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ABSTRACT

This thesis presents a full-spectrum, well-conditioned, Green-functionmethodology
for evaluation of scattering by general periodic structures, which remains applica-
ble on a set of challenging singular configurations, usually called Rayleigh-Wood
(RW) anomalies, where most existing methods break down. After reviewing a va-
riety of existing fast-converging numerical procedures commonly used to compute
the classical quasi-periodic Green-function, the present work explores the diffi-
culties they present around RW-anomalies and introduces the concept of hybrid
“spatial/spectral” representations. Such expressions allow both the modification of
existing methods to obtain convergence at RW-anomalies as well as the application
of a slight generalization of the Woodbury-Sherman-Morrison formulae together
with a limiting procedure to bypass the singularities. Although, for definiteness,
the overall approach is applied to the scalar (acoustic) wave-scattering problem in
the frequency domain, the approach can be extended in a straightforward manner
to the harmonic Maxwell’s and elasticity equations. Ultimately, the thorough un-
derstanding of RW-anomalies this thesis provides yields fast and highly-accurate
solvers, which are demonstrated with a variety of simulations of wave-scattering
phenomena by arrays of particles, crossed impenetrable and penetrable diffraction
gratings, and other related structures. In particular, the methods developed in this
thesis can be used to “upgrade” classical approaches, resulting in algorithms that are
applicable throughout the spectrum, and it provides new methods for cases where
previous approaches are either costly or fail altogether. In particular, it is suggested
that the proposed shifted Green function approach may provide the only viable alter-
native for treatment of three-dimensional high-frequency configurations. A variety
of computational examples are presented which demonstrate the flexibility of the
overall approach, including, in particular, a problem of diffraction by a double-helix
structure, for which numerical simulations did not previously exist, and for which
the scattering pattern presented in this thesis closely resembles those obtained in
crystallography experiments for DNA molecules.
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C h a p t e r 1

INTRODUCTION

The study of waves and wave-scattering phenomena impacts upon many fields in the
physical sciences and dates back to the seminal work of many illustrious scientists,
founders of modern science. The present state of technology in our era was enabled
mostly through the utilization of different manifestations of waves, most notably
electromagnetic waves to transmit information throughout the globe and space,
and elementary particles in their quantum-mechanical wave-like interpretation, like
the electron, to process data in modern computers. An understanding of wave
phenomena will continue to play critical roles in years to come, in promising fields
of science and technology such as photonics and quantum computing, among many
others.

With the widespread accessibility of high-performance computational resources
in recent decades, computer simulations have become an essential tool in wave
simulation, complementing both theory and experiment. In this context, the goal
of this thesis is to introduce fast numerical methods to simulate certain wave-
phenomena in a regime which has remained challenging in the field of applied
and computational mathematics; one where the propagation domain presents an
invariance by a certain set of discrete translations, i.e., it has a periodic structure.

The remainder of this introductory chapter summarizes the early history of the field
of wave-scattering, with an emphasis in periodic problems, as well as the state of
the art in this area. Additionally, some notation is introduced and the mathematical
problem underlying this thesis is stated.

1.1 Early history
The pioneering experiments of FrancescoMariaGrimaldi [Gri65], RobertBoyle [BJ38]
and Robert Hooke [Hoo65] provided support to the first scientific explanations of the
oscillatory nature of light. This important work was greatly advanced by Christian
Huygens [Huy90], who introduced the famous principle which states that, "Every
point of the ‘aether’ upon which the luminous disturbance falls may be regarded as
the center of a new disturbance propagated in the form of spherical waves; these
secondary waves combine in such a manner that their envelope determines the wave-
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front at any later time." Using this premise Huygens obtained theoretical derivations
of the experimental laws of reflection and refraction (commonly known as Snell’s
or Snell-Descartes’ laws).

The authoritative figure of Isaac Newton, who advocated instead the corpuscular
theory of light [New72], caused the wave-theory to be ignored for over a century.
Eventually, however, a rapid sequence of decisive developments in the early XIX
century led to the widespread acceptance of the wave theory. In 1801, Thomas
Young enunciated the principle of interference and explained the colors of thin
films [You02], but as this analysis was largely qualitative, these ideas did not gain
general recognition. Supporters of the corpuscular theory, like Simon de Laplace
and Jean-Baptiste Biot, proposed the subject of diffraction for the prize question set
by the Paris Academy for 1818 with the belief that the corpuscular theory would
result triumphant. However, even with a large opposition, the prize was awarded to
Augustine Jean Fresnel, whose treatment was based on Huygens’ and Young’s wave
theory; in this work he could not only explain the “rectilinear propagation” of light
(the main objection to the theory made by Newton) but also calculated diffraction
effects caused by edges, apertures and screens [Fre68]. Based on Fresnel’s ideas,
Siméon Denis Poisson predicted the appearance of a bright spot in the center of
the shadow produced by the illumination of a small disc, a result which he consid-
ered ridiculous and would disprove the wave-theory; however, this prediction was
experimentally verified by Dominique François Arago [Ara19], who was appointed
by the Paris Academy to report on Fresnel’s investigations. The dispute between
the two theories was settled in great part (at least for the following sixty years)
through a set of experiments performed by Foucault, Fizeau and Breguet [Fou50;
FB50] in 1850. The measurements showed that light propagates slower in media
denser than air disproving the corpuscular theory (which predicted the opposite)
and giving support to the wave-theory (which predicted correctly this behavior). In
the following decades, a rigorous mathematical foundation for the wave theory was
settled by Hermann von Helmholtz, George Airy [Air38], George Green [Gre38],
Franz Neumann [Neu38], George Stokes [Sto49], Gustav Kirchhoff [Kir83] and,
later, Lord Rayleigh [Ray07] and Arnold Sommerfeld [Som09].

Concurrently to the vast expansion of the field of optics, several discoveries in
electricity and magnetism took place in the 19th century, most famously by Michael
Faraday [Far39] and André-Marie Ampère [Amp26]. The culmination of all these
advances took place in the first unification of the laws of physics with the work
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of James Clark Maxwell [Max81]. Measurements by Rudolph Kohlrausch and
Wilhelm Weber [KW93] showed that electromagnetic waves propagate at the same
speed as light. These observations led Maxwell to conjecture that light has its origin
in perturbations of the electromagnetic field, a prediction that was later verified
through experimentation in 1888 by Heinrich Hertz [Her88]. Posterior work by
Marconi [Mar09] and Braun [Bra09] initiated the era of wireless communications,
showing the enormous practical consequences ofMaxwell’s electromagnetic theory.

Diffraction gratings
A diffraction grating can be defined as any repetitive array of diffracting elements,
either apertures or obstacles, which have the effect of producing periodic changes
in the phase or amplitude of an incoming oscillatory radiation. The discovery of the
working principle and first prototypes of diffraction gratings are attributed to David
Rittenhouse in 1785 [Rit86] though these investigations attracted little attention at
the time. During the following decades, Joseph von Fraunhofer would rediscover
independently this principle and perfect the manufacturing process [Fra24] of this
and many other devices, setting his home Bavaria as the European epicenter of the
optical industry at the time. Subsequent developments in the following hundred
years, most famously by Henry A. Rowland, Albert A. Michelson and Robert W.
Wood [Har49], improved the fabrication techniques yielding devices of very high-
quality at the beginning of the XX century.

Many disciplines in the sciences have benefited from studies of diffraction patterns
produced by periodic structures. The first spectrographs used multiple diffraction
gratings (as the one introduced byRittenhouse and Fraunhoffer) to split the incoming
radiation of interest into its many spectrum components; this analysis enabled a large
number of applications ranging from the determination of the chemical structure
of distant stars to the study of the detailed structure of the hydrogen atom. X-
ray crystallography was also greatly influenced by the study of wave-phenomena
in periodic media as, in this case, the grating structure is provided by atoms in a
crystal which are typically separated by distances of the order of an Ångström—
a magnitude comparable to the wavelength of X-rays. Max von Laue theorized
that if a beam of X-rays illuminates a crystal then a diffraction pattern would be
produced and, therefore, certain properties of the crystal could be deduced. The
first observations of this phenomena were made by Walter Friedrich, Paul Knipping
and von Laue [FKL13], granting the latter the 1914 Physics Nobel Prize.
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One of the first applications of modern quantum mechanics (as established in the
Schrödinger formalism) was suggested by Felix Bloch to study the conduction of
electrons in crystalline solids through the introduction of the important concept of
the electronic bandgap [Blo29]. According to this theory, materials present two
types of energetic states that an electron can assume: the valence band, in which
an electron is tied to the nucleus of an atom, and the conduction band, in which
the electrons have enough energy to move freely in the material. The bandgap can
be roughly described as the distance between the largest energy state of the valence
band and the lowest energy state of the conduction band; if there is no gap then no
energy is necessary to excite an electron to move (and therefore conduct electricity)
while if the gap is large then the material acts as an insulator (a very large amount
of energy would be necessary for an electron to leave its orbit). Semiconductors
are then the materials which require a small additional amount of input energy to
be able to control the state of an electron at will. The existence of such a gap is
a consequence of the periodic structure of the electric potential produced by the
atoms in the crystal and can be regarded as one of the most important implications
of quantum-mechanics (and therefore, of wave-phenomena) in our present highly-
technological society.

The first rigorous mathematical treatment of scattering by periodic media is at-
tributed to Lord Rayleigh who, in his famous Theory of sound [Ray96] considered
the scalar problem of scattering by a periodic surface of the form (x, f (x)), x ∈ R,
where f is an L-periodic smooth function. Thus, for an incoming plane wave with
wavenumber k which illuminates the grating under an angle of incidence θ, Rayleigh
modeled the scattering process by means of the scalar problem

∆u(x, y) + k2u(x, y) = 0, y > f (x)

u = −eik sin(θ)x−ik cos(θ)y, y = f (x)

u propagates outward.

(1.1)

With a simple separation of variables argument he showed that in the region y >

max{ f (x)} (above the grooves) the solution of (1.1) can be expressed in the simple
form

u(x, y) =
∑
n∈Z

Aneiαnx+iβny, (1.2)

where
αn = k sin(θ) +

2π
L

n, βn =

√
k2 − α2

n, Im(βn) ≥ 0. (1.3)
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Equation (1.2) reveals the nature of the reflected field produced by a periodic
structure of an incoming plane-wave: it is the superposition of infinitely many
waves of which finitely many are non-decaying propagating modes (whenever βn

is a real number) while the remaining decay exponentially fast as y → +∞ (are
evanescent) whenever βn is a purely complex number. Expressions like (1.2), usually
called Rayleigh expansions, appear throughout this work, and play major roles in
the methodology proposed. An interesting situation arises whenever a scattering
configuration (in this case k, θ and L) is selected so that there exists at least one
integer n which satisfies βn = 0; in that case, one of the modes in (1.2) travels
parallel to the periodic surface y = f (x). Moreover, as one (or more) of these three
parameters varies around this singular configuration we see that the corresponding
mode eiαnx+iβny changes abruptly in its nature, from being propagating to evanescent
(or vice versa). Lord Rayleigh attributed to this pass-off configurations [Ray93] a
set of observations carried out previously in 1902 by Robert W. Wood, who had
noted that [Woo02]

"[...] On mounting the grating on the table of a spectrometer I was
astounded to find that under certain conditions the drop from maximum
illumination to minimum, a drop certainly of from 10 to 1, occurred
within a range of wave-lengths not greater than the distance between
the sodium lines (...) A change of wavelength of 1/1000 [of a micron] is
then sufficient to cause the illumination in the spectrum to change from
a maximum to a minimum."

These particular configurations, discussed by Wood and Rayleigh, and their exten-
sions to other setups, which are the central topic around which this thesis revolves,
have received in the computational physics literature the name Wood anomalies.
It has been pointed out recently by David Maystre [May12], based on work in the
1940s by Fano [Fan41], that the original experiments of Wood cannot be explained
solely in terms of Rayleigh expansions and suggests a distinction for the anomalies
observed in the scattering patterns of diffraction gratings and a renaming for what
has been called up to this dateWood anomalies. Thus, in this thesis we will refer to
the singular pass-off configurations as Rayleigh-Wood (RW) anomalies.

Recent progress and current challenges
Wave-scattering by periodic media, including RW anomalous configurations, con-
tinue to attract the attention of many researchers in the fields of optics [Dar+18;
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Kim+15; Mar+16; MS16; Mau+14; May12; NPT18; Sav+13; TJE19] and com-
putational electromagnetism [BD14; BM18a; BF17; Bru+16; Bru+17; LB16;
Cho18; LKB15; Per+18; NPT18; Den+17a]. Classical boundary integral equa-
tions methods [PC90; Ste+06; Vey+91] have relied on the quasi-periodic Green
function (denoted throughout this work as Gq

κ), which is defined in terms of a
slowly converging infinite series (equation (2.1)). In order to obtain efficient scatter-
ing solvers, several alternative representations, with better convergence properties,
have been introduced for the evaluation of Gq

κ . These employ either Kummer or
Shanks transformations, lattice sums, Laplace-type integrals and, most notably, the
Ewald summation method [Lin10; Lin98]. In the last decade, the novel windowed-
Green function (WGF) method was introduced and applied to the periodic prob-
lem [BD14; Bru+16; Mon08] obtaining super-algebraic convergent solvers away
from RW-anomalies. With the exception of the Ewald method, the convergence
properties of these methodologies deteriorate significantly around RW-anomalies
which are pervasive in the most challenging three dimensional case (see Figure 2.1).

A subsequent development to the WGF methodology introduced a novel quasi-
periodic “shifted” Green function [BD14; Bru+17] which, like the “classical” (un-
shifted) quasi-periodic Green function, is also defined in terms of an infinite series
but whose general term has a faster -algebraic- decay rate obtained with the in-
troduction of additional spatial poles. This improvement yields a Green-function
which, unlike Gq

κ , is well-defined at RW-anomalies. Since it introduces new spatial
singularities, this technique was first applied to problems where the domain was
a half-space whose boundary could be parametrized by the graph of a periodic
function. The contribution [BF17] introduced a slightly different use of the shifted
Green function from its original inception to allow for its application to more general
domains.

In a nutshell, numerical methods which discretize boundary integral equations
basically operate by forming a finite linear system of equations and solving it by
either direct inversion or an iterative algorithm. As RW-anomalies are approached in
the periodic problem, two sources of pollution in the numerical error of the solution
emerge: the most drastic of them corresponds to (1) Poor approximations of Gq

κ ,
while a more subtle one is related to (2) Ill-conditioning in the system of equations.
Whereas both the WGF and Laplace-type integral methods suffer from the first
problem (Figures 1.1 and 1.2), the shifted Green function and Ewald methods do
not (see Figure 5.3). In this context, the main contributions of this thesis include



7

Figure 1.1: Error in aWGF simulation of wave-scattering of an incoming planewave
with incidence angle θ by a two-dimensional periodic array of circular cylinders of
period 5λ (left, depicted in Figure 5.1) and 10λ (right). Here and throughout this
thesis λ denotes the radiation wavelength. The vertical lines indicate the incidence
angles which give rise to RW-anomalies for this configuration (see equation (2.6)).
Errors were estimated via the energy balance criterion (Appendix A). Clearly,
uncontrolled errors arise at and around RW anomalies for the non-RW capable
version of the WGF approach.

Figure 1.2: Same experiment as in Figure 1.1 but the simulation is obtained by
means of the Laplace-type integral method (Section 2.1). Clearly, uncontrolled
errors arise at and around RW anomalies for the non-RW capable version of the
Laplace-type integral approach.

(a) a theoretical understanding of these difficulties, and (b) computational algorithms
which, exploiting the new theory, enable solution of previously intractable problems.

Through the introduction of the concept of hybrid “spatial/spectral” representa-
tions, this work shows that if a representation of Gq

κ is used which displays explicitly
terms that cause the divergence of Gq

κ as RW anomalies are approached, then
high-accuracies can be obtained in the evaluation of Gq

κ in very close proximity
(to machine precision) of the singular configuration—thus addressing the evalua-
tion difficulty mentioned in point (1) above. Use of such representations, in turn,
provides an insight into the ill-conditioning of the resulting linear systems around
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RW-anomaliesmentioned in point (2) above, and they allow us to introduce a regular-
ization technique, which we refer to as the “Woodbury-Sherman-Morrison (WSM)
methodology”, that resolves the difficulty and can be used to produce solutions at
RW-anomalies using quasi-periodic Green function methods. These two elements
are the building blocks of this thesis which, ultimately, strives to obtain fast, ro-
bust and highly-accurate solvers to simulate wave-scattering phenomena by periodic
media in general geometries irrespectively of the occurrence of RW-anomalies.

A major difficulty still remains in the high-frequency/large-periods regime since, as
briefly described in Chapter 3, classical methods break down due to instabilities and
cancellation errors (see, also, [KNR11; KR09]). As explored in that chapter and
demonstrated in a two-dimensional case in [BM18a], the shifted Green function, in
contrast, does not present these difficulties, providing a promising direction for this
challenging case. However, since additional acceleration techniques are required to
treat such large configurations (in view of the large number of discretization points
they require), the resolution of this challenge is out of the scope of this thesis and is
left for future work.

The following section presents notations and establishes the PDE problem this
thesis intends to solve. Chapter 2 then introduces the most important mathematical
object of this dissertation, the classical quasi-periodic Green function, and gives
several alternative representations for its evaluation. The details of the numerical
implementations needed in the solvers used in this thesis are described in Chapter 3
while the framework put forth in this work is explained in Chapter 4. Finally,
Chapter 5 contains a variety of numerical results demonstrating the applicability of
the overall methodology.

1.2 Preliminaries and notation
Periodic structures
This thesis considers frequency-domain problems of wave scattering by periodic
penetrable and impenetrable diffraction gratings in two- and three-dimensional
space, including arrays of particles, layers of corrugated surfaces and combina-
tions thereof. In all cases the propagation domain Ω ⊆ Rd (d = 2, 3) is infinite
and translationally invariant with respect to a certain periodicity lattice Λ. In detail,
calling

Λ =

{
dΛ∑
i=1

mivi : mi ∈ Z

}
, (1.4)
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Figure 1.3: Same experiment as Figure 1.1 but the simulation is obtained by means
of the Ewald method (Section 2.2). We restrict the attention to the case where the
period equals 5λ and the plane wave impinges on the structure with angles very close
to normal incidence (the central anomalous configuration in Figures 1.1 and 1.2).
In these numerical examples, the angle θ equals δ5, sampling incidence directions
which differ from normal incidence in angles of the order of 10−5 to 10−14. The
errors is unbounded around θ = δ5 = 0, at which point the method fails.

a given dΛ-dimensional periodicity lattice (1 ≤ dΛ < d), Ω satisfies the translation-
invariance property

Ω + R = Ω for all R ∈ Λ. (1.5)

The directions vi , i = 1, . . . , dΛ in (1.4) are commonly called the primitive (or
periodicity) vectors of the lattice. Without loss of generality, throughout this work
it is assumed that v1 is parallel to the x1-axis, and that the lattice is contained in
the subspace generated by the vectors x1, . . . , xdΛ (so that the periodicity lattice is
contained in the line {(x1, 0)} in two dimensions, and either in the line {(x1, 0, 0)}
or the plane {(x1, x2, 0)} in three dimensions).

Remark 1. In what follows, for x ∈ Rd we let x⊥ denote the projection of x into the
subspace orthogonal to the setΛ, and we call x‖ = x− x⊥. Thus, for x = (x1, x2, x3)

we have e.g. x⊥ = (0, x2, x3) for d = 3 and dλ = 1, while x⊥ = (0, 0, x3) for d = 3
and dλ = 2.
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Clearly, the projection x‖ = x − x⊥ can be expressed in the form

x‖ =
dΛ∑
i=1

aivi, ai ∈ R. (1.6)

and so, letting x] =
∑dΛ

i=1 bivi + x⊥ where the coefficients bi = ai − baic belong to
the interval [0, 1), any point x ∈ Rd is a translation of x] by the lattice Λ. In what
follows, for any set S ⊆ Rd we will let S] denote the set

S] =
{
x] : x ∈ S

}
. (1.7)

We say that a set S ⊆ Rd is transversely bounded (resp. transversely unbounded) if
the corresponding set S] is bounded (resp. unbounded).

Scattering problems
For a given incident field uinc, we seek to evaluate the associated acoustic fields
under sound-soft and sound-hard conditions. In the sound-soft case, for example,
the acoustic field u is a weak solution of the scalar Helmholtz equation

∆u + k2n2(x)u = 0 in Ω, (1.8)

with wavenumber k > 0, while in the sound-hard case, u satisfies

∇ ·

(
1

n2(x)
∇u

)
+ k2u = 0 in Ω. (1.9)

Here the refractive-index function n(x) > 0 is aΛ-periodic function of x throughout
Ω, that is n(x + R) = n(x) for all x ∈ Ω and all R ∈ Λ, and locally constant, with a
finite set of values. The domain Ω is decomposed as a finite union

Ω =

r+1⋃
j=0
Ω j, (1.10)

of the setsΩ0,Ω1, . . . ,Ωr,Ωr+1, on each one of which the refractive index is constant
(see Figure 1.4). In detail, throughout this thesis it is assumed that

1. All except at most two of the sets Ω j are transversely bounded. The set
Ω0 is required to be transversely unbounded, and Ωr+1 is either transversely
unbounded or empty.

2. For dλ = d − 1, Ω0 contains a set of the form {xd > M} for some M > 0. For
d = 3 and dλ = 1, Ω0 contains a set of the form {|x⊥ | > M}. If Ωr+1 , ∅

(which is not possible for d = 3 and dλ = 1), then Ωr+1 contains the set
{xd < −M} for some M > 0.
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Figure 1.4: Incoming plane waves impinging on two periodic structures of the types
considered in this thesis. In both cases the refractive index assumes three different
values and the dark-gray regions indicate the domain Ωimp which waves cannot
penetrate. The left figure includes only one transversally unbounded propagation
region (Ω0), while the right figure contains two transversally unbounded regions
(Ω0 and Ω2). Thus, these examples demonstrate cases where Ωr+1 is empty and
non-empty, respectively.

3. There are at most two and at least one transversely-unbounded constant-
refractivity sets. One of these sets, denoted by Ω0, is assumed to contain the
incident field. The set denoted by Ωr+1 (r ≥ 0), on the other hand, equals
either the second transversely-unbounded constant-refractivity set or, if Ω0 is
the only such set, then Ωr+1 = ∅.

Thus, equations (1.8) and (1.9) become

∆u + k2n2
j u = 0 in Ω j for 0 ≤ j ≤ r + 1. (1.11)

Note that Ω may or may not equal the totality of Rd . In the case Ω = Rd each
portion of space is occupied by a penetrable material. In the case Ω , Rd , in turn,
the complement Ωimp of the closure of Ω,

Ω
imp = Rd \Ω = Rd \

©­«
r+1⋃
j=0
Ω j

ª®¬
is assumed to be occupied by either sound-soft or sound-hard impenetrable media,
or a combination of the two. Thus Ωimp is given by the union

Ω
imp = Ω

imp
D ∪Ω

imp
N
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of the disjoint sets Ωimp
D (with boundary Γimp

D ) and Ωimp
N (with boundary Γimp

N )
occupied by sound-soft and sound-hard materials, respectively:

Γ
imp = Γ

imp
D ∪ Γ

imp
N .

For simplicity, throughout this contribution it is assumed that Γimp
D and Γimp

N are
disjoint, but the general non-disjoint case can also be considered within this context
(cf. [A+17]).

We assume that the structure is illuminated by a plane wave uinc defined in the
transversely-unbounded domain Ω0, where

uinc(x) = eiα·x−iβ·x, x ∈ Ω0. (1.12)

Here α and β are parallel and perpendicular to the latticeΛ, respectively, and verify
|α |2 + |β |2 = n2

0k2; the scattered field us is thus defined by the relations

us(x) =


u(x) − uinc(x), x ∈ Ω0

u(x), x ∈ Ω j, j ≥ 1
(1.13)

and we clearly have

∆us + k2n2
j u

s = 0 in Ω j for 0 ≤ j ≤ r + 1. (1.14)

For each pair j, ` of indices, j < `, we denote by Γj` the boundary between Ω j and
Ω`, and we let Γj` = ∅ for j ≥ `. For x ∈ Γj` ( j < `), ν = ν(x) denotes the unit
normal vector to Γj` which points into the “plus side” Ω j of Γj`. (Note that, even
for j < `, Γj` is empty whenever Ω j and Ω` do not share a common boundary.)
For x ∈ Γimp, in turn, ν = ν(x) denotes the normal to Γimp which points into the
interior of Ω (or into the exterior of Ωimp). Additionally we define the set of all
points at transmission boundaries (resp. all points at impenetrable boundaries) by
Γtrans =

⋃
j<` Γj` (resp. Γimp = ∂Ω), and we call Γ = Γtrans ∪ Γimp the set of all

points at interface boundaries. The impenetrable boundary Γimp may additionally
be decomposed into its sound-hard and sound-soft portions: Γimp = Γ

imp
s ∪ Γ

imp
h .

For x ∈ Γ we define the boundary values of a function u and its normal derivative
at x from the + and − sides of an interface by

u±(x) = lim
δ→0+

[
u(x ± δν(x))

]
and

∂u±
∂ν
(x) = lim

δ→0+

[
∇u(x ± δν(x)) · ν(x)

]
.

(1.15)
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The PDE problem under consideration is fully determined by equation (1.11) to-
gether with the boundary conditions

u = 0 for x ∈ Γ
imp
s and

∂u
∂ν
= 0 for x ∈ Γ

imp
h , (1.16)

together with the transmission conditions

u+ − u− = 0 and
∂u+
∂ν
−

1
C2

j`

∂u−
∂ν
= 0, x ∈ Γj` (1.17)

and the conditions of radiation at infinity. (The latter concept, together with the
related reciprocal lattice Λ∗ and the associated Rayleigh expansion, are described in
what follows.) In these equations we have set

Cj` =


1 in the sound-soft case, and
n`
nj

in the sound-hard case.

The reciprocal lattice

Λ
∗ =


dΛ∑
j=1

m jw j : m j ∈ Z
 (1.18)

plays an important role in the context of periodic lattice sums we consider—which
can be represented either as series with support over the lattice Λ or, on account
of the Poisson summation formula [Sim15], over the reciprocal lattice Λ∗. The
reciprocal basis vectors w j , j = 1, . . . , dΛ, are defined as the vectors which span the
same vector subspace as the set {vi : i = 1, . . . , dΛ}, and which verify the relations

vi · w j = 2πδ j
i . (1.19)

Following [Lin10], using the multi-index m = (m1, . . . ,mdΛ) ∈ Z
dΛ , elements of Λ

and Λ∗ will be denoted by

Rm =

dΛ∑
i=1

mivi and Km =

dΛ∑
i=1

miwi, (1.20)

respectively.

We say that a function u defined onΩ is α-quasi-periodic with respect toΛ provided

u(x + Rm) = eiα·Rmu(x) for all m ∈ ZdΛ . (1.21)

Clearly, the incident field (1.12) is an α-quasi-periodic function and, as is well
known [PC90], so is the scattered field us. On any set of the form

Vm2
m1 = {x ∈ R

d : m1 < |x
⊥ | < m2} (1.22)
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that satisfies
Vm2

m1 ⊆ Ω j for some j, (1.23)

the solution us in (1.14) (like any quasi-periodic solution of the Helmholtz equation)
may be expressed as an α-quasi-periodic Rayleigh-series expansion of the form

us(x) =
∑

m∈ZdΛ

A+meiαm ·x+iβm(nj k)xd + A−meiαm ·x−iβm(nj k)xd, dΛ = d − 1 (1.24)

and
us(x) =

∑
m∈ZdΛ

eiαm ·xUm(x2, x3) dΛ = 1, d = 3, (1.25)

where Um(x2, x3) satisfies the Helmholtz equation with wavenumber βm(n j k) in
two-dimensional space

∆Um(x2, x3) + βm(n j k)2Um(x2, x3) = 0. (1.26)

In (1.24) and (1.25) we have set

αm = α + Km, βm = βm(κ) =
√
κ2 − |αm |

2 and Im(βm) ≥ 0. (1.27)

Remark 2. Throughout this work we will consider problems where the propagation
domainΩ extends to infinity both along the periodic lattice direction as well as along
orthogonal directions to the lattice (see points 1–3 in 1.2). Note that in the case
dΛ = d − 1, the modes eiαm ·x+iβm xd and eiαm ·x−iβm xd represent outgoing waves in
the half-spaces xd > M and xd < −M respectively. Similarly, the cylindrical waves
eiαm ·xH(1)0

(
βm

√
x2

2 + x2
3

)
represent outgoing waves in the case dΛ = 1, d = 3.

A quasi-periodic solution of the Helmholtz equation (1.11) is called radiating if
the relevant associated Rayleigh expansion, either (1.24) or (1.25), only contains
outgoing modes in any set Vm2

m1 satisfying (1.23). Thus the scattered field us, which
has been assumed to be radiating, i.e., it only contains outgoing modes and remains
bounded as |x⊥ | → ∞, is given by a Rayleigh expansion of the form

us(x) =
∑

m∈ZdΛ

A+meiαm ·x+iβm(nj k)x⊥, xd > M and

us(x) =
∑

m∈ZdΛ

A−meiαm ·x−iβm(nj k)x⊥, xd < −M
(1.28)

if dΛ = d − 1 and
us(x) =

∑
m∈ZdΛ

eiαm ·xUm(x2, x3) (1.29)

if dΛ = 1, d = 3, where Um(x2, x3) satisfies (1.26) and the two-dimensional Som-
merfeld radiation condition [CK12, Eqn. 3.85].
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We will obtain α-quasi-periodic solutions of equation (1.11) by relying on integral
equations and α-quasi-periodic Green functions. The classical α-quasi-periodic
Green function is introduced in the following section, which additionally describes
the difficulties that arise at Rayleigh-Wood anomalies. Section 4.2 then presents a
new strategy leading to Green-function solutions even at and around Wood anoma-
lies.
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C h a p t e r 2

QUASI-PERIODIC GREEN FUNCTIONS AND THEIR
REPRESENTATIONS

Given α ∈ Rd and κ > 0 the quasi-periodic Green function Gq
κ is given by the

conditionally-convergent sum

Gq
κ(x) =

∑
m∈ZdΛ

eiα·RmGκ(x − Rm), (2.1)

where

Gκ(x) =


i
4 H(1)0 (κ |x |) for d = 2,
1

4π
eiκ |x |

|x | for d = 3
(2.2)

denotes the free-space Green function for the Helmholtz equation with wavenumber
κ in d-dimensional space.

The quasi-periodic Green function can be interpreted as the field generated by an
infinite number of radiating point sources distributed periodically and acting coher-
ently through a suitable phase factor. A direct application of the Poisson summation
formula [Sim15] to (2.1) yields the corresponding spectral representations for the
quasi-periodic Green function:

Gq
κ(x) =

1
A

i
2

∑
m∈ZdΛ

eiαm ·xeiβm |xd |

βm
, d = 2, 3 and dλ = d − 1 (2.3)

Gq
κ(x) =

1
A

i
4

∑
m∈ZdΛ

eiαm ·xH(1)0

(
βm

√
x2

2 + x2
3

)
, d = 3, dλ = 1. (2.4)

Here A denotes the area of the unit cell,

A =

{
|v1 | if dλ = 1

|v1 × v2 | if dλ = 2
(2.5)

and the parameters αm and βm are defined in (1.27). The spectral representa-
tions (2.3)– (2.4) manifest the singular character of the quasi-periodic Green func-
tion at configurations for which the scalar βm vanishes for some value or (finite
number of) values of the index m: as such singular configurations are approached,
singularities of type β−1

m and log(βm) arise for d = dΛ + 1 and d = dΛ + 2, respec-
tively. A triple (κ, α,Λ) for which βm vanishes for some value of m is said to be a
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Figure 2.1: Density of RW-anomalies for a bi-periodic array (dΛ = 2) in three-
dimensional space (d = 3) where v1 = (L, 0, 0), v2 = (0, L, 0) with L = 1λ (top-
left), L = 3λ (top-right) and L = 5λ (bottom-left). Each point in the lines inside the
circles corresponds to an incoming direction of a plane wave (which impacts directly
in the possible value of α) giving rise to an RW anomalous configuration. (In the
present d = 3 case each plane-wave incoming direction represents a point in the
lower hemisphere in the bottom-right image. The two-dimensional figures, which
are presented to facilitate visualization, are obtained by projecting these points into
a circle of radius 1 in the plane via the map (x, y, z) → (x, y, 0).)

Rayleigh-Wood (RW) anomaly triple; clearly, at RW anomalies the (finite) set

W =W(κ, α,Λ) =
{
m ∈ ZdΛ : κ2 − |α + Km |

2 = 0
}
=

{
m ∈ ZdΛ : βm = 0

}
(2.6)

is non-empty.

The spectral representations (2.3) and (2.4) provide an exceptional computational
tool whenever the following conditions are satisfied: 1) The triple (κ, α,Λ) is
not a RW anomaly; and 2) The magnitude |x⊥ | of the projection x⊥ is relatively
large compared to the period—since, in such cases, the series (2.3) and (2.4)
converge exponentially fast to the corresponding quasi-periodic Green functions
(see Section 3.1 for a more detailed analysis). For small values of |x⊥ |, however,
the convergence rates deteriorates. To compute the quasi-periodic Green functions
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in the latter regime alternative representations must be used which, like the one
displayed in equation (2.1), make explicit the spatial Green-function singularities.
The representation (2.1) is only conditionally convergent, however, and therefore
finite truncations of it yield poorly convergent approximations. For example, a
straightforward truncation in the dΛ = 1 case converges with an error that decays
like the inverse of the square root of the numbers of terms used.

A number of methodologies have been developed which, for configurations away
from RW-anomalies, can be used to evaluate the quasi-periodic Green function effi-
ciently and accurately—including lattice sums [Den+17b; Lin10; Lin98], Laplace-
type integral representation [BH09; BH10; KNR11; KR09; Vey+91], the Ewald
summation method [Are+13; CWJ07; Ewa21; Lin10; ND57] and, recently, the
Windowed Green function and the shifted Green function methods [BD14; Bru+16;
Bru+17]. Except for the shift-based Green function approach, however, all of these
methodologies do fail at RW-anomalies since the classical quasi-periodic Green
function is not even defined in that case. Sections 2.1, 2.2 and 2.3 describe the
Laplace-type integral, Ewald and shifted Green function approaches respectively,
which can all be (separately) used as base elements for the strategy proposed in
Chapter 4 for the RW anomaly.

2.1 Laplace-type integral method (dΛ = 1)
In the case dΛ = 1, Laplace transform methods can be used to express the quasi-
periodic Green functions as a sum of a single free-space Green function and certain
Laplace-type integrals. (Laplace-type Integral methods have been successfully
extended to bi-periodic arrays, dΛ = 2, for Cartesian lattices [Lin10]—for which the
generating vectors v1 and v2 are orthogonal—but we do not consider such extensions
in this work.) A full description of the dΛ = 1 methods can be found in [KNR11;
KR09; Lin10; Lin98; Vey+91].

Assuming v1 = L x̂1 (L is the period of the lattice) the classical quasi-periodic Green
function (2.1) in the case dΛ = 1 is given by

Gq
κ(x) =

∑
m≤−1

eiα·x̂1LmG(x − mL x̂1) + Gκ(x) +
∑
m≥1

eiα·x̂1LmG(x − mL x̂1). (2.7)

Expressing Gκ in terms of its Laplace transform [Bat54, Eq. 5.14.9] and [Erd+54,
Eq. 4.15.19] we obtain

Gκ(x) =
eiκ |x1 |

2π

∞∫
0

e−κ |x1 |u
fd

(
κ |x⊥ |

√
u2 − 2iu

)
(
u2 − 2iu

) (3−d)/2 du, (2.8)
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where
fd(t) = cos(t) for d = 2 and fd(t) =

κ

2
J0(t) for d = 3, (2.9)

and where J0 denotes the zero-th order Bessel function. For evaluation points x

within the unit cell (|x1 | ≤ L), substitution of (2.8) into the last sum in (2.7) yields

e−iκx1

2π

∞∫
0

eκx1u

(
∞∑

m=1
e−(κu−i(α·x̂1+κ))mL

)
fd

(
κ |x⊥ |

√
u2 − 2iu

)
(
u2 − 2iu

) (3−d)/2 du, (2.10)

or, equivalently,

e−iκx1

2π

∞∫
0

e−κ(L−x1)u

e−i(α·x̂1+κ)L − e−κLu

fd
(
κ |x⊥ |

√
u2 − 2iu

)
(
u2 − 2iu

) (3−d)/2 du. (2.11)

Using a similar derivation for the first series in (2.7) the Laplace-type integral
representation

Gq
κ(x) = Gκ(x) +

e−iκx·ê

2π
I+(x) +

eiκx·ê

2π
I−(x) (2.12)

results, where

I±(x) =

∞∫
0

e−κ(L±x1)u

e−i(κ∓α·x̂1)L − e−κLu

fd
(
κ |x⊥ |

√
u2 − 2iu

)
(
u2 − 2iu

) (3−d)/2 du. (2.13)

The generalized Gauss-Laguerre quadrature rule [Pre+07] is well suited for evalu-
ation of the integrals I±. In contrast to the spectral representations, formula (2.12)
makes explicit the spatial singularity around the origin of the quasi-periodic Green
function but it does not present in a similarly explicit form the singularity at RW
anomalies—which is explicit in (2.3) and (2.4). The Laplace-type integral repre-
sentation (2.12), which was used in [BH09; BH10] to produce efficient periodic
scattering solvers for challenging configurations, is also a key component in the
analysis performed in [KNR11; KR09] for the periodic problem at high frequencies.
The strategies presented in those references cannot be applied at RW anomalies,
however.

As detailed in what follows, each of the integrals I± can be re-expressed as the sum
of two terms, one of which explicitly captures the RW-anomaly singularities in (2.3)
and (2.4), while the other, which is given by a rapidly convergent integral, remains
bounded near RW anomalies.
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To see this we first note that, except at RW-anomalies the denominator e−i(κ∓α·x̂1)L −

e−κLu in (2.13) does not vanishes in the integration domain. Indeed, the zeroes of
the denominator are the purely imaginary numbers iu±m, where

κu±m = κ ∓ αm · x̂1, (2.14)

Clearly these zeroes can only be real if κu±m vanishes, or, equivalently, if the RW-
anomaly condition |αm | = κ is satisfied. In particular, at RW-anomalies, at least
one of the integrals I± diverges.

In order to explicitly extract the singular term we multiply and divide the integrand
in (2.13) by u − iu±m and we obtain

I±(x) =

∞∫
0

e−κ(L±x1)u

u − iu±m
1

u(3−d)/2gd(u)du, (2.15)

where we have set

gd(u) =
u − iu±m

e−i(α·x̂1∓κ)L − e−κLu

fd
(
κ |x⊥ |

√
u2 − 2iu

)
(u − 2i)(3−d)/2 .

As a function of the real variable u, gd is an infinitely differentiable function around
the origin (since in either case, d = 2 and d = 3, the Taylor series of the analytic
function fd around zero only contains even powers). Adding and subtracting gd(iu±m)
from gd(u) in (2.15) we obtain

I±(x) =

∞∫
0

e−κ(L±x1)u

u(3−d)/2
gd(u) − gd(iu±m)

u − iu±m
du + gd(iu±m)

∞∫
0

e−κ(L±x1)u

u − iu±m
du

u(3−d)/2 . (2.16)

Clearly, the integrand in the first term of the right hand side of equation (2.16) is
regular and can be evaluated by means of the Gauss-Laguerre quadrature rule. The
last integral on the right-hand side, in turn, can be expressed in terms of special
functions. Indeed, in the case d = 2 using the relation [DLM17, Eq. 7.7.2]

e−z2
erfc (−iz) =

z
πi

∞∫
−∞

e−t2

t2 − z2 dt, Im(z) > 0 (2.17)

and the change of variables u = t2 we obtain

∞∫
0

e−κ(L±x1)u

u − iu±m
du
√

u
= πeiπ/4e−iκu±m(L±x1)

erfc
(
e−iπ/4

√
κu±m(L ± x1)

)
√

u±m
, (2.18)
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where erfc denotes the analytic extension of the complementary error function

erfc(z) =
2
√
π

∞∫
z

e−t2
dt (2.19)

to the complex plane. For the case d = 3, in turn, we have

∞∫
0

e−κ(L±x1)u

u − iu±m
du = e−iκu±m(L±x1)E1

(
−iκu±m(L ± x1)

)
(2.20)

where E1 denotes the analytic extension of the exponential integral

E1(z) =

∞∫
z

e−t

t
dt,

to the maximal analyticity domain C \ (−∞, 0] (that is also commonly used as the
principal branch of the logarithm function). The factor gd(ium) that multiplies the
last integral on the right-hand side of equation (2.16) (in either case, d = 2 or d = 3)
in turn, is given by

gd(ium) =
eiκLu±m

κL

fd
(
κ |x⊥ |

√
2um − u2

m

)
(i(um − 2))(3−d)/2 , (2.21)

as it can be checked easily. In view of equations (2.18), (2.20) and (2.21) together
with the relation βm(κ) = κ

√
2um − u2

m (that results from (1.27) and (2.14)) it follows
that the second term on the right hand side of (2.16) equals

π
i
L

e∓iκu±mx1erfc
(
e−iπ/4

√
κu±m(L ± x1)

) cos
(
βm(κ)|x

⊥ |
)

βm(κ)
(2.22)

for d = 2 and

1
2L

e∓iκu±mx1 J0
(
βm(κ)|x

⊥ |
)

E1

(
−i

βm(κ)
2

κ +
√
κ2 − βm(κ)2

(L ± x1)

)
(2.23)

if d = 3. In either the case d = 2 or d = 3, substituting the last integral in
equation (2.16) by the corresponding expression (2.22) or (2.23), and then replacing
the ensuing formulae for I± into (2.12), yields an expression for the quasi-periodic
Green function Gq

κ in terms of special functions and integrals that do not suffer from
singularity at RW-anomalies. The 1/βm Green-function singularity in the case d = 2
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is explicitly displayed in (2.22), while the corresponding logarithmic singularity in
the case d = 3 can be made explicit by using the relation [DLM17, Eq. 6.6.2]

E1(z) = −C − log(z) −
∞∑

k=1

(−z)k

kk!
. (2.24)

The special-function values required to evaluate the expressions (2.22) and (2.23)
can generally be obtained without difficulty by means of well known algorithms,
as indicated in Chapter 3. As discussed in that chapter, however, the necessary
integrals (namely, the first integral expression on the right-hand side in (2.16) for
d = 2 and d = 3), while regular at RW-anomalies, still present significant challenges
in the high-frequency regimes.

2.2 Ewald summation method (dΛ = 1, 2)
The Ewald summation method was originally introduced [Ewa21] as a technique to
evaluate the electrostatic potential energy in crystals; its derivation in the context
of the Helmholtz equation and, generally, wave-propagation phenomena is quite
intricate, but a detailed description can be found in Appendix B. The representations
that result after the application of this procedure expressesGq

κ as a sum of two infinite
series Gq

Λ
and Gq

Λ∗
,

Gq
κ = Gq

Λ
+ Gq

Λ∗
, (2.25)

indexed by elements in the lattices Λ and Λ∗, and whose general terms decay as
exp(−η2 |Rn |

2) and exp(− |Kn |
2 /4η2) respectively. The constant η > 0, which

arises as a splitting parameter of an integral representation of the free-space Green
function, is carefully chosen in order to maximize the convergence rate of the two
series as well as to ensure the stability of the method (see [KM00; LBA08; SM07]).

In what follows we present explicit expressions for Gq
Λ
and Gq

Λ∗
for various values

of d and dΛ; a derivation of these expressions, which can be found in [Lin10], is
presented in Appendix B for easy reference. To display these expressions we call
ρn the Euclidean distance between an observation point x and a lattice point Rn,
and we denote by E j = E j(z) the exponential integral with complex argument z:

E j(z) =

∞∫
z

e−t

t j dt. (2.26)

Then, for d = 2 and dΛ ≤ d, Gq
Λ
is given by

Gq
Λ
(x) =

1
4π

∑
m∈ZdΛ

eiα·Rm

∞∑
j=0

1
j!

(
κ

2η

)2 j

E j+1

(
η2ρ2

m

)
, (2.27)
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while for d = 3 and dΛ ≤ d,

Gq
Λ
(x) =

1
8π

∑
m∈ZdΛ

eiα·Rm

ρm

[
eikρmerfc

(
ηρm + i

κ

2η

)
+ e−ikρmerfc

(
ηρm − i

κ

2η

)]
.

(2.28)
The corresponding expressions for Gq

Λ∗
are as follows. For d = 2, 3 and dΛ = d − 1

Gq
Λ∗

is given by

Gq
Λ∗
(x) =

i
4A

∑
m∈ZdΛ

eiαm ·x

βm

[
eiβm xderfc

(
−ηxd − i

βm
2η

)
+ e−iβm xderfc

(
ηxd − i

βm
2η

)]
.

(2.29)

while for d = 3 and dΛ = d − 2 = 1

Gq
Λ∗
(x) =

1
4πA

∑
m∈ZdΛ

eiαm ·x
∞∑

j=0

1
j!

(
iη

√
x2

2 + x2
3

)2 j

E j+1

(
−
β2
m

4η2

)
. (2.30)

Note thatGΛ depends only on the spatial dimension d irrespectively of the dimension
dΛ of the lattice, whereasGΛ∗ depends only on the complementary dimension d−dΛ
but not directly on d.

2.3 Shifted Green function (dΛ = 1, 2)
The conditionally convergent sum (2.1) owes its poor convergence rate to the slowde-
cay of the free-space Green function at infinity. As detailed in [BD14] and [Bru+17],
use of a certain half-space shifted Green function produces quasi-periodic Green
functions with a user-prescribed algebraic decay, convergent at any configuration,
including RW-anomalies. In brief, given a shift-parameter h > 0 and a unit-vector
v̂, the half-space shifted Green function of order j ≥ 0 is given by

Gκ, j(x) =

j∑̀
=0
(−1)`

(
j
`

)
Gκ(x + `hv̂). (2.31)

It can be shown that [BD14; Bru+17] given M > 0, there exists a constant C(h, M)

such that for |x · v̂ | ≤ M we have

|Gκ, j(x)| ≤ C(h, M)|x‖ |−( j+1)/2 (2.32)

if j is an even positive integer and

|Gκ, j(x)| ≤ C(h, M)|x‖ |−( j/2+1) (2.33)
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if j is an odd positive integer. In these estimations x‖ is the projection of the point
x into the plane orthogonal to v̂. The shifted quasi-periodic Green function, in turn,
is given by

Gq
κ, j(x) =

∑
m∈ZdΛ

eiα·RmGκ, j(x − Rm), (2.34)

where the unit-vector v̂ used to define Gκ, j is taken orthogonal to the plane that
contains the lattice Λ. It is clear from (2.31) that the classical quasi-periodic Green
function can be written in terms of Gq

κ, j as

Gq
κ(x) = Gq

κ, j(x) −

j∑̀
=1
(−1)`

(
j
`

)
Gq(x + `hv̂). (2.35)

If the triple (κ, α,Λ) is not an anomalous configuration and for points for which the
quasi-periodic Green functions in the finite sum in equation (2.35) can be expressed
by their corresponding spectral representations it follows that (cf. [BF17, Eqs. 4.5,
4.6])

Gq
κ(x) = Gq

j (x) −
i

4A

∑
m∈Z

j∑̀
=1
(−1)`

(
j
`

)
eiαmx1 H(1)0

(
βm(κ)|x

⊥ + `hv̂ |
)

(2.36)

if dλ = 1, d = 3 and

Gq
κ(x) = Gq

j (x) −
i

2A

∑
m∈Zdλ

j∑̀
=1
(−1)`

(
j
`

)
eiαm ·x+iβm |xd+`h|

βm
(2.37)

if dλ = d − 1. Equations (2.36) and (2.37), only valid for non-anomalous config-
urations, express the quasi-periodic Green function Gq

κ as a sum of two quantities,
the first one contains the spatial singularities (x ∈ Λ), while the second one con-
tains the singular terms which arise as a RW-anomaly is approached. Both (2.36)
and (2.37) thus yield jointly spatial-spectral fast-convergent representations of Gq

κ

that exhibit explicitly all spatial and spectral singular terms. On the basis of (2.37),
the contribution [BF17] introduced the use of the Woodbury-Sherman-Morrison
formulae as a means to overcome the difficulties around RW-anomalies for prob-
lems of scattering by arrays of particles in two-dimensional space. The present
contribution extends that work to enable applicability of the overall methodology
to arbitrary periodic domains—by utilizing either the shifted Green function in the
form (2.35) or, alternatively, either a modified version of the Laplace-type integral
representation (2.12) (for dΛ = 1, d = 2, 3) or, finally, a modified version of the
Ewald-summation expression (2.25).
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C h a p t e r 3

NUMERICAL IMPLEMENTATIONS

This chapter describes high-order methods for the discretization of the integral equa-
tion (4.4), which lead to fast and highly-accurate numerical solvers for simulation
of wave-scattering by periodic media.

Section 3.1 summarizes succinctly the various strategies used in this contribution for
the evaluation of the special functions with complex argument that are required as
part of the spectral, Laplace-type integral and Ewald representations. That section
also presents a description of the main difficulties presented by those evaluations in
the last two cases, and it compares the performance and stability of the Laplace-type
integral and Ewald methods along with the one based on use of the shifted Green
function for a variety of configurations. (The spectral representation, while useful
as a component of other methods, cannot be used by itself as part of a quasi-periodic
solver, in view of its inability to resolve the spatial Green-function singularity.)
The comparisons show that the Ewald representation provides the best convergence
properties for small periods in the case dΛ = d − 1, but becomes unstable in higher-
frequency regimes and in the case dλ = 1, d = 3 forwhich the shiftedGreen-function
becomes computationally advantageous1. Thus, the numerical software produced
for this thesis utilize the Ewald method and the shifted Green function method for
those cases accordingly, obtaining fast and highly-accurate solvers.

All numerical boundary integral equations methods need the evaluation of certain
convolution-type integrals whose kernel present weak (integrable) singularities of
order O (log(r)) and O (1/r) (r → 0) for d = 2 and d = 3 respectively. Section (3.2)
describes the numerical techniques used in this work to compute such weakly-
singular integrals.

3.1 Evaluation of quasi-periodic Green functions
Spectral series
As mentioned in Chapter 2, the spectral representations (2.3)–(2.4) give rise to
exceptional performance unless either |x⊥ | is small or the scattering configuration

1All times in Section (3.1) were measured in a single core of an Intel i5-8250U processor in a
personal computer.
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(κ, α,Λ) is an RW-anomaly. More specifically, since the m-th term of the spectral
series has an asymptotic behavior of order e−2π/L‖m‖∞ |x⊥ | as ‖m‖∞ → ∞ (L is the
period if dΛ = 1 or the largest period if dΛ = 2), a truncation of the spectral series
with ‖m‖∞ < N yields an error of order

O

(
e−N2π |x⊥ |/L

1 − e−2π |x⊥ |/L

)
. (3.1)

The exponential decay of the terms of the spectral series (2.3) and (2.4) only
manifests itself for values of m satisfying κ2 < |αm |

2. Since these terms decay
slowly for the propagating-mode indexes m satisfying κ2 ≥ |αm |

2, if any accuracy
is to be expected, the truncation parameter N must be sufficiently large so as to
include, in the corresponding truncation, all propagating-mode terms. Thus, to
achieve an ε-accuracy the truncation parameter N must satisfy

N &
κL
2π
+ O

(
L

2π |x⊥ |
log

(
1

ε(1 − e−2π |x⊥ |/L)

))
. (3.2)

It can be clearly seen from this estimate the advantages and difficulties of using
truncations of the spectral series to compute Gq

κ for large and small values of
|x⊥ | respectively; in this contribution we have utilized the spectral series whenever
|x⊥ | > L, and, depending on the characteristics of each problem, we have employed
one of the three alternative representations discussed in Chapter 2 in other cases.
(As can be appreciated from the results in Chapter 5, the first two methods are
efficient for acoustically small-medium configurations; as explained in what fol-
lows and exemplified in Tables 3.2, 3.4, for larger periods these techniques present
stability issues due to the exponential growth of special functions evaluated in the
complex plane resulting in loss of accuracy. The shifted Green-function approach,
in contrast, does not suffer from these difficulties and it proves advantageous in a
higher-frequency regime as illustrated in Table 3.8.)

Ewald and Laplace-type integral methods: Special functions and instability
sources
In what follows we summarize the algorithms we use for the evaluation of the special
functions that are required in the implementations of the Ewald and Laplace-type
integral representation methods, and we review certain sources of instability that
arise as special functions are incorporated in the corresponding implementations.
All of the special-function methods utilized in this thesis can be found in the ACM
Transactions of Mathematical Software (ACM TOMS).
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N 16 32 64 128

2.5λ 0.15E-5 0.12E-8 0.49E-13 0.48E-14
4.5λ 0.21E-4 0.17E-7 0.68E-12 0.93E-14
8.5λ 0.18E-3 0.11E-6 0.31E-11 0.14E-12

Avg. computing time (s) 7.51-3 1.31E-2 2.31E-2 4.31E-2

Table 3.1: Accuracy and performance of the Laplace-type Integral method, away
from RW-anomalies, for a periodic array with dΛ = 1, d = 3 at a non-anomalous
configuration. In this example, α = (0, 0, 0). The displayed values correspond to
the maximum relative error when the integrals I± in (2.12) are evaluated by means
of the Gauss-Laguerre quadrature rule with N nodes sampled at 100 points of the
form xi = ((i/100− 0.5)L,

√
2L/4,

√
2L/4), i = 0 . . . 99 where L denotes the period

(in all these cases, |x⊥ | = L/2). The reference value is obtained by means of the
spectral representation (2.4) truncated with as many terms as specified in (3.2) to
obtain machine precision.

As mentioned in Chapter 2 and demonstrated in Table 3.1, the integrals (2.13)
associated with the Laplace-type integral representation method embodied in equa-
tion (2.12) can be efficiently evaluated by means of Gaussian quadrature rules. In
this contribution the weights and nodes for the Gauss-Laguerre rule are obtained
applying TOMS Algorithm 655 [EK87]. In the case dΛ = 1, d = 3, it is addi-
tionally necessary to compute the Bessel function J0 with complex argument (see
equation (2.9)); this task is tackled by exploiting Algorithm 912 [Kod11]. Since the
magnitudes of the cosine and the Bessel function of the first kind grow exponentially
fast as the absolute value of the argument’s imaginary part increases, the direct inte-
gration strategy typically results in loss of accuracy under two commonly occurring
situations, namely, whenever we have either 1) large values of the product of the
wavenumber and the period, or 2) large values of the quotient of the magnitude |x⊥ |
of the orthogonal projection and the period (see Table 3.2). Extensions of our meth-
ods to high-frequency approaches like those presented in [KNR11] and [KR09],
which would enable applicability of those approaches to RW anomalous configura-
tions, will be left for future work.

The Ewald representation (2.28) and (2.29), in turn, requires the evaluation of
the exponential integrals E j(z) (equation (2.26)) for real values of z, as well as
the complementary error function erfc (equation (2.19)) for complex values of z.
The exponential integrals E j , on one hand, can be computed by means of the
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N 128 256 512

16.5λ 0.22E-11 0.30E-11 0.51E-11
32.5λ 0.16E-7 0.18E-7 0.21E-7
64.5λ 0.76E-1 0.13E+0 0.60E-1

PPPPPPPPPPeriod
N 128 256 512

16.5λ 0.61E-7 0.49E-7 0.65E-7
32.5λ 0.16E+1 0.29E+1 0.27E+1
64.5λ 0.33E+16 0.12E+16 0.13E+16

Table 3.2: Same experiment as in Table 3.1 with larger periods, a larger number of
quadrature nodes and for two values of |x⊥ |: 0.5L (top) and 0.75L (bottom). The
large magnitude of the Bessel function of the first kind produces a loss of accuracy
in the Laplace-type integral method as the magnitude of the period increases.

recursion [DLM17, p. 8.19.12]

E j+1(z) =
e−z − zE j(z)

j

or directly through the relation [DLM17, p. 8.19.7]

E j(z) =
1

( j − 1)!

[
(−z) j−1E1(z) + e−z

j−2∑
n=1
( j − 2 − n)!(−z)n

]
. (3.3)

Our algorithms utilize the latter approach, which provides a more stable evaluation
algorithm than the alternative recursive method. (The necessary polynomial coeffi-
cients in (3.3) can be pre-computed for all necessary values of j and then utilized
to evaluate the needed polynomials by means of Horner’s scheme.) In either case it
is necessary to separately evaluate the function E1(z) (for real arguments z), and for
this we utilize Algorithm 715 [Cod93]. The evaluation of the necessary values of
the erfc functions in the Ewald representations, on the other hand, are reduced, on
the basis of the relation

erfc(z) = e−z2
w(iz), z ∈ C (3.4)

to evaluation of the function w, where w(z) is the closely related Faddeeva func-
tion [DLM17, p. 7.2.3]

w(z) = e−z2 ©­«1 +
2i
√
π

z∫
0

et2
dtª®¬ (3.5)
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which is then computed, for the argument iz, by means of Algorithm 916 [ZA11].
(Other related techniques include [AQ11; Wei94], which also rely on the rela-
tion (3.4) and first compute w(iz) to obtain the values of erfc(z).) The substitu-
tion (3.4) in the case dΛ = 2, d = 3, for instance, reveals the exponential decaying
rate of the Ewald method but, also, the exponential growth for higher-frequencies.
Indeed, the m-th term in (2.28) equals

eκ
2/4η2

e−η
2ρ2

m

[
w

(
−
κ

2η
+ iηρm

)
+ w

(
κ

2η
+ iηρm

)]
(3.6)

while for (2.29) the corresponding m-th term equals

eκ
2/4η2

eη
2x2

de−|αm |
2/4η2

[
w

(
βm(κ)

2η
− iη |xd |

)
+ w

(
βm(κ)

2η
+ iη |xd |

)]
. (3.7)

Increasing the user-prescribed parameter η > 0 improves the convergence rate of
the term (2.28) (which is exponentially fast, of the order of e−η2ρ2

m) but it negatively
affects the convergence of (2.29) (which is also exponentially fast, but of order
e−β2

m/4η2). Similarly, decreasing η improves the convergence of the exponential rate
of the second terms but it reduces the convergence rate of the first one. Choosing η
of order O(

√
2π/L) (where L is the largest period of the bi-dimensional array) the

two series will have the same asymptotic convergence rate as ‖m‖∞ → ∞. Doing
so, however, causes an exponential growth of the term eκ2/4η2 which is present in
both (3.6) and (3.7) as κ or the period grow. Since the sum of (2.28) and (2.29) equals
the quasi-periodic Green function, which is a bounded quantity when evaluated away
from the lattice points Rm, cancellation of the two exponentially large quantities
must take place, which produces large cancellation errors and consequent instability
of the method at high-frequencies or large periods. Such exponential growth can
(and usually is) prevented by restricting the term κ/2η to be less than a maximum
threshold; this, however, gives a lower-bound for the parameter η in terms of the
wavenumber κ and therefore the term eη

2x2
d will grow exponentially fast if the

magnitude of the orthogonal projection xd is moderately large (see Table 3.4).
Similar analyses have been conducted in [Are+13; CWJ07; KM00; LBA08] for the
cases d = 2 and dΛ = 1, d = 3, demonstrating the aforementioned cancellation
errors and the associated high-frequency breakdown of the Ewald method. This
situation is highly-problematic in the dΛ = 1, d = 3 case as illustrated in Table 3.5
and analyzed in great detail in [CWJ07]. In that reference the high-accuracy achieved
by the Ewald method is demonstrated for configurations where the period equals
0.05λ and 0.5λ and the evaluation points are such that |x⊥ | is a tenth of the period.
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N 2 4 8 16

4λ ×
(
1 + 10−2) 0.99E0 2.56E-4 4.93E-12 5.66E-16

4λ ×
(
1 + 10−4) 1.81E0 6.91E-5 4.80E-12 9.62E-15

4λ ×
(
1 + 10−6) 1.09E0 1.15E-5 8.92E-13 4.24E-16

4λ ×
(
1 + 10−8) 1.38E0 2.71E-5 2.11E-12 1.15E-15

4λ ×
(
1 + 10−10) 1.37E0 2.66E-5 2.07E-12 1.90E-15

4λ ×
(
1 + 10−12) 1.37E0 2.64E-5 2.06E-12 2.90E-16

4λ ×
(
1 + 10−14) 1.37E0 2.64E-5 2.06E-12 1.12E-15

Avg. computing time (s) 2.12E-4 2.39E-4 3.14E-4 5.97E-4

Table 3.3: Accuracy and performance of the Ewald method for a bi-periodic array
(dΛ = 2, d = 3) as anRW-anomaly is approached. In this configuration, α = (0, 0, 0).
The displayed values in this table correspond to the maximum relative error of finite
truncations of (2.28) and (2.29) of the form ‖m‖∞ ≤ N to compute Gq

κ sampled
at 1002 evaluation points xi j = (iL/100, jL/100, d/2), i, j = 0 . . . 99 in a single
period (in all these cases, |x⊥ | = L/2). The reference value is computed by means
of the spectral series with a very large number of terms to achieve machine-precision
(see (3.1)). The times reported correspond to a single evaluation of Gq

κ using the
Ewald’s method. Clearly, unlike the Laplace-type integral method, the performance
of the Ewald method is unaffected by proximity to RW-anomalies. However, the
Ewald expressions are undefined at RW configurations.

For a modestly large period (5.5λ), in turn, the errors that contribution presents are
only of the order of 10−4-10−5. In fact the errors can be much larger than one, as
|x⊥ | slightly increases, in sharp contrast of the errors that the Ewald method can
produce in the case dΛ = d − 1 for such small periods (Table 3.5). Thus, for the
simulation of linear arrays in three-dimensional space the Ewald method, although
fast when compared with the Laplace-type integral method, has an erratic behavior
making it unsuitable as the basis for a robust and full-spectrum solver.

However, for linear and bi-periodic arrays in two and three-dimensional space re-
spectively and for the problems of low-frequency and small period considered in
this thesis the Ewald method provides a very fast computational tool as can be
appreciated in Table 3.3; finite truncations of the form ‖m‖ ≤ N of (2.27), (2.28)
and (2.29) converge very rapidly amortizing the additional cost associated with the
evaluation of special functions even around RW-anomalies.

The shifted Green-function based approach is the simplest of the three methods de-
scribed in this thesis as it does not require the evaluation of special functions; only
finite truncations of the sums over the direct and the reciprocal lattices inherent in
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PPPPPPPPPPeriod
k/η 0.1 0.25 0.5 1 2

2.5λ NaN 0.32E+13 0.77E+3 0.12E-3 0.36E-14 0.33E-14
4.5λ NaN 0.31E+12 0.14E-1 0.58E-14 0.58E-14 NaN
8.5λ NaN 0.13E+10 0.57E-14 0.57E-14 NaN NaN
16.5λ NaN 0.14E+1 0.40E-14 0.29E-14 NaN NaN
32.5λ NaN 0.52E-14 0.48E-14 NaN NaN NaN
64.5λ NaN 0.41E-14 NaN NaN NaN NaN

PPPPPPPPPPeriod
k/η 0.01 0.1 0.25 0.5 1 2

2.5λ NaN 0.34E+13 0.67E+01 0.37E-12 0.33E-14 0.33E-14
4.5λ NaN 0.17E+12 0.79E-08 0.26E-14 0.26E-14 NaN
8.5λ NaN 0.42E+06 0.30E-14 0.21E-14 NaN NaN
16.5λ NaN 0.12E-13 0.19E-14 NaN NaN NaN
32.5λ NaN 0.29E-14 NaN NaN NaN NaN
64.5λ NaN NaN NaN NaN NaN NaN

Table 3.4: Same experiment as Table 3.3 increasing the period (but taken to avoid
an RW-anomaly), varying the values of the splitting parameter η and the value of
|x⊥ |: 0.5L (top) and 0.75L (bottom). In all cases the sums (2.28) and (2.29) are
truncated with ‖m‖∞ < 100. For various choices of the splitting parameter the
Ewald method behaves in an erratic manner and is not able to produce meaningful
results for the largest period.

k/η
Period (L) |x⊥ |/L 4/5π π 4/3π

1.5λ 0.1 0.18E-09 0.30E-07 0.18E-05
0.5 0.21E-01 0.41E-03 0.33E-05

2.5λ 0.1 0.17E-09 0.67E-08 0.23E-05
0.5 0.25E+04 0.49E+02 0.76E+00

4.5λ 0.1 0.96E-07 0.29E-07 0.20E-05
0.5 0.53E+09 0.12E+08 0.21E+06

Table 3.5: Relative errors for the evaluation of Gq
κ in the dλ = 1, d = 3 case obtained

bymeans of the Ewaldmethod at points for two values of |x⊥ |. A number of different
splitting parameters η are chosen but the method does not yield meaningful results
as the magnitude of the orthogonal projection increases.
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the two terms in (2.37) are needed. The sum over the direct lattice (and therefore, the
complete procedure) inherits the algebraic decay (2.32)–(2.33) of the shifted Green
function. Thus either a small or large number of terms is needed in these truncations
to achieve an accurate approximation of Gq

κ depending on whether the period is large
or small compared to the wavelength (cf. Tables 3.7 and 3.8, respectively). The
slow convergence in the small-period case is specially problematic for bi-periodic
arrays in three-dimensional space as the computation of the finite truncations have a
quadratic cost (the sum must be performed over two directions). However, even for
small periods, for arrays with a single direction of periodicity (dΛ = 1) the algebraic
decay does not pose a major difficulty—which is especially important in the three-
dimensional case where the Ewald method is highly unstable and the Laplace-type
integral technique is orders of magnitude slower than the shifted Green function
method (Tables 3.6 and 3.9). Furthermore, the number of terms needed for the
shifted Green function to achieve a given desired accuracy decreases as the period is
increased (it is inversely proportional to L−(

j
2−1) for j even, with a slightly more neg-

ative exponent for j odd); see [BD14; Bru+17] and Table 3.8. Since, additionally,
as the computation of the quantities involved are not exponentially large or small,
no instabilities as the ones in the Ewald or Laplace-type integral methods occur,
making the shifted Green-function based method highly suitable for large-period
configurations even in the case d = 3, dΛ = 2. This regime presents an additional
computational challenge, that of dealing with scattering obstacles which are acous-
tically large and which require a large number of discretization points to resolve the
wavelength. In this case, acceleration techniques to reduce the natural operation
count of order O(N2

dis) arising in boundary integral equation methods (where Ndis is
the number of discretization points) are needed. The contribution [BM18a] already
established the applicability of the shifted Green-function together with such ac-
celeration techniques for problems with large periods in two-dimensional space for
rough surfaces, even at and around RW-anomalies. The applicability of the method
used in that reference to the framework this thesis presents is out of scope and will
be left for future work.

3.2 Evaluation of weakly-singular integrals
This section describes numerical methods for evaluation of weakly-singular inte-
grals, necessary for the solvers presented in this thesis. As mentioned in Chapter 4,
only smooth surfaces are considered but the general framework which is the sub-
ject of this work remains valid for non-smooth domains, provided the associated
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N 64 128 256 512

4λ ×
(
1 + 10−2) 0.44E-05 0.53E-06 0.66E-07 0.82E-08

4λ ×
(
1 + 10−4) 0.17E-04 0.39E-05 0.88E-06 0.18E-06

4λ ×
(
1 + 10−6) 0.79E-05 0.19E-05 0.49E-06 0.12E-06

4λ ×
(
1 + 10−8) 0.49E-05 0.12E-05 0.30E-06 0.76E-07

4λ ×
(
1 + 10−10) 0.35E-05 0.87E-06 0.22E-06 0.55E-07

4λ ×
(
1 + 10−12) 0.28E-05 0.68E-06 0.17E-06 0.43E-07

4λ ×
(
1 + 10−14) 0.23E-05 0.56E-06 0.14E-06 0.35E-07

Avg. computing time (s) 4.29E-04 5.02E-04 6.51E-04 9.46E-04
PPPPPPPPPPeriod

N 64 128 256 512

4λ ×
(
1 + 10−2) 0.86E-08 0.20E-09 0.82E-11 0.37E-11

4λ ×
(
1 + 10−4) 0.16E-07 0.76E-09 0.40E-10 0.14E-11

4λ ×
(
1 + 10−6) 0.73E-08 0.36E-09 0.20E-10 0.73E-11

4λ ×
(
1 + 10−8) 0.45E-08 0.22E-09 0.13E-10 0.26E-11

4λ ×
(
1 + 10−10) 0.33E-08 0.16E-09 0.92E-11 0.16E-11

4λ ×
(
1 + 10−12) 0.25E-08 0.13E-09 0.72E-11 0.53E-12

4λ ×
(
1 + 10−14) 0.21E-08 0.10E-09 0.59E-11 0.42E-12

Avg. computing time (s) 8.54E-04 9.72E-04 1.24E-03 1.73E-03

Table 3.6: Accuracy and performance of the shifted Green-function (2.37) based
method for a linear array in three-dimensional space (dΛ = 1, d = 3) as an RW-
anomaly is approached. In the experiment, Gq

κ is computed for several evaluation
points such that, in all cases, |x⊥ | equals half of a period. Highly accurate results
are obtained, in contrast with the Ewald method (cf. Table 3.5), in short computing
times compared with the also accurate Laplace-type integral method (cf. Table 3.1).

weakly-singular integrals are evaluated accurately. A simple procedure to discretize
integral equations, which is the one used to produce the results in this dissertation,
is based on use of a set of discretization (also called collocation) points xi over
the domains of the integral operators (namely, the scattering boundaries). These
operators are evaluated using the approximate values of the unknown density Φ at
the points xi. Such procedure yields a finite system of equations whose unknowns
are approximate values ofΦ(xi). In the following subsections we make these ideas
precise for the two- and three-dimensional cases.

Two-dimensional case
We consider for definiteness the numerical approximation of the single layer oper-
ator (4.1) where γ] is a smooth closed curve which can be parametrized by a C∞
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PPPPPPPPPPeriod
N 100 200 400 800

4λ ×
(
1 + 10−2) 2.65E-7 7.83E-8 2.14E-8 4.62E-9

4λ ×
(
1 + 10−4) 1.74E-6 2.73E-7 4.42E-8 9.14E-9

4λ ×
(
1 + 10−6) 1.35E-5 2.46E-6 4.38E-7 9.59E-8

4λ ×
(
1 + 10−8) 9.54E-7 2.19E-7 6.96E-8 1.78E-8

4λ ×
(
1 + 10−10) 2.47E-7 6.37E-8 2.47E-8 7.94E-9

4λ ×
(
1 + 10−12) 7.31E-8 2.05E-8 7.60E-9 2.53E-9

4λ ×
(
1 + 10−14) 2.27E-8 6.51E-9 2.36E-9 7.87E-10

Avg. computing time (s) 2.04E-2 7.21E-2 2.77E-1 1.09E0
PPPPPPPPPPeriod

N 100 200 400 800

4λ ×
(
1 + 10−2) 4.99E-11 1.40E-10 2.76E-10 4.62E-9

4λ ×
(
1 + 10−4) 1.04E-10 1.64E-10 4.15E-10 9.14E-9

4λ ×
(
1 + 10−6) 6.37E-10 2.54E-10 4.27E-10 9.59E-8

4λ ×
(
1 + 10−8) 2.41E-11 2.58E-11 6.24E-11 1.78E-8

4λ ×
(
1 + 10−10) 6.69E-12 6.66E-12 1.30E-11 7.94E-9

4λ ×
(
1 + 10−12) 1.65E-12 2.14E-12 5.12E-12 2.53E-9

4λ ×
(
1 + 10−14) 6.39E-12 1.18E-12 9.00E-13 7.87E-10

Avg. computing time (s) 3.59E-2 1.24E-1 4.75E-1 2.15E0

Table 3.7: Accuracy and performance of the shifted Green-function (2.37) based
method for a bi-periodic array as an RW-anomaly is approached. The same nu-
merical experiment as the one carried out for Table 3.3 was conducted considering
evaluation points such that |x⊥ | equals half of a period. The algorithm parameters
are j = 4 (top) and j = 8 (bottom), h = 0.25λ−1 and we truncate the sum (2.34)
in the form ‖m‖∞ ≤ N . The sum over the reciprocal lattice in (2.37) is truncated
with as many terms as taken for the spectral sum used to compute the reference
value (fewer terms could be used, but use of the larger number of terms induces
only a marginal additional computing cost). Although accurate, the shifted Green
function method is significantly more expensive than the Ewald method for the type
of small-period configurations considered in this table (cf. Table 3.3).
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N 2 4 8

2.5λ 0.23E+3 0.23E+3 0.23E+3
4.5λ 0.38E+1 0.38E+1 0.49E-1
8.5λ 0.16E+0 0.52E-2 0.13E-6
16.5λ 0.90E-6 0.45E-9 0.18E-10
32.5λ 0.13E-9 0.38E-10 0.73E-10
64.5λ 0.15E-10 0.19E-10 0.29E-10

Max. computing time (s) 1.30E-2 1.32E-2 1.35-2
PPPPPPPPPPeriod

N 4 8 16

2.5λ 0.25E+2 0.25E+2 0.40E+0
4.5λ 0.22E+1 0.75E-1 0.27E-3
8.5λ 0.12E+0 0.36E-3 0.15E-4
16.5λ 0.12E-4 0.63E-6 0.66E-7
32.5λ 0.11E-5 0.24E-7 0.31E-8
64.5λ 0.12E-7 0.43E-9 0.56E-10

Max. computing time (s) 6.58E-3 6.68E-3 7.02E-3

Table 3.8: Same experiment as in Table 3.7 but with large periods showing the
accuracy of the shifted Green-function method with j = 4 (top) and j = 8 (bottom).
The algebraic decay rate of the shifted Green function produces convergence even
when a very small number of periods (N in the table) in the spatial sum in (2.37) are
included. The corresponding spectral sum in that equation is truncated according
to (3.2) to reach machine-precision; thus, the computational cost increases as the
period grows. The reported time corresponds to the maximum computing time
measured when the period equals 64.5λ (cf. Table 3.4). Note that, in particular, for
the large-period configurations considered in this table, for which, as demonstrated
in Table 3.4, the Ewald method breaks down, the shifted Green-function method
produces accurate results in short computing time. The large errors observed for
the smaller periods can be significantly reduced by increasing the value of N (cf.
Table 3.7), albeit at added computing cost.
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PPPPPPPPPPeriod (L)
N 2 4 8

2.5λ 0.47E-02 0.39E-03 0.37E-04
4.5λ 0.14E-02 0.11E-03 0.94E-05
8.5λ 0.41E-03 0.27E-04 0.21E-05
16.5λ 0.29E-03 0.18E-04 0.13E-05
32.5λ 0.10E-03 0.55E-05 0.33E-06
64.5λ 0.80E-04 0.35E-05 0.18E-06

Max. computing time (s) 3.64E-04 3.73E-04 3.98E-04
PPPPPPPPPPeriod (L)

N 8 16 32

2.5λ 0.42E-02 0.72E-04 0.12E-05
4.5λ 0.36E-03 0.53E-05 0.87E-07
8.5λ 0.29E-04 0.36E-06 0.53E-08
16.5λ 0.55E-05 0.63E-07 0.88E-09
32.5λ 0.65E-06 0.58E-08 0.58E-10
64.5λ 0.22E-06 0.13E-08 0.15E-10

Max. computing time (s) 7.28E-04 7.43E-04 7.77E-04

Table 3.9: Same experiment as in Table 3.6 but with large periods showing the
accuracy of the shifted Green-function method with j = 4 (top) and j = 8 (bottom)
for the dΛ = 1, d = 3 case. The points where Gq

κ is evaluated at satisfy |x⊥ | = L/2.
The algebraic decay rate of the shifted Green function produces convergence even
when a very small number of periods (N in the table) in the spatial sum in (2.37) are
included. The corresponding spectral sum in that equation is truncated according
to (3.2) to reach machine-precision; thus, the computational cost increases as the
period grows. The reported time corresponds to the maximum computing time
requiredwhen the period equals 64.5λ. Note that, in particular, for the configurations
considered in this table, for which, as demonstrated in Tables 3.2 and 3.5, the Ewald
and Laplace-type intergal methods break down even for modestly large-periods, the
shifted Green-function method produces accurate results in short computing time.
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2π-periodic function C(t), t ∈ [0, 2π]. This example encapsulates the main ideas
needed to 1) tackle the evaluation of weakly-singular integrals and 2) obtain linear-
systems which discretize boundary integral equations; the analysis can be easily
extended to consider double layer potentials and other periodic surfaces whose in-
tersection with the unit cell is not a closed curve. As is well known, the free-space
Green function (2.2) for two-dimensional space can be expressed in the form

Gκ(x − y) = −
1

2π
log

(
|x − y |

2

)
J0(κ |x − y |) + Gκ(x − y),

where Gκ is an analytic function of both spatial variables x and y. Letting x = C(t),
y = C(τ), t, τ ∈ [0, 2π], Sq

κ [ψ](x) can be written in the form
2π∫

0

[
log

(
|C(t) − C(τ)|2

4

)
K̃s(t, τ) + K̃r(t, τ)

]
ψ(C(τ))| ÛC(τ)|dτ, (3.8)

where K̃s and K̃r are C∞ functions (and even analytic if the parametrization C is
analytic). As is well-known, the rapid convergence of Fourier series of smooth
(or analytic) functions together with the exactness of the trapezoidal rule with 2Ni

points for trigonometric polynomials of order Ni form the basis of spectral methods;
utilization of this quadrature rule to evaluate the regular term of (3.8) yields super-
algebraic (resp. exponential) convergence for smooth (resp. analytic) densities ψ
and curves C. The logarithmic singularity in (3.8) can be treated by re-expressing
the integrand in the form

2π∫
0

[
log

(
4 sin2

( t − τ
2

))
Ks(t, τ) + Kr(t, τ)

]
ψ(C(τ))| ÛC(τ)|dτ, (3.9)

where the kernels Ks and Kr are slight modifications of K̃s and K̃r in (3.8). The
introduction of the sin function in the argument of the logarithm makes it possible
to utilize the relation [Kre14, Eq. 12.16]

1
2π

2π∫
0

log
(
4 sin2

( s
2

))
eimsds =


0 m = 0

− 1
|m| m , 0

which yields a quadrature rule [CK12, Eq 3.93–3.95] of the form
2π∫

0

[
log

(
4 sin2

( t − τ
2

))
Ks(t, τ) + Kr(t, τ)

]
dτ ∼

2Ni−1∑
j=0

[
RNi (t)Ks(t, t j) +

π

Ni
Kr(t, t j)

]
| ÛC(t j)|ψ(C(t j))

(3.10)
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for logarithmic-type integrals on the basis of the trapezoidal rule nodes t j =

jπ/Ni, j = 0 . . . 2Ni − 1. This rule converges with super-algebraic order (or ex-
ponential order if the domain boundary is analytic). In (3.10) we have used the
quadrature weights

RNi

j (t) = −
2π
Ni

1
m∑

m=1
cos m(t − t j) −

π

N2
i

cos Ni(t − t j). (3.11)

The integration nodes xi = C(ti) provide the natural choice for collocation in the
context of the present Nyström technique. The overall method results in an Ni × Ni

linear system equations which can either be solved by forming and inverting the
associated dense matrix, or by means of an iterative linear algebra solver. As can be
appreciated from the two-dimensional examples considered in Chapter 5, the overall
strategy yields a fast and highly-accurate algorithm.

Three-dimensional case
The evaluation of the weakly-singular integrals over surfaces in three-dimensional
space has been an active research area in computational physics. A novel technique
put forth in [BG18], which is the backbone of the three-dimensional solvers used
in this thesis, is based on use of a partition of a given scattering surface S into
a finite number of non-overlapping patches Pi, each diffeomorphic to the square
[−1, 1]2 in the u − v parameter space. In other words, under this scheme each
patch is parametrized by a mapping xi = xi(u, v) : [−1, 1]2 → Pi (see Figure 3.1).
Utilization of Chebyshev points in the square [−1, 1]2 yields 1) spectrally accurate
integration rules for smooth functions defined over each patch Pi; 2) straightforward
expansion of smooth functions defined in the patch Pi in terms of Chebyshev
polynomials (whose coefficients can be obtained at a cost ofO(N log N) operations);
and 3) intrinsic spectral differentiation rules of smooth functions defined in the
manifold which are of interest in electromagnetic problems (such as the surface
divergence and the surface curl).

The singular integration arising from the corresponding free-space Green func-
tion (2.2), whose singularity is of order 1/|x − y |, in turn, can also be pre-computed
on the basis of the aforementioned Chebyshev expansions. Indeed, for a point x
lying in the surface or close to it, a weakly-singular (or nearly-singular) integral of
the form

I(x) =
∫
S

H(x, y)
|x − y |

ψ(y)dS(y)
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Figure 3.1: Non-overlapping patches on toroidal (left) and “double-helix” (right)
scattering surfaces. Each patch shown is obtained by evaluating the respective
parametrizations at the set of Chebyshev points adequately translated and scaled
from the unit square [−1, 1]2.

can be decomposed as a sumof integrals over each one of the patches in the aforemen-
tioned partition of the surface S. Use of the accompanying local parametrizations
xi then yields

I(x) =
∑

i

1∫
−1

1∫
−1

H̃i(u, v)
|x − xi(u, v)|

Ji(u, v)ψ̃i(u, v)dudv, (3.12)

where Ji(u, v) denotes the surface element of Pi at the point xi(u, v). Approximating
the densities ψ̃i(u, v) by truncations of their associated Chebyshev series, each
integral in the sum on the right-hand side of (3.12) can be approximated with
spectral accuracy by the expression

Nu∑
n=1

Nv∑
m=1

ψ̃i
n,m

1∫
−1

1∫
−1

H̃i(u, v)
|x − xi(u, v)|

Ji(u, v)Tn(u)Tm(v)dud, (3.13)

where ψ̃i
n,m are the coefficients of the expansion in Chebyshev polynomials of ψ̃i and

Tj denotes the one-dimensional j-th Chebyshev polynomial. The resulting integrals
in (3.13) are now independent of the density and can be obtained as a result of a pre-
computation which is obtained, in brief, by discretizing the singular integral with
a weighted-grid which accumulates discretization nodes around the closest point in
Pi to the evaluation point x by considering one-dimensional change of variables
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Figure 3.2: Refinement around a singular target point (red dot) for a sphere. Figures
reproduced from [BG18], with the authors’ permission.

in the integration variables u and v so that the resulting Jacobian vanishes along
with some of its derivatives (to a user-prescribed order) cancelling out the weakly-
singular integral (see Figure 3.2). This procedure yields high-order, algebraic,
convergence dictated by the order of the aforementioned change of variables. A
detailed description of this algorithm and its convergence properties can be found
in [BG18]. The highly-accurate results in Chapter 5 show the effectiveness of the
overall integration technique when used in conjunction with the methods described
in Section 3.1 for the evaluation of the quasi-periodic Green function.
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C h a p t e r 4

INTEGRAL EQUATION METHODS FOR
WAVE-PROPAGATION PROBLEMS IN PERIODIC MEDIA

4.1 BIE formulations
For simplicity, in this contribution attention is restricted to integral solvers for scalar
Helmholtz problems in periodic structures with smooth boundaries, but any integral
equation methodology (with application to, e.g., open and/or non-smooth surfaces,
Maxwell or Elasticity equations, etc.) can be used in conjunction with any of the
quasi-periodic Green function methods presented in this paper. All of the examples
considered in the present contribution originate from representations of the scattered
field us in terms of the single- and double-layer potentials

S
q
κ [ψ](x) =

∫
γ#

Gq
κ(x − y)ψ(y)dS(y) and

D
q
κ [φ](x) =

∫
γ#

∂Gq
κ

∂ν(y)
(x − y)φ(y)dS(y),

(4.1)

for a Λ-periodic surface γ (see Remark 1) which equals either Γj` for some j < `,
or relevant portions of Γimp

D
, or Γimp

N
, respectively. (For example, the integral that

represents the field in the domainΩ0 in Figure 1.4 (left) includes single- and double-
layer operators defined on the upper (circular) portions of Γimp, but it does not include
integrals over the component of Γimp closer to the bottom of the figure.)

As is known, both potentials in (4.1) are solutions of the Helmholtz equation with
wavenumber κ for x < γ. We thus assume that the unknown scattered field has been
expressed in terms of a boundary integral representation of the form

us(x) = T[Φ](x), (4.2)

where
T[Φ](x) = Tj[Φ](x) for x ∈ Ω j, (4.3)

with Tj[Φ](x) given, for x ∈ Ω j , by linear combinations of integral expressions
of the form (4.1) involving Green functions corresponding to the domain Ω j , as
suggested above, and as illustrated further below in this section, and where Φ is
either a scalar density, or a vector containing such densities. This procedure reduces
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the scattering problem under consideration to a system of integral equations of the
form

(J + T)[Φ] = F (4.4)

over appropriately chosenBanach spaces X of functions (typically Sobolev spaces [MM00]
or Hölder spaces [CK13]), where T : X → X is a compact operator, and where
J either vanishes (in first-kind Fredholm equations) or is an invertible bounded
operator (in second-kind Fredholm equations).

Thus, for example, in the case of an impenetrable scattering structure for which
Ω = Ω0 is a volume having as boundary a periodic surface Γimp, the fields us =

S
q
n0k[ϕ] and us = D

q
n0k[ϕ] with γ = Γ

imp are solutions of the sound-hard or sound-
soft scattering problems respectively (with boundary conditions given in (1.16)),
provided the density ϕ satisfies the corresponding boundary integral equations

−
1
2
ϕ(x) +

∫
(Γimp)#

∂Gq
κ

∂ν(x)
(x − y)ϕ(y)dS(y) = −

∂uinc

∂ν(x)
, x ∈ (Γimp)], or (4.5)

1
2
ϕ(x) +

∫
(Γimp)#

∂Gq
κ

∂ν(y)
(x − y)ϕ(y)dS(y) = −uinc(x), x ∈ (Γimp)]. (4.6)

In cases in which periodic arrays of impenetrable scattering particles are included,
combined-field formulations are necessary to eliminate internal resonances [CK13].
In these two cases, the boundary potential T in equation (4.2) is either Sq

n0k orD
q
n0k

whereas J in equation (4.4) are minus or plus a half of the identity operator of the
underlying space X and T is either the normal derivative of the single layer potential
or the values of the double layer potential at the surface (Γimp)].

In addition to the impenetrable cases mentioned above, a specially well studied case
concerns situations in which the refractive index n(x) assumes only two values,
n0 and n1, and there is no impenetrable region (i.e., Ω = Rd). In such cases the
scattered field admits the representation

us(x) =


D

q
n0k

[
ϕ − uinc] (x) − Sq

n0k

[
1

C2
01
ψ − ∂uinc

∂ν

]
(x), x ∈ Ω0

−D
q
n1k [ϕ] (x) + S

q
n1k [ψ] (x), x ∈ Ω1

(4.7)

in terms of single- and double-layer potentials, where the densities ϕ and ψ satisfy
the system of integral equations([

Id 0

0 1+C−2
01

2 Id

]
−

[
Dq

0 − Dq
1 −(C−2

01 Sq
0 − Sq

1 )

Nq
0 − Nq

1 −(C−2
01 Kq

0 − Kq
1 )

]) [
ϕ

ψ

]
=

[
uinc

∂uinc

∂ν

]
, x ∈ Γ]01. (4.8)
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Here the operators Sq
j , Dq

j are defined as the restriction to the boundary curve γ
# of

the single- and double-layer potentials (4.1) with γ = Γ01 and κ = n j k ( j = 0, 1).
The operator Nq

j and Kq
j , in turn, denote the normal derivatives on γ# of the double-

layer potential with and the adjoint of Dq
j (in the sense of [CK13]), respectively,

once again, using κ = n j k. A comprehensive discussion of the properties and
character of these operators can be found in [CK13]. Clearly, in the present case
T in equation (4.2) can be identified with the right-hand side of (4.7), and the
quantities and J and T in equation (4.4) equal the first and second square-bracketed
terms in (4.8).

As in the three prototypical cases embodied by equations (4.5) through (4.8), for
general periodic structures of the type described in Section 1.2, the operator T in
equation (4.4) equals a combination of integral operators over the various scattering
surfaces Γimp

s , Γimp
h and Γj` (1 ≤ j < ` ≤ r +1). Each one of these operators utilizes

either a quasi-periodic or a free-space Green function with an appropriate value
of the wavenumber κ, or a combination of quasi-periodic Green functions for two
different wavenumbers. Clearly, these integral equation systems are onlymeaningful
provided noWood anomalies arise in the overall scattering setup. The regularization
methodology we propose, which yields integral equation formulations that are valid
even at Wood anomalies, is described in the following section.

4.2 A well-conditioned system: WSM regularization
As is well-known [GV96], numerical solutions obtained from ill-conditioned lin-
ear systems by Gaussian elimination may contain inaccuracies proportional to the
size of the condition number of the underlying linear algebra problem. This ill-
conditioning can also increase the number of steps needed by iterative methods to
reach convergence to a very small tolerance. The following analysis reveals that
the system of integral equations (4.4) is ill-conditioned around RW-anomalies and
therefore, even if the integral operators in that equation are approximated with very-
high accuracies, its direct inversion may result in loss of accuracy around these
singular configurations (Figure 1.3). In this context, the WSM regularization tech-
nique proposed in this section represents a very significant contribution of this thesis
given that it yields a reformulation of equation (4.4) which does not break down as
an anomalous configuration is either approached or reached.

In what follows, given a fixed triple (k, α,Λ), which we call a primitive triple, we
associate to each domain Ω j a corresponding derived triple (n j k, α,Λ). Letting
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(kw, αw,Λw) denote a primitive triple for which, for at least one value of j , the cor-
responding j-th domain derived triple (n j kw, αw,Λw) is a RW-anomaly, for a given
primitive triple (k, α,Λ) in the vicinity of (kw, αw,ΛW ), the Green function expres-
sions (2.3) and (2.4) for the wavenumber n j k can be expressed in the regular/singular
form

Gq
nj k
(x) = Greg

nj k
(x) + C(d, dΛ)

∑
m∈Wj

eiαm ·x f (βm(n j k)), (4.9)

where the regular part Greg
nj k

is well defined for (k, α,Λ) equal to and in a vicinity
of (kw, αw,Λw), and where the second term on the right-hand side contains the
singularity that arises as the RW anomaly is approached. In (4.9), the constant
C(d, dΛ) equals the pre-factor that multiplies the infinite sums in equations (2.3)–
(2.4); the function f (t) is given by f (t) = 1/t for dΛ = d − 1, d = 2, 3, and f (t) =

2i/π log(t/2) for dΛ = 1, d = 3; andWj =W(n j kw, αw,Λw) (see equation (2.6)).

The expression (4.9) results from the spectral representations (2.3)–(2.4) together
with the relations

eit

t
−

1
t
→ i and H(1)0 (t) −

2i
π

log
( t
2

)
→

2i
π

C as t → 0, (4.10)

where C denotes the Euler-Mascheroni constant, C = 0.5772156649...; the finite
sum in the right-hand side of (4.9) contains all the terms which give rise to the sin-
gular behavior of the quasi-periodic Green function around a RW-anomaly and thus
obtain a finite quantity in the limit as the RW anomaly is approached. (Concurrent
RW terms occur at an RW anomaly whenever the setWj contains more than one
element.)

Letting Treg and TW denote the (possibly matrix-valued) integral operators that are
obtained by replacing the quasi-periodic Green function(s) Gq

nj k
(x − y) (for which

the derived triple (n j k, α,Λ) is close to anRW-anomaly) and their normal derivatives
in the definition of the operator T by the expressions arising from the first and last
terms on the right-hand side of equation (4.9), equation (4.4) may be re-expressed
in the form

(A + TW )Φ = F, where A = J + Treg. (4.11)

The operator TW, in turn, may be expressed in the form

TW = EWD−1RW, (4.12)
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where RW denotes the finite rank integral operator resulting from replacement of
Gq

nj k
in the definition of T by the kernel∑

m∈Wj

eiαm ·(x−y), (4.13)

where, letting XW denote the (finite-dimensional) image (spanned by a certain finite
basis {Φm : m ∈

⋃
jWj}) of RW, D : XW → XW is defined over the basis elements

Φm as
DΦm =

1
f (βm(n j k))

Φm, m ∈ Wj (4.14)

(and subsequently extended by linearity), and where EW is the inclusion operator of
XW into X .

The definitions of the finite-dimensional space XW, its basis {Φm : m ∈
⋃

jWj},
and the operator D become apparent as the replacement of the corresponding Gq

nj k

by the separable kernel (4.13) is effected. For instance, in the examples discussed
in Section 4.1 we have

Φm(x) = ∂ν(x)

(
eiαm ·x

)
, x ∈ ∂Ω], m ∈ W0 (4.15)

for equation (4.5),

Φm(x) = eiαm ·x, x ∈ ∂Ω], m ∈ W0 (4.16)

for equation (4.6) and

Φm(x) =

[
eiαm ·x

∂ν(x)
(
eiαm ·x

) ] , x ∈ Γ01, m ∈ Wj (4.17)

for equation (4.8). In the first two cases, the finite-rank operator RW assumes the
same form, namely

RW [ϕ](x) = C(d, dΛ)
∑

m∈W0

Im[ϕ]Φm, (4.18)

but the corresponding functionals Im for equations (4.5) and (4.6) are given by

Im[ϕ] =
∫

(Γimp)]

e−iαm ·yϕ(y)dS(y) and Im[ϕ] =
∫

(Γimp)]

∂ν(x)

(
e−iαm ·y

)
ϕ(y)dS(y),

(4.19)
respectively. In the case of the transmission problem (equation (4.8)), in turn, we
have

RW [Φ](x) = C(d, dΛ)
©­«

∑
m∈W0

Im[Φ]Φm −
∑

m∈W1

Jm[Φ]Φm
ª®¬ (4.20)
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with Φ =

[
ϕ

ψ

]
, where we have set

Im[Φ] =
∫
(Γ01)]

[
∂ν(y)

(
e−iαm ·y

)
ϕ(y) − e−iαm ·yψ(y)

]
dS(y) and (4.21)

Jm[Φ] =
∫
(Γ01)]

[
∂ν(y)

(
e−iαm ·y

)
ϕ(y) −

1
C2

01
e−iαm ·yψ(y)

]
dS(y). (4.22)

Substitution of (4.12) in (4.11) shows that the original integral equation (4.4) can
be expressed in the form

(A + EWD−1RW)Φ = F . (4.23)

The inverse of the operator on the left-hand side can be obtained on the basis of the
Woodbury formula

(A + EWD−1RW)
−1 = A−1 − A−1EW(D + RW A−1EW)

−1RW A−1 (4.24)

(see (Remark 3)) provided the operators A and (D + RW A−1EW) are invertible.

Equation (4.24) is a crucial formula. Assuming that the operator A−1 is invertible
and well-conditioned:

1. it expresses the inverse operator on the left-hand side in terms of the inverse
of the operator A—that only involves the quantities Greg

nj k
(as defined in (4.9)),

which are well-defined at and around RW-anomalies;

2. it encapsulates the ill-conditioning of (4.23) at RW-anomalies through the
explicit diagonal operator D−1 (which blows up as the anomaly is reached)
but which only manifests itself on the right hand side of (4.24), through its
inverse D (which tends to zero as the anomalous configuration is approached)
and

3. its right-hand expression shows that the inverse operator on the left-hand side
of that equation actually has a removable singularity at the RW anomaly under
consideration, and it provides a useful formula for solution of equation (4.4)
at and around (kw, αw,Λw).
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The Woodbury formula (4.24) additionally requires the inversion of the operator
D + TW A−1EW. But this inversion problem can easily be translated into a finite-
dimensional matrix inversion problem—since this operator is defined over the finite-
dimensional space XW .

A numerical study of the well-conditioning of the WSM methodology as well as
its ability to prevent the loss of accuracy observed in Figure 1.3 is included in
Section 5.1, demonstrating the value of the framework.

Remark 3. The Woodbury formula is usually introduced in the context of fast-
inversion of matrices; it commonly reads [Pre+07]

(A +UCV)−1 = A−1 − A−1U(C−1 + V A−1U)−1V A−1, (4.25)

where A ∈ Cn×n, U ∈ Cn×k , C ∈ Ck×k and V ∈ Ck×n with k usually much
smaller than n (the case k = 1 is also known as the Sherman-Morrison formula.)
But, as equation (4.25) can be established by mere substitution and algebraic
manipulation, the formula is valid for infinite-dimensional operators as well. Briefly,
equation (4.25) holds for arbitrary operators provided 1) the operator A is invertible,
2) the domains and ranges of the operatorsU,C andV are such that the composition
UCV is well-defined, 3) the operatorC is invertible in the space in which it is defined
and, finally, 4) the operator C−1 + V A−1U is invertible.

Evaluation of scattering solutions at and around RW-anomalies
As is customary in integral equation methods, once the underlying operator equation
is solved, the values of the solution of the PDE problem under consideration can
be obtained by means of a post-processing step that proceeds by evaluation of the
pertaining boundary potentials, such as (4.2) in the acoustic case, using as surface
density the solution Φ of the integral equation. As mentioned at the beginning
of Section 4.1, all solutions of the Helmholtz equation considered in this paper
utilize the quasi-periodic Green function (2.1) with various wavenumbers, and their
normal derivatives, as kernels of the single and double layer potentials. However,
this particular Green function ceases to exist at RW-anomalies and therefore an
additional step is needed in the analysis presented in this section to produce quasi-
periodic solutions of the Helmholtz at anomalous configurations.

To do this we first use equation (4.9) to produce a decomposition of the potentials
in (4.2) into a regular and a singular part,

Treg [Φ] = Treg [Φ] + TW [Φ] , (4.26)
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analogous to the decomposition introduced previously for the operator T . For
example, in the impenetrable case with either sound-hard or sound-soft boundary
conditions, the scattered field is given by a single layer potential or a double layer
potential, respectively (see equations (4.5) and (4.6)). After replacement of the
quasi-periodic Green function by (4.9) we obtain the representation

us(x) =

∫
(Γimp)]

Greg
n0k(x − y)ϕ(y)dS(y) + C(d, dΛ)

∑
m∈W0

eiαm ·x f (βm(n0k)) Im[ϕ]

(4.27)
for the single layer case and

us(x) =

∫
(Γimp)]

∂Greg
n0k

∂ν(y)
(x − y)ϕ(y)dS(y) + C(d, dΛ)

∑
m∈W0

eiαm ·x f (βm(n0k)) Im[ϕ],

(4.28)
for the double layer case, where the functionals Im are given by equation (4.19) and
x ∈ Ω0. For the transmission case, in turn, the scattered field is a linear combination
of single and double layer potentials (see equation (4.7)) and after replacement of
the quasi-periodic Green functions by (4.9) we obtain

us(x) =

∫
Γ
]
01

∂Greg
n0k

∂ν(y)
(x − y)ϕ(y)dS(y) −

1
C2

01

∫
Γ
]
01

Greg
n0k(x − y)ψ(y)dS(y)+

C(d, dΛ)
∑

m∈W0

eiαm ·x f (βm(n0k)) Jm[ϕ], x ∈ Ω0,

(4.29)

us(x) = −

∫
Γ
]
01

∂Greg
n1k

∂ν(y)
(x − y)ϕ(y)dS(y) +

∫
Γ
]
01

Greg
n1k(x − y)ψ(y)dS(y)−

C(d, dΛ)
∑

m∈W1

eiαm ·x f (βm(n1k)) Im[ϕ], x ∈ Ω1,

(4.30)

where Im and Jm are given by Equations (4.21) and (4.22). In these examples,
either f (βm(n0k)) or f (βm(n1k)) (or both) diverges as the anomalous configuration
is approached but, as shown in what follows, all the corresponding products of the
diverging f (βm(n j k)) by each of the possible functionals are convergent quantities.

Indeed, in the general case (4.2) (and in particular in these three examples), these
products are no other than the coordinates of the operator D−1RW expressed in the
corresponding basis {Φm : m ∈ Wj}. Thus, in order to evaluate the needed products
at or around an RW anomaly, it suffices to compute the quantity D−1RWΦ, whereΦ
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is the solution of (4.23) obtained by means of the Woodbury formula (4.24)—either
at the near anomalous configuration, or in the limit as the anomaly is reached. To
do this we perform the following computation:

D−1RWΦ = D−1RW

(
A−1 − A−1EW(D + RW A−1EW)

−1RW A−1
)
F

= D−1RW A−1F − D−1RW A−1EW(D + RW A−1EW)
−1RW A−1F

=
[
D−1

(
D + RW A−1EW

)
− D−1RW A−1EW

] (
D + RW A−1EW

)−1
RW A−1F

=
(
D + RW A−1EW

)−1
RW A−1F,

(4.31)

where the only slightly non-trivial step, namely, the third equality, is established
by factoring out the term (D + RW A−1EW)

−1RW A−1F from the right. Note that,
as in (4.24), the inverse of the sum on the last line in (4.31) can be obtained
by solving a finite-dimensional linear system of equations. Since the last line in
this equation tends to a finite limit as the RW configuration is approached, the
coordinates of D−1RWΦ can be continuously extended in the RW-anomaly limit.
Thus, the spatial values of the solution of the PDE under consideration can be
continuously extended to the anomalous configuration (kw, αw,Λw) considered in
the present section.
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C h a p t e r 5

NUMERICAL RESULTS

This chapter presents a variety of numerical experiments showing the applicability
and performance of the methodology proposed in this thesis to obtain solutions at
RW-anomalies as well as non-anomalous configurations on the basis of all three
Green function evaluation techniques: the Laplace, Ewald and shifted Green func-
tion methods. The two-dimensional examples included in this work (Section 5.2)
consist of arrays of penetrable and impenetrable particles whereas in the more chal-
lenging bi-periodic three-dimensional case (Section 5.3) we also consider arrays of
impenetrable particles as well as bi-periodic reflective and transmissive gratings.
Finally, in the case dΛ = 1, d = 3, the solvers are demonstrated with the simulation
of acoustical wave-scattering by impenetrable double-helical periodic structures
(Section 5.4).

All simulations were obtained with a Fortran-90 implementation of the numeri-
cal solvers and the various figures were rendered with the visualization software
VisIt [Chi+12] using the SILO file format. The two-dimensional simulations were
executed in a single core of an Intel i5-8250U processor in a personal computer
with 16 Gb of RAM memory while the solvers for the different three-dimensional
examples were run in 24 cores of an Intel(R) Xeon(R) CPU E5-2670 v3 processor
in a single node of a computing cluster with 120 Gb of RAM memory; in this latter
case, the parallelization of the evaluation of the quasi-periodic Green function as
well as the pre-computations needed for the rectangular integration technique were
programmed using the OpenMP API. The linear systems in the two-dimensional
case were solved by Gaussian elimination using the LAPACK implementation pro-
vided in the Intel Math Kernel Library; in the three-dimensional examples, in turn,
the solutions were obtained using the CERFACS implementation of the GMRES al-
gorithm [Fra+97] (in these cases we have reported the number of iterations required
to achieve a residual tolerance of 10−12 .)

Throughout this chapter the overall solver error is estimated by means of the energy
balance criterion described in Appendix A. In the case dΛ = d − 1, we also
perform a convergence analysis on the Rayleigh coefficient A+0 (present in all the
cases considered in what follows): the relative error is evaluated via comparison
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with the corresponding value obtained using the finest discretization with the largest
truncation parameter.

Remark 4. The necessary parameters required for the various quasi-periodic Green
function evaluation methods were selected as follows. The shift parameter and num-
bers of shifts used for the shifted Green function (which is employed in Sections 5.1
and 5.4) are h = λ/2 and j = 8. The splitting parameter in the Ewald method (which
is employed in Sections 5.1, 5.2 and 5.3) was selected as η = k. The Laplace-type
integral method (which is utilized in Section 5.1) only requires a selection of the
number of quadrature points; a number of 128 quadrature points was used in all
cases.

5.1 Condition number analysis around RW-anomalies
Figure 5.1 depicts the first scattering setup considered in this chapter, namely, a
plane wave illuminating a two-dimensional periodic array, of period L = 5λ, of
impenetrable sound-soft cylindrical obstacles. The individual sound-soft scatterers
have circular cross-section with diameter equal to half a period, and the simulations
carried out for this geometry contemplate angles close to normal incidence which,
for the chosen period, is an RW anomalous configuration.

As stated in Chapter 1, the application of integral equation methods to periodic me-
dia normally present two main types of difficulties around RW-anomalies. The most
dramatic challenge concerns inaccuracies in the evaluation of the quasi-periodic
Green function—which result in an inaccurate construction of the linear system
to be inverted. The second challenge relates to the ill-conditioning of the system
around RW-anomalies, which might also produce a loss of accuracy even if very
accurate evaluations of Gq

κ are used, such as those arising from the Ewald or shifted
Green function methods (Tables 3.3 and 3.7). The first of these difficulties is il-
lustrated in Figure 5.2, which displays the error in the energy balance criterion
(Appendix A) in a case in which the quasi-periodic Green function is computed by
means of the Laplace-type integral method using equations (2.12) and (2.13)—in
which the singular 1/βm term has not explicitly been extracted—and by means of
equations (2.12), (2.16) and (2.22)—which include singularity extraction. Fig-
ure 5.3 displays results of two similar experiments, in both cases using singularity
extraction, except that, in this case, the Ewald and shifted Green function represen-
tations are used to compute Gq

κ . These figures illustrate the benefits resulting from
use of hybrid spatial/spectral representations with singularity extraction to produce
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Figure 5.1: Real part (left) and intensity pattern (right) for the total field u scat-
tered under normal incidence by a periodic array of impenetrable sound soft two-
dimensional obstacles with circular cross section.

highly-accurate results around the singularity—irrespectively of the use of theWSM
formalism.

Difficulties related to system ill-conditioning around RW-anomalies, in turn, only
emerge as high-accuracies are sought. As explained in Chapter 4, ill conditioning
arises in these cases from the diagonal operator D−1 in equation (4.23), which
blows up as the RW singularity is approached. In the two-dimensional example
considered in the present section, D−1 diverges with an order O(1/

√
∆θ) as ∆θ → 0

resulting in matrices whose condition numbers only increase up to figures of order
108 in double precision arithmetic (Figure 5.5). Given that these values are not
exceedingly large, a severe loss of accuracy is not evidenced (only a few digits are
lost). However, the WSM regularization technique produces linear systems which
are well-conditioned (at least for all the runs of the solvers and all the experiments
presented in this thesis, see Figure 5.5) yielding a methodology which preserves the
accuracy of the underlying method to evaluate Gq

κ and which can extend the solution
to the RW-anomaly itself (Figure 5.4).

In what follows we demonstrate the validity and applicability of the proposed frame-
work for a number of relevant examples.
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Figure 5.2: Errors estimated by the energy balance criterion, for scattering solvers
based on the Laplace integralmethod, that compute inaccurately (top) and accurately
(bottom) the quasi-periodic Green function around a RW-anomaly. The angles
θ = δ5 sample incidence directions which differ from normal incidence in angles of
the order of 10−5 to 10−14.

5.2 Two-dimensional simulations
The second two-dimensional example we consider in this thesis is the scattering by
a periodic array with period equal to four exterior wavelengths (4λ) formed by three
obstacles: a rotated kite-shaped particle whose boundary is parametrized by

C(t) = λ(0.65 cos(2t) − 0.65, 1.5 sin(t)) t ∈ [0, 2π],

a tilted ellipse, with major and minor semi-axes equal to 2λ and λ respectively, and
a circle of radius λ (Figure 5.6). The infinite propagation medium has refractive
index n0 = 1 and the particles have refractive indexes equal to n1 = 1.5, n2 = 2.5
and n3 = 3.5, respectively, and are assumed to model sound-hard materials (the
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Figure 5.3: Energy balance errors for two scattering solvers that do not utilize the
proposed WSM formalism around RW-anomalies, and which rely on the shifted
Green function with j = 8 (top) and the Ewald method (bottom). The angles θ = δ5

sample incidence directions which differ from normal incidence in angles of the
order of 10−5 to 10−14.

corresponding constants Cj` in (1.17) are thus 1/n`, ` = 1, . . . , 3.). The structure
is illuminated by a plane-wave with normal incidence giving rise to an anomalous
configuration where βm = 0 for m = ±4. Table 5.1 shows the effectiveness of the
proposed framework to treat RW-anomalies achieving spectral order of convergence
and fast-simulations with high-accuracies; Figure 5.6, in turn, illustrates the real
part of the total field in the region where the scattering process takes place and also
the diffraction pattern observed in the same area.

The final two-dimensional numerical experiments considered in this section illus-
trates the robustness of the overall methodology. Two arrays with periods 5λ and
10λ of impenetrable sound-soft particles are illuminated with a whole range of
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Figure 5.4: Energy balance errors in the solution of the scattering problem depicted
in Figure 5.1 on the basis of the Laplace-type integral method with singularity
extraction, as proposed in this thesis (top, cf. Figure 5.2), and Ewald methods (bot-
tom), with and without WSM regularization. The angles θ = δ5 sample incidence
directions which differ from normal incidence in angles of the order of 10−5 to
10−14.
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Figure 5.5: Condition number in the simulation of the scattering problem depicted
in Figure 5.1 using the Laplace-type integral method (with singularity extraction)
and the Ewald representation with and without the WSM regularization. (For this
configuration the twoGreen functionmethods produce the necessaryGreen-function
values with errors of the order of machine precision). The angles θ = δ5 sample
incidence directions which differ from normal incidence in angles of the order of
10−5 to 10−14.

incidence angles sampling anomalous and non-anomalous configurations. In both
cases 64 points are used to discretize each ellipse (Figure 5.8) and each series in
the Ewald representation is truncated with |m| < 40. As can be clearly appreciated
from the errors displayed in Figure 5.7, the overall accuracy of the methodology
does not suffer at and around RW-anomalies. Scattering patterns for a particular
incidence angle are displayed in Figure 5.8.

5.3 Three-dimensional simulations–Bi-periodic structures
The first numerical example considered in this section is the scattering of an in-
coming plane wave by a periodic array of impenetrable sound-soft tori (Figure 5.9).
The results displayed in Tables 5.2 and 5.3 correspond to a lattice whose periodicity
vectors are v1 = L(1, 0, 0) and v2 = L(cos(π/3), sin(π/3), 0) (a honeycomb struc-
ture) where the size of the period equals L = λ and L = 4λ respectively. The wave
impinges on the array with a propagation direction equal to
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Figure 5.6: Real part (left) and intensity pattern (right) of the total field u scattered
under normal incidence by a periodic array containing three types of penetrable
obstacles (kite (top), tilted ellipse (center) and circle (bottom) ) with refractive in-
dexes of 1.5, 2.5 and 3.5 respectively (the refractive index of the infinite propagation
domain equals 1). Each obstacle has an approximate diameter of one exterior wave-
length (λ) and the period equals 4λ, yielding an RW-anomalous configuration: for
m = ±4 we have βm = 0.

(cos(φ) sin(θ), sin(φ) sin(θ),− cos(θ)) (5.1)

with φ = π/3 and θ = π/6 giving rise to an anomalous configuration in the example
with largest period (L = 4λ). We use a global parametrization of the torus

x(s, t) = (cos(πs)(r cos(πt) + R), sin(πs)(r cos(πt) + R), r sin(πt)) , (s, t) ∈ [−1, 1]2

setting in both cases R = L/4 and r = L/16. Non-overlapping patches can be ob-
tained bymeans of dyadic subdivisions of the square [−1, 1]2 and a proper re-scaling.
High-order convergence can be appreciated from the displayed errors (Tables 5.2
and 5.3) as the discretization of the surface is refined (where the refinement is con-
trolled with the number of patches and with the number of Chebyshev nodes in the
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Ndis Ntr EBC A+0 Time (s)

96

5 0.24E+0 0.10E-02 0.32
10 0.96E-3 0.76E-04 0.42
20 0.81E-4 0.34E-04 0.64
40 0.80E-4 0.34E-04 1.06

128

5 0.24E+0 0.10E-02 0.58
10 0.93E-3 0.10E-03 0.77
20 0.74E-6 0.13E-06 1.14
40 0.44E-8 0.25E-09 1.90

160

5 0.24E+0 0.10E-02 0.94
10 0.93E-3 0.11E-03 1.24
20 0.74E-6 0.13E-06 1.82
40 0.98E-10 Ref 3.00

Table 5.1: Energy balance error and computing times for the simulation of the
scattering setup illustrated in Figure 5.6 at an RW anomalous configuration. These
results were obtained by means of the framework proposed in this thesis, in this
case on the basis of the modified Ewald summation method and the spectral series.
Each obstacle is discretized by means of Ndis nodes and both series in the Ewald
summation method are truncated at |m| ≤ Ntr; see also Remark 4.

u and v direction) as well as increasing the number of terms in the truncation of the
series in the Ewald representation.

The second experiment conducted to test the robustness of the method around RW-
anomalies resembles the one performed to produce Figures 5.7. We consider an
impenetrable sound-soft crossed grating (that is, a grating for which the lattice
directions lie at 90◦ from each other), whose boundary is parametrized by

x(s, t) =
(

L
2

s,
L
2

t,
H
2

sin(πs) sin(πt)
)
, (s, t) ∈ [−1, 1]2, (5.2)

with period and height given by L = 5λ and H = λ, and we compute the energy
balance error for a range of 10,000 incidence directions (5.1) where the sample
angles are given by θi = arccos(iπ/100), φ j = 2π j/100, i, j = 0 . . . 99. The unit-
cell of the grating is divided in four non-overlapping patches (obtained from a single
dyadic splitting of the parameter square [−1, 1]2 and a re-scaling of the parameters)
and each is discretized with 16 × 16 Chebyshev grid points. The evaluation of the
quasi-periodic Green function is performed by means of Ewald method truncating
each of the required series with ‖m‖∞ < 20. It can be clearly appreciated from
Figure 5.10 that high-accuracies are obtained irrespectively of the occurrence of
RW-anomalies (Figure 2.1).
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Figure 5.7: Energy balance error as a function of the incidence angle for the
scattering configurations depicted in Figure 5.8. The Ewald method with WSM
regularization is used in all cases. The top and bottom graphs correspond to the
arrays with period equal to 5λ and 10λ respectively.

Finallywe consider the convergence properties of themethodology for a transmission
grating. In this case, the propagation domain Ω = R3 having two subregions with
constant refractive indexes n0 = 1 and n1 = 1.25 (Figure 5.11); the boundary
between the two is parametrized by themapping (5.2) where the period L = 2λ0 (two
wavelengths of the domain with refractive index n0 = 1). Under normal incidence,
this configuration gives rise to RW-anomalies in both domains (there are, in each
set, 4 indexes m such that βm(n j k) = 0, j = 0, 1). As can be clearly appreciated in
Table 5.4, very high accuracies are obtained for the finest discretization and results
with a few number of correct digits can be obtained in a few seconds.

5.4 Linear periodic arrays in three-dimensional space
This section illustrates the applicability of the ideas developed in this thesis to the
simulation of three-dimensional periodic structures with a single direction of peri-
odicity. In order to obtain highly-accurate evaluations of Gq

κ we utilize the shifted
Green function representation (2.36) which yields highly accurate results in fast
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Figure 5.8: Diffraction pattern (total field) that results as a plane wave with an
incidence angle of 30◦ impinges on a four-layer array of impenetrable ellipses with
periods equal to 5λ (left) and 10λ (right). In both cases the ellipses have major and
minor semi-axes equal to 2.5λ and 1.25λ.

Figure 5.9: Real part (left) and intensity (right) of the total field that results as a
plane-wave impinges upon an array of impenetrable tori arranged in a honey-comb
lattice structure of period equal to 4λ in each one of the two lattice directions.
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Patches Nu × Nv Ndis Ntr EBC A+0 Iterations Time (s)

1

8 × 8
64 5 0.6309E-02 0.47E-02 18 <1
64 10 0.6314E-02 0.47E-02 16 <1
64 20 0.6314E-02 0.47E-02 16 <1

16 × 16
128 5 0.8058E-05 0.4405E-05 20 2
128 10 0.7052E-05 0.4807E-05 18 3
128 20 0.7052E-05 0.4807E-05 18 3

32 × 32
1024 5 0.1863E-05 0.9206E-06 17 9
1024 10 0.8408E-07 0.4880E-07 16 15
1024 20 0.8408E-07 0.4880E-07 16 38

4

8 × 8
256 5 0.1525E-04 0.2038E-04 18 <1
256 10 0.1376E-04 0.2190E-04 16 <1
256 20 0.1376E-04 0.2190E-04 16 3

16 × 16
1024 5 0.1873E-05 0.9257E-06 15 7
1024 10 0.7330E-07 0.4720E-07 14 13
1024 20 0.7330E-07 0.4720E-07 14 36

32 × 32
4096 5 0.1946E-05 0.9572E-06 15 103
4096 10 0.9999E-09 0.0000E+00 14 198
4096 20 0.9999E-09 Ref 14 568

Table 5.2: Convergence analysis for a periodic array of impenetrable tori arranged
in a honeycomb structure with period equal to λ and for an incidence field for which
the configuration is away from RW-anomalies. The quasi-periodic Green function
is evaluated by means of the Ewald method where each infinite sum in the Ewald
representation is truncated with ‖m‖∞ ≤ Ntr. See also Remark 4.

computing times, in contrast to the Ewald method which has an erratic behavior
(Table 3.5) and does not present a major advantage in terms of speed as in the bi-
periodic case analyzed in the previous section. The Laplace-type integral method
was not used either since it becomes costly due to the evaluation of Bessel functions
with complex argument. Perhaps, in part, for these reasons, these type of config-
urations have received much less attention in the computational physics literature
than their well-known bi-periodic relatives. Only approximate models [Nor+15]
and finite-differences in time-domain (FDTD) simulations were produced [Wil+09]
to compute the eigenmodes of twisted waveguides. The contributions [BM18b;
LZT13; TL10] consider linear arrays of spheres but also concentrate on the study of
guidedmodes in the periodic structure rather than the simulation of awave-scattering
process. To the best of our knowledge, the numerical simulations presented in what
follows are the very first high-order numerical simulations ever produced for linear
arrays in three-dimensional space.
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Patches Nu × Nv Ndis Ntr EBC A+0 Iterations Time (s)

1

8 × 8
64 10 0.2595E+00 6.0971E-02 31 <1
64 20 0.2545E+00 5.9180E-02 30 <1
64 40 0.2545E+00 5.9168E-02 29 <1

16 × 16
128 10 0.2425E-01 2.6792E-02 36 2
128 20 0.2488E-01 2.5300E-02 35 3
128 40 0.2488E-01 2.5299E-02 33 9

32 × 32
1024 10 0.4450E-03 7.8421E-04 39 17
1024 20 0.2128E-04 1.9235E-05 37 40
1024 40 0.2234E-04 1.9456E-05 35 133

4

8 × 8
256 10 0.1563E-01 8.7905E-03 32 2
256 20 0.1792E-01 9.7342E-03 31 3
256 40 0.1792E-01 9.7348E-03 29 9

16 × 16
1024 10 0.5682E-03 1.1452E-03 32 18
1024 20 0.5851E-04 8.4642E-05 29 42
1024 40 0.5687E-04 8.5112E-05 28 133

32 × 32
4096 10 0.3621E-03 3.7297E-04 29 268
4096 20 0.1414E-05 7.9210E-07 26 638
4096 40 0.1806E-07 Ref 24 2105

Table 5.3: Convergence analysis for a periodic array of impenetrable tori arranged
in a honeycomb structure with period equal to 4λ and for an incidence field that
gives rise to a RW anomaly—which is treated here by means of the WSM method.
Truncations of the form ‖m‖∞ ≤ Ntr were used for the WSM-modified Ewald
summationmethod to obtain the highly accurate results displayed; see alsoRemark 4.

We consider first the scattering of an impenetrable, sound-soft, double-helical struc-
ture comprised of two “twisted” cylinders (Figure 5.12) and compute the energy
balance error for several discretization levels and a number of finite truncations of
the shifted Green function representation (2.36).

Each infinite helix is obtained from an appropriate rotation around the x1-axis of
the globally-parametrized surface

x(s, t) = C(s) + r cos(t)ê2(s) + r sin(t)ê3(s), s ∈ R, t ∈ [0, 2π], (5.3)

where C(s) = (Rσs, R cos(s), R sin(s)) is a parametrization of a helical curve with
radius R and slope σ, where r is the inner-radius of the twisted cylinder and ê2 and
ê3 are the normal and bi-normal unit vectors of the Frenet reference frame ofC. The
subdivision into patches required by the rectangular integration methodology can be
obtained by means of dyadic subdivisions of [−1, 1]2 and proper rescalings. For the
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Figure 5.10: Energy balance error for a periodic crossed-grating with period equal
to 5λ as a function of the incidence direction. The unit-cell of the grating is divided
in four non-overlapping patches (obtained from a single dyadic splitting of the
parameter square [−1, 1]2 and a re-scaling of the parameters) and each is discretized
with 16 × 16 Chebyshev grid points. The evaluation of the quasi-periodic Green
function is performed by means of Ewald method truncating each of the required
series with ‖m‖∞ < 20; see also Remark 4.

examples considered in Tables 5.5 and 5.6 we have set in equation (5.3) r = λ/2 and
R = λ. The slope, in turn, isσ = 5λ/2πR yielding a period equal to 5λ. In both cases
the incident wave has a propagation direction given by equation (5.1) with φ = 0 and
θ = π/6 for Table 5.5 (a non-anomalous configuration) and θ = 10−8 (very close
to an RW-anomaly) for Table 5.6. The results displayed in those tables demonstrate
the excellent convergence properties of the shifted Green function in conjunction
with the rectangular integration method away from and around RW-anomalies.

The final numerical experiment considered in this thesis concerns the diffraction
of a normally incident plane-wave by a linear array of spheres distributed along
two helical curves. The geometrical and acoustical parameters are taken so as to
reproduce the results obtained by Rosalind Franklin and Raymond Gosling [FG53]
in their famous crystallography experiment (Figure 5.14, right) which lead to the
determination of the double-helical structure of DNA molecules. The normally-
incident incoming wave has a wavelength equal to 0.154nm while each helix has 10
impenetrable spheres of radius 0.195nm modelling the phosphorus atom, the largest
in the DNA molecule (Figure 5.13). Additionally, both the helical curves where the
spheres are centered have diameter and period equal to 2nm and 3.4nm, respectively,
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Figure 5.11: Real part (left) and intensity (right) of the total field produced as a
plane-wave impinges upon a transmission grating with period equal to 2λ in both x1
and x2 directions under normal incidence. The boundary between the two constant
refractive index domains is parametrized by (x1, x2, sin(πx1/2) sin(πx2/2)). The
upper and lower media have refractive indexes equal to 1 and 1.5, respectively. This
setup gives rise to RW-anomalies in both domains.

Figure 5.12: Twisted double-helical structure of period 5λ illuminate with a plane
wave with incidence direction given by (5.1) where φ = 0 and θ = π/6. The
intensity pattern of the total field is displayed in a plane parallel to the periodicity
direction located behind the double helix, 50 wavelengths away from the structure.
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Patches Nu × Nv Ndis Ntr EBC A+0 Iterations Time (s)

1

8 × 8
64 10 0.8255E+00 9.8145e-02 44 <1
64 20 0.8322E+00 9.8587e-02 44 <1
64 40 0.8322E+00 9.8586e-02 44 1

16 × 16
128 10 0.1112E-01 0.23947E-02 36 2
128 20 0.1074E-01 0.23674E-02 36 5
128 40 0.1074E-01 0.23673E-02 36 16

32 × 32
1024 10 0.1839E-04 0.1957E-05 34 26
1024 20 0.2118E-06 0.9429E-06 34 74
1024 40 0.2136E-06 0.9426E-06 40 255

4

8 × 8
256 10 0.3886E-02 0.98145E-03 32 2
256 20 0.2486E-02 0.98587E-03 35 5
256 40 0.2486E-02 0.98586E-03 33 9

16 × 16
1024 5 0.3220E-04 0.98325E-05 32 32
1024 10 0.4003E-05 0.14548E-05 32 80
1024 20 0.3992E-05 0.14554E-05 32 255

32 × 32
4096 5 0.2018E-03 0.2018E-03 30 212
4096 10 0.2783E-09 1.2845E-09 19 720
4096 20 0.2710E-09 Ref 19 1164

Table 5.4: Convergence analysis for a transmission crossed-grating with period
equal to 2λ under normal incidence (an RW anomalous configuration). Truncations
of the form ‖m‖∞ ≤ Ntr of the modified Ewald summation method are used to
obtain highly accurate results; see also Remark 4.

Patches Nu × Nv Ndis Ntr EBC Iterations Time (s)

1 16 × 16
256 2 0.2564E+00 42 1.69
256 4 0.2373E+00 41 1.78
256 8 0.2372E+00 41 1.84

4 16 × 16
1024 2 0.1414E-01 44 26.52
1024 4 0.1348E-03 42 27.31
1024 8 0.5230E-05 40 28.88

16 16 × 16
4096 2 0.1416E-01 44 423.36
4096 4 0.1361E-03 42 442.48
4096 8 0.3881E-05 40 462.56

Table 5.5: Convergence analysis for a double-helix structure (Figure 5.12) of period
5λ. The incidence direction is given by (5.1) with φ = 0 and θ = π/6 (not an RW-
anomaly). The quasi-periodic Green function is evaluated by means of truncations
of the shifted Green function representation 2.36 with j = 8 and h = λ/2. In this
table, the sum over the spatial lattice in (2.36) (Gq

j in Equation (2.34)) is truncated
with |m| ≤ Ntr terms; see also Remark 4.
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Patches Nu × Nv Ndis Ntr EBC Iterations Time (s)

1 16 × 16
256 2 0.4397E-01 40 1.70
256 4 0.4104E-01 40 1.78
256 8 0.4100E-01 40 1.84

4 16 × 16
1024 2 0.4366E-02 39 26.17
1024 4 0.2232E-04 39 27.14
1024 8 0.1049E-04 39 28.45

16 16 × 16
4096 2 0.4411E-02 39 424.73
4096 4 0.1152E-04 39 441.23
4096 8 0.6991E-06 39 461.32

Table 5.6: Convergence analysis for a double-helix structure (Figure 5.12) of period
5λ. The incidence direction is given by (5.1) where φ = 0 and θ = 10−8, very close
to an RW-anomaly (which occurs at θ = 0). The quasi-periodic Green function is
evaluated by means of truncations of the shifted Green function representation 2.36
with j = 8 and h = λ/2. In this table, the sum over the spatial lattice in (2.36) (Gq

j ,
Equation (2.34)) is truncated with |m| ≤ Ntr terms; see also Remark 4.

Figure 5.13: Double helix of spherical particles .

and they are mutually displaced by 3/8 of the period along the periodicity direction.
This last parameter was crucial in the original experiment as it allowed to conclude
from the absence of the fourth diffraction order that the structure consists of just
two displaced helices (in contrast to other models proposed by Linus Pauling which
considered the possibility of a third helix). To produce the simulation run to
compute the far-field displayed on the left of Figure 5.14, each sphere is splitted
into 6 non-overlapping patches each of which is discretized with a Chebyshev grid
of 8 × 8 points and the shifted Green function is truncated with |m| < 10. Even
though the physical processes that govern acoustical wave-scattering and X-Ray
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Figure 5.14: Simulated diffraction pattern by a double-helical array of sound-soft
impenetrable spheres obtained by means of the shifted Green function method
depicted in 5.13 (left) and X-Ray diffraction pattern by DNA in its hydrated B-form
(right, well known as the “Photo 51” image, copyright: King’s College London).
The quasi-periodicGreen function is evaluated bymeans of truncations of the shifted
Green function representation (2.36) with j = 8 and h = λ/2. Note the mismatch
between theoretical and experimental images at the center of the diffraction pattern:
the right-hand experimental data does not contain the bright central line that is
clearly visible on the left-hand image. This is a feature of the experimental setup,
which used a filter to occlude the intense line to avoid overexposure of the X-Ray
photographic film.

diffraction are different, the simulated diffraction pattern resembles remarkably well
the one obtained experimentally, including the “missing” fourth-order resulting
from the destructive interference caused by the relative displacement of the helices
(Figure 5.14).
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C h a p t e r 6

CONCLUSIONS

This dissertation has analyzed the major challenges encountered by classical meth-
ods based on quasi-periodic Green functions in the simulation of wave-scattering
by periodic media around a set of anomalous configurations, the RW-anomalies,
which are observed in both two- and three-dimensional problems, and which are
pervasive in the most challenging three-dimensional case. Through the concept
of hybrid spatial/spectral representations, this contribution introduced a framework,
theWoodbury-Sherman-Morrison methodology, to understand and bypass the prob-
lems presented by these singularities irrespectively of the underlying geometry of
the scattering structure. As a result, fast and robust numerical solvers were obtained
and applied to the simulation of acoustic wave-scattering by various two and three-
dimensional periodic structures with a variety of boundary conditions. The errors
and times presented in this contribution render the software developed for this thesis
among the most accurate and fastest available to date.

Limitations and future work
Even though the problem of wave-scattering by periodic media has a rich history
with many influential contributions and applications by prominent figures of modern
science, many interesting research avenues open up from this dissertation.

Firstly, as can be observed in this work (Tables 5.2–5.6), a major limitation in bound-
ary integral equations (BIE) methods is the non-sparsity of the linear systems they
produce. Even though BIE methods require the discretization of surfaces (and not
volumes), the slow decay of the free-space Green function demands the considera-
tion of the interaction of each pair of discretization points resulting in a quadratic
complexity in time and space if no additional acceleration procedures are employed.
To address this difficulty, an equivalent-sources acceleration technique [BM18a]
has been successfully employed for two-dimensional periodic problems to reduce
the quadratic operation count using the shifted quasi-periodic Green function. In
this context, its adaptation and application to the general treatment put forth in this
contribution represents an exciting opportunity for future work as it will enable
the treatment of problems with large periods where the scatterer spans the whole
unit-cell, which is the prevailing situation in remote sensing applications where the
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Figure 6.1: Band-structure of a two-dimensional array of circles with transmission
boundary conditions. The horizontal axis corresponds to the values of themagnitude
of α (which is taken parallel to the x1-axis). For each pair (|α |, k) we discretize the
integral equations for the transmission case (4.8) and compute the smallest singular
value (in logarithmic scale) of the resulting matrix. The blue lines indicate the
existence of a non-trivial null-space of the integral equation, related to the presence
of a resonant mode. The corresponding quasi-periodic Green function is computed
by means of the Ewald-method and the WSM methodology is not used (explaining
certain defects in the figure where RW-anomalies occur).

surface of the ocean or rough terrains are modeled with a periodizing scheme (in
order to eliminate edge effects).

Secondly, a related problem to the ones considered in this thesis is the computation
of resonant modes for a periodic structure in which the propagation domain is
periodic along each direction of space, i.e., dΛ = d. In this case, since the Laplacian
is a self-adjoint operator and the PDE problem is posed in a bounded domain
(due to the periodicity in all directions of space), for a fixed value of α there will
exist a discrete set of parameters k j (accumulating at infinity) for which there exist
a non-trivial solution (an α-quasi-periodic eigenmode of the Laplace operator).
Varying the value of α, a continuous curve of wavenumbers k j is obtained for which
there exist a non-trivial solution of the Helmholtz equation with homogeneous
boundary conditions, i.e., a “resonant mode”; computing these lines is known as the
problem of determining the band-structure of the crystal (Figure 6.1). While some
BIE methods have been applied successfully in related two-dimensional eigenvalue
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problems where quasi-periodicity was not considered [A+17], the extension of the
ideas put forth in that contribution together with the framework developed in this
thesis represents a promising direction for future work. Specifically, since the
singularity of the quasi-periodic Green function for the case dΛ = d behaves with
an order O(1/β2

m) [Lin10, Eq. 2.8], the problem in the conditioning of the linear
system around RW-anomalies analyzed in this work becomes more salient than in
the cases considered here (dλ < d), rendering the WSM methodology a promising
tool to tackle this problem.

Lastly, from a theoretical standpoint, the validity of theWSMmethodology hinges on
the invertibility of the regularized operator A in equation (4.23). While conducting
the research that underlies this thesis, it was found that the existence of A−1 is
closely linked with the establishment of conditions for the uniqueness of solution of
the underlying PDE. At this point, this connection is not reflected in the present work
as the latter problem constitutes a mathematical challenge that has been scarcely
explored in the context of periodic problems and exceeds the scope of this thesis.

Hopefully, this work will enable further progress in the field of optics and compu-
tational electromagnetism and, also, in the theory of partial differential equations.
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A p p e n d i x A

ENERGY BALANCE CRITERION

The principle of conservation of energy provides, under certain circumstances, a
valuable indicator of the accuracy of a numerical methods for periodic structures.
Even though the exact (or highly-accurate) verification of a conservation principle
does not guarantee in general the convergence of the method, it provides a good
estimator of the overall accuracy of the algorithm, specially when accompanied by
other criteria, such as resolution analysis. In the wave-scattering by periodic (non-
absorbing) media the relevant conservation principle follows from Green’s second
identity [PC90]. Since the corresponding conservation principle varies depending
on the geometrical setup of the underlying scattering problem, we derive in what
follows the energy balance criterion for the problems considered in Chapter 5.

A.1 Scattering by particles, dΛ = d − 1.
In this configuration we assume that a unit period of the complement of the propaga-
tion domainΩ0 which, for definiteness, we call D0, is formed by the union of finitely
many disjoint bounded obstacles, filled with either a penetrable (non-absorbing) or
an impenetrable material. If either Dirichlet, Neumann or transmission conditions
are prescribed in ∂D0, the total field u satisfies∫

∂D0

(
u
∂u
∂ν
− u

∂u
∂ν

)
dS = 0. (A.1)

Let M > 0 such that D0 ⊂ {x ∈ R
d : |xd | < M} and assume, for definiteness, that D0

is fully contained inside the volume ΩM =
{∑dΛ

i=1 sivi + s x̂d : 0 ≤ si ≤ 1, |s | < M
}
;

such assumption can be dropped by joining the top and bottom faces of this volume
with one (if d = 2) or two (if d = 3) pairs of, possibly curved parallel faces which
do not intersect D0 and where each surface in the pair is a translation by vi of the
other (see Figure A.1). A direct application of Green’s second identity in the domain
ΩM \ D0 shows that∫

∂D0

(
u
∂u
∂ν
− u

∂u
∂ν

)
dS =

∫
{|xd |=M}]

(
u
∂u
∂ν
− u

∂u
∂ν

)
dS. (A.2)

Writing u = us + uinc (equations (1.12)–(1.13)), expressing us by its corresponding
Rayleigh series in the regions xd > M and xd < −M (equation (1.24)) and using
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Figure A.1: Unit period of the complement of the propagation domain Ω0 (D0)
and integration domain ΩM where Green’s second identity is applied. The integrals
along the parallel surfaces that joins the top and bottom flat boundaries cancel out
due to the periodicity.

the orthogonality of eiαm ·x , m ∈ ZdΛ with respect to the standard L2 inner-product,
it can be shown that
1
A

∫
{|xd |=M}]

u
∂u
∂ν

dS =

i
∑

m∈ZdΛ

βm(n0k)
(
|A+m |

2 + |A−m |
2
)

e−2Im(βm(n0k))M + 2iβRe(A−0 ) − 2βIm(A+0 e−2iβM).

(A.3)

Taking the imaginary part of this expression and letting M → ∞ we obtain the
energy balance criterion∑

m∈U0

βm(n0k)
(
|A+m |

2 + |A−m |
2
)
+ 2βRe(A−0 ) = 0, (A.4)

where we have set U0 = {m ∈ Z
dΛ : n2

0k2 − |αm |
2 > 0}.

A.2 Scattering by impenetrable and transmissive gratings, dΛ = d − 1.
In this case we assume first that the propagation domain Ω = Ω0 ∪ Ω1 and the
common boundary between Ω0 and Ω1 is a periodic and connected surface; the
impenetrable case (where the propagation domain Ω is formed by a unique domain
of constant refractive index, the impenetrable region Ωimp is non-empty and the
boundary between these two is also a periodic and connected surface) can be easily
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Figure A.2: Unit period of a transmission grating and integration domainΩM where
Green’s second identity is applied. The integrals along the parallel surfaces that
joins the top and bottom flat boundaries cancel out due to the periodicity.

obtained from the transmission case (see Figure A.2). Given M > 0 and applying
Green’s second identity in the region ΩM defined in the previous section we have

∫
{xd=M}]

(
u0
∂u0

∂xd
− u0

∂u0

∂xd

)
dS =

∫
{xd=−M}]

(
u1
∂u1

∂xd
− u1

∂u1

∂xd

)
dS (A.5)

(the boundary term along the common interface vanishes because of the transmission
conditions (1.17)). A similar argument as the one provided in the previous section
(using relations (1.12)–(1.13), expanding u0 and u1 in terms of their corresponding
Rayleigh-series and using the orthogonality of eiαm ·x , m ∈ ZdΛ with respect to the
standard L2 inner-product) shows that∑

m∈U0

βm(n0k)|A+m |
2 +

∑
m∈U1

βm(n1k)|A−m |
2 = β, (A.6)

where U0 is given in the previous section and U1 is defined similarly as U1 = {m ∈

ZdΛ : n2
1k2 − |αm |

2 > 0}. The energy balance criterion for the impenetrable case
can be obtained in a straightforward manner noting that for such configuration, the
total field can be extended to the region Ωimp by zero, which is trivially a solution
of the Helmholtz equation; thus, the brief derivation above can also be applied in
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this case and since all coefficients of the Rayleigh expansion A−n vanish we have∑
m∈U0

βm(n0k)|A+m |
2 = β. (A.7)

A.3 Scattering by linear arrays in three-dimensional space, dΛ = 1, d = 3
This section derives the energy balance criterion for periodic structures like the ones
considered in Section 5.4 consisting of arrays of impenetrable particles or surfaces
having periodicity along the x1 axis (linear arrays). We assume that the infinite set
of scatterers are contained inside the cylinder ΩM = {x ∈ R

3 : x2
2 + x2

3 < M2} for
some M > 0. Letting ρ > M and applying Green’s second identity in a similar
manner as in Sections A.1 and A.2 we have

0 =
∫

∂B(0,ρ)

(
u
∂u
∂ν
− u

∂u
∂ν

)
dS. (A.8)

Writing u = us+uinc and replacing us by its correspondingRayleigh expansion (1.29)
it follows that

0 =
∑
m∈Z

∫
|x⊥ |=ρ

(
Um

∂Um

∂ν
−Um

∂Um

∂ν

)
+ 2iIm

©­­«
∫

|x⊥ |=ρ

eiβ·x⊥ ∂U0

∂ν
−U0

∂eiβ·x⊥

∂ν

ª®®¬ .
(A.9)

For those indexes m such that β2
m = κ

2 − α2
m > 0, the functions Um are solutions of

the Helmholtz equation in two-dimensional space satisfying Sommerfeld’s radiation
condition and therefore each can be expanded in the form

Um(x2, x3) =
∑̀
∈Z

u(m)
`

H(1)n (βm |x
⊥ |)einθ, (A.10)

where H(1)
`

is the Hankel’s function of the first kind of order ` and θ is such that
x2 = |x

⊥ | cos θ and x3 = |x
⊥ | sin θ. A similar expression for the factor eiβ·x⊥ of the

incoming wave can be obtained by means of the Jacobi-Anger’s expansion [CK12]

eiβ·x⊥ =
∑̀
∈Z

i`e−i`θ̃ J`(|β | |x⊥ |)ei`θ, (A.11)

where θ̃ is such that β = |β |(cos θ̃, sin θ̃) and J` is the Bessel’s function of the first
kind of order `. Using the orthogonality of the exponentials ei`θ in L2(∂B(0, ρ)) and
the relations for the Wronskians [DLM17, Eq. 10.5.1-5]

W(H(1)
`
,H(1)

`
)(z) = −

4i
πz
, W(H(1)

`
, J`)(z) = −

2i
πz
,
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we have ∫
|x⊥ |=ρ

(
Um

∂Um

∂ν
−Um

∂Um

∂ν

)
= 8i

∑̀
∈Z

|u(m)n |
2 (A.12)

and ©­­«
∫

|x⊥ |=ρ

eiβ·x⊥ ∂U0

∂ν
−U0

∂eiβ·x⊥

∂ν

ª®®¬ = 4i
∑̀
∈Z

u(0)
`

i`ei`θ̃ . (A.13)

Note that these expressions are independent ρ. In contrast, for the indexes m such
that β2

m = κ
2−α2

m < 0,Um decays exponentially fast as ρ→∞ and therefore, taking
that limit in (A.9), the corresponding integrals involving Um in that equation will
vanish out. Thus, we obtain the energy balance criterion for impenetrable periodic
structures with dΛ = 1 in three-dimensional space:∑

m∈U

(∑̀
∈Z

|u(m)
`
|2

)
= −Im

(∑̀
∈Z

ei`(θ̃−π/2)u(0)
`

)
. (A.14)
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A p p e n d i x B

EWALD SUMMATION METHOD

All cases of Ewald’s representation formula (2.27)– (2.30) are derived from the
integral expression

Gκ(x) =
1

2πd/2

∫
C

e−|x |t
2
eκ

2/4t2
td−3dt, d = 2, 3 (B.1)

of the corresponding free-space Green function Gκ(x) (see Equation (2.2)), where
C is a contour joining the origin and infinity and which verifies

| arg t | <
π

4
as t →∞ and arg t → −

π

4
as t → 0.

Equation (B.1) is obtained by means of the following Lemma.

Lemma 1. For ν ∈ R, r > 0 and k ∈ C with 0 < arg(k) < π/2 it holds

H(1)ν (kr) =
2
iπ

e−iπν
(

k
2r

)ν ∫
C

t−2ν−1e−r2t2+k2/4t2
dt . (B.2)

Proof. Consider first the well-known representation of the Hankel function of the
first kind of order ν [GR14, Eq.8.422]

H(1)ν (z) = −
i
π

+∞+iπ∫
−∞

ez sinh(w)−νwdw, | arg z | <
π

2
, (B.3)

where the path of integration is given by

{−t : 0 < t} ∪ {it : 0 < t < π} ∪ {t : 0 < t} .

Assuming 0 < arg(z) < π/2, applying Cauchy’s theorem in the rectangle with
vertices −R, 0, iη and −R + iη (η = π/2 − arg z) to the integrand in (B.3) (a
holomorphic function) and then taking the limit R → ∞ it follows that the portion
of the integral in (B.3) along the path {−t : 0 < t} ∪ {it : 0 < t < π} is equal to the
integral with same integrand but along the infinite path {t + i(π/2 − arg z)} (in this
computation it is necessary to bound the integral along the vertical segment −R+ it,
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Figure B.1: Integration contour obtained after the change of variables u = ew in
equation (B.5).

0 < t < η, though it can be easily checked that the integrand decays exponentially
fast as R→ +∞). Thus we can re-express H(1)ν (z) in the form

H(1)ν (z) = −
i
π

+∞+iπ∫
−∞+i( π2 −arg z)

ez sinh(w)−νwdw (B.4)

for 0 < arg z < π/2. Making the substitution u = ew it follows that

H(1)ν (z) = −
i
π

∫
C̃

u−ν−1e
z
2 (u−

1
u )du, (B.5)

where the transformed path C̃ is formed by the segment joining the origin with
ei(π/2−arg(z)), then the arc of unit radius joining this latter point with −1 and then the
infinite line (−∞,−1] (see Figure B.1). Thus,

H(1)ν (kr) = −
i
π

∫
C̃

u−ν−1e
kr
2 (u−

1
u )du, (B.6)

and a second substitution u = −2rt2/k yields

H(1)ν (kr) = −
2i
π

e−iπν
(

k
2r

)ν ∫
C

t−2ν−1e−r2t2+k2/4t2
dt, (B.7)
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Figure B.2: Integration contour obtained after the change of variables u = −2rt2/k
in equation (B.7).

where the path of integration C is a segment that starts at the origin with direction
e−iπ/4, an arc of a circle and then a line that extends to infinity parallel to ei arg z/2

(see Figure B.2). �

Remark 5. The path of integration in (B.2) can be deformed as long as the new
contour starts at the origin in the same direction e−iπ/4 and the integration variable
t approaches infinity satisfying | arg(t)| < π/4 (if this latter condition is satisfied
we have Re(t2) > 0 and so the exponential in (B.2) decays exponentially fast as
|t | → 0).

In the case d = 2, the integral representation for the free-space Green function (B.1)
is obtained from (B.2) by substitution. For d = 3, in turn, we get (B.1) from the
relation

1
4π

eikr

r
=

1
4
√

2π

√
k
r

H(1)
−1/2(kr)

together with (B.2) (setting ν = −1/2 in the latter formula).

For simplicity, in what follows we will interchange deliberately infinite summations
with integrals over infinite regions without justifying the procedure at each step.
A rigorous derivation of Ewald’s representation formula would require adding a
small imaginary part ε to the real wavenumber κ > 0 in order that all intervening
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infinite sums converge absolutely and uniformly (so that the summation and integral
symbols can be interchanged safely) and then, finally, taking the limit ε → 0 in the
resulting expressions.

Letting η > 0 denote an arbitrary splitting parameter, we consider in (B.1) a path
C = C1 ∪ C2 where C1 equals the infinite line [η,∞) while C2 is a curve contained
in the complex plane that starts at the origin in the direction e−iπ/4 and ends at the
point η. The decomposition (2.25) results from representing each free-space Green
function in (2.1) using formula (B.1) and splitting the integral along the contour
C into two integrals along C1 and C2. The first of the resulting expressions is the
infinite sum

Gq
Λ
(x) =

∑
Rm∈Λ

eiα·Rm
1
πd/2

∫ ∞

η
e−|x−Rm |

2t2
eκ

2/4t2
td−3dt (B.8)

which equals (2.27) when d = 2 and (2.28) when d = 3; these two equations can be
obtained by setting ρm = |x − Rm |, and using the relations∫ ∞

η
e−|x−Rm |

2t2
eκ

2/4t2 1
t

dt =
1
2

∞∑
j=0

1
j!

(
k
2

)2 j ∞∫
η2

e−ρ2
nu

u j+1 du

=
1
2

∞∑
j=0

1
j!

(
k
2

)2 j

E j+1(η
2ρ2

m)

(B.9)

and∫
e−a2t2+b2/t2

dt = −
√
π

4a
e−a2t2+b2/t2

[
w

(
b
t
+ iat

)
+ w

(
−

b
t
+ iat

)]
+const, a , 0.

(B.10)
In (B.9), E j denotes the exponential integral defined in (2.26) while in (B.10), w is
the Faadeeva function given by

w(z) = e−z2
erfc(−iz), z ∈ C (B.11)

and where erfc denotes the analytic continuation of the complementary error func-
tion.

To obtain the corresponding expressions forGq
Λ∗

in (2.25), we use the decomposition
x = x‖ + x⊥ (see Remark 1) and note that the dΛ-dimensional Fourier transform
(which we denote by FdΛ) of the function

f (x‖) =

∫
C1

e−|x
‖ |2t2

e−|x
⊥ |2t2

eκ
2/4t2

td−3dt (B.12)
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equals

FdΛ( f )(ξ) = π
dΛ/2

∫
C1

e−|x
⊥ |2t2

e(κ
2−|ξ |2)/4t2 1

t3−(d−dΛ)
dt . (B.13)

Thus, if d − dΛ = 1, we can use (B.10) together with the change of variables t = 1/s
and obtain

FdΛ( f )(ξ) = i
π(dΛ+1)/2

2
√
κ2 − |ξ |2

e−|x
⊥ |2η2

e(κ
2−|ξ |2)/4η2

[
w

(
−|x⊥ |η + i

√
κ2 − |ξ |2

2η

)
+ w

(
−|x⊥ |η − i

√
κ2 − |ξ |2

2η

)]
.

(B.14)

If d = 3 and dΛ = 1, in turn, performing the change of variables t = 1/s2 we have

FdΛ( f )(ξ) = π
1/2

∞(eiπ/8)∫
1/η2

e−|x
⊥ |2/ses(κ2−ξ2)/4 1

s
ds, (B.15)

where the upper limit∞(eiπ/8) indicates that infinity is approached along the direc-
tion eiπ/8. Expanding e−|x⊥ |2/s by a Laurent series (with respect to s) we have

FdΛ( f )(ξ) = π
1/2

∞∑
j=0

(−1) j

j!
|x⊥ |2 j

∞(eiπ/8)∫
1/η2

es(κ2−ξ2)/4 1
s j+1 ds (B.16)

and noting that

∞(eiπ/8)∫
1/η2

es(κ2−ξ2)/4 1
s j+1 ds = η2 j E j+1

(
−
κ2 − |ξ |2

4η2

)
(B.17)

we get

FdΛ( f )(ξ) = π
1/2

∞∑
j=0

(−1) j

j!
|ηx⊥ |2 j E j+1

(
−
κ2 − |ξ |2

4η2

)
. (B.18)

Equations (2.29) and (2.30) are obtained applying the Poisson summation formula
to

Gq
Λ∗
(x) =

∑
Rm∈Λ

eiα·Rm
1
πd/2

∫
C2

e−|x−Rm |
2t2

eκ
2/4t2

td−3dt

with the corresponding computed Fourier transforms (B.14) and (B.18).
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