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ABSTRACT

Theoretical and experimental investigations of the dynamic behavior
of cylindrical liquid storage tanks are conducted to seek possible
improvements in the design of such tanks to resist earthquakes. The
study is carried out in three phases: 1) a detailed theoretical treat-
ment of the liquid-shell system, 2) an experimental investigation of
the dynamic characteristics of full-scale tanks, and 3) a development
of an improved design-procedure based on an approximate analysis,

Natural frequencies of vibration and the associated mode shapes
are found through the use of a discretization scheme in which the
elastic shell is modeled by finite elements and the fluid region is
treated as a continuum by boundary solution techniques. In this
approach, the number of unknowns is substantially less than in those
analyses where both tank wall and fluid are subdivided into finite
elements., A method is presented to compute the earthquake response of
both perfect circular and irregular tanks; it is based on superposition
of the free lateral vibrational modes, Detailed numerical examples are
presented to illustrate the applicability and effectiveness of the
analysis and to investigate the dynamic characteristics of tanks with
widely different properties. Ambient and forced vibration tests are
conducted on three full-scale water storage tanks to determine their
dynamic characteristics. Comparison with previously computed mode
shapes and frequencies shows good agreement with the experimental
results, thus confirming the reliability of the theoretical analysis.
Approximate solutions are also developed to provide practicing engineers
with simple, fast, and sufficiently accurate tools for estimating the

seismic response of storage tanks.
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DYNAMIC ANALYSES OF LIQUID STORAGE TANKS

GENERAL INTRODUCTION

The progress of scientific investigations into the dynamic behavior
of liquid storage tanks reflects the increasing importance of these
structures. Early uses for liquid containers were found in the petro-
leum industry and in municipal water supply systems. As their numbers
and sizes began to grow, their tendency to vibrate under seismic loading
became a matter of concern. For instance, the possible failure of large
tanks containing flammable liquids in and around densely populated areas
presents a critical fire hazard during severe earthquakes. 1In addition,
the consequences of total spills of the contained liquid, as well as
structural damage to the tank and its accessories, may pose a consider-
able economic loss. 1In recent times, the use of liquid containers in
nuclear reactor installations has led to several investigations of their
vibrational properties. However, the performance of liquid storage
tanks during the 1964 Alaska and the 1971 San Fernando earthquakes
revealed a much more complex behavior than was implied by design assump-
tions. Thus, although the problem has been recognized, the state of
knowledge of liquid-tank seismic vibrations is, still, not entirely
satisfactory.

The present study develops a method of analyzing the dynamic
behavior of ground-supported, circular cylindrical, liquid storage tanks
by means of a digital computer. The reliability of the theoretical

analysis was confirmed by conducting vibration tests on full-scale tanks.
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In addition, approximate solutions are also developed to provide
practicing engineers with simple, fast and sufficiently accurate tools
for estimating the seismic response of storage tanks.

The following sections present a brief historical review of the
literature and outline the methods of analysis employed in the present

study.

A. Historical Background

Seismic damage of liquid storage tanks during recent earthquakes
demonstrates the need for a reliable technique to assess their seismic
safety. The Alaska earthquake of 1964 caused the first large-scale
damage to tanks of modern design [1,2] and profoundly influenced the
research into their vibrational characteristics. Prior to that time,
the development of seismic response theories of liquid storage tanks
considered the container to be rigid and focused attention on the
dynamic response of the contained liquid.

One of the earliest of these studies, due to L. M. Hoskins and
L. S. Jacobsen [3], reported analytical and experimental investigations
of the hydrodynamic pressure developed in rectangular tanks when sub-
jected to horizontal motion. Later, Jacobsen [4] and Jacobsen and Ayre
[5] investigated the dynamic behavior of rigid cylindrical containers.

In the mid 1950's, G. W. Housner [6,7] formulated an idealization,
commonly applied in civil engineering practice, for estimating liquid
response in seismically excited rigid, rectangular and cylindrical
tanks. He divided the hydrodynamic pressure of the contained liquid

into two components; the impulsive pressure caused by the portion of the
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liquid accelerating with the tank and the convective pressure caused by
the portion of the liquid sloshing in the tank. The convective com-
ponent was then modeled by a single degree of freedom oscillator. The
study presented values for equivalent masses and their locations that
would duplicate the forces and moments exerted by the liquid on the
tank. The properties of this mechanical analog can be computed from the
geometry of the tank and the characteristics of the contained liquid.
Housner's model is widely used to predict the maximum seismic response
of storage tanks by means of a response spectrum characterizing the
design earthquake [8,9,10].

At this point the subject appears to have been laid to rest until
the seismic damage in 1964 initiated investigations into the dynamic
characteristics of flexible containers. In addition, the evolution of
both the digital computer and various associated numerical techniques
have significantly enhanced solution capability.

The first use of a digital computer in analyzing this problem was
completed in 1969 by N. W. Edwards [11]. The finite element method was
used with a refined shell theory to predict the seismic stresses and
displacements in a circular cylindrical liquid-filled container whose
height to diameter ratio was smaller than one. This investigation
treated the coupled interaction between the elastic wall of the tank
and the contained liquid. The tank was regarded as anchored to its
foundation and restrained against cross-section distortionms.

A similar approach was used by H. Hsiung and V. Weingarten [12] to
investigate the free vibrations of an axisymmetric thin elastic shell

partly filled with liquid. The liquid was discretized into annular
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elements of rectangular cross-section. Two simplified cases were
treated; one neglecting the mass of the shell and the other neglecting
the liquid-free surface effect. In a more recent study, S. Shaaban and
W. Nash [13] undertook similar research concerned with the earthquake
response of circular cylindrical, elastic tanks using the finite element
method. Shortly after [13], T. Balendra and W. Nash [14] offered further
generalization of this analysis by including an elastic dome on top of
the tank.

A different approach to the solution of the problem of flexible
containers was developed by A. S. Veletsos [15]. He presented a simple
procedure for evaluating the hydrodynamic forces induced in flexible
liquid-filled tanks. The tank was assumed to behave as a single degree
of freedom system, to vibrate in a prescribed mode and to remain circular
during vibrations. The hydrodynamic pressure distribution, base shears
and overturning moments corresponding to several assumed modes of vibra-
tions were presented. He concluded that the seismic effects in flexible
tanks may be substantially greater than those induced in similarly
excited rigid tanks. Later, Veletsos and Yang [16] presented simplified
formulas to obtain the fundamental natural frequencies of the liquid-
filled shells by the Rayleigh-Ritz energy method. Special attention was
given to the cosf-type modes of vibration for which there is a single
cosine wave of deflection in the circumferential direction.

Another approach to the free vibration problem of storage tanks was
investigated by C. Wu, T. Mouzakis, W. Nash and J. Colonell [17]. They
developed an analytical solution of the problem using an iteration pro-

cedure but the assumptions employed in their analysis forced the modes
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of vibration to be of a shape that cannot be justified in real "tall"
tanks. They also computed the natural frequencies and mode shapes of
the cosnb-type deformations of the tank wall, neglecting the initial
hoop stresses due to the hydrostatic pressure, which introduced certain
errors.

Until recently, it was believed that, only, the cosf-type of modes
were important in the analysis of the vibrational behavior of liquid
storage tanks under seismic excitations. However, shaking table experi-
ments with aluminum tank models conducted recently by D. Clough [18] and
A. Niwa [19] showed that cosnb-type modes were significantly excited by
earthquake-type of motion. Since a perfect circular cylindrical shell
should exhibit only cos6-type modes with no cosnf-type deformations
of the wall, these experimentally observed deformations have been attri-
buted to initial irregularities of the shell radius. Shortly after the
foregoing tests were completed, J. Turner and A. Veletsos [20] made an
approximate analysis oflthe effects of initial out-of-roundness on the
dynamic response of tanks, in an effort to interpret the unexpected
results.

Extensive research on the dynamic behavior of liquid storage tanks
has also been carried on in the aerospace industry. With the advent
of the space age, attention was focused on the behavior of cylindrical
fuel tanks of rockets, the motivation being to investigate the influence
of their vibrational characteristics on the flight control system.
However, the difference in support conditions between the aerospace
tanks and the civil engineering tanks makes it difficult to apply the

aerospace analyses to civil engineering problems, and vice-versa. A
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comprehensive review of the theoretical and experimental investigations
of the dynamic behavior of fuel tanks of space vehicles can be found

in [21].

B. Outline of the Present Study

Recent developments in seismic response analyses of liquid storage
tanks have not found widespread application in current seismic design.
Most of the elaborate analyses developed so far assume ideal geometry
and boundary conditions never achieved in the real world. In addition,
the lack of experimental confirmation of the theoretical concepts has
raised doubts among engineers about their applicability in the design
stage. With few exceptions, current design procedures are based on the
mechanical model derived by Housner for rigid tanks.

The following study develops a method for analyzing the dynamic
behavior of deformable, cylindrical liquid storage tanks. The study was
carried out in three phases: 1) a detailed theoretical treatment of the
liquid-shell system, 2) an extensive experimental investigation of the
dynamic characteristics of full-scale tanks, and 3) a development of an
improved design-procedure based on an approximate analysis.

A necessary first step was to compute the natural frequencies of
vibration and the associated mode shapes. These were determined by
means of a discretization scheme in which the elastic shell is modeled
by finite elements and the fluid region is treated as a continuum by
boundary solution techniques. In this approach, the number of unknowns
is substantially less than in those analyses where both tank wall and

fluid are subdivided into finite elements.
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Having established the basic approach to be used, the analysis was
applied to investigate the effect of the initial hoop stress due to the
hydrostatic pressure, the effect of the coupling between liquid sloshing
and shell vibrations, the effect of the flexibility of the foundation,
and the influence of the rigidity of the roof.

The remainder of the first phase of the study was devoted to
analyzing the response to earthquake excitation. Special attention was
first given to the cosO-type modes for which there is a single cosine
wave of deflection in the circumferential direction. The importance of
the cosnb-type modes was then evaluated by examining their influence on
the overall seismic response.

The second phase of research involved vibration tests of full-scale
tanks. The vibrations of three water storage tanks, with different
types of foundations, were measured. Ambient as well as forced vibra-
tion measurements were made of the natural frequencies and mode shapes.
Measurements were made at selected points along the shell height, at the
roof circumference, and around the tank bottom.

The principal aim of the final phase research was to devise a prac-
tical approach which would allow, from the engineering point of view,

a simple, fast and satisfactorily accurate estimate of the dynamic
response of storage tanks to earthquakes. To achieve this, some simpli-
fied analyses were developed. As a natural extension of Housner's model,
the effect of the soil deformability on the seismic response of rigid
tanks was investigated. To account for the flexibility of the container,
the tank was assumed to behave as a cantilever beam with bending and

shear stiffness. The combined effects of the wall flexibility and the



soil deformability were then investigated. To further simplify the design
procedure, mechanical models, which take into account the flexibility of
the tank wall and the foundation, were developed and their parameters dis-
played in charts. These curves facilitate the calculations of effective
masses, their centers of gravity, and the periods of vibration. Space
limitations necessitate that much of the analysis of the third phase of
the study be not included in this report. However, the details of such
analysis will be presented in a separate Earthquake Engineering Research
Laboratory report (EERL) in the near future.

The research presented in this thesis advances the understanding
of the dynamic behavior of liquid storage tanks, and provides results

that should be of practical wvalue.

C. Organization

The dissertation is divided into three parts covering the three
different phases of the study. Each part consists of one or more
chapters and each chapter is further divided into sections and subsec-
tions. The subject matter is covered in five chapters and each is
written in a self-contained manner, and may be read more or less
independently of the others. The letter symbols are defined where they
are first introduced in the text; they are also summarized in alphabet-
ical order following each chapter. Many references have been included
éo that the reader may easily obtain a more complete discussion of the

various phases of the total subject.
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PART (A)
CHAPTER I

FREE LATERAL VIBRATIONS OF LIQUID STORAGE TANKS

Knowledge of the natural frequencies of vibration and the associated
mode shapes is a necessary first step in analyzing the seismic response
of deformable, liquid storage tanks. The purpose of this chapter is to
establish the basic set of equations which govern the dynamic behavior
of the liquid-shell system, and to develop a method of dynamic analysis
for free vibrations of ground-supported, circular cylindrical tanks
partly filled with liquid.

In the first section, the problem is stated, the coordinate system
is introduced, and the possible modes of vibration are discussed, The
second section contains the basic equations which govern the liquid
motion: the differential equation formulation and the variational for-
mulation. The third section discusses the different expressions for
energy in the vibrating shell and the derivation of its equations of
motion by means of Hamilton's Principle. In the fourth section, topics
which receive attention are: the application of the boundary solution
technique to the liquid region, the variational formulation of the
overall system, the finite element idealization of the shell, and the
evaluation of the several matrices involved in the eigenvalue problem.
The fifth section presents detailed numerical examples and explores
some of the results which may be deduced about the nature of the dynamic

characteristics of the system.
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It is worthwhile to mention that the method of analysis presented
in this chapter is not only competitively accurate, but it is also com-
putationally effective in the digital computer. In addition, the effi-
ciency of the method facilitates the evaluation of the influence of the
various factors which affect the dynamic characteristics, as will be

demonstrated in the second chapter.

I-1. Preliminary Considerations

The purpose of this section is to present a brief description of
the structural members of a "typical" liquid storage tank and to discuss
the advantages of the circular cylindrical tank over other types of
containers. This section is also intended to outline the coordinate
system used in the analysis, and it contains a discussion of the possible

modes of vibration of the liquid-shell system.

I-1-1. Structural Members of a "Typical" Tank

A considerable variety in the configuration of liquid storage tanks
can be found in civil engineering applications. However, ground-
supported, circular cylindrical tanks are more popular than any other
type of containers because they are simple in design, efficient in
resisting primary loads, and can be easily constructed.

A "typical" tank consists essentially of a circular cylindrical
steel wall that resists the outward liquid pressure, a thin flat bottom
plate that rests on the ground and prevents the liquid from leaking out,
and a fixed or floating roof that protects the contained liquid from

the atmosphere.
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The tank wall usually consists of several courses of welded, or
riveted, thin steel plates of varying thickness. Since the circular
cross-section is not distorted by the hydrostatic pressure of the con-
tained liquid, the wall of the container is designed as a membrane to
carry a purely tensile hoop stress. This provides an efficient design
because steel is a very economic material especially when used in a
condition of tensile stress.

Several roof configurations are employed to cover the contained
liquid: a cone, a dome, a plate or a floating roof. A commonly used
type is composed of a system of trusses supporting a thin steel plate.
The roof-to-shell connection is normally designed as a weak connection
so that if the tank is overfilled, the connection will fail before the
failure of the shell-to-bottom plate connection. In addition, enough
freeboard above the maximum filling height is usually provided to avoid
contact between sloshing waves and roof plate.

Different types of foundation may be used to support the tank: a
concrete ring wall, a solid concrete slab, or a concrete base supported
by piles or caissons. The tank may be anchored to the foundation; in
this case, careful attention must be given to the attachment of the
anchor bolts to the shell to avoid the possibility of tearing the shell
when the tank is subjected to seismic excitationg. For unanchored tanks,
the bottom plate may be stiffened around the edge to reduce the amount
of uplift.

To summarize, circular cylindrical tanks are efficient structures

with very thin walls; they are therefore very flexible.
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I-1-2. Coordinate System

The liquid-shell system under consideration is shown in Fig. I-1,
It is a ground-supported, circular cylindrical, thin-walled liquid con-
tainer of radius é*z iength L, and thickness h. The tank is partly
filled with an inviscid, incompressible liquid to a height H.

Let r, 8, and z denote the radial, circumferential and axial coor-
dinates, respectively, of a point in the region occupied by the tank.
The corresponding displacement components of a point on the shell middle
surface are denoted by w, v, and u as indicated in Fig. I-1l. To describe
the location of a point on the free surface during vibration, let &
measure the superelevation of that point from the quiescent liquid free
surface. Lastly, let S; denote the quiescent liquid free surface, and
S, and S3 denote the wetted surfaces of the shell and the bottom plate,
respectively.

In the following analysis, the shell bottom is regarded as anchored
to its rigid foundation, and the top of the tank is assumed to be open.
The effect of the soil flexibility and the roof rigidity will be dis-

cussed later in the second chapter,

I-1-3. Types of Vibrational Modes

The natural, free lateral vibrational modes of a circular cylindri-

cal tank can be classified as the cosf-type modes for which there is a

single cosine wave of deflection in the circumferential direction, and

*The letter symbols are defined where they are first introduced in the
text, and they are also summarized in alphabetical order in Appendix
I-a.
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Fig. I-1. Cylindrical Tank and Coordinate System.
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as the cosnb-type modes for which the deflection of the shell
involves a number of circumferential waves higher than 1. Figure I-2-a
illustrates the circumferential and the vertical nodal patterns of these
modes. For a tall tank, the cosf-type modes can be denoted beam-type
modes because the tank behaves like a vertical cantilever beam.

In addition to the shell vibrational modes, there are the low-
frequency sloshing modes of the contained liquid. Fig. I-2-b shows
the first two free surface modes of a liquid in a rigid circular cylin-

drical tank.

I-2. Equations Governing Liquid Motion

The following section contains the basic equations which govern the
liquid motion inside the tank. The fundamental assumptions involved in
the derivation of these equations are briefly presented. The full set of
the differential equations and their associated boundary conditions is
clearly stated. Finally, the variational equations of the liquid motion
are introduced and the equivalence of the two formulations is demon-

strated.

I-2-1. Fundamental Assumptions

In a consideration of the different factors affecting the motion of
the liquid, the following conventional assumptions are made:
1. The liquid is homogeneous, inviscid and incompressible.
2. The flow field is irrotational.
3. No sources, sinks or cavities are anywhere in the flow
field.

4. Only small amplitude oscillations are to be considered.
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(i) cosG—n}pe Mode

(ii) cosnB-type Modes
m-=| m=2 m=3

Vertical Nodal Pattern Circumferential Nodal Pattern

(a) Shell Vibrational Modes

Quiescent Liquid
Free Surface

| s e

First Sloshing Mode Second Sloshing Mode

(b) Sloshing Modes in Rigid Tanks

Fig. I-2. Types of Vibrational Modes of the
Liquid-Shell System.
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I-2-2., Differential Equation Formulation

For the irrotational flow of an incompressible inviscid liquid,

the velocity potential, ¢(r,6,z,t), satisfies the Laplace equation

vV2¢ = 0 (1.1)

in the region occupied by the liquid (0 =r <R, 0 =9 =27, 0 =z =< H)

where
52 s 1 32 32
2 b=
. arZ T x B¢ r2 302 T BgP

In addition to being a harmonic function, ¢ must satisfy the proper
boundary conditions. Since it is primarily viscous effects which pro-
hibit the liquid from slipping along the solid boundaries, the condition
of no tangential slipping at the boundary is relaxed and only the velo-
cities of the liquid and the container normal to their mutual boundaries
should be matched. The velocity vector of the liquid is the gradient of
the velocity potential, and consequently, the liquid-container boundary
conditions can be expressed as follows:

1. At the rigid tank bottom, z = 0, the liquid velocity in the

vertical direction is zero
P
i(r,e,o,t) = 0 (1.2)

2. The liquid adjacent to the wall of the elastic shell, r = R,

must move radially with it by the same velocity

3% - v
oy (R,0,z,t) o (6,z,t) (1.3)



20

where w(6,z,t) is the shell radial displacement.

At the liquid free surface, z = H + £(r,0,t), two boundary condi-
tions must be imposed. The first of these conditions is called the
kinematic condition which states that a fluid particle on the free sur-
face at some time will always remain on the free surface. The other
boundary condition is the dynamic one specifying that the pressure on
the free surface is zero. This condition is implemented through the
Bernoulli equation for unsteady, irrotational motion

9 . B L *(z-H) = 0

= o, + T VeV + g = (1.4)

where p is the liquid pressure; Py is the liquid density; and g is the
gravity acceleration. By considering small-amplitude waves, the free

surface boundary conditions become

22 (r,0,0,t) = 22(r,8,0) (1.5)
by FL(r,0,H,8) + 0y g E(x,0,6) = 0 (1.6)

in which the second-order terms are neglected. Equations 1.5 and 1.6
are often combined to yield the following boundary condition which

involves only the velocity potential

2
%(r’e’H’t) +g%—2(r,9,H,t) = 0 (1.7)
t

The pressure distribution, p(r,6,z,t), can be determined from the

Bernoulli equation and is given by

3
p(r;e’z,t) = -02 'a'% =2 pz g * (H—Z) (1.8)
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where the nonlinear term V¢°V¢ is neglected as being quadratically
small. It should be noted that the pressure p is the sum of the

hydrostatic pressure

P, = Ppg ° (H-2) (1.9)
and the dynamic pressure

p. = - N N0} (1.10)

I-2-3. Variational Formulation

There are often two different but equivalent formulations of a
problem: a differential formulation and a variational formulation.
In the differential formulation, as we have seen, the problem is to
integrate a differential equation or a system of differential equations
subject to given boundary conditions., In the variational formulation,
the problem is to find the unknown function or functions, from a class
of admissible functions, by demanding the stationarity of a functional
or a system of functionals. The two formulations are equivalent because
the functions that satisfy the differential equations and their boun-
dary conditions also extremize the associated functionals. However,
the variational formulation often has advantages over the differential
formulation from the standpoint of obtaining an approximate solution.

The most generally applicable variational concept is Hamilton's

Principle, which may be expressed as follows

t

§1 = 6j(T—U+w)dt = 0 (1.11)

Y
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where T is the kinetic energy, U is the potential energy, W is the
work done by external loads and § is a variational operator taken
during the indicated time interval. Hence, this approach necessitates
the formulation of the kinetic energy of the liquid, the potential
energy of the free surface and the work done by the liquid-shell
interface forces.

It has been shown [3] that the appropriate variational functional

for the liquid is given by

2g
! 51 By (1.12)
where w is the prescribed radial velocity of a point on the middle

t
2(p P 2
1(9) = f {7’1 f o e (%‘5) és - o, fcpchs}dt
’ \%

surface of the shell and V is the original volume occupied by the
liquid and bounded by the surface S = S1 + S2 + 83; Sl being the
quiescent liquid free surface, and 82 and S3 are the wetted surfaces
of the elastic shell and the rigid bottom plate, respectively.

By requiring that the first variation of I be identically zero
[3], the differential equation (Eq. 1.1) and the associated linear
boundary conditions (Eqs. 1.2, 1.3, and 1.7) can be obtained.

A different variational formulation was presented by Luke [4] to
obtain the two nonlinear boundary conditions at the free surface. He
extended the variational principle used by Bateman [5] by including the
free surface displacement among the quantities to be varied and

employing the functional
t

2
I 6,8 = [ L (6,0 at (1.13)

!
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where Lc is the complementary Lagrangian functional; ¢ is the liquid
velocity potential; and & is the free surface displacement measured
from the quiescent liquid free surface.

As mentioned earlier, a linearized version of the free surface
boundary conditions, Egs. 1.5 and 1.6, can be deduced by considering
small amplitude surface waves. Under this linearization scheme, the

complementary Lagrangian functional takes the following form:

p . 2
Lc (¢,E)=-T2‘J(V¢°V¢)dv+ p2 Sf (¢E—%§)_ds+ pzsf ¢ w ds
1 2
(1.14)

We shall now proceed to show that the requirement for the first
variation of the functional Ic (¢,£) to be zero, will provide us with

all the Egs. 1.1 to 1.3, 1.5 and 1.6. Performing the variation, one

can obtain

t, t,
o1 = - Py f j (V9+VS9) dv dt + p, f f ($8E +£8¢ - gESE) ds dt
tl v tl Sl
ty
+ 0, tf sj w 8¢ ds dat (1,15)

1 "2
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Applying Green's theorem to the first term and integrating the

second by parts, yields

i t
2 2
£ ¥ e B
t t
2 ° e
* Py j I (-9SE + E6¢ -gESE) ds dt + p, J (¢58) ds
tl Sl Sl tl
by . £, 2
tog | Jwesasar = oy [ V4 6 avac
& 5 6, v
) t,
- pz[ f (%% - é) 6¢ ds dt - p,Q, f (&) + gg) GF, ds de
| e, 5
t, ‘,
" Py J- (%% - &) §¢ ds dt - Py J-‘%% §¢ ds dt (1.16)
tl Sz tl s3
3¢

where ) is the derivative of the potential function ¢ in the direction
of the outward normal vector Y% Note that the variation and differen-
tiation operators are commutative and the order of integration with
respect to space coordinates and time is interchangeable. Also, by
definition, 8% (r,0,t) is zero at t = t; and t = ty
The integral in Eq. 1.16 must vanish for any arbitrary values of
8¢ and 6§, These variations can be set equal to zero along S and Sl’

respectively, with 8¢ different from zero throughout the domain V.

Therefore, one must have

V29 = 0 in V (1.17)
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Furthermore, because of the arbitrary nature of the variations

8¢ and 6&, one can write

3 .3

2 _ ¢ =0 along s, teen 2 (r,0,m,0) - %%—(;,e,o (1.18)
b+gf =Oalong s .. 22 (r,8,H,t) + gE(r,0,t) = 0  (1.19)
3% . 3 5

-5% - w =0 along S2 i.e. 3% (R,8,z,t) = Sg(e,z,t) (1.20}
5 5

5%- = 0 along S3 i.e. 5% (r,6,0,t) = 0 (1.21;

Thus, the first variation of the functional IC has furnished the
fundamental differential equation (Eq. 1.17) and the appropriate
boundary conditions (Eqs. 1.18 to 1.21).

The functional Ic(¢,£) will be adopted in the following analyses;
it is particularly effective in analyzing the dynamic behavior of the

liquid-shell-surface wave system, as will be explained later.

I-3. Equations Governing Shell Motion

Shells have all characteristics of plates along with an additional
one - curvature. However, a large number of different sets of equationms
have been derived to describe the motion of a given shell; this is in
contrast with the thin plate theory, wherein a single fourth order
differential equation of motion is universally agreed upon.

The main purpose of this section is to present a straightforward
formulation of the potential and kinetic energies of a circular cylin-
drical shell, and to derive its equations of motion by means of

Hamilton's Principle,
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I-3-1, Potential Energy of the Shell

The present formulation of the potential energy is based upon a
first approximation theory for thin shells due to V. V. Novozhilov [7].
For simplicity and convenience, the theory will be developed in Appen-
dix I-b for the special case of circular cylindrical shells following
an analogous procedure as outlined by Novozhilov for arbitrary shells.

The potential energy stored in the flexible shell is in the form
of a strain energy due to the effect of both stretching and bending.
The force and moment resultants acting upon an infinitesimal shell
element are depicted in Figs. I-3-a and I-3-b, respectively. The

strain energy expression can be written as

L 2w ~
e M R
U(t) = > .f j'(Nzez + Nee6 + N €6 + Msz + MeKe + Kze) de dz
0 0 (1.22)

In equation 1.22, Nz and Ne are the membrane force resultants;
and Mz and Me are the bending moment resultants. The quantities N and
M are referred to as the effective membrane shear force resultant and
the effective twisting moment resultant, respectively; they are related

to Nze' Nez’ MZe and Mez by

N = N

MGZ
ze - —R— = Nez (1-23—3)

= L .
M = > (Mze + Mez) (1.23-b)

Now, the shell material is assumed to be homogeneous, isotropic
and linearly elastic. Hence, the force and moment resultants can be

expressed in terms of the normal and shear strains in the middle
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Rdo

(b) MOMENT RESULTANTS

Fig. I-3. Notation and Positive Directions of
Force and Moment Resultants.
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surface Ez, €, and eze; in terms of the midsurface changes in curva-

ture KZ and Kef and in terms of the midsurface twist KzG as follows:
Nz = k1 (ez + v se) (1.24-23)
Ne = kl (ee + v gz) (1.24-b)
No= o Y €06 (1.24-c)
Mz = k2 (Kz + v Ke) (1.24-4d)
Me = k2 (Ke + v Kz) (1.24-e)
Moo=k, (Y K (1.24-£)
2 2 zf

where k., is the extensional rigidity and k, is the bending rigidity;

1 2

they are given by

k. = -Eb (1.25-a)
1 2
1-v
3
k, = __Eh—“i_ (1.25-b)
12 (1-v°)

where E is the modulus of elasticity of the shell material; v is
Poisson's ratio; and h is the shell thickness.
Equations 1.24-a to f can be written, more conveniently, in

the following matrix form:
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e} = [Dlie} (1.26)
where
o e Y
zZ Z
Ne ge
J N €ze
{o} = > (1.27-a) ; {e} = < T (1.27-b)
M K
Z A
My g
M
- ( 26
(1 v o 0 0 o |
V) J. 0 0 0 0
0 0 1-v 0 0 0
2
and [D] = kl (1.27-¢)
0 0 0 n® w 0
12 12
2 2
vh h
0 0 0 17 17 0
2
(1-v)h
—9 0 0 0 0 2%
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The normal and shear strains in the middle surface are related

to the components of the displacement by

E:z = E (1.28_3.)
= 1 v s

€ = R (ae + w) (1.28-b)
_ ., 1l _

829 ol + R 36 (1.28-c)

Also, the changes in the midsurface curvatures Kz and Ke and the mid-

surface twist Kz are given by

S

82
K = -2°2¥ (1.29-a)
z 3 2
z
1 82w oV
Ry = -5 Ey- 2 (1.29-b)
R a6
2 82w 2 v
Ko = “Rz30 TR 3z (L. 25-2)

Now, the generalized strain vector {e} can be expressed in terms

of the displacement vector {d} as follows:

{et = [Pl{d} (1.30)

u
where {d} = {v} (1.31) ; and [P] is a differential operator
w

matrix defined by



— =
5
- 0 0
13 1
B R 90 R
1 9 9
R 30 5z g
[F] = (1.32)
2
0 0 _a__
0z
o L 1
2 38 2 ngl
o 23 _2 79
| R 09z R 09z236

With the aid of equations 1.22, 1.26, and 1.30, the potential

energy expression can be written as

U(t) ({e}T{o}) R d6 dz

I

N
o(““xw
c>k___\N

({e}T[D1{e}) R 6 dz (1.33)

]
N |
ng"‘\r*
o‘\':}\’

or, in terms of the displacement vector, as

L m

2
/ {([P]{d})T[D]([P]{d})} 49 dz (1.34)
0

b

u(t) =

0
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It is worthwhile to indicate that Egs. 1.24-a to f are as
simple as possible, but they still fulfill the requirements which
are sufficient for the validity of the fundamental theorems of the

theory of elasticity in the theory of shells [8].

I-3-2. Kinetic Energy of the Shell

The kinetic energy of the shell, neglecting rotary inertia,

can be written as

L 2m

2
T(t) = [ [m ‘au(gtz t)) & <3V(gt,:z,t)>
( 0
. <8w(6,z,t)>2]J R d6 dz (1.35)
ot

where m(z) is the mass of the shell per unit area. Eq. 1.35 can be

written, more conveniently, as follows

L 2m
[ / (m(z){d}T{d}> Rd6 dz  (L.36)
0 0

T(t) =

N

where {d} is the displacement vector, defined by Eq. 1,31, and ( )

means differentiation with respect to the time, t.

I-3-3. Derivation of the Equations of Motion of the Shell

The differential equations of motion of the elastic shell and
their associated boundary conditions will be derived by means of

Hamilton's Principle. The use of this variational principle has
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the advantage of furnishing, automatically, the correct number of
boundary conditions and their correct expressions. It employs the
different expressions of energy of the vibrating shell which have
been derived in the preceding sections. 1In addition, an expression
of the work done by the liquid-shell interface forces, through an

arbitrary virtual displacement 6w, is required; it can be given by

H 2
f f(p(R,G,z,t) 6w> R a8 dz (1.37)
0 0

where p(R,0,z,t) is the prescribed liquid pressure per unit area of
the middle surface of the shell; and H is the liquid height.

Many investigators have considered various simplifying assump-
tions so that it may be possible to obtain closed form solutions
to the resulting set of differential equations. Since the method
of solution to be used in this analysis is a numerical one, such
considerations need not ‘be made.

The variation of the kinetic energy, T(t), has the form

/

ST(t)

r
{m(Z) L%% 6(%% 6( ) + — 6( ]} R df dz

o &-‘ﬁ§

u 3 s w ,
[’“( ) [at st (Sw + 30 57 (8v) + 90 o (8w )]lR dg dz;

‘3“--\r
cau___ﬁg)

therefore,
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t
t2 2 L 27
- ou 9 v 3 ow o
-/-ST(t)dt = J. lm(z)[at at((Su) + Nt at((Sv) + St at(cSw):”R dedzdt
tl tl 0 0
L 27 " " "
u 2 oV 4 ow e
= m(z) [ Su) I + <§E 6Y> l + <5€ 6W>l ] R d6dz
0 O tl tl tl

0 82 82
m(z) ——%-6u + > Sv + ; Sw| (R dBdzdt
ot ot ot
0

2 2 2

1 52 52 %
Jm(z) U su + 2 sv + 2¥ swflR dedzdt
" ot ot ot

(1.38)

Note that, by definition, Su(6,z,t), 6v(6,z,t), and &w(b,z,t) are
zero at t = t1 and t = t2.

The strain energy expression, Eq. 1.33, can be written, in terms

of u, v, and w, as follows

L. 2T
. __Eh u . 1 /9y ] 2(1-v) [ du (v
U = + L _ v
@ - B [ a2 2 )] -
0 0
Qo L av]z) Lo <[i . 1_<azw _ EX)T _
2 R 96 3z 12 822 R2 362 36

2 2 2 2
2(1-v) [dw /5w v 2(1-v) |d3°w ov
2 [;zz <392 - ae)] =5 15298 " 3z & i da 392
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and therefore, the variation of the strain energy can be expressed

as
L 2m
Eh du
SU(t) = [—
(l_vZ) J. Jl oz

(5 - o))

+ 2(1-v)h

55 54

06

2

12R

2 82
0

VvV 3

L 2m 2
su(t) = J'J'{ (1’;’) 3‘2‘+(§;") gzae+
(l-v) 2R” 38
0 0
2 2 2 2
‘hﬁ”izuﬂ?”pl—ap t (5 25 + 209
= 3z 36 12R“ \R® 90
2 3 3
-l g ie e =) vk R -
12R“ \R“ 96 3z°986 R 12R° \R® 96

R 3z

_ (1—\))h2 .
2

_ov|,
oz
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3 2 /.4 4 g
+ (2-V) 3V>+W—2+L<a—ﬂ+% o +—17L°Z~>:| Swi R dp dz
R

dz 96 R oz R™ 9z736 o0
2m L
Eh du . V [dv 1-v |1 3u . dv
+— f{[a_z'+i(ae+W)J'6“ +_2_[E5'e'+$
a-v?) .

__r_mi(_a_zw.._y)] . B L+ﬁ[?_2£+1<3_2vz_ﬂ>] (&) .
3R2 29z096 0z o 12 3z R2 862 96 oz
0
L
2 .3 3
h 3 Vv o w 9 v
s e W B - . Sw R do (1.40)
12 [323 2 (ézaez 3286)} : }

Introducing Eqs. 1.38 and 1.40 into Eq. 1.11, and assuming that

the tank is empty for the time being, gives

2m
j' [azu 1-v azu _ m(l—vz) Bzu

t2L 9
Eh I J’ % +(l+\))3v+_\g§vg_‘6u
o5y 222 = 2R 8 Eh 4.2 2R 0230 = R 9z
t. 0 O
1
+ [(l+v) 82u % 1-v 32v & i azv _ m(l—vz) 32v £ h2 <l__32v 3
2R 0236 2 822 RZ ae2 Eh 3t2 12R2 R2 ae2

2 2 3 3
) OV l ow__h [1 3w N 0w .
2 (1-v) 2) MVREY 2 < 7 3t (@) — v -
’ R” 36 92730

2 Eh 2

2 2 2
[%_8_11_+l__§y__h <_1___2)_1+(2_\))8v>+_w_+m(1—\))8w
R ot
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£, 2" L .
Eh _[eu, v (ov _ v {1ou, oy _n® |
* 2 j f{ [32+R(89+>] 2 2 I|R38 "9z .2
(1-v™) t 0 0 3R
1
E 2 2 L 3
<aw _&> P é_vz+v_<u_3_‘f>.5ﬁ) - -
02936 9z 12 322 RZ 392 96 oz 12 8z3 RZ
0 0
3 2 L
<3W2‘gz§e> s 8 RdO dt = 0 (1.41)
9296
0

The integral must vanish for any arbitrary values of Su, 8v, 8w,
w s
and 6(%;), so these variations can be set equal to zero at z =0 and

z = L, and different from zero throughout the domain 0<z<L. Therefore,

one must have

82u 4 S10) 82u _ m(l—vz) 82u - (1+v) 32V LV (1.42)
az2 2R2 392 Eh at2 2R 9z90 R 9z
1+ Bzu 1-v azv 1 82v m(l—vz) BZV h 1 Bzv 32v
R 5208 T 2 .27 2 2 Eh 2 vt 222t

0z R~ 230 ot 12R™ \R™ 236 o9z

1282 \ &2

2 3 3
+l_28_W_ (L 3%, ey 2 EY = g (1.43)
) 3
R R™ 96 9z 36



2 3 3 2
%EEJ“%B_E' St d (gl 5 +‘Y‘2'+m(é;\)) =5 4
Z x 12R“ \R” 30 9z"38) R ot
2 /.4 4 4
n? (2 s 5 19
2 e s e R (1.44)
az*  R% 9z%00% R 90

Eqs. 1.42, 1.43, and 1.44 are the basic differential equations
of motion of the shell and can be expressed in the following matrix

form

(L] {d} = {o} (1.45)

where {d} is the displacement vector defined in Eq. 1,31; and [L] is a

linear differential operator which can be written as

—

0> | (1-v) 3 -
2 2 2
0z 2R 006 5
(L +v) 3 v 3
2 2R 9z36 R 3z
) pg(1-v7) 2
i i
a-v) o> , 1 3°
2 822 R2 362
A1 8
.2 2 38
= | v el _ 28 42 !
2R 93z36 E 2
ot 3 3
) 1 93
-a | (2-v) >t 5 —3
a2 1 82 9z 96 R 96
+a 2(1—\))——2' + W]
9z R 96
1 —12- + gRaA®
R2 96 R
%
R 93z 2
3 3 p (1-v7) .2
- (2—v)-=§2.._+.L2.3_3 | + S )
| i 3z“96 R” 3067 || E 5> _
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where

Eall
862

2
g = —h——-; A4 e A2 A2 - A2 g i
R2

12R azz

; and Pq
(1.47)
Furthermore, because of the arbitrary nature of the variation,

in considering Eq. 1.41, one can write

L
Eh2 [g_u+2(3_v+ )] . Su -0 (1.48)
z R \96
(1-v7)
0
Eh 13u . v h [odw ov ’
{2(1+\)) ESEJ’E_;R_Z(?W@_E) i T o
0
_ L
3 2 2
|2 gl@] -0 om
12(1-v7) L 3z R™ \06 0
o L
3 3 3 2
ang { B | 2y 2 (T S e = 0 a0
12(1-v°) | 32> R” \5z986 “ 0

In order to clarify the four terms in parentheses in the preceding
equations, reference can be made to Eqs. 1.23, 1.24, 1.25, 1.28, and

1.29. 1It will be recognized that these terms represent the resultants
M0 1 My
NZ, (Nze + —§~), Mz’ and (Qz +-§ YL respectively. Hence, Egs.

1.48, 1.49, 1.50, and 1.51 take into account the possibility that

either
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Nz = 0 or u = 0 at z = 0, z =1L (1.52)
Mze
NZG+T = 0 or v = 0 at z = 0, z =1L (1.53)
M = 0 or AW— = 0 at z = 0, Z =1L (1.54)
z 0z
M
1 7z6
QZ+-§_3€. = 0 or w = 0 at z = 0, z =1L (1.55)

Equations 1.52, 1.53, 1.54, and 1.55 represent both the natural and
geometrical boundary conditions associated with the equations of
motion of the shell.

For a partly filled liquid container, the equations of motion

take the following form

2
_ o (1-v)
L] dak = g {8 (1.56)
0
where {F} = {0} (H<z<L) and {F} = { 0 (0<z<H); p being the
P

liquid pressure.

I-4. A Numerical Approach to the Lateral Free Vibration - The Finite
Element and the Boundary Solution Methods

The finite element method is now recognized as an effective
discretization procedure which is applicable to a variety of engi-
neering problems. It provides a convenient and reliable idealization
of the system and is particularly effective in digital-computer analy-
ses. However, for some specific simple problems, the so-called

boundary solution technique [10] may be even more economical and
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simpler to use. We shall briefly discuss the similarities and
differences of these two procedures.

In the standard procedure of the finite element method, the
unknown function is approximated by trial functions which do not
satisfy the continuum equations exactly either in the domain or,
in general, on the boundaries. The unknown nodal values are deter-
mined by an approximate satisfaction of both the differential equa-
tions and the boundary conditions in an integrated mean sense. The
boundary solution technique consists in essence of choosing a set
of trial functions which satisfies, a priori, the differential equa-
tions throughout the domain. Now, only the boundary conditions have
to be satisfied in an average integral sense. Since the boundary
solution technique involves only the boundary, a much reduced number
of unknowns can be used as compared with the standard finite element
procedure. At this point, we must remark that the boundary solution
technique is limited to relatively simple homogeneous and linear
problems in which suitable trial functions can be identified.

Since each procedure has certain merits and limitations of its
own, it may be advantageous to solve one part of the region using
the boundary solution technique and the other part by the finite
element method. In the following section, such a combination has
been used successfully. The liquid region is treated as a continuum
by boundary solution technique and the elastic shell is modelled by

finite elements. In this approach, the number of unknowns is sub-
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stantially less than in those analyses where both tank wall and liquid

are subdivided into finite elements [3, 12, 13].

I-4-1. Application of the Boundary Solution Technique to the Liquid
Region

It has been shown that the functional Ic (¢,€) defined by Egs.
1.13 and 1.14, together with the variational statement GIC =0,
provide the necessary differential equation to be satisfied throughout
the liquid domain as well as the appropriate boundary conditioms.
Henceforth, we shall be concerned with the variational formulation,

demanding stationarity of

=
2 P . 2 .
IC(¢,€) = f {— 2_2,[%" Vo) dv +. pzf (p&- %——) ds + p2]¢w ds}dt
t \Y 8, s,
(1.57)

*
Once a set of trial functions, Ni(r,e,z), which are solutions
of the Laplace equation, have been identified, then one can assume

that
! *
¢(r,e,z,t) = 1§l Ni(r,Q,z) ° Ai(t) (1.58)

where I is the number of trial functions to be used in the expansion
of the potential function ¢.
Since the velocity potential function defined by Eq. 1.58 satis-

fies the Laplace equation, V2¢ = (0, identically throughout the liquid
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domain, one can replace the volume integral in Eq. 1.57 by a surface
integral using Green's theorem:

j- (VoeVp) dv = J-¢ %%’ds - j- ¢ V2¢ dv = J-¢ g%-ds (1.59)
\Y S \Y S

3¢

where v is the derivative of the potential function ¢ in the direction
of the outward normal vector V.

~

Now, we seek the stationarity of the functional

E

~ 2 2

1,00 = [ -5t [ oghaevop [ ) as v oy [0 ds par
tl S S S

1 2
(1.60)

~

The functional Ic(¢,€) defined in the preceding equation involves
only the boundaries of the liquid region, and therefore a finite
element discretization of the liquid region itself is not needed.

I-4-2. Variational Formulation of the Equations of Motion of the
Liquid-Shell System

As was seen, the extremization of the complementary functional
Ic(¢,€), assuming that the shell velocity is prescribed, leads to
the differential equation of motion of the liquid and the appropriate
boundary conditions. Similarly, it was demonstrated that the set of
equations which govern the shell motion can be obtained by means of
Hamilton's Principle, assuming that the liquid pressure is prescribed.

A combination of the preceding variational formulations can be
made to provide a variational formulation of the motion of the liquid-

shell system; the variational functional can be written as
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t2 p,QI
J(u,v,w,¢>,£) = j T({],V,{J) = U(u,v,w) s '2'_ f(Vcb-Vq)) dv
£, v
° 52 .
o, f €9- £5) ds + o, f o & ds lde (1.61)
%) Sy

where u, v, and w are the displacement components of the shell in
the axial, circumferential, and radial directions, respectively; T
and U are the kinetic and strain energies of the shell;pl is the
liquid density; ¢ is the liquid velocity potential; £ is the free
surface displacement; and g is the gravity acceleration.

When it is noted that the volume integral in Eq. 1.61 can be
replaced by a surface integral, refer to sec. I-4-1, the functional

J takes the form

t

2 p
J(U,V,W,d),g) = I T(ﬁ,%,i\T) - U(u,V,W) - 2—2 f¢ g% dS

tl S

Ll 2 o
t o, f(&d’ __8_%_) ds + o, [w¢ ds { dt (1.62)
S

1 Sy

In this chapter, only the impulsive pressure of the liquid will
be considered; this is equivalent to assuming a zero gravity accel-

eration. Given this new situation, the functional J can be written as
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t

2 P
J(u,V9Ws¢’E) = J' T(l'l,\'f,ﬁl) - U(u,v,w) = 2—2' fd) _g% ds

tl S

+ 0, jénbds * f w ¢ds | dt (1.63)

R Sy

Now, it can be recognized that the shell vibrational motion is
independent of the free surface motion, and consequently, it is pos-
sible to omit the term in Eq. 1.63 involving the free surface velocity.

Hence, the functional J is given by

2 Py (. 3 .
J(u,v,w,p) = ]- T(a,v,w) - U(u,v,w) - E—-I¢ sg-ds + pz.[ wds §dt
tl S 82

(1.64)

The effect of the coupling between liquid sloshing and shell vibrations

will be discussed later in chapter II.

I-4-3. Expansion of the Velocity Potential Function

The solution ¢(r,0,z,t) of the Laplace equation, V2¢ = 0, can
be obtained by the method of separation of variables. Thus a solution

is sought in the form

6(r,0,2,t) = R(x)* 0(8)*Z(z)*T(t) (1.65)

Appendix I-c gives a detailed derivation of all possible solutions of

the Laplace equation which can be stated as follows:
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"Jn(kr)cosh(kz)
Jn(kr)sinh(kz)

r 2
n , (nz1) (1.66)
r

o(r,0,z,t) = %n(t) cos(ne){

In(kr)cos(kz)

LIn(kr)sin(kz)

where Ja and I, are the Bessel functions and the modified Bessel
functions, respectively, of the first kind of order n; k is a separa-
tion constant; and n is the circumferential wave number. It should
be noted that the terms containing the Bessel functions and the
modified Bessel functions of the second kind, Y, and K,, as well as
the terms &r " and r = have been discarded, since they are singular
at r = 0.

In a solution by the separation of variables, the terms given
by Eq. 1.66 should be superimposed to satisfy the boundary conditions.
Therefore, it is desirable to retain only those terms which have
vanishing derivative with respect to z at z = 0. Hence, the terms
Jn(kr)cosh(kz), In(kr)cos(kz), and r" are retained. The separation
constant is chosen to satisfy that the liquid pressure at the free
surface is zero, or equivalently, the time derivative of the veloc-
ity potential function at z = H is zero for all time. Hence, the

*
trial functions Ni are given by

[ee]

N, (r,8,2) = I_ T(a,r) cos(az) cos(nb) (1.67)
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where ai = ig%ﬁllﬂ (1.68)

The velocity potential function, ¢(r,0,z,t), can then be expressed

as
1 *
¢(r,6,2z,t) =L A () N(r,0,2) (1.69)
or in a matrix form as
Bl Bz t) = {A(t)}T AR, (1.70)

I-4-4. TIdealization of the Shell

The first step in the finite-element idealization of the shell
is to divide it into an appropriate number of ring-shaped elements.
These elements are interconnected only at a finite number of nodal
points as shown in Fig. I-4-a. (it is probably more descriptive to
speak of the "edges" of the element rather than the '"nodes'; however,
these terms will be used interchangeably). The element size is
arbitrary; they may all be of the same size or may all be different.

The equations of motion of the shell admit the representation

of the displacement components u, v, and w in the following form

u(®,z,t) = E u (z,t) cos(nb) (1.71-3a)
n=1 n

v(8,z,t) = v (z,t) sin(nb) (1.71-b)

w(®,z,t) = ngl wn(z,t) cos(nb) (1.71-c)
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Now, the displacement functions un(z,t),vn(z,t), and wh(z,t) can be
expressed in terms of the nodal displacements of the finite elements
by means of an appropriate set of interpolation functions. The
shape functions associated with the axial and tangential displacements
are taken to be linear between the nodal points. However, those
associated with the radial displacement are cubic Hermitian poly-
nomials to assure slope continuity at the nodes.

Consider a typical shell element of length Le with a local
axial coordinate z as shown in Fig. I-4-b. The displacements une(E,t),

vne(z,t) and whe(z,t) can be written in terms of the nodal displace-

ments as follows

2

u (z,t) = .I, 8.(2) u . (t) (1.72-a)
2

v (zt) = L os.(2) v . () (1.72-b)
2

w (0 = I (Ni@) OES RO Gni(t)) (1.72¢)

where e is the subscript indicating "element'" and Gni(t), ;ni(t)’

ani(t)’ and Qni(t) are the generalized nodal displacements of the

element. The shape functions are given by
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= e q 2
Sl(z) = 1 I
e
- z
S,(2) = 1
e
= - 5
Nl(Z) = 1—3LT+2LT
e e
(1.73)
= - o
NZ(Z) = 3;2_—2?3—
e e
- = .
Nl(z) = z -2 Zg + 5
Le
A - = B
Npked = =% 5
e Le

Since the displacements of each circumferential wave number n
are uncoupled, it is appropriate to omit the subscript n for brevity.

Eqs. 1.72-a to c can be written in a matrix form as

{dz,0)}, = Q@) Hd(®)], (1.74)

and

F@IEm, = @@ @m), (1.75)

W, (z,t)

where
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(u_(z,1))
{d(E,t)}e = J ve(E,t)f
| Vo (2,0))
(s, @ 0 0 0 s, (2)
[Qz)] = [ 0 s;(z) 0 0 0
| 0 0 Nl(E) N, (2) 0
uy (£)
v, ()
w, (t)
Wy (£)
{E(tj}e =1
uz(t)
v, (t)
w, (t)
‘:’2“>J
m = 0 0 NG B® 0 0 NG
F#@) = @ e Nn,E NG

(1.76);
0 0 0
sz(E) 0 0
0 N, () &2(2)
(1:.77)3
(1.78);
Nn,@}  1.79);
(1.80); and
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.

w, (t)

w, ()
@w, - ﬁ < (1.81)
Qz(t)

&z(t)

L # &

NEL _
Finally, let {q} = I {d(t)}e (1.82)
e=1

where {q} is the assemblage nodal displacement vector; and NEL is

the number of shell elements along the shell length.

I-4-5. Evaluation of the Shell Stiffness Matrix

The elastic properties of the shell are found by evaluating
the properties of the individual finite elements and superposing
them appropriately. Therefore, the problem of defining the stiff-
ness properties of the shell is reduced basically to evaluating the
stiffness of a typical element.

The strain energy of the shell due to stretching and bending

(Eq. 1.33) can be written as

L
U = 3 f ({e}T[p]{e}) do az (1.83)
0

where {e} = [P]{d} (1.84); and [P] is a differential operator

O _— N
=

matrix defined by Eq. 1.32.
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For each circumferential wave number n, the displacement vector
{d} of any point (R,8,z) on the middle surface of the shell can be

expressed in terms of the vector {dn} as follows

{a} = [@n]{dn} (1.85)
where
cos (nb) 0 0
[On] = 0 sin(nb) 0 (1.86) ;
0 0 cos (nb)
'un(z,t)\
{d (z,0)} =10v (z,v) § (L-87) 3
n W n
Lwn(z,t))

u and LA being the axial and radial displacement at 6 = 0; and v
is the maximum tangential displacement.

Substitute Eq. 1.85 into Eq. 1.84, then one can write

{e} = [(PMa} = [Plle 1{a} = [B1[F ()1{a}  (1.88)

where
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—
cos(nb) 0 0 0 0 0 -W
0 cos (nb) 0 0 0 0
0 0 sin(nb) 0 0 0
[@n] = (1.89)
0 0 0 cos (nf) 0 0
0 0 0 0 cos (nh) 0
0 0 0 0 0 sin(nf)
— 5 —
3z 0 0
n 1
0 R R
n )
. "R dz .
and [Pn(z)] = (1.90)
2
0 0 _3__2__
0z
n n2
O oA s
R2 RZ
o 23 m3
| R 9z R 9

With the aid of Eq. 1.88, the strain energy expression (Eq. 1.83)

can be written as
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2m
o~ i " b A A
u(e) ‘([Pn]{dn}> < [ CRESIEN de> (1B_1{d_}) } az

0

[}
N[
O\, =

R
2

A T = ]
{([Pn]{dn}> (D] ([P_I{d_} } dz (1.91)

O S

Again, the displacements of each circumferential wave number
n are uncoupled, and therefore, it is appropriate to omit the sub-
script n for brevity.

Now, the strain energy (Eq. 1.91) may be expressed, with the aid

of the displacement model (Eq. 1.74), as

NEL

Le
gty = TZT—R 5 f
0

N -
= [ (ra@y” (IP11Q1{3} ) a2 (1.92)

where NEL is the total number of shell elements along the shell
length; and [D]e is the element constitutive matrix; it is assumed
constant over the entire element.

Eq. 1.92 may be expressed conveniently in terms of the element

stiffness matrix as

1 NEL _ . _
v = 3 I G KL, (1.93)
L
e T ’
where k], = ™ [ (B[] [B] <z (1.94) ;
0
and [B] = [;][Q] (1.95)
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The integration involved in the evaluation of [KS]e can be
accomplished by using the Gaussian integration method along the
element length. A Four-points integration-rule is required to
exactly compute the elements of the stiffness matrix; it can be

stated as follows

L

e 4
G(z)dz = I G(z,) W, (1.97)
2
0
where z, = 75—(1 + ni); nl = F 0.339981; n2 = F 0.861136;
4 3
W, = 0.326 L ; and W, = 0.174 L .
l e 2 e
4 3

The process of constructing the equations for the assemblage
from the equations for the individual elements is routine. Nodal
compatibility is used as the basis for this process. Since the
displacements are matched at the nodes, the stiffnesses are added
at these locations. The assemblage stiffness matrix and the nodal

displacement vector can be written as

NEL NEL _
k1 = 3 k] and {q} = 3 {dk (1.98)
e=1 =1

Now, the strain energy expression becomes

v = 5 (@' K] {a (1.99)
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Finally, when it is noted that the strain energy stored in
the shell during deformations must always be positive, it is evident

that

3 (@K Ha} > 0

Matrices which satisfy this condition, where {q} is any arbitrary
nonzero vector, are said to be positive definite; positive definite
matrices are nonsingular and can be inverted. The stiffness matrix

[KS] is also symmetric and banded.

I-4-6. Evaluation of the Shell Mass Matrix

The kinetic energy of the elastic shell (Eq. 1.36) can be

written as

T, 2m ) .
T(t) = % f f (m(z){d}T {d}) R d6 dz (1.100)
0 0

Substituting Eq. 1.85 into Eq. 1.100, one can obtain

T 2T
T(t) = %f m(z) {dn}T <f[en]T[en] de>{dn} dz
0 0
L
= %R f <m(2){dn}T{dn}> dz (1.101)
0
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When the interpolation displacement model is used, Eq. 1.74
can be inserted into the expression of the translational kinetic

energy to obtain

-r NEL L T 2 _
T(t) = 5 % m, _f ([Q]{d}e) ([Q]{d}e) dz (1.102)
e=]1
0

where the subscript n is omitted for brevity and m, denotes the mass
of the shell element per unit area; it is assumed uniform over the
entire element.
Equation 1.102 can also be written as
NEL l}T

r {d
e

M_] {é} (1.103)
e=1 €

S’ e

N~

T(t) =

where [Ms]e is the consistent mass matrix of the element which can

be defined by

L
e

M1, = TRn f [Q1t[q] dz (1.104)
0

When the integration involved in the evaluation of [MS]e is

carried out, the resulting consistent mass matrix is
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[- Le Le ]
3 0 0 0 5 0 0 0
o L o o o e o 0
3 6
13, 1112 or,  _132
O % =5 o3 0 % T 420
2 3 2 3
0 o i 2 O S
210 105 220 140
4] = mEa (1.105)
© Le Le
5 0 0 0 3 0 0 0
Le Le
0 2 0o 0 0o = 0 0
o 1312 130 1115
0o 0 e 0 0 E S
70 420 35 210
1l il 1l
A 220 1o 0O 210 105 |

The mass matrix of the complete assemblage can be developed
by exactly the same type of superposition procedure as that described
for the development of the assemblage stiffness matrix. The assem-

blage consistent mass matrix is

WJ = ;gl Pge (1.106),
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and therefore, the translational kinetic energy can be written as

T(t) = % {q}T[MS]{é} (1.107)

I-4-7. The Matrix Equations of Motion

As a consequence of neglecting the free surface oscillation
modes, the motion of the tank wall can be analyzed by introducing an
additional mass matrix in the matrix equations of motion of the
shell; it represents the effect of the liquid dynamic pressure during
vibration.

To establish the matrix equations of motion of the liquid-shell
system, one can make use of the variational functional (Eq. 1.64)

which can be written as

t2 0

J(u,v,w,p) = f T@,v,w) - U(u,v,w) - ?& fd) % ds + Py fv'zqﬁds dt
S

t S
1 2 (1.108)

The scalar energy quantities, U(t) and T(t), are already obtained
in terms of the assemblage nodal displacement vector, {q}, and are
given by Egs. 1.99 and 1.107, respectively.

Now, inserting the expression for the potential function (Eq.
1.70) into the third term of the functional J, and noting that the
trial functions, given by Egs. 1.67 and 1.68, satisfy the conditions

that ¢ = 0 along Sl and %%— = 0 along SB’ one can write
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P P
7’1 f¢§% = f¢-ﬂl ds (1.109)
S

H 27
p
72 ff < $Rs 02k} 2—f (R,e,z,t)> R d6 dz

H 2w
RO T
= TZ (D)} (ff{ N(R,0, z)}{—— (R,0,2)} db dz>{A(t)}
00
(1.110)
where §i (r,6,z) = rl%;:l In(air) cos(aiz) cos(nB) ; and
B = LR i = 1,2,..... I.

2H

Performing the integration involved in Eq. 1.110, one can obtain,

th . : :
for the n~ circumferential wave, the following

L [o8 e - TPl am

where EC] is a diagonal matrix whose elements are given by

o.H

= ——L— o« 7 i =
C,; = 5 L (@R "I (R , i=1,2,....,L (1.112)

With the aid of the radial displacement expression (Eq. 1.71-c),

the last term of the variational functional (Eq. 1.108) becomes
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H 27
pg, [V:J ¢ ds = pg, ![ <€v(6,z,t)-¢(R,9,z,t)>Rd8 dz
S 0 '
2 H 2
= sz g[‘}n(z,t)<fcos(n6) °¢>(R,6,z,t)de>] dz (1.113)
0

and upon using the potential function expression (Eq. 1.70) in

Eq. 1.113, it can be obtained

H
% Sf wods = RO, {(&n(z,t)-{ﬁ(z)}T-{A(t)}) dz (1.114)
2
where ﬁi(z) = In(aiR) cos(aiz) (1.115)

Now, inserting the shell displacement model (Eq. 1.75) into

Eq. 1.114 to get
L

e
, NEH " T
0 f w¢ds = mRp ). [{E(t)}e {E(E)}{f&(z)}T {A(t)} dz
52 e=1 \0 &
NEH /| . T
= TmRP, > <‘E(t)}e {'C]e[A(t)}> (1.116)

e=1

where NEH is the number of shell elements in contact with the liquid
along the shell length; and [a]e is a matrix of order 8 x I which can

be expressed.as follows:
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[0 0 0 0
0 0 0 0
C33 C3p C33 - & Cat
) C41 C42 C43 . _— C4I
el, = 0 0 0 .. .. 0 (1117
0 0 0 0
Co1 %93 Gy e & s
| Ce1 Cg2 Cg3 - o Cs1]
where
- (L, 6 e e 12 6
CBi = In(cntiR)Le <B. + 3> 51n[Bi(e 1] + 5 cos[Bi(e—l)]- 3
i Bi B. B
i i
. 12 _
81n[Bie] al cos[Bie]> §
B.
i
A - . S 2 1 _ 6 y -2
C4i = I (a.R)L ( 3 31n[Bi(e l)]_< > 4 ) cos[Bi(e 1)] 3
B; B; Bi Bi
sin[B.e] - . cos[B.e]
i 4 i ’
By
_ 6 . 12 1, 6
671 = I,(RL, [ —3 sin[g,(e-1)] - , coslB;(e-1)] + (B_ S >
B Bs i By
sin[Bie] + _].ZZ_ cos[Bie]> :
B;
681 = In(aiR)Li<—g§— sin[Bi(e-—l)] + —8—2— cos[Bi(e—l)] - ;g— sin[Bie]

2 i bl 1

+ —é——%— cos[Bie] .
B. B.

b 8 7



BB

Bi = aiLe ; and e is the number of the element (refer to Fig. I-4-a).

Using Eq. 1.82 , one can write Eq. 1.116 in terms of the assemblage

nodal displacement vector as follows

. T .~
" jqu ds = TRoy {3} (€1 {A} (1.118)
52
where [c1 = 2 [cl, (1.119)
e=1

A
It is more convenient to redefine the matrices ECJ and [C] as

fc] = mro, fc] [c] = mRe, [C] (1.120)

Hence, Eqs. 1.111 and 1.118 can be written as

;&j"’% 4B = 1/2{A}TEC:|{A} (1.121)

s pﬁfﬁ ¢ ds ={C‘[}T [E] {A} (1.133)
S
2

Now, inserting Egs. 1.99, 1.107, 1.121, and 1.122 into the varia-

tional functional (Eq. 1.108), one can obtain for the assemblage
t2

s (102 4l o1 fa)- 272 faff 1,0 fa) - vz 1 (o) +

£ {c‘;}T [6]{A}> dt = 0

Applying the variational operator yields



v .

jz( oa) "1 {a) - foa) TIrgI{a) - (o4} T[] (a) + (eq) cI {A)

E

+ {5A}T[6]T{E;}>dt = 0 (1.123)

Integrating the first and fourth terms in Eq. 1.123 by parts
with respect to time, and noting that the displacement vector must

satisfy the conditions {q(tl)} = {q(tz)} = {0}, then one can write

t
[ el o + e+ (8 (A + o™ [ccd (a) -
' (61"4q)] fac = o (1.124)

Since the variations of both the nodal displacement, {8q}, and the
coefficients, {§A}, are arbitrary, the expressions in brackets must
vanish. Therefore, the matrix equations of motion for the liquid-shell

system can be obtained in the form
M 1(§) + (K ]{a} + [Cl{A} = {0} {11253
and fcliar - 815G = {0y (1.126)

Since the matrix EC] is not singular, then one can write Eq. 1.126

as
-1,45.T -
{ay = [c™re1 (1.127)
Now, differentiating Eq. 1.127 with respect to time

iy = [ terYe (1.128)

]
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and substituting Eq. 1.128 into Eq. 1.125 to get
M 1{q} + [Ks]{q}+[é][c]'l[6]T{'ci} = {0} (1.129)

Now, define an added mass matrix [DM] as follows
o] = (&1 ier” (1.130)

The matrix [DM] is symmetric and is a partially complete matrix (i.e.,
not banded); the elements are well distributed over the matrix. The
general form for such a matrix and for the banded consistent mass matrix
is shown schematically in Fig. I-5; only the hatched blocks are non-zero
elements.

Finally, the governing matrix equation of the lateral vibration of

the liquid-filled shell is given by
([MS]+ [DM]) {qy + [K1{q} = {0} (1.131)

I-4-8. An Alternative Approach to the Formulation of the Added Mass

Matrix
In the preceding section, the matrix equations of motion of the

liquid-shell system were derived by means of the variational functional
(Eq. 1.64). Another way of treating the problem is to derive the added
mass matrix directly from the appropriate expression for the work done
by the liquid-shell interface forces, and then, to derive the governing
matrix equation of motion of the shell by means of Hamilton's Principle.
This approach is simpler and easier to follow; it will be explained in
this section.

It has been shown that the potential function ¢(r,0,z,t) which
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satisfies the appropriate boundary conditions at the liquid free sur-

face, and at the rigid bottom plate, can be expressed as

¢(r,08,z,t) = 2: Z: (Ani In(air) cos(uiz) cos(ne)) (1.132)
n=1 i=1

The remaining boundary condition at the liquid-shell interface

(Eq. 1.3) can be written as

Igi-{géi [Ahi oy in(aiR) cos(aiz) ] - Qn(z,t) } cos(nB) = 0
(1.133)

and consequently,

ééi [Ani ai’In(aiR) cos(aiz)] = Qn(z,t) (1.134)

The functions Ani(t) can be determined in terms of Qn(z,t) by em-

ploying the orthogonality relations of the cosine functions, namely,

H 0 i#3
~/~ cos(aiz) cos(ajZ) dz = { (1.135)
0 B L =

2 J

After the appropriate algebraic manipulations of Eq. 1.134, the

following expressions for Ani(t) result

H

2 f w (z,t) cos(a.z) dz
0o ™ * , i = 1,2,.... (1.136)

oy H In(aiR)

ni

; th . ;
and therefore, the dynamic pressure, for the n ~ circumferential
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distribution, can be given by

)
Pd (R,6,z,t) = =Py 5%—(R,6,z,t)

H
| #a(nse) costaym) dn

20, &
- -0 I (aR)-cos(0,z) + cos(nd)
i=1 ai’aﬁ%g) ol

{1,137}

The work done by the liquid pressure through an arbitrary virtual

displacement, 6wn cos(nb), can then be written as

H 2m
SW = f f(pd(R,e,z,t)'(Swn°cos(n6))R de dz
0 O

H

ZTTRp oo I (Q.R) H
L n i . 2 P ol
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