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Abstract 

The MARK III collaboration has collected a large sample of n mesons pro­

duced at the 1/J(3770) resonance. The reconstruction of several thousand hadronic 

n decays makes possible for the first time the reconstruction of exclusive semilep­

tonic n decays. Absolute branching ratios are measured for the nine decays 

n° ~ K- e+ Ve, n° ~ K- 1fo e+ Ve, n° ~ K 1f- e+ Ve, n+ ~ K° e+ Ve, n+ ~ 
K- ?r+ e+ v n° ~ ?r- e+ v n° ~ K- µ+ v n° ~ K ?r- µ+ v and n+ ~ e, e, µ, µ, 

K µ+ Vµ. The sums of the exclusive branching ratios are in good agreement with 

the inclusive semileptonic branching ratios measured by the MARK III. The rate 

of the Cabibbo-suppressed decays is consistent with the predicted rate. The con­

tribution of the K* (892) to the K-?r invariant mass spectrum for decays of the 

type n ~ K 1f e+ Ve is found to be about 55%. The vector form factor in the de­

cays n° ~ K- e+ Ve and n° ~ K- µ+ vµ is measured and found to be consistent 

with a simple pole form. 
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Chapter 1: Introduction 

The greatest triumph of high energy physics over the last forty years has 

been the development of the Standard Model - the gauge theory of the electro­

magnetic, weak, and strong interactions. This theory describes successfully so 

seemingly different processes as the production of muon pairs in electron-positron 

collisions and the decay of vector bosons in proton-antiproton collisions. So suc­

cessful in fact is this theory that one is tempted to assume that its content should 

somehow have been obvious to earlier investigators, but this, of course, was not 

the case. Physicists found themselves confronted with a baffiing array of phe­

nomena and it is remarkable that they were able to impose order on this apparent 

chaos. Credit for this is due largely to a few bold theoretical conjectures and a 

number of sophisticated experiments designed to test them. 

By the end of the 1950's, the gauge theory of electromagnetism - Quantum 

Electrodynamics or QED - was well established. In particular, the re normal­

izability of the theory had been demonstrated. The divergences, which had so 

perplexed many physicists, could be cancelled order-by-order in a perturbation 

expansion to yield finite results. Calculations carried out even to quite high order 

were consistently in agreement with experiment. The predicted and measured 

value of the Lamb shift for the hydrogen atom were in excellent agreement. Per­

haps most impressive of all was the value predicted for the gyromagnetic ratio 

of the electron. 111 Experiments have shown this to be one of the most accurately 

predicted values in the history of science. 

If all appeared well for the interactions of photons with the two leptons then 

known - the electron and muon - the weak and strong interactions were far 

from being understood. By 1953, twelve hadrons had been identified: the baryons 

p, n, A 0 , E-, E+, and 5-, and the mesons 7r-, 7ro, 7r+, K-, K 0 , and K+. Although, 

some similarities and regularities among these particles had been recognized, it 

was impossible to predict many of their production and decay properties. 
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The most troublesome of the known particles were the hyperons. For exam­

ple, it was difficult to understand the copious production but long lifetime of the 

A0• In 1953, Gell-Mann 121 and Nishijima 131 introduced a new additive quantum 

number - strangeness - which would be conserved in strong and electromag­

netic interactions. They predicted the existence of three new particles - E0 , 2°, 

and J?°. The E0 was subsequently discovered in the decay E 0 ~ A0 /, and the 

6° in the decay 6° ~ Ao 7ro. 

An internal symmetry known as isospin, with mathematical properties iden­

tical to those of angular momentum, had been identified as a symmetry of the 

strong interactions. 141 Under isospin, protons and neutrons transform jointly 

as an eight-component isospinor. With the introduction of strangeness, isospin 

was no longer sufficient to explain the properties of the known hadrons since 

strangeness is also conserved in strong interactions. In 19S6, Sakata 151 put for­

ward a model in which the A 0 was joined with the proton and neutron in a triplet 

of fundamental particles. The strong interactions would then be invariant under 

the group SU(3), a larger group that the SU(2) of isospin. 

Mesons have baryon number zero, so they would consist of a bound state of a 

baryon and an anti baryon. An octet and a singlet of mesons may be formed from a 

triplet of baryons and a triplet of antibaryons, as evidenced in the formula 3©3 = 

8EB1. The octet contains four isospin multiplets: J(isospin)= ~' s(strangeness)= 

1; I= 1, s = O; I=~' s = -1; and I= 0, s = 0. The seven pseudoscalars then 

known filled the first three of these multiplets. In 1961, 161 an eighth pseudoscalar 

- the 17° - was discovered and determined to be the I = 0, s = 0 singlet. 

The Sakata model was highly successful in describing mesons but less so in 

describing baryons. Gell-Mann 171 and Ne'eman rsJ proposed that baryons should 

also belong to an octet representation of SU(3). This model is known as the 

eightfold way. As well as accounting for the known baryons, it was able to predict 

the mass splitting within the octet. The Gell-Mann-Okubo mass formula, 191 in 

which electromagnetic mass splittings within isospin multiplets are ignored, may 
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be written as 

where M is the expectation value of the mass operator; Y the hypercharge; 

and Mi, M2, and Ms constants depending only on the group representation. In 

this parameterization, MN = Mi + M2 + ! Ms, ME = Mi + 2Ms, MA = Mi, and 

Ms= Mi-M2+!Ms. Further, !{MN+Ms) = H3MA+Ms), a prediction borne 

out by experiment. Indeed, !(MN+ Ma)= 1129 MeV /c2, and t(3MA +ME)= 

1135 MeV /c2, where average values have been used for masses within isospin 

multiplets. 

The eightfold way model was able to predict the existence and properties of 

the n- baryon. 1101 A number of baryon resonances had been observed in K-N 

reactions. When two octets - for example, the pseudoscalar and baryon octets 

- are combined, a number of irreducible representations result: 8©8 = 1EB8EB8EB 

10EB10EB27. The .6..(1232), observed in K-N reactions, has I=~ and Y = +1; a 

multiplet with these quantum numbers occurs in the 10 and 27 representations. 

The 27 representation also contains many resonances not observed, so baryon 

resonances observed in K-N scattering belong to a 10 representation of SU(3). 

This representation includes a state with I = O and Y = -2, termed the n­
by Gell-Mann. The mass formula given above predicts equal spacing within 

the decuplet and a mass of 1685 Me V / c2 for the n-. This state is stable against 

decay by the strong and electromagnetic interaction as there are no lighters = -3 

states. It would decay weakly into K-A 0 , 7r-a0 , or 7r0a-. A particle with mass 

1686 ± 12 Me V / c2 and the other predicted properties was discovered in 1964 at 

Brookhaven. 1111 This discovery helped catalyze support for the eightfold way. 

The "vector minus axial-vector", or V-A, structure of weak currents had been 

inferred from the decay of muons and the /3 decay of nuclei. In 1963, 1121 Cabibbo 

proposed an extension to this model which was able to incorporate both b..s = 0 

and b..s = -6..Q = 1 decays. The weak current would transform as an SU(3) 

octet and consist of not only vector and axial-vector parts, but also -6..s = 0 and 
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D..s = 1 parts. In the notation of Cabibbo, Jµ = a(J~o) + g1°)) + b(J~l) + g11
)) 

where Jµ and gµ are vector and axial-vector currents, respectively; the superscript 

refers to the change in strangeness. In order to preserve a form of universality, 

Cabibbo required that a2 + b2 = 1. The weak current could then be written 

Jµ = cos '19 cU~o) + g1°)) +sin '19 0 {J'~1 ) + g11
)). [The notation "19 c" is not Cabibbo's, 

but the relation tan '19 c = b/ a is.] With this Ansatz, it is possible to compare 

D..s = 0 and D..s = 1 decay rates. For example, 

It is also possible to predict the relative rates of all allowed transitions among 

members of the same SU{3) multiplet. 

With the failure of the Sakata model to describe the structure of the baryon 

multiplets, there was no adequate theoretical explanation for why the known 

mesons and baryons populate octet representations of SU{3). Gell-Mann, 1131 and 

independently Zweig, 1141 developed a model in 1964 in which there would again 

be a triplet of fundamental fermion fields as in the Sakata model. These fields, or 

quarks 1151 would, however, have baryon number 1/3 and would therefore not be 

identified with any known particles. As before, mesons would consist of a quark­

antiquark pair, but baryons would now consist of three quarks. This would be 

possible as 3 ® 3 ® 3 = 1 EB 8 EB 8 EB 10. Thus, the new quark model would retain 

the important features of the eightfold way. 

Cabibbo's hypothesis was easily incorporated into the quark model. The weak 

currents would now be written: J~0)+g1°) = d1µ(l-1s)u, J·~1)+g11 ) = S/µ(l-1s)u, 

and Jµ = cos '19 0 d1µ(l -1s)u +sin '19 0 s/µ(1 - 1s)u. 

A major shortcoming of any theory containing only charged weak currents, 

like the currents above, is that it is not renormalizable. Consider the scattering 

process VµVµ ---t w+ w- for which the lowest order Feynman diagram is shown 
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µ 

-
v µ. 

Figure 1.1: Tree level diagram for Vµ Ilµ-+ w+ w-

in Fig. 1.1. At very high energies, the cross section increases with energy: 

da E 2 sin2 
{) --G2 ___ _ 

dO - F 87r2 

where {) is the polar scattering angle. This violates unitarity in that all partial 

waves must decrease in their contribution to the cross section as 1/ E 2• The 

behavior of this cross section is dominated by the longitudinal component of the 

W polarization. This situation does not occur in QED; the gauge invariance of 

the electromagnetic interaction allows the longitudinal polarization states to be 

removed from calculations. Further, in QED, all "loop integrals" are at worst 

logarithmically divergent. Such divergences may be tamed with the introduction 

of a finite number of parameters. In this simple model of the weak interaction, 

many loop integrals diverge as a power of the loop momentum. This necessitates 

the introduction of an infinite number of parameters. 

It is the gauge invariance of QED which insures that calculations at any 

order will yield finite results. Glashow 1161 proposed in 1961 that SU(2) be con­

sidered a symmetry of the weak interaction. This was added to the U(l) sym­

metry of the electromagnetic interactions, so the total symmetry group was then 

SU(2)xU(l). Under this symmetry, left-handed spinors would transform as 
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follows: 

Here, a(x), and ,B(x) are continuous functions, and i are the generators of SU(2). 

The covariant derivative for such a transformation is Dµ = aµ+i!gr·Wµ-i!g' Bµ. 

Wµ are the three SU(2) gauge fields and Bµ the one U(l) gauge field. The 

important point here is that there are now two neutral fields Bµ, and woµ. 

The combination of fields Aµ = sin 'l?w woµ + cos 'l?w Bµ is massless and may 

be identified with the photon. The orthogonal combination zµ = cos 'l?w woµ 

- sin 'l?w Bµ has mass Mz = Mw /cos 'l?w. This weak mixing angle is determined 

by the relative magnitude of the couplings g and g1
: tan 'l?w = g1 

/ g. This zo 

boson is the neutral partner of the charged weak bosons, w+, and w-, so it 

will be responsible for neutral weak decays. Neutral currents were observed for 

the first time in 1973, by the Gargamelle bubble chamber groupl111 at CERN, in 

neutrino-nucleon interactions. 

By 1971, 't Hooft[isJ h d d d · th t th b d a succee e m provmg a a eory ase on 

SU(2) x U(l) is renormalizable. There still remained several serious problems, 

two of them associated with the decays of neutral kaons. The Cabibbo hy­

pothesis may be thought of as implying mixing between the d and 8 quarks, 

that the weak and strong interaction eigenstates are not the same. This mixing 

may be written as d' = d cos'!? c + 8 sin'!? C' and the charged current becomes 
-I 

Jµ = d /µ(1 - 1 5 )u. It was then expected that the neutral current would have 

a similar form: Nµ = U/µ(1 - /5)u + d1
/µ(1 - /5)d'. It is interesting to dis­

play the mixing angle explicitly. Nµ = u/µ(1 - /
5
)u + cos2 '!? cd/µ(1 - /

5
)d 

+sin2 '1?c8/µ(1 -1
5

)8 + sin'l?ccos'l?c(d/µ(1-1
5
)8+8/µ(1 - /

5
)d). The first 

three terms conserve strangeness but the last two have a change of strangeness 

of ±1. 

Such strangeness changing neutral currents should be observed in the de­

cays of the K2. The decay K- ~ µ-Tlµ has a large branching ratio. Since the 
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SU(2) xU(l) model predicts nearly equal couplings for charged and neutral cur­

rents, it was expected that the decay Kf -)- µ+ µ- should also occur with a large 

rate. That such strangeness changing neutral currents were not observed was 

striking. The prediction of a large rate was a severe failure of the SU(2) xU(l) 

model. 

Another failure was the prediction of a K2-K~ mass difference - ~m -

which was much larger than that which had already been measured. It is in­

structive to examine this prediction in some detail. The mass difference comes 

about through the mixing of the K 0 and K° states. The lowest order pro­

cesses are shown in Fig. 1.2a and 1.2b. The mass of the K2 will be raised to 

(mko+ < K°IHw IK0 > )1/ 2 and that of the K~ will similarly be lowered to 

(mk-0 - < KIHw IK0 > )112 • The difference in these values is approximately 

ml(~< K°IHwlK0 >. 

If all external momenta are neglected - the mass scale here is set by Mw so 

ignoring external momenta results in only a small error - the matrix element 

corresponding to Fig. 1.2a may be written, in the Feynman-'t Hooft gauge, as: 
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a 
sin8c cosec 

d s 
w 

Ko -o 
u u K 

w 
d s 

cosec sin8c 

b 
sin8c cosec 

d s 
u 

Ko w w -o K 
u 

d s 
cosec sin8c 

Figure 1.2: Lowest order processes contributing to KL - Ks mass difference. 

The integration is easily performed to lowest order in mu/Mw: 

As m;/MJv « 1, only the first term need be retained. It is useful to apply the 
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identity: 

After collecting terms and substituting g = 25/ 4G¥2 Mw 

M G}Ma, . 2 .Q 2 .Q - ( d - >. ( 
a= - 2 sm vccos vcs1/>. l -1) 2s21 l -1 )dl 87r 5 5 

The matrix element corresponding to Fig. 1.2b is precisely the same so 

In order to calculate the mass difference, it is necessary to carry out a Fierz 

transformation on the field operators in M to group s1 and d1 , and s2 and d2 , 

together. Then it is possible to make the vacuum insertion: IO>< OI ~ 1. 

The partially conserved axial-vector current hypothesis - PCAC - relates 

< Ols1>.1sdlK0 > to < Ols/>./sulK+ >=if K Pf<. With this Ansatz, 

If the measured values of f K sin{} c = 33 Me V and Mw = 80.8 Ge V / c2 are used, 

this formula predicts !::,.m/mK ~ 2 x 10-11 • This quantity has been measured to 

be 7.1 x 10-15 , in terrible disagreement with the prediction. 

In 1970, G lashow, Illiopolous, and Maiani 1101 proposed a mechanism - now 

known as the GIM mechanism - to insure that perturbative expansions in the 

weak coupling constant would converge. This mechanism had the fortuitous 
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result that strangeness-changing neutral currents would disappear and that the 

Kl - K~ mass difference calculation would be rendered sensible. They proposed 

the existence of a fourth quark field associated with a new quantum number, 

charm. With the introduction of this new quark, there would be the same number 

of quarks and leptons. 

The leptonic weak current may be written Jf = lCL"fµ(l - 1
5

)1 where l is a 

column vector (ve, Vµ, e-, µ-) and CL is a 4 x 4 matrix: 

0 0 1 0 

0 0 0 1 

0 0 0 0 

0 0 0 0 

By analogy with this, the hadronic weak current may be written as J'f'I 
qCH"fµ(l - /

5
)q where q = (c, u, s, d). CH is given by 

0 0 - sin t?c cost? c 

0 0 cost? c sin t? c 
CH= 

0 0 0 0 

0 0 0 0 

Here, t?c is the Cabibbo angle. Thus, the GIM mechanism may be seen as an 

extension of Cabibbo's hypothesis. Most significant, though, is the symmetry 

between the leptonic and hadronic currents in this four-quark model; CL and CH 

are equivalent under an SU(4) rotation. 

It was noted above that Cabibbo's hypothesis could be understood as a 

type of mixing among the mass eigenstates. This idea may be extended to the 

four-quark model. The weak eigenstates - those appearing above - are linear 

combinations of the mass eigenstates. The form of the mixing is given by CH: 

d' = d cost? c + s sin t? c and s' = -d sin t? c + s cost? c· Now the hadronic current 

may be written J'f'I = d1
1µ(1 - 1

5
)u + s'1µ(l - /

5
)c. In this parameterization, 
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the form of the weak neutral current is Nµ = u1µ(l - /
5
)u +<J 1µ(1 - /

5
)d' 

+c1µ(1-/
5
)c +s'1µ(1-/

5
)s1• In terms of the mass eigenstates: Nµ = u1µ(1-1

5
)u 

+d1µ(l - / 5)d +c1µ(l - / 5)c +s1µ(l - / 5)s . The mixing angle has disappeared 

from the neutral current as has any strangeness-changing part. 

Even though, through the introduction of the GIM mechanism, strangeness­

changing neutral currents have been removed, the decay K£ --+ µ+ µ- could still 

receive a substantial contribution from the second order weak process shown in 

Fig. 1.3a. This, however, will be substantially cancelled by the processes in 

Fig. 1.3b - 1.3d. The resulting matrix element 1201 for the sum of the processes 

illustrated in Fig. 1.3a - 1.3d is: 

The decay rate, in the PCAC limit - s1a1
5
d =>if KPJ{ 0 - is: 

G4 ~~~~~ 

f(K0 --+ µ+µ-) = ____E_cos2 rJ sin2 rJ m 4 / 2 m 2 ·1m2 -4m2 327f5 C C c K µ y Ko µ 

= 5.0 x 10-29 GeV 

The corresponding branching ratio is B(K£ --+ µ+ µ-) = 3.9 x 10-12 • This result 

is much smaller than the measured branching ratio of 9.1±1.9 x 10-9 • The GIM 

mechanism thus removes the large second order weak contribution. This decay 

probably proceeds through an intermediate state consisting of two photons. 



12 

s 
w 

µ+ s µ+ 

Ko u llµ Ko 
w 

d µ d µ 

a b 

w 
s s 

d µ d w µ 

c d 
Figure 1.3: Second order diagrams for KL--+µ+µ-
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The D..m calculation given above must be modified to incorporate the charm 

quark. Now the matrix element will be given by 

The integral may be evaluated exactly, but it is more instructive to keep only 

those terms which are of lowest order in mi/ Mw . 

I d
4
k k k [ 1 1 

(27r)4 a (3 (k2 - M&, )2 (k2 - m~)2 + (k2 - M&, )2(k2 - m~)2 
_ 2 1 ] _ -i gap m~ + m~ ... 

( k2 - M&, )2 ( k2 - m~)( k2 - m~) - 647r2 M&, M&, + 

With the assumption that me ~ mu the mass difference becomes 

D..m G2 

-- = ___E__m2 sin2 -0 cos2 -0 f 2 
mK 47r2 c G G K 

Gaillard and Lee 1211 used this formula to predict me ~ 1.5 Ge V / c2 , certainly 

a remarkable prediction, especially since it made several months before the an­

nouncement of the discovery of the J / 'ljJ ! 

Late in 1974, the extraordinary resonance known as the J /1/J was discovered. 

A group at the Brookhaven AGS 1221 investigated the reaction p + Be ---+ e+ + 
e- + X. They observed a very prominent peak in the e+ e- invariant mass 

distribution at a mass of 3.1 GeV /c2 • The resonance was denoted J by this 

group. 

Independently, and simultaneously, a group at SPEAR 1231 observed a very 

large enhancement in the total hadronic cross section; the peak value of the cross 
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section was reported as 2300±200 nb. Similar enhancements were observed in the 

µ+µ-and e+ e- cross sections. The hadronic cross section, in particular, exhibits 

the high mass radiative tail characteristic of initial state radiation in electron­

positron storage rings. The resonance, denoted 1/J, was determined to have mass 

M't/J = 3.105 ± 0.003 GeV /c2 and width r 't/J < 1.3 MeV. After the announcement 

of this discovery, three groups at the ADONE facility 1241 at Frascati confirmed 

both the existence of the resonance and its mass. 

The J / 'ljJ was determined to have the spin, spatial parity, and charge conjuga­

tion parity of the photon; at a center-of-mass energy of 3.1 Ge V, electron-positron 

interactions occur predominantly through annihilation to a single photon. The 

J / 'ljJ also has odd G-parity since it decays most often to final states containing 

an odd number of pions. Since G = (-1) 1+J, this implies that the Jf?.jJ has even 

isospin. The final states p- 'ff+, p07r0 , and p+ 'ff- occur with equal frequency, so 

the isospin of the J / 'ljJ must be zero. 

It is very difficult to imagine that the J /1/J could be formed from u, d, and 

s quarks. The J /1/J is much narrower than meson resonances of lower mass. If 

the J /1/J did consist just of the three light quarks, it should decay quickly to 

final states containing lower mass mesons. There would certainly be generous 

phase-space available for such decays. 

An explanation for the extremely narrow width of the J /1/J is that it consists of 

a bound pair of charm quarks. Charm is conserved in strong and electromagnetic 

interactions, so the J /1/J should decay to a pair of mesons, each containing one 

charm quark, as shown in Fig. 1.4a. If, however, the charmed mesons have masses 

which are too large, the J /1/J would have to decay through the OZI suppressed 

process shown in Fig. 1.4b. This process should proceed only slowly, accounting 

for the narrow width. A similar effect is observed in the decays of the</> resonance. 

The </> is also quite narrow: there is very little phase-space available for the OZI 

allowed decay </>-+ K K but a great deal available for the OZI suppressed decay 

</> -+ 'ff+ 'ff- 7ro. Despite the difference in phase-space, the </> decays predominately 
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Figure 1.4: OZI allowed (a) and suppressed(b) decays of charmonia 

to KK. 
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Shortly after the discovery of the J /7./J, another narrow resonance - the 7./J' 

- was discovered at SPEAR at a center-of-mass energy of 3.685 GeV. This 

resonance was also very narrow and was determined to have the same quantum 

numbers as the 7./J. 



16 

If the J / 7/J were a bound state of two charm quarks, the relative motion of 

these quarks should be largely nonrelativistic; the quark mass may be assumed 

to be of order 1/2Mt/J. The spectrum of states should then be similar to that of 

positronium - a bound state of a positron and an electron. The major difference 

between these systems - positronium and charmonium - lies in the nature of 

the binding potential. The charmonium potential has not yet been computed 

from first principles, but it must become large when the quarks are separated 

by a large distance as they are confined to the interior of the meson. Thus, the 

charmonium potential cannot be a simple Coulomb potential. 1251 

The energy levels of positronium are shown in Fig. 1.5a. The states are 

identified in spectroscopic notation. The observed states of charmonium are 

shown in Fig. 1.5b. The similarity is quite striking. The J / 'ljJ and the 7/J' are 

identified as the first and second 3 S1 states, respectively. The 3 P states -

denoted x
0

, x
1

, and x
2 

- are not produced directly in e+ e- collisions. Rather, 

they are observed in radiative transitions 1261 of the type 7/J' --+ I x J' Th us they 

have positive C- parity as do the corresponding positronium states. The lowest 

lying 1 So state - the 'f/ c - has been studied extensively. 1211 Finally, evidence for 

the next higher 1 So state, denoted rJ' has been reported; 1281 the mass reported c 
is 3590 MeV /c2 • 

The 7/J(3770) resonance - hereafter referred to as the 7/J" - is identified as 

the lowest lying 3 D 1 state, but it is probably not a pure state. The van Royen­

Weisskopf formula predicts a leptonic width for the 7/J" of 

where ec is the charm quark charge of 2/3. The wavefunction for a pure D state 

has a node at the origin, so this formula predicts a leptonic width of zero. This 

is, however, not correct as the 7/J" is observed in e+ e- collisions. The measured 

leptonic width of the 7/J" is 280 e V. The non-zero leptonic width 1201 may come 
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Spin, Spatial and Charge Parity (JPC) 

Figure 1.5: Energy levels of positronium (a) and mass spectrum of charmonium (b) 

about through mixing of the 3 D 1 state with the nearby 3 81, the 'If;' which has a 

leptonic width of 1.7 keV. 

The 'If;" is much broader than the J /'If; or the 'If;', with a total width of 25 

MeV. This is usually attributed to the fact that the mass of the 'If;" lies above the 

threshold for producing the lightest explicitly charmed particles - the D mesons. 
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The decays of 'If;" to charmed particles is no longer suppressed by the OZI rule, 

so they proceed very rapidly. The mass, however, lies below the threshold for 

producing D's in combination with other, heavier charmed mesons. Since charm 

is conserved in strong and electromagnetic interactions, the 'If;" decays only to 

DD pairs when it decays to charmed particles. 

The four quark model was highly successful, but it had to be extended due 

to two later discoveries. The first was the discovery of the r lepton. 1301 This 

extraordinary particle exhibits all of the properties of the e and µ, except that 

its mass is so large that it may decay to hadrons. The branching ratios 1311 of the 

r to many final states may be predicted unambiguously, and these predictions 

are consistently in good agreement with experiment. These calculations require 

that the r be accompanied by a new neutrino, the Vr. Even though this particle 

has not been observed directly, its existence is not disputed. 

The second major discovery was that of the T family of resonances; 1321 the 

mass of the ground state T(lS) is 9.4600 GeV/c2 • These exhibited properties 

quite similar to those of the 1/; family, and were interpreted as bound states 

of a new quark and antiquark - the bottom or b quark. The spectrum of 

bottomoni'um states is similar to that of charmonium. The level splitting of the 
3 S1 states is nearly identical. 

Mt/J' - Mt/J = 589.06 ± 0.13 MeV /c2 

My• - Mr= 563.3 ± 0.4 MeV /c2 

Mt/J(4o3o) - M~ = 345 ± 5 MeV /c2 

Myu - My1 = 332.2 ± 0.7 MeV /c2 

The four quark model had to be revised to accommodate the new particles. If 

there were six leptons but five quarks, the lepton-quark symmetry so attractive in 

the four quark model would have to be abandoned. The existence of a sixth quark 

- the top or t quark - was postulated to recover this symmetry. The leptons 

have the same couplings, and the leptonic current the same structure, as before, 
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but the quark currents are slightly different. With four quarks, there was only 

one parameter - the Cabibbo angle - to describe the difference between the 

weak and mass eigenstates. In a model with six quarks, the mixing is described 

by a 3 x 3 unitary matrix. Such a matrix has nine independent elements, but five 

of these may be absorbed as phases in the definitions of the quark fields. Hence, 

a model with six quarks will have four mixing parameters. In the Kobayashi­

Maskawa (KM) parameterization, fas) the mixing matrix is written 

d 8 b 

U ( Ct 
-s1c3 -s1s3 ) 

U= c s1c2 c1c2c3 - s2s3ei8 c1c2c3 + s2c3ei8 

t s1s2 c1s2c3 - c2s3ei8 c1s2s3 - c2c3ei8 

With this form for U, the charged current is written 

J~ = (u,c,t)'Y"(1- ,,p (:) 

A recent compilation 1341 of the absolute values of the KM matrix elements 

reports 

d 8 b 

u ( 0.9742 -0.9756 0.219 - 0.225 0.000 - 0.008 

U= c 0.219 - 0.225 0.973 - 0.975 0.037 - 0.053 ) 

t 0.002 - 0.018 0.036 - 0.052 0.9986 - 0.9993 

The range given for these values corresponds to the 90% confidence level. The 

values were obtained from a global fit using the experimental values and the 

unitarity of the matrix as constraints. Unitarity is, of course, only insured if 

there are six quarks. 
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The experimental values come from a number of sources. Uud is obtained by 

comparing the rates for muon decay and neutron beta decay. In this case, Uud 

is equivalent to the Cabibbo angle. Uus is obtained from the semileptonic decays 

of hyperons - E- -t ne-ve, E- -t A0e-ve, a- -t A0e-ve, a- -r E0e-ve, and 

A0 -r pe- Ile - and of kaons - K+ -r 'ffoz+vz and K 0 -r 71"-z+vz . The element 

Ucd is obtained from neutrino induced charm production. The charmed-strange 

quark element Ucs is derived from the semileptonic decay of D mesons. The 

ratio JUubl/IUcbl is obtained by studying the endpoint of the lepton momentum 

spectrum in semileptonic decays of B mesons. The final element Ucb may be ex­

tracted by assuming that the measured semileptonic branching ratio of B mesons 

is determined by the semileptonic decay rate of the b quark. The experimental 

results may be summarized: 

Uud = 0.9729 ± 0.0012 

Uus = 0.221±0.002 

Ucd = 0.24 ± 0.03 

Ucs > 0.66 @ 90% CL 

JUubl < 0 14@ 90%CL 
IUcbl - . 

0 

0.037 < Ucb < 0.053 

Wolfenstein (as) has pointed out that the KM matrix exhibits a well-developed 

structure, that this matrix deviates only slightly from the unit matrix. Setting 

>. = Uus and A= Ucb/ >.2 , the KM matrix, to second order in >., may be written: 

( 

1 - 1/2>.2 

u = ->. 
0 

So far, no widely accepted model has been able to explain the structure of the KM 

matrix, as displayed above. This structure suggests strongly that some additional 

symmetry must be at work to determine the pattern of quark mixing. 
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Chapter 2: Decays of D mesons 

2.1: Phenomenology of D Meson Decay 

Two new particles 1361 
- the n° and the n+ - were discovered in 1976 

at SPEAR. They were determined to be charmed mesons on the basis of a few 

key observations. That they had spin zero made it unlikely that they could be 

hadronic resonances of some sort. They decayed most often into final states 

containing strange particles, as would be expected from the structure of the 

charm-changing weak current. Finally, the masses were quite large, greater than 

one-half that of the J /'If;, which was already believed to be a cc resonance. 

The n°, n+, and F+ are the lightest charmed particles. They are all pseu­

doscalar mesons, and together they transform as a 3-representation of SU(3). The 

masses of the n°, n+, and F+ are 1864.7 MeV /c2 , 1869.2 MeV /c2, and 1971 

Me V / c2 , respectively. Each is believed to be a bound state of a charm quark and 

light antiquark: n° => cu, n+ => cd, and F+ => cs. Their antiparticles are the 
-=D n , n-, and F-. n mesons have isospin 1/2 while the F+ has isospin zero. 

When the existence of charmed particles was reported, it was expected that 

the n°, n+, and F+ would have nearly identical lifetimes. It was surely a sur­

prise when the n° and n+ lifetimes were determined to be significantly different. 

The first measurements of the ratio of lifetimes relied on the fact that the weak 

Hamiltonian for a c --+ st+v1 transition is an isoscalar, so r(n° --+ z+ X) = 

r(n+ --+ z+ X). With this equality, and neglecting Cabibbo suppressed contri­

butions, the ratio of inclusive semileptonic branching ratios for the n° and n+ 

may be related to the ratio of their lifetimes. 1371 

B(n+ --+ 1+ X) 
B(no --+ t+ X) 

r(n+ --+ 1+ x) 
r(n° --+ z+ X) 

f tot(n°) 
f tot(n+) 

f tot(n°) 
ftot(n+) 

Recently, the MARK III collaboration performed a high statistics measure-
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ment of the inclusive semileptonic branching ratios with the following results: 1381 

B(n+--+ e+ X) = 17.0 ± 1.9 ± 0.7% 

B(n°--+ e+ X) = 7.5 ± 1.1±0.4% 

r(n+) = 2.3+0.s+o.1 
r(no) -0.4-0.1 

The lifetimes of the n° and n+ have also been obtained directly by several 

collaborations by measuring the decay distance in bubble chambers, silicon strip 

vertex detectors, and proportional tube vertex chambers. The results of the 

experiments are summarized in Table 2.1.I. The world average values of the n° 

and n+ lifetimes from these experiments are: fao] 

r - (10 29+0·54 ) x 10-13 sec n+ - · -o.43 

r - (4 43+0·19) x 10-13 sec no - . -0.17 

r n+ = 2_39+0.16 
r -0.14 
no 

This is in very good agreement with the ratio given above based on the inclusive 

semileptonic branching ratios. 

A great number of different decay modes of n mesons have been observed. 

Recent measurements of the MARK III collaboration are collected in Table 2.1.II. 

If the inclusive semileptonic branching ratios for muons are assumed to be the 

same as those for electrons, then most of the decay modes have been accounted 

for; the sum of the listed branching ratios for the n° is 85% and for the n+ it 

is 82%. It is possible to examine the three-body decays for signs of any resonant 

substructure. Such an analysis has been carried out by the MARK III for the 

decays n° --+ K-n+ n°' n° --+ ](° n+ 71'"-' and n+ --+ Kn+ n°. The preliminary 

results are summarized in Table 2.1.III. It is interesting to note that in each case 

these three-body final states are dominated by two-body decays of the vector­

pseudoscalar type. 
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Table 2.1.I: Measurements of Lifetime of Charmed Particles 

D+ no 
Experiment Decays r(10-13s) Decays r(10-13s) 

E-531 23 11.l:~t~ 58 4 3+0.1+0.1 
. -0.5-0.2 

WA-58 27 5.o2tg ± 1.9 44 3.62:6:~ ± 0. 7 

SHF 48 8.6 ± 1.32:g:~ 50 6.1 ± 0.9 ± 0.3 

NA-16 15 8 4+3.5 . -2.2 16 4 1 +1.3 
. -1.0 

NA-18 7 6.32:t~ ± 1.5 9 4.12:i:~ ± 0.5 

NA-27 147 10.62:6:g 129 4 2+0.5 . -0.4 

NA-1 98 9 5+3.1 . -1.9 51 4 3+1.4 
. -0.9 

NA-11 28 10.62:~:~ ± 1.6 26 3. 72:6:~ ± 0.5 

NA-32 42 9 8+i.9 
. -1.5 42 3 9+0.6 . -0.5 

E-691 480 10.92:g:~ ± 0.6 672 4.4 ± 0.2 ± 0.2 

DELCO 4.6 ± L52:g:~ 

MKII 16 8.92:~:~ ± 1.3 66 4. 12:g:~ ± 0.5 

HRS 114 8.1±1.2 ± 1.6 53 4.2 ± 0.9 ± 0.6 

TASSO 13 4.32:i:~ ± 0.8 

CLEO 247 11.4 ± 1.6 ± 1.0 317 5.0 ± 0.7 ± 0.4 

Total 1361 10.292:g:~i 1546 4 43+0.19 . -0.17 

2.2: Transformation Properties of the Weak Hamiltonian 

Many of the features of the Hamiltonian responsible for weak decay may be 

inferred from its properties under SU(2) and SU(3) transformations. The weak 

Hamiltonian is composed of the contraction of two weak currents: Hw = Jµ Jtµ. 

The current has the form: JµUi{i/('lµ(l - / 5)qj; Uij is the element of the mixing 

matrix corresponding to quarks qi, and q,·. In a model with three quarks invariant 
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Table 2.1.II: D Branching Ratios as Measured by MARK III 

no n+ 

Decay Mode Branching Ratio Decay Mode Branching Ratio 

Cabibbo Allowed Decays 

K-7r+ 5.6 ± 0.4 ± 0.3% K°7f+ 4.1±0.6 ± 0.3 

K°7ro 2.4 ± 0.5 ± 0.2% K-7r+7r+ 11.6 ± 1.4 ± 0.7 

K°11 2.0 ± 0.9 ± 0.3% 
-=<) 
K 7r+7ro 12.9~'.t~ ± 2.1% 

Kw 4.2 ± 1.7 ± 1.1% 
-=<) 
K 7r+7r+7r- 9.l~t~ ± 0.9% 

K-7r+7ro 17.5 ± 1.3 ± 1.3% K-7r+7r+7ro 6.3~U ± i.2% 
-=<) -K 7r+7r 8.3 ± 0.9 ± 0.8% 

K-7r+7r+7r- 11.8 ± 0.9 ± 1.1 % 

K° 7f+7f-7fo 14.9~~:~ ± 3.5% 

Cabibbo Suppressed Decays 

7f-7f+ 0.18 ± 0.06 ± 0.04% 7f+7fo < 0.53% (90% CL) 

K-K+ 0.68 ± 0.11 ± 0.08% K°K+ 1.30 ± 0.40 ± 0.22% 

K*-K+ 1.1 ± 0.5 ± 0.2 7f-7f+7f+ 0.49 ± 0.19 ± 0.12% 

K*oKo < 0.80% (90% CL) ¢m+ 0.97 ± 0.27 ± 0.14% 

K°K+ -7fnon-res < 1.8% (90% CL) K*°K+ 0.56 ± 0.25 ± 0.13% 

7f+7f-7fo 1.1±0.4 ± 0.2% K-K+ + 7fnon-res 0.68 ± 0.31 ± 0.11 % 

7f-7f+7f+7f- 1.5 ± 0.6 ± 0.2% 

Semileptonic Decays 

e+ X 7.5 ± 1.1±0.4% e+ X 17.0±1.9 ± 0.7% 

under SU(3), the quark fields transform as the fundamental representation. The 

weak current then transforms as: 1' 01 

Jµ => 3 © 3 = 1 EB 8 
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Table 2.1.III: Resonant Structure of Three-body Decays 

Mode Fraction of total Branching Ratio 

no ~ K- ?r+ 7ro 

- *o o K 7r 7.6 ± 3.3 ± 2.0% 2.0 ± 0.9 ± 0.5% 

K *-?r+ 12.9 ± 2.7 ± 2.0% 6.8 ± 1.5 ± 1.2% 

K-p+ 74.0 ± 4.7 ± 5.0% 13.0 ± 1.3 ± 1.3% 

non-resonant 5.5 ± 4.4 ± 3.0% 1.0 ± 0.8 ± 0.5% 
-:-=O n° ~ K ?r+?r-

K°po 16.8 ± 5.3 ± 2.5% 1.4 ± 0.5 ± 0.2% 

K *-?r+ 63.9 ± 7.6 ± 4.5% 8.0 ± 1.3 ± 0.9% 

non-resonant 19.3 ± 8.6 ± 3.5% 1.6 ± 0.7 ± 0.3% 
-:-=O n+ ~ K ?r+?ro 

K°p+ 86.5 ± 9.1 ± 5.0% 11.2 ± 2.6 ± 1.9% 

K *o?r+ 7.0 ± 4.3 ± 4.0% 2.7 ± 1.8 ± 1.6% 

non-resonant 6.5 ± 5.5 ± 4.0% 0.8 ± 0.7 ± 0.5% 

The singlet will henceforth be neglected from further consideration. Now the 

weak Hamiltonian transforms as: 

The Hamiltonian must be symmetric, so only the symmetric irreducible represen­

tations - 1, 8, and 27 - may contribute. These may be decomposed to reveal 

the irreducible representations of SU(2) they contain: 

8 :::) 2~s=-1 EB (1 EB 3)~s=O EB 2~s=+l 

27:::) 3~s=-2 EB (2 EB 4)~s=-1 EB (1EB3EB5)~s=O EB (2 EB 4)~s=+l EB 3~s=+2 

It is well known that kaon decays are almost always accompanied by a change 

in isospin of 1/2, even though both l:ll = 1/2, and l:lJ = 3/2 amplitudes exist in 
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principle. The dimensionality of an SU(2) multiplet is 21+1, so the!::!..!= 1/2 and 

!::!..! = 3/2 terms in the Hamiltonian correspond to the 2 and 4-representations of 

SU(2), respectively. For !::is= -1, as in kaon decay, both the 2 and 4 of SU(2) 

are contained in the 27 of SU(3), whereas the 8 of SU(3) contains only the 2 of 

SU(2). In order to retain the !::!..! = 1/2 rule, it seems natural to assume that the 

octet part of the weak Hamiltonian should dominate over the 27-plet part; this 

is known as octet domz'nance. 

For charm decays, the appropriate symmetry group is SU(4). Now Jµ => 

4 ® 4 = 1EB15. The weak Hamiltonian will transform as 

, -
Hw => 15 ® 15 = 1 EB 15s EB 15a EB 208 EB 45a EB 45a EB 84 8 

Of these irreducible representations of SU(4), only the 20' and the SO-represen­

tations have charm changing parts. Their SU(3) decompositions are: 

, -
20 ::::> 6Ac=-1 EB 8Ac=O EB 6Ac=+l 

84 ::::> 6Ac=-2 EB (3 EB 15m)Ac=-1 EB (1 EB 8 EB 27)Ac=O EB (3 EB 15m)Ac=+l EB 6Ac=+2 

Here, the 84 of SU(4) contains both the charm-conserving 8 and 27-represen­

tations of SU(3), but the 20' of SU(4) contains only the 8 of SU(3) assumed 

to be dominant in strangeness-changing decays. Hence, it might be tempting 

to assume that the 20-plet should dominate over the 84-plet in charm-changing 

decays. The consequences of this assumption will be discussed later. 

The decays of charmed mesons are accompanied by a change of charm of 

-1, so the relevant part of the weak Hamiltonian has the following properties: 

Hw,Ac=-l => 3 EB 6 EB 15. Suppose that a charmed meson decays to a pair of 

non-charmed pseudoscalars. The transition amplitude for such a decay may be 

written: A =< clHw,Ac=-1 IPP >. The notation le > represents the wavefunction 

of the charmed meson and IPP > the wavefunction of the system of the two 

pseudoscalars. le >=> 3, and IPP >=> 8 ® 8 = 1 EB 8s EB Ba EB lOa EB lOa EB 27 a· 
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Since the two scalars are in an l = 0 state, Bose statistics require that IPP > be 

symmetric. Thus IPP >=> 1EB8EB27, and A=> 3 © (3 © 6 EB 15) © (1EB8EB27). 

The amplitude A must be an SU(3) singlet, so only some of the nine terms 

implied above may contribute. Specifically, only five of the terms in the product 

(3©6EB15) © (1EB8 EB 27) contain a 3, which when combined with the 3 will yield 

a singlet. 

3©1=3 

3 © 8 = 3 EB 6 EB 15 

3 © 27 = 15 EB 24 EB 42 

6@1=6 

6 © 8 = 3 EB 6 EB 15 EB 24 

6 © 27 = 6 EB 15 EB 151 EB 24 EB 42 EB 60 

15©1=15 

15 © 8 = 3 EB 6 EB 15 EB 15 EB 151 EB 24 EB 42 

15 © 27 = 3 EB 6 EB 15 EB 15 EB 151 EB 21 EB 24 EB 24 EB 42 EB 42 EB 48 EB 60 EB 90 

The five independent transition amplitudes are then, in the notation of Quigg, 1411 

given by: 

S =< ci618 > 

T =< cl15l27 > 

E =< cl15l8 > 

F =< cl3l8 > 

G =< cl3ll > 

Quigg calculated the amplitude for several decays into two pseudoscalars in terms 

of the five amplitudes introduced above. His results are given in Tables 2.2.I -

2.2.11. 
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Table 2.2.I: D 0 decays into two pseudoscalar mesons 

Final State Amplitude 

K-1r+ (2T + E - S) Uud Ucs 

J?°?ro )2(3T - E + S) Uud Ucs 
-=:O 
K ry8 )6(3T - E + S) Uud Ucs 
-=:O 
K ryo +s(E - S) Uud Ucs 

K+K- (2T + E - S)E + !(3T + 2G + F - E)t:.. 

1f+1f- -(2T + E - S)E + !(3T + 2G + F - E)t:.. 

7ro7ro !(3T - E + S)E + t(-7T + 2G + F - E)t:.. 

KoJ?° !(-T + 2G - 2F + 2E)t:.. 

ry8ry8 -!(3T - E + S)E + t(-3T + 2G - F + E)t:.. 

ryoryo !Gt:.. 
2 

7rory 
8 -ts-(3T- E + S)E + 

2
Js(-6T + 3F - 3E)t:.. 

ry8ryo 0(8 - E)E + -jz(F - E)t:.. 

7rory 
0 

Jj,(E - S)E - !V¥(3F - 3E)t:.. 

K+1r- (2T + E - S) Uus Ucd 

Ko?ro )2(3T - E + S) Uus Ucd 

Kory 
8 )6(3T - E + S) Uus Ucd 

Kory 
0 

~(E - S) Uus Ucd 

E = !{UusUcs - UudUcd) 

f:.. = !{UusUcs + UudUcd) 

2.3: Construction of the Effective Weak Hamiltonian 

To lowest order in a 8 , a charmed meson decays when its valence charm quark 

decays. If this quark decays through the emission of a W boson, which subse­

quently materializes as a quark or lepton pair, the light valence quark in the 
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Table 2.2.II: n+ decays into two pseudoscalar mesons 

Final State Amplitude 

K°'lr+ 5T Uud Ucs 

7r+7ro lT:E-lT~ V2 V2 
7r+1J 

8 - ~(9T + 2E + 2S)E + ~(-3T + E + 3F)~ 
K+K° (3T - E - S)E + !(2T + E + 3F)~ 
7r+1J 

0 --Ja(E + S)E + -}s(E + 3F)~ 
Ko7r+ (2T + E + S) Uus Ucd 

K+7ro )2-(-3T + E + S) Uus Ucd 

K+17 
8 

~(3T - E - S) Uus Ucd 

K+17 
0 -jg(E + S) Uus Ucd 

E = !(UusUcs - UudUcd) 

~ = !{UusUcs + Uu,dUcd) 

meson plays no important role in the dynamics of the decay; it is said just to be 

a spectator. 

The simplest spectator decays are processes like the one shown in Fig. 2.3.1. 

The weak Hamiltonian governing this decay is given in the Standard Model by:* 

Since me ~ Mw, q2 ~ Ma, and the Hamiltonian may be reduced to the point 

* This derivation follows that of Riickl. 1'
21 
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d, i+ 

c s 

Figure 2.3.1: Simple spectator process 

interaction: 

The presence of gluons will affect the form of this Hamiltonian. To lowest 

order in a 8 , only four diagrams will be important; these are shown in 

Figs. 2.3.2a-2.3.2d. For clarity, they are shown, with the u quark moved to 

the initial state. If all external momenta are ignored, the matrix element corre­

sponding to Fig. 2.3.2a is: 

This may be simplified by assuming that the quarks are massless but off mass­

shell by an amount µ. Further, if Mw is used as the ultraviolet cutoff point, the 

weak interaction may again be reduced to a point. 
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a b 
u d 

w 

c s 

c d 

Figure 2.3.2: Order a 8 corrections to spectator process 
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The integration is easily performed: 

Finally, 

Diagram b gives an equal contribution. Diagrams c and d also yield the same 

result with two changes. First, the crossing of the gauge bosons will introduce 

an overall change of sign. Second, use will be made of the identity 

This introduces a factor of 4. Now, the total matrix element M =Ma+ Mb+ 

Mc +Md is: 

M = ~ ( 1

1
6 + 1

1

6 - ~ - ~) :s log ( :: ) Ucs Uud 

S/µ(1 - /
5
)>.acu1µ(l - /

5
),\ad 

Thus, the first order change in the weak Hamiltonian is 

The first order change has the same chiral and flavor structure as the lowest 

order Hamiltonian, but now it contains currents which are color octets. These 
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s 
a c s 

d 

d 

c u b u 

Figure 2.3.3: Induced neutral decay: reduced (a), unreduced (b) 

may be expanded in terms of color singlets by making use of several identities: 

[lµ(l - 15)tp bµ(i - 15)Lrc5 = -bµ(i - 15)Ll!c5 bµ(i - 15)J,.,p 

(>..a)ij (>..a) kl= -~OijDkl + 28iz0kj 

{ c, u} = o = { c, d} = {u d} 

These may be combined to yield: 

S1µ(l -1
5
)AaCU/µ(l -1

5
))..ad 

2 = -- S/µ(l -1 )C u1µ(l -1 )d 
3 5 5 

+2s1µ(l -15)du1µ(1 -15)c 

This result is remarkable in that the hard gluon exchange has induced an effective 

neutral interaction. If the weak interaction had not been reduced to a point 

interaction, this effective neutral interaction, as shown in Fig. 2.3.3a, would be 

seen to correspond to the diagram in Fig. 2.3.3b. 

It is useful to rewrite the corrected Hamiltonian in terms of operators with 

definite symmetry properties. As shown above, Hw,D.c=-1 => 6 EB 3 EB 15. The 
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6-representation is antisymmetric but the 3 is symmetric under interchange of 

two quarks. Consider now the combinations 

1 
0± = 2 [s"fµ(l - "(

5
)CU"fµ(l - "f

5
)d 

± S"fµ(l - "f
5
)du"fµ(l - "t

5
)c] 

The operator O+ is symmetric and so corresponds to the 3-representation. The 

operator Q_ is antisymmetric and corresponds to the 6-representation. After 

substituting the definitions of O+ and Q_ into that for Hw: 

as (M&,) C+ = 1- -log -
27f µ2 

a (M,2) c_ = 1 + ; log µi:: 

This result may be extended to all orders of perturbation theory through the 

use of renormalization group techniques. 

This is known as the leading-logarithm result. The constants 'Y+ and "f- are given 

by 

6 
"I+ = - 33 - 2Nt 

12 
"I-=----

33- 2Nt 

For the decay of the charmed quark, there are three lighter quarks which may 

participate - Nt = 3 - so "f+ = -2/9 and "f- = 4/9. Using the charmed quark 

mass to set the scale,µ= me~ 1.5 GeV/c2 , C+ = 0.74, and C_ = 1.8. 
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2.4: Shortcomings of the Spectator Model 

Armed with an explicit form of the weak Hamiltonian, it is possible to make 

specific predictions for various decay processes. As a first example, consider 

the inclusive semileptonic branching ratios of D mesons. If only Cabibbo favored 

spectator amplitudes are included, the non-leptonic decay proceeds via c --+ sud, 

and the semileptonic decay via c--+ s z+ v 1• For the non-leptonic decay, it is useful 

the rewrite the Hamiltonian yet again as a sum of color singlet and color octet 

parts. To do this, use is made of the identity: 

The weak Hamiltonian is now: 

The two terms in this expression have different color structures and hence do 

not interfere. To simplify the notation, write H(l) for the singlet part of Hw 

and H(8) for the color octet part. In order to calculate the decay rate, it is 

necessary to square H(l) and H(8), sum the results over final state spins and 

colors, and average over the initial state spin and color. After performing the 

color calculations: 
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JHw,t.,~-1J' oc 3G(2C+ + C-))' + 
3
3
2 

G(C+ - C-))' = 2Ci + c: 

IHw,~c=-11 2 
= ~ (2ci + C~) ( d1u(l -1

5
)u C/u(l - /

5
)s 

·S/µ(l - /
5
)CU/µ(l - /

5
)d) 

The spin calculations must now be performed, and the result integrated over 

the available phase-space. This task is greatly simplified by noting that, if the u 

and d quarks are considered massless, the spinor expression above is equivalent 

to that for the decay µ- -+ e- IleVµ. Borrowing the muon decay result, the 

non-leptonic decay rate is: 

G2ms 
f(c-+sud)=(2C 2 +C2 ) F cg(m2 jm2) + - 1927r3 s c 

The function g corrects the decay rate for the non-zero strange quark mass: 

g(x) = 1-8x+8x3 -x4 -12x2logx. Forms= 0.5 GeV/c2 and me= 1.5 GeV/c2, 

g(m;/m~) = 0.45. 

The semileptonic decay rates may be calculated in a similar manner. 

The total decay rate is given by the sum of the non-leptonic and semileptonic 

decay rates: 

ftot = f(c-+ sud)+ f(c-+ se+ Ve)+ f(c-+ sµ+ Vµ) 

G2ms 
= (2C2 + C 2 + 1+1) F c g(m2/m2) + - 1927r3 s c 

The semileptonic branching ratios are finally: 

B(c-+ sl+ v) = f(c-+ sl+vz) = 1 
1 r tot 2C! + c:_ + 2 

If the values from the leading-logarithm calculation - C+ = 0. 7 4, and C_ = 1.8 

- are used, the branching ratio is B( c -+ s l+ vz) = 16%. This applies to all 
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charmed pseudoscalar mesons: the F+ as well as the n° and n+. This is the 

first major shortcoming of the spectator model. The semileptonic branching ratio 

obtained here is in reasonable agreement with that of the n+ but very far from 

that of the n° . 

There are two conventional mechanisms for correcting this problem. The first 

is to notice that in some exclusive hadronic decays of the n+, several amplitudes 

may interfere, thus reducing the overall non-leptonic decay rate. For example, 

consider the decay n+ ~ K° 71"+ : 

In the limit that SU(3) is not broken 

-d) 
< K is1µcln+ > =< 7r+iu1µcln+ > 

< 7r+iu1µ1
5
diO > =< Kis1µ1

5
diO > 

In this limit, then, the terms proportional to c_ interfere destructively, and the 

matrix element is: 

A similar calculation yields the matrix element for n° ~ x- 7r+. 

< K-7r+IHw,Llc=-1in° > 

= 3~ ((2C+ + c_) < 7r+iu1µ1
5
dlO >< x-1:s1µcin° > 

+(2C+ - C-) < K-7r+is1µdiO >< Oiu1µ15cin° >) 

Consider the second term for a moment. The matrix element between then and 
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the vacuum is related to the pseudoscalar decay constant of the n: 

Now it is possible to use the Dirac equation to simplify the matrix element 

between the K- 71"+ system and the vacuum: 

After combining these relations: 

This vanishes in the limit of SU(3) symmetry and will be neglected for now. 

By using the two matrix elements calculated above, it is now possible to 
-=:() 

compare the decay rates for n° -+ K-71"+ and n+ -+ K 7r+. 

-=:() 
r(n+ -+ K 71"+) 
f(no -+ K-7r+) 

(4C+) 2 

(2C+ + C_ )2 ~ 0.8 

The recent measurements of the MARK III, as given in Table 2.1.II, indicate that 

the ratio is actually much lower. 

Thus, if the values of C+ and c_ obtained from perturbative QCD are used, 

interference alone is unable to account for the smallness of the decay rate for 

n+-+ K°'lr+. 

The second mechanism for correcting the semileptonic decay rates is to as­

sume that there is a large non-leptonic enhancement in decays of the n°. Then 

the non-leptonic decays of the n° will be increased over those of then+' as there 

are no Cabibbo favored annihilation processes for the n+. 
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Table 2.4.I: Branching ratios of possible annihilation processes 

Experiment Decay Mode Branching Ratio 

ARGUS · no~ K°<P 0.99 ± 0.32 ± 0.17% 

CLEO no~ K°<P 1.18 ± 0.40 ± 0.17% 

MARK III no~ K°<P 11 +0.7+0.4% 
. -0.5-0.2 ° 

n° ~ K° K+ K- -=-=<> 11 +0.4+0.3% 
non-K </> 

. -0.3-0.2 ° 
no~ K°Ko < 0.60% (90% CL) 

There are several experimentally tractable final states from n° decay which 

contain no u quarks, and thus must come about through flavor annihilation. 

Specifically, these are K ¢, K K0 , and K*° K0 • The latter two are Cabibbo 

suppressed, but the first is Cabibbo favored. This final state has been observed 

by a number of collaborations. 1431 The measured branching ratios are given in 

Table 2.4.I. 

An inspection of Table 2.1.II will make it clear that a branching ratio of 1.1 % 

is not particularly small. Further, in the decay n° ~ K ¢, as ss pair must be 

produced from the vacuum. When a uu or dd pair is produced instead, it is 

expected that the corresponding amplitude will be substantially larger, maybe 

by as much as a factor of five. 

There is further evidence that annihilation processes may be very important. 

The amplitude for n° ~ K 71'0 has both spectator and annihilation components, 

as does that for n° ~ K- 71'+. 

-=° ol I o < K 7r Hw,t::..c=-1 n > 

= 3~ ((2C+ - c_) < Kls/µ/5dlO >< 71'
0 iu1µc1n° > 

+(2C+ - c_) < K7r0 is1µdlO >< Oiu1µ15c1n° >) 
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If the annihilation term is neglected, the ratio of K n° and K-n+ decay rates is: 

f(n°--+ Kn°) 1 (2C+ - C_) 2 
------ = - ~ 0.005 
r(no--+ K-n+) 2 (2C+ + c_)2 

On the other hand, if the annihilation terms are much larger than the spectator 

terms, and if SU(3) invariance is valid, 

f (n° --+ K n°) 1 
f(no --+ K-n+) 2 

Experimentally, this ratio is quite large. 

B(n° --+ K n°) 
B(no --+ K-n+) = 0.43 ± 0.09 ± 0.04 

That this ratio is so much closer to the prediction based on annihilation domi­

nance than to the prediction based on spectator dominance implies that annihi­

lation processes may be very important in decays of the n° 

In summary, predictions for the non-leptonic decay rates of n mesons may 

be brought into line with experimental results if: 

1. annihilation effects are important in n° decays. 

2. SU(3) invariance leads to interference among the amplitudes for n+ decay. 

3. the operator coefficients obeys the inequality c_ ~ C+. This the same as 

the assumption of 20-plet dominance mentioned earlier. 

The last assumption is required to reduce the rate for n+ --+ Kn+ relative to 

n° --+ K - n+. Precisely this assumption, however, reduces the inclusive semilep­

tonic branching ratio of the n+. Thus it is very difficult to obtain a comprehen­

sive picture of n decay including both non-leptonic and semileptonic processes. 



41 

Chapter 3: Semileptonic Decays of D Mesons 

3.1: The Difficulties of Non-leptonic Decays 

In chapter 2, it was shown that it is very difficult to develop a consistent 

procedure for calculating the decay rates of charmed particles. As pointed out 

by Riickl, 1441 the problem does not lie with the weak Hamiltonian as derived in 

section 2.2. The form of the weak Hamiltonian is exact. 

1 
0± = 2 ( U/µ(1 - /

5
)dS/µ(1 - /

5
)c 

± S/µ(1 - /
5
)du/µ(1 - /

5
)c) 

The leading-logarithm values of C+, and c_ - 0.74 and 1.8, respectively- may 

be modified by higher order process, but the operator structure will not change. 

Under SU(3) of color, Hw,flc=-1 => 3 ® 3 = 3 EB 6. The 3-representation is an­

tisymmetric whereas the 6-representation is symmetric. Thus, under SU(3)colon 

O+ => 6, and Q_ => 3. Since the strong interactions are invariant under 

SU(3)colon the addition of more gluons - the higher order processes mentioned 

above - will not affect the operator structure. 

The difficulties lie rather with the calculation of the matrix elements of this 

Hamiltonian. Several assumptions were made in section 2.3. The most important 

are: 

1. that charmed mesons consist only of valence quarks which are in a color 

singlet state. 

2. that the vacuum insertion, IO >< OI ~ 1, is applicable. 

3. that final state interactions are negligible. 
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The second assumption has the consequence that currents transforming as color 

octets may be neglected; these cannot connect mesonic states with each other 

or with the vacuum. Such currents may in fact be important. A large, negative 

contribution would correct the predictions for both n° --+ K° 1fo' and n+ --+ 

-==° K 1f+. The exact size of this contribution is, unfortunately, very difficult to 

calculate. 

The assumption that charmed mesons consist only of two valence quarks is 

probably indefensible. As has been pointed out, a large annihilation amplitude 

is required phenomenonologically to produce the desired enhancement of non­

leptonic decays of the n°. The arguments given in section 2.3, by which the 

annihilation amplitudes vanish in the limit of SU(3)fla.vor symmetry, are invali­

dated if the meson also contains soft gluons. 

Finally, it is probably not the case that final state interactions may be ig­

nored. There are several large hadronic resonances in the 0.5-1.5 GeV /c2 range, 

particularly the p(770) and K* (892). These, of course, play only a small role in 

the decays of kaons, for which final state interactions are not very important. In 

the case of n mesons, however, these interactions may have a dominant effect. 

Donoghue 1451 has pointed out that even the 'smoking gun' test of flavor annihi­

lation - the observation of the decay n° --+ K </> - may not be unambiguous. 

He argues that this final state may be produced by a spectator process such as 

n° --+ K*0 
TJ which is subsequently modified by quark exchange between the K*

0 

and the TJ as shown in Fig. 3.1.1. 

The conclusion one is forced to draw from the preceding discussion is that 

it is difficult, if not impossible, at the present time to make firm predictions 

for exclusive non-leptonic decay rates. Before this will become possible, it will 

be necessary to construct meson wavefunctions including all gluonic degrees of 

freedom. It will also be necessary to discover the appropriate machinery for 

calculating matrix elements of operators which are not color singlets. It should 

be noted, however, that of late some progress 1461 has been made through the use 
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Figure 3.1.1: Alternative origin of D0 ~ K° </>events 

of a 1/ Ne expansion, where Ne is the number of colors. 
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If it is difficult to make comprehensive predictions for non-leptonic decays, 

the semileptonic decays are much easier to understand. In particular, Cabibbo 

favored semileptonic decays proceed only through spectator processes. Further, 

only matrix elements of color singlet operators may contribute. The Feynman 

diagram for Cabibbo allowed semileptonic decay is shown in Fig. 3.1.2. Clearly 

there are no strong interaction effects to be considered between the leptons and 

quarks. 

3.2: Parameterization of Hadronic Matrix Elements 

Cabibbo allowed semileptonic decays proceed through processes like that 

shown in Fig. 3.2.1. The weak Hamiltonian for any such spectator process is 

given in the Standard Model by: 
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c 
D 

q q 

Figure 3.1.2: Feynman diagram for Cabibbo allowed semileptonic decay 

Jµ,lepton = vnµ(l - l5)l 

Jf:adron = qUqclµ(l - /
5

)C 

The final state quark, q, may be either an s or d quark. The factor Uqc is the 

appropriate element of the quark mixing matrix. The transition amplitude is then 

M =< hl+ v1IHwlD >,where the notation h stands for the hadrons produced in 

the final state. 

As noted at the end of section 3.1, semileptonic processes are free of strong 

interactions between the leptons and quarks. If electromagnetic radiative cor­

rections are neglected, there can be no question of the validity of factorizing the 

amplitude Minto leptonic and hadronic parts. 

The matrix element of the leptonic current is very simple. The leptons are 

free pointlike particles. The matrix element may be written using free particle 
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wavefunctions as: 

It is precisely the fact that the matrix element of the leptonic current is 

well-understood which makes the study of the semileptonic decays of mesons 

interesting. The dynamics of the leptonic current may be exploited to probe the 

structure of the hadronic matrix elements. 

The simplest prediction for the matrix element of the hadronic current obtains 

when the quarks are also treated as free pointlike particles. In this case, the 

hadronic matrix element is similar to the leptonic matrix element. 

In this case, the transition amplitude is 

As was shown in section 2.3, this matrix element leads to a value for the semilep­

tonic decay rate of: 

G2ms 
f(c--+ sl vz) = F ~ g(m;/m~) 

19271" 

The lifetime of a charmed meson in this model is: 

B(D--+ l + X) 
r = ~~~~~-
D f ( C --+ s [ Vz) 

If the constituent masses of me = 1.5 Ge V / c2 , and m8 = 0.5 Ge V / c2 and the 

measured branching ratios of B(D0 --+ eX) = 7.5±1.1±0.4% and B(D+ --+ eX) = 
17.0±1.9 ± 0. 7% are used, this formula predicts lifetimes of r Do = 6.4 x 10-13 sec 

and r n+ = 1.4 x 10-12 sec. These are larger than the measured values, but they 
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Lifetimes of D0 and D0 
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Figure 3.2.1: D 0 and n+ lifetimes in the free fermion approximation 

depend critically on the value chosen for the masses. The predicted lifetimes are 

shown in Fig. 3.2.1 as a function of me; a dependence on m 8 enters only through 

g, a slowly varying function, whereas the lifetime is proportional to m-;5• 

This free quark hadronic current may be corrected to first order in 0: 8 by 

including the processes of Fig. 3.2.2. Similar processes enter into the calculation 

of radiative corrections to muon decay. It is possible to adapt these calculations 

to the present case through the substitution: 

4 
= -O:s 

3 

The result of this calculation may be written: 1471 

The values of f and f(l) /r are given in Table 3.2.I for a number of values of 
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a b 

c 

Figure 3.2.2: Lowest order corrections to free fermion approximation 

>.. - ms/me, with as(m~) taken to be 0.7 It is important to note that the func­

tion f is positive, so that the first order corrections increase the predicted D 

lifetime. This makes it even more difficult to reconcile the measured lifetimes 

with reasonable estimates of me and ms. 

The failure of this calculation should in no way be a surprise. The quarks 

in the semileptonic process under consideration are not even approximately free; 

they are confined to the interior of the hadrons. Any successful calculation will 

have to take into account this non-perturbative aspect of the problem. 

Having demonstrated that a realistic approach to charmed meson decays will 

have to be based on the properties of hadrons, and not merely on those of free 

quarks, it is useful to identify the types of hadrons which may be produced. It is 

easy to show that the masses of such hadrons should be tightly constrained. 1481 

If mh is the hadron mass, m~,....., (Ps + Pq-) 2 = m; + m~ + 2Ps ·Pg-. The c quark 
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Table 3.2.1: First order correction to r ( c ~ s l vl) 

). =ms/me f (.A) r(1) ;r 

0.0 3.62 0.46 

0.1 3.25 0.52 

0.2 2.84 0.58 

0.3 2.50 0.63 

0.4 2.23 0.67 

0.5 2.01 0.81 

0.6 1.83 0.74 

0.7 1.70 0.74 

0.8 1.59 0.77 

0.9 1.53 0.77 

is so massive that its rest frame nearly coincides with that of the decaying D. If 

the Fermi motion of the q quark is ignored, it will be at rest within this meson. 

Thus, in the rest frame of the c quark, P8 • Pq- ~ mq-E8 • In the three body decay 

c ~ s l vz, if the leptons are considered approximately massless, the energy of 

the s quark must obey the inequality Es ~ (1/2me)(m~ + m;). The mass range 

available is thus: 

m-
m 2 < m2 < m2 + m~ + _q (m2 + m2) K- h- s q e s me 

If the constituent quark masses of mu. ~ md ~ 0.3 Ge V / c2 , m 8 ~ 0.5 Ge V / c2 , 

and me ~ 1.5 Ge V / c2 are used, the mass range is 

0.49 GeV /c2 ~ mh ~ 0.9 GeV /c2 

The hadronic final state consists of an sq pair, and possibly additional uu or 

dd pairs, so it has isospin 1/2. It is probable that the semileptonic decay ampli­

tude will be dominated by final states consisting of a single kaon, the K* (892) 
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resonance, or non-resonant K-7r pairs. No higher mass strange resonances are 

energetically accessible. 

Consider the simplest hadronic final state, in which the final state quarks 

form a kaon. The matrix element of the hadronic current is in that case given by 

The D and K mesons are both pseudoscalars so only a vector current - a vector 

of odd parity - may connect them.* 

This matrix element must be a vector. The states of the D and Kare determined 

by their 4-momenta, so Jµ may depend only on these 4-momenta. Only two 

linearly independent combinations may be constructed from two 4-vectors. If 

these are chosen to be the sum and difference of these vectors, the hadronic 

matrix element may be parameterized as: 

The coefficients are scalar functions or form factors. Since they are scalar func­

tions, they may depend only on the four scalars P'};, P'fr, (Pn + PK) 2 , and 

( Pn - PK) 2 • Of these, the first two are trivial as P'}; = m1 and Pfr 

The last two are not independent; consider the sum of these two terms. 

It is conventional to choose t = (Pn - PK) 2 as the independent variable. The 

* J,,_ is a vector and so has odd parity. If V,,_ and A,,_ are vector and axial-vector operators, 
the matrix elements < KIV,,_ID > and< KIA,,_JD >have odd and even parity, respectively. 
Thus, J,,_ ex< KIV,,.JD >. 
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hadronic matrix element is finally: 

Jµ = !+(t) (Pn +PK)µ+ f-(t) (Pn - PK)µ 

The case of the production of a vector meson - or of a pair of pseudoscalar 

mesons in a relative P wave - is somewhat more complicated. Such a state 

is characterized by both its momentum and polarization. The hadronic matrix 

element will then depend on three 4-vectors. Four combinations of these may 

be formed which are linear in the polarization: three axial-vector and one polar­

vector combination. The matrix element in now 

Similar arguments may be used to parameterize the hadronic matrix elements 

for several other final states. Results are quoted below for four additional final 

states. 1491 

< X(3 P2)ls/µ/5clD >= k(t)E~l/PJ) + b+(t)(E~/3Pj)P~(Pn + Px)µ 

+ b_(t)(E~/3Pj)P~(Pn - Px)µ 
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3.3 Prediction of Form Factors 

There are several procedures which yield predictions for the various form 

factors listed at the end of section 3.2. Perhaps the simplest predictions are based 

on current algebra techniques. As an illustration, consider the decay D--+ Ke Ve. 

The corresponding transition amplitude is < KIVµJD >. The divergence of the 

vector current is not zero, but it is a scalar. 1001 Thus the matrix element of this 

divergence must correspond to the exchange of a scalar quantum. The divergence 

of the part of the hadronic current corresponding to exchange of a vector quantum 

must be zero. 

Here, Jµ = !+(t)(Pn+PK)µ+ f-(t)(Pn-PK)µ as shown in the previous section. 
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To find J~j=I) it is only necessary to project Jµ onto the surface orthogonal 

to (PD - Px)µ. 

Since the vector part of the amplitude is proportional to f +(t), this is usually 

called the vector form factor. 

The part of the amplitude corresponding to scalar exchange is just that part 

of Jµ parallel to (PD - Px)µ: J}j=O) = Jµ - J~j=I). If the scalar form factor, 

f o ( t), is defined by the relation 

(mb - mk)fo(t) = (mb - mk)f+(t) + tf-(t) 

the scalar amplitude is 

The form factors, !+(t) and fo(t), govern the exchange of quanta of differ­

ent angular momenta, so they are independent functions. After making a few 

assumptions, it is possible to make simple predictions for f + and /o. 

1. Returning to the form of the transition amplitude, the two form factors, 

f + and /-, must be relatively real in order to insure the time reversal 

invariance of this amplitude. The form factors may thus be chosen to be 

real over the kinematically allowed range 0 ~ t ~ ( m D - m K) 2 • 

2. It is reasonable to assume that f + and f o are analytic functions over the 

entire complex t plane. 

3. For unitarity to be respected, it is necessary that f(t) --+ 0 as JtJ --+ oo. 
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4. The positions of any singularities will be given by the masses of resonances 

with the appropriate quantum numbers. 

The exchanged quanta must have the quantum numbers of charm and strange­

ness as they couple to explicitly charmed and strange particles, the D and K. 

The F* vector resonance has the correct quantum numbers so f +(t) will have a 

singularity at t = m} •. Since f + is an analytic function, it may be evaluated by 

making use of Cauchy's integral formula. 

!+(t) =~I !+(t') dt' 
27ri t' - t 

c 

The threshold at a mass of M = m D + m K results in a square-root singularity 

in the complex t plane since t ex: M 2 • The branch cut is chosen along the positive 

real axis from to = (mn + mK)2 to oo. The mass of the F* is not necessarily 

above this D-K threshold; the value of 2140 Me V / c2 , as reported in the Review 

of Particle Properties, lies well below this threshold. If mr 2: mD + mK an 

appropriate integration contour is given in Fig. 3.3.la. If mr < mD + mK, the 

singularity at t = m~. will be to the left ·of the branch cut and the contour in 

Fig. 3.3.lb must be used. 

In either case, the contribution from the large circle may be neglected since 

f(t) ~ 0 as !ti ~ oo. The integrations above and below the branch cut may be 

combined. Since f +(t) is real for 0 ::; t ::; (mn - mK)2, the Schwarz reflection 

principle guarantees that f +(t*) = f.f_(t) for all t. With this relation, 

f+(t 1 + iE) - f+(t 1 
- iE) = 2ilmf+(t1 + iE) 

( 

00 00 ) 1 
1
. f + ( t1 + fr) dt1 

1
. f + ( t1 

- i E) dt1 

-Im -Im 
27ri €->0 I t1 + iE - t €->0 I t' - iE - t 

to to 

00 

= _!_ I Imf + ( t') dt' 
7r t' - t 

to 

Finally, two dispersion relations result, corresponding to the two integration 
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a b 
Figure 3.3.1: Integration contours for form factor evaluation 

contours. 
00 

f + (t) = _!_ J Im/+ (t') dt' 
7r t' - t 

to 

00 

!+(t) = _!_ J lmf+(t') dt' _ ~ f !+(t') dt' 
7r t' - t 27ri t' - t 

to 

For t > to, f + will simply be a Breit-Wigner amplitude. 

( ') C+ !+ t = I 2 T 
t - mF. + i mF* 

where r is the resonance width. For (mn - mK) 2 < t < (mn + mK)2, !+will be 

given by the analytic continuation of the Breit-Wigner amplitude above. 

( ') C+ 
f + t = t1 - m}. - rmF* 

Fort >to, the imaginary part off+ is 

1 -C+fmF* 
lmf+(t) = (t' - mi.)2 + f2mi. 
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In the range 0 ::; t ::; ( m D - m K) 2 , f + is given by the dispersion relations 

above. The two relations may be combined into one by making use of the Heavy­

side function H ( y'fQ - m F*): 

The dispersion relation is now: 

00 

!+(t) = C+fmr f dt' 
1f to (t' - t) ( (t' - m}. )2 + f2m}.) 

- _1 H(· IF - m .) f !+(t') dt' 
21fi v io F t' - t 

Performing the indicated integrations: 

f ( ) C+ ( 4 2 r2 2 2)-1 + t = -- mF. + mF. - 2mF*t + t 
1f 

· { (m}. - t) [~ - arctan(r~F" (to - m}.))] 

fmr lo (r
2
m}. +(to - m}.)2)} 

+ 2 g (to - t) 2 

H(y'tO - mr) 
-C+~~~~--=-~ 

m}. + fmF* - t 

In the limit that rm F* is small, the above prediction for f + becomes quite 

simple 

C+ 
f +(t) = - 2 t mF. -

Such an expression is usually normalized so that the unknown constant is !+(O). 

This is the conventional prediction for !+(t). As has been shown, however, it is 

only valid in the limit in which the width of the F* may be ignored. 
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The behavior of the vector form factor f + is dominated by the existence of 

the charmed, strange vector resonance, the F*(2140). In a similar manner, the 

behavior of the scalar form factor f o will dominated by a charmed, strange scalar 

resonance. Unfortunately, no such state has been observed. Nevertheless, the 

four quark model with SU(4) symmetry predicts the existence of a 15-plet of 

scalar mesons. This 15-plet contains the SU(3) scalar non-charmed nonet and 

two SU(3) triplets of charmed mesons. These mesons will hereafter be referred 

to as Dg, Dci, and F~ with quark content cu, cd, and cs, respectively. 

An approximate mass formula may be used to estimate the masses of the 

charmed scalar meson masses. The Gell-Mann - Okubo mass formula may be 

extended to encompass the SU(4) symmetry group. 1011 As is well known, the 

mass splittings within meson multiplets are best described by a formula for the 

quadratic mass of these mesons. 

Here, the hypercharge is given by Y = B + S - C, where B, S, and C are baryon 

number, strangeness, and charm, respectively. Making use of this formula, it is 

simple to derive the relations: 

2 2 2 2 mp - mn = m,,s - mK 

2 2 2 2 
mFo - mDo = m,,~ - mK, 

The isoscalar components of the pseudoscalar and scalar octets are denoted ry 8 

and ryg. These are combinations of the observed states rJ and ry', and of the 

5*(975) and i:(1300). 

There is no formula which relates the masses of the charmed mesons sepa­

rately to the masses of non-charmed mesons. It is, however, quite reasonable to 

assume that the difference in the D and K masses is caused primarily by the 

large difference between the c and s quark masses. The difference in masses be­

tween equivalent elements of different multiplets should thus be approximately 
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the same. This may be demonstrated in the case of the pseudoscalar and vector 

15-plets: 

mbo - mko = µr(o-) = 3.229 ± 0.002 

mbo. - mko• = µi(l-) = 3.233 ± 0.008 

It will be assumed from now on that µi is a constant, denoted {3, with a value of 

{3 = 3.23. Now the masses of the scalar charmed mesons may be predicted. 

m2 = m2 +{3 Do IC 

mb
0 

= 2.25GeV /c2 

2_ 2 2 2 2 {3 m Fo - m Do + m,,g - ml\, = m,,g + 

The mass of the isoscalar 77g is not known, but it must lie in the range ms• < 
m,,g ~ml!.. There is thus a corresponding range in the predicted mass of the Fo. 

2.05 GeV /c2 ~ mp
0 
~ 2.22 GeV /c2 

The mass given above for the Fo should not be taken as a precise prediction, 

as the SU(4) symmetry is known to be badly broken, but rather as an indication 

of the general order of the mass to be expected. The results of this discussion 

are summarized in Table 3.3.I. 

The scalar form factor will be estimated on the assumption that the mass of 

the Fo lies above D - K threshold. As in the case of the vector form factor, there 

will be constant which cannot be determined from the dispersion relation. From 

the definition of fo(t), it may be seen, however, that fo(O) = f +(O). 

Finally, the scalar form factor is given by: 

m2 

fo(t) = !+(O) m2 F~ t 
Fo 
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Table 3.3.I: Charmed Meson Masses 

Scalar (predicted) 

Do 2.25 GeV /c2 

Fo 2.05 - 2.22 Ge V / c2 

Pseudoscalar (measured) 

no 1.8646 ± 0.0006 GeV /c2 

n+ 1.8693 ± 0.0006 Ge V / c2 

F+ 1.9705 ± 0.0025 Ge V / c2 

Vector (measured) 

D*o 2.0072 ± 0.0021 Ge V / c2 

D*+ 2.0101 ± 0.0007 Ge V / c2 

F*+ 2.110 ± 0.0060 GeV /c2 

Axial-Vector (predicted) 

DA 2.2 - 2.3 GeV /c2 

FA 2.2 - 2.3 GeV /c2 

Alternatively, the form factor f- is predicted to be: 

f-(t) = f+(O) mD - mK Fo - F* 
( 

2 2 ) ( m2 m2 ) 

t m}
0 

- t m}. - t 

A similar approach may be used to predict the behavior of the form factors 

in the decay D -t K * e Ve. As shown in section 3.2, the transition amplitude is: 

< K*jVµ - AµID > = ig(t)Eµ11pue*11 (Pn + PK·)P(Pn - PK·)u - f(t)e~ 

- a+(t)(e* · Pn)(Pn +PK·)µ - a_ (t)(e* · Pn)(Pn - PK•)µ 
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The vector part of this amplitude is: 

J~j=l) = ig(t)Eµvpuf.* 11 (Pn +PK· )P(Pn - PK· )u 

- f(t) ( f.~ - ( E* ·tPn) (Pn - PK·)µ) 

- a+(t)(E* · Pn) ((Pn +PK•)µ - ( m1J ~ mk) (Pn - PK•)µ) 

After collecting terms proportional to Pn ± PK·, the vector part of the matrix 

element is: 

The scalar part is found by subtracting Ji=0 from Jµ: 

It is useful to define two new functions: 

(mb - mJ<)ao(t) = f(t) + (mb - mJda+(t) + ta_(t) 

With these new definitions: 

Consider now the divergence of this amplitude: 

< K* IBµVµID > = o 

< K*\aµ Aµ\D > = -ao(t)(E* · Pn)(mb - mk) 

The divergence of an axial-vector is a pseudoscalar, so ao(t) must be dominated 
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by the exchange of a pseudoscalar quantum. In this case, there is no ambiguity; 

the F meson is known to be a charmed, strange pseudoscalar. 

The form factor g(t) corresponds to exchange of a vector meson, the F*. 

The remaining two form factors, f(t) and a+(t), will both be dominated by the 

exchange of axial-vector quanta. These states have not yet been detected, but a 

prediction like that for the scalar mesons may be made. The only complication is 

that the mixing of the Q(1280) and Q(1400) introduces an additional uncertainty. 

The charmed axial-vector mesons will be denoted D~, ni, and F_t with quark 

content cu, cd, and cs, respectively. 

m~(12so) +fl ::; mbA ::; m~(1400) +fl 

2.2 GeV /c2 
::; mnA ::; 2.3 GeV /c2 

m~(1285) +fl ::; m~A ::; m~(1420) +fl 

2.2 GeV/c2
::; mFA::; 2.3 GeV/c2 

The form factors for D -t K* e Ve are given by the formulae: 

Before the task at hand may be considered finished, it is necessary to calculate 
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the values of the four constants !+(O), g(O), f(O), and a+(O). Wirbel, Stech 

and Bauer 1021 base their calculation of these constants on a relativistic harmonic 

oscillator potential. They describe the initial and final state mesons as relativistic 

bound states of a quark qi and an antiquark q2. The wavefunctions of these 

mesons are given by: 

Jff, m,j,J.z > = \1'2(2n)3/2 L I d3pl d3p2S3(p - P1 - p;) 
sl,s2 

The various notations used are: pis the momentum of the meson; x is the 

fraction of the longitudinal momentum carried by quark qi, x = p /p; p T is the 
lz 1 

transverse momentum vector of quark qi. 

These authors then express the weak hadronic current in terms of creation 

and annihilation operators. They form the matrix element < XIJ~JD > and 

compare the result with a parameterization for the transition amplitude. (Their 

parameterization differs slightly from that given above.) In this way they ob­

tain the form factors in terms of the meson wavefunctions. They find, for a 

pseudoscalar final state, the unknown constant to be: 

1 

hi= ho= J d2
pT J dxcp:nK(ffr,x)cpm0 (ffr,x) 

0 

For the case of a vector meson in the final state: 

1 

hA0 = hA3 = J d2
pT J dxcp:n1~~ (ffr, x)ai

1
)'Pmv (ffr, x) 

0 
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The operator a}1
) is a Pauli matrix acting on the spin of the decaying c quark. 

hv = me -ms J 
mD-mK. 

hA1 = me+ ms J 
mn+mK. 

1 

J _ 1n2 J d2 J dx * 1,-1 (..... ) . (1) (..... ) - v ,£, Pr x 'PmK• PT' x iay 'PmD Pr' x 
0 

As mentioned above these authors use an eigenstate of a relativistic harmonic 

oscillator potential for their meson wavefunction. The momentum part of this 

wavefunction is: 

This form contains the parameter w which determines the average transverse 

momentum of the quarks within the meson: < Pf >= w2• This parameter 

should be about the same for all mesons as the potential is flavor independent. 

The results of Wirbel, Stech and Bauer's calculations* are listed in Table 

3.3.II for two different values of the parameter w. 

* The parameterization used by Wirbel, Stech, and Bauer differs from that of section 3.2. 
The two parameterizations are related through the following equations: 

!+(t) = Fi(q2
) 

fo(t) = Fo(q2) 

f(t) = -i(mD + mK• )Ai(q2) 

a+(t) = i A2 (q2 ) 
mD +mK. 

a3(t) = -i ( 22mK. 2 ) A3(q2) 
mD -mK. 

ao(t)=-i( 22mK.2 )Ao(q2) 
mD -mK. 

g(t) = i V(q2) 
mD +mK. 
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Table 3.3.II: Form Factor Constants a la Wirbel, Stech, and Bauer 

Constant Average pT 

w = 0.4 MeV w = 0.5 MeV 

D---+ K eve 

!+(O) 0.76 0.82 

D---+ K* eve 

g(O) 0.46i 0.56i 

f (O) -2.43i -2.95i 

a+(O) 0.42i 0.55i 

The constituent quark model was used by Grinstein, Wise and Isgur 1491 to 

calculate the hadronic matrix element directly. They chose non-relativistic wave­

functions which are solutions of Schrodinger's equation with a potential 

( ) 
4a8 V r = --+c+br 
3r 

The parameters are given the values: a 8 = 0.5, c = -0.84, and b = 0.18 GeV2 • 

The form of the potential above is similar to that of the charmonium model 

detailed in chapter 1. The first term has the 1 / r dependence characteristic of 

the Coulomb potential; it attempts to account for the short range behavior of 

the strong interaction. The term linear in r provides a potential increasing with 

distance, corresponding to the confining behavior of the strong interaction at 

large spatial separations. 

The matrix element of the weak current with respect to the non-relativistic 

wavefunctions is expanded in terms of form factors j. It is possible to calculate 

these j analytically if they multiply terms which are of sufficiently low order in 

the momenta. The form factors f, which appear in the expansion of the matrix 

element with respect to the physical states, are taken to equal the non-relativistic 

form factors at the zero recoil point. 
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The results of the these calculations are quoted below. A description of the 

notation is in order. The parameters /3D, /3K and /3K . appear in the meson 

wavefunctions; they have the values /3D = 0.39, /3K = 0.34, and /3K. = 0.30. The 

combinations /31K = 1/2(/31+/3Jd and /31K· = 1/2(/31+/3k.) also appear in the 

formulae. The maximum momentum transfer for a state Xis tm = (mn - mx) 2 • 

The quark masses appear in the combinations: µ± - (mq-1 ± m;;- 1)-1 where q 

is a u or d quark. Finally, the t-dependence of the form factors is given by the 

function: 

( m )
1

/
2 

(/3 f3 )
3
1

2 
[ ( m2 ) tm _ tl F = _K D x exp - d 

ihn !3nx 4ihnihx f31x 

The state X denotes either K or K *. The masses marked with a tz'lde are the 

constituent quark model masses: ihn =me+ mq, mK = mK. = m8 + mq. 

D ~ Keve 

f-(t) = F(t) [1 - (ihn + mK)-
1
- - -

1
- r:!d /3~1 ] 

2mq 4µ+ mK DK 

D ~ K *eve 

f(t) = 2ihnF(t) 

1 [ 1 1 md /31 ] g(t) = -F(t) - - --- --
2

-
2 mq 2µ_ mK· /3nK· 

It is not possible to calculate a+(t). The authors conclude, however, that 
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Chapter 4: The MARK III Detector 

4.1: An Overview 

The MARK III is a general purpose magnetic spectrometer installed in the 

West interaction of the electron-positron storage ring SPEAR. Although the de­

tector is essentially conventional in design, it differs from detectors used at higher 

energy facilities in two major ways. First, the amount of structural material was 

kept to an absolute minimum. At SPEAR, the average momentum of charged 

tracks is only about 400 - 500 MeV /c. Multiple Coulomb scattering will cause a 

serious deterioration of the momentum resolution for such low momentum parti­

cles unless the amount of material is small. Table 4.1.I summarizes the materials 

used in the construction of the drift chamber. Second, the MARK III is the first 

magnetic detector installed at SPEAR with its shower detectors mounted inside 

the magnet, allowing the reconstruction of many final states which contain a low 

energy photon or 7ro. 

Table 4.1.I: Materials in Drift Chamber 

Component Thickness(% of radiation length) 

Beam pipe 0.40 % 

Layer 1 0.68 % 

Inner Wall of Drift chamber 0.16 % 

Drift chamber gas 0.75 % 

Drift chamber wires 0.15 % 

Total 2.14 % 

The innermost part of the MARK III is a trigger drift chamber which sur­

rounds the beryllium beam pipe. Immediately outside of the trigger chamber 

is the main drift chamber. The scintillation counters of the time-of-flight (ToF) 

system are attached to the outside of the main drift chamber. The barrel shower 
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Shower Counte 

TOF Counter 

Figure 4.1.1: MARK III detector, front view 

detector is installed between the ToF counters and the magnet which produces an 

axial field of about 0.4 T. The two endcap shower detectors are mounted within 

the iron flux return parallel to the face of the main drift chamber. Outside of the 

flux return are two banks of proportional tubes used for the detection of muons. 

Figs. 4.1.1 and 4.1.2 are drawings of the MARK III from the front and side. 

4.2: Trigger Chamber 

The MARK III is quite a large detector, so some method is necessary to limit 

the number of triggers caused by cosmic rays. In previous detectors at SPEAR, 
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Figure 4.1.2: MARK III detector, side view 

End Cap 
Shower Counter 

scintillation counters were placed around the beam pipe. A signal was required 

in one of these for the detector to be triggered. The cosmic ray rate was reduced 

because of the very small area and good time resolution of the counters. 

A similar approach was used in the MARK III except that a set of four 

concentric low-mass cylindrical drift chambers replaced the scintillation counters. 

An axial view of these chambers is shown in Fig. 4.2.la. Collectively, the four are 

called Layer 1. Each chamber is 1.1 m long. The inner radius of the innermost 

chamber is 9.2 cm and the outer radius of the outermost chamber is 13. 7 cm 

so the thickness of each chamber is 1.1 cm. The cylindrical walls are made of 

Rohacell foam 2 mm thick, clad on both sides with 0.5 mm of aluminized mylar. 
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Figure 4.2.1: Layer 1 from front (a), Layer 1 cell structure (b) 

Each chamber contains thirty-two cells, the boundaries of which are defined 

by thirty-two field shaping wires of 178 µm copper-beryllium (CuBe). Centered 

between each field shaping wire is a sense wire of 38 µm stainless steel (SS). The 
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sense wires are operated at a voltage of +2175 V, and the field wires at -200 

V. The aluminized surfaces of the cylindrical walls are maintained at ground 

potential. 

All four chambers are used for tracking, but only the innermost two are used 

in the trigger. If the only trigger requirement were a hit in one of these layers, 

the trigger 'window', during which a hit would have to appear, would have to be 

at least as wide as the maximum drift time. The spacing between a field wire and 

its neighboring sense wire is 1.125 cm in the second chamber; this is, of course, 

slightly different in the other chambers. The velocity at which ionization drifts 

in the gas - 70% argon and 30% ethane - is about 5 cm/ µsec, so the maximum 

drift time is about 230 nsec. At SPEAR, the beam crossing frequency is 1.28 

mHz, so the beams cross every 781 nsec. A gate width of 230 nsec would thus 

represent a reduction in cosmic ray trigger rate of only about 70%. 

This situation may, however, be improved substantially. The chambers in 

Layer 1 are alternately offset by one-half cell; a sense wire aligns radially with 

field wires in the adjoining chambers. Tracks so close to the interaction point are 

all approximately radial, so the sum of the times in adjacent chambers is nearly 

equal to the maximum drift time. This is illustrated in Fig. 4.2.lb. 

The sum of times is accomplished digitally by the use of a bidirectional tapped 

delay line or chronotron. 1031 The pulse heights on the sense wires vary widely. 

To limit the resulting time slewing, the pulses from both ends of each wire are 

fed to discriminators and the discriminated pulses passed on to an OR-gate. The 

resulting pulses from the nearest sense wires in adjacent chambers are fed into 

opposite ends of one of the sixty-four Layer 1 chronotrons. The pulses are clocked 

in opposite directions through the chronotron. A coincidence of the pulses at any 

tap produces an output pulse. The distribution of chronotron times for hadronic 

and cosmic ray events is shown in Fig. 4.2.2. The times for hadronic events 

peak at about 250 nsec as expected while the distribution of times for cosmic ray 

events is approximately uniform. A window of 100 nsec is used in the trigger. A 
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Figure 4.2.2: Layer 1 chronotron times 

400 

chronotron pulse must fall within this window to be considered valid. The total 

reduction in the cosmic ray trigger rate is thus about 87%. 

The cells in Layer 1 are relatively large, given the small radius of the cham­

bers, so the electric field is quite non-uniform within the cells. The spatial reso­

lution of the cells is therefore modest, only about 350 µm. The addition of four 

spatial points close to the interaction point is, however, of considerable use in 

detecting steeply inclined tracks and in locating secondary vertices. 

The stainless steel sense wires of Layer 1 have a resistance about 1.3 KO, 

making possible the use of charge division to determine the z position of hits. 

This technique is described fully in the following section. 
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4.3: Main Drift Chamber 

The main drift chamberr541 is also cylindrical. The inner wall, of radius 

14.47 cm and length 177.8 cm, is a tube of Hexcell, a honeycomb of shellacked 

paper formed into a tube and covered on the inside and outside with phenolic 

plastic. Such a structure exhibits extraordinary strength in spite of the fact that 

it is nearly massless. The Hexcell is clad on the inner and outer surfaces with 

aluminized mylar. The outer wall of the drift chamber consists of curved plates 

of 6.25 mm thick aluminum. The outer radius of this wall is 114.26 cm and the 

length is 233.7 cm. The front and back faces of the chamber are made of G-10 

fiberglass on aluminum clad Hexcell. 

The chamber has an inner and outer section. The inner section - Layer 2 

- is as long as the inner Hexcell, making room for the compensating magnets; it 

extends in radius to 31.45 cm. The remainder of the chamber- Layers 3-8 - is 

as long as the outer aluminum wall. The difference in length of these two sections 

is bridged with an aluminum 'top hat'. A drawing of the main drift chamber is 

given in Fig. 4.3.1. 

The thirty-two cells of Layer 2 align radially with the cells of Layer 1. The 

cells are bounded by two sets of fifteen field shaping wires of 175 µm CuBe. 

These are spaced 1 cm apart radially. Between these field wires are thirteen 20 

µm tungsten sense wires with a guard wire of 57 µm SS at the top and bottom of 

the cell. The center sense wire is not used. Alternate sense wires are staggered 

+ 150 µm or -150 µm azimuthally from the center line of the cell. This aids in 

resolving the left-right ambiguity, as will be described below. 

The pulse heights on the twelve instrumented sense wires give twelve mea­

surements of the rate of ionization loss - dE / dx - by a particle passing through 

Layer 2. In order to accomplish this, this layer is operated at a low gain of about 

2 x 104 to prevent saturation. The voltage applied to the field wires must be 

increased with radius to make up for the increasing cell size. The voltage ranges 
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Figure 4.3.1: Main drift chamber, side view 

from -3.2 to -4.2 kV. The guard wires are held at ground potential. 

The pulses from Layer 2 are extremely small, only about 200 µ V. After an 

initial period of data taking, it was found to be necessary to add preamplifiers 

to compensate for high frequency pickup on the cables leading from the drift 

chamber. These are mounted directly on the face of the chamber and provide a 

gain of about 20. 

A further problem with Layer 2 required consideration. The high density 

of the wires results in considerable capacitive coupling among the sense wires. 

A pulse on one sense wire often induces a pulse of the opposite polarity on the 

adjoining sense wires . Resistors were added between all nearest and next-nearest 



73 

<> + ¢ 

<> x <> 

<> x ¢ <> Field wire 

+ Guard wire 

<> x <> 
X Sense wire 

<> + <> 

Figure 4.3.2: Main drift chamber cell, layers 3-8 

neighbor sense wires to alleviate this problem. 

The outer portion of the drift chamber - Layers 3-8 - consists of six con­

centric rings or planes of cells. The positions of the cells were chosen so that the 

cells are all of the same size throughout Layers 3-8. The number of cells in each 

layer is equal to sixteen times the number of that layer; there are forty-eight cells 

in Layer 3. The cell structure is similar to that in Layer 2 except that now there 

are only five field wires, and three sense wires. The sense wires are staggered 

by 400 µm in these triplet cells. The cell structure is illustrated in Fig. 4.3.2. 

The field wires are operated at -4.2 kV, the voltage again increasing with radius 

within the cells. The gain of these cells is about 2 x 105 , and the spatial resolution 

is 250 µm. 

The sense wires in Layers 2-8 are staggered to help resolve a common problem 

of large drift chambers, the so-called left-right ambiguity mentioned above. If the 

sense wires were aligned radially, it would be impossible to decide on the basis 

of the measured times alone whether a track had passed through the left or the 

right half of a cell. Separate fits must be performed for each combination of 

left-right hypotheses. The number of such combinations may be quite large and 
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this procedure may absorb an appreciable amount of computer time. 

3 

If, on the other hand, the wires are not aligned but staggered, there is a much 

simpler solution. For each of the triplet cells, the quantity fl. = 1/2(t1 + t3) -t2 is 

formed, where ti is the time measured for the ith wire. If the wires were perfectly 

positioned, and electric field perfectly uniform, I fl. I would equal the wire stagger 

and the sign of fl. would indicate whether the track passed to the right or left. 

It is usually possible to resolve the left-right question in this manner. Fig. 4.3.3 

presents a histogram of fl. for all cells in Layer 3. 

A simple non-iterative quadratic fit is performed for the left side and the 

right side hypotheses in Layer 2; the decision is made on the basis of the x2 value 

from the fit. An actual track is plotted in Fig. 4.3.4 as it passes through cells in 

Layers 2, and 3. 
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Figure 4.3.4: Track through layers 2 and 3 

Two different methods are used for determining the z coordinates of drift 

chamber hits. Charge division is performed on the highly resistive guard wires 

in Layer 3, 5, and 7 and the sense wires in Layer 1. The z position is determined 

by comparing the amount of charge collected at each end of these wires. The 

relation is: 

where l is the length of the wire and q1 and q2 are the charges collected at the 

ends of the wires corresponding to a negative and positive value of z, respectively. 

Noise pickup and crosstalk make the charge division system rather unreliable. 

The resolution is at best about 5 cm. For this reason, charge division is seldom 

used in track fitting. 

Two layers - Layers 4 and 6 - of the drift chamber have wires which are 
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not axial but are strung in small angle stereo, 7. 7° for Layer 4 and -9.0° for 

Layer 6. A much better, if also more involved, procedure uses information from 

these layers to determine the z position. Since the wires are not axial, the z 

position of a hit is correlated with its position in the azimuthal angle cp. Timing 

information from the axial layers is used to determine the trajectory of a particle 

in the transverse plane. All hits in the stereo layers which are at all close to this 

trajectory are examined. A full helix fit is attempted for all combinations of cells 

with consistent timing information. A single stereo layer provides a resolution in 

the dip angle of about 150 mr. The wide spacing of 27 cm between the stereo 

layers increases this resolution to about 10 mr if information is present from both 

Layer 4 and 6. 

A helix fit is applied to each track making use of all available information. 

The momentum resolution is ap/P = 1.5%Jl + p2 , the first term coming from 

multiple scattering. In spite of the very low mass of the drift chamber, the 

resolution is still dominated by multiple scattering for momenta below 1 GeV /c. 

The small signal electronics of the drift chamber systems, with the exception 

of the preamplifiers of Layer 2, are housed in a shielded alcove near the detector. 

Schematic diagrams for Layer 2 and Layers 3-8 are given in Figs. 4.3.5 and 

4.3.6. The electronics for Layer 1 are similar to those of Layer 2 except that the 

preamplifiers are mounted in the alcove and are made of discrete components. 

The discriminators are based on the MVL 100 integrated circuit of LeCroy 

Research Systems, which contains an amplifier with a gain of 100 and a dis­

criminator circuit with a differential output. The threshold is set by an external 

control voltage. 

Discrete amplifiers are used for the charge division signals and for the pulse 

height measurements on the sense wires of Layer 2. As both timing and pulse 

height information is extracted from the sense wires of Layers 1 and 2, a splitter 

circuit is used to isolate the inputs of their discriminators and amplifiers. 

The precise time at which a beam crossing occurs is obtained by an electrode 
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inside the beam pipe. A sophisticated discriminator 1551 which provides stable 

timing regardless of the magnitude of the input signal, is used to derive a common 

start signal for much of the electronics. The time variati~n is less than 80 psec 

as the beam current varies by a factor of 20. This signal initiates a voltage ramp 

in the multihit time-to-analog converters or MTAC's. 1561 This ramp is appli_ed to 

a group of storage capacitors. If a signal from one of the discriminators arrives, 
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the corresponding capacitor is isolated from the ramp by a FET switch. The 

voltage on this capacitor is then related to the time between the beam crossing 

and the arrival of ionization at a sense wire. In principle, an MTAC can measure 

up to four times for each sense wire. In practice, however, only the first is used. 

The charge division and dE / dx signals are obtained by integrating the signals 

from the guard wires of Layers 1, 3, 5 and 7 and the sense wires of Layer 2. 

This is accomplished by a multihit sample-and-hold amplifier and multiplexer or 

MSHAM. 1571 The integration gate width is 1 µsec. As before, only the first 'time 

bucket' is used. 

The information from the MSHAM's and MTAC's are digitized by semiau­

tonomous multichannel analog-to-digital converters or BAD C's. 1581 These are 

based on AMD 2901 bit-slice microprocessors and Datel EH12B3 ADC's. These 

modules perform pedestal subtractions and other simple corrections on the data 

before they are read out via a VAX CAMAC channel 1591 into the online computer, 

a VAX 11/780. 

4.4: Time of Flight System 

An advantage of the low average momenta of particles produced at SPEAR 

is the possibility of the identification of these particles by their time-of-flight. 1601 

To this end, a series of forty-eight scintillation counters are mounted on the outer 

surface of the main drift chamber with steel bands. The counters are 3.2 m long 

and 5 cm thick. To reduce the gaps which would otherwise result, the counters 

are not rectangular but slightly trapezoidal in cross section. The average width of 

the counters is 15.6 cm. The scintillating material chosen is Nuclear Enterprises 

Pilot F. 

Light is extracted from both ends of the scintillators with Lucite light pipes, 

which are tapered to 7.5 cm in order to pass through holes in the iron flux r~turn. 

A second, faster taper in the shape of a cone is made at the phototube. Fig. 4.4.1 
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Figure 4.4.1: Orientation of scintillators and light pipes 

illustrates the arrangement of scintillators and light pipes. The phototube used 

is the Amperex XP2020, chosen for its small transit time variations across the 

surface of the photocathode. 

The timing resolution of the ToF system is very good. For Bhabha events, 

the resolution is 171 psec, whereas for hadronic events it is 189 psec. That the 

resolution is slightly worse for hadronic events is probably due to the possibility 

of inelastic interactions within the scintillators. 

The ToF system's ability to separate electrons from pions may easily be 

predicted. The time-of-flight of a particle of mass m and momentum p is t = 

l y' m2 + p2 / p where l is the length of the path traversed. The difference in the 

times-of-flight of an electron and pion of equal momenta is then: 

t7r - te = ~ ( V m~ + p2 - V m~ + p2) 

For a helix of radius p and pitch >.., the length of a path from the interaction 

point to the ToF counters is: 

2p . (RToF) l = --, arcsm --
cos A 2p 
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The inner radius of the ToF system, RroF, is 1.14 m. Finally, the radius of the 

helix is: 

pcos >. 
P = 2.998 x 10-2 B 

The magnitude of the field strength, B, is measured in kG, the momentum in 

GeV /c and the radius in m. The formulae are evaluated in Figs. 4.4.2 and 4.4.3 

from the 7r - e and the K - 7r time differences. These figures show that 2a 

separation of electrons and pions is possible up to 300 Me V / c and 2a separation 

of kaons and pions up to 1 GeV /c. 

The performance of the ToF system meets these predictions. Fig. 4.4.4 shows 

values of momenta, as measured in the drift chamber, versus the corresponding 

velocities, as measured by the ToF system. The bands from pions, kaons, and 

protons are clearly visible. 

For the purposes of analysis, the measured times-of-flight are converted into 

a weight: the probability that a given time corresponds to a particular particle 

mass. The weights are defined by the relation: 

W ( 
(tmeasured - tpredicted)

2
) =exp -

2 
aToF 

The weight is calculated from the measured momentum, path length and time­

of-flight for a number of particle hypotheses. 

Three separate signals are provided by each phototube. A timing signal is 

produced by the last dynode. Such signals from each end of a scintillator are fed 

into opposite ends of a chronotron. This yields a trigger signal, whose time is 

independent of the z position of a hit within the scintillator. 

The time and the pulse height of the signal from the phototube's anode are 

measured in a special device called a DISC0. 1611 This consists of a dual thresh­

old discriminator, a time-to-analog converter, and a sample-and-hold amplifier. 

The discriminator produces an output pulse when the input exceeds each of two 
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Figure 4.4.3: Predicted K - 1T separation from ToF system 

thresholds. It was hoped that this would reduce time slewing, but it proved to be 

of little use. For this reason, only the lower threshold is used. The time-to-analog 

converter is similar to that in the MTAC module except that the ramp downward 

is initiated by a pulse from the discriminator. The ramp is halted by a common 



1.2 

0.8 

0.4 

0 
0 

• a • 
• 
• 
• • 

82 

' • • 

0.4 0.8 
MOMENTUM 

1.2 
(GeV/c) 

Figure 4.4.4: Momentum versus velocity 

stop derived from the beam crossing signal. 

• 

The magnitude of the anode signal is related to the ionization loss in the 

scintillator. As explained above, the counters are 5 cm thick, which corresponds 

to 12% of one radiation length. Since the counters are not thin, the distribution 

of pulse heights should be given approximately by a Landau distribution. A 

histogram of ToF pulse heights for Bhabha events is given in Fig. 4.4.6, the 

momenta of which are plotted in Fig. 4.4.5. The solid curve in Fig. 4.4.6 is the 

result of a fit to the Landau function: 
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The parameter .\ is linearly related to the pulse height. 
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4.5: Shower Detectors 

The shower detection system has three major component parts: a barrel 

detector 1621 and two endcap detectors. 1631 The barrel shower detector is mounted 

within the aperture of the magnet and just outside of the ToF counters. It is 

assembled around an aluminum support spool 1.26 m in radius, 3.85 m long and 

2.3 cm thick. The instrument consists of twenty-four layers of proportional cells 

- 320 axially oriented cells per layer. The cells are formed from aluminum'!­

beams'. A sense wire of 46 µm SS is drawn through the center of each cell. The 

layers are separated by twenty-three cylinders of radiator, this being composed 

of an alloy of 6% antimony and 94% lead reinforced on both sides with 0.064 cm 

of aluminum. The radiator is 0.28 cm thick which corresponds to one-half of one 

radiation length. The considerable weight of the sheets of radiator is supported by 

five aluminum ribs. Finally, the detector is suspended from its spool by twenty­

four bolts attached to the magnet iron. A drawing of the detector is given in Fig. 

4.5.1. 

The two endcap detectors consist of five units each: two "D's" on either side 

of the beam pipe, two "keyway" detectors below and one "tombstone" detector 

above the beam pipe. The D's and the tombstone are mounted on a removable 

iron door which is part of the magnet flux return. The keyway detectors fit 

snugly behind and below the compensating magnets and are not easily removed. 

Each unit is identical in structure. Twenty-four layers of proportional cells are 

interspersed among twenty-four sheets of radiator. The cells are formed from 

rectangular aluminum tubes which are oriented vertically. The construction of 

the endcaps is illustrated in Fig. 4.5.2. 

Charge division is used in the. shower detectors to obtain the position of a 

shower along each wire; this is the z coordinate for the barrel and the y coordinate 

for the endcaps. The resolutions obtained are 0.8% of the wire length for the 

barrel and 1.0% for the endcaps. The resolution transverse to the wire direction 
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Figure 4.5.1: Barrel shower detector 
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is much better: u'P = 7 mr for the barrel and Ux. = 7 mm for the endcaps. 

The wires in the first six layers are read out separately, whereas the remaining 

eighteen layers are readout in groups of three. 

The energy resolution of the shower detectors is modest. For the barrel, 

the resolution is approximately uE/E = 17.5%/VE(GeV) , while for the endcap 

the resolution is slightly better uE/E = 17.0%/VE(GeV). Fig. 4.3.3 shows the 

value of the energy obtained in the shower counter divided by the momentum as 

measured in the drift chamber for Bhabha events. The effect of the support ribs 

is clearly seen. 

The efficiency of the shower detectors for detecting low energy photons has 



s 
;j ....., 
~ 
Q) 

s 
0 

::::!1 
'-. 
~ 
tlO 

""' Q) 

~ 
r:r.l 

2.0 

1.5 

1.0 

0.5 

0.0 
-2 

87 

E/P for Bhabha Events 

-1 0 1 2 
Z at shower counter (M) 

Figure 4.5.3: Energy / momentum for Bhabha events at VS = 4.14 Ge V 

been studied by using the large number of events available from the decay 

J / 'ljJ ---+ p0 7ro. The energies of the photons from the decay of the 7ro are uni­

formly distributed. Any deviation from uniformity in the observed distribution 

indicates an inefficiency. The result of this study is given in Fig. 4.5.4. The 

response of the detectors is obviously quite uniform; they are completely efficient 

down to incident energies of 100 MeV. At 50 MeV, the efficiency falls to 75%. 

4.6: Magnet 

There are three magnets in the MARK III detector: the main solenoid and 

two compensating magnets. The main solenoid is a conventional magnet wound 

on an aluminum spool 2.24 cm thick of inner radius 1. 715 m . The four layers of 

windings are composed of aluminum conductor, 5 cm by 5 cm in cross section 
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Figure 4.5.4: Shower detector efficiency 

with a hole in the center 2.5 cm in diameter to accommodate the flow of cooling 

water. The solenoid produces a field of 0.4 T at the center of the detector and 

dissipates about 1 MW of heat. 

An axial magnetic field placed in a storage ring has the unfortunate effect 

of coupling the horizontal and vertical betatron oscillations. This situation may 

be corrected through the use of rotated quadrupole magnets or of compensat­

ing magnets; the latter are small solenoidal magnets placed symmetrically at 

both ends of the larger solenoid. The strength and direction of the fields of the 
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compensating magnets are chosen to make the line integral of the magnetic field 

vanish along the direction of the beam as it passes through all three magnets. 

The compensating magnets surround the beam pipe and are mounted just out­

side Layer 2 of the main drift chamber. They have the same number of windings 

as the main solenoid and are operated in series with it. 

Before the installation of the drift chambers and shower detectors, the mag­

netic field was 'mapped'. A series of measurements were made at a large number 

of locations within the volume of the magnet. The measuring device was a pair 

of orthogonal Hall effect magnetometers. These measured the strength of the 

field in the radial and axial directions simultaneously. 

In order to reconstruct the trajectories of charged tracks, it is desirable to 

have an analytic function which accurately reproduces the behavior of the field. 1641 

The natural coordinate system of the magnetic field is the system in which it has 

maximal symmetry. This will be denoted everywhere by a superscript E. In this 

system, the field will be expanded in a series of polynomials. The coordinate 

system in which the field was measured will be denoted by a superscript M. 

Let xM be the position of a point p in the M system and XE its position 

in the E system. These are linearly related: xM = R (XE - l). R is a three 

dimensional rotation matrix and l is the vector from the origin of E to the 

origin of M. Similarly, the fields are also related: §M(xM) = RBE(RTxm + l). 

The M and E systems are thus related by six parameters: three rotations and 

three translations. 

The field in the E system is expanded in terms of nine polynomials. 1651 Only 

the radial - p - and the axial - z - components are given. The azimuthal 

component is assumed to be identically zero in this system. The first seven 

polynomials describe the field of the main solenoid and the last two describe that 

of the two compensating magnets. The parameters A1 and .>t2 are the z positions 

of the two compensators. 
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Pz8 = - ((z + >.1)2 + p2)5/2 

p2 - 2(z - >.2)2 
Pz9 = --------,-

((z _ >.2)2 + p2)5/2 

The values of all the parameters are obtained from a least squares fit to the 

measured field values. The results of the fit are given in Table 4.6.I. It should 

be noted that the parameters relating the M and E systems are all very small 
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and the series of expansion coefficients Ai and A1 converges very quickly. The 

behavior of the field in the p, <.p, and z directions is illustrated in Figs. 4.6.1 -

4.6.3. 

Table 4.6.I: Magnetic Field Parameters 

Parameter Value 

Rotations (radians) 

t?i -1.16 x 10-3 

'1?2 2.64 x 10-4 

'1?3 4.36 x 10-6 

Translations (millimeters) 

~x 1.09 

~y -1.25 

~z -1.80 

Compensator positions (meters) 

.Ai 1.68 

.A2 1.69 

Expansion coefficients (Gauss) 

Ai 4,052 

A2 7.63 

A3 -523 

A4 -0.173 

As 6.02 

A6 0.00129 

A1 0.0519 

As -57.0 

Ag -57.8 
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Figure 4.6.3: Magnetic field strength as a function of z 

4.7: Muon System 

60 

The muon detection system consists of two banks of proportional tubes, lo­

cated outside of the flux return, separated by 13 cm of steel. The proportional 

tubes are 2.5 cm in radius and 4.2 m long. They are arranged in an overlapping 

fashion in groups of eight. The azimuthal resolution of the system is 9 mm. 

Charge division is used to locate hits along the axis of the tubes. The resolution 

for this is 6 cm. A drawing of one muon tube assembly is given in Fig. 4.7.1. 

The muon system is almost perfectly efficient for detecting muons with trans­

verse momenta greater than about 700 Me V / c. Below this value, the momentum 

acceptance falls rapidly, dropping to zero below 600 Me V / c. The muon system 

is thus most useful for locating pairs of muons and for rejecting cosmic rays. 

Pions and kaons which decay in flight or which manage to 'punch through' 

the flux return may produce a signal in the muon system. The probability for 

this to happen has been measured using events of the type J /1/J -t p7r and 
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Figure 4.7.1: Muon tube assembly 

J /'If; ---t K*(892)K. These events may be isolated easily through kinematic fit­

ting. The probabilities are shown in Fig. 4.7.2 and 4.7.3 for pions and kaons, 

respectively. 
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4.8: Coverage of Systems 

The various systems of the MARK III subtend different solid angles. The 

coverage of each system is summarized in Table 4.8.I. 

Table 4.8.I: Coverage of Detector Systems 

System Coverage (% of 47r sr) 

Layer 1 98% 

Layer 2 93% 

Layers 3-8 85% 

ToF system 76% 

Barrel 80% 

Endcap - front 8.5% 

- back 6.5% 

Muon system 65% 

4.9: Event Trigger 

As mentioned above, the beams cross every 781 nsec at SPEAR. It takes, 

however, much longer - 30 msec - to digitize and record all of the information 

from an event, so a fast and efficient trigger is required. 1061 Ordinarily, a reset 

signal is produced 590 nsec after each beam crossing to prepare all the electronics 

systems for the next beam crossing. This signal may be inhibited under two 

conditions by the Level 0 trigger, the lowest level of the trigger logic. The Level 

0 trigger is satisfied if two Layer 1 chronotrons fire within the 100 nsec gate, or 

if a signal from one Layer 1 chronotron is accompanied by another from a ToF 

chronotron within a 27 nsec gate. The Level 0 trigger rate is about 2-3 kHz. Most 

such triggers are the result of collisions between beam electrons and residual gas 

molecules within the beam pipe. 
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If a Level 0 trigger occurs, the information from the main drift chamber 

is examined by the next level of the trigger, Level 1. This attempts to find 

valid tracks within Layers 1,3, and 5. A cell in Layers 3 or 5 is considered to 

have been hit if there signals from at least two of its three · sense wires. All 

patterns of tracks with transverse momenta greater than 75 MeV /c are stored 

in programmable array logic or PAL circuits, one for each cell of Layer 5. The 

arrangement of PAL's is illustrated in Fig. 4.9.1. Level 1 is satisfied if two valid 

tracks are found or if one valid track is found with a coincident ToF hit. If a 

Level 1 trigger occurs, all resets are inhibited and digitization begins after which 

the event is processed and finally stored on tape. The Level 1 trigger rate is 3-5 

Hz, providing dead time of about 10-12%. 

The efficiency of the trigger was measured using events of the type 'If;' -+ 

J /'If; 7r+7r-. The events were isolated by tagging on the missing mass recoiling 

from the 7r+7r- system. The information not relating to this system was exam­

ined to determine whether it would have been sufficient to cause a trigger. The 

momentum of the J /'If; is very low, and does not complicate this analysis. The 

trigger was found be 93% efficient for detecting the decay of a J /'If;. 
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Chapter 5: Data Sets 

5.1: J /1/J Data Sets 

The MARK III detector has been used to acquire several different data sets. 

The first, consisting of 0.9 million J / 1/J decays, was collected in the Spring of 

1982. This will be referred to as the 1982 J /1/; data set. The events in this set 

were used in the checkout and debugging of the detector and analysis software. 

In the Spring of 1983, a further 1.8 million J /1/; decays were collected - the 

1983 J /1/; data set. These data were taken after the observation of a narrow peak 

in the K+ K- mass distribution for events of the type Jj'l/; --)- 1K+ K- drawn 

from the 1982 data. 1671 

Although the apparatus performed well in 1982, two improvements were made 

before the Spring 1983 run. As noted in the previous chapter, layer 2 of the main 

drift chamber is operated at a reduced gain. The noise pickup on the cables 

leading from layer 2 overwhelmed the very small signals. In order to remedy this 

problem, a preamplifier was added on the face of the chamber to each channel 

of layer 2. The wires in the cells of layer 2 are very close together resulting in 

substantial capacitive coupling among the sense wires. A signal on one wire often 

induced a signal of the opposite polarity on the adjacent wires. These induced 

signals were cancelled with the addition of a series of resistors between the sense 

wires. These improvements allowed the pulse heights measured in layer 2 to be 

used for particle identification. 

5.2: 1/J" Data Sets 

Following the acquisition of the 1982 Jj'l/; data, about 1,800 nb-1 were col­

lected in the Fall of 1982 at an energy of 3. 768 Ge V, the peak of the 1/;11 resonance. 

This resonance lies below DD* threshold and decays predominantly into DD 
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pairs, making it an ideal 'D factory'. It was possible to reconstruct D mesons 

from this initial sample cleanly, in several different modes. 

Further data taking at the same energy in the Spring of 1983 and 1984 re­

sulted in a total luminosity of 9,300 nb-1. Altogether, these three blocks of data 

comprise the 'If;" data set. This includes non-resonant final states unrelated to 

charmonium, 21400 n°If and 17000 n+ n- pairs, 1681 and 22000 r+r- pairs. 1691 

5.3: Tagged Sample 

The analysis of semileptonic processes is based on a sample of tagged events, 

events in which one D could be reconstructed in an hadronic decay mode. The 

remainder of the event - the recoil from this reconstructed D - is then known 

a priori to have been the result of the decay of the companion D. This allows 

identification even of semileptonic decays in which, of course, the neutrino is not 

detected. 

Large signals were observed in eight Cabibbo favored channels: 1101 

Here and following, D 0 implies If and n+ implies n-. All of the events in the 

'If;" data set were first examined for kaons, neutral or charged. Only those events 

containing a kaon were considered further. 

A track was classified as a charged kaon if its ToF weight was larger than 

its pion or proton weight, and if the measured time-of-flight differed from that 

predicted for a kaon by less than five standard deviations. 

The procedure used to identify neutral kaons via the decay K~ ~ ?T+?T- was 

somewhat more involved. All pairs of oppositely charged tracks were considered, 

provided that each track could be well-fit to a helix. 1111 The position of the decay 
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vertex and the momenta of the tracks at this vertex were calculated as discussed 

in appendix 2. The mass of the candidate, as calculated at the vertex, was 

required to be consistent with the mass of the K~ . Finally, the displacement of 

the decay vertex from the primary vertex, the position of which was determined 

by performing a constrained fit to the remaining charged tracks, was required to 

align with the momentum of the candidate. 

Appropriate combinations of particles were constructed for each of the eight 

modes listed above. The number of events in each mode was determined by ex­

amining a variable known as the beam-constrained mass. The ordinary invariant 

mass of a decaying particle may be calculated from the formula: 

M = (LEj)2 - (2:~· )2 
j j 

The sums extend over all the daughter particles. The resolution in the invariant 

mass is about 15-20 Me V / c2 • In the decays of the '1/J", the D mesons are produced 

only in pairs and are thus monochromatic. The total energy of each D must equal 

the beam energy. The beam-constrained mass is defined by the relation: 

Mbc = Eteam - (L ~-)2 
j 

The resolution for this quantity is much better than that for the invariant mass. 

The beam energy is known at SPEAR to within two to three MeV. Further, the 

momentum of each D is small, 260 and 280 Me V for the charged and neutral 

mesons, respectively. 

Two tag modes contain neutral p1ons. These are identified through their 

decay to two photons. The momenta of pairs of photons, each with an energy 

of at least 150 MeV, were subjected to a fit with two constraints: the invariant 

mass of the pair was forced to equal the 7ro mass, and its total energy to equal the 

difference between the beam energy and the sum of the energies of the charged 

particles. The x2 from the fit was required to be less than six. 
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The beam-constrained mass distributions for the four n° decay modes are 

given in Fig. 5.3.1 and those for the n+ in Fig. 5.3.2. The number of tags 

represented by each plot is determined by fitting the distribution to a function 

of the form: 

F(m) = [a1 + a2 (m - 1.8) + a3 (m - 1.8)2] · ~ ( 1 - ~ arctan(a(m - /3))) 

+a4 exp(-(m ~:D)
2

) 

The first terms parameterize the background and the Gaussian term accounts for 

the signal. Just above the n mass, there is no more phase space available for a 

decay to a pair of n mesons. The arctangent provides a sharp cutoff as observed 

in the data. The number of tags is calculated by integrating the background 

terms over the range 1.85 to 1.88 GeV /c2 and subtracting this number from the 

observed number of events in this range. The number of tags is summarized in 

Tables 5.3.I and 5.3.II. The errors quoted there are the statistical errors on the 

* number of background events. 

The decay n° -+ K-7r+ is virtually free of background. It may be used to 

illustrate a characteristic feature of decays of the '1/J". This is a vector resonance, 

so when it decays to a pair of pseudoscalars, these should be produced with the 

angular distribution P(cos '!?) = sin2 '!? where '!? is the polar angle. Fig. 5.3.3 is 

a histogram of the observed values of cos'!? for all detected K-7r+ events. The 

solid curve in this figure is the result of a fit to the function 1 + a cos2 '!?. The 

value of a from this fit is -0.87 ± 0.04. 

* The justification for this will be given in section 7.2. 
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Table 5.3.I: Numbers of D 0 Tags 

Mode Number of Tags 

K-7r+ 1089±13.8 

K- 7r+ 7r+ 7r- 1254 ± 40.8 

K-7r+7ro 1738 ± 60.8 

-=° K 7r+7r- 325.9 ± 17.1 

Table 5.3.11: Numbers of n+ Tags 

Mode Number of Tags 

K-7r+7r+ 1346 ± 24.6 

K°7r+ 152.8 ± 7.7 

K°7r+7r+7r- 207.0 ± 20.9 

-=° K 7r+7ro 268.4 ± 36.8 

Cos(e) for K- rr+ Events 
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Figure 5.3.3: Angular distribution of K- 7r+ events 
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Chapter 6: Electron Detection 

6.1: Electron Sample 

The major difficulty faced in identifying electrons is separating them from 

hadrons. The energy resolution of the shower detectors in the MARK III is not 

sufficient for distinguishing unambiguously between electromagnetically interact­

ing and minimum ionizing particles on the basis of their deposited energy. This 

situation is made worse by the fact that hadrons often interact inelastically within 

the shower detector's lead radiator. 

The shower detectors are of little help for low momentum electrons which 

deposit about the same amount of energy as a hadron whether or not the hadron 

interacted. The resolution of the ToF system is quite good, nevertheless it is 

able to separate only very low momentum electrons from pions; the ability to 

separate electrons from kaons or protons extends to much higher momenta. The 

separation ability of the ToF system is shown in Figs. 4.4.2 and 4.4.3 as a function 

of momentum. 

For electron identification, the ToF system is used to remove kaons and pro­

tons. The information from the ToF and shower detector system is combined 

to remove pions. Since the ToF counters and the barrel shower detector cover 

about the same fiducial region, information from the endcap shower detectors is 

not used. 

Efficient and reliable identification of electrons requires a detailed examina­

tion of the properties of electromagnetic and hadronic showers in the shower 

detectors. This entails identifying a large sample of electrons and pions. These 

samples, of course, must be collected in ways which do not bias the study of 

shower development. 

At electron-positron colliders, there is an excellent source of electrons, the 

QED Bhabha scattering process e+ e- -+ e+ e- . The electron is nearly massless, 
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so radiative corrections are very important for this process. The spectrum of 

radiated photons is in general soft, but there is a long tail which extends up to 

the beam energy. A Monte Carlo calculation of this energy spectrum is shown 

in Fig. 6.1.1. 1121 Roughly half of the photons are emitted from the initial state* 

and the remainder from the final state. 

Photons from the initial state are seldom detected; they are emitted nearly 

parallel to the beam direction and so usually remain within the beam pipe. 

Thus, if the photon from the scattering process e+ e- ~ e+ e- I - hereafter 

referred to radiative Bhabha scattering - is detected, it is most likely the result 

of Bremsstrahlung from one of the final state electrons. This has several for­

tunate consequences. The final state electron which does not radiate will have 

momentum approximately equal to the beam energy. The electron which does 

radiate will be of lower momentum; the momentum distribution peaks at high 

momentum but extends to very low momenta. A Monte Carlo calculation of this 

spectrum is shown in Fig. 6.1.2. 

The electron sample was drawn from events produced by radiative Bhabha 

scattering. For such events, stringent cuts were placed on the photon and on the 

charged track of higher momentum. The charged track of lower momentum was 

added to the electron sample. The cuts imposed were: 

1. that there must be two and only two tracks in the drift chamber with 

well-measured momenta and showers in the barrel shower detector. 

2. that there must be at least one neutral shower in the barrel shower detector 

with a measured energy of at least 200 Me V. 

3. that the higher momentum track should have momentum - as measured 

in the drift chamber - and energy - as measured in the shower detector 

- within two standard deviations of the beam energy. 

* The terms initial and final state are of somewhat dubious utility as Bhabha scattering 
proceeds through t-channel exchange as well as s-channel annihilation. In spite of this, 
initial and final state radiation are the conventional terms. 
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4. that the lower momentum track must have momentum at least 200 Me V / c 

below the beam energy. 

5. that the direction of the neutral track should match the direction of the 

missing momentum. The missing momentum is defined by the relation 

P missing = - P1 - P2. Here, P1 and P2 are the momenta of the charged 

tracks. The cuts imposed are l'i?"Y - '!?missing! < 0.1 and l'P"Y - 'Pmissingl < 

0.006. The angles'!? and <p are the polar and azimuthal angles, respectively, 

measured in radians. 

Neutral tracks were required to have a measured energy of at least 200 MeV 

for several reasons. The shower detector is almost completely efficient for photons 

of energy greater than 100 MeV. There are, however, some neutral showers which 

are not associated with incident photons. These are the result of 'split-offs' from 

the showers of charged tracks or of electronic noise. Most of these spurious 

neutral tracks are of low measured energy. Requiring the energy to be greater 

than 200 MeV removed the majority of these. 

The energy requirement has another effect. The electron sample is needed to 

study the pattern of energy deposition by electrons in the shower detector. In 

the case of final state Bremsstrahlung, the photon and the radiating electron will 

be emitted in approximately the same direction; the larger the photon energy, 

the largely will be the angle between their directions. If the photon is required to 

deposit at least 200 Me V in the shower detector, the photon and electron showers 

will seldom overlap. Requiring that the radiating electron have momentum at 

least 200 Me V / c below the beam energy helps insure that a photon of reasonably 

high energy must have been emitted. 

Even if the energy resolution of the shower detectors is modest, their direc­

tional resolution is excellent. Therefore, the direction of the detected photon and 

the direction of the missing neutral momentum should coincide closely. 

A large number of events was found which passed all the cuts listed above: 

3,400 and 8,500 from the 1982 and 1983 J /7/J data sets, respectively. The lower 
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Figure 6.1.3: Energy spectrum of detected photons in radiative Bhabha events 

momentum electron from each event was added to the electron sample. The 

photon energy spectrum for these events is shown in Fig. 6.1.3. Figures 6.1.4 

and 6.1.5 illustrate the difference between the directions of the photon and the 

missing momentum, in {) and <.p respectively. The momentum spectrum of the 

electron sample is given in Fig. 6.1.6. 

6.2: Pion Sample 

A sample of charged pions was drawn from two sources: the strong decay 

J /'I/; --+ p7r and the weak decay K~ --+ 'If+ 'If-. The first decay has a large branching 

ratio - 1.22 ± 0.12% - and so is a particularly rich source. Events of this type 

were isolated in several steps. First, all two prong events with at least two neutral 

tracks were kinematically fit to the hypothesis Jj'I/;--+ 7r+7r-7r0 • The sample of 

events so selected was already virtually free of background but a few additional 

cuts were imposed. 
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Electron Momenta from Bhabha Sample 
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Figure 6.1.6: Momentum spectrum for electron sample 

The unfit invariant mass of the 7ro was required to be in the range 75 MeV /c2 

:::=; M'ffo :::=; 200 MeV /c2 • For events with a neutral rho, both charged pions were 

added to the pion sample. The charged pion recoiling from a charged rho was 

examined further. In order to reduce contamination from radiative Bhabha scat­

tering, the recoiling pion was required to deposit no more than 750 Me V in the 

shower detector. Finally, if this track had valid ToF information- its pion weight 

was required to be larger than its kaon weight in order to eliminate Kd K-=f' 

events. Specifically, the requirement imposed was W'ff/(W'ff +WK) 2: 0.7. For 

all Jj'lf; --t p±7r-=f' events satisfying these requirements, the charged pion from 

the decay of the p was added to the pion sample. Altogether, 4, 700 pions were 

extracted from the 1982 J /'If; data set and 10,200 from that of 1983. 

The high quality of these events is illustrated in Figs. 6.2.1 to 6.2.5. The 

invariant mass of the neutral pion is shown in Fig. 6.2.1 while that of the p is 

given in Fig. 6.2.2. The momentum spectrum of the recoiling pion is plotted in 

Fig. 6.2.3 and that of the rho in Fig. 6.2.4. Finally, the momentum spectrum of 
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all those pions added to the pion sample is given in Fig. 6.2.5 

The second source of pions was the decay K~ -+ 7!"+7!"-. In order to isolate 

such events, a fitting procedure was applied to all pairs of oppositely charged 

tracks. The helical paths of these tracks will have zero, one, or two points of 

intersection - hereafter referred to as crossing points. (These crossing points 

may be found quite simply as described in Appendix 2) If there is no crossing 

point, the point of closest approach of the two helices is used; if there are two 

crossing points, the one closest to the primary vertex is used. The crossing point 

is required to be displaced from this primary vertex by at least four millimeters in 

the x - y plane. The momenta and error matrices of each track are 'swum' to the 

crossing point, both tracks assumed to be pions. A fit is now performed, adjusting 

the 4-momenta of the tracks so that their sum aligns with the displacement of 

the crossing point, and requiring that this sum have the invariant mass of the 

K 0 • The x2 from this fit must be less than fifty. Finally, the unfit invariant mass 

of the K 0 must be in range 485 MeV /c2 ::; MKo::; 508 MeV /c2 • 

For each event satisfying these requirements, both tracks were added to the 

pion sample. A total of 5,200 pions from K 0 decays was isolated from the 1982 

J /'1/J data set. A further 11,000 were isolated from the 1983 J /'1/J data set. The 

momentum spectrum of these pions in shown in Fig. 6.2.6. The spectrum for 

the combined sample is plotted in Fig. 6.2.7. 

6.3: Pion-electron Separation Algorithm 

An algorithm was developed, on the basis of the electron and pion sam­

ples, for distinguishing between electrons and pions. The algorithm is a tree 

d 1 °fi k0 f h h . f . t•t• . 1731 
structure c ass1 er, ma mg use o t e tee mque o recursive par 1 10nmg. 

The mathematical details of this technique are summarized in appendix 1. 

There are separate classification procedures or trees for each of seven momen­

tum ranges. The performance of the several detection systems varies considerably 
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Figure 6.2.1: Invariant mass of 71"0 candidates 
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Figure 6.2.2: Invariant mass of p candidates 
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Figure 6.2.3: Momentum spectrum of 7r recoiling from p 
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Figure 6.2.4: Momentum spectrum of p 
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Figure 6.2.5: Momentum spectrum of 7r's selected from 'ljJ -* p7r events 

with momentum so it was necessary to find different sets of cuts in different mo­

mentum regimes. The momentum ranges are: 

p < 300 MeV /c 

300 <p < 400 MeV /c 

400 <p < 500 MeV /c 

500 <p < 600 MeV /c 

600 <p < 800 MeV /c 

800 <p < 1000 MeV /c 

p > 1000 MeV /c 

Time-of-flight information is available for most but not all tracks. A separate 

set of trees was prepared for tracks without ToF information; for these tracks it 

was necessary to 'cut harder' on the information from the shower detector. 

It is difficult to devise a classifier which is both highly efficient for detecting 
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Figure 6.2.6: Momentum spectrum of 1!''s selected from K~ events 
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Figure 6.2.7: Momentum spectrum of all 1!''s in pion sample 
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electrons and very effective in rejecting pions; there will always be a tradeoff 

between detection efficiency and background rejection. Separate sets of trees for 

the detection of electrons and pions were produced. The electron trees are able to 

detect about 80% of real electrons while rejecting about 96% of real pions. The 

pion trees do just the reverse. They accept about 80% of real pions while rejecting 

about 96% of real electrons. (This 'fine-tuning' was accomplished by adjusting 

the cost-complexity parameter as described in appendix 1.) In all, twenty-eight 

trees were produced. 

A series of variables were chosen to characterize each track. An exhaustive 

examination of fifty-one variables was performed to determine which were most 

useful in distinguishing electrons from pions. The eight best were culled from 

this set. A description of each follows. 

1. Energy in the shower counter: An electron will usually have a larger 

pulse-height in the shower detector than a non-interacting pion. 

2. Center-of-gravity of the shower: This variable is defined by the relation 

s = :L:!1 Xi · Eif Etot· Xi is the position of the ith layer of the shower detector 

from the inner surface, in radiation lengths. Ei is the energy deposited in the 

ith layer and Etot is the total energy. An electromagnetic shower will reach its 

maximum after between three and four radiation lengths of material,* leading 

to a value of s of about four. A minimum ionizing shower will deposit its energy 

uniformly leading to a value of s of about six. An interacting pion will often 

deposit its energy earlier yielding a smaller value of s. 

3. RMS azimuthal width of shower: A minimum ionizing "shower" is typically 

quite narrow. If an inelastic interaction takes place, several photons will often 

be produced; such a shower will appear very broad. An electromagnetic shower, 

however, almost always appears moderately broad. This is one of the most useful 

variables. 

* This is true for the momentum range 300 MeV /c < p < 1500 MeV /c. The position of the 
shower maximum varies as the logarithm of the energy. 
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4. Energy-layer correlation: A longitudinal shower profile was developed 

for pion initiated showers. The energy-layer correlation variable measures the 

degree to which a given shower matches this shower profile. The profile is found 

by evaluating the sum 

N iI: - -M·· - - (E· - E ·)(E· - E·) i1 - N i i 3 3 
i=l 

This sum extends over all pions in the sample. N is the total number of pi­

ons. The subscripts i, and J refer to the layer within the shower detector. The 

correlation function is 

F = L(Ei - Ei) Mij1 (Ej - Ej) 
ij 

The value of F is small for pions and substantially larger for electrons. 

5. Energy divided by momentum: This is the 'classic' variable for identify­

ing electrons. Minimum ionizing showers yield a small value on average while 

electromagnetic showers yield values close to unity. 

6. Energy in layers four through six: 

7. Energy in layers seven through nine: Minimum ionizing showers usually 

have smaller values of these variables than electromagnetic showers. Dividing 

the shower longitudinally in this fashion has two advantages. It allows the cuts 

to be rescaled in the region past the electromagnetic shower maximum. It also 

affords two chances to trap an interacting pion, as an hadronic interaction may 

occur anywhere within the shower detector. 

8. Normalized ToF weight: A normalized weight is used which is defined as 

W = We/(W1T +We)· This variable is 1 for a well identified electron, 0 for a well 

identified pion, and 1/2 if no determination may be made. 

Plots of each these variables are given in Figs. 6.3.2 - 6.3.9. Momentum 

ranges were chosen to show the variables to best effect: p > 0.500 Ge V / c for 

6.3.2 - 6.3.8 and p < 0.400 GeV /c for 6.3.9. 
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The trees were grown using tenfold cross-validation using only the 1983 data. 

The performance of each tree was estimated using the 1982 data. The perfor­

mance of the complete classification algorithm was finally measured using samples 

of electrons and pions drawn from the 1/;11 data set. The same procedures were 

used to isolate these samples; 17 ,000 pions and 60,000 electrons comprise these 

samples. The performance of the classifier is summarized in Tables 6.3.I to 6.3.IV. 

The errors quoted in these tables were calculated using a method developed by 

F. James and M. Roos.1741 

An example of a tree is given in Fig. 6.3.1. The classification begins at the 

node labeled 1. The value of the appropriate variable - the total energy in the 

shower counter - is compared with the split value. If the measured value is less 

than the split, classification continues at node 2, otherwise it continues at node 

4. The classification is finished when a split leads to a terminal node. The class 

assignment of these nodes is indicated in the figure by an e of 7r for an electron 

or pion assignment. 
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Splits 

Node Variable Value 

1 1 0.726 

2 5 0.665 

3 6 0.109 

4 6 0.056 

5 4 189.3 

7T e e 7T 

Figure 6.3.1: Electron tree without ToF information - 0.8 < p < 1.0 GeV /c 

Circles indicate split nodes and boxes indicate terminal nodes 

Variable No. Definition 

1 Total energy in shower detector 

2 Center-of-gravity of shower 

3 RMS width of shower 

4 Energy layer correlation 

5 Energy/ momentum 

6 Energy in layers 4-6 of shower detector 

7 Energy in layers 7-9 of shower detector 

8 Renormalized ToF weight 
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Table 6.3.I: Electron Tree with Good ToF Information 

Momentum range Pe->e p'lr->e 

p < 300 MeV/c 0 963+0.020 . -0.019 0 046+0.003 . -0.003 

300 < p < 400 Me V / c 0 762+0.023 . -0.022 0 025+0.002 . -0.002 

400 < p < 500 Me V / c 0 766+0.023 . -0.022 0 035+0.003 . -0.003 

500 < p < 600 Me V / c 0 751+0.024 . -0.024 0 042+0.004 . -0.004 

600 < p < 800 Me V / c 0 849+0.020 . -0.019 0 039+0.004 . -0.004 

800 < p < 1000 MeV /c 0 876+0.022 . -0.021 0 024+0.009 . -0.007 

p > 1000 MeV /c 0 905+0.0ll . -0.011 0 077+0.025 . -0.019 

Table 6.3.II: Electron Tree without ToF Information 

Momentum range Pe->e p'lr->e 

p < 300 MeV/c 0 320+0.026 . -0.024 0 060+0.007 . -0.006 

300 < p < 400 Me V / c 0 526+0.040 . -0.038 0 048+0.007 . -0.006 

400 < p < 500 Me V / c 0 122+0.040 . -0.038 0 047+0.008 . -0.007 

500 < p < 600 Me V / c 0 731+0.033 . -0.032 0 024+0.009 . -0.006 

600 < p < 800 Me V / c 0 845+0.021 . -0.021 0 033+0.0ll . -0.008 

800 < p < 1000 MeV /c 0 867+0.019 . -0.019 0 033+0.024 . -0.Q15 

p > 1000 MeV /c o 881+0.009 . -0.009 0 024+0.053 . -0.019 
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Table 6.3.III: Pion Tree with Good ToF Information 

Momentum range Pe->'lr p'lr->'lr 

p < 300 MeV/c 0 036+0.003 . -0.003 0 953+0.017 . -0.016 

300 < p < 400 MeV/c 0 057+0.005 . -0.005 o 834+0.011 . -0.017 

400 < p < 500 MeV/c 0 042+0.004 . -0.004 0 789+0.019 . -0.018 

500 < p < 600 Me V / c 0 057+0.006 . -0.005 o 851+0.024 . -0.024 

600 < p < 800 Me V / c 0 041+0.003 . -0.003 0 842+0.026 . -0.025 

800 < p < 1000 MeV /c 0 045+0.004 . -0.004 o 811+0.058 . -0.055 

p > 1000 MeV /c 0 042+0.002 . -0.002 0 846+0.091 . -0.082 

Table 6.3.IV: Pion Tree without ToF Information 

Momentum range Pe->'lr p'lr->'lr 

p < 300 MeV/c 0 437+0.031 . -0.029 0 836+0.031 . -0.030 

300 < p < 400 Me V / c 0 290+0.028 . -0.026 0 882+0.037 . -0.036 

400 < p < 500 MeV/c 0 203+0.018 . -0.017 0 938+0.044 . -0.042 

500 < p < 600 Me V / c 0 068+0.009 . -0.008 0 858+0.055 . -0.052 

600 < p < 800 Me V / c 0 065+0.005 . -0.004 0 880+0.062 . -0.058 

800 < p < 1000 MeV /c o 060+0.004 . -0.004 0 902+0.123 . -0.108 

p > 1000 MeV /c 0 022+0.001 . -0.001 o 833+0.220 . -0.174 



600 

400 

200 

0 

1500 

1000 

500 

0 

0.5 1.0 
electrons 

124 

Total energy 
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Figure 6.3.2: Total energy measured by shower detector 
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Figure 6.3.3: Center-of-gravity of shower 
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Figure 6.3.4: RMS azimuthal width of shower 
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Figure 6.3.5: Energy-layer correlation 
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Energy / Momentum 

Figure 6.3. 7: Energy in layers 4 - 6 of shower detector 
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Figure 6.3.8: Energy in layers 7 - 9 of shower detector 
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Figure 6.3.9: Normalized ToF weight 
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Chapter 7: Semileptonic Branching Ratios: 

Electron Modes 

7.1: Inclusive Properties 

The detailed study of charmed semileptonic decays is greatly facilitated by 

the associated production of charmed particles at the 1/J", where the only charmed 

particles produced are pairs of D mesons. There is so little phase space available 

that not even a pion may accompany the D pair. If one D in an event is re­

constructed in an hadronic decay, the remainder of the event must consist of the 

decay products of the companion D. Thus it is possible to isolate semileptonic 

decays cleanly in spite of the neutrino which, of course, is not observed. 

The inclusive semileptonic branching ratios of charmed mesons are of great 

theoretical interest as these are related to the lifetimes of these particles.* The 

MARK II 1751 and MARK III 1761 collaborations have measured - using similar 

techniques - the inclusive semileptonic branching ratios of D mesons. A set 

of hadronic tags is first isolated, as detailed in section 5.3. The charged tracks 

recoiling from each tag are then examined. A track with valid ToF information 

is identified as a kaon if WK /Wtot 2: 0.8. All tracks are classified as pions or 

electrons by the procedures of section 6.3. These procedures classify each track as 

a pion or electron. For this reason, tracks identified by the ToF system as kaons 

are removed from further consideration; with their relatively large ionization 

losses, kaons are more likely then pions to be misidentified as electrons. 

The number of signal electrons is calculated through an unfold procedure. 

Let the numbers of detected electrons and pions be Nf and Nf, and let the 

number of signal particles be Nf and N;. These quantities are related through 

* This is discussed more fully in section 2.1. 
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Nf = N! P(e---+ e) + N! P(7r---+ e) 

Nf = N! P(e---+ 7r) + N! P(7r---+ 7r) 

The factor P(a ---+ b) is the probability that a signal particle of type a will be 

detected as a particle of type b. These probabilities are given in Tables 6.3.I -

6.3.IV. The number of signal electrons is obtained by inverting the above equa­

tions, with one set of equations for each of the seven momentum ranges indicated 

in the tables. 

The number of signal electrons must be corrected for both charge-symmetric 

and non-charm backgrounds. One of the particles from an hadronic D decay 

may be misidentified as an electron due to the decay of a hadron, the produc­

tion of a pair of electrons, or the misidentification of a hadron. These processes 

are all charge-symmetric, producing an equal number of electrons and positrons. 

Cabibbo favored semileptonic decays, being spectator decays, yield leptons whose 

charge is correlated with the charm of the tag; a tag of positive charm should 

be accompanied by an electron while a tag of negative charm should be ac­

companied by a positron. The number of signal events may be corrected for 

charge-symmetric backgrounds by analyzing the right-sign particles - particles 

with charge corresponding to the charm of the tag - and wrong-sign particles 

separately. The number of right-sign and wrong-sign electrons are unfolded sep­

arately, and the number of wrong-sign electrons subtracted from the number of 

right-sign electrons. 

The tag samples contain not only charm decays but also hadronic decays of 

non-charm origin, as may be seen in Figs. 5.3.1 and 5.3.2. These non-charm 

events have a large range of beam-constrained masses. Thus events with masses 

within a control region far from the D mass may be used to correct for the 

effect of non-charm events under the D mass peak. The numbers of right-sign 

and wrong-sign particles are recorded for the control region, then unfolded and 

subtracted to obtain the number of control electrons. This number of electrons 
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from the control region is scaled appropriately and subtracted from the number 

of events in the D mass region. 

The inclusive branching ratios are obtained by correcting the number of elec­

trons for the detection efficiency. The inclusive branching ratios reported by the 

MARK II collaboration are: 

B(D0
--+ e+ X) = 5.5 ± 3.7% 

B(D+ --+ e+ X) = 16.8 ± 6.4% 

The branching ratios measured by the MARK III are of higher precision: 

B(D0 --+ e+ X) = 7.5 ± 1.1±0.4% 

B(D+ --+ e+ X) = 17.0 ± 1.9 ± 0.7% 

The errors are statistical and systematic, respectively. 

This inclusive analysis may be carried a step further . It is possible using 

the same techniques to measure the number of charged particles produced in a 

semileptonic decay. The tag modes considered are: 

For simplicity, only the states of positive charm are listed here. The decays of 

the If and n- are, of course, considered as well. The signal region is defined as 

the range of tag beam-constrained masses from 1.86 to 1.87 GeV /c2 for neutral 

tags and from 1.865 to 1.875 GeV /c2 for charged tags . In both cases, the range 

from 1.80 to 1.84 GeV /c2 serves as a control region. 

The tagging procedure may find a number of tags in a single event. This is 

particularly true for those modes containing a 7fo. There is no straightforward 

procedure for determining which of these tags is the "correct" one. For the 

present analysis, only the first tag encountered in each event is considered. The 

relative numbers of charged particles will be correct, but these numbers may not 

conveniently be converted to branching ratios. 
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Figure 7.1.1: D0 tag mass spectrum for multiplicity study 

D+ Beam-Constrained Mass 

1000 

750 

500 

250 

+ + '+- + + + ++ + 

0 

1.8 1.82 1.84 1.86 1.88 1.9 
Beem-constrained mess (GeV /c2

) 

Figure 7.1.2: n+ tag mass spectrum for multiplicity study 

The numbers of signal and background events is obtained by subjecting the 

observed numbers of events to the fitting procedure of section 5.3. The tag spectra 

are given in Figs. 7.1.1 and 7.1.2 with the fitted distributions overplotted. The 

results of the fit are summarized in Tables 7.1.I and 7.1.II. 
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Table 7.1.I: n° tags: results of fit 

Signal events (1.86 - 1.87 GeV /c2) 3130 ± 38.9 

Background events (1.86 - 1.87 GeV /c2) 1512 ± 38.9 

Background events (1.80 - 1.84 GeV /c2) 5489 ± 74.1 

scale factor = 1512/5489 = 0.276 

Table 7.1.II: n+ tags: results of fit 

Signal events (1.865 - 1.875 GeV /c2) 1695 ± 27.7 

Background events (1.865 - 1.875 GeV /c2 ) 764.9 ± 27.7 

Background events (1.800 - 1.840 GeV /c2) 2444 ± 49.4 

scale factor = 764.9/2444 = 0.313 

As indicated in the tables, the results from the control regions must be scaled by 

factors of 0.276 and 0.313 for n° and n+ events, respectively. 

All tracks passed to the 7r / e separation algorithm are required to have good 

z information; they must have valid information from at least one stereo layer 

in the drift chamber. They must also have valid ToF information. The trees for 

tracks without ToF information admit much larger backgrounds; compare, for 

example, Tables 6.3.I and 6.3.II. 

The charged multiplicity of the recoil from each tag is found simply by count­

ing the number of charged tracks not used in the tag. No further requirements 

are placed on these charged tracks. The number of electrons for each charged 

multiplicity are given in tables 7.1.III and 7.1.IV. 
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Table 7.1.III: Electrons from n° by multiplicity 

Multiplicity Signal Region Control Region Net 

(prongs) Right sign Wrong sign Right sign Wrong sign 

1 14.1 -0.1 3.1 8.7 15.7 ± 3.9 

2 137.8 23.3 40.6 30.4 111.7 ± 12.9 

3 20.0 10.6 29.9 16.6 5.7 ± 5.8 

4 24.2 17.3 40.5 25.3 2.6 ± 6.8 

5 4.6 12.6 15.8 9.9 -9.7 ± 4.3 

6 2.9 1.6 7.9 7.0 1.0 ± 2.4 

7 1.0 0.8 2.9 0.9 -0.5 ± 1.4 

Table 7.1.IV: Electrons from n+ by multiplicity 

Multiplicity Signal Region Control Region Net 

(prongs) Right sign Wrong sign Right sign Wrong sign 

1 103.3 -0.2 11.4 -0.1 99.9±10.3 

2 13.2 5.1 11.0 5.4 6.3 ± 4.5 

3 72.0 14.7 22.5 16.6 55.5 ± 9.5 

4 14.2 0.7 8.9 3.0 11.7 ± 4.0 

5 8.8 4.7 3.6 3.9 4.2 ± 3.8 

6 0.7 0.9 1.6 2.7 0.1±1.5 

7 2.2 0.0 0.9 -0.1 1.9 ± 1.5 

The number of produced and detected events are related by an efficiency 

matrix: ND = E NP, ND = (ND(lprong), ... 'ND(7prongs)). For the n°' the 

produced multiplicities are two, four, and six, while for the n+, they are one, 

three, five, and seven. Thus the dimension of the efficiency matrix for the n° is 

7 x 3 and for the n+ is 7 x 4. The components of these matrices are measured 



134 

by passing Monte Carlo generated events through the same analysis programs as 

the data. The following decays were generated: 

Several of these modes may produce the same number of tracks. For example, 
-:-=O -=:O K 1f+1f-e+ve and K 1f+1f+1f-1f-e+ve both have five prong components. Where 

there is such an overlap, the efficiencies are averaged. The efficiency matrices so 

obtained are: 

2 4 6 

1 0.050 0.0 0.0 

2 0.585 0.012 0.0 

3 0.009 0.129 0.011 

E(D0
) = 4 0.002 0.461 0.049 

5 0.001 0.003 0.153 

6 0.0 0.0 0.135 

7 0.0 0.0 0.004 

1 3 5 7 

1 0.628 0.005 0.0 0.0 

2 0.010 0.109 0.002 0.0 

3 0.010 0.480 0.031 0.002 

E(D+) = 4 0.0 0.009 0.156 0.014 

5 0.0 0.001 0.259 0.075 

6 0.0 0.0 0.004 0.154 

7 0.0 0.0 0.0 0.132 

The number of produced events of each multiplicity is obtained through a 
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least-squares fit, minimizing the x2 function: 

7 (NP - NP) 2 

x2 = """' i i L...t a~ 
i=l i 

Here, Nf is the observed number of events of multiplicity i and ai is the standard 

deviation of this number. Nf is the number of events predicted. The results of 

the fit are summarized in Tables 7.1.V and 7.1.VI. 

Table 7.1.V: Results of Multiplicity Fit for n° 

Multiplicity Produced Events 

2 prongs 200.3 ± 21.1 

4 prongs 8.3±14.5 

6 prongs -13.5 ± 15.2 

x2 /degree of freedom = 1.85 

Table 7.1.VI: Results of Multiplicity Fit for n+ 

Multiplicity Produced Events 

1 prong 157.6 ± 16.4 

3 prongs 90.9±18.0 

5 prongs 27.7 ± 12.9 

7 prongs 5.4 ± 7.4 

x2 /degree of freedom = 2.18 

The results given in these tables indicate that the semileptonic decays of 

n° mesons result most often in two charged tracks with some four prong events 

produced as well. The semileptonic decays of n+ mesons produce mostly one 

and three prong events, but there is evidence that some five prong events are 

produced also. The arguments of section 3.2 indicate that the mass of any res­

onant hadronic state produced in n semileptonic decay is likely to be bounded 
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by 0.9 Ge V / c2 • It is thus to be expected that the following decays might yield 

observable signals: 

D o K- + K- o + -=°K - + --7 e Ve, 7r e Ve, 7r e Ve, 

D+ --7 K e+ve, K- 'Jr+ e+ Ve, 'Jr- 'Jr+ e+ Ve 

7.2: Exclusive decays 

Although a great deal of information may be gleaned from inclusive measure­

ments, of at least equal importance is the reconstruction of exclusive final states. 

In particular, the study of charm decays has been spurred by the abundance of 

exclusive measurements; many of the details discussed in chapters 2 and 3 would 

be of merely academic interest were it not for the results of several experiments 

on the exclusive hadronic decays of D and F mesons. 

It was pointed out - at considerable length - in chapter 3, that the de­

scription of semileptonic decays is a much more tractable theoretical problem 

than that of hadronic decays. The nature of the W-lepton vertex is not disputed 

within the context of the Standard Model. Thus semileptonic decays may be 

used to probe the structure of the hadronic matrix elements. In particular, as 

there are no strong final state interactions between the leptons and quarks, a 

measurement of the semileptonic branching ratios provides information on the 

spin and momentum dependence of these hadronic matrix elements. 

No previous experiment has had the capacity for good electron identification 

and good exclusive reconstruction in concert with a large enough sample of charm 

events to reconstruct exclusive semileptonic decays. That the MARK III detec­

tor is capable of reconstructing events in which both D's decay hadronically has 

been demonstrated through the direct measurement of D hadronic branching 



137 

ratios. 1111 It is also possible with the MARK III to reconstruct semileptonic 

decays completely. In events with an hadronic tag, the four-momentum of the 

companion n is known a priori, so the missing momentum and energy - that 

carried by the unobserved neutrino - may be calculated unambiguously. 

The decay n° - K- e+ Ve produces the simplest final state to be isolated in 

the recoil spectrum. The tag sample used for isolating this decay consists of tags 

of the types n° --> K-n+, K- n+ n+ n-, and K- n+ n°. For reasons which will be 

explained below, all tags are considered; if a particular event has several tags, 

each is considered. 

There must be two charged tracks of opposite charge recoiling from the tag. 

The right-sign track - the track with charge corresponding to the charm of the 

tag - is classified by the ToF system and the n / e separation algorithm. If the 

track has valid ToF information, it is classified as a kaon if WK /Wtot 2: 0.8. Only 

tracks not classified as kaons, but identified as electrons by the n / e separator, 

will be considered candidate electrons. For this purpose, all of the trees of the 

n / e separator are used. In order to ensure the quality of the electron tracks, each 

must have a successful helix fit including valid z information. 

The wrong-sign track is assumed to be a hadron. The quantity U - Emissing -

Pmissing is calculated for two hypotheses: that the hadron is a kaon and that it is 

a pion.* The missing momentum vector must 'point' to an instrumented region 

of the detector. The track is considered to be a kaon if the corresponding value 

of U is closer to zero than that for the pion hypothesis. Spectra of this variable 

are shown in Fig. 7.2.1 for both hypotheses for Monte Carlo events of the type 

* The value of U is zero if only a single massless particle is missing. Since this variable is 
linear in the missing energy and momentum, its resolution depends only on the resolutions 
in these quantities. The resolution in the missing mass, on the other hand, also depends 
explicitly on the missing energy and momentum. 
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Figure 7.2.1: U for K-e+ve events from Monte Carlo 

- Kaon hypothesis · · · pion hypothesis 

0.3 

n° ---+ K-e+ve. The good separation of the two distributions is evident. If the 

candidate kaon track has valid ToF information, the weight must be consistent 

with the kaon hypothesis: specifically, WK/Wtot 2'.: 0.7. Finally, the track must 

have a helix fit with valid z information. 

Backgrounds may arise from several sources. Two-body hadronic decays such 

as n° ---+ K- 7r+ may be removed by placing a cut on the invariant mass of the 

Ke system, calculated under the assumption that the electron is really a pion. 

Requiring this invariant mass to be less than 1. 7 Ge V / c2 removes about 60% of 

the two-body decays. t The position of this cut is very near the endpoint of the 

t This figure is obtained by 'turning off' the 7r / e separator. If the candidate electrons are 
required to be identified by this algorithm, about 99% of the two-body decays are removed. 
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invariant mass spectrum for K-e+ve events, so less than 10% of the signal events 

are lost through imposing this cut. 

The decay of the n° with the largest branching ratio is n° ---+ K-7r+7ro. If 

the 7f+ were misidentified as an electron this decay could be misclassified as a 

semileptonic decay. Such contamination may be limited by examining the neutral 

tracks in the recoil. A neutral track may be the result of a photon interacting in 

one of the shower detectors, but it may also be a 'fake photon'. These may occur 

for a number of reasons: chief among them are electronic noise and the 'split­

offs' from hadronic and electromagnetic showers. Fake photons from electronic 

noise usually have low pulse heights and thus low measured energies. Split­

offs are almost always near the entry point of a charged track into the shower 

detector. The cosine of the angle 1? ')'charged, where 1? ')'charged is the angle between 

the direction of the photon and that of the nearest charged particle at the face 

of the shower detector, is plotted in Fig. 7 .2.2 for all neutral tracks in the n 
tagged sample. The distribution increases substantially for values of cos 1? ')'charged 

greater than 0.96. 

An isolated photon is defined as a neutral track with measured energy greater 

than 100 Me V and cos 1? ')'charged < 0.95; the definition of an isolated photon re­

quires also that the shower begin within the first three radiation lengths of ma­

terial in the shower detector. Hadronic split-offs are not modeled in the shower 

simulation; it is clear, however, that a cut at cos 1? ')'charged < 0.95 will eliminate 

virtually all of these split-offs. If the angular distributions of the various par­

ticles are generated with care, such a cut will not introduce serious systematic 

uncertainties. Neutral tracks identified as isolated photons are likely to be real 

photons. Hadronic backgrounds may thus be considerably diminished by dis­

carding events with unused isolated photons. Indeed, about 50% of decays of the 

type n° ---+ K-7r+7ro may be eliminated by requiring that there be no isolated 

photons in the event. 

There are two other sources of background events: the semileptonic decays 
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charged) for all events in then tagged sample 

n°---+ K-7r0 e+ve and Kl 7r-e+ve. In both cases, there is a great deal of missing 

energy. Requiring that the missing energy be less than 900 Me V removes about 

40% of these events; as this is near the endpoint of the neutrino lab-frame energy 

spectrum for K- e+ve events, it has little effect on the detection efficiency for 

such events. 

Forty-eight events pass the cuts detailed above. The beam-constrained masses 

of all the n° tags are compared in Fig. 7.2.3 with those of the forty-eight signal 

events in Fig. 7.2.4. It is clear from these two figures that the amount of non­

charm contamination has been dramatically reduced. Indeed, since non-charm 

events populate the entire range from 1.80 - 1.88 GeV /c2 in Fig. 7.2.3, the al­

most total lack of events in the range 1.80 - 1.85 GeV /c2 in Fig. 7.2.4 makes it 

clear that non-charm events are not a serious source of background. Thus the 

only cut that need be placed on the tags themselves is a requirement that their 

beam-constrained masses be in the range 1.85 - 1.88 Ge V / c2
• Forty-seven events 

remain after the imposition of this cut. 

The number of backgrounds events expected is estimated by a Monte Carlo 
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Figure 7.2.3: Tag beam-constrained mass for all D0 tags 
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Figure 7.2.4: Tag beam-constrained mass for all signal events 

simulation. The initial D and D are forced to decay to the appropriate final 

states. For semileptonic decays, the formulae of appendix 3 are used. For had­

ronic decays, the 4-momenta are generated according to phase-space. [781 Hadronic 

resonances produced in the D decay are allowed to decay to stable particles. 
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Stable particles are propagated through a model of the MARK III which 

simulates all of the important systems of the detector. Charged tracks are trans­

ported along a piecewise helical track. Multiple Coulomb and nuclear scattering 

are accounted for in all potential scattering centers before the ToF counters. 

The amount of material in the beam pipe, and drift chamber walls, gas and 

wires is tabulated - in radiation lengths for the multiple Coulomb scattering 

and in hydrogen equivalents* for the nuclear scattering. In the former case, the 

scattering angle is generated, using the momentum and the amount of material 

traversed, according to a Gaussian distribution. The cross-sections used in the 

nuclear scattering calculations are given in Tables 7.2.I- 7.2.II. 1101 The scattering 

probabilities are: 

P 1 
- 1 - e-O"tota.I N 

tota -

P. P O" elastic 
elastic = total 

O"total 

The quantity N is the number-density of the material being traversed. If the 

scattering is determined to be inelastic, the particle is absorbed. If the scattering 

is elastic, the momentum transfer t is generated in the range: 

4m2p2 
P <t<O 

2Em + m 2 + m 2 - -
p 

Here, E,p, and mare the energy, momentum and mass of the incident particle. 

The probability distribution oft is given in the optical model 1801 by: 

p ( t) = __ 1_ du elastic 

O" elastic dt 

1 
---eBt 
O"elastic 

B = O"total 

l67r(l - Utotai/ O"elastic) 

The scattering angle is calculated from the generated value oft. 

* The number of nuclei in one gram of material is No/ A where No is Avogadro's number and 
A is the atomic weight. The cross-section of a nucleus is approximately proportional to 
A2 /3. Thus, the hydrogen equivalent number-density of a material is N = b * A 2 13 *No/ A 
where b is the thickness. Here, the difference in the proton and neutron cross sections is 
ignored. 
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Table 7.2.I: Total cross sections for nuclear scattering 

plab (GeV /c) Total cross section (mb) 

11"+ 7r 
- K+ K- p p 

0.20 54.7 26.6 11.8 113.8 20.2 281.0 

0.30 200.0 67.8 12.7 79.4 20.2 281.0 

0.40 73.8 32.4 13.7 69.8 20.2 203.1 

0.50 40.8 27.2 13.0 44.7 20.2 168.0 

0.60 25.0 29.3 13.0 37.8 24.4 152.9 

0.70 17.4 43.0 12.6 34.2 24.8 130.0 

0.80 15.5 36.7 13.0 41.0 24.3 104.0 

0.90 20.7 41.6 14.2 43.4 25.0 116.8 

1.00 24.4 60.6 16.0 49.8 28.8 117.4 

1.20 30.0 37.2 18.5 36.9 35.6 109.0 

1.40 39.4 36.7 18.3 31.6 46.5 102.8 

1.60 40.0 34.8 17.7 32.5 47.5 97.8 

1.80 31.4 34.6 18.0 31.9 47.5 95.5 

2.00 29.3 36.2 17.6 30.4 47.2 90.2 

3.00 29.2 32.0 17.2 27.4 44.5 76.6 

4.00 28.0 29.9 17.6 28.2 42.3 66.8 

The ionization losses of charged particles are modeled differently in the solid 

materials of the detector and in the drift chamber gas. The expected energy loss 

in the solid materials is computed from the Landau-Sternheimer formula: 1811 

dE N 2 2 
dx = (3 2 (8.991 +log(/ ) - (3 - 8) 

The constant 8 accounts for the Sternheimer density effect; N is a normalization 

constant. This formula is unreliable for materials of very low density, so for 
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Table 7.2.II: Elastic cross sections for nuclear scattering 

plab {GeV /c) Total cross section (mb) 

7f+ 7f - x+ x- p p 

0.20 30.0 6.2 11.6 59.1 20.0 100.8 

0.30 40.0 22.5 12.3 40.4 20.0 80.0 

0.40 60.2 13.8 11.7 32.1 20.0 73.1 

0.50 38.7 10.9 12.6 21.5 20.0 62.0 

0.60 20.6 12.9 12.6 17.7 20.0 55.4 

0.70 13.0 20.0 11.4 14.2 20.0 45.0 

0.80 9.4 14.9 13.0 19.3 20.0 49.0 

0.90 8.1 14.8 12.1 20.9 22.0 48.1 

1.00 11.2 26.4 11.2 21.8 24.0 46.1 

1.20 13.6 12.5 10.6 12.7 25.0 43.2 

1.40 19.2 12.3 9.5 8.8 24.0 38.0 

1.60 16.7 9.8 8.6 8.9 26.0 31.1 

1.80 12.3 9.6 7.6 8.1 21.0 30.0 

2.00 9.8 8.0 6.2 7.5 21.5 28.0 

3.00 7.8 6.7 5.1 5.0 17.0 21.2 

4.00 6.4 6.4 4.2 4.3 13.5 19.8 

the drift chamber gas, the energy loss is generated using a function obtained by 

fitting to the pulse heights measured on the wires of Layer 2. 

The probability of photon pair conversion is calculated for each of the various 

regions of the detector. In practice, given the very low mass of the detector 

components, significant pair production occurs only within the beam pipe and 

the drift chamber walls. 

A time-of-flight is generated for each charged track if it hits a ToF counter. 
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The model produces a Gaussian distribution of times using the measured resolu­

tion of each counter. 

The simulation of electromagnetic showers is based on a simple analytic 

model. 1821 The energy deposited in each layer is generated first. Next, a se­

ries of hits on the sense wires is produced according to these generated energies; 

the pulse heights on each wire are 'smeared' according to a Gaussian distribu­

tion. No attempt is made to take the effect of the support ribs into account. The 

parameters of the model are optimized so that the Monte Carlo data reproduces 

the energy and angular resolutions observed in the real data. 

The model used for electromagnetic showers does not produce the correct lat­

eral or longitudinal shower development. The 7r / e separation algorithm depends 

critically on the detailed structure of the shower, so this algorithm may not be 

used with Monte Carlo data. Instead a 'black box' approach is adopted: it is 

decided on the basis of the momentum, presence or absence of ToF information, 

and particle type whether a track is to be classified as a pion or electron. The 

measured efficiencies, given in Tables 6.3.I - 6.3.IV, form the heart of the black 

box. Thus, the results obtained are statistically correct, that is the results will 

be correct if a large number of events is analyzed. 

The energy deposited in the shower detector by hadrons and muons is gen­

erated according to the observed energy spectra of these particles. The hits on 

the wires are generated according to model describing the showers of minimum 

ionizing particles. The energy deposition is thus correctly modeled - even the 

energy deposited through inelastic interactions is taken into account - but the 

pattern of this energy deposition does not reflect all of the features of hadronic 

showers. In particular, hadronic split-offs are not modeled at all. 

A number of backgrounds have been investigated. The probability, EB, that 

a background event may be identified as a signal event is determined from the 

Monte Carlo simulation; the Monte Carlo data is passed through the same anal­

ysis programs as the real data. In some cases, the probability is so small that 
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no events are detected. In such cases, the 63.8% confidence level upper limit -

corresponding to one a - is used. The number of background events expected 

IS: 

NB = Ntags · BB · EB 

Here, BB is the branching ratio of the background process. The branching ratios 

for the K- p+ and K *- 7r+ final states* are derived from an analysis 1831 of the 

resonant substructure of the decays n° -+ K-7r+7ro and n° -+ K 7r+7r-. The 

numbers of background events expected are given in Table 7.2.III. An overall 

uncertainty of 50% is assigned to the total number of background events. 

Table 7.2.III: n°-+ K- e+ Ve: Expected Backgrounds 

Source EB BB NB 

K *-e+ve 0.0076 ± 0.0014 ""' 4% 1.2 

K-p+ 0.0005 ± 0.0004 13.0 ± 1.3 ± 1.3% 0.3 

K *-7r+ 0.0013 ± 0.0006 8.0 ± 1.3 ± 1.3% 0.4 

K-7r+fJ 0.0003 ± 0.0003 :::; 10% 0.1 

- *O 0 
K 7r :::; 0.0003 2.0 ± 0.9 ± 0.5% 0.02 

K-7r+7ro7ro :::; 0.0003 ""' 8% 0.1 

Total 2.1±1.1 

The efficiency for detecting the n° -+ K- e+ Ve signal is also determined by 

a Monte Carlo simulation. This detection efficiency is not independent of the 

tag type, as might be supposed. The more tracks there are in the tag, the more 

'crowded' the event is - the more difficult it is to reconstruct all of the tracks in 

the recoil. Detection efficiencies are therefore calculated for each tag type. The 

* See also Table 2.1.III. 
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decay n° --+ K-7r+7ro is known to be dominated by the quasi two-body decay 

n° --+ K- p+ so this final state is used to represent the K-7r+7ro tag. Little is 

known about the resonant substructure of the decay n° --+ K-7r+7r+7r-; this is 

generated according to phase-space. The detection efficiencies are listed in table 

4.2.IV. 

It is quite simple to extract a branching ratio when a large tag sample is 

available. If the tag and signal modes are different - as is manifestly the case 

for semileptonic decays - the number of signal events expected is: 

N!pected = B · Ntags · € s + Nbackground 

The branching ratio is here denoted by B and the detection efficiency by E 8 . The 

uncertainty in the branching ratio obtained from this formula will be dominated 

by the uncertainty in the number of detected events. The uncertainty in the 

number of tags is not~~ as might be expected. The number of tags may 

be thought of as the number of experiments performed with the product of B 

and Es being the probability of success. Were there no background in the tag 

sample, the uncertainty in the number of tags would be zero. As there are indeed 

background events in the tag sample, the uncertainty in the number of tags is 

equal to the uncertainty in the number of background events. 

In Table 7.2.IV, the branching ratio for the decay n°--+ K- e+ Ve is calculated 

for each tag mode. The number of background events should be proportional to 

the number of tags, so the number of background events assigned to the ith mode 

is: 

i total tags 
(

Ni ) 
Nbackground = Nbackground N.total 

tags 

A weighted average is calculated from the three individual branching ratios ac­

cording to the formula: 

B= 
[ ]

-1 
3 

1 
3 

Bi 
La2. I:~ 
j=l BJ i=l Bi 
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As is clear from the results listed in Table 7.2.IV, the number of events 

detected for each tag mode is quite small. The averaging procedure employed 

above is correct only if the various random variables are normally distributed; it 

is thus of dubious applicability in the present case. It is included only to provide 

an 'intuitive' estimate of the branching ratio. 

The branching ratio is obtained from a maximum likelihood fit. The likeli­

hood function is: 

Here, m is the number of events detected against the ith tag mode, n is the 

expected number of events, Ei the measured detection efficiency and Ni the mea­

sured number of tags. The branching ratio, the detection efficiencies and the 

number of tags are used as parameters in the fit. The branching ratio from the 

fit is given in Table 7.2.IV. The uncertainties quoted there are both the parabolic 

error - the error obtained from the covariance matrix - and the maximum 

likelihood error - the error given by a change of 1/2 in w = - log£. A plot of 

w is given in Fig. 7.2.5. 

The errors quoted in Table 7.2.IV are purely statistical. A number of effects 

may contribute to the systematic error. The assumed 50% uncertainty in the 

number of background events is responsible for a systematic error of 3%. The 

electron detection efficiencies are not perfectly known; the error caused by this 

is estimated by folding the electron spectrum from n° --+ K- e+ Ve with the 

measured detection efficiencies of the 7r / e separator. The resulting uncertainty is 

about 2%. The ToF system is modeled carefully, but a systematic dependence on 

the ToF cuts remains, estimated to be about 5%. The black box approach adopted 

for the modeling the 7r / e separator guarantees that the calculated efficiencies will 

be correct. This method, however , relies on the ability to pair a detected track 

with a track generated by the Monte Carlo event generator. As electron tracks 
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Figure 7 .2.5: Plot of w = - log f, for n° -t K- e+ Ve 

0.05 

do not decay- with a resulting 'kink' - and seldom undergo a large scatter, the 

reconstructed and generated 4-momentum are usually quite similar. That this is 

not always the case introduces a small systematic error. It is difficult to quantify 

this error precisely, but it certainly is not larger than 5%. It might be thought 

that the detection efficiency could depend on the form factor chosen in the event 

generator. Detection efficiencies calculated using a simple pole factor, with pole 

mass 2.14 GeV /c2 , and a constant form factor are not, however, significantly 

different. If all the systematic errors are added linearly, the total systematic 

uncertainty is 15%. 

The branching ratio for n° -t K- e+ Ve is measured to be: 

I B(n° -t K- e+ Ve) = 3.9 ± 0.6 ± 0.6% I 
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Table 7.2.IV: Detection Efficiencies and Branching Ratios for n° ---+ K- e+ Ve 

Tag Mode Events Ntags Es B 

Signal Background 

K-7r+ 10 0.6 1089 ± 13.8 0.289 ± 0.009 0.030 ± 0.010 

K-7r+7r+7r- 18 0.6 1254 ± 40.8 0.265 ± 0.011 0.052 ± 0.013 

K-7r+7ro 19 0.9 1738 ± 60.8 0.291 ± 0.013 0.036 ± 0.009 

total 47 2.1 4081±74.5 

Weighted Average 3.7 ± 0.6% 

Fit Result with parabolic error 3.9 ± 0.6% 

Fit Result with maximum likelihood error 3.9 ± 0.6% 

The analysis of this final state is very similar to that for n° ---+ K- e+ Ve the 

primary difference being that two neutral tracks must be found which together 

form a 7ro. The tracks must be separated from all charged tracks as explained 

above. No cut is placed, however, on the measured energies of the photons. There 

may be several combinations of photons. For example, if four photons are found, 

there will be six candidate 7r0 's. The resolution in the invariant mass of the two 

photon system is not sufficient for discriminating among the various combinations 

of photons. The angular resolution of the shower detectors is very good, but the 

energy resolution is simply not adequate for this task. The energies of pairs of 

photons are obtained from a least squares fit subject to the constraint that the 

mass of the two photon system equal the 7ro mass.* The value of U is calculated 

for each combination of photons. That combination is retained for which U is 

* This involves finding the roots of a fourth order polynomial. This is accomplished by means 
of Newton's method with the measured energies as starting values. 
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nearest zero. Any isolated photons which are not part of this combination must 

have measured energies less than 100 MeV. 

The performance of the 7ro detection procedure is illustrated in Figs. 7 .2.6 

- 7.2.8. A number of events of the (potentially very interesting!) type 'ljJ -r 

p 7ro were generated. This state was chosen so that a single, monoenergetic 7ro 

would be formed recoiling against a single charged track which presumably never 

decays. 1841 The invariant, unfit masses of the photons pairs are shown in Fig. 

7.2.6. The resolutions in momentum and angle obtained from the fit are displayed 

in the next two figures. The fit momentum of the of n°'s is plotted in Fig. 7.2.7. 

It is obvious that the momentum resolution is modest. The angular resolution, 

however, is excellent. Fig. 7.2.8 is a plot of cos(~), where~ is defined as the angle 

between the generated and reconstructed directions of the 7r0 's. 

Among the several backgrounds is one of curious origin: n° -r K- e+ Ve. 

This is a very small but quite interesting background. The presence of an isolated 

photon would preclude n° -r K- e+ Ve decays from being detected as such. In 

addition, two spurious neutral tracks may seem to form a 71"0 ; the requirement 

that a fit be successfully performed is hardly stringent. Hence, it is possible that 

a decay of the type n° -t K- e+ Ve might be mistaken for n° -t K- 71"0 e+ Ve. 

Such cases, fortunately, are easily removed. The value of U is calculated for both 

hypotheses - n° -t K- e+ Ve and n° -t K- 71"0 e+ Ve - and the event retained 

only if U for the latter hypothesis is closer to zero. 

The remaining backgrounds are all small. Three body hadronic decays such 

as K-7r+7ro are suppressed by a cut on the invariant mass of the K-7r0 e+ system 

calculated under the hypothesis that the electron was really a pion; the invariant 

mass must be less than 1.7 GeV /c2 • Other backgrounds, such as K-7r+n°7r0 , 

are suppressed by eliminating events with extra isolated photons. The expected 

number of background events is summarized in Table 7.2.V. 

The detection efficiencies and branching ratios are obtained as explained in 

section 7.2.1. These are given in Table 7.2.VI. In the analysis of this final state, 
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Figure 7.2.6: Invariant Mass of Photon Pairs 

another potential source of systematic error has been introduced: the detection 

of the 7ro. The requirement that the photons be well separated from all charged 

tracks should reduce the problem of hadronic split-offs, which are not modeled 

in any way in the Monte Carlo. However, the energy resolution of the shower 

detectors - particularly for low energy photons - makes the efficiency for de­

tecting the 7ro somewhat difficult to calculate. This introduces an uncertainty of 

about 5%. The uncertainty in the number of background events yields a further 

error of 10%. The total systematic error is thus estimated to be 27%. 

The detection efficiencies are determined from Monte Carlo events of the 

type n° --+ K*- e+ Ve. The choice of the K- 7ro mass distribution does not, 

however, introduce a significant systematic error. If the detection efficiencies are 
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Figure 7.2.7: Reconstructed Momenta of Monoenergetic 7r0 's 
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Figure 7.2.8: cos(s"): s" = angle between generated and reconstructed direction of 71"
0 . 

calculated using events in which the K- and 7ro are in a non-resonant S-wave, 

these efficiencies change by only about one standard deviation 



154 

Table 7.2.V: n°-+ K-11"0 e+ Ve: Expected Backgrounds 

Source EB BB NB 

K-p+ < 0.0003 13.0 ± 1.3 ± 1.3% 0.2 

K *-11"+ < 0.0003 8.0 ± 1.3 ± 1.3% 0.1 

K-11"+ 11"011"0 0.0012 ± 0.0006 ...., 8% 0.4 

K-11"+77 0.0003 ± 0.0003 :S 10% 0.1 
- *O 0 K 11" 0.0002 ± 0.0002 2.0 ± 0.9 ± 0.5% 0.02 

-=-=° K 11"+ 11"-11"0 < 0.0003 14.9 ± 2.7 ± 3.5% 0.2 

K - e+ve 0.0022 ± 0.0007 3.9 ± 0.6 ± 0.6% 0.1 

p-e+ve 0.0022 ± 0.0007 ...., 0.2% 0.02 

Total 1.1±0.6 

Table 7.2.VI: Detection Efficiencies and Branching Ratios for n° -+ K- 1ro e+ Ve 

Tag Mode Events Ntags Es B 

Signal Background 

K-11"+ 2 0.3 1089 ± 13.8 0.095 ± 0.008 0.016 ± 0.013 

K-11"+11"+11"- 3 0.3 1254 ± 40.8 0.072 ± 0.010 0.030 ± 0.018 

K-11"+11"0 2 0.5 1738 ± 60.8 0.086 ± 0.011 0.010 ± 0.008 

total 7 1.1 4081 ± 74.5 

Weighted Average 1.4 ± 0.6% 

Fit Result with parabolic error 1.7 ± 0.8% 

Fit Result with maximum likelihood error 1 7+0.9% 
. -0.7 ° 

The branching ratio for n° -+ K- 1ro e+ ve is thus: 

I B(n°-+ K-11"0 e+ Lie) = 1.7!8:~ ± 0.5% I 
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7 Do -=° - + .2.3: --+ K 7r e Ve 

Neutral kaons are detected only through their decay K~ --+ Jr+ Jr-, so in the 

decay D 0 --+ K Jr- e+ Ve, three charged tracks must be found in the recoil along 

with an electron of the correct charge; the electron is identified in the usual way. 

The sum of the charges of all four tracks must, of course, be zero. No isolated 

photons may be found in the recoil; this helps limit hadronic backgrounds. 

Of the three tracks accompanying the electron, there will be two combinations 

of oppositely charged tracks. Either of these combinations could represent the 

decay products of the neutral kaon; both are examined using the vertex finding 

procedures presented in appendix 3. The 3-momentum of each combination is 

required to align with the displacement of the K~ system from the primary vertex. 

If e is the angle between the momentum and vertex displacement, I cos( e) I must 

be in the range [0.9, 1]. If the momentum of the K~ is very small, the two crossing 

points of its daughter tracks may both be very close to the primary vertex. It 

is then very difficult to distinguish between the two crossing points. For this 

reason, cos(~) is allowed to be in the 'negative' range [-1, -0.9]. 

The effect of these cuts is displayed in Figs. 7.2.9 and 7.2.10. In the first 

figure, the invariant mass of all candidate neutral kaons - before any particle 

identification cuts - is displayed. In the second figure, this same mass is shown 

after the cuts described above. The reduction in background is clear. The only 

further cut required to isolate the K~ is a cut on their mass from 0.46 to 0.52 

Ge V / c2 • In the very unlikely event - only one of the nine signal events - that 

both combinations are accepted as K~ candidates, a decision between them is 

made on the basis of the value of U, calculated using the momentum of each 

candidate 'swum' to the vertex. The difference in the U values is very small, so 

even if this procedure selects the wrong combination, it makes little difference. 

The numbers of background events are estimated as before. These expected 

backgrounds are summarized in Table 7.2.VII. The systematic error has contribu-
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Figure 7.2.9: Invariant mass of all candidate K 0 
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Figure 7.2.10: Invariant mass of all K 0 after all cuts 

tions from a number of sources: electron detection efficiency (5%), 7r / e separator 

simulation (2%), pion detection efficiency (2%), background subtraction (5%), 

and K° detection efficiency. This last effect is due primarily to a sensitivity of 
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-=D 
Table 7.2.VII: n° - K 'If- e+ Ve: Expected Backgrounds 

Source f.B BB NB 

x-p+ 0.0002 ± 0.0002 13.0 ± 1.3 ± 1.3% 0.1 

K *-'lf+ 0.0002 ± 0.0002 8.0 ± 1.3 ± 1.3% 0.07 

x-7f+7fo7fo < 0.0003 ,...,8% 0.1 

x-'lf+rJ < 0.0003 ::; 10% 0.1 

- *O 0 K 7r < 0.0003 2.0 ± 0.9 ± 0.5% 0.02 

1?° 7f+7f-7fo < 0.0003 14.9 ± 2.7 ± 3.5% 0.2 

x-e+ve < 0.0007 3.9 ± 0.6 ± 0.6% 0.1 

p-e+ve 0.0002 ± 0 .0002 ,.._, 0.2% 0.002 

Total 0.7 ± 0.4 

Table 7.2.VIII: Detection Efficiencies and Branching Ratios for n° - K° 'If- e+ Ve 

Tag Mode Events Ntags Es B 

Signal Background 

x-'lf+ 2 0.2 1089 ± 13.8 0.090 ± 0.006 0.018 ± 0.014 

x-'lf+'lf+'lf- 5 0.2 1254 ± 40.8 0.099 ± 0.009 0.039 ± 0.018 

x-'lf+'lfo 2 0.3 1738 ± 60.8 0.086 ± 0.009 0.011 ± 0.009 

total 9 0.7 4081±74.5 

Weighted Average 1.7 ± 0.7% 

Fit Result with parabolic error 2.2 ± 0.8% 

Fit Result with maximum likelihood error 2 2+0.9% 
. -0.7 ° 

the detection efficiencies on the precise form of the cos(~) cut. This is estimated 

to cause an uncertainty of about 5%. The total systematic error is thus 19%. The 

detection efficiencies and individual branching ratios are listed in Table 7.2.VIII. 
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The branching ratio for n° ---7 K° 1f- e+ Ve is: 

These decays both produce final states containing three charged tracks. As 

noted in section 7.2.1, the misidentification of a kaon as a pion - or vice versa 

- usually produces a significant change in U. Hence, it is possible to carry out 

a search for these two final states simultaneously. 

Three charged tracks must be found, each with good z information. One of 

the three must be identified as electron of the appropriate charge. The track 

of the same charge as the electron is assumed to be a pion. The value of U is 

calculated under the hypotheses that the remaining track is a kaon and that it 

is a pion. If the value for the kaon hypothesis is closer to zero than that for the 

pion hypothesis, the event is analyzed further as a n+ ----r K- 1f+ e+ Ve candidate, 

otherwise it is analyzed as a n+ ----r K° e+ Ve candidate. 

In the latter case, the momentum of the K 0 is calculated at its vertex. The 

same direction and invariant mass cuts are used as in section 7.2.3. If the event 

is of the type n+ ---7 K- 1f+ e+ Ve, the ToF information of the kaon is examined. 

If it is valid, the kaon weight must be consistent with the kaon hypothesis as in 

section 7.2.1. 

The numbers of background events are listed in Tables 7 .2.IX and 7 .2.X. 

The detection efficiencies and branching ratios are given in Tables 7 .2.XI and 

7.2.XII. The systematic error for n+ ----r K- 1f+ e+ Ve has contributions from 

the kaon detection efficiency (5%), pion detection efficiency (2%), electron de­

tection efficiency (5%), 7r / e separator simulation (2%), and the uncertainty in 

the background subtraction (3%) for a total of 17%. The systematic error for 

D+ ----r K° e+ Ve is determined by the K° detection efficiency (5%), the electron 
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detection efficiency ( 5 %) , the 7r / e separator simulation ( 2%) and the background 

subtraction (5%); the sum is 17%. 

The branching ratios for n+ --+ K° e+ Ve and n+ --+ K- 'lr+ e+ Ve are: 

B(D+ --+Ke+ Ve) = 6 .3~i:~ ± 1.1% 

B(D+ --+ K- 7r+ e+ Ve) = 3.9~8:~ ± 0.7% 

-=-::0 
Table 7.2.IX: n+ --+ K e+ Ve: Expected Backgrounds 

Source f.B BB NB 

K*o + e Ve 0.0004 ± 0.0001 "'6% 0.05 

K-7r+7r+7ro < 0.0005 6.3~L~ ± i.2% 0.06 

K°p+ 0.003 ± 0.001 11.2~~:~ ± 1.9% 0.8 

K-7r+7r+ < 0.0004 11.6 ± 1.4 ± 0.7% 0.09 

-*O + K 7r 0.001 ± 0.0005 2.7 ± 1.8 ± 1.6% 0.05 

Total 1.1±0.6 

Table 7.2.X: n+ --+ K- 'lr+ e+ Ve: Expected Backgrounds 

Source f.B BB NB 
-:=O 
K e+ve 0.003 ± 0.001 "'7% 0.4 

K-7r+7r+7ro 0.005 ± 0.001 6 .3~U ± i.2% 0.6 

K°p+ < 0.0005 11.2~~:~ ± 1.9% 0.1 

K-7r+7r+ 0.0004 ± 0.0004 11.6 ± 1.4 ± 0. 7% 0.09 

- *o + K 7r 0.0005 ± 0.0003 2.7 ± 1.8 ± 1.6% 0.03 

Total 1.2 ± 0.6 
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Table 7.2.XI: Detection Efficiencies and Branching Ratios for n+ -+It e+ Ve 

Tag Mode Events Ntags Es B 

Signal Background 

K-7r+7r+ 7 0.8 1346 ± 24.6 0.111 ± 0.004 0.042 ± 0.017 

Jt7r+ 1 0.1 152.8 ± 7.7 0.113 ± 0.004 0.052 ± 0.055 

-==° K 7r+7r+7r- 2 0.1 207.0 ± 20.9 0.104 ± 0.006 0.088 ± 0.065 

-==° K 7r+7ro 5 0.1 268.4 ± 36.8 0.114 ± 0.008 0.160 ± 0.076 

total 15 1.1 1974 ± 49.6 

Weighted Average 5.0±1.5% 

Fit Result with parabolic error 6.3±1.8% 

Fit Result with maximum likelihood error 6 3+2·0% . -1.6 0 

Table 7.2.XII: Detection Efficiencies and Branching Ratios for n+ -+ K- 11"+ e+ Ve 

Tag Mode Events Ntags Es B 

Signal Background 

K-7r+7r+ 16 0.8 1346 ± 24.6 0.308 ± 0.013 0.037 ± 0.010 

Jt7r+ 4 0.1 152.8 ± 7.7 0.287 ± 0.012 0.089 ± 0.045 

-==° K 7r+7r+7r- 2 0.1 207.0 ± 20.9 0.298 ± 0.021 0.031±0.023 

-==° K 7r+7ro 2 0.2 268.4 ± 36.8 0.277 ± 0.025 0.024 ± 0.019 

total 24 1.2 1974.2 ± 49.6 

Weighted Average 3.6 ± 0.8% 

Fit Result with parabolic error 3.9 ± 0.8% 

Fit Result with maximum likelihood error 3 9+0.9% . -0.8 ° 
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In the discussion of the final state n° -+ K- e+ Ve, the absolute value of U 

for the kaon hypothesis was required to be nearer zero than that for the pion 

hypothesis. Events for which IUI is smaller for the latter hypothesis, but which 

satisfy the other requirements described in section 7.2.1, are ascribed to the decay 

n° -+ 11"- e+ Ve. This selection is completely unbiased, so it is significant that 

forty-seven events are detected in the decay n° -+ K- e+ Ve, while only three are 

detected in the decay no -+ 11"- e+ Ve. 

The largest background to this decay is the decay n° -+ K- e+ Ve; the dis­

crimination based on U is good, but as is clear from Fig. 7.2.1, there is some 

overlap in the U spectra for the kaon and pion hypotheses. The numbers of events 

expected from this and other sources are enumerated in Table 7.2.XIII. The de­

tection efficiencies are listed in Table 7.2.XIV. The systematic error is dominated 

by the uncertainty in the background subtraction (24%), but there are contribu­

tions as well from the electron identification (7%) and pion identification (5%) 

for a total of 36 % . 

The branching ratio for n° -+ 11"- e+ Ve is: 

I B(n° -+ 11"- e+ Ve) = 0.4~8:~ ± 0.1 % I 
The significance of this measurement is simply stated: this is a Cabibbo­

suppressed decay and it thus tests directly the elements of the weak mixing - or 

KM - matrix. The ratio of branching ratios for the decays n° -+ 11"- e+ Ve and 

n° -+ K- e+ Ve may be predicted by integrating the formulae* of appendix 3: 

The measured branching ratios yield a ratio IUcd/Ucs 1
2 = 0.05 ± 0.03 ± 0.01. The 

* The form factor f+(t) for D-> ?re+ Ve has its pole at m~ • . 
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ratio obtained from the KM matrix elements t given in chapter 1 is 0.052±0.001. 

Thus the observed rate of Cabibbo-suppressed semileptonic decay is consistent 

with the rate of neutrino induced charm production. 

Table 7.2.XIII: n° ---+ 71"- e+ Ve: Expected Backgrounds 

Source EB BB NB 

K-p+ < 0.0003 13.0 ± 1.3 ± 1.3% 0.2 

K*-11"+ 0.0003 ± 0.0003 8.0 ± 1.3 ± 1.3% 0.1 

K-7r+7ro7ro < 0.0003 ""' 8% 0.1 

K-1r+?J < 0.0003 ~ 10% 0.1 

-*O 0 K 7r < 0.0003 2.0 ± 0.9 ± 0.5% 0.03 

K-e+ve 0.0027 ± 0.0008 3.9 ± 0.6 ± 0.6% 0.4 

Total 0.9 ± 0.5 

Table 7.2.XIV: Detection Efficiencies and Branching Ratios for n° ---+ 71"- e+ Ve 

Tag Mode Events Ntags ES B 

Signal Background 

K-7r+7ro 2 0.8 1738 ± 60.8 0.229 ± 0.011 0.003 ± 0.003 

-==° -K 11"+11" 1 0.1 325.9 ± 17.1 0.280 ± 0.013 0.010 ± 0.010 

total 3 0.9 2064 ± 63.2 

Weighted Average 0.4 ± 0.4% 

Fit Result with parabolic error 0.4 ± 0.4% 

Fit Result with maximum likelihood error 0 4+0.4% . -0.3 ° 

t These elements are taken from the 1986 edition of the Review of Particle Properties. 
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7 .3: Summary of electron modes 

Measurements of the branching ratios for five exclusive semileptonic decays 

were presented in section 7.2. As a final demonstration of the quality of the data 

used in these measurements, a scatterplot of U versus tag beam-constrained mass 

is given for each mode - the n° decays in Fig. 7.3.1 and the n+ in Fig 7.3.1. 

In each case, there is a clear clustering of events near then mass and a value of 

zero for U. 

In section 7.1, it was predicted that the only Cabibbo-favored semileptonic 

decays yielding observable signals would be precisely those discussed in section 

7.2. If these do indeed account for the bulk of n semileptonic decays, then the 

sum of the exclusive branching ratios should nearly equal the inclusive branching 

ratios. The branching ratios and their sums _are collected in Table 7.3.I; the 

branching ratio for n+ ---+ K°7r0 e+ve is unmeasured, so in order to sum the 

n+ branching ratios, it is necessary to multiply the branching ratio for n+ ---+ 

K-7r+e+ve by the square of the Clebsch-Gordan coefficient 3/2. The sum of the 

exclusive branching ratios for the n° is in good agreement with the inclusive 

branching ratio. The sum for the n+ differs from the inclusive measurement by 

two standard deviations. 

In summary, the semileptonic decays of n mesons are dominated by final 

states containing either a single kaon or a kaon-pion pair. A comparison of the 

inclusive and exclusive branching ratios rules out any large Cabibbo-suppressed 

contribution; indeed, the rate observed for the decay D 0 ---+ 7r- e+ Ve is consis­

tent with the prediction obatined by using the value of Ucd measured in charm 

production from neutrino beams. 
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Table 7.3.I: n Semileptonic Branching Ratios: Electron Modes 

Mode Branching Ratio 

n° ~ K-e+ve 3.9 ± 0.6 ± 0.6% 

n° ~ K-7r0 e+ve 1.7!g:~ ± 0.6% 
-=° n° ~ K 7r-e+ve 2.2:g:~ ± 0.4 % 

n° ~ 7r- e+ve OA!g:~ ± 0.1% 

n° ~ [K7r]- e+ve 3.9:tg ± o.6% 

n° ~ (K- + [K7r] - ) e+ve 7.8!~:~ ± 0.8% 

n° ~ e+ x 7.5 ± 1.1 ± 0.4% 
-=-::0 

n+ ~ K e+ve 6.3!i:~ ± 1.1 % 

n+ ~ K - 7r+ e+ve 3.9!g:~ ± 0. 7% 

n+ ~ [K7r]o e+ve s.9!L~ ± i.1 % 

n+ ~ (K + [K7r]0 ) e+ve 12.2!~:6 ± 1.6% 

n+ ~ e+ x 17.0 ± 1.9 ± 0.7% 
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Figure 7.3.1: Tag beam-constrained mass versus U for n° events 
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Figure 7.3.2: Tag beam-constrained mass versus U for n+ events 
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Chapter 8: Semileptonic Branching Ratios: 

Muon Modes 

8.1: Muonic decays and muon identification 

The coupling of the w ' gauge boson to a charged lepton - neutrino pair is a 

universal coupling in the Standard Model; the W couples equally to each of the 

three families of leptons. The correctness of this assumption may be tested in 

a number of ways. For example, the rate predicted for the decayµ- ----+ e-vµIle 

- including radiative corrections - is in good agreement with the measured 

decay rate. The ratio of the couplings of the W to the first two families may 

be obtained by comparing the predicted and measured values of the ratio of 

branching ratios B(r-----+ µ-vrllµ)/B(r-----+ e-vrlle)· This ratio is predictedrssJ 

to be* g(m~/m;)/g(m;/m;) = 0.97. A recent measurement[sGJ by the MARK III 

is B(r- ----+ µ-Vrllµ)/ B(r- ----+ e-vrlle) = 0.99 ± 0.07 ± 0.04. 

The universality of the W - lepton coupling may also be investigated through 

a comparison of the semileptonic decays of mesons. Cabibbo-favored semileptonic 

decays are spectator decays, so the ratio of the exclusive branching ratios for such 

processes is predictable. A numerical integration of the formulae given in sections 

A3.1 and A3.2 yields the ratio: 

_B-'-( D_o _----+_K_-_µ_+----'vµ_) = 0.96 
B(D0 ----+ K- e+ Ve) 

The identification of D semileptonic decays containing muons is complicated 

by the angular and momentum acceptance of the MARK Ill's muon system; this 

system was not designed to aid in the analysis of semileptonic decays but rather 

to isolate dimuon events and to help reject cosmic rays. The muon system covers 

only 60% of 47r and is only efficient for muons with transverse momenta greater 

* The function g(x), introduced in section 2.4, is 1 - Bx+ 8x3 
- x4 

- 12x2 log(x). 
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than 600 Me V / c. The limited momentum acceptance, in particular, is a serious 

problem. The transverse momentum spectra for the decays n° ~ K- µ+ Vµ 

and n° ~ K*- µ+ Vµ are shown in Figs. 8.1.1 and 8.1.2. It is clear from these 

figures that only about 15% of the n° ~ K- µ+ vµ decays and about 3% of the 

n° ~ K*- µ+ Vµ decays will produce muons energetic enough to penetrate to 

the muon system. 

It is possible to identify semileptonic decays containing muons without using 

the muon system. In events with an hadronic tag, the missing energy and mo­

mentum may be calculated unambiguously. Thus kinematics may substitute for 

hardware in the isolation of semileptonic decays. Such a procedure naturally ad­

mits somewhat larger backgrounds than the procedures of chapter 7; the number 

of signal events, however, is greatly increased. 

This decay - just as in the electron case - yields a particularly simple final 

state. The analysis is quite similar to that for the decay n° ~ K- e+ Ve. The 

cuts on the invariant mass of the K- µ+ system and on the missing energy are 

in fact identical to those described in section 7.2.1. The requirements placed on 

the kaon are, however, somewhat more stringent. The candidate kaon must be 

identified by the ToF system; the weight for the kaon hypothesis must be greater 

than seventy percent of the sum of the weights. This requirement is placed on 

the kaons as these may be reliably identified by the ToF system. With the kaon 

positively identified, the rejection of backgrounds through kinematic means is 

rendered more secure and reliable. 

The hadronic decay n° ~ K- 7r+ 7ro is the largest background to the decay 

n° ~ K- µ+ vµ- This situation occurs primarily because of the inability of 

the ToF system to distinguish between pions and muons. The ToF system is 

used only to remove well-identified kaons. Most of the pions which interact in 
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Muon PT in Lab Frame 

Transverse Momentum (GeV/c) 

Figure 8.1.1: Muon transverse momentum spectrum for n° ~ K- µ+ Vµ 

Muon PT in Lab Frame 

Transverse Momentum (GeV/c) 

Figure 8.1.2: Muon transverse momentum spectrum for n° ~ K*- µ+ Vµ 

the shower detector are rejected by requiring that the energy deposited by the 

candidate be less than 300 Me V. The number of background events is further 

reduced by 'tightening' the definition of an isolated photon; in the present case, 

an isolated photon need only have a measured energy of 50 Me V. This energy cut 
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may not be lowered any further without incurring large systematic uncertainties 

due to fake photons. 

A neutral pion escapes detection if neither of the photons from its decay are 

identified as isolated photons. This may happen if both of the photons enter an 

uninstrumented region of the detector, particularly the region from the center 

of the beam pipe to the innermost edge of the endcap shower detectors. This is 

more often the case than might expected as photons from the decay of the 7ro in 

the decay n° -+ K- 71"+ 7ro usually have a small opening angle. In such cases, the 

missing transverse momentum- Pt - is small. The Pt spectrum for Monte Carlo 

events of the type n° -+ K- p+, in which both photons are undetected, is shown 

in Fig. 8.2.1. If the missing Pt is required to be greater than 200 MeV, 60% of 

the remaining events are removed. A prediction of the neutrino Pt spectrum in 

the decay n° -+ K- µ+ Vµ is shown in Fig. 8.2.2. The missing Pt cut is seen to 

remove only about 15% of the signal events. 

The expected backgrounds are enumerated m Table 8.2.I. A new type of 

background is encountered here; non-charm backgrounds must be considered for 

the first time. The possibility of non-charm backgrounds is taken into account by 

fitting the beam-constrained mass distribution of the tags for the signal events. 

The spectrum of this mass is shown in Fig. 8.2.3; the solid curve is the result of 

the fit. 

The branching ratio is calculated as in chapter 7. The detection efficiencies 

and other relevant quantities are listed in Table 8.2.II. The systematic error 

is somewhat different from that for n° -+ K- e+ Ve as the dependence of the 

detection efficiencies on the shower detector energy must be considered. The 

energies deposited by muons are illustrated in Fig. 8.2.4 both for real e+ e- -+ 

µ+ µ- / events and for Monte Carlo n° -+ K- µ+ Vµ events. The agreement 

is fairly good; the differences result in a 5% systematic error in the detection 

efficiencies. The energy cut for isolated photons contributes a 10% systematic 

uncertainty. The ToF identification of the candidate kaon causes an uncertainty 
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D 0 -~K-7T+7To: Missing Transverse Momentum 
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Figure 8.2.1: Missing transverse momentum spectrum for 

n° ---+ K- 11"+ 1ro events with no isolated photons 
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Figure 8.2.2: Neutrino transverse momentum spectrum for n° ---+ K- µ+ vµ 

of about 5%. Finally, the uncertainty in the number of background events results 

in a systematic error of 10%. The total systematic error is then 30%. 



172 

Tag Mass for K- µ+ Vµ Signal Events 
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Figure 8.2.3: Tag beam-constrained mass spectrum for n° ---"* K- µ+ Vµ events 
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Figure 8.2.4: Energy deposited by muons: 

e+e----"* µ+µ-/indicated by n n°---* K-µ+vµ indicated byf 

The branching ratio for n° ---"* K- µ+ Vµ is thus: 

I B(n° ---"* K- µ+ vµ) = 4.1±0.7 ± 1.2% I 
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Table 8.2.I: n° ---+ K- µ+ vµ: Expected Backgrounds 

Source EB BB NB 

K-p+ 0.0062 ± 0.0012 13.0 ± 1.3 ± 1.3% 3.3 

K*-7r+ 0.0043 ± 0.0010 8.0 ± 1.3 ± 1.3% 1.4 

K-7r+7ro7ro 0.0005 ± 0.0004 ,...,8% 0.2 

K-7r+fJ 0.0005 ± 0.0004 :::; 10% 0.2 

-*o o K 7r 0.0041 ± 0.0010 2.0 ± 0.9 ± 0.5% 0.3 

7r+7r-7ro 0.0003 ± 0.0003 1.1±0.4 ± 0.2% 0.01 

K*-µ+vµ 0.0032 ± 0.0009 ,...,4% 0.5 

non-charm 3.5 

Total 9.4 ± 4.7 

Table 8.2.II: Detection Efficiencies and Branching Ratios for n° ---+ K- µ+ vµ 

Tag Mode Events Ntags Es B 

Signal Background 

K-7r+ 14 2.5 1089 ± 13.8 0.290 ± 0.009 0.037 ± 0.011 

K-7r+7r+7r- 16 2.9 1254 ± 40.8 0.275 ± 0.012 0.038 ± 0.011 

K-7r+7ro 26 4.0 1738 ± 60.8 0.275 ± 0.014 0.046 ± 0.010 

total 56 9.4 4081±74.5 

Weighted Average 4.1±0.6% 

Fit Result with parabolic error 4.1±0.7% 

Fit Result with maximum likelihood error 4.1±0.7% 
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-==° 8.3: n° --)- K 71"- µ+ Vµ 

Of the four-body decays discussed in section 7.2, the only corresponding 

muonic decay which is tractable is n° --)- K 71"- µ+ Vµ. The decay n° -)­
K- 71"0 µ+ Vµ is hampered by a very large background from n° --)- K- 71"- 71"0 • In 

the remaining decay, n+ --)- K- 71"+ µ+ Vµ, it is impossible, using the techniques 

described in section 8.2, to distinguish the pion from the muon. 

-==° In the decay n° --)- K 71"- µ+ Vµ, four charged tracks must be observed re-

coiling from the hadronic tag as the K is only detected through its decay to 

two charged pions. There are four pairs of tracks of opposite charge, any one of 

which may constitute the decay product of the K. The vertex finding proce­

dures of appendix 2 are applied to each pair of tracks; the invariant mass of each, 

calculated at the vertex, is plotted in Fig. 8.3.1. The number of combinations is 

greatly reduced by requiring that this mass lie in the range 0.46 - 0.52 GeV /c2 • 

Of the 239 events is this range, only eight have two combinations and none have 

more than two. As in section 7.2.3, a decision between them is made on the basis 

of U . 

K~ Mass at Vertex 
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Invariant mass (GeV/c2

} 

Figure 8.3.1: n° --)- K 7r- µ+ vµ: Invariant mass of K~ candidates 
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-=:() 
Once a candidate K is selected, the remaining 'right-sign' track is subjected 

to the shower detector energy cut described in section 8.2. The missing Pt must 

be greater than 200 Me V / c. Finally, the usual missing energy and invariant mass 

cuts are applied. 

Another problem of combinatorics arises with this decay. As has been noted 

several times, the tag mass sample contains a substantial number of background 

events; in many cases, there is even more than one tag per event. The lack of 

positive identification of the muon makes it possible to exchange one or more 

tracks in the recoil with tracks from the tag. Thus, is a small number of cases, 

more than one candidate semileptonic decay may be found in an event. This 

problem could have appeared in the analysis of n° - K- µ+ vµ, but fortunately, 

the low multiplicity and strict kaon identification make the exchange of particles 

very unlikely. The higher multiplicity of the decay n° - K 7r- µ+ Vµ, however, 

makes it necessary to consider such exchanges; in four of the twenty detected 

events, more than one candidate decay was found. There is no obvious way to 

distinguish among the candidates, so a procedure is adopted which is statistically 

correct; only the first candidate encountered is accepted. 

The branching ratios and detection efficiencies are calculated in the usual 

way. The results are listed in Tables 8.3.I and 8.3.II. The systematic error has 

contributions from the K identification (5%), the background subtraction (38%), 

the shower detector energy cut (5%), and the isolated photon energy cut (10%) 

for a total of (58%). 

The branching ratio for the decay n° - K° 1r- µ+ Vµ is: 

I B(n° - K° 1r- µ+ vµ) = 2.r~U ± i.6% I 



176 

Table 8.3.I: n° -+ K° 7r- µ+ Vµ: Expected Backgrounds 

Source f.B BB NB 

K-p+ 0.0003 ± 0.0003 13.0 ± 1.3 ± 1.3% 0.2 

K*-7r+ 0.0003 ± 0.0003 8.0 ± 1.3 ± 1.3% 0.1 

K-7r+7ro7ro < 0.0003 "'8% 0.1 

K-7r+rJ 0.0010 ± 0.0005 ::; 10% 0.4 

-*O 0 K 7r < 0.0004 2.0 ± 0.9 ± 0.5% 0.03 

-==° K 7r+7r-7ro 0.0043 ± 0.0010 14.9 ± 2. 7 ± 3.5% 2.5 

non-charm 5.2 

Total 8.5 ± 4.3 

Table 8.3.II: Detection Efficiencies and Branching Ratios for n° -+ K° 7r- µ+ Vµ 

Tag Mode Events Ntags Es B 

Signal Background 

K-7r+ 5 2.3 1089 ± 13.8 0.098 ± 0.004 0.025 ± 0.015 

K- 7r+ 7r+ 7r- 7 2.6 1254 ± 40.8 0.106 ± 0.007 0.033 ± 0.016 

K-7r+7ro 8 3.6 1738 ± 60.8 0.105 ± 0.007 0.024 ± 0.012 

total 20 8.5 4081 ± 74.5 

Weighted Average 2.7 ± 0.8% 

Fit Result with parabolic error 2.7 ± 1.0% 

Fit Result with maximum likelihood error 2 7+1.1% . -1.0 0 
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-=-=° 8.4: n+ ---+ K µ+ vµ 

The isolation of decays of the type n+---+ K µ+ Vµ is much simpler than the 

procedure required for n° ---+ K 7r- µ+ vµ. Three charged tracks are observed in 

the recoil so there are only two combinations of oppositely charged tracks. In only 

one event do both combinations satisfy the usual K~ identification requirements; 

the value of U was again used as the arbiter. The problem of more then one 

candidate decay being found in an event does not appear in the present case; the 

multiplicity is lower than in the decay n° ---+ K 7r- µ+ Vµ and the n+ tagged 

sample has less background than the n° sample. 

The number of background events expected is summarized in Table 8.4.I. The 

detection efficiencies and individual branching ratios are given in Table 8.4.II. 

The systematic error is due to uncertainties in the K~ identification (5%), the 

measured energy of the muon (5%), the background subtraction (15%) and the 

energy of isolated photons (10%); the total systematic error is then 35%. 

The branching ratio for the decay n+---+ K µ+ Vµ is: 

I B(n+ ---+ K µ+ vµ) = 10.2:u ± 3.6% I 
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-:-=O 
Table 8.4.I: n+ --+ K µ+ vµ: Expected Backgrounds 

Source EB BB NB 

K°7r+ 0.0037 ± 0.0012 4.1 ± 0.6 ± 0.3% 0.3 

K-7r+7r+7ro 0.0004 ± 0.0004 6.3=~:i ± 1.2% 0.1 

K°p+ 0.0130 ± 0.0022 11.2=~:~ ± 1.9% 2.9 

K-7r+7r+ 0.0004 ± 0.0004 11.6 ± 1.4 ± 0.7% 0.1 

-*o + K 7r 0.0017 ± 0.0006 2.7 ± 1.8 ± 1.6% 0.1 

non-charm 5.4 

Total 8.9 ± 4.5 

Table 8.4.II: Detection Efficiencies and Branching Ratios for n+ --+ K µ+ vµ 

Tag Mode Events Ntags Es B 

Signal Background 

K-7r+7r+ 21 6.1 1346 ± 24.6 0.137 ± 0.005 0.028 ± 0.007 

K°7r+ 4 0.7 152.8 ± 7.7 0.141 ± 0.005 0.053 ± 0.029 
-=:;() 
K 7r+7r+7r- 4 0.9 207.0 ± 20.9 0.138 ± 0.008 0.037 ± 0.021 
-=:;() 
K 7r+7ro 8 1.2 268.4 ± 36.8 0.152 ± 0.008 0.057 ± 0.022 

total 37 8.9 1974 ± 49.6 

Weighted Average 9.4±1.9% 

Fit Result with parabolic error 10.2 ± 2.2% 

Fit Result with maximum likelihood error 10.2:U% 



179 

8.5: Summary of muon modes 

With the measurement of the branching ratios for three muonic decays, a 

comparison may be made among the semileptonic decays containing electrons 

and those containing muons. The branching ratios of the comparable electron 

and muon modes are listed in Table 8.5.I. The n° decays have quite similar 

branching ratios. The branching ratios for the n+ decays differ by 1.8 standard 

deviations. 

Table 8.5.I: n Semileptonic Branching Ratios: 

Muon Modes - and comparable Electron Modes 

Mode Branching Ratio 

n°-+ x-e+ve 3.9 ± 0.6 ± 0.6% 

n°-+ x-µ+vµ 4.1±0.7 ± 1.2% 
-=° n°-+ K 7r-e+ve 2.2!8:~ ± 0.4 % 
-=:() 

n°-+ K 7r-µ+vµ 2.1!U ± i.6% 
-=:() 

n+-+ K e+ve 6.3!i:g ± 1.1 % 
-=° n+-+ K µ+vµ 10.2!U ± 3.6% 

If the small phase-space effect discussed in section 8.1 is ignored, the ratio of 

the leptonic couplings of the W may be extracted by minimizing the likelihood 

function: 

fl _ rr3 
(- (Bi(e) - Bi(e))

2
) rr3 

(- (Bj(µ) - Bj(µ))
2

) 
J.., - exp 2 ( ) exp 2 ( ) a . e a . µ 

i=l i j=l J 

The electronic branching ratios are used as parameters in the fit. The muon 

branching ratios are related to these by the equation Bj(µ) = a 2 Bj(e), where a 

is the ratio of couplings. 
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The results of the fit are summarized in Table 8.5.II. The most likely value of 

a is clearly consistent with unity. Even with the rather large uncertainty in this 

value, there is no evidence for a large deviation from electron-muon universality. 

Table 8.5.II: Relative Electronic and Muonic Branching Ratios 

Parameter Value from fit 

B(D0 ~ K- e+ Ve) 3.9±0.9% 

-==° B(D0 ~ K 11"- e+ Ve) 2.3 ±0.6% 

-==° 6 1 +1.8% B(D+ ~ K e+ Ve) . -1.7 0 

a= Jr(D ~ µ+ X)/f(D ~ e+ X) 1 32+0.24 . -0.21 
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Chapter 9: Development and Coda: 

Kinematic Properties of Semileptonic Decays 

9.1: Inclusive and exclusive decays 

The comparison of the inclusive and exclusive branching ratios, described in 

section 7.3, may be improved through the inclusion of the muonic decay modes. 

The comparable electronic and muonic branching ratios are averaged using the 

weighting procedure of section 7.2.1. The results are given in Table 9.1.I. The 

agreement among the sums of the exclusive branching ratios and the inclusive 

branching ratios is quite good. In particular, the n+ measurements are in better 

agreement; the slight discrepancy noted in section 7.2.3 is thus seen to be just 

a statistical artifact. There is no evidence for the production of any final states 

other than those discussed in chapters 7 and 8. 

Table 9.1.I: Exclusive and Inclusive Semileptonic Branching Ratios 

Mode Branching Ratio 

n°~K-z+111 3.9 ± 0.7% 

n° ~ K- 1ro z+ 111 1.7±1.1% 
-=-::0 n° ~ K 1r- z+ 111 2.3 ± 0.8% 

n° ~ (K- + [K7r]-)z+ 111 7.9±1.5% 

n° ~ e+ x 7.5 ± 1.1±0.4% 

-==° n+ ~ K z+ 111 7.4 ± 1.8% 

n+ ~ K- 11"+ z+ 111 3.9±1.1% 

n+ ~ (K° + [K7r]0 ) z+ 111 13.3 ± 2.5% 

n+ ~ e+ x 17.0 ± 1.9 ± 0.7% 

The inclusive lepton spectrum from semileptonic n decays, measured by the 

MARK III, is shown in Fig. 9.1.1. The component parts of this spectrum may 
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be displayed by summing the appropriate exclusive modes. The lepton spectra 

of the detected events are shown in Fig. 9.1.2; the histograms are predictions 

based on the formulae of appendix 3. The agreement between the measured and 

predicted spectra is good for events of the type n° --+ K-1+ vz. The measured 

spectrum in the case n --+ K 7r l+ vi, however, appears 'softer' than the Monte 

Carlo prediction for the decay n --+ K* l+ Vz. 

9.2: n --+ Ke+ Ve versus n --+ K 7r e+ Ve 

The relative amounts of the decays n --+ Ke+ Ve and n --+ K 7r e+ Ve is ob­

tained through a maximum-likelihood fit to the measured branching ratios. The 

branching ratios for n°--+ K-1+ Vz and n+--+ Kl+ Vz are used as parameters. 

The branching ratio for n+ --+ K- 11"+ e+ Ve is then: 

2 -;:;-::() 
B(n+ --+ K- 11"+ l+ vz) = - (3 B(n+ --+ K l+ vz) 

3 

Here, (3 is the relative amount of the K and K 7r final states produced and the 

factor 2/3 is the square of the Clebsch-Gordan coefficient. The most likely value 

of (3 is 0.8; the uncertainty in this value is 0.3. This uncertainty includes the 

systematic errors of the various branching ratios. 

The ratio R = B(n--+ K7reve)/(B(D --+ K7reve) + B(D --+ Keve)) is eas­

ily calculated from the value of (3: R = 0.44::!:8:8g. This is slightly smaller than 

the value R = 0.55 ± 0.12 reported by the DELCO collaboration 1871 which was 

obtained from a fit to the observed electron energy spectrum using predictions 

for the spectra from n--+ Ke+ Ve and D--+ K* e+ Ve. This measurement is nec­

essarily dependent on the model chosen to represent these spectra. The present 

direct measurement does not suffer from any inherent model dependence. 

Several models predict the relative branching for D --+ Ke+ Ve and D --+ 

K 7r e+ve. Each of these requires that the K-11" system be composed entirely 
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Figure 9.1.1: Inclusive electron momentum spectra 

n° ---+ e + x (a); n+ ---+ e + x (b) 
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Figure 9.1.2: Exclusive lepton energy spectra in D ems: 

D---+ K z+ Vz (a); D---+ K 7r z+ llz (b) 
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of the K* ( 892) resonance. If the K -'Jr system in such decays is assumed to be 

resonant - an assumption which will be shown in section 9.3 to be incorrect -
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Table 9.2.I: Ratio of K-7r Final State to Total Decay Rate 

Model Quantity Value 

Bauer, Stech, Wirbel K*(K + K*) 0.53 

Grinstein, Wise, Isgur K*(K + K*) 0.60 

Ali, Yang K*(K + K*) 0.24 - 0.36 

Suzuki K*(K + K*) 0.73 

Chao, Kramer, Palmer, Pinsky K*(K + K*) 0.24 

Observation [K7r]/(K + [K7r]) 0 44+0.08 
. -0.09 

the measured values of R may be compared with the predicted values; the values 

obtained from the models of Bauer, Stech, and Wirbel 1881 of Grinstein, Wise 

and Isgur, 1891 of Ali and Yang, 1901 of Suzuki 1911 and of Chao, Kramer, Palmer, 

and Pinsky 1921 are summarized in Table 9.2.I. The measured value is consistent 

with the first three models but differs from the prediction of the fourth by 3.6 

standard deviations. This is not overly surprising, as the first three models 

include calculations of hadronic matrix elements whereas the fourth is based on 

the decay of the c quark, treated as a free particle. This approach was shown 

in section 3.2 to be inadequate for predicting charmed mesons lifetimes. The 

last model uses the formalism of chiral anomalies to fix the magnitude of the 

vector current. This model is somewhat less restrictive in its treatment of the 

K -7r system than the other models; unfortunately, its prediction differs from the 

measured value of R by 2.2 standard deviations. 

9.3: Resonant structure of K-7r system 

Each of the models discussed in section 9.2 includes the assumption - ex­

plicitly or tacitly - that the only hadrons produced in semileptonic decays are 

single pseudoscalars of single vector mesons. The detected events of the type 

D -+ K 7r e+ Ve offer a direct test of this assumption. 
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The invariant mass of the K-7r system is shown in Fig. 9.3.1 for each of 
--=-=° the four decays n° -t K- 7ro e+ Ve, n° -t K 7r- e+ Ve, n+ -t K- 7r+ e+ Ve, and 

n° -t K 7r- µ+ Vµ. In each case, there is a clear peak in the mass range 0.875 -

0.925 Ge V / c2 - the range containing the K* (892) resonance - but there are also 

events with masses above and below this range. These events are not background. 

The imposition of tighter tag and particle identification cuts reduces the total 

number of events but not the relative number of events in the mass 'wings'. 

The contribution of the K* (892) resonance to the observed mass spectrum 

may be estimated through the use of an unbinned maximum-likelihood fit. The 

model chosen includes amplitudes for both the K* and either S-wave or P-wave 

'phase-space'.* The spectra for these processes are calculated through a Monte 

Carlo simulation; the generated events are subjected to the same reconstruction 

and analysis programs as the real data. The resulting spectra are shown in Fig. 

9.3.2. The spectra are smoothed by a cubic-spline algorithm. 

The magnitude of the K* (892) contribution is estimated from the forty elec­

tronic events; the events from the decay n° -t K 7r- µ+ Vµ contain too much 

background to be used. An investigation of the K-7r mass acceptance indicates 

no serious systematic differences among the three electronic decays. Therefore, 

the same fitting function is used for all the events. 

The data are presented in Figs. 9.3.3 and 9.3.4 along with the results of the 

models containing the K*(892) and S-wave or P-wave phase-space. Even though 

the fits were performed using unbinned maximum-likelihood techniques, for pur­

poses of comparison, the value of x2 is calculated for both modes: x2 /degree-of­

freedom is 14.6/29 for the K* + S-wave model and 16.8/29 for the K* + P-wave 

model. The fit to the S-wave model is slightly better, but both fits are clearly 

* The terms S-wave and P-wave phase-space will be used to denote spectra calculated as 
described in appendix 3; the S-wave and P-wave matrix elements are used in conjunction 
with non-resonant phase-space. 
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Figure 9.3.1: Invariant masses of K-7r system 
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Figure 9.3.2: Predicted K-1!' mass distributions 

acceptable from a statistical point of view. The result of the S-wave fit is: 

B(D --r K* e+ Ve) 
( K + ) = 0.55 ± 0.13 (S-wave) 

B D --r 1T' e Ve 

The result of the P-wave fit is: 

B(D --r K* e+ Ve) 
( K + ) = 0.57 ± 0.13 (P-wave) 

B D --r 1T' e Ve 
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The contribution of the K* (892), as determined from these fits, indicates that 

not all of the observed events may be accounted for by the K* (892) alone. There 

must be a substantial non-resonant contribution as well. 

It is quite difficult to assess the effect of this result on the various theoretical 

models. Each offers predictions for resonant hadronic states, but not for unbound, 

non-resonant states. Hence, they must be modified in some way to incorporate 

such states before they may be used reliably to calculate the rate of semileptonic 

decay to final states containing more than three bodies. This applies not only to 

n decays, but also to the decay of bottom mesons. In particular, the measure­

ment of the of the KM matrix element Ubu should be carefully reexamined as this 

depends critically on the endpoint of the lepton momentum spectrum in semilep­

tonic B decay; predictions of this endpoint will require revision if non-resonant 

final states are found to be important in B decays. 

The observation of non-resonant final states in semileptonic decays is not 

without precedent. The decays K+ -+ 7r+ 7r- e+ Ve and K+ -+ 7r+ 7r- µ+ Vµ 

proceed at small but measurable rates. The 7r+ -7r- masses are of necessity below 

the resonance region. In the case of n decays, however, several resonances are 

energetically accessible, so the observation of non-resonant final states takes on 

much more significance. 

9.4: Vector form factor 

A total of 103 events are observed in the two modes n° -+ K- e+ Ve and 

n° -+ K- µ+ vµ. These modes are particularly 'clean'; of the 103, only 11.5 are 

expected to be from background processes. These events are thus well suited for 

investigation of the dynamics of the decay. 

The decay n° --t K- e+ Ve is governed by the vector form factor* f +(t); 

t is the square of the mom en tum transferred to the lepton pair, (PD + PK) 2 • 

* This is discussed at length in chapter 3. 
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K-rr Invariant Mass: S-Wave Fit 
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Figure 9.3.3: Invariant mass of the K-7r system: 

fit to K* (892) + S-wave phase-space 

K-rr Invariant Mass: P-Wave Fit 

20 

15 x2 = 16.63 

10 

0.6 0 .6 1 1.2 
Invariant Mass (GeV /c2

) 

Figure 9.3.4: Invariant mass of the K-7r system: 

fit to K * (892) + P-wave phase-space 
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The matrix element for the decay D 0 --+ x- µ+ vµ contains two form factors, 

!+(t) and f-(t), but the effect of the second of these is very small. t The lepton 

energy spectra for these decays are shown in Fig. 9.3.1; the spectra are calculated 

according to the formulae of appendix 3. There is clearly little difference in the 

two spectra. The events detected in the two modes may thus safely be combined 

for the extraction of the vector form factor . 

The Dalitz plot of the lepton and kaon energies is given in Fig. 9.4.2 for 

each of the two decays. The energies are found by boosting the 4-momenta to 

the center-of-mass of the decaying D. It is only the presence of the hadronic tag 

which makes this possible as the 4-momentum of the semileptonically decaying 

D is known a priori. The most obvious features of these Dalitz plots is the 

accumulation of events toward large kaon energies. 

The kaon energy spectrum is proportional to l!+(t)l 2. In the ems of the 

decaying D, tis equal tomb+ m~ -2mnEK. Thus, the value of the form factor 

may be obtained from the t spectrum of the kaon. The measured t spectra are 

plotted in Fig. 9.4.3 for the two decay modes. 

The number of events expected in the range from t tot+ dt is: 

dN ex l!+(t)l 2 (x2 - 4.\2)312 E(t) 
K 

Here, .\ is the ratio of K and D masses, x K the energy of the kaon in dimensionless 

units - xK = 1 + .\2 - t/mb - and E(t) the detection efficiency. If l!+(t)I is 

assumed to be a slowly varying function, the value of If+ ( t) I may be estimated 

by: 

!+(t) ex 
N 

rt+ll./2 E(t) (x2 - 4.\2)3/2 dt 
Jt-ll./2 K 

where N is the number of events observed in the range t - b../2 tot+ b../2. The 

t The form factor f-(t) multiplies terms of order m!. The effect of these terms, relative to 

those multiplied by f+(t), is thus of order m!/m~ = 0.003. 
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Figure 9.4.1: Energy spectra of leptons in n° ems: 

n° - K- e+ Ve (a); n° - K- µ+ Vµ (b) 
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Figure 9.4.2: Dalitz plots of kaon and lepton energies: 

n° - K- e+ Ve (a); n° - K- µ+ Vµ (b) 



30 

20 

10 

0 
0 

0.5 

0.4 

0.3 

0.2 

0.1 

0.0 

192 
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Figure 9.4.3: Kaon t spectra in n ems: 

n° ~ K- e+ Ve (a); n° ~ K- µ+ Vµ (b) 
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n° ~ K- e+ Ve (a); n° ~ K- µ+ Vµ (b) 
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detection efficiencies, obtained from a Monte Carlo simulation are shown in Fig. 

9.4.4. 
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The values of the form factor obtained by the above procedure are given in 

Fig. 9.4.7b. The unknown constant !+(O), discussed in section 3.3, may not, 

unfortunately, be determined in this manner. The values plotted are actually 

!+(t)/ !+(O). The calculation of the uncertainties in the values given in the 

figure merits some discussion. The value of the form factor in some range of 

t is proportional to VN, where N is the number of events detected in this range. 

The uncertainty in this number of events is, however, also equal to VN, at 

least in the limit in which Gaussian statistics apply. If the usual rules of error 

propagation are used, the resulting uncertainty in g = VN is quite surprising: 

g-Vfi 

b = Bg bN = ! 
g BN 2 

This result, that the uncertainty in g is constant, independent of N, is surely not 

correct. This uncertainty may calculated numerically from the formulae: 

Clg = y' < g2 > - < g >2 

00 -N Ni 
< gm > = L im/2 e ·1 

i. 
i=O 

The uncertainties so calculated are plotted in Fig. 9.4.5. The uncertainty ap­

proaches the value 1/2 - the result from the simple error propagation - for 

large values of N. 
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Figure 9.4.5: Uncertainty in g = VN 

If the vector form factor is assumed to be of the simple pole form derived 

in section 3.3, the pole mass may be calculated from the kaon t spectrum. The 

likelihood function is: 

2 

f+(t) = f+(O) r;F· t 
mF• -

The maximum momentum transfer, tmax, is (mn-mK) 2. The pole mass obtained 

from the fit is mF* = 2.7~6:~ GeV /c2 ; the errors are evaluated at the 63.8% 

confidence level corresponding to one standard deviation. The likelihood function 

is plotted in Fig. 9.4.6; its very asymmetric shape is responsible for the fact that 

the positive error is so much larger than the negative error. 
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Figure 9.4.6: w = - log(.C) for fit to pole mass 

The kaon t spectrum, corrected for detection efficiency, is shown Fig. 9.4.7a; 

the solid curve is the predicted spectrum using the pole mass obtained from the 

fit. This prediction clearly provides a satisfactory description of the data. The 

values of !+(t)/ !+(O) obtained above are plotted in Fig. 9.4.7b . Again the result 

of the fit is in good agreement with the data. 

The systematic uncertainty in the value of mF* due to the fitting procedure 

is studied by generating Monte Carlo events with various values of the pole mass, 

then calculating this mass from these events. The results of this investigation 

are shown in Fig. 9.4.8. The fitting procedure is seen to be free of any substan­

tial systematic difficulties. Any remaining systematic uncertainty in the mass 

determination originates with the determination of the detection efficiencies. If 

the fit is applied to the electronic and muonic data separately, the results are: 

mr(e) = 2.4~~:~; mr(µ) = 3.l~~?i0 • The different data sets do yield different 

results, however, this difference is small compared with the quite large statistical 

errors in the determination of m F*. 
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Figure 9.4.8: Comparison of generated and measured values of pole mass 



197 

9.5: Conclusions 

A great deal of information on the semileptonic decays of D mesons has 

been discussed, all of the information concerning exclusive processes for the first 

time. The only previous direct measurements were of the inclusive semileptonic 

branching ratios. 

The exclusive branching ratios obtained are absolute branching ratios. They 

depend neither on the magnitude of the charm production cross section nor on 

the integrated luminosity. These measurements are thus directly applicable to 

other experimental situations where the process of charm production may be 

completely different . 

The measured values of the exclusive branching ratios demonstrate for the 

first time that the semileptonic decays of D mesons are dominated by the final 

states K z+ Vz, and K 7f z+ Vz. The lack of large contributions from final states 

such as K 7r 7r e+ Ve confirms a basic assumption of almost all theoretical models. 

As there is sufficient phase-space available for such multi-body decays, the dom­

inance of K z+ Vz, and K 7f z+ Vz underscores the essential spectator character of 

semileptonic decays. 

The semileptonic decays of kaons have been studied extensively. The dynam­

ics of these processes are in excellent agreement with Standard Model predictions. 

However, the maximum momentum transfer possible in such decays is relatively 

small: 0 :S t :S (mK - m71") 2 = 0.13 (GeV /c2) 2 • In the case of D decays, this 

range is extended by more than an order of magnitude: 0 :St :S (mn - mK) 2 = 

1.88 (GeV /c2) 2 • Thus, the semileptonic decays of D mesons probe the Standard 

Model over a much larger kinematic range than do the decays of kaons. The 

good agreement between the measured and predicted energy spectra support the 

procedures used to calculate these spectra: parameterization of hadronic matrix 

elements through symmetry arguments, and factorization of hadronic and lep­

tonic vertices. That the measured vector form factor is consistent with the simple 



198 

pole form lends credence to the idea of using dispersion relations to calculate form 

factors. 

Of the heavy pseudoscalar mesons, the D is the first to be observed in semilep­

tonic decays to four-body final states. That the hadronic part of such a final state 

is not completely resonant is unexpected and difficult to explain. It may have 

important consequences for other heavy meson systems such as the B hadron 

system. Little is known about these particles as only a handful have been recon­

structed. If non-resonant final states are important in B decays, this will affect 

the relative amounts of D and D* mesons produced in their decay which will in 

turn affect the calculation of the charm multiplicity from B decays. The presence 

of non-resonant final states might also affect the search for top - or T - mesons 

at the SLC and LEP. It has been proposed 1031 that the limited hadronic mass 

range available in semileptonic decays might provide a clean signature for these 

T mesons. If there are non-resonant final states, these mass limits will become 

'smeared out' and it is unclear how clean the signature would remain. 

An important lesson to be drawn from the semileptonic decays of D mesons is 

the necessity of including the properties of hadrons in the calculation of semilep­

tonic decay rates. This has proven feasible and reliable in the case of D mesons. 

It is even more important in the decay of the B meson; there the spectator model 

is of even less use due to the helicity of the neutrino. The processes c --+ s e+ Ve 

and D --+ Ke+ Ve predict very similar lepton spectra. Predictions based on the 

processes b --+ c e- Ve and B --+ De+ Ve are, however, very different. This may, 

in particular, affect the calculation of the endpoint of the lepton momentum 

spectrum so crucial to the determination of the KM matrix element Ube. 
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Appendix 1: Recursive Partitioning 

Developing Tree Structured Classification Rules 

Any object may be characterized by a set of observations or measurements 

made on it. Further, this object may belong to one of several classes . Suppose 

that m measurements are performed on each object. Then there is a measurement 

vector, x = ( x1, ... , xm), corresponding to each object. Let X be the space 

containing all such vectors x. Suppose further that there are N classes and let 

C be the set {1, ... , N}. A classifier, d(X), is simply a mapping from X to C. 

If Aj is the set of all x in X such that d( X) = J., then Aj n Ai = 0 if i -=/=- J. 

and X = UjAj. Thus d partitions X into disjoint subsets. 

A learning set, summarizing past experience, is necessary for devising the 

classifier. If there is a set of M objects, with classifications already known, the 

learning set which will be denoted £ is defined as 

M 

£ = U (xi,J.i) 

i=l 

Xi E X,Ji E c 

Each of the quantities Xi may be of one of two types: 

• ordered: takes on values from the set of real numbers 

• categorical: takes on values from a finite set, the elements of which have no 

natural order, i.e., {red, white, blue} 

The usefulness of a classifier is measured by its misclassification rate, R* ( d), 

the probability that an object drawn randomly from X will be incorrectly clas­

sified. In general, R* ( d) cannot be calculated directly but several estimates may 
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be defined. The resubstitution estimate is . 

R(d) = ~ I: x(d(xi) i= ii) 
(x,j)EL'. 

x(true) = 1 

x(f alse) = 0 

For the test-sample estimate, the learning set is divided into two subsets,..C1 

and ..C2. The classifier, d, is devised only from the elements of ..C 1 • The misclas­

sification rate is estimated from 

Continuing this process, the learning set may be divided into V subsets of 

equal size. The classifier, dj, is devised V times from the elements of the set 

Ui=l=j ..Ci· Then the elements of ..Cj are used to make a test-sample estimation and 

finally, the V-fold cross validation estimate is calculated. 

Tree-structured classifiers are constructed by repeatedly splitting subsets, or 

nodes, of X into two descendant subsets. The process begins with X itself. The 

final, or terminal, nodes form a partition of X and each one is associated with one 

and only one class. Several different terminal nodes may, however, be associated 

with the same class. 

Constructing a tree classifier entails using the learning set to 

• determine the splits 

• identify each terminal node with a class 
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• decide when to declare a node terminal 

Central to determining the best split for a given node is the concept of 'pu­

rity'. A node is pure if all of its elements are of the same class. It is maximally 

impure if it contains an equal number of elements of each class. This may be 

formalized through the use of an impurity function, </>, a function on the set of 

all N -tuples (P1, . . . ,PN) satisfying L~iPi = 1. It should be maximum only 

at the point (1/ N, ... , 1/ N), minimum at the N points (1, O, . .. , 0), (0, 1, ... , 0), 

. . . , (0, . .. ,0, 1), and symmetric in all the P/s. 

The joint probability of an object being both in node t and of class j is 

estimated as p(j,t) = II(j) · Mj(t)/Mj where Mj is the number of elements 

in £ of class J·, MJ·(t) the number of elements in £ which are also in t and 

of class J·, and II(j) is the a priori or prior probability of picking an object 

from X of class j . II(j) is often estimated as Mi/M where M is the total 

number of elements in £. The probability of an object being in node t is then 

P(t) = Li P(j, t) and the conditional probability of an object in node t being 

of class J. is P(jJt) = P(j, t)/ P(t). Note that Lj P(jJt) = 1. The impurity of a 

node is defined simply as 

i(t) = </>(P(lJt), ... , P(NJt)) 

Splits are chosen which maximize the decrease in impurity. Suppose a split, 

s, is chosen which partitions a node t into two new nodes, tL and tR, with 

proportions pL and pR of the elements oft going into tL and tR, respectively. 

The decrease in impurity afforded by this split is then 

~i(s, t) = i(t) - i(tL)PL - i(tR)PR 

or noting that pL = p(tL)/p(t) and pR = p(tR)/p(t) 

~i(s, t) = (i(t)p(t) - i(tL)p(tL) - i(tR)p(tR)) · p~t) 

It is important to note that selecting a split to maximize ~i(s, t) is equivalent 
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to selecting a split to minimize the impurity of the whole tree. If a tree has a 

nodes, T, the subset f of which are terminal, the impurity of the tree is 

I(t) = L i(t)p(t) 
tET 

Suppose some terminal node, t, in f is partitioned according to a split 8. The 

new tree, T', has impurity 

I(T') = L i(t)p(t) + i(tL)P(tL) + i(tR)p(tR) 
t# 

The resulting decrease in impurity is then 

I(T) - I(T') = i(t)p(t) - i(tL)P(tL) - i(tR)p(tR) 

= t>.i(s, i) . p(t) 

Since p(t) is always greater than 0, a split selected to maximize t>.i(s, t) is guar­

anteed to minimize the impurity of the entire tree. 

One last requirement needs to imposed upon the impurity function. It is 

necessary to insure that, all other things being equal, that split is selected which 

results in the purest daughter nodes. Consider the two-class problem indicated 

in Fig. Al.1. The same number of objects, 20, are misclassified in both cases. 

Case b is clearly preferable, however, as the right daughter node is completely 

pure and no further splitting is required. The split resulting in case b will be 

chosen if the impurity function decreases faster than linearly as P(J'lt) -+ 1. 

The criteria for determining a split may now be summarized. First, an im­

purity function must be chosen with the following properties: 

• ef> is a symmetric function of N variables. 

• ef> is maximum at the point (1/ N, ... , 1/ N) 

• ef> is minimum at the N points (1,0, ... ,0), (0,1, ... ,0), ... , (0, ... ,0,1). 
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b 

Figure A.1.1: Splits of two different purities: 

Split in (b) is preferable to split in (a) 

Numbers inside the circles are the class populations . 

• aa
2

~ < 0 for 0::; Xj ::; 1. Second a split is chosen which maximizes D..i(s, t) 
xj 

An identification rule J. ( t) assigns to the node t a class from the set C. An 

obvious choice is J.(t) = m~xP(ijt). It may be the case, however, that it will be 
i 

more 'costly' to misclassify some classes than to misclassify others. It is possible 

to introduce this cost via the cost matrix, the elements of which are: 

C(ijJ.) 2: 0 

C(i!J") = O 

i#J 

i=J 

The cost of identifying a terminal node as class i is now 2-:f=,1 C(ilJ")P(J"jt). 

The optimal identification rule, the one which minimizes this cost, is J"(t) = 

m~nl:f=,1 C(ilJ)P(J"jt). 
i 

Impurity functions may also take this variable cost into account. One such 
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function is the Gini Diversity Index. 

<f>(P(llt), ... 'P(NIT) = L C(ilj)P(ilt)PUlt) 
i,j 

The third and final requirement for constructing a tree classifier is a method 

for determining when a node should be declared terminal. There is no known 

general procedure for determining whether a node should be split, but there is a 

simple alternative. A very large tree is produced from the learning set and then 

parts of this tree which are of little use are removed in a process called pruni"ng. 

The pruning procedure is quite simple. Denote by Tt the branch of T origi­

nating at the node t, that is the set consisting of t and all its descendants. An 

example is shown in Fig. Al.2. As noted above, the cost of a node t is 

r(t) = m~n L C(ilj)P(Jlt) 
i . 

J 

The cost of a branch is then 

R(Tt) = L r(t)p(t) 
tET1 

where Tt is the set of all terminal nodes in Tt. 

The measure of the usefulness of a branch Tt is its cost complexity which is 

defined as 

Here and following ISi denotes the cardinality of the set S. The parameter a 

is a penalty paid for having too many nodes. As long as Ra(Tt) < Ra(t), Tt 

is preferable to just t alone, but as a increases so does the cost per terminal 

node. At some of value of a, it will be preferable to prune Tt, keeping only t. 
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Figure Al.2: Example of a branch: dotted lines enclose Tt 

The value of a at which this occurs is easily calculated. If R 0 (Tt) = R 0 (t) then 

R(Tt) + a!ftl = R(t) +a, or 

R(t) - R(Tt) 
a= !ft! -1 

Defining A(t) = (R(t) - R(Tt))/(lftl - 1), the weakest l£nk in the tree is that 

node for which A(t) is a minimum, for as a increases this node is the first node 

with R0 (t) = R0 (Tt)· 

The complete procedure for producing a tree-structured classifier consists in: 

1. growing an overly large tree from the learning set, with at most a few 

elements of this set in each terminal node. 

2. pruning this large tree by removing successively each weakest-link. If two 

or more nodes yield the same value of A(t), all of them are pruned at the 

same time. 

3. evaluating the true misclassification cost of each of the resulting subtrees, 

either by cross-validation or by the use of an independent test set. 
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The best subtree is the one with the lowest misclassification cost. This tree is 

used as the tree-structured classifier. 
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Appendix 2: Identification of K~ 

In the plane transverse to the beam direction, the trajectory of a particle is 

circular. Two such trajectories intersect in this transverse plane in zero, one or 

two cross£ng po£nts. (The case in which the circular paths coincide exactly will 

be excluded from consideration.) 

The radii of the circles, as well as the position of their centers, must be cal­

culated first in terms of the charges and momenta of the particles, their positions 

of closest approach to the primary vertex, and the magnitude of the magnetic 

field. The radii, Pl p2, are given by the formula p = Pxy/(0.03 · B), where Pxy is 

the transverse momentum and B the magnitude of the magnetic field. If Mi is 

the position of closest approach of the ith particle, and qi and <.pi are its charge 

and azimuthal position, the center of the circular path is located at: 

Cx = Mx + qp sin<.p 

Cy= My - qp COS<.p 

The various angles are illustrated in Fig. A2.1. 

The paths will not intersect if the circles are disjoint or if one is contained 

wholly within the other. Even if there is no crossing of the trajectories, these 

could still correspond to the decay of a K~. Multiple Coulomb scattering and 

measurement errors will limit the accuracy to which the helices may be recon­

structed. The circular projections must come within a 'grazing distance' of each 

other of 9 mm to be considered further. 

If one circle is contained within the other, the vertex is taken to be the point 

halfway between the two points on the circles closest to each other, as illustrated 

if Fig. A2.2. The position of the vertex is: 

~ is the distance between the centers JC2 - C1 J and f the unit vector connecting 
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Pxy 

Figure A2.1: Center of helix 

them ( <% - Ci)/~. The points on the circles closest to this vertex are: 

When the two circles are disjoint, a similar calculation yields the position of 

the vertex. This situation is shown in Fig. A2.3. In this case: 

The points nearest the vertex are as given above. If the circles intersect in only 

a single point, the two formulae above yield the same vertex position: 

This final case to be considered is that in which the circles intersect in two 

points. This is, unfortunately, more complicated than the previous cases. A 
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Figure A2.2: One circle within the other 

Figure A2.3: Two circles disjoint 
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diagram defining the various angles involved is given in Fig. A2.4. It is easily 

seen that a 2 +>.i =Pi and a2 +>.~ = p~. Also, it should be noted that/;::,,.= >.1 +>.2• 

Now: 

Since Pl and >.1 are related - Pl cos ~ = >.1 - it is simple to solve for cos~. 

p2 - p2 + f::..2 
cos~= 1 2 

2p1f::.. 

The positions of the two crossing points may now be calculated: 

Vix= Cix + P1 cos(e + ~) 

Viy = C1y +Pl sin(e + ~) 

V2x = C2x + P1 cos(e- ~) 

V2y = C2y +Pl sin(e - d 

The vertex closest to the primary vertex is kept. 

It is now necessary to calculate for all cases the z position of the vertex. For 

a helix, there is a simple relation between the angle swept out in x - y plane, 'r/, 

and the distance travelled in the z direction: 

d'r] 
cot>.= -pq­

dz 

The angle >. is the dip angle of the helix and q is the particle charge. The angle 

rJ is the sum of the two angles a and (J as indicated in Fig. A2.5. The first of 

these, a, is the azimuthal position of the vertex in a coordinate system centered 

at 61. 

The angle (J is related to the azimuthal direction 'Pl of particle number one at 

it position of closest approach to the primary vertex: (J = -q1 · 7r /2 - 'Pl· The 
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C1-1<-~~~--==--+--=~­

V2 

Figure A2.4: Two crossing points 

v 

M 

Figure A2.5: Turning angle 
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angle rJ is now given by: 

sin rJ = -qi sin( a+ <p1) 

The distance travelled in the z direction is finally: 

The resolution in the dip angle is significantly worse than the resolution in the 

transverse plane. For this reason, the z distance is calculated separately for both 

tracks. The z position of the vertex is obtained by averaging these distances. 

The momenta of the two tracks must now be transformed - 'swum' - to 

the vertex. This accomplished most easily by calculating the swum momenta in 

terms of the total transverse momentum, Pxy: Px = qpxy sm a, Py = -qpxy cos a. 

The z component is unchanged. 
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Appendix 3: Spectra in Semileptonic Decays 

A3.1: D-+ Pe+ lie 

The simplest semileptonic decays are those in which a pseudoscalar meson 

decays into another pseudoscalar, an electron and an electron-neutrino. An ex­

ample of such a decay is D-+ Ke+ lie. When a D meson decays semileptonically, 

the amplitude may be written as: 

As was discussed in chapter 3, if the D decays into a kaon (or pion) and a 

lepton pair, the hadronic current may be parameterized in terms of two form 

factors: 

If the charged lepton is an electron, the second form factor f- ( t) may be ignored. 

This is easily demonstrated by considering the contraction of (Pn - PK)µ with 

J µ, leptonic • 

(Pn - PK)µ u(lle)l'µ(l -15)v(e+) =(Pe+ Pv)µ u(ve)tµ(l - /
5
)v(e+) 

= u(ve)/°v(l -15)v(e+) + u(lle)(l + 15)/°ev(e+) 

The Dirac equation may be used to simplify this further since: 

u(ve)/°v = mvu(lle) = 0 

/°ev(e+) = -mev(e+) 

If it is assumed that f- is at most of the same magnitude* as f +, this term has 

a negligible effect on the decay rate due to the smallness of me. 

* In the PCAC limit, f-(t) should actually be much smaller in magnitude than !+(t). 
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The invariant amplitude is now given by: 

It is necessary to square this and sum over the lepton spins. t 

The remaining calculations are best carried out in the rest-frame of the de­

caying D. It is convenient to introduce the dimensionless quantities Xi - 2Ei/mn 

and >. = mK/mn. Note that if all three final state particles were massless, the 

range of each of the xi's would be from 0 to 1. In terms of these, the inner 

products are: 

The matrix element is now: 

t The normalization chosen for the spinors is: 

With this choice: 

uu=2m vv = -2m 

L u,,(P, s)u,a(P, s) = (;F>+ m)a,a 

L v,,(P, s)v,a(P, s) = (;F>- m)a,a 
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The decay rate is then given by: 

In the rest frame of the D, t = m~(l + >.. 2 - xK), so seven of the integrals 

may be performed trivially, yielding the expression: 

The joint distribution of Xe and x K is then: 

In order to obtain the distribution of x K' it is necessary to carry out the inte­

gration over Xe.* The result is remarkably simple: 

If the form factor !+(t) is taken to be constant, the electron energy spectrum 

* The limits of integration depend on the value of x K. The relation (PK+ P11 )
2 = (PD - Pe) 2 

is given in terms of the dimensionless quantities by: 

1 
1- x = >.2 + -x (x - (x2 - 4>.2 ) 112 cos{} ) e 2 " K K Kv 

Solving for Xe, and making use of the identity xK +Xe+ x11 = 2: 

2(1 - >. 2 - x ) 
Xe= 2- X + K 

K x - 2 - (x2 - 4).2)1/2 cos{} K K Kv 

The limits are given by the constraint I cos {}Kvl ~ 1. The upper and lower limits, x~ and 
x~, are then: 
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and the distribution of cosrJKe may be obtained in closed form: 

W(xe) = x~(l - ).2 - Xe)2 

1 - Xe 

W(y) = r:5 (6 + 6y(1 - >.2) + y2(1 - >.2)2) log(l + y(l - >.2)) 

3(1 >.2) l - -;; (2 + y(l - >.2)) (1 + y) 

1 
y = 2 (cos iJ Ke - 1) 

For the calculation of detection efficiencies, it necessary to generate a large 

number of events in which the kinematic variables display the correct spectra. 

, Suppose that these distributions are determined by an integral of the form: 

b d 

I= J dx J dy f(x, y) 
a c 

The integration may be performed numerically by the Monte Carlo method. The 

variables x and y are picked at random - with a uniform distribution - in the 

appropriate ranges. If many such pairs are chosen, the value of the integral is 

approximately: 

The random variables x and y drawn from these N events will not, of course, 

have the correct spectra as the values of x and y were chosen uniformly. The 

correct distributions are: 

d 

1 dl 1 I P(x) =I dx =I dy f(x,y) 
c 

b 

ldl 1 I P(y) = -- = - dx f(x, y) 
I dy I 

a 
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The joint probability is: 

1 
P(x, y) = If(x, y) 

Finally, the conditional probability of y given a value of x is: 

P( I ) = P(x,y) 
y x P(x) 

f(x, y) 

I: dy J(x,y) 

The random variables x and y may be forced easily to have the correct spectra. 

Consider the case of a single variable z E [a, b] with the probability distribution 

P(z). Suppose it is necessary to pick values of z randomly such that these values 

will reflect P ( z). A simple way to do this is to pick values uniformly in the range 

[a, b]. The variable qi = P(zi)/ Pmax, where Pmax is the maximum value of P, is 

then a random variable in the range [0,1]. This value qi is compared with another 

uniformly distributed random variable r also in the range [0,1]. The value of Zi is 

retained only if ri :S qi, otherwise it is discarded and a new value generated. The 

probability that a value of z in the range [z, z +dz] will be retained is then equal 

to P(z)dz. Thus the set of values {zi} are correctly distributed. This procedure 

is called the weighted-reJection method. 

This method may be generalized to any number of variables. In the present 

case, there are two variables x and y. If both are generated uniformly, the joint 

probability f(x, y) divided by its maximum must be compared with a uniformly 

distributed random number as before. Those events retained will display the 

correct spectra. 

For each event (xi, Yi), f(xi,Yi) is the weight.* The value of the integral 

is just the mean value of these weights. These may exhibit very large fluctua­

tions so the value of the integral estimated from them may converge only very 

slowly. Often a change of variables may substantially limit these fluctuations and 

* If the integration is over a volume of phase-space, this weight is denoted the phase-space 

weight. 
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thus dramatically improve the convergence. The procedure for such a change of 

variables is best illustrated in one dimension. 

b 

I= J f(x) dx 
a 

Suppose the values of x are not to be picked uniformly but rather according to 

a distribution g(x). Define the cumulative distribution to be G(x) = J: g(y) dy. 

Consider now the ratio: 

G(x) - G(a) 
r=-----

G(b) - G(a) 

Clearly, r is a random variable in the range [0,1]. Further, dr is given by: 

dr = g(x) dx 
G(b) - G(a) 

Thus if x is distributed according to g(x), r is uniformly distributed. The ratio 

above may be inverted formally to yield: 

The integral is now: 

x = c-1 [G(a) + r(G(b) - G(a))J 

I= J(G(b) - G(a)) f(x(r)) dr 
g(x(r)) 

N 
~ __!_ "'(G(b) - G(a))f(x(ri)) 

N ~ g(x(ri)) 
i=l 

If the function g is nearly the same as f, the Monte Carlo estimate of the integral 

will converge very quickly. 
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Returning now to the case of two variables, suppose xis distributed according 

to: 
d 

g(x) = ~ J f(x, y) dy 
c 

and that y is distributed according to: 

P( I ) = 1 f(x, y) 
y x I g(x) 

The cumulative distributions are: 

x y 

G(x) = J g(x) dx H( ) = I f(x, y) d 
y I g(x) y 

a 

Finally, define the two ratios: 

G(x) - G(a) 
r1 = G(b) - G(a) = G(x) 

r = H(y) - H(c) = H( ) 
2 H(d) - H(c) y 

The differential quantities are given by: 

dr1 = g(x) dx 

d - f(x,y) d 
r2 - I g(x) y 

The integration is now reduced to the trivial result: 

Thus the weight for each event is unity. 

c 

The procedure outlined above is used to construct the 4-momenta in the 

Monte Carlo simulation of D ---+ Pe Ve. 
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1. xK is picked in the range [2>., 1 + >. 2] according to W(xK). 

2. Xe is picked in the range [x~, x~] according to W(xelxk) using the value of 

x K picked in step 1. 

3. The polar angles, <.pe and <.pK' are picked uniformly in the range [0,27r]; 

cosiJK
11 

is picked uniformly in the range [-1,+1]. 

4. Finally, the angle between the 3-momenta of the kaon and electron is eval­

uated: 

The various spectra are illustrated in Figs. A3.1.l - A3.1.4. The form factor 

was taken to be of the simple pole form: 

2 
mF* 

!+(t) = f+(O) m}. - t mp- = 2.14 GeV /c2 
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Kaan Energy Spectrum 
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Figure A3.1.1: Energy spectrum of K- in n° rest frame for n°--+ K- e+ Ve 
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4000 

3000 

2000 

1000 

0 '--'----'--'--'-'----'-----'--'-L......J.---'--'--'-'----'--'--'-L.......l.---'--'--'--'----'-~ 
0 0.2 0.4 0 .6 O.B 

x. = 2 E. I MD 

Figure A3.1.2: Energy spectrum of e+ in n° rest frame for n°--+ K- e+ Ve 
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Neutrino Energy Spectrum 
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Figure A3.1.3: Energy spectrum of Ve in n° rest frame for n° ---+ K- e+ Ve 

e-v Angular Distribution 

2500 

2000 

1500 

1000 

500 

-0.8 -0.8 -0.4 -0.2 0 
y = (cos(ll •• ) - 1)/2 

Figure A3.1.4: Distribution of y = !(cos'!Jev. - 1) in n° rest frame for n°---+ K- e+ Ve 
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A3.2: D --t p µ+ Vµ 

When a D meson decays into a pseudoscalar meson, a muon, and a muon­

neutrino, the form factor f-(t) may no longer be ignored. The two form factors 

must be relatively real to insure the T invariance of the amplitude. Ignoring the 

overall phase, the matrix element is given by: 

L IMl2 = 8G} cos2 
{) c 

[f!(t)(2Pµ ·(PD+ PK)P11 ·(PD+ PK) - Pµ · P11 (PD + PK) 2) 

+2m! f+(t)f-(t)P11 ·(PD+ PK)+ m! f'!_(t)Pµ · P11 ] 

The spectra may be calculated as before in terms of dimensionless quantities. 

One additional ratio is necessary: E = mµ/mD. 

W(xµ, xK) =f!(t)(8xµ - 4xKxµ + 4xK - 4x! - 4 

-4).2 - 3E2 + 3E2XK + 4E2Xµ + A2E2 - E4
) 

+2f+(t)f-(t)E2(3 - >.2 + E2 - XK - 2xµ) + J'!..(t)E2(1 + >.2 - E2 - xK) 

W(xK) = [t!(t) (~(xi- 4>.2) + E2(1 + >.2 - xK) 

2E4 
( 1 - A 2) 2 E6 1 2 10 2 4 ) 

- (1 + ).2 - xK)2 + (1 + ).2 - xK)3 (1 + 3XK - 3>. + .\ ) 

+2f+(t)f-(t)E2(1- ).2) (1- .\~2 )
2 

l+ -xK 

+ f2 (t)E2(1 + _x2 - X ) (1 - E2 ) 2] (x2 - 4).2)1/2 
- K 1 + _\2 - XK K 

The range of xK is now [2.\, 1 + .\2 - E2]. For a given value of xK, the range of 

Xµ IS: 

These and other spectra, evaluated in the rest frame of the decaying D are 
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shown in Figs. A3.2.1 - A3.2.4. The form factor f-(t) is assumed to have the 

form: 

f-(t) = !+(O) (m~ -m~) ( m~0 _ m~. ) 
t m}

0 
- t m }• - t 

mp
0 

= 2.20 GeV /c2 

Kaan Energy Spectrum 
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1.1 

Figure A3.2.1: Energy spectrum of K- in n° rest frame for n° ---+ K- µ+ vµ 
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Figure A3.2.2: Energy spectrum of µ+ in n° rest frame for n° ---+ K- µ+ Vµ 
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Neutrino Energy Spectrum 
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Figure A3.2.3: Energy spectrum of Vµ in n° rest frame for n° -t K- µ+ Vµ 
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Figure A3.2.4: Distribution of y = !(cos 11 µv,. - 1) in n° rest frame for n° -t K- µ+ Vµ 
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A3.3: D -r Ve+ Ve 

When a D meson decays to a vector meson, an electron and an electron­

neutrino, the situation is more complicated. The hadronic current is: 

Jµ,hadronic = Vzcos'l?c[ig(t)Eµvpo-E*v(PD + Py)P(PD + Py)o-

- f(t)E~ - a+(t)(E* · PD)(PD +Py)µ - a_(t)(E* · PD)(PD - Py)µ] 

Just as f-(t) could be ignored in the pseudoscalar case, a_(t) may be ignored 

here. 

It is necessary to sum the matrix element over the spins of the leptons and 

over the polarizations of the vector particle. The latter is accomplished through 

the use of the identity: 

The matrix element is given by: 

L IMl2 = 8G} cos2 'I? c 

[ 8g2(t)((Py · Pe)(PD ·Py )(PD· Pv) +(Py· Pv)(PD ·Py )(PD· Pe) 

- m~(Py · Pe)(Py · Pv) - m~(PD · Pe)(PD ·Pe)) 

- 8g(t)f(t)((Py · Pe)(PD · Pv) - (Py· Pv)(PD ·Pe)) 

!() () (
2(PD ·Py )(Py· Pe)(Py · Pv) 

+ 4 t a+ t 2 my 

- (PD· Pe)(Py ·Pe) - (PD· Pv)(Py ·Pe)) 

+ t'(t) (2(Pv. P~rv. Pv) + (P,. Pvl) 

+ 4a2 (t) (2(PD. Py)2(Py. Pe)(Py. Pv) - 2m2 (Py. Pe)(Py. Pv) 
+ m2 D 

y 

+ m~m~(Pe · Pv) - (PD· Py )2(Pe · Pv))] 
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The spectra are given by: 

W(xe, xv) = 4m~g(t) 2 A - 2g(t)f(t)B + 2f(t)a+ (t)C + f
2

~t) D + 4m~a~(t)E 
mD 

A= ~(6xvxe - 4xv - 4xe + 3x~ + 2x; - x~ - 2xvx; 

- 2x~xe + 2 - 2.\4 
- 2.X2xvxe + .X 2 x~) 

B = 2(3xv + 2xe - 2xvxe - x~ - 2 - 2.\2 + .X2xv + 2.X2xe) 

- 1 ( 2 2 C -
2

.\2 -4xv - 4xe + 4xvxe + 2xv + 2xe 

- x~xe - xvx; + 2 + 2.\2 
- .X 2 x~ + .X4xv) 

D = 2~2 (xv+ 2xe - xvxe - x; - 1 + .X2 - 2.X2xv + 2.X4
) 

E _ 1 ( 3 2 2 2 3 2 2 ,2 
- 8.X2 Xv - Xv + XvXe - XyXe - XvXe + 4A 

+ 4.\4 
- 4.X2xv - 8.X2xe + 4.X2xvxe + 3.X2 x~) 

The inclusion of the vector particle introduces a further complication into the 

event generation; the phase-space weight is no longer simply unity. It is straight­

forward to calculate this weight with the observation that a decay determined 

by multiparticle phase-space factors into a series of quasi two-body decays. This 

may be demonstrated with the case of a pseudoscalar decaying into three pseu­

doscalars, say D ---+ K7r7r. If the matrix element for this process is ignored, the 
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decay rate is: 

This integral may be written in a more convenient form through the use of 

three identities: 

b4(Pn - PK - P7r1 - P7r2 ) = j b4(Pn - PK - P)b4(P - P7r1 - P7r2 ) d4p 

I b ( P 2 - M 2) dM2 = 1 

I b ( p2 - M2) d4p = I ~; 
The decay rate may now be cast into the form of two quasi two-body decays: 

Here, Mis the invariant mass of the 7r1 - 7rz system. 

Returning now to the semileptonic decay D ~ Ve+ Ve, assume that the vector 

particle is the K* (892) resonance. The matrix element for this decay must contain 

the weak matrix element given above and also a Breit-Wigner function for the 

mass of the K*. The decay rate for the decay chain D ~ K* e+ Ve, K* ~ K7r is 

given by the expression: 

Mis the invariant mass of the K - 7r system. Mr and r r are the resonant mass 

and width of the K*. The integration may be simplified by applying the factoring 
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rule derived above: 

The integration of the terms within curly braces - {} - has already been 

accomplished with the results described above. Six of the remaining integrations 

are trivial: 

The function qK(M2) gives the momentum of the Kin the center-of-mass of the 

K*. Its definition is: 

(M4 + m4 + m4 - 2M2m2 - 2M2m2 - 2m2 m2 )1/2 
q ( M2) = K 7r K 7r K 7r 

K 2M 

One further simplification is in order: dM2 = 2M dM. Now the integration is 

reduced to: 

As is clear from the discussion in section A3.l, this integral will converge much 

faster if M is chosen according to a Breit-Wigner distribution. This seemingly 

difficult task turns out to be surprisingly simple. If the random variable r is 

uniformly distributed in the interval [0,1], then the values of M obtained from the 
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following formula will display a Breit-Wigner distribution; the range of allowed 

masses is [Mmin,Mmax]· 

M =Mr+ r; tan [ arctan(;r (Mmin - Mr)) 

+ r( arctan(;r (Mmax - Mr)) - arctan(;r (Mmin - Mr)))] 

dM = (1 + (4/r;)(M - Mr) 2
) 

· i ( arctan ( ;r (Mmax - Mr)) - arctan ( ;r (Mmin - Mr))) dr 

If the energies x K* and Xe are generated according to the above distributions, 

and the mass M according to a Breit-Wigner distribution, the phase-space weight 

for each generated event is: 

Figures A3.3 .1 - A3.3 .5 illustrate the spectra for the decay n° ---+ K*- e+ Ve, 

K*- ---+ K- 7ro. The form factors in these calculations are: 

m2 
g(t) = g(O) 

2 
r 

mr -t 
m2 

f(t) = f(O) 
2 

FA 
m -t 

FA 

m2 

a+ ( t) = a+ ( 0) 
2 

FA 
m -t 

FA 

mFA = 2.25 GeV /c2 
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K• Energy Spectrum 
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Figure A3.3.1: Energy spectrum of K*- in n° rest frame for n° -+ K*- e+ Ve 

Electron Energy Spectrum 
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Figure A3.3.2: Energy spectrum of e+ in n° rest frame for n° -+ K*- e+ Ve 
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Neutrino Energy Spectrum 

x. = 2 E. I Mo 

Figure A3.3.3: Energy spectrum of Ve in n° rest frame for n° ~ K*- e+ Ve 
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Figure A3.3.4: Distribution of y !(cos '19 eve - 1) in n° rest frame for n° ~ K*- e+ Ve 
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K•- Mass Distribution 
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Figure A3.3.5: K*- mass spectrum for n° -+ K*- e+ Ve 

A3.4: D -+ v µ+ Vµ 

For decays of this type, the form factor a_ (t) should, in principle, not be ig­

nored. The resulting formulae, however, become quite complicated. By ignoring 

this form factor, the relative error introduced is of order m~/m~ = 0.003. This 

ratio is small enough that serious problems will not occur if a_ (t) is ignored. 

thus all of the Monte Carlo simulations of D-+ V µ+ Vµ are performed by using 

the formulae of section A3.3, replacing me everywhere by mµ-

A3.5: D-+ PPe+ Ve 

If the two pseudoscalar mesons are produced in a relative S or P wave, the 

formulae of sections A3.1 and A3.3 may be applied. In both cases, the mass of 

the P1 - P2 system is generated uniformly in the range [mp
1 
+ mp

2
, mn - me]· 

the resulting phase-space weight is 27rq Pi; q Pi is the momentum of P1 in the 

center-of-mass of the P1 - P2 system. 

The S-wave and P-wave mass distributions are given in Figs. A3.5.l and 

A3.5.2 for the decay n+-+ K- 'Ir+ e+ Ve. 
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S-wave Mass Distribution 
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Figure A3.5.1: S-wave mass distribution for n° ---* K- 71"+ e+ Ve 
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Figure A3.5.2: P-wave mass distribution for n° ---* K- 71"+ e+ Ve 
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