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ABSTRACT

Hydrogen-related internal frictlon peaks have been measured in
anorphous zpapd and YéMF336’ covering a range of hydrogen concentrations
up to 0.86 H/M for the former alloy. The internal friction peaks were
found to be several times wider than a peak due to a single relaxing
defect, and quite asymmetric with a long low temperature tail, as with
previous measurements on hydrogen in amorphous metals. They showed a
thermally activated relaxation time with a frequency prefactor and a
range of activation energies indicative of a point defect source. The
eyidence i3 shown to sirongly indicate a Snoek-type defeclt, consisting
of single hydrogen atoms in interstitial sites with strongly elliptical
opr variable strain dipole tensors. The integral equation that gives the
internal friction ls inverted for the first time to yield the distribue
tion of relaxation times ., It is suggested that the main peak in the
resulting distribution of activation energies results from hydrogen
hopping through three-sided faces, primarily between tetrahedral sites,
These sites are found to change at high concentration to have a lower
strain dipole ellipticity and to become more wel l-defined., This is
interpreted as signaling a change in the structure of the amorphous
metal itself. In addition there appear to be a small number of other
deep-well sites where hydrogen is initially trapped at low concentra-
tions, These have a very broad distribution of activation energies
ranging from the main peak down to below 0.1 eV. A model is proposed to
aceount for this by hopping of hydrogen between larger sites through

distorted four-sided faces in the metal lattice,
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1. INTRODUCTORY SURVEY
1.1 INTRODUCTION

The exlstence and properties of hydrogen dissolved in a metal have
been investigated since 1866. When hydrogen enters a metal it displavs
meveral properties not found anywhere else, At temperabtures below room
temperature it diffuses faster in solids than any other element. It
strains the metal so severely as to cause it in some cases to disinte
grate into a powder, It is the prototype for the lattice gas, whose
atoms are confined to discrete lattice points and which display a gase
liquid type phase transition. It is therefore a very interesting sube-
Ject for study on its own, apart from any possible applications. The
aspects of particular interest here will be briefly covered in this
chapter,

Bulk amorphous metals were first discovered in 1959, They have
been studied intensely since then, and now constitute a major field of
research, They will be discussed in this chapter also, but only to the
extent of outlining what is known about their atomic structure, In
particular, possible interstitial sites for hydrogen in the amorphous
lattice will be of interest, since hydrogen in all known cases enters
metals as an interstitial rather than a substitutional atom. Hydrogen
has been studied in amorphous metals only since 1978, and not yet in
very great detail. Much remains to be learned about its behavior there,

The present investigation actually has a dual thrust. In addition
to giving information on the mobility of hydrogen in amorphous nmetals,
internal friction measurements essentially use the hydrogen atom as a

microscopic probe of the structure of the metal itself, This will be
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used to study the hydrogen sites and the paths it takes in jumping from

one site to another,

Chapter 2 will develop the theory of internal friction. Most of
the discussion will be based on the simple case of atomie hopplng in a
crystal line material, where the defect 18 a single interstitial atom
which occupies only one type of site. Internal friction measurements
can gilve the activation energy and frequency prefactor for the atomic
hopping, as well as information on the asymmetry of the hydrogen site,
The strength of the relaxation which leads to internal friction depends
on the sguare of the asymmetry., For an amorphous metal there is no
longer Jjust one type of site, and parameters such as well depth and the
activation energy for hopping become distributed guantities, while the
relaxation strength gives an average value for the site asymmetry
factor,

Chapter 3 contains a description of the experimental apparatus,
including the low-temperature vacuum probe and the drive and detection
elesctronics, Measurements were made on thin amorphous Iropd specimens
hydrogenated to different levels, as well as on an amorphous Y-Fg come
pound, over a temperature raunge of 10 K to 370 K. The results are
presented in the first part of chapter 4 and show considerable qualitae
tive similarity to internal friction results seen in other hydrogenated
amorphous wmetals. The internal frictlon peaks are 3.5 times as wide as
the simple Debye peak resulting from a relaxation involving only a
single site, and are quite asymmetric, showing a long low-temperature
tall. The mathematical technigues needed to deal with the results where
the activation energy is distributed are then developed and applied for

the first time to yield this distribution,
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Chapter 5 contains an interpretation of the results in terms of

possible hydrogen sites. The data appear to require two types of sites,
a common site together with a less-common site with lower ground state
anergy which becomes filled first. Further, two types of hydrogen jump
paths are proposed to explain the form of the data. In addition,
changes with hydrogen concentration indicate a change in the nature of
the predominant type of Jjump, and probably in the structure of the metal
itself, at higher concentrations., Thus not only is the local mobility
of hydrogen elucidated but much is inferred about the types of sites it
oceuples and about the atomic structure of the amorphous metal lattice

itselfl,
1.2 HYDROGEN IN METALS

The first observation of hydrogen in a metal over a century ago
gtarted with the observation that palladium takes up large amounts of
hydrogen, that 1t diffuses at a rapid rate and causes a greal expansion
and embrittlement of the metal, and that it is not absorbed in stoichio-
metric amounts(1.1), Hydrogen is absorbed easily until the number ratio
¢ of hydrogen to metal atoms (or H/M ratio) is about 0.6. Then the
chemical potential starts rising rather abruptly. Palladium will easily
absorb hydrogen directly from the gas phase of H, at elevated tempera-
tur@$(1°2), 0 in this case the pressure of Hg in equilibrium with the
dissolved hydrogen rises sharply after ¢ = 0.6, This is not related to
the complete £illing of one particular kind of interstitial site in Pd,
but to the Filling of the electronic d-band of Pd by the shared elec-
trons of hydrogenﬂh2>, as will be discussed below. In other cases

hydrogen forms a definite stoichiometric compound with the metal, which
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is called a hydride as distipguished from a econtinuous solid solution

like that in Pd. For example, ZrNiH, apparently exists as a solid
solution of H in ZrNi, as the hydride for x = 1, and as a trihydride at
x = 3. Hydrogen appears to have very small solubility in the mono~ and
twi«hydwide$(1°3)®

There i3 a considerable amount of technological interest in the
hydrogenation of metals. One area of interest is in using them as an
efficient (and safe) way of storing hydrogen, since in many metals it
exists at a higher density thap in its liquid state, Palladium, the
group IIL, IV, and ¥ traunsition metals, the rare-eariths, and the actin-
ide metals all react exothermically with hydrogen to form either stable
solid solutions or hydrides, The remaining transition metals react
endothermically with hydrogen. In alloys of two elements A and B where
A has a higher hydrogen affinity than B, the hydrogen is comwmonly found
to preferentially oceupy sites entirely surrounded by A &tomsvhB); or
even to cause a separation of the alloy into two phases, oune poor and
one rich in 4, with the hydrogen going into the A rich phaﬁe(j“av1“5)@

Another area of inteprest lies in concern over the effects of hydro-
gen embrittlement on mechanical structures, as in the case of fusion
reactor components. This embrittlement is due partly to the large
expansion of the crystal lattice, which can be of the order of a 15%-20%
volume inerease at ¢ = lphﬁ)@ In addition hydrogen tends to concen=
trate itsell at the apex of any cracks that have formed, due to the
local lattice strain there, This in turn stresses the lattice more and
promotes propagation of the crack,

Hydrogen embrittlement 1is actually Just one result of the interw

action between hydrogen and the elastic properties of the metal, When
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hydrogen enters a metal 1t occupies interstitial sites between metal

atoms, rather than substitutional sites where it would replace a metal
atom or £il1 & vacancy. As with most interstitials, each such hydrogen
atom causes a local dilatation of the lattice. This of course increases
the heat of solution of hydrogen in the metal, in spite of introducing
strain energy into the lattice. But of perhaps more interest than this
is the effective interaction that is induced between dissolved hydrogen

atoms.

1.2.1 Lattice Gas

Hydrogen in crystalline metals can cause two kinds of phase {ransg-
ition with ilncreasing concentration. OUne kind is a change in the
erystal structure of the metal lattice. For example, ZrPdHX i3 orthow
rhomic at x = 0 and 3 but triclinic at x = 1¢1+3), while zru, is fec
around ¢ = 1,6-1.65 and face-centered tetragonal above about ¢ = 1.75,
though 1t is hep at x = 0(?“?}@ The other kind of phase transition
involves the local density of hydrogen, not the erystal structure of the
metal. Above a certain concentration which depends on temperature, a
new high concentration phase can coexist with the low concentration
phase alt the same hydrogen pressure or activity. The upper concentras
tion value is also a function of the temperature. These upper and lower
concentrations converge as the temperature 1s raised until they meet at
a oritical point (figure 1.1).

The obvious analogy to the liguid-gas phase transition immediately
leads one to look for an attractive effective interaction between the
hydrogen atoms, It is now accepted that this is due to the interaction

of the strain fields of a pair of hydrogen atoms(?°8)m The palr can
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Figure 1.1

Pressure-composition diagram with an isotherm. a),
Low density phase. b), High density phase. ¢), Criti-
cal point. d). Isotherm. e). Plateau of isotherm, in
mixed phase region. f,g). Lower and upper phase

limits,
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lower its botal strain energy by moving into proximity with each other

and sharing the burden of dilating the lattice. This interaction is a
long-range one. Consider the strain €44 produced by a concentration ¢
of hydrogen interstitials (or any defects, for that matter) where ¢ is
the hydrogen to metal atom number ratio. At low defect concentrations

the macroscopie strain produced will be linearly proportional to c. The
strain may in general not be isotropic. Further, in a crystal there may
be ny erystallographically equivalent orientations of the defect silte,
each referred to by an index vthg), Bach will be populated by a defect

concentration e, with

c=2 Cy - (1.1)

A defect of orientation v produces a set of digplacements %k of the
surrounding lattice atoms which initially occupy lattice positions at
ﬁk@ We can describe this strain field by a multipole expansion, in
analogy with the way that the field due to an electric charge distribu=-
tion is mharaeterized(1°10). We do this to enable the computation of
the interaction energy of the local dilatation with an external stress
field, for reasons that will be explained later. Since the stress is a
tensor field the multipole moments will also be tensors, while in the
electrostatics case the quantities are all vectors. Therefore, the two
cases are nobt Formally identical, Furthermore the strain field to be
desceribed here is not the aspatially varying one due to a single defect
but the uniform macroscopic expansion due to a uniform distribution of
defects. Generally it is found that only the dipole term is needed to

adequately describe the experimental facts, Then the multipole sxpan=



sion is given by

Ny
e mE }\\.)a c (1.2)
1] 5 1] 0V
with
\) p— k }.( (1&3)

where R% is the position of neighboring atom k relative to the position
of a defect of typev. The indices 1 and j refer to Cartesian coordin-

ates, From equation 1.2, we have
W= (1.4)

We see that Azj is the average macroscopic strain due to unii concentra-
tion of defects in sites of crystallographic orientation v(ug}ﬁ

Another conjugate approach to describing the same dilatation is to
do a multipole expansion of the stress field (at constant, e.g., zero,
strain) rather than of the strain field, in terms of the forces on atoms
around a defect, These forces %k, introduced by Kamzaki(1“1)9 are the
forces on an atom k that would be required to move it in the absence of
the defect Lo the position that it assumes with the introduction of the

defect. Here again only the dipole term is kept, and we fimdvhﬁ)

n
d
Y
O35 = -y~ & Pis ¢ (1.5)
1) Vo o iy
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with
v k Lk
Po. = o R (1.6)
1J %; J R1
and
ey, .
Voo 1 (1.7)
Pij Vo 3¢

where Vg ia the atomic volume of the lattice atoms and P, the dipole
moment of the force fileld, often called the double=Torce tensor, is

positive, Then Aij and Pij are related by

[

vl e, v
M e V(‘; % Siike Pig - (1.8)

P

The change in volume of a crystal with e = e/ng for all v is given by

AV e - \) - @ A - ?e

where

=5 V..
A %‘, A5 (1.10)

Since the A tensor is a strain tensor it is symmetric, and can be

diagonalized by a spatial rotation to
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(1.11)

with
v 5y
Aij =2 Cim %im Ap (1.12)

where the @, are the direction cosines for the orientation v and the
Ay are the principal values of A along three mutually perpendicular
principal axes. All orientations v are crystallographically egquivalent
80 they all become the same when diagonaligzed; only their orientations
with respect to the erysial axes differ, If Xl = lz = %39 the loecal
dilatation 1s spherically symmetric., If this is not the case the local
dilatation takes the form of an ellipsoid. In some cases wmore than one
defect orientation will result in the same strain dipole t&m$or(1»9)ﬂ
For example, a defect composed of an interstitial-vacancy pair will be
distinguishable from the original defect after the palr are interchanged
by an inversion operation, but the inversion of an ellipsoid leaves it
unaffected, 8o their two strain dipoles are degenerate, Then we
introduce a symbol ny for the number of dipole tensor orientations, with
Ny £ ng, and do our sums, such as equation (1.2), over teunsor rather
than defect orientations. As will be seen in Chapter 2, anelastic
relaxation, which gives rise to internal friction, is possible only in

the case of an elliptical strain dipole unless there is more than one
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kind of defect. The effect is proportional to the square of a difference

between different prinecipal wvalues of ), i.e. its elliptieity,

The change in relative lattlce constant Aa/a or volume AV/V = 3ha/a
mentioned above can be measured by accurate measurements of changes in
the lattice parameter using =xz-ray or neutron diffraction. Another
approach is to make measurements of length changes in macproscople specie
mens using strain gauges or a vernier gauge, Since equation (1.9)
indicates that the change in volume i3 proportional to the number of
hydrogen atoms, we assign to sach hydrogen atom a volume Av equal to the

change in crystal volume V, caused by its introduction

it

AV nAv = NCAy = R CAV (1.13)

or

Be  av

‘"“Vg“'* ¢ v “ (1.14)
where V, 1s the average volume of a metal atom. Rather surprisingly, a
comparison of Av for hydrogen in a large number of hep, bee, and fec
metals and alloys discloses a nearly uniform value of about 2.9 to 3 33
per hydrogen atom 1n the low concentration regicnvbﬁ)e At high o this
can fall off by perhaps 5-10%.

We are now prepared to discuss the dipole~dipole interaction
between the strain fields of two interstitial atoms. It goes asymptot-
lcally as r=3 in an infinite crystal which shows that it is indeed a
long=-range interaction. If the strain field 1s cvaleulated in a finite

lattice the boundary conditions are changed: the surface of the erystal
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is free rather than being constrained by the surrounding material., The

solution then is a superposition of two strain fields: that of a proton
in an infinite lattice, and a solution to the homogeneous equations {(no
hydrogen present) that yields the expansion needed to meet the new
boundary conditions at the surface. This latter strain fleld depends
astrongly on the shape of the material., Thus two hydrogen atomns or
groups of atoms create strain fields that depend on sample shape, be it
a sphere, rod, or foll, resulting in a shape dependence to the interac-
tion force and hence to measurable properties sensitive to these inter=-
agtioms(hg}« In a mean field theory, for example, the relaxation time
for diffusion takes on a Curie-Weiss form so that T, and the diffusion
coefficient D&kaT(TwTQ) depend on the shape. This has clearly been
geen in diffusion experiments where To for wires and foils differed by
100 K(jiww This provides direct experimental evidence that the
hydrogen-hydrogen interaction is mediated by lattice strain rather than
by some other interaction,

There may also be a short-range HeH repulsive interaction in
addition to the long range attra@hio&<1“12)» A minimum distance of
2olm2.2 X has been suggested for the HeH interstitial separation, based
on band structure calculations by Switendick and on some circumstantial
evidence regarding maximum solubilities of hydrogen in alloyﬁ(’”73k
However this is rather speculative at this point.

These interactions between hydrogen atoms lead naturally to a Van
der Waals equation of state, and in faect the metal-hydrogen system obeys
the equation better than any actual gas in the region around the critie
cal pomntthju)m This system is commonly called a lattice gas.

The discontinuity in hydrogen density at the boundary between the
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gas-1ike and liguid-like phases in such a system below the critical

temperature would cause a large difference in the lattlee parameter if
the two phases were physically separated from each other, Thus at a
phase boundary the lattice parameter mismatch can easily exceed the
maximum strain a crystal can support without developing dislocations.
Therefore, the metal may only remain coherent, or free of dislocation,
for temperatures down to a few degrees K below the critical point before
the concentrations of the two phases diverge sufficiently that disloca-

tions will develop(hg)

1.2.2 Electronic

Lffects

In the low=concentration regime, it is often found experimentally
that when a metal is hydrogenated from H, gas, the concentration is
initally proportional to p1/2 where p 18 the pressure of sz This is
called Sieverts' law, and it can be derived by equating the chemical

potential of hydrogen inside and outside of the metal, That of Hg
:Ls(jwélﬁ)

My = ugz(T) + kT an P (1.15)

2

while the chemical potential of Hin H, is 1/2 of this. In the metal,

uy can be represented byFMZ)
U, = uo + kT an (+)+ 2 (1.16)
H - MH MATTC My ’

where ug is the standard potential, the second term is the configura-

tional entropy term, and the third term represents any differences
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between the actual chemical potential and the ideal form represented by

the first two terms. Combining these, we get

1 _ C é
7l KT &n P = kT 2n K + kT 2n <m>“* AUH (1.17)

where K = QXPI(US - %ugz)/kT] is Sieverts' constant. If Aug 18 zero, at
Y

low ¢ we get p” = Ko as claimed,

The difference Lernm Apy can be split into two parts, one due to the

electron and one to the proton,

AuH = Aue + AuH* {(1.18)
The protonic term is the energy of the expansive stress on the lattice,
already discussed. The electronic term represents the rise in the Fermi
level due to £illing of the states by the added electrons of the hydrow
gen, In a rigid band model the rate of increase would just be inversely
proportional to D(EF) for the pure metal. As mentioned near the begin-
ning, in Pd this is the reason for the sharp rise of Y, above about
e = 0.6, Below that level the 5s band plus the very top of the Pd i4d
band is being filled. At ¢ = 0.6 the 4d band becomes filled and only
the Hs band with sharply lower density of states is available(1*2%
However in Pd metal there are only 0.36 eupty states in the 44
band(1”5)m Hence the rigid band model is not applicable; ithe addition
of hydrogen modifies the band structure, In fact, what apparently
happens is that the Pd 4d band remains relatively rigid, bub some of the
electrons contributed by hydrogen are in turn used for screening the

proton. These are not totally localized, bult are broadened by interac-
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tion with other bands into what looks like an extension of the broad 5s

band to even lower energy; il.e.,, it appears that the s band has been
shifted down in energy{1-2), Thus the 4d band gets filled less rapidly
than expected, as does the s band after the d band is £illed, Other
metals have not been studied as extensively as Pd but the behavior of

the electrons may be gqualitatively similar,

1.2.3 Diffusion

One very important topie from the polnt of view of the present
research is the nature of diffusion of hydrogen in metals. Below poom
temperature, hydrogen diffusivities in some metals exceed the diffus-
ivity of any other atomic species., This is particularly true in the bee
hydrogen absorbing metals such as V¥V, Nb, and Ti.

Fundamentally, as one Increases the temperature from absolute zero
four different regimes of diffusion are possible(-17), i tne lowest
temperatures true quantum mechanical tunneling should predominate. Here
the existence of a hydrogen atom in a particular energy well does not
correspond to an eigenstate of the system., Instead, the interaction
between hydrogen in neighboring interstitial sites will lead to a broad-
ening of the discrete energies into bands, Jjust as in the case of
electrons in metals, and the states will be delocalized., The matrix
element J for the hydrogen-hydrogen interaction is small compared to the
strength of the hydrogen-lattice interaction{T-17) 5o the bands will be
narrow. The diffusion rate will be limited by scattering due to defects
and phonong., Quantum tunneling has not been seen in metal-hydrogen

systems to date,

Going up in temperature, before thermal energies are sufficient to
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allow classical over-the-barrier hopping at significant rates a region

of phonon-assisted quantum tunneling 1s found, The fundamental distinc-
tion between the guantum states here and those above is that the states
are now localized., This is probably due to at least two Fa@torsvh17x
One relates to the proton=phonon interaction which limits the lifetime T
of the delocalized guantum state. When this becomes so short such that
the energy uncertainty h/t is greater than the energy width of the band
given by J, the extended quantum state has lost its meaning., The other
reason 18 that the matrix element J between hydrogen atoms in neighbor-
ing sites, and therefore the bandwidth itself, decreases with ilncreasing
temperature. This is related to the local dilatation caused by hydrogen
atoms. The local expansion results in a lowering of the potential
energy of the hydrogen in its site relabtive bto its value before relaxa-
tion of the lattice, as illustrated by site 1 of figure 1.2. This does
not imply that one site has a lower energy than the others in the loy-
temperature extended quantum state. There the dllatation and lowering
of the potential energy will be spread out over all hydrogen sites
uniformly, Here, however, when caleulating the tunneling mabtrix element
J one must take this relaxation into account. Neighboring guantunm
energy levels are no longer degenerate, which reduces J by one order of
magnitude at T = 0 and by two orders of magnitude at room temperature,
supressing tunn&limg(1”77ﬁ This further contributes to the transition
from band gquantum states to localized quantum states and causes the
hydrogen to be self-trapped.

In contrast, phonon-assisted quantum tunneling occcurs when bthermal
fluctuations in the metal lattice momentarily railse the energy in site 1

to the level in a neighboring site and allow quantum tunneling between



] P o

Figure 1.2

Lowering of the potential energy (i.,e., self-
trapping) of a hydrogen atom in site 1 relative to
original ly degenerate sites such as 2, due to dilata-

tion of the lattice,
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them. This is a thermally activated process with an activation energy

given by the energy required to bring the guantum levels in two sites to
eguality., It is now becoming accepted thal this is the process respons
sible for the very low activation energies, of the order of 50 meV, in
the bee metals at temperatures below about 250K, though it is not seen
at all in other metals,

At higher temperatures yet, thermal energies become sufficient to
allow classical hopping over the barrier to dominate., This is a result
of the higher frequency prefactors involved, which are basically of the
order of the Einstein frequency for atomic vibration of the hydrogen in
the potential well of the interstitial site. We consider an aton moving
from aslte A to a site B, Due to relaxation of the lattice all the metal
atoms are affected and the configuration space involves all 3N + 3
coordinates. Following Kehr(@”17) we introduce a coordinate £ that
follows the path from A to B over the saddle point 8. The results of

absolute rate theory(1+18) give the jump rate r:

z(g.)
- KL T s (1.19)
TT o TIEy)

where Z(gA) is the partition funetion for the hydrogen atom at site A
2 ,

and 7 (&s) is that for the saddle point subject to the restriction that

motion is only allowed in the plane perpendicular to £, Inserting the

free energy G%(g) where £ i3 kept fixed, the rate is

I'= vy exp(as/k) exp(=aH/KT) = Ty exp(~AH/kT) {(1.20)

el
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) (1.21)

M= H(g) - HY(gy)s (1.22)
Vag is the vibration freguency along the £ direction at the equilibpium
site, and TO is the renormalized vibration freguency that is measured
experimentally.,

This is strictly a classical calceculation and does not account for
gquantum effects that may be prather large since the guantum state
energles are frequently larger than kT even at room temperature., A true
guantum mechanical calculation of the Jjumping rate in the nearly=
elassiecal regime is apparently not available, though attempts have been
made to correct this in an ad hoo way by replacing the partition
function in equation (1.18) by the corresponding guantum mechanical

v&rﬁion(1°17),

2y =% exp(-Eh/kT) (1.23)
Y

and

%

*g
(g = 2; exp(-E,°/kT) (1.24)

with eigenstates E$ for states around site A and Egﬁ at the saddle
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point., The states at the saddle point are calculated excluding motion

along £, and including the potential energy differance Ug = Upe We
assume that there are three local vibrational modes at the eguilibrium
aite and two at the saddle point and that these are not coupled to
lattice vibrations, which are in turn unaffected by the hydrogen being
at the minimum or saddle point. If these local mode frequencies are

well above kT the result for cuble symmebtry is

“U_=Up- 3/2hw, + ho_
r m~%§ exp [ s A T A Sj . (1.25)

This corresponds to calculating the activation energy by adding the

difference in potential energy to the zero-point eneprgy taking into
account the decreased number of degrees of freedom alt the saddle point.
To be done correctly, all the calculations at the saddle point must of
course take into account the local lattice relaxation that may occur as

the hydrogen passes through it.
1.2.4 Local Modes

The assumptlion was made above that the local vibration modes are not
coupled to the lattice phonons. This assumption is relatively good
because the large mass mismaltceh between the hydrogen and metal atons
prevents the hydrogen optical modes from very strongly driving the metal
atoms. For low concentrations where the hydrogens are too far apart to
interact these hydrogen vibrations then become loecal medesph?g)m These
exist in addition to the normal band modes where hydrogen is vibrating

in phase with the lattice, and with about the same amplitude of hydrogen

vibration.
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An experiment that can debect ithe hydrogen optical modes is inelas-

tic neutron scattering. Hydrogen has a very large incoherent and much
smal ler coherent neutron scattering cross section 8o that neutron scab-
tering ie sensitive to even amall amounts of hydrogen and yields the
local phonon density of states. Inelastic neutron scattering in crys-
talline hydrides can frequently be fitted to a sum of Lorentzian peaks
representing the vibration frequencies along three axes in each of the
hydrogen sites, with reasonably good agreement with model calculations
based on knowledge of Lthe sgite.

Deuterium, on the other hand, has a moderately large coherent and
much smaller incoherent neutron scattering cross section, so neutron
geattering results yield the structure factor for the spatial arrange-
ment of deuterium atoms, Thus by doing elastic neutron scattering on a
deuteride one gets the D - metal as well as metal - metal distance
information.

In all the foregoing analysis we have assumed the existence of one
or a few fairly well-defined interstitial sites, present in number
comparable to N, the number of metal atoms, Put as in most material
problems, defects may also be important. In particular, deeper wells
may exist around dissolved impurities such as oxygen or nitrogen(1.9,
1.20, X‘QK)g dislocation&oh&g! 1.23, 1“2u)g vacancles or impurity metal
substitutional atomstﬁﬁg), Bach of these can give rise to an internal

friction peak, as will be seen later,

LIC GLASSES

We next turn briefly to another topic of great and fundamental

interest, that of amorphous metals, These are materials that display
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the characteristic properties of crystalline metals but lack their longe

range {crystalline) atomic order, These have been prepared in a variety
of ways, Historieally, the first known examples were produced by vapor
deposition and electro-deposition. In 1959 Pol Duwez and assoclates
first produced such a metal by rapid quenching from the 1liguid
phamﬁ(q“gﬁb, In this case the resulting metal is sometimes called a
metallic glass to distingulsh it from other preparation methods. More
recently, hydriding of a crystalline Zr«Rh alloyv“z?) and thermal
treatment of a multilayer sandwich of crystalline metalgfhgg) have led
$o the production of amorphous metals by solild-state reaction for the
first time. It is generally found that alloys are much easier to make
amorphous than the pure slements, The most common classes of binary
glassy metals are alloys of a transition metal with a metalloid (B, C,
Si, P}, or of an early transition metal with a late transition metal.
Ternary and more complex alloys are also common.

Frequently there is a close correlation between the range of compo~
gition over which an alloy can be made amorphous and the position of a
deep eutectic in its phase diagram. This indicates a relatively large
affinity of the two species for each other in the liguid state and
indicates a relatively large negative heal of mixing of the liguid as
compared to the crystalline structure. Also, in the case of liquid
guenching this tends to give a smaller temperature difference between
the liguidus line and the temperature at which the atoms become configue
rationally frozen, (i.e., the glass transition temperature Tg)@ This
allows lower cooling rates to be used while 8till quenching the alloy to
the glassy state without nucleation of erystallites., If the glassy

metal is reheated to the vieinity of T, it will normally crystallize,

g
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1a3.1 X=Ray Diffract

ion on Amorphous Metals

One of the most dramatic experimental indications that a material at
hand 18 amorphous i3 its x-ray diffraction pattern, Unlike the guite
narrow Bragg peaks seen for a polyerystalline material, the first peak
is quite broad. Further, only the first two or three peaks are discern-
ible at all, unlike a crystalline metal where many Bragg peaks can be
easily seen., Finally, the fact that no analog of a single-crystal
diffraction peak is ever seen in an amorphous diffraction pattern
indicates an isotropic structure with no long-range order.

The diffraction pattern of a material is a three-dimensional Fourier
transform of its thermally averaged spatial electronic number density,
An experimental diffraction pattern can be normalized by the X-ray
secattering form factor of the atoms involwved, then transformed back to
give the radial distribution function (RDF). This is the average
distribution of atoms around a typical atom as a function of radius v,
When this 1s computed for amorphous metals 1t shows a strong primary
peak corresponding to the first nearest neilghbor of a given atom, with
increasingly blurred peaks out to the first several nearest neighbors
(see figure 1.3a), However, though in principle this contains a great
deal of information about the structure of the wetal, in practice
surprisingly little useful information can really be gleaned from it.
What i3 obtained from the position and area of the peak is the average
distance to the nearest neighbor and the average number of nearest
neighbors (the coordination number). For binary (Axﬁ(qu)}&mOthOU$
alloys, if three measurements can be made with differing cross-sections

for the two component atoms, the partial RDF's for the A-A, A-~B, and BB
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Reduced radial distribution functions

Glr) = uﬂrgp(p)mﬂml for melt-gspun glassy metals,

E

a)s ZryPd. b). Zr,Pd annealed for 11 h at 190 C,
e). ngPdH2ﬂ7 hydrogenated in 1 atnm. Hy, at 180 C.
d). ZrQPQHB,O hydrogenated in 25 atm. H, at 180 C.

{Taken from ref, 1.12)
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pairs can be extracted along with their coordination numbers.

1.3.2 Models

The first models for metallic glasses involved the dense randon
packing of hard spheres (DRPHS)., More recently softer potentials
combined with relaxation of the atomic positions on a computer have
yielded much better fits to observed RDF's and to density measurements
which give densities higher than DRPHS modalsphag)a Inclusion of
different atomliec radli in the case of alloys and the possibility of
ineluding chemical short range order are further advantages. The
topological short range order in an alloy does not completely specify
the structure: the arrangement of individual atomic specles on a given
{random) lattice still remains to be specified, and will generally be
affected by the chemical affinity of differing atoms relative to their
affinity for their own species,

One of the pileces of information coming out of the models that is of
particular interest for this study is a counting of the available interw
atitial sites in a glassy metal., One of the early DRPHS models was
aconstructed by Bernal from steel ball bearing3(1“309 1‘3*)a From the
spatial coordinates of the centers of the balls he constructed a ball-
and-stick model, and used this to study the holes between spheres.
Allowing for up to 20% distortions of the polyhedra, he found he could
it them all into the Five categorlies shown in figure 1.4, 73% of the
holes were tetrahedra, 20% half octahedra, and the remaining 7% com-
prised the other holes, The half octahedron, trigonal prism, and Archi-
median antiprism each present four-sided faces to the outside world,

These can each be capped with a half octahedron just by adding another
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Pigure 1.8 Bernal's five hole types. a), Tetrahedron. b). Haly
octahedron. c¢). Trigonal prism. d). Archimedian anti-

prism. e). Tetragonal dodecahedron.



DT
vertex exterior to that face, leaving polvhedra whose surfaces contailn

only triangular faces, For example, doing this to the halfl octahedron
forms a full octahedron., Arranged this way, the population percentages
are 869 tetrahedra, 6% octahedra, 8% Other@“3ah

More recently there has besn considerable interest in the possibile
ity that the icosahedron may form a significant structural unit in
metallic glasses, The icosahedron is a regular polyhedron of 12 ver-
tices (13 if an atom at the center is included) with 5-fold symmetry.
For an isolated 13-atom cluster 1t is generally found to be the struce
ture with the minimum energy. The symmetry is used to partly explain
the erystallization barrler, since long-range order is incompatible with
S-fold symmetry. In a glass any lcosahedra will certainly be distorted
and their identification might have more to do with the sye of the
beholder than with any objective criteria, since they can also be
deseribed by a collection of distorted octahedra and tetrahedra,
Intepreatingly enough, ilcosahedral point group symmebry has very recently
been experimentally observed for the first time, in grains of 2 um size
in a rapidly cooled Al-Mn alloy and surrounded by an fco AL
mﬁtrikvﬁga}@ However, this has never been seen in a metallic glass.

Hecently there has been an effort to quantify more objectively the
types of interstitial holes in computer models using soft interatomic
potentials such as Lennard-Jones or Morse pwtentials(1'329 ﬁ°3n), the
latter being the softest. Surprisingly, it was found that the resulting
distribution of interstitial sizes shows two peaks corresponding to
tetrahedral and octahedral sites as shown in figure 1.5(a,b). These
become more clearly differentiated as the potential becomes softer. The

long tail at large radius presumably represents larger Bernal polyhedra,
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Figure 1.5 Distribution functions for radii of holes in inter-
stitial sites (a and b) and faces (¢ and d) found in
relaxed computer models. A Lennard-Jones pair poten-
tial was used for the models on the left, while a
Morse potential was used for those on the right, #0n
indicates the interstitial site radius for a regular
octahedron, "I for a tetrahedron., (Taken from ref.
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When the site-site correlation function vs., separation is computed,

peaks appear that agree well with the distances calculated if regular
polyhedra were connected in different possible ways. For example, two
tetrahedra might be Joined face to face, edge to edge while each sharing
a face with a third intervening tetrahedron that joina them, or edge to
edge but sharing faces with an intervening octahedron., A check for
possible clusters of atoms that could be represented as a distorted
icosahedron was negative,

Distributions of hole radii for the distorted triangular and square
faces through which a diffusing atom must jump were also computed for
these models. Again a bimodality was observed which was more extreme in
the case of the softer Morse potential., These are displayed in figure
1.5(e,d).

Polk at one time proposed that in a transition metal - metal loid
(T-=M) glass such as Feq_yByx» the M atoms might fit into the existing
Bernal holes of an imagined DRPHS metal structure formed by the T atonms
without disturbing itvk35)@ He calculated that if the metalloid atoms
went only into the three larger holes, excluding the tetrahedral and
octahedral sites, the maximum value of x would be 21%, which agrees well
with the composition at whieh it is easiest to form many of these
alloys. He also showed that the density of the alloy would agree well
with measured values for T-M alloys., It is not obvious why such a model
should be valid since the metalloid is present at quenching rather than
entering afterward and is not constrained from inducing a different
initial structure, particularly in light of the strong directional
nature of metalloid atoms® bonding. It was shortly pointed out that

Polk had overestimated the size of the holes considerably(1:36), On the
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other hand, hydrogen can be introduced after quenching and is expected

to go into all such sites, as will be discussed below. Thus understande
ing the nature of the sites is important to a study of hydrogen in
amorphous metals. Conversely, hydrogen can be viewed as a microscopile

probe of the structure, useful in its elucidation,

One final property of glassy mebtals that is of interest here is the
very large reduction in the shear modulus G compared to that in the
cerystalline verslon of the sane alloy«“37)m The bulk modulus is
reduced by only about 5-10% and 1t correlates with the atomic volume,
which in amorphous metals is larger than in crystalline form by 2-3%.
The bulk modulus is almost exclusively a funetion of atomic volume and
18 very insensitlive to atomic-scale structuﬁﬁt“38)m The shear modulus,
however, which typleally decreases in a glassy metal to something like
75% of its erystalline value, is not associated with a volume change.

Wealre, et a1¢(1'39) did an early set of calculations of the bulk
and shear wodull of metallic glasses, using Morse palr potentials., One
asimple method was to use calculated (from models) or experimental padial
distribution functions to provide the interatomic distance information,
The structure was then strained and the pair potential integrated over
the atrained RDF to provide its energy. This corresponds to moving each
atom in a s0lid as though it were a point in an ideal homogeneous
continuum. Thus there are no relative internal displacements of the
atoms, The bulk moduld caleulated in this way for hypothetical Cu, Al
Au, and Ni pure metal glasses were 4-17% lower than in the crystal, in

fairly good agreement with the results mentioned above., However, with
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this constraint of no internal motions the shear modulus is given by

G = 3/5 B s0 the relative reductions in G are the same as for B,

On the other band, in actual glasses the atoms may move to a varieby
of positions around the position caleulated above, Several sets of
about 100 atoms were taken from the interlor of one of Bennet's DRPHS
models by the same authors and relaxed using the chosen palr potential,
These were then subjected to strains and allowed, or not allowed, to
internally relax before calculating the elastic constants. With no
relaxation after straining, the results were similar to those already
mentioned. If relaxation was allowed, B decreased by about 3% over the
unrelazed value while G decreased by about 33%. This shows that relaxa-
tion by internal displacements nicely accounts for the low shear wmodulus

in metallic glasses,
1.4 HYDROGEN IN AMORPHOUS METALS

Hydrogen was first introduced into metallic glasses only relatively
r@@@ntly(qwu031“”1)m Just on the basis of what is known about glassy
metals and about hydrogen in metals one should be able to deduce at
least some of the resulting properties, If hydrogen continues to exist
as an interstitial it must surely go into the Bernal holes mentioned
above, The fact that glassy metals tend to have a density several
percent below that of the corresponding crystalline form might suggest
an increased capacity for hydrogen uptake, and this has often been
observed to be the casell1:42, 1@33)w though it is not true for
gy (T84, 1.85)

The sites occupied will clearly not all be identical; the number of

metal atoms in the polyhedron forming the site, the depth of the poten-
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tial energy well, the Einstein frequencies of local vibration near the

minimum, the helght of the activation energy barrier for hopping through
the various faces of the polyhedron, the distance to and depth of neigh-
boring wells, and the ellipticity of the site's A tensor (as mentioned
early in this chapter, and to be developed in Chapter 2) will all be
different for each site, Therefore, for a macroscopic sample each of
these quantities will be distributed over a range of values with some
distribution function, Further, some quantities may be correlated with
other quantities (e.g., well depth with activation energy).

Inelastic neutron scattering experiments on hydrogen in glassy
metals have found an optic peak that has nearly the same energy as that
in the corresponding crystalline alloy, but whose width is approximately
twice as wide, due to the distribution of kinds of altes in the glass,
In a=ZrNiH, g and a=Zr NiHy ("a" indicates that it is amorphous) the
peaks may show some structure, as does the crystal line alloy(1°”6)ﬁ
However in merQPdH3 the peak, measured at 10X with mueh better accu-
racy, was much smoother and £1it well to a Gaussianthu?). The fundamen-
tal peak was centered at 125 meV with a full widbth at half maximum
{(FWHM) of 62 meV, and the second harmonic was centered al 260 meV with a
FWHM of 146 meV. For a crystalline Zr,PdHy g3 @lloy the peak was
centered at 137 meV, with the atoms probably occupying Zru tetrahedral
sites but possibly with some ZPBPG tetrahedral sites invmlvad(i’ugh
The similarity in peak positions suggests that hydrogen may occupy
tetrahedral positions in the glassy alloy.

I=-ray and neutron diffraction measurements«m&(Zr1“xpdxxﬂ orrﬂy
with x near 0,33 and y near 0 or near 1 show that for y = 0 the first

0
maximum at about 2,90 & in the RDF contains the Zr-Zr, Zr-pd, and Pd=Pd
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partial pair contributions. As such the peak already shows some broads

ening. On hydriding toy = 1 the first maximum splits into two peaks,
as seen in figure 1.3(c,d). The lower peak al about 2.89 g appears Lo
represent Pd-Pd and Zr-Pd pairs while the upper peak at about 3.32 X is
due to Zr-Zr pairﬁiﬂ“qa? 1°R9)a Similar results were observed for
Zw3ﬂhﬁ5og Versus ngﬁhg with Zr-Zr pair distances in the hydrided sample
being almost identical to those in hydrided Zr,Pd. This indicates that
in the glassy metal the hydrogen initially goes preferentially into
sites surrounded exclusively by Zr atoms., The results of elastic neutron
seattering on the corresponding deuterides should also be capable of
yvielding this information directly as the deuteriume-metal coordination
number, but the data available to date for amorphous Zr-Ni and Zr-Pd
deutevideﬁ(mﬂg) are not of very high quality. They do indiecate roughly
Bt neighbors,

Another technique that bears information on hydrogen neighbors is
soft x-ray emisaion spectroscopy (SXES). Results on both ZrkégPd°35H1°0
and Zraﬁ?Nim33D1°O as compared to the unhydrided or undeuterated alloy
show a strong decrease in the Zr L3 band peak with simultansous growbh
of a substantial bump about 7 eV to the low side of the p@ak<7*5a>n In
contrast there is virtually no change for the Ni or Pd bands. This
reinforces the view that at ¢ = 1 hydrogen is interacting entirely (or
nearly so) with Zr atoms.

The expected distribution of activation energies has been seen for
several alloys in NMR measurements of such things as the proton rotat-
ing-frame relaxation time T.;. These measurements are sensitive to the
hydrogen residency timﬁrdbetween Jumps. When 1ln ﬂiis plotted versus

inverse temperature on an Arrhenius plot, a straight-1line f£it to the



w3}
data (as is found in the case of the crystalline hydrides) indicates a

single activation energy. The curved line found for glassy metal
hydridws(ﬁ”gﬂ) indicates a distributed set of contributing activation
energies, This will be discussed in more detail later. The hydrogen
mobility seen in NMR measurements was also much larger in the glassy
metal than in the corresponding crystalline metal.

A Pinal observation (or lack thereof) is that to date no plateau has
been seen in P-C (pressure-concentration) isotherms for hydrogen in any
glassy metall1-45, 1“§2)o It eould be that this is because critical
temperatures are low and haven'’t been encountered yvet, On the other
hand, 1t may be that the distributed nature of the relevant paramebers
{(such as well depths and effective H-H interaction strengths) causes
sach local region to require a different critical hydrogen concentration
before it reaches 1{s own threshold for the hydrogen low density-high
density phase transitlon., This would result in an overall smearing out
of the phase transition expected for a lattice gas in the perilodic

potential of a crystalline metal.
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LI THEORETICAL BACKGROUND:; INTERNAL FRICTION

The primary experimental bechnique employed in this research was
the measurement of internal friction on thin ribbons of hydrogenated
metal lic glasses, The theory of internal friction will first be develw
oped for crystalline materials where it is somewhat easier to discuss
since hydrogen occupies a single kind of site. Then it will be extended
to glassy alloys,

Historically, the fiprst internal friction peak to be explained on a
fundamental basis was the Snoek effect in bee g=Fe with carbon or nitro-
gen impuritiea(gﬂ)a It 1s now known that the impurity is interstitial
(rather than substitutional), in the octahedral site (figure 2.1(a)).
The six iron atoms around it do not form a regular octahedron., For site
1 in figure 2.1(a) the two atoms sharing the x axis are at a distance of
a/2 while the four atoms at the centers of the four adjacent unit cells
are at a distance of a/v/2, Putting an interstitial atom into site 1
will cause a local dilatation; this has already been described in
Chapter 1. Because of the irregularity of the octahedron the )\ tensor
for this site will have two equal principal values along the %2 and §3
directions, and a larger one along §§@ Thus the loecal dilatation will
take the form of an ellipsold of revolution, in this case a prolate
spheroid with its long axis along ;1. Sites 2 and 3 are crystal-
lographically equivalent to 1, but have differently oriented ) tensors,

Next we consider the response of this system to an externally
applied strain. Experimentally, a thin strip of thickness t is bent
into a slight curve as in figure 2.2(a). Traversing the sample from the

inside of the curvature out, the local strain goes linearly from its
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a)s The three crystallographically equivalent octa-
hedral interstitial sites in the bec lattice, marked
by x's, The lattice points are marked by circles.
b). A schematic hydrogen-metal pair potential, show-
ing the positions of the nearest neighbor (nn) and

next nearest neighbor (nnn) metal atoms for an octaw

hedral site.



Fligure 2.2

a). Edge view of a thin strip bent into an exagger-
ated curve., The shaded regions are small elements of
volume near the inner and outer surfaces. b), The

strain as a function of position in the strip.
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most negative value at the inside to zero at the center, to an equally

positive value at the outside (figure 2.2b). Typical maximum strains
are of the order of 10~8 or less., In any element of volume with dimen-
sions small with respect to t, the local stress is simply unixial, and
hence 18 related {to the strain by Young's modulus E. In other experi-
mental designs a torsional strain can be applied, usually using material
in the shape of a wire or rod, {0 measure relaxation of Lhe shear
modulus G

On a gqualitative level it is easy to understand the response of the
interstital atoms in a particular small region of the metal to the
strain, Since the ny = ny = 3 crystallographically equivalent types of
sites are all degenerate in the absence of atrain they will initially be
equally populated. When a negative (compressive) strain € is applied,
say along axis §1 in figure 2.1, the defects of orientation (1) will
nave thelr energy raised more bthan will atoms in orientations (2) or (3)
as shown in figure 2.3, This i1s due to the displacement of the nearest
neighbors, To the extent that the interstitial-metal interaction can be
deacribed by a pair potential as shown in figure 2.,1(b), the nearest
neighbors lie on a steeper or higher-force region of that potential than
do the next nearest neighbors of the octahedron., For atoms in orienta-
tion (1) it is the nearest neighbors that are moving toward the hydrogen
while for orientation (2) and (3) it is the next nearest neighbors,

Now we calculate the anelastic relaxation. Since we will ulti-
mately want to use elastic modulil prather than their inverses, the
compliances, we will use the dipole moment P of the force field rather
than A, To simplify the notation we will for the moment consider only a

uniaxial strain €44 and the corresponding stress element U499, and will



@ wn ow Gp Gw 4w

b

- ws @ W o w w e wn W W W s

Figure 2.3 Dependence of free energy on uniaxial strain at the
three oetahedral site orientations in a bee metal,
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drop the subscripts. The total stress will be the stress due to the

elastic modulus plus the additional siress described by eguation (1.5),

resulting in

n

t
1 v [ C
mmM&:ww}:P<c w-») (2.1)
V0 Vel v nt

where M is the appropriate modulus of elasticity and the constant ﬁ%?
hag been subtracted so that the definition of the stress will yieldya
zero value at equilibrium with € = 0. We see that ¢, =~ e/ng is the
deviation of the concentration of defects from 1is mean value for tensor
orientation v, If the defects can jump to sites of a new orientation
with a time consbtant 1, when a change in strain changes the energy
levels the concentrations will relax to new values given by the Boltgze
mann distribution. Thus we have an lunternal variable whose equilibrium
value i3 a simple function of the external strain and which does not
respond instantaneously, but relaxes to the new value with a characterw
istic time t. This internal variable also affects the stress associated
with the strain via (2.1), 8o it is macroscopically observable. The
stress o will display an instantaneous elastic response given by the
first term in (2.1), followed by the relaxation to a new value given by
the second term, as shown in figure 2,4,

As an aside, this general phenomenon can also result from other
internal variables that couple to the strain and require a finite time t
to relax to a new value, The thermoelastic effect is one example, The
strain at a point in the material in figure 2.2 gives rise to a change
in temperature proportional to the thermal expansion coefficient(2:2),

The strain gradlent resulis in a thermal gradient whieh then relaxes in
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Figure 2.4 a), Application of a strain step function b). The
resulting stress is Iinditially the Hook's law unre-

laxed value Oye This then relaxes to the walue ORe
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a time characteristic of thermal diffusion across the material. This

time constant depends on the thermal diffusion coefficient Dyp. Other
examples of internal relaxations include those due to the magnetoelastic
effect, grain boundary sliding, and motion of dislocations in the pres-
ence of pinning centers, as well as relaxations of point defects more
complicated than those of a simple interﬁtitial<2°2)@ These latter
defects could be pairs of interstitial atoms {(more common at higher
concentrations), interstitiazl-vacancy pairs, interstitial-substitutional
paira, substitutional«=vacancy pairs, substitutional-substitutional
pairs, ete, All of these relaxations are seen in the appropriate cir-
cumstances, Any such reversible relaxation of bhe stress (or equiva-
lently, the strain) to a definite equilibrium value which is a2 function
only of the strain {or stress) and the temperature, is termed anelasbtic.
This is to distinguish it from plasticity (which for our purposes is
nearly instantaneous in response, bub not reversible or linear) and
linear viscoelastiecity (whiech like anelasticity is linear and not
instantaneous, but is not reversible).

Continuing now with the caleulation of the anelastic part of the
stress, and following Nowick & ﬁ&pry%ﬂ2°2) ana10g0u3>d%V$l®Dment for

the strain, we write the differential of the free energy per unit volume

£,
df = o de - s dT m%:i\vdcv (2.2)
where
. af
A, = - 3c. /. : (2.3)

v/ T, e
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Then subtracting from £ the contribution due to the configurational

entropy s, per unit volume

£ o= f 4 Tg@ {2.4)

and caleulating the change in this modified free energy due to a defect

of orientation v, we define

q)' P V m (2&5)

where Nv i3 the number of dipoles of orientation v per unit volume.
Then @viﬁ the free eneprgy associated with having a dipole in orientation
v, including the vibrational entropy but not the configurational en-

tropy. From (2.2) we get the Maxwell relation

= -ls =y P (2.6)

where the latter equality 13 just equation (1.7)s Then since the con-
figurational entropy in (2.4) depends on e, but not on £, from sguations

(2.3), (2.5), and (2.6) we have

M@W_ = e p\) (29?)
£

which is the relation we seek. The existence of a dependence of stress
on defect concentration implies through (2.6) the existence of a depen-

dence of the energy levels on strain, Integrating this for small £, we
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get

\Y

¢

H

- PYe + ¢¥ (2.8)

where §§mouLd be a function of e, = e/ng and temperature. For small
concentrations where defects are too far apart to interact significantly
@v ahould become independent of e, = @/mt and ¢? should go to zero:

Voo pYe (2.9)

Now we are ready to calculate the equilibrium population ¢, of

defects with orientation v. Using Boltzmann statistics we have

v _ exp(0"/kT)
¢ Z exp (=oM/KT)

(2.10)

Assunming ¢u1kT << 1, an excellent approximation,

C \ U
oL [1 - %w»}{ 2 Szb} : (2.11)
[ Ny AT
Inserting {(2.9) we have
e C Ce E v u]
C, -~ T | P - 2 P (2.12)
v nt ntkT ﬂt "

We see that the change in population is proporticnal to the strain, the

el lipticity of the double force tensor (in brackets), and the concentra-
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tion, and inversity proportional to the temperature.

Now putting (2.12) back into (2.1) we get, at equilibrium,

o _ c ve _ 1 VNZls oy oM o= M 2.1
SE M- g |2 (P - g (ZP ) o R - (2.13)
ot V t \wv

In the second equality M has been identified as the unrelaxed modulus
M, & Mp(1 + A) while the second term is 8M, the anelastic part of the
modulus, and the dimensionless relaxation strength A is defined as
ﬁM/MR, The unrelaxed and relaxed moduld give the stress at t = 0 and
t = o respectively as shown in figure 2.4. This conpletes the calcula-
tion of the equilibrium condition,

We are now ready to consider the differential equations that
desoeribe the relaxation process between the initial and final limits
Just calculated., Nowick and Berry in reference (2.2} have considered a
series of increasingly complex models and shown that the simplest mechw
anical model that exactly reproduces the behavior of an anelastic solid
is the one shown in figure 2.5. It i3 a spring of modulus &M in series
with a Newtonlan dashpot of viscosity n = t8M paralleled by a second
spring of modulus Mp. Upon sudden extension the dashpot is initially
not extended at all while both springs are fully extended so the modulus
is Mu = MR + &M. The dashpot then extends until the stress in the
spring in series with it 18 zero, whereupon the modulus is Mp. The

differential equation that follows 1s(2:2)

o+ 10 = MRE + TMUE (2.14)

This c¢an be solved to give the step response



T

oM
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Flgure 2.5 Mechanical model for the anelastic modulus., Mp is the
relaxed modulusg, &M is the anelastic modulus, and W
is the Newtonian damping which provides a time cone

stant ¢ for relaxation.
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M(t) = MR + &M exp(-t/T) - (2.15)

The relaxation strength A = §M/Mp is frequently small, e.g., 102 to
1@”6 or smal ler, and hence difficult to measure quasistatical ly with
good accuracy. A better way is to make a dynamical measurement.
Assume that a sinusoidal strain is applied. We expect the stress also

to be sinusoidal bui possibly not in phase:
£ = emexp(imt) and o = (00 + ﬁﬁl> exp(iut) (2.16)
Substituting these into (2.714) and separating the real and imaginary

parts, we get Ty + 161 = M(m)@w where now we have defined a complex

modulus M{w) = My + iM,. Then

M] = Mu - (SM “”“w”j“w (2017)
T+ (wt)
and
M, = oM —2 o |
2 1%(wT)2 {2.18)

We can understand these as follows, For v <<{ 1/w the internal
variable (e.g., the interstitial atoms hopping to more favorable sites)
is always nearly in equilibrium with the instantaneous value of
the strain. In this limit the real part of the modulus approaches
MR = M, = &M, the relaxed modulus, The stress almost keeps up with the

strain so the out-of-phase part of the stress approaches zero, At the
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other extreme, for tv>> 1/w the internal variable barely starts to relax

during one half-cycle. The real part of the modulus approaches the
unrelaxed modulus Mu9 while once again the out-of-phase part approaches
zero because the amount of relaxation allowed during one half cycle is
small, Finally, fort = 1/w the real part of the modulus takes an inteprw
mediate, partly relaxed value while the phase lag between £ and o©
reaches a maximum. Hence MQ reaches its maximum value of 6M/2 at
wt = 1, A peak with the form of equation (2.18) is called a Debye peak
and is shown in figure 2.6(a). M; is shown in figure 2.6(b). It
decreases by M in passing through the region where wt = 1. Note that
this reglon of decrease is narrower than the width of the M5 peak. My
and M, are not independent. FEach contains all the information about the
anelastic part of the modulus, and they are related by Kronig-Kramers
relatiomg(g“g)e

For a resonant system composed of a mass and a spring with an
anelastic component, the imaginary part of the modulus minics almost
exactly the effect of the damping term in 2 damped harmonic oscil lator,

The latter has the differential equation
mx 4+ yx + Mx = F(t) . (2.19)
Inserting P = F@@imt and x = xoéth@ this gives
[(wz + mg) + ‘i(f%g] Xy = Fo/m (2.20)

2 M
where woo= = and mg-x-%, For an anelastic spring and no Newtonian

Q
damping, we have
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Figure 2.6

a), The imaginapry part Mg of the modulus versus
in(wr). b). The corresponding dispersion in the real
part M1 of the modulus, For a thermally activated
process the abscissa can be replaced by 1/T, to

within the scaling factor Ea/k,
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mx + (M1 + iMZ) x = F(t) (2.21)
giving
(«wz + wg) + %3» Xy = %94 (2.22)
where in this case
Wl = ﬁﬁ% and ““é . Tﬁ-fl (2.23)

For small Q! these are almost indistinguishable, The phase lag of the
response causes an energy loss proportional to the imaginary part of the
modulus, A8 was just pointed out this loss term is a funection of wrt and
peaks at ot = 1, while W 4is also a function of wrt and goes through a
decrease near ot = 1,

In internal friction measurements the mass of the material itself
is used or else an additional mass is introduced, to create a resonant
system. Efforts are made to eliminate danmping from any other sources
such as ailyr or the clamping mechanism that holds one end of the speci-
men, In the vibrating reed method depicted in figure 2.2(a) no added
mass is normally used, allowing excitation of the first several flexural
modes having 0, 1, 2, ...y nodes beyond the clamped end, Frequencies
range from perhaps 50 Hz to 10 KHz or more. In a torsion pendulum a
mass is added to a wire to establish a single frequency of vibration,
typlecally of the order of 0.1 to 1 Hz.

In either case two methods are availlable to measure the relaxabion
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strength A, The system can be driven into oscillation, the driving

force removed, and the free decay of oscillation observed. Alternative-
1y, from (2.22) we see that the steady state response to the driving

force is

F wzmwz - iwg/Q
x{w) = — —2 (2.24)
m (mgme)Z ¥R wg/QZ

The imaginary or 90% part of this expression is an approximately
Lorentzian peak tThat can be measured and fitted to values of w, and g~
to yield the elastic and anelastic moduli, The measurements in the
present work wepre made in this way. As an alternative to internal
friction, another common type of measurement 18 ultrasonic attenuation,
Here a sample is driven at ultrasonic frequencies at one end and the
loss term is measured from the abttenuation of the vibration amplitude
with distance along the specimen,

Next we consider the specific case of a thermally activated time
constant for relaxation, t = TQexp(Ea/kT)g the inverse of equation
(1.20). Writing the imaginary part of the modulus in terms of 1n wr, it
then becomes

M2 = Q%:sech(ﬁn wt) §ﬂ>sech(ﬁn wr Ea/kT) . (2.25)

i

In this case the peak could be traversed experimentally eilther by vary-
ing w or by varying t via the temperature, From an experimental point
of view the latter is usvally much easier since only discrete (and

widely spaced, in the case of a vibrating reed) values of w are avall-
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able without changing the dimensions of the sample under study. When

plotted versus 1/T (figure 2.6), M, is symmetrical about the point where
=-1n wt, = E,/kT, with a width inversely proportional to E,. Since in an
experiment both Ej and T, are unknown and of interest, at least two sets
of measurenents are needed to allow thelr computation, Q"““"i must be
measured versus temperature for two or more discrete frequencies w,
Then, since at the peak wt = 1, one could plot lnw = -ln Ty = Ea/kTpeak

versus 1/T The slope gives Ea and the intercept gives 1. However

peak’
this 18 very wasteful of the data since only the peak value is being
used, It is betlter to use all of the data, as will be discussed in
Chapter 4. Furthermore, the position of a peak is always difficult bto
astimate accurately from experimental data, and caleulated values of To
and Ea depend very sensitively on the (relatively small) shift in peak
temperature,

Now in genepral 1t may be the case that more than one relaxation

is present, each possibly with its own relaxation strength M and relaxe

ation time t, For n relaxations the complex wmodulus M(w) is then given

by(QQZ}

M M M 6)
= - S - (202
1 ot
v ﬁ%j 1+(mTi)
and
n, Y
M, =2, My ——5 (2.27)

where for the thermally activated case 1y = Tmi@xp(ﬁaifkT)m Each term

in the sum in (2.27) produces 1its own Debye peak, which will be olearly
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separated from the others only 1if its time constant t is separated from

the othepr peaks® time constants by a ratio of the order of the width of
a Debye peak., The Debye peak's full width at half maximum (FWHM) is

given by t /1 = (2 + ¢§)2 z 13.9, where ¢, are the values at the upper

&
and lower hal f-amplitude points.

in a single-crystal sample substantially wore information is
avallable from the symmetry properties of the defeets(g“ax, In order to
have anelastic relaxation the defect symmetry must be lower than the
prystal symmebry which it breaks, allowing more than one orientation of
the strain dipole tensor. Thus a defect with cubic symmetry (i.e,, a
spherical dipole tensor) can not be detected by internpal frietion, and a
tetragonal defect can be detected only 4f 1t exists in a cubie ecrystal,
Furthermore, even a defect of lower symmetry than the crystal may have
certain directions about which all defect orientations are symmetrical,
A strain along that axis then affects thew all equally, leaving them
degenerate in energy. Finally, a spherically symwebric strain field
(uniform compression) will not split the energy levels of any defect
type: the bulk modulus cannot have an anelastic component if only one
defect type is present,

In general the angular dependence of the anelastic relaxation
strength can be compubted by simply putting the equivalent of equation
{1.12) for the stress dipole tensor into the full tensor form of equa-
tion (2.13). Then by measuring the anelastic relaxation strength as a
funetion of orientation with respect to the crystal axes the defect
symmetry can be deduced, In fact it is usually sufficient just to
measure it along two or three high-symmetry directions. Nowick and

Berry present in reference (2.2) the selection rules along important
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symmetbtry axes for defects of each symmelry system occurring in each

erystal syametry type.

e see from equation (2.13) that internal friction gives a measure
of the shape factor %(PEJ)H - (%EEJ)Z = §(P§j“§ij)2’ which reduces in
each particular case to an expression involving squares of differences
of the principal values Py, such as (P, - Pe)g or (Py ~ (Py + PB/Q))Q,
ete, Hence the data can only give bLhe magnitude and not the sign of
these differences., We have seen in Chapter 1 that measurement of the
change in lattice parameter with concentration yields the trace of A,
and therefore TraceP = Py + Py + ?3 through equation (1.8). Fregquently
with a knowledge of the defect site the sign of the shape factor can be
guessed., If so, putting this information all together can give numerical
values for the prineipal values of the strain dipole tensor.

In metallic glasses, of course, the above single crystal sym-
metry measurements are no longer possible, and in general as already
mentioned in the case of hydrogen interstitials the well depths, activa-
tion energies for hopping, values of t,, and size and ellipticity of the
strain dipole tensor will all be distributed quantities. The sums in
equations (2.26) and (2.27) will be replaced by integrals over the
distributed quantities. Because the overall size of the strain dipole
tengor as well as its degree of el lipticity are variable, seven sites
such as regular octahedra with a gymmetric tensor will contribute to
internal friction, Two such adjacent sites with different values of 2
would experience different changes in their potential energy with strain
and contribute to the anelastic relaxations

Internal friction peaks due to hydrogen have been seen in both

metal-metal lold and metal-metal glasses in recent years, and have in
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each case shown a peak 2-4 times broader than a peak due to only one

Debye peak, with a much broader tail on the low=-temperature than the
high=-temperature side“hg)@ This can be explained by a distribution of
relaxation times with a shape crudely similar in form to that of the
internal friction peak, The question then is whether this distribution

is due to a distribution in t. or Eag This will be discussed in detail

©
in Chapters 4§ and 5.

Brief mention should be made here of the Goraky effect, for it
is a very useful technigque that is closely related to internal friction
neasurements of point defect relaxations., The latter measure the shape
factor or ellipticity of the dipole strain field and involve ®lopcal®
reorientation of the defect; where local in this case means that the
defeet moves only by distances of the order of the lattice parameter in
the process of reorienting. On the other hand, the Gorsky effect
depends on the overall size or trace of the dipole strain field and
involves long-range diffusion. Typilcally a rod or foil-shaped sample is
subjected to a constant bending strain. The uniaxial strain gradient
across the specimen has a pure dilatational component which causes a
gradient in the chemical potential. Relaxation oceurs by diffusion of
the defects from one side of the sample to the other, Relatively rapid
diffusion is required even for very thin samples in order to allow a
reasonable measuring time, so this has been used mostly on hydrogen in

metals,
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JLI APPARATUS AND EXPERIMENTAL TECHNIQUES

ATION AND HYDAOGENATION

3.1.1 Appapatus

The apparatus used for introdueing hydrogen from the gas phase into
amorphous zrgPd ribbons is shown in figure 3.1. It is not sophistiecated
but since it worked well for the present alloy it was not upgraded. The
cold trap was used to remove impurities from the H, gas, though this
does not help with O, or N,, which were present in the bottled Hy gas at
less than 5 ppm. The pressure gauge was a large dial gauge with a
sensitivity of better than 0.2 torr. The pump used was a small mechan-
ical wacuum pump which was run conbinuously when the system was not in
use to keep outgassing rates down., The valves were Cirele Seal O-ring
stopeock type valves, whose original O-rings were replaced by ones of
superior hydrogen imperviousness, The plumbing was all soldered copper
tubing except for the specimen holders, which were made of pyrex or
quartz glass and were connected to the rest of the system with an O-ring
flange joint. The furnace was a vertical electrical furnace which could
be moved down and away from the specimen holder to let it cool. The
outgassing rates were typically such that the pressure due to extraneous
gases prose by about 5 x 19“2 torp/day. At this rate, and especially if
a rough correction was made, the slow increase in pressure did not cause
an appreciable error in the calculation of hydrogen uptake by the metal.,

The furnace temperature was controlled Lo within about %1 X. The
vertical temperature profile in the furnace was measured., It had a

maximum near the center of the furnace, with a region 3 cm long over
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which the temperature variation was *1/2K. The sample holder was

adjusted to hold the samples, which were usually 1-2 cm long, centered
at the maximum,

In order to measure pressure vs, composition (P-C) isothernms, H2 gas
was introduced into the apparatus with the sample either at room temperw
ature (Tr) or at the temperature of the furnace (Tg). The volume of the
system was known, so pressure and temperature readings yielded the
quantity of hydrogen. Then the metal was allowed to absorb the gas
until equilibrium was reached, whereupon the quantity of remaining Hs
gas was measured, The difference divided by the amount of metal gave
the concentration, and this was plotted vs., the equilibrium pressure,
Then more hydrogen was introduced and the above measurements repeated.
In this way a set of points on the P-C diagram was obtained for that
temperature. For amorphous Zr,Pd the uptake of hydrogen was limited by
the condition of the surface. The rate of uptake was always initially
relatively slow, and increased by many orders of magnitude as further
absorption and/or desorption occurred. This is commonly the case for Zr
&llﬁy$(3ﬁ)e Further, just cleaning the surface with methanol in an
ultrasonic cleaner significantly reduced the hydrogenation time,

The details of the procedupre are only slightly more complicated than
Just described. In order to measure the pressure accurately it must be
constant, necessitating very slow uptake of hydrogen, or measurement
before introducing it into the specimen chamber. The former was usually
feasible with the sample at 200 C only when first introducing hydrogen,
Later, after the surface became activated, the absorption rates becanme
very high, in one case so high that a new charge of hydrogen would be

absorbed in 2-3 sec., and absorption was visible on the gauge even at
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room temperature, Therefore, valve number 2 in figure 3.1 was intro=-

duced and the total volume VT and the chamber volume Vc {(beyond the
valve) measured, Then, before introducing a new charge of gas, the
existing gas quantity in the chawber was calculated, valve #2 was
closed, more gas was introduced into the gauge side and measured, and
the quantity of gas in the new charge added to that in the chamber,

A second complication arises from the fact that it is necessary
to keep the sample at Tf while making the pressure reading for the PC
diagram, for use both as the pressure value on the diagram and in
calculating the amount of hydrogen just absorbed, If this reading were
made at room temperature the properties of the isotherm at Tf would not
be measured. In order to calculate the quantity of gas present in the
apparatus the detailed temperature profile would be needed, However,
the assumption was made that the profile had a shape independent of the
values of T, and Tf but that it was proportional to them. Then the
pressure with the chamber at Tf wag calibrated against the ppressure at
Tr to check the above assumption, which was found to be good in the
temperature range of interest., Mathematically this is just equivalent
to having a certain volume at Tf, and the remainder at Tpu

A final correction had to be made due to the fact that the volune
in the pressure gauge ochanged significantly with pressure, This funce-
tlonal dependence was measured by using a falrly large chamber, filling
the total volume with gas, isolating the chamber with valve # 2, pumping
out the gauge side, then opening the valve and reading the new lower
preassure. This gave the ratio of Vg to Ve Hepeating this process gave
VT versus pressure. Programs for the calculation of various quantities

from other quantities were written for a hand-held calculator.
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All the actual hydrogenation of samples was carried out at 200 C to

maximize the rate of absorption while avoiding crystallization, which
may occur at 215 C in a=ZryPdH;(3-2), For the present study only the
isotherm at 200 C was measured since it did not show any interesting
behavior such as a plateau like that seen in crystalline metal-hydrogen
systems, though this fact is of interest in itself and will be discussed
later., The isotherm 1s shown in figure 3.2. The pressures were too
small to measure with the present apparatus up to C = 0.73, a result
consistent with other Zr alloys with their large negative heat of mixing
with hydrogen“ﬁg)o The isotherm was used to predict the amount of gas
needed to hydrogenate a sample to a given concentration, while having

enough gas left over to supply the equilibrium pressure,

3.1.2 Sapples

The a=2ry,PdH, samples that were used for internal friction were
made by the melt-spinning method., Briefly, the molten alloy is squirted
under pressure onto a rapldly spinning copper wheel, where it forams a
thin layer. The cooling rate, of thevorder of 106 QClﬁp is sufficiently
high to bring the liquid below the glass transition temperature before
erystallization takes place. The resulting ribbon is typically approxi-
mately 40 um thick, 1-2 mm wide, and can be many meters long. The
ribbons were all checked by x-ray diffraction for the presence of any
erystallization, and only completely amorphous specimens used. They
were then held flat in a clawmp between pieces of glass to prevent
curling, and hydrogenated. Finally they were checked again to make sure
that no crystallization had occurred. The initial sample used was not

hydrogenated at all, though it was annealed three hours at 200 Cin
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vacuum after having been stored in air for about 3 months.

After an internal friction peak was seen in this sample the deci-
sion was made to hydrogenate further samples and observe the behavior of
the peak. This showed, as has been the case with internal friction
peaks in other unhydrogenated awmorphous alloy3(3A» 3°5)9 that the peak
was due to hydrogen. It may be that 1t was already present as an impure
ity in the Zr or Pd parent metals, was introduced in the alloying or
melt-spinning process, or was absorbed from the air afterward.

The Zr,PdHy internal friction specimens each came from different
ribbons, They were prepared at concentrations of 0.23, 0.64, and 0.86
H/M, The ¢ = 0.23 and ¢ = 0.64 ribbons were made from high purity
(99.999%) Zr and Pd starting wmetals, Normally two or three strips about
1.5 « 2 em in length were used. This was done both to raise the hydrogen
pressures needed for these small samples, thus improving the relative
accuracy of pressure measurewent, and to ensure a better choice of
sample in the common event that significant curling occurred in spite of
the clamping procedure. In the case of the 0.23 concentration the two
1.5 om strips were cut from a 3 cm pilece of ribbon before hydriding.
Soon after hydriding them it was realized that this was a mistake
because for this concentration the equilibrium pressure is very low, If
one sample were to start absorbing before the other and take up more
than its share of hydrogen, there would be no effective way for equili-
bration to occur by hydrogen transfer from one to the other. However,
DEC and x~ray diffraction measurements carried out following the
internal friction measurements showed that the hydrogen concentrations
in the two samples were approximately @qu&l(3°6h Nevertheless, the

concentration for this sample is slightly uncertain, to the extent of
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1 at. %.

The ¢ = 0,86 sample was exposed to air for 1 minute at 200 ¢ after
hydrogenating in an attempt to inactivate the surface and seal in hydroe
gen, Internal friction measurements on a particular vibration mode of
this sample repeated several months later agreed with each other to a
fraction of a percent, the normal error level, This shows that no
hydrogen had escaped in spite of the fact that the H, gas pressure in
equilibrium with this concentration is 0.14 atm at 200 C and roughly
0,10 atm at 25 C. This exposure to air was not repeated for the
¢ o= 0,68 and ¢ = 0.23 specimens hydrogenated later because their egui-
libriunm H2 pressures are exceedingly small. All the specimens were
hydrogenated at 200 C for a period of several days.

The Yﬁuyegﬁ sanples were made by the piston-and«anvil teche
niqu@(3°7) a8 1=2 om diameter folls., Strips were cul from the center of
gach foil for internal friction measurements, The surface was sanded
with fine sandpaper to relieve surface stresses whieh otherwise caused

the specimens to curl with time and thermal cycling.

APPARATUS

The internal friction apparatus 1s shown in figure 3.,3. The specie-
men, almost 2 cm in length to leave about 1.3 c¢m hanging free, is
clamped between the two halves of a stainless steel clamp machined to
have sharp, clean corners at the point where the specimen emerges. This
is to minimize any losses that may oceur due to friction at the clamping
point. Three spring washers were used below the head of each of the two
stainless steel cap screws that clamp the two halves together. The

screws were tightened to the point where the spring washers were
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completely flattened, then released about 1/4 turn., This provides a

clamping force which 1s relatively constant over the several hundred
degree temperature range of measurement. If springs were not included
differential thermal expansion could cause much more radical changes in
clamping force. In addition to the protruding sample a second pribbon is
laid into the clamp perpendicular to it (forming a tee shape) o provide
stability from rocking motions of the clamp halves over the sample.

The entire probe was evacuated by a diffusion pump which ran cone-
tinuously. A simple calculation based on molecular flow shows that the
pressure at which the gas will cause an error of 19 at a Q=1 or 1073 in
the lowest vibration mode, the worst case, for a typical vibrating reed
sample is about 10=3 torr., Pressures were not measured in the probe but
were probably well below iﬁmm torr when the probe was immersed in LNEe

The sample in 1ts clamp was then held in a thick square-tubulap
copper housing which is split lengthwise to allow positioning of the
clamp at any position along its vertical axis, accommodating different
sample lengths. The housing also serves to support the drive and
receiver electrodes, to maintain a thermal shield around the sample and
to provide isolation from vibrations., The electrodes are threaded to
allow adjustment of thelr distance from the reed, and mounted in Teflon
sheaths for electrical isolation. The mechanical isolation comes from
suspending the housing from two small wire loops. Surrounding the
copper housing is a heat shield which is maintained within a few degrees
of the housing's temperature. Its top part serves as a platform from
which the housing 1s suspended, and has a hole in its center for wires
(and vacuum) to pass through. Finally, the outer can maintains the

vacuum seal and conducts heat out to the LNa or LHe bath, The experi-
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ments were conducted primarily from 80 K upwards in a LN, dewar, but

some measurements were made down to 10 X in a LHe dewar to check for the
presence of any lower-temperature peaks (which were not found).

The housing, c¢lamp and sample were heated by heaters in each half of
the housing. The temperature was measured by a silicon diode tem-
perature sensor mounted in a hole in the elawmp about 1 mm from the
sample., A Lakeshore DTC=500 temperature controller was used to maintain
the temperature constant to within about 10 wK. The sensor was cali-
brated against a platinum resistance thermometer (prt). The prt was
calibrated by measuring its resistance at 4.2K, 77.36K, and 273.15K.
The first and third values were used in a two-point prt calibration
method published by Besley and Kemp(3i”a

The heat shield was heated separately using a pair of thermocouples
operating between the sample housing and the heat shield to measure the
temperature differential between them., The temperature was controlled
using a Harwell temperature controller, which was turned off while
operating below 95 K to allow temperature stabilization.

The one-dimensional vibration isolation provided by the two-wire
suspension of the housing is parallel to the direction of vibration of
the reed., Vibrations along the vertical or the other horizontal axis
lie along the length or width of the reed and should not couple to the
vibrations of interest. Further isolation from external vibrations was
provided by the fact that the probe is suspended from a collar at itas
top end, 1.5 meters above the reed. It was found necessary to use a
thin foam between this collar and the supporting stand, and to put the
entire stand and dewar on an 8 cm thick foam cushion. In addition the

wires from the instrument rack and the rubber hose from the diffusion
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pump had to be mechanically secured, in the latter case to the wall,

then to the support stand, before going to the top of the probe. This
eliminated all external vibration sources except for that due to the
bubbling in the cryogenic ligquid, which could be reduced by a factor of
3or 8 by £illing 1t up to a high level so that the buprsting bubbles
were well above the position of the reed. Also, at temperatures above
about 150 K where the bubbling got worse, this problem could be reduced
significantly by lifting the probe above the level of the cryogenic
liquid while still retaining enough cooling to be able to maintain a
stable temperature., The mechanical vibration problem falls off pradi-
cally for reed vibration modes higher than the fundawmental, as will be

axplained below.

3.3 ELECTRONICS

323:1 Drive Systen

The overall block diagram for electroniec measurement and control is
shown in figure 3.4. As was mentioned in Chapter 2, Q=1 was measured by
recording the response (equation 2.24) versus fr@dmency at nine points
over an interval of twice the FWHM. The reed was driven electrostati-
cally by a sine wave voltage applled to the drive electrode. The vie
brating reed and the receiver electrode form a capacitor. A relatively
large DO voltage, usually about 50 V, applied to the receilver electrode
induced an oscillating charge on the electrode, and this current was
amplified and measured. Using a lock-in amplifier, one can measure
either the real or imaginary part of the response, or any linear combi-

nation of them by setting the phase. The imaginary part, which is close
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to a Lorentzilan, was used because it is superior for measuring Q“1@ As

we will see below the current measured is then given by

w3 /Q
“yra/Qf

) = 1, (3.1)

(mgmm

We consider first the drive electronics, The most striangent
requirements on the frequency stability occur on the steep aide of the
Lorentzian response when the width Q“1 is small. Taking the derivative

of T{w) and evaluating at the half-amplitude points w = w,(1 % gﬁ)wme

first order we have

a1 ~ 1 Q (3.2)

1,._.,.‘.» TR s s () = Q % (303)

The smallest values of Q“1 ever measured were 2 X 10“” and the smallest
measurable response increment ﬁi/imax was about 10”3 30 the mayxyimum
fregquency stability needed was Sm/mo = 2% 10”’”7y over a wmeasuring
period of the order of minutes. This required the use of a crystal
oscelllator, A phase~locked loop was bullt with three user-sebtable
divide counters. The 10 MHz crystal frequency was divided by Nq, mul bl
plied by NE* then divided by'NB where Nﬁ and NQ range from 1 to 100 and

NB goes Lo 106w This ensured that some combination of the three numbers
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could be found which will yield a frequency satisfactorily close Lo any

desired value. The numbers were calculated by a small calculator
program. The frequency drifts observed were about 2 x 10=6 overnight,
less than 4 x 10”7 over an hour, and perhaps 10“7 over a few minutes,

A square wave at frequency w/2 went to an integrator which was
built with aubtomatic gain control (AGC) to adjust the integration rate
to yield a constant-amplitude triangle wave at any freguency in the
range 10 Hz = 10 MHz, This was bullt into a plug-~in unit for an HP
33004 function generator whose triangle to sine wave converter was used
to yield the drive signal. The drive had a maximum amplitude of 10 ¥
rus and showed an amplitude stability of about 5 x 10“”, Harmonics at
wy; 3w/2, o .. are also present at a low level. The close proximity of
the drive and detector electrodes unfortunately allows the latter to
capacitively plek up the drive frequency in addition %fo detecting the
reed motion. One advantage of the present arrangement is that the drive
volbtage i8 at w/2 and hence is filtered out by the lock-in amplifier,
However any sin ot drive harmonic looks like a signal and 4f it varies
with time it adds noise to the response. The dual AGC feedbacks in the
square~to=-triangle converter seem to generate just such a low level
harmonic whose amplitude varied at frequencies below about 0.1 Hz, which
was a minor annoyance, Coaxial ground shields at the electrode tips
reduced the capacitive pickup by over a factor of 200, unless the reed
{(which is at ground) was narrower than the electrode, allowing the
drive's electric field to lesk around it to a greater extent.

The force on the reed due to the electric field 18 given by the
gradient of the electric field energy. For a drive voltage given by

Y = szin(wt/a)? the force is



(1+cos wt) (3.4)

where A is the area of the electrode facing the reed, g, is the permit-
tivity of free space, and d is the reed-electrode spaecing. The reed is
driven at twice the frequency of the voltage,

A small asymmetry in noise level was consistently noticed between
the low- and high=frequency sides of the response peak. This can be

explained by an interference between the effects of two harmonic bLerms,

as follows. Writing

x(t) = x, *+ x; sin wt + x, cos wt (3.5)
and
Vi(t) = ¥y sin (%‘t) + Wy, sinat + Vyy cos wt
+ Y in 3wt + v Cosgwt"ﬂ“ (3.6)
we have
e A e A
. 1 2
F(t) = % = (v](t))z - g s Ve (3.7)
(d;(t))" (d (1))

where d, and dq are the time-varying distances to the receiver and drive

electrodes,
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and likewise

Ingerting (3.5) into the left side of equation (2.21) and {(3.7) into the
right, keeping terms only to second order, and throwing out all terms on
the right (in the force expression) that do not have a time dependence

of sin wt, cos wbt, or a constant to mateh those on the left, we get

o[ W ,
X, == [Fy = Fy [1-=%)) (3.10)
mCUO dﬂi

after some algebra

2
mg( ] iigz) Y, (2 . wz)
= F] : v] V1 ’ (3.11)
17T W 4 ’ .
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Fj = mp“ﬁrzm and F? e o (3“‘“4)
&d1 2do
and
do = do X, and dy = dy = xg (3.15)

Typical values of xqs the quantity measured, are 2,5 um for the lowest
mode at about 100 Hz, which gives a maximum strain of about 5 x 107,

The noise asymmetry can now be explained. It results from the
second term in the numerator of the response, equation (3,11). This
term results from the cos 3/2wt harmonic and changes s8ign as w goes
past Weye The qu sin wt component, which is capacitively picked up as
already mentioned, 18 independent of w. If V32 is correlated in time
with V21, they will add on one side of the peak and subtract on the
other.,

Aotually (3.10) and (3.11) are more useful than their use above
suggests, as they display several other more important effects. First,
the mean position do {or dq) of the reed is changed, as indicated by
(3.15), because of the DC forces F, and Fq from the two electrodes, with
F1 < 08 “Fm for the voltages used. If the electrodes are positioned
wrong initially or the reed curled slightly with time, this force can
pull 1t completely over to the receiver slectrode and short it out, or
at least bend it so close that the forces become nonlinear due to x(t)
becoming a large fraction of d. In this case the reed sees a signifi-

cantly larger force when it is close Lo an electrode than it does 1/2
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cycle later, providing a (nonlinear) feedback. This can be tested for

by reducing the voltage and looking for changes in the response, or
simply by observing a poor £it to the theoretical form of the response,

Another frequently used test was to trade the connection to the
drive and detector electrodes, thus exchanging their funetions, If
dy # dq, quwill change according to (3.13). This results from the fact
that both DC forces (equations 14), being proportional to +3x to first
order in x, just mimic the elastic modulus and both reduce it. Applying
the larger voltage, Vov to the smallepr of d, or dy results in the
largest modulus reduction. Interchange of electrodes was used, then, to
test for reed centering, If wL was very much higher for one connection
than for the other, the electrode positions were adjuated. If not, the
connection with higher m; was used,

The modulus shift was primarily a problem for the first mode, whose
effective one=dimensional spring constant is by far the smallest. This
is because higher modes involve greater curvature of the reed for the
same deflection. The full ecalculation of the mode shapes and freguen-
cies are glven by Timoshenko et a1.(3.9) and will not be treated here.
The frequencies for the sequence of modes n = 1, 2, 3, .. are in the
ratio 1 ¢ 6.267 ¢ 17.55 ¢ ... and quickly approach limiting values of
(Qn«?)g, if the frequency for mode 1 i8 assigned the value 1.425, The
mode shape i3 independent of sawple properties or dimensions, provided
the sample is a rectangular bar, and when that is not true it is still
uniquely determined by the shape of a given sample. Then the entire

motion is debtermined by that of a single point and can be treated as a

one-parameter oscillator with an anelastic spring. The effective

elastic spring constant is proportional to wgy which for the first two
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frequencies has a ratio of 39.3 ¢ 1. Thus the shift in apparent modulus

due to the electrode static forces will be only 4% as large in the
second mode as in the first., Since the modulus shift varies if the
electrodes or reed move even slightly, with temperature or other
factors, a plot of apparent modulus vs, temperature is not reliable for
the lowest mode,

The strong increase in effective spring constant with mode is also
part of the reason for the fact mentioned previously that external
vibrations are not as important for higher modes. In making measure-

ments the same maximum response current I (at w = wm} was generally

VS
used where possible., Then x ., =~ w=1 put from equation (2.22) or (3.11)
the driving force increases with vibration frequency since F -~ 02K ~ w,
Thus the apparent forces due to external vibrations become relatively
smaller at higher frequencies., The other reason is that for higher
modes they do not couple to the vibration as efficiently because Lhe
inertial force is constant along the reed, bul the mode shape dictates
that portions between successive modes move in opposite directions,
This increasingly cancels oub the effective noise forces with freguency.
In this connection it should also be noted that the required electric
driving force F goes up faster than u in high vibration modes. As the
last node approaches the end of the reed where the electrodes are and
passes into the area between them, the effective driving force falls

of'f.

3.3.2 Signal Detection

The changing charge on the receiver electrode is given by
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to first order in % The term in xg, which was dropped, yields Fouriler
components at de and 2w which are filtered out., With x << d,, I is just
proportional to wx, as asserted in (3.1).

The signal was sent to a blas box where the DC receliver blas was
added while the signal was capacitively coupled through to the PAR Model
181 current-sensitive preamp where the current was converted to a volte-
age at a gain of up to 109 V/A. This was then sent a PAR HR~8 lock-in
amplifier, Its reference signal was taken from an output on the fre-
quency generator,

The time-varying harmonics mentloned above, occurring in the drive
yoltage and capacitively picked up by the recelver; became increasingly
bothersome for higher wmodes due to the increased drive voltage required
along with the proportionality to w inherent in capacitive pickup. This
was nulled by using a portion of the drive voltage as a subtractive
input to the lock=-in amplifier. This also had the effect of gﬁbtw&cting
of f wost of the w/2 Fourler component that was picked up capacitively,
thereby reducing signal overload in the input stages of amplification,

Une other source of gystematic error should be mentioned. There
was a tendency for the electrodes to move toward each other at low
temperatures, An error in the caleulation of such changes due to theps
mal expansion had originally indicated an insignificant amount of mo-
tion, so the brass electrodes were not replaced., In fact, the change in

total gap is expected to be about 14% from 77 K to 300 K due to thermal
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expansion, and the electrodes should have been replaced with copper

ones, JIn any case, whether it was due to this or some other reason,
consistent long-term drift of frequency W, was noticed with time,
particularly after heating to a new temperature in certain temperature
regions. The most likely reason for this was a slowly changing position
of either the resd or the electirodes, With measurements being made over
a span of several minutes from one side of the Lorentzian peak to the
other, 1if the peak drifts by a significant fraction of its width in this
time the calculation of the peak width ig biased to larger or smal ler
values, depending on the relative directions of drift and measurement.
This is at its worst for very narrow (small Q”7) peaks, and could cause
errors of several percent. Thus it was always checked for by repeating
the measurement at the two half-amplitude points, and if any drift was
found a second set of wmeasurements was btaken in the opposite direction

and the resulting Q=1 values averaged.
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LV RESULTS AND MATHEMATICAL ANALYSIS

4.1 FITTING w_ AND O

The data taken on a sample in a given vibration mode at a given
temperature consisted of measurements of the amplitude of response to a
constant amplitude driving force at nine frequencies spaced over an
interval about twice as wide as the FWHM of the Lorentzian. This was
then repeated at a sebt of temperatures selected to sample the internal
frequency spectrum at intervals of 1/2 the FWHM of an internal friction
Debye peak (not to be confused with the above Lorentzian peakl)., This
procedure was repeated for each of the lowest three wodes of the sample.

The data for each temperature were least-squares it to the mathe-

matical form

flw) = A {cos ¢ Im [I(wongngL)j + sin ¢ Re [I(mo,QmﬁgQL)]} + a
(4.1)
where Qg is the Q setting of the lock-in amplifier's signal filter,
which was used at settings of 8 or 10. I (mO,Q“iﬂQL) is the complex
response as modified by the lock-in amplifier’s transfer function, The
offset, a, 18 required because of the presence of small constant instru-
mental offsets. The lock-in phase setting was adjusted to maintain ¢
near zero, Then there are 5 parameters to £it: Wy Q“1, 4, a and ¢.
After initially developing the program a number of data sets were
generated consisting of the (approximately) Lorentzian peak plus a small
normally distributed pseudorandom error, with a standard deviation

of either 1% or 0.1%. This was done for ny = 5, 9, and 15 point fits
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with n, = 4 fit parameters (wy,, Q7', A, a). The standard deviation 30

of the fitted value of Q“1 was found to be approximately given by

5 e
4~ VSSE__ (4.2)
1) “Vndwnp A

where SSE is the sum of the squares of the eprors for the fit., This was
used in estimating the error in Q”1 for subsequent actual data, The
average magnitude of the errors depends on several factors. First, we
see that they tend to be a fixed fraction of Q“1 30 the absclute errors
are higher for higher internal friction., They also tended to be
somewhat larger for the lowest mode where vibrations and frequency drift
were serious problems, the latter only being noticeable at small Q“1a
Errors were also larger for the third mode where capacitive pickup of
the drive voltage became worse, Data taken later, after more improves-
ments were made, were general 1y better unless the reed was too narrow
{as mentioned previously). A rough average estimate for SQ/QM‘Qa based on
(4.2) would range from 0.5 = 1% for most of the sets of data, FEstimates
of the erropr from the differences between Q“1 values when two or more
measurements were made under identical conditions agree well with this
estimate., In one or two cases the entire peak was remeasured 2-3 months
later with excellent agreement, indicating in addition that no hydrogen

had been lost or gained,

4.2 INTERNAL FRICTION RESULTS

For a continuous distribution of activation energies equations

(2,26) and (2,27) become
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My =M - }f g(E) exp(-tn wr - E/KT) sech(in wr + E/KT) dE (3.3)
(0]

and

M2 = M]Q = Jff g(E) sech{an Wty * E/KT) dE (4.4)
0

where from equation (2.13) we see that the expected 1/7 dependence has

been put in explicitly, while the distribution function g(E) contains

the factor ¢(AP)2/V n,k. Note that due to the presence of (AP)%/ngs
g{E) i3 not Just the number of defects per unit energy found in an
interval 4E about an activation energy E, which we might properly term
the distribution of activation energies and refer to as n(E). Instead,
it should probably be called the distribution of relaxation atrengths
over activation energy. Actually, the situation may be even more
complex than this, due to the distribution in the sites? ground state
energles or well depths Ego If this distribution covers an energy range
much smaller than kT for temperatures of interest, no further change
results, If not, g(E) contains a site occupation factor. Since any
site can contain only 0 or 1 hydrogen atom, this factor is8 just the
Fermi-Dirac distribution F(Eg) = (1 + exp((Eg - u)/kT))“?, where u is
the chemical potential for hydrogen. Then g(E) x((AP)g/nt)F(Eg)n(Eh
In spite of these complication, gle) will frequently be referred to as
the distribution of activation energies for the sake of verbal economy,
Note also that Q”1, though widely used in the literature, is not
really the best parameter to use, especlally when it is large, because

it 18 Just MQ/M1y and M1 not only decreases with temperature but dige
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plays the further decrease around the M, peak illustrated in figure 2.6,

The decrease 1s proportional to the M, peak strength. MQ/M%’haB been

used throughout rather than Q“’ (though it is frequently referred to as

M, for brevity), where M? is Mi(rp@akL
4,2.1 The 9! and w, Data

The internal friction data for the four ngpdﬂx samples are shown in
rfigures 4.1 - 4.4 plotted as E, versus 1/T, the modulus M of interest
being Young's modulus E. Note the shift to higher temperature with
increased neasurement frequency as expected. The data for the unhy-
drided sample was taken earlier while more attention was being paid to
improving the apparatus and reducing noise than to data collection.
Measurements were made using the second and third vibration modes but
unfortunately the third mode data were not quite carried past the peak.
The elastic modulus Ey, which is proportional to wgy is shown in figure
4,6 for the C = ,86 sample, normalized to its maximum value, It dise
plays the behavior descrided above, The mode 1 frequency also has
Imposed on it the additional effective modulus change due to slowly
changing static electrode forces mentioned at the end of chapter 3,
largest at low T, which act to cancel the normal decrease with T also
described in Chapter 3,

Most of the data were taken from about 80 K to 370 K. For the
second mode of the C = .86 sample, however, measurements were extended
down to 10K to check the low temperature behavior, These data, shown
in Pigure 1.5, show that the internal friction decreases to a background
level alwmost identical with that seen just above the peak. Note that in

figures 4,2 to 4.4 the high temperature minimum level increases with
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cies: Mode 2, 252.42 Hz., Mode 3, 706.95 Hz. Errors

are smaller than the diameter of the dots,
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of (ZryPd)H 3. The mode is indicated by a number
near each curve., FPeak frequencies: Mode 1, 130.47
Hz. Mode 2, 813,99 Hz., Mode 3, 2227.0 Hz. Errors

are smaller than the dots,
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increasing frequency, indicative of a thermoelastic internal friction

contribution,

Data taken on a Y@@Fe36 alloy are shown in figure 4.7. The peaks
look very similar to those seen by Kunzi, et ale0h1) in Y6&06369 which
were later found to be due to a hydr@genﬂimpurity(uWZB@ The peaks in
the present data occur roughly 35 XK lower in temperature, and there is
an additional bump in the tail region. The high-temperature rising
background looks like that found in many other metallic glasses as the
glass transition temperature is approached; see below for further dise
cussion, These data were taken early on and have much larger ervor
levels than the later data, of the order of 5%, or 5 = 10 times that of
the ngpdﬁx data. FPurther, unlike the Zrde alloys this sample was not
pre-annealed and showed considerable anpealing behavior when heated to
100 C during measurement. As can be seen in figure 4.6, the internal
friction background went down greatly from run 1 to run 2 on the lowest
mode, but further annealing took place in run 2, accounting for some

high-temperature fall off,

42,2 91

The portion of the background due to air damping and ¢lamping losses
will (hopefully) be fairly constant over temperature. In any case this
is the assumption that is commonly made in the absence of any better
information, and even if incorrect this part of the background forms
only a few percent of the size of the present peaks. The strength of

the contribution from thermoelastic danmping is““B)

QLZTM2
M = WME“:N”H* ("‘;@5)
)
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Internal friction for the first 3 modes of YﬁaFe36.
The first mode was measured twice:; — - -, first

measurement, in which significant annealing occurred,

106,96 Hz. s second measurement of first mode,

107.08 Hz. second mode, 5SB9.,45 Hz, ss0sg
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third mode, 1560.7 Hz, Errors are proportional to

Q”jg the error bar shown is for the peak.
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where o 48 the thermal expansion coefficient and QU is the specific heat

per unit volume with the stress constant. Typleal values for A = SM/M

are around 1-2 x 103, The relaxation time is

T (4.6)

D

where d is the reed thickness, D,y = Kth/ew is the thermal diffusion
coefficient, and Kth i8 the thermal conductivity. In the temperature
region of interest Dy, ~ 1/7T while e, and o are roughly independent of
T, o v and 8M both depend approximately linearly on T, Ifwr<< 1 the

Debye peak

- Wt
= M (4.7)

goes as dM.wt, so Mg might be expected to go very roughly as 12, For
pure Zr and Pd with reeds of thickness 25-40 um (the thicknesses actue
ally used), the peak frequencies would be 62 = 28 KHz and 31 - 12 KHz,
respectively. Accounting for perhaps a factor of 2=5 increase in 1 (and
therefore the same decrease in peak frequency) due to the decreased
thermal conductivity of glassy relative to crystalline m@tala(”vn),
this still leaves wrt < 1 in all cases, However, published data where a
background has not yet been subtracted often show something closer to a
linear dependence of the thermoelastic component on T. Since even the
amorphousg unhydrided Zran alloy showed a strong Q“1 peak in the present
data (figure 4.1), no direct information is available on the thermo-
elastic component's temperature dependence, and a linear T dependence

was assumed. The relative thermoelastic and constant background levels
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were estimated by extrapolating the changing background at the high

temperature minimum to zero frequency. Then each was gsubtracted fron

the data over the full temperature range.

4,3 MEASURING

E, AND Tt

Once the Q"”“’mi data are in hand the question arigses of values for Te
and Eg, and of whether the distribution of t is based on a distribution

of one or both of these parameters, The calculation of Ea and T, is
done by measuring the 1/T shift between data taken at two different

frequencies, and needs to be done assuming elther a t, or an E, dis-

tribution. For a Ty distribution with E_, constant we see from equation

a
{2.25) that, for a given point on the Debye peak, l.e., Mz = const., we

have

an Wt + Ea/kT = C (4.8)

where ¢ 1is a constant. Then for two sets of data taken at different

frequencies, the shift in inverse temperature

1 k
e B gn(w/m ) (ng)
TZ T Ea 2

ig independent of T or Toe Each point on the entire broadened peak
ahifts by the same amount and computing Ea merely regquires fitting the
two sets of data to each other by shifting one of them versus 1/7.

ir Em is8 distributed and Ty 18 not, the data at each temperature
will result from a contribution at a certain E, and a small range of

nearby values. The central value of E, is given by (4.8) with C = 0,
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and is proportional to T, Solving (4,9) with this condition we find T,

is related to T1 by a multiplicative factor

TZ ) Sm(mml“to) ) n wy + n Ty

T ) an wy * n T,

= (4.10)
) _Kﬂ(sz

0

Note that this shift ratio is a constant, independent of T or E,. When
plotted versus 1/T, peaks at low T (hence low Ea) shift more than peaks
at high T (and Ea)? as can be seen more easily from (4.9). The 1/T
shift is proportional to 1/Ea, Thus on going to higher frequency the
broadened peak as a whole becomes wmore compact. The increased overlap
of neighboring relaxzation peaks means that not only does the overall
peak become narrower but its shape changes; l.e., it does not scale,
making the job of fitting the value Of‘ﬂbmuch more difficult. In the
1imit of infinite T it collapses into a siwple Debye peak, which will in
general bear little resemblance to the original overall peak shape,
This increased overlap also causes the peak height to increase, and in
fact this Jjust cancels the 1/7 dependence of the relaxabtion strength, as
we will see below.

A computer program was wribtten to use data from a selected tempera-
ture window about the peak for the data of a second frequency, scale its
amplitude, shift it versus 1/7, and thus £it it to a first peak., An
interpolation scheme was needed because a given datum from the shifted
set will in genepral not fall exactly on top of any of the first peak
data, A Lagranglan interpolation was used between points on the first
peak, using the six points centered on the interval of interest., For
each temperature-shifted second peak datum this interpolation was done

at the same temperature in the first peak, and the sum of the squares of
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the differences (or SSE) between these values computed, Then SSE was

minimized with respect to the two parameters.

To analyze the shape changes that occur for an Ea distribution we
return to (4.4) and consider a single value of E, and the peaks it
produces in each data set., The temperature at the top of these peaks

will be labeled by Ty, where i refers to data set 1 or 2, Writing B for

1/kT,
By = - iﬁﬁ«g«iﬁ?@l (4.11)
and from (4.9) we have
= Eﬁf wp) B, = (B (4.12)
an(““TEY 1 1

where typiecally C is about .93 for mode 2 versus mode 1 and about .89
for mode 3 versus mode 1, Now consider the ratio Mg(ﬁg,wg)/M2(81,m1)y
which i3 the ratioc of the anelastic moduli of the two data sets at these

corresponding temperatures:

e,
g

Mz(cgewz) -
Mz(agml)

g(E) sech(gﬁmgro + CRE) dE

f(C,B) = (4.13)

ijs g(E) S@Ch(ﬁnwWTo + BE) dE

[, 9(E) sechlca(E-)] d
= ¢ , (4.14)

oo

‘f g(E) sech[B(E-E )] dE
Q
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Further, we could replace CS(EmEO) in the numerator and B(EWEQ) in the

denominator by x:

[ee]

x i
j:CBE g(E, + Tg) sech x dx
e : : (1.15)
m X
j g(E, + 7) sech x dx
MBEO

The lower limit can be replaced by -= because BE, = =ln wqT, is a large
number, In this form the cancel lation of the explieit 1/7T dependence by
the inereasing overlap is apparent. For example, if g(E) = const. then
£ = 1, independent of anything. Sech x peaks at x = 0, 80 it selects
the values of g(E) around E, with a width given by Ax/CB for the
numerator and Ax/8 for the denominator, where Ax = 2.63 is the FWHEM of
sech % This expresses in a different way the fact that any point in
the numerator has more overlap from nearby values in g(Ea) than does the
same point in the denominator, since € < 1,

Now let us expand g(E) in a power series about E, to examine the

effect of slope and curvature on £{C,8). Introducing

g(E) = g, + g (E-E,) + g, (E-E )" + ... (4.16)

into (4.15) the odd powers of E - E, 8ive zero because sech x 1s an

even function of x. Then

90 1 92 9212
Blotzgglat e Ty 2t
F(C,8) = - T (4.17)
%0 19 S22
g lhtzel 14—+
83 2908 10
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where

. X

I zjo " sech x dx (4.18)

and the first several values of I,,/(2n)1 are 1.2377, 1.2683, 1.2727,
and 1,2732, which rapidly converge to 1.2733. Notice that if fourth-
order and higher terms are small, and the second derivabive g2 is posi-
tive, then £ » 1, while 8o ¢ 0 results in £ < 1. This should be obvious
since, 1if the curvature is positlive, increased overlap will tend %o
raize the local value of Mg while negative curvature (as in the region
of a peak) will do the opposite. A constant slope in g(E) has no effect
because with more overlap bthe increasing contributions from the higheg
side are cancelled by the lower contribubions from the low-g side,

An attempt was made to estimate the first two or three even-power
derivatives of g(E) from g itself (see below) or from the M, data, for
use in caleulating £, This would then be used in the fitting program Lo
improve the quality of £it and the accuracy of the fitted parameters,
The caleulation from the Mg data was made by making the crude approxima-
tion that sech x = §(x), which becomes good only in the limit where g{E)
is slowly varying on the scale of the width of sech[B(E - EO)]Q Por
calculations from both g and M, the derivatives were estimated by fit-
ting a polynomial to a reglon around EQ and extracting the derivabtives
of the polynomial, However, neither the resulting series in the numera-
tor nor the denominator of (4.17) nor the overall expression converged,
but seemed to experlence increasingly wild oseillations as terms were
added., This was then given up. However, figure 4.8(a) shows the second

peak shifted onto the first, where its inecrease in regions of positive
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curvature and decrease near the peak are visible. The relative standard

error of F£it was usually about 1-29%.

In order to better estimate the temperature shifts, then, the window
in the fitting program was varied. A%t the minimum only about the bop B
points in the high frequency or second peak were kept, corresponding to
only about the upper 15% of the data (between 85% and 1009 of the peak
height) being kept. At the maximum window width about the top 80% of
the peak was kept. The plots of the resulting values of 1ln 1, are shown
in figure 4.9 versus percentage of the peak height lncluded. If the Mg
peaks were symmetrical the plots should be flat (apart from random
seatter). The value of T, used was that where roughly the top 30% of
the peak 1s included in the window. If the window is narrower the
statisties are not good, while if it is wider there may be significant
bilas due to errors in the estimation and subtraction of background
levels. “

In the case of the unhydrided aergpd sample the lack of complete
data over the second measured peak meant that no reliable estimate of T,
could be made., An attempt was made to estimate it by fitting only the
1/T shift and supplying an assumed relative amplitude externally, but
the 1, value calculated this way was so sensitive to the relative ampli-

tude that even a 1% change shifted 1. by 2«4 oprders of magnitudel

o)

Finally, in the absence of any better information the v wvalue was

©

extrapolated from the values for higher ¢, to 4 x 10“155, which is
unlikely to be incorrect by more than a factor of 2.

Table 4,1 displays a variety of data for each sample, The temper-
ature, natural vibratlon frequency, and internal friection value at the

peak are glven for each mode. The Young's modulus values at 80K are
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The fitted values of To plotted against window
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computed frwm(u°5)

2,4
F = 1200 % (4.19)

tzn?
whepre p is8 the density, ¢ is the length, and ¢t 18 the thickness of the
reed. The ny; are the numbers mentioned in Chapter 3 that give the
ratios of the mode frequencies, and the first three values are 1.875,
b,694, and 7.855. The resulting values of E are only accurate to
perhaps 10% in absolute value, a common problem with this type of meas~
s

urement on glassy wetals, due mostly to uncertainty in the reed thick-
ness, Other quantities given in the table are the value of T, the FWHM
of the peak compared to that of a single Debye peak, and the asymmetry
ratio of the peak as defined by Berry and Pritch@k(mﬁﬁ)@ This is the
ratio of the halfe-width at bal femaximum on the low temperatures side of
the peak to that on the high temperature side. The asymumelry ratios
previously seen in metale-metalloid and metal-metal glasses have been in
the range of 1.6-1,8, while the peak width seen has been 2-% times
larger than that of a Debye peak(%2:%8)  qualitatively, the hydrogen
peaks seen in most metallic glasses to date look remarkably similapr in
shape, suggesting perhaps a common basis related to the structural
natwre of the hydrogen aites in the glass,

The typical Ea values found at the peaks, in the range .42 - 59 eV,
with T, of the order of 10”1“39 are just what are expected for hopping
of single H atoms, as opposed to a collective relaxation mode, for
example., If 7T, were the distributed variable, on the other hand, by

using the value of Ea found at the peak we find that the T, distribu=

tion would range over an interval from about 10='ls to something like
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10”“93W which 1s an obviously unphysical value. Since E, varies as

ln 7, (if all else is constant), even 1froi$ distributed over a range
of perhaps a factor of 5 or 10, as might be expected, that will leave
almost all the responsibility for the variation in © to a distribution

in Ea‘ Nevertheless, fits were also attempted assuming a T, rather than

o]

Ea distribution. The quality of fit was typically twlece as poor, though
there would have been a much greabter discrepancy in £it quality if the
correction £(C,8) for the curved regions of g(E) could have been calcu-
lated in the former case., Figure 4.83(b) shows the same dabta as in
figure 4.8(a) but with the shift calculated in this way, and the lack of
compatibility is apparent. The fit should have been exact.
Incidentally, this may also explain an effect that has been seen
with internal friction in glassy metals (not hydrogenated) approaching
the glass transition temperature. There, the magnitude of the internal
friction i8 commonly found to start rising exponential ly with tempera=
tume““éw 4.8, 4.9, u“1039 apparently due to thermally activated hopping
of the metal aboms. Berry““g) has noted that when E, and T, values are
computed from the temperature shift between data taken at two frequen-
cies the T, values {@efay 10”25s) are unreasonable. He later suggested
an explanation(aﬁj) which 48 mathematically incorrect, based on the
idea that Ea i3 not truly a constant but depends on the temperature,
This by dtself is certainly to be expected on the basis of thermal
expansion of the lattice. This expansion should be expected to affect
the hopping saddle point energy more than the energy at the minimum,
However, rather than making the linear expansion about the value of 2.6

eV calculated at T, = 593K, as follows
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E=E -« (TwTO) (4.20)

ao that at T = T0 the measured value Ea would be recovered, Berry used

E=E, (1-at) (4.21)
which does not have this property. Then arguing that T should be of
the order of ?0“133w he calculated the value of E, which this implies,
Ea:zﬁwz eV, He then used this to caleculate a., To put it another way,

7 18 then given by

£ (1-aT )] | -af E 3
e O N o d MWQ. ..MQ» e #* “.MQM s
T T, exp (}ww&T [}0 eXp —g ] exp 1§ % 1, eXp T > (h.22)

rg is set equal to 10“35 s and To to ?0“13 8. Unfortunately, this does
not change anything, because t 18 now given by Tgmxp(EQ/kT) and when Tg
and E0 are calculated from the data at 593K they will vield the same
yvalues as before,

In fact, the explanation for the unphysical values of T, may lie in
equation (4,14). An internal friction spectrum rising exponentially
with T implies a g(E) of roughly similar shape which certainly has
positive curvature., Then on going to a higher frequency, f(c,B8) > 1
averywhere: the internal friction at the higher frequency is too high.
If this is not accounted for it will result in a smaller 1/7 shift and
hence from (4.9) a larger value of E, and smaller value of T,e Approxe
imate calculations of this correction brought E, down from 2.6 eV to

2.2 eV, This is not enough, as Ty = 10“1“ s requirss Eazgﬁsg eV. Thus
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further explanation is needed. However, the above discussion may

explain the data in some of the other reported cases, which have not yet

been analyzed for the £(C,R) correction,

The obvious next item on the agenda would be an inversion of the
integral equation, (4.4), to compute g(E) from M,(w,T). It might seem
surprising that no one has to this point attempted to do this in a non-
parametric way for internal frietion data. On the other hand, good
numerical algorithms have only become avallable during the last decade,
The only methods used to date have been to assume a given mathematical
form for a relaxation strength distribution function, calculate M,, then
adjust the distribution parameters to get the best fit““z)» One
function used for M, was of the form sech(aln wr). For a = 1 this
becomes just the Debye peak, while for o < 1 the peak becomes broadened,
while still symmeirical. Other distributions such as a simple rectangu-
lar one and a Gaussian in 1ln t have alsoc been discussed and used. To
better £it asymnmetric internal friction peaks a distribution function
composed of two hal f-Gaussians of equal magnitude but different widths
have also been used““jz)o This worked fairly well in the peak region
but did not reproduce the low temperature tail,

Consider now the problem of inverting (#4.4). The internal friction
data exist in the form of a discrete set of mw measurements at temper=
atures Ti?i.m 19 o o o5y Mo To do a pumerical inversion it is necessary
that the energy spectrum also be discretized. This done (with n evenly
spaced energy Iintervals), an interpolation scheme can be used between

points gy = g(Ej)g J =1, oesy n. This forms a continuous function g(E)
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parameterized by its values at the Ej, which if known could be inserted

into {(4.4) to caleulate M, at any desired value of w and T. Since there
is no reason to believe that g(E) is not a reasonably smooth funcition,
it was declded to Qs««z a smooth interpolation scheme rather than a simple
one such as a trapezoldal op twowpoint rule. The alwm was to try to do
all caleculations to an accuracy of the order of 0.1%. Simulations were
carried out on a couple of smooth wel l=known peaked cuprves. They were
approximated by Lagrange interpolation between discrete points. These
points were chosen at intervals whose relation ¢to the peaks' FWHMs was
similar to thosse of the data at hand, It was found that 2p = 6 was the
smal lest even number of points that gave the desired accuracy of the
interpolate to the actual curve near its peak. Therefore six points
were used, cenbtered aboubt the energy interval of interest, and the
interpolation used only in its central segment. In the pair of later
vals at the beginning and end of each data set, the interpolation order
2p was reduced to 4 and 2 points as necessary.

Putting this form of g into (4.14) we get

: n-1 Ek+1p kep k+p E-E, ! .
2 1 ) B , -+ =) dE.
MZ(‘“’Ti’) sz E 9 EE ECE, S@Gh(ﬁﬁw‘r@ kT) dE
k=1 7B l=k-prl askept] \ Y

(4.23)

The integrals were done by Simpson’s prule, and again simulation was used
to select the number ny of intermediate points used between E, and L

to yield a Simpson integral of the desired accuracy. Then after inter-

changing the order of summation on J and k we finally get
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Mz(wﬂTi) mz“, AJ (U)aT.i) gj {4.24)
=1
or
Mai = Ayj 9 (4.25)
where
-l s ‘
Aj(w,T@) mZL jZd S, s&ch(%nwro + ﬁ%) L (4.26)
k=j-p r=] 9=k=-p+] |

L7

and S, is the Simpson coefficient, [gﬁﬁi:&:iAE‘

If we take n = m and try to solve this by inverting the matrix Aijy
the result is nonsense. The reason is that (4.,4) is a Fredholm equation
of the first kind with a kernel, sech x, which is quite smooth, The
result is that it 1s ill-conditioned. The meaning of this can be seen
by supposing that to start with we have no errors in the M2 data and we
have the corresponding "correct” solution g,(E). To this solution we
then add a function 4g which is highly oscillatory, varying rapidly over
the width of the kernel., The more rapidly it oscillates the lower will
be its contribution to the integral, if its amplitude is constant,
Conversely, if we start again with no errors but now allow the presence
of computational or experimental errors in ME’ this will cause the

appearance of oscillating components in g(E) whose magnitudes rise with

frequency for a given magnitude of errors in My, The maximum observable
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frequencies are limited by the energy sampling interval. As a result,

if part of the M2 data were weeded out to leave w' = n points and w' was
increased from a smwall value, the caleculated distribution g would remain
reasonably smooth up to some value mw, then would start acquiring
increasing amounts of spurious oscillatlions. The number m% would be
approximately the true rank of the matrix A, as we will see., The
problem with this aporoach 18 that it wastes a lot of data, not using
the additional data to provide statistical lmprovement.

A better approach is to write Ag = MQ@ where 4 18 our original m x n
matrix with m > n and the symbol = means that the norm of the residual

vector

r= Ag - Mz (h.27)

will be minimized, Using the Fuclidean norm, this becomes Jjust a leastw
sguares minimization of an over-determined problem. There are at least
three principal methods of solving this pr@blem““a3ﬂ M*ﬁg). The earliw
est and most common method has been to left multiply by Arﬁ Since the
residual vector Ag - M2 must be orthogonal to the @olumﬁ gpace of A, we

have

AT (Ag - M) =0 or (ATA) g = ATM, (1.,28)

which are called the normal egquations., The matrix ATA is square with
rank n, Sinece 1t is symmetrilc and nonnegative definite, it can be
solved by the efficient Cholesky elimination m&thod(”“joh However,

this regquires twice the precision in computation that two other methods
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require which deal direcly with the matrix A,

One method i3 a relatively recent modification of the wel l=-known
Gram-Schmidt orthogonalization procedure and involves a decomposition
A = QR with Q an orthogonal matrix and R a triangular matrix. This
method requires choosing in advance a value for the rank n, then solving
the system, This 18 fine for a problem where n is known, but that is
not the case here. Another approach, the Singular Value Decomposition
{SVD) method, has stability properties almost identical with those of
the modified Gram-Schmidt orthogonalization, while reguiring somewhat
fewer arithmetric operations and slightly less at@rage““mu)w The main
reason the SVD method was chosen, however, was that after choosing a
value of n larger than needed and solving the asystem, solutions to the
system corresponding to any rank (or wmore properly pseudorank) are
available without further work. In addition there are then available
good ecribteria on which to base the seleciion of the correct pseudorank,

It can be shown that the matrix A can be decomposed as
A= usy! (4.29)
where S5 is diagonal and is arranged so that its elements are nonnegaltive
and in nonincreasing ordev(h”lnm These elements are the singular
values., U and V are orthogonal matrices of rank m and n, respectively,
with m > n and computing them comprises the main effort in the SVD
method. The columns of V are the singular vectors, which span the space
of the solution g. Now the Euclidian length of a vector is unaffected

by multiplying it by an orthogonal matrix, B0 we want to minimize
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v = IUT"‘lz = |5p - a (4.30)

where

p = Vug and q = U M2 ° (%03?)

In expanded form,

] P1 93 )
Po QZ
: "
s S 3.32
mmmmm iﬂw pn qﬂ ( 3 )
941
qm

For the original case considered where n = m we see that the singular
value decomposition must give a matrix S which is ill-conditioned, since
A4 is but U and V are both well-behaved. The condition number, which is
a measure of the ill-conditioning, is given by the ratio of the largest
to smallest (i.e., first to last) singular values, and it was commonly
109 or larger for the present data even with n relatively small, It is
generally found that the smallest singular values correspond to the most
vsclllatory singular vectors,

Now consider the minimization problem in (4.32)., Computing the norm
of the residual vector (the difference between the two sides of the

equation), we get
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(s;pi-a)° + 2 a5 . (4.33)
] i=n+]

s

Irl2 =

i

1

Clearly, the norm will not be smaller than the second sum on the right
aide above, bubt it can be kept no larger than that by setting each term

in the first sum on the right to zero:

p‘i mww ‘i m19 5o s 9 n. (uﬁga)

However, the osclillabory components are still included. We now need to
use our estimate of the level o of eprror in the data Mg, and hence in g
(since q is only a rotation of M, by the orthogonal matrix UTg equation

(4.31)). Then the uncertainty in each p; will be given by

&pi = §““ (,“BQBE‘MS}

from (4.34), Generally, 1t is found that for some number k the first k
elements of p will exceed thelr uncertalnty while the remalning ones
will not, These last elements might well be zero or of the opposite
sign due to the errors in the MQ data. Consider the possibility of
replacing them with some other value, e.g., zZero. This changes the
solution, but it was not good anyway. The last elements of p control
the amount of the last, most oscillatory singular vectors introduced,
This is because g = Vp from (4.31) so p; controls the amount of the ith
singular vector contributed to g. We are not introducing arbitrariness
into the solution vector g beyond that already present due to data

uncertainty. Although the Py for L 2k 4+ 1, soey n could be set Lo some



w110
nonzero value within the uncertainty limits, zero values have the

attraction of belng simple, eliminating the most oscillatory componentis

from g, and minimizing the norm lp]z = |g 5. Note from (4.34) and

{8,35) that 1f py < Apy then g4 < 0, so the cutoff value of k can be
found simply be scanning down the g vector until the elements get
smal ler than o. Other methods exist for choosing (411 but they are
related to those above and usually glve aboul the same answer,

The 3VD subroutines of Lawson and Han&an““ﬁa) were used after
generating the matrix A, 7The singular values, p and g vectors, the
norns of the g and residual vectors, and the latter normalized by
1/(mmk)?j2 were all displayed, along with the V matrix 1f desired. In
addition the g vectors were compubted and displayed for each cholce of k
from 1 to n. Typical solutions g, for several k values with the mode 1
data of the ¢ = 0.86 sample are shown in figure 4,10, The continuous
curves are the same interpolated curve actually generabted in the compuw
tation,

Estimation of the uncertainty in the data is complicated by the fact
mentionad earlier that the error tended to be a given fraction of Mo,
hence largest in magnitude at the peak. It is possible to scale each
equation in (4.25) by the inverse standard deviation of MZi s0 that all
Mgi have the same resulting error. However, this emphasizes the acours
acy of the solution g in the low-amplitude talls at the expense of
accuracy alt the peak, while we are at least as interested in the behave
ior near the peak as in the talls., On the other hand, when this is not
done the error in g contains large~ and small-error components mixed
together, complicating the choice of k. The error was at first cone

servatively estimated as that of the peak, but the k value chosen on
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this basis was usually smaller by 2-4 than what seemed to be the optimal

solution based on examination of the solutions, For example, it was
frequently found that for both lower and higher than optimal k values
the solution went significantly negative in places and was more oscillae
tory than for one or a few optimal solutions. Negative probabilities or
distribution functions normal 1y being frowned on, their avoidance where
possible was finally settled on as a criterion :suppl@m@ntary to those
described above in deciding on k., Actually, since for reasonable k
values the (slightly) negative values only occurred at the highest
energies where g(E) had essentially gone to zero, this eriterion was
nearly equivalent to looking for minimal ly oscillatory solutions in that
reglon, Any negative excursions were required to be smal ler relative to
the peak height than the relative uncertalnty level. There exists an
SYD algorithm which incorporates linear inequalities as constraints
which could have been used to ensure that all solutions were nonnegative
at the points Ej(u"“’), but it does not seenm to be perfected yetw‘”m)@

The selected pseudorank values for the various data sets taken from
77 K up lie in the range 13 =18, The question of which initial value of
n should be used still r@méin& It was found empirically that n needed
to be greater than k by at least 1 or 2 to avoid introducing spurious
behavor, and that as (n-k) got large, the solution at a given k very
gradual ly became slightly oscillatory. For all the data taken from 77 K
to 370 K, o was set at 20,

To check the inversion another program was written to recompute
M;(w,T) from the caleculated g(E). Comparison of the results with the
original data for the first mode of the ¢ = (.86 sample showed that the

maximum error was 0.5% of the peak height, while the average error was
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about one-half of that. The sum of the squares of the errors agreed

exactly with the value computed by the SVD routines. This showed that
the BYD program worked correctly and provided quite accurate solutions,

The final Zr,PdH, g(E) solutions are shown in figures 4.11 to 4,14,
Note the generally good agreement of the calculated g(E) for the three
frequencies of each sample. They should be identical apari from uncere
talnty in the data, assuming the sample to be homogeneous. Sample
inhomogeneities would be reflected in the data since for different
vibration modes the nodes and regions of maximum curvature occur in
varying locations, The YS&Fegé samples cut from foils might be expected
to display more of this while the melt-spun Zr,Pd ribbons should be
relatively homogeneous. Those that were hydrogenated should also be
fairly homogeneous with respect to hydrogen content due to its high
mobllity,

The exact eneprgy scale for the unhydrogenated Zrde is uncertain
because it depends on the assumed value of Toe A c¢hange by a factor of
2 in T, causes only about a 3% change in the position of the g(Ea) peak,
however.,

For some reason the inversion of the unhydrogenated sample’s déta
was much less stable than for any of the other data. It is clear even
from the internal friction data, figure 4.1, that there iz a low Lemper=
ature shoulder on the peak and this shows up in g(E), but there is
glignificant oseillation with an amplitude of about 3.5% in all solue
tions, making the distinctness of the two sube-peaks uncertain, For no
value of k is there a region where several adjacent k values give very
nearly the same curve to within a small fraction of 1%, as for the other

data sets, A value was chosen which seemed to generally minimize this
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oscillation, The oscillation is most likely due to the significantly

higher uncertainty in this early data.

For the YE&F936 data the peak falls squarely on the lower end of a
rapidly rising exponential background, apparently of the type discussed
earlier in this chapter, resulting from the metal atoms themsel ves
beginning to become mobile, Attempts were made to self-consistently
subtract off the background, but there was a falr amount of uncertainty
because bthe measurement did not really go high enough to reach the
region where the rising background was completely dominant. Even worse,
annealing was taking place at the upper temperatures, causing the backe
ground to change rapidly. When inversion of the data was carried out,
the resulting g(E) was naturally sensitive in the high-energy region to
the details of the background subtraction, Hence the results are not

very meaningful and are not reproduced here,
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N JINTERPRETATION

5:1.1 Type of Relax:

Probably the most fundamental question about the internal friction
peaks observed in ZroPdHy is the source of the relaxation. Figure 5.1
displays g(8) for the second mode of each of the four ZrQPdHX alloys,
drawn to the same scale, The second mode was chosen because it gen-
erally has the smallest level of uncertainty, as mentioned before. In
addition that comprises the only complete set of data for the unhydrided
a=7Zr,Pd and the most complete set (down to 10K) for the ¢ = 0.86 alloy.
Clearly, the relaxation is related to the presence of hydrogen, but
there are still several possiblilities. The relaxing defect could be a
single hydrogen atom hopping between sites with elliptical strain dipole
tensors oriented in different directions (a Snoek relaxation), a pair of
hydrogen atouns {(a Zener relazation); or a hydrogen-impurity pair such as
H«- 0or He« N reorienting by the the hopping of the hydrogen atoms to a
different but still neighboring site. All of these point defects are
seen Iln crystalline hydrides. In addition, it could conceivably be
related to other relaxations seen in crystalline materials such as those
due to hydrogen dragged by moving dislocations {(if one accepts the
possibility of dislocation-like defects in amorphous metals), To answer
this guestion we must look at certain features of the data.

Toward this end, a number of parameters calculated from the data are
displayed in table 5.1. The values of T, Were calculated by least-

squares fit to the 1/T shift for different vibration frequencies as
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Comparison of the distribution of activation energies
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TABLE 5.1

Parameters for the distribution of relaxation strength over

activation energy in (ngpd)1HG for the second vibration mode

measurements,
Q “'D Ow23 0&62‘ 0&86
Ty X ?Oju, 8 0.4 0.6 1.3 1.5
0.52,

Emax’ aV 0.59 0.42 0,45 0,42
(B ), eV 8.1 76 93 146
FWHM of g(E,), eV 0.22 0,20 0.12 0.12
A;\ s 0908 0@01‘; 0903
pasudorank k used:

mode 1 11 15 13

mode 2 15 11 17 22

mode 2 10 18 14
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described in chapter 4, As already mentioned, the value for the

hydrided sample is an assumed value., The value Emax is where g has its
peak. For the double peak of the unhydrided sample both peak positions
are shown, without correction for the presence of the other peak since
the peak shapes were unknown. The maximum relaxation strength g(Emﬁx)
and full width at half maximum of the g(E) peak are given next, fol lowed
by an estimate of the ellipticity of the strain dipole tensor, and the
pseudorank k used for caleulation of each g.

The strain dipole ellipticity was calculated from the total inte-
grated relaxation strength as follows. We can write equation (2.13) for

a single relaxation as

0

where AP or AN are a measure of the ellipbicity of P or A, respectively,
and B is a geometrical factor that includes 1/nt and the detaills of the
term in the square brackets of equation {(2.13). For polverystalline
matals B falls around 0.1, within a factor of less than 2, and this
value has been suggested by Berry and Pritchet for amorphous mete

a1s(5:1),  For a distribution of relaxations A becomes %ij;(ﬁ)dEw Then

we have

2 k _
(AN)S = ng(&;)dgm (5.2)
CVoMuB

The value of the modulus is taken from Table 4.1, since its inaccuracy
is less than that of g, and in any case it is the only estimate press

ently available. If the uncertainty in B is a factor of 2 the unceprs=
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tainty in A) 18 a factor of 1.5,

From the density measurements of Bowman, Rosker, and Johnson(5:2) on
the alloys Zr,Pd and (ngPd),ﬂHaN the change in volume 18 AV/V = 0,12,
ir Ay = Ay = }‘3 g A ag it should in an isotropic material, we get
A o= 082, If )\ is a function of ¢ (it frequently is in crystalline
materials, falling off at high ¢ by an amount of the order of 10%), it
may be larger at low c. For the ¢ = (.86 specimen we see that the value
paleulated for A) 18 0,03, while for ¢ = 0,23 1t 138 0,08, larger than A
itself, We recall from Chapter 1 that A iz a macroscopic parameter
defined by the change in strain per change in defect concentration. In
a single crystal xij can be anisotropic but in an isobropic polycrystale
line material the measured value will be isotropic. In the same way
glassy metals must have locally anisotropic hydrogen strain dipole
tensors or there would be no internal friction peak. In this case 1t is
not constant over a crystal domain but describes only one defect site,
Since Al, whiech is an averaged measure of its local asymmetry, i3 as
large as A we see that locally some components may be roughly twice the
average value, It is interesting to note that the present values of A)
are a factor of 3-0 smaller than the value 0.2 calculated by Berry and
Pr*ii:,chet;(s“ﬂ in the same way Llor amorphous NbBGm

Returning now to the gquestion of the type of relaxation seen here,
we see from the table that the 1, values are of the order of 10- 14 3,
increasing slightly with hydrogen concentration. These are in the range
expected and commonly observed as the attempt frequency for a point
defect relaxation, and rule out any other type of relaxation., Given
this, then, we still have several possibilities to decide among. We now

examine the dependence of the defect concentration on temperature and
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hydrogen concentration,

For a hydrogen pair (H-H) or higher (n-atom) cluster defect in the

dilute 1imit, the defect concentration will b@“ﬁg? 5.4)
n
Coi = @ Cy @XP (wAgHH/kT) (5.3)

where o 1s a constant related to the coordination number for hydrogen
sites about each other, Agyy is the hydrogen-hydrogen binding energy
caused by the lattice-mediated attractive Interaction discussed in
Chapter 1, and CH is the concentration of aingle hydrogen atoms,

For a hydrogen-impurity (H=-I) pair, also in the dilute limit for

both hydrogen and the impurity,

Cyy = a' cpcy exp (»Ang/kT) (5.1)

where ey is the impurity concentration. However, things are really more
complicated than this, As the hydrogen concentration approaches and
surpasses the impurilty concentration, the number of HeI pairs will
saturate. Each impurity may be surrounded by z hydrogen sites but each
of these can be occupled only by edther 0 or 1 atons, giving a maximun
of zCy pairs. Further, the interaction energy Agyy is & negative energy
that causes hydrogen to be bound or trapped by the impurity, and it will
be a distributed gquantity. The distribution is likely to cover a range
of energies greater than kT at tewperatures of interest. Thus, a Fermi-
Dirac distribution is needed to describe the occupation of sites,
Finally, as long as we are discussing trapping of hydrogen by impurities

in these deeper than average wells we might as well include all traps,
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such as the larger interstitial holes discussed in Chapter 1. These

aites may have a lower potential energy since they have a larger radius.
The local dilatation induced by hydrogen and hence the lattice strain
energy will then be smaller, provided that the metal atoms involved are
the same. If they are not, for example if Zwupdg octahedra but no Zré
octahedra can be found, this would not necessarlily be the case,
Furthermore, the increased coordination number im\the larger polyhedpral
holes may have an effect on the ground state energy, due to chemical
bonding effects for an interstitial such as hydrogen.

Aotual ly, there is no reason not to go ahead and include all sites,
tetrahedral, octahedral, or impurity traps. The computer models of
Finney and Wallace(5:5) and Ahmadzaden and Cantor(5+6) show that the
distribution of hole sizes is biwmodal, apparently resulting from the
existence of only tetrahedral and octahedral sibtes in their relaxed soft
potential monatomic computer models, as we recall from figure 1.5. This
should yield a bimodal distribution n(G) for the density of sites with

ground state free energy G. The total hydrogen concentration will be

_n(8) __ (5.5)

1+exp G “

If kT is small compared to the energy range of n(G), the Fermi-Dirac
distribution can be replaced by a step funetion,

Interestingly, Kirchheim, Sommer, and Sohluckebier(5°?) have made
electrochemlcal measurements of the chemical potential of hydrogen in
several metal-metalloid glasses. They analyzed their data assuming a
Gaussian for n(G) and were able to fit their data at higher H concentra-

tions by adjusting its center value G, and standard deviation .  The
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calculated values of ¢ were in the range of .14 to .18 eV, However, at

concentrations below ¢ = 10”3 the results deviated strongly from the
theoretical curve, indicating excess deep traps numbering about 0.19%
per metal atom. It is interesting to speculate that these may represent
a few larger hydrogen sites left over after the metalloid atoms £4111
most of these lapge sites,

Next we consilder the case of H palrs at high concentrations where
{(5.3) is no longer wvalid., The best treatment to date stems from
Le Claire and meer“ﬁa)y who considered binary crystalline disordered
(substitutional) alloys of elements A and B. This analysis can be
applied to the present case by allowing A and B to refer to empty or
full hydrogen sites. Although next nearest neighbors appear to be
frequently at least as important as nearest neighbors for Zener relaxae-
%i0ﬁ3(5°3)gL@ Claire and Lomer originally used only nearest neighbor
interactions., For each of the z/2 directions i to a nearest neighbor,
where z 18 the coordination number, the fraction gy of AA bonds is used
as an order parameter. The fraction of AB and BB bonds along direction
i can be expressed in terms of Ty and these can be used to build a
caleulation of the anelastic relaxation strength just as in Chapﬁer 2y
by substituting them for the concentrations e, of the simple defects
oriented in direction v. The only difference is that the sum of the oy
along different axes is not conserved as in equation (1.1). Instead the

quasichemical approximation

Nap Mg _ op (1m2c+0j)
)2 )2

= exp (-4g/kT) (5.6)

(c-0.

(ﬂAB i
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is used to give the dependence of the order parameter on temperature,

Here, g is the free energy G per atom, The final result is

V 2 fa )

M = i~ f(g,,c) &%ELE (PV) (5.7)
0 v

with Oy the value of the Uy at zero stress, which is sinmilar to (2.13)

but with e¢/n, replaced by f(oo,c)cg(’imc)za f(o,s¢) is a function which

is zero for complete long-range oprder and 1 for complete disorder, and

it shows an exp(-Ag/kT) behavior because of its dependence on o., Other

o
improvements can be made but this is sufficient for the data at hand.

We are now prepared to examine the question of which type of defect
causes the main peak in the anelastic relaxation seen here. Impurity
traps can be ruled out as an explanation of the main peak in z(E)
because the number 0f such pairs saturates at the impurity concene
tration, while no such saturation is seen up to ¢ = 86, To check for
hydrogen pairs we need to check the height Bpax of the peak in g(E) as a
function of T and ¢. We expect a binding energy of the order of 0.1eV
for the H pair, Values from .,065eV to 0.22eV have been reported, for
example, in crystalline me”“@ ?3.9)@ Figure 5,2 shows the value of
Bpay Plotted versus MTpea.k for the three modes of the o = 0.23, 0.6,
and 0.86 hydrides., The very slight temperature dependences and the
wrong sign of the slope for ¢ = 0.23 argue against the pair hypothesis,
A qulick calculation of Ag shows that its magnitude would be less than
0,01 eV for all samples. Even more striking is figure 5.3 which does
not agree well with a ce(%e)2 dependence. We conclude that we are most
likely seeing a Snoek relaxation, as have other workers with Pdaomm,

NbyoNigg, Pdpp 5CyeSiqg s and other glasses,(5:10s 5.1, 5.12)
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5ale2 Behavlor of the Peak

Figure 5,3 displays a dependence of nayx O0 © that is not very
simple. If instead we had plotted the integral of g(E), the point at
e = 0,23 would have been raised even higher relative to those at the
higher concentrations because its peak is much broader. In figure
5.8(a), the positions Emax of the maxima in g are plotted vs. ¢,
including two values for the double peak of the nominally ¢ = 0 data,
The latter are plotted at a ¢ value which is only a crude guess based on

the assumption that, for this and the ¢ = 0.23 data, is propore

Enax
tional to ¢, Then in figure 5.4(b) the full widths at half maximum of
the peaks are plotted vs. o.

In each of these last three figures 1t appears that the two lower
concentration peaks belong to one family while the two higher ones
belong to another. To allow better comparison of the inbtrinsic shapes
of the peaks, in figure 5.5 they have all been scaled to unity height
and shifted versus energy so that their upper toes coincide, to the
extent possible. The upper two concentrations' peaks are remarkably
closgse in shape, and the lower two are much more similar to each other
than to the former two, It would seem plausible that between ¢ = 0.23
and ¢ = 0,64 a change has occurred in the metal lattice or in the nature
of the relaxing defect.

The nature of this change 1s not clearly understood yet. From the
results of x-ray diffractiom“ﬁ13) and soft x-ray emission spectrosco-
py(ﬁmaa) experiments described near the end of chapter 1, it is clear

that the hydrogen is surrounded almost exclusively by Zr atoms up to at

least ¢ = 1, Therefore, this is not the cause of the differences ssen
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Activation Energy, eV

The distribution of activation energies for the
second vibration mode of the four alloys of figure
5.1, scaled to unity height and shifted in energy to
bring their upper toes into approximate colncidence,
in order to allow comparison of the peak shapes,
= = =y ¢ = 0, shifted by 0.242 eV. ..., ¢ = 0.23,
shifted by 0.084 eV. w«w==, ¢ = 0.64, shifted by

0.039 eV, =, ¢ = 0,86, unshifted,
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between the low and high ¢ peaks. It would appear that at large c the

amorphous alloy is forced to undergo some sort of structural re-
ordering. This conclusion is based on the above evidence in addition to
the x-ray results just mentioned, and shown in figure 1.3. When hydro-
gen was added to near the ¢ = 1 level, the Zr-Zr distances increased
while the Zr-Pd and Pd-Pd distances were almost unaffected., It i=
impossible for simple homogeneous expansion to explain this regult:
Local motions of Zr atoms relative to Pd atoms are required aside from
that, This type of struecture change has an analog in the changes in
erystal structure seen in erystalline alloys as ¢ increases,

Another feature of figure 5.1 is that as ¢ increases, the g(Ea§
curve decreases continuously in height at high Ea values, while 1t
inereases at low values, This is in sharp contrast to the behavior of
an amorphous Zr?ﬁNigu alloy reported by Agyeman et aljgm?g) where, as
more hydrogen was added, the internal friction curve followed the pre-
vious curves on the high temperature side but then diverged upward near
the peak and below to yield a higher, broader peak, shifted to lower
energles, In awaBGe the peak was found merely to grow everywhere
without appreciable shift in temperatmre(§”1% But in NbuON16@(Sd1)
and Pd7?®50u6Sijéé¥5'1o) the behavior found was similar to that
described here. Several explanations are poséible,

The first and only explanation which has been advanced to d&t@(5°10)
is the filling of the deepest wells first as described above in equation
{(5.5), coupled with a correlation between well depth G and activation
energy, One simple model used, for example, is that pletured in figure
5.6 where all the barrier heights are equal., Then Ea Just varies

inversely with G, and the initial filling of deep wells leads to the
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Pigure 5.6 A schematic representation of a model for the poten-
tial energy wells in a glassy metal, All maxima have
the same energy but the energies of the minima are

distributed.
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initial appearance of high E, values, This would nicely explain the

Zr76N12H data mentioned above, Howsver, though there is undoubtedly a
certain amount of truth in this picture, it i3 a rather poor approxima-
tion. Due to the greater steepness of the hydrogen-mebtal pair potential
at small distances, the saddle polint energy will be more sensitive to
fluctuations in these distances than will the energy at the minimum,
Therefore, there should be a distribution of saddle-point energies as
wide as or wider than the distribution of energlies at the minima,

A much more sophisticated caleculation has been done by Riche
ards(gdé)w He has derived an approximate relationship between the sum
of the edge lengths of tetrahedral and octahedral sites and their intep=
stitial site energles, using several simple pair potentials. He did the
same for the relationship of the perimeter of these sites triangular
faces to the saddle point energy for a hydrogen atom passing through
these faces, He then represented the first peak of an RDF by a Gaussian
and applied this to the caleulation of the distribution of the above
total edge lengiths, and hence the site or saddle point energies., He
focused only on hopping through triangular faces, ignoring square f{aces,
and got a nearly symmetric distribution of activation energles, Doing
this for amorphous Pd803120 he got a distribution whose mean could be
adjusted to agree with that of the experimental data, The width he
caleulated was somewhat too wide to f£1t the data., He also took into
account the correct filling of the wells, According to his ealeculation
the well depth and the activation energy are statistically correlated,
As a result, when the hydrogen concentration increases, the center of
the peak in the distribution of activation energies moves to lower

energy while its width increases somewhat, as we expect, Of course, the



=136
distribution of all sites, occupied and unoccupied, is still independent

of ©.

We see, however, that this well-filling ideas does not explain the
present data in which g(E) decreases radically at high E, while it
increases at lower E,, This effect has sometimes been explained as
being due to the mutual blocking effect of hydrogen atoms in neighboring
deep wells which keep the atoms in a given deep well from hopping.
However, this would require that most of the nearest neighbors of a deep
well also be deep, which is almost certainly not true since 1t would
require macroscopic separation of the material into large regions with
either deep or normal wells. And in any case, even 1f it were true, the
apparent minimum separation requirement mentioned in Chapter 1 which
prevents H«H distances of less than about 2.1 X might keep the nearest
nelghbor sites empty. Also it could well be true that adjacent deep
wells are connected by unusually low rather than high Ea barriers, as we
will see below., Finally, this idea leads to an apparent width of g(Ea)
which jncreases with ¢, while the present data do the opposite. In sum,
this approach appears almost worthless for explaining the data here,

A second explanation exists for the downward motion of the upper
toe of g(E) with ¢, as follows. The known lattice expansion caused by
hydrogen will, as argued above, affect the saddle point energies more
atrongly than the energies at the minima., Their difference, Eyy, will
without question decrease with expansion. The only guestion is whether

this effect is large enough to account fully for the observed decrease
in Ea@
The third possibility is that the changes in the chemical poten-

tial due to the excess potential Auy introduced in equation (1.16) might
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be responsible, The proton part of this, related to the lattice sirain

energy, 13 essentially Just the second explanation above., However, the
alectronic part could also produce the observed results by affeclting the
saddle point and minimum differently as a function of e, Recall that in
Pd, part of the electrons go into the existing d and 8 bands at the
Fermi level and part go into newly created semilocalized screening
states near the bottom of the 3 band., If this picture holds in other
metals, surely the former electrons would not be appreciably affected by
a change in position of the H atom from minimum to saddle point. The
question is whether the sereening electrons will be affected by c¢. The
answer, in Pd at least, is yes. As the 4d band gets filled, the density
of states at Ef goes down sharply. Meanwhile, in the simplest approxi-
mation of the Friedel model the screening falls off exponentially with

distance, with a decay length(5“17)

= [Anel -4
ro = [dne) D(EL)T . (5.8)

When this radius gets long enough that the screening charges of two lons
(1.e., the proton and a metal ian)‘interaet, the energy rises. This
should happen first and most sirongly at the saddle point, raising the
activation energy. Conversely, if Ef lies in a region where D(E) is
increasing with E, an increase in Ey would reduce the screening length
and might lower the activation energy. In ZPQPdHX the superconducting
eritical temperature and magnetic susceptibility, which should be pro-
portional to Q(Ef), both go down by about a factor of 2 as ¢ goes from 0
to 1. Hence the screening length will increase with ¢ and the activa=-

tion energles should go up, rather than down as observed. We conclude
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that the only viable explanation is the lattice expansion.

5ala3. Sites for the Peak Region

One of the best ways to investigate the kind of interstitial sites
present In an amorphous metal from a theoretical point of view is by
examination of a computer model. Several investigators have worked on
this. Abmadzadeh and C&ntmr(sﬂﬁ) have examined hard sphere and
gomputer-relaxed soft sphere models for polyhedra of atoms connected by
distances less than some cutoff distance. This was done only for a pure
metal with all spheres having the same radius. They do not in this way
account for all the volume, but they find tetrahedra and octahedra in
ratios that agree qualitatively with those of Finney and Wallace(5:5)
and Bernal, Thelr distributions of saddle point and interstitial radii
show distinet bimodal behavior similar to those of Fianney and Wal lace
mentioned near the end of chapter 1, However, unlike Finney and
Wal lace, they were able to identify whether the contributions came fronm
Jw Or H-sided faces for saddle points, or from tetrahedra or octahedra
for site minima, For the relaxed models the portions of the distribu-
tion due to triangular saddle points and tetrahedral interstital sites,
regpectively, are nearly symmetrical peaks, while the J.gided faces and
octahedra provide long tails at larger radii, They did not proceed to
ealeulate distributions of activation energies, but qualitatively the
results implied, if that were done, are obvious., Richards, as mentioned
above, went on to carry out those calculations.

Since possible interstitial sites in glassy metals appear to be
composed mostly of tetrahedra, with a few octahedra and larger sites, it

should be safe to assume that the peak in g{(E) is due primarily to
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hydrogen atoms jumping out of tetrahedral sites, through triangular

faces, A8 was mentioned above, we are falrly confident that the major-

ity of H atoms sit in Zr, tetrahedra over the range of ¢ covered.

5.2 TAIL RE

We have so far mostly ignored the low energy tail of g(E).
Probably its most striking aspect in figure 5.1 is the fact that it
guickly saturates at a certain absolubte level and inepeases no further,
and in fact actually decreases slightly with increasing ¢. The hydrogen
concentration at saturation is unknown, but it is less than 0.23 H/M.
The almost inescapable conclusion is that it is due to an impurlity trap
or a desp well, such as an octahedral or larger site.

One apgument that somewhat disfavors 1lmpurities as an explanation
is the variation in sample preparation detailed in Chapter 3. These
included the ribbons being melt-spun at different times, use of differ-
ent purlities of starting elements, different exposures to air at 25 C or
200 C, and different annealing times Iin the hydrogenation process,
Therefore 1t might be expected that they would have different levels of
0 or N impurities.

A second reason to quesilon hydrogen-impurity defecis as the source
of the low energy tail 1s that they might be expected to produce a peak
rather than such a broad distribution. Further, 1t might be questioned
whether the impurity would really pull the activatbtion energy, as opposed
to the interstital site energy, down that far,

The other possibility, deep octahedral sites, requires discussion
of some considerations not yet dealt with, Repeated reference has been

made to the idea that for smaller holes the hydrogen exists at a higher
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and steeper point on its pair potential with the metal, similar to the

case illustrated in figure 2,1, but with smaller holes having the radius
marked "nn® and larger holes the radius marked "nnn® This idea is
supported by the fact that hydrogen causes a large lattice expansion for
erystalline metals in which it ocecuples either tetrahedral or sctahedral
sites, dmplying that for both sites the slope of the pair potential is
negative., Further evidence for this idea lies in the fact that in many
metals hydrogen occupies the largest sites. Examples are hep cobalt and
fee gadolinium for octahedral sites and bee vanadium, niobium, tantalum,
and iron for tetrahedral sites (since these are larger than the beo
octahedral sites).

On the other hand, there are some exceptions. In bee copper the
octahedral sites are occupied. In all the phases of zirconium (hep,
fee, and face-centered tetragonal) the tetrahedral sites are occupied.
Otherwise, copper and zirconium are very different with respect to
hydrogen: in zirconium its heat of formation is very large and negative
while in copper it is small, Evidently for these metals the simple
spherical pair potential is not an adequate description of the hydrogen-
metal interaction. Chemiecal bonding effects, including the coordination
number of metal atoms around the hydrogen, may be important, In any
case, though, it may be that in amorphous Zr,Pd there are sites that
have a deeper potential energy minimum than do the tetrahedral sites,
with their coordination number of 4, or the octahedral sites, with a
coordination number of 6., An example might be a heavily distorted
netahedron, as we shall see shortly.

The other explanation of the tail region depends not only on the

sites occupied but on the path taken by a hydrogen atom in hopping from



LD
one site to another. In this case these two issues are very intimately

related, As already examined in a previous publieati&m(SJ&)g the idea
i3 that the tall results from hopping through four-sided or sguare
faces, which have two degrees of freedom not present in a triangular
Pane, For the latter the shape is fixed except for the wvariabllity of
each aide's length, as determined by the width of the first peak in the
BRDF., Allowing all three sides to vary in length results dn limited
variability in the radius of the hole through the center and hence
limited variability in the saddle point energy. This is just the ecalcu-
lation carried out by Richards. We assume that the main peak in g(m&}
results from hopping through these three-sided faces.

For a square face, apart from the variability in the length of the
sides there is freedom to deform it into a non-sguare parallelogram in
the plane, or to bend 1t out of the plane along a diagonal axis. For
either deformation the diagonal length starts out at /24, where d is
the length of the side, and can decrease until 1t reaches a length of
about d. To be specific, consider an octahedron, figure 5.7. Let 1t be
initially elongated along the x axis., Then start compressing it along
the 3 axis, Initially the potential energy minimum will lie at the
center., As the top and bottom atoms approach each other this minimunm
will eventually split, say into two minlma along the z axis as shown in
the same figure. Just after this the activation energy for hoppilang
between these two sites will be at a minimum, A3 the octahedron is
compressed further along the z axis, it will rise. When the top and
bottom atoms reach a distance d, the formerly square face through the
center will have changed to two adjacent triangular faces, and the

octahedron into four very distorted tetrahedra (with perhaps four minima
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Figure 5.7 A distorted octahedron with metal atoms represented
by dots and hydrogen sites by x's, used as a model
for the variable saddle point energies of hopping

through square faces,
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in the potential energy). The activation energy for jumping through

these Paces will have moved continously from zero up to the value for a
trlangular face. For the 1argeﬁ sites illustrated in figure 1.4 similar
considerations apply.

If we now envision an ensemble of such octahedra opr other sites
whose square faces are distorted to varying degrees in the metal, the
result should be a swmooth, continuous distribution of activation eneprw
gies ranging from zero up to the main peak. This is Just what is seen,
Purther, for the partially distorted octahedron the interstitial site
energies may be low, as mentioned above, leading to the trapping behave
ior seen. The reason is that if an octahedron has been distorted enough
that the central minimum has been split into two minima, each lying in a
half octahedron (Pigure 1.8(b)), the site’s coordination number is §.
It may be that the increase in site volume over that of a tetrahedral
alte lowers the potential energy wmore than it is raised by the increase
in cocordination aumber, This may be true even though it is pot true for
a coordination number of 6 or higher.

One vaveat is that the total number of non-tetrahedral sites is by
all accounts relatively low, perhaps of the order of 15% of all sites,
But only part of these will be sufficiently distorted that they will
have split into two minima, so0 the pumber of sites contributing to the
low energy tall may be only a few percent. Of course, the factor (AX)2
will undoubtedly be different than for the tetrahedral asites., If it is
larger it would make the talil more prominent., It should also be noted
that experim@nkallyﬁg(Ea) does not go all the way down to zero energy as
predicted but drops off to zero at about 0.07eV. The changing strength

of g(Ea) versus E; in this tail region could be due either to a changing
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density of sites with E_, or to the (A)\)Q factor!s being a function of

the distortion of the square face, or both, Certainly, Ak i3 zero for a
regular octahedron and becomes nonzero when the polyhedron is distorted,
yielding a trend similar to that seen in the data.

Finally, then, we see that either impurity traps or hopping through
square faces can explain the tall, The present data are not capable of
distinguishing between these possibilities with certalnty, but they

favor the latter,

For the unhydrided ngPd specimen the relaxation strength distribu-
tion shows some unigque features. The low temperabture tail is relatively
very prominent, in agreement with the idea that i1t represents trapped
hydrogen atoms, But even more striking is the double peak structure and
its very high activation energy.

It 43 a 1little difficult to believe that these peaks, or aven the
lower one, have the same source as the peak at 0.42 eV for ¢ = 0.23. It
is tempting to speculate that they may arise from trapping, parhaps by O
or N impurities., This would explain thelr hxgﬁer activation energy,
larger by 0.1 - 0.2 eV, which is a reasonable value for the depth of a
trap. The double peak might be attributed to two kinds of traps or
perhaps to first and second nearest neighbor sites around the trap, with
the first nearest neighbors being the deepest,

The main problem with this picture is that as pointed ouf above
these sites should remain present in the internal friction spectrum at
higher concentrations, Much more information is needed before any

conclusions can be reached. It should be useful to do NMR on low=e
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samples and to compare this with data for higher ¢ to see if the hydro-

gen site parameters are different.

In passing we note that a small, very narrow peak was seen in the
second vibration mode for the uanhydrided ngPd specimen at 252 K, supers
imposed on the rising low temperature tail, Initially it had a magni-
tude of Q~! = 4 x 10™° and a width of about 5 K. This was remeasured in
the second mode, but when the mode 3 measurements were made it had
disappeared, It is so narrow that the minimum value of Ea that can be
associated with 4t is 1.1 eV, This is suggestive of metal atom rather
than hydrogen hopping and might be due either to relaxation of the
glasay lattice or to anelastic relaxation in erystal line inclusions
small enough to have escaped detection by Xeray diffraction. However,
the latter seems unlikely in view of the fact that the peak seemed to

disappear with time.
5.4 LenFese DATA

The internal friction measurements on X64F@36 have not been ana-
lyzed nearly as thoroughly as those of the 4roPdH, alloys. As explained
previously, this was due to much larger measurement error in addition to
uncertainty about the high temperature rising background. In spite of
this several comments can be made. The extra peak at lower temperature
was not seen in the data of Kunzi, et alw(§“19> on the similar alloy
Xﬁﬁcogﬁe It was not large enough to allow its isolation from the main
peak by subtraction, given the level of data uncertainty. However, it
appears from visual inspection to have roughly the same 1/T shift as
does the main peak in its vicinity once the backgrounds are accounted

for. If so, it will have the same Ty Value, and 1t can be included when



wfl4fe-
computing g(E) since the inversion assumes that all relaxation compo-

nents have the same Tge Since Kunzi, et al, found that their peak in
Y656035 was due to hydrogen, it is a reasonable assumption that the main
peak here is also., However, 1t would be interesting to know whether or
not the small bump is hydrogen-related or not. If g0, this along with
the wunhydrided ngpd sample become the {flrst known examples of a hydro-
gen-related double peak in an amorphous alloy. If not, this would join
one other possible @xampla(ﬁ*zg) as the only known internal friction
peaks in non-magnetic glassy alloys.

Beyond this, the internal friction data themselves in figure U.7
seem to show the same low temperature tall seen almost universally in
metal lic glasses, though due to problems discussed in Chapter U the

g(Ea) spectra do not show the peak asymmetry as clearly.

The similarity of the present peak shapes to those seen in Pdaoﬁizo
and other metallic glasses has already been noted, If the low energy
tail represents hopping through (distorted) square faces, that would
explain its general presence in widely different glasses, assuming that
all glasses have this structural feature in common. Hydrogen-impurity
trapping could also explain this general phenomenon if all the hydrogen-
ated glasses examined to date had impurities in roughly the same
amounts, but this seems doubtful.

The 1, values in (szPd)ﬂigﬁ can be compared Lo inelastic neutron
scattering results on aerQFd hydrogenated to about the same level as
the ¢ = 0.88 sample(ﬁﬁzj)@ The energy Nw, of the transition from the

ground state to the first excited state was measured as 0,125 eV. This
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T is just the quantum frequency of motion of the atom in the potential

well, Since this is not very small compared to the overall activation
eneprgy of .42 eV we see that quantum effects will be important, but in
the eclassliecal limit the atom has the same frequency of motion as in the
quantum mechanical limit and 2w/T, can be identified as w,; with the
following correction. From eguation (1.20) in Chapter 1 we recall that
the attempt frequency is renormalized by exp{As/k) where As i3 the
difference in vibrational entropy between the saddle point and the
minimum, This we can compute: the value of T from Table 1 vields
;:m/% z 0,283 eV, so dividing by “th from above we get As = k 1n 2,26,
The equivalent of about 1 extra lattice state per hydrogen atom would be
created if all hydrogen atoms were at their saddle points (assuming the
single atomic jump picture).

The range of activation energles seen here is also confirmed by the

NMR measurements of B@wmam(s"gg)

» Who made measurements of the proton
rotating frame relaxation times Tm on hydrogenated Zr,Pd alloys with
¢ = .96, The proton-proton term in the dipole relaxation time dominates
other contributions in this alloy, so it is a favorable one for these
measurements. A large minimum was found in '1‘»] 0 corresponding to hydro-
gen hopplng. These data were converted to a value of Ty = ‘rd/.’e‘z where
To 18 the mean correlation time, while 1y is the mean residence time
measured In internal friction experiments,

Bowman's resulting data are shown in figure 5.8, The plots of
~r§1 for the erystalline hydrides fit well to a straight line on the
Arrhenius plot, but the data for the glassy alloy show a short fairly
straight region near the top followed by a curve below. This is the

result of a peaked distribution of activation energies. At low tenpera-
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tures all bubt the lmwast«Ea hops are frozen oubt and T, appears to have a

small activation energy. At higher temperatures the hops with larger Ea
values start contributing and overwhelm those of lower Ea because they
are greater in number; g is higher there, Finally, as barriers higher

than E start contributing, they make little difference because they

Mmax
are fewer in number. The upper behavior settles down at a slope near
that given by ﬁmax’ Thus the peak seen by internal friction qualita-
tively explains the NMR data. Further, the range of values found for
the apparent activation energy vary from 0.08eV to QQHBQVKE“EB), AP BB
ing perfectly with those seen for the ¢ = .86 hydride, of 0.07eV to

0.42eV at bthe peak.

Internal friction measurements have been made in two amorphous
alloys, aergPde and a»YsAFegé‘ The hydrogen-related peaks observed
were mostly measured over a temperature interval of about 80 X to 370 K.
Por the high hydrogen concentration alloy measurements were ocarried on
down to 10 K. In most cases measurements were made at the three lowest
vibration modes of fach specimen to allow fitting of an activation
energy and time constant Ty to the temperature shifts of the peaks,

The procedure for fitting internal friction measurements made at
different frequencies becomes more complicated when the peaks represent
2 spectrum of relaxationa whose time constants are thermally activated
with different activation energies, In this case a simple attempt to
caleulate the activation energy from the temperature shift is lucorrect.
The relaxation strength at a bLemperature then becomes a nonlocal

funetion of g(E&), depending on its behavior in an energy interval.
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This fact has not been appreciated in the past, leading to errors in

caleulations of activation energies. This is particularly a problem
where very broad actlivatlon energy distributions are present,; as in
metal lic glasses,

The integral equation for the anelastic modulus has been inverted
using a sipgular value decomposition method to yleld a distribution of
relaxation strength over activation energy. This is the Tipst time this
has been done in a non-parametric way. The results show the qualitative
features expected from the internal friction data, with an asymmelric
peak and a long tail extending down to below 0.1 eV. The distributions
for different fregquencies generally agree well with each other for one
specinen,

There is a general trend for the upper side of the peak to move Lo
lower energy with increasing c¢. The only possible explanation for this
appears to be the effect of lattice expansion on the activation energies
for hopping out of the sites., At the high hydrogen concentrations,
¢ = 0.64 and o=z 0.86, the peak becomes much narrower and the peak
position moves upward before resuning its downward trend., At the same
time the peak loses intensity if normalized by ¢, As a result of these
two effects the peak area normalized by ¢, and hence the calculated
agsymuetry of the sirain dipole, are much smaller at large ¢, While some
of this could be due Lo site competition between hydrogen atoms at high
concentratlons, the relazxation strength does not follow a @2(1we}2
dependence. Nor is there a strong exponential dependence of relaxation
strength on temperature at constant ¢, From these considerations 1t
appears that the relaxing defect is Snoek-~1like (i.e., due to a single

atom rather than H=H or H~dmpurity pairs or other more complex cluse
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ters), and that the nature of the hydrogen site changes considerably at

largs c¢. This may be due to a change induced in the structure of the
metallic glass, an ildea also supported by the x-ray diffraction experi-
ments showing a change in Zr-Zr distances while Zr-Pd and Pd-Pd distans
ces remain virtually unchanged.

Regardless of some of the uncertainties mentioned above, it appears
correct to assume that the peak in g(Ea) is due to hydrogen hopping
through saddle points in triangular faces. This agrees with dense
random packing models using hard spheres, or soft potentials prelaxed by
a compuber, which show that the great majority of the faces around
interstitial sites are triangular.

The low-energy tail in g(Ea) saturates at low concentration, indi-
cating that 1t is due to sites whose potential wells are deeper than
average. A model is suggested to explain the broad featureless nature
of the tall, based on hopping through four-sided faces., These can be
distorted continuously from a square into a set of triangles, A distri-
bution in this degree of distortion would account for the smooth nature
of the tail, the fact that it goes to low eneprgies, and that it
continues just up to the peak. Other ideas such as impurity trapping do
not explain the observations as well. 7The similarity of the form of the
internal frictlion peak to other peaks reported in both transition metal-
metal loid and transition metal-transition metal metallic glasses sug-
gests that the peak shape 1s based on very general phencmena, of the

above type,
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