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ABSTRACT 

The essential starting point of this dissertation presents an 

alternative approach for formulating simultaneous equation models for 

qualitative endogenous variables. To be explicit, the endogenous 

variables will be generated as Nash equilibria of a game between two 

players, and the statistical model will be generated by invoking the 

random utility framework introduced by McFadden (1974, 1981). Contrary 

to the earlier s~ultaneous equations models (Heckman (1978)), the 

approach presented in Chapter II will not ~pose logical consistency 

constraints on the parameters. A distinctive feature of the model is 

that it extends the usual s~ultaneous model ~ith structural shift to 

cases where the parameters need not satisfy the logical consistency 

conditions. 

Following the game theoretic formulation set out in Chapter II, 

Chapter III proposes an alternative model where the equilibrium concept 

is that of Stackelberg. As in Chapter II, we will still assume that 

each player max~izes his own utility, with the statistical model again 

being derived using McFadden's random utility approach. A distinctive 

feature of this model is that it contains as a special case the usual 

recursive model for discrete endogenous variables. 

With Chapters II and III as a theoretical background, the purpose 

of Chapter IV is to present an empirical study of the Nash and 

Stackelberg equilibrium models. The problem we examine concerns a 

married couple's joint decision whether or not to participate in the 
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labor. market. We examine three competing specifications. Chapter V 

concludes this dissertation with a discussion of which of the three 

empirical models most adequately describes the joint labor force 

participation decision of a random sample of married couples. Since 

none of the three models are completely nested in each other, we are 

not able to employ any of the classical tests. As such, we use an 

alternative method developed by Vuong (1985) for choosing the most 

adequate model. 
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CIIAPTER I: INmODUCl'ION 

Over tho last fow decades. economists have become increasingly 

interested in studyins economic decisions involving choice over a 

finite number of alternatives. For ezample .• frequently analyzed 

behavioral phenomena are decisions over brands of consumer durablos 

(see. e.g •• Dubin and McF*dden (1984) and Crags and Uhler (1970)). 

travel mode (see, e.s •• Domencich and McFadden (1975) and Bausman and 

Wise (1978)). and labor force participation (see. e.g •• Gunderson 

(1974) and Parsons (1980)). (Soo Amemiya (1981) for a larse list of 

empirical papers which use discrete models.) .As a first step in 

modolina such ezamp1es. it is natural to consider a univariate xandom 

variable takins on two or mo~e discrete values. For instance. we may 

consider a random variable takins on only two outcomes, those beins 

whether to drive to work or take tho bus• alternatively. we may 

describe a random variable whoso two outcomes index an individual's 

decision whether or not to participate in the labor market. But now 

consider a more coaplicated problem in which an individual must decide 

not only whether to take tho bus or drive to wort but also whether to 

travel durina rush hours or off-rush hours; or the decision of a 

husband and wife whether or not to eaCh participate in the labor 

market. ~rtainly both of those probleas iuvolve joint decisions and 

should be aodelod as multivariate (jointly dependent) qualitative 

random variables. typically. we then specify a systoa of simultaneous 

equations in the fora of a structural model. Such a system is 

simultaneously determined in the sense that the interaction of all 
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variables as specified by tho model determines simultaneously the 

entire sot of jointly dependent qualitative variables. 

At this point it may be useful to recall what we mean by a 

structural model. 

"In the fundamental economic sense, the property that 
characterizes a structural system is the (truth of tho) 
assertion that it describes accurately (or adequately) the 
precise fashion in which all the current endosenous and 
predetermined variables mutually interact within the 
specified economic system~ Thus, aa of a siven moment of 
time, observations on tho system represent the result of 
such interaction.." 

P.I. Dhrymes (1974) 

If these observations on the system represent the result of 

interaction amons individuals or firms, then it must be recosnized 

that these interactions will most likely be ~haractorized by stratesic 

behavior. Therefore, it is incumbent that this stratesic behavior be 

incorporated diroctly into econometric models of individual choice 

usins the concepts of same theory. Until now, this has not been done 

and will be tho focus of this dissertation. To be more precisew tho 

major purpose of this dissertation is to present an alternative 

approach for formulatins simultaneous equations models for qualitative 

ondosenous variables. The endosenous variables will be senerated 

successively as Nash and Stackelbora equilibria of a same played 

between two individuals, snd tho statistical model will be senoratod 

by invokina tho random utility fraaowork introduced by McFadden (1974, 

1981). We then apply these models to a labor force participation 

problem. Finally, we propose a test to choose tho model which most 

accurately generates the observations. Ronco, tho title of this 
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dissertation. 

Before developing the ideas in this dissertation, it is first 

necessary to review tho literature on qualitative multivariate random 

variables. This literature has essentially developed in two separate 

directions by those who assume an underlyins unobserved or latent 

random variable, and those who make no such assumption but instead 

follow the loslinear model approach to analyze continseney tables. As 

Fienbers (1975) points out, this controversy dates back to the 

bosinnins of tho 20th century with Pearson (1900) advooatins tho 

for.mer approach and Yule (1900) advocatina tho latter. We will 

discuss the latter approach first. 

The d~stribution of a sot of K dichotomous random variables is 

completely described by tho 2K joint cell probabilities 

Pr(Y1,Y2 , •••• YK) in tho K dimensional continsoncy table. In tho case 

of K = 2, for esamplo with Y1 and Y2 takins on values one or zero, the 

four probabilities Pr(Y1 = y1,Y2 = y2) may be described in the 

followins table. 

1 0 

1 Pr(1,1) Pr(1,0) 

0 Pr(O,l) Pr(O,O) 
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The probabilities must sum to one and each must lie in the unit 

interval. 

One representation of this problem is known as the loslinear 

model (LLN) (see. •·I•• Bithop. Fienberg and Bolland (1975). Goodman 

(1971) and Haberman (1974)). For the case of K = 2. with Y
1 

and Y
1 

each tatins on tho values 1 and 0, the loslinear model is siven by 

Note that tho 1K = 12 = 4 cell probabilitioa are fully represented by 

tho four sinslo and double subscripted u terms. In this formulation. 

tho terms u1 and u2 are commonly known aa "main effocta" and tho u11 

toJ:m h known as tho "second-order interaction effect". Since tho 

four probabilites must sum to one. tho standard normalization imposed 

on tho overall moan, u0 , is 

.-uo = i; ~ ezp[u1(1Y1-1) + ~(1Y1-u 
1 2 

+ u11<2Y
1
-1)(1Y

1
-1)]. 

(2) 

While tho loalinoar model may be successful in describins tho 

outcomes in a purely scientific experiment, it is of little use when 
--

one of the purposes of statistical est~ation is to predict tho effect 

of chansos in economic policy or some other structural chanse. 

Indeed, tho loalinoar model does not mate the distinction between 

endoaonous and •~osenous v&Eiables~ as such, it has boon described by 

some (see, •·I· Maddala (1983)) as more a corrolatioa model than a 
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causal model. It is probably for this reas~n that tho loglinear model 

has been little used in economics. To this end, the conditional 

loglinear model (CLLH) has been put forth as a model which purports to 

more adequately expld.n causal relationships (see, e.g., Norlove and 

Press (1973, 1976) and Vuona (1982b). Given that we may want to 

explain o3e variable given advance knowledge of another variable, a 

formulation in terms of conditional probabilities seems particularly 

appealina. With this in mind, the conditional probability of Y1 given 

Y2 is written as 

where we have used tho loalinear specification of the joint 

probability of (Y1,Y2) as given in (1) and the normalization given in 

(2) • A representation that is more commonly used is tho loa-odds 

ratio: 

( 3) 

For completeness, we have a s~ilar expression for the probability of 

(4) 
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Because of the similarity between equations (3) and (4) and 

the structural equations in a simultaneous model for continuous 

variables, some authors have been led to interpret these conditional 

loglinear equations as structural (see, e.g., Schmidt and Strauss 

(197Sa,b)). To do this is misleading, for a couple of reasons (see, 

e.g., Nelson (1979) for an alternative discussion). First, and 

foremost, as opposed to the situation in classical simultaneous models 

where tho endogenous variables are determined jointly, tho derivation 

at equations (3) and (4) is based on conditional distributions. 

Second, note tho implicit cross-equation parameter constraint in 

equations (3) and (4), viz, w~ • w~. Thus we are required to live 

with tho unappealing and restrictive notion that the effect of Y1 on 

Y2 is equal to tho reverse effect of Y2 on Y1 • We are thus led to the 

conclusion that the conditional loglinear model has no more of a 

structural interpretation than the loalinear model; indeed, this 

should not be surprisins siven that the latter model is nothina more 

than an alternative representation of tho fo~er model. A further 

attempt to modol causal relationships is aiven by tho recursive 

logistic model (ILK), the topic to which we now turn. 

Unlike tho usual siBultaneous equations model where it is not 

possible to iatorprot each equation as a conditional ezpoctation 

ozcopt in tho case of a fully recursive model, we find that the 

fo~ulation of multivariate qualitative variables in a loaistic 

framework allows us to do precisely this. But as we will shortly soo, 

recursive loaiatic models suffer fraa tho aaao drawbacks as 
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conditional loglinoar models. Let us first o%amino models that are 

only partially recursive. Consider the case of three binary variables 

Y1• Y2 and Y3 where we posit that Y1 is determined first. and that Y1 

then effects both Y2 and Y3 which are determined jointly. Then the 

model is aiven as Pr(Y1.Y2.Y3) = Pr(Y1) • Pr(Y2,Y31Y1). Since it is 

easily shown that all parameters appeas:ina in Pr(Y2• Y3 1Y1) also appear 

in P~(Y2 1Y1 .Y3 ) and Pr(Y3 1Y1.Y2), we will use these latter two 

conditional probabilit,r o%presaions. Then e%presaina each of tho 

three probability components as loa-odds, we have: 

= ~r(Y2 • 1IY1,Y3)] 
L2(13 101 LPr(Y2 m oiY

1
.t

3
) 

= 2~ + 2u12Y1 + 2u23Y3 + 2u123YlY3. 

and 

(:rCY3 = l,,IY1• Y2)] 
L3(12 • 101 lPr(Y

3 
• oiY

1
,Y2) 

• 2u3 + 2ul3y1 + 2~3Y2 + 2u123Y1Y2. 

(5) 

( 6) 

( 7) 

where the u to~• appoarins in tho above throe equations refer to tho 

coefficients in the loalinear model. But DOW note fraa equation (6) 

that the coefficient attached to the Y3 term is the same as tho 

coefficient attached to the Y2 term in equation (7), viz. 2u23 • 

Therefore we see, just as in the conditional loalinoar model, that tho 

effect of Y2 on Y3 is identical to the opposite effect of Y3 on Y2 • 
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We now turn to fully reaarsive losistic models. 

Let us now alter tho ezample used in the discussion of 

partially recursive models so that now Y1 is determined first. that Y
1 

determines Y2 and that Y1 and Y2 now jointly determine Y3 • Thus we 

need to ezamine the marsinal distribution of Y1, tho conditional 

distribution of Y2 aiven Y1, and finally the conditional distribution 

of Y3 siven the joint determination of Y1 and Y2 • Asain, ezpressing 

each of the three probability components as los-odds rati~s. we have: 

(8) 

(9) 

(10) 

Althouah it is seen that thoro are no cross-equation constraints 

appearina in equations (8) throuah (10), in contrast to the previous 

two models, this model is inadequate unless the process aeneratina the 

observations is truly recursive. MOreover, even if tho true process 

is recursive, tho model still does not have a structural 

interpretation in tho sense that wo are modolina tho conditional 

determination of tho outcomes rather than their joint determination. 

For this reason, a number of authors fool that a more useful approach 
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in aodelina aultivaEiate qualitative v&Eiables is to assuae the 

existence of undeElyina continuous Eesponse functions. Since the 

aeneEal aodel intEoduced by Beckman (1978) considOEI a nuaboE of otheE 

models as special cases, we will confine OUEaolvoa to a dia~aaion of 

his aodel (see also Kaddala and Lee (1976)). 

Bockman consideEs the followina two equation aodol 

(11) 

(12) 

• • wheEe Y1t and Y2t &EO continuous latent Eandoa V&Eiables and Y1t and 

t
2

t aEo obaeEve4 qualitative v&Eiablea aeneEatod usina tho followina 

dichotomization: 

• 1 iff y1t > 0 

0 othoEWise (U) 

• 1 iff y2t > 0 

0 othoEWise 

• By aatina specific assaaptions on J1 and J2~ and on t 1t and 

• Y2t• a nuaboE of diffeEent aodels aEiso fE~ the aenoral· aodel 

specified by equations (11) - (13). 

both obaoEvod and if J1 and J2 are both zoEo, we have the classical 

siaultaneous equations aodel. Second, it aay be the oaao that while . ~ . 
we only obaerve whether tho event t 2t ~ o~ we aay in fact observe t 1t; 

• t 1t ia theEefoEe tEeated as a continuous E&ndoa variable. Beckman 
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calls this the "Hybrid Model with Structural Shift." Naturally. then 

we have the simple "Hybrid Model" when no structural shift is 

permitted; this is when p1 = p2 = 0. Finally. when y
1 

= y
2 

= 0 and 

• >. • >. 
only the events Y1t ~ 0 and Y2t ~ 0 are observed. we have a bivariate 

probit model with structural shift. When. in addition. p1 = p2 = o. 

we have the simple bivariate probit model of Ashford and Sowden 

{1~70). Since all tho models discussed above ezhibit similar 

characteristics. we will confine tho discussion to the case of the 

bivariate probit model with structural shift. 

As is well-known. all simultaneou. equations models of dummy 
•• • • 

endosenous variables that have tho realization of Y1t and Y2t• namely 

Y1t and Y2t• appearins as riaht-hand side variables must satisfy a 

constraint on tho paraaotors so as to insure that the probabilities 

add up to one. This restriction on tho parameters is commonly known 

as the losical consistency condition; for tho case at hand. the 

restriction is that p1 • p2 • 0. (See Beckman (1978) and Kaddala 

(1983); see also Schaidt (1981) for a sonora! discussion of losical 

consistona,y conditions required for various forms of simultaneous 

equations probit and tobit models.) As will be soon later. the 

implications of tho loaical consistency condition for bivariate probit 

models with structural shift are quito important and strikina. 

Iuat ss we have previously arauod that tho loslinear model and 

its conditional loslinoar and recursive loaistic variants are not 

adoqU.to for formulatina structural econometric models. Bockman arsuos 

that tho bivariate probit model with structural shift is superior to 
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the loglinear model in the sense that the loglinoar model is not 

sufficiently rich in parameters to distinguish structural association 

amona discrete random variables from purely statistical association 

amona discrete random variables. As we shall see, Beckman's arsument 
~ 

differs slightly from the arguments put forth above. 

To fiz ideas, consider again the loglinear model for two 

dichotomous variables 

Then the four joint probabilities generated by this model give us the 

followina set of equations: 

loa[Pr(O,O)] • u0 - u1 - u2 + • 12• 

where aaain u0 • -loa[ezp(u1 + u2 + u12> + 

u -2 
so as to insure that the individual probabilities add up to one. Now 

note that in the loalinear model, the conditional probabili~ that 

Y1 • 0 aivon Y2 may bo written as 
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Now let ua considox compaxable oxpxeasions fox Bockman's 

bivaxiato pxobit model with stxuctural shift. Repeating again tho two 

equation model. and omittins tho subscript t. we have 

Now let us impose tho losical consistency condition that 

~2 - o. say. T.hon, asain. the four joint probabilities s~neratod by 

this model sivo us the followins set of equations 

whore F(•,•, p) is the bivariate noraal cumulative density function 

with correlation coefficient p. Then usins the four equations above, 

we can write tho conditional probability that Y1 • 0 sivon Y2 as 
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Beckman now wishes to point out that while u1 and x1«1 • u2 and 

x2a2 play similar roles in the models in which they appear. it is 

important to note that u12 ancl p and p1 also play similar roles. In ·. 

the bivariate probit model with structural shift. the probability that 

Y1 • 0 given Y2 depends on Y2 for two conceptually distinct reasons: 

one related to the true structure of the model (p1 F 0) and tho other 

due to covariance in latent errors (p ~ 0). In the loglinear model. 

these two effects are indistinguishable. Thus the loglinear parameter 

of association. u12• corresponds to two distinct parameters in the 

bivariate probit model with structural shift. p and p1 • Although one 

must judge for himself whether or not the preceding arguaent is 

convincina. two fazther points deserve mention. 

First. while both the loglinear model and the Beckman model 

each contain a parameter whiCh attempts to capture the association 

between tho random variables Y1 ancl Y2• both these parameters are 
-

subject to restrictions; these restrictions call into question the 

usefulness of both models. As recalled fraa above. both the 

conditional loalinear model and tho partially recursive logistic model 

contain the iaplioit cross-equation parameter constraint which 

requires that tho effect of Y2 on Y1 be equal to the reverse effect of 

Y2 on Y1 • In the Bectaan aoclel. on the other hand. althouah the shift 

parameters are inoludocl as an attempt to O%plicitly model tho 

structural association between the raadoa variables Y1 and Y2• it will 

later be shown that tho required loaical consistency condition implies 

that the effect of Y1• say~ on Y2 is structurally independent fraa tho 
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reverse effect; this point was alluded to by Schmidt (1981). 

The second point concerns the Beckman model in particular. 

With rare exception (Waldman (1981)). the required logical consistency 

conditions do not have an economic interpretation. That is, there is 

usually no a priori reason to impose that either p1 or p2 must be 

zero. 

With this in mind, tho purpose of Chapter II of this 

dissertation is to present an alternative approach for formulating 

simulataneous equations models for qualitative endogenous variables. 

To be explicit. the endogenous variables will be generated as NaSh 

equilibria of a same between two individuals. and the statistical 

model will be generated by invokins the random utility framework 

introduced by McFadden (1974. 1981). (See Beckman (1978) p. 954. for 

a discussion of the random utili~ framework in bivariate probit 

models with structural shift.) Contrary to the earlier simultaneous 

equations models. the approach presented in Chapter II will not impose 

logical consistency constraints on the parameters. 

MOreover. a distinctive feature of tho model is that it 

extends the usual simultaneous model with structural shift to cases 

where tho parameters need not satisfy tho losical consistency 

conditions. Indeed. when tho losical consistency conditions are 

imposed. tho model coincides with tho usual s~ultanoous equations 

model with structural shift. This will provide a structural 

interpretation to the usual dichotomization. 

With this as a bactaround. Chapter II is oraanizod as follows. 
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Section 1 provides a short introduction to the Chapter. In Section 2. 

we show that the losical consistena,r condition implied by simultaneous 

equations models with structural shift require• the1e models to be 

recur•ive. Then in Section 3. our same theoretic approach will 

sussest a natural rule for seneratins the observed dichotoaon~ 

variables. other than tho dichotomization used in the literature up 

until now. The resultins statistic model is derived. and it i1 seen 

th~t no losical consistency condition• are implied on the parameters. 

In Section 4. identification of the model is discussed alona with 

problems of estimation that relate particularly to identification. 

Section 5 conclu4oa tho paper. Proofs of all proposition• are found 

ia the tezt of the Chapter itself. The first partial derivatives of 

the espresaiona for the probabilities are found in the Appendiz to 

Chapter II. as they will be needed both for identification and 

maziaization of the likelihood function. 

Followina the saae theoretic formulation set out in Chapter II 

where the diacrete dichotomoUI randoa variable• are aenerated as Na&h 

equilibria of a aame played by two individual•• Chapter III proposed 

an alternative aodel where the equilibria. concept used ia that of 

Stactelbera. A. in Chapter II. we will still aaaume that each player 

maztaizea hia own utility. with the statiatical aodel aaain beina 

derived uaina the randoa utility approach ••aaeated by KoFadden (1974. 

1981). A diatinctive feature of our model ia that it contains aa a 

special caae the usual recuraive model for discrete endoaenous 

variables (see. e.a •• K&ddala and Lee (1976)). A structural 
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interpretation of this latter model can then be given in terms of a 

Stackelberg game in which the leader is indifferent to the follower's 

actions. 

With this as a brief background, Ch~pter III is ozganized as 

follows. Section 1 provides a brief introduction to the Chapter. In 

Section 2, we derive the statistical model where the outcomes are 

aenerated as Stac:telbera equilibria of a aame played between two 

players. Section 3 compares the usual fo~ulation of the problem in 

terms of recursive models with our alternative fo~ulation. In 

particular, it is shown that the usual recurs~ve model is nested in 

our more general model. In Section 4, we discuss identification of 

tho model and ostt.ation issues as they relate to identifioation. 

Section 5 concludes the Chapter. Proofs of all propositions are found 

in the tezt of the Chapter. T.he first partial derivatives of the 

probabilities, which are needed both for identification and est~ation 

of tho model, are found in tho Appondiz to Chapter III. 

With Chapters II and III as a theoretical backarouad, the 

purpose of Chapter IV ia to proaent an empirical atudy of tho Naah and 

Stackelbora equilibria. models. Tho probloa we will ezaaino concerns 

a married couple'• joint decision whether or not to participate in the 

labor aar:tet. As auoh, we will ezaaine three coapetina 

specifications. First, we will aasuae that the joint work dooiaion is 

the outcoae of a Naah aaao played by the huaband and wife. Second, we 

will aasuae that the married couple playa a Stackelbera aaae in which 

the huaband playa the role of the leader, while his wife playa the 
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role of the follower. Third, we will specify another Stackelberg game 

in which tho roles of the leader and follower are reversed. 

Yo fool that an ezamination of this problem will yield two 

useful results. First, it will demonstrate that tho game theoretic 

models we have proposed are in fact empirically tractable. Second, we 

feel that the proposed study will make a contribution to the 

literature on labor force participation because we ezplicitly model 

the behavior of a married couple in a game theoretic framework, while 

previous work has either taken tho husband's decision whether or not 

to wo%k as ezosonous (see, e.,., Bockman (1974), Beckman and Kacurdy 

(1980)), or specified tho labor supply of a husband and wife from tho 

outcome of a joint utility function (see, •·I·• Ashenfelter and 

Hockman (1974), Cotterman (1981), and Gronau (1973)). 

After one reads Chapters II and III, it will hopefully be 

clear that the structures of tho Nash and Stackolbors models contain 

some similarities. As such, the =imilaritiea in the structure of the 

models will naturally translate into similarities in the specification 

of the throe applicat~ona. T.hus, after a brief introduction in 

Section 1, these a~ilaritios will be discussed all at once in Section 

2. Section 3 will discuss peculiar features of tho structure of tho 

Nash model alona with tho empirical results of tho problem under 

study. Section 4 will discuss tho Stackolbora model for tho case in 

whiCh tho husband playa tho role of tho loader while hia wife playa 

tho role of tho follower. Empirical results will also be presented. 

Section 5 discusses tho third empirical ozamplo whore tho roles of the 
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husband and wife are reversed. Section 6 provides a brief conclusion. 

A description of the data set used in the three empirical studios is 

included as an Appendi~ to Chapter IV. As such. the Appendi~ will 

discuss tho source and description of the orisinal data set. the 

selection criteria we used in choosina the appropriate set of 

observations. and tho moans and variances of tho explanatory 

variables. 

With Chapters II throuJh IV as a backaround, it is natural to 

conclude this dissertation with a discussion of which of tho three 

empirical models moat accurately describes tho joint labor force 

participation decision for tho randoa sample of married couples. 

Chapter V proposes to do precisely this. As will be made explicit in 

Chapter V, none of tho three models are completely nested in each 

other; as such, we will not be able to employ any of tho classical 

tests. viz, tho Wald test, tho Laaranso Multiplier test or tho 

likelihood ratio test. To sot around this difficulty. two alternative 

methods have boon developed over the last couple of decades, those 

beins the techniques of model selection as proposed first by Akaike 

(1973. 1974). and tests of non-nested hypotheses firat propoaed by Co~ 

(1961. 1962). Since neither of these two methods has been widely 

employed in tho e~irical econometrics literature, it is therefore 

necessary to present a brief review of tho literature on both of them. 

With this as a brief backsround to tho problem of choosina tho 

moat adequate model, Chapter V is oraanized as follows. Section 1 

presents a brief introduction. Sections 2 and 3 present a review of 
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tho litoEaturo on model selection and tests of non-nested hypotheses. 

respectively. As will be explicitly pointed out in both sections. 

major difficulties are encountered in caErying out either of the two 

methods. As such. an alternative method will be employed which deals 

both with model selectio.m and testa of non-nested hypotheses. 

Although this method is developed fully in Vuong (1985). it will be 

discussed briefly in Section 4. Using tho method suggested in Section 

4. Section S will attempt to choose tho most adequate of tho three 

proposed models. Section 6 presents a brief conclusion. 

Upon tho completion of ChaptoE v. two sepaEato appendices will 

be found. Appendix A presents tho docaaentation and tho computer 

proaraa used to estimate tho Nash model. Similarly. Appendix B ·-· 

presents tho documentation and tho computer pEO&Eaa used to estimate 

both specifications of tho Stackelberg model. 
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CHAPTER II : AN ECONOMETRIC MODEL OF A NASH GAME 

1 . INlROWCI'ION 

Over tho last decades, economists have been increasingly 

interested in studying economic decisions involving choice among a 

finite number of alternatives. For instance. freq~ntly analyzed 

behavioral phenomena are decisions on labor force participation, 

travel modes. and brands of co .. odity purchase_•• A reason for such a 

trend may lie in the increasina availability and quality of larae 

microdata sets. Since the behavioral phenomena of interest were 

qualitative in nature, new statistical models such as the by-now 

well-known loait model were introduced in econometrics (McFadden 

(1974), Nerlove and Preas (1973. 1976)). 

Followina the development of the standard linear simultaneous 

equations model (Koopmans and Hood (1953)), tho literature on discrete 

variables models has rapidly evolved in stmultaneous modeling. In 

particular. the first simultaneous models that were proposed were 

directly iasued from the standard 1 inear siaul taneous equatioas model. 

Specifically, the models were formulated in teras of a liaear 

simultaneous equations model in latent continuous variables fr011 which 

the observed qualitative variables were ;one:ated usina a 

• • dichotomization such as Y1t • 1 if Y1t > o. and Y1t • 0 if Y1t i 0 

(see e.g., Maddala and Leo (1976), Nelson and Olson (1978)). 
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More recently. startins with Amemiya (1974) and Heckman 

(1978), a new generation of simultaneous models for 

qualitative/truncated variables was introduced whore the underlying 

simultaneous equations models were formulated in terms of both latent 

continuous variables and observed qualitative/truncated variables. 

These models are often called simultaneous models with structural 

shift. As is well-known. however, a major difficulty that arises with 

those latter models is that they require tho parameters to satisfy 

some losical consistency conditions in order that the models be 

statistically meaninsful (see, e.g •• Heckman (1978), Gourieroux, 

Laffont. and Monfort (1980), and Scbaidt (1981)). 

With some rare exceptions (Waldman (1981)). the losical 

consistency conditions implied by the simultaneous models with 

structural shift do not have an economic interpretation. This fact 

explains the few applications of these models in economics. MOreover. 

as Scbidt (1981) has pointed out, when the exogenous va:d &ol~.li ~ro 

qualitative. the associated logical consistency conditions imply some 

rocursivity in the simultaneous equation models. Althoush Haddala 

(1983. Sections 5.7 and 5.8) has warned asainst the mechanistic 

formulation of simultaneous models with latent continuous variables. 

and has arsuod that in many cases an alternative model without losical 

consistena,r conditions can be specified, the previous models are 

nevertheless the only ones available in the literature that have both 

latent continuous variables and observed qualitative variables in tho 

equations. 
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The purpose of this chapter is to present an alternative 

approach for formulatins simultaneous equations models for qualitative 

endogenous variables. For the simple model that we shall propose. 

both latent continuous variables and observed dichotomous variables 

will appear in the equations. To be explicit. the observed endogenous 

variables will be senerated as Nash equilibria of a game between two 

individuals. and the statistical model will be generated by invoking 

the random ~tility framework introduced by McFadden (1974. 1981). 

Contrary to earlier s~ultaneoua models. however. our approach will 

not ~pose loaical consistency constraints on the parameters. 

A distinctive feature of our model is that it extends the 

usual simultaneous model with structural shift to cases where the 

parameters need not satisfy the loaical consistency conditions. 

Moreover. when the logical consistency conditions are ~posed. our 

model coincides with the usual simultaneous model with structural 

shift. This provides a structural interpretation to the usual 

dichotomization. 

The chapter is oraanized as follows. In Section 2. we shall 

show that the loaical consistency conditions implied by s~ultaneous 

equation models with structural shift actually rule out s~ultaneity 

for the st.ple problem that we consider. Since siaultaneity is an 

inherent feature of the problea. it follows that these models are 

inappropriate. Then in Section 3. our same-theoretic approach will 

sugaest a natural rule for aener~tina the observed dichotomous 

variables. other than the dichotomization rule used in the literature 
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up to now. Tho rosultins statistical model is derived. and it is seen 

that no losical consistency conditions are implied on the paramotors. 

Section 4 discusses identification of tho model and a few estimation 

problems as they relate to identification. Section S concludes tho 

chapter. As will be discussed in Section 3. a difficulty arises when 

thoro do not exist unique pure stratesy Nash equilibria. As a result. 

Appendix A of this chapter provides a justification of how wo handle 

this difficulty. Tho first partial derivatives of tho probabilities 

are found in Appendix B of this chapter. as they will be needed for 

both identification and estimation of tho model. 

2. SDIJLTANF.OUS EQUATIONS MODELS WITH Sl1l1JC11JIW.. SHIFT: A CRITIQUE 

To simplify tho discussion. we shall restrict our attention to 

the case where there are only two qualitative ondosenous variables. 

To simplify further. we shall assume that these variables are 

dichotomous. As an illustration. it will be convenient to consider 

tho decision to participate in the labor force by a husband and his 

wife: 

Yh = 1 if the husband works. 

• 0 otherwise. 

Y • 1 if the wife works. w 

• 0 otherwise. 

(The subscript indoxina tho observations is oaittod in this section 

and the followina one.) 

Followina tho classical tradition in econoaics. we shall 
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nevertheless postulate that each individual mazimizes hia or her own 

utility function. The decisions of the husband and wife need not. 

however. be independent since tho utili,f.J:' derived by_each ind~vidual 

-naturally depends on tho action taken by the other. Let Uh(i.j) be 

the utility that the husband derives froa tatins action i if his wife 

takes action j where i • 1 if the husband worts and 0 otherwise. and 

j = 1 if the wife worts and 0 otherwise. The utility U (j.i) derived 
w 

by the wife froa takins action j if her husband takes action i is 

defined similarly. 

To sonerate the obfervod dichotoaous variables lh and Yw• the 

rule that has been used in the literature on st.ultaneous equations 

models for dummy endosonous variables is su.aarized in tho following 

asslUilption. 

ASSUJIPTION A1: 

lh • = 1 if lh > o • 

.. 0 otherwise • 

• y = 1 if y > o. w w 

= 0 otherwise 

where: 

. ~ ~ ~ ~ 

Y mY [U (1.1) - U (0.1)] + (1- y_ )[U_(l.O) - U (0.0)] • . w ~ w w ~ w w 
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Tho rationale for this model is the following. If tho wife 

works (Yw = 1), then the husband works (Yh = 1) if and only if 

- - 1 Uh(1,1) L Uh(0.1)~ On the other hand, if the wife does not work 

- -(Yw = 0), the husband works if and only if ~h(l,O) L Uh(O,O). 

Combinina those two conditions, it follows that 1h = 1 if and only if 

• • 1b > 0 where lh ia defined as above. 

similarly derived. 

The decision rule for Y is 
w 

-Following McFadden (1974, 1981), the utilit~es Uh(i,j) and 

-U (j,i) are treated as random, and decomposed into deterministic ... 
components and random components: 

-Uh(i,j) • Uh(i,j) + ~h(i,j), 

-u ... <J,i) = u.cj.i) + ~<J~i). 

To complete the specification of the statistical model. assumptions 

must be made on the unobserved random components ~h(i.j) and ~(j,i). 

• • From the ezpressiona for 1h and Yw• it is clear that only tho 

differences ~h(1,1) -·~h(0,1), ~h(1,0) - ~h(O,O), ~(1,1) - ~(0,1), 

and ~(1,0) - ~(0,0) are relevant. We make tho following simplifying 

assllllption: 

ASSUMPTION A2: 

~h(1,1) - ~h(0,1) • ~h(1,0) - ~h(O,O) 

~(1,1) - ~(0,1) - ~(1.0) - ~(0.0) - 8 • w 
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where the pair (ah.aw) is normally distributed with zero me~na, unit 

variances, and correlation p. 

To simplify further, we shall assume that the difference in 

utility that the husband derives froa wortins versus not workins. when 

the wife worts, differs only by a constant Ph from the utility he 

derives from wortins versus not wortins when tho wife does not work. 

A similar simplifyins assumption is made for the wife. 2 Formally, we 

have: 

ASSUMPTION A3: 

Uh(l,l) - Uh(O,l) • ph + Uh(l,O) - Uh(O,O) • ~h + Ah' 

u (1,1) - u (0,1) - p + u (1,0) - u (0,0) & p + 4 • w w w w w w w 

Using Assumptions A2 and A3 in tho expressions for ~ and Y;. 

it follows that: 

Given the previous a1sumptions, our model is a simultanoou= 

equations aodel with structural shift (Boctaan (1978), Schaidt 

(1981)). Froa Schaidt's condition 12.6, it follows that, for the 

model to be statistically meaninaful, the followina loaical 

consistency condition must hold: 

(1) 

(2) 

(3) 
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i.e., either ph or Pw must be zero. 

In tho simple problem considered here, tho logical consistency 

condition can readily be interpreted. For instance, "Ph = 0" means 

that, apart from the statistical association between sh and sw' and 

hence between ah and Yw' the husband's decision on labor force 

3 participation does not depend on the actual wife's decision. Thus 

the logical consistency condition (3) implies that the decision of 

either one of tho individuals must be structurally independent from 

tho decision of the other. In other words, the losical consistena,y 

condition associated with tho above siaultaneous equation model with 

structural shift introduces structural rocursivity in the model. 

Since there is no reason to impose a priori that Ph or pw be zero, it 

follows thtt tha usual approach for formulatina simultaneous equation 

models with structural shift is inappropriate. 

3 • AN ALTERNATIVE FORJIJLATION 

As araued by Beckman (1978), and made explicit in Chapter I, 

an important justification for the use of simultaneous equations 

models with structural shift is that these models can distinauish 

structural association from purely statistical association amona 

discrete endoaonoua variables, while alternative models such as those 

developed by Goodaan (1970) and Norlovo and Pross (1976) caDDot. 4 Tho 

previous section has shown, however, that the correspondina 

simultaneous model with structural shift is inappropriate in our case 

because of tho implied loaical consistency condition. 
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Althoush Assumption Al defines the crucial dichotomization 

that generates tho observed discrete variables Y1 and Y2• that 

assumption has not boon questioned in the literature on discrete 

variables modelina. We shall arsue that Assumption Al is in fact the 

cause of tho problems that are associated with the losical consistency 

conditions. Our approach relies instead on the following assumption: 

ASSUMPTION Al': The observed dichotomoua variables (Yh.Yw) are Nash 

Equilibriua (NE) outcomes of a game played between tho two 

individuals. 

Since the utility derived by each individual depends on tho 

action of tho other. tho natural framework is that of a same between 

tho two individuals. In situations other than tho one considered 

hero, tho utility functions can obviously be replaced by the 

appropriate payoff functions. Assumption Al' considers tho non­

cooperative Nash Equilibrium concept, although alternative equilibrium 

concepts can be invoked as we shall soon see in the ne&t chapter. 

(See Brown and Manser (1978), Manser and Brown (1980), McElroy and 

Horney (1981), and IDoreman and Xapteyn (1985) for related work using 

a cooperative aaae solution.) 

AssURption Al' is not, however, sufficient to define how the 

observed dichotomous variables (Yh,Yw) are aenerated. This is so 

because in many sames, and especially for tho pa~ticular problea 

considered hero, a Nash Equilibrium may not exist or multiple Nash 

Equilibria may arise. As seen below, this difficulty will be resolved 
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by increasina the ~umber of parameters. 

To determine tho NE outcomes of tho aame, we derive tho 

reaction functions of each individual. 5 Since tho outcome space is 

simply {0,1) X {0,1}, there are only four possible reaction functions 

for ~ach player. These are referred to as &1 , &2, &3, 84 for the 

husband and W1 , W2 , W3, W4 for the wife, as displayed in Fiauros 1 and 

2, respectively. For instance, reaction function B1 for the husband 

says that, whether or not the wife works, tho husband will always 

choose not to work. 

Given that Bi and W j are tho huaband and wife's reaction 

functions, we can readily find tho Nash Equilibria. Table 1 indicates 

the Nash Equilibria (or lack thereof) for each of the 16 possible 

pairs of reaction functions 

TABLE 1: Nash Equilibria 

Busband/W if e w1 w2 w3 w4 

81 (0,0) (0,0) (0,1) (0,1) 

~ (0,0) (0,0)4(1,1) None (1,1) 

~ (1,0) None (1,0) 4(0,1) (0,1) 

84 (1,0) (1,1) (t,or (1,1) 

whore the firat nuabor in each ordered pair refers to the huabaad and 

tho second to the wife. 
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As mentioned earlier. a difficulty arises because of the non-

existence or tho multiplicity of Nash Equilibria for the pairs 

<92.w2>. CB2 ,w3>, CB3 ,w2> and (B3 ,w3>. As a result, we shall 

distribute the probability of occurrence of each of those pairs over 

the appropriate outcomes according to some weights. 6 The 

interpretation of tho weights will be discussed more fully in Appendi~ 

A. Let Pr(i,j) be the probability that the random variables Ib and Yw 

take on the values i and j. Using Table 1, it follows that: 

Pr(O,O) ,.. Pr(B1 ~ w1
) + Pr(B

1 
~ W

2
) + Pr(B

2 
~ W

1
) 

+ a1PrCB2 ~ w2> + c1Pr(B2 ~ w3) "!' ct1Pr(B3 b. W2) (4). 

Pr( 1,0) ,.. Pr(B3 ~ W1) + Pr(B4 b. W 1) + PrCB4 l W3) 

+ b1Pr(B3 ~ 1J3) + c2PrCB2 b. 1J3) + ct2Pr(B3 b. W2) (5) 

Pr( 0,1) ,.. Pr(B1 ~ W 3) + Pr(B1 ~ 1J 4> + Pr(B3 b. W 
4
> 

where 

+ b2Pr(B3 ~ W3) + c3Pr(B2 ~ w3) + d3Pr(B3 b. w2) (6) 

Pr( 1,1) • Pr(~ l W 4) + Pr(B4 b. W2) + Pr(B4 6 W 4> 

+ a2Pr(~ ~ W2) + c4Pr(B2 ~ W3) + ct4Pr(B3 ~ W2) (7) 

8 1 + 82 - 1 • 

c1 + c2 + c3 + c
4 

• 1 , 

bl + b2 - 1 

d1 + d2 + d3 + d4 = 1 

all these additional paraaeters beina non-nesative. 

We are now in a position to derive the conditions under which 
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the reaction functions for the husband and wife will occur. As 

expected. each reaction function will occur if certain conditions on 

tho random components ah and aw are satisfied. For brevity, we derive. 

only the conditions for the husband's reaction functions. 

Usins Fisure 1. reaction function B1 can be characterized by 

- -the followins two conditions: Uh(1,0) - Uh(O,O) < 0 and 

-Uh(1,1) - Uh(0,1) < 0. Usins Assumptions 1 and 2 these conditions are 

equivalent to ah < - ~ and ah < - Ah - ph, reapectively, which can be 

combined to sive ~ <- ~- max(O.ph). 

- -Reaction function H2 ia characterized by Uh(1,0) - Uh(O,O) < 0 

- -and Uh(1,1) - Uh(O,l) 2 o. which are equivalent to ah < - Ah and 

~ l - Ah - ph, respectively. When co•bined we have -Ah-ph ~ ah < -Ah 

if Ph 2 0; otherwise, reaction function B2 cannot occur. 

. - -Reaction function u3 ia characterized by Uh(1,1) ~ Uh(0,1) < 0 

-and Uh(1.0) - Uh(O,O) l 0. Usins Assumptions 1 and 2 these conditions 

are equivalent to ah < - ~ - Ph and ah l - Ah' respectively. When 

combined we got -~ ~ ah < -~-ph if ph < 0; otherwise reaction 

function u3 camnot occur. 

-and Uh(l,l) - Uh(O,l) l 0, which are equivalent to 'h 2 - Ah and 

ah 2 - ~ - Ph' respectively, which when coabined aive 

~ 2- Ah- min(O,~). 

The followina table thus sives tho conditions on ah and •w 
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that must be satisfied for each of tho husband's reaction functions to 

hold. Conditions for tho wife's reaction functions are the same with 

the subscript h boins replaced by w. 

TABLE 2: Conditions for Husband's Reaction Functions 

Bl: ah < -Ah - max(O,~h) 

~: -Ah - ~h ~ sh < -Ah if ph~ 0; otherwise cannot occur 

B3: -Ah ~ sh < -Ah- ph if ph < 0; othorwiao cannot occur 

B4: eh 1 -Ah - min(O,~h) 

We can now derive ~he probabilities Pr(i,j) in teras of the 

unknown parameters. Let F(a,b,p) be the c.d.f. evaluated at (a,b) of 

a bivariate normal distribution with zero means, unit variances, and 

correlation p. Let I(a,b,c,d,p) be tho intesral of the correspondins 

bivariate density over tho ranso a l ah l c, b 2 ew 1 d. Usina 

Equations (4)-(7), we have: 

PROPOSITION 1: Tho probabilities Pr(i,j) are: 

= F(-Ah' -A ,p) - a2I++ if ph ~ 0, ~w 2 0 w 

• F(-~, -Aw,p) + c1I+- if ph 1 0, pw < 0 
Pr(O,O) 

• F(-Ah' -Aw,p) + cl1I-+ if ph < 0, P,.. 2 0 

• F(-Ah, -A .. ,p) if ph < o, ~w < 0 

• F(~, -A - Pw· -p) if ph 2 o. pw ~ 0 w 

• F(Ah, -A - ~w· -p) + c2I+-w if ~h ~ 0, pw < 0 
Pr( 1,0) 

• F(~, -A pw, -p) + d2I-+ if ph < 0, Pw 2 0 -w 

• F(Ah' -A - ~w· -p) - b I if ph < o, p < 0 , 2- w 

(8) 

(9) 
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= F(-A - p • h h A • w 
-p) if ph 1 o. P, l o 

= F(-Ah - ph .. A • w 
-p) + c3I+- if ph 1 0, P, < 0 

Pr( 0.1) = F(-A - p • A • -p) + d3I_+ if ph < o. p 1 0 
(10) 

h h w w 

= F(-Ah - ph, A,, -p) - b I 1- if ph < o. P, < 0 

= F(Ah + ph, A + P,.P> w - a1I++ if ph 1 o. P, l 0 

= F(Ah + ph. A + P,-P> + c4I if ph l o. P, < 0 
w +-

Pr(1,1) 
= F(Ah + ph. A + P,.p> + d4I_+ if ph < o. p l. 0 

(11) , , 
.. F(Ah + ph, A + P,.p> , if ~ < o. 11, < 0 

where 

I++ = I(-4a, -A , , -Ah - ph, -A,- P,.p), ( 12) 

I+- ~ I(-4a, -A, - P,- -Ah- ph, -A,,p), 

I = I(-~ - p -+ h' -A,, -Ah' -A,- P,.p), 

I = I(-A - p - h h' -A - p , ,. -Ah' -A.,, p) • 

PROOF: From Table 2 and the conditions for the wife's reaction 

functions, it follows that some reaction functions cannot occaz 

accordina to the sian• of Ph and P,· For instance, when ph 2 0 and 

P, l 0, the reaction functions B3 and w3 cannot occur. From Equations 

(4)-(7) it follows that, whoa ph l 0 and P, l 0, we have: 

Pr(O,O) • Pr(B1 ,W1) + Pr(B1,W2) + Pr(82,11) + a1Pr(i2,W2), 

Pr(l,O) • Pr(B4,W1), 

Pr(O,l) • Pr(B1,W4). 

Pr(l,l) • Pr(B2,W4) + Pr(B4,W2) + Pr(H4,t4) + a2Pr(B2,W2). 
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Similarly, when Ph 2 0 and Pw < 0, tho reaction functions H3 

and w2 never occur so we have: 

Pr(O,O) == Pr(B1,W1) + Pr(B2,'11) + c1Pr(B2,W3), 

Pr(l,O) == Pr(B4,W1) + Pr(B4 ,w3) + c2Pr~B2 ,W3 ), 

Pr(O,l) = Pr(B1 ,'13) + Pr(B1 ,W4) + c3Pr(B2,W3), 

Pr( 1,1) = Pr(B2,W4) + Pr(B4 ,W2) + Pr(B4,W4) + c4Pr(B2 ,W3). 

When ph < 0 and pw 2 0, tho reaction functions B2 and w3 never 

occur. Thus: 

Pr(O,O) = Pr(B1 ,W1) 

Pr(l,O) • Pr(B3,w1) 

Pr(O,l) • Pr(B1 ,W4) 

Pr(l,l) = Pr(B4,W2) 

Finally~ when ph 

'2 never occur. Thus: 

Pr(O,O) = Pr(B1 ,'11), 

Pr(l,O) = Pr(B3'~1) 
Pr(O,l) • Pr(B1 ,W3) 

+ Pr(B1,1f2) + d1Pr(B3 ,W2), 

+ Pr(B4,'11) + d2Pr(B3,W2), 

+ Pr(B3 ,W4) + d3Pr(B3 ,W2), 

+ Pr(B4,W4) + cl4Pr(B3 ,'12). 

< 0 and p < 0, the reaction functions w 

+ Pr(B4 ,'11) 

+ Pr(B1 ,W4) 

+ Pr(B4 ,W3) + b1Pr(Bs,W3), 

+ Pr(B3 ,W4) + b2Pr(B3 ,W3), 

Pr(l,l) • Pr(B4,w4). 

B2 and 

It now suffices to use tho conditions on sh and 'w for 

obtainiDI particular reaction fUDctions for the husband and wife. For 

each of tho 4 possible pairs of sian• for Ph and p
9

, fiauxoa 3a-3d 
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Areas Definin~ Pr(O,O), Pr(l,O), Pr(O,l), Pr(l,l) 

(0, 1) 

(0,0) 

-D. -13 
h h -l\ 

(1,1) 

(1,0) 

Fig. 3a : 6 > 0 , a > 0 
h- w-

-~ 

(0,1) 

(1,1) 

(1,0) 

Fig. 3e 

-6 -6 h h 

(0, 1) 

l (0,0) 

{1,1) 

(1,0) 

Fig. 3b a > ·o B < o h- t w 

-~ - -L\- h 

(0,1) (1, 1) 

(0,0) (1,0) 

-----:-----------------··-· _.,_ 
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show the areas over which the bivariate normal density for (ah,aw) 

must be intesrated to obtain tho 4 probabilities Pr(O,O), Pr(l,O), 

Pr(O,l), and Pr(l,l). (The areas are separated by heavy lines, while 

the lishter lines separate tho areas correspondins to the realizations 

of tho specific pairs of reaction functions.) It follows that the 

probabilities Pr(O,O), Pr(l,O), Pr(O,l) and Pr(l,l) are siven by 

Equations (8)-(11). 

Q.E.D. 

One can readily Check that the four probabilities Pr(i,J) add 

up to one irrespective of the sisns of Ph and Pw• and are continuous 

with respect to all the parameters. It is then worth notin& that tho 

proposed model does not imply any loaical consistency constraints on 

tho structural parameters. In addition, Heckman's losical consistency 

condition (3) can be interpreted in our model. 

PROPOSITION 2: Iaposins Ph • p = 0 is equivalent to ~posins that . w 

tho probability that each of the four pairs of reaction functions 

PROOF: Since (ah''w) have a joint continuous distribution, it follows 

from the conditions for the husband's and wife's reaction functions 

aiven in Table 2 that if Ph • 0 or pw • 0 then H2 , H3, w2, or w3 occur 

with zero probability. 

Couversely, if the pair (5~,W2 ) occurs with zero pr9bability 

it follows fro. Table 2 that either phi 0 or pw i 0, i.e., that 

-----------------------------------------·· ·---·· .. 
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ph • Pw 2 0. Similarly if tho pair (U2 ~w3 ) occurs with zero 

probability it follows that Ph~ 0 or Pw 2 o. i.e •• that Ph • pw ~ O. 

Ronco ph • Pw = 0. 

Q.E.D. 

From Fisuros 1 and 2. it follows that the losical consistency 

condition (3) requires that either tho husband's or tho wife's action 

be independent from tho action of the other. as discussed in Section 

2. More importantly. once the losical consistency condition is 

imposed. tho standard rule used in tho literature to senerato tho 

observed dichotomous variables is equivalent to imploaontina Nash 

outcomes. This is shown in tho followina proposition. 

PROPOSriiON 3: If tho condition Ph·Pw = 0 is imposed. Assumption Al' 

is equivalent to Assumption Al. 

PROOF: Lot us first assume that ph = 0. From Table 2. it is clear 

that reaction functions u2 and u3 now occur with probability zero. 

Dependina on tho sian of P •• wo have two cases to consider. For 

brevity. we only present tho case whore P. < 0. 

Aaain fro. Table 2. imposina pw < 0 prevents reaction function 

w2 froa occurrina. Roferrina to Table 1. wo see that outcoae pair 

(0.0) occurs if and only if reaction functions u1 and w1 are used. 

But froa Table 2 we see that the use of (B1.w1) is equivalent to tho 

occurrence of sh < -Ah and •w < -A. whiCh is equivalent to ~ < 0 and 

• Yw < 0 as soon froa equations (1) and (2). 
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Tho occurrence of outcome pair (1,0) is equivalent to tho uso 

of (R4 ,w1> or (B4,w3>. Now, (R4,W1) is used if and only if sh 2 -~h 

and aw < -~.• (B4.w3> is used if and only if ah 2 -~h and 

-~. ~ sw < -~.- ~.. Thus, the use of (B4,w1> or (B4,w3> is 

equivalent to ah 2 -~h and aw < -~. - ~ •• which is equivalent to 

~ 2 0 a!ld Y: < 0. 

A. seen from Table 1, outcome pair (0,1) occurs if and only if 

reaction functions (B1 ,W3) or (B1 ,w4> are used. The occurrence of 

(B1 ,w3) is equivalent to ah < -~h and-~.~ aw < -~.- ~.• (B1,w4> is 

equivalent to ah < -~n and •w 2 -~.- ~.. Th~, (B1 .w3> or (B1,w4> 

occur if and only if ah < -~ and aw £ -A.. which is equivalent to 

• • ~ < 0 and Yw l 0. 

Outcome pair (1,1) is realized if and only if reaction 

function pair CB4,w4> is used. Tho use of {B4 ,w4> is equivalent to 

• • ah £ -~h and •w £ -A •• which is equivalent to ~ ~ 0 and Yw ~ 0. 

To show that the proposition holds when. ~. • 0, we proceed 

identically. 

Q.E.D. 

To illustrate Proposition. 3, consider the case where ~h • 0 

and ~. < o. Under tho usual dichota.ization, outcome (1,1) is 

• • observed if and only if 1h ~ 0 and Yw ~ o. while outcome (1,1) is a 

Nash Bquilibriu. if and only if tho husband's reaction function. is H4 

and tho wife's reaction function. is w4 • Proposition. 3 says that 

• • ~ ~ 0 and Yw l 0 if and only if the husband and wife have reaction 



functions H4 and w4 respectively. 

Second, Proposition 3 says that OUE interpretation of the 

observed dichotoaous variables 1h and Yw as Nash Equilibriua outcomes 

reduces to the usual dichotoaization when the losical consistency 

condition holds. It follows that our probability model defined by 

Equations (8)-(11) is identical to tho usual simultaneous equations 

model with structural shift defined by equations (1)-(2) when 

Ph·Pw = 0. For instance, if Ph • 0, the probability model becomes: 

Pr(O,O) = F(-A -A h' w' p) 

Pr(l,O) • F(~, -A - p w w' -p) 

Pr(O,l) • F(-Ah' Aw' -p) 

Pr(l,l) • F(Ah' Aw + '·· p) 

(see, •·I·• Beckman (1978. p. 949) 

Finally, while tho usual dichotomization cannot aenerate a 

well-defined statistical model when Ph·P. # 0, our formulation based 

on Assumption Al' can still aonorate a simultaneous equations model 

for discrete endoaeno~ variables whether or not tho structUEal 

parameters satisfy tho losica1 consistency condition. When one 

considers a aa.o whore only a unique pure stratoay Nash Equilibrium is 

allowed, our same theoretic model is related to models based on 

Assu.ption Al. Tho followina Corollary is a strai&htforward 

consequence of Propositions 2 and 3. 

COROLLARY 1: If tho condition Ph • pw • 0 ia imposed, Assumption A1 

is equivalent to a aamo in which only pure strato&Y Nash Equilibria 
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a:re allowed. 

It is of interest to know the direction of chanse in the 

probabilities that the husband and wife will work as ~·Aw.~h.~w vary •. 

These are siven by Pr(l.·) • Pr(l.l) + Pr(l.O) for the husband and 

Pr(•.l) a Pr(l.l) + P~(O.l) for the wife. 

PROPOSITION 4: (1) An increase in ~h or ~ 

(i) always increases the probability that the husband will work 

Pr(l. •): 

(ii) increases (decreases) the probability that tho wife will work 

Pr(•.l) if ~w l 0 (~w < 0). 

(2) By symmetry. the effects of an increase in ~ or A can bo w w 

deduced from (1). 

As expected. an increase in Ph or ~ increases the probability 

that the husband will work. :reaardless of whether or not tho wife 

works. Also when ~w l 0 tho effect of an increase in ~h or ~ 

increases tho probability that the wife will work. since it increases 

the likelihood that tho husband will W9rk. Similar remarks can be 

made for an increase in ~ and A • (Included with the proof of w w 

Proposition 4 is a table indicatina tho direction of chanae in the 

probabilities Pr(i,j) as~· Aw• J.b• and~. vary). 

PROOF: Easily established by usina either tho areas dofinina the 

probabilities Pr(i.j) or by usina tho first partial derivatives found 

b1. Appendix B. The table below can s:l.ailarly be established. 
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increase in ~ 

Pr( 1,1) Pr(l,O) Pr(0,1) Pr(O,O) Pr(1,•) Pr(•,l) 

Jlh ~ O,Jl, ~ 0 + + + + 

Jlh 2 O,Jl < , 0 ? + ? + 

Jlh < 0, Jl" 2 0 + ? ? + + 

Jlh < O,Jl, < 0 + + + 

Increase in Jlh 

Pr( 1,1) Pr(1,0) Pr( 0,1) Pr(O,O) Pr(1,•) Pr(•,l) 

Jlh 2 o,,s 2 0 + no chanse + + , 
Jlh < O,Jl < 0 + + + + , 
Jlh < o,p 2 o + + + , 
ph < o.p, < 0 + + DO chanse + 

Tho offocts of an increase A, and Jl, on tho probabilities can bo found 

by roversina rows 2 and 3, reversina colaans 1 and 2, and reversins 

columns 5 and 6. · 

Q.E.D. 

4. IIENTIFICATION AND ESTIIIATION 

Given the previous expressions for tho probabilities Pr(i,j) 

of tho observed dichota.oaa variables 1h andY,, the loa-likelihood 

function under randoa saaplins can be written as: 

(13) 
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= ~[Yhtywt los Prt(1,1) + fht<l- Ywt) los Prt(l,O) 

+ (1- lht)Ywt log Prt(0,1) + (1- Yht)(1- Ywt) los Prt(O,O)], 

where the subscript t indexe1 the observations. The probabilities are 

subscripted by t since ~ and Aw are in general functions of 

explanatory variables. We aaau.o: 

, , 
~t • ~t1h and Awt = zwt1w• (14) 

whore ~t may include characteristics of tho t-th household in 

addition to characteristics of tho husband. A similar remark applies 

The parameters of tho model are (yh,ph,yw,pw,p) toaethor with 

tho weishts a's, b's, o's, and d's introduced in Equations (4)-(7). 

Althouah for the purposes of est~ation we will constrain a priori 

those weights to satisfy a1 = a2 • 1/2, b1 • b2 = 1/2, 

c1 = c2 = o3 = o4 = 1/4, and d1 = d2 = d3 = d4 = 1/4, we will next 

show that the parameters (yh,~yw,pw,p,a,b) ar~ identified. Notice 

that ~posina these a priori weights is equivalent to distributing the 

probabilities of the four pairs of reaction functions (~,W2 ), 

· <H2,W3), (B3 ,W2), and (B3,W3) equally over the appropriate outcomes. 

We now turn to tho problea of identification. 

In order to discuss tho conditions under which our model is 

identified, we must first introduce some notati·on. Defino tho 

followina partitioned matrix I as 

D X w w : D X]· I P P 



44 

where Dh • D, and DP are each block diasonal matrices of order 3T, 

the t-th blocks given as follows: 

h 
(1-al)et 

h 
alft 0 

w 
(1-a1)et 0 

w 
alft 

0ht 0 
h 0 , D • 0 

w 
0 = gt gt , 

wt 

0 0 hh 
t 0 0 hw 

t 

1 2 -I++ (1-a1)rt -alrt 

D = 0 
3 0 . -r pt t 

, 

4 0 
0 

-r 
t 

if ~ < 0 and ~w < 0 

r· 
.. 1 

0 0 
, 

0 0 rt 0 et •t 

Dht= 0 
h h 

• D = 0 
, , 

D = 4 3 
blat -(1-b )h blat -(1-b )h , (1-bl)rt -blrt 1 t wt 1 t pt 

lo fh 0 0 0 f, 0 
t t 2 -r t 

if ~h 1 0 and ~ < o. or ph < 0 and ~ 2 0 , , 
h fh 0 

, i" 0 •t t •t t 

0ht = 0 ( h + fh) 8t t 0 , D • wt 0 ( , + f,) 1 t t 
0 , 

0 fh 
t 

hh 
t 0 f .. 

t 
h .. 

t 

1 2 0 rt -rt 

Dpt • 0 2 3 0 (-r -r ) , 
t t 

0 4 2 
-rt -rt 

0 

I ; 

0 
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with 

where 9 is the univariate normal o.d.f. and' is the oorreapoadins 

p.d.f. A quantity with a , •• aeana that quantity is divided by the 

2 square root of 1 - p • In addition. let f(z.y.p) be the p.d.f. 

correapondins to the bivariate normal p.d.f. F(z.y.p). Now define: 

The aatrioe a ~ and i• are of dimension 3T by ~ + 1 and 3T by Kw + 1. 

the t-th blooka siven reapootivoly as: 

r ~t , 
1 zwt 

, 
0 ~t and 1 zwt • 

l1 
, 

~t 0 zwt 
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In addition, Xp is a unit vector of dimension 3T when Ph > 0 and 

Pw < 0 or ph < 0 and ~w > 0; when ph and Pw have the same sign, Xp is 

given by the matrix 

PROPOSITION 5: The parameters <Ph'~w,yh,yw,p,a,b) of the model are 

-identified if and only if A has full column rank. 

PROOF: 

From equation (13), we have, omittina tho subscript t, that 

8lod(Z,t) • \yw 8Pr(1,1) + ~( 1 - Yw) 8Pd1.0) 
ae Pr< 1,1) ae Pr( t,o> at 

( 1 - Yh)( 1 - Yw) aPr(O,Q) 
Pr(O,O) at ' 

atoaf 8lod is Then, 8A 8A liVeD by 
"'h .. h 

where we have used the fact that 1h and Yw take on only the values 
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zero or on~. Since Yh and Yw are random variables where !h • i, 

Y = j with probability Pr(i,j), i.j 1 {0,1}. we have that 
w 

E[clloaf 
a ph 

2 
8lo•fl • 1 [aPrCl.l)l 
aph l Pr(l,1) aph 

2 2 2 
+ 1 [aPrCt.o>l + 1 [aPrC0.1>l + 1 [aPrCo.o>l 

Pr(l,O) aph l Pr(O,l) clJih l Pr(O,O) clJih l ' 
Proceeding analoaously. the remainins terms in B are aiven by: 

E[aloaf I clloafl- ~ ~ 1 aPr(i.i) aPr(i.i). 
aek aeh ~oJ,;oPr(i,J) aek aeh 

Notice that B can be decomposed into B • A'DA where A is of dimension 

4T by 1:. When Jib and P, have the saae sip, 1: • ~ + l:w + 4.; 

otherwise, 1: • ~ + l:w + 3. For clarity if ph > 0 and Jlw > 0, the t-

th block of matriz A, denoted by At is defined as: 

clPrt(l,l) clPrt (1,1) clPrt (1,1) aPrt(l,l) clPrt (1,1) clPrt (1,1) 

a ph apw 
, , clp -Ba1 ayh clyW' 

arrt (1,0) clPrt (1,0) clPrt (1.0) clPrt(1,0) clPrt(l,O) clPrt (1,0) 

a ph apw 
, • clp aa1 clyh clyW' 

clPrt(0,1) clPr
1 

(0,1) arrt(O,l) arr
1

(0,1) arr
1 

(O.U clPrt (0,1) 

a ph ap .. 
, , clp aa1 clyh ayw 

arr
1 

(0,0) BPrt (0,0) arr
1

(0.0) BPr
1

(0,0) clPrt(O,O) 
!lld~.~u 

a ph apw 
, , clp aa1 clyh clyW' 

and D is a block diaaonal matriz of order 4T, the t-th block siven by 
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Prt (1,1) 0 0 -1 
0 

0 Prt (1,0) 
0 0 

0 0 Prt(0,1) 0 • 

0 0 0 Prt(O,O) 

As shown by Rothenberg (1971), the model will be (locally) identified 

if and only if B is nonsingular. Since D is of full rank and 4T > K, 

a necessary and sufficient condition is that A have full column rant. 

As can be seen from Appendix B, tho partial derivatives of Prt(i,j) 

with respect to tho vector & depend on the signs of ~h and pw; we must 

therefore chock that matrix A is nonsingular for all cases. 

Case 1: ~h > 0, Pw > 0 

. Substituting into At the partial derivatives, using the 

i 1 i i . j notation et,ft•lt• ht,1 • h,w# and rt,j=l,2,3,4, established earlier. 

we perfo~ the following matrix algebra 

(i) add Row 4 to Row 1, notins that a2 • 1 - a1 

(ii) add Rows 2 and 3 to Row 1 

(iii) add (1- a1) (Row 2 and Row 3) to Row 4 

(iv) switCh Rows 2 and 4; swlth Rows 3 and 4. 

(v) switch Columns 2 and 3 

O.ittina Row 1 since it is identically null, we have 

h 
(1-•t>•t (a 1f~+(l-a 1 )e~)xht v (l-a1)dt 

v v 
(alft+(l-al)et)x~t 

0 h • v v t 
1 txht It 1txwt 

hh 
t 

hh • 
txht: 0 hv ' txwt . 

We now decompose this aatriz into a partitioned aatrix 

D X w w : »i ]· I P 

1 2 
(.l-n 1rt-alrt -I++ 

-r3 
t 0 

4 0 -rt 
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whore Dh' D , and D are each block diagonal matrices of order 3T, the w p 

t-th blocks beina Dht' Dwt' and Dpt rospoctiv~ly, as sivon previously. 

Case 2: ph < 0, Pw < 0 

Substituting into At tho partial derivatives found in Appendix 

i i i i j B, again using •t• ft' It• ht' i ~ h,w, and·rt,t • 1,2,3,4, as 

established in tho text, now perform tho following matrix algebra on 

matrix A 

(i) add Rows 2 and 3 to Row 1, noting that b2 • 1 - b1 

(ii) add Row 1 to Row 3 

(iii) add Row 4 to Row 3 

( iv) add (1 - b
1

) (Row 1 ·and Row 4) to Row 2 · 
. 

(v) reverse Columns 2 and 3 

Aaain, omittina Row 3 since it is identically null, we have 

h h • " " . 1 
et etxht et etxwt rt 

h (b 1g~-(1-b 1 )h:)xht 
w (b 1g;-(l-b 1 )h;)x~t 

3 4 
-(1-b )h blgt -b1rt+(l-b1_rt 

1 t 

0 fh • 0 f" • z 
txht txwt -rt 

which can be writtea as A. 

Case 3: Ph > 0, p
9 

< 0 

Procoodina as in Case 2, perform the followiaa alaebra 

(i) subtract Row 4 fraa Rows 1, 2 and 3, aotiaa that 

dl - d2 - d3 - 44 - i 
(ii) add 1/4( Row 1 +Row 2 +Row 3) to Row 4 

(iii) reverse ColUBDs 2 and 3 

Doletina Row 4 since it ia null, we have 

0 

I 

0 
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h h t!>~t 
, ( , + W I 

•t (et + •t et fth:wt 

h h I , 
( w + W I 

At = 0 (gt + ft)~t 't gt ft)xwt 

hh h h I 
0 (hw + w ' 

t (ht + ft)~t t ft)xwt 

-which can be written as A. 

Case 4: ~h < 0, ~, > 0 

Identical to Case 3; this can be easily seen by noting that 

Q.E.D. 

As can be easily seen, Dh' Dw• and DP are nonsingalar under 

all four cases since Dht' Dwt• and Dpt are eit~er triangular matrices 

or can be made trianaular by suita~le permutations of rows and 

-columns. By examinina matrix A above, it is clear that if A does not 

have full column rant, it will occur extremely rarely for some 

specific values of the parameters as an artifact of certain 

explanatory variables (note the exception in Corollary 2 bolow). 

When compared to the restrictions needed for the 

identification of linear models, our results are quite surprising. 
' 

I I 

For eltample. even if ~t and xwt are the same, it will occur only 

rarely that our model is not identified, a sharp contrast to tho order 

conditions whiCh is necessary for the identification of linear models. 

A corollary to Proposition 5 provides a necessary condition 

for identification as shown next. Suppose that constant terms are 

included in both equations of (14). 

0 ' - 0 4wt • 1, + xwt'w where yh is the coefficient for tho husband's 

constant tera and ~t is a vector of ezplanatory variables for husband 

0 t; r, and x,t are defined analoRously for the wife. We then have: 
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COROLLARY 2: If constant terms (y~ and y~) are included in both 

- -equations, and if yh = 0 and yw = 0, the model ia not identified. 

PROOF: 

Note that when only constant terms aro included, 

roduco respectively to T repetitions of 

and X 
w 

Note also that the blocks comprisina Dh are now identical, aa 

are the blocks comprisina D now identical. (This is because w 
• • ~t'Aht'Awt, and Awt no lonsor depend on t). As a result, tho matrix 

-A repeats itself ovory throe rows. Since K • 4 > 3, B is sinsular. 

Q.E.D. 

Therefore if one intends to estimate the model with both 

constant torma (y~ and y:) included, at least one equation muat 

include further ezpla~tory variables or tho model will certainly be 

not identified. 

As a practical U.plication of Corollary 2 for estimation, if 

one includes a constant tera in eaCh equation alona with one or more 

additional ezplanatory variables in at loaat one of the equations, one 

or more of the initial values for the parameters aasociated with these 

non-constant ezplanatory variables muat be non&ero. Otherwise, the 

information matrix will be sinaalar at the first iteration, and the 
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optimization cannot be carried out. 

5. CONCLUSION 

In this Chapter, we presented an alternative approach for 

formulatins simultaneous equations models for qualitative endosenous 

variables. Contrary to earlier simultaneous models, our model does 

not require any loai~~l consistency conditions on tho parameters. In 

addition, a distinctive feature of our approach is that the 

simultaneous model is derived from optimizins behavior within the 

random utility framework. 

Our approach also emphasizes the role ~f the equilibrium 

concept used in order to define the process seneratina the observed 

random variables 1h and Yw. Our proposed model oztends the usual 

simultaneous model with structural shift to cases where the parameters 

need not satisfy the loaical consistency conditions. Moreover, when 

the loaical consistency conditions are imposed, our model relates to 

the usual simultaneous equations model with structural shift in a 

number of important ways. First, imposina the losical consistency 

condition is equivalent to imposina that four of tho sizteen possible 

pairs of reaction functions occur with probability zero. Aa a result, 

it is shown in Section 3 that either the husband's or the wife's 

actions are required to be structurally independent of tho action of 

the other. Second, t.poaina tho loaical consistency condition on our 

same theoretic model insures that only pure strateay Na&h Equilibria 

are allowed as solutions. Finally, and aost iaportantly, once the 

loaical conaistency condition is imposed, our model coincides with the 
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usual simultaneous equations model with structural shift. Since our 

model is still well defined in the absence of this restrictive 

condition, it follows that the simultaneous model with structural 

shift is nested in our model. Althoush the model studied in this 

Chapter is relatively simple, we believe that our approach is a first 

step in introducins stratesic behavio~ directly into econometric 

models of structural shift. That the model can be extended to other 

game theoretic equilibrium concepts is shown in the followins chapter. 
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FOOTNOTES 

1. When an individual is indifferent between wortins and not 

wortina, we arbitrarily consider that he will wort, hence the uso 

of tho weak inoql~lity. 

2. The assumption is that Ph and pw do not depend on individuals. 

By allowina Ph or Pw not to be zero, one is allowina interactions 

in the constant teras of Ah and Aw defined below. 

3. The condition ph • 0 holdm if one assumes that tho husband's 

utility function is additively separable so that Uh(Yh,Yw) s 

Uh(Yh) + Uw(Yw). Then~ a Uh(1)- Uh(O). We are aratoful to 

Donald Lion for pointina this out. Note, however, that assuming 

tho husband's utility function to be additively separable 

essentially roaovos simultaneity as is arauod in tho text. 

4. See, however, Vuona (1980, 1981, 1982b). 

5. Althou&h it is not necessary to use reactions functions in order 

to derive tho probabilities Pr(i,j) aivon in Proposition 1, it is 

auch easier to do so. For ezamplo, take the case where ph < 0, 

Pw < 0 and we do not use reaction functions. 

Usina Assumptions Al', A2 and A3, we find that outcome 

(0,0) ia a pure stratoay NaSh Equilibria. (P.S.N.E.) if 

.... ... - ... 
Uh(O,O) ~ Uh(l,O) and Uw(O,O) ~ Uw(l,O) which is equivalent to 

~ i -~ and •w i Aw. But since ~ < 0 and pw < 0, outcoao (1,1) 
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cannot be a P.S.N.E. for that would require ah < -~h -Ah and 

ew < -~. -Aw' which is inconsistent with tho requirements for 

outcome (0,0) beins a P.S.N.E. Therefore, if outcome (0,0) is a 

P.S.N.E., it must be unique P.S.N.E. when ~h < 0 and Pw < 0. 

Thus, Pr(O,O) = F(-Ah' -Aw,p) as siven in Proposition 1. A 

similar araueont show• that if outcome (1,1) is a P.S.N.E., it is 

a unique P.S.N.E. when ~ < 0 and ~w < 0. 

Alternatively, outcome (1,0) is a P.S.N.E if 

~ ~ - N 

Uh(l,O) l Uh(O,O) and Uw(O,l) l Uw(l,l), which is equivalent to 

~ 2 -Ah and •w < -pw -A.. MOreover, outooae (0,1) is a P.S.N.E. 

- - -if Uh(0,1) l Uh(l,l) and Uw(1,0) l Uw(O,O), which ia equivalent 

to eh < -~h -Ah and aw l -A.. But now note that there exists the 

area {-~ ~ sh < -ph -Ah X -A. ~ •w < -~. -Awl where both 

outcomes (1,0) and (0,1) are P.S.N.E. We therefore divide this 

area into two parts and assign tho parts to outcomes (1,0) and 

(0,1) accordins to the woishta b2 and b1, respectively, where 

b2 + b1 - 1. 

6. An obvious aeneralization of our model ia to specify the weishts 

(ah, bi' oj' ~) as functions of ezplanatory variables. For 

exa.ple, sa· h - 1, 2, can be specified in a loaistic functional 

fo~ as 

los a1t - ~: + z~ 6a1 and 

a ' a loa a2 t • ~t + zt & 2, 
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where Zt is a vector of ezplanator,y variables for the t-th 

a household and pt is a normalizing parameter so as to insure 

a ' a ' a a1t + a2t • 1, viz, pt --log[ozp(Zt& 1) + exp(Zt & 2)]. Notice 

then that a1t and a2t can be written in familiar fo~ as 

•jt .. a , j = 1, 2. Notice also that 

oxp(Z~ &a1) + oxp(Z~ & 2> 

a1t and 12t are constrained to lie in the open unit interval. 

This unconstrained model thus contains our model which assumes 

that the weiaht parameters are constant across observations, or 

equivalently that the para.eters &8
, &b, &c, and &dare zero, 

with the exception of those parameters associated with the 

constant term. It then follows that this assumption can bo 

tested. Another intorosti~g teat would br to check whether 

6 8 
• 6b • &c • 6d • 0, including the constant to~. If this 

hypothesis is not rejected, tho data would support the idea that, 

whenever thoro i' no NaSh Equilibrium, each of the four outcomes 

are equally likely to occur~ alternatively, when there are two 

Nash Equilibria, a rejection of the hypothesis would support 

distributina the probabilit,r over tho two outcomes with equal 

weiahts. (See Appendiz A for a more co•ploto discussion.) 
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APPENDIX A 

As discussed in Section 3 of this chapter, a difficulty arises 

because of the non-ezistence of Nash Equilibria for the two pairs of 

reaction functions (B2 ,w3) and (B3 ,w2) and the multiplicity of Nash 

Equilibria for tho pairs (B2,W2) and (B3 ,W3). As will be recalled, we 

handled this problem by distributing the probability of occurrence of 

each of these four pairs of reactions functions over tho appropriate 

outcomes accordina to some fizod weights that wore independent of the 

observations. For ozample, when tho husband used reaction function u2 

and tho wife used reaction function w3 , we distributed tho probability 

of occurrence equally over each of the four outcomes. When the pair 

(B2 ,W2) was used, we found that two Nash Equilibria, (0,0) and (1,1), 

occur; we therefore distributed equally tho probability over each of 

those two outcomes. the purpose of this Appendix is to discuss more 

fully those weights. 

In tho previous developments of Section 3, we have restricted 

ourselves to Nash Equilibria in pure strategies. A broader class of 

strategies is in aeneral considered in game theory, namely the class 

of mixed strategl~• (see, •·•·· O.on (1982))~ In this more soneral 

approach, rtndo~ss enters into tho statistical model now for two 

reasons; they are (i) tho randoa nature of the samplina, or 

equivalently, the isnorance of the econometrician. and (ii) tho 

randoaization of tho strateaios. Bow can tho simultaneous model 

proposed in tho text of this chapter be interpreted when mixed 

strateatos are allowed? 
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First. it is worth notins froa Table 1 that in 12 out of the 

16 cases. a unique pure strategy Nash Equilibrium exists. Moreover. 

as tho following Lemma shows. when thoro is a unique Nash Equilibrium 

in pure strategies. then thoro are no Nash Equilibria in mixed 

strategies. It therefore follows that for those 12 cases. restricting 

ourselves to pure strategies is irrelevant. 

LEMMA 1: For a two-person. two-strategy. normal form random payoff 

game, if there is a unique Nash Equilibrium in pure .stratesies. there 

is almost surely no mixed strate17 Nash Equilibria. 

PROOF: (by contradiction) Let tho payoff matrix bo siven by: 

player B 

1' 2' 

1 

player A 

2 

Without loss of soner~li~. assuae (1,1') is tho unique Nash 

Equilibrima; we therefore require a11 > a21 and b11 > b12 • Note that 

we use strons inequalities since a11 • a21 or b11 • b12 occur with 

probabili~ zero. Assuae a mizod strateay N.E. exists where player A 

plays strate17 1 with probability p and strateiY 2 with probability 

(1-p), 0 < p < 1. Similarly, player B plays strateay 1' with 

probabili~ q and strsteay 2' with probability (1-q). 0 < q < 1. In 

choosina mized strateaiea, players A and B ~t solve rospoctlvoly: 

----------------------------------------- - --- ------------
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mas EnA = pqa11 + p(l - q)a12 + (1 - p)qa21 + (1- p)(1- q)a22 
(1) 

p 

max EnB = pqb11 + p(1 - q)b12 + (1 - p)qb21 + (1- p)(1- q)b22. (2) 
q 

For a mixed stratesy N.E. to ezist. it must be the case that: 

(3) 

. and 

( 4) 

But when a11 > a21 we have by (3) that a12 < a22 • Also. when 

b11 > b12 we have by (4) that b21 < b22 • Therefore both (1.1') and 

(2.2') are pure strateay Nash Equilibria. Contrm4lction. Yo now need 

to show there do not eziat any Nash Equilibria when one player plays a 

pure strateSY while the other player playa a mixed strateay. Assume 

player A plays a mixe4 atratesy while player B playa strate&Y 1' as a 

pure strateay. We therefore have 0 < p < 1 and q = 1. But from (3) 

we then have a11 = a21 • which occurs with probability zero. 

Contra4iction. Tho other three cases follow ozactly an4 yield similar 

contradictions. 

Q.E.D. 

Oa tho other han4. when there are two pure atrateay Nash 

Equilibria, which is tho case whoa reaction function pairs (B2 .w
2

) or 

(B3 .W3) are used, we estt.ate the model by taposina weiahts which 

distribute the probability of occurrence over the appropriate pair of 

pure strateay Nash Equilibria. Specifically, when reaction function 
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pair <82~W2 ) is used, the two pure strategy Nash Equilibria are (0,0) 

and (1,1); we sot the weights a1 and a2 each at one half. Similarly, 

when reaction function pair (B3 ,W3) is used, tho two pure stratesy 

Nash Eqiulibria are (1,0) and (0,1); we set these weights b1 and b2 

also at one half each. It follows that thoae weishta could be 

estimated since Proposition 5 demonstrates that & and b are 

identified. 

The third possibility is when there are no Nash Equilibria in 

pure stratesiea. This occurs when the husband and wife use reaction 

pair CB2 ,w3> or (B3 ,w2>. In this case, as the next Le .. a shows, there 

exists a uaique Nash Equilibrium in mixed stratesies. 

LEMMA 2: For a two-person, two atrateay. normal fora same, if there 

are no Nash Equilibria in pure stratesies, then there exists a unique 

Nash Equilibrium in mixed stratesies. 

PROOF: Existence is well known (see e.a •• Owen (1982), p. 126). From 

Lemma 1 we know that for Q mixed stratesy N.B. to exist, we must have 

a22 - a12 
0 => q - ' all - a12 - a21 + a22 r O; 8 11 - a12 - a21 + 8 22 

( 5) 

and 

(6) 

or 

( 7) 
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and 

(8) 

Now assume that there exists multiple mixed stratesy Nash Equilibria 

for player A. Then froa (7) we must have (a11 - a12 - a21 + a22> = 0 

and (a22 - a12) • 0. Therefore, a22 = a12 and a11 = a21 • Then when 

b11 2 b 12 we have that (1,1') is a pure stratesy Nash Equilibrium. 

Contradiction. Alternatively, when b11 < b12 we have that (1,2') is a 

pure stratesy Nash Equilibrium. Contradiction. The case where there 

exists multiple mixed stratesy Nash Equilibria for player B proceeds 

similarly. 

Let us now consider tho case where one player plays a pure 

strateSY while the other player playa a mixed stratoJY. Lot player A 

play stratesy 1 as a pure strateay while player B plays a mixed 

strateSY• We then have p = 1 and 0 < q < 1. Then from (6) we have 

that 

Therefore b11 • b12• Now, for (1,1') not to be a pure stratesy N.E. 

we require a21 > a11; for (2,1') not to be a pure strateay N.E. we 

require b22 > b21; tor (2,2') not to be pure strateay N.E. we require 

a12 > a22 • But those conditions then require (1,2') to bo a pure 

strateSY N.E. Contradiction. Similarly, let us exaaine tho case 

whore player A plays stratoSY 2 aa a pure stratoay while player B 

continues to play a mixed atratesy. We then have p • 0 and 0 < q < 1. 
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From equation (6) we then set b22 = b21 • Now, for (2,2') not to be a 

pure strategy N.E. we require a22 < a12; for (1,2') not to be a pure 

strategy N.E. we require b12 < b11; for (1,1') not to be a pure 

strategy N.B. we require a11 < a21 • But the above conditions then 

imply that (2,1') is a pure stratesy N.E. Contradiction. The cases 

where player A plays a mised strategy while player B playa a pure 

strategy lead to similar contradictions. 

Q.E.D. 

Let (qhO'qhl), where qhO + qhl • 1, ~araoterize the 

randomization of atrateaies between not workina and workins for the 

huaband; a~ilarly, let (~0,~1 ) characterize the randomization 

between not workina and workina for tho wife. Then the woiahts 

c1, c2, c3, and o4 for the reaction function pair CBz,W3) defined in 

Section 3 can be interpreted as: 

• 

But wo know froa equations (3) and (4) of Lemma 1 that for a misod 

strate17 Nash Bquilibriua to esist we ma.st have 

Uh(l,l)~l + Uh(l,O)(l-'wl) • Uh(O,l)~l + Uh(O,O)(l-'wl) 

and 

(9) 

(10) 

(11) 
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Solving (10) and (11) for ~1 and qh1 wo get respectively: 

Uh(O,O) - uh (1,0) 

'1,1 = Uh(1,1) - Uh(1,0) - Uh(0,1) + Uh(O,O) 

u (0,0) w - u (1,0) 
qhl = u ( 1,1) - u (1,0) - u (0,1) + u co.o>· w " w w 

By substituting from ASSUMPTION A3 of tho current chapter, we got 

~1 = -Ah/~h and qh1 = -Aw/~w· Noting that ~O = (1-~1 ) and 

qhO = (1-qhl) and using (9), we got that 

~ +A (~~+ ~). -A ~A + Ah 
c1 = ( w ..,) c2 

.., 
=- ( ~ ), 

tlw h ~w h 
~ +A ~ A Ah 

c3 = -( .., :!) c4 = 
w 

~-
~ . ~w • ~h. h 

Moreover, we know frma Lemma 2 that the mixed strategy Nash 

Equilibrium is unique. As a result, ci = di. i = 1 •••••• 4. It 

therefore follows that tho model proposed in Section 3 of this chapter 

can be interpreted as a model in which tho weights c's and d's remain 

constrained as c1 = di = t• i = 1, ••• , 4. 
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APPENDIX B 

First Partial Derivatives of tho Probabilities Pr(i,j) 

For brevity, lot us rewrite tho four probabilities Pr(i,j) 

listed in Proposition 1 using tho indicator variables Ih and Iw 

defined as: 

1 if ~h l 0 

1h = 0 if ~h < 0 

Then we have: 

1 if ~w l 0 

and Iw = 0 if ~ < o· 
w 

Pr(l,O) • F(~, - ~w- ~w' - p) + ~(1-Iw)c2I+- + (1-Ih)Iwd2I_+ 

- (1-~)(1-I )b I 
Jl w 2 --

Pr(O,l) • F(- ~h- ph,Aw' - p) + Ih (1-Iw)cSI+- + (1-~)Iwdsi-+ 

- (1-I-)(1-I )b I 
Jl w 1-

Pr(1,1) • F(~h + ~h'Aw + p,p) - ~Iwali++ + ~(1 - Iw)c4I+­

+ (1-~)Iwd4I_+. 

In order to dote~ine tho first partial derivatives of tho 

Probabilities Pr(i,j), we need the followina two Lo .. aa. 
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LEMMA 4: 

aF<~·:·o> • f(a)~( b - P:) and aFCaat·o> "" f(b) ~ ( a - pb) where 

.Jl - p il -. p 
2 

~is the univariate normal c.d.f. and' is the corrospondins p.d.f. 

J 
a Jb . PROOF: Wo have that F(a,b,p) • -m -m f(x,y,p) dy dx whore f is tho 

bivariate normal p.d.f. with zero moans, unit variances and 

correlation p. In addition, lot a quantity with a "*" indicate a 

2 quantity divided by the square root of 1 - p • Wo then have 

• • • • • • f(z~y,p) a ' (x) • f(y - pz ) - ' (~) • f(x - py ) 

which sivoa 

Th aFCa.b.p) '( )•(b• *> on aa • a "'I' - pa o 

Similarly~ 
arca.b.p) 

ab 

Q.E.D. 

LEMMA 5: Let f be the p.d.f. eorreapondina to the bivar~ate normal 

c.d.f. F. Thea if •h and •, each have zero aeana and unit variances 

with correlation coefficient p, we have aFCaa:·o> • f(a,b,p). 

PROOF: J a • • Fraa Le .. a 4, f(a~b,p) • __ ,(x)9(b - pz )dz. 
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aF J a • • • a ( b • - px •) Then a .. '(x) • f(b -px ) a dx 
p - p 

J 
a, * • pb-x = (x) • f(b -px ) • 2 3/ 2 dx. 

- (~p ) 

Thus, 

![ .. -J a (2n)-1/2f(x • - pb *> • o -b2/2 
ap -

'- pb 
2 3/2 dx. 

(1 - p ) 

• • Lottins z = x - pb • we have 

!l a -pb . -1/2 

I
. . 

a • - (2n) 
• -b2/2 

• z • f ( z) • o dz 

p -

• • • = f(a - pb) • f (b) • f(a.b,p). 

Asain, let a quantity with a "•• indicate a quantity divided by the 

square root of 1- p2 • Then usina Lemmas 4 and 5, the first partial 

derivatives of tho pr9babilities Pr(i,j) are as follows: 

aF(- ~· - Aw•P) 
a ph 

aF(- ~· - Aw,p) 

atsw 
CIF(- ~, - A,.,p) 

ayh 

aF( - Ah" - Aw,p) 
a.,, 

- 0 , 

- 0 • 

• • • - f(A )9(- A~ + pA )x ; w Jl w , 

-------------------------------·--- ·- ·-·-- ---
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and 

• • • *>) 31++ R )~(-A - p + p(A_ + 'h - - - t<~ + ~"'h 'T , , D. a ph 

------------~ 
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• • • + f(Ah + Ph>•<- A,+ p(Ah + ph)) • 

ai++ • • • • 
~ •- f(A

9 
+ P,>•<- Ah- Ph + p(A9 + P,>> , 

• • • • - '(Ah + Ph>•<- A,- P, + p(Ah + ph)) 

• • • + '(~)·(- A
9 

- P, + p~) 

• • • + '(Ah + Ph>•<- A,+ p(Ah +ph)) ] ~ • 

ai++ • • • • • • 
~ • [ -'(A )~(-A_ + pA ) -'(A + p )·(-A_ - Ph + p(A + P )) 

"1, w --"h w w w --"h w w 

• • • + '(A9 )·(- ~ - ph + pA9 ) 

• • • + '(A,+ P,>•<-Ah + p(A, + P,>>l z, • 

a I++ -ap- = f(Ah.A
9

.p) + f(Ah + ph.Aw + p
9

,p) - f(Ah,Aw + p
9

,p) 

- f(Ah + ph.A
9

.p) 

with 

and 
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CBAPl'ER III: AN ECONOMETRIC MODEL OF A STACIELBERG GAME 

1. IN'IROOOCl'ION 

In tho previous chapter, we proposed an alternative 

simultaneous model for discrete ondosonous variables. A distinctive 

feature of that model is that no logical consistency constraints on 

the parameters need to be imposed. In addition, our staultaneous 

model was derived from optimizins behavior as an outcome of a same 

between two players. T.ho equilibrium concept used was that of Nash. 

In the current chapter, we shall propose an econometric model of an 

alternative equilirium concept from noncooperative same theory. 

In this alternative game theoretic formulation. we shall still 

assume that each player maximizes his own utilit,y. Tho model proposed 

in the current chapter is, however, different from the simultaneous 

model of the previous chapter since the equilibrium concept used here 

will be that of Stackelberg. Althouah it may appear that the model is 

recur1ive, it will be soon that the model in fact seneralizes 

recursive models for discrete ondosenous variables that have been 

considered up to now in the literature (see, e.a •• Kaddala and Lee 

(1976)). As before, our model becoaea stochastic by adoptina the 

random utilit,y fra.ework introduced by McFadden (1974, 1981). For 

notational convenience, we derive the statistical model by assumina 
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the husband is the Stackelberg leader and his wife the follower; that 

is, we assume the husband knows what action his wife will take 

conditional upon hia action and he thus opt~izes accordingly. 

This chapter is organized aa follows. In Section 2, we derive 

the statistical model where the outcomes are generated as Stackelberg 

equilibria of a game played between two players. Section 3 compares 

the usual formulation of the problem in terms of recursive models with 

our alternative formulation. In particular, it is shown that the 

usual recursive model is nested in our more general -model. In Section 

4, we discuss identification of tho model and estimation issues as 

they relate to identification. Section 5 concludes the chapter. The 

first partial derivatives of tho probabilities, which are needed both 

for identification and ost~ation, are found in tho Appendix to this 

chapter. 

2. TBE MODEL 

For ease of exposition, assume that tho husband is tho 

Stackelborg loader and the wife is the follower. Let Uh(i,j) be the 

payoff to tho husband 'when he takes action i and his wife takes action 

j, i,j a {0,1}. Analoaously, let U (j,l) be tho payoff to tho wife. 
"' 

Then we have the extensive form: 
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uw<O,l) 

UB(l,O) 

uw(l,O) 

UH(O,l) 

Fiaure 1 

uwco.o> 
UR(O,O) 

Tho husband, in makina his decision whether to take action 1 

or 0 must take tho wife's payoffs into account. That is, the husband 

must take action i such that when tho wife takes action j, conditional 

on i, Uh(i,j) sivea the husband the areatest possible payoff. There 

are four possible cases, w1 , w2• w3 , and w4 for tho husband to 

consider before takina his action i: 1 

w1 if (1,0) l u (0,0) 
.... .... 

~ u (1.1) l u (0,1) , w w w - - - -w2 u (1.0) < u (0,0) ~ u (1,1) l u (0,1) , w , , 
.... - - .. 

w3 u (1,0) 
w 

< u (0,0) w 
~ u (1,1) 

w 
< u (0,1) , 

.... - ~ ij (1,1) -w4 u ( 1,0) l U,(O,O) < u (0,1). , , , 

The four cases Y1 , w2 , w3 , and w
4 

are tho wife's reaction 

functions as aiven in Fiaure 2. For example, reaction function w1 

says that whether tho husband chooses action 1 or 0, the wife always 

chooses action 1. Conditional on tho reaction function 
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WIFE W1 lr-------~~------~ 

0 1 
BUS lAND 

Fiaure 2: Wife's Reaction Fanctioas 

chosen by the wife. the husband then takes that action which:mastmizes 

his payoff. For example. if the wife follows reaction function w1 • 

the husband will choose action 1 when Uh(l.l) ~ Uh(O.l). while 

choosing action 0 w4en the inequality is reversed. Thus. each 

reaction function Wi for the wife calls for a payoff comparison c1 for 

the husband. Therefore we define: 

cl Uhcl.l) ~ uhco.1) 

- -c2 Uh(l.l) ~ Uh(O.O) 

- -c3 uh c 1.0) l. Uh(O.O) 

- -c4 Uh(1.0) l. Uh(O.l). 

Let ci indicate the neaatioa of ci. 

Now that the reaction functions for the wife Wi and the payoff 

comparisons for the husband c1 have been defined. we can readily find 

2 the Stackelbers outcomes of this same. as indicated in Table 1. Note 
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that for each outcome. tho first number in each ordered pair refers to 

the husband while tho second number refers to the wife. 

Table 1: Stackelbera Equilibria 

,1 4 c 1 (1.1) ,3 4 c3 
(1.0) 

"1 4 c
1 

(0,1) "3 4 c
3 < o.o> 

w2 4 c2 (1.1) "4 ' c4 
( 1.0) 

"2 4 c2 (0.0) "4 4 c4 ( 0.1) 

To introduce a stochastic structure. we shall follow McFadden 

(1974. 1981). - -T.ho utilities Uh(i,j) and Uw(j.i) are then treated as 

random. and decomposed into doto~inistic components and random 

components. Further. wa shall allow for tho possibilitr that the 

utility tho husband receives depends on the wife's decision whether or 

not to work. We mak~ a similar allowance for tho wife. Then fo~ally 

we have the followina sot of four equations: 3 

Uh(l. Yw) 

Uh(O. Yw) 

uwu·!ia> 
Uw(O.l)_) 

where 

1 
~- 0 

1 
y .. 
w 0 

if tho huaband worka 

othorwilo 

if the w if o worka 

otherwilo • 

( 1) 

(2) 

(3) 

(4) 

------------------------------------~. ~ ··-· 
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To illustrate, tho utility that the husband receives from 

workina when his wife also works (Y = 1) is given by w 
- 1 1 1 Uht(1,1) = Uht + ~ + ~h· As can be seen from the wife's reaction 

functions Wi and the husband's utility (payoff) comparisons 

Ci' i = 1,2,3,4, only differences in utilities aro relevant in the 

husband's and wife's respective decisions whether or not to work. As 
1 0 1 0 

a result, we define eh a ~h- ~h and ew = ~- ~· It is assumed from 

now on that tho pair (ah,aw) is no~ally distributed with zero means, 

unit variances and correlation p. 

The distribution of tho random components (8h,aw) then induces 

a probabilistic structure on tho observed deciaiona (Yh' Yw). Indeed, 

each reaction function Wi for the wife will occur if certain 

conditions on tho random component •w are satisfied. Let us now 

derive these conditiona. 

Usina Fiaure 2, reaction function w1 is characterized by the 

followina two conditions: U (1,0) l U (0,0) and U (1,1) i U (0,1). • • • • 
From (3) and (4) those conditions are equivalent to 8 2 -(U1 - u0) • • • 

1 0 1 0 and e 2 -(U - U + ~ - ~ ), respectively, which can be combined to • w w • • 

siva a• 1 -<u1
- u0

) - min(o,~1 - ~0). • • • w 

Reaction function W2 is Characterized by Uw(1,0) < Uw(O,O) and 

equivalent to a ~ -<u1 - u0) and - ... U (1,1) 2 U (0,1), which are " .. • • • 
1 0 

a > -(U - U + w .. w 
1 0 1 

-(U - U + a -.. , .. 

1 0 aw- a.>. respectively. When combined, we aet 

0 1 0 1 0 a ) < 8 < -(U - U ) if a - a ~ 0; otherwise, w w w w w w" 

reaction function Y2 cannot occur. 

Reaction function W3 it characterized by Uw(l,O) < Uw(O,O) and 

-----~------------------------·--- --·-
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Using (3) and (4). these conditions are equivalent 

and 8 < -(U1 - u0 + a 1 - a0 >. respectively. When w w w w w 

combined. we aet 8 < -<u1
- u0

) - max(O. a
1

- a
0
). w w w w w 

Reaction. function w4 is characterized by U (1,0) l U (0.0) and w w 

U (1.1) < U (0,1), which are equivalent to 8 l -cu1 - u0) and 
w w w w w 

1 0 1 0 
8 < -(U - U +a -a ). respectively, which whoa combined give w w w w w 

-(U1 - u0) < 8 < -(U1 - u0 + a1 - a0) if a1 - a0 < 0; otherwise 
w " w w w w 'W w w 

reaction function w4 cannot occur. We thus have tho following table. 

Table 2: Conditions for Wife's Reaction Functions 

1 0 if a - a l 0 w w 

otherwise cannot occur 

otherwise cannot occur 

Once a reaction function for the wife is determined. a utility 

comparison for tho huaband is also deter.mined; that is, if tho wife's 

reaction function is given by Wi. tho husband makes utility comparison 

c1, i • 1 ••••• 4. A. with tho wife. each utility comparison Ci will 

occur if a certain condition on the random component sh is satisfied. 

Those are now derived. 

We soo from Fiaure 1 that when tho wife follows reaction 

function w1 .. the husband compares Uh(l.l) and Uh(O.l). If 

Uh(l,l) l Uh(O.l). thea from (1) and (2) we have that 



76 

8 ~ -<ul _ uo + a..l _ a..o>. 
h h h .n .n 

When the wife follows reaction function w2• the husband 

compares Uh(1,1) and Uh(O,O). When Uh(1,1) ~ Uh(O,O), we have that 

1 0 1 
ah ~ -<uh- uh + ~>· 

When reaction function w3 is used, the husband compares 

Uh(l,l) and Uh(0,1). When Uh(1,1) ~ Uh(O,l), we have that 

1 0 
eh ~ -(Uh- Uh). 

Finally, Fisure 1 shows that when tho wife uses w4, the 

... -husband makes a comparison between Uh(l,O) and Uh(O,l). If 

... - 1 0 0 Uh(l,O) l Uh(O,l), YO have froa (1) and (2) that 'h 2 -(Uh- uh- ~). 

We therefore have tho followins table. 

Table 3: Conditions for Husband's Utility Comparisons 

Now that randomness has boon introduced into the model, we can 

derive the joint probabilities on the part of both the husband and 

wife whether or not to work. Let Pr(l,j) be the probability that the 

randoa variables 1h and Yw take on the values i and j, i,j a {0,1). 

Froa Table 1, we have 

Pr(O,O) • Pr(W2 l C2) + Pr(W
3 

l C
3

) 

Pr(l,O) • Pr(W3 l c3) + Pr(W
4 

l C4) 

(5) 

( 6) 
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Pr(O,l) = Pr(W1 ~ C1) + Pr(W4 ' C4) 

Pr(1,1) = Pr(W1 ~-c1 ) + Pr(W2 ~ C2 ). 

(7) 

(8) 

Using Tables 2 and 3 and Equations (5)-(8) we can derive the 

probabilities in terms of the unknown paramet~rs. Let F(a,b,p) be the 

c.d.f. evaluated at (a,b) of a bivariate normal distribution with zero 

means, unit variances, and correlation p. Moreover, let I(a,b,c,d,p) 

be the integral correspondins to a bivariate density over the range 

4 a 1 sh 1 c, b l sw l d. As can be seen from Table 2, the 

1 0 probabilites Pr(i,j) will depend on the sign of Aaw a (aw- a ... ). We 

then have: 

PROPOSITION 1: 

Pr(O,O) = F(-AUh,-AUw,p) - I! 

= F(-AUh,-AUw,p) 

Pr(l,O) = F(AUh,-AU - Aa ,-p) ... ... 

Pr(O,l) 

Pr(l,l) 

where 

I B 
+ Zl 

I~ • 

• F(AUh,-AUw - Aaw,-p) + IB 

1 0 
= F(-AUh - ~ + ~,AUw,-p) 

1 0 A 
• F(-AUh - ~ + ~,Au .... -p) + I 

1 0 A = F(AUh + ~ - ~,AUw + Aa .... p) - I+ 

1 0 
• F(AUh + ~ - ~,AUw + Aa .... p) 

if Aa 2 0 ... 
otherwise 

if Aa 1 0 w 

otherwise 

if Aa ~ 0 
1r 

otherwise 

if Aa, 2 0, 

otherwise 

(9) 

(10) 

(11) 

(12) 

(13) 
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PROOF: 

From Table 2- it is clear that rea~tion function w4 for the wife 

cannot occur when Ca1 - a0) ~ o_ while reaction function w2 cannot w w 
1 0 1 0 occur when Caw - aw> < o. Thus when Caw - a,> ~ o it follows from 

equations (5) - (8) that 

Pr(O,O) • Pr(W2 j c
2

) + Pr(W3 ~ c
3
), 

Pr(1,0) = Pr(W3 ~ c3), 

Pr(O,l) + PrCW1 ~ C1), 

Pr(1,1) • Pr(Wl ~ C1) + Pr(W2 ~ C2). 

Similarly, when (a1 - a0) < 0, we have that w w 

Pr( 0,0) • Pr(W3 ~ C3), 

Pr( 1,0) • Pr(W3 ~ c3) + Pr(W4 ' C4), 

Pr( 0,1) • Pr(W1 ~ c
1

) + Pr(W
4 

~ C
4
), 

Pr( 1,1) • PrCW1 • C1). 

Now, usins the conditions on •w and 'h aiven in Tables 2 and 

3, respectively, we can derive the needed coaparisons between 

particular w1, Ci, and Ci, i • 1, ••• ,4. For the cases 

Aaw • (a1 - a0) ~ 0 and Aa a (a1 - a0) < 0, fiauros 3a and 3b • • w w w 

respectively show tho areas over whiCh the bivariate normal denai~ 

must be intearated to obtain tho four probabilities 
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(0,1) (1,1) 

I~ 

~Uw-6~ ~--------------~~----~~----~ .................. ... 

(0,0) (1,0) 

figure 3& 

figure 3b 
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Pr(O,O), Pr(l,O), Pr(O,l), and Pr(l,l). Without loss of generality. 

figures 3a and 3b are drawn for tho case ~ < 0 < ~· It can be seen 

A B A B from figures 3a and 3b that I+. I+' I_ and I_ correspond to the areas 

over the bivariate normal density given by (13). It follows that tho 

probabilities Pr(O,O), Pr(l,O), Pr(O,l), and Pr(l,l) are given by 

equations (9) - (13) in Proposition 1. 

Q.E.D. 

Let us now examine how the probabilities Pr(l,•) and Pr(•,l) 

will chanae as wo allow tho parameters to vary. These aro given as 

Pr(l,•) a Pr(l,l) + Pr(l,O) and Pr(•,l) a Pr(l,l) + Pr(O,l), 

respectively. We then have: 

PROPOSITION 2: 

(i) An increase in ~ or AUh always increases the probability that 

tho husband will work, Pr(l,•)• 

(ii) an increase in~ always decreases tho probability that tho 

husband will work: 

(iii) an increase in Aa or AU always increase the probability that 
'W w 

the wife will work, Pr( • ,1). 
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PROOF: 

Easily established by using either tho areaa defining tho 

probabilities Pr(i~J>~ aa soon in figures 3a and 3b or by 

differentiating tho probabilities found in Proposition 1. Included 

below is a table indicating the direction of change in tho 

probabilities as all parameters are allowed to vary. 

1 
«ia 

0 
"h 

AU • 

1 
«ia 

Pr( 0,0) 

DO 
chanae 

? 

1 

Pr( 0,0) 

no 
chanso 

no 
chaaae 

DO 
chaase 

Pr( 1,0) 

DO 
chanao 

no 
chanae 

+ 

Pr( 1,0) 

no 
chanso 

+ 

1 

Pr(O,l) 

+ 

DO 
chanse 

+ 

Pr(O,l) 

+ 

? 

7 

Pr(1,1) 

+ 

+ 

+ 

1 

Pr(1,1) 

+ 

+ 

+ 

+ 

Pr(l, •) 

+ 

1 

+ 

1 

Pr(1.•) 

+ 

1 

+ 

? 

Pr(•,1) 

+ 

DO 
chango 

+ 

+ 

+ 

Pr(•,1) 

DO 
chanso 

+ 

+ 

+ 
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Q.E.D. 

As expected. an increase !n AUh increases the probability that 

tho husband will work, whether or not tho wife chooses to wort; a 

similar remark holds for an increase in AU • Also, as can be seen w· 
1 from equation (1), an increase in~ increases tho probability that 

tho husband will wort when he knows his wife wishes to wort, while 

having no effect on his propensity to work when he knows his wife 

chooses not to wort. From equation (2). it is clear that an increase 

in~ increases the husband's utility of not wortins. Finally usina 

equations (3) and (4). it is soon that an ino~ease in AU increases w 

tho wife's utility of joining tho labor market. 

3 • A COIIPAlliSON OF MODELS 

Now that we have developed a model in which the outcomes of 

the sequential decision-mating problem are generated as Stactolbora 

equilibria of a game between two players. we are in a position to 

compare it to the usual recursive probability model for dichotomous 

variables (see •·•·• Maddala and Lee (1976)). Accordina to the usual 

formulation. a reaursive equation system is described in terms of 

latent continuous variables, where tho observed dichotomous variables 
-

are generated usina a dichotomization. In our case, tho corrospondins 

recursive probability model is 

·---·-·-· 

(14) 

(15) 
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for some ~ and Aw, and 

• • if \. > 0, 1 if y > 0, 
w 

otherwise, y = w 0 otherwise. 

Tho purpose of this section is to show that this recursive probability 

model is nested in our model of Section 2. 

Suppose that 

1 0 
~- ~ = 0; (16) 

then from equations (1) and (2) definina tho husband's utilities, we 

have: 

Thus tho restrictions (16) can be interpreted as imposina that the 

utilities derived by the husband from workin1 or not workina do not 

depend on the wife's decision whether or not to work. 

But now note that if the restrictions (16) hold, then from 

Table 3, the four conditions c1, c2 , c
3

, and c4 are identical; that 

is, 'h 2 -AUh. Lookina now at the conditions for tho wife's reaction 

functions, we have to distinauish two cases accordins to the sian of 

Amw• Suppose first that Aaw 20. Then it is readily seen fraa Tables 1 

and 2 that tho pairs (1,1), (1,0), (0,1), and (0,0) occur under the 

followina conditions: 

(1,1) if and only if AUh + 'h 2 0 and AUw + Amw + •w 2 0, 



( 1,0) 

(0,1) 

(0,0) 

84 

if and only if AUh + eh ~ 0 and AU + Ao + a < O, 
w w " 

if and only if AUh + eh < 0 and AUw + e.., ~ 0, 

if and only if AUh + ah < 0 and AUw + 'w < O. 

It suffices now to note that these conditions are exactly identical to 

the ones that are obtained froa the recursive p~obability model (14)-

(15) with the usual dichotomization where ~ = AUh' 

A = AU and ~ = Ao • The case Ao < 0 is similarly studied, and w w w w w 

gives the same conditions as above on the errors ah and •w· We have 

therefore established the followina proposition. 

PROPOSITION 3: If the restrictions ~ • ~ •. 0 hold, then the usual 

recursive probability model usia; the dichoto.aization rule is 

identical to ouz model in whiCh the observed outcomes are generated as 

Stackelberg equilibria. 

The baport of Proposition 3 is that it aives a st~uctural 

interpretation to the usual recursive probability model in terms of a 

Stackelbera same. In addition , since the restrictions (16) on the 

parameters of our model must hold in order for the result in 

Proposition 3 to hold, it follows that tho usual recursive probability 

model is nested in our proposed model. As an empirical consequence, 

it is then possible to test the specification of the usual recursive 

model by testina ~ • ~ • o. Finally, aiven the above int•rpretation 

of these restrictions, it can be seen that these restrictions are 

unrealistic since they iapose that the utility the husband derives 

from workina or not workina does not depend on whether the wife is 
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workina. Thus, the usual recursive formulation is inappropriate since 

it implicitly assumes that the leader is indifferent to the follower's 

action. Let us also note that although tho husband is moving first 

and in principle should take into account his wife's conditional 

action when making his decision, the restrictions (16), when imposed, 

lead tho husband to ignore his wife's action. 

4. IDENTIFICATION AND ESTIMATION 

Given the previous expressions for the probabilities Pr(i,j) 

of the observed dichotomous variables lh and Yw, the loa-likelihood 

function under random sampling is written as: 

L • ~ loa Prt (Yht' Ywt) (17) 

= ~[lbtYwt los Prt(1,1) + lht(l- Ywt) loa Prt(1,0) 

+ (1- lbt>Ywt loa Prt(0,1) + (1- Yht)(1- Ywt) loa Prt(O,O)], 

where the subscript t indexes the observations. the probabilities are 

subscripted by t since AUh and AU• are in general functions of 

explanatory variables. Yo aasuao aa in Chapter II: 

I I 

AUht • ~tyh and AUwt = xwtYw• (18) 

whore ~t may include characteriatics of the t-th household and 

characteristics of tho husband. A similar roaark applies to xwt• Yo 

now turn to the conditions under whiCh tho parameters 

0 1 
(p,Aaw·~·~·Th'yw) of our model are identified. 

In order to diacuas identification, we first need to introduce 
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some notation. Define tho following partitioned matrix I as 

where DP • Dh and Dw aro block diagonal matrices of order 3T. the t-th 

blocks given as follows: 

if ACI ~ 0 w 

0 0 

D • 0 pt 

0 0 

0 0 

0 

dw+ 0 0 
t 

Dpt • 0 

0 

0 

bw- 0 
t 

0 

; 

0 

0 

• 

0 

( ,_h+ h+) 
ut +ct 

0 

0 

0 

0 

bh- 0 
t 

0 

• and 

• and 
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The elements of tho above matrices are described in the Appendix to 

this chapter. The matrices lh and x, are of dimension 3T by lb + 2 

and 3T by X + 1. the t-th blocks siven respectively as: 
w 

-1 0 ~t 0 xwt 
, 

0 1 ~t and 1 xwt • 
, 

0 0 ~t 1 xwt 

In addition, X 
p 

is a unit vector of dimension 3T. 

PROPOSITION 4: 

identified if and only if 1 has full coluan ~ant. 

PROOF: 

Fraa expression (17). we have. omittina tho subscript t. that 

a1o1 f(Z.t) • thY. OPr(l.J) lh(l - Yy) 8Pr(1.0) 
ae Pi1i':iT ae + Pr( 1.0> ae 

+ ( 1 - Yh)Yy aPrCO.l) (1 - Yh)( 1 - Yj) 3Pr(0,0) 
Pr(o.l) ae + PrCo.o> ae 

Th 3101 f aloe f is aivew by en. ap ap , say, -
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+ [(l - Yh)Yw 3Pr(0.1)]
2 

+ [(1 -Yh) (1 - Y") 3Pr(0.0)]
2 

Pr(O,l) 3p Pr(O,O) 3p " 

whore wo have used tho fact that ~ and Yw tako on only tho values 

zero or one. Since 1b andY" are random variables where lb = i, 
Yw = j with probability Pr(i,j), i,j a (0,1), wo have that 

E[alos f atog f] • 1 [3Pr(1,1)]2 
ap ap Pr(1,1) ap 

+ 1 [aPr(1.o>]2 1 [aPr(O.U]2 1 [aPdo.o>]2 
Pr(l,O) 3p + Pr(O,l) ap + Pr(O,O) 3p • 

ProooedinJ analoaoualy, the remainina terms in B are aivon by: 

Notice that B can bo decomposed into B • A'DA whore A is of dimension 

4T by K, K • lb + Kw + 4, that has as its t-th block At dofino4 as: 

3Prt(1,1) aPrs:(l,l) aPrS:(l,l) aPrt(l,l) ctPrt (1,1) aPrt(l,l) 
ap a.Aa, a o a 1 

, , 
~ ~ ayh ay, 

aPrt (1,0) 3Prt(l,O) aPrs: (1,0) aPrt (1,0) 3Prt(l,O) 3Prt (1,0) 
ap aAa, a a: a 1 

, , 
~ ayb. ay, 

aPrt(O,l) aPrS: (0,1) 3Prt (0,1) aPrt(O,l) aPrS:(0,1) 3Prt (0,1) 
ap a.Aa, a o a 1 

, , 
~ ~ ayh ay, 

aPrS: (0,0) aPrS:(O,O) 3Prt(O,O) aPrt(O,O) aPr:li(O,O) aPr:li(O,O) 
ap a.Aa, a~ a~ 

, , 
ayh av, 
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and D is a block diasonal matriz of order 4T, the t-th block siven by 

Prt (1,.1) 0 0 -1 
0 

0 Prt (1,.0) 
0 0 

0 0 Prt(O,.l) 0 

0 0 0 Prt(O,.O) 

The model will be locally identified if and only if B is nonsinsular 

(see, e.s ... Rothenbers (1971)). Since D ia of full rank and 4T > K,. a 

necessary and sufficient condition is that A have full column rank. 

From the Appendix to this Chapter,. it is seen that the partial 

derivatives of Prt(i,.j) with reapect to the vector e depend on the 

sian of Aa - we muat therefore check that matrix A has full cola.n w 

rank in both cases. 

Case 1: Aaw 2 0 

Substitutins into At the partial derivatives, usins the 

i+ i+ i+ i+ j+ notation at ,.bt ,.ct ,dt ,i • h,.w, and rt ,.j • 1,2,3,.4,. found in the 

Appendix, we perfo~ the followina matrix alaebra: 

(i) add rows (2+3+4) to row 1 

(ii) add row 2 to row 4 

(iii) add cola.n 3 to column 4 

(iv) multiply columna 1, 2 and 6 by -1 

(v) Switch rowa 3 and 4. 

Rearranaina columns and omittina row 1 since it is identically null, 

we have 
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1+ 0 0 
h+ , w+ w+ , 

rt •t ~ •t •t x .. 

X 2+ 3+) 0 (bh+ h+) (bh+ + h+) , w+ w+ w+ , 
= (rt + rt + ct ct (bt + ct )xw t t t 

0 t ~ • 

4+ dh+ 0 
h+ , 

0 
w+ , 

rt t -dt ~ dt x .. 

We now decompose the reaultins matrix A into a partitioned matrix 

where D • Dh, and D are eaCh block diaaonal matrices of order 3T, the 
p W' 

t-th blocks beina Dpt' ~t' and Dwt respectively, as aiven above. 

Case 2: Aaw < 0 

Substitute into At the partial derivatives found in the 

i- i- i- i- j-
Appendix, aaaia usias at ,bt ,ct ,dt ,i = h,w, aad rt ,j = 1,2,3,4. 

Now perform the followins matriz alaebra on matriz A: 

(i) add rows (1+2+4) to row 3 

( ii) add row 4 to row 2 

(iii) add columa 4 to column 3 

(iv) multiply columa 6 by -1 

(v) switCh rows 2 aad 4. 

Reuranaina coluaaa aa4 oaittiaa row 3 siace it ia i4eatically null, 

we have 

1- 0 0 
h- 1 0 w- 1 

rt at~ •t xw 

A • 2- 0 h- h- 1 bw- bw- 1 
t rt bt bt ~ t t xw 

3- 4- h- h- dh-, 1 w- w-
d;->x! (rt + rt ) ct 0 -(c + "t (ct + t t ~ 
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... 
which can be written as A. 

Q.E.D. 

As seen in the Appendiz, the elements of the matrices DP, ~· 

and Dw are all nonzero. MOreover, these matrices are nonsinaular in 

both cases since they are either triangular matrices or can be made 

trianaular by suitable permutations of rows and columns. By ezamining 

matriz 1 above, it is clear that if l does not have full column rank, 

it will occur only eztremely rarely for some specific values of the 

parameters as an artifact of certain ezplanatory variables. Wo have, 

althoup, the followina ne·oesaary condition for identification. 

OOROLLARY 1: 0 
Gw = 0, the model is not identified. 

PROOF: 

h+ ht When Aaw • 0, it is seen frOB above that bt + ot = 0. 

Therefore matriz Dht is sinaular for all t which implies that matriz A 
no lonaer has full column rant. 

Q.E.D. 

Aa a practical ~plication of the corollary for estimation, it 

must be the case that the initial values chosen for a! and a! not be 

the same. Otherwiae, tho iDfor.aation matriz will be nonainaular at 

the first iteration, and the opt~ization cannot be carried out. 
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S • CONCLUSION 

In this chapter, we presented a new approach for formulatins 

simultaneous equations models for qualitative endoaenous variables. As 

we have seen, this approach intesrates results from noncooperative 

same theory and discrete choice modelins. In contrast to the model 

proposed in the previous chapter, we assume a model where two 

individuals play a Stackelbera same in which each player maximizes his 

own utility. As in the model of the previous chapter, the current 

model is also made stochastic by adoptins the random utility 

framework. 

1ust as the previous chapter proposed a aen~ralization of 

simultaneous equations models with structural shift in which the 

discrete endoaenous variables were senerated as Nash equilibria of a 

same between two players, the model proposed in the current chapter 

generalizes the recursive models for discrete endosenous variables 

that have been proposed up to now in the literature. As we have seen 

in Section 3, the usual recursive aodel is nested in our game 

theoretic model. AlthouJh recursive models have been used in the 

formulation of many econometric problems in which sequential decision 

makina is a distinct feature, these models implicitly assume that the 

leader is indifferent to the follower's action. If this is not the 

case, then tho usual recursive models are misspecified since they 

ianoro tho opt~izinJ 

behavior of the leader who is tatina into account tho conditional 

action of tho second asent when chooslnJ his action. As such, tho 



93 

usus! recursive model of a sequential decision matins problem is 

inadequate in many problems. In contrast. our formulation in terms of 

a Stackelberg model allows for optimizins behavior on the part of both 

asonts. 
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FOOTNOTES 

1. Where an individual is indifferent. we arbitrarily assume that he 

or she will take action 1. 

2. Let us note that the husband is fully informed about tho utility 

fungtion of tho wife; that is. ho not only knows the deterministic 

components in tho utilities (3)-(4) given below. but also the 

random components. An intereating generalization, which will bo 

pursued in futuro work. arises when tho huband knows only tho 

deterministic components, in which case one has a Staokelborg game 

under uncertainty (see also Vuona (1982))~ 

3. Lot us note that we allow tho utilities lh(l.Yw) and Uw(l.lh) to 

depend on Yw and Yh respectively. This contrasts with tho 

formulation adopted in Chapter II. 

4. If a < c. I(a,b.c,d,p) is by convention tho negative of tho 

integral of tho bivariate density over tho ranao [aMc] X [d.b]. A 

similar remark applioa if b < d. If both a < c and b < d, then 

I(a,b,c,d,p) ia by convention tho intoaral of tho bivariate 

density over [a,c] X [b,d]. 
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APPENDIX 

First partial derivatives of tho Probabilities Pr(i,j): Lot~ be the 

univariate normal c.d.f. and let ' be tho corrospondins p.d.f. We 

then USe th 1 ti aF(x,y.p) 'f( )•( * *> aF(x,y.p) 
e re a OnS ax • I T "1' . - p1 1 ay := 

• • aFCx.y.p) '(y).(x - py ) , and ap = f(x, y, p) where a quantity with a "*" 
2 means that quantity is divided by the square root of (1- p ). Proofs 

of these relations are found in Appendix B to Chapter II. In 

~ddition, lot f(x,y,p) be tho p.d.f. oorreapondins ~o tho bivariate 

normal c.d.f. F(x,y,p). Then from equations (9)-(13) found in Section 

2 of this chapter, tho first partial derivatives of tho probabilities · 

Pr(i,j) use tho followins: 

aF(-AUh,-AU,,p) 

ay ... 
aF(-AUh.,-AUw.,p) 

86.Ciw 

aF(-AUh,-AUw.,p) 
0 

.a~ 

• • • _,(AU )9(-AUh + pAU )x , ... ., ., 

- 0, 

.. 0, 

8F(-AUh.,-AU.,.,p) 
----~~--~-- .. o. 

a~ 
8F(-AUh,-AU,,p) 

ap • f(-AUh,-AU.,,p)J 

8F(AUh,-AU - Au ,-p) • • • 
a;h • • t<~>•<-Au ... - Ae~., + pAUh>'h· 

aF(AUh,-Au - Ae~ ,-p) • • • 
aT... ., • -f(AU., + Au.,).(AUh- p(AU., + Ae~,))x.,. 

aF(AUh,-AU., - Au.,,-p) • • • 
aAa., • -f(AUw + Ae~,)9(AUh- p(AU, + Ae~,)), 
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0 
0• • 1 AU -p) • 1~ + pAU )x • BF(-AUh - ~ + ~ ""' w• ,.. fCAUw)Cf(-AUh - ~ + ~ w w 

ay. 
1 0 AU -p) 

BF(-AUh - ~ + ~ ""' w• ,. 0,. 

a Am• 

1 0 AU -p) 1 0 
BF'(-AUh - ~ + ~·"' w• ,. f(AUh + ~ - ~) 

a(Lo 

n • • 1• o•)) 
X .(AU - p(AUh + ~ - ~ • ![ 

1 0 AU -p) 1 0 
aF(-AUh - ~ + ~·"' w" :a -f(AUh + ~ - ~) 

a~ 
• • 1• O*>> X Cf(AU - p(AUh + ~ - ~ • 
1f 

BF{-AUh- ~ + ~.Au •• -p) • -f{-AUh- ~ + .:.AUY.-p)l 
ap 

aF(AUh + ~ - a:.AUw + Am,,.p) 

ayh 

aF(AUh + ~ - a:.AUY + Amw,.p) 

ay, • '(AUw + Am,) 

• 1* o• 
X Cf(AUh + ~ - ~ 

1 0 AU + ACI p) 
aF(AUh + ~ - ~·"' w w" • '(AUw + Aaw) 

BAa, 
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and 

• 1* • • 
+ tU.U + All )9(-AUh - a.. + p(AU + A11 ) ) , , 11 , , 

• 1• o• • 
+ T<AU,)9(-AUh - "h + ~ + pAU,> 

• 1• o• • • - '(AU + All )9(-AUh - a.. + a.. + p(AU + A11 ))]z • 
1f' 1f' 11 A 1f' 1f' 1f' 
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A 
at+ 1 • • 1• - = -f(AU + 'it)9(-AU + p(A.Uh + ~ )) aai h " 

1 • • • 1* 
+ f(A.Uh + ~)f(-AU, - ACI, + p(AUh + ~ )) 

1 o • • 1• o• + f(AUh + ~ - 'it)9(-A.U, + p(A.Uh + ~ - ~ ) ) 
1 o • • • 1• o• 

- f(A.Uh + 'it - ~)~(-AU, - A.e~, + p(A.Uh + 'it - 'il )) , 

• •• • • • [-t(AUh)·(-A.U, + pA.Uh) + '(A.Uh)t(-A.U, - A.e~, + pAUh) 

1 • • 1• 
+ '(A.Uh + ~)f(-A.U, + p(AUh + 'it )) 

1 • • • 1• 
- t(A.Uh + 'it)f(-A.U, - A.e~, + p(A.Uh + 'it ))]zn~ 

• 1• • 
+ f(A.U,)9(-A.Uh - 'it + pA.U,) 

• 1• • • 
- f(A.U + ACI )•(-A.Uh - Cl. + p(AU + A.CI ))]z , 

W W A W W 1f 

B 
at+ • ., • 
ixa = '(A.U + ACI )9(-A.Uh + p(AU + A.CI ) ) , 1f , , , 

• 1• • • 
-· t<AU, + Ae~,)·(-AUh - 'it + p(AU, + Ae~,)), 

--- ~--------
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o • • • •o 
[-f(4Uh - ~)·(-4Uw - Aaw + p(4Uh ~ ~ )) 

o • • o• + f(4Uh - ~)·(-4Uw + p(4Uh - ~ ) ) 

1 o • • • 1• o• + f(4Uh + ~ - ~)'f(-4Uw - Aaw + p(4Uh + "h - ~ )) 
1 o • • 1• o• 

- f(4Uh + ~ - ~)'f(-4Uw + p(4Uh + ~ - ~ ))]~, 

• o• • • [-f(AU + Aa )·(-4Uh + ~ + p(AU + Aa )) 
W W A W W 

• o• • + fCAUw)•(-AUh + ~ + p4Uw) 

• 1• o• • • + f(AUw + 4aw)•(-4Uh- ~ + ~ + p(4Uw + Aaw)) 

• 1• o• • 
- tCAUw)•(-AUh - «;. + ~ + p4Uw))]zw• 

A 
ar_ • o• • • 

-aA • -f(AU + Aa )·(-4Uh + ~ + p(AU + Aa )) «w w w D. w w 

+ f(4Uw + 4aw)•(-4U:- ~· + ~· + p(AU; + Aa:)), 

A 
ar_ o • • • o• 
a O ""' tCAUh - ~)·(-AUw - Aaw + p(4Uh - ~ ) ) 

"h 
o • • o• 

- tCAUh - ~)·(-AUw + p(AUh - ~ )) 

1 o • • • 1• o• 
- f(4Uh + ~ - ~)9(-AUw - Aaw + p(4Uh + "h - "h ) ) 

1 o • • 1• o• 
+ f(4Uh + ~ - ~)9(-4Uw + p(AUh + ~ - ~ )) • 

A 
ax_ 1 o • • • 1• o• 
a~ = f(AUh + ~ - ~)9(-AUw - Aaw + p(AUh + ~ - "h )) 

1 0 • • 1* 0*)) 
- f(AUh + "Jl - "Jl)9(-4Uw + p(AUh + ~ - "h " 

A ar_ o o 
ap • f(-AUh + "Jl,.-4Uw - Aaw•P) - f(-4Uh + ~,.-AUw•P) 

1 0 1 0 
- f(-AUh- ~ + "Jl,.-AUw- Aa ... p) + f(-AUh- ~ + ~.-AU ... p)J 



100 

-= av, 
• • • • • [-T(AU + Au )9(-AUh + p(AU + Aa )) + TCAU )•(-AUh + pAU ) w w w , , w 

• o• • • +'(AU,+ Aa,)9(-AUh + ~ + p(AU, + Aa,)) 

• o• • - '(AU,)9(-AUh + ~ + pAU,)h:,. 
B ai_ • • • 

----aA .= -f(AU + Au )9(-AUh + p(AU +Au )) a, w w w w 

• o• • • +'(AU,+ Aa,)9(-AUh + ~ + p(AU, +Au,)) 

B 
ai_ o • • • o• aa: = -f(AUh - ~)9(-AU, - Aa, + p(AUh - ~ ) ) 

o • • o• + '(AUh- ~)9(-AU, + p(AUh- ~ )), · 

For simplicity, we drOp the subscript t in the following expressions. 

rl+ • f(AUh,AU + Au ,p) , w 
2+ 1 

r • -f(AUh + ~,AU,,p) 
3+ 1 

r • f(AUh + ~,AU, + Aa,,p) 
4+ 1 0 

r • f(A~ + ~ - ~,AU,,p) 
h+ • • • 

a e T<AUh)9(-AU, - Aa, + pAUh) 
h+ 1 • • 1• 

b a _,(AUh + ~)9(-AUw + p(AUh + ~ )) 
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CHAPTER IV: AN EMPIRICAL SlUDY OF THE GAME THEORETIC MODELS 

1. IN'IRODUCTION 

The purpose of the current chapter is to present an 

econometric study of the Nash and Stackelborg equilibrium models 

proposed in the previous two chapters. The problem we will ezamine 

concerns tho joint decision of a married couple whether or not to 

participate in the labor force. We fool that an ezamination of this 

problem will yield two useful results. First. it will demonstrate 

that the game theoretic models we have proposed are in fact 

empirically tractable. Second. we fool that the proposed study will 

make a contribution to the literature on labor force participation 

because we ezplicitly model tho behavior of a married coQP.le in a game 

theoretic framework. while previous empirical work has oithor taken 

tho husband's decision whether or not to work as ozosonous (see. o.g •• 

Hockman (1974). Hockman and McCurdy (1980)). or specified the labor 

supply of a husband and wife from tho outcome of a joint utility 

function (see. e•l•• Ashenfelter and Bockman (1974). and Gronau 

(1973)). AlthouJh Brown and Hanser (1978), Manser and Brown (1980) 

and McElroy and Horney (1981) have done related work usin& a 

cooperative game solution, none have provided an empirical 

application. 
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By now it should be clear after readins Chapters II and III 

that the structure of the Nash and Stackelberg models contain many 

similarities. These common elements arise for essentially four 

reasons. First, the dimensionality of both models is the same; in 

both models, attention is restricted to tho case of two qualitative 

endogenous variables where each variable takes on only two outcomes. 

Second, both models follow the classical tradition in economics, 

postulating that each member of tho married couple maximizes his or 

her own utility function. Tho decisions made by the husband and wife 

need not be independent, however, since the utility derived by each 

individual naturally depends on the action taken by the other. In 

this sense, both tho Nash and Stactelberg models allow as araum~nts in 

each utility function tho action taken by both members of tho married 

couple. Third, since the ultimate goal.of tho previous two chapters 

was to specify an econometric model of the two game theoretic notions. 

it was necessary to introduce a stoChastic struct~o into tho two 

models. This was done by treatins the utilities as random, 

decomposins the utility of each of the four outcomes into a 

deterministic component and an additive random component• the 

deterministic components were in turn decomposed into continuous 

explanatory variables and shift parameters. Finally, since the 

observed dichota.ous variables wore aonorated as equilibriua outcomes 

of game theoretic notions, it was necessary in both models to derive 

the reaction functions of each individual. Given the probabilistic 

structure, each reaction function occured if certain relations were 
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satisfied between tho disturbance terms. the shift parameters. and 

differences in tho continuous explanatory variables. 

Given the similarities in the structure of both the Nash and 

Stackelbers models. it should not be surpxisina that tho specification 

of the throe empirical models will in turn yield many similarities. 

As to economize on space. those timilarities are discussed in tho 

followina section. Section 3 will discuss peculiar features of the 

structure of tho Nash model alons with the empirical results of tho 

problem under study. Sections 4 will discuss tho Staokelbers model 

for tho case in which tho husband plays tho role of tho leader while 

his wife plays the role of tho follower. Empirical results will also 

be presented. Section 5 discusses the third empirical esamplo whore 

tho roles of tho husband and wife are reversed. Section 6 provides a 

brief conclusion. A description of tho data sot used in the three 

empirical studies is included as the Appendix to this chapter. As 

such. it discusses tho source and description of tho original data 

set. the selection criteria we used in choosina tho appropriate sot of 

observations. and the means and variances of the explanatory 

variables. 

2. ~ TIIB co•~ S'DlUcnJBB OP TBB MODELS 

In each of tho three models. tho followina four equations will 

be used to describe the joint behavior of a representative married 

couple: 



where 

1 if the ha.band works, 
y_ ... 
a 0 otherwise, 

1 if the wife works, 
y -w 0 otherwise. 
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(1) 

(2) 

(3) 

(4) 

Equations (1) and (2) describe the reservation wases, or equivalently, 

tho shadow price of tbae for tho husband and wife, respectively. Note 

that tho wife's decision of whether or aot to work, aiven by tho 

dichotoaous variable Y , affects tho husband's reservation waae in 
w 

(1). Analosously, tho husband's decision of whether or not to work, 

sivon by lh• affects tho wife's reservation wase in (2). Equations 

(3) and (4) describe tho market waaos for tho husband and tho wife, 

respectively. Note that in tho aenoral specification of the three 

models, we also allow for tho possibility that Qne of tho determinants 

of tho husband's aarkot waao ic whether or not he has a workina wife: 

we aab a siailar allowance for the wife. 

Now let the husband's (wife's) reservation waae play the role 

of the payoff he (she) derives fraa not workina. aivea below by 

equations (5) and (6) respectively. Siailarly, let the husband's 

(wife's) market waae play the role of tho payoff he (she) derives from 
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workins. given by equations (7) and (8) respectively. We then have 

tfh (0, Yw) 
, r 

ct;Yw + 
r 

= ~'Yh + 'llh 

u ... co. ~) ' r d~~ +~ = z y + ww 

trh (1, Yw) 
r II 

~y + II = ~'Yh + ... "'h 

u ... c 1. ~) 
, Dl 

d~ + 'llDl· =X 'Y + ww w w 

Since we are describins the empirical structure ~f the three models 

only in general terms in this sectioa, it should be noted that tho 

structural assumptions of both the Nash and Stackelbers models will 

place zero restrictions on certain of the shift para.eters 

df, i • h,w, j • m,r. 

In each of tho three models, wo must now specify the set of 

(5) 

( 6) 

( 7) 

(8) 

explanatory variables used to estimate the market wase equations and 

the reservation wage equations for the husband and wife.1 Market wages 

for tho husband and wife aro specified in (9) and (10) respectively. 

Reservation wases for the husband and wife are specified in (11) and 

(12) respectively. 

(9) 

tJ m 0 1 2 3 
... (l,Y-) • W • 1 + y AGBW + 1 AGBW**1 + y EmCf a w w w w w 

(10) 
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( 11) 

-9 ... to r r 
+ y,KIDS6-13 + 1, ICIDS>14 - d._\_ + 11._.• ( 12) 

where 

AGBB Ago of husband 

AGBr Age of wife 

AGBI**2 Squared age of wife 

EDOCB Number of years of fo~al schoolina of husband 

EDOCW Number of years of fo~al school ina of wife 

UNEk Local unemployment rate 

RACE Dummy variable indicatina race of married couple• 1 = Black or 
' 

Hispanic. e othorwise2 

ASSETS Family's annual income other than from waaos or salaries 3 

ICIDSl-2 Number of children in faaily unit ages 1 and 2. 

ICIDS3-5 Number of children between ases 3 and 5. 

ICIDS6-13 Number of children between 6 and 13. 

ICIDS<13 Number of children in faaily unit 13 years or younser 

ICIDS > 14 Number of children in f uaily unit 14 years or older 

The plus and minus lips under tho ozplanatory variables in equations 
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(9)-(12) indicate the expected impact upon estimation. Note that not 

only does the wife's decision of whether or not to work effect the 

husband's market wase. it also affects the husband's reservation wase. 

Analosously. the husband's decision to work or not affects the wife's 

market wase and also her reservation waso. 

Tho data used in this study on married couples is from the 

1982 wave of the University of Michisan Survey Research Center's Panel 

Study on Income Dynamics. 1968-1982. The data was restricted to 2012 

records for married couples livins in tho U.S., where both tho husband 

and the wife were able-bodied, neither older than 64 years of ase with 

no nonrelative livins in tho family unite A more detailed description 

of tho Panel Study en tho selection criteria we used is found in the 

Appendix to this chapter. Lot us now briefly discuss the estimation 

technique used as it will apply to all throe empirical problems. 

Althoush many of the nonlinear optimization methods developed 

over the years could be used to estimate the NaSh and Stackolborg 

models. we choose to use a version of tho iterative procedure 

sussested by Berndt. Hall. Ball. and Bausman (1974). A major 

advantaso of the BBBB alsoritha is that it makes use of tho 

information matriz equality when the method of maximua likelihood is 

applied to correctly specified models. As such, only tho first 

partial derivatives of the expressions for the probabilities need to 

be derived. 

For completeness, a brief disression on the derivation of the 

BBBB alsoritha. a variation on the method of scorins. is in order. 
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Tho method of scoring is as follows. Given a sample of n i.i.d. 

observations Cy1 ~···•Yn) from a density function f(y~e>, the los­

likelihood function is given as 

Lot e0 be an initial or trial value of tho parameter vector e. Then 

atos L alos L -by taking a Taylor o~pansion of ae around e 0 we set ae -

alos L I + a2
loa L I -- -- e • (e- e0). But since ae e0 aeae• 0 

le ... n-1 f. 
0 1&1 

a.s. -1 
~ -n 

atoa L - alos L I we have ae _ S(e0) - (I(e0) • (e - e0) where S(e0) a ae e . 
atoa L I -1 ° But at a ma~imum we must have ae e = 0 ore= e0 + I(e0) SCe0>. 

The method of scorins now works as follows: For any initial e0 

construct S(e0) and 1(90). Tho new estimate e
1 

is sivon by 

-1 e1 z e0 + ICe0) S(e0). Since tho acorins method involves second 

partial derivatives, we exploit tho fact that under correct model 

specification tho info~ation matrix may also be written as 

-1 • I(e ) = -2 B [alos L • Bloa L ] Since 
n 0 n ae ae• • 

_1 _1k a1os f(y i.e> atos f(y 1 .. e> 
n Q(G) • n ae • ae• 

•1 
v -2 [ 8lo1 L • a los L ] 

a~. » n ae ae, .. 

Berndt .. et. at. susaost usina e1 • e0 + Q(e0>-1sce0) as an iterative 
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procedere. 

3 • THE NASH MODEL 

A. SPECIAL FEATURES OF THE NASH SPECIFICATION 

Recall from Assumption A3 of Chapter II that only two shift 

parameters. ph and Pw• appear in the equations specifyins the joint 

determination of the decision of the husband and wife whether or not 

to participate in tho labor force. As a result. equations (1)-(4) 

must be suitably modified. We thus assume that the ~ife's decision of 

whether or not to work. siven by the dichotomous variable Y • affects w 

the husband's reservation wase but not his market wage. Similarly. we· 

assume that the husband's decisio~ of whether or not to work. siven by 

lb• affects the wife's reservation wase but not her market wase. We 

then have: 

wr ' r r (13) h = ~Th- phyw + 11h 

wr a:: 
, r 

P 1h + r (14) z '1 -w ww w 1l._ 

~ 
'm m (15) = ~Th + 1\h 

wm = x' m + Ill (16) w wYw 11._• 

Lettina the husband's (wife's) reservation wase play the role 

of the payoff he (she) derives from not workina. and lettina the 

husband'• (wife'•) market wase play the role he (lhe) derive• from 

workins. we have the followina four equation• 

( 17) 



lYw<o.lh> 

Uh(1,Y ... ) 

uwu.~> 
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Z' r 11 Y. + r = wYw - ... a. 11, 
' m m 

.. ~yh + 11h 

' m m 
... xwyw + 11,· 

Notice from Chapter II that Assumption A2 on the error terms is 

naturally satisfied. Moreover. we have: 

(18) 

( 19) 

(20) 

(21) 

(22) 

Thus Assumption A3 of Chapter II is also satisfied. In addition. note 

that in specifyins tho husband's reservation w.ase and market wase 

equations, siven by (17) and (19) respectively. it may be the case 

that certain explanatory variables appear in both equations, implying 

that the associated coefficient in (21) will be measurins tho 

difference between market and reservation wages. A similar comment 

holds for tho wife. 

Applyina (21) and (22) to tho general specification siven in 

the previous section, we now have 

and 

uw(1,1) - u ... <o,1) - pw + uw(1,0) - uw<o,o> (24) 

• (ywO - t> + (y
1 - y1)AGBI + (y

2 - y2)AGBI••2 + (y3 - y3)EllltY w w w w w w w 

+ (yh
4 

- i 4
h>UNEII + (y

5 
- i 5

>RACB - y6 ASSBTS - i 7
uDS1-2 , w w w 
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- -8y KIDS3-5 - y9KIDS6-13 - y1°KIDS>14 + ~ 
w w w ~.· 

B. EMPIRICAL RESULTS FOR lBE NASH MODEL 

Assuming that the parameters are identified, maximization is 

straightforward although the log-likelihood takes four different 

functional forms according to tho signs of ~h and ~w· To complicate 

matters, we do not have a sot of initial consistent estimates of the 

parameters (yh, ~h' Yw• ~w' p) nor do we believe that tho log­

likelihood function is globally concave. Although ~his iituatioa is 

common in problems of nonlinear estimation, one can never be totally 

certain that he has found tho global maximum. Th~ best that one can 

do is experiment with various sets of initial parameter values until 

becomins reasonably certain that the slobal masmua has boon reached. 

To this end, we provided various initial values for (yw, ~h' Yw• ~w) 

with a grid search over possible values of p. Having no strong priors 

over p, we estimated all values from -.9 to +.9 in increments of 1. 

We then iterated until convergence, convergence being reached when, on 

average, each element of tho score vector was no greater than .01. 

Different trials of the parameter vector (yh, ~h' Tw• ~w) included (i) 

tho zero vector; (ii) our a priori best suess of the parameter values, 

matins use of equations (23) and (24): (iii) the previous trial with 

the sisns of the coefficients reversed; (iv) dividina be ten the final 

estimates fro. each of the trials (i), (ii) and (iii). Upon 

estimation, it was found that the parameter estimates and log-

likelihood values wore almost tho same for each of tho give trials 

listed above; wo took this as sufficient evidence that we had found 

------ ------------------------
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the global maximum of the log-likelihood function. 

As can be seen from Table 1, the value of p that maximizes the 

log-likelihood function appears to lie in the interval (-1.0. -.8). 

Therefore we tried all values within this interval in increments of 

.01. The maximizing value of p is -.91. which also appears in Table 

1. It may appear surprising that tho maximizina value of p is close 

to minus one. One possible explanation for this result may be due t~ 

the fact that the contingency table is very unbalanced. As we see 

from Figure 1 of the Appendix to this chapter. there are very few 

observations for which tho husband does not work; for only 77 of tho 

2020 observations on married co~les does the husband choose not to 

work. If we now look at Fiauro 3c of Chapter II hince 
A 
ph < 0 and 

A 
pw > 0). we see that an ellipsoid in (ah.aw) space will be centered, 

most 1 itely. in ~he (1.1) region since this corresponds to the largest 

element in tho contingency table: for 1204 observations out of 2020, 

both the husband and wife wort. Moreover. an ellipsoid whoso major 

acis has slope near minus one and centered in tho (1.1) region will 

cover an area associated with the larsost number of observations. 

Since tho method of estimation employed is maximum likelihood. this 

explanation seems quite plausible. In addition. a likelihood ratio 

test of p = 0 vs. p • -.91 can be easily constructed froa Table 1. 

Since -2(los-l~~~lihood value for p • 0 - loa-likelihood value for 

p = -.91) - x~ ••• can reject tho hypothesis that p - 0 at tho 95 

porcont level. 

Table 3 lists the estimated coefficients and tho associated 



Correlation Coefficient (p) 

-.99 
-.91 
-.9 
-.8 
-.7 
-.6 
-.5 
-.4 
-.3 
-.2 
-.1 
o. 

.1 

.2 

.3 

.4 

.5 

.6 

.7 

.s 

.9 
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TABLE 1 

Log-likelibooa Value 

-1514.95 
-1514.57 
-1514.59 
-151!.05 
-1515.12 
-1516.41 
-1517.07 
-1516.56 
-1516.93 
-1517.35 
-1517.79 
-1518.13 
-1518.67 
-1519.10 
-1519.51 
-1519.90 
-1520.17 
-1520.65 
-1521.01 
-1511.58 
-1511.92 
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TABLE 2 
p = 0 

Hystumsi Wife 
t- t-

Coefficient Estimate Statistic Coefficient Estimate Statistic 

• 
ph 0.384 1.00 

Pw -0.681 -1.29 

)NSTANT o -o 
(yh - yb) 0.835 1.22 0 -o 

(yw - Yw> -0.161 -0.24 

;EH 1 -1 
(yb - yb) 0.014 1.89• 

lEW 
1 -1, (y - y.) 
w w -0.084 -3.46 .. 

;EW••2 
2 ""2 

(yw - Yw> -0.001 -4.24•• 

)UCH 2 ""2 
(yb - yh) 0.058 1.78• 

)UCW 
3 ~ 

<Yw - Yw> 0.039 3.18•• 

lEH 3 ~ 
(yb - yb) -0.043 -2.41•• 4 -4 

(yw - Yw) -0.015 -1.59 

lCE 4 -4 
(yh - yh) -0.262 -1.97•• 5 -s 

(yw - Yw> 0.399 5.31•• 

iSET -5 0.381 1.27 
_, 

-0.012 -2.06•• -yh -y 
w 

:DS1-2 
_, 

-0.700 -11.20•• -yw 

:DS3-5 
-s -0.451 -7.3 , •• -yw 

CDS6-13 
_, 

-0.200 -5.21•• -y 
w 

CDS < 13 
_, 

-0.046 -o.72 -y b 

CDS ) 14 -7 0.018 0.79 
-1,0 -o.136 -2.74•• -yh -y w 

)g-likelihood value • -1518.23 • significant at the 10. level 
•• a1gn1ticant at the 5~ level 
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TABLE 3 
p = -.91 

Hu§:tumg 1W:! 
t- t-

Coefficient Estimate Statistic Coefficient Estimate Statistic 

tlh -.972 -2.44•• 
~w 2.63 11.80•• 

I STANT o -o 
(yh - yh) 1.04 1.55 0 ""() 

(yw - Yw> -3.02 -6.16•• 

m 1 "'1 
(yh - yh) 0.009 1.10 

!:W 1 '""1 
(yw - 1w) 0.067 2.84•• 

!:W••2 2 ""'2 
(yw - 1w) -0.001 -3.73•• 

JCH 
2 ""'2 

(yh - yh) 0.142 4.71•• 

JCW 
3 -3 

(yw - Tw> 0.032 1.ss• 

:M 
3 -3 

(yh - yh) -o.055 -2.67•• 
4' -4 

(yw- Tw) -0.001 -0.08 

=E 
4 -4 

(yh - yh) -0.128 -0.89 s -s 
(yw - Tw) 0.442 S.87 .. 

~ET 
-5 0.427 1.48 -6 -0.012 -2.22•• -yh -yw 

DSl-2 -7 -0.650 -u.oo•• -y w 

DS3-5 -a -0.426 -7 .30•• -yw 

DS6-13 
... , 

-0.153 -4.01•• -y w 

DS < 13 -6 
-o.074 -1.26 -yb 

DS > 14 -7 0.211 1.68• -10 -0.148 -3.00•• -yh -rw 

g-likelibood value • -1514.57 • s1gn1t1aant at tbe 10. level 
•• s1SD1t1aant at tbe s• level 
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t-statistics for the case p = -.91. Several points deserve mention. 

First, if we compare Table 2. the esttmated coefficients and t-

statistics for tho case of p = 0, with Table 3 we see that the sisns 

of the estimated coefficients are quite robust with respect to p. 

Second, we see that both ph and pw are sisnificantly different from 

zero, providins evidence that tho husband's decision whether or not to 

work depends on tho wife's decision and vice versa. From (17) we see 

that tho nosative estimated coefficient of ph from Table 3 implies 

that if the wife works, tho husband's reservation waso increases as 

ezpoctod. A priori, we would also ezpoct the estimate of P to be w 

nesative also• we offer no ezplanation for the disconcerting result 

that Pw is positive. 

Finally, and most importantly, we caD provide a test of 

whether or not the losical consistency condition, Ph • Pw = 0, holds 

for the empirical problem presently under study. Since tho results 

presented in Table 3 provide unrestricted estimates of tho two shift 

parameters ph and Pw• we can easily perform a Wald teat of the losical 

consistency condition. As a reminder, let ua define the Wald 

statistic. If e is a k vector of parameters, r(e) a vector of s 

restrictions (J < k) imposed by the null hypothesis on e, and R the s 

z k matrix of partial derivatives ar(e)/ae, the Wald statistic is 

given by 

W • r(~)'[RI(;)-lR')-lr(;). 

Asymptotically. W is distributed x2 <s>. For the case at hand, 
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e - (ph. pw. yh. Yw• p) and r(e) =ph • P. = 0 so that I = 1. Since 

the value of tho Wald statistic in this case is 4.63. we can reject 

the hypothesis th~t Ph • Pw = 0 at the 95 percent level. If we recall 

from Chapter II that the usual simultaneous equations model for dummy 

endogenous variables developed by Heckman (1978) is not well-defined 

when ph • Pw ~ o. but that our formulation in which the dummy 

endogenous variables are generated as outcomes of a Nash game always 

yields a well-defined statistical model, we are led to conclude that 

tho Hockman formulation is inappropriate for modeling tho empirical 

problem at hand. 

Looking asain at Table 3. we see that most of tho coefficients 

ezplainins tho wife's decision whether or not to work are in asreomont 

with our expectations and are hiahly sisnificant. For exsmplo. family 

income from sources other than wases and salaries (ASSET) has the 

expected effect of increasins the waso at which a wife is willins to 

accept work outside the homo. Concernins children. one would 

certainly expect that mothers would be least likely to leave the homo 

when children are very youns and be more inclined to seek outside 

employment as children become older and more self-sufficient. Indeed. 

this is what we see froa Table 3. Children between the ases of one 

and two (llDSl-2) raise the mother's reservation waso more than do 

children between three and five (IIDS3-5)J her reservation waso is 

hishor for children between throe and five than for children six to 

thirteen (KIDS6-13)J finally. tho mother is more likely to atay home 

when her children are between siz aad thirteen than whoa they are 
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fourteen years or older (KIDS14). 4 The estimated positive coeff ient 

on the female race dummy (RACE) seems to suggest that women of racial 

minoriti~s. on average. can command a higher market wage than they are 

willing to accept to enter the labor market; that is- minority women 

are on average worth more in the marketplace than they think they are 

worth. While one may interpret this result as saying that racial 

discrimination in the marketplace is not as widespread as minority 

women are led to believe. the discrepancy between reservation wage and 

market wage may be a reflection of past discrimination. Tho 

coefficient on the wives' education (EDOCI) is also consistent with 

our prior expectation; althouJh an increase in education should 

increase the wife's market waae. it should also increase her 

reservation waae. Turnina finally to the effect of ase on a wife's 

decision whether or not to work, a life-cycle model of employment 

would sugaest that women are more likely to work during middle age 

than either early or late in their lifo times. That is. the 

probability of working as a function of aae first increases. then 

reaches a maximum, and then decreases. As can be seen from Table 3, 

tho combined effects of a linear term on ago (AGEl) and a quadratic 

term (AGBI**1) does indeed impart the expected shape. 

Turnin1 next to the variables used to explain the husband's 

decision of whether or not to work. we see that while a nuaber of tho 

coefficients are insianificant. soae of the variablea to whiCh we 

attached strona priora appear to be sianificant. For example, the 

coefficients attached to both the husband's aae (AGEB) and the local 
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une~ployment rate (UNEH) measure tho difference between tho husband's 

market wage and his reservation wage; if the husband is behaving 

logically, both of these estimated coefficients should be close to 

zero, which they are. The positive estimated coefficient on the 

husband's level of educatio~ (EDDCB) is aurprisins; one would a priori 

ezpect that an increase in education would raise equally the husband's 

market wage and reservation wase. One possible explanation for this 

surprising result is that additional education is viewed by many as a 

consumption good rather than an investment sood. 5 

4. TBB STACIELBERG MODEL:. HUSBAND LEADER 

A. SPECIAL FEATURES OF THB STACIELBBRG SPECIFICAl'ION 

Recall froa the specification of the Stackelborg model given 

in Chapter III that we allow for the inclusion of four shift 

parameters. Thus, equations (1)-(4) need only be altered to conform 

to tho notation used in Chapter III. We thus have: 

Equations (25) and (26) describe the reservation waaes, or 

equivalently, the shadow price of time for the husband and wife, 

respectively. Note that the wife's decision of whether or not to 

work, siven by tho dichotoaous variable Y, affects the huaband's w 

---------

(25) 

(26) 

(27) 

(28) 
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reservation wase in {25). Analosously, the husband's decision of 

whether or not to work, given by Yh, affects the wife's reservation 

wage in (26). Equations (27) and (28) describe the market wages for 

the husband and the wife, respectively. Note that we allow the 

possibility that one of the determinants of the husband's market wage 

is whether or not he has a workins wife; we make a similar allowance 

for the wife. 

As in the Nash model, lot the husband's (wife's) reservation 

wage play the role of tho payoff he (she) derives from not w~rking. 

r - r -Therefore YO have wh- Uh(O,Yy) and w •• u.(o,lh>· Similarly, let the 

husband's (wife's) market waae play the role of the payoff he (she) 

derives fraa wortins. We thus have w: = Uh(l,Yy) and w: = u.(1,1h)· 
We then see from equations (25) throush (28) that 

1 0 'm 'r 1 0 'm 'r 
Uh- Uh i!! AUh = ~yh - ~yh and Uw- Uw s AUw = Xwyw - ZwYw• 

Moreover, note that in specifyina the husband's reservation wase and 
. 

market wase equations, given by (25) and (27) respectively, it may be 

that certain explanatory variables appear in both equations, implyins 

that the associated coefficient in AUh will be measuring the 

difference between tho market and reservation waso coefficients. A 

similar remark holds for tho wife. In addition, note that the 

1 0 assuaptlons on tho error terms are also satisfied, namely ah a ~h - ~h 

1 0 
and •w • ~ - "'w • 

Usins the senora! specification aot out in Section 2 of this 

Chapter, we then have the followina two ozprosaions for AUh and AU• 

(29) 

----~~----
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0 ... o 1 -1 2 -2 = (y - y ) + (y - y )AGEl + (y - y )AGEI**2 w w lit li' w w 
3 -3 4 -4 5 -5 -6 + (y - y )E:Wtw + (yh - yh)UNEH + (y - y )RACE - y ASSETS w w w w w 

-7 ...a 3 ..,!) -10 - y KIDSl-2 - y KIDS -5 - y EIDS6-13 - y KIDS>14. w w w w 

B. EMPIRICAL RESULTS 

(30) 

F~om equations (25) and (27) it will be ~•called that not only 

does the model allow fo~ the possibility that one of the dete~inants 

of the husband's ~ose~vation wage is whotho~ o~ not his wife chooses 

to work, tho model also allows fo~ the possibility that the husband's 

m~ket wage is affected by his wife's decision. Although economic 

theory susaests that only the forme~ effect should be moaninaful, we 

can teat that hypothesis in o~ model by allowina fo~ the p~eaonco of 

both effects; that is, both ~ and ~ a~e included. 

As with the Nash model. we cu~~ently do not have a set of 

initial consistent estimates of the para.ete~s nor do we believe that 

-------

tho los-likelihood function is alobally concave. As befo~e. we 

pe~fo~ed a grid sea~ch usina va~ious sets of initial values of the 

0 1 
pa~amete~ veoto~ (~, ~· yh, Am,., yw) with a s~id sea~Qh ove~ 

possible valuea of p. Asain, havina no st~ons prio~s ove~ the most 

likely value of p, we estimated all values f~oa -.9 to +.9 ia 

inc~ements of .1. The conversence c~ite~ion we used was the same one 

p~eviously used in tho Nash model, viz., the mean value of each 
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TABLE 4 

~ Included 

Log-likelihood Value 

-1516.81 
-1517.03 
-1515.71 
-1515.10 
-1514.99 
-1514.93 
-1515.00 
-1515.14 
-1515.31 
-1515.58 
-1515.89 
-1516.14 
-1516.64 
-1517.06 
-1517.50 
-1517.98 
-1518.50 
-1519.19 
-1510.53 

------- ~~ ----- ---
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1TABLE S 
~ Includeci 

p = 0 

Hlai!tlimsl jlli 
t- t-

Coefficient Estimate Statistic Coefficient Estimate Statistic 

0 -1.76 -1.83• 
~ 
1 -0.510 -0.68 AGW -1.44 -3.SS•• 
~ 

INSTANT 
0 ""() -0.361 -0.32 

0 ""() 0.580 0.90 (yh - yh) (yw - 1w) 

~EH 
. 1 -1 
(yh - yb) 0.017 2.01• 

1 -1, 0.087 3.57•• ~EW (yw - 1w) 

~EW••2 
2 ""2 

(yw - Yw> -0.134 -4.39•• 

IUCH 2 ""2 
(yh - ~h) 0.067 1.62 

>UCW 
3 _, 

0.039 3.22•• Cyw - 1w> 

IEM 
3 _, 

-o.043 -1.98•• 
4 -4 -0.015 -1.63• (yh - yh) (yw - 1w> 

LCE 4 -4 -o.300 -2.16•• s -s 0.406· 5.49•• (yh - yh) (yw - 1w) 

~SET 
-s 0.454 1.36 -6 -0.012 -2.13•• -yh 'w 

:DS1-2 
-7 -o.695 -11.20•• -y w 

:DS3-5 
""8 -0.444 -7 .30•• -rw 

tDS6-13 
-g 

-0.211 -5.63•• 
'w 

tDS <13 
_, 

-o.023 -o.29 -yh 

CDS > 14 
_, 

-yh 0.074 0.62 
-1,0 -0.133 -2.71•• -'w 

)g-likelihood value • -1515.58 • sigaitioant at the 101 level 
•• signiticant at the 5~ l~vel 

·----------------------------------- ··----
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1TABLE 6 
'il Included 

p = -.40 

lila§~UUis:l ~ 
t- t-

Coefficient Estimate Statistic Coefficient Estimate Statistic 

0 -1.98 -1.72• ~ 
1 -0.256 -0.30 Acaw -1.15 -2.02•• ~ 

)NSTANT o -o 
(yh - yh) -o.136 -0.60 o -o 

(yw - Yw) 0.330 0.43 

;EH 1 -1 
(yh - yh) 0.014 1.75• 

;EW 1 '""1-
(yw - Yv) 0.084 3.48 .. 

IEW••2 
2 ""2 

(yw - 1w) -0.131 -4.32•• 

)UCH 2 ""2 
(yb - yb) 0.071 1.81• 

)UCW 
3 -3 

(yw - 1w) 0.039 3 .27•• 

IEM 3 -3 
(yh - yh) -0.040 -1.98•• 4 -4 

(yw - 1w) -0.014 -1.48 

lCE 4 -4 
(yh - yh) -o.330 -2.55•• 5 -5 

(yw- Tw) 0.420 5.66•• 

iSET -5 0.410 1.35 
... , 

-o.012 -2.13•• -yh -y w 

:DS1-2 
... , 

-o.685 -11.10•• -y w 

:DS3-5 ""8 -0.444 -7 .30•• -yw 

CDS6-13 "'"9 -0.212 -5.66•• -yw 

:Ds < 13 -6 0.021 0.29 -rh 

:Ds ) 14 -7 0.104 0.93 "'"10 -0.132 -2.70•• -yh -y w 
,g-likelibood value • -1514.93 • aisniticant at the 101 level 

•• aipiticant at the 51i level 

---- -~-- -- --- --
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TABLE 7 

~ Not Included 

Correlation Coefficient (p) Log-likelihood Value 

-.9 -1519.15 
-.8 -1517.52 
-.7 -1515.85 
-.6 -1515.21 
-.45 -1514.93 
-.5 -1515.00 
-.4 -1515.03 
-.3 -1515.20 
-.2 -1515.44 
-.1 -1515.74 
o. -1516.06 

.1 -1516.41 

.2 -1516.78 

.3 -1517.16 

.4 -1517.55 

.5 -1517.97 

.6 -1518.46 

.7 -1519.08 

.a -1520.08 

.9 -1522.29 
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1 TABLE 8 
~ Not Included 

p :: 0 

H!.UibiD$1 ~ 
t- t-

Coefficient Estimate Statistic Coefficient Estimate Statistic 

0 -1.-47 -2.01•• ~ 
"w -1.49 -3. 71•• 

ISTANT o -o 
(yh - yh) -o.300 -0.27 o -o 

(yw - Tw) 0.61 0.95 

ill 
1 -1 

(yh - yh) 0.016 1.92* 

M 
1 -1 

(yw - 1w) 0.086 3.56•• 

:w••2 2 ""'2 
(yw - 1w) -0.133 -4.37•• 

ICB 2 ""'2 
(yh - yh) 0.052 1.28• 

rcw 3 '""3 
(yw - 1w) 0.042 3.45•• 

M 3 '""3 
(yh - yh) -o.039 -1.91• 4 -4 

(yw - 1w) -0.016 -1.77• 

:E 4 -4 
(yh - yh) -o.339 -2.56•• 5 -5 

(yw - 1w) 0.403 5.43•• 

,gr -5 0.460 1.41 -6 -0.012 -2.10•• -yh -y 
w 

tS1-2 
_, 

-0.691 -11.30•• -y 
w 

tS3-5 -a -0.450 -7.45•• 
'w 

tS6-13 
... , 

-0.212 -5. 76•• -y 
w 

s < 13 
_, 

0.011 0.20 -yh 

's > 14 -7 0.011 0.69 "'"10 -0.132 -2.68•• -yh 'w 

;-likelihood value • -1516.06 • sip1ticant at the i~ level 
•• sigDiticant at tbe 5~ level 
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1 TABLE 9 
«il Not Included 

p == -.45 

i:I!.!IQIIUI Wife 
t- t-

Coefficient Estimate Statistic Coefficient Estimate Statistic 

0 -1.82 -2.16•• ~ 
&aw -1.12 -1. 92• 

INSTANT o -o 
(yh - yh) -o. 784 -0.63 0 -o 

(yw - yw) 0.31 0.40 

fEB 1 -1 
(yh - yh) o.ou 1.68• 

lEW 1 ""1 
(yw - 1w) 0.083 3.47 .. 

IEW••2 2 ~ 
(yw - Yw> -0.130 -4.31 .. 

IUCH 
2 ""'2 

(yh - yh) 0.069 1.7,. 

IUCW 
3 _, 

(yw - Yw> 0.040 3.34 .. 

IEH 3 -3 
(yh - yh) -o.038 -1.97•• 4 -4 

(yw - Yw) -0.014 -1.50 

lCE 4 -4 
(yh - yh) -o.335 -2.64•• 

5 ... , 
(yw - Yw> 0.442 5.69•• 

iSET -s 0.410 1.35 -6 -0.012 -2.13 .. -yh ~w 

~DS1-2 
-7 -o.684 -11.20•• -y w 

CDS3-5 -s -0.447 -7 .45•• -y w 

tDS6-13 
... , 

-0.214 -5 .ssu -yw 

tDS < 13 
... , 

0.034 0.63 -yh 

tDS ) 14 -7 0.109 0.99 -tO -0.132 -2. 70•• -yh -yw 

~g-likelihood value • -1514.93 • sigDiticaat at the 10. level 
•• sigDiticaat at the 5~ level 
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element of the score vector was allowed to be no greater than .01. 

Different trials of the parameter vector (~, a;. yh, Aaw• yw) 

included (i) tho zero vector; (ii) our best a priori guess of tho 

parameter vector; (iii) the previous trial with the sisns of the 

coefficients reversed; (iv) dividing by ten tho final estimates from 

each of trials (i). (ii) and (iii); and (v) dividins by ton and 

multiplyins by minus one tho final estimates from each of trials (i). 

( ii) and (iii) • 

As can be seen from Table 4. tho value of p that maximizea the 

likelihood function ia -.40. Tho maximum likelihood estimates of the 

parameters of tho full model for case p • -.40 are thus presented in 

Table 6. For completeness. Table 5 lists the maxima. likelihood 

estimates for the case p = o. It is seen in a comparison of Tables 5 

and 6 that the estimates are quite robust with respect to p. Looting 

at tho t-statistio associated with ~ on Table 6. it follows that the 

hypothesis that ~ • 0 cannot be rejected at any reasonable level of 

sisnificance. as theory susaests. Althoush we see that most of the 

explanatory variables. especially for the wife. have the a priori 

correct sign and are hishly sianificant. we have therefore reestimated 

tho model without ~· Companion estimates for this case include the 

arid search over possible values of p. siven in Table 7; the maximum 

likelihood estimates for the case p = o. aiven in Table 8; and the 

coefficient estimates correspondina to tho value of p which maximizes 

the likelihood function, aiven in Table 9. 

As can be seen froa Table 7, the value of p that maximizes the 
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log-likelihood function is -.45. Although it may at first appear 

surprising that this maximizing value of p is not positive. it must be 

remembered that p is not simply tho correlation between omitted 

variables in the husband's and wife's equations. but arises from a 

more complicated relationship between the disturbance terms eh and s,. 
1 0 1 0 viz. ah e ~h - ~h and a

9 
• ~ - ~ as soon in Section 2 of Chapter 

III. From Table 9 we see that both Au
9 

and ~ are significantly 

different from zero. providing evidence that tho wife's decision 

whether or not to work depends on the husband's decision and vice 

versa. Althoush it will be recalled from Section 4 of Chapter III 

that only tho difference Aaw • a! - a~ can be identified in our model. 

economic theory asain sugsests that a! should be a priori zero since 

u1 measures tho effect of the h~band's decision whether or not to 
w 

work on the wife's market wage. 

is actually an estimate of -a0 • 
w 

Therefore the estimate -1.12 of Au w 

With this in mind then, we see from 

equation (26) that if tho husband works. the wife's reservation wage 

increases as ezpected since :0 is positive. It should also be noticed 
w 

from Table 9 that we ~an provide a test of Proposition 3 of Chapter 

III. Since ai is restricted to be a priori zero and a: is 

significantly different from zero at the 5 percent level. we can 

reject tho hypothesis that the data are aenerated from the usual 

recursive probability model usina the dichotomization rule in favor of 

our model in which tho observed outcoaes are aenerated as Stackelbora 

equilibria. In other words, we must accept the hypothesis that ~he 

husband takes his wife's conditional action into account when making 
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his decision whether or not to work. 

A priori. we would expect the estimate of ~ to be positive; 

that is, we expect that the wife's decision to work should increase 

tho husband's reservation waao. In contrast. we find that tho 

estimate of ~ is neaative and aianificant at the s~ level. One 

possible explanation for this result ia that no husband wishes to 

suffer the embarrassment of stayina at homo when his wife chooses to 

work• that is, tho husband lowers his reservation waae when his wife 

is workina. 

Lootins aaain at Table 9, we see that moat of tho coefficients 

oxplainins the wife'a decision whether or not ·to work are in aareemont 

with our expectations and are hiahly sianificant. In readina Table 9 

it should be noted that all estimated coefficients represent either 

differences between market and reservation waaos or minus the 

reservation waae coefficients. as seen in Equations (29) and (30). 

For example. family income from souces other than waaes an4 salaries 

(ASSET) has tho ozpocted effect of incroasins tho waso at which the 

-6 wife is willina to accept wort outside the haae (y • +0.012). w 

Concernins children. one would certainly expect that mothers would be 

least likely to leave the home when children are very youna and be 

more inclined to seek outside employment as children become older and 

more self-sufficient. That is, youaaer children should have the 

effect of increasina mother's reservatioa waae more than do older 

childre~. Indeed, this is what we see frOB Table 9. Children between 

the aaes of one and two (llDSl-2) raise tho mother's reservation waae 
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more than do children between three and five (KIDS3-5); her 

reservation wage is higher for children between three and five than 

for children six to thirteen (KIDS6-13): finally. mothers are more 

likely to stay at homo when their children are between six and 

thirteen than when they are fourteen years or older (KIDS>14). The 

coefficient on the wives' education (EDUCW) is also consistent with 

our a priori expectations: although an increase in education should 

increase the wife's market wage, it should also have the effect of 

increasing her reservation wage. The estimated positive coefficient 

on tho female race dummy (RACE) seems to sugaest again that women of 

racial minorities, on average, can command a hi&her market wage than 

the wage necessary to entice them into the labor market: that is, 

minority woaen are on average worth more in the market place than they 

think they are worth. Turnina finally to the effect of age on a 

wife's decision whether or not to work. a life-cycle model of 

employment would suggest that women are more likely to work during 

middle age than either early or late in their lifetimes. That is, the 

probability that an i~dividual will work exhibits a concave shape. As 

can b~ soon from Table 9. tho combined effects of a positive linear 

term on aao (AGEl) and a noaativo quadratic term (AGE••2) does indeed 

impart an increasina then a decroasina shape with respect to age. 

Turnina next to the variables used to explain tho husband' a 

decision whether or not to work, we see that while some of tho 

coefficients are lnslanificant, many of tho variables to which we 

attach strona priors are indeed sianificant. For example, the 
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coefficients attached to tho husband's ago (AGED), his education 

(EDOCB) and tho local unemployment rate (UNEM) are each sisnificant. 

Since each of those three coefficients measure tho difference between . 

tho husband'• market waso and his reservation waae, it ia not 

surprisins that they all should be close to zero if the husband is 

behavins rationally; for example, the effect of an increase in 

education should not only increase an individual'• market wase but 

should also increase hia reservation wase. Finally we see that the 

effects of racial diacrimination on minorities have the effect of 

lowerins their market wages relative to those of nonainorities. 

5. 'l1IB STACIELBERG HODEL: WIFE LEADER 

A. SPECIAL FEATURES OF THE STACDLBERG SPECIFICATION 

In this third empirical example we shall reverse the roles of 

the husband and wife in the Stackelbors model so that the wife now 

plays the role of the leader while her husband plays tho ~ole of the 

follower. The current specification differs frOB the specification of 

the previous section in only one respect. Recall fraa Chapter III 

that only the differepco in the shift parameters asiociated with the 

market waao and reservation wase can -_,e identified for the individual 

~layina the role of the follower, while both shift parameters can be 

identified for the leader. Since the huaband ia now playina the role 

of the follower, only A~ • ~ - ~ can be identified, althouah both 

a! and a! can now be identified separately for the wife. The method 

we employ to estimate the para.eter vector (A~, yh' a!, a!, 'w' p) is 

the same one used to estimate the Stackelbora model in which tho 
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husband plays the role of the leader; it is fully stated in Section 

SB. 

B. EMPIRICAL RESULTS 

Recall from the previous section that while it ia only 

possible to estimate the difference ~~ = ~ - ~~ it is possible to 

estimate both a0 and a1 • that is~ we can separatelv test the effect of w w~ " 

the husband's decision of whet~er or not to work on both the wife's 

reservation wase and also on her market wase. Althoush economic 

theory susaests that the latter effect should not be sisnificant. we 

test this hypothesis in the model by allowina for the presence of both 

effects; that is. we estimate the model where both a0 and a1 are w w 

included. T.he empirical results are siven in Tables 10 through 12. 

As can be seen from Table 10, the value of the correlation 

coefficient. p, that maximizes the los-likelihood function is .93. 

Constructins a likelihood ratio test of p • 0 vs. p • .93, we see that 

the hypothesis of p • 0 can be rejected at any reasonable level of 

sisnificanco. The maximum likelihood estimates of the parameters 

alons with the associated t-statistics are found in Table 12 for the 

case p • .93. For comparison, companion estiaates for the case p = 0 

are included in Table 11. 

Fro. Table 12, we see that econoaic theory is confirmed in the 

sense that we cannot reject at the 101 level the hypothesis that 

a1 = o. As a result. we have therefore reestimated the model without w 

a!; that is, we a priori constrain tho effect of tho husband's 
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TABLE 10 

1 caw Included 

Log-likelihood Value 

-1518.16 
-1516.18 
-1515.59 
-1515.62 
-1516.18 
-1516.56 
-1515.91 
-1516.13 
:..1514.96 
-1514.37 
-1513.74 
-1513.10 
-1512.45 
-1511.70 
-1510.91 
-1510.02 
-1509.07 
-1507.71 
-1506.57 
-1506.26 
-1507.29 
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1TABLE 11 
aw Included 

p = 0 

· Hy§biDSI ~ 
t- t-

Coefficient Estimate Statistic Coefficient Estimate ·Statistic 

~ 1.46 8.11•• 0 1.83 7.05 .. aw 
1 -2.51 -0.22 aw 

)NSTAHT 0 -o 
(Th - yh) 1.15 1.94• 0 -o 

(yw - Tw> 2.96 0.26 

IEH 1 -1 
(yh - yh) 0.008 1.19 

JEW 1 -t 
(yw- 1w) 0.101 3.40 .. 

JEW••2 1 ""1 
(yw - 1w) -0.150 -4.06 .. 

)UCH 2 ""1 
(yh - yb) -o.oso -1.70• 

>UCW 3 ""3 
(yw - 1w) 0.052 3 .58•• 

IEM 3 -s 
(yh - •. ~h) -0.028 -1.68• 

4 ... 4 
(yw - 1w) -0.030 -2 .53 .. 

lCE 
4 ..... 

(yh - yh) -0.354 -3.21•• 5 '"'5 
(yw - 7w) 0.325 3 .15•• 

I SET 
... , 

0.344 1.68• -6 -0.004 -0.57 -y 'w h 

:DS1-2 
... , 

-0.864 -8.21•• -y w 

CDS3-5 -s -0.552 -6 .57•• 'w 

CDS6-13 -9 -0.160 -5.32•• -y w 

CDS < 13 
-6 0.020 0.39 -y b 

ms > 14 
-1 

0.051 0.50 -tO -0.138 -2 .13•• -yb 'w 
)g-likelibood value • -1514.37 • siSDiticant at the 10. level 

•• sicaiticant at the 5~ level 
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1TABLE 12 
aw Included 

p = .93 
Husbmsl .H!!:! 

t- t-
Coefficient Estimate Statistic Coefficient Estimate Statistic 

~ 1.03 5.94 .. 0 2.05 15.70 .. aw 
1 -2.24 -1.54 aw 

>NSTAHT o -o 
(yh - yh) 2.02 3.50•• o -o 

(yw - 1w) 3.24 2.25 

IEH 1 -t 0.015 2.28•• (y - yb) h 

lEW 
1 ... 1 

(yw - 7 w) 0.084 3.89 .. 

IEW**2 2 ""2 
(yw - 7 v> -0.118 -4.43•• 

)UCH 2 ""2 
(yb - yb) -o.099 -3.82•• 

lUCW 
3 _, 

(yv - Tv> 0.024 2.07•• 

lEM 
3 .... 3 

(yh - yb) -0.030 -1.64 4• -4 
(yw - 7 w) -0.029 -2.55 .. 

lCE 4 -4 
(yh - yh) -0.378 -3.16•• 5 -s 

(yv - yw) 0.110 1.10 

;SET -5 0.482 2.01•• -6 -0.002 -0.29 -yh -yv 

:DSl-2 
... , 

-0.595 -9.90•• -yv 

:DS3-5 -a -0.374 -61.32•• -y 
w 

:DS6-13 
_, 

-0.162 -4.02•• -yv 

:ns < 13 -6 0.026 0.46 -yh 

:ns > 14 
... , 

0.010 0.01 -tO -o.081 -1.47 -y -yw h 

,g-likelihood value • -1506.26 • sipiticut at the 10. level 
•• sipiticut at the s• level 
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l TABLE 13 
CJw Not Included 

Correlation Coefficient (p) Log-likelihood Value 

-.9 -1519.16 
-.8 -1516.73 
-.7 -1516.13 
-.6 -1516.10 
-.5 -1516.2.9 
-.4 -1516.81 
-.3 -1516.81 
-.l -1516.86 
-.1 -1516.17 
o. -1515.77 

.1 -1515.37 

.l -1514.97 

.3 -1514.58 

.4 -1514.19 

.5 -1513.83 

.6 -1513.52. 

.7 -1513.34 

.71 -1513.33 

.8 -152.1.03 

.9 -152.2..60 
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1 TABLE 14 
aw Not Included 

p = 0 

Hy§QiD$1 ~ 
t- t-

Coefficient Estimate Statistic Coefficient Estimate Statistic 

~ 1.33 6.82•• 0 
e&w 1.79 6. 79•• 

INSTANT 
0 -o 

(yh - 1 n) 1.10 1.88• 0 -o 
(yw - Yw> 0 .. 450 0.77 

IEH 1 -1 
(yh - yh) 0.009 1.22 

lEW 1 '""1 
(yw - yw) 0.101 3.52•• 

IEW**2 2 -z 
(yw - 1w) -0.150 -4.20•• 

lOCH 2 -z 
(yb - yb) 0.033 -1.13 

IOCW 
3 ..., 

(yw - Yw) 0.050 3 .49•• 

IEM 3 -s 
(yh - yh) -o.030 -1.7~ 

4 ..... 
(yw - yw) -0.028 -2.46•• 

~cE 
4 '"'4 

(yb - yb) -o.340 -3.01•• 5 '"'5 
(yw - yw) 0.328 3.28•• 

.SET 
... , 

0.365 1.56 
... , 

-0.005 -0.74 -yb -yw 

DS1-2 
... , 

-0.835 -8.36•• -y w 

. DS3-5 .... 
-0.526 -6.53•• -yw 

:DS6-1~ 
... , 

-0.262 -5 .39•• -yw 

DS < 13 
_, 

-0.013 -0.28 -yb 

DS > 14 '"'7 0.035 0.34 '""10 -0.138 -2.22.•• -yb -yw 

~s-l1kel1bood value • -1515.77 • s1p1t1cant at the 1~ level 
•• s11Dit1cant at the 5~ level 
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1 TABLE 15 
aw Not Included 

p - .71 

Hy§tumsl oW:! 
t- t-

Coefficient Estimate Statistic Coefficient Estimate Statistic 

~ 1.04 5.85•• 0 
aw 2.46 13 .s•• 

lNSTANT 
0 ""() 

(yh - yh) 1.80 3 .26•• 0 -o 
(yw - 1 w) 1.27 2.37•• 

fEB 1 ""1 
(yh - yh) 0.012 1.71• 

iEW 1 ""1 
(yw - 1w~ 0.094 3.74•• 

1EW**2 2 ""'2 
(yw - Yw> -0.134 -4.33•• 

1UCH 2 ""'2 
(yh - yh) -0.072 ·-2.68•• 

IUCW 
3 ""3 

(yw - 1 w) 0.032 2.53•• 

IEM 3 ""3 
(yh - yb) -0.033 -1.90* 4 -4 

(yw - 1w) -0.032 -2. 76•• 

.CE 4 ""4 
(yh - yh) -0.342 -2.95•• 5 -s 

(yw - 1 w) 0.174 1.66• 

:SET -s 0.324 1.81* ""6 -0.001 -0.16 -yh -yw 

DS1-2 -7 -0.733 -9.40•• -rw 

DS3-5 -s -0.459 -6.62•• -yw 

:DS6-13 
... , 

-0~244 -5.41•• -yw 

:os < 13 
_, 

-0.067 -1.44 -yh 

:os > 14 ""7 -o.oos -o.os ""10 -0.112 -1.74• -yh -rw 

~s-likelibood value • -1513 .33 • sisniticant at the 1&1 ~evel 
•• sigDiticant at the 5" level 

-------- ~-- -- -·~ ----~---~---- -----------~--- -- ----
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decision of whether or not to work on the wife's market wage to be 

zero. Companion estimates for this case include the arid search over 

possible values of p. siven in Table 13; the max~ma likelihood 

estimates and tho associated t-statiatics for the case p • 0, aiven in 

Table 14; similar est~ates for the value of p which maximizes the 

value of the likelihood function are aiven in Table 15. 

As can be seen from Table 13, the value of p that maximizes 

the likelihood function is p • .71. Asain, a likelihood ratio test at 

any reasonable level of sianificance would reject tho hypothesis that 

p • 0. Wo also see from Table 15 that both A~ and m: are 

sisnificantly different from zero, providina evidence that the 

husband's decision of whether or not to work depends on tho wife's 

decision and vice versa. Althouah it will bo recalled from the 

1 0 previous section that only the difference ~ • ~ - ~ can be 

identified in the model where the husband plays the role of the 

1 -
follower. economic theory asain suaaosts that ~ should be a priori 

zero. Thus, the ostt.ato of A~ • 1.04 is actually an estimate of 

-~. With this in mind, we see from equation (25) of Section 4-A that 

if the wife works, the husband's reservation waae in faot declines. 

The only explanation wo offer for this disoonoertina result is that no 

husband wishes to suffer tho e•barrass•ent of stayina out of tho labor 

force when his wife chooses to workJ that is, the husband chooses to 

lower his reservation waae when ho has a workina wife. 

Notice al•o from Table 15 that wo can aaain provide a test of 

1 Proposition 3 of Chapter III. Since we a priori restrict ~ to be 
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zero and ~ is sianificantly different from zero at the S percent 

level. we can reject the hypothesis that the usual recursive model is 

identical to our proposed model in which the outcomes are aenerated as 

Stackelbera equilibria of a game in which tho wife plays the role of 

tho leader while her husband plays the role of the follower. In this 

model. in other words. we cannot reject the hypothesis that the wife 

takes her husband's conditional action into account when makina her 

decision of whether or not to participate in the labor market. Note 

also that the estimate of a0 is positive and hiahly sianificant. 
w 

providina evidence that tho husband's decision to work has the 

espocted effect of increaaing tho wife's r~sorvation waao. 

Examinina aaain Table 15. we see that most of the coefficients 

esplaining tho wife's decision of whether or not to work have the a 

priori correct sign and are highly significant. As is clear fraa 

looking at Table 15. many of the ost~ated coefficients represent the 

difference between market and reservation waaes. As such. our a 

priori expectation• would auga~st that these estimated coefficients 

should be zero since any variable which haa the eff~ct of increasing 

the wife's market waae should have the balancina effect of increasins 

her roaervation waao. Indeed. thia is what we soo when wo examine the 

offocta of an incroaao in tho education of tho wife (EDUCI) or an 

increaao in the local unemployment rate (UNEK). Tho estt.atod 

positive coefficient on the female race dummy (lACE). however. does 

not meet with our a priori expectationa. One posaible explanation for 

this unexpected roault ia that woaon of racial minorities. on avoraae. 
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can command a waao in the market hiaher than tho waao necessary to 

entice them into the labor market; in other words, minority women are 

on averaae worth more in the market than they think they are worth. 

Turnina next to tho effect of age on a wife's decision of 

whether or not to work. a lifo cycle model of employment is again 

confi~ed. As seen from Table 15, the combined effects of a positive 

linear term on aae (AGEl) and a neaative quadratic term (AGB••2) does 

indeed impart an increasing than a decreasing shape with respect to 

age. That is, the probability that a wife will work exhibits a 

concave shape. We need now only examine tho effects of children on 

the wife's decision whether or not to work. As we have soon in the 

previous two studies, our a priori expectations are confirmed in the 

sense that younger children have the effect of increasing tho mother's 

reservation wage more than do other children. Indeed. again we see 

that an increase in reservation waaes for the wife exhibits a 

monotonically decr~asins shape with respect to the aae of an 

additional child. 

----------

Turnina next to the variables used to explain the husband's 

decision whether or not to work, we see that all estt.ated 

coefficients are sianificant at the 10 percent level except those 

associated with tho two aao cateaorios of children, viz. (liDS<13) and 

(EIDS>14). Aaain. it should be noted in readina Table 15 that the 

coefficients associated with the husband's a1e (AGBB), his education 

(EUJcif), his race (RACE) and tho local unemployment rate (UNEII) 

represent tho difference between his market waae and his reservation 
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wage. As such, we would again ezpect that if the husband is behaving 

logically, these est~ated coefficients should be close to zero. 

Indeed, this is what we see for all variables escept race (RACE). The 

negative and significant estimate associated with race •~ems to sugest 

that tho effects of racial discrimination tend to lower tho market 

wages of minorities relative to the wages of nonminorities. Finally, 

we see that an increase in assets has the effect of lowerins the 

husband's reservation wage; we offer no ezplanation for this 

disconcortins result. 

6. CONa.USION 

The purpose of the current chapter was to present an 

econometric study of tho Nash and Stackelbers equilibriua models as 

set forth in Chapters II and III, respectively. The problem examined 

concerned tho joint decision of a married couple whether or not to 

participate in the labor force. TWo useful results should be apparent 

from this study. First, we have demonstrated that the game theoretic 

models proposed are in fact empirically tractable. Second, we feel 

that tho proposed study has made a contribution to the literature on 

labor force participation because we explicitly modeled the behavior 

of a married couple in a game theoretic fraaowork, while previous work 

has either taken the husband's decision to work as exoseno .. or 

specified the labor supply of a husband and wife fro. the outcome of a 

joint utility fuaotion. 

In addition, we were able to test the hypothesis that the 

uusal recursive probability model uains the dichotoaization rule is 
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identical to our model in which the observed outcomes are generated as 

Stackelberg equilibria. In both specifications of the Stackolberg 

model. we were able to safely reject this hypothesis. That is. in 

both specifications. we we~e required to accept the hypothesis that 

the individual playing the role of the leader takes the conditional 

action of the follower into account when making his or her decision 

whether or not to work. Moreover. we were heartened in all three 

empirical examples to get strong results. both in terms of correct 

siana on coefficients for which we had strong priors and sianificant 

t-atatistica. 
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APPENDIX: DESCRIPTION OF THE DATA 

This Appendix describes ~he source of the data, the selection 

criteria used in choosins the approriate observations, and tho means 

and variances of the explanatory variables. Tho data used in all 

throe studies comprisins tho empirical part of this dissertation is 

from tho 1982 wave of tho Panel Study of Income Dynamics, 1968-1982. 

Tho sample is a combination of a representative cross-section of 

nearly 3.000 families selected by tho Survey Research Center at the 

Uniersity of Michigan, and a subsample of about 1,900 low income 

families previously interviewed by tho Censua Bureau for the Office of 

Economic Opportunity. This data was then restricted to 2,012 records 

for married couploa livina in tho United States, where both the 

husband and wife were able-bodied, neither older that 64 years of ago 

with no nonrolativo livins with the family: in addition, the sample 

was further restricted to couples whoso marital status had not changed 

within tho previous twelve months. 

Below we list tho selection criteria used. Of tho orisinal 

6.742 observations, we were loft with 2,012 observations after 

selection. 

(1) Family compoaition chanso in 1982 was restricted to children 

mavins in or out of tho home: husband and wife remained married 

and in the ha.e. Loss: 2,295 observations. 

(2) Family was restricted to husband, wife and children. Loss: 1,349 

observations. 

(3) both the husband and tho wife were restricted to be 64 years or 



147 

less in age. Loss: 219 observations. 

(4) Husbands who stated they were retired. permanently disabled. 

temporarily laid-off, or students were e&cluded. Those who 

stated they were "working now" were classified by us as working,; 

those who answered "looking for wort.. unemployed." were 

considered to be not yo~t.ing. Loss: 331 observations. 

(5) Wives who stated they were retired, permanently disables, 

temporarily laid-off. unemployed but looking for wort.. or 

students were e&cluded fraa the sample. Those who stated they 

were "working now" wore classified by us as working,; those who 

answered "housewife" were considered to be not working. Loss: 

174 observations. 

(6) If either the husband or tho wife had a physical or nervous 

condition that liaited the type or tho amount of wort. they could 

do, they were e&cluded fraa the sample. Loss: 287 observations. 

(7) If any record contai~ed missing data for tho 10 e&planatory 

variables used in the analysis, that record was dropped. Loss: 

67 observations. 

(8) Eight observations were dropped because of incorrectly reported 

unemployment data. 

Of the 2.012 observations reaaining after selection, the 

numerical breakdown based upon husband/wife employment status is 

described in the followina table. 

-------- -------------- ----------~--



Wife 

Working 

Not 
Working 

148 

Working 

1204 

739 

HUSBAND 

FIGURE 1 

Not 
Working 

48 

29 
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MEANS AND VARIANCES OP THE EXPLANATORY VARIABLES 

AGED Age of Husband 36.1 

AGPJr Ase of Wife 34.3 

AGEI••2 Squared Age of Wife 1270 

EDUCB Husband's Education (years) 12.6 

EDUCW Wife's Education (years) 12.7 

UNEM Local u.nemployment rate 9.49 

ASSETS Family non-wase incoae .986 
(in thousands t> 

llDSl-2 Numbe~ of chil~ea aaes 1 and 2 .325 

IIDS3-5 Numbe~ of chil~en between 
ages 3 and 5 .296 

KIDS6-13 Numbe~ of chil~en between 
ages 6 and 13 .602 

KIDS<13 Number of chil~ea 13 o~ youaae~ 1.22 

KIDS)14 Number of children 14 or older .296 

RACE Race dliiiiiDY 
(1 if Black or Hispanic. 
0 othe~ise) 

.252 

VARIANCE 

109.0 

97.4 

592000 

4.32 

6.65 

13.8 

22.6 

.299 

.270 

• 135 

1.28 

.458 

------------ ---------
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FOO'INO'l'ES 

1. The set of explanatory variables used in our empirical analysis 

will present no surprises. Indeed, most empirical studies of 

labor force particpation using cross-section data uso a fairly 

common sot of explanatory variables (see, e.g •• Ashenfelter and 

Rockman (1974), Gronau (1973), Heckman (1974, 1976). and Nakamura 

and Nakamura (1981)). 

2. Tho Panel Study of Income Dynamics asked only tho race of tho head 
. 

of household• if married, we assuaed the spouse to be of tho same 

race. 

3. For a discussion of tho appropriateness of inc1udina current 

assets in a labor supply equation, see Cotterman (1981). 

4. Note from (24) that i 6 through 110 enter with negative sisns. 
w w 

5. Soo, e.g •• Lazear (1977) for a discussion of this particular 

hypothesis. 
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CBAPl'ER V: A CIIOICE OF THE MOST ADEQUATE MODEL 

1. IN'IROIIJCl'ION 

In Chapters II and III. respectively. we proposed ~conometric 

models of two different game theoretic equi\ibrium notions. those 

being Nash Equilibrium and Steckelberg Equilibrium. In Chapter IV. 

three different empirical models were proposed and estimated 

concerning the joint labor force participation decision of a married 

couple. The first model assumed that the husband and wife both played 

a Nash game. The second model assumed that the married couple played 

a Stackelberg game where tho husband played tho role of the loader and 

his wife played tho role of the follower. Model three. while also a 

Stackelbers same. assumed that the roles of the two players were 

reversed; that is. it was assumed that the wife played tho-role of the 

leader while tho husband played the role of the follower. The purpose 

of the present chapter is to determine the most adequate model among 

the three proposed for ezplainins the joint labor force participation 

decision over a larae sample of married couples. 

The problea at hand can be considered to take the followins 

form. Let us define two sequences of rando• vectors y1 ••••• yn and 

x1 ••••• xn. The yi's will be thou&ht of as the endosenous variables 

and the xi's as tho exosenous variable a. and we a~e inter.eated in 

testins various hypotheses about the conditional distribution of the 
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sequence y1 , ••• ,yn with ~espoct to x1, ••• ,xn. The hypotheses to be 

tested are two functional forms of tho conditional density of yi given 

xi denoted by 

where ll H and lR K represent H dimensional and K dimensional real 

parameter spaces, respectively. The functions f and g will depend on 

parameter vectors which are given respectively as 4 and p. 

If those models are nested in the sense that for any parameter 

value;, tho p.d.f. f(ylx,;) can be approximated arbitrarily closely 

by s(ylx.j) o~ if fo~ any parameter vocto~ p, tho p.d.f. s<ylx,j) can 

be approxt.ated arbit~arily olosoly by f(ylx,;), tho problem of 

choosins the more adequate model is one in which the classical tests 

may be applied, viz, tho Wald test, the Lasranao multiplier test, and 

the likelihood ratio test. Alternatively, tho models may belons to 

separate families in the sense that fer any parameter value ;, tho 

p.d.f. fCylx,;) caanot be approximated arbitrarily closely by s(ylx,j) 

and for any parameter value j, tho p.d.f. s(ylx.j) cannot be 

approxt.ated arbitrarily olosoly by f(ylx,;). When tho two models 

belons to separate families we say they are non-nested. Aa we shall 

soon see, two different approaches have been sussested in tho 

literature for choosina tho most adequate model when th~ compotins 

models bolons to separate families. 

- --·--··---- . ·--- .. 
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Tho situation encountered, however, when we try to examine any 

two of the three proposed same theoretic models is neither one of 

comparins two nested models nor of tostins two non-nested models. As 

will be shown later, tho models are pairwise overlapping. As such, 

the traditional methods for choosing the moJt adequate model are, 

strictly speakins, inappropriato.1 They will nevertheless be discussed 

for completeness. Given tho drawbacks of tho traditional methods 

which we shall point out, we therefore rely on a new technique 

developed by Vuons (1985) which handles as separate cases those 

situations in which the models may be nested, non-nested or 

overlappina. We also contrast tho traditional approaches with the 

approach we adopt for choosing tho same theoretic model which most 

adequately describes the labor force participation decision of a 

random sample of married couplesc 

In an attempt to discriminate between alternative models that 

arise from separate families, two different approaches have been 

sussested in the literature over the last two decades. Tho first 

approach, orisinatina with Akaike (1973, 1974), has como to be known 

as model selection. As that name tmplies, one simply seeks to choose 

one model from a specified pair of models which miuimizes an 

appropriately defined loss function; in tho Ataiko settina, the loss 

function is defined as two tt.os tho Kullback-Loibler (1951) measure 

of information. A1 thoup work subsequent to Akaike has been done on 

model selection, it has all concentrated on linear models; as such, it 

is inappropriate for tho task at hand. (See Kinal and Lahiri (1983) 
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for a review of this literature.) 

The second approach has come to be known as non-nested 

hypothesis testins. Here, two main principles have been proposed in 

the literature: the Cox (1961, 1962) principle which is based on a 

modified likelihood ratio and the Atkinson (1970) principle which 

consists of neatins the non-nested models in a more seneral model. 

Althoush the Cox formulation does not explicitly allow the presence of 

exosenous variables, subsequent work by Aguirre-Torres and Gallant 

(1983) explicitly incorporates explanatory variable~. Recent work by 

Gourieroux, Monfort and Trosnon (1983) takes a different approach and 

rests on the notion of a pseudo-true parameter value and its 

associated pseudo-true maxtmu. likelihood esttmator (seo, e.g., Sawa 

(1978) and Gourieroux, Monfort and Troanon (1984)). This work also 

allows for the presence of explanatory variables. 

With this as a brief backsround, the present chapter is 

organized as follows. In Section 2, the Akaike principle of model 

selection will be developed more fully. Aa will be seen, a certain 

amount of controversy still exists as to whether or not tho formula 

proposed by Akaito for the selection amons compotins models is 

correct. Moreover, it will be pointed out that the criteria proposed 

by Akaike is not probabilistic. That is, one simply chooses that 

model, aaoaa a sroup of compotina models, with tho laraost model 

selection criteria. As such, wo aro required to choose a "boat" model 

even thouah the "boat" model may bo statistically indistinauilhable 

froa one or more of tho compotina models. Section 3 will discuss in 

____ " _____ ---
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some detail. starting with Cox. tho papers mentioned above on non­

nested hypothesis testing. As will be pointed out. all tests of non­

nested hypotheses are difficult to implement. In addition. as Vuong 

(1985) has argued. the Cox-type tests are inadequate for choosina tho 

best model amona a aroup of competing models. Since the techniques to 

be proposed in Sections 2 and 3 are inappropriate for tho task at 

hand. Section 4 will discuss the new approach developed by Vuong 

(1985). As will be seen. this approach places tho problem of model 

selection in a hypothesis testina framework. Section 5 will actually 

apply this test to tho three models estimated in Chapter IV. Section 

6 concludes tho chapter. 

2. MODEL SELECl'ION 

Any discussion of model selection criteria for non-nested 

models must beain with Akaike (1973. 1974). both because he originated 

tho subject and also because his framework is quito general. Tho 

basic attitude taken by Akaiko toward the subject of model selection 

is to rocoanize the fact that. in aeneral. a certain amount of 

discrepancy exists bo~woon the true. but unknown. distribution of a 

random variable and any propoaed model. Tho best that can be done in 

tryina to cope with this sort of situation is to identify the most 

adequate aodol relatively amona a sivon set of alternative models. 

Tho adequacy of a propoaod model thna needs to be quantified by 

definina a suitable measure of tho distance of tho model froa tho 

unknown true distribution. Tho measure of distance used by Akaiko is 

baaed upon the Eullback-Loibler (1951) Infonaation Criterion (ILIC); 
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as such, Akaito's statistic for measuring this distance is called tho 

Akaito Information Criterion and is abbreviated as tho AIC. 

Suppose that one is concerned with the probabilistic structure 

of a set of independent random variables y • (y1 , ••• ,yn). To simplify 

tho discussion, let ua further suppose that thoro are no exoaenous 

variables. Let G0 (y) be tho true distribution of y with associated 

p~obability density function a0(y). We now postulate a distribution 

F(y,G) to approximate tho unknown distribution G0(y). Then the 

Kullbact-Leibler Information Criterion (KLIC), which defines a measure 

of distance between the true distribution G0 (y) and the proposed 

distribution F(y,m), is defined as 

o 1 <yl • loa--- a0<y)dy 
[ 

o ] J 1°(y) 

I(G,F) = EG loaf(y,G) f(y,G) 

0 0 0 where f (reap. s ) is the density function ofF (resp. G) and E6(•) 

stands for the ezpectation with respect to the true distri~ution G0 • 

Since it can be shown that tho ILIC is nonnegative, I(G0 ,F) ~ 0, and 

equals zero only whoa F(y,G) = G0(y), it is therefore natural to 

choose that distribution, amons a aroup of distributions, which 

minimizes tho ILIC. Actually, Ataite proposes a sliahtly different 

measure of the dlscropan~ between tho true distributio~ G0 (y) and a 

p~oposod distribution: 
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T.hen the distance between the true distribution G0 (y) and a proposed 

model :1 = (f(y,ca): ca a A} is WCG0 .~) = -2Jlosf(~,g·l g0(y)dy where a.• 
g (y) 

• is the pseudo-true value of a.: that is, a. is the value of ca which 

0 0 minimizes W(G .~). As can be seen, W(G ,OJ) is two times the 

Kullback-Leibler Information measure given previously. Why Ataiko 

uses a modified KLIC will bo soon later. Associated with tho above 

loss function is tho following function 

R( G0 ,c;7) = EA W( GO :if.> 
Cl 

where tho ezpectation is taken with respect to the distribution of a., 

tho maxiaum likelihood estimator of a. Note that we take the 

expectation with respect to: so that R(G0,~) is no lonaer a random 

variable. 

0 0 • Since W(G :'J) ia unknown because G and a are unknown tho 

next step then is to propose a criterion which provides an estimate of 

0 • 
R(G ,F). Tho approach relies on the fact that a can be replaced with 

A A 
tho maximum likelihood estimator a which convoraos almost surely to a 

(see, •·•· White (1982)). Althouah it is not necessary to ao throuJh 

the complete derivation of the criterion, we nood to examine the first 

stop in order to make clear the major drawback of tho AIC. Assume 

that ca is of dimension L. Now consider the problem of the selection 

of a(y,K"), E- O,l, •••• L based OD the independent observations 

y1, ••• , yn whore E" is restricted to tho space with 
A 

• • • • E~ • O • If we let E" be tho maximua likelihood 

estimator in E" space, then 
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N A 
I ""-2 ) logg(yi'Ka) will be a consistent estimate of 

X L N f.;t A 
g(yi' La) 

- A .... W(a,Xa) since we are assuming tho model with L parameters, g(y,a), is 
A A 

the true model. - Cl Cl Let us now treat W(a,K ) as a function of X and take 
A 

-A - a a second order Taylor expansion of W(a,a) around a assuming that X is 
A 

close to a. We got 

B ·c- -, - o d aw<A.q> I -- -2Jaa<y.A)d• -- o ut " a.a - an aa - aa •J 

a-a 
since 

I ( 
a2w<u.q) 

g y,a)dy • 1 for every a. Now, aaaa• 

Ja
2
lo• •<y.A> -"" 2 aaaa• s(y,a)dy. We therefore have that 
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N [s<y .. ,:>1 i''L = N•J!IL = -2 [ los 
1 

A • Since we are only concerned with 
1=1 s<y1, Led 

A A A 
findins the 1 u which will sive the minimum of R(Lu, 1u), we have only 

to compute 

sives the minimum of~~· 0 i K i L. ~is called_the Akaike 

Information Criterion, AIC. The first term in the AIC measures the 
A 

soodness of fit of the model to a siven set of data since s(y,xB) is 

the mazimized likelihood function. The second term is interpreted as 

a penalty that is paid for increasins the number of parameters (see 

Leamer (1979) for a further discussion of this point). 

Three points are now worth notins. First, although the above 

derivation required that s(y,
1

u) be nested in s(y,Lu), the use of the 

AIC requires no such assumption. That is, the AIC can be used to 

select between non-nested models since each model can be thought of as 

boins nested in a laraer model that contains both. Second, as pointed 
A 

out by Sawa (1978), tho above requirement that 
1

u be sufficiently 

close to the true parameter value ; lessons to some eztent the 

plausabili~ of the AIC. To see this, consider the problem where we 

must choose between f 1 and f 2 , say. The AIC for t 1 is evaluated 

assumina that f 1 is sufficiently clo3e to the true model, while tho 

AIC for f 2 is evaluated assuaina that f 2 is sufficiently close to the 
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true model. Third- as noted above, the AIC trades off goodness of fit 

for the number of parameters. As such, one can consider it to be 

analogous to the multiple correlation coefficient adjusted for degrees 

of freedom, R, suitably gen~ralized so that one may compare nonlinear 

and non-nested models. Moreover, just as the use of ~ can be 

misleading when choosing among nested regression models, so can the 

use of the AIC when choosing amons nonlinear &Ad/or non-nested models. 

To see this- recall from Pesaran (1974) the following esample. 

Consider a 1 inear model with X-1 regressors and the _same model with an 

estra regressor. He then shows that the two models are related as 

:'2 (1 + 5> 4\ RI-1 • n _ X + 1 (tX - 1) where Bx and ix-l denote 

tho adjusted multiple correlation coefficients for the models with X 
~ 

and X-1 esplanatory variables respectively, tX is the t-statistic of 

the added variable and n is the sample size. It is then clear from 

this relation that an estimated value of the t-ratio which is slightly 

greater than one will increase the adjusted multiple correlation 

coefficient but will only be sianificant at tho 25 percent level, 

which is auoh laraer than the normally adhered to sianificance levels 

of 5 percent or 10 percent. A similar problea exists with the Akaike 

Information Criterion: we are required to Choose aaona alternative 

models simply oa the bash of whiCh one gives tho miaim1111 AIC, 

ianorina the fact that the competing models may be statistically 

indistinauishable. As we shall see in the next section, this problem 
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is overcome when we study those techniques collectively known as non-

nested selection criteria. We will also see in Section 4 that the 

recent wort by Vuona (1985) places in a hypothesis testing framework 

the problem of selectina amona competins models whether they be 

nested, non-nested or overlapping. 

3 • NON-NESTED HlPOTBESES TESTING 

Although important strides have been made in tho last few 

years in developing tests for separate families of hypotheses, all of 

this wort draws heavily from Cox (1961, 1962). As suoh, it is only 

fittins that wo discuss the work of Co: first. As we shall soon see, 

the test proposed by Cox is a modification of the likelihood ratio 

test. 

In keepina with the notation of tho previous section, suppose 

that the observed value of a random vector y = (y1 , ••• ,yn) is to be 

used to test the null hypothesis, Bf, that the true probability 

density function is f(y,a0), where a0 is an unknown parameter vector. 

Lot B be the alternative hypothesis with p.d.f. s(y,J), where p is a 
an unknown vector para.eter, and where f(y,a) and g(y,J) are separate 

A \ A 
familiea. In addition, lot L1(a) • L-loa f(yi,a) be the maximized los 

A 
1 ikol ihood under Bf whore a is the mad.aa 1 ikol ihood estimator. 

L
8

(J) • I:loa s(y1,;) is similarly defined. Cos (1961) proposes tho 

followina test 

A. A A. A. 
Tf a {Lf(a) - L

1
(J)) -! {Lf(a) - L

1
(p)) whore E(•) moans that 

G 
A 

you evaluate tho ezpectation with respect to f(y•a~ T.hus, the 
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test 

compares tho observed difference in log-likelihood with an estimate of 

that to be expected under Hf. As such. an est~ate of Tf close to 

zero would indicate tho acceptance of Hf; a positive estimate of Tf 

would indicate a departure from Hf away from H
8

; and a negative 

estimate of Tf also indicates a departure from Hf but in the direction 

of H
1

• Examining the latter case aore carefully. although a 

significantly negative value of Tf indicates rejection of Hf. it 

obviously does not indicate acceptance of B • since a model caunot be 
8 

accepted (or rejected) until it has been put to a test. It is 

therefore for this reason that we must reverse tho roles of the two 

hypotheses and repeat tho t~st procedure. If tho roles of Bf and B
1 

as null and alternative hypotheses are interchanged. a test statistic 

T is obtained. where 
8 

A 41\ 
Lf(a)] - E[L (p) 

A I 
p 

(1982) thea show 

A 
Lf(a)]. Cox (1962) and White 

that if the coaponents (y1 ••••• yn) are independently and identically 

distributed. n-l/2rf is under Bf distributed asymptotically normal 

with moan zero and asymptotic covariance matriz 
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subscript on the variance and covariance operators, V and C, indicates 

that the expectation is taken with respect to f(y;alph0). Tho major 

difficulty with the test proposed by Cox is tho computation of tho 
A A ~ 

expectation of Lf(a)- L8 (~) with respect to the P.D.F. f(y;u). 

TWo methods have been proposed to get aroun4 this problem by 

numerically simulating the distribution of the teat statistic. These 

met~ods are known as parametric and nonparametric bootstrapping; we 

will discuss the former first. 

The idea of parametric bootstrapping (see Williams (1970) and 

Loh (1985)) is quite simple. Assume two hypotheses, B0: f(y,G) and 
~ 

B1: g(y,p). Under B0, we assume~ • 4 and simulate for sufficiently 

largo 1:, • • 1: sets of artificial data (y1k,•••,ynk)' k • 1, ••• ,1: • drawn 

• A population with density f(y ,4). From tho k-th set of from tho 

#W #W 
artificial data, tho pseudo maxtaum likelihood estimates ~· Pk are 

calculated along with tho test statistic 

This is done for each k, k = 

1, ••• ,1:. Calculating the comparable test statistic 
1 A A 

Tn • n- L: log[f(yi,p>/a(yi,u)] from the real data, hypothesis B0 is 

• rejected if Tn exceoda tho largest element of tho set (Tnk}. Tuznins 

tho problea around, we can aaain by simulation obtain observations on 

the distribution of the statistic assuaina model a(y,p) is true with 

parameter• equal to its aaxtaua likelihood estimates, t, from the 

oriainal data. Once theae steps are co~leted, the problea is then 

one of deterainina whether the observed data arise from just one, both 

or neither of the two models f(y,u) and a(y,p). We now tuzn to a 
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discussion of nonparametric bootstrappins. 

The work of Asuirre-~orres and Gallant (AGT) is similar to the 

work previously described in the sense that the goal is to provide a 

bootstrap estimate of the expectation under tho null of the Cox 

difference. viz 

(1) 

This method differs from the previous bootstrap method, however, in 

that tho error structure of both models is froo of any distributional 

assumptions. It is necessary to adopt tho notation of AGT for they 

consider the Cox test for choosins between two nonlinear, non-nested 

models 

based on the observed data {yt.xt1:.1 • (When distributions on tho 

error terms are specified. each model determines a conditional 

density: f(ylx.G) corresponding to q1 (y,x,G) • o1 and s<ylx,p) 

correspondins to q2 (y,x,p) • e2 .> 

Tho distribution free estimate of the ozpectation of tho Cox 

difference under tho null is then calculated as follows. For ~ ~. 
A 

compute a randoa sa.plo of size n denoted as Ytj' J • l, •••• n, by 

(i) findina tho maximua likelihood estimate G. 

(H) for each xt' senorato tho n dimensional vector of 
. .... 

residuals e t .... " fro• •t • 't(yt,xt.G) by varyina 
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Yt• t = l, ••• ,n. 
A 

find ytj by solving 
A 

the equations ej 
A A 

= ql ( Y tj '.zt' a) 

This procedure thus specifies a way of generating a random sample of 

dependent variables, yt, conditional upon zt under the conditonal 

density f(yl.z,a) without making any distributional assumptions on the 

errors, e1t. The distribution free estimate of the ezpression given 

in (1) is then 

2 Two further points deserve mention. First. we must assume 

that the errors, e1t or e2t' are not only independent but also 

identically distributed in order that the estimate given in (2) 

(2) 

converges almost surely to (1). Therefore, the bootstrapping method 

proposed by AGT is not valid for models with a heteroscedastic error 

structure. Second, in order to calculate the bootstrap o~timate it is 

necessary to be able to ezpress the conditional density under the 

null, f(ytlzt,a), in terms of the ezpression q1(yt,zt,a) = o1t• 
' 

certainly the latter expression contains aore structure than the 

former. 

Lot us now discuss an alternative approaCh for testing non-

nested hypotheses aa proposed by Gourierouz, Monfort and Trognon 

(1983). They propose a test based on the difference between the 

pseudo-maximum likelihood estimator of tho parameter of tho 

alternative model and an estimator of the pseudo-true value obtained 
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from tho mazimua likelihood estimator for tho parameter of tho null 

model. An added feature of their approach is that it takes explicitly 

into account tho presence of explanatory variables. 

As before. tho hypotheses to be tested are two functional 

forms of tho conditional density of Yt given xt denoted as 

D
8 

= {g(ytlxt"~). ~ aBC IlK}. 

For convenience f(ytlxt.a) and s(ytlxt.p) will also be denoted by 

ft(a) and gt(~) and the conditional expectations with respect to the 

densities will be written as B and B. Therefore. tho conditional 
a ~ 

los-likelihood functions associated with Df and D
8 

are respectively 

given by 

We now allow for tho possibility that the true distribution generating 

tho observations may not be associated with either of the families Hf 

and B • As such. those estimators have been termed pseudo-maximum 
I 

likelihood (PKL) estimators (see. ••I•• Gourierouz. Monfort and 

Trosnon (1984)) and are defined to be tho solutions of mas L~(a) and 
a 

T A A 
max L (~). Those estbaatora are denoted as a and~. respectively. 
~ 8 

Yo now define tho finite sample pseudo-true value of ~ for a 

siven a as the solution to tho problem 
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T t 
maz [ E los st(p) ; 
p t=l (I 

this solution is denoted as bT(CJ), where 

! los st<Pl = Jlos s<ylzt,pl • f(ylzt,a)dy. 

Since this problem is equivalent to 

whes:e 

is the Xullback-Leibler information criterion. it is clear that tho 

sample pseudo-true value of p, bT(CJ), is the p which minimizes the 

distance between Bf and &
8 

when we asau.o that f(ylz.CJ) is ts:ue. In 

the same way, the finite sample pseudo-true value of a for a siven p 

is denoted as aT(~) and is defined as tho solution to 

T t 
maz \ E los ft(CJ) • 

(I /;1 p 

Moreoves:, Gous:ierouz, Monfort and Trosnon (1984) show that tho 

A 
pseudo-maziaua likelihood eattBator. P. is a consistent estimator of 

tho asymptotic pseudo-true value, b(CJ). It therefore seems natural to 
A 

compare under Bf the psoudo-mazla'llll libl ihood estiaator P of p with 

TA 
b (a), the finite sample pseudo-true value of p. Since, under Bf, 
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A T A 
~ - b (a) converges to zero, and since this ia not in general the case 

A T A 
under H • a significant departure from zero of ~ - b (a) will be in 

I 

favor of H • Tho authors then show that tho distribution of 
I 

Jr [~- bT(:)] is asymptotically norma~. 

We now discuss another method of testing non-nested hypotheses 

which yields a test statistic that is asymptotically equivalent to tho 

Coz test. Although this method was originally suggested by Coz (1961, 

1962), it was formalized by Atkinson (1970) and consists of nesting 

two non-nested models into a sonora! model in which the two smaller 

models would both be special cases. Bzplicit account is not taken for 

ezogonous variables. 

Asain. lottins tho two component p.d.f.'s be f(y,a) and 

g(y,~), tho combined p.d.f. is of the fora 

1-1 
f 1 ( y) • _...~~..____..a."-1....,"""--­

[f(z,a)]1 [s(z.~)J 1-1dz 

when we assume that tho observations are identically and independently 

distributed. Note that tho denominator has boon introduced so that 

f 1 (y) has tho properties of a density. Since we ~ro ultimately 

concerned with an estimate of 1, Atkinson follows a sugsostion by 

Bartlett (1953) and uses an asymptotically noraal statistic for 

tostins hypotheses about the value of sinslo parameter. 1. in the 

presence of nuisance parameters, a and ~. For ease of ezposition, we 

assume that L, the los-likelihood of the observations, contains only 

tho nuisance scalar parameter &. 
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Let 

where the partial derivatives are evaluated and the expectations 

calculated under the null hypothesis. Tho fost statistic proposed by 

Bartlett is 

T= • 

which has an asymptotic normal distrib~tion. If wo uae as estimates 

of the n~isanco parameters tho maximum likelihood estimates under tho 

null hypothesis, we see that tho second torm in tho nuaerator in tho 

above expression drops o~t. 

Lot ua now assume that tho null hypothesis is A = li that is, 

we assume f(y,m) is tho tr~e model and we test for dopart~es from 

f(y,m) in tho direction of s(y,J). It is then only necessary to 

differentiate tho loa-likelihood function associated with fA(y) with 

respect to m, J and 1 and evaluate those partial derivatives at 1 = 1. 

Since the test statistic T req~ires that we estimate A and p under the 

" null hypothoais ). • 1, we use the mazimllll likelihood estimator « and 

. " tho pseudo-aulaua 1 ikol ihood estimator b(a). 

Aa with all tho non-nested hypotheses tests disc~ssod so far, 

we also need to reverse the roles of the two distrib~tions and test 

tho hypothesis 1 • Oi that is, we must test for depart~es from a(y,J) 

in tho directioa of f(y,m). 
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4. LIXELIHOOD RATIO 'IESTS FOR .MODEL SELECI'ION AND 

The purpose of the current section is to provide a brief 

overview of tho method proposed by Vuans (1985) for tho selection of a 

"best" model from a set of competins models in a hypothesis testins 

framework. As in Akaike (1973. 1974) the selection criteria used is 

based on tho Kullback-Leibler (1951) Information Criterion (KLIC) 

which measures the difference between a siven distribution and the 

true distribution. The work discussed here differs, however, from 

Akaike in three important respects. First. conditional models are 

considered so as to allow for explanatory variables. Second. Vuons 

(1985) examines the cases in which the competin& models may be non-

nested, over1appina or nested~ in contrast, Akaiko (1973, 1974) l~its 

himself to a discussion of non-nested models. Moreover, in contrast 

to Akaike. Vuona does not require one of the models to be correctly 

specified. Finally, the test statistic proposed is based on tho los-

likelihood ratio uncorrected for the number of estimated p~rameters. 

Usina the notation established earler. let us define two 

conditional models Fa • {f(ylx,a),a a A} and G~ a {s(ylx.~).~ a B}. 

Then tho distance of each of those models from the true conditional 

distribution h0 (ylz), as aeasures by the KLIC, is defined as 

E
0

[1oa h0(ylx>l - E0[1oa f(ylx,a•)J and 

E0[loa h0 (ylx>l - E0 [loa s(ylx,,*)], respectively, whore E0[•] denotes 

tho expectation with respect to tho true joint distribution of (y,x) 

• • and a and ~ are tho pseudo-true values of a and' (see •·&·• Sawa 

(1978) and Gourieroux. MOnfort and Trosnon (1984)). As noted before, 
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both of these expressions are nonnegative and equal zero, say, only 

when h0(ylx) = f(ylx,a•). ~such, an equivalent selection criterion 

is based on E0[log f(ylx,m•)] and E0 [1og g(ylx,,•)], tho bettor of the 

two models being tho one which sives the larger value. Although both 

of these quantititos are unknown, they can each be consistently 

estimated by (1/n) t~es tho loa-likelihood evalated at the respective 

pseudo-maximum likelihood esttmators. With this as a backsround, 

Vuona (1985) aaasests tests for model selection where tho null 

hypothesis is that E0 [1oa a<ylx,p*)J = E0[loa g(ylx,p*)J, indicating 

that the two models are equivalent, against 

E0[los fCylx,m*>l > E0 [1oa a<ylx,,•)l indicatina that Fm is better 

0 • 
than o,, or asaiast E [los f(ylx,a )] < E0 [1oa a<ylx,,•)] indicatina 

that o, is better than FB. As such, the teat will be based oa the 

likelihood ratio statistic 

n 
= '\ loa 

tf.=t 

~ ~ . 
whore aa and pn are the paoudo-maxiaum likelihood estimators of m and 

• ' . 
Aa noted in the Introduction to this chapter, the model 

selection criterion proposed by Akaike (1973, 1974) is not 

probabilistic. Since Vuoaa (1985) derives testa for model selection 

it is therefore necessary to exaaine the asymptotic distribution of 

the likelihood ratio statistic. A complication arises, althon&h, 
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because the asymptotic distribution of the likelihood ratio statistic 

depends on whether or not f(·l·,m.) = g(•l·.~.>. As is shown in Lemma 
A 1\ 

3.1 of Vuong (1985), if f(•l•,a•) = g(•l·,~.). then 2LR (e.~) has a n n n 

l~itins distribution which is a weiahted sum of chi square random 

variables, the weights beins the eigenvalues of a matrix to be 

discussed later. 

On the other hand, if f(·l·,4.) ~ s<·l·.~.>. then 

n-1/2LRn(:.~) ia a consistent estimator of LR(4•,~•) 
• n-l/2E0 [1ogf(ylx,a•)- loss(ylx,~·)]. Indeed, as Theorem 3.4 of 

Vuons (1985) shows, if f(•l•, a.>~ a<·l·.~.> then 

2 • • 
where~. is the variance of los[f(y)lx, m >/s<ylx, ~)]where the 

variance is computed with respect to tho joint distribution B
0 of 

(y,x) • 

Then under B0: EO[loaf!zla, :::] • O, 
a<ylx, 

Theorem 5.2 of Vuons (1985) shows that n-l/2UI.. c: , p >f.. -~ N(O,l) n n n n 

where:: ia a consistent estimator of ~:. This consistent estimator 

will be defined shortly. As should be clear, if the mo~ols are non­

• . nested, one must have f(•l•.a) ~ s<·l·.~ )J alternatively, when the 

models are either nested or overlappina, one may also have 

• • f(·l·•a) • a<·l·.~ ). 
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As will be shown in the next section, the Nash model and tho 

two Staokelberg models are all pairwise overlappins. In a pairwise 

test of the three proposed models, it is therefore necessary to test 

• • whether or not f(•I•,A) s s<·l·.~ ). As shown in Lemma 4.1 of Vuong 

• • (1985) a necessary and sufficient oondition.for f(•l•,m) = s<·l·.~) 
2 2 • 1 • is~. • 0, ~. denotins the variance of los[f(ylx,m) s(ylx.~ )]. 

Since 

e~octation taken with respect to the true joint distribution B0 of 

(y,~), a consistent estt.ator, ~. of ~: is aiven by the sample 
n 

analog: 

.... 
~ mentioned above, the asymptotic distribution of ~ is seen to be a 

D 

weiahted sua of independent chi-square randoa variables, tho weights 

beina tho oiaonvaluos of tho matri~ product Vl: whore 

B (~ ) 
I 
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and 

-1 • • -1 • 

[

Af (a )Bf(a )Af (a ) 

-1 • • • -1 • 
A (a )B f(a .~ )A (~ ) 

I B I 

Submatrices within V and }: are defined as. for example 

and 

Bf(a) 5 sO[Blo• f(ylx.q) • 8lo1 f(ylx,q)]. aa aa, • 

Consistent estimates of the matrices V and l: can be given by their 
.... 

syntax error file ohap5i. between lines 919 and 919 saaple analogs. V 

and L· 
With this in mind. Vuong (1985) proposes a two-Rtep sequential 

procedure for ohoosina tho botter model of two coapetina but 

overlappins models. If we let S: : ~: a 0 and u: : ~! ~ o. the 

sequential procedure is 

(i) Test S: aaainst R: usina the test based on::. This is termed 

the variaace test by Vuoaa (1985). If U: cannot be rejected. 

thea conclude that the models Pa and GP caDBot be discr~iaatod 

given the data. Alternatively. if ~ is rejected. then 

(ii) Test &0 aaainst Rf or &
1 

usins tho model selection test based on 

-1/2 .... .... 
the statistic a LR (a .p ) which has a ltaitias standard n n D 
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normal distribution. 

In the next section we then show that there exists a set of 

restrictions on tho parameters of tho Nash and tho two Stackelberg 

models such that the three models pairwise overlap. This being the 

case. we would normally then implement the above sequential procedure. 

Since tho first step of this sequential procedure is difficult to 

implement. wo will instead use an alternative procedure. This 

alternative procedure is based on whether we can reject the hypothesis 

wU) 2 • • 
u0 :~. = 0 or equivalently f(•l•.a) = g(•l·.~) if we can 

statistically shaw that the estimated conditional distributions for 

the competina but overlapping models are not pairwise identical. To 

do this. we need to characterize tho intersection of any two 

overlapping models. We therefore propose in the next section a 

necessary and sufficient condition for the models to be pairwise 

identical. If we can then reject this condition based upon the 

estimated distributions of Chapter IV. we need then only implement the 

second step of tho above sequential procedure. 

5. IMPLEMENTING TBB 1EST FOR 'I'HB CliOICB OF THE IIOST ADEQUATE HODEL 

As stated in the previous section. we will now present 

necess•ry and sufficient conditions for the throe game theoretic 

models to be pairwise identical. Let us first start with the 

conditions that relate the two Stackolbors models. those being the 

models in which the husband and the wife successively play the role of 

the leader. The conditional distribution for the Stackelbers game in 

which the husband plays the role of tho leader is aiven as Proposition 
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1 of Chapter III. In order to avoid confusion. we aow state 

explicitly the conditional distribution of the Stackelbers game in 

which the wife plays the leading role. The probabilities relating the 

four possible discrete outcomes are as follows: 

,. ,.. f/IW ,...B 
Pr(O,O) = F(-AUw,-AUh,p) - I+ 

F(-AUw .. -AUh,;) 

.. .., .. -- #Ill# 

Pr(l,O) = F(AUw,-AUh-Aah,-p) 

- ..... ....,1 ... o ... 
Pr(O .. l) • F(-AU -a +a ,AUh .. -p) w w w 

__ 1 _o _ _ .. 
F(AU +a -a ,AUh+Aa.,p) 

y y w ll 

where 

otherwise 

-
otherwise 

if A~ l 0 

otherwise 

-if A~ 2 0 

otherwise 
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_A _ _o _ _ _ ,.,1 ... o _ _ 
I = I(-AU +m ,AUh-Aah,-AU -m +a ,-AUh,p) w w w .. .. 

- -As in Chapter III, let us decompose AUh and AU, into linear 

combinations of coefficients and esplanatory variables. We then have 

and 

AU 
w 

_o 
=y:X +& w .. w 

_1 
+ 6 z w 

where Z contains those explanatory variables that are common to both 

the husband and the wife while ~ and x .. contain those variables that 

are specific to tho husband and wife, respectively. Without loss of 

generality, let us also assume that lh• Xw and Z are one-dimensional. 

We first present tho followins Lemma. 

LEMMA 1: For every a and b, I(a+z,b+y,a,b,p) • I(a+z,b+y,a,b,p) if 

-and only if z=z and yay, provided sy # 0. 

PROOF: 3 
((=-) Obvious. 

~~ ~ ~ 

(=•>) Define G(a,b;z,y,z,y) = I(a+s,b+y,a,b) - I(a+z,b+y,a,b) 
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-I -a+x b+y 

f(u,v;p)dvdu - I ~(u,v;p)dvdu. 
a b 

... -
Since G(a,b;x,y,x,y) is identically zero for all a and b, we have 

--aG(a, b;x,y, x.y) 
a a -- f+by [f(a+x,v;p) - f(a,v;p)]dv 

-[f(a+x,v;p) - f(a,v;p)]dv • 0 Va, b. 

2 --
Al 

a G(a, b;x,:r, s.,y) O 
so, aaab - • Va,b ~plies that 

- - -= f(a+s.,b+y;p) f(a+s.,b;p) - f(a,b+y;p), (1) 

Now let 

-f(a s.,b y;p) a f(a+s.,b+y;p) + (&1+&2) 

-and f(a+s.,b;p) • f(a+x,b;p) + s1 • (2) 

-T.hen f(a,b+y;p) • f(a,b+y;p) + a2• 

3 --
Moreover, a G(a,b;z.y.s..y) • 0 implies that 

aa2ab 
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[(a+x)-p(b+y)]f(a+x,b+y;p)-[(a+x)-pb]f(a+x,b;p)-[a-p(b+y)]f(a,b+y;p) 

- - -=[(a+x)-p(b+y)][f(a+x,b+y;p)+a1+a 2J-[(a+x)-pb][f(a+x,b;p)+s11 

--[a-p(b+y)](f(a,b+y;p)+a21 • ( 3) 

Upon simplification, wo get 

- ,.. -- .... .... ,.. 
-pye

1
+xs

2
=£x-x-p(y-y)]f(a+x,b+y;p)-[x-x]f(a+x,b;p)+p(y-y)f(a,b+y;p). 

Similarly, 
3 --a G(a,b;z,y,s:.y) 

aaab2 = 0 implies that 

[(b+y)-p(a+x)]f(a+x,b+y;p)-[b-p(a+x)f(a+x,b;p)-[b+y-pa]f(a,b+y;p) 

--[b+y-pa][f(a,b+y;p)+a2l • 

Again, upon simplification we get 

,. .,. ,.. .. ..... ,., 
Ya

1
-pxa

2
c[y-y-p(x-x)]f(a+x,b+y;p)+p[x-xlf(a+x,b;p)-(y-y)f(a,b+y;p) (4) 

Combinins equations (3) and (4), we have 

= [(z-:-p(y-~))f(a+z,h+y;p)-(z-;~f(a+z,b;p)+p(y-~)f(a,h+y;pll· 
(y-y-p(x-x))f(a+z,b+y;p)+p(x-x)f(a+x,b:p)-(y-y)f(a,b+y;p) 
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-Thor of ore' since xy '/: 0 ·and r pI 'I= 1, YO have 

[:~]- ---=2 1~- [-~; 
(p - 1)xy -y 

[ - - ] (x-x)[f(a+z,b+y;p)-f(a+x,b;p)]-p(y-y)[f(a+z,b+y;p)-f(a,b+y;p)] 

-p(x-;)[f(a+x,b+y;p)~(a+x,b;p)]+(y-;)[f(a+x,b+y;p)-f(a,b+y;p)] 

[ 

2 - ... ] 1 
(p -1)x(y-y)[f(a+z,b+y;p)-f(a,b+y;p)] 

= 
2 -- 2 - ... (p -1)zy (p -l)y(z-s)[f(a+z,b+y;p)-f(a+z,b;p)] 

rv:; [f(a+x,b+y;p)-f(a,b+y;pl] 

= l y-
z-z -:- [f(a+z,b+y;p)-f(a+z,b;p)] 

• ( 5) 

% 

4 --
Now, YO also have a G(a,b~z,y.z,y) = 0 

· aa ab 
which implies that 

2 2 [(a+z)-p{b+y)] f(a+z,b+y;p)-[(a+z)-pb] f(a+z,b;p) 

-[a-p(b+y)J 2f(a,b+y•p) 

- - 2 - 2 = [(a+z)-p(b+y)] [f(a+s,b+y•p)+s1+s2J-[(a+x-pb) [f(a+x,b•p)+a1J 

- 2 -[a-p(b+y)] [f(a,b+y;p)+a
2
]. 
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After rearransina. we have 

2 2 
2..... ..... ..., .. .. ,.,. 

e1(p y -2py(a+x-pb))+a2Cx +2x(a-pb-py)) 

~ - ~ .. 
= [x-x-p(y-y)][2a+x+x-p(2b+y+y)]f(a+z,b+y;p) 

Substituting (S) into the above equation, we have 

- - ... .. -+ p(y-y)[-2a-z-z+2pb+py+py-py+2a+2x-2pb])f(a+x,b+y;p) 

~ - ~ 
=(x-z)(-x-2a+2pb+2py+2a+z+x-2pb)f(a+x,b•p) 

- ,., ,. .. 
+ p(y-y)(-py+2a+2z-2pb-2a+2pb+py+py)f(a.b+y;p) 

Upon simplification. we then have 

- -(z-x)(z+2py)f(a+x.b;p)+p(y-y)(py-2z)f(a.b+y;p) 

( 6) 

Note that fC·.•;p) is of the exponential form. Therefore (6) is 

possible only when all of the coefficients are zero. Note also that 

the coefficients are independent of a and b. We now have four cases 

- -to consider. dependins on whether or not x-x and y-y are each zero. 

Case 1: x-x = o. y-y = 0. The proof is complete. 

Case 2: y-y = o. x-x ~ 0. 
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.... ... 
We have from (6) that z+2py = 0 and z+py-py = 0 which implies z = 0 

... -and y = 0 or z = 0 and p = 0. If y = 0, we have a contradiction since 

we have assumed that z,PO. If p = 0, y F 0, then 

I(a+z,b+y,a,b;p) = I(a+z,b+y,a,b;p) implies that 

J

a+z Jb+y 
a '(u)du b '(v)dv 

J 
... fb a+z 

= f(u)du 

a b 

-+y 

f(v)dv. 

- -Since y • y, we must have z • z. Co~tradiction. 

-Case 3: z-z = 0, y-y F 0. 

- ... From (6) we have that 2z+py • 0 and py+z-z = 0 which implies py = 0 

-and z=O whiCh is a contradiction since zy • 0 by aasuaption. 

-Case 4: z-z p 0, y-y p 0. then z+2py = 0 and p(py+2z) • 0. 

- -If p = 0, then z = 0 which iapliea z = o· or y = O. Contradiction. If 

- - -p I= 0, then z+2py • 0 and py+2z • 0 which iapliea xy • 4zy. We also 

have froa (6) that 

-(z-z)(z-py+py) + p(y-y)(py+z-z) • 0 which bDplies 

-- ,. -- .... 
(z-z)(-py-py) + p(y-y)(-z-z) • 0 since z • -2py and py • -2z. 

- --2p(zy- zy) = 0 which in turn t.pliea r.r • zy since we have assumed 

that p I= 0. 
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- - - -Thus xy = 4xy implies x = 0 or y = O. Contradiction. 

Q.E.D. 

We are now in a position to prove the following necessary and 

sufficient condition such that the two Stactelbera models are 

identical. 

-PROPOSITION 1: Suppose that either Th ~ 0 and yw ~ 0 or yh ~ 0 and 

-yw ~ O. Then Pr(i.j) • Pr(j.i). i.j • 0.1, for any~· X~· Z if and 

only if 

- - -p - p, Th = Th• Tw • yw; 

~ 
... o 1 ... 1 -• Cl - 0, ~ = Cl - 0, ACIW- A~- 0; .. w 

(60 61) 
_o ...1 

6w = 6w whore 6 = 6 ... (6 • 6 )· and 
w w' w ' w w w • 

- 0 1 
_o _1 

&h = 6h whore 6h = (6h' &h). 6 = (&h, &h). h 

PROOF: We have four cases to consider, dopendins upon the sian• of 

-Case 1: ACiw 1 0, Ae~h 1 0 

<<-) Obvious. 

(-->) Without loss of aenerality, let us suppose Th ~ 0 and Tw ~ o. 

We must have Pr(1,0) • Pr(O,l) which aives 
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First note that we must have yh ~ 0 and yw ~ 0. Otherwise, the riaht 

hand side would be indep~ndent of Xb and Xw' which contradicts the 

-assumption that yh ~ 0 and r, ~ 0. Moreover, note that yh and yh must 

have the same sian~ otherwise, one side would be decreasina in ~ 

while the other side would be increasing in~· A similar requirment 

holds for Yw and Yws Without loss of generality, let us suppose that 

... -
yh > O, Yh > 0, -r, > 0, r.., > 0. Since the results must hold for all 

~· lot ~ -+ +•. This implies 

o 1 -
0 

cp( -y X -6 - 6 Z - ACI ) • 9( -y X - 6 ww w w w ww w 

_t _1 _o 
& Z - Cl + Cl ) or w w w 

_o 
1 0 - _t _o _1 

YwX + 6 Z + (6_ + ACI_) = y X + 6 Z + (6 + Clw . w .. .. .. ww w , Clw) for any Xw' z . 

Bence, we must have 

1 _1 
6 • 6 , and w , 

0 
_o _1 _o 

6 + ACI .. 6 + Cl - Cl • w 1r 1r , 1r 

(7) 

(8) 

(9) 
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Similarly .. let Xw ~-CD. 'Ihia implies 

This in turn implies that 

-yh = yh, (10) 

o _o 1 _t ... 
&h a &h and &h = &h, or, for notational convonioneo, &h = &h. (11) 

... 
In addition, wo must have Pr(O,l) • Pr(l,O) or 

( 12) 

By tho same arsument aa above, if wo let lb ~ -CD wo obtain 

(13) 

1 
o - 0 

1 - -&,. - &,. and 6 - 6 which sivea 6 - & • .. .. .. .. (14) 

In addition, we set fro. (9) that 

( 15) 
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Similarly, letting X.., ~ +m, we obtain 

1 _1 
& == & and h h 

£.0 + 1 0 -;
0 

A-
uh 'i1 - 'i1 = uh + 'il• 

o _o 
But since we have from (11) that &h = &h equation (18) implies 

Now note that equations (16) and (11) imply that AUh • AUh while 

-equations (13) and (14) imply AU =AU • , , 

( 16) 

(17) 

( 18) 

( 19) 

If we now use the fact that F(~,y,p) • F(y,x,p), equation (12) can be 

rewritten as 

1 0 - - -F(-AUh - ~ + ~· AU,, -p) = F(-AUh - A~, AU, .. -p). But· 

- - 1 0 -AUh • AUh, AU, • AU, and ~ - "h_ • A~ from ( 19). 

Moreover, the precedina equation must hold for all ~ X , Z, and a, , 

-hence for all AUh and AU,. This implies p • p. 

-Third, settina Pr(l,l) • Pr(l,l) we aet 

1 0 A 
F(AUh + "h_ - ~· AU, + Aa,, p) - I+ 

But since we have froa above that 
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A _A 
wo must have I+ = I+ other words, 

- _1 - - .... 1 _o -= 1(-AU - (I I -AUh, AU - Cl + (I I -AUh - ACih' p) 
w w w w w 

- _1 - - - .... 1 _o -= 1(-AUh, -AU - (I I -AUh - Aa;h' -AU - a; + a;h' p) 
w w w w 

This last inequality comes about by switching tho order of 

intosra~ion. Notins again that 

_t 
= e~.., - a;~, wo have 

1(-AUh - ~, -AU..,, -AUh -(~ - 0.:>, -AU.., - Aa;,, ·p) 

-
1 

1 0 • 1·(-AUh, -AUw - m..,. -AUh - (~ - ~), - AUw - Am,, p), 

which must hold for any AUh and AU..,. Employing Lemma 1 on tho above 

1 ... 1 
equation, wo aot ~ • 0 and m.., • 0. Finally, sottina Pr(O,O) • 

.... B ... ... ... ...B 
Pr(O,O), wo aot F(-AUh, -AU..,, p)- I+= F(-AU,, -AUh, p)-- I+. 

B 
B ... 

Usiua the same araumeut as above, we aet I+ = I+. In other words, 

1 
1(-AUh, -AU,, -AUh - ~· -AU.., - Am,, p) 

_1 
Clw' p) • Employina Lemma 1 asain, 

But we have from above that ~ • 0 and 
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..,1 
Cl = o. 
" 

-Therefore. Aah = 0 and Aaw = 0. Now. using equations (lS) 

.. o 0 
and (19) respectively • we get a" = 0 and ~ = O. 

-Case 2: Aaw 2 0 and Aah < O. 

Without loss of generality. let us assume yh ~ 0 and yw P 0. If we 

first set Pr(O,O) • ~r(O,O), we get 

( 20) 

Since we assume that yh ~ 0 and yw ~ o. it must also be the 

.. 
case that yh ~ 0 and yw ~ 0; otherwise. the right hand side of the 

above equation wout.d not depend on ~ and Iw while the left hand side 

would. In addition. yh must have the same sign as yh; similarly yw 

must have the same sign as y • Without loss of generality. let us 
1r 

.. 
assume Yw > o. yw > o. yh > o. Yw > 0. 

Now let Xh ~ -•. We see then that I! ~ o. Equation (14) then 

becomes 
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0 1 - ... o ... 1 
«PC-r,X_ - 6 - 6 Z) = ~(-y X - o - o Z) or 

" W W WY W W 

o 1 - _o _1 
y X + 6 + o Z = y X + 6 + o Z ,, , , ww 'I' .. 

We then have 

Y, = Y,• 

o ... o 1 _1 
o = o and o • & which imply w .. w ... 

\1 X • Z. , 

-& = & w 11' 

Similarly, if we 1 et X ~ -CD we set , 

V ~. z. Wo thon havo 

-

(21) 

(22) 

(23) 

(24) 

Note also that from (21) and (22) wo got ~U • AU ; from (23) and (24) ' w w 

-we got ~Uh • AUh. let us next look at tho conditions under which 

-Pr(l.1) • Pr(l.l). This equality implies 

1 o A - ... 1 ... o - - -
F(AUh + L -a. • AU + Aa • p)- I = F(AU • a -a. AUh + ~L. p) 

ll ll w , + ... ... w ll 

which in turn implies 
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0 1 1 0 0 1 
F(yh~ + 6h + 6hZ + ~ - ~· ywXw + 6, + &,z + .&a,. p) -

011 01 0110 01 I(-- X..-& -6 Z-a.. -y X -6 -& Z - X.. -6 -6 Z-a.. +a.. - X -6 -6 Z-Aa p) 'hA h h .a! w w w w • 'hA h h n. n.' 'w w w w w' 

_ _o _1 _1 _o 
= F(y X + & + 6 Z + a - a w w w w w w' 

Since IA ~ 0, YO aot 
+ 

_ _1 _o -~(AU +.&a) =~(AU +a -a). 
w w w " w 

Since AU = AU , we aet 
1J w 

_1 _o 
.&a, = a - a • , w 

Similarly, if we let X -+ +m, we get w 

- 1 0 
A~=~-~· 

-The conditions for which Pr(l,O) = Pr(O,l) are 

_1 _o _ _ _A 
F(.&Uh, - AU - Aa , -p) = F(-AU - a + a , .&Uh, -p) + I_. w .. .. .. .. 

which yield upon substitution 

F(AUh, -AU - Aa , -p) a F(-AU - Aa , AUh' -p) w w , w 

-Finally, Pr(O,l) • Pr(l,O) aives 

1 o - - - - _n 
F(-AUh - ~ + ~· AUw' -p) = F(AUw' -AUh - A~, -p) + I_, 

or ~on substitution 

(25) 

(26) 

(27) 

(28) 



191 

F(-AUh - a! + ~· AUw, -p) = F(AUw,-AUh - ai + ~· -p) (29) 

- _o 
+ I(-AUw' -AUh - Aah, -AUw + 

-We now need to show that p = p; to do this, we will use conditions 

-(20)~ (25), (28) and (29) and the facts that Aaw 2 0 and Aah i 0. In 

ddi · 1 h 1 . aF<x.y.a> ( ) o h a t1on, we wil note t e re at ion ap ,. f x, y, p > w ere 

f(x,y,p) is the bivariate normal p.d.f, Note that the signs of 1! and 

1! from equations (20) and (25), respectively, will depend upon the 

1 0 signs of ~ and~~ This is so because we have assumed that Aaw 2 0. 

Note also that the signs o~ I~ and I~ from equations (28) and (29), 

1 0 respectively, will not depend upon the individual signs of ~ and~· 

If we can thus determine the signs of 1! and I!, we can determine the 

-relationship betweend p and p since we know that 

aF(x,y,p)/ap = f(x,y,p) > 0. A similar argumen~ holds when we v&ry 

_1 _o 
the signs of a and a • We thus have eiaht subcases to consider. w w 

Subcase 1: If ~ 2 0 and a: 2 0, then I! 2 0 which implies that 

p l p. A -On the other hand, I+ i 0 which aives p i p. Thus 

-p = p. 

Subcase 2: If ~ i 0 and 0: i 0, then I! i 0 aivina p i p. 

Subcase 3: 

A -Similarly, I+ 2 0 which aives p 2 p. -Therefore, p = p. 

1 0 If ~ 2 0 and ~ i 0, it must be the case that both are 

zero since we require Aah i 0. As a result, IB = IA = 0 + + 
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which gives p == p. 

Subcase 4: If ~ i 0 and ~ 2 0, then I! i 0 which implies p i p. On 

A the other hand, I+ 2 0, siving us p ~ p. Combining these 

results, we get p = p • 

Subcase 5: 
... 1 _o A 

If «.., ~ 0 and A.., 2 o~ then I_ 2 0 which implies that 

-p ~ -; or p i p. Similarly. I~ ~ 0 which gives p ~ p. 

We thus have p = p. 

Subcase 6: 
J ~ A B 

If A < 0 and A < 0, then I < 0 and I ) 0. These two w- w- -- ---conditions require that p • p. 

Subcase 7: 
J ~ A B 

If Aw 2 0 and Aw i 0, then I_ i 0 alfd I_ 2 0. We thus 

respectively require p ~ p and p i p which again sives 

-p - p. 

_1 _o 
Subcase 8: If Cl i 0 and A ) 0, it must be the case that both are 

w .-
zero since wa require AA 2 o. As a result. IA :a I~ :a 0 w --which aivos p - p. 

-Since p = p. we have from (20) and (25) that 

I(-AUh -AU • w. 

-I(-AUh, -AU..,, -AUh - A~, -AU.., - Aa..,. p) • But from Lemma 1. we get 
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A~ = 0. Similarly. we have from (28) and (29) that I~ = I~. 

Applying Lemma 1 again. we get that Aa = 0. Finally. we can equate w 

IB to IA from equations (20) and (28), respectively. which give 
+ -

~=A~ 
_o 

and a = o. But since A~= 0 from above. we get that 
w 

1 0 
_o _1 

~ = ~ = o. Moreover, since A a = C1 = 0, we sot a = o. 
w w w 

Case 3: Aa,.. ~ 0 and Ach i 0. This case proceeds identically as Case 

1. 

,.. 
Case 4: Aa,.. ~ 0 and Aah 2 0. This case proceeds identically as Case 

2. 

Q.E.D. 

We now state necessary and sufficient conditions such that the 

Nash model and tho two Stackelberg models are overlapping. Again, we 

need to state another Lemma. 

LEMMA 2: For every a and b, 

F(a,b,p) - F(a+z,b+y,p) z F(a,b,p) - P(a+x.b+y,p) if and only if 

p = ;, provided x • y P 0, lpl P 1 and 1;1 p 1. 

(•=>) Let us define 

-B(a,b•x,y,p,p) = F(a,b,p) - F(a + x,b + y,p) 

--F(a,b,p) + F(a + x,b + y,p) • 0 V a,b. 
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h Now aaab = f(a.b.p) - f(a + z,b + y,p) 

--f(a,b,p) + f(a + z,b + y,p) = 0 V a,b. 

Then if f(a,b,p) = f(a,b,p) + a
1

, we also must have 

f(a + z,b + y,p) = f(a + x,b + y,p) + a1 . 

a3u . Differentiating again, we get = 0 which implies 
aa2ab 

a - 0~ f(a,b.p) - a+ x - p(~ + y) f(a + x,b + y,p) 
1-p 1-p 

- ... 
a- pb - a+ z - p(b + y) 

= f(a,b,p) - -f(a + x,b + y,p) 
..:z ..:z 

1 - p 1 - p 

-a - pb ] = (f(a,b,p)+a1 -
... 2 

a+ x- p(b + y)[f(4 + x,b + y,p)+a
1
J. 

..:z 
1 - p 1 - p 

This last term comes about by substitution from above. If we 

rearrange terms, the above equation sives us 

- . -~1 py - X [·- ob f(a,b,p) • 8 -

... 2 
1 1 - p"J. 

1 - p 1 - p 

f. + 
-I - 2'1z + y} a+ % - 2fb + xll ( 1 ( 30) 

2 
f a + x,b + y,p • 

l 1 - p ..:z 
1 - p 
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a3u Moreover. • 0 yields 
aaab2 

b - pa .c bK--+:.......;~v'"'>---&.P \:~t..~. at......::+-z~) 
2 

f(a,b,p) -
2 

f(a + x,b + y,p) 
1 - p 1 - p 

... 
=[b-~] [f( ..... ) + 1 b + y - p( a + z) [f(a + b ) 1 a,u,p 81 - z. + y,p + 81 • 

_2 
1 - p 1 - p 

If we rearrange terms, the above equation can be written as 

pz - y 

,.). 
1 - p 

- [: 
- pa _ b - ;:] 

- p2 ,...,.. 
1 - p 

-+ y- p(a + z) 

1 - p2 

b + y - p(a + 

..). 
1 - p 

z)] ( f ~ + z,b + y~p). 

(31) 

Now, if we combine equations (30) and (31) and assume that py - x F 0, 

we set 

p% - y [·- ~-. -~1 f(a.b,p) - 1-p ..). py - z 
1 - p 

f· + 
-z - eUz + :d a+ z - oUz + xll l 2 2 

f(a + x,b + y,p 

l 1 - p ... 
1 - p 
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[

b - pa b - ;.] f( b ) = 2 - a, ,p -
1- p j. 

1 - p 

[

b + y - 0 (2 + x) _ b + 

1 - p 
%- ~~ + x]f(a + x,b + 

1 - p ) 

y,p) 

But this is possible only when 

;x - x f• -ob _ a - Pbl ::a 

- ll 2 2 PY - z - P - I 
1 - p J 

[: = :; - b - ~1 = o. 
1 - p J 

v a. b. 

-b - oa b - pa Rewritiag this last equality, 2 - ::a 0, sives us 
1-p j. 

1 - p 

2 ..;1. ..;1. - 2 
(p - p )b - [p(1-p ) - p(l- p ))a • 0, V a,b~ 

This in turn implies that 

2 p • p 
j. - 2 -and p(1-p) • p(1-p ). Now either p • p and we are done or 

p = -p which implies 

..;1. - _2 
p(1-p) • p(1-p ). But this implies 

-p = 0 = p. Alternatively. if py-x = 0, we have from (30) that 

[

a- p~- a- ;b] f(a,b,p) -
1-p ..;1. 

1 - p 
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[

a + :r. - p(~ + ::y) _ a + 

1 - p 

:r. - p(b + ::y) - ] f(a + :r.,b + y,p) = 0 , V a, b. 
_2 

1 - p 

But this implies that 

a- pb 

1 - p2 
a - pb = 0 which in turn implies · 

_2 
1 - p 

.... 2 2 .... 2 -
(p - p )a + b(p(l 2 p ) - p(l p ) ) = 0 , V a, b. We therefore require 

... .... 2 2 -~ p2) -p = p and p(l - = p(l- p ). Now, either p = p and we are done, 

-or p = -p which implies 

... 2 - ... 2 -p(l - p·) - -p(l - p ) which in turn sivos p = 0 = p. 

Q.E.D. 

We are now ia a position to provide necessary and sufficient 

conditions such that tho Nash model and each of tho two Stactelborg 

models are overlappins. Since the conditions under which the Nash 

model overlaps with tho husband leader Stactelbors model are identical 

to the conditions under which the Nash model overlaps with tho wife 

leader Stactelbers model, we will only prove the former so as to 

economize on space. Lot those terms with a tilde superscript be 

associated with tho husband leader Stackelbors model and those without 

a tilde be asasociated with tho Nash model. We then have: 

-PROPOSITION 2: Suppose that ~ i 0, ~w 2 0, and Aa
9 

~ 0. In 

addition, suppose that either yh ~ 0 and yw p 0 or ;h P 0 and ;,.. ~ O. 
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-then Pr(i,j) = Pr(i,j), i, j = 0, 1, if and only if 

-
'Yh = 'Yh• &h = &h. Tw = Tw• & = & ,,. .. 

_1 _o ... 
Pw = Aa , ph = a - ah! p = p. ph • P, = 0; and ... h 

_1 _o 
~ = ah = 0 or A a = o. .. 
PROOF: (<==) Obvious. 

(==>) Without loss of generality, assume that Th ~ ~ and Tw # 0. 

-Then, when we set Pr(O.O) = Pr(O,O), it is clear that y # 0 and , 
-y

9 
# 0; otherwise Pr(O,O) would depend on ~ and Xw while Pr(O,O) 

-would not. MOreover, Th and Th must have the same sign. Similarly, 

y andy must have tho same sign. Without loss of generality, let us w ... 

then set 

Yh > 0, Yw > 0, Th > 0, Tw > O. Then from the equality 

Pr(O,O) = Pr(O,O), if we let~ -+ -• we sot 9(-AU) • 9(-AU) which 
A w w 

implies that AU =AU • Written out more fully, we set 
W W, 

- -T X + & Z • T X + 6 Z V X Z. This implies that w w w .. • , w. 

- - (32) 

Similarly, if we let Xw -+ -e, we have 

- - (33) 

Nezt set Pr(l,l) = Pr(l.l). If we let~-+ +• we aet 
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Similarly, if we let X ~ +CD we get .., 

( 34) 

f3 = ACI • (35) .., w 

We next show by contradiction that Ph • P.., = 0. Assume not; that i!, 

assume ~ ~ 0 and P.., ~ 0. If we take tho difference 

Pr(O,O) - Pr(l,l) = Pr(O,O) - Pr(l,l) we got 

F(-AUh, -AU..,, p) - F(AUh + ph, AU.., + P..,• p) 

From (32) we have that AU.., = AU
9

; from (33) we have that AUh = AUh. 

Using (34) and (35) the above difference implies 

But from Lemma 2 we see that we must have p • p. Using asain the 

equality Pr(O,O) • Pr(O,O) we have 

which implies I-+ • 0. As a result, we must have f3h • f3.., = 0, which 

is a contradiction. Bence, we must have f3h • J.., • 0. Thus I_+ = 0, 

- -and Pr(O,O) = Pr(O,O) aives p • p. It now remains to show that 

_t _o _ 
~ = Clh = 0 or Ae1

9 
= 0. We use the previous result that f3h • f3.., == 0. 
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First, suppose that ~w ~ 0. Equation (35) then implies that 

-Aaw ~ 0. Second, suppose that ~h ~ 0. Equation (34) implies that 

_1 _o 
~- ah = 0. Third, suppose that Aa = 0; then we have what we wanted 

" -to show. Finally, suppose that Am ~ 0. The required equality 
w 

"' Pr(l,O) = Pr(l,O) gives 

Since ~h . p .... 0, we see that I = 0. Moreover, IB = 0 since 
" -+ 

- - I~ • 
_o 

AUh = AUh, AU =AU , Pw = Aa • and p = p. 0 implies that 'it = 0 
" w " 

0 
_1 

since we assume Am ~ o. But if ~ = 0 we also see that 'it = 0 by 

" 
(34). The conditions under which Pr(0.1) • P(O,l) have already been 

established. 

Q.E.D. 

It is now important to notice that tho necessary and 

sufficient conditions for the three same theoretic models to be 

pairwise identical fail to hold. Lookins at Tables 6 and 12 of 

Chapter IV alons with the statement of Proposition 1, w~ see that the 

necessary condition& for the two Stackelbers models to be overlappins 

fail to hold when we esamine the estimated coefficients siven in these 

two tables. For esample, we see from Table 

different from zero at the 90 percent level 

6 that :: 

" while Aa 

" 

is sisnificantly 

differs from 

zero at tho 9S percent level. Correspondinsly, Table 12 indicates 

A() ... 
that both m

7 
and Amw are both sisnificantly different from zero at tho 
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95 percent level. 

We also see from Tables 6 and 12 and the statement of 

Proposition 2 of this chapter that neither Stackolborg model is 

pairwise to tho Nash model. First. Table 6 indicates that the 

husband-loader Stackelberg model is not identical to the Nash model 

A() A 
because both «h and A«w are significantly different from zero at the 

90 and 95 percent levels. respectively. Second. we see from Table 12 

that the Nash model and the wife-leader Stackelb•ra models are not 

A() A 
identical because both «w and A~ differ significantly from zero at 

the 95 percent level. 

•e are now in a position where we can appeal to Theorem 5.2 of 

Vuons (1985) which under 

Bo: Eo los f<ylx; ~ [ ,.*.)] 
s(y)x; IS ) 

the statistic 

nl/21B (:.;) lB (: .p ) 
----~n~--- - ----------------~n~-n~-·----------------

:n f1 ( f(ytlxt; : )]2 1 A A 2 
L. los - - i - [lB (« • P > l 1/2 

t 1 ( I Ill) a n n n 
• S Yt xt; ,. 

is asymptotically distributed as standard normal. The values of the 

three statistics are presented in the followins table. where N stands 

for the Nash model and SB and SW stand for tho husband leader 

Stackelbera model and wife leader Stackelber;. respectively. 
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Model G 

N sw 

SH -.056 -1.24 

Model F 

sw .855 

As we see frca the above table, we are unable at the commonly 

adhered to levels of confidence able to pairwise discriminate between 

any of the three same theoretic models. That is, wo are required to 

accept the hypothesis the Nash model is as equally aood (or bad) as 

tho husband leader Stackelbers model for ezplainina tho joint labor 

participation decision of a randoa sample of married couples. Tho 

other two hypotheses we must similarly accept. 

6 • CON<UJSION 

In Chapters II and III respectively. we proposed econometric 

models of two different aaao theoretic oquilibriua notions, those 

beins Nash Equilibriua aad Stackolbora Equilibriua. In Chapter IV, 

throe different empirical models wore proposed and estimated 

concornina tho joint labor force participation decision of a married 

Qouple. Tho first aodel assuaod that tho husband and wife both played 

a Nash aaae. Tho second model assuaod that tho married couple played 

a Stackolbora saao whore tho husband played tho role of tho leader and 

his wife played the role of the follower. Model throe, while also a 

Stackelbers aaae, assuaod that tho roles of tho two players wore 



203 

reversed: that is, it was assumed that the wife played the role of the 

leader while the husband played the role of the follower. The purpose 

of tho present Chapter was to determine the most ad~quate model among 

the three proposed for ezplaining tho joint l&bor force participation 

decision over a larso random sample of married couples. 

Tho situation encountered, however, when we attempted to 

ozamino any two of tho three proposed game theoretic models was 

neither one of comparing two nested models nor of comparing two non­

nested models. As was shown, tho models are pairwise overlapping. As 

such the traditional methods developed for choosina the moet adequate 

model were inappropriate for the task. Yo therefore relied on a new 

technique developed by Vuong (1985) which handles as separate cases 

those situations in which the models may be nested, non-nested or 

overlappina. The results of the previous section indicated that 

although it was not pos•ible to reject the hypotheses that any model 

was pairwise better than the remainina models in ezplaiaina tho joint 

labor force participation decision for a random sample of married 

couples, the log-likelihood values may suaaest that the Stackelbera 

model in which the wife plays the role of the leader may be tho best. 

An alternative specification of tho three competlna models may yield 

more definitive results; this project will be tackled in future work. 



W4 

FOONOTES 

1. It should be pointed out that applied econometricians commonly 

confuse non-nested models with overlappina models. and then 

proceed to apply tho techniques reserved for non-nested models to 

overlappina models. The reason for this confusion. as pointed 

out by McAleer and Bera (1983). appears to bo that definition of 

non-nested modela is usually not well-stated. 

2. These observation• arose from a discussion with Quang Vuong. 

3. I owe this proof to Donald Lien. 

4. I owe this proof to Donald Lien. 
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APPENDIX A: DOa:JMENTATION AND COMPUTER PROGRAM FOR THE NASH MODEL 

The computational procedures required for the estimates 

obtained in Chapter IV for the Nash model involve the formulation of 

the log-likelihood function in the parameters involved and the 

maximization of this log-likelihood function given observations on the 

two jointly dependent dichotomous endosenous variables, and whatever 

exosenous explanatory variables are thousht to affect tho occurrence 

or nonoccurrence of tho qualitative dependent variables. Tho prosram, 

consistent with the mod~l described in Chapter II, assumes that tho 

disturbance pair (sh' sw) is bivariate normally distributed with zero 

means, unit variances and correlation coefficient p. For 

computational ease. the prosram provides for a grid search over 

possible values of p. In addition, to economize on the number of 

lines of code, three IMSL routines are used: MDNOR and MDBNOR, tho 

univariate and bivariate normal cumulative distribution functions, 

respectively, and LINV3P which inverts a positive definite matrix. To 

control i2put and output, three files are required by t~e proaram. 

First, an input file called PARAH.DAT consists of a number of lines of 

control parameters; these parameters will be discussed later. Second, 

another input file, INPUT.DAT, is tho user's data sot. It consists of 

two dichotomous dependent variables and tho exoaenous explanatory 

variables. Finally, an output file, ODTPDT.DAT, is used for the 
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printing of summary statistics. Both dichotomous variables should be 

coded as either zero or one. For each observation. tho explanatory 

variables follow ~ediately. Note also that if one wishes to provide 

for a constant term among the explanatory variables. a vector of 

"ones" should bo included in the data file; there is no built-in 

option for a constant term in the program. The program uses a 

modified version of the algorithm suggested by Berndt, Hall. Ball and 

Hausman (1974). We now discuss briefly tho proaram flow of control. 

After roadina in tho control cards from file PARAM.DAT 

(SUBROUTINE RDFILEl), the program reads in the user's data set from 

INPUT .DAT (SUBROUTINE RDFILE2),; as a check, tho first four 

observations are printed out. The followina stepa are now performed 

for each value of the correlation coefficient. p, used in the arid 

search. SUBROUTINE INrr now calculates and prints tho initial values 

of the coefficients and tho initial value of tho log-likelihood 

function. Control is now transferred to SUBROUTINE BDBB, tho routine 
) 

which performs tho iterations for each value of tho correlation 

coefficient. Now, for each iteration, SUBROUTINE QSOORB performs two 

tasks. First, tho total score is calculated; that ia, the individual 

score vectors are sumaed over the nuaber of observations. This is 

performed usina subroutines ISOOIBOO, ISCOREOl, ISOORE10 and ISOORB11 

since tho functional form for tho score will obviously depend on tho 

values taken jointly by tho dichotomous endoaenous variabl8s. Second, 

the oute~product of each individual score vector is computed and 

those outer product matrices are then sumaod over tho nuabor of 
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observations producing a new matrix Q. This is done with the aid of 

SUBROUTINE IQ. Next, IMSL routine LINV3P calculates the inverse of 

the Q matrix and postmultiplies it by the score vector. Control is 

now transferred to SUBROUTINE OPTSTP where the optimal step size is 

calculated; once tho step size if found, the new parameter values are .. 
calculated. SUBROOTINE QSCORE is now called again and SUBROUTINE TEST 

checks for conversence. If conversence is not attained, the precedins 

sequence will bo re~oated either until conversence is attained or, 

failina that, until tho maximum number of iterations has boon 

completed. If conversence is attained, routine LINV3P is asain called 

to calculate the inverse of tho Q matrix, th~_aaymptotic covariance 

matrix. Control is then transferred to SUBROUTINEYKIE which prints 

out the number of iterations, tho final score vector, tho los-

likelihood value, and the estimated coefficients along with tho 

associated t-statiatica. 

The prosram described here is subject to a nuabor of 

limitations, most of which may be relaxed easily. The proaram has 

boon written for data seta with up to 3000 obaervationa, whore tho 

behavior of each player in the Naah game can each bo estimated by up 

to 40 ezplaaatory variabloa. Note also, as mentioned earlier, that 

the alaoritha haa no built-in constant term; if one wiahea to include 

a conatant te:na aa an explanatory variable, a vector of "onea" should 

be included in th~ input file INPUT.DAT. 

We now describe the control carda required by the proaram. 

Each control card should be entered on a separate line in PARAK.DAr. 
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1. First control card (512) 

(a) INDS: One or zero, indicating whether or not the score is to be 

written after each iteration on output file OUTPOT.DAT. 

(b) IElG: One or zero, indicating whether or not the eigenvalues of 

the Q metrix are to bo printed out at the end of each iteration. 

(c) ILOG: One or zero, indicating whether or not the log-likelihood 

value is to be written out after each iteration; if ILOG = 0, the 

log-likelihood value is written only after the final iteration, 

whether or not convergence is achieved. 

(d) IOPT: The value of this parameter, either zero or one, 

determines whether or not a fixed atepaize ia automatically taken· 

at eaCh iteration. Although in theory a fixed atepaize (equal to 

one) is asymptotically efficient, in many numerical problems a 

variable stepsize is often required. 

(e) IPARAK: One or zero, indicatins whether or not the estimated 

parameters are to be written out after each iteration. IF IPARAH 

a 0, the parameter estimates are written out only at tho end of 

the final iteration. 
'• 

2. Second control card (312) 

(a) IVAR: One or zero, depending on whether or not tho aaymptotic 

covariance matrix is to be written after the final iteration. 

(b) IPITl: One or zero, dependina on whether or not the predicted 

probabilities for each observation ere to written after the final 

iteration. 

(c) IFIT2: One or zero, dependina on whether or not tho observed and 
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predicted two by two continsency tables are to be written after 

the final iteration. 

3. Third control card (16, 513, F4.3) 

(a) NODS: Number of observations in data set INPUT.DAT. 

(b) NBI: Total number of unique explanatory variables in data set 

INPUT. DAT. 

(c) NB: Number of ezplanatory variables used to describe the 

behavior of the leader in the Stackelbers model. 

(d) NW: Number of explanatory variables used to describe the 

behavior of the follower in the Staotelbers model. 

(e) NIBO: Number of values of the correlation coefficient, p, used 

in the arid search. 

(f) MITER: Limit on the nuabor of iterations for each value of the 

correlation coefficient. 

(s) BPS: The conversence criterion. The mean taken over the number 

of observations, for each element of the score must be less then 

or equal to EPS for conversence to be attained. 

4. Fourth control card (ZOP4.Z) 

VRBO(I), I • 1, NRBO: The values of the correlation coefficient, 

p, which coaprlse the arid search. Up to 20 values are allowed. 

5. Fifth control card (8B10.3) 

XO(I), I • 1, NR+NI+3: Initial values of the parameters. Eisht 

values are allowed per line. 

6. Sizth control card (40IZ) 

IB(I), I • l,NB: Positive intosers correspondins to the column 
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locations in INPOT.DAT of tho explanatory variables for tho first 

player in tho Nash game. 

1. Seventh control card (4012) 

EW(I). I=l.NI: Positive integers corresponding to tho column 

locations in INPUT.DAT of the explanatory variables for the 

second player in the Nash game. 

8. Eighth control card 

Format in which d&ta file INPUT.DAT is to be read. The format 

must be placed in parentheses. (•). 
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It consists of two dichotomous dependent variables and the exogenous 

explanatory Yariables. Finally, an output file. ODTPUT.DAT. is used 

for the printins of s~ary statistics. Both dichotomous variables 

thould be coded as either zero or one. In addition. the first element 

of each observation should correspond to the action taken by tho 

leader in the Stackelbors model, while tho second element should 

correspond to tho follower. For each observation. tho explanatory 

variables follow immediately. Note also that if one wishes to provide 

for a constant tora amons tho explanatory variables, a vector of 

"ones" should bo included in tho data file; thoro is no built-in 

option for a constant term· in the prosram. 

It ahonld also be noted that throush internal control of the 

prosra., two conversonco alsorithas are provided. In normal use. it 

will be tho case that the sum of tho outer products of tho individual 

score vector will be a nonsinsular matrix; in this case. the matrix 

will be invertible an~ the prosram uses the alaoritha susaested by 

Berndt, Ball. Ball and Bausman (1974). Occasionally, thouah, it may 

be tho case. especially within tho first few iterations, that the 

model is alaorithaically not identified. In thia situation, tho 

proaraa employs tho method of steepest ascent. a routine that does not 

require tho inverse of the matrix discussed above. (See Mickle and 

Szo (1972, pp. 126-128) for a discussion of this alaoritha.) We now 

d~acuss briefly tho proaraa flow of control. 

After readina in the control cards from file PARAK.DJr 

(SUBR<IJTINE RDFILEl). tho prosraa reads in tho user's data set froa 
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DIMENSION VRH0(100),X(40),Q(820),SCORE(40),X0(40) 
DI!mNSION XH(3000,40),XW(3000,40) 
INTEGER NYH(3000),NYW(3000),KB(40),KW(40),RDFT(20) 
COMMON NOBS*NH,NW,XB,XW,NYH,NYW 
OPEN(UNIT=1 , RECORD'J'YPE=' VARIABLE' , FORM=t' FOlUIATl'ED' , 

1FILE='PARAM.DAT',STAIUS•'OLD') 
OPEN (UNIT=2 , RECORDTYPEz' VARIABLE' , FOlUl•' FOIUIATl'ED' , 

lFILE='INPUT.DAT',STAIUS•'OLD') 
OPEN(UNIT=3 , RECORDI'YPE=' VARIABLE' , FORM•' FORMATl'ED' , 

lFILE=' OOTPUT. DAT' , STAIU S=' OLD' ) 
CALL RDFILE1(N,NOBS,NBW,NB,NW,KB,KW,VBBO,NRHO,XO,RDFT,MITER,EPS, 

1 INDS,IEIG,ILOG,IOPT,IPARAM,IVAR,IFIT1,IFIT2) 
CALL RDFILE2(NOBS,NBW,NB,NW,KB,KW,RDFT,XB,XW,NYR,NYW) 
DO 10 K=1,NRHO 

WRITE(6,1000) K 
1000 FORMAT(' CASE ', I2,' STARTED') 

CALL INIT(K:,N,VRHO,XO,RHO,X,VLIKE,ILOG,IOPT) 
CALL BBHB(N,MITER,EPS,RHO,X,Q,SCORE,VLIXE,STPSIZE,NrrER,INDS, 

1 IEIG,ILOG,IOPT,IPARAH,IER) 
IF(IER.EQ.130) GO TO 10 

CALL WRIE(N,NH,NW,RHO,VLIIE,STPSIZB,Nrr£R,X,Q,SCORE,IVAR) 
IF(IFIT1.EQ.l.OR.IFIT2.EQ.1) CALL FIT(RBO,X,VLIIE,IFIT1,IFIT2) 

10 CONTINUE 
STOP 
END 

SUBROOTINE RDFILEl(N,NOBS,NRW,NB,NI,KH,IW,VRHO,NRBO,XO,RDFT, 
lMITER,EPS,INDS,IEIG,ILOG,IOPT,IPARAM,IVAR,IFIT1,IFIT2) 

DIMENSION VRH0(100),X0(40) 
INTEGER KH(40),KI(40),RDFT(20) 
READ(1,1003) INDS, IEIG, ILOG, IOPT, IPARAM 

1003 FORMAT(SI2) 
READ(1,1004) IVAR,IFIT1,IFIT2 

1004 FORMAT(3I2) 
READ(1,1000) NOBS,NBW ,NR,NW ,NRBO,MITER, EPS 

1000 FORMAT(I6,5I3,F4.3) 
READ(1,2000) (VIHO(I),I•1,NRHO) 

2000 FORJIAT(20F4.2) 
N=NR+NI+2 
M-N/8 
IF(M.EQ.O) GO TO 11 

DO 15 IM•1,M 
Ml•(IM-1)•8+1 
M2•IM•B 
READ(1,5000) (XO(J),1•Ml,M2) 

15 CONTIMJE 
11 M3=M•B+1 

IF(M3.Gl'.N) GO TO 12 
READ(1,5000) (X0(1),1•M3,N) 

5000 FORMAT(8E10.3) 



12 IF(NH.EQ.O) GO TO 10 
READ(1,3000) (XB(J),J=l,NH) 

10 IF(NW .EQ.O) GO TO 20 
READ(1,3000) (KW(J),J=l,NW) 

3000 FORMAT(40I2) 
20 CONTINUE 

READ(1,4000) RDFT 
4000 FORMAT(20A4) 
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CALL WRTRD1(NOBS,NHW,NB,NW,NRHO,VRHO,MITER,EPS,RDFT) 
RE'IURN 
END 

SUBR.OOTINE WRI'RD1(NOBS,NHW ,NH,NW ,NRHO, VRHO,MITER,EPS, RDFT) 
DIMENSION VRH0(100) 
INTEGER RDFT ( 20) 
WRITE(3,1001) 

1001 FORMAT(' NOBS ', 'NBW',' NB',' NW',' NRHO',' MITER',' EPS') 
WRITE(3,1002) NOBS,NHW,NH,NW,NRHO,MlTER,EPS 

1002 FORMAT(I6,3I3,2X,I3,3X,I3,F4.3) 
WRrr.E(3,2001) (VRHO(I),I=1,NRHO) 

2001 FORMAr(/,'RHO VALUES :',20F4.2) 
WRITE(3,4001) RDFT 

4001 FORHAT(/,'READING FORMAT :',20!4) 
RE'IURN 
END 

suBROOTINE RDFILE2 c NODS, NHW. NH, NW. m, o. RDFT, xu, xw. 
1 NYB,ND) 

DIMENSION XX(40),XB(3000,40),XW(3000,40) 
INTEGER KH(40),1W(40),RDFT(20),NYH(3000),NYW(3000) 
DO 100 I==1,NOBS 

READU,RDFT) NYB(I) ,NIW(I), (XX(]) ,1=1,NBW) 
DO 110 1=1 ,NH 

K1=1W(1) 
XB(I,1)=XX(:U),, 

110 CONTIMJE 
DO 120 1=-1,NW 

KJ'=I.W(1) 
XW(I,J)==XX(D) 

120 CONTINJE 
100 CONTIMJE 

CALL WRTOBS(NB,NI ,NYB,ND ,XH,XW) 
RE'IUBN 
END 

SUBROOTINE WRTOBS(NB,NW,NYB,tmr.XK,XW) · 
DIMENSION NYH(3000),NYI(3000),XB(3000,40),XW(3000,40) 
DIMENSION XXH(40),XXI(40) 
WRITE(3,1003) 

1003 FORMAT(! I 'FIRST 4 OBSERVATIONS : ') 



DO 100 I=1,4 
IYH=NYH(I) 
I'iW=NI'tf(I) 
WRITB(3,1000) I,IYR,IYW 
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1000 FORi~T(/,'OBSERVKriON ',14,' :',' IYB =',12,' IYW =',12) 
DO 110 1=1,NH 

:XXH(1)=XH(I,1) 
110 CONTINUE 

DO 120 1=1,NW 
:XXW ( 1) =XW (I ,1) 

120 CONTINUE 
WRITB(3,1001) 

1001 FORMAT(/,' XH :') 
CALL WRTVEC(NH,XXH) 
WRITE( 3 ,1002) 

1002 FORMAT(/,' XW :') 
CALL Wln'VEC(NW, :XXW) 

100 CONTII'IJE 
REnJRN 
END 

SUBROOTINE INIT(X:,N, VRHO,XO,RHO,X, VLIIE, !LOG, IOFI') 
DIMENSION XH(3000,40),XI(3000,40),X0(40),X(40),VRH0(100) 
INTEGER NYB(3000),NYI(3000) 
COMMON NOBS, NH, NW, XH, XW, NYB, NYW 
RHQoiVRHO(K:) 
WRITE(3,1000) K:,RHO 

1000 FOBJJAT(/1/,'CASE ',I3,3X,'RHO =',F4.2) 
DO 20 1=1,N 

X(1)=X0(1) 
20 CONTINUE 

WRITB(3,2001) 
2001 FOIU~T (I , 'STARTING VALUES : ' ) 

CALL WRTVEC(N,X) 
IF(ILOG.EQ.O.AND.IOFI'.EQ.O) GO TO 13 

CALL VALUB(N,RRO,X,VLIIE) 
13 IF(ILOG.EQ.O) GO TO 14 

WRITE(3,3000) VLIIE 
3000 FOJUIAT(/, 'INITIAL LOG-Limt.IBOOD VALUE = '.B13 .6) 
14 RE'l'URN 

END 

SUBROUTINE VALUE(N,BHO,X,VLIIB) 
DIMENSION XB(3000,40),11(3000,40),X(40) 
INTEGER NYB(3000),N!W(3000) 
COMMON NOBS,NH1)M' ,XB,D ,NYH,NYW 
VLIKB-0. 
DO 100 I•1,NOBS 

INYH•NYH(I) 
IND•N!W (I) 
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CALL DELTA(I#X,DELTAH,DELTAW) 
IF (INYH.EQ.l.OR. INIW .EQ.1) GO TO 11 

CALL IPROBOO(RHO,X,DELTAB,DELTAW#PROO) 
CALL TOL(PROO) 
VLIKE=VLIKE+ALOG(PROO) 
GO TO 100 

11 IF (INYH.EQ.O.OR. IND .EQ.l) GO TO 12 
CALL IPROB10(RHO,X,DELTAB,DELTAW,PR10) 
CALL TOL(PR1 0) 
VLIKE=VLIKE+ALOG(PR10) 
GO TO 100 

12 IF (INYH.EQ.1.0R.IND .EQ.O) GO TO 13 
CALL IPROB01(RHO,X,DELTAB,DELTAW,PR01) 
CALL TOL(PR01) 
VLIKE=VLIKE+ALOG(PR01) 
GO TO 100 

13 CALL IPROB11(RBO,X,DELTAH,DELTAW,PR11) 
CALL TOL(PRll) 
VLIEE•VLIEE+ALOG(PR11) 

100 CONTINUE 
REIURN 
END 

SUBROOTINE DELTA( I, X, DEL TAB, DEL TAW) 
DIMENSION X(1),XB(3000,40),XW(3000,40) 
INTEGER NYH(3000),NIW(3000) 
CmiMON NOBS,NB,NW ,XB,XW ,NYB,NIW 
DELTAB•O.O 
DELTAW=O.O 
DO 100 .J=1,NH 

.JH-1+2 
DELTAR•DELTAB+X(JB)*XB(I,.J) 

100 CONTINUE 
DO 200 .J=1,NI 

JW=J+NH+2 
DELTAW=DELTAi+X(JW)*XI(I,.J) 

200 CONTINUE 
REIUBN 
ENn 

SUBROOTINE BBBB( N, MITER, EPS, RHO,X, Q, SCORE, VLIKE, STPSIZE, NITER, 
1INDS,IEIG,ILOG,IOPT,IPARAH,IER) 

DIMENSION XB(3000,40),XI(3000,40),X(40),Q(820),SOORE(40) 
INTEGER NYH(3000),NYI(3000) 
COIIMON NODS, NB, NW, XB, XW, NYB, NIW 
NITER•999 
NIN•O 
NOOT-3 
CALL UGETI0(3,NIN,NOOT) 
CALL QSCORE(N,RHO,X,Q,SCORE) 
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IF(INDS.EQ.O.AND.IEIG.EQ.O) GO TO 1002 
CALL WRIBDl(N,Q,SCORE,INDS,IEIG) 

1002 CONTINUE 
DO 10 ITER•1,MITER 
~~ LINV3P(Q,SCORE,3,N,IER) 
IF(IER.EQ.130) GO TO 999 
CALL OPrSTP(N, RHO, X, SCORB, STPSIZE, VLIKB, ILOO, IOPr) 
CALL QSCORE(N,RBO,X,Q,SCORE) 

.CALL T.EST(NOBS,N,SCORE,EPS,IEND) 
IF (IEND.EQ.1) GO TO 20 
IF(ITER.EQ.HITER) GO TO 11 

CALL WRTBBB(N,IrER,STPSIZE,X,Q,SCORE,VLIKB,INDS,IEIG,ILOG, 
1 IP~) 

11 CONTINUE 
10 CONTINUE 

GO TO SO 
20 NrrER=ITER 
SO IF(ILOG.EQ.1.0lt.IOPT.EQ.1) GO TO 40 

CALL VALUE(N,RHO,X,VLIKB) 
40 CALL LINV3P(Q,SCORE,1,N,lER) 
999 RE'IURN 

END 

SUBROUTINE QSCORE(N,RBO,X,Q,SCORE) 
DIMENSION XB(3000,40),XI(3000,40),X(40),Q(820),SCORE(40) 
DIMENSION QI(820),SOOREI(40) 
INTEGER NYH(3000),NYW(3000) 
COMMON NOBS, NB, NW, XB, XW, NYU, NYW 
NN=N*(N+1)/2 
DO 400 1=1,N 

SCORR(.J) =0. 
400 CONTINUE 

DO 500 1:•1, NN 
Q(lr)=O. 

SOO CONTINUE 
DO 100 I•1,NOBS 

CALL ISCORE(I,N,RHO,X,SCORBI) 
CALL IQ(N,SOOREI,QI) 
DO 200 1•1,N 

SCORE(1)•SOORE(1)+SCORBI(1) 
200 CONTINUE 

DO 300 1:•1,NN 
Q(K:)-Q(K)+QI(K:) 

300 CONTINUE 
100 CONTINUE 

RE'IURN 
ENJ)• 

SUBROUTINE Wln'BBB(N, ITER, STPSIZB,X,Q, SCORE, VLIIB, INDS, IEIG, D.OG, 
1 IP~) 

-------------------------------------·· ... 
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IF(INDS.EQ.O.AND.IEIG.EQ.O.AND.ILOG.EQ.O.AND.IPARAM.EQ.O) 
1 GO TO 11 

CALL WRTBB2(N, ITER, X, STPSIZE, VLIKE, ILOG, IPARAM) 
IF(INDS.EQ.O.AND. IEIG.EQ.O) GO TO 12 

CALL WRTBBl(N,Q,SCORE,INDS,IEIG) 
12 CONTINUE 
11 RB'IURN 

END 

SUBROUTINE WRT.BBl(N,Q,SCORE,INDS,IEIG) 
DIMENSION Q(820),SCORE(40) 
DIMENSION D(40),Z(40,40),WK(860) 
IF(INDS.EQ.O) GO TO 1001 

WRITE(3,4000) 
4000 FORMAT(/ , ' SCORE ' ) 

CALL WRTVEC(N,SCORE) 
1001 CONTINUE 

IF(IEIG.EQ.O) GO TO 1002 
CALL BIGRS (Q,6,2,D,Z,6,WK,IER) 
WRITE (3, 5000) 

5000 FORMAT ( I , ' EIGEN : ' ) 
CALL WRIVEC(N,D) 

1002 CONTINUE 
RETURN 
END 

SUBROUTINE OPTSTP(N,RBO,X, SCORE,STPSIZE, VLIKE, ILOG, IOP'I') 
DIMENSION XH(3000,40),XW(3000,40),X(40),Q(820),SCORE(40) 
DIMENSION X1(40) 
INTEGER NYB(3000),NYW(3000) 
f:OMMON NODS, NB, NW, XH, XW, NYU, ND 
VLIKEO•VLIKE 
STIJSIZE-1. 
DO 100 Nl'R.Y•1 I 9 

DO 200 1•1,N 
X1(1)zX(1)+SOORE(1) 

200 CONTINUE 
IF(ILOO.EQ.O.AND.IOPI'.EQ.O) GO TO 300 

CALL VALUE(N,RBO,X1,VLIIE) 
IP(IOP'I' .EQ.O) GO TO 300 

DVLIKE-VLIKE-VLIKEO 
IP(DVLIIB.GE.O.) GO TO 300 

STPSIZB-STPSIZE- .1 
STPSIZ1•STPSIZE+.1 
DO 500 1•1,N 

SCORE(1)•SCORE(1)*STPSIZE/STPSIZ1 
SOO CONTINUE 

CONTINUE 
CONTINUE 

CONTINUE 



100 CONTINUE 
300 DO 400 J=l,N 

X(J)=Xl(J) 
400 CONTINUE 

Rt."l'URN 
END 
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SUBRWTINE TEST(NOBS,N,SCORE,EPS, lEND) 
i>I&IENSION SCORE(!) 
IEND=O 
DO 10 J=l,N 

A=ABS(SOORE(7))/NOBS 
IF (A.GT .EPS) GO TO 20 

10 CONTINUE 
IEND-1 

20 RE'IURN 
END 

SUBROOTINE WRTBB2 ( N, ri'ER, X, STPSIZE, VLIKE, U.OG, IPAR.AH) 
DIMENSION 1(40) 
WRITE(3,1000) ITER 

1000 FORMAT(//,'ITERAriON ',13) 
IF(ILOG.EQ.O) GO TO 10 

WRirE(3,2000) STPSIZB,VLIIE 
2000 FORMAT(/ I, STEPSIZE = ',F5 .3., LOG-LIIELIHOOD VALUE = , ,E13 .6) 
10 IF(IPAIWI.EQ.O) GO TO 20 

WRirE(3 ,3000) 
3000 FORMAT(/ I' PAR.AME'I'ERS :, ) 

CALL WRrVEC(N,X) 
20 RE'ltJRN 

.END 

SUBROOTINE I SCORE( I,N, RHO, X, SCOREI) 
DIMENSION XH(3000,40),XW(3000,40),X(40),SCOREI(40) 
DUfENSION DF(40) ,DJ;(40) 
INTEGER NYB(3000),N!W(3000) 
COMMON NOBS,NB,NI,XR,D,NYH,ND 
INYB•NYB(I) 
IND•NYI(I) 
CALL DELTA(I,X,DELTAD,DBLT~) 
IF (INYB.EQ .. l.OR.INJW .BQ.l) GO TO 11 

CALL IPROBOO(RHO,X,DELTAB,DBLT~.PROO) 
CALL ISCOREOO(I,N,RHO,X,DELTAB,DELTAI,PROO,SCOREI) 
GO TO 14 

11 IF (INYB.EQ.O.OR.nmr .EQ.l) GO TO 12 
CALL IPROB10(RHO,l,DELTAB,DELTAI,PR10) 
CALL ISOORE10(I, N, RHO, X, DELTAB, DELTAI, PRlO, SCORE!) 
GO TO 14 

12 IF (INYB.EQ.1.0B..IND.EQ.O) GO TO 13 
CALL IPROB01(RHO,X,DELTAB,DELTAI,PR01) 
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CALL ISCORE01(I,N,RHO,X,DELTAH,DELTAW,PR01,SCOREI) 
GO TO 14 

13 CALL IPROB11(RHO,X,DELTAB,DELTAW,PR11) 
CALL ISCORE11(I,N,RHO,X,DELTAH,DELTAW,PR11,SCOREI) 

14 CONTINUE 
RETURN 
END 

SUBROOTINE IPROBOO (RHO, X, DEL TAB, DBLTAW, PROO) 
DIMENSION X(40) 
Hl=-DELTAB 
Wl=-DELTAW 
B2=-DELTAH-X(l) 
W2=-DELTAW-X ( 2) 
CALL BIDBNOR( Hl, W1, RHO, PROO, IER) 
X1=X(l) 
X2=X(2) 
IF (X1.LT.O •• AND.Xl.LT.O.) GO TO 13 

CALL INTEGRAL(Bl,W1,82,W2,RHO,PROB~IBR) 
IF (X1.LT.O •• OR.X2.LT.O.) rd) TO 10 

PROO•PROO-.S*PROB 
GO TO 13 

10 IF (X1.JX.O •• OR.X2.GE.O.) GO TO 11 
PROO•PROo-.25*PROB 
GOT013 

11 PROO•PR00-.25*PROB 
13 RE'llJRN 

END 

SUBROUTINE ISCOREOO(I,N,RHO,X,DELTAH,DELTAW,PROO,SCOREI} 
DIMENSION XB(3000,40),XW(3000,40),X(40),SOOREI(40) 
DIMENSION DI(40) 
INTHGER NYB(3000),N!f(3000) 
COMMON NOBS,NB,NI,:XU,XW,NYB,ND 
SCOREI ( 1) =0 • 
SCOREI ( 2) =0 • 
Hl-DELTAB 
ZB--DEJ..Tjf+RHO•DELTAB 
CALL PAJrl'IAL( RHO, B1 I ZB, PARTH) 
PARTH-PAin'll 
DO 10 J"•l,NB 

J"B-J"+2 
SOOREI(J"B)•PARTB*XR(I,J") 

10 CONTINUE 
W1-DELTM 
ZW-DELTAB+RHO•DELTAW 
CALL PARTIAL(RBO,W1,ZW,PAR'IW) 
PAR.'N•-PAimf 
DO 20 J"•l, Nl 

JW•J"+NH+2 



SCOREI(JW)=PARTW•XW(I.J) 
20 CONTINUE 

Xl=X(l) 
X2=X(2) 
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IF (X1.LT.O •• AND.X2.LT.O.) GO TO 30 
CALL PARTIALI(I,.N.RHO,.DELTAH.DELTAW,.DI.X) 
IF (Xl.LT.O •• OR.X2.LT.O.) GO TO 40 

00 31 1•1,.N 
SCOREI(1)=SCOREI(1)-.S•DI(J) 

31 CONTINUE 
GO TO 30 

40 IF (Xl.LT.O •• OR.X2.GE.O.) GO TO SO 
00 41 J=1.N 

SCOREI(J)=SCOREI(1)-.25•DI(1) 
41 CONTINUE 

GO TO 30 
SO CONTINUE 

DO 51 J .. l.N 
SCOREI(J)aSCOREI{J)-.25•DI(J) 

51 CONTINUE 
30 CONTINUE 

CALL TOL(PROO) 
DO 60 J•l.N 

SCOREI(J)=SOOREI(J)/PROO 
60 CONTINUE 

RE'IDBN 
END 

SUBROOTINE IPROBlO(RHO,.X.DELTAH.DELTAW ,.PR10) 
DIMENSION X(40) 
XNEGRHO.-RBO 
01-DELTAB 
W1-DELTAW 
H2-DELTAH-X ( 1) 
W2-DELTA\f-X(2) 
CALL !IDBNOR(DELTAB,. W2 ,.XNEGRDO,. PR10 • IER) 
Xl•X(l) 
X2•X(2) 
IF (X1.GE.O •• AND.X2.GE.O.) GO TO 13 

CALL INTEGRAL( Bl. Wl, 02,. W2, RDO. PR.OB • IER) 
IF (Xl.LT.O •• OR.X2.GE.O.) GO TO 10 

PR1G-PRlo-.25•PROB 
GO TO 13 

10 IF (X1.GE.O •• OR.X2.LT.O.) GO TO 11 
PR10•PR1o-.25•PROB 
GO TO 13 

11 PRlO=PRlo- .S•PROB 
13 RETUBN 

END 
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SUBROUTINE ISCORE10(I,N,RHO,X,DELTAH,DELTAi,PR10,SCOREI) 
DI&mNSION XB(3000,40),XW(3000,40),X(40),SCOREI(40) 
DIMENSION DI(40) 
INTEGER NYB(3000),NYW(3000) 
COMMON NODS. NH, NW, XB, XW, NYB, NIW 
SCOREI(l)•O. 
W2--DELTAW-X(2) 
W3=-W2 
ZW•DELTAB-RBO*l\'3 
CALL PARTIAL(RRO,W2,ZW,PARTW) 
SCOREI(2)=-PARTW 
ZH•W2+RBO*DBLTAB 
CALL PARTIAL(RHO,DELTAB,ZH,PARTB) 
DO 10 .J•1,NH 

JB-1+2 
SCOREI(JH)=PARTH•XB(I,J) 

10 CONTINUE 
PARTW•-PARTf 
DO 20 .J•1,NW 

JW•J+NB+2 
SCOREI(JW)•PARTW*IW(I;1) 

20 CONTniJE 
X1•X(1) 
X2=X(2) 
IF (X1.GE.O •• AND.X2.GE.O.) GO TO 30 

CALL PARIIALI(I,N,RHO,DELTAB,DELTAW.DI.X) 
IF (Xl.LT.O •• OR.X2.GE.O.) GO TO 40 

DO 31 J•1,N 
SCOREI(J)•SCOREI(.J)-.25•DI(.J) 

31 CONTINUE 
GO TO 30 

40 IF (Xl.GE.O •• OR.Xl.LT.O.) GO TO 50 
DO 41 J•l,N 

SCOREI(J)•SCOREI(J)-.25•DI(.J) 
41 CONTINUE 

GO TO 30 
50 CONT:UUE 

DO 51 1•1,N 
SOOREI(1)•SCORBI(1)-.5•DI(J) 

51 CONTINUE . 
30 CONTniJE 

CALL TOL(PR10) 
DO 60 .J•1,N 

SCOREI(.J)•SOOREI(1)/PR10 
60 CONTil'iJE 

REIUHN 
END· 

SUBROOTINE IPROBOl (RHO, X, DELTAS, DBLTAW, PROl) 
DIMENSION X(40) 



XNEGRHO.-RHO 
Hl=-DELTAH 
Wl-DELTAW 
B2=-DELTAH-X ( 1) 
W2=-DELTAW-X(2) 
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CALL MDBNOR(B2.DELTAW.XNEGRBO.PR01.IER) 
X1=X(1) 
X2=X(2) 
IF (X1.GE.O •• AND.X2.GE.O.) GO TO 13 

CALL INTEGRAL(Bl.Wl.H2.W2.RHO.PROB.IER) 
IF (Xl.LT.O •• OR.X2.GB.O.) GO TO 10 

PR01=PR01-.25*PROB 
GO TO 13 

10 IF (Xl.GE.O •• OR.X2.LT.O.) GO TO 11 
PR01=PR01-.25*PROB 
GO TO 13 

11 PR01=PR01-.5*PROB 
13 RE'lURN 

END 

SUBROOTINE ISCOIEOl (I • N. RBO. X. Dm.TAB. DEL TAW • PROt. SCOREI) 
DIMENSION XR(3000.40).Xf(3000.40).X(40).SCOREI(40) 
DIMENSION DI(40) 
INTEGER NYB(3000).ND(3000) 
COMMON NODS. NB. NW. XH. D. NYR. ND 
B2=-DELTAB-X(1) 
B3-R2 
ZW=DELTAW-RBO*B3 
CALL PARTIAL( RHO. H2.ZW .PARTW) 
SCOREI(l)=-PARTW 
SCOREI(2)-o. 
DO 10 1•1.NB 

111-1+2 
SCOREI(1H)--PARTI~(I.1) 

10 CONTINUE 
ZH•H2+RHO*DELTA\f 
CALL PARTIAL( RHO. DEL TAW. ZH. PARTH) 
DO 20 1•1,NI 

JW•1+NB+2 
SCOREI(JW)•PARrH*XW(I.1) 

20 CONTINUE 
Xl•X(l) 
X2•X(2) 
IF (X1.GB.O •• AND.X2.GB.O.) GO TO 30 

CALL PARTIALI(I.N,RHO.DBLTAH.DELTAW.DI.X) 
IF (Xl.LT.O •• OR.X2.GE.O.) GO TO 40 

DO 31 1•1.N 
SCORBI(1)•SCORBI(J)-.25*DI(J) 

31 CONTIMJB 
GO TO 30 
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40 IF (Xl.GE.O •• OR.X2.LT.O.) GO TO SO 
DO 41 .T=l,N 

SCOREI(1)=SCOREI(1)-.25*DI(1) 
41 CONTINUE 

GO TO 30 
50 CONTINUE 

DO 51 .T•l,N 
SCOREI(.T)=SCOREI(1)-.5*DI(.T) 

51 CONTINUE 
30 CONTINUE 

CALL TOL(PROl) 
DO 60 .T=l,N 

SCOREI(1)=SCOREI(1)/PR01 
6 0 CONTINIJ E 

RE'IURN 
END 

SUBROUTINE IPROBll(RHO,X,DELTAB,DELTAW,PRll) 
DIMENSION X(40) 
Hl=-DELTAB 
Wl=-DELTAW 
B2-DELTAB-X(1) 
W2-DELTAW-X(2) 
m-m 
W3-W2 
CALL MDBNOR( B3 , W3 , IUIO, PR11, mR) 
Xl=X(l) 
X2•X(2.) 
IF (X1.LT.O •• AND.X2.LT.O.) GO TO 13 
·CALL INTEGRAL(Bl,W1,82.,W2,BBO,PROB.,IER) 

IF (Xl.LT.O •• OR.X2.LT.O.) GO TO 10 
PR1l•PR11-.5*PROB 
GO TO 13 

10 IF (Xl.LT.O •• OR.X2.GE.O.) GO TO 11 
PR11•PR11-.25*P~OB 
GO TO 13 

11 PR11•PR11-.25*PROB 
13 RB'IUBN 

END 

SUBROO'TINE IS COREll (I, N,lUIO, X, DEL TAB, DEL TAW, PR11, SCOREI) 
DIMENSION XR(3000,40),XW(3000,40),X(40),SCOREI(40) 
DIMENSION DI(40) 
INTEGER NYB(3000),N!W(3000) 
COMMON NOBS,NB,NI,XB,D,NYR,ND 
H3•DELTAH+X(1) 
W3•DELTAI+X(2) 
ZH•W3-RBO*B3 
CALL PABriAL(lUIO,B3,ZB,PARrB) 
SCOREI ( 1) •PARTB 

---------------------------------------- ---



ZW=B3-RHO*W3 
CALL PARTIAL(RBO,W3,ZW,PARTW) 
SCOREI(2)•PAR'rl 
DO 10 1•1,NB 

1U=1+2 
SCOREI(1H)=PARlB*XB(I,1) 

10 CONTINUE 
DO 20 J•l,NW 

.TW•1+NH+2 
SCOREI(JW)•PARTW*XW(I,J) 

20 CONTINUE 
Xl=X(l) 
X2•X(2) 
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IF (Xl.LT.O •• AND.X2.LT.O.) GO TO 30 
CALL PARTIALI(I,N,RBO,DELTAB,DELTAW,DI,X) 
IF (Xl.LT.O •• OR.X2.LT.O.) GO TO 40 

DO 31 1•1,N 
SCOREI(1)•SCORBI(J)-.5•DI(J) 

31 CONTINUE 
GO TO 30 

40 IF (Xl.LT.O •• OR.X2.GB.O.) GO TO 50 
DO 41 1•1,N 

SOORBI(J)•SCORBI(J)-.25*DI(J) 
41 CONTINUE 

GO TO 30 
5{) CONTINUE 

DO 51 J'•l .. N 
SCOREI(1)•SCOREI(1)-.25*DI(1) 

51 CONTINUE 
30 CONTINUE 

CALL TOL(PRll) 
DO 60 J'•l,N 

SCORBI(1)•SCOREI(J')/PR11 
60 CONTINUE 

RB'IUBN 
mm 

SUBROOTINE TOL(XPROB) 
XMIN•l.E-20 
IF(XPROB.LB.DIIN) XPROB•DIIN 
RB'lUBN 
END 

SUBROOTINE IQ(N, SCORBI,QI) 
DIMENSION SCORBI(40),QI(820) 
IR•O 
DO iO IX•l,N 

DO 20 J"X•l, IX 
IL-IR+J"X 
QI(IL)•SOORBI(IX)*SOORBI(JX) 



10 CONTINUE 
IR=IR+IX 

10 CONTINUE 
NN•N*(N+1) /2 
RE'IURN 
END 
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SUBRWTINE PARTIAL (RHO, Y, Z, PART) 
ZX=Z/SQRT(1.-RH0**1) 
DENSY•.3989422*EXP(-Y**2/1.) 
CALL MDNOR( ZX, PBIZX) 
PART-DENSY*PBIZX 
REIURN 
em 

SUBROOTINE PARTIALI(I,N, RHO,DELTAB,DELTAW ,DI,X) 
DIMENSION DI(40),XB(3000,40),XI(3000,40),X(40) 
DIMENSION NYB(3000),NYW(3000) 
COMMON NODS, NB, NW, XB, XW, NYB, N!W 
Bl-DELTAB 
W1•-DELTAW 
82-DELTAB-:X ( 1) 
W1-DELTAW-:X(2) 
B3•-B2 
W3•-W2 
Z1=W2+RBO*B3 
Z2=W1 +RBO*B3 
Z3•B2+RBO*W3 
Z4=Bl+RBO*f3 
Z5=W1+RBO•DELTAH 
Z6•W2+RBO•DELTAH 
Z7•Bl+RHO•DBLTAW 
Z8•B2+RHO•DBLTAW 
CALL PARTIAL( RHO, B2, Zl, PAR'l'l) 
CALL PARTIAL(RBO,B2,Z2,PART2) 
CALL PARTIAL(RBO,W2,Z3,PART3) 
CALL PARTIAL(RBO,W2,Z4,PART4) 
CALL PARTIAL(RBO,Bl,Z5,PART5) 
CALL PARTIAL(RHO,Bl,ZCS,PARTCS) 
CALL PARriAL(RBO,Wl,Z7,PART7) 
CALL PARTIAL(RBO,Wl,Z8,PART8) 
DI(l)--PARTl+PART2 
DI(2)--PART3+PART4 
PARTH=-PARr5-PARTl+PARTCS+PART2 
DO 10 .T•1,NB 

.TB-.T+2 
DI(.TB)•PARTB-xB(I,.T) 

10 CONTINJE 
PAR'rf-PART7-PART3+PART4+PART8 
DO 20 .T•1 ,NW 



JW=1+2+NB 
DI(JW)=PARTW*XW(I.I) 

20 CONTINUE 
REIURN 
am 
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SUBROUTINE INTEGRAL(ARG1.ARG2,ARG3,ARG4,ARG5.PROB,IER) 
CALL MDBNOR(ARG1,ARG2,ARG5,PROB1,IER) 
CALL MDBNOR(ARG3,ARG4,ARG5,PROB2,IER) 
CALL &IDBNOR( ARG1, ARG4, ARG5. PROB3, IER) 
CALL MDBNOR(ARG2,ARG3,ARG5,PROB4,IER) 
PROB•PROB1+PROB2-PROB3-PROB4 
RE'IURN 
am 

SUBROUTINE WRTE(N,NB,NI,RBO, VLIIB, STPSIZE,NITER,:X.,Q, SCORE, IVAR) 
DIMENSION X(40).Q(820).SOORE(40) 
WRITE(3,1000) RHO 

1000 FO~(//,'RHO • ',F5.3) 
WBITE(3.2000) NrrER,STPSIZE 

2000 FORMAT(/ ,'MJMBER OF ITBRAl'IONS • ',I3,' FINAL Sl'EPSIZE •' ,F5.3) 
WBITE(3.2001) 

2001 FORMAT (I , 'FINAL SCORE : ' ) 
CALL WR'l'VEC(N, SCORE) 
WRITE(3,3000) VLIIB 

3000 FORMAT(/,'LOG-LIKELIBOOD VALUE • ',E13.6) 
TSTAr•X(1)/SQRr(Q(1)) 
WRITE(3,4000) X(l) ,TSTAr 

4000 FORMAT(//, 'BETA R • ',E10.3,' T-STATISTIC • ',E10.3) 
TSTAr•X(2)/SQRr(Q(3)) 
WBITE(3,5000) X(2),TSTA7 

5000 FORMAT(! ,'BEI'A W • ',E10.3,' T-STATISTIC • ',E10.3) 
NBB•NII+2 
DO 100 I•3 ,NBB 

IB•I-2 
IN•I*(I+1)/2 
TSTAT•X(I)/SQRr(Q(IN)) 
WRITE (3,6000) IB,X(I) ,TSTAl' 

100 CONTDIJE 
6000 FORMAr(/,'GAHMA B ',12,' m ',E10.3,' T-STATISTIC • ',B10.3) 

K:•3+NB 
DO 200 I•K:,N 

D•I-1:+1 
IN•I*(I+1) /2 
TSTAT•X(I)/SQRr(Q(IN)) 
WBITE(3,7000) IW,X(I),TSTAT 

200 CONTINUE 
7000 FORMAT(/ ,'GAMMA W ',I2,' • '.El0.3.' T-STATISTIC • '.B10.3) 

IF(IVAR.EQ.O) GO TO 50 
CALL WRIVAR(N.Q) 



SO CONTINUE 
RETURN 
END 

SUBROOTINE WRrVAR(N, Q) 
DIMENSION Q(840),ROW(40) 
WRITE(3 ,8 000) 
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8000 FORMAT(//,.' ASDIP'l'OTIC COVARIANCE MATRIX')· 
DO 20 I•1,.N 

IL-I•(I-1)/2 + 1 
m•n.+I-1 
U=O 
DO 30 ;r-n..m 

U•U+1 
ROW(IJ')=Q(J') 

30 CONTINUE 
WRITE(3,4000) 

4000 FO~(/) 
CALL Wlm'BC( I, ROW) 

20 CONTINUE 
99 RE'IUBN 

END 

SUBROOTINE WRTVEC(NDIJI,. VEC) 
DIMENSION VEC(40) 
JIDIII-NDIJI/8 
IF(JIDIJI.EQ.O) GO TO 10 

DO 20 IM-1,.JIDIJI 
Ml.•(IM-1)•8+1 
M2•I11•8 
WRlTE(3,.3000) (VEC(1),1•Jil,.JI2) 

3000 FORMA7(8E10.3) 
20 CONTIWE 
10 M3•MDIJI•8+1 

IF(JI3 .Gl' .NDIJI) GO '1'0 30 
WRITE(3,3000) (VEC(1),1•113,NDIJI) 

30 RB'IUBN 
END 

SUBRCIJTINE FIT(BHO,X, VLIIE, IFIT1, IFIT2) 
DIMENSION XB(3000,40).X.(3000,40),X(40),BrA8(4) 
DIMENSION N1B(3000),N11(3000),INDEX0(3000),INDBXP(3000) 
INTEGER TABLB(4) ,BS1TAB(4) ,NGTAB(4) 
COMMON NOBS, NB, Nl, JB, D, N!B, ND 
NGB0-6 
NGBl.•O 
NGWO=O 
NG1f1..0 
DO 10 J'•1,4 

NGTAB(I)-o 
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10 CONTINUE 
IF(IFITl.EQ.l) GO TO 12 

11 CALL TREATl(ruiO,X, INDEXO, INDEXP,NGBO,.NGB1,NGWO,NGW1,NG'l'AB) 
GOT013 

12 CALL TREAT2(1UIO,X, INDEXO, INDEXP,NGBO,NGB1,NGWO,NGW1 ,NGTAB) 
13 IF(IFIT2 .EQ.O) GO TO 14 

CALL FITS TAT (NODS,. VLIXE, INDEXO, INDEXP, NGHO, NGHl,NGWO ,NGW1,NGTAB, 
1 TABLE,BSTTAB,R,BB,RI ,R'l'AB,RHO,RH1,RIO,JlW1,BLIIE) 

CALL WRTSTAT (TABLE, BS'ITAB, R,lUI, Rl • RTAB, RHO, RH1, RIO, RW1, BLIIE) 
NX=NB+NW+2 
CALL WR'l"VEC(NX,X) 

14 RE'IURN 
END 

SUBROUTINE TREAT1(BBO,X,INDEXO,INDEXP,NGHO,NGB1,NGWO,NGW1,NGTAB) 
DIMENSION XP.(3000,40),XW(3000,40),X(40) . 
DIMENSION NYB(3000),NIW(3000),INDEX0(3000),INDEXP(3000) 
IN1'EGER NGTAB(4) 
COMMON NODS. NB, NW • XH, XW • NIB, NIW 
DO 100 I•1.NOBS 

CALL DELTA(I • X. DEL TAB, DELTAW) 
CALL IPROBOO(RBO,X,DELTAB,DELTAI,PROO) 
CALL IPROB01(RBO,X,DBLTAB,DBLTAI,PR01) 
CALL IPROB10(RBO.X,DBLTAH,DELTAI,PR10) 
CALL IPROB11(RHO,X,DBLTAB,DBLTAW,PR11) 
CALL YH~(PROO,PR01,PR10,PB11,IYBBAr,IYWBAr,INDEXI) 
INDEXP (I) •INDBXI 
IYH•NYB(I) 
ID'•N'IW(I) 
CALL IND(IYH, ID'. INDEXOI) 
INDEXO(I)•INDEXOI 
CALL COONT( IYR, ImBAr, ID' • IDBAT, INDEXOI, INDBXI, NGHO, NGBi, 

1 NGWO,NGW1,NGTAB) 
100 CONTINUE 

REl'URN 
END 

SUBROUTINE 1.1lBAT2 (RHO, X, INDBXO, INDEXP • NGliO , NGR1, NGWO • NGW1, NGTAB) 
DIMENSION XH(3000,40),XW(3000,40),X(40) 
DIMENSION N1B(3000),N!I(3000),INDEX0(3000),INDBXP(3000) 
INTEGER NGTAB(4) 
COJIKON NOBS, NB, Nlf ,XH, D, Nm, ND 
WRITB(3,1000) 

1000 FORMAX(//,' YR '•' II '•' ~ '•' W~ '•' PROO '• 
1 'PROt '•' PRlO '•' PR11 ',/) 

DO 100 I•1,N<IIS 
CALL DELTA(I,X,DELTAB,DBLTAW) 
CALL IPROBOO(RHO,X,DBLTAB,DELTAW,PROO) 
CALL IPROB01(RHO,X,DBLTAB,DBLTAI,PR01) 
CALL IPROB10(RBO,X,DELTAB,DELTAI,PR10) 
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CALL IPROB11(RRO,X,DELTAB,DBLTAI,PR11) 

1001 

1 

CALL Y&Ar(PROO,PR01,PR10,PR1l,IYBBAX,I1WHAX,INDEXI) 
INDBAP (I) •INDEX! 
IYH•NYII(I) 
I!W=ND'(I) 
WRriE( 3 ,1001) IYH, I!W, IYBBAT, IDBAT, PROO ,.PR01,.PR10, Pall 
FORMAT(4(3X,I1,2X),.4(1X,F4.3,1X)) 
CALL IND(IYH, ID. INDEXOI) 
INDEXO(I)•INDBXOI 
CALL COUNT(IYB, IYBBAX, I"!W,. IDHAT,. INDEXOI, INDEXI,NGBO,NGHl, 

NGWO,.NGW1,NGTAB) 
· 100 CONTINUE 

RE'IUBN 
END 

SUBROJTINE YHAT(PROO ,PR01,PR10 ,PR11, IYHHAT • IDHAT, INDEX!) 
INDEXI•l 
IF(PROO.GT.PR01) GO TO 200 

PRMAX•PR01 
INDEXI•2 
GO TO 110 

200 PRJIAX•PROO 
110 IF(PRMAX.Gr.PR10) GO TO 100 

PRMAX•PR10 
INDEXI•3 

100 IF(PRMAX.Gr.PR11) GO TO 500 
INDEXI-4 

500 GO TO (501,502,.503,504),INDEXI 
501 IYBBA1'•0 

IlWHAT•O 
GO TO 900 

502 IYBBA1'•0 
IlWHAT•l 
GO TO 900 

503 IYBIIAT•1 
IliBAT•O 
GO TO 900 

504 I1BBAT•1 
IDBAT•l 

900 RB'IUBN 
END 

SUBROOTINE IND(IYH, I1W, INDEXOI) 
INDEXOI•l 
IF(ID .EQ.l) GO TO 200 

IF(IYH.BQ.l) INDEXOI•3 
GO TO 100 

200 INDEXOI•2 
IF(IYH.EQ.l) INDEXOI•• 

100 CONTDIJE 



RE'l1JRN 
mm 
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SUBRWTINE CWNT( IYH, IYHHAr, ID, IDHAT, INDEXOI, INDEXI, 
1 NGHO,NGHl,NGWO,NGWl,NGTAB) 

INTEGER NGTAB(4) 
IF(IYB.EQ.O.AND.IYBBAr.EQ.O) NGHO•NGH0+1 
IF(IYB.EQ.l.AND.IYBBAr.EQ.l) NGHl•NGH1+1 
IF(ID .EQ.O .AND. I1WHAT .EQ.O) NGWO•NGW0+1 
IF(ID.EQ.1.AND.IYWHAr.EQ.1) NGW1=NGW1+1 
DO 100 1•1,4 

IF(INDEXOI.EQ.1.AND.INDEXI.EQ.1) NGTAB(1)•NGTAB(1)+1 
100 CONTINUE 

RE'l1JRN 
mm 

SUBRWTINE FITSTAT(NOBS, VLIIE, INDEXO, INDEIP.,NGRO,NGHl,NGWO,NGWl, 
1 NGTAB, TABLE, ES'ITAB, R, RR, RW, Rl'AB, RHO, RR1,1lWO ,JDU, BLIIE) 

DIMENSION XNGTAB(4),RrAB(4) 
INTEGER NGTAB(4),TABLE(4),ES'ITAB(4),INDEX0(3000),INDEJP(3000) 
CALL CONTIN( NODS, INDEXO, TABLE) 
CALL CONTIN(NOBS, INJ)EXP,F3'ITAB) 
XNGBO•NGHO 
XNGBl•NGBl 
XNGB-XNGRO+XNGBl 
XNGWO•NGWO 
XNGW1=NGW1 
XNGW=JNG;JO+XNGW1 
XNOB8-NOBS 
RH•XNGR/XNOBS 
RHO•XNGHO/(TABLE(1)+TABLE(2)) 
RB1•XNGB1/(TABLE(3)+TABLE(4)) 
RW•XNGtf /XNOBS 
RWO•XNGWO/(TABLE(1)+TABLE(3)) 
RW1•XNGW1/(TABLB(2)+TABLB(4)) 
DO 10 1•1,4 

XNGTAB(1)•NGTAB(1) 
RTAB(1)•XNGTAB(1)/TABLE(1) 

10 CONTINUE 
XNG-XNGTAB( 1)+XNGTAB(2)+XNGTAB(3)+XNGTAB(4) 
R•XNG/XN08S 
RLIIE-1.+ VLIIE/(XNOBS*ALOG(4.)) 
RB'IUIN 
END 

SUBRWTINE CONTIN( NODS, NVBC, NTAB) 
INTEGER NVEC(3000),NTAB(4) 
DO 100 1•1,4 

NTAB(1)-o 
100 CONTINUE 



DO 200 I•1, NOBS 
NVECI•NVEC(I) 
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GO TO (101,102,103,104),NVECI 
101 NTAB(1)=NTAB(1)+1 

GO TO 201 
102 NTAB(1)=NTAB(1)+1 

GO TO 201 
103 NTAB(3)=NTAB(3)+1 

GO TO 201 
104 NTA8(4)=NTAB(4)+1 
201 CONTINUE 
200 CONTINUE 

RE'IURN 
END 

SUBROOTINE WRTSTAT (TABLE, ESTrAB, R, BB, IDY, R'l'AB, BBO, BB1, BWO, BW1, 
1 nim> 

DIMENSION R'l'AB(4) 
INTEGPJl TABLE(4) ,ESTrAB(4) 
WRIIE(3,2004) RLIIE,R 

1004 FOlMAr(//,' RLIIE • ',F4.3,3X,' R • ',F4.3) 
WRIIE( 3 ,2000) 

2000 FORMAT(//,' OBSERVED AND PREDICTED CONTINGENCY TABLES : ') 
WRITE(3,2001) 

2001 FORMAT(/', CELLS :I' I 00 I', 01 , ', 10 , • I 11,) 
WRITE(3,2002) (TABLE(~).~•1,4) 

2001 FOlMAr(/,' OBSERVED :',2X,I4,4X,I4,4X,I4,4X,I4) 
WRITE(3,2003) (ESTTAB(J),J•l,4) 

2003 FORMAX(/,' PREDICTED :',2X,I4,4X,I4,4X,I4,4X,I4) 
WRITB(3,2005) (R'l'AB(J),~•1,4) 

2005 FORMAr(/,' BI-RAXIOS : 1 ,2X,F4.3~4X,F4.3,4X,F4.3,4X,F4.3) 
WRIIB(3,2006) 

1006 FORJL\T(//,' RATIOS : WORK 6. NarfORK WORK ONLY NOT WORX ') 
WRIIB(3,2007) RB,BBl,BBO 

2007 F0~(/, 1 BDSBAND :',6X,F5.3,11X,F5.3,9X,F5G3) 
WRll'E(3,1008) llW ,Bl,BIO 

2008 FORMI7(/,' WIFE :',6X,F4.3,11X,F4.3,9X,F4.3) 
RE'IURN 
END 
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APPENDIX B: DOaJMENTATION AND COMPUTER PROGRAJI FOR THE STACDLBER.G 

MODEL 

The computational procedures required for the estimates 

obtained in Chapter IV for the Stackelbera models involve the 

formulation of the los-likelihood function in the parameters involved 

and the maximization of this los-likelihood function siven 

observations on the two jointly dependent dichota.oua endosenoua 

variables, and whatever exoaenoua explanatory variables are thouJht to 

affect the occurrence or nonoccurrence of tho qualitative dependent 

variables. The proar .. , consistent with the acdel described in 

Chapter III, assuaes that the disturbance pair {sh. •w) is bivariate 

normally diatzibuted with zero means, unit variances and correlation 

coefficient p. For computational ease, the proar .. provides for a 

arid saarch over possible values of p. In addition, to ecosoaize on 

the nuaber of linea of code, four IMSL routines are used: MDNOR and 

MDBNOR, the univariate and bivariate normal cuaulative distribution 

functions, respectively• ZXLSF, which provides the min~ua of a one­

dimensional function• and LINV3P whiCh inverts a positive definite 

matrix. To control input and output, three files are required by the 

proar... Firat. an input file called PARAK.~ consists of a nuaber 

of linea of control paraaetera1 these paraaetera will be discussed 

later. Second, another input file, INPDT.DAr, is the user's data set. 



233 

INPUT.DAT (SUBROUTINE RDFILE2),; as a check. the first four 

observations are printed o~t. The followins steps are now performed 

for each value of the correlation coefficient. p, ~sed in the grid 

search. SUBROOTINE INIT now calc~lates and printa the initial values 

of the coefficients and the initial value of the los-likelihood 

f~ction. Control is now transferred to SUBROUTINE BBBB, the routine 

which performs the iterations for each value of tho correlation 

coefficient. Now, for each iteration, SUBROUTINE QSOORB performs two 

tasks. First, tho total score is calculated; that is, tho individual 

score vectors are summed over the number of observations. This is 

performed usins subroutines ISCORBOO, ISOORBOl, ISOORB10 and ISOOKE11 

since tho functional form for tho score will obviously depend on the 

values taken jointly by the dichotomous ondosonous variables. Second, 

tho outer prod~ct of each individual score vector is computed and 

these o~ter product matrices are then summed over the number of 

observations producins a new matrix Q. This is done with the aid of 

SUBROUTINE IQ. Next, IMSL routine LINV3P ch~cka to aee whether or not 

matrix Q is nonsinsalar. If Q is nonsinsular, LINV3P calculates the 

inverse of the Q aatris and poataultipliea it by the score vector; in 

this case the BBBB alsoritha will be used. If Q is &insular, 

SUBROUTINE CHOICE divides each eleaont of the acore vector by its 
. 

norm• in this case. the method of steepest ascent is used. Control is 

now transferred to SUBROUTINE OPTSTP where the opttaal step size is 

calculated; once the step size if found, the new paraaeter values are 

calculated. SUBROUTINE QSOORB is now called asain and SUBROUTINE TEST 
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checks for convergence. If convergence is not attained. tho preceding 

sequence will be repeated either until conversence is attained or, 

failina thAt, until the maximum number of iterations has been 

completed. If convoraence is attained. routine LINV3P is asain called 

to calculate the inverse of tho Q matrix. tho asymptotic covariance 

matrix. Control is then transferred to SUBROUTINE WRIE which prints 

out tho number of iterations. the final score vector. the los­

liblihood value. and tho estimated coefficients alona with tho 

associated t-statistics. 

Tho proaraa described hero is subject to a number of 

lbaitations. most of whiCh" may be relaxed easily. The proaraa has 

boon written for data sets with up to 2100 observations. whore the 

behavior of the leader and follower in tho Staokolbora aaao can each 

be estimated by up to 13 ezplanatory variables. Note also. as 

mentioned earlier. that the alaorithm has no built-in constant term; 

if one wishes to include a constant tor. as an ezplanatory variable. 

a vector of "ones" should be included in the input file INPUT.DAT. 

We now describe tho control cards required by the prosram. 

Each control card should be entered on a separate line in PARAK.DAT. 

1. First control card (412) 

(a) INDS: One or zero. indicatina whether or not the score is to be 

written after eaCh iteration on output file OUTPUT.~. 

(b) ILOG: One or zero. indicatina whether or not tho loa-likelihood 

value is to be written out after each iteration• if ILOG • o. the 

loa-likelihood value is written only after the final iteration. 

---------



whether or not convergen~e is achieved. 

(c) IOPT: The value of this parameter. either zero or one. 

determines whether or not a fixed stepsize is automatically taken 

at each iteration. Although in theory a fixed stopsizo (equal to 

one) is asymptotically efficient. in many numerical problema a 

variable stepsize is often required. Tho parameters required to 

control the stepsize are entered on the third and fourth control 

cards. 

(d) IPARAM: One or zero. indicating whether or not the estimated 

parameters are to be written out after eaCh iteration. IF IPARAK 

• 0, the parameter estimates are writton·out only at tho end of 

the final iteration. 

2. Second control card (312. E10.3) 

(a) IVAR: One or zero. dependina on whether or not tho asymptotic 

covariance matrix is to be written after tho final iteration. 

(b) IFITl: One or zero. depending on whether or not the predicted 

probabilities for each observation are to written after tho final 

iteration. 

(c) IFTT2: One or zero. dopendina on whether or not tho observed and 

predicted two by two continsency tables are to be written after 

the final iteration. 

(4) BADSC: It is occasionally tho case that for particular values of 

the parameters. the score vector for certain observations may 

contain extreaely larae eleaents. When this oocura •. it is often 

t~e case that the sua over the observation& of the outer product 
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of the score is a singular matrix. In such a case. the BBBH 

algorithm will not be used at that particular iteration. 

Therefore. by settins BADSC to a particular value. any 

observations for which one or more elements of the score vector 

exceeds BADSC will not be used in the calculation of tho total 

score and Q matrix for that iteration. Note. however. that tho 

score for each observation is checked asainst BADSC at each 

iteration• if an observation is deleted durin& a particular 

iteration. it is not necessarily deleted from successive 

iterations. If BADSC • o. it will default to l•B + 20. 

3. Third control card (I2. 4F7.5. I3) 

Tho parameters on this control card are used to determine tho 

opt~al step size when usina tho BBBB alaoritha. Paraaeters (b) 

- (f) are arausonta in IMSL subroutine ZXLSF. a routine for 

findin1 tho maxiaua of a senoral one-dimensional function. If 

IOPT • o. only SlPSIZl nooda to be determined• all other 

parameters on this control can be left blank. In this caso. it 

is susgestod that STPSIZB be sot to one since a fixed full step 

is asymptotically efficient. When IOPT • 1. all parameters oa 

this control card need to be sot. 

(a) NINCl: A positive intoser. indicatins how many t~oa the los­

likelihood function is to be evaluated over the maxiaua stop size 

allowed. 

(b) STPSIZl: A positive real nuaber. indicatins tho masiaua atop 

size allowed. 



(c) STEP!: An order of masnitudo estimate, either positive or 

nosativo, of tho required chanso in STPSIZl. 

(d) BOUND!: A limit, which must be sot to a positive number~ on tho 

amount by which STPSIZl may bo chansod from its initial value. 

(e) XACCl: Tho required absolute accuracy,in tho final value of 

STPSIZl. Normally thoro are points on either side of STPSIZl 

within a distance XACCl at whiQh tho vclue of the los-likelihood 

function is no sreator than tho value of tho los-likelihood 

function evaluated at STPSIZl. 

(f) MAJFNl: A limit. which must be sot to a positive intoao~. on tho 

nuabor gf attempts to find tho opttaal step size. 

An oxaaplo should help clarify thins•· Aaauae one wishes to allow a 

mazizua possible step size of one at eaCh iteration but would like to 

evaluate tho los-likelihood function at atop size incrementa of .25, 

.so •• 75. and 1.0. Therefore, STPSIZBl is sot to 1.0 and NINCl • 4. 

In addition, asauao that one would like to search over tho entire 

ranse of eaCh interval, ••I•• (0, .25), but also insure that tho 

minimua stop size taken is .0001. Therefore, STEP1 should be set at 

-.24990 and BODND1 should be sot at .24990. Tho IMSL documentation on 

ZXLSP suaaesta settina XACC1 • .001 and MAXFN1 • 50. 

4. Pourth control card (12, 4P7.5. 13) 

The par.-otora on this control card are used to determine tho 

opttaal stop size when usina tho method of steepest ascent 

alaoritha. The description for those control cards is the same 

as for tho third control card. 



~8 

5. Fifth control card (I6. 5I3. F4.3) 

(a) NODS: Number of observations in data set INPDT.DAT. 

(b) NBW: Total number of unique explanatory variables in data set 

INPUT.DAT. 

(c) NB: Number of explanatory variables used to describe the 

behavior of the leader in the Stackelbera model. 

(d} NW: Number of explanatory variables used to describe the 

behavior of the follower in the Stactelb~ra model. 

(e) NRHO: Number of values of the correlation coefficient. p, used 

in the arid searCh. 

(f) MITER: Limit on the number of iterations for each value of the 

correlation coefficient. 

(a) BPS: Tho converaence criterion. Tho moan taken over the number 

of observations, for eaCh element of the score must be less thea 

or equal to EPS for conversence to be attained. 

6. Sixth control card (20F4.2) 

VRBO(I), I • 1, NRBO: Tho values of the correlation coefficient, 

p, which comprise tho srid search. Up to 20 values are allowed. 

7. Seventh control card (8E10.3) 

XO(I), I • 1, NB+N1+3: Initial values of tho paramete~s. Eiaht 

values are allowed per line. 

8. Eiahth control card (40I2) 

IB(I), I • 1,NB: Positive inteaers correspondina to the coluan 

locations in INPUT.DAr of tho explanatory vaziabloa for the 

Stackolbera leader. 
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9. Ninth control card (4012) 

KW(I). I=l.NI: Positive integers corresponding to the column 

locations in INPUT.DAr of the ezplanatory variables for the 

Stackelbers follower. 

10. Tenth control card 

Format in which data file INPUT.DAT is to be read. Tho format 

must bo placed in parentheses. (•). 
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DIMENSION X(30).Q(465),SCORE(30),X0(30),VRH0(20) 
DIMENSION XH(2100,13) .XW(2100 .. 13) ,X1(30) ,PROBBAT(2100) 
INTEGER NYB(2100).NYW(2100),KH(13),KW(13),MAXFN 
RF.AL STEPp BaJND, XACC 
CFIARACI'ER•4 RDFT(20) 
COMMON /CMNl/ NOBS,NB,NW,XH,XW .. NYH .. NYW,PROBBAT,/OIN2/ RATIO 
COMMON I CMN3/ N, BBO. X, Xl .. SCORE 
OPEN(UNIT•l,FILE-'PARAM.DAT' .. STAnJS•'OLD'· .. ERR•lO) 
OPEN(UNIT•2 ,FILE-' INPUT .DAT', STAnJS•'OLD' ,ERR•lO) 
OPEN(UNlT•3,FILE-'0DTPUT.DAT',STAnJS•'OLD',ERR•lO) 
CALL RDFILEl(NOBS,NBW,NB.NW,KB.KW,XO .. RDFr, 

1MITER,EPS.INDS.ILOG,IOPT.IPARAM.IVAR.IFIT1.IFIT2,NRHO .. VRBO, 
2NINC1 .. S'l'PSIZl, STEPl, BODNDl. XACCl. MAXPNl. 
3NINC2, S'l'PSIZ2 • STEP2,. BODND2 .. XACC2 ,MAXFN2 • DADS C) 

CALL RDFILE2(NOBS,NBW,NB,NI,KB,IW.RDFT,XB,XW, 
1 NYB,ND) 

DO 11 DHO.l,NRBO 
RHO.VRHO(DIIO) 
WRITE(3,1000) IRHO,RBO 

1000 FORMAT(//,' CASB ',12.' IUIO • ',F5.3) 
CALL INlT(XO .. VLIIE, ILOG, IOPl') 
CALL BBBB(MITBR,EPS,Q, VLIIE,NITER, INDS, ILOG, IOPl', IPARAII, IER. 

2 NINCl.STPSIZl .. STEPl.BODNDl.XACCl.MAXFNl,S'l'PSIZB, 
3 NINC2, STPSIZ2, STEP2, BmND2,XACC2 ,MAXFN2 • DADS C) 

CALL Wltt'B(NR,NI, VLID. STPSIZE,NITER,Q, IVAR, IER) 
IF (IFITl.BQ.l • Oil. IFIT2 .EQ.l) CALL FIT( VLID, IFIT1.IFIT2) 

11 CONTIRJE 
10 CONTitiJE 

STOP 
END 

SUBROOTINE RDFILEl ( NOBS, NBW, NB, Nl, KB, D. XO, RDFT, 
!MITER, BPS, INDS, U.OG, IOP'l', IPARAII, IVAR, IFITl, IFIT2 ,NRBO, VBBO. 
2NINC1,STPSIZ1,STEP1,BOOND1,XAOC1,MAXFN1, 
3NINC2 • STPSIZ2, STEP2, BOOND2, XACC2 ,MAJFN2 • BADSC) 

DIMENSION X0(30),VRH0(20),X(30),X1(30).SCORE(30) 
INTEGER IB(13),11(13),MAJPN 
RBAL STEP, BOOND, XACC 
COJOION /OfN3/ N,BBO,X,Xl, SCORE 
CIIAR.ACI'EJl•4 BDFl' ( 20) 
RBAD(1,1003) INDS,ILOG,IOPT,IPARAK 

1003 F~(4I2) 
READ(1.1004) IVAR,IFIT1,IFIT2,BADSC 

1004 FORMA7(3I2,E10.3) 
READ(1,1005) NINC1,STPSIZ1 .. STEP1,BODND1,XAOC1,MAXFN1 

1005 FORMAr(I2.4F7.5,I3) 
READ( 1,1006) NINC2, STPSIZ2, S'I'BP2 .BOOND2,XACC2 ,JIADN2 

1006 FORMAr(I2.4F7.5 .. I3) 
IF(BADSC.EQ.O.) BADSC.1.E+20 
READ(1,1000) NOBS,NDI,NB,NI.NRHO,MITER,BPS 
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1000 FORMAr(I6,5I3,F4.3) 
READ(1,2000) (VRBO(I),Ia1,NRHO) 

2000 FORMAr(20F4.2) 
N-Nift-NI+3 
JI=N/8 

5000 
15 
11 

IF(M.EQ.O) GO TO 11 
DO 15 DI-1,M 

Ml•(IM-1)*8+1 
M1•IM*8 
READ(1,5000) (XO(J),J=Ml,M2) 
FORMAT ( 8E1 0. 3) 

CONTitiJB 
M3•M*8+1 
IF(M3.GT.N) GO TO 12 

READ(1,5000) (XO(J),J•M3,N) 
12 IF(NB.EQ.O) GO TO 10 

READ(1,3000) (KB(1),1•1,NB) 
10 IF(NI.BQ.O) GO TO 20 

READ(1,3000) (IW(J),J•1,NI) 
3000 FORMAT(40I2) 
20 CONTINUE 

READ(1,4000) RDFI' 
4000 F0~(20A4) 

CALL WRTRD1(NOBS, NBW, NB, NW, MITER, EPS, RDFT) 
RB'I'URN 
END 

SUBROOTINB WB:l'RD1 (NODS, NBW, NB, Nl, MITBll, EPS, RDFI') 
CBARACI'BR *4 RDFI' ( 20) 
Wltrl'B(3,1001) 

1001 FORMAT(' NOOS ', 'NRI',' NB',' Nl',' MITER',' EPS') 
Wltrl'B(3,1002) NOBS,NBI,NB,NI,MITER,BPS 

1002 FORMAT(I6,3I3,3X,I3,P4.3) 
WRITB(3,4001) RDFT 

4001 FORMAT(/, 'RBADING FORMAT :',20M) 
RB'I'UBN 
END 

SUBRmTINE RDPILB2 ( NOBS, NBW, NB, Nl, m, D, IDFT, IB, D, 
1 NYB,ND) 

DIMBNSION Xl(30),XB(2100,13),D(2100,13) 
IN1BGBR IB(13),11(13),NYR(2100),NYI(~100) 
CBARACI"BR*4 RDFI' ( 20) 
DO 100 I•1,NOOS 

RBAD(2,RDFI') NYR(I) ,tmr(I) ,(JX(1) ,J•l,NBI) 
I~(NB.BQ.O) GO TO 10 
DO 110 1•1 ,NB 

IJ'•mU> 
XB(I,J)•XX(D') 

110 CONTitiJB 



10 IF(NW .EQ.O) GO TO 100 
DO 120 J'•l,NW 

K.T=D(J) 
D(I,J')=XX(KJ') 

120 CONTINUE 
100 CONTINUE 
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CALL WRTOBS( NB, NW, NYU, Nil', XB, XW) 
RETURN 
END 

SUBROOTINE WRTOBS( NR, NW, NYB, ND, XB, XW) 
DIMENSION N1B(2100),NYW{2100),XB(2100,13),D(2100,13) 
DIMENSION XXR(13),XXI(13) 
WRITE (3 ,1 003) 

1003 FORMAT(/,'FIRST 4 OBSERVATIONS : 1
) 

00 100 1•1,4 
IYH•N!II(I) 
ID•ND(I) 
WRITB(3,1000) I,IYB,IYI 

1000 FOIUIAT(/, 1 <BSERVATION 1 ,I4,' :',' Ini•',I1,' 111•1 ,12) 
IF(NB.EQ.O) GO TO 10 
DO 110 J'•1,NB 

XXB(J')•XB(I,J') 
110 CONTINUE 

WIUTE(3,1001) 
1001 FORMAT( I' I XH :, ) 

CALL WRIVEC(NB,UB) 
10 IF(NW .EQ.O) GO TO 100 

DO 120 J'•1,NW 
XD(J')•D(I,J') 

120 CONTIMJE 
WIUTE(3,1002) 

1002 FORMAT(/,' XI :') 
CALL WRTVEC( Nlf, XXW) 

100 CONTINUE 
RBTUBN 
END 

SUBI.mTINE INrr(XO, VLIIB, D.OO, lOP!') 
DIMENSION XR(2100,13),JI(2100,13),X0(30),X(30),X1(30),SCORE(30) 
DIIBNSION PROB&Jr(2100) 
INT.BGBI N1B(2100),N11(2100) 
COMJION /CIIN1/ NCXIS,NB,NI,XB,D ,NYB,ND ,PROBBAT 
COMHON /CIIN3/ N,RBO,X,X1,SCORE 
DO 20 J'•1,N 

X(J')•X0(1) 
20 CONTINUE 

WIUTB(3,2001) 
2001 FORJIAT(/., STARTING VALUES :I) 

CALL WRrVEC(N,X) 



CALL VALUE(N,X,VLIIE) 
IF(ILOG.EQ.O) GO TO 14 

WRITE(3,3000) VLIKE 
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3000 FORMAT(/,' INrriAL LOG-LIKELIHOOD VALUE == ',El3 .6) 
14 RE'IURN 

END 

SUBRWTINE VALUE(N,X, VLIKE) 
DIMENSION XH(2100,13),XI(2100,13),X(30).PROBHAr(2100) 
IhiEGER NYH(2tOO),N!W(2100) 
COMMON /CMNl/ NOBS,NB,NW ,XH,XI,NYH,ND ,PROBBAT 
VLIKE-0. 
DO tOO I•t,NOBS 

INYH•NYH(I) 
IND•N!W(I) 
CALL DELTA(I,DELTAB,DELTAW) 
IF (INYH.EQ.t.<B. IND.EQ.t) GO TO tt 

CALL IPROBOO(DELTAB,DELT~,PROO) 
PROBBAr(I)•PROO 
CALL TOL( PROO) 
VLIIE-VLIIE+ALOG(PROO) 
GO TO 99 

11 IF (INYH.F.Q.O .<B.IND.F.Q.l) GO TO t2 
CALL IPROBlO(DELTAH,DELTAW ,PR!O) 
PROBBAT(I)•PR10 
CALL TOL(PRlO) 
VLI:&:E-VLIIE+ALOG( PRl 0) 
GO TO 99 

12 IF (INYH.EQ.l.<B.IND.F.Q.O) GO TO 13 
CALL IPROB01(DELTAB,DBLTAW,PR01) 
PROOBAT (I) •PROt 
CALL TOL(PROl) 
VLIIE-VLIIE+ALOG(PROt) 
00 TO 99 

13 CALL IPROBll(DBLTAH,DELTAW,PRll) 
PROBHAT(I)•Pilt 
CALL TOL(Pllll) 
VLID-VLID+ALOG(PRll) 

99 CONTINUE 
100 CONTiliJB 

RE'IURN 
END 

SUBROOTINB DELTA( I, DBLTAH, DELTAW) 
DIMENSION X(30),JB(2tOO,t3),!1(2tOO,t3),Xt(30),SOORE(30) 
DIMENSION PROBBAT(2100) 
INTEGER NYB(2100),NYW(2100) 
COMMON /OINt/ NOBS,NB,NI,XB,D ,N!B,ND ,PROBBAl' 
COMMON /CilN3/ N,IBO,X,Xl,SOORB 
DELTAH•O.O 



DELTAW•O.O 
DO 100 1•1,NB 

111-1+3 
DELTAB•DELTAH+X(1B)*XB(I,1) 

100 CONTINUE 
DO 100 1•1, Nl 

JW•1+NB+3 
DELTAW•DELTAI+X(1W)*XW(I,1) 

200 CONTINUE 
RE'IUBN 
em 
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SUBRWTINE BHBB(MITER, EPS, Q, VLIIE, NITER, INDS, D..OG, IOPr, IPARAM, IER, 
2NINC1,STPSIZ1,STBP1,BOOND1,XACC1,MAXFN1,STPSIZE, 
3NINC1,STPSIZ2,STBP1,BODND2,XACC2,MAXFN2,BADSC) 

DIMENSION XB(2100,13),XI(2100,13),X(30),Q(465),SOORE(30), 
1SCORE1(30),X1(30),PROBBAr(2100),D(30),Z(30,30),WK(495),QEIG(465) 

INTEGER NYB(2100),N1W(2100),MAXFN 
REAL STEP,BOOND,XACC 
COMMON /OINl/ NOBS,NB,NI·,JB,D ,NYB,ND ,PROBBAr 
COMMON /CMN3/ N,RBO,X,Xl,SCORE 
NITER•999 
NN-N*(N+l) /2 
CALL QSCORE(Q,BADSC) 
IF(INDS.BQ.O) GO TO 1002 

CALL WKIBBl 
1002 CONTIWE 

DO 10 ITER•l ,MITER 
WRITB(3,1000) rrER 

1000 FORMAT{/,' ITERAI'ION ', 13,' STARTS') 
DO 70 I•l,N 

SOOREl(I)•SOORE(l) 
70 CONTINUE 

CALL AVEC(NN,A,Q) 
CALL LINV3P(Q,SCORE1,3,N,IER) 
CALL AVEC1(N,A,SOOIB1) 
CALL AVEC(NN,A,Q) 
CALL CROICE(IBR,SOORE1,NINC1,STPSIZ1,STBP1,BOOND1,XACC1,MAXFN1, 

1 NINO, STPSIZ1, STBP2 ,BOOND1,XACC2 ,ILUFN2, 
2 NINC,STPSIZO,S1EP,BODND,IACC,MAIFN) 

CALL OPrSTP(NINC,STPSIZO,STPSIZE, VLIIE, ILOG, IOPT,STBP,BOOND, 
1 XACC,KAJFN,IER) 

CALL QSOORE(Q,BADSC) 
CALL TEST(NOBS, BPS, lEND) 
IF (IEND.BQ.1) GO TO 20 
IF(ITER.BQ.MITBR) GO TO 11 

CALL WRIBBB( rr.ER, STPSIZE, VLIIB, INDS, ILOG, IPARAM, IOPT, IER) 
11 CONTDIJE 
10 CONTDIJE 

GO TO 50 
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20 NITER=I'l'ER 
SO IF(ILOG.EQ.l.OR.IOPI'.EQ.1) GO TO 40 

CALL VALUE(N.X.VLIIE) 
40 IF(IOPr .EQ.O) GO TO 60 

WRlT£(3.6000) IER 
6000 FORMAT(/ • 'LAST STEP OPTIMIZATION. IER ""' • I3) 
60 CONTINUE 

CALL AVBC(NN.A,Q) 
CALL LINV3P(Q.SCORE,1.N,IER) 
CALL AVEC(NN.A,Q) 
IF(IER.BQ.129.0R.IER.EQ.130) IER•128 
IF(IER.EQ.128) GO TO 999 
GO TO 998 

999 WRrrE(3,1001) IER 
1001 FORMAT(/,1X,'IER = ',13, 

1/, ''l'BB Q MATRn IS SINGULAR OR. ILL-CONDITIONED', 
2/, 'THE Q MATRIX BEFORE INVERSION IS : ') 

CALL WRIV AR( Q) 
998 RETURN 

END 

SUBRWTINE AVBC(NDIM,A, VEC) 
DIMENSION VEC(46S) 
A•1.E+04 
DO 100 I•1,NDIM 
VEC(l)•A*VEC(I) 

100 CONTDIJE 
RE.l'UBN 
END 

SUBRWTINE AVEC1(NDIM.A,VEC) 
DIMENSION VEC(30) 
A•1.E+04 
DO 100 I•1,NDIII 
VEC (I) •A*VEC(I) 

100 CONTINUE 
RETURN 
END 

SUBIODTINE CHOICE(IER,SCORB1,NINC1,STPSIZ1,ST.BP1,BODND1,XACC1, 
1 HADN1, NINC2 • STPSIZ2, STEP2, BODND2,XACC2 ,IIAXFN2, 
2 NINC,STPSIZO,STEP,BODND,XACC,KAXPN) 

DIMENSION X(30),X1(30),SOOIE(30),SCOBEl(30) 
COMMON /CJIN3/ N,RHO,X,X1,SCORE 
IF (IER.NE.O) GO TO 10 

nrrE(3,1000) 
1000 FORMAT(/,' BBBR ALG<ItiTBII ') 

NINCaNINC1 
STPSIZO•STPSIZl 
STEP.STEP1 



BCIJND-BCIJNDl 
XACC=XACCl 
MAIFN•MAJFNl 
DO 20 I•l.N 

SCORE(I)=SCOREl(I) 
20 CONTINUE 

GO TO 30 
10 WRIIE(3,2000) 
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2000 FORMAT (I , ' SCORE ALGCElTIIH ' ) 
NINC=NINC2 
STPSIZO•STPSIZ2 
STEP.STEP2 
BCIJND-BCIJND2 
XACC=XACC2 
MAXFN•MAJFN2. 
CALL NORM(N,SOORE,XNSCOR) 
DO 40 I•l,N 

SOORE(I)•SCORE(I)/XNSCOR 
40 CONTINUE 
30 RE'IURN 

Fm) 

SUBRCIJTINE QSCORE( Q, BADSC) 
DIMENSION XB(2100,13),11(2100,13),X(30),Q(465),SOORE(30) 
DIMENSION QI(465),SOOREI(30),X1(30),PROB&Ar(2100) 
INTEGER NYB(2100),NYI(2100) 
COMMON /CMNl/ NOBS,NB,NW,m,D ,NYB,ND ,PROBBAT 
COMMON /CMN3/ N,RBO,X,Xl,SCORE 
NN•N*(N+l)/2. 
DO 400 J'•l,N 

SCORE(J')-o. 
400 CONTINUE 

DO 500 lt•l,NN 
Q(l:)-o. 

SOO CONTINUE 
NBAD-0 
DO 100 I•l,NOBS 

CALL ISCORE(I, SCOREI) 
CALL IQ(SCORBI,QI) 
DO 101 J'•1,N 

IF(SCORBI(1) .GB.BADSC) GO TO 102 
101 CONTDIJB 

DO 200 J'•l, N 
SOORB(1)•SCOIE(1)+SCOREI(1) 

200 CONTn«JB 
DO 300 1:•1,NN 

. Q(I:)•Q(I:)+Ql(l:) 
300 CONTitiJB 

GO TO 100 
102. WBlrB(3,1000) I 
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1000 FORMAT ( I , ' BAD OBSERVATION = 1 
, I4) 

CALL WRI'VEC(N, SCORE!) 
NBAD-NBAD+1 

100 CONTINUE 
WRITE(3,2000) NBAD 

2000 FORMAT(/, 1 NUMBER OF BAD OBSERVATIONS : ', I6) 
RE'lUBN 
FND 

SUBROOTINE WKIBBH(ITER, STPSIZE, VLIIE, INDS, D.OO, IPAR.AM, IOPT, IER) 
DIMENSION X(30),SCORE(30),X1(30) 
COMMON /CMN3/ N,RBO,X,X1,SCORE 
IF(INDS.EQ.O.AND.ILOO.EQ.O.AND.IPARAM.EQ.O) 

1 GO TO 11 
CALL Wln'BB2(ITER, STPSIZE, VLIIE, D.OG, IPARAJI,IOPl', IER) 
IF(INDS.EQ.1) CAU.. WKIBBl 

11 RE'lURN 
FND 

SUBROOTINB Wlrt'BBl 
DIMENSION SOOBE(30),X(30),X1(30) 
COMMON /OJN3/ N,RBO,X,X1,SCORE 
WRITBU,4000) 

4000 FORMAT (I , ' SCORE ' ) 
CAU.. W:trrVEC(N, SCORE) 
CAI.J.. WR1'VEC1(N, SCORE) 
RETURN 
END 

SUBROOTINE OPl'STP(NINC, STPSIZO, STPSIZB, VLIIE, D.OG, IOPl', STEP, BOOND, 
1 XACC,MAXFN,IBR) 

DIMENSION XB(2100,13),Ji(2100,13),X(30),X1(30),SOORE(30) 
DIMENSION PROB&Ar(2100) 
.INTEGER NYB(2100) ,ND(2100) ,MAJFN, IER 
REAL STPSIZB, STEP,BQJND,XACC,II.OGLII: 
COMMON /CMN1/ N<BS,NH,NW,XB,D ,Nm,ND ,PROB&Ar 
COMMON /C11N3/ N,RBO,X,X1,SCORE 
En"ERNAL II.OGLU: 
IF(IOPl'.P.Q.O) GO TO 10 

STPINCaSTPSIZO/NINC 
INCIIAX-G 
VLIIBII-VLIIB 
DO 20 J'•l,N 

Xl(J')•X(J') 
20 CONTIHJB 

DO 60 INC>1 ,NINC 
STPSIZB-INC*STPINC 
DO 70 J'•1,N 

X(J')•Xl(J')+STPSIZB*SCORE(J') 
70 CONTDIJE 
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CALL VALUE(N,X,VLIKE) 
WRITE(3,1000) STPSIZE,VLIIE 

1000 FORMAT(' STEPSIZE •' ,F7 .5,' LOOLIK ==' ,E13 .6) 
IF(VLIKE. LE. VLIKEM) GO TO 80 

INCHAX•INC 
VLIKEM-VLIKE 

80 CONTINUE 
60 CONTINUE 

IFUNCMAX.EQ.O) GO TO 90 
STPSIZE-INCMAX*STPINC 
CALL ZILSF(MLOOLIK, STPSIZE, STEP, BWND, XACC,IIAXFN, IEB.) 
GO TO 200 

90 STPSIZE-STPINC/2 
STPO•STEP/2 
BWNDOaBWND/2 
CALL ZILSF(MLOGLII:, STPSIZE, STPO, BOJNDO ,XACC, MAXFN, IER) 

200 DO 40 .T•1,N 
X(.T)•X1(.T) 

40 CONTIMJE 
GO TO 50 

10 STPSIZE-STPSIZO 
50 CONTINUE 

DO 30 .T•1,N 
X(.T)•X(.T)+STPSIZE*SOORB(.T) 

30 CONTINUE 
IF(ILOO.BQ.O.Cil.IOPI' .EQ.O) GO TO 100 

CALL VALUE(N,X,VLII:E) 
100 CONTINUE 

RE'l'URN 
em 

SUBRWTINE NORM(NV, VECTOR, XNVEC) 
DIMENSION VECTOR(30) 
XNVBc-O. 
DO 100 I•1,NV , 
XNVEc-XNVEC+VECTOR(I)**2 

100 CONTIMJE 
XNVBO-SQJrf(XNVEC) 
RB'IUIN 
END 

SUBRCIJTINB TEST(NCIIS,EPS, IBND) 
DIMENSION SCOIE(30),J.(30),X1(30) 
COMIION /CIIN3/ N,RBO,X,Xl,SCORE 
IBND-0 
DO 10 .T•l,N 

A-ABS(SOORE(.T))/NOBS 
IF (A.Gr.BPS) GO TO 20 

10 CONTINUE 
IBND-1 
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20 RE'IURN 
END 

SUBROOTINE Wlll'BB2(ITER, STPSIZE, VLim, ILOO, IPARAH, IOPl', mR) 
DIMENSION X(30),X1(30).SOORE(30) 
COMMON /CMN3/ N,RHO,X,X1,SOORE 
WRrrE(3,1000) ITER 

1000 FORMAr(//,'IIERAriON 1 ,I3) 
IF(ILOG.BQ.O) GO TO 10 

WRITB(3,2000) STPSIZE,VLIKB 
2000 FOIUIAT(/. I STEPSIZE - I .F7 .5., LOG-LIKELIHOOD VALUE - , • E13 .6) 

IF (lOP!' .BQ.O) GO TO 10 
WRIIE(3,2001) IBR 

2001 FORMAT(/,' STEP OPI'IMIZATION, IBR .. I ,13) 
10 IF(IPAlWI.EQeO) GO TO 20 

WlU'l'B(3,3000) 
3000 FORHAT(/ .,'PAR.AJIETERS : ') 

CALL WRTVBC(N,X) 
CALL WRrVECl(N,X) 

20 RETURN 
END 

SUBROOTINB ISOORE(I, SOOREI) 
DIMENSION JB(2100,13),J1(2100,13),X(30),SCOREI(30),PROBBAr(2100) 
INTEGER NYB(2100),NYI(2100),X1(30),SCORE(30) 
COMMON I CMN1/ NODS, NB, NW, XB, D, NYB, ND, PROD BAr 
COMMON /CMN3/ N,RHO,X,X1,SCORE 
INYII•Nm(I) 
IND•NYI(I) 
CALL DELTA(I,DBLTABIDELTAI) 
IF (INYB.EQ.1.(1l.IND .BQ.l) GO TO 11 

CALL IPROBOO(DELTAB,DELTAW,PROO) 
CALL ISCOREOO(I,DELTAB,DBLTAI,PROO,SCOREI) 
GO TO 14 

11 IF (INYB.EQ.O.Cil.IND .EQ.l) GO TO 12 
CALL IPROB10(DBLTAB,DELTAI,PI10) 
CALL ISOORB!O(l,DBLTAB,DBLTAI,PR!O,SCOREI) 
GO '1'0 14 

12 IF (IN!II.EQ.l.Cit.IND.Bl.O) GO '1'0 13 
CALL IP.ROB01(DELT~&,DELTAI,PR01) 
CALL ISOORB01(I,DBLTAB,DELTAI,PR01,SCOREI) 
GO '1'0 14 

13 CALL IPR<II11 (DELTAS, DBLTAW • PRll) 
CALL ISOORE11(I,DBLTAB,DBLTAI,PR11,SCOIBI) 

14 CONTitiJB 
RETURN 
END 

SUBI.OOTINE IPR<IIOO(DBLTAB,DBLTA'I ,PROO) 
DIMENSION X(30),X1(30),SOORE(30) 
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COMMON /CMN3/ N,BBO,X,X1.SCORE 
Hl=-DELTAB 
W1=-DELTAW 
H2=-DBLTAB-X ( 2) 
W2=-DELTAW-X(3) 
CALL MDBNOR(Hl,W1,RHO,PROO,IER) 
X4=X(3) 
IF (X4.LT.O.) GO TO 13 

CALL INTEGRAL( B1, W1, H2, W2 ,PROB, IER) 
PROO=PROO-PROB 

13 RE'l'URN 
END 

SUBROOTINE ISCOREOO (I, DEL TAB, DEL TAW, PROO, SCOREI) 
DIMENSION XU(2100,13),XI(2100,13),X(30),SCOREI(30) 
DIMENSION DI(3G),X1(30),SCORE(30),PROBHAr(2100) 
INTEGER NYH(2100),NYI(2100) 
COMMON I CMN1/ NOBS, NH, NW, XB, D, NYR, N1W, PROBBAT 
COMMON /CJIN3/ N, RBO,X,Xl, SCORE 
SCOREI(l)-o. 
SCORBI(2)-o. 
SCOREI(3)-o. 
Hl•DBLTAR 
ZH-DBLTAW+RBO•DBLTAB 
CALL PARTIAL(Hl,.ZB,PARTB) 
PARTB-PARTB 
DO 10 .J•1,NH 

111-1+3 
SOOREI(.JB)•PARTB~(I,.J) 

10 CONTINUE 
Wl•DELTAW 
ZW•-DELTAB+RBO•DELTAW 
CALL PARTIAL(Wl,ZW,PAlmf) 
PARTI-PAlmf 
DO 20 .J•l,NW 

.JW•.J+N&t-3 
SOOREI(.JI)•PARTI•XI(I,.J) 

20 CONTn«JB 
X4-X(3) 
IF (X-4.LT.O.) GO TO 30 

CALL PARTLIOO(I,DBLTAB,DELTAW,DI) 
DO 31 .J•l,N 

SCOREI(.J)•SOOREI(.J)-DI(.J) 
31 CONTINUE 
30 CONTINUE 

CALL TOL(PROC) 
DO 60 .J•l,N 

SCORBI(.J)•SOORBI(.J)/PROO 
CALL TOLl(SCORBI(.J),rrRUN) 
CALL BIGNl(SOORBI(.J),rrRDN) 
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IF(ITRDN.GT.O) WRIT£(•.1000) I.J.ITRUN 
1000 FORMAT(' OBSERVATION ',16,' PARAME'l'Ell '.13,' ITRUN ',12) 
60 CONTINUE 

RE'IURN 
END 

SUBROOTINE IPRCI510(DELTAB,DELTAW ,PR10) 
DIMENSION X(30),X1(30),SCORE(30) 
COMMON /CMN3/ N,RBO,X,X1,SCORE 
XNEGRBOa-RBO 
Hl==-DELTAB 
W1-DELTAW 
Hl-DELTAB+X(l) 
W2-DELTAW-X(3) 
CALL MDBNOR.(DELTAB,W2,XNEGBHO.PR10,IER) 
X4-X(3) 
IP (X4.GE.O.) GO TO 13 

CALL INTEGRAL(Bl,W2,B2,W1,PROB,IER) 
PR1o-PR10+PROB 

13 RBTDRN 
END 

SUBROUTINE ISCORB!O( I ,DELTAS, DELTAW, PR10, SCORE!) 
DIMENSION XB(2100,13),11(2100,13),X(30),SCORBI(30) 
DIMENSION DI(30),X1(30),SOORE(30),PROBBAr(2100) 
INT.BGER N!B(2100),NYI(2100) 
COMMON /CMN1/ NOBS,NB,NI,XB,JI,NYB,N1\'f,PROBRAT 
COMMON /CIIN3/ N,RBO,X,X1,SCORB 
ARGB-DELTAS 
ARGW•DELTAW+X(3) 
SCORBI (1) -o .. 
SCORBI(2)-o .. 
W2•DELTAW+X(3) 
ZW•DELTAB-RBO .. l 
CALL PARTIAL(1f2 ,zw, l'All'l'l) 
SCORBI(3)--PARI1f 
ZB--W2+RBo-DBLTAB 
CALL PARTIAL( DELTAS, ZB, PARTB) 
DO 10 J•l,.NB 

JB-.T+3 
SOORBI(JB)•PAR7B~(I,J) 

10 CONTniJB 
PAR'lY-PAJmf 
DO 20 J•l.NI 

JW•J+NB+3 
SCORBI(.TI)•PABlW~(I,J) 

20 CONTIMJB 
X4-X(3) 
IP (X4 .. GB .. O.) GO IO 30 

CALL PART.LilO(I,DBLTAB,.DBLTAW,DI) 
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DO 3t 1=-t,N 
SOOREI(1)•SCOREI(1)+Dl(1) 

3t CONTINUE 
30 CONTINUE 

CALL TOL(PR10) 
DO 60 1=-t.N 

SCOREI(1)•SCOREI(1)/PR10 
CALL TOLt(SOOREI(1),ITKUN) 
CALL BIGNt(SOOREI(1),rrRUN) 

60 CONTINUE 
RE'l'URN 
END 

SUBROOTINB IPROBOt DEL TAB. DEL TAW, PROt) 
DIMENSION X(30),Xt(30),SCORE(30) 
COJOION /CMN3/ N,RBO,X,Xt,SCORE 
XNEGRBo-RBO 
Hl-DELTAB+X ( 1) 
Wt-DBLTA1f 
B2--DBLTAB-X(1)+X(1) 
W2-DBLTA1f-X ( 3) 
CAU. MDBNOR( B2. DEL TAW II XNEGRBOII PROt. IBJl) 
X4-X(3) 
IF (X4.GB.O.) GO to t3 

CALL INTEGRAL( Hl, W2 II B2 II Wt,PROB, IER) 
PROl•PROt+PROB 

13 REIUHN 
END 

SUBRaJTn.'E ISCOREOl (I, DEL TAB, DEL TAW, PROt, SCOREI) 
DIMENSION XH(2t00,13),JJ(2100o13)~X(30),SCOREI(30) 
DIMENSION DI(30),X1(30),SOORE(30),PROBBA7(2100) 
INTEGER N1B(2100),N!I(2t00) 
coMMON /CliNt/ NODS, NB, NW, m. D. NYBII ND, PROBBA7 
COJIHON /CJIN3/ N,JUIO,X,Xt,SCORE 
ARGB-DELTAB+X(2)-X(1) 
ARGW•DBLTAW 
B2•DBLTAR+X(2)-X(t) 
H3-B2 
ZW•DBLTAW-IBO*B2 
CALL PARTIAL( B2 ,zw ,PARTI) 
SCORBI ( 1) •PAJmf 
SCORBI(2)-PAilTf 
SCORBI(3)-o. 
DO tO 1•t,NB 

1&-1+3 
SOORBI(1B)--PARTI~(I,1) 

10 CONTINUE 
ZB-B3+RBO*DELTAW 
CALL PARTIAL(DBLTAW, ZB, PARTB) 

--------------- ----------------------- --------



DO 20 J=l.NW 
JW=1+NB+3 
SCOREI(JW)•PARTR*XW(I,J) 

20 CONTINUE 
X4•X(3) 
IF (X4.GE.O.) GO TO 30 
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CALL PARTLI01(I,DELTAB,DELTAI,DI) 
DO 31 1•1,N 

SCOREI(J)•SOOREI(J)+DI(J) 
31 CONTIMJE 

30 CONTINUE 
CALL TOL( PROl) 
DO 60 J=1,N 

SOOREI(J)•SOOREI(J)/PR01 
CALL TOLl(SCOREI(J),ITRUN) 
CALL BIGNl(SOOREI(J),ITRUN) 

60 CONTINUE 
RE'IUBN 
END 

SUBROOTINE IPROBll(DELTAB,DELTAI,PRll) 
DIMENSION X(30),X1(30),SOORE(30) 
COMMON /CMN3/ N,RIIO,X,Xl,SOOU 
Hl-DELTAB-X ( 2) 
W1-DELTA1f 
H2--DELTAB-X(2)+X(1) 
W2-DELTA1f-X(3) 
B3-B2 
W3•-W2 
CALL MDBNOR(B3,W3.RRO.PR11,IER) 
X4-X(3) 
IF (X4.LT.O.) GO TO 13 

CALL INTBGRAL(Dl,W1,82,W2.PROB,IER) 
PR11•PR11-PROB 

13 RE'IUBN 
END 

SUBRCUTINE ISOORE11 (I, DEL TAB, DELTAW ,PR11. SCORE!) 
DIMENSION XR(2100,13).XI(2100,13),X(30),SOOREI(30) 
DIMENSION DI(30).X1(30).SODRB(30),PROBBAr(2100) 
INTEGER NYB(2100).NYI(2100) 
COJDION /CJINl/ NOBS, NB, Nl, :m, XI, N!B, ND, PROD BAr 
COMMON /CJIN3/ N,RIIO,X,Xl,SOORE 
ARGB-DELTAB+X(2)-X(l) 
ARGI•DBLTA1f+X(3) 
B3•DELTAB+X(2)-X(1) 
W3•DBLTAW+X(3) 
ZB-W3-RBo-B3 
CALL PARTIAL(B3,ZB,PARIB) 
SOOREI(l)--PARTB 



SCOREI(2)•PARTB 
ZW•R3-RBO*W3 
CALL PARTIAL(W3,ZW.PARTI) 
SCOREI ( 3) •PARTI 
DO 10 1=1.NB 

111-1+3 
SCOREI(1B)•PARTB*XR(I.1) 

10 CONTINUE 
DO 20 1•1.NW 

1W•1+NIIt-3 
SOORBI(JW)•PARTW*XI(I.1) 

20 CONTINUE 
X4=X(3) 
IF (X4.LT.O.) GO TO 30 
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CALL PARTLI11(I.DBLTAB.DBLTAW,DI) 
DO 31 1•1,N 

SOORBI(1)•SOORBI(1)-DI(1) 
31 CONTitiJE 
30 CONTINUE 

CALL TOL(PR11) 
DO 60 1•1,N 

SOOREI(1)•SOOREI(1)/PR11 
CALL toL1(SCOREI(1),r.rRUN) 
CALL BIGN1(SCOREI(1),ITRON) 

60 CONTINUE 
RE'l'URN 
am 

SUBRWTINE TOL(:IPROB) 
XMIN•l.E-20 
IF(:IPROB .LB.DIIN) :IPROB•XHIN 
RB'IURN 
END 

SUBRWTINB TOLl (INUII, rrRIJN) 
ITRDN-0 
ASIIL-1.08-20 
ANUIPABS(XMJII) 
IF(ANUII.GE.ASML) 001'0 100 

ITIDN-1 
SIGN-1. 
IF(DIJII.LT.O.) SIGN-1. 
DIJ .. SIGN*ASIIL 

100 :REIURN 
END 

SUBRCITTINB IQ( SCORE!, QI) 
DIMENSION SOORBI(30),QI(465),X(30),X1(30),SOORB(30) 
COMMON /CIIN3/ N,RBO,X,X1,SCORE 
m-o 
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DO 10 IX=l,N 
DO 20 1X=l. IX 

IL=IR+1X 
QI(IL)=SOOREI(IX)*SOOREI(1X) 

20 CONTINUE 
IR=IR+IX 

10 CONT:n«JB 
NN•N*(N+l) /2 
RB'l1JRN 
END 

SUBROOTINE PARTIAL(Y,Z,PART) 
COMMON /CMN3/ N,RBO,X,Xl,SOORE 
DIMENSION X(30),X1(30),SCORB(30) 
SNU~SQRT(l.-RB0**2) 
CALL TOL( SNiJM) 
ZX•Z/SNUM 
XNUM-Y**2/2. 
CALL BIGN(XNOM) 
DENSY•(BXP(XNUM))/SQRT(2*AOOS(-1.)) 
CALL JIDfOR.( ZX, PBIZX) 
PAR~DENSY•PBIZX 
RE'IURN 
END 

SUBROOTINE PARTLIOO(I,DELTAB,DBLTA1f ,DI) 
DIMENSION DI(30) ,XB(2100,13) ,D(2100,13) ,X(30) 
DIMENSION NY8(2100),NYI(2100),X1(30),SOOIE(30),PROB~(2100) 
COMMON /CMNl/ NOBS,NB,NW ,lB,XW .NYB,NYI,PROBBAl' 
COMMON /CMN3/ N,RBO,X,Xl,SOORE 
81-DBLTAB 
Wl-DBLTAW 
82-DELTAB-X ( 2) 
W2-DBLTA1f-X(3) 
m-m 
W3-W2 
Zl•Wl+RBO*B3 
Z2•W2+RBO*B3 
Z3•Bl+RBO*I3 
Z4•112+RB0*13 
Z5•Wl+RBo-DFJ..TAB 
Z6=W2+RBo-DFJ..TAB 
Z7•Bl+RBo-DFJ..TAW 
Z8•112+RBO*DBLTAW 
CALL PARTIAL(B2,Z1,PART1) 
CALL PARTIAL ( B2, Z2 , PAB.1'2) 
CALL PARTIAL(W2,Z3,PART3) 
CALL PARTIAL(1f2 ,Z4 ,PART4) 
CALL PARTIAL(Bl ,Z5 ,PART5) 
CALL PARTIAL(Hl,Z6,PART6) 



CALL PARTIAL(W1,Z7,PARI7) 
CALL PARTIAL(W1,Z8 ,PARTS) 
DI(l)-o. 
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DI(2)•PART1-PART2 
DI(3)=PART3-PART4 
PARTB•-PARr5+PARr6+PART1-PART2 
DO 10 1•1,NB 

111-1+3 
DI(1B)•PARTB*XB(I,.1) 

10 CONTINUE 
PARTW•-PARti+PART3-PART4+PARtB 
DO 20 1 .. 1,.NW 

1W•1+3+NB 
DI(1W)=PARTW*XW(I,1) 

20 CONTINUE 
RE'l1JRN 
END 

SUBROOTINE PARTLI10( I • DEL TAB, DBLTAW. DI) 
DIMENSION DI(30),.XB(2100,.13),.li(2100,.13),.X(30) 
DIMENSION NYR(2100),NYI(2100),.X1(30),SOORE(30),.PROBBAX(2100) 
COMMON /CMN1/ NOBS,NB,Nr,XB,JI,.NIH,NII,PROBBAr 
COMMON /CMN3/ N,BHO,.X,.Xl,.SCORE 
Rl-DBLTAH 
Wl-DBLTAW 
82-DBLTAB+X(l) 
W2-DBLTAW-X(3) 
83-Bl 
ws-wz 
Z1•W2+RBO•B3 
Z2•W1+RHO*B3 
Z3•Bl+RB0 .. 3 
Z4•B2+RB0 .. 3 
Z5•W2+RHO*DELTAB 
Z6•W1+RHO*DELTAB 
Z7•Bl+RBo-DBLTAW 
Z8=B2+RBO*DBLTAW 
CALL PARTIAL(B2,.Z1,.PAB.Tl) 
CALL PARTIAL( B2 ,.Z2 ,PART2) 
CAlL PARTIAL(W2,.Z3 ,.PART3) 
CAIJ. PARTIAL('I2,.Z4,.PAB.T4) 
CALL PAllTIAL(Bl.,.Z5 ,.PART5) 
CALL PAB.TIAL(H1,.Z6,.PART6) 
CALL PARTIAL(W1,.Z7,.PAB.T7) 
CALL PAB.TIAL(W1,.Z8,.PART8) 
DI(1)-PART1+PAR12 
DI(2)..0. 
DI(3)--PAR73+PART4 
PARrB--PART5+PART1+PARr6-PARr2 
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DO 10 1•1,NB 
IH-1+3 
DI(1B)•PARTH*XB(I,1) 

10 CONTINUE 
PARTI•PART7-PART3+PART4-PART8 
DO 20 1•1,NW 

JW•1+3+NB 
DI(1W)•PARTW*IW(I,1) 

20 CONTINUE 
RETURN 
END 

SUBROOTINE PAR'11..I01 (I • DEL TAB, DELTAW. DI) 
DIMENSION DI(30),XB(2100,13),XI(2100,13),X(30) 
DIMENSION NYB(2100),Nti(2100),X1(30),SCORE(30),PROBBAr(2100) 
COMMON /CiiN1/ NOBS,NB,NW,XB,D,NYB,Nti,PROBBAr 
COMMON /CJIN3/ N,.RBO,X,X1,SCOU 
B1-DBLTAB 
W1-DBLTAtf 
B2-DBLTAB+X( 1) 
83-DBLTAB-X ( 2) +X ( 1) 
W2-DELTA1r-X(3) 
H4-112 
B5-B3 
W3-W2 
Zl•W2+RBO*B4 
Z2•W1+RBO*B4 
Z3•:"!e*RHO*B5 
Z4•W1 +RBO*B5 
Z5•B2+RBO-.r3 
Z6•B3+RBO-.r3 
Z7•~+RBO*DBLTAtf 
Z8•B3+RBO*DELTAtf 
CAU. PARTIAL( 112 ,Zl,PARTl) 
CALL PARTIAL(II2,Z2,PAllT2) 
CALL PARTIAL(B3,Z3,PART3) 
CALL PARTIAL(B3,Z4,PART4) 
CALL PARTIAL(W3,Z5,PART5) 
CALL PARTIAL(W3,Z6,PART6) 
CALL PARTIAL(Wl,Z7 ,PART7) 
CALL PARTIAL(Wl,Z8 ,PAR1.'8) 
DI(1)•PART1-PART2-PARr3+PART4 
DI(2)•PARI3-PART4 
DI(3)-PARr5+PARr6 
PAR'III-PARr4-PAI.Tl+PAil'l'3+PAllT2 
DO 10 J•1,NB 

J'B-J'+3 
DI(J'B)•PARTH*lB(I,J') 

10 CONTDIJE 
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PARTW•-PART5-PART8+PART7+PART6 
DO 20 1=1,NW 

1W•1+3+NB 
DI(1W)•PARTW*XI(I,1) 

:o CONTINUE 
RE'l'ORN 
END 

SUBROUTINE PARTLill(I,DBLTAB,DELTAW,DI) 
DIMENSION DI(30),XR(2100,13).XW(2100,13),X(30) 
DIMENSION NYR(2100),NYI(2100),X1(30),SOORE(30).PROBBAX(2100) 
COMMON /CJI.N1/ NODS, NH, NW .. XH. D .. NYU, NiW. PROBBAT 
COMMON /CJI.N3/ N.BRO.X.Xl.SOORE 
Hl-DBLTAR 
Wl=-DBLTAW 
H2-DPJ..TAB-X(2) 
H3-Dm.TAH-X(2)+X(1) 
W2-DELTAW-X(3) 
H4-B2 
115=-83 
W3-W2 
Z1•W1+BRO*B5 
Z2•W2+RBO*B5 
Z3•W1+RHO*B4 
Z4•W2+1UIO*B4 
Z5•B2+RHO*W3 
Z6•H3+RHO*W3 
Z7•B2+RHO*DBLTAI 
Z8•H3+RBO*DELTAI 
CALL PARTIAL(B5,Zl.,PARTI) 
CALL PARTIAL(B5.Z2.,PAR'l'2) 
CALL PARTIAL( B4, Z3 .. PART3) 
CALL PAllTIAL(B4.Z4.PART4) 
CALL PARTIAL(W3,Z5,PART5) 
CALL PARTIAL(W3,Z6,,ART6) 
CALL PARTIAL(W1.Z7gPART7) 
CALL PARTIAL(W1.Z8.PART8) 
DI(l)--PAIJl+PARr2 
DI(2)--PAllT3+PARr4+PARil-PART2 
DI(3)•PARr5-PARr6 
PARTB-PAJa3-PARr2+PAllT4+PAR.Tl. 
DO 10 .T•1.NB 

1&-1+3 
DI(1B)•PARIB*XB(I.1) 

10 CONTINUE 
PARTI--PART7-PARr6+PART5+PAllT8 
DO 20 1•1.NI 

1W•1+3+NB 
DI(IW)•PARTW~(I • .J) 

20 CONTINUE 



RE11JBN 
END 

2.59 

SUBROOTINE IN1'EGRAL(ARG1,ARG2 ,ARG3 ,ARG4 ,PROD, IER) 
DIMENSION X(30).X1(30),SCOR£(30) 
COMMON /CMN3/ N,RBO,X,X1,SCORB 
CALL MDBNOR(ARG1,ARG2,BHO,PROB1,IER) 
CALL MDBNOR(ARG3,ARG4,RBO,PROB2,IER) 
CALL MDBNOR(ARG1,ARG4,BBO,PROB3,IER) 
CALL MDBNOR(ARG3,ARG2,RRO,PROB4,IER) 
PROB•PROB1+PROB2-PROB3-PROB4 
RE11JBN 
END 

SUBRQJTINE WRTE(NB,NW, VLID,STPSIZE,NITER,Q,IVAR, IER) 
DIMENSION X(30),Q(465),SCOIE(30),X1(30) 
COMMON /CMN3/ N, RBO,X,X1,SCORB 
WRITB(3,2000) NIIER,STPSIZE 

2000 F'OIUIAT (I , 'MJMBER OF ITERATIONS • ' , I3 , ' PINAL S'l'BPS IZE ... ' , P7 • 5) 
WRIIB(3,2001) 

2001 F'OIUIAT (I , 'FINAL SCORE : ' ) 
CALL WRTVEC(N, SCORE) 
WRIIB(3,3000) VLIIB 

3000 F'ORNA7(/,'LOG-LIIELIBOOD VALUE • ',E13.6) 
WRrrB(3,4000) RHO 

4000 FORMAX(//,'IRO • ',E10.3) 
TSTAr•X(l)/SQRr(Q(l)) 
IF(IER.EQ.128) TSTAr•O. 
WIUTE(3,5000) X(1) ,TSTAT 

5000 FORMAT (I., ALPHA B-0 - ' • ElO .3. I 'I'-STATISTIC - '. El.O .3) 
TSTAr•X(2)/SQRr(Q(3)) 
IF'(IER.EQ.128) TSTAr•O. 
WRIIB(3,6000) X(2) ,'l'STAT 

6000 FORMAT(/,' ALPHA B-1 • ',B10.3,' T-STATISTIC • ',E10.3) 
TSTAr•X(3)/SQRr(Q(6)) 
IF(IBR.EQ.128) TSTAr•O. 
WIUTB(3, 7000) X(3), TSTAT 

7000 PORJIAT(/,'DEL ALPHA W• ',E10.3,' T-STAriSTIC • ',B10.3) 
NBH•NH+3 
DO 100 I-4,NBB 

IB•I-3 
IN•I•(I+l) /2 
TSTAT•X(I)/SQRr(Q(IN)) 
IF'(IER.BQ.128) TSTAT•O. 
WRITE (3,8000) IB,X(I),TSTAT 

100 CONTINUE 
8000 FOIMAT(/,'DELTA UB' ,12,' • ',B10.3,' T-STA7ISTIC • ',B10.3) 

K-4+NB 
DO 200 I•K, N 
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IW=I-K+1 
IN•I•(I+l) /2 
TSTAT•X(I)/SQRr(Q(IN)) 
IF(IER.EQ.128) TSTAT•O. 
WRITE(3.9000) IW .X(I) • TSTAT 

200 CONTINUE 
9000 FORMAT(/ .'DELTA UW' .I2.' • '.E10.3.' T-STATISTIC • '.E10.3) 

IF(IVAR.EQ.O.OR.IER.EQ.128) GO TO 50 
WRITE(3 .1000) 

1000 FORMAT ( // • 'ASYMPI'OTIC COV ARIANCB MATRIX') 
CALL WRTV Alt( Q) 

SO CONTINU'E 
RE'l1JRN 
END 

SUBRWTINE WRTVAR(Q) 
DIMENSION Q(465).ROW(30).X(30).X1(30).SCORE(30) 
COMMON I CJIN3/ N. RBO. X. X1. SCORE 
DO 20 I•1.N 

IL-l~(I-1)/2 + 1 
m•IL+I-1 
0•0 
DO 30 J'•IL. m 

0•0+1 
R.OI(D)-Q(J') 

30 CONTINUE 
WR1TEU.4000) 

4000 FORMAT(/) 
CALL WRTVBC(I.ROI) 

20 CONTDIJE 
99 RE'l1JRN 

END 

SUBRWTINE WR'l'VBC(NDIII. VBC) 
DIMENSION VBC(30) 
MDIM-NDIII/8 
IF(JIDIII.EQ.O) GO TO 10 

DO 20 DI-1.11DIII 
Ml•( Ill-1) *8+1 
M2•DI*8 
WBITB(3.3000) (VEC(J).J'•M1.M2) 

3000 FORIIIr(8B10.3) 
20 CONTDIJE 
10 M3•11DIII*8+1 

IF(IIS.GT.NDIII) GO 1'0 30 
WRITB(3.3000) (VBC(J').J'•MS.NDIII) 

30 RB'IURN 
END 

SUBRWTINE WR'l'VBC1 ( NDIII. VBC) 



DIMENSION VEC(30) 
MDIII•NDIM/8 
IF(MDIM.EQ.O) GO TO 10 

00 20 Dl•l ~MDIII 
Ml=(IM-1)*8+1 
M2=IM*8 
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WRITE(*,3000) (VEC(~).~•IIl,M2) 
3000 FORMAT(lX,8B10.3) 
20 .CONTIMJB 
10 M3•MDIM•8+1 

IF(M3.GT.NDIM) GO TO 30 
WRITE(•,3000) (VEC(1),J•II3,NDIII) 

30 RE'IUBN 
END 

SUBROUTINE FIT(VLIIE,IFIT1,IFIT2) 
DIMENSION lB(2100,13),1W(2100,13),X(30),RrAB(4),X1(30),SOORE(30) 
DIMENSION N1B(2100),NYI(2100),INDEX0(2100),INDEXP(2100) 
DIMENSION PROBBAr(2100) 
IN'l'BGER TABLE(4) ,ESTTAB(·4) ,NGTAB(4) 
COMMON /CNNl/ NOBS,NR,NI,XR,D,Nm,NYW,PROBBAT 
COMIION /CPI.N3/ N,RBO,X,X1,S(X)RE 
NGBO-o 
NGHl-G 
NGWO-o 
NGWl•O 
DO 10 1•1,4 

NGTAB(.J)=O 
10 CONTINUE 

IF(IFITl.EQ.l) GO TO 12 
11 CALL TREAT! ( INDEXO, INDEXP, NGBO, NGBl, NGWO, NGWl,NGTAB) 

GOT013 
12 CALL 'l1lEAT2 (INDEXO, INDEXP, NGBO ,NGHl, NGWO ,NGWl,NGTAB) 
13 IF(IPIT2 .EQ.O) GO TO 14 

CALL FITSTAT(NOBS, VLIIB, INDBXO, INDBJP, NGBO ,NGHl,NGYO ,NGWl, NGTAB, 
1 TABLE, BS'lTAB, R, RB,.RW, RTAB, RHO ,BB1,BIO, Bll,BLIIB) 

CALL 1ftn'STAT(TABLE, BS'lTAB, R, RR, llW, RTAB, BBO, RB1,RWO, Rll ,BLIIB) 
NX•N&tNI+4 
CALL 1fRI'VEC(NX, X) 

14 RB'IVRN 
END 

SUBROOTINE 'l'RBATl ( INDBXO, INDEXP, NGBO ,NGBl.,NG1fO ,NG1f1 ,NGTAB) 
DIMENSION XB(2100,13),JI(2100,13),X(30),X1(30),SCORB(30) 
DIMENSION N1B(2100),N!I(2100),INDBX0(2100),1NDEIP(2100) 
DIMENSION PROBSAr(2100) 
IN'l'BGER NGTAB(4) 
COIOiON /CJINl/ NOBS,NB,NI,XB,D,N!B,N!I,PROBBAl" 
COIDION /CJIN3/ N,RRO,X,Xl,SCORB 
DO 100 I•1, NOBS 
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CALL DELTA(I.DBLTAB.DELTAW) 
CALL IPROBOO(DBLTAB.DELTAW,PROO) 
CALL IPROB01(DELTAB.DELTAW.PR01) 
CALL IPROB10(DELTAB.DELTAW.PR10) 
CALL IPROB11(DBLTAB,DELTAI.PR11) 
CALL YBAr(PROO.PR01.PR10.PR11.IYBBAr,IYW~.INDEXI) 
INDEJP( I) •INDEXI 
IYB•NYR(I) 
ID•ND(I) 
CALL IND(IYB. I'IW, INDEXOI) 
INDEXO(I)•INDEXOI 
CALL COUNT( IYB, IYIIIIAT. ID, IDHAr • INDEXOI, INDEXI • NGBO, NGBl, 

1 NGWO,NGW1,NGTAB) 
100 CONTINUE 

RE'llJRN 
mm 

SUBRWTINB TllEAT2 ( INDEXO. INDEJP • NGHO. NGBl.. NGWO, NGW1,NGTAB) 
DIMENSION XB(2100,13),11(2100,13),X(30),X1(30),SCORB(30) 
DIMENSION N1B(2100),NYI(2100),INDEX0(2100),INDBIP(2100) 
DIMENSION PROBBAr(2100) 
IN'l'EGBR NGTAB(4) 
COMMON /CMNl/ NOBS,NB,NI,XR,JI,NYB.N!I,PROBHAr 
COMJION /CMNS/ N, RBO.X.Xl, SCORE 
WRITB(3,1000) 

1000 FORMAT(/ I.' YB ',' 1W ',' BRAT '•' WHAT ',' PR.OO '• 
1 ' PR01 '•' PRlO '•' PR11 ',/) 

DO 100 I•l,NOBS 
CALL DBLTA(I,DELTAB,DELTA'f) 
CALL IPR.OBOO(DELTAB,DBLTAW,PROO) 
CALL IPROB01 (DEL TAB, Dl!LTAlf • PR01) 
CALL IPROB10(DBLTAB.,DBLTAW,PR10) 
CALL IPROBll (DEL TAB, DBLTAlf, PR11) 
CALL YBAr(PROO,PR01,PR10,PR11,IYBHAr,IYWBA7.INDEXI) 
INDEJP (I) •INDEX! 
IYB•N!B(I) 
ID•NYW(I) 
WRrl'B( 3,1001) IJB, I'D. I!IIBAl' • IDBAT, PROO, PRO!, PRlO, PR11 

1001 F0~(4(3X,I1,2X).,4(1X,F4.3,1X)) 
CALL IND(IYB,ID.INDBXOI) 
INDEXO (I )•INDBXOI 
CAU. CCXJNT( I'!B, IlJIIIAT, I1W, IDHAr, INDBXOI, INDBJ.I • NGBO, NGBl., 

1 NGWO, NG'Wl, NGTAB) 
100 CONTDIJB 

RE'IURN 
END 

SUBROOTINB YIIAl'(PROO ,PR.Ol,PRlO ,PR!l, IIBIIAT, IDBAT • INDEX!) 
INDEXI•l 
IF(PROO.Gl".PROl) GO TO 200 



PRMAX=PR01 
INDEXI•2. 
GO TO 110 

200 PRMAX•PROO 
110 IF(PRMAX.Gl'.PR10) GO TO 100 

PRMAX=PRlO 
INDEXI•3 

100 IF(PRMAX.Gl'.PRll) GO TO 500 
INDEXI-4 
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500 GO TO (501.502.503.504),INDEXI 
501 IYIIHAT•O 

IDHAT•O 
GO TO 900 

502 IYBBAT•O 
IDHAT•l 
GO TO 900 

503 IYBBAT•l 
IDHAT•O 
GO TO 900 

504 IIIIIIAT•l 
IDBAT•1 

900 RE'IURN 
mm 

SUBROOTINE IND(IYB, ID, INDEXOI) 
INDEXOI•l 
IF(ID .EQ.l) GO TO 200 

IF(IYB.EQ.1) INDEXOI•3 
GO TO 100 

200 INDEXOI•2 
IF(IYB.EQ.l) INDEXOI-4 

1 00 CONTINUE 
RE'IUBN 
mm 
SUBROOTINE COO'NT( IYB, IYBBAT, I'ft, IYIIIAT, INDEXOI, INDEII, 

1 NGBO,NGB1,NGWO,NGW1,NGTAB) 
INTEGER NGTAB( 4) 
IF(IYB.EQ.O.AND.IYBBAT .EQ.O) NGBO•NGBO+l 
IF(IYB. EQ.l.AND. IYBBAT .EQ.l) NGB1•NGB1+1 
IF(I!I.EQ.O.AND.InriiAT.EQ.O) NGIO•NGW0+1 
IF(I11.EQ.1.AND.InrHAT.EQ.1) NGW1•Ne!1~1 
DO 100 1•1,4 

IF(INDEXOI.EQ.1.AND.INDBXI.EQ.1) NGTAB(1)•NGTAB(1)+1 
100 CONTINUE 

REI'URN 
mm 

SUBltOOTINE FrrsTAT(NOBS, VLID. INDEXO,INDEIP,NGBO,NGBl,NGWO,NGWl, 
1 NGTAB, TABLE, ESTrAB, R, RB, BW, RTAB, lBO ,RBl, RIO ,BI1,BLIIE) 

___ , ______ . ·--···-. -·· 
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DIMENSIOh XNGTAB(4),RIA8(4) 
INTEGER NGTAB(4),TABLE(4),ESTTAB(4),INDEX0(2100),INDEXP(2100) 
CALL CONTIN(NOBS, INDEXO, TABLE) 
CALL CONTIN(NOBS, INDEXP,ESTTAB) 
XNGHO•NGHO 
XNGHl•NGHl 
XNGJiaXNGHO+XNGHl 
XNGWOuNGWO 
XNGW1•NGW1 
XNGW•XNGWO+XNGW1 
XNOB8-N<BS 
BII•XNGH/XNOBS 
RHO•XNGHO/(TABLE(l)+TABLE(2)) 
RH1•XNGH1/(TABLE(3)+TABLE(4)) 
RW•XNGW /XNOBS 
RWO•XNGWO/(TABLE(1)+TABLE(3)) 
Rr1•XNGW1/(TABLE(2)+TABLE(4)) 
DO 10 1•1,4 

XNGTAB(1)•NGTAB(1) 
RTAB(1)•XNGTAB(1)/TABLE(1) 

10 CONTDIJE . 
XNG-XNGTAB(1)+XNGTAB(2)+XNGTA8(3)+XNGTAB(4) 
R•XNG/XNCBS 
RLIKE-1.+ VLIIE/(XNOBS*ALOG(4.)) 
lUmJRN 
mm 

SUBRWTINE CONTIN(NOBS,NVEC,NTAB) 
INTEGER NVEC(2100),NTAB(4) 
DO 100 1•1,4 

NIAB(1)-o 
100 CONTDIJE 

DO 200 I•1,NOBS 
NVECI•NVEC(I) 
GO TO (101,102,103,104),NVECI 

101 NTAB(1)•NTAB(1)+1 
GO TO 201 

102 NTAB(2)•NTAB(2)+1 
GO TO 201 

103 NTAB(3)•NTAB(3)+1 
GO TO 201 

104 NTAB(4)•NTAB(4)+1 
201 CONTIMJE 
200 CONTDIJE 

RB'IURN 
mm 

SUBROOTINEWRISTAr(TABLE,ESTTAB,R,BB,BI,RrAB,BBO,IBl,IIO,BI1, 
1 RLIIE) 

DIMENSION RrAB(4) 



INTEGER TABLE(4) ,ES1TAB(4) 
WRITE(3,2004) RLIBE,R 
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2004 FORMAT(//,' RLIXE a ',F4.3,3X,' R = ',F4.3) 
WRITE(3,2000) 

2000 FORMAT(/ I,' <BSERVED AND PREDICI'ED CONTINGENCY TABLES : ') 
WRITE(3 ,2001) 

2001 FORMAT( I. ' CELLS : '. ' 00 , • ' 01 , 'I 10 ' • ' 11') 
WRITE(3,2002) (TABLE(~).~•1,4) 

2002 FORMAT(/,' OBSERVED :',2X,I4,4X,I4,4X,I4,4X,I4) 
WRrrE(3,2003) (ESTTAB(1).~•1,4) 

2003 FORMAT(/,' PREDICTED :',2X,I4,4X,I4,4X,I4,4X,I4) 
WRIIE(3,2005) (RrAB(1),~•1,4) 

2005 FORMAT(/,' BI-BAriOS :',2X,F4.3,4X,F4.3,4X,F4.3,4X,F4.3) 
WRITE(3"2006) 

2006 FORMAT(//,' lAriOS : WORK 4 NaiTIORK WORK ONLY Nar WORK ') 
WRITE(3,2007) 1UI,BB1,RBO 

2007 FO~(/,' HUSBAND :',6X,F5.3,11X,F5.3,9X,F5.3) 
WRrr£(3,2008) RI,HI1,RIO 

2008 FORJfAT(/,' WIFB :',6X,F5.3,11X,F5.3,9X,F5.3) 
RE'IURN 
END 

SUBROUTINE BIGN(XNDM) 
ABIG-85. 
ANUM-ABS(DIUM) 
IF(ANUM.LT.ABIG) ooro 100 

SIGN-1. 
IF(XNOM.LT.O.) SIGN--1. 
XNUM-SIGN•ABIG 

100 REIURN 
END 

SUBROUTINE BIGNl(XNUM,ITRON) 
ITRIJN-0 
ABIG•1.0E+20 
ANUM-ABS(INUM) 
IF(ANUJI.LT.ABIG) ooro 100 

ITRDN-2 
SIGN-1. 
IF(XNUM.LT.O.) SIGN-1. 
XNUIPSIGN•ABIG 

100 JUmJIN 
END 

REAL FUNCliON F(N,Z) 
COMMON /C11N2/ RATIO 
REAL Z(1) 
PI•ACOS(-1.) 
XNUM- .5-z( 1) ••2 
CALL BIGN(XNDM) 
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DEN5-(1./SQRT(2.*PI))*EXP(XNUM) 
Y=RATIO*Z(l) 
CALL MDNOR(Y,CDF) 
F•DENS""CDP 
REIURN 
END 

REAL FUNCIION MLOOLIK(STPSIZE) 
DIMENSION X(30) ,X1(30) ,SCORE(30) ,XB(2100,13) ,D(2100,13) 
DIMENSION PROBBAr(2100) 
INTEGER N!B(2100),N!W(2100) 
REAL STPSIZE 
COMMON /CMN1/ NOBS,NB,NI,XB,XW ,N!B,N1W ,PROBBAT 
COMMON /CMN3/ N,RBO,X,X1,SCORE 
DO 10 1•1,N 
X(1)•X1(1)+STPSIZE*SCORE(1) 

10 CONTIMJB 
CALL VALUE(N,X,VLIIB) 
WRITBU ,1 02) STPSIZB, VLim 

102 FORIIAT(lX, I STEPSIZE •' ,F.7 .5. I LOGLIK •' ,E13 .6) 
MLOGLIJ:-VLIIE 
RE'IUKN 
£NO 
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