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ABSTRACT

Many driving factors of physical systems are often latent or unobserved. Thus,
understanding such systems crucially relies on accounting for the influence of the
latent structure. This thesis makes advances in three aspects of latent-variable mod-
eling: inference, algorithms, and applications. Specifically, we develop and explore
latent-variable techniques that a) ensure interpretable and statistically significant
models, b) can be efficiently optimized to identify best fit to data, and c) provide
useful insights in real-world applications. The specific contributions of this thesis
are:

• We employ a latent-variable graphical modeling technique to develop the first
state-wide statistical model of the California reservoir network. With this
model, we precisely characterize the system-wide behavior of the network to
hypothetical drought conditions, and proposed guidelines formore sustainable
reservoir management.

• Motivated by the previous application, we provide a geometric framework to
assess the extent to which our latent variable model has learned true or false
discoveries about the relevant physical phenomena. Our approach generalizes
the classical notions of true and false discoveries in mathematical statistics
that rely on the discrete structure of the decision space to settings where the
decision space is continuous and more complicated. We highlight the utility
of this viewpoint in problems involving subspace selection and low-rank
estimation.

• We propose a convex optimization procedure to fit a latent-variable graphical
model for generalized linear models. This framework provides a flexible
approach to model non-Gaussian variables including Poisson, Bernoulli, and
exponential variables. A particularly novel aspect of our formulation is that it
incorporates regularizers that are tailored to the type of latent variables.

• We describe a computationally efficient framework to learn a latent-variable
model with high-dimensional and non-iid data. This framework is based on
factoriable precision operators that decouple the component associated with
the observational dependencies and the component associated to interdepen-
dencies among the variables.
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• We propose a convex optimization technique to provide semantics to latent
variables of a factor model. This approach is based on linking auxiliary
variables — chosen based on domain expertise — to these latent variables.
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C h a p t e r 1

INTRODUCTION

An overarching challenge in science and engineering is to develop concise and

interpretable frameworks that characterize the relationships among a large collec-

tion of variables. As an example, in computational biology, a common scienti�c

discovery involving a gene regulatory network is to determine how variation in

one gene impacts the others genes in the network. In water resources, a complete

understanding of the relationship among the di�erent water entities in a network

provides an important tool to enforce e�ective and sustainable policies. Finally,

in imaging spectroscopy, characterizing the relationship among the spectral pro�le

of patches in a scene is crucial for the accuracy of existing detection techniques

(e.g., matched �lters). A signi�cant di�culty that arises with �nding the statis-

tical dependencies among a collection of variables is that we do not have sample

observations of some of the relevant variables. These latent (hidden) variables

complicate �nding a concise representation, as they introduce confounding depen-

dencies among the variables of interest. Consequently, signi�cant e�orts over many

decades have been directed towards the problem of accounting for the e�ects of

latent phenomena in statistical modeling via latent-variable techniques. Commonly

employed latent-variable models include factor analysis, latent dirichlet allocation,

mixture distributions, latent-variable graphical models, etc.

While the topic of latent-variable modeling has been widely studied in statistics,

computer science, and optimization, many outstanding challenges remain at the in-

terface of estimation, inference, and computation. Speci�cally, many latent-variable

techniques rely on the data being generated from Gaussian distribution, which may

be fundamentally incorrect in many applications. How do we reliably estimate

parameters of a latent-variable model from data of various types? With respect to

inference, how do we guarantee that our obtained model is an accurate representation

of a physical phenomena given �nite sample size? Finally, the data we face is often

high-dimensional with a large number of observations. Can we develop optimiza-

tion algorithms that scale and ensure that their solutions are statistically consistent?

This thesis is an attempt at addressing these challenges with a strong emphasis

on applications. Speci�cally, many of the speci�c problems that are tackled in the-

sis thesis are motivated by an application in water resources, which is described next.
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1.1 Motivating Application

An application that has motivated many of the methodological advances made

in this thesis is the California reservoir network. The reservoir network, consisting

of 1530reservoirs, is California's major defense against severe droughts, which is

frequently experienced in the state. For four years, from 2012 to 2015, California

was in a state of severe drought on par with the worst periods in the past1; 200years

[Agh+14]. The impact of the drought was exacerbated by a fundamental limitation

in our ability to predict water levels in reservoirs. Which reservoir will dry up �rst?

What is the likelihood of systemic failure (i.e. multiple large reservoirs exhausting)?

Answering these sorts of questions would enable policy makers and water managers

to mitigate the damage caused to California's40million residents.

Previous analysis has focused on the behaviour of a small collection of reservoirs

using physical laws or via empirical techniques. Due to the size and complexity of the

reservoir networks, these approaches have been di�cult to carry out. Speci�cally, a

challenge that must be overcome is to understand the in�uence of external factors on

the reservoirs, as well as reservoir interdependencies, since one reservoir failing can

negatively a�ect other reservoirs in the network. The external factors that strongly

a�ect reservoirs may be measurable phenomena (e.g. precipitation and temperature),

or hard-to-quantify in�uence of human operator. In other words, the external factors

may be unobserved or latent. To that end, in Chapter 2, we employ a class of latent

variable models, known as latent-variable graphical modeling, where the graph

connections encode reservoir dependencies and the latent variables account for the

external factors. All of these components are learned from data and are utilized to

characterize the system-wide response of reservoirs. With this model in hand, we

obtain a clearer picture of the demands placed on reservoirs during drought, and

propose a practical guideline for policies that can lead to more sustainable water

resources. The results of Chapter 2 correspond to the paper [Tae+17].

To the best of our knowledge, this is the �rst state-wide model of California

reservoirs. However, we believe that even better models could be obtained by ad-

dressing some of the limitations of latent-variable modeling techniques that will

not only serve reservoirs but other applications as well. More speci�cally, select-

ing a model from latent-variable modeling techniques often require tuning hyper-

parameters. In the reservoir work, these parameters were chosen via a heuristic
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known as cross-validation, which does not o�er any theoretical guarantees. Next,

many latent-variable approaches assume that the variables of interest are Gaussian

to produce computationally appealing and statistically accurate procedures. With

reservoirs, we overcome this limitation by averaging daily observations to obtain

monthly volumes, and validate that the Gaussianity assumption is reasonable after

this preprocessing. Furthermore, latent-variable modeling techniques often assume

that all observations are identically and independently distributed. With reservoirs,

we removed seasonality and veri�ed that the dependencies between observations

is substantially reduced. Finally, latent variables produced from data are typically

mathematical objects that without semantics. In the reservoir work, we employ a

simple post-hoc correlation analysis to link potentially relevant auxiliary variables

to learned latent variables to �nd matches.

1.2 Methodological Contributions

Motivated by these limitations, this thesis provides the following methodologi-

cal contributions: an inference procedure to ensure that the model draws accurate

inferences about some underlying phenomena, a convex optimization technique

to identify a latent-variable graphical model for non-Gaussian variables, a math-

ematically rigorous and computationally e�cient approach to handle non-iid and

high-dimensional data, and �nally, a convex optimization procedure to provide

semantics to latent-variables. Throughout this thesis, we will explore how these

methodologies will not only bene�t reservoir modeling, but also applications in

hyperspectral imaging, social networks, and collaborative �ltering.

Below, we provide more details of the contributions of this thesis beyond the

reservoir analysis. Details about related previous work are given in the relevant

chapters. The research and results of Chapters 3 and 6 correspond to completed

papers [TSC19] and [TC18], respectively. The work in Chapters 4 and 5 correspond

to papers that are in preparation.

Chapter 3 - Inference in Low-rank Estimation Low-rank models are ubiquitous

in latent variable modeling pipelines. In many of the applications in which they

are employed, the row/column spaces of the low-rank matrix have some physical

meaning or represent discoveries. As an example, with reservoirs in Chapter 2, they

encode the e�ect of external factors (latent variables) on reservoirs; in hyperspectral

imaging, they represent signature materials of an underlying scene; in radar, they
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represent the direction of moving targets. Given the importance of row/column

space structures, how do we evaluate the extent to which our model has learned true

or false discoveries about the relevant phenomena?

A common approach to statistical model selection � particularly in scienti�c

domains in which it is of interest to draw inferences about an underlying phenomenon

� is to develop powerful procedures that provide control onfalse discoveries. Such

methods are widely used in inferential settings involving variable selection, graph

estimation, and others in which a discovery is naturally regarded as a discrete

concept. However, this view of a discovery is ill-suited to many model selection

and structured estimation problems in which the underlying decision space is not

discrete. We describe a geometric reformulation of the notion of a discovery, which

enables the development of model selection methodology for a broader class of

problems. We highlight the utility of this viewpoint in problems involving subspace

selection and low-rank estimation, with a speci�c algorithm to control for false

discoveries in these settings. Concepts from algebraic geometry (e.g. tangent

spaces to determinantal varieties) play a central role in the proposed framework.

Chapter 4 - Latent Variable Graphical Modeling: Beyond Gaussianity The

algorithm to �t a latent-variable graphical model to reservoir volumes in Chapter 2

is appropriate when the variables are Gaussian. In many scienti�c and engineer-

ing applications, the set of variables one wishes to model strongly deviate from

Gaussianity. Existing techniques to �t a graphical model to data su�er from one or

more of these de�ciencies: a) they are unable to handle non-Gaussianity, b) they are

based on non-convex or computationally intractable algorithms, and c) they cannot

account for latent variables. We develop a framework, based on Generalized Linear

Models, that addresses all these shortcomings and can be e�ciently optimized to

obtain provably accurate estimates. A particularly novel aspect of our formulation

is that it incorporates regularizers that are tailored to the type of latent variables:

nuclear norm for Gaussian latent variables, max-2 norm for Bernoulli variables,

and complete positive norm for Exponential variables. For each case, we provide

a semide�nite relaxation and demonstrate that the associated norm yields a better

sample complexity (than the nuclear norm) for similar computational cost. We fur-

ther demonstrate the utility of our approach with data involving U.S. Senate voting

record.

Chapter 5 - Model Selection with non-iid DataThe data we observe and process

is typically both non-iid and high-dimensional. As an example, reservoir volumes in
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Chapter 2 exhibit signi�cant temporal correlations so that the data is non-iid, and the

reservoir network is large so that the data is high-dimensional. Existing techniques

that model such complex datasets requireO¹n2p6º computations (n : number of

observations,p: number of variables), which is a signi�cant bottleneck for large

n; p. By appealing to ideas from Stochastic Partial Di�erential Equations (SPDE)

and covariance selection, we provide a framework that blends temporal/spatial and

network modeling inO¹np2+nlog¹nºp+ p6º computations. Using this methodology,

we are able to e�ciently obtain high-dimensional models with rich dependencies

across observations. We apply our approach to signature detection in hyperspectral

imaging and demonstrate improved performance over existing techniques.

Chapter 6 - Interpreting Latent Variables Via Convex Optimization Factor anal-

ysis is a prominent multivariate statistical modeling approach to identify the e�ects

of (a small number of) latent variables on a set of observed variables. However, the

latent variables in a factor model are purely mathematical objects that are derived

from the observed phenomena, and they do not have any interpretation associated to

them. A natural approach for attributing semantic information to the latent variables

in a factor model is to obtain measurements of some additional plausibly useful co-

variates that may be related to the original set of observed variables, and to associate

these auxiliary covariates to the latent variables. In this paper, we describe a sys-

tematic approach for identifying such associations. Our method is based on solving

computationally tractable convex optimization problems, and it can be viewed as

a generalization of the minimum-trace factor analysis procedure for �tting factor

models via convex optimization. We analyze the theoretical consistency of our ap-

proach in a high-dimensional setting as well as its utility in practice via experimental

demonstrations with real data.
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C h a p t e r 2

LATENT VARIABLE GRAPHICAL MODELING WITH
APPLICATION TO RESERVOIR MODELING

As described in Chapter 1, many of the research questions that are tackled in this

thesis stem from an application involving the statistical modeling of the California

reservoirs. In this chapter, we will dive deep into this application, discuss the chal-

lenges that arise from modeling a system of reservoirs, and propose latent-variable

methodologies that address these challenges. The results of this chapter are pub-

lished in [Tae+17] and were developed jointly with John Reager, Michael Turmon

and Venkat Chandrasekaran. The author contributed by performing data prepro-

cessing, developing modeling framework& algorithms to analyze the data, and

implementing the numerical methods to produce the �nal results. The description

of the work contained in this chapter was written by the author.

2.1 Introduction

Motivation

The state of California depends on a complex water management system to meet

wide-ranging water demands across a large, hydrologically diverse domain. As part

of this infrastructure, California has constructed 1530 reservoirs having a collective

storage capacity equivalent to a year of mean runo� from California rivers [Gra99].

The purpose of this system is to create water storage capacity and extend seasonal

water availability to meet agricultural, residential, industrial, power generation, and

recreational needs.

Major statewide California precipitation de�cits during the years 2012�-2015 ri-

valled the most intense 4-year droughts in the past 1200 years [GA14]. The drought

was punctuated by low snowpack in the Sierra Nevada, declining groundwater stor-

age, and fallowed agricultural lands, in addition to signi�cantly diminished reservoir

levels [Agh+14; Fam14; How+14]. This sensitivity of the California reservoir net-

work to external conditions (e.g. temperature, precipitation) has implications for

statewide water and agricultural security. In this chapter, we seek a characterization

of the relationships among the major California reservoirs and their sensitivity to

statewide physical and economic factors, with a view to investigating and quantify-

ing the likelihood of systemic catastrophes such as the simultaneous exhaustion of
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multiple large reservoirs.

Such an analysis has been di�cult to carry out on a system-wide scale due to

the size and complexity of the reservoir network. In one direction, a body of

work has focused on characterizing the behavior of a small collection of reservoirs

using physical laws(e.g. [CL04; Chr+06; NW15]). Such approaches quickly

become intractable in settings with large numbers of reservoirs whose complex

management is based on multiple economic and sectoral objectives [How+14]. The

hard-to-quantify in�uence of human operators and the lack of system closure have

made the modeling and prediction of reservoir network behavior using physical

equations challenging in hydrology and climate models [Sol+16]. In a di�erent

direction, numerous works have developedempirical techniquesfor modeling the

behavior of a small number of reservoirs (e.g. [RW83; Pha89; NG91; NG93;

BHH03; HE07; BP08; Wis+10; Che+15]). However, these methods are not directly

applicable to modeling a large reservoir network, as the water levels of major

reservoirs in California exhibit complex interactions and are statistically correlated

with one another (as is demonstrated by our analysis). This necessitates a proper

quanti�cation of the complex dependencies among reservoirs in determining the

systemic characteristics of the reservoir network.

The focus of this work is to develop a statewide model over the California reservoir

network that addresses the following scienti�c questions:

1. What are the interactions or dependencies among reservoir holdings? In

particular, how correlated are major reservoirs in the system?

2. Are there common external factors in�uencing the network globally? Could

these external drivers cause a system-wide catastrophe?

To the best of our knowledge, our work is the �rst that attempts such a statewide

characterization of the California reservoir network. The statewide external factors

that we consider in our analysis include physical factors such as statewide PDSI and

average temperature, and economic factors such as the consumer price index and the

number of agricultural workers. The focus on these statewide external in�uences is

driven by the global nature of our analysis; indeed, an exciting direction for further

research is to complement our global model with local reservoir-speci�c factors to

obtain an integrated picture of both systemic as well as local risks to the reservoir

network.
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Answering these questions for the California reservoir system raises a number

of challenges, and it is important that any modeling framework that we consider

addresses these challenges. First, reservoirs with similar hydrological attributes

(e.g. altitude, drainage area, spatial location) tend to behave similarly. As an

example, a pair of reservoirs that is approximately at the same altitude or in the

same hydrological zone are more likely to have a stronger correlation than those in

di�erent altitudes / zones. Therefore, we seek a framework that ably models the

complex heterogeneities in the reservoir system. A second challenge, which is in

some sense in competition with the �rst one, is that compactly speci�ed models are

much more preferable to less succinct models, as concisely described models are

often more interpretable and avoid problems associated withover-�tting. Finally,

it is crucial that models with both of the preceding attributes have the additional

feature that they can be identi�ed in a computationally e�cient manner.

Approach and Results

Gaussiangraphical modelso�er an appealing and conceptually powerful frame-

work with all the attributes just described. Graphical modeling is a prominent

multivariate analysis technique that has been successfully employed in domains as

varied as gene regulatory network analysis, social networks, speech recognition, and

computer vision (see [Jor04] for a survey on graphical modeling). These models

are de�ned with respect to graphs, with nodes of a graph indexing variables and

the edges specifying statistical dependencies among these variables. In a reservoir

modeling context, the nodes of the graph correspond to reservoirs and an edge

between two reservoirs would describe the strength of the interaction between the

levels of those reservoirs. Formally, the strength of an edge speci�es the degree of

conditional dependence between the corresponding reservoirs; in other words, this

is the dependence between two reservoirs conditioned on all the other reservoirs in

the network. Informally, an edge in a graphical model denotes the extent to which

two reservoirs remain correlated even after accounting for the in�uence of all the

other reservoirs in the network. We illustrate these points using a toy example of

a graphical model over a collection of8 reservoirs, shown in Figure 2.1(a). (This

�gure is purely for explanatory purposes rather than a factual representation of the

complex dependencies among reservoirs, which we obtain in Section 3.) One can

imagine that the reservoir volumes of Shasta (which is at a high elevation in northern

California in the Sacramento hydrological zone) are independent of the reservoir

Pine Flat and the reservoir Isabella (which are in southern California in the Tulare
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hydrological zone) after conditioning on volumes of reservoirs in the central portion

of the state (e.g. Black Butte, Lake Berrysa, New Melones, Buchanan, and Don

Pedro). These relationships are encoded in a graphical model of Figure 1(a). In

particular, note that Shasta has an edge linking it to each of the reservoirs {Black

Butte, Lake Berrysa, Don Pedro, New Melones, Buchanan}, but does not have an

edge connecting it to the reservoirs {Pine Flat, Isabella}. Figure 1(a) is, of course, a

cartoon demonstration of a graphical modeling framework. In practice, identifying

conditional dependencies between pairs of reservoirs in large networks such as the

one considered in our work is a challenging problem, and we describe tractable

approaches to learning such a graphical structure underlying the complex California

reservoir system in a completely data-driven manner in Section 3. To the best of

our knoweledge, this is the �rst work that applies graphical modeling techniques to

model reservoirs or other water resources.

The graphical modeling framework provides a common lens for viewing two

frequently employed statistical techniques. On the one hand, a classical approach

for obtaining a multivariate Gaussian distribution over reservoir volumes is via a

maximum likelihood estimator. This estimator has been widely used in various do-

mains in the geophysical sciences for multivariate analysis of a collection of random

variables [Wac03]. The model obtained by this maximum likelihood estimator is

speci�ed by a completely connected graphical structure, where all reservoirs are

conditionally correlated given all other reservoirs. On the other hand, an indepen-

dent reservoir model analyzes the behavior of an individual reservoir independently

of the other reservoirs in the network. This model results in a fully disconnected

graphical model. In this chapter, we learn a statistical graphical model over the

reservoir network in a data-driven manner based on historical reservoir data. This

model yields a sparse (yet connected) graphical structure describing the network

interactions. We demonstrate that this model outperforms the model obtained via

classical maximum likelihood estimator and an independent reservoir model. Thus,

the reservoir behaviors are not independent of one another but can be speci�ed

with a moderate number of interactions. We demonstrate that a majority of these

interactions are between reservoirs that are in the same basin or hydrological zone,

and among reservoirs that have similar altitude and drainage area.

A natural question is whether some dependencies speci�ed by the graphical

model are due to a small number of external phenomena (drought, agricultural

usage, Colorado river discharge, precipitation, etc.). For example, water held by a
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collection of nearby reservoirs might be in�uenced by a common snowpack variable.

Without observing this common variable, all reservoirs in this set would appear to

have mutual links, whereas if snowpack is included in the analysis, the common

behavior is explained by a link to the snowpack variable. Accounting for latent

structure removes theseconfoundingdependencies and leads tosparser and more

localizedinteractions between reservoirs. Figure 2.1(b) illustrates this point. Latent

variable graphical modeling o�ers a principled approach to quantify the e�ects of

external phenomenathat in�uence the entire reservoir network. In particular, this

modeling framework uses observational data to¹aº identify the number of global

drivers (e.g. latent variables) that summarize the e�ect of external phenomena on

the reservoir network, and¹bº identify the residual reservoir dependencies after

accounting for these global drivers. Our experimental results demonstrate that the

reservoir network at a monthly resolution has two distinct global drivers, and residual

dependencies persist after accounting for these global variables.

Latent variable graphical modeling obtains a mathematical representation of the

global drivers of the reservoir network. One is naturally interested in linking these

mathematical objects to real world signals (e.g. statewide Palmer Drought Severity

Index, snowpack, consumer price index). We present an approach for associating

semantics to these global drivers. We �nd that the statewide Palmer Drought Severity

Index (PDSI) is highly correlated (� � 0:88) with one of the global drivers. PDSI is

then included as a covariate in thenextiteration of the graphical modeling procedure

to learn a joint model over reservoirs and PDSI. Using this model, we characterize

the system-wide behavior of the network to hypothetical drought conditions. In

particular, we �nd that as PDSI approaches� 5, there is a probability greater than

50% of simultaneous exhaustion of multiple large reservoirs. We further present

an approach for identifying speci�c reservoirs in the network that are at high risk

of exhaustion during extreme drought conditions. We �nd that the Buchanan and

Hidden Dam reservoirs are at high risk and describe water management policies and

practices that were enforced to prevent exhaustion.

2.2 Dataset and Model Validation

Our primary dataset consists of monthly averages of reservoir volumes, derived

from daily time series of volumes downloaded from the California Data Exchange

Center (CDEC). We also used secondary data for some covariates.
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Figure 2.1: Graphical structure between a collection of8 reservoirs without la-
tent variables¹aº and with latent variables¹bº. Green nodes represent reservoirs
(variables) and the clouded green node represents latent variables. Solid blue lines
represent edges between reservoirs and dotted edges between reservoirs and latent
variables. The reservoirs have been grouped according to hydrological zones.

Reservoir Time Series& Preprocessing Techniques

As described in Section 1, there are1; 530reservoirs in California. In this work,

we perform statistical analysis on the largest60 reservoirs in California. We apply

our analysis to a subset of the reservoirs, as they have a large amount of historical

data available. Our technique can be extended to a larger collection of reservoirs

given su�cient data. For these60 reservoirs, daily volume data is available during

the period of study (January 2003 � November 2016). We excluded �ve reservoirs

with more than half of their values unde�ned or zero, leaving55reservoirs. This list

of daily values was inspected using a simple continuity criterion and approximately

50speci�c values were removed or corrected. Corrections were possible in six cases

because values had misplaced decimal points, but all other detected errors were set

to missing values. The most common error modes were missing values that were

recorded as zero volume, and a burst of errors in the Lyons reservoir during late

October 2014 that seems due to a change in recording method at that time.

The �nal set of 55 reservoir volume time series spans 5083 days over the 167

months in the study period. It contains two full cycles of California drought (roughly,

2007 � 2008 and 2012 � 2015) and three cycles of wet period (2004 � 2006,

2009 � 2011, 2016). Four California hydrological zones are represented, with 25,

20, 6, and 4 reservoirs in the Sacramento, San Joaquin, Tulare, and North Coast

zones, respectively.

We are interested in long-term reservoir behavior and thus model reservoir vol-
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umes at a monthly time scale. In particular, we average the data from daily down to

167monthly observations. The reservoir data exhibit strong seasonal components.

As such, a seasonal adjustment step is performed to remove these predictable pat-

terns, so that we can model deviations from the underlying trend in the reservoir be-

havior. Speci�cally the steps are as follows Letf �y¹iºgntrain
i=1 � R55 andf �y¹iºgntest

i=1 � R55

be the averaged monthly reservoir volumes in the training and validation set respec-

tively. Focusing on a reservoirr and the month of January, let� �yr be the average

reservoir level during January (obtained only from training observations). For each

observationi in January, we apply the transformation:~y¹iº
r = �y¹iº

r � � �yr . We repeat

the same steps for all months. Furthermore, letting� r be the sample standard devi-

ation of the training observationsf ~y¹iº
r gntrain

i=1 , we produce unit variance observations

with the transformation,y¹iº
r = 1

� 1•2
r

~y¹iº
r . Before being used in the �tting algorithms,

each time series is also rescaled by its standard deviation so that each series has

unit variance. We note that our statistical approach identi�es correlations between

reservoir volumes. Since correlation between two random variables is normalized

by their respective variances, this transformation is appropriate. We repeat the same

steps for all reservoirs to obtain the preprocessed reservoir observationsf y¹iºgntrain
i=1

andf y¹iºgntest
i=1 .

With the exception of the Farmington reservoir (which has volume less than

108 m3), the joint volume anomalies of the remaining54 reservoirs (after prepro-

cessing) are well-approximated by a multivariate Gaussian distribution. This is

demonstrated by a Q-Q plot in Figure 2.2. Since a large amount of historical data

is available for the Farmington reservoir, we have included it in our analysis. These

observed properties suggest that the reservoir data is amenable to the multivariate

Gaussian models we employ in this chapter.

Covariate Time Series

Latent variable graphical modeling identi�es a mathematical representation of

the global drivers of the reservoir network. We link these global drivers to real-

world signals using ancillary data, i.e.,covariates, which are observable variables,

exogenous to the model, that may a�ect a large fraction of reservoirs. The par-

ticular covariates that we use are temperature (averaged values over California

downloaded from NOAA), Palmer Drought Severity Index (averaged values over

California downloaded from NOAA), hydroelectric power generation of California

(downloaded from U.S. Energy Information and Administration), Colorado river

discharge (averaged values downloaded from United States Geological Survey), and
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Figure 2.2: (a): Q-Q plot of the entire set of55 reservoirs. (b): Q-Q plot of
54 reservoirs (excluding the Farmington reservoir). The Q-Q plots are against a
multivariate Gaussian distribution. Notice thaty = x is a close approximation to
the Q-Q plot implying that54 reservoirs (excluding Farmington reservoir) are well
approximated by a multivariate Gaussian distribution.

Sierra Nevada snow pack covariate (manually averaged in the Sierra Nevada region

where the elevation is over100m, gridded observations downloaded from NOAA).

Note that since we are interested in statewide covariates that exert in�uence over

the entire network, these hydrological indicators were averaged over the state of

California (or in the case of snowpack and Colorado river discharge, averaged over

a large region in the Sierra Nevada and Colorado river respectively). In addition

to these hydrological indicators, we use the following economic factors: statewide

number of agricultural workers (downloaded from State of California Employment

Development Department) and statewide consumer price index (downloaded from

Department of Industrial Relations).

For each of the7 covariates, we obtain averaged monthly observations from

2003�2016. We apply a time lag of two months to the covariates temperature,

snowpack, Colorado river discharge, and Palmer Drought Severity Index (the rea-

son for a two months lag is explained in Section 4.4). As with the reservoir time

series, we remove seasonal patterns with a per-month average, and rescale to obtain

unit variance variables.

Model Validation

To ensure that the model of the reservoirs is representative of reservoir behav-

ior, we perform model validation using a technique known asholdout validation
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[HTF09]. The objective of this technique is to produce models that are not overly

tuned to the idiosyncrasies of observational reservoir data, so that these models are

representative of future reservoir behavior. In a holdout validation framework, the

available data is partitioned into a training set, and a disjoint validation set. The

training set is used as input to a �tting algorithm to identify a model. The accu-

racy of this model is then validated by computing the average log-likelihood of the

validation set with respect to the distribution speci�ed by the model. Here, larger

values of log-likelihood are indicative of better �t to data. For our experiments, we

set aside monthly observations of reservoir volumes and covariates from January

2004 � December 2013 as a training set (ntrain = 120) and monthly observations

from January 2003 � December 2003 and January 2014 � November 2016 as a

(disjoint) validation set (ntest = 47). Both the training and validation observations

contain a sign�ciant amount of annual and inter-annual variability.

2.3 Dependencies Underlying the Reservoir Network

Method: Graphical Modeling

A common approach for �tting a graphical model to reservoirs is to choose the

simplest model, that is, the sparsest network that adequately explains the observa-

tional data. Easing this taks, for Gaussian graphical models, the graphical structure

is encoded in the sparsity pattern of the precision matrix (inverse covariance ma-

trix) over the variables. Speci�cally, zeros in the precision matrix of a multivariate

Gaussian distribution indicate absent edges in the corresponding graphical model.

Thus, the number of edges in the graphical model equals the number of nonzeros of

the precision matrix� . As an example, consider the toy graphical model in Figure

1(a). Suppose that the precision matrix� of size8 � 8 is indexed according to the

ordering {Shasta, Black Butte, Lake Beryssa, Isabella, Pine Flat, Don Pedro, New

Melones, and Buchanan}. Then� has the following structure:

� =

©
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where? denotes a nonzero value. The intimate connection between a graphical

structure and the precision matrix implies that �tting a sparse Gaussian graphical

model to reservoir observational data is equivalent to estimating a sparse precision

matrix � . Thus, the reservoirs are modeled according to the distributiony �

N¹0 ; � � 1º, where� is sparse. Note that the preprocessing to remove climatology

causes the mean to be zero. A natural technique to �t such a model to observational

data is to minimize the negative log-likelihood (e.g. maximum likelihood estimation)

of data while controlling the sparsity level of� . The log-likelihood function of

the training observationsD train = f y¹iºgntrain
i=1 � R55 (after removing some additive

constants and scaling) is given by the concave function

` ¹� ; D trainº = log det¹� º � tr »� � � n¼ ; (2.1)

where � n = 1
ntrain

Í ntrain
i=1 y¹iºy¹iº0

is the sample covariance matrix. Thus, �tting a

graphical model toD train translates to searching over the space of precision matrices

to identify a matrix� that is sparse and also yields a small value of� ` ¹� ; D trainº.

This formulation, however, is a computationally intractable combinatorial problem.

Recent work [YL07; FHT08] has identi�ed a way around this road block by using

a convex relaxation:

�̂ = arg min
� 2S55

� ` ¹� ; D trainº + � k� k1

s:t: � � 0 : (2.2)

The notationS55 denotes the set of symmetric55 � 55 matrices. The constraint

� 0 imposes positive de�niteness so that the joint distribution of reservoirs is non-

degenerate. The regularization termk � k1 denotes theL1 norm (element-wise sum

of absolute values) that promotes sparsity in the matrix� . The L1 penalty, and

more broadly, regularization techniques, are widely employed in inverse problems

in data analysis to overcome ill-posedness and avoid problems such asover-�tting

to moderate sample size (see the textbooks/monographs [BG11; Wai14] and the

references therein). These regularization approaches have proved to be valuable

in many applications, including cameras [Dua+08], magnetic resonance imaging

[Lus+08], gene regularity networks [ZK14], and radar [HS09].

The regularization parameter� in (2.2) provides overall control of the trade-o�

between the �delity of the model to the data and the complexity of the model. In

particular, the program (2.2) with� = 0 yields the familiar maximum likelihood co-

variance estimator. This estimator has a well-known closed form solution�̂ = � � 1
n .
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Generally,� � 1
n will not contain any zeros. This implies that the estimated graphical

structure is fully connected with close �t to the training dataD train. However, as

explored in Section 3.2, this model may be over-tuned to the idiosyncrasies of the

training observationsD train and will not generalize to future behavior of reservoirs

(a phenomenon known asover-�tting). Larger values of� yield a sparser graphical

model with very large� resulting in a completely disconnected graphical model

where the reservoirs are independent of one another. Importantly, for any choice

of � > 0, (2.2) is a convex program with a unique optimum, and can be solved

e�ciently using general purpose o�-the-shelf solvers [TTT16]. Further theoretical

support of this estimator is presented in [Rav+11b].

We select the regularization parameter� byholdout validation. In particular, for any

choice of� , we supply the training observationsD train to (2.2) to learn a graphical

model and compute the average log-likelihood of this model on the validation set

D test = f y¹iºgntest
i=1 � R55. We sweep over all values of� to choose the model with

the best validation performance. Let the selected model (after holdout validation)

be speci�ed by the precision matrix̂� . As discussed earlier, the matrix̂� speci�es

the structural properties of the graphical model of the network. An edge between

reservoirsr andr0 is present in the graph if and only if̂� r;r 0 , 0, with larger mag-

nitudes indicating stronger interactions. We denote the strength of an edge as the

normalized magnitude of the precision matrix entry, that is,

s¹r; r0º = j�̂ r;r 0j
�

¹�̂ r;r �̂ r 0;r 0º1•2 � 0: (2.3)

The quantitys¹r; r0º can be viewed as the partial correlation between reservoirsr and

r0, given all other reservoirs. In particular, a larges¹r; r0º indicates that reservoirsr

andr0 are highly correlated even after accounting for the in�uence of all the other

reservoirs in the network. A small value ofs¹r; r0º indicates that the reservoirsr

andr0 are weakly correlated conditioned on all the reservoirs. Finally,s¹r; r0º = 0

indicates that reservoirsr andr0 are independent conditioned on all the remaining

reservoirs.

Results: Graphical Model of Reservoir Network

In this section, we explore the properties of a graphical model over the reservoir

network. As described in Section 3.1, we learn a graphical model by specifying a

regularization parameter� and supplying observationsD train to the convex program

(2.2). We vary� from 0 to 1 to identify a collection of graphical models. For� � 1,

the graphical model is completely disconnected and not of interest. For each graph-

ical model, we measure the training performance as the log-likelihood of training
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observationD train and the validation performance as the log-likelihood of validation

observationsD test. Figure 2.3 illustrates the training and validation performances for

di�erent values of� . Recall that� = 0 corresponds to an unregularized maximum

likelihood estimate and� = 1 corresponds to independent reservoir model. We

chose� = 0:23 to obtain a graphical model with the best validation performance.

Results of Figure 2.3 demonstrate that the training performance is a decreasing

function of� : smaller values of� lead to a closer �t to training observations. How-

ever, small values of� yield a high complexity model that �ts the idiosyncrasies of

the training data and thus su�ers from over-�tting. This is evident from the poor

validation performance of unregularized ML estimate (when� = 0). The graphical

model is the superior model since it has a better validation performance than the

unregularized ML estimate and an independent reservoir model. Thus the reservoir

behaviors are not independent but can be characterized by a moderate number of

dependencies. In the supplementary material, we characterize the sensitivity of the

graphical model to the choice of the regularization parameter� .

Model Training performance Validation performance
unregularized ML estimate (� = 0) � 23:91 -1140.4

independent reservoir model (� = 1) � 83:23 � 101:95

graphical model (� = 0:23) -63.52 -85.54

Table 2.1: Training and validation performances of unregularized maximum likeli-
hood (ML) estimate, independent reservoir model, and graphical model. As larger
values of log-likelihood are indicative of better performance, the graphical model is
the superior model.

To demonstrate that the graphical model estimate does not vary signi�cantly under

small perturbations to� , we also obtain graphical model estimates with� = 0:26

and� = 0:20(Recall that the edge strengths in a graphical model contain the relevant

information of the model). Figure 2.4(a) compares the edge strengths of the model

with � = 0:23 and the model with� = 0:20. Furthermore, Figure 2.4(b) compares

the edge strengths of the model with� = 0:23 and the model with� = 0:26.

Evidently, strong edges persist across all models, with a few weak edges removed

or added as� is varied. The total number of edges in the graphical model when

� = 0:20, � = 0:23, and� = 0:26 is 295, 285, and279respectively. Furthermore,

the quantity� (de�ned in equation (4) of main paper) is0:852; 0:859, and0:862for
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Figure 2.3: Training and validation performance of graphical modeling for di�erent
values of the regularization parameter� . The training performance is computed
as the average log-likelihood of training samples and the validation performance is
computed as the average log-likelihood of validation samples.

Figure 2.4: Sensitivity of the graphical model estimate to perturbations of� around
the optimal value� = 0:23(this choice of� leads to optimal validation performance):
we observe that strong edges in the original model are strong edges in the perturbed
model (i.e., with perturbed� ) with approximately the same strength.

� = 0:20, � = 0:23, and� = 0:26. These results suggest that our conclusions are

not particularly sensitive to the choice of the regularization parameter, although we

chose� = 0:23as it leads to the best validation performance.

We further explore the properties of the speci�ed graphical model, consisting

of 285 edges. Using relation (2.3), we compute the strength of the connections

in the graphical structure. The upper triangle of Figure 2.5 shows the dependence
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relationships between reservoirs in this graphical model. The �ve strongest edges in

this graphical structure are between reservoirs Relief � Main Strawberry, Cherry �

Hetch Hetchy, Invisible Lake � Lake Berryessa, Almanor � Davis, and Coyote Valley

� Warm Spring. We show the geographical location of these pairs of reservoirs in

Figure . The presence of these strong edges is sensible: each such edge is between

reservoirs in the same hydrological zone, and4 of these5 edges are between pairs of

reservoirs fed by the same river. The �ve most connected reservoirs in order Folsom

Lake, Antelope river, Black Butte River, New Exchequer, and French Meadows,

all of which are large reservoirs (volume� 108 m3). We show the �ve strongest

connections to Folsom lake in Figure 2.6 , all of which are either connected or are

in close proximity to the Sacramento River. As a point of comparison, the lower

triangle of Figure 2.5 shows the graphical structure of the unregularized maximum

likelihood estimate. This model yields a fully connected network.

Furthermore, we observe that a majority of interactions in this graphical model

are among reservoirs that have similar drainage area (e.g. land where water falls

o� into reservoirs) and elevation. Figure 2.7 (a) shows a plot of the ratios of

drainage areas between pairs of reservoirs connected via an edge and the strength

of the connections. Figure 4(b) shows a plot of the ratios of altitudes between

pairs of connected reservoirs and the strength of the connections. As a point of

comparison, Figures 2.7(c) and 2.7(d) show similar metrics for the unregularized

maximum likelihood estimate. Examining Figure 4, we observe that graphical

modeling removes (or weakens) dependencies between reservoirs of vastly di�erent

drainage area or elevation. This is expected since reservoirs with substantially

di�erent drainage area or elevation are less likely to have similar variability.

We observe that a large portion of the strong interactions occur between reservoirs

in the same hydrological zone, here denotedh¹r º. To quantify this observation, we

consider

� =

Í
r;r 0 and h¹r º=h¹r 0º s¹r; r0º

Í
r;r 0 s¹r; r0º

; (2.4)

the ratio of within-zone edge strength to total edge strength. The model we �t

has� = 0:85, so 85% of the total edge strength is between reservoirs in the same

hydrological zones. In comparison,� = 0:46 for an unregularized maximum

likelihood estimate. Nevertheless, we notice some surprising connections between

reservoirs that are geographically far apart. In the next section, we propose a

framework to quantify the in�uence of external phenomena on the reservoir network.



20

Figure 2.5: Linkages between reservoir pairs in the graphical model (upper triangle)
compared with those of the unregularized maximum likelihood estimate (lower
triangle). Connection strengths¹r; r0º is shown in the image map, with unlinked
reservoir pairs drawn in gray. The four hydrological zones are separated by red
lines. Red boxes surround the �ve strongest connections in each model.

We further explore the e�ect of these external phenomena to remove the confounding

relationships between geographically distant reservoirs.

2.4 Global Drivers of the Reservoir Network

We identi�ed a graphical model over California reservoirs. Could some of these

dependencies speci�ed by the graphical model be due to external phenomena (e.g.

global drivers)? In this section, we describe an approach, known aslatent variable

graphical modeling, that identi�es the number and e�ect of global drivers on the

reservoir network. Since these global drivers are not directly observed (although

we later discuss an approach to link global drivers to real-world signals), we also

denote them aslatent variables.



21

Figure 2.6: A schematic of California and its river network with some reservoir
connections. Green nodes represent the5 pairs of reservoirs with strongest edge
strength in the graphical model. The red nodes represent the �ve strongest edges to
Folsom Lake, which is the most connected reservoir in the network. The acronyms
for the reservoirs are: WRS (Wishon), COY (Coyote Valley), INV (Indian Valley),
BER (Lake Berryessa), SHA (Shasta), BUL (Bullards Bar), FOL (Folsom Lake),
CMN (Camanche), DNP (Don Pedro), EXC (New Exchequer), ALM (Almanor
Lake), DAV (Lake Davis), SWB (Main Strawberry), RLF (Relief), CHV (Cherry
Valley), and HTH (Hetch-Hetchy).
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Figure 2.7: a) Ratios of drainage areas between pairs of reservoirs connected with
an edge and their corresponding edge strengths in a graphical model. b) Ratios of
elevations of pairs of reservoirs connected with an edge and their corresponding
edge strengths in a graphical model. c) Ratios of drainage areas between pairs
of reservoirs connected with an edge and their corresponding edge strengths in an
unregularized maximum likelihood (ML) estimate. d) Ratios of elevations of pairs
of reservoirs connected with an edge and their corresponding edge strengths in an
unregularized maximum likelihood (ML) estimate.
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Method: Latent Variable Graphical Modeling

As shown by [CPW12], �tting a latent variable graphical model corresponds

to representing the precision matrix of the reservoir volumes� as the di�erence

� = S� L, whereS is sparse, andL is a low rank matrix. The matrixL accounts

for the e�ect of external phenomena, and its rank is equal to the number of global

drivers; these global drivers summarize the e�ect of external phenomena on the

reservoir network. The matrixS speci�es the residual conditional dependencies

among the reservoirs after extracting the in�uence of global drivers. Moreover, the

sparsity pattern ofSencodes the residual graphical structure among reservoirs. As

an example, consider the toy model shown in Figure 2.1(b). Suppose that the matrix

Sis indexed according to the ordering {Shasta, Black Butte, Lake Berrysa, Isabella,

Pine Flat, Don Pedro, New Melones, and Buchanan}. ThenShas the structure:

S =

©
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where? denotes a nonzero entry. Fitting a latent variable graphical model to

reservoir volumes is to identify the simplest model, e.g. smallest number of global

drivers and sparsest residual network, that adequately explains the data. In other

words, we search over the space of precision matrices� that can be decomposed

as � = S � L to identify a matrixS that is sparse, a matrixL that has a small

rank, and also yields a small negative log-likelihood� ` ¹D train; S � Lº. As with

the case of graphical modeling, this formulation is a computationally intractable

combinatorial problem. Based on a recent work by [CPW12], a computationally

tractable estimator is given by:

¹Ŝ; L̂º = arg min
S; L2S55

� ` ¹S� L; D trainº + � ¹kSk1 +  tr¹Lºº

s:t: S� L � 0; L � 0 : (2.5)

The constraint� 0 imposes positive de�niteness on the precision matrix estimate

S� L so that the joint distribution of reservoirs is non-degenerate. The constraint� 0
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imposes positive semi-de�niteness on the matrixL (see [CPW12] for an explanation

of this constraint). Here,̂L provides an estimate for the low-rank component of the

precision matrix (corresponding to the e�ect of latent variables on reservoir vol-

umes), and̂Sprovides an estimate for the sparse component of the precision matrix

(corresponding to the residual dependencies between reservoirs after accounting for

the latent variables).

The regularization parameter provides a trade-o� between the graphical model

component and the latent component. In particular, for very large values of , the

convex program (2.5) produces the same estimates as the graphical model estimator

(2.2) (that is,L̂ = 0 so that no latent variables are used). As decreases, the

number of latent variables increases and correspondingly the number of edges in the

residual graphical structure decreases; this is because latent variables account for

a global signal common to all reservoirs. The regularization parameter� provides

overall control of the trade-o� between the �delity of the model to the data and the

complexity of the model.

As before, the functionk � k1 denotes theL1 norm that promotes sparsity in the

matrixS. The role of the trace penalty onL is to promote low-rank structure [Faz02].

As before, for�;  � 0, (2.5) is a convex program with a unique optimum that can

be solved e�ciently. Theoretical support for this estimator is presented in [CPW12].

Similar to the graphical model setting, we use theholdout validationtechnique to

determine the number of global latent variables and edges in the graphical structure

between reservoirs. Concretely, for a particular choice of�;  , we supplyD train as

input to the program (2.5) to learn a latent variable graphical model and compute the

average log-likelihood of this model on the validation setD test. We sweep over all

possible choices of; � and choose a set of parameters that yield the best validation

performance.

Let the selected model (after holdout validation) be speci�ed by the parameters

¹Ŝ; L̂º. The matrix L̂ denotes the e�ect ofk = rank¹L̂º latent variables on the

reservoir network. The matrix̂S encodes the residual graphical structure between

reservoirs after incorporatingk latent variables. We can quantify the strength of

the edges of this graphical structure using the relation (2.3) with�̂ replaced withŜ.

Finally, we quantify the portion of the variability of the network explained by the
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latent variables as follows: the model estimates the covariance matrix of reservoirs

as¹Ŝ� L̂º� 1 so thaty � N¹ 0; ¹Ŝ� L̂º� 1º. Given that the variance of a reservoirr ish
¹Ŝ� L̂º� 1

i

r;r
, we denote the overall variance of the network as

Í 55
r=1

h
¹Ŝ� L̂º� 1

i

r;r
.

The variance of reservoirr , conditioned onk latent variables, is given by¹Ŝ� 1ºr .

We thus denote the variance of the network conditioned onk latent variables by
Í 55

r=1

h
Ŝ� 1

i

r;r
. Furthermore, we de�ne the ratio

� ¹kº =

Í 55
r=1

h
¹Ŝ� L̂º� 1 � Ŝ� 1

i

r;r
Í 55

r=1

h
¹Ŝ� L̂º� 1

i

r;r

(2.6)

as the portion of the variability of the network explained byk latent variables.

Results: Accounting for Drivers of the Reservoir Network

We �rst explore the e�ect of global drivers on the connectivity of the reservoir

network. Using observationsD train as input to the convex program (2.5), we vary

the regularization parameters¹�;  º to learn a collection of latent variables graphical

models. Figure 2.8 shows the residual conditional graphical structure corresponding

to each model. We observe that an increase in the number of latent variables leads

to sparser structures and stronger inner-zone connections. Indeed, the ratios of

inner zone edge strengths to total edge strength are� = 0:91, � = 0:91, � = 0:93,

� = 0:94, � = 0:97, and � = 0:99 for models with1, 2, 3, 4, 5, and 6 latent

variables respectively. These results support the idea that latent variables extract

global features that are common to all reservoirs, and incorporating them results

in more localized interactions. The residual dependencies that persist (even after

including several latent variables) can be attributed to unmodeled local variables.

Further, appealing to relation (2.6), the portion of the variability of the network

explained by1, 2, 3, 4, 5, and6 latent variables is given by� ¹1º = 0:23, � ¹2º = 0:25,

� ¹3º = 0:28, � ¹4º = 0:31, � ¹5º = 0:32, and� ¹6º = 0:40respectively. Thus, the e�ect

of latent variables on the network increases as we incorporate more of them in the

model. Nonetheless, even6 latent variables explain less than50%of the reservoir

variability, with the other portion attributed to residual conditional dependencies

between reservoirs. Furthermore, this experiment suggests that both the in�uence

of global latent variables and residual dependencies among reservoirs are important

factors of the reservoir network variability.

We now focus on one of these latent variables. In particular, we choose the

parameters¹; � º via holdout validation with the validation setD test to learn a latent
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Figure 2.8: Linkages between reservoir pairs in the latent-variable sparse graphical
model (upper triangle) with varying number of latent variables compared with those
of the ordinary sparse graphical model model (lower triangle). Connection strength
s¹r; r0º is shown in the image map, with unlinked reservoir pairs drawn in gray. The
four hydrological zones are separated by red lines. Red boxes surround the �ve
strongest connections in each model.
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