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ABSTRACT

The essential starting point of this dissertation presents an
alternative approach for formulating simultaneous equation models for
qualitative endogencus variables. To be explicit, the endogenous
variables will be generated as Nash equilibria of a game between two
players, and the statistical model will be generated by invoking the
random utility framework int roduced by McFadden (1974, 1981). Contrary
to the earlier simultaneous equations models (Heckman (1978)), the
approach presented in Chapter II will not impose logical comsistency
constraints on the parameters. A distinctive feature of the model is
that it extends the usual simultaneous model with structural shift to
cases where the parameters need not satisfy the logical consistency
conditions.

Following the game theoretic formulation set out in Chapter II,
Chapter III proposes an alternative model where the equilibrium concept
is that of Stackelberg. As in Chapter II, we will still assume that
each player maximizes his own utility, with the statistical model again
being derived using McFadden”s random utility approach. A distinctive
feature of this model is that it contains as a special case the usual
recursive model for discrete endogenous variables.

With Chapters II and III as a theoretical background, the purpose
of Chapter IV is to present an empirical study of the Nash and
Stackelberg equilibrium models. The problem we examine concerns a

married couple”s joint decision whether or not to participate in the
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labor market. We examine three competing specifications. Chapter V
concludes this dissertation with a discussion of which of the three
empirical models most adequately describes the joint labor force
participation decision of a random sample of married couples. Since
none of the three models are completely nested in each other, we are
not able to employ any of the classical tests. As such, we use an
alternative method developed by Vuong (1985) for choosing the most

adequate model.
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CHAPTER I: INTRODUCTION

Over the last few decades, economists have become increasingly
interested in studying economic decisions involving choice over a
finite number of alternatives., For example, frequeatly analyzed
behavioral phenomena are decisions over brands of consumer durables
(see, e.g., Dubin and McFadden (1984) and Cragg and Uhler (1970)),
travel mode (see, e.g., Domencich and McFadden (1975) and Hausman and
Wise (1978)), and labor force participation (see, e.g., Gunderson
(1974) and Parsons (1980)). (See Amemiya (1981) for a large list of
empirical papers which use discrete models.) .As a first step in
model ing such examples, it is natural to consider a univariate random
variable taking on two or more discrete values. For instance, we may
consider a random variable taking on only two outcomes, those being
whether to drive to work or take the bus; alternatively, we may
describe a random variable whose two outcomes index an individual's
decision whether or not to participate in the labor market. But now
consider a more complicated problem in which an individual must decide
not only whether to take the bus or drive to work but also whether to
travel during rush hours or off-rush hours; or the decision of a
husband and wife whether or not to each participate in the labor
market. Certainly both of these problems imvolve joint decisions and
should be modeled as multivariate (jointly dependent) qualitative
random variables. Typically, we then specify a system of simultaneous
equations in the form of a structural model. Such a system is

simul taneously determined in the sense that the interaction of all




variables as specified by the model determines simultaneously the
entire set of jointly dependent qualitative variables.
At this point it may be useful to recall what we mean by a

structural model.

*In the fundamental economic sense, the property that

characterizes a structural system is the (truth of the)

assertion that it describes accurately (or adequately) the

precise fashion in which all the curremt endogenous and

predetermined variables mutnally interact within the

specified economic system. Thus, as of a given moment of

time, observations on the system represent the result of

such interaction.”

P.J. Dhrymes (1974)

If these observations on the system represent the result of
interaction among individuals or firms, then it must be recognized
that these interactions will most likely be characterized by strategic
behavior. Therefore, it is incumbent that this strategic behavior be
incorporated directly into econometric models of individual choice
using the concepts of game theory. Until now, this has not been done
and will be the focus of this disserctation. To be more precise, the
major purpose of this dissertation is tolpresent an alternative
approach for formulating simultaneous equations models for qualitative
endogenous variables. The endogenous variables will be generated
successively as Nash and Stackelberg equilibria of a game played
between two individuals, and the statistical model will be generated
by invoking the random utility framework introduced by McFadden (1974,
1981). We then apply these models to a labor force participation

problem. Finally, we propose a test to choose the model which most

accurately generates the observations. Hence, the title of this




dissertation,

Before developing the ideas in this dissertation, it is first
necessary to review the literature on qualitative multivariate random -
variables. This literature has essentially developed in two separate
directions by those who assume an underlying unobserved or latent
random variable, and those who make no such assumption but instead
follow the loglinear model approach to analyze contingency tables. As
Fienberg (1975) points out, this controversy dates back to the
beginning of the 20th century with Pearson (1900) advocating the
former approach and Yule (1900) advocating the latter. We will
discuss the latter approach first.

The distribution of a set of K dichotomous random variables is
completely described by the 2x joint cell probabilities
Pt(Yl'!é""' x) in the K dimensional contingency table. In the case
of K = 2, for example with Yl and Yz taking on values one or zero, the
four probabilities Pt(Yl = y5.Y, = yz) may be described i;.the

2
following table.

Y
1 2 0
| | |
1 | Pr(1,1) | Pr(1,0) |
| | |
Y

1 [ | |
0 = Pr(0,1) = Pz(0,0) =




The probabilities must sum to one and each must lie in the unit
interval.

One representation of this problem is known as the loglinear
model (LLM) (see, e.g., Bithop, Fienberg and Holland (1975), Goodman
(1972) and Haberman (1974)). For the case of K = 2, with Yl and Y

2
each taking on the values 1 and 0, the loglinear model is given by

108[P:(Y1. Yz)] =5, + u1(2Y1-1) + u2(2Y2—1) + nlz(ZYl—l)(ZYz-l). (1)

K = 2z = 4 cell probabilities are fully represented by

Note that the 2
the four single and double subscripted u terms. In this formulation,
the terms u, and u, are commonly known as “main effects” and the LD
term is known as the "second-order interaction effect”. Since the
four probabilites must sum to one, the standard normalization imposed
on the overall mean, LT is

e "0 = ;

; expln, (27,-1) + u,(2Y,-1) (2)
1

2
+ ulz(zYl-l)(ZYz—l)].

While the loglinear model may be successful in describing the
outcomes in a purely scientific experiment, it is of little use when
one of the purposes of statistical estimation is to p:e&ict the effect
of changes in economic policy or some oth;r structural change.

Indoeed, the loglinear model does not make the distinction between
endogenous and exogenous variables; as such, it has been:described by

some (seo, e.g. Maddala (1983)) as moxre a correlation model than a




causal model. It is probably for this reason that the loglinear model
has been little used in economics. To this end, the conditional

logl inear model (CLLM) has been put forth as a model which purports to
more adegquately explain causal relationships (see, e.g., Nerlove and
Press (1973, 1976) and Vuong (1982b). Given that we may want to
explain one variable given advance knowledge of another variable, 2
formulation in terms of conditional probabilities seems particularly
appealing. With this in mind, the conditional probability of Yl given

Yé is written as

Pr(1,Y,) + P;(O.Yz)

Pr(Y, | Y, =

exp(ulYl_j ulele)
exp(u1 + nlez) + oxp(-u1 —nlez)’

where we have used the loglinear specification of the joint
probability of (Yl'Yﬁ) as given in (1) and the normalization given in
(2). A representation that is more commonly used is the log-odds

ratio:

+ 2u,,.Y = wl + 'IY . (3)

Pe(Y, = 1lY,)
= 2u, 1272 " Yo T 212

R
112 Pr(Y, = 0lY,)

For completeness, we have a8 similar expression for the probability of

Yé given Y1:

P(Y, = 1lY.)

2 2
L2!1 = log [ FT;:—:TBTii;] 2nz + 2u12Y1 = w5 + '111‘ (4)




Because of the similarity between equations (3) and (4) and
the structural equatiohs in a simoltaneouns model for continuous
variables, some authors have been led to interpret these conditional
loglinear equations as structural (see, e.g., Schmidt and Strauss
(1975a,b)). To do this is misleading, for ; couple of reasons (see,
e.g., Nelson (1979) for an alternative discussion). First, and
foremost, as opposed to the situation in classical simultaneous models
where the endogenous variables are determimed jointly, the derivation
at equations (3) and (4) is based on conditional distributionms.
Second, note the implicit cross—equation parameter constraint in
equations (3) and (4), viz, '; - w:. Thus we“aro required to live
with the unappealing and restrictive notion that the effect of Yl on
Yé is equal to the reverse effect of Yz on Yl. We are thus led to the
conclusion that the conditional loglinear model has no more of a
structural interpretation than thp loglinear model; indeed, this
should not be surprising given that the latter model is nothing more
than an alternative representation of the former model. A further
attempt to model causal relationships is given by the recursive
logistic model (RLM), the topic to which we now turn.

Unl ike the usual simultaneous equations model where it is not
possible to interpret each equation as & conditional expectation
except in the case of a fully recursive model, we find that the
formulation of multivariate qualitative variables in a logistic
framework allows us to do precisely this. But as we will shortly see,

recursive logistic models suffor from the same drawbacks as




conditional loglinear models. Let us first examine models that are

only partially recursive. Consider the case of three binary variables

Yl’ Yz and Y3 where we posit that Yl is determined first, and that Yl
then effects both Yz and 13 which are determined jointly. Then the
model is given as P‘(Y1'72'Y3’ = Pr(Yl) . Pr(!z.Ylel). Since it is
easily shown that all parameters appeascing in Pr(Yz.Ylel) also appear
in Pg(YzlYl.Ys) and Pr(Y3|Yl.Y2). we will use these latter two
conditional probability expressions. Then expressing each of the

three probability components as log-~odds, we have:
(Y, = 1) :
i S
1 1°‘[::(11-o)] 23y, (3)

e(Y,. = 11Y,,Y.)
= 2 1" 3
Llis 1°‘[::(12 = oltl.zs)]

=
L]

= 202 + Zulel + 2n23Y3 + 2u12311Y3, (6)
and
L3j1z = los[ft(zg - 1=Y1.!21]
P:(Y3 =0 Yl,Yz)
= 2n3 + 2n13Y1 + 2u23Y2 + 2“1232112' (7)

where the u terms appearing in the above three eguations refer to the
coefficients in the loglinear model. But now note from equation (6)

that the coecfficient attached to the 13 term is the same as the

coefficient attached to the !é term in equation (7), viz, 2n23.

Therefore we sed, just 23 in the conditional loglinesr model, that the

effect of Yé oﬁ Y3 is identical to the opposite effect of YS on 12.




We now turn to fully recursive logistic models.

Let us now alter the example used in the discussion of
partially recursive models so that now Y1 is determined first, that le
determines Yz and that Y1 andﬂY2 now jointly determine Y3. Thus we
need to oxamine the marginal distribution of Yl‘ the conditional
distribution of Yé given !1, and finally the conditional distribution
of Yé given the joint determination of Yl and Yz. Again, expressing

each of the three probability components as log-odds ratics, we have:

Pr(Y, = 1)
= —_—l | .
L, 108{?2(11 - 0)] 2u1. (8)
'p:(rz = 1l11)
LZII = log Lpt(rz - OIYI)j = an + 21112!1. and (9)
Pe(Y, = 11Y,,
311 Pr(Y, = olrl.rz)
= 2u3 + 2n13 + 2023Y2 + 2n123IIY2. (10)

Although it is seen that thore are no cross—equation constraints
appearing in equations (8) through (10), in contrast to the previous
two models, this model is inadequate unless the process generating the
observations is truly recursive. Moreover, oven if the true process
is recursive, the model still does not have a structural
interpretation in the sense that we are modeling the conditiog:l
determination of the outcomes rather than their joint determination.

For this reason, a number of anthors feel that a more useful approach




in model ing multivariate qualitative variables is to assume the
existence of underlying continuous response functions. Since the
general model introduced by Heckman (1978) considers a nunbe¥ of other
models as special cases, we will confine ourselves to a discussion of
his model (seec also Maddala and Lee (1976)).

Heckman considers the following two equation model

® L ]

Ylt = xlt“1 + Bl’Zt + !ﬁt71 + LI : (11)
L L ]

Yo = Xppg + Bo¥yy + Tyo¥p * 8y (12)

* »
where Ylt and YZt are continuvous latent random variasbles and Ylt and

YZt are observed qualitative variables generated using the following
dichotomization:
14ff Yo, > 0
¥ 1t ’
1t = 0 otherwiss (13)
1428 Yo, > 0
. 2t ’
2t =
0 otherwise °
)
By making specific assumptions on 51 and Bz, and on !lt and
.
th. a number of different models arise from the gemeral model

specified by equations (11) — (13). For example, if !;t and Y;t are

both observed and if ﬁl and Bz are both zero, we have the classical

simultaneous equations model. Second, it may be the case that while
L 3
we only observe whether the event !;t % 0, we may in fact observe Ylt;

)
Ylt is therefore treated as s continuous random variable. Heckman
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calls this the "“Hybrid Model with Structural Shift.” Naturally, then

we have the simple "Hybrid Model” when no structural shift is

permitted; this is when By = gz = 0, Finally, when Yy TY, = 0 and
only the events Y;t % 0 and Y;t % 0 are observed, we have a bivariate
probit model with structural shift. When, in additiom, Bl = 52 = 0,
we have the simple bivariate probit model of Ashford and Sowden
{1970). Since all the models discussed above oexhibit similar
characteristics, we will confine the discussion to the case of the
bivariate probit model with structural shift.

As is well-known, all simultaneouns equations models of dummy
endogenous variables thnt'iave the reslization of Y;t and Y;t' namely
Ylt and YZt' appearing as right-hand side vafiables must satisfy a
constraint on the parameters s0 as to insure that the probabilities
add up to one. This restriction on the parameters is commonly known
as the logical consistency condition; for the case at hand, the
restriction is that Bl . Bz = 0. (See Heckman (1978) and Maddala
(1983); see also Schmidt (1981) for a gemeral discussion of logical
consistency conditions required for various forms of simultaneous
equations probit and tobit models.) As will be seen later, the
implications of the logical consistency comdition for bivariate probit
models with structural shift are quite important and striking.

Just as we have previously argued that the loglinear model and
its conditional loglinear and recursive logistic variants are not

adequate for formulating structural econometric models, Heckman argues

that the bivariate probit model with structural shift is superior to
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the loglinear model in the sense that the loglinear model is not
sufficiently rich in pi:ameters to distinguish structural association
among discrete random variables from purely statistical association
among discrete random variables. As we shall see, Heckman's argument
differs slightly from the arguments put forEh above.,

To fix ideas, consider again the loglinear model for two

dichotomous variables

Y., = - - - -
loglPr( 1 !i)] U, + ul(ZY1 1) + uz(ZYz 1) + ulz(ZY1 1)(2!2 1).

Then the four joint probabilities generated by this model give us the

followirg set of equations:

loglPr(i,1)] = uy + u; +u, +ou,,,
log[P£(1,0)] = u; + u, - U -,
1og[Pr(0,1)] = Uy - u; +u, - B,
10g[Pr(0,0)] = L AT

where again Uy = —IOg[oxp(n1 + u, + nlz) +

exp(u1 -u, - n12) + exp(-nl +tu, - nlz) + exp(—n1 ~u, + ulz)]

30 as to insure that the individual probabilities add up to one. Now
note that in the loglinear model, the conditional probability that

Y1 = 0 given Yz may be written as
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- 1
Pr(Y, = olxz) =

_ (2u,,¥,-20.,(1-Y,))"
(1+ ¢ 2%1e 1 12"~ 2

272

Now let us consider comparable expressions for Heckman’s
bivariate probit model with structural shift. Repeating again the two

equation model, and omitting the subscript t, we have

]
Y, = X0y v By, t ey

¥y = Ey0, + BoX, + o8y

Now let us impose the logical consistency condition that
Bz = 0, say. Then, again, the four joint probabilities generated by

this model give us the following set of equations

Pr(1,0) = F(xlalr -Xzaz, -p),

Pr(1,1) = F(xla1 + Bys Xa,, P

where F(+,+, p) is the bivariate normal cumulative density function
with correlation coefficient p. Then using the four equations above,

we can write the conditional probability that Yl = 0 given Y2 as

-Yz

Y 1
(—Xa—B.Xa.-p)'|2 (-X,a,, -X,a,, p)
Pr(¥Y, = 0lY,) = [F i3 1 22 -[E--l-l——-3-2--]
1 2 F(=, —xzaz. -p) ] F(=, -xzaz. p)




13

Heckman now wishes to point out that while o, and xlul. v, and
Xzaz play similar roles in the models in which they appear, it is
important to note that LT and p and ﬂl also play similar roles, In
the bivariate probit model with structural shif¢, the probability that
Y1 = 0 given Y2 depends on Yh for two conceptually distinct reasons:
one related to the true structure of the model (B1 ¥ 0) and the other
due to covariance in latent errors (p # 0). In the loglinear model,
these two effects are indistinguishable. Thus the loglinear parameter
of association, Byg0 corresponds to two distinct parameters in the
bivariate probit model with structural shift, p and Bl. Although one
must judge for himself whether or not the preceding argument is
convincing, two further points deserve mention.

First, while both the loglinear model and the Heckman model
each contain a parameter which attempts to capture the association
between the random variables Yl and Yz. both these parameters are
subject to restrictions; these restrictions call into que;tion the
usefulness of both models. As recalled from above, both the
conditional loglinear model and the partially recursive logistic model

contsin the implicit cross—equation parameter constraint which

requires that the effect of Yé on Yl be equal to the reverse effect of

Yé on Yl' In the Heckman model, on the other hand, although the shift

parameters are included as an attempt to explicitly model the

structural association betwoen the random variables Y, and Yz, it will

1
later be shown that the required logical consistency condition implies

that the effect of Yl' say. on !ﬁ is structurally independent from the
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reverse effect; this point was alluded to by Schmidt (1981).

The second point concerns the Heckman model in particular.
With rare exception (Waldman (1981)), the required logical comnsistency
conditions do not have an economic interpretation, That is, there is
usually no a priori reason to impose that either ﬁl or 52 must be
zero:

With this in mind, the purpose of Chapter IXI of this
dissertation is to present an alternative approach for formulating
simulataneous equations models for gualitative endogenous variables.
To be explicit, the endogemouns variables will be generated as Nash
equilibria of a game between two individuals, and the statistical
model will be generated by invoking the random utility fromework
introdunced by McFadden (1974, 1981). (See Heckman (1978) p. 954, for
a discussion of the random utility framework in bivariate probit
models with structural shift.) Contrary to the earlier simultaneous
equations models, the approach presented in Chapter II will not impose
logical consistency constraints on the parameters.

Moreover, a distinctive feature of the model is that it
extends the nusual simultaneous model with structural shift to cases
where the parameters need not satisfy the logical consistency
conditions. Indeed, when the logical consistency condiéions are
imposed, the model coincides with the usual simul taneous equations
model with structural shift. This will provide a structural
interpretation to the usuasl dichotomization. |

With this as & background, Chapter II is organized as follows.
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Section 1 provides a short introduction to the Chapter. In Section 2,
we show that the logical consistency condition implied by simultaneous
equations models with structural shift requires these models to be
recursive, Thoh in Section 3, our game theoretic approach will
suggest a natural rule for generating the observed dichotomous
variables, other than the dichotomization used in the literature up
until now. The resulting statistic model is derived, and it is seen
that no logical consistency conditions are implied on the parameters.
In Section 4, identification of the model is discussed along with
problems of estimation that relate particularly to identification.
Section 5§ conciudss the pa;er. Proofs of all propositions are found
ia the text of the Chapter itself., The first partial derivatives of
the expressions for the probabilities are found in the Appendix to
Chapter II, as they will be needed both for identification and
maximization of the likelihood function.

Following the game theoretic formulation set out in Chapter II
where the discrete dichotomous random variables are goenerated as Nash
equil ibria of a game played by two individuals, Chapfet III proposed
an alternative model where the equilibrium concept used is that of
Stackelberg. As in Chapter 1I, we will still assume that each player
maximizes his own utility, with the statistical nodpl again being
derived using the random utility approach suggested by McFadden (1974,
1981). A distinctive feature of our model is that it contains as a
special case the usual recursive model for discrete endogenous

variables (see, e.g., Maddala and Lee (1976)). A structural
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interpretation of this latter model can then be given in terms of a
Stackelberg game in which the leader is indifferent to the follower's
actions.

With this as a brief background, Chapter III is organized as
follows. Section 1 provides a brief introd;ction to the Chapter. In
Section 2, we derive the statistical model where the outcomes are
generated as Stackelberg equilibria of a game played between two
players. Section 3 compares the usuval formulation of the problem in
terms of recursive models with our alternative formulation. In
pacticular, it is shown that the usual :ecnrs{ve model is nested in
our more general model. In Section 4, we discuss identification of
the model and estimation issues as thoy relate to identification.
Section § concludes the Chapter. Proofs of all propositions are found
in the text of the Chapter. The first partial derivatives of the
probabilities, which are needed both for identification and estimation
of tho model, are found in the Appondix to Chapter III.

¥With Chapters II and III as a theoretical backgrouand, the
purpose of Chapter IV is to present an empirical study of the Nash and
Stackelberg equilibrium models. The problem we will examine concerns
a married couple’s joint decision whether or not to participate in the
labor market. As such, we will examine three competing
specifications. First, we will assume that the joint work decision is
the outcome of a Nash game played by the husband and wife. Second, we
will assume that the married couple plays a Stackelberg game in which

the husband plays the role of tho leader, while his wife plays the
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role of the follower. Third, we will specify another Stackelberg game
in which the roles of the ieader and follower are reversed.

We feel that an examination of this problem will yield two
useful results. ”First. it will demonstrate that the game theoretic
models we have proposed are in fact empirically tractable. Second, we
feel that the proposed study will make a contribution to the
literature on labor force participation because we explicitly model
the behavior of a married couple in a game theoretic framework, while
previous work has either taken the husband’s docisién whether or not
to work as exogenous (see, e.g., Heckman (1974), Heckman and Macuordy
(1980)), or specified the labor supply of 2 husband and wife from the
outcome of a joint utility function (see, e.g., Ashenfelter and
Heckman (1974), Cotterman (1981), and Gromau (1973)).

Af ter one reads Chapters II and IXII, it will hopefully be
clear that the structures of the Nash and Stackelberg models contain
some similarities. As such, the cimilarities in the structure of the
models will naturally translste into similarities in the specification
of the three applications. Thus, after a brief introduction in
Section 1, these similarities will be discussed all at once in Section
2. Section 3 will discuss peculiar features of the structure of the
Nash model along with the empirical results of the problem under
study. Sectionm 4 will discuss the Stackelberg model for the case in
which the husband plays the role of the leader while his wife plays
the role of the follower. Empirical resﬁltl will also bﬁ presented.

Section 5 discusses the third empirical example where the roles of the
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husband and wife are reversed. Section 6 provides a brief conclusion.
A description of the data set used in the three empirical studies is
included as an Appendix to Chapter IV. As such, the Appendix will
discuss the source and description of the original data set, the
selection criteria we used in choosing the appropriate set of
observations, and the means and variances of the explanatory
variables.

With Chapters II through IV as a background, it is natural to
conclude this dissertation with a discussion of which of the three
empirical models most accurately describes the joint labor force
participation decision for.tho random sample of married couples.
Chapter V proposes to do precisely this. As will be made explicit in
Chapter V, none of the three models are completely nested in each
other; as such, we will not be able to employ any of the classical
tests, viz, the Wald test, the Lagrange Multiplier test or the
likel ihood ratio test. To get around this difficulty, twé alternative
methods have been developed over the last couple of decades, those
being the techniques of model selection as proposed first by Akaike
(1973, 1974), and teasts of non—nested hypotheses fi:at proposed by Cox
(1961, 1962). Since neither of these two methods has been widely
employed in the empirical econometrics literature, it is therefore
necessary to present a brief review of the liter;ture on both of them.

With this as a brief background to the problem of choosing the
most idoqunto model, Chapter V is organized as follows. Section 1

presents a brief imtroduction. Sections 2 and 3 present a review of
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the literature on model selection and tests of non—nested hypotheses,
respectively. As will.be explicitly pointed out in both sectioms,
major difficulties are encountered in carrying out either of the two -
methods. As such, an alternative method will be employed which deals
both with model selection and tests of non—nested hypotheses.

Although this method is developed fully in Vuwong (1985), it will be
discussed briefly in Séction 4. Using the method suggested in Section
4, Section 5 will attempt to choose the most adequate of the three
proposed models. Section 6 presents a brief conclusion.

Upon the completion of Chapter V, two.sepn:ate appendices will
be found. Appeadix A presents the documentstion and the computer
program used to estimate the Nash model. Similarly, Appendix B
presents the documentation and the computer program used to ostimatle

both specifications of the Stackelberg model.
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CHAPTER II: AN ECONOMETIRIC MODEL OF A NASH GAME

1. INTRODUCTION

Over the last decades, economists have been increasingly
interested in studying economic decisions involving choice among a
finite number of alternatives. For instance, frequently analyzed
behavioral phenomena are decisions on labor force participation,
travel modes, and brands of commodity purchases. A reason for such s
trend may lie in the increasing availability and quality of large
microdata sets. Since the behavioral phemomena of interest were
qualitative in nature, new statistical models such as the by—-now
well-known logit model were introduced in econometrics (McFadden
(1974), Nerlove and Press (1973, 1976)).

Following the development of the standard linear simultaneous
equations model (Koopmans and Hood (1953)), the literature on discrete
variables models has rapidly evolved in simul taneous modeling. In
particular, the first simultancous mcdels that were proposed were
directly issued from the standard linear simultaneous equations model.
Specifically, the models were formulated inm terms of a linear
simul taneous equations model in latent continuous variables from which

the observed gualitative variables were gemerated using a

e ™ 0if ¥, _< O

.
dichotomization such as Ylt = 1 if Ylt >0, and ¥ 1¢ &

1
(see e.g., Maddala and Lee (1976), Nelson and Olson (1978)).




21

More recently, starting with Amemiya (1974) and Heckman
(1978), a new generation of simultaneous models for
qualitative/truncated variables was introduced where the underlying
simultaneous equations models were formulated in terms of both latent
continuons variables and observed gualitative/truncated variables.
These models are often called simultaneous models with structural
shift. As is well-known, however, a major difficulty that arises with
these latter models is that they require the parameters to satisfy
some logical consistency conditions in order that the models be
statistically meaningful (see, e.g., Hockman (1978), Gourieroux,
Laffont, and Monfort (1980), and Schmidt (1981)).

With some rare exceptions (Waldman (1981)), the logical
consistency conditions implied by the simultaneous models with
structural shift do not have an economic interpretation. This fact
explains the few applications of these models in economics. Moreover,
as Schmidt (1981) has pointed out, when the exogenous varéabisg are
gualitative, the associated logical consistency conditions imply some
recursivity in the sigultaneous equation models. Although Maddala
(1983, Sections 5.7 and 5.8) has warned against the mechanistic
formulation of simultaneous models with latent continuous variables,
and has srgued that in many cases an alternative model without logical
consistency conditions can be specified, the previous models are
nevertheless the only ones available in the literature that have both
latent continuous variables and observed qualitative variables in the

equations,
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The purpose of this chapter is to present an alternative
approach for formulating simultaneous equations models for qualitative
endogenous variables. For the simple model that we shall propose,
both latent continuous variables and observed dichotomous variables
will appear in the equations. To be explicit, the observed endogenous
variables will be generated as Nash equilibria of a game between two
individuals, and the statistical model will be generated by invoking
the random utility framework introduced by McFadden (1974, 1981).
Contrary to earlier simultaneous models, however, our approach will
not impose logical consistency constraints on the paranéters.

A distinctive feature of our model is that it extends the
ususl simultaneous model with structural shift to cases where the
parameters need not satisfy the logical consistency conditionms.
Moreover, when the logical consistency conditions are imposed, our
model coincides with the usual simultaneous model with structural
shift. This provides a structural interpretation to the usunal
dichotomization.

The chapter is organized as follows. In Section 2, we shall
show that the logical consistency conditions implied by simultaneous
equation models with structural shift actually rule out simultaneity
for the simple problem that we consider. Since simultaneity is an
inherent feature of the problem, it follows that these models are
inappropriate. Then in Section 3, our game~theoretic approach will
suggest a natural rule for generating the observed dichotomous

variables, other than the dichotomization rule used in the literature
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up to now. The resulting statistical model is derived, and it is seen
that no logical consistency conditions are implied on the parameters.
Section 4 discusses identification of the model and a few estimation
problems as they relate to identification. Section 5§ concludes the
chapter. As will be discussed in Section 3, a difficulty arises when
there do not exist unique pure strategy Nash equilibria. As a result,
Appendix A of this chapter provides a justification of how we handle
this difficulty. The first partial derivatives of the probabilities
are found in Appendix B of this chapter, as they will be needed for

both identification and estimation of the model.

2. SIMULTANBOUS EQUATIONS MODELS WITH STRUCTURAL SHIFT: A (RITIQUE
To simplify the discussion, we shall restrict our attention to

the case where there are only two qualitative endogenous variables.

To simpl ify further, we shall assume that those variables are

dichotomous. As an illustration, it will be convenient to comsider

the decision to participate in the labor force by a husband and his

wife:

Y, =1 if the husband works,
= 0 otherwise,
Y =1 if the wife works,
= 0 otherwise.
(The subscript indexing the observations is omitted inm this section
and the following one.)

Following the classical tradition in economics, we shall
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nevertheless postulate that each individual maximizes his or her own
utility function. The decisions of the husband and wife need not,

however, be independent since the utility derived by, each individual

naturally depends on the action taken by the other. Let ﬁh(i,j) be
the utility that the husband derives from taking action i if his wife

takes action j where i = 1 if the husband works and O otherwise, and

j =1 if the wife works and 0 otherwise. The utility ﬁ'(j,i) derived
by the wife from taking action j if her husband takes action i is
defined similarly,

To generate the observed dichotomous variables !i and Y', the
rule that has been used in the literature on simultaneous equations
models for dummy endogenous variables is summarized in the following

assumption.

ASSUMPTION Al:

1 if!;>0,

%

0 otherwise,
Y =1 ifY >0,
w

= (0 otherwise

where:
L -~ ~ ~ ~
Yy = L0, (1,1) -5, (0,11 + (1 - Y )V, (1,00 - T (0,001,
[} ~ o~ ~ ~
Y =400 (1,1) -0 _(0,1)] + (1 - ¥ )I[U (1,00 - T (0,01,
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The rationale for this model is the following. If the wife

works (Y; = 1), then the husband works (Yh = 1) if and omnly if
ﬁh(l.l) 2 ﬁh(o,l)-.1 On the other hand, if the wife does not work

(Y, = 0), the husband works if and only if ﬁhu.m 2 'ﬁh(o.o) .
Combining these two conditions, it follows that !h =1 if and only if
Y; > O where !; is defined as above. The decision rule for X' is

similarly derived.
Following McFadden (1974, 1981), the utilities ﬁh(i.j) and

ﬁw(j.i) are treated as random, and decomposed into deterministic

components and random components:

ﬁhu,j) = U (4,9) + n,(1.4),

T (5.1 =T (5.1 +n (j,d).

To complete the specification of the statistical model, assumptions

must be made on the unobserved random components nh(i,j) and q'(j,i).
.

From the expressions for !; and Y'. it is clear that only the

differences nh(l.l) -'nh(O.l). nh(l.O) - nh(0.0), n'(l.l) - n'(o.l).

and n'(I.O) - n'(0.0) are relevant. VWe make the following simplifying

assumption:

ASSUMPTION A2:

n,(1,1) - nh(o.l) = nh(l.O) - nh(0.0) =8y

n'(l.l) - n'(o,l) = n'(l.O) - n'(0.0) =8 .
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where the pair (sh,e') is normally distributed with zero mesans, unit

variances, and correlation p.

To simplify further, we shall assume that the difference in
utility that the husband derives from working versus not working, when
the wife works, differs only by a constant Bh from the utility he
derives from working versus not working when the wife does not work.

A similar simplifying assumption is made for the wife.z Formally, we

have:

ASSUMPTION A3:

U,(1,1) -0, (0,1) =8 + T (1,0) -0, (0,0) =B +A,

Using Assumptions A2 and A3 in the expressions for !; and Y:.

it follows that:

L ]
‘. + (2)
!' = A' + B'!i L

Given the previous assumptions, our model is a simul taneous
equations model with stxuctural shift (Heckman (1978), Schmidt
(1981)) . From Schmidt's condition 12.6, it follows that, for the
model to be statistically meaningful, the following logical

consistency condition must hold:

ﬂh * B' =0, (3)
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i.e., oeither Bh or ﬁ' must be zero.

In the simple problem considered here, the logical consistency
condition can readily be interpreted. For instaace, "Bh = (" means
that, apart from the statistical association between 8y and 8 and
hence between 8, and Y;. the husband’s decision on labor force
participation does not depend on the actual wife's decision.3 Thus
the logical consistency condition (3) implies that the decision of
either one of the individuals must be structurally independent from
the decision of the other. In other words, the logical consistency
condition associated with the above simultaneous equation model with
structural shift introduces structural recursivity ism the model.

Since there is no reason to impose a priori that ﬂh or Bw be zero, it

follows that the usual approach for formulating simultaneous equation

models with structural shift is inappropriate.

3. AN ALTERNATIVE FORMULATION

As argued by Heckman (1978), and made explicit in Chapter I,
an important justification for the use of simultaneous equations
models with structural shift is that these models can distinguish
structural association from purely statistical association among
discrete endogenous variables, while alternative models such as those
developed by Goodman (1970) and Nerlove and Press (1976) clnnot.4 The
previous section has shown, however, that the corresponding
simultaneous model with structural shift is 1napprop:iat§ in our case

because of the implied logical comnsistency condition.
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Although Assumption Al defines the crucial dichotomization
that generates the observed discrete variables Y1 and Yz. that
assumption has not been questicned in the literature on discrete
variables modeling. We shall argue that Assumption Al is in fact the
cause of the problems that are associated with the logical comsistency

conditions. Our approach relies instead on the following assumption:

ASSUMPTION Al’: The observed dichotomous variables (!i,y;) are Nash

Equil ibrium (NE) outcomes of s game played between the two

individuals.

Since the utility derived by each individual depends on the
action of the other, the natural framework is that of a game between
the two individuvals. In situations other than the one considered
here, the utility functions can obviously be replacéd by the
appropriate payoff funmctions. Assumption Al’ considers the non-
cooperative Nash Equilibrium concept, although alternative equilibrium
concepts can be invoked as we shall soon sce in the next chapter.
(See Brown and Manser (1978), Manser and Brown (1980), McElroy and
Horney (1981), and Kooreman and Kapteyn (1985) for related work using
a cooperative game solution.)

Assumption A1’ is mnot, however, sufficient to define how the

obgserved dichotomous variables (!i_y;) are gonmerated. This is so
because in many games, and especially for the particular problem

considered here, a Nash Equilibrium may not exist or multiple Nash

Equilibria may arise. As seen below, this difficulty will be resolved
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Wife

L
0] 1 Husband
Figure 1: Husband's Reaction Functions
Wife f
Hulbaﬂz’

Figure 2: Wife's Reaction Functions
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by increasing the -umber of parameters.

To determine the NE outcomes of the game, we derxrive the
reaction functions of each individnnl.s Since the outcome space is
simply {0,1} X {0,1}, there are only four possible reaction functions
for each player. These are referred to as ﬁl‘ Hz. 30 84 for the
husband and '1. Wz. Ws. 14 for the wife, as displayed in Figures 1 and
2, respectively. For instance, reaction function Hl for the husband
says that, whether or not the wife works, the husband will always
choose not to work. '

Given that Hi and"j are the husband and wife's roaction .
functions, we can readily find the Nash Equilib:ia. Table 1 indicates
the Nash Equilibria}(or lack thereof) for each of the 16 possible

pairs of reaction functions

TABLE 1: Nash Equilibria

Husband/Wife '1 '2 w3 W4
B, (0,0) . (0,0) (0,1) (0,1)
H, (0,0) (0,0)4(1,1) None (1,1)
H, (1,0) None (1,0)4(0,1) (0,1)
H, (1,0) (1,1) (1,0) - (1,1)

where the first number in each ordered pair refers to the husband and

the second to the wife.
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As mentioned earlier, a difficulty arises because of the non-
existence or the multiplicity of Nash Equilibria for the pairs
(Hz.wz_), (nz,w3), (ns.wz) and (ns,wa). As a result, we shall
distribute the probability of occurrence of each of those pairs over

the appropriate outcomes according to some weights.6

The
interpretation of the weights will be discussed more fully in Appendis
A. Let Pr(i,j) be the probability that the random variables !h and Yw

take on the values i and j. Using Table 1, it follows that:

Pr(0,0) = Pr(l!l A '1) + Pr(lll . l’z) + Pr:(H2 .Y '1)

+ all’x'(l!2 4 Wz) + c:ll’z:(ﬂ2 .Y '3) A dll’::(ﬂ3 A '2) (4)
Pr{(1,0) = Pr(lls . '1) + Pr(H4 & '1) + Pl:(ﬂ4 & '3)

+ blPt(Ha aws) + czPr(Bz A's) + dzl’r(l!3 6.'2) (5)
Pr(0,1) = Pr(Hl [ '3) + Pr(lll A '4) + l’:.'(H3 & W4)

+ 1:21’::(113 QW3) + csl’t(l!2 &'3) + d3Pr(l!3 . \'2) (6)

Pr(1,1) = P::(l!2 'y '4) + Pr(ll4 A '2) + l’r(l!4 [ '4)

+ azl’r(ﬂz . wz) + c4Pr(Hz &Is) + d4P:(n3 &'2) (7
where
al-l-az-l s b1+b2-1 ’
°1+02+03+c4-1. d1+d2+d3+d4=1,

all these additional parameters being non-negative.

Woe are now in a position to derive the conditions under which
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the reaction fuactions for the husband and wife will occur. As
expected, each reaction function will occur if certain conditions on
the random components 8y and s are satisfied. For brevity, we derive.
only the conditions for the husband’s reaction functions.

Using Figure 1, reaction function HI can be characterized by
the following two conditions: Ehu.m - 'ﬁh(o,m < 0 and

fih(1.1) - ﬁh(o.n < 0. Using Assumptions 1 and 2 these conditions are
equivalent to &y { - Ah and 8y - Ah - Bh' respectively, which can be

combined to give g < — A, - mux(o.ﬂh).
Reaction function lIz is characterized by ﬁh(l.O) - Eh(0,0) <0

and ﬁh(l.l) - ﬁh(o.n 2 0, which are equivalent to g, < — A, and

h h
&y 2 - Ah - Bh' respectively. When combined we have -Ah—ph £ 8y { -Ah

if ph 2 0; otherwise, reaction function Hz cannot occur.

Reaction function 1!3 is characterized by Ehu.n - ﬁh(o,l) <0
and ﬁh(l,O) - Eh(0.0) 2 0. Using Assumptions 1 and 2 these conditions
are equivalent to 8y - A11 - Bh and 8y 2 - Ah. respectively. When
combined we get —A1l £ 8y 4 —Ah-Bh if Bh { 0; otherwise reaction

function l{s cannot occur.

Reaction function H4 is characterized by Eh(l.Of - Eh(0.0) 2 0

and fl'h(l.l) - ﬁh(o,n 2 0, which are egquivalent to e, 2 - Ah and
8y 2 - All - ﬁh. respectively, which when combined give
&y 2 - Ah - nin(O.Bh).

The following table thus gives the conditions on & and L
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that must be satisfied for each of the husband’s reaction functions to
hold. Conditions for the wife's reaction functions are the same with

the subscript h being replaced by w.
TABLIE 2: Conditions for Husband’s Reaction Functions

g < A, - max (0, ﬂh
Hﬁ: -Ah - Bh 8y < A if Bh 0; otherwise canmot occur
33 fAh £ sh Ah Bh if ﬁh < 0; otherwise camnot occur

4 ey 2 --Ah - min(o.ﬁh)

Wo can now derive the probabilities Pr(i,j) in terms of the
unknown parameters. Let F(a,b,p) be the c.d.f. evaluated at (a,b) of
a bivariate normal distribution with zero means, unit variances, and
correlation p. Let I(a,b,c,d,p) be the integral of the corresponding
bivariate density over tho range & 2 8y 26, b2 8 2 d. Using

Equations (4)-(7), we have:

PROPOSITION 1: The probabilities Pr(i,j) are:

= F(-A,, -A_.p) — 8,1 . if B, 20,8 20

= F(-Ah' "A'pp) + 011""' if Bh 20, B' <0
= F("Aho "A'.P) + d11_+ if ah ( ol p.' 2 o
= F(-3y, -A_,p) if B, <0, B <0
= F(A,, -A_ = B_. =p) if B 20, B 20
= F(Ay, -A_ = B, =p) + oI _ if g 20, p", <o
Pr(1,0) _ P(Ay. -A_ = B, =) + 4,1, i£ g <0, B 20 (9)

=F(Ay, -A = B, =p) - bI__ if By <0, B <O
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= F(-Ah - ﬂhn A'D "P) if Bh 20, B' 20
= F(-Ay = By, AL, =) + ;I if B 20, B <0
Pr(0,1) . (10)
= F(—Ah - Bh' A'. -p) + d31_+ if Bh < 0, ﬁ' 20
= F(-A, = By, &, =p) - b I__ if By <0, B <0
= F(Ah + Bh: A' + ﬁ'pp) - 311++ if Bh 20, B' 20
=F(A, + By, A_+B.p) + oI if B 20, B <0
Pr(1,1) (11)
= F(Ah + By A, B'.p) +d,I if B, <0, B 2 0
= F(Ah + Bh. A"" B'op) if Bh { 0, B' <0
where
I++ = I(-Ah. -A'. —Ah - th -A' - B'ap)l (12)
I =

- I("Aha -A' - ﬁ'p -Ah - pho 'A'op)a
— I(-Ah - ﬂhp -A'n "Ahp -A' - ﬂ'op)a

—_— I("Ah - Bhn “A' - B'o "Ah: "A'.P) .

L]
#

-
u

PROOF: From Table 2 and the conditions for the wife’s reaction
functions, it follows that some reaction functions canmot occur
according to the signs of ﬂh and ﬂ'. For instance, when Bh 2 0 end
B' 2 0, the reaction functions Ha and 13 cannot occur. From Equations

(4)-(7) it follows that, when Bh 2 0 and B' 2 0, we have:

Pr(0,0) = P:(Hl.ll) + Pr(Bl,'z) + Pt(ﬂz,ll) + ‘1P““z"z"
Pr(0,1) = Pr(Bl.'4).
Pr(1,1) =

Pr(Bz.l4) + Pt(H4, 2) + Pr(l!4.l4) + .21’:(1!2.'2).
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Similarly, when Bh 2 0 and B' < 0, the reaction functions Hs

and Wz never occur sO we have:

Pr(1,0) = Pr(H4,'1) + Pr(H4,'3) + czPrSHé,ws),
Pr(0,1) = P:(nl.ws) + Pr(Bl.w4) + °3P‘(“i"3"
Pr(1,1) = Pr(Bz.w4) + Pr(H4.'2) + Pr(H4.W4) + c4Pr(H2.W3).

When Bh < 0 and B' 2 0, the reaction functions Hz and '3 never

occur. Thus:

Pr(0,0) = Pr(H,,W,) + Pr(H ,W,) + &,Pr(H,,N,),
Pr(1,0) = Pr(H,,¥,) + Pr(H,V,) + d,Pr(H,.V,),
Pr(0,1) = Pr(H;,¥,) + Pr(H;,¥,) + d.Pr(H,,V,),
Pr(1,1) = Pr(H,,W,) + Pe(H,,W,) + 4 Pr(H,,W,).

A

Finally, when B 0 and B ¢ 0, the reaction functions H, and
h v

2

Wz never occur. Thus:

Pr(0,0) = Pr(nl.ll).
Pr(1,0) Pt(Hs.Yl) + Pr(ll4.'1) + Pr(H4.'3) + blPr(Hs.‘Ws).
Pr(0,1) = Pr(H,,W;) + Pr(H,,W,) + Pr(H;.,W,) + b,Pr(H;,V;),
Pr(1,1) = P:(H4.l4).
It now suffices to use the conditions on oY and &y for
obtaining particular reaction functions for the husband and wife. For

each of the 4 possible pairs of signs for Bh and B'. figures 3a-3d
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Areas Defining Pr(0,0), Pr(1,0), Pr(0,1), Pr(l,l)

Fig. 3¢ : 8<0 ,8>0 Fig. 3d : B <0, B <O
h W
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show the areas over which the bivariate normal density for (eh.e')
must be integrated to obtain the 4 probabilities Pr(0,0), Pr(1,0),
Pr(0,1), and Pr(1,1). (The arcas are separated by heavy lines, while
the lighter lines separate the areas corresponding to the realizations
of the specific pairs of reaction functions.) It follows that the
probabilities Pr(0,0), Pr(1,0), Pr(0,1) and Pr(1,1) are given by

Equations (8)-(11),.
Q.E.D.

One can readily check that the four probabilities Pr(i,j) add
up to one irrespective of the signs of Bh and ﬁ'. and are continuous
with respect to all the parameters. It is then worth noting that the
proposed model does not imply any logical consistency constraints on
the structural parameters. In addition, Heckman's logical consistency

condition (3) can be interpreted in our model.

PROPOSITION 2: Imposing ﬂh . p' = 0 is equivalent to imposing that
the probability that each of the four pairs of reaction functions

(nz.wz). (né.w3). (Hé.'z). (33.13) occurs is a priori zero.

PROOF: Since (ch.c') bhave 8 joint continuous distribution, it follows
from the conditions for the husband’s and wife’s reaction functions

given in Table 2 that if Bh = 0 or B' =0 then H,, H,_, '2. or ¥, occur

3
with zexro probability.
Conversely, if the pair (5;.'2) occurs with zero probability

it follows from Table 2 that either ﬁh £ 0 or B' £0, i.e., that
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By ° B, 2 0. Similarly if the pair (né.w3) occurs with zero
probability it follows that Bh £ 0or p' 2 0, i.e., that Bh . B' < 0,

Hence Bh . ﬂw = 0,

Q.E.D.

From Figures 1 and 2, it follows that the logical consistency
condition (3) requires that either the husband’s or the wife’s action
be independent from the actiom of the other, as discussed in Section
2. More importantly, once the logical consistency condition is
imposed, the standard rule used in the literature to generate the
observed dichotomous variables is equivalent to implementing Nash

outcomes. This is shown in the following proposition.

PROPOSITION 3: If the comdition ph-p' = 0 is imposed, Assumption Al’

is equivalent to Assumption Al.

PROOF: Let us first assume that Bh = 0, From Table 2, it is clear
that reaction functions Hz and H3 now occur with probability zero.
Depending on the sign of B', we have two cases to consider. For
brevity, we only present the case where B' { 0.

Again from Table 2, imposing B' < 0 prevents reaction function
12 from occurring. Referring to Table 1, we seo that oﬁtcoue pair
(0,0) occurs if and only if reaction functions Hl and '1 are used.
But from Table 2 we see that the use of (31,11) is equivalent to the
occurrence of &y < -Ah and L < -A' which is equivalent to I; < 0 and

Y: < 0 as seon from equations (1) and (2).
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The occurrence of ouvutcome pair (1,0) is equivalent to the use

> -A

of (34.'1) or (Bhaws)- Now, (H@.Wl) is used if and only if ¢ h

h
and e < -A s (H,,W,) is used if and only if e, 2 -A, and
-A, £ L ¢ —A' - B'. Thus, the use of (H4.W1) or (Bﬁ,ws) is
equivalent to N 2 -Ah and 8y ¢ —A' - B'. vhich is equivalent to
Y 2 0emd Y, <O,

As seen from Table 1, outcome pair (0,1) occurs if and only if
reaction functions (Bi,ws) or (81,14) are used. The occurrence of

h h
equivalent to &y < -An and e 2 -A' - p'. Thus, (513!3) or (H ,!4)

(B "3) is equivalent to e ¢ -«A. and —A' £ L < —A' - B'; (Bi,w4) is
occur if and only if & { ;Ah and L 2 ﬂA'. which is equivalent to
Y, <Oand ¥, 0.

Outcome pair (1,1) is realized if and only if reaction
function pair (34,'4) is used. The use of (H4.l4) is equivalent to

. .

8, 2 —Ah and e 2 -A'. which is equivalent to !h 2 0 and !' 2 0.

To show that the proposition hoids when p' = 0, we proceed

identically.
Q'E.D.

To illustrate Proposition 3, consider the case.where Bh = 0
and B_ ¢ 0. Under the usual dichotomization, outcome (1,1) is
observed if and only if !; 2 0 and !: 2 0, while outcome (1,1) is s
Nash Equilibrium if and only if the husband’s reaction funotion is H4
and the wife’s reaction function is '4. Proposition 3 says that

!; 2 0 and !: 2 0 if and only if the husband and wife have reaction




functions H4 and W, respectively.

4

Second, Proposition 3 says that our interpretation of the
observed dichotomous variables !i and Y‘ as Nash Equilibrium outcomes
reduces to the nsual dichotomization when the logical comsistency
condition holds. It follows that our probnﬁility model defined by
Equations (8)-(11) is identical to the usual simultaneous equations
model with structural shift defined by equations (1)-(2) when

Bh°B' = 0. For instance, if ﬁh = 0, the probability model becomes:

Pr(0,0) = F(-Aha "A'n P)
Pr(1,0) = F(A,, -A_ - B_, —p)
Pr(0,1) = F("Ahl A'o -P)

Pr(1,1) = F(Ah, A' + B'. p)

(see, e.g., Hockman (1978, p. 949)

Finally, while the usual dichotomization cannot generate a
well—defined statistical model when Bh'ﬁ' # 0, our formulation based
on Assumption Al’ can still generate a simultaneous equations model
for discrete endogenoys variables whether or not the structural
parameters satisfy the logical consisteacy condition. When one
considers a game where only a unique pure strategy Nash Equilibrium is
allowed, our game theoretic model is related to models based on
Assumption Al, The following Corollary is a straightforward

consequence of Propositions 2 and 3.

COROLLARY 1: If the condition ph . p' = 0 is imposed, Assumption Al

is equivalent to a game in which only pure strategy Nash Equilibria
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are allowed.

It is of interest to know the direction of change in the
probabilities that the husband and wife will work as Ah,A',ph,p' vary. -
These are given by Pr(1,°) = Pr(1,1) + Pr(1,0) for the husband and

Pr(+,1) = Pr{1,1) + Pz(0,1) for the wife.

PROPOSITION 4: (1) An increase in ph or Ah o
(i) always increases the probability that the husband will work
Pr(1,°);
(ii) increases (decreases) the probability that the wife will work
Pr(-,1) if By2 0 (B' < 0.
(2) By symmetry, the effects of an increase in B, or A can be

deduced frxom (1).

As expected, an increase in ﬁh or Ah increases the probability
that the husband will work, regardless of whether or not the wife
works., Also when B' 2 0 the effect of an increase in ﬁh 6: Ah
increases the probability that the wife will work, since it increases
the 1likel ihood that tyo husband will work. Similar remarks can be
made for an increase in B' and A'. (Included with the proof of

Proposition 4 is a table indicating the direction of change in the

probabilities Pr(i,j) as Ah’ A', Bh' and p' vary) .

PROOF: Easily established by using eithoer the areas defining the
probabilities Pr(i,j) or by using the first partial derivatives found

in Appendix B. The table below cen similarly be established.




42

increase in Ah

Pr(1,1) Pr(1,0) Pr(0,1) Pr(0,0) Pr(1,°) Pr(-,1)

ﬁh 2 O:B' 20 + + - - + +
Bh < onﬁw 20 + ? ? - + +
By < OoB' <0 + + - - + -
Increase in Bh

Pr(1,1) Pr(1,0) Pr(oal) Pr(0.0) Pr(1,°) Pt('al)
ph .Z onp' 2 0 + no clunge - - + +
By < 0.B, 20 + - - - + +
Bh 4 O,B' 0 + + - no change + -

The effects of an increase A' and B' on the probabilities can be found
by reversing xows 2 and 3, reversing columns 1 and 2, and reversing

columns § and 6.

Q.E.D.

4. IDENTIFICATION AND ESTIMATION
Given the previous expressions for the probabilities Pr(i,j)
of the observed dichotomous variables !i and !'. the log—likel ibood

function under random sampling can be written as:

L = 5; log Pr (Y, .,Y .) (13)
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= Z‘Yht“n log Pr(1,1) + 4, (1 - Y ) log Pr (1,0)

+ (1 - !ht)yft log Prt(O.l) + (1 - !it)(l - !;t) log Prt(0.0)].

where the subscript t indexes the observations. The probabilities are
subscripted by t since Ah and A' are in general functions of

explanatory variables., VWe assume:

’ ’

e = X eTh and A"t = x Ty (14)
where X, ¢ may include characteristics of the t-th household in
addition to characteristics of the husband. A similar remark applies
to x't.

The parameters of the model are (7h.Bh.1'.B'.p) together with
the weights a’'s, b's, c's, and d’s introduced in Equations (4)-(7).
Although for the purposes of estimation we will constrain a priori

these weights to satisfy a, = a, = 1/2, b, =b, = 1/2,

2
Cy =6y =0y =0, = 1/4, and dy =d, =dy =d, = 1/4, we will next
show that the parameters (Yh,ﬂhyv.ﬁ'.p.n.b) ar: identified. Notice
that imposing these a priori weights is equivalent to distributing the
probabilities of the four pairs of reaction functions (Hé.wz),
~(n§.w3). (33.!2). and (B%.'s) equally over the appropriate outcomes.
Wo now turn to the problem of identification.

In ordexr to discuss the conditions under which our model is

identified, we must first introduce some notation. Define the

foilowing partitioned matrix A as




where Dh

the t-th blocks given as follows:

h h
(1 al)et alft 0
h
Dpe = 0 B¢ ot nwt =
b
] 0 0 ht.
(1-a el -a 22 Tas
1°7t 1
3
Dpt (1] rt 0 H
0
4 0 _
| T, J
if ﬂh < 0 and B‘ <0
[ h ] K
L 0 0 et
= h _ _ h =
D= © b8, (1 bl)ht ’ Dwt 0
0 flt‘ 0 0
L ) |

if Bh 2 0 and ﬁ' < 0, or Bh { 0 and 5' 20

ey £ 0]
Dpe = |0 (‘1:+ f:’ 01+ Dyt
CIENE A
.r: -r: 0 ]
Dpt =10 (—t:°t:) 0f}.
o = *ri_

v
1'¢
w
B, 0
v
0
0
w
-(1-b)n. |, D
w
£e
J
” ]
£y 0
w w
)0
w w
fe b,

pt

» D' and Dp are each block diagonal matrices of order 3T,
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with

] L L4 L
Pay, + B IR, + B = plAy + B,))
= P(A, )(-AL, + pAy,)
= P(a, )R(-A,, - B) + pAr,)
L J * *
- P(ay, + B IR, - p(Ar, + By))

= P(a,, + B, + By — plAL, + BL))

o B o, rh
deed aaPodPeabddoed

L]

L L
= PA_ (AL, + pAL)

. . .
== P + BB, —p(A +B))

o
d g e

B

* * L
= P R(-Ay, - By + pA_L),

o

where ® is the univariate normal c.d.f. and ¢ is the corresponding
p.d.f. A quantity with a "*”" means that quantity is divided by the
square root of 1 - pz. In addition, let £f(x,y,p) be the p.d.f.

corresponding to the bivariate normal p.d.f. F(x,y.,p). Now define:

2]

f(Aht + ﬁhoA't + s'pp)
= f(A

"
ettt WD N ot

nt*dwes?)

)
H

"

The matrices ih and i' are of dimension 3T by K, + 1 and 3T by K_+ 1,

the t-th blocks given respectively as:

R o, .
1z, 12,
0 x;t and |1 x;t .
1 Xpe) 0 Xy¢ )




In addition, i; is a unit vector of dimension 3T when ﬂh > 0 and
B' < 0or ﬂh < 0 and B' > 0; when Bh and B' have the same sign, ib is

given by the matrix

1 0
1 0
0 1

PROPOSITION 5: The parameters (ﬂh.B'.yh.y',p,a.b) of the model are

identified if and only if K has full column rank.
PROOF:

Let Zt = (Y ht’ Yyt xht.x ) and & = (Bh.ﬂ .1h.1'.p.a.b). Define:

T dlog £(Z,0) dlog £(Z_,0)
B= B[)'_' : i saer! ] =) B,.
t=1 t=1

From equation (13), we have, omitting the subscript t, that

L % ez, BT Y aprio)
30 Pt(l 1) 20 Pr(1,0) 20

-0 apeco,n , 2520 - %) apeco,0)
Pz(0,1) a9 Pr(0,0) e

+

Then, §%§:£'§§§:£ is given by

2 _ 2
LY ape(Ll) . (1-Y) ope(1,0)
Pr(1,1) 9B, Pr(1,0) 3B,
2

I’r(O 1 aph P£(0,0) 3B, ’

where we have used the fact that !i and Y' take on only the values
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zero or one, Since Yi and !' are random variables where !i = i,

Y =] with probability Pr(i,j), i,j ¢ (0,1}, we have that

2
g[2loss dlogf] | 1 [9Pr(1,1)
aph aph ® Pr(1,1) 3By

gz:.s_.mlz.

, —1 feercon)] , 1 [apz(o

Proceeding analogously, the remaining terms in B are given by:

. —1 [ap
Pr(1,00| 9B,

glalosf | _.91:. _A__ 8Pr(i,j) 9Pz(i,j)
36, ae,l —oPr{i.d a0, 30,

Notice that B cam be decomposed into B = A'DA where A is of dimeunsion
4T by K. Vhen Bh and ﬂ' have the same sign, K = ‘h + !' + 4;
othezwise, K = Ki + !; + 3. For clarity if ﬂh > 0 and ﬂ' > 0, the t-

th block of matrix A, denoted by At is defined as:

9Pz, (1,1) 9Pr,(1,1) 9Pr,(1,1) @Pr,(1,1) 3Pz, (1,1) #Pr (1.1)
By 3, ary 3y, ap -98y
0Pz, (1,0) 9Pr,(1,0) 9Pr (1,0) @Pr (1,00 9Pr,(1,0) @Pr (1,0)
Y 3, a1y ar,, dp 93y
8Pz, (0,1) 8Pz, (0,1) 9Pr,(0,1) dPr,(0,1) 9Pr,(0,1) Pz, (0,1)
3Py P, vy o, 9 da)
9Pz, (0,0) Pz (0,0) aPr (0,0) @Pr (0,00 9Pr (0,00 b (4,
3By 28, ar. or. ap da,

and D is a block diagonal matrix of order 4T, the t—th block given by
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1-1
Fp:t(l.n 0 0 0
0 Pr (1,0) 0 0
0 0 Pr_(0,1) 0 .
L 0 o_ 0 Prt(D.O)'

As shown by Rothenberg (1971), the model will be (locally) idéntificd
if and only if B is nonsingular. Since D is of full rank and 4T ) K,
a neéessary and sufficient condition is that A have full column rank.
As can be seen from Appendix B, the partial derivatives of Prt(i.j)
with respect to the vector © depend on the signs of ﬂh and B'; we must

therefore check that matrix A is nonsingular for all cases.

Case 1: Bh > 0, Bw >0 .
. Substituting into At the partial derivatives, using the
:.f:,g:. h:.i = h,w, and :{,j=1.2.3.4. establ ished earlier,

we perform the following matrix algebra

notation e

(i) add Row 4 to Row 1, noting that 8, = 1 - s,

(ii) add Rows 2 and 3 to Row 1

(iii) add (1 - a (Row 2 aad Row 3) to Row 4

1)
(iv) switch Rows 2 and 4; swith Rows 3 and 4.
(v) switch Columns 2 and 3

Omitting Row 1 since it is identically null, we have

- h h _ hy _, - W L W, - 1_ 2 -
(1 .l)et (alft+(1 .l)et)xht (1 al)dt (alft-l-(l .l)et)xu: 4l ar.-ar, LI
h_, \ w_, _3
0 B:%he 8¢ B ®ue e 0
h ' v_, gl
he b Xhe 0 heXoe Te °

We now decompose this matrix into a partitioned matrix
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where Dh. D'. and Dp are each block diagonal matrices of order 3T, the

t—th blocks being Dht' nwt' and Dpt respectively, as given previously.

Case 2: <0, B' <0

Py
Substituting into At the partial derivatives found in Appendix

B, again using e:, f:. gi, h:, i=h,w, and':i,

t=1,2,3,4, as
estaﬁlished in the text, now perform the following matrix algebra on
matrix A
(i) add Rows 2 and 3 to Row 1, noting that b, =1 - b,
(ii) add Row 1 to Row 3 -
(iii) add Row 4 to Row 3
(iv) add (1 - bl) (Row 1 -and Row 4) to Row 2°

(v) reverse Columns 2 and 3

Agein, omitting Row 3 since it is identically null, we have

h h , W W
& ®c*he € ec¥ut Te 0
h h h w w_1o Wy e - 3 - 4
-(l—bl)hc (blgt-(l-bl)ht)xl"lt blgt (blgt Qa bl)ht)xvt blrt+(l bl—rt L
h W, - 2
0 Ecxltnt 0 Etx\r: . [V} B

which can be written as Z.

Case 3: Bh >0, B' <0
Proceeding as in Case 2, perform the following algebra
(i) subtract Row 4 from Rows 1, 2 and 3, noting that
= - - -1
dpmdy=dy ==
(ii) add 1/4( Row 1 + Row 2 + Row 3) to Row 4
(iii) reverse Columns 2 and 3

Deleting Row 4 since it is null, we have
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" h h ' w w w, !
e, (eg + fl:)"ht oy (oo + fo)x .
T . h h,_ ' v w w, '
A =J0 (g +f)x, 8, (8 *EIx,
h h h, ' w w, !
Lht (ht + ft)xht 0 (ht + ft)x't.

which can be written as K.

Case 4: Bh <0, ﬁ' >0
Identical to Case 3; this can be easily seen by moting that
¢y =4, =1/4, 1 =1,2,3,4,
QDEODO
As can be easily seen, Qh, n'. and DP are nonsingular under
all four cases since th’ nwt' and Dpt are either trisngular matrices

or can be made triangular by suitable permutations of rows and

columns. By examining matrix A above, it is clear that if 1 does not

have full column rank, it will occur extremely rarely for some

specific values of the paramoters as an artifact of certain

explanatory varisbles (mote the eiception in Corollary 2 below).
When compared to the restrictions mseded for the

identification of linear models, our results are quite surprising.

’ ’
For example, even if Xt and x . are the same, it will occur only

t

rarely that our model is not identified, a sharp contrast to the order
conditions which is necessary for the identification of linear models,
A corollary to Proposition 5 provides a necessary condition

for identification as shown next. Suppose that constant terms are

iacluded in both equations of (14). Defime Aht = 7: +x and

tTh

’r o~
Awt = 13 + I A where 7: is the coefficient for the husband's

constant term and X, ¢ is 8 vector of explanatory variables for husband

ts 10

v are defined analogously for the wife. We then have:

and x't
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COROLLARY 2: If comstant terms (yp and 72) are included in both

equations, and if ;h = 0 and ;' = O, the model is not idemntified.

PROOF:

Note that when only constant terms are included, xh and i'

reduce respectively to T repetitions of

1 1 1 1
0 1 and 1 1;.
1 0 1

Note also that the blocks comprising Dh are now identical, as
are the blocks comprising D' now identical., (This is bocasmse

* *
Aht'Aht'Awt’ and Avt no longer depend on t). As a result, the matrix

X ropoats itself every three rows. Since K =4 > 3, B is singular.

Q.E.D.

Therefore if one inteands to estimate the model with both
constant terms (Yg and 72) included, at least one equation must
include further explanatory variables or the model will certainly be
not identified.

As a practical implication of Corollary 2 for estimation, if
one includes & constant term in each equation along with one or more
additional explanatory variables in at least one of the equations, one
or more of the initial valves for the parameters associated with these
non-constant explanatory variables must Be nonzero. Otherwise, the

information matrix will be singular at the first iteration, and the
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optimization cannot be carried out.

5. CONCLUSION

In this Chapter, we presented an sltermative approach for
formulating simultaneous equations models fq: qualitative endogenous
variables, Contrary to earlier simultaneous models, our model does
not require any logic:l consistency conditions on the parameters. In
addition, a distinctive feature of our approach is that the
simul tanecous model is derived from optimizing behavior within the
random utility framework,

Our approach also emphasizes the role pf the equilibrium
concept used in order to defime the process generating the observed
random variables !h and Y;. Our proposed model extends the usual
simul taneous model with structural shift to cases where the parameters
need not satisfy the logical consistency conditions. Moreover, when
the logical consistency conditions are imposed, our model relates to
the usual simultaneous equations model with structural shift in a
numbexr of important ways. First, imposing the logical consistency
condition is equivalent to imposing that four of the sixteen possible
pairs of reaction functions occur with probability zero. As a result,
it is shown in Section 3 that either the husband’s or the wife’s
actions are required to be structurally independent of the action of
the other. Second, imposing the logical consistency condition on our
game theoretic model insures that only pure strategy Nash Equilibria
are allowed as solutions. Finally, and most importantly, once the

logical consistency condition is imposed, our mcdel coincides with the
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usual simultaneous equations model with structural shift. Since our
model is still well defined in the absemnce of this restrictive
condition, it follows that the simultaneons model with structural
shift is nested in our model. Although the model studied in this
Chapter is relatively simple. we believe that our approach is a first
step in introducing strategic behavior directly into econometric
models of structural shift. That the model can be extended to other

game theoretic equilibrium concepts is shown in the following chapter.
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FOOTNOTES

VWhen an individual is indifferent between working and not
working, we arbitrarily consider that he will work, hence the use

of the weak inequality.

The assumption is that Bh and B' do not depend on individuvals.
By allowing B, or B, not to be zero, one is allowing interactions

in the constant terms of Ah and A' defined below.

The condition ph = 0 holds if one assumes that the husband's
utility function is ahditively separable so that Uh(Yi,Y;) =
Uh(Yi) + U'(Yi). Thea A, = Uh(l) - Uh(OJ. We are grateful to
Donald Lien for pointing this out. Note, however, that assuming
the husband’s utility function to be additively separable

essentially removes simultaneity as is argued in the text.
See, however, Vuong (1980, 1981, 1982b).

Although it is not necessary to use reactions functions in order
to derive the probabilities Pr(i,j) given in Propositiom 1, it is
much easier to do so. For example, take the case where Bh <0,
B' < 0 and we do not use reaction functions.

Using Assumptions Al’, A2 and A3, we find that outcome

(0,0) is a pure strategy Nash Equilibrium (P.S.N.E.) if

T,(0,0) 2T,(1,0) and T_(0,0) 2 T _(1,0) which is equivalent to

e, S -A, and e S A . But since f, < 0 and B_ < 0, outcome (1,1)
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cannot be a P.S.N.E. for that would require 8y < —Bh -Ah and

g, < -ﬂ' —A'. which is inconsistent with the requirements for
outcome (0,0) being a P.S.N.E. Therefore, if outcome (0,0) is a
P.S.N.E., it must be unique P.S.N.E. when Bh < 0 and ﬁ' < 0.
Thus, Pr(0,0) = F(-Ah, -A'.p) as givan.in Proposition 1. A
similar argument shows that if outcome (1,1) is a P,.S.N.E,, it is
& unigque P.S.N.E. when ﬁh ¢ 0 and ﬁ' < 0.

Alternatively, outcome (1,0) is s P.S.N.E if

T,(1,0) > fx'h(o.O) and U_(0,1) 2 '6'(1.1). which is equivalenmt to

ey 2 --Ah and L < —ﬂ' -A'. Moreover, outcome (0,1) is s P.S.N.E.

if ﬁh(o.1) 2 Eh(l.l) and E'(I,O) 2 E'(0.0). which is equivalent
to 8 < -Bh -Ah and 8, 2 -A'. But now note that there exists the
area [-Ah < 8y 4 -Bh -4, X fA' £ s, < —B' -A'} where both
outcomes (1,0) and (0,1) are P.S.N.E. Ve therefore divide this
area into two parts and assign the parts to outcomes (1,0) and

(0,1) according to the weights b, and by, zespectively, where

b, + b1 =1,

An obvious generalization of our model is to specify the weights
(‘ha b,, °j' dk) as functions of explanatory vnriayles. For
example, &, h =1, 2, can be specified in a logistic functional

form as

a
log 8¢ = Be + Z

a
log S = B, + Z
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where Zt is a8 vector of explanatory variables for the t-th

household and u: is & normalizing parameter so as to insure

a r.a '8
8, * 25, = 1, viz, e =—103[exp(zt5 1) + exp(Zt $2)]. Notice
then that 8¢ and a,, can be written in familiar form as
’ aj
exp(Zt 5 7)
'jt = " s =1, 2, Notice also that

' Ca 4 2
cs::p(Zt $71) + exp(Zt 5 %)

2, and 12t are constrained to lie in the open'nnit interval.
This unconstrained model thus contains our model which assumes
that the weight parameters are constant across observations, or

b. 6°. and Gd are zero,

equivalently that the parameters 5'. 8
with the exception of those parameters associated with the
constant term. It then follows that this assumption can be
tested. Another interesting test would be to check whether

8% = 6b = 8¢ = bd = (O, including the constant term. If this
hypothesis is not rejected, the data would support the ides that,
whenever there is no-N:sh Equilibrium, each of the four outcomes
are equally likely to occur; altermatively, when there are two
Nash Equilibria, a rejection of the hypothesis would support
distributing the probability over the two ontcomes with equal

weights., (See Appendiz A for s more complete discussion.)

rd
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APPENDIX A

As discussed in Section 3 of this chapter, a difficulty arises
because of the non—-existence of Nash Equilibria for the two pairs of
reaction functions (ﬂé,ws) and (Bé.'z) and the multiplicity of Nash
Equilibria for the pairs (Hé.wz) and (HS"3)‘ As will be recalled, we
handled this problem by distributing the probability of occurrence of
each of these four pairs of reactions functions over the appropriate
outcomes according to some fixed weights that were independent of the
observations. For example, when the husband used reaction function Hz
and the wife used reaction function '3, we distributed the probability
of occurrence equally over each of the four outcomes. When the pair
(Bé.'z) was used, we found that two Nash Equilibria, (0,0) and (1,1),
occur; we therefore distributed equally the probability over each of
these two outcomes. The purpose of this Appendix is to discuss more
fully these weights.

In the previous developments of Section 3, we have restricted
ourselves to Nash Equilibria in pure strategies. A broader class of
strategies is in general considered in game theory, namely the class
of mixed strategies (see, e.g., Owen (1982)). In this more general
approsch, raandommness enters into the statistical model now for two
reasons; they are (i) the random nature of the sampling, or
equivalently, the ignorance of the econometrician, and (ii) the
randomization of the strategies. How can the sinnltunoousvnodel
proposed in the text of this chapter be interpreted when mixed

strateglios are allowed?




58

First, it is worth noting from Table 1 that in 12 out of the
16 cases, a unique pure strategy Nash Equilibrium exists. Moreover,
as the following Lemma shows, when there is a unique Nash Equilibrium
in pure strategies, then there are no Nash Equilibria in mixed
strategies., It therefore follows that for those 12 cases, restricting

ourselves to pure strategies is irrelevant.

LEMMA 1: For a two-person, two—strategy, normal form random payoff
game, if there is a unique Nash Equilibrium in pure strategies, there

is almost surely no mixed strategy Nash Equilibria.

PROOF: (by contradiction) Let the payoff matrix be given by:

player B
1’ 2!
1 all'b a b
11 "12°712
player A
2

221°93; #33:b5,-

Without loss of generality, assume (1,1’) is the unique Nash

Equilibrium; we therefore require a and b >b Note that

112 % 11 > P12°
we use strong inequalities since 8,7 = 8,, OF b11 = b12 occur with
probability zero. Assume a mixed strategy N.E. exists ;here player A
plays strategy 1 with probability p and strategy 2 with probability
(1-p), 0 < p < 1. Similarly, player B plays strategy 1' with
probability q and strategy 2' with probability (1-¢), 0 < q < 1. In

choosing mixed strategies, players A and B must solve respectively:
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m;x EuA = pqa,, + p(1 - q)a12 + (1 - p)qa21 + (1 -p)(1 -~ q)u22 (1)

m;x E"B = qul1 + p(1 - q)b12 + (1 - p)q_b21 + (1 -p)(1 - q)bzz. (2)

For a mixed strategy N.E. to exist, it must be the case that:

JEn

——Aa = —- - —-—
3p 0 = 8,40 %+ 312(1 q) 8,0 + azz(l q) (3)

and

dEn
__§= = - = -
2a 0 = bllp + b21(1 p) blzp + b22(1 p). (4)

But when 111 > 321

we have by (4) that b

we have by (3) that a_, ¢ a Also, when

12 22°

byy > by, 91 < Pyp- Therefore both (1,1') and
(2,2') are pure strategy Nash Equilibria. Contradiction. We now need
to show there do not exist any Nash Equilibria when one player plays a
pure strategy while the other player plays a mixed strategy. Assume
player A plays a mixed strategy while player B plays strategy 1' as a
pure strategy. We therefore have 0 ( p {1 and q = 1. But from (3)
we then have 81 = 2853, which occurs with probability zero.
Contradiction. The other three cases follow exactly and yield similar

contradictions.

Q.E.D.
On the other hand, when there are two pure strategy Nash
Equilibria, which is the case when reaction function pairs (Bé,'z) or
(113.'3) are used, we estimate tho model by imposing weights which
distribute the probability of occurremce over the appropriate pair of

pure strategy Nash Equilibria. Specifically, when reaction function
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pair (Hé.wz) is used, the two pure strategy Nash Equilibria are (0,0)
and (1,1); we set the weights 8y and a, each at one half. Similarly,
when reaction function pair (ns,ws) is used, the two pure strategy
Nash Eqiul ibria are (1,0) and (0,1); we set these weights b1 and bz
also at one half each. It follows that these weights could be

estimated since Proposition 5 demonstrates that ¢ and b are
identified.

The third possibility is when there are no Nash Equilibria in
pure strategies. This occurs when the husband and wife use reaction
pair (Bé.ws) or (83.'2). In this case, as the next Lemma shows, there

exists a unique Nash Equilibrium in mixed strategies.

LEMMA 2: For a two-pexson, two strategy, normal form game, if there
are no Nash Equilibria in pure strategies, then there exists a unique

Nash Equilibrium in mixed strategies.

PROOF: Existence is well known (see e.g., Owen (1982), p. 126). From

Lemma 1 we know that for o mixed strategy N.E. to exist, woe must have

dEn a,, — &
2 12
= Q=) q= _—2- s 8 - a - 8 + a # 0; (5
ap 819 " 855 ~ 85y * 8y," 711 12 21 22
and
9En b b
2 21
=0 = p = ——22 , by -b.,-b, +b, %0, (6
2q bll blz b21 + b22 11 12 21 22
or
(111 -8 = 8y, + azz)q - (‘22 - 112) = 0 (7
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and

(by, - b.n - b = 0. (8)

11 ~ P12 7 byy * byp)e -~ (byy ~ byy)
Now assume that there exists multiple mixed strategy Nash Equil ibria

b

for player A. Then from (7) we must have (al =0

17 %12 7 821 * 3p))
and (a22 - a12) = 0., Therefore, 8y, = 8;, and 8., = 8,,. Then when
b11 2 b12 we have that (1,1') is a pure strategy Nash Equilibriunm,

Contradiction. Alternatively, when b11 < b1 we have that (1,2') is a

2
pure strategy Nash Equilibrium. Contradiction. The case where there
oxists multiple mixed strategy Nash Equilibria for player B proceeds
similarly.

Let us now consider the case where one player plays a pure
strategy while the other player plays a mixed strategy. Let player A
play strategy 1 as a pure strategy while player B plays a mixed
strategy. We then have p =1 and 0 < q < 1. Then from (6) we have

that

b2z ~ by

1= ]
byy = byy = by + by,

Therefore b11 = b12‘ Now, for (1,1') not to be a pure strategy N.E.
we require 3y, 0 8,4 for (2,1') not to be s pure strategy N.E. we
require b,, > b,,; for (2,2') not to be pure strategy N.E. we require
84, 2 259 But these conditions then requixe (1,2') to be a pure
strategy N.E. Contradiction. Similarly, let us examine the case
where player A plays strategy 2 as a pure strategy while playog B

continues to play a mixed strategy. We them have p = 0 and 0 ( q < 1.
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From equation (6) we then get b22 = b21. Now, for (2,2') not to be a
pure strategy N.E. we fequiro 8,y < 8,5 for (1,2') not to be a pure
strategy N.E. we require b12 < bll; for (1,1') not to be a pure
strategy N.E. we require 84 < 859 But the above conditions then
imply that (2,1’) is a pure strategy N.E. éontradiction. The cases
where player A plays a mixed strategy while player B plays a pure

strategy lead to similar contradictions.

Q.E.D.

Let (th’th)' where 90 * 9y = 1, ch.nncterize the
randomization of strategies between not working and working for the
husband; similarly, let (q'o.q'l) characterize the randomization
between not working and working for the wife. Then the weights
C1s C5s Cg3» and c4 for the reaction function pair (Hﬁ,'s) defined in

Section 3 can be interproted as:

%1 = Y090 ° ®3 = 91%0 -

°3 * Yo% °4 * p1% - (9
But we know from equations (3) and (4) of Lemma 1 that for a mixed

strategy Nash Equilibrium to exist we must have

and

U (1,1)q,, + U (1,00(1-q.,) = U _(0,1)q,, + U_(0,0)(1-q,,). (12)
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Solving (10) and (11) for q,q 8nd q;, we get respectively:

v, (0,0) - U, (1,0)
U1 U,(1,1) - 0,(1,0) - T, (0,1) + T, (0,0)

U'(0,0)

U (1,0)
= w i
%1 T (1,1) - T (1,0

U'(O.l) + U'(0.0)'

By substituting from ASSUMPTION A3 of the current chapter, we get

Qg = —Ah/ph and q, = -A'/p'. Noting that q_, = ({-qwl) and

Qo = (1-qh1) and using (9), we get that

B+ A + -A_ B +A
CI,(J___', (Eh_Ah). c. =—X (-h_"h

B, By 28, " B
¢ =-Cxtle 2 P T Y
3 Bw ph 4 Bw ) Bh

Moreover, we know from Lemma 2 that the mixed strategy Nash

Equilibrium is unique. As a result, c; = di' i=1,...., 4. 1t

therefore follows that the model proposed in Section 3 of this chapter

can be interproeted as a model in which the weights c’'s and d's remain

constrained as ci = di = %, i=1,.0., 4,
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APPENDIX B
First Partial Derivatives of the Probabilities Pr(i,j)
For brevity, let us rewrite the four probabilities Pr(i,j)
listed in Proposition 1 using the indicator variables Ih and I'

defined as:

1 if Bh 20 1 if ﬁ' 20

BT 0 if B <O and I = 4 ;¢ B, ¢ 0°

Then we have:

F(- Ay, -A,p) - LT al +1(1-T)cI + (1-I)DI 4T,

Pr( 090)

Pr(1,0) = F(Ay, = A - B, = p) + L(I-I)e 0, + (1-L)I d,I |

- (1-I)(1-L )b,I__

- (1-I) (1~I )b, I__

Pr(1,1) = F(Ah + ﬂh.A' + B,p) - IhI'aII++ + Ih(l - I')c4l+_

+ (1-I)I 4T ..

In order to determine the first partial derivatives of the

Probabilities Pr(i,j), we need the following two Lemmas.
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LEMMA 4:
QE_(.%...LD)_ - T(,,@(_b_:_ng, and ill(%.‘.)!z..e)_ = P(b) ® (=L there

2 2
v1-p vi-»p
® is the univariate normal c.d.f. and P is the corresponding p.d.f.

a b .
PROOF: Wo have that F(a,b,p) =I I f(x,y,p) dy dx where f is the

- -
bivariate normal p.d.f. with zero means, unit variances and
correlation p. In addition, let a quantity with a “*" indicate a

quantity divided by the square root of 1 - pz. ¥Wo then have

£f(x,y,p) = f‘(x) . f(y. - px‘) = ?‘(y) . T(x‘ - py.)

which gives

a b
F(a,b,p) = [ 1(:)” iy - px‘)dy]dx

a b * * a . .
= 9(x) Mdy dyldx = P(x)P(b - px )dx.
Then 2E{2aDap) . ¢(a)a(b° - pa*).
Similarly, QE.(.la..‘.’LD.L = ?(a)@(a. - pb.).

Q.E.D.

LEMMA 5: Let £ be the p.d.f. corresponding to the bivariats normal

c.d.f. F. Then if 8, and s, cach have zero means and unit variances
with correlation coefficient p, we have QF_(.I;‘.’L.D). = f(a,b,p).

' a
PROOF: From Lemma 4, f(a,b,p) = ] ‘f(x)@(b. - px.)dx.

-
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a L] *
Then 2E = ]- P(x) - ?(b‘-px.) . g'('b‘-a:;&)'dx

a . » pb-x
= ]‘-Q‘f(x) P(b -px ) (1_‘,2)3/2 dx.

- 2/2
But HIPb* - px*) = (212 9z’ - pb%) - 6P . Thus,

2/2
a _] a (2::)“1/2?(!. _ %, b -
o pb ) * e . dx.
ap 1 - p2)372

* *
Letting z = x - pb , we have

2/2

e o
s —pb - -
E . (2n) 1/z-z°1’.(z) c e ? 4z

dp —

=¢e* - pb") - P°(b) = £(a.bup).

QeE.D.

Again, let a quantity with a "*" jindicate a quantity divided by the
square root of 1 - pz. Then using Lemmas 4 and 5, the first partial

derivatives of the probabilities Pr(i,j) are as follows:

aF (- Ah' - A'.p)

_aih =0 ,
oF(~ Ah’ - A'.p)
T 0,
F(- A, - A_,p)
( A%i f PA(-A] + pAD)E,
aF( - Ak. - A'DP)

. .
ary - T(A')Q(- A+ pA')x' F




9F (- Ah. - A'.p)
ap .
GF(A,hL. - A!: E!. - p)
aph
aF(AL. - A! - B!. - p)
ap,
aF(Ah. -A - B!. - p)
ayh
”‘A;g - A' - ﬂ!. - p)
ay'
aF(AL!. - AL- B!._- p)
dp
oF (- AL- ﬂh.A'. - p)
By
F(- AL— Bh'A" - p)
B,
aF( - Ah - BEA" - p)
ayh
dF(- A, - Bprdys - p)
61:
OF(- A, - By.AL, — p)
ap
ap(h + Bh:.A_L+ ﬂ!.p)
9By
OF (A, + By.Ay + B.p)
B,
GF(AE + Bhﬁ' + ﬁ!.p)
ayh
aF(i+ ph.A’ + B!.p)
37'
al?(ék + Bh;f_‘ + B'.p)
ap .
and
ox,,

oB,

*
== P4, + B R(-A,
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f(-Ah.- A'. p)

0,

- f(Ah. - A

w w

0,

- P(a_ + B R4, - p(A + B)),
L * ]
Pa, )P~ AL - Bo + pASIT,
- P4, + BB, - p(A, + BIx

-Bo"P)

~ P4, + B IR, - plA, + B))

- PG4, + B IR, - plA, + B)Ixy,

L J * L
= ?(A')Q(- Ay - By ¥ pA )X

= - f(~ Ah - Bh'A" -

L L
= P4, + B )R] + B
= P(A_ + B)P(A; + By
= P4, + 8,0, + B,
- P+ B)RG; + B

= £(A, + By.A_+ B_.p)

- p; + p(A; + p;))

p)

plAr + B))

L J L
- P(A' + B")) »

L ] -
p(Ah + nh))xh.

L L] .
p(A' + ﬂ') )x' »
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» - s
+ ?(Ah + ph)Q(- A+ p(Ah + ph)) .
| ] * * L ]
== P+ BIP(-A, ~ By + A+ B))

+PLA_+ BB AL + A + %)),
w w Ah w w

S = [ P A) + pA)

or,,

ay

o,

ap

- P(A, + B )R- A - Be + plAp + Br))
+ PA IR AL — B) + pAr)
* ] L 4

+ 1'(Ah + Bh)Q(- AL+ p(Ah + ph)) ]_ x, -
= [ - PAB(-A] + pAY) - PA_+ BB(- Ay - By + p(A) + BY))
+ PAB(- Ay - By + pAY)

+ A+ BIR(-A, + p(AL + BI] x_ .
= f(Ah.A',p) + f(Ah + Bh:A' + ﬂ'.P) - f(AhpA' + B'ap)

with

o, OI_, ax,, oI C)

3 “a() - T ac Ty Ta -
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CHAPTER III: AN ECONOMETRIC MODEL OF A STACKELBERG GAME

1. INTRODUCTION

In the previous chapter, we proposed an altermative
simul taneous model for discrete endogenous variables. A distinctive
feature of that model is that no logical consistency constraints on
the parameters need to be imposed. In addition, ounr simultamneous
model was derived from optimizing behavior as an outcome of a game
between two players. The equilibrium concept used was that of Nash.
In the curreant chapter, we shall propose an econometric model of an
alternative equilirium concept from noncooperative game theory.

In this alternative game theoretic formulation, we shall still
assume that each player maximizes his own utility. The model proposed
in the current chapter is, however, different from the simultaneous
model of the previous chapter since the equilibrium concept used here
will be that of Stackelberg. Although it may appear that the model is
recursive, it will be seen that the model in fact generalizes
recursive models for discrete endogenous variables that have been
considered up to now in the literature (see, eo.g., Maddala and Lee
(1976)) . As before, our model becomes stochastic by adopting the
random utility framework introduced by McFadden (1974, 1981). For

notational convenience, we derive the statistical model by assuming
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the husband is the Stackelberg leader and his wife the follower; that
is, we assume the husband knows what action his wife will take
conditional upon his action and he thus optimizes accordingly.

This chapter is organized as follows. In Section 2, we derive
the statistical model where the outcomes are generated as Stackelberg
equilibria of a game played between two players. Section 3 compares
the usunal formulation of the problem in terms of recursive models with
our alternative formulation. In particular, it is shown that the
usual recursive model is nested in our more general model. In Sectiom
4, we discuss identification of the model and estimation issues as
they relate to identification. Section 5 concludes the chapter. The
first partial derivatives of the probabilities, which are needed both
for identification and estimation, are found in the Appendix to this

chapter.

2. THE MODEL

For ease of exposition, assume that the husband is the
Stackelberg leader and the wife is the follower. Let Uhﬁi.j) be the
payoff to the husband when he takes action i and his wife takes action
j» 1, ¢ {0,1}, Analogously, let ﬁv(j.i) be the payoff to the wife,

Then we have the extensive form:
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g,01,1) g 0,1 T,6a,0 §,,(0,0)
Ug(l,1) Uy(1,0) U, (0,1) U,(0,0)
Figure 1

The husband, in making his decision whether to take action 1
or 0 must take the wife’s ﬁayoffs into account. That is, the husband

must take action i such that when the wife takes action j, conditional

on i, uh(i.j) gives the husband the greatest possible payoff. There

are four possible cases, Wl, '2' '3. and ¥
1

4 for the husband to

consider before taking his action i:

LA ﬁwu.m 2T _(0,0) ¢ T _(1,1) 2T _(0,1)

»~

W, : Uw(l.O) < U'(0,0) ¢ U'(l.l) 2 U'(O.l)
Wy Uv(laO) < U'(0.0) é U'(I.l) < U'(O.l)
W U'(I,O) 2 U'(0,0) é U'(l.l) < Uw(O.l).

The four cases W;, W,, ¥W,, and W, are the wife’'s reaction
functions as given in Figure 2. For example, reaction function '1
says that whether the husband chooses action 1 or 0, the wife always

chooses action 1. Conditional on the reaction function
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WIFE
1

o 1
HUSBAND

Figure 2: Wife's Reaction Functions
chosen by the wife, the husband then takes that action which maximizes
his payoff. For example, if the wife follows reaction function '1’
the husband will choose action 1 when ﬁh(l.l) 2 ﬁh(o.1). while
choosing action O when the inequality is reversed. Thus, each
reaction function 'i for the wife calls for a payoff comparison Ci for

the husband. Therefore we define:

ﬂ‘hu.n 2 U, (0,1)

[y

(1.2 20 (0,0

(1.0 2T, (0,0
: Uhﬁl.O) 2 Uh(O.l).

()
o

Let Ei indicate the negation of Ci.
Now that the reaction functions for the wife 'i and the payoff
comparisons for the husband Ci have been defined, we can readily find

the Stackelberg outcomes of this game, as indicated in Table 1.2 Note
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that for each outcome, the first number in each ordered pair refers to

the husband while the second number refers to the wife.

Table 1: Stackelberg Equilibria

v, 4cC (1,1)
LA ’61 (0,1)
W, 4C, (1,1)
V,4C, (0,0)

V3 4C,
V3 8¢
v, &cC,

W4 & 04

(1,0)
(0,0)
(1,0)
(0,1)

To introduce a stochastic structure, we shall follow McFadden

(1974, 1981). The utilities ﬁh(i.j) and ﬁ'(j.i) are then treated as

random, and decomposed into deterministic components and random

components. Further, we shall allow for the possibility that the

utility the husband receives depends on the wife’s decision whether or

not to work. Ve make a similar allowance for the wife.

we have the following set of four equations:

1
h
+ @ *

<1 1
+ G'xh + Ny

+ oy, +

=1

ol . 1

-

Uh(O.Y;) =1

1) =1
U (0,Y;) =T

U
1 0d =po

where

1 if the husband works

BT oo otherwise

1 if the wife works
w 0 otherwise

3

Then formally

(1)
(2)
(3)
(4)
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To illustrate, the utility that the husband receives from
working when his wife also works (Yi = 1) is given by
ﬁht(l.l) = Uit + ui + qi. As can be seen from the wife’s reaction
functions 'i and the husband’s utility (payoff) comparisons
Ci' i=1,2,3,4, only differences in utilities are relevant in the
husband’s and wife’s respective decisions whether or not to work. As
a result, we define g, = ni - ng and g, = n: - “3‘ It is assumed from
now on that the pair (eh.sw) is normally distributed with zero means,
unit variances and correlation p.

The distribution of the random components (ch.c') then induces
a probabilistic structure on the observed decisions (!h.!;). Indeed,
each reaction function Wi for the wife will occur if certain
conditions on the random component s are satisfied. Let us now
derive these conditions.

Using Figure 2, reaction function '1 is characterized by the
following two conditions: ﬁ'(l.O) 2 ﬁ'(0.0) ;nd.ﬁ'(l.l) 2 ﬁw(O,l).
From (3) and (4) these conditions are equivalent to 8, 2 -(U: - US)
and &, 2 -(U: - Ug + c: - ce). respoctively, which can be combined to
give & 2 -(U: - Ug) - nin(O.c: - cg). |

Reaction function '2 is characterized by ﬁ'(l,O) < ﬁ'(0.0) and
ﬁ'(l.l) 2 ﬁ'(o,1). which are equivalent to s £ -(U: - 03) and
> <l - 00 + ol

1 0 1 0 1 0
-(U' - U' + a, - a') < s'< (U' U') if

- ag). respectively. VWhen combined, we get

1
a
w

8'
- ag 2 0; otherwise,

reaction function '2 cannot occur.

Reaction function '3 it characterized by ﬁ'(1.0) < ﬁ'(0.0) and
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ﬁw(l.l) < ﬁw(o.l). Using (3) and (4), these conditions are equivalent

0 1

1_ .0 P 0
to < (U' U') and & < (U' U' +a aw), respectively. When

&

w
1 0 1 0

combined, we get e'< —(U' - U') - max(0, a - aw).

Reaction function W4 is characterized by ﬁw(l.O) 2 ﬁw(0.0) and

Uw(l.l) < U'(O.l). which are equivalent to &, 2 (U' - U') and

1 0 1 0 .
ey 4 (U' U' + e - a'). respectively, which when combined give

1_.0 1i_.0, 1_0 .. 1_ 0,
(U"r U') < e_ ¢ (U' U' + e aw) if e, — a < 0; otherwise

v

reaction function 74 cannot occur. We thus have the following table.

Table 2: Conditions for Wife's Reaction Functions

. ol _ 0y _ 1_ 0
v, &, > (U' U') min(O.a' a')

R S 1_0 —mt _ 0 1_ 0
v, : (U' U' + o a‘) ¢ s, < (U' U') if a a 20

4 otherwise cannot occur

. vl 10y 1_ 0

ws Doy < (U' U') max(O.a' a')
1 (1] 1 1

W4 : -(U' -0

1.0 0 o, ..
') < 8 ¢ -(U' - U' +a - uw) if e, - < 0;

otherwise canmnnot occur

Once a reaction function for the wife is determined, a utility
comparison for the husband is also determined; that is, if the wife’'s
reaction function is given by 'i' the husband makes utility comparison

Ci’ i=1,...,4. As with the wife, each utility comparison C, will

i

occur if a certain condition on the random component &, is satisfied.

h
These are now derived.
Wo see from Figure 1 that when the wife follows reaction

function '1, the husband compares ﬁh(l.l) and ﬁhKO.l). If

ﬁh(l.l) 2 ﬁh(o.l). then from (1) and (2) we have that
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1 0 1 0

When the wife follows reaction function Wz, the husband
compares ﬁh(l.l) and ﬁh(0.0). When ﬁh(l,l) 2 ﬁh(0,0). we have that
o 2 03 - 00 + by,

When reaction function W3 is used, the husband compares
U,(1,1) and T (0,1). When U (1,1) > ¥ (0,2), we have that
e 2 —(U; - Ug).

Finally, Figure 1 shows that when the wife uses W4, the

husband makes a comparison botween,ﬁh(l.O) and ﬁh(o.1). If
ﬁh(l.O) 2 ﬁh(o.1). we have from (1) and (2) that e, 2 -(Ui - Ug - a:).
We therefore have the following table.

Table 3: Conditions for Husband’s Utility Comparisons

¢ ¢ &y 2 -(Ui - U: +a - a:)
Cp + ey 2 =0} -0+ ol

Cg ¢ g 2 ~(Up = U

C4 Poey 2 -(Ui - Ug - a:)

Now that randomness has been introduced into the model, we can
derive the joint probabilities on the part of bofh the husband and
wif e whether or not to work. Let Pr(i,j) be the probability that the
random variables !i and !; take on the values i and j, i,j & {0,1}.

From Table 1, we have

Pr(0,0) = Pt('2 A Cz) + Pr('s . Cs) (5)

Pr(1,0) = Pr('3 L} 03) + Pt('4 & 04) (6)
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Pr(0,1) = Pr(W1 a Cl) + Pr(w4 & C4)

Pr(1,1) = Pr('1 &‘Cl) + Pr(Wz & Cz).

&)
(8)

Using Tables 2 and 3 and Equations (5)-(8) we can derive the

probabilities in terms of the unknown parameters. Let F{a,b,p) be the

c.d.f. evaluated at (a,b) of a bivariate normal distribution with zero

means, unit variances, and correlation p. Moreover, let I(a,b,c,d,p)

be the integral corresponding to a bivariate density over the range

a ) &y 2¢, b)) L 2 d.4 As can be seen from Table 2, the

probabilites Pr(i,j) will depend on the sign of Ac, = (c: - 03). We

then have:

PROPOSITION 1:

B
Pr(0,0) = F(-AUh,-AU'.p) - I, if Aa_ 2 0
= F(~-AU .-AU'.p) otherwise
Pr(1,0) = F(AU »—AT_ - Aa_,-p) if Aa_ 2 0
= F(AU »—AU - Ac'.—p) + IE otherwise
1 0
Pr(0,1) = F(-AUh -o ah,AU'.—p) if Aa_ 20
= F(-AU, - a; + cg.AU'.-p) + If otherwise
1 0 : A
Pr(1,1) = F(AU, + a = 4 ,AU + Aa_,p) - I if Aa_ 2 O,
= F(AUh + ai - a:.AU' + Aa'.p) otherwise

where

A , 1 1 0
I+ = I(-AUh - uh.-AU'.-AUh - ah + Cha-AU' - Aﬂ'np)
h
1

B 1

I, = I(-AUh.—AU'.-AU - ah.-AU' - Aa'.p)
A 0 0

I_ a X ( AUh + nh .-AU' Aa'. AUh Gh + Gh. "AU'; p)

(9)

(10)

(11)

(12)

(13)
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B 0
I” = I(-AU,,-AU_ - Aa_,-AU, + a,-AU_,p)
1 _ol _ 0
B and AU =T -T_.

- UO

AUh =T B

PROOF:

From Table 2, it is clear that reaction function W, for the wife

4
cannot occur when (u: - ae) 2 0, while reaction function Wz cannot
occur when (a: - ag) ¢ 0, Thus when (ai - ag) 2 0 it follows from

squations (5) — (8) that

Pc(0,0)

Pt(wz é Cz) + P:(Ws é C3)'

Pr(l.O)

Pr('3 £ C3)-
Pr(0,1) + Pr('l é Cl).

Pr(1,1)

P:(Wl ¢ Cl) + P:('2 é Cz).

Similarly, when (ai - “3) < 0, we have that

Pr(0,0) = Pr(W £ Es).
Pr(1,0) = Px(W; & C,) + Pr(W, £ C)),
Pr(0,1) = Pr(W, & C;) + Px(W, £ C),
Pr(1,1) = Pr('1 £ Cl"

Now, using the conditions on L and 8y given in Tables 2 and
3, respectively, we can derive the needed comparisons between
particular 'i’ Ci. and Ei’ i=1,...,4. For the cases
i
Aa_ I'(G: - ug) 2 0 and Aa' = (a' - ae) < 0, figures 3a and 3b
respectively show the areas over which the bivariate normal density

must be integrated to obtain the four probabilities
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A Uh—l ﬁ‘ﬂ 191 - Uh—l ;i -\ Uh

AU

4 Uy A%

figure Ja

-AUp-aptad  -AUgtaf  -A,

figure 3b
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Pr(0,0), Pr(1,0), Pr(0,1), and Pr(1,1). Without loss of genmerality,
0 1

figures 3a and 3b are drawn for the case ah < 0 ¢ . It can be seen
from figunres 3a and 3b that Iﬁ, If. If and IE correspond to the areas

over the bivariate normal density givem by (13). It follows that the
probabilities Pr(0,0), Pr(1,0), Pr(0,1), and Pr(1,1) are given by

equations (9) — (13) in Proposition 1,
Q.E.D.

Let us now examine how the probabilities Pr(1,+) and Pr(~,;)
will change as we allow the parameters to vary. These are given as
Pr(1,-) = Pr(1,1) + Pr(1,0) and Pr(-,1) = Pr(1,1) + Pr(0,1),

respectively. We then have:

PROPOSITION 2:

(i) An increase in ﬂi or AU, always increases the probability that

the husband will work, Pr(1,°);

(ii) an increase in ag always decresses the probability that the
husband will work;

(iii) an increaseo in Aa' or AU' always increase the probability that

the wife will work, Pr(-,1).
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Easily established by using either the areas defining the

probabilities Pr(i,j), as seen in figures 3a and 3b or by

differentiating the probabilities found in Proposition 1.

below is a table indicating the direction of chamge in the

probabilities as all parameters are allowed to vary.

Pr(0.0)
1 -
%n
o0 a0
change
Aa' ?
AUh -
AU' ?
Pr(0.0)
1
no
s change
o 0
change
Aa no
v change
Anh -

Case 1: Aa' = (G:

Pr(1,0) Pr(0,1)
no -
change
no +
change
- no
change
+ . -
- +

. 1
Case 2 : Aa' = (a'

Pt(IDO) Pr(o;l)
no -
change
- +
- ?
+ -
? ?

-ag)zo
Pr(1,1)

+

- 03) <0
Pr(1,1)

+

Pr(1,°)

+*

Pr(1,*)

+

Included

Pr(':l)

no
change

Pt(.ll)

no
change
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Q.E.D.

As expocted, an increase in AU, increases the probability that
the husband will work, whether or not the wife chooses to work; a
gsimilar remark holds for an increase in AU', Also, as can be seen
from equation (1), an increase in ui increases the probability that
the husband will work when he knows his wife wishes to work, while
having no effect on his propensity to work when he knows his wife
chooses not to work. From equation (2), it is clear that an increase
in ag inocreases the husband’s utility of not working. Finally using
equations (3) and (4), it is seon that an increase in AU' increases

the wife’s utility of joining the labor market.

3. A COMPARISON OF MODELS

Now that we have developed a model in which the outcomes of
the sequential decision-making problem are generated as Stackelberg
equil ibria of a game between two players, we are in a position to
compare it to the usual recursive probability model for dichotomous
variables (see e.g., Maddala and Lee (1976)). According to the usual
formulation, a rocursive equation system is described in terms of
latent continuous variables, where the observed dichotomous variables
are generated using a dichotomization. In our case, the borresponding

recursive probability model is

x: =A + B +e (14)
*
Y, =4, + 8 (15)
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for some Ah and A'. and

L ]
1 if!;>0. 1 4f Y, >0,

Yﬁ = 0 otherwise, !; = 0 otherwise.

The purpose of this section is to show that this recursive probability
model is nested in our model of Section 2.

Suppose that

@ =a) =0; (16)

then from equations (1) and (2) defining the husband’s utilities, we

have:

= 1.1
Up(1.T) =Ty +ny

o 0 0

Thus the restrictions (16) can be interpreted as imposing that the
utilities derived by the husband from working or not working do not
depend on the wife’s decision whether or not to work.

But now note that if the restrictions (16) hold, then from

Table 3, the four conditions CI. C,, Cs. and C, are identical; that

2 4 :
is, Y 2 -ADh. Looking now at the conditions for the wife’s reaction
functions, we have to distinguish two cases according to the sign of
Aa_. Suppose first that Aa_ 20. Then it is readily seen from Tables 1
and 2 that the pairs (1,1), (1,0), (0,1), and (0,0) occur under the

following conditions:

(1,1) 1if and only if AUh + 8y 2 0 and AU' + A+ e 20,




84

(1,0) if and only if AUh + e 2 0 and AU' * Aaw + e, < 0,

(0,1) if and only if AUh + e <0 and AD' + e 20,

h

(0,0) if and omnly if AU, + &, < 0 and AU' + 8 < 0.

h

It suffices now to note that these conditions are exactly identical to
the ones that are obtained from the recursive probability model (14)-
(15) with the usual dichotomization where Ah = AUh.
A_ =AU and B_ = Aa_. The case Aa_ { 0 is similarly studied, and

w w w w w

gives the same conditions as above on the errors 8y and L We have

therefore established the following proposition.

PROPOSITION 3: If the restrictions i = aJ = O hold, then the usual
recursive probability model using the dichotomization rule is
identical to our model in which the observed outcomes are generated as

Stackelberg equilibria.

The import of Proposition 3 is that it gives a structural
interpretation to the usual recursive probability model in terms of a
Stackelberg game. In addition , since the restrictions (16) on the
parameters of our model must hold in order for the result in
Proposition 3 to hold, it follows that the usual recursive probability
model i; nosted in our proposed model. As an empirical comsequence,
it is them possible to test the specification of the usual recursive
model by testing a; = u: = O, Finally, given the above interpretation
of these restrictions, it can be seen that these restrictions are
unrealistic singe they impose that the utility the husband derives

from working or not working does not depend on whether the wife is
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working. Thus, the usual recursive formulation is inappropriate since
it implicitly assumes that the leader is indifferent to the follower's
action. Let us also note that although the husband is moving first
and in principle should take into account his wife’s conditional
action when making his decision, the restrictions (16), when imposed,

lead the husband to ignore his wife’s action.

4. IDENTIFICATION AND ESTIMATION
Given the previous expressions for the probabilities Pr(i,j)

of the observed dichotomous variables !i and !;, the log~likel ihood

function under random sampling is written as:

L= ; log Pr (Y, .,Y ) (17)
= gltht!“ log Pr (1,1) + Y, (1 - Y ) log Pr (1,0)

+ (1 - Yit)l;t log Prt(O.l) + (1 - Yit)(l - !;t) log Prt(0.0)].

where the subscript t indexes the observations. The probabilities are
subscripted by t since AUh and AU' are in general functions of

explanatory variables. VWe assume as in Chapter II:
’ [
AUpe = Zpetp omd AU, = x 07, (18)

where X, ¢ DAY include characteristics of the t-th household and
characteristics of the husband. A similar remark applies to L SN Ve
now turn to the conditions under which the parameters
(p.Aa'.a:,ci,yh.vw) of our model are identified.

In order to discuss identification, we first need to introduce
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some notation., Define the following partitioned matrix X as

where Dp » l)h and Dw are block diagonal matrices of order 3T, the t—th

blocks given as follows:

if Aa_ > 0
[ 1+ ¥ h+]
T, 0 0 0 0 | a8,
2+ 3+ h+ h+
Dpt 0 . £ |- Dht_= 0 (bt +ct ) O , and
4+ h+
A t | =4 0 0 |
_ e
0 (1) at
= '+ '+ »
D‘t bt ct 0 H
w
dg 0 0
if Aaw {0
 1- y - h-
tt 0 0 0 0 8,
2- h-
Dpt = [0 T o |, Dht - 0 bt 0 ,» and
3- 4 h~, b=
Lo e Te L—(ct +dt ) o 0 ]
a‘t" o o
'-
Dwt = 10 bt o 1.
F 0 4
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The elements of the above matrices are described in the Appendix to
this chapter. The matrices ih and E' are of dimension 3T by Kh + 2

and 3T by Kw + 1, the t-th blocks given respectively as:

. ' - . . -
-1 0 e 0 x
0 1 xh ¢ and 1 x .

’

| 0 0 x . ] | 1 oz ]

In addition, 'x'p is a nnit vector of dimemsion 3T.

PROPOSITION 4: The parameters (p.Ac',ui.u:,yh,yw) of the model are

identified if and only if A has full column rank.

PROOF:

[ ’ o 1
Let zt (Yht’y't.xht’x't) and 6 = (p.AG'UthahoYho"') « Definme:

8103 f(Z »0) dlog f(Z .9)]
t=1

o E:[;1 . 96

From expression (17), we have, omitting the subscript t, that

3105 £(Z.8) L ooprny  W1- YY)
39 ® Pr(l1.1 3@ ' " Pr(1,0) 30

(1-%)Y (1-%)(1-7Y.)
Pxr(0,1) aPc(0,0)
* o, D e T P:h(o.O) = e

Then, 9_1_3:_1 ng:“", say, 1is given by

2 2
[ﬁx TRt I 5(1 Y)ig (1.0)
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2 2

N (1 - Yi)Y aPr(0,1) . (1 - Yg)(l Y;) aPr(0,0)
Pr(0,1) ap Pr(0,0) ap g

where we have used the faot that !i and Y; take on only the values

zero or one, Since Ii and Y' are random variables where Yi =i,

Y = j with probability Pr(i,j), i,j ¢ {0,1}, we have that

E Laq:fi ] Pr(l 1) [—L(m]z
* Pr(a, 0)[ ]z Pr(0, 1)[ ]2 Pr(0, 0)[ ]2

Proceeding anslogously, the remaining terms in B are given by:

ilgx_t. - __z._ar.:_(mn_mm
=0 {=oPr(i,3) 26, a0,

Notice that B can be decomposed into B = A’DA where A is of dimension

4T by K, K = Kh + K' + 4, that has as its t—-th block A.t defined as:

BP?E(I.I) apr£(1.1) aPrt}I.l) aPr!(l.l) aPrg(l.l) BPrt(l.l)

ap 3Aa 0 1 ' N
w ' aah aah ayh 81'

apr£}1.0) BPtgfl.O) ap:t§1.0) aPrt(l.O) aPrt(l.O) aPrt(l.O)

’ ]

ar:t(o.1) aPtﬁ(O.l) ap:§50.1) angfgfl) aP:;(O.l) 3Prt(0.1)

Y ] (]
apl aA¢' aa: aai ayh 61'

aP:!(0.0) aPrth.O) aPrt(0.0) aPrtfo.O) aPrtfg.O) aPtt(O,D)

’ [
o aAa' au: aai arh 37'
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and D is a block diagonal matrix of order 4T, the t-th block given by

. a=1
Pr, (1,1) 0 0 0

0 Pr (1,0) ° 0

0 0 Pr (0,1) 0 :
] 0 0 0 prt(o,o)‘

The model will be locally identified if and only if B is nonsingular
(see, ¢.g8., Rothenberg (1971)). Since D is of full rank and 4T > K, a
necessary and sufficient condition is that A have full column rank.
From the Appendix to this chapter, it is seen that the partial
derivatives of Prt(i.j) with respect to the vector 6 depend on the
sign of Aa'; we must therefore check that matrix A has full column

rank in both cases.

Case 1: Aa_ > 0
Substituting iato At the partial derivatives, using the

:+.c:+,d:+,i = h,w, and r{+.j =1,2,3,4, foﬁnd in the

notation u:+,b
Appendix, we perform the following matrix algebra:
(i) add rows (2+3+4) to row 1
(ii) add row 2 to row 4
(iii) add column 3 to column 4
(iv) multiply columns 1, 2 and 6 by -1

{(v) Switch rows 3 and 4.

Roarzranging columns and omitting row 1 since it is identically null,

we have
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1 1+ h+ ! wt+ wt !
T, 0 0 a, X a, 8, X
A = 2+ 3+ h+ h+ h+ h+, ! w+ \ad w+
t (rt + ) 0 (bt + ¢, ) (bt + cy )xh . (bt t o, )x'
4+ b+ h+ ! w+ !
I r, dt 0 -dt x, 0 dt x

where Dp. Dh’ and D' are oach block diagonal matrices of order 3T, the

t—th blocks being Dpt’ th, and Dwt respectively, as given above.

Case 2: Aa' <0

Substitute into At the partial derivatives found in the

i i
t t

Now perform the following matrix algebra on matrix A:

Appendix, again using a -.b:-.c ’.dt'.i = h,w, and :{—.j =1,2,3.4.
(1) add rows (1+2+4) to row 3

(ii) add row 4 to row 2

(iii) add column 4 to column 3

(iv) multiply column 6 by -1

(v) switch rows 2 and 4.

Rearranging columns and omitting row 3 since it is identically null,

we have
i 1- h- 1 w- 1 1
rt 0 0 ‘t x 0 't x'
ry 2~ h- h-_1 i w1
A =
t T, 0 bt bt = bt bt X
4~ h— he- h-, 1 w w- w-, 1
|5y + 1) e 0 (e +d)xy o (ep +d Ddx ]
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which can be written as K.
Q.E.D.

As seen in the Appendix, the elements of the matrices Dp. Dh,
and D' are all nonzero. Moreover, these matrices are nonsingular in
both'cases since they are either triangular matrices or can be made
triangular by suitable permutations of rows and columns. By examining
matriz X above, it is clear that if A does not have full column raauk,
it will occur only extremely rarely for some specific values of the
parameters as an artifact of certain explanatory variables. We have,

although, the following necessary condition for identification.
COROLLARY 1: If Aa' = a: - ag = (0, the model is not identified.

PROOF:

When Aa' = (, it is seen from above that h:+ + ott = 0.

Therefore matrix D t is singular for all t which implies that matrix A

h

no longer has full columa rank.

Q.E.D.

As a practical implication of the corollary for estimatiomn, it

must be the case that the initial values chosen for u‘l' and “3 not be

“the same. Otherwise, the information matrix will be nonsingelar at

the first iteration, and the optimization canmot be carried out.
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5. CONCLUSION

In this chapter, we presented a new approach for formulating
simul taneous equations models for qualitative endogenous variables. As
we have seen, this approach integrates results from noncooperative
game theory and discrete choice modeling. In contrast to the model
proposed in the previous chapter, we assume a model where two
individuals play a Stackelberg game in which each player maximizes his
own utility. As in the model of the previous chapter, the current
model is also made stochastic by adopting the random utility
framework,

Just as the previous chapter proposed a gensralization of
simul taneous equations models with structural shift in which the
discrete endogenous variables were generated as Nash oquilibria of a
game between two players, the model proposed in the current chapter
generalizes the recursive models for discrete endogenous variables
that have been proposed up to now in the literature. As ﬁe have seen
in Section 3, the usual recursive model is nested in our game
theoretic model. Although recursive models have been used in the
formulation of many econometric problems in which sequential decision
making is a distinct feature, these models implicitly assume that the
leader is indifferent to the follower’s action. If thi; is not the
case, then the usual recursive models are misspecified since they

ignore the optimizing

behavior of the leader who is taking into account the conditional

action of the second agent when choosing his action. As such, the
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usual recursive model of a sequential decision making problem is
inadequate in many problems. In contrast, our formulation in terms of
a Stackelberg model allows for optimizing behavior on the part of both

agents,




1.
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FOOINOTES

Where an individuoal is indiffereat, we arbitrarily assume that he

or she will take actiom 1.

Let us note that the husband is fully iaformed about the utility

function of the wife; that is, he not only knows the deterministic
components in the utilities (3)-(4) given below, but also the
random components. An interesting gemeralization, which will be
pursued in future work, arises when the huband knows only the
deterministic components, in which case one has a Stackelberg game

under uncertainty (see also Vuong (1982)).

Let us note that we allow the utilities Uh(1,!;) and §_(1,%) to

depend on Y; and Yh respectively. This contrasts with the

formulation adopted in Chapter II.

If a (¢, I(a,b,c,d,p) is by convention the negative of the
integral of the bivariate density over the range [a,c] X [d,b]. A
similar remark applies if b < d: If both a { ¢ and b { d, then
I(a,b,c,d,p) is by comvention the integral of the bivariate

density over [a,c]l X [b,dl.
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APPENDIX

First partial derivatives of the Probabilities Pr(i,j): Let & be the

univariate normal c¢.d.f.

and let 9 be the corresponding p.d.f. We

then use the relations QE.(%;ML = ?(x)@(y‘. - pz.) ._a_l_-‘_(_x_a,;z,_g)_, =

?(y)@(x‘ - py‘). and Q.ﬂ!;fa.ﬂ)_

= £f(x,y,p) where a quantity with a "*”

means that quantity is divided by the square root of (1 - pz). Proofs

of these relations are found in Appendix B to Chapter II. 1In

addition, let f(x,y,p) be the p.d.f. corresponding to the bivariate

nOfllll c.d.fl F(X:Yap)-

Then from equations (9)-(13) found in Section

2 of this chapter, the first partial derivatives of the probabilities -

Pr(i,j) use the following:

3Ty
9F (AU n"AU'p P)

h

L4 L4
= ~9(AD, )@(-AT, + pAU )x, ,

37'
BF(-AE]_l. -AU!. p)

* *
= ~$(AU_)@(-AU, + pAU )x_,

aAu.'

’0,

aF ( -Auh. -AU'n p )

e

dap

30,

3F(-AU, ,-AU_,
(-AUy,.~ATy-P) 0,

&
aF("AU .-AU!, P)

ap

= f(-AUh. -AU'. P) H

oF (AU_ » —AU!_ - Aﬂwn -P)

ayh

aF(AU_.—AU! - Ac!.-'p)

L = 9(A,)®(-AU, - Aa, + pAUL)x,,

81'

9F (AU .-AI_I! - Aa_,-p)

_h

= -?(AU' + Aa')Q(AU; - p(AU; + Aa:))x'.

v

aAa'

= (AU, + Aa_)@(AU; - p(AU, + Aa)),
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dF (Aﬂh, -AU_ - Aaw. -p)

w
8 0 =0
i
OF (AU ,-AU_ = Aa_,=p) Y
3al ’
%
aF (AU .-AU! - Aa'.-p)
ap — = —f(AUho-AU' - Aa'n-p);
1 0
oF (-AU, - + ,AU ,-p)
b~ % 7 %' 1 0
o1y = ---'i‘(AlIh + oo - “h)
. . 1 0s
X Q(AU' - p(AUh + e - a ))x.h-
1 0
oF (AU, - + ,AU .'P)
b~ %% "% . 1e oe .
o1, = ?(AU')Q(-AUh —a ta + pAU')x'.
1 0
al"‘(-AlIh e a.h.AU!.-p) -0
aAu' ’
8F("'AU! - u.; + ag.AU!.-p) 1 0
X ®(AT, - p(AT; + @i - ad)),
1 0
BF("AU - + G.h.AU'.'p) 1 0
= — = -P(AU, + -a)
3“11; b % %
X R(ATS - p(AT, + &}' = ab ),
1 0
aF(-AU - + aAU .-P)
h o]_z 4 - —f(= _ 1 0 .
ap £( Auh Gh + GhaAU'n P).
1 0
OF(AU_ + AU + Aa ,p)
BT %" %y 1_0
a1y = PATy + ay - ay)
. * . 1® 0s
X Q(AU' + Aa - p(AUh ta -a ))xh.
1 0
dF (AU, + - »AU_ + Aa_,p)
™ % ~ %nlyw w?
3‘!' T(AU' + A“w)

. 1 0 s ]
X Q(AUh ta -a - p(AU' + Aa'))x'.

aF(AU + Gh ub.AU + Aa .P)
33a = T(AU' + Aa')
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. 1% o. L L ]
X Q(Aﬂh + aQ ~o - p(AU' + Aa'))n
1 0
9F (AU, + - AU+ Aa_,p)
h- % " %w ] = - 1_ 0
aag ?(AUh + a ah)
s . & 1 0
XQ(AU' + Aa_ - p(AU11 ta -a )),
1 0
aF(AU_h + e - a.LAU + Aa .p) - $aaU, + 1 0)
a‘1111 " % " %

X Q(AU: + Aa; - p(AU; + a.:. - a.g')).

1 0
BF(AU + - ,AU + Aa ap)
h_ % " % w W, - 1_0 .
3p f(AUh + ﬂ.h ﬂhnAU' + Aﬂ'.p)n

and

aIA

S Liarar® . 1¢
T [ ?(Auh + uh)Q( AU + p(Auh +a ))
+ QAU + al)®(-AU, - Aa. + p(AT; + ai'))

1 0 . . 1* o*
+ ?(A'Uh +a - a.h)‘l’(-AU' + p(Al)‘h ta —oy ))
*

1 0 L ] L 4 1. 0‘
- ‘P(AUh +a - ah)Q(-AU - da_ + p(AUh ta - ah_))]xh.

w

alf . 1 *
E = [-P(AU )@(-AIIh - a + pAU_ )
+ PAU, + Aa )@(-A, - ap" + p(AU, + Aal))
oe [ 4
+ ?(AU')Q(-AUh - “h + o + pAU)
1s 0* . *
- ?(AU' + Aa')Q(-AUh —a ta + p(AU' + Aa') )-]x'.
GI_‘: . 1 . .
m'; = PAT_ + Aa)P(-AU, - @ + p(AU_ + Aa))
. 1+ 0¢ . .
- T(AU' + Aa')Q(-AUh —a te + p(AU' + Aa')).
OIA |

__.t - - 1 - o _ L ] | ] 1‘ _ o.
aag ?(Aﬂh + o ah)Q( AU' + p(AUh + ap ay »
+ YT, + ol - ad)®(-aT] - Aal + p(AU; ra - a0,
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a—-ﬁ 1 * (A‘a'I +a®
aa; = -?(Auh + a‘h)Q(-AUw p(AT, + oy ))
1 . . . 1
+ ?(AUh + n.h)Q(-AU' - Aa_ + p(AIIh + o ))
. . 1s 0*
+ PUT, + of - a)®(-AT, + p(AU, + @y = a ))
1 0 s . . 1 o*
| - ?(AUh + ooy - o.h)‘l’(-AU‘ - Aa_ + p(AIIh ‘o -a 3,
BIA
=X = £(-AU, - ol,-aU_,p) - £(-AU, - ol,-AU_ - Aa_.p)
ap h =~ %' 4% P A~ %™ w’ P
1. 0 1, 0 i
- f(-AUh e+ ah.-AU'.p) + f(—AUh -a 4 ah.-AU' - An',p).
B
o1, N . e
7, [-$(AT, )®(-AU_ + pAU.) + P(AV,)(-AU_ - Aa_ + pAU,)
+ (AT, + al)B(-AT, + p(AT, + ai'))
1 . . . 1®
- ?(AUh + ah)Q(-AU' - Aa_ + p(AUh + ay ))]xn.
BIE . . . . .
5,—,: = [--‘P(AIII“,)Q(-AIJk + pAU') + ?(AU' + Au')Q(-AUh + p(AU' + Aa'))
. 1s .
+ PAU)R(-AT, - ap  + pAT )
. 1* . .
- ?(AU' + Aa')Q(—AUh -—a ¢ p(AU' + Aa'))]x'.
B
aI+ ] L -
m; = f(AU' + Aa')Q(-AUh + p(AU' + Aa'))
» 1® . .
- ?(AU' + Au.')CP(-AlJh -a + p(AU' + Aa')).
alf
— = 0,
0
day,
aIB
o+ Lo ar® . 1
1 T(AUh + a.h)Q( AU + p(AUh +a ))
%h
1 . . . 1
- f(AUh + nh)Q(-AU' - Aa_ + p(AlIll + @ »).
B
oI, 1
'a'b_ = f(-AUh.-AU'pP) -f(- Uh,-AU' - Aa‘.p) - f(-AUh - d.h."'AU'.p)

1
+ f(—AlTh - ah,—AU' - Aa'.p);
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ar?

;é = [PV, - a)@(-AT] - Aa, + p(AT; - ar®))
+ P(AT, - a)@(-AT, + p(AT; - a0 )

+ ‘I’(AIJh + a.i - a:)Q(-AU: - Au: + p(AII;1 + q.ll‘ —a))
- P(AT, + af - a)P(-AT, + p(AU, + al* - a2*))1x,,

v

A
aI_ . 0 s *
_37' = [-?(AU' + Aaw)‘P(--AUh ta o+ p(AU' + Aa'))
* 0 -
+ T(AU')Q(-AUh ta o+ pAU')
L ] L * L ] L
+ PAT_ + Aa JP(-AT; - ay + ap + p(AU, + Aa )

1s

- PATIR(-AT, - ap + ap + pAU D]z,

A
or_ —9AT + . 0o . .
v Xe, = -P(AU_ + Aa )P(-AU} + a, + p(AU_ + Aa )
+ PAT, + Aa )B(-AT, - ai® + al  + p(AT, + Aal)),

BIA

—_— = _ 0 _ L ] _ ] ] - (1] ]
720 ‘I’(Aﬂh ah)Q( AU - Aa_ + ;»(AIJll ay M

0 s - os
- P(AD, - o )R(-AU_ + p(AU, - a, ))

- (AT, + u.i - a.ﬁ)@(-Au; - Aa: + p(AU; + u;' - a.g'))
1 o ] ® 1. o.
+ ?(Aﬂh +ay - a.h)Q(-AU' + p(Ath ta -oay )),
A
oI

o 1 Omran® _ A" . 1¢ _ 0
aaﬁ ?(AUh+ oy - @ )P(-AU_ - Aa_ + p(AU, + a a )

- AU, + of - a:)Q(-Au; + p(Aul'l + ci‘ - a:.))'
ar? o 0
B = f(-AUh + a,,~AU_ - Aa'.p) - f(--AlIll + ah.-AU'.p)
- £(-AU, - a.i + {.—Au' - Aa_.p) + £(-AU, - ai + u.ﬁ.-AU'.p);
B
a1

. ]

- . . . .
;Y; = [-*(Auh)Q("AU' - Aa_ + pAUh) + '(AUh)Q(-AU' + pAuh)

. o

0 . . 0*
+ ?(AUh - ch)Q(-AII = Aa_ + p(A!Ih - a ))

«
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- (AU, - oa))®(-AU] + p(AT; - ad*))Ix_,

aI . & E [ ]
— = [—‘P(AU' + Aa )P(-AU, + p(AU_ + Aa))) + ?(AU')Q(—AUh + pAU)
+ PAT_ + Aa )®(-AT; + af* + p(AU, + Aa))

- P(AU )R(-AU, + ap + pAU)1x .

~P(AT_ + Aa YP(-AT, + p(AT, + Aa_))

+ P(AU_ + Aa YB(-AT; + ab® + p(AU. + Aay))

—5 = -fuv, - a:)@(—AU: - Aa_ + p(AT; - u.:.))

0 . . os
+ f(au, - o, JR(-AU_ + p(AU, - ay ), -

—_ =0,

- = f(—AUh,—AU' -~ Aaw.p) - f(-AUh.-AU',p)

- £(—AU, +

0
h s - AU' - AG'.P) + f(-AUh + aha-AU'.p)

sfo

Elements of the matrices Dpt’ Dht’ and Dwt'

For simplicity, we drop the subscript t in the following expressioms.

1+
r = f(AUh,AU' + Aa'.p)

2t = -£(AU, + al’;.Au'.p)

3+ 1
r = f(AUh + ah,AU' + Aaw,p)

r4+ - f(Aull + a.i - u:.AU',p)

Rl ?(AUh)Q(-AU: - Aa: + PAU;)

~“P(AT, + a})P(-AT, + p(AT; + ai'))

vt
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AT, + al)@(-AT, - Aa, + p(AU, + a; )

1 0 . * »
?(AUh + e - ah)Q(AU' - p(Al]h + o - ))
(AT, + Aa JP(AT, - p(AT, + Aa_))

?(AU')Q(—AU; - ai' + pAU)

(AU, + Aa )P(AU, + ar - p(AU, + Aa))

--‘l’(AUW)‘P(-AII;'1 - a.;‘ + ag' + pAU:)

f(AUh,AU'.p)

1 0
f(AIIll +a - "'h’AUw + Au'.p)

0
"f(AUh - thAU' + Aﬂ'op)
0

| ] *
~(AU, )P(-AT, + pAU;)
1 0 . . . 1* 0e
?(A‘Uh +ap - ah)Q(AU' + Aa_ - p(AUh ta -a ))
~(AT, - aIP(-AU, - Aa_ + p(AT; - ap )
0 . . o*
PAT, - a)@(-AT, + p(AT, - ap )
- [ ]
$(AT_)Q(-4T, + pAU_)
P(AU_ + Aa )P(AT, + af - ab’ - p(AU, + Aa)))
~P(AT, + Aa JB(AT, - ap - p(AT, + Aa))

(AT )D(-AT, + a0 + pAUL) .
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CHAPTER IV: AN EMPIRICAL STUDY OF THE GAME THEORETIC MODELS

1. INTRODUCTION

The purpose of the current chapter is to preseant an
econometric study of the Nash and Stackelberg equilibrium models
proposed in the previous two chapters. The problem we will examine
concerns the joint decision of a married couple whether or not to
participate in the labor force. We feel that an examination of this
problem will yield two useful resnlts. First, it will demonstrate
that the game theoretic models we have proposed are in fact
empirically tractable. Second, wo feel that the proposed study will
make a contribution to the literature on labor force participation
because we explicitly model the behavior of a married couple in a game
theoretic framework, while previous empirical work has either taken
the husband’s decision whether or not to work as exogenous (see, e.g.,
Heckman (1974), Heckman and McCurdy (1980)), or specified the labor
supply of a husband and wife from the outcome of a joint utility
function (see, e¢.g., Ashenfelter and Heckman (1974), and Gronau
(1973)). Although Brown and Manser (1978), Manser and Brown (1980)
and McElroy and Horney (1981) have done related work using a
cooperative game solution, none have provided an empirical

application.
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By now it should be élear after reading Chapters II and III
that the structure of the Nash and Stackelberg models contain many
similarities. These common elements arise for essentially four
reasoas, First, the dimensionality of both models is the same; in
both models, attention is restricted to the case of two qunalitative
endogenocus variables where each variable takes on only two outcomes.
Second, both models follow the classical tradition in economics,
postulating that each member of the married couple maximizes his or
her own utility function. The decisions made by the husband and wife
need not be independent, however, since the utility derived by each
individual naturally depenas on the action taken by the other. In
this sense, both the Nash and Stackelberg models allow as argumants in
each utility function the action taken by both members of the married
couple. Third, since the ultimate goal of the previous two chapters
was to specify an econometric model of the two game theoretic notions,
it was necessary to introduce a stochastic structure into the two
models. This was done by treating the utilities as random,
decomposing the utility of each of the four outcomes into a
deterministic component and an additive random component; the
deterministic components were in turm decomposed into continuous
explanatory variables and shift parameters. Finally, since the
observed dichotomous variables woere generated as equilibrium outcomes
of game theoretic notions, it was necessary in both models to derive
the reaction functions of each individual. Given the probabilistic

structure, each reaction function occured if certain relations were
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satisfied between the disturbance terms, the shift parameters, and
differences in the coatinuous explanatory variables.

Given the similarities in the structure of both the Nash and
Stackelberg models, it should not be surprising thet the specification
of the three empirical models will in turn yield many similarities.

As to economize on space, these similarities are discussed in the
following section. Section 3 will discuss peculiar features of the
structure of the Nash model along with the empirical results of the
problem under study. Sections 4 will discuss the Stackelberg model
for the case in which the husband plays the role of the leader while
his wife plays the role of the follower. Empiricnl results will also
be presented. Section § discusses the third empirical example where
the roles of the husband and wife are reversed. Section § provides a
brief conclusion. A description of the data set used in the three
empirical studies is included as the Appendix to this chapter. As
such, it discusses the source and-description of the original data
set, the selection criteria we used in choosing the appropriate set of
observations, and the means and variances of the explanatory

variables.

2, ON THE COMMON STRUCTURE OF THE MODELS
In each of the three models, the following four equations will
be used to describe the joint behavior of a representative married

couple:
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w: = z;y; + d;Y; + n; (1)
LSRRG AR | (2)
e n e 4l @
Vg = Xl + djn + ), (4

1 if the husband works,
!h = 0 otherwise,

1 if the wife works,
w 0 otherwise.
Equations (1) and (2) describe the reservation wages, or equivalently,
the shadow price of time for the husband and wife, respectively. Note
that the wife’'s decision of whether or not to work, given by the
dichotomous variable !;. affects the husband’s reservation wage in
(1). Analogously, the husband’s decision of whether or not to work,
given by !i. affects the wife’s reservation wage in (2). Equations
(3) and (4) describe the market wages for the husband and the wife,
respectively. Note tiat in the general specification of the three
models, we also allow for the possibility that one of the determinants
of the husband’'s market wage it whether or not he has 2 working wife;
we make a similar allowance for the wife.

Now let the husband’'s (wife’'s) reservation wage p;ay the role
of the payoff he (she) derives from not working, givean below by
equations (5) and (6) respectively. Similarly, let the husband’'s

(wife's) market wage play the role of the payoff he (she) derives from
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working, given by equations (7) and (8) respectively. We then have

U0.%) = Zurp + 4T+ ny ()
U 0.%,) =25+ &7Y, + uf (6)
U (LY) =X} + &Y + np : (7
v.(LY) = X:,'r: + &Y+, (8)

Since we are describing the empirical structure of the three models
only in general terms in this section, it should be noted that the
structural assumptions of both the Nash and Stackelberg models will
place zero restrictions on certain of the shift parameters

di. i=h,w, j=mnr.

In each of the three models, we must now specify the set of
explanatory variables used to estimate the market wage equations and
the reservation wage equations for the husband and wife.1 Market wages
for the husband and wife are specified in (9) and (10) respectively.
Reservation wages for the husband and wife are specified in (11) and

(12) respectively.

S I 2 3 4
U, (1Y) =¥ Ty * Y,AGEH + y EDUCH + v, UNEN + v, RACE (9)
m
- d;'[' + qh
m 0 1 2 3
U (1Y) = W, = 7, + Y, AGEN + y AGEW#2 + y EDUCY (10)

+7:um+1:mm+ ‘i AR
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et _ ~0 , ~1 ~2 ~3 ~4 ~5
ﬂh(o.Yw) =W, = ¥, + Y AGEH + Y, EUCH + y, UNEM + ¥, RACE + Y, ASSETS
+ 30gIDSC13 + 77x1ns>14 + d¥Y + qf (11)
Ty h Yty
'Uw(o.Yh) =W_ =7 + Y AGEW + Y AGEWSs2 + ¥ EDUCY + y UNEM
~5 ~0 ~'T ~8

+ 7wR.ACE + ywASSEI'S + ywxms1-z + ‘YWKIDS3-5

~9 ~10 r, . .1
+ YWKIDSG 13 + T, KIDS>14 d'!h + . (12)
where
AGEH Age of husband
AGEW Age of wife

AGEW**2  Squared age of wife

EDUCH Number of years of formal schooling of husband

EDUCW Number of years of formal schooling of wife

UNEM Local menploﬁment ‘rate

RACE Dummy variable indicating race of married couple; 1 = Black or

Hispanic, @ otherwise?

_ ASSETS Family’s annual income other than from wages or salaries 3
KIDS1-2 Number of children in family unit ages 1 and 2.

KIDS3-5 Number of children between ages 3 and §.

KIDS6-13 Number of children between 6 and 13.

KIDS<13 Number of children in family unit 13 years or youmger
KIDS>14 Number of children in family unit 14 years or older

The plus and minus signs under the explanatory variables in equations
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(9)-(12) indicate the expected impact upon estimation. Note that not
only does the wife’'s decision of whether or not to work effect the
husband’s market wage, it also affects the husband’s reservation wage.
Analogously, the husband’s decision to work or not affects the wife’s
market wage and also her reservation wage.

The data used in this study on married couples is from the
1982 wave of the University of Michigan Survey Research Center’s Panel
Study on Income Dynamics, 1968-1982. The data was restricted to é012
records for married couples living in the U.S., where both the husband
and the wife were able-bodied, neither older than 64 years of age with
no nonrelative living in tie family uvnit. A.nore detailed description
of the Panel Study on the selection criteria we used is found in the
Appendix to this chapter. Let us now briefly discuss the estimation
technique used as it will apply to all three empirical problems.

Al though many of the nonlinear optimization methods developed
over the years could be used to estimate the Nash and Stackelberg
models, we choose to use a version of the iterative procedrre
suggested by Berndt, Hall, Hall, and Hausman (1974). A major
advantage of the BHHH algorithm is that it makes use of the
information matrix equality whoen the method of maximum 1likelihood is
applied to correctly specified models. As such, only the first
partial derivatives of the expressions for the probabilities need to
be derived.

For completeness, a brief digression on the derivatiom of the

BHHH algorithm, a variation on the method of scoring, is in order.
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The method of scoring is as follows. Given a sample of n i.i.d.
observations (yl.....y#) from a density function f(y,9), the log-

likel ihood function is given as

n
log L(O) = ; log £(y,,0).
=1

Let 9 be an initial or trial value of the parameter vector 6. Then

by taking a Taylor expansion of —lgx-k around 00 we get Ql%g_L ~

2
log L 9 1log L . _
| Y TYY; '90 (8 - 8,). But since

2
-1 32! L, ..t )ﬁ 3"log £(y;, 0)
20006’ 2039’ 00

[ % 79 -n 1 _—l—‘—L
- I‘° ) = E [ 3030’ L g

00
But at a maximum we must have ng‘—- | =0or©®=290

we have log L ~ S(Go) - (I(G ) - (0 - O ) where S(Oo) = él%g‘k IO .
0
0

The method of scoring now works as follows: For any initial Oo

construct S(Oo) and I(Oo). The new estimate 01 is given by

0, = Oo + I(Oo)-IS(Go). Since the scoring method involves second

1
partial derivatives, we exploit the fact that under correct model

specification the information matrix may also be writtem &s

a ! n(e) = a2 g [H&L . AL g,
-1 -lii i i
n Q(e) a1 = EY) * 20°

aégnz_l.u_k ﬂa‘él-"!"

Berndt, et. al, suggest using 61 = 00 + Q(Oo)-IS(Oo) as an iterative

-1
+ 1(00) S(Oo).
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procedure,

3. THE NASH MODEL
A. SPECIAL FEATURES OF THE NASH SPECIFICATION

Recall from Assumption A3 of Chapter II that only two shift
paraﬁeters. ah and ﬁ', appear in the equations specifying the joint
determination of the decision of the husband and wife whether or not
to participate in the labor force. As a result, equations (1)-(4)
must be suitably modified. We thus assume that the wife’s decision of
whether or not to work, given by the dichotomous variable !;, affects
the husband’'s reservation wage but not his market wage. Similarly, we
assume that the husband’s decisior of whether or not to work, given by
!h. affects the wife’s reservation wage but not her market wage. Ve

then have:

w; = Zh'y; - BhY' + n; (13)
o ' o

W =Zy, - B Y +n, (14)

wnl; = xhy: + 1‘: (15)

W2 = x;-,: +nl (16)

Letting the husband’s (wife’s) reservation wage play the role
of the payoff he (she) derives from not working, and letting the
husband’'s (wife’s) market wage play the role he (she) derives from

working, we have the following four equations

. 4
tfh(o.z') = Zyyy = By Y, * ny (17)
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_ T _ r
ﬁ'(O.Yh) =z, 'Bwfi + (18)
B,(1.Y) = x;ly: + np (19)
¥ (1Y) = x",y:‘ + 2, (20)°

Notice from Chapter II that Assumption A2 on the error terms is

naturally satisfied. Morcover, we have:

h h ''m ‘''r
Uh(l.l) - Uh(o,l) = ﬂh + 0°(1,0) - 0°(0,0) = thh - Zhyh + Bh (21)

U,(1,1) =0 (0,1) =B+ U"(1,0) - 0'(0,0) =X vy - Z v +B,- (22)

Thus Assumption A3 of Chapter II is also satisfied. In addition, note
that in specifying the husband’s reservation wage and market wage
equations, givem by (17) and (19) respectively, it may be the case
that certain explanatory variables appear in both equations, implying
that the associated coefficient in (21) will be measuring the
difference between market and reservation wages. A similar comment
holds for the wife.

Applying (21) and (22) to the gemeral specification given in

the previous section, we now have

U,(1,1) - Uh(O.l) =Byt Uh(l.O) - Uh(0.0) (23)

= (-,: - ;'g) + (-,; - ?i)mnn + (7: - ?i)nwcn + (1: - 7i)UNEu

* (of - ?:)ucz ~ FSASSETS - ‘-;:nnsls - JIKIDS14 + B,
and
U,(1,1) - U _(0,1) =p_+ U (1,00 - U_(0,0) (24)

0 ~0 1 ~1 2 ~2 3 ~3
(7' 1') + (1' - 1')AGEI + (7' - 7')AGEI“2 + (1' - 1')EDUCI

(Yh 7h)UNEH + (7' - 7')RACE - Y'ASSETS - 1'K1D81-2

+
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- 73kIps3-5 - 7Oxips6-13 - 71%Ips>14 + B .
w v v w

B. EMPIRICAL RESULTS FOR THE NASH MODEL

Assuming that the parameters are identified, maximizatiom is
straightforward although the log—likelihood takes four different
functional forms according to the signs of Bh and B'. To complicate
matters, we do not have a set of initial consistent estimates of the
parameters (yh. Bh’ Ty’ B'. p) nor do we believe that the log-
likel ihood function is globally concave. Although this situation is
common in problems of nonl inear estimation, one can never be totally
certain that he has found the global maximum. Ths best that one can
do is experiment with various sets of initial parameter values nntil
becoming reasonably certain that the giobal maxmum has been reached.

To this end, we provided various initial values for (7'. Bh’ T’ ﬁ')

with a grid search over possible values of p. Having no strong priors

over p, we estimated all values from —.9 to +.9 in increments of 1,

We then iterated until comvergence, convergence being reached when, on

average, each element of the score vector was no greater tham .01.
Different trials of the parameter vector (vh. Bh. Ty’ B') included (i)
the zero vector; (ii) our a priori best guess of the parameter values,

making use of equations (23) and (24); (iii) the previous trial with

the signs of the coefficients reversed; (iv) dividing be ten the final

estimates from each of the trials (i), (ii) anmd (iii). Upon
estimation, it was found that the parameter estimates and log-
1ikel ihood values were almost the same for each of the give trials

listed above; we took this as sufficient evidence that we had found
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the global maximum of the log—likelihood function.

As can be seen from Table 1, the value of p that maximizes the
log—likel ihood function appears to lie in the interval (-1.0, -.8).
Therefore we tried all values within this interval in increments of
.01, The maximizing value of p is -.91, which also appears in Table
1. It may appear surprising that the maximizing value of p is close
to minus one. One possible explamation for this result may be due to
the fact that the contingency table is very unbalanced. As we see
from Figure 1 of the Appendix to this chapter, there are very few
observations for which the husband does not work; for only 77 of the
2020 observations on married couples does the husband choose not to
work. If we now look at Figure 3c of Chapter II (since 3; < 0 and
ﬁ; > 0), we see that an ellipsoid in (ah.a') space will be centered,
most likely, in the (1,1) region since this corresponds to the largest
element in the contingency table; for 1204 observations out of 2020,
both the husband and wife work. Moreover, am ellipsoid wﬂose major
acis has slope near minus one and centered in the (1,1) region will
cover an area associated with the largest number of observations.
Since the method of estimation employed is maximum likel ihood, this
explanation seems quite plausible. In additiom, a likelihood ratio
test of p = 0 vs., p = —.91 can be easily constructed from Table 1.
Since =2(log-1i*:tihood value for p = 0 — log-likelihood value for
p =—-.91) ~ x:. we can roject the hypothesis that p = 0 at the 95
percent level.

Table 3 lists the estimated coefficients and the associated



Correlation Coefficient (p)

-.99
-.91
-.9
-.8
-7
-.6
-.5
-.4
-.3
-2
-.1
0.
o1
2
.3
4
.S
.6
o7
.8
.9
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TABLE 1

Log-likelihood Value

-1514.95
-1514.57
-1514.59
-1515.05
-1515.72
-1516.41
-1517.07
-1516.56
-1516.93
-1517.35
-1517.79
-1518.23
-1518.67
-1519.10
-1519.51
-1519.90
-~1520.27
-1520.65
-1521.01
-1521.58
-1521.92




INSTANT

EH

EW

EWes2

UCH

)UCHW

|EM

\CE

SET

.DS1-2

.DS3-§

[DS6-13

DS < 13

(DS > 14

Coefficient

”~
e
-2
i
-2
=2
L

L)
2
=2
i
-2
=2
~

Husband
Estimate

0.384

0.835

0.014

0.058

=0.043

-0.262

0.381

C.088

)g-likelihood value = -1518,23
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TABLE 2
p =0

t-
Statistic

1.00

1.22

1.89¢

1.78*

~2.41%e

~1.97ee

1.21

-0.72

0.79

® significant at the 10% level
*® gignificant at the 5% level

Coefficient

_~10
1“

Wife

Estimate

-0.161

-0.084

-0.001

0.039
-0.015
0.399
-0.012
-0.700
-0.451

-0.200

-0.136

t-

Statistic

-1.29

-0.24

-3.46%

~4.240e

3.18es

-1.59

5.31%e

=2.06%*

-11 .20‘.

-7.37%¢

=5.21%*

-2 . 74‘.



INee2

JCH

JCW

)S1-2

)S3-§

S 6-13

)S < 13

)S > 14

Coefficient

By

~6
“Th

~7
Yy

Husband
Estimate

-.972

1.04

0.009

0.142

-0.058

-0.128

0.427

-0.074

0,211

g~likelihood value = -1514.57
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TABLE 3
P = -, 91
t—
Statistic Coefficient
-2 044‘.
Bw
0 ~0
1.55 (1w - 7w)
1.10
(75 - 1:)
(7: - ;z)
4,710e
3 -3
(1w - 7w)
-2.67e ol - 19
-0.89 ) - ;:)
~6
1.48 Ty
27
T
~8
Ty
-~9
Tw
‘1-26
~10
™
1.68 -

* significant at the 10% level
#¢ gignificant at the 5% level

Wife

Estimate

2.63

-3.02

0.067

-0.001

0.032

-0.001

0.442

© -0.012

~0.153

-0.148

t_
Statistic

11.80s%*

-6.16%¢

2.84s*

=3.73ee

1.85¢
-0.08
5.87%
-2.229s
-11.00%
-7.308s

=4.01%%

-3.00%*
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t—-statistics for the case p = —-.91, Several points deserve mention.
First, if we compare Table 2, the estimated coefficients and t-
statistics for the case of p = 0, with Table 3 we see that the sigas
of the estimated coefficients are quite robust with respect to p.
Second, we see that both ﬁh and B' are significantly different from
zero, providing evidence that the husband’'s decision whether or not to
work depends on the wife’s decision and vice versa, From (17) we see
that the negative estimated coefficient of ph from Table 3 implies
that if the wife works, the husband’s reservation wage increases as
expocted. A priori, we would also expect the estimate of B' to be
negative also; we offer no explanation for the disconcerting result
that B‘ is positive.

Finally, and most importantly, we can provide a test of
whether or mnot th; logical consistency condition, Bh . ﬁ' = 0, holds
for the empirical problem presently under study. Since the results
presented in Table 3 provide unrestricted estimates of the two shift
parameters Bh and B'.‘we can easily perform a Wald test of the logical
consistency condition. As a reminder, let us define the Wald
statistic. If O is alk vector of parameters, r(6) a vector of g
restrictions (g < k) imposed by the null hypothesis on ©, and R the g

z k matrix of partial derivatives 3r(0) /30, the Wald statistic is

given by

¥ =& RI® 17125,

Asymptotically, W is distributed 12(3). For the case at hand,
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8= (Bh. B', The Ty’ p) and r{(9) = Bh . Bw = (0 so that g = 1. Since
the value of the Wald statistic in this case is 4.63, we can reject
the hypothesis that Bh . p' = 0 at the 95 percent level. If we recall
from Chapter II that the usual simultancous equations model for dummy
endogenous variables developed by Heckman (1978) is not well-defined
when By * By # 0, but that our formulation in which the dummy
endogenous variables are generated as outcomes of a Nash game always
yields a well-defined statistical model, we are led to conclude that
the Heckman formulation is inappropriate for modeling the empirical
problem at hand.

Looking again at Table 3, we see that most of the coefficients
explaining the wife’s decision whether or not to work are in agreement
with our expectations and are highly significant. For example, family
income from sources other than wages and saiaries (ASSET) has the
expected effect of increasing the wage at which a wife is willing to
accept work outside the home. Concerning childremn, one wéuld
certainly expect that mothers would be least likely to leave the home
when children are very young and be more inclined to seek outside
employment as children become older and more self-sufficient. Indeed,
this is what we see from Table 3. Children betweon the ages of one
and two (KIDS1-2) raise the mother’s reservation wage more tham do
children between three and five (KIDS3-5); her reservation wage is
higher for children between three and five than for children six to
thirteen (KIDS6-13); finally, the mother is more likely to stay home

when her children are between six and thirteen than when they are
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fourteen years or older (EIDS14) .4 The estimated positive coeff ient
on the female race dummy (RACE) seems to suggest that women of racial
minorities, on average, can command a higher market wage than they are
willing to accept to enter the labor market; that is, minority women
are on average worth more in the marketplace than they think they are
worth. While one may interpret this result as saying that racial
discrimination in the marketplace is not as widespread as minority
women are led to believe, the discrepancy between reservation wage and
market wage may be a reflection of past discrimination. The
coefficient on the wives’ education (EDUCW) is also consistent with
our prior expectation; although an increase in education should
increase the wife’s market wage, it should also increase her
reservation wage. Turning finally to the effect of age on a wife's
decision whether or not to work, a life-cycle model of employment
would suggest that women are more likely to work during middle age
than either early or late in their life times. That is, the
probability of working as a function of age first increases, then
reaches a maximum, and then decreases. As can be seen from Table 3,
the combined effecte of a linear term on age (AGEW) and a quadratic
term (AGEW®*#2) does indeed impart the expected shape.

Turning next to the variables used to explain tﬁo husband’'s
docision of whether or not to work, we see that while a number of the
coefficients are insignificant, some of the variables to which we
attached strong priors appear to be significant. For example, the

coefficients attached to both the husband’'s age (AGEH) and the local
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unempl oyment rate (UNEM) measure the difference between the husband’'s
market wage and his reservaiion wage; if the husband is behaving
logically, both of these estimated coefficients should be close to
zero, which they are. The positive estimated coefficient on the
husband’s level of educstion (EDUCH) is surprising; ome would a priori
expect that an increase in education would raise equally the husband’s
market wage and reservation wage. One possible explanation for this
surprising result is that additional education is viewed by many as a

consumption good rather than an investment good.s

4. THE STACEELBERG MODEL:. HUSBAND LEADER
A. SPECIAL FEATURES OF THE STACKELBERG SPECIFICATION

Recall from the specification of the Stackelberg model given
in Chapter IXII that we allow for the‘inclusion of four shift
parameters, Thus, equations (1)-(4) need only be altered to conform

to the notaticn used in Chapter III. We thus have:

[}

Vi = Zf + a.gY' + "1(: (25)
' n

¥ =2y + ol '+ nd (26)
', 1 1

LR s S (27)
?

ERIN AP

Equations (25) and (26) describe the reservation wages, or
equivalently, the shadow price of time for the husiand and wife,
respeétively. Note that the wife’s deciiion of whether or not to

work, given by the dichotomous variable !;, affects the husband’s
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reservation wage in (25). Analogously, the husband’s decision of
whether or not to work; given by Yi, affects the wife’s reservation
wage in (26). Equations (27) and (28) describe the market wages for
the husband and the wife, respectively. Note that we allow the
pessibility that one of the determinants of.the husband’'s market wage
is whether or not he has a working wife; we make a similar allowance
for the wife.

As in the Nash model, let the husband’s (wife’s) reservation
wage play the role of the payoff he (she) derives from not working.
Therefore we have W; = ﬁh(o,!;) and W: = ﬁ'(o,!i). Similarly, let the
husband’s (wife’s) market wage play the role Af the payoff he (she)
derives from working. We thus have W: = ﬁh(l.!;) and‘W: = ﬁ'(l.!h).

We then see from equations (25) through (28) that
Uh Uo = AU xhyh 2;1; and'U: - U: = AU' = 1;1: - 2;1:.
Moreover, note that in specifying the husbtand’'s reservation wage and
market wage equations, given by (25) and (27) respectively; it may be
that certain explanatory variables appear in both equations, implying
that the associated coefficient in Aﬂh will be measuring the
difforence between the market and reservation wage cosfficients. A

similay remark holds for the wife. In addition, note that the

assumptions on the error terms are also satisfied, namely 8, B n; - qg
and e_ = 1_ 0
w™ My " N

Using the general specification set out in Sectiom 2 of this

Chapter, we then have the following two expressions for AU

b and AU'

0 ~0 1 ~1 2 ~2
AU, = (vy, - vh) + (rh - 1h)AGEH + (7h - vh)EDUCB (29)
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+ () - ¥3)oNew (rf - ¥hrace - 7iassers - 7Skips13 - F7kips14

and
0 ~0 1 -1 2 a2
AU, (1' - 7') + (7w - 7w)AGEI + (1' - 1')AGEW"2 (30)
+ (3 - Premad + (o - Fhonee + (oF - Pirace - Fassems
- 77kIDS1-2 - 7°KIDS3-5 - FPKIDS6-13 - 71OKIDS)>14.
w w w w

B. EMPIRICAL RESULTS

From equations (25) and (27) it will be recalled that not only
does the model allow for the possibility that one of the determinants
of the husband’s reservation wage is whether or not bhis wife chooses
to work, the model also allows for the possibility that the husband’'s
market wage is affected by his wife's decision. Although economic
theory suggests that only the former effect should be meaningful, we
can test that hypothesis in our model by allowing for the presence of
both effects; that is, both ag and ai are included.

As with the Nash model, we curreantly do not have a set of
initial consistent estimates of the parameters nor do we believe that
the log-likelihood function is globally concave. As before, we
performed a grid search using various sets of initial values of the
parameter vector (a:. a;. Ty’ Aa'. 1') with a grid search over
possitle values of p. Again, having no strong priors over the most
likely value of p, we estimated all values from -.9 to +.9 in
increments of .1. The convergence criterion we used wls.the same one

previously used in the Nashk model, viz., the mean value of each
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TABLE 4

a; Included

Correlation Coefficient (p) Log-1likelihood Value
-.9 -1516.82
-.8 -1517.03
-.7 -1515.72
-.6 -1515.20
-.5 -1514.99
-.4 ~-1514.93
-.3 -1515.00
-.2 -1515.14
-.1 -1515.32
0. -1515058

.1 -1515.89
.2 -1516.24
.3 ' -1516.64
4 A -1517.06
- -1517.50
.6 . -1517.98
.7 -1518.50
.8 -1519.19

9 -1520,53




INSTANT

EWee2

UCH

UCW

\CE

SET

.DS1-2

.DS3-5

.DS6-13

DS < 13

(DS > 14

Coefficient
0

2 oF

~g
R4

~7
“Tn

Husband
Estimate

-1076

-0.361

0.017

0.067

-0.043

=0.300

0.434

-0,023

0.074

)g-1likelihood value = -1515.58
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TABLE §

Included

p=0

t’_
Statistic

-1.83*

-0068

-0 032

2.01e

1.62

-1.,98%s

=2.16%¢

1.36

-0.29

0.62

¢ significant at the 10% level
s® significant at the 5% lavel

Coefficient

~10
. -YH

Hife

Estimate

-1.44

0.580

0.087

0.039

-0.015

0.406

-0.012

-0.693

-0.444

-0.211

t-

Statistic

=3 .55+

0.9

3.57¢e

—4 03 9‘.

3.,22%¢

-1.63*

5.49e+

=2,13%s

-11 020..

~7.30%*

~5.63%¢

=2,71%%
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TABLE 6

aé Included
p = —040
Husband Nife
t- e
Coefficient Estimate Statistice Coefficient Estimate Statistice
ag -1.98 -1.72¢
a; - -0.256 -0.30 Aa -1.15 -2.02e%
0 ~0 0 ~0

NSTANT (v - 1) -0.736 -0.60 ) - ¥ 0.330 0.43
. 1 -
EW (1i - ;3) 0.084 3.48%e
EWes2 ' (7: - ;:) -0.131 -4.320
UCH (f - ;z) 0.071 1.81¢
uew : (73 - ;:) 0.039 3,270
IEM (7; - ;z) -0.040 -1.98¢ (7: - ;:) -0.014 -1.48
CE (1; - ;;) -0.330 -2.55ee (1: - ;i) 0.420 5.66e%
SET - 0.410 1.35 -7S ~0.012 —2.130e
'DS1-2 -;: -0.685 ~11.10%*
DS3-5 -7 ~0.444 ~7.300s
DS 6-13 -;: -0.212 -5.660s
DS < 13 -;g 0.021 0.29
DS > 14 -7 0.104 0.93 -7 -0.132 -2.70ee
)g-likelihood value = -1514.93 * significant at the 10% level

*® gignificant at the 5% level
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TABLE 7

a; Not Included

Correlation Coefficient (p) Log-likelihood Value
-.9 ) -1519.15
-.8 ~1517.52
-7 -1515.85
~-.6 -1515.21
-.45 -1514.93
-.3 -1515.00
-.4 ~1515.03
-.3 -1515.20
Y -1515.44
-.1 -1515.74
0. : -1516.06

i | ’ . -1516.41
2 ' -1516.78
.3 -1517.16
4 -~1517.58
.5 -1517.97
.6 -1518.46
.7 -1519.08
8 ) -1520.08

.9 . -1522.29



Coefficient

@
STANT (] - )
H rp - vp)
W
Wes2
cH trp - 1)
oW
M ' (73 - ;:)
£ o - TH
ET -
S1-2
S3-5
S6-13
S ¢ 13 -;:
S > 14 -;Z

Husband
Estimate

-1 .41

-0.300

0.016

0.052

-0.039

-0.339

0.460

0.011

0.081

=likelihood value = -1516.06
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TABLE 8
Not Included
p=0
Hife
t- -
Statistic Coefficient Estimate Statistic
-2.018s
Aa -1.49 —3.71ee
w .
-0.27 (73 - ;3) 0.61 0.95
1.92¢
(7$ - ;i) 0.086 3,568
(2 - ;3) -0.133 -4.37s
1.28¢
(1: - ;:) 0.042 3.45ee
-1.91e (7: - ;:) -0.016 -1.77*
2.568 (S = 33
-2. v - 1) 0.403 5.43es
1.41 -;: -0.012 -2.10%%
~7
- -0.697 -11.30e
—;: ~0.450 —7.45%e
-;: -0.212 -5.76e
0.20
0.69 ":° -0.132 ~2.68e

¢ significant at the 10% level
s® gignificant at the 5% level



INSTANT

EH

IEW®*2

YUCH

YUCW

\CE

SET

.DS1-2

.DS3-5

(DS6-13

DS < 13

DS > 14

Coefficient

0
“n

0 =0
(7n - vh)

~1
(1; = 1y)

”~~
-
<2
t
-3
o
b4

~6
“Th

~7
“Th

Husband
Estimate

-1.82

-0.784

0.013

0.069

-0.038

-0.335

0.410

0.034

0.109

)g-1likelihood value = ~1514.93
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TABLE 9

Not Included

p = —.45

t—
Statistic

-2.16¢*

-0.63

1.68+

" 1,79¢

-1.97%¢

-2 . 64..

1.35

0.63

0.99

8 significant at the 10% level
*¢ significant at the 5% level

Coefficient

~10
W

Wife
Estimate
-1.12

0.31

0.083

-0.130

07040
-0.014
0.442
-0.012
-0.684
-0.447

-0.132

t-

‘Statistic

-1.92¢

0.40

3.47ss

-4 .31‘.

3.340s

-1050

5.69%s

=2.13%

=11.20%+

=T7.45%+

-5.88%s

-2.70es*
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element of the score vector was allowed to be no greater than .01.
Different trials of the parameter vector (ag. ai. Ty de . yw)
included (i) the zero vector; (ii) our best a priori guess of the
parameter vector; (iii) the previous trial with the signs of the
coefficients reversed; (iv) dividing by ten the final estimates from
each of trials (i), (ii) and (iii); and (v) dividing by ten and

mul tiplying by minus one the final estimatss from each of trials (i),
(ii) and (iii).

As can be seen from Table 4, the value of p that maximizes the
likel ihood function is -.40. The maximum likelihood estimates of the
parameters of the full model for case p = -.40 are thus presented in
Table 6. For completeness, Table 5 lists the maximum likelihood
estimates for the case p = 0, It is seen in a comparison of Tables 5
and 6 that the estimates are quite robust with respect to p. Looking
at the t—statistic associated with a; on Table 6, it follows that the
hypothesis that a; = 0 cannot be rejected at any reasonable level of
significance, as theory suggests. Although we see that most of the
explanatory variables, especially for the wife, have the a priori
correct sign and are highly significant, we have therefore reestimated
the model without n;. Companion estimates for this case include the
grid search over possible values of p, given in Table 7; the maximum
likelihood estimates for the case p = 0, given in Table 8; and the
coefficient estimates corresponding to the value of p which maximizes
the likel ihood function, given in Table 9.

As can be seen from Table 7, the value of p that maximizes the
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log-1ikel ihood function is -.45. Although it may at first appear
surprising that this maximizing value of p is not positive, it must be
remembered that p is not simply the correlation between omitted
variables in the husband’'s and wife's equations, but srises from a
more complicated relationship between the disturbance terms &y and L
viz, 8y = n; - n: and g, = ni - ng as seen in Section 2 of Chapter
III. From Table 9 we see that both Aaw and a: are significantly
different from zero, providing evidence that the wife’s decision
whether or not to work depends on the husband’s decision and vice
versa. Although it will be recailed from Section 4 of Chapter III
that only the difference Aa' -3 a: - “3 can be identified in our modcl..
economic theory again suggests that a: should be a priori zero since
a: measures the effect of the husband’s decision whether or not to
work on the wife’'s market wage. Therefore the estimate ~1.12 of Aaw
is actually an estimate of —ag. With this in mind then, we see from

equation (26) that if the husband works, the wife’s reservation wage

increases as expected since :3 is positive. It should also be noticed
from Table 9 that we can provide a test of Proposition 3 of Chapter
IIX. Since ai is restricted to be a priori zero and u: is
significantly different from zero at the 5§ percent level, we can
reject the hypothesis that the data are generated from the usual
recursive probability model using the dichotomization rule in favor of
our model in which the observed outcomes are goemerated as Stackelberg
eqniiibria. In other words, we must accept the hypothesis that the

busband takes his wife’s conditional action into account when making
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his decision whether or not to work.

A priori, we would expect the estimate of a: to be positive;
that is, we expect that the wife’s decision to work should increase
the husband’s reservation wage. In contrast, we find that the
estimate of ag is negative and significant at the 5% level. One
possible explanation for this result is that no husband wishes to
suffer the embarrassment of staying at home when his wife chooses to
work; that is, the husband lowers his reéeservation wage when his wife
is working.

Looking again at Table 9, we sece that most of the coefficients
explaining the wife’s decision whether or not to work are in agreement
with our expectations and are highly significant. In reading Table 9
it should be noted that all estimated coefficients represent either
differences between market and reservation wages or minus the
reservation wage coefficients, as seen in Equations (29) and (30).

For example, family income from souces other than wages and salaries
(ASSET) has the expected effect of increasing the wage at which the
wife is willing to accept work outside the home (;: = +0,012),
Concerning children, ome would certainly expect that mothers would be
least likely to leave the home when children are very young and be
more inclined to seek outside employment as children become older and
more self-gsufficient. That is, younger children should have the
effect of increasing mother’s reservation wage more than do oldex
children. Indeed, this is what we see from Table 9. Children between

the ages of one and two (KIDS1-2) raise the mother's reservation wage
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more than do children between three and five (KIDS3-5); her
reservation wage is higher for children between three and five than
for children six to thirteen (KIDS6-13); finally, mothers are more
likely to stay at home when their children are between six and
thirteen than when they are fourteenm years or older (KIDS>14). The
coefficient on the wives’ education (EDUCW) is also consistent with
our a priori expectations; although an increase in education should
increase the wife’s market wage, it should slso have the effect of
increasing her reservation wage. The estimated positive cooefficient
on the female race dummy (RACE) seems to suggest again that women of
racial minorities, on average, can command a higher market wage than
the wage necessary to entice them into the labor market; that is,
minority women are on average worth more in the market place than they
think they are worth. Turning finally to the effect of age on a
wife’s decision whether or not to work, a life-cycle model of
empl oyment would suggest that women are more likely to work during
middle age than either early or late in their lifetimes., That is, the
probability that an igdividﬁnl will work exhibits a concave shape. As
can bs seen from Table 9, the combined effects of a positive linear
term on age (AGEW) and a negative quadratic term (AGE®**2) does indeed
impart an increasing them s decreasing shape with respecf to age.
Turning next to the variables used to explain the husband’s
decision whether or not to work, we see that while some of the
coefficients are ingignificant, many of the variables to which we

attach strong priors are indeed significant. For example, the
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coefficients attached to the husband’s age (AGEH), his education
(EDUCH) and the local unemployment rate (UNEM) are each significant.
Since each of these threo coefficients measure the difference between .
the husband’'s market wage and his reservation wage, it is not
surprising that they all should be close to zero if the husband is
behaving rationally; for example, the effect of an increase in
education should not only increase an individual'’s market wage but
should also increase his reservation wage. Finally we see that the
effects of racial discrimination on minorities have the effect of

lowering their market wages rolative to those of nomminorities.

5. THE STACEELBERG MODEL: WIFE LEADER
A, SPECIAL FEATURES OF THE STACKELBERG SPECIFICATION

In this third empirical example we shall reverse the roles of
the husband and wife in the Stackelberg model so that the wife now
plays the roie of the leader while her husband plays the role of the
follower. The current specification differs from the specification of
the previous section in only ome respect. Recall from Chapter IIX
that only the difference in the shift parameters associated with the
market wage and reservation wage can De identified for the individual
playing the role of the follower, while both shift parsmeters can be
identified for the leader. Since the husband is now playing the role
of the follower, only Aah = q; - ag can be idemtified, although both

1 0

ay and a  can mow be identified separately for the wife. The method

we employ to estimate the parameter vector (Auh. Ty “2‘ a:. Ty’ p) is

the same one used to estimate the Stackolberg model in which the
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husband plays the role of the leader; it is fully stated in Section

5B.

B. EMPIRICAL RESULTS

Recall from the previous section that while it is only
possible to estimate the difference Aah = ai - ag. it is possible to
estimate both ag and a:; that is, we can separately test the effect of
the husband’s decision of whether or not to work on both the wife’s
reservation wage and also on her market wage. Although economic
theory suggests that th; latter effect should not be significant, we
test this hypothesis in the model by allowing for the presence of both
effects; that is, we estimate the model where both ag and a: are
included. The empirical results are given in Tables 10 through 12,
As can be seen from Table 10, the value of the correlation
coefficient, p, that maximizes the log-likelihood function is .93.
Constructing a likelihood ratio test of p = 0 vs. p = .93, we see that
the hypothesis of p = 0 can be rejected at any reasonable level of
significance. The maximum likel ihood estimates of the parameoters
along with the associated t—statistics are found in Table 12 for the
case p = ,93. For comparison, companion estimates for the case p = 0
are included in Table 11,

From Table 12, we see that economic theory is confirmed in the
sense that we cannot reject at the 10% level the hypothesis that

c: =0, As a result, we have therefore reestimated the model without

1

ey that is, we a priori constrain the effect of the hushand's
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TABLE 10

a:', Included

Correlation Coefficient (p) Log-likelihood Value
=.9 -~1518.16
-.8 -1516.18
-.7 -1515.59
~.6 -1515.62
-.5 -1516.18
-.4 -1516.56
-.3 -1515.91
-.2 -1516.13
-.1 ~1514.96
0. -1514.37

1 . -1513.74
2 ) -1513.10
.3 -1512.45
4 -1511.70
.5 -1510.91
.6 -1510.02
o7 ' -1509.07
.8 -1507.71
.9 -1506.57
.93 ‘ -1506.26

.99 -1507.29
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TABLE 11
a_ Included
W
p=0
- Husband Hife
- .
Coefficient Estimate Statistic Coefficient Estimate ‘Statistic
say 1.46 3.12¢¢ a) 1.83 7.05%e
. ) )
al 2.52 0.22
NSTANT  (yp = 70) 1.15 1.94¢ @2 -7 2.96 0.26
. 1~
:EH (rp - ¥p) 0.008 1.19
\EW (o - ) 0.101 3.400e
EWe02 - -7 -0.150 ~4.06¢
UCH a2 -7 -0.050 -1.70¢
UCH 0 -7 0.052 3,580
IEM (rE =) -0.028 -1.68¢ ot -7h -0.030 ~2.53¢e
\CE (rg = 1) -0.354 ~3,220¢ - 7 0.325 3,158
SET -¥; 0.344 1.68¢ —;: -0.004 -0.57
DS1-2 ' -;: -0.864 ~8.21¢e
'DS3-$ -;f, ~0.552 —6.57%®
'DS6-13 -;: -0,260 —5.320e
DS < 13 v 0.020 0.39
DS > 14 - 0.052 0.50 -0 -0.138 —2.13%e
g-likelihood value = -1514.37 ® significant at the 10§-levol

*s significant at the 3% level



INSTANT

tEH

IEW

IEWe®2

)JUCH

UCW

|EM

\CE

SET

DS1-2

DS3-§

‘DS6-13

DS < 13

DS > 14

Coefficient

(r

(y

n~- '

h- Tn

”~~
-8
=2
I
2
5
.

~6
R4

_~7
T

Husband

Estimate

1,03

2.02

0.015

-0,099

~0.030

-0.378

0.482

0.026

0.010

g-likelihood value = —1506.26
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TABLE 12
a, Included
p = .93

t-
Statistic

5.94%¢

3.500%e

2.28e¢

~3.82%e

-1.64
=3.16%*

2.01ee

0.46

0.01

¢ significant at the 10% level

Coefficient

(y

1
(7"

»~

(r

(v

(7:

(y

tﬁH ‘:ﬂ o

~10

w

s significant at the 5% level

Wife

Estimate
2.05

-2.24

3.24

0.084

-0.118

0.024
-0.029

0.110
~0.002
-0.595
-0.374

-0.162

-0.087

t_
Statistic

15.70%=

_1'54

2.25

3.89%e

~4.430e

2.07es
=2.55%*
1.10
-0.29
=9.90%*
- 328

=4.02%s

-1.47
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1 TABLE 13
a, Not Included
Correlation Coefficient (p) Log-likelihood Value

-.9 -1519.16
-.8 -1516.73
-.1 -1516.13
-.6 ~1516.10
-.5 -1516.29
-.4 -1516.81
-.3 -1516.81
-.2 -1516.86
-.1 -1516.17
0. -1515.77
.1 -1515.37
.3 -1314.58
4 . -1514.19
.5 -1513.83
) N -1513.52
.7 -1513.34
.11 - -1513.33
.8 -1521.03

.9 -1522.60
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TABLE 14

al Not Included
w
p=20
Husband Hife
| t- t-
Coefficient Estimate Statistic Coefficient Estimate Statistic
da,, 1.33 6.82¢ o
a 1.79 6.79%s
w
NSTANT o - ;g) 1.10 1.88% «? - ;:) 0.450 0.77
EH (g - ;;) 0.009 1.22
W (7: - ;t) 0.101 3.5208
EWee2 (73 - ;:) -0.150 ~4.,208s
UCH ry - 12 0.033 -1.13
UCwW (1: - ;3) 0.050 3.498s
EM -7 ~0.030 -1.79¢ rd - ¥H -0.028 —2.46%e
CE (rg - 1) -0.340 -3.01e¢ o -7 0.328 3.28e
~s ~6

SET -, 0.365 1.56 -¥° -0.00S -0.74
DS1-2 -;: -0.835 -8.36%¢
pS3-§ -;: -0.526 —6.53%e
DS6-13 - -0.262 -5.39%s
DS < 13 —;g -0.013 -0.28
DS > 14 -;Z 0.035 0.34 -;:9 -0.138 —2.22%¢
g-1ikelihood value = -1515.77 s significant at the 10% level

¢¢ significant at the 5% level
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TABLE 15
aw Not Included
p=.71
Husband
t-
Coefficient Estimate Statistic Coefficient
da, 1.04 5.850e 0

aw
NSTANT () - YD) 1.80 3.26%+ (v - 70
EH p - TR 0.012 1.71¢

1 -

EW (ry =)
EWee2 (1: - ;t)
UCH -7 -0.072 ~2.68ee
vew (3 - 7
oY 3 - 7 -0.033 -1.90e (rd - TH
CE (g - 1) -0.342 2,950 =T
| ~5 ~6
SET - 0.324 1.81¢ 8

~7
pS1-2 =7

*
DS3-§ ‘ v
| ~9
DS6-13 52
DS < 13 -;g -0.067 ~1.44
DS > 14 -;; -0.008 -0.08 ":°
g-likelihood value = ~1513.33 8 significant at the 10% level

o8 significant at the 5% level

Wife

Estimate

2.46

1.27

0,094

-0.134

0.032
-0.032
0.174
-0.001
-0.733
-0.439

-0.244

-0.112

t-

Statistic

13 .8e»

2.37e>

3,748+

~4.339s

2,538

"2 . 7 6‘:.

1.66*

-0.16

-9.40%*

-5.41%e

~1.74®
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decision of whether or not to work on the wife’s market wage to be
zero, Companion estimates for this case include the grid search over
possible values of p, given in Table 13; the maximum 1ikel ihood
estimates and the associated t—statistics for the case p = 0, given in
Table 14; similar estimates for the value of p which maximizes the
value of the 1likelihood function are given in Table 15.

As can be seen from Table 13, the value of p that maximizes
the likelihood function is p = .71. Again, a likelihood ratio test at
any reasonable level of significance would reject the hypothesis that
p = 0. VWe also see from Table 15 that both Aah and ag are
significantly different from zero, providing évidence that the
husband’s decision of whether or not to work depends on the wife's
decision and vice versa. Although it will be recalled from the
previous section that only the difference Anh - ai - ag can be
identified in the model where the husband plays the role of the
follower, economic theory again suggests that ai should be a priori
zero. Thus, the ostimate of Aah = 1.04 is actually an estimate of
-ag. With this in mind, we see from equation (25) of Section 4-A that
if the yife works, the husband’s reservation wage in faot declines.
The oniy explanation we offer for this disconcerting result is that no

husband wishes to suffer the embarrassment of staying out of the labor

‘force when his wife chooses to work; that is, the husband chooses to

lower his reservation wage when he has a working wife.
Notice aluo from Table 15 that we can again provide a test of

Proposition 3 of Chapter III. Since we a priori restrict a; to be
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zero and ag is significantly differeant from zero at the 5 perceat
level, we can reject the hypothesis that the usual recursive model is
identical to our proposed model in which the outcomes are generated as
Stackelberg equilibria of a game in which the wife plays the role of
the leader while her husband plays the role of the follower. In this
model, in other words, we cannot reject the hypothesis that the wife
takes her husband’s conditional action into account when making her
decision of whether or not to participate in the labor market. Note
elso that the estimate of ag is positive and highly significant,
providing evidence that the husband’s decision to work has the
expocted effect of increagsing the wife’s roservation wage.

Examining again Table 15, we see that most of the coefficients
explaining the wife’'s decision of whether or not to work have the a
priori correct sign and are bhighly significant. As is clear from
looking at Table 15, many of the estimated coefficients represent the
difference between market and reservation wages. As such, our a
priori expectations would suggest that these estimated coefficients
should be zero since any variable which has the effect of increasing
the wife's market wage should have the balancing effect of increasing
her reservation wage. Indeed, this is what we see when we examine the
effects of an increasze in the education of the wife (EDUCW) or an
increase in the 1ocal unemployment rate (UNEM). The estimated
positive coefficient on the female race dummy (RACE), however, does
not meet with our a priori expectations. Ome possible explanation for

this unexpected result is that women of racial minorities, on average,
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can command a wage in the market higher than the wage necessary to
entice them into the labor market; in other words, minority women are
on average worth more in the parket than they think they are worth.

Turning next to the effect of age on a wife’s decision of
whethexr or not to work, a life cycle model of employment is again
confirmed. As seen from Table 15, the combined effects‘of a positive
linear term on age (AGEW) and a negative quadratic term (AGE#%2) does
indeed impart an increasing than a decreasing shape with respect to
age. That is, the probability that a wife will work exhibits a
concave shape. We need now only examine the effects of children on
the wife’'s decision whetho; or not to work. As we have seenvin the
previous two studies, our a priori expectations are confirmed in the
sense that younger children have the effect of increasing the mother's
reservation wage more than do other children. Indeed, again we see
that an increase in reservation wages for the wife exhibits a
monotonically decreazsing shape with respect to the age of an
additional child.

Turaing next to the variables used to explain the husband’s
decision whether or not to work, we see that all estimated
coefficients are significant at the 10 percent level except those
associated with the two age categories of children, viz, (KiDS<13) and
(KIDS>14). Again, it should be noted in reading Table 15 that the
coefficients associated with the husband’s age (AGEH), his education
(EDUCH), his race (RACE) and the local unemployment rate (UNEM)

represent the difference betweon his market wage and his reservation
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wage. As such, we would again expect that if the husband is behaving
logically, these estimated coefficients should be close to zero.
Indeed, this is what we see for all variables except race (RACE). The
negative and significant estimate associated with race seems to sugest
that the effects of racial discrimination tend to lower the market
wages of minorities relative to the wages of nomminorities. Finally,
we see that an increase in assets has the effect of lowering the
husband’'s reservation wage; we offer no explanation for this

disconcerting result.

6. CONCLUSION

The purpose of the curreant chapter was to present an
econometric study of the Nash and Stackelberg equilibrium models as
set forth in Chapters II and III, respectively. The problem examined
concerned the joint decision of a married couple whether or mnot to
participate in the labor force. Two useful results should be apparent
from this study. First, we have demonstrated that the game theoretic
models proposed are in fact empirically tractable. Second, we feel
that the proposed study has made a contribution to the literature on
labor force participation because we oxplicitly modeled the behavior
of a married couple in a game theoretic framework, while previous work
has either taken the husband’s decision to work as exogenous or
specified the labor supply of a husband and wife from the outcome of a
joint utility fuanction.

In addition, we were able to test the hypothesis that the

uusal recursive probability model using the dichotomization rule is
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identical to our model in which the observed outcomes are generated as
Stackelberg equilibria. In both specifications of the Stackelberg
model, we were able to safely reject this hypothesis. That is, in
both specifications, we were required to accept the hypothesis that
the individual playing the role of the leader takes the conditiomal
action of the follower into account when making his or her decision
whether or not to work. Moreover, we were heartened im all three
empirical examples to get strong results, both in terms of correct
signs on coefficients for which we had strong priors and significant

t—statistics,
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APPENDIX: DESCRIPTION OF THE DATA
This Appendix describes the source of the data, the selection
criteria used in choosing the approriate observations, and the means
and variances of the explanatory variables. The data used in all
three studies comprising the empirical part of this dissertation is

from the 1982 wave of the Panel Study of Income Dynamics, 1968-1982.

The sample is a combination of a representative cross—section of

nearly 3,000 families selected by the Survey Research Center at the

Uniersity of Michigan, and a subsample of about 1,900 low income

families previously interviewed by the Census Bureau for the Cffice of

Economic Opportunity. This data was then restricted to 2,012 records

for married couples living in the United States, where both the

husband and wife were able-bodied, neither older that 64 years of age
with no nonrelative living with the family; in addition, the sample
was further restricted to couples whose marital status had not changed
within the previous twelve months. -

Below we 1ist the selection criteria used. Of the original

6,742 observations, we were left with 2,012 observations after

selection.

(1) Family composition change in 1982 was restricted to children
moving in or out of the home; husband and wife remained married
and in the home. Loss: 2,295 observations.

(2) Family was restricted to husband, wife and children. Loss: 1,349
observations.

(3) both the husband and the wife were restricted to be 64 years or



(4)

(5)

(6)

(7

(8)
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less in age. Loss: 219 observations,

Husbands who stated they were retired, permanently disabled,
temporarily laid-off, or students were excluded. Those who
stated they were "working now” were classified by us as working;
those who answered "looking for work, umemployed,” weze
considered to be not working. Loss: 331 observations.

Wives who stated they were retired, permanently disables,
temporarily laid-off, unemployed but looking for work, or
students were excluded from the sample. Those who stated they
were "working now” wore classified by us as working; those who
answered "housewife” were considered to be not working. Loss:
174 observations.

If either the husband or the wife had a physical or nervous
condition that limited the type or the amount of work they could
do, they were excluded from the sample. Loss: 287 observationms.
If any record contained missing data for the 10 explanatory
variables used in the analysis, that record was dropped. Loss:
67 observations,

Eight observations were dropped because of incorrectly reported
unemployment dats.

Of the 2,012 observations remaining after selection, the

numerical breakdown based upon husband/wife employment status is

described in the following table.
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HUSBAND
Not
Working Working
Working 1204 48
Wife
Not
Working 739 29

FIGURE 1




AGEH
AGEW
AGEW**2
EDUCH
EDUCW
UNEM
ASSETS

KIDS1-2

KIDS3-5

KIDS6-13

KIDS<13
KIDS>14

RACE

MEANS AND VARIANCES OF THE
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Age of Husband

Age of Wife

Squared Age of Wife
Husband’s Education (years)
Wife's Education (years)
Local unemployment rate

Family non-wage income
(in thousands §)

Number of children ages 1 and 2

Number of children between
eges 3 and 5

Number of children between
eges 6 and 13

Number of children 13 or younger

Number of children 14 or older

Race dummy

(1 if Black or Hispanic,
0 otherwise)

EXPLANATORY VARIABLES

MEAN

36.7

34.3

1270

12.6
12.7
9.49

.986

.325

<296

602
1.22
+296

252

VARIANCE

109.0

97.4

592000

4.32
6.65
13.8

22.6

299

270

.7135
1.28

.458
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FOOTNOTES
The set of explanatory variables used in our empirical analysis
will present no surprises. Indeed, most empirical studies of
labor force particpation using cross—section data use a fairly
common set of explanatory variables (see, e¢.g., Ashenfelter and
Heckman (1974), Gronau (1973), Heckman (1974, 1976), and Nakamura

and Nakamura (1981)).

The Panel Study of Income Dynamics asked only the race of the head
of household; if married, we assumed the spousJ to be of the same

race.,

For a discussion of the appropriateness of including current

assets in a labor supply equation, see Cotterman (1981).

Note from (24) that 7: through ;:0 enter with negative signs.

See, e¢.g., Lazear (1977) for a discussion of this particular

hypothesis.
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CHAPTER V: A CHOICE OF THE MOST ADEQUATE MODEL

1, INTRODUCTION

In Chapters II and III, respectively, we proposed ecomometric
models of two different game theoretic equilibrium notions, those
being Nash Equilibrium and Stackelberg Equilibrium, In Chapter IV,
three different empirical models were proposed and estimated
concerning the joint labor force participation decision of a married
couple. The first model assumed that the husband and wife both played
a Nash game. The second model assumed that the married couple played
a Stackelberg game where the husband played the role of the leader and
his wife played the role of the follower. Model three, while also a
Stackelberg game, assumed that the roles of the two players were
reversed; that is, it was assumed that the wife played the. role of the
leader while the husband played the role of the follower. The purpose
of the present chapter is to determine the most adeguate model among
the three proposed for explaining the joint iabor force participation
decision over a large sample of married couples.

The problem at hand can be considered to take the following
form. Let us define two sequences of random vectors yl.....yn and
 PEEEETE S The yi's will be thought of as the endogenous variablea
and the ‘i" as tho exogenous variables, and we are interested in

testing various hypotheses about the conditional distribution of the
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sequence yl.---.yn with respect to xl.....xn. The hypotheses to be
tested are two functional forms of the conditional density of 2 given

x, denoted by

i

Hf = [f(yi|xi.c), as AT Rn} and

K

Hg = {s(yilxi.ﬂ), BeBT R}

where RH and ]Rx represent H dimensional and K dimensional real
parameter spaces, respectively. The functions £ and g will depend on
parameter vectors which are givenm respectively as a and B.

. If these models aré nested in the sense that for any parameter
value a, the p.d.f. f(ylx.;) casn be approximated arbitrarily closely

by g(ylx.i) or if for any parameter vector 3. the p.d.f. g(ylx.g) can

be approximated arbitrarily olosely by f(ylx.;). the problem of
choosing the more adequate model is ome in which the classical tests
may be applied, viz, the Wald test, the Lagrange multiplier test, and
the likelihood ratio test. Alternatively, the models may belong to
separate families in the sense that f£cr any parameter value ;. the
p.d.f. £(ylx,a) cammot be approzimated arbitrarily closely by g(ylx,B)
and for any parameter value E. the p.d.f. g(ylx.g) cannot be
approximated arbitrarily closely by f(ylx,a). When the two models
belong to separate fnnilias wo say they are nonrnsstqd. As we shall
soon see, two different approaches have been suggested in the

literature for choosing the most adequate model when the competing

models belong to separate families.
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The situation encountered, however, when we try to examine any
two of the three proposed game theoretic models is neither ome of
comparing two nested models nor of testing two non-nested models., As
will be shown later, the models are pairwise overlapping. As such,
the traditional methods for choosing the most adequate model are,
striétly speaking, inappropriate.l They will nevertheless be discussed
for completeness. Given the drawbacks of the traditional methods
which we shall point out, we therefore rely on a new technique
developed by Vuong (1985) which handles as separate cases those
situations in which the models may be nested, non—-nested or
overlapping. We also contrast the traditional approaches with the
approach we adopt for choosing the game theoretic model which most
adequately describes the labor force participation decision of a
random sample of married couples.

In an attempt to discriminate between alternative models that
arise from separate families, two different approaches have been
suggested in the literature over the last two decades. The first
approach, originating with Akaike (1973, 1974), has come to be known
as model selection. As that name implies, one simply seeks to choose
one model from a specified pair of models which miuimizes an
appropriately defined loss function; in the Akaike setting, the loss
function is defined as two times the Kullback-Leibler (1951) measure
of information. Although work subsequent to Akaike has been done on
model selectiom, it has all concentrated on linear models; as such, it

is inappropriate for the task at hand. (See Kinel and Lahiri (1983)
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for a review of this literature.)

The second approach has come to be known as non-nested
hypothesis testing. Here, two main principles have been proposed in
the literature: the Cox (1961, 1962) principie which is based on a
modified likelihood ratio and the Atkinson (1970) principle which
consists of nesting the non-nested models in a more general model.
Although the Cox formulation does not explicitly allow the presence of
exogenous variables, subsequent work by Aguirre-Torres and Gallant
(1983) explicitly incorﬁorctes explanatory variables. Recent work by
Gourieroux, Monfort and Trognon (1983) takes a different approach and
rests on the notion of a pseudo—true parameter value and its
associated pseudo—true maximum likel ihood eostimator (see, e¢.g., Sawa
(1978) and Gourieroux, Monfort and Trognon (1984)). This work also
allows for the presence of explanatory variables.

With this as a brief background, the present chapter is
organized as follows., In Section 2, the Akaike principle of model
selection will be developed more fully. As will be seen, a certain
amount of controversy still exists as to whether or not the formula
proposed by Akaike for the selection among competing models is
correct. Moreover, it will be pointed out that the criteria proposed
by Akaike is not probabilistic. That is, one simply chooses that
model, among a group of competing models, with the largest model
selection criteria. As such, we are required to choose a "best” model
even though the "best” model may be statistically indistinguishable

from one or more of the competing models. Section 3 will discuss in
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some detail, starting with Cox, the papers mentioned above on non-
nested hypothesis testing. As will be pointed out, all tests of non—-
nested hypotheses are difficult to implement. In addition, as Vuong
(1985) has argued, the Cox~type tests are inadequate for choosing the
best model among a group of competing models. Since the techniques to
be proposed in Sections 2 and 3 are inappropriate for the task at
hand, Section 4 will discuss the new approach developed by Vuong
(1985). As will be seen, this approach places the problem of model
selection in a hypothesis testing framework. Section 5 will actually
apply this test to the three models estimated in Chapter IV. Section

$ concludes the chaptez.

2. MODEL SELECTION

Any discussion of model selection criteria for non-nested
models must begin with Akaike (1973, 1974), both because he originated
the subject and also because his framework is quite general. The
basic attitude taken by Akaike toward the subject of nodel-selection
is to recognize the fact that, in general, a certain amount of
discrepancy exists between tha true, but unknown, distribution of a
random variable and any proposed model. The best that cam be dome in
trying to cope with this sort of situation is to identify the most
adequate model relatively among & given set of alternative models.
The adequacy of a proposed model thuns needs to be guantified by
defining a suitable measure of the distance of the model from the
unknown true distribution. The measure of distance used by Akaike is

based upon the Kullback-Leibler (1951) Information Criterion (KLIC);
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as such, Akaike'’s statistic for measuring this distance is called the

Akaike Information Criterion and is abbreviated as the AIC.

Suppose that one is concerned with the probabilistic structure

of a set of independent random variables y = (yl,....yn). To simplify
the discussion, let us further suppose that there are no exogenous
variables. Let Go(y) be the true distribution of y with associated
probability density function so(y). Ve now postulate a distribution
F(y,a) to approximate the unknown distribntion_Go(y). Then the
Eullback-Leibler Information Criterion (KLIC), which defines a measure
of distance between the true distribution Go(y) and the proposed

distribution F(y,a), is defined as

so(y)_] I 2y 0

1(G,F) =Eg[103f(y'°) = |logg(y,a) 8 (V¥

where f (resp. go) is the density function of F (resp. Gp) and Eg(')
stands for the expectation with respect to the trume distribution Go.
Since it can be shown that the EKLIC is nonnegative, I(GO.F) 2 0, and
equals zero only when F(y,a) = Go(y). it is therefore natural to
choose that distribution, among a2 group of distributions, which
minimizes the KLIC. Actually, Akaike proposes a slightly different

measure of the discropancy between the true distribution Go(y) and a

proposed distribution:

0

W, F) = -ZIlogﬂx"“)‘ 2 ay.
g (y)
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Then the distance between the true distribution GQ(y) and a proposed

model F = (£(y.a); a ¢ A} is W(6', %) = -2[1ogﬂ%'-°—)~ s%(y)ay wheze o

g ()
is the pseudo~true value of a; that is, u. is the value of a which
minimizes W(GD,EF). As can be seen, W(Goﬁ§) is two times the
Kullback-Leibler Information measure given previously. Why Akaike
uses a modified ELIC will be seen later. Associated with the above

loss function is the following function

R(6%29) = E, (%P
a

where the expectation is taken with respect to the distribution of :.
the maximum 1ikel ihood estimator of a. Note that we take the
expectation with respect to : so that R(Goﬁf) is no longer a random
variable.

Since W(Go£§) is unknown because Go and a. are unknown the
next step then is to propose a2 criterion which provides an estimate of
R(GO,F). The approach relies on the fact that u‘ can be replaced with
the maximum likelihood estimator ziwhich converges almost surely to :
(see, e.g. White (1982)). Although it is not necessary to go through
the complete derivation of the criterion, we need to examine the first
step in order to make clear the major drawback of the AIC. Assume
that a is of dimension L. Now consider the problem of the selection
of g(y,xa). K =0,1,...,L based on the independent observations
Fyseeer ¥y where g2 is restricted to the space with
KE+1 “EK%+2 ~ " g% " 0. If we let i: be the maximum 1ikelihood

estimater in g space, then
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= —; logs(y 'K will be a consistent estimate of
g(:ri La)

~ A -~
' W(a,xa) since we are assuming the model with L parameters, g(y.,a), is

A A
the true model. Let us now treat W(a,K®) as a function of K and take
A A

a second order Taylor expansion of W(a,a) around a assuming that K% is

A
close to a. We get

-~y -~ -~ L
l’(a.x:) ~ %a,a) * ;l(xkl - a‘)'Jm |

.'.ltt ‘)( —a)ml
1m-1

-3/2
) aa‘ aam ~t Op(n )

a=a

= W(a,a) + W (a.xa) + W (a.xc) + 0 (n 3/2

since

But W(a,a) = 0 ang 2&u8)y —zjé‘ﬁzfﬂlay =

a=a

[g(y.a.)dy = 1 for every a. Nov.—h-(-"“ﬂ |

dada’ ~
a=q

st 1, atr® 1 -

N

2 ~
9 log g(yv.a) %
= 2[3 dada’ s(y.a)dy. We therefore have that

W(a.xa) v (a.Kn). Akaike next shows that
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~ A
R( a, Ka) = —(K"L + 2K - L) is a good estimate of Elz(a.xa) where

= N.ﬁ?L = -25: log -——1-—5—- . Since we are only concermed with
i=1 g(yi. a)

A A A
finding the K which will give the minimum of R(Lp,xa). we have only

to compute

) N A A
K;L g;;log g(yi.xa) + 2K and adopt the K which

gives the minimum of KxL' 0K (L. KAL is called_tha Akaike
Information Criterion, AIC. The first term in the AIC measures the
goodness of fit of the model to a given set of data since s(y.x:) is
the maximized likel ihood function. The second term is interpreted as
a penalty that is paid for increasing the number of parameters (see
Leamer (1979) for a further discussion of this point).

Three points are now worth noting. First, although the above
derivation required that g(y,xa) be nested in g(y.La). the use of the
AIC requires no such assumption. That is, the AIC can be used to
select between non-nested models since each model can be thought of as
boing nested in a larger model that contains both. Second, as pointed
out by Sawa (1978), the above requirement that i: be sufficiently
close to the true parameter value a lessons to some extent the
plausability of the AIC. To see this, consider the problem where we
must choose between fl and fz. say. The AIC for £1 is evaluated
assuming that fl is sufficiently close to the true model, while the

AIC for £2 is evaluated assuming that f, is sufficiently close to the

2
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true model. Third, as noted above, the AIC trades off goodness of fit
for the number of parameters. As such, one can comsider it to be
analogous to the multiple correlation coefficient adjusted for degrees

of freedom, R, sunitably generalized so that one may compare nonlinear

and non—nested'models. Moreover, just as the use of i? can be
misleading when choosing among nested regression models, so can the
use of the AIC when choosing among nonlinear and/or non—-nested models.
To see this, recall from Pesaran (1974) the following example.
Consider a linear model with K-1 regressors and the same¢ model with an

extra regressor. He then shows that the two models are related as

(1 + _zl_ix) (‘:

i: - ii—l = ——T71 ~ 1) where Ei and Ei%l denote

the adjusted multiple correlation coefficients for the models with K
and K-1 explanatory variables respectively, ?i is the t-statistic of
the added variable and n is the sample size. It is then clear from
this relation that an estimated value of the t—ratio which is slightly
greater than one will increase the adjusted multiple correlation
coefficient but will ;nly be significant at the 25 percent level,
which is much larger than the normally adhered to significance levels
of 5 percent or 10 percent. A similar problem exists with the Akaike
Information Criterion: we are required to choose among aliternative
models simply on the basis of which one gives the minimum AIC,
ignoring the fact that the competing models may be statistically

indistinguishable. As we shall see in the next section, this problem




161

is overcome when we study those techniques collectively known as non-
nested selection criteria. We will also see in Section 4 that the
recent work by Vuong (1985) places in a hypothesis testing framework
the problem of selecting among competing models whether they be

nested, non—nested or overlapping.

3. NON-NESTED HYPOTHESES TESTING

Al though important strides have been made in the last few
years in developing tests for separate families of hypotheses, all of
this work draws heavily from Cox (1961, 1962). As such, it is only
fitting that we discuss the work of Cox first. As we shall soon see,
the test proposed by Cox is a modification of the likelihood ratio
test.

In keeping with the notation of the previous section, suppose
that the observed value of a random vector y = (yl,...,yn) is to be
used to test the null hypothesis, Hf, that the true probability
density function is f(y.ao). where ao is an wvnknown paraneier vector.
Let H8 be the alternative hypothesis with p.d.f. g(y,B), where B is
an unknown vector parameter, and where f(y,a) and g(y,B) are separate
families. In additiom, let Lf(:) = ;:log f(yi.:3 be the maximized log
1ikelihood undor H, where 2 is the maximum 1likelikood estimator.
Lg(a') = ZIOg s(yi.g) is similariy defined. Cox (1961) ftoposea the

following test

A A A A
Te = {Lf(a) - L (8)) -E {L.(a) - L (B)} where E{°} means that
8 A £ 8 :
a

A
you evaluate the expectation with respect to f(y;a), Thus, the
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test

compares the observed differemce in log-likelihood with an estimate of
that to be expected under Bf. As such, an estimate of Tf close to
zero would indicate the accepfance of Hf; a positive estimate of Tf
would indicate a departure from Hf away from Hg: and a negative
estiﬁate of Tf also indicates a departure from Hf but in the direction
of Hg. Examining the latter case more carefully, although a
significantly negative value of Tf indicates rejection of Hf. it
obviously does not indicate acceptance of Hs, since a model cannot be
accepted (or rejected) until it has been put to a test., It is
therefore for this reason that we must reverse the roles of the two
hypotheses and repeat the test procedure. If the roles of Hf and ng
as null and alternative hypotheses are interchanged, a test statistic

'l‘8 is obtained, where

A A A A
T =[L (B) - L_(a)] - E[L (B) - L_(a)]l. Cox (1962) and White
8 8 f A B £

B
(1982) then show

that if the components (y1.°o-.yn) are independently and identically
distributed, nfllzT} is under Ef distributed asymptotically normal

with mean zero and asymptotic covariance matrix

CZ(F - G,F )
V(F - G) - < ¢
a V;(Fa)

dlog f(v,a)
where F = log f(y,a), Fa = 2a » G = log g(y,B), and the
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subscript on the variance and covariance operators, V and C, indicates
that the expectation is taken with respect to f(y;alpho). The major
difficulty with the test proposed by Cox is the computation of the
expectation of Lf(;) - Lg(g) witﬁ respect to the P.D.F, f(y;:b.
Two methods have been proposed to get around this problem by
numerically simulating the distribmtion of the test statistic. These
methods are known as parametric and nonparametric bootstrapping; we
will discuss the former first.

The idea of parametric bootstrapping (see Williams (1970) and
Loh (1985)) is quite simple., Assume two hypotheses, Ho: f(y,a) and
le g{y.B). Under Ho. we asgume G = : and simulate for sufficiently
large K, K sets of artificial data (y;k.---.y;k). k=1,...,K, drawn

s A
from the population with density f(y ,a). From the k-th set of

As As
artificial data, the pseudo maximum likel ihood estimates e, Bk are

calculated along with the test statistic

-
Tﬁk

1,...,K. Calculating the comparable test statistic

- As As
-l 2: log[f(y;k.ﬁk)/s(y;k.ak)]. This is done for each k, k =

T, = n ! 2: log[f(yi.aSIs(yi.:bl from the real dats, hypothesis H, is
rejected if Tn exceeds the largest element of the set [T;k}‘ Turning
the problea around, we can again by simulation obtain observations on
the distribution of the statistic assuming model g(y,p) is true with
paramoters equal to its maximum likelihood estimates, a; from the
original data. Once these steps are completed, the problem is then

one of determining whether the observed data srise from just onme, both

or neither of the two models f(y,a) and g(y,f). We now tura to a
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discussion of nonparametric bootstrapping.

The work of Aguirre-"orres and Gallant (AGT) is similar to the
work previously dosctiﬁed in the sense that the goal is to provide a
bootstrap estimate of the expectation under the null of the Cox

difference, viz

n A A A
(1/n) zl ‘( (1og f(ylxt.a) - log g (ylxt.ﬂ)]f(ylxt.a)dy. (1)
t=

This method differs from the previous bootstrap method, however, in
that the error structure of both models is free of.any distributional
assumptions. It is necessary to adopt the nogation of AGT for they
consider the Cox test for choosing between two nonlinear, non-nested

models

ql(yt.xt,a) =e,, and qz(yt.xt.p) =e,, t=1,cc0,n,

t,

based on the observed data {yt'xt}tsl‘

(When distributions on the
error terms are specified, each model determines a conditional
density: £(ylx,a) corresponding to 9,(y,x,0) = o, and g(ylx.B)
corresponding to qz(y,x.S) = 02.)

The distribution free estimate of the expectation of the Cox
difference under the null is then calculated as follows. For each t,

A
compute & random sample of size n denoted as Yt s J=1,...,m, by

3
A

(i) finding the maximum likelihood estimate a,

(i1) for each x,, gonmorate the n dimensional vector of

residuals 6. from o ( S b i
esidusls ¢ from e = q (y,.x,.a) by varying
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yt’ t=1'.-0’n.
s b 1lvi h i e (A ‘3
(iii) find ytj vy solving the equations ej = q ytj'xt’“
This procedure thus specifies a way of generating a random sample of
dependent variables, Ve conditional upon x, under the conditonal
density f(ylx,a) without making any distributional assumptions on the

errors, ;.. The distribution free estimate of the expression given

in (1) is then

1 & A A A A
(1/2°) tgl );1 [log £(y, lx,.a) - log sy, lx..B)1. (2)

Two further points deserve mention.2 First, we must assume
that the errors, €;¢ OF ©y,» 2r® not only independent but also
identically distributed in order that the estimate given in (2)
converges almost surely to (1). Therefore, the bootstrapping method
proposed by AGT is not valid for models with a heteroscedastic error
structure. Second, in order to calculate the bootstrap estimate it is
necessary to be able to express the conditional density under the
null, f(ytlxt.a). in terms of the expression ql(yt.xt.a) =0,
certainly the latter éxp:ession contains more structure than the
former.

Let us now discuss an alternative approach for testing non-
pested hypotheses as proposed by Gourieroux, Monfort and Trognon
(1983) . They propose a test based on the difference between the

pseudo—maximum 1ikel ihood estimator of the parameter of the

alternative model and an estimator of the pseudo—true value obtained
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from the maximum likel ikood estimator for the parameter of the null
model. An added feature of their approach is that it takes explicitly
into account the presence of explanatory variables.

As before, the hypotheses to be tested are two functional

forms of the conditional density of Ve given x, denoted as

H, = {f(ytlxt.u). ag AC RH}.

= K
Hs = {s(ytlxt.ﬁ). BpeBC R

For convenience f(y_ lx _,c) and g(y lx_,B) will also be demoted by
t 't t 't

}.

ft(c) and gt(ﬁ) and the conditional expectations with respect to the

densities will be written as E and E. Therefore, the conditional
a B
log-1likel ihood functions associated with llf and Hg are respectively

given by

T T
L.(a) = if log £ (a), L (B) = if log g, (B).
£ t=1 t 8 t=1 t

We now allow for the possibility that the true distribution generating
the observations may not be asscciated with either of the families Hf
and ﬂ!' As such, these estimators have been termed pseudo-maximum
likelihood (PML) estimators (see¢, o.g., Gourieroux, Honfprt and

Trognon (1984)) and are defined to be the solutions of max L:(a) and
a

A A
max L:(ﬁ). These estimators are denoted as a and B, respectively.
B

We now define the finite sample pseudo—true value of B for a

given a as the solution to the problem
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T
max log g, (B) ;
8 é;; t

A et

this solution is denoted as 5T(a). where

t

E log g (B) = Ilos 8(ylz.,p) * flylx ,a)ay.
a

Since this problem is equivalent to

t f_(a)
5: E log X
a

min
B =1 B¢

where

t £ (a) . f(ylx, ,a)
S RS
E logst(ﬁ) [ log 0 xt’p) f(y|xt.a)dy
is the Kullback-Leibler information criteriom, it is clear that the
sample pseudo—true value of B, 5T(a). is the B which minimizes the
distance between Hf and RS when we assume that f(ylx,a) is true. In
the same way, the finite sample pseudo—~true value of a for a given B

is demoted as aT(B) and is defined as the solution to

iﬁ t
max E log £ _(a).
a t=18 t

Moreover, Gourieroux, Monfort and Trognon (1984) show that the
psoudo—maximum 1ikel ihood esti-ntor-'?. is & consistent estimator of
the asymptotic pseudo—true value, b(a). It therefore seems natural to
compare under Hf the pseudo—maximum 1likel ihood eatinator'a of B with

A
ﬂr(c), the finite sample pseudo-true value of f. Since, under Hf,
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? - bT(:) converges to zero, and since this is not in general the case
under Hs. a significant departure from zero of 3 - bT(:3 will be in
favor of Hs. The authors then show that the distribution of

v}l-' [‘ﬁ\ - bT(:)] is asymptotically normal.

We now discuss another method of tefting non—nested hypotheses
which yields a test statistic that is asymptotically equivalent to the
Cox test. Although this method was originally suggested by Cox (1961,
1962), it was formalized by Atkinson (1970) and consists of nesting
two non-nested models into a gemneral model in which the two smaller
models would both be special cases. Explicit accomnt is not taken for
exogenous variables.

Again, letting the two component p.d.f.’'s be f(y,a) and

g(y,B), the combined p.d.f. is of the form

fx(y) =

£z, a)1* [g(z. )11 2dz

when we assume that the observations are identically and independently
distributed. Note that the denominator has been iatroduced so that
fx(y) has the properties of a density. Since we'nre ultimately
concerned with an estimate of A, Atkinson follows a suggestion by
Bartlett (1953) and uses an asymptoticaiiy normal statistic for
testing hypotheses about the value of single parameter, A, in the
presence of nuisance parameters, a and f. For ease of exposition, we
assume that L, the log—-likelihood of the observations, contains only

the nuisance scalar parameter 6,
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Let
2 2 2
L L "L
I = -E( )n I = "E( )o I = -E( )
11 Blz 12 069 22 692

where the partial derivatives are evaluated and the expectations
calculated under the null hypothesis. The test statistic proposed by

Bartlett is

(aLfor) - (112/122)(3/1./:»0)
2 1/2
(Iy1 ~(I3p/Tpa))

T= ’
which has an asymptotic normal distribution. If we use as estimates
of the nuisance parameters the maximum likeliﬁood estimates under the
null hypothesis, we sce that the second term in the numerator in the
above expression drops out.

Let us now assume that the null hypothesis is A = 1; that is,
we assume f(y,a) is the true model and we test for departures from
f(y,a) in the direction of g(y,B). It is then only necessary to
differentiate the log-likelihood function associated with fl(y) with
respect to a, B and l‘and evaluate these partial derivatives at A = 1,
Since the test statistic T requires that we estimate A and B under the
null hypothesis A = 1, we use the maximum likel ihood estimator : and
the ﬁsoudo-nnxinun 1ikel ihood estimator b(:}.

As with all the non-nested hypotheses tests discussed so far,
we also need to reverse the roles of the two distributions and test
the hypothesis A = 0; that is, we must test for departures from g(y,B)

in the direction of f(y,a).
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4. LIKELIHOOD RATIO TESTS FOR MODEL SELECTION AND

The purpose of the current section is to provide a brief
overview of the method proposed by Vuong (1985) for the selectiom of a2
"best” model from a set of competing models in a hypothesis testing
framework., As in Akaike (1973, 1974) the selection criteria used is
based on the Kullback-Leibler (1951) Information Criterion (KLIC)
which measures the difference between a8 given distribution and the
trae distribution. The work discussed here differs, however, from
Aksike in three important respects. First, conditional models are
considered so as to allow for explanatory variables. Second, Vuong
(1985) examines the cases in which the competing models may be non-
nested, overlapping or nested; in contrast, Aksike (1973, 1974) limits
himself to a discussion of non-nested models. Noreover, in contrast
to Akaike, Vuong does not require one of the models to be correctly
specified. Finally, the test statistic proposed is based on the log-
likelihood ratio uncorrected for the number of estimated parameters.

Using the notation established earier, let us define two

conditional models Fa = {f(ylx,a),a ¢ A} and G, = {g(ylx,B),B & B}.

B
Then the distance of each of these models from the true conditional
distribution ho(y|x)n as measures by the ELIC, is defined as

Eo[log ho(ylx)] - Eollo; £f(ylx,a*)] and

Eo[log ho(ylx)] - Bo[log gl{ylx.p®)]1, respectively, where Eol‘] denotes
the expectation with respect to the true joint distributiom of (y,x)

]
and ¢ and B. are the pseudo—true values of a and B (see e.g., Sawa

(1978) and Gourieroux, Monfort and Trognon (1984)). As noted before,
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both of these expressions are nonnegative and equal zero, say, only
when ho(ylx) = f(ylx.a‘). As such, an equivalent selection criterion
is based on Eollog f(y|x.a.)] and Eo[log s(y|x.B‘)]. the better of the
two models being the one which gives the larger valus. Although both .
of these quantitites are unknown, they can each be consistently
estimated by (1/n) times the log-likelihood evalated at the respective
pseudo—maximum 1likelihood estimators. With this as & background,
Voong (1985) suggests tests for model selection where the null
hypothesis is that E°[1og g(ylx.ﬂ.)l = Eouog g(ylx.a')l. indicating
that the two models are equivalent, against

Bollog f(ylx.a‘)] > Eollog g(ylx.p.)] indicating that F_ is better
than GB' or against Eollog f(ylx.a‘)] < Eollog g(ylx.B‘)] indicating
that GB is better than Fc' As such, the test will be based on the
likelihood ratio statistic

A A £, A g A
LR (e, ) =L (a) - LEGB )

A
f ’
f o ey
=1 K(yt lxtaﬂn)

A A
where a and Bn are the pseudo—maximum likel ihood estimators of u‘ and
L ]
B .

As noted in the Introduction to this chapter, the model
selection criterion proposed by Akaike (1973, 1974) is not
probabilistic, Since Vuong (1985) derives tests for model selection
it is therefore necessary to examine the asymptotic distridbution of

the likel ihood ratio statistic. A complication arises, although,
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because the asymptotic distribution of the likelihood ratio statistic
depends on whether or mot f(-|-,a,) = g(+l+,B,). As is shown in Lemma
3.1 of Vuong (1985), if £(-l-,a,) = g(:l-,B,), then zmn(ﬁn.ﬁn) has a
limiting distribution which is & weighted sum of chi square random
variables, the weights being the eigenvalues of a matrix to be
discussed later.

On the other hand, if £(-l<,a,) # g(<l*,8,), then
n_I/ZLRh(:.g) is a consistent estimator of LR(a,,B,)
- n-l/znpllogf(ylx.a.) - logg(ylx.B.)]. Indeed, as Theorem 3.4 of

Vuong (1985) shows, if f£(-l:, a,) # g(*l+,B,) then

“1/2,, A A -1/20 f(ylx, a,)] D 2
n I.Rn(an.ﬁn) n ) A [lozs(ylx. p.) rd N(O. (ﬂ.)

. s
where mf is the variance of loglf(y)lx., a )/g(ylx, B )] where the
variance is computed with respect to the joint distribution Ho of

(y.x) .

.
Then under HY: EG[IOQELZI“-Q-ll = 0,

L
glylx, 8)

/2, A A D
Theorem 5.2 of Vuong (1985) shows that n Lkn(an. ﬂn) LR -=> N(0,1)

where Si is a consistent estimator of uf. This consistent estimator
will be defined shortly. As should be clear, if the noﬁels are non-
nested, one must have f(°|'.c‘) ¥ g(°|'.p‘); alternatively, when the
models are either nested or overlapping, one may also have

£C-1-,a") = gC:1-,8").
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As will be shown in the next section, the Nash model and the
two Stackelberg models are all pairwise overlapping. In a pairwise
test of the three proposed models, it is therefore necessary to test
whether or not f(‘l'.u.) = s('!'.ﬁt). As shown in Lemma 4.1 of Vuong
(1985) a necessary and sufficient condition for f(‘l'.a‘) = s('l'.B‘)
is w& =0, uf denoting the variance of log[f(ylx,a‘)/g(ylx.p‘)].

Since

uf = varo log

o

s(ylx.ﬁ‘)
a2
= E]10g ﬂ.zlz..n_).] - [30[10‘ ﬂxix.n:l]] , the
s(ylx.B ) g(ylx.p )

expectation taken with respect to the true joint distribution HO of

(y,x), a consistent estimator, 3&. of wz is given by the sample

anslog:

2 2

A
(y |x .a ) 1 & f(yllxl.a )

- log .
a

ﬂll-i

A
t=1 g(ytlxt.ﬁn)

A
As mentioned above, the asymptotic distribution of L is seen to be a
weighted sum of independent chi-square random varisbles, the weights

being the eigenvalues of the matrix product VI: where

L s &
ga) “Bygla 8]

V= l
* @ L ]
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and

- -1, -1, ® * s -1, @
. B 6 s AEhB TN 6T

-1, e s s 1 =® -1, * ¢ -1 @
AB (a )Bgf(u B )A8 ®) Ag (g )BS(B )As )

Submatrices within V and 2: are defined as.‘for exazaple

dada’

2
Ag(a) £° um_ﬂxlz..s).]
and

Bf(a) 5 Eo[il_o_l_fésc.l!.ha.ﬂ). . Q.lm_g_i.:'rk...g).].

Consistent estimates of tho matrices V and S: can be given by their

A
syntax error file chap5i, between lines 919 and 919 sample analogs, V

and I:.

With this in mind, Voong (1985) proposes a two—step sequential
procedure for choosing the botter model of two competing but

overiapping models. If we let B: : uf = 0 and H: : wz # 0, the

sequential procedure is

(1) Test H: against H: using the test based on Si. This is termed

the variance test by Vuong (1985). If H: cannot be rejected,

then conclude that the models Fa and GB cannot be discriminated

given the data. Alternatively, if Bg is rejected, then

(ii) Test Ho against Ef or Hz using the model selection test based on

-1/2 A A
the statistic a th(an.an) which has a limiting standard
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normal distributiom.

In the next section we then show that there exists a set of
restrictions on the parameters of the Nash and the two Stackelberg
modéls such that the three models pairwise overlap., This being the
case, we would normally then implement the above sequential procedure.
Since the first step of this sequential procedure is difficult to
implement, we will instead nse an alternative procedure. This
alternative procedure is based on whether we can reject the hypothesis
ngmf = 0 or equivalently f(‘l'.a.) = g('l'.ﬂ*) if we can
statistically show that the g¢stimated conditional d;stributions for
the competing but overlapping models are not pairwise ideatical. To
do this, we need to characterize the intersection of any two
overlapping models. We therefore propose in the next section a
necessary and sufficient condition for the models to be pairwise
identical. If we can then reject this condition based upon the

estimated distributions of Chapter IV, we need thenm only implement the

second step of the above sequential procedure.

5. IMPLEMENTING THE TEST FOR THE CHOICE OF THE MOST ADEQUATE MODEL
As stated in the previous section, we will now present
necessary and sufficient conditions for the three game theoretic
models to be pairwise identical. Let us first start with the
conditions that relate the two Stackelberg models, those being the
models in which the husband and the wife successively play the role of
the leader. The conditional distribution for the Stackelberg game in

which the husband plays the role of the leader is given as Proposition
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1 of Chapter III. In order to avoid confusion, we now state
explicitly the conditional distribution of the Stackelberg game in

which the wife plays the leading role.

The probabilities relating the

four possible discrete outcomes are as follows:

-~ -~ ~ e ~B
Pr(0,0) = F(-AUw.-AUh,p) -1,

F(—AU',-AUh,p)

B

F(AU'. "AUh’AG .‘P) + I__

(%Y

-~ ~0 -~

Pr(0,1) = F(-AU'—n +a .Aﬂh.-p)

- o

v
~ -~ ~o ~ -~ -~A
F(-AU -a_+a_,AU, ,-p) + I_

1.0 ~A

Pr(1,1) = F(AU *a_~a_,AD, +Aa,,p) - I

F (AU'+¢'—a', Uh+Aah. p)
where

A 1 1 0

if AZh )0

otherwise

-~

if A B 20

otherwise

ifA;hzo

otherwise

ifA;hzo

otherwise
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I, =1I (-AUw. -AUh. —AUw-aw. —AUh—Aah. p)

I_ = I ( -Auw » "Auh"Aﬂh » -AUW+ Qw » -AUh P ’
As in Chapter III, let us decompose Aﬁh and AEW into linear

combinations of coefficients and explanatory variables. We then have

AUh = Yh;h + Sh + ShZ

and

~ ~ 0 1
AU =9 X +& +52
w v w w

where Z contains those explanatory variasbles that are common to botkh
the husband and the wife while Xh and x' contain those variables that
are specific to the husband and wife, respectively. Without loss of
generality, let us also assume that xh. I' and Z are one—dimensional.

We first present the following Lemma.
LEMMA 1: For every a and b, I(a+x,bt+y,a,b,p) = I(a+x,bty,a,b,p) if
and only if x=x and yc;, provided xy # O.

3

PROOF: ({==) Obvious.

(==>) Define G(a.b;x.y.;,;) = I(a+x,b+y,a,b) — I(a+x,b+y,a,b)
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atx y a+; b+;
= f(u,v;p)dvdu - ®(u, v;p)dvdu.

a b a b

Since G(a.b.’x.y,x,;) is ideatically zero for all a and b, we have

3G(a,b;x,v,x,v)
95{s bax % = [f(a+x,v;p) - £(a,v;p)ldv
a
J b
by
- [f(atx,v;p) — f(a,v:p)ldv = O Ya,b.
J b
326(a,bix,v, 2.7

Al so, = 0, Va,b implies that

dadb

f(a+x,b+y;p) - flatxz,b;p) ~ £(a,bty;p)

= f(a+;.b+;;p) - f(a+;.b;p) - f(#.b+;;p). Ya,b. (1)

Now let

£a 1,b yip) = flatx,bryip) + (e e,

and f(a+;.b:p) = f(a+x,b;p) + & (2)

1 L]

Then f(n.b"-;;p) = £(a,b+y;p) + ey

aSG . ~ A

Moreover, = 0 implies that
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[(a+x)-p(b+y) 1f(a+x,b+ysp)~[(a+x)-pblf(a+x,b;p)~[a—p(b+y) 1£(a,bty;p)
=[(a+;)-p(b+;)]lf(a+x.b+y:p)+81+82]—[(a+;)—pb][f(a+x.b;p)+ell

—[a-P(b+;)][f(a.b+y;p)+a2] . (3)

Upon simplification, we get

'5;81+;32=[x-;-p(y-;)]f(a+x.b+y;p)-[x~;]f(a+x.b:p)+p(y—;)f(a.b+y;p).

336(a,b:2,7,2,¥

2 = 0 implies that
- dadb

Similarly,

[(b+y)~p(a+x)I1f(a+x,bty;p) ~-[b-p(a+tx)f(a+tx,b;p)-[b+y—palf(a,bty;p)
= [(6+7)-p(a+X)] [£(a+x, bry;p) +s +e,1-[b-p(a+x) ] [£(a+x,bip) +e,)

~[b+y-pal [£(a, brysp)+e,] .

Again, upon simplification we get

;el-p;ez=[y—;-p(x-;)]f(a+x.b+y;p)+p[x-;lf(a+x.b;p)—(y—;)f(a.b+y;p) (4

Combining equations (3) and (4), we have

-~ 1
[_py ;]
y -pxl e

2

[(x-;—p(y—;))f(a+x.b+y;p)-(x-;)f(a+x.b;p)+p(y-;)f(a.b+y:p)

(y-;-p(x-;))f(a+x.b+y:p)+p(x-;)f(a+x.b:p)-(y-;)f(a.b+y;p)
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Therefore, since xy # 0 and [pl # 1, we have

] -px -x
[31] -l { "l X
2 (pz - zxy Ly -py

(x—;)[f(a+x.b+y:p)-f(a+x.b:p)]-p(y—;)[f(a+x.b+y:p)-f(a.b+y:p)]

{-p(x-;)[f(a+x.b+y:p)‘@(a+x.b:p)]+(y—;)[f(l+x,b+y;p)—f(a,b+y;p)]

. [(pz-l);(y-;)[f(g+x.b+y:p)-f(a.b+ysp)]l

(pz—l);; (pz-l);(x-;)[f(a+x.b+y:p)-f(a+x.b:p)]

¥ [f(a+x,bty;p)-£(a,b+yip)]
Yy

izﬁ [f(a+x,bty;p)—f(at+x,b;p)]
X

4 . _~
Now, we also have S=S(LPir¥v.x.¥) _ ,

- aa3ab

which implies that

[(a+x)-p(b+y)lzf(n+x.b+y:p)-[(a+x)-pb]2f(a+x.b;p)

—[a-p(b+y)lzf(a.b+ysp)

= [(a+2)-p(b+7) 1218 a+x, brysp) +e +e, 1~ (atx-pb1 2 [£(asx, bip) +e,]

~La=p(6+3) 12 [£(a, brysp)te, ] .

(5)
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Af ter rearranging, we have

2 2
81( pz; —29;( a+;-pb) )+¢2(x +2;( a."Pb'P;) )

= [x-2-p(y=y) ] [2a+x+x-p( 2b+y+y) 1 £(a+x, bry;p)

- [x-;][28+x+;;29b]£(a+x.b;p)+p(y—;)(2&-2pb-py-p;)f(a.b+y:p)-

Substituting (5) into the above equation, we have

[(x-;)[Za+x+;—2pb-py-p;-;—2a+2pb+2p;]
+ p(Y';)[-Za-x-;+29b+py+p;—p;+2a+2;~2pb]}f(a+x.b+y;p)
=(x-;)(-;-2;+29b+2p;+2a+x+;—29b)f(a+x.b;p)

+ p(y—;)(—5;+2u+2;;2pb—2a+29b+py+py)f(a.b+y:p)
Upon simplification, we then have

(x~;)(x+29;)f(a+x.b;p)+p(y-;)(by—z;)f(a.b+y:p)

= [(x—;)(x+p;—py)+p(y?;)(py+;;x)]f(a+x.b+y;p). Ya,b. (6)

Note that f(-,*;p) is of the exponential form. Therefore (6) is
possible only when all of the coefficients are zero. Note also that

the coefficients are independent of a and b. We now have four cases

to consider, depending on whether or not x-x and y~; are each zero.

Case 1: x-x = 0, yy = 0. The proof is complete.

Case 2: y-; =0, x-; $ 0.
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We have from (6) that x+2py = 0 and x+p;'-py = 0 which implies x = 0
and ; =0Qorx=0and p=0. If y =0, we have a contradiction since
we have assumed that :y#o. Ifp=0, ; # 0, then

I(a+x,b+y,a,b;p) = I(a+tx,b+y,s,b;p) implies that

atx bty atx b +y

?(u)du Pv)dv = P(u)da f(v)dv.
a b ‘ a b

Since y = ;. we must have x = ;. Contradiction.

Casze 3: x-; = 0, y—; £ 0.
From (6) we have that 2;+py = 0 and pyi-;—x = 0 which implies py = 0

and ;=0 which is a contradiction since ;; = 0 by assumption.

Case 4: x-x # 0, y-y # 0. Then x+2py = 0 and p(py+2x) = 0.
If p =0, then x = 0 which implies ; = 0 or ; = 0, Contradiction. If

p # 0, then x+2p; = 0 and py+2; = ) which implies xy = 4:;. We also

have from (6) that

(x-;) (x-pyi'p;) + p(y—;)(py'l';—x) = 0 which implies

(x-;) ("PY‘P;) + p(r;) (-x-;) = 0 since x = -29; and py = -2x.
Ve then have -p[(x-x) (y*;) + (y-;) (x+x)] = 0 which implies

~2p(xy — xy) = 0 which in turn implies xy = xy since we have assumed

that p # 0.
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Thus ;; = 4:; implies ; = 0 or ; = Q. Contradiction.
Q.E.D.

We are now in a position to prove the following necessary and
sufficient condition such that the two Stackelberg models are

identical.

PROPOSITION 1: Suppose that either v, # 0 and v, # O or ;h 4 0 and

;' # 0. Then Pr(i,j) = Pr(j,i), 1, = 0,1, for any X, X, Z if and

only if

0 0 ~1 ~
o =a =0.ah=a'=0,Aa'=A¢h=0:
6' = 8' where 6.' = (6'. 6'). 6' = (6'. 6'): and

6h = ah where 6h = (sha ah). 511 = (ah. 6h) -

PROOF: We heve four cases to consider, depending upon the signs of

Auw and Aah-
Case 1: Aa' 2 0, Aah 2 0
({==) Obvious.

(==>) Without loss of generality, let us suppose 7y # 0 and Ty % 0.

We must have Pr(1,0) = ;r(o.l) which gives

+ a_s A B’ -p) or

A
[+

F(AU, , -AU' - Aa'. -p) = F(-AU' - e
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Ry X, + 89 + 81z, . X - 53 - 81Z - Aa_, —p) =

F(-V'X' - Bw - S'Z -a + L yhxh + 5]1 + th, -p)
First note that we must have ;h # 0 and ;' # 0. Otherwise, the right

hand side would be independent of xh and x'. which contradicts the

assumption that 10 # 0 and 7, # 0. Moreover, note that Ty and ;h must
have the same sign; otherwise, one side would be decreasing in Xb

while the other side would be increasing in xh' A similar requirment -
holds for Ty and ;'. Without loss of generality, let us suppose that

Th > 0, ;h > 0, Yw > 0, ;' > 0, Since the results must hold for all

xh, let xh - +, This impliecs

q’(-y'x' —6' - 6'Z - A"w) = Q(-'y'X' - 8' - S'Z -a + a.') or

ToXy * 8.7+ (5' + Aa') = 1'1' + 6'2 + (6' te - a') for any X'. y A
Hence, we must have

Ty = Ty’ (7
1 ~1

8' = 6', and (8)
6' + Aa"= 8' ta -a. (9
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Similarly, 1let x' - -o, This implies

~1
+ GhZ) or

0
0 1 -~ Y
Ply X, + 8y + 5,2) = ®ly X, + 8,
1] 1 ~ ~0 ~1
X + 5, + 8,7 = Yh;h + 5, + 8 Z for any X, z,

This in turn implies that

Yh = Th.
0 1

o ~ 1 -~ -
Sh = bh and Sh = Gh. or, for notational coavenience, Bh

In addition, we must have Pr(0,1) = §r(1.0) or

1 o -~ ~ ~ -~
F(-AU, - a +a., AU, —p)ﬂi(AU'. -AUh - Aa. -p) or

1 0. 1 0 1 0
FlypX = 8,2 - (8 +ay —ap), v X +8Z+ 5., -p)

0 ~l 0

-~ ~1 -~ ~ -~ -~ ~
= F(wav + 6wz + 8'. —thh - 6hz - (bthah), =) .

By the same argument as above, if we let xh - -o we obtain

Ty = Ty
6o O 4 -
6, = 6, and 8 = 8 which gives 8 _ = §_.

In addition, we get from (9) that

(10)

(11)

(12)

(13)

(14)

(15)
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Similarly, letting x' - +», we obtain

Yh = Yh’
1
1 '
Sh = Sh and
0
0 1 0 ~ ~
Sh + Qg - = 5h + Aah.

But since we have from (11) that 8:

% - o = a

Now note that equations (16) and (11) imply that AU

equations (13) and (14) imply AU_ = Aﬁ'.

=3

equation (18) implies

= Aﬁ while

(16)
(17)

(18)

(19)

If we now use the fact that F(x,y,p) = F(y,x,p), equation (12) can be

rewritten as

1 o ~ ~ ~ -~
F(-AUh - ah + ah. AU'D "P) = F("AUh d Aah. Au'p -ﬁ) . But -
AL AUh. AU' = AU' and @ ~a, = Aah from (19).
Moreover, the preceding equation must hold for all xh xv. Z, and

hence for all AU, and AU . This implies p = P

h

Third, setting Pr(1,1) = ;r(l.l) we get

1 0 A
F‘(AITh +tap —a, AU+ Aa, p) - I,
= F(AU' ta -a., AUh + Aah. p) - I,.

But since we have from above that
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1
~ ~ 1 o L.ad -~ "~ _ -
AUh = AUh' AU' = A w %= Aah. e —a = Aa'. and p=p

~A
we must have If = I+ other words,

I(-udy - ar, -AU_, -AU, - of + a), -AU_ - Aa_, p)
~ ~1 -~ ~ ~1 ~0 -~ ~ -~

= I(-AU' -a., -AUh. AU' -e ta, —AUh - Aah. p)
- ~ o -~ - ~ ~1 0 o

= I(—AUh. -AU' -a, —AUh - Aah. -AU' -a + a, p)

This last inequality comes about by switching the order of

integration. Noting again that

0

~1
~ -~ -~ 1 -~ _
AUh = AUh’ AU' = AU'. P=pay ~ay, = Aah and An' =a

- ag. we have

1 1 ] .
I(-AUh - a, -AU'. -AUh --(ah - nh). -AU' - Aa'. p)

1
-~ 1 0
I(-AUh, -AU' -a, -Aﬂh - (ah - ah). - AU' - Aa_, P,

which must hold for any AUh and AU'. Employing Lemma 1 on the above

~1
equation, we get ni = 0 and e = 0. Finally, setting Pr(0,0) =
L] B -~ -~y L4 . ~B
: B
Using the same argument as above, we get If = I*. In other words,

-~ - - -— 1 —-— -
~ ~1
= I(-AUh. -AU'. -AUh - Auh. -AU' -ea.. p) . Employing Lemma 1 again,

1
1 -~ '
we got @ = Aah and Aa' =a.. But we bave from above that a; = 0 and
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1 ~
a =0, Therefore, Aca
w h

= 0 and Aa' = 0. Now, using equations (15)
~0 0
and (19) respectively , we get e = 0 and o = 0.

Case 2: Aa' 2 0 and Aah < 0.

Without loss of generality, let us assume Ty # 0 and 7, # 0, If we

first set Pr(0,0) = 3r(0,0), we get

F(—AUh. -AU'. p) - If = F(—AE‘. -Aﬁh. ;). or upon substitution

0_,1 0_ .1 _
F(~v,X, - 8, - 8,Z, —y X -6 = 8.2, p)

0 1 o_ .1, _ _£0_ 1, 1
rpXy = 8y = p20 ~ Y%y ~ 8y ~ 820 — 1%y = By 82~ wys
0 1
-y'x' - 8' - §'Z - An'. p)
= F(ﬂwx' - 5' - SWZp _thh - 5h - sth P) . (20)
Since we assume that Ty, # 0 and # 0, it must also be the

case that ;h # 0 and ;‘ # 0; otherwise, the right hand side of the

above equation would not depend on xh and X' whkile the left hand side
would, In addition, Th nost have the same sign as ;h: similarly Ty
must have the same sign as Te Without loss of gemerality, let us

assume Y_ > 0, Ty > 0, ;h > 0, ;; > 0,

Now let X, ™ -=. We see then that If =» 0. Equation (14) then

becomes
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0 .1 ~ <01
orx - 80 -5l <@ X -5 -3D or

[= T |

1
o 1 _~ -~ ~
rE, * 8, +8;Z=v X% +5 +8Z V¥ X, I

]

We then have

v, = ;w. (21)

0 ~1 ~

0 _<% 1 .
8' = bw and 6' = 8' which imply 8' = 6' . (22)

Similarly, if we let x.' -5 -@ we get

P, X, - 5 - §,2) = ®(-7,X, - & - §,2) which implies

thh + Sh + 7hz = yhxh + sh + ahz Y xh, Z. Ve then have

Yll. = Yhn . (23)
o ~° 1 ~1 -~ ’

Sh =Ty and 8h = Sh or Sh = Sh. (24)

Note also that from (21) and (22) we get AU' = Aﬁ'.' from (23) and (24)
we get AUh = Aﬁh. let us next look at the conditions umder which

Pr(1,1) = Pr(1,1). This equality implies

1 0

FAU, + a; = a,, AU + Aa_, p) - I = F(AU' =a -a, AU + Aa,. p)

which in turn implies
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0 1 1 0 0 1
F(‘yhxh + sh + 6hz o, -,'x' + 6' + 8 Z+ Aa, p) -
¢ .1 1 0.1 0o .1 1. 0 0.1
I(—thh_sh-shz-a'h' "T'x' 8' SwZ. -Yhﬁ 6h 6hz ah+a'h' -Y'X'—S'—B'Z—Aaw. p)
= F(-ywx' + sw + swz tao -a, Thxh + 6h + shz + Aah. p). (25)

Now let X.h - +o, Since If - 0, we get

‘P(AU' + Aa') = Q(AUw + a - a') . Since AU' = AUw’ we get
~1 0
Ao = a - a_. (26)

Similarly, if we let X' -~ +o, we get

A, = ap - a.:. (27

The conditions for which Pz (1,0) = ‘!;:(0.1) are

. 1 0 . . A
F(Auhp - AU' - An" -P) = F(-A“' - C' + a'p AUhu _P) + I_b

vhich yield upon substitution
+ I(.AU' + u.', -AUh - Aaho -AU' - u' + u'p -Auho P) .
Finally, Pr(0,1) *5:(1.0) gives

B

_ _ 1 o _ - ~ _ ~ _ ~ - ~
F( AU, o ta, AU'. p) F(AU'. AUh Aah. p) + I_,

or upon substitution
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1 1 0
F(AU'.-AUh -a t Q. ~p) (29)

0
F(fAUh - a + L AU'. p)

~ ~o -~
+ 1(-AU_, -AU, - Aa,, -AU_+ a_, -AU,, p).

;: to do this, we will use conditions

We now need to show that p

(200, (25), (28) and (29) and the facts that Aa_ 2 O and AZh 0. In

oF(x,v.p)
ap

f{(x,y,p) is the bivariate normal p.d.f. Note that the signs of If and

addition, we will note the relatiom = f(x,y,p) > O where
Iﬁ from equations (20) and (25), respectively, will depend upon the
signs of ai and a:‘ This is so becaunse we have assumed that Aaw 2 0.
Note also that the signs of If and IE from equations (28) and (29),
respectively, will not depend upon the individual signs of a; and ag.

If we can thus determine the signs of If and If. we can determine the

relationship betweend p and ; since we know that
oF(x,y,p) fap = £(x,¥,p) > 0. A similar argument holds when we vary

~1 0
the signs of a and a. We thus have eight subcases to consider.

Subcase 1: If ni 2 0 and u: 2 0, then If 2 0 which implies that

p 2 ;. On the other hand, If £ O which gives p £ ;. Thus
P =P

Subcase 2: If a < O and u: < 0, then I] < 0 giving p £ p.

Similarly, If 2 0 which gives p 2 ;. Therefore, p = p.

Subcase 3: If a; 2 0 and a: £ 0, it must be the case that both are

zero since we require A~h £ 0. As a result, If = If = ¢




Subcase

Subcase

Subcase

Subcase

Subcase

Since p

I(-AUh‘

192

which gives p = ;.

4: If ol < 0 and q: >0, then I® ¢ O which implies p ¢ p. On

the other hand, If 2 0, giving us p 2 ;. Combining these

results, we get p = ;.

A > 0 which implies that

1 0
5: If a > 0anda 2> 0, then I
w w

£ C which gives p 2 ;.

-p 2 —; or p £ ;. Similarly, IE

We thus have p = ;.

~1

0
6: If a {0Oanda £ 0, then I
w  §

< 0and I > 0. These two

A

conditions require that p = p.

~1 0
7: If a2 0anda <O, then 1 ¢ 0 ama 1B ) 0. Ve thus
respectively require p 2 ; and p £ ; which again gives
p=9.

~1 ~0
8: If a £ 0 and a 2 0, it must be the case that both are

zero since we require Aa' 2 0. As a result, If = IE = 0

which gives p = ;.

= ;. we have from (20) and (25) that

1
AU' -AUh G —AU' Aa'. p) =

»

-AU_, -AU, - Aah. —AU' - Aa_, p). But from Lemma 1, we get




193

A;h = 0. Similarly, we have from (28) and (29) that If = IE.

Applying Lemma 1 again, we get that Aa' = 0. Finglly, we can equate

IB

+ to If from equations (20) and (28), respectively, which give

1 - o~ _~ = . - _
a = Aah and e 0. But since Aah =0 from.above. we get that

0
1_ 0 _ . oo b o =
o =aq = 0. Moreover, since Aaw =ea = 0, we get a 0.

Case 3: Aa_ £ O and A; < 0. This case proceeds identically as Case

w - h
1.
Case 4: Aa' £ 0 and A~h 2 0., This case proceeds identically as Case
2.

QIE.D'

We now state necessary and sufficient conditioms such that the

Nash model and the two Stackelberg models are overlapping. Again, we

need to state another Lemma.

LEMMA 2: For every a and b,

F(a,b,p) - F(a+x,b+y,p) = F(a,b,p) - F(a+x.b+yo;) if and only if
p = ;. provided x * ¥ ; 0, lpl #1 and |;| £1.

PROOF®: (¢==) Obvious

(==)) Let us define

H(a,b;x,¥,p,p) = F(a,b,p) - F(a + x,b + y,p)

-F(.jb';) + F(‘ + x,b + y;;) = 0 V a,b.
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2

Now g%g% = f(a,b,p) ~ f(a + 2,5 + y,p)

~£(a,b,p) + f(a + x,b + 3,p) =0 V¥ a,b.
Then if f(a.b.;) = f(a,b,p) + gy, we also must have
f(a + x,b + y.;) = f(a + x,b + y,p) + e,-

833

da"ab

Differentiating again, we get = 0 which implies

20k gy p,p) - 22 E=0(b 2T g

1 - o2 1 - o2

a + x,b+ y,p)

=A=0b sy p,p) -2tz =0b V) oy 42+ y,p)

~2 ~2
1-p 1-9p9

= A’:'nhlf(lub'P)+81] ~atx oo * Vg4 g,p+ v.p)+e 1.

~2 ' 2
1 -9 1-9p

This last term comes about by substitation from above. If we

rearrange terms, the above equation gives us

~

Yy - x | &y = [L;ﬂl- 8= pb £(a,b,p)
1-p

~la+t x-po(b+y) a+tx-p(b+y) £(a + T.b + yp) .
2 » F
l 1-p ~2
1-p

(30)
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3
-Q-EE = (0 yields

dadd

Moreover,

b =08 c0y,0,p) - b+ y) ~pladx) e,y g,b+ y,p)

1 - p? 1 - p?

- b= bty-pla+z)
= [==28] tf(a,b.p) + 5,1 - BF 22X} [£(a + x.b + 7.p) + e,].

1-p 1-p

If we rearrange terms, the above equation can be written as

px - ¥V e, = b —-—pa _b = pa £(a,b.p) (31)
~2 1 - p2 o~
1-p 1-p
b+ y—pl(a+x) b+ y-o(s+x) £(a + x,b + yop) .
1-92 ' ~2
1-p

Now, if we combine equations (30) and (31) and assume that ;y -x 0,

we get

J> Sl 4 8_-2%_5_-'_& £(a,b,p)
o - 1-p ~2
PY - 2 1-p

2

_la+t x—-po(b+vy) a+x-p(b+y) f(a + x,b + y,p)
1-p ~2
|
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1-p

b+ty-op(a+x) b+ y- ;(g + x
2
1-p ~2
1-p)

f(a + x,b + y,p)

But this is possible only when

pxX = Y L-ﬂ_é-oblab—p’a‘—b-osaon VaOb

;-xll"’z ~2| 1 - p? ~2
y 1-p] 1-p |
Rewriting this last equality, b -‘°§ -bz=os, 0, gives us
1-p ~2
1-p

2 2 2~ 2
(" = p )b ~ [p(1=p ) = p(1 -~ pT)]a =0, V a,b,

Thig in turn implies that

2 2 2 =2 P
p" = p and p(1-p ) = p(1-p”). Now either p = p and we are done or

p = —; which implies

~2 ~ a2
p(1-p ) = p(1-p ). But this implies

; =0 =p., Alternatively, if ;y - x = 0, we have from (30) that

[.e_-_.nh _a=p0b £(a,b,p) -
1-p

1-p
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a+tx-pb+y) atx—oplb+y
2 2

1-p

f(a + x,b + y,p) =0, V a,b.
1-p

But this implies that

&= Dg - a—ob 0 which in turn implies
1-9p 2
1-9
(p“ - pla+ blp(l ~-p°) —p(1 -p)) =0, V a, b. Ve therefore require
p” =p and p(1 - p”) =p(1 - p ). Now, either p = p and we are done,
or p = —p which implies
2 2

;(1 - ;') = —;(1 - ; ) which in tura gives ; =0 =p,
Q.E.D.

We are now ii a position to provide necessary and sufficient
conditions such that th; Nash moﬁel and each of the two Stackelberg
models are overlapping. Since the conditions under which the Nash
model overlaps with the husband leader Stackelberg model are identical
to the conditions under which the Nash model overlaps with the wife
leader Stackelberg model, we will only prove the former so as to
economize on space. Let those terms with a tilde superscript be

associated with the husband leader Stackelberg model and those without

a tilde be asasociated with the Nash model. We then have:

PROPOSITION 2: Suppose that B, < 0, 3 0, and A;' <0. In

addition, suppose that either 1 # 0 and Ty ¢ 0 or ;h # 0 and ;w # 0.
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Then Pr(i,j) = Pr(i,j), i, §j = 0, 1, if and only if

~ ~ ~

Py =Aa_, By =a - a» p=ps By ° B =0; and

1.0 -~
o = ay = ( or Aaw = 0.
PROOF: ({==) Obvious.

==)) Without loss of gemerality, assume that h # 0 and Yy # 0.
Then, when we set Pr(0,0) = Pr(0,0), it is clear that ;' # 0 and

;' # 0; otherwise Pr(0,0) wounld depend on ;h and Xw while Er(0,0)

would not. Moreover, 12y and Ty must have the same sign. Similarly,

y_ and ;' must have the same sign. Without loss of gemerality, let us

w

then set

1, > 0, v, >0, ?h > 0, ;' > 0. Then from the equality

Pr(0,0) = Px(0,0), if we let X - - we got ®(-AU) = D(-aT ) which

implies that AU' = Aﬁ'. VWritten oat more fully, we get

Te¥, * 8,2 =T X + g'z VX Z. This implies that

Ty =Ty and 6' = 5'. (32)
Similarly, if we let x' =) -=, we have

~

Ty =7, and 8 = 5. | (33)

Next set Pr(1,1) = Pr(1,1). If we let xh - 4o we get
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511 = ah = ah' (34)

Similarly, if we let I' - +@ we get

By = Aa_. (35)

We next show by contradiction that Bh . B' = 0. Assume not; that is,

assume ﬁh # 0 and B' # 0. If we take the difference

Pr(0,0) - Pr(1,1) = Pr(0,0) - Pr(1,1) we get

F(-AU,, -AU_, p) - F(AU, + B, AU_+ B_, p)
= F(-AUh. -AUW, p) - F(AUh +a -oa., AUw + Aa'. p).

.

From (32) we have that AU = Aﬁ': from (33) we bave that AU, = Aﬁh.

Using (34) and (35) the above difference implies

F(-AU,, -AU_, p) - F(AU, + B, AU_+ B_, pl

But from Lemma 2 we see that we must have p = ;. Using again the

equality Pr(0,0) = Pr(0,0) we have

F(-AU,, -AU_, p) + d, + I, =F(-AU,, -aU_, p) = F(-AU,, -AU_, p)

1

which implies I_+ = 0. As a result, we must have Bh . ﬁ' = 0, which

is a contradiction. Hence, we must have ﬁh ‘B, = 0. Thus I__ =0,

and Pr(0,0) = Sr(0.0) gives p = ;. It now remains to show that

aQ =a = 0 or A;' = (), We use the previous result that Bh . B' = 0,
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First, suppose that B' # 0. Equation (35) then implies that

A;w # 0. Second, suppose that Bh # 0. Equation (34) implies that
~1 0
% ~ %

to show. Finally, suppose that A;' # 0. The required equality

0. Third, suppose that A;w = 0; then we have what we wanted

Pr(l,0) %I(I,O) gives

_ - -~ - ~ -~ B
F(AU,, -AU_-B_, =p) +d, + I_, =F(AU,, -AU_- Ac_, -p) + I_.

Since ﬂh . ﬂ' = 0, we seo that I_+ = (0. Moreover, If = 0 since

0
= AT = T 2 5 B i i s =
AU, = AUh. AU' AU', By Aa'. and p = p. I_ = 0 implies that ay 0

~ ~1
since we assume Aa' # 0. But if ag = 0 we also see that a = 0 by

(34). The conditions under which Pr(0,1) = B(0,1) have already been

establ ished.
Q.E.D.

It is now important to notice that the necessary and
sufficient conditions for the three game théoretic models to be
pairwise identical fail to hold. Looking at Tables 6 and 12 of
Chapter IV along with the statement of Proposition 1, we see that the
necessary conditions for the two Stackelberg models to be overlapping

fail to hold when we examine the estimated coefficients givenm in these

two tables. For example, we see from Table 6 that ::

A
different from zero at the 90 percent level while Aa' differs from

is significantly

zero at the 95 percent level. Corxrespondingly, Table 12 indicates

' A
that both :: and Ac' are both significantly different from zero at the
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95 percent level.

We also see from Tables 6 and 12 and the statement of
Proposition 2 of this chapter that neither Stackelberg model is
pairwise to the Nash model. First, Table 6 indicates that the

husband-leader Stackelberg model is not idemtical to the Nash model

A9 A
because both ¢, and Aa' are significantly different from zero at the
90 and 95 percent levels, respectively. Second, we see from Table 12

that the Nash model and the wife—leader Stackelborg models are not

A
identical because both :: and Aah differ significantly from zero at
the 95 percent level.
We are now in a position where we can appeal to Theorem 5.2 of

Vuong (1985) which under

s)
B, EO[M f_(x.lx.._n‘_]
gylx; )

the statistic

= Gaﬂ a aa
© 2
n (y Ix » a )

——t -t Llyp (u n )12 1/2

s(ytlxt. B)
is asymptotically distributed as standard normal. The values of the
three statistics are presented in the following table, where N atands
for the Nash model and SH and SW stand for the husband leader

Stackelberg model and wife leader Stackelbergz, respectively.
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Model G

SH -.056 -1.24

Model F

SW .855

As we see frcm the above table, we are unable at the commonly
adhered to levels of confidence able to pairwise discriminate between
any of the three game theoretic models. That is, we are required to
accept the hypothesis the Nash model is as equally good (or bad) as
the hnsbaﬁd leader Stackelberg model for explaining the joint labor
participation decision of a random sample of married couples. The

other two hypotheses we must similarly accept.

6. CONCLUSION

In Chapters II and III respectively, we proposed econometric
models of two different game theoretic equilibrium notioms, those
being Nash Equilibrium and Stackelberg Equilibrium. In Chapter IV,
three different empirical models were proposed and estimated
concerning the joint labor force participation decision of a married
couple. The first model assumed that the husband and wife both played
a Nash game. The second model assumed that the married couple played
a Stackelberg game where the husband played the role of the leader and
his wife played the role of the f&llower. Model three, while also a

Stackelberg game, assumed that the roles of the two players were
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reversed; that is, it was assumed that the wife played the role of the
leader while the husband played the role of the follower. The purpose
of the present Chapter was to determine the most adequate model among
the three proposed for explaining the joint lsbor force participation
decision over a large random sample of married couples.

The situation encountered, however, when we attempted to
examine any two of the three proposed game theoretic models was
neither one of comparing two nested models nor of comparing two non-
nested models. As was shown, the models are puirwiie overlapping. As
such the traditional methods developed for choosing the moet adequate
model were inappropriate for the task. Ve thérefo:e relied on a new
technique developed by Vuong (1985) which handles as separate cases
those situations in which the models may be nested, non-nested or
overlapping. The results of the previous section indicated that
although it was not possible to rejeot the hypotheses that any model
was pairwise better than the remaining models in explaining the joint
labor force participation decision for a random sample of married
couples, the log—like}ihood values may suggest that the Stackelberg
model in which the wife plays the role of the leader may be the best.
An aslternative specification of the three competing models may yield

more definitive results; this project will be tackled in future work.
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FOONOTES

It should be pointed out that applied ecomometricians commonly
confuse non-nosted models with overlapping models, and then
proceed to apply the techniques reserved for non-nested models to
overlapping‘models. The reason for this confusion, as pointed
out by McAleer and Bera (1983), appears to be that definition of
non-nested models is usually not well-stated.

These observafions arose from a8 discussion with Quang Vuong.

I owe this proof to Donald Lien.

I owe this proof to Donald Lien,
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APPENDIX A: DOCUMENTATION AND COMPUTER PROGRAM FOR THE NASH MODEL

The computational procedures required for the estimates
obtained in Chapter IV for the Nash model involve the formulation of
the log—likel ihood function in the parameters involved and the
maximization of this log—likel ihood function given observations on the
two jointly dependent dichotomous endogenous variables, and whatever
exogenous oxplanatory variables are thought to affect the occurrence
or nonoccurrence of the qualitative dependent variesbles. The program,
consistent with the model described in Chapter II, assumes that the
disturbance pair (8h. a') is bivariate normally distributed with zero
means, unit variances and correlation coefficient p. For
computational ease, the program provides for a grid search over
possible valunes of p. In addition, to economize on the number of
lines of code, three IMSL routines are used: MDNOR and MDBNOR, the
univariate and bivariate normal cumulative distribution functions,
respectively, and LINV3P which inverts a positive definite matrix. To
control iaput and output, three files are required by the program.
First, an input file called PARAM.DAT consists of a number of lines of
control parameters; these parameters will be discussed later. Second,
another input file, INPUT.DAT, is the user’s data set. It consists of
two dichotomous dependent variables and the exogenous exélanatory

variables. Finally, an output file, OUTPUT.DAT, is used for the
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printing of summary statistics. Both dichotomous variables should be
coded as sither zero or one. For each observation, the explanatory
variables follow immediately. Note also that if one wishes to provide
for a constant term among the explanatory variables, a vector of
“ones"” should be included in the data file; there is no built—in
optibn for a constant term in the program. The program uses a
modified version of the algorithm suggested by Berndt, Hall, Hall and
Hausman (1974). We now discuss briefly the program flow of control.

After reading in the coutrol cards from file PARAM.DAT
(SUBROUTINE RDFILEl), the program reads in the user’s data set from
INPUT.DAT (SUBROUTINE RDFILE2); as a check, the first four
observations are printed out. The following steps are now pexformed
for each value of the correlation coefficient, p, used in the grid
search. SUBROUTINE INIT now calculates and prints the initial values
of the coefficients and the initial value of the log—likelihood
function. Control is now transferred to SUBROUT;NE BHHH, the routine
which performs the iterations for each value of the correlation
coefficient. Now, for each iteration, SUBROUTINE QSCORE performs two
tasks. First, the total score is calculated; that is, the individual
score vectors are summed over the number of observations. This is
performed using subroutines ISCORE0G, ISCOREO1, ISCORE10 and ISCOREL1
since the functional form for the score will obviously depend on the
values taken jointly by the dichotomous endogenous variablas. Second,
the outoé/;rodnct of each individual score vector is computed and

these outer product matrices are thenm summed over the number of
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observations producing a2 new matrix Q. This is done with the aid of
SUBROUTINE IQ. Next, IMSL routine LINV3P calculates the inverse of
the Q matrix and postmultiplies it by the score vector. Control is
now transferred to SUBROUTINE OPISTP where the optimal step size is
calculated; once the step size if found, thg new parameter values are
calculated., SUBROUTINE QSCORE is now called again and SUBROUTINE TEST
checks for convergence. If convergence is not attained, the preceding
sequence will be repeated either until convergence is attained or,
failing that, until the maximum number of iterations has been
completed. If convergence is attained, routine LINV3P is again called
to calculate the inverse of the Q matrix, the asymptotic covariance
matrix, Control is then transferred to SUBROUTINE WRIE which prints
out the number of iterations, the final score vector, the log-

likel ihood vaiue, and the estimated coefficients along with the
associated t-statistics.

The program described here is subject to a number of
limitations, most of which may be relaxed easily. The program has
been written for data sets with up to 3000 observations, where the
behavior of each player in the Nash game can each be estimated by up
to 40 explanatory variables. Note also, as mentioned earlier, that
the algorithm has no built-in constant term; if one wishes to include
a constant term as an explanatory variable, a vector of "ones” should
be included in ths input file INPUT.DAT.

We now describe the comtrol cards required by the program.

Each control card should be entered on a separate line in PARAM.DAT.




(a)

(b)

(c)

(d)

(e)

2.

(a)

(v)

(c)
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First control card (5I2)

INDS: One or zero, indicating whether or not the score is to be
written after each iteration on output file OUTPUT.DAT.

IE1G: One or zero, indicating whether or not the eigenvalunes of
the Q metrix are %o be printed out at the end of each iterationm.
ILOG: One or zero, indicating whether or not the log-likel ihood
value is to be written out after each iteration; if ILOG = 0, the
log—-likelihood value is written only after the final iteration,
whether or mot convergence is achieved.

IOPT: The value of this pnfaneter. either zero or ome,
determines whether or not a fixed stepsize is automatically taken’
at each iteration. Altbhough in theory a fixed stepsize (equal to
one) is asymptotically efficient, in many numerical problems a
variable stepsize is often required.

IPARAM: One or zero, indicating whether or not the estimated
parameters are to be written out after each iteration. IF IPARAM
= 0, the parameter estimates are written out only at the end of
the final iteratiom.

Second control ;;rd (312)

IVAR: One or zero, depending on whether or not the asymptotic
covariance matrix is to be written after the final iteration.
IFIT1: One or zero, depending on whether or not the predicted
probabilities for each observation are to written after the final
iteration.

IFIT2: One or zero, depending on whether or not the observed and




(a)
(b)

(c)

(d)

(e)

(£)

(g)
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predicted two by two contingency tables are to be written after
the final iterationm.

Third control card (16§, 5I3, F4.3)

NOBS: Number of observations in data set INPUT.DAT.

NEW: Total number of vnique explanatory variables in data set
INPUT.DAT.

NH: Number of explanatory variables used to describe the
behavior of the leader in the Stackelberg model,

NW: Number of explanatory variables used to describe the
behavior of the follower in the Stackelberg model.

NRHO: Number of values of the correlation coefficient, p, used
in the grid search.

MITER: Limit on the number of iterations for each value of the
correlation coefficient.

EPS: The convergence criterion. The mean taken over the number
of observations, for each element of the score must he less then
or equal to EPS for convergence to be attaimed.

Fourth control card (20F4.2)

VRHO(I), I = 1, NRHO: The values of the correlation coefficient,
p, which comprise the grid search. Up to 20 values are allowed.
Fifth control card (8E10.3)

X0(I), I = 1, NE+NW+3: Initial values of the parameters. Eight
values are allowed per line.

Sixth control card (40I2)

KH(I), I = 1,NH: Positive integers corresponding to the column
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locations in INPUT.DAT of the explanatory variables for the first

player in the Nash game.
Seventh control card (40I2)

EW(I), I=1,NN: Positive integers corresponding to the column
locations in INPUT.DAT of the explanatory variables for the
second player in the Nash game.

Eighth control card
Format in which data file INPUT.DAT is to be read. The format

must be placed in pareatheses, (°).
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It consists of two dichotomous dependent variables and the exogenous
explanatory variables., Finally, an output file, OUTPUT.DAT, is used
for the printing of summary statistics. Both dichotomous variables
should be coded as either zerb or one. In addition, the first element
of each observation should correspond to the action taken by the
leaéer in the Stackelberg model, while the second element should
correspond to the follower. For each observation, the explanatory
variables follow immediately. Note also that if one wishes to provide
for a constant term among the explanatory variables, a vector of
"ones" should be included in the data file; there is no built-in
option for a constant term- in the program.

It should also be noted that through internal control of the
program, twc convergence algorithms are provided. In normal use, it
will be the case that the sum of the outer products of the individual
score vector will be a nonsingular matrix; in this case, the matrix
will be invertible and the program uses the algorithm suggested by
Berndt, Hall, Hall and Hausman (1974). Occasionally, though, it may
be the case, especially within the first few iterations, that the
model is algorithmically not identified. In this situation, the
program employs the method of steepest ascent, a routine that does not
require the inverse of the matrix discussed above. (See Mickle and
Sze (1972, pp. 126-128) for a discussion of this algorithm.) Ve now
discuss briefly the program flow of control.

After reading in the control cards from file PARAM.DAT

(SUBROUTINE RDFILEl), the program reads in the user’s data set from
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DIMENSION VRHO(100),X(40),Q(820),SCORE(40),X0(40)
DIMENSION XH(3000,40),XW(3000,40)
INTEGER NYH(3000) ,NYW(3000),KH(40),EW(40),RDFT(20)
COMMON NOBS, NH, NW, XH, XW, NYH, NYW
OPEN(UNIT=1, RECORDTYPE='VARIABLE' , FORM='FORMATTED' ,
1FILE='PARAM.DAT’ , STATUS='0LD’)
OPEN(UNIT=2, RECORDIYPE='VARIABLE' , FORM='FORMATTED' ,
1FILE='INPUT.DAT’ , STATUS='0LD’)
OPEN(UNIT=3 , RECORDIYPE='VARIABLE’ , FORM='FORMATTED’ ,
1FILE='OUTPUT.DAT'’ ,STATUS='0LD’)
CALL RDFILE1l(N,NOBS, NHW,NH, NW, KH, KW, VRHO, NRHO, X0, RDFT, MITER, EPS,
1 INDS, IEIG, ILOG, IOPT, IPARAM, IVAR, IFIT1, IFIT2)
CALL RDFILE2(NOBS, NHW,NH,NW,KH, KW, RDFT,XH, XW, NYH, NY¥)
DO 10 K=1,NRHO
WRITE(6,1000) K
1000 FORMAT(' CASE ’,I2,’' STARTED')
CALL INIT(K, N, VRHO, X0, RHO, X, VLIKE, ILOG, IOPT)
CALL BHHH(N, MITER, EPS, RHO, X, Q, SCORE, VLIKE, STPSIZE, NITER, INDS,
1 IEIG, ILOG, IOPT, IPARAM, IER)
IF(IER.EQ.130) GO TO 10
CALL WRTE(N,NH,NW,RHO, VLIKE, STPSIZE, NITER, X, Q, SCORE, IVAR)
IF(IFIT1.EQ.1.0R.IFIT2.EQ.1) CALL FIT(RHO,X, VLIKE, IFIT1, IFIT2)
10 CONTINUE
STOP
END

SUBROUTINE RDFILE1 (N, NOBS, NEW,NH, NW, Ki, KW, VRHO, NRHO, X0, RDFT,
1MITER, EPS, INDS, IEIG, ILOG, IOPT, IPARAM, IVAR, IFIT1, IFIT2)
DIMENSION VRHO(100),X0(40)
INTEGER KH(40),KW(40),RDFT(20) .
READ(1,1003) INDS, IEIG, ILOG, I0PT, IPARAM
1003 FORMAT (5I2)
READ(1,1004) IVAR, IFIT1,IFIT2
1004 FORMAT(3I2)
READ(1,1000) NOBS, NHW,NH,NW, NRHO, MITER, EPS
1000 FORMAT(16,513,F4.3)
READ(1,2000) (VRHO(I),I=1,NRHO)
2000 FORMAT (20F4.2)
N=NH+NW+2
M=N/8
IF(M.EQ.0) GO TO 11
DO 15 IM=1,M
Mi=(IM-1)*8+1
M2=IM*8
READ(1,5000) (X0(J),J=M1,M2)
5000 FORMAT (8E10.3)
15 CONTINUE
11  M3=Me8+1
IF(M3.GI.N) GO TO 12
READ(1,5000) (XO(J),J=M3,N)
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12 IF(NH.EQ.0) GO TO 10
READ(1,3000) (KH(J),J=1,NH)
10 IF(NW.EQ.0) GO TO 20
READ(1,3000) (EW(J),J=1,NW)
3000 FORMAT(4012)
20 CONTINUE
READ(1,4000) RDFT
4000 FORMAT (20A4)
CALL WRTRD1(NOBS,NHW,NH, NW,NRHO, VRHO, MITER, EPS, RDFT)
RETURN
END

SUBROUTINE WRTRD1(NOBS, NHW,NH, NW, NRHO, VRHO, MITER, EPS, RDFT)
DIMENSION VRHO(100)
INTEGER RDFT(20)
WRITE(3,1001) ..
1001 FORMAT(' NOBS ’',’'NHW’,’ NH’,’ NW',’ NRHO’,' MITER’,' EPS')
WRITE(3,1002) NOBS, NHW, NH, NW, NRHO, MITER, EPS
1002 FORMAT(I6,313,2X,13,3X,13,F4.3)
WRITE(3,2001) (VRHO(I),I=1,NRHO)
2001 FORMAT(/,’RHO VALUES :',20F4.2)
WRITE(3,4001) RDFT
4001 FORMAT(/,’READING FORMAT :’,20A4)
RETURN
END

SUBROUTINE RDFILE2(NOBS, NHW,NH, NW,KH, KW, RDFT, XH, XW,
1 NYH, NIVW)
DIMENSION XX(40),XE(3000,40),XW(3000,40)
INTEGER KH(40) ,KW(40),RDFT(20),NYH(3000) ,NYW(3000)
DO 100 I=1,NOBS
READ(2,RDFT) NYH(I),NYW(I),(XX(J),J=1,NHVW)
DO 110 J=1,NH
ET=KH(J)
XH(I,J)=XX(KT) ..
110 CONTINUE
DO 120 J=1,NW
KT=KW(J)
XW(I,J)=XX(KT)
120 CONTINUE
100 CONTINUE
CALL WRTOBS(NH,NW,NYH, NYW, XH, XW)
RETURN
END

SUBROUTINE WRTOBS(NH, NW, NYH, NYW, XE,XVW) -
DIMENSION NYH(3000) ,NYW(3000) ,XH(3000,40),XW(3000,40)
DIMENSION XXH(40),XXW(40)
WRITE(3,1003)
1003 FORMAT(/,'FIRST 4 OBSERVATIONS :’)
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DO 100 I=1,4
IYH=NYH(I)
IYW=NYW(I) _
WRITE(3,1000) I,IYH,IYW
1000 FORMAT(/,'OBSERVATION ‘,I4,’ :',* IYH =',I2,' IW =',I2)
DO 110 J=1,NH
XXH(J)=XH(I,J)
110  CONTINUE
DO 120 J=1,NW
XXW(J)=XW(I,J)
120  CONTIMUE
: WRITE(3,1001)
1001 FORMAT(/,' XH :')
CALL WRTVEC(NH, XXH)
WRITE(3,1002)
1002 FORMAT(/,' 3XW :')
CALL WRTVEC(NW,XXVW)
100 CONTINGE
RETURN
END

SUBROUTINE INIT(K, N, VRHO, X0, RHO, X, VLIKE, ILOG, IOPT)
DIMENSION XH(3000,40),XW(3000,40),X0(40),X(40),VRHO(100)
INTEGER NYH(3000) ,NYW(3000)
COMMON NOBS,NH, NW, XH, XW, NYH, NYW
RHO=VRHO(K)
WRITE(3,1000) K,RHO
1000 FORMAT(///,'CASE ’,I3,3X,'RHO =',F4.2)
DO 20 J=1,N
X(J)=X0(J)
20 CONTINVE
WRITE(3,2001)
2001 FORMAT(/,'STARTING VALUES :')
CALL WRTVEC(N,X)
IF(ILOG.EQ.0.AND.IOPT.EQ.0) GO TO 13
CALL VALUE(N, RHO, X, VLIKE)
13  IF(ILOG.EQ.0) GO TO 14
WRITE(3,3000) VLIEE
3000 FORMAT(/,’INITIAL LOG-LIKELIROOD VALUE = ',E13.6)
14 RETURN
END

SUBROUTINE VALUE(N, RHO, X, VLIKE)
DIMENSION XH(3000,40),XW(3000,40),X(40)
INTEGER NYH(3000) ,NYW(3000)
COMMON NOBS,NH, NW, XH, XW, NYH, NYW
VLIKE=0.
DO 100 I=1,NOBS

INYH=NYH(I)

INYW=NYW(I)
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CALL DELTA(I,X,DELTAH, DELTAW)
IF (INYH.EQ.1.O0R.INYW.EQ.1) GO TO 11
CALL IPROBOO(RHO,X,DELTAH, DELTAW, PROO)
CALL TOL(PROO)
VLIEKE=VLIKE+ALOG(PR0O)
GO TO 100
11 IF (INYH.EQ.0.OR,INYW.EQ.1) GO TO 12
CALL IPROB10(RHO,X,DELTAH, DELTAW, PR10)
CALL TOL(PR10)
VLIKE=VLIKE+ALOG(PR10)
GO TO 100
12 IF (INYH.EQ.1.O0R.INYW.EQ.0) GO TO 13
CALL IPROBO1(RHO,X,DELTAH,DELTAVW, PRO1)
CALL TOL(PRO1)
VLIKE=VLIKE+ALOG(PRO1)
GO TO 100
i3 CALL IPROB11(RHO,X,DELTAH, DELTAW,PR11)
CALL TOL(PR11)
VLIKE=VLIKE+ALOG(PR11)
100 CONTINUE
RETURN
END

SUBROUTINE DELTA(I,X,DELTAH, DELTAW)
DIMENSION X(1) ,XH(3000,40),XW(3000,40)
INTEGER NYH(3000) ,NYW(3000)
COMMON NOBS,NH, NW, XH, XW, NYH, NYW
DELTAH=0.0
DELTAW=0.0
DO 100 J=1,NH
JH=J+2
DELTAH=DELTAH+X(JH) *XH(I,J)
100 CONTINUE
DO 200 J=1,NW
JW=J+NH+2
DPELTAW=DELTAW+X (JW)*XW(I,J)
200 CONTINUE
RETURN
END

SUBROUTINE BHHH(N, MITER, EPS, RHO,X, Q, SCORE, VLIKE, STPSIZE, NITER,
1INDS, IEIG, ILOG, IOPT, IPARAM, IER)

DIMENSION XH(3000,40) ,XW(3000,40),X(40) ,Q(820) ,SCORE(40)

INTEGER NYH(3000) ,NYW(3000)

COMMON NOBS,NH, NW, XH, XW, NYH, NYW

NITER=999

NIN=0

NOUT=3

CALL UGETIO(3,NIN,NOUT)

CALL QSCORE(N, RHO, X, Q, SCORE)
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IF(INDS.EQ.0.AND.IEIG.EQ.0) GO TO 1002
CALL WRTBH1(N,Q, SCORE, INDS, IEIG)

1002 CONTINUE

11
10

20
50

40
999

400

500

200

300
100

DO 10 ITER=1,MITER
CALL LINV3P(Q,SCORE,3,N, IER)
IF(IER.EQ.130) GO TO 999
CALL OPTSTP(N,RHO, X, SCORE, STPSIZE, VLIKE, ILOG, IOPT)
CALL QSCORE(N,RHO, X, Q, SCORE)
_CALL TEST(NOBS, N, SCORE, EPS, IEND)
IF (IEND.EQ.1) GO T0 20
IF(ITER.EQ.MITER) GO TO 11
CALL WRTBHH(N, ITER, STPSIZE, X, Q, SCORE, VLIKE, INDS, IEIG, ILOG,
IPARAM)
CONTINUE
CONTINUE
GO TO 50
NITER=ITER
IF(ILOG.EQ.1.0R.IOPT.EQ.1) GO TO 40
CALL VALUE(N,RHO, X, VLIKE)
CALL LINV3P(Q, SCORE, 1,N,IER)
RETURN
END

SUBROUTINE QSCORE(N, RHO, X, Q, SCORE)
DIMENSION XH(3000,40),XW(3000,40),X(40),Q(820) ,SCORE(40)
DIMENSION QI(820),SCOREI(40)
INTEGER NYH(3000) ,NYW(3000)
COMMON NOBS,NH,NW, XH, XW, NYH, NIW
NN=N#*(N+1) /2
DO 400 J=1,N
SCORE(J)=0.
CONTINUE
DO 500 K=1,NN
Q(K)=0.
CONTINUE
DO 100 I=1,NOBS
CALL ISCORE(I,N,RHO,X, SCOREI)
CALL IQ(N,SCOREI,QI)
DO 200 J=1,N
SCORE(J)=SCORE(J)+SCOREI(J)
CONTINUE
DO 300 K=1,NN
Q(K)=Q(K)+QI(K)
CONTINUE
CONTINUE
RETURN
END

SUBROUTINE WRIBHH(N, ITER, STPSIZE, X, Q, SCORE, VLIKE, INDS, IEIG, ILOG,
IPARAM)
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IF(INDS.EQ.0.AND.IEIG.EQ.0.AND. ILOG.EQ.0.AND. IPARAM. EQ.0)
1 GO TO 11 ' :
CALL WRTBH2(N, ITER, X, STPSIZE, VLIKE, ILOG, IPARAM)
IF(INDS.EQ.0.AND.IEIG.EQ.0) GO TO 12
CALL WRTBH1(N, Q, SCORE, INDS, IEIG)
CONTINUE
RETURN
END

SUBROUTINE WRTBH1(N, Q, SCORE, INDS, IEIG)
DIMENSION Q(820),SCORE(40)
DIMENSION D(40),2(40,40) ,WK(860)
IF(INDS.EQ.0) GO TC 1001
WRITE(3,4000)
FORMAT(/,"' SCORE : ')
CALL WRTVEC(N, SCORE)
CONTINVE
IF(IEIG.EQ.0) GO TO 1002
CALL EIGRS (Q,6,2,D,Z,6,VK, IER)
WRITE(3,5000)
FORMAT(/,’ EIGEN : ')
CALL WKIVEC(N,D)
CONTINUE
RETURN
END

SUBROUTINE OPTSTP(N,RHO, X, SCORE, STPSIZE, VLIKE, ILOG, IOPT)
DIMENSION XH(3000,40) ,XW(3000,40) ,X(40),Q(820) ,SCORE(40)
DIMENSION X1(40)
INTEGER NYH(3000) ,NYW(3000)
r'OMMON NOBS,NH, NW, XH, XW, NYH, NXW
VLIKEO=VLIKE
STPSIZE=1.
DO 100 NIRY=1,9
DO 200 J=1,N
X1(J)=X(J)+SCORE(J)
CONTINUE
IF(ILOG.EQ.0.AND.IOPT.EQ.0) GO TO 300
CALL VALUE(N,RHO,X1,VLIKE)
IF(IOPT.EQ.0) GO TO 300
DVLIKE=VLIKE-VLIKEO
IF(DVLIKE.GE.O0.) GO TO 300
STPSIZE=STPSIZE-.1
STPSIZ1=STPSIZE+.1
DO 500 J=1,N
SCORE(J)=SCORE(J) *STPSIZE/STPSIZ1
CONTINUE
CONTINUE
CONTINUE
CONTINUE
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CONTINUE

DO 400 J=1,N
X(¥)=X1(J)

CONTINUE

RETURN

END

SUBROUTINE TEST (NOBS, N, SCORE, EPS, IEND)
DIMENSION SCORE(1)
IEND=0
DO 10 J=1,N
A=ABS(SCORE(J))/NOBS
IF (A.GT.EPS) GO TO 20
CONTINUE
IEND=1
RETURN
END

SUBROUTINE WRIBH2(N, ITER, X, STPSIZE, VLIKE, ILOG, IPARAM)
DIMENSION X(40)
WRITE(3,1000) ITER
FORMAT (// ,' TTERATION ’,13)
IF(ILOG.EQ.0) GO TO 10
WRITE(3,2000) STPSIZE, VLIKE
FORMAT(/,’ STEPSIZE = ’,F5.3,' LOG-LIKELIHOOD VALUE = ’',E13.6)
IF(IPARAM.EQ.0) GO TO 20
WRITE(3,3000)
FORMAT(/, ' PARAMETERS :’)
CALL WRTVEC(N,X)
RETURN
END

SUBROUTINE ISCORE(I,N,RHO,X,SCOREI)
DIMENSION XH(3000,40) ,XW(3000,40) ,X(40) ,SCOREI(40)
DIMENSION DF(40),DI(40)
INTEGER NYH(3000) , NYW(3000)
COMMON NOBS, NH, NW,XH, XW, NYH, NYW
INYH=NYH(I)
INYW=NIW(I)
CALL DELTA(I,X, DELTAH,DELTAW)
IF (INYH.EQ.1.O0R.INYW.EG.1) GO TO 11
CALL IPROBOO(RHO,X, DELTAH, DELTAW, PR0O)
CALL ISCORE(0O(I, N, RHO, X, DELTAH, DELTAW, PROO, SCOREI)
GO TO 14
IF (INYH.EQ.O0.OR.INYW.EQ.1) GO TO 12
CALL IPROB10(RHO,X, DELTAH,DELTAW,PR10)
CALL ISCORE10(I, N, RHO, X, DELTAH, DELTAW, PR10, SCOREI)
GO TO 14
IF (INYH.EQ.1.0R.INYW.EQ.0) GO TO 13
CALL IPROBO1(RHO,X,DELTAH,DELTAV, PRO1)
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CALL ISCOREO1(I,N,RHO,X,DELTAH, DELTAW,PRO1,SCOREI)
GO TO 14
CALL IPROB11(RHO,X,DELTAH, DELTAW,PR11)
CALL ISCORE11(I,N,RHO,X,DELTAH,DELTAW,PR11,SCOREI)
CONTINUE
RETURN
END

SUBROUTINE IPROB(CO(RHO, X, DELTAH, DELTAV, PR0OO)
DIMENSION X{(40)
H1=—DELTAH
Wi=-DELTAW
H2=-DELTAE-X(1)
W2=—DELTAW-X(2)
CALL MDBNOR(H1,W1,RHO, PROO, IER)
X1=X(1)
X2=X(2)
IF (X1.LT.0..AND.X2.LT.0.) GO TO 13
CALL INTEGRAL(H1,W1,H2,W2,RHO,PROB,IER)
IF (X1.LT.0..0R.X2.LT.0.) GO TO 10
PRO0O=PR0O0O-.5*PROB
GO TO 13
IF (X1.LT.0..0R.X2.GE.0.) GO TO 11
PROO0=PROO-.25%PROB
GO TO 13
PRO0=PR0O0-.25*PROB
RETURN
END

SUBROUTINE ISCOREOO(I,N, RHO,X, DELTAH,DELTAW, PR0OO, SCOREI)

DIMENSION XH(3000,40) ,3XW(3000,40) ,X(40),SCOREI(40)
DIMENSION DI(40)
INTEGER NYH(3000) ,NIW(3000)
COMMON NOBS, NH, NW, XH, XW, NYH, NXW
SCOREI(1)=0.
SCOREI(2)=0.
H1=—DELTAH
ZH=-DELTAW+RHO*DELTAH
CALL PARTIAL(RHO,H1,ZH, PARTH)
PARTH=—PARTH
DO 10 J=1,NH

JH=J+2

SCOREI(JH) =PARTH*XH(I,J)
CONTINUE
W1=—DELTAW
ZW=-—DELTAH+RHO*DELTAW
CALL PARTTIAL(RHO,W1,ZW, PARIW)
PARTW=-PARIW
DO 20 J=1,NW

JW=J+NHE+2
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SCOREI (JW) =PARTW*XW(I,J)
CONTINUE
X1=X(1)
X2=X(2)
IF (X1.LT.0..AND.X2.LT.0.) GO TO 30

CALL PARTIALI(I,N,RHO,DELTAH, DELTAVW, DI,X)

IF (X1.LT.0..0R.X2.LT.0.) GO TO 40
DO 31 J=1,N
SCOREI(J)=SCOREI(J)-.5*DI(J)
CONTINUE '
GO TO 30 :
IF (X1.LT.0..0R.X2.GE.0.) GO TO 50
DO 41 J=1,N
SCOREX (J)=SCOREI(J)-.25*DI(J)
CONTINUE
GO TO 30
CONTINUE
Do 51 J=1,N
SCOREI(J)=SCOREI{J)-.25*DI(J)
CONTINUE
CONTINUE
CALL TOL(PROO)
D0 60 J=1,N
SCOREI(J)=SCOREI(J)/PROO
CONTINUE
RETURN
END

SUBROUTINE IPROB10O(RHO, X, DELTAH, DELTAW,PR10)

DIMENSION X(40)

XNEGRHO=-RHO

Hi=—DELTAH

W1=—DELTAW

H2=-DELTAB-X(1)

W2=—DELTAV-X(2)

CALL MDBNOR(DELTAH, W2 ,XNEGRHO, PR10, IER)

X1=X(1)

X2=X(2)

IF (X1.GE.0..AND.X2.GE.0.) GO TO 13
CALL INTEGRAL(H1,¥1,H2,W2,RHO,PROB, IER)
IF (X1.LT.0..0R.X2.GE.0.) GO TO 10

PR10=PR10-.25*PROB
GO TO 13
IF (X1.GE.0..O0R.X2.LT.0.) GO TO 11
PR10=PR10-.25*PROB
GO TO 13
PR10=PR10-.5*PROB
RETURN
END
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SUBROUTINE ISCORE10(I,N,RHO,X,DELTAH, DELTAW, PR10,SCOREI)
DIMENSION XH(3000,40),XW(3000,40),X(40),SCOREI(40)
DIMENSION DI (40)

INTEGER NYH(3000),NYW(3000)

COMMON NOBS.NH,NVW,XH, XW, NYH, NYW

SCOREI(1)=0,

W2=-DELTAW-X(2)

W3=-W2

ZW=DELTAH~-RHO®*¥3

CALL PARTIAL(RHO,W2,ZW, PARIV)

SCOREI (2)=—PARIVW

ZH=W2+RHO*DELTAH

CALL PARTIAL(RHO,DELTAH,ZH, PARTH)

DO 10 J=1,NH :

JH=J+2
SCOREI (JTH) =PARTH*XH(I,J)

CONTINUE

PARIW=-PARTW

DO 20 J=1,N\W
JW=J+NH+2
SCOREI(JW)=PARTW*XW(I,J)

CONTINUE

X1=X(1)

X2=X(2)

IF (X1.GE.0..AND.X2.GE.C.) GO TO 30
CALL PARTIALI(I,N,RHO,DELTAH,DFLTAW,DY.X)
IF (X1.LT.0..0R.X2.GE.0.) GO TO 40

DO 31 J=1,N
SCOREX(Y)=SCOREI(J)-.25*DI(J)
CONTINUE
GO TO 30
IF (X1.GE.0..0R.X2.LT.0.) GO TO 50
DO 41 J=1,N
SCOREI(J)=SCOREI(J)-.25*DI(J)
CONTINUE
GO TO 30
CONTINUE
DO 51 J=1,N
SCOREI(J)=SCOREI(J)~-.5*DI(J)
CONTINUE '

CONTINUE

CALL TOL(PR10)

DO 60 J=1,N
SCOREI(J)=SCOREI(J) /PR10

CONTINUE

RETURN

END

SUBROUTINE IPROBO1(RHO, X, DELTAH, DELTAVW,PRO1)
DIMENSION X(40)
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XNEGRHO=~RHO

H1=-DELTAH

W1=—DELTAW

H2=-DELTAH-X(1)

W2=-DELTAW-X(2)

CALL MDBNOR(H2 ,DELTAW,XNEGRHO, PRO1, IER)

X1=X(1)

X2=X(2)

IF (X1.GE.0..AND.X2.GE.0.) GO TO 13
CALL INTEGRAL(H1,W1,H2,W2,RHO,PROB, IER)
IF (X1.LT.0..0R.X2.GE.0.) GO TO 10

PR01=PRO1-.25*PROB
GO TO 13
IF (X1.GE.0..0R.X2.LT.0.) GO TO 11
PR01=PR01-.25*PROB
GO TO 13
PRO1=PR0O1-.5*PROB
RETURN
END

SUBROUTINE ISCOREO1(I,N,RHO,X,DELTAH, DELTAW,PRO1,SCOREI)
DIMENSION XH(3000,40),XW(3000,40),X(40),SCOREI(40)
DIMENSION DI(40)
INTEGER NYH(3000) ,NYW(3000)
COMMON NOBS,NH,NW, XH, XW, NYH, NYW
H2=-DELTAH-X(1)
H3=—H2
ZW=DELTAW-RHO*H3
CALL PARTIAL(RHO, H2,ZW,PARIV)
SCOREI(1)=—PARIVW
SCOREX(2)=0.
DO 10 J=1,NH
JH=J+2
SCOREIX (JH) =~PARTW*XH(I,J)
CONTINUE
ZH=H2+RHO*DELTAW
CALL PARTIAL(RHO, DELTAW,ZH, PARTH)
DO 20 J=1,NW
JW=J+NE+2
SCOREI (JW)=PARTH®*XW(I,J)
CONTINUE
X1=X(1)
X2aX(2)
IF (X1.GE.0..AND.X2.GE.0.) GO TO 30
CALL PARTYALI(I,N, RHO,DELTAH,DELTAW,DI,X)
IF (X1.LT.0..0R.X2.GE.0.) GO TO 40
PO 31 J=1,N
SCOREI(F)=SCOREI(J)-.25*DI(J)
CONTINUE
GO TO 30
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IF (X1.GE.0..O0R.X2.LT.0.) GO TO 50
DO 41 J=1,N
SCOREI(J)=SCOREI(J)-.25*DI(J)
CONTINUE
GO TO 30
CONTINUE
DO 51 J=1,N
SCOREI(J)=SCOREI(J)-.5*DI(J)
CONTINUE
CONTINUE
CALL TOL(PRO1)
DO 60 J=1,N
SCOREI(J)=SCOREI(J)/PRO1
CONTINUE
RETURN
END

SUBROUTINE IPROB11(RHO,X,DELTAH,DELTAW, PR11)
DIMENSION X(40)
H1=—DELTAH
W1=-DELTAW
H2=—DELTAH-X(1)
W2=~DELTAW-X(2)
H3=-H2
W3=—¥W2
CALL MDBNOR(H3,W3,RHO,PR11,IER)
X1=X(1)
X2=X(2)
IF (X1.LT.0..AND.X2.LT.0.) GO TO 13
- CALL INTEGRAL(H1,W1,H2,¥2,RHO,PROB, IER)
IF (X1,LT.0..0R.X2.LT.0.) GO TO 10
PR11=PR11-.5*PROB
GO TO 13
IF (X1.LT.0..0R.X2.GE.0.) GO T0 11
PR11=PR11-,25%PROB
GO TO 13
PR11=PR11~-.25*PROB
RETURN
END

SUBROUTINE ISCORE11(I, N, RHO, X, DELTAH, DELTAW, PR11, SCOREI)
DIMENSION XH(3000,40),XW(3000,40),X(40) ,SCOREI(40)
DIMENSION DI(40)

INTEGER NYH(3000) ,NYW(3000)

COMMON NOBS,NH, NW, XH, XW, NYH, NYW

H3=DELTAH+X(1)

W3=DELTAW+X(2)

ZH=W3-RHO*H3

CALL PARTIAL(RHO, H3,ZH, PARTH)

SCOREI(1)=PARTH
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ZW=H3-RHO*W3

CALL PARTIAL(RHO,W3,ZW,PARIV)

SCOREI(2)=PARIVW

DO 10 J=1,NH
FH=J+2
SCOREI(JH)=PARTH*XH(I,J)

CONTINUE

DO 20 J=1,NW
JW=J+NBE+2
SCOREI(JW)=PARIW*XW(I,J)

CONTINUE

X1=X(1)

X2=X(2)

IF (X1.LT.0..AND.X2.LT.0.) GO TO 30
CALL PARTIALI(I,N, RHO,DELTAH, DELTAVW,DI,X)
IF (X1.LT.0..0R.X2.LT.0.) GO TO 40

DO 31 J=1,N
SCOREI(J)=SCOREI(J)—.5*DI(J)
CONTINUE
GO TO 30 .
IF (X1.LT.0..0R.X2.GE.0.) GO TO 50
DO 41 J=1,N
SCOREI(JY)=SCOREI(J)-.25*DI(J)
CONTINUE
GO TO 30
CONTINUE
DO 51 J=1,N
SCOREI (J)=SCOREI(JX)~-.25*DI(J)
CONTINVE

CONTINUE

CALL TOL(PR11)

Do 60 J=1,N
SCOREX(Y)=SCOREI(J) /PR11

CONTINUE

RETURN

END

SUBROUTINE TOL(XPROB)
XMIN=1.E-20
IF(XPROB.LE.XMIN) XPROB=XMIN
RETURN ,

END

SUBROUTINE IQ(N, SCOREIX,QI)
DIMENSION SCOREI(40),QI(820)
IR=0
DO 10 IX=1,N
DO 20 JX=1,IX
IL=IR+JX
QI (IL)=SCOREI(IX)*SCOREI(JX)
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20 CONTINUE
IR=IR+IX
10 CONTINUE
NN=N*(N+1) /2
RETURN
END

SUBROUTINE PARTIAL(RHO, Y, Z, PART)
ZX=Z/SQRT (1 .-RHO**2)
DENSY=,3989422¢EXP (-Y**2/2.)
CALL MDNOR(ZX,PHIZX)
PART=DENSY*PHIZX

RETURN

END

SUBROGTINE PARTIALI(I, N, RHO,DELTAH, DELTAW, DI, X)
DIMENSION DI(40),XH(3000,40),XW(3000,40),X(40)
DIMENSION NYH(3000),NIW(3000)
COMMON NOBS, NH, NW,XH, XW, NYH, NYW
H1=-~DELTAH
W1=-DELTAW
H2=-DELTAH-X(1)
W2=-DELTAW-X(2)
H3=-H2
W3=-W2
Z1=W2+RHO®*H3
Z2=W1+RHO*H3
Z3=H2+RHO*W3
Z4=H1+RHO*W3
Z5=W1+RHO*DELTAH
Z6=W2+RHO*DELTAH
Z7=H1+RHO*DELTAW
Z8=H2+RHO*DELTAW
CALL PARTIAL(RHO,H2,Z1,PART1)
CALL PARTIAL(RHO, H2,Z2,PART2)
CALL PARTIAL(RHO,W2,Z3,PART3)
CALL PARTIAL(RHO,¥W2,Z4,PART4)
CALL PARTIAL(RHO,H1,ZS, PARTS)
CALL PARTIAL(RHO, H1,Z6,PART6)
CALL PARTIAL(RHO,W1,Z7,PART7)
CALL PARTIAL(RHO,W1,Z8,PARTS)
DI(1)=-PART1+PART2
DI(2)=—PART3+PART4
PARTH=—PART5-PART1+PART6+PART2
DO 10 J=1,NH

JH=J+2

DI(JH)=PARTH*XH(I,J)

10 CONTINUE

PARTW=—~PART7-PART3+PART4+PARTS
DO 20 J=1,NW
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JW=J+2+NH
DI(JW)=PARIW*XW(I,J)
CONTINUE
RETURN
END

SUBROUTINE INTEGRAL(ARG1,ARG2,ARG3, ARG4, ARGS,PROB, IER)
CALL MDBNOR(ARG1,ARG2,ARGS,PROB1, IER)

CALL MDBNOR(ARG3, ARG4, ARG5S ,PROB2, IER)

CALL MDBNOR(ARG1, ARG4, ARG5,PROB3, IER)

CALL MDBNOR(ARG2,ARG3,ARGS,PROB4, IER)
PROB=PROB1+PROB2-PROB3-PROB4

RETURN

END

SUBROUTINE WRTE (N, NH, NW, RHO, VLIKE, STPSIZE, NITER, X, Q, SCORE, IVAR)
DIMENSION X(40),Q(820),SCORE(40)
WRITE(3,1000) RHO
FORMAT(//,’RHO = ’,F5.3)
WRITE(3,2000) NITER, STPSIZE -
FORMAT(/,'NOMBER OF ITERATIONS = ‘,I3,' FINAL STEPSIZE =',F5.3)
WRITE(3,2001)
FORMAT(/,’FINAL SCORE : ')
CALL WRIVEC(N, SCORE)
WRITE(3,3000) VLIEE
FORMAT (/, * LOG-LIKELIEROOD VALUE = ’,E13.6)
TSTAT=X (1) /SQRT(Q(1))
WRITE(3,4000) X(1),TSTAT
FORMAT(//,'BETA H = ’,E10.3,’ T-STATISTIC = ',E10.3)
TSTAT=X(2) /SQRT(Q(3))
WRITE(3,5000) X(2),TSTAT
FORMAT(/,’BETA W = ',E10.3,' T-STATISTIC = ’,E10.3)
NHH=NH+2
DO 100 I=3,NHH
IH=X-2
IN=I*(I+1)/2
TSTAT=X(I)/SQRT(Q(IN))
WRITE (3,6000) IH,X(I),TSTAT
CONTINVE
FORMAT(/,’GAMMA H ’,12,’' ~ ’,E10.3,’ T-STATISTIC = ’',E10.3)
K=3+NH
DO 200 I=K,N
IW=]-K+1
IN=I*(I+1)/2
TSTAT=X(1)/SQRT(Q(IN))
WRITE(3,7000) IW,X(I),TSTAT
CONTINUE
FORMAT(/,'GAMMA W ’,I2,’ = ',E10.3,' T-STATISTIC = ’,E10.3)
IF(IVAR.EQ.0) GO TO 50
CALL WRTVAR(N, Q)
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CONTINUE
RETURN
END

SUBROUTINE WRIVAR(N, Q)
DIMENSION Q(840),ROW(40)
WRITE(3,8000)
FORMAT (// ,' ASYMPTOTIC COVARIANCE MATRIX'):
DO 20 I=1,N
IL=I*(I-1)/2 + 1
IU=IL+I-1
Iy=0
DO 30 J=IL,IU
IT=1IT+1
ROW(XT)=Q(T)
CONTINUE
WRITE(3.4000)
FORMAT (/)
CALL WRTVEC(I,ROW)
CONTINUE
RETURN
END

SUBROUTINE WRTVEC(NDIM, VEC)
DIMENSION VEC(40)
MDIM=NDIM/8
IF(MDIM.EQ.0) GO TO 10
DO 20 IM=1,MDIM
Ml=(IM-1)%8+1
M2=IM*8
WRITE(3,3000) (VEC(J),J=M1,M2)
FORMAT (8E10.3)
CONTINUE
M3=MDIM*8+1
IF(M3.GT.NDIM) GO T0 30
WRITE(3,3000) (VEC(J),J=M3,NDIM)
RETURN
END

SUBROUTINE FIT(RHO, X, VLIKE, IFIT1, IFIT2)
DIMENSION XH(3000,40).,XW(3000,40) ,X(40),RTAB(4)
DIMENSION NYH(3000),NYW(3000) , INDEX0(3000) , INDEXP(3000)
INTEGER TABLE(4) ,ESTTAB(4) ,NGTAB(4)
COMMON NOBS, NH, NW, XH, XW, NYH, NYW
NGHO=0
NGH1=0
NGV O=0
NGW1=0
DO 10 J=1,4
NGTAB(J)=0
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10 CONTINVE
IF(IFIT1.EQ.1) GO TO 12
11 CALL TREAT1(®HO,X, INDEXO, INDEXP, NGHO , NGH1 ,NGWO,NGW1 , NGTAB)
GO TO 13
12  CALL TREAT2(RHO,X, INDEXO, INDEXP, NGHO ,NGH1 , NGW0 ,NGW1,NGTAB)
13 IF(IFIT2.EQ.0) GO TO 14
CALL FITSTAT (NOBS, VLIKE, INDEXO, INDEXP, NGHO , NGH1 ,NGWO,NGW1 , NGTAB,
1 TABLE, ESTTAB, R, RH, RW, RTAB, RHO , RH1 , BWO ,RW1 , RLIKE)
CALL WRTSTAT (TABLE, ESTTAB,R, RH, RW, RTAB, RHO, RH1, RWO0,RW1,RLIKE)
NX=NH+NW+2
CALL WRTVEC(NX,X)
14 RETURN
END

SUBROUTINE TREAT1(RHO, X, INDEX0, INDEXP, NGHO , NGH1 , NGWO0 ,NGW1 , NGTAB)
DIMENSION XH(3000,40),XW(3000,40),X(40) .
DIMENSION NYH(3000) ,NIW(3000),INDEX0(3000),INDEXP(3000)
INTEGER NGTAB(4)
COMMON NOBS,NH, NW, XH, XW, NYH, NYW
DO 100 I=1,NOBS
CALL DELTA(I,X,DELTAH, DELTAV)
CALL IPROBOO(RHO, X, DELTAH, DELTAW, PROO)
CALL IPROBO1(RHO,X,DELTAH, DELTAVW,PR0O1)
CALL IPROB10(RHO,X,DELTAH, DELTAW,PR10)
CALL IPROB11(RHO,X,DELTAH, DELTAW,PR11)
CALL YHAT(PROO,PRO1,PR10,PR11, IYHHAT, IYWHAT, INDEXI)
INDEXP (I)=INDEXI
IYH=NYH(I)
IYW=NYW(I) :
CALL IND(IYH, IYW, INDEXOI)
INDEXO(I)=INDEXOI
CALL COUNT(IYH, IYHHAT, IYW, IYWHAT, INDEXOI, INDEXI, NGHO ,NGH1,
1 NGWO ,NGW1 ,NGTAB)
100 CONTINUE
RETURN
END

SUBROUTINE TREAT2(RHO, X, INDEXO, INDEXP, NGH0 , NGH1 , NGWO , NGW1 , NGTAB)
DIMENSION XH(3000,40),XW(3000,40),X(40)

DIMENSION NYH(3000),NIVW(3000), INDEX0(3000) , INDEXP(3000)

INTEGER NGTAB(4)

COMNON NOBS, NH,NW,XH, XW, NYH, NYW

WRITE(3,1000)
1000 FORMAT(//,* YR ',* YW ',’ HHAT ’,’ WHAT ’,’ PROO ',
1 * PRO1 ’,* PR10 ',’' PR11 ',/)

DO 100 I=1,NOBS
CALL DELTA(I,X,DELTAH, DELTAW)
CALL IPROBOO(RHO,X,DELTAH, DELTAW, PR0O)
CALL IPROBO1(RHO,X,DELTAH, DELTAW,PRO1)
CALL IPROB10(RHO, X, DELTAH, DELTAW, PR10)
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CALL IPROB11(RHO, X, DELTAH, DELTAW,PR11)

CALL YHAT(PROO,PRO1,PR10,PR11, IYHHAT, IYWHAT, INDEXX )

INDEXP (I)=INDEXI

IYH=NYH(I)

IYW=NIW(I)

WRITE(3,1001) IYH, IYW, IYHHAT, IYWHAT, PROO,PRO1,PR10,PR11

FORMAT (4(3X, I1,2X),4(1X,F4.3,1X))

CALL IND(IYH, IYW, INDEXOI)

INDEXO(I)=INDEXOI

CALL COUNT(IYH, IYHHAT, IYW, IYWHAT, INDEXOI, INDEXI, NGHO ,NGH1,
NGWO0,NGW1 ,NGTAB)

"100 CONTINUE

200
110

100

500

501

502

503

504

900

200

100

RETURN
END

SUBROUTINE YHAT(PROO,PRO1,PR10,PR11, IYHHAT, IYWHAT , INDEXI)

INDEXI=1

IF(PRO0.GT.PRO1) GO TO 200
PRMAX=PRO1
INDEXI=2
GO TO 110

PRMAX=PROO

IF(PRMAX.GT.PR10) GO TO 100
PRMAX=PR10
INDEXI=3

IF(PRMAX.GT.FPR11) GO TO 500
INDEXI=4

GO TO (501,502,503,504) , INDEXI

IYHHAT=0

IYWHAT=0

GO TO 900

IYHHAT=0

IYWHAT=1

GO TO 900

IYHHAT=1

IYWHAT=0

GO TO 900

IYHHAY=1

IYWHAT=1

RETURN

END

SUBROUTINE IND(IYH, IYW, INDEXOI)
INDEXOI=1

IF(IIV.EQ.1) GO TO 200

IF(IYH.EQ.1) INDEXOI=3
GO TO 100

INDEXOI=2

IF(IYH.EQ.1) INDEXOI=4
CONTINUE




100

10

100

230

RETURN
END

SUBROUTINE COUNT(IYH, IYHHAT, IYW, IYWHAT, INDEXOI, INDEXI,
1 NGHO,NGH1 ,NGWO,NGW1 ,NGTAB)
INTEGER NGTAB(4)
IF(IYH.EQ.0.AND.IYHHAT .EQ.0) NGHO=NGHO+1
IF(IYH.EQ.1.AND,IYHHAT.EQ.1) NGH1=NGH1+1
IF(IYW.EQ.0.AND.IYWHAT.EQ.0) NGWO=NGWO+1
IF(IYW.EQ.1.AND.IYWHAT.EQ.1) NGW1=NGW1l+1
DO 100 J=1,4

IF(INDEXOI.EQ.J.AND. INDEXI.EQ.J) NGTAB(J)=NGTAB(J)+1
CONTINUE
RETURN
END

SUBROUTINE FITSTAT(NOBS,VLIKE, INDEXO, INDEXP, NGHO,NGH1 ,NGWO ,NGW1,
1 NGTAB, TABLE, ESTTAB, R, RH, RW , RTAB, RHO, RH1 ,BWO0, BW1, RLIKE)

DIMENSION XNGTAB(4) ,RTAB(4)

INTEGER NGTAB(4) ,TABLE(4),ESTTAB(4) , INDEX0(3000) , INDEXP (3000)

CALL CONTIN(NOBS, INDEXO, TABLE)

CALL CONTIN(NOBS, INDEXP, ESTTAB)

XNGHO=NGHO0

XNGH1=NGH1

XNGH=XNGHO+XNGHL

XNGWO=NGW0

XNGW1=NGW1

XNGW=XNGHO+XNGW1

XNOBS=NOBS

RH=XNGH/XNOBS

RHO=XNGHO/ (TABLE(1) +TABLE(2))

RH1=XNGH1/ (TABLE(3)+TABLE(4))

RW=XNGW/XNOBS

RWO0=XNGWO0/ (TABLE(1)+TABLE(3))

RW1=XNGW1/(TABLE(2)+TABLE(4))

DO 10 J=1,4

XNGTAB(J) =NGTAB(J)
RTAB(J)=XNGTAB(J) /TABLE(J)

CONTINUE |

XNG=XNGTAB( 1) +XNGTAB( 2) +XNGTAB( 3) +XNGTAB( 4)

R=XNG/XNOBS

RLIKE=1.+ VLIKE/(XNOBS®*ALOG(4.))

RETURN

END

SUBROUTINE CONTIN(NOBS, NVEC, NTAB)
INTEGER NVEC(3000) ,NTAB(4)
DO 100 J=1,4
NTAB(J)=0
CONTINUE
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DO 200 I=1,NOBS
NVECI=NVEC(I)
GO TO (101,102,103,104) ,NVECI
NTAB(1)=NTAB(1)+1
GO TO 201
NTAB(2)=NTAB(2)+1
GO TO 201
NTAB(3)=NTAB(3)+1
GO TO 201
NTAB(4)=NTAB(4)+1
CONTINUE
CONTINUE
RETURN
END

SUBROUTINE WRISTAT (TABLE, ESTTAB, R, RH, B¥, RTAB, RHO,RH1 ,RW0,BW1,
1 RLIKE)

DIMENSION RTAB(4)

INTEGER TABLE(4) ,ESTTAB(4)

WRITE(3,2004) RLIKE,R -

FORMAT(//,* RLIKE = ’,F4.3,3X,’' R = ’',F4.,3)

WRITE(3,2000)

FORMAT(//,' OBSERVED AND PREDICTED CONTINGENCY TABLES :°')
WRITE(3,2001)

FORMAT(/,' CELLS :',’ o0 °*,* o011 ‘', 0 *,' 11')

WRITE(3,2002) (TABLE(J),J=1,4)

FORMAT(/,’ OBSERVED :',2X,I4,4X,14,4X,14,4X,14)
WRITE(3,2003) (ESTTAB(J),J=1,4)

FORMAT(/,' PREDICTED :’,2X,I14,4X,14,4X,14,4X,14)
WRITE(3,2005) (RTAB(J),J=1,4)

FORMAT(/,' HW-RATIOS :’',2X,F4.3.4X,F4.3,4X,F4.3,4X,F4.3)
WRITE(3,2006)

FORMAT(//,’ RATIOS : WORK A NOIWORK WOBK ONLY NOT WORK ')
WRITE(3,2007) RH,RH1,RHO

FORMAT(/,* HUSBAND :’',6X,F5.3,11X,F5.3,9X,F5.3)
WRITE(3,2008) R¥,RW1,RWO

FORMAT(/,' WIFE :°',6X,F4.3,11X,F4.3,9X,F4.3)

RETURN

END
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APPENDIX B: DOCUMENTATION AND COMPUTER PROGRAM FOR THE STACEKELBERG

MODEL

The computational procedures required for the estimates
obtained in Chapter IV for the Stackelberg models involve the
formulation of the log-likelihood function in the parameters involved
and the maximization of this log-likelihood function given
observations on the two jointly dependent dichotomous endogenous
variables, and whatever exogencus explanntory.vatinbles are thought to
affect the occurrence or nonoccurzence of tho gualitative dependent
variables. The program, consisteat wiih the model described in
Chapter III, assumes that the disturbance pair (sh, sw) is bivariate
normally distributed with zero means, unit variances and correlation
coefficient p. For computational ease, the program p:oviées for a
grid scarch over possible values of p. In addition, to economize on
the number of lines of code, four IMSL routines are used: MINOR and
MDBNOR, the univsriate and bivariate normal cumulative distribution
functions, respectively; ZXLSF, which provides the minimum of a one-—
dimensional function; and LINV3P which inverts a positive definite
natrix. To control input and output, three files are required by the
program. First, an input file called PARAN.DAT consists of a anumber
of lines of control parameters; these parameters will be discussed

later. Second, another input file, INPUT.DAT, is the user’s data set.
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INPUT.DAT (SUBROUTINE RDFILE2); as a check, the first four
observations are printed out. The following steps are now performed
for each value of the correlation coefficient, p, used in the grid
search., SUBROUTINE INIT now calculates and prints the initial values
of the coefficients and the initial value of the log-likelihood
function. Control is now transferred to SUBROUTINE BHHH, the routine
which performs the iterations for each value of the correlation
coefficient. Now, for each iteration, SUBROUTINE QSCORE performs two
tasks. First, the total score is calculated; that is, the individual
score vectors are summed over the number of observations. This is
performed using subroutines ISCORE(OO, ISCOREO1, ISCORE10 and ISCORE1l .
since the functional form for the sccre will obviously depend on the
values taken jointly by the dichotomous endogenous variables. Second,
the outer product of each individual score vectox is computed and
these outer product matrices are them summed over the number of
observations producing a new matrix Q. This is done with the aid of
SUBROUTINE IQ. Next, IMSL routine LINV3P checks to see whether or not
matrix Q is nonsingular. If Q is nonsingular, LINV3P calculates the
inverse of the Q matrix and postmultiplies it by the score vector; in
this case the BHHE algorithm will be used. If Q is singular,
SUBROUTINE CHOICE divides sach element of the score vector by its
norm; in this case, the method of steepest ascent is used. Control is
now transferred to SUBROUTINE OPTSTP where the optimal step size is
calculated; once the step size if found, the new parameter values are

calculated. SUBROUTINE QSCORE is now called again and SUBROUTINE TEST
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checks for convergence. If convergence is not attained, the preceding
sequence will be repeated either until convergence is attained or,
failing that, until the maximum number of iterations has been
completed. If convergence is attained, tontine LINV3P is again called
to calculate the inverse of the Q matrix, the asymptotic covariance
matrix. Control is then transferred to SUBROUTINE WRTE which prints
out the number of iterations, the final score vector, the log-

likel ihood value, and the estimated coefficients along with the
associated t—statistics.

The program described here is subject to a number of
limitations, most of which may be relaxed oasily. The program has
been written for data sets with up to 2100 observations, where the
behavior of the leader and follower in tho Stackelberg game can each
be estimated by up to 13 explanatory varisbles. Note also, as
mentioned earlier, that the algorithm has no built—in constant term;
if one wishes to include a constant term as an explanatorfy variable,
a vector of "ones” should be included in the input file INPUT.DAT.

We now describe the control cards required by the program,
Each control card should be entered on a separate line in PARAM,DAT.
1. First control card (4I12)

(s) INDS: One or zero, indicating whether or not the score is to be
written after each iteration on output file OQUTPUT.DAT.

(b) ILOG: One or zero, indicating whether or not the log-likelihood
value is to be written out after each iteration; if ILOG = 0, the

log-likel ihood value is written only after the final iteration,




(c)

(d)

2.

(a)

(»)

(¢)

(d)
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whether or not comvergence is achieved.

IOPT: The value of this parameter, either zero or ome,
determines whethor or not a fixed stepsize is automatically taken
at each iteration. Although in theory a fixed stepsize (equal to
one) is asymptotically efficient, in many numerical problems a
variable stepsize is often required. The parameters required to
control the stepsize are entered on the third and fourth control
cards.

IPARAM: One or zero, indicating whether or not the estimated
parameters are to be written out after each iteration. IF IPARAN
= 0, the parameter estimates are written out only at the end of
the final iteration.

Second control card (312, E10.3)

IVAR: One or zero, depending on whether or not the asymptotic
covariance matrix is to be written after the final iteration,
IFIT1: One or zero, depending on whether or not the predicted
probabilities for each observation are to written after the final
iteration.

IFIT2: One or zero, dependig; on whether or not the observed and
predicted two by two contingency tables are to be written after
the final iteration.

BADSC: It is occasionally the case that for particular values of
the parameters, the score vector for certain observations may
contain extremely large elements. When this occurs, it is often

the case that the sum over the observations of the outer product
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of the score is a singular matrix. In such a case, the BHHH
algorithm will not be used at that particular iterationm.
Therefore, by setting BADSC to a particular value, any
observations for which oﬁe or more elements of the score vector

exceeds BADSC will not be used in the calculation of the total

score and Q matrix for that iteration. Note, however, that the

score for each observation is checked against BADSC at each
iteration; if an observation is deleted during a particular
iteration, it is not necessarily deleted from successive
iterations. If BADSC = 0, it will default to 1°E + 20,

Third control card (I2, 4F7.5, I3)

The parameters on this control card sre used to determine the
optimal step size when using the BHHH algorithm, Parameters (b)
- (£f) are arguments in IMSL subroutine ZXLSF, a routine for
finding the maximum of a general one~dimensional function. If
IOPT = 0, only STPSIZ1 needs to be determined; all other
parameters on this control can be left blank. In this case, it
is suggested that STPSIZE be set to one since a fixed full step
is asynptoticull& officient. When IOPT = 1, all parameters on
this control card need to be set.

NINC1: A positive integer, indicating how many times the log-—
1ikel ihood function is to be evaluated over the maximum step size
allowed.

STPSIZ1: A positive real number, indicating the maximum step

size allowed.
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(c) STEP1l: An order of magnitude estimate, either positive or
negative, of the required change in‘STPSIZI.

(d) BOUND1: A limit, which must be set to a positive number, on the
amount by which STPSIZ1 may be changed from its initial value, -

(e) XACCl: The reguired absolute accuracy in the final value of
STPSIZ1. Normally there are points on either side of STPSIZ1
within a distance XACC1 at which the velue of the log-likelihood
function is no greater than the value of the log-likelihood
function evaluated at STPSIZ1.

(f) MAXFN1: A limit, which must bo set to s positive integer, on the
number of attempts to find the optimal step size.

An oxample should help clarify things. Assume one wishes to allow a

maximum possible step size of one at each iteratior but would like to

evaluate the log-likelihood fuanction at step size increments of .25,

.50, .75, and 1.0, Therefore, STPSIZEl is set to 1.0 and NINC1 = 4.

In addition, assume that one would like to search over the emtire

range of each interval, e.g., (0, .25), but also insure that the

minimum step size taken is .0001, Therefore, STEP1 should be set at

-.24990 and BOUND1 should be set at .24990. The IMSL documentation on

ZXLSF suggests setting XACC1 = .001 and MAXFN1 = 50,

4. Fourth control card (I2, 4F7.5, I3)
The parameters on this control card are used to determine the
optimsal step size when using the method of steepest ascent
algorithm. The description for these control cards is the same

as for the third control carcd.
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(b)

(c)

(4}

(e)

(£)

(g)
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Fifth control card (I6, 5I3, F4.3)

NOBS: Number of observations in data set INPUT.DAT.

NHW: Total number of unique explanatory variables in data set
INPUT.DAT.

NH: Number of explanatory variables used to describe the
behavior of the leader in the Stackelberg model.

N¥V: Number of explanatory variables used to describe the
behavior of the follower in the Stackelburg model,

NRHO: Number of values of the correlation coefficient. p, used
in the grid search.

MITER: Limit on the number of iterations for each value of the
correlation coefficient.

EPS: The convergence criteriom. The mean taken over the number
of obsexvations, for each element of the score must be less then
or equal‘to EPS for convergence to be attained.

Sixth control card (20F4.2)

VRHO(I), I = 1, NRHO: The values of the correlation coefficieat,
p, which comprise the grid search. Up to 20 values are allowed.
Seventh control ¢card (8E10.3)

X0(I), I =1, NBE+NW+3: 1Initial values of the parameters. Eight
values are allowed per line.

Eighth coatrol c;rd (4012)

KA(XI), I = 1,NH: Positive integers corresponding to the column
locations in INPUT.DAT of the explanatory variables for the

Stackelberg leader.
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Ninth control card (4012)

EW(I), I=1,NW¥: Positive integers corresponding to the column

locations in INPUT.DAT of the explanatory variables for the

Stackelberg follower.

Tenth control card

Format in which data file INPUT.DAT is to be read.

must be placed in parentheses, (°).

The format
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DIMENSION X(30),0Q(465),SCORE(30),X0(30),VRHO(20)
DIMENSION XH(2100,13),XW(2100,13),X1(30),PROBHAT(2100)
INTEGER NYH(2100) ,NYW(2100),EH{13) ,EW(13),MAXFN
REAL STEP, BOUND, XACC
CHARACTER*4 RDFT(20)
COMMON /CMN1/ NOBS,NH,NW,XH, XW, NYH, NIW, PROBHAT, /CMN2/ RATIO
COMMON /CMN3/ N, RHO,X,X1,SCORE
OPEN(UNIT=1,FILE='PARAM.DAT' , STATUS='OLD'-, ERR=10)
OPEN(UNIT=2 ,FILE='INPUT.DAT', STATUS="'0OLD’ , ERR=10)
OPEN(UNIT=3 ,FILE='OQUTPUT.DAT’ , STATUS='OLD’ , ERR=10)
CALL RDFILEI1(NOBS,NHW,NH,NW, KH, KW, X0, RDFT,
1MITER, EPS, INDS, ILOG, IOPT, IPARANM, IVAR, IFIT1, IFIT2,NRHO, VRHO,
2NINC1, STPSIZ1, STEP1, BOUND1,XACC1,MAXFN1,
3NINC2, STPSIZ2, STEP2 , BOUND2,XACC2 , MAXFN2 , BADSC)
CALL RDFILE2(NOBS, NHW,NH, NW,KH, KV, RDFT, XH, XW,
1 NYH, NYW)
DO 11 KRHO=1,NRHO
RHO=VRHO (ERHO)
WRITE(3,1000) KRHO,RHO
FORMAT(//,' CASE ’,12,’ RHO = ’,F5.3)
CALL INIT(XO,VLIKE, ILOG, IOPT)
CALL BHHH(MITER, EPS, Q, VLIKE, NITER, INDS, ILOG, IOPT, IPARAM, IER,
2 NINC1,STPSIZ1,STEP1,BOUND1,XACC1,MAXFN1, STPSIZE,
3 NINCZ,STPSIZ2,STEP2,BOUND2,XACC2, MAXFN2 , BADSC)
CALL WRTE(NH,NW,VLIKE, STPSIZE, NITER, Q, IVAR, IER)
IF(IFIT1.EQ.1.0R.IFIT2.EQ.1) CALL FIT(VLIKE, IFIT1, IFIT2)
CONTINUE
CONTINUE
STOP
END

SUBROUTINE RDFILE1(NOBS, NHW,NH,NW,KH, KW, X0, RDFT,
1MITER, EPS, INDS, ILOG, IOPT, IPARAN, IVAR, IFIT1, IFIT2 ,NRHO, VRHO,
2NINC1,STPSIZ1, STEP1,BOUND1,XACC1, MAXFN1,
3NINC2,STPSIZ2,STEP2, BOUND2,XACC2 , MAXFN2 , BADSC)

DIMENSION X0(30),VRHO(20),X(30),X1(30) ,SCORE(30)

INTEGER KH(13),KW(13),MAXFN

REAL STEP, BOUND,XACC

COMMON /CMN3/ N,RHO,X,X1,SCORE

CHARACTER*4 RDFT(20)

READ(1,1003) INDS, ILOG, IOPT, IPARAN

FORMAT (412)

READ(1,1004) IVAR, IFIT1,IFIT2,BADSC

FORMAT (3I2,E10.3)

READ(1,1005) NINC1,STPSIZ1,STEP1,BOUND1,XACC1,MAXFN

FORMAT (12,4F7.5,13) -

READ(1,1006) NINC2,STPSIZ2,STEP2,BOUND2,XACC2, MAXFN2

FORMAT (12,4F7.5,13)

IF(BADSC.EQ.0.) BADSC=1.E+20

READ(1,1000) NOBS, NHW,NH, NW, NRHO, MITER, EPS
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1000 FORMAT(16,513,F4.3)
READ(1,2000) (VRHO(I),I=1,NRHO)
2000 FORMAT (20F4.2)
N=NE+NW+3
M=N/8
IF(M.EQ.0) GO TO 11
DO 15 IM=1,M
Ml=(IM-1)%*8+1
M2=1IMe8
5000 FORMAT (8E10.3)
15 CONTINUE
11 M3=M*8+1
IF(M3.GT.N) GO TO 12
READ(1,5000) (X0(J),J=M3,N)
12 IF(NH.EQ.0) GO TO 10
READ(1,3000) (KH(J),J=1,NH)
10 IF(NW.EQ.0) GO TO 20
READ(1,3000) (EW(J),J=1,NW)
3000 FORMAT({4012) :
20 CONTINUE
READ(1,4000) RDFT
4000 FORMAT(20A4)
CALL WRTRD1(NOBS, NHW,NH, NW, MITER, EPS, RDFT)
RETURN
END

SUBROUTINE WRTRD1(NOBS, NHW, NH, NW, MITER, EPS, RDFT)
CHARACTER®*4 RDFT(20)
WRITE(3,1001)
1001 FORMAT(' NOBS ','NHW’,’ NH',’' NW',’ MITER’,’ EPS’)
WRITE(3,1002) NOBS,NHW,NH, NW, MITER, EPS
1002 FORMAT(I6,313.3X,13,F4.3)
WRITE(3,4001) RDFT
4001 FORMAT(/,'READING FORMAT :°‘,20A4)
RETURN
END

SUBROUTINE RDFILE2(NOBS, NHW,NH, NV, KH, KW, RDFT, XH, XW,
1 NYH, NIW)
DIMENSION XX(30),XH(2100,13),XW(2100,13)
INTEGER KH(13) ,EW(13),NYH(2100),NYW(2100)
CHARACTER®*4 RDFT(20)
DO 100 I=1,NOBS
READ(2,RDFT) NYH(I),NIW(I),(XX(J),J=1,NHW)
IF(NH.EQ.0) GO TO 10
DO 110 J=1,NH
KI=KE(J)
XH(X,J)=XX(KT)
110 CONTINVE




10

120
100

1003

1000

110
1001

10

120
1002

100

20

2001

242

IF(NW.EQ.0) GO TO 100
DO 120 J=1,NW
KI=KW(J)
XW(I,J)=XX(KJ)
CONTINUE
CONTINUE
CALL WRTOBS(NH, NW,NYH, NYVW, XH, XW)
RETURN
END

SUBROUTINE WRTOBS(NH, NW, NYH, NYW, XH, XW)
DIMENSION NYH(2100),N¥W(2100),XH(2100,13),XW(2100,13)
DIMENSION XXH(13),XXW(13)
WRITE(3,1003)
FORMAT(/,'FIRST 4 OBSERVATIONS :')
DO 100 I=1,4

IYH=NYH(I)

IYW=NIW(I)

WRITE(3,1000) I, IYH,IYW

FORMAT(/,'OBSERVATION ',I4,’ :',’ IYH =’,12,’' IW =',12)

IF(NH.EQ.0) GO T0 10

DO 110 J=1,NH

XXH(T)=XH(I,J)

CONTINUE

WRITE(3,1001)

FORMAT(/,' XH :')

CALL WRIVEC(NH,XXH)

IF(NW.EQ.0) GO TO 100

DO 120 J=1,NW

XXW(J)=XW(I,J)

CONTINUE

WRITE(3,1002)

FORMAT(/,' XW :')

CALL WRTVEC(NW,XXW)
CONTINUE
RETURN
END

SUBROUTINE INIT (X0, VLIKE, ILOG, IOPT)
DIMENSION XH(2100,13),XW(2100,13),X0(30),X(30),X1(30),SCORE(30)
DIMENSION PROBHAT(2100)
INTEGER NYH(2100) ,NYW(2100)
COMMON /CMN1/ NOBS,NH,NW,XH,XW,NYH, NYW, PROBHAT
COMMON /CMN3/ N,RHO,X,X1,SCORE
DO 20 J=1,N
X(J)=X0(J)
CONTINUE
WRITE(3,2001)
FORMAT (/,* STARTING VALUES :°)
CALL WRTVEC(N,X)
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CALL VALUE(N, X, VLIKE)
IF(ILOG.EQ.0) GO TO 14
WRITE(3,3000) VLIKE
3000 FORMAT(/,’INITIAL LOG-LIKELIHOOD VALUE = ’,E13.6)
14  RETURN
END

SUBROUTINE VALUE(N, X, VLIKE)
DIMENSION XH(2100,13),XW(2100,13),X(30) ,PROBHAT(2100)
INTEGER NYH(2100),NIW(2100)
COMMON /CMN1/ NOBS, NH,NW,XH, XW, NYH, NYW, PROBHAT
VLIKE=0.
DO 100 I=1,NOBS
INYH=NYH(I)
INYW=NYW(I)
CALL DELTA(I,DELTAH,DELTAW)
IF (INYH.EQ.1.0R.INYW.EQ.1) GO TO 11
CALL IPROBOO(DELTAH, DELTAW, PR0OO)
PROBHAT (I)=PROO
CALL TOL(PROO)
VLIKE=VLIKE+ALOG(PR00)
GO TO 99
11 IF (INYH.EQ.0.OR.INYW.EQ.1) GO TO 12
CALL IPROB10(DELTAH, DELTAW,PR10)
PROBHAT (1) =PR10
CALL TOL(PR10)
VLIKE=VLIKE+ALOG(PR10)
GO TO 99
12 IF (INYH.EQ.1.0R.INYW.EQ.0) GO TO 13
CALL IPROBO1(DELTAH, DELTAW, PRO1)
PROBHAT (I)=PRO1
CALL TOL(PRO1)
VLIEKE=VLIKE+ALOG(PRO1)
GO TO 99
13 CALL IPROB11(DELTAH,DELTAW,PR11)
PROBHAT (I)=PRil
CALL TOL(PR11)
VLIKE=VLIKE+ALOG(PR11)
99 CONTINUE
100 CONTINUE
RETURN
END

SUBROUTINE DELTA(I,DELTAH, DELTAW)

DIMENSION X(30),XH(2100,13),XW(2100,13),X1(30),SCORE(30)
DIMENSION PROBHAT (2100)

INTEGER NYH(2100) ,NYW(2100)

COMMON /CMN1/ NOBS, NH,NW,XH,XW, NYH, NYW, PROBHAT

COMMON /CMN3/ N,RHO,X,X1,SCORE

DELTAH=0,0
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DELTAW=0.0
DO 100 J=1,NH
JH=J+3
DELTAH=DELTAH+X (JH) *XH(I, J)
CONTINUE
DO 200 J=1,NW
JW=J+NH+3
DELTAW=DELTAW+X (JW) *XW(I,J)
CONTINUE
RETURN
END

SUBROUTINE BHHH(MITER, EPS, Q, VLIKE, NITER, INDS, ILOG, IOPT, IPARAM, IER,

2NINC1, STPSIZ1, STEP1,BOUND1,XACC1,MAXFN1, STPSIZE,
3NINC2,STPSIZ2,STEP2 ,BOUND2, XACC2 ,MAXFN2 , BADSC)

DIMENSION XH(2100,13),XW(2100,13),X(30),Q(465),SCORE(30),

1SCORE1(30) ,X1(30) , PROBHAT (2100) ,D(30) ,Z(30,30) ,WK(495) ,QEIG(465)

1002

1000

70

N =

11
10

INTEGER NYH(2100) ,NYW(2100) ,MAXFN
REAL STEP, BOUND, XACC
COMMON /CMN1/ NOBS, NH, NW, XH, XW, NYH, NYW, PROBHAT
COMMON /CMN3/ N,RHO,X,X1,SCORE
NITER=999
NN=Ne(N+1) /2
CALL QSCORE(Q, BADSC)
IF(INDS.EQ.0) GO TO 1002
CALL WRTBH1
CONTINUE
DO 10 ITER=1,MITER
WRITE(3,1000) ITER
FORMAT(/,’ ITERATION ',I3,' STARIS’)
DO 70 I=1,N
SCORE1(I)=SCORE(I)
CONTINUVE
CALL AVEC(NN, A, Q)
CALL LINV3P(Q,SCORE1,3,N, IER)
CALL AVEC1(N, A, SCORE1)
CALL AVEC(NN,A,Q)
CALL CHOICE(IER, SCORE1l,NINC1,STPSIZ1,STEP1,BOUND1,XACC1,MAXFN1,
NINC2,STPS1Z2, STEP2 ,BOUND2 ,XACC2 ,MAXFN2,
NINC, STPSIZ0, STEP, BOUND, XACC, MAXFN)
CALL OPYTSTP{NINC, STPSIZ0, STPSIZE, VLIKE, ILOG, IOPT, STEP, BOUND,
XACC, MAXFN, IER)
CALL QSCORE(Q, BADSC)
CALL TEST(NOBS, EPS, IEND)
IF (IEND.EQ.1) GO TO 20
IF(ITER.EQ.MITER) GO TO 11
CALL WRTBHH(ITER, STPSIZE, VLIKE, INDS, ILOG, IPARAM, IOPT, IER)
CONTINUE
CONTINUE
GO TO 50
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20 NITER=ITER
50 IF(ILOG.EQR.1.0R.IOPT.EQ.1) GO TO 40
CALL VALUE(N,X, VLIKE)
40 IF(IOPT.EQ.0) GO TO 60
WRITE(3,6000) IER
6000 FORMAT(/,'LAST STEP OPTIMIZATION, IER =’,I3)
60 CONTINUE
CALL AVEC(NN,A,Q)
CALL LINV3P(Q, SCORE, 1,N, IER)
CALL AVEC(NN, A, Q)
IF(IER.EQ.129,0R.IER.EQ.130) IER=128
IF(IER.EQ.128) GO TO 999
GO TO 998
999 WRITE(3,1001) IER
1001 FORMAT(/,1X,'IER = ’,I3,
1/,’THE Q MATRIX IS SINGULAR OR ILL-CONDITIONED’,
2/,'THE Q MATRIX BEFORE INVERSION IS :’)
CALL WRIVAR(Q)
998 REIURN
END

SUBROUTINE AVEC(NDIM, A, VEC)
DIMENSION VEC(465)
A=1 .E+04
DO 100 I=1,NDIM
VEC(I)=A*VEC(I)
100 CONTINUE
RETURN
END

SUBROUTINE AVEC1(NDIM, A, VEC)
DIMENSION VEC(30)

A=1 .E+04
DO 100 I=1,NDIM
VEC(I)=A*VEC(I1)
100 CONTINUE
RETURN
END
SUBROUTINE CHOICE(IER, SCORE1,NINC1,STPSIZ1,STEP1,BOUND1,XACC1,
1 MAXFN21 ,NINC2, STPSIZ2, STEP2 ,BOUND2,XACC2 , MAXFN2,
2 NINC, STPSIZO, STEP, BOUND, XACC, MAXFN)

DIMENSION X(30),X1(30),SCORE(30),SCORE1(30)
COMMON /CMN3/ N,RHO,X,X1,SCORE
IF (IER.NE.O) GO TO 10
WRITE(3,1000)
1000 FORMAT(/,' BHHH ALGORITHM ')
NINC=NINC1
STPSIZ0=STPSIZ1
STEP=STEP1
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BOUND=BOUND1

XACC=XACC1

MAXFN=MAXFN1

DO 20 I=1,N

SCORE(I)=SCORE1(I)

CONTINUE

GO TO 30
WRITE(3,2000)

2000 FORMAT(/,’ SCORE ALGORITHM ')

40
30

400

500

101

200

300

102

NINC=NINC2

STPSIZ0=STPSI1Z2

STEP=STEP2

BOUND=BOUND2

XACC=XACC2

MAXFN=MAXFN2

CALL NORM(N, SCORE, XNSCOR)

DO 40 I=1,N
SCORE(I)=SCORE(I)/XNSCOR

CONTINUE

RETURN

END

SUBROUTINE QSCORE(Q, BADSC)
DIMENSION XH{2100,13),X¥(2100,13),X(30),Q(465),SCORE(30)
DIMENSION QI(465),SCOREI(30),X1(30),PROBHAT(2100)
INTEGER NYH(2100),NYW(2100)
COMMON /CMN1/ NOBS,NH,NW,XH,XW,NYH, NYW, PROBHAT
COMMON /CMN3/ N,RHO,X,X1,SCORE
NN=N®(N+1) /2
DO 400 J=1,N
SCORE(J)=0.
CONTINUE
DO 500 K=1,NN
Q(K)=0.
CONTINUE
NBAD=0
DO 100 I=1,NOBS
CALL ISCORE(I,SCOREI)
CALL IQ(SCOREI,QI)
DO 101 J=1,N
IF(SCOREI(J) .GE.BADSC) GO TO 102
CONTINUE
DO 200 J=1,N
SCORE (J) =SCORE(J) +SCOREI(J)
CONTINUE
DO 300 K=1,NN
Q(K)=Q(K)+QI(K)
CONTINUE
G0 TO 100
WRITE(3,1000) I
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1000 FORMAT(/,' BAD OBSERVATION = ',14)

100

CALL WRTVEC(N, SCOREX)
NBAD=NBAD+1

CONTINUE

WRITE(3,2000) NBAD

2000 FORMAT(/,' NUMBER OF BAD OBSERVATIONS :’,I6)

11

4000

20

70

RETURN
END

SUBROUTINE WRTBEH(ITER, STPSIZE, VLIKE, INDS, ILOG, IPARAM, IOPT, IER)

DIMENSION X(30),SCORE(30),X1(30)

COMMON /CMN3/ N,RHO,X,X1,SCORE

IF(INDS.EQ.0.AND. ILOG.EQ.0.AND. JIPARAM.EQ.0)

1 GO TO 11

CALL WRTBH2(ITER, STPSIZE, VLIKE, ILOG, IPARAM, IOPT, IER)
IF(INDS.EQ.1) CALL WRIBH1

RETURN

END

SUBROUTINE WRTBH1

DIMENSION SCORE(30),X(30),X1(30)
COMMON /CMN3/ N,RHO,X,X1,SCORE
WRITE(3,4000)

FORMAT(/,* SCORE : ')

CALL WRTIVEC(N, SCORE)

CALL WRTVEC1(N, SCORE)

RETURN

END

SUBROUTINE OPTSTP(NINC, STPSIZO,STPSIZE, VLIKE, ILOG, IOPT, STEP, BOUND,
1 XACC, MAXFN, IER)
DIMENSION XH(2100,13),XW(2100,13),X(30),X1(30),SCORE(30)
DIMENSION PROBHAT(2100)
INTEGER NYH(2100),NIW(2100) ,MAXFN, IER
REAL STPSIZE, STEP, BOUND, XACC, MLOGLIK
COMMON /CMN1/ NOBS,NH,NW,XH,XW,NYH, NYW, PROBHAT
COMMON /CMN3/ N,RHO,X,X1,SCORE
EXTERNAL MLOGLIK
IF(IOPT.FQ.0) GO TO 10
STPINC=STPSIZ0/NINC
INCMAX=0
VLIKEN=VLIKE
DO 20 J=1,N
X1(J)=X(J)
CONTINUE
DO 60 INC=1,NINC
STPSIZE=INC*STPINC
DO 70 J=1,N
X(J)=X1(J)+STPSIZE*SCORE(J)
CONTINGE
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CALL VALUE(N, X, VLIKE)
WRITE(3,1000) STPSIZE, VLIKE
FORMAT(®* STEPSIZE =’,F7.5,' LOGLIK =’,El3.6)
IF(VLIKE.LE,VLIKEM) GO TO 80
INCMAX=INC
VLIKEM=VLIKE
CONTINUE
- CONTINUE
IF(INCMAX.EQ.0) GO TO 90
STPSIZE=INCMAX*STPINC
CALL ZXLSF(MLOGLIK, STPSIZE, STEP, BOUND, XACC, MAXFN, IER)
GO TO 200
STPSIZE=STPINC/2
STPO=STEP/2
BOUNDO=BOUND/2
CALL ZXLSF(MLOGLIK, STPSIZE, STP0, BOUNDO, XACC, MAXFN, IER)
DO 40 J=1,N
X(J)=X1(J)
CONTINUE
GO TO 50
STPSIZE=STPSIZ0
CONTINUE
DO 30 J=1,N
X(J)=X(J)+STPSIZE*SCORE(J)
CONTINUE
IF(ILOG.EQ.0.OR,.IOPT.EQ.0) GO TO 100
CALL VALUE(N, X, VLIKE)
CONTINUE
RETURN
END

SUBROUTINE NORM(NV, VECTOR, XNVEC)
DIMENSION VECTOR(30)

XNVEC=0.

DO 100 I=1,NV
XNVEC=XNVEC+VECTOR( I )se2
CONTINUE

XNVEC=SQRT (XNVEC)

RETURN

END

SUBROUTINE TEST(NOBS, EPS, IEND)
DIMENSION SCORE(30),X(30),X1(30)
COMMON /CMN3/ N,RHO,X,X1,SCORE
IEND=0
DO 10 J=1,N
A=ABS(SCORE(J)) /NOBS
IF (A.GT.EPS) GO TO 20
CONTINUE
IEND=1
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RETURN
END

SUBROUTINE WRTBH2 (ITER, STPSIZE, VLIKE, ILOG, IPARAM, IOPT, IER)
DIMENSION X(30),X1(30),SCORE(30)
COMMON /CMN3/ N,RHO,X,X1,SCORE
WRITE(3,1000) ITER
FORMAT (// ,* ITERATION ' ,I3)
IF(ILOG.EQ.0) GO TO 10
WRITE(3,2000) STPSIZE, VLIKE
FORMAT(/,’ STEPSIZE = ',F7.5,' LOG-LIKELIHOOD VALUE = ’,E13.6)
IF(IOPT.EQ.0) GO TO 10
WRITE(3,2001) IER
FORMAT(/,' STEP OPTIMIZATION, IER = ',I3)
IF(IPARAM.EQ.0) GO TO 20
WRITE(3,3000)
FORMAT (/, ' PARAMETERS :’)
CALIL, WRIVEC(N, X)
CALL WRTVECi(N,X)
RETURN
END

SUBROUTINE ISCORE(I,SCOREI)
DIMENSION XH(2100,13),X¥(2100,13),X(30),SCOREI(30) ,PROBHAT (2100)
INTEGER NYH(2100) ,NYW(2100) ,X1(30),SCORE(30)
COMMON /CMN1/ NOBS,NH,NW,XH,XW,NYH, NYW, PROBHAT
COMMON /CMN3/ N,RHO,X,X1,SCORE
INYH=NYH(I)
INYW=NYW(I)
CALL DELTA(I,DELTAH, DELTAW)
IF (INYH.EQ.1.0R.INYW.EQ.1) GO TO 11
CALL IPROBOO(DELTAH, DELTAW, PR0O)
CALL ISCOREO0G(I,DELTAH, DELTAW,PROO, SCOREI)
GO TO 14
IF (INYH.EQ.0.OR.INYW.EQ.1) GO TO 12
CALL IPROB10(DELTAH, DELTAW,PR10)
CALL ISCORE10(I,DELTAH, DELTAW,PR10,SCOREI)
GO TO 14
IF (INYH.BQ.1.0R.INIV.EQ.0) GO TO 13
CALL IPROBO1(DELTAH,DELTAW,PRO1)
CALL ISCOREO1(I,DELTAH,DELTAW,PRO1,SCOREI)
GO TO 14
CALL IPROB11(DELTAH, DELTAW,PR11)
CALL ISCORE11(I,DELTAH,DELTAY,PR11,SCOREI)
CONTINUE
RETURN
END

SUBROUTINE IPROBOO(DELTAH, DELTAW, PROO)
DIMENSION X(30),X1(30),SCORE(30)
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COMMON /CMN3/ N,RHO,X,X1,SCORE
H1=-DELTAH
W1=—DELTAW
H2=-DELTAH-X(2)
W2=-DELTAW-X(3)
CALL MDBNOR(H1,W1,RHO,PROO, IER)
X4=X(3)
IF (X4.LT.0.) GO TO 13
CALL INTEGRAL(H1,¥1,H2,W2,PROB, IER)
PRO0=PR00-PROB
RETURN
END

SUBROUTINE ISCOREOO(I,DELTAH,DELTAW,PR0OO, SCOREI)
DIMENSION XH(2100,13),XW(2100,13),X(30),SCOREI(30)
DIMENSION DI(36),X1(30),SCORE(30),PROBHAT(2100)
INTEGER NYH(2100),NYW(2100)
COMMON /CMN1/ NOBS,NH,NW,XH, XW,NYH, NIV, PROBHAT
COMMON /CMN3/ N,RHO,X,Xi,SCORE
SCOREI(1)=0.
SCOREI(2)=0.
SCOREI(3)=0.
Hi=DELTAH
ZH=-DELTAW+RHO*DELTAH
CALL PARTIAL(H1,ZH, PARTH)
PARTH=-PARTH
DO 10 J=1,NH

JH=J+3

SCOREI(JH) =PARTH*XH(I,J)
CONTIMUE
W1=DELTAW
ZW=-DELTAH+RHO*DELTAW
CALL PARTIAL(W1,ZW,PARIV)
PARIW=-PARTW
DO 20 J=1,NW

JW=J+NH+3

SCOREI(JW)=PARIW*XW(I,J)
CONTINUE
X4=X(3)
IF (X4.LT.0.) GO TO 30

CALL PARTLIOO(I,DELTAH,DELTAW,DI)

DO 31 J=1,N
SCOREI(J)=SCOREI(J)-DI(J)
CONTINUE

CONTINUE
CALL TOL(PROC)
DO 60 J=1,N

SCOREI(J)=SCOREI(J)/PROO

CALL TOL1(SCOREI(J),ITRUN)

CALL BIGN1(SCOREI(J),ITRUN)
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IF(ITRUN.GT.0) WRITE(*,1000) I,J, ITRUN
1000 FORMAT(*' OBSERVATION ',I6,’ PARAMETER ',I3,' ITRUN ',I2)
60 CONTINUE
RETURN
END

SUBROUTINE IPROB10(DELTAKE, DELTAW,PR10)
DIMENSION X(30),X1(30),SCORE(30)
COMMON /CMN3/ N,RHO,X,X1,SCORE
XNEGRHO=-RHO
H1=-DELTAH
W1=—DELTAW
H2=—DELTAB+X(1)
¥W2=—DELTAW-X(3)
CALL MDBNOR(DELTAH,W2,XNEGRHO, PR10, IER)
X4=X(3)
IF (X4.GE.0.) GO TO 13
CALL INTEGRAL(Hi,W2,H2,W¥1,PROB, IER)
PR10=PR10+PROB
13  RETURN
END

SUBROUTINE ISCORE10(I,DELTAH,DELTAW,PR10,SCOREX)
DIMENSION XH(2100,13),XW(2100,13),X(30),SCOREI(30)
DIMENSION DI(30),X1(30),SCORE(30),PROBHAT(2100)
INTEGER NYH(2100) ,NYW(2100)
COMMON /CMN1/ NOBS,NH, NW,XH, XW, NYH, NYW, PROBHAT
COMMON /CMN3/ N,RHO,X,X1,SCORE
ARGH=DELTAH
ARGW=DELTAW+X(3)
SCOREI(1)=0.
SCOREI(2)=0.
W2=DELTAW+X(3)
ZW=DELTAB-RHOW2
CALL PARTIAL(W2,2W,PARIV)
SCOREI(3)=-PARIW
ZB=—W2+RHO*DELTAH
CALL PARTIAL(DELTAH,ZH, PARTH)
DO 10 J=1,NH
JB=J+3
SCOREI(JYH) =PARTH*XH(I,J)
10 CONTINUE
PARTW=—PARIW
DO 20 J=1,NW
JW=J+NHE+3
SCOREIL(JW)=PARIV*X¥W(I,J)
20 CONTINUE
X4=X(3)
IF (X4.GE.0.) GO TO 30
CALL PARTLI10{I,DELTAH,DELTAW,DI)
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Do 31 J=1,N
SCOREI(J)=STOREI(J)+DI(J)
CONTINUE

CONTINUE

CALL TOL(PR10)

DO 60 J=1,N
SCOREI(J)=SCOREI(J) /PR10
CALL TOL1(SCOREI(J),IIRUN)
CALL BIGN1(SCOREX(J),ITRUN)

CONTINUE

RETURN

END

SUBROUTINE IPROBO1 DELTAH, DELTA¥,PRO1)
DIMENSION X(30),X1(30),SCORE(30)
COMMON /CMN3/ N,RHO,X,X1,SCORE
XNEGRHO=~RHO
H1=-DELTAH+X(1)
W1=—DELTAW
H2=—DELTAH-X(2)+X(1)
W2=—DELTAW-X(3)
CALL MDBNOR(H2,DELTAW,XNEGRHO, PRO1, IER)
X4=X(3)
IF (X4.GE.0.) GO TO 13

CALL INTEGRAL(H1,W2,H2,W1,PROB, IER)

PRO1=PRO1+PROB

RETURN
END

SUBROUTINE ISCOREO1(I,DELTAH, DELTAW,PRO1,SCOREX)
DIMENSION XH(2100,13),X%(2100,13).%X(30),SCOREI(30)
DIMENSION DI(30),X1(30),SCORE(30),PROBHAT(2100)
INTEGER NYH(2100) ,NI¥{(2100)
COMMON /CMN1/ NOBS,NH,NW,XH,XW, NYH, NYW, PROBHAT
COMMON /CMN3/ N,RHO,X,X1,SCORE
ARGH=DELTAH+X(2)-X(1)
ARGW=DELTAW
H2=DELTAH+X(2)-X(1)
H3=-H2
ZW=DELTAW—-RHO*H2
CALL PARTIAL(H2,ZW,PARIVW)
SCOREI(1)=PARIV
SCOREI(2)=—PARIV
SCOREI(3)=0.
DO 10 J=1,NH
JH=J+3
SCOREIX (JH) =-PARTW*XH(I,J)
CONTINUE
ZH=H3+RHO*DELTAW
CALL PARTIAL(DELTAW,ZH, PARTH)
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DO 20 J=1,NW
JW=J+NB+3
SCOREI (JW)=PARTH*XW(I,J)
CONTINUE
X4=X(3)
IF (X4.GE.0.) GO TO 30
CALL PARTLIO1(I,DELTAH,DELTAW,DI)
DO 31 J=1,N
SCOREI (J)=SCOREI(J)+DI(JY)
CONTINUE
CONTINUE
CALL TOL(PRO1)
DO 60 J=1,N
SCOREI(J)=SCOREI(J)/PRO1
CALL TOL1(SCOREI(Y),ITRUN)
CALL BIGN1(SCOREI(J) ,ITRUN)
CONTINUE
RETURN
END

SUBROUTINE IPROB11(DELTAH,DELTAW,PR11)
DIMENSION X(30),X1(30),SCORE(30)
COMMON /CMN3/ N, RHO,X,X1,SCORE
H1=-DELTAH~X(2)
W1=—DELTAW
H2=-DELTAB-X(2)+X(1)
W2=-DELTAW-X(3)
H3=—H2
W3=-W2
CALL MDBNOR(H3,W3,RHO,PR11, IER)
X4=X(3)
IF (X4.LT.0.) GO TO 13
CALL INTEGRAL(H1,W1,H2,W2,PROB,IER)
PR11=PR11-PROB
RETURN
END

SUBROUTINE ISCORE11(I,DELTAH, DELTAW,PR11,SCOREI)
DIMENSION XH(2100,13),XW(2100,13),X(30),SCOREI(30)
DIMENSION DI(30),X1(30),SCORE(30),PROBHAT (2100)
INTEGER NYH(2100) ,NYW(2100)

COMMON /CMN1/ NOBS, NH, NW,XH, XW, NYH, NYW, PROBHAT
COMMON /CMN3/ N,RHO,X,X1,SCORE
ARGH=DELTAH+X(2)-X(1)

ARGW=DELTAW+X(3)

H3=DELTAB+X(2)-X(1)

W3=DELTAW+X(3)

ZH=W3-RHO*H3

CALL PARTIAL(H3,ZH, PARTH)

SCOREI(1)=-PARTH
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SCOREI(2)=PARTH

ZW=H3~RHO*W3

CALL PARTIAL(W3,ZVW, PARIVW)

SCOREI(3)=PARIW

DO 10 J=1,NH
JE=J+3
SCORRI(JH)=PARTH*XH(I,J)

CONTINUE

DO 20 J=1,NW
JW=J+NBE+3
SCOREI(JW)=PARIW*XW(I,J)

CONTINUE

X4=X(3)

IF (X4,LT,0,) GO TO 30
CALL PARTLI11(I,DELTAH,DELTAW,DI)

DO 31 J¥=1,N
SCOREI(J)=SCOREXI(J)-DI(J)
CONTINUE

CONTINUE

CALL TOL(PR11)

DO 60 J=1,N
SCOREI(J)=SCOREI(Y)/PR11
CALL TOL1(SCOREI(J) ,ITRUN)
CALL BIGN1(SCOREI(J),ITRUN)

CONTINUE

RETURN

END

SUBROUTINE TOL(XPROB)
XMIN=1.E-20

IF(XPROB.LE.XMIN) XPROB=XMIN
RETURN

END

SUBROUTINE TOL1(XNUM, ITRUN)
ITRUN=0
ASML=1 .0E-20
ANUN=ABS (XNUN)
IF(ANUM.GE.ASML) GOTO 100
ITRUN=1
SIGN=1.
IR(XNUM.LT.0.) SIGN=-1.
XNUMN=SIGN®ASML
RETURN
END

SUBROUTINE IQ(SCOREI,QY)

DIMENSION SCOREI(30),QI(465),X(30),X1(30),SCORE{30)
COMMON /CMN3/ N,RHO,X,X1,SCORE

IR=0




20

10

255

DO 10 IX=1,N
DO 20 JX=1,IX
IL=IR+JX
QI(IL)=SCOREI(IX)*SCOREI(JX)
CONTINVE
IR=IR+IX
CONTINUE
NN=N*(N+1) /2
RETURN
END

SUBROUTINE PARTIAL(Y,Z,PART)
COMMON /CMN3/ N,RHO,X,X1,SCORE
DIMENSION X(30),X1(30),SCORE(30)
SNUM=SQRT (1.-RHO**2)

CALL TOL(SNUM)

ZX=Z/ SNUM

XNUM=-Y%+2/2,

CALL BIGN(XNUM)

DENSY=(EXP (XNUM) ) / SQRT(2*AC0S{(-1.))
CALL MDNOR(ZX, PHIZX)
PART=DENSY*PHIZX

RETURN

END

SUBROUTINE PARTLIOO(I,DELTAH, DELTAW,DI)
DIMENSION DI(30),XH(2100,13),XW(2100,13) ,X(30)

DIMENSION NYH(2100),NIW(2100),X1(30),SCORE(30),PROBEAT (2100)

COMMON /CMN1/ NOBS,NH,NW,XH,XW,NYH, NYW, PROBHAT
COMMON /CMN3/ N, RHO,X,X1,SCORE
H1=—DELTAH

W1=—DELTAW

H2=—DELTAH-X(2)
W2=—DELTAW-X(3)

H3=H2

W3=-W2

Z1=W1+RHO®H3

Z2=W2+RHO®*H3

Z3=H1+RHO*W3

ZA=H2+RHOW3
Z5=W1+RHO®*DELTAH
Z6=W2+RHO*DELTAH
Z7=H1+RHO*DELTAW
Z8=H2+RHO*DELTAW

CALL PARTIAL(H2,Z1,PART1)
CALL PARTIAL(H2,Z2,PART2)
CALL PARTIAL(W2,Z3,PART3)
CALL PARTIAL(W2,Z4,PART4)
CALL PARTIAL(H1,ZS,PARTS)
CALL PARTIAL(H1,Z6,PART6)
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CALL PARTIAL(W1,Z7,PART7)
CALL PARTIAL(W1,Z8,PARTS)
DI(1)=0.
DI (2) =PART1-PART2
DI(3)=PART3-PART4 .
PARTH=-PARTS+PART6+PART1-PAR
DO 10 J=1,NH

JHE=J+3

DI(JH)=PARTH*XH(I,J)
CONTINUE
PARTW==PART7+PART3-PART4+PARTS
DO 20 J=1,NW

JV=J+3+NH

DI(JW)=PARIW*XW(I,J)
CONTINUE
RETIURN
END

SUBROUTINE PARTLI10(I,DELTAH, DELTAW,DI)
DIMENSION DI(30),XH(2100,13),XW(2100,13),X(30)
DIMENSION NYH(2100) ,NYW(210€0),X1(30),SCORE(30) ,PROBHAT(2100)
COMMON /CMN1/ NOBS, NH, NW,XH, XW, NYH, NYW, PROBHAT
COMMON /CMN3/ N, RHO,X,X1,SCORE
H1=-DELTAH

W1=~DELTAW

B2=~-DELTAH+X(1)

W2=-~DELTAW-X(3)

H3=-H2

W3=—W2

Z1=W2+RHO*H3

Z2=VW1+RHO*H3

Z3=H1+RHO*W3

Z4=H2+RHO*W3

ZS=W2+RHO*DELTAH

Z6=W1+RHO*DELTAH

Z7=H1+RHO®*DELTAW

Z8=H2+RHO*DELTAW

CALL PARTIAL(H2,Z1,PART1)

CALL PARTIAL(H2,Z2,PART2)

CALL PARTIAL(W2,Z3,PART3)

CALL PARTIAL(W2,Z4,PART4)

CALL PARTYAL(H1,Z5,PARTS)

CALL PARTIAL(H1,Z6,PART6)

CALL PARTIAL(W1,27,PART7)

CALL PARTIAL(W1,Z8,PARTS)
DI(1)=-PART1+PART2

DI(2)=0.

DI (3)=-PART3+PART4
PARTH=-PARTS5+PART1+PART6—-PART2
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DO 10 J=1,NH
JH=J+3
DI{(JH)=PARTH*XH(I,J)
CONTINUE
PARTW=PART7-PART3+PART4-PARTS
DO 20 J=1,NW
JW=J+3+NH
DI(JW)=PARIW*XW(I,J)
CONTINUE
RETURN
END

SUBROUTINE PARTLIO1(I,DELTAH, DELTAW,DI)
DIMENSION DI(30),XH(2100,13),XW(2100,13),X(30)
DIMENSION NYH(2100),NYW(2100),X1(30),SCORE(30) ,PROBHAT (2100}
COMMON /CHN1/ NOBS,NH,RW,XH,XW, NYH, NIW, PROBHAT
COMMON /CMN3/ N,RHO,X,X1,SCORE
H1=-DELTAH
W1=—DELTAW
H2=-DELTAB+X(1)
H3=—DELTAH-X(2)+X(1)
W2=~DELTAW-X(3)
H4=—H2
HS=-H3
W3=-W2
Z1=W2+RHO*H4
Z2=W1+RHO*H4
Z3=T2+RHO*HS
ZA=VW1+RHO*HS
Z5=H2+RHO*W3
Z6=H3+RHO*W3
Z7=F2+RHO*DELTAW
Z8=H3+RHO*DELTAW
CALL PARTIAL(H2,Z1,PART1)
CALL PARTIAL(H2,Z2,PART2)
CALL PARTIAL(H3,Z3,PART3)
CALL PARTIAL(H3,Z4,PART4)
CALL PARTIAL(W3,ZS,PARTS)
CALL PARTIAL(W3,Z6,PART6)
CALL PARTIAL(W1,Z7,PART7)
CALL PARTIAL(W1,Z8,PARTS)
DI (1) =PART1-PART2~-PART3+PART4
DI(2)=PART3~-PART4
DI (3) =—PARTS+PARTé6
PARTH=—-PART4~PART1+PART3+PART2
DO 10 J=1,NH
JH=J+3
DI(JYH)=PARTH*XH(I,J)
CONTINUE
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PARTW=—-PARTS-PART8+PART7+PART6
DO 20 J=1,NW

JW=J+3+NH

DI (JW)=PARTW*XW(I,J)
CONTINUE
RETURN
END

SUBROUTINE PARTLI11(I,DELTAH,DELTAW,DI)
DIMENSION DI(30) ,XH(2100,13),X¥W(2100,13),X(30)
DIMENSION NYH(2100),NYW(2100),X1(30),SCORE(30) ,PROBHAT(2100)
COMMON /CMN1/ NOBS,NH,NW,XH,XW,NYH, NYW, PROBHAT
COMMON /CMN3/ N,RHO,X,X1,SCORE
H1=-DELTAH
W1=—DELTAW
H2=—DELTAB-X(2)
H3=-DELTAH~X(2)+X(1)
W2=»-DELTAW-X(3)
H4=-H2
H5=—H3
W3=-W2
Z1=W1+REO*HS
Z2=W2+RHO*HS
Z3=W1+RHO*H4
Z4=W2+RHO*H4
Z5=H2+RHOW 3
Z6=H3+RHO*W3
Z7=H2+REO*DELTAW
Z8=H3+RHO*DELTAW
CALL PARTIAL(HS,Z1,PART1)
CALL PARTIAL(HS,Z2,PART2)
CALL PARTIAL(B4,Z3,PART3)
CALL PARTIAL(BH4,Z4 ,PART4)
CALL PARTIAL(W3,ZS5,PARTS)
CALL PARTIAL(W3,Z6,PART6)
CALL PARTIAL(W1,27,.PART7)
CALL PARTIAL(W1,28,PARTS8)
DI(1)=—PART1+PART2
DI (2) ==-PART3+PART4+PART1-PART2
DI (3)=PARTS-PART6
PARTH==PART3~PART2+PART4+PART1
DO 10 J=1,NH
JH=J+3
DI(JH)=PARTH*XH(I,J)
CONTINUEB
PARTW=—PART7-PARTG6+PART5+PARTS
DO 20 J=1,NW
JW=J+3+NH
DI(JW)=PARTW*XW(I1,J)
CONTINUE
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RETURN
END

SUBROUTINE INTEGRAL(ARG1,ARG2,ARG3,ARG4,PROB,IER)
DIMENSION X(30),X1(30),SCORE(30)

COMMON /CMN3/ N, RHO,X,X1,SCORE

CALL MDBNOR(ARG1, ARG2,RHO, PROB1, IER)

CALL MDBNOR(ARGS3 , ARG4 ,RHO, PROB2, IER)

CALL MDBNOR(ARG1, ARG4,RHO, PROB3, IER)

CALL MDBNOR(ARG3,ARG2,RHO, PROB4 , IER)
PROB=PROB1+PROB2-PROB3-PROB4

RETURN

END

SUBROUTINE WRTE(NH, NW, VLIKE, STPSIZE,NITER, Q, IVAR, IER)
DIMENSION X(30),Q(465) ,SCORE(30),X1(30)

COMMON /CMN3/ N, RHO,X,X1,SCORE

WRITE(3,2000) NITER, STPSIZE

2000 FORMAT(/,'NUMBER OF ITERATIONS = ',I3,' FINAL STEPSIZE =’,F7.5)

WRITE(3,2001)
2001 FORMAT(/,’FINAL SCORE : ')
CALL WRTVEC(N, SCORE)
: WRITE(3,3000) VLIEKE
3000 FORMAT(/,’ LOG-LIKELIHOOD VALUE = ',E13.6)
WRITE(3,4000) RHO
4000 FORMAT(//,’'RHO = !,E10.3)
TSTAT=X(1) /SQRT(Q(1))
IF(IER.BQ.128) TSTAT=0.
WRITE(3,5000) X(1),TSTAT -
5000 FORMAT(/,'ALPHA H-0 = ',E10.3,° T-STATISTIC = ’,E10.3)
TSTAT=X(2) /SQRT(Q(3))
IF(IER.EQ.128) TSTAT=0.
WRITE(3,6000) X(2),TSTAT
6000 FORMAT(/,’ALPHA H-1 = ',E10.3,’ T-STATISTIC = ’,E10.3)
TSTAT=X(3) /SQRT(Q(6)}
IF(IER.EQ.128) TSTAT=0.
WRITE(3,7000) X(3),TSTAT
7000 FORMAT(/,*DEL ALPHA W= ',E10,.3,' T-STATISTIC = ’',F10.3)
NHH=NHE+3
DO 100 I=4,NHH
IH=I-3
IN=I*(I+1)/2
TSTAT=X(X)/SQRT(Q(IN))
IF(IER.EQ.128) TSTAT=0.
WRITE (3,8000) IH,X(I),TSTAT
100 CONTINUE

8000 FORMAT(/,’DELTA UH’',I2,' = ',E10.3,’ T-STATISTIC = °',E10.3)

K=4+NH
DO 200 I=K,N
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W=I-K+1
IN=I*(I+1)/2 :
TSTAT=X(I)/SQRT(Q(IN))
IF(IER.EQ.128) TSTAT=0.
WRITE(3,9000) IW,X(I),TSTAT
CONTINUE
FORMAT(/,'DELTA ©UW'’,12,' = ',E10.3,' T-STATISTIC = ’',E10.3)
IF(IVAR.EQ.0.0R.IER.EQ.128) GO TO 50
WRITE(3,1000)
FORMAT (// ,* ASYMPTOTIC COVARIANCE MATRIX')
CALL WRTIVAR(Q)
CONTINUE
RETURN
END

SUBROUTINE WRIVAR(Q)
DIMENSION Q(465),RON(30),X(30),X1(30),SCORE(30)
COMMON /CMN3/ N,RHO,X,X1,SCORE
PO 20 I=1,N
IL=I*(I-1)/2 + 1
IU=IL+I-1
IJ=0
DO 30 J=IL,IU
ILI=1J+1
ROW(IY)=Q(J)
CONTINUE
WRITE(3,4000)
FORMAT (/)
CALL WRTVEC(I,ROW)
CONTINUE
RETURN
END

SUBROUTINE WRTVEC(NDIM, VEC)
DIMENSION VEC(30)
MDIM=NDIM/8
IF(MDIM.EQ.0) GO TO 10
DO 20 IM=1,MDIN
Mi=(IN~-1)*8+1
M2=]IM*8 :
WRITE(3,3000) (VEC(J),J=M1,M2)
FORMAT (8E10.3)
CONTINUE
M3=MDIN®*8+1
IF(M3.GT.NDIM) GO TO 30
WRITE(3,3000) (VEC(J),J=M3,NDIM)
RETURN
END

SUBROUTINE WRTVEC1(NDIM, VEC)
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DIMENSION VEC(30)
MDIM=NDIM/8
IF(MDIM.EQ.0) GO TO 10
DO 20 IM=1,MDIM
Mi=(IM-1)*8+1
M2=IM*8
WRITE(*,3000) (VEC(J),J=M1,M2)
FORMAT (1X,8E10.3)
CONTINVE
M3=MDIM*8+1
IF(M3.GT.NDIM) GO TO 30
WRITE(*,3000) (VEC(J),J=M3,NDIM)
RETURN
END

SUBROUTINE FIT(VLIKE, IFIT1,IFIT2)
DIMENSION XH(2100,13),3XW(2100,13),X(30) ,RTAB(4) .11(30) SCORE(30)
DIMENSION NYH(2100),NYW(2100) , INDEX0(2100), INDE!P(ZIOO)
DIMENSION PROBHAT (2100)
INTEGER TABLE(4),ESTTAB(4) ,NGTAB(4)
COMMON /CMN1/ NOBS,NH,NW,XH, XW,NYH, NYW, PROBHAT
COMMON /CMN3/ N,RHO,X,X1,SCORE
NGHO=0
NGH1=0
NGWO0=0
NGW1=0
DO 10 J=1,4
NGTAB(J) =0
CONTINUE
IF(IFIT1.EQ.1) GO TO 12
CALL TREAT1(INDEXO, INDEXP, NGHO ,NGH1 ,NGWO,NGW1 ,NGTAB)
GO TO 13
CALL TREAT2(INDEXO, INDEXP,NGEO,NGH1 ,NGWO,NGW1,NGTAB)
IF(IFIT2.EQ.0) GO TO 14
CALL FITSTAT(NOBS, VLIKE, INDEXO, INDEXP, NGHO , NGH1 , NGW0 ,NGW1 ,NGTAB,
TABLE, ESTTAB, R, RH, RW , RTAB, RHO , RH1 , RW0 ,BW1 ,RLIKE)
CALL WRTSTAT (TABLE, ESTTAB, R, RH, RW, RTAB, RHQ , RH1, RW0,RW1,RLIKE)
NX=NE+NW+4
CALL WRIVEC(NX,X)
RETUEN
END

SUBROUTINE TREAT1 ( INDEXO, INDEXP, NGHO , NGH1 , NGWO ,NGW1 ,NGTAB)
DIMENSION XH(2100,13),XW(2100,13),X(30),X1(30),SCORE(30)
DIMENSION NYH(2100) ,NYW(2100) , INDEX0(2100) , INDEXP(2100)
DIMENSION PROBMAT (2100)

INTEGER NGTAB(4)

COMMON /CMN1/ NOBS,NH,NW,XH, XW, NYH, NYW, PROBHAT

COMMON /CMN3/ N,RHO,X,X1,SCORE

DO 100 I=1,NOBS
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CALL DELTA(I,DELTAH,DELTAW)

CALL IPROBOO(DELTAH,DELTAW,PROO)

CALL IPROBO1(DELTAH,DELTAW,PRO1)

CALL IPROB10(DELTAH,DELTAW,PR10)

CALL IPROB11(DELTAH,DELTAVW,PR11)

CALL YHAT(PROO,PRO1,PR10,PR11, IYHHAT, IYWHAT, INDEXI)
INDEXP(I)=INDEXI

IYH=NYH(I)

IYW=NYW(I)

CALL IND(IYH, IYW, INDEXOI)

INDEXO(I)=INDEXOI

CALL COUNT(IYH, IYHHAT, IYW, IYXWHAT, INDEXOIX, INDEXI, NGHO ,NGH1,

1 NGWO0 ,NGW1 ,NGTAB)
100 CONTINUE

RETURN
END

SUBRGUTINE TREAT2 ( INDEXO, INDEXP, NGHO , NGH1 , NGW0 , NGW1 ,NGTAB)
DIMENSION XH(2100,13),XW(2100,13),X(30),X1(30),SCORE(30)
DIMENSION NYH(2100),NYW(2100),INDEX0(2100) , INDEXP(2100)
DIMENSION PROBHAT(2100)

INTEGER NGTAB(4)

COMMON /CMN1/ NOBS, NEH, NW,XH,XW, NYH, NYW, PROBHAT

COMMON /CMN3/ N,RHO,X,X1,SCORE

WRITE(3,1000)

1000 FORMAT(//,* YH ', IW ',’ HHAT ',’ WHAT ’',’' PROO ',

1001

1

1

* PRO1 ’,' PR10 ',' PR11 ',/)
DO 100 I=1,NOBS
CALL DELTA(I,DELTAH,DELTAW)
CALL IPROBOO(DELTAH, DELTAW, PR0OO)
CALL IPROBO1(DELTAE,DELTAW,PRO1)
CALL IPROB10(DELTAH, DELTAW,PR10)
CALL IPROB11(DELTAH,DELTAW,PR11)
CALL YHAT(PROO,PRO1,PR10,PR11,IYHHAT, IYWHAT, INDEXI)
INDEXP (X )=INDEXI
IYH=NYH(I)
IYN=NYW(I)
WRITE(3,1001) IYH, IYW, IYHHAT, IYWHAT,PROO,PRO1,PR10,PR11
FORMAT (4( 3X, I1,2X),4(1X,F4.3,1X))
CALL IND(IYH, IYW, INDEXOI)
INDEXO(I)=INDEXOIX :
CALL COUNT(IYH, IYHHAT, IYW, IYWHAT, INDEXOX, INDEXI, NGHO,NGH1,
NGWO0 , NGW1 , NGTAB)

100 CONTINUE

RETURN
END

SUBROUTINE YHAT(PROO,PRO1,PR10,PR11, IYHHAT, IYWHAT, INDEXI)
INDEXI=1
IF(PROO.GT.PRO1) GO TO 200
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PRMAX=PRO1
INDEXI=2
GO TO 110
PRMAX=PR0OO
IF (PRMAX,GT.PR10) GO TO 100
PRMAX=PR10
INDEXI=3
IF(PRMAX.GT.PR11) GO TO 500
INDEXI=4
GO TO (501,502,503,504) , INDEXI
IYHHAT=0
IYWHAT=0
GO TO 900
IYHHAT=0
IYWHAT=1
GO TO 900
IYHHAT=1
IYWHAT=0
GO TO 900
IYHHAT=1
IYWHAT=1
RETURN
END

SUBROUTINE IND(IYH, IYW, INDEXOI)
INDEXOI=1
IF(IYW.EQ.1) GO TO 200
IF(IYH.EQ.1) INDEXO0I=3
GO TO 100
INDEXOI=2
IF(IYH.EQ.1) INDEXOI=4
CONTINUE
RETURN
END

SUBROUTINE COUNT(IYH, IYHHAT, IYW, IYWHAT, INDEXOI, INDEXI,
1 NGHO , NGH1 ,NGW0 ,NGW1 , NGTAB)
INTEGER NGTAB(4)
IF(IYH.BQ.0.AND.IYHHAT.EQ.0) NGHO=NGHO+1
IF(IYH.EQ.1.AND, IYHHAT.FQ.1) NGH1=NGH1+1
IF(IYV.EQ.0.AND,.IYWHAT.EQ.0) NGWO=NGW0+1
IF(IYW.EQ.1.AND.IYWHAT.EQ.1) NGW1=NQ¥1--1
DO 100 J=1,4

IF(INDEXOI.EQ.J.AND.INDEXI.EQ.J) NGTAB(J)=NGTAB(J)+1
CONTINUE
RETURN
END

SUBROUTINE FITSTAT (NOBS, VLIKE, INDEXO, INDEXP, NGHO , NGH1 , NGWOQ,NGVW1,
1 NGTAB, TABLE, ESTTAB, R, RH, RW , RTAB, RHO ,RH1 ,EW0 , EW1 ,RLIKE)
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DIMENSION XNGTAB(4),RTAB(4)
INTEGER NGTAB(4) ,TABLE(4) , ESTTAB(4) , INDEX0(2100) , INDEXP(2100)
CALL CONTIN(NOBS, INDEXO, TABLE)
CALL CONTIN(NOBS, INDEXP, ESTTAB)
XNGHO=NGHO
XNGH1=NGHI
XNGH=XNGHO+XNGH1
XNGWC=NGWO
XNGW1=NGW1
XNGW=XNGW0+XNGW1
XNOBS=NOBS
RH=XNGH/XNOBS
RHO=XNGHO/ (TABLE(1)+TABLE(2))
RH1=XNGH1/ (TABLE(3) +TABLE(4)) .
RW=XNGW/XNOBS
EWO=XNGNO/ (TABLE(1) +TABLE(3))
RW1=XNGW1/(TABLE(2)+TABLE(4))
DO 10 J=1,4
XNGTAB(J) =NGTAB(J)
RTAB(J)=XNGTAB(J) /TABLE(J)
CONTINUE
XNG=XNGTAB( 1) +XNGTAB(2)+XNGTAB(3) +XNGTAB(4)
R=XNG/XNOBS ,
RLIKE=1.+ VLIKE/(XNOBS®ALOG(4.))
RETURN
END

SUBROUTINE CONTIN(NOBS, NVEC, NTAB)
INTEGER NVEC(2100) ,NTAB(4)
DO 100 J=1,4
NTAB(J)=0
CONTINVE
DO 200 I=1,NOBS
NVECI=NVEC(I)
G0 TO (101,102,103,104) ,NVECI
NTAB(1)=NTAB(1)+1
GO TO 201
NTAB(2)=NTAB(2)+1
GO TO 201
NTAB(3)=NTAB(3)+1
GO TO 201
NTAB(4)=NTAB(4)+1
CONTINUE
CONTINUE
RETURN
END

SUBROUTINE WRTSTAT(TABLE, ESTTAB,R, RH, RW, RTAB, RHO ,RE1 ,RWO,RW1,
RLIKE)
DIMENSION RTAB(4)
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INTEGER TABLE(4) ,ESTTAB(4)

WRITE(3,2004) RLIKE,R

FORMAT(//,' RLIKE = ',F4.3,3X,' R = ',F4.3)

WRITE(3,2000)

FORMAT(//,' OBSERVED AND PREDICTED CONTINGENCY TABLES :')
WRITE(3,2001)

FORMAT(/,' CELLS :',' 60 *,' 01 ', 10 '’ 11’)
WRITE(3,2002) (TABLE(J),J=1,4) )

FORMAT(/,' OBSERVED :',2X,14,4X,14,4X,14,4X,14)
WRITE(3,2003) (ESTTAB(J),J=1,4)

FORMAT(/,' PREDICTED :°’,2X,I14,4X,14,4X,14,4X,14)
WRITE(3,2005) (RTAB(J),J=1,4)

FORMAT(/,’ HW-RATIOS :',2X,F4.3,4X,F4.3,4X,F4.3,4X,F4.3)
WRITE(3.2006)

FORMAT(//,' RATIOS : WORK 4 NOIWORK WORK ONLY NOT WORK ')
WRITE(3,2007) RH,RH1,RHO

FORMAT(/,’ HUSBAND :',6X,F5.3,11X,F5.3,9X,F5.3)
WRITE(3,2008) RW,RW1,RWO

FORMAT(/,’ WIFE :’',6X,F5.3,11X,F5.3,9X,F5.3)

RETURN '

END

SUBROUTINE BIGN(XNUM)
ABIG=85.
ANUM=ABS (XNUM)
IF(ANUM.LT.ABIG) GOTO 100
SIGN=1,
IF(XNUM.LT.0.) SIGN=-1.
XNUM=SIGN®*ABIG
RETURN
END v

SUBROUTINE BIGN1(XNUM, ITRUN)
ITRUN=0
ABIG=1.0E+20
ANUM=ABS (XNUM)
IF(ANUM.LT.ABIG) GOTO 100
ITRUN=2
SIGN=1.
IF(XNUM.LT.0.) SIGN=-1.
XNUM=SIGN*ABIG
RETURN
END

REAL FUNCTION F(N,Z)
COMMON /CMN2/ RATIO
REAL Z(1)
PI=ACOS(-1.)
INUM=— . 58Z(1)%*2
CALL BIGN(XNUM)
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DENS=(1./SQRT(2.*PI))*EXP(XNUM)
Y=RATIO*Z(1)

CALL MDNOR(Y, CDF)

F=DENS*CDF

RETURN

END

REAL FUNCTION MLOGLIK(STPSIZE)

DIMENSION X(30),X1(30),SCORE(30),XH(2100,13),XW(2100,13)
DIMENSION PROBHAT(2100)

INTEGER NYH(2100),NYW(2100)

REAL STPSIZE

COMMON /CMN1/ NOBS,NH,NW,XH, XW, NYH, NYW, PROBHAT
COMMON /CMN3/ N,RHO,X,X1,SCORE

DO 10 J=1,N

X(J)=X1(J)+STPSIZE*SCORE(J)

CONTINUE

CALL VALUE(N,X, VLIKE)

WRITE(3,102) STPSIZE,VLIKE

FORMAT (1X, * STEPSIZE =*,R7.5,’ LOGLIK =’,E13.6)
MLOGLIK=-VLIKE

RETURN

END
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