\ 

l dA = K*B e- i 26Bz 
dz 

2 

I :z~ I « 8 I~~ I 

They are the coupled-mode equations, where 

TI 68 = B - Q_ -
fl. 

which is a phase mismatch factor, and 

<flf> 

(2.40) 

(2.41) 

(2.42) 

which is the coupling coefficient. The Dirac bracket in (2.42) means 

an integral over all x. 

It can easily be proved from (2.40) that ~2 (!A(z)l 2 - I B(z)i 2) = 0 

which describes the conservation of energy in this contradirectional 

coupling process. 
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For TM modes, the results are presented in Appendix B. 

(b) Calculation of the coupling coefficient 

The coupling coefficient, which is defined in (2.42), is an im-

portant parameter in estimating the strength of coupling. The expres-

sions for some interesting special corrugation profiles are calculated 

directly. 

For a rectangular profile, w1(x) = -w/2, w2(x) = w/2, and 

a £~O(x) = sin(~;w/A) 0 

2 . ~nw ( 2 2) J [f(x)]2 dx ik sln T n2-nl -d K = 2s tn _oo ________ _ 

i sin ~TIW 
A = ---=---'--

~TI 

J [f(x)]2 dx 
-oo 

h2d 1 2 2 2 -:::-;-"--- [ 1 + qd - -3-( h - q ) d - ... J 
Steff 

(2.43) 

where teff' h, and q were defined previously in (2.16) and (2. 7). Note 

that K = 0 for ~w/A = integer. 

For a square profile, which is a special case of w = A/2, 

K = 0 for ~ = even 

~-1 

( -1 )-2- i K = _,___,_ __ 
~TI 

(2.44) 

) A -1 ( 2x) For a sinusoidal profile, w2(x = 2n cos -1 - Cl , 

w1(x) = -w2(x), and 

sin [ ~ cos-1 (-1 - .?f)] 



i k2 1 K=--
28 ~1T 
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0 

(n~- n~) J sin[~ cos-l (-1- 2dx)][f(x)] 2. dx 
-d 

for ~ = 1 (2.45) 

In the above calculation, the full guide thickness was employed 

to compute the unperturbed mode field f(x), but, as shown in [5], this 

could lead to overestimates of the coupl i ng coefficient . The optimal 

unperturbed mode is that of a relevant four-layer structure. However, 

Streifer et al. [6] found that one could obtain adequate accuracy without 

excessive complexity by judiciously choosing the unperturbed guide bound­

ary. Theychose t• such that the volume of n1 material extending into re­

gion 2 just equalled the volume of n2 material extending into region l, 

as shown in Fig. 2.4b, i.e., 

2 6n ( z, x) = 
in area A 

(2.46) 

in a rea B , a rea A = a rea B 

In this modification the single-val ued width functions are w1(x), 

w2(x), w3(x), and w
4

(x). The Fourier expansion of 6n2(z,x) is 

. 2n 
-1£- z 

e fl. 
(2.47) 

elsewhere 

with 

-d2 < X < 0 
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- t 

(a) 

X 

d 01 

2! .... ..,_;;:;:..._____ A ~ I 

- t' 

(b) 

Fig. 2.4 Definition of single-valued width functions w;(x) which 
describe the corrugation profile . In (b), x=O is deter­

mined by equalizing areas A and B. 

• z 

z 
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and (2.48) 

i~ ~n w4(x) i~ ~n w
3

(x) 
= e - e 

2Hn 0 < X < dl 

The corresponding coupling coefficient is 

(2.49) 

For a rectangular profile, w
1

(x) = -w/2, w2(x) = w/2, w
3

(x) = w/2, 

w4 (x) = 11-w/2, d1 =(w/A)d, d2 = d-d
1 

= (1- w/A)d, and 

Sin ~TIW 

a~ro(x) - - -fir!!_ 

2 . ~TIW 
ik Sln T 

K = 2B ~TI 

2 [f(x)] dx 

(2.50) 

where B, h, q, and teff are quantities corresponding to the waveguide 

with a thickness t - I d. Note that K = 0 when ~w/A = integer. For 

a square profile, which is a special case of w = A/2 

K = 0 for ~ = even 
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For a sinusoidal profile, w2(x) = 2~ cos-1(- ~x), w1 = -w2(x), w3(x) = 

fl. -1 ( 2x) ( ) 
2TI cos - d, w4 x = fl.-w3(x), d1 = d2 = d/2, and 

a (x) =_sin[~ cos-1
(- 2x/d)] 

~;o ~n 

f
d/2 

. 2 (n~- n~) sinU cos-l (- 2dx)][f(x)]2 dx 
K = ~ _1 -d/2 

26 ~TI foo 
[f(x)]2 dx 

for ~ = (2.52) 

As can be seen, the improved analysis corrects second and higher order 

terms only. 

The derivation of the coupling coefficient for a sinusoidal cor­

rugation is easier by the method of a zig-zag ray picture which will be 

introduced in Section 2.6. 

Alternatively, the coupling coefficients can be derived by a dif­

ferent approach which will help us better understand the origin of the 

coupling . From the coupled-mode equation (2.40), if we set 66 = 0, then 

IKI = ll_dBI A dz (2.53) 

so physically IKI is the fractional reflection of the incident amplitude 

per unit length in the corrugation. Let us apply this simple idea to 

the estimation of IKI in a square corrugation. Because of waveguide dis­

persion (2.8), the propagation constant of the mode is 6 in the uncor-

rugated portion and is B-oB in the corrugated portion of the waveguide. 
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Each propagation discontinuity will cause a partial reflection (i.e., 

coupling). Within each period we have two reflections. Although 

these two reflection coefficients have opposite sign, the propagation 

phase delay between these two reflected waves is exactly in at the 

Bragg wavelength (6S = 0) , hence they add up in phase, i.e., 

where, to a first-order approximation, 

I I - os 
r - 2i3 

Since A = in/S, we obtain 

I I 
_ os 

K - iTI 

The next step is t o find a relation between 66 and d. 

oS = ~ d = h2d 
at Steff 

thus h2d I Kl = 
inSteff 

(2.54) 

(2.55) 

From (2.8), 

(2.56) 

which is exactly the same as (2.44) to the first order in d. 

In some applications, a corrugated waveguide is used in the in-

plane deflection of the guided beam. The magnitude of the coupling 

coefficient can also be estimated for this case by this simple concept . 



-39-

The coupled-mode equations for this case are formally similar 

to those in (2.40) when a coordinate s (see Fiq. 2.5) is used. 

Hence 

where lrl is given by the Fresnel formula 

1 1 = B sin a - (B-oB) sin(a-oa) 
r B sin a + (B-oB) sin(a-oa) 

To a first-order approximation, 

I r I = B cos a oa + oB sin a 
2B sin a 

The relation between oa and oB can be derived from Snell's law: 

B cos a= (B-oB) cos(a-oa), and is 

oa = oB c;:os a 
B s1n a 

Then (2.58) becomes 

The Bragg condition for this case is 

fl. = .(l:rr 
S sin a 

After substituting (2.59) and (2.60) in (2.57), we obtain 

9-TI sin o 

( 2. 57) 

(2.58) 

(2.59) 

(2.60) 
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2.4 Solutions of the Coupled-Mode Equations 

The coupled-mode equations can be solved once the boundary condi­

tions are specified. In this derivation, the boundary values are given 

in a coordinate system as shown in Fig. 2.6a for a square corrugation. 

Compared with that used to calculate K in the last section, this coor-

dinate is shifted by A/2 in the z-direction. Although the phase of K is 

not important (because the physically measured quantities are all re­

lated to the absolute value of K), we still prefer a mathematically 

proper Kin our new coordinate. Hence, in what follows, K is (-1) times 

that obtained in the last section. For clarity, setting z = l, and to a 

first-order approximation 

After making the following substitutions 

K = -iK K = IKI 

A(z) = a(z) e-ili6z ( 2. 61 ) 

B(z) = b(z) e i li6z 

the E(z) in (2.39) becomes 

i 6 z -i6 z 
E(z) = ~~ + b(z) e 0 6 = TT/ A 

~;) 
0 

E+(z) 

(2.62) 

and the coupled-mode equations in ( 2. 40) become 



{ 

db + it.6 b = 
dz 

da 
dz - i !'.6 a = 

-42-

(2.63) 

Equations in (2.63) can be combined to give second-order differential 

equations for the incident wave a and the reflected wave b. 

(2.64) 

Boundary conditions are b(L) = 0 and a(O) = 1. Under phase-matching 

conditions 66 = 0, we obtain 

b(z) = i sinh K(L-z) 
cosh KL 

a(z) = cosh K(L-z) 
cosh KL 

A plot of the behavior of la(z)l 2 and lb(z)l 2 for this case is shown 

in Fig. 2.6b. 

If 66 "f 0, then 

b ( z ) = --.-i K---:--S_i n_h~y_,_( L_-...... z_._) .---~ 
y cosh yl - it.B sinh yl 

a(z) = y cosh y(L-z) - i6B sinh y(L-z) 
y cosh yl - i6B sinh yl 

The reflection and transmission coefficients are 

E (O) iK sinh yl 
r = E:(o) = b(O) = y cosh yl- i6B sinh yl 

and 

(2.65) 
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n, 
z=O z=L 

: I u u u I 
I 
I 

I I 
n2 I I 

I I 

(; ri~' : . J : .·.• : .· ~ . : ; · .. • ..•. · •.. : . . ~· •. : : '~. ·.: :•· · ...• ·.' .: :· . ; ; 
II I (a) 
I I 
I I 
I I 

(b) z=O z=L 

Fig. 2.6 (a) Corrugated section of a dielectric waveguide. 
(b) Transfer of power from an incident to a reflected 
wave at the Bragg frequency. 
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a(L) 
iS L iS L 

e o = e o 
y cosh yl - i~S sinh yl 

Both rand t can be written as 

i¢ 
r = I rl e r 

and 
i¢t 

t = It! e 

By straightforward calculation, one can show that 

and 

2 . h2 L = K Sln y 
2 2 . h2 L y + K Sln y 

2 
T = I t 1

2 
= -,.----;.--.,.----

2 2 . h2 L y + K Sln y 

¢t = S L + tan-l(~S tanh yl) + nn 
0 y 

(2.66) 

( 2. 67) 

(2.68) 

(2.69) 

where n is an integer. Note R+T = which is a statement of the con-

servation of energy. 

(a) Reflection characteristics 

Using K as a parameter, R is a symmetric function, and ¢r-; is 

an antisymmetric function of ~S. For clarity, we discuss the character-

istics of R and ¢r only in the domain ~B > 0. 

In ~S < K, the effective propagation constant is a complex num-

ber which corresponds to the forbidden gap of propagation in the corrugated 
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waveguide. The expressions for Rand ¢rare given by (2.68). In the 

band edge, 68 = K, y = 0 

and 

TI -1( ) ¢r = 2 + tan KL + nn 

In the allowed band, 68 > K, y = iy, where 

and 

- J 2 2 Y = (68) - K 

2 . 2-R _ K s1n yl 
- =2 2 . 2-

y + K Sln yl 

TI -1 68 -) ¢ = -2 + tan (-- tan yl + nn r -
y 

To express ¢r as a continuous function of 68L, we set 

n = 0 when 

and 

n 

with n=l,2,··· 

Typical plots of R(68L) and¢ (6BL) are shown in Fig. 2.7 r 

The maximum reflectivity R is at 68L = 0. 
0 

R = tanh2 KL 
0 

(2.70) 

(2. 71) 

(2.72) 

Th f fl . . R 0 -L L j 2 (K'Trl) 2 ' e zeros o re ect1v1ty = are at y = nn or 68 = ±n n + " 

n=l,2,···. The locations of secondary maxima of reflectivity are deter­

mined by finding the local minima of ( .YL )2. The first few roots are 
Sln YL 
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R 

KL=2.0 

4 6 8 10 ~{3L 

Fig. 2.7 Plot of (a) reflectivity (b) phase delay of a grating 
reflector as a function of the detuning 6BL. 
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yl = 4.493, 7.725, 10.904, etc. For example, the first side lobe has 

the maximum reflectivity of 

R = 1 
1 1 + 21. 191 

(KL) 2 

To estimate the bandwidth of the reflectivity spectrum, we use the 

relation 

6\ ~ 6(6BL) (2.73) 
\ nN 

where N is the number of the participating grating period. The band-

width between the first two reflection zero points is 

The 3-db bandwidth is 

- li( liBL) 1/2 - 1/2 (~) 
6\FWHM - n N 

For example, in terms of (A/N), 

KL = 7T 

n/2 
n/4 , 

M0_0 = 2.828, 
2.236, 
2.062, 

6\FWHM = 2.486 
1. 519 
1.076 

At first glance, it seems that ¢r = n/2 at the Bragg frequency 

(6B = 0) is a peculiar result [7] . However , after a careful inspection 

we find it depends on the location of the coordinate origin used in calc u­

lating the coefficient K. Corrugations have been used extensively in 

distributed feedback (DFB) lasers. Us i ng the above analysis, we wil l give 

a simple explanation of an interesting fact regarding DFB lasers which 
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states that the oscillation of a DFB laser does not start at the Bragg 

frequency where the corru~ation provides the maximum feedback [8]. 

First, we arbitrarily choose a reference plane in the corrugation as 

in Fig. 2.8 . Using a self-consistent method, the oscillation thresh­

old will depend on the phase of r1r2. The frequency at which this 

phase is 2mn has the low threshold. At the Bragg frequency, 

then it can be proved that r
2 

~ ei(n-¢). Thus 

= -1 (destructive interference) which may exclude the possi-

bility of oscillation at the Bragg frequency in a DFB laser. 

If the waveguide medium has a gain or loss constant a we simply 

·0 replace S in the solutions by S+1 2, where a is positive for loss and 

negative for qain · 

(b) Normal-mode solutions 

Although the solutions E+(z) and E_(z) in (2.62) are complete 

solutions of the wave equation, they are not expressed in terms of the 

normal modes, or Floquet modes, of a periodic structure. A Floquet mode 

should be a superposition of the fundamental wave function and its spa­

tial harmonics in the structure. In the following, we will prove that 

E(z) can be rewritten in the Floquet modes, thus demonstrating the equiv­

alence of the coupled-mode solution to the normal-mode solution in a 

corrugated waveguide . 

From (2.62) , 

E(z) = E+(z) + E_(z) 

iS z -iS z 
= a(z) e 0 + b(z) e 0 

a(z) and b(z) satisfy the equations 
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Fig. 2 . 8 Illustration of a round-trip phase lag in the "cavity 11 

of a distributed feedback (DFB) laser. 
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2 
(~ + :y-2) ~} = 0 y = J u~s )2 2 - K 
dz 

The general solutions are 

b(z) = bl eiyz + b -iyz 
2 e 

a(z) = a1 
eiyz + 

a2 e -iyz 

If we choose two independent constants as a
1 

and b2, then• from (2 . 63), 

b1 = oa1 and a2 = ob2 , where a= (y-6S)/K. Hence 

a1 and 

first 

then 

-i(y+S )z i [(y+B )z - 2B z] 
E (z) = b e 0 + oa e 0 0 

2 1 

i(y+B )z -i[ (y+S ) z - 2S z] 
E+(z) = a e 0 + ab e 0 0 

1 2 

b2 are determined by the boundary conditions . 
E+ (z) E ( z) 

term in {E_(z) and the second term i n {E:(z) as 

i(y+S )z i[(y+S )z- 2S z] 
a1e 0 + oa1e 0 0 

-i (y+B )z -i [ (y+B )z- 2B z] 
F ( z ) = b e 0 + ab e 0 0 

2 2 

E(z) = F+(z) + F_(z) 

If we combine the 
F+(z) 

{F_(z)' i.e., 

( 2. 74) 

(2.75) 

and F±(z) are the Floquet modes (2S
0 

= 2rrjA in this case) which repre­

sent the forward and backward waves, respectively. 

Several interest i ng characteri st i cs have to be mentioned. First, 

the forward and backward waves contain identical amounts of the har-

monic due to the translational symmetry of the corrugated waveguide i n 
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the z direction. Second, the group velocities ± dw /d(y+S
0

) of the 

fundamental and ± dw /d(y-S
0

) of the harmonic in F±(z) are the same, 

and they depend on the parameter y. Thus, in the normal-mode formal-

ism, waves of similar group velocity are grouped together, while in 

the coupled-mode formalism, waves are grouped according to their 

phase velocity. 

2.5 Radiation Coupled from a Corrugated Waveguide 

Surface corrugations in a waveguide not only couple the forward 

going guided modes to the backward going guided modes, but also couple 

the guided modes to the radiation modes. Our theoretical approach for 

the latter case still uses the coupled-mode formalism. We express the 

total field in terms of the Floquet modes of the corrugated structure. 

A perturbation method will be described to solve the coupled-mode 

equations. The attenuation constant for the guided mode due to the 

coupled-radiation loss will be derived. 

Consider TE modes. EY satisfies 

(2.76) 

Now we express Ey as a summation of partial waves in a form dictated 

by the Floquet theorem. iS z 
EY = I Em(x) e m (2.77) 

m 
with 

(2.78) 
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If no corrugation were present, then all Em(x) with m r 0 would be 

zero, so that E
0

(x) would be the only mode--the incoming guided mode 

in the waveguide. In addition, n2(z,x) is expressed as 

2 n {z,x) (2.79) 

Compared with (2.31) and (2 . 34), 

which describes a four-layer structure. Substituting (2.77) and (2.79) 

in (2.76), we obtain 

Vm (2.80) 

The coupled-mode equations given in (2.80) can be solved by the pertur­

bation method [ 9]. We first assume that all the partial waves Em(x) 

with m r 0 are small. Consequently E
0

(x) can be approximately solved 

by 

(2.81) 

which, subject to the continuity conditions at x = 0, -d, and -t, deter-

mines B
0 

and E
0

(x). Then the resulting E
0

(x) is used on the right hand 

side of (2.go) to drive the other partial waves Em(x) for m r 0: 

( 2. 82i 
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Thus we obtain a first-order perturbation solution for Em. An iter­

ative procedure may be taken to obtain mor~ accurate solutions. For 

details of this analysis, interested readers are referred to Ref. 9. 

The value of s
0 

determined by (2 .81) is a real number which does 

not reveal the fact that the incident mode E
0 

is attenuated. This attenuation 

can be evaluated by calculating the power catried by the partial waves Em 

whose IBm! < kn 3 (radiation modes) . The time-averaged Poynting vec-

tor is .~ = t Re(t X R*). It can be shown that the power radiated 

per unit waveguide length by a TE wave i s 

P1 = 2 = l Re(E H*) -i aE 
where Hz = ~ (2.83) 

X 2 y Z ' W1lo ax 

For a partial wave, E = E (x) y m 
eismz 

and Em(x) is taken as 

i Jk2 n~ 62 X 

{ Em(O) 
m 

X > 0 e 

Em(x) = • J 2 2 62 X -1 k n -
Em(-t) e 3 m 

X < -t 

Thus the power radiated per unit waveguide length by a partial wave 

is 

Usually, an output coupler uses only one part of the radiated power 

expressed above. If 6~ exceeds k 2 n~ ,3, imaginary terms occur in 

(2.84) ; there will be no radiation contribution from such a partial 

wave. From (2.78) and kn 3 < s
0 

< kn 2, P~ = 0 for m < 0 and for 
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large positive m (this, of course, will depend on the magnitude of the 

grating period A). Since the radiated power is proportional to the 

guided power, then 

dP r p I = - _o = aPO 
m m dz 

with 

The attenuation constant a is thus given by 

r P' 
2w)J0 m m 

a = - 6-o- -Jr---1 E-
0

-12,.--d-x (2.85) 

We are also concerned with the direction at which a partial wave wi ll 

be coupled out . This is given by 

-1 6m 
¢ i = cos ( k n . ) , 

1 
= 1 ,3 ( 2. 86) 

which is an angle measured from the waveguide axis. 

2.6 Zig-Zag Ray Analysis for Corrugated Waveguides 

Coupling parameters for reflection and output coupling in corru­

gated waveguide devices can also be calculated using a zig-zag ray 

picture [10]. Its first-order results are in good agreement with 

those from coupled-mode theory. This approach is especially useful 

in the case where the coupled-mode ana lysis is hindered by excessive 

computation, for example, in sinusoidal corrugations. 

· In a thin-film dielectric waveguide, light is guided by total 
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internal reflections at both interfaces between the film and the 

cladding media; thus a guided mode can be described by a zig-zag 

ray bouncing back and forth as shown in Fig. 2.9 a. We divide the 

incident power on the corrugated interface into sections whose widths 

are equal to the mode bounce distance (see Fig. 2. 9 a). Then, in out-

( -1 ) . put coupling, the normalized measure of radiated power, a em 1n 

(2.85), can be expressed as 

a = Nn ( 2.87) 

where N is the number of sections in a unit length (1 em) and n is 

the diffraction efficiency of the surface grating (corrugation). We 

add up the efficiency (or more correctly, t he diffracted power) of each 

section because the coupled waves from different sections do not overlap 

or interfere with each other (Fig. 2.9b). However, we should take 

into account the interference in the case of reflection of the guided 

mode. The magnitude of the coupling coefficient, K (cm- 1), is de-

fined as 

K=N . .[rl ( 2.88) 

This is the optimum estimation, since we add up the diffracted ampli­

tude coherently from different sections of incident wave (Fig . 2.9 c). 

This may not be exactly true. 

The whole problem can be separated i nto two independent sub­

problems: one is the calculation of the di ffraction efficiency n of 

the surface grating, and the other is t he estimate of N (cm-1) which 

is the bounce rate of the incident mode. 
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n 
1 1 

~Mod.e Bounce~ 
1 

~D1stance~ 

(a) 

(b) 

(c) 
Fig. 2. 9 Zig-zag ray picture illustrating (a) mode bounce distance 

(b) process of output coupling (c) process of reflection 
(feedback) in a corrugated waveguide . 
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(a) Diffraction efficiency n 

The phenomenon of diffraction at a corrugated interface between 

two dielectric media has been a subject of interest for many years. 

The geometry is sketched in Fig. 2.10. In electromagnetic theory, 

the field amplitudes of different diffraction orders can be solved, 

in principle, by matching the boundary co nditions on the corrugated 

interface. In the case of a small sinusoida l corrugation, we can de-

rive, to some order of approximation, the diffraction efficiency of a 

given order in closed form. 

ForTE waves (see Fig. 2.10), 

i(0x+sz) i(-p9,X + B9,z) 

E "t A e o o 
+ l.' b£ e in n2 medium 

X, 

(2.89) 
y i(T,Q,X + f:\Z) 

in medium I' c£ e nl 
£ 

where B = £ B0 + £K, K = 2n 
A 

00 = Jk2 2 _ 62 
n2 o J 2 2 2 p£ = k n2 - B£ Po = 00 

and T = Jk2
n
2 

-9, 1 
B2 
£ 

The boundary conditions are that EY and Ht are continuous on the corru­

gated surface described by x = f(z). The tangential magnetic field 

is 
(2. 90) 



-58-

Fig . 2.10 Incident and diffracted waves at both sides of a surface 

grating. The coordinate and grating parameters used in 
the analysis are also shown . 
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where f' = df/dz, 

and 
. aE 

H = _, _ _1_ 
x w]J

0 
az 

If f(z) = a sin Kz, where a is the grating amplitude and thus half of 

the corrugation depth d, namely, a = d/2, then imposing the continuity 

requirement leads to a pair of equations [11] 

6 [-b]J+vJv(pJJ+va) + clJ_VJv(TlJ_Va)] = AJJJ(aoa) 

and 
p2 - vKB / + vKB 

' [ l-l l-l b J (p a) + l-l l-l c J (T a)] 
~ P]J+V ]J+V V ]J+V T]J-V ]J-V V ]J-V 

2 
a

0
- JJKB

0 = AJ (a a) 
a

0 
lJ o 

where J are Bessel functions. v 

(2.91) 

Assume a small perturbation ka << 1. Then for a zero-order ap-

prox imation, lJ = 0, we obtain 
a - T 

bo = 0 0 A a + T 
0 0 

2a
0 

( 2. 92) 

co = A a + T 
0 0 

For a first-order approximation, lJ = -1 (as mentioned previously, we are 

interested only in the negative order of the diffraction), we have equa­

t ions which involve both b~ l , c_1 and b
0

, c
0

. After using the result 

(2.92), we obtain 

c_ 1 = b_1 
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(2.93) 

It is apparent that each order of approximation follows from the preced­

ing orders. Each time we need to solve only two unknowns from two equa­

tions in (2.91 ). For a second-order approximation~= -2, we obtain 

( 2. 94\ 

For a third-order approximation ~ = -3, we obtain 

( 2. 95) 

The diffraction efficiencies are defined by 

( 2. 96) 

where t indicates a diffraction order. Note, G
0 

= R, o
0 

= h, and 

T = iq for the incident condition equivalent to a guided mode, where h 
0 

and q are defined in (2.7). 
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(b) Bounce rate N 

The bounce rate N is the number of bounces per unit length. At 

first glance, it would seem that N = l/(2t cot e), where tis the wave-

guide thickness and e is the incident angle of the mode whose S = kn2cos e. 

However, to treat the problem accurately, the Goos-Hanchen shift [12] at 

the interfaces (or dielectric discontinuities) should be taken into ac-

count. The Goos-Hanchen shift is a phenomenon associated with the total 

internal reflection of a ray (which can be the axis of a finite uniform 

beam or a Gaussian beam, for example). It is a lateral displacement 

between the incident and reflected rays at the interfaces, as illustrated 

in Fig . 2.11., so the distance between two consecutive bounces at the 

same interface is 

It can be proved that 

= cot e 
sl q and s = cot e 

3 p 

where q and pare defined in (2.7) . The bounce distance is then expres-

sed as 

where teff is exactly the effective thickness of the waveguide as de-

fined in (2.16) . The bounce rate is then 

N 1 1 h (2.98) = = LB - 2teff cot e 2Steff 



-62-

I~ L s --------------~~ 

Fig. 2.11 Goos-Hanchen shifts and resulting bounce distance of a 
zig-zag ray which is totally reflected at both inter­
faces in a waveguide structure. 

/ 
/ 
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(c) Derivation of the coupling parameters 

Now we are ready to derive the coupling parameters using the above­

described zig-zag ray theory. The results should provide direct 

evidence of the equivalence between this ray formalism and coupled-mode 

or other first-order perturbation theories. 

As a first example, consider the coupling coefficient (2.88). In 

this case, -£.K=2B, BQ,=-B, pQ,=o
0

=h, and TQ,=T
0

=iq. Thus, 
2 

n£. = I b£./A I , and 

( 2 . 99) 

For£.= -1 (Fig. 2.12a), it can be shown from (2.93) that lb_1/AI = ha. 

Thus 

K = 
-1 

( 2 .1 00 ) 

which is exactly the same as (2.52) derived from coupled-mode theory. 

Similarly, for £.=-2 (Fig. 2.12 b), 

K = h2a2 jk2(n2-nl)2+ q2 
-2 4Bteff 

and for £.= -3 (Fig. 2.12c), 

2 ~ 2 2 s2 j 2 2 s2 
2 + q ( k n - - - k n - -) 2 9 1 9 

(2.101) 

( 2 .1 02 ) 

Fig. 2.13 is a plot of coupling coefficients KQ, versus corrugation 

depth d=2a using (2 .100), (2.101) and (2.102). Also shown in the 
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figure are the results in Ref. 6 which usffi coupled-mode theOfY· They are 

in good agreement with each other when ka < 1. 

Next, consider (2.87)- a measure of radiated power in output 

coupling. After substituting (2.96) and (2.98 ) in (2.87), we obtain 

( 2 . 1 03) 

As usual, this result of ray optics can be interpreted in terms of elec­

tromagnetic plane waves. The gu i ded power i n the waveguide is 

_ B 2 
P - --2 -- 2IAI t ff o w~0 e 

and the radiated power per unit waveguide length is 

Thus expression (2. 103) can be rewritten as 

P' 
£ a = 

£ Po 

which is similar to the definition of attenuation constant in (2.85). 

More importantly, our ray-picture approximation is able to give analytic 

expressions for a£. For example, consider second-order feedback (Fig . 

2.1 2b), in which the first-order diffracted waves are coupled out normal 

to the surface. It can be calculated immediately that 

Cl. -1 ( 2. 1 04) 

Similarly, for the third-order feedback case (Fig. 2. 12~). the first- and 



(b) 
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Schematic diagram showing the related diffraction com­
ponents in (a) 1st-order (b) 2nd-order (c) 3rd-order 
feedback configurations. The evanescent components 
are not shown. 
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A= 0.85fLm 
n1= 3.4 

n2 = 3.6 
n3 = 3.4 

t = I.OfLm 

I 
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500 1000 1500 
0 

Corrugation Depth d (A) 

2000 

Fig. 2.13 Coupling coefficient versus corrugation depth for lst-, 
2nd-, and 3rd-order feedbacks. Dashed lines are results 
of ray-picture approximation. Solid lines are results 
of coupled-mode analysis (After [6]). 
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second-order diffracted waves are radiated out of the waveguide, which 

results in attenuation constants 

a. -1 

and (2.105) 

2 2 B
2 

2 J 2 2 s2 j 2 2 s2 
+ 4 ( k n1 - g-) + q - 7 k n2 - g k n1 - 9] 

Fig. 2.14 is a plot of (2.104) versus corrugation depth, d. Compared 

with the result from coupled-mode analysis , the agreement is good only 

for small d such that ka < 1. Fig. 2.15 is a plot of (2.103) ~ersus 

corrugation period for two partial waves £ = -1 and -2, given d = 500~ 

(ka < 1). Also shown in the figure are results from coupled-mode analy­

sis [9]. As can be seen, they are in good agreement and a._1 >> a._ 2, 

since ka < 1 is fulfilled. To summarize, the ray-picture approximation 

is simple and gives the analytic results which are good when the corruga­

tion depths are small. 
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Fig . 2.14 Radiated power versus corrugation depth. Dashed line is 
obtained from ray-picture approximation. Solid line is obtained 
from coupled-mode analysis (After [9]). They are in good agreement 
only for small corrugation depths. 
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Fig. 2.15 Radiated power versus corrugation period for two partial 

waves ~=-1 and ~=-2. Results of ray-picture approximation 
(dashed lines) and coupled-mode analysis (solid lines, 
after [9]) are compared. Dotted lines are the correspond-
ing direction of radiation. 



-70-

Chapter 2 References 

1. See, for example, D. Marcuse, Theory of Dielectric Optical Waveguides 

(Academic Press, New York, 1974), Chap. 1. 

2. See, for example, C. Elachi, 11 \~aves in active and passive periodic 

structures: a review 11 , Proc. IEEE 64, 1666 (1976). 

3. J. R. Pierce, 11 Coupling of modes of propagation 11 , J. Appl. Phys. ~' 

179 (1954). 

4. A. Yariv, 11 Coupled-mode theory for guided-wave optiCS 11
, IEEE J. 

Quantum Electron. QE-9, 919 (1973). 

5. K. Handa, S. T. Peng, and T. Tamir, 11 Improved perturbation analysis 

of dielectric gratings 11 , Appl. Phys. _§__, 325 (1975). 

6. W. Streifer, D. R. Scifres, and R. D. Burnham, 11 Coupling coeffici­

ents for distributed feedback single- and double-heterostructure 

diode lasers 11 , IEEE J. Quantum Electron. QE-11, 867 (1975). 

7. P. K. Tien, 11 Integrated optics and new wave phenomena 11 , Rev. Mod. 

Phys. 49, 391 (1977). 

8. H. Kogelnik and C. V. Shank, 11 Coupled-wave theory of distributed 

feedback lasers 11 , J. Appl. Phys. 43, 2327 (1972). 

9. W. Streifer, D. R. Scifres, and R. D. Burnham, 11Analysis of grating­

coupled radiation in GaAs:GaAlAs lasers and waveguides~~, IEEE J. 

Quantum Electron. QE-12, 422, 494· (1976); W. H. Lee, private commun. 

10. P. Zory, 11 Corrugated grating coupled devices and coupling coeffici­

ents11, Topical Meeting on Integrated Optics, Paper WBl, Salt Lake 

City, Utah, 1976. 



-71-

11. D. Marcuse, "Higher-order scattering losses in dielectric wave­

guides", Bell Syst. Tech. J. ~, 1801 (1972). 

12. F. Goos and H. Hanchen, "Ein neuer und fundamentaler Versuch zur 

Totalreflexion ",Ann. Physik (6) L 333 (1947); 

J. J. Burke, "Lateral shifts of light beams on total reflection", 

Opt. Sci. Newsletter (Univ. Arizona, Tucson)~' 31 (1971). 



-72-

Chapter 3 

ELECTROOPTIC SCANNING OF LIGHT COUPLED FROM A CORRUGATED LiNb03 WAVEGUIDE 

3.1 Introduction 

In this chapter, we describe a method of beam scanning in which the 

direction of light radiated from a grating output coupler in a dielectric 

waveguide is controlled, via the electroopti c effect, by an applied elec­

tric field. Bragg diffraction (either output coupling [1] or in-plane 

deflection [2]) from a variable wavelength acoustic wave has been used 

for optical scanning. The advantages of our proposed method over the 

above technique will be the capabilities of (1) high speed scanning (or 

switching), and (2) broadside coupling to air. 

Details of some experimental techniques will be presented in 

Chapter 5. The principle and theory of the device are given. Experimen­

tal results are compared with theory. The prospect and further consider­

ations of the device are discussed. 

3.2 Device Theory 

The principle of the device can be described using a LiNb03 wave­

guide in the manner sketched in Fig . 3.1 where x, y , and z are the 

crystal axes. Consider a guided mode with a propagation constant 8 along 

the x-ax i s, incident upon a grating coupler with a period A . The wave 

will be diffracted into air (radia ted) with an angle ~with respect to 

the x-axis. The angle ~ is determined by (2.86) or the phase-matching 

diagram in Fig. 3.1, 
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2n 
6- 1\ = k cos¢ (3.1) 

where k = 2n/A and A is the vacuum wavelength. If we replace 6 by 

kneff as in (2.14), then (3.1) becomes 

A 
neff - X = cos ¢ (3.2) 

For a given A and A, the angle ¢ depends on the index neff" The angle 

of deflection (scanning) corresponding to a small change of index is 

then 

(3 . 3) ----·~-

s ~ r; ·v 

The number of resolvable spots N in the angle of deflection is obtained 

by dividing the magnitude of 6¢ by the angular divergence o¢ of the 

coupled wave. 

This angular divergence is determined by several factors. The 

first is nonuniformity of the film thickness in the coupling region . 

As a matter of fact, we have local variations of neff due to waveguide 

dispersion. By differentiating (3.1), this factor is 

66 0 ¢ - - .,.--r---,-k sin ¢ 

aneff 
at ot 

si n ¢ (3.4) = 

The angular divergence is also diffraction l imited by the finite coupl­

ing length L, and is 

o¢ = A 
L sin ¢ 

(3.5) 

where L is the shor ter of the grating lengths or the 1/e folding 
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distance for the guided mode intensity along the grating. Note, an op­

timum coupling length is reached when (3.5) is equal to (3.4), and no 
! 

improvement in resolution will be gained by further increasing the 

coupling length: Loptimum = A/oneff' In a structure with uniform wave­

guide and grating parameters, (3.5) is the main term to be considered. 

From (3.3) and (3.5), we obtain 

(3.6) 

The number of resolvable spots is thus independent of the choice of¢ 

or A. To estimate ~neff' we choose both t he direction of the applied 

electric field and that of the mode polar i zation as parallel to the z 

(optic) axis of LiNb03. Strictly speaking, to evaluate 6neff we have 

to know the applied electric field distribution first, and then calcu-

late the electrooptically induced index change to obtain the new index 

profile of the waveguide and new neff' However, if the optical field 

of the guided mode is well confined so that the applied electric field 

is almost uniform across it, then we can approximate 6neff by the electro­

optic index change at the waveguide axis . This change is given by [3] 

with E
2 

given by [4] 

2 v E =--z n a 

(3. 7) 

(3 .8) 

where V and a are the applied voltage and separation between the two 

electrodes, respectively. 
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3.3 Holographic Gratings 

An important step in the fabrication of corrugated waveguide 

devices is that of corrugating a waveguide surface. Since the period 

of the corrugations required in this application is of the order of a 

micron or less, classical ruling and conventional photolithographic 

techniques cannot be used for writing the grating lines. Instead, 

the grating masks have to be generated either by electron-beam litho­

graphy or holographic interference technique;. The latter, which 

records the interference fringes of two collimated intersecting laser 

beams, will be used in our work. 

In the holographic interference technique, the surface to be 

corrugated is spin-coated with a layer of photoresist. Two plane 

waves of the same wavelength A are incident upon the photoresist sur-

face at an angle2e as shown in Fig. 3.2a. The total field on the 

surface is 

El =A eikz sine+ pA e-ikz sine+ i¢ 
x=O 

where p and¢ are the amplitude ratio and the phase difference between 

the two beams, respectively . The corresponding intensity distribution 

is IEI~=O = IAI 2 
[1 + p2 + 2p cos(2kz sine-¢)] (3.9) 

which is modulated in the z direction with a period A= A/(2sine). 

When p = 1, we have the extremes of 0 and 4IAJ 2 in (3.9); so the 

intensity contrast is maximum if the intensity of the two beams is 

equal over the surface. In addition, as long as ¢ is constant in time, 

the interference pattern will remain sta t ionary in space. Fig. 3.2b 

shows a resulting photoresist pattern afte r development. 
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(a) 

(b) 

laser beam 
A 

A A= ___,,---
2sine 

Fig. 3.2 (a) Exposure of photoresist by two interfering laser beams. 
(b) Photoresist pattern after development. 
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3.4 Experimental Results 

In our first experiment, we used a planar Ti-diffused LiNb03 
waveguide. The waveguide was formed by diffusing a 200 ~ Ti metal 

film into a Y-cut LiNb03 substrate at 975°C for 5 hours [5]. The result­

ing waveguide supported a TE0 mode with an index neff = 2.212 at 
0 

A = 6328 A. The surface corrugation was then fabricated by ion-beam 

etching through a photoresist mask generated by a holographic inter-

ference technique. The period of the corrugation was determined to be 

5180 ~. We chose a shallow corrugation to ensure that the coupling 

length L was the geometrical length of the grating. 

A TE0 mode at A = 6328 ~ was excited in the waveguide by a 

rutile prism coupler and diffracted out to air by the corrugation 

grating. The diffraction angle¢ was calculated and measured to be 8°. 

A typical far-field diffraction pattern for the coupled wave is shown 

in Fig. 3.3. Also shown in this figure i s a plot of the measured 

angular divergence 8¢ versus the grating length L. For L = 2.5 mm, 

8¢ ~ 0.15°, which was larger than the calculated value 8¢ideal = 0.10°. 

The electrooptically induced index change was produced by apply­

ing a voltage to a pair of parallel Al electrodes deposited photolitho-

qraphically on top of the waveguide. The separation between the 

two electrodes was a = 33 ~m. The scanning of the coupled beam is 

shown in Fig. 3.4. This double exposure shows two states: without 

an applied voltage and with an applied voltage of 500 volts, which 

corresponds to a field of 10 volts/~m. The measured number of 

resolvable spots was 3, while the number predicted by (3.6) was 6. 
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500 vo lts 

Fig. 3.4 Photograph of the resolved spots cor responding to the 

applied voltages as indicated . The device has L=2 . 5mm 

and a=33\Jm. 
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The discrepancies between the measured and the calculated values were 

partly due to an overestimate of 6neff' and partly due to imperfec­

tions in the structure. 

To achieve a better electrooptic interaction, we performed the 

second experiment on a channel waveguide. A channel waveguide on a 

LiNb03 substrate was formed by the oxidation of a 4 ~m wide, 200 ~ 

thick Ti film at 600°C for 4 hours, and then the diffusion of the 

resulting oxide at 950°C for 5 hours [6]. It supported a single mode 

(neff = 2.210) with a loss constant of 1 db/em. The grating parameters 

were A= 4200~ and L = 2.5 mm, so¢~ 45° and o¢.d 1 ~ 0.02°. A 
1 ea 

typical far-field diffraction pattern of the coupled wave from the 

channel waveguide is shown in Fig. 3.5a. Fig. 3.5b shows the scanning 

of the coupled beam. The voltage of 150 volts is applied to electrodes 

with a spacing of 10 ~m (E
2 

~ 10 volts/~m). The photograph in Fig. 3.5c 

shows three well resolved spots corresponding to voltages of 0, 100, 

and 200 volts, respectively. From the measurement, N ~ 5 when 

V = 200 volts. The theoretical number is 8. 

In this application we have used an electrooptically induced 

index change 6ne = (1-2) x 10-3. A further reduction of the voltages 

required can be made by decreasing the separation between the two 

electrodes . The resolution can be improved by increasing the coupling 

length in the grating with a corresponding penalty in the switching 

speed. This will be discussed in a later section. 

To summarize, we have demonstrated angular scanning of a beam 

coupled from a corrugated LiNb03 waveguide. This was done by using 
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the electrooptic effect to modulate the index of refraction in the 

corrugated section of the waveguide. The number of resolution ele-

ments is limited by the dielectric breakdown of the waveguide material. 

We have demonstrated the capability of producing one resolved spot per 

3 volts/~m applied field. In principle, ' by using a grating of 1 em 

length and an applied field of 40 volts/~rn in the system of Fig. 3.1 , 

the number of resolution elements should be ~100. 

3.5 Coupling Efficiency 

In a previous section, we investigated the number of resolvable 

spots obtainable from the described electrooptic scanner. It is also 

important to consider other pertinent device parameters such as cou­

pling efficiency and switching speed. The efficiency of a grating 

coupler in a diffused waveguide can be calculated using the method of 

a zig-zag ray approximation described in Section 2.6. The character-

istics of guided modes in such waveguides are, of course, prerequisite 

in this consideration. 

(a) Modes in a diffused waveguide 

The diffused waveguide used in our experiment has a graded index 

of refraction in the film . According to Ref . 5, the small increase of 

index in the substrate has a Gaussian distribution. Thus the i ndex 

profile for this waveguide structure (Fig . 3.6a) is 

X < 0 

n(x) = (3 . 10) 

X > 0 

where 6n is the increment at the surface, and a is the 1/e folding 
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Consider TE modes, E = f(x) eiBz where f(x) satisfies 
y 

d
2
; + [k2n2(x) - s2]f = 0 

dx 
(3.11) 

Closed-form solutions of (3 . 11) with n(x) given by (3 .10 ) do not exist. 

If we approximate the Gaus sian function in (3.10) by a parabola: 

exp(-x2;a2) ~ 1 - x2;a2, (3.11) will become similar to a simple harmonic 

oscillator (SHO) equation in x < 0. We further assume that f(O) = 0 

which is a good approximation for the large dielectric discontinuity at 

the waveguide surface. Then, the guided modes of interest have a formal 

similarity to the odd order modes (which are antisymmetric with respect 

to x = 0) of a SHO. This approximation method has been justified by 

comparing the measured and calculated Bm values [7]. 

After the following substitutions: 

k2(n 3
2 + 2n 36n) - s2 

t; = ax , a= jk(2n 36n) 112;a , and J.! = -____.;;.-~2--"---­a 

( 3. 11) becomes 

if 2 
~ + ().! - l; ) f = 0 , f(O) = 0 

The solutions require 

J.! = 4m + 3 

with m = 0,1,2, ... (rrode index) . The corresponding eigenfunctions are 
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given by 

(3.13) 

where H2m+l are the Hermite polynomials. Typical field distributions 

for the first few modes are shown in Fig. 3.6b. Putting m = 0 in 

(3.12), we obtain the expression for neff of TE0 mode . 

The waveguide used in the experiment has the following data: 

;x. = 0.6328 ]lm, a= 2 ]lm, n3 = 2.2, and 6n = 0.02 

(3 . 14) 

Hence neff= 2.210. Compare this to the observed value of 2.212. 

To i mprove the above approxi mation, we can include a quartic term 

with an adjustable coefficient in the approach to a true Gaussian 

fun ction and use this term as a first-order perturbation source [8] to 

the zero-order solutions described above. 

(b) Coupling efficiency 

For a grating coupler, 

the coupling efficiency = a_1 L (3.15) 

where Lis the grating length, and a_ 1 = Nn_ 1 as defined in (2.87) . 

N is the mode bounce rate (cm- 1), and n_1 is the diffraction efficiency . 

In a diffused waveguide, t he zig-zag ray model of a guided mode 

can be described in a manner shown in Fig. 3.6c. The mode bounce rate 

is thus 

1 
N = C 

8 
(3.16) 
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Fig. 3.6 

X 

(a) Index profile of a diffused waveguide. Curve A is the 
true Gaussian function . Parabola curve B is an approximate 
profile. (b) Approximate field distri butions for the first 
two order TE modes. (c) Zig-zag ray model in a diffused wave­
guide and the relevant coordinates and parameters . 
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where the correction for the Goos-Hanchen shift 2s1 is necessary only 

at the dielectric discontinuity at x = 0. 2r is the distance between 

the entering and emerging points of the ray at the waveguide surface. 

It is determined by solving the (eikonal) ray equation. The ray 

equation [9] is written as (Fig. 3.6c) 

-+ 

d (n ~) = vn as ds (3.17) 

For a very confined mode, ds 

reduced to 

~ dz, and the x-component of (3.17) is 

Using the approximate n(x) 

2 
n(x) = n3 + ~n - ~n ~ 

0 

Then, to first-order in ~n, (3.18) becomes 

11 
_ ~n 2x 

X- -Yi37 

(3.18) 

X > 0 

where the prime indicates a derivative with respect to z. The boundary 

conditions are 

z = - r X = 0 x' = tane 

z = 0 x' = 0 

where ± tane is the slope of the trajectory at the surface, 

-1 neff e =cos (n 3+~n), and x
0 

is the turning point. r in (3.16) is thus 
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determined as follows : 

x' = tan e, X = 0 > x' =} t an2e 2lln :x2 
- fl3 a2 

x' = 0 X = xo determines 
Xo tan e 

' --
a 

j2lln 
n3 

z = 0 ' X = =9 
a ( . -1 X :!!:.) xo z = s1n -

~ 
X 2 

0 

3 

z = -r, X = 0 determines r = 
rra 

(3 . 19) 
2 ~ 3 

Note that r is independent of e, which is not generally true . This is 

an artifact of the parabolic approximation used in the above derivation. 

The Goos-Hanchen shift is given by 

where 

cot e 
sl = q 

Applying the same data used to calculate neff in (3.14), we obtain 

r = 23 .3 llm , and s1 = 0.5 llm 

Thus N = l/LB = 210 cm-l. 

(3.20) 

Next, we calculate the diffraction efficiency of the surface 

grating . We are only interested in the diffraction to the air side . 

From (2.96) 
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= T -1 leAl 1

2 c -1 cr (cr -T ) 
n_, with 0 0 0 ( 3. 21) cro r=-a P_l+ T_l 

where cro = k j ( n3 + lin) 2 2 
neff To = iq = ikJn~ff- 2 

nl 

k j ( n 3 + lin ) 2 A 2 j 2 A 2 P_l = (neff-A) 'T_l = k nl - (neff- K) 

Using the values a= 200~ (or d = 400 ~),A= 4200 ~'and the previous 

data, we obtain n_1 = 0.29%. 
-1 Thus a_1 = Nn_1 = 0.61 em and the coupling efficiency (3 . 15) is 

15% for L = 2.5 mm. 

The coupling efficiency can be increased by using a blazed grating. 

A result of such a consideration is shown in Fig. 3.7a [10]. The curve 

shown is for propagation from left to right . For the opposite direction 

of propagation the same curve is obtained when the abscissa is replaced 

with 1 - ~· From Fig. 3.7b it follows that the radiated power exercised 

by modes traveling in opposite directions is not equal and can differ by 

a large factor. This is analogous to the blazing effect in conventional 

spectroscopic gratings . For li/A = 0, the power radiated into region 1 

is approximately 10 times that radiated into region 3, and conversely 
ll for li/A = 1.0 (or 1 - K = 0). In the former case, the guide appears to 

widen as the wave passes under each sawtooth . Thus power is allowed to 

leak out to the superstrate . In the latter case, a wave traveling in 

the opposite direction sees a contracting guide under each sawtooth, and 

power is forced toward the substrate in a manner similar to that of a 

tapered coupler . Alternatively, this can be explained us i ng a ray 



- I E
 

0 0 ~
 

<l
> ~
 

0 a_
 

"'C
 

<l
> -0 2
5
~
~
~
~
-
-
~
~
-
-
-
-
~
 

T
o

ta
l 

R
a

d
ia

ti
o

n
 0.

15
J.

Lm
 

6.
 

~
~
I
 

I.
O

fL
m

T
 
~

02 
J..

 
n

3
 

"'C
 

10
 

0 

>.. 
=

 0
.8

8
fL

m
 

n 2
=

 3
.6

 

n
1
=n

3
=

3
.4

 

A
=

 0
.2

1
 fL

m
 

TE
2 

0::
: -0 <l
> 
~
 

:::
J 

(/
) 

0 <l
> 

~
 

( 
a

) 

0 
0

.2
 0

.4
 0

.6
 0

.8
 

1.
0 

S
ha

pe
 

P
a

ra
m

e
te

r 
l::..

 
A

 

\ 
''
I
-
-
-
-

'' 
-
-

-
-

--
-

--
-

,,,
 

-
-
-

-
--

--
.1

./
L

_
 

/7
/ 

-
-
-
-
-
-
-
-
-
-

-
-
-

( b
 )

 

n,
 

n
2

 

n
3

 

( c
 )

 

/
/
/
 

//
/ 

,.,,.
 

1
--

A
 
--

! 

2.
,. 

I 
T

l I 

Fi
g.

 
3.

7 
(a

) 
R

ad
ia

te
d 

po
w

er
 v

er
su

s 
sh

ap
e 

pa
ra

m
et

er
 

in
 

a 
tr

ia
n

g
u

la
r 

gr
at

in
g 

co
up

le
r 

(A
ft

er
 [

10
])

. 
(b

) 
B

la
zi

ng
 e

ff
ec

t 
in

 a
 c

or
ru

ga
te

d 
w

av
eg

ui
de

. 
(c

) 
Ra

y 
pi

ct
ur

e 
of

 a
 g

ui
de

d 
w

av
e 

in
 a

 
w

av
eg

ui
de

 w
ith

 
a 

bl
az

ed
 

gr
at

in
g 

at
 t

he
 s

ur
fa

ce
. 

Th
e 

bl
az

in
g 

ef
fe

ct
 i

s 
op

tim
iz

ed
 w

he
n 

8
3 

=
 

cp
3. 

I "' 0 I 



-91-

picture as in Fig. 3.7c . The direction of the beam coupled into the 

substrate is determined by the phase-matching condition 

(3.22) 

The radiation that is coupled out will be enhanced if the face of the 

grating is inclined at such an angle that the guided wave is reflected 

and then refracted into the direction specified by (3.22). In Fig. 

3.7c, this implies e3 = ¢3. e3 is related to the neff of the waveguide 

and the blazing angle~ by the following equations from geometric optics 

considerations: 

e1 = e + ~ 

(3.23) 

Experimentally, a high-efficiency blazed grating coupler has been 

demonstrate~lll The technique used for fabricating such gratings and some 

preliminary results will be discussed in Chapter 5. 

3.6 Switching Speed and Power Consumption 

The switching speed of an acousto-optic device is limited by the 

finite transit time of the acoustic wave across the optical beam. 

However, this drawback does not exist in an electroootic device in 

which the transit time of light across the device (say, the grating 

length in our case) is very short compared with the RC time-constant 

of the device. 
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The capacitance C for an electrode configuration in Fig. 3.1 

is given by [12] 

(3.24) 

where E is a composite dielectric constant to be discussed later. K 

and K' are the complete elliptic integrals: K = K(k), K' = K(k'), 

k' = ~ and k = a/b. Parameters a, b, and L are all shown in Fig . 

3.1. Assume b >>a, then (3.24) is reduced to 

C=~.Q.n( 4b)EL (3.25) n a 

For example, if a/b = l/5, (3.25) gives C = 1.91 E L. Compare this to 

the value of 1.90 EL obtained from (3.24) using polynomial expansions of 

the complete elliptical integrals. The electrodes are deposited on the 

surface of a LiNb03 crystal. We can approximate [13] the composite di­

electric constant of this structure by 

(3.26) 

where EY and cz are the relevant dielectric constants of LiNb03. 

E = 43 E , E = 28 E , and E is the vacuum permittivity. Thus, in the 
y 0 z 0 0 

case of a/b = l/5, the device capacitance is C(pf) = 3.0 L(cm). 

If a load resistance R is placed in shunt with C, and the com­

bination is driven by a matched [14] voltage generator, the operational 

bandwidth is given by 

1 
B = nRC 

The power dissipated is 

( 3. 27) 



v2 
m 

p = 2R 
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(3.28) 

where the peak voltage Vm is determined by the desired number of re­

solvable spots N. In terms of (3.27), we obtain the expression for the 

power per bandwidth: 

p = ~ c v2 
B 2 m (3.29) 

For example, using a grating length L = 1 em and a separation between 

the two electrodes a = 5 urn, it requires TI volts to produce a resolvable 

spot. If we choose N = 5, then V = 15 volts, which still can be gen­m 

erated by a high-speed transistor circuitry. The device capacitance is 

3.0 pf. The maximum switching speed (or operational bandwidth) could 

be as high as 2 GHz for R = 50o. The power required per unit bandwidth 

is thus 1 mW/MHz. 
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Chapter 4 

WAVELENGTH DEMULTIPLEXERS AND BROAD-BAND OPTICAL FILTERS 

4.1 Introduction 

In this chapter, we describe the fabrication of multifrequency 

waveguide devices which include wavelength demultiplexers and broad-band 

filters. These ideas are illustrated in Fig. 4.1, showing devices in 

which chirped gratings are used. A chirped grating has a monotonic vari­

ation in period along the grating length. In a chirped-grating deflector 

different wavelengths are deflected from different locations of the grat­

ing, and are separated spatially. Similarly, in a chirped-grating 

reflector, different wavelengths are reflected at different points along 

the grating. Thus the 11 chirp 11 in the grating has the effect of deflect­

ing or reflecting a broad band of wavelengths. 

The coupled-mode theory developed in Chapter 2 will be extended to 

study the characteristics of these two devices. Experimental results are 

discussed and compared with theory. For details of some experimental 

techniques, the interested reader is referred to Chapter 5. 

4.2 Chirped Gratings 

In fabricating a chirped-grating mask, we again use a holographic 

interference technique. The sample is exposed to the pattern produced 

by the interference of a collimated beam and a cylindrically focused beam 

derived from the same laser. In this case, the total field on the sur­

face (Fig. 4.2) is 
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Fig. 4.1 Schematic dia~ram of (a) a wavelength demultiplexer and 
(b) a broad- band optical filter in which chirped gratings 

are used . 



where k = 2n/A, and A is the recording wavelength. The resulting inter­

ference pattern is 

IEI~=O = 2IAI 2 [1 +cos ¢(z)], assuming A= B, 

where ¢(z) = k(z sin e - )(z-zf) 2 + x~) The period distribution is 

thus given by 

A(z) = d:TI/dz = ____ A ____ _ 
'+' zf-z 

sin e + ---'----
0 < z < L ( 4. 1 ) 

)(zf-z)2 + x~ 

For small chirps , L << zf,xf' and (4.1) can be approximated by 

A(z) 

or 

2n 2n 2n z 
ATZT = 1\TOT- T rf 

These linear functions will be used in our device analysis. 

4.3 Theory of Wavelength Demultiplexers 

Some interesting parameters in the design of demultiplexers are 

the deflection efficiency, and the approximate number of resolvable 

wavelengths. In this analysis, we assume a chirped grating whose 

period varies linearly with a rate yin a length L. The period varia­

tion in the direction (z) of the incident beam is thus 
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~(z) = ~(0) + (y sin a)z , 0 < z < L/sin a (4.2) 

where a is the incident angle with respect to the grating lines (Fig. 

4.la). The equivalent chirping rate is y sin a. The effective corru­

gated section which will deflect light with a wavelength A can be 

derived from coupled-mode theory. As shown in Section 2.4, a g_rating 

possesses stop bands of 

(4.3) 

in which the propagation is forbidden. K~(0 is the ~th_order coupling 

coefficient, and 6S is a phase mismatch factor which in this case is 

6B = B sin a - ~ n/~. In terms of wavelength, (4.3) becomes 

2 
K~ A 

( 6A) = -----:--
8 n neff sin a 

(4.4) 

The subscript B indicates that the interval 6A has a center wavelength 

A which satisfies the Bragg condition 

~A = 2neff ~ sin a (4.5) 

Conversely, if we fix the wavelength at (4.5) and vary the grating 

period, then the period interval which has the effect of deflecting 

this center wavelength can be derived from (4.4) and (4.5) 

2 
K~ A ~ 

( 6~) B = ----'----;:-----=--

2 2 . 2 
n neff s1n a 

(4.6) 

In a chirped grating described by (4.2), the effective length along the 
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z axis, which corresponds to the amount of period variation in (4.6) 

is Leff/sin o where 
2 

(6A)B K£ A £ 
Leff = -~- = --...,..----....--

2 
2 . 2 

rr y neff s1n a 

( 4. 7) 
y 

Although a plane wave analysis is employed in the above derivation, we 

always use a finite beam in a practical device. This leads to a con-

sideration of the spatial resolution of the deflected beams. The above 

expression for Leff is still applicable if the beam width wbeam is much 

larger than Le¥fsa.We also assume that Le~fsina »:\,so the divergence of 

the deflected beam is negligible. It can be easily shown that the ap-

proximate number of resolvable wavelengths in the described demultiplexer 

is 

N = 
L/sin a (4.8) 

where Leff is taken as a wavelength-averaged value. The deflection ef­

ficiency is obtained from (2.72) by replacing L by L ff' 
2 2 e 

2 . 2 K£ A £ 
R = tanh KQ, Leff = tanh 2 . 2 (4.9) 

2rr y neff s1n a 

4.4 Experimental Results 

An optical demultiplexer such as the one just described was fab­

ricated in a glass waveguide and investigated using a tunable dye 

laser. The grating period required in this case was ~3000~. In the 

first experiment, a glass waveguide was fabricated by sputter-deposit­

ing [1] a layer of Corning 7059 glass on a glass substrate. The 
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resulting waveguide supported a ™o mode with an index neff~ 1.5 at 

A = 6000~. A chirped-grating corrugation was then fabricated [1] on 

top of the waveguide. 
0 

Its period variation ranged from 2930 to 3210A 

over a distance of 6.5 mm . To demonstrate the demultiplexing effect, 

the output from a tunable dye laser was coupled irito the waveguide with 

a prism coupler. The angle a at which the guided beam was incident 

upon the grating lines was set at ~42°. Fi g. 4. 3a shows the deflection 

of .two different wave lengths from two different locations in the chirped 

grating . This is shown schematically in Fig . 4. 3b . The two wavelengths 

have a 200~ difference and are separated spatially by 4 mm. 

To measure more quantitatively some interesting parameters of the 

device, we performed a second experiment. A second sample was fabricated . 

The thickness of the waveguide was measured to be t = 0.65 ~m. This 

waveguide supported a single mode (TM0) of neff= 1. 54 at A = 6000~ 

Other relevant indices of refraction were determi ned [1] : n3 = 1.51 and 

n2 = 1.57. The period variation of t he grat i ng was approximately l i nea r 

over a portion of the total length. This region of interest has a 

period from 2975 to 3105~ over a distance L = 3. 5 mm. So the chirpi ng 

rate was y = 4x 10-6. The sinusoidal corrugation depth was estimated [1] 

to be d = 400~, which corresponded to a coupling coefficient ( B.6) of 

Kl ~ 80 cm-l The incident conditions were chosen so that the incident 

angle a= 40°, and the beam width wbeam = 500 ~m . Hence the effective 

length (4.7) , the deflection efficiency (4.9) , and the number of resolv­

able wavelengths (4.8) were calculated to be Leff ~ 120 ~m, R ~ 50% , and 

N ~ 8 , respectively . The deflection efficiency was roughly measured by 
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(b) 

Fig. 4~3 (a) Photograpb·sho~ing .t he ~deflcction of t~o different wave­
lengths from two different locations in a chirped grating. 
(b) Sc~ematic dra,·Jing of the cxperi!'lental result sho·wn in (a). 
The <..!Jsheu ·l ines outline the grating region. 



-104-

using a fiber probe, and was ~10%. The measured number of resolvable 

wavelengths was ~7. Quantitative determination of R was thwarted by 

excessive scattering loss. The measured and calculated N were in good 

agreement. 

To summarize, we have demonstrated the fabrication of wave­

length demultiplexers using chirped gratings on the surface of thin­

film glass waveguides. A demultiplexer with 8 resolvable wavelengths 

and 50% deflection efficiency has been studied. The deflection effi­

ciency can be increased by using a small chirping rate with a corres­

ponding penalty in the number of resolvable wavelengths or the device 

length. This device can demultiplex, according to wavelength, an 

optical signal traveling in a fiber, and send each wavelength component 

to a differeng fiber or detector in an array. 

4.5 Theory of Broad-Band Grating Filters 

Filter response of nonuniform almost-periodic structures has 

been the subject of current theoretical interest. The analysis of this 

problem uses coupled-mode theory. Kogelnik [2] showed that the reflec­

tion coefficient satisfied a Riccati equation and reported numerical 

results for reflection from chirped gratings and tapered gratings. In 

the case of small variations, it is possible to use perturbation tech­

niques. Streifer et al. [3] used such a technique to obtain simple 

formulas for the first-order results. For linear chirps, Matsuhara et 

al. [4] gave an analytical solution which was in the form of the 

Whittaker function. However, we shall prove that the solution should 
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be in a form of parabolic cylinder functions. A simple method based 

on the direct integration of the coupled-mode equations will also be 

included in our analysis. 

The generalized coupled-mode equations (see Appendix C) are 

{ 

dB = K A e i ( 2 Bz - ¢ ( z) ) 
dz 

dA = K*B e-i(2Sz-¢(z)) 
dz 

z 

where ¢(z) = J A~;) dz 
0 

(4.10) 

A and Bare the complex amplitudes of the incident and reflected 

modes under consideration. K is the coupling coefficient and 8 is 

the propagation constant of the modes . In a chirped gratinq whose 

period varies as 

2TI 2TI MZT = 1\TOT - 2yz 

the phase ¢(z) becomes 

¢(z) = A~~) z- yz
2 

and the equations in (4.10) become 

{

dB= 
dz 

dA _ 
dz -

. A -i26z eiyz2 
1 K e 

. B i 26z 
-lK e 

. 2 
-lyZ e 

0 < z < L (4.11) 

(4 . 12) 

where K is assumed to be a real and positive number. 6 is a phase 

mismatch factor and is defined by 
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o = A(o) - B (4.13) 

The point where the Bragg resonance condition A~;) - 28 = 0 is satis­

fied shall be referred to as the Bragg point zB. We find 

ZB = o/y (4.14) 

which is a function of wavelength (B= B(A)). 

To simplify the equations, instead of using the coordinate z 

as in (4.11), we use z as a local coordinate (i.e., z = 0 corresponds 

to the Bragg point) for a given wavelength (or B). This results in 

2n --,.-,-::'\ = 2 B - 2 y z 
H\Z/ 

cP(z) 

{ 

~~ = 

dA = dz 

2 = 2Bz - yz 

. 2 
. A lyZ 1K e 

-iK B e 
. 2 -lyZ 

(4.15) 

If the condition yl << B is satisfied in our gratings, we can make the 

following substitutions 

The 

1 . 2 - - lyZ 
A = u e 2 

equations in (4.15) 

(v + iyzv iKU dz 

du iyzu + iKV -az-

1 . 2 

B = v e 
2 lyZ 

become 

= 0 

(4.16) 

= 0 
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Equations (4.16) can be combined to give second-order differential 

equations for the incident wave u and the reflected wave v 

{ 

d
2
v ( 2 2 2 . ) -2 + Y Z - K + ly V = 0 

dz 

d2u 2 2 2 . - 2 + (y z - K - 1y)u = 0 
dz 

(4.17) 

The boundary conditions are v(L- zB) = 0 and u(-zB) = 1. If we use a 

dimensionless variable s defined by 

s = ( 2y) 1 12 z 

The equations (4.17) become 

2 

{ 

~ + (l s2 - b)v = o 
ds2 4 

d2u 1 2 - 2 + (- s - a)u = 0 
ds 4 

where a = cr + i/2, b = cr - i/2, 2 and cr = K /2y 

(4.18) 

(4 .19) 

These are the standard equations for the parabolic cylinder functions 

[5,6]. Some important properties of these functions are listed in 

Appendix D. 

From (D.l) and (4.18), we see that the parameter c has differ-

ent values for incident and reflected modes. These are a and b, and 

the corresponding functions are denoted by Ea(s) and Eb(~), respec­

tively. Since a and bare complex conjugates, [Ea(s)]* = Eb(s) and 

[Eb(s)]* = E:(s). Replacing c with b in the recurrence relation (0.3) 
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and with a in (0.4), we obtain a pair of equations 

(4.20) 

which are, in fact, the same coupled-mode equations (4.16) satisfied by 

v and u, after the variable z is changed to s· Thus 

is a pair of solutions for our problem. It can be easily shown that 

other independent solution-pairs are 

Consequently, the general solutions for (~~~~) may be written as some 

linear combination of two of the above four linearly independent solu­

tions. Using the coupled-mode equations (4.20) in the Wronskian (0.2) 

for the functions Ea(s) and E~(s), we obtain 1Ea1 2 - 1Ebi 2 = 2o-
112 

which 

is constant for all s and describes the energy conservation law in the 

physical process . 

In order to apply the asymptotic properties of the E-functions 

and thus simplify the solutions, we assume that the boundary coordinates 

satisfy a certain condition. Foro>> 1 (very small chirps), this 
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condition islsbdryl>> a. 

. ( L ) -l/2) m1n z8, -z 8 >> y . 

For a« 1, this condition islsbdryl» 1 (or 

So the assumption is that the Bragg point or 

region of maximum coupling cannot be near the grating edges. Hence, the 

boundary condition v(z = L-z8 ) = 0, which coincides with the asymptotic 

behavior of Eb(s) (see (0 .8)), gives 

The constant C will be determined by the other boundary condition. In 

terms of the functions (0.7) of negative arguments 

v(s) = C [-ena E (-s} + (e2na_ 1)1/2 E*( -d] 
2e2na _ 1 b b 

The corresponding u(s) is 

u(s) = C [ena E (-d _ (e2na _ 1) 1/2 E*(-d] 
2e2na _ 1 a a 

Using the asymptotic expressions (0.8) 

u (z=-z ) = -----=c-c __ 
B 2e2na _ 1 

ena 21/ 2 a-114 , neglecting the phase factor 

The condition u(z=-z 8) = leads to 

C = 2-l/2 al/4 e-na( 2e2na _ 1) 

Thus 

u(d 

(4 . 21) 

and 
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v(z;;) = 2-1/2 01/4 e-1T0(2e2n0- 1) E (z;;) 
b 

= 2-l/2 01/4 e-n0[-en0Eb(-z;;) + (e2n0 ... 1)112 E~(-i:;)] (4.22) 

Power series expansions about l; = 0 are possible for numerical evaluation 

of v(i:;), but are useful only forlsl<< lbl . Asymptotic series are also 

available for lsi>> lbl. Forlslcomparable to lbl, the numerical values 

are best calculated by direct integration of the coupled-mode equations 

in (4.16). Typical field intensity distributions for the reflected mode 

are shown in Fig. 4.4. The reflectivity is thus the steady-state value of 

the curve at the far-left side of the figure. An analytical expression 

for the reflectivity R can be derived from the asymptotic behavior of 

(4.22) 

2 R=lv(z=-z8)1 =1 
2 -2n0 -nK /y e = 1 - e (4.23) 

The correctness is checked by the expression for the transmissivity 

The expression (4.23) is good to all wavelengths whose Braqg points are 

not near the grating edges. 

Regions of the guide for which 2n/ll.(z) .s_ 8 + kn 3 wi 11 cause the mode 

to radiate into the substrate of index n3. If the light is coupled into 

the larger period end of the guide, most of the light is radiated into 

the substrate before it reaches the Bragg point z8 and is reflected. If 

we define z by 2n/ll.(z ) = B+ kn 3, then clearly z must be greater than s s s 
z8 for the right-traveling mode to be reflected efficiently. However, 
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1.0 
Reflected 
Field 
Intensity 

~·.·. · .. ·:.·.·.·.· ..... :·.:·.·.···· 
0.5 

____,..;...:; .. ·:.· ... ·:::···:.· .. ·:.; .. · .. ·.: 

-20 

- 20 

-10 0 10 
z (in units of (2 Yt112 ) 

(]"" = 1.0 1.0 
Reflected 
Field 
Intensity 

-10 0 10 

z (in units of (2Y)-112) 

20 

20 

Fig . 4.4 Reflected fie l d intensity as a fu nction of distance from 
t he Bragg poin t of a chirped grat i nq re f lector wi th var i ous 
a (or y ) 's. Note that the scale of distance is different 
from curve to curve . 
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if zs is only slightly larger than z8, we may not obtain full reflection. 

If at least 90% of the reflected light intensity is to be reflected 

before the point zs' then it can be shown from (4.22) that 

-1/2 z - z > - y s B for 0 « 

The condition thus becomes 

(4.24) 

For 0 << 1 the incident mode is coupled into the reflected mode only 

over a portion of the grating length, and the resulting reflection may be 

small. Under these conditions we may set A~ 1. Imposing the boundary 

condition B{L-z8) = 0, the reflected amplitude B{-z8) can be approxi­

mately solved by direct integration of (4.15) 

L-fzB . 2 
B(-z

8
) = -i Ke 1yz dz 

-ZB 

Most of the contribution will come from a region of width~ y-l/ 2 

tered about the Bragg point. If min(z8,L- z8) >> y-l/ 2, we thus 

(4.25) 

cen-

extend 

the limits of integration from -oo to +oo, and evaluate the integral by 

the method of stationary phase. The result is 

B{-z8) = -iK(I!:_) l/2 irr/4 e y 

and the reflectivity R is 

2 2 'ITK (4.26) R ::: jB(-z8)j ---y 
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which is the same as (4.23) when nK2/y << 1. The bandwidth of the 

chirped grating filter is proportional to yl . Thus, for a given grating 

length L, the reflectivity-bandwidth products are constant if the coupl­

ing strengths are uniform over the entire length. Note that the above 

integral method can be applied to the case with more complex period 

functions. 

If we account for residu~l waveguide losses by replacing S every-

where by S + i ~ , 

of (4.12) becomes 
L 

B(O) = -i J 
0 

where a/2 is the (amplitude) loss constant, integration 

. 2 -i 2(o-~)z 
K(z) e1yz e 2 dz 

·The method of stationary phase gives 

2 -2az _ nK e B 
y 

( 4 .27) 

The K's in (4.26) and (4 .27) are evaluated at the Bragg point. The ex­

ponential factor in (4.27) can be interpreted by noting that 2z8 is the 

round trip traveling distance before reflection. 

4.6 Experimental Results 

We again used a glass waveguide to demonstrate this device. The 

fabrication of the glass waveguide and chirped grating was similar to 

that described in Section 4.4. In the first experiment, we used a wave-

guide with the following parameters: t = 0. 77 )lm, neff= 1.524, n3 = 1.515, 

and n2 = 1.544 at A. = 5950~ . It supported a single TE mode with a propa­

gation loss constant of 3-5 db/em. The grating period required in this 
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0 
application was ~2000A. The special technique used to obtain such a 

small period will be described in Chapter 5. The resulting chirped 
0 

grating had a period from 1905 to 2005A over a length L= 10 mm. Figure 

4.5 consists of SEM photographs of a section of such a structure. The 

corrugation had a sinusoidal profile and had a depth of 350~ deter­

mined from these SEM pictures. 

The experimental setup used to examine our chirped grating filter 

is sketched in Fig. 4.6. The output beam from a tunable dye laser (line­
o 

width ~ 0.5A) was coupled into the waveguide by a prism coupler. This 

prism coupler also served as the output coupler for the reflected mode. 

The incident and reflected waves were separated by a beam splitter. and 

their relative power ratio was measured. The light was coupled into the 

short period end of the guide so as to minimize losses due to radiation 

into the substrate, as explained in the previous section. As a result, 

longer wavelengths penetrated further into the grating before reflection 

and thus experienced a larger attenuation due to the residual waveguide 

loss (most of which comes from surface scattering). The observed spec-

tral response is shown in Fig. 4.7a. The residual loss a can be deter­

mined from Fig . 4.7a-d to be 2.41 cm-l. The observed reflectivity at 
2az (A) 

A is multiplied by a factor e 8 where 2z8(A) is the round trip 

traveling distance, to obtain the intrinsic filter reflectivity. The 

loss-corrected spectral response of this filter (Filter 1) is then 

shown in Fig. 4.8~ Its bandwidth is ~ 300~. 

In the second experiment, a bandwidth of~ 150g was de­

signed and fabricated. A uniform-period grating filter was also 
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.... _. 
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. \; ~~yj~~~1;:. ';)i·: 
:::·~t· .. ~. 

air 

---­film ---substrate 

Fig. 4.5 SEM photographs of a section of a glass waveguide and 
surface corrugation. The structure has a waveguide 
thickness of 0.77wm and a corrugation depth of 350 ~-



T
u

n
ab

le
 

D
ye

 
L

a
s

e
r 

D
e

te
c

to
r 

R
e

fl
e

c
te

d
 

B
ea

m
 

B
e

a
m

 
S

p
li

tt
e

r 

P
ri

sm
 

C
o

u
p

le
r 

-

Fi
g

. 
4.

6 
Sc

he
m

at
ic

 
o

f 
gr

a
ti

n
g

-f
il

te
r 

ev
al

ua
ti

on
 s

et
up

. 

W
av

eg
u

id
e 

A
 (z

) 
I __

. 
_

, 
(J

) 
I 



-117-

0 
20~ 20 
10 < 10 •• 

CD 
5 a. 5 • 

::0 • • 2 CD 2 • ......., 
• 

I CD I • (') - • .5 . 5 • < • -.2 '< .2 ,- .I 
0 .5 1.0 1.5 2.0 ~ 5800 5900 6000 6100 

Round-trip 
Traveling Distance (em) Wavelength (A) 

0 .5 1.0 1.5 2.0 6000 
0 0 

.25 
-u 
0 
(/) 

.5 - .5 0 
:::1 

-(') 
.75 3 .75 -

1920 1960 2000 
Grating Period (A) 

Fig. 4.7 (a) Observed reflectivity versus wavelength for a chirped 
grating filter. (b) and (c) are then used to obtain the 
corresponding plot (d) of observed reflectivity versus 
round-trip traveling distance. The residual loss is thus 
determined from the slope of this function. 
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fabricated for comparison . 

The device parameters of all these three filters are listed in 

Table 4.1. The intrinsic filter responses are shown in Fig. 4.8, 

where the band-limited characteristic of the uniform-period grating 

filter is detailed in the inset . The ability to tailor-design the 

bandwidth of an optical filter is thus manifest. The response data 

are summarized in Table 4. 2. The bandwidths are in good agreement with 

the design values, while the measured and calculated values of reflec-

tivity are within 10% due to the difficu l ty in the estimation of 

coupling efficiency of the prism coupler . 

To summarize, we have demonstrated the fabrication of broad-band 

optical f i lters using chirped gratings on top of thin-film glass wave-
a 

guides. Grating filters with bandwidths of 300 and 150A and reflecti-

vities of 18 and 40% respectively, have been demonstrated. The control 

of the waveguide, corrugation , and chirp parameters will lead to band 

rejecti~n filters whose response conforms cl osely to desi~n values . 
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Fig. 4.8 Reflectivity versus wavelength for grating filter s. Circle 
represents Filter 1; dot represents Filter 2. A narrow-band 
filter (Filter 3) is Jlso shown for comparison and detai1ed 
in the inset. 
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Chapter 5 

EXPERIMENTAL TECHNIQUES 

It is the purpose of this chapter to describe some of the important 

experimental techniques which have been used and developed in connection 

with the previously mentioned corrugated waveguide devices. These in­

clude the fabrication of thin-film wavegu i des and surface corrugations , 

and the measurement methods used to characterize them. Of these, the 

very important holographic interference and ion-beam etching techniques 

used in fabricating gratings and the useful prism coupler method for 

determining the waveguide parameters will be discussed in some detail. 

5.2 Fabrication of Thin-Film Optical Waveguides 

There are two kinds of waveguides which have been used in our ex­

periments: Ti-diffused LiNb03 waveguides and sputtered glass waveguides. 

Their fabrication methods are described as follows: 

(a) Ti-diffused LiNb03 waveguides 

LiNb03 waveguides can be fabricated by a variety of methods [1] . 

Of thes~, the in-diffusion of titanium metal is simple, and the resulting 

waveguides have very good optical quality. The diffusion also smooths 

out the irregularities of the original Ti pattern edge. The channel 

waveguide fabricated by this method thus has low scattering loss from 

the side wall. In our work, a film of Ti metal was electron-gun 

evaporated on a LiNb03 substrate . Note, in fabricating channel wave­

guides , we started with a few microns wide strip Ti pattern, which was 
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cut by the lift-off photolithographic technique. The sample was then 

placed in a furnace to diffuse the Ti metal. Since the Ti metal was very 

easily oxidized, we assumed in the process the diffusant was Ti02. To 

insure this, we also tried to oxidize the Ti metal completely at a lower 

temperature (say, 600°C) before diffusion at 950°C. We chose a diffu­

sion time sufficiently long to make the diffusion complete. The maximum 

change of index and the diffusion depth thus depended on the amount of 

Ti deposited. In our experiment, we used a 200~ film and a diffusion 

time of 5 hours. After diffusion, the diffusant (and thus the change of 

index of refraction) had a Gaussian profile into the substrate with a 

depth of 2 ~. The fractional increment of index at the surface was 

(0.5-1)%. The resulting waveguide supported a TE0 mode with a loss 

constant of ~ 1 db/em. 

(b) Sputtered glass waveguides 

Glass waveguides are typically fabricated by depositing a glass 

film on a glass substrate. RF sputtering is generally used for deposit­

ing such a thin film, the sputtering agent being either pure oxygen [2] 

or a mixture of argon and oxygen[3]. In this work, we explored the 

possibility of using ion beam sputtering as a deposition method. The 

ion beam was directed to bombard the target material, and the ejected 

particles were deposited onto a substrate. 

The original ion beam machine is shown in Fig. 5.1. The chamber 

was alternatively modified as shown in Fig. 5.2. The target surface is 

inclined at an angle with respect to the ion beam. The sputtered par­

ticles have a specific spatial distribution [4]. The simplest way to 
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PUMPING PORT 

SAMPLE 
HOLDER 

TARGET 
HOLDER 

Fig. 5.2 Schematic drawing of the portions of the ori9inal ion 
milling machine modified for sputterin9. 
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even it out is to set the substrate far away from the target and move 

the substrate back and forth in the manner shown in the figure. Further-

more, another degree of randomness can be generated by slowly rotating 

the target within a small angle during sputtering. The deposited film 

will then be uniform to a certain extent along the translational direc­

tion. A molybedenum aperture is inserted between the ion source and the 

target. This limits the beam to the target area and minimizes possible 

contamination from the beam sputtering other materials within the chamber. 

To fabricate a glass waveguide, we used a target of Corning 7059 glass 

(which is an alumino-borosilicate glass) and a substrate of regular micro­

slide (namely, a soda-lime glass). The ion source was from argon, 

which had a pressure of (2-3) x 10-4 torr. The accelerating voltage and 

the ion current density were 2 kV and 0.3 mA/cm2, respectively. The tar-

get surface was situated at an angle of 30° with respect to the ion beam. 

The distance between the substrate and the target was 6 em. Oxygen with 

a partial pressure of 1:4 to the argon was introduced into the chamber to 

repair oxygen deficiencies in the sputtering process . The deposition 

rate was then calibrated to be 0.36±0.01 ~m/hr. We used a film thick­

ness of 0.7-1.0 ~m, so a typical sputtering time was 2-3 hours. Data in 

Fig. 5.3 are typical film thickness measurements with a Sloan Dektak. The 

uniformity was better than 5% across a distance of 1 em. The resulting 

film had an index of refraction 2-3 % higher than that of the substrate . 

The waveguide had a propagation loss of 3-5 db/em at the wavelength of 
0 

6000A. 
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5.3 Measurement of Waveguide Parameters 

Prism-film couplers [5] are generally used in the laboratory for 

coupling a laser beam into thin-film dielectric waveguides. A prism-

film coupler can also be used to evaluate waveguide parameters such as 

the propagation constant S and the attenuation constant a for a 

guided mode. The principle of this device is an evanescent field 

coupling. It is the synchronized optical 11 tunneling 11 in the air gap 

existing between the prism and film which makes the coupling possible. 

In the experiment, we pressed the prism against the waveguide surface 

to reduce the air gap to the order of magnitude of a wavelength . Then 

the coupler was rotated with respect to the laser beam to find an angle 

at which a guided mode was 11 excited 11
• This was indicated by the pres-

ence of a scattered light streak. 

(a) Measurement of S or n ff-

Using a prism-film coupler (Fig. 5.4a) it can easily be shown that 

the neff of the excited mode can be expressed by 

( 5.1) 

where the index np and angle a are parameters associated with the prism; 

¢ is the incident angle. We used a rotating table which could be read 

to an angular precision of one second of arc. The index np can be de­

termined by the method of minimum dev iation . However, the dispersion 

data provided by the manufacturer, especially for glass material, are 

well established. These optical data are generally acceptable and re­

produceable. The accuracy of neff thus obtained in my experiment was 
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good to the third decimal place, e.g., 1.524 ± 0.001. 

In practice, we prefer small values of¢ to minimize the Fresnel 

reflection loss at the incident interface. This dictates the choice of 

a. We also like to keep the coupling spot almost stationary when the 

coupler is rotated. This determines the relative positions among the 

prism, the rotating center, and the laser beam. The offset between the 

rotating center and the laser beam was shown [6] to be r
0 

= ~P/np where 

~p is a normal distance from the coupling spot to the incident interface. 

This offset is small when the prism is small. Rigorously, this offset 

(see Fig. 5.4b) will depend on the incident angle¢ and can be expressed 

as 

r-r 
0 = ~ l 

2 - 4 + ... 

For small ¢'s this correction factor is small. 

(b) Determination of film index n2 

(5 .2) 

The index of refraction of a thin film can be determined by the 

Abeles method [7]. In the waveguide experiment, it can also be deter-

mined as follows. For a multimode waveguide, if the mode spectrum 

(S
0
,s1,···) is obtained, then from the eigenvalue equation (2.9), we 

have at least two simultaneous equations for solving two unknown param­

eters n2 and t. In a single-mode waveguide, if we can determine the 

film thickness t by other methods, then n2 can be solved from a single 

equation of (2.9). The above method depends on the value of n3 being 
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previously determined. We found n3 could be determined by the Brewster 

angle method. The accuracy depends on the fineness of angular division 

about the Brewster angle. For example, using our rotating table, n
3 

of 

a soda-1 ime glass was determined to be 1.515 ± 0.001 at A. = 6000~. In 

our experiment, a single mode glass waveguide was used. The film thick-

ness t was measured to be 0.75 ~m with a Sloan Dektak. The measured 

effective index was neff = 1. 524 ± 0. 001 . The best fit gave n2 = 1 . 544. 

(c) Coupling efficiency of a prism coupler 

A prism coupler is a very efficient device to couple light into 

and out of thin-film waveguides. In some experiments, we have to 

estimate this coupling efficiency. Assume in a coupling length L, the 

laser illumination is uniform, and the air gap a (which determines the 

coupling strength) is also uniform. Following a plane wave analysis, 

the coupling efficiency can be expressed [8] as 

where 

( e-1;) n = 2 ..... _l -· -__ .___ 

i; = T L 
2L8 

i; (5.3) 

L8 is the geometrical bounce distance of the guided mode. T is the 

characteristic transmissivity of this prism-air-film system, which is 

proportional to exp(-2qa), where q is the field decay constant in the 

air film. The maximum efficiency occurs at i; = 1 .25, and is n = 81%. 

If we use it as an output coupler, the efficiency can be 100% follow­

ing the reciprocal theorem. In the experiment, the coupling spot was 
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chosen near the prism corner; the incident laser beam was typically 

focused to a size of 100-200 ~m. If the prism corner was not exactly 

90°, then the reflected beams were separated from the incident beam. 

We observed two such reflected beams, which indicated that part of 

the beam was not incident directly on the coupling spot and thus did 

not contribute to the coupling. Taking this and the Fresnel reflec-

tion loss into account, we obtain 

(5.4) 

The notations are defined in Fig . 5.4c. ~Y measuring Pi' Pi, and P~, 

a value of 60% was obtained. The system had a total efficiency of 

~50% for input coupling; 90% for output coupling. 

(d) Measurement of waveguide loss · 

The intrinsic waveguide loss has been roughly estimated [2] by 

monitoring the intensity of scattered light along the length of the 

guide. The scattered light was collected, for example, by a fiber 

optic probe. In principle, the attenuation constant a can be deduced 

by measuring the transmitted power as a function of propagation 

distance. Using a pair of prism couplers [9], a guided mode is cou­

pled into and out of the waveguide. The output power is thus expressed 

( ) -az P z = P.n.e 
0 1 1 

where ni is the input coupling efficiency; z is the separation between 

the two prisms. If care is taken to keep the input condition constant 



( a) 

( b) 

( c) 

P.' 
2 

Fig. 5.4 
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coupling spot 

________ _____.] 

~------------~~ 
-total internal reflection 

evanescent field coupling 

Diagrams of prism couplers showing (a) the phase-matched con­
dition under which the incident beam is coupled into the film 
(b) the offset of the incident beam so that the beam is kept 
incident at the prism corner when the coupler is rotated 
(c) the incident beam Pi which is focused to the prism corner. 
Pi can be divided into Pl (shaded) and P2. P1 will contribute 
the couplin9, and part of it will be reflected back (P1) . P2 
cannot contribute to the forward coupling, and is totally refl ected(P~). 



-134-

when the output prism is moved and reloaded, then it can be shown 

that 

(5.5) 

Using this method, we found our glass waveguides had a loss constant 

a= 3-5 db/em, and LiNb03 waveguides, a~ 1 db/em. 

5.4 Fabrication of Holographic Gratings 

In previous chapters, we introduced the general theory of opti-

cal interference methods used for producing holographic gratings with 

uniform and variable periods. Here we describe the experimental details. 

The optical setup used in the experiment is shown in Fig. 5.5. 

The light source used most often in our work was an argon laser (4579~ 

line) or a helium-cadmium laser (4416 or 3250 ~line). A spatial 

filtering arrangement consisting of a quartz lens and a 12.5 ~m pinhole 

was used as shown. The quality of the expanded beam before and after 

using a pinhole is shown in Fig. 5.6. The 11 roughness 11 of the beam 

consisted of high spatial Fourier components at the focal plane of lens, 

and was thus filtered out by the pinhole. The Fourier transform of 

the fundamental Gaussian mode was centered at the pinhole and was thus 

unaffected . Sometimes apertures were also placed between the beam 

splitter and the mirrors to block unwanted reflections from the former . 

If we take the expanded beams (spherical waves) into account, the inter­

ference pattern (or contours of equal intensity) is expressed from 

Fig. 5.7a as 
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Mirror Mirror 

'-.......) Spatial 
Filter 

8 = sin-1 A 
2A 

Fig. 5.5 Experimental setup for fabricating holographic gratings. 
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Fig. 5.6 An expanded He-Cd laser beam .befor.e and after spatial 
filtering. 
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2R R rnA. c R - c R 2 
1 2 + 2R R + ( 2 1 1 2) 

R1 - R2 1 2 R1 - R2 

which is a set of concentric circles with the integer m as a parameter. 
c2R1 - c1 R2 The center is at R _ R on the z axis, and the radii of curvature are 

1 2 

If R1 = R2 = R, the contours become straight lines with periodicity 

fl.= A/(sin e1 +sin e2). The period at the pattern edge 11.1 and that at 

the center 11.0 (see Fig. 5.7b) differ by 

(5.6) 

L - cos e 
where s = sin-l 2 R to a first-order approximation. A typical order 

-5 of magnitude is 10 for L/R = 0. 01 . This deviation is a very small fac-

tor indeed. 

The smallest period that can be obtained from the above experimen­

tal setup is fl.= A./2 (when e = 90°). In order to obtain gratings with a 

period less than A./2, we make the exposure take place inside a liquid 

bath [10]. The recording wavelength is thus reduced by a factor which 

is equal to the index of refraction of the liquid. For example, we used 
+ 0 

xylene liquid to reduce the wavelenqth of an Ar line (4579A) to obtain 

gratings with period ~2000~ in the fabrication of filters. 
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X 

z 

( a ) 

Pinhole Pinhole 

( b) 

Fig. 5.7 Interference with spherical waves (expanded beams). 
(a) Coordinates showing the spherical centers and the 
recording plane. (b) Symmetric case of (a), which is 
used to examine the period variation across the exposed 
area. 
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The currently available photoresist and developer used in the 

above-mentioned holographic interference lithography were: 

Photoresist Shipley AZ1350B 

Developer Shipley AZ303A:deionized water = 1 :6 

Best results were obtained when the spin-coated thickness of the photo­

resist was less than the grating period to be fabricated and the 

developing time was fixed at 10 sec. A thin photoresist layer was ob­

tained by diluting the photoresist with the thinner. The etched depth 

thus depended upon the amount of exposure. This analysis is presented 

in Appendix E. 

The setup used for the fabrication of chirped gratings is shown 

schematically in Fig. 5.8. The converging beam was generated with a 

cylindrical lens that was placed after the spatial filter. A neutral 

density plate was introduced before the cylindrical lens so that the 

focused beam had the same intensity as the collimated beam on the re-

cording plate. We have shown previously that such an interference pattern 

has a period distribution (4.1): 

A( z) = ____ >-. ___ _ 

zf - z 
sin e + ------ 0 < z < L (5. 7) 

1 2 2 
\ (zf-z) + xf 

The focal position (zf,xf) can be expressed in terms of e, L, and the 

F number (F = f/w) of the cylindrical lens as follows (see the inset of 

Fig. 5.8). We will use the converging angle 2a as a parameter, where 
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-1 ( 1 ) a = tan 2F . 

Then 
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From simple geometry, we obtain 

r = L cos(8-a) 
f sin 2a 

xf = -rf cos(e+a) 

= L(sin 28 +sin 2a) 
2 sin 2a 

L(cos 28+cos 2a) 
2 sin 2a 

( 5 .8) 

Typical plots of A(z) are shown in Fig. 5.9. These plots were used in 

the design of our broad-band filters. 

5.5 Surface Corrugation by Ion-Beam Etching 

The photoresist grating can be transferred to the waveguide sur­

face by ion beam etching (sputtering) [11]. The term 11 Sputtering 11 

refers to the ejection of atoms from a target surface by bombarding 

with energetic (keV) particles. The process is nonselective to all 

materials as long as the ion energy exceeds the binding energy of the 

target material. Ion beam etching is also characterized by an extremely 

high resolution (e.g., a 500~ linewidth) capability and an absence of 

lateral etching or 11 Undercutting 11
• In contrast, most chemical etchants 

are material selective and possess some etching habit. Chemical etching 

is extensively used in semiconductor processing. For glass materials, 

or in case the surface to be etched is not totally exposed, ion beam 

etching is the method of choice. Compared with plasma etching, the 

directed ion beam has the advantage that it is able to bombard the tar­

get at any desired angle. 
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The etching conditions used in our experiment were an ion 

energy of 1-2 keV and an ion current density of 0.1 mA/cm2. We used 

such a high ion energy to improve the beam collimation and such a 

low . ion current to better control the etching process. The substrate 

was inclined at an angle 20-30° relative to the ion beam, the grating 

lines being oriented parallel to the ion beam. This induced a smooth­

ing of irregularities in the photoresist mask and produced deep grooves 

in the substrate. Consider a profile erosion under ion bombardment. 

Since the ion sputtering rate varies with the angle of incidence, facets 

are formed on the profile of photoresist, and the profile erodes at a 

rate dominated by the etching rate of these facets. If the substrate is 

normal to the ion beam, the erosion rate of resist profile will be twice 

the angular maximum etching rate of resist [12]. The substrate (glass 

or LiNbo
3 

), however, erodes only at a normal-incidence rate which is 

smaller than the former. As a result, the groove aspect ratio (depth/ 

period) of the pattern will be degraded. The resist erosion rate is 

minimized when the substrate is inclined to the angle of maximum etching 

rate of resist [12]. On the other hand, we also like the inclination to 

be adjusted to obtain the possibly larger etching rate for the substrate . 

The determination of our etching conditions was made according to this 

tradeoff. 

Blazed gratings can also be fabricated by ion-beam etching. By 

inclining the substrate to be corrugated at an angle a to the ion-beam 

and using photoresist lines to shadow one side of the grooves, gratings 

with an asymmetric tooth-shape were thus formed. Fig. 5.10 shows the 

profiles of such gratings for various values of angle a . It can be seen 
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a= 15° a= zoo 

Fig. 5.10 Blazed gratings fabricated at va riou s angles of ion beam 
etching on the (100) GaAs subst r ate . 
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that this method is capable of controlling the blazing angle in 10-20° . 

The blazing effect was roughly evaluated by measuring the intensities of 

the +l and -1 order diffracted beams from a normally incident beam 

(6328~ He-Ne laser). With the laser polarization perpendicular to the 

grating grooves, our best results correspond to an absolute diffraction 

efficiency of 54% and an extinction ratio of 227. The blazed grating 

has an important application in improving the coupling efficiency of 

the grating coupler . 

5.6 Measurement of Grating Parameters 

The grating period and corrugation depth are the two major para-

meters in a corrugated waveguide device. The grating period determines 

the filtered wavelength, the deflection angle in the plane of waveguide, 

and the coupling angle. The corrugation depth determines the optical 

efficiency of the device. Both the period and depth of the corrugation 

need to be accurately measured in order to characterize devices. The 

methods of these measurements are described as follows. 

(a) Determination of grating periods 

Grating periods can be easily determined with a Littrow configu-

ration. The grating is mounted on a rotary table, and a laser beam is 

directed to it . The grating is then rotated until the diffracted beam 

and the incident beam directions coincide (see Fig. 5.lla). This occurs 

when the condition 2A sine= A is satisfied. The period A is thus 

determined by measuring this Littrow angle e. The sensitivity of this 

measurement is given by dA/d e = -A cote. For example, in the measure­

ment of a period A = 4200~ using an A/ laser A = 4579~, we have 



-146-

e = 33.03° and idA/del = 1.88~/min of arc. Hence, typically , an error 

of 1 minute in angular reading will result in an error of ~2~ in period 

measurement. 

The measurement of small periods is not as straightforward. For 

a grating with a period A ~ 0.2 ~m, we cannot observe diffraction in 

air using A = 4579~ . However, the diffract i on will occur in a medium 

with index of refraction n > A/2A . The arrangement used to make the 

observation possible is shown i n Fig. 5.llb . A grating is attached to 

one of the prism faces with xylene (an index matching fluid) . The 

prism is then rotated until the diffracted beam from the grating re-

traces the incident beam path. This incident angle ¢ is measured. 

The grating period is then given by A= A/(2n case), where 

e = a - sin-1(sin¢/n). The above formulas involve the index nand the 

angle a of the prism , which have to be determined beforehand. 

(b) Determination of corrugation depths 

Corrugation depths can be measu red f rom SEM photographs. However , 

nondestr uctive methods were also developed in the course of this work . 

These methods are based on a diffr action efficiency measurement. The 

grating is coated with a thin layer of metal to become a reflection 

grating. By measuring the i ntens i ty of the diffracted beam from a 

normally incident laser beam, the corrugated depth d is thus calculated 
2 from the formula n~ = J ~ (kd) assuming kd << 1, where k = 2n/A. The 

corrugatiDn depth as a function of diffraction efficiency is plotted i n 

Fig . 5.12a. We used this configur ation fo r large period gratings . 

For small period gratings , the optical arrangement used to evalu-
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/ 

A A - ~.:...,.---- 2 sine 

A A = -=----'--2n case 

. -l(sin¢) e = a - Sln n 

laser beam 

laser beam 

Littrow reflection configurations for grating period 
measurements. The prism in (b) allows the measurement 
of small periods as can be seen by the factor n in the 
denominator. 
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ate the corrugation depth is shown in Fig. 5.12b. It is especially 

useful for transparent substrates. We rotate the stage until a 

diffracted beam first appears in the transmitted side. The measured 

diffraction efficiency, corrected by the reflection loss at the exit 

interface, is then used to calculate the corrugation depth from the 

formula shown in the figure. 
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Fig. 5.12 Determination of the corrugation depth through the meas­
urement of diffraction efficiency (a) for reflection 
gratings and (b) for transmission gratings. 
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Appendix A 

DERIVATION OF THE HELMHOLTZ EQUATIONS 

In a dielectric medium without free charge and current, Maxwell •s 

equations are written 

-+ -+ 
'V • D = 0 

-+ -+ 
'V . B = 0 

-+ (A. 1) 
-+ -+ aB 'i] X E = - at 

-+ 
-+ -+ aD 'V X H = at 

-+ -+ 
where E and H are the electric 

and magnetic field, respectively. If a harmonic time dependence of 

-iwt e is assumed, then the last two equations in (A.l) become 

-+ -+ -+ 
'V x E = iwll H 

0 
(A. 2) 

(A.3) 

Taking the curl of (A.2) and using (A.3), we obtain the equation 
-+ 

for the electric field E 

(A.4) 

2 2 where k = w l1
0

E
0 

or k = 2n/\; \ = vacuum wavelength. 
-+ 

If E is along 

a direction of translational symmetry of the dielectric constant, or if 

the medium is homogeneous, (A.4) becomes 

(A. 5) 
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Similarly, the magnetic field H satisfies 

-+ 1 -+ -+ 2-+ 
I/ X (211 X H)= k H 

n 

In the case of a homogeneous medium, (A .6) becomes 

(A.6) 

(A . 7) 
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Appendix B 

DERIVATION OF THE TM-MODE COUPLING COEFFICIENT 

The magnetic field H obeys (A.6): 

-+ 1 -+ -+ 2-+ 
v X (2 v X H) = k H k = 2n/"A (B .1) 

n 

For a TM waveguide mode, the independent field component H = H (z,x) . y y 

From (B.l), Hy satisfies 

aH a aH 
~z (v ____y) + - (v ____i'_) 
a az ax ax ' \) 

- 1 
=2 

n 
(B.2) 

In a structure such as that t~eated in Section 2.3, the function v is 

periodic in z and can be expressed 

- H 2n z 
v(z,x) = v'(x) + tw L a9. (x) e A 

MO 
(B.3) 

where v'(x) = v(x) + 6v a
0

(x) 

Here v(x) describes the inverse squared index distribution for the un­

corrugated waveguide; 6v = ~- ~ is the "perturbed" amplitude; a9. 
n1 n2 

are Fourier coeffic i ents for the corrugated profile. For the contra-

directional coupling , assume 

(8.4) 

where g(x) is the transverse field distr i bution of the mode in a 

structure described by v'(x) . Followi ng the same approximation in 

deriving (2.40), we again obtain t he coupled-mode equations 



{ 

dB = K A e i 26Sz 
dz 

dA _ *B -i2t.Sz 
-- K e dz 

where t.S = S - S 
0 

Integration by parts leads to 
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(8.5) 

. t-v{ I a9,(x)[~J 2 
dx - s; I a9,(x)[g(x)J

2 
dx} 

K = - 1 
- (8.6) 

2S I 2 v' (x)[g(x)] dx 

which is the coupling coefficient for TM modes. 
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Appendix C 

DERIVATION OF GENERALIZED COUPLED-MODE EQUATIONS 

In Chapter 2, only uniform K and A over the coupling length have 

been considered. If the corrugation depth or waveguide thickness varies 

along the coupling length , then K is no longer constant. However, the 

equation can be generalized by replacing the constant K by K(z). If 

the period of corrugation is variable, A= A(z), the generalization of 

the equation can be illustrated with the following example . 

Assume 

2 2 2 n ( z) = n + ~n cos ¢(z) 
\ ) 

-..../"" 

perturbation 
term 

where z 

¢(z) f 
21T = ATZT dz 

0 

This is a one-dimensional problem . E(z) satisfies 

Assuming a solution of the form 

E(z) = A(z) eiBz + B(z) e-iBz , B = kn 

and using the slow-varying approximation, we obtain 

{ 

dB _ K A e i ( 2 Bz - ¢ ( z) ) 
dz-

dA _ K*B e-i (2Rz- ¢(z)) a-z-

(c. 1 ) 

(C . 2) 

(C.3) 
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where K is interpreted as a co~pling coefficient. These are general­

ized coupled-mode equations. 
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Appendix 0 

PARABOLIC CYLINDER FUNCTIONS 

Some of the properties of parabolic cylinder functions used in 

Section 4.5 are listed below . 

A complex solution of the equation 

( 0. 1 ) 

is E(c,s), where c is a complex parameter, and s is a real variable. 

E(c,s) and E*(c,s) are linearly independent and their Wronskian is 

W[E(c,s), E*(c,s)] = -2i (0.2) 

Two recurrence relations with c's differing by i are: 

dE(c,s) + i -
2
s E(c,s)- i[±(c+-

2
i)J1/ 2 E(c+i,z:) = 0 (0.3) 

ds 

and 

dE~~,z:)- if E(c,z:) ± i[±(c-~)] 1 / 2 E(c-i,z:) = 0 (0.4) 

The ± signs apply in the right- and left-half of the complex c plane, 

respectively. The linear relation 

(l + e2nc) 112 E(c,z:) = enc E*(c,s) + iE*(c,-z:) (0.5) 

is useful in writing solutions for negative s in terms of the functions 

of positive s· The asymptotic expansion of E(c,s) for s >>lei is 

E(c,s) 
( 1 . ) . r 2+ 1c l/4 , 
l ] e 

r(2 - ic) 
(0. 6) 
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where 
oo r(2r+-2

1 +ic) 
s(c,s) rv 1 + L (-i)r 

r=l r( }+ i c) 
1 

Special Cases for c = a , b 

According to (4 .19), ~=a± i/2, and a is real and positive. The 

corresponding functions are Ea(~) = E(a.~) and Eb(~) = E(b,~). Note 

that [Ea(~)]* = Eb(~) and [Eb(~)]* = E~(~) . Using these identities in 

(0 .5), we obtain 

E*( -s} = ( e 2no _ 1 ) 1 I 2 E ( d - eno E* ( s) 
a a a 

E*(-s) = (e2no _ 1)1/2 Eb(d + eno Eb(s) 
b 

(D . 7) 

Ea ( -d = [E* ( -s} ]* b 

E (-s ) = [E*(- ~ )]* b a 

The asymptotic expressions of the functions for positive large values 

of ~ are 

Ea(~) = 21/2 o-1/4 eie(o.~) sa(~) 

Eb(~) = 21/2 ol/4 ~-1 ei e (o,~) sb( s ) 

where e(o,s) = ~ 24 - a £n ~ + ~ arg r(io) - n/8. 

(0.8) 
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Appendix E 

ANALYSIS OF EXPOSURE AND DEVELOPMENT OF PHOTORESIST 

Positive photoresist plays an important role in fabricating 

relief structures in microelectronics and thin-film optical circuits. 

In particular, AZ-1350B photoresists, manufactured by the Shipley Co., 

exhibit very high resolution and thus are especially useful in the 

fabrication of gratings with submicron periods. 

Positive photoresist materials are composed of two major com-

ponents: a base resin and a light-sensitive "inhibitor" compound 

(which inhibits dissolution of the unexposed resist in an alkaline 

aqueous developer solution). Photodecomposition of the inhibitor 

molecules during the exposure decreases its concentration and, as a 

consequence, increases the etching rate of the exposed resist during 

development. AZ-1350B photoresists are sensitive to ultraviolet and 

blue light. In use, the photoresist is spin-coated on the surface of 

a substrate. The film is then exposed and developed. Here we shall 

derive the relationship between the etched depth 6 and the exposure E 

(in units of energy per unit area). 

The rate at which the inhibitor concentration at a depth x is 

reduced by exposure can be described by 

aM(x,t) = -c I(x,t) M(x,t) 
at 

_ na 
c = hv (E.l) 

where M(x,t) = local inhibitor concentration, I(x,t) = light intensity, 

hv = photon energy, r1 = quantum efficiency, and a = absorption cross 
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section of inhibitor molecules . Assuming aM
0
a << 1 (M

0 
is the concen­

tration in an unexposed film; a is the film thickness), the light 

intensity is almost uniform across the film, I(x,t) ~ I (canst). Then 

the fractional concentrations of the residual and destroyed inhibitors 

after an exposure of t seconds are 

and 

f
2
(t) = M~t) = e-cit 

0 
(E .2) 

respectively. If the developer etching rate of unexposed resist i s r2 
and that of fully bleached resist is r1, then the etching process is 

expressed 

(E.3) 

where 6r = r1-r2. 

In this process the photoresist film is exposed for T seconds 

and then developed for 0 seconds . The exposure is defined by E = IT. 

From (E.2) we obtain f 2 = exp(-cE) . Equation (E . 3) thus becomes 

dx -cE df = r1 - 6r e 

The resulting etched depth between exposed and unexposed resist is 

-cE) A = (r1 - Ar e 0 

= 1\r (l - e-cE)O 

"' 6r cE 0 if cE « 1 (E. 4) 
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The above exponential term represents the material nonlinearity 

which can be neglected if cE << 1. For a given photoresist, the 

exposure E can be reduced and the above condition can be satisfied by 

using an efficient developer. Compared to the AZ developer , AZ-303A 

developer much enhanced the photoresist sensitivity and speed. 

We also found a 6:1 solution (one part of developer diluted with six 

parts of water) had an acceptable etching rate and behaved linearly 

(E.4) in the range of our interest. This al l owed high-efficiency 

holographic gratings to be made. 



Part II 

OPTICAL WAVES IN PERIODIC LAYERED STRUCTURES 
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Chapter 1 

INTRODUCTION 

1.1 Wave Propagation in Layered Media 

Periodic layered structures play a significant role in a number of 

important optical applications. These include multilayer coatings for 

both high reflection and antireflection purposes as well as for mono­

chromatic filtering [1] . Other proposals involve the use of these 

structures for phase matching in nonlinear optical applications [2,3,4] 

and for obtaining optical birefringence in layered media composed of 

isotropic materials [5,6]. 

Recent developments in the crystal growing field, especially in 

molecular beam epitaxy [7], make it possible to grow multilayers with 

well controlled periodicities and with layer thicknesses down to 10~. We 

may thus consider the periodic optical medium as a new optical medium to 

take its place among homogeneous isotropic and anisotropic materials. 

Before proceeding with the many applications envisaged for periodic 

media, we need to understand precisely and in detail the nature of elec­

tromagnetic wave propagation in these media. 

These applications in stratified media benefitted largely from the 

pioneering analysis of Abeles [8] who introduced the matrix method to 

treat the propagation of waves in layered structures. Electromagnetic 

propagation in periodic layered media was considered in detail with the 

direction of propagation normal to the layers by Levin [9] . Rytov [5] 

investigated the electromagnetic properties of a finely stratified 

medium. His results are valid for any layer thickness. However, he 
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considered only some special cases of wave propagation. Weinstein [10] 

derived general expressions for the reflectivity and transmissivity of 

multilayer coatings of any number of components. Epstein [11] found 

that the equivalent index of refraction of a symmetrical . period is a 

pure imaginary number in a stop band, while it is a real number in a 

pass band of an alternating layered structure. Propagation characteris­

tics of periodic arrays of dielectric slabs were also studied by Lewis 

and Hessel [12]. They explained those characteristics in terms of sta­

bility diagrams and equivalent networks. 

Although a number of special cases have been analyzed, a general 

theory has not been established. This work describes a general theory 

of electromagnetic propagation in periodic media. Our approach is gen­

eral, so that many situations considered previously will be shown to be 

special cases of our formalism. The theory has a strong formal similar­

ity to the quantum theory of electrons in crystals and thus makes heavy 

use of the concepts of Bloch modes, forbidden gaps, evanescent waves, 

and even surface levels. In addition to demonstrating the application 

of the theory to such familiar problems as the reflectivity of multi­

layer coatings, we also consider guiding phenomena in multilayer struc­

tures. 

1.2 Multilayer Waveguides 

The historical interest in multilayer structures was restricted 

primarily to the design of reflection coatings . Little attention, how­

ever, was paid to the guided waves in these structures. During the last 

decade, layered structures have been used as waveguides in a variety of 
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devices such as thin-film passive waveguides and heterojunction semicon­

ductor lasers [13] . Multilayer waveguides are becoming increasingly 

important in integrated optics. The dual 11 Channel 11 waveguide has been 

studied extensively in the theory of branching waveguides [14] and direc­

tional couplers [15] which are used as mode selectors and switches in 

integrated optics. Multichannel waveguides will probably be used in the 

switching network of a high data rate communications system [16]. 

In this work, guiding characteristics in periodic multilayer wave­

guides are investigated. Of particular interest are waves guided by 

the boundary of a semi-infinite periodic layered structure . These waves 

were considered in a superficial manner by Arnaud and Saleh [17]. How­

ever, for a rigorous treatment, it is necessary to use the results of 

our general theory presented here . 
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Chapter 2 

BLOCH FORMULATION OF ELECTROMAGNETIC PROPAGATION IN PERIODIC MEDIA 

2.1 · Introduction 

A systematic approach which formulates electromagnetic propagation 

in periodic media will be presented in th i s chapter . It is based on the 

Bloch formalism of periodic structures. 

The Bloch wave function was introduced in 1928 to describe elec­

tron motion in crystals [1]. The resulting theory of energy bands was a 

great advancement in solid state physics . Electromagnetic propagation 

in a periodic layered medium has its formal similarity to electron 

motion in a one-dimensional periodic squa re-well potential field [2]. 

Thus we expect that all the interesting properties of electrons in crys­

talline solids should have their counterparts in the optics of periodic 

media. Of these, the analogous band structure of a periodic medium is 

totally new in optics. 

The mathematical derivations can be largely simplified by choosing 

a convenient representation for the wave function and by using matrix 

algebra. Thus, before giving our Bloch solut i on, we will start with the 

above-mentioned approach in the next section. 

2.2 Matrix Method and Translation Operator 

For the sake of clarity in introducing the basic concepts , we will 

consider only the simplest type of periodic medium. The periodic medium 

treated in what follows consists of alternating layers of different in­

dices of refraction . The index profile is given by 
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n(x) " { ~~ 0 < X < b 
(2 . 1) 

b < X < A 

with 

n(x+A) = n(x) (2.2) 

where the x-axis is normal to the interfaces , and A is the period. The 

geometry of the structure is sketched in Fig . 2. 1. 

The field within each homogeneous layer can be expressed as a sum 

of an inc i dent plane wave and a reflected plane wave. In the case of TE 

waves (E-vector normal to the plane of incidence) , the electric f i eld i n 

the na-layer of the nth unit cell is thus written as 

E(z ,x) = E(x) ei Bz (2 . 3) 

with 

E(x) 
ik (x-nA) - ik (x-nA) 

= a( a ) e ax + b(a) e ax 
n n 

(2 . 4) 

where 

a=l ,2 (2 . 5) 

The electric field can also be represented by a column vector whose com­

ponents are the complex amplitudes a(a ) and b(a ): n n 

The column vectors are not independent of each other. They are related 

through the continuity conditions at the interfaces. As a matter of 

fact , only one vector (or two components of two different vectors) can 
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Fig. 2.1 A portion of a typical periodic medium. 
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be chosen arbitrarily. Imposing continuity of E and dE/dx at 

x = (n - l)A (see Fiq. 2.2), 

-ik A ik2 A 
a + b = c e 2X + d e x 

n-1 n-1 n n 
-ik2 A ik2 A 

k
1 

(a 
1 

- b 
1 

) = k
2 

( c e x - d e x ) 
x n- n- x n n 

or in terms of a matrix equation for our column vectors, 

a n-1 

b n-1 

1 
- 2 

k -ik A 
(l+_Q_)e 2x 

klx 

k -ik A 
(1 - _Q_)e 2x 

klx 

k ik A 
(1 - _Q_)e 2x en 

kl X 

k ik A 
(l+_Q_)e 2x d 

kl X n 

Similarly, the boundary conditions at x = (n-l)A + b lead to 

-ik a ik2 a 
e 2x + d e x en n 

-ik1 a ik1 a 
= a e x + b e x 

n n 

or 
k
1 

i (k
2 

-k
1 

)a 
(l + _x)e x x 

k2x 

k
1 

i ( k2 +k
1 

) a 
(l--x)e x x 

k2x 

k1 -i (k2 +k1 )a 
(l __ x)e x x 

k2x 

k1 -i (k2 -k1 )a 
(l+-x)e x x 

k2x 

(2.6) 

(2. 7) 

(2.8) 

(2.9) 

(2.10) 

(2 . 11) 

where we have defined an= a~l) , bn = b~l), en = a~ 2 ), and dn = b~ 2 ). 
c 

By eliminating (dn), the matrix equation 
n 
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:n-1) 
n-1 

= (: :) ( ::) (2.12) 

is obtained. The matrix elements are 

-ik a k k 
A = e lx [cos k b _l i (_Q + ~) sin k2xb] (2.13) 

2x 2 klx k2x 

-ik a k k 
c = e lx[li(_Q-~) sin k2xb] (2 .14) 2 klx k2x 

B = C* (2.15) 

D =A* (2.16) 

and according to (2.5) can be viewed as functions of 8. The matrix in 

(2.12) is the unit cell translation matrix which relates the complex 

amplitudes of the incident plane wave a 1 and the reflected plane wave n-
bn-l in one layer of a unit cell to those of the equivalent layer in the 

next unit cell. Because of the fact that this matrix relates the fields 

of two equivalent layers with the same index of refraction, it is uni-

modular , i.e. , 

AD- BC = 1 (2.17) 

which can be verified using expressions in (2 .13)-(2.16). It is important 

cn-1 Cn 
to notice that the matrix which relates (d 

1
) to (d ) is different from 

n- n 
the matrix in (2.12) . These matrices, however , possess the same trace. 

As will be shown later, the trace of the translation matrix is directly 
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related to the band structure of the periodic medium. 

The matrix elements for TM waves (H-vector normal to the plane of 

incidence) are slightly different from those of the TE waves . They are 

given by 

(2.18) 

(2.19) 

As noted above, only one column vector is independent. We can 

choose it, as an example, as the column vector of the n1-layer in the 

zeroth unit cell. The remaining column vectors of the equivalent layers 

are given as 

( ::) = ( : : r ( :: l (2.22) 

By using (2 .17), the above equation can be simplified to 

( :: ) = ( _: -: r ( :: 1 (2.23) 

The column vector for the n2-layer can always be obtained by using (2.11). 
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2.3 Bloch Waves and Band Structures 

The periodic medium is equivalent to a one-dimensional lattice 

which is invariant under the lattice translation. The lattice or unit 

cell translation operator T is defined by 

Tx = x + A (2.24) 

It follows that 

T E(x) = E(T-1x) = E(x-1\) (2.25) 

The ABCD matrix derived in the previous section is thus a representa­

tion of the unit cell translation operator. According to the Floquet 

theorem , a wave propaqating in a periodic medium is of the form [3] 

(2.26) 

where uK(x) is periodic with a period!\, i.e . , 

( 2. 27) 

It follows that 

(2.28) 

The subscript K indicates that the function EK(x) depends on K. The 

parameter K is known as the Bloch wave number . The problem at hand is 

thus that of determining K and EK(x). 

In terms of our column vector representation, and from (2.4), the 

periodic condition (2.28) for the Bloch wave is simply 
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( ::) (2.29) 

It follows from (2 . 12) and (2 . 29) that the column vector of the Bloch 

wave satisfies the following eigenvalue problem 

( : : ) ( :: ) , e-m ( :: ) (2 . 30) 

The phase factor exp(-iKA) is thus the eigenvalue of the translation 

matrix (A , B,C,D) and is given by 

( 2. 31) 

The two eigenvalues in (2.31) are the inverse of each other, since the 

translation matrix is unimodular. The eigenvectors corresponding to 

the eigenvalues (2.31) are obtained from (2.30) and are 

( 

8 

) times an arbitrary constant 
e-iKA- A 

(2 . 32) 

If we choose the eigenvector of the zeroth column as an independent vee-

tor, the eigenvectors of the remaining columns are then derived from 

(2 .29) as 

(2.33) 
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According to (2.4) and (2.33), the final result for the Bloch wave in 

the n1-layer of the nth unit cell is 

(2.34) 

where a
0 

and b
0 

are given by (2.32). This completes the solution of the 

Bloch waves. 

Equation (2.31) gives the dispersion relation among w, B, and K. 

It can be rewritten as 

(2.35) 

Regimes where jA;oj < 1 correspond to real K's and thus to propagating 

Bloch waves. When jA;Dj > 1, K = ~rr + iKi and has an imaginary part so 

that the Bloch wave is evanescent. These are the so-called "forbidden" 

gaps of the periodic medium. The band edges are the regimes where 

IA+2DI-- 1. The band structure for a typical periodic medium as obtained 

from (2.35) is shown in Figs. 2.3 and 2.4 for TE and TM waves, respec­

tively . It is interesting to notice that the TM forbidden gaps shrink 

to zero when B = z n2 sin e28 with e2B as the Brewster angle, since at 

this angle the incident and reflected waves are uncoupled. The disper-

sion relation w vs K for the special case B = 0, i .e., normal incidence , 

is shown i n Fi g. 2.5. 



27
1"

 

- ul
<:

 
.....

. 
0 (/

) --
.,. 

c :J
 

lliillllillll
llllllillii'l

lllll~il
l
l
l
i
l
~
~
 

I 
I 

c 
-
-
' 

-
-.

...
.)

 

-
0

0
 

3 
I 

0 
.,. 

27
1"

 
37

!"
 

47
1"

 
57

!"
 

67
!" 

/3 
(in

 u
ni

ts
 o

f l.)
 

-+
 

F
ig

. 
2.

3 
TE

 
w

av
e 

(E
 

no
rm

al
 

to
 

th
e 

pl
an

e 
o

f 
in

ci
de

nc
e)

 
ba

nd
 

st
ru

ct
u

re
 i

n 
th

e 
w-

B
 pl

an
e.

 

Th
e 

da
rk

 
zo

ne
s 

ar
e 

th
e 

al
lo

w
ed

 
ba

nd
s.

 



2-
rr

 

- ul<:
: 

'+
- 0 en
 -

7
r 

c:
 

::::
J c:
 

li
~l

ll
ll

il
ll
ll
ll
ll
ll
~~
 

I 
I _
. 

-
'-

l 

---
'-

0
 

3 
I 

0 
7

r 
2-

rr
 

3-
rr

 
4-

rr
 

5-
rr

 
6-

rr
 

{3
 (

in
 u

ni
ts

 o
f l_

) 
~
 

Fi
g

. 
2.

4 
TM

 w
av

e 
(H

 
no

rm
a

l 
to

 
th

e 
pl

an
e 

o
f 

in
ci

de
nc

e)
 

ba
nd

 
st

ru
ct

u
re

 
in

 
th

e 
w-

B
 p

la
ne

. 

T h
e 

da
sh

ed
 

li
ne

 
is

 
6 

=
 z

 n 2 
si

n 
e 28

. 
Th

e 
da

rk
 

zo
ne

s 
ar

e 
th

e 
al

lo
w

ed
 

ba
nd

s.
 



ul<
: 71

"/2
 

-0 (/
) -·- c ~ c ·-

I 
/
.
 

I 
-

.. ... 
3 

0 
7

r 
27

1"
 

K
 (i

n 
un

its
 o

f _
l) 

Fi
g

. 
2.

5 
D

is
pe

rs
io

n 
re

la
ti

o
n

 
be

tw
ee

n 
w

an
d 

K
 w

he
n 

B
 =

 
0 

(n
or

m
al

 
in

ci
de

nc
e)

. 
Do

tt
ed

 c
ur

ve
s 

ar
e 

th
e 

im
ag

in
ar

y 
p

ar
t 

o
f 

K
 in

 
ar

b
it

ra
ry

 s
ca

le
s.

 

I __
, 

co
 

0 I 



-181-

Chapter 2 - References 

l. F. Bloch, "Uber die Quantenmechanik der Elektronen in Kristall­

gittern~ Z. Physik~' 555 (1928). 

2. D. Kassel, "Analogies between thin-film optics and electron -band 

theory of solids", 1966 Annual Meeting of the Optical Society of 

America, Paper ThFl, San Francisco, California, 1966 . 

3. See, for example, C. Kittel, Introduction to Solid State Physics, 

5th ed. (Wiley, New York, 1976), p. 190, or 

J. Mathews and R. L. Walker, Mathematical Methods of Physics, 2nd 

ed. (Benjamin, Reading-Massachusetts, 1970), p. 198 . 



-182-

Chapter 3 

ANALYSIS OF BRAGG REFLECTORS 

3.1 Introduction 

As we pointed out previously, the original interest in periodic 

multilayer structures was in reflection coatings or interference filters 

[1]. These operations use Bragg diffraction and thus are known as 

11 Bragg 11 reflectors. 

Recent developments in integrated optics have made very heavy use 

of corrugated waveguides as Bragg reflectors for guided waves [2]. 

Surface corrugations (or gratings) provide a spatially periodic perturba­

tion on the effective index of refraction of the waveguide. If the cor­

rugation has a rectangular profile, the resulting index variation 

simulates exactly our periodic medium. 

The above two areas of practical interest have given us a great 

stimulus to study Bragg reflectors as the first application of our new 

formalism of periodic media. In what follows, we will employ the theory 

described in the previous chapter to analyze the reflection characteris­

tics of multilayer reflectors. The application to grating reflectors in 

guided wave optics will also be included . 

3.2 Multilayer Reflectors 

For simplicity, consider the structure sketched in Fig. 3.1 which 

consists of a periodic medium of N unit cells as a reflector. 

As a result of successive multiplications of the unit cell transla­

tion matrix in (2.12), we obtain a matrix equation which relates the 
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incident, reflected, and transmitted waves by 

(3 . 1) 

The Nth power of a unimodular matrix can be simplified by the following 

matrix identity [3]: 

(: :J (AUN- 1 - UN-2 BUN-1 ) 
= 

CNN-1 DUN -1 - UN-2 
(3 . 2) 

where 

UN = si n(N+l )KJ\ 
sin KJ\ (3 . 3) 

with K given by (2.35). The reflection coefficient is defined by 

r = 
N 

(3 . 4) 

and is immediat ely obtained from (3.1) and (3.2) as 

(3.5) 

The reflectivity is obtained by taking the absolute square of rN : 

(3.6) 

We have in (3 . 6) an analytic expression of the reflectivity of a multi­

layer reflector . The term JCJ 2 is directly rela t ed to the reflectiv­

ity of a single unit cell by 
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2 - I r 1 I 
(3. 7) 

The second term in the denominator of (3.6) is a fast varying function 

of K, or alternatively, of S and w. Therefore it dominates the struc-

ture of the reflectivity spectrum. Between any two forbidden gaps of 

the periodic medium there are exactly N-1 nodes where the reflectivity 

vanishes. The peaks of the refl ectivity occur at the centers of the 

forbidden gaps. There are exactly N-2 side lobes which are all under 

the envelope ICI 2 I [ ICI 2 +(sin KA) 2]. 

At the band edges, KA = ~TI and the reflectivity is given by 

= (3.8) 

In the forbidden gap, KA = ~rr+ iKiA and the reflectivity formula 

of (3.6) becomes 

= 
2 sinh K.A 2 

ICI +(sinh N~.A) 
1 

(3 . 9) 

For a large N the second term in the denominator approaches zero expon-

entially as exp[-2(N-l)KiA]. It follows that the reflectivity in the 

forbidden gap is near unity for a Bragg reflector with a substantial 

number of periods. 

TE and TM waves have different band structures and different re-

flectivities. For TM waves incident . at the Brewster angle, there is 

no reflected wave. Mathematically , this is due to the vanishing of the 
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dynamical factor ICI 2 at that angle. The reflectivity for some typical 

multilayer reflectors as a function of frequency, using the angle of 

incidence as a parameter, are shown in Figs. 3.2 and 3.3. 

Similarly, the transmission coefficient and transmissivity are 

obtained as 

tN 
aN 1 =- = 
ao AUN-1 - UN-2 

(3 .10) 

and 

itNI
2 

= 1 2 = - lrNI (3.11) 

respectively. 

3.3 Grating Reflectors 

The analysis of grating reflectors uses the coupled mode theory [4] 

which is essentially a very good first-order approximation. It also in­

dicates that a grating with a rectangular profile corresponds to the case 

described above. Here we shall prove that the exact solution (3 .9) will 

reduce to the coupled mode solution when the 11 perturbation 11 is small. 

where 

Equation (3 .9) is rewritten as 

= 

2 sinh NK.J\ 2 
ICI ( sinh K~J\) 

1 

2 sinh NK.J\ 2 
1 + ICI (sinh K.~ ) 

1 

( A+D J(A+
2

D)2 _ l) KiJ\ = Q.n - - 2- + 

(3.12) 

(3.13) 

and A, C, and 0 are given by (2.13), (2.14), and (2.16), respectively. 

After defining 
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Fig. 3.2 TE wave reflectivity spectra of a 15-period multilayer 

reflector at various angles of incidence. 
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Fig. 3.3 TM wave reflectivity spectra of a 15-period multilayer 

reflector at various angles of incidence. 
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sinh NK.fl. 
sinh x = !CI 1 

sinh K.fl. 
1 

we obtain 

Assume in the structure 

then it can be shown that, under the 

c Lln = ---n 

A+D = 1 + l (Lln)2 + - -2- 2 n 

and n1 - n2 = Lln « n 

Bragg condition, 

K.J\ = £n(l + Lln + ... ) Lln 
~-

1 n n 

and sinh x Lln N ~ -n 

The reflectivity (3 .15) thus becomes 

(3.14) 

(3 .15) 

(3.16) 

(3.17) 

On the other hand, from the coupled mode analysis [4] the reflec-

tivity at the Bragg resonance is 

where K, the coupling coefficient, is given by 

K = tl.d_ 
J\ 

(3.18) 

(3.19) 
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with r the reflection coefficient of a single interface, and 

L = Ni\ 

Using the same assumptions in the structure as above, we obtain 

and 

I I 
_ lm 

r - 2n 

lln 
K =-

ni\ 

Thus the resulting reflectivity is 

(3.20) 

( 3. 21 ) 

(3.22) 

which is exactly the same as (3.17). Equations (3.17) and (3.22) are 

simply results of constructive interference. 

Grating reflectors which are characterized by a small lln need a 

large number of periods to provide substantial reflectivity. As the 

number of periods, or more accurately, the effective length of the grat-

ing increases, the frequency resolution increases. This explains why a 

grating filter also works like a very narrow band filter. Typical 

filter responses are shown in Fig. 3.4, which is a plot of an exact 

expression of I rN 1
2 versus w . 

The coupled mode analysis is able to express the incident and re­

flected field distributions inside a grating reflector. Our matrix 

method gives instead a recurrence relationship between plane wave ampli-

tudes of equivalent layers. For example, by setting a
0 

= l in (3.10) 

and (3.5), 
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(3.23) 

(3.24) 

These are the boundary conditions . After the relevant translation 

matrix operation, we obtain 

AU - u 
an = N-n-1 N-n-2 

AUN-1 - UN-2 
(3.25) 

and 
cu 

b = N-n-1 
n AUN-1 - UN-2 

(3.26) 

The amplitudes c and d at the neighboring layer can be obtained by 
n n 

(2.11) . Plots of field intensities versus position (n) using absolute 

squares of (3 . 25) and (3.26) are shown in Fig. 3.5 . 



1.
0 

~
 

+
-

·- (/
) c Q
) 

+
- c ·- ""
0 -

I 
I 

~0
.5
r 

"
"
"
"
 lo

n1
2 

-
'
 

1.
0 

w
 

I 
""

0 Q
) 

N
 - - 0 E
 

!o
-

0 z 

0
1 

I 
I 

I 
I 

I 
I 

I 
T

: 
I 

I 
I 

I 
0 

5
0

0
 

10
00

 
15

00
 

2
0

0
0

 
2

5
0

0
 

3
0

0
0

 

Po
si

tio
n 

(i
n

 u
ni

ts
 o

f 
A

) 
F

ig
. 

3.
5 

B
eh

av
io

r 
o

f 
in

ci
d

en
t 

an
d 

re
fl

ec
te

d
 f

ie
ld

 
in

te
n

si
ti

es
 

in
si

d
e 

a 
g

ra
ti

n
g

 
re

fl
ec

to
r.

 



-194-

Chapter 3 - References 

1. See, for example, 0. S. Heavens, Optical Properties of Thin Solid 

Films (Dover, New York, 1965), p. 207. 

2. See, for example, A. Yariv and M. Nakamura, 11 Periodic structures 

for integrated optics 11
, IEEE J. Quantum Electron. QE-13, 233 (1977). 

3. M. Born and E. Wolf, Principles of Optics, 2nd ed. (Macmillan, New 

York, 1964), p. 67. 

4. A. Yariv, 11 Coupled-mode theory for guided-wave opticS, 11 IEEE J. 

Quantum Electron. QE-9, 919 (1973). 



-195-

Chapter 4 

ANALYSIS OF MULTICHANNEL WAVEGUIDES AND OPTICAL SURFACE WAVES 

4.1 Introduction 

It is the purpose of this chapter to investigate the guided modes 

in a periodic layered structure. Of particular interest are those 

modes which have a large degree of lateral field confinement. Al though 

these confined modes cannot exist in an infinite periodic medium, the 

structures of practical use are expected to have only a finite number of 

periods. These finite structures, capable of mode confinement, will be 

referred to as periodic multichannel waveguides. 

The analysis of the problem involves matching the boundary conditions 

at every interface. The conventional method thus suffers from the serious 

difficulty of solving a large number of linear simultaneous equations. 

However, the problem can be made much easier by using our new method 

described in Chapter 2 that involves only the manipulation of 2x2 

matrices. Besides, many interesting guiding phenomena can be interpreted 

in terms of our band structures of periodic media. Moreover, the predic­

tion of guiding of confined modes (surface waves) in a structure consisting 

of a semi-infinite periodic medium is beyond the scope of conventional 

methods. 

In this work, periodic multichannel waveguides and electromagnetic 

surface waves will be treated. Analytic expressions for the mode disper­

sion relations and typical field distributions of the modes can easily be 

obtained by our method. 
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4.2 Periodic Multichannel Waveguides 

In this section we look for the guided modes which propagate 

parallel to the interfaces of the layers and are laterally confined in 

a portion of the periodic medium. We will limit our analysis toTE 

modes only . Two important periodic multichannel waveguides (PMW) will 

be considered in the following. 

(a) Symmetric type 

Consider the simplest kind of symmetric PMW structure with the 

index of refraction given by 

ni\ < x < ni\+b (n=O,l,2,···,N-l) 
n (x) = ( 4. 1 ) 

otherwise 

with n1 < n2. The geometry of the waveguide structure is sketched in 

Fig. 4.1 . Since we are interested in confined modes only, the fields 

must be transversely evanescent in the n1 medium. The translation matrix 

which relates the field in one period to that of the next one is given by 

(2 . 12) : 

( an-1) " A B~ ::) I b c oj \ n-1 

( 4. 2) 

where, after defining klx = iq and k = 2x p in (2.13)-(2.16)' 

A = eqa[cos pb - l (£- _g_) 
2 q p sin pb] (4.3) 

B = e-qa[- l (£+_g_) 
2 q p sin pb] (4.4) 
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n(x) 

... _j 

----~O~----~A----~2~A------(~N--~I)-A------~x 

••• 

Fig. 4.1 Structure of a symmetric N-channe1 waveguide. 
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c = eqa[ l (£+ .9.) sin pb] 2 q p (4.5) 

D = e-qa[cos pb + l (.P..-.9.) sin pb] 2 q p (4.6) 

with 

(4 . 7) 

(4.8) 

As a result of successive multiplications of the matrix in (4.2), the 

matrix equation which relates the fields on both sides of the finite 

periodic medium is obtained: 

(4.9) 

We set a
0 

= bN = 0 in (4.9}, since only outward evanescent fields can be 

present in the 11 Cladding 11 media. After using the Chebyshev identity 

(3.3) for the Nth power of the matrix in (4.9) it follows immediately 

that 

A sin NKA sin(N-l)KA = O 
sin KA - sin Kl\ 

which is the mode dispersion relation. 

(4.10) 

If the left-hand side of (4.10) is plotted as a function of B for 

a given frequency w, the B's at which the function becomes zero are the 

eigenvalues which correspond to the mode propagation constants . It can 

be shown mathematically that there are exactly N eigenvalues in each 

allowed band where KA varies from £n to (£+l)n and none elsewhere [1]. 
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Physically our waveguide structure can be considered as a system of N 

interactinq slab waveguides. TheN modes are simply due to the "split­

ting" of an N-fold degenerate mode as the ~eparations between the N 

identical slab waveguides are reduced from i~finity. Each confined 

mode of the single waveguide thus gives rise to a band with N modes. 

The dispersion relation (w vs S) is shown in Fig. 4.2. 

(b) Asymmetric type 

Consider a simple asymmetric PMW structure with the following 

index profile: 

X < 0 

n (x) = nA < x < nA+b (n=O,l ,2,···,N-1) (4.11) 

otherwise 

with na,nl < n2. The geometry of the waveguide structure is sketched in 

Fig. 4.3. The problem will be approached by the procedures illustrated 

in the same figure. Since every interface can be replaced by a 2 x 2 

matrix, the characteristic matrix equation for this case is 

( )
. ( )N ( . • • A B aN 

\ . • O+O C D 0 ) 

(4.12) 

where ba is the field amplitude on the na side of the structure, and 

the matrix ( .) accounts for the imaginary interface at x = -6 and 

is given by 
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(b) {3 

Fiq. 4.2 Dispersion curves for the confined 111odes of symmetric 

(a) 1-channel, and (b) 2-channel waveguides . Note the 

splittinq of the curves in (b) . 
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(a) 

• • • 

(b) 

Fig. 4.3 (a) Structure of an asymmetric N-channel waveguide. 

(b) Geometry used to approach the problem. The solution 

is obtained by letting 8 + 0. 

X 

'' ':. 



-202-

(4.13) 

where 
q = js2 - (~ n ) 2 a c a (4.14) 

Similarly, the mode dispersion relation is obtained as 

q - q s1'n NKA ( ) a H sin N-1 KA _ 
(A+ q + q C) sin KA - sin KA - 0 

a 
(4.15) 

The above equation can be reduced to (4.10) by sett i ng na = n1. 

The eigenvalue B .. s are determined as in the symmetric case (4 .10). 

Instead of having all eigenvalues in the allowed band, an asymmetric 

periodic multichannel waveguide can have some eigenvalues in the forbid­

den gap of the periodic medium. These modes can be traced in terms of 

perturbation theory to the unperturbed modes of the surface asymmetric 

channels. Therefore the characteristic of those modes is the localiza-

t i on of energy near the surface . Eigenvalues (s 's) of the confined 

modes as a function of the separation between the neighboring channels 

are shown in Figs . 4.4 and 4.5 . The band edges of the periodic medium 

are also shown in the same figures. For small separations, all the 

eigenvalues are in the allowed bands. There are exactly N discrete 

S-levels in a complete band. At infinite separation the B-levels con­

sist of an (N-1)-fold degenerate level and a nondegenerate level which 

corresponds to the only surface channel in ou r structure . The (N-1 )­

fold degenerate level will split into a band of N-1 levels when the 
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/3 

{3 

w 
cn 1 0 0.5 1.0 1.5 

Separation a (in units of b) 
Fig. 4.4 ~ vs separation (solid lines) for two asymmetric N-channel wave­

guides with N=2 (upper diagram) and N=5 (lower diagram) at 
(J) = i 11 § . The dark zones are the allowed bands. Dashed curves 
are the band edges. The inset shows the refractive index profile. 
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{3 

0.5 1.0 1.5 
Separation a (in units of b) 

Fig. 4.5 B vs separation (solid lines) for two asymmetric N-channel wave­
guides with N=2 (upper diagram) and N=5 (lower diagram) at 
w = n %· The dark zones are the allowed bands. Dashed curves 
are the band edges. The inset shows the refractive index profile. 
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separation is finite. Those N-1 levels are always in the allowed 

band regardless of the separation. The crossing between the nondegener­

ate level and the band edge happens at some critical separation ac. The 

surface modes only exist when the separation is larger than ac. 

Typical transverse field distributions are shown in Figs. 4.6 and 

4.7 for N = 2 and 5, respectively. Only the confined modes in the first 

allowed band which is derived from the lowest order modes of the un-

coupled individual slab waveguide are shown. As we know, there are 

exactly N modes in each complete band. The modes will be designated as 

TErn£ with£ as the band index (£=0,1,2,···) and mas the mode index 

(m=O,l,2,···,N-l). There are exactly m+£N zero crossings in the trans­

verse field distribution for the m£th mode with £zero crossings in each 

channel layer and m zero crossings in the N-1 separation layers. The 

field can have at most one zero crossing in each separation layer where 

the field is evanescent. 

The field distribution depends strongly on the index of refraction 

of the superstrate na when na is near n1. The variation of the field 

distribution of the TE00 mode is shown in Fiqs. 4.8 and 4.9 for N= 2 and 

5, respectively. There is a drastic change of the field intensity in 

the surface channel when na is varied slighly from n1. This phenomenon 

will become very useful if a superstrate material with an electrooptic 

property can be found so that na can be tuned slightly around n1 by an 

applied electric field. The resulting change of the optical energy 

localization in a dual channel waveguide can thus be used as a switch or 

modulator. 
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Fig. 4.6 Transverse field distributions for the confined modes in the 
first band of a 2-channel waveguide. 
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TEoo 

-

Transverse field distribution 

Fig. 4.7 Transverse field distributions for the confined modes 

in the first band of a 5-channel waveguide. 
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n2 • 

t n, 

no n0 = 1.0 

n0 = 2.8 < n1 

n0 =2.89=n 1 

7\' 
l 

Transverse field distribution 

Fig. 4.8 Transverse field distributions for the TE00 mode of a 

2-channel waveguide at various n 's. a 
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n0 = I. 0 

7\' 
I I I I I I 1'--------t 

Transverse field distribution 

Fig. 4.9 Transverse field distributions for the TE 00 mode of a 

5-channel waveguide at various n 's. a 
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In the above analysis we assumed that the refractive index of the 

substrate is the same as n1 for simplicity of calculation. This is the 

reason that only one surface mode is found. In general, if nsf n1 , 

two surface modes will exist. This is similar to the electronic surface 

states in a crystal where the number of surface states is equal to the 

number of surface atoms. Here the number of surface modes is equal to 

the number of surface channels. However, as noted above, the electro-

magnetic surface modes in our structure exist only when the separation 

between channel layers is large enouqh. This state of affairs is quite 

different from that of electronic surface states in crystals where, ac­

cording to Shockley [2], surface levels appear only when the interatomic 

distance becomes small enough so that the boundary curves of the allowed 

energy bands have crossed. 

Finally, one thing in Figs. 4.4 and 4.5 has to be mentioned. In 

those figures we plot B values for the confined modes only. A confined 

mode has its B value satisfy 

(4.16) 

where 

(4.17) 

and 

B = max(~ n ~ n ) min c a' c s (4.18) 

so that the guided wave is transversely standing in the periodic channels 

and evanescent in the cladding regions. For large enough separation 

between channels the whole band of B-levels will fall between B and 
. ~X 

B . so that there are N confined modes. As the channels are brought m1n 
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closer together , the B-levels "repel,, each other. As a result , some of 

the modes will find their B value expelled from the confined region in 

B space. Those modes are transformed into substrate or superstrate 

modes (B < Bmin) which are not confined, since the major part of their 

energy is in those unbounded regions. 

4.3 Electromagnetic Surface Waves 

Localized surface modes also exist in a semi-infinite periodic 

medium. They are guided by the interface between two semi-infinite 

media and will be referred to as electromagnetic surface waves. 

The existence of a surface wave can be explained as fol l ows: In 

Section 2.3 we have shown that, at a given frequency, there are regions 

f B f h . h K . 1 b . K .Q:rr • K Th o or w 1c 1s a comp ex num er, 1.e. , = 1\ + 1 i' e waves 

with an exponential intensity variation due to the imaginary part of K 

cannot exist in an infinite periodic medium , and we refer to these 

regions as forbidden. However, if the periodic medium is semi-infinite, 

the exponentially damped solution is a legitimate solution near the sur­

face and the field envelope decays as exp(-Kix) where x is the distance 

from the surface . 

The existence of surface waves can also be argued using perturba-

tion theory. According to perturbation theory, our structure can be 

considered as an array of infinite numbers of interacting slab wave-

guides. These waveguides are identical to each other except for the 

one near the surface. When the separation between the neighboring 

waveguides is infinite, there is no interaction and the guides can be 

considered as independent of each other. The eigenvalues (B,s) thus 



-212-

fall into two levels: One is an infinitely degenerate level, the other 

is a nondegenerate level which corresponds to the extreme guide near 

the surface . As the waveguides are brought together, the interaction 

between the waveguides causes the eigenlevels to split. As they split , 

the allowed band is fully occupied by the levels originating from the 

infinitely degenerate level. As a result, the only place where the 

nondegenerate level can be accommodated is in the forbidden gap. The 

field intensity for this wave is localized near the surface because of 

the fact that in the forbidden gap the corresponding K is complex and 

the associated field is damped into the periodic medium. 

To study the properties of the surface waves, consider a semi­

infinite periodic medium as sketched in Fig. 4.10. The distribution of 

the indices of refraction is 

X < 0 

n(x) = n2 nA < x < nA+b (4.19) 

n1 nA+b < x < (n+l)A, (n=O,l ,2, .. ·) 

with na,nl < n2. We look for the surface waves propagating parallel to 

the surface (say, in the positive z direction). For the sake of 

definiteness we consider the TE polarization only where the E-vector is 

in the y direction. The electric field is thus expressed as 

E(z,x) = E(x) ei Sz (4 . 20) 

with E(x) obeying the following equation: 
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d2 2 2 2 - 2 E (X ) + [w 
2 

n (X ) - B ] E (X ) = 0 
dx c 

( 4. 21) 

We take the solution in the following form: 

{ qax X~ 0 a e 
E(x) = 

Ek(x) e i Kx X..?_ 0 

(4.22) 

where qa is given by 

qa = j B2 - (~- n )2 
c a (4.23) 

and a is a constant. In order to be a surface wave, the Bloch wave num-

ber K in (4.22) must be complex so that the field decays as x goes posi­

tive. This is possible only when the propagation constant B falls into 

a forbidden gap of the periodic medium. Another condition is that E(x) 

and its derivative be continuous at the interface with medium na. This 

immediately gives us the condition for the surface waves: 

eiK/\ - A - B 
q e- i K/\ - A + B 

(4.24) 

where A, B, and q are given by (4.3), (4.4), and (4.7), respectively. 

The field distributions of some typical surface waves are shown in Figs. 

4.11 and 4.12. 

It is evident that the energy is more or less concentrated in the 

first few periods of the semi-infinite periodic medium. It can be easi ly 
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shown that 

Energy in the first period -2KiA 
~----.-~---.~--~------~~~-~~--~--~--= 1 -e Energy in the whole semi-infinite periodic medium (4.25) 

where Ki is the imaginary part of K. Generally speaking, the fundamental 

surface wave has the largest Ki and thus the highest degree of localiza­

tion. The fundamental surface wave may happen to be in the ath or the 

lst forbidden gap. It depends on the magnitude of the index of refrac­

tion na. For na less than n1 which is the case of practical interest 

(say, na = index of refraction of air), the fundamental surface wave has 

its K in the lst forbidden gap. This is due to the fact that when the 

individual slab waveguides are separated i nfinitely from each other, the 

nondegenerate eigenvalue , which depends on na' is lower than that of the 

degenerate one. The field profile in each period of the medium is 

similar to that in the preceding period except that the amplitude is 
~ -K.A 

reduced by a factor of (-1) e 1 
, where~ is the integer corresponding 

to the ~th forbidden gap. The number of surface wave modes equals the 

number of the confined modes of the surface channel waveguide. 

We have derived the mode condition for the surface wave by matching 

the boundary condition between an evanescent wave in the homogeneous 

medium and a decaying Bloch wave in the periodic medium. The existence 

of the surface wave in a semi-infinite periodic medium is independent of 

the separation between channel layers, because the allowed band is always 

fully occupied. However, i n a finite structure as discussed in the last 

section, the allowed band is not fully occupied, and thus the surface 

wave appears only when the separation is large enough so that the nonde­

generate level does not enter into the allowed band. 
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The surface wave can still be guided when n2 < n1 ; however, the 

local extrema will sh i ft to n1 layers where the profile becomes 

sinusoidal. This can be proved as follows . In the region where the 
1 d2E . fie l d is evanescent f ---2 1s positive. Thus if there is any bending 

dx 
in the profile for E > 0 the bending is concave upward, while for 

E < 0 it is concave downward. This defin i tely excludes the possibility 

fo r E(x) to possess any local extr emum in the region where the field is 

evanescent . 

In the above calculation we assumed z n1 < B < z n2 so that the 

transverse field is sinusoidal in the n2 layers while being evanescent 

in the n1 layers. However, this condition is not necessary. Surface 

waves exist also when B < z n1. The transverse conf i nement, however, is 

not as tight as that of the former case, since the Bloch waves decay 

faster whenever there is a region where the wave is evanescent . The 
w wave does not exist, however, when B > c n2, si nce in th i s case 

0 everywhere so that if the field is evanescent in the homogene-

ous medium na, it will blow up without bound in the periodic medium and 

vice versa . 
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