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Abstract 

One strategy for controlling transmission of insect-borne disease involves replacing the 

native insect population with transgenic animals unable to transmit disease. Population 

replacement requires a drive mechanism to ensure the rapid spread of linked transgenes 

conferring disease refractoriness. Medea selfish genetic elements have the feature that 

when present in a female, only offspring that inherit the element survive, a behavior that 

can lead to spread. We validate our model against a synthetic Medea element created in 

Drosophila and find that the model fits the data without parameter fitting.  We use 

modeling to identify conditions under which Medea elements spread. We derive 

equations describing the allele frequencies required for spread of Medea elements with a 

fitness cost, and the equilibrium allele frequencies attained. We show that when Medea 

spreads, it drives the non-Medea genotype out of the population, and we provide 

estimates of the number of generations required to achieve this goal. We also characterize 

two contexts in which Medea elements with fitness costs drive the non-Medea allele from 

the population: an autosomal element in which zygotic rescue is incomplete and an X-

linked element in species in which X/Y individuals are male. We explore costs and 

benefits associated with the introduction of multiple Medea elements.   
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Chapter 1: Introduction 

Some insects and arthropods act as vectors for important human, animal and agricultural 

diseases ranging from Lyme’s Disease to Chagas’ Disease to viral plant pathogens.  

Insect-borne diseases sicken and kill millions of people annually (WHO 2009, WHO 

2010).  The two most devastating are malaria, a Plasmodium, and dengue, a virus.   

Currently about half of the world’s population is at risk for these diseases (WHO 2009, 

2010). In 2008, there were 247 million cases of malaria resulting in about 1 million 

deaths.  About 20% of childhood mortality is related to malaria in Africa (WHO 2010). 

Annually, dengue sickens about 50 million people, killing about 15,000 (WHO 2009).  

Both diseases have been expanding their ranges with dengue transmission reported in 

Florida in 2010 (CDC 2010). 

 

By definition, these insect-borne diseases have a complex life cycle.  They have at least 

two hosts, often humans and mosquitoes and the pathogen must cycle between the two 

hosts.  That is, a person with malaria will not transmit malaria to another person without 

the Plasmodium first infecting a mosquito host.  Therefore, there are currently two 

strategies to fight these diseases: (1) treat an infected human with pharmaceuticals and 

(2) prevent mosquitoes from biting humans.  There are no effective drugs to target 

dengue (WHO 2009).  While there are agents to treat malaria, they are often expensive 

and pathogen-resistance is an increasing problem (Hyde 2005, Greenwold et al. 2008).  

Strategies to prevent mosquito bites include spraying insecticides and repellants, wearing 

protective clothing or bed nets, using screen doors and air conditioning, and making 

alternations to the environment such that there is less standing water and fewer breeding 
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sites (Kitron and Spielman 1989; Trape et al. 2002; Gould and Schliekelman 2004).  

While these methods have shown limited locally efficacy, in many parts of the world 

mosquito population densities are extremely high and most pathogen control efforts have 

not seen clinical results (WHO 2010).  Additionally, some methods such as air 

conditioning are extremely expensive while others such as draining fields or spraying 

large quantities of insecticides have huge ecological consequences. 

 

Finally, as illustrated by the WHO 2010 clinical results, the incidence of disease is not 

linearly related with the size or the mosquito population, or number of bites a human 

receives (MacDonald 1957; Boete and Koella 2002, 2003).  In many parts of Africa, each 

person receives hundreds of potentially infections bites annually.  To effectively reduce 

the number of cases of malaria, the number of infectious bites would have to be reduced 

by more than 90 (and in many cases more than 99%).  Even in by optimistic estimates, 

bed nets, screened doors and protective clothing alone cannot achieve this result.  Heavy 

use of insecticides can dramatically reduce mosquito populations.  However, once 

applications cease, the population will rapidly reestablish, leading to a potentially 

devastating disease epidemic (Roberts et al. 1997).    

A new strategy is to modify the insect population such that is refractory to pathogens.  

That is, insert a gene into the insect’s genome that makes that organism either immune or 

unable to transmit a particular pathogen.  There has been success with disease inhibition 

(de Lara Capurro et al. 2000; Ito et al. 2002; Moreira et al. 2002; Franz et al. 2006; 

Corby-Harris, et al. 2010).  However, creating a genetically resistant only solves one part 
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of the problem.  In order for the strategy to work, this new genetically modified (GM) 

insect strain must be able to outcompete the native population such that all the 

mosquitoes in the population carry this particular gene of interest.  Selfish genetic 

elements are a particular class of genes that have transmit themselves at greater than 

Mendelian frequencies through a genome without any apparent phenotypic benefit to that 

organism.  If a selfish genetic element and a gene for disease refractoriness are linked in a 

genome, the disease refractory gene should be able to hitchhike with the selfish genetic 

element (Braig and Yan 2001; Gould and Schliekelman 2004; Sinkins and Gould 2006). 

 

There are a multitude of naturally occurring selfish genetic elements including sterile 

male release, transposable elements, homing endonucleases, meotic drive mechanisms, 

underdominance, Medea, an intracellular bacterium Wolbachia and killer-rescue (Burt 

and Trivers 2006, Sinkins and Gould 2006, Wade and Beeman 1994, Huang et al. 2009).  

In order to choose which strategy to examine more closely, we need to describe important 

features of the drive system.  While it is possible to release large numbers of insects, 

smaller releases of insects will be preferred from a financial standpoint.  Additionally, 

because we can assume that there is a fitness cost on the insect for the inability to 

transmit disease (in the form of a reduced lifespan or decreased fecundity), the drive 

system should be able to drive even in the presence of a fitness cost (Schmid-Hempel 

2005; Tripet et al. 2008; Vernick et al. 2005).  The drive system should be relative stable 

in the face of evolution.  That is, a drive systems that are vulnerable to rapid evolutionary 

change are probably not viable.  Finally, the ability to physically create the drive system 

in a lab is critical for success. 
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Sterile male strategies have been effective in eliminating populations of screwworms 

(Cochliomyia hominivorax)and Mediterranean fruit flies (Ceratis capitata) (Knipling 

1955; Hendrichs et al. 1995; Benedict and Robinson 2003).  This strategy works by 

releasing large numbers of irradiated male insects over a target area.  These insects are 

rendered sterile from the radiation and compete with native males to mate with any 

females in the area.  If males are released whenever females are present, the population 

will crash.  A strain of mosquitoes that is genetically sterile when raised in the absence of 

tetracycline has been developed in England (Thomas et al. 2000).  This strategy has 2 

major disadvantages.  1) Insects must be released continuously or the native insects will 

reemerge and 2) large numbers of insects must be released (larger if there is a fitness cost 

on the genetically modified insects). 

 

Transposable elements and homing endonucleases have very high transmission rates even 

in the presence of large fitness costs.  However, efforts to engineer them have been 

largely unsuccessful.  Recently, an intriguing proof of principle system has been 

developed using homing endonucleases in mosquito.  Homing endonucleases function by 

cutting a specific sequence of DNA and hijack the cellular machinery to repair the break 

by inserting itself into the break point.  In this case, the I-Scel element is able to cleave 

mosquito chromosomes in a site-specific manner.  Most of the time, it inserts itself (and a 

marker gene) into broken chromosome.  Occasionally, the chromosome repairs itself 

through blunt end ligation and the site is destroyed (Windbichler et al. 2011).  While the 
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strategy is highly successful initially, this rapid creation of chromosomes which do not 

contain the gene of interest and are not vulnerable to the endonuclease may cause the 

strategy to be unviable. 

 

Meotic drive mechanisms cause population crashes by forcing the population to become 

entirely male or entirely female.  This strategy has not been engineered in the lab.  If a 

chromosome evolved resistance to this mechanism, it would rapidly take over the 

population. 

 

Underdominance and killer-rescue are strategies that involved creating an element that 

kills the organism and a second element that acts as an antidote.  In the case of killer-

rescue strategies, the two elements are unlinked.  They killer gene must be introduced a t 

a relatively high level.  The both the killer and rescue gene will remain at intermediate to 

high levels for a transient period of time (Huang 2009).  Underdominance takes the 

strategy one step further allowing 2 killer genes and 2 rescue genes to act.  In this case, 

killer 1 is linked to rescue 2 and killer 2 is linked to rescue 1.  Both sets of genes must be 

passed on for the organism to be viable.  Underdominance requires a relatively high  

release threshold and is vulnerable to fitness effects, but will drive to completion (that is 

no native alleles will remain in the population) (Davis et al. 2001).   

Maternal-effect lethal selfish genetic elements are members of a class of selfish genetic 

elements that enhance their transmission by causing the death of offspring that lack the element 
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(BURT and Trivers 2006). These elements were first described in the flour beetle Tribolium 

castaneum and are known by the acronym Medea (maternal-effect dominant embryonic arrest). 

Medea elements in Tribolium are chromosomally located and gametes are generated and 

transmitted in a strictly Mendelian manner. Tribolium Medea drives because when present in 

females, only progeny that inherit the element-containing chromosome from either the 

maternal and/or paternal genome survive (BEEMAN et al. 1992). Therefore, Medea enhances its 

transmission relative to competing non-Medea-bearing homologous chromosomes (hereafter 

referred to as the non-Medea allele) by causing the death of progeny that do not carry a copy of 

Medea found in the mother. One Tribolium Medea, MedeaM1, has been mapped and is 

associated with a composite Tc1 transposon insertion that includes a number of genes 

(LORENZEN et al. 2008). How this insertion confers maternal-effect lethal selfish behavior is 

unknown, but genetic analysis suggests a model in which Medea consists of two tightly linked 

loci: one that encodes a maternal-effect lethal activity (a toxin) inherited by all progeny of 

Medea-bearing mothers, and a second that encodes a zygotic rescue activity (an antidote) that 

can be inherited from either the maternal or paternal genome  (BEEMAN et al. 1992).  Loci with 

genetic characteristics similar to those of Tribolium Medea have also been described in mice, 

but little is known about their molecular basis (HURST 1993; PETERS and BARKER 1993; 

WEICHENHAN et al. 1996; WEICHENHAN et al. 1998).  Synthetic Medea elements that drive 

population replacement in Drosophila have been generated (CHEN et al. 2007). The genetic 

and cell biological principals utilized to generate Medea in Drosophila involve maternal-

specific silencing of a gene whose product is synthesized maternally and deposited into the 

developing oocyte, but only required during embryogenesis (the toxin), coupled with zygotic 

expression of a rescuing transgene (the antidote). These principles are straightforward and 
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conserved across the animal kingdom, and therefore should be applicable to the generation of 

similar elements in agricultural pest and human disease vector species.  

 

The dynamics of Medea spread have been modeled by several groups. Wade and Beeman first 

considered this problem, focusing on several situations in which Medea was introduced into 

populations at very low frequency (WADE and BEEMAN 1994). They showed that if the 

presence of Medea does not result in a fitness (fecundity) cost to carriers, independent of 

maternal-effect killing, Medea spreads to fixation for all degrees of maternal effect lethality, 

though the rate of Medea increase is very slow when it is introduced at low frequency. They 

also showed that if the presence of Medea results in a decrease in fecundity independent of 

maternal-effect killing, the frequency of the Medea allele could still increase to a stable internal 

equilibrium. Whether Medea increased in frequency or was lost from the population was found 

to depend critically on the degree of dominance of the fitness costs: high levels of completely 

recessive fecundity costs were well tolerated, but when Medea was present at low frequency, 

even modest degrees of dominance led to loss of Medea from the population. Population 

genetic models of HASTINGS (1994), SMITH (1998) and CHEN et al. (2007) show that, Medea 

elements with significant dominant fitness costs can still spread, provided they are introduced 

above a critical introduction frequency. Previous work has focused on the fate of the Medea 

allele. However, it is the fate of Medea-bearing genotypes that is important for population 

replacement. CHEN et al. (2007) showed that, at least under some conditions, when Medea 

elements with fitness costs are introduced at frequencies that result in spread to an internal 

equilibrium allele frequency, non-Medea individuals are nonetheless rapidly eliminated from 
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the population. However, it has not been clear to what extent this conclusion can be 

generalized. 

 

In summary, Medea elements are attractive candidates to drive population replacement for 

several reasons. First, they can spread (provided certain conditions detailed below are met) 

even if they confer a fitness cost to carriers (CHEN et al. 2007; HASTINGS 1994; SMITH 1998; 

WADE and BEEMAN 1994). Second, under at least some conditions when Medea spreads it 

eliminates the non-Medea genotype from the population (CHEN et al. 2007). Third, the 

synthetic form of Medea is the only gene drive mechanism that is both well understood at the 

molecular level, because it was designed with components of known behavior, and that has 

been demonstrated to drive population replacement. Finally, design considerations discussed 

by CHEN et al. (2007) regarding ways to prevent recombinational separation of drive and 

disease refractoriness functions, to prevent selfish element spread in non-target species, and to 

carry out multiple cycles of population replacement, provide reasons to believe that the 

population genetic behavior of synthetic Medea elements can to some extent be controlled. 

Therefore, Medea is a logical target for concerted development efforts.  

 

My work focuses both on questions surrounding the practical aspects of the release of 

Medea and the some of the interesting mathematics behind the equilibria.  We want to 

answer the question of how many insects must be relased given a variety of 

circumstances including fitness costs, location of the element, and imperfect transmission 

of the element as well as how long population replacement takes.  In chapter 2 of this 
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theis, we examine how well our model behaves in comparison to our lab created Medea 

drive system.  This chapter is a reproduction of Chen’s 2007 paper with my contribution 

showing that our real Medea element behaves as predicted by our models.  Chapter 3 

looks properties of a Medea element in a large single population and is an expanded 

version of our Evolution paper (Ward et al., 2011).  Chapter 4 is a short discussion of 

work I did examining the extent to which Medea produced in our one lab strain of 

Drosophilia can act as a driver in various other Drosophila populations.  Chapter 5 

contains overall conclusions. 
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Chapter 2:  A Synthetic Maternal-Effect Selfish Genetic Element Drives Population 

Replacement in Drosophila 

 

First reported in 2007 in Science.  Volume 316. 

 

Chun-Hong Chen, Haixia Huang, Catherine M. Ward, Jessica T. Su, Lorian V. Schaeffer, 

Ming Guo,  Bruce A. Hay 

 

Abstract 

One proposed strategy for controlling the transmission of insect-borne pathogens uses a 

drive mechanism to ensure the rapid spread of transgenes conferring disease 

refractoriness throughout wild populations. Here, we report the creation of maternal-

effect selfish genetic elements in Drosophila that drive population replacement and are 

resistant to recombination-mediated dissociation of drive and disease refractoriness 

functions. These selfish elements use microRNA mediated silencing of a maternally 

expressed gene essential for embryogenesis, which is coupled with early zygotic 

expression of a rescuing transgene.   

 

Body text: 

Mosquitoes with a diminished capacity to transmit malaria or dengue have been 

identified in the wild and/or created in the laboratory, demonstrating that endogenous or 

engineered mosquito immunity can be harnessed to attack these pathogens (1–5). 
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However, it will be necessary to replace a large percentage of the wild mosquito 

population with refractory insects to achieve substantial levels of disease control 

(6–8). Mosquitoes carrying genes that confer disease refractoriness are not expected to 

have a higher fitness than native mosquitoes, implying that Mendelian transmission is 

unlikely to result in an increase in the frequency of transgene-bearing individuals after 

their initial release into the wild (4, 9). Thus, effective population replacement will 

require the coupling of genes conferring disease refractoriness with a genetic mechanism 

for driving these genes through the wild population at greater than Mendelian frequencies 

(10, 11). 

 

Maternal-effect selfish genetic elements [first described in the flour beetle Tribolium 

castaneum and known by the acronym Medea (maternal effect dominant embryonic 

arrest)] select for their own survival by inducing maternal-effect lethality of all offspring 

not inheriting the element bearing chromosome from the maternal and/or paternal 

genome (12) (Fig. 1A). Current models predict that if Medea elements are introduced into 

a population above a threshold frequency, determined by any associated fitness cost, they 

will spread within the population (12–14) (Fig. 1, C and D). When introduced into a 

population at relatively high frequencies, Medea elements are predicted to rapidly convert 

the entire population into element-bearing heterozygotes and homozygotes (Fig. 1C). 

Medea in Tribolium is hypothesized to consist of a maternal lethal activity (a toxin) that 

kills non-Medea–bearing progeny and a zygotic rescue activity (an antidote) that protects 

Medea-bearing progeny from this maternal lethal effect (12, 15) (Fig. 1A).  
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Fig. 1. Characteristics of a maternal-effect selfish genetic element (Medea) and a 
synthetic Medea element in Drosophila. (A) It is postulated that females heterozygous for 
Medea (Medea/+) deposit a protoxin or toxin (red dots) into all oocytes. Embryos that do 
not inherit a Medea-bearing chromosome die because toxin activation or activity is 
unimpeded (bottom left square). Embryos that inherit Medea from the maternal genome 
(top left square), the paternal genome (bottom right square), or both (top right square) 
survive because zygotic expression of a Medea-associated antidote (green background) 
neutralizes toxin activity. (B) (Top) Schematic of a simple molecular model that accounts 
for Medea behavior postulates the existence of two tightly linked loci. One locus consists 
of a maternal germline–specific promoter that drives the expression of RNA or protein 
that is toxic to the embryo. The second locus consists of a zygotic promoter that drives 
the expression of an antidote. (Bottom) Schematic of Medeamyd88 is shown. ORF, open 
reading frame; Mir 6.1-Myd88-1+2, transcript encoding two copies of Drosophila 
miRNA 6.1 modified to target the myd88 5′ untranslated region. (C) Frequency of 
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genotypes lacking Medea for an element carrying the additive fitness costs indicated, 
over generations, with Medea introduced at a 1:1:2 ratio of homozygous 
Medea-bearing males, non-Medea–bearing males, and females lacking Medea. 
Generation zero refers to the wild population (non-Medea/non-Medea = 1) before 
population seeding. Generation one refers to the progeny of crosses between these 
individuals and homozygous Medea-bearing males. (D) Frequency of the non-Medea–
bearing chromosome for the populations described in (C). (E and F) Medeamyd88-1 drives 
population replacement in Drosophila. Medeamyd88-1 was introduced into seven population 
cages at an allele frequency of ~25% (16). (E) The frequency of genotypes lacking 
Medea (+/+) over generations is indicated for two separate sets of population cage 
experiments, involving three (green lines; 20 generations) or four (blue lines; 15 
generations) population cages each. The predicted frequency of genotypes lacking 
Medea, for a Medea element with zero fitness cost (introduced at an allele frequency of 
25%) is indicated by the red line. (F) The frequency of the non-Medeamyd88-1–bearing 
chromosome (+/Medea and +/+) over generations from the population cage experiments 
in (E) is indicated as above, as is the predicted frequency for an element with zero fitness 
cost. 
 

To create a Medea-like maternal-effect selfish genetic element in Drosophila, we 

generated a P transposable element vector in which the maternal germline–specific bicoid 

(bic) promoter drives the expression of a polycistronic transcript encoding two 

microRNAs (miRNAs) designed to silence expression of myd88 (the gene producing the 

toxin) [Fig. 1B and (16)]. Maternal Myd88 is required for dorsal-ventral pattern formation 

in early embryo development. Females with germline loss-of-function mutations for 

myd88 give rise to embryos that lack ventral structures and thus fail to hatch, even when 

a wild-type (WT) paternal allele is present (17). This vector (known as Medeamyd88) also 

carries a maternal miRNA–insensitive myd88 transgene expressed under the control of 

the early embryo–specific bottleneck (bnk) promoter (the gene producing the zygotic 

antidote) (Fig. 1B). Our analysis focused on flies carrying a single autosomal insertion of 

this element, Medeamyd88-1. 
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Matings between heterozygous Medeamyd88-1/+males (where + indicates a chromosome 

that does not carry Medeamyd88-1) and homozygous +/+ females resulted in high levels of 

embryo viability, similar to those for the w1118 strain used for transformation (Table 1). In 

addition, 50% of the adult progeny carried Medeamyd88-1, as expected for Mendelian 

segregation without dominance. Matings among homozygous Medeamyd88-1 flies also 

resulted in high levels of egg viability. In contrast, when heterozygous Medeamyd88-1/+ 

females were mated with homozygous +/+ males, ~50% of progeny embryos had ventral 

patterning defects (fig. S1) and did not hatch (Table 1). All adult progeny (n >12,000 

flies) carried Medeamyd88-1 (Table 1). On the basis of these data and the results of several 

other crosses (Table 1), we inferred that a single copy of bic-driven miRNAs targeting 

maternal myd88 expression was sufficient to induce maternal-effect lethality and a single 

copy of zygotic bnk-driven myd88 expression was sufficient for rescue. The above 

observations, in conjunction with the lack of any obvious fitness effects (lethality) in 

individuals carrying one or two copies of Medeamyd88-1, suggested that Medeamyd88-1 

should be able to drive population replacement. 

Table 1. Medeamyd88-1 shows maternal-effect selfish behavior. Progeny of crosses between 
parents of several different genotypes (M refers to the Medeamyd88-1–bearing 
chromosome; + refers to the non–element-bearing homolog) are shown. The maternal 
copy number (0 to 2) of bic-driven miRNAs targeting the endogenous myd88 transcript 
(maternal toxin) and zygote copy number (0 to 2) and percentage of embryos inheriting 
bnk-driven myd88 (zygotic antidote) are indicated, as are the adult progeny genotypes 
predicted for Mendelian inheritance of Medeamyd88-1 and the percent embryo survival. -, 
not measured. The asterisk denotes that embryo survival was normalized with respect to 
percent survival (± SD) observed in the w1118 stock used for transgenesis (97.1 ± 0.7%). 
 

Parental genotype Inherited by the  Adult M progeny (%)  
Male Female Oocyte 

(Maternal 
toxin) 

Embryo 
(Zygotic 

antidote (n, 
%)) 

Predicted Observed Embroy 
survival 

(%) 

M/+ +/+ 0 0, 50 50 50 99.6 ± 1 
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1, 50 (n>7000) 

M/M M/M 2 2, 100 100 - 98.1 ± 0.4 
+/+ M/+ 1 0, 50 

1, 50 
50 100 

(n>12000) 
48.3 ± 2 

M/M M/+ 1 1, 50 
2, 50 

100 - 98 ± 1 

M/+ M/+ ` 0, 25 
1, 50 
2, 25 

75 - 74.3 ± 0.5 

M/+ M/M 2 1, 50 
2, 50 

100 - 98.3 ± 1 
 

+/+ M/M 2 1, 100 100 - 99.1 ± 0.4 
M/M +/+ 0 1, 100 100 - 98.8 ± 0.5 

 

 

To test this prediction, we mated equal numbers of WT (+/+) and Medeamyd88-

1/Medeamyd88-1 males with homozygous +/+ females, giving rise to a progeny population 

with Medeamyd88-1 present at an allele frequency of ~25% (16). This level of introduction, 

although high, is not unreasonable, given previous insect population suppression 

programs (18). Replicate population cage experiments, carried out in a darkened 

incubator to prevent Medeamyd88-1–bearing flies (which are Pw+ and thus red-eyed) from 

obtaining any vision-dependent advantage over their +/+ counterparts (which are w1118 

and white-eyed) (19), followed three replicates for 20 generations. A second set of four 

replicates, which were initiated by crossing heterozygous Medeamyd88-1/+ males with 

homozygous +/+ females, was followed for 15 generations. In both experiments, 

non-Medeamyd88-1–bearing flies permanently disappeared from the population between 

generations 10 and 12 (Fig. 1E), without a loss of non-Medea–bearing + chromosomes 

(in Medeamyd88-1/+individuals) in the population (Fig. 1F). The observed changes in 

Medeamyd88-1 were not significantly different from the null hypothesis that the element 

had no fitness cost [(16) and fig. S2], although we cannot exclude the possibility that a 
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Medeamyd88-1–associated cost is counterbalanced by an unknown negative effect 

associated with the w1118 mutation in +/+ individuals. Finally, we carried out three further 

replicate population cage experiments in which the Medeamyd88-1 transgene was 

introduced at a frequency of 25% into the Oregon-R strain, which is WT with respect to 

the endogenous w locus (and thus members of which are red-eyed). Evidence for 

population replacement by generation 12 was observed in this context as well (16), 

suggesting that Medeamyd88-1–associated Pw+ expression is unlikely to be a major 

contributor to the ability of Medeamyd88-1 to drive population replacement. 

For any gene-drive mechanism to be successful in reducing parasite transmission, there 

must be tight linkage between the genes that mediate drive and effector functions (10). If 

the driver becomes separated from the effector gene through chromosome breakage and 

nonhomologous end joining (as in a reciprocal translocation) (Fig. 2A), and the effector 

gene carries a fitness cost, selection will favor and promote the spread of individuals 

carrying Medea elements that lack the effector (Medeaeff). Locating the effector gene 

between the toxin and antidote prevents a single chromosome breakage and end joining 

event from creating a Medeaeff-bearing chromosome(Fig. 2B). However, it does not 

prevent the creation of Medeains-bearing chromosomes that carry the antidote, and 

perhaps the effector, but not the toxin (Fig. 2B). Medeains-bearing chromosomes 

are insensitive to Medea-dependent killing. If the presence of the toxin and/or the 

effector results in a fitness cost, then Medeains-bearing chromosomes gain a fitness 

advantage with respect to those carrying the complete Medea element, thereby promoting 

spread of the former. This outcome can lead to the reappearance of pathogen-transmitting 

insects (14).  
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One way to prevent chromosome breakage and end joining–mediated formation of 

Medeaeff and Medeains elements is to put the toxin and effector genes into an intron of 

the antidote (Fig. 2C).  To test this approach, we generated flies carrying Pw+Medeamyd88-

int, in which the toxin, a transcript generating maternally expressed miRNAs targeting 

myd88, was placed in an intron of the zygotically expressed antidote, bnk-driven myd88, 

in the opposite orientation (Fig. 2D). We characterized the behavior of one autosomal 

insertion of this element Medeamyd88-int-1, which behaved as a maternal effect selfish  

 

 

Fig. 2.  A strategy for enhancing the functional lifetime of Medea elements in the wild 
and for carrying out cycles of population replacement. (A to D) Locating Medea toxin 
and effector genes in an intron of the antidote prevents chromosome breakage and end 
joining–mediated separation of drive and effector genes and creation of Medeains-bearing 
chromosomes. [(A) to (C)] Medea constructs with different gene arrangements are 
shown. Sites of chromosome breakage and end joining with a second nonhomologous 
chromosome are indicated by the crossed lines. Recombinant products referred to in the 
text are indicated by thick lines, the color of which indicates the centromere (solid 
circles) involved. (A) Recombination at site 1 generates a Medeains-bearing chromosome 
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that carries the effector. Recombination at site 2 generates a Medeaeff-bearing 
chromosome. (B) Recombination at site 1 or site 2 generates a Medeains-bearing 
chromosome. (C) Recombination at sites 1 to 3 generates benign chromosomes that 
cannot show Medeains or Medeaeff behavior. (D) Schematic of Medeamyd88-int. Splice 
donor and acceptor sites are indicated in large red letters, with the branchpoint and 
polypyrimidine stretch in small red letters. (E and F) A strategy for carrying out cycles of 
population replacement with Medea. (E) A first-generation Medea element (Medean), 
driven by Toxinn and Antidoten, is integrated into the chromosome [thick black line with 
centromere (solid circle) at the right] at a specific position (triangle). A second-
generation Medea element (Medean+1), driven by Toxinn+1 and Antidoten+1, can be 
integrated at the same position using site-specific recombination (24). Locating both 
elements at the same position limits the possibility of homologous recombination creating 
chromosomes that carry both elements. (F) Because progeny carrying Medean are 
sensitive to Toxinn+1, the only progeny of females heterozygous for Medean+1 that 
survive are those that inherit Medean+1, regardless of their status with respect to Medean. 
In contrast, the progeny of Medean females that fail to inherit Medean survive if they 
inherit Antidoten as a part of Medean+1. 
 
genetic element (Table 2). Females heterozygous for Medeamyd88-int-1 gave rise to a high 

frequency of Medeamyd88-int-1–carrying progeny (>99%), and the maternal-effect lethality 

associated with a single copy of Pw+Medeamyd88-int-1 was rescued by zygotic expression of 

the antidote from either the maternal or paternal genome (Table 2). However, when  

 

Table 2. Medeamy88-int-1 shows maternal-effect selfish behavior. Progeny of crosses 
between parents of several different genotypes notations are the same as those in Table 1. 
 

Parental genotype Inherited by the  Adult M progeny (%)  
Male Female Oocyte 

(Maternal 
toxin) 

Embryo 
(Zygotic 

antidote (n, 
%)) 

Predicted Observed Embroy 
survival 

(%) 

M/+ +/+ 0 0, 50 
1, 50 

50 51 
(n=5000) 

98.4 ± 0.6 

M/M M/M 2 2, 100 100 - 98.6 ± 0.8 
+/+ M/+ 1 0, 50 

1, 50 
50 99.5 

(n=5000) 
48.7 ± 0.6 

M/M M/+ 1 1, 50 
2, 50 

100 - 98.4 ± 0.7 

M/+ M/+ ` 0, 25 
1, 50 
2, 25 

75 - 73.6 ± 1.2 
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M/+ M/M 2 1, 50 

2, 50 
100 - 57.2 ± 1.5 

 
+/+ M/M 2 1, 100 100 - 20.2 ± 1.1 

M/M +/+ 0 1, 100 100 - 98.5 ± 0.7 
homozygous element bearing females were crossed with non–element bearing males, 

progeny embryo survival was very poor (~20%), suggesting an inefficient zygotic rescue, 

perhaps resulting from inefficient splicing of the myd88 artificial intron. Population 

replacement for an element with these fitness characteristics is still expected to occur, 

though with some delay (fig. S3) as compared to that for an element in which the fitness 

costs are a simple function of copy number in either sex (Fig. 1, C and D). Medeains-

bearing chromosomes can also arise if the toxin mutates to inactivity. Although toxin 

mutation cannot be prevented, the use of miRNAs as toxins can provide a degree of 

redundant protection because multiple miRNAs, each processed and functioning as an 

independent unit, can be linked in a polycistronic transcript [(Fig. 1B and (16)]. The use 

of miRNAs as toxins also provides a basis by which selfish genetic element drive can be 

limited to the target species. Medea elements only show drive when maternal-effect 

lethality creates an opportunity for zygotic rescue of progeny that inherit the element. 

Therefore, drive can be limited to a single species by the use of miRNAs that are species-

specific in their ability to target the maternally expressed gene of interest. 

 

Perhaps the most likely point of failure in any population-replacement strategy involves 

the effector. Effector genes can mutate to inactivity, creating Medeaeff-bearing 

chromosomes. In addition, parasites may undergo selection for resistance to these 

effectors. These events, as well as the possible appearance of Medeains-bearing 

chromosomes discussed above, will lead to the reappearance of permissive conditions for 
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disease transmission. Therefore, it is important that strategies be available for removal of 

an element from the population, followed by its replacement with a new element. One 

potential strategy for achieving this goal, in which different Medea elements located at a 

common site in the genome compete with each other for germline transmission in 

transheterozygous females, is illustrated in Fig. 2, E and F. 

 

Our data show de novo synthesis of a selfish genetic element able to drive itself into a 

population. This laboratory demonstration notwithstanding, several obstacles remain to 

the implementation of Medea-based population replacement in the wild. First, for pests 

such as mosquito species, there is little genetic or molecular information regarding genes 

and promoters used during oogenesis and early embryogenesis. This information is 

straightforward to generate, with the use of transcriptional profiling to identify 

appropriately expressed genes and transgenesis and RNA interference in adult females to 

identify those required for embryonic development, but it remains to be acquired. In 

addition, current models of the spread of Medea do not take into account important real-

world variables, such as migration, nonrandom mating, and the fact that important 

disease vectors such as Anopheles gambiae consist of multiple partially reproductively 

isolated strains (20, 21). Although an understanding of the above issues is critical for the 

success of any population-replacement strategy, the problems are not intractable, as 

evidenced by past successes in controlling pests by means of sterile-male release (18) and 

as implied by our growing understanding of mosquito population genetics, immunity, and 

ecology (20–23). 
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Supporting Material 

Materials and methods 

Construction of a modified bicoid promoter: 

A bicoid promoter fragment was amplified from genomic DNA with primers Bic- 

5 5’- GGC CTC GAG TTA GAT CTC AAT TGT GCC ATC TCT ACA TCT CTT CGC 

TCA TCC CTA AAT AAA AGA ATG AAC ATC GAG GGA GG and Bic-3 5’ GGC 

CAA TTG GGC GGC GGT TGC GCC GTT TTC C, cut with Xho1 and EcoRI [all 

restriction enzymes provided by New England Biolabs (NEB), Beverly MA], and ligated 

into pGMR (1) cut with the same enzymes. Two Serendipity (Sry) binding sites [CGC 

TCA TCC CTA AAT and GTG CCA TCT CTA CA (2)] were placed 5’ to the bicoid 

promoter in order to enhance maternal expression levels. Primers 4bic-1 5’- GGC CTC 

GAG TTA GAT CTC AAT TGT GCC ATC TCT ACA TCT CTT CGC TCA TCC CTA 

AAT AAA AGA ATG AAC ATC GAG GGA GG and Bic-3 were annealed with the 

bicoid promoter fragment generated above and PCR carried out (Fig. S4A). This product 

was cloned into pGMR as above, generating pSry-Bic-GMR. 

 

Construction of miRNAs targeting myd88. 

The Drosophila miRNA mir6.1 is illustrated in Fig. S4B. The Drosophila miRNA mir6.1 

stem-loop precursor and surrounding sequences is illustrated to the left, with the mature 

miRNA indicated in red. Processing sites for Drosha and Dicer are indicated (arrows). 

22bp sequences corresponding to mature mir6.1 were replaced with sequences perfectly 

complementary to sequences from the myd88 5’UTR, generating two new miRNAs, 

mir6.1-myd88-1 and mir6.1-myd88-2. Two sites in the myd88 transcript were targeted to 
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minimize the possibility that mRNA secondary structure would prevent the miRNA-

RISC complex from being able to bind and cleave the mRNA. The use of multiple 

miRNAs targeting a common transcript, but at distinct positions, also provides a method 

for limiting the possibility that a single mutational event (in either the miRNA or the 

target sequence) will lead to a loss of toxin efficacy. Myd88 mRNA sequences are 

indicated in black. The sites in myd88 that are targeted are Myd88-1 CGA TCG GAA 

AAC TCG AAA AAA T and Myd88-2 TCA CGC GCT TCA TCG TTT TAT T (Fig. 

S4C). To generate a mir6.1 stem-loop backbone that generates a mature miRNA 

complementary to one or the other of these target sites we annealed pairs of primers. For 

example, to make a miRNA that targets myd88-1, primers Myd881-1 and Myd881- 2 

(DdMyd881- 1: 5'-GGC AGC TTA CTT AAA CTT AAT CAC AGC CTT TAA TGT 

CGA TCG GAA AAC TCG AAA ACA TTA AGT TAA TAT ACC ATA TC and 

DdMyd881- 2: 5'-AAT AAT GAT GTT AGG CAC TTT AGG TAC CGA TCG GAA 

AAC TCG AAA AAA TTA GAT ATG GTA TAT TAA CTT AAT GT) were annealed 

and filled in using PCR (Fig. S4C). This product was then amplified using primers Mir6 

5’ EcoRI/BglII (5'-GGC GAA TTC CGC CAG ATC TTT TAA AGT CCA CAA CTC 

ATC AAG GAA AAT GAA AGT CAA AGT TGG CAG CTT ACT TAA ACT TA) and 

Mir6 3’ BamHI/NotI (5' GGC CGC GGC CGC ACG GAT CCA AAA CGG CAT GGT 

TAT TCG TGT GCC AAA AAA AAA AAA AAT TAA ATA ATG ATG TTA GGC 

AC). These primers add mir6.1 flanking sequences that are thought to promote miRNA 

processing, as well as several restriction sites (Fig. S4C). A miRNA that targets myd88-2 

was generated similarly, beginning with primers Myd882-1 GGC AGC TTA CTT AAA 

CTT AAT CAC AGC CTT TAA TGT TCA CGC GCT TCA TCG TTT TCT TTA AGT 
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TAA TAT ACC ATA TC and Myd882-2 AAT AAT GAT GTT AGG CAC TTT AGG 

TAC TCA CGC GCT TCA TCG TTT TAT TTA GAT ATG GTA TAT TAA CTT AAA 

GA. PCR products were purified with Qiagen (Valencia, CA) PCR purification columns, 

and then digested with enzymes. For dMyd88-1 these were EcoRI and BamHI, for 

dMyd88-2 BglII and NotI. Digested products were then ligated into sry-bic-GMR cut 

with EcoRI and NotI, generating pBic-mir6.1-myd88. The structure of this construct is 

shown in Fig. S4D. 

 

Zygotic promoter and myd88 antidote rescue construct: 

A 500 bp fragment of DNA containing the transient, early zygotic bnk promoter 

(3) was amplified from genomic DNA using primers Bnk 5’ XhoI (5'-GGC CTC GAG 

TAT TTC ACA AAT TCA ATT TTA ATA TTT AAG) and Bnk3’ EcoRI (5'-GGC GAA 

TTC GTT GAC GGT TGA AGT ACG AAT GTG CTG T), cut with XhoI and EcoRI 

and inserted into similarly cut pGMR, generating P-BNK. The myd88 coding region was 

amplified from a cDNA library using primers myd88-5 (5’- GGC GAA TTC ATG CGC 

CCT CGA TTT GTA TGC CAT C and myd88-3 (5’- GGC GCG GCC GCT CAG CCC 

GGC GTC TGC AGC TTC), cut with EcoRI and NotI, and ligated into similarly cut 

PBNK, generating P-BNK-dMYD88 (Fig. S5A). Note that because this myd88 transcript 

lacks a 5' UTR present in the endogenous myd88 transcript, it is not silenced by mir6.1- 

myd88-1 or mir6.1-myd88-2, which target the myd88 5' UTR. 

 

Generation of MedeaMyd88: 
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P-BNK-dMYD88 (Fig. S5A) was cut with XhoI and 5’ ends were dephospholated with 

Calf Intestinal Alkaline Phosphatase (NEB, Beverly MA). A gypsy insulatorcontaining 

DNA fragment was amplified from genomic DNA using a 5’ primer (gypsy 

5’) that contained a number of restriction enzyme target sites (SalI, HpaI, AvrII, NheI, 

SpeI, KpnI, BglII) (5’- GGC GTC GAC GTT AAC CTA GGC TAG CAC TAG TGG 

TAA CCC CGA GAT CTT CAC GTA ATA AGT GTG CGT TGA ATT TAT TCG C) 

and a second primer (gypsy 3’), which contains an XhoI site, (5’- GGC CTC GAG AAT 

TGA TCG GCT AAA TGG TAT GGC AAG AAA AG). This PCR fragment was cut 

with SalI and XhoI and ligated into XhoI cut P-BNK-dMYD88. This created Pgypsy- 

BNK-dMYD88 (Fig. S5B), which was cut with AvrII and dephosphorylated with Calf 

Intestinal Alkaline Phosphatase. The modified bicoid promoter and myd88-targeting 

miRNAs in pBic-mir6.1-myd88 (Fig. S4D) were amplified using primers 4 BIC Myd 1+2 

5’ AvrII- 5' GGC CCT AGG GTC GAG TTA GAT CTC AAT T and 4 BIC Myd 1+2 3’ 

HpaI /SpeI/ Nhe- 5' GGC GTT AAC ACT AGT GCT AGG GCC TTC TAG ACC CCG 

GCC GC. The PCR product was cut with AvrII and NheI and ligated into AvrII cut 

Pgypsy- BNK-dMYD88. One plasmid product, designated P-bicoid-myd88RNAi-gypsy- 

BNK-dMYD88, was selected in which the bicoid and myd88 promoters were oriented so 

as to transcribe in opposite directions (Fig. S5C). 

 

Generation of Medeamyd88-int: 

The plasmid P-Bnk-dMyd88 was cut was cut with EcoRI and NotI, the vector purified 

and then ligated with PCR fragments dMyd88 exon 1/intron 1(EcoRI, SpeI) and intron 1/ 
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exon2 (SpeI, NotI), generating P-Bnk-dMyd88-intron. PCR fragment dMyd88 exon 

1/intron contains dMyd88 exon 1and a 5’ splice site. This fragment was amplified 

by PCR with primer Myd88 EcoRI 5’ (5'-GGC GAA TTC ATG CGC CCT CGA TTT 

GTA TGC C) and Myd 88 exon 1 /intron SpeI /NheI 3’ (5'- GGC ACT AGT GGC CGC 

TAG CAG CGA CTA CCA TAA GTA AAA AAT AGT TAA TGC CTA CCC AGA 

TTC TCC TGG ATA TCG TCG CAG). The second PCR fragment, dMyd88 intron 1/ 

exon2, contains intron 1, a pyrimidine-rich trait and 3’ splice site as well as the 3' exons 

of dMyd88 derived from the cDNA. This fragment was amplified by PCR with primers 

myd88-EXON2–intron-SpeI-5 (5'- GGC ACT AGT TAG TAA AAC TGT TTT AAT 

TTT GCT CTC CTC AAA AGC CAA GGA CAC CCA GCG CTT CAT CAT G) and 

myd88-NotI-3 (5'- GGC GCG GCC GCT CAG CCC GGC GTC TGC AGC TTG C). 

PBnk-dMyd88-intron was cut with SpeI, which cuts within the intron. The product was 

dephosphorylated with Calf Intestinal Alkaline Phosphatase according to the 

manufacturers instructions (NEB, Beverley MA) and ligated with a PCR product 

containing the modified bic promoter and the Myd88- targeting miRNAs. Primers used 

were 4 BIC Myd 1+2 5’ SpeI, which also contains a consensuses branch point site GAT 

TAG ATG, (5' GGC ACT AGT TAT TGA TTA GAT GTC GAG TTA GAT CTC AAT 

T) and 4 BIC Myd 1+2 3’ NheI (5'- GGC GCT AGC GGC CTT CTA GAC CCC GGC 

CGC). The final product was designated as Pw+Medeamyd88-int. 

 

Transgenesis and Population cage experiments: 

Germline transformants were generated in a w1118 background using standard techniques, 

by Rainbow Transgenic Flies, Inc (www.rainbowgene.com, Newbury Park, 
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CA). The exact origin of the chromosomes present in the w1118 strain used for 

transgenesis and population replacement experiments, and the relationship of these 

chromosomes to those present in the OR strain, is unknown. The second and third 

chromosomes were isogenized in a w1118 background in the early 1990s as a prelude to 

a large mutagenesis screen for regulators of Ras pathway signaling (6). The stock has 

been maintained continuously in the laboratory since then. All fly experiments were 

carried out at 25C, ambient humidity in 250 ml bottles containing Lewis medium (4) 

supplemented with live dry yeast. Fly rearing was carried out in a light tight chamber 

placed in an incubator or in a darkened incubator. In a first set of experiments (three 

green lines in Fig. 1E,F), three populations of 50 males heterozygous for Medeamyd88-1 

(w1118/Y; Pw+Medeamyd88-1/+) were each crossed with 50 w1118 females in separate 

bottles.  In a second set of experiments (four blue lines in Fig. 1E, F) 25 wildtype (+/+) 

males and 25 homozygous Medeamyd88-1/ Medeamyd88-1 males were crossed with 50 

w1118 females in separate bottles. For both sets of experiments flies were allowed to lay 

eggs for four days, after which adults were removed. Progeny were allowed to develop, 

eclose and mate for another 10 days. All adult progeny were collected at this single 

timepoint and their genotypes determined using eye color as a marker (no Medea, w1118 = 

white eyed; Medeamyd88-1/+ = yellow/orange eyed; Medeamyd88-1/ Medeamyd88-1 = darker 

red eyed).  Note that adult progeny continued to eclose after the time of collection. These 

were not counted or transferred into the subsequent generation population. Numbers of 

adults scored per population per generation ranged between 102 and 601 (mean 333; 

s.d.105). Following counting, progeny were transferred to fresh bottles and allowed to lay 

eggs for four days, and the cycle repeated. In a second set of population cage 
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experiments, Medeamyd88-1 was first introduced into a w+ background in order to decrease 

the possibility that Pw+ expression from the vector carrying Medeamyd88 was providing 

these animals with an unknown (vision independent) fitness advantage. Females 

homozygous for Medeamyd88-1 were mated with Oregon R (OR) males, which carry a 

wildtype copy of the w gene at the endogenous locus on the X chromosome. Progeny 

males, which are w+/Y; Medeamyd88-1 were then mated as above to OR virgin females 

to initiate the population cage experiments. The presence of the endogenous w+ gene 

completely prevents direct identification of Medeamyd88-1-bearing individuals based on 

eye color, since the endogenous w+ gene is expressed at very high levels compared with 

the Pw+ in our transformed strain. We determined genotypes at the end of the 12th 

generation in the following way. 200 males from each population were mated singly in 

vials with w1118 females. All male progeny inherit the w1118 chromosome from their 

mothers (making them w1118 with respect to the endogenous locus on the X 

chromosome). However, those males that carry one copy of Medeamyd88-1 give rise to 50% 

red-eyed progeny, while those homozygous for Medeamyd88-1 give rise to all red-eyed 

progeny. In each of the three populations the % of non-element-bearing males was less 

than 1%: population #1 = 0/200 +/+, 30/200 Medeamyd88-1/+, 170/200 Medeamyd88-1/ 

Medeamyd88-1; Population #2 = 1/200 +/+, 67/200 Medeamyd88-1/+, 132/200 Medeamyd88-1/ 

Medeamyd88-1; Population #3 = 0/200 +/+, 58/200 Medeamyd88-1/+, 142/200 Medeamyd88-1/ 

Medeamyd88-1. Note that the OR genetic background into which Medeamyd88-1 was 

introduced should be assumed to be distinct from that of the w1118 strain used for 

transgenesis and the population replacement experiments described above. Thus, while 

evidence for population replacement was obtained in both sets of experiments they are 
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not strictly comparable in the sense that more variables have been changed than just the 

status of the w gene (w1118 versus w+). 

 

Embryo and adult viability determination: 

Adult viability for the crosses presented in Table 1 and Table 2 was determined as 

follows. 50 adult males of the indicated genotype were allowed to mate with 50 virgin 

females in bottles supplemented with dry yeast for three days. 10 bottles were established 

for each cross. Adults were then removed. Adult progeny from each bottle were 

collected, genotyped and counted (either directly or by weighing and comparing with a 

standard) for 10 days following eclosion of the first progeny. For embryo viability 

counts, 2-4 day old adult virgin females were allowed to mate with males of the relevant 

genotypes for 2-3 days in egg collection chambers supplemented with wet yeast paste. On 

the following day, a 3 hr egg collection was carried out, after first having cleared old eggs 

from the females through a pre-collection period on a separate plate for three hrs. 

Embryos were isolated into groups of 100 and kept on an agar surface at 25oC for 48-72 

hrs. The % survival was then determined by counting the number of unhatched embryos. 

Four groups of 100 embryos per cross were scored in each experiment, and each 

experiment was carried out three times. The results presented are averages from these 

three experiments. Embryo survival was normalized with respect to the % survival 

observed in parallel experiments carried out with the w1118 strain used for transgenesis. 

 

Modeling Medea population spread 
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In order to model the spread of Medea and compare this with our experimental 

observations, a deterministic model was created. In this model, we used as our initial 

conditions 25% non-element-bearing (wildtype; WT) males, 25% homozygous Medea 

bearing males, and 50% WT females for Medea. These initial conditions, which mimic 

those of the first set of population cage experiments (green lines in Fig. 1E, F) are 

mathematically equivalent to the second set of crosses carried out, involving 

heterozygous Medeamyd88/+ males crossed to wildtype (+/+) females) (blue lines in Fig. 

1E, F),. Genotypes for each generation were calculated beginning with genotype 

frequencies from the previous generation. We assumed random mating, nonoverlapping 

generations, and interfamily competition. We assume that maternal effect lethality for 

progeny of Medea that fail to inherit the element is 100%, as observed for Medeamyd88 

(Table 1). 

 

We kept track of the frequency of homozygous, heterozygous, and WT male and female 

flies in each generation. For this model, aside from the first generation, the frequency of 

WT males and females are equal, the frequency of heterozygous males and females are 

equal, and the frequency of homozygous males and females are equal. From the 

frequency of each type of fly, we calculated the frequency of each allele type. For 

example, in order to calculate the frequency of WT females in generation n+1 we begin 

with the frequency of WT females in generation n. We calculate the percent of the next 

generation that will be wild type by finding the frequency of viable WT female embryos 

normalized (divided by) the total viable population (WT, heterozygotes and 

homozygotes). WT female flies can arise from (½ WT males x WT females) + (1/4 of 
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WT female x heterozygous males). WT embryos derived from crosses between 

heterozygous females x WT males will die as embryos and not contribute to the 

population. We calculate the total viable population by summing the WT females, WT 

males, heterozygous females, heterozygous males, homozygous females and homozygous 

males. 

 

When we assessed a fitness cost (as in Fig. 1C, D and Fig. S3), this cost was assumed to 

be an additive fitness cost. The fitness cost was expressed as a fraction of the embryos 

that die. That is, for a 5 percent fitness cost, 95 percent of the heterozygous embryos are 

viable, while 90 percent of the homozygous embryos were viable. For the model 

presented in Fig. S3, a specific additional fitness cost of 80% was incurred by progeny of 

homozygous Medeamyd88-int mothers that inherited only one copy of the element (the 

fathers being either Medeamyd88-int/+ or +/+). The formulas used are shown below. 

WTf, Hetf, Homof, WTm, Hetm, and Homom refer to the fraction of the adult population 

that is WT female, heterozygous female, homozygous female, WT male, heterozygous 

male, homozygous male, respectively. FitCost is the fitness cost, 

TotalViablePopulation=the total viable population, WTembryo, Hetembryo, 

HomoembryoWT embryo, and Hetembryo refer to the number of WT, heterozygous, and 

homozygous embryos produced before the effects of the medea element are included and 

without normalization. All subscripts refer to the generation. 

𝑊𝑇𝑓𝑛+1 = 𝑊𝑇𝑚𝑛+ =
. 5𝑊𝑇𝑒𝑚𝑏𝑟𝑦𝑜𝑛+1

𝑇𝑜𝑡𝑎𝑙𝑉𝑖𝑎𝑏𝑙𝑒𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑛+1
 

𝐻𝑒𝑡𝑓𝑛+1 = 𝐻𝑒𝑡𝑚𝑛+ =
. 5𝐻𝑒𝑡𝑒𝑚𝑏𝑟𝑦𝑜𝑛+1(1− 𝐹𝑖𝑡𝐶𝑜𝑠𝑡)
𝑇𝑜𝑡𝑎𝑙𝑉𝑖𝑎𝑏𝑙𝑒𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑛+1
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𝐻𝑜𝑚𝑜𝑓𝑛+1 = 𝐻𝑜𝑚𝑜𝑚𝑛+ =
. 5𝐻𝑜𝑚𝑜𝑒𝑚𝑏𝑟𝑦𝑜𝑛+1(1 − 2𝐹𝑖𝑡𝐶𝑜𝑠𝑡)

𝑇𝑜𝑡𝑎𝑙𝑉𝑖𝑎𝑏𝑙𝑒𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑛+1
 

where, 

𝑇𝑜𝑡𝑎𝑙𝑉𝑖𝑎𝑏𝑙𝑒𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑛+1

= 𝑊𝑇𝑒𝑚𝑏𝑟𝑦𝑜𝑛+1 + 𝐻𝑒𝑡𝑒𝑚𝑏𝑟𝑦𝑜𝑛+1(1 − 𝐹𝑖𝑡𝐶𝑜𝑠𝑡)

+ 𝐻𝑜𝑚𝑜𝑒𝑚𝑏𝑟𝑦𝑜𝑛+1(1 − 2𝐹𝑖𝑡𝐶𝑜𝑠𝑡) 

𝑊𝑇𝑒𝑚𝑏𝑟𝑦𝑜𝑛+1 = 𝑊𝑇𝑓𝑛𝑊𝑇𝑚𝑛 + 0.5𝑊𝑇𝑓𝑛𝐻𝑒𝑡𝑚𝑛 

𝐻𝑒𝑡𝑒𝑚𝑏𝑟𝑦𝑜𝑛+1

= 𝑊𝑇𝑚𝑛𝐻𝑜𝑚𝑜𝑓𝑛 + 0.5𝑊𝑇𝑚𝑛𝐻𝑒𝑡𝑓𝑛 + 0.5𝐻𝑒𝑡𝑚𝑛𝑊𝑇𝑓𝑛

+ 0.5𝐻𝑒𝑡𝑚𝑛𝐻𝑒𝑡𝑓𝑛 + 0.5𝐻𝑒𝑡𝑚𝑛𝐻𝑜𝑚𝑜𝑓𝑛 + 𝐻𝑜𝑚𝑜𝑚𝑛𝑊𝑇𝑓𝑛

+ 0.5𝐻𝑜𝑚𝑜𝑚𝑛𝐻𝑒𝑡𝑓𝑛 

𝐻𝑜𝑚𝑜𝑚𝑏𝑟𝑦𝑜𝑛+1

= 0.5𝐻𝑜𝑚𝑜𝑚𝑛𝐻𝑒𝑡𝑓𝑛 + 0.5𝐻𝑒𝑡𝑚𝑛𝐻𝑜𝑚𝑜𝑓𝑛 + 0.25𝐻𝑒𝑡𝑚𝑛𝐻𝑒𝑡𝑓𝑛

+ 𝐻𝑜𝑚𝑜𝑚𝑛𝐻𝑜𝑚𝑜𝑓𝑛 

 

All model calculations were carried out in Excel for Windows XP. Matrix manipulation 

calculations were carried out in Maple 9.01 (Maplesoft, a division of 

Waterloo Maple Inc, 2003). 

 

To determine if the experimental population data presented in Fig. 1 conformed to the 

model, the methods of Wilson (5) were used. Briefly, these methods are based on a Chi-

square analysis of allele frequency corrected for the non-independence of generations 

(the frequency of allele p at generation 3 is dependent on the frequency of allele p (the 



 
39 

 
Medea allele) in generation 2). Because of the non-independence of generations, a 

covariation matrix is used. The covariation matrix for a particular category (experimental 

trial), c, is denoted Wc and is calculated as 

(𝑊𝑐)𝑡𝑡 =
1
𝑛𝑐,𝑡

+ (1 −
1
𝑛𝑐,𝑡

) �1 + (𝑤𝑐 − 1)��1 −
1
𝑁𝑐,𝑗

�
𝑡−1

𝑗=1

� 

 

and 

(𝑊𝑐)𝑡,𝑡+𝑟 = (𝑊𝑐)𝑡,𝑡+𝑟 = 1 + (𝑤𝑐 − 1) ��1 −
1
𝑁𝑐,𝑗

�
𝑡−1

𝑗=1

 

 

where 

Nc,j is the number of genes (twice the number of individuals) taken at generation j to be 

parents of the next generation. nc,j is the number of genes (twice the number of 

individuals) used for genetic analysis. To be conservative (that is, to make the assumption 

that our population has the largest possible variation), wc was calculated as 

(Vc)O,O/πC,O(l-πc,o), where Vc is the sample variance of the initial population and πC is the 

theoretical variance of the initial population. 

 

The difference vector, γc
m, for any particular model, m, is calculated as the difference 

between the normalized gene frequencies observed experimentally and the normalized 

gene frequencies expected from our model using a particular fitness cost. Each of these 

frequencies are normalized using the arcsin transformation: 2 sin−1 �𝑝, modified such 
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that if p=0, the transform equals2 sin−1 �𝑛𝑡
2

 where nt is the number of individuals in a 

particular generation, t. We calculate the Chi-square test statistic for a particular model, 

m, as (𝜒𝑚)2 = ∑ (𝛾𝑐𝑚)𝑇𝑐 𝑊𝑐
−1𝛾𝑐𝑚. The degrees of freedom in each category are calculated 

as the number of generations observed less the number of fitted parameters in the model. 

To find the total degrees of freedom, the degrees of freedom in each category are 

summed. The values of p range from 0 (all individuals are homozygous for the construct) 

to 1 (all individuals are homozygous wildtype). When all 7 experimental trials were 

considered as a group, the Chi-square test statistic for no fitness cost was 88.3. There are 

122 degrees of freedom, leading to a critical χ2=148.8, with a probability error threshold 

(P value) of 0.05. Our Chi-square value is less than the critical value, indicating the data 

from our experiments is not significantly different from the theoretical model. The 

minimal Chi-square value to the nearest percent occurs at 0 fitness cost. Due to the 

conservative nature of this test, the confidence interval is large. To the nearest 0.01, the 

fitness cost can range from -0.23 to 0.10 and be consistent with our observations at a P 

value of .05. This range is calculated by finding the first value resulting in a Chi square 

value falling outside the critical value, 147.7 (d.f=121).  
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Fig. S1. Embryos of Medeamyd88 mothers that fail to inherit Medeamyd88 have dorsal 
ventral patterning defects. (A) Cuticle preparation of an embryo from wildtype parents. 
Anterior is to the left, and dorsal is up. Rows of denticle belts are visible on the ventral 
side of the embryo. (B-D) Embryos from Medeamyd88/+ mothers. Ventral denticle belts 
are decreased in size (B) or largely absent (C,D), consistent with the dorsalization 
expected on loss of maternal Toll signaling. 

 
Figure S2. The population replacement behavior of Medeamyd88-1 is consistent with that 
of a Medea carrying little or no fitness cost. The frequency of the non-Medea-bearing 
chromosome (the + allele) is plotted over generations, from Fig. 1F. The black lines 
identify boundary conditions for a Medea with a fitness gain of 23% or a fitness cost of 
10%, values at which we would reject the hypothesis that Medeamyd88-1 conforms to 
the model. See SOM methods for details. 
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Figure S3. Drive characteristics of a Medea elements with the fitness characteristics of 
Medeamyd88-int. Medea is modeled as being introduced into the population at an allele 
frequency of 25%, representing a scenario in which equal numbers of wildtype and 
homozygous Medea-bearing males are mated with wild, non-element- bearing females, as 
in Fig. 1C, D. (A) Frequency of individuals lacking Medea for an element in which 
progeny of homozygous Medea females that inherit only one copy of the Medea suffer an 
80% fitness cost (embryo mortality), in addition to either no fitness cost (red line), a five 
percent additive fitness cost (yellow line), a 10 percent additive fitness cost (green line), 
a 15% additive fitness cost (blue line), or a 20% additive fitness cost (black line) over 
generations. (B) Frequency of the + allele (non-element bearing chromosome) for the 
populations described in (A). For a Medea that has a fixed, additive fitness cost (such as 
described in Fig. 1C, D), the frequency of non-Medea bearing chromosomes initially 
decreases rapidly, but slows and eventually reaches a stable equilibrium value. This is 
due to Medea-dependent selection against the non element-bearing chromosome, which 
is balanced by its increased fitness relative to that of Medea-bearing counterparts, as 
detailed by Wade and Beeman (13). In contrast, when the progeny of homozygous 
Medea-bearing females cannot be rescued by a single Medea, then the non-element 
bearing homolog comes under selective pressure that increases with the frequency of 
homozygous Medea-bearing females in the population. For situations in which the fixed 
additive fitness costs are modest (0-10%) this results in a more dramatic reduction of the 
non-Medea-bearing chromosome from the population. Medea elements with this 
characteristic may be useful for population replacement since the presence of two effector 
copies in each individual should also delay the re-appearance of disease carriers when the 
effector mutates to inactivity. 
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Figure S4. Scheme for the generation of a stronger version of the bic promoter, and for 
the generation of a transcript carrying two miRNAs designed to silence maternal myd88. 
See SOM methods for details. (A) Generation of a stronger bic promoter. (A, top) 
PrimersBic 5'Xho1 and Bic 3' EcoR1 were used to amplify the bicoid promoter. (A, 
middle) This fragment was re-amplified with Bic 3' EcoR1 and a second 5' primer (4 Bic 
5' Xho1) which included a dimer of Sry binding sites. (A, bottom) The final product, 
which carries an Xho1 site at the 5' end, and an EcoR1 site at the 3' end, constitutes the 
modified bicoid promoter. (B) The Drosophila miRNA mir6.1 stem-loop precursor and 
surrounding sequences is illustrated to the left, with the mature miRNA indicated in red. 
Processing sites for Drosha and Dicer are indicated (arrows). 22bp sequences 
corresponding to mature mir6.1 were replaced with sequences perfectly complementary 
to sequences from the myd88 5’UTR, generating two new miRNAs, mir6.1-myd88-1 
(shown) and mir6.1-myd88-2. Mature mir6.1-myd88-1 and mir6.1-myd88-2 are indicate  
in red, and complementary Myd88 mRNA sequences targeted by these miRNAs are 
indicated in black. (C) Strategy for the synthesis of mir6.1-myd88-1 using two rounds of 
PCR. The first round of PCR amplifies the miRNA stem loop (miRNA and 
miRNA*strand indicated in pink and yellow, respectively). This product was amplified in 
a second round of PCR using oligonucleotides that provide mir6.1 flanking sequences 
(not shown) and restriction sites for cloning. (D, upper) Schematic of the sequences that 
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make up the bic-driven miRNAs that target myd88. Cloning sites are indicated. (D, 
lower) Stem loop regions and surrounding sequences of bic-mir6.1-myd88-1 + myd88-2. 
The bic promoter is located to the left. 
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Figure S5. Schematic depicting key intermediates in the generation of a P element 
expressing myd88-silencing miRNAs under the control of the maternal bic promoter, and 
a miRNA-insensitive version of myd88 under the control of the transient, early bnk 
promoter. See SOM methods for details. 
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Chapter 3:  Medea selfish genetic elements as tools for altering traits of wild 

populations: A theoretical analysis 
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Abstract 

One strategy for controlling transmission of insect-borne disease involves replacing the 

native insect population with transgenic animals unable to transmit disease. Population 

replacement requires a drive mechanism to ensure the rapid spread of linked transgenes 

conferring disease refractoriness. Medea selfish genetic elements have the feature that 

when present in a female, only offspring that inherit the element survive, a behavior that 

can lead to spread. Here we use modeling to identify conditions under which Medea 

elements spread. We derive equations describing the allele frequencies required for 

spread of Medea elements with a fitness cost, and the equilibrium allele frequencies 

attained. We show that when Medea spreads, it drives the non-Medea genotype out of the 

population, and we provide estimates of the number of generations required to achieve 

this goal. We also characterize two contexts in which Medea elements with fitness costs 

drive the non-Medea allele from the population: an autosomal element in which zygotic 

rescue is incomplete and an X-linked element in species in which X/Y individuals are 

male. Finally, we explore costs and benefits associated with the introduction of multiple 

Medea elements. Our results suggest that Medea elements can drive population 

replacement under a wide range of conditions. 
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Introduction 

Insects act as vectors for many human, animal and agricultural diseases. Mosquitoes are 

particularly important vectors for a number of important human diseases, including malaria and 

dengue fever. Effective vaccines against these pathogens do not exist, and in the case of 

malaria the appearance and spread of drug-resistant Plasmodium is a constant source of 

concern (Hyde 2005; Greenwood et al. 2008). Vector suppression through the release of sterile 

males, the use of insecticides, or modification of the environment, provides an important 

approach for limiting mosquito-borne disease (Kitron and Spielman 1989; Trape et al. 2002; 

Gould and Schliekelman 2004). However, each method has limitations. Release of sterile 

males and the use of insecticides provide only transient population suppression. Insecticides 

affect many non-target species and mosquitoes often evolve resistance to these compounds. 

Wholesale modification of the environment may not be feasible or desirable in some situations 

based on ecological concerns.  

 

Replacement of insect disease vectors with modified counterparts refractory to pathogen 

transmission is a long-established concept for disease prevention (reviewed in Braig and Yan 

2001; Gould and Schliekelman 2004; Sinkins and Gould 2006). Mosquitoes with a diminished 

capacity to transmit Plasmodium or dengue have been identified in the wild and/or created in 

the laboratory (de Lara Capurro et al. 2000; Ito et al. 2002; Moreira et al. 2002; Franz et al. 

2006), demonstrating that the insect immune system can be harnessed to attack these 

pathogens. However, insect disease vectors are spread over wide areas, and in order to achieve 

significant levels of disease control it will be necessary to replace a large percentage of the 
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wild mosquito population with refractory insects (Macdonald 1957; Boete and Koella 2002; 

Boete and Koella 2003). In addition, enhancement of immune function in insects is generally 

thought to be costly, requiring tradeoffs with other life history traits such as longevity and 

fecundity. This fitness cost is likely to result in a decreased ability to pass on alleles conferring 

pathogen resistance to future generations relative to alternative, disease transmission-

permissive alleles (Schmid-Hempel 2005; Vernick et al. 2005; Tripet et al. 2008). Therefore, 

simple mass release of transgene-bearing insects is unlikely to result in a high enough 

frequency of disease refractory individuals to prevent disease transmission. Together, these 

observations imply effective population replacement will require that genes conferring disease 

refractoriness be linked with a genetic mechanism for driving them through the wild population 

at greater than Mendelian frequencies. 

 

Selfish genetic elements have increased rates of transmission relative to the rest of the genome 

of the individual in which they appear. This can result in their spread within a population even 

if they are neutral or lead to fitness costs in the organisms in which they reside (Burt and 

Trivers 2006). Such elements are said to "drive" themselves into a population. Many people 

have proposed linking genes for disease refractoriness with a selfish genetic element. The hope 

is that these beneficial genes will hitchhike with the selfish genetic element as it drives itself 

through the native insect population, thereby replacing the wild, disease-permissive population 

with one that is refractory to disease transmission.  A number of selfish genetic elements have 

been considered as vehicles for driving genes into populations. These include transposons, 

male post meiotic segregation distorters, homing endonucleases, B-chromosomes, Medea 

elements, and the intracellular bacterial symbiont Wolbachia. Translocations, compound 
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chromosomes, or pairs of unlinked lethal genes, each of which is associated with a repressor of 

the lethality induced by expression of the other lethal gene - a system known as engineered 

underdominance, have also been proposed as ways of driving linked genes into populations 

(reviewed in Braig and Yan 2001; Gould and Schliekelman 2004; Sinkins and Gould 2006).  

 

Maternal-effect lethal selfish genetic elements are members of a class of selfish genetic 

elements that enhance their transmission by causing the death of offspring that lack the element 

(Burt and Trivers 2006). These elements were first described in the flour beetle Tribolium 

castaneum and are known by the acronym Medea (maternal-effect dominant embryonic arrest). 

Medea elements in Tribolium are chromosomally located and gametes are generated and 

transmitted in a strictly Mendelian manner. Tribolium Medea has the feature that when present 

in females, only progeny that inherit the element-containing chromosome from either the 

maternal and/or paternal genome survive  (Fig. 1A) (Beeman et al. 1992). In contrast, Medea-

bearing males give rise to wildtype and Medea-bearing progeny with equal frequency when 

mated to wildtype females. Therefore, Medea enhances its transmission relative to competing 

non-Medea-bearing homologous chromosomes (hereafter referred to as the non-Medea allele) 

by causing the death of progeny that do not carry a copy of Medea found in the mother (Fig. 

1A). One Tribolium Medea, MedeaM1, has been mapped and is associated with a composite 

Tc1 transposon insertion that includes a number of genes (Lorenzen et al. 2008). How this 

insertion confers maternal-effect lethal selfish behavior is unknown, but genetic analysis 

suggests a model in which Medea consists of two tightly linked loci: one that encodes a 

maternal-effect lethal activity (a toxin) inherited by all progeny of Medea-bearing mothers, and 

a second that encodes a zygotic rescue activity (an antidote) that can be inherited from either 
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the maternal or paternal genome (Beeman et al. 1992; Beeman and Friesen 1999) (Fig. 1B).  

Loci with genetic characteristics similar to those of Tribolium Medea have also been described 

in mice, but little is known about their molecular basis (Hurst 1993; Peters and Barker 1993; 

Weichenhan et al. 1996). Synthetic Medea elements that drive population replacement in 

Drosophila have been generated (Chen et al. 2007). The genetic and cell biological principles 

utilized to generate these elements involve maternal-specific silencing of a gene whose product 

is synthesized maternally and deposited into the developing oocyte, but only required during 

embryogenesis (the toxin), coupled with zygotic expression of a rescuing transgene (the 

antidote). These principles are straightforward and conserved across the animal kingdom, and 

therefore should be applicable to the generation of similar elements in agricultural pest and 

human disease vector species.  

 

 

Figure 1.  

Genetic behavior of Medea, and the molecular logic underlying synthetic Medea elements in 
Drosophila. See text for details. 
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The dynamics of Medea spread have been modeled by several groups. Wade and Beeman first 

considered this problem, focusing on several situations in which Medea was introduced into 

populations at very low frequency (Wade and Beeman 1994). They showed that if the presence 

of Medea does not result in a fitness (fecundity) cost to carriers, independent of maternal-effect 

killing, Medea spreads to fixation for all degrees of maternal effect lethality, though the rate of 

Medea increase is very slow when it is introduced at low frequency. They also showed that if 

the presence of Medea results in a decrease in fecundity independent of maternal-effect killing, 

the frequency of the Medea allele could still increase to a stable internal equilibrium. Whether 

Medea increased in frequency or was lost from the population was found to depend critically 

on the degree of dominance of the fitness costs: high levels of completely recessive fecundity 

costs were well tolerated, but when Medea was present at low frequency, even modest degrees 

of dominance led to loss of Medea from the population. These authors, and Smith (Smith 

1998), showed that Medea's ability to spread in the face of fitness costs could be enhanced if 

progeny of a Medea-bearing mother compete with each other for resources. In this context, 

known as family-level, or soft selection (Wade, 1985; Kelly 1992), the death of non-Medea 

offspring within the family of a Medea-bearing mother frees limited resources for sibling 

Medea-bearing progeny, providing them with a real fitness benefit that increases their 

likelihood of survival. Any level of family-level selection promotes the spread of Medea. In the 

work below we assume no family-level selection because this assumption provides a more 

conservative estimate of Medea's potential as a population replacement drive mechanism and 

because there is no evidence that mosquitoes show family-level selection. That said, some 

mosquitoes, such as Aedes aegypti, an important vector of dengue, breed in small containers 

that may often be resource-limited for larval growth (Clements 1999), suggesting that family-
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level selection could be important in some contexts, a topic that should be further explored.  

Population genetic models of Hastings (1994), Smith (1998) and Chen et al. (2007) show that, 

in the absence of family-level selection, Medea elements with significant dominant fitness 

costs can still spread, provided they are introduced above a critical introduction frequency. 

Previous work has focused on the fate of the Medea allele. However, it is the fate of Medea-

bearing genotypes that is important for population replacement. Chen et al. (2007) showed 

that, at least under some conditions, when Medea elements with fitness costs are introduced at 

frequencies that result in spread to an internal equilibrium allele frequency, non-Medea 

individuals are nonetheless rapidly eliminated from the population. However, it has not been 

clear to what extent this conclusion can be generalized. 

 

In summary, Medea elements are attractive candidates to drive population replacement for 

several reasons. First, they can spread (provided certain conditions detailed below are met) 

even if they confer a fitness cost to carriers (Hastings 1994; Wade and Beeman 1994; Smith 

1998; Chen et al. 2007). Second, under at least some conditions when Medea spreads it 

eliminates the non-Medea genotype from the population (Chen et al. 2007). Third, the 

synthetic form of Medea is the only gene drive mechanism that is both well understood at the 

molecular level, because it was designed with components of known behavior, and that has 

been demonstrated to drive population replacement. Finally, design considerations discussed 

by Chen et al. (Chen et al. 2007) regarding ways to prevent recombinational separation of 

drive and disease refractoriness functions, to prevent selfish element spread in non-target 

species, and to carry out multiple cycles of population replacement, provide reasons to believe 

that the population genetic behavior of synthetic Medea elements can to some extent be 
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controlled. Therefore, Medea is a logical target for concerted development efforts (reviewed in 

Hay et al. 2010). The aim of this paper is to describe the conditions under which Medea 

elements are predicted to succeed as drivers of population replacement in large, unstructured 

populations.  

 

The model. 

We use a deterministic model to examine the invasion of synthetic Medea elements into 

populations.  Terms are defined in Table 1. Table 2 presents the frequencies of parental 

genotypes in the population, and offspring frequencies and genotypes produced by each 

mating. The deterministic model assumes an infinite population with random mating and 

discrete, non-overlapping generations. Expression of the toxin/antidote genes that make up 

Medea, and/or the cargo genes linked to Medea (genes conferring resistance to pathogen 

transmission), may result in a fitness cost to carriers. Fitness costs may also arise through tight 

linkage between Medea and a nearby deleterious allele or insertion-dependent effects on the 

expression of nearby genes. These are fitness costs not associated with the Medea-killing itself. 

We consider three types of fitness cost: an embryonic fitness cost (cE,Het and cE,Homo), a 

maternal fecundity loss (cD,Het and cD,Homo), and a paternal fertility loss (cS,Het and cS,Homo).  

cD,Het, cS,Het, cD,Homo, and cS,Homo act on the genotypes of the parents, causing a fecundity loss in 

females and a fertility loss in males. For example, if wildtypes have a fertility/fecundity of 1, 

then in heterozygous females this cost can be interpreted as meaning heterozygous females lay 

only (1-cD,Het) fertile eggs, while heterozygous males only successfully fertilize (1-cS,Het) eggs. 

An embryonic cost refers to the fraction of Medea-bearing embryos dying as juveniles. Since 
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costs are likely to be borne by both parents (e.g. insertion site-dependent effects; consequences 

of toxin/antidote expression) or by the female alone (e.g. costs associated with expression of 

maternal toxin or disease resistance effector), we do not consider paternal fitness costs in 

isolation. In some of what follows, it is more convenient to frame the discussion in terms of 

fitness (Vx) rather than the fitness costs induced by the construct.  For example, the fitness of a 

homozygous female is VD,Homo=1-cD,Homo.  In our simulations, all fitness costs are assumed to 

be multiplicative both at a single locus and between loci, and are restricted to values of no 

more than 20% per copy. At these levels of fitness costs, additive and multiplicative fitness 

costs behave qualitatively similarly. In addition, the use of multiplicative fitness costs allows 

us to analyze the behavior of multiple elements without a hard limit on the number of copies 

per organism. We briefly consider recessive fitness costs but find, following Wade and 

Beeman, that when costs are completely recessive, Medea spreads following any finite 

introduction, regardless of the cost to homozygotes (Wade and Beeman 1994). Instead, we 

focus on the more conservative scenario, in which heterozygotes experience a fitness cost.  

This is likely to be more relevant to population replacement since many of the costs associated 

with synthetic Medea elements, including costs associated with the expression of toxin and 

antidote, as well as costs associated with expression of transgene effectors, are likely to be 

dominant. 
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Table 1: A list of abbreviations.   

All abbreviations in the text are listed here. 

SMM Fraction of the male population homozygous for Medea 
SM+  Fraction of the male population heterozygous for Medea 

S++  Fraction of the male population homozygous for the non-Medea allele 
DMM Fraction of the female population homozygous for Medea 
DM+  Fraction of the female population heterozygous for Medea 

D++  Fraction of the female population homozygous for the non-Medea allele 
GMM Fraction of the population homozygous for Medea 
GM+  Fraction of the population heterozygous for Medea 

G++  Fraction of the population homozygous for the non-Medea allele 
‘ A prime in all above refers to the next generation 
cS,genotype Male fertility loss at a given genotype 
cD,genotype Female fecundity loss at a given genotype 
cE,genotype Rate of embryonic death at a given genotype, independent of the maternal 

effect Medea killing 
p Allele frequency of the Medea element 
q Allele frequency of the WT element 
W Mean fitness 
VS,genotype Male fertility retained at a given genotype(1-cS,genotype).  When homozygous 

fitness is equal to the square of heterozygous fitness, the fitness cost is said to 
be multiplicative.  

VD,genotype Female fecundity retained at a given genotype(1-cD,genotype).  When 
homozygous fitness is equal to the square of heterozygous fitness, the fitness 
cost is said to be multiplicative. 

VE,genotype Embryonic viability retained at a given genotype(1-cE,genotype).  When 
homozygous fitness is equal to the square of heterozygous fitness, the fitness 
cost is said to be multiplicative. 

t0 Fraction of WT offspring of a Medea-bearing mother that die. 
t1 Fraction of heterozygous offspring of a homozygous Medea mother that live. 
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Table 2: Parental genotype frequency, fitness effects, and offspring frequency.  

Mating frequencies are the product of the genotype frequencies of the male and female parents.  
A reduction of fertility, fecundity or embryonic viability leads to a reduction in the frequency 
of viable offspring of some genotypes.  When m0=1, all non-Medea offspring of Medea 
heterozygous mothers will live.  When m1=1, all heterozygous Medea offspring of Medea 
homozygous mothers will live.  By summing all the families and dividing by the mean fitness 
of the population, we find the genotype frequencies of the offspring.  This is explicitly done in 
the text. 

 

 Parental Genotype 
Frequency 

Fitness/Fecundity/Fertili
ty 

Offspring Frequency 

Famil
y 

Mal
e 

Femal
e 

Mating Male Female  Homo Het WT 

1 SMM DMM SMMDM

M 
VS, Homo VD, Homo VE, 

Homo 
  

2 SM+ DMM SM+DMM VS, Het VD, Homo ½ VE, 

Homo 
½VE,Hetm2

1 
 

3 S++ DMM S++ 
DMM 

1 VD, Homo  VE, Het m1  

4 SMM DM+ SMMDM+ VS, Homo VD, Het ½ VE, 

Homo 
½ VE, Het  

5 SM+ DM+ SM+DM+ VS, Het VD. Het ¼ 
VE,Hom

o 

½ VE. Het ¼m
0 

6 S++ DM+ S++DM+ 1 VD, Het  ½ VE, Het ½ 
m0 

7 SMM D++ SMMD++ VS, Homo 1  VE. Het  

8 SM+ D++ SM+D++ VS. Het 1  ½ VE, Het ½ 

9 S++ D++ S++ D++ 1 1   1 

 

We consider two types of Medea-dependent lethality. The term t0 refers to the fraction of 

non-Medea progeny from heterozygous Medea mothers that die. Typically, we will 
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consider t0=1, meaning that embryos from Medea-bearing mothers that fail to inherit 

Medea always die. We also consider situations in which heterozygous offspring of 

homozygous Medea mothers have a probability of dying.  This death, also considered by 

Smith (Smith 1998), and observed by Beeman et al. (Beeman et al. 1992) in Tribolium, 

and by Chen et al. (Chen et al. 2007) in Drosophila, may represent incomplete zygotic 

rescue of maternal-effect lethality associated with two maternal copies of the toxin gene 

and one copy of the zygotic antidote. The fraction that die by this mechanism is modeled 

as t1, with t1=1 meaning that all heterozygous progeny die. Except where noted 

specifically, t1=0.  It is sometimes useful to consider the fraction of progeny that live (µ): 

µ0=1-t0 and µ1=1-t1.  

 

Given the assumptions above, the equations for the genotype frequencies in generation n + 1 

from those in generation n are 
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where the mean fitness, W, equals the sum of the right sides of these three equations multiplied 

by W, 
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In all generations after the introduction, male and female genotype distributions are the same. 

 

Understanding the relationship between genotype frequency, fitness, and Medea allele 

frequency. 

Throughout the text we follow allele fitness as a way understanding the fate of Medea in 

populations. By allele fitness we mean the probability that a given allele in a zygote that has 

survived possible Medea-dependent killing will be passed in the next generation to a zygote 

that also survives Medea-dependent killing, given a specific set of population genotype 

frequencies. This term incorporates fitness losses associated with Medea-dependent maternal-
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effect killing, as well as killing-independent fitness costs associated with Medea. In order to 

understand the dynamics of Medea spread, and how this depends on allele frequency and 

fitness, we need to be able to describe Medea allele and genotype frequencies, and allele and 

genotype fitnesses, over generations. In a Medea-bearing population the fate of an individual 

depends on the genotype of its mother as well as its own genotype. Thus, knowledge of one 

genotype frequency after a single round of random mating is not sufficient to characterize the 

population, as it would be if the population was in Hardy-Weinberg equilibrium.  

 

We approach this problem first by presenting an example, a Medea with a 20% multiplicative 

embryonic fitness cost.  We plot, on a DeFinetti diagram, the trajectories of genotype 

frequencies over 1000 generations when present in a population initially composed of different 

proportions of Medea homozygotes and non-Medea individuals (points along the horizontal 

axis), non-Medea individuals and Medea heterozygotes (points along the left axis), or Medea 

homozygotes and heterozygotes (points along the right axis) (Fig. 2A). For this set of 

parameters, all populations converge to one of two stable equilibrium points, composed of 

either non-Medea individuals, or of two thirds Medea homozygotes and one third Medea 

heterozygotes, the stable internal equilibrium allele frequency (SIEAF) (Fig. 2A). The regions 

of initial conditions that converge to each stable equilibrium are separated by a set of gamete 

frequencies, known as a separatrix, that define a threshold between Medea allele loss and 

fixation. The separatrix is the stable manifold of the unstable equilibrium (a saddle).  This 

family of points includes one, the unstable internal equilibrium allele frequency (the UIEAF), 

discussed further below. Importantly, all populations initiating on either side of the separatrix 

approach and ultimately follow a common trajectory in moving towards one or the other stable 
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equilibrium (the common trajectory is the unstable manifold of the unstable equilibrium). This 

observation implies that one can calculate genotype frequencies, and thus allele fitness, as a 

function of Medea allele frequency, by calculating the approximate positions of points on this 

common trajectory. To do this we take a number of starting parental genotypes distributed 

throughout the parameter space of all possible parental genotypes, indicated by the black dots 

in the DeFinetti diagrams in Fig. 2B.  Each genotype in the distribution is advanced one 

generation and all possible genotype distributions for that generation, indicated by the green 

region, are plotted. The procedure is repeated for a second generation, resulting in the region of 

possible genotypes indicated in red; for a third generation, resulting in the region of possible 

genotypes indicated in yellow; and for a fourth generation, resulting in the region of possible 

genotypes indicated in blue. After four generations the genotype space distribution is very tight 

(the blue region that resembles a line in Fig. 2B). Throughout the remainder of the text we use 

the constrained values of genotype space during the fourth generation to calculate genotype 

frequencies and fitness values with respect to Medea allele frequency. Plots of genotype or 

fitness as a function of Medea allele frequency (as in Fig. 3A,C) which appear line-like, are not 

one-dimensional lines, but narrow two-dimensional bands around a line. Places where the 

bands cross are not points but small areas.   
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Figure 2.  

DeFinetti diagrams showing genotype trajectories for a Medea with a fitness cost. (A) The 
DeFinetti diagram plots the change in genotype frequencies over generations for a Medea with 
a 20% embryonic, multiplicative fitness cost, and values of t1=0 and t1=1.  Population 
trajectories start with different ratios of two of the three genotypes (genotypes corresponding to 
points along each of the sides of the triangle). Green lines show trajectories that end at 2/3 
Medea homozygotes, 1/3 Medea heterozygotes and no non-Medea individuals, the SIEAF (the 
stable internal equilibrium allele frequency). Red lines indicate population trajectories that end 
with loss of Medea individuals from the population. The unstable internal equilibrium 
frequency (UIEAF) is a point on the common trajectory taken by Medea-bearing populations 
that separates populations in which Medea spreads from those in which Medea is lost. (B) Plot 
of genotype frequencies over four generations for the Medea allele in (A), introduced into a 
population at a number of different starting genotype frequencies (black circles). When adults 
from within the G0 genotype distributions (each of the black circles) mate randomly with each 
other, a range of possible G1 genotype distributions, indicated by the green region, is obtained. 
When adults from G1 genotype distributions mate randomly, a set of possible G2 offspring 
genotype distributions defined by the red region is obtained; matings within each G2 genotype 
distribution result in the set of possible G3 offspring distributions defined by the yellow region; 
and G3 matings result in the G4 (blue) distribution. The G4 distribution, which is highly 
constrained, can be used to approximate genotype frequencies and allele fitness for specific 
Medea allele frequencies. 
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Figure 3.  

Characteristics of Medea allele and genotype spread as a function of introduction frequency, 
and of allele fitness as a function of Medea allele frequency. (A) The frequency of individuals 
lacking Medea (Non-Medea), heterozygotes (Heterozygous), and homozygotes for Medea 
(Homozygous Medea), are plotted with respect to Medea allele frequency. The fitness of the 
Medea allele, the non-Medea allele, and the population is also shown. The presence of Medea 
in the female is assumed to result in 100% death of non-Medea-bearing progeny, with all 
heterozygous Medea progeny of homozygous Medea mothers being viable. (B) Medea allele 
frequency is plotted as a function of the number of generations for different introduction ratios 
of homozygous Medea/non-Medea males into a population of non-Medea females. (C) The 
population frequency of individuals with Medea (Medea Genotype Frequency) is plotted as a 
function of generations for different introduction ratios of homozygous Medea/non-Medea 
males into a population of non-Medea females. (D) Plot of allele and genotype fitness, and 
genotype frequency, as a function of Medea allele frequency, for a Medea that carries a 10% 
embryonic fitness cost. The unstable internal equilibrium allele frequency (UIEAF) and stable 
internal equilibrium allele frequency (SIEAF) are indicated. Thin arrows indicate the directions 
in which the Medea allele frequency moves on either side of the UIEAF and SIEAF.   
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An autosomal Medea increases to an equilibrium allele frequency when introduced above 

a threshold frequency determined by fitness costs, and this increase is accompanied by 

the elimination of non-Medea individuals from the population. 

Medea increases in frequency by killing alternative non-Medea alleles, thereby causing a 

relative increase in the population frequency of the Medea allele. Medea-bearing individuals 

and alleles experience no direct benefit from this killing, but non-Medea alleles experience 

Medea-dependent death (a fitness loss) in each generation that is dependent on the Medea 

allele frequency. The relationship between genotype and Medea allele frequency, and between 

allele and population fitness and Medea allele frequency, for a Medea with no fitness cost, is 

illustrated in Figure 3A. The Medea allele spreads to fixation because its fitness is always 

greater than that of the non-Medea allele. This result agrees with that of earlier works 

(Hastings 1994; Wade and Beeman 1994; Smith 1998). The rate of Medea spread depends 

dramatically on the introduction frequency. If Medea is released into a population at low 

frequencies there is a long lag phase during which the frequency of Medea alleles and 

individuals increases only slowly because the frequency of Medea-dependent killing is low 

(Fig. 3B, C) (Wade and Beeman 1994). This lag phase is followed by roughly 15 generations 

that accounts for a dramatic loss of non-Medea alleles and individuals (Fig. 3B, C). If Medea is 

released at higher frequencies the lag phase is shortened, but in other respects the population 

trajectories are very similar (Fig. 3B, C). 
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We now consider the fate of autosomal Medea alleles that have a fitness cost not associated 

with Medea-dependent killing. As an example, we begin by considering the fate of a Medea 

carrying a 10% embryonic fitness cost (Fig. 3D). Recall that fitness costs are multiplicative, so 

homozygotes carry a 19% fitness cost. Note that the fitness curves for the Medea and non-

Medea allele cross at two positions. These define small regions that include the unstable 

internal equilibrium allele frequency (UIEAF), a point on the separatrix of Fig. 2A, and the 

stable internal equilibrium allele frequency (SIEAF) (the stable internal equilibrium of Wade 

and Beeman (1994), and Smith (1998)), the point to which all gamete frequencies converge in 

Fig. 2A when Medea spreads. At these two points Medea-dependent killing of non-Medea 

alleles is balanced by natural selection-dependent loss of Medea alleles. If Medea is present at 

a frequency below the UIEAF, the Medea-dependent cost to the non-Medea allele is less than 

that associated with carrying the Medea allele (the non-Medea allele has a higher average 

fitness than the Medea allele), and Medea is driven out of the population. In contrast, if the 

Medea allele frequency is just above the UIAEF but below the SIAEF, the non-Medea allele 

has a lower fitness (due to increased Medea-dependent killing) than the Medea allele, and the 

frequency of Medea increases over the generations towards the SIEAF, even though this is 

associated with a decrease in overall population fitness. The SIEAF represents a stable upper 

limit on the Medea allele frequency since when the Medea allele frequency is higher than the 

SIEAF, non-Medea alleles have, on average, a higher relative fitness; they lack the fitness costs 

associated with being in Medea homozygotes (they are in heterozygotes), and because Medea 

is now common they only rarely suffer the cost of death due to maternal-effect lethality in non-

Medea progeny. As a result, fitness costs associated with carrying Medea cause the Medea 

allele frequency to decrease through natural selection, back towards the SIEAF (Fig. 3D). In 
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consequence, the SIEAF also represents a local population fitness maximum. If the fitness cost 

associated with Medea is increased, the UIEAF will increase, and the SIEAF (discussed further 

below) will decrease. 

 

In order to solve for the equilibrium values of this system, we set MMMM GG =′  and ++++ =′ GG .  

Recalling that genotype frequencies must sum to one, 1=++ +++ GGG MMM , and assuming that 

all fitness values are greater than 0, we find 4 biologically possible equilibria.  Two of these 

equilibria, a population that contains only non-Medea individuals and a population that 

contains only homozygous Medea individuals, are trivial. The third contains all three 

genotypes. This is an unstable equilibrium and is the UIEAF. The final equilibrium includes a 

mix of heterozygous and homozygous Medea individuals and is the SIEAF.  The general forms 

of the equations corresponding to these equilibria are too complicated to be useful. The general 

forms of the expressions that describe the equilibria and the corresponding Maple code are left 

to the supplemental materials.   

 

In order to analyze the stability of these equilibria, we use the standard linear stability analysis 

for difference equations. We calculate the eigenvalues of the Jacobian matrix, 
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which are evaluated at each equilibrium in turn.  The equilibrium is stable if both eigenvalues 

have modulus less than one. If the eigenvalue with the largest modulus lies on the unit circle 

(e.g. equals 1 or −1) then linear stability analysis is inconclusive. If either eigenvalue has 

modulus larger than one then the equilibrium is unstable.  

 

For the trivial equilibrium where there are no Medea individuals in the population, we can find 

the general stability criteria.  The eigenvalues of the Jacobian are 0 and )( ,,, HetDHetSHetE VVV + .  

Notice that the stability does not depend on the fitness of homozygotes.  This equilibrium is 

stable except when heterozygotes have no fitness cost, in which case the analysis is 

inconclusive.  In the case where the population consists of only homozygous Medea 

individuals, the eigenvalues are 0 and  
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If t1=0, VE,Het≥VE,Homo, VD,Het≥VD,Homo, VS,Het≥VS,Homo, and at least one homozygous fitness is less 

than 1, this equilibrium is unstable. These results imply that for a Medea with a dominant 

fitness cost, for which heterozygotes are more fit than homozygotes, and heterozygous 

offspring of homozygous Medea females always survive, Medea will not spread from very low 
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frequency; if it is present at a frequency from which it does spread, the population will always 

contain some non-Medea alleles. 
 

 

The general expressions for the equilibrium values for the three genotype (G++, GM+, GMM) or 

two genotype (G++=0, GM+, GMM) scenarios in which all parameters vary are too cumbersome 

to be useful. Here we consider a simpler case, in which t0=1, t1=0, and there is an embryonic 

fitness cost associated with Medea.  We have also considered maternal and parental fitness 

costs with t0=1, t1=0.  Explicit expressions for equilibria and stability conditions incorporating 

these costs are shown in the Supplementary Materials. For each of the three fitness scenarios a 

maximum of 4 biologically relevant equilibria exist. These are (1) the equilibrium with no 

Medea, which is stable if heterozygotes have a fitness cost; (2) an unstable equilibrium with all 

genotypes; (3) an equilibrium with heterozygous and homozygous Medea individuals (no non-

Medea individuals) that is stable if the fitness cost to homozygotes is higher than that to 

heterozygotes, and homozygotes have a fitness of at least 0.3 (situations in which fitness values 

are below 0.3 and/or homozygotes are more fit than heterozygotes are likely not biologically 

relevant); and (4) an equilibrium with only homozygous Medea that is unstable if the fitness 

cost to homozygotes is greater than that to heterozygotes.  

 

 To simplify the analysis of the model we limit our analysis to cases where there are 2 

independent variables (homozygous and heterozygous fitness, or t1 and fitness). We plot these 

variables against each other to create a parameter space diagram in which regions of feasibility 
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and stability or instability are indicated. In the current case, which incorporates an embryonic 

fitness cost, our equations simplify to: 
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where the mean fitness, W, equals  
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We find 4 equilibria. Regions of stability and feasibility are indicated in Fig. 4A, which plots 

homozygous fitness versus heterozygous fitness.  
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(1) All non-Medea individuals: 

G++ = 1, GM+ = GMM= 0; 

As noted above for the general case, this equilibrium is always stable (Figure 4A, regions 

A, B, and C) unless VE,Het=1 (Fig. 4A, line a), at which value the linear stability analysis 

is inconclusive.  In other words, if the presence of Medea results in a fitness cost to 

heterozygotes, very low-level introductions of Medea will result in loss of the Medea 

allele. Numerical results indicate that when fitness costs are purely recessive ( 1, =HetEV ; 

1, ≤HomoEV ), this equilibrium is unstable, implying that low-frequency introductions of 

such a Medea can result in spread, even if the fitness of homozygotes is close to zero. 

Throughout the text we consider the more realistic case in which heterozygotes 

experience a fitness cost (VE,Het<1).   

 

 (2) All three genotypes present in population: 
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Equilibrium 2 is only biologically feasible if VE,Homo≥VE,Het (1-VE,Het) (Fig. 4A, regions A and 

B).  By linear stability analysis this equilibrium is unstable when VE,Het<1 and VE,Homo>VE,Het(1-

VE,Het) (Fig. 4A, regions A and B).  At VE,Het=1 (Fig. 4A, line a), this equilibrium is coincident 
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with equilibrium 1 (G++=1, GM+=0 and GMM=0) and unstable as determined through numerical 

simulations.  

 

Figure 4. 

Diagrams partitioning (VHet, VHomo) fitness parameter space into regions in which linear 
stability analysis indicates qualitatively similar behaviors are observed. (A) Parameter space 
diagram of (VE,Het, VE,Homo) space (this diagram is identical for a Medea with parental fitness 
cost) . Qualitative behavior changes as each curve is crossed, with the occurrence of a 
bifurcation.  Equilibrium 1, which consists of only the non-Medea genotype, is stable in all 
regions except at line a where the analysis is inconclusive.  Equilibrium 2, which consists of all 
genotypes, is unstable in regions A and B and infeasible in C.  Equilibrium 3, which consists of 
heterozygous and homozygous Medea, is infeasible in A, stable in B and unstable in C.  
Equilibrium 4, which consists of only the homozygous Medea genotype, is stable in A and 
unstable in B and C. Line a corresponds to a region in which Equilibrium 1 and 2 are 
coincident.  Line b separates regions A and B. On this line, Equilibrium 3 and 4 are coincident. 
Transcritical bifurcation occurs as Equilibrium 3 moves through Equilibrium 4 (i.e. the two 
collide), with the two equilibria exchanging stability.  Curve c separates regions B and C. On 
this curve, Equilibrium 2 and 3 are coincident. Transcritical bifurcation occurs as the two 
equilibria collide, with the two equilibria exchanging stability.  (B) Parameter space diagram of 
(VD,Het, VD,Homo) space.  Explanations are as in (A). 

  

(3) No non-Medea individuals in the population: 
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This equilibrium is biologically feasible if VE,Homo≤VE,Het (Fig. 4A, regions B and C). By linear 

stability analysis, this equilibrium is unstable for VE,Homo<VE,Het(1-VE,Het) (Fig. 4A, region C), 

and stable for VE,Homo>VE,Het(1-VE,Het) (Fig. 4A, region B).  For parameter sets with values in 

region B, there is an equilibrium which we define as the SIEAF, at which non-Medea 

individuals, but not non-Medea alleles, have been eliminated from the population. When 

VE,Homo=VE,Het (Fig. 4A, line b) this equilibrium is coincident with equilibrium 4.  When 

VE,Homo=VE,Het(1-VE,Het) (Fig. 4A, line c), this equilibrium is coincident with equilibrium 2.  

 

(4) All Medea homozygous individuals in the population: 

G++ = 0, GM+ = 0, GMM= 1; 

By linear analysis, this equilibrium is stable if VE,Homo>VE,Het (Fig. 4A, region A), and unstable 

if VE,Homo<VE,Het (Fig. 4A, regions B and C). When VE,Homo=VE,Het, this equilibrium is coincident 

with equilibrium 3 (Fig. 4A, line b) and stable. Therefore, when a Medea carries a fitness cost, 

and homozygotes are less fit than heterozygotes, unless a population begins with no wildtype 

alleles, the population will always contain wildtype alleles. 
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A Medea with parental fitness costs has identical regions of stability to a Medea with an 

embryonic cost. Equilibrium 2 is 0=++G ,  
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V
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+++ −−= GGG MMM 1 .  In the case of a maternal only fitness cost, there are again four 

equilibria.  Equilibrium 1 has only non-Medea individuals and is stable if VE,Het  <1 (Fig. 4B, 

regions A,B, and C, but not line a).  Equilibrium 2 has all three genotypes in an analytically 

tractable ratio, but the formula is complicated and therefore not reproduced here (see 

Supplemental Materials for details).  Equilibrium 2 is feasible, except at extremely low fitness 

values (Fig. 4B, regions A and B, but not C).  When it is feasible, it is unstable. Equilibrium 3 

has no non-Medea individuals,  
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and is only biologically feasible when VE,Homo<VE,Het (Figure 4B, regions B and C).  The  

equilibrium is stable in region B.  Equilibrium 4 contains only homozygous Medea individuals 

and is only stable when heterozygotes are more fit than homozygotes (Figure 4B, region A). 
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The above observations suggest that if an autosomal Medea with a fitness cost is present above 

a critical frequency, it will spread, ultimately reaching the SIEAF, at which point non-Medea 

individuals will no longer be present in the population. This feature of Medea, that if spread 

occurs non-Medea individuals are driven from the population, is important because the 

epidemiology of insect-borne diseases such as malaria indicates that disease prevention 

through population replacement will require that most insects be refractory to disease 

transmission (Macdonald 1957; Boete and Koella 2002; Boete and Koella 2003). In this 

context the quantity of most interest is not the allele frequency of the transgene, but the 

frequency of transgene-bearing individuals. 

 

The rate at which Medea spreads and eliminates non-Medea individuals is a function of its 

introduction frequency and the nature and size of the fitness cost. This point is illustrated for 

the relationship between a parental fertility/fecundity cost, an embryonic fitness cost, or 

maternal fecundity cost, on the X axis, the ratio of homozygous Medea/non-Medea males 

introduced into a population of non-Medea females, indicated on the Y axis, and number of 

generations required to bring non-Medea individuals below a specific frequency (1%) in Fig. 

5A, 5B and 5C, respectively. The lower bound on these graphs (the black border) defines for 

any given fitness cost, the critical homozygous Medea/non-Medea male introduction ratio 

(CMIR), below which Medea will not spread. This number is of practical interest because the 

release of Medea-bearing males is most appropriate for population replacement in mosquito 

populations since it is technically feasible to release only males (Knipling et al. 1968; Asman 



 
75 

 
et al. 1981; Catteruccia et al. 2005; Smith et al. 2007), and females bite and transmit disease 

while males do not. In addition, the release of homozygous males only is likely to maximize 

spread since it forces all Medea-bearing individuals to mate with non-Medea-bearing 

individuals, maximizing drive in the next, heterozygous, generation. A sex-independent 

parental fitness cost (Fig. 5A) requires the highest introduction frequency. In the first 

generation two copies of the fitness cost are born by homozygous Medea fathers used to 

initiate population replacement, leading to a decrease in their reproductive output and the 

effective introduction frequency. In the second generation each heterozygous parent bears one 

copy of the cost. In future generations the costs are born in a dose-dependent manner by 

Medea-bearing individuals of both sexes. Medeas carrying an embryonic fitness cost (Fig. 5B) 

require a somewhat lower introduction frequency because there is no cost in the first, parental 

generation. In subsequent generations the costs are born in a dose-dependent manner by all 

Medea carriers, as with a parental cost. A female-specific fitness cost (Fig. 5C) requires the 

lowest introduction frequency because no fitness cost is incurred in the first, parental 

generation, while in subsequent generations the costs are limited to females.  
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Figure 5.  

When an autosomal Medea with a fitness cost and t1=0 spreads, it drives the elimination of 
non-Medea individuals, but not non-Medea alleles, from the population. (A) Plot describing the 
number of generations required for Medea to be present in 99% of individuals, for a Medea 
element with a parental fertility/fecundity cost. Homozygous Medea male:non-Medea male 
introduction ratios are indicated on the Y axis, and parental fertility/fecundity cost on the X 
axis. Area between lines indicates regions of parameter space within which a specific number 
of generations (indicated by numbers and arrows) are required for the frequency of Medea 
individuals to reach 99% or greater. Line color, shown in the heat map at the bottom, provides 
a measure of how many generations are required. Black lines (50+) indicate that fifty or more 
generations are required. The border between the black-lined region and the lower unlined 
region defines the critical male introduction ratio (CMIR). (B) Plot describing the number of 
generations required for Medea to be present in 99% of individuals, for a Medea element with 
an embryonic fitness cost. (C) Plot describing the number of generations required for Medea to 
be present in 99% of individuals, for a Medea element with a maternal fecundity cost. (D) 
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Stable internal equilibrium values of the non-Medea allele are plotted as a function of fitness 
cost/fecundity loss for embryonic, sex-independent parental, or maternal costs. 

 

The fate of the autosomal non-Medea allele  

As discussed above, when an autosomal Medea allele carrying a fitness cost is introduced 

above a critical value and complete zygotic rescue requires only one copy of the antidote, the 

frequency of the Medea allele increases and approaches an equilibrium, the SIEAF, with the 

non-Medea allele. Equilibrium allele frequency values can be algebraically derived.  Since we 

are focused on the equilibrium conditions when there are no non-Medea individuals in the 

population, G++=0, and the proportion of heterozygotes is directly related to q, the fraction of 

non-Medea alleles in the adult population, GM+=2q, and GMM=1-2q.  

For the parental (two parent) fitness cost the stable equilibrium occurs at  
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For the embryonic fitness cost the stable equilibrium occurs at  
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For the maternal fitness cost the stable equilibrium occurs at  
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These equilibrium values, for Medea elements carrying parental, embryonic, or maternal 

fitness costs, are plotted as a function of fitness cost in Fig. 5D.  

 

We now relax the assumption that heterozygous Medea offspring of homozygous Medea 

mothers always survive.  Such a situation could easily arise if progeny of homozygous Medea-

bearing mothers (which inherit two dosages of the toxin) cannot, or can only imperfectly be 

rescued from death by a single copy of Medea (a single copy of the antidote) in the zygote 

(0<t1<1) (see also Fig. S3 in (Chen et al. 2007)). Smith makes a related point, though details of 

his model differ from ours with respect to the fate of homozygous Medea progeny of 

homozygous Medea mothers (Smith 1998): we assume that homozygous progeny of 

homozygous Medea mothers show 100% survival, as observed in (Chen et al. 2007), while he 

does not. We calculate the equilibrium values assuming that VS,Het=VS,Homo=VD,Het=VD,Homo=1, 

VE,Homo=VE,Het
2 and t0=1.  Again there are four possible equilibria. We plot the feasibility and 

stability of equilibria within t1, embryonic fitness parameter space in Fig. 6A.   

 

 (1) No Medea-bearing individuals in the population: 

G++=1, GMM=0, GM+=0. 
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This equilibrium is stable (Fig. 6A, regions A, B, and C) except when VE,Het=1 (Fig. 6A, line 

a), where the stability analysis is inconclusive.  Simulations indicate that at this latter point the 

equilibrium is unstable. This equilibrium implies that if there is a fitness cost, regardless of t1, 

with very low introduction frequencies Medea will be lost. 

 

(2) All three genotypes in the population: 
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This equilibrium is not feasible for low fitness values (Figure 6A, region C), and is biologically 

feasible, but unstable when 
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(Fig. 6A, regions A and B). 
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Figure 6. When Medea is located on an autosome, and heterozygous Medea offspring of 
homozygous Medea mothers do not always survive, the Medea allele achieves a lower 
equilibrium frequency or is eliminated from the population. (A) Diagram partitioning (t1, VHet) 
parameter space into regions in which linear stability analysis indicates qualitatively similar 
behaviors are observed. Qualitative behavior changes as we cross each of these curves, with 
the occurrence of a bifurcation.  Black lines partition parameter space for Medea elements with 
an embryonic or parental fitness costs, while red lines partition parameter space for Medea 
elements with a maternal fitness cost.  Equilibrium 1, which consists of only the non-Medea 
genotype, is stable in all regions.  Equilibrium 2, which consists of all genotypes, is unstable in 
regions A and B and infeasible in C.  Equilibrium 3, which consists of heterozygous and 
homozygous Medea genotypes, is infeasible in C, stable in A and unstable in B.  Equilibrium 
4, which consists of only the homozygous Medea genotype, is stable in B and unstable in A 
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and C. Line a corresponds to a Medea with no fitness cost.  At line a, the stability of 
equilibrium 1, the all non-Medea equilibrium, is inconclusive.  Line b separates regions A and 
B. On this line, Equilibrium 3 and 4 are coincident. Transcritical bifurcation occurs as 
Equilibrium 3 moves through Equilibrium 4 (i.e. the two collide), with the two equilibria 
exchanging stability.  Curve c separates regions A and C. On this curve, the Equilibrium 2 and 
3 are coincident.  (B) Plot of allele fitness, and genotype frequency, as a function of Medea 
allele frequency, for a Medea that carries a 10% embryonic fitness cost and has t1=0.5. 
Compare with the Medea shown in Fig. 3D, in which t1=0. (C) Medea-bearing genotype 
frequency is plotted as a function of the number of generations for Medea elements with zero 
fitness cost and different levels of heterozygous offspring lethality (t1), introduced into a 
population of non-Medea females using a fixed 1:1 ratio of Medea:non-Medea males. (D) Plot 
of Medea allele frequency as a function of the number of generations for the zero fitness cost 
Medea elements in (C). (E) Plot as in (C) for Medea elements with a 10% embryonic fitness 
cost. (F) Plot of Medea allele frequency as a function of the number of generations for Medea 
elements with a 10% embryonic fitness cost.  Note that the Medea allele frequency increases to 
higher equilibrium values as t1 increases.  

 

(3) No non-Medea individuals in the population: 
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The equilibrium population consists only of Medea-bearing genotypes and is only feasible 

when t1≤2 (1-VE,Het), and is stable in Fig. 6A region A but unstable in Fig. 6A region C. The 

algebraic expression describing curve c is the equality shown in equilibrium 2.   This 

equilibrium indicates that there are situations in which the death of heterozygous progeny of 

homozygous mothers causes a decrease in the equilibrium non-Medea allele frequency as 

compared to the case in which such heterozygous progeny never die.  There is an additional 

curve where the linear stability analysis is inconclusive, 
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crossed, and therefore it is not plotted. 

 

 

(4) All Medea homozygous individuals in the population: 

G++=0, GM+=0, and GMM=1. 

The population is entirely homozygous Medea.  This equilibrium is stable when t1>2(1-VE,Het) 

(Figure 6A, region B) and unstable when t1<2(1-VE,Het) (Figure 6A, regions A and C).  At the 

equality, the analysis is inconclusive but the equilibrium is coincident with equilibrium 3. This 

equilibrium indicates that there are biologically relevant situations (high Medea fitness and 

high t1) in which the non-Medea allele is driven from the population.  

 

Figs. 6B-F illustrate the behavior of Medea elements with t1>0. In Figs. 6C-F homozygous 

Medea and non-Medea males are introduced at a 1:1 ratio into a population of non-Medea 

females. Figs. 6C, D show the behavior of Medea elements with no fitness cost, in which 

heterozygous progeny of homozygous mothers do not die (t1=0), sometimes die, (t1=0.25; 

t1=0.5; t1=0.75), or always die (t1=1.0). Figs. 6E, F show the behavior of Medea elements that 

carry a 10% embryonic fitness cost, with t1 values as above. In both cases non-Medea 

individuals are eliminated from the population, though values of t1>0 result in modest delays. 

The fate of the non-Medea alleles is more complicated. As illustrated in Fig. 3, and noted by 
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previously by others (HASTINGS 1994; WADE and BEEMAN 1994), a Medea with no fitness 

cost, and with t1=0, will ultimately spread to fixation. Values of t1>0 speed this process, with 

greater t1 values leading to more rapid loss of the non-Medea allele (Fig. 6D) (with t1 values of 

0, 0.25, and 1 resulting in non-Medea allele frequencies of 0.0279, 0.00161, and 1.03x10-10, 

respectively after 40 generations). When a Medea carries a fitness cost, values of t1>0 result in 

a decrease in the non-Medea equilibrium allele frequency, which can go to 0 for high values of 

t1, resulting in loss of the non-Medea allele (Fig. 6F).  For example, for the Medea shown in 

Fig. 6F, which has a 10% embryonic fitness cost and t1=0, the non-Medea equilibrium allele 

frequency is 9.09%. In contrast, t1 values of 0.25, 0.5, 0.75, or 1 result in non-Medea allele 

frequencies of 0.0220, 8.74x10-4, 9.24x10-6, or 3.65x10-8, respectively, after only 40 

generations. The curves shown in Fig. 6A demarcate regions of fitness, t1 space within which 

non-Medea alleles are lost (region B) or retained (region A) in the population, for different 

kinds of fitness costs.  

 

The mechanism by which values of t1>0 can lead to loss of the non-Medea allele from the 

population can be understood by considering the changing fitness of the non-Medea allele for 

t1=0 and t1>0, as the frequency of Medea increases. Fig. 6B provides an example, for a Medea 

with a 10% embryonic fitness cost and t1= 0.5. When such a Medea allele is present at 

frequencies just above the UIAEF, most Medea alleles are in heterozygotes, and non-Medea 

alleles experience a Medea-dependent fitness cost similar to that for a Medea with a 10% 

embryonic fitness cost and t1=0 (Fig. 6B, compare with Fig. 3D). For the element with t1=0, 

the fitness of the non-Medea allele decreases initially as Medea spreads, but then recovers 

significantly as the frequency of males homozygous for Medea (which protect non-Medea 
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alleles in heterozygous female parents from death in non-Medea progeny) increases (Fig. 3D). 

Homozygous Medea females always allow survival of non-Medea alleles in progeny. In 

contrast, for a Medea with a 10% fitness cost and t1=0.5, the fitness of the non-Medea allele 

continues to remain low, never becoming greater than that of the Medea allele (Fig. 6B). 

Homozygous male parents continue to protect non-Medea alleles in heterozygous mothers 

from death in progeny, as above. However, for Medea elements with t1=0.5, non-Medea alleles 

from heterozygous males face a new, 50% risk of death in heterozygous progeny when female 

parents are homozygous for Medea. As the frequency of homozygotes increases, so does the 

frequency of killing through this mechanism: 0% killing when non-Medea alleles are in 

females; 50% killing when they are in males, resulting in up to 25% killing as the Medea allele 

frequency approaches fixation. Medea alleles in heterozygous progeny are also killed through 

this mechanism. But as Medea spreads, the frequency of heterozygotes becomes rare with 

respect to the frequency of Medea-bearing individuals (which are mostly homozygotes), while 

heterozygotes make up the majority of individuals carrying the non-Medea allele. Therefore, 

the fitness costs from this form of death are born primarily by the non-Medea allele. In 

summary, when t1>0, non-Medea alleles experience a novel Medea-dependent fitness cost that 

increases as Medea spreads and homozygous females become common. If t1 is large this can 

have a dramatic effect on non-Medea allele fitness. In particular, high t1 values can result in the 

fitness of the Medea allele (when present at frequencies above the UIAEF) being always 

greater than that of the non-Medea allele (Fig. 6B). This results in the non-Medea allele being 

eliminated from the population, an outcome also reflected in population fitness, which - 

following an initial decrease resulting from high levels of Medea-dependent killing - increases 

continuously as Medea spreads to fixation.  



 
86 

 
 

When a Medea located on the X chromosome in a X/Y male heterogametic species 

spreads, it always drives the non-Medea chromosome to extinction. 

 

The spread of a Medea on the X, in a X/Y male heterogametic species, also results in non-

Medea alleles experiencing a novel cost that leads to their loss from the population. Sx 

represents the fraction of the total population that is male of genotype x and Dx the fraction of 

the total population that is female of genotype x.  For a Medea on the X, the standard iterative 

Medea equations are modified as follows:  
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where the mean fitness, W, equals  
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Recalling S+Y+SMY+D+++DM++DMM =1, and setting S’+Y=S+Y, D’MM=DMM, D’M+=DM+, and 

D’++=D++, we find 4 equilibria.  

 

(1) DMM=0; DM+=0; D++=1/2; SMY=0; S+Y=1/2 

 

Equilibrium (1) is stable for all values of VE,Het except VE,Het=1.  At VE,Het=1 the linear stability 

analysis is inconclusive, but simulations indicate that the equilibrium is unstable. In other 

words, as with the case of an autosomal element carrying a fitness cost, if the presence of 

Medea results in a fitness cost to carriers, very low-level introductions of Medea will result in 

loss of the Medea allele. 



 
88 

 
 

Equilibrium (2) is a mixture of all genotypes.  The equilibrium expressions are cumbersome 

and can be found in Supplementary Materials.  There is a cumbersome analytical solution for 

when the equilibrium is biologically feasible.  Numerically the equilibrium is feasible, but 

unstable, when VE,Het is less than about 0.54. In other words, when the fitness of Medea is low 

there is an equilibrium at which non-Medea individuals exist with Medea-bearing individuals, 

but it is unstable. This equilibrium is unlikely to be biologically relevant since we are primarily 

interested in elements with fitness greater than 0.54.  

 

(3) 
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Equilibrium (3) is stable for VE,Het<0.5, unstable for VE,Het>0.5, and the analysis is inconclusive 

at VE,Het=0.5. In other words, when the fitness of Medea is below 0.5 (probably of little 

biological relevance), there are conditions under which Medea can still spread, such that at 

equilibrium all individuals carry Medea, and some females carry non-Medea alleles. Wildtype 

alleles cannot exist in males because, as discussed further below, X/Y males cannot be rescued 

from death when they inherit a non-Medea X chromosome from a Medea-bearing mother.  
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This equilibrium is stable for VE,Het>1/2, unstable for VE,Het<1/2, and the analysis is 

inconclusive at VE,Het=1/2. This equilibrium is particularly interesting because it suggests that if 

Medea becomes established, there is a broad range of physiologically relevant conditions 

(VE,Het>1/2) under which the non-Medea allele is eliminated from the population. 

 

Loss of the non-Medea allele occurs under the conditions of equilibrium (4) because this allele 

experiences a unique cost. In each generation X-linked non-Medea alleles present in 

heterozygous Medea female parents have a 50% probability of ending up in a male progeny, 

which, as noted above, are doomed to death because they cannot be rescued by a paternally 

derived Medea allele. Thus, the non-Medea X allele experiences a minimum 50% probability 

of death in the subsequent generation each time it finds itself in a heterozygous Medea female, 

and the probability of finding itself in a heterozygous Medea female (as opposed to a non-

Medea female) increases as the frequency of Medea increases.  This stands in contrast to the 

case of an autosomal Medea with t1=0, in which the spread of Medea serves to protect the non-

Medea allele from death (see discussion of Fig. 3D). As a result of this X-linkage effect, the 

fitness costs associated with the non-Medea allele remain higher than those associated with the 

Medea allele for all Medea allele frequencies above the UIEAF. This forces the non-Medea 

allele out of the population, and is also reflected in changes in population fitness as Medea 

spreads. Population fitness initially decreases as a result of Medea-dependent killing of non-

Medea alleles; it then increases continuously as Medea spreads and the killing of non-Medea 

male progeny declines. These features of an X-linked Medea are illustrated in Fig. 7A, which 
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plots allele fitness versus Medea allele frequency for a X-linked Medea with a 10% embryonic 

fitness cost. The dynamics of Medea spread for representative elements located on the X 

carrying an embryonic fitness cost are illustrated in Figs. 7B-D. Non-Medea individuals are 

rapidly eliminated from the population, though the times required are somewhat longer, and 

CMIRs somewhat higher than those required for an autosomal element with a similar fitness 

cost, since introduced males carry only one copy of Medea.  

 

 
Figure 7.  

When Medea is located on the X chromosome in a male heterogametic species, and Medea 
spreads, the non-Medea allele is eliminated from the population. (A) Plot of allele and 
population fitness as a function of Medea allele frequency, for a Medea that carries a 10% 
embryonic fitness cost, located on the X chromosome. Lines and labels and other conditions 
are as in Fig. 3D. (B) Medea genotype frequency is plotted as a function of the number of 
generations for Medea elements on the X with different levels of an embryonic fitness cost, 
introduced into a population of non-Medea females using a fixed 1:1 ratio of Medea:non-
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Medea males. (C) Plot describing the number of generations required for Medea to be present 
in 99% of individuals, for a Medea element on the X with an embryonic fitness cost. Compare 
with Fig. 4B. (D) Medea allele frequency is plotted as a function of the number of generations 
for the elements shown in (B).  

 

Population replacement with multiple Medea elements 

Insects used for population replacement may carry multiple, unlinked, versions of a single 

Medea element as a way of increasing the introduction frequency of the element given a 

particular organism introduction frequency, assuming that a  single copy of the element in 

progeny guarantees their survival regardless of how many copies of Medea (and thus the toxin) 

the mother carries.  Because the number of possible genotypes scales as 3n, where n is the 

number of copies of the construct, it is not convenient to examine high copy number 

deterministically. However, up to 3 copies is practical deterministically, and probably realistic 

in practice. Details of this model are provided in Supplementary Materials. The invasion 

dynamics for three unlinked autosomal elements, with each element bearing the same 

embryonic fitness cost, are shown in Fig. 8A (compare with Fig. 5B). For elements with low 

fitness costs a major effect of introducing multiple elements is to increase the rate of Medea 

spread, while at high fitness costs a primary effect is to lower the critical introduction 

frequency. Both of these effects occur because with multiple unlinked elements more Medea 

heterozygotes are generated during early generations, leading to increased killing of non-

Medea alleles. 

 

In reality it is likely that individual elements will have distinct fitness costs as a result of 

insertion site-dependent effects. Transgene insertions may have effects on neighboring genes, 
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and neighboring genes or local chromatin structure may have effects on the expression of 

toxins, antidotes, or genes conferring disease refractoriness. We consider the simple case of a 

Medea element located at two different positions in the genome, in which the two elements 

have different fitness costs. For details see Supplementary Materials.  As illustrated in Fig. 8B, 

while both Medea elements initially increase in frequency, ultimately the Medea with the 

lowest fitness cost spreads through the population, while the other element is eventually lost. 

Loss of the element(s) with the higher fitness cost occurs because once population replacement 

has gone to completion all viable genotypes (individuals) must inherit Medea. In this situation 

Medea's selfish behavior is not relevant, since all Medea elements in an individual are 

proposed to function equally well in terms of Medea-dependent killing (t0=1) and rescue (t1=0). 

Instead, those genotypes carrying the Medea element with the lowest fitness cost will have a 

selective advantage over those carrying Medea elements with higher fitness costs, resulting in a 

generation-by-generation increase in the frequency of the former. An important implication of 

this is that while the introduction of multiple copies of a single Medea element can facilitate 

population replacement, one Medea is ultimately likely to predominate. Since a low fitness cost 

associated with a specific Medea insertion could reflect decreased expression of genes 

conferring disease refractoriness, it will be important to be confident that the presence of each 

Medea in isolation is sufficient to confer disease refractoriness.  

 

Population replacement may also utilize individuals that carry several different Medea 

elements that fail to rescue each other (because they utilize different toxins and antidotes). In 

one possible arrangement, two such Medea elements may be inserted next to each other (two 

Medea - one insertion), creating a composite element. Such an arrangement could be used as a 
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way of generating redundancy that prevents the appearance of antidote-only alleles. Antidote-

only alleles are resistant to Medea-dependent killing, and can lead to the reappearance of non-

Medea individuals since a female carrying such an allele and a non-Medea allele can give rise 

to non-Medea progeny (Smith 1998). Antidote-only alleles can arise through mutational 

inactivation of the maternal toxin. They can also be created if unlinked copies of the antidote 

gene, perhaps generated through retrotransposition, come under the control of an early zygotic 

promoter. However, with the two Medea - one insertion arrangement, both toxins, or both 

antidotes would need to undergo such alterations in order for antidote-only alleles to appear. 

To the extent that such alterations result from independent mutational events, the probability of 

two such events occurring in a single genome becomes quite low. The dynamics of a two 

Medea - one insertion composite element are the same as those for one Medea at a single locus.  

All individuals gain the benefits of Medea, but each Medea-bearing individual also incurs all 

fitness costs.  
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Figure 8. Population replacement with multiple Medea elements can serve to enhance or retard 
the spread of Medea, depending on how the elements are organized. (A) Plot describing the 
number of generations required for Medea to be present in 99% of individuals, when three, 
unlinked Medea elements carrying identical embryonic fitness costs are introduced into the 
population. Compare with Fig. 4B. (B) Plot of the population frequency of individuals with 
Medea as a function of generations, when two identical Medea elements with different levels 
of an embryonic fitness cost are introduced into a population. (C) Plot of the population 
frequency of individuals with Medea as a function of generations. Examples in which two 
different Medea elements are located at a common position, creating a composite element (2 
Medeas 1 Insertion), are indicated by dotted lines. Examples in which two different Medea 
elements are unlinked (2 Medeas 2 Insertion), are indicated by solid lines. When both Medea 
elements are located at the same position spread occurs more rapidly than with two unlinked 
elements, and under fitness cost conditions (cE=0.10) in which two unlinked Medea elements 
fail to spread. 

 

In a second possible arrangement, known as two Medea - two insertions, Medea elements that 

fail to rescue each other are unlinked. Both Medea elements, if introduced above a critical 

value, will spread. Redundancy is still preserved since inactivation of both toxins, creation of 
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two new antidotes, or inactivation of both copies of the disease resistance gene would be 

necessary for the appearance of individuals potentially able to transmit disease. We compared 

the dynamics of Medea spread for the two-Medea one insertion and two-Medea two insertion 

strategies. We consider the case in which fitness costs are embryonic. Interestingly, the two-

Medea-two insertion strategy consistently results in Medea entering the population more 

slowly and requiring a higher introduction frequency, than with the two-Medea one insertion 

strategy. This occurs even though the two-Medea one insertion strategy requires that each 

Medea-bearing individual bear the full costs associated with two or four copies of the disease 

resistance transgene, while the two-Medea two insertion strategy does not (Fig. 8C). The 

reason the two-Medea two insertion strategy performs poorly reflects the fact that females 

heterozygous for both elements experience a unique cost - a significant probability that 

offspring will inherit one, but not the other element, resulting in progeny death. In contrast, in a 

two Medea - one insertion strategy, inheritance of Medea guarantees progeny survival. In 

short, a requirement that some individuals inherit several different unlinked Medeas in order to 

survive results in an increased frequency of progeny genotypes in which rescue fails, while 

decreasing the number in which rescue succeeds, thereby slowing Medea spread.  

Discussion 

Here we use a deterministic model to show that Medea selfish genetic elements can drive rapid 

population replacement under a wide range of conditions, provided that they are introduced 

above a critical introduction frequency (or critical male introduction ratio), determined by the 

fitness costs associated with Medea. Stochastic effects (drift, founder effects) will soften this 

transition such that Medea will sometimes spread when introduced below the CMIR, and 

sometimes fail to spread when introduced above it, as recently modeled for the case of the 
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Wolbachia drive system (Jansen et al. 2008). A detailed analysis of Medea behavior in finite 

populations remains to be carried out. A critical feature of Medea's potential as a drive 

mechanism, highlighted throughout this work, is that under all conditions in which spread 

occurs, even when Medea carries a fitness cost and non-Medea alleles remain in the 

population, non-Medea individuals are permanently eliminated from the population. In some 

cases, when autosomal Medea elements have a t1>0, or when Medea is located on the X, the 

non-Medea allele can also be eliminated from the population. The rate of Medea spread is a 

function of introduction ratio, fitness costs, and number of elements. Low fitness costs allow 

rapid spread at relatively low Medea/non-Medea male introduction ratios, while high fitness 

costs require higher introduction ratios in order for spread to occur quickly, or at all. The use of 

introduction strains that carry multiple copies of a particular element can further increase the 

rate of spread and allow the use of lower introduction ratios, though one element is likely to 

ultimately predominate within the population. In summary, the key to rapid population 

replacement with Medea is to have a high enough introduction ratio so that Medea-dependent 

killing of non-Medea alleles on a generation-by-generation basis, particularly for the early 

generations, is substantially greater than the coincident loss of fitness-compromised Medea 

alleles through natural selection.  

 

Practical population replacement requires that transgenic individuals be refractory to disease 

transmission for many generations. Medea elements that are autosomally linked with t1>0, or 

that are X-linked in a male heterogametic species (such as the malaria vector, Anopheles 

gambiae) could be useful in this regard since having no non-Medea alleles in the population 

serves to maximize the number of genes for disease refractoriness in individual females in the 
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population. These genes, because they are proposed not to confer a fitness benefit to carriers, 

will eventually undergo mutational decay. If such mutations result in a fitness increase to 

carriers (a loss of a fitness cost associated with their anti-disease function), and the non-Medea 

allele has a significant equilibrium frequency in the population, then insects permissive for 

disease transmission will appear. This appearance is delayed if each individual necessarily 

carries two Medea elements.  

 

The ability to eliminate a specific allele from the population also provides a basis from which 

to carry out modifications of a transgenic population. For example, the toxin component of the 

drive mechanism also does not provide a fitness benefit to the organisms in whose genomes it 

resides. Therefore, it too will eventually undergo mutational decay to inactivity, resulting in the 

appearance of antidote-only alleles. Pre-existing diversity and mutation within the pathogen 

population may also contribute to the emergence of pathogen populations resistant to first 

generation effectors. It is also possible, though probably unlikely, that the presence of specific 

effectors will facilitate the emergence of new pathogens and forms of disease. For all of these 

reasons, it is essential that strategies be available to remove first-generation elements from the 

population, replacing them with second-generation elements, if desired (Braig and Yan 2001; 

Christophides 2005; James 2005; Hay et al. 2010). As discussed in Chen et al. (2007), second 

generation Medea elements can be generated that will spread at the expense of first generation 

elements, when both elements are located at the same chromosomal position. If second 

generation autosomal elements having t1>0 are used, or the elements are X-linked, first 

generation elements can be eliminated from the population during this process. The use of such 

second generation elements carries a price in that somewhat higher introduction frequencies 
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are needed than with an autosomal Medea   element having t1=0 (Chen et al. 2007, Fig. S3; and 

compare Fig. 5B with Fig. 7C). But given the importance that control over the fate of released 

transgenes is likely to have for the acceptance of population replacement as a viable strategy 

for disease prevention, this may be a small price to pay. This strategy does not restore the 

population to its pre-transgenic state, but it does provide a method for removing specific 

transgenes from the population.  

 

What are the contexts in which area-wide population replacement with Medea can realistically 

be carried out? Our results suggest that in order for Medea to drive rapid population 

replacement within 10-20 generations (roughly 1-2 years), Medea/non-Medea male 

introduction ratios of between 1:10 and 1:1 are needed, depending on the nature and size of 

fitness costs, and the number of elements carried in the introduction strain. These numbers 

represent optimistic estimates because they assume that Medea males are competitive with 

wild males. However, Medea male mating competitiveness may be decreased (thereby 

lowering the effective Medea/non-Medea male introduction ratio) through several mechanisms. 

For example, factory rearing can select for distinct mating and other life history traits that are 

maladaptive in the wild. The factory strain may also be partially reproductively isolated from 

the wild population of interest. It should be possible to remove some of these genetic barriers 

to male mating competitiveness and offspring fitness by introgressing Medea into the wild 

genetic background prior to, or during factory rearing. However, non-genetic fitness costs 

associated with factory rearing (food, stress associated with handling and distribution to sites 

of release) may still result in loss of male mating competitiveness (reviewed in Dyck et al. 

2005). The importance of each of these variables will need to be evaluated, ideally in field 
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tests, before accurate estimates of Medea's ability to penetrate a specific population can be 

obtained.   

 

Wild populations of Aedes aegypti and some Anopheles species have been estimated to range 

from 10,000-20,000 adults per village (Scott et al. 2000; Taylor et al. 2001). These sizes are 

small compared with those associated with classical sterile male release in other insects; 

68,000 per week in the case of the screw worm fly, and ~109 in the case of ongoing 

Mediterranean fruit fly suppression programs (Dyck et al. 2005). With respect to mosquitoes, 

weekly factory production of 1,000,000 Aedes aegypti could be achieved routinely in the 

1960s. Large numbers of Anopheles males have also been produced in factory environments 

using mid-twentieth century technologies (Knipling et al. 1968). In some contexts it may also 

be possible to take advantage of naturally-occurring changes in mosquito population size to 

provide an environment in which Medea can more easily gain a foothold within a population. 

For example, while wet season populations of Anopheles adults per village in Mali can reach 

~15,000, in the dry season these populations consist of only 1,000-3,000 adults (Taylor et al. 

2001). These encouraging points notwithstanding, it is important to emphasize that area-wide 

population replacement remains a daunting task. Disease-endemic regions can be very large 

(thousands of square miles), and consist of many villages, requiring that the number of Medea 

males to be released be scaled accordingly. Modest migration rates can result in rapid spread of 

Medea in space (J. M. Marshall, C. M. Ward and J. T. Su, unpublished observations). 

However, if inter-village distances and other environmental obstacles are such that mosquito 

migration between villages is minimal, Medea will need to be introduced at many sites in order 

to create area-wide protection within a reasonable timeframe. These facts, coupled with the 
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issues associated with factory rearing and distribution noted above, argue that a detailed 

analysis of the local mosquito population, the environment, and the amount of resources 

available to raise and distribute Medea-bearing insects will need to be carried out before 

population replacement is attempted in any given area. Finally, we note that the models 

examined here make a number of assumptions: infinite population size, non-overlapping 

generations, no age structure within the population, random mating, and no migration. This 

kind of model is often used to gain basic insights into population genetic processes.  However, 

it provides only a qualitative snapshot of the conditions under which Medea can succeed in 

driving population replacement. It will be important to carry out more detailed modeling that 

takes account of the biology of specific pest species, as well as other variables that can 

influence rate of spread and functional lifetime in the wild. 
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 Supplementary Material 

The supplementary material is intended to provide mathematical details the text leaves 

out for clarity. We begin with a section describing how we calculate fitness for the 

autosomal case.  We then repeat the calculations for an X-linked allele.  We give the 

equations for 2 kinds of Medea and 3 copies of a single Medea.  Finally, we attach the 

Maple code for the equilibria calculations.   

 

Fitness Calculations 
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By fitness of a particular genotype we mean the average number of progeny a zygote of 

that genotype will have, given a particular zygote genotype distribution.  A zygote with a 

fitness of 1 exactly replaces itself (has one progeny).  Fitness of a particular allele refers 

to the average number of progeny an individual with that allele will have, given a 

particular genotype distribution. Fitness has three components.  1) The ability of an 

organism to survive to reproductive maturity, lgenotype.   This is the embryonic fitness.  2) 

The ability of an organism to make gametes (a parental fertility or fecundity loss), 

mgenotype.  3)  A component specific to Medea, the ability of the gametes to survive fusion 

to form a viable zygote, ngametetype.  In order to calculate fitness we must track the fate of 

the 8 types of gametes.  Gametes have 3 essential attributes, 1) whether they are sperm or 

egg, 2) whether they carry the Medea or non-Medea allele and 3) the genotype of the 

gamete’s parent. 

 

To find fitnesses, we begin by finding the distribution of gametes given a distribution of 

zygotes.  We start by introducing the following terminology.  A zygote has already 

undergone death by the Medea mechanism but has not experienced any fitness costs. 

Zygotes can be zygote++, zygoteM+, or zygoteMM for the fraction of zygotes that are 

homozygous non-Medea, heterozygous for Medea, or homozygous Medea, respectively.  

Egg/sperm sub gamete genotype, gamete’s parent’s genotype.  Gamete genotype can be p 

or q for Medea and non Medea respectively.  Gamete’s parent’s genotype can be MM, 

M+, or ++ for homozygous Medea, heterozygous Medea and homozygous non-Medea, 

respectively.  For example, we define spmq++ as the the fraction of male gametes that are 

non-Medea from a non-Medea parent.  VP is the parental fitness cost.  In the case of an 
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egg, it is VD and in the case of a sperm it is VS.  We do not consider the case where VD is 

not equal to VS.  Mathematically, 
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++++  
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Now we examine the fitness of each type of gamete (part 3).  To find fitness, we examine 

the fate of the gamete when it joins with all other possible gametes.  For example, a non-

Medea sperm from a non-Medea parent will always survive when it joins a non-Medea 

egg from a non-Medea parent, will die a fraction (1-t0) of the time when it joins a non-

Medea egg from a heterozygous parent, will always survive when it joins a Medea egg 

from a heterozygous parent, and will die a fraction (1-t1) of the time when it joins a 

Medea egg from a homozygous Medea female.  To find the fitness of the genotype, we 

find the mean of the fitness of sperm and egg of the same genotype. 
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)1()1( 10 teggeggteggeggn pMMpMqMqspermq −++−+= ++++++  

pMMpMqMqeggq spmspmspmspmn +++= ++++++  

( )++++++ += eggqspermqq nnn 2
1  

 

)1()1( 10 teggeggteggeggn pMMpMqMqspermqM −++−+= +++++  

pMMpMqMqeggqM spmspmtspmtspmn ++−+−= +++++ )1()1( 00  

( )+++ += eggqMspermqMqM nnn 2
1  

 

pMMpMqMqspermpM eggeggeggeggn +++= +++++  

pMMpMqMqeggpM spmspmspmspmn +++= +++++  

( )+++ += eggqMspermqMqM nnn 2
1  

 

pMMpMqMqspermpMM eggeggeggeggn +++= ++++  

pMMpMqMqeggpMM spmspmtspmtspmn ++−+−= ++++ )1()1( 11  

( )eggqMMspermqMMqMM nnn += 2
1  
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Genotype fitness 

 

The genotype fitness is calculated by multiplying each component of fitness. 
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Allele fitness 

 

The Medea allele fitness is calculated by finding the fitness of the heterozygote 

multiplied by the fraction of Medea alleles in heterozygotes and adding the fitness of 

homozygous Medea multiplied by the fraction of Medea alleles in homozygotes.  Fitness 

of the non-Medea allele is calculated similarly. 
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Population fitness 

The population fitness is the sum of the products of each genotype and the fraction of 

zygotes with that genotype. 
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X chromosome 

An X-linked Medea is different from autosomal Medea in that the ratio of males to 

females is not 1 to 1.  There are only 2 male genotypes Medea Y and non-Medea Y.  

 Parental Genotype 

Frequency 

Male Offspring 

Frequency 

Female Offspring 

Frequency 

Family Male Female Mating Medea non-

Medea 

Homo Het WT 

1 SMY DMM SMY*DMM VE  VE
2   

2 S+Y DMM S+Y 

*DMM 

VE   VE  

3 SMY DM+ SMY*DM+ ½ VE ½ ½ VE
2 ½ VE  

4 S+Y DM+ S+Y*DM+ ½ VE ½  ½ VE ½ 

5 SMY D++ SMY*D++  1  VE  

6 S+Y D++ S+Y*D++  1   1 

Equations are shown in the text. 

 

Fitness: 
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We use the same definitions of fitness and symbols as defined in the autosomal fitness 

cost case. 
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+
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Now we examine the fitness of each type of gamete (part 3).  To find fitness, we examine 

the fate of the gamete when it joins with all other possible gametes. 
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pMMpMqYspermq eggeggeggn ++= ++++  

YMYpMYYYYqYeggq spmspmspmspmn +++= +++  

 

pMMpMqspermYM eggeggeggn ++= ++++  

pMYeggqM spmn =+  

 

pMMpMqMqspermpM eggeggeggeggn +++= +++++  

YYpMYYMYYqeggpM spmspmspmspmn +++ +++=  

 

pMMpMqMqspermpMY eggeggeggeggn +++= ++++  

pMYpMYqMYYqeggpMM spmspmspmspmn +++= +  

 

Allele fitness 
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The Medea allele fitness is calculated by finding the fitness of the heterozygous females 

multiplied by the fraction of Medea alleles in heterozygous, adding the fitness of 

homozygous Medea females multiplied by the fraction of Medea alleles in a homozygous 

female Medea background and adding the fitness of male Medea individuals and 

multiplying by the fraction of Medea alleles in a male Medea background.  Fitness of the 

non-Medea allele and Y are calculated similarly. 

 

Population fitness 

The population fitness is the sum of the fitness of each genotype multiplied by the 

fraction of zygotes with that genotype. 
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Two Medea, Two Insertions 

 

We begin by defining variables.  We do not define all possible genotypes, but explain 

how the naming scheme works.  

 

SAABB Fraction of the male population homozygous for MedeaA and MedeaB, a + in the 

subscript refers to being non-Medea at that locus.   

SA+BB is the fraction of the male population heterozygous for MedeaA and homozygous 

for MedeaB. 

DAABB Fraction of the female population homozygous for MedeaA and MedeaB, a + in the 

subscript refers to being non-Medea at that locus.   

DA+BB is the fraction of the female population heterozygous for MedeaA and homozygous 

for MedeaB. 

sA Fraction of embryos that die per copy of the MedeaA construct 

sB Fraction of embryos that die per copy of the MedeaB construct 

W Mean fitness   

VA Fraction of embryos that live per copy of the A construct; (1-sA) 

VB Fraction of embryos that live per copy of the B construct; (1-sB) 

MA+ Male gamete with MedeaA and non-MedeaB  
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FA+ Female gamete with MedeaA and non-MedeaB  

 

Tables of multiple families are extremely large.  Instead, we find the probability of each 

type of gamete.  For male gametes, the genotype of the father is unimportant.  However, 

for female gametes, if the gamete is non-Medea, the genotype of the female parent is 

critical. 

 

We find the gamete population: 

MAB=SAABB+½SAAB++½SA+BB+¼SA+B+ 

MA+=½SAAB++SAA+++¼SA+B++½SA+++ 

M+B=½SA+BB+¼SA+B++S++BB+½S++B+ 

M++=¼SA+B++½SA++++½S++B++S++++ 

 

FAB=DAABB+½DAAB++½DA+BB+¼DA+B+ 

F A+=½DAAB++DAA+++¼DA+B++½DA+++ 

F+B=½DA+BB+¼DA+B++D++BB+½D++B+ 

F++=¼DA+B++½DA++++½D++B++D++++ 
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We allow the gametes to combine and Medea to kill.  Recall that Medea mothers kill any 

wildtype offspring.  Medea A and Medea B act independently.  An embryo with a mother 

that has Medea A will not be rescued by a Medea B allele.   

 

GAABB’=VA
2VB

2(FABMAB)/W 

GAAB+’= VA
2VB (MABFA++MA+FAB) /W 

GAA++’= VA
2 (MA+(DAA+++½DA+++))/W 

GA+BB’= VAVB
2 (MABF+B+M+BFAB) /W 

GA+B+’= VAVB(M++FAB+MA+F+B +M+BFA++MABF++)/W 

GA+++’= VA(MA+(½DA++++D++++)+M++(½DA++++D++++))/W 

G++BB’= VB
2(M+B(D++BB+½D++B+))/W 

G++B+’= VB(M+B(½D++B++D++++)+M++(D++BB+½D++B+))/W 

G++++’= M++D++++/W 

 

Where, 

W=VA
2VB

2(FABMAB)+VA
2VB(MABFA++MA+FAB)+VA

2(MA+(DAA+++½DA+++))+VAVB
2(MABF+B

+M+BFAB)+ 
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VAVB(M++FAB+MA+F+B+M+BFA++MABF++)+VA(MA+(½DA++++D++++)+M++(½DA++++D++

++))+ 

VB
2(M+B(D++BB+½D++B+))+VB(M+B(½D++B++D++++)+M++( D++BB+½D++B+))+M++D++++ 
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Three copies of Medea 

We begin by defining variables.  We do not define all possible genotypes, but explain 

how the naming scheme works.  

 

 

SAABBCC Fraction of the male population homozygous for MedeaA and MedeaB, a + 

in the subscript refers to being non-Medea at that locus.   

SA+BBC+  Fraction of the male population heterozygous at for MedeaA, homozygous 

for MedeaB, and heterozygous for MedeaC. 

DAABBCC Fraction of the female population homozygous for MedeaA and MedeaB, a 

+ in the subscript refers to being non-Medea at that locus.   

SA+BB++ Fraction of the female population heterozygous at for MedeaA, 

homozygous for MedeaB and homozygous non-Medea for MedeaC. 

sA Fraction of embryos that die per copy of the MedeaA construct 

sB Fraction of embryos that die copy of the MedeaB construct 

W Mean fitness   

VA Fraction of embryos that live per copy of the A construct; (1-sA) 

VB Fraction of embryos that live per copy of the B construct; (1-sB) 

MA++ Male gamete with MedeaA, non-MedeaB and non-MedeaC 
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F+BC Female gamete with non-MedeaA, MedeaB and MedeaC 

 

Tables of multiple families are extremely large.  Instead, we make find the probability of 

each type of gamete.  For male gametes, the genotype of the father is unimportant.  

However, for female gametes, if the gamete is non-Medea,  the genotype of the female 

parent is critical. 

 

We find the gamete population: 

 

MABC=SAABBCC+½SAABBC++½SAAB+CC+¼SAAB+C++½SA+BBCC+¼SA+BBC++¼SA+B+CC+⅛SA+B+C

+ 

MAB+=½SAABBC++SAABB+++¼SAAB+C++½SAAB++++¼SA+BBC++½SA+BB+++⅛SA+B+C++¼SA+B++

+ 

MA+C=SAABBCC+½SAABBC++½SAAB+CC+¼SAAB+C++½SA+BBCC+¼SA+BBC++¼SA+B+CC+⅛SA+B+C

+ 

MA++=¼SAAB+C++½SAAB+++ 

+½SAA++C++SAA+++++⅛SA+B+C++¼SA+B++++¼SA+++C++½SA+++++ 

M+BC=½SA+BBCC+¼SA+BBC++¼SA+B+CC+⅛SA+B+C++S++BBCC+½S++BBC++½S++B+CC+¼S++B+

C+ 
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M+B+= 

¼SA+BBC++½SA+BB+++⅛SA+B+C++¼SA+B++++½S++BBC++S++BB+++¼S++B+C++½S++B+++ 

M++C=¼SA+B+CC+⅛SA+B+C++½SA+++CC+¼SA+++C++½S++B+CC+¼S++B+C++S++++CC+½S+++

+C+ 

M+++= 

⅛SA+B+C++¼SA+B++++¼SA+++C++½SA++++++¼S++B+C++½S++B++++½S++++C++S++++++ 

 

FABC=DAABBCC+½DAABBC++½DAAB+CC+¼DAAB+C++½DA+BBCC+¼DA+BBC++¼DA+B+CC+⅛DA

+B+C+ 

FAB+=½DAABBC++DAABB+++¼DAAB+C++½DAAB++++¼DA+BBC++½DA+BB+++⅛DA+B+C++¼DA

+B+++ 

FA+C=DAABBCC+½DAABBC++½DAAB+CC+¼DAAB+C++½DA+BBCC+¼DA+BBC++¼DA+B+CC+⅛DA

+B+C+ 

FA++=¼DAAB+C++½DAAB+++ 

+½DAA++C++DAA+++++⅛DA+B+C++¼DA+B++++¼DA+++C++½DA+++++ 

F+BC=½DA+BBCC+¼DA+BBC++¼DA+B+CC+⅛DA+B+C++D++BBCC+½D++BBC++½D++B+CC+¼D

++B+C+ 

F+B+= 

¼DA+BBC++½DA+BB+++⅛DA+B+C++¼DA+B++++½D++BBC++D++BB+++¼D++B+C++½D++B+++ 
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F++C=¼DA+B+CC+⅛DA+B+C++½DA+++CC+¼DA+++C++½D++B+CC+¼D++B+C++D++++CC+½D

++++C+ 

F+++= 

⅛DA+B+C++¼DA+B++++¼DA+++C++½DA++++++¼D++B+C++½D++B++++½D++++C++D+++++

+ 

 

We allow the gametes to combine and Medea to kill.  Recall that Medea mothers kill any 

wildtype offspring.  Medea A and Medea B are the same type of Medea.  An embryo 

with a mother that has Medea A will be rescued by a Medea B allele.   

 

GAABBCC’=VA
2VB

2VC
2(MABCFABC)/W 

GAABBC+’= VA
2VB

2VC(MABCFAB++MAB+FABC)/W 

GAABB++’= VA
2VB

2 (MAB+FAB+)/W 

GAAB+CC’= VA
2VBVC

2(MABCFA+C+MA+CFABC)/W 

GAAB+C+’= VA
2VBVC(MABCFA+++MAB+FA+C+MA+CFAB++MA++FABC)/W 

GAAB+++’= VA
2VB (MAB+FA+++MA++FAB+)/W 

GAA++CC’= VA
2VC

2(MA+CFA+C)/W 

GAA++C+’= VA
2VC(MA+CFA+++MA++FA+C)/W 

GAA++++’= VA
2(MA++FA++)/W 
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GA+BBCC’= VAVB

2VC
2(MABCF+BC+M+BCFABC)/W 

GA+BBC+’= VAVB
2VC(MABCF+B++MAB+F++C+MA++F+BC+M+B+FABC)/W 

GA+BB++’= VAVB
2(MAB+F+B++M+B+FAB+)/W 

GA+B+CC’= VAVBVC
2(MABCF++C+MA+CF+BC+M+B+FA+C+M++CFABC)/W 

GA+B+C+’=VAVBVC(MABCF++++MAB+F++C+MA+CF+B++MA++F+BC+M+BCFA+++M+B+FA+C+

M++CFAB++ 

M+++FABC)/W 

GA+B+++’= VAVB (MAB+F++++MA++F+B++M+B+FA+++M+++FAB+)/W 

GA+++CC’= VAVC
2(MA+CF++C+M++CFA+C)/W 

GA+++C+’= VAVC(MA+CF++++MA++F++C+M++CFA+++M+++FA+C)/W 

GA+++++’= VA (MA++F++++M+++FA++)/W 

G++BBCC’= VB
2VC

2(M+BCF+BC)/W 

G++BBC+’= VB
2VC(M+BCF+B++M+B+F+BC)/W 

G++BB++’= VB
2 (M+B+F+B+)/W 

G++B+CC’= VBVC
2(M+BCF++C+M++CF+BC)/W 

G++B+C+’= VBVC(M+BCF++++M+B+F++C+M++CF+B++M+++F+BC)/W 

G++B+++’= VB (M+B+F++++M+++F+B+)/W 
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G++++CC’= VC

2(M++CF++C)/W 

G++++C+’= VC(M++CF++++M+++F++C)/W 

G++++++’= (M+++D++++++)/W 

 

W=VA
2VB

2VC
2(MABCFABC)+VA

2VB
2VC(MABCFAB++MAB+FABC)+VA

2VB
2(MAB+FAB+)+VA

2VBVC
2

(MABCFA+C+MA+CFABC)+VA
2VBVC(MABCFA+++MAB+FA+C+MA+CFAB++MA++FABC)+V

A
2VB(MAB+FA+++MA++FAB+)+VA

2VC
2(MA+CFA+C)+VA

2VC(MA+CFA+++MA++FA+C)+VA

2(MA++FA++)+VAVB
2VC

2(MABCF+BC+M+BCFABC)+VAVB
2VC(MABCF+B++MAB+F++C+M

A++F+BC+M+B+FABC)+VAVB
2(MAB+F+B++M+B+FAB+)+VAVBVC

2(MABCF++C+MA+CF+B

C+M+B+FA+C+M++CFABC)+VAVBVC(MABCF++++MAB+F++C+MA+CF+B++MA++F+BC+

M+BCFA+++M+B+FA+C+M++CFAB++M+++FABC)+VAVB(MAB+F++++MA++F+B++M+B+

FA+++M+++FAB+)+VAVC
2(MA+CF++C+M++CFA+C)+VAVC(MA+CF++++MA++F++C+M+

+CFA+++M+++FA+C)+VA(MA++F++++M+++FA++)+VB
2VC

2(M+BCF+BC)+VB
2VC(M+BC

F+B++M+B+F+BC)+VB
2(M+B+F+B+)+VBVC

2(M+BCF++C+M++CF+BC)+VBVC(M+BCF+++

+M+B+F++C+M++CF+B++M+++F+BC)+VB(M+B+F++++M+++F+B+)+VC
2(M++CF++C) 

+VC(M++CF++++M+++F++C)+M+++D++++++ 
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Equilibria Calculations (Maple Code) 

The attached code calculates equilibrium values and stability for both autosomal and X-

linked Medea.  The code contains much of the output.  Some of the equilibria take many 

pages to output; therefore that output has been suppressed.  Some calculations take 

minutes to days to run on a PC with 2 gigabytes of RAM with and an Intel® Core2™ 

CPU .  We provide appropriate warnings.   

 

Here we provide a summary of the calculations with more details than the text. Some 

cumbersome equations are not reproduced.  Equilibria are calculated by simultaneously 

solving ++++ = GG '

 and MMMM GG =' .  To find stability, the modulus of the eigenvalues of 

the Jacobian must be less than 1. 

 

Recall the Jacobian matrix is defined as 

 



















∂
∂

∂
∂

∂
∂

∂
∂

++

++++

++

G
G

G
G

G
G

G
G

MM

MM

MM

MM

''

''

. 

 

 



 
128 

 
Embrynoic Fitness Costs 

VD,Het=VD,Homo=VS,Het=VS,Homo=1, t1=0, t0=1 

 

There are 4 equilibria. 

1.  G++ = 1, GM+ = GMM= 0 

The eigenvalues are 










HetEV ,

0
 

 

2.  
1,,

,,
2
,

−+−

+−
−=++

HetEHomoE

HomoEHetEHetE

VV
VVV

G  

1
21

,,

,
2
,

−+−

−+
−=

HetEHomoE

HetEHetE
MM VV

VV
G  

Feasibility: 

Using 0=++G  

2
,,, HetEHetEHomoE VVV −≥  

Using other genotype boundaries, no additional feasibility conditions are found. 
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Stability: the eigenvalues are cumbersome expressions (see expression 22 in the maple code).  

In the biologically feasible realm, the modulus of each eigenvalue is equal to 1 when 1, =HetEV  

and 2
,,, HetEHetEHomoE VVV −= .  These boundaries are coincident with feasibility.  Except at 

boundaries, all feasible solutions are unstable. 

 

  3. 0=++G  

HomoEHetE

HomoE
MM VV

V
G

,,

,

2 −
=  

Biological feasibility: 

HomoEHetE VV ,, ≥  

The eigenvalues are 

















 +−

HetE

HomoE

HetE

HetEHomoE

V
V
V

VV

,

,

2
,

,,

 

The second eigenvalue shows a change in stability that is coincident with feasibility.  

Therefore, no examination HomoEHetE VV ,, ≥ is necessary. 

 

The modulus of the first eigenvalue equals 1 when 
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2
,,, HetEHetEHomoE VVV +=   and 2

,,, HetEHetEHomoE VVV −=  

The first solution is never biologically feasible.  The second solution is stable when 

2
,,, HetEHetEHomoE VVV −> . 

 

4. G++ = 0, GM+ = 0, GMM= 1 

The eigenvalues are  















HomoE

HetE

V
V

,

,

0
 

The stability boundary is 

HomoEHetE VV ,, =  

Stability occurs when 

HomoEHetE VV ,, <  

 

Parental Fitness Costs 

VD,Het=VS,Het, VD,Homo=VS,Homo, VE,Homo=VE,Het=1,  t1=0, t0=1 

Stability and feasibility analysis yields the same boundaries as embryonic.  Detailed analysis is 

shown in Maple Code.  As noted in the text, the equilibrium values are different. 
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Maternal Fitness Costs 

VE,Het=VS,Het=VE,Homo=VS,Homo =1,  t1=0, t0=1 

1. G++ = 1, GM+ = GMM= 0 

The eigenvalues are 

 

2. 0=++G  

HetD

HetDHomoDHetDHomoDHetDHomoD

MM V

VVVVVV
G

,

2
,,,

2
,,, 22 +−±−

=  

Only the (+) solution is relevant, when HomoDHetD VV ,, ≥  

Stability: 

The only boundary condition other than feasibility is 

2
12741

,

,
2
,

3
,,

2
,

, −

++−−+−
=

HetD

HetDHetDHetDHetDHetD
HomoD V

VVVVV
V .  This equilibrium is stable when 

homozygous fitness is greater than the expression. 

 

3.  The all genotypes equilibrium is a very cumbersome expression.  However, by solving for 

no non-Medea individuals in the population, we find that the biological feasibility boundary is 
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the same as the stability boundary for equilibrium 2.  There are no other stability boundaries.  

The equilibrium is always unstable when feasible. 

 

4. G++ = 0, GMM= 1 

The eigenvalues are 














+

HomoD

HetDHomoD

V
VV

,

,,

2

0
 

This equilibrium is stable when HomoDHetD VV ,, >  

 

Embryonic Fitness Costs and t1 

VD,Het=VD,Homo=VS,Het=VS,Homo=1, t1=0, t0=1 

 

There are 4 equilibria. 

1.  G++ = 1, GM+ = GMM= 0 

The eigenvalues are 










HetEV ,

0
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2.  
424244

24824
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1
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2
1
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,

+−−++−

+−+−−
−=++ tVVtVVtVVt

tVtVtVtV
G

HetEHetEHetEHetEHetEHetE

HetEHetEHetEHetE  

424244
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,
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,

4
,

2
1

2
,,

+−−++−

++−
−=

tVVtVVtVVt
VV

G
HetEHetEHetEHetEHetEHetE
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Feasibility: 

Using 0=++G  

3
,

,
2
,

3
,

4
,,

2
,

1

1238412

HetE

HetEHetEHetEHetEHetEHetE

V
VVVVVV

t
+−−+−±++

=  

 

Only the (-) solution is relevant. 

 

Stability:  No eigenvalues are less than or equal to 1 within the biologically feasible region. 

Therefore the equilibrium is unstable. 

  3. 0=++G  

22
211

1,

1,,

−+

−±−
−=

tV
tVV

G
HetE

HetEHetE
MM  

Only the (+) solution is biologically relevant. 

Biological feasibility: 
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12

1
, 1 tV HetE −≤  

The eigenvalues are cumbersome functions that are not reproduced here – see Maple code. 

 

The modulus of the first eigenvalue equals 1 when  

(a) 12
1

, 1 tV HetE −= , 

(b) 
1

, 2
1
t

V HetE = , 

(c) 
1

112
1

2
1

,

41
t

tt
V HetE

++−−
−= , 

(d) 3
,

,
2
,

3
,

4
,,

2
,

1

1238412

HetE

HetEHetEHetEHetEHetEHetE

V
VVVVVV

t
+−−+−+−+

=  

  

In case (a), this is the feasibility boundary. 

In case (b), this solution is entirely outside the range of biological feasibility. 

In case (c), no change of stability is found after passing this curve. 

In case (d), solutions are stable above the curve and unstable below it. 

No additional boundaries are found with solutions of the second eigenvalue. 
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4. G++ = 0, GM+ = 0, GMM= 1 

The eigenvalues are  














−

−
HetEV

t

,

1

2
2

0
 

The stability boundary is 

12
1

, 1 tV HetE −=  

Stability occurs when 

12
1

, 1 tV HetE −<  

X-linked Element 

1.   DMM=0; DM+=0; D++=1/2; SMY=0; S+Y=1/2 

 

The eigenvalues are 0, -.5V and V.  This equilibrium is always stable except when the fitness 

equals 1.   

 

2.  All genotypes.  See Maple Code for expressions for the genotype fractions at equilibrium.   

This equilibrium is unstable.  The Maple code shows this by plotting the modulus of the 

eigenvalues for all possible fitnesses.   
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3.  No non-Medea individuals 

0
0

2
12
2

,

,

,

,

=
=

−

−
=

−
−=

++

++

+

S
D

V
V

D

V
V

D

HetE

HetE
M

HetE

HetE
MM

 

This equilibrium only exists for fitness values greater than or equal to 0.5.  The eigenvalues are 

0 and HetEV ,2 .  This equilibrium is stable when it exists, except at the boundaries where the 

analysis is inconclusive. 

 

4. No non-Medea alleles. 

0
0
0

1,

,

=
=
=

+
=

++

++

+

S
D
D

V
V

D

M

HetE

HetE
MM

 

The eigenvalues are  0 and 
HetEV ,2

1 .  Therefore this equilibrium is stable for fitnesses greater 

than 0.5, and unstable for lower fitnesses; stability at the equality is inconclusive. 
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Chapter 4:  

Some strains of Drosophila show resistance to synthetic Medea 

 

Introduction: 

Medea successfully drives in the Hay lab stock (w1118) Drosophila melanogaster. There is 

at least one line (Medeamyd88-1) that drives perfectly.  That is, in over 12,000 progeny, a 

heterozygous female has never produced a fly without Medea (Chen, et al, 2007).  

However, the identical construct inserted at other locations in the genome is not as 

successful.  A large fraction of the offspring are Medea-bearing, but the drive is not 

100%.  Here we use 2 such lines (CC and FF).  Finally, the Hay lab has generated other 

versions of Medea with different miRNA toxins including dah (discontinuous actin 

hexagons) (unpublished data). 

 

While Medea elements do not have to have the property that heterozygous females 

produce only Medea offspring.  In the absence of fitness costs, if the Medea 

heterozygotes kill even a small fraction of their non-Medea progeny, Medea will spread 

(Wade and Beeman 1994, Ward and Su, unpublished). However, fitness costs lead to 

introduction thresholds (Wade and Beeman 1994) and residual non-Medea individuals in 

the population (Ward and Su, unpublished).  Genes that confer resistance to Medea, these 

will be selected for, and if fitness costs are high and/or resistance is high, Medea can be 

lost from the population (Ward and Su, unpublished).   
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If Medea elements are going to be used in mosquitoes, they will need to function in a 

variety of genetic backgrounds.  Because we have synthetic Medea in Drosophila, we can 

test whether our Medea lines can convert other drosophila strains.  This can give us 

confidence that the Medea elements are not specific to a particular genome.  However if 

our Medea lines do not drive in other genetic backgrounds, we need to revise our toxin-

antidote strategy. 

 

  

Materials and Methods. 

We obtained 20 strains of Drosophila from the Tucson Stock Center (now at UCSD).  

These are listed in Table 1.  These strains are globally diverse and hopefully represent 

geographic diversity.  We then crossed 6 individual male flies from these lines to our 

Medea lines and backcrossed 10 hybrid females individually into the wild strain.  Male 

progeny from this cross were scored by eye color.  Because the white gene (causes eyes 

to be red) is located on the X chromosome, and males get their X chromosome from their 

mother, half the males should get an X chromosome without the white gene.  The Medea 

element is marked with a white gene that does not express as strongly as the endogenous 

white gene, leading to orange eyes.  Because the Medea element is not on the X 

chromosome, it segregates independently the endogenous white gene.  If Medea 

functions, all progeny should have red or orange eyes.  If Medea does not drive, half the 

progeny will have red eyes, one quarter will have white and one quarter will have orange.  

See Figure 1 for a schematic.   
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Table 1: Location and time of collection for each fly line.  The number refers to the UCSD stock center 
number of the form 14021-0231.xx where xx is the number in the stock column.  Collection location is 
where the stock was taken and the date of collection, if known, is noted. 
 

Stock Collection Location        Date 

0 Hawaii 1955 
1 Peru 1956 
2 Micronesia  
3 Australia  
4 Malaysia 1962 
5 Guam 1968 
6 India 1968 
7 Taiwan  

14 Florida  
15 Brazil  
22 Mexico 2002 
23 Greece (Crete) 2002 
24 Congo 2003 
34 St. Kitts (Caribbean) 2005 
37 Arizona 2005 
47 Catalina Island 2006 
51 South Africa 2007 
53 Mauritius (East of 

Madagascar) 
2006 

55 Arkansas 2007 
56 Connecticut 2007 

 

 

Figure 1: Medea crosses.  This figure shows the crossing scheme to determine if Medea Medea works 
other strains.  Notice that if Medea fails to drive, the males will be at 2:1:1 red to orange to white ratio, but 
if it drives, the males will be at a 1:1 ratio. 
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Results and discussion: 

Several lines had to be excluded from our study.  Lines 0, 2 and 56 did not grow well in 

my hands.  Line 5 displayed evidence of hybrid digenesis and did not survive crosses.  

Line 23 died whenever it was placed on the carbon dioxide pad, possibly as a result of a 

sigma virus.  

 

Between ~300 and ~2500 flies were counted for each Medea and strain combination.  

The distribution of eye colors in the males is shown in Figure 2.  In dah, nearly all the 

lines show high levels of Medea drive, however, several show at least some resistance.  

Most of the wild strains show some resistance to myd88 based Medeas.  However, the 

position of the construct is important.  The myd88-1 has less resistance than the other two 

positions.  This is not surprising as CC and FF are known to not drive completely in 

w1118.  Some strains (such as 24) show relatively high levels of resistance in all lines.  

Others show resistance to cc and FF but not myd88-1.   
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Figure 2.  Medea’s ability to drive in various genetic backgrounds.  If Medea works perfectly, the expected 
ratio of eye color (red:orange:white) is 1:1:0, if it fails, it will be at 2:1:1.  The data that are missing simply 
mean those crosses were not set up due to time. 
 
Because all crosses were set up with single females, we looked for variation in resistance 

to Medea within strains.  If the resistance mechanism was not fixed in a strain, we would 

expect to see some crosses showing resistance to the Medea allele and other showing no 

resistance in a single strain.  Uniform low level resistance will often allow Medea to 

spread.  However, the presence, even at low levels of highly resistant alleles may cause 

Medea to be driven from a population.  Because of the large number of crosses, finding 

statistically significant variation is difficult.  However, in several cases one cross from 

line 34 would show no resistance and in other cases it showed resistance.  However, the 
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number of flies that did not show resistance was not high enough to exclude 1) 

contamination of the sample or 2) statistical chance. 

 

Only one mechanism of resistance was determined.  The target sites for the miRNAs 

were sequenced and, in line 34, there is a single base pair deletion in the first target site.  

The loss of that base seems to confer resistance even with a second functioning target 

site.  As the target sites are in the 5’UTR, it is not surprising that some polymorphisms 

occur.  Other lines did not show mutations in the target sites. 

 

Attempts to find other dominant resistant alleles were unsuccessful.  We used balancer 

chromosomes to move a single chromosomes from the wild strains into w1118 .   We then 

tested the resistance to Medea of these flies repeated the Medea crosses.  The only 

chromosome that we isolated for Medea resistance was chromosome 2 of line 34, the 

target site mutation.   

 

Resistance to Medea is common in wild strains of flies.  However, these were first 

generation elements, containing only 2 miRNAs.  Simply altering the gene that miRNA 

targets reduced the amount of natural resistance substantially; in fact in about 2/3 of the 

trials no resistance to Medeadah was noted.  Knowledge of Medeamyd88 resistance did not 

correlate with Medeadah resistance, indicating that use both dah and myd88 could be an 

effective strategy.  Resistance can be due to mutations in target sites, but other 

mechanisms must also be at work.  Both genomic position and identity of the target play 

roles in amount of resistance to Medea.  When releasing Medeas in the field, ensuring 
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that all miRNAs can function independently can help decrease resistance.  It will also be 

important to test Medea elements in local populations before releasing them into the wild. 
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Chapter 5: Conclusions 

 

Medea is a maternal effect selfish genetic element with attractive properties for use as a 

synthetic gene drive system for the control of insect-borne illness.  First, Medea elements can 

spread even if they confer a fitness cost to carriers. Second, under at least some conditions 

when Medea spreads it eliminates the non-Medea genotype from the population. Third, the 

synthetic form of Medea is the only gene drive mechanism that is both well understood at the 

molecular level, because it was designed with components of known behavior, and that has 

been demonstrated to drive population replacement. Finally, design considerations discussed 

by regarding ways to prevent recombinational separation of drive and disease refractoriness 

functions, to prevent selfish element spread in non-target species, and to carry out multiple 

cycles of population replacement, provide reasons to believe that the population genetic 

behavior of synthetic Medea elements can to some extent be controlled. Therefore, Medea is a 

logical target for concerted development efforts.  

 

Our data show de novo synthesis of a selfish genetic element able to drive itself into a 

population in a manner consistant with our modeling efforts without need for any data 

correction.  We extend out anaylsis with a deterministic model to show that Medea 

selfish genetic elements can drive rapid population replacement under a wide range of 

conditions, provided that they are introduced above a critical introduction frequency (or 

critical male introduction ratio), determined by the fitness costs associated with Medea. 

Our analysis highlights the importance of examining genotype frequencies as well as 

allele frequencies – an important point when working in systems that violate assumptions 
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of Hardy-Weinberg.  In this case, the eggs retain a “memory” of their maternal genotype.  

Other gene drive systems will have unique challenges in their models. 

 

A critical feature of Medea's potential as a drive mechanism, highlighted throughout this 

work, is that under all conditions in which spread occurs, even when Medea carries a 

fitness cost and non-Medea alleles remain in the population, non-Medea individuals are 

permanently eliminated from the population. In some cases, when autosomal Medea 

elements have a t1>0, or when Medea is located on the X, the non-Medea allele can also 

be eliminated from the population. The rate of Medea spread is a function of introduction 

ratio, fitness costs, and number of elements. Low fitness costs allow rapid spread at 

relatively low Medea/non-Medea male introduction ratios, while high fitness costs 

require higher introduction ratios in order for spread to occur quickly, or at all. The use of 

introduction strains that carry multiple copies of a particular element can further increase 

the rate of spread and allow the use of lower introduction ratios, though one element is 

likely to ultimately predominate within the population. In summary, the key to rapid 

population replacement with Medea is to have a high enough introduction ratio so that 

Medea-dependent killing of non-Medea alleles on a generation-by-generation basis, 

particularly for the early generations, is substantially greater than the coincident loss of 

fitness-compromised Medea alleles through natural selection. 

 

Practical population replacement requires that transgenic individuals be refractory to disease 

transmission for many generations. Medea elements that are autosomally linked with t1>0, or 

that are X-linked in a male heterogametic species (such as the malaria vector, Anopheles 
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gambiae) could be useful in this regard since having no non-Medea alleles in the population 

serves to maximize the number of genes for disease refractoriness in individual females in the 

population. These genes, because they are proposed not to confer a fitness benefit to carriers, 

will eventually undergo mutational decay. If such mutations result in a fitness increase to 

carriers (a loss of a fitness cost associated with their anti-disease function), and the non-Medea 

allele has a significant equilibrium frequency in the population, then insects permissive for 

disease transmission will appear. This appearance is delayed if each individual necessarily 

carries two Medea elements.  

 

The ability to eliminate a specific allele from the population also provides a basis from which 

to carry out modifications of a transgenic population. For example, the toxin component of the 

drive mechanism also does not provide a fitness benefit to the organisms in whose genomes it 

resides. Therefore, it too will eventually undergo mutational decay to inactivity, resulting in the 

appearance of antidote-only alleles. Pre-existing diversity and mutation within the pathogen 

population may also contribute to the emergence of pathogen populations resistant to first 

generation effectors. It is also possible, though probably unlikely, that the presence of specific 

effectors will facilitate the emergence of new pathogens and forms of disease. For all of these 

reasons, it is essential that strategies be available to remove first-generation elements from the 

population, replacing them with second-generation elements, if desired.  As discussed in Chen 

et al. (2007), second generation Medea elements can be generated that will spread at the 

expense of first generation elements, when both elements are located at the same chromosomal 

position. If second generation autosomal elements having t1>0 are used, or the elements are X-

linked, first generation elements can be eliminated from the population during this process. The 
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use of such second generation elements carries a price in that somewhat higher introduction 

frequencies are needed than with an autosomal Medea  element having t1=0. But given the 

importance that control over the fate of released transgenes is likely to have for the acceptance 

of population replacement as a viable strategy for disease prevention, this may be a small price 

to pay. This strategy does not restore the population to its pre-transgenic state, but it does 

provide a method for removing specific transgenes from the population.  

 

What are the contexts in which area-wide population replacement with Medea can realistically 

be carried out? Our results suggest that in order for Medea to drive rapid population 

replacement within 10-20 generations (roughly 1-2 years), Medea/non-Medea male 

introduction ratios of between 1:10 and 1:1 are needed, depending on the nature and size of 

fitness costs, and the number of elements carried in the introduction strain. These numbers 

represent optimistic estimates because they assume that Medea males are competitive with 

wild males. However, Medea male mating competitiveness may be decreased (thereby 

lowering the effective Medea/non-Medea male introduction ratio) through several mechanisms. 

For example, factory rearing can select for distinct mating and other life history traits that are 

maladaptive in the wild. The factory strain may also be partially reproductively isolated from 

the wild population of interest. It should be possible to remove some of these genetic barriers 

to male mating competitiveness and offspring fitness by introgressing Medea into the wild 

genetic background prior to, or during factory rearing. However, non-genetic fitness costs 

associated with factory rearing (food, stress associated with handling and distribution to sites 

of release) may still result in loss of male mating competitiveness. The importance of each of 
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these variables will need to be evaluated, ideally in field tests, before accurate estimates of 

Medea's ability to penetrate a specific population can be obtained.   

 

Wild populations of Aedes aegypti and some Anopheles species have been estimated to range 

from 10,000-20,000 adults per village. These sizes are small compared with those associated 

with classical sterile male release in other insects; 68,000 per week in the case of the screw 

worm fly, and ~109 in the case of ongoing Mediterranean fruit fly suppression programs. With 

respect to mosquitoes, weekly factory production of 1,000,000 Aedes aegypti could be 

achieved routinely in the 1960s. Large numbers of Anopheles males have also been produced 

in factory environments using mid-twentieth century technologies. In some contexts it may 

also be possible to take advantage of naturally-occurring changes in mosquito population size 

to provide an environment in which Medea can more easily gain a foothold within a 

population. For example, while wet season populations of Anopheles adults per village in Mali 

can reach ~15,000, in the dry season these populations consist of only 1,000-3,000 adults. 

These encouraging points notwithstanding, it is important to emphasize that area-wide 

population replacement remains a daunting task. Disease-endemic regions can be very large 

(thousands of square miles), and consist of many villages, requiring that the number of Medea 

males to be released be scaled accordingly. Modest migration rates can result in rapid spread of 

Medea in space (J. M. Marshall, C. M. Ward and J. T. Su, unpublished observations). 

However, if inter-village distances and other environmental obstacles are such that mosquito 

migration between villages is minimal, Medea will need to be introduced at many sites in order 

to create area-wide protection within a reasonable timeframe. These facts, coupled with the 

issues associated with factory rearing and distribution noted above, argue that a detailed 
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analysis of the local mosquito population, the environment, and the amount of resources 

available to raise and distribute Medea-bearing insects will need to be carried out before 

population replacement is attempted in any given area. Finally, we note that the models 

examined here make a number of assumptions: infinite population size, non-overlapping 

generations, no age structure within the population, random mating, and no migration. This 

kind of model is often used to gain basic insights into population genetic processes.  However, 

it provides only a qualitative snapshot of the conditions under which Medea can succeed in 

driving population replacement. It will be important to carry out more detailed modeling that 

takes account of the biology of specific pest species, stochasticity, as well as other variables 

that can influence rate of spread and functional lifetime in the wild. 

Finally, we note that while models are critical for understanding the dynamics of spread 

and estimating population sizes, they are not a substitute ofr laboratory efforts.  First, for 

pests such as mosquito species, there is little genetic or molecular information regarding 

genes and promoters used during oogenesis and early embryogenesis. This information is 

necessary for the creation of Medea elements and straightforward to generate, with the 

use of transcriptional profiling to identify appropriately expressed genes and transgenesis 

and RNA interference in adult females to identify those required for embryonic 

development, but it remains to be acquired. Finally, we must test any strains we develop 

in the lab with a variety of insects from the wild populations to ensure that those 

populations are not pre-adapted to be resistant to our engineered elements.  From rapid 

screening it appears that populations will have variable amounts of resistance to alleles.  

Encouragingly, even our first generation elements drove in many, mnay populations.  By 

increasing the number of target sites and selecting those targets to be in conserved 
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regions, we can create better candidate elements.  Ulitmately, field tests will be required. 

Although an understanding of the above issues is critical for the success of any 

population-replacement strategy, the problems are not intractable, as evidenced by past 

successes in controlling pests by means of sterile-male release and as implied by our 

growing understanding of mosquito population genetics, immunity, and ecology. 




