Software Register Synchronization for

Super-Scalar Processors with Partitioned Register

Files

Thesis by
Daniel Maskit

In Partial Fulfillment of the Requirements
for the Degree of
Doctor of Philosophy

California Institute of Technology

Pasadena, California

1997
(Submitted December 12, 1996)

i1

© 1997
Daniel Maskit
All Rights Reserved

iii

Acknowledgements

Many thanks to my advisor, Steve Taylor. Steve has taught me a great deal about
parallel programming and about the practice of academia. He has encouraged me to
do the work which I am interested in, allowed me to do things my way, and given
me the confidence to believe in my intuition. In addition, Steve is one of the most
generous people I have ever worked with. He treats his graduate students as his
colleagues, and has done everything he can to make our graduate careers not just as

productive, but as enjoyable, as possible.

Special thanks are also due to Bill Dally. Bill has gone out of his way to take an
interest in my career. He has advised me both academically and professionally. He
has offered his time and the time of others in his lab to further our common goals. I

look forward to future productive work with Bill.

I would also like to thank the other members of my committee. Al Barr and
Mani Chandy have participated in one way or another with almost all phases of my
academic progress at Caltech. They have consistently been pleasant to work with, and
obviously been interested in my progress. They have both encouraged me to broaden
my horizons, and have introduced me to new and interesting ways of thinking about

the world of computer science.

This work would not have been possible without the assistance and great pa-
tience of the members of the MIT Concurrent VLSI Architecture (CVA) Group. In
particular Steve Keckler has taught me a great deal about architecture, VLSI, and
technical writing (although this thesis reflects how much I had to learn far more than
it reflects his positive influence). Others deserving of mention include Yevgeny Gure-
vich, Andrew Shultz, Fletcher Sandbeck, Andrew Chang, Nick Carter, and Michael
Noakes.

A great debt is owed to Rich Lethin who set aside his own research to spend nearly

v
a year training me to the point where I could assume primary responsibility for the
Multiflow compiler work. Rich’s teaching skills and generosity were invaluable to my

work.

In addition, all the members of the CVA group have conspired to be wonderful
hosts to me during the many trips I made to Boston in the course of this work. They
made me feel welcome, and treated me not so much as a visiting colleague, but as an

honored guest.

While at Caltech I have continued the study of history inspired by my don from
Sarah Lawrence College, Francis B. Randall. I have completed a history minor for
my Ph.D. working primarily with Doug Flamming who has made this study both

educational and fun.

My time in graduate school has been vastly improved both by the friends I left
behind when I came to California: Jesse Lentchner and Rebecca Terner, Dirk Dawson
and Laura Emerick, Bruce Musser, Ethan Galant and Leigh Hendrickson; as well as
new friends I have made here at Caltech: Maneesh Sahani, Jennifer Linden, Len and

Shelly Mueller, Eve Schooler and Bob Felderman.

I would also like to thank the other members of the Scalable Concurrent Program-
ming Laboratory, both past and present: Mike Palmer, Marc Rieffel, Jerrell Watts,
Bryan Chow, Yair Zadik, Dave Bourgeois, and Andy Fyfe. The lab has consistently
been a good working environment, and a great group of people to socialize with.

The finest treasure that I have encountered during my time at Caltech, however,
is my fiancee Kelly Smith. I look forward to many happy years with her.

I would be remiss if I did not mention my family. My father Bernie and his wife
Wilma have been encouraging and supportive, and have maintained a warm household

which allows me to continue thinking of New York as home.

My paternal grandmother Celia has always stood by and encouraged and made it
very clear how proud she is of not only my accomplishments, but those of my brothers

as well. It is a pleasure to continue to make her proud.

My mother Paula has been supportive of some of the very difficult decisions I have

v
had to make during my graduate career, and in the process has made her love for me
obvious.

My brothers Sid and Jonathan have helped keep my feet on the right path, and
provided many enjoyable days of exploring exotic places from the swamps of Louisiana
to the bistros of Paris. I am extremely lucky to have siblings who are also wonderful
friends.

I would finally like to acknowledge the critical support I received from my aunt,
Mae Lord. Mae’s untimely death has left me deeply saddened. I have been deprived

of one of the finest confidants and advisors one could hope for.

The funding for the work described in this thesis has come from a variety of
sources. I spent several years being funded by an NSF Graduate Fellowship, with
the research project itself funded by the Advanced Research Projects Agency, ARPA
Order number 8176, and monitored by the Office of Naval Research under contract
number N00014-91-J-1986. The rest of the work was conducted with funding from
the Advanced Research Projects Agency under contract number DABT63-95-C-0116.
Some of the hardware resources used to run simulations reported on in this work were
provided by the U.S. Air Force under Air Force Office of Scientific Research Grant
F49620-95-1-0081. In addition, I was designated a finalist by the Hertz Foundation
in 1994.

vi

Abstract

Increases in high-end microprocessor performance are becoming increasingly reliant
on simultaneous issuing of instructions to multiple functional units on a single chip.
As the number of functional units increases, the chip area, wire lengths, and delays
required for a monolithic register file become unreasonable. Fulure microprocessors
will have partitioned register files. The correctness of contemporary super-scalar pro-
cessors relies on synchronized accesses to registers. This issue will be critical in
systems with partitioned register files. Current techniques for managing register ac-
cess ordering, such as register scoreboarding and register renaming, are inadequate for
architectures with partitioned register files. This thesis demonstrates the difficulties
of implementing these techniques with a partitioned register file, and introduces a

novel compiler algorithm which addresses this issue.

Whenever a processor using register scoreboarding or register renaming issues an
instruction, either the scoreboard or the register name table must be accessed to check
the instruction’s sources and destination. If the register file is partitioned, checking
the scoreboard or name table for a remote register is difficult. One functional unit
cannot determine at runtime when it is safe to write to a register in another functional
unit’s register file. While these techniques can be supported through use of a global or
partitioned scoreboard, such an implementation would be complex, and have latency

problems similar to those of a monolithic register file.

This work discusses the organization of multiple functional units into loosely-
coupled groups of functional units that can communicate via direct register writes,
but with purely local hardware interlocks to force synchronization. A novel compiler
algorithm, Software Register Synchronization (SRS), is introduced. A comparison
between SRS and existing hardware mechanisms is conducted using the Multiflow

compiler modified to generate code for the MIT M-Machine. Experiments to evaluate

vii
the SRS algorithm are run on the M-Machine simulator being used for architectural
verification. In order to support partitioned register file architectures, an alternative
to traditional hardware methods for managing register synchronization needs to be
developed. This thesis presents a novel compiler algorithm to address this need. The
SRS algorithm is described, demonstrated to be correct, and evaluated. Details of
the implementation of the SRS algorithm within the Multiflow compiler for the MIT

M-Machine are provided.

viii

Contents
Acknowledgements i1l
Abstract vi
1 Introduction 1
1.1 Trends in Computer Architecture 3
1.2 Register Synchronization 0L .. 6
1.3 Hardware Methods for Managing Register Synchronization 8
1.4 A New Way of Organizing a Processor 12
1.5 Related Work L 14
1.5.1 Instruction Scheduling for ILP 15
1.6 The Trace Scheduling Algorithm 17
1.6.1 The Phase Ordering Problem 21
1.6.2 Instruction Reordering 23
1.6.3 Management of Splits and Joins 25
1.7 Overview of the Dissertation 28
1.8 Contributions of this Dissertation 29
1.9 Organization of the Dissertation 30
2 Register Synchronization for a Monolithic Register File 31
2.1 Example 1: Delayed Loads 32
2.2 Example 2: Multiple Loads, 33
2.3 Development of Register Synchronization Definition 35

2.4 Overview of Solution 37

2.4.1 Entering a BasicBlock
2.4.2 Processing a BasicBlock 00
2.4.3 Leaving a BasicBlock
2.5 Algorithm oo
2.6 Correctness of the Algorithm
2.6.1 Basic Definitions00

2.6.2 Definitions for Transitional Information
2.6.3 Invariants, Preconditions and Postcondition
2.6.4 Demonstration of Correctness

2.6.5 Managing Transfer of Control

3 Algorithm Modifications for Trace-Scheduling

3.1 Algorithm Modifications for Trace Scheduling
3.1.1 Processinga Trace
3.1.2 Trace Algorithm
3.1.3 Correctness Modifications for Trace Scheduling . .

3.2 Implementation of Software Register Synchronization . . .

3.2.1 Compiler Scoreboarding

4 Algorithm Modifications for a Partitioned Register File

4.1 VLIWA s,
4.1.1 Algorithm Changes for VLIW+
4.1.2 Correctness Modifications for VLIW+

4.1.3 Management of INCOMING while Scheduling a Trace

4.2 VLIW-Unknown. i v e i i e
4.3 MAP . .

X

5 Compiler Development and Architectural Evaluation

5.1 Predicated Operations
5.1.1 Select Operations.
5.1.2 Conditional Branches,

5.2 64-Bit Execution Lo Lo o

5.3 Local Register-to-Register Moves

5.4 Constant Generation

5.5 Memory Addressing Lo Lo

5.6 Hardware Memory Segmentation

6 Experimental Evaluation

6.1 Experimental Environment o000,
6.2 Basic Benchmark Programs
6.3 SCP Applications o
6.4 Dynamic Instruction Overhead
6.5 Performance Overhead
6.6 Application Experiment L.
6.7 Operating System Experiment,
6.8 Discussiono e e e e

7 Conclusions

7.1 Results o o s,
7.2 Future Work
7.3 Conclusion v v o v o i e

A The MAP Instruction Set
A.1 Anatomy of an Instruction

A.2 Listing of Operations

80
81
81
82
83
83
84
85
87

92
92
94
96
98
100
103
105
106

109
109
110
110

112

X1

Bibliography 116

Xii

List of Figures

1.1 Tradeoff Between Compiler and Hardware Complexity in Com-

puter Designs L o
1.2 Register Scoreboarding oL,
1.3 Abstract View of The MAP Processor
1.4 Operation of a Basic Block Compiler
1.5 Division of a Program into Basic Blocks and Traces
1.6 Operation of the Multiflow Compiler
1.7 Encapsulation of Delayed-Binding Information
1.8 Code Motion to Increase ILP
1.9 Code Motion Below Splits and Above Joins
1.10 Selection of Join Point to Minimize Hardware Delay

1.11 Resource Usage Represented as a Partial Schedule

2.1 Delayed Load
2.2 Worst-case Timing for Delayed Load
2.3 Multiple Loads,
2.4 Worst-case Timing for Multiple Loads
2.5 Adjacent Block Scheduling
2.6 State Transition Diagram
2.7 State Transitions for Single-Instruction Scheduling
2.8 General Outline of Algorithm
2.9 Scheduling Algorithm for a Basic Block
2.10 Algorithm for Merging STATE from Scheduled Successors

13
18
19
20
22
24
26
27
28

32
33
34
34
36
39
40
42
44
45

3.1
3.2
3.3
3.4

4.1

4.2
4.3
4.4

5.1
5.2
5.3
5.4
3.5
5.6
5.7

6.1
6.2
6.3
6.4
6.5
6.6
6.7

X1il

General Outline of Trace Algorithm 60

Scheduling Algorithm for a Trace 61
Routine to Manage State During Scheduling 62
Code Transformation to Convert a WAW hazard into a RAW Hazard 67

Remote Register Write for VLIW+ with Transfer Latency of
One Cycle 70

Remote Register Write for VLIW+ with Zero-Latency Transfer 71

General Outline of Algorithm for VLIW4 73
Scheduling Algorithm for VLIW4 75
Conditional Expressions that can use Predicated Operations 81
Compilation of Conditionals using Predicated Operations . . 82
Optimized Code Using Post-Increment Addressing 86
Code Fragment from espresso 88
Simple Implementation of memcpy 89
Efficient Implementation of memcpy 90

Correct Implementation of memcpy for the MAP Processor 91

Dynamic Instruction Counts - Normalized to NONE 98
Inner Loopof LU 99
Hash Table Insertion from the HASH Benchmark 99
Hardware vs. Software WAW Prevention: No Optimization 100
Hardware vs. Software WAW Prevention: Optimization 101
Hardware vs. Software WAW Prevention for Compress 104
Hardware vs. Software WAW Prevention for SCPlib 107

Xiv

List of Tables

3.1
5.2

6.1
6.2
6.3
6.4
6.5
6.6
6.7

Al
A2
A3
A4

Count of EMPTY as a Percentage of Total Executed Instructions 84
Structure of an M-Machine Pointer 87
Memory Models Used For Experiments 93
Compile-Time Options Used For Experiments 93
Benchmarks Used For Experiments 94
Count of Inserted Barriers for Benchmark Programs 96
Count of Inserted Barriers for SCP Applications 97
Count of Inserted Barriers for Compress 103
Count of Inserted Barriers for SCPlib 106
Anatomy of an Instruction L 0 oL 112
IALU Instructions. oo ittt e e 114
FALU Instructions 115
MEMU Instructions. o 115

Chapter 1 Introduction

Increases in high-end microprocessor performance are becoming increasingly reliant
on simultaneous issuing of instructions to multiple functional units on a single chip.
As the number of functional units increases, the chip area, wire lengths, and delays re-
quired for a monolithic register file become unreasonable. Future microprocessors will
have partitioned register files. The correctness of contemporary super-scalar proces-
sors relies on synchronized accesses to registers. This issue will be critical in systems
with partitioned register files. Current techniques for managing register access order-
ing, such as register scoreboarding [59] and register renaming [60], are inadequate for
architectures with partitioned register files. This work demonstrates the difficulties of
implementing these techniques with a partitioned register file, and introduces a novel

compiler algorithm which addresses this issue.

This thesis assumes a generic model of a partitioned register file system in which
each functional unit is assigned to a local register file. More than one functional
unit can be assigned to the same local register file. Functional units can read only
from their local register file. All such reads access the local hardware scoreboard and
are synchronizing operations. When an instruction issues, its destination register is
marked EMPTY. Attempts to read an EMPTY register will stall until the register
is marked FULL. Functional units can write to either their local register file, or to
remote register files on the same chip. Writes do not access the scoreboard prior
to issuing. The only access to the scoreboard performed by a write is to mark the

destination register FULL after the write has completed.

State of the art high performance processors manage register synchronization

through register scoreboarding or register renaming. When an instruction issues, ei-

2
ther the scoreboard or the register name table must be accessed to check its sources
and its destination. If the register file is partitioned, checking the scoreboard or name
table for a remote register is difficult, one functional unit cannot know when it is safe
to write to a register in another functional unit’s register file. While these techniques
can be supported through use of a global scoreboard, or a partitioned scoreboard, they
are complex to implement, and have latency problems similar to those of a monolithic

register file.

An alternative to global scoreboarding or renaming is to change the model in which
the functional units communicate with one another. Instead of communicating via
general registers, remote register writes can be placed into a queue [18], to be read at
the receiving functional unit’s leisure. The receiving functional unit can then locally
manage register synchronization within its own register file. This solution requires
additional hardware, the queue, and can increase compiler complexity as queue write

order could be critical. [18, 10].

This work discusses the organization of multiple functional units into loosely-
coupled clusters. These are groups of functional units that can communicate via
direct register writes, but with purely local hardware interlocks to force synchro-
nization. A compiler algorithm, Software Register Synchronization (SRS) is intro-
duced. A comparison between SRS and existing hardware mechanisms will be made.
This comparison examines solutions for a contemporary super-scalar processor with
a monolithic register file. The comparison is conducted using the Multiflow com-
piler modified to generate code for the MIT M-Machine. Experiments to evaluate
the SRS algorithm are run on the M-Machine simulator being used for architectural

verification.

3
1.1 Trends in Computer Architecture

The first RISC microprocessor [46, 48] heralded a new era in computer architecture.
Since the advent of RISC, emphasis in microprocessor design has been on balancing
VLSI complexity with compiler complexity. Figure 1.1 shows the design space for a
variety of architectures showing the tradeoff between these complexities. In this new
era, progress in computer architecture has been driven by architectural innovation
enabled by increases in available chip area as process feature size has decreased. One
of the major areas of emphasis in early RISC architectures was the use of pipelin-
ing to increase instruction throughput. This emphasis on RISC and pipelining as a
replacement for earlier microcoded designs revived the concept of static scheduling.
Rather than having a complex control unit within the processor to manage all of the
aspects of resource management, static scheduling performs some of this management

within the compiler.

The MIPS (Microprocessor without Interlocked Pipe Stages) [32] processor devel-
oped at Stanford in the early 1980’s was one of the early RISC architecture projects.
This processor is of particular interest since, as its name suggests, it does not have
hardware interlocks in the pipeline. Relative to the Berkeley RISC project [46, 47],
the MIPS architecture places a higher emphasis on processor performance than on
compiler simplicity. In order to simplify the pipeline hardware, hazard detection and

avoidance is assigned to the compiler.

The next major development in architecture was superscalar microprocessors.
This development drew on earlier computer designs, such as the CDC-6600 [59] which
had superscalar designs but required multiple chips, and the IBM 360/91 [1] which
was the first machine to use register renaming. The first of these chips was the Amer-
ica research processor which became the IBM RS/6000 [30, 45]. This processor has

three functional units: fixed-point, floating-point, and branch. The emphasis of this

VLIW .

Compiler
Complexity

’ CISC

Hardware Complexity

Figure 1.1: Tradeoff Between Compiler and Hardware Complexity in Computer De-
signs. This figure shows the spectrum of design space from a Complex Instruction Set Computer
(CISC) like the DEC VAX which featured extensive microcoding to a VLIW machine which has all
machine operation choreographed by the compiler.

5
design is on simplifying hardware without significantly adding to compiler complexity.
One of the key ideas in this design is the separation of the register file into specific
registers intended to be used by each functional unit. This functional separation re-
duces the circumstances in which the functional units will interfere with each other,
but requires explicit compiler management of this interference when it does occur.
For example, it is the compiler’s responsibility to ensure that moving data from one

register type to another is performed safely.

The most recent commercially available high-end processors, such as the Intel
Pentium Pro [13], HP PA-8000 [27], MIPS R10000 [43], and the IBM/Motorola Pow-
erPC 604 [44], feature up to six functional units, and hardware implementations of
register synchronization techniques that allow out-of-order issuing of instructions.
These machines employ complex hardware, which allows some degree of simplifica-
tion within the compiler. For example, the coordination of out-of-order instruction

issue is managed entirely in hardware.

An alternative approach to supporting multiple functional units is Very Long
Instruction Word (VLIW) architectures. This term, coined by Josh Fisher [20],
describes a machine with many functional units, and no interlocks. The compiler
required for such a machine is quite complex, as it must statically schedule all of the
machine’s resources for each clock cycle. In such a machine, improper compiler chore-

ography of operations can violate program correctness, or even crash the machine.

Current super-scalar designs allow reads and writes to a single register file from
any one of the functional units, requiring, in general, two read ports and one write
port on the register file for each functional unit. Since each write port requires one
word-line for selection, and one bit-line to move the data [42], the size of the register
file is a function of the square of the number of write ports. Thus, doubling the
number of functional units results in a four-fold increase in the size of the register

file. In addition the register file access delays increase due to parasitic capacitances:

6
wire parasitics due to longer bit- and word-lines as well as transistor parasitics for
each port. Both area constraints and wire delays limit the practical number of register

file ports.

In order to continue extracting more performance out of a single chip by adding
additional functional units, it will be necessary to partition the register file. This so-
lution will yield smaller register files and higher tolerance for delays in writing distant
register files. One effect of partitioning the register file is an increase in compiler com-
plexity as the compiler must take on responsibility for managing transfers between

register files.

1.2 Register Synchronization

Register hazards result when the relative order of instructions reading or writing their
registers is not strictly controlled. Read-after-write (RAW) hazards occur when an
instruction issues before the instruction producing its data has completed. Write-
after-read (WAR) hazards occur when an instruction writes its result to a register
before an instruction that was supposed to read the old value is able to issue. Write-
after-write (WAW) hazards are due to instructions completing in a different order than
they were specified (or assumed) by the compiler. Thus if two sequential operations
A followed by B both write into the same register rl1, and B completes before A,
then r1 will have the incorrect result. Any subsequent instruction that reads from

that register will get an incorrect result.

In purely sequential machines, WAW and WAR (collectively called WAX) haz-
ards do not occur, as instructions are fetched and executed in exactly the order in
which they are specified in the object code. However, the performance improvements
seen in modern microprocessors have opened a window for these hazards. Pipelined

processors in which register writes can occur from multiple stages of the pipeline,

7
non-blocking memory systems, multiple arithmetic units—such as floating point or
superscalar units, and out-of-order instruction issue, often performed in hardware
by high performance processors, all pose a threat of WAX hazards. Some examples
of modern processors that use non-blocking caches, multiple arithmetic units, deep
pipelines, and out-of-order execution are the MIPS R10000 [43], HP PA-8000 [27],
Intel Pentium Pro [13], and the IBM/Motorola PowerPC 604 [44].

RAW hazards can be eliminated with a relatively simple hardware scoreboard,
which marks registers empty when an instruction issues, and marks it full when
the result returns. Instructions which attempt to read a register marked empty are
blocked from executing until the empty register is marked full. RAW hazards are
“true” hazards as they indicate the data dependencies between instructions; han-
dling them in some way in hardware is usually necessary because they are frequent.
Conceptually, WAX hazards can be eliminated with an infinite number of registers.
No registers would be reused, and no WAX conflicts could occur. With a limited reg-
ister set, registers must be reused. Without either software or hardware precautions,
register reuse can result in WAX hazards, causing the program to produce incorrect
results. WAR hazards may also be eliminated by prohibiting hardware out-of-order
instruction issue completely; or by preventing an operation which writes a particular
register from issuing prior to the completion of any instruction that precedes it in
the static schedule that reads from the same register. WAW hazards are due to out
of order instruction completion, which can be caused by variable instruction latency,
and require special hardware for detection. This thesis focuses on reducing hard-
ware complexity by moving WAW detection into the compiler and converting WAW
hazards into RAW hazards that can be detected by the already necessary register

scoreboard.

The motivation for this algorithm comes from compiler development for the MIT

M-Machine [19] currently being designed by the Concurrent VLSI Architecture Group

8
at MIT. The Multi-ALU processor (MAP) chip, which serves as a single processing
node in the M-Machine, performs remote memory accesses asynchronously, but does
not check the synchronization state of registers prior to overwriting them. This allows
processing to continue while awaiting completion of a remote memory access, but does
not protect against WAW hazards. This architectural decision poses a challenge to
the compiler: to efficiently support a non-blocking memory system while maintaining
program correctness by preventing WAW conflicts. The MAP processor of the M-
Machine features loosely-coupled CPUs on a single chip. Each of these processors can
write the register files of all other processors on the same chip. Traditional methods
of preventing WAW hazards are particularly problematic as they require each CPU to
keep track of both local and remote registers. The simplified scoreboarding hardware
of the MAP, the non-deterministic memory latencies, and the multiple clusters with

distinct register files all require the efficient software solution described in this thesis.

1.3 Hardware Methods for Managing Register Syn-

chronization

The two main hardware techniques for preventing WAW hazards in pipelined pro-
cessors are register scoreboarding [59], and register renaming [60]. The DEC Alpha
21164 [16] uses register scoreboarding. This is illustrated in Figure 1.2 ' . Within
the machine’s pipeline is a scoreboard for representing register state. When an in-
struction is issued, its destination register is marked pending, and cleared when the
instruction completes. When a subsequent instruction that needs to write or read
from a pending register is at the issue stage, the pipeline stalls until the register is

written. No instructions proceed past the pipeline stage containing the scoreboard

I The instruction set used in the examples is the MAP instruction set. Most operations take three
arguments. The first two are operands, the third is a destination. More details on this instruction
set can be found in Appendix A.

Clock Cycles
a=b+5; 1 2 3 4 5 6 7

Register Scoreboard
P = Pending
W = Written

Figure 1.2: Register Scoreboarding. This figure shows a simplified machine pipeline with four
stages, Instruction Fetch and Decode (IFD), Execute (EX), Memory Access (MEM) and Writeback
(WB). The sample code is shown progressing through this pipeline. Due to the data dependencies in
the code, the add is not able to proceed to the EX stage until the 1d enters the WB stage. The stall
of the add delays the entrance of the st to the IFD stage. The state of the register scoreboard is also
shown. When an operation enters the WB phase, the Pending state of the register is cleared in the
first half of the cycle, allowing the dependent instruction to enter the EX phase. In this situation,
the needed value is bypassed directly into a functional unit input, as well as being written to the
register file.

10
until the condition which caused the stall has been handled. This form of score-
boarding eliminates both RAW and WAW hazards, but prevents an opportunity of
dynamically eliminating “false” WAW hazards: those hazards introduced as a result

of how the program is executed.

Register renaming, such as used in the MIPS R10000 [43], provides the opportunity
to eliminate the false WAW hazards by using more machine registers than are visible
to the programmer. When an instruction is issued, the register name table is updated
so that the destination register is given a new physical name and the virtual to physical
translation is recorded. Subsequent instructions that read the virtual register are
mapped to the physical register. If another instruction that targets the same virtual
register is issued, then a new physical register is allocated and the virtual to physical
translation is modified. Subsequent reads to the virtual register name will find the
new physical register. Register renaming allows the number of live registers to be
larger than the number of registers that can be named by the compiler. However,
if the number of live registers is greater than the number of physical registers, the

pipeline (like that of the scoreboard solution above) must stall.

Both scoreboarding and register renaming are suitable for today’s architectures
with single register files and a limited number of functional units. However, both
techniques require access to global structures: the scoreboard or the name table.
These structures will have latency problems similar to those of a monolithic register

file as the number of functional units grows.

In the case of scoreboarding, the latency for accessing a global scoreboard would
be incurred more than once for each instruction being issued. When a functional unit
1s ready to issue an instruction, a signal must be sent to the scoreboard to attempt to
mark the target register pending. Execution cannot proceed until a return signal is
received indicating that the register is now marked pending awaiting the completion of

the instruction. When the instruction completes, the scoreboard needs to be written

11
to update the state for the target register. For operands, it is necessary to check the
state of the register, and delay execution until the source register is known to be full.
The checking of the source operands can occur concurrently with the checking of the

target register if enough ports on the scoreboard are provided.

For register renaming, it is necessary to examine all instructions that are ready to
issue in a given cycle to determine which subset of those instructions can be issued.
The logic required for this comparison needs to have write ports from all functional
units, and grows in size as a function of the square of the number of these ports. The
size and latency issues for this logic would be very similar to those encountered for a

monolithic register file.

The software-only solution found in VLIW machines is applicable to machines in
which all resources are scheduled in the compiler. The work in this thesis extends that
work so that the software cooperates with the mechanisms provided in the hardware

to handle the non-determinism present in the systems of today and tomorrow.

The complication posed by use of a partitioned register file occurs when a value
needs to be written into a remote register file. One of the following conditions must

be met for the transfer to be initiated:

o The writing functional unit must have determined that it is safe to write the
remote register

o The remote register file must be capable of delaying the processing of the write
until it is safe for it to occur

If all of the processors are executing in lockstep, as in a traditional VLIW, and
the latency for memory accesses either is known or has a hard upper bound, the
compiler is able to statically ensure the first of these conditions. Otherwise, the first
of these conditions can only be met if there is global sharing of information among

register banks and functional units. In particular, each functional unit needs to be

12
able to access the scoreboard associated with all register banks. This requirement for
a globally accessible scoreboard has delay problems similar to those of a monolithic
register file. In the absence of known memory latency and hardware write interlocks,

WAW hazards can occur even within a single cluster of the MAP chip.

The second condition requires additional hardware, a queue, and represents a dif-
ferent organization of the processor. The finite nature of the queue can result in
hardware deadlock. In addition, support for the queue can increase compiler com-

plexity as queue write order could be critical.

1.4 A New Way of Organizing a Processor

The Multi-Alu Processor (MAP), the processor for the MIT M-Machine, uses sev-
eral mechanisms to improve processor throughput relative to a super-scalar or VLIW
architecture. These mechanisms include loosely-coupled clusters of processors, and
hardware multithreading. The MAP clusters are each similar to a super-scalar proces-
sor, containing integer, memory, and floating-point functional units with a common
register file. All of the clusters within a single MAP have the ability to write the
register files associated with all other clusters. Figure 1.3 shows the aspects of the

MAP architecture that are relevant to this thesis.

The MAP processor is a prototype of future systems that will contain multiple
ALUs and disjoint register files. Unlike VLIWs, the MAP cannot be completely
statically scheduled, as the different clusters are allowed to issue instructions inde-
pendently and memory latencies are variable due to the cache and virtual memory
system. The MAP has nine functional units, three each of floating-point, integer,
and address, which are organized into three clusters, each of which contains integer,
memory, and floating-point units, as well as an integer and a floating point register

file. The clusters communicate and synchronize through registers, as a portion of

13

Cluster 0 Cluster 1 Cluster 2

Integer -~ Floating-Point
Register File Register File

integer ALU

Memory Unit

Figure 1.3: Abstract View of The MAP Processor. The MAP Processor has three clusters
each of which contains an integer ALU, double-precision floating-point unit, and a memory unit, as
well as integer and floating-point register files. Data can be transferred register-to-register across
the Cluster Switch (C-Switch). The arrows indicate read and write ports, each of which is capable
of carrying one machine word in the indicated direction each clock cycle.

each cluster’s register file may be written by other clusters.

Register synchronization is performed using a scoreboard and hardware RAW haz-
ard detection. When an instruction issues, its destination register (if the destination
is in the same cluster in which the instruction issues) is marked empty. When the
instruction completes, its destination register is marked full. The complication occurs
when an instruction from one cluster targets the register file of a remote cluster. In
this case the register is not marked empty as the hardware required to do this is
prohibitively expensive. Instead the receiver is required to execute an EMPTY instruc-
tion in order to mark the register empty prior to receiving the data. This allows
RAW hazards to be eliminated even for remote register writes. The register score-
board prevents RAW hazards and in-order instruction issue prevents WAR hazards;

no hardware is provided to detect WAW hazards.

Further compiler work is required to take advantage of the loosely coupled pro-

14
cessor clusters and low interaction latency of the MAP chip. Non-determinism in
execution timing requires that the compiler choreograph synchronization and com-
munication between clusters. The current approach being explored for this work is
scheduling the code within the compiler as if it were a VLIW with all units run-
ning in lockstep, and inserting code to synchronize clusters whenever an inter-cluster
write is required. A variety of other schemes are also under consideration, including
treating each cluster as an independent processor, and using inter-cluster writes as
a very efficient form of inter-processor communication. Any technique that is used
will require inserting code to synchronize two clusters prior to transferring data be-
tween them. Trivial extension of SRS will allow it to be used in the choreography
between the clusters. Prior to permitting an inter-cluster register write, the compiler
can determine the state of the register to be written using the software scoreboarding
described here. If the local register to be written by the remote cluster is not full, the
instruction notifying the remote cluster can be delayed by inserting a register barrier
on the local cluster. This prevents the remote cluster from writing the local register

until it is safe from WAW hazards.

1.5 Related Work

The work presented in this thesis is most closely related to previous work in the
fields of register allocation, and instruction-level parallelism (ILP). Previous work in
computer architecture for ILP was presented in Sections 1.1 and 1.3. This sec-
tion presents some of the background material in register allocation, and in compiler
support for ILP.

The standard technique for performing register allocation is register coloring. This
was originally presented by Chaitin [9, 8]. In the last decade there has been a signifi-

cant number of publications seeking to improve upon this technique (2, 4, 11, 7, 5, 3].

15
This is still an area of active research. Recent research has focused on developing tech-
niques to refine graph coloring to reduce the number of spills that are inserted into
code. Most recently, work [6, 24] has focused on using different heuristics to decrease
the amount of spilling that is performed. One of the fundamental assumptions of
register coloring is that instructions will not be reordered once register assignments
have been made. The instruction scheduling performed by the Multiflow compiler

renders this technique unusable [23].

Compiler techniques for eliminating both RAW and WAW hazards have been pro-
posed and implemented. Significant work on static scheduling for instruction-level
parallelism, particularly in scheduling beyond basic block boundaries, was performed
at Yale University [17], and was implemented in the Trace [12] family of VLIW
computers produced by Multiflow. The Multiflow machine had up to 28 execution
units and a register file partitioned across the units. The entire machine executed
in lockstep with fully predictable latencies. The linchpin of this technology was the
compiler [37] which statically scheduled long traces of code for instruction level par-
allelism. The compiler performed memory bank disambiguation to prevent multiple
references to the same bank of memory in a given cycle, and there was no data cache.
As all latencies could be statically determined and no out of order execution was
allowed, all RAW and WAW hazards were eliminated by the compiler, and without
complex hardware. Further details about the Multiflow compiler and trace-scheduling

are presented in Section 1.6.

1.5.1 Instruction Scheduling for ILP

There have been a variety of techniques proposed for increasing the amount of ILP
available to the scheduling phase of a compiler. There are two classes of these tech-

niques. One group focuses on scheduling beyond the boundaries of a basic block.

16

The other group works on loop transformations to increase parallelism within a basic

block.

Trace-scheduling [17, 37] is covered in detail in Section 1.6. In summary, this
algorithm uses heuristics to predict which direction conditional branches will go at
runtime. This information is used to coalesce basic blocks into a single unit for
scheduling called a trace. This algorithm performs similar code motion to that used
for reordering instructions within a basic block to increase ILP, but allows code to
move past conditional branches under some circumstances. The conditions under

which such code motion is allowed are expanded upon in Trace Scheduling-2 [21].

Superblocks [33] are a variation on traces. The key difference is that a superblock
only has one entrance point at the top, whereas a trace can also have entrance points
into the middle. A hyperblock [38] is similar to a superblock, but contains predicated
instructions. That is, a hyperblock may contain code from mutually exclusive basic
blocks, with predicates on the execution of some instructions controlling whether or
not they are executed. The target machine for such a construct supports predicated

instructions in hardware.

There have been a variety of compile-time techniques used for increasing the
amount of available ILP within a loop. In particular, software pipelining [36] ex-
poses parallelism by overlapping instructions from different loop iterations without
violating loop-carried data dependencies. Similarly, loop unrolling, duplicates the
code within a loop which has the same overlapping benefits of software pipelining,

and also reduces the number of conditional branches taken during loop execution.

Branch prediction can also be very powerful for increasing ILP. The compiler
statically predicts which way a branch will go at run time, and schedules the code
using that assumption. This can result in an increase in code size if an alternative

piece of code is generated for when the branch takes the other direction. Some of

17
this code bloat can be reduced if the target architecture has predicated operations.
There has also been work done on the feasibility of performing compiler-time branch

prediction based on information gathered during previous runs of the program [22].

Another important area of research relating to compiler scheduling for parallelism
is that of inter-procedural analysis. Traditionally compilers, including the Multiflow
compiler, have restricted their data analysis to within individual procedures. Recently
work has been conducted into the possibility of extending traditional analyses across
procedural boundaries [61, 29, 28]. This work has the possibility of increasing the

amount of ILP made available to the scheduling phase of a compiler.

1.6 The Trace Scheduling Algorithm

The motivation for trace scheduling is found in the problem of compiling for ILP.
In general, it is difficult for a compiler to locate enough parallelism within a basic
block to sustain utilization of multiple functional units. A compiler using the trace-
scheduling algorithm seeks to overcome this obstacle by performing scheduling on a
larger unit than a basic block. This larger unit is called a trace. A trace is allowed to
span multiple basic blocks, and may contain conditional branches within it. Traces
are not allowed to contain loop back edges. One important difference between a basic

block and a trace is that a trace is allowed to have multiple exit and entry points.

Figure 1.4 shows the steps performed by a traditional basic-block compiler.
Within such a compiler the ordering in which blocks are scheduled is based on their
position within the control-flow graph. This graph is traversed in some ordering,
generally breadth- or depth- first. In contrast, trace-scheduling uses heuristics to
predict which paths through the control-flow graph are most likely to be followed,
and assembles these basic blocks into a trace to be scheduled as a unit. Figure 1.5

shows the selection of a trace from a control flow graph. The goal of the trace-picking

18

Figure 1.4: Operation of a Basic Block Compiler. A traditional compiler iterates over basic
blocks in the program graph. For each block it first allocates registers, and then schedules operations
onto the functional units of the target machine. When it has scheduled all of the basic blocks, it

terminates.

19

Figure 1.3: Division of a Program into Basic Blocks and Traces. The Trace-picking
heuristics predicts which direction the branch ending a basic block is most likely to go. The code
most likely to be executed is added to the trace containing the branch. For loops, the heuristics
assume that the loop body is more likely to be executed than the loop exit code.

20
heuristics is to identify the performance critical portions of the code first, so that
they are not bound by resource constraints imposed by less important portions of
the program. In particular, the trace-picking heuristics are intended to favor code

composing inner loops of scientific computations. The general flow of operations

Figure 1.6: Operation of the Multiflow Compiler. The Multiflow compiler picks traces out
of the program graph, and performs a single scheduling step which performs both register allocation
and functional unit assignment at the same time. When the entire program has been scheduled, the
compiler terminates.

within the Multiflow compiler is shown in Figure 1.6.

This compilation strategy involves significant departures from traditional compil-

ers. These include performing register allocation and instruction scheduling as part

21
of the same compilation phase; reordering instructions to shorten a schedule; and du-
plicating instructions at trace split and join points. One of the most obvious of these
departures is the division of the program into traces described above. The following

sections provide details of some of the other interesting aspects of trace-scheduling.

1.6.1 The Phase Ordering Problem

In a traditional basic block compiler there are usually independent scheduling phases
for register allocation, and instruction scheduling. The separation of these two pro-
cesses creates a phase ordering problem [23]. If register allocation is performed first,
dependencies on register usage which are unrelated to program data dependencies
can be introduced into the schedule. If instruction scheduling is performed first, it
can be impossible to perform register allocation for the resultant schedule. To com-
pensate for these problems, it is necessary to insert spills and restores after much of
the scheduling information has been destroyed. In general, traditional compilers will

perform register allocation first, as this results in less inefficiency.

The Multiflow compiler uses a different approach. Register allocation and in-
struction scheduling are performed as part of the same phase. The emphasis on this
process is that priority for registers should go to the instructions that are going to
be issued most frequently. One of the ramifications of this decision is that register
coloring [9, 8] can not be used during trace-scheduling. One of the assumptions of
register coloring is that instructions will not move relative to each other. As described
in Section 1.6.2 the reordering of instructions is important to the efficiency of the code

generated by the Multiflow compiler.

The key idea used for register allocation in the Multiflow compiler is delayed

binding. Values are not assigned to registers until they are actually referenced. When

22
the first trace in the program is selected it has no constraints on register usage. Recall
that the trace-picking heuristics are intended to select the performance-critical inner
loops of scientific computations to be scheduled prior to any other portions of the
code. If the target machine has sufficient registers, the inner loops will be executed
with no spilling or extraneous copies. Any necessary spills are pushed out of the

critical path of the program.

This mechanism functions by attaching information about bindings between vari-

ables and registers to scheduled traces. This process is called bookkeeping within

Figure 1.7: Encapsulation of Delayed-Binding Information. Once a trace has been sched-
uled, variable binding information is inserted into the program control-flow graph. A USE node
indicates where this trace assumes that variables are upon entry. A DEF node indicates where
variables are left upon exit.

the Multiflow compiler literature [17, 37]. This information is in the form of special
nodes inserted into the control-flow graph. These nodes are inserted in between a

piece of code which has just been scheduled, and any unscheduled code. USE nodes

23
are placed at join edges, and contain information as to where the scheduled code
assumed variables to be located. When the adjoining unscheduled code is scheduled,
it must ensure that these variables are left in the proper place. DEF nodes are placed
at split edges, and contain information as to where the scheduled code has left vari-
ables. When the adjoining unscheduled code is scheduled, it must use these nodes
to determine the initial location of the variables. This is shown in Figure 1.7. Until
a variable is actually referenced, the location it is bound to is a temporary. Section

1.6.3 contains further discussion of split and join edges.

The generic name for these nodes is a Value-Location Mapping (VLM) [23]. When
a trace is scheduled it has to reconcile the information in its entry and exit VLMs.
If it is not possible to maintain a desired register binding throughout an entire trace,
and no other registers are available for temporary storage, the variable in question

must be spilled to and restored from memory.

1.6.2 Instruction Reordering

Instruction reordering is another technique that increases the amount of available ILP
in code output by a compiler. The idea behind this reordering is that the sequential
ordering of instructions within a program does not necessarily represent the data
dependencies of instructions. If two operations do not share any data dependencies,
then their execution order can be reversed without affecting the correctness of the
program. Some instructions can be moved past conditional branches. When this
occurs, it is sometimes necessary to insert compensation code to ensure that all of the
required instructions are executed whichever way the conditional branches go. This
section deals with code motion that does not require compensation code. Section

1.6.3 describes compensation code, and the circumstances under which it is required.

24
The data dependencies between instructions are represented as edges in the DAG
of a trace. An instruction is unavailable for scheduling until all instructions on which
it depends have been scheduled. Once all of these constraining operations have been
scheduled, the instruction is data ready. Any ordering in which data readyinstructions
are scheduled should be safe, as these instructions are guaranteed to not have any
true data dependencies. It is still necessary to ensure that no false data dependencies

are introduced through register reuse. Figure 1.8 shows an example of legal code

Source Code

Sequential Schedule Reordered Schedule

Figure 1.8: Code Motion to Increase ILP. If this code is scheduled based purely on the
order in which operations occur in the source program, four cycles are needed to issue all of the
instructions. Since there would certainly be a floating-point pipeline stall between the first and
second instruction, this would take several additional cycles to complete. If the code is reordered,
1t is possible to increase the distance between the two floating point operations, thereby decreasing
the duration of the pipeline stall. Also, the reordered schedule requires one fewer cycle to issue.

motion.

It is legal to move an instruction above a split if the result of the split is not to
memory, and is not live on the off-trace edge. That is, if the result of the operation

might be accessed if the branch goes opposite to the predicted direction, it cannot

25
legally be moved. This code motion requires that the hardware be capable of delaying
or suppressing the exceptions that might result from issuing an instruction out of
order. For example, moving a division above the safety check ensuring that the

divisor is not zero can cause a divide-by-zero exception.

This processing is similar to the scheduling performed by a compiler for a pipelined
machine in order to minimize pipeline stalls [53, 25, 31]. The ability to schedule across
basic block boundaries significantly expands the possibilities for such code motion.
For a pipelined machine, the emphasis is on trying to fill all of the issue slots between
the start of an instruction, and the clock cycle when it is legal to access the result
of the instruction. For superscalar and VLIW machines, there is the added goal
of increasing the available ILP in the program to take advantage of the available

functional units.

1.6.3 Management of Splits and Joins

When managing conditional branches, special handling is necessary to ensure that any
instructions that have been moved beyond a branch are executed on all appropriate
paths through the program; and that the machine resource restrictions are adhered
to whichever direction of the branch is taken. The Multiflow compiler models these
changes in control flow as splits and joins. Within the program graph, these tran-
sitions are modeled as edges which can contain instructions, and information about
both machine state and the binding of variables to registers. The instructions within
such an edge are compensation code required to maintain program correctness. The
information about machine state is contained within partial schedules. Section 1.6.1
describes the management of variable-register bindings. Section 1.6.2 describes code
motion beyond splits and joins that do not require compensation code. This section

discusses compensation code and partial schedules.

26

Compensation Code

When an instruction is moved below a split or above a join, it is necessary to insert
compensation code to ensure correctness of the compiled code. An example of the

insertion of compensation code is shown in Figure 1.9. Any instruction that has

Original Trace Schedule Original Trace Schedule

(a) (b)

Figure 1.9: Code Motion Below Splits and Above Joins. (a) The original trace contains
a split after instruction C. When the trace is scheduled, A is moved below the split. A copy of A,
denoted 4, is added as compensation code on the outgoing edge. (b) The original trace contains
a join before instruction A. When the trace is scheduled, both B and € are moved above the join.
Copies of B and C, denoted B’ and C’, are added to the incoming edge as compensation code.

moved beyond a branch will have to occur in at least two places in the generated
code. This duplication of instructions can lead to code explosion. The Multiflow
compiler contains safety mechanisms to restrict this code duplication. In particular,
if a program is deemed to have grown too large, all further code motion which would
require compensation code is forbidden. A-s this prohibition is unlikely to be invoked
until after the traces most likely to be frequently executed have been scheduled, it

should have little effect on the overall efficiency of the generated program.

Instructions that occur before a join point can tie up hardware resources. If one
instruction is followed by stall cycles inserted into the schedule, and a join is allowed
to happen once this instruction has issued, it is more efficient to wait until the stalls

have happened as well. This is shown in Figure 1.10.

27

Original Trace Schedule

Possible
Join

Actual
Join

Figure 1.10: Selection of Join Point to Minimize Hardware Delay. The original trace
contains a join after instruction A. When A is scheduled, it is followed by three hardware stall cycles.
While the join could happen during the first of these stalls, it is more efficient to delay the join until
just after the last stall.

In order to balance the possible delays due to hardware constraints with the
amount of compensation code that is generated, the compiler selects the cycle at
which a join occurs. Joining as early as possible minimizes compensation code, but

can result in delays.

Partial Schedules

When transition between traces occur, it is possible that pipelines or other machine
resources might be in use within an already scheduled trace. It is necessary to ensure
proper modeling of this hardware resource usage. If there is a hardware resource
such as a floating-point divide unit which can accept a new instruction once every
five cycles, and an instruction using this resource is issued three cycles before a split
point, this resource usage must be modeled to prevent a conflict when an adjacent
trace is joined. This is represented as a partial schedule. The usage of the resource is
copied onto the edge, but the instruction that requires the usage is not. This is shown
in Figure 1.11. The resource information is added on to the top of the trace being
joined. The scheduler ensures that this resource is not over-subscribed. An example

of the importance of partial schedules can be found in Section 4.1.

28

Original Trace Schedule Joined Trace Schedule

Figure 1.11: Resource Usage Represented as a Partial Schedule. Instruction F is a floating-
point instruction that ties up some hardware resource for five cycles. If a split occurs before those
five cycles are up, the resource usage information must be copied onto the off-trace edge. When
the trace being joined by this partial schedule is scheduled, both the compensation code and partial
schedule information are incorporated into the trace. During scheduling, operations from lower down
in the trace are allowed to move up and overlap with the resource usage information as long as they
don’t need the busy resource.

A busy resource does not consume an instruction issue slot. A machine could have
one floating-point issue slot every cycle; and floating-point divide and add could use
different hardware resources. The busy status of the divide unit would not prevent

adds from being issued.

1.7 Overview of the Dissertation

The current trend in high-performance microprocessors is towards improving perfor-
mance by increasing the number of functional units on a single chip. These chips
apply complex hardware solutions to the problem of register synchronization. The
register file size, and accompanying wire lengths and delays, significantly increases as
the number of functional units go up. The most obvious solution to this problem,
partitioning the register file, rules out hardware implementations of existing register

synchronization schemes. The delays incurred by the monolithic register file are still

29
present in the synchronization scheme for a partitioned register file. The limiting
effect on processor clock speed caused by the delays entailed in a large number of
functional units dictate that register files be partitioned, but the partitioned register

file system requires a new approach to register synchronization.

This dissertation presents a novel compiler-based approach to this problem. This
solution, the Software Register Synchronization (SRS) algorithm, is a synthesis of a
known hardware technique, register scoreboarding, with an existing compiler schedul-
ing algorithm, trace scheduling. The SRS algorithm relies on the existence of a local
scoreboard at each register file which enforces a pipeline interlock when attempting
to read a register which is marked as empty. This operation can be managed using
purely local information. The Multiflow trace-scheduling compiler provides the ability
to make decisions about register selection at the same time as functional unit selec-
tion. This allows the SRS algorithm to bias register use away from empty registers,
as well as ensuring that local synchronization is performed on any potentially empty
register prior to overwriting the register. The trace scheduler also provides a frame-
work for propagating information between traces at compile time. This framework is
utilized to propagate register state information across trace boundaries. Finally, the
Multiflow compiler provides static scheduling and instruction reordering to increase

the amount of available Instruction-Level Parallelism (ILP) in a program.

1.8 Contributions of this Dissertation

This dissertation makes the following contributions:

e It identifies register size expansion as a limiting factor on degree of ILP in pro-
cessors, proposes partitioning of register files to circumvent this limitation, and

30

describes the problems in implementing traditional hardware register synchro-
nization techniques in the presence of a partitioned register file.

e It proposes and demonstrates the correctness of a compiler algorithm, Software
Register Synchronization (SRS) to manage register synchronization in both con-
ventional super-scalar designs, and super-scalar designs with partitioned register

files.

e It evaluates the performance characteristics of code compiled using the algo-
rithm, and evaluates the M-Machine architecture as a compiler target.

1.9 Organization of the Dissertation

Chapter 2 describes a compiler algorithm for managing register synchronization within
a system with a monolithic register file. This includes a description of the register
synchronization problem, and a demonstration of the correctness of the algorithm.
Chapter 3 extends the algorithm to function within a trace-scheduling compiler. This
description includes details of the implementation of this algorithm within the Mul-
tiflow compiler, and necessary changes to the demonstration of correctness. Chapter
4 extends the algorithm to a multi-cluster environment. This includes the addi-
tional implementation notes, as well as changes to the demonstration of correctness.
Chapter 5 describes some implementation details of the retargeting of the Multiflow
Compiler to the M-Machine, accompanied by a critique of the M-Machine instruction
set architecture. Chapter 6 provides experimental results. These results include an
evaluation of the single cluster algorithm relative to hardware solutions for register
synchronization. Chapter 7 proposes future directions for this work, and presents

conclusions.

31

Chapter 2 Register Synchronization for a

Monolithic Register File

This chapter reformulates the issue of register synchronization, and presents a com-
piler algorithm for ensuring correct execution of compiled code on a processor with
a monolithic register file. The original version of the algorithm is for a traditional
basic-block compiler targeted for a single-cluster of the MAP. Following chapters will
introduce additional constraints, and discuss the changes necessary to the algorithm
to manage these additional issues. For the purposes of this discussion, the target
architecture is defined as only enforcing register synchronization on reads. A demon-

stration of the correctness of the algorithm is presented.

Existing processors demonstrate that register synchronization is readily manage-
able for a monolithic register file using either register scoreboarding [59], or register
renaming [60]. The algorithm is presented in this form to provide a base case of

compatibility with existing techniques.

The set of possible machine operations can be divided into three categories based
on their handling of register synchronization state. READ operations are the only

operations that perform synchronization.

e LOAD places a value into a destination register. LOADs can complete asyn-
chronously. When a LOAD is initiated a synchronization flag associated with
the destination register is set. This flag is cleared when the LOAD completes.

e READ takes a value from a source register and uses it to perform some oper-
ation (such as add, subtract, compare, etc.). READS will not begin until the

32

synchronization flag on the source register is cleared.

e WRITE places a value into a destination register. WRITES will complete even if the
synchronization flag on the destination register was set when they started. After
a WRITE has completed, the synchronization flag on the destination register is

always cleared.

2.1 Example 1: Delayed Loads

Figure 2.1 demonstrates the need for register synchronization: as WRITEs do not

respect the state of their destination registers, out-of-order instruction completion

can result in incorrect program execution. The value *p is LOADED into r1. If ¢ = 0,

the program will stall until the LOAD completes, and then READ r/ and add it to r2. If

g # 0, r1 could be WRITTEN before the LOAD completes. Figure 2.2 shows a worst-case

timing sequence. In this case, the test fails, and #I is WRITTEN to rI. Prior to the

return, the LOAD completes, placing *p in r1. The incorrect result is returned to the

caller.

a = *p; LOAD
EQUAL
BF
ADD
JMP
else L1:
: MOVE
L2:
RETURN

return a;

p, rl ; LOAD from location p into rl
q, 0, cc0 ; Check (q == 0)

cc0, L1 ; If false, branch to L1

r2, rl, r2 ;Add rl tor2

L2

#1, rl ; WRITE rl

rl

Figure 2.1: Delayed Load. This shows the source code and assembly language for a code
fragment containing a WAW hazard. If the FALSE direction of the branch is taken, there would be

two consecutive writes to the same register.

33

Figure 2.2: Worst-case Timing for Delayed Load. This diagram shows the timing of op-
erations for the Delayed Load example that would generate the incorrect answer. In between the
initiation and completion of the LOAD operation which uses rl as its target, the number 1 is written
into the rl. At the end of this execution rl is supposed to contain 1, but contains instead *p.

2.2 Example 2: Multiple Loads

Figure 2.3 shows a second situation in which register synchronization is necessary:
Two consecutive LOADs to the same register can complete in the wrong order, leaving
the incorrect value in the register. The value *p is LOADED into r1. If ¢ = 0, the value
b is LOADED into r!. This creates a race condition to determine the contents of r1.
Figure 2.4 shows a worst-case timing sequence. In this case in between *p is LOADED
into rl. As ¢ = 0, b is LOADED into r1. The LOAD of b completes immediately. Then

the LOAD of *p completes. The incorrect result is returned to the caller.

34

a = *p; LOAD p, rl ; LOAD from location p into rl
if(q == 0) EQUAL q, 0, cc0 ; Check (q == 0)
BF cc0, L1 ; If false, branch to L1
a = *b; LOAD b,rl
L1:
a=a-+c ADD rl,r4r4 ; READ rl, r4; WRITE r4
return a; RETURN r4

Figure 2.3: Multiple Loads. This program contains the source code and assembly language for
a more subtle register synchronization problem. If the first load results in a remote memory access,
and the second load hits in the cache, the second load could complete first, yielding the incorrect
answer.

Figure 2.4: Worst-case Timing for Multiple Loads. This diagram shows the timing of
operations for the Multiple Loads example that would generate the incorrect answer. The first LOAD
misses in the primary cache, and takes several cycles to complete. The second LOAD hits in the
primary cache, and completes immediately. The target register, r1, which is supposed to contain *b,
ends up containing *p

35
2.3 Development of Register Synchronization Def-

immition

This section further refines the specification of the register synchronization algorithm.

An initial statement of the specification is:

Guarantee that no WRITE or LOAD has as its destination a register whose
synchronization flag is set.

This can be achieved within a basic block using a single forward pass over the
block, inserting correction code when a problematic instruction is encountered. To
achieve correctness READS can be inserted to force synchronization. Complications
arise when dealing with transitions between basic blocks, as this requires propagating

state information across block boundaries.

To preserve generality, the scheduling of basic blocks is assumed to have no fixed
ordering. This is illustrated in Figure 2.5, which shows four basic blocks. T'wo of these
basic blocks have already been scheduled; two of the blocks are as yet unscheduled.
One of the unscheduled blocks has been selected to be scheduled. There are operations
in both the preceding and succeeding scheduled block which might require action
within the current block. If the first instruction in the selected block is WRITE R4, it
is necessary to first insert a READ R4. If the last instruction is a LOAD R3, the READ

R3 in the predecessor makes this a safe operation to perform.

36

= Scheduled

= Unscheduled

= Selected

Figure 2.5: Adjacent Block Scheduling. During code scheduling, traces are not processed in
any fixed ordering. When scheduling a given trace, there could be both predecessors and successors
containing operations that can affect the current trace. This diagram shows a portion of a program
graph. The trace that has just been selected for scheduling inherits two registers from a scheduled
predecessor that are PENDING as they are the targets of LOAD operations within that predecessor;
but sees two registers that are GROUNDED by READ operations in a scheduled successor.

37

The problem of ensuring program correctness can be specified as:

Obtain register state information from scheduled predecessors. Gener-
ate a schedule for the current block, inserting synchronizing READS where
required. Examine scheduled successors, insert any READS required for
transition from current block into scheduled blocks. Ensure that state
information made available to all predecessors and successors is correct.

2.4 Overview of Solution

There are three parts to the solution of this problem: scheduling the code for a ba-
sic block; maintaining state information to be propagated to unscheduled adjoining
blocks; and obtaining state information from scheduled adjoining blocks. The pro-
cessing can be divided into three phases: entering a basic block, processing a basic

block, and leaving a basic block.

There are three possible states for a given register. The state of a register can be
propagated downward from a scheduled predecessor, established in the current block,

or upwardly-exposed from a scheduled successor. The three states are:

e PENDING. The synchronization bit for the register is set; or the exposed reference
to this register is a LOAD.

e FULL. The synchronization bit for the register is cleared. There either is no
exposed reference, or the exposed reference is a WRITE.

e GROUNDED. There is an upwardly exposed READ of this register.

2.4.1 Entering a Basic Block

Upon entry to a basic block it is assumed that all registers are FULL. All predecessor

blocks are examined. The final register states from any scheduled predecessors are

38
combined. If a register is PENDING in any scheduled predecessor, it must be treated as
if it is PENDING in all scheduled predecessors. As GROUNDED applies only to upwardly-

exposed state it is not relevant here.

2.4.2 Processing a Basic Block

For each instruction within a basic block, several stages of processing are performed.
All instruction source operands that are in registers are identified, and those registers
are marked FULL. The state of the destination register, if any, is checked. If the
destination register is PENDING, a READ on the destination register is inserted prior
to the current instruction. If the instruction is a WRITE the destination register is

marked FULL. If the instruction is a LOAD the destination register is marked PENDING.

2.4.3 Leaving a Basic Block

The final register states from the current block must be consistent with the first usage
in any scheduled successors. Within the current block, each register is identified as
either PENDING or FULL. If a register is FULL on exit from the current block, than any
initial operation using that register in the next block is legal. If a register is PENDING,
the only initial operation that is legal is a READ. If the upwards-exposed reference to
a register is a READ, the register state is GROUNDED. If the STATE for a register in all
scheduled successors is GROUNDED, than the register can be PENDING on exit from the
current block. Otherwise, it is necessary to GROUND the register by performing a READ
on it prior to exiting the current block. The full set of state transitions is shown in

Figure 2.6.

39

e
Frrguwenat®

HEBERE WS ¥ RN

READ

WRITE
LOAD
Figure 2.6: State Transition Diagram. There are three states which a register can be in.
There are three types of instructions that can alter a register’s state. This state transition diagram

represents the register states as nodes, and the instruction types as edges. The two edges which
require the insertion of a synchronizing READ to preserve program correctness are so designated.

40
2.5 Algorithm

Recall that the specification being implemented is:

Obtain register state information from scheduled predecessors. Gener-
ate a schedule for the current block, inserting synchronizing READS where
required. Examine scheduled successors, insert any READS required for
transition from current block into scheduled blocks. Ensure that state
information made available to all predecessors and successors is correct.

As described in Section 2.4 registers can be in one of three states: PENDING
registers have their synchronization bit set; FULL registers had their synchronization
bit cleared by a WRITE; GROUNDED registers had their synchronization bit cleared by a
READ. The GROUNDED state is only relevant for managing transitions from a block to

a scheduled successor. Within a block GROUNDED is identical to FULL.

READ

WRITE
== we w LOAD

Figure 2.7: State Transitions for Single-Instruction Scheduling. While working within a
basic block, only two register states need be considered. The third state, GROUNDED is only relevant
while reconciling the current block with upwardly-exposed references in a scheduled successor.

Within a basic block register synchronization states are represented as a set,

PENDING, of registers with their synchronization bit set. The possible state tran-

41
sitions for each register referenced in an instruction are shown in Figure 2.7. For any
given register, if the register is not in PENDING initially, any operation can be per-
formed without special handling. If the performed operation is a LOAD, the register is
placed in PENDING. If the register is initially in PENDING, the only operation which can
be performed without special handling is a synchronizing READ. Prior to issuing any
other instruction a READ must be inserted to ensure that the register is FULL before it
is overwritten. If either a READ or a WRITE is performed, the register is removed from

the set PENDING.

Register synchronization information is propagated between basic blocks in two
different forms. Information from a scheduled predecessor is in the set PENDING
described above. Information from a scheduled successor is in a set STATE which
encodes information about the first usage of each register. The possible values for a
register in STATE are FULL, PENDING and GROUNDED depending on the first reference

to the register in the scheduled successor.

The general outline of the algorithm is shown in Figure 2.8. Iterating until all
basic blocks have been scheduled, select a basic block. The routine SelectBlock()
chooses the next block to be scheduled. All that is specified about SelectBlock()
is that it will select an unscheduled block. Calculate the initial value for PENDING,
for the selected block. Schedule the instructions within this basic block. Calculate
STATE; for this block. This is derived from STATES for all scheduled successors of the
current block. For any register which was not referenced in this block, set STATE(r)
for that register to STATE;(r). Generate any compensation code needed to reconcile

PENDING, with STATE;.

Figure 2.9 shows the algorithm for scheduling a basic block. Iterating over all
instructions within the basic block, ensure that all operations are scheduled and all

necessary READS are inserted. Determine the value of STATE,(r) for all registers refer-

42

while (not all blocks scheduled)

b = SelectBlock();
PENDING, = 0;
for all predecessors p of b

if (predecessor p scheduled)

PENDING, = PENDING, U PENDING,;

for all registers r

STATEp(r) = NULL

Schedule(d);
STATE; = JoinSuccessorStates());

for all registers r
if (r € PENDING, AND (STATE;(r) # GROUNDED)
issue read of r
remove r from PENDING,
if (STATE,(r) = NULL)
STATE,(r) = GROUNDED;
if (STATE,(r) = NULL)
STATEp(r) = STATE:(r);
Mark b as scheduled

Figure 2.8: General Outline of Algorithm.

43

enced in the block, and maintain the membership information for the set PENDING,.

The routine JoinSuccessorStates() is shown in Figure 2.10. This routine

examines STATE; for all scheduled successors, and merges them into one STATE;.

2.6 Correctness of the Algorithm

This section demonstrates that the algorithm presented in the previous section will
guarantee that the synchronization state of a register is always cleared before an
operation using that register as its destination is issued. This is shown by providing
more formal definitions for the concepts discussed in previous sections, describing

invariants for the algorithm, and then providing a demonstration of correctness.

2.6.1 Basic Definitions
This following provides more formal definitions for many of the concepts introduced
in the previous several sections.

B is the complete set of basic blocks in a program.

R is the complete set of available machine registers.

SCHEDULED(b) = TRUE if code has been generated for block b.

FIRST(b,r), b € B,r € R, is the first operation in a block b that references r as

source and/or destination. FIRST(b,r) is one of READ, WRITE, LOAD.

LAST(b,r), b € B,r € R, is the last operation in a block b that references r as

source and for destination. LAST(b,r) is one of READ, WRITE, LOAD.

SOURCE(OP(b,7)) = TRUE if r is a source for OP(r) in b.

44

for each operation O {
switch(instruction type of O) {
case READ:
if STATEy(source(O)) = NULL
STATEy(source(O)) = GROUNDED
if STATE(target(O)) = NULL
STATEy(target(0)) = FULL
if source(O) € PENDING,
remove source(O) from PENDING,
break;

case WRITE:
if target(O) € PENDING, {
issue READ of target(O)
remove target(O) from PENDING,

if STATE, (target(O)) = NULL
STATEy(target(0)) = FULL
break;

case LOAD:
if target(O) € PENDING, {
issue READ of target(O)
if STATEy(target(O)) = NULL
STATEs(target(0)) = GROUNDED
}
else {
add target(O) to PENDING,
if STATE,(target(O)) = NULL
STATEy(target(O)) = PENDING

}
break;

issue O

Figure 2.9: Scheduling Algorithm for a Basic Block.

45

for all registers r
STATE;(r) = GROUNDED;
for all scheduled successors s of b
for all registers r
if (STATE;(r) = PENDING V STATE,(r) = PENDING)
STATEI(T) = PENDING;
else if (STATE;(r) = FULL V STATE,(r) == FULL)
STATE;(r) = FULL;
return STATE;;

Figure 2.10: Algorithm for Merging STATE from Scheduled Successors.

OP € {FIRST,LAST},r € R,be B.

DESTINATION(OP(b,7)) = TRUE if r is a destination for OP(r) in b.
OP € {FIRST,LAST},r € R,b € B.

SUCCESSOR(b,s) = TRUE if b,s € B A s is a successor of b.
PREDECESSOR(b,p) = TRUE if b,p € B A p is a predecessor of b.

Processing of each instruction involves two distinct phases. First, all of the regis-
ters which are used as sources for the instruction are processed as having been READ.
Next, the destination register is processed as being either WRITTEN or LOADED depend-
ing on the instruction. If the destination is PENDING after the first phase of processing,

a synchronizing READ must be inserted before this instruction is scheduled.

2.6.2 Definitions for Transitional Information

These definitions can be used to define rules to determine the contents of the sets
STATE, and PENDING;. Recall that STATE, is the register synchronization information

upwardly exposed from a scheduled successor of the current block. If the first reference

46

to a register performs a READ on the register, then STATE(r) for that register is

GROUNDED:
SOURCE(FIRST(b,7)) = TRUE — STATE,(r) = GROUNDED

If the first reference to a register is as destination, the operation could be either a
WRITE or a LOAD. If it is a WRITE, then STATEy(r) is FULL, if it is a LOAD, then STATE(r)

is PENDING:
SOURCE(FIRST(b,7)) = FALSE A FIRST(b,r) = WRITE — STATE,(r) = FULL
SOURCE(FIRST(b,r)) = FALSE A FIRST(b,r) = LOAD — STATE(r) = PENDING

It is possible to combine the STATE, for all scheduled successors of a block once
some rules of precedence are defined. If STATE,(r) = PENDING for any successor,
STATE;(r) = PENDING. If STATE,(r) # PENDING for all successors, but STATE(r) =
FULL for any successor, STATE;(r) = FULL. Otherwise, STATE,(r) = GROUNDED for all
successors, and STATE;(r) = GROUNDED. Using this definition of N, it is possible to

define:

STATE; = {N; STATE,, |s; € B A SCHEDULED(s;) = TRUE
A SUCCESSOR(b, 5;) = TRUE

There are two rules needed for determining the contents of PENDING,. If the last
reference to a register uses the register as destination, and the operation is a LOAD,
then PENDING(r) for that register is TRUE. In all other cases, PENDINGy(r) for that

register is FALSE:

DESTINATION(LAST(b,7)) = TRUE A LAST(b,r) = LOAD
— PENDINGy(r) = TRUE

DESTINATION(LAST(b,r)) = FALSEV LAST(b,r) # LOAD
— PENDINGy(r) = FALSE

47
For a given block, the initial contents of PENDING, is the union of the sets PENDING,
from all of the scheduled predecessors of the block b. For this union operation, a
register is considered to be in PENDING,, iff PENDING,(r) = TRUE for any scheduled

predecessor p. This leads to the definition:

PENDING, = {U; PENDING,, |p; € B ASCHEDULED(p;) = TRUE
A PREDECESSOR(b, p;) = TRUE}

2.6.3 Invariants, Preconditions and Postcondition

The preconditions for the algorithm are:

e B contains all of the basic blocks for a procedure.

o The graph containing B is properly organized to represent the relationships
between all blocks and their predecessors/successors

Each b € B contains a set of operations {O|O € {READ, WRITE, LOAD}

All operations are legal to issue

b€ B — SCHEDULED(b) = FALSE

The invariants for this algorithm are:

b € BA SCHEDULED(b) = TRUE — All original operations in b have been
issued.

b€ BA SCHEDULED(b) = TRUE — All required READS have been inserted in
b.

b € BA SCHEDULED(b) = TRUE — PENDING, is correct.

b € BA SCHEDULED(b) = TRUE — STATE, is correct.

The termination condition for the algorithm is:

48
e bc B — SCHEDULED(b) = TRUE

The postconditions for the algorithm are:

Vb € B PENDING, is correct.

Vb € B All original operations in b have been issued.

Vb € B All required READS have been inserted in b.

e Vb & B STATE, is correct.

That is, the invariants hold for all basic blocks in the program. Recall that the

specification for this algorithm is:

o Obtain register state information from scheduled predecessors. Guaranteed by
invariants 3 and 4.

o Generate a schedule for the current block, inserting synchronizing READS where
required. Guaranteed by invariants 1 and 2.

e Examine scheduled successors, insert any READS required for transition from
current block into scheduled blocks. Guaranteed by invariants 2 and 3.

e Ensure that state information made available to all predecessors and successors
is correct. Guaranteed by invariants 3 and 4.

2.6.4 Demonstration of Correctness

Initially, no blocks have been scheduled, and all invariants are trivially preserved. If
B = 0, then there are no basic blocks within the current procedure, and the algorithm
trivially terminates. Otherwise, there is at least one block which needs to be scheduled
and the outer loop denoted by:

while (not all blocks scheduled)
will be entered. This loop condition can be rewritten as:

while ({3b]b € BA SCHEDULED(b) = FALSE })

49
Since SelectBlock() is guaranteed to return a value {b|b € BA SCHEDULED(B)
= FALSE} , and such a b exists, after execution of this line it can be asserted that:
b € BA SCHEDULED(b) = FALSE.

The next step in the algorithm is to ensure that the set PENDING, contains only
registers that are in PENDING, of scheduled predecessors p, and contains all such
registers. The initialization:

PENDING, = 0;
allows us to assert: PENDING, contains no registers not present in PENDING, of a
scheduled predecessor of b. If there are no scheduled predecessors of b, then this
initial value is correct. If there are scheduled predecessors, the following code will

ensure that PENDING, contains the proper set of registers:

for all predecessors p of b
if (predecessor scheduled)
PENDING, = PENDING, U PENDING,;

This can be expressed as:

({¥p|p € BA PREDECESSOR(b, p) = TRUE })
if (SCHEDULED(p) = TRUE)
PENDINGy = PENDING, U PENDING,;

This loop will terminate as it iterates only once for each predecessor of b, and the set

of predecessors is finite. After execution of this loop the following can be asserted:

reR A r € PENDING, «— r€ PENDING, A SCHEDULED(p) = TRUE
A PREDECESSOR(b, p) = TRUE
At this point, the initial computation of PENDING, is complete.
It will be demonstrated in Section 2.6.4 that, after the call:

Schedule(d);

50

the following can be asserted: all original operations in b have been issued; all required
READS have been inserted in b; PENDING, is correct up to this point; and STATE, is
correct up to this point.

It will be shown in Section 2.6.4 that, following the call:

STATE, = JoinSuccessorStates(b);
the following can be asserted: STATE; is correct.

Next, an iteration over all registers is performed to identify any registers which
are in PENDINGy, but are not grounded in STATE;. In addition, any registers for which

STATEy(r) = NULL are set to STATEs(r):

for all registers r

if » € PENDING, A (STATES(T) = PENDING YV STATES(T) = FULL)
issue READ of r
remove r from PENDING,
if (STATE,(r) = NULL)

STATE,(r) = GROUNDED;

if (STATEy(r) = NULL)

STATE,(r) = STATE,(r);

This loop will terminate as each iteration examines one register and the number of
registers is finite. After this code has executed, it can be asserted that: STATE,
is correct; all necessary READs to compensate for transitions between this block and
scheduled successors have been issued; PENDINGy, is correct. Finally, SCHEDULED(b)
is updated using:

SCHEDULED(b) = TRUE
And all of the invariants hold for the current block.

As this loop will be executed exactly once for each block b € B, and there are
a finite number of blocks in B, the loop will terminate. After each iteration of the
loop SCHEDULED(b) holds for one more block than it had on the previous iteration.
Therefore, when the loop terminates the postcondition:

b€ B — SCHEDULED(b) = TRUE

has been satisfied.

51

Correctness of the routine Schedule()

Recall that the required postconditions of this routine are:

o All original operations in B have been issued.

All required READS have been inserted in B.

PENDING is correct up to this point.

STATE, is correct up to this point.

Recall also, that the following preconditions have been shown to hold on entry to this

routine:

e b€ BA SCHEDULED(b) = FALSE

e PENDING, is correct up to this point.

This entire routine is in the form of a single loop denoted by:

for each operation O
As a block must have a finite number of operations, and each operation is dealt with
in a single loop iteration, this loop will terminate. As the bottom of this loop is the
instruction:

issue O
it can be trivially asserted that all original operations in b are issued.

Depending on the type of operation currently being handled, one of three clauses
is executed. By showing that each clause properly handles one type of operation, it
will be demonstrated that all operations will be properly handled.

The only item of concern for processing a READ is to ensure that following the
READ, its source register is not in PENDING,. In terms of STATE,, if this is the first

reference to the source register, its state is set to GROUNDED, and if this is the first

52

reference to the destination register its state is set to FULL. This is all accomplished

with the clause:

if STATE,(source(O)) = NULL
STATEy(source(O)) = GROUNDED
if STATEy(target(O)) = NULL
STATEy(target(O)) = FULL
if source(O) € PENDING,
remove source(O) from PENDING,
Following this clause and the issuing of the instruction at the bottom of the loop, it
can be asserted that if the first operation is a READ, all postconditions hold at the
bottom of the loop after the first iteration.
When dealing with a WRITE, if the target register is in PENDING,, it is necessary to
insert a READ of this register. Following this insertion, the register is removed from

PENDING,. In either case, if this is the first reference to the target variable, its state

is set to FULL. These manipulations are performed by:

if target(O) € PENDING, {
issue READ of target(O)
remove target(O) from PENDING,

if STATE,(target(O)) = NULL
STATE,(target(O)) = FULL

Following this clause and the issuing of the instruction at the bottom of the loop, it
can be asserted that if the first operation is a WRITE, all postconditions hold at the
bottom of the loop after the first iteration.

When dealing with a LOAD, if the target of the LOAD is in PENDING,, it is necessary
to insert a READ of this register. The register is not removed from PENDING, however,
as the target of the LOAD currently being processed must be in PENDING, once the

current instruction has been issued. If we are to issue this read of the target register,

53
and this is the first reference to this register, its state is set to GROUNDED. If the target
is not in PENDINGs, it is added to PENDING,. If this is the first reference to this register,

its state is set to PENDING. This logic is encoded as:

if target(O) € PENDING, {
issue READ of target(O)
if STATE,(target(O)) = NULL
STATEy(target(O)) = GROUNDED
}
else {
add target(O) to PENDING,
if STATEy(target(O)) = NULL
STATEp(target(Q)) = PENDING

Following this clause, and the issuing of the instruction at the bottom of the loop,
it can be asserted that if the first operation is a LOAD, all postconditions hold at the
bottom of the loop after the first iteration.

It can now be asserted that if the instruction is any of READ, WRITE, LOAD, fol-
lowing the issuing of the instruction at the bottom of the loop all postconditions
hold after the first iteration. This can be generalized to the statement that all post-
conditions will hold at the bottom of any loop iteration, in particular the final loop

iteration. Therefore, all postconditions hold at the end of this routine.

Correctness of the routine JoinSuccessorStates()

Recall that the requirement of this routine is that it has as its postcondition:
STATE, is correct

To be able to discuss this, it is necessary that some description be provided as to

what it means for this condition to hold. If STATE,(r) for a register is PENDING for

any scheduled successor s, then it is irrelevant what STATE,(r) for that register is for

any other scheduled successor s. The register must be treated as if it is PENDING for

all successors. If STATE;(r) % PENDING for all scheduled successors, but it is FULL for

54
one or more successors, then it is treated as being FULL for all successors. If neither
of these conditions are met, then the register is treated as being GROUNDED for all
SUCCeSsOors.

The preconditions for this routine are:

e beB

e The information about successors to b is valid

The above description implies that the default setting for a register, unless it is
overridden by a value from a scheduled successor, is GROUNDED. Therefore, the first

operation in the routine is:

for all registers r
STATES(T) = GROUNDED;

This loop will terminate as it iterates once per register and there are a finite number
of registers. If there are no scheduled successors of b, then the routine terminates
here, and the returned STATE, is GROUNDED for all registers. This is the correct return
value for this circumstance. If there are scheduled successors, the loop denoted by:

for all scheduled successors of b
will be entered. This can be rewritten as:

(Vs | s € B A SCHEDULED(s) = TRUE A SUCCESSOR(b, 5) = TRUE)
This loop will terminate as there must be a finite number of successors to a block.
Within this loop, there is another loop which is denoted by:

for all registers r
This loop will also terminate as the number of registers is finite. The body of this

loop is:

55

if (STATEs(r) = PENDING V STATE,(r) = PENDING)

STATE,(r) = PENDING;
else if (STATEs(r) = FULL V STATEs(r) = FULL)

STATE(r) = FULL;
The first check shown here ensures that if any scheduled successor has STATE4(r) =
PENDING, then the set returned from this routine will have STATE,(r) = PENDING.
Similarly, if none of the scheduled successors has STATE(r) = PENDING, but one or
more of them have STATE4(r) = FULL, then the set returned from this routine will
have STATEs(r) = FULL. If none of the scheduled successors have either STATE4(r) =
PENDING or STATE,(r) = FULL, then the set returned from this routine will have the
default value of STATE(r) = GROUNDED. Upon assignment of the return value from

this routine to STATE,, it can be asserted that STATE, is correct.

2.6.5 Managing Transfer of Control

The preceding algorithm and proof do not address the issue of managing register state
when a transfer of control, such as a function call or interrupt, occurs. It is assumed
that interrupts are not an issue as they will either only use special hardware registers
set aside for their use, or will first read any registers that they are going to write to
preserve their initial values. The interrupt handler must take action to ensure that no
registers which were not PENDING on entry to the handler are PENDING when control
is returned to the user program.

The algorithm relies on all registers being in a known state upon entry to a
function. In order to support separate compilation of source files and the use of
libraries, it is necessary to ensure that no registers are PENDING prior to issuing a
function call. In a system where all source was required to be in a single input
file, it would be possible to extend the interblock exchange of information to also
handle interprocedural exchange. It is also possible to design a system that uses this

interprocedural exchange of information by importing information from previously

56

compiled images, but that is outside the scope of this thesis.

57

Chapter 3 Algorithm Modifications for
Trace-Scheduling

The previous chapter dealt with a traditional compiler which works with basic block
scheduling. The Multiflow compiler being used for the M-Machine work uses a trace
scheduling algorithm [17, 37]. In terms of the SRS algorithm, the major difference
between basic blocks and traces is that, unlike a basic block, a trace can have multiple
entry and exit points. This chapter explains the changes that are necessary to the
algorithm presented in Section 2.5 to accommodate trace scheduling; and discusses

the impact of these changes on the demonstration of correctness.

3.1 Algorithm Modifications for Trace Scheduling

The major changes to the SRS algorithm for accomodating trace-scheduling deal
with transitions between traces. First, changes need to be made to the management
of the data transferred between traces. For the basic block algorithm it made sense
to associate this information with each block. When dealing with trace-scheduling a
more natural association is to be found with the edges between traces. This provides
a natural way of handling the multiple entry and exit points which can exist within
a trace. One of the properties of these edges is that they only have one entry point

and one exit point.

58

3.1.1 Processing a Trace

For each cycle in the schedule being generated, there are three phases to the pro-
cessing. Initially, it is necessary to manage any edges that enter the trace at the
current cycle. Each instruction within the current cycle must be processed. Finally,
the management of edges leaving the trace after the current cycle must be managed.

At the beginning of each cycle, a check is made to determine if any edges join
the current trace at this cycle. If edges do join at this cycle, it is necessary to either
incorporate PENDING information from the edge if it has been scheduled, or to attach
STATE information to the edge if it hasn’t been scheduled. The final register states
from any scheduled predecessors are combined.

If a register is PENDING in any scheduled predecessor, it must be treated as if
it is PENDING in all scheduled predecessors. As GROUNDED applies only to upwardly-
exposed state it is not relevant here. For any given instruction, it is necessary to have
incorporated information about all preceding instructions which have already been
scheduled.

When STATE is attached to an edge this does not mean that the current values
of STATE, that have already been computed for this trace are copied into the edge.
It means that a new STATE, is initialized, and all further computation of STATE that
occurs in the process of scheduling the current trace must update not only STATE; for
the trace, but all STATE, for unscheduled edges that have already joined the trace.
This process will ensure that when the edge is scheduled it is presented with a clear
picture of what will happen to registers following the transition from the edge into
the adjoining trace.

For each instruction within the current cycle, several stages of processing are per-
formed. All instruction source operands that are in registers are identified, and those
registers are marked FULL. The state of the destination register, if any, is checked.

If the destination register is PENDING, a READ on the destination register is inserted

59
prior to the current instruction. If the instruction is a WRITE the destination register is
marked FULL. If the instruction is a LOAD the destination register is marked PENDING.

If there are unscheduled edges leaving the trace, PENDING, is attached to the edge
to be used when it is scheduled. If there are scheduled edges leaving the trace, a check
is made to determine if any synchronizing operations need to be inserted before the
next instruction is emitted.

At the end of each cycle, management of edges that split from the current trace are
handled. If these edges have already been scheduled, a check is made to determine if
any registers need to be READ prior to transitioning to the edge. If the adjoining edge
has not been scheduled, then a copy of PENDING, is placed on the edge. If there are
multiple edges, all of the unscheduled edges should be handled first. This maximizes
the distance between initiating a LOAD operation and the first off-trace access to the

targeted register.

3.1.2 Trace Algorithm

One of the interesting aspects of managing traces is that there is the possibility of
edges joining to and splitting from a trace at every cycle of the schedule. This increases
the complexity of the routine for scheduling the trace, but vastly simplifies the top
level of the algorithm. The top-level code necessary is shone in Figure 3.1, all that
remains from Figure 2.8 is some trivial initialization, and marking the completed
trace as scheduled. The routine SelectTrace has replaced SelectBlock, but has an
equivalent definition: it returns a trace that has not yet been scheduled. PENDING,
is initialized to empty, and STATE, is set to NULL for all registers. The trace is
scheduled, and then marked as scheduled.

Figure 3.2 shows the algorithm for scheduling a trace. This combines the mange-
ment of transitions between traces shown in Figure 2.5, and the state transitions

shown in Figure 2.6. This algorithm also manages the sets PENDING, and STATE, for

60

while (not all traces scheduled)
t = SelectTrace();
PENDING, = {;
for all registers r
STATE,(r) = NULL

Schedule(t);

Mark t as scheduled

Figure 3.1: General Outline of Trace Algorithm.

the current trace, as well as STATE, for all unscheduled edges that join the current
trace. The basic structure of the algorithm is to iterate over all cycles in the trace,
executing a prologue, loop body, and epilogue.

The loop prologue manages incoming edges. For all scheduled incoming edges, the
information from PENDING, is incorporated into PENDING,. For unscheduled incoming
edges, STATE, is created and associated with the edge.

The loop body processes all operations within the current cycle ensuring that they
are all scheduled and all necessary READS are inserted. the loop body also updates
PENDING,, STATE; and STATE, based on the operations being scheduled. Figure 3.2
shows the manipulation of PENDING, in accordance to the rules illustrated in Figure
2.6. This same set of rules controls the management of STATE, and STATE, shown in
Figure 3.3, which is called once for STATE, and once for each STATE, from unscheduled
edges that have previously joined the current trace.

The epilogue manages outgoing edges. First all of the unscheduled edges have
PENDING, copied into them. This allows any necessary register synchronization to be
delayed as long as possible on these edges. For the scheduled outgoing edges, STATE,
needs to be reconciled with PENDING,. Each register is checked. Any register which

is in PENDING, but is not GROUNDED in STATE. needs to be READ before the transition

61

for each cycle C {
for each edge e joining t at C {
if {edge e scheduled)
PENDING, = PENDING: U PERDING,
else
Create STATE,

}

for each operation O {
updateState(O, t, t);
for each edge e that joins trace above O
updateState(O, t, e);

switch(instruction type of O) {
case READ:
if source(O) € PENDINGy
remove source(O) from PENDING,
break;

case WRITE:
if target(O) € PENDING; {
issue READ of target(O)
remove target(O) from PENDING,

break;

case LOAD:
if target(O) € PENDING,
issue READ of target(O)
else
add target(O}) to PENDING,
break;
}

issue O

}

for each unscheduled edge e splitting from t at C
Attach PENDING; to e
for each scheduled edge e splitting from t at C
for all registers r
if (r € PENDING, AND (STATE,(r) # GROUNDED)
issue read of r
remove r from PERDING,

Begin Prologue: Process incoming edges
For scheduled edges, add PENDIKG, into PERDING,

For unscheduled edges, create STATE,
End Prologue: All incoming edges have been processed

Begin loop body
Update STATE;

Update STATE,

After a READ, the source is GROUNDED

A WRITE can't proceed if target is PERDING

GROUKD the target

A LOAD can’t proceed if target is PENDING
GROUND the target

Target must be in PERDING, once the LOAD has issued

End Loop Body

Begin Epilogue: Process outgoing edges
For unscheduled edges, attach PEEDING,

For scheduled edges reconcile PERDINGy with STATE,

End Epilogue: All outgoing edges have been processed

Figure 3.2: Scheduling Algorithm for a Trace. This algorithm is divided into three sections.
The prologue manages all incoming edges, either incorporating information from PENDING, into
PENDING;, or creating STATE,, depending on whether or not the edge is scheduled. The loop body
maintains STATE, and STATE, for all edges that have previously joined the trace. In addition,
PENDING, is maintained while all operations are issued and all required READs are inserted. Finally,
the epilogue manages transition to edges leaving the trace at the end of the current cycle. Either
PENDING, is copied into the edge, or READs are inserted to reconcile PENDING, with STATE,, again
depending on whether or not the edge has been scheduled.

62

updateState(Operation, t, e) {
switch(instruction type of O) {
case READ:
if STATE, (source(O)) = NULL
STATE,(source(O)) = GROUNDED
if STATE,(target(O)) = NULL
STATE, (target(0)) = FULL
break;

case WRITE
if STATE, (target(0)) = NULL
STATE,(target(0)) = FULL
break;

case LOAD
if target(O) € PENDING, {
if STATE, (target(O)) = NULL
STATE.(target(Q)) = GROUNDED

else if STATE,(target(O)) = NULL
STATE,(target(0)) = PENDING
break;

Figure 3.3: Routine to Manage State During Scheduling. This algorithm tracks the first
reference to each register relative to when the edge e joined the current trace t. This processing
simply encodes the state transitions shown in Figure 2.6, with the additional checks to ensure that

this is the first reference to the relevant register.

63
to the edge can occur. Ideally these READs are made conditional so that they are
only issued if the outgoing edge is going to be executed. This is only practical in a

machine with predicated instructions.

3.1.3 Correctness Modifications for Trace Scheduling

Most of the changes to the algorithm to accommodate trace-scheduling have little
impact on the previously demonstrated correctness of the algorithm. The one area
which bears some examination is the code that occurs at the beginning and end of
each cycle of scheduling. These pieces of code mirror in many respects the code at
the beginning and end of each basic block/trace.

At the beginning of each cycle, a check is made to determine if any edges join
the current trace at this cycle. If edges do join at this cycle, it is necessary to either
incorporate PENDING information from the edge if it has been scheduled, or to attach
STATE information to the edge if it hasn’t been scheduled. In the first case, this is
directly analogous to incorporating PENDING, from all predecessors to a given trace
into HOT, prior to beginning scheduling of the trace. For any given instruction, it
is necessary to have incorporated information about all preceding instructions which
have already been scheduled. For the latter case, some clarification is needed. When
STATE is attached to an edge this does not mean that the current values of STATE,
that have already been computed for this trace are copied into the edge. It means
that a new STATE, is initialized, and all further computation of STATE that occurs in
the process of scheduling the current trace must update not only STATE, for the trace,
but all STATE, for unscheduled edges that have already joined the trace. This process
will ensure that when the edge is scheduled it is presented with a clear picture of what
will happen to registers following the transition from the edge into the adjoining trace.

At the end of each cycle, management of edges that split from the current trace

are handled. If these edges have already been scheduled, a check is made to determine

64
if any registers need to be READ prior to transitioning to the edge. If the adjoining
edge has not been scheduled, then a copy of PENDING, is placed on the edge. Relative
to this edge, this is equivalent to placing PENDING, into an adjoining trace. If there
are multiple edges all of the unscheduled edges should be handled first, to maximize
the distance in between initiating a LOAD operation and the first off-trace access to

the targeted register.

3.2 Implementation of Software Register Synchro-
nization

As part of the M-Machine software effort, the Scalable Concurrent Programming
Laboratory at Caltech has acquired the source code to the Multiflow compiler and
is using 1t as a platform for compiler development and experimentation. The first
phase of the project — porting it the MAP instruction set, improving code quality,
incorporating optimizations, and using it as a vehicle for architectural evaluation —
has been completed as part of this thesis research. The compiler generates code for a
single MAP cluster and although fully optimized, most of the standard optimizations,
including common subexpression elimination, copy propagation, and loop invariant
code motion, are operational.

The second phase of the compiler modifications entails developing and imple-
menting algorithms for effective use of the loosely-coupled clusters of functional units
within the MAP chip. This includes inserting appropriate synchronization and com-
munication instructions into the streams that execute on different clusters but are
intended to work together, sharing data among their register files. The MAP’s non-
blocking memory system with unpredictable latencies and its capability for remote
register writes has caused the issue of WAW hazards to arise in both phases of com-

piler development. The work described in this section focuses on Software Register

65
Synchronization (SRS), which eliminates the WAW hazards found while compiling

code for a single cluster.

3.2.1 Compiler Scoreboarding

In the MAP, a hardware register scoreboard is provided to eliminate RAW hazards. In
order to avoid additional hardware expense, the M-Machine compiler is responsible for
detecting WAW hazards and converting them into RAW hazards so that the hardware
register scoreboard will prevent them. Thus if the compiler finds an instruction that
writes to a register that is already pending, it inserts an instruction that reads from
that register so that the thread will stall until the WAW hazard is resolved.

There are two methods of performing this synchronization, register barriers and
memory barriers. The first is on a fine grained register basis in which an instruction
to read from a single register, a register barrier, is inserted. This is useful when a
WAW hazard on an individual register is discovered. The second method is useful
for eliminating WAW hazards across control flow changes such as procedure calls
and returns. The MAP provides a memory barrier (mbar) instruction which stalls
until all outstanding memory references to the cluster have returned. This allows
synchronization with a single instruction on groups of WAW hazards that are due to
references to the non-blocking memory system.

In order to detect WAW hazards, the compiler maintains a software scoreboard
that monitors reads and writes to registers during compilation. When an instruction is
scheduled, its destination register is marked pending. When a subsequent instruction
that reads from the register is scheduled, the register is marked full; the hardware is
responsible for ensuring RAW synchronization at runtime. Due to the uncertainty of
both memory latencies in a non-blocking memory system, and communication timing
between loosely-coupled processors, the compiler assumes that no previous register

writes have completed unless there is an intervening read from that register. This

66
provides a clear goal for the software scoreboard: monitor all register accesses and
insert intervening register reads when a WAW hazard is detected.

Because WAW hazards are largely due to physical resource constraints (not enough
registers), the compiler’s register scoreboard and monitoring is performed during the
register allocation phase of compilation. This has the additional benefit that the
register allocator can be biased away from using a register that would create a WAW
hazard. If the compiler increases the distance between conflicting writes, then the
register read that eliminates the WAW hazard may not need to stall at runtime,
resulting in only a single cycle overhead. The initial implementation of SRS, evalu-
ated in this thesis, performs the full algorithm functionality within traces, but does
not copy register state information across trace boundaries. When transitions off
of the current trace are detected, synchronizing operations may be inserted to force
PENDING registers into the FULL state prior to entry to the adjoining trace.

One of the roles of hardware RAW management is handling antidependencies.
As the base scheduling paradigm for the Multiflow compiler is a VLIW machine
containing no hardware dependence checking, the scheduler will generate code which
properly manages antidependencies. The definition of an antidependence [30] is that
the first instruction involved is a READ. The synchronizing nature of this READ assures
that the first operation will have completed before the second one is issued.

Figure 3.4 shows an example of a WAW hazard in a small code sequence that is
resolved by the compiler scoreboard algorithm. The move instruction is the interven-
ing read; r0 is used as a target of the synchronization instruction as r0 is mapped to

zero and writes to it do not actually occur.

67

Post-Sync
load rl, r2
move 12, r0,

add rl, r3, 12

Pre-Sync
load rl, 12
add rl, r3, r2

Figure 3.4: Code Transformation to Convert a WAW hazard into a RAW
Hazard. The pre-synchronized sequence clearly has a WAW hazard as the load
may complete after the add. In the post-synchronized sequence, a synchronizing
instruction has been added. The move operation blocks until the load completes,
after which the add is able to execute.

68

Chapter 4 Algorithm Modifications for a

Partitioned Register File

The previous two chapters discussed managing register synchronization for a mono-
lithic register file. As discussed in Chapter 1, future systems, including the MIT
M-Machine, will have partitioned register files. There are two critical differences be-
tween these future architectures and VLIW [20] machines. These new architectures
utilize dynamic data dependence checking, as opposed to the static scheduling em-
ployed by a VLIW; and the functional units will not necessarily execute in lockstep.
This chapter discusses the changes needed to the register synchronization algorithm
to manage such an architecture.

Several variations on this architecture are considered. The first variant, referred
to as VLIW+, is a system with processors operating in lockstep, and a known transfer
latency for remote register writes. In the VLIW+ system, when the processor stalls
awaiting completion of a memory operation, the register transfer pipeline also stalls.
The second variant to be considered is referred to as VLIW-Unknown, and differs from
VLIW+ in two respects. First, the transfer latency for remote registers writes is vari-
able, and is therefore unknown at compile-time; and the transfer pipeline continues
to operate even if the machine stalls awaiting completion of a memory operation.
Finally, the MAP is considered. In this system the processors do not run in lockstep
relative to each other; the transfer latency is unknown; and the only portion of the
machine that stalls awaiting completion of a LOAD operation is the cluster of functional
units awaiting the result of the LOAD.

In a true VLIW architecture most of the latencies for operations are known at

69

compile time. This allows the compiler to statically generate a schedule that will
execute correctly. One caveat on such a schedule is that it contains a deadline for
the completion of memory operations. If the memory subsystem is unable to meet
this deadline the entire machine stalls until the memory operation completes. On a
machine such as the M-Machine a stall could last in excess of one hundred instructions
if the data needs to be fetched from a remote processor. A second caveat on the
VLIW static schedule is that it has to assume a deadline for the completion of writes
to remote register files. Again, the entire machine would have to stall if the deadline
was not met.

While both of these issues are relevant on architectures such as the M-Machine,
they do not require full-machine stalls if a deadline is not met. The dynamic depen-
dence checking allows stalling to be delayed until the data is actually needed; and
stalls, when they occur, do not need to stop the entire machine, only the portion
actually awaiting the delivery of the data. On the M-Machine this would typically be
% of the processor for a given stall.

The management of memory operations detailed for the monolithic register file in
Chapter 3 continues to be appropriate for the partitioned register file. There is an
additional case that needs to be managed for partitioned register files: the issuing of
an instruction whose target register is in a remote register file. Section 4.1 addresses
managing this case for the VLIW+ architecture. Section 4.2 discusses the VLIWUnknown

architecture. Section 4.3 discusses managing this issue for the MAP chip.

4.1 VLIW+H

For a true VLIW architecture, the register synchronization provided by this algo-
rithm is part of the normal VLIW instruction scheduling. This section addresses

working with a machine where memory latencies could be high enough that stalling

70
the machine when a memory completion deadline was missed could severely decrease
processor performance. In order for this scheduling to work, the transfer latency has
to be maintained as a fixed number of cycles. When the processors stall awaiting
completion of a memory operation, the register transfer pipeline also stalls. The
situation in which the transfer latency is unknown is covered in Section 4.2.

The scenario being covered in this section is shown in Figure 4.1. In this example,
the remote register WRITE has a latency of one cycle (the resulfn is available in the
remote register at the beginning of the second cycle after the WRITE is initiated).
Cluster 0 issues a LOAD whose target is register i7 (1). Sometime thereafter, Cluster 1
issues an add that will WRITE i7 on cluster 0 (denoted cl0.i7) (2). In the cycle between
the initiation and completion of this WRITE, a synchronizing READ is performed by
Cluster 0 on register i7 (8). This guarantees that the next access to cl0.i7 (4) reads

the value generated by (2).

(1)

(2)
(3)
(4)

Cluster 0 Cluster 1

Figure 4.1: Remote Register Write for VLIW+ with Transfer Latency of One Cyecle.

If the transfer latency is zero (the result is available in the remote register at
the beginning of the first cycle after the WRITE is initiated) this case is essentially

the same as a register WRITE in a monolithic register file. This is shown in Figure

71
4.2. Prior to issuing the WRITE (2) a check is made to determine the state of the
target register. If it is PENDING, a synchronizing READ (3) must be issued prior to the
WRITE. As described in Chapter 1, it is not trivial to manage the synchronization of
these WRITEs in hardware. One of the advantages of implementing the scoreboard in
software is that it is not bound by any of the VLSI constraints that make it prohibitive

to implement in hardware.

(1)

(2)
(3)
(4)

Cluster 0 Cluster 1

Figure 4.2: Remote Register Write for VLIW+ with Zero-Latency Transfer.

Managing LOAD operations that target a remote register is the same as managing
non-zero latency transfers in an architecture which does not prevent completion of
a remote transfer while the processors are stalled. If two operations are allowed to
be in-flight at the same time, there is a race condition; it is not possible to predict
which operation will complete first. In order to prevent this situation, it is necessary
to guarantee that any previous operation targeting a given register has completed
before issuing a new one. This is done by treating a LOAD with a remote target
identically to a LOAD with a local target. If the state of the target register is PENDING,
a synchronizing READ must be issued prior to issuing the LOAD. If the target register

is not PENDING, it is marked PENDING once the LOAD has been issued.

72
4.1.1 Algorithm Changes for VLIW+

In addition to performing the functionality described in Chapters 2 and 3, the algo-
rithm also needs to maintain information about outstanding remote transfers. This
information will be represented as the set INCOMING. Each member I of INCOMING con-
sists of two elements: target (I) which is the register to be written, and deadline(I)
which is the cycle number in which the operation will complete. As it is possible for
there to be pending incoming transfers from an adjacent previously scheduled trace,
INCOMING is treated similarly to PENDING. The union operation for INCOMING is to
add all incoming transfers into the existing list. Duplicate writes to the same register
in a given cycle are discarded. The new general outline of the algorithm is shown
in Figure 4.3. The basic structure is essentially the same; JoinSuccessorStates and
SelectTrace are unchanged. The algorithm for scheduling a single trace is different,
and there is the addition of INCOMING. On entry to the trace the handling of PENDING
and INCOMING are identical, although each set has its own union operation.

On exit from a trace, special management is required to manage pending transfers
that will complete within an already scheduled successor, and will conflict with a
PENDING register. If this situation is detected, the compiler must take some action to
ensure that there is no conflict between a remote transfer and a memory operation.
This processing is encapsulated in the routine StitchIncoming. As the functioning of
the scheduler described in Section 1.6.3 prevents this situation from arising, details
of StitchIncoming are not provided. In particular, the scheduler would move the
Join point below the problematic register access, and move the intervening code, and
management of the remote transfer, onto the newly created edge.

The modified version of the routine Schedule is shown in Figure 4.4. In addition
to the functionality shown in Figure 3.2, it maintains INCOMING when edges join to
or split from the current trace. At the beginning of each cycle INCOMING is checked

for transfers that will complete in the following cycle. If any such transfers exist, and

73

while (not all traces scheduled)
t = SelectTrace();
PENDING, = 0;
INCOMING, = 0;
for all predecessors p of ¢
if (predecessor p scheduled)
PENDINGy = PENDING; U PENDING;
INCOMING, = INCOMING, U INCOMING,;

Schedule(t);
STATE; = JoinSuccessorStates(?);

for all registers »

if (r € PENDING, AND (STATE(r) # GROUNDED)
issue read of r
remove r from PENDING,
if (STATE,(r) = NULL)

STATE.(r) = GROUNDED;

if (STATE,(r) = NULL)

STATE,(r) = STATE(r);

if (INCOMING, # §)

StitchIncoming(t)
Mark t as scheduled

Figure 4.3: General Outline of Algorithm for VLIW+.

74
the target register is PENDING, a synchronizing READ of the target register is issued
in the current cycle. As with Figure 4.3, there is a problem if there are pending
transfers that will complete within an already scheduled successor, and will conflict
with a PENDING register. If this situation is detected, extra cycles must be added into
the current schedule at the split point to ensure that there is no conflict between the
transfer and a memory operation. Once again, this processing is encapsulated in the

call to StitchIncoming, and managed by the scheduler.

4.1.2 Correctness Modifications for VLIW +

This section describes the changes which need to be made to the proof of correctness
presented in Chapter 3 to demonstrate the correctness of the algorithm presented
in Section 4.1. All of the changes to the demonstration of correctness involve the
proper management of INCOMING.

Recall that the primary requirement for PENDING is that it is correct at all points
in the computation. The correctness of this set is defined as containing only registers
that are in the state PENDING, and containing all such registers. A similar requirement
can be defined for INCOMING. This set is to be correct at all points in the computation.
This correctness is defined as the set containing information about all outstanding
remote transfers at each point in the computation.

Initially INCOMING; is initialized to (. If there are no scheduled predecessors
to this trace this is the correct value. If there are scheduled predecessors, the list
of outstanding remote transfers from each of this predecessors is incorporated into
INCOMING,. This is done using the same loop that incorporates information from
scheduled predecessors into PENDING;. The only change to this loop is the addition
of the line:

INCOMING; = INCOMING; U INCOMING,

The U operator here adds the entire contents of INCOMING, to INCOMING;. The

75

for each cycle C
for each edge e joining t at C

if (edge e scheduled) {
PENDING; = PENDING, U PENDING,
INCOMING; — INCOMING, U INCOMING,

}

else {
Attach STATE, to e

(1) for each member I of INCOMING,
if deadline(T) == C + 1 {
(2) if target(I) € PENDING,
issue READ of target(I)
remove target(I) from PENDING,
}
(3) else if deadline(I) ==
remove I from INCOMING,

for each operation O {

issue O
}
for each edge e splitting from t at C
if (edge e scheduled) {
for all registers r
if (r € PENDING, AND (STATE,(r) # GROUNDED)
issue read of r
remove r from PENDING,
if (INCOMING, # 0)
StitchIncoming(t)
}
else {
Attach PENDING, to e
Attach INCOMING; to e

}

Figure 4.4: Scheduling Algorithm for VLIW+.

76
only special case is two outstanding transfers with the same target and the same
deadline. If this case occurs, only one of the records is maintained. As the records
are identical, and will require the same processing to manage, this does not affect the
integrity of the set. This operation will ensure that INCOMING, is correct after it has
been issued.
As long as the routine StitchIncoming preserves the required conditions, then the

processing at the end of Figure 4.3 will maintain these conditions.

4.1.3 Management of INCOMING while Scheduling a Trace

The management of INCOMING at the beginning and end of each cycle is the same as
the handling for entry to and exit from the trace itself.

At the beginning of each cycle it is necessary to examine the contents of INCOMING,
to determine if any transfers are scheduled to complete in the next cycle. This is

accomplished with the clause marked (1) in Figure 4.4:

for each member I of INCOMING,
if deadline(I) == C + 1

The first of these lines can be rewritten as:

while ({311 € INCOMING,})

As there will be a finite number of members in INCOMING;, this loop will terminate.
As C is the current cycle, and deadline(I) is the cycle in which the transfer will
complete, the check will identify the members of INCOMING, which we are interested
n.

For the transfers which are going to complete in the next cycle, a check is made
to determine if any of them are targeting a register which is currently PENDING. Any
such registers are READ and removed from PENDING, by the clause marked (2) in
Figure 4.4:

77
if target(I) € PENDING,

issue READ of target(I)
remove target(I) from PENDING,

After this code has been executed it can be asserted that there are no remote
transfers that will complete in the next cycle which target a register which is PENDING.
It can also be asserted that PENDING, is correct up to this point.

For the transfers which are going to complete in this cycle, all that is necessary
is that the description of the transfer be removed from PENDING,. As the register
allocator and scheduler are already aware that there is a transfer that is supposed
to complete this cycle, no attempt will be made to allow another instruction to
WRITE or LOAD to target(I). This is trivially accomplished by the clause marked (3)

in Figure 4.4:

else if deadline(I) == C
remove | from INCOMING,

Following the execution of this clause, it can be asserted that INCOMING, is correct.

4.2 VLIW-Unknown

The next architecture to be considered departs froms the VLIW+ design described in
Section 4.1 in two ways. The latency for remote register transfers is unknown at
compile time, and the hardware that performs the remote data transfers does not
suspend operation when the processors stall. This makes remote register transfers
identical to issuing a LOAD operation with a remote destination.

This creates a scenario similar to that shown in Figure 4.2, but with the difference
that there could be a processor stall inbetween steps (3) and (4). Although the

algorithm for managing this scenario may be less efficient than that for a known

78

transfer latency, it is simpler: prior to issuing the remote WRITE, a check is made of
the register to determine its state. If it is PENDING, the register is READ before the
WRITE is allowed to issue. This will ensure that the outstanding memory operation has
completed. The register is then marked as PENDING. This solution provides the same
latency-hiding potential for remote transfers as is provided for memory operations.
It also contains the same potential for stalling due to an incomplete transfer as for
an incomplete LOAD.

To implement this solution, no additional data need be maintained beyond what
is required for the basic trace-scheduling algorithm shown in Section 1.6. The only
adjustment is that remote transfers are treated identically to LOADs with a remote
target. Both of these operations can be handled as described in Section 4.1. Prior
to issuing the operation the register state of the target register is examined. If the
target register is PENDING, a READ of it needs to be scheduled. Unless the lower-bound
on the transfer latency is quite small (zero or one cycles), this READ can be scheduled
in either the same cycle as the remote transfer, or the following cycle. A lower bound
of zero cycles will be assumed to preserve generality. With a transfer latency of zero,
it is necessary to issue the synchronizing READ of a register in either the same cycle

as the remote transfer, or in the previous cycle.

4.3 MAP

The design for the MIT M-Machine includes a feature known as ’processor coupling’
[34]. This is a hardware design idea that allows a chip to be constructed out of
multiple clusters of functional units, each containing its own associated register file,
with the ability to write values directly into the register files of the other clusters.
Each cluster has its own Instruction Pointer (IP), and there is no guarantee made

about the relative values of IPs on different clusters. While these clusters can be run

79
as autonomous units, the intended use is to have all of the clusters execute different
portions of the same instruction stream, synchronizing when necessary to transfer
data between clusters.

There are two major issues that this loose processor organization presents to
the compiler. The first of these is managing register synchronization which is the
focus of this thesis. The second issue is that of effective scheduling of instructions
across loosely coupled processors. As is the case with most parallel programming,
relative to computation, synchronization within such a system is expensive. The
ability of a compiler to generate efficient code for a loosely-coupled architecture, and
therefore the utility of such a design, is an open question. This is currently a topic of
interest for both the Scalable Concurrent Programming Laboratory at Caltech and
the Concurrent VLSI Architecture Group at MIT.

The major register synchronization issue presented by the MAP architecture is the
sharing of register files among multiple asynchronous threads of control. In practice,
this issue is simpler than it might appear. The asynchronous nature of the threads re-
quires explicit synchronization before the transfer of data between threads can occur.
Without explicit synchronization, a register could be overwritten before the receiving
thread was able to EMPTY it. This guarantee of synchronization permits the use of the
same algorithm proposed for a lockstepped machine with unknown transfer latency

described in section 4.2.

80

Chapter 5 Compiler Development and

Architectural Evaluation

This chapter describes some of the implementation details of the retargeting of the
Multiflow compiler to the MIT M-Machine. These details are accompanied by com-
mentary on, and critique of, the MAP instruction set architecture. The first part
of this critique is an exploration of how the M-Machine architecture addresses criti-
cisms (41, 40] leveled at its predecessor, the J-Machine [14].

The major complaints about the J-Machine architecture were the distinction be-
tween message buffer memory, and the lack of hardware floating-point support. Both
of these concerns have been addressed in the M-Machine. The location of messages
within memory is now under software control, and can be determined on a per-
message basis. This allows the capability to copy message data out of the network
directly into its final location. The M-Machine floating-point support is quite good.
Each cluster of functional units has its own floating-point unit, for a total of three
on each chip. In addition to standard floating-point arithmetic functions (+,-,*,/),
the floating-point units also perform integer division (which was absent in the J-
Machine), floating-point comparisons, and square root. All operations are done on a
64-bit IEEE floating-point format.

Other concerns raised about the J-Machine included the awkwardness of the mem-
ory addressing, the lack of byte addressing, the limitations on constant generation,
and the lack of registers. The M-Machine solutions for all of these problems are
significantly better than the solutions used in the J-Machine. Byte addressing has

been implemented in a reasonable fashion, and the number of machine registers is

81

adequate. Memory addressing and constant generation are discussed later.

5.1 Predicated Operations

One of the features of the MAP instruction set is the ability to predicate any instruc-
tion on the value contained in a condition code (cc) register. This feature allows the
compiler to generate very efficient code in situations where each clause in a conditional
operation is very short. Two examples of how this is used within the compiler are
select operations, including floating-point absolute value (FABS); and conditional

branches.

5.1.1 Select Operations.

Select operations set a variable to one of two values based on a boolean expression.
These operations are common in C code, and usually take one of the forms shown
in Figure 5.1. Both of these examples can be compiled into very short instruction
sequences as shown in Figure 5.2. It is clear from these examples that additional

optimization could be performed to eliminate the copying of a register to itself.

(1) Conditional Using If..Then (2) Conditional Using 7. .:
if (a == b) c=(a==b)"?
c=a; ((a>0)7a:-a)
else : 0;
c=0;

Figure 5.1: Conditional Expressions that can use Predicated Operations. These two code
fragments show common C language statements that can be efficiently compiled through the use of
predicated operations.

82

(1) Conditional Using If..Then (2) Conditional Using ?..:
ieq 16,17, cc0; ilt 10,16, cc0;
ct cc0 mov 16, i6; ct ccO mov 16, i8;
cf ¢c0 mov i0, i6; cf cc0 mov 18, i8;

ieq 16,17, cc0;
ct cc0 mov i8, i6;
cf cc0 mov 10, i6;

Figure 5.2: Compilation of Conditionals using Predicated Operations. This figure shows
the assembly code output by the compiler for the examples shown in Figure 5.1.1.

FABS. A special case of a conditional which can be implemented using a predicated
operation is floating-point absolute value (FABS). This is a function that is supported
on both the SPARC-2 and the MIPS R4400 processors using an fabs instruction. The
M-Machine compiler treats FABS as an instruction internally, but implements it using

a predicated operation.

5.1.2 Conditional Branches

In addition to enabling the conditional filling of branch-delay slots, predicated op-
erations provide a simple method for synchronizing registers at conditional changes
in control flow. The one situation under which this capability is used is for register
synchronization. At present, when a change in control flow is detected, and there are
PENDING registers, these registers are synchronized prior to the change of control flow.
The use of a conditional barrier in this instance prevents premature synchronization

of registers if the branch is not taken.

83
5.2 64-Bit Execution

Unlike both the J-Machine, and all of the Multiflow Trace machines, the M-Machine
has a word length of 64 bits. This change has a number of obvious advantages,
including the ability to store floating-point values in integer registers, and an increased
virtual address space. Such a fundamental change, however, required substantial
changes within the compiler.

For example, it was necessary to rewrite every line which generated a 32-bit in-
ternal constant. This generation was originally performed with a call to a routine to
generate an integer constant, with the assumption that integers were always 32-bit.
These calls were replaced with a function which took a size argument to allow for
generation of both 32- and 64-bit constants. One of the difficulties with this transi-
tion is that performing 32-bit initialization on a 64-bit constant leaves the high-order
32-bits of the constant undefined.

Another change was the necessity of creating 64-bit versions of most of the internal
operations. For example, the M-Machine does not have a 32-bit integer addition, but
does have a 64-bit integer addition. Although the compiler started out with a fairly

complete set of opcodes, most of them had to be discarded in favor of 64-bit variants.

5.3 Local Register-to-Register Moves

Like many contemporary processors, each M-Machine cluster sub-divides its local
register file into an integer bank and a floating-point bank. As was shown in Figure
1.3, all moves from one register bank to another, even if the other bank is in the
same cluster, must go through the C-Switch. This introduces some variability to the
latency of these moves, and requires some form of software intervention to assure
proper synchronization. The latency of these moves is low enough that the compiler

scheduling will avoid WAW hazards. What is necessary is for the functional unit

84
associated with the target register to issue an EMPTY instruction on the register before
the move is initiated. As there is at least a 1-cycle latency for data to move across
the C-Switch, the EMPTY can be issued in the same cycle as the move.

The additional instructions necessary for these EMPTY instructions, and the moves
between integer and floating-point registers can compose a significant portion of in-
struction cycles during progam execution. This is particularly the case for programs
that use a large amount of integer division and multiplication, as these operations
require moving the operands over to the floating-point registers, and moving the re-
sult back to the integer bank. Table 5.1 shows the cost of EMPTY instructions as
a percentage of executed instructions for unoptimized versions of the benchmarks
described in Section 6.2. As these are operations whose latency can be bounded
at compile-time, it is possible for the compiler scheduler to manage this piece of

instruction choreography.

I Program Name | EMPTY Percentage]

MaM] 6.71
DIR 3.75
HASH 0.59
FFT 4.10
LU 4.79

Table 5.1: Count of EMPTY as a Percentage of Total Executed Instructions

5.4 Constant Generation

The technique for generating constants within the M-Machine is straightforward, but
can be expensive for 64 bit constants. It is possible to generate 16 bits worth of
constant with a single instruction, which mandates a cost of four instructions for a
64-bit constant. This requires some intelligence on the part of the compiler to avoid

generating constants that are longer than necessary. For example, at compile-time

85

it 1s not possible to know how many bits are necessary to contain the address of a
function. Early on in the M-Machine implementation the compiler naively assumed
that all such constants were 64-bits in length. When it became apparent that constant
generation accounted for a significant portion of instructions within a program, this
was examined more closely. Although the M-Machine virtual address space is large
enough that a 64-bit constant could be required to represent the address of a function,
this is an unlikely scenario. Especially since the address generated is relative to a data
pointer stored in a machine register. A decision was made that program code size was
unlikely to grow beyond 2*?bytes = 4 Gigabytes. Constant generation for function
addresses was reduced to 32-bits.

A similar assumption was initially made for offsets from the stack pointer required
for spilling and restoring registers. When this was examined more closely it became
apparent that a more efficient solution could be utilized as these offset values are
known at compile time. Unfortunately the uncertainty of whether one or two instruc-
tions will be needed does result in an inefficiency due to the structure of the compiler.
In order to ensure proper choreography of instructions each operation is specified as
taking a specific number of clock cycles to execute. The required machine resources
for each of these cycles are specified. But in the case of a spill or restore we have
created a situation where an operation can take a variable number of instructions. At
present this requires that vspills and restores insert a NOP instruction into the slot for
the second constant generation instruction if a 16-bit constant is adequate. Future

optimizations should be able to eliminate this spurious use of resources.

5.5 Memory Addressing

As already mentioned, the memory addressing used by the M-Machine allows the com-

piler to generate significantly better code than did the J-Machine addressing modes.

86
For accessing 64-bit data a straightforward load (1d) or store (st) instruction can be
used. Address arithmetic is accomplished through the use of a load effective address

(LEA) instruction which can either add to or subtract from the starting address.

Auto-increment Addressing Another method available for pointer arithmetic
i1s an auto-increment feature available in both load and store instructions. These
instructions take an optional operand which is an integer to be added to the pointer
after the memory operation has been issued. Although the compiler does not yet take
advantage of this feature, it is intended to support a very efficient way of implementing
the pointer auto-increment feature of C. An example of how this could yield more

efficient code is shown in Figure 5.5.

(1) Source Code (2) Current Output (3) Optimized Qutput
intcpy(a,b,size) 1: ialu ine i0,i8, cc0 1: ialu ine i0,i8, cc0
long *a, long *b, int size memu 1d i6, i9; memu 1d 16,48, 19;
2: ialu sub i4,#1, i4; 2: ialu sub 14,#1, i4;
while(size-){ 3: ialu cf ccO br L173; 3: ialu cf cc0 br L173;
*at+ = *b+44; 4: ialu lea 16,#8, i6; 4: memu mov i4, i8;
} 5: memu mov i4, i8; 5: memu st 19, #8, 17
} 6: memu st 19, 17;

ialu lea i7,#8, i7;

Figure 5.3: Optimized Code Using Post-Increment Addressing. This figure shows the
source code for a trivial function, accompanied by the code currently generated by the compiler for
the loop body, and the code that could be generated if the compiler took advantage of the post-
increment addressing mode. The numbers to the left of the instructions represent the cycle in which
each instruction takes place. The use of the post-increment addressing mode shortens the schedule
for the loop within this routine by one cycle. It actually removes two instructions, leaving room for
the compiler to move some other ialu instruction into cycle 5.

Byte Addressing The M-Machine memory operations are optimized for full-word
operations. To support partial-word accesses instructions are provided to insert and

extract bytes and half-words. All of these instructions require fetching the entire

87
word containing the desired data, and then performing the insert or extract. The in-
sert and extract operations (insb, insh, extb, exth) take as arguments a register
containing the data word to operate on, and a register either containing the data to
insert, or to receive the extracted data. This second operand also contains the byte
offset to be used for the insert/extract. One minor complication introduced by this
structure is the necessity of maintaining both the data word retrieved by memory and

the pointer to that word of memory.

5.6 Hardware Memory Segmentation

Part of the functionality of the M-Machine memory system is hardware memory seg-
mentation and protection. Memory accesses can only be performed by dereferencing
pointer data types. The ability to construct a new pointer (using the setptr instruc-
tion) is restricted to system code. User code can perform simple pointer arithmetic
using the LEA instruction, as long as the new pointer obeys the segmentation limits
of the old pointer. The layout of a pointer is shown in Figure 5.2. Segments are
always 2" words in length, with n specified in the segment length field of the pointer.
The permission bits can be used to flag data as read only or read/write. There are a

number of execute permissions that a pointer can have, including privileged and user.

| Bits: | 64 | 60-63 l 54 - 59 | 0-53 |
[l Pointer Tag | Permission Bits | Segment Length | Addresﬂ

Table 5.2: Structure of an M-Machine Pointer

Any attempt to access memory outside of a pointer’s segment results in an error.
This can cause difficulties in C programs that use common but imprecise memory
accesses. One example of such an access can be found in the SPEC92 [54] benchmark

program espresso. One portion of this program, shown in Figure 5.4, uses a macro

88
to traverse all elements within a dynamically created array. This loop terminates
when the pointer to the current element of the list is equal to the element one past
the end of the list. According to the C specification, it is legal to take the address of
the first element past the end of an array [35]. Technically these elements are not
within an array, however, but are aligned within a contiguous block of dynamically
allocated memory. If the end of the array should fall on the segment boundary,
taking the address of an element past the end of the array will generate an error on
the M-Machine. Fortunately, this issue can be trivially addressed by taking the size
requested for dynamic memory allocation and adding some extra space so that it is
legal to address an item just past the end of the segment actually requested by the

user program.

#define foreach_set(R, last, p)
for(p=R—data,last=p+R—count*R—wsize;p<last;p+=R-—wsize)

Figure 5.4: Code Fragment from espresso. This shows a macro definition used within the
espresso benchmark from the SPEC Integer92 benchmark suite. This macro traverses a list of
elements stored sequentially in a contiguous block of dynamically allocated memory. The termination
condition of the loop is when the pointer to the current element is equal to the address of the first
element past the end of the list.

Address Arithmetic and Pointer Copying. Two other areas in which the
pointer structure of the MAP can create problems is performing arithmetic oper-
ations on pointers, and in performing block memory copies of memory that includes
pointers. Both of these problems are encountered by the C library routine memcpy ().
In it’s simplest form this routine can be written as shown in Figure 5.5. The weakness
in this implementation is that if the memory being copied contains pointers, only 64
bits of each pointer will be moved. The resultant memory will contain integer data

rather than pointers as the pointer tag bit has been lost.

89

char *memcpy (char *ptoarg, char *pfromarg, long c)

char *pto = (char *) ptoarg;
const char *pfrom = (const char *) pfromarg;

while (¢c—— != 0)
*pto++ = *pfrom++;
return ptoarg;

}

Figure 5.5: Simple Implementation of memcpy. This program shows a simple implementation
of the C library routine memcpy (). As this routine performs copies one byte at a time, it will lose
M-Machine data tags present beyond a word boundary. In particular, this copy will strip the pointer
tag bit off of any pointer data items.

This problem with the loss of pointer bits suggests a different, and more efficient,
implementation of memcpy (). This implementation, shown in Figure 5.6 attempts
to word-align the source and destination pointers. It may be necessary to do a small
number of byte copies for both winding up and winding down the copy, but the bulk
of the copying is performed as word copies. This has the advantages of being more
efficient than the simple implementation, and of ensuring that information, such as
the MAP pointer tag bits, is not destroyed by the copy. If it is not possible to word-
align the pointers, this routine defaults to using the byte copy shwon in Figure 5.5.

The drawback to the implementation shown in Figure 5.6 is that it performs arith-
metic on MAP pointers. As these data items have information stored in high-order
bits, they will frequently appear to arithmetic operations as negative numbers. This
can easily result in incorrect results. To ensure correct results for arithmetic on point-
ers it is necessary to remove the high-order bits. This can be trivially accomplished

with a pair of shift operations as shown in Figure 5.7.

90

char *memcpy (char *ptoarg, char *pfromarg, long c)

char *pto = (char *) ptoarg;

const char *pfrom = (const char *) pfromarg;
int windin, windout;

long *pf, *pt;

windin = pfromarg % 8;
windout = ptoarg % §;

if(windout && windin != windout) {
while (¢c—— 1= 0)
*pto++ = *pfrom+-+;
return ptoarg;

}

¢ -= windin;
while (windin—— != 0)
*pto++ = *pfrom+4;

if(c < 0) {
return ptoarg;

}

windin = ¢ % §;
¢ -= windin;

for(pf = (long *) pfrom, pt = (long *) pto ;¢ > 0; c -= 8)
*pt++ = *pf++;

pto = (char *) pt;
pfrom = (char *) pf;

while (windin—— != 0)
*pto++ = *pfrom++;
return ptoarg;

Figure 5.6: Efficient Implementation of memcpy. This program shows an efficient implemen-
tation of the C library routine memcpy (). This routine attempts to word-align the two pointers, and
then do word copies of the memory. If it is not possible to word-align the two pointers, then this
routine defaults to using the byte copy employed by the simple implementation shown in Figure 5.5

91

char *memcpy (char *ptoarg, char *pfromarg, long c)

char *pto = (char *) ptoarg;

const char *pfrom = (const char *) pfromarg;
int windin, windout;

long *pf, *pt;

long ft, tt;

ft = (int) pfromarg;
ft <<= 10,

ft >>= 10;

tt = (int) ptoarg;
tt <<= 10;

tt >>= 10;

windin = pfromarg % 8;
windout = ptoarg % 8;

Figure 5.7: Correct Implementation of memcpy for the MAP Processor. This program
shows a change that must be made to the implementation shown in Figure 5.6 to ensure correct
functioning on the MAP processor. If the high bits of a pointer are not removed prior to performing
arithmetic operations on the pointer incorrect results can occur.

92

Chapter 6 Experimental Evaluation

This section describes a set of experiments and results that demonstrate the costs
associated with WAW hazards on a selected set of benchmark programs!. Each pro-
gram is characterized by the number of WAW hazards it experiences. Software WAW
detection is compared to hardware WAW scoreboarding in terms of dynamic instruc-
tion counts and overall runtimes. In addition, the impact of compiler optimizations

is discussed.

6.1 Experimental Environment

The experiments were conducted using executable programs generated by the M-
Machine compiler, as well as an assembler and linker developed by members of the
Concurrent VLSI Architecture Group at MIT. The programs were executed on msim,
the simulator being used at MIT to perform architectural and logic validation of the
M-Machine. The programs were all run on top of mars [26], the M-Machine runtime
system, on one simulated M-Machine node. The user portion of the programs all ran
within a single cluster (three functional units) of the M-Machine. Sixteen integer and
sixteen floating point registers are available in the MAP chip. The programs were
all compiled using mmcc, the Multiflow C compiler ported to the M-Machine, and
enhanced with software WAW scoreboarding and detection.

For the purposes of these experiments msim was modified to support two different
memory models, as shown in Table 6.1. MM is the memory system that will be used

in the actual M-Machine hardware. This system uses a register scoreboard that only

'Some of the results from this chapter are also presented in [39].

93
synchronizes on READ accesses. SCOREBOARD is a memory system similar to that found
in commodity processors such as the DEC Alpha 21164. This system uses a register
scoreboard that will synchronize on both READ and WRITE accesses. Other than the

ability to synchronize on WRITE accesses, the SCOREBOARD and MM models are identical.

I Model Name l Description |

MM M-Machine Model
SCOREBOARD | Register Scoreboarding for WAW Prevention

Table 6.1: Memory Models Used For Experiments

Each program used in these experiments was compiled with four different sets
of compiler options as shown in Table 6.2. For SCOREBOARD, which has hardware
detection and prevention of WAW hazards, the NONE and OPT compilations flags are
used. NONE uses neither compiler optimization nor software WAW detection, while
OPT uses the standard optimizations in mmcc. For the MM model, the software WAW
detection and prevention of the WAW and ALL models must be used. The use of
optimization is investigated because although optimization can remove some number
of compiler-generated WAW hazards from the output code, it also increases register
pressure which can shorten the amount of latency that the algorithm can hide by

delaying synchronization.

[Option Name { Description f Model use4|
NONE No optimizations or WAW Prevention SCOREBOARD
OPT Standard Optimizations Only SCOREBOARD
WAW WAW Prevention Only MM
ALL Both Standard Optimization and WAW Prevention | MM

Table 6.2: Compile-Time Options Used For Experiments

94
6.2 Basic Benchmark Programs

The programs that were selected for this evaluation are shown in Table 6.3. The
first three of these programs are small codes with easily understood memory access
patterns. The last two from the SPLASH [52] suite have more complicated memory
access patterns, and they have been slightly modified to eliminate the synchronization
that is only necessary for running in parallel. Table 6.4 shows the number of instruc-
tions contained in each program both with and without optimization, as well as the
number of inserted synchronization operations that are placed into the program by
the software WAW prevention algorithm. Only a small number of instructions need
to be added even into the largest of the benchmark programs. In general, the use of

optimization increases the number of instructions that need to be inserted.

| Program Name | Description | Source | Problem Size |
MaMI Matrix Multiplication SCP Lab 32 x 32 Matrix
DIR Dirichlet Heat Transfer SCP Lab 50 x 50 Grid
HASH Hash Table Insert/Retrieve | SCP Lab 1000 Entries
FFT Fast Fourier Transform SPLASH Suite | 1024 Doubles
LU LU Decomposition SPLASH Suite | 32 x 32 Matrices

Table 6.3: Benchmarks Used For Experiments

MaM1 is a matrix multiply that uses a simple triple-nested loop to read across rows
of one matrix, and columns of the other. This represents the most trivial operation
likely to be relevant to performance of scientific codes. After some initial compulsory
misses, the cache hit rate is close to 100% as the cache can hold all of the elements of
all of the matrices. The WAW hazards detected by the compiler occur only at branch
points.

DIR is a program to solve LaPlace’s equation V2§ = 0 using constant boundary
conditions and a Gauss-Seidel iteration scheme. This is intended to recreate the mem-

ory access pattern seen in the large-scale implicit /explicit Navier-Stokes applications

95
developed by the Scalable Concurrent Programming Laboratory [57, 56, 55]. The
inner loop iterates over all elements in a 2-dimensional grid, and averages it with
its four neighbors to the left, right, top, and bottom. As with MaM1, there will be
occasional cache misses, but in general cache locality will provide immediate service
of memory requests.

HASH is a hash table entry and retrieval program that is specifically designed to
expose performance weaknesses of the memory system. This code is typical of that
used in Particle-in-cell (PIC) or Direct Simulation Monte Carlo (DSMC) simulation
techniques [50, 49, 51]. The bulk of this code dereferences pointers and traverses
linked lists. The problem size is large enough that cache misses are likely. Code that
can be optimized away will mask some of the latency of memory operations, how-
ever optimization opportunities are restricted as very little computation is performed
between hash table accesses.

FFT performs a Fast Fourier Transform, which is frequently seen as the inner loop
of many applications in image and signal processing. Most of the loops within this
program are double-nested. In addition, the computation within most of the loops is
very simple. The problem size is small enough to allow most of the data to reside in
cache.

LU performs Lower-Upper Decomposition on a matrix, an operation frequently
performed by linear algebra applications. One of the aspects of this program that
complicates its memory behavior is that several of the nested loops within the program
use a subroutine to perform the innermost loop. This results in increased register
pressure within the loop, and increases the need for synchronization between iterations

of the loop.

96

Program Name Instructions | Memory | Register
Barriers | Barriers

| Without Optimization (WAW) | | [
MaMl 1156 6 2
DIR 637 4 0
HASH 2446 25 13
FFT 8959 40 92
LU 6782 42 41

| With Optimization (ALL) | | |
MaMl 1038 7 0
DIR 507 4 0
HASH 2231 35 19
FFT 8033 83 108
LU 5488 60 59

Table 6.4: Count of Inserted Barriers for Benchmark Programs

6.3 SCP Applications

In addition to the benchmark programs which were actually executed on the M-
Machine simulator, a study was done of some of the large-scale applications codes in
use within the Scalable Concurrent Programming Laboratory. This study measured
the number of inserted barrier instructions required when compiling these applications
for the M-Machine.

The applications examined are a Particle-In-Cell code (PIC) [50]; a three dimen-
sional concurrent DSMC code (HAWK) [49, 51]; and a code which computes both
steady state and unsteady solutions to the three-dimensional, compressible Navier-
Stokes equations (ALSINS) [57]. Each of these programs was compiled both with and
without optimizations.

The data for the inserted barriers required in these applications are shown in Table
6.5. In addition to the information gathered for Table 6.4, these table also indicates
how many of the inserted barriers occur at branches. It is possible that the total

number of barriers required for these programs could be reduced if the portion of the

97

SRS algorithm that optimizes transitions between traces were fully implemented.

All of the application programs require significantly more inserted barriers than
do the smaller benchmark programs. For most of the programs the inserted barriers
make up between 2% and 3% of the total number of instructions in generated code.
The two exceptions are ALSINS without optimization where the barriers are less
than 1% of the total instructions, and PIC with optimization where the barriers are
slightly over 6%. Approximately 2% of these inserted barriers all occur within a single
routine. This routine, PhyPgetf, manages the packing of data into messages to be
sent to neighboring nodes. The bulk of this routine is a switch. . case statement with
26 clauses all of which include a loop, and most of which have a function call within
that loop. Another 1.4% of the inserted barriers comes from the code that handles
removing data from incoming messages. This code has many of the same features
requiring synchronization as PhyPgetf. As the vast bulk of these inserted barriers
would not be encountered on any given execution of these functions, the totals appear

worse than they are likely to be in terms of impact at runtime.

Program Name Instructions | Memory | Register | Branches
Barriers | Barriers

| Without Optimization (WAW) | | } [
PIC 60,516 1238 350 907
HAWK 65,444 964 661 456
ALSINS 282,975 1004 945 619

| With Optimization (ALL)] |] | |
PIC 116,017 4166 2878 1672
HAWK 63,073 1189 742 356
ALSINS 180,876 3005 1912 882

Table 6.5: Count of Inserted Barriers for SCP Applications

98

W NONE
- R
OPT
OALL

Mak DIR HASH FFT Lu

Figure 6.1: Dynamic Instruction Counts - Normalized to NONE

6.4 Dynamic Instruction Overhead

The dynamic instruction overhead shows the number of additional instructions re-
quired to implement WAW detection in software. This is a function of both the cost
(in instructions) of each software WAW synchronization and their frequency. Fig-
ure 6.1 shows the dynamic instruction counts of both optimized and unoptimized
models, normalized relative to the unoptimized code with no software WAW detec-
tion. As can be seen in this graph, there is essentially no cost in added instructions
of using software WAW prevention. Programs that use optimization perform signifi-
cantly better than those that do not.

The only programs that display a noticeable overhead from the software WAW
detection are LU (1.78%) and HASH (1.48%). The overhead in LU is due to the
cost of synchronization needed to manage the use of a subroutine call as an inner
loop for much of the performed computation. The relevant piece of code is shown in
Figure 6.2. This function requires memory synchronization before it is called, and

increases register pressure within the loop.

99

for (k=0; k<n; k++) {
for (j=k+1; j<n; j++) {
alk-+j*stride] /= alk-+k*stride];
alpha = -afk+j*stride];
length = n-k-1;
daxpy(&alk+1+j*stride], &a[k+1+k*stride], n-k-1, alpha);

Figure 6.2: Inner Loop of LU. The call to the function daxpy in this loop accounts for a
significant amount of the synchronization cost for the LU benchmark. The function call increases
the already high level of register pressure within this routine.

The overhead incurred by HASH is the result of the code containing many branches
and function calls. Due to the small amount of code in between changes in control
flow, there is frequently a need for synchronization at these points in the program.
This can be seen in the first portion of the HASH program, shown in Figure 6.3,

which does all of the insertions into the hash table.

for(i=0;i < ITERATIONS ; i++) {
theKey = hash_value_to key((void *) &seeds[i]);
hash_add(&theTable, theKey, &theValue);
*(int *)theValue = seedsli;
keys[i] = theKey;

Figure 6.3: Hash Table Insertion from the HASH Benchmark . The general structure of
the HASH benchmark is a small number of memory references mixed in with calls to a hash-table
management library. The small amount of code inbetween function calls makes it likely that there
will be a need for synchronization prior to transferring control to the called function.

100
6.5 Performance Overhead

The total impact of software WAW detection can be determined by the number of
cycles actually spent on each benchmark. This is a function not only of the cycle
overhead of software WAW detection, but also the number of cycles spent waiting
for the WAW to be resolved. Figures 6.4 and 6.5 show the breakdown of the number
of cycles for each benchmark, into software WAW overhead cycles, execution cycles,
time spent blocked on the memory system, and time spent waiting for WAWs to be
resolved. For the SCOREBOARD model (denoted with SCORE), the three components
of program execution time are instructions issued (INST), time stalled waiting for
memory synchronization of RAW hazards (RAW), and time stalled waiting for mem-
ory synchronization of WAW hazards (WAW). The components for the MM model
are INST, RAW, time stalled waiting for memory synchronization of WAW hazards
(WAW), and overhead due to instructions issued to implement SRS (SRS).

12.0x10% B SRs
10.0x10° i \WAW

RAW
B INST

8.0x108

6.0x10°
4.0x10%

2.0x10°

0

Figure 6.4: Hardware vs. Software WAW Prevention: No Optimization

On the SCOREBOARD model the largest component of program execution time is

101
actual instructions issued, followed by time spent awaiting memory synchronization
due to RAW hazards. The only program that shows discernible cost awaiting resolu-
tion of WAW hazards is FFT, but this cost is negligible. Programs on the MM model
spend a small amount of time managing WAW hazards, but this is a tiny portion of
the total program execution time.

Figure 6.4 shows that the performance of software WAW prevention solution is
comparable to that of the hardware solution. MaM1 and DIR perform as well on the MM
model as they do on the SCOREBOARD model. FFT and LU do not perform quite as well
on the MM model, but the performance loss is quite small, with a peak performance
difference of less than 1%. HASH is slightly worse as Software WAW detection is 2.3%

worse than the hardware-only model.

6
8.0x10
o B SRS
7.0x108 - WAW
6.0x10° -
5.0x10° - RAW
4.0x108 H NST
3.0x10°% -
2.0x10% -
Loo® Il “
O 1

ws L w w

o s Cﬂ s o o

22 B g3 g2 &3

@ a ® @ @

MaMI DIR HASH FFT LU

Figure 6.5: Hardware vs. Software WAW Prevention: Optimization

With optimizations, the simplest of the benchmarks in both program structure
and memory access pattern were virtually identical both comparing the MM and
SCOREBOARD models; and with and without compiler optimization. Because these

programs, DIR and MaM1, are memory latency bound (ie. they have very little compu-

102
tation to hide memory latency), optimizations are not likely to improve the overlap
between computation and memory access. The dominant effect of optimization in
these programs is to reduce the total instruction count, without significantly affect-
ing the number of WAWs.

The relative execution time of LU increases for software WAW detection as the
result of optimization. LU has a significant amount of computation between memory
references, which is reduced by optimization. This decreases the program’s ability to
cover memory latency with computation. Even with this additional degradation, the
performance loss in LU for using software WAW prevention is less than 1%, still low
enough to warrant this simplification of hardware.

Surprisingly, the execution time of the optimized FFT benchmark is actually
less (almost 5% better) when using software WAW detection than when using the
SCOREBOARD model. Since the program for the software WAW detection is virtually
identical to that for SCOREBOARD, except for the additional synchronization instruc-
tions, one would expect the MM model to be strictly worse than SCOREBOARD. Part of
the reason for the improvement of software WAW detection, is the register allocation
biasing performed by the software solution. If the register biasing is used, but without
inserting synchronizing operations, the gap between hardware and software shrinks
to 2%. This remaining difference can be accounted for by examining the number of
data cache misses incurred. The version of the program without the synchronizing
operations encounters 76,552 more data cache misses than the program with inserted
operations. This is an example of the change in program performance that can be
caused by cache effects. This fluctuation is of the same order of magnitude as the
performance degradation caused by using software WAW detection.

Finally, HASH gets significantly worse under optimization, showing a 6% increase
in runtime over the hardware model. The HASH benchmark was designed to expose all

of the latencies in memory accesses. The memory access pattern for this program is

103
irregular, and there is essentially no computation that can be overlapped with memory
accesses. As virtually all of the memory accesses are within loops, there is a high
likelihood that the software WAW prevention algorithm will force synchronization to
occur earlier than the hardware algorithm, and thereby eliminate what little overlap

of computation and memory access could potentially exist in the program.

6.6 Application Experiment

This section presents experimental results for an application program, the UNIX
compress program. This program uses adaptive Lempel-Ziv encoding [62] to reduce
the size of an input file. This program performs a large amount of 1/O which is
presently trapped by the simulator and executed on the host. The program per-
forms computation to implement the compression algorithm, as well as hash table
manipulations to keep track of intermediate data.

The count of inserted barriers for this program is shown in Table 6.6. These
numbers are consistent with the numbers seen for the benchmark programs discussed
in Section 6.2. The number of inserted instructions is a small part of the total number
of instructions in the program, and optimization increases the number of instructions

that are inserted.

[| Instructions | Memory Barriers | Register Barriers | Branches |
[NONE| 5385 | 61 21 | 10
| WAW | 5492 | 97 29 N

Table 6.6: Count of Inserted Barriers for Compress

Figure 6.6 shows the performance results from executing compress. The input file
for these runs was a 100,000 byte reference file provided with the SPEC92 benchmark

suite [54]. The compressed file produced by the program is 53,475 bytes long. The

104
relatively small change in the execution time between the optimized and unoptimized
versions of this code is due to the significant portion of the program that is consumed
by the overhead of reading in and writing out the data files. Even though much of
this work is carried out by the simulator and the host, the program still incurs the
overhead for making the calls to the I/O routines.

The overall result of these numbers is that there is negligible difference between
the SRS algorithm and register scoreboarding for compress. SRS requires only 1%
more execution cycles than does HRS, and SRS-OPT uses 0.13% more cycles than
HRS-OPT. This supports the claim that the relatively poor performance of the HASH
benchmark with SRS is due to the lack of computation between loop iterations. In
comparison to HASH, there is a large amount of computation between calls to hash
table routines in compress. While the use of different hash routines in the two
programs precludes a direct comparison, the difference between the two results is

compelling.

3.00E+07
2.50E+07
2.00E+07
1.50E+07
1.00E+07

5.00E+06

0.00E+00

HRS
SRS
HRS-OPT
SRS-OPT

Figure 6.6: Hardware vs. Software WAW Prevention for Compress

105
6.7 Operating System Experiment

This section presents results for an application executed using the Scalable Concur-
rent Programming Library (SCPlib) [58] which is a library to support concurrent
programming which exhibits operating system characteristics including preemptive
multi-tasking and support for message-passing and I/O. The base application being
executed on top of this environment is the Dirichlet problem described in Section 6.2.

SCPIlib provides basic programming technology to support irregular applications
on scalable concurrent hardware. This technology has been successfully applied to
a variety of large-scale industrial application problems. The technology is based
on the concept of a concurrent graph that provides an adaptive collection of light-
weight threads that may relocate between computers dynamically. The graph is
portable to a wide range of high-performance multicomputers (e.g. Cray T3D/E
and Intel Paragon), shared-memory multiprocessors (e.g. SGI PowerChallenge), and
networked workstations (e.g. IBM, SGI, or Sun workstations). For each architecture
it is optimized to take advantage of the best available underlying communication and
synchronization mechanisms.

The experiments described in this section were executed using a single-node ver-
sion of SCPlib ported to the M-Machine. The use of this portable framework will
allow for future direct comparisons between the M-Machine and existing commercial
parallel computers. With the exception of load-balancing this single-node implemen-
tation utilizes all of the features of SCPlib. While it does not yet support internode
communication, this is a special-case of multi-threading and inter-thread communi-
cation which are used for these experiments.

Table 6.7 shows the count of inserted barriers for SCPlib. These numbers are
consistent with the numbers seen for both the benchmark programs discussed in Sec-

tion 6.2, and the compress application discussed in Section 6.6. The statement made

106
about the results for compress still hold here: the number of inserted instructions
is a small part of the total number of instructions in the program, and optimization

increases the number of instructions that are inserted.

] | Instructions | Memory Barriers | Register Barriers | Branches]
| NONE | 66873 | 604 | 500 | 0]
| WAW | 74820 | 1149] 627 | 211]

Table 6.7: Count of Inserted Barriers for SCPlib

Figure 6.7 shows the performance results from using SCPlib to execute a program
calculating a solution to the Dirichlet problem on a 10 x 10 grid. Unlike previous
experiments, this problem is run as a parallel program. The grid is partitioned among
four processes, and SCPlib manages all of the process scheduling and inter-process
communication. The execution of all four processes occurs on a single node of the
MAP. Once again, the results show a negligible difference between the SRS algorithm
and register scoreboarding. Without optimization, the difference between HRS and
SRS is only 0.9%. While optimization does result in large increase in the difference,
this increase still results in a small, 3.49%, performance penalty for use of SRS.
This degradation in performance is due in part to changes in control flow requiring

synchronization, which increase fourfold when using optimizations.

6.8 Discussion

In general, using a software algorithm to prevent WAW hazards is not significantly
more expensive than preventing these hazards in hardware. This is due in part to the
rarity of these hazards. In addition, the ability provided by the MAP of preventing

a hazard using a single instruction reduces the cost of the software solution. In

107

8x108

7x108 B SRS
6x10° B wAw
5x108 RAW
4x10° INST
3x108

2x108

1x10°

2] 2]
o ey
I (&3]

HRS-OPT
SRS-OPT

Figure 6.7: Hardware vs. Software WAW Prevention for SCPlib

addition, some amount of the runtime overhead incurred by the software algorithm
would have been incurred by hardware WAW detection anyway. Other costs within
the memory system, such as cache misses and synchronizing on RAW hazards, have
a much greater impact on program performance than management of WAW hazards.

The main observations from the experiments are summarized below:

o WAW hazards occur infrequently. As can be seen in Table 6.4 there are
very few places within the benchmark programs where the compiler detected
WAW hazards. Even in the worst case, the code inserted to manage WAW
hazards comprises less than 2.4% of the program. Figures 6.4 and 6.5 show a
very small cost for WAW hazard management in all programs on all models.

¢ Software WAW prevention requires only one instruction per hazard.
As was discussed in Section 3.2, the MAP processor has a hardware memory
barrier (mbar) instruction. In addition, a single register barrier can be im-
plemented by performing a READ on the register. Both of these methods of
synchronization require only one instruction to implement.

o Software WAW detection has very little impact at runtime. In the
worst case, programs using software WAW detection incurred a 6% performance
degradation relative to using hardware WAW detection, which is seen in a pro-
gram designed to expose weaknesses in the memory system. In general, the
software overheads are less than 2%.

108

¢ Memory effects have greater impact on execution time. As can be
seen in Figures 6.4 and 6.5, the greatest cost in program execution other than
issuing of instructions is waiting for memory synchronization following either
cache misses or hardware detection of a RAW hazard. Relative to the time
spent managing these other synchronization events, overhead needed for WAW
detection and management is negligible.

109

Chapter 7 Conclusions

7.1 Results

In this thesis I have described how compiler support can eliminate certain pipeline
hazards, thus alleviating the need for added hardware complexity. Read-after-write
(RAW) hazards need some form of hardware support, especially when instructions,
such as memory instructions in a lockup-free cache, may have variable latency. RAW
synchronization is usually accomplished using pipeline stalling or register scoreboard-
ing. Unlike RAW hazards, which are true data dependencies, write-after-read (WAR)
and write-after-write (WAW) hazards are artifacts of a finite number of machine reg-
isters. The compiler algorithm for SRS (Software Register Synchronization) uses a
compile-time scoreboard to detect when WAW hazards may occur. It then inserts
additional instructions to convert these hazards to RAW hazards that can be handled
by the simple hardware register scoreboard.

The experiments described in Section 6 compare WAW scoreboarding to SRS. In
general, WAW scoreboarding performs at best only 2% better than SRS, as WAW
hazards are actually rare events. The one exception to this performance was seen in
HASH, a program specifically designed to expose weaknesses in the memory system.
None of the programs spent a significant percentage of execution time managing SRS.
This low cost can be largely attributed to the rarity of WAW hazards, combined with
the ability to convert them into RAW hazards using a single instruction. The overhead
incurred for RAW hazard management, even when using WAW scoreboarding, is
a far more significant factor than efficient WAW hazard management in program

performance.

110
7.2 Future Work

One of the most interesting open questions raised by this thesis is how well SRS
will perform in a multi-cluster implementation. The complication in answering this
question is that it requires a good multi-cluster implementation of the compiler, which
does not yet exist. The design of such a compiler is in itself an interesting research
topic.

It would be interesting to implement the full SRS algorithm to determine what
effect that has on performance. While the algorithm must sometimes be more con-
servative than hardware, it should be capable of closing the gap between current
performance and hardware.

While this thesis has demonstrated that SRS is a good substitute for hardware
register scoreboarding, it is unknown how SRS performs relative to hardware register

renaming.

7.3 Conclusion

Current high performance microprocessors use expensive hardware mechanisms to
eliminate WAW hazards at runtime. This is due both to the desire to have object code
compatibility, and to allow out of order instruction issue, as seen in some superscalar
processors. The simplest mechanism is to use a scoreboard to track both register reads
and register writes. Register renaming is an effective technique for eliminating WAW
hazards at runtime, while also allowing out of order instruction issue. Both of these
techniques require a table that must be accessed for all operands and destinations of
every issuing instruction. Like the register file, the size of this table increases with
the square of the number ports, making it large and slow as the number of arithmetic
units increases.

As the number of function units increases on a single chip, register files will be

111
partitioned and access to them will be restricted to a small cluster of function units.
Fast interaction latencies between clusters will be critical to high performance and the
ability to exploit instruction level parallelism across the clusters. However, hardware
WAW detection using scoreboarding or register renaming will become unattractive as
maintaining global register state for use by every execution unit will be prohibitively
slow and expensive.

Involving the compiler in preserving the order of instructions at runtime is a novel
and necessary innovation to enable reduced hardware complexity. In the tradition
of VLIW computers, this allows the compiler to perform better management of the
hardware resources, including the registers. Machines may be made simpler and faster
by removing complex hardware, and transferring those responsibilities to the compiler.
As demonstrated by this thesis, WAW hazard detection can easily be performed in
the register allocation phase of the compiler with little if any performance impact. If
the clock rate can be increased at all, then it is likely to be a performance win. The
strategy of making the compiler more intelligent will enable the continued increase in
microprocessor performance as the improvement from those factors of the past (faster

process technology and architectural innovations) become less significant.

112

Appendix A The MAP Instruction Set

This chapter provides a brief overview of the composition of the MAP instruction
set. The structure of instructions is described, and a list of operations and their
functionality is provided. This chapter lists some of the instructions that can be issued
by user code, and does not list instructions that can only be issued by privileged code.

Complete details on the MAP instruction set can be found in [15].

A.1 Anatomy of an Instruction

A MAP instruction consists of up to three operations, each of which are to be ex-
ecuted simultaneously on the same cluster of functional units. Each MAP chip is
’capable of executing three instructions (nine operations) at the same time. Within
an instruction, each operation is designated by the functional unit on which it is to
be executed.

An instruction is of the form:

instr | ialu condition code | condition register | opcode | operands
falu condition code | condition register | opcode | operands
memu | condition code | condition register | opcode | operands | ;

Table A.1: Anatomy of an Instruction

The initial instr, and the terminal ; delimit the instruction. Each functional unit
has one line to specify the operation to be executed on that unit. If any of these lines
are omitted, no operation is scheduled on that functional unit. If all three lines are
omitted, the instruction is considered to be a no operation (NOP). At execution time

a NOP will consume an instruction issue slot, but will not perform any computation.

113
Conditional Execution: Each operation has optional fields for specifying a con-
dition code and a condition register. If neither of these fields is specified, the default
value is to always execute the operation. If a condition code and a condition register
are specified, the operation is only executed if the condition code matches the boolean

value in the condition register.

A .2 Listing of Operations

This section lists the possible values for the opcode field within an instruction, and de-
scribes the operands for each opcode. The following are conventions that are followed

in these tables:

o Letters from a - ¢ represent integers

o The letter d is a word whose lower 32-bits contain a datum to be inserted into
a word, and whose upper 32-bits contain information as to where the datum is
to be inserted.

o Letters from e - h represent floating-point numbers

e The letter i represent a 16-bit constant

e The letter s represents a scalar which could be either integer or floating-point
e The letters p and q represent pointers

e The letter r represents a bitmask of register IDs

o CC represent a condition code register

o P represents the hardware Instruction Pointer

114

| Opcode I Function | Opo0] Opl1|Op2]
add c =a + b (signed) a b c
sub c = a- b (signed) a b c
addu ¢ = a + b (unsigned) a b c
subu ¢ = a - b (unsigned) a b c
lea q=p+ a p a q
leab q = baseof p + a p a q
and c=aANDbD a b c
or c=aORb a b c
Xor c=aXORb a b c
ash ¢ = a SHIFT b (arithmetic) a b c
Ish c = a SHIFT b (logical) a b c
rot ¢ = a ROTATE b a b c
insb ¢ = Insert byte d into a a d c
insh ¢ = Insert halfword d into a a d C
extb ¢ = Extract byte b from a a b c
exth ¢ = Extract halfword b from a a b c
empty Empty registers r T
ccempty | Empty condition registers r r
br IP = IP + offset offset
jmp IP=p p
imm c=1 i c
shoru b = a OR (b logical SHIFT 16) a b
not b =NOT a a b
mov b=a a b
ilt CC = a < b (signed) a b CC
ile CC = a <= b (signed) a b CC
ult CC = a < b (unsigned) a b CC
ule CC = a <= b (unsigned) a b CC
ine CC=al=b a b CC
ieq CC=a== a b CC

Table A.2: TALU Instructions

115

| Opcode | Function] Op0|Op1 | Op 2 | Op3 }
fadd h=1f+g f g h
fsub h=f-g f g h
fmul h=f*g f g h
fdiv h=1/g f g h
imul c=a*b a b c
idiv c=a/b a b c
fmula |e=(f*g)+h f g h e
fsqrt g=/f f g
fempty | Empty registers r r
fimm h=i i h
fshoru | g =1{ OR (g logical SHIFT 16) f g
mov g=1 f g
flt CC = f{ < g (signed) f g CC
fle CC = f <= g (signed) f g CC
fne CC=fl=g f g CC
feq CC=f==¢g f g CC
itof f = (double) a a f
ftoi a = (long) f f a
Table A.3: FALU Instructions
| Opcode | Function | Op 0 | Op 1 I Op2]
1d s = contents of memory location p p s
st contents of memory location p=a | a p
fst contents of memory location p = f f p
mbar Memory Barrier
lea q=p+a p a q
leab q = baseof p + a p a q
not b=NOT a a b
mov b=a a b
add ¢ = a + b (signed) a b c
sub c=a- b (signed) a b c
and c=aANDD a b c
or c=aORb a b c
xor c=aXORb a b c

Table A.4: MEMU Instructions

116

Bibliography

[1]

2]

3]

ANDERSON, D., SPARAcIO, F., AND ToMASULO, R. The IBM System/360
Model 91: Machine Philosophy and Instruction-Handling. IBM Journal of Re-
search and Development (January 1967), 8-24.

BERNSTEIN, D., GoLpIN, D., GoLrumBic, M., KrRawczyk, H., MANSOUR,
Y., NAHSHON, I., AND PINTER, R. Spill code minimization techniques for
optimizing compilers. In Proceedings of ACM SIGPLAN 1989 Conference on
Programming Language Design and Implementation (June 1989), ACM, pp. 258-
263.

BRADLEE, D. G., EGGERS, S. J., AND HENRY, R. Integrating register al-
location and instruction scheduling for RISCs. In Proceedings of the Fourth
International Conference on Architectural Support for Programming Languages

and Operating Systems (April 1991), ACM, pp. 122-131.

BriGgas, P., CooPER, K., KENNEDY, K., AND TORCZON, L. Coloring heuris-
tics for register allocation. In Proceedings of ACM SIGPLAN 1989 Conference on
Programming Language Design and Implementation (June 1989), ACM, pp. 275~
284.

BriGags, P., CooPER, K., AND TORCZON, L. Aggressive live range splitting.
Department of computer science technical report, Rice University, 1991.

BriGas, P., CoOPER, K., AND TORCZON, L. Improvements to graph coloring
register allocation. ACM Transactions on Programming Languages and Systems

16, 3 (May 1994), 428-455.

CALLAHAN, D., AND KOBLENZ, B. Register allocation via hierarchical graph
coloring. In Proceedings of ACM SIGPLAN 1991 Conference on Programming
Language Design and Implementation (June 1991), ACM, pp. 192-203.

CHAITIN, G. Register allocation and spilling via graph coloring. In Proceedings
of ACM SIGPLAN 1982 Symposium on Compiler Construction (June 1982),
ACM, pp. 98-105.

CHAITIN, G. J., AUSLANDER, M., CHANDRA, A., COCKE, J., HOPKINS, M.,

AND MARKSTEIN, P. Register allocation via coloring. Computer Languages 6,
1 (January 1981), 47-57.

CHARLESWORTH, A. E. An Approach to Scientific Array Processing: The Ar-
chitectural Design of the AP-120B/FPS-164 Family. Computer 14, 9 (September
1981), 18-27.

117

[11] CHow, F., AND HENNESSY, J. The priority-based coloring approach to register
allocation. ACM Transactions on Programming Languages and Systems 12, 4

(October 1990), 501-536.

[12] CoLwELL, R. P., NIX, R. P., O’'DONNELL, J. J., PAPWORTH, D. B., AND
RopmaN, P. K. A VLIW architecture for a trace scheduling compiler. IEEE
Transactions on Computers 37, 8 (August 1988), 967-979.

[13] CoLwELL, R. P., AND STECK, R. L. A 0.6um BiCMOS processor with dynamic
execution. In ISSCC95 (February 1995), IEEE, pp. 176-177.

[14] DaLry, W. J., ET AL. The J-Machine: A fine-grain concurrent computer.
Information Processing 89 (1989).

[15] DaLry, W. J., KECKLER, S. W., CARTER, N., CHANG, A., FiLLO, M.,
AND LEE, W. S. The MAP instruction set reference manual v1.51. Concurrent
VLSI Architecture Memo 59, Massachusetts Institute of Technology, Artificial
Intelligence Laboratory, August 1996.

[16] EDMONDSON, JOHN, H., ET AL. Internal organization of the Alpha 21164,
a 300-MHz 64-bit quad-issue CMOS RISC microprocessor. Digital Technical
Journal 7,1 (July 1995).

[17] ELuis, J. R. Bulldog: A Compiler for VLIW Architectures. MIT Press, 1986.

(18] FARRENS, M. K., AND PLESZKUN, A. R. Implementation of the PIPE proces-
sor. Computer 24, 1 (1991).

[19] FiLLo, M., KECKLER, S. W., DALLY, W. J., CARTER, N. P., CHANG, A.,
GUREVICH, Y., AND LEE, W. S. The M-Machine Multicomputer. In Proceed-
ings of the 28th International Symposium on Microarchitecture (Ann Arbor, MI,

December 1995), ACM, pp. 146-156.

[20] FISHER, J. A. Very long instruction word architectures and the ELI-512. In Pro-
ceedings of the 10th Annual International Symposium on Computer Architecture
(1983).

[21] FISHER, J. A. Global code generation for instruction-level parallelism: Trace
scheduling-2. In Proceedings of the Workshop on Advanced Compilation Tech-
niques for Novel Machine Architecture (1991), Springer-Verlag.

[22] FISHER, J. A., AND FREUDENBERGER, S. M. Predicting conditional jump di-
rections from previous runs of a program. Hewlett-packard laboratories technical
report, Hewlett-Packard Laboratories, 1992.

[23] FREUDENBERGER, S. M., AND RUTTENBERG, J. C. Phase ordering of register
allocation and instruction scheduling. In Code Generation - Concepts, Tools,

Techniques (1991).

[24]

[25]

[30]

[31]

[32]

[33]

118

GEORGE, L., AND APPEL, A. W. Iterated register coalescing. ACM Transac-
tions on Programming Languages and Systems 18, 3 (May 1996), 300-324.

GIBBONS, P., AND MUCHNIK, S. S. Efficient instruction scheduling for a
pipelined processor. In Proceedings of ACM SIGPLAN 1986 Symposium on
Compiler Construction (June 1986), ACM, pp. 11-16.

GUREVICH, Y. The M-Machine operating system. Master of Engineering Thesis,
Massachusetts Institute of Technology, Department of Electrical Engineering and
Computer Science, September 1995.

GWENNAP, L. PA-8000 combines complexity and speed. Microprocessor Report
8, 15 (November 1994).

Harr, M. W. Managing interprocedural optimization. Ph.D. Thesis, Rice
University, Department of Computer Science, May 1991.

Harr, M. W., MELLOR-CRUMMEY, J., CARLE, A., AND RODRIGUEZ, R.
FIAT: A framework for interprocedural analysis and transformation. In Proceed-
ings of the Siath Workshop on Languages and Compilers for Parallel Computing
(August 1993).

HENNESSY, J. L., AND A., P. D. Computer Architecture a Quantitative Ap-
proach. Morgan Kaufmann, San Mateo, 1990.

HENNESSY, J. L., AND GRross, T. Postpass code optimization of pipeline
constraints. ACM Transactions on Programming Languages and Systems 5, 3
(July 1983), 422-448.

HENNESSY, J. L., Jouppi, N., AND BASKETT, F. MIPS: A VLSI processor
architecture. In Proceedings of CMU Conference on VLSI Systems and Compu-
tation (October 1981), Computer Science Press, pp. 337-346.

Hwu, W.-M. W., MAHLKE, S., CHEN, W. Y., CHANG, P. P., WARTER,
N. J., BRINGMANN, R. A., OUELLETTE, R. G., HANK, R. E., KIYOHARA,
T., HaaB, G. E., HowLMm, J. G., AND LAVERY, D. M. The superblock:
An effective technique for VLIW and superscalar compilation. The Journal of
Supercomputing 7, 1-2 (May 1993), 229-248.

KECKLER, S. A coupled multi-alu processing node for a highly parallel computer.
Master of Science Thesis, Massachusetts Institute of Technology, Department of
Electrical Engineering and Computer Science, May 1992.

KERNIGHAN, B. W., AND RITCHIE, D. M. The C Programming Language,
2nd FEdition. Prenitce Hall, 1988.

LaM, M. S. Software pipelining: An effective scheduling technique for VLIW
machines. In Proceedings of ACM SIGPLAN 1988 Conference on Programming
Language Design and Implementation (June 1988), ACM, pp. 318-328.

37]

[48]

[49]

119

Lowney, P. G., FREUDENBERGER, S. G., Karzes, T. J., LICHTENSTEIN,
W. D., Nix, R. P., O’DONNELL, J. S., AND RUTTENBERG, J. C. The
Multiflow trace scheduling compiler. The Journal of Supercomputing 7, 1-2 (May
1993), 51-142.

MAHLKE, S. A, Lin, D. C., CuEN, W. Y., HaNK, R. E., AND A., B. R.
Effective compiler support for predicated execution using the hyperblock. In Pro-
ceedings of the 25th International Symposium on Microarchitecture (December
1992), pp. 45-54.

MaskIT, D., KECKLER, STEPHEN, W., AND TAYLOR, S. Software Register
Synchronization for Partitioned Register Files. IEEE Transactions on Computers
(Submitted November 1996).

MaAskKIT, D., AND TAYLOR, S. Experiences in programming the J-Machine.
Department of Computer Science Technical Report CS-TR-93-11, California In-
stitute of Technology, 1993.

MAsSKIT, D., AND TAYLOR, S. A Message-driven Programming System for

Fine-grain Multicomputers. Software - Practice and Experience 24, 10 (October
1994), 953-980.

MEAD, C., AND CONWAY, L. Introduction to VLSI Systems. Addison Wesley,
Menlo Park, California, 1980.

MIPS TECHNOLOGIES, INCORPORATED. RI10000 Microprocessor Product
Qverview. Sunnyvale, CA, 1994.

MOTOROLA CORPORATION. PowerPC 604 RISC Microprocessor Users Manual,
1995.

OEHLER, R., AND GROVES, R. IBM RISC System-6000 processor architecture.
IBM Journal of Research and Development 84, 1 (January 1990), 23-36.

PATTERSON, D. A., AND DITZEL, D. R. The case for the reduced instruction
set computer. Computer Architecture News 8 (October 1980).

PATTERSON, D. A., AND SEQUIN, C. RISC-I: A reduced instruction set VLSI
computer. In Proceedings of the 8th Annual International Symposium on Com-
puter Architecture (1981).

RADIN, G. The 801 minicomputer. SIGARCH Computer Architecture News 10
(March 1982), 39-47.

RIEFFEL, M. Concurrent simulation of plasma reactors for VLSI plasma manu-
facturing. Master of Science Thesis, California Institute of Technology, Depart-
ment of Computer Science, 1995.

[50]

[51]

[54]
[55]

[56]

[57]

120

Rov, S., HasTiNGs, D., AND TAYLOR, S. Three-dimensional plasma particle-
in-cell calculations of ion thruster backflow contamination. In Proceedings of the

34th AIAA Aerospace Sciences Meeting (1996), AIAA.

SHANKAR, S., RIEFFEL, M., TAYLOR, S., JERDE, L., AND DITiZI1O, R. Three-
dimensional flow simulations in low pressure etch reactors. In Invited talk for the
22nd Tegal Plasma Symposium (1996).

SINGH, J. P., WEBER, W.-D., AND GUPTA, A. SPLASH: Stanford parallel
applications for shared-memory. Tech. Rep. CSL-TR-91-469, Stanford University,
Apr. 1991.

SiTES, R. Instruction ordering for the CRAY-1 computer. Department of Com-
puter Science Technical Report 78-CS-023, University of California, San Diego,
1979.

SPEC benchmark release 1.1, 1992.

TAYLOR, S., AND WANG, J. A concurrent Navier-Stokes solver for implicit
multibody calculations. In Proceedings of Computational Fluid Dynamics 93
(1993), Elsevier Science Publishers B.V.

TAYLOR, S., AND WANG, J. A concurrent, nodal mismatched, implicit Navier-
Stokes solver. In Proceedings of Computational Fluid Dynamics '94 (1994), El-
sevier Science Publishers B.V.

TAYLOR, S., AND WANG, J. Launch-vehicle simulations using a concurrent, im-
plicit Navier-Stokes solver. Journal of Spacecraft and Rockets 33, 5 (September-
October 1996), 601-606.

TAYLOR, S., WATTS, J., RIEFFEL, M., AND PALMER, M. The concurrent
graph: Basic technology for irregular problems. IEEE Parallel and Distributed

Technology 4, 2 (Summer 1996), 15-25.

THORNTON, J. E. Parallel operation in the Control Data 6600. In Proceedings
of the Fall Joint Computer Conference (January 1964), pp. 33-40.

TOMASULO, R. An efficient algorithm for exploiting multiple arithmetic units.
IBM Journal of Research and Development 11, 1 (January 1967), 25-33.

TRIOLET, R., IRIGOIN, F., AND FEAUTRIER, P. Direct parallelization of call
statements. In Proceedings of ACM SIGPLAN 1986 Symposium on Compiler
Construction, SIGPLAN Notices 21(7) (July 1986), ACM, pp. 176-185.

WELCH, T. A. A technique for high performance data compression. [EEE
Computer 17, 6 (June 1984), 8-19.

