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ABSTRACT

Due to its high coherence in transmission over a large distance in ambient envi-
ronment, quantum optical system has been a prevailing platform for long-distance
quantum communication, which was recently realized over a continental distance
with a low earth orbit satellite and ground stations [102, 70]. However, pure quantum
optical system has so far shown weak interactions between photon and matter, which
makes it inefficient in carrying out deterministic quantum gates for quantum repeater
based scalable quantum network and quantum computing. On the other hand, su-
perconducting quantum systems operating in the microwave domain with Josephson
junction transmon qubits have proven to be capable of efficient deterministic quan-
tum operations on quantum states [86, 87, 66]. Nevertheless, such architecture
is prone to errors and decoherence due to cross-talk between microwave elements
in a large-scale superconducting quantum circuit. Furthermore, superconducting
systems, in general, also have large footprint (100s um) elements (resonators and
superconducting quantum bits) [92, 60] that limit the ability to scale up a supercon-
ducting quantum system. Moreover, microwave quantum circuits require cooling
to around 10 mK, making it unsuitable for communicating quantum information
outside a dilution refrigerator (DF). Micro- and nano- acoustic elements have been
extensively used in conventional integrated information processing systems due to
their compactness and high coherence [97]. Acoustic systems in quantum engineer-
ing also have the advantage of being a platform for universal couplings between
various quantum systems including spins, optical photons, and superconducting
circuits. As it will be discussed in this thesis, elements critical to scalable optical
quantum network and superconducting quantum circuit can be constructed relying
on the cavity optomechanics and piezoelectric interactions.

Optomechanical interaction is concerned with the light pressure coupling of cavity
mechanical deformation to a strong optical field. This interaction has allowed the
close to mechanical ground state cooling of mechanical resonators using laser and
the ultra-sensitive displacement measurement that led to the detection of gravita-
tional waves in the LIGO collaboration [125, 25]. Optomechanical crystals (OMCs)
are lithographically patterned devices which contain periodic structure that host
bandgaps for both optical band electromagnetic waves and microwave band acoustic
waves. A properly engineered defect in the crystal can confine and localize acoustic
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and electromagnetic modes of similar wavelengths into a small mode volume [17,
20, 21]. A strong optomechanical coupling, which can be achieved between such
strongly confined co-localized optical and acoustic modes, can be used in engineer-
ing the quantum state of mechanical motion to realize useful quantum devices such
as a high-coherence quantum memory [74] and an optomechanical high efficiency
optical isolator for unidirectionally connecting distant optical cavities via an acous-
tic bus [37].

To strongly couple the mechanical degree of freedom with a superconducting quan-
tum circuit, various methods can be used, ranging from electromechanic coupling
(electric coupling to a mechanically compliant capacitor), magnetomechanical cou-
pling (magnetic coupling to a vibrating SQUID loop), and piezoelectric coupling.
The recent advent of quantum acoustics [23, 8, 9] was realized with the strong piezo-
electric coupling between a superconducting transmon qubit and a high-coherence
mechanical resonator. The engineered strong piezoacoustic coupling provides the
possibility to carry out deterministic ultra-high fidelity two-qubit quantum gates
on non-classical mechanical quantum states [52]. This ability together with the
recent demonstration of ultra-long phonon lifetime mechanical resonators show the
possibility of integrating the ultra-high quality mechanical resonator as a compact
quantum memory element and even a new ultra-compact (10s um) quantum bit
architecture for scalable superconducting quantum circuits. Furthermore, the strong
piezoelectric coupling that can transduce quantum state in a superconducting circuit
into mechanical wave also makes it possible to efficiently transduce a quantum state
between a superconducting quantum circuit and a telecommunication band optical
channel via a mechanical waveguide connected to an optomechanical crystal cavity.

The Chapter 1 will summarize the theoretical framework for optomechanics, elec-
tromechanics, magnetomechanics, and piezoacoustics. The Chapter 2 will introduce
the superconducting quantum circuit and Josephson junction transmon qubit used in
this work. The Chapter 3 will introduce the the synthetic crystals that tailor the prop-
agation dispersions of optical and mechanical waves. This forms the foundations for
the photonic and phononic engineering to guide and confine photons and phonons
involved in this work. The Chapter 4 will proceed to discuss optomechanical inter-
action induced time-symmetry breaking, device design, and characterization details
of optomechanical crystals and waveguides used in this work that enabled the con-
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struction efficient optomechanical optical isolator. The Chapter 5 will talk about
details of characterizing ultra-high quality nano-mechanical microwave resonators
demonstrating phonon lifetime approaching one second at 10 mK. The various dis-
sipation mechanisms involved in the pump heating induced elevated mechanical
loss and intrinsic dissipation in the absence of pump heating are going to be dis-
cussed. This information is important in understanding the potentials of acoustic
quantum memories based our ultra-high quality phononic platform. The Chapter 6
introduces the details in design and characterization of piezoacoustic resonators
strongly coupled to superconducting electric circuit for the purpose of piezoacoustic
transduction that can be further used for building compact an ultra-long lifetime
nano-mechanical quantum memory, an ultra-compact anharmonic acoustic qubit ar-
chitecture, and a microwave to optical transducer (in the appendix). The Chapter 7
presents the efforts of growing Aluminum Nitride (AlN) with both atomic-layer-
deposition (ALD) and sputtering. The Chapter 8 will introduce a hardware efficient
programmable superconducting quantum logic circuit architecture that opens door
to various research directions in quantum floquet engineering, cryogenic high ef-
ficiency circulator, topological photonic lattice, and demonstration of small size
fault-tolerant protocols requiring a high connectivity graph between qubits and
dynamic coupling controls. I will use a four-qubit device to create a synthetic quasi-
3D tetrahedron interacting photonic lattice with intrinsic time-reversal symmetry
breaking and nontrivial single-photon manifold phases as an example to showcase
the flexibility and usefulness of such architecture. The Chapter 9 will conclude
the work, with a summary and introduction to future directions on a hardware ef-
ficient way for scaling up superconducting quantum circuits and novel experiments
in quantum optomechanics.
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C h a p t e r 1

FRAMEWORKS FOR COUPLING MECHANICAL MOTION TO
OPTICAL AND ELECTRIC CIRCUITS

1.1 Optomechanical Interaction
Strong optical field in a high quality optical cavity can impart a large radiation
pressure onto the cavity itself. For the simplicity of the discussion, assume that the
optical cavity is a Fabry-Perot optical cavity with highly reflective and mechanically
compliant mirrors. To further simplify the problem, only one mirror is assumed to
be the moving mirror as shown in the Fig. 1.1 with all the system variables involved
in the following discussion. The Hamiltonian describing this system with intrinsic
losses to environment and coupling to an external optical pump can be written into
(1.1).

H = ~(ω0 + g0 x̂ −
κ

2
i)â†â + ~(ωm −

γi
2

i)b̂†b̂

− ~
√
κei(âexâ† + â†exâ) − ~

√
κii(âenvâ† + â†envâ)

− ~
√
γii(b̂envb̂† + b̂†envb̂)

(1.1)

In this expression, â(b̂) and â†(b̂†) are quantum annihilation and creation operators

b

aout

ain
e

bin

ain
iκi

κe

γi

a

Figure 1.1: Ageneric optomechanical cavitywith an optical cavity radiation pressure
coupled to a moving mirror (blue) of the cavity.
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for the optical cavity (mechanical resonator) mode of interest. x̂ = b̂ + b̂† is
the normalized dimensionless displacement quantum operator for the mechanical
oscillation. κ = κi + κe is the total optical loss rate (linewidth) of the optical mode.
It is the sum of intrinsic optical cavity loss rate (κi) and coupling rate to pump
waveguide(κe). γi is the intrinsic loss rate of the mechanical mode of interest into
its environment. As there is no mechanical pump channel, all the mechanical loss
is due to intrinsic coupling to acoustic environment. It should be noted that the
laser driving term can be expanded into a sum of classical laser driving amplitude
and a quantum fluctuation term as âex = αex(t) + δâex. Take αex(t) = α0

exe−iωlt

for a laser pump with frequency ωl. First, to get rid of the time-dependence of
the driving laser, transform the (1.1) into a frame rotating with the laser using the
unitary transformation Û(t) = exp(iωlâ†ât) and the obtained rotated Hamiltonian
will be (1.2) with ∆0 = ω0 − ωl.

HR = ~(∆0 + g0 x̂ −
κ

2
i)â†â + ~(ωm −

γi
2

i)b̂†b̂

− ~
√
κei(âR

exâ† + â†ex
Râ) − ~

√
κii(âR

envâ† + â†env
Râ)

− ~
√
γii(b̂envb̂† + b̂†envb̂)

(1.2)

Here the optical drive and environment noise in the rotating frame are: âR
ex =

eiωlt âex = α0
ex+eiωltδâex and âR

env = eiωlt âenv. Absorbing the time factors on the input
quantum variables in the rest of the work is equivalent to also transforming the input
quantum dynamics into the rotating frame, and thus quantum fluctuations of pump
channel and environment can be relabeled as eiωltδâex → δâex and eiωlt âenv → âenv

From the Hamiltonian, we can get the master equations of the open quantum system
as (1.3) and (1.4).

Û̂a = −i(∆0 −
κ

2
i)â − ig0(b̂ + b̂†)â +

√
κeâR

ex +
√
κiâR

env (1.3)

Û̂b = −i(ωm −
γi
2

i)b̂ − ig0â†â +
√
γib̂env (1.4)

The above equations of motion are intrinsically nonlinear and a general solution to
the problem is not available. However, due to the usual smallness of the vacuum
optomechanical coupling rate g0, significant optomechanical interaction is only
achieved with strong laser pump that creates a relatively large and steady state
photon population in the optical cavity mode of interest. Assuming that the laser
pump is also long enough to drive the optical cavity into a steady state (ring-up
effect ignored), the equation of motion can be linearized with the substitution,
â = α + δâ, where α is the classical coherent amplitude of the cavity mode and δâ
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describes the small quantum dynamics of the cavity. Expanding the equations with
the substitutions for drive and cavity dynamics and ignoring terms corresponding
to negligible multi-photon processes (O(δâ2) and O(δâ†2) in Hamiltonian), we can
have linearized equations of motion as (1.5) and (1.6).

Ûδâ = −i(∆0 −
κ

2
i)δâ − ig0α(b̂ + b̂†) +

√
κeδâex +

√
κiâenv (1.5)

Û̂b = −i(ωm −
γi
2

i)b̂ − ig0(α∗δâ + αδâ†) +
√
γib̂env (1.6)

The equation above also assumes a steady state condition and a shift of mechanical
resonator’s harmonic potential coordinate origin that:

α = −

√
κeiα0

ex
∆0 −

κ
2 i

(1.7)

b̂ −
g0 |α |

2

ωm −
γi
2 i
→ b̂ (1.8)

It is clear from the (1.5) and (1.6) that the effective optomechanical interaction
strength is G = g0α with intra-cavity photon number defined as nc = |α |

2. Effec-
tive interaction rate (G) between quantum dynamics of the optical cavity and the
mechanical cavity can be enhanced significantly with a large intra-cavity photon
population. Depending on whether κ � ωm, optomechanical interactions can be
studied in two regimes for different applications.

1.1.1 Sideband Unresolved Regime: Measuring Mechanical Displacement
The sideband unresolved regime corresponds to the case that κ � ωm. In this case,
optical light field in the cavity responds to the mechanical displacement instanta-
neously and records the displacement into the phase of light leaving the cavity. The
optomechanical displacement measurement is behind the LIGO Scientific Collabo-
ration that used strong optical fields in 4 km long cavities tomeasure the gravitational
displacements of cavity mirrors [125, 25]. This regime can also be used to precisely
measure displacement of a micro-mechanical resonator and was used in building
quantum-limited optomechanical accelerometers on-chip [67]. It can be used to
explore pulsed optomechanics that can potentially generate close to 20 dB optical
squeezing and explore transient dynamics and coherence of quantum mechanical
motion.

1.1.2 Sideband Resolved Regime: Photon-Phonon Scattering
The sideband resolved regime corresponds to the case where κ � ωm. In this
regime, long lived optical field in an optical cavity feeds back to the mechanical
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displacement dynamically due to retardation in optical response according to the
sign of laser-cavity detuning ∆0. For red-detuning that ∆0 > 0, the retardation
causes out of phase response of optical field to motion that effectively damps the
mechanical oscillator. The effect is most predominant when ∆0 ∼ ωm. Then (1.5)
and (1.6) can be written using rotation-wave-approximation (RWA) as (1.9) and
(1.10).

Ûδâ = −i(∆0 −
κ

2
i)δâ − ig0αb̂ +

√
κeδâex +

√
κiâenv (1.9)

Û̂b = −i(ωm −
γi
2

i)b̂ − ig0α∗δâ +
√
γib̂env (1.10)

The above equations describe that a mechanical quanta can coherently up-convert a
pump laser photon into a cavity frequency photon and vice versa. This mechanism
was used to efficiently laser cool a 5 GHz nano-mechanical resonator mode to its
motional ground state and, as it will be discussed in this work, count mechanical
resonator phonon population via detecting the number of photons, leaving the opti-
cal cavity at cavity frequency. The phonon-photon scattering rate for ∆0 = ωm can
be shown to be γOM = 4G2

κ and the effective total damping rate of the mechanical
resonator is γ = γi + γOM

As the red-detuning can swap phonon and cavity-photon, similarly, the blue-detuned
region where∆0 < 0 led to spontaneous down-conversion of a laser pump frequency
photon into a cavity frequency photon and a mechanical resonator phonon with the
frequency of |∆0 |. The process is also resonantly enhanced if |∆0 | = ωm and the
on-resonance total damping rate of the mechanical resonator is γ = γi − γOM.
Optomechanical system under blue-detuned laser drive can lead to lasing when the
optomechanical photon-phonon scattering rate is γOM > γi. This interaction can
be used to write-in a quanta from optical pump into the mechanical resonator and
entangle it with a cavity-frequency photon.

1.2 Electromechanical Interaction
Electromechanical interaction is normally used to describe the coupling between a
mechanically compliant capacitor and an electric circuit as shown in Fig. 1.2. The
mechanical motion of the capacitor modulates its capacitance. If the capacitor is
part of a LC electric resonator, the motion is transduced into the modulation of
the frequency of the electric resonator. It is just like the case of optomechanics
where mechanical displacement modulates the optical cavity frequency and leads
to optomechanical interaction between light and matter. The LC-resonator with
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Figure 1.2: Similar to the optomechanical case, electromechanical interaction can be
realized in an electric LC-resonator that has a capacitor that is mechanical compliant.
Mechanical displacement x̂ modulates the capacitance and changes the resonator’s
frequency.

vibrating capacitor leads to a similar dynamics that couples the microwave electric
signal in the circuit to the mechanical mode of the capacitor.
Instead of repeating the discussions in the introduction of optomechanics, the elec-
tromechanical interaction can also be extended to describe a system of two electric
resonators coupled via a vibrating capacitor shown in Fig. 1.3. In this case, the
system is effectively an engineered nonlinear system that causes three-wave-mixing
of the mechanical motion with the two electric resonances. The dynamics of the
system can be generically written as (1.11).
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Figure 1.3: a, a qubit on the right can be strongly coupled to a mechanical oscillator
to swap a quanta between the qubit and a mechanical mode via an engineered three
wave mixing shown in b using a mechanically compliant capacitor that couples a
LC-resonator and a superconducting qubit. Themechanical mode of interest is in the
coupling capacitor and its displacement (x) will modulate the coupling between the
LC-resonator and qubit. This three wave mixing effectively enhances the coupling
between the mechanical mode and the qubit with the LC-resonator driven to a high
coherent amplitude.

H =
∑
j=1,2
~(ω j −

κ j

2
i)â†j â j + ~(ωm −

γi
2

i)b̂†b̂

+ ~(J0 + J1 x̂)(â1 + â†1)(â2 + â†2)

(1.11)

where â j(b̂) denotes the annihilation operator for the electric resonances (mechanical
resonator). The two electric resonances are coupled via a static coupling J0 and a
varying coupling term J1 x̂ to the first order in displacement x̂ = b̂† + b̂. Using the
presented coupler design which composed of a vibrating capacitor in parallel to a
SQUID loop, the coupling terms can be expressed as (1.12) and (1.13) assuming
that Cm ' Cm,0 + Cm,1 x̂ and zero-point-fluctuation in charge amplitudes described
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by (1.14). Z1,2 =
√

L1,2
C1,2

are the impedance of the electrical resonator 1 and 2.

J0 =
q0
1q0

2
Cm,0

(1.12)

J1 = −J0
Cm,1

Cm,0
(1.13)

q0
1,2 =

√
~ω1,2C1,2

2
=

√
~

2Z1,2
(1.14)

The three mixing amplitude is characterized by the J1 in the term involving (b̂† +
b̂)(â1 + â†1)(â2 + â†2). Assuming that the second electric resonator on the left has a
large coherent population α1 and ω2 = ω1+ωm, the interaction picture Hamiltonian
in rotation-wave-approximation (RWA) is (1.15):

Hint = ~J1(α
∗
1 â2b̂† + α1â†2 b̂) (1.15)

Thus, it can be seen that the swap between electric resonator-1 and the mechanical
resonator can be parametrically enhanced with the large photon number n1 = |α1 |

2

in electric resonator-1.

Furthermore, even though electric resonator-2 was described here as a harmonic os-
cillator with harmonic annihilation and creation operators â2 and â†2, it is still valid
to replace the resonator-2 with a superconducting transmon qubit so that quantum
state can be transferred between the qubit and the mechanical resonator at large
effective coupling rate enhanced parametrically by populating the other harmonic
electric resonator.

This implementation allows the qubit to mechanical resonator coupling to be para-
metrically enhanced, just like the electromechanical coupling between an electric
resonator and a mechanical resonator can be parametrically enhanced by a large
detuned pump to the electric resonator. The difference is that the parametric en-
hancement comes from pumping a second harmonic electric resonator and the
coherent single quanta quantum state transfer is between a transmon qubit and a
mechanical mode of interest.

1.3 Magneto-mechanical Interaction
Magneto-mechanical coupling is also another form of creating parametrically en-
hanced coupling between an electric mode and an acoustic mode via having the
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Figure 1.4: Similar engineered three wave mixing used to enhance single photon
swap rate between a qubit and a mechanical mode can be realized a SQUID device
that couples a highly driven LC-resonator with the superconducting qubit. The
SQUID device has a segment that is mechanically compliant and its displacement
(x) modulates the magnetic flux through the SQUID loop in a strong magnetic field
threading magnetic flux Φex through the loop.

mechanical mode to modulate the coupling between the electric mode of interest
and another heavily populated harmonic electric resonator illustrated in Fig. 1.4.
It is similar to the previous electromechanical case with a mechanically compliant
capacitor in the coupler. This design, instead of implementing a moving capacitor,
uses a mechanically compliant SQUID loop with part of the loop wire being me-
chanically compliant schematically shown in Fig. 1.4 as the blue segment. With a
strong magnetic field near the moving SQUID edge, motion will be transduced into
modulation in the SQUID loop flux which will lead to a modulation of the SQUID
effective inductance that creates the coupling between the two electric resonators.
The generic form of the Hamiltonian will be the same as (1.11). The static and
moving couplings can be expressed as (1.16) and (1.17) with static external flux bias
Φ0

ex .

J0 = φ
0
1φ

0
2E0

J cos
(
π
Φ0

ex

Φ0

)
(1.16)

J1 = −φ
0
1φ

0
2E0

J sin
(
π
Φ0

ex

Φ0

)
π

Φ0

∂Φex

∂x
(1.17)

φ0
1,2 =

π

Φ0

√
~ω1,2L1,2

2
=

π

Φ0

√
~Z1,2

2
(1.18)

The static coupling J0 can be tuned to zero with external magnetic flux bias
Φ0

ex = (0.5 + 2n)Φ0 for n ∈ N . Furthermore, the |J1 | is maximized at these
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Figure 1.5: a shows that the mechanical deformation of a piezoelectric material
generates an electric potential and a charge accumulation on its surface. b The
piezoelectric coupling linearly maps a mechanical mode into the electric domain as
vibrating electric dipoles.

J0 = 0 bias points. The ability to turn off the static coupling avoids the large disper-
sive shifts and decoherence caused by the highly populated electric resonator to the
detuned superconducting qubit.

The interaction Hamiltonian under RWA and the assumptions in the electromechan-
ics section will still be (1.15). Thus, replacing the right electric resonator with a
superconducting qubit will lead to a strong effective coupling between the qubit and
the mechanical mode of interest because this effective single quanta coupling rate is
parametrically enhanced by the large population of left electric resonator.

1.4 Piezoelectric Interaction
Piezoelectricity is concerned with a phenomenon that certain materials respond to
mechanical deformation with a electric polarization and voltage build-up. A simple
figure that illustrates this is shown in Fig. 1.5a. This property of various piezoelectric
materials has been extensively utilized over the last century to generate ultra-sound
for electric circuits. The strong coupling between the material strain and electric
field is due to the broken center symmetry of the material’s crystal structure so that
strain in the lattice displaces theweighted centers of opposite charges and electrically
polarizes the material which is shown in Fig. 1.6 and Fig. 1.5. It should be noted that
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there are 20 central symmetry broken crystal classes that have piezoelectric effects.
Most commonly used piezoelectric materials can only be polarized by having a
non-zero strain-stress field. Such materials belong to 10 of the piezoelectric crystal
classes. The rest of the piezoelectric crystal classes are spontaneously polarized
even without any deformation.
The mechanical deformation of a piezoelectric material can be effectively mapped
into its dual electric domain as an ensemble of electric dipoles like Fig. 1.5b.
The mapping can also be quantitatively captured by the coupled field equations
in (6.1) and (6.2) with stress (i j) induced electric polarization (Pi) described by
Pj =

∑
kl d j klσkl . The piezoacoustic mode’s coupling to a mode of electric circuit

can be equivalently treated as the coupling between an electric dipole ensemble to an
external electric field. This observation leads to a convenient method for extracting
piezoelectric coupling between the electric circuit and a piezoacoustic mode of
interest by utilizing the established electromagnetic perturbation method for electric
field to polarization field coupling, which can be shown in the later chapter as an
overlap integral between the normalized polarization field and the circuit’s electric
field.

It will be discussed later in detail that coupling cooperativity of a given piezoelectric
material to a circuit is fundamentally limited by its piezoelectric coupling coefficient,
conventionally denoted as k2

pe, which is defined as (1.19).

k2
pe =

Energy Stored In Electric Field
Energy Stored In Stress Field

(1.19)

This value for the main piezoelectric material (Aluminum Nitride) of interest in
this work is between 1% ∼ 4%. Other materials like LiNbO3 and PMN-PT can
have larger piezoelectric coupling coefficients for achieving much higher quantum
transduction cooperativities.
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Figure 1.6: a, the deformation of a piezoelectric Aluminum Nitride crystal unit
cell is shown here. As the unit cell is deformed under c-axis directional strain, the
center of opposite charges move in opposite directions due to the lack of inversion
symmetry about the c-axis. The deformation is highlighted here with negative
Nitrogen ions (blue) and positive Aluminum ions (red). b, the AlN crystal unit cell
exhibiting hexagonal 6mm-symmetry around the c-axis. Primitive lattice vectors
are shown in red. The crystal lattice is sited from a web source under public license.
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C h a p t e r 2

SUPERCONDUCTING QUANTUM CIRCUIT AND JOSEPHSON
JUNCTION TRANSMON QUBIT

Superconductivity is a mesoscopic quantum phenomenon originating from the con-
densation of cooper-pairs in a superconducting ground state gapped from states
containing unpaired electrons. Electrons now share a common wave-function in the
ground state and it can be described by a single superconducting phase factor, φ, for
regions of common potential, V , which can be defined as (2.1).

φ(x, t) =
∫ t

0
V(x, τ)dτ (2.1)

Each piece of superconductor in a circuit can be denoted as a node and marked with
its superconducting phase variable in a circuit diagram shown in Fig. 2.1. Here,
we need to introduce the concept of the spanning-tree in a given circuit. To define
a spanning tree, a reference point need to be chosen to be the zero phase point.
From the reference point, find a path that traverse all the notes in the circuit without
self-intersections that form loops. The path is then called the spanning tree of the
circuit. The choice of a spanning tree for a given circuit is not unique. In fact, each
choice represents a gauge degree of freedom in circuit dynamics. For example, two
different choices of spanning tress are shown in Fig. 2.1 (a) and b.

The set of independent phase factors associated with the nodes in the circuit are
the degrees of freedom of the system. The classical dynamics of the system can be

Z(ω)

Z(ω)Z(ω)

Z(ω)
φ1

φ3

φ2
φ1

φex

Z(ω)

Z(ω)Z(ω)

Z(ω)
φ1

φ3

φ2
φ1

φex

Figure 2.1: Two choices of spanning trees (red) for one physical circuit.
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described with a Lagrangian L({φi, Ûφi}) which is written down noting that Vi = Ûφi

for a node and each electric element’s energy can be written as Ek = Ek(Vk+1 −

Vk, φk+1− φk) or Ek = Ek(Vk+1−Vk, φk+1− φk + φex) if the k-th and (k +1)-th nodes
are connected with a path segment that forms a loop with the rest of the choice of
spanning tree. The formed loop has an external magnetic flux Φex thought it that
induces an additional phase difference φex = πΦex

Φ0
. For example, linear inductance L

can contribute inductive energy EL =
(φLΦ0/π)

2

2L with a flux quantaΦ0 =
h
2e and linear

capacitor C can contribute capacitive energy EC =
1
2C ÛφC

2. With the Lagrangian,
we can also define conjugated charges for the system with (2.2).

qi =
∂L({φi, Ûφi})

∂ Ûφi
(2.2)

Until this point, the circuit is still described classically and the {φi, qi} variables are
not operators but numbers. To promote these variables into quantum operators so
that the circuit’s quantum dynamics can be accurately described in the framework
quantummechanics, we can define the algebra of the variables to follow the canonical
commutation relation in (2.3) with δi, j being the Kronecker delta function that is 1
when i = j and 0 for other cases. [

φ̂i, q̂ j
]
= iδi, j (2.3)

The Hamiltonian of the system can be obtained via (2.4).

Ĥ({φ̂i, q̂i}) =
∑

i

Û̂φi q̂i − L̂({φ̂i,
Û̂φi}) (2.4)

2.1 Josephson Effect and Josephson Junction
Josephson effect (Nobel Prize 1973) is concerned with a system composed of two
superconductors with a very thin layer of insulator separating them shown in the
Fig. 2.2. As electrons in each superconductor pair up as cooper-pairs and condense
into a ground state, the thin barrier forms a narrow infinite potential wall between
cooper-pairs on both sides. As the wave-function of the electrons on one side has
finite amplitude on the other side, there is a finite tunnelling possibility for a cooper
pair to tunnel through the barrier into the other side. To have a better understand-
ing of the effect that is in the core of superconducting Josephson junction qubits,
we begin with a brief introduction of the BCS theory (Nobel Prize 1957) and then
use a simple delta-potential model to derive the responses of the Josephson junction.
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Figure 2.2: a, Cooper-pair tunneling between the two superconductors due to ex-
tended electronic wave-functions across the potential barrier from the thin insulator.
This tunneling term introduces localized cooper-pair state around the insulator. This
is the origin of the Josephson energy EJ and lossless Josephson junction current un-
der an external voltage. b, the SEM image of a Josephson junction used in this work.
The metal and insulator composition is shown in the lower right corner with the
black layer representing a layer of insulating oxide. The superconductors used are
evaporated Aluminum and the insulating layer was created in a self-limited way via
oxidizing the lower Aluminum layer before depositing the upper layer Aluminum.

2.1.1 BCS Theory
BCS theory is named after John Bardeen, Leon Cooper, and John Robert Schrieffer
who proposed that electrons in a Fermi sea due to exchange of phonon via the
crystal lattice can form a bound state of two electrons as the so-called cooper-pair.
To understand the superconducting ground state formed with condensed cooper-
pairs, an anza wave-function for the superconducting ground state with zero net
electron cooper-pair momentum was proposed to be (2.5) and illustrated in Fig. 2.3.

|Ψ〉 =
∏

#»
k

(u #»
k + v #»

k eiφ #»
k ĉ†#»

k
ĉ†
−

#»
k
) |0〉 (2.5)
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Figure 2.3: The zero net-momentum Cooper-pair formed near the Fermi-surface
that has energy slightly below the Fermi-level in the condensated superconducting
ground state.
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The |0〉 is the Fermi sea without any cooper-pair and {ĉ†#»
k
} are single electron

fermionic creation operators for an electron with momentum
#»

k . Since each cooper-
pair’s Hilbert Space in the above proposed ground-state form has two possible basis
states, each pair can be represented using a spin, and the ground state becomes a
direct product of states of spins as (2.6) and (2.7).

(u #»
k + v #»

k eiφ #»
k ĉ†#»

k
ĉ†
−

#»
k
) |0〉 →

[
u #»

k

v #»
k eiφ #»

k

]
(2.6)

Ψ =
⊗

#»
k

[
u #»

k

v #»
k eiφ #»

k

]
(2.7)

The above spin representation of BCS ground state allows the use of Pauli matrices
for each cooper-pair’s sub Hilbert Space. Assuming that each electron has energy
ε #»

k relative to the Fermi energy, we can have the kinetic part of the cooper-pairs
Hamiltonian in (2.8). The condensation of cooper-pairs has to do with an attractive
potential due to the phonon exchange interaction between unbounded electrons.
The detailed dynamics that generated the critical attractive potential is beyond
the scope of this work. Phenomenologically, this effect can be incorporated into
the effective Hamiltonian as an attractive potential term with constant potential V

favoring condensation. As a result, the effective Hamiltonian can be written into
(2.8).

H = −
∑

#»
k

ε #»
k σ̂z,

#»
k −

V
2

∑
#»p , #»q

(σ̂x, #»p σ̂x, #»q + σ̂y, #»p σ̂y, #»q ) (2.8)

As can be seen from the potential term of (2.8), the spins in the system have
ferromagnetic interaction with each other in the XY-plane. This means that in
ground state, their average polarization will be aligned in XY-plane. The average
polarization of each spin in XY-plane are (2.9) and (2.10).〈

σ̂x, #»q
〉
= 2u #»q v #»q cos φ #»q (2.9)〈

σ̂y, #»q
〉
= 2u #»q v #»q sin φ #»q (2.10)

The ferromagnetic interaction will result in φ #»q for the whole ground state to become
the same and we can define a single phase variable, φ, to characterize the whole
condensation of superconducting electrons.

Themean field approximation on the potential term significantly simplifies dynamics
of the problem and makes the solution obvious. Taking the mean field approxima-
tion, a mean field Hamiltonian becomes (2.11) with the definition ∆ = V

∑
q u #»q v #»q
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H = −
∑

#»
k

ε #»
k σ̂z,

#»
k −

V
2

∑
#»p , #»q

(σ̂x, #»p
〈
σ̂x, #»q

〉
+ σ̂y, #»p

〈
σ̂y, #»q

〉
)

= −
∑

#»
k

(σ̂x,
#»
k , σ̂y,

#»
k , σ̂z,

#»
k ) · (∆ cos φ,∆ sin φ, ε #»

k )

(2.11)

The above equation is just describing non-interacting spins in amagnetic field whose
z-component depends the location. Since in this mean field approximation region
spins are decoupled, a simple solution for eigenvalues and eigenstates of each spin
can be obtained as (2.12) - (2.15)

E
±,

#»
k = ±

√
∆2 + ε2

#»
k

(2.12)

Ψ− =

[
sin θ

2
−eiφ #»

k cos θ
2

]
(2.13)

Ψ+ =

[
cos θ

2
eiφ #»

k sin θ
2

]
(2.14)

θ = 2 arctan ©«
1 + ε #»

k

|E
±,

#»
k |

1 − ε #»
k

|E
±,

#»
k |

ª®¬ (2.15)

The solution can be used to solve for the energy gap ∆ self-consistently by using
∆ = V

∑
q u #»q v #»q .

Furthermore, beyond the lower energy ground state corresponding to |Ψ−〉, we also
have single electron excitation of the Fermi sea ĉ†

±
#»
k
|0〉 which can be related to the

so-called quasi-particle excitation of the cooper-pair ground state as show belowwith
two independent types of quasi-particle creation operators γ†

0, #»
k
and γ†

1, #»
k
defined as

(2.16).

γ†
0, #»

k
= u #»

k ĉ†#»
k
− e−iφv #»

k ĉ
−

#»
k

γ†
1, #»

k
= u #»

k ĉ†
−

#»
k
+ e−iφv #»

k ĉ #»
k

(2.16)

It can be checked that γ†
0, #»

k
|Ψ−〉 = ĉ†#»

k
|0〉 and γ†

1, #»
k
|Ψ−〉 = ĉ†

−
#»
k
|0〉.

The above derivations are for cooper-pairs of zero net moment that corresponds
to a stationary ground state of minimal energy. BCS condensation can also have
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non-zero momentum and thus may also be described by a planar travelling wave-
function as in the case of a free electron. Here for the simplicity of the discussion,
we took a simple planar travelling wave-function and it can be shown in a more
general Hamiltonian to have the forms (2.17) and (2.18) for the incident wave from
the left and transmitted wave on the right respectively.

ΨL = Aeiκx

[
u

eiφLv

]
+ Beiκx

[
v

eiφLu

]
+ Ce−iκx

[
u

eiφLv

]
(2.17)

ΨR = De−iκx

[
v

eiφRu

]
+ Eeiκx

[
u

eiφRv

]
(2.18)

Using this together with the continuity boundary conditions for wave scattering off
a delta-potential, we can obtain two quasi-particle bound states around the barrier
with eigenenergies as (2.19) and the current for them as (2.20) with phase difference
across the junction as δ = φR − φL .

E±,J = ±∆
√

1 − η sin δ2 (2.19)

I±,J =
2π
Φ0

∂E±,J
∂δ

(2.20)

The total current through the junction is (2.21) where f± are Fermion occupation
numbers for the upper (forward,+) and lower (backward,−) bound states of cooper-
pair condensation wave-functions near the potential barrier.

IJ = I−,J f− − I+,J f+

= I−,J( f− − f+)

=
π

2
∆(T)
eRN

tanh
∆(T)
2kbT

sin δ

= IJc sin δ

(2.21)

This is shows that the current flowing through the junction is ∝ sin δ. Comparing
it with a linear inductive element that IL =

Φ0
πL δ ∝ δ, it is clear that a Josephson

Junction is a nonlinear inductor which forms the foundation for all superconducting
Josephson junction qubits as it can be used to create anharmonic resonators in the
circuit that are effectively two level systems if we only care about the excitation
between the ground state and the first excited state.
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Figure 2.4: The inset of a shows schematically a superconducting quantum interfer-
ence device (SQUID). It is composed of two Josephson junctions connected together
in parallel. This device can regarded one Josephson junction with tunable Josephson
energy tuned by an external magnetic flux Φex threaded by an external circuit. a
shows the effective Josephson inductance tuned by the external flux corresponding to
different levels of asymmetry (defined in the text) in the pair of Josephson junctions.
b, SEM images of SQUID devices with Dolan Bridge and Manhattan Josephson
junctions (red circles) used in our superconducting transmon qubits.

2.1.2 Superconducting Quantum Interference Device
A superconducting quantum interference device (SQUID) has been widely used the
community of superconducting quantum circuit electrodynamics. It is composed of
a pair of Josephson junctions shown in Fig. 2.4a. The two junctions may not be the
same and their asymmetry is characterized by a dimensionless parameter d in (2.22)
with Josephson junction energies EJ1 and EJ2. The SQUID energy with a phase
difference δ across it is (2.23). For a negligible asymmetry (d ∼ 0), the SQUID can
be regarded as a nonlinear inductance just like a single Josephson junction would
be. The effective Josephson junction inductance for a SQUID with d = 0 is (2.24)
with tunability curve shown in Fig. 2.4b. SQUID has been widely used in a variety
of applications for the flexibility offered by its tunable effective Josephson junction
inductance. For example, tunable transmon qubits use SQUID as their nonlinear
inductance to achieve a wide variety of frequency tuning so that they can avoid
resonant coupling to TLSs and perform fast two qubit gates on demand. SQUIDs
are also serially connected to form a serial SQUID resonator that can be regarded
as a high impedance tunable electrical resonator for applications involving quantum
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acoustic transductions.

d =
|EJ1 − EJ2 |

EJ1 + EJ2
(2.22)

ESQUID = −(EJ1 + EJ2)

[
cos

(
π
Φex

Φ0

)
cos δ + d sin

(
π
Φex

Φ0

)
sin δ

]
(2.23)

LSQUID =
Φ2

0

π2(EJ1 + EJ2) cos
(
πΦex
Φ0

) = L0
SQUID

cos
(
πΦex
Φ0

) (2.24)

2.2 Superconducting Josephson Junction Qubits
2.2.1 Anharmonic Quantum Oscillator
As it was found out in the previous section that potential energy stored in the
Josephson junction region is not, in general, quadratic. The cos δ dependent potential
can be used to create highly nonlinear electric resonators as illustrated in the circuit
diagram in Fig. 2.5 where a box with a cross in the circuit diagram is used to describe
the Josephson junction. The Hamiltonian can thus be written as (2.25).

Ĥ =
q̂2

2C
− EJ cos δ̂ (2.25)

This Hamiltonian can also be used to describe the motion of a quantum pendulum
since both systems’ potentials are cos-dependent. In terms of a quantum oscillator,
its displacement amplitude corresponding to a low level excitation is characterized

by the oscillator’s zero-point-fluctuation amplitude φzpf =
(

2EC
EJ

) 1
4 where EC =

e2

2C

is called the "Charging Energy" of the qubit. In the case of a small zero-point-
fluctuation amplitude, the nonlinear harmonic oscillator can be approximated by a
aharmonic oscillator with a slightly perturbed parabolic potential. Linear harmonic
oscillator has equally spaced energy levels and aharmonic oscillator will have energy
levels with nonuniform spacings due to the perturbation. This feature in the energy
structure allows selective addressing of transitions and effective truncation of its
Hilbert space to the lowest relevant levels. We can treat such aharmonic resonators
in a superconducting circuit as artificial atoms and two level systemswhen the system
is sufficiently cooled to its ground state in a dilution refrigerator (DF). Such artificial
atoms and superconducting two level systems are called superconducting Josephson
Junction qubits in the context of quantum computing based on superconducting
circuits.

There are a large variety of Josephson junction qubits utilizing the cos δ-potential
provided by the Josephson junctions. The difference is mainly characterized by
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Figure 2.5: The left is a linear electric resonator represented with a LC-resonator. It
has a parabolic potential with phase difference δ cross the capacitor as the potential
position variable. The right is the anharmonic resonator that forms the foundation
of Josephson junction qubits. The anharmonic resonator potential will create the
unevenly spaced energy levels indicated in the figure.
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the shape of the superconducting phase potential in the neighborhood of a chosen
linearization point (phase difference bias across a Josephson junction). In this way,
Josephson junction qubits can be separated into different categories including flux
qubits, phase qubit, charge qubits, and transmon qubits. The rest of the section will
focus on discussing the different superconducting qubits systems.

2.2.2 Charge Qubits and Transmon Qubits
Charge qubits and transmon qubits are forms of a so-called Cooper pair box qubit
category [66]. The cooper-pair box qubits have phase bias point δ0 = 0. A charge
qubit has a large zero-point-fluctuation amplitude that makes the qubit extremely
nonlinear since the phase oscillation of an excitation covers most of the nonlin-
ear cos δ-potential making the oscillator a strictly nonlinear oscillator. It can be
described by a circuit in Fig. 2.6a with phase variable potential described by in
Fig. 2.6b. The system’s Hamiltonian can be written as (2.26).

Ĥ = EC(n̂ − ng)2 − EJ cos δ̂ (2.26)

In the expression, the classical variable ng is the residual number of charges accu-
mulated across the capacitor which is also commonly called the "bias charge" in
literature. This variable can be controlled and tuned via an external voltage source
(the blue part in Fig. 2.6). The energy levels of the system can be solved analyti-
cally according to (2.27) from [64] with Mathieu’s characteristic value Aα(β) and
numerically. The influence of the bias charge on the levels can be easily seen from
(2.27). This indicates that a charge qubit’s frequency can be externally tuned with an
external DC voltage and also that the energy levels are sensitive to the charge number
fluctuation on the capacitor. As charge is long range coupled to the electromagnetic
environment, its environmental noises will jitter the bias charge, which will in term
jitter the transition frequency of the qubit. The frequency jittering leads to dephasing
of the qubit. A charge qubit needs to be charge biased to its charge insensitive point at
each 1

2−charge point to eliminate the bias charge dependence to the first-order [64].
These points are also called the degeneracy points as the charging energies for a
cooper pair to exist on both sides of the capacitor are the same. In other words,
the two charge states

��n = ng − 1
2
〉
and

��n = ng + 1
2
〉
have the same charging energies.

Ek(ng) = ECA2[ng+s(k,ng)]

(
−

EJ

2EC

)
, (2.27)

(2.28)



23

δ V

~ XY-Control

Charge-Bias ControlCooper-Pair Island

Figure 2.6: An illustration of controls on a single junction charge qubit. For a charge
qubit, its strong energy charge dispersion can be utilized to tune its frequency over a
large range via a capacitor and external voltage source (blue) that control the number
of residual cooper-pairs in the Cooper-pair island (red). This control can thus be
viewed as a Z-control for charge qubits. There can also be an XY-control (yellow)
for a charge qubit implemented with a near resonant external AC voltage source that
drive the qubit via a small capacitor. This AC drive induces Rabi oscillation of the
qubit between states having energy difference matching the driving frequency. If
the driving frequency is around the spacing between the lowest energy levels, the
qubit can be rotated on the Bloch sphere spanned by the two lowest states.

Due to the sensitivity to unavoidable environmental charge noise, charge qubits often
have very short coherence time. However, the transmon qubit which is another type
of cooper-pair box qubit with phase bias around δ0 = 0 is designed to significantly
suppress the charge sensitivity of these qubits at a relatively small cost of reduced
anharmonicity. This qubit is differentiated from a charge qubit by its much smaller
phase zero-point-fluctuation amplitude. This makes the qubit a slightly perturbed
harmonic oscillator. More specifically, the qubit is shunted with a large capacitor

between the cooper-pair island and the ground so that φzpf =
(

2EC
EJ

) 1
4 is small. This

large capacitance at a given qubit transition frequency leads to a large EJ
EC
� 1 which

exponentially suppresses the bias charge dependence of the qubit energy levels and
polynomially suppresses the anharmonicity (|ωge − ωef |) of the qubit. This type of
qubit has demonstrated energy relaxation time T1 ∼ 40 µs and phase coherence time
T2 ∼ 20 µs. Due to high reproducibility, relatively long coherence time, and high
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Figure 2.7: a A realization of a flux-qubit with controls and the readout circuit.
b shows the phase variable double-well potential which can be tuned by external
controls.

controllability, transmon qubits have been the most popular type of qubits recently
in literature and are frequently used in this work.

2.2.3 Flux Qubits
Flux qubits can be constructed with a circuit diagram shown in Fig. 2.7a. In this
structure, the potential energy landscape and energy levels are shown in Fig. 2.7b.
The potential of the flux qubit is a double-well where the phase of the qubit can tunnel
between the two wells through the finite wall. This tunneling process produces
a higher energy bounding state and a lower energy anti-bounding state. They
correspond to symmetric and anti-symmetric combinations of localized ground
state wave-function in each well. Each localized ground state of the double well
corresponds to either a clockwise (red) or an anti-clockwise (green) circulation
of superconducting current in the flux qubit loop. The spacing between the two
lowest levels is determined by the tunnelling amplitude between the two wells. By
selectively addressing the transition between the ground state and first excited state,
we can treat the multi-level system effectively as an engineered two level system.
This system’s Hamiltonian can be described in (2.29). For a large anharmonicity,
the system is constructed in a way that the linear inductance of Lq cancels the
negative effective Josephson junction inductance of the SQUID loop. The SQUID
loop is biased to negative inductance by an externally applied Z-Control magnetic
flux through the small SQUID loop. The balance of the potential well can also be
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tuned by a DC flux through the rest of flux qubit circuit loop. This control flux is
applied via the XY-Control loop. As the ground state and first excited states are
formed by the hybridized clockwise and anti-clockwise superconducting currents,
an operating flux qubit requires the double well to be balanced with an appropriately
high potential barrier. The system can be viewed as a dual to the charge qubit system
and this time the number of external flux quanta through the circuit become the bias
constant that can be used to tune the potential to be a symmetric double well where
localized ground states have the same energy in either well. The degeneracy point
notion is similar to the degeneracy point in the case of a charge qubit. This point
also provides the qubit with protection against flux noise to the first order. The
charge noises’ detrimental impact on qubit coherence is eliminated, as the flux qubit
has a large zero-point-fluctuation charge amplitude and is thus not sensitive to the
environmental perturbation in charge degree of freedom. Near the flux degeneracy
point of the device, the effective Hamiltonian can again be reduced into a spin in
externalmagnetic field similar to the charge qubit case. Theminimal energy splitting
between the lowest states is determined by the tunneling amplitude, which depends
exponentially on the barrier height. This value needs to be determined numerically
for a give set of circuit parameters and analytical solution is not available.
Even though flux qubits are insensitive to charge noise and should to the first order be
insensitive to flux noise, flux fluctuation in the environment also causes detrimental
effects in the coherence of the qubit. The sources of the flux noises can be flux
trapping or critical current fluctuation in junctions.

H = ECn̂2 +
Φ2

0δ̂
2

2L
− EJ cos δ̂ (2.29)

2.2.4 Phase Qubits
Typical phase qubits can be achieved with a circuit diagram shown in Fig. 2.8a.
This circuit will give a potential illustrated in Fig. 2.8b together with the lowest
energy levels for the bounded states when the Josephson junction is current biased
closed to its critical current using a high impedance current source connected to
it. Just like the flux qubit, this type of qubit is not sensitive to charge noises due
to its large charge zero-point-fluctuation amplitude for a given frequency with a
large EJ

EC
ratio. For a bias current Ib, the Hamiltonian of the system can written

as (2.30). The titled washboard potential shown in Fig. 2.8b has a tilting slope
given by the ratio Ib

IJ
where IJ is the Josephson junction critical current. For an

external bias current close to the critical current, the potential near φ ∼ π
2 can be

approximated with a qubit potential shown in (2.31). The potential has a well with
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Figure 2.8: a, an example of phase qubit which is current (Ib) biased just below the
Josephson junction’s critical current (IJ) to generate the potential shown in b. The
potential barrier can also be controlled by increasing the bias current.

a finite potential barrier that can confine a few low level states in it. The barrier
height is ∆V = 2

√
2

3 IJφ0(1 − Ib
IJ
)

3
2 . The ground state to first excited state transition

frequency is shown in (2.33). As the localized energy levels in the well are not
uniformly spaced, the qubit’s Hilbert space can be truncated to the ground state and
the first excited state. The effective Hamiltonian can be written with Pauli operators

for spins as in (2.32) with χ =
√
~ωge
3∆V and ∆I = Ib − IJ.

H = ECn̂2 − IbΦ0δ − IJΦ0 cos δ (2.30)

V = Φ0

(
−∆I

(
δ −

π

2

)
−

IJ
6

(
δ −

π

2

)3
)

(2.31)

Heff =
ωge

2
σ̂z +

√
~

2ωegCq
∆I(σ̂x + χσ̂z) (2.32)

ωge ' 0.95
1

√
LJ0CJ

[
1 − (

Ib
IJ
)2
] 1

4

(2.33)

2.2.5 Superconducting Qubit Readout
The previous section has introduced the three major types of superconducting
Josephson junction qubits that can effectively be treated as two level systems and
store quantum states as superpositions of their ground states and first excited states.
The next important question other than how information is stored is how information
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can be extracted by measurement with minimal perturbation. The readout part in a
circuit should have the property that it can measure the state of the qubit on-demand.
This means that the readout circuit does not decohere or measure the qubit when
the qubit is going through quantum gate operations and high fidelity qubit state
measurement can be turned on on-demand to distinguish the ground state and the
first excited state. Furthermore, the back-action of the measurement should be weak
enough to avoid relaxing the qubit. There are four parameters that characterize a
readout scheme. They are listed here for reference:

1. Measurement Time τmeas: The time needed to accumulate information for
reaching signal-to-noise of one in the determining the state of the measured
qubit in one shot.

2. Measurement Decoherence Rate Γmeas: The decoherence rate caused when
the qubit is being measured.

3. Parasitic Decoherence Rate ΓRO: The decoherence rate when the qubit is
not being measured and the decoherence is caused by qubit coupling to the
measurement circuit.

4. Measurement Dead Time τd: The time needed for the measurement circuit
and possibly the qubit to be reset for the next round of repeated measurement.

It is desirable to simultaneously minimize these parameters for achieving ideal read-
out. However, the conflicting nature between these parameters prohibits this ideal
optimization and leaves a bound in how well a given scheme can do. The merit of
a readout scheme can also be measured with the so-called readout fidelity. This is
qualitatively defined as the probability of obtaining the correct measurement of a
qubit in either the ground state or the first excited state. If for a qubit in the ground
state (first excited state), the measurement indicates an outcome corresponding to
a ground state (first excited state) with probability Pgg(Pee), the readout fidelity is
FR = Pgg + Pee − 1.

The fidelity and speed of the readout, usually not discussed in the context of quantum
algorithms because they enter marginally in the evaluation of their complexity, are
actually key to experiments studying the coherence properties of qubits and gates. A
very fast and sensitive readout will gather at a rapid pace information on the imper-
fections and drifts of qubit parameters, thereby allowing the experimenter to design
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fabrication strategies to mitigate them during the construction or even correct them
in real time. For single-shot readout to have high fidelity close to unity, the qubit
shouldn’t be relaxed by the measurement which demands that Γmeasτmeas � 1. For
the measurement circuit to have minimal detrimental effect on the qubit coherence
when measurement is not needed, the system should also satisfy ΓRO � Γ2 where
Γ2 is the intrinsic dephasing rate of the qubit.

Over the time, various different methods for reading out different qubits were devel-
oped and the recently developed dispersive readout schemes are the most popular
ones. Unlike other schemes that require on-chip amplification and switching ele-
ments which introduce loss channels and heat load in the neighborhood of a qubit,
dispersive readout measurement can be turned on via a readout pump applied to the
readout circuit and information regarding the measured state of the qubit can be ob-
tained by a series of amplifiers from the low temperature stages to room temperature
electronics. This type of readout combined hardware simplicity, qubit coherence
protection, and the ability to turn ON/OFF measurement (and its back-action) on
demand. Fig. 2.9 shows a circuit diagram for a transmon qubit coupled to a readout
system composed of a far detuned resonator and a transmission line used to probe
the resonator. As the readout resonator is coupled to the qubit via a capacitor,
the coupling slightly hybridizes the readout resonator and the qubit despite of the
large detuning between then that ∆RO � JRO. This slight hybridization leads to a
resonator-like mode having almost all of its energy in the resonator and a qubit-like
mode having almost most of its energy in the qubit. If we ignore the qubit and
only look at the frequency response of the resonator as probed by the transmission
line, the readout resonator’s frequency will appear to be shifted as it is now slightly
dressed with the qubit. If the qubit is in its ground state, this shift is often regarded
as a form of Lamb-shift. If the qubit is in its excited state, the shift of the frequency
will be different and this change of frequency can be probed with either the phase or
amplitude responses of the pump pulse with frequency aligned with the resonator
frequency when the qubit is in its ground state. It has to be noted that the state
dependant frequency shift of the readout resonator is absent in a system with two
coupled harmonic resonators as it will be shown later that the dispersive shift is
related to the anharmonicity directly.

The Hamiltonian describing a transmon qubit coupled to a resonator can be written
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Figure 2.9: A standard transmon dispersive readout circuit (green) without Purcell
filters.

as (2.34). The Hamiltonian can be diagonalized to the second order in
( g
∆

)2 by first
rotating the basis via an unitary transformation defined as (2.36) with (2.37).

Ĥ = ~ωq(ĉ†ĉ +
1
2
) − EJ −

EC

12

(
ĉ + ĉ†

)4
+ ~ωrâ†â

+ ~g(ĉ − ĉ†)(â − â†)
(2.34)

gk,k+1 = g 〈k | (ĉ† − ĉ) |k + 1〉 (2.35)

Û = exp
(
Ŝ − Ŝ†

)
(2.36)

Ŝ =
∑

k

βk â |k + 1〉 〈k | (2.37)

βk =
gk,k+1

ωk,k+1 − ωRO
=

gk,k+1

∆k
(2.38)

Using theBaker-Campbell-Hausdorff (BCH) formulawhich describes exp
(
Â
)

exp
(
B̂
)
=

exp
(
Â + B̂ + [Â, B̂]/2 + ...

)
and keep the transformed Hamiltonian to the second or-

der as stated previously will yield the effective Hamiltonian in this transformed
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frame as (2.39).

Ĥeff = ÛĤD̂† '
∑

k

~ωk |k〉 〈k | +
∑

k

~χk,k+1 |k + 1〉 〈k + 1|

+ ~

(
ωRO − χ01 |0〉 〈0| +

∑
k=1
(χk−1,k − χk,k+1) |k〉 〈k |

)
â†â

+
∑

k

~ηk â2 |k + 2〉 〈k | +
∑

k

~η∗k â†2 |k〉 〈k + 2|

(2.39)

ηk =
gk,k+1gk,k+2[(ωk+1 − ωk+2) − (ωk − ωk+1)]

2(ωk+1 − ωk − ωRO)(ωk+2 − ωk+1 − ωRO)
(2.40)

χi j =
g2

i j

ωi j − ωRO
(2.41)

ωi j = ω j − ωi (2.42)

As it can be noticed in the second line of (2.39), the effective dressed readout
resonator frequency depends on the number state of the transmon qubit. More
precisely, the effective readout resonator frequency can be treated as a projective
measurement operator for the qubit state. This forms the basis of the dispersive
readout schemes and the dispersive shifts are closely related to the anharmonicity of
the qubit energy levels. If we truncate the Hilber space for the qubit into the lowest
energy levels, the system Hamiltonian can be written as (2.43).

Ĥeff ' ~(ω
′
RO − χσ̂z)â†â +

~ωq

2
σ̂z (2.43)

χ =

(
g2
RO

ωRO − ωq

)
(2.44)

If the qubit was replaced with a linear resonator, the state dependent dispersive shifts
would be zero as mentioned earlier.

It should also be mentioned that this readout can still introduce a qubit decay
channel even though the qubit is coupled to a far detuned resonator, which can
in principle act as a filter that protects the qubit from environmental noises in the
readout transmission line. The decay channel is called Purcell loss [115]. It is
fundamentally a second order effect that virtual coupling between the qubit and
the electromagnetic continuum in the transmission line can be mediated by virtual
photon processes in the readout resonator as shown in Fig. 2.10a. The Purcell loss
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Figure 2.10: aThe Purcell loss process due to virtual coupling between the transmon
qubit (black-solid line) and the electromagnetic continuum (black-dotted lines) in
the transmission line coupled to the readout resonator (green-solid line) far detuned
from the qubit. The green wiggling line is the readout tone. The black-dotted arrow
is the quantum path via which a qubit photon tunnels into the transmission line
continuum. b, the Purcell loss is significantly suppressed by introducing a Purcell
filter that modifies the electromagnetic density of states (green-dotted lines) coupled
to the readout resonator. c is a modified readout circuit (green) with an addition of
Purcell filter that suppresses the Purcell loss significantly.

rate is κpurcell '
(
gRO
∆QR

)2
κRO where gRO is the coupling rate between the readout

resonator and the qubit. ∆QR = ωq − ωRO and κRO is the damping total rate of the
readout resonator. This loss mechanism can be strongly suppressed with an on-chip
Purcell filter in the readout transmission line to block the electromagnetic wave with
qubit frequency from propagating in and out of the chip via the readout ports [115,
57]. The filtered process is shown in Fig. 2.10b. The new circuit diagram with
the filter is shown in Fig. 2.10c. This does not influence the propagation of the
readout pump since the readout pump aligned with the readout resonator frequency
well within the bandpass window of the Purcell filter. This filter should ideally
have a wide pass-band covering the readout resonator frequencies and stop-band for
all qubit frequencies if there are multiple qubits and readout resonators. A wide
bandpass Purcell filter with a high stop-band attenuation can be achieved with the
superconducting microwave photonic crystal [83].
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Figure 2.11: The resonant XY-Control (yellow) circuit of a standard transmon qubit
with qubit frequency tuning implemented with a blue Z-Control circuit (blue) that
tune the qubit frequency by threading external magnetic flux Φex through the qubit
SQUID loop.

2.2.6 Transmon Qubit Controls
As this work only used transmon qubits, I will discuss about the basics in controlling
this type of qubit using classical electric signals. An image of a superconducting
transmon qubit and a corresponding circuit diagram is shown in Fig. 2.11. There
are two types of controls for the qubit called XY-Control and Z-Control on a qubit
Hamiltonian that describe its dynamics in (2.45)

2.2.6.1 XY-Control

XY-Control couples the qubit charge degree of freedom to an oscillating external
voltage drive. This control is used to drive the transition between qubit energy
levels. For the truncated Hilbert space containing only the lowest energy levels of
interest, the qubit state can be represented on the so-called Bloch-Sphere as shown
in Fig. 2.12 as a vector pointing to a point on the sphere. A XY-Control drive can
be characterized with a detuning δXY = ωXY − ωq and a so-called Rabi amplitude

~ΩXY = CXY
(8E3

CEJ)
1
4

e Ṽd proportional to the driving port voltage amplitude Ṽd. It can
lead to a driving interaction Hamiltonian as (2.46) under a driving voltage described
by Vd(t) = Ṽd cos (ωXYt). This causes the spin state vector to precess around an axis
with direction along (2.47) with rate (2.48).
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Htransmon =
~ωq

2
σ̂z + Hd (2.45)

Hd = ~ΩXY cos (ωXYt)σx (2.46)
#»
R =

(
ΩXY

ΩR
, 0,

δXY
ΩR

)
(2.47)

ΩR =

√
δ2
XY +Ω

2
XY (2.48)

The XY-Control potentially provides the a relaxation channel for the qubit as it
directly couples the charge degree of freedom to a classical drive line going off the
chip. This loss channel can be suppressed greatly by designing the XY-Control’s
coupling to the qubit as small as possible and fast XY-Control rotation can still be
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obtained via a stronger drive on the control line.

2.2.6.2 Z-Control

Z-Control is used to control the transition frequency of the shown transmon qubit
with a SQUID as its nonlinear inductance by threading magnetic flux into the
SQUID loop. The frequency of a typical superconducting qubit can be tuned with
external flux Φex following the ω01 = ωmax

01

√
cos (πΦex

Φ0
). The ability to tune the

frequency of a qubit can be used to control relative phase of the quantum state and
turn-on/off resonant coupling between another coupled qubit at a given frequency.
As the current in the Z-Control changes the qubit frequency, this control channel
also transduces the current noise into frequency jittering of the qubit. This random
jittering leads to a phase random walk and dephasing of the qubit. For protecting
the qubit coherence, a stable DC-bias in the Z-Control can be used to tune to qubit
into its flux noise insensitive point corresponding to an extremum in qubit frequency.

Moreover, a Z-Control with fast oscillation can also be used to generate side-bands
of a qubit so that the qubit can be accessed at multiple frequencies without having
to move the qubit out of its flux noise insensitive point. This AC frequency tuning
of a qubit can be further used to generate phase and amplitude controlled qubit-
qubit coupling between detuned qubits via their side-bands with a relative phase
difference in oscillating Z-Controls. Details of the side-band generation can be
understood in the following simple model. Assume that the external magnetic field
fluxΦex(t) = Φ0

ex+AΦ cos (ωdt), the absorption spectrum of the qubit can be derived
below from (2.49) to (2.54). Multiple sidebands will be generated at locations de-
tuned by multiples of the driving frequency ωd. IfΦ0

ex = 0, with modulation around
the flux insensitive point, the sidebands will be at even integer multiples of the flux
driving frequency. This parametric modulation of the qubit frequency can be used
to quickly tune two qubits into near resonance and perform two qubit gates between
two far detuned qubits. This is useful as parametric frequency modulation generates
sidebands detuned from the main qubit frequency with detuning depending on the
driving frequency instead of the driving amplitude. This makes it possible to access
the qubit at frequencies outside the tunability range based on DC flux tuning of the
qubit SQUID (even above the maximum qubit frequency at flux insensitive point).
The amplitude can be used to tune the coupling rate between two detuned qubits
during near resonant interaction. It has also been shown in experiments that para-
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metric modulation of the qubit frequency does not significantly degrade the qubit
coherence as compared with the degradation caused by DC tuning of the qubit away
from its flux insensitive point. The technique can also be used to generate qubit
absorption/emission sideband near the readout resonator frequency for an ultra-fast
high fidelity readout of the qubit.

H(t) =
~

2
ωq(t)σ̂z (2.49)

Ûρq(t) = −
i
~

[
H(t), ρq

]
+
Γ1

2
(2σ−ρσ+ − σ+σ− − ρσ+σ−) −

Γφ

4
[σ̂z, [σ̂z, ρ(t)]]

(2.50)
d
dt
〈σ−(t)〉 = Tr ( Ûρ(t)σ−(t = 0)) =

(
−iωq(t) −

Γ1

2
− Γφ

)
〈σ−(t)〉 (2.51)

Putting (2.49) into (2.50) will lead to (2.51). Following the Quantum Regression
Theorem, we can have (2.52).

d
dt
〈σ−(t)σ+(0)〉 =

(
−iωq(t) −

Γ1

2
− Γφ

)
〈σ−(t)σ+(0)〉 (2.52)

〈σ−(t)σ+(0)〉 = exp
((
−

(
Γ1

2
+ Γφ

)
|t | − i

∫ t

0
ωq(τ)dτ

))
(2.53)

The absorption/emission noise spectrum of the qubit can be shown to be (2.54) with
(2.53).

S[ω] =
1

2π

∫
−

∞∞eiωτ 〈σ−(τ)σ+(0)〉

=
1

2π

∫
−

∞∞ exp
((

iωτ − Γ2 |τ | − i
∫ τ

0
ωq(s)ds

))
dτ

(2.54)

The final form in (2.54) with Γ2 =
Γ1
2 +Γφ which is the total dephasing rate cannot be

further simplified analytically in general. However, the last integration can be easily
done numerically for any given form of ωq(t) caused by fast Z-Control modulation
of the qubit frequency. An example of modulation with Φex(t) = AΦ cos (ωdt) can
be calculated to have absorption peaks shown in Fig. 2.13.

The XY-Control and Z-Control together can be used to produce any single qubit
gates. Combining single qubit operations together with pulsed frequency control
that bring two qubits into resonance for a short time can generate arbitrary two qubit
gates. The ability to create arbitrary single and two-qubit gates forms the foundation
for universal quantum computing with superconducting transmon qubits.
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Figure 2.13: a, the qubit absorption spectrum with frequency flux modulation tone
ωd = 25 MHz. b, the qubit absorption spectrum with frequency flux modulation
tone ωd = 100 MHz.

2.3 Standard Cryogenic System for Measuring and Controlling A Transmon
Qubit

2.3.1 Structure and Cooling Process of a Dilution Refrigerator
Superconducting quantum circuits involved in this work operate in the GHz mi-
crowave region and have to be cooled to mK temperatures for lowering the thermal
microwave photon noise in its environment. In this work, we used the commercial
dilution refrigerator (DF) from BlueFors Cryogenics Oy. As it an be seen in this
figure, the refrigerator has multiple stages that can be sequentially cooled to different
temperatures with different cooling powers. The cooling process for different stages
can be better seen in the Fig. 2.14. In this system, the first two stages are directly
connected to two cooling stages of a Pulse Tube (PT) cooling system respectively.
The cold plate and the mixing chamber plate are thermally connected to the second
PT stage with switchable thermal switches. These thermal connections can be dis-
connected during the cooling process.
Initially, the low temperature stages are thermally connected with the switches to
the first two plates connected to the PT. The first stage can be cooled to around 50 K
and second stage and lower temperature parts can be further cooled to around 4 K.
After the plates and lines in the system are cooled to around 4K, the thermal switches
disconnect lower temperature plates from the 4 K plate connected to the PT. Then,
the condensation of gaseous He3/He4 mixture starts with starting the compressed
gas flow into the Still Line (SL) below the 4 K plate. There is a main flow impedance
in the line to partly condense the pressurized gas mixture using the Joule-Thomson
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Figure 2.14: The cooling system of a dilution refrigerator.

effect before arriving at the still plate. The condensed liquid He3/He4 mixture fills
the condensation line and still line below the still plate and mixing chamber. After
the condensation is complete with sufficient liquid He3/He4 mixture to fill the lines
andmixing chamber below the still chamber. The still pumping starts to remove He3
from the system. This evaporative cooling cools the still plate to around 800 mK.
At this temperature, the phase separation between He3 and He4 phases occurs in the
mixing chamber (MC). Due to gravity, heavier pure He4 phase liquid region forms
at the bottom of the mixing chamber. The He3 phase liquid forms above the He4
rich region in the still line. Due to the pumping on the still chamber, He3 constantly
diffuses across the phase boundary between the He4 and He3 condensed regions
in MC. The He3 then replenishes the still chamber and gets pumped away by still
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pumping. The pumped He3 is returned back into the condensation line and dilution
unit of the fridge so that the cooling cycle is completed. The He3 diffusion across
the boundary into He4 region takes away the thermal energy and cools the mixing
chamber to below 10 mK.

2.3.2 Cryogenic Setup forControlling andMeasuringSuperconductingQubits
A typical circuit diagram for controlling and measuring a superconducting qubits
is shown in Fig. 2.15. For all the control lines, attenuators were used to attenuate
noises propagating from room temperature environment into the fridge. They serve
as thermal anchoring points that dump high temperature electromagnetic noises onto
the the cooled plates along the way. They also re-emit Johnson–Nyquist electronic
noises at their ambient temperature down the line into the lower temperature stages
where other attenuators are located. Here are also band-pass filters on the lines to
filter out thermal noises with irrelevant frequencies. The XY-Drive line has a band-
pass filter around the qubit resonance and is heavily attenuated as electromagnetic
waves resonantwith the qubit can propagate on the line and this can be a direct energy
relaxation channel for the controlled qubit. The cost for having larger attenuation
on the XY line is increased signal power which may cause heating issues, as the
attenuators also dissipate the excess energy into its environment that has finite
cooling power. The low pass filter on the Z-control line is used to block higher
frequency noises that may act as dephasing noise to the qubit. The readout input
line is also heavily attenuated and filtered around the readout resonator frequency.
Thermal photon population in the readout resonator can also dephase qubit via
the dispersive coupling effect. A larger readout pump is thus needed to achieve
sufficient readout photon number in order to have fast and high fidelity readout.
The output line of the readout loop goes through amplifiers instead of attenuators
because projective measurement quantum signals are weak and sufficient photons
need to be collected to achieve acceptable signal-noise-ratio (SNR). The amplifier
is like the attenuators that also add its own thermal noise to its output line. Thus it
is ideal to achieve the smallest added noise power as possible. The smallest added
noise power is half quanta of photon energy at the readout frequency. The amplifier
needs to be located to low temperature stages near the superconducting chip. In
our system, as the first amplifier, we used a Traveling-Wave-Parametric-Amplifier
from the Lincoln Lab to amplify the output readout signal to the quantum limit at
the mixing chamber plate. There is also a low temperature High Electron Mobility
Transistor (HEMT) amplifier located at the 50 K stage. Even though it is ideal to
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Figure 2.15: The standard wiring of microwave and DC lines used to control and
measure superconducting qubits used. The pink boxes are attenuators that are used to
dissipate higher temperature radiation noises propagating from higher temperature
stages and room temperature electronics. They absorb the incoming noise and
re-emit Johnson–Nyquist noise corresponding to their ambient temperatures down
the line into lower temperature stages. There are also filters used to filter out
noise power outside the frequency range of interest. The circulator on the mixing
chamber stage forbids the backward transmission of high temperature noise back
into the device under test while allowing the readout signal to be transmitted out.
The output readout signal is then amplified by the Traveling-Wave-Parametric-
Amplifier (TWPA) from Lincoln Lab to amplify the signal to the quantum limit.
This significantly increases the signal-to-noise (SNR) of the qubit measurements
for a given number of averages. The quantum-limit amplified readout out signal
then goes through a low temperature High-Electron-Mobility-Transistor Amplifier
(HEMT) on the 4 K stage before leaving the DF and being further amplified by room
temperature amplifiers and digitized.
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locate the amplifiers at lower temperature stages to minimize added thermal noise,
the cooling power at lower temperature stages is significantly lower. Amplifiers also
dissipate a larger amount heat to its environment, a higher cooling power is needed
to avoid heating up the stage. The output readout signal is further amplified by
room temperature amplifiers before being digitized by our digitizer. The readout
output line also back propagates noise into the lower temperature stages. This noise
power is also blocked from going back to the superconducting quantum chip by
the circulators that unidirectionally transmit the output readout signal and dump
inversely propagating noise into their cryogenic ambient environment.
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C h a p t e r 3

SYNTHESIZED CRYSTALS FOR ENGINEERING
PROPAGATION OF LIGHT AND MECHANICAL WAVES

It has long been known that electronic waves in a periodic potential can have a
nontrivial dispersion relation that processes gaps in allowed frequencies for the
propagating waves. Such gaps are often called electronic bandgaps and dielectric
materials that processes such gaps are called semiconductors, widely used in building
today’s electronics. The electronic wave dispersion can be calculated by solving the
Schrodinger’s equation for electrons in a solid, shown in (3.1).

(
−
~2

2me
∇2 + V( #»r )

)
Ψ( #»r ) = EΨ( #»r ) (3.1)

This equation has a periodic potential term V( #»r ) = V( #»r +
#»
R), where #»

R is a
displacement vector that the crystal structure is invariant with respect to it. The
discrete translation symmetry can be utilized to simplify the Schrodinger’s equation
using the Bloch’s theorem that the solutions of (3.1) can be written into the form in
(3.2).
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(3.1) can be reduced into (3.5) with periodic boundary conditions on the boundaries
of an unit cell which is the basic repeating structure of a crystal.
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k , there is a series of eigen-energies corresponding to eigen-solutions
of (3.5). These eigen-energies can be labelled from the lowest energy up with an
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t=220 nm

a b

Figure 3.1: a, a 2D photonic crystal with hexagonal unit cell highlighted in the
red region. b, the photonic crystal is created with by etching holes in a suspended
silicon membrane with thickness t = 220 nm.

is called a band. All the bands formed by all the eigen-modes collectively form
the electronic bandstructure of the material. As it has already been seen in vari-
ous semiconductor materials, bandstructures of certain periodic potentials can host
gaps in the energy meaning that no eigen-modes can be found for range of electron
energy. These gaps intuitively indicate that electronic waves with certain energy are
not allowed to propagate in the crystal.

Moreover, this phenomena is not unique to electronic waves in crystals with periodic
potentials and it is fundamentally a result of discrete translation symmetry of the
Hamiltonian. This means that other waves propagating in a medium with discrete
translation symmetry can also process nontrivial dispersion relation (bandstructure)
with bandgaps.

3.1 Photonic Crystal
Electromagnetic waves in a periodically patterned dielectric structure like the peri-
odically patterned suspended silicon membrane in Fig. 3.1 is engineered to tailor the
dispersion of electromagnetic waves in optical domain to have bandgap that prohibit
propagation of light in certain frequency range. This artificially synthesized mate-
rial which is also called photonic crystal and the electromagnetic wave equation in
such periodic structures can be described by (3.8) in a unit cell highlighted as the
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a b

Figure 3.2: a, photonic point defect cavity with the defect cavity region highlighted
in red. b, a periodic translation of the defect region in one direction can create a
photonic waveguide that route the optical waves with a tailored dispersion.

red region in Fig. 3.1a with Bloch waves for electromagnetic fields in (3.7).
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Structure in Fig. 3.1 has a bandstructurewith awide gap. This gap indicates that opti-
cal wave with frequency inside the gap can not propagate in themembrane. Photonic
crystals with locally broken translation symmetry can be used to guide and trap light
on a microchip. Light can be trapped in the crystal by creating a small region on the
crystal that breaks the translation symmetry locally. This small region, if designed
properly, can support modes of light with frequency forbidden from propagation in
the bulk of the crystal. In this way, an optical cavity is created in this region with the
rest of the photonic crystal acting as mirrors. As can be seen, this confinement can
be engineered easily with current nanofabrication techniques to only hold a single
fundamental mode of light with an ultra-small mode volume that can be used to
strongly couple light to matters like atoms andmechanical mode in the cavity region.

3.1.1 Photonic Waveguide and Photonic Defect Cavity
A waveguide for routing light with engineered dispersion can be made by breaking
the discrete translation symmetry in a region to support wave propagation at a cer-
tain frequency in the bandgap of the bulk of the crystal as shown in Fig. 3.2b with



44

t =220 nm

a b

Figure 3.3: a, a 2D phononic crystal with a square unit cell highlighted in the red
region. b, the photonic crystal is created with by etching the unit cell patterns in a
suspended silicon membrane with thickness t = 220 nm.

the red region. The waveguide band structure can be obtained by looking at an unit
cell with periodicity along the propagation direction as highlighted by the dashed
red box in Fig. 3.2b. By changing the hole dimensions in the middle of the unit cell,
a specific band can be moved into the bandgap.

Similar to engineering the photonic waveguide in a photonic crystal where a waveg-
uide is built by locally breaking the crystal’s discrete translation symmetry in one
direction, an optical cavity can be created by breaking the crystal’s discrete trans-
lation symmetry in all directions as in the red region of Fig. 3.2a. The cavity is
introduced with an intentionally introduced point defect region.

3.2 Phononic Crystal
An engineered periodic structure can also be used in trapping and guiding mechani-
cal waves propagating in solids. Periodically patterned solid can also have nontrivial
bandstructure and bandgaps that prohibits the propagation of strain wave in certain
frequency range. The dynamics and bandstructure of mechanical waves in the struc-
ture can be calculated with the frequency domain strain wave eigen-equation in
(3.10) derived from the time-domain strain-wave equation in (3.9).
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a b

Figure 3.4: a, phononic point defect cavity with the defect cavity region highlighted
in red. b, a periodic translation of the defect region in one direction can create a
mechanical waveguide that route the optical waves with a tailored dispersion.

This type of engineered material is called phononic crystal and an example of it
is shown in Fig. 3.3 which is a patterned suspended silicon membrane. For the
suspended silicon membrane used in this work, its thickness is 220 nm and this is
effectively a two-dimensional material for mechanical wave with frequency below
10GHz as such waves’ wavelength is much larger than themembrane thickness. The
shown two-dimensional phononic crystalwith a square unit cell highlighted in the red
region has a two-dimensional acoustic phonon bandstructure illustrated in Fig. 3.5a.
The region highlighted in the Fig. 3.5a is a phononic bandgap around 5 GHz.
If a defect region is created in the phononic crystal that can support mechanical
vibration with frequency in the bandgap as shown with a red region in Fig. 3.4a, this
defect region forms a phononic crystal defect cavity and the surrounding bulk of the
phononic crystal acts as mechanical mirror that confines the mode into the defect
region. In contrary to the photonic crystal cavity case where loss due to photon
scattering off the two-dimensional structure into free space is possible, as there
is a continuum of three-dimensional electromagnetic density of states around the
structure, bandgap for themechanicalwaves is truly three-dimensional asmechanical
waves of any frequency can not propagate in vacuum around the structure. This
true three-dimensional confinement forms the basis of realizing nano-mechanical
GHz resonators with unprecedented quality factor around 50 billion at cryogenic
environment which will be discussed later in this work.
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Figure 3.5: a The phononic bandstructure corresponding to the nominal phononic
unit cell in the inset. For the nominal unit cell we have ctx,y = 200 nm, chx,y =

487 nm,cax,y = 550 nm. The other unit cells in b − d have different ctx values. b,
the phononic bandstructure with ctx = 150 nm. c, the phononic bandstructure with
ctx = 100 nm.d, the phononic bandstructure with ctx = 50 nm. It can be seen that
the red-band is moved down into the bandgap region of the nominal phononic crystal
in the bulk of the membrane. Mechanical modes with frequency around 5 GHz can
be supported by a defect region in a nominal phononic crystal for applications in
constructing phononic waveguides and defect cavities.
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3.2.1 Phononic Waveguide
Just like the methods used for designing a waveguide in a photonic crystal, a
phononic waveguide that guides the on-chip propagation of mechanical waves with
tailored dispersion can be realized via breaking the discrete translation symmetry
of the phononic crystal in direction orthogonal to the desired propagation direction
as in the example shown in Fig. 3.4b with the red dashed box highlighted unit cell
that preserves the discrete translation symmetry along the desired mechanical wave
propagation direction. The ability to engineering mechanical waveguides on a chip
enables wiring various different quantum objects on a chip via mechanical waves
as mechanical coupling is a type of universal coupling for creating hybrid quantum
systems. For example, coupling between two optical cavities can be mediated via a
mechanical waveguide.

As mechanical waves in GHz have short wavelengths in micrometers and phononic
waveguides confine the propagation to only the waveguide region, this also provides
the possibility of scaling up spin based quantum computing chips without increasing
cross talks between qubits that ultimately limit the fidelity of quantum operations
on a scaled up chip with more than a hundred integrated qubits.

3.2.2 Phononic Defect Cavity
A cavity that localizes mechanical vibration modes can be realized by breaking all
translation symmetry of the crystal bulk in a local region as in the red region of
Fig. 3.4a. The region, similar to the photonic case, is called the defect region of the
photonic crystal and the cavity formed in this way is always called photonic defect
cavity. To understand the symmetry, size, and frequency of the modes localized in
the defect region, it is helpful to study the "bandstructure" of the phononic defect
region. This means that we can start by looking at the bandstructure corresponding
to a phononic crystal formed by periodic translation of the defect region on the
suspended membrane. The "bandstructure" of the phononic crystal defect region
can be seen in Fig. 3.5 with the bandgap of the bulk of the phononic crystal outside
the defect region highlighted in the red. The parts of the defect region bands in
the bulk bandgap region forms the localized modes in the cavity. Qualitatively,
each localized mode can be viewed as a standing wave formed by the superposition
of the propagating modes of a certain band trapped in the bulk bandgap region.
Thus, as more of a defect band get trapped in the bandgap region, the smaller and
more localized the defect cavity mode corresponding to that band is going to be.
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Figure 3.6: These are examples from Jasper Chan’s Ph.D. thesis. a, the fundamental
optical mode (195 THz) field that is co-localized with the fundamental mechanical
mode around 5.1 GHz with the breathing deformation profile in b. c, the optical
bandstructure of the 1D photonic crystal in the mirror (bulk) region of the 1D
photonic nanobeam. d, the mechanical bandstructure of the 1D phononic crystal in
the mirror (bulk) region of the 1D phononic nanobeam realized with the same unit
cell shown in a and b. The bandgaps are highlighted in the red regions of c and d.
The optical and mechanical cavities mode frequencies are highlighted in c and d in
the bandgap regions with dashed black lines.

This can be argued from the perspective that the real space trapped mode profile
is qualitatively a Fourier transform from the trapped band in the momentum space
(

#»

k −space) to the real position space.

3.3 Opto-mechanical Crystal
As mentioned previously, optical and mechanical waves can be localized by prop-
erly designed periodically patterned structures. In particular, in this work, a two-
dimensional silicon basedmembrane can be used to co-localize light andmechanical
waves in a defect region if their wavelengths are comparable. For example, a 5 GHz
mechanical wave has wavelength around 2 µm and a C-band optical field in the
silicon photonic substrate has wavelength around 1 um. Since the optomechanical
interaction is a radiation pressure interaction that is proportional to the intensity
of the optical field and displacement of the mechanical oscillator. A fundamental
mechanical mode is about a half-wavelength long that matches the full wavelength
fundamental optical mode as shown in the Fig. 3.6 [17].
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C h a p t e r 4

TIME SYMMETRY BREAKING WITH SYNTHETIC GAUGE
FIELD FOR UNIDIRECTIONAL PHOTON ROUTING

Synthetic magnetism has been used to control charge neutral excitations for appli-
cations ranging from classical beam steering to quantum simulation. In optome-
chanics, radiation-pressure-induced parametric coupling between optical (photon)
and mechanical (phonon) excitations may be used to break time-reversal symmetry,
providing the prerequisite for synthetic magnetism. Here we design and fabricate
a silicon optomechanical circuit with both optical and mechanical connectivity be-
tween two optomechanical cavities. Driving the two cavities with phase-correlated
laser light results in a synthetic magnetic flux, which in combination with dissi-
pative coupling to the mechanical bath leads to nonreciprocal transport of photons
with 35 dB of isolation. Additionally, optical pumping with blue-detuned light
manifests as a particle non-conserving interaction between photons and phonons,
resulting in directional optical amplification of 12 dB in the isolator through direc-
tion. These results indicate the feasibility of utilizing optomechanical circuits to
create a more general class of nonreciprocal optical devices, and further to enable
novel topological phases for both light and sound on a microchip.

Synthetic magnetism involving charge neutral elements such as atoms [26], po-
laritons [65, 105, 118], and photons [127, 50, 36, 101, 126] is an area of active
theoretical and experimental research, driven by the potential to simulate quantum
many-body phenomena [71], reveal new topological wave effects [100, 72], and cre-
ate defect-immune devices for information communication [50, 126]. Optomechan-
ical systems [11], involving the coupling of light intensity to mechanical motion via
radiation pressure, are a particularly promising venue for studying synthetic fields,
as they can be used to create the requisite large optical nonlinearities [103]. By
applying external optical driving fields time-reversal symmetry may be explicitly
broken in these systems. It was predicted that this could enable optically tunable
nonreciprocal propagation in few-port devices [76, 49, 48, 132], or in the case of a
lattice of optomechanical cavities, topological phases of light and sound [95, 114].
Here we demonstrate a generalized form of optical nonreciprocity in a silicon op-
tomechanical crystal circuit [38] that goes beyond simple directional propagation;
this is achieved using a combination of synthetic magnetism, reservoir engineering,
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and parametric squeezing.

Distinct from recent demonstrations of optomechanical nonreciprocity in degener-
ate whispering-gallery resonators with inherent nontrivial topology [62, 116, 107],
we employ a scheme similar to that proposed in Refs. [48, 114] in which a syn-
thetic magnetic field is generated via optical pumping of the effective lattice formed
by coupled optomechanical cavities. In such a scenario, the resulting synthetic
field amplitude is set by the spatial variation of the pump field phase and the field
lines thread optomechanical plaquettes between the photon and phonon lattices (see
Fig. 4.1). To achieve nonreciprocal transmission of intensity in the two-port device
of this work i.e., bonafide phonon or photon transport effects, not just nonreciprocal
transmission phase – one can combine this synthetic field with dissipation to imple-
ment the general reservoir engineering strategy outlined in Ref. [82]. This approach
requires one to balance coherent and dissipative couplings between optical cavities.
In our system the combination of the optical drives and mechanical dissipation pro-
vide the “engineered reservoir” which is needed to mediate the required dissipative
coupling.

To highlight the flexibility of our approach, we use it to implement a novel kind
of nonreciprocal device exhibiting gain [2, 3]. By using an optical pump which is
tuned to the upper motional sideband of the optical cavities, we realize a two-mode
squeezing interaction which creates and destroys photon and phonon excitations in
pairs. These particle non-conserving interactions can be used to break time-reversal
symmetry in a manner that is distinct from a standard synthetic gauge field. In a
lattice system, this can enable unusual topological phases and surprising behavior
such as protected chiral edge states involving inelastic scattering [94] and amplifi-
cation [93]. Here, we use these interactions along with our reservoir-engineering
approach to create a cavity-based optical directional amplifier: backward propa-
gating signals and noise are extinguished by 35 dB relative to forward propagating
waves which are amplified with an internal gain of 12 dB (1 dB port-to-port).

The optomechanical system considered in this work is shown schematically in
Fig. 4.1a and consists of two interacting optomechanical cavities, labeled L (left) and
R (right), with each cavity supporting one optical mode OL(R) and one mechanical
mode ML(R). Both the optical and mechanical modes of each cavity are coupled
together via a photon-phonon waveguide, resulting in optical and mechanical inter-
cavity hopping rates of J and V , respectively (here we choose a local definition of
the cavity amplitudes so both are real). The radiation pressure interaction between
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the co-localized optical and mechanical modes of a single cavity can be described
by a Hamiltonian Ĥ = ~g0â†â(b̂+ b̂†), where â(b̂) is the annihilation operator of the
optical (mechanical) mode and g0 is the vacuum optomechanical coupling rate [11]
(here we have omitted the cavity labeling).

To enhance the effective photon-phonon interaction strength each cavity is driven
by an optical pump field with frequency relatively detuned from the optical cavity
resonance by the mechanical frequency (∆ ≡ ωp − ωc ≈ ±ωm), with a resulting
intra-cavity optical field amplitude |α |eiφ. In the good-cavity limit, where ωm �

κ (κ being the optical cavity linewidth), spectral filtering by the optical cavity
preferentially selects resonant photon-phonon scattering, leading to a linearized
Hamiltonian with either a two-mode squeezing form Ĥent = ~G(eiφd̂†b̂† + e−iφd̂b̂)

(blue detuned pumping) or a beamsplitter form Ĥex = ~G(eiφd̂†b̂ + e−iφd̂b̂†) (red
detuned pumping). Here G = g0 |α | is the parametrically enhanced optomechanical
coupling rate and d̂ = â − α contains the small signal sidebands of the pump. For
both cases the phase of the resulting coupling coefficient is nonreciprocal in terms of
the generation and annihilation of photon-phonon excitations. As has been pointed
out before, such a nonreciprocal phase resembles the Peierls phase that a charged
particle accumulates in a magnetic vector potential [35]. Crucially, the relative
phase ΦB = φL − φR is gauge independent (i.e. independent of local redefinitions
of the â and b̂ cavity amplitudes), implying it should have an observable effect.
In the simple case of ∆ = −ωm, ΦB is formally equivalent to having a synthetic
magnetic flux threading the plaquette formed by the four coupled optomechanical
modes (two optical and twomechanical) [36, 48, 114]. For∆ = +ωm, a non-zeroΦB

still results in the breaking of time-reversal symmetry, though the lack of particle
number conservation means that it is not simply equivalent to a synthetic gauge
field. Nonetheless, we will refer to it as a flux in what follows for simplicity.

To detect the presence of the effective flux ΦB, consider the transmission of an
optical probe signal, on resonance with the optical cavity resonances and coupled
in from either the left or the right side via external optical coupling waveguides
as depicted in Fig. 4.1b. The probe light can propagate via two different paths
simultaneously: (i) direct photon hopping between cavities via the connecting opti-
cal waveguide, and (ii) photon-phonon conversion in conjunction with intervening
phonon hopping via the mechanical waveguide between the cavities. As in the
Aharonov-Bohm effect for electrons [5], the synthetic magnetic flux set up by the
phase-correlated optical pump beams in the two cavities causes a flux-dependent
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interference between the two paths. We define the forward (backward) transmis-
sion amplitude as TR→L(L→R) ≡ dout,L(R)/din,R(L), where dout(in) is the amplitude of
the outgoing (incoming) electromagnetic signal field in the corresponding coupling
waveguide in units of square root of photon flux. The optical transmission amplitude
in the forward direction has the general form

TL→R[ω;∆ = ±ωm] = A±[ω]
(
J − Γ±[ω]e−iΦB

)
, (4.1)

where ω ≡ ωs − ωp and ωs is the frequency of the probe light. Γ± is the amplitude
of the effective mechanically-mediated coupling between the two optical cavities,
and is given by

Γ±[ω] =
VGLGR

(−i(ω ± ωmL) +
γiL
2 )(−i(ω ± ωmR) +

γiR
2 ) + V2 . (4.2)

The prefactor A±[ω] in Eq. (4.1) accounts for reflection and loss at the optical cavity
couplers, as well as the mechanically-induced back-action on the optical cavities.
This prefactor is independent of the transmission direction, and for the reverse
transmission amplitude TR→L, only the sign in front of ΦB changes.

The directional nature of the optical probe transmission may be studied via the
frequency-dependent ratio

(
TL→R

TR→L

)
[ω;∆ = ±ωm] =

J − Γ±[ω]e−iΦB

J − Γ±[ω]e+iΦB
. (4.3)

Although the presence of the synthetic flux breaks time-reversal symmetry, it does
not in and of itself result in nonreciprocal photon transmission magnitudes upon
swapping input and output ports [28, 82]. In our system, if one takes the limit
of zero intrinsic mechanical damping (i.e. γik = 0), the mechanically-mediated
coupling amplitude Γ±[ω] is real at all frequencies. This implies |TL→R | = |TR→L |,
irrespective of the value of ΦB. We thus find that non-zero mechanical dissipation
will be crucial in achieving any non-reciprocity in the magnitude of the optical
transmission amplitudes.

The general reservoir-engineering approach to nonreciprocity introduced inRef. [82]
provides a framework for both understanding and exploiting the above observation.
It demonstrates that nonreciprocity is generically achieved by balancing a direct
(Hamiltonian) coupling between two cavities against a dissipative coupling of the
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cavities; such a dissipative coupling can arise when both cavities couple to the same
dissipative reservoir. The balancing requires both a tuning of the magnitude of the
coupling to the bath, as well as a relative phase which plays a role akin to the flux
ΦB. In our case, the damped mechanical modes can play the role of the needed
reservoir, with the optical drives controlling how the optical cavities couple to this
effective reservoir. One finds that at any given frequency ω, the mechanical modes
induce both an additional coherent coupling between the two cavities (equivalent to
an additional coupling term in the Hamiltonian) as well as a dissipative coupling
(which is not describable by a Hamiltonian). As is shown explicitly in App, 4.2,
in the present setting these correspond directly to the real and imaginary parts of
Γ±[ω]. Hence, the requirement of having Im Γ[ω] , 0 is equivalent to requiring a
non-zero mechanically-mediated dissipative coupling between the cavities.

Achieving directionality requires working at a frequency where the dissipative cou-
pling has the correct magnitude to balance the coherent coupling J, and a tuning
of the flux ΦB. For |Γ±[ω]| = J and arg(Γ±) = −ΦB (, 0, π), one obtains purely
uni-directional transport where the right optical cavity is driven by the left optical
cavity but not vice versa. One finds from Eq. (4.3) that the mechanically-mediated
dissipative coupling between the cavities is maximized at frequencies near the me-
chanical normal mode frequencies ω ≈ −ωm ± V ; to achieve the correct magnitude
of coupling, the optical pumping needs to realize a many-photon optomechanical
coupling Gk ≈ (Jγik)

1/2 (see App. 4.2 for details). Note that our discussion applies
to both the choices of red-detuned and blue-detuned pumping. While the basic
recipe for directionality is the same, in the blue-detuned pump case the effective
reservoir seen by the cavity modes can give rise to negative damping, with the result
that the forward transmission magnitude can be larger than one. We explore this
more in what follows.

In order to realize the optomechanical circuit depicted in Fig. 4.1 we employ the
device architecture of optomechanical crystals [33, 108, 44], which allows for the
realization of integrated cavity-optomechanical circuits with versatile connectivity
and cavity coupling rates [109, 38]. Figure 4.2a shows the optomechanical crystal
circuit fabricated on a silicon-on-insulator microchip. The main section of the cir-
cuit, shown zoomed-in in Fig. 4.2b, contains two optomechanical crystal nanobeam
cavities, each of which has an optical resonance of wavelength λ ≈ 1530 nm and a
mechanical resonance of frequency ωm/2π ≈ 6 GHz. The two optical cavities can
be excited through two separate optical coupling paths, one for coupling to the left
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cavity and one for the right cavity. Both the left and right optical coupling paths
consist of an adiabatic fiber-to-chip coupler which couples light from an optical fiber
to a silicon waveguide, and a near-field waveguide-to-cavity reflective coupler. This
allows separate optical pumping of each cavity and optical transmission measure-
ments to be carried out in either direction. The two nanobeam cavities are physically
connected together via a central silicon beam section which is designed to act as both
an optical waveguide and an acoustic waveguide. The central beam thus mediates
both photon hopping and phonon hopping between the two cavities even though
the cavities are separated by a distance much larger than the cavity mode size [112,
38]. The numerically simulated mode profiles for the localized cavities and the
connecting waveguide are shown in Fig. 4.2c and 4.2d, respectively. The hopping
rate for photons and phonons can be engineered by adjusting the number and shape
of the holes in the mirror section of the optomechanical crystal cavity along with
the free-spectral range of the connecting waveguide section [38]. Here we aim for
a design with J/2π ≈ 100 MHz and V/2π ≈ 3 MHz so that nonreciprocity can be
realized at low optical pump power, yet still with high transmission efficiency.

As will be presented elsewhere [39], the optical and mechanical frequencies of the
optomechanical cavities are independently trimmed into alignment post-fabrication
using an atomic force microscope to oxidize nanoscale regions of the cavity. Af-
ter nano-oxidation tuning, the left (right) cavity has optical resonance wavelength
λL(R) = 1534.502 (1534.499) nm, total loaded damping rate κL(R)/2π = 1.03
(0.75) GHz, and intrinsic cavity damping rate κiL(R)/2π = 0.29 (0.31) GHz (c.f.
Fig. 4.2e). Note that hybridization of the optical cavity resonances is too weak to be
observable in themeasured left and right cavity spectra due to the fact that the optical
cavity linewidths are much larger than the designed cavity coupling J. The thermal
mechanical spectra, as measured from the two cavities using a blue-detuned pump
laser (see App. 4.1), are shown in Fig. 4.2f where one can see hybridized resonances
M± which are mixtures of the localized mechanical cavity modes ML and MR. A
nearby phonon waveguide mode (MW) is also observable in both left and right
cavity spectra. The optomechanical coupling rate and mechanical dissipation rate
of ML(R) were measured before nano-oxidation tuning, yielding g0,L(R)/2π = 0.76
(0.84)MHz and γiL(R)/2π = 4.3 (5.9)MHz.

The experimental apparatus used to drive and probe the optomechanical circuit is
shown schematically in Fig. 4.3a. As indicated, an optical pump field for the left
and right cavities is generated from a common diode laser. The phase difference of
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the pump fields at the input to the cavities, and thus the synthetic magnetic flux, is
tuned by a stretchable fiber phase shifter and stabilized by locking the interference
intensity of the reflected pump signals from the cavities. To highlight the unique
kinds of nonreciprocal transport possible in our setup, we present results for an
experiment performed with blue-detuned pump fields with frequencyωp ≈ ωc+ωm;
as discussed, this will enable non-reciprocal transport with gain. An input optical
probe signal is generated from either of the left or right cavity pump beams by
sending them through an electro-optic modulator (EOM). A vector network analyzer
(VNA) is used to drive the EOMs at modulation frequency ωmod and detect the
photocurrent generated by the beating of the transmitted probe and reflected pump
signals, thus providing amplitude and phase information of the transmitted probe
signal. Owing to the spectral filtering of the cavities, only the generated lower
sideband of the blue-detuned pump at ω = −ωmod is transmitted through the circuit
as a probe signal.

Figure 4.3b shows the ratio of the forward and backward optical power transmission
coefficients of the probe light (|TL→R/TR→L |

2) for several magnetic flux values
between ΦB = 0 and π. For these measurements the pump powers at the input
to the left and right cavity were set to PpL = −14.2 dBm and PpR = −10.8 dBm,
respectively, corresponding to intra-cavity photon numbers of ncL = 1000 and ncR =

1420. So as to remove differences in the forward and reverse transmission paths
external to the optomechanical circuit, here the |TL→R/TR→L |

2 ratio is normalized to
0 dB for amodulation frequencyωmod/2π ≈ 5.74GHz, detuned far frommechanical
resonance in a frequency range where reciprocal transmission is expected. Closer
to mechanical resonance, strong nonreciprocity in the optically transmitted power
is observed, with a peak and a dip in |TL→R/TR→L |

2 occurring roughly at the
resonance frequencies of the hybridizedmechanical modes M+ and M−, respectively
(c.f. Fig. 4.2c). The maximum contrast ratio between forward and backward probe
transmission – the isolation level – is measured to be 35 dB for ΦB = 0.34π near
the M+ resonance. The forward transmission is also amplified in this configuration
(blue-detuned pump, ∆ = +ωm), with a measured peak probe signal amplification
of 12 dB above the background level set by photon hopping alone (J/|Γ± | � 1).
The corresponding port-to-port net gain is only 1 dB due to impedance mismatching
(J , κ/2) and intrinsic optical cavity losses (see SI for details).

From a two-parameter fit to the measured optical power transmission ratio spectra
using Eq. 4.3 (see blue curves in Figs. 4.3b and 4.3c), we obtain a waveguide-
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mediated optical and mechanical hopping rate of J/2π = 110 MHz and V/2π =
2.8 MHz, respectively, consistent with our design parameters. Figure 4.3d shows
the theoretical calculation of |TL→R/TR→L |

2 for a full 2π range of ΦB with the
measured and fit optomechanical circuit parameters. The pattern is seen to be odd
symmetric with respect to ΦB = π. Inserting an additional magnetic flux π into
the measurements performed in Fig. 4.3b yields the spectra shown in Fig. 4.3c
which displays a switch in the isolation direction as predicted by the model. The
pump power dependence of the peak (in frequency) forward signal amplification
and the corresponding backward signal attenuation relative to the background level
far from mechanical resonance are shown in Fig. 4.3e for a fixed magnetic flux of
ΦB = 0.28π. Good correspondence with the theoretical power dependence (solid
curves) is observed, with nonreciprocal amplification vanishing at low pump power.

One can also obtain nonreciprocal optical power transmission utilizing an even
simpler system involving a single mechanical cavity. This is the situation we have
for the Fabry-Perot-like mechanical resonances that exist in the central coupling
waveguide (see MW resonance of Fig. 4.2c). As depicted in Fig. 4.4a, the mode
configuration in this case consists of two optical cavity modes (OL and OR) coupled
together via the optical waveguide, one mechanical waveguide mode MW which
is parametrically coupled to each of the optical cavity modes, and the synthetic
magnetic flux ΦB = φL − φR due to the relative phases of the optical pump fields
threading the triangular mode space. In Fig. 4.4b and 4.4c we show themeasurement
of |TL→R/TR→L |

2 for a series of different flux valuesΦB with blue-detuned pumping
(∆ ≈ +ωMW) at levels of ncL = 770 and ncR = 1090. In this single mechanical mode
case the direction of the signal propagation is determined by the magnitude of the
flux; ΦB ≤ π leads to backward propagation and ΦB ≥ π to forward propagation.
The lower contrast ratio observed is a result of the weaker coupling between the
localized optical cavity modes and the external waveguide mode, which for the
modest pump power levels used here (. 100 µW) does not allow us to reach the
parametric coupling required for strong directional transmission.

While our focus has been on the propagation of injected coherent signals through
the optomechanical circuit, it is also interesting to consider the flow of noise. As
might be expected, the induced directionality of our system also applies to noise
photons generated by the upconversion of both thermal and quantum fluctuations of
the mechanics; see App. 4.3 for detailed calculations. One finds that for the system
of Fig. 4.2, the spectrally-resolved photon noise flux shows high directionality, but
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that the sign of this directionality changes as a function of frequency (analogous to
what happens in the transmission amplitudes). In contrast, in the single-mechanical
mode setup of Fig. 4.4 the sign of the directionality is constant with frequency,
and thus the total (frequency-integrated) noise photon flux is directional depending
upon the flux magnitude. The laser pump fields can thus effectively act as a heat
pump, creating a temperature difference between the left and right waveguide output
fields. The corresponding directional flow of quantum noise is especially useful for
quantum information applications, as it can suppress noise-induced damage of a
delicate signal source like a qubit [82, 3].

The device studied in this work highlights the potential for optomechanics to real-
ize synthetic gauge fields and novel forms of nonreciprocity enabled by harnessing
mechanical dissipation. Using just a few modes, it was possible to go beyond
simply mimicking the physics of an isolator and realize a directional optical am-
plifier. By adding modes, an even greater variety of behaviours could be achieved.
For example, the simple addition of a third optical cavity mode, tunnel-coupled
to the first two cavities but with no mechanical coupling, would realize a photon
circulator similar to the phonon circulators considered in Ref. [48]. Scaling the
synthetic gauge field mechanism realized here to a full lattice of optomechanical
cavities would allow the study of topological phenomena in the propgation of both
light and sound. Predicted effects include the formation of back-scattering immune
photonic [114] and phononic [95] chiral edge states, topologically nontrivial phases
of hybrid photon-phonon excitations [95], dynamical gauge fields [131], and, in the
case of non-particle-conserving interactions enabled by blue-detuned optical pump-
ing, topologically protected inelastic scattering of photons [94] and even protected
amplifying edge states [93].

4.1 Device Fabrication and Methods
4.1.1 Device fabrication and atomic force microscope nano-oxidation tuning
The devices were fabricated from a silicon-on-insulator wafer with a silicon device
layer thickness of 220 nm and buried-oxide layer thickness of 2 µm. The device
geometry was defined by electron-beam lithography followed by inductively coupled
plasma reactive ion etching to transfer the pattern through the 220 nm silicon device
layer. The devices were then undercut using an HF:H2O solution to remove the
buried oxide layer and cleaned using a piranha etch.

After device fabrication, we used an atomic force microscope to draw nanoscale
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oxide patterns on the silicon device surface. This process modifies the optical
and mechanical cavity frequencies in a controllable and independent way with the
appropriate choice of oxide pattern. The nano-oxidation process was carried out
using an Asylum MFP-3D atomic force microscope and conductive diamond tips
(NaDiaProbes) in an environment with relative humidity of 48%. The tip was biased
at a voltage of −11.5 V, scanned with a velocity of 100 nm/s, and run in tapping
mode with an amplitude of 10 nm. The unpassivated silicon device surface was
grounded.

4.1.2 Optical transmission coefficient measurement
To measure the optical power transmission through the optomechanical circuit we
used a vector network analyzer (VNA). The VNA outputs a microwave tone from
port 1 with frequency ωmod to an electro-optic modulator which modulates the
optical pump to generate an optical sideband corresponding to the optical probe. In
the case of a blue-detuned pump from the optical cavity resonance, the probe field
corresponds to the lower sideband (selected by the filtering properties of the cavity
itself). Both the optical probe and pump are launched into one optomechanical cavity
in the circuit. At the other cavity, the transmitted optical probe combines with a
second pump and the beating of the two is detected by a high-speed photodetector
(both the first and second pump beams are from the same laser source, and thus phase
coherent). The photocurrent signal from the photodetector is sent into port 2 of the
VNA to measure the microwave signal transmission coefficient Tµ. Fig. 4.5 shows
|Tµ |2 for forward (right-propagating; blue curve) and backward (left-propagating; red
curve) directions through the optomechanical circuit as a function of the modulation
frequency ωmod. In Fig. 4.5a the synthetic flux value is locked to ΦB = 0.34π
whereas in Fig. 4.5b ΦB = 1.34π. In both flux settings the optical pumping levels
were such that the left and right cavity photon numbers were ncL = 1000 and
ncR = 1420, respectively.

While absolute optical transmission is not directly measured, the ratio of the optical
transmission coefficients for forward and backward propagation can be obtained
from the normalized microwave signal transmission coefficient T̄µ,

|TL→R/TR→L |
2 = |T̄µR/T̄µL |

2, (4.4)

where |T̄µ |2 is normalized using the value of |Tµ |2 away from all mechanical reso-
nances to remove all the external asymmetry in the experimental setup for left and
right propagation paths. These external asymmetries include modulator efficiency,
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cable/fiber loss, etc. In our analysis the normalization level is the average value
of |Tµ |2 in the frequency range of 5.74-5.76 GHz. To be clear, the reason this
calibration is necessary is because we do not actually physically swap the source
and detector in our measurements. Rather, for the left-to-right transmission path we
have one modulator on the left side which generates the probe tone and one detector
on the right side which measures the transmission through to the right side. When
we measure right-to-left transmission we have a different modulator on the right
side to generate the probe tone and a different detector on the left side to detect the
transmitted probe. If the modulator on the left side is different from the modulator
on the right side, then for the same microwave drive that excites the modulators we
would get different a different optical probe power in the sidebands of the pump.
Similarly if the left and right detectors have different efficiencies then they would
produce a different photocurrent for the same transmitted optical probe power. Since
we measure in practice the ratio of the microwave drive to the detected microwave
photocurrent, this could cause an inherent asymmetry in the measured transmission
for left-to-right and right-to-left transmission even if the optical transmission was
perfectly symmetric.

4.1.3 Device characterization
To determine the components of optical cavity loss (intrinsic decay rate κi, external
waveguide-to-cavity coupling κe, total cavity decay rate κ) of both the left and right
optical cavities we used a pump-probe scheme similar to that used to measure the
nonreciprocity of the optomechanical circuit. The pump beam in this case, however,
is set to be very weak so as to not resonantly excite the mechanics as the probe signal
is swept across the optical cavity resonance. The cavity scans are plotted in Fig. 4.6a
and 4.6b for the left and right cavities, respectively. We fit the phase response curves
and get κiL(R)/2π = 0.29 (0.31) GHz, /2π = 0.74 (0.44) GHz, and κL(R)/2π = 1.03
(0.75)GHz. The intrinsic and external optical cavity rates are used to determine the
intra-cavity photon number for a given optical pump power (specified at the input
to the cavity).

Thermal mechanical spectra of the two cavities are measured with a weak blue-
detuned optical pump so as to avoid back-action; a single pump is used for each of
the left and right cavity measurements. The reflected pump light from the cavity
contains modulation sidebands from the thermal mechanical motion, which upon
detection with a high-speed photodetector creates a photocurrent with the thermal
motion of the mechanical cavity modes imprinted on it. Since the mechanical
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modes can be hybridized between left-cavity, right-cavity, and waveguide modes, a
measurement with the left-side pump produces a local measurement of the cavity
modes as measured by the localized left optical cavity mode, and similarly for the
right-side pump and cavity. The intrinsic decay rate of the mechanical modes is
inferred from the linewidth of the Lorentzian mechanical spectrum.

Measurements of the mechanical mode spectra were performed both before and after
the cavities were nano-oxidized to tune their localized optical andmechanical modes
into resonance. Measurements prior to nano-oxidation allowed us to determine the
local (left and right) mechanical and optical cavity mode properties (i.e., the bare,
uncoupled mode properties). Knowing the left and right cavity mode properties
from independent measurements allowed us to fit with fewer fitting parameters
the measured forward and backward transmission curves of the hybridized cavities
presented in the main article text. Note that after nano-oxidation the left and right
optical cavity modes were only very weakly hybridized so as to maintain their left-
cavity and right-cavity character. The mechanical modes were tuned to be strongly
hybdridized as evidenced in Fig. 4.6f. Figures 4.6c and 4.6d show the measured
linewidth of the mechanical cavity modes ML(R) versus optical pumping power. In
Fig. 4.6c the left cavity was pumped with a blue detuning ∆ = +ωmL; in Fig. 4.6d
the right cavigty was pumped with a blue detuning of ∆ = +ωmR. By fitting the
measured data with formula γ = γi − 4g2

0nc/κ (nc corresponding to the intra-cavity
photon number determined from the OL(R) measured cavity properties), we obtain
g0,L(R)/2π = 0.76 (0.84) MHz and γiL(R)/2π = 4.3 (5.9)MHz for the left (right)
localized cavity modes.

The optical (J) and mechanical (V) hopping rates between the two optomechanical
cavities via the connecting waveguide are determined from a global fitting using
Eq. (1) for the group of measured transmission coefficient ratio curves in Figs. 3c
and 3d with varying ΦB. The intra-cavity cavity photon number, optomechanical
coupling rates, and intrinsic mechanical decay rates are all taken as fixed and equal
to the independently measured values as described above.

With the fit value of J from forward and reverse transmission measurements versus
ΦB, and the measured cavity coupling rates (κ, κi) from the left and rigth optical
cavity modes prior to nano-oxidation tuning, we fit the measured optical reflection
spectra of the two weakly coupled optical cavity modes after nano-oxidation. This
allows us to determine the uncoupled left and right optical cavity mode frequencies.
The measured and fit spectra as measured from the left and right cavities are shown
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in Fig. 4.6e. As noted earlier, the measured spectra after nano-oxidation are still pre-
dominantly given by uncoupled left and right cavity modes. Based on the theoretical
fit to the measured optical reflection spectra, we also calculate the transmission of
an optical probe signal through the optomechanical circuit in the absence of a pump
beam (i.e., no coupling to phonons, just pure optical transmission)

η =
J
√
κeLκeR���� J2 + κLκR/4 − (ω − ωcL)(ω − ωcR)

− iκL(ω − ωcL)/2 − iκR(ω − ωcR)/2

���� . (4.5)

Fig. 4.6f shows the numerical result, and theminimum insertion loss for transmission
from one port to the other port is found to be about 11 dB for a probe signal frequency
in between the two cavity resonances. This is the estimated port-to-port optical
transmission effiency in absence of optomechanical amplification.

4.2 Theory of optical nonreciprocity
4.2.1 Input-output formula
Weprovide theoretical analysis of optical nonreciprocity in the coupled optomechan-
ical cavity system. We first consider the case with two optical and two mechanical
cavity modes. The Hamiltonian of this system can thus be written as follows,

Ĥ =
∑

k=L,R

~ωck â†k âk + J(â†L âR + âL â†R) +
∑

k=L,R

~ωmk b̂†k b̂k

+ V(b̂†L b̂R + b̂L b̂†R)

+
∑

k=L,R

~g0k(b̂
†

k + b̂k)â
†

k âk +
∑

k=L,R

i~
√
κekαpk e−iωpk t−iφk (âk − â†k),

(4.6)

where J andV are the waveguide mediated optical andmechanical coupling strength
(we gauged out the phase of J and V and take both of them to be real), and the last
two terms are the optical driving fields (pumps) which have the same frequency and
correlated phases. We consider the situation where the optical cavities are nearly
degenerate, i.e., ωcL ' ωcR ≡ ωc and both optomechanical systems are driven with
a blue-detuned laser (ωpk = ωc +ωmk). We perform a displacement transformation
âk = αk + d̂k , separating the classical steady state amplitude of the local optical
cavity field from its fluctuations. With this we can linearize the optomechanical
interaction in the Hamiltonian of Eq. 4.6 in the usual manner. Assuming the good
cavity limit (sideband resolved,ωmk � κk), we apply a rotating wave approximation
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and obtain for the equations of motions (~ = 1)

d
dt

d̂L =
(
i∆L −

κL

2

)
d̂L −

√
κeL d̂L,in −

√
κiL ξ̂L,in − iJd̂R − iGL b̂†LeiφL,

d
dt

d̂R =
(
i∆R −

κR

2

)
d̂R −

√
κeRd̂R,in −

√
κiRξ̂R,in − iJd̂L − iGRb̂†ReiφR,

d
dt

b̂L = −
(
iωmL +

γiL
2

)
b̂L −

√
γiLb̂L,in − iV b̂R − iGL d̂†LeiφL,

d
dt

b̂R = −
(
iωmR +

γiR
2

)
b̂R −

√
γiRb̂R,in − iV b̂L − iGRd̂†ReiφR, (4.7)

with the total damping rates κk = κek + κik , the detunings ∆k = ωp − ωck and the
many-photon optomechanical couplings Gk = g0kαk . The latter contains the steady
state amplitude of the local optical cavity field αk eiφk , which is related to the pump
amplitudes through

αL(R)eiφL(R) =

(i∆R(L) − κR(L)/2)
√
κeL(R)αpL(R)e−iϕL(R)

+ iJ√κeR(L)αpR(L)e−iϕR(L)

(i∆L − κL/2)(i∆R − κR/2) + J2 . (4.8)

We find the steady state amplitude is approximately √κekαpk e−iϕk/i∆k under the
condition ∆k ≈ ωmk � κk, J, which means each cavity is effectively only driven
by its own optical pump. Thus, each pump-enhanced optomechanical coupling and
its phase can be independently controlled. The intrinsic noise operators ξ̂k,in and
b̂k,in in the coupled mode equations 4.7 describe thermal and vacuum fluctuations
impinging on the the cavities and themechanical modes respectively. The associated
noise of a possible input signal is described via d̂k,in.

4.2.2 Mechanically-mediated coupling
We perform a Fourier transform (b̂[ω] ≡

∫
dt b̂(t)e+iωt ; b̂(t) ≡

∫
dω
2π b̂[ω]e−iωt) of

the coupled mode equations Eqs. 4.7 and insert the resulting solution for b̂†L,R[ω]

into the equations of the cavity operators. Ignoring the intrinsic noise terms ξ̂in,k
and b̂in,k for the moment, we obtain for the cavity operators in frequency space
(ΦB = φL − φR)

χ̃−1
L,+[ω]d̂L[ω] = −

√
κeL d̂L,in[ω] − i

(
J − Γ+[ω]e+iΦB

)
d̂R[ω],

χ̃−1
R,+[ω]d̂R[ω] = −

√
κeRd̂R,in[ω] − i

(
J − Γ+[ω]e−iΦB

)
d̂L[ω], (4.9)
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with the modified susceptibility χ̃−1
k,+[ω] =

(
−i(ω + ∆k) +

κk
2 + iΣk,+[ω]

)
. The fre-

quency dependent coupling Γ+[ω] and the self-energy Σk,+[ω] are defined as

Γ+[ω] =
VGRGL[

−i(ω + ωmL) +
γiL
2
] [
(−i(ω + ωmR) +

γiR
2

]
+ V2

Σk,+[ω] =
iGk

VG k̄

[
−i(ω + ωmk̄) +

γi k̄

2

]
Γ+[ω],

(4.10)

here the coupling Γ+[ω] coincides with Eq. (2). After eliminating the mechanical
degrees of freedom, one finds both a "local" modification of each cavity (described
by the self energy Σk,+[ω]) and an induced coupling between the cavities. The
self-energies lead to damping (or anti-damping) of each cavity resonance as well
as a frequency shift of the resonance. Here the subscript + indicates blue-detuning
(∆k = ωpk − ωc ≈ +ωmk). The poles of the self energy read

ω± = −
i
4
(γiL + γiR) −

1
2
(ωmL + ωmR)

±

√
V2 −

[
1
4
(γiL − γiR) −

i
2
(ωmL − ωmR)

]2
.

(4.11)

The induced coupling has a coherent and a dissipative aspect. To illustrate this
we separate the coupling into real and imaginary parts Γ+[ω] ≡ ΓRe[ω] + iΓIm[ω].
The real and imaginary parts of this frequency-dependent coupling have completely
different physical interpretations. We see this, by considering again the coupling
terms in Eq. (4.9). We have

d̂L[ω] ∼
[
−i

(
J − ΓRe[ω]e+iΦB

)
− ΓIm[ω]e+iΦB

]
d̂R[ω]

≡

[
−i J̃ [ω] − ΓIm[ω]e+iΦB

]
d̂R[ω]

,

d̂R[ω] ∼
[
−i

(
J − ΓRe[ω]e−iΦB

)
− ΓIm[ω]e−iΦB

]
d̂L[ω]

≡

[
−i J̃∗[ω] − ΓIm[ω]e−iΦB

]
d̂L[ω]

. (4.12)

For the given frequency of interest, we see that the real part of the induced coupling
is completely equivalent to having a Hamiltonian, coherent tunneling term between
the cavities; we can absorb it into a redefinition of the coherent hopping strength
J, i.e., J → J̃[ω]. In contrast, the coupling mediated by the imaginary part
ΓIm[ω] is not equivalent to some effective coherent tunneling interaction between the
cavities, i.e., the ΓIm[ω] terms in d̂L and d̂R Eqs.(4.12) cannot be incorporated into a
definition of J. The terms involving ΓIm[ω] instead represent a dissipative coupling
between the two cavities mediated by the mechanics. Such dissipative interactions
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(if we ignore their frequency dependence) can be obtained in a master equation
formalism via an effective Lindblad dissipator of the form 2ΓImL

[
d†L + e−i∆φd†R

]
,

where L[ô]ρ̂ = ôρ̂ô† − 1/2ô†ôρ̂− 1/2ρ̂ô†ô is the standard Lindblad superoperator.

4.2.3 Directionality by balancing coherent and dissipative interactions
The dissipative coupling is crucial for directionality: by balancing the dissipa-
tive interaction against the coherent interaction we obtain a nonreciprocal system
(following the general recipe outlined in Ref.[82]). For example, if we aim for a
directional transport from the left to the right cavity, we want to decouple the left
cavity from the right cavity (while still having the right cavity influenced by the left
cavity). This is accomplished by balancing coherent and dissipative interactions,
i.e.,

J̃[ω] !
= iΓIm[ω]eiΦB, (4.13)

in which case the coupling from the left to right cavity vanishes, cf. Eq. (4.12), and
we obtain a unidirectional coupling where the right cavity is driven by the left cavity
but not vice versa. Crucially, this would not be possible without the dissipative
interaction, i.e., we need ΓIm[ω] , 0. Note, for the situation that ΓIm[ω] = 0, i.e.,
γik = 0, but finite ΦB, we still obtain a directional dependent phase. However, to
use this as the basic for nonreciprocal transmission additional interference processes
have to implemented.

The directionality condition Eq. (4.13) can be reformulated in terms of the original
J and the phase difference ΦB as used in Eq. (4.9). This translates to the condition

J = |Γ+[ω]| , ΦB = − arg(Γ+[ω]), (4.14)

where we still aim for unidirectional behavior from left to right. For the case of a
purely real coupling Γ+[ω] = ΓRe[ω] these conditions could still be satisfied, i.e., for
ΦB = 0 and ΓRe[ω] = J. However, this means that there is effectively no coupling
between the cavities, and thus no forward transport either. Note that a sign change
in arg(Γ+[ω]) would lead to the opposite situation, where the propagation direction
would be from right to left.

In general, the directionality balancing condition obtained here is frequency depen-
dent, for the simple reason that the mechanically-mediated cavity-cavity coupling
is frequency-dependent. If we could somehow fulfill the directionality condition in
Eq. (4.14) at every frequency, the cavity output field operators would be given by
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(using the standard input-output relation d̂k,out = d̂k,out +
√
κek d̂k)

d̂L,out[ω] =
[
1 − κeL χ̃L,+[ω]

]
d̂L,in[ω],

d̂R,out[ω] =
[
1 − κeR χ̃R,+[ω]

]
d̂R,in[ω]

− i
√
κeRκeL χ̃R,+[ω] χ̃L,+[ω] |Γ+[ω]|

(
ei2 arg(Γ+[ω]) − 1

)
d̂L,in[ω],

(4.15)

where we neglected the noise contributions originating from the mechanical modes,
i.e., the coupling to b̂n,in in Eq. (4.9), and the intrinsic cavity noise ξin,k for simplicity.
Here, we see again that the dissipative interaction is crucial as we need arg(Γ+[ω]) ,
nπ, n ∈ Z, i.e., we need a finite imaginary part of Γ+[ω].

The experimentally relevant situation is where dissipative and coherent interac-
tions are only balanced at a single frequency (by appropriate tuning of phase and
J). Achieving this condition close to the normal modes resonance frequencies is
favorable given the resonantly-enhanced transmission. Enforcing directionality at
ω = −ωm ± V for equal mechanical resonance frequencies, results in the direction-
ality conditions

ωmL = ωmR : ΦB = ∓ arctan
2V (γiL + γiR)

γiLγiR
, J =

VGRGL√
1
4V2 (γiL + γiR)

2 +
γ2
iLγ

2
iR

16

, (4.16)

where the upper (lower) sign in the phase difference ΦB realizes directionality at
ω = −ωm +V(−ωm −V). Directionality here means that an input signal injected on
the left cavity is transmitted to the right cavity, whereas the backward propagation
path, i.e., from right to left, is blocked.

On the other side, if we assume identical baremechanical damping of themechanical
modes (γiL = γiR = γi), but unequal bare mechanical frequencies (ωmL , ωmR),
then we find that at the frequencies of the hybridized mechanical modes Ω± =
−1

2 (ωmL + ωmR) ±
√

V2 + 1
4 (ωmL − ωmR)2 the directionality condition is modified

to

γiL = γiR : ΦB = ∓ arctan
4
√

V2 + 1
4 (ωmL − ωmR)2

γ
, J =

VGLGR

γ

√
V2 +

γ2

16 +
1
4 (ωmL − ωmR)2

. (4.17)

where the upper (lower) sign in the phase difference ΦB realizes directionality at
ω = Ω+(−). The directionality conditions for a perfectly symmetric device, i.e., for
equal mechanical resonance frequencies (ωm) and decay rates (γ), can simply be
read off from either Eq. 4.17 or Eq. 4.16.
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4.2.4 Nonreciprocal optical transmission: two blue-detuned pumps
From the equations for the cavity operators in Eqs. 4.9 we can calulate the transmis-
sion coefficients via input/output theory. Note that although Eqs. 4.9 are formulated
on the basis of noise operators, they also describe the dynamics of the cavity field
amplitudes dk around their steady state solution. The right transmission coefficient
TL→R ≡ dR,out/dL,in and left transmission coefficient TR→L ≡ dL,out/dR,in are given
by

TR�L[ω] =
i
√
κeLκeR

[
J − Γ+[ω]e∓iΦB

]
χ̃−1

L [ω] χ̃
−1
R [ω] +

[
Γ+[ω]2 + J2 − 2Γ+[ω]J cos(φ)

]
≡ A+[ω]

[
J − Γ+[ω]e∓iΦB

]
,

(4.18)

with the modified susceptibilities χ̃k[ω] as defined after Eq. (4.9). The prefactor
A+[ω] is the same for both transmission amplitudes, it accounts for themechanically-
induced back-action on the optical cavities, cf. after Eq. (2). Note, that the corre-
sponding prefactor for two red-detuned pumps is simply A−[ω] = −A∗+[−ω].

We now assume a completely symmetric pair of mechanical cavities (ωmL = ωmR =

ωm and γiL = γiR = γi) and apply the corresponding directionality direction for
symmetric parameters, cf. Eq. 4.17 or Eq. 4.16. The transmission coefficient for the
through direction (→) under these conditions of perfect nonreciprocity is given by,

T→[−ωm ± V] =
√
κeLκeR
κRκL

√
1 ± i γi4V

1 ∓ i γi4V

×
8i
√
CLCR[

CL
(
1 ± i γi2V

)
−

(
1 ∓ i 2V

κL

) (
2 ± i γi2V

) ]
×

[
CR

(
1 ± i γi2V

)
−

(
1 ∓ i 2V

κR

) (
2 ± i γi2V

) ]
, (4.19)

introducing the single cavity cooperativity Ck ≡ 4G2
k/γiκk . Considering as well

symmetric optical cavities (κeL = κeR = κe; κL = κR = κ) with symmetric optical
pumping (GL = GR = G) the transmission coefficient simplifies to

T→[−ωm ± V]
V�κ
'

8iC κeκ[
2 − C ± i γi2V (1 − C)

]2 , (4.20)

with C ≡ 4G2/γiκ and under the realistic assumption that the hopping rate V is
much lower than the cavity decay rate κ. Here we work with blue-detuned pumping
of both optical cavities (∆ ≈ +ωm), which results in parametric amplification of
each of the left and right mechanical modes and leads to amplification of the optical
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probe signal. This becomes apparent for the situation that the mechanical hopping
rate is much faster than the intrinsic mechanical decay rate (V/γi � 1). In this
case the gain diverges for C → 2 (this is twice as large as for a single cavity
instability because the mechanical modes are hybridized and thus the effective
optomechanical coupling from the left or right optical cavity is reduced by a factor
of
√

2, hence the cooperativity by a factor of 2). Note, for the situation V/γi � 1,
the directionality conditions at the hybridized mechanical modes ω = −ωm ± V

simplifies to J ' GLGR/γi and ΦB → ∓π/2.

4.2.5 Nonreciprocal optical transmission: two red-detuned pumps
The analysis for the the case of two red detuned pumps is similar to the blue-detuned
case. The cavity operators in Eq.(4.7) couple now to the mechanical lowering
operators b̂k and vice versa, while the detuning between the cavity resonances and
the external pump tones yields ∆k = −ωmk . The ratio of transmission coefficients
is found to be given by the following expression

TL→R

TR→L
=

J − Γ−[ω]e−iΦB

J − Γ−[ω]e+iΦB
=

J − VGLGR

[−i(ω−ωmL)+
γiL

2 ][−i(ω−ωmR)+
γiR

2 ]+V2 e−iΦB

J − VGLGR

[−i(ω−ωmL)+
γiL

2 ][−i(ω−ωmR)+
γiR

2 ]+V2 e+iΦB
(4.21)

where we have Γ−[ω] = Γ∗+[−ω], and thus the ratio |TL→R/TR→L | is the same for
blue and red detuned pumps evaluated at corresponding frequencies. The reason for
this is that the transmission is either amplified or suppressed simultaneously for both
directions and thus their ratio stay unchanged. Comparing to the blue detuned case,
the perfect nonreciprocity condition remains the same in the red detuned case, while
the transmission coefficient for the through direction the hybridized mechanical
modes Ω± = ωm ± V is given by (assuming ωmL = ωmR, γiL = γiR = γi and
V � κk)

T→[ωm ± V] '
√
κeLκeR
κRκL

8i
√
CLCR[

CL + 2 ± i γi2V (CL + 1)
] [
CR + 2 ± i γi2V (CR + 1)

] . (4.22)

From Eq. 4.22, we note in general an attenuated transmission for the red detuned
case as T→ ≤

√
κeLκeR/(κLκR) < 1. For the case of a fast hopping rate V/γi � 1

equality is achieved when Ck = 2 and/or κk/2 = GLGR
γi

. Comparing the latter to
Eq. 4.16 we see the maximal through transmission efficiency is achieved when the
optical cavity loss rate κk/2 is matched to the inter-cavity photon hopping rate J for
both cavities (impedance matching condition).
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4.2.6 Nonreciprocity associated with a single mechanical waveguide mode
In our optomechanical circuits, we also observed optical nonreciprocity with a
single mechanical waveguide mode. In this case, the Hamiltonian describing the
interaction between two optical cavity modes and one mechanical waveguide mode
is given by,

Ĥ =
∑

k=L,R
~ + J(+) + ~ωMW b̂†Wb̂W (4.23)

+
∑

k=L,R
~
(
b̂W +∗ b̂†W

)
+

∑
k=L,R

i~
√
κekαpk e−iωpt−iφk (−).

Going through a similar calculation using coupled mode equations, we find that the
ratio of right and left optical transmission coefficients is

TL→R

TR→L
=

J ± i |GWLGWR |

−i(ω±ωMW)+
γiW

2
e−i(ΦB±ΦW )

J ± i |GWLGWR |

−i(ω±ωMW)+
γiW

2
e+i(ΦB±ΦW )

, (4.24)

where the upper (lower) sign corresponds to the blue (red) detuned case and ΦW =

arg(G∗WLGWR). The corresponding conditions for perfect directionality from left to
right and at ω = ∓ωMW are

J =
2|GWLGWR |

γiW
, ΦB = ±

π

2
∓ ΦW . (4.25)

This in turn leads to the transmission coefficients

T→[∓ωMW] =

√
κeLκeR
κLκR

4i
√
CW LCW R

(CW L ∓ 1)(CW R ∓ 1)
. (4.26)

In the case of blue detuned tones an input signal is amplified and the corresponding
gain increases for CW k → 1.

Note in Eq. 4.25 we included the phase of the product G∗WLGWR. This addition
comes from the fact that we have already chosen definitions for the local cavity mode
amplitudes (aL,R and bL,R) such that the phase of the optomechanical couplings of
the localized cavity modes – GL ≡ |αL |g0,L and GR ≡ |αR |g0,R – are both zero.
With these same definitions for amplitudes aL and aR we are not then free to set
the phases of both GWL and GWL to be zero; not at least for the same set of pump
phases φL and φR chosen for the localized cavity mode coupling. A simple example
helps to illustrate this. The mode MW can be viewed as a hybridization between the
localized left and right cavity modes and a delocalized waveguide mode [38]. Using
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perturbation theory, we have for the mechanical mode amplitude of the hybridized
mode MW,

bW = bW′ +
tL
−ωmL

bL +
tR
−ωmR

bR, (4.27)

where bW′ is the unperturbed delocalized waveguide mode amplitude and is the
unperturbed frequency of the delocalized waveguide mode. tL(R) is the coupling
coefficient between the delocalized waveguide mode and the localized cavity mode
ML(R). The phases of tL and tR are determined by the field distribution of the
hybridized mode MW in the left and right cavities, respectively, and cannot be
(both) chosen arbitrarily . Using the mode decomposition of Eq. 4.27, we have that
arg(g∗0,WLg0,WR) = arg(t∗LtR) aswe have already chosen a local cavitymode amplitude
basis such that arg(g0,L) = arg(g0,R) = 0 and > ωmL, ωmR (this assumes of course
that the left (right) optical cavitymode only couples to the portion of bWwhich is due
to bL (bR), which is a good approximation due to the fact that the optical cavities are
in the far field of each other). Thus, by simultaneouslymeasuring the flux-dependent
transmission near the resonance of the localized mechanical cavity modes and the
hybridized mechanical waveguide mode we can determine the arg(g∗0,WLg0,WR) in
this mode basis (see Fig. 4.8 for example). For the MW mode in our experiment,
we find arg(g∗0,WLg0,WR) ≈ π, which means for this hybridized mode and chosen
localized cavity mode basis the mechanical motion in the left cavity as seen by the
left cavity optical mode is approximately 180 degrees out of phase with the motion
in the right cavity as seen by the right cavity optical mode.

4.3 Directional flow of quantum and thermal noise
Besides the nonreciprocal optical signal transmission, the flow of quantum and ther-
mal noise in the optomechanical circuit is directional. This is a natural consequence
of the system’s scattering matrix having a directional form; the scattering matrix
determines both the transmission of coherent signals, as well as noise properties.
To show this, we calculate the symmetrized output noise spectral density via

S̄k,out[ω] =
1
2

∫
dΩ
2π

〈{
d̂k,out[ω], d̂

†

k,out[Ω]

}〉
, (4.28)

defined in the standard manner [24]. The mechanical and optical noise operators
introduced in Eqs. 4.7 have zeromean and satisfy the canonical correlation relations:

〈ôk,in[ω]ô
†

k ′,in[Ω]〉 = 〈o
†

k,in[ω]ok ′,in[Ω]〉 + δk,k ′δ(ω +Ω)

=
(
nthok + 1

)
δk,k ′δ(ω +Ω),

(4.29)

ôk,in = d̂k,in, ξ̂k,in, b̂k,in. (4.30)
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where nthok is the thermal occupation of each bath. In what follows, we assume that
we have no thermal occupation of the optical field. This is justified as we work with
a very high optical frequency.

Figure 4.7a-d depicts the output spectra for the situation that both pumps are blue
detuned from the cavity by ωm. Here we assumed equal mechanical frequencies
ωmL = ωmR = ωm and work in a rotating frame where the uncoupled mechanical
resonance frequencies are shifted to zero. The remaining parameters are as used
in the experiment, i.e., we take γiL/2π = 4.3 MHz, γiR/2π = 5.9 MHz, κL/2π =
1.03 GHz, κR/2π = 0.75 GHz, κiL/2π = 0.29 GHz, κiR/2π = 0.31 GHz, V/2π =
2.8 MHz, J/2π = 110 MHz. The multiphoton couplings GL = GR used in the
calculation are determined from Eq. 4.16.

Figure 4.7a shows the result for zero temperature mechanical baths and a finite phase
ΦB = 0.36π (determined from Eq. 4.16). As expected, the L and R output spectra
are not identical: while each has a double-peaked structure (corresponding to the two
normal mode resonances), the right output spectra S̄R,out[ω] has the upper-frequency
peak larger than the lower-frequency peak, while the situation is reversed for the
left output spectra. This does not lead to any asymmetry in the total output photon
number fluxes (i.e., intergrated over all frequencies). It does however lead to an
asymmetry in the energy fluxes (i.e., as the higher energy peak is bigger for the right
output spectrum, and the low energy peak is bigger for the left spectrum). Thus, the
"quantum heating" of zero-point fluctuations preferentially cause an energy flow to
the right (rather than to the left) for this choice of phase.

It is also worth noting that if all dissipative rates are equal for the R and L cavities,
then the L output spectrum is just the frequency-mirrored R output spectrum. The
latter is visible in Fig. 4.7c, where we plotted the output spectra for symmetric
parameters, i.e., we set γiR/2π = γiL/2π = 4.3 MHz, κR/2π = κL/2π = 1.03 GHz,
κiR/2π = κiL/2π = 0.31 GHz and ΦB = 0.38π (determined from Eq. 4.16 for the
new γiR). However, having unequal decay rates, i.e., γR , γL and κR , κL , leads
to a slight asymmetry even if the phase is set to zero, i.e., ΦB = 0, as visible in
Fig. 4.7b. In Fig. 4.7g we plot the asymmetry S̄L,out[ω] − S̄R,out[ω] for all the four
cases corresponding to Fig. 4.7a-d.

For finite temperature, we find that the output spectrum has a roughly linear depen-
dence on the mechanical bath temperature: S̄k,out(T) = cknth + S̄k,out(0) (assuming
nthbL
= nthbR ≡ nth). This linear dependence is visible if we compare Fig. 4.7c,d and

Fig. 4.7e,f, where the latter show the output noise spectra for nth = 10 with sym-
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metric cavity parameters. Additionally, we also calculate the added noise quanta to
the transmitted signal

n̄k,add[ω] ≡
S̄k,out[ω]

|Tk[ω]|2
−

1
2
, (4.31)

where 1
2 is the half quanta noise of the vacuum optical fields injected from the

coupler. Fig. 4.7h shows the added noise for left-right propagation withΦB = 0.36π
(and asymmetric experimental cavity parameters). The mechanical baths nth are
varied as denoted in each graph. Even if the cavities and the mechanics are only
driven by vacuum noise the standard quantum limit (SQL) of half a quanta is not
achieved. This is due to the limited amount of gain achieved in the experiment, i.e.,
the transmission coefficient is not high enough to suppress the noise contributions.
Moreover, even in the large gain limit the added noise would be roughly one quanta
due to the finite amount of intrinsic optical cavity loss.

4.4 Reciprocal device
Realizing optical nonreciprocity in the optomechanical circuits studied in this work
is not simple or easy as just creating a circuit with optical and mechanical coupling
between two optomechanical cavities. One is limited by the practical realities of
device power handling capability, finite optical and mechanical Q-factors, etc. As
such, not all the circuits that were tested exhibited nonreciprocal transmission and
amplification; the effects were too weak to observe in some circuits. This, however,
was a useful test of our set-up as nonreciprocity could be effectively turned on and
off by looking at different circuits with only slightly different parameters.

Eq. 4.17 sets the desired circuit parameters in order to achieve significant nonre-
ciprocity, which for the optomechanical coupling, optical and mechanical Q-factors,
and the power handling capabilities of the nanobeam cavities requires optical hop-
ping rate between cavities to be less than J/2π ≈ 500 MHz. Devices with larger
coupling rates can simply not be pumped hard enough to satisfy Gk ≈ (Jγik)

1/2. To
confirm this, here we show another optomechanical crystal circuit with bare cavity
wavelengths of λL(R) = 1535.051 (1535.060) nm and inter-cavity photon hopping
rate of J/2π = 1.4 GHz (more than ten times larger than the device studied). The
mechanical spectra of this device as measured from both the left and right optical
cavities is shown in Fig. 4.8a. Figure 4.8b shows the normalized transmission coef-
ficient for forward and reverse optical signal propagation for a blue-detuned pump
wavelength of λp = 1534.99 nm and synthetic flux of ΦB = π/2. Even at the
largest pump powers (Pp ≈ 100 µW; nc ≈ 1.5× 103) this device does not satisfy the



72

condition of Eq. 4.17 due to the large J, resulting in nearly perfect reciprocity in the
optical signal transmitted power. These measurements were performed on the exact
same set-up as the circuit studied.
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Figure 4.1: Synthetic magnetic field in an optomechanical cavity system.a, In
this scheme consisting of only two optomechanical cavities, a two-dimensional
plaquette can be formed from the synthetic dimension [114] created by radiation
pressure coupling from the optical modes to the mechanical modes. Photon hopping
at rate J and phonon hopping at rate V occurs between the optical and mechanical
cavities, respectively, with J and V real for appropriate choice of gauge. Pumping
of the optomechancial cavities with phase correlated laser light (|αL |eiφL for the left
cavity and (|αR |eiφR for the right cavity) results in a synthetic flux ΦB = φL − φR
threading the 4-mode plaquette. b, Scheme for detecting the synthetic flux through
nonreciprocal power transmission of an optical probe laser field. For forward
(L → R) propagation, constructive interference set by the flux-dependent phase
ΦB ≈ π/2 of the dissipative phonon coupling path results in efficient optical power
transmission. The accumulated phase in the phonon coupling path is reversed for
the backward (R → L) propagation direction resulting in destructive interference
and reduced optical power transmission in the left output waveguide. The power in
this case is sunk into the mechanical baths.
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Figure 4.2: Silicon optomechanical crystal circuit.a, Scanning electron mi-
croscopy (SEM) image of the optomechanical crystal circuit studied in this work.
The circuit is fabricated from a silicon-on-insulator microchip (see App. 4.1). b,
SEM of the main part of the circuit, which consists of a left and a right nanobeam
optomechanical crystal cavity with a central unpatterned nanobeam waveguide con-
necting the two cavities. A left and right optical coupler, which are each fed by an
adiabatic fiber-to-chip coupler [46], are used to evanescently couple light into either
of the two optical cavities. c, FEM simulated electrical field Ey and magnitude
of the displacement field for the localized optical and mechanical cavity modes,
respectively, of the nanobeam. d, FEM simulated section of the corresponding
optical and mechanical modes of the connecting waveguide. e, Optical reflection
spectrum of the left (blue) and right (orange) optical cavities. f, Optically transduced
mechanical power spectral density (PSD) measured from the left (blue) and right
(orange) optical cavities. M± are the two hybridized mechanical cavity modes with
frequency ωM+(−)/2π = 5788.4 (5779.1) MHz and MW is a mechanical waveguide
mode with frequency ωMW/2π = 5818.3 MHz.
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Figure 4.3: Measurement of optical nonreciprocity.a, Experiment set-up. Red
(blue) lines are optical (electronic) wiring. Blue-detuned pump light from a tunable
diode laser is split into two paths and fed into the two cavities (red arrows). Part
of the reflected pump laser light from the cavities (purple arrows) is collected
by a photodetector (PD) and fed into a stretchable fiber phase shifter (φ-shifter)
to tune and lock the phase difference of the optical pumps. Each optical path
can be modulated by an electro-optic modulator (EOM) to generate an optical
sidebandwhichwe use as the optical probe signal. Themicrowavemodulation signal
with frequency ωmod is generated by port 1 of a vector network analyzer (VNA).
After optical amplification and photodetection, the transmitted optical probe signal
through the optomechanical circuit is sent back to port 2 of the VNA to measure the
phase and amplitude of the optical probe transmission coefficient. EDFA: Erbium
doped fiber amplifier, FPC: fiber polarization controller, λ-meter: wavelengthmeter.
b, The ratio of optical power transmission coefficients for right- and left-propagation
versus modulation frequency (ωmod = −ω = ωp − ωs), for three different synthetic
flux valuesΦB/π = 0.18, 0.26, and 0.34. The blue curves correspond to the fit of the
theoretical model (c.f. Eq. 4.3) to the measured spectra. c, The power transmission
coefficient ratio forΦB with an additional π flux relative to those in b. d, Theoretical
calculation of the power transmission coefficient ratio for 0 ≤ ΦB ≤ 2π, where the
six grey lines correspond to the six measured ΦB values in b and c. e, Peak forward
signal amplification above background level (blue squares) and corresponding signal
attenuation in the reverse direction (red circles) versus average optical pump power
(P̄p =

√
PpLPpR) for fixed flux value ofΦB = 0.28π. The solid curves are theoretical

calculations based upon the theoretical model (c.f. Eq. 4.3 and SI) fit to the data in
b and c.
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Figure 4.4: Synthetic magnetic field with a single mechanical cavity.a, Physical
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C h a p t e r 5

ULTRA-HIGH QUALITY NANO-MECHANICAL RESONATOR

With the rapid progress of quantum science and technologies in recent years, the
need for a high quality quantum memory device for various applications has driven
efforts in developing systems from trapped cold atoms, high quality 3 dimensional
microwave cavity, nuclear spins in nitrogen centers, and topological materials.
Nano-mechanical resonators have shown in many cases to be a promising platform
for storing energy over a relatively long time. This Chapter will present our work on
creating a 5 GHz nano-mechanical resonator that can have energy relaxation time
around 1 second in 10 mk environment. Such ultra-high quality nano-mechanical
resonators can be integrated with a superconducting quantum circuit as quantum
memory elements.

5.1 Phononic bandgap structure
Phononic bandgap structures, similar to their electromagnetic counterparts, can be
used to modify the emission or scattering of phonons. These ideas have recently
been explored in quantum optomechanics [6, 18, 138, 134, 43] and electrome-
chanics [58] experiments to greatly reduce the mechanical coupling to the thermal
environment through acoustic radiation. At ultrasonic frequencies and below, one
can combine phononic bandgap clampingwith a formof ‘dissipation dilution’ in high
stress films [128] to realize quality (Q) factors in excess of 108 in two-dimensional
nanomembranes [134] and approaching 109 in one-dimensional strain-engineered
nanobeams [43]. At higher, microwave frequencies the benefit of stress-loading of
the film fades as local strain energy dominates [43] and one is left once again to deal
with intrinsic material absorption.

To date, far less attention has been paid to the impact of geometry and phononic
bandgaps on acoustic material absorption [15, 54]. Fundamental limits to sound
absorption in solids are known to result from the anharmonicity of the host crys-
tal lattice [69, 121, 133]. At low temperatures T , in the Landau-Rumer regime
(ωτth � 1) where the thermal phonon relaxation rate (τ−1

th ) is much smaller than
the acoustic frequency (ω), a quantum model of three-phonon scattering can be
used to describe phonon-phonon mixing that results in damping and thermalization
of acoustic modes [69, 121]. Landau-Rumer damping scales approximately as Tα,
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Figure 5.1: Nanobeam optomechanical crystal and phononic shield design.a,
Scanning electron microscope (SEM) image of a full nanobeam optomechanical
crystal (OMC) device fabricated on SOI with N = 7 periods of acoustic shielding.
A central coupling waveguide allows for fibre-to-chip optical coupling as well as
side-coupling to individual nanobeam OMC cavities. b, SEM image of an individ-
ual nanobeam OMC and the coupling waveguide, with enlarged illustration of an
individual unit cell in the end-mirror portion of the nanobeam. c, FEM simulations
of the mechanical (top; total displacement) and optical (bottom; transverse electric
field) modes of interest in the nanobeam. Distortion of the mechanical displacement
profile is exaggerated for clarity. d, SEM image showing the nanobeam clamping
geometry. e, SEM image of an individual unit cell of the cross-crystal acoustic
shield. The dashed lines show fitted geometric parameters used in simulation, in-
cluding cross height (hc = 474 nm), cross width (wc = 164 nm), inner fillet radius
(r1), and outer fillet radius (r2). f, Simulated acoustic band structure of the realized
cross-crystal shield unit cell, with the full acoustic bandgap highlighted in pink.
Solid (dotted) lines correspond to modes of even (odd) symmetry in the direction
normal to the plane of the unit cell. The dashed red line indicates the mechanical
breathing-mode frequency at ωm/2π = 5.0 GHz.

where α ≈ 4 depends upon the phonon dispersion and density of states (DOS) [121].
At the very lowest lattice temperatures (. 10 K), where Landau-Rumer damping has
dropped off, a residual damping emerges due to material defects. These two-level
system (TLS) defects [96], typically found in amorphous materials, correspond to a
pair of nearly degenerate local arrangements of atoms in the solid which can have
both an electric and an acoustic transition dipole, and couple to both electric and
strain fields. Recent theoretical analysis shows that TLS interactions with acoustic
waves can be dramatically altered in a structured material [15].
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5.2 Limits of acoustic damping
Here we explore the limits of acoustic damping and coherence of amicrowave acous-
tic nanocavity with a phononic crystal shield that possesses a wide bandgap for all
polarizations of acoustic waves. Our nanocavity, formed from an optomechanical
crystal (OMC) nanobeam resonator [32, 18], supports an acoustic breathing mode
at ωm/2π ≈ 5 GHz and a co-localized optical resonant mode at ωc/2π ≈ 195 THz
(λc ≈ 1550 nm) which allows us to excite and readout mechanical motion using
radiation pressure from a pulsed laser source. This minimally invasive pulsed mea-
surement technique avoids a slew of parasitic damping effects − typically associated
with electrode materials and mechanical contact [41], or probe fields for continuous
readout − and allows for the sensitive measurement of motion at the single phonon
level [81]. The results of acoustic ringdown measurements at millikelvin tempera-
tures show that damping due to radiation is effectively suppressed by the phononic
shield, with breathing mode quality factors reaching Q = 4.9× 1010, corresponding
to an unprecedented frequency-Q product of f -Q = 2.6×1020. The temperature and
amplitude dependence of the residual acoustic damping is consistent with relaxation
damping of non-resonant TLS, modeling of which indicates that not only does the
phononic bandgap directly eliminate the acoustic radiation of the breathing mode
but it also reduces the phonon damping of TLS in the host material.

5.3 Device design and fabrication
The devices studied in this work are fabricated from the 220 nm device layer of a
silicon-on-insulator (SOI) microchip. Details of the fabrication process are provided
in [74]. In Figs. 5.1(a-b) we show scanning electron microscope images of a single
fabricated device, which consists of a coupling optical waveguide, the nanobeam
OMC cavities that support both the microwave acoustic and optical resonant modes,
and the acoustic shield that connects the cavity to the surrounding chip substrate.
Fig. 5.1c shows finite-element method (FEM) simulations of the microwave acoustic
breathing mode and fundamental optical mode of the nanobeam cavity. We use the
on-chip coupling waveguide to direct laser light to the nanobeam OMC cavities.
A pair of cavities with slightly different optical mode frequencies are evanescently
coupled to each waveguide. An integrated photonic crystal back mirror in the
waveguide allows for optical measurement in a reflection geometry. The design of
the OMC cavities, detailed in Ref. [18], uses a tapering of the etched hole size and
shape in the nanobeam to provide strong localization and overlap of the breathing
mode and the fundamental optical mode, resulting in a vacuum optomechanical
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coupling rate [12] between photons and phonons of g0/2π ≈ 1 MHz.

In order tominimizemechanical clamping losses, the nanobeam is anchored to the Si
bulk with a periodic cross structure which is designed to have a complete phononic
bandgap at the breathing mode frequency [18]. Through tuning of the cross height
hc and width wc (c.f., Figs. 5.1(d-e)), bandgaps as wide as ∼ 3 GHz can be achieved
as shown in Fig. 5.1. We analyze SEM images of realized structures to provide
accurate structure dimensions for our FEM models, and in particular we include in
our modeling a filleting of the inner and outer corners (r1 and r2 in Fig. 5.1e) of
the crosses arising from technical limitations of the patterning of the structure. To
investigate the efficacy of the acoustic shielding we fabricate and characterize arrays
of devices with a scaling of the cross period number from Nshield = 0 to 10, with all
other design parameters held constant. FEM modeling indicates (see [74]) that the
addition of the cross shield provides significant protection against nanometer-scale
disorder which is inherently introduced during device fabrication.

5.4 Optical Ringdown measurements
Optical measurements of the acoustic properties of the OMC cavity are performed at
millikelvin temperatures in a dilution refrigerator. The sample containing an array
of different OMC devices is mounted directly on a copper mount attached to the
mixing chamber stage of the fridge, and a single lensed optical-fiber is positioned
with a 3-axis stage to couple light into and out of each device [81]. In a first set of
measurements of acoustic energy damping, we employ a single pulsed laser scheme
to perform both excitation and readout of the breathing mode. In this scenario,
depicted in Fig. 5.2a, the laser frequency (ωl) is tuned to the red motional sideband
of the OMC cavity optical resonance, ∆ ≡ ωc − ωl ≈ +ωm, and is pulsed on for
a duration Tpulse and then off for a variable time Toff. This produces a periodic
train of photon pulses due to anti-Stokes scattering of the probe laser which are
on-resonance with the optical cavity. The anti-Stokes scattered photons are filtered
from the probe laser and sent to a single photon detector producing a photon count
rate proportional to the number of phonons in the acoustic resonator (see [74] for
details of the measurement set-up and phonon number calibration methods).

We display in Fig. 5.2b a typical readout signal, showing the normalized phonon
occupancy during and immediately after the application of a 4 µs pulse. The initial
optomechanical back-action cooling of the acoustic breathing mode is followed
by a slower turn-on of heating of the mode during the pulse. After the pulse,
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Figure 5.2: Ringdownmeasurements of the acoustic breathingmode. a, Illustra-
tion of the ringdownmeasurement performed using a red-detuned (∆ = +ωm) pulsed
laser for excitation and readout. b, Normalized phonon occupancy measured during
(left) and after (right) the laser readout pulse (nc = 569; optomechanical back-action
rate γOM/2π = 1.07 MHz) for a 6-shield device (device B). Squares are measured
data points. Solid and dashed lines are a best fit to the dynamical model of the hot
bath (see [74]). The displayed pulse-on-state plot (left) corresponds to a delay of
Toff = 200 µs, with nim = 4.2 and nfm = 13.6 phonons. c, Ringdown measurements
of a 7-shield device (device C) for readout pulse amplitude of nc = 320. The series
of inset panels show the measured (and fit; solid blue curve) anti-Stokes signal
during the optical pulse at a series of pulse delays. d, Plot of the measured breathing
mode Q-factor versus number of acoustic shield periods Nshield. The solid green
line is a fit to the corresponding simulated radiation-limited Q-factor (see [74]) for
devices with standard deviation (SD) σ = 4 nm disorder in hole position and size,
similar to the value measured from device SEM image analysis. The shaded green
region corresponding to the range of simulated Q values (ensemble size 10) within
one SD of the mean. The square purple data points represents the measured Q in
(f). e, Acoustic excitation is performed coherently by using either a blue-detuned
pump (upper diagram) to drive the breathing mode into self-oscillation, or using an
RF-modulated red-detuned pump [110] (lower diagram). See [74] for details of the
coherent excitation and readout parameters. f, Ringdown measurements performed
on an eight-shield device (device D) at large phonon amplitude. For blue-detuned
driving (red squares) the fit decay rate is γ0/2π = (0.122±0.020)Hz. Formodulated-
pump driving (purple circles) the fit decay rate is γ0/2π = (0.108± 0.006) Hz. The
error bars are 90% confidence intervals of the measured values of nim. The shaded
regions are the 90% confidence intervals for the exponential fit curves.
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with the back-action cooling turned off, a transient heating of the acoustic mode
occurs over several microseconds. The parasitic heating is attributable to very
weak optical absorption of the probe pulse in the Si cavity which produces a hot
bath coupled to the breathing mode [81]. Here we use the transient heating of the
acoustic mode to perform ringdown measurements of the stored phonon number. A
phenomenological model of the dynamics of the induced damping (γp) and effective
occupancy (np) of the hot bath (see [74]) allows us to fit the anti-Stokes decay signal.
Plotting the initial mode occupancy at the beginning of the fit readout pulse (nim)
versus delay time Toff between pulses (c.f., Fig. 5.2a), we plot the ringdown of the
stored phonon number in the the breathing mode as displayed in Fig. 5.2c for a
device with Nshield = 7.

Performing a series of ringdown measurements over a range of devices with varying
Nshield, and fitting an exponential decay curve to each ringdown we produce the Q-
factor plot in Fig. 5.2d. We observe an initial trend in Q-factor versus shield number
which rises on average exponentially with each additional shield period, and then
saturates for Nshield ≥ 5 to Qm & 1010. As indicated in Fig. 5.2c these Q values
correspond to ringdown of small, near-single-phonon level amplitudes. We also
perform ringdown measurements at high phonon amplitude using two additional
methods displayed schematically in Fig. 5.2e and described in detail in [74]. These
methods use two laser tones to selectively excite the acoustic breathing mode using
a ×1000 weaker excitation and readout optical pulse amplitude (nc . 0.3). The
measured ringdown curves, displayed in Fig. 5.2f, show the decay from initial
phonon occupancies of 103-104 of an 8-shield device (device D; square purple data
point in Fig. 5.2d). The two methods yield similar breathing mode energy decay
rates of γ0/2π = 0.108 Hz and 0.122 Hz, the smaller of which corresponds to a
Q-value of Qm = 4.92+0.39

−0.26 × 1010 and a phonon lifetime of τph,0 = 1.47+0.09
−0.08 s.

Comparing all three excitation methods with widely varying optical-absorption-
heating and phonon amplitude, we consistently measure Qm & 1010 for devices with
Nshield ≥ 5.

5.5 Temperature dependent damping
In order to understand the origin of the residual damping for large Nshield we also
measured the temperature dependence of the energy damping rate, breathing mode
frequency, and full width at halfmaximum (FWHM) linewidth of the breathingmode
for the highestQ 8-shield device (device D). In Fig. 5.3awe plot the energy damping
rate which shows an approximately linear rise in temperature up to Tf ≈ 100 mK,
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Figure 5.3: Temperature dependence of acoustic damping, frequency, and fre-
quency jitter. Plot of the measured breathing mode energy damping rate, γ0/2π,
as a function of fridge temperature (Tf). Dashed green (magenta) curve is a fit with
temperature dependence γ0 ∼ T1.01

f (γ0 ∼ T2.39
f ). Error bars are 90% confidence

intervals of the exponential fit to measured ring down curves. Inset: Plot of mea-
sured damping data with estimated energy damping from a TLS model (see [74]).
The shaded blue region corresponds to the standard deviation of log (γ0/2π) for 100
different random TLS distributions.

and then a much faster ∼ (Tf)2.4 rise in the damping.

Estimates of the magnitude of Landau-Rumer damping of the breathing mode (see
[74]) indicate that 3-phonon scattering in Si is far too weak at Tf . 1 K to explain
the measured damping. Analysis of the interactions of TLS with the localized
acoustic modes of the confined geometry of the OMC cavity structure, however,
show that TLS interactions can explain all of the observed breathing mode behavior.
In this analysis, detailed in [74], FEM simulation is used to find the frequencies
and radiation-limited damping rates of the acoustic quasi-normal modes of the
OMC cavity structure. An estimate of the spectral density of TLS within the
breathing mode volume (Vm ≈ 0.11 (µm)3) is ascertained from estimated surface
oxide (∼ 0.25 nm [135]) and etch-damage (∼ 15 nm [91]) layer thicknesses in the
Si device, and bulk TLS density found in amorphous materials [63, 96]. Using
the resulting effective spectral density of interacting TLS, n0,m ≈ 20 GHz−1, and
average TLS transverse and longitudinal deformation potentials of M̄ ≈ 0.04 eV and
D̄ ≈ 3.2 eV, respectively, yields breathingmode damping and frequency shifts which
are in excellent agreement with the measured data (see Fig. 5.3). The estimated level
of frequency jitter is also found in agreement with the measured value, assuming all
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TLS are being pumped via the same optical absorption that drives the hot bath.

Several key observations can be drawn from the TLS damping modeling. The first
is that the typical T3 dependence of TLS relaxation damping of acoustic waves is
dependent on the phonon bath DOS into which the TLS decay [15, 54]. In the OMC
cavity the phonon DOS is strongly modified from a three-dimensional bulk material.
This directly results in the observed weak temperature dependence of the acoustic
damping for Tf . 100 mK, where the thermally acitvated TLS interact resonantly
with an approximately one-dimensional phonon DOS. A second point to note is
that the TLS resonant damping is strongly suppressed due to the phononic bandgap
surrounding the OMC cavity. Estimates of the phonon-induced spontaneous decay
rate of TLS in the bandgap is on the order of Hz; combined with the discrete number
of TLS in the small mode volume of the breathing mode, acoustic energy from the
breathing mode cannot escape via resonant coupling to TLS. The observed lack
of saturation of the breathing mode energy damping with either temperature or
phonon amplitude is further evidence that non-resonant relaxation damping − due
to dispersive coupling to TLS − is dominant [96] . Finally, the small average number
of estimated TLS in Vm which are thermally activated at the lowest temperatures
(∼ 2), leads to significant variation in the simulated TLS relaxation damping at
Tf ∼ 10 mK (see shaded blue region of the inset to Fig. 5.3). This is consistent
with the observed fluctuations from device-to-device in the low-temperature Qm for
devices with Nshield > 5 (see Fig. 5.2d).

Utilizing the advanced methods of nanofabrication and cavity optomechanics has
provided a new toolkit to explore quantum acoustodynamics in solid-state materials.
Continued studies of the behavior of TLS in similar engineered nanostructures to
the OMC cavity of this work may lead to, among other things, new approaches
to modifying the behavior of quasi-particles in superconductors [104], mitigating
decoherence in superconducting [42, 79] and color center [119, 13] qubits, and even
new coherent TLS-based qubit states in strong coupling with an acoustic cavity [99].
The extremely small motional mass (meff = 136 fg [18]) and narrow linewidth of
the OMC cavity also make it ideal for precision mass sensing [51] and in exploring
limits to alternative quantum collapse models [88]. Perhaps most intriguing is the
possibility of creating a hybrid quantum architecture consisting of acoustic and
superconducting quantum circuits [29, 98, 47, 23, 75, 113, 84, 10], where the small
scale, reduced cross-talk, and ultralong coherence time of quantum acoustic devices
may provide significant improvements in performance of current quantum hardware.
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C h a p t e r 6

QUANTUM ACOUSTICS WITH PIEZOELECTRIC STRONG
COUPLING BETWEEN SUPERCONDUCTING CIRCUITS AND

PHONONIC RESONANCES

As shown in the last chapter, nano-mechanical cavity isolated from the environment
with two-dimensional phononic crystal shield can achieve a strikingly long energy
relaxation time approaching one second for a mode frequency around 5 GHz. Fur-
thermore, the high quality phononic resonator is a small footprint (∼ 10 µm) planar
structure in a suspended silicon membrane. Considering that mode frequency of
this resonator is compatible with the state of art superconducting quantum circuit,
it provides an attractive way to integrate multiple high quality phononic cavities
with a qubit as a multi-mode quantum memory bank that can be used to realize
a Von Neumann architecture for scalable quantum computing. In order to enable
the state transfer between a superconducting microwave circuit and the mechani-
cal degree of freedom efficiently, piezoelectric materials can be used to construct
the transduction interface. Piezoelectric materials have inversion symmetry broken
crystal structure that can be electrically polarized in response to a strain field in
the crystal as in Fig. 1.6 and Fig. 1.5. This transduction mechanism can directly
map a mechanical mode’s strain profile into a coherently vibrating electrical dipole
ensemble. In the following subsections, I will first introduce the piezo-phononic
transducer we created to efficiently transduce between an microwave photon in the
electric circuit and an mechanical phonon in a mechanical mode of interest. After
introducing the interface we built to bridge the gap between the electric domain and
acoustic domain, I will present a viable architecture that can be used to efficiently
couple a high coherence superconducting transmon qubit to an ultra-high coherence
phononic cavity via an engineered hybrid virtual coupling channel which is com-
posed of a tunable electric resonator and a high coupling piezoacoustic cavity on a
two-dimensional phononic crystal. In the end, I will introduce the efficient quantum
optical-microwave transducer that can be enabled by the piezoelectric transducer and
opportunities in adopting newmaterials for close to unity efficiency microwave field
to acoustic field transduction. In the end, I will also talk about the work we did on
designing an ultra-high efficiency phononic piezoacoustic transduction waveguide
to probe the ultra-small piezoelectric coefficients potentially present in the surface
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layer of a silicon substrate due to surface inversion symmetry breaking.

6.1 Phononic piezoelectric transducer
In order to transduce a quantum state from a qubit into the mechanical degree of
freedom, it is important that we can engineer an efficient transducer made out of a
piezoelectric material. Here we chose a piezoelectric material called Aluminum Ni-
tride (AlN). This material has the Wurtzite crystal lattice structure shown in Fig. 1.6
with labeled c-axis as the main inversion symmetry broken axis. As the electric
dipole is generated between the positive charge center of Al-ions and weighted neg-
ative charge center of N-ions, the dominant piezoelectric conversion effect comes
from the strain along the c-axis which includes the dilation (compression) along
this axis. The piezoelectric coupling equations of motion are described in (6.1) that
describes the electric field transduction to strain-field and (6.2) that describes the
transduction from stress to electric displacement field and contributes the material
polarization, Pi =

∑
j k di j kσj k .

si j =
∑
kl

ci j klσkl +
∑

k

dki j Ek (6.1)

Di =
∑

j k

di j kσj k +
∑

j

εi j E j (6.2)

Here, ci j kl is the elastic matrix connecting strain-stress for a solid material and εi j is
the linear polarization dielectric permittivity. We can write strain-stress tensors (si j

and σi j) as vectors to unwrap the piezoelectric coupling coefficient tensor di j k into a
matrix form [d]3×6. This matrix representation for AlN can be further simplified to
include only five non-vanishing independent parameters due to its 6mm symmetry
around its c-axis.

®σ =



σ11

σ22

σ33

σ13

σ23

σ12


(6.3)

[d] =


0 0 0 0 d15 0
0 0 0 d24 0 0

d31 d32 d33 0 0 0

 (6.4)
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The electric field component, E3, align the c-axis direction can be coupled to dilation
strain fields in directions normal to the c-axis (d31, d32) and parallel to the c-axis
(d33). The electric field components in the plane normal to the c-axis are coupled
to the sheer strains σ13 and σ23 via d15 and d24 respectively. The sheer deformation
coupling can be readily utilized to couple the electric field of an inter-digit array
of planar electrodes on a surface of the piezoelectric material shown in Fig. 6.1.
Even though the dilation motion along the c-axis provides stronger piezoelectric
coupling, electric field coupling to motion in this direction is realized with a sand-
wich structure schematically shown in Fig. 6.9b. This type piezoacoustic resonator
can be commonly found in various applications to obtain strong piezoelectric inter-
action and high conversion efficiency. However, a precise fabrication of such a stack
multi-layer structure for constructing a nano-mechanical resonator is challenging.
As a result, we first attempted the inter-digit (IDT) architecture for realizing high
efficiency microwave to mechanics transduction and will move towards realizing
stacked piezoacoustic phononic crystal in the future as it will be discussed in other
sections of this chapter.

As an initial attempt, we designed the IDT resonator shown in Fig. 6.1. The resonator
is called Lamb resonator in literature and is clammed onto the nearby substrate via
the two-dimensional phononic crystal shield on a suspended silicon membrane and
one full device looks like this Fig. 6.3. The mechanical mode of this shown struc-
tures can be simulated using COMSOL to be Fig. 6.1c and d. The larger the size,
the larger the electric energy participation ratio of the coupled electric microwave
resonator at a given mode frequency in the piezoelectric coupling since the IDT
region’s contribution to the total electric resonator capacitance scales linearly with
the size of this region (i.e. the number of periods of the Lamb resonator unit cell and
lateral length of the unit cell). This scaling trend with the number of periods in the
Lamb resonator shown in Fig. 6.2. It shows an expected scaling of g = gu

√
Nidt with

gu being the single unit cell piezoacoustic coupling rate and this can continue until
all the capacitance of the superconducting qubit at a given frequency is contributed
to completely by the IDT capacitance.

The method to scale up the coupling by creating a larger Lamb resonator soon
encounters the difficulty of having denser spectrum since more modes around the
frequency of the superconducting resonator and the desired Lamb mode of interest.
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Figure 6.1: a, the Lamb resonator we designed with electrodes highlighted in blue.
b, the AlN layer below the electrodes and above the suspended silicon membrane.
c, the normalized mechanical mode piezoelectric potential near the top surface of
the AlN. This potential profile is a direction transduction from the strain-stress
field of the mechanical mode into its dual electric domain and an optimal coupling
between this mode and the electric field of the electrodes can be achieved with
aligning the positive and negative electrodes with the positive potential and negative
potential nodes respectively. d, the displacement field and deformation profile of
the mechanical mode of interest that is optimally coupled to the electrodes.

If the other modes’ detuning from the superconducting qubit frequency are smaller
than their coupling strength to the qubit, these modes will be hybridized to the
qubit, which makes the system evolution dynamics complicated. If the modes are
of high coherence, quantum state may still be stored in and extracted by from the
ensemble of modes via a re-phasing pulse on the qubit to reverse the free evolution
ballistic diffusion of quantum state among multiple mechanical modes. To achieve
single mode interaction between the qubit and a piezoacoustic mode, we can tailor
the density of acoustic modes and eliminate spurious piezoacoustic modes near the
Lamb mode of interest via phononic engineering and careful design of the resonator
dimensions.
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Figure 6.2: a, we kept the length (w) of each IDT unit cell to be 10 µm and swept the
number of IDT unit cells Nidt in the Lamb resonator. b, the simulated piezoacoustic
coupling rate g

2π between the high coupling mechanical mode of interest around
3 GHz with a resonant electric resonator with capacitance Cµ = 60 fF as a function
of number of periods (Nidt) in the Lamb resonator. The trend of the coupling rate for
a large enough number of periods scales as g = gu

√
Nidt with gu being the single unit

cell piezoacoustic coupling rate to a resonant electric resonator with Cµ = 60 fF.

The phononic crystal we have discussed so far is implemented in a single layer
of suspended bare silicon membrane. In order to integrate this silicon phononic
crystal with aluminum nitride (AlN) and electrodes, it is desirable to understand
the influence of these added materials on the phononic gap and slight redesigns
may be needed in the cases where the phononic gaps can not efficiently confine the
mechanical mode of interest in the resonator region.

A 60 nm thick layer of Al can be deposited on the phononic crystal as shown in
Fig. 6.4a and b. Their corresponding bandstructures are shown in Fig. 6.4c and d as
dashed red lines. Solid lines in Fig. 6.4c and d are bandstructures of a bare silicon
phononic crystal with bandgap between 4 GHz and 6 GHz.

If a 300 nm layer of AlN is deposited on the phononic crystal as shown in Fig. 6.5a,
its phononic bandstructure is shown in b as dashed red lines. In practice, we use over-
etch to remove the AlN residual on the silicon surface, this over etch can reduce the
silicon thickness to around 170 nm. This over-etch’s perturbation can be understood
through the thinned phononic unit cell in c and its phononic bandstructure in d as
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Readout Resonator

Piezo

Figure 6.3: The SEM image of the first generation Lamb resonator (red box) and
its coupled superconducting transmon qubit (dashed green box). The yellow region
corresponds to the readout resonator attached to the qubit for measuring the Rabi
oscillation between the qubit and the piezoacoustic mode.

dashed red lines. In both Fig. 6.5b and d, the bare 220 nm thick silicon phononic
crystal bandstructure is shown as the solid blue lines with bandgap between 2.5 GHz
and 3.8 GHz.
It can be observed that the bandstructure is perturbed by the additional layer of
materials. Nevertheless, the resulting bandgaps are still wide enough and roughly
centered at the frequency of interest.

6.1.1 Optimizing the piezoacoustic coupling per period of Inter-digit electrode
As discussed previously in the introduction that piezoacoustic coupling can be
readily extracted from Finite-Element-Method (FEM) simulations that calculate the
piezoacoustic resonator’s normal modes’ strain-stress field together with their strain
induced electric polarization field in terms of piezoacoustic displacement field #»

Dpa.
The simulated electric field corresponding to the Lamb resonance mode of interest
is shown in Fig. 6.1c and its mechanical deformation is shown in Fig. 6.1d. The
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Figure 6.4: a, the phononic crystal unit cell with the blue part corresponds to
150 nm thick Al wires running on the phononic crystal. This type of purtubation
leads to a phononic bandstructure shown in c with dashed lines. Similarly, b is
the phononic crystal unit cell with blue part representing a 150 nm thick Al layer
uniformly deposited on top of the etched silicon layer. This type of Al deposition
leads to a phononic bandstructure shown in d with dashed lines. The solid lines
in c and d represent the bandstructure of the unperturbed phononic crystal with a
bandgap between 4 GHz and 6 GHz.
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Figure 6.5: a, the phononic crystal unit cell with the blue part corresponds to
300 nm thick AlN layer uniformly deposited on the phononic crystal. This type of
purtubation leads to a phononic bandstructure shown in cwith dashed lines. b is the
silicon phononic crystal unit cell which is over etched to have a thickness around
170 nm. This reduction in silicon thickness leads to a phononic bandstructure shown
in d with dashed lines. The solid lines in c and d represent the bandstructure of the
unperturbed phononic crystal with a bandgap between 2.5 GHz and 3.8 GHz.
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FEM simulation of piezoacoustic normal modes also yields those normal modes’
as-simulated energies Epa which can be used to normalize each mode’s piezoa-
coustic polarization field to the electric quadrature amplitude of the mode’s zero-
point-energy motion. This normalized amplitude can be then used to calculate
the zero-point-energy normalized electric field of coupled electric circuit. As the
electromagnetic wave in GHz range near the mechanical resonance has wavelength
near centimeter which is much larger than the typical size (∼ 10µm) of the piezoa-
coustic resonator, it suffices to simulate the static electric field corresponding to
the electric circuit’s voltage amplitude on the electrodes to calculate the coupling
between the electric circuit to the piezoacoustic modes via overlap integrals between
the simulated normal modes’ piezoelectric displacement fields and the simulated
static electrodes’ electric field for a given voltage. As the overlap integral is bi-
linear in the piezoelectric field and the electrodes’ electric field, we can simulate
the static field by numerically assign one volt of potential difference between the
coupling electrodes to obtain the per-volt-piezoelectric-coupling (Jpvpa) strength of
the piezoacoustic mode to an external circuit. Then, the Jpvpa can then be translated
to the coupling to any type of external circuit by multiplying it with the external
circuit’s properly normalized voltage amplitude on the coupling electrodes.
For example, if the piezoacoustic resonator is coupled to a transmission line with
characteristic impedance of Z0, the coupling rate of the resonator to the transmission

line is
√
κepa = Jpvpa

√
~ωpZ0

2 where ωp is the resonant frequency of the piezoacoustic
resonator as the zero-point-fluctuation voltage in a transmission line is VT,zpf(ω) =√
~ωZ0

2 with quantized transmission line voltage V̂(t) = VT,zpf

(
âex(t) + â†ex(t)

)
and

normalization such that
〈
â†ex(t)âex(t)

〉
= Ûn for a traveling photon number rate of Ûn in

the transmission line. In the case where this piezoacoustic resonator is coupled to an
electric resonator of impedance Zr =

√
Lr
Cr
at frequencyωr with resonator inductance

Lr and capacitance Cr, the coupling strength is Jpa = Jpvpa
√
~ω2

r Zr
2 .

With the physical intuition built upon the above understanding of the coupling, it
immediately leads to the conclusion that electrodes need to be placed at the anti-
nodes of the Lamb resonator deformation profile tomaximize the electrodes’ electric
field overlap with the piezoelectric displacement field for achieving optimal cou-
pling efficiency. This optimization done for the shown Lamb resonator predicts that
the coupling to a transmission line of Z0 = 50 Ω is κepa/2π ' 10 kHz and the cou-
pling to aωr/2π = 3GHz electric resonator having Zr = 430Ω is Jpa/2π ' 16MHz.
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6.1.2 Lamb Resonator Coupling Spectrum Cleanup
As briefly discussed previously, spurious modes that can also be reasonably coupled
to the electrodes will appear as the Lamb resonator size scales up. Most of these
spurious modes are a hybridization of other modes of different polarisation to the
mode of interest. Those other modes appear as a result of the denser density of
states in the frequency range of interest due to the increasing resonator size. More
specifically, a simplified model shown below can be used to understand the increase
in the number of modes near the Lamb resonance frequency of interest.

Consider an infinite two-dimensional suspended membrane surface whose thick-
ness is much smaller than wavelength of an elastic wave in our interested frequency
range. The elastic wave equation can be written as (6.5). As X-translation com-
mutes with Y-translation in this system, wave function can be written into a product
of an x-dependent part and an y-dependent part like (6.6) that are eigen functions
of X-translation and Y-translation operators respectively. Furthermore, due to the
translation invariance in both directions, both X-dependent and Y-dependent com-
ponents can be written as plane waves in (6.7) and (6.8). In the case of a broken
translation symmetry with a finitely sized Lamb resonator structure, the basis func-
tions (6.6) formed with (6.7) and (6.8) still completely span the whole Hilbert
space of the elastic wave equation with finite boundary conditions. However, they
are not in general orthogonal. Considering a finite rectangle membrane shown in
Fig. 6.6a, the X-translation still commutes with Y-translation since the boundaries
are orthogonal in this ideal rectangle box. The eigen-function can still be written as
a product of an X-dependent part and a Y-dependent part. Meanwhile, each part is
a superposition of two counter propagating plane waves that form a standing wave
in that direction. The eigen modes should look like (6.6) with (6.9) and (6.10). The
allowed states form a two-dimensional point lattice shown in Fig. 6.6c and d for two
rectangle sizes. The density of states increases as the system size become larger. An
increase of dimension in Y-axis increases the number of modes that have the same
wavelength in X-dependent part of the eigen function. As for a Lamb resonator
coupled to the IDT, the periodicity of the electrodes in X-axis should match that of
the X-dependent part of the eigen functions to achieve optimal coupling between
the electric field and the elastic wave. This means that for a given IDT periodicity
in X-axis, the larger the Y-dimension size of the Lamb resonator the more modes
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are going to be efficiently coupled to the electrodes near the frequency of interest.

Θ̂®u = ω2®u (6.5)

®u =

[
u1

u2

]
=

[
uX1(x)uY1(y)

uX2(x)uY2(y)

]
(6.6)

®uX(x) = ®axeikx x (6.7)

®uY (y) = ®ayeiky y (6.8)

®uX(x) = ®ax sin (kx,n(x +
Lx
2
) (6.9)

®uY (y) = ®ay sin (ky,n(y +
Ly
2
) (6.10)

kµ,n =
nπ
Lµ

,µ = x, y (6.11)

Realistically, the device boundaries look like the Fig. 6.6bwhere the X-Y translation
symmetry is broken, meaning that X-translation and Y-translation is not commu-
tative. This broken symmetry means that eigen functions of the resonator can no
longer be a simple product of X-dependent component and Y-dependent component
and the previously mentioned infinite surface plane wave basis of the Hilbert space
will be mixed into inseparable eigen functions satisfying the rough boundary con-
ditions. This creates the complicated mode profiles seen in a large Lamb resonator
whose spectrum is convoluted. Furthermore, the modes of the same frequency and
wavelength in one direction can be broken into multiple parts as the randomness in
the metal electrodes and AlN material in-uniformity may have already broken the
translation symmetry in the bulk of the resonator far from the boundaries. Thus,
the larger the device the harder it gets to clean the spectrum so that we have a single
mechanical mode of interest that is strongly coupled to the electrodes and external
circuit at a given frequency.

As the ideal rectangle density of states have suggested, the lateral length (Y-axis
length) of the resonator should be made small enough to exclude mode distribution
in the Y-dependent part of the eigen function. This direction should be smaller than
half-wavelength of the acoustic frequency of interest in the material.
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Figure 6.6: a, the rectangle box that mixes two counter propagation planar wave
in one direction. The plane wave basis functions are not orthogonal in the inner
product space defined on this finite two-dimensional space. However, as the box
edges are orthogonal, the X-dependant component and Y-dependant component are
still separable. b, the edges of the finite space is rough and the inner product space
defined in this space does mix the X-dependant component and the Y-dependant
component. c, the quantized density of states (DOS) for a rectangle box shown in
a. d, the DOS of a 2D finite surface that are narrower in Y-direction as compared
to the case in c. The narrower one dimension gets, the sparser the states are in that
direction.

6.2 Ultra-high coherence compact quantum memory for a superconducting
transmon qubit

As indicated in the previous section that a silicon phononic cavity coupled to a
transmon qubit via a piezoelectric material can be used as a compact high-coherence
quantum memory for a quantum electric circuit. However, a large coupling between
the electric circuit and the silicon mode also comes with the cost of significantly
elevated loss due to large electric and acoustic energy participation ratios in the
extremely lossy the piezoelectric material [89]. Moreover, a large coupling is nec-
essary for achieving high fidelity state transfer as it requires a high cooporativity
interface between the transmon qubit and high quality silicon phononic mode of
interest. Thus, it appears contradictory to require on-demand high fidelity quantum
state transfer between the memory and qubit in a swap-state, high coherence super-
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conducting qubit in an idle-state, and ultra-high coherence silicon memory acoustic
mode in an idle-state for one device. In this section, I will present a way we propose
to achieve the three goals in one device that can switch between the swap-state and
the idle-state. This device can be turned to a swap-state where a quantum state can
be swapped with a high cooporativity (∼ 105) between a superconducting transmon
qubit and a high coherence phononic quantummemory cavity. After the completion
of the swap operation, the system can be turned into an idle-state where the high
coherence of the transmon qubit and the ultra-high coherence of the bare silicon
phononic quantum memory mode can be preserved. More specifically, we expect
the silicon memory mode to achieve an energy relaxation time in millisecond during
the idle-state with realistic system loss rates.

The idea behind this device that almost combines the best of bothworlds is illustrated
in Fig. 6.7a. Instead of having the transmon qubit (red) and the quantum memory
mode (blue) in direct contact with piezoelectric material, the device contains three
subsystems, as illustrated in Fig. 6.7c. Shown on the left in the red box is a
superconducting transmon qubit on silicon-on-insulator (SOI) substrate with the
buried oxide etched away [60]. The blue box corresponds to the defect phononic
crystal cavity on a bare suspended silicon membrane. These two subsystems are
coupled to an intermediate hybrid system (green box) with pure electric coupling,
Jq, and puremechanical piezo-memory coupling, Jm, respectively. The intermediate
hybrid system has a tunable electromagnetic resonator (Iem) with frequency, ωem,
and a piezoacoustic resonator (Ipa) with frequency, ωpa. They are strongly coupled
with piezoelectric coupling strength, Jp. As mentioned previously, the system can
switch between an idle-state and a swap-state. The state of operation depends on
how the intermediate system is hybridized and how qubit frequency (ωq) is tuned to
align with the memory frequency (ωm). In the swap-state, intermediate resonators
are tuned resonant (ωem = ωpa) and strongly hybridized into symmetric and anti-
symmetric superpositions of the microwave resonator mode and the piezoacoustic
mode at frequencies ω± = ωpa ± Jp. In qubit-memory coupling (Jvc) in the swap-
state is implemented with a virtual coupling process mediated by the hybridized
intermediate system super-modes.

We can also draw a not-to-scale illustration in Fig. 6.7d to show the layout of the
device. The blue box in the figure highlights the region containing the phononic
region. It has the piezoacoustic resonator and memory cavity embedded in a two-
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Component w [nm] l [nm] t [nm] Freq.[GHz]

Piezo.

685 1118 Top Mo 100

5.15AlN Act. 100
Bot. Mo 90
AlN Seed 30

Memory 440 780 5.0

Unit Cell w [nm] h [nm] a [nm] Gap. [GHz]
200 488 550 4 − 6

Table 6.1: The table listing a set of experimentally achievable mechanical struc-
ture design parameters that can satisfy the requirements for realizing the proposed
architecture’s desired operations.

dimensional phononic crystal. Even though the illustration is not-to-scale, it can still
be seen that the mechanical region has an extremely small footprint, as compared
with all the other electric components in the system. This means that multiple
mechanical memory cavities can be coupled to one transmon qubit in parallel so
that one qubit can have a memory bank consisting of a large number of ultra-high
coherence quantum registers. In this architecture, ultra high fidelity in-memory
two-qubit gates can be carried out [52]. In the rest of this section, I will discuss each
part of the device designed for realizing this Quantum Random Access Memory
(QRAM). Moreover, I will elaborate on design optimizations, operation protocols,
and potential applications in building near-term engineering feasible fault-tolerant
quantum computers.

6.2.1 2D Phononic Crystal and Defect Cavity
Periodically patterned solid mechanical structure on 2D silicon membrane with
a gaped mechanical wave bandstructure can be used to manipulate the propaga-
tion of mechanical waves (phonons). A complete 3D phononic bandgap between
4 GHz−6 GHz (Fig. 6.8b) is realized in the phononic crystal depicted in Fig. 6.8a
using the unit cell structure illustrated as an inset.

A point defect in the 2D phononic crystal can localize a mechanical mode to form a
cavity [111, 6, 18]. Previous studies have shown that this type of GHz mechanical
cavities can demonstrate outstanding quality factor (Q-factor) around fifty-billion
leading to a phonon lifetime about one second at a refrigerated temperature around
10 mK [74]. Fig. 6.8c depicts a 5 GHz 2D phononic cavity design that can be
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Figure 6.7: a, The virtual coupling model used in this work. mode-Q, mode-M,
and mode-Iem,pa stand for qubit mode (red), acoustic memory mode (blue), and
intermediate electric and piezoacoustic modes (green). The intermediate system
decay rates (κem and γpa), the qubit intrinsic decay rate (κi), and memory intrinsic
decay rate (γi) are shown in this figure. The acoustic memory mode is assumed
to be almost lossless (γi/2π ∼ 1 Hz) in the system dynamics of interest. b, The
system energy levels of different parts of a with corresponding colors. c, The
proposed circuit diagram of the system has three parts. The part highlighted in the
red box represents the qubit, and the part highlighted in the green box represents
the high-Q memory resonator. They are each coupled to the intermediate system
highlighted in the green box with pure electric and mechanical couplings Jq and
Jm respectively. The intermediate microwave and the piezoacoustic resonators are
strongly piezoelectrically coupled with rate, Jp. d The illustration (not to scale) of
the proposed device layout with different elements colored corresponding to c.

mechanically coupled to a piezoacoustic resonator on the same 220 nm thin phononic
crystal membrane. The memory’s frequency (ωm) can be tuned around 5 GHz by
changing its width (wm) and length (lm) in design. The dependence on these
parameters is illustrated in Fig. 6.8e. It can be seen that the significant tuning
dimension is the length of the cavity. This observation is consistent with the planar
memory mode profile in Fig. 6.8d revealing major deformation in the cavity length.

6.2.2 Piezoacoustic Cavity
In order for the scheme to protect the memory in idle-state and achieve high state
transfer cooperativity in swap-state, the piezoacoustic cavity that transduces quan-
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Figure 6.8: a, A periodically patterned 2D square lattice phononic crystal with
primitive vectors ®a1,2 . Its unit cell structure is depicted in the lower-left corner
inset. b, The wide microwave bandgap phononic bandstructure of the phononic
crystal membrane using unit cell design parameters taken from Table 6.1. The
large bandgap in allowed mechanical wave frequency between 4 GHz and 6 GHz is
highlighted in orange. The black-dotted line in the middle of the gap corresponds
the memory cavity mode frequency ωm/2π ∼ 5 GHz. c, The structure of the
proposed high-Q acoustic memory cavity which is realized as a phononic defect
cavity embedded in a phononic crystal. d, Fundamental mode displacement field
profile of the memory cavity in c. e, The design parameter dependence of the
target mechanical resonator mode. The mode frequency has little dependence on
the width (wm) of the mechanical cavity width (red axis and dotted curve). This
mode’s frequency can be tuned (blue axis and solid line) in design by changing the
cavity length (lm).
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tum signal between the electric and acoustic domains needs to be strongly coupled to
the tunable electric resonator with a large Jp. Furthermore, the piezoacoustic struc-
ture should be extremely compact such that frequency spacings between nearby
piezoacoustic modes are wide enough to avoid lossy parasitic modes’ couplings to
the high-Q mechanical memory mode. The compactness requires the use of a thin-
film piezoelectric material that has a small loss tangent and reasonable piezoelectric
coupling coefficient. The piezoelectric material of choice is Aluminum Nitride
(AlN) as it has a relatively low microwave loss tangent (tan δAlN ∼ 5 × 10−4) [137,
31, 30, 120, 78, 77] and well established nano-fabrication processes [122, 31,
123]. Furthermore, a large field overlap efficiency between piezoacoustic mode
inverse piezoelectric displacement field ( #»

DP) and the electrodes’ electric field (
#»
E µ)

is necessary to maximize the piezoelectric coupling. Such efficient field overlap
is commonly realized with a structure having AlN sandwiched between two elec-
trodes [90] depicted in Fig. 6.9b. In order to further improve the thin-film material
quality and confine elastic energy in the piezoelectric material, the heavy super-
conducting metal, Molybdenum (Mo), is often used as electrodes [122, 31, 123].
To allow evaporation of superconducting wires with the lift-off process, we use Al
as the metal leads connecting the Mo electrodes to the external circuit. Al can
be evaporated to the selected area after patterning the thin layers of Si, sputtered
Mo, and sputtered AlN. The desired high coupling piezoacoustic mode mechanical
displacement profile (Fig. 6.9c) and inverse piezoelectric displacement field ( #»

DP)
in the z-direction (Fig. 6.9g) are plotted for the cross-section indicated in Fig. 6.9b.
Fig. 6.9h further shows the electromagnetic mode’s electric field ( #»

E µ) component
in the z-direction. Fig. 6.9g and h highlight that this design achieves the optimal
piezoelectric field overlap for a piezoacoustic mode ωpa/2π ' 5.15 GHz.

The high-coupling piezoacoustic mode frequency (ωpa) and piezoelectric coupling
rate (Jp) depend on the resonator’s length (lp), block width (wp), and AlN active
layer thickness (tp) as can observed in Fig. 6.9d−f. They indicate that the mode fre-
quency depends dominantly on the width of the cavity. Noticeably, there are dips in
the piezoelectric coupling rate even though the mode frequency curves are smooth.
These dips are the direct consequences of the high-coupling mode hybridizing with
other low-coupling modes. Fig. 6.9d and Fig. 6.9e correspond to the case where the
frequency (ωpa) of the high-coupling mode is tuned to resonance with low-coupling
modes. Fig. 6.9f illustrates that the low-coupling modes are tuned to be resonant
with the high-coupling mode since the high-coupling mode frequency (ωpa) is not
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sensitive to the length (lp) of the resonator. An appropriate design will avoid the
parameter regions that lead to these parasitic degeneracies.
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Figure 6.9: a, Top view of piezoacoustic resonator. b, The stack composition
of the piezoacoustic resonator. The transparent green plane indicates the cross-
section taken for plotting g and h. c, The high piezoelectric coupling mode’s
simulatedmechanical displacement field profile. d−f, Design parameter dependence
of the high-coupling mode frequency, ωpa (blue axis and curve), and piezoelectric
coupling rate, Jp (red axis and curve). The piezoelectric coupling rate, Jp, is
calculated assuming the piezoacoustic resonator is coupled to a resonant high-
impedance electric resonator with total shunted capacitance Cµ = (CI + Cg) ∼ 5 fF.
g, Normalized inverse piezoelectric displacement field’s ( #»

DP) z-component. h,
Normalized electrode electric field’s ( #»

E µ) z-component. We plot the z-components
in g and h to highlight piezoelectric coupling to the dominant piezoelectric axis
(z-axis) of AlN.

There are two ways the piezoelectric coupling can be extracted from finite-element-
method (FEM) simulated mechanical deformation of piezoacoustic modes. The
first method utilizes the fact that deformation of a piezoelectric material generates
electric dipole moment [130]. This inverse piezoelectric effect can be viewed as a
direct mapping of the mechanical deformation into the electric domain. Coupling
between a piezoacoustic mode and an electromagnetic mode of an external circuit
can then be extracted via an overlap integral of the piezoacoustic mode’s normalized
inverse piezoelectric displacement field ( #»

DP) and the normalized electromagnetic
mode’s electric field ( #»

E µ). The piezoelectric coupling rate can thus be calculated
as (6.12),
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~Jp =
∫

#»
DP(

#»r ) · #»
E µ(

#»r )d #»r 3, (6.12)

with #»
DP is normalized according to (6.13),

#»
DP =

√
~ωp

4Ep

#»
Dfem

P , (6.13)

where #»
Dfem

P is the as-simulated field. The as-simulated piezoacoustic mode’s field
has total energy, Ep. The normalization scales the displacement field ( #»

Dfem
P ) such

that the normalized field ( #»
DP) contains the mode’s zero-point energy. The nor-

malized external circuit electromagnetic mode’s electric field ( #»
E µ) can be obtained

by simulating the electric field distribution according to the prescribed zero-point-
fluctuation potential (Vzpf) between the electrodes. The zero-point voltage fluctuation

amplitude is Vzpf =
√
~ωµ
2Cµ

where ωµ is the resonant frequency of the coupled elec-
tromagneticmode andCµ = (CI+Cg) is the total capacitance of the electric resonator.

On the other hand, piezoelectric resonators have been widely used in microwave
engineering for compact electric filtering applications [97]. In those applications,
the compact piezoacoustic devices are commonlymodeled as equivalent circuits that
manifest identical electrical responses [130]. By fitting a serial-LC resonator model
(Fig. A.1) to numerically simulated device electric admittance, equivalent circuit
elements (Cg, Cpa, Lpa) can be extracted. The coupling between the external circuit
and piezoacoustic mode can then be understood in the standard circuit dynamics
framework. The admittance simulation and corresponding fitting are described
in Appendix A.1.2. For the piezoelectric resonator design parameters shown in
Table 6.1, the extracted equivalent circuit model elements are Lpa = 141 µH,
Cpa = 6.45 aF, and Cg = 1.3 fF. The direct dielectric capacitance, Cg, is the result
of the AlN linear dielectric permittivity. It can be independently calculated without
considering the piezoelectric response of AlN.

Thus, the piezoacoustic mode designed according to Table 6.1 can have frequency,
ωpa/2π ' 5.15 GHz, and realize a large piezoelectric coupling, Jp/2π ∼ 100 MHz.

6.2.3 Evanescent Mechanical Coupling Between Piezo and Memory Cavities
The piezoacoustic resonator and thememory cavity are located on the same phononic
crystal membrane with complete mechanical bandgap between 4 GHz−6 GHz.
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Figure 6.10: a, The double cavity layout on a phononic silicon membrane. The left
side cavity is piezoacoustic resonator, and the right side is high-Q memory cavity.
The parameter relevant to fine-tuning mechanical coupling strength (Jm) is the width
(wc) of the narrow “bridge“ connecting nearby phononic crystal squares between
the two acoustic cavities. Desired coupling rate, Jm/2π ∼ 5 MHz, can be achieved
with wc = 186 nm. b, System mechanical frequency spectrum as a function of
the memory cavity length with other parameters fixed to values in Table 6.1. The
blue-solid line is the frequency of the memory cavity mode, and red-dashed line is
the high piezoelectric coupling piezoacoustic mode (mode of interest). The yellow-
dotted line is a parasitic mode of the piezoacoustic resonator that has negligible
piezoelectric coupling. Mechanical coupling rate can be extracted from fitting
the avoided crossing in system mechanical spectrum. c, Calculated mechanical
coupling rate (Jm) as a function of wc using evanescent field overlap integral method
(blue-solid) and fitting avoided crossing in the spectrum (red-dashed line).
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Nearby mechanical cavities with frequencies around 5 GHz can be coupled through
their evanescent mechanical fields in the vicinity. Two methods care used to extract
the mechanical coupling rate from FEM simulations. The most straight forward
one is sweeping the memory cavity length (lm) such that the double cavity sys-
tem exhibits avoided crossing in the simulated mechanical spectrum, as shown in
Fig. 6.10b. Fig. 6.11b and c illustrate the hybridized modes near the avoided cross-
ing. The avoided crossing in Fig. 6.10b is fitted to obtain the mechanical coupling
rate Jm/2π ∼ 5 MHz between memory cavity (blue-solid curve) and piezoacoustic
cavity (red-dashed curve). The yellow-dotted line in Fig. 6.10b corresponds to a
piezoacoustic resonator mode next to the piezoacoustic mode of interest. It has
negligible piezoelectric coupling due to its anti-symmetric mode shape. Tuning of
mechanical coupling rate, Jm, can be achieved by perturbing the width (wc) of the
narrow bridge region connecting nearby phononic crystal squares between the two
cavities indicated in the green box of Fig. 6.10a.

Despite the conceptual simplicity demonstrated in the above method, it is very
time-consuming for design parameter sweeps and inaccurate for extracting a small
coupling rate due to numerical errors. This method also relies on observing avoided
crossing, which is not the case for designing far detuned cavities. Alternatively,
a more efficient and accurate method based on perturbation theory similar to the
coupled mode theory in optics was developed. To arrive at the correct formalism
for calculating weak evanescent field coupling on a discrete phononic crystal, it
is important to properly define an inner-product as in (6.14). This inner-product
is properly defined for the displacement field, ®q1,2(

#»r ), linear space of the given
phononic crystal. The crystal’s material property and dielectric distribution are
characterized by the discontinuous density, ρ( #»r ), over a spatial region, T , of in-
terest. The constructed inner-product space ensures that the acoustic eigenmodes’
displacement fields are orthogonal and normalizable in the phononic crystal region.

〈®q1 | ®q2〉 ≡

∫
T
®q1(

#»r )∗ · ®q2(
#»r )ρ( #»r )d #»r 3 (6.14)

The method requires independent simulations of bare piezoacoustic mode displace-
ment field (®up,fem), bare memory cavity mode field (®vm,fem), and the piezoacoustic
mode profile in a full-geometry configuration ( ®wmp,fem). They are further normalized
according to (6.15), (6.16), and (6.17), respectively. These fields are normalized
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Figure 6.11: a, The asymmetric view of the two mechanical resonators. The piezoa-
coustic resonator has different function layers highlighted in colors corresponding
to Fig. 6.9b. The blue plane is the cross-section where mechanical super-modes‘
displacement fields are plotted in the two following figures. b and c, The symmetric
and anti-symmetric mode profiles respectively when the two mechanical cavities
hybridize near the avoided crossing point.
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to their corresponding zero-point-fluctuation energies in a quadrature (~ωζ4 ) from
as-simulated total elastic energies, Eζ , ζ = p, m, mp.

®u =

√
~ωp

4Ep
®up,fem (6.15)

®v =

√
~ωm

4Em
®vm,fem (6.16)

®w =

√
~ωmp

4Emp
®wmp,fem

' α®u + β®v

(6.17)

Perturbatively, the simulated piezoacousticmode displacement field can be expended
to into a superposition of bare piezoacoustic mode and memory mode fields as
indicated by the second equal sign in (6.17). Overlap integrals of the fields can be
carried as in (6.18) and (6.19) to get the expansion coefficients in (6.17),

α =
− 〈®v | ®u〉 〈 ®w |®v〉 + 〈®v |®v〉 〈 ®w | ®u〉

〈®u| ®u〉 〈®v |®v〉
(6.18)

β =
〈®v |®v〉 〈 ®w |®v〉 − 〈®u|®v〉 〈 ®w | ®u〉

〈®u| ®u〉 〈®v |®v〉
, (6.19)

The piezo-memory mechanical coupling rate (Jm) can be calculated as (6.20),

Jm = β(ωp − ωm). (6.20)

The mechanical coupling rate dependence on the narrow region width is shown in
Fig. 6.10c. The blue-solid (red-dashed) curve is the mechanical coupling rate cal-
culated with perturbation (fitting avoided crossing). Two methods agree reasonably
with each other. However, the perturbation method reduced the time needed for
obtaining the curve by almost 40 times and can be readily applied to more general
cases involving multiple acoustic cavities in any configuration.

6.2.4 Tunable High Impedance Electric Microwave Resonator Coupled To A
Transmon Qubit Via A Tunable Inductive Coupler

A high zero-point-fluctuation voltage amplitude (Vzpf) on the piezoelectric resonator
electrodes is needed for achieving a large piezoelectric coupling. Furthermore,
the electric microwave resonator frequency (ωem) needs to be tunable for a better
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Figure 6.12: Circuit diagram for a transmon qubit labeledwithQ coupled inductively
to the intermediate tunable high impedance electromagnetic resonator with eight
serial SQUIDs labeled with Iem. The intermediate electromagnetic mode frequency
(ωem) can be tuned by an external current (red arrow) that threads a total magnetic
flux of Φr through the SQUIDs. The coupler labeled with G between the transmon
qubit and the electromagnetic resonator is tunable, and the coupling rate, Jq, depends
on the external magnetic field flux (Φg) through the ground loop.

swap-state frequency alignment with the piezoacoustic resonator considering the
fabrication uncertainty. Such a tunable high-impedance electric microwave res-
onator can be realized with a series of SQUIDs [8] shown in the green box of
Fig. 6.12. Its frequency can be tuned by adjusting externally applied magnetic
flux (Φr). A single compact SQUID loop with maximum inductance ∼ 11 nH was
achieved in [60]. Fifteen such SQUIDs can be serially connected to provide the
necessary linear inductance. Stray capacitance of this serial SQUID inductance is
negligible leading to a high impedance electric resonator ∼ 5 GHz with a shunted
total capacitance Cµ = (CI + Cg) ∼ 5 fF.

As shown in Fig. 6.12, the inductive coupling (Jq) between transmon qubit and the
serial SQUID resonator was realized with a “gmon“ coupler [22] in the red box.
The coupling between the transmon qubit and the serial-SQUID resonator can be
continuously tuned, as shown in (6.21),
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Jq = −
√
ωqωem

2
√
(Lg + LI)(Lg + LJ)

L2
g

2Lg + Lg0/cos δg
, (6.21)

where the Lg0 is the single junction inductance of the tunable coupler and δg ≡
πΦg/Φ0. Φg is the externally applied magnetic flux through the coupler loop and
Φ0 ≡

h
2e is a magnetic flux quanta. The swap-state electric coupling can be tuned

to optimize the state transfer fidelity. This coupling can also be turned off during
idle-state to protect the superconducting transmon qubit from decoherence noises
in the intermediate system.

6.3 On-Demand Coherence Preserving Virtual Coupling Channels
A desired acoustic quantum memory integrated with a superconducting quantum
logic circuit needs to implement a swap-state and an idle-state. In the swap-state, it
needs to perform a high-fidelity quantum state transfer. In the idle-state, it preserves
the memory’s ultra-high coherence and strongly suppresses the parasitic decoher-
ence introduced into the superconducting quantum circuit.

Direct quantum state transduction between a superconducting qubit and a mechan-
ical resonator using a piezoelectric material always induces large fixed parasitic
decoherence to both superconducting and mechanical resonators due to the static
couplings between the lossy piezoelectric material and the acoustic mode of inter-
est and superconducting qubit [137, 31, 30, 120, 78, 77, 90, 23]. Efforts in the
literature have been focused on maximizing the cooperativity of the piezoelectric
transduction in the system to maximize the quantum state transfer fidelity. This can
be done with optimal designs that maximize the ratio of the qubit electric energy
and acoustic energy directly involved in the piezoelectric transduction. However,
such optimization is fundamentally limited by the ratios of the chosen piezoelec-
tric material’s piezoelectric coupling coefficient k-factor [27, 56] over its intrinsic
material loss tangents in elastic and electric domains. For example, the commonly
used low-loss thin-film piezoelectric material Aluminum Nitride (AlN) has k-factor
k2
AlN ∼ 1% [90]. It indicates that this material can transduce at most 1% of its

mechanical energy into electric energy. The realizable piezoelectric coupling rate,
Jp, is bounded according to (6.22).

Jp ≤ JAlN ≡ kAlN
ωm

2
(6.22)
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This leads to a coupling rate at most Jp/2π = JAlN/2π ∼ 250 MHz between a qubit
and a piezoacoustic resonator for a resonance ωq/2π = ωm/2π ∼ 5 GHz.

On the other hand, a phononic microwave resonator made out of AlN was shown to
have a quality factor of QAlN ∼ 20000 [129] (a decay rate of γAlN/2π ∼ 255 kHz).
Furthermore, AlN has microwave loss tangent of tan δAlN ∼ 5 × 10−4 (κAlN/2π ∼
2.5 MHz) [137, 31, 30, 120, 78, 77]. The maximal cooperativity in a directly
coupled qubit-acoustic system is Cmax

AlN =
4J2

AlN
γAlNκAlN

∼ 3.8 × 105. A similar analysis
can be done to show that the maximum cooperativity achievable in a coupled qubit-
piezoacoustic system using piezoelectric material LiNbO3 is ∼ 106 with parameters
from recent works on defect phononic cavity made with LiNbO3 [9]. Despite the
possibility for realizing high fidelity quantum state transfer as promised by the po-
tentially significant cooporativity, electric and the acoustic modes are susceptible
to significant piezoelectric material losses that can not be turned off after switching
into the idle-state.

To mitigate the idle-state parasitic mechanical loss in the memory mode, it can be
designed such that a small participation ratio of the mechanical energy (ηm) exists
in piezoelectric material. The reduction will in principle not change the maximal
cooperativity of the transduction process. This is true when the qubit total loss (κq) is
dominated by the parasitic loss due to its energy participation (ηq) in the lossy piezo-
electric material. It is easy to show that Jp ≤

√
ηmηqkAlN

ωm
2 with total mechanical

damping rate γm = ηmγAlN and total qubit relaxation rate κq = ηqκAlN+ κi. Note that
energy participation ratios only limit the upper bound on the obtainable piezoelectric
coupling rate (Jp). The obtained piezoelectric coupling rate also relies on the field
overlap efficiency between the piezoelectric field of an acoustic mode of interest and
the external circuit’s electric field in the material. Nevertheless, a smaller mechan-
ical participation ratio reduces the coupling rate ∝ √ηm given the same field overlap.

For coherent quantum acoustic transduction, the state swapping rate should be larger
than the total qubit damping rate (κq). The later can be reduced with lower electrical
participation ratio ηq and is bounded below by the intrinsic qubit loss of a good qubit
with relaxation time∼ 30 µs (κi/2π ∼ 5 kHz) assumed for the rest of this work. With
these constraints, the smallest qubit energy participation ratio for keeping the previ-
ously estimated high cooperativity independent of the change in participation ratios
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is ηmin
q ∼

κi
κAlN

such that ηqκAlN > κi. To have Jp > κi in this limit, we then require
ηm &

κAlNκi
J2
AlN

where JAlN is the greatest piezoelectric coupling rate achievable with
unity participation ratios. This leads to a minimal parasitic mechanical damping of
acoustic memory in a direct piezoelectric transduction scheme, γmin

m '
4κi

Cmax
AlN

which
can be comparable to the state-of-art intrinsic acoustic damping γm/2π ∼ 1 Hz [74]
for cooperativity Cmax

piezo ∼ 106 with either AlN or LiNbO3 shown previously.

Even though the best performance achievable with simple direct coupling scheme is
promising, engineering such a piezoacoustic device providing maximal field overlap
for reaching optimal transduction (Jp =

√
ηmηqkAlN

ωm
2 ) is very challenging. This is

because design parameters are coupled and constraint by nano-fabrication capabili-
ties and piezoelectric material crystal axis orientations. Other practical limitations
such as complicated wiring directly on the phononic memory with mechanically
lossy materials can also significantly degrade memory quality and reduce the yield
of device fabrication. Moreover, even if the conditions can be satisfied with design
and fabrication, the coupling rate will be close to the transmon intrinsic relaxation
rate. Such a slow SWAP-gate between the superconducting system and acoustic
memory limits the usefulness of utilizing the quantum memory to boost the scala-
bility of a superconducting quantum circuit.

The device proposed here separates the directly coupled system into two parts so that
different parts can be optimized for different tasks with more design freedom. The
intermediate hybrid piezoelectric system that efficiently transduces electric field into
acoustic vibration and the high-coherence system that is composed of an ultra-high
quality acoustic memory cavity and high coherence superconducting qubit. This
device also contains various in-situ controls that can not only switch the device
between two operation states but also optimize their performance in both states.
The swap-state ensures that the qubit quantum state can be written into (readout
of) the memory cavity with high fidelity and the idle-state minimizes the influence
of the coupling to preserve high qubit and memory phonon bare coherence. It can
be shown that the overall swap-state transfer cooperativity is still bounded by the
optimal cooperativity achievable with direct coupling. However, achieving optimal
piezoelectric coupling does not need to further complicate the piezoacoustic res-
onator and compromise ultra-high quality acoustic memory cavity. Moreover, it is
possible to swap a quantum state faster than the direct coupling scheme for the same
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level of the idle-state qubit and memory coherence. Different parameter regions in
Jq, ωm, and ωem for a fixed ωpa/2π = 5.15 GHz can be explored to identify the best
parameter set that optimizes the performance of the device in both swap-state and
idle-state.

6.3.1 Swap-State: Quantum State Transfer
For a coupled four-cavity system shown in Fig. 6.7a, the overall Hamiltonian can be
written as (6.23),

Ĥ =~
ωq

2
σ̂z + ~ωemb̂†emb̂em + ~ωpab̂

†
pab̂pa

+ ~ωmâ†â + Ĥint

, (6.23)

with the four-cavity interaction part in (6.24),

Ĥint =~Jq(σ̂+b̂em + σ̂−b̂†em) + ~Jm(b̂paâ
† + b̂†paâ)

+ ~Jp(b̂emb̂†pa + b̂†emb̂pa)
, (6.24)

where σ̂± are the raising (+) and lowering (−) operators of the superconducting qubit,
and {â, â†} are the bosonic operators of thememory resonatormode. {b̂em,pa, b̂

†
em,pa}

are intermediate electric resonator (Iem) and piezoacoustic resonator (Ipa) modes’
bosonic operators, respectively.

The intermediate resonators are tuned resonant with frequency ωem = ωpa and
hybridized into symmetry (+) and anti-symmetric (−) modes (WLOG, we assume
that ω± = ωpa ± Jp) as shown in Fig. 6.7b during the swap-state, the intermediate
system can be diagonalized with (6.25) leading to (6.26),

b̂± = (b̂em ± b̂pa)/
√

2, (6.25)

Ĥ = ~
ωq

2
σ̂z +

∑
k=±

~ωk b̂†k b̂k + ~ωmâ†â + Ĥint, (6.26)

where the interaction part of the Hamiltonian is transformed into (6.27),

Ĥint =
∑
k=±

©«
~

Jq
√

2
(σ̂+b̂k + σ̂−b̂†k)

+ ~ k Jm√
2
(â†b̂k + âb̂†k)

ª®¬ . (6.27)

To adiabatically eliminate the far-detuned intermediate system degrees of freedom
({b̂em,pa, b̂

†
em,pa}) and focus on the effective coupling between the qubit (σ̂±) and
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memory ({â, â†}), we can define the following unitary transformation, Ûvc, in (6.28),

Ûvc = exp

©«
∑
k=±

k

(Jmâ† + Jqσ̂+)b̂k
− (J∗mâ + J∗q σ̂−)b̂

†

k
√

2(ωk − ωm)

ª®®®®®¬
. (6.28)

Apply it to (6.26) and (6.27), it can be shown that the final effectiveHamiltonian after

ignoring higher order terms involving O
((

Jq,m
ω±−ωq,m

)2
)
has the form (6.29) assuming

ωq ' ωm and Jq, Jm �
√

2|ω± − ωq,m |.

Ĥeff = ~
ω′q

2
σ̂z + ~ω

′
mâ†â + ~Jvc(σ̂+â + σ̂−â†) (6.29)

Jvc =
JqJm

2

(
1

ω+ − ωm
−

1
ω− − ωm

)
(6.30)

ω′q,m = ωq,m −
J2
q,m

2

(
1

ω+ − ωq,m
−

1
ω− − ωq,m

)
(6.31)

where Jvc is the effective virtual coupling rate between the transmon qubit and mem-
ory mode. ω′q and ω′m are renormalized frequencies of the qubit and the memory
cavity after diagonalizing and eliminating the intermediate system degrees of free-
dom in the far-detuned limit. The bare qubit and memory cavity frequencies (ωq,m)
are Lamb shifted by the detuned intermediate system as seen in (6.31). The virtual
coupling process can be understood to contain two quantum channels connecting
the qubit with acoustic memory cavity . Each channel is formed with a super-mode
of the intermediate system that mediates the virtual coupling, as expressed with
Jvc,± = ±

JqJm
2(ω±−ωm)

.

The swap-state requires degenerate intermediate resonators (ωem = ωpa) andmatched
renormalized qubit and memory frequencies (ω′q = ω′m). For a given Jp/2π =
100 MHz and Jm/2π = 5 MHz, the parameters requiring optimization are design
and fabrication defined piezo-memory detuning, ∆pa ≡ ωpa − ωm, and external
flux tunable electric coupling, Jq, for achieving high state-transfer fidelity with a
small piezo-memory coupling, Jm, that is needed to suppress idle-state memory
piezoelectric material damping (γpm). The state transfer fidelity dependence on ∆pa
and Jq is shown in Fig. 6.13a assuming κem/2π = 600 kHz, γpa/2π = 200 kHz,
and κi/2π = 5 kHz that can be achieved with state-of-art device fabrication and
known material properties [9]. As high state transfer fidelity requires the effective
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frequencies of the qubit and the memory are the matched (ω′q = ω′m), the qubit
bare frequency ωq needs to be tuned appropriately. The fine-tuning of the qubit
frequency leads to the near-unity state-transfer fidelity shown Fig. 6.13a over a wide
range of parameters (Jq and ∆pa). Thus, even with realistic fabrication randomness
in acoustic resonators’ detuning (∆pa), it is always possible to perform a high-fidelity
SWAP-Gate between the qubit and memory.

A red-dotted line cutting Fig. 6.13a leads to Fig. 6.13b. The later figure contains an
oscillating region around ∆pa/2π ' Jp/2π = 100 MHz. This region corresponds to
the case where the memory cavity is almost resonant with a super-mode of the in-
termediate system (ωm ∼ ω−). If we take ∆pa = Jp as indicated by the black-dashed
vertical line in Fig. 6.13a and b, we can obtain the time-domain evolution of the first
excited state populations of the four coupledmodes in the system shown in Fig. 6.13c.

As will be discussed in the next section, a large |∆pa | is preferred in this virtual
coupling scheme to suppress the idle-state parasitic mechanical loss in the memory
cavity while maintaining a high state-transfer fidelity. We also need to avoid mem-
ory cavity hybridization with the intermediate system super-modes in the swap-state
around |∆pa | ∼ Jp. Consequently, the large detuned region (|∆pa | > Jp) in Fig. 6.13a
is the region of interest. Further discussion on optimizing system operating param-
eters will be presented in a later section. In order to characterize the performance of
this class of quantum memory that operates in two distinct functional states, we will
introduce a newfigure ofmerit called theAsynchronizedQuantumEfficiency (AQE)
that can be optimized against an external flux tunable Jq and design-fabrication de-
fined ∆pa.

Taking device parameters as ωm/2π ∼ 5 GHz, ωpa/2π ∼ 5.15 GHz, Jm/2π ∼
5 MHz, and Jp/2π ∼ 5 MHz, the swap-state can have a virtual coupling rate
Jvc/2π ∼ 200 kHz. The effective virtual coupling leads to a quantum state transfer
time ∼ 1.25 µs. The faster swap-state rate can be obtained with larger Jq as the state
transfer fidelity is close to unity over a wide range of Jq according to Fig. 6.13a.
However, a larger Jq increases the superconducting qubit’s total damping (κq) in
the swap-state. It is straightforward to show that the qubit-memory cooperativity
will be the independent of Jq in the dispersive limit (Jq �

√
2|∆pa ± Jp |). This is

true if the qubit total damping rate κq is dominated by the parasitic loss introduced
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Figure 6.13: a, Qubit-memory state transfer fidelity during device swap-state
assuming qubit intrinsic damping rate κi/2π = 5 kHz, memory damping rate
γi/2π = 1 Hz, intermediate electric resonator damping rate κem/2π = 600 kHz,
intermediate piezoacoustic resonator damping rate γpa/2π = 200 kHz, piezo-
memory coupling rate Jm/2π = 5 MHz, resonant intermediate system resonators
ωem/2π = ωpa/2π = 5.15 GHz. For this plot, the qubit bare frequency is fine-tuned
such that effective qubit and memory frequencies are matched (ω′q = ω′m). The
fidelity here is defined as the state transfer fidelity (Fpa ≡

��〈e, 0| Ûpa(tpa) |g, 1〉
��2) for

transferring a quantum state (|ψ〉q,m are quantum states of the qubit (q) and memory
(m) subspace respectively) |φi〉 = |e, 0〉 = |e〉q |0〉m to

��φ f
〉
= |g, 1〉 = |g〉q |1〉m

via the system propagator Ûpa(tpa) with tpa chosen to maximize the fidelity in
time-domain evolution. b, Fidelity as a function of (∆pa = ωpa − ωm) for
Jq/2π = Jm/2π ' 5 MHz corresponding to the red-dotted line in a. The oscil-
lation near ∆pa/2π ∼ Jp/2π = 100 MHz is caused by the hybridization of the
qubit and memory cavity with the intermediate system’s lower super-mode (ω−). c,
The time-domain evolution of the first excited state populations of the four coupled
modes in the system including the qubit (blue-solid), intermediate electric resonator
(red-solid), intermediate piezoacoustic resonator (yellow-dotted), and memory cav-
ity (purple-solid), if ∆pa = Jp. d, Maximum state transfer fidelity as a function of
Jm. The state transfer fidelity illustrated here was optimized with respect to ∆pa, Jq,
and ωq. Other parameters such as the intrinsic damping rates are fixed to the values
in obtaining a for each given Jm. e, Induced memory cavity’s piezoelectric material
parasitic loss γpm due to its coupling to the intermediate piezoacoustic resonator as
a function of intermediate tunable electromagnetic resonator frequency (ωem) and
designed memory cavity frequency (ωm) when the qubit is decoupled in the device
idle-state. f, Induced memory cavity loss due to coupling to the intermediate system
for the choice that ωm/2π = 5 GHz corresponding to the red-dotted line in e. g,
swap-state energy level diagram of the system with ωm/2π ∼ 5 GHz which is about
50 MHz below the lower super-mode of the intermediate system.



120

via Jq in the swap-state (κq � κi) . If Jq & |∆pa ± Jp |, the swap-state qubit and
memory hybridize with a super-mode of the extremely lossy intermediate system,
this hybridization leads to a triangular region with significantly reduced fidelity
centered around ∆pa ∼ Jp for a large Jq in Fig. 6.13a.

6.3.2 Idle-State: Memory and Qubit Coherence Preservation
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Figure 6.14: a, the idle-state energy levels. To reach the idle-state indicated here,
we can far detune the qubit frequency (ωq) such that it is tuned to its flux-insensitive
point away from the memory cavity frequency (ωm). Furthermore, we can turn off
the electric coupling (Jq) between the qubit and the intermediate electric resonator
so that the superconducting qubit can be further protected. We also far detune
the tunable electric resonator in the system such that the intermediate system is
no longer hybridized. In this case, the piezoacoustic cavity is now dispersively
coupled to the memory cavity at its bare frequency (ωpa). The bare frequency
is about Jp/2π ' 100 MHz higher than the lower super-mode (ω−) in the swap-
state. Thus, the piezoacoustic mode is further detuned from the memory mode
by ∆pa. The parasitic damping (γpm) introduced into the memory cavity via the
fabrication defined mechanical coupling Jm/2π ∼ 5 MHz is strongly suppressed by
this detuning (∆pa) and can be lower than ∼ 100 Hz as can be seen in Fig. 6.13e
and f. b, the Asynchronized Quantum Efficiency (AQE) as a product of the swap-
state transfer fidelity (Fpa) and memory enhancement factor (Gqm). It is introduced
to characterize the performance of the class of quantum memory devices that can
switch between a swap-state and an idle-state. A large AQE is preferred for a good
device that operates in this asynchronized way.

Quantum state swap is turned off during the idle-state of the device. The idle-state
corresponds to the energy levels shown in Fig. 6.14a. In this state, the qubit is tuned
to its flux insensitive point far from the memory frequency. Moreover, the qubit
to intermediate electric resonator coupling, Jq, can be tuned to zero in this state to
further isolate the qubit from losses.

For simplicity of analyzing decoherence of the memory cavity due to coupling
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to the intermediate system, it can be assumed that the intermediate system and
the memory cavity effectively form a linearly coupled three-cavity system. The
amount of decoherence noise introduced into the memory cavity due to Jm can be
understood with the bare noise power spectrum of the lossy piezoacoustic mode
(b̂pa, b̂†pa) strongly coupled to a lossy electromagnetic resonator mode (b̂em, b̂†em).
The power spectral functions can be shown as in Appendix A.3 to be (6.32) and
(6.33),

Sb̂†pa b̂†pa
[ω] =

(〈n2〉 + 1) γpa +
(〈n1〉+1)J2

p κem

(ωem−ω)2+
κ2
em
4(

ωpa − ω −
J2
p (ωem−ω)

(ωem−ω)2+
κ2
em
4

)2

+

(
γpa
2 +

J2
p
κem

2

(ωem−ω)2+
κ2
em
4

)2

, (6.32)

Sb̂pa b̂pa[ω] =
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〈n1〉J2
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em
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. (6.33)

The noise in piezoacoustic mode can perturb and decohere the memory cavity via
mechanical coupling Jm. The induced memory mode piezoelectric material decay
rate is shown in equation (6.34),

γpm = J2
m

(
Sb̂†pa b̂†pa

[ωm] − Sb̂pa b̂pa[−ωm]
)

=

J2
m

(
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em
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em
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em
4

)2

, (6.34)

where κem (γpa) is the intrinsic decay rate of the intermediate electromagnetic cavity
(piezoacoustic cavity) and ωem (ωpa) is the frequency of the intermediate electro-
magnetic resonator (piezoacoustic cavity). 〈n1〉 (〈n2〉) is the equilibrium thermal
occupation of the photon (phonon) bath at a refrigerated temperature Tenv ∼ 10 mK.
The noise power in the piezoacoustic mode degree of freedom (b̂pa, b̂†pa) is con-
tributed by the noise of piezoacoustic cavity’s intrinsic loss channel (γpa) and the
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noise from the intermediate electromagnetic resonator mode’s intrinsic loss channel
(κem) via the piezoelectric coupling Jp.

Idle-state memory cavity coherence can be protected by far detuning the interme-
diate electromagnetic resonator such that the memory cavity only suffers the small
parasitic loss from a far detuned piezoacoustic resonator. Givenωpa/2π = 5.15GHz
and Jm/2π = 5 MHz, the induced memory cavity piezoelectric material loss rate
(γpm) as a function of memory cavity’s designed frequency (ωm) and intermediate
electromagnetic cavity frequency (ωem) is shown in Fig. 6.13e. Designing the mem-
ory cavity such that ωm/2π ' 5 GHz will lead to an induced loss curve in Fig. 6.13f
corresponding to the red-dashed cut line in Fig. 6.13e. If the intermediate tunable
electromagnetic resonator is tuned to a low frequency in idle-state, the memory
cavity can preserve its high coherence as γpm is minimized. The residual induced
memory cavity loss due to the fixed coupling Jm to the piezoacoustic resonator will
limit the memory phonon lifetime τm = 1

γi+γpm
' 1

γpm
∼ 1 ms assuming a large

piezoacoustic resonator damping rate γpa/2π ' 200 kHz. Note that the residual
induced memory mode loss is ∝ J2

m. As a result, it is preferable to take a small
Jm. Meanwhile, the swap-state state transfer fidelity decreases rapidly with smaller
Jm as illustrated in Fig. 6.13d. The chosen Jm/2π ∼ 5 MHz is small enough to
suppress the additional loss in idle-state while still offerings close to unity (∼ 0.97)
state transfer fidelity during swap-state in the presence of large intermediate system
loss.

6.3.3 System Parameter Optimization for A Large Asynchronized Quantum
Rate

A good figure of merit that can be defined for evaluating such class of asynchronized
quantum logic devices is the Asynchronized Quantum Efficiency (AQE) expressed
in (6.35),

ζAQE ≡ Fpa(Jq,∆pa)Gqm(∆pa), (6.35)

as a product of the swap-state state transfer fidelity (Fpa) and idle-state memory
enhancement factor, Gqm,idle(∆pa). The enhancement factor is the ratio of idle-state
memory relaxation time (τm = 1/γm,idle) over bare qubit relaxation time (τq = 1/κi)
as in (6.36),

Gqm(∆pa) ≡ κi/γm,idle(∆pa), (6.36)
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where the idle-state memory damping rate is expressed in (6.37),

γm,idle(∆pa) = γi +
J2
mγpa

∆2
pa +

γ2
pa
4

. (6.37)

A high AQE indicates that the quantum memory can be accessed by a supercon-
ducting quantum circuit with a high fidelity and store quantum resources over an
extended period.

The ζAQE can be optimized with respect Jq and ∆pa seen in Fig. 6.14b for the
previously chosen realistic system parameters in obtaining Fig. 6.13a. It can be seen
that, for this proposed schemewith a high-quality qubit having bare energy relaxation
time ∼ 30 µs, a larger piezo-memory detuning (|∆pa |) is generally preferred for
Jvc(∆pa) � κq,swap(∆pa) and κq,swap(∆pa) � κi ' 2π × 5 kHz where κq,swap is the
swap-state qubit total damping rate in (6.38),
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This condition can be satisfied for |∆pa |/2π ≤ 1GHz. Since Jvc(∆pa) � γm,swap(∆pa) �

γi ∼ 2π×1Hz is true for an ultra-wide range of |∆pa | with swap-state memory damp-
ing rate expressed in (6.39),
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(6.39)

a large swap-state cooperativity,Cvc =
4Jvc(∆pa)2

κq,swapγm,swap
with Jvc(∆pa) =

JqJm
2

(
1

∆pa+Jp
− 1
∆pa−Jp

)
,

can be realized in a large detuning regime (|∆pa | > Jp). Furthermore, the idle-state
damping (γm,idle) of the acoustic memory is rapidly suppressed with a large detuning
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according to (6.37). The near-unity state transfer fidelity with suppressed idle-state
memory damping rate results in a large AQE for a large ∆pa. After defining the
∆pa and a small Jm with design and fabrication that is susceptible to randomness in
practice, the electric coupling rate (Jq) can be adjusted with an external magnetic
flux Φg to optimize the AQE in-situ.

6.3.4 Ultra-High Fidelity In-Memory Two-Qubit Quantum Gates
The small footprint of acoustic elements allows a transmon to be coupled to mul-
tiple single-mode acoustic memory resonators that collectively form a quantum
memory bank. Furthermore, the non-linearity of the coupled qubit can act as a four-
wave-mixer that effectively implements two-qubit gates for quantum states stored in
two detuned acoustic memories when two microwave tones drive it with detuning
matching the frequency difference between the two memories [52]. The gates are
implemented with the transmon qubit being far detuned from the acoustic cavities.
Under this condition, the gates are virtual gates, and the transmon qubit is not excited.
Thus, the decoherence due to the energy participation in the transmon qubit during
the gate operations is strongly suppressed and the gate fidelity is mostly limited by
the decoherence of the acoustic cavities. In the optimal case, the virtual two-qubit
gate fidelity can be expressed as (6.40) with γ̄ being the average damping rate of the
acoustic memory modes involved. cv = 1 for a SWAP gate involving two acoustic
memory cavities and cv = 2 for a CZ gate involving three acoustic memory cavities.
In the expression, ∆ν characterizes the scale over which the difference in memory
mode frequencies varies as defined in [52]. Since the point defect acoustic memories
can have damping rate γm/2π ∼ 1 Hz with the intermediate system super-modes far
detuned from the memories and ∆ν/2π & 100 MHz can be realized easily in design-
ing the array of detuned single-mode acoustic memory cavities, the two-qubit gates’
fidelities between a pair of detuned memory cavities ' 99.999% for a SWAP-gate
and ' 99.998% for a CZ gate. The ultra-high fidelity two-qubit gates implemented
in an acoustic memory bank together with ultra-high fidelity single transmon qubit
gate can lead to a novel hardware efficient hybrid fault-tolerant quantum computing
architecture using engineering feasible electric and acoustic elements.

Fv ' 1 −
3cv
2

[
πγ̄
√

2∆ν

] 2
3

(6.40)
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6.3.5 Conclusion and Outlook
In this section, we proposed an experimentally realizable architecture with a realistic
device design that is robust against fabrication randomness and can transfer, with
near unity fidelity, a quantum state between a superconducting qubit and a phononic
cavity which can store a quantum state for milliseconds. As mentioned earlier, the
small footprint of a phononic memory cavity further allows a qubit to be coupled
to multiple detuned single mode phononic memory cavities via one intermediate
hybridized system. These phononic cavities can be used to store a large number
of quantum states as quantum resources for the coupled quantum logic circuit.
Furthermore, ultra-high fidelity two-qubit quantum gates can be directly carried out
on a pair of ultra-high coherence phononic cavities by coupling them to a driven
detuned transmon that acts as a four-wave-mixer [52]. The abilities to densely store
a large number of quantum states by multiplexing multiple single mode acoustic
memories around a transmon qubit and to carry out arbitrary ultra-high fidelity two-
qubit gates between them lead to a scalable quantum information processing platform
for building fault-tolerant quantum computers in a near future. Despite applications
in near-term scalable quantum computing systems, the proposed architecture also
opens doors to new research routes in manipulating a large number of mesoscopic
mechanical objects to test the limit of quantummechanics [88] and strong coupling of
superconducting qubits to highly coherent elastic spins in single crystalline silicon.
These purely elastic microwave spins may originate from neutral lattice defects and
are only strongly coupled to strain field. They can potentially be used as extremely
compact and coherent nonlinear quantum logic units embedded in a phononic crystal.

6.4 Stacked Phononic Piezoacoustic Crystal for Nonlinear Phononics And A
New Architecture for Phononic Quantum-Bit

Similar to encoding quantum states in three-dimensionalmicrowave cavities strongly
coupled to a detuned superconducting transmon qubit which provides a slight non-
linearity to the harmonic modes of the three-dimensional cavities, a mechanical
cavity can also be perturbed to act directly as a quantum state storage and com-
putation element by coupling it to a detuned Josephson Junction superconducting
qubit. To strongly perturb the harmonic modes of the coupled cavity, it requires that
the superconducting qubit and the cavity are strongly coupled to each other. The
most efficient coupling can be realized with AlN that has main piezoelectric axis
(c-axis) normal to the surface of its substrate using a vertically stacked Mo-AlN-
Mo as what was done in the previous section. The mechanical mode that can be
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most strongly coupled to the electrodes is the mode that is mostly vertical dilation
motion. This means that the structure needs to be thick enough to have the dilation
mode within the frequency range of the superconducting Josephson junction qubit
∼ GHz. Furthermore, in order to achieve stronger coupling, it is desirable to have
the superconducting qubit’s electric energy participation (ηq) mostly overlapped
with the piezoelectric region to have the largest possible qubit electric field overlap
with the piezoacoustic mode electric polarization field. This means that increasing
the planar size of the resonator scales up the coupling with increasing capacitance
between the two electrodes. However, the increase of resonator size increases the
density of mechanical modes that can be coupled to the electrodes strongly. This is
similar to the first section where we discussed about the spurious mechanical mode
crowding in the Lamb resonator with increasing size. The mechanical state space is
direct product of mode space in the planar direction and the vertical dilation motion
direction. The crowding of modes in the planar dimensions increase the number of
modes near main coupling mode where the whole top surface of the resonator moves
in phase and the same can be seen in the lower surface of the resonator. One way
to eliminate the planar direction mode space density is to create phononic pattern
in planar direction like the one shown in Fig. 6.15b − d. The three-dimensional
phononic structure shown here is engineered in a way that there are two bandgaps
around the vertical dilation motion mode which has an almost flat planar dispersion.
As this dilation mode dispersion is isolated from the surrounding bands, the mode
is not susceptible to mixing with spurious modes that appear with an increasing
planar size of the resonator. The whole resonator will be able to resonate with a
mode profile like Fig. 6.15a. The unit cell of the structure and the unit cell Γ−point
mode of interest is shown in Fig. 6.16. This resonator can be called a phononic
Bulk Acoustic Resonator (phBAR). In the following discussions, we assume that the
Josephson junction inductance is fixed to about 22 nH.

We can now explore the quantum dynamics of the hybrid system shown in Fig. 6.17a.
As it was mentioned previously, a piezoacoustic resonator can be modeled in the
circuit dynamics as a serially connected large inductance with a small capacitor
highlighted in the blue box. The superconducting qubit part of the device is in the
red box. This includes the large capacitance provided by the electrodes in the phBAR
region and a standard Josephson junction. The quantum degrees of freedom are the
phase (φ1) of the superconducting qubit and the phase (φ2) of the piezoacoustic
resonator. The Schrodinger equation of the system is shown in (6.41) with quantum
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Figure 6.15: a, the high piezoelectric coupling thickness dilation bulk acoustic mode
in a quarter of the photonic Bulk-Acoustic-Resonator (phBAR). The center of the
piezoacoustic resonator deforms the most. b - d highlight different material layers
of the phBARwhich is a sandwich structure having piezoelectric AlN layer between
two electrode layers. The sandwich is on top of a suspended silicon layer.
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Figure 6.16: a shows the top down view of an unit cell of the phBAR. The parameters
shown in the figure will eliminate the planar spurious modes around 4 GHz with
a wide phononic bandgap for waves propagating in planar directions. b shows the
vertical composition of an unit cell of the phBAR device and c is the normalized
mechanical mode profile corresponding to the Γ−point of the band that forms the
high piezoelectric coupling dilation phBAR mode shown in Fig. 6.15.
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wave-function Ψ(φ1, φ2) in the two phase variables’ basis, {|φ1, φ2〉}. This is just a
linear partial differentiation for a wave-function on a two-dimensional box having
periodical boundary conditions as Ψ(φ1 + nπ, φ2 + mπ) = Ψ(φ1, φ2) for n,m ∈. It
can be easily solved with FEM we have been using for simulating the eigen modes
of fields in complicated structures. A straightforward and careful reprogramming
of the computational tool we have, we can quickly and accurately solve the eigen
wave-functions of the system and their eigen frequencies. The solved wave-function
(“boson cloud“) can be illustrated in Fig. 6.17c from (1) − (7) for the first 7 modes.
It can be identified that the mode 1, 3, 6 are anharmonically perturbed harmonic
mechanical modes and the other are qubit-like electric modes of the system. The
energy level dispersion of the system with respect to the number of residual charge
bias associated with the phase node of the superconducting (charge) qubit in the
system is in Fig. 6.18. It can be seen that the charge dispersion of the harmonic
modes are flat meaning that they are not susceptible to the charge noise in the
circuit on the superconducting qubit degree of freedom. It can also be found that
the energy level spacings between the harmonic modes are not equal and they can
exhibit aharmonicity (χ = ω1→2−ω0→1) reaching about 100 MHz for the first three
energy levels from the mechanical resonator. These means that it is possible for
us to use perturbed energy levels of the mechanical resonator as high quality new
mechanical qubit levels and the whole device can be thus called “mechmon“.

ĤphBar =
1

2(CJ + Cm + Cg)
q̂2

1 − EJ cos (φ̂1) +
1

2Cm
q̂2

2 +
1

2Lm
φ̂2

2 +
1

Cm
q̂1q̂2 (6.41)

6.5 Future Directions on Piezoelectric Microwave-Acoustic Transduction
As can be seen in the previous discussions presented in this chapter, the piezoelectric
material piezoelectric coefficient and crystallinity are critical for achieving highly
efficient and low noise quantum acoustic transduction. In terms of high piezoelectric
coupling coefficients, there are a wide variety of materials that can significantly out
perform the AlN we have been using. However, most of the materials will have
significantly reduced piezoelectric coefficients in low temperatures. This is because
as mentioned in the introduction chapter, material piezoelectric commonly has two
contributions called intrinsic piezoelectricity and extrinsic piezoelectricity.
The intrinsic piezoelectricity originates from the central symmetric breaking of the
material crystal unit cell. This effect directly leads to the electric polarization of
the crystal under strain. As this is fundamentally related to the crystal structure
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Figure 6.17: a illustrates the effective circuit diagram for the systemwith a Josephson
junction characterized by LJ andCJ connected to the phBARdevice as further shown
in b. The phBAR device can be synthesized with an effective serial LC resonator
(Lm and Cm) in parallel with a large capacitance provided by the linear dielectric
capacitance between the two electrodes of the phBAR device. c shows the wave
function Ψ(φ1, φ2) of the lowest 7 eigen states of the anharmonic phBAR system.
The third, and the sixth eigen states are perturbed anharmonic acoustic first excited
and second excited quantum states. The first one is the system ground state. The
qubit-like states in (2), (4), (5), (7) are wave functions of electric modes in the
system. It should be noted that the electric modes are periodic in the Josephson
junction phase variable φ1 with periodicity 2π.
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Figure 6.18: The charge dispersion corresponding to different piezoelectric coupling
coefficients assuming that the dielectric capacitanceCJ � Cg = 100 fF and junction
inductance LJ = 22 nH. a is for k2

eff = 1%. b shows the dispersion for k2
eff = 1.5%

and this leads to anharmonicity between the lowest three mechanical modes to be
around 290 MHz.c shows the dispersion for k2

eff = 2% which leads to anharmonicity
between the lowest three mechanical modes to be around 600 MHz. The calculated
charge dispersions also shows that the mechanical modes even though perturbed by
dispersive coupling to nonlinear elements are highly charge fluctuation insensitive
as compared to their qubit-like electric mode counterparts. This means that the an-
harmonic mechanical modes can be great candidates for coherently storing quantum
information in a small footprint device.

and unit cell distortion, the intrinsic piezoelectricity is not going to change in low
temperature.
The extrinsic piezoelectricity is commonly observed in poly-crystalline bulk piezo-
electric materials. In such materials, each small domain with a well defined uniform
crystal orientation is coupled to external electric field due to their intrinsic piezo-
electricity. under external electric field, the domains are polarized tend to align with
electric field. This tendency together with sufficient thermal mobility of the domain
walls leads to the electric field induced structural change in the material. Such
more drastic and macroscopic change in material structure causes a much larger
strain response to the external electric field. Thus this extrinsic piezoelectricity is
normally responsible for the large piezoelectric responses of most materials in room
temperature. As the temperature is lowered, the domain wall movement is impeded
since there is insufficient thermal energy for the domain walls to overcome potential
barriers forbidding them from moving. In the mK environment we are concerned
with, there can not be extrinsic piezoelectric contribution for any piezoelectric ma-
terial. For example, the commonly used ceramic piezoelectric material PZT will
have a factor of ten reduction in its piezoelectric response. As single crystalline AlN
is an intrinsic piezoelectricity dominated material, its piezoelectric coefficients do
not change much when the temperature is lowered.
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Nevertheless, AlN is still a weak piezoelectric material that only has piezoelectric
coupling coefficient k2

AlN = 1% ∼ 4%. It is desirable to identify a new single
crystalline material that can exhibit ultra-high intrinsic piezoelectric coefficient and
perform well at low temperatures. Lithium Niobate (LiNbO3) has been an emerging
popular material to replace AlN in implementing various quantum acoustic trans-
duction as its piezoelectric coefficient can be as large as k2

LiNbO3
= 25% [136, 16]

if the electric field can be correctly aligned with its major piezoelectric crystal axis
and proper acoustic mode can be engineered to have large elastic energy stored
in strain along this major piezoelectric axis. Research efforts have been invested
into developing robust nano-fabrication processes for patterning a hard material like
LiNbO3. These efforts can lead to a new stage of quantum acoustic device research
in a near future.

As an even larger leap forward in the coupling coefficient and single crystallinity
can enable a variety of ultra-high performance quantum acoustic applications, it
is also worth noticing some other single crystalline candidates that have been uti-
lized widely to generate ultra-sound in industry and haven’t been carefully looked
at in the quantum acoustics community. A potential candidate for realizing such
a great leap forward is Lead Magnesium Niobate-lead Titanate (PMN-PT). This
single crystalline material has been widely used in medical ultra-sound genera-
tion since 1980s and recently various public and private efforts have been invested
into micro-machining single crystalline PMN-PT with DRIE (Ar+C4F8) for MEMS
applications [4, 139]. It is intrinsic piezoelectricity dominated and can exhibit
piezoelectric coupling coefficient k2

PMN-PT & 50% [73] in practice. Single crys-
talline PMN-PT has been consistently grown in industry by companies including
Siemens. The single crystalline material also has the advantage over many other ma-
terial that its piezoelectric axis is along its main crystal axis meaning that PMN-PT
wafers have piezoelectric axis normal to its surface. As it is common in semicon-
ductor industry to bond an ultra-thin (100s nm) layer of single crystalline wafer
onto a single crystalline silicon wafer, we can expect to have PMN-PT to be bonded
onto our SOI wafers and we can planarly pattern the material to generate highly
efficient piezoelectric transduction between a superconducting quantum circuit and
a phononic mechanical resonator on SOI in mK environment. To understand the
origin of the large piezoelectric coupling presents in PMN-PT, we can look at its
crystal structure containing super-cells. A deformation in the super-cell will lead
to a large displacement of charges in a super cell formed by two unit cells. This
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deformation thus creates a huge electric dipole which can be coupled strongly to the
external electric field [124].
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C h a p t e r 7

EFFORTS IN GROWING AND CHARACTERIZING
PIEZOELECTRIC MATERIAL ALUMINUM NITRIDE

As the piezoelectric material Aluminum Nitride has been the core of the previ-
ously discussed works related to transducing electric signal and quantum state into
quantum mechanical motion, its material properties including electrical quality,
acoustic quality, and piezoelectric coefficients are of primary importance for the
works. These properties are fundamentally linked the crystal growth quality of the
deposited AlN thin film on a silicon substrate or a Molybdenum substrate. In order
to explore the possibilities of growing the high quality AlN thin film of various
thickness, we used AlN sputtering and Atomic Layer Deposition (ALD). In the rest
of the chapter I will introduce the techniques we used to probe and improve the
deposited material’s quality.

7.1 Thin Film Quality Characterization
To understand the deposited thin film’s quality, it is important to obtain informa-
tion regarding the film’s crystallinity, thickness, chemical composition, and surface
topology. The section will introduce the tools we used for characterizing the films
we have.

7.1.1 Single Crystalline Thin Film X-ray Diffraction (XRD)
X-rayDiffractionmeasurement is commonly used inmaterial science to characterize
the crystalline phases (periodic alignment of atoms in a direction) in a given solid.
The incident X-ray is reflected by different crystal planes as shown in the simplified
diagram Fig. 7.1. The phase difference between beams reflected on two nearby
planes is (7.1). For a diffraction peak to appear, the condition in (7.2) needs to be
satisfied. As can be seen, the diffraction peak reveals the periodic alignment of crys-
tal plane in one direction and its angular position indicates the plane spacing. For a
given incident beam (determined by the X-ray source location) and a given detection
direction (determined by detector location), the XRD measurement is sensitive to
the periodic crystal lattice alignment along the middle of the angle between the in-
cident beam direction and the detection direction as shown in Fig. 7.1 with a yellow



134

ω=θθ

X-ray Source X-ra
y Detector

n

Figure 7.1: The illustration of an X-ray Diffraction (XRD) experiment used in this
work to characterize the crystal quality of the deposited thin films used in this work.
The X-ray source is located at the angular location θ with respect to the normal
direction of the surface of the thin film. The X-ray detector is located at an angular
location ω with respect to the surface of the sample under test. For the XRD
experiment used to characterize the periodic alignment of crystal planes parallel to
the film surface, the detector location ω is chosen such that ω = θ. This is why this
scan is also called "coupled-scan" or θ − 2θ scan.

dashed line. The crystal planes of interest is perpendicular to the yellow dashed line.

δ = 2π
2d sin (θ)

λ
(7.1)

δm = 2mπ , m ∈ Z (7.2)

As the X-ray incident beam moves angularly (θ) from 0 degree to 90 degree, if the
detector angular location (ω) is adjusted such that the middle of the angle between
the two directions are kept normal to the top surface of a thin film sample (ω = θ),
we can keep probing the periodicity in the direction normal to the surface and
identify the distance between the crystal planes parallel to the surface by observing
the angular positions (θi) of the peaks as shown in later measured AlN and Mo
XRD curves. This is often called θ − 2θ scan or coupled scan. There is another
method calledω scan which is used to further understand the quality of crystal plane
alignment for existing peak shown in a θ − 2θ scan. In this method, the incident
beam angular location θ is fixed at the angle where the interested peak was found in
a coupled scan. The detector angular location ω is then moved around the θ value to
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X-ray Source X-ra
y Detectorθ ω~θ

Figure 7.2: This shows another type of X-ray characterization of a thin film’s crystal
quality. If the thin film’s crystal planes, even though periodically aligned in the
direction normal to the surface of the sample, are misaligned slightly so that they are
not ideally parallel with each other, an incident X-ray with narrow angular spread
will be angularly boarden after diffraction on the thin film under test shown here.
This spread can be measured precisely by fixing the X-ray source angular position
at θ corresponding to a XRD diffraction peak in the previous coupled-scan that
corresponds to a periodic alignment of crystal planes. The detector is moved around
ω ∼ θ to measure the reflected X-ray spread caused by the uneven crystal planes in
the thin film. This measurement is called θ − ω scan or X-ray Rocking Curve.

probe the angular spread of the diffracted X-ray for a given incident angle as shown
in Fig. 7.2. This scan is often called the XRD Rocking Curve scan. The spread
indicates that the crystal planes are not perfectly parallel to each other.

7.1.2 Measuring the Film Thickness with Ellipsometry
The ellipsometry is used to study the thickness of an ultra-thin film having thickness
ranging from a few atomic layers to a few micrometers. A typical setup of a
measurement looks like Fig. 7.3. A linearly polarized (by the polarizer in between
s and p directions) broadband light is sent onto the surface of the sample and the
reflected light is collected by the photo-detector after a rotating polarization analyser.
After light incidence on the material, the relative phase between s-component and
p-component of the electric field vector leads to a rotating electric field vector in the
plane normal to the propagation direction as the light propagates in free space. The
electric field vector trajectory formed over an optical field period can be projected
onto a plane normal to the propagation direction in general case as an ellipse (line
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Light Source DetectorPolarizer Analyser

θs

p

Figure 7.3: The setup for an ellipsometry measurement. The detector and a broad-
band light source are located with angular positions θ with respect to the normal
direction (the dashed orange arrow) of the sample surface. The broadband line is
linearly polarized by a polarizer so that it has ®s and ®p components parallel and per-
pendicular to the sample surface surface respectively. The relative phase between the
two component will be changed by the ultra-thin film leading to an elliptically polar-
ized light characterized by the polarization analyser that measures the polarization
with a rotating polarizer before the optical detector .

and circle are included as special cases). The shape of the ellipse is determined
by the electric field components’ phase difference ∆φelip and amplitude ratio relip.
These parameters depend critically on the thickness and refractive index of different
layers of materials. In practice where there are normally multiple layers of dielectric
materials, the thickness of the layer of interest can be extracted by a numerical fitting
routine that fit thin layer thickness and refractive indexes to the measured ∆φelip and
relip as functions of photon wavelength. The fitting will work more robustly if all
the layers’ refractive indexes are known and there is a good initial knowledge about
the thickness of the layers.

7.1.3 MeasuringOxygenContaminationwithX-rayPhotoelectronSpectroscopy
The Chemical composition in the thin film is important for understanding the issue
with the film that didn’t form good crystals. Particularly, the unintended Chemical
contamination of other Chemical species is a sign that the Chamber condition is
not ideal and requires attention immediately. The Chemical composition of the
thin film can be found by doing the X-ray Photoelectron Spectroscopy (XPS). The
setup looks like Fig. 7.4. The focused X-ray is used to bombard the top thin layer
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Figure 7.4: The X-ray Photoelectron Spectroscopy (XPS) measurement involved in
the work is illustrated here. The XPS utilizes a focused soft X-ray to dissociate
inner electrons of elements in the sample. These dissociated inner electrons escape
the thin film and become free photoelectrons in an ultra-high vacuum chamber.
An photoelectron’s kinetic energy Ee is equal to the difference between the known
incident X-ray photon energy EX-ray and the element’ characteristic binding energy
EBinding. The photoelectrons then enter an kinetic energy analyser that uses magnetic
field to steer electrons of different energies to different electron detectors. An
example of the measured electron kinetic energy is shown in the lower left corner of
the figure. This spectrum can be fitted with different material element composition
models (the dashed lines) to determine the elemental composition of the top layer
(within 100 nm from the top surface) of the thin film.

of a given sample. It excites photoelectrons in the material and uses the electron
spectrometer to obtain the kinetic energy distribution of the ejected electrons in the
ultra-high-vacuum (UHV) chamber. This information can be used to extract the
binding energy of the electrons in the material. The characteristic binding energy
is used to determine the involved Chemical species. As the photoelectrons deep
within the material can not propagate out, the XPS is typically most efficient within
the top 100 nm surface of the sample.

7.2 Atomic Layer Deposition for Depositing High Quality AlN
Atomic Layer Deposition (ALD) is a layer-by-layer deposit on process that utilizes
self-limited material growth to precisely control the uniformity and thickness of the
deposited ultra-thin film. The process [117] to deposit the AlN is illustrated in the
Fig. 7.5. The tool looks like Fig. 7.6 with different parts involved in the process
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N2/H2 Mixture PlasmaTMA Pulse Ar Purge

Ar PurgeAr Plasma Annealing

Ar+
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Methyl
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Figure 7.5: The Atomic-Layer-Deposition procedures used to deposit ultra-high
quality AlN thin films. The Ar-plasma step is called Atomic-Layer-Annealing that
is used to locally heat the atomic layer just deposited to increase surface atoms’
mobility and help the layer to reach the ideal crystalline phase thermodynamically.

shown in Fig. 7.7. The system originally uses a Inductively-Coupled-Plasma (ICP)
to generate high density reactive H-plasma and N-plasma from the input gas mixture
in the ICP tube. Inert Ar gas can also be pumped into the chamber via another gas
port to create a low pressure environment to damp the kinetic energy of reactive
ions. The plasma power can also be used to tune the plasma ion kinetic energy and
density for achieving high quality thin AlN film. As the ALD process is a chemistry
dominated process that is driven thermodynamically, temperature of the substrate
and reactive ion kinetic energy are critical for achieving uniform self-limited atomic
layer-by-layer growth of a thin film as appropriate atom mobility can lead to higher
quality crystalline films. This is because the free energy of the desired crystal phase
with c-axis normal to the thin film surface is the lowest and thus thermodynamically
favored.

We grew multiple thin films initially and obtained high quality materials after fine
tuning the kinematics of the chemical process with the pressure and flow rate as well
as the plasma power shown in Fig. 7.8 and Fig. 7.9. In Fig. 7.8, it is obvious that
all the deposited films on Sapphire-[002] substrates (i) are significantly better than
the quality of films deposited on a silicon substrate (ii) with Si-[001] face. This is
because the ALD process is a low kinetic energy Chemical process. As a result, the
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Figure 7.6: The Atomic Layer Deposition (ALD) tool we used. The plasma tube is
later upgrade with a metal Hollow Cathode Plasma (HCP) tube to eliminate Oxygen
contamination due to deteriorating quartz ICP plasma tube.

grown AlN layer quality depends strongly on the lattice match between the substrate
surface and the AlN crystal plane of interest at the boundary. In Fig. 7.8a, a higher
power ALD process injects larger kinetic energy and mobility to the deposited Al
and N atoms. This consistently leads to an improvement in grown film quality. In
Fig. 7.8b, the thickness dependence shows that the film’s quality improves as the
film become thicker. This indicates that the upper layers of the grown thin film
is more crystalline than the lower layers of the AlN thin film near the interface
between the substrate and the film. This is because the lattice mismatch between
the substrate surface and the AlN crystal plane creates faults and disorders in the
interface layer of the AlN film. In Fig. 7.8c shows that the Atomic-Layer-Annealing
process which is supposed to yield better AlN crystal as it injects kinetic energy to
the deposited atomic layer of AlN and provides the Al and N atoms with sufficient
mobility to reach the thermodynamically preferred crystalline phase. However, if
the Ar-ions have too much kinetic energy, it will also provide too much energy to the
atomic layer of AlN and "melts" the crystalline structure of the formed AlN layer.
We also observed, in Fig. 7.9, a system drift in chamber conditions that can not be
corrected by just flushing the chamber with N-plasma to pre-condition the chamber.
Furthermore, the chamber deterioration also become more profound over a month’s
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N2

Ar

H+H2
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Figure 7.7: An illustration of the ALD deposition process during the H/N-plasma
step. Different gas atoms and ions are market with different colors according to the
legends on the upper left. Ar-gas is pumped into the system to serve as either a buffer
gas the create a small pressure in the chamber or a purge gas that remove reacted
gas from the chamber between two reactive steps. There is also a plasma tube that
ionize gas mixtures going through it. Here in the figure, H2 and N2 are injected
into the plasma tube and become H-ions and N-ions that can react actively with the
atomic layer of reactants deposited by the previous short pulse TMA injection on
the surface of the substrate.
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time and more high plasma power ALD runs.

We carried out XPS study of the deposited films’ Chemical composition and realized
a significant increase over time in Oxygen composition level in the film and later
realized that the quartz ICP plasma tube we used to generate the Chemically reactive
plasmahas been ion etched during the process and becomedark as shown inFig. 7.10.
Since the tube is made with Oxygen-rich quartz, the Oxygen contamination of the
film can be caused by the tube. We replaced the plasma tube with a Hollow-Cathode-
Plasma (HCP) source fromMeaglow Ltd. and the improvement was significant after
we conditioned the chamber with N-plasma for several rounds.

7.3 Sputtering Deposition of AlN Thin Layer and Electrodes
The previously discussed ALD process is a self-limiting Chemical Vapor Deposition
(CVD) method. It is a low kinetic energy surface chemistry dominated epitaxial
growth process. As a result, the process, even though can potentially create an
extremely high quality uniform ultra-thin film on a crystalline substrate, is intrin-
sically very sensitive to the ALD chamber chemical environment and substrate
surface morphology (roughness and crystal structure). Thus, ALD, despite of its
high potential, requires challenging fine parameter tuning and deep understanding of
chamber history. These practical complications often make it hard for reproducing
results reported in literature. A widely adopted alternative method for growing high
quality thin films is called sputtering deposition. It is a high kinetic energy physical
process dominated epitaxial growth process. Even though this technique is not
self-limited and may not produce the ultra-high quality film potentially achievable
with more chemical processes, it is relatively more robust in terms of reproducing
results presented in literature [61, 1, 68, 78, 77, 80, 59, 40, 55]. In this section we
will present our efforts to grow Molybdenum electrode thin film and AlN thin film
with sputtering. The tool (AJA Orion Sputtering System) looks like Fig. 7.11. The
processes and relevant system parts we used to deposit the Mo and AlN thin film
are shown in Fig. 7.12a and b respectively. The commercial magnetron sputtering
systemwe used can operate in three modes (DC, Pulsed-DC, RF) and it has magnetic
field generated by electromagnet below the target plate to confine ionizing electrons
near the target for increasing the ionization efficiency and local sputtering plasma
density. This also has the benefit of avoiding electron charging grown thin film on
substrate if it is insulating.
The system operating in the DCmode negatively bias the target such that sputtering
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Figure 7.8: a shows the plasma power dependence of deposited AlN quality on
Sapphire (i) and Si (ii) substrates. b shows the thickness dependence of the deposited
AlN thin film quality on Sapphire (i) and Si (ii) substrates. c is the comparison of
ALD process with or without Atomic-Layer-Annealing (ALA) shown in Fig. 7.5 as
the Ar-plasma step that transiently heats the newly deposited AlN atomic layer to
provide sufficient mobility to the atoms for them to reach the preferred crystalline
thermal equilibrium phase.
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Increase N2/H2 Flow by 25%

Increase Plasma Time by 10s
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Figure 7.9: This shows some of the later trials we conducted to improve and repeat
the previously obtained best result. It shows that non of the parameter tuning leads
to a better film quality. In the end, we tried to repeat the recipe for depositing our
previously obtained best film, the resulted film quality is still worse than the previous
best one obtained using the same parameters. This observation strongly indicates
an unknown system deterioration in the deposition chamber quality.

gas (Ar) is ionized and accelerated towards the target. These positively charged
ions then transfer their kinetic energy into the target material atoms which are then
sputtered out of the target into the vacuum. The sputtered target atoms then arrive
at the substrate and are deposited on the surface of the substrate. Such DC opera-
tion mode has been widely used for conductive targets as a constant DC bias will
accumulate charge on insulating targets. This accumulated charge will cancel the
bias voltage eventually and stop the sputtering process. As the target accumulates
charge, discharging arcs can also appear near the target which create uncontrolled
chemical reactions and contaminating droplets in the plasma leading to poor thin
film quality.

In the Pulsed-DC mode, the target plate can be biased with alternating periods of
positive and negative voltages. When it is negatively biased, sputtering plasma ions
are accelerated towards the target and electrons are driven away. When the target is
positively biased, electrons are attracted towards to target and ions are driven away.
The positive bias is critical for depositing insulating materials like the AlN. If AlN



144

Figure 7.10: The burned quartz plasma tube that was etched by the high power
plasma and generated excessive Oxygen into the ALD process chamber and con-
taminated the ultra Oxygen sensitive AlN process and caused deteriorating chamber
condition that yielded inconsistent AlN deposition results.
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Figure 7.11: The sputtering system we used in the Kaliv Nanoscience Institute
(KNI) cleanroom. This system has 8 magnetron guns and correspondingly 8 targets
in one chamber. This allows the system to co-sputter alloys and a variety of other
compounds. In this system, the distance between the substrate and the guns can also
be changed. However, it should be noticed that as the guns are not facing normal to
the substrate surface, the closer the substrate gets to the guns the more uniform the
sputtered film can be. This system also allows the sputtering to operate in DC mode
and RF mode introduced in this text.
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Figure 7.12: a, the reactive deposition of AlN thin film using RF sputtering. A
mixture of sputtering Ar (purple) and N2 (deep blue) gases are pumped into the
system and ionized near the target. Ar-ions (orange) and N-ions (light blue) sputter
the Al target and sputtered Al atoms react with N-ion in the chamber which then
fall on the substrate to form the thin layer of AlN. b, the DC sputtering of Mo thin
film. In this process, pure Ar is pumped into the chamber as sputtering gas. Mo
atoms sputtered by the Ar-ions will fall onto the substrate to form the uniform layer
of Mo. In contrast to depositing dielectric like AlN where a layer of insulating AlN
forms on the Al target and causes charge accumulation and detrimental discharge,
Mo deposition does not form this insulating layer and DC sputtering is sufficient for
this material.

deposition is done with Al target and N-plasma, an insulating AlN layer can form
on the target surface. This insulating layer will quickly accumulate charge when
the target is negatively biased. If the negative bias period is too long, this charge
will build up to a point where either it cancels the electric field of the negative DC
bias or causes discharge near the surface of the target. The cancellation of DC bias
stops the ionization of sputtering gas. The discharge generates arcs in the plasma.
The arcs generate noncrystalline material droplets that significantly contaminates
the deposited thin film on the substrate. To avoid these detrimental effects, the
length of the negative bias is limited and its is followed by a period of positive bias.
Positively biased target attracts electrons towards it to neutralize the positive charge
on the insulating surface of the target.

The target can also be driven with an RF source to ionize and accelerate sputtering
gas near the target plate. RF drive together with magnetic field near the target
keeps a high density of ionizing electrons near the target which efficiently ionize the
sputtering gas locally. As the electrons are quickly oscillating back and forth near
the target, the accumulated positive charge is neutralized. However, RF operation is
significantly more sophisticated as this requires a stable microwave source around
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13.56 MHz and a impedance matching network to match the RF drive with the
plasma impedance for efficient ionization. We have tried the processes listed in
Table.7.1 to deposit the films.
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Figure 7.13: TheXRDcurves of the deposited films using combinations of processes
in Table.7.1 on different substrates. The peaks are identified by comparing their θ
location with known diffraction angles of AlN-[002] crystal plane (2θAlN-002 ' 36°)
and Mo-[011] crystal plane (2θMo-011 ' 40°). We characterized AlN andMo crystal
quality using their diffraction peaks’ fitted Full-Width-Half-Maximum (FWHM).
Raw data of the XRD curves are in red and the fitted curves are in blue with green
representing a global slope correction.
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Fig. 7.13a.(i) shows the XRD curve corresponding to the process labelled as Mo1
in Table.7.1. This results in a Full-Width-Half-Maximum (FWHM) linewidth of
0.9°. Fig. 7.13a.(ii) is the XRD result for Mo3 which doubled the DC power to
400 W and resulted in a linewidth of 0.64°. Thus, Fig. 7.13amanifests the expected
outcome of increasing the DC power for depositing a better quality Mo thin film
as the higher kinetic energy of the sputtered atoms, the more compact and uniform
the metal film gets. Fig. 7.13b compares the influence of substrate on the quality
of deposited films. We experimented with deposition using Mo3 process on Silicon
substrate with Si-[001] face and SOI substrate with Si-[001] face. The two substrates
show almost identical XRD results with linewidth 0.66°and 0.63°respectively for
the Mo-[110] crystal plane. This means that the quality of deposited Mo is very
much kinematically define. As we have got a good enough layer of Mo grown on
Silicon and SOI substrates, we proceeded to experiment with depositing AlN on
sputtered Mo thin film in Fig. 7.13c where we use process AlN1 to deposit AlN
on Mo deposited with Mo3. We tested the combination of recipes on both Si and
SOI substrates. The room temperature processes didn’t lead to observable AlN
signature peaks, AlN-[002], on both substrates. The observed Mo-[110] peaks are
slightly broadened after the AlN deposition This can be due to the scattering of
the amorphous AlN layer on Mo. In Fig. 7.13d, we tried to deposit AlN2 film on
Mo1 film on both substrates and expected to see an improved AlN quality. This is
because high quality Mo films have rough top surface (large surface height standard
deviation in AFM) due to large grains present in a crystalline film. This roughness
will disrupt the periodic alignment of AlN crystal in the initial atomic layers of the
grown AlN film near the Mo surface even when aligned AlN crystal is thermody-
namically favored. Furthermore, as crystalline AlN alignment with c-axis normal
to the film surface is thermodynamically favored (this alignment has the lowest en-
ergy), sufficient thermal energy is needed for the deposited layers to spontaneously
align themselves. As a result, we useMo1which lead to a less idealMo thin film and
AlN2 that is heated and can potentially lead to better thermal dynamical equilibrium
(crystalline AlN). The XRD curves in Fig. 7.13d is what we expected. It should be
noticed that this group of results reflect the substrate dependence of the deposited
films’ quality. Fig. 7.13d.(i) is deposition on Si substrate with Si-[001] top face
and (ii) is deposition on SOI substrate. The SOI substrate led to a better AlN film
quality and this can be caused by the different thermal properties of SOI and Si
substrates that led to different Mo surface roughness. In the set of experimentation
on two different substrates shown in Fig. 7.13e, we still used the Mo1 process to
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grow the Mo layer on top of the substrates. The difference from the previous trials
is that we used the process AlN3 to deposit the AlN thin layer. This AlN3 process
used lower substrate temperature compared to AlN2 with other parameters kept the
same. This is because higher temperature can not only help the formed AlN atomic
layers to reach their thermal equilibrium favoring the crystalline formation of the
desired AlN-[002] crystal alignment, but also disturb the formed crystal alignment
due to excessive thermal kinetic energy. This means that there is a sweep point in
temperature that supply sufficient thermal kinetic energy for the AlN atoms to have
enough mobility to move away from thermodynamically meta stable alignments
and reach global minimum corresponding to the desired crystal phase, but the tem-
perature should be too high that the thermal energy "melts" the crystal phase. As
can be shown here, the deposited crystal quality is significantly improved with AlN
linewidths being 0.6°and 0.49°respectively on Mo/Si and Mo/SOI substrates. There
is still a substrate quality dependence in this set of trials as Mo can have different
surface typologies depending on whether it is deposited on Si or SOI. In Fig. 7.13f,
this set of experiment is to see if we can significantly improve the Mo layer quality
for further confirming that a more crystalline Mo layer leads to a more amorphous
AlN layer deposited on top of it. As we observed that high sputtered Mo kinetic
energy leads to more compact and thus a more crystalline Mo layer, we decreased
the sputtering chamber pressure by reducing the Ar gas flow which not only sputters
theMo target but also buffers the flow of sputteredMo atoms. This lowered pressure
in Mo4 in (i) and Mo5 in (ii) consistently leads to significantly improved Mo crystal
quality. Furthermore, we also increased the substrate temperature in Mo5 to pro-
vide sufficient mobility to the deposited Mo atoms to reach the thermodynamically
favored crystalline phase. As (ii) which used Mo5 showed better crystal quality
with FWHM∼ 0.52°as compared with (i) with FWHM∼ 0.35°, we conclude that
an appropriated heated substrate would help create a better Mo crystalline film in
sputtering. In Fig. 7.13g, we then deposited the AlN layer using AlN3 onto the Mo
film prepared previously with Mo5. This XRD curve showing an AlN peak FWHM
reaching 1.38°indicates that a more crystalline Mo layer does create a worse top
surface for deposited AlN to crystallize correctly.

The line shape of a XRD curve is determined by various thin film material proper-
ties. The width of the crystal axis peak is partially determined by the grain size of
the crystal. The area of it corresponds to the fraction of the crystalline phase region
in the thin film. It needs to be noted that the line shape can be a superposition of a
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narrower peak and a wide peak. This means that there is a high quality crystalline
region and amore amorphous region in the thin film. As can be seen in some figures,
the line shape can be distorted, and this distortion is a result of internal strain of
the film. Material growing on a substrate having different crystal lattice face at the
top surface can develop a large strain due to the lattice mismatch. Another factor
of intrinsic strain is the dislocation and vacancies in the thin film as a result of
nonuniform physical growth and kinetic impact of atoms on grown film. The strain
can be tuned by adjusting plasma power and chamber pressure to tune the kinetic
energy of impact atoms/molecules. However, this is also coupled with other pa-
rameters that determines the film growth rate and crystallinity. For example, higher
strain and high crystal quality are achieved with larger plasma power in traditional
magnetron sputtering systems. To achieve low strain high quality thin films, a new
S-gun magnetron system was recently developed.

In parallel to developing a sputtering process in house, we also purchased S-gun
magnetron sputtering services fromOEM Inc., who can sputter an ultra-high quality
AlN and Mo ultra-thin films on the silicon wafer we provided.
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C h a p t e r 8

HARDWARE EFFICIENT PROGRAMMABLE MULTI-QUBIT
ALL-TO-ALL COUPLING ARCHITECTURE: SPIDERMON

The rapid scaling up of superconducting quantum circuits composed of an increas-
ing number of superconducting Josephson junction qubits have called for innova-
tive methods for engineering hardware-efficient programmable on-demand all-to-all
multi-qubit coupling on a planar circuit.
Due to the lack of connectivity in most superconducting qubit architectures, novel
quantum programs that could be carried out with a manageable number of two qubit
gates between non-nearest-neighbor qubits are always mapped into much deeper
quantum circuits involving only two qubit gates between nearest-neighbor qubits.
In order to carry out a deep circuit using nearest neighbor interactions, two qubit
gates’ fidelity between nearest neighbors is required to be almost to unity. This has
become one of the major challenges in integrating an increasing number of super-
conducting qubits onto one chip with high fidelity controls containing single and
two-qubit gates implemented using complicate control circuit wiring. Currently,
this direction of scaling up superconducting qubit system has led to the noticeable
development of three-dimensional integration and packaging in major quantum in-
dustry companies and national labs.
Instead of developing complicated three-dimensional systems to wire up multiple
qubits that are nearest-neighbor coupled, I devised a way to couple these qubits
such that an arbitrary coupling graph between different qubit pairs can be gener-
ated pragmatically and controlled in time domain. The scheme of the coupling
looks like the one shown in Fig. 8.1. The N qubits in the system are detuned from
each other with detuning ∆i j = ωi − ω j . As they are commonly grounded via a
serially connected linear inductor Lg and a SQUID loop with effective Josephson
junction inductance LgJ, inductive coupling between the i-th qubit and the j-th qubit
is gi j = (Lg +

LgJ

cos π Φex
Φ0

)
√
ωiωj

2
√

LiLj

, where ωi and Li are the frequency and inductance

of the i-th qubit. Φex is the externally threaded flux through the SQUID loop and
Φ0 is a magnetic flux quanta. We can drive the external magnetic flux such that
Φex(t) = Φ0

ex + AΦΦ0 cosωdt and obtain (8.1)-(8.4).
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Figure 8.1: The proposed multi-qubit coupling scheme that programmably couples
N qubits (in red) together via a common modulated SQUID (yellow) serially con-
nected to a linear inductance (yellow) before going to the ground. The SQUID
is externally driven (yellow) with AC flux modulation having multiple frequency
components shown in the lower left modulation signal spectrum. All the qubits can
be measured and controlled independently via separate readout resonators (blue)
and Purcell filters (green).
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gi j(t) ' g0 + g1 AΦΦ0 cos (ωdt + φi j) + g2 A2
ΦΦ

2
0 cos (ωdt + φi j)

2 +O(A3
Φ
Φ

3
0)

(8.1)

g0 =

√
ωiω j

2
√

Li L j
(Lg +

LgJ

cos πΦ
0
ex
Φ0

) (8.2)

g1 =
LgJ

2
√

Li L j

√
ωiω j

π tan
(
π
Φ0
ex
Φ0

)
Φ0 cos (πΦ

0
ex
Φ0
)

(8.3)

g2 =
1
2

LgJ

2
√

Li L j

√
ωiω j

π(1 + sin (πΦ
0
ex
Φ0
)
2
)

Φ0 cos (πΦ
0
ex
Φ0
)
3 (8.4)

We can choose the D.C. bias of the external magnetic flux such that Φ0
ex =

Φ0
π arccos (− LgJ

Lg
). This choice of external flux bias will lead to Lg +

LgJ

cos π Φ
0
ex
Φ0

= 0. If

the linear inductance is designed to have LgJ ∼ Lg, Φ0
ex ' Φ0. The coupling will

become (8.5) and different orders of the coupling coefficients are plotted in Fig. 8.2.

gi j(t) '
LgJ

4
√

Li L j

√
ωiω jπA2

ΦΦ0 cos (ωdt + φi j)
2 +O(A4

ΦΦ
4
0) (8.5)

If the external flux modulation frequency ωd is chosen such that ωd = ∆i j , photon
hoping between the i-th qubit and j-th qubit can be effectively induced as shown in
the rotational-wave-approximation (RWA) illustrated in (8.6)-(8.8).

Ĥ =
~

2

∑
k

ωkσz,k

+ ~
∑

i j

gi j(t)(σi+σj− + σi−σj+)
(8.6)

Ûint = e
it
2

∑
k ωkσz,k (8.7)

Ĥint,RWA = ~
∑

i j

gi j(t)(σi+σj−ei(ωi−ωj )t + σi−σj+ei(ωj−ωi)t)

'
LgJ

16
√

Li L j

√
ωiω jπA2

ΦΦ0(σi+σj−e−φi j + σi−σj+e−φi j )
(8.8)

This technique can clearly be extended to controlling multiple two qubit couplings
at the same time by multiplexing in frequency domain multiple phase coherent mi-
crowave tones in the coupler SQUID flux modulation as shown in the lower left part
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Figure 8.2: The DC parts of the coupling inductance are plotted on against the
left (blue) axis. This shows that the Josephson junction inductance (solid blue)
cancels the linear inductance (dashed blue) in the unit of SQUIDminimum effective
Josephson junction inductance (LJg) around the Φ0

ex ∼ Φ0 bias point. The higher
orders of the coupling (g1, g2, g3, g4) when the flux is modulated slightly around
the bias point are plotted against the right (red) axis in the unit of g0. It can be seen
that the odd orders vanish at the bias point and even orders are non-vanishing.

of Fig. 8.1.

Furthermore, if the coherent modulation tones are phase correlated so that phase
difference between any pair of tones is composed of a free time evolution contribution
with a constant phase offset, the induced photon hoping will have hoping direction
dependent phases that break the time-reversal symmetry of the system. Another
aspect of coupling multiple qubit with programmable arbitrary connection graphs
is the possibility to synthesize exotic topology in higher dimensions.
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Figure 8.3: a, the example application of the hardware efficient programmable mul-
tiqubit coupling scheme to a four qubit device. b, this system can also be mapped
into a quasi-3D tetrahedron connectivity structure where photons flow on the edges
of the tetrahedron. d, we drive the coupling between four detuned qubits with qubit
frequencies in c via six external flux drive tones that are phase correlated. The
correlated phases can be used to break the time reversal symmetry of photon hoping
on between the qubits. Novel applications including cryogenic high efficiency cir-
culator can be realized with this device to realize scalable superconducting quantum
network in microwave domain in a DF between multiple qubit chip packages. This
can also be used to simulate non-trivial topological photon current in a synthesized
high dimensional structure.
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8.1 Time-reversal Symmetry Broken Interacting Photonic Tetrahedron Lat-
tice

As a concrete example, Fig. 8.3 shows that we can synthesizes a tetrahedron pho-
tonic lattice with as few as four qubits that are fully connected in a programmable
way. Moreover, the time-reversal symmetry of a photon hopping on the edges of the
tetrahedron is broken with phase correlated flux modulation tones. The physics of
time reversal symmetry broken tetrahedron photon lattice can be captured with the
following Hamiltonian (8.9). This Hamiltonian is written in a form that highlights
the slightly anharmonic bosonic resonator nature of transmon qubits. In this form,
it is clear that the anharmonicity of a transmon qubit site can be equivalently viewed
as a reflection of on-site attractive interaction (Uk < 0) between interacting photons
in the quantum circuit induced by the Josephson junction that is an nonlinear in-
ductance element. This Hamiltonian can be further transformed into the interaction
picture as (8.10) assuming that the coupling coefficients are modulated with phase
correlated tones matching the detunings between each qubit pairs with phase factor
eiφp,q . This interaction picture Hamiltonian can be solved to obtain its eigenstates
and energies of for a single photon excitation manifold.

H4q =

4∑
k=1
~ωk ĉ†k ĉk + ~Uk ĉ†k ĉk ĉ†k ĉk

+

4∑
p=1,q>p

~
(
gp,q(t)ĉ†pĉq + gp,q(t)∗ĉpĉ†q

) (8.9)

H4q,int =

4∑
p=1,q>p

~g̃p,q

(
eiφp,q ĉ†pĉq + e−iφp,q ĉpĉ†q

)
(8.10)

The solved energy energies of the single-photon excitation manifold as a function
of total photon hoping phase accumulated in a path through all nodes without
any self-intersection is shown in Fig. 8.4a assuming that gp,q(t) = geiφp,q . We
can also measure the photon current flowing through each edge and plot them in
Fig. 8.4b − f for φtot = φ41 and other φpq = 0. The colors of the different curves
in Fig. 8.4b − f correspond to the energy levels with the same colors in Fig. 8.4a.
The photon current can be measured using averaged the Pauli operator correlations
Ip,q =

〈
σ̂p,xσ̂q,y

〉
−

〈
σ̂p,yσ̂q,x

〉
of nearest qubit sites p, q on the coupling graph

Fig. 8.3b. This current variable is in the unit of g which is photon hoping rate
between nearest neighbors. A derivation of the form used for photon current can
be found in [106]. It should be emphasize that the non-zero photon currents in
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Figure 8.4: a, the single photon manifold energy levels of the four qubit spidermon
system in time-independent interaction picture frame following from (8.10) for
different total photon hopping phase φtot accumulated in a path (1 → 2 → 3 →
4→ 1) passing all sites without self-intersections. b − f, the photon current of each
edge in the tetrahedron if φtot = φ41 and other φpq = 0. Colors of different current
curves correspond to different energy levels in a. The current I2,3 is not plotted as
I2,3 = 0 with the chosen phase (gauge field flux) distribution on the photonic lattice.

Fig. 8.4b − f are spontaneous as they are currents flowing in a single photon eigen-
state of the four qubit system. These currents are nontrivial since the eigen-states
are stationary states of the system and their photon distribution should be time
independent. These currents are examples of Chiral edge currents in a topological
condensed matter system or a synthetic topological photonic material.

Besides simulating novel physics in a higher dimension with planar structures, this
type of device can also be used to build high efficiency cryogenic circulator to route
photons between superconducting chips in the same dilution refrigerator. Such
circulators will be extremely low loss and are critical for building superconducting
quantum network that connects multiple well packaged superconducting quantum
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Figure 8.5: The Scanning ElectronMicroscope (SEM) image of one of the fabricated
two qubit device that are coupled together via a tunable coupler to realize photon
hoping between detuned qubits assisted with an external flux modulated coupler.

processors into a large quantum system.

Experimentally, we built two generations of test devices to test the idea of inducing
photon hoping between detuned qubits via modulating the coupling between them.
The first chip is shown in Fig. 8.5. It has two qubit inductively coupled via a common
SQUID coupler to the ground and the SQUID in this design is not serially connected
to a linear inductor. This results in a non-zero static coupling term g0 , 0. The
coupling between the two qubits can be written as (8.1) with Lg = 0.

To avoid a large static coupling between the two qubit that hybridizes the two qubit
unintentionally despite of their large detuning, the coupler SQUID’s junctions’
inductance needs to be small. However, this introduces two issues. One issue
is that the time dependent oscillating part’s induced photon hoping rate is also
proportional to the SQUID inductance and reducing it will also significantly reduce
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the parametrically induced hoping rate for a given fluxmodulation amplitude. This is
a fundamental issue as the flux modulation amplitude is bounded since the SQUID’s
effective inductance is periodic in the external flux. Driving with flux modulation
amplitude greater than 0.5Φ0 is not going to benefit the coupling parametrically
induced photon hoping rate. Another more practical issue related to fabrication is
that a small Josephson junction inductance corresponds to a large junction area. This
is particularly difficult with our current fabrication techniques that are tailored to
reliably yield small size junctions suitable for making high quality superconducting
transmon qubits as a smaller junction has in generally smaller number of two-level-
systems (TLSs) that can rapidly decohere the junction’s transmon qubit. To be more
specific, coupling SQUID’s Josephson junctions’ areas in our fabrication calibration
need to be larger than 1µm2 while the concurrently fabricated superconducting
transmon qubits’ Josephson junctions’ areas are about 0.07µm2. The second issue
experimentally lowered the fabrication yield of such devices significantly unless
we completely alter the fabrication processes which involve replacing the double
layer electron resist mask with metal mask or using the Manhattan style junction
fabrication process instead of the Dolan-Bridge junctions.
After characterizing this two qubit design in cryogenic environment, we shifted
our attention to the design with the coupler SQUID serially connected to a linear
inductance. In order to increase our success rate in observing parametrically induced
photon hopping between a pair of detuned qubits, we also extended the device to
include four single junction superconducting transmon qubits seen in Fig. 8.6.

The DC flux bias was taken to cancel the serial linear inductance. In this scheme, it
is critical to have a stable bias current source to generate a stable external magnetic
flux for the coupler SQUID to cancel the slightly large linear inductance Lg. The
modulation tones were put into the coupler via phase correlated waves synthesized
by our keysight AWG cards and mixed to a stable microwave tone generated by
an external RF-generator. This mixed microwave flux modulation pulse is further
mixed with the DC bias current using a bias-tee in the DF MC stage where the
superconducting quantum circuit is located before going into the SQUID coupling
flux control line.

8.2 Controlling and Measuring Slightly Hybridized Multiqubit system
In a general multiqubit system, there can be unwanted couplings between qubits
that are far detuned. These couplings slightly hybridize the system such that the
energy levels of the system used for storing and manipulating quantum information
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Figure 8.6: a, The four qubit spidermon device that has a linear inductance serially
connected to a SQUID device. This device has four far detuned single junction
transmon qubits that can be individually controlled and read out. The coupler
region is highlighted in a red-dashed box. b, the zoomed in view of the coupler in
the red-dashed box. The linear inductor is highlighted in the blue region and it is
serially connected to a SQUID device in the green region.

are supermodes formed by slightly hybridized qubits. If the control and readout
schemes, still assume that the far detuned qubits are orthogonal with each other,
the qubit gate and readout fidelity will be reduced with reduction positively related
to the extend of hybridization which rotates the system Hilbert space’s eigen basis
away from the basis formed by direct product of eigen states of each qubit. The
accidental hybridization can be an important factor to be considered in spidermon
system as several qubits are coupled together via a common current path. In this
section, I will analysis the influence of such slight hybridization and propose how
we can measure and appropriately combine control pulses to directly measure and
address the true eigen basis of the system.

As a first step, we can start with analyzing a two qubit system having two far detuned
qubits weakly coupled with coupling rate g0

12. It can be seen that we also included
the readout resonators into the system for looking at the hybridization’s influence
on our qubit state measurement. There are also two XY-drives on the qubits.
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The system’s Hamiltonian can be written as (8.11).

Ĥ2q =
1
2
~ω1σ̂zq1 +

1
2
~ωq2σ̂z2

+ ~g12(σ1+σ2− + σ1−σ2+)

+ ~(ωr1 − χ1σ̂zq1)â
†

1â1 + ~(ωr2 − χ2σ̂zq2)â
†

2â2

+
1
2
~Ω0

1(σ1+ + σ1−) cos(ωd1t + φ1) +
1
2
~Ω0

2(σ2+ + σ2−) cos(ωd2t + φ2)

(8.11)
where the rising and lowering operators for our qubits are σk,± = σk,x ± iσk,y with
k = 1, 2. We also have that σ̂zk = 2σk,+σk,− − 1. Notice that the form in the above
expression already diagnalized the dispersive interaction between the qubits and the
readout resonators. As a result, the qubits and readout resonator frequencies are
already renormalized.

Take the following transformations in (8.12) and (8.13).[
σs−

σa−

]
=

[
α1 α2

β1 β2

] [
σ1−

σ2−

]
(8.12)[

σ1−

σ2−

]
=

1
α1β2 + α2β1

[
β2 β1

α2 −α1

] [
σs−

σa−

]
=

[
β′2 β′1
α′2 −α

′
1

] [
σs−

σa−

]
(8.13)

As the two qubit part of the Hamiltonian in (8.11) can be rewritten as (8.14)

Ĥq−q =
[
σ1+ σ2+

] [
ωq1 g12

g12 ωq2

] [
σ1−

σ2−

]
=

[
σs+ σa+

] [
β′2 β′1
α′2 −α

′
1

]† [
ωq1 g12

g12 ωq2

] [
β′2 β′1
α′2 −α

′
1

] [
σs−

σa−

] (8.14)

The super-mode transformation should transform the basis into the eigen basis of
the qubit-qubit system that diagonalize the qubit-qubit part of the Hamiltonian. By
solving the diagonalization problem in (8.15).[

β′2 β′1
α′2 −α

′
1

]† [
ωq1 g12

g12 ωq2

] [
β′2 β′1
α′2 −α

′
1

]
=

[
λ+ 0
0 λ−

]
(8.15)

We can find diagonalization leads to (8.16) and (8.18) with eigen basis rotational
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angle defined by (8.17).

λ± =
(ωq1 + ωq2) ±

√
(ωq1 − ωq2)2 + 4J2

2
(8.16)

tan(θ±) =
λ± − ωq1

g12
(8.17)[

β′2 β′1
α′2 −α

′
1

]
=

[
cos (θ+) cos (θ−)
sin (θ+) sin (θ−)

]
(8.18)

Applying the above eigen basis rotation matrix to the driving part of the Hamiltonian
in (8.11) we can obtain (8.19).

Ĥdrive =
~

2
Ω1(t)(σ1+ + σ1−) +

~

2
Ω2(t)(σ2+ + σ2−)

=
~

2
(Ω1(t)β′2 +Ω2(t)α′2)(σs+ + σs−) +

~

2
(Ω1(t)β′1 −Ω2(t)α′1)(σa+ + σa−)

(8.19)[
Ω1(t)

Ω2(t)

]
=

[
β′2 β′1
α′2 −α

′
1

] [
Ωs(t)

Ωa(t)

]
(8.20)

In (8.19) and (8.20), we assumed that absorbed the time dependence of the XY-
Drives such that Ωk=1,2,a,s(t) = Ω0

k=1,2,a,s cos
(
ωd,k t + φk

)
where Ω0

k=1,2 is the single
qubit XY-Drive Rabi frequency.

It can be seen from (8.20) that a simple linear combination of control pulses on the
two qubits with appropriate driving frequency, phases, and amplitudes can allow us
to directly manipulate the eigen basis of the qubit system with high fidelity. More
generally, it can be shown that for a multi-qubit system hybridized in a way that
can be represented by a basis transformation matrix T̂ in (8.21) the drive is also
transformed according to (8.22).

σ1−

σ2−
...

σN−


= T̂


σ̃1−

σ̃2−
...

σ̃N−


(8.21)


Ω1(t)

Ω2(t)
...

ΩN (t)


= T̂


Ω̃1(t)

Ω̃2(t)
...

Ω̃N (t)


(8.22)
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In order to measure the quantum state now stored in the Hilber space with rotated
eigen basis due to the hybridization, we need to understand the relation between
the projective map on to the eigen basis and the dispersive shifts of the readout
resonators. The qubit state dependent dispersive shift of the k-th readout resonator
can be written as (8.23) using the transformation matrix defined in (8.21).

∆ω̂r,k = −χkσz,k = −χk

[∑
j

|Tk, j |
2σ̃z, j +

∑
i j

T∗k,iTk, j σ̃i+σ̃j−

]
(8.23)〈

∆ω̂r,k
〉
= −χk

∑
j

|Tk, j |
2 〈
σ̃z, j

〉
(8.24)

The system state measurement is done with averaging the qubit state dependent
readout resonator frequency shift as in (8.24). If the mode hybridization is signif-
icant, we can extract the coefficients of the transformation matrix Ti j using very
weak continuous microwave drive to drive the system from different XY-Control
ports and measure all the readout resonators’ frequency shifts.

The weak drive when resonant with the eigen mode of the system can drive the eigen
mode into an equal mixed state of ground and excited states leading to an average
occupation number ∼ 0.5, Other modes due to large drive-mode detunings and
weak drive amplitude will lead to negligible average populations and contributions
to readout resonator frequency shifts for these non-resonantmodes. The step-by-step
process is as follows:

1. Characterize the readout resonator frequencies without qubit drives.

2. Continuously drive the j−th XY-Control port with sweeping amplitude and
frequency around the j−th qubit’s designed frequency.

3. Observe the frequency responses of all readout resonators using VNA

4. Identify the XY-Control drive frequency and smallest amplitude that leads to
significant frequency shifts in at least one of the readout resonators.

5. Record the frequency shifts of all readout resonators. The i−th readout
resonator’s frequency shift ∆ωr,i j = −0.5χi |Ti j |

2.

6. Repeat the above steps from Step.2 for the ( j + 1)−th XY-Control port until
all the XY-Control ports are probed and all ∆ωr,i j are obtained.



167

7. Because T̂ is unitary,
∑

j |Ti j | = 1 ∀i = 1, 2, . . . , N . χi = −2
∑

j ∆ωr,i j and
then we can have |Ti j | =

√
−2∆ωr,i j/χi.

It should be remarked that the above method for accurately identify amplitudes of
the transformation matrix coefficients is most useful when the hybridization is large
since readout resonator frequency shifts caused by slight qubit hybridization can
be much smaller than the linewidth of the readout resonators. In the case of very
slight hybridization, the j−th readout resonator frequency shift can be regarded
as a good proxy for measuring the state of the system eigen mode that is almost
overlapping with the resonator’s directly coupled fabricated qubit. In the case of
very slight hybridization, a more general automated machine learning based routine
can be used to learn the XY-Control transfer matrix T̂ for generating optimal pulse
combinations to create gates for the multi-qubit system.
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C h a p t e r 9

CONCLUSION

The rapid rise of quantum information technology (QIT) in recent years has signaled
the advent of a new stage in technology evolution where the scalability of quantum
systems far beyond the existing architectures is at the center of today’s quantum
technology breakthroughs. In this work, I introduced my efforts in engineering
preliminary hybrid quantum devices that can potentially become the foundation of
future scalable quantum systems for quantum computation, communication, and
sensing.

Using engineered optomechanical interactions between high-finesse optical cavities
andmechanical resonators, we created a device that can unidirectional route photons
on an integrated photonic microchip composed of patterned suspended crystalline
silicon membrane [37]. Such optomechanical interaction is also used to probe and
demonstrate that ultra-high quality phononic cavities having mechanical frequency
∼ 5 GHz can store the energy of this mechanical mode with relaxation time reaching
1 s in a 10 mK environment [74].

The ultra-high quality phononic cavities created are based on synthetic crystals for
trapping the mechanical modes of interest. Such structures that localize mechanical
motions into a highly confined volume have an extremely compact footprint on a
planar silicon structure. These devices are compatible with the prevailing planar
superconducting quantum logic circuits composed of superconducting transmon
qubits that operate around 5 GHz with lifetime . 100 µs [52, 10, 7, 66, 60]. As
a scalable quantum computing architecture based superconducting transmon qubits
may require a quantum version of VonNeumannArchitecture (VNA) [85]. VNAhas
been commonly used in all current classical computing systems since its introduc-
tion in 1940s for efficiently scaling up early computers. This proven path in scalable
classical digital computing hints the potential adoption of Quantum Von Neumann
Architecture (QVNA) in near future quantum computers. This requires ultra-high
coherence quantum memory elements having lifetime much longer than the super-
conducting qubits and demand close to unity qubit-memory read-write fidelity. The
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small footprint and ultra-high quality of phononic quantum acoustic memory can
lead to multiplexed quantum memory bank that further boost the functionality of
QVNA based on high frequency phononic quantum memories. Ultra-high fidelity
two-qubit gates can be carried out in a memory bank [52]. This together with
ultra-high single qubit gates in electric domain can lead to a new architecture for
building fault-tolerant quantum computers in near future. In order to couple a quan-
tum electric circuit with this promising phononic quantum memory, we choose to
use piezoelectric coupling as the transduction mechanism and developed ways to
deposit high quality piezoelectric AluminumNitride (AlN) layer and electrodes (Mo
and Al). We also adopted industrial deposition services that deposit an ultra-high
quality thin AlN layer on our supplied SOI wafers.

Using piezoelectric thin film AlN having thickness around 300 nm and novel pro-
cessing techniques [23, 129], we designed, fabricated, and patterned piezoacoustic
Lamb resonators having a 3 GHz piezoacoustic mode optimally matched with in-
terdigitated electrodes. Several Lamb resonator are coupled to a superconducting
qubit for hybridizing the qubit with multi-mode acoustic memory bank. Microwave
transmission lines are also directly connected to these acoustic resonators to spectro-
scopically study the coupling spectra of fabricated piezoacoustic Lamb resonators
of various sizes. The mode-matched Lamb resonator creates an highly efficient
interface between the microwave electric domain and microwave acoustic domain
on silicon. The microwave acoustic degree of freedom in a silicon membrane can
be further coupled to optical degree of freedom in telecommunication band to assist
quantum high-fidelity and high-SNR transduction between microwave photons and
telecommunication photons.

Furthermore, I introduced a viable phononic quantum memory architecture based
on engineered piezoelectric virtual coupling channels to have an integrated quan-
tum acoustic memory that can dynamically switch between an idle-state and a
swap-state. In the idle-state where the virtual coupling is turned off, the ultra-high
coherence (relaxation time ∼ 1 ms) is achieved in the phononic memory and the
superconducting qubit’s high bare coherence (T1 ∼ 10 µs) is preserved. In the swap-
state, high fidelity (∼ 1) quantum state transfer is realized between the qubit and
thememory via a high cooporativity (∼ 105) virtual piezoelectric coupling interface.
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A scalable quantum computing architecture based on QVNA not only requires high
quality on-demand quantummemory but also demands a programmable and scalable
quantum logic circuit architecture. Near the end of this dissertation, I introduced my
latest work on creating a novel programmable multi-qubit coupling scheme which is
hardware-efficient, fast, high-fidelity, and non-nearest neighbor in a planar circuit.
The scheme can be used to created in-situ controlled time-dependent couplings
between arbitrary qubit pairs in a cluster of qubits. This can for example create a
time-reversal symmetry broken photonic lattice that processes nontrivial persistent
photon currents in eigen-states of single-photon and two-photon manifolds. This
readily allows the creation of a high-efficiency large-bandwidth microwave photon
circulator [14] based on time-reversal symmetry broken photon-hopping and para-
metric amplifications created with phase correlated multi-tone coupling pulses to
modulate the couplings of between qubit pairs. The scheme opens doors for a variety
of near-term novel experiments including high-connectivity floquet-engineering [34,
140], synthetic high-dimension topological photonic lattices, and demonstrations of
small qubit system fault-tolerant protocols [45, 19] with frequency domain multi-
plexed programmable controls.

In conclusion, this dissertation shows preliminary steps towards building various
parts required for constructing scalable quantum systems for the progression of
quantum information technology in the near-term Noisy Intermediate-Scale Quan-
tum (NISQ) era.
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A p p e n d i x A

DETAILS ON DESIGNING ULTRA-HIGH COHERENCE
MICROWAVE PHONONIC QUANTUM RANDOM ACCESS

MEMORY

A.1 Finite-element Simulations and Device Parameters
Due to the complexity of piezoelectric field distributions for different piezoacoustic
modes, analytic computation of the coupling strength between different modes
and the electric circuit is in general not feasible. Finite-element-method (FEM)
numerical simulations can be very efficient in solving frequency-domain responses
of the structure. Sec. A.1.1 discusses a method utilizing field overlap integral [53]
to calculate the piezoelectric coupling rate of a piezoacoustic eigenmode to an
electromagnetic mode in an external electric circuit. Sec. A.1.2 introduces another
method to synthesis an equivalent circuit and calculate its piezoelectric coupling
rate to the rest of the microwave circuit. This method relies on the simulated
frequency-domain admittance response of a piezoelectric system.

A.1.1 Coupling Rate Via Field Overlap Integral
Due to the broken central symmetry in a piezoelectric material crystal structure,
deformation will significantly impact its charge distribution, leading to electric
polarization. The mechanically induced polarization density in the dielectric can be
described as (A.1),

#»
Pm = [d] #»σ. (A.1)

where [d] is a 3 × 6 matrix called piezoelectric coupling coefficient matrix and #»σ is
the mechanical stress field written as a vector of 6 elements. External electric field
( #»
E e) can also generate trivial linear dielectric polarization field expressed in (A.2),

#»
P e = ([ε] − ε0I)

#»
E e, (A.2)

with permittivity matrix, [ε], and identity matrix, I. As a result, the total displace-
ment field generated by a given stress field and an external electric field is (A.3).
Similarly, the strain field can also have an external electric field contribution due to
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the inverse coupling matrix as in the second term of (A.4).

#»
D = [d] #»σ + [ε]

#»
E e (A.3)

#»s = [c] #»σ + [d]t
#»
E e (A.4)

They form a set of coupled equations that determine the mechanical and electrical
responses of the piezoelectric material. In weak coupling limit, energy transfer
between external electric field #»

E e and stress field #»σ can be understood with pertur-
bation theory leading to the overlap integral (6.12) discussed in the main text.

A.1.2 Coupling Strength via Circuit Equivalence
Piezoelectric devices have beenwidely used in integratedmicrowave circuits as com-
pact filters due to their electrical response. For an electric circuit, the piezoacoustic
resonator can be equivalently viewed as a lump electric resonator with effective
inductance Lpa and capacitance Cpa [130, 90, 8]. The simulated admittance of the
piezoelectric mode of interest is shown in Fig. A.1. There are different ways of syn-
thesizing an equivalent circuit corresponding to a simulated admittance. The most
commonly used is a serial circuit model where the piezoacoustic mode is mapped
into serially connected motional inductance Lpa and motional capacitance Cpa. The
mechanical mode corresponds to an admittance pole. In the serial equivalent circuit
model, the effective inductance can be intuitively understood as a representation of
a mechanical resonator mass inertia. This equivalent serial LC resonator is further
parallelly connected to the linear capacitance Cg, which corresponds to the motion
independent capacitance between the electrodes. It represents the low-frequency
electric response of the system. A fit to the admittance as shown in Fig. A.1 extracts
the effective inductance and capacitance.

The equivalent model can be used to determine the coupling rate (Jp) between the
piezoacoustic resonator with frequency ωm and a resonant electric resonator having
total capacitance Cµ = (CI + Cg) as:

Jp =
ωm

2

√
Cpa

(Cµ + Cpa)Cpa
. (A.5)

Furthermore, the equivalent circuit model can be readily used to extract the piezoa-
coustic resonator’s external coupling rate, κex = Z0/Lpa, to amicrowave transmission
line by comparing (A.6) and (A.7) for transmission line coupled to an one-side res-
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Figure A.1: The admittance of the proposed piezoelectric resonator in the inter-
mediate system. The simulated data is fitted with a serial resonator model that is
illustrated as an inset. The equivalent circuit variables are defined in the inset as
dielectric linear capacitance Cg, the motional inductance Lpa and capacitance Cpa.
The piezoacoustic resonance is ωpa =

1√
LpaCpa

.

onator.

S11 =
Zpa − Z0

Zpa + Z0
(A.6)

S11 =
(κ0 − κex)/2 − i(ω − ωpa)

(κ0 + κex)/2 − i(ω − ωpa)
(A.7)

where the Zpa = 1/Ypa is the frequency-dependent impedance of the piezoelectric
resonator and Z0 is the characteristic impedance of the transmission line used to
couple the mechanical resonator. To have a better comparison with the single side
coupled cavity response (A.7) for extracting corresponding parameters, an arbitrarily
small resistance, R, serially connected with the serial-LC resonator can be assumed.
It is straightforward to show that κex/2π = 57 kHz for direct transmission line
coupling to the mechanical resonator assuming Z0 = 50 Ω.
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A.2 Derivation of Multi-channel Virtual Coupling
In general, the coupling between a cavity and a qubit via multiple intermediate levels
can be written in the following Hamiltonian (A.8) and (A.9),

Ĥsys = ~ωmâ†â + ~ωq
σ̂z

2
+

∑
k
~ωkb̂†kb̂k + Ĥint, (A.8)

Ĥint =
∑
k
~
(
g∗k b̂†kâ + gkb̂kâ†

)
+ ~

(
J∗k b̂†kσ̂− + Jkb̂kσ̂+

), (A.9)

where all the involved intermediate bosonic levels are labeled as b̂k in the Hamil-
tonian. Jk and gk are coupling of the k-th intermediate level with the qubit and
memory cavity respectively.

The four-body dynamics of the system can be simplified by eliminating the inter-
mediate system’s degrees of freedom. The first step is to transfer the system in to an
approximately diagonalized frame via the unitary transformation (A.10) assuming
that ωm ' ωq,

Û = exp
©«
∑
k

(gkâ† + Jkσ̂+)b̂k
− (g∗kâ + J∗k σ̂−)b̂

†

k
ωm − ωk

ª®®®®¬
. (A.10)

In the dispersive limit where |ωk −ωm | � |Jk |, |gk |, the transformed system Hamil-
tonian can be simplified after ignoring higher order terms into (A.11),

Ĥeff = ~ω
′
mâ†â + ~ω′q

σ̂z

2
+ ~(J∗vcâ

†σ̂− + Jvcâσ̂+), (A.11)

where ω′m and ω′q are renormalized frequencies of the two resonant cavities. The
frequency shifts are small in this limit and we can always tune the qubit frequency
slightly such that ω′m = ω′q. The effective coupling rate, Jvc, can be expressed as
follows in (A.12),

Jvc =
∑
k

g∗kJk
ωk − ωm

. (A.12)

In the case where the intermediate system contains two strongly coupled resonant
cavities, the two hybridized levels are symmetric and anti-symmetric superpositions
of the two cavity modes. We can analysis the effective dynamics by going into
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the frequency-domain considering that diagonalizing the intermediate double cavity
first in (6.23) and (6.24) will reveal a correspondence that g± = ±Jm/

√
2 and

J± = Jq/
√

2 for symmetric (+) and and anti-symmetric (−) super-modes. Starting
from the four-body system Hamiltonian in (A.13),

H4−body = ~ωmâ†â + ~ωq
σ̂z

2
+

∑
k=±

~ωkb̂†kb̂k

+
©«
∑
k=±

~
(
g∗k b̂†kâ + gkb̂kâ†

)
+ ~

(
J∗k b̂†kσ̂− + Jkb̂kσ̂+

) ª®®¬
, (A.13)

weobtain the following quantummaster equations ofmotion (EOMs) in (A.14)−(A.16).

Û̂σ− = −ωqiσ̂− −
Jq
√

2
ib̂+ −

Jq
√

2
ib̂− (A.14)

Û̂a = −ωmiâ −
Jm
√

2
ib̂+ +

Jm
√

2
ib̂− (A.15)

Û̂b± = −ω±ib̂± ∓
Jm
√

2
iâ −

Jq
√

2
iσ̂− (A.16)

The time-domainEOMscan be further Fourier-Transformed into their dual frequency-
domain forms as a set of simple linear equations in (A.17)−(A.19).

− ωi ˜̂σ− = −ωqi ˜̂σ− −
Jq
√

2
i ˜̂b+ −

Jq
√

2
i ˜̂b− (A.17)

− ωi ˜̂a = −ωmi ˜̂a −
Jm
√

2
i ˜̂b+ +

Jm
√

2
i ˜̂b− (A.18)

− ωi ˜̂b± = −ω±i ˜̂b± ∓
Jm
√

2
i ˜̂a −

Jq
√

2
i ˜̂σ− (A.19)

To eliminate the detuned intermediate system degrees of freedom and extract the
two-body dynamics between the near resonant resonant qubit and memory, we can
solve for the intermediate system’s ˜̂b± as functions of ˜̂σ− and ˜̂a in (A.20).

−ωi ˜̂b± =
−

Jq
√

2
˜̂σ− ∓ Jm√

2
˜̂a

ω± − ω
(A.20)

Plugging the solution back into (A.17) and (A.18), we can solve for the ˜̂σ− and ˜̂a as
follows in (A.21) and (A.22), respectively.
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−ωi ˜̂σ− = −
©«
ωq−

J2
q
2

(
1

ω+−ω
+ 1

ω−−ω

) ª®¬ i ˜̂σ−

−
JqJm

2
i
(

1
ω− − ω

−
1

ω+ − ω

)
˜̂a

(A.21)

−ωi ˜̂a = −

(
ωm−

J2
m
2

(
1

ω+−ω
+ 1

ω−−ω

) ) i ˜̂a

−
JqJm

2
i
(

1
ω− − ω

−
1

ω+ − ω

)
˜̂σ−

(A.22)

The effective virtual coupling rate (Jvc) and renormalized effective qubit andmemory
frequencies (ω′q and ω′m) can be extracted from the above solutions and arrive at
(A.23)−(A.24) shown below.

Jvc =
JqJm

2

(
1

ω− − ωm
−

1
ω+ − ωm

)
(A.23)

ω′q = ωq −
J2
q

2

(
1

ω+ − ωq
+

1
ω− − ωq

)
(A.24)

ω′m = ωm −
J2
m
2

(
1

ω+ − ωm
+

1
ω− − ωm

)
(A.25)

The frequency shifts in (A.25) and (A.24) are proportional to J2
m and J2

q respectively.
The qubit bare frequency, ωq (Φex), can always be tuned by external flux, Φex, to
match effective frequencies of the qubit and memory (ω′q = ω′m). Thus, a high state-
transfer fidelity swap-state can always be reached. AQE optimization for a given
∆pa which is defined by design and fabrication can always be done in an experiment
by adjusting Jq using external magnetic flux, Φg, through the tunable coupler.

A.3 Idle-State Noise Propagation and Decoherence Suppression
To study the additional decoherence of the ultra high-Q defect phononic cavity due
to its mechanical coupling (Jm) to the lossy intermediate system, a simplified model
of three coupled cavities is studied here. Cavity-A1 (â1, â

†

1) and Cavity-A2 (â2, â
†

2)
are the lossy cavities belonging to the intermediate system. The Cavity-B (b̂, b̂†)
corresponds to the low loss mechanical cavity. The system Hamiltonian can be
written as (A.26),

Ĥ = ~ωaâ
†

1â1 + ~ωaâ
†

2â2 + ~ωbb̂†b̂ + Ĥint, (A.26)
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and the interaction part is (A.27),

Ĥint = ~Ja
(
â†1â2 + â1â†2

)
+ ~Jb

(
â†2 b̂ + â2b̂†

)
. (A.27)

The dynamics of the system can be derived from solving the system master equation
in the frequency-domain. The equation of motion (EOM) for the system can be
written as (A.28) - (A.30).

Û̂a1 = −i(ωa1 −
γa1
2

i)â1 − iJaâ2 +
√
γa1â1e (A.28)

Û̂a2 = −i(ωa2 −
γa2
2

i)â2 − iJaâ1 − iJbb̂ +
√
γa2â2e (A.29)

Û̂b = −iωbb̂ − iJbâ2 (A.30)

where the â1e and â2e represent the continuum environmental bath modes and they
are normalized into photon number flux.

They can be transformed into the frequency-domain as (A.31) - (A.33)

− iω ˜̂a1 = −i(ωa1 −
γa1
2

i) ˜̂a1 − iJa ˜̂a2 +
√
γa1 ˜̂a1e (A.31)

−iω ˜̂a2 = − i(ωa2 −
γa2
2

i) ˜̂a2 − iJa ˜̂a1

− iJb
˜̂b +
√
γa2 ˜̂a2e

(A.32)

− iω ˜̂b = −iωb
˜̂b − iJb

˜̂b (A.33)

To understand how the decoherence noises in the lossy cavities (A1 and A2) perturb
the high-Q mode (B), the noise spectral power density of Cavity-A2 when it is
decoupled from the high-Q mode needs to be calculated as (A.34).

Sâ2â2[ω] =

∫ 〈
˜̂a†2[ω] ˜̂a2[ω]

〉
dω′ (A.34)

The average is over the state of the lossy cavities and their environment where
˜̂a†2[ω] = ( ˜̂a2[−ω])

†. The environment noise on A1 and A2 has the following proper-
ties:

〈 ˜̂a†1e[ω] ˜̂a1e[ω
′]〉 = 〈n1〉δ(ω + ω

′) (A.35)

〈 ˜̂a†2e[ω] ˜̂a2e[ω
′]〉 = 〈n2〉δ(ω + ω

′) (A.36)

〈 ˜̂a1e[ω] ˜̂a†1e[ω
′]〉 = (〈n1〉 + 1)δ(ω + ω′) (A.37)

〈 ˜̂a2e[ω] ˜̂a†2e[ω
′]〉 = (〈n2〉 + 1)δ(ω + ω′) (A.38)
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where 〈n1〉 and 〈n2〉 are equilibrium bath mode occupations at the given frequency,
ω.

Combining the results from (A.31)−(A.38) and in the limit where Jb = 0, it is
straightforward to show the spectral power densities of the Cavity-A2 are (A.39),

Sâ2â2[ω] =

〈n2〉γa2 +
〈n1〉J2

b γa1

(ωa1+ω)2+
γ2
a1
4

(ωa2 + ω −
J2
b (ωa1+ω)

(ωa1+ω)2+
γ2
a1
4

)2

+ (
γa2
2 +

J2
b
γa1

2

(ωa1+ω)2+
γ2
a1
4

)2

, (A.39)

and its reversed dual in (A.40),

Sâ†2 â†2
[ω] =

〈n2〉γa2 +
〈n1〉J2

b γa1

(ωa1−ω)2+
γ2
a1
4

(ωa2 − ω −
J2
b (ωa1−ω)

(ωa1−ω)2+
γ2
a1
4

)2

+ (
γa2
2 +

J2
b
γa1

2

(ωa1−ω)2+
γ2
a1
4

)2

. (A.40)

Below 10 mK, 〈n1〉 and 〈n2〉 ∼ 0 for the 5 GHz mode. As a result, the Cavity-B will
only see the noise in Sâ†2 â†2

and the additional decay rate, γab, is (A.41),

γab = J2
b (Sâ†2 â†2

[ωb] − Sâ2â2[−ωb])

' J2
b Sâ†2 â†2

[ωb]
. (A.41)
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A p p e n d i x B

EFFICIENT OPTIC-MICROWAVE QUANTUM
TRANSDUCTION VIA ACOUSTIC CHANNEL

Quantum communication and distributed quantum system over a vast distance have
been recently attracted significant amount of attention among the quantum science
and technology community due to both its potential in constructing a secure com-
munication network and realizing a quantum Internet between quantum computers.
Previous work in demonstrating successful intercontinental quantum key distribu-
tion was based on free space optical channel between a satellite and ground stations.
However, scalability of this approach is limited due to the high costs of constructing
a new constellation of quantum satellites and compatible grounds stations. Another
approach more feasible for economically scaling up the quantum communication
network is based on quantum repeaters and routers that can be used for upgrading
existing telecommunication fiber-optical network to be compatible with quantum
communication. Quantum repeaters and routers can be realized in various architec-
tures. One candidate requires the incorporation of superconducting quantum circuit
that is efficient in carrying out deterministic quantum operations which can enable
high speed long distance quantum communication in an extended fiber-optical net-
work. This implementation requires a high efficiency coherent transduction between
a telecommunication band photon in the optical fiber and a microwave frequency
photon in the superconducting circuit. A transducer with unity efficiency can be
realized with an optomechanical crystal coupled to a microwave circuit. In the rest
of this section, we will present the analysis of the proposed optomechanical crystal
quantum transducer.
Fig. B.1 shows the scheme we have for the transduction. Microwave frequency

mechanical mode of the optomechanical crystal is coupled to a tunable supercon-
ducting microwave resonator with rate Jpa. The optical cavity is coupled to the input
fiber with coupling rate κoe and it suffers from intrinsic loss to environment with
rate κoi. The superconducting microwave resonator is coupled to a transmission line
with rate κµe and it has intrinsic loss rate κµi to the environment. The system Hamil-
tonian for the open quantum system can be written as (B.1)-(B.6). The intrinsic loss
channels will introduce environmental noises (anin,b

n
in,c

n
in) into the system along with

signals (ain,out and cin,out) coupled into the system via external coupling channels to
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Figure B.1: The red mode on the left is the optical cavity mode that is dispersively
coupled to the mechanical mode (green) via the optomechanical coupling. The me-
chanical mode (green) is strongly resonantly coupled to a tunable superconducting
microwave resonator/qubit (blue) in a single photon level.

the fiber and superconducting transmission line.

H = H0 + HDrive + HSignal + HNoise (B.1)

H0 = ~(ωo −
κo

2
i)â†â + ~(ωm −

γ

2
i)b̂†b̂ + ~(ωµ −

κµ

2
i)ĉ†ĉ (B.2)

HInt = ~g0â†â(b̂† + b̂) (B.3)

HDrive = −~
√
κoei(α∗in(t)â + αin(t)â

†) (B.4)

HSignal = −~
√
κoei(â

†

inâ + âinâ†) − ~
√
κµei(ĉ

†

inĉ + ĉinĉ†) (B.5)

HNoise = −~
√
κoii(â

†
nâ + ânâ†) − ~

√
γi(b̂†nb̂ + b̂nb̂†) − ~

√
κµii(ĉ

†
n ĉ + ĉnĉ†) (B.6)

where α(t) = α0 exp(−ωdti) is the optical pumping field at ωd . Taking the time
dependant unitary transformation to a rotating frame with the driving field shown
in Û = exp

(
−ωd â†âti

)
and then linearize the Hamiltonian using â = ā + δâ with

coherent cavity amplitude ā, we can obtain the standard optomechanical interaction
Hamiltonian after rotation-wave-approximation assuming ∆o = ωo − ωd > 0

H′ = H′0 + H′Signal + H′Noise (B.7)

H′0 = ~(∆o −
κo

2
i)â†â + ~(ωm −

γ

2
i)b̂†b̂ + ~(ωµ −

κµ

2
i)ĉ†ĉ (B.8)

H′Int = ~G(b̂
†â + b̂â†) (B.9)

H′Signal = −~
√
κoei(â

†

inâ + âinâ†) − ~
√
κµei(ĉ

†

inĉ + ĉinĉ†) (B.10)

H′Noise = −~
√
κoii(â

†
nâ + ânâ†) − ~

√
γi(b̂†nb̂ + b̂nb̂†) − ~

√
κµii(ĉ

†
n ĉ + ĉnĉ†) (B.11)

We relabelled δâ → â, âin exp((ωdti)) → âin, and ân exp((ωdti)) → ân. Define
G =
√

ncg0 as the optomechanical coupling rate with intra-cavity photon occupancy
nc = |ā|2.
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Figure B.2: a, the transduction number efficiency (η) as a function of signal fre-
quency (ω) with typical system parameters with a high power optical drive leading
to an intra-cavity photon number nc ' 1000. The dashed black lines are the
ω = ωµ=±1,ν=1 and the central dot-dashed line is ω = ωµ=0. The blue-solid line
is the transduction number efficiency η. The red-dashed line is the noise optical
photon number that is transduced into the optical output channel from themicrowave
photon noise, mechanical phonon bath noise, and optical cavity photon noise. The
yellow-dot-dashed line is the noise microwave photon number transduced into the
microwave transmission line output from optical photon noise, mechanical phonon
bath noise, and microwave cavity photon noise. b − d assume that ω = ωµ=±1,ν=1
which leads to the largest transduction number efficiency for different effective op-
tomechanical cooperativity Ceff

om and intra-cavity photon number nc driven by the
strong detuned pump laser. Laser heating effect leading to the elevated phonon num-
ber and acoustic damping rate is taken into consideration with the heating curves
extracted from experimental data in [Hengjiang2019]. b, the transduction number
efficiency as a function of effective optomechanical cooporativity (Ceff

om) and pump
intra-cavity photon number (nc) in the optomechanical cavity. c, the microwave-
to-optics transduction signal-to-noise (SNRo) that is always much larger than unity
over a wide range of optomechanical cooporativity and pump laser power. This is
because, in this direction of transduction, the important piezoacoustic cooporativity
Ceff
µm � 1. d, the optics-to-microwave transduction signal-to-noise (SNRµ). This

highlights that Ceff
om � 1 is necessary to have an ultra-low noise transduction from

an optical photon to a microwave photon.
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Using relation Û̂O = i
~

[
H′, Ô

]
Ûa = −i(∆o −

κo

2
i)â − iGb̂ +

√
κoeâin +

√
κoiân (B.12)

Ûb = −iGâ − i(ωm −
γ

2
i)b̂ − iJĉ +

√
γb̂n (B.13)

Ûc = −iJb̂ − i(ωµ −
κµ

2
i)ĉ +

√
κµeĉin +

√
κµiĉn (B.14)

Transforming the equations into frequency domain.

− iωã = −i(∆o −
κo

2
i)ã − iGb̃ +

√
κoeãin +

√
κoiãn (B.15)

− iωb̃ = −iGã − i(ωm −
γ

2
i)b̃ − iJc̃ +

√
γb̃n (B.16)

− iωc̃ = −iJb̃ − i(ωµ −
κµ

2
i)c̃ +

√
κµec̃in +

√
κµic̃n (B.17)

Writing this system of equations in matrix form:


∆o − ω −

κo
2 i G 0

G ωm − ω −
γ
2 i J

0 J ωµ − ω −
κµ
2 i



ã

b̃

c̃


= −i


√
κoeãin +

√
κoiãn

√
γb̃n

√
κµec̃in +

√
κµic̃n


(B.18)

Inverting the coefficient matrix on the left, we will obtain


ã

b̃

c̃

 = −iD[T]


√
κoeãin +

√
κoiãn

√
γb̃n

√
κµec̃in +

√
κµic̃n

 (B.19)

[T] =[
(ωm −ω −

γ
2 i)(ωµ −ω −

κµ
2 i) − J2 −G(ωµ −ω −

κµ
2 i) GJ

−G(ωµ −ω −
κµ
2 i) (∆o −ω −

κo
2 i)(ωµ −ω −

κµ
2 i) −J(∆o −ω −

κo
2 i)

GJ −J(∆o −ω −
κo
2 i) (∆o −ω −

κo
2 i)(ωm −ω −

γ
2 i)

]
(B.20)

D =
(
(∆o − ω −

κo

2
i)(ωm − ω −

γ

2
i)(ωµ − ω −

κµ

2
i)

− G2(ωµ − ω −
κµ

2
i) − J2(∆o − ω −

κo

2
i)
)−1 (B.21)
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For input signal from microwave transmission line (c̃in) we can obtain the signal in
the optical fiber from input-output theorem.

ãsignalout = D
√
κoeκµeGJc̃in (B.22)

ãnoiseout = D
(
√
κoeκoi

(
(ωm − ω −

γ

2
i)(ωµ − ω −

κµ

2
i) − J2

)
ãn

−
√
γκoeG(ωµ − ω −

κµ

2
i)b̃n + GJ

√
κµiκoec̃n

) (B.23)

The conversion number efficiency η can be shown in (B.24)

η =

〈
ãsignal†ãsignal

〉〈
c̃†inc̃in

〉 =
��D√κoeκµeGJ

��2 (B.24)

SNRo =

〈
ãsignal†ãsignal

〉〈
ãnoise†out ãnoiseout

〉
=

κµeG2J2

κoi
��(ωm − ω −

γ
2 i)(ωµ − ω −

κµ
2 i) − J2

��2 n̄ob

+ γG2
��ωµ − ω −

κµ
2 i

��2 n̄mb + G2J2κµin̄µb

(B.25)

SNRµ =

〈
c̃signal†c̃signal

〉〈
c̃noise†out c̃noiseout

〉
=

κoeG2J2

κµi
��(ωm − ω −

γ
2 i)(ωo − ω −

κo
2 i) − G2

��2 n̄µb

+ γJ2
��∆o − ω −

κo
2 i

��2 n̄mb + G2J2κoin̄ob

(B.26)

Note that the denominator of the conversion efficiency can be minimized with
respect to the frequency ω by looking for the extrema points of the denominator
in (B.28) according to (B.29) with solutions in (B.32) and (B.33) assuming the
resonant condition that ∆0 = ωm = ωµ.

d = (∆o − ω −
κo

2
i)(ωm − ω −

γ

2
i)(ωµ − ω −

κµ

2
i)

− G2(ωµ − ω −
κµ

2
i) − J2(∆o − ω −

κo

2
i)

(B.27)

D = |d |2 (B.28)

0 =
∂D
∂ω
= 2Re

[
∂d
∂ω

d∗
]

(B.29)
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ζ =

(
16G4 + 32G2J2 + 16J4 − 16G2γ2 − 16J2γ2 + γ4

− 24G2γκo − 16G2κ2
o + 8J2κ2

o − γ
2κ2

o

+ κ4
o − 24J2γκu + 8G2κ2

u − 16J2κ2
u

− γ2κ2
u − κo

2κ2
u + κ

4
u

)1/2

(B.30)

β = 8G2 + 8J2 − γ2 − κ2
o − κ

2
u (B.31)

ωµ=±1,ν=±1 = ωm + µ

√
β + νζ

2
√

3
(B.32)

ωµ=0 = ωm (B.33)

For expressions in (B.32), we can notice that typical parameters have κo ∼ 2π ×
1 GHz, κu ∼ 2π × 10 kHz, γ ∼ 2π × 1 kHz, γ ∼ 2π × 1 kHz, J ∼ 2π × 10 MHz,
and G = g0

√
nc ∼ 2π × 10 MHz. These typical parameters lead to b < 0. Thus

only ωµ=±1,ν=1 and ωµ=0 are valid real solutions. It can also be shown that ωµ=0

leads to a maximal point of D and a local minimal point in (B.24). ωµ=±1,ν=1 are
the maximal points of (B.24).

To highlight the importance of effective cooperatives for optomechanical and piezo-
electric interactions defined as Ceff

µm =
Cµm
n̄mb

and Ceff
om =

Com
n̄mb

with Cµm =
4J2

γκµ
,

Com =
4G2

γκo
, we can look at the case where ω = ωm and have (B.34) − (B.36).

η =
κoeκµeG2J2

(
κoγκµ

8 +
G2κµ

2 +
J2κo

2 )
2

(B.34)

SNRo '
1

Ceff
µm
+
κoi

κo

n̄ob

Com
(

1
Cµm

+ Cµm + 2) (B.35)

SNRµ '
1

Ceff
om
+
κµi

κµ

n̄µb
Cµm
(

1
Com
+ Com + 2) (B.36)

As both of these noise photon numbers need to be much smaller than 1 for high
fidelity transduction, cryogenic temperature will be needed for eliminating the GHz
microwave bath noise photon occupation. This readily eliminates the second term
of (B.36). The second term of (B.35) is also vanishing as the telecommunication
band optical bath occupation is zero. But the first terms may not be vanishing as the
mechanical bath phonon occupation is larger than one due to the parasitic heating
effect of the laser on the silicon material. Since Ceff

µm � 1 has been shown to be
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achievable with the state-of-art electromechanical-crystal (EMC), the work shown
in [Hengjiang2019] demonstrating the possibility to have Ceff

om � 1 has made it
possible for future opto-electro-mechanical-crystal (OEMC) quantum transducers
to achieve unity transduction number efficiency together with vanishing noise.

The analysis above is for the system operating in the case where ω = ωµ=0 which
is a local minimum for the transduction number efficiency. The maximal effi-
ciency points are harder to draw insights without using numerical tools to study the
transductions in two directions (optics-to-microwave and microwave-to-optics). For
typical system parameters and experimentally probed laser heating curves for two
dimensional optomechanical crystals [Hengjiang2019], the transduction number
efficiency and transduced noise photon numbers are shown in Fig. B.2a assuming
nc = 1000. Fig. B.2b−d show transduction number efficiency and signal-to-noises
(SNRs) as functions of effective optomechanical cooporativity (Ceff

om) and the intra-
cavity photon number (nc) driven by the pump laser. As it is shown in Fig. B.2d, the
optical to microwave transduction signal to noise (SNRµ) strongly depends on Ceff

om.
SNRµ � 1 requires Ceff

om � 1. Furthermore, SNRµ is independent of the pump
laser power (nc). The later observation is because the experimentally extracted
heating curves reveal that the mechanical decoherence rate due to laser heating is
proportional to nc and this leads to a laser power independent effective cooporativ-
ity as G ∝

√
nc. Figures showing the dependence on Cµm is not shown as it can

be shown for a large range of typical system parameters Cµm � 1 is always true
and transduction quality is not limited by it. This is very evident in the Cµm � 1
sensitive microwave-to-optics transduction SNRo � 1 illustrated in Fig. B.2c.
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