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ABSTRACT

-

As n consequence of agsuning that the circumferentisl normal
gtrain and in-plane shear strain of & cylindrical shell vanish, a
relatively simple differential egquetion iz derived which can be
readily solved. An investigation of the frequencieg of harmonic
vibration of each Fourler component of the shell leads to a cri-
terion determining a range of wave nuvbers within which the ap-
proximate wethod leads to sabtisfactory results. Experimental
meagurenents show that soluticns of the spproximate equation are
accurate except in the vicinity of a sgharp varlation of the load
intemsiﬁyp and so long as the length to diameter ratic of the

shell is sufficiently large.
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Chapter I

INTRODUCTION AND HISTORICAL BACKGROUND

A coumon structural element ig the thin-walled cylindrical shell
which may be a sinple load carrying member such as & monccogue air-
frame or & roof panel; or, it way be part of a system of wmeubers, as in
the case of petrocleun production apparatus.

The general problem of the behavior of such a shell under the ac-
tion of a eys%ém of radial and tangential loads has been formulated by
many. Notably Love (1), Flugge (2), and Timoshenko (3) have, by the
use of the thin shell approximation and linearization techniques, pro-
duced the so-called "exact” equations. These eguations consist of a
gystem of ithree paftial differential equationes in the shell displacements
u, v, vy and are of the second, third and fourth orders respectively.

Recently Epstein (4) and Kemnard (5) have undertaken a more funda-
nental formulation of these general equations. They are concerned with
the higher order terms which are usually neglected, and they show that
these terms have appréciable significance in cbtaining the higher vi-
brational frequencies, especially of torsional wmodes. Both these papers
and the work of Chien (0) take, as a starting point, the basic equations
of three-dimensional elagticity, and cbtain tﬁe equations of the thin
shell by & limiting process.

Thus far, only two wmethods of solution are avallable for these
equations, and these have scrious disadvantages. Tiwoshenko (3) shows
that & systen of Double Fourier Series will solve the equatious in gener-

al., However, from the difficulties associmsted with compuling double
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series, only solutlons for the very slovly varying loading functions
can be cbtained. On the other hand, Yuan (7) solved ihe Flugge equations
for a concentrated force at an srbitrary point by transform wmethods. Howe
ever, this soclution is not amensble to any generallzatlon to other load-
ing conditicus because of ite size and cowplexity.

Other soluticns for the general loading condition are available, but

are approximations to the

exact” formulation of Love, Flugge and
Timoshenko. These soluticns resolve themselves into three classes, nomely:
1., The Inextengional Theory
2. The Finsterwalder Approximation

3. Donnell's Eguations

The theory of Inextensional deformations of shells was derived by

Lord Rayleigh(8, ¢),and appears in his Theory of Soundg (10). Love (1, 11)
devotes his chapter 13 (1) to 2 formulation of the general inextensional
theory; while Timoshenko (3) considers this theory as a method of solving
the problen of concentreted radial loads acting on diawetrically opposed
points of the surface. Yuan (12) also considered this problem, but his
method belongs in the third category. However, Hermes (13) has shown that,
for the case of symoetrical line loads placed diametrically opposed, the
inextensional theory results in unreslistic implications that fail to give
a physically satisfactory representation of the response of the system.
The second clags of solutiocns represents the work of Gerusn and
Scandanavian civil engineers., In an attempt to solve the problem of the
response of long shell-type roof structures to distributed loads, they
generally assumed that the effects of the axial bending mouentd (Mx) and
torgue (Mxy) were unimportant. The first solution in thils mamner was pro-

posed by Finsterwalder (14), who derived a single partial differential



egquation in the clrcumferential bending moment'(My). This approach was
further simplified by Schorer (15) in 1635, when he reduced the differ-
ential equaticn to two terus, agaln in the varlable My, by restricting
the solution to long spans 6n1y. Bovever, even with the simplifications
iontroduced in this paper, any application reguires considerable compu-
tation. A paper by Odqvist (16) extends Schorer's solution, and presents
results frow which stresses can be cbitained without extensive calculations.
The applicebility of the above method to cases in which line or concene
trated loads are applied to the structure, raised soue doubts In the minds
of Hoff (17) and Yusn (12). They replsced the differential equations
arising from the condition of equilibrium as proposed by Love (1), Flugge
(2) snd Timoshenko (35 by a simpler statement proposed by Donnell (18).
The so-called Donnell's Eguation is cbtained from the "exact” equations
of Love, etc. by considering certaln terms as having less gignificance
than the leading terms. Hoff and asso.iates are able to cbtain a sclution
for the displacewents, wmoments and weuwbrane stresses arising from & sinu-
s0i1dally distributed line load applied along a generator. Yuan solved
the problem of a councentrated radial load on the surface of & finite cylin-
der using the wethod of lusges on a solution derived for a c¢ylinder of
infinite length. All the above solutiﬁns are spplicable to the general
problem by the wethod of superposition, if one assumes the accuracy of
the differential eguation to be suificient, and thus represent the so-
lution to the general problem for swmall displacements, .
Therefore, given a distribution of loading on a thiﬁ eylindrical shell,
one finds that applicable polutlions are svailsble only insofar as Hoff's
golutlon and Yuan's solution can be applied by the method of superposition.

The inextensional theory has been shown to be inapplicsble on the basis
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of Hermes' work; and the method of Finsterwalder has been shown not €0
apply to shells in which there is considerable bending. However, the
gsolutlons proposed by Hoff and Yuan suffer from the same disadvantage

28 Yusn's more exact solution, in that they are of considersble complexi-
tv, restricting their usefulness to the simplest of loading conditions.
In asddition, it is doubtful if Donnell's equation is applicable in the
vicinity of a discontinuity in loeding.

It'ia the purpose of this paper to describe and develop a method of
analysis that leade to solutioms of an approximate differential eguation.
Thesge soluﬁions apply everywhere but in the lmmediate neighborhood of &
digscontinuity of loading, snd give results in this neighborhood that will
have an accuracy egual to or greater than that cbtained with the classi-
cal eguations of Donnell. These solutions have the further advantage of
being mich simpler in form than the solutions of Hoff and Yuan, and thus
have a greater applicebility to the general problem of radial loading.

Tnis work is an extension of a previous paper by Hayashi (19) in

which the "simple bean” concept of Chapter II, section 2 first appears.



DESCRIPTION, ASSWMPTIONS AND DERIVATIONS

1. Basic Relsptions: Congider the following representation of the clreus-

lar cylindrical shell shown in filgure 1.

Figure 1.

o . * % & * # ®
The displacenents of the shell are given as u , v , v , Inthe x , ¥y , 2

¢irections respectively. The non-dimensicnal distences and displacements

are defined by the equations

i

X =¥x/o ¢ =q'/a z - 20

i

% =% /e v = v w = wa (I1-1.1)

where u, v, w are considered functions of (x, ¢ ) only.

Considering an element of the cylindrical sghell bounded by surfaces
* .
x = const,., % = const. shown in figure £, the shear forces per unit

length (Q) and bending momente per unit lengih (M) are indicated in their
positive sense, slong with the proper convention for norual and shear

stresses.



Figure 2.

If it is assumed that the shell is thin, that is, h/a <1, one can make

the conventional sssumption that the shell is in the condition of plane

streass, or that

so that,

i

H

1)

_E_.
-Vt

(€. + vey)

\EV"‘ (GQI + 'VGI)

STy G = E/ausv)

(II-1.2)

(I1-1.3)

If one assumes that the nerbrane strains have negligible effect on the

curvatures, then the strains (€. ,€4 ’Wh#' ) are defined in terms of the

mesbrane strains (€, , €2 , ¥ ) and the local curvatures (), , }‘1 5 }tg )

ag FTollows:

©

(II"l. 2‘;)



where the curvabures are
'kx = "J}y’z’

i (w—‘ +4 UJ“,;‘»)

<
(>3
1
e

L é: (w.):# < Vs't')

~ A *
Y = &uup + Ve

The subscripts following a comms indicate differentiation,
moments per unlt length sre defined sge

M *~D(\4,‘+V\(%)

x =

M¢ = ~D(&\3 “‘1"&\)

E K

Ml«b =T MM =D (‘—ﬂ}t‘s D = 12 (1~ 1)

The shear forces per unit length are given by
Qv = Mu,v' * t‘M&bu,ﬁ:

Q¢ = é—. M¢;¢ - l\/"‘d’:’.

(11-1.5)

(11-1.6)

The bending

(11-1.7)

(11-1.8)

In agreeuent with Kirchhoff's suggestion, the total effective shear force

per unit length is defined as



(11-1.9)

2. Biwple Besu Concept: Consider the civeulsyr cylindrilcal ghell shown

in figuwre 1 to be the limiting case of an n-sided polygonal shell shown
in figure 3; that is, the limiting case of a structure composed of ele-

ments of lengbh L snd width a Al where A¢ = 2T /n, as n becomes very
N .

Consider one of these component elements shown in figure 4. In general,

-

%
the element will be acted upon by radizl loads in the z directiom, and

) A e N #* #
stresses distributed along the sldes y =% -aA«# /2, = =0, L. The

_ %
stresges shown in figure he, b sre those acting on the surface z = 0,

or the werbrane stresses,



Pigure 4b illustrates that for small A¢ one can take the axial mexbrane
stress U, as belng wade up of a constant part O plus a bendimf; gtress
¢, which varies linearly over the depth aA¢. The simplest method of

couputing these wesbrene stresses 1l to assume that the stresses in the

elenental bean follow the simple beam theory. This theory, when applied

with the assumphtion of plane sgtress, requires that

E  *
G"b = (‘\x - (J\o = - l"V"‘ - wal.
a8 a result of sgsuning
’ E
€, = "SA] and o = T o

. - PR . * .

vhere r is the local radlius of curvature (~1/ vw,ya) of the % -axis in
* * L3 9.3 3 £}

the x ,y -plane. Furtherwore, if one differentiates ) and 0. with re-

#
gpect to ¥y and uses the identity for €, , it can be shown that this
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requires

I = o

in sccordance with simple beam theory,
Thus, applying the concepts of simple beaun theory to cylindrical
shells conceived as being made up of bean elements of infinitesimal depth,

one cbtains two relations between the three displaceuments, that is,

= ur -
¢ i1-2.1
4 *
1 -
V)'l'.' + o u)Q = 0 II"?--Z
wihich state respectively that & .= 0 and R4 = O,

3« Derivation of the Approximate Differential Eguations: In order to

gtudy the behavior of a shell under the restrictions gz_;} = ¢, the differ-
ential equations governing the benavior of u{x,®), v(x,$), w(x,® ) must
be Formulated and ﬁheﬁ golved for the functions thewselves. The usual
wanner of formulating these differential equations is 1o express the

three equations of equilibrium in terms of the three displacement funce
tions. However, the restrictions €1’<) = 0 preclude this, for the forces
can no longer be expressed in terms of the displacements.

The method that is applicable in this case is that of the Caleulus of
Variations wiﬁhva Subsidiary Condltion, This wmethod leads to differential
equations describing = shell acted upon by a general system of foreces in
which the deformation of the shell will only be an approximatiocn to the
exact éolution, but the total energy of the gystenm will be a winimum

consistent with €3 ,9 = 0.



The total energy of the systen U lg defined ane the sum of the sirain
energy of the shell V and the pobantial energy of any external forces.
Thig potential energy lg egual to the negative of the work (T) done by

thege external Porces acbing on the shell sg it deforws. Thus,
U=V -T (11-3.1)

The strain energy per unit volume V_, ws given by Timoshenko (20), when
]

.

the plone stress approximation (eg. II-1.2) is applied, reduces to

o v ! 2
Vv, = -l—é-~(ﬁ\7‘-\-3‘;')—- E-Q‘@y * 5 (Y.‘S

h

or alternatively, using ecustlion

II-1.3, as
R . = kS K3 - 2 P
VA ~m[€¥ + € +aveyEy 4 Y %’1 (11-3.2)

The totel gtrain energy V is given by the integral of the above expression

throughout the vwolume of the shell, that is,

<
u

Vo adv’dd dz* (11-3.3)

where 1t is mssumed that h/a << 1 80 that the volume element of inte-

gration is given by

d(von.umg) = 0 (l— g)du'&#ai' = &dt’A$d2‘

Agsuming that the only forces =acting on the shell are radial loads over



H
ot
£3

H

the surface of the shell given by the distribubtion q(x,¢ ), the external

oF

= ff% o\ 4) lu'o\dt'cl(% (T-3.4)

Axial and tengential cowponents of load could be ipcluded in the sane

work becomes

Paghion.
If equations ITX-1.4, II-1.5, II-1.5 are substituted intc equation
11.3,.2, taking into mccount equations II-2.1, II-2.2, then V becomes a
. * %
function of u , v only. Furthermore, if equation II-3.2 is substituited

*
into equation II-3.3, the integration over z can be carried out directly,

* ¥* 3%
as u , w are functions of x , ¢ only., Finally, substliubting the ex-

presgion for V, T into egquation II-3.1, the total energy of the gysbem U

becones

r 2
Enh h'l. ¥ w * 2 2
0 ff m[ B v e T e (477 e)

. 2 * . * 4 |
+ G-V W vH\ () Lu,) +Z_‘g-h§,‘-f(” "“’m)]
..m-‘i Qo A'\c'cl¢ (II»,?;-EZ‘)

# %*
where u , v are related by the subsidiary condition that

E
G =y v g%y =0 (11-3.6)

k-

which ig cbtained by elimineting v from equations II-2.1, II-2.2.
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In order to obtaln the differential eguations of egquilibrium from

this expression for total energy U, it is necessary tﬁat the veriation

of U vanish subject to the subsidiary condition of equation II-3.6. This

is accouoplished, according t0 the method outlined in Courant and Hilbert
(21), by introducing the subsidiery condition into the ‘total energy ex-
pregslon, thus forming a new function U*. This new function U* is egual
to U plus the result of first multiplying the subsidiary coundition G by

an arbitrary function /A and then integrating this product over the surface

of the shell, that ig

U’ =uU +jvf/\‘({‘¢)e'<\z’qd¢
%
The function ¥ i1s then regquired to be 2 winimum for a suiiable value of
the parameter /N . ‘Thus it follows that
3U" = o
or that,

Eh »2 T s 2 2 . 2
Z( - + _!‘__ h *
%ff 1(\-'\:’)[ 7k Zz Cier “'\Td‘-(hr + ur”_N))

¥

2 ’ 2
+ Vhoar "y -v) b o~ Lou’
Gar WY (Lu' +U1¢¢) + % (*r)tq, u )

L4

o ¢

» A * 1 a, ? N\ [— ' [ -\
~wfq 4 Ay r3lge) pdiadd = o VII-3.7)

This operation has been carried out for two cases: 1) the coumplete cylin-
%* # *
der, for which the limits of integration arve x, < x £ x, , §,$¢ ¢ ¢,
where ¢z~ ﬁ'=27f ; and 2) the curved panel, for which the limits of
%* *

' * ' * *
integration are x, € = § x,, 0 ¢ $ < <;6° where in both cases %, - X = L.
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Due to the commutatlion between the vsriation and integration processe

and between the differentiation and variation processes, as shown In

3%
Hiidebrand (22 the rejquirement that U he stationery reduces hos
3 4 o

L:»a

¢ $=de
- =
t l(m_)v'q e ’¢) du’ ‘ l(‘uw'ct; - t'&l¢) Sur
¢‘¢i’ ¢'¢1
" ¢~ 4 AL
| [Blhe s e val, sy 49
% %
% * ¢
* » * -~ ¥
* ‘g[ii e T ey PO Srevr ~ BT “"} il A
T . %
71_ ¢2
pelal mw, ) - T A
+ {1 LD (3% “rm*q)) Aw]%& dy
% -
%’ $ b u
+ + £ h * i
+J lA M)A | e B
[ ¢ ¢ u

0
. + * LY g,F R * *
+f' [A D(w\l'fl‘ +g§-"w~n' -2 B‘undé LY e )] duw l&4¢

(0
j , Wt g‘z (™ + “’7¢¢ )] S(m’)“t') O"J#’

l’
l,_ $;
RV os” e gt
jf xw-( u’“‘ e e hea“'u’w)
Y ¢

v & A)¢¢]Bu'4y’ad¢

2
pegind

3
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v 2 * \ * ) \ 2
+ff b (arw’t’t't’ M E_i'uyw’k'ct¢ * E“-Us;¢¢¢¢ + Z«.ar
¢,

» *

R . 2V ¥ 2. =V
+ o t.\r“M + Kz.m‘vt, y T,_"s'ﬂ'ﬂ"i"ﬁ)

B
(0]

~ (Cl + AW-)] Sm'dt’adct,

where all expressioas apply to the case of the curved panel, and only
the latter five integrals apply to the case of the complete cylinder.
The first four terme and the line integrals give rise to the boundery
conditiong; while the suwrface integrals produce the regquired differential

equations, Thus, the "natural” boundery conditions for a curved panel

are, on the cOrners of the panel

~-v v * - -
D5 (g - 3 % ) =o (11-3.8)
O, U_T“ = QO
* %

on the curved houndary (x = x , Xz Y,

ZL:Y, = O or, u'= o (IT-3.9)
. * S -~V * R » =
N D<w)t'k’7¢' Y Yoo, -2 = &"t‘b + =3 C"n'@p) (&)
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=4
§oll
¥
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o
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oo the straight boundary =<4 ¢, ,
-V (w‘. - _L.a*) a
o D e d o ¢ + = AJ
o, w = o (13-3.12)
D \ hd * * -~y 7 *
-2 — ur, 4+ -V -2 5 U =
a | ax ¢ ol M¢¢+< )hn¢ff < o ¥ ©
. +*
0T or = Q (IK -3 L3
D} = (" +w ) + Vv ar = O
( 19¢ ' f
| ¥ -
or, o = O (TT2.34)
¢
* e
N = o oy, U’¢ = o (IT-3.15)
The “ratwral” boundary conditions for o complete ¢ylinder are squations
If-3,9, 123,10, II-3.11 as She obher integrais vanish frow the pericdici-

]
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L1
@
[
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£
o
=
fto
r

uniike the bound

It wust be noted

£ e Ty D g o P % L, ol =
G = 0. Thus, for esanple, ve are Iree to choose

the boundary conditions on w  and its derdvalives, bul as a result, the



*®
boundary conditions on u and its derivatives are fixed. Thils will be
iliustrated in later examples.

Malking use of the definitions given in Chapter II~l and the identitles
in eguations II-2.1, II-2,2, the above boundary comditions expressed in
phygical gquantities are:

on the coruners of the panel,

, _ ® o %
on the curved boundary (x =x, , x, ),

NI = G:‘Az, = O

Or; ZL = O

*
A+ Q =0 or o’ ~ o
1 4 ¥
]
*
M, =~ or, w s =0

MQW h Q—;"A,Q = ©
or, %"= o
Q‘ie&{t Q or, w’ = o
Mq, = 0 or, w;; ~ 0
A =0 o, u =o
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where the value of M, & at the corners of the psnel neasures the value
of the comcentrated reactions at the corners.
Considering the surface integrals that result from the variational
procedure, it is noted that the coefficient of the integrand of the firsy
+*
integral is v ; while the ccefficlent of the integrand of the second
#
integral is du . vain, these variatlons sre not independent,; and an
244 s P »
argument different from that used for holonomic systems must be used 1o
determine the differential eguations. If I\ is chosen so that the coef-
% 13 3. 3 % I}
ficient of du vanishes y then, since the variation Y% can be arbitrari-
#* k4 * *
1y assigued inside x, ¢ x ¢ x, ; 9 € ¢ < ﬁfz , the coefficient of Sw

must vanish., Thus, the following differentisl equations are ovtalned:

_Eh : T T WS S N - :

r?fz[z‘)u’f e (e T @ m)] t N = © (11-3.16)
Vi + L+ 2.0t s v

D[ e WP T e YR W, -2 'OZ‘Z‘m’w]

(11-3.17)
-9 - A)v' = O

in addition to the subsidiary condition (eq. II-3.6), meking three differ-

entlal equations in the three dependent varilebles w* 3 z;fﬁw ,A . Let the

folloving notation be defined

4 & 2 »
Vw'=V‘7.u.r = + A *

¥ * ! .

vt @'w{v't’w + ok “ﬁom

If equation II-3.16 is operated on by cxg—u} and eguation II-~3.17 is oper=-
X

ated on by a&—gg and the resulting equations added, one cbtains an eguation

independent of /. , that is,



“ * * A . *
o 2 kY u
D {v’ v o.“ur BRI +%‘b‘rn’u' 3 n¢¢ /D ]
)s#c}:
. Eah * - ___ * - N
\-v2 [Z(ﬂl’t' k ( n“*‘t "bQ)] . = O (II 3'18)
Yv

This equation, plus the subsidiery condition (eq. 1I-3.6)

g Loyt = 0
w- + & b4 =

¥ » '
give two equations in the two dependent variables u , w . If equation

. 3
IT1.3.18 is operated on by g%z and equation II-3.%5 1s operated on by'gﬁ}S
end the resulting eguations added, one cbiains
\_7‘4 L2 O ot
s r E. ! + c—;“'w 1/]3
LT IY
+ ‘2'( )‘U ’y l'l‘ e ((xr + ’¢¢)l'kt¢¢ (1'1"3'19)
Introducing the dimensionless varlables (eq. II-1.1), along with
3 h
p=ye/D ="
(11-3.20)
“ 142 -
Vw =V Vu = wnuw-"zwlncw + Baeed
one obiains equation II-3,1¢ in the forn
X IGUICRYN) (11-3.21)

A 2
- 2
[Vur +2V @ + W p] 1 ,Lz . m¢¢

mw
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This eqguation plus the constralants that

V., = -
1 W~ VW + Z(,q> Q
completely determine the dlzplacements once the loading functlon and

poundary conditions are prescribed.

Equation II-3.21 can be compered with the "exact” egquations of

Timoshenko (3) which are, in the present notation,

= O

1N
+

XU he + Y Ve T VW

5
J

Vi - ¥/ ('vum Vi~ w) + {V‘v + (xw)v,w] = p
¢
Donnell's Equations, siumplified by Hoff and Yusn, are

8 2 «
_‘v —_ =~
V &= = Y W ey v'p o

1

2
V u = vV, - @ae

<
<
v

R+ V) Wigy, +W, b4

4. Reduction to a Total Differential Bquation: In this section and in

the following sectiong, we shall not consider the case of the complete



cylinder or the curved panel in which one or more of the gides are free.
It is only in these cases that the function /A uwuet be -omputed., Instead,
attention will be r:estricteci to the cases in which a complete cylinder or
curved panel is supported such that the deflectlon w vanighes at the
boundaries.

a) The Complete Cylinder: Comsider the case of the couplete cylin-
P &

der shown in figure 5. /

Figure 5

In the interval -%<¢ <% , the functions W (v, ¢),p(y,¢) can be

expressed as

W@, ¢) = (u, m) Goa md (I1-k.1)

i [N18

F e Gimd (1I-1.2)

Nl

/3(7‘|¢) =

M=Q

vhere w(x,p) must satisfy equation II-3.21, and B(x,n) is given by
*

f@m) = ,%,fp(t,é)ﬁ‘bqub (11-4.3)



If eguations II-h.1, II-4.2 are substituted into equation II-3,.21, one
q » F)

chtains

‘ Z Gam {(m“pz/,(z)'\,\])nw ~ 2 \'Jmu (- -y mt ‘"V)

]

W (=) “"‘“P} °©

s0 that,

(m“+ 22 / rL.‘) W

2 —_— 2 - A
weee "™ w)u (W20 s =)+ W) = i (II-k.4)
Trus, the result of assuming €, =0 is the reduction of the classical
8th order sguation as obtained by Flugge (2) to a ith order equation,
Substitubting equation II-4.1 into equations II-3,10, II-3,11 with
the definitions contained in eguation II-1.1, one cbtains the following

boundary conditions on x = 0, 4/a : either,

W =0
"Plxed BEnd"” @@I-b4.5)
Wyt ©
oy
W = O
"Pin-Ended” (11-4.6)
W =a
N

It 1s apparent with these boundary conditlons that for n = 0, W(x,0) =0,

80 thet equation II-k.1 reduces to:

w(¢) = ZW(’Q,M)QA/M} (TI-L.7TY

m=\



2
&

less variebles of eguabtion IXI-1.1 into

m
[
g
&
[
4]
fods

Inbroducing the

equation II-3.6, the subsidiary condition becomes

and integrates to
u(x,¢) = Z;ﬁ:' tGemp +4 {0 +qa) (11-4.8)
M=

Frow the requirement of periodicity of u(x,¢ ), that is,

U (v, d>) ue,p+at)

it follows that £ = ¢. If eguation IT-4.8 is substituted into eguation

I1-3.18, ome finds thet g must satisfy

¥owwe = ©

3 = ¢ + Qe +C3

Ags u = counst. corresponds to translation of the cylinder as a rigid body,
which produces no gtrain, C3 way be set equal to zero without loss of
generali%y. Purthermore, since radial loads are the only external forces
being consldered, C, , C, can be taken as equal to zero, as these constants
correspond to a ghell acting as a coluun supporting its own vwelght and to

& shell in wifora axisl compression respectively. Thus u becounes

U0) = Z ,L,e'wvi Gamdg (1I-4.9)

m=1
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With equation II-4.9 it is evident that the boundary conditions on
u cannot be prescribed independently of the boundary conditions on w.

From equation II-L4.9, it follows that

i g
Woo- o

=
=

% (v0) Gam¢ d$
¥
Therefore, requiring u to vanish on the boundary implies that \qx vanishes;

or, requiring Uy to vanish implies that x%tvvanishes,

Thus, for the case of the complete cylinder, the deflections w, u are
given by equations II-4.7, II-4.9 respectively, and must satisfy the differ-

ential equation II-4.4 with the boundary conditions arbitrarily chosen

between
uw = O
aﬁu = O "Fixed End"
U =0

and,
&= O
M, = 0O "Pin-Ended"
Uy, = ©

©) The Curved Panel:

Consider the Case of the curved panel shown
in figure 6.



Figure 6

Tn the interval O <$ £ @, the functions w(x,$ ),p(x,$¢) can be ex-

pressed as

wne) = Z W Gam) Sim /g (TT-k4.10)
pl,¢) = % Z F (% m) Sim /g (TT-kh.11)

where w(x, ¢ ) must satisfy equation II-3.21, and p(x,n) is given by
¢
F g m) =j P d): Sommtd/g - i (T1-4.12)

(e}

However, as will be shown, only certain boundary conditions on ¢>= O'¢Z

can be satisfied.

If equations IT-4.10, II-4.11 are substituted into equation II-3.21,

one obtains

«©

Z Sim ’"{h‘b/%[(’i““z/f)wzutz 2\ (/7\4 ~Tval 4 1-v)

1144
M=

A /Rl-n)zw - zﬁ“{:/?go} = O

so that,



(N_\«+u /’(z)‘“]muw 2.2 W)W.(ﬁ\"- TVR 4 rv) + A (;,.L,)zw 2 2 /R“ﬁ/?so (II-5.13)

L4

where n = %? . Substituting equetion II-4.10 into eguatloms II-3.10,
o

II-3.11, the sawe boundary conditions result as for the complete cylinder,

that is, either

W = o
"Pixed~Bng”
W = o
"\
or,
W =o0
"Pin-Ended"
W =0 J
Wy

on x =¥3 Lfa, However, it follows that by substituting equation II-L.10
into equations II-3.13, IX-31.%4, the boundary conditions wyilig =0 are
automatlcally satisfied on ¢ = 0, ¢°. Thus, the use of equaticn IT-4%.10
as a substitution is liwmited to the "Pin-Ended" condition and certain
modifications, and as Brown {23) points out, is not appllicable to the
"Fixed-End" condition, For the "Fixed-End" condition, w,p would have to
be expanded in a series of orthogonal functions that automatically satis-
£y the conditions w, Ww,g =0 on ¢ = O,foa

One finds on substituting equation II-4.10 into the subsidlary con-

dition, that u becones

ao

Uk, d) = Z :%rwn don M (4 + ¢ @ * 3 (IT-h.14)

m=\
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Similar to the above result thet the condition v, w,¢ =0 cannot be

satisfied on ?4 = Oy 79’0 by equation II-k,10, it follows that this substi-

tution cemnot give uw,y =0 on # =0,¢ ; bus, with £, g = 0, it auto-

matically satisfies the condition u = 0. Therefore u becoues

u@d) = chzm Son b (4,

m=1

(11-%.15)

Thus, for the cage of the curved panel, the deflections w, u are

given by equations II-%.10, II-L.15 respectively, which wust satisfy the

differential equation II~4.13 subject to the boundary conditlons arbi-

trarily chosen between

@ = o
w,=° “Flred-Eng® (1I-k.10)
U= o
and,
W = O
™M, 3 © "Pin-Ended" (TT-4.17)
le =0
on x = * Qho ; but limited tc the conditions that
w = O
Mg = © (1-4.18)
w = o
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Chapter III

PARTICULAR INTEGRALS

The analysis of Chapter II shows that the assumpbions €.,9 = ¢

lead to the differential equations

[qu +2Vor vwr - P + R/il W+ 29 +W44)

19 o

W

For the case of the complete cylinder (fig. 5) acted upon by a distri-
bution of forces such that
i
Py = —f,o(‘u 4) Gamdpdd

v

the deflections may be expregsed as

a;-(y,q,) = Z AWACIN LY ~ ¢

M=y
o
]
u(y,¢) = Z = W, Gr g
m=
wvhere W(x,n) oust satisfy

(m +12/y2 )\«J (m* -2V +l-V)+mW(mq)

Ht'ﬂl )'kk

subject to the boundary conditions that either



H
oo
2
8

= 0
W, = ° "Fixed-End"
= O
or,
UJ’ =
M= © "Pin-Ended”
/l(“‘: ©

on x = 0, ’Q/a.

For the case of the curved penel (fig. 6) acted upon by & dis

N
-
G L=

pubtion of forces such that
$,
5 m) = j pCr ) Sinmb /g, d
(o]

the deflections are

w (¢,9) = Z W (g, m) Son g /g

M=

oo

A0 4)= ) (M) Wa Samdey,

m=y

vhere W{x,n) must satisfy

(ﬁ“ﬂz/,‘z)\'\/'mu -2 ;ﬁzw)w (RT3, V) + A (-0 W = ar'p /8,

subject Lo the boundary conditions
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w = O
w =0 "Pixed-Bndg"
U = O

or,
4y = O
My=o "Pin-Ended”
ﬂ) =0

w = o
Mq,—o
u = o

on ¢ = 03 ¢° »
In the following sections, some solutions of the above equations will

be presented.

1. The Fundsmental Sclution for the Pin-Ended Boundary Conditlons

The Fundamental Sclution, that is, the solution for o unit concentrated
Topce lécateﬁ at an arblirsry polat, iz of interest since the solubion
for any distribution cf loading can be found from this solution by the
mebhod of superposition.

Coési@er then the case of the complete cylinder (fig. T), satisfying
the "Pin-Ended" boundary conditions (eg. II-4.6), wheve the loading funce

% 4%
tion representa o concenbrated unit radisl force acting at {x = x = 0)e
o ¥



Figure 7.

The concentrated force is expressed by

q (¢ 9) = 5 8 ) 8@

where ${x) is the Dirac Delta Functicn. Introducing the dimensionless
guantities as defined by equations II-1.1, II-3.20, and using the relation

that
) = é-%@)

one Tinds

) T o e-%) @)

£

pd) = L. 3(-w) 5G)

Substltuting this dinensionliesgs loading functiom into equation II-L.3 it

P ) = ,ﬁ) (- %) (111-1.1)



With p (%, n) so defined, egustion II-k.b becomes
(4 ‘1/(‘)Ww~m —2m Wy (- 2Vl 4 ev) W )P

= am'/ap - S(v-%)

This eguation is eguivalent to requiring that, for all poluts save x = x|

(" ra ) W W (-2 e ) WY < 0 (111-1.2)

ey

subject 4o the conditicon of continuliy of the function W and its first

two derivatives at x = x, , plus the "Jump Condition” given by

[WWJ = K (T1T-1.3
. Y

,ni
wﬂ-u

wre

K am'/nD

=
e e
o~ .N\M + /,lz

onn IT-4.6 wust be

[
]
{5
1’ L‘J
c‘i'
&
=
=
£
e
{-—J
£
i3
5
i}
el
'¥
?
o
it
o
s
0
93]
ks
o
&
]
j»)
y
i1
i
&
ey

For n = 1, eguation IIT-1.2 reduces Lo

W = O

¥v XY



£
[8Y]
§

The golutlon of this equation which setisfies the conbinuity and "Jump"

conditions” at x = xg , and the boundary conditions at x = 0, 'g/a is

R

given by

W) = K\[g (9%-‘ el (14 LA 3°7‘°)M]

4 i
W) s, [S0 6k B8 (1 gy - & | .
L a& 3 wat ©

Tor n > 1, it is assumed that the solution (W) is proportional %o

exp {mx). Meking this substitution into eguation 1313-1.2, 1t is found

that o uust satisly

(/y\“ + |Z/lz?-)./»\l4 ~ 2 ml(mq~ ﬂ/hz+ I-l/)/)ﬂl + /A‘( (/h?ml)z = O

(1I1-1.5)
If the roots of this equation ave
m = Taxig (171-1.6)

the solution bakes the form

W@ m) = @@y (AGun xy + B Semhou)

This solution for the above boundary and continuity conditions becoues

W@ m = B, Ga@u Srhat + D, Sin@1Gak vy (171-1.7)

(OSYﬁ'V-o)



- 34 .

W, m) = A,GaRuGanwy  + B,Ga v Sunhay

+C, @t Sk 0% + D, StnQt Gk iy (111-1.8)
(G svs /)
vhere the coefficlents are
A=~ K .(« SenRr, Ganatr, ~ Q@ GLEY Sum mo)
Q@ (a®+ @%) ’ .
B,= : =~ A, GunaQy Swmaty +CzJS'JQ/ B @ )
Sot €0 4 s;,.m%( 2ol . e GoChe
C. - - K. (uG« QY Sunhay, +@Q SunRy Gk uuo)
* Au@ (o074 @Y
D, = : .<~AzScm&Gu@ —CSMQ&hQ)
L Selat 4+ Staaly, e e @ = Co Sutnutie Ganaty

B = | [_ Az( SQ\}@'ILOGAQ\OGJ)AGKQ +

] .
C"‘@"'o SMM‘LD %(}:@ﬂo + Suﬁ)\zkuo

Ga Bt Strnx s Gan a8 Suhal/a &@um«uo)

SRR + S o LY

- Cz( Son 0%, Seth wt Gukxts
Sy, + Sutay

G Qu, S te SKn@ G1@ee SunRY, Strhu UQ) ]

SWIRL + S ¢ Qo



D = : [~A1(Swe&/a&@&/& -

S + Skt

SmBy, Gy, x Sim@4 + Sonkiel )
SW@% + Swmlolg

- Cx <SM°‘Q/¢1 Caan xQp -

SehaGanat, x  Sm@¥% + Subx Ya ) (111-1.9)
S Ble + Seiwly

2. A Concentrated Force at the Mid-Span Polnt: Consider the case of

N

the complete cylinder (fig. 8), satisfying the "Pin-BEnded" boundary con-
‘ditions (eg. II-4.6), where the loading function represents s concen-
trated unit radial force acting at x = (, ¢ = O, This solution is
identical to the previcus solution if x = ,Q/Ba. However, rather than to

make this substitution, it is wore convenlent for subsequent computation

to take the point of application of the load s a new origin of coordi-

P-1 J’/&/'I

nates (fig. 8).

Figure 8



In this case the loading function becoues,

‘1(’&‘@) = L. %) 54)
50 that §@e) = Z\f 3)- $(9)
and P,$) = %- ) 8(¢)
with Pum) = o590 (11I-2.1)

With p(x, n) so defiped, equation II-4.4 reduces to

@2 /'(z) Wiy =27 Woa(W- vy + AW = o

wilth the reguirement thalt W be an even function of %, and possess &

"Jump” in the third derivative glven by

m“l
):Ww“] = K = /M D

~Y 11/22

With & ,@ defined by equations III-1.5, I1I-1.0, the solution satis-

fying the boundary, "Jump” and continulity conditions is

3 [ 3 2
RCDERNCAZN RICORTICO Y
(o s < 94%) (111-2.2)
and
W(m) = A CuQuGanay +BGaRy Swhy
+Q Sim@u Sunhay + D' Gahaty In@Y
(111-2.3)

(o tv¢ $ %)
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vhere the coefficlents are

A =. B Sehal Ganal SWQ-Q G0
GV, + Sc,“x\zu&,/l&[ 2a. o faa ¥ a
B -t
Qor (x4 @)
C = B SonQYy, GaR % Sunhal)  (Gan ok
Gl 8L/ + S el o 20008450 *@‘ Y a ba,
D' = -(%)B (171-2.1)
3. . Concentrated Force at the Mid-Bpan Point with a Stiffening Ring:

Consider the case of a "Piln-Ended” c¢ylindrical shell with a stiffening
ring {£ig. 9), acted upon by a concentrated lomd applied at the uid-span
polint. The ring s idealized to bhave infinltesimal widih, bubt finilte
propertiss othervise,

In opder to sﬁaﬁy thig shellering coanbhination, let us separate the
gysten into three parts: 1) a ring acted upon by an arbitrarily distribu-
ted radiel load; 2) a shell acted upon by the reaction to tﬁ@ digtributed
lead acting on the ring; and 3) a shell acted upon by a concentrated radi-
al foree P. The tobtal deflection of the shell is the sum of that produced
by the distributed load and that produced by the concentrated force. The
wagnitude of the distributed load is obtained by requiring com atibility
of the deflections of the ring-shell covbination. This wmebhod could be
applied to any number of stiffening ringg, and also extended to include

the effect of longeron stiffeners.



Q)

Ring

Flgure 9.

Congider & thin ring (fig. 9) of radlus a_, mosent of inertia I and
T

zodulus E, acted upon by a distributed londing Function @{ ¢ ). I the

B Ly

depth of the ring is swell covpared to its radius, it cen be shown thet

ion for the total

o
1]

only strain energy of bending iz ilmportent In the expre

gtrain energy V, that is,

»
f~)
2

f
¥ * S
V = E;\__I.j‘(uy + UM) Qnd(¥
n
A

The external work T done on the ring is equal to

i
Q@) w'a, dd
-

l‘r!

"

Thug, the totael energy of the ring U becones
¥
k3
U = | Bl (el ) - 9u” |o dé
Aa ! N

‘W

%*
Eeguiring that w (¢ ) be such that the tobal energy of the systen is a



miniows, thet is

o
@
N
0

*
it followg that v wnmust satisly
- P % ~ '
(\y = =3,
: 4?*I‘ 2ur)¢¢ 4+ Qa"‘/EJ\I (III;):I.)

Introducing the dimensionless coordinates

& =wa, G- add/, (T1I-3.2)
equation III-3.1 becomes

The substitubion

@ = i b, Coa mg

(I11-3.3)

D

Fecun

reduces equation III-3,1 a to

ic.wp[bm(ma.)hcm] - o

m=-O

which reguires bm = /(“za l)l (111-3.4)



<

The loading function {eq. III-3.3) is completely arbitrary, however the
condition of egullibrium of the ring as & rigld body reguires that the
total force on the ring nust vanish, that is

N

Q(¢)C¥t¢ Qndq: = o

W
g
fQ(Q) S a,d¢ = o
-
The first equation requires £, = Q, while the second eguation is identi-

cally satisfied, as Q iz an even function of 4’ .

Thus, the deflectiom of the ring under the arbitrary loading becomes:

w’(¢) = a Z(z 3 Gamd Q= o) (111-3.5)
MO
Congider the deflection of the shell under the reaction to the dig-

trivuted load scting on the ring, that is

0, = -~ 4w

q (¢, %) 2 3N Q)

where 1t is assumed that the effect of the ring on the ghell can be satise-
Pactorily aspproximated by a distribution of load over the line x = 0. It

then follows that

9 (1,$) =- %25 QW)

O.

50 thai P, ¢) =~ - —-]g— RYARCYCY]



and
_ F a1 -
m)= - 22 e g (III-3.6)
P Cam) Do Cn (%) 3

with o{x, n) so defined, eguation II-b.k becoues

(m+ ‘2/1‘)wxww ~2nm W’“'(m'ﬂﬂm’w )+ o (- YW =0

aubject to the condition of continulty of the function W and 1ts first

two derivatives at x

= O, and the "Juup Condlticn"” given by

[wwlz K= - 222i _C» (111-3.7)
D a: \-Hl/m-u{z ,
4=0

For n = 0, W, vanlshes as K

n o= 1, W, vaaishes ag C, = 0.
For o > 1, the solution gatisfying the b

Lty and “Juap”
conditions 1s

W@, = Gige (A Gy + B Sinh xt)
+ Sy (€ Somat + D Guho)
(o s s Lsaq) (III-3.8)
wvhere '
A = E\ = - ! Grln oLy — bl SQ&&Q&
//B Cor2 @2 + Seurel [S\ %%\&%Zﬂ. é waﬂ. A
aa RO
B = { . EJ]Q X ) Cm\

‘lo((dq@z) Daj L 'R/rlzm“

C = C = l ‘[S‘Qg QR+ & Suho® Gane.
/B Q&‘%% +Suu34!é% " C“aq ¢ @ 2o




Dyg =D - -(¥g) (111-3.9)

Uping the solution for the concentrated unlt load given by equations
Iii-2.2, I11-2.3 and III-2Z. LL, the total deflection is dbtained by 'super-
posing on the above solution the result of multiplying the solution for

the concentrated unlt force by P, that is

3
@(u,9) = PL/A8HDoT

{ + lllzl

[or- ey + 6

T . 94D Gamd YEL I
+ Z Do (nt+Qy) V4 Ix/maz <P A C )
ms2

[G«Lé"{ (5 Gahuy + Swn o(u) + 30»\@1(5 Semda XY *]3&)\014‘)]

(1III-3.10)

Thug, the deflection of the shell is wmade up of & mé(ﬁe whilch represents
the shell remaining cirvecular (n = 1)}, plus higher modes which describe
the local deviation from roundness.

When applying tl:ee_* compatibllity condition to the ringeshell coolbi-
nation, only the higher (n> 2) defiection wmodes must be equated, as the
ving 18 free to wove as a.rigid Ludy. Bquating the deflection of the
shell at x = Q Lo the deflection of the ring given by eguetion III-3.5
leads o

xS

C:\Q.n  Gam - i ~ AQZ/"nD Glmd NE T
(W)t ¢ L A5 @Y 1 4@ /i ,(P s 'C"‘)
=0 ms2
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g0 That, as the coelficient of each terw wust vanlsh Ldentically,

c

° = o

i
0
Ip)

- Ao (a*+@') Da,d
\ (4 \7\/,““,(1)

A (-0 E.lo

Floally, the defle gsurface of the ghell beoomes

% 3
W (x,9) = PL /482D a . q(%)3_6(%)1+ ']G«p

(-t R/zz

D
+ Z [('u@'u (A Ganeen + Sanut) + SonQu (€ Serdnon +§Gw«uu)i %
had
Pa’ G
ay oL md
WA(CR-)ELL
3“ (11%1-3.32)
o (4 Q2 D
\ 4\( +@). Qn 11'2//.11)
A(.mz‘i)1 EAIQI ~1
In order to evaluabe the effect of the gbiffening ring on the radlal

deflections, eguation III-3.12 can be compared with eguaticn LIT-2.3

Su

whdleh »

P & EVED gy oz D T > Ao g & . e od npe
unatiffened suell. Introducing the nobalion

B l ~ Pa/ap
P Qoo (a*4 Q%) 1+ /s

the deflection of the unebiffened ghell becoues
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m=3

w” (v, ¢) = ?_Q\ f‘q\fjﬁm.[‘\ (Q_“i)s - 6(00]1«”]}&4&

*Z {Gm 8% (A Gornotu v Seiha) + Sin@U (5 Suihow«_ﬁ&huu)]
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ring is to give the deflected surface a smeller curvature, as a greater

proporétion of the load lg carried in the lower modes.

L, A Concentrated Force on s Curved Panel: The resulis of Chapter

I1-kb con be applied to o curved penel (fig. 10), simply supported on all

sides, with e concentrated force P applied at the mid-point,

The losding function ¢ is given by

(%) = .30 8- 4 )
Also,
P Q) = :%‘ IO R CEX N7
g0 that, Fun) = %‘* L 3@) Sonmh /g (III-4.1)

With p(x,n) so defined, eguation II-4.13 reduces %o

pyF-FVAT ) AR GAFW - o (I31-k.2)

v )W L 2 W



subject to the boundary conditions

N

W= W ©

onx =t 42a,  and the requirement that W be an even function of x

and possess a "Jump” in the third derivative given by

AW - - 2?01- Son M /2
1 mm] ’i_m Do 1+ R/'f;‘q (II1-4.3)

Since, in most practicel cases $ <, the case n = 1 will not occur,

W(x,n) can be taken proporticnael to exp (mx). With this substitution, m

wuet satisfy

G R R TN AL S ) P ) S S e TN

If the roots of this eguation are

the assumwed solution can be put in the form

Wa,m) = Gigw (A Gunat +‘BSu§uk1u)

| (111-4.5)
+ Si@v (C Swhay + D'Gahat)

(o s¥ < 23a)

The coefficients vwhich sé.tisfy the sbove boundary, continuity snd “Jump"
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conditiong are

A = A/B = \ . E ‘la-l _\(x .
GORL | Swateg i G2 éswez‘ﬁ&‘g%
A Aa
B = -~ \ Km
Ao (a?4@*)  mV+4 =z /9
¢ =<C/B = ‘ | SmBR GaB 4 X Swima Gahal
(o' €8 + Sane® 28 aa @ @ 20 as.
Q. aa
b = 'D’/B = (D(/@)
(III-4.6)
5. A miform Load on o Curved Penel: The results of Chapter II-4.b

can algo be applied o a curved panel acted upon by 2 wnlform redlal load
of intensity g . This could be an gpproximation to the cuge of a panel
aeted upon by its own weight. In thils latter case, the loasding function

.

7 5 g Gu(b-hh) <9, " RheG-ha) o

vhere there will be a correspunding tengentially distributed load given
by '

g Sin Gl 4) = (- ) - 9,0 (ke 8)s -

Thus the assumptions thet g = comstant (q_) and the effect of the tan-
gential load is negligible, will be s good approximstion to the gravity

load prdblem providing ¢; is small,



For the uniform load provlen, equation II-k.12 becoues
- 3
ID('IL‘M) = 229¢°Q'/I\\I\D (m= l|3|“" ) (EII-SOK)
s0 that, for simply supported sides, the assumpbion that

() = ) W) Sinndg jg

n=u

leads to the reduced eguation

~A =~

(m + \&/71) Wi —2;‘1“])1:1'(7“4* ANV AW (R) = an P/d,

M =2y
( /4.) (111-5.2)

Teking W(x,n) to be proportional to exp (mx), it is found thet w must

satigfy the equation
(m's ta/,zz)m\“ ~aa( Al AMar)mie R (A1) = o

If the roots of thie equation are

m = toref

M

the solution can be put in the form



Wam) =W, + AGifuGonuy + B Sunfru Suhay
(o svs L/a0)

Teposing the boundary conditions on x = T £ /28 that

the coefficients bhecome

W, = 43,9/ a%D (R~)7
A = - V{p [(az‘et)sgn%SM;% + au@m%&m%]/

T T el Y - Q 2 2 .2 -2
[(a-@)sun@ﬁ &%SM%M%‘{Z +o @ (&*%Mﬁ”&“%iW?q ]

B = -~ V\__;P [(“’~€’)Q&%w% - Qag St}n@a;oa Swh%%]/
L g - k1 Z . .. 2
[(a-@)sw%%m%% Sm‘gg&w%we(mggm% ~ So&@afz_o__ Sonk %)}

(ﬁ\ = 1,3, F, ~’“->
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Chapter IV

APPLICABILITY OF THE APPROXIMATION

To eptablish some criterion for the range of approximate validity of

oF

he differential eguation that has Deen derived, an investigetion of the
fregquencies of harmonic vibration of each Fourler cogponent of the de-
formed surface was made. By comparison with more accurately determined
values, one can obtailn a range of parameters within which the assumptions
thet el,q = O give aﬁaurat@ regulte. This same criterdn can be carried
over to the static loading case.

In 4he following section, the freguencies of harmonic vibration have
been computed including the effect of the longitudinel ineriis terms,
thet is, body forces in the x, y-directions. These frequencies are only
approximetely equal to those cbialned from equation II-3.21;, as the deri-
vation of this egquation did not provide Ffor the inclusion of body forces
in the x, y-directions. The body force in the z~direction is cbiained ﬁy
replacing p(iz«:%, $) by - § hw' . where § is the wess of the shell per
unit volume. However, this effect vas ehown by Reissner {(24) to be unim-
portant, that is, the freguencies of transverse vibration were relatively
unaffected by the presence of the loagitudinsl inertla terms. Thusg, the
conclusions dyrawn from the results of the general freguency equation ap-

ply equally as well to equation II-3.2L1.

1. Derivation of Freguency Pactor: Consider the harnonle vibration

of & complete cylindrical ghell, the ends of which are sluply supported
according to equation II-4,17. In accordance with the boundary conditions,

take the deflections to be of the following foru:



m m T
w (W, 0) = Z Z Cs3 S‘;.\«_A%s’cuw Gl we (Iv-1.1)
m m

where A = u\ a/& and wm,n are mve nusbers representing the nuiber of
axial half-waves and circumferentisl full waves respectively. Substituting
equation IV-1.1 into eguetion II-3.3 and ueing the relations given by
eguation II-3.2 and equation II-1.4; one cbtains the Pollowing expression

for the total strain energy of the shell
Eni®d Alre Vo, et 2
Vi) = z z Ao (- vz) A [(;1) + 31—;(] + (C'z.- QB)
+ U (Y’ +av[ (M) (ts-c) +¢5 A,l;‘(m‘q)J
+ —%{(\)(C Ca_)+ ~2 (Cz,"\ - a¢yCs "‘Qa/m)} Cu_lmt'
(1v-1.2)

Corregponding to the asawptions that € R,q vanigh, the above expresgion

reduces o

E hQh 7- AN ?
Ve - Z\Z“\o&(\‘ 3y [k<;‘*+% M Qz/\a ()™

+ xZ'V.(n}-u) + (:g‘%f(’“:ml'-)z] G we

(IV-1.3)
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ag this assswoption requires

I? our attention ig restricted to fregquencies below which the effect
of rotary inertia is lgportent, the kinetic energy per unilt volume N

reduces toi
¥ r? > R
No = %C (h)t * v)t + w)t ) (Iv-1.%)

Thus, the total kinetic energy of the shell N bhecoues

NE) = jjfﬁxo ady’dpda’ (IV-1.5)

Substituting equation IV-1l.k4 into equation IV-1.5 and using eguation

iV-1.1, the total kinetic energy becomes

kS

kS .
NE=®aOnfpau (0 1+ ¢ + X ¢)SRex (IV-1.6)

Corresponding to the assuupbions that €, ,9 vealsh, this expression

reduces £0

N@) = netea - (1r Ly A) Swlew (IV-1.7)



The freqguencies of vibration, as defined by a frequency factor V , are
chtained by eguating the wmaxiwmue kinetic energy to the waxicum strain

energy, Hence

v = R/S

(E‘I"lq‘g)
vhere V= (1-v)get W E
A C] Xl 2 z
R = X\ I:(%J + C_‘;ii'( ] + (C-Cs) + G T/la'(-"‘l“)a
2
e [Q\(%) (G-Ca) + ey >~1'(z/lat'(mhﬁ)]
i 2 2 R 1 2 2
+ ‘;;’ l(%‘;)(cp Cz) + x'(z/:;' (Cs m ~aC, ¢, + 7::1.02)]
? 2 &
S = ¢C; 4 ;’;;'Q: + (%\—J C, (IV-1.9)
wnen €,,9 = 0, the equations in IV-1.9 reduce %o
(v T)+ G o0t XY (Rag 4 2 ()"
x(—;\:&*]a)"'l&(m—‘ + " o~ +—(; T
VvV = =
}
o+ R + ]
(Iv-1.10)
2. Anzlysis and Comparison of Results: As a result of the simplify

ing agsumptions that € .“(7 vanish, a single linenr equation for the

frequency factor was oblained. The exact wethod, as Pfollowed by Arunold



and Warburton (25), involves subgtituting equation IV-1.1 into the three
Yexnot” differential equations, thus cbtaining three pimultanecus, houo-
geneous, linear eguations in the varisbles C, , Cia , Ca . The reguire~
wment that the deterainant of the coefficients nust vanish glves a cuble
eguation in the freguency factor. The esse with which eguation IV-1.10
is solved in comparison with the classical cubilc equaticn indicates its
posgible shorteomings.

A couparison of the results obtained by Arnold and Warburtos, and
those obtained from equation IV.1.10 is presented in figures 11, 12 for
two values of h/a. It can be seen that for the lower circumferential
modes {n-swall), eguation IV-1.10 represents the actusl physical system
only in the neighborhood of lower axial wodes (A-sumall). Hovever, as
the number of eireumfereﬁtial waves increases, eguation IV-1.10 is satis-
factory up to en increasing nucher of axial waves.

Thig can be lnterpreted on the basis of the underlying asssumptions
derived in Chapter II-2, Consider an elemental panel (fig. 13) vibrating
in such & way ag Lo satisfy the boundary conditions of 2 gluply supported
beamn, that ig, vanishing of the deflection v% and the bending noment

v * % gt the ends, and of the shesr strain oun the upper and lower

gurfaces.

o N
N 7

A

I L9-o

% 1_\/:‘ ){1(‘:0 \v'l \/11'1’20
Y=0
Ll ¢

Figure 13.
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From the equations IV-1.1, one finds that the dimensions are such that
the span~to-depth or slenderness ratio is m/x . The nore exact theory
of beams, as given by Timoshenko (20), shows that neglecting €, is
Justified only if the beam is slender, that is, n/N of the order of
ten. Thus, by analogy, one should not expect agreewent with "exact”
theories when the wmodel corresponds ©0 & short-deep besm. Actually, the
agreement extends satisfactorily to beawms vhose slenderness ratio is
practically three. This is evident in the accowpanying figures.

These results can be carried over to the gtatic losding case. By
analogy, if the loading functlon produces a deflected surface whose de-
gcripbion by & Double Fourler Series depends gtroﬁgly cn those wmodes which
lie in the range n/X < 4, one cannot expect patisfactory agreement.
Thus, the deflection due to a gtrongly varying loading function cannot be
expected to be accurete, However, frow Saint-Venant's Principle, this
discrepancy will be localized in the vicinity of the strong varietion. As
will be ghown in a later section, even for the ultimate case of uw concen-
trated load, %h@ deflected surface cen be described reasonably well even

near the load.

3. A Becond Approximation: Certainly, in the ezacht treatment of dee
formation, the strains €, Y do not venish, though their effect way not
be large. However, for computing natural frequencies, the restricticn of
movement caused by the vanishing of €., gives rise to inereasing error
as n/\ becomes small, as shown in figures 11, 12. In order to obitain
this Trequency range more zccurately and yet retain some esse of calcus
lation, an iterative scheme will be devised based on the results of

neglecting €, .
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As ghown in Appendix 1I, one can apply to thin shells the classical
two-dinensilonal equations of equillibrium. This wmeans that the effect of
bending on the in-plane equilibrium of thin shells is negligible. Thus,
regtricting attention to the net siress acting over the thickness of the

ghell, thet is, the mewbrane gitress, 1t follows that

T v Ny - ¢ L (IV-3.1)
Oy e T e Ve (1v-3.2)
where 0 = %1 (€1+ vea) (Iv-3.3)
¢y = \_E—,,s (ca s ve,) (IV-3.4)
?“ = GY (1v-3.5)

Agsunming, for s first approximation, that € a,() vanish, sguations

IV-1.1 becoune

27 C) = ) ) S(2) 6 Gu g Guen (1V-3.6)
V:(f,«#) = Z Z % Sim /'_"_}3' Samdlet (IV-3.7)
o, (C\4) = Z 2 ¢ Sen m_;y'euq,&m (IV-3.8)
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FPurtheraore, uj: way be congidered the exact delflectlon, ag eguation
IV-3.6 is perfectly general, Heuce vf‘ N wf are derived from m‘i ag a
result of the assumption that €2, vanish.
With this Pirst approzimation the steps 1o be followed ave
a) Compute €, frou equation II~1.6,
b) Coupute €a from eguation IZ-1.6 and substitute €.,€a into
IV-3.3 in order %o evaluate 0; .
c) With ¢, , compute /)‘@},W fron eguations IV-3.1, IV-3.5,
and giuwilerly ,

d) Compute Q’y_ from equation IV-3.2.

e) With Q‘w , €, determine s new value for €a from eguation
Y

:{T‘VT”.’S-?}.
L % ) #* #
£) Pinally, with ue determine a corrected v = v, fron equation
- S" . N . #* %
II-1,6 using determined in c¢); and a nev v = w, frow
# *

equation II-1.6 using €, couputed in &) and v = v, .

Followling the above steps, one finds
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a) o Zg = {c(%\*—’)a-(%)z[ ()¢ (‘%‘)‘]}Sw—}v’a«w&m

from Ty = Q’f(c v;“' - ,);1,\")44’

c )a-v?

ey <))< 7;e(%gfp+(gf}*w(%f{gr Sinay G nd G

from €,-= “;1% - V&,

Z %\ [ I+ E/gw (%\)2‘ Q/G(QT(QY] Sem ALJ’:_@' Son mdp GL@:

¢ { - E/é“"‘)(%) ~ e/G (Q_;‘_g)-l__ .‘E—Vle(g‘%)(l." '\7//:)

3
3
31

AT+ QY] S Gung Gawe

¥ ;3
from V, :f(9~ éb;)du and & = V,q) -~ Q€3

This iterative process could be repeated indefinitely, but on comparing

the above results with equation IV-1l.1, the displaceument coefficlents

are seen to correspond to

CZ :[ i+ \_‘__‘\.’tz()\t-—V)}C

¢s = ca- [T 2+ 3 A)']e

(1v-3.9)
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It hes been found thalt these wmode shapes give sufficiently accuraie

freguencies so tha% Turther iterations are not warranted. Thus, defining

Azcl/c, B=C3/CI
That is, from equation IV-3.G,
A=y &L (X-9)
l v v Ayt
B = A—(%\)(‘V*,—“‘z)“ o +(2)

the freguency factor expression (eq. IV-1.5) becones

v=R/S
where  R'= (X)'+ Ty, [xu (v s Ay X () +a (o)W (B
+ (a3 v av(AT(B-A) + S (AV(A Y
- XY () AB 3 N4 (A)VAT

x
T

S'= B+ LA +(2)

(IV-3.10)

(Iv-3.11)

(1v-3.12)

(Iv-1.13)

It has been found convenient, in calculating freguencies with egquation

IV-1.13, to use the following procedure:
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a) Compute V frow equation IV-1.10.

b) Evaluate A,B.

c) Compute V from eguation IV-1.,13.

d) Répeat from b) until the process converges.
Thia method has been followed %o obtain the frequencies shown in figures
11, 12. Within the range of Qar&meters presented, the frequency curves
determined from equation IV-1.13 are not distinguishable from those of
Arnold and Warburton.

L, Application to 8tatic Loads: In particular cases where the distri-

bution of radial load is not a strongly varying function, it way be con-

venient to uge a double series sclution rather than the wethods of Chapter

II. This wethod wight be more applicable to automatic computing methods.
Consider the following system (fig. 14) with an arbitrary distribution

of radial load q.

Figure 14.

The displacements uway be written

W(@8) = ) ) R (R) o RdY Ging
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w (V) = Z ch %I- Ga m$ (Iv-4.1)

Corresponding to equation IV-1.2, the total energy V of the shell becomes
-2 EhXW & m, A §
\' ZZ TR OB ) (IV-4.2)

vhere

SRS R (CR PR I S R

T (1|

3|
~—py

(%)l+ xz'll/B' (ml~ a.% +/§%1)]

{(IV-4.3)

with A,B defined in eguations IV-3,10, IV-3.11 and IV-3.12.

The btotal externzl work T corresponding to equation II-3.4 is given by

"ff‘}(’k‘;‘))z an S(m”:‘z—“'G&MQadt'c\¢ (Tv-b.4)

If one wekes the approximation that Qafy vanish, the Principle of
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Least Euergy requires that

3(v-T) = o (IV-k.5)
o
€ - E:K;bﬁz\) fc’*““*’ f R Sim 2 (17-1.6)
where
fan - X(Lt L)+ L0t s B v oy g (52 (T¥-5.7)

This solution is essentielly the one studled by Hevashi (19).

In order %o obtaln o wore accurate solution for a given loadlug cone
divion, one can apply the results of Chapter IV-3, Eguations IV-3.11 and
Iv-3.12 give C, as & definite function of C, , C, . If eguations IV-L.2
and IV-L.L are substituted intc equation IV-L.5 and the varistional pro-

cedure carried out with C, a8 the dependent varisble, it follows that

- ot (v-v?) * *
T T TN JEM “‘4’6‘#]‘3(""“3"“ Tvd“ (1V-4.8)

Por purposes of computation, it has been found that one can satisfactorily
approximate the mode shapes by neglecting the inertial eifect Y s that

is, by taking

o
}
<
T
3
~
»
+
—~
I
S’
£

(IV-1.9)



This is showm in figure 15.

The preceding analysis consists of an expansion of the golution in
terms of mpproximete mode shapes. It was seen in Chapter IV-3 that these
modes led to frequencies that were indistinguishable from those calcu-
lated by nore exact methods. However, as the freguencles are obtmsined
from an expression involving the integral of the modes, one must expect
the accuracy of the mode shapes to be less than that of the frequencies.
This ig shown in figure 15, The "exact"” mode shapes were obtained from
Baron and Bleich (26). The mode shapes resulting from the assumptions
thet €., vanish lie on the axis, as A, B are identically equal to one.
Again, it 1s evident that this assumption is reasonable only in the vie-
cinity of »/n < 1, that is, & model of the shell consisting of long
slender eleuental beams. The second approximetion given by eguations
IV-3.11 and IV-3.12 is applicable over a much wider range. In fact, it
is fortultous that the errcr in approximating the wode shapes by equation
IV-k.9 seems to be in the direction of closer correspondence with the re-~
sults of Baron and Bleich., Presumsbly, if the iterative procedure de-
scribed in Chepter IV-3 were carried an additional step, it would result
in mode shapes that would approximate those of Baron and Bleich more

clogely.



1000[

100,

Deflection Ratio

10

1.0

-
+

—66—

B { Eqn. I1V-3,12)

e

A ( Egn. IV-3,11)

O - A{Baron and Bleich)
A - B{Baron and Bleich)

& - AlEgn. IV-4.9)

L B(Eqn. IV-4.9)

Slenderness Parameter (M/n)

4

5 6 7 8 9

Figure 15 - Deflection Ratio

10



- 67 -

Chapter V

EXPERIMENTAL PROCEDURE AND RESULTS

It is the purpose of this chapter to examine the behavior of the shell
surface in the neighborhood of a concentrated lcad, which is the ultluate
in discomtinuous loading functions, in order to deteruine both how large is
the region of discrepancy between the approximate theory and experivent,
and to obtain & weasure of this discrepancy in both deflee%iaﬁ and strain.
By extrapolating the resulte for & concentrated load to the nore geuneral
loading functions, one caun cbtain a measure of the accuracy of the approxi-

“mate pethod in the general case,

1. ﬁ Experimental Appsratus: The cylindrical shell used in the experil-

mental investlgetion was coustructed by usual sheet metal technigue with

o welded longitudinal sesa. The material was & low carbon steel that had
‘been ecold-rolled., The dluensions are those given in Appendixz I. Two rings
soldered into the ends of the shell to retain the shape afforded a means

of festening the deflection-measuring fixture. .

The load-spplying device, shown in fi@ure 16, consists of a rod o

which sandbags of any desirved weight can be placed, and which is gulded
by & wooden frawe, The load is actually applied to the shell through cone
tact with the end of the rod on which a hemisphere of radius 1/4 inch has
been ground.

2. Radilal Deflection: The apparstus used in the measurement of radi-

al deflection wes the same ag Thalt used by Hayashi {19). This fixture,
shown in figure 17, cousists of & long bar which rotates freely in the
shell and on which is wounted = slider holding a diml gege. It was found

convenient to use a l-inch Ames Disl Gage with a least reading of 0.001 in.
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Figure 16 - Cylindrical Shell with Load Applying Apparatus
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Figure 17 - Radial Deflection Measuring Fixture
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The axial position of the éliaer coculd be measured by an attached steel
tape (lemst reading 1/16 in.); while the sngular orientation could be
meagured by a protractor faétene& to the shell (least reading 1°).

Since the shell was constructed by the usuasl sheet metal technigue,
the crosg-~gections were not perfectly round, although the generators
| were r&aﬂeﬂably gtraight. The initial surface of the wid-span station is
shown in figure 18. The scatter in the cbserved points is due to the
effect of different orientations of the shell, that is, the deflection
due to the veight of the shell itself.

Deflection data was taken at geveral points aroanﬁbthermid~span
station with a concentrated load appiiled gt this station, and is presented
in figure 19. BEach set of symbols applies tos different angular orien-
tation of the point of application of the load which are given in figure
18, It is to be noted that the initial curvature has a marked effect on
" the final deflected surface. So-called high spots or pesks,as at ¢ = 50°
(2ig. 18),give deflections which are low; while at low spots or valleys,
s at P = 1500 (£ig. 18), the deflections are high. This difference is
esgentially the result of applying the load alternstively along & wajor
or a uninor axis of a locally elliptic surface. The resulte cbtained in
the relatively constent-curvature reglons, that is 20° ¢ ¢ < 900 and
200°¢ @ ¢ 270° (£ig. 18), were consistent in the peak.readings. How-
ever, 1t wes generally found that the surface lmperfections had a greater
effect on the resulting deflected surfoce in reglons where the shape of
the 6efleéted surface was slovly varying, as at a couparatlvely large
distance from the point of application of the load.

A representative set of data is shown in figures 20 and 21, where it

is compared with the computed curves of Appondlx I. For the circumferential
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Figure 20 - Radial Deflection vs, Angle - Sta. 0
Comparison With Experiment
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variation (fmb. 20), very good agreement is found in the region away
from the load; while, in the reglon under the load, the curvatures that
were caleulated are found to be much sualler then those cbgerved, For
the axisl variation (fig. 21), the discrepancy again 1s in an underesti-
mabion of the curvature in the nelghvovhood of the lond, bul there the
effact extends to largey disteunces frow the load,

§

From these resulbs, it can be concluded that the approximste uwetnod
underestinates the curvatures in the neighborhood of the load, but gives
g good representation élsewhere. This &is&réyancy is more pronounced in
the axial direc%ian‘ﬁheré th@ r&te of change of cwrvature 1s not as large
ag in tha ciruumfereuti&l directi p .. Thus, slince the strain depends es-
gentially on the local curvature, ahd the diﬁcrepamcy in the curvabure
extends frow the locad to 2 grester degree 1n the axlal dlrection than in
the circumfersntial direction, one can expect the ii@cr@pancy in the obe-
served strain $0 be in the region under the load, bub 1o extend in the

axial direction to a greater degree than in the clrounferential divectioun.

3. Axial Mevbrane Strain: In order to peasure the axlal strain,
electric reslstance strain gages (Baldwin, Type A7) with & gage length

of 1/h dneh (width 1/8 inch) were atteched to the surface of the shell.
Two goges were located at each axial statlion, one ou the inver wall and
one on the outer wall., Measurements were taken 2t axial gtations 9/16
inch and l~3/ 2 ineh from the nid-span suaticn at whieh the load was ap-
nlied. The strein was measured by meane of a Baldwin Strain Indlcator.
The wyparatus is shown in figure 22,

As the wall thickness of the shell wes 2 nominal 0,015 incl, and the
total thickness of the gages (paper + grid + paper) was sbout 0.005 inch,

it was suspected that straln neasuremente in bending wight be greatly
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Figure 22 - Cylindrical Bhell with Strain Measuring Apparstus



affected by this apparent increasge in wall thickness due to the gage. In
order to measure this effect, & strip of the same material was tested as
o cantilever beam. Four geges of the same type were located on the beaan
in the sawe fashion as they were located on the shell. From the resulis
shown in figure 23, it 1is evident that the reading of the gege can be as
mich 88 20-25 % higher than that expected on the tasis of simple bean
theory. However, the most significant result iz that, due to small differ-
ences, 85 in the amount of glue aspplied to the gage, it was found that
gages at the same station gave results that amight differ =s much as 5-10 %.
Thus, as thg newbrane strain is taken ©o be half the sun of the readings
of the two gages at o given point, it is possible that the resuiting new
brane etrain can be in error by an smount equal to approximately 2-5 % of
the bending strain a2t that polnt. Particularly in the neighborhocd of the
load this cen anmount to a8 much as 2-10 % of the mewbrane strain.

The results of the wmeuwbrane strain messurenents sre given in figures
24, 25 corresponding to the axial stations given sbove. It can be obe
gerved that within the 11&1@3 of the error In the gsges mentioned above,
the strain results are as predicied from the snalysis of the deflection
reasuremente; that is, for any gliven asxisl station, the agreement ig good
away from the generator ¢ = d, but near this generator, the lack of curve-
ture given by the approximste theory results in straing that are not in
good agreenent with those cheerved.

The strain in the lmedlate vicinity of the polnt of application of
the load was evidently above the yileld point of the material, as plastic
flow was visible at the points where the lomd vas applied. BSeveral at-
tempts were made to ueasure strain in this region, but due to the highly

localized behavicr of the gtrain snd its wmagnitude, the goges failed or
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Figure 24 - Axial Membrane Strain vs. Arc Length at Sta, 1-3/32;

Comparison With Experiment
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indicated that possibly the adhesive had broken by exhibiilng s changlng
null point.

Thus the strain in the vicinity of the point of application of the.
load is divided into three regions. The first, closest to the load end
extending s distance couparable 10 seversal shell thicknesses, is probably
degeribable only in terms of 2 wore complete three dimensional anelyeis
and exhibits a plastic deformmtion. The second, extending asbout an inch
from the load, 18 o reglon in which the strains Gz)<7 are important. The
third, comprising the remainder of the shell, is a region in which the

strains €3 are not significent and the approximate method is sufficient.



Ag a result of considering a cilrcular shell to be the limiting case
of a polygonal shell, a method of anelysis was developed that neglected
the contribution of the in-plane sheer and circumferentisl normal stralus
to the deformation. The classical systém of three partial differential
equations given by Timoshenko (3) has been reduced by this simplified
approach to & less complex set, namely

(Ve +3aVe v © - P) +|a/,zz By + ROV (o 1 0,)

19ddd wed e o

Y = O

P

&,q + Yy, = O

For the case of a complete shell, the substitution

W (% '4,) =Z\J ('U.,A\)Q—Am(#

mn=i

reduces the equation for w to a totel differential equation of the fourth

order given by

(m* + ta/zz) Wi~ 27 W (m“— v+ tw) + m'q(mz~ YW = o

This is to be compared with Donnell's equations which are



8 2 A
~ -
Vo o+ '—,(z Wgyay = VP
“ -

\vAalY

i

(a+ 7)(13“"1) w + w:¢¢¢

With the same substitution for w, Dounell's equation for w reduces to &
totel differential equation of the elighth order.

An anslysis wes wade which estasbllshes the conditions of loading under
which the approvimete golution gives satisfectory values for stresses
throughout the shell., It was fbmnd that if the loeding function cauldtb%
expanded in a Douvble Fourier Series such that the principal coefficlents
correpponded to wave nunbers heving circunferential wave nurbers n grester
then or egusl to,sbout three times the axial wave number A , the approxi-
mate solution was in good agreﬁmeht with the solutions dbiained usging s
more exach spproach. This iz eguivalent to reguiring that the prineipal
deflection modes of the shell give rise to elemental panels with a high

slenderness ratio (1length/depth).

Thus, 1f one has a stroungly verying loading function, the approximate
method will give more accurate results if a/d is swall., For, with a/l
small, a8 A is proportional to a/ﬂ , then for a given nunber of axial
waves, & greater range of n is within the desired range. When a/d is
large, good representation of & strongly varying loeding function is not
possible,as the principal modes lie outside the dasife& range,

A couwputed solution for a concentrated load was compared with experi-

mental neasurements of radisl deflection and axisl nmesbrane strain., It



. Bl .

was Tound thet in the lmmediate neighborhood of the concentrated load,

the approximete solution was in errvor. The observed deflection under the

load was sbout 20% larger than was calculated. No strain data could be

obtained in this region. However, outside the region lmmedlately under
the load, good correspondence wag found between the cbserved and calcu-

lated values of both deflectlon and strain.
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Appendix I

CALCULATIONS FOR A CONCENTRATED LOAD
APPLIED AT THE MID-SPAN POINT OF A COMPLETE CYLIMDER

In order to carry out the indicated summation for the case presented

in Chapter III-Z, the roots o, of the following eguation wust be cbtained.

/mq—- A mt 3 é = Q
s} = A
= X -~ a~¥ym ¥ -V
where A= am.Mm 2 > o
mt s la/:zz

3 A (m1~ l)z

B =
nY + R /rll
It follows directly that

,ml': /-\/a iLs‘B *(A/a)—”

In polar notation, n° can be written as

(1 o)

where o - lam [Q/A-\{é «(K/a)l ]
a = \B

This iz shown graphically in figure A-l. Therefore, the roots u are



given by

(2 9) C(EO/a4+ W)

Va e s e

80 that X =«/Ja;(ﬂ[l:31 + R/a)‘

¢ - ’\ji(ﬁ ~ I\/a)ﬁ

Figure A-1l.

For n > 10, n* is negligible in comparison with n s 80 thet the

following simplifications can be usde:

IR/;L = mé’//(mq-}Iz/?z)
B = m%/ (s 32/72)

If ¥ is defined as

N = U/t /pan®



then

(m2r0)
Nl'i-el = mzN
0(2~@7~ = N2
Using the following data,
£ = 30 % 10 pei a = 3.367 inch
h = 0.015 inch £ = L5 inch
Y = 0,89

values of W, £ , A/B, B, C/B, D'/B have been couputed and sre presented
in Table I for the first thirty-five terms. It is to be noted that all
the above items save B sre general properties of the differentlal eguation
applied to a particular cylinder geometry for arbitrary loading function
at the point x = 0 and "Pin-Ended"” boundary conditions. Only B is charac-
teristic of the lcading function.

For the case of the concentrated force of megnitude P located at the
wmid-gpan point, the deflection w and the axial wembrane strain €, are

given by -
wy,$) = ZW(’U,M‘)CMM¢ + W) G
mz1
e (v ¢) = Z Wi benp + W (60 Gap
M=y
vhere
Wea) = BGuge (Sahar +Ap Gana)

| + Sem@u (Q/B Stk oy~ &.huu)]



- G0 -
and
W]w(‘u,m) =B G-L@‘(.[“ (dl# @z) S\)\\M(Xu B (Nz% +ao(€-% - Qt% )Mdul
S [(0 -aep - €5) Shr - § (016G

For purposes of carrying out the calculstions, the following functions

will be introduced:
? ) = G gu (Sw«au + % Codn au)

+'Sw@u<% S W ~ %Qwhocu)

Aax) =% GA@&L (4@ Sunoty + (oA +30gS ~@’%)Gu\o<u]

AN

o)

+S(m@'u[(oiz% ~axgz - "% ) Sk ot - %(a\ Q%) Gan u”u}

(A-I.1)

Thus, the deflection and axisl wewbrane strain relations are given by

G d) =) Bhund < Fra) + W) Gug

m=\
® (A-I.2)
€1, d) - ZB Gum * A %) +W_ G ) Gag

L%
m=

The functions ?,X can be greatly simplified if the bebhavior of o ,@ is

determined for n-large. For n such that

|a/m.<422 < |



W can be sxpanded asm

N = W (G R GER)

k3 a
Therefore, o ,(3 can be expressed as

et B R RG]

w0
]
3
~|w
»
r—
)
214

()« 3 (&) -]

n\z‘

o« e L (IR AT /2
80 that /@ c: [ b i‘(mnzz)“ [ ;;iz)" "]
Thus, as

o
m+w® Svﬁ.h"al_% M%_%b

it is justifieble after a fev terms to take

__6__ = — l. Q Q - [*'4

B - B - (€

When this simplification is introduced, the functions ?, »f becone

0&'(’"\,%) = - e—au((h@u + % S%é’u)

A = L™ (G- & Say) (m2m')

(A-1.3)



"'yz"

For the wvalues of JQ, & glven previously, this simplification can be ap-

plied for n' = 7. Defining the angle ¥ as

Seny = @/J LYY GY = «Noa&@E

it followae that

4
]
ﬂ
o
T
~

P,m) & san(¥ 4 av)

-/K('Vlm) = a4 @2 . Q—‘W Di*_@_z Sn( ¢.~@7‘) (m amf)
. € =

80, for n-large,

Lim |B] =< o Lim | £] -

n-r s

‘and, for x = O,

Lo (F) = - 1o Jim (A) = N
T-+0 U +o
mo>mt myat

The procedure in calculating w, €, is therefore to carry out expilcit-
ly the summation indicated by equation A-I.2 using the relations of
equaticon A-I.1 for n < 0¥ and the relations of equation A-I.3 far/nenﬁg
After a number n* of terus, it becomes reasonable to make the approxi-

mation that

B/P SO L (m)m*)
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%
For an error in B/P less than 10%, n cen be teken egual to thirty-five.

Thus the remainder of the series can be taken %o be of the form

R,@é) =~ o Z F G m g

S, (1e) =~ =5 z,m ) @umd
m30

where 36

@ ) = ) Bland xFaun) + R ) + V)G

m=1

Gl(ﬂ,*b) = ZBG&/A(} x '&(’U,m) + 3, () + W, (1) G &

m=|
From the behavior of ¢, 4 described above, it follows thab

R.(00)] ¢ o5 | ) B3|« Feee)
m=36 ™
S, @e)| ¢ ‘%‘—5 z m3' A, 35)
m=36
vhile -
Rm(°)¢) = l{zb z Q:n?
m=30
S, (o) = - s ) Tund
nse

(A-I.k)

These latter functions can be deteruined explicitly frowm a considere

ation of the-following function

E‘a(‘b) = i i&’@«mdb

m=

(A-I.5)



In Jolley (29) and Bromwich (28), the following function is dellned

Gind .l (aSmdia) (o< ¢ <an)

m

e

Therefore, from the unifornity of & Fourier Seriles, it follows that

<

SIS —Mzﬂ,ﬁz Son m (A-I.6)
and SV I (2 S ¢/2) (A-I.7)

Integrating once with respect to ¢ results in

E"')d; - éﬁma + a ,B“(Su\\u)thb + C,

This latter integral can be expressed in terms of a serles given in

Dwight (29), so that ":],* becones

| 3 &
Ty =t s ot a[%ﬂ’“% S L))

am+

m”‘B,.\(q’/a) ]

aamei)l

a

H-

\ ?
- (_) U1
19,845 a

where the B, are Bernoulli Nusbers. From equation A-I.6 it follows that

so that C,=~fbm(gtﬁm¢)= o



’s‘_é:}
G

Integrating once more, the function T (¢) becoumes
— 2 $\4 2
Z(@) = ($)(ama-2) +(2F (LY - ‘e(-a)[ Lo ()

" B 36 PN
<am+()| ;:( )

From equation A-I.5 and the fact that

f‘”" (¢70nd7) =

the constant C, becomes

Ca= 2 = &

vhere \3(3) is the Riemann Zete Function of argument three, Finally, the

function @) can be evaluated in the following form:

= ‘f(s) +(%)a(ﬁm‘4~3) “'(%)a’a”‘<g)a 18 %) [ +

Im-3
L (9 | e\ . a ‘B 36
(1) + ———_( ) 4---F mcam/'“)‘. ot (

(A-1.7)

The remainders Rn 2 Sn are then calculated by evaluating eguation A-I.7 for
a particular value of $ and subtracting from this the sum of the first
thirty~five terms. The results of this calculation are given in Table II

for several values of 75 .
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The calculations indicated above have been carried out for several
exial stations for both exial weubrane straln and deflection. The results
are presented in figures A-1.2, A-I.3, A-I.k, A-I.5, A-I.6, The remainder
terms for x # 0, using eguation A-I.4, are found to be negligible coumpared

to the contribution of the leading terms,
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Figure A-1,2 - Axial Membrane Strain vs, Angle at Sta. 1-3/32
Simple Beam Concept
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Figure A-1,3 - Axial Membrane Strain vs. Angle at Sta, 9/16
Simple Beam Concept
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Figure A-1.4 - Axial Membrane Strain vs, Angle at Sta, 0
Simple Beam Concept
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F1g_ureA -1,5 - Radial Deflection vs., Angle at Sta, 0
" Simple Beam Concept
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Appendix II

APPROXIMATE EQUILIBRIUM EQUATIONS

From Timoshenko (3), one cbteine the Following linearized differential

equation for the static case:

hl ’ _‘__ (L]'* ) hl v v' _ —\- ¥ _
R (mw'l'Q’ o) Yo ¢V Ve ar | = O

If the dimensionless rstios given in eguation II-1.1 and equetion II-3,.20

are introdixced ; the gbove equations become

~y
Z‘xU‘u * La_‘”x#d) + L‘%‘!.qu, = VWi
\/’¢¢ + %.V’kt \ia} Z(’u‘*) = uf’¢ »
- ?l/na (0 i * Copgg + 7V Yy *VI¢¢> (A-11.1)

ig '(_1<< 1, the above equations can be approximated as

Y L4V -
Uy * T Uepq + Vs = VY

(A-II.2)

V’4>¢ + ':31-/~v,11 A Lii:—y.&|]‘¢ = w)¢



&
[
3

Lak

H

or equivalently,

Uy +’V(V"b~w)] + ‘:-al.(&@ +Vm)'¢ = O |
N v (4-II1.3)

]
0

_V,4 ~wrow ‘VZ&,‘,])Q + “T".(Z(q +vm)

"
Except for a factor of proportionality, these equations are just the differ-
ential equations of egquilibrium for the static two-dimensional theory of
elagticity, If the variables u, v in equation A-II.2 are separated, the

equations become

«

VU = YWy ~ Wiyee

(A-II.4)

“

vy = (a.'i‘V) w’¢ux+(ﬁ’,¢¢¢

It should be noted that equations A-II.L are well suited for approxi-
mate caleulations. As the dependence on w can be placed on the right hand
slde of the equatiocns, w can be trested as a forcing function. If one can
determine an approximate form for w by soue means, it can be substituted
in equation A-II.L in order to compute u, v. Thus, instead of the methods
of Chapter II-4, one might calculate u, v from equation A-II.4 using as an
approximate form for w the solution given by equation II-3.21. This method
should leaed to wore accurate strains than the wethod of Chapter II.L, as,
in this case, one obtains the exact u; v corresponding to an approximate

w, whereas in the method of Chapter II-4, one cbtains only approximate u, v

correagponding to an approxiumate w.
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B/P

n X @ A/B « 10° ¢/B. D/B

2 0.08802 0.08765 -0. 2505 =566,5 1.106 ~1.00k
3 0.2163 0.21%0 -1.077 ~-19%.5 1.159 -1,011
h 0.3967 0.35%0 -1.00k -100C. 4 1.007 -1.020
5 0.6305 0.6111 -1.001 -61.74 1.033 ~-1.032
6 0.9195 0.875¢ ~1.000 -41.76 1.0k6 -1, 0l
T 1.266 1.150 -1.000 -30.07 1.064 ~1.064
8 1.670 1.540 " -22.64 1.084 ~1.084
o 2.138 1.928 " ~-17.61 1.109 -1.109
10 2.680 2.357 " -14.08 1.137 -1.137
11 3.276 2.805 " -11.28 1.168 -1.166
12 3.937 3.27h . -5, 340 1.203 -1.203
13 L, 664 3.75% " ~-7.83 1.241 -1.2k1
14 5.459 L,254 " -6.642 1.283 -1.283
15 6.321 L,751 N -5.682 1.330 -1.330
16 7.247 5. 2k N ~4.903 1.382 ~1.382
17 8.237 5.727 " -4,251 1.438 -1.438
18 $.288 £.163 " -3.710 1.500 -1.500
19 10,39 6.633 " -3.266 1.566 -1.566
20 11.55 7.046 " -2.878 1.639 -1.639
21 12,7k 7.h2k " ~-2.553 1.716 ~1.716
22 13,98 7.765 " -2.271 1.800 -1.80¢
23 15.25 8.068 " -2.027 1.890 -1.890
24 16.54 8.331 B -1.817 1.965 -1.685
25 17.84 8.551 " -1.634 2.08¢ ~-2.086
26 19.16 8.733 " -1.473 2,154 -2, 1G4
27 20.49 8.877 " -1.331 2.308 -2.300
28 21.81 8.985 ; -1.207 2.k27 -2.L27
29 23.1h 9,059 " -1.097 2.554 -2.55h
30 2k 45 9,103 -0.5998 2,686 -2,686
31 25.76 9,120 " -0.5131 2.827 -2.827
32 27.06 9.113 " ~0.8358 2.969 -2.965
33 28.35 9.08%4 -0.7665  3.121 -3.121
3k 29.62 9.039 " ~0.7043 3.277 -3.277
35 30.88 8.976 " ~0.6491 3. 440 -3 kO



TABLE II
35 [ Y
f z j‘; G*"\‘# ’ = = Z ,‘T\ Ga mb Difference

M=\ m=i
s} 1.201660 1.202057 000397
5° 1.18717h 1.187059 -, 000116
10° 1.152567 1.152620 . 000052
20° 1,0LB473 1,0h5599 . 000025
30° 0.907466 0.907486 . 000020
ho® 0. 748104 0.748115 000015
51.428° 0.552023 0.552015 -, 00000S
60 0. 400672 0. L00ES6 . 000103





