
Atmospheric Reactive Trace Gas Observations in Field and
Chamber Studies using CF3O

– Chemical Ionization Mass
Spectrometry

Thesis by

John D. Crounse

In Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

California Institute of Technology

Pasadena, California

2011

(Defended December 6, 2010)



ii

© 2011

John D. Crounse

All Rights Reserved



iii

To Kimberly and Leif, and to my Parents, Virginia and Robert



iv

Acknowledgments

I thank Prof. Paul Wennberg for countless ideas, discussions, and (seemingly) endless opportunities

for conducting exciting research throughout my time at Caltech, and for serving as my academic

and research advisor. It has been a very rewarding experience to work closely with Paul during my

graduate studies. In addition to being a brilliant scientist, Paul also takes a personal interest in the

well-being of his students. This has created an enjoyable and productive working environment.

I also express gratitude to Prof. Mitchio Okumura, Prof. Geoff Blake, and Prof. John Seinfeld

for their collaborations, insight, and direction, and also for serving as my thesis committee.

I fondly recall stimulating interactions with the diverse group of people with whom I have shared

office space during my time at Caltech: Drs. David Shuster, Julianne Fry, and Julie O’Leary, William

Amidon, as well as (future Drs.), Anna Beck, and Xavier Levine. The practice of having people with

widely diverse backgrounds sharing office space is, in my opinion, a very good thing.

I thank Dr. Coleen Roehl for her ready and willing support in wide ranging areas, includ-

ing custom chemical syntheses, chemical analyzes, ordering materials and chemicals, fabrication

of instrument cables and electronics boxes, and much help with packing and preparing for field

experiments. Without such assistance, this work would not be possible.

I must thank Sergey Nizkorodov, the leading postdoctoral scholar in the lab when I arrived, who

taught me much about experimental laboratory techniques, including the dangers of trapping ozone.

He is an exceptional scientist, and was a great mentor to me as a new graduate student.

A special thanks to Drs. Karena McKinney, David McCabe, Jason St. Clair, Andreas Kürten

and Melinda Beaver – postdoctoral scholars with whom I had the distinct pleasure of working closely

with in the development and field deployment of the CIMS instrumentation which forms the basis of

this research; and fellow graduate students Alan (#1) Kwan, Kathleen Spencer, and Fabien Paulot

– all of whom have shared in extensive field work and its associated joys and sorrows.

I have benefited greatly from working closely with fellow graduate student Fabien Paulot. I

have learned much from his insight into chemical reaction mechanisms. His exceeding computer



v

coding and chemical modeling (and Teflon bag making) abilities coupled with his zeal for complete

understanding have been a tremendous boon to myself and to the larger Wennberg group.

It has been very good to work closely with Jason St. Clair and Melinda Beaver. These recent

postdocs in the Wennberg group have taught me that in science, patience is a virtue. I have benefited

from Jason’s broad knowledge on all manner of things, and Melinda’s thoughtful insight.

David McCabe and I spent two very memorable field campaigns (INTEX-B and TC4) deploying

(and building) our instrumentation. While, at the time, these were quite stressful situations, now,

I have fond memories of these experiences. Amongst many other things, David taught me that

steadfast perseverance can overcome large obstacles.

Thanks also to the many experiences shared with fellow Wennbergers – Rebecca Washenfelder,

Yang Zhonghua, Julianne Fry, Gretchen Keppel-Aleks, and almost Wennbergers – Shabari Basu,

Kate Cambell, and Anna Beck. Also, thanks to Zsuzsa Marka and Yael Yavin for assistance in

getting our CIMS instruments ready for field operations.

I have had the pleasure of fruitful collaborations with Bob Yokelson (U. Montana, and co-workers)

on several projects relating to emissions from biomass burning and chemistry thereof. He has taught

me much about the atmospheric chemistry of forest fire emissions.

Many thanks to the members of the Seinfeld group Jesse Kroll, Sally Ng, Arthur Chan, Puneet

Chhabra, Beth Kautzman, Jason Surratt, Man Nin Chan, Christine Loza, and Lindsay Yee, with

whom we have worked with closely in carrying out the chamber experiments. Without the experi-

mental collaboration with the Seinfeld roof lab, much of the research reported in this thesis would

not have been possible.

I thank Jim Oliver (mechanical engineer), Norton Allen (software engineer), Ricardo Paniagua

(machinist), Joseph Haggerty (machinist), Michael Roy (machinist), Chris Baumgartner (electronics

engineer), Suresh Dhaniyala (aeronautical engineer), Urs Steiner (mass spectrometry expert, Varian

Inc.), Tommy Thompson (RF engineer), and Dave Tanner (CIMS expert) for their involvement in

design, and implementation/fabrication of the CIMS instruments, electronics, software, and hard-

ware required for the integration of these instruments onto research aircraft. These people do the real

work of transforming ideas into reality – without their support this science would not be possible.

I acknowledge financial support from the EPA – Science to Achieve Results (STAR) graduate

fellowship program (fellowship number FP916334), which provided stipend and tuition support for

three years of my graduate work.

I would also like to acknowledge my uncle, Ray Gustafson. Ray and I share a common interest



vi

in science and engineering. I have enjoyed our conversations about science and life in general. Our

interactions influenced my decision to study physical science, and I thank him for that.

Finally, I thank my wife, Kimberly, my son, Leif, and family who have encouraged and supported

me throughout my graduate work. You have endured the trials beside me, and for this I am

very thankful. My brother James, and sister-in-law Shallena, have provided local support and

encouragement during my graduate studies. It has been very nice to have family nearby during

this journey. My parents, Virginia and Robert Crounse, have nurtured my sense of curiosity since a

young age, placing a high value on education. They have continually provided material, emotional,

and spiritual support. For this I am eternally grateful.



vii

Abstract

This dissertation describes the development of chemical ionization mass spectrometry (CIMS) in-

strumentation and methods utilizing the CF3O
– reagent ion for the sensitive, specific, and direct

detection of many oxygenated volatile organic compounds (OVOC) and inorganic reactive trace gases

in the atmosphere. These species include HNO3, HONO, HO2NO2, SO2, HCN, H2O2, CH3OOH,

CH3C(O)OOH, HC(O)OH, CH3C(O)OH, HC(O)CH2OH, CH3C(O)CH2OH, organic hydroperox-

ides (ROOH), and many multifunctional species (e.g., hydroxynitrates, hydroxycarbonyls, hydroxy-

hydroperoxides, carbonylnitrates, carbonylhydroperoxides, etc.). CF3O
– tandem mass spectrome-

try (MSMS) is demonstrated to be useful for distinguishing and individual quantification of certain

isobaric compounds, as well as solving instrumental background problems for certain species. This

technology is applied in field studies conducted from aircraft and ground-based platforms and to

chamber studies investigating VOC oxidation and organic aerosol formation mechanisms. Com-

parisons with simultaneous observations from other instrumentation for several species show good

agreement with CIMS observations.

CF3O
– -CIMS observations of HCN (a biomass burning tracer) from aircraft are used to quantify

the impact of biomass burning emissions to the Mexico City region in March 2006. Biomass burning

emissions are shown to contribute significantly to a number of gas and aerosol phase pollutants

even in the midst of the large anthropogenic pollution emissions from Mexico City. The analysis of

the photochemical aging of a fire plume over the Yucatan Peninsula (March 2006) is also reported.

Observations indicate intense chemistry occurring within the fire plume evidenced by high OH levels,

fast production of H2O2 and conversion of NO and NO2 (NOx) into peroxyacetylnitrate (PAN) and

aerosol nitrate. This rapid chemistry is likely driven by photolysis of HONO, which is observed to

be emitted in high amounts from these fires.

The CIMS methods are applied to studies of VOC oxidation and organic aerosol formation

conducted in chamber experiments. Specifically, new insights gained from the study of isoprene

oxidation under high and low NOx conditions are reported. We quantify the formation of small
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carboxylic acids as well as C5-nitrates from the oxidation of isoprene under high NOx conditions.

Under low NOx conditions, we show that C5-hydroxyhydroperoxides are formed in high yield. Sub-

sequent oxidation of these hydroxyhydroperoxides is shown to occur through a unique HOx neutral

mechanism that generates C5-epoxydiols, a likely precursor to organic aerosol.

We utilize the high sensitivity and specificity of CF3O
– -CIMS to study novel intermolecular

hydrogen-shift isomerization processes in peroxy radicals formed during isoprene oxidation. We find

these rates to be substantially slower than recent theoretical predictions; however, we find these

isomerization rates to be fast enough to be important for atmospheric isoprene oxidation in regions

where RO2 lifetimes become long. Globally, we estimate 8-11% of isoprene peroxy radicals react

through 1,6-H-shift isomerization reactions.
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1.1 Overview

Atmospheric chemistry research encompases the study of the composition of and the chemical re-

actions occurring within and at the interfaces of planetary atmospheres. For more than the past

half century, extensive work in this field has resulted in a substantial body of knowledge about the

composition and chemistry of Earth’s atmosphere, and, in particular, how both are impacted by

natural and anthropogenic activities or processes. Still, there remain significant gaps in our under-

standing. Specifically, mechanisms for the gas-phase degradation of certain larger (i.e., C≥4) volatile

organic compounds (VOC) under low to moderate nitric oxide (NO) conditions (relevant for much

of Earth’s atmosphere) are poorly understood. Also, the mechanistic understanding of secondary

organic aerosol (SOA) formation from the oxidation of VOC remains elusive. In many cases, the

uncertainties in the gas-phase oxidation processes of VOC are directly related to uncertainties in

SOA formation mechanisms. These uncertainties translate into incomplete understanding of ozone

and organic aerosol production degrading our ability to improve air quality. From the perspective of

climate change these uncertainties also influence our understanding of Earth’s global radiative forc-

ing budget and hence our predictions of future climate. The reduction of some of these uncertainties

has been the goal of this thesis.

The gas-phase photooxidation of VOC in Earth’s atmosphere result eventually in either con-

version of the constituent carbon and hydrogen atoms into CO2 and H2O, respectively, or the loss

of some intermediate product(s) to the surface by wet or dry deposition. This oxidation process

can involve various oxidants (for most VOC, OH radical is dominant), many oxidation steps, and

numerous intermediate products for each VOC.

The intermediate oxygenated volatile organic compounds (OVOC) produced in the oxidation of

VOC are often multifunctional and, depending on their size and volatility, can partition to aerosol

and participate in heterogeneous chemistry. Continued oxidation of OVOC generally result in more

highly oxidized species. Corresponding vapor pressures for the OVOC intermediates either decrease

as compounds become larger and/or more functionalized, or increase if fragmentation via C-C bond

scission occurs (Kroll and Seinfeld, 2008; Kroll et al., 2009). For a given parent VOC, the combination

of these processes (functionalization and fragmentation) often leads to minimum in OVOC volatilities

at some intermediate oxidation step. Thus it is logical to expect these intermediate OVOC to play

an important role in SOA formation.

The detection and quantification of gas-phase OVOC through traditional analytical methods

(e.g., gas chromatography (GC), high performance liquid chromatography (HPLC), derivatization-
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HPLC, Fourier transform spectroscopy (FTS), mass spectrometry (MS), and combination thereof)

poses substantial analytical challenges. As noted above, many OVOC contain multiple functionali-

ties, including hydroxy, hydroperoxy, nitrooxy, carbonyl, acid, and peracid groups. These compounds

often tend to be quite reactive (even unstable), such that collection in the condensed phase, or even

gas-phase exposure to GC columns result in irreversible loss and often conversion to other species.

Spectroscopic detection methods (e.g., FTS) while having the benefits of being very specific and

not requiring significant sample handling, are generally less sensitive and thus require high ana-

lyte concentrations (or very long pathlengths) to achieve reasonable signal-to-noise levels as well as

quality reference spectra for product identification and quantification. Futhermore, such reference

spectra are generally not available for more complex OVOC. MS, while very sensitive and requiring

little sample handling (if used alone), is generally not very specific. Traditional ionization methods

(electron impact ionization (EI)) involve high ionization energies, which usually result in substantial

fragmentation of the analyte species. The lack of sensitive, specific, and quantitative methods for

detecting and monitoring these reactive intermediate OVOC species is a major impediment to the

reduction in uncertainties related to atmospheric VOC oxidation and SOA formation mechanisms.

The focus of this thesis is the development and application of advanced mass spectrometry in-

strumentation capable of sensitive, specific, and quantitative detection of many reactive intermediate

OVOC (and other important inorganic photochemical species). As summarized below, chapters 2

and 3 describe the development of the chemical ionization mass spectrometry (CIMS) instruments

used in this work. Chapters 4 and 5 discuss the deployment of these instruments on research aircraft

for making observations of trace gases in the atmosphere, particularly focusing on the importance

of emissions from biomass burning (BB) to atmospheric chemistry and composition. Finally, Chap-

ters 6, 7, and 8 discuss the application of this technology to environmental chamber studies for the

detection of reactive OVOC intermediates formed during the oxidation of biogenic VOC illustrating

how such OVOC detection enables elucidation of VOC oxidation and SOA formation mechanisms.

1.2 Instrumentation

Chemical ionization mass spectrometry (CIMS) differs from traditional electron impact ionization

mass spectrometry (EI-MS) in that the neutral analyte is ionized through reaction with an ionized

atomic or molecular species, generally termed reagent ion. The reaction energy for these ion – neu-

tral molecule reactions is substantially less than that required for electron impact ionization. This

typically results in the ionization of neutral species with no (or little) fragmentation – markedly
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different from electron impact ionization. Given this, chemical ionization typically allows for much

greater specificity in the detection of neutral species than does electron impact ionization. However,

the choice of reagent ion often limits the species that can be detected and the environments within

which they can be detected due to the reactivities (or lack thereof) of the reagent ion with the

analyte of interest and with other gases that may be present (e.g. O3, H2O, etc). Owing to the high

sensitivity inherent in MS techniques, and high specificity achieved through soft ionization, CIMS

methods can quantify trace gases directly in ambient air (providing the reagent ion is unreactive to

the major atmospheric gases) often with detection limits of a few 10’s of pptv for sub-second integra-

tion periods. In recent years CIMS methods (including proton-transfer-reaction mass spectrometry

(PTR-MS)) have been shown to be very powerful tools for quantifying trace gases in Earth’s atmo-

sphere (Viggiano (1993); Huey (2007); de Gouw and Warneke (2007), and references contained

within).

Chapters 2 and 3 describe two chemical ionization mass spectrometry (CIMS) instruments and

methodologies which have been developed as part of this thesis. Both instruments utilize CF3O
–

ion chemistry, differing only in the ion mass filtering part of the instruments. CF3O
– has proven to

be a very special reagent ion with many applications for monitoring in situ atmospheric trace gases

due to its low reactivity with O3 and H2O and its high reactivity with many atmospheric species

of interest. The ion chemistry of CF3O
– has been investigated previously in the laboratory for

potential detection of several inorganic and small organic acids (Huey et al., 1996; Amelynck et al.,

2000a,b). Prior to this work, however, CF3O
– has not seen extensive application.

Chapter 2 describes the first instrument (as deployed on the NASA DC-8 aircraft for the INTEX-

NA experiment) referred to here as the single quadrupole instrument. This instrument was originally

constructed to fly aboard the NASA ER-2 aircraft and did so during the SOLVE campaign measur-

ing HNO3 in both the gas and particle phase. In 2003 this instrument was overhauled and fitted for

deployment on the NASA DC-8. Along with refitting the instrument to the DC-8, the instrumen-

tal sensitivity was improved and the suite of detectable species was broadened. In particular, the

discovery of CF3O
– clustering chemistry with H2O2, PAA, and other hydroperoxides was an impor-

tant step for continued field deployment of this instrument. The single quadrupole instrument was

deployed on the NASA DC-8 aircraft during the Intercontinental Chemical Transport Experiment –

North America (INTEX-NA) in the summer of 2004. CIMS observations of HNO3, H2O2, HCN and

peroxyacetic acid (CH3C(O)OOH, PAA) were reported for this mission. Comparisons with NO –
3

observations from a mist chamber instrument (http://www-air.larc.nasa.gov/TAbMEP2_icartt.html)
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and HPLC-derivative-fluorescence observations of H2O2 and PAA (Chapter 2) were possible through-

out the entire campaign as all instruments were located on the same platform. In general, the com-

parisons were quite good, demonstrating the ability of this CIMS technique to make robust trace gas

observations from aircraft platforms. PAA was shown to be ubiquitous throughout the troposphere

often present at levels exceeding 100 pptv during the INTEX-NA campaign. Observations of methyl

hydrogen peroxide (MHP, CH3OOH) while demonstrated in the laboratory under dry conditions

were not possible in the field due to interferences present under humid conditions at the cluster ion

detection mass (m/z = 133).

Chapter 3 describes a second CIMS instrument consisting of a modified commercial instru-

ment (Varian triple quadrupole), and differing from the single quadrupole in that it contains three

quadrupole ion guides, allowing for tandem mass spectrometry (MSMS). The primary motivation

for the development of this instrument was the inability to detect MHP with the single quadrupole

instrument due to background interferences. MSMS provides a viable method for the separation of

isobaric ions so long as the fragment ion spectra produced under the collision induced dissociation

(CID) of parent ions are distinct. For the MHP product ion and isobaric background ions this is

indeed the case, such that MSMS-MHP has virtually no instrumental backgrounds. This has been

demonstrated through the in situ observations of MHP, which have been reported for subsequent

field campaigns (the second part of INTEX-B, TC4, and ARCTAS).

The added benefits that MSMS brings to CF3O
– ion chemistry have only just begun to be

exploited. Chapter 7 describes the separation and quantification of isobaric hydroxyhydroperoxides

and dihydroxyepoxides that are formed in the oxidation of isoprene. It also describes a characteristic

daughter ion (m/z = 63) that appears to be to originate from clusters of CF3O
– with hydroperoxide

compounds, but not other multifunctional compounds (i.e., hydroxycarbonyls, hydroxynitrates, etc.)

This instrument also has the ability to switch rapidly between negative ion mode (CF3O
– chem-

istry) and positive ion mode (H+·(H2O)n chemistry (PTR-MS)). The PTR-MS ion chemistry allows

for detection of simple alcohols, carbonyls, and other VOC compounds that are not detectable using

CF3O
– ion chemistry. PTR-MS mode has not been used in field experiments due to the need to

generate quasi-continuous data for species observed in negative ion mode, but has been used success-

fully in chamber studies, where analyte concentrations change slowly enough to allow for switching

between negative and positive modes.

The combination of MSMS–CF3O
– ion chemistry and positive ion chemistry make the triple

quadrupole instrument a very powerful tool for the investigation of oxidation mechanisms of VOC.
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1.3 Field observations of biomass burning emmisions

Emissions from the combustion of non-fossilized vegetative material often termed biomass burning

(BB) are estimated to comprise the largest source of carbon-containing aerosol particles and the

second largest source of atmospheric trace gasses to the atmosphere (Andreae and Merlet, 2001;

Bond et al., 2004; Guenther et al., 2006). The photochemistry within these BB plumes can be quite

intense due to high concentrations of reactive species and seemingly ample sources of oxidant. Much

is still unknown about the chemical composition and chemistry of BB plumes with only ∼50% of

the carbon being identified as specific species. The unidentified fraction is thought to consist of

primarily of high molecular weight OVOC species.

Chapters 4 and 5 report findings from the analysis of data collected during the Megacity Initiative:

Local and Global Research Observations (MILAGRO) science campaign, conducted in March 2006.

The MILAGRO campaign involved a very large number of scientists and instruments operating from

several ground locations and a number of airborne (aircraft and balloon) platforms in and around

Mexico City. The primary goal of this research intensive was to characterize the emissions from

a mega-city and monitor the photochemical aging of these emissions as they are transported away

from the city to the regional and global scales.

The two Caltech CIMS instruments operated from the NSF/NCAR C-130 aircraft, which was

stationed in Veracruz, Mexico. The C-130 made 12 local sorties from Veracruz, most of which aimed

at intercepting the Mexico City plume at various distances from the city. One flight targeted the

emissions from large fires burning on the Yucatan Peninsula. Chemical species monitored by the

CIMS instruments for this research campaign include: HNO3, peroxynitric acid (PNA, HO2NO2),

HONO , SO2, HCN, H2O2, peroxyacetic acid (PAA, CH3C(O)OOH), and formic (HC(O)OH), acetic

(CH3C(O)OH), and propionic (CH3CH2C(O)OH) acids.

Elevated levels of HCN, a tracer for BB emissions (Li et al., 2000), were observed over the entire

Mexico City region for much of this research campaign. Using HCN and acetylene (C2H2) as biomass

burning and urban emissions tracers, respectively, Chapter 4 describes an analysis of the impact of

biomass burning emissions within the Mexico City region during March 2006. From the tracer

analysis of the aircraft data we estimate that biomass burning contributed approximately 1/3 of the

elevated CO, benzene (C6H6), and NOy. Such emissions we associate with 2/3 of the organic aerosol

(OA), and sub-micron scattering. Fire season in the Mexico City region generally intensifies from

March–June, peaking in May. Fires during March 2006 were closer to the climatological average for

the month of May. The fire impact inferred from ground-based observations within Mexico City are
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somewhat smaller than those determined from the aircraft data (Molina et al., 2007; Bravo et al.,

2002; Salcedo et al., 2006; Yokelson et al., 2007b; Stone et al., 2008; Moffet et al., 2008; Aiken et al.,

2009, 2010; DeCarlo et al., 2010). This effect is likely due to the separation of sources, with fires

occurring primarily on the sides of the mountains surrounding Mexico City, and the anthropogenic

emissions occurring predominantly on the basin floor within Mexico City. Even so, biomass burning

emissions during fire season substantially impact pollution and visibility levels in and around Mexico

City in spite of large anthropogenic pollution emissions.

Chapter 5 reports emissions for a large number of species observed from the Yucatan fires during

March 2006. These emissions were observed by instrumentation located on two aircraft platforms,

the NSF C-130 and the University of Montana/US Forest Service Twin Otter. Emission ratios

(relative to CO) are reported for several species which have never (or rarely) been measured from

fires previously, including: OH, PAA, propionic acid, H2O2, methane sulfonic acid, and sulfuric

acid. Also reported is a rare study of the photochemical aging of a fire plume. The C-130 aircraft

flew inside of the fire plume downwind from the fire, sampling the aged BB emissions. Rapid

production of several species, including H2O2, O3, PAN, organic and inorganic aerosol – all indicate

intense photochemistry occurring within the plume. Of particular interest is the observation that

∆PM2.5/∆CO more than doubled over this time period. This fast photochemistry is likely fueled

by the photolysis HONO, which is emitted in large amounts (∼10% of NOy) from these fires. It

is now being recognized that HONO emissions from fire are generally abundant (3–30% of NOy)

(Trentmann et al., 2005; Keene et al., 2006; Yokelson et al., 2007a; Burling et al., 2010; Roberts et al.,

2010) and HONO photolysis is an important source of OH during the initial stages of photochemical

aging during daylight periods (Trentmann et al., 2005; Alvarado and Prinn, 2009).

1.4 Atmospheric oxidation mechanisms of biogenic compounds

Approximately 500 Tg of isoprene (C5H8, 2-methyl-1,3-butadiene) synthesized by plants are released

to the atmosphere each year (Guenther et al., 2006). This single emission dominates the release of

non-methane hydrocarbons (NMHC) to the atmosphere. Current research continues to reveal new

aspects of isoprene chemistry that have important implications for our understanding of Earth’s

atmospheric photochemistry and formation of secondary organic aerosol. Driven primarily by dis-

crepancies between observed and modeled OH levels under high isoprene conditions (Tan et al.,

2001; Thornton et al., 2002; Ren et al., 2008; Lelieveld et al., 2008), and by evidence that, in certain

regions of the atmosphere, a large fraction of the SOA is attributable to isoprene chemistry (Claeys
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et al., 2004; Surratt et al., 2006), the study of the atmospheric chemistry of isoprene through both

experimental and theoretical means is being revisited.

Chapter 6 details an in-depth analysis of the gas-phase products formed in the oxidation of

isoprene under high NOx conditions. Important findings include the observation of significant yields

for both formic and acetic acids, and an estimation for the yield of isoprene nitrates near the high

end of the range of previous determinations (∼12% molar yield). In addition we find that the C5-

isoprene nitrates have a short atmospheric lifetime and, upon oxidation, appear to recycle NOx with

substantial yield. Propanone nitrate was determined to be formed in the course of this chemistry

in ∼1% molar yield, and, due to its long lifetime, is likely to have the largest impact in terms of

atmospheric reactive nitrogen transport of all the isoprene nitrates.

A surprising and important discovery pertaining to low NOx isoprene oxidation is described in

Chapter 7. C5-hydroxyhydroperoxides are formed in high yield (>70%) as first generation products.

Through the combination of MSMS-CF3O
– ion chemistry and use of isotopically labeled oxidants,

we show that these C5-hydroxyhydroperoxides are catalytically converted (by the OH radical) to C5-

dihydroxyepoxides in high yield (>75%). This unique mechanism explains a portion (but not all) of

the modeled–versus–observed OH discrepancy described above. Several theoretical-based predictions

have been put forward which may help resolve more of the remaining discrepancy. Perhaps even more

important is the now experimentally confirmed (Surratt et al., 2010; Chan et al., 2010) prediction

that these dihydroxyepoxides should efficiently undergo heterogeneous reactive uptake to form C5-

tetrols and related species that have previously been shown to comprise a large fraction of SOA

attributed to isoprene under low-moderate NOx conditions (Claeys et al., 2004; Surratt et al., 2008).

Chapter 8 presents experimental constraints for the 1,6-H-shift isomerization rates of 1,4-OH-OO-

and 4,1-OH-OO-isoprene peroxy radicals. The isomerization rates are experimentally determined to

be ~50 times slower than the recent theoretical predictions of Peeters et al. (2009). Despite this

slow rate (k2951,6-isom = 0.002 s−1), this isomerization reaction is predicted to substantially impact

the atmospheric chemistry of isoprene (Archibald et al., 2010). The full impact on atmospheric

HOx levels is not yet known due to uncertainty in the fate of the isomerization products. The

rates for the 1,5-H-shifts (from alcohol) for 1,2-OH-OO and 4,3-OH-OO β-isoprene peroxy radicals,

also predicted through theoretical calculations by Peeters et al. (2009) and da Silva et al. (2010),

were not well-constrained through our experiments, but observations were consistent with the rate

calculated by da Silva et al. (2010) (k3181,5-isom = 0.005 s−1).
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Chapter 2

Measurement of gas-phase
hydroperoxides by chemical
ionization mass spectrometry∗

∗Reproduced with permission from “Measurement of Gas-Phase Hydroperoxides by Chemical Ionization Mass Spec-
trometry” by John D. Crounse, Karena A. McKinney, Alan J. Kwan, and Paul O. Wennberg, Analytical Chemistry,
2006, 78, 6726–6732. Copyright © 2006 by the American Chemical Society.
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2.1 Abstract

A new method for the detection of gas-phase hydroperoxides is described. The clustering chemistry

of CF3O− is exploited to produce speciated measurements of several hydroperoxides with high

sensitivity and fast time response. Correspondence of airborne observations made with this technique

and the established HPLC method is illustrated. CF3O− appears to be a highly versatile reagent

ion for measurements of both weak and strong acids in the atmosphere.

2.2 Introduction

Hydroperoxides (ROOHs) are important components of the Earth’s atmosphere. Depending on the

nature of R, they have widely varying atmospheric lifetimes and impacts. In general, the larger and

less polar organic hydroperoxides (e.g., R = CH3 or CH3CH2) can be transported by atmospheric

motion without significant loss to cloud. Thus, these compounds serve as reservoirs of HOx (OH

and HO2) whose subsequent photochemistry (photolysis or oxidation by OH) can release radicals,

oftentimes in areas distant from where they are initially formed. Such transport, for example, to the

upper troposphere, can significantly alter gas-phase oxidation rates and radical budgets (Wennberg

et al., 1998; Jaegle et al., 2000). Peroxides with high solubility (e.g., R = H, HOCH2) are often

lost by uptake onto aerosol and cloud droplets where they promote heterogeneous oxidation of many

compounds such as SO2 (Penkett et al., 1979) and may play a role in the formation of secondary

organic aerosol (Claeys et al., 2004).

Hydrogen peroxide, H2O2, is formed in the atmosphere almost exclusively through the self-

reaction of HO2:

HO2 + HO2 → H2O2 (R2.1)

Organic peroxides generally form in the atmosphere via OH mediated oxidation of saturated hydro-

carbons,

R−H + OH→ R·+ H2O (R2.2)

R·+ O2 + M→ RO2·+ M (R2.3)

RO2·+ HO2·→ROOH + O2 (R2.4)
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or unsaturated hydrocarbons,

(R1)(R2)C−−C(R3)(R4) + OH→(R1)(R2)C(OH)−C·(R3)(R4) (R2.5)

(R1)(R2)C(OH)−C·(R3)(R4) + O2 + M→(R1)(R2)C(OH)−C(R3)(R4)O2·+M (R2.6)

(R1)(R2)C(OH)−C(R3)(R4)O2·+ HO2·→(R1)(R2)C(OH)−C(R3)(R4)OOH + O2 (R2.7)

where R is an organic substituent (e.g., CH3), and R1−R4 are either H-atom or organic substituents.

Peroxides can also be produced by the ozonolysis of alkenes under high-humidity conditions (Gab

et al., 1995). Because RO2· reacts quickly with NO, the efficiency of peroxide formation tends to

decrease at high NOx, although in highly polluted environments, such as Mexico City, peroxides

are predicted to be highly elevated despite the high NOx due to very high hydrocarbon concentra-

tions (Madronich, 2005).

To date, most atmospheric peroxide measurements have required extensive sample handling (Kok

et al., 1989; Lee et al., 2000). Typically, sampled air is passed through water, stripping soluble

peroxides into the aqueous phase. The aqueous-phase peroxides are detected using a derivatiza-

tion/fluorescence technique, sometimes after separation by high-performance liquid chromatography

(HPLC) (Lee et al., 2000; Heikes et al., 1987; Penkett et al., 1995; Lee et al., 1995). While these

methods have been tested and refined for some time, they are limited by the solubility of ROOH,

potential artifacts from aqueous-phase chemistry, and the ability to separate and preserve ROOH on

the HPLC column. In addition, time response can be rather long (a few minutes). Direct measure-

ments of peroxides have been performed with tunable diode lasers, but these methods suffer from

poor sensitivity and “optical noise” effects (Slemr et al., 1986; Kormann et al., 2002).

Chemical ionization mass spectrometry (CIMS) has been shown to be a versatile and fast mea-

surement technique for a wide variety of atmospheric trace gases. Airplane measurements by CIMS

have focused on HNO3 (Fahey et al., 2001; Furutani and Akimoto, 2002; Miller et al., 2000; Neuman

et al., 2002; Zondlo et al., 2003; Marcy et al., 2005; Reiner et al., 1998), with some measurements

of peroxy radicals (Cantrell et al., 2003), SO2 (Miller et al., 2000; Reiner et al., 1998), HCN (Miller

et al., 2000; Viggiano et al., 2002), DMSO (Nowak et al., 2001), OH, H2SO4, and MSA (Mauldin

et al., 2003), and ClONO2 and HCl (Marcy et al., 2005), but the technique has also been explored for

a suite of other species including CH3COOH and HCOOH (Amelynck et al., 2000a), NH3 (Nowak

et al., 2002), and HNO4 (Slusher et al., 2001), using a wide range of ionization schemes and other

conditions. For many compounds, detection limits of 10 pptv can be obtained with subsecond inte-
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gration time. The fast response time allows for high temporal resolution, which is particularly useful

for airborne measurements.

To our knowledge, peroxides have been detected by CIMS on three occasions. H2O2 and

CH3OOH clusters with F – have been demonstrated in laboratory studies (Messer et al., 2000),

a cluster tentatively identified as CO –
3 ·H2O2 was observed in aircraft-borne observations over Ger-

many during a 1991 aircraft campaign aboard the DLR Falcon (Reiner et al., 1998), and a product

ion at 101 amu was assigned to isoprenehydroxy-hydroperoxides detected using a proton-transfer

reaction mass spectrometer, which made measurements over a tropical rain forest (Warneke et al.,

2001). In this paper, we describe the use of the negative ion cluster chemistry of CF3O
– , which

has previously been shown to be useful for measurement of inorganic and organic acids (Amelynck

et al., 2000b,a; Huey et al., 1996), for sensitive and selective airborne measurement of ROOH species

H2O2 and CH3C(O)OOH (peroxyacetic acid, PAA). We also report the results of an intercompari-

son between our technique and the established HPLC method (Lee et al., 1995) performed on the

NASA DC-8 during the Intercontinental Chemical Transport Experiment-North America (INTEX-

NA, summer 2004), which shows these two methods to be in good agreement.

2.3 Instrument description

The Caltech CIMS instrument was built in 1998 through a joint collaboration with the National

Center for Atmospheric Research (NCAR) to measure polar stratospheric HNO3 on the NASA ER2

aircraft (Fahey et al., 2001). It was retrofitted in 2003 to fly aboard the NASA DC-8 aircraft and the

suite of compounds quantified has been broadened. The instrument components, described below,

are depicted in Figure 2.1.

Ambient air is sampled through a custom, partially stopped, aluminum inlet (A and B in Figure

2.1), which directs a fraction of the flow perpendicularly toward the instrument and serves as a

virtual impactor to discriminate against particles of diameter > 0.3 µm from the sample flow.

Upon redirection, the sample air flows through a glass tube (C), coated with a thin layer of Teflon

(Fluoropel PFC 801A, Cytonix Corp.) to minimize surface hydrophilicity, which is particularly

problematic for HNO3. Wall effects are further mitigated because flow through the glass tube is fast

(40 m/s), and only the center of the flow passes through the adjustable aperture (G) into the ion

flow tube (J), while the rest is exhausted through the arms of the aluminum y-block (F).

The reagent ion is produced by flowing a 10 ppmv mixture of CF3OOCF3 in N2 at a rate of

400 standard cubic centimeters per minute (sccm) at 35 hPa total pressure through a cylindrical
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Figure 2.1 – Schematic of the Caltech CIMS instrument as utilized on the NASA DC-8.

ion source cup (M) lined with a nickel foil containing a layer of polonium-210 and sealed with a

gold coating (NRD LLC-initially 4.5 mCu activity). Polonium-210 ejects α particles, which start

the series of reactions leading to formation of CF3O
– :

210Po→ α+ 206Pb (R2.8)

α+ N2 → N+
2 + e− + α (R2.9)

e− + CF3OOCF3 → CF3O− + CF3O· (R2.10)

The CF3OOCF3 was prepared by Dr. Darryl DesMarteau of Clemson University. Careful storage

and handling of the CF3OOCF3 is required to produce a clean CF3O
– source. We highly recommend

use of an all-metal storage system. Small amounts of silicone from O-rings and grease in valves,

regulators, and tubing within the gas handling system lead to unacceptably high impurity ions such

as Si(CH3)3F
–
2 (m/z 111), Si(CH3)2F

–
3 (m/z 115), Si(CH3)F

–
4 (m/z 119), and SiF –

5 (m/z 123),

which presumably are ions formed from the reaction of CF3O
– with fluorinated silicon molecules

(Si(CH3)3F, Si(CH3)2F2, Si(CH3)F3, and SiF4, respectively). These fluorinated silicon molecules

seem to form through the reaction of CF3OOCF3 (or some degradation product thereof) with silicone
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present in the system. The removal of all silicone compounds from the system virtually eliminates

these impurities.

Transport of the ions out of the source is enhanced by applying an electric potential between

the source cup and the source cap (N). The cup and cap are typically held at –250 and –240 V,

respectively, with respect to the pinhole orifice plate (O). There is essentially no pressure drop

between the ion source and the ion/molecule reaction region (K) in the ion flow tube (J). As the

ions enter the ion-molecule reaction region, they are accelerated toward the pinhole, perpendicular

to the sample flow, by the electric field between the source cap and the pinhole orifice plate (100

V/cm). In this region, the ions react with trace gases in the sample air to form selective product ions

(described below in Ion Chemistry and Water Dependence). The adjustable orifice (G) is adjusted

using a computer-controlled stepper motor to maintain a constant flow tube pressure (35 hPa). A

critical orifice (L) located just after the ion-molecule reaction region ensures a constant mass flow

(2 L/min) through the flow tube. Temperature throughout the flow tube is close to 20°C but varies

somewhat with the temperature outside the aircraft and the temperature of the aircraft cabin.

The average ion-molecule reaction time in the flow tube is 1 ms. This is determined by monitoring

the ratio of [HF ·NO−3 ] to [CF3O−] as a function of [HNO3] and using the established rate constant

for the reaction HNO3 + CF3O− → HF ·NO−3 + CF2O (Amelynck et al., 2000a; Huey et al., 1996).

The reaction time estimated in this manner is somewhat longer than the transit time calculated for

an electric field of 100 V/cm over the flow tube diameter of 2.5 cm at 35 hPa, possibly due to the

non-uniform electric field produced across the flow tube.

After formation, the product ions are sampled into the high vacuum system through a 260 µm

pinhole on the orifice plate (O). They are then directed through lens 1 (P) and enter the octopole ion

guide (Q) composed of 0.635 cm (diameter) precision ground stainless steel rods arranged in a circle

with i.d. of 1.78 cm and held together by two Teflon mounting rings. The octopole power supply is

a simple resonant circuit, composed of an air core transformer whose primary is driven by switching

transistors. The power supply operates at 1.2 MHz and is tuned into resonance by adjusting the

frequency. The typical rf amplitude is 200 V peak to peak. The pinhole and lens 1 are normally

held at aircraft ground, while the octopole bias is set to +1.5 V to optimize ion throughput while

minimizing fragmentation of weakly bound clusters such as CF3O− · H2O2. The octopole chamber

is maintained at ∼ 10−3 hPa under the typical gas load (gas flow of 20 sccm at a flow tube pressure

of 35 hPa and 20°C) by turbopump 1 (R, Varian V-250).

As the ions exit the octopole, they pass through lens 2 (S), set at +18 V, into the quadrupole
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chamber. The quadrupole chamber is differentially pumped by a second turbopump (Y, Varian

V-250) to a pressure of 1× 10−5 hPa under gas load; this turbopump exhausts into the low-pressure

side of turbopump 1 to reduce power consumption and heat production. In the quadrupole chamber,

the ions pass through a series of four lenses (T-W) held at –40, +220, –100, and +30 V, respectively,

to focus and energetically prepare the ions for the mass filter (X), a commercial 19-mm quadrupole

(Extrel). The quadrupole power supply (QSC Systems) enables selective filtering of masses ranging

from 10 to 250 amu with unit mass resolution and consumes 30 W of power. The ions of a selected

mass exit the quadrupole, and are detected using a channel electron multiplier (Z, K&M 7550m)

operated in pulse counting mode with a preamp/discriminator (Amptek A-101) allowing for single

ion detection and count rates up to 4 MHz. All instrument control and data collection are conducted

with a PC-104 computer through data acquisition boards (Diamond Systems) running a real-time

operating system (QNX 4.25) using custom control software.

2.4 Ion chemistry and water dependence

In the first laboratory study of CF3O
– chemistry, Huey et al. identified fluoride ion transfer as

the primary reaction pathway of CF3O
– with strong acids, i.e., CF3O− + HX → HF · X− +

CF2O (Huey et al., 1996). Amelynck et al. later showed that for weaker acids, such as HC(O)OH and

CH3C(O)OH, CF3O− often reacts via clustering chemistry, i.e., CF3O−+HX→ CF3O− ·HX (Ame-

lynck et al., 2000a). While investigating the ion reaction chemistry of CF3O− with peroxynitric acid

(HNO4; which also reacts both by fluoride transfer and clustering), we discovered that CF3O−

clustered efficiently with H2O2, which is a reagent (and impurity) in the synthesis of HNO4. Fur-

ther experimentation with additional hydroperoxides (CH3OOH, CH3C(O)OOH, and HOCH2OOH)

showed that many other compounds of this type cluster efficiently with CF3O−.

The efficiency of the clustering of CF3O− with a particular ROOH is highly dependent on the

water vapor mixing ratio. To quantify this dependence in the laboratory, we introduced a known

quantity of ROOH into the flow tube and monitored instrument sensitivity as a function of flow

tube humidity, which we controlled.

H2O2 was introduced to the humidity-controlled flow tube by flowing dry N2 over urea hydrogen

peroxide (UHP) held at constant temperature. Constant outputs of other hydroperoxides came from

temperature-controlled diffusion vials. PAA and UHP are available commercially (Sigma-Aldrich)

while methyl hydrogen peroxide (MHP) (Vaghjiani and Ravishankara, 1989) and hydroxymethyl

hydrogen peroxide (HMHP) (Marklund, 1971) were synthesized in the laboratory, using established
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Figure 2.2 – Sensitivity to H2O2 (mass 119), dependent on water (stars, 10000 ppmv H2O; circles, 100
ppmv H2O) due to reduced sensitivity and increase in the background. For the mass scans illustrated
here, the H2O2 mixing ratio is 5000 (closed stars), 500 (closed circles), or < 50 pptv (open symbols).

methods. While we had no incidents, extreme care must be taken synthesizing these peroxides as

they have been know to explode unexpectedly.

We controlled the humidity with mass flow controllers, adjusting the proportion of water vapor

saturated air to dry zero air (Air Liquide) entering the flow tube. The saturated air was provided

by a series of two atmospheric pressure (1013 hPa) H2O bubblers submerged in a temperature-

controlled bath held at 40°C. After the second bubbler, the saturated air flowed through an orifice

to reduce the pressure and avoid water condensation in the flow tube, even at high water vapor

mixing ratios and reduced temperature. The measured rate of mass loss of the water in the double

bubbler system was consistent with complete saturation of the air exiting the bubbler.

Figure 2.2 illustrates mass scans in the region of the CF3O− · H2O2 cluster (m/z 119). At high

concentrations of H2O, the CF3O− is present as CF3O− ·H2O (m/z 103), CF3O− ·(H2O)2 (m/z 121),

and higher clusters–CF3O− · (H2O)n. This decreases the sensitivity to H2O2 (and other peroxides)

and increases the backgrounds due to the hydrolysis of CF3O− by H2O to F− · (H2O)n ions.

While the thermodynamics of the reaction mechanism are beyond the scope of this paper, the

following reactions are likely responsible for the changing sensitivity in response to varying [H2O]:

CF3O− + ROOH + M↔ CF3O− · ROOH + M (R2.11)
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CF3O− ·H2O + ROOH→ CF3O− · ROOH + H2O (R2.12)

CF3O− · ROOH + H2O→ CF3O− ·H2O + ROOH (R2.13)

For H2O2, R2.11 (forward) is somewhat slower than R2.12, so the sensitivity improves as [H2O]

increases to 0.1% before decreasing at higher water mixing ratios. For other peroxides (e.g., MHP),

the sensitivity decreases with increasing H2O for all H2O concentrations. The ratio of R2.13 to

R2.12 sets how quickly the sensitivity declines with [H2O]. For relatively strong clusters (e.g.,

CF3O− · H2O2 or CF3O− · PAA), the falloff is less steep than for weaker ones (e.g., CF3O− ·

CH3OOH or CF3O− ·CH3CH2OOH). Thus, for accurate quantification, each individual compound

must be calibrated separately; in addition, the curves shown in Figure 2.3 will be specific to the

conditions in the ion flow tube (pressure, temperature, interaction time). The heat of formation of

CF3O− ·H2O2 has not been measured, but the binding energy is greater than that of CF3O− ·H2O

(51 kJ mol−1 (Amelynck et al., 2000b)), as evidenced by reaction R2.12. Ab initio calculations and

thermodynamic discussions of the clustering chemistry will be addressed in a separate paper.

2.5 Field operation

2.5.1 Calibration

In addition to the laboratory calibrations, the instrument was calibrated hourly during flight using

standard additions of gas-phase H2O2, HNO3, HC(O)OH, and H3CC(O)OH to the flow tube. The

nitric acid and organic acid standards are isotopically labeled and evolve from permeation tubes held

at constant temperature (Washenfelder et al., 2003). The H2O2 calibration standard is produced

by flowing dry N2 over UHP held at a constant temperature of 0°C in a glass U-tube. At 0°C,

UHP has a H2O2 vapor pressure of 1.4 × 10−3 hPa (determined by collecting the output in water

and analyzing with a standard colorimetric technique (Bioxytech H2O2-560, Bio-Stat Research).

Maintaining the pressure (2000 hPa) and flow (80 sccm) constant, one produces a standard of 700

ppbv H2O2. A fraction of this flow (22 sccm) is injected into the flow tube and diluted by the either

scrubbed ambient air or zero air (1800 sccm) to give a concentration of 8 ppbv H2O2 in the ion flow

tube. This source produces a constant (±10%) mass flow of H2O2 over several months, without

need to refresh the UHP. The sensitivity for other species (e.g., HCN and PAA) was inferred from

laboratory determination of the relative calibration factors for these compounds compared to the

standards used in flight.
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Figure 2.3 – (Top) Mass 119 signal as a function of [H2O2] for several H2O concentrations: plus
[H2O]) 10 ppmv, square [H2O]) 1000 ppmv, circle [H2O]) 5000 ppmv, and triangle [H2O]) 10000 ppmv.
(Bottom) Normalized signal for mass 119 (solid-thick), 161 (dotted), 112 (dashed), 82 (dash-dot), and
mass 133 (solid-thin) signal as a function of [H2O], for a constant addition of H2O2, PAA, HCN, HNO3,
and MHP, respectively.
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2.5.2 Water sensitivity

Accounting for the change in sensitivity with variation in the water vapor mixing ratio is critical for

accurate measurements. During INTEX-NA, the ion flow tube air was essentially undiluted ambient

air. Water vapor mixing ratios varied from more than 3% to as low as 10 ppmv, resulting in very

large changes in the sensitivity for all analytes. We account for these changes in sensitivity by using

a combination of the periodic calibrations and measurements of the ambient H2O mixing ratio by a

separate instrument on the DC-8, the tunable diode laser hygrometer (Podolske et al., 2003). In the

future, we plan to use a 1:4 mix of ambient air to dry nitrogen to avoid H2O mixing ratios greater

than 1%. Above 1% humidity, we observe substantial hydrolysis of our reagent ion. The hydrolysis

of the reagent ion yields many product ions that clutter the mass spectrum.

2.5.3 Backgrounds

Even in the absence of analytes, ion signals are often present at masses of interest. These arise from

interferences from mass analogs as well as H2O clusters of other ions present in the flow. We use two

methods in flight to estimate these background signals. In the first, ambient air is “scrubbed” by

passing it through a two-stage filter composed of (1) alumina pellets coated with palladium (Sigma-

Aldrich) and (2) nylon wool coated with sodium bicarbonate before entering the flow tube. This

filter quantitatively removes H2O2 and organic peroxides (as well as most acids). In the second,

high-purity zero air from a cylinder (Air Liquide) is added to the flow tube instead of ambient air.

Neither method is ideal. Although the filter scrubs targeted analytes from the air, it may also scrub

the species which cause mass analog background signals. The bottled air measures the instrument

background signal but does not give any information about mass analog backgrounds in ambient

air. Also, both methods, generally, alter the humidity in the flow tube, which, as discussed above,

directly affects the sensitivity for these gases. Fortunately, for many analytes, including H2O2 and

PAA, these backgrounds tend to be relatively constant (at a given water vapor concentration). For

CH3OOH, backgrounds at mass 133 (Si(CH3) 2F−3 · H2O) coupled with low sensitivity due to high

water concentrations in the flow tube prevented us from making make usable measurements of this

compound during INTEX-NA (see Table 2.1, Supporting Information, for a summary of sensitivities

and backgrounds).
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2.5.4 Measurement of additional compounds using CF3O
−

In addition to its clustering with ROOH, CF3O− clusters efficiently with other compounds that

have historically been difficult to detect and quantify. During INTEX-NA, our instrument measured

HCN and HNO3 as well as H2O2 and PAA, while organic acids, though quantifiable in principle,

could not be measured effectively due to background issues. In addition, preliminary work in our

laboratory demonstrates that many of the products of isoprene oxidation can be measured with

high sensitivity using CF3O− clustering chemistry. These include isoprene-hydroxy-hydroperoxide,

isoprene-hydroxy-nitrate, and hydroxy-acetone. Additional laboratory tests have confirmed this

method to be sensitive for measuring compounds of the form RCH(OOH)CH2(OH), RC(O)CH2OH,

and RCH(ONO2)CH2OH. A paper describing these experiments on isoprene oxidation products will

be forthcoming.

2.6 Comparison with HPLC method

During the INTEX-NA field campaign, the CIMS instrument measured H2O2 and PAA with an

approximate 7 and 3% duty cycle, respectively. The remainder of the time the instrument measured

other compounds (e.g., HNO3 and HCN), backgrounds, standards, and the reagent ion and its water

clusters, which are necessary for data reduction. This field experiment provided over 28 h of direct

comparison of this new peroxide technique with observations from the University of Rhode Island

HPLC-fluorescence instrument (Lee et al., 1995). These flights spanned conditions from the polluted

boundary layer to the remote free troposphere and lower stratosphere.

Figure 2.4 shows the comparison for H2O2 and PAA from these two instruments. Overall,

agreement is quite good for both species. A total of 89 and 92% of the observations for H2O2 and

PAA, respectively, lie within experimental uncertainty. The correlation for the PAA comparison

(r2 = 0.60) is somewhat less than for H2O2 (r2 = 0.82), possibly due to the following: (1) There

were 45% fewer comparisons for PAA than H2O2. (2) The dynamic range was significantly smaller for

PAA than H2O2. (3) The HPLC detection limit was significantly higher for PAA than for H2O2. The

uncertainty in CIMS measurements during INTEX-NA were 35% for H2O2 and 35% for PAA and

are primarily determined by uncertainties in backgrounds and our water sensitivity determination.

Agreement at both low– and high–humidity demonstrates that our parametrization of the humidity

dependence of the instrument’s sensitivity is adequate for water mixing ratios ranging from less than

10 ppmv up to 2% (see Figure 2.5).
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Figure 2.4 – (Top) University of Rhode Island H2O2 vs. Caltech CIMS H2O2 both measured aboard
NASA DC-8 during INTEX-NA. A total of 89% of the measurements agree within uncertainties after
averaging the faster measurement to the slower time base for a total of 2793 comparable observations.
The dash-dot line is the Matlab robust fit (y = mx+b) to filtered data (+) with m = 0.98, b = 32 pptv,
and r2 = 0.82, and the dashed line is 1-1 line. Solid lines are error limits about dash-dot line. The
data were filtered (open circles, rejected [8%], plus symbols [+], accepted [91%]) using a first-derivative
cutoff (17 pptv/s) in the time domain for each set of data to remove outliers. The reasons for using
the derivative cutoff are 2-fold: (1) there are errors associated with averaging the fast time base to
the slower one, and these are more prevalent when the analyte concentration is changing rapidly, and
(2) the Caltech CIMS measurements occasionally were affected by short periods of electronic noise.
Both error sources are captured by the derivative cutoff. (Bottom) Same comparison as (A), but for
PAA measurements. A total of 92% of measurements lie within uncertainties for the 1504 comparable
observations. The first derivative cutoff (6 pptv/s) removed 1% of the data. Solid lines are error limits
about dash-dot line; the dash-dot line is Matlab robust fit (y = mx + b) to the filtered data (+) with
m = 0.69, b = 56 pptv, and r2 = 0.60. The dashed line is 1-1 line.
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Table 2.1 – Typical sensitivities and backgrounds for several hydroperoxides measured by the Caltech
CIMS at several water levels.

Sensitivity (cts s−1 pptv−1) Background (cts s−1)

Ambient [H2O] (ppmv) H2O2 PAA MHP H2O2 PAA MHP

102 15 15 12 120 80 640

103 25 17 4 400 120 1000

104 4 9 0.1 1000 200 1500

2.7 Conclusions and summary

CIMS using CF3O− as a reagent ion has been successfully demonstrated to measure hydroperoxides

H2O2 and PAA with good sensitivity (25 pptv for H2O2, 25 pptv for PAA) and time resolution (<

1 s). This fast technique will enhance studies of heterogeneous air masses and is particularly useful

for airborne sampling. High temporal resolution aircraft measurements of hydroperoxides will con-

tribute to the study of many important atmospheric processes including convective transport, cloud

processing, and aerosol aging. Further development of this method should increase its applicability

to other important compounds, such as CH3OOH, HMHP, and the products of isoprene oxidation.

2.8 Supporting information

As supporting information we present Table 2.1 containing information regarding the average sen-

sitivities and backgrounds for the CIMS technique at several water levels as well as Figure 2.5

showing the ratio of the URI(H2O2)/CIT(H2O2) measurements from INTEX-NA as a function of

water mixing ratio.

2.9 Acknowledgments

We thank Dan O’Sullivan, Julie Snow, Haiwei Shen, and Brian Heikes for allowing us to show

their H2O2 and PAA data prior to publication. We thank Norton Allen and James Oliver for their

assistance in the preparation of the CIMS instrument for the DC- 8. We thank Suresh Dhaniyala

for his assistance in the design of the inlet. Funding for this work was provided by a grant from

the National Aeronautics and Space Administration (NAG: NNG04GA59G). J. D. C. and A. J.

K. thank the EPA-STAR Fellowship Program (FP916334012) and the NSF Graduate Research

Fellowship program, respectively, for providing support. This work has not been formally reviewed



29

S-3 
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Figure 2.5 – Ratio of URI-H2O2/CIT-H2O2 as a function of water. The dash-dot line is robust fit to
data (m = 0.00, b = 1.07)
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Chapter 3

Chemical ionization tandem mass
spectrometer for the in situ
measurement of methyl hydrogen
peroxide∗

∗Reprinted with permission from “Chemical ionization tandem mass spectrometer for the in situ measurement
of methyl hydrogen peroxide” by Jason M. St. Clair, David C. McCabe, John D. Crounse, Urs Steiner, and Paul
O. Wennberg, Review of Scientific Instruments 81, 094102, 2010. Copyright © 2010 by the American Institute of
Physics.
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3.1 Abstract

A new approach for measuring gas-phase methyl hydrogen peroxide (MHP,CH3OOH) utilizing chem-

ical ionization mass spectrometry is presented. Tandem mass spectrometry is used to avoid mass

interferences that hindered previous attempts to measure atmospheric CH3OOH with CF3O− clus-

tering chemistry. CH3OOH has been successfully measured in situ using this technique during both

airborne and ground-based campaigns. The accuracy and precision for the MHP measurement are

a function of water vapor mixing ratio. Typical precision at 500 pptv MHP and 100 ppmv H2O is

80 pptv 2 sigma for a 1 s integration period. The accuracy at 100 ppmv H2O is estimated to be

better than 40%. Chemical ionization tandem mass spectrometry shows considerable promise for

the determination of in situ atmospheric trace gas mixing ratios where isobaric compounds or mass

interferences impede accurate measurements.

3.2 Introduction

Hydrogen peroxide (H2O2) and methyl hydrogen peroxide (MHP, CH3OOH) are the two most

abundant hydroperoxides in the troposphere. The formation of H2O2 and CH3OOH occurs via

reactions R3.1 and R3.2.

HO2 + HO2 → H2O2 + O2 (R3.1)

CH3O2 + HO2 → CH3OOH + O2 (R3.2)

Primary loss mechanisms for both hydroperoxides include photolysis and reaction with OH

H2O2 + hv → 2 OH (R3.3)

CH3OOH + hv → CH3O + OH (R3.4)

CH3O + O2 → CH2O + HO2 (R3.5)

H2O2 + OH→ HO2 + H2O (R3.6)

CH3OOH + OH→ CH3OO + H2O (R3.7)

CH3OOH + OH→ CH2O + OH + H2O(viaCH2OOH) (R3.8)
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H2O2 is also lost via wet and dry deposition (O’Sullivan et al., 1996; Valverde-Canossa et al.,

2006). The transport of H2O2 and CH3OOH and the subsequent release of HOx and CH2O (a HOx

precursor) necessitates the inclusion of hydroperoxides in HOx and O3 budgets, particularly for the

upper troposphere (UT) (Jacob et al., 1997; Prather and Jacob, 1997; Jaegle et al., 2001). Convective

systems rapidly transport boundary layer air up into the UT, affecting the chemical balance of the

UT through enhancements of photochemically active species, including hydroperoxides (Jaegle et al.,

2001; Barth et al., 2007). H2O2 has a higher removal rate via convective processing than CH3OOH

due to its much larger Henry’s Law coefficient 8.33 × 104 and 311 M atm−1, respectively, at 298

K (O’Sullivan et al., 1996). Consequently, an increase in CH3OOH relative to H2O2 can be used to

identify recent convective activity (Heikes et al., 1996; Cohan et al., 1999; Kim et al., 2002).

The most common technique for the measurement of atmospheric gas phase H2O2 and CH3OOH

involves transferring the hydroperoxides into the aqueous phase followed by chemical derivatization

and detection via fluorescence (Lee et al., 2000). Separation of the constituent hydroperoxides by

high-performance liquid chromatography is often performed on the aqueous sample before deriva-

tization. Drawbacks to the fluorescence technique include a slow instrumental time response often

minutes and the potential for interference from aqueous chemistry, e.g., hydroperoxide reaction with

SO2 (Lee et al., 2000). We have successfully utilized the chemical ionization mass spectrometry

(CIMS) for the in situ detection of H2O2 as described in Crounse et al. (2006) with an instrument

time response of 1 s and a possible data rate of 8 Hz or higher. The measurement of H2O2 and

other trace species by the Caltech single quadrupole CIMS instrument using CF3O
– negative ion

chemistry followed from previous works with similar ion chemistry (Huey et al., 1996; Amelynck

et al., 2000b,a). The negative ion cluster chemistry of CF3O
– with H2O2 provides a signal at a

mass-to-charge ratio m/z = 119, unencumbered by significant mass interferences. However, the de-

tection of CH3OOH by the same ion chemistry is complicated by a background signal at m/z = 133

that is unrelated to CH3OOH (Crounse et al., 2006).

We have developed a new CIMS instrument for the detection of CH3OOH and other trace species

that utilizes the same ion chemistry while being largely immune to mass interferences described

previously (Crounse et al., 2006). The new instrument employs tandem mass spectrometry MS to

differentiate isobaric ionized species by decomposing the parent ion into daughter fragments that

uniquely identify each species if their respective daughter ion spectra are distinct. The tandem

MS or triple quadrupole instrument has participated in three aircraft campaigns: aboard the NSF

C-130 during MILAGRO/INTEX-B in 2006, and aboard the NASA DC-8 during TC4 in 2007 and
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ARCTAS in 2008 see Fast et al. (2007), Toon et al. (2010), and Jacob et al. (2010), respectively,

for mission details. The tandem MS instrument also participated in the ground-based summer 2009

BEARPEX campaign. In this paper, we describe the tandem MS CIMS instrument as well as present

in situ data showing the benefit of tandem MS for the measurement of methyl hydrogen peroxide

by CIMS.

3.3 Instrument description

The Caltech triple quadrupole CIMS instrument consists of a custom chemical ionization source

coupled to the mass spectrometer from a commercial Varian 1200 GCMS system Palo Alto, CA. The

ion source and ion chemistry have been described previously for the Caltech single quadrupole CIMS

instrument (Crounse et al., 2006), so only a brief description is included below. The Varian 1200

contains three quadrupoles: two used for mass filtration and one for collision-induced dissociation.

The instrument can be operated in single MS or tandem MS (MSMS) mode, although in flight, it is

typically run only in MSMS mode due to the time required to switch between the two modes. The

instrument can also be operated in a positive ion mode similar to a proton transfer reaction mass

spectrometer, though this ability has only been exploited in the laboratory (Paulot et al., 2009b)

and not in field experiments.

A schematic of the Caltech triple quadrupole CIMS instrument is shown in Fig. 3.1. The DC-8

aircraft inlet is described in Crounse et al. (2006) and is shown schematically in Fig. 3.1 (A–C).

The triple quadrupole CIMS samples from one of the two bypass flows from the single quadrupole

instrument Y-block ( Crounse et al., 2006, Fig. 1D). From the Y-block, the flow travels through 1.57

m of 2.54 cm outer diameter OD Teflon perfluoroalkoxy polymer PFA tubing (Fig. 3.1, E) at a flow

of 10 standard liters per second to a T-block (Fig. 3.1, F) mounted atop the mass spectrometer.

The majority of the flow into the T-block exits as bypass flow through two ports on opposite sides of

the block, as only a small portion 600 standard cubic centimeters per minute SCCM is analytically

sampled. The sample flow enters the flow tube through an adjustable pinhole orifice plate (Fig.

3.1, G) that regulates the flow via software control of a stepper motor to maintain a constant 35

hPa pressure and approximately constant analytical sample mass flow in the flow tube. The 2.54

cm OD, 11.7 cm long glass flow tube (Fig. 3.1, H) connects the T-block to the ion source block,

delivering the sample flow to the ion/molecule reaction region (Fig. 3.1, J). The flow tube is coated

with a fluoropolymer (Fluoropel PFC 801A, Cytonix, Beltsville, MD) to minimize the wall uptake

and release of water and other analytes. The analytical flow is diluted 1:2 by the addition of a



38

G 

E 

H 

J 

L M 

Q1 

Q2 

Q3 R 
N2 / CF3OOCF3 in 

A    Tapered inlet shroud 

B    High flow, rear-cut inlet 

C    Wall of aircraft 

D    ‘Y-block’  

E    Teflon tubing  

F    ‘T-block’ 

G    Pressure control orifice 

H    Flow tube 

J    Ion – ambient molecule   

   reaction region 

K   CF3O
- source cup 

L   CF3O
- source lens 

M   350 µm orifice 

N   Ion lens 

O   Conical hexapole ion guide 

P   Ion lens 

Q1   1st quadrupole mass filter 

Q2   Quad ion guide / collision – 

  induced dissociation region 

Q3   2nd quadrupole mass filter 

R   electron multiplier  

N2 in 
(for CID)  

Tandem Mass Spectrometer 

To single  
quad CIMS 

A 
B 

Direction of flight 

Flow 

C 

D 

F 

K 
N P 

O 

Figure 3.1 – Triple quadrupole CIT CIMS instrument schematic aboard the NASA DC-8.

constant 1.2 standard liters per minute flow of ultrahigh purity (UHP) N2 on the low-pressure

side of the T-block. The decrease in water mixing ratio upon dilution improves the instrument

sensitivity for MHP, which exhibits monotonically decreasing sensitivity with increasing water and

decreases instrumental backgrounds from water clusters. Calibration gases are also introduced at the

lowpressure side of the T-block during calibration cycles. All flow controllers used in the instrument

are piezoelectricactuated with all-metal seals (HORIBA STEC, Austin, TX).

The reagent ion for the chemical ionization is produced by flowing 400 SCCM of 10 ppmv

CF3OOCF3 in UHP N2 into a cylindrical source cup (Fig. 3.1, K) lined with a foil containing

Po-210 (NRD LLC, 4.5 mCi). Alpha particles emitted by the Po-210 begin a series of reactions that

ultimately yield the reagent ion CF3O−. A 30 V potential between the source cup and source lens

(Fig. 3.1, L) accelerates CF3O− ions into the ion/molecule reaction region where they can react

with analytes. CH3OOH forms a cluster with the reagent ion

CF3O− + CH3OOH + M→ CF3O− · CH3OOH + M, (R3.9)

where M is a N2 or an O2 molecule. Typical voltages for the source cup and source lens are 330
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and 300 V, respectively, with the orifice into the mass spectrometer at 0 V. The potential between

the source lens and the orifice directs ions toward the orifice, moving the ions perpendicular to the

sample flow. Note that all voltages listed below are relative to ground rather than to adjacent ion

optics.

Product ions enter the mass spectrometer through the 350 µm orifice (Fig. 3.1, M), passing

through a lens (Fig. 3.1, N) before reaching the conical hexapole ion guide (Fig. 3.1, O). The lens

serves to shield the orifice from the hexapole and both the lens and the orifice are held at 0 V. The

hexapole is mounted in the chamber that originally housed the ionization source for the commercial

instrument. The conical hexapole is driven at 1.638 MHz by the radio frequency (RF) supply used

to operate the original hexapole ion guide in the Varian 1200 and typically is biased by +1.2 V.

The conical hexapole is composed of six 16.6 cm long conical stainless steel rods with end di-

ameters of 7.1 and 2.4 mm. The rods are arranged in a circular pattern that begins with an inner

diameter (ID) of 14.2 mm for the larger diameter rod ends near the lens. The ID of the hexapole

narrows to 4.8 mm at the smaller diameter rod ends. The ion beam exits the hexapole chamber

via a 4 mm aperture (Fig. 3.1, P), held at +2.4 V for m/z = 133 → m/z=85, as are all of the

subsequent ion optic voltages. The pressure in the hexapole chamber is typically 4.7× 10−3 hPa.

The first mass selection is performed by the first quadrupole mass filter (Fig. 3.1, Q1). Q1 is

usually set to a 0.7 amu full-width half maximum FWHM mass resolution with an average potential

of +3.4 V. Ions that are selected by Q1 pass through to the collision-induced dissociation CID

chamber (Fig. 3.1, Q2), consisting of a partially enclosed rf-only quadrupole with a small flow of N2

that yields a CID pressure of 2.7×10−3 hPa. Collisions of ions with N2 in Q2 cause fragmentation of

the analyte ions with the fragment yield dependent on the CID pressure and the collision energetics.

The third quadrupole (Fig. 3.1, Q3), with a typical mass resolution of 1.5 amu FWHM, filters for a

specific daughter ion produced by the CID. The voltage between Q1 and Q2 is adjusted to optimize

the yield of the desired daughter ion. In the case of CH3OOH, Q2 is set to +6.4 V. CID decomposes

the ion cluster

CF3O− · CH3OOH(m/z = 133) + M→ CF3O−(m/z = 85) + CH3OOH + M, (R3.10)

with Q3 passing m/z = 85 to the electron multiplier detector (Fig. 3.1, R). Q3 is held at +7.0 V and

the voltage across the electron multiplier is 2 kV. The pressure in the main chamber is 6.7 × 10−5

hPa while the CID gas is flowing. The pumping on the hexapole chamber and the main chamber is

performed by a split flow Edwards EXT200/200H turbomolecular pump (Tewksbury, MA).
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Data for the triple quadrupole CIMS instrument are collected on two computer systems. Control

and data collection for the mass spectrometer are conducted by the software provided by Varian,

along with supplemental scripts written in-house. Gas flows, ion source voltages, pump and valve

controls, and environmental parameters are controlled and recorded by a Diamond Systems Hercules

II (Mountain View, CA) running the QNX real-time operating system version 4.25 with custom

software. Communication between the two computer systems, necessary for synchronizing data

collection, is achieved via 3 bits from QNX to Windows that enable/disable MS data collection,

select source polarity, and select scan or hop mode for m/z selection; 2 bits from Windows to QNX

indicate the status of MS data collection.

3.4 Instrument operation

The data collection rate for a given m/z is dependent on the number of other masses monitored and

the amount of time spent on each mass. The time spent on a given mass varies from mass to mass,

between 0.125 and 1 s in multiples of 0.125 s, and was chosen in consideration of the signal to noise

ratio at that mass. For example, CH3OOH data might be collected for 1 s every 30 s. The base unit

of 0.125 s is arbitrary. It is important to note that data reported from instruments operated in this

manner contain no information about a given mass in the air sampled while the instrument is not

measuring that mass.

The electron multiplier in the Varian 1200 provides an analog signal to an analog-to-digital

converter ADC for data collection, in contrast to the single quadrupole CIMS instrument where the

electron multiplier is operated in pulse counting mode. Each 0.125 s segment is comprised of 1531

samples of the ADC one every 82 s, which are averaged to give the analog signal in millivolts. The

instrument requires the data to be collected over a scan, so the 1531 samples span a 0.1 amu Q3

window centered on the daughter m/z.

A software ion-counting method is used to improve the sensitivity of the instrument at low signal

levels. The signal for each of the 1531 samples is compared in the software to a preset threshold

and if the signal exceeds the threshold, then a count is recorded. The two subsequent samples are

ignored to avoid double-counting the same ion. The number of counts tallied over the 1531 samples

is recorded as the raw digital signal per 1/8 s. This digital signal and the analog signal are subjected

to postflight data processing before being combined into one data set, as described below.
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3.4.1 Backgrounds and in-flight calibrations

The measurement of MHP by single MS is hindered bym/z = 133 signal from ions (e.g., CF3CO−2 ·HF

and Si(CH3)2F−3 · H2O) that are produced in the ion source from impurities in the reagent gas

CF3OOCF3 flow. The measurement of MHP by tandem MS is largely immune from significant

instrumental backgrounds because the interfering ions do not yield m/z = 85 upon collision-induced

dissociation. Instrumental backgrounds are measured on a regular basis with a dry zero every 110

min and an ambient zero every 20 min. During a dry zero, the T-block orifice closes to end sampling

of ambient air and the dilution N2 flow is increased in compensation to maintain 35 hPa in the flow

tube. During the ambient zero, the balance of flow is instead provided with ambient air that is first

passed through a scrubber consisting of Pd-coated alumina pellets and an annular glass substrate

coated with NaHCO3. The scrubber quantitatively removes peroxides while passing H2O. In-flight

calibrations are typically performed every 45 min with an ambient zero flow and every 110 min

with a dry zero flow. The in-flight calibration system is described in Crounse et al. (2006). The

calibration species typically included are H2O2, CH3OOH, peroxyacetic acid CH3C(O)OOH, and

isotopically labeled nitric, formic, and acetic acids (Washenfelder et al., 2003).

3.5 Data analysis

The analog and the digital count data require postcollection processing before the data are analyzed.

A counting correction is applied to the digital count data to account for multiple ions arriving at

the detector within the same counting window. The analog signal is corrected for detector baseline

drift by subtracting a baseline from the analog data. The baseline is obtained by interpolating the

analog signal measured when the digital count rate is zero. The data carried forward in the analysis

are a combination of the analog and digital count data: digital count data are used up to 200 counts

per 1/8 s and the analog data are used when the count rate is higher. Data with 200 counts per 1/8

s are fit to a line and the slope is applied as a scaling factor to the higher-signal analog data before

combining the analog and digital data into a single data set, expressed as an ion count. Consecutive

1/8 s data points with the same m/z 8 data points for MHP are then averaged using the combined

analog/ digital data. As a consequence, all count rates presented for the tandem MS instrument are

in 1/8 s time units.

The data are normalized to the 13C reagent ion signal, taken as 13CF3O−(m/z = 86)+ 13CF3O− ·

H2O(m/z = 104). Signal levels at the 12C reagent ion masses (m/z = 85 and m/z = 103) are too
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high to safely measure without decreasing the detector gain. Typical rates for m/z = 86→ m/z=86

in dry air are 1500 cts per 1/8 s. Normalizing to the reagent ion signal is necessary to correct

for changes in reagent ion mixing ratio in the flow tube, as well as changes in instrumental ion

throughput (generally ≤±7%). “Normalized ion counts” refer to the data after this correction is

applied.

The periodic dry and ambient zero data are used to obtain a background signal for each analyte.

The approach used to obtain the background for a given species varies, depending on factors such

as the efficiency of the ambient scrubber in removing the species and whether the background signal

exhibits a water dependence. For MHP measured by tandem MS, the background signal is small

and stable enough that an interpolation of the zero data is sufficient to represent the instrument

background. After the background is subtracted, the water-dependent sensitivity curve for the

analyte is applied using the water cluster masses m/z = 104 and m/z = 121(12CF3O− · (H2O)2)

or the water measurement available for the flight (e.g., the NASA Langley Diode Laser Hygrometer

DLH (Podolske et al., 2003)), with a dilution factor applied to account for the decrease from ambient

to flow tube humidity. The calculated analyte flow tube mixing ratio is then corrected for dilution

to obtain the ambient mixing ratio.

3.6 Laboratory calibrations

Laboratory calibrations for CH3OOH and H2O2 are performed by introducing the output of a stable

peroxide source and measuring the ion signal as a function of flow tube water mixing ratio. Figure

3.2 shows the CH3OOH and H2O2 sensitivity curves for the tandem instrument, with ion signal

plotted as a function of flow tube water mixing ratio. The ion signal is shown normalized to the 13C

reagent ion signal as explained in Sec. 3.5. The details of the peroxide calibrations are enumerated in

Crounse et al. (2006). In-flight calibrations are performed using a temperature-controlled diffusion

vial as the CH3OOH source and urea hydrogen peroxide as the H2O2 source. The same peroxide

sources are used for laboratory calibrations. Additional laboratory calibrations for CH3OOH are

performed with a larger source consisting of CH3OOH in a 6.4 mm OD glass vial held at room

temperature. Dry N2 is passed over top of the vial and into a single pass optical cell for mixing ratio

determination by Fourier transform–IR absorption (Niki et al., 1983). The output of the optical

cell is then diluted and introduced into the CIMS flow tube. The output of all CH3OOH and H2O2

sources are determined by a colorimetric technique (Bioxytech H2O2-560, Bio-Stat Research).
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Figure 3.2 – Sensitivity curves for CH3OOH (m/z = 133→m/z = 85) dashed line and H2O2 (m/z =
119→m/z = 85) solid line as a function of the water mixing ratio in the instrument flow tube.

3.7 Field data

To illustrate the benefit of tandem MS in reducing signal backgrounds, Fig. 3.3 displays the m/z =

133 normalized ion counts from both Caltech CIMS instruments and MHP mixing ratios from

the tandem MS instrument for one flight April 19, 2008, during the spring ARCTAS campaign.

Figures 3.3(a) and 3.3(b) show the normalized counts for m/z = 133 (single quadrupole CIMS) and

m/z = 133→ m/z=85 (triple quadrupole CIMS), with the ambient data shown as the line and the

zeros shown as dark points (dry zero) and light points (ambient zero). The single quadrupole CIMS

collected data at m/z = 133 for 1/8 s every 15 s while the triple quadrupole CIMS collected data at

m/z = 133→ m/z=85 for 1 s every 8 s. The zeros for the single quadrupole CIMS are substantial in

comparison to the ambient data signal and they vary over the duration of the flight. The zeros for

the triple quadrupole CIMS instrument, in contrast, are consistently an order of magnitude lower

than the ambient data signal. The difference in the relative magnitude of the zeros for the two

instruments makes determining MHP mixing ratios straightforward for the triple quadrupole CIMS

and very difficult for the single quadrupole instrument. Triple quadrupole CIMS MHP data for the

flight, determined by subtraction of the zeros and application of the water-dependent sensitivity

curve, is also shown in Fig. 3.3 (c). Aircraft altitude is included for reference.
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thick line.
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3.8 Accuracy and precision

The uncertainty in the in situ measurement of MHP by the triple quadrupole CIMS instrument is

dominated by the uncertainty in the water-dependent sensitivity curve used to calculate MHP mixing

ratios. Uncertainty in the sensitivity curve is a combination of instrumental precision, accuracy in

the absolute quantification of the MHP calibration source, and accuracy in the quantification of the

water mixing ratio in the flow tube during calibration. At high flow tube water mixing ratios, the

sensitivity of the instrument to MHP is greatly diminished as seen in Fig. 3.2. The lower sensitivity

results in greater uncertainty in [CH3OOH]ambient at high water mixing ratios. Uncertainty in the

determination of the flow tube water mixing ratio, during both calibration and ambient air sampling,

contributes to the uncertainty in the MHP measurement because the instrument sensitivity to MHP

varies with water and any error in [H2O]flowtube results in an error in [CH3OOH]ambient. For the

ARCTAS campaign, we determined the 95% confidence interval measurement uncertainty to be the

following function of ambient H2O:

U95%(DLH) = 50 pptv +


0.40× [MHP] if 0≤DLH≤230 ppmv

−9.1+20.8×log10(DLH)
100 × [MHP] if DLH>230 ppmv,

(3.1)

where “DLH” is the ambient water mixing ratio in ppmv as measured by the DLH instrument. The

50 pptv term is included to account for the possible introduction of a bias by the subtraction of the

instrumental background and is only significant at low MHP mixing ratios. At higher MHP mixing

ratios, the uncertainty ranges from 40% to 80% at high water. Because the measurement uncertainty

is dominated by the accuracy, time-averaging data does not reduce the uncertainty. The precision

at 500 pptv MHP and 100 ppmv H2O is 80 pptv (2σ) for a 1 s integration period.

3.9 Conclusions

MHP can be quantified rapidly and precisely with CF3O
– CIMS using tandem MS to distinguish

MHP signal from mass interferences at m/z = 133. Like the single quadrupole CIMS instrument,

the tandem MS instrument possesses the high sensitivity and rapid time response that is necessary

for high spatial resolution in situ sampling from aircraft. In addition, the tandem MS instrument

opens up the possibility of measuring atmospheric species that are otherwise not measurable, either

by separating mass interferences, differentiating between isobaric compounds, or elucidating chem-
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ical structures by analyzing parent-daughter fragmentation patterns. The tandem MS instrument

achieves a typical precision of 80 pptv (2σ) at 500 pptv MHP and 100 ppmv H2O for a 1 s integration

period and a measurement accuracy better than 40% at 100 ppmv H2O.
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Chapter 4

Biomass burning and urban air
pollution over the Central Mexican
Plateau∗

∗Reproduced with permission from “Biomass burning and urban air pollution over the Central Mexican Plateau” by
J. D. Crounse, P. F. DeCarlo, D. R. Blake, L. K. Emmons, T. L. Campos, E. C. Apel, A. D. Clarke, A. J. Weinheimer,
D. C. McCabe, R. J. Yokelson, J. L. Jimenez, and P. O. Wennberg, Atmospheric Chemistry and Physics, 9, 4929–4944,
2009. Copyright © 2009 by the authors.
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4.1 Abstract

Observations during the 2006 dry season of highly elevated concentrations of cyanides in the atmo-

sphere above Mexico City (MC) and the surrounding plains demonstrate that biomass burning (BB)

significantly impacted air quality in the region. We find that during the period of our measurements,

fires contribute more than half of the organic aerosol mass and submicron aerosol scattering, and

one-third of the enhancement in benzene, reactive nitrogen, and carbon monoxide in the outflow

from the plateau. The combination of biomass burning and anthropogenic emissions will affect ozone

chemistry in the MC outflow.

4.2 Introduction

The 20 million (2005) inhabitants of Mexico City experience some of the worst air quality in the

world. The high population density coupled with the topography of the city (2200 m, surrounded

on three sides by mountains) leads to the daily buildup of pollutants in the region (Molina and

Molina, 2002). Despite growing population and greatly increased automobile use, air quality has

improved measurably in the last decade as the federal and city governments implemented a series

of air quality regulations broadly similar to those that have been effective in, for example, Los

Angeles (Lloyd, 1992). Nevertheless, ozone and particulate matter (PM) in the city often exceed

international standards (WHO, 2008) and the city is consistently enveloped in a pall by the large

amount of aerosol present.

The pollution from the city has impacts beyond the basin. Aerosols and ozone produce impor-

tant forcing on regional climate through their interaction with both thermal infrared and visible

radiation (Solomon et al., 2007). Indeed, the effluents from megacities, such as Mexico City, are now

seen as globally important sources of pollution.

In the last decade, there have been several intensive studies of the air quality in the Mexico

City basin. A major study undertaken in the Mexico City Metropolitan Area in spring of 2003

(MCMA-2003) included significant international cooperation (Molina et al., 2007). In the spring of

2006, a consortium of atmospheric scientists expanded significantly on this study, obtaining a large

suite of measurements in and around Mexico City in an effort to understand both the controlling

chemistry in the basin and the impacts of the outflow pollution on the broader region. Named

Megacity Initiative: Local and Global Research Observations (MILAGRO), this campaign involved

measurements at several ground sites along the most common outflow trajectory, and from several
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aircraft. The National Science Foundation (NSF) C-130 (operated by the National Center for Atmo-

spheric Research (NCAR)), and the US Forest Service Twin Otter, along with several other aircraft

operated from Veracruz, Mexico. Here, we focus on observations made from the C-130 aircraft on

seven flights above the Central Mexican Plateau. Details about the broader MILAGRO study are

reviewed by Fast et al. (2007).

Most efforts to engineer improvements in Mexico City air quality have logically focused on re-

ducing emissions from the transportation and power generation sectors (McKinley et al., 2005) and

on new liquefied petroleum gas (LPG) regulations. However, as in Los Angeles, as the emissions

from transportation and industrial sectors decline, continued improvement in air quality will require

addressing additional sources.

Biomass burning can be a significant contributor to poor air quality in many regions of the world,

including Southern California (Muhle et al., 2007). Several previous studies have suggested that

fires in and around the Mexico City basin can impact air quality (Molina et al., 2007; Bravo et al.,

2002; Salcedo et al., 2006). During the springtime (March–May), many fires occur in the pine forests

on the mountains surrounding the city, both inside and outside the basin. These fires are virtually

all of human origin. Primarily they originate from accidental means (escaped agricultural/land

maintenance fires, escaped campfires, smoking, fireworks, vehicles, etc.), with a smaller number

originating from intentional ignition (E. Alvarado, Univ. of Washington, personal communication,

2009). Typically, the biomass burning season intensifies in late March, reaching a maximum in

May (Fast et al., 2007; Bravo et al., 2002). The heat from these fires is observable from space by

the infrared channels of the moderate resolution imaging spectroradiometer (MODIS) instruments

operated from NASA’s Aqua and Terra platforms (Giglio et al., 2003). Figure 4.1, for example,

shows two visible images from MODIS taken on 5 March (panel a) and 10 March (panel b) 2006.

The locations of the detected thermal anomalies are shown as red boxes. The aerosol haze from

the fires can be seen covering large areas of land around and above MC, particularly on 5 March.

MODIS imagery suggests that the total biomass burning around MC in March 2006 was greater

than climatological amounts, and closer to what is normally observed during the month of April.

Using tracers of pollution from biomass burning and urban emissions, we show that fires signif-

icantly impacted air quality above and downwind of Mexico City in March 2006. We use aircraft

measurements of hydrogen cyanide (HCN) to estimate the contribution of biomass burning to the

regional air quality. HCN is produced in the pyrolysis of amino acids (Ratcliff et al., 1974) and has

been widely used as an atmospheric tracer of biomass burning emissions (e.g., Li et al., 2003). We
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Figure 4.1 – MODIS-Aqua images of the Mexico City basin on (a) 5 March 2006 at 13:35 CST and (b)
10 March 2006 at 13:55 CST, illustrate how large fires in the hillsides surrounding the city can impact
visibility. Red boxes are thermal anomalies detected by MODIS. Black lines represent Mexican state
boundaries. Images courtesy of MODIS Rapid Response Project at NASA/GSFC.

use simultaneous observations of acetylene (C2H2) to characterize the contribution of urban emis-

sions. We show that a simple two end-member mixing model (biomass burning and urban emissions)

developed from these tracers can explain most of the observed variability in several pollutants in-

cluding carbon monoxide, benzene, organic aerosol, reactive nitrogen oxides (NOy), and the amount

of submicron aerosol particles.

4.3 Observations

The NSF C-130 flew through the Mexico City region on eleven flights in March 2006 (Fig. 4.2).

Of these flights, three had fewer than ten samples of C2H2 within our study area (3×3 degree box

centered on MC, shown in Fig. 4.2 and termed Central Mexican Plateau) and one flight did not have

HCN observations. These flights are excluded from the calculation of the overall fire impact (4, 12,

26, and 28 March). In Fig. 4.2a, the aircraft flight tracks are colored by the average amount of HCN

measured in the air. Acetonitrile (CH3CN) mixing ratios, which also have been used extensively

as a biomass burning tracer, were highly correlated (r2=0.78) with overall regression slope of 0.39

(∆CH3CN/∆HCN) (Fig. 4.7), similar to several previous measurements of biomass burning emission

ratios (Yokelson et al., 2007a; Singh et al., 2003). The mean mixing ratio of HCN in the study area
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(seven flights considered, within the 3×3 degree box) was measured to be 530 pptv, about 390 pptv

higher than the background values observed in clean air encountered above the plateau pollution.

Figure 4.2b shows the C-130 flight tracks colored by the mixing ratio of C2H2. C2H2 is produced

in the combustion of both gasoline and diesel fuels. We chose C2H2 as our urban tracer because

its atmospheric lifetime is quite long. We calculate that with respect to its major loss mechanism

(reaction with the hydroxyl radical, OH), the atmospheric lifetime is ten days to two weeks in the

Mexico City region. We did not use other tracers of city emissions such as toluene or methyl tert-

butyl ether (MTBE) because their shorter atmospheric lifetimes complicate the regional analysis. In

fresh city plumes (as determined by the ratio of toluene to C2H2), all the urban tracers (e.g., C2H2,

MTBE, toluene) are highly correlated.

Although the regions of enhanced C2H2 and HCN appear geographically coincident in Fig. 4.2, the

sources of these gases within the basin are geographically (and temporally) distinct and significant

differences in their distribution can be observed on smaller spatial scales. This is illustrated in

Fig. 4.3a. On 8 March 2006, the C-130 flew into the Mexico City basin and over a short period

encountered air masses significantly enhanced in either HCN, C2H2, or both (panel a). Fig. 4.4

shows the flight track corresponding with data shown in Fig. 4.3 on top of the MODIS - Aqua image

for March 8th.

To quantify the contribution of both fire and urban emissions to the distribution of a trace gas

(or aerosol), Y , we implement a simple two end-member model using the measured excess HCN,

[HCN] *, and measured excess C2H2, [C2H2] *, as tracers:

Y = FY (fire)× [HCN]∗ + FY (urban)× [C2H2]∗ (4.1)

where,

[HCN]∗ = [HCN]− SHCN(urban)× [C2H2]∗ − [HCN]background (4.2)

[C2H2]∗ = [C2H2]− SC2H2
(fire)× [HCN]∗ − [C2H2]background (4.3)

FY are scalars that relate the emission of Y from fire and urban sources to the emissions of

HCN and C2H2, respectively (Table 4.1). SHCN and SC2H2
are the emission ratios of HCN to C2H2

and C2H2 to HCN for urban and fire emissions, respectively. These cross terms account for the

contribution of urban and fire emissions to the excess HCN and C2H2, respectively. We also account

for the amounts of these tracers advected into the region from afar (backgrounds).

We derive a set of emission ratios, FY , for the pollutants using total least squares (TLS) analysis
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Figure 4.2 – C-130 flight tracks during MILAGRO colored by tracers: (a) observed HCN–
HCNbackground, and (b) observed C2H2. The map has been divided into 0.2×0.2 degree pixels and
all observations from the C-130 across the MILAGRO campaign within a given pixel have been aver-
aged together. High-concentration data have been rounded down to capped values of 0.8 and 1.5 ppbv
for HCN and C2H2, respectively. Color scales range from 0 ppbv (dark blue) to the capped value (dark
red). The black star in each panel is the center of Mexico City, and the black box outlines the 3×3
degree box centered on Mexico City, which is the study area considered for the fire impact analysis.
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Figure 4.3 – Timeline from the flight of 8 March 2006: (a) measured HCN, C2H2, and radar alti-
tude. The observed (dots) and reconstructed (bars) CO, benzene, and organic aerosol concentrations,
are shown in panels (b–d), respectively. The bar widths represent the relative bottle sampling time
(width has been expanded by 3× for clarity). The measurements in panels (b–d) are colored by
[toluene]/[C2H2]

* with color scale ranging from red=1 to blue=0, and grey meaning data was unavail-
able for this calculation. Data points with black borders in panels (b–d) lie within the 3×3 degree
study area.
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Figure 4.4 – MODIS-Aqua image and C-130 flight track from March 8, 2006, as accompanyment to
Figure 4.3. Flight track is colored by aircraft radar altitude (altitude above the ground). Specific times
along the flight track are shown as red asterisks, and labeled as local time in hours (GMT-6). The blue
box encompasses the 3×3 degree study area.
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Table 4.1 – Anthropogenic and biomass burning emission ratios derived here (TLS) and those measured
directly in the Mexico City area.

Urban Biomass Burning

(∆[x]/∆[C2H2])a (∆[x]/∆[HCN])a

Species optb 29 March optb fire obs.d

CO 96±3
2 92 104±8

9 117

C6H6 0.137±0.005
0.005 0.13 0.19±0.01

0.01 –

NOy 4.3±0.3
0.3 3.7 5.4±1.0

1.0 7.1f

OA 3.9±1.0
0.6 2.9 22±4

4 14

scatteringe 22±4
3 22 75±6

7 78

HCN – 0.056c –1– –1–

C2H2 –1– –1– – 0.17

a Units are mol/mol, except for ∆OA/∆[y] and
∆[scattering]/∆[y], which have units of µg sm – 3

ppbv – 1 and Mm – 1 ppbv – 1, respectively.
b Calculated emission ratios determined from TLS anaylsis.
c An upper limit for how much HCN comes from urban emis-
sions in MC, derived from data collected from C-130 on 29
March 2007, a day with low BB influence. This factor is
not optimized.

d Median values for fires sampled by the Twin Otter around
Mexico City in March 2006 (Yokelson et al., 2007b).

e This refers to submicron scattering measured at 550 nm.
f This value is the NOx/HCN emission ratio, not NOy/HCN.
For this comparison we assume that in the fresh smoke
sampled by Yokelson et al. (2007b), NOx ≈ NOy.
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(Table 4.1). We weight [HCN] * and [C2H2] * by estimates of their error determined primarily from

uncertainties in the backgrounds and in the variability of the emission ratios. We estimate the

uncertainty in the derived emission ratios using a bootstrap method (Efron and Tibshirani, 1993).

The bootstrap method creates x alternate data sets by picking n random samples with replacement

from the original data set, where n equals the number of samples in the original data set. The TLS

analysis is then performed across all alternate data sets, and statistics are computed on the results of

all analyses. For this analysis we used x=1000. In Table 4.1, we also summarize the emission factors

determined independently from measurements made directly in biomass burning plumes measured

in the basin during MILAGRO.

Gasoline and diesel engine exhaust contain HCN, though previous measurements of the emissions

vary by orders of magnitude (Baum et al., 2007). Automobiles lacking catalytic converters can

produce 100 times more HCN than automobiles with functional catalysts (Baum et al., 2007; Harvey

et al., 1983). To estimate the appropriate emission ratio for Mexico City, SHCN, we use observations

made from the C-130 on 29 March when the C-130 sampled city emissions with what appears to be

minimal fire influence (Fast et al., 2007). The measured slope of HCN to C2H2 in the city plumes

encountered on this day is 0.056 (mol/mol). The ratio of CH3CN to HCN in the city emissions

is 0.5, similar to the ratio measured in both fire plumes and in the region as a whole. This is in

contrast to observations from Asia where urban emissions had a much lower ratio of CH3CN to

HCN (Li et al., 2003). Thus it is possible that even on the 29th, some of the HCN is from burning.

Given our cross term corrections, and assuming urban fire sources such as garbage, coal, and biofuel

burning was no different on 29 March than on other days, emissions from these urban fire sources

are counted as urban emissions and not as fire emissions. Using the 0.056 (mol/mol) as an upper

limit for the HCN/C2H2 emission ratio from urban emissions, we estimate that all urban emissions

of HCN account for no more than 15% of the total emissions in the basin during March 2006. Other

sources of HCN from, for example, coal burning and petrochemical industries are also estimated to

be small (see Section 4.6.2).

We use measurements of C2H2 and HCN observed in forest fires in and around Mexico City to

estimate SC2H2
(Yokelson et al., 2007b). The emission of C2H2 from these forest fires was near the

low end of the range typically observed for extratropical forest fires (Yokelson et al., 2007b; Andreae

and Merlet, 2001). We estimate that the contribution of biomass burning to C2H2 accounts for less

than 10% of the C2H2 in and around Mexico City (see Table 4.1).

To account for the background amounts of C2H2 and HCN advected into to the region, we use
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our observations in air sampled aloft, away from the Mexico City basin. We use separate HCN

and C2H2 backgrounds for the gas-phase species and for organic aerosol/scattering, as aerosols

have a more variable atmospheric lifetime. For the gas-phase species (CO, benzene, and NOy),

we use a constant value of 140 pptv for the background values of HCN for flights before 21

March. Following a shift in weather on 21–22 March (Fast et al., 2007) (see also Figs. 4.11–4.13,

and http://www.atmos-chem-phys.net/9/4929/2009/acp-9-4929-2009-supplement.pdf for higher res-

olution MODIS images), we find higher background concentrations for HCN (220 pptv). C2H2

backgrounds are quite small (0–30 pptv), so we have used a constant background value of 0 pptv for

the analysis of the gas phase species. For organic aerosol and scattering, we have used a flight-by-

flight analysis of the correlation of organic aerosol mass and scattering with HCN and C2H2 to define

the background HCN and C2H2. For flights in early March, the implied background of HCN and

C2H2 for organic aerosol (the abundance of these gases when the amount of organic aerosol is zero) is

very close to the global backgrounds used in the analysis of the gases, but following the rainy period,

20–26 March, the apparent backgrounds for both HCN and C2H2 increased more drastically than

for the gas phase pollutants; organic aerosol concentrations were near zero at significantly higher

concentrations of HCN and C2H2 (300 and 150 pptv, respectively). This difference is likely due to

removal of aerosol (but not insoluble gases such as HCN, CO, C2H2, etc.) in the region during the

rain storms.

The variance in the abundance of our fire and urban tracers (HCN and C2H2) explains most of

the variability in CO and other pollutants. For example, in panels b, c, and d of Fig. 4.3, we show the

observations (circles) for CO, benzene, and organic aerosol mass along the C-130 flight track. The

observations are averaged to the sampling time of the whole air samples used to determine C2H2.

The bars show the contributions from fire and urban emissions, estimated from [HCN] * (orange) and

acetylene, [C2H2] * (black) using the emission ratios described in Table 4.1 and the mixing model

described by Eq. (4.1).

Figure 4.5a shows a scatter plot of the predictions from the two component model and all obser-

vations (from all flights) made from the C-130 during MILAGRO for CO. The observations made

within the 3×3 degree box surrounding MC, during the seven flights considered in this analysis are

highlighted with a black border. CO has a relatively long lifetime in the atmosphere and there is a

persistent northern hemispheric background of between 60 and 150 ppbv that varies with season and

latitude. To estimate the regional increase in [CO], we assume that the background [CO] is equal to

the simulation of background CO taken from the Model for OZone And Related chemical Tracers
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(MOZART) chemical transport model (Horowitz et al., 2003), plus a constant 34 ppbv offset (see

Fig. 4.3b, green bars). The offset was determined from the bias between MOZART simulations and

the observed CO in the cleanest air encountered during MILAGRO – typically aloft and outside the

Mexico City basin. Figure 4.5d shows the comparison for benzene. From the tracer analysis, we

estimate that biomass burning accounts for (31±3)%, (36±3)%, and (34±7)% of the CO, benzene,

and reactive nitrogen (NOy). These estimates are the mean of the mass-weighted, daily-averaged

fire/excess fractions for observations made within the 3×3 degree box centered on MC, for the seven

flights considered in this analysis. The sensitivity of these ratios to the size of the box is described

in Table 4.2. Consistent with expectation, the fraction of pollution from biomass burning is lower

for a smaller box centered over the city.

Figure 4.6a shows a scatter plot of the predictions from the two component model for organic

aerosol. The data are colored by the ratio of toluene to acetylene. High ratios (red colors) are

indicative of very fresh emissions with little photochemical processing. A similar figure for submicron

aerosol scattering is shown as Fig. 4.9. From the tracer analysis, we estimate that biomass burning

accounts for (66±11)%, and (57±5)% of the organic aerosol mass and total submicron scattering

(which determines visibility). These estimates are the mean of the mass-weighted, daily-averaged

fire/excess fractions for observations made within the 3×3 degree box centered on MC for the seven

flights considered in this analysis.

4.4 Discussion

In Table 4.1, we compare the emission ratios estimated from the TLS analysis with observations

made in the city plume encountered on 29 March (little BB influence) and in fresh fire plumes

sampled within the study area by the Twin Otter (Yokelson et al., 2007b). The emission ratios

derived here do not change if the data from the 29th are excluded from the least-squares analysis.

Note, while (Yokelson et al., 2007b) report emission factors for up to five fires (or groups of fires)

as well as the geometric mean of the reported individual emission factors, here we report (Table

4.1) the median values of the individual emission ratios calculated from the emission factors given

therein. Median values are reported here because of the high variability of the individual emission

factors, and the non-uniform weighting across fires in the geometric mean calculation. In particular,

the unusually high modified combustion efficiency (MCE) of the “17 March – Planned Fire” and the

group of fires reported as “6 March - Fires 1–4” are given 25% of the weight as the remainder of the

fires in calculating the geometric mean. While not as good, the comparison using the mean of the
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Figure 4.5 – Scatter plots for observed vs. reconstructed CO (a) and benzene (d). Associated scatter
plots for CO vs. each tracer, [C2H2]

* (b) and [HCN] * (c) and for benzene vs. each tracer, [C2H2]
* (e)

and [HCN] * (f). Lines are best fit to all data using total least squares (TLS) regression. Points are
colored by [toluene]/[C2H2]

*, where red=1 and blue=0. Points with black border lie within the 3×3
degree study area.
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emission ratios derived from (Yokelson et al., 2007b) does not alter the conclusions.

The urban ratio of CO to C2H2 measured on 29 March, 92 (mol/mol), is very close to the emission

ratio estimate from the total least squares (TLS) analysis, 96 (mol/mol) (Table 4.1). This ratio is

lower than typically observed in US (300–500 mol/mol), and Asian cities (220 mol/mol) (Xiao et al.,

2007), but comparable to the value observed by Grosjean et al. (1998) in urban air in Brazil. The

lower emission ratios in Mexico and Brazil may reflect differences in fuel composition or catalytic

converter functionality (Sigsby et al., 1987). The relatively high concentration of C2H2 in traffic

exhaust combined with the emissions of C2H2 from fires near the low end of the typical range makes

C2H2 a good tracer for the Mexican urban emissions. Observations made during the same period

of CO and C2H2 at a ground station (T1) in Mexico City and described by de Gouw et al. (2009)

show a mean CO to C2H2 ratio of 150 mol/mol. It is not known at this time what accounts for

this difference, but likely it is due to a difference in calibration factors. The analysis described here

is not sensitive to an absolute error in C2H2 or CO as the emission ratios are derived internally to

the data set. While a calibration error in either CO or C2H2 will affect the C2H2 emission ratios

reported in Table 4.1, it will not change the calculated fire impact for the trace gasses reported in

Table 4.2.
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The median ratio of CO to HCN observed in biomass burning plumes within the study area,

117 mol/mol (Yokelson et al., 2007b), is close to that derived in the total least squares analysis,

104 mol/mol. As noted by Yokelson et al. (2007b), this ratio is at the low end of the range

typically observed for biomass burning. The relatively high emissions of HCN in biomass burning

plumes combined with the low emission ratios from urban sources makes HCN a very good tracer

for biomass burning in Mexico City.

Biomass burning is a significant global source of benzene and the impact of this source in and

around the Mexico City basin is quite apparent in the correlations of benzene with the tracers

(Fig. 4.5d–f). From the least squares analysis, we estimate that fires contributed 36% of this pol-

lutant to the atmosphere above the central Mexican Plateau in March 2006. Relative to CO, the

benzene emission ratio for biomass burning derived here is similar to those reported in other stud-

ies (Andreae and Merlet, 2001). As an aside, measurements of the ratio of benzene to toluene have

been used in many previous studies to estimate the aging of an urban airmass as the atmospheric

oxidation of toluene occurs much more rapidly than benzene (e.g., Cubison et al., 2006). Because

the benzene/toluene emission ratio from fires (∼1–3) is much greater than the same emission ratio

from urban emissions (0.2), this method is not appropriate for cities – such as Mexico City during

the biomass burning season – that have significant contributions of benzene from fire emissions.

Organic aerosol generally accounts for more than half the mass of fine particulate matter (PM2.5)

in (Salcedo et al., 2006) and around (DeCarlo et al., 2008) Mexico City. As shown in Fig. 4.6b–c,

the amount of organic aerosol is highly correlated with [HCN] * and [C2H2] *, suggestive of large fire

and urban emission influences. Using the emission ratios described in Table 4.1, we estimate that

biomass burning contributes 66% of the organic aerosol to the study area in March 2006. These

estimates are quite uncertain, however, due to complex aerosol chemistry.

Organic aerosol is both formed in and lost from the atmosphere on relatively fast timescales.

Although direct (or primary) emissions of organic aerosol from automobiles are quite small (∼5–10 µg

per standard (T=273 K, P=1 atm) cubic meter of air (sm 3) per ppmv CO), subsequent atmospheric

oxidation of co-emitted hydrocarbons such as toluene and other aromatics, as well as biogenic and

biomass burning hydrocarbon emissions, can yield low vapor pressure compounds that condense on

the existing particulate forming secondary organic aerosol (SOA) (Kroll and Seinfeld, 2008). The

amount of SOA produced from these gas-phase sources over the period of a day substantially exceeds

the primary emissions from urban sources (de Gouw et al., 2005; Kleinman et al., 2008; Robinson

et al., 2007; Volkamer et al., 2006). The influence of this process is apparent in the aircraft data.



65

In Fig. 4.6a, the organic aerosol data is colored by the ratio of toluene to acetylene. Toluene is

co-emitted with acetylene in urban emissions, but is oxidized in the atmosphere with a lifetime of

approximately 12 daylight hours. In samples containing very high toluene (less oxidized), the total

least squares analysis tends to over-predict the amount of organic aerosol. For example, the urban

emission ratio derived from the least squares analysis (∼39 µg per sm 3 per ppmv CO or ∼ 3.9 µg

per sm 3 per ppbv of C2H2) is greater than the factor derived from the slope of the correlations in

the fresh plumes encountered on 29 March.

In addition to aerosol growth, aerosol mass can be lost through several mechanisms. As aerosol

is transported away from its source and diluted with clean air, semi-volatile compounds evaporate

to the gas phase (Robinson et al., 2007). Dry and wet deposition also remove aerosol from the

atmosphere. As mentioned earlier, the changing backgrounds for aerosol relative to insoluble gases

observed during late March are likely explained by aerosol loss via wet deposition.

Despite the complexity of the aerosol chemistry, the simple two end-member mixing model does

describe much of the variability of organic aerosol mass observed from the C-130. This result may

be related to our sampling – most of the observations were made in the afternoon when the city and

fire emissions had experienced some aging. The apparent organic aerosol emission ratio for urban

emissions derived from the 29 March plume, 32 µg OA per sm 3 per ppmv CO, is not inconsistent

with other estimates for organic aerosol from urban emissions aged 3–6 h (de Gouw et al., 2005;

Volkamer et al., 2006). The aerosol burden continues to increase as the air masses are further

oxidized in the MC outflow (Kleinman et al., 2008); similar to what has been observed in the New

York City (de Gouw et al., 2005) and Atlanta plumes (Weber et al., 2007).

The complexity of the mixing of the urban-core aerosol emissions with the regional aerosol

emissions (often dominated by fire emissions) as well as mixing with the clean free troposphere

precludes strong statements on the aerosol dynamics of these different sources.

The average NOx/VOC emission ratio for the fires surrounding Mexico City is similar to the

urban NOx/VOC emission ratio for Mexico City. This is due in part to the higher than expected

NOx emission from the fires, which is significantly (2–4×) larger than typical for fires (Yokelson et al.,

2007b). As the fire and urban NOx/VOC emissions are similar, the fire emissions will significantly

impact the ozone production in the Mexico City outflow. Modeling of the transport and aging of the

MC plume using a 3-D chemical transport model with full chemistry and accurate urban and fire

emissions will be required to quantify the full impact of the fire emissions on ozone concentrations.
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4.5 Implications for air quality improvement

The implications of this study for air quality engineering in Mexico City are not straightforward.

Although visibility within the city and the export of aerosol, ozone, and other trace gases is sig-

nificantly impacted by biomass burning during the period of our observations, it is not possible to

estimate from this data set the long-term impact of such burning on the urban dwellers of Mexico

City. Biomass burning in March 2006 was significantly higher than typical for March, though not

unlike the amount of burning usually observed in the height of the biomass burning in April/May.

During most of the year (June–February), however, these sources are negligible. Thus, annually-

averaged, the impact of biomass burning will certainly be much smaller. In addition, because our

sampling was from aircraft and primarily in the afternoon, and because the biomass burning was

primarily in the forest above the city (Yokelson et al., 2007b), the impact of fire on the air breathed

by people within Mexico City will be smaller than the regional impact estimated here. Indeed, we

observe that even in the relatively well mixed afternoon planetary boundary layer, the impact of

fire increases with altitude (Fig. 4.10). Consistent with this finding, estimates of the impact of fire

on air quality at the ground stations within the city suggest a smaller fire influence (Molina et al.,

2007; Bravo et al., 2002; Salcedo et al., 2006; Yokelson et al., 2007b; Stone et al., 2008; Moffet et al.,

2008; Aiken et al., 2009). A possible method for estimating the impact of fires to people on the

ground in Mexico City would be through the use of a high-resolution 3-D chemical transport model

constrained by accurate winds and meteorological conditions, accurate fire emissions, and coupled

with population maps. For example, an extension of the Fast et al. (2009) study could provide such

an estimate, however additional work would be required to properly model the nighttime and early

morning boundary layer, as well as an adequate parameterization of SOA growth which considers

both anthropogenic and biomass burning precursors. Finally, unlike reducing emissions from the

urban sources, reducing fire emissions through fire suppression efforts may have environmental costs

as well as benefits; although forest fire suppression in and around the basin would yield improve-

ment in visibility, such fire suppression actions may be inconsistent with proper forest management

practices.



67

4.6 Supporting information

4.6.1 Data sources

HCN was measured on the NCAR C-130 as discrete 0.5 second samples obtained every 5 seconds.

The analysis was performed by chemical ionization mass spectrometry (CIMS). While the Caltech

CIMS instrument has been described in previously in detail (Crounse et al., 2006), the particular

HCN method has not. In brief, HCN reacts rapidly with the CF3O
– (and CF3O

– ·H2O) anion

to form the cluster product ion, CF3O
– ·HCN, which is monitored at m/z = 112. Instrumental

backgrounds were measured once every 15 minutes by passing ambient air through a filter containing

nylon wool coated with NaHCO3. In-flight calibrations were performed about once per hour using

HNO3 and H2O2 calibration standards and proxied to laboratory calibrations of HCN. Similar to

H2O2, the sensitivity of the CIMS instrument toward HCN is a function of water vapor. This

is corrected for using the aircraft water vapor measurement and a water vapor sensitivity curve

for HCN determined in the laboratory. Absolute laboratory calibrations were conducted using

HCN permeation tubes (KIN-TEC), whose output was determined through both gravimetric and

spectroscopic (FTS) means. Both absolute calibration methods agreed within 10%. Considering

uncertainties in the absolute laboratory calibrations and water vapor concentration, the accuracy

of the HCN observations is estimated to be better than ±30%. The precision is limited mostly by

counting statistics (background + signal) and is about 5% (1 standard deviation) at 250 pptv HCN

under low to moderate water vapor levels (H2O mixing ratio ≤ 0.004) for a 0.5 second integration

period.

CH3CN was measured by a cryotrap concentrator coupled to a gas chromatograph mass spec-

trometer (cryo-GCMS), an instrument similar to the one described by Apel et al. (2003). The

cryo-GCMS instrument concentrated ambient air in the cryotrap for 45 seconds prior to a 125 sec-

ond analysis, yielding one data point every 170 seconds. The accuracy for the cryo-GCMS CH3CN

determination is estimated to be ±20% with a precision of ±3%.

C2H2, benzene, and toluene were recovered from 2 L canister samples that were periodically filled

(approximately 12 samples per hour for the flights into the city). Each canister is filled over a period

of 30–120 sec. These samples were analyzed by gas chromatography at UC Irvine (Blake et al.,

1997). The detection limit for each of these compounds is 3 pptv, and the accuracy is estimated to

be better than ±5% for C2H2 and ±10% for benzene and toluene.
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NOy was measured via catalytic reduction of reactive nitrogen species to NO on a gold surface

in the presence of a small flow of CO, used as a reducing agent. The resulting NO was measured by

the standard chemiluminescence technique. In order to keep the conversion efficiency constant the

converter was maintained at a constant pressure using a heated teflon valve just upstream of the

converter. The converter was housed in the inlet pylon, extending about 30 cm into the airstream,

in order to minimize the length of inlet tubing upstream of the converter. The upstream plumbing

(tubing and valve) were limited to a heated length of about 15 cm. The inlet tubing and converter

were oriented perpendicular to the airstream with an aft-facing 45 ◦ cut on the end of the tubing.

This configuration minimized particle amplification, and tended to exclude larger particles (1 micron

or so). At 1 ppbv, the estimated NOy precision and accuracy are ±3% and ±15%, respectively.

Carbon monoxide was measured continuously with an vacuum ultraviolet (VUV) fluorescence

instrument similar to the one developed by Gerbig et al. (1999) with a precision of 3 ppbv and

a typical accuracy of ±10% at 100 ppbv CO levels. On several flights, the VUV fluorescence CO

measurements were not available and CO concentrations were determined from the canister samples.

Aerosol composition (organic, sulfate, nitrate, ammonium, and chloride) and mass were deter-

mined with a high resolution aerosol mass spectrometer (HR-AMS) (DeCarlo et al., 2006, 2008). The

HR-AMS detection limit for the organic aerosol is 0.35 µg sm−3 for a 12 second integration period,

and its accuracy is estimated to be better than ±25%. Aerosol scattering coefficients were measured

at 450, 550, and 700 nm wavelengths using two TSI-3563 nephelometers. One nephelometer mea-

sured submicron scattering employing a 1 µm aerodynamic impactor, and the other measured total

scattering (Anderson et al., 2003).

4.6.2 Alternative HCN sources

In addition to biomass burning and gasoline/diesel combustion, other sources of HCN may contribute

to the enhanced HCN in the basin. For example, HCN has also been shown to be produced in the

pyrolysis of coal from the breakdown of pyrrolic and pyridinic nitrogen (Leppalahti and Koljonen,

1995). Coal burning, however, is minimal in the basin. According to the 1999 Mexico National Emis-

sions Inventory (NEI), 88% of the CO produced in Mexico City, and surrounding states (summing

over Distrito-Federal, Mexico, and Morales) comes from mobile sources (NEI, 2008).

We did observe elevated HCN in the plumes from the power plants (fuel-oil fired) and petrochem-

ical complex in Tula, north of Mexico City. The ratio of HCN to CO in the Tula plume is similar

to that from fire. The Tula CO emissions are, however, significantly smaller than the CO emissions
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from fire in the MC basin suggesting these emissions have minimal influence on the regional HCN

budget.

4.6.3 HCN and acetonitrile correlation

A reasonable correlation (r2=0.78, n=835) exists between HCN and CH3CN observations, suggest-

ing similar sources (Fig. 4.7). However, on multiple occasions, directly over Mexico City, enhanced

CH3CN was observed without accompanying enhancements in HCN (see Fig. 4.7, data excursions

well above the best fit line). Explanations for these CH3CN plumes could include industrial, non-

combustion, sources, or possibly a different compound interfering with the GC-MS CH3CN measure-

ment. Overall, ∆CH3CN is 39% of ∆HCN (Fig. 4.7). On 29 March, a day with little fire influence

according to HCN levels relative to CO, the slope of CH3CN to HCN is similar to the overall rela-

tionship, indicating that these compounds are emitted from urban sources in about the same ratio

as from fire, or that fire is still the dominating source of these compounds even for days without

large fires.

4.6.4 NOy and submicron scattering

Analogous to Figs. 4.5 and 4.6, NOy (Fig. 4.8), and submicron scattering at 550 nm (Fig. 4.9)

reconstructions are shown. The two-component fit for total scattering yielded very similar results

as the one for submicron scattering (e.g., fire fraction also equal to 57%), with similar correlation

coefficients. Significant amounts of aerosol nitrate were measured in and around Mexico City. For

this analysis total NOy was taken as the sum of measured NOy and aerosol nitrate. While the

NOy instrument likely measures some of the aerosol nitrate as NOy, at this time it is not known

what fraction of aerosol nitrate was sampled by the NOy instrument. To the extent aerosol nitrate

is sampled by this NOy instrument, we are double counting the aerosol nitrate. The correlation

with the two-component model is significantly better if the aerosol nitrate is added to the NOy

measurement to give total NOy.

4.6.5 Altitude dependence of fire impact

As observed from the C-130, and inferred by comparing the C-130 data with observations on the

ground in Mexico City, the impact of the fires surrounding Mexico City is not as severe on the

ground, as it is above the City. This is due in part to the location of the fires, elevated above the

city on the mountainsides surrounding the city. The impact of fire increases with altitude above



70

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

HCN (ppbv)

C
H

3C
N

 (
pp

bv
)

 

 

Observations: n = 835; r2 = 0.78
Least squares: slope = 0.45; int = 0.039
Robust total least squares: slope = 0.39; int = 0.054
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Figure 4.10 – Altitude dependence of fire CO over Mexico City region. The fraction of excess CO
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Mexico City (Fig. 4.10), suggesting that the smoke from the fires does not fully impact the ground.

4.6.6 Box size for study area

For the ratios of fire impact reported in the body of the main work a rectangular study area of

3×3 degrees, centered on MC, was considered. As one focuses more on MC by decreasing the

box size, the urban emissions become relatively more important (Table 4.2). This makes sense

considering the fires emissions originate from many diffuse sources (individual fires) scattered across

the plateau, while the urban emissions are more centrally located in and around the MC basin.

Table 4.2 compares the results for the two-component model using three different box sizes. Box 1

is the smallest, encompassing the populated area of Mexico City and some adjacent terrain. Box 2

is larger and includes the ring of mountains around MC. Box 3 is the largest box, equating to the

3×3 degree box used for the results presented in the main body of this work.

4.6.7 MODIS Aqua satellite image time line

A daily timeline of true color satellite images of the Mexico City area, collected from the MODIS

instrument aboard the Aqua satellite, for the month of March 2006 are shown in Figs. 4.11–4.13. The

images were taken at approximately 1:30 p.m. local time each day. The red boxes on each satellite
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Table 4.2 – Fire impact for pollutants considering several box sizes.

Species Box 1a(%) Box 2b(%) Box 3c(%)

CO 21 28 31

C6H6 25 33 36

NOy 24 31 34

OA 52 61 66

scattering 43 52 57

a Box defined by latitude: [19.269 to 19.867] and
longitude: [−99.300 to −98.867].

b Box defined by latitude: [19.067 to 20.033] and
longitude: [−99.433 to −98.667].

c Box defined by latitude: [17.900 to 20.900] and
longitude: [−100.400 to −97.400].

image represent detected thermal anomalies. One can observe from inspection of the images that

many fires are not detected due to a number of reasons, including cloud cover, smoke cover, low

fire temperature, or simply lack of satellite coverage. Also, the number of detected fires does not

necessarily correlate with the impact of fires on the visibility as observed from the satellite pictures.

Higher resolution images are available as supplementary material for both Aqua and Terra images

of the Mexico City region during March 2006.
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Figure 4.11 – MODIS-Aqua images around Mexico City for 5 March through 13 March 2006. Red
boxes represent detected fires. Black lines are state boundaries. Blank areas represent missing data.
Images courtesy of MODIS Rapid Response Project at NASA/GSFC.
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Figure 4.12 – MODIS-Aqua images around Mexico City for 14 March through 22 March 2006. Red
boxes represent detected fires. Black lines are state boundaries. Blank areas represent missing data.
Images courtesy of MODIS Rapid Response Project at NASA/GSFC.
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Figure 4.13 – MODIS-Aqua images around Mexico City for 23 March through 31 March 2006. Red
boxes represent detected fires. Black lines are state boundaries. Blank areas represent missing data.
Images courtesy of MODIS Rapid Response Project at NASA/GSFC.
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Chapter 5

Emissions from biomass burning in
the Yucatan∗

∗Reproduced with permission from “Emissions from biomass burning in the Yucatan” by R. Yokelson, J. D.
Crounse, P. F. DeCarlo, T. Karl, S. Urbanski, E. Atlas, T. Campos, Y. Shinozuka, V. Kapustin, A. D. Clarke, A.
Weinheimer, D.J. Knapp, D. D. Montzka, J. Holloway, P. Weibring, F. Flocke, W. Zheng, D. Toohey, P. O. Wennberg,
C. Wiedinmyer, L. Mauldin, A. Fried, D. Richter, J. Walega, J. L. Jimenez, K. Adachi, P. R. Buseck, S. R. Hall, and
R. Shetter, Atmospheric Chemistry and Physics, 9, 5785–5812, 2009. Copyright © 2009 by the authors.
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5.1 Abstract

In March 2006 two instrumented aircraft made the first detailed field measurements of biomass

burning (BB) emissions in the northern hemisphere tropics as part of the MILAGRO project. The

aircraft were the National Center for Atmospheric Research C-130 and a University of Montana/US

Forest Service Twin Otter. The initial emissions of up to 49 trace gas or particle species were

measured from 20 deforestation and crop residue fires on the Yucatan peninsula. This included two

trace gases useful as indicators of BB (HCN and acetonitrile) and several rarely, or never before,

measured species: OH, peroxyacetic acid, propanoic acid, hydrogen peroxide, methane sulfonic acid,

and sulfuric acid. Crop residue fires emitted more organic acids and ammonia than deforestation

fires, but the emissions from the main fire types were otherwise fairly similar. The Yucatan fires

emitted unusually high amounts of SO2 and particle chloride, likely due to a strong marine influence

on this peninsula. As smoke from one fire aged, the ratio ∆O3/∆CO increased to ∼15% in < ∼1 h

similar to the fast net production of O3 in BB plumes observed earlier in Africa. The rapid change in

O3 occurs at a finer spatial scale than is employed in global models and is also faster than predicted

by micro-scale models. Fast increases in PAN, H2O2, and two organic acids were also observed. The

amount of secondary organic acid is larger than the amount of known precursors. Rapid secondary

formation of organic and inorganic aerosol was observed with the ratio ∆PM2.5/∆CO more than

doubling in ∼1.4±0.7 h. The OH measurements revealed high initial levels (>1×107 molecules

cm−3) that were likely caused in part by high initial HONO (∼10% of NOy). Thus, more research

is needed to understand critical post-emission processes for the second-largest trace gas source on

Earth. It is estimated that ∼44 Tg of biomass burned in the Yucatan in the spring of 2006. Mexican

BB (including Yucatan BB) and urban emissions from the Mexico City area can both influence the

March–May air quality in much of Mexico and the US.

5.2 Introduction

The MILAGRO (Megacity Initiative Local and Global Research Observations) project was designed

to study the local to global atmospheric affects of pollution from megacities (http://www.eol.ucar.

edu/projects/milagro). Megacities have a population > 10 million and are rapidly increasing in

number on the five most populated continents. The first MILAGRO field campaigns occurred in

March 2006 and studied the impact of trace gases and particles generated in Mexico City (MC,

North America’s largest metropolitan area) on regional atmospheric chemistry (Fast et al., 2007;
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Molina et al., 2007). Regional biomass burning (BB) was also studied because it is a major emission

source in Mexico that peaks during the February–May dry season. Earlier papers estimated that

BB located adjacent to MC accounted for ∼20–30% of the CO (and several other important trace

gases) and about one-half of the particle mass in the March 2006 MC outflow (Yokelson et al., 2007b;

Crounse et al., 2009). Another very important source of BB emissions in the MILAGRO study region

is the Yucatan, which accounts for 7% of Mexico’s land area, but almost 30% of the total biomass

burned in Mexico annually (2002–2006 average) and almost 40% of the biomass burned in Mexico

in 2006. (Section 5.5 describes the model used to generate these estimates.) From the perspective

of the MILAGRO campaign, Yucatan BB emissions are important because MC and the Yucatan

impact nearly the same regional environment and Yucatan emissions can be transported to MC or

interact with the MC plume downwind of the city. For example, in 1998 intense BB in the Yucatan

impacted air quality in much of Mexico and the US (Kreidenweis et al., 2001). Yucatan BB is also

of interest beyond the scope of the MILAGRO campaign. On a global basis, BB is the largest source

of primary fine carbonaceous particles, the second largest source of trace gases, and it occurs mostly

in the tropics, which play a critical role in global atmospheric chemistry (Andreae and Merlet,

2001; Kreidenweis et al., 2001). However, both the initial emissions from BB and the post-emission

chemistry in smoke are poorly characterized and MILAGRO offered an opportunity to study these

topics with well-equipped research aircraft. Further, most of the research on BB has been done in the

southern hemisphere (SH) tropics during the SH dry season June–October (Andreae and Merlet,

2001). However, significant amounts of BB also occur in the northern hemisphere (NH) tropics,

which experience a dry season and a peak in BB in February–May. Major fire theatres in the NH

tropics include the Indochina peninsula, the Indian subcontinent, the Sahel region of Africa, northern

South America, Central America, and the Yucatan (Lacaux et al., 1996, http://maps.geog.umd.edu).

Finally, the tropical dry forests of the Yucatan are an example of the ecosystem that accounts for

the most biomass burned globally (Desanker et al., 1997). Emissions measurements have been made

in the tropical dry, “Miombo” forests of Africa (Sinha et al., 2004). However, the Miombo region

is minimally developed with mostly understory burning and only limited, primitive slash and burn

agriculture (Desanker et al., 1997). In contrast, the Yucatan has high rates of forest clearing (using

fire) for conversion to mechanized agriculture and also burning of residues from existing crops. This

paper presents the first detailed measurements of the initial trace gas and particle emissions from

fires in the NH tropics (up to 49 species on 20 fires). It includes the first in situ measurement of

OH in a BB plume and measurements of numerous post-emission changes in trace gas and particle
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species in one plume. Only a few observations of the chemical evolution of individual BB plumes

have been made (Goode et al., 2000; Yokelson et al., 2003; Jost et al., 2003; Hobbs et al., 2003;

Abel et al., 2003) and the observed evolution is only partially reproduced by models (Tabazadeh

et al., 2004; Trentmann et al., 2005; Mason et al., 2006; Alvarado and Prinn, 2009). Thus, these

measurements of smoke evolution add substantially to our limited knowledge of this topic. We

estimate the monthly to annual production of fire emissions from the Yucatan and summarize their

regional transport to show the impact of these fires on the region. Finally, some general comments

on global NH tropical biomass burning are offered.

5.3 Experimental details

Due to the large number of instruments deployed on the two research aircraft we can only present a

list of the species measured and a few basic details here. More detail is found on all the instruments

on the Twin Otter in Yokelson et al. (2007b) and in various other papers cited for each C-130

measurement.

5.3.1 Measurements on the Twin Otter

The University of Montana airborne Fourier transform infrared spectrometer (AFTIR) measured

samples temporarily detained in the flow-through gas cell to quantify water vapor (H2O), car-

bon dioxide (CO2), carbon monoxide (CO), methane (CH4), nitric oxide (NO), nitrogen dioxide

(NO2), ammonia (NH3), hydrogen cyanide (HCN), ethene (C2H4), acetylene (C2H2), formaldehyde

(HCHO), methanol (CH3OH), acetic acid (CH3C(O)OH), formic acid (HC(O)OH), and ozone (O3).

Ram air was grab-sampled into stainless steel canisters (whole air sampling (WAS)) that were later

analyzed at the University of Miami by gas chromatography (GC) with a flame ionization detec-

tor (FID) for CH4, and the following non-methane hydrocarbons (NMHC): ethane, C2H4, C2H2,

propane, propene, isobutane, n-butane, t-2-butene, 1-butene, isobutene, c-2-butene, 1,3-butadiene,

cyclopentane, isopentane, and n-pentane. CO was measured in parallel with the CH4 measurement,

but utilized GC with a Trace Analytical Reduction Gas Detector (RGD). Canisters were also col-

lected for later analysis at the United States Forest Service (USFS) Fire Sciences Laboratory by

GC/FID/RGD for CO2, CO, CH4, H2, and several C2-C3 hydrocarbons. The canister-filling inlet

(large diameter, fast flow) also supplied sample air for a Radiance Research Model 903 integrating

nephelometer that measured “dry” (inlet RH < 20%) bscat at 530 nm at 0.5 Hz. The bscat measured
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at the inlet temperature and pressure was converted to bscat at standard temperature and pressure

(STP, 273 K, 1 atm) and then multiplied by 208800±11900 to yield the mass of particles with aero-

dynamic diameter < 2.5 microns (PM2.5) in µg sm−3 of air, based on a gravimetric “calibration”

similar to that described in Trent et al. (2000). An isokinetic particle inlet sampled fine particles

with a diameter cut-off of a few microns. Particles of diameter < 1 micron account for nearly all

the fine particle (PM2.5) mass emitted by biomass fires (Radke et al., 1991). This inlet supplied

sample air to two particle samplers (MPS-3, California Measurements, Inc.) that were used to collect

aerosol particles onto transmission electron microscope (TEM) grids in three size ranges over time

intervals of ∼l to 10 minutes for subsequent TEM analyses. Details of the analyses are described in

Adachi and Buseck (2008). The same inlet also supplied a LiCor (Model #7000) measuring CO2

and H2O at 5 Hz and a UHSAS (Ultra High Sensitivity Aerosol Spectrometer, Particle Metrics,

Inc.) deployed by the University of Colorado (CU). The UHSAS provided the number of particles

in each of 99 user-selectable bins for diameters between 55 and 1000 nm at 1 Hz. All three Twin

Otter inlets were located within 30 cm of each other. The nephelometer was not available on the

12 March flight so we used the UHSAS particle counting/size data to indirectly determine particle

mass. We assumed spherical particles and integrated over the dry size distribution measured by the

UHSAS, to obtain an estimate of the volume of particles (PV1, µm3 cm−3) of air at 1 Hz. We then

noted that on 22 and 29 of March the PV1 (for PV1 < ∼30) was related to bscat as follows:

bscat = PV1 × 1.25(±0.25)× 10−5 (5.1)

On March 12, the PV1 did not exceed 30 µm3 cm−3 in the plume of Fire #3. We used equation

1 to convert PV1 to bscat and then converted bscat to PM2.5 as described above.

5.3.2 Measurements on the C-130

5.3.2.1 Continuous measurements

The continuous measurements are listed in order of their sampling frequency starting with nominal

1 s resolution. A CO vacuum ultraviolet (VUV) resonance fluorescence instrument, similar to that

of Gerbig et al. (1999), was operated on the C-130 through the National Center for Atmospheric

Research (NCAR) and NSF. Sulfur dioxide (SO2) was measured by the NOAA UV pulsed fluores-

cence instrument (Thermo Electron model 43C-TL modified for aircraft use). O3, NO, NO2, and

NOy (the sum of all N-containing species minus HCN, NH3, and N2) were measured by the NCAR
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chemiluminescence instrument (Ridley et al., 2004). Formaldehyde was measured by the NCAR dif-

ference frequency generation (DFG) airborne spectrometer (Weibring et al., 2007). The absorption

(530 nm), scattering (550 nm), number, and size distribution of dry particles was measured at 1–10

s resolution by a particle soot absorption photometer (PSAP), nephelometer (TSI 3563), and optical

particle counter (OPC) all deployed by the University of Hawaii (Clarke et al., 2004). The total

550 nm scattering was converted to STP scattering and then PM2.5 (µg sm−3) using a dry mass

scattering efficiency (MSE) of 4.8±1.0 obtained for a USFS TSI model 3563 during the gravimetric

calibration carried out for the Twin Otter nephelometer. The absorption was used directly with the

scattering to calculate single scattering albedo (SSA) or converted to an estimated black carbon in

µg sm−3 using a mass absorption efficiency (MAE) of 12±4 (Martins et al., 1998). The NCAR

Scanning Actinic Flux Spectroradiometers measured 25 J-values at 10 s resolution (Shetter and

Muller, 1999). An NCAR selected ion chemical ionization mass spectrometer (SICIMS) measured

the hydroxyl radical (OH), sulfuric acid (H2SO4), and methane sulfonic acid (MSA) at 30 s time

resolution (Mauldin et al., 2003).

5.3.2.2 Discrete measurements

The PAN-CIGARette (PAN-CIMS Instrument by Georgia Tech and NCAR, small version, Slusher

et al., 2004) measured compounds collectively referred to as PANs (PAN, peroxyacetyl nitrate;

PPN, peroxypropionyl nitrate; PBN, peroxybutyryl nitrates = sum of peroxy-n-butyryl- and perox-

yisobutyryl nitrates; MoPAN, Methoxyperoxyacetyl nitrate; APAN, peroxyacryloyl nitrate; MPAN,

peroxymethacryloyl nitrate) in turn on a 2 s cycle. A California Institute of Technology (Caltech)

CIMS measured a suite of organic acids (acetic, peroxyacetic, formic, and propanoic acid); and SO2,

HCN, hydrogen peroxide (H2O2), nitrous acid (HONO), and nitric acid (HNO3). The mixing ratio

of each species was measured for 0.5 s, in turn during a multispecies scan, with a period ranging from

4–20 s for each analyte (Crounse et al., 2006). An Aerodyne high-resolution time-of-flight aerosol

mass spectrometer (HR-ToF-AMS) operated by CU (DeCarlo et al., 2006, 2008; Aiken et al., 2008)

measured the organic aerosol mass (OA); the OA to organic carbon (OC) mass ratio; and non-

refractory (NR) sulfate, nitrate, ammonium, and chloride (µg sm−3 1 atm, 273 K) for the last 6

seconds of each 12 s measurement cycle. (The first 6 s of each cycle measured size distributions.)

At times continuous 4 s particle chemistry averages were recorded instead. A proton transfer mass

spectrometer (PTR-MS) measured CH3OH, acetonitrile (CH3CN), acetaldehyde, acetone, methyl

ethyl ketone, methyl propanal, hydroxyacetone plus methyl acetate, benzene, and 13 other species
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in a 35 s cycle (Karl et al., 2007, 2009).

5.3.3 Generalized airborne sampling protocol

The Twin Otter and C-130 were based in Veracruz with other MILAGRO research aircraft. The

main goal of the Twin Otter flights was to sample fires and the C-130 also sampled a few fires. On

both aircraft, background air (i.e., ambient boundary layer (BL) air not in plumes) was characterized

when not sampling BB plumes. The continuous instruments operated in real time in background

air. The discrete instruments acquired numerous spot measurements in background air. These spot

measurements should be representative since the continuous instruments showed that the background

air was well-mixed on the spatial scale corresponding to the discrete sampling intervals.

To measure the initial emissions from the fires, the aircraft usually sampled smoke less than

several minutes old by penetrating the column of smoke 150–600 m above the active flame front.

A few “fresh” smoke samples up to 10–30 minutes old were acquired at elevations up to 1700 m.

The continuous instruments monitored their species while penetrating the plume up to five times

per fire. On the Twin Otter, the AFTIR, MPS-3, and WAS were used for spot measurements

in the smoke plumes. To allow calculation of excess concentrations in the smoke plume; paired

background spot measurements were made just outside the plume. The discrete instruments on the

C-130 always acquired at least one sample, and usually several, that were within the fresh smoke

plumes. The background for those samples was taken as the average of the discrete measurements

in the background air near the plume.

More than a few kilometers downwind from the source, smoke samples are already “photochemi-

cally aged” and better for probing post-emission chemistry than estimating initial emissions (Goode

et al., 2000; Hobbs et al., 2003). Both aircraft acquired some samples in aged plumes up to ∼14 km

downwind and ∼1.5 h old (see Section 5.4.4).

5.3.4 Data processing and synthesis

Grab, or discrete, samples of both a plume and the adjacent background can be used to calculate

excess mixing ratios (∆X, the mixing ratio of species “X” in the plume minus the mixing ratio of “X”

in the background air). ∆X reflects the degree of dilution of the plume and the instrument response

time. Thus, a useful, derived quantity is the normalized excess mixing ratio (NEMR) where ∆X is

divided by the “simultaneously” measured excess mixing ratio of another species (∆Y); usually a

fairly long-lived plume “tracer” such as ∆CO or ∆CO2. The uncertainty in the NEMR includes a
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contribution due to differences in response times if two instruments are involved. A measurement

of ∆X/∆Y in a plume up to a few minutes old is a molar emission ratio (ER). We computed fire-

average molar ER for each individual fire from grab or discrete samples as follows. First, if there is

only one sample of a fire then the calculation is trivial and equivalent to the definition of ∆X/∆Y

given above. For multiple grab (or discrete) samples of a fire, the fire-average, ER was obtained

from the slope of the least squares line (with the intercept forced to zero) in a plot of one set of

excess mixing ratios versus another. This method is justified in detail by Yokelson et al. (1999).

When the AFTIR and the USFS WAS measured the same pair of compounds on the same fire, their

data were combined in the plots as shown in Figure 5.1a.

Emission ratios can also be obtained from the continuous instruments by comparing the integrals

of ∆X and ∆Y as the aircraft passes through a nascent smoke plume. Comparing the integrals helps

compensate for the different instrument response times (Karl et al., 2007). When only one pass

is made through the plume of a fire (as on the C-130), the ratio of those integrals gives the ER.

When more than one pass is made through the plume of a single fire with continuous instruments

(e.g. PM and CO2 on the Twin Otter), we plot the integrals versus each other and obtain the

ER from the slope, analogous to grab sample plots. For the C-130 we usually compared integrals

for various species to the integrals for CO. The exception was the PTR-MS. For the PTR-MS we

obtained ER to methanol averaged over the three C-130 fires by comparing the integrated excess

for all three fires to the integrated excess amount for methanol. Finally, it is sometimes possible to

use a “proxy” to generate continuous data from discrete samples. For example, the ratio of HCN

to NOy should not vary much throughout an individual plume. Thus, an estimate of the real-time

variation in HCN can be obtained by multiplying the continuous NOy data by the HCN/NOy ratio

measured intermittently in the plume. Subsequently, the “continuous” HCN trace can be integrated

and compared to integrals from other continuous instruments such as CO. For two species measured

discretely by the Caltech CIMS (SO2 and HCN) it was meaningful to compare the “integral-based”

ER to CO to the “plot-based” ER to CO. In comparison to the integral-based ER, the plot-based

approach returned individual fire ER that were less than 10% different when 2–3 minutes were spent

in plume and up to 19% different for brief sample periods. The ER obtained from the plot-based

method did not show significant bias when averaged over all five comparable samples (the plot-based

ER was 0.998±0.14 of the integral based ER).We take this as a rough estimate of the additional

uncertainty affecting the study-average ER calculated from discrete samples. The lack of bias makes

sense since, e.g., a slower-responding CO instrument could read a little low when entering the plume,



92

a) Fire #2, 22 March

y = 0.0934x
R2 = 0.9923

0

2

4

6

8

10

12

14

16

18

0 50 100 150 200
ΔCO2 ppm

Δ
C

O
 p

pm

AFTIR

WAS

Linear
(AFTIR+WAS)

b) Fire 3, 23 March

y = 0.0081x
R2 = 0.8577

0

1

2

3

4

5

6

7

0 200 400 600 800

ΔCO ppb
Δ

H
C

N
 p

pb

c) Fire 2, 23 March

y = 0.0623x
R2 = 0.9575

0

20

40

60

80

100

120

0 500 1000 1500 2000

ΔCO ppb

Δ
O

A
 μ

g/
sm

3

d) Fire 2, 23 March

0

500

1000

1500

2000

2500

72390 72430 72470

UTC s

C
O

 p
pb

0

2000

4000

6000

8000

10000

12000

14000

CO
NO

N
O

 p
pt

Figure 5.1 – a) WAS and AFTIR spot measurements were coupled to determine the ER ∆CO/∆CO2
on the Twin Otter and they agreed well with each other. This is a key quantity used to synthesize
data from the two aircraft. b) The ∆HCN/∆CO ER from plotting discrete CIMS samples vs. the CO
measured at the same time for all data in the fresh and aging plume of Fire #3. The slope of the plot
gives the same ER as the proxy method (Section 5.3.4). ∆HCN/∆CO does not vary greatly in the
downwind samples. c) Four-second averages for ∆OA from the AMS plotted versus the 4-s averages of
∆CO. d) Continuous NO and CO for same fire as in c). Comparison of the integrated amounts above
background yields the ER.
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but a little high when leaving the plume. Figure 5.1 illustrates typical analyte levels encountered

and gives examples of ER derivations.

It is also possible to estimate ER from measurements that were not made simultaneously, or

that were made on different aircraft. For example, the molar ER to CO2 for the NMHC measured

by U-Miami WAS on the Twin Otter was derived for each fire as follows. The molar ER to CO

measured by WAS from a fire was multiplied by the molar ∆CO/∆CO2 ER measured on that same

fire by AFTIR. The study-average molar ER to CO2 for species measured on the C-130 (no CO2

data on C-130) was estimated by multiplying the C-130 molar emission ratio to CO or CH3OH by

the study-average molar emission ratio of these latter species to CO2 measured by AFTIR/WAS

on board the Twin Otter (on different fires). CO was measured with high accuracy by AFTIR,

the VUV instrument, and WAS. Methanol was measured with high accuracy by the AFTIR and

PTR-MS. This facilitated coupling data from various platforms and instruments or for different fires.

As a plume ages, the downwind NEMR (∆X/∆Y) can vary from the ER that was measured at the

source. The accuracy of downwind ∆X/∆Y may be reduced by differences in the time response

of instruments, but in the dilute plume, the excess mixing ratios tend to vary slower in time and

space making timing differences less critical. Section 5.4.4 discusses uncertainty in the aging plume

in detail.

5.3.4.1 Estimation of fire-average initial emission factors

For any carbonaceous fuel, a set of ER to CO2 for the other major carbon emissions (i.e., CO, CH4,

a suite of non-methane organic compounds (NMOC), particle carbon, etc) can be used to calculate

emission factors (EF, g compound emitted/kg dry fuel burned) for all the emissions quantified from

the source using the carbon mass-balance method (Yokelson et al., 1996). In this project, EF were

calculated for all the individual fires sampled by the Twin Otter from AFTIR measurements of CO2,

CO, CH4, and NMOC and WAS measurements of CO2, CO, CH4, and non-methane hydrocarbons

(NMHC, a subset of NMOC consisting of compounds containing only C and H and no O or N). The

nephelometer PM2.5 and the AMS/PSAP measurements of the mass fraction of C in the Yucatan BB

aerosol (0.48±0.08) were used to estimate the particulate carbon. We also calculated study-average

EF for the species measured on the C-130 by using the study average ER for those species to CO2

calculated using the overlap species with the AFTIR as described above. The carbon mass-balance

method assumes that all the volatilized carbon is detected. By ignoring unmeasured gases, we may

overestimate the emission factors by 1–2% (Andreae and Merlet, 2001). We also assumed all the
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fires burned in fuels that were 50% C by mass on a dry weight basis (Susott et al., 1996), but the

actual fuel carbon percentage could vary by ±10% (2σ) of our nominal value. EF scale linearly

with the assumed fuel carbon fraction. Because much of the NO is quickly converted to NO2 after

emission, we also report an EF for “NOx as NO.” For any species “X” we abbreviate the EF as EFX.

5.3.5 Details of flights

5.3.5.1 Twin Otter flight of 12 March

Figure 5.2a shows the Twin Otter flight path over the Yucatan peninsula on 12 March along with the

location of the fires that we sampled and the hotspots detected by MODIS. (The MODIS hotspots

were obtained from the Mexican Comisión Nacional para el Conocimiento y Uso de la Biodiversidad

(CONABIO) website at:

http://www.conabio.gob.mx/conocimiento/puntos_calor/doctos/puntos_calor.html

hereinafter cited as “CONABIO”). The fire locations and characteristics and any matches with

hotspot locations are also shown in Table 5.1. Widespread cloud cover over the Yucatan could have

obscured some fires during both of the satellite overpasses that covered the Yucatan: 10:34 LT (Terra

1, usually before most burning) and 13:38 LT (Aqua 2) (CONABIO). All three fires were sampled

between 14:00 and 16:00 LT and all the fires were located near the coast S of Campeche. The fuel

for all these fires was crop residue (CR) with a minor fraction in adjoining woodlands on Fire #5.

The fire numbers begin with #3 because two fires were sampled en route to the Yucatan that will

be described elsewhere.

5.3.5.2 Twin Otter flight of 22 March

Figure 5.2b shows the Twin Otter flight path over the Yucatan peninsula on 22 March along with

the locations of the fires sampled and the MODIS hotspots. The fire locations, characteristics, and

hotspot matches are also shown in Table 5.1. Eight fires were sampled between 13:14 and 15:29

LT of which five were deforestation fires (DF, burning forest slash) and three were “mixed” (CR

fires that escaped and burned adjacent forest, or CR/DF). (Section 5.5 gives more detail on the

fires.) The sampling was all after the last satellite overpass with coverage of the Yucatan (Aqua

1 12:40 LT). At the time we sampled Fire #3 it was burning slash in a small clearing surrounded

by intact forest. The fire evidently began burning the adjacent forest by 23 March and was then

sampled by the C-130 (see next section). Our Fire #8 was located near the coast in a patchwork of

small fields and different-aged forests suggesting intensive use by small holders. The fire started as



95

b)a)

c)
c) inset

d)

Figure 5.2 – Fires sampled, hotspots, and flight tracks for: a) 12 March 2006. b) 22 March 2006 c)
23 March 2006. d) 29 March 2006. Scale varies from plot to plot. For comparison the distance from
Campeche to Merida is 155 km.
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Table 5.1 – Details of the fires sampled in the Yucatan by the Twin Otter and C-130 during MILAGRO
(March 2006).

Date Fire Lat Long Time Coverage by cloud-free MODIS OP Hotspot Fuels

dd/mm/yy # dd.dddd dd.dddd LT Terra hhmm LT Aqua hhmm LT Y/n observed from aircraft

12/03/06 3 19.1834 -90.7269 1405-1409 1034 1338 n crop residue (CR) some small-holdings

12/03/06 4 19.6330 -90.6758 1420-1424 1034 1338 n CR larger holdings

12/03/06 5 19.5947 -90.6497 1555 1034 1338 n nearly all CR, one spot in forest

22/03/06 1 19.5306 -90.1063 1314-1317 1110 1240 n CR/deforestation (DF) for mechanized agriculture (MA)

22/03/06 2 19.7748 -89.8675 1329-1333 1110 1240 Y CR/DF mixed (MA)

22/03/06 3 19.7703 -89.5177 1344-1348 1110 1240 n deforestation (DF) adjacent to MA

22/03/06 4 19.8158 -89.4578 1353-1356 1110 1240 n DF adj. MA

22/03/06 5 19.8649 -89.4717 1358-1401 1110 1240 n DF adj. MA

22/03/06 6 20.3532 -88.8383 1424-1427 1110 1240 n DF adj. MA

22/03/06 7 20.8525 -88.4018 1447-1450 1110 1240 n DF adj. MA

22/03/06 8 21.2085 -89.0345 1512-1529 1110 1240 Y CR/DF many small fields; also burned brush, scrub, and grass

23/03/06 1 19.8266 -89.3825 1410 1016 1321 n unknown

23/03/06 2 19.7648 -89.5220 1412 1016 1321 Y unknown

23/03/06 3 19.8201 -89.3681 1417 1016 1321 n unknown

29/03/06 1 19.6235 -90.3815 1337-1353 1116 1246 Y CR/DF clearing scrub/brush for MA

29/03/06 2 19.7208 -90.4108 1346 1116 1246 n DF adjacent to mid-sized fields

29/03/06 3 19.4230 -90.2315 1400 1116 1246 n CR/DF many small fields; also burned brush, scrub, and grass

29/03/06 4 19.5128 -89.8192 1412-1416 1116 1246 n CR MA

29/03/06 5 20.0371 -89.8395 1435-1448 1116 1246 n CR MA

29/03/06 6 20.0055 -89.7808 1438-1441 1116 1246 n CR MA

a crop residue fire, but spread to adjoining fields and forest. Strong surface winds pushed this fire

aggressively towards the southeast. At 600–700 m altitude, the plume “curled back” and dispersed

northwest at higher elevations. Three samples of this fire’s plume were obtained below 669 m (msl)

and then 2 more were acquired at ∼1700 m where the plume had probably aged ∼10–30 min. Fire

#8 was one of several sampled fires that were detected by MODIS and in the case of Fire #8 this

indicates that it had burned for at least ∼3 hours.

5.3.5.3 C-130 flight of 23 March: Yucatan portion

On 23 March, from 14:05:35–14:06:39 LT, the C-130 descended through three closely spaced “stacked”

smoke layers (with embedded fair-weather cumulus) near the top of the boundary layer (2200–2500

m) over the Yucatan (Figure 5.2c, Table 5.1). The three high smoke layers had aged up to several

hours and probably experienced some cloud processing (based on the proximity of the clouds and

the fact that the RH exceeded 100% as the C-130 passed through the middle layer). Next, at lower

altitude, nascent smoke was sampled from three fires in the area; once per fire (14:09:31-14:16:47

LT). The sample of Fire #2 acquired by the C-130 on 23 March was located ∼750 meters from the

sample acquired by the Twin Otter on 22 March of their “Fire #3.” A photograph of the C-130 Fire
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#2 shows a large area of burned forest. Thus, this fire was likely a continuation of the one sampled

from the Twin Otter a day earlier. This fire was also the only fire sampled by the C-130 that was

detected by MODIS (CONABIO, Table 5.1).

The last C-130 sample of nascent smoke (from Fire #3 on 23 March) was at 1700 m and thus about

10–30 minutes old. Immediately after this sample, the aircraft stayed in the plume and followed the

smoke in a curving path for about 14 km down wind probing smoke that had presumably aged an

additional ∼1.5±0.7 hours relative to the sample of nascent smoke (14:16:48–14:18:31 LT) (Section

5.4.4). During the nominal aging interval from 1.27–1.47 hours the RH exceeded 100% indicating

possible cloud processing. By 14:19:41 LT, the C-130 had climbed back above the boundary layer

and set course for Veracruz.

5.3.5.4 Twin Otter flight of 29 March

Figure 5.2d shows the Twin Otter flight path over the Yucatan peninsula on 29 March, the fires

sampled (from 13:37–14:41 LT), and the hotspot locations (from Terra 1 at 11:16 LT and Aqua 1

at 12:46 LT). The fire, fire type, and hotspot matches are also in Table 5.1. In contrast to the 22

March flight when most of the fires found were DF, on 29 March all but one of the fires found were

originally CR. Thus, of the six fires found, there was one DF, three CR, and two mixed (CR that

escaped and also burned some woodland).

5.4 Results and discussion

5.4.1 Fire-average initial emission factors measured on the Twin Otter

The fire-average emission factors (EF g/kg) measured on the Twin Otter are shown in Table 5.2

along with the study-average EF for DF and CR fires. If molar ER are preferred for an application,

they can be obtained from the EF in Table 5.2 with consideration of the difference in molecular

mass. The modified combustion efficiency (MCE, ∆CO2/(∆CO2+∆CO)) for each fire is also shown

in Table 5.2. The MCE indicates the relative amount of flaming and smoldering combustion for

biomass burning. Lower MCE indicates more smoldering (Yokelson et al., 2003). Figure 5.3 shows

EFCH3OH vs MCE and demonstrates that much of the large variation in EFCH3OH (factor of

∼4.5) is correlated with the different MCE that occur naturally on biomass fires. In principle, it

would be advantageous to incorporate this variability into emissions estimates. Unfortunately, at

this time, MCE cannot be measured from satellites nor can seasonal trends in MCE be confidently
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Figure 5.3 – The variation in the fire-average initial EF for NMOC is typically high and it is usually
well correlated with the modified combustion efficiency (MCE). High MCE indicates relatively more
flaming combustion and low MCE indicates more smoldering.

assigned (Yokelson et al., 2008). For N and S species EF variability also arises from the variable

N and S components of the fuel (Yokelson et al., 1996, 2003, 2008). We note that the sum of the

EF for gas-phase non-methane organic compounds (NMOC) in Table 5.2 is 12.8 and 12.0 g/kg for

CR and DF fires, respectively. However, oxygenated volatile organic compounds (OVOC) normally

dominate the gas-phase NMOC emitted by biomass fires and in this study many OVOC common

in biomass smoke were not measured on the Twin Otter. In an earlier study of fire emissions with

enhanced detection of gas-phase OVOC, the combined instrumentation could not identify about 50%

of the gas-phase NMOC by mass (Yokelson et al., 2008). Therefore, we speculate that 30 g/kg is

a conservative estimate of the real sum of gas-phase NMOC from these Yucatan fire types (see also

Section 5.4.2).

5.4.1.1 Comparison to previous work on Yucatan and other deforestation fires

Coffer et al. (1993) made the only other fire emissions measurements in the Yucatan. They measured

CO2, CO, H2, CH4, and total NMHC (TNMHC) on two deforestation fires in February of 1990 and

1991. Utilizing all 23 WAS smoke samples and 11 backgrounds that they collected, yielded an

average CO/CO2 ratio of 0.071 – equivalent to an MCE of 0.934. Their MCE is a little higher than

our DF average (0.927), but well within our range for DF (0.907-0.945). We can not derive EF from

their data because the average molecular mass and carbon fraction of their TNMHC is unknown.

We can directly compare to their molar ratios to CO for H2 (0.35±0.13; 0.44±0.21 (Twin Otter))

and CH4 (0.096±0.03; 0.125±0.056 (Twin Otter)). Thus, while there is no statistically significant
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Table 5.2 – The date, fire number, fire type (see text), and emission factors (g/kg) sorted by primary
technique for fires sampled by the Twin Otter in the Yucatan during March 2006. Blank indicates no
data.

12/3 12/3 12/3 22/3 22/3 22/3 22/3 22/3 22/3 22/3 22/3 29/3 29/3 29/3 29/3 29/3 29/3

Species 3 4 5 1 2 3 4 5 6 7 8 1 2 3 4 5 6 CR DF

AFTIR CR CR CR MIX MIX DF DF DF DF DF MIX MIX DF MIX CR CR CR Avg Stdev Avg Stdev

CO2 1631 1722 1729 1607 1627 1644 1651 1711 1600 1651 1671 1656 1682 1695 1603 1679 1689 1676 50 1656 38

CO 80.04 57.63 50.38 114.4 96.76 84.71 88.22 63.27 104.3 84.26 72.25 82.44 71.35 68.13 123.2 67.25 71.74 75.04 25.81 82.68 14.21

MCE 0.928 0.950 0.956 0.899 0.915 0.925 0.923 0.945 0.907 0.926 0.936 0.927 0.938 0.941 0.892 0.941 0.937 0.934 0.023 0.927 0.013

NO 4.780 1.620 2.688 3.866 1.275 1.496 0.877 5.386 2.412 3.909 6.345 3.206 1.960 1.322 2.163 0.958 2.352 1.334

NO2 4.457 7.077 4.550 11.51 2.360 2.049 3.559 1.248 4.598 3.858 12.43 4.818 6.253 9.669 4.753 1.253 1.275 3.894 2.256 3.594 1.791

NOx as NO 2.907 4.615 2.968 12.29 3.159 4.025 6.187 2.089 4.495 3.394 13.49 4.568 7.987 12.65 5.673 2.777 2.154 3.516 1.337 4.696 2.099

CH4 9.648 1.471 2.067 7.349 6.302 6.055 7.326 2.557 9.213 6.595 4.151 3.517 3.718 4.883 5.131 4.402 2.709 4.238 2.993 5.911 2.427

HCHO 3.136 6.661 0.886 0.879 2.613 2.760 2.726

CH3OH 4.397 1.892 0.766 3.834 3.168 2.879 4.527 1.354 4.689 3.325 2.376 1.694 1.021 1.336 3.530 2.034 1.704 2.387 1.327 2.966 1.544

CH3C(O)OH 4.643 6.476 7.070 3.544 2.534 2.412 1.431 4.678 3.416 6.359 3.250 2.388 4.765 2.013 2.894 1.220

HC(O)OH 3.859 0.618 3.739 2.738 1.838

ceNH3 0.910 3.902 1.393 0.626 0.080 1.869 0.539 0.309 0.366 1.675 0.350 0.339 1.379 1.477 0.771 0.739

HCN 0.102 0.302 0.225 0.172 0.449 0.250 0.277 0.277 0.233 0.065

WAS

ethane 1.476 0.153 0.190 1.187 0.490 1.611 1.065 0.668 0.866 0.992 0.897 0.662 0.676 0.548 1.069 0.403

ethene 1.465 0.526 0.594 0.992 0.742 1.452 1.127 1.065 0.813 0.925 0.433 0.962 0.761 0.746 0.842 0.341 1.048 0.265

propane 0.436 0.040 0.054 0.256 0.184 0.194 0.163

propene 0.942 0.173 0.205 0.521 0.423 1.215 0.669 0.845 1.386 3.924 0.630 0.634 0.517 0.325 1.350 1.471

isobutane 0.032 0.003 0.004 0.020 0.012 0.014 0.012

n-butane 0.097 0.009 0.014 0.045 0.048 0.042 0.035

ethyne 0.292 0.144 0.139 0.295 0.234 0.202 0.202 0.064

t-2-butene 0.089 0.011 0.012 0.057 0.034 0.041 0.033

1-butene 0.195 0.041 0.044 0.127 0.080 0.097 0.065

isobutene 0.176 0.022 0.031 0.117 0.064 0.082 0.064

c-2-butene 0.067 0.008 0.009 0.043 0.025 0.031 0.025

cyclopentane 3×10−3 1×10−4 4×10−4 2×10−3 1×10−3 1×10−3 1×10−3

isopentane 0.014 0.001 0.000 0.010 0.010 0.007 0.006

n-pentane 0.030 0.003 0.005 0.020 0.014 0.014 0.011

1,3-butadiene 0.214 0.033 0.057 0.130 0.072 0.101 0.073

H2 3.00 2.16 4.32 2.27 2.37 1.44 1.29 4.76 1.66 1.68 2.70 1.79 2.61 1.13

Neph/UHSAS

PM2.5 6.52 8.29 8.83 5.48 5.49 2.12 6.59 3.73 10.06 6.21 3.56 5.69 5.78 7.06 3.87 5.81 1.39 4.50 1.64
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difference, our measurements imply moderately higher emissions of these smoldering compounds.

The response of TNMHC instruments to OVOC is poorly characterized, but their large molar ratio

of TNMHC/CO (24%) agrees with our statement above (and Section 5.4.2) that the Twin Otter

total NMOC is too low. The present study does, however, greatly expand the extent of speciation

of Yucatan fire emissions.

We compare our DF data to the most recent and extensive measurements of DF in the Amazon,

a study that included both airborne measurements of nascent emissions and ground-based measure-

ments of the smoldering emissions that cannot be sampled from an aircraft (Yokelson et al., 2008).

A few main features stand out. The largest difference occurs for initial emissions of particles. The

EFPM2.5 for the Twin Otter Yucatan DF is only 4.5±1.6 g/kg compared to 14.8±3.4 g/kg for the

Amazon. Both of these values are significantly different from the recommendation of Andreae and

Merlet (2001) of 9.1±1.5 g/kg, although their recommendation agrees remarkably well with the

average of the Yucatan and Amazon values (9.7 g/kg). A main factor contributing to the observed

difference in EFPM2.5 is probably that the March 2006 early dry season fires that we were able to

sample in the Yucatan were much smaller and less “intense” than the late dry season fires sampled

in Brazil. As discussed in detail by Yokelson et al. (2007a) and references therein, it is likely that

larger more intense fires have much larger particle emission factors. Since a large fraction of annual

biomass burning occurs late in the dry season, the late dry season EFPM may better represent

the annual particle production. Also, we show in Section 5.4.4 that the ∆PM2.5/∆CO ratio could

increase by a factor of ∼2.6 in ∼1.4 h after emission. This factor times our initial EFPM2.5 of 4.5

g/kg suggests that shortly after emission, about 12 g/kg of PM2.5 have been produced even by the

small Yucatan fires considered here.

The Yucatan fires had higher mean EFCO2 (1656±38 (1601 Amazon)) and lower mean EFCO

(83±14 (108 Amazon)). This is indicative of relatively more flaming combustion, which is also

reflected in the higher MCE (0.927 (0.904 Amazon)). The higher MCE and a possible tendency

for the biomass to be higher in nitrogen content may explain the higher mean EFNOx (4.7 (1.7

Amazon). Propene was also emitted in higher amounts from Yucatan fires (1.36 (0.5 Amazon)).

Most of the compounds that were measured in both studies had average EF that were not sta-

tistically different between the two forest environments. The means (in g/kg) for these compounds

are: CH4 (5.9 Yucatan, 6.3 Amazon); HCHO (2.6 Yucatan, 1.7 Amazon); CH3OH (2.98 Yucatan,

2.95 Amazon); NH3 (.78 Yucatan, 1.1 Amazon); ethane (1.08 Yucatan, 1.01 Amazon); ethene (1.05

Yucatan, 0.98 Amazon) and HCN (0.23 Yucatan, 0.66±0.56 Amazon). Two compounds had signifi-
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cantly lower emissions from the Yucatan deforestation fires: CH3C(O)OH (2.9 Yucatan, 4.3 Amazon)

and HC(O)OH (below detection limit in Yucatan, 0.57 Amazon).

The EF measured for a single understory fire in a tropical dry forest in Africa were all within

the range of EF we measured for the Yucatan DF, except that the EF for total PM for the African

understory fire was 13 g/kg (Sinha et al., 2004). There are not enough measurements of understory

fires to determine if their EF are significantly different from the EF for DF. For species not measured

in this study, the EF measured for deforestation fires in Brazil are probably the best estimate for

these, and global tropical forest fires (Yokelson et al., 2008). By extension, the EF values measured

in this work, but not in Brazil (Section 5.4.2) are likely the best estimate for global tropical forest

fires.

5.4.1.2 Comparison of Yucatan deforestation and crop residue fires

We also compare the EF from the two main types of fires we observed in the Yucatan. Despite

the fuel differences, the EF overlap within 1 standard deviation for most species. However, the

tendency towards higher emissions of organic acids and ammonia from crop residue fires is clear

(CH3C(O)OH (4.8 CR, 2.9 DF); HC(O)OH (2.7 CR, below detection limit DF); and NH3 (1.38 CR,

0.775 DF)). “Higher than normal” emissions of these species were also observed from burning rice

straw by Christian et al. (2003) in a lab study. The Yucatan DF emitted more HCHO than the

CR fires we sampled (below detection limit CR, 2.6 DF). However, the rice straw fire sampled by

Christian et al. (2003) had very high HCHO emissions. Thus, low HCHO emissions are not likely

a universal feature of CR fires. In summary, since the EF were about equal for most species, this

suggests that the overall average trace gas speciation of the emissions from the region may not be

very sensitive to a shift in the relative amount of these two main fire types for most species.

5.4.2 Fire initial emissions measured on the C-130

No CO2 data was collected on the C-130 so we present ER to CO in Table 5.3. Also the fuels were

not positively identified so the C-130 data was not included in the “fire-type specific” comparison

above. However, the extensive instrumentation on the C-130, and the well-designed flight path,

provided a large amount of valuable data.

The initial fire emissions of several species were measured for the first time in the field by

the Caltech CIMS. These include H2O2, peroxyacetic acid, and propanoic acid. All these reactive

compounds were present in significant amounts in the youngest smoke samples. The presence of
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Table 5.3 – Initial emission ratios to COa measured in nascent smoke and normalized excess mixing
ratios (to CO) measured in aged smoke layers on the C-130 on 23 March 2006

Fire number and averages Altitude of aged smoke layers

Species Instrument 1 2 3 Avg Stdev 2476 m 2292 m 2166 m Avg 3 layersb

SO2 NOAA UV 0.0243 0.0264 0.0254 0.0015 0.009 0.0186 0.0188 0.0155

SO2 Caltech CIMS slope 0.0257 0.0048 0.0213 0.0173 0.011

SO2 Ratio 2 methods 1.06 0.81 0.93 0.18

NO NCAR Chemiluminescence 0.008 0.0032 0.0085 0.0066 0.0029 0.0069 0.0011 0.0008 0.003

NO2 NCAR Chemiluminescence 0.027 0.0147 0.0377 0.0265 0.0115 0.0088 0.0012 0.0017 0.0039

NOx/CO NCAR Chemiluminescence 0.035 0.0179 0.0462 0.033 0.0142 0.0157 0.0023 0.0025 0.0068

NOy/CO NCAR Chemiluminescence 0.0471 0.0282 0.0607 0.0453 0.0163 0.0424 0.0108 0.007 0.0201

NOx/NOy NCAR Chemiluminescence 0.7423 0.6369 0.7606 0.7133 0.0668 0.3708 0.2103 0.3625 0.3145

O3 NCAR Chemiluminescence 0.17 0.0458 0.0189 0.0782∑
PANs/NOy NCAR spectrometer 0.113 0.135 0.303 0.1837

HCHO NCAR diode laser 0.0252 0.0252 0.0344 0.0164 0.0254

HCN CIMS NOy proxy 0.0148 0.0063 0.0088 0.01 0.0044

HCN CIMS slope 0.0152 0.0074 0.0081 0.0102 0.0043 0.0022

HCN Ratio 2 methods 1.03 1.17 0.92 1.04 0.13

HONO CIMS NOy proxy 0.0023 0.0031 0.0029 0.00277 0.00042

HONO CIMS slope 0.0022 0.0075 0.0028 0.00417 0.0029 0.00033 0.00008

CH3C(O)OH CIMS slope 0.0093 0.0466 0.0158 0.0239 0.0199 0.024

HC(O)OH CIMS slope 0.0023 0.0034 0.0025 0.0027 0.0006 0.0055

H2O2 CIMS slope 0.0018 0.0013 0.0013 0.00147 0.0003

Peroxyacetic Acid CIMS slope 0.00013 0.00026 0.00017 0.00019 0.0001 0.0011

Propanoic Acid CIMS slope 0.00098 0.0028 0.00086 0.00155 0.0011 0.0007

Acetonitrile NCAR PTR-MS 0.0043

Acetaldehyde NCAR PTR-MS 0.0187

Acetone NCAR PTR-MS 0.0066

Methanol NCAR PTR-MS 0.0254

Methylethylketone NCAR PTR-MS 0.003

Methylpropanal NCAR PTR-MS 0.0011∑
Hydroxyacetone, Methylacetate NCAR PTR-MS 0.007

Benzene NCAR PTR-MS 0.0034

Ammonium (PM1) CU HR-ToF-AMS 0.0034 0.0005 0.0033 0.0024 0.0017 0.0141 0.0062

Chloride (PM1) CU HR-ToF-AMS 0.009 0.0009 0.0092 0.0063 0.0047 0.0122 0.0025

Nitrate (PM1) CU HR-ToF-AMS 0.0031 0.0022 0.0034 0.0029 0.0007 0.0257 0.0057

Sulfate (PM1) CU HR-ToF-AMS 0.0004 0.0004 0.001 0.0006 0.0003 0.0196 0.0022

Organic Aerosol (PM1) CU HR-ToF-AMS 0.033 0.0498 0.039 0.0406 0.0086 0.1714 0.0751

Organic Carbon (PM1) CU HR-ToF-AMS 0.0203 0.0342 0.0248 0.0264 0.0071 nm∑
PM1 Species CU HR-ToF-AMS 0.0489 0.0538 0.0558 0.0528 0.0036 0.2429 0.0917

Black Carbon (PM2.5) UH PSAP 0.0066 0.0043 0.0081 0.0063 0.0019 nm 0.0039

Total PM2.5 UH Nephelometer 0.0698 0.073 0.0624 0.0684 0.0054 0.2185 0.1151

% PM2.5 speciated AMS, PSAP, Nephelometer 79 80 102 87.1 13.3 111 83

Particle surface areac UH OPC and FMPS 50.7 52.3 41.1 48 6.1 29.5 34.6

a Trace gas ratios to CO are molar ratios and particle species ratios to CO are mass ratios (273 K, 1 atm).
b Computed as average of individual layers when available or as single value for all layers.
c Dry PM3.0 surface area in m2/gPM2.5.
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the peroxide species in the nascent smoke may partially reflect fast initial photochemistry (e.g.,

recombination of peroxy radicals (RO2, HO2)). There was no increase with altitude in the ratio of

peroxide species to CO when comparing the freshest sample of each fire, but we cannot rule out a

photochemical contribution to our reported initial emissions since even the freshest smoke (from Fire

#2) could have been ∼3–10 minutes old and photochemical production of H2O2 was observed in the

aging plume from Fire #3 (Section 5.4.4). They are important as a HOx reservoir and the H2O2

plays an important role (along with HCHO) in the oxidation of sulfur in clouds (Finlayson-Pitts and

Pitts Jr, 2000).

The NCAR SICIMS detected traces of H2SO4 (∆H2SO4/∆CO, 5.4 × 10−7 ± 5.2 × 10−7) and

MSA (∆MSA/∆CO ∼8.4×10−8±1.3×10−7) in the young fire emissions also for the first time. The

initial amount of these species varies greatly potentially due to differences in fuel S and plume

reactivity. To “normalize” for fuel S variation and highlight any altitude dependence, which could

indicate fast initial chemistry, we computed the initial ratios of H2SO4 or MSA to SO2. No trend

was observed with altitude in these ratios, but due to the high variability and uncertain formation

process we do not report initial emissions for these species in the Tables.

The combination of PTR-MS and the Caltech CIMS made it possible to detect many gas-phase

NMOC that have been measured from fires before, but not on the Twin Otter in this study. In Table

5.4 where the results from the two aircraft are combined (as detailed in Section 5.4.3) the sum of

identified gas-phase NMOC is 22 g/kg. This value is close to the sum of identified gas-phase NMOC

for Brazilian deforestation fires (25.8 g/kg) reported byYokelson et al. (2008). However, both of

these values are only ∼50% of the true sum of gas-phase NMOC, which includes detected, but

unidentified, species that are mostly high molecular weight OVOC (Yokelson et al., 2008). The sum

of the molar ratios to CO (Table 5.4 data) for the OVOC that could be measured was 0.1295. The

sum of the molar ER to CO for measurable NMHC was 0.0393. Thus, the OVOC/NMHC ratio in

the initial gas-phase emissions was about 3.3 — or OVOC accounted for 77% of measured, emitted

NMOC on a molar basis. The dominance of NMOC by OVOC in BB plumes causes significant

photochemistry differences compared to fossil fuel burning plumes, where NMOC are dominated by

NMHC (Singh et al., 1995; Mason et al., 2001).

An important species detected by PTR-MS was acetonitrile, which is thought to be produced

almost exclusively by biomass burning (de Gouw et al., 2003) and thus has value as a BB tracer

with relatively long (few months) atmospheric lifetime. The ER to CO for this species averaged

over the three C-130 fires was 0.0043. The recommended acetonitrile to CO ER for 18 Brazilian
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Table 5.4 – Initial ERa to CO and EF (g/kg) for Yucatan Fires as measured by both Twin Otter
(seventeen fires) and C-130 (three fires).

Twin Otter C-130 Yucatan Average Initialb

ER to CO ER to CO ER to CO EF EF

Compound avg stdev avg stdev avg g/kg Stdev

CO2 13.024 0.321 13.024 1641 40

CO 1 0.242 1 80.18 19.4

NO 0.0338 0.0196 0.0066 0.0029 0.0202 1.733 1.264

NO2 0.0378 0.0256 0.0265 0.0115 0.0321 4.235 3. 406

NOx as NO 0.0645 0.0431 0.033 0.0142 0.0488 4.188 3.328

NOy 0.0453 0.0163 0.0453

HONOc 0.0028 0.0004 0.0063 0.853 0.636

SO2 (Caltech CIMS three fires) 0.0173 0.011 0.0173 3.164 2.016

CH4 0.1104 0.0517 0.1104 5.059 2.369

HCHO 0.0326 0.0275 0.0252 0.0289 2.482 2.095

CH3OH 0.0282 0.0138 0.0254 0.0282 2.586 1.264

CH3C(O)OH 0.0231 0.0105 0.0239 0.0199 0.0235 4.036 3.829

HC(O)OH 0.0205 0.0141 0.0027 0.0006 0.0116 1.532 1.105

NH3 0.0209 0.0219 0.0209 1.017 1.066

HCN 0.0032 0.0014 0.01 0.0044 0.0066 0.512 0.316

Acetonitrile 0.0043 0.0043 0.5

Acetaldehyde 0.0187 0.0187 2.355

Acetone 0.0066 0.0066 1.103

Methylethylketone 0.003 0.003 0.624

Methylpropanal 0.0011 0.0011 0.219∑
Hydroxyacetone, Methylacetate 0.007 0.007 1.475

Benzene 0.0034 0.0034 0.759

H2O2 0.0015 0.0003 0.0015 0.143 0.029

Peroxyacetic Acid 0.0002 0.0001 0.0002 0.04 0.022

Propanoic Acid 0.0015 0.0011 0.0015 0.328 0.233

Ethane 0.0098 0.0052 0.0098 0.844 0.449

Ethene 0.0111 0.0038 0.0111 0.889 0.305

Propane 0.0015 0.0013 0.0015 0.192 0.161

Propene 0.0079 0.0082 0.0079 0.952 0.988

Isobutane 0.00009 0.00007 8.60E-05 0.014 0.012

n-Butane 0.00025 0.00021 2.50E-04 0.042 0.035

Ethyne 0.00289 0.00091 0.0029 0.215 0.068

t-2-Butene 0.00025 0.0002 2.50E-04 0.04 0.033

1-Butene 0.0006 0.0004 6.00E-04 0.096 0.064

Isobutene 0.00051 0.0004 5.10E-04 0.081 0.064

c-2-Butene 0.00019 0.00015 1.90E-04 0.03 0.025

Cyclopentane 5.80E-06 4.80E-06 5.80E-06 0.0012 0.001

Isopentane 3.40E-05 3.00E-05 3.40E-05 0.007 0.006

n-Pentane 6.90E-05 5.40E-05 6.90E-05 0.014 0.011

1,3-Butadiene 0.00065 0.00046 6.50E-04 0.1 0.072

H2 0.4301 0.206 0.4301 2.463 1.18

PM2.5 0.0733 0.0261 0.0684 0.0054 0.0709 5.877 2.142

Ammonium (PM1) 0.0024 0.0017 0.0024 0.192 0.136

Chloride (PM1) 0.0063 0.0047 0.0063 0.509 0.377

Nitrate (PM1) 0.0029 0.0007 0.0029 0.233 0.056

Sulfate (PM1) 0.0006 0.0003 0.0006 0.047 0.024

Organic aerosol mass (OA) (PM1) 0.0406 0.0086 0.0406 3.254 0.69

Organic carbon (OC) (PM1) 0.0264 0.0071 0.0264 2.117 0.569

Black carbon (BC) (PM2.5) 0.0063 0.0019 0.0063 0.541 0.163

a Molar ratio to CO for gases and mass ratio to CO (273 K, 1 atm) for particle species.
b Straight average of Twin Otter and C-130 data when species measured from both aircraft.
c Yucatan initial values calculated assuming that initial HONO is about 10% of NOy. Uncertainty from
Keene et al. (2006) (see text).
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DF was 0.0026±0.0007 (Yokelson et al., 2008). Without better information on the variability of

this ratio in the Yucatan we cannot say it is different from the ER for Brazilian DF. HCN is

another compound produced mainly by biomass burning and used as a tracer (Li et al., 2000).

The ∆HCN/∆CO ER measured on the C-130 was 0.0100±0.0044 (n = 3) and the Twin Otter

∆HCN/∆CO ER for all fires was 0.0032±0.0014 (n = 7). The combined average for both aircraft

is about 0.0066±0.0041, which is not significantly higher than the ∆HCN/∆CO ER obtained for

Brazilian DF (0.0063±0.0054). The ∆CH3CN/∆HCN molar ER is fairly consistent for several recent

field studies: 0.39 MC-area (Crounse et al., 2009), 0.41 Brazil DF (Yokelson et al., 2008) and ∼0.43 in

the Yucatan if we only consider the fires where both species were measured. The ∆CH3CN/∆HCN

molar ER for laboratory fires in six different tropical fuels was 0.56±0.31 (Christian et al., 2003).

As noted in Section 5.4.1.1, the Yucatan DF emitted more NOx than Brazilian DF, which could

suggest a higher fuel N content in the Yucatan and the hypothesis that NOx is produced by oxidation

of most of the N-containing compounds in the fuel. The fact that HCN and acetonitrile emissions

are highly variable in both locations, but not larger (on average) from the Yucatan fires suggests

that these species may arise from the pyrolysis of only specific, N-containing precursor compounds

in the fuel that vary in concentration, but on average are about the same in Brazil as in the

Yucatan. In any case, potential, total fuel N differences do not provide a simple rationale for all our

observations (Yokelson et al., 2008).

Nitrous acid (HONO) is known to be a direct initial emission from fossil fuel combustion (Finlayson-

Pitts and Pitts Jr, 2000, pp 274) and Keene et al. (2006) and Yokelson et al. (2007a) observed

direct emission of HONO from biomass burning in the lab and field, respectively. Photolysis with

unit quantum yield to OH and NO is the only important daytime loss for HONO and occurs within

10–20 minutes (Finlayson-Pitts and Pitts Jr, 2000). Thus we expect the lower altitude samples of

the Yucatan BB plumes to have higher ∆HONO/∆NOy values (where this ratio should normalize

for fuel N differences to some extent). This trend is evidenced in our samples since ∆HONO/∆NOy

was the highest for Fire #2 (∼0.11, sampled at 390 m) and decreased for Fires 1 (∼0.05, 1110

m) and 3 (∼0.044, 1730 m). Since NOy is about 75% NOx (Table 5.3), a comparable value for

∆HONO/∆NOx of 0.14 was measured at lower altitudes (predominantly ∼580 m) in Brazil by

Yokelson et al. (2007a). The lab BB study of Keene et al. (2006) reported a ∆HONO/∆NOx

molar ratio of 0.13±0.097. In the aging Fire #3 plume (Sect. 3.4) the ∆HONO/∆CO dropped to

about one-tenth of the initially observed value within ∼20 minutes and ∆HONO/∆CO was even

lower in the aged haze layers (Table 5.3, Section 5.4.5). Thus, we conclude that HONO accounts for
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about 10% of initial BB NOy and that it makes a major contribution to both OH and NO in fresh

BB plumes.

Both the Caltech CIMS and NOAA UV instruments confirmed higher than average emission of

SO2 from these fires. The average SO2/CO ER from the CIMS instrument reflects one more fire than

sampled by the NOAA UV instrument. The CIMS average molar ER of 0.0173 is approximately

7 times larger than the average for tropical forest fires (0.0024) quoted by Andreae and Merlet

(2001). The reason for this could involve the fuel S content, which could be high in the Yucatan

because of soil S; manure used as fertilizer; or deposition of marine sulfur. There are some very

large SO2 sources in central Mexico including volcanoes and petrochemical refineries (de Foy et al.,

2007; Grutter et al., 2008). These sources are normally downwind of the Yucatan, but there may be

occasional meteorological circumstances where they contribute to sulfate deposition in the Yucatan.

The mean PM2.5 mass ratio to CO (0.0684±0.0054, Table 5.3) obtained by coupling the UH

nephelometer with the NCAR CO for the three C-130 fires was very similar to the average ratio

obtained for all 17 fires on the Twin Otter (0.073±0.026). This suggests that the two aircraft

sampled a similar mix of biomass burning and confirms that the PM emissions were below the

literature average for tropical forest fires. The UH PSAP allowed a rough measurement of black

carbon (BC) based on light absorption. Martins et al. (1998) compared BC measurements by light

absorption to those made by thermal evolution techniques. They found significant variation in the

MAE with mixing state, size distribution etc, and obtained an average MAE for fresh-aged Brazilian

BB smoke of 12±4 m2 g−1. Using this MAE we obtained an average initial mass fraction of BC

to PM2.5 of 0.095±0.036, which is a little higher than the average initial mass fraction obtained for

Brazilian fires by Ferek et al. (1998)(0.071±0.012). Black carbon is the main component of smoke

that lowers the single scattering albedo (SSA). Christian et al. (2003) showed that EFBC increase

with MCE (BC is a flaming combustion product) while CO correlates with smoldering combustion,

which also tends to emit a “white” reflective smoke high in organic mass (Yokelson et al., 1997).

Fires 1 and 3 sampled by the C-130 had updraft cores that directly rose to high altitudes in the

boundary layer due to vigorous flaming, while Fire #2 had a lower buoyancy plume (C-130 flight

video, http://data.eol.ucar.edu/). The plume dynamics are consistent with the BC and SSA data as

Fires 1 and 3 had low SSA (0.67 and 0.73) and high BC/CO mass ratios (0.066 and 0.081) compared

to Fire 2 (SSA 0.84, BC/CO 0.043).

From the OPC data, assuming spherical particles, we calculated the dry surface area of particles

0.15–3 microns in diameter, which should account for most of the particle surface emitted (Table
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5.3). The average value was 48±6.1 m2/gPM2.5. The lowest individual value was obtained for Fire

#3 (41.1 m2/gPM2.5), which was sampled at the highest altitude (1700 m) and likely reflected fast

initial coagulation. The more aged upper haze layers had values near 30 m2/gPM2.5, and this is

likely a good estimate of the dry surface area after most of the coagulation is complete. Ambient

RH in the upper boundary layer ranged from 70–100% so the ambient particles would have been

significantly larger due to addition of water. Measurements of the growth of BB particles as they

hydrate typically show an exponential increase in total scattering to about a factor of 2 near 80%

RH, which is usually the cut-off for the measurement (Magi and Hobbs, 2003). Thus, the particle

surface area could certainly double as “dry smoke” becomes “wet smoke.” Assuming an aged smoke

layer dry PM2.5 of 100 µg sm−3 we obtain a dry particle surface area concentration of ∼3×10−3 m2

sm−3. Multiplying by a typical number of active sites per m2 (1019, Bertram et al., 2001) suggests

a “few ppbv” of active surface sites are available for heterogeneous chemistry in a typical wet or dry

smoke plume. This is a significant available surface area, but much smaller than the droplet surface

area within clouds (up to 0.5 m2 sm−3). The tendency of smoke-impacted clouds to have more, but

smaller droplets (Kaufman and Nakajima, 1993) can cause the surface area in smoky clouds to be

2-7 times larger than in clean clouds. Depending on the extent of smoke-cloud interaction this could

be the most important influence of BB on available surface area.

The AMS coupled with the VUV-CO provided the mass ratio to CO for a suite of particle

constituents: NR sulfate, nitrate, ammonium, chloride, and organic mass (Tables 5.3 and 5.4).

Coupling the AMS with the UH nephelometer allowed an estimate of the mass fraction of each AMS

species to the total PM2.5 (Tables 5.3-5.5). These ratios can be compared to measurements in plume

penetrations of nascent smoke from Brazilian fires by Ferek et al. (1998). (Since these ratios change

rapidly after emission, it is best to compare initial ratios from similarly aged, very fresh samples.)

Since Ferek et al., report a higher average ratio of PM4 to CO (0.10) this could bias a comparison

of ratios to CO between the two studies. Thus we compare our mass fractions of total PM2.5 to

the mass fractions of total PM4 that they obtained for the average of four fire types shown in their

Table 3. The average MCE for their data treated in this manner is 0.924; close to the average MCE

(0.929) measured on the Twin Otter for all Yucatan biomass burning.

Fire #2, which may have been a forest fire (based on the video and photos) had the highest

OA and lowest BC and is the C-130 fire that is most like the Brazil fires (Table 5.5). Fires 1 and

3 have much higher initial NR chloride, nitrate, and ammonium than Fire 2 or the Brazilian fires.

This could indicate that these fires were burning crop residue and that the emissions were impacted
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Table 5.5 – Estimated speciation of the total PM2.5 as a percentage of the mass for fires 1-3 on 23
March 2006 (sampled by C-130).

Yucatan This Work Amazona Yucatan/Amazon

Species Fire-1 Fire-2 Fire-3 Avg Stdev Avg Stdev

Sulfate (PM1) 0.57 0.55 1.54 0.89 0.56 1.95 0.83 0.45

Nitrate (PM1) 4.47 2.96 5.51 4.31 1.28 0.96 0.33 4.49

Organic Aerosol Mass (PM1) 47.19 68.26 62.42 59.29 10.88

Organic Carbon (PM1) 29.09 46.8 39.82 38.57 8.92 61.8 6.4 0.62

Ammonium (PM1) 4.93 0.66 5.26 3.61 2.56 0.09 0.08 40.14

Chloride (PM1) 12.83 1.21 14.74 9.59 7.33 1.8 1.1 5.33∑
AMS-PM1 Species 69.99 73.63 89.46 77.7 10.35

BC (PM2.5) 9.45 5.87 13.02 9.45 3.58 7.1 1.2

K 3.7 2.7

PM4 % speciated (Amazon) 77.4 4.4

PM2.5 % speciated (Yucatan) 79.44 79.5 102.48 87.14 13.29

a Source: mass percent of PM4 from Ferek et al., (1998).

by fertilizers. However, the high average EFCl – in the Yucatan could also reflect wet deposition of

marine aerosol on the fuels (McKenzie et al., 1996). The lower EFCl – for Fire #2 might indicate

that it was not burning hot enough to volatilize the fuel chlorine efficiently. Despite the high SO2

emissions from the Yucatan fires the initial PM2.5 is not elevated in sulfate, which makes sense since

the atmospheric oxidation of SO2 to sulfate typically requires about a week. The sum of species

characterized by Ferek et al. on their filters was about 77 % of their PM4. The main species they did

not measure is non-carbon organic mass since they analyzed for organic carbon (OC) only. Adding

their residue to their OC suggests a ∆OA/∆OC ratio of ∼1.34±0.11, which is a little lower than

the ∆OA/∆OC of 1.55±0.08 measured by the AMS for the Yucatan fires. The average Yucatan

OC was 39±9% of the PM2.5 on a mass basis, which is below the average of ∼62±6% obtained by

Ferek et al. in Brazil. However, the OA for Yucatan fires may be a little higher. Clarke et al.

(2007) and Hoffer et al. (2006) suggested that a small fraction of BBOA (up to ∼20%) is refractory.

The classification as “refractory” depends on the technique so some BBOA defined as “refractory”

in other studies may be detected by the AMS. Finally, one African tropical dry forest fire emitted

“total” PM that was only 23% OC (Sinha et al., 2004). The sum of the species analyzed on the

C-130 accounted for 87±13% of the total PM2.5 as calculated from our MSE-based approach. Other

methods of computing total PM2.5 on the C-130 could be used such as the size distribution coupled

with the particle number and an assumed density. But the agreement obtained from the MSE-based
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approach is adequate as each technique only claims accuracy of ∼25%. The main aerosol species not

quantified on the C-130 is potassium (K). The K+ signal in the AMS can reflect both surface and

electron impact ionization making it difficult to quantify the amount of K in ambient particles. K

was about 3.7% of particle mass in Ferek et al., but its incorporation into particles depends strongly

on the amount of flaming combustion (Ward and Hardy, 1991) as may also be the case for chloride.

5.4.3 Overall combined initial emissions from Yucatan biomass burning

In this study we simply take the average of all the Twin Otter data and weight it equally to the

average of all the C-130 data. As discussed in Section 5.5, this approach may weight the emissions

from CR fires too heavily to be a true regional average, but it allows us to use the valid measurements

from mixed or unknown fire types. Since, we have also presented the emissions data in the original

stratified form (Tables 5.2 and 5.3), this allows alternate coupling schemes for future applications.

In any case, as noted above, the fire type may not affect the smoke chemistry dramatically except

for organic acids, NH3, and some PM species. In addition, the smoke transported away from the

Yucatan will not have the same composition as the initial emissions due to rapid photochemistry

detailed in Section 5.4.4.

To couple data from both aircraft in our estimate we proceed as follows. Both molar ER to CO

and EF are useful for regional estimates and only the former was measured on the C-130. Thus, in

Table 5.4, Column 2, we have converted the average EF for all the species and all the fires measured

from the Twin Otter (DF, CR, and mixed) to molar ER to CO. Column 4 shows the average ER

to CO measured for all the species for all fires sampled by the C-130. In Column 6 the combined

average ER to CO is shown for all species. When a species was measured on both aircraft or by two

instruments we took the straight average of the two values as our preliminary estimate of the study

average regional value (except for SO2 as detailed above). Finally, in Column 7, the study-average

initial ER from Column 6 have been converted to EF using the Twin Otter average CO/CO2 and

the carbon mass-balance method (Section 5.3.4.1).

It is worth noting briefly that, on average, similar fires were sampled by each aircraft. The

PM2.5/CO ratios are close as noted above. A best calculation of the methanol to CO ratio measured

on the C-130 (allowing for sampling rate differences) gives an average value for the three C-130

fires of 0.0254, which is within 10% of the average measured by AFTIR for the 17 fires sampled on

the Twin Otter (0.0282). The ∆CH3C(O)OH/∆CO and ∆HCHO/∆CO ER measured on the two

different aircraft were also very similar (Table 5.4). The means were not as close for NOx and HCN,
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but the standard deviation about the mean was large for both species on both aircraft. We do note

that, the ∆HCN/∆CO ER measured on Fire #3 by the AFTIR on 22 March was 0.0037, which is

not far from the value measured by the Caltech CIMS (0.0047) on the continuation of that fire the

next day, though perhaps burning partly different fuels.

5.4.4 Photochemical aging of smoke (first 1.5 hours)

Post-emission chemistry determines much of the atmospheric impact of smoke from fires. In this

study, the C-130 first sampled Fire #3 at 1700 m where the smoke would have been ∼10–30 minutes

old and then immediately followed the plume downwind. About 14 km downwind, ∆CO in the

plume suddenly decreased from values that were ≥ 10–20 times the variation in the background

(∼5 ppbv CO) to only 2–3 times the background variation. The measurements continued beyond

this point, but we do not discuss them since the excess values are highly uncertain. The average

windspeed measured in the aging plume was 9.6±4.2 km h−1. Assuming the average winds were the

same when the downwind smoke was originally emitted implies that the downwind smoke had aged

up to an additional ∼1.5±0.7 h.

In Figure 5.4a, ∆O3/∆CO is plotted versus the estimated change in smoke age. A rapid increase

in this ratio to ∼15% occurs in < 1 h. Figure 5.4a also shows ∆Ox/∆CO versus time where “Ox”

approximates the total odd oxygen. In this work the sum of O3, NO2, and PANs account for nearly

all the odd oxygen. The rise in ∆Ox/∆CO is very similar to that in ∆O3/∆CO confirming that

O3 is being produced through photochemical oxidation of NMOC (Crutzen et al., 1999). Yokelson

et al. (2003) measured a rise in ∆O3/∆CO to ∼9% in ∼0.7 h on three isolated BB plumes in

Africa and the ∆O3/∆CO observed in this work after ∼0.7 h of smoke aging (∼8%) is close to the

value observed in the African plumes. The chemical evolution of one of the above-mentioned African

plumes was measured in great detail (Hobbs et al., 2003) and Trentmann et al. (2005) constructed

a comprehensive photochemical model for comparison with those measurements. The model agreed

with the measured rate of increase in ∆O3/∆CO only if plausible, but unconfirmed, heterogeneous

reactions were added; or if the measured initial emissions of NMOC were increased by 30% (on a

molar basis) as a surrogate for unmeasured NMOC. The latter assumption is consistent with our

earlier statement that ∼50% of the NMOC emitted by BB are unidentified on a mass basis and this

should perhaps be a standard assumption in the modeling of BB plumes. The rate of increase in

∆O3/∆CO seen in the Yucatan and Africa is faster than observed in some BB plumes; especially

at high latitudes (Goode et al., 2000; de Gouw et al., 2006), but most BB occurs in the tropics. In
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any case, from southern Africa to Alaska it has been shown that large-scale chemical changes can

occur in BB plumes in an initial photochemical regime that is different from the ambient boundary

layer and at a spatial scale that could challenge regional-global models.

In Figure 5.4a, and some of the Figures that follow, there is some non-monotonic structure and/or

“scatter” in the downwind normalized excess mixing ratios (NEMR). This is expected due to several

factors including: (1) Different parts of the plume can age at different rates. An aircraft cannot

fly exactly down the plume center-line and instead goes in and out of regions where the smoke is

more concentrated and there is less light. Also, the combustion rate at the source can fluctuate

leading to a non-monotonic decay in total smoke concentration downwind. (2) The fuels and initial

emissions can vary over the course of a fire. When a fire burns freely into homogeneous fuels, the

flaming/smoldering ratio and the initial emission ratios may be fairly constant (Hobbs et al., 2003),

but this is not always the case. (3) Mixing with fresh or aging plumes from other fires is possible.

∆HCN/∆CO is one of the ER that varies the most from fire to fire and this NEMR was fairly

constant for the 1.5 h of Fire #3 data we show. (Figure 5.1b shows all the HCN and CO values in

the aging Fire #3 plume.) However, some degree of mixing with other plumes cannot be completely

ruled out.

A rigorous error estimate is not possible for each of the above terms or the assumption of a similar

windspeed before our sampling. Thus we point out obvious trends in the data and, in some cases,

we fit a line to the data and compare the slope to the standard error in the slope to determine if

there is a statistically significant trend. The plume chemistry is not expected to be linear: the linear

fit is employed as a simple test of whether the values at the beginning and end of the aging sequence

are significantly different from each other. Below, we show that the initial emissions were likely

very similar for the samples probed at the beginning and the end of the sequence and so significant

differences between these points are then evidence for a net change due mostly to photochemistry.

The fractional uncertainty in the effective “rate” of any process that might be derived from the fit

would be larger than the standard error divided by the slope due to the additional uncertainty in

the sample ages. Probably all the samples have experienced more aging, or all the samples have

experienced less aging, than estimated. The real uncertainty in the rate is probably about a factor

of two.

Figure 5.4b suggests that there were likely some gradual changes in the initial emissions of Fire

#3 and the post-emission processing environment that help interpret our data in the aging plume.

Figure 5.4b shows ∆BC/∆CO at the 5 s time resolution of the PSAP. BC is a flaming product
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Figure 5.4 – a) Rapid increase in ∆O3/∆CO and ∆Ox/∆CO in the aging plume of the C-130 Fire
#3 discussed in Section 5.4.4. b) The plot of ∆BC/∆CO in the same plume shows that the flaming
to smoldering ratio at the source, and the initial emissions, were probably similar for the beginning
and end of the aging sequence shown. The JNO2

trace shows that the rate of photochemistry can vary
within the same plume (Section 5.4.4).
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and CO is a smoldering product. As the C-130 flew downwind in the plume, the gradual 20%

decrease in ∆BC/∆CO until about 0.9 h suggests the instruments were sampling smoke originally

produced at a gradually decreasing flaming/smoldering (F/S) ratio. The peak in BC/CO at ∼1 h

could reflect a temporary increase in the F/S ratio at the source about an hour before the sampling

started. For the older samples, the F/S ratio was again close to the F/S ratio at the time of the first

C-130 sample. Thus a comparison of the beginning and end NEMRs may best reflect post-emission

chemistry. The variation in JNO2
is also shown in Figure 5.4b. JNO2

first increases by about a

factor of 3 as the smoke dilutes. Near the one-hour aging mark JNO2
decreases by ∼2, ∆O3/∆CO

decreases slightly, and CO increases. The aircraft is evidently entering a region of the plume with

greater total smoke concentration. After one hour, both ∆O3/∆CO and JNO2
increase, the smoke

concentration decreases, and minimal cloud-processing may occur.

A key driver for photochemistry besides UV is OH. In Hobbs et al. (2003) the rate of decrease

of numerous NMHC in one African biomass burning plume was used to estimate an average plume

OH over the first 40 minutes of aging of ∼1.7×107 molecules cm−3. On our Fire #3, no NMHC

were measured within the aging plume, but an OH instrument was on board. The first OH value

in the aging plume (averaged over 29 s of flight time and a calculated range of smoke aging of 22–

43 minutes) is 1.14×107 molecules cm−3. This is 5–20 times larger than the OH values in nearby

background air. The plume OH levels thereafter decreased to about twice the average OH in the

boundary layer. To our knowledge this is the first in situ measurement of OH in a BB plume and

it confirms the potential for very high initial OH in BB plumes. The measurements imply a major

shortening of reactive species “lifetimes” in comparison to ambient air as predicted earlier (Mason

et al., 2001). HO2 and RO2 would likely be elevated along with OH (Mason et al., 2001). However,

the one minute time resolution of the HO2 instrument and some missing data make it difficult to

determine the levels of this species in the three BB plumes sampled on the C-130.

Trace gases other than O3 also increased. The initial ∆HCHO/∆CO from the NCAR DFG

spectrometer was 0.025 ± 0.01 and it increased to 0.038 ± 0.01 at 0.8 ± 0.1 hours. Similar in-

creases in this NEMR were also seen in an African plume in samples acquired near the top of the

plume (Hobbs et al., 2003). The ∆HCHO/∆CO increased dramatically when smoke entered a cloud

in Africa (Tabazadeh et al., 2004) and may have also increased strongly in the Fire 3 plume for the

points that may be cloud impacted (∼0.065±0.025).

The ratio ∆H2O2/∆CO was 0.0013 in the nascent smoke from Fire #3 and then increased by

∼4 to 0.0054 after ∼1.3 hours of aging (Figure 5.5). In Figure 5.5, the intercept is forced to the
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Figure 5.5 – The plot and comparison of the standard error in the slope to the slope indicates that
there is a statistically significant increase in ∆H2O2/∆CO with aging. The uncertainty in the rate of
increase is probably about a factor of two when uncertainty in the age of the samples is considered
(Section 5.4.4).

initial ∆H2O2/∆CO value that was determined by plotting ∆H2O2 versus ∆CO for all the samples

in the nascent smoke of Fire #3. We force the intercept because it is based on more samples (with

higher S:N) and it has lower uncertainty than the individual downwind NEMRS. With additional

aging, the ∆H2O2/∆CO ratio would likely increase significantly beyond the ratio measured at 1.3 h

due to lower NOx and entrainment of the BL air which had an absolute H2O2/CO ratio of 0.0125.

Lee et al. (1997) observed ∆H2O2/∆CO ratios of 0.01–0.046 in BB-impacted SH BL air.

Figure 5.6 shows post-emission growth in peroxyacyl nitrates both as ∆PAN/∆CO and

∆
∑

PAN/∆NOy. An initial value for ∆PAN or ∆
∑

PAN may not be meaningful (as for O3) and

was not measured due to interference in the nascent smoke. However, Figure 5.6a shows that the

∆PAN/∆CO ratio increases rapidly from ∼0.0025 (at ∼0.4 h) to ∼0.006 (at ∼1.4 h). The NEMR

reached in ∼1.4 hours is as large as the NEMR observed in smoke from Canada that was ∼8 days

old during NEAQS (F. Flocke private communication). This demonstrates that large variability in

initial emissions and/or photochemical processing can be associated with BB plumes. Figure 5.6b

shows the ∆
∑

PAN/∆NOy with aging in the Fire #3 plume. In the ∼1.2–1.4 h aging interval,

∆PAN/∆NOy alone has increased to about 13%. The other PAN-like species showed similar trends,

but were present in smaller amounts. The sum of the most abundant other PAN-like species (APAN

and PPN) was about 20% of PAN in the 1.2–1.4 h interval and the ∆
∑

PAN/∆NOy had increased

to 0.167±0.036 in this interval. In the initial Fire #3 plume ∆NOx/∆NOy was 0.76 (based on

comparing integrals) and in the 1.2–1.4 h aging interval ∆NOx/∆NOy was 0.41±0.1. This implies

a NOx loss of 46±11%. A second estimate of the percentage of NOx loss based on the decrease
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Figure 5.6 – (a) ∆PAN/∆CO increases quickly. (b) The increase in PANs accounts for ∼31% of the
loss in NOx (Section 5.4.4).

in ∆NOx/∆CO is 62±16%. Averaging these estimates of the NOx loss gives 54±19% implying

that PANs accounted for 31±13% of the loss of NOx. Similar trends were not observed for HNO3.

Modestly elevated mixing ratios of HNO3 occurred in some parts of the BL, but were not correlated

with the obvious presence of fresh or aged smoke (i.e. elevated CO). The NH3/NOx molar ER

measured by AFTIR on Yucatan fires was as high as 1.5 and averaged 0.46±0.42. Thus, much of the

HNO3 formed may have reacted quickly with NH3 to form particle nitrate as also discussed later.

The post-emission fate of organic acids in BB plumes is variable. Goode et al. (2000) observed

secondary increases in both excess formic acid (∆FAc) and excess acetic acid (∆HAc) ratioed to

∆CO for one Alaskan fire, but only in ∆FAc/∆CO for another Alaskan fire. In three different African

BB plumes, Yokelson et al. (2003) observed ∆HAc/∆CO increase to 6–9% in < 1 h, but saw no



116

post-emission increase in ∆FAc/∆CO. A huge regional plume emanating from the Brazilian Amazon

had much higher ∆FAc/∆CO (∼1.6%) and ∆HAc/∆CO (∼5%) than the initial values measured for

Amazonian fires (Yokelson et al., 2007a). Within the aged Fire #3 plume, we measured more organic

acids than previously possible. The excess mixing ratios of FAc and peroxyacetic acid normalized

to ∆CO both increased (Figure 5.7) while the excess mixing ratios of HAc and propanoic acid

normalized to ∆CO did not show significant trends. In general, the ratio of excess carbon contained

in organic acids to excess carbon contained in CO is large in fresh smoke and very large in slightly

aged smoke (4–18% in the Yucatan, Brazil, and Africa). Thus, in many BB plumes organic acids are

the third most important carbon reservoir behind CO2 and CO and ahead of CH4. The observed

growth in organic acids is often much larger than the amount of known precursors. There may be

currently unidentified high molecular weight precursors that are emitted in quite variable amounts.

The total NOx loss for the 1.2–1.4 h aging interval was 54±19% with the formation of PANs

accounting for a NOx loss of ∼17% as shown earlier. The measured OH (starting at 1.1×107 and

dropping to 4.1×106) coupled with the pseudo-second-order rate constant for OH+NO2 (1.02×10−11

cm3 molecule−1 s−1) at the temperature and pressure of the plume (288 K, 815 hPa) predicts an

additional 30% loss (Sander et al., 2006). The additive loss from these two channels (47%) is

close to the total loss considering the uncertainty in the sample ages (a factor of 2) and the rate

constant (∼30%), but other loss processes are not excluded. For the 22 March Twin Otter Fire #8,

∆NOx/∆CO decreased ∼75% between the young and aged samples. This larger decrease could be

partly due to changes in this ratio at the source, but may also reflect the fact that the Twin Otter

sampled initial smoke at lower altitude (300-600 m) than the C-130 (∼1700 m). OH may be higher

in the fresher smoke (Hobbs et al., 2003).

Figure 5.8 shows ∆SO2/∆CO from both the NOAA UV and the Caltech CIMS in the C-130 Fire

#3 plume. The ratio drops from the initial average of 0.0239 to ∼0.015 by ∼0.7 h. A decrease this

fast is not likely to be due only to gas-phase or heterogeneous processes in the aging plume. The

fact that SO2 is produced by flaming combustion and CO is mainly from smoldering combustion

probably explains much of the observed drop. As shown in Figure 5.4b, the samples with nominal

aging times up to almost 1 h reflected relatively more smoldering at the source. For the 1.2–1.4 h

aging interval, the F/S was about the same as the initial value and ∆SO2/∆CO was 0.0186±0.006 on

the continuous instrument (no CIMS samples). This could imply an SO2 loss of 23±8% due mainly

to plume processes. The expected loss by OH oxidation is only ∼3% at 1.3±0.1 h. According to

Seinfeld and Pandis (2006), SO2 loss is very fast in cloud droplets and also significant on particles
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Figure 5.7 – Net production of both formic acid (a) and peroxyacetic acid (PAA) (b) in the aging
smoke from the C-130 Fire #3 (Section 5.4.4).
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Figure 5.8 – Continuous and discrete measurements of ∆SO2/∆CO in the aging C-130 Fire #3 plume.
Much of the initial drop in ∆SO2/∆CO is likely due to the gradually decreasing ratio of flaming to
smoldering combustion (F/S) at the source (Section 5.4.4). The F/S for the beginning and end of the
aging sequence shown is about the same and the average ∆SO2/∆CO value in the 1.2–1.4 h aging
interval is ∼23% lower than the initial ratio.

at RH > 90% or near NH3 sources, conditions which are met for much of the Fire #3 plume. The

expected and observed changes in sulfur species over the relatively short time monitored in the Fire

#3 plume are small and uncertain, but heterogeneous processes may well have contributed.

A large increase in ∆PM2.5/∆CO was observed in the aging Fire 3 plume. Figure 5.9a shows a

rapid initial rise in ∆PM2.5/∆CO, which may partly reflect decreased F/S at the source combined

with the higher EFPM normally observed for smoldering Yokelson et al. (2007a). At ∼1.4 h of

aging the ∆PM2.5/∆CO had increased by a factor of 2.6±1.5, which is independent of the choice

of a fixed MSE. Figure 5.9b shows the mass fraction ∆BC/∆PM2.5, which decreased by 2.6 over

the same aging period. This decrease is independent of the choice of fixed MAE. Since BC is made

only by flaming combustion at the source and ∆BC/∆CO is similar at the source and the end of

the aging period, the complementary change in the above ratios confirms that the overall change in

∆PM2.5/∆CO is due to secondary aerosol formation. Also shown in Figure 5.9b is the increase in

SSA from ∼0.75 to ∼0.93 as the mass fraction of BC decreases in the PM2.5. This is analogous to

the increase in SSA from 0.84 to 0.885 measured by Abel et al. (2003) over ∼2.4 hours of aging in

an African BB plume. In this work, we also quantified the secondary formation of the individual

non-absorbing constituents using the AMS as described next.

Figure 5.10 shows the Fire #3 aging results for all the particle species measured by the AMS

except for NR chloride. The excess amounts of all the particle species shown are normalized to excess
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Figure 5.9 – a) The mass ratio of ∆PM2.5/∆CO increases by 2.6 as the smoke from the C-130 Fire #3
ages 1.4 h using the endpoint of the fit line. (The apparent faster initial increase may reflect the higher
particle emissions for smoldering combustion.) b) As the particles age, BC is conserved (∆BC/PM2.5

decreases by 2.6), non-absorbing components are added, and SSA increases.
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Figure 5.10 – Secondary formation of organic and inorganic aerosol in the aging plume of C-130 Fire
#3 (see Section 5.4.4).

CO and all these ratios increased significantly. (∆chloride/∆CO remained constant over ∼1.4 h).

Summing the ER to CO (on a mass basis) in the fresh smoke of Fire #3 gives a total of 5.6%. We

derived a “final” mass ER to CO from the fit shown at 1.4 hours and then summed these ratios to

obtain 13.3%. Thus, the excess mass of all AMS species ratioed to excess CO increases by a factor of

2.4 over this time period – in good agreement with the factor of 2.6 implied by the light scattering.

The changes in the mass percentage of the ∆PM2.5 were also computed for each species yielding

complementary results since the particles were adding mass. For instance, the ∆sulfate/∆CO ratio

increased by a factor of 8.6±2.7 (95% CI) from its initial value to its value at 1.4 h. This was larger

than the overall PM2.5 growth factor of ∼2.6 so the mass percentage of the particles accounted for

by sulfate increased from ∼1.5 to ∼5%. The growth factor measured for ∆OA/∆CO was 2.3±0.85,

which is slightly smaller than the overall PM2.5 growth of ∼2.6 so the calculated mass fraction of OA

in the PM2.5 decreased slightly from 62 to 53%. Disregarding uncertainty, the calculation suggests

that the particles could be adding organic mass, but adding inorganic mass at an even higher rate.

The growth factor for ∆NO –
3 /∆CO was 5.4±1.2 and the mass percentage of nitrate increased from

5.5 to 11%. The ratio ∆NH+
4 /∆CO increased by 2.7±2.0 and so the computed mass percentage

of ammonium was nearly unchanged (5.3% initial to 5.4% final). Since ∆Cl – /∆CO (final) divided

by ∆Cl – /∆CO (initial) was 1.02, the calculated mass percentage of Cl – decreased by 2.6 (from

14.7% to 5.7%); the inverse of the overall particle growth. Note in this case Cl – was not lost

from the particles; it simply represented a decreasing fraction of the PM. The AMS spectra showed
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that the ∆OA/∆OC ratio increased with aging (Figure 5.10). This is consistent with an increasing

contribution of oxygenated secondary OA (Zhang et al., 2005) since heterogeneous chemistry with

OH is too slow to add so much oxygen on this timescale (DeCarlo et al., 2008).

On a molar basis, as the plume from Fire #3 ages, the increase in ∆NO –
3 /∆CO accounts for

49±16% of the decrease in ∆NOx/∆CO expected due to OH reaction. The molar increase in

∆sulfate/∆CO accounts for 39±16% of the total observed ∆SO2/∆CO decrease. Similar calculations

for ammonium are not possible since NH3 was not measured on the C-130. However, on a molar

basis, the ammonium formation is nearly equal to the sum of the sulfate and nitrate formation. A

balance between the loss of gas-phase organic precursors emitted by BB and the secondary formation

of BBOA is complex for several reasons. The condensed phase species comprising BBOA are mostly

unknown and they likely added mass during gas-phase oxidation. In addition, only ∼50% of the total

gas-phase NMOC emitted by BB have been identified. Grieshop et al. (2009) recently found that

the loss of known secondary OA (SOA) precursors in wood stove smoke only accounted for ∼20%

of the measured SOA formation in a smog chamber experiment. They also developed a model that

accounted for all the observed SOA formation by assuming that unspecified low volatility organic

compounds were present in significant amounts; an assumption that is not included in other current

SOA models. Finally, in real BB plumes some of the secondary aerosol formation can occur due to

condensation of trace gases from other sources. However, we get a rough idea of the magnitude of

the conversion process as follows. We estimate the growth for each AMS particle species by applying

the measured growth factor from Fire #3 to the average initial EF for that species shown in Table

5.4. We then divide by the average initial EF in Table 5.4 for the trace gas precursor to get an

upper limit for the fractional precursor conversion. With these assumptions, the mass of the PM

species formed in ∼1.4 h divided by the mass of the co-emitted gas-phase precursor is: sulfate/SO2

(0.11), OA/∆NMOC (0.19), NO –
3 /NOx (0.25), and NH+

4 /NH3 (0.32). The OA/NMOC fraction is

overestimated as explained above: i.e., the projected mass yield of OA at 1.4 h is 0.10 compared

to estimated total NMOC (including unmeasured species). However, the growth factors observed in

this work, coupled with the TEM results presented next may be the most comprehensive evidence

available for rapid secondary formation of both organic and inorganic aerosol in a BB plume. The

large amount of secondary formation observed in this work has important implications for air quality,

radiative transfer, and visibility. This is especially true because biomass burning is the second-largest

global source of NMOC (∼500 Tg yr−1) after biogenic emissions (∼1000 Tg yr−1) (Yokelson et al.,

2008). Finally, large formation of SOA may not always occur in BB plumes (Capes et al., 2008) so
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this subject deserves significant further research.

TEM analysis of individual aerosol particles shows that their composition and structure in the

smoke changed within 30 minutes of emission, presumably through condensation, heterogeneous

reactions, or both (Figure 5.11). We compared TEM samples that were collected at two altitudes

(∼600 m and ∼1700 m) on the Twin Otter from the 22 March Fire #8.

The younger sample was collected within a few minutes of emission. The older sample had aged

between 10 and 30 minutes since emission. The younger sample contains many particles with a large

fraction of KCl, whereas the older one has particles that contain K, S, and Na and that presumably

consist of K2SO4, Na2SO4, and their mixtures. The older sample also includes spherical organic

aerosol particles (tar balls; indicated with a “T” in Figure 5.11c) like those reported by Posfai et al.

(2003) and Hand et al. (2005).

The increases in S and organic C with aging measured by using the TEM are consistent with

the increases for the same species measured using the AMS on the C-130 Fire #3. One possible

difference between the two fires is that the TEM data show that there is almost no Cl in the 10–30

minute old sample whereas measurements with the AMS revealed a decrease in the mass percentage

of chlorine, but a constant chlorine/CO ratio with aging. Chlorine could decrease with age as the

result of reactions in the atmosphere. Similar Cl loss was also observed in African biomass burning

plumes (Posfai et al., 2003; Li et al., 2003). KCl reacts with sulfuric acid and forms K2SO4, releasing

Cl as HCl. A possible reason for the difference in the results for the two fires could be that Cl loss

is a fast initial process and the youngest AMS sample was at the same altitude as the oldest TEM

sample. If most of the KCl particles reacted within 10 to 30 minutes of emission, no further Cl

decrease would have been detected with AMS in their biomass burning plume. Another possibility

is that as the sulfate is replacing the chloride in KCl, the chloride is recondensing as NH4Cl, which

is detectable with the AMS but is likely lost in the vacuum of the TEM (Johnson et al., 2008). In

any case, to our knowledge, Cl – has been observed to decrease or be conserved as BB plumes age,

but not to increase.

5.4.5 Chemistry of aged smoke layers at top of boundary layer

Unlike the case for C-130 Fire #3, we do not know the initial ER for the fires that contributed to the

aged, and potentially cloud-processed, smoke layers that were penetrated at the top of the BL on 23

March. However, we can compare the normalized excess mixing ratios in these high-altitude, aged

smoke layers to our study-average initial ER measured in nascent smoke and the trends observed in
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Figure 5.11 – Morphologies and compositions of individual particles from young (a few minutes old)
and older (∼10 to 30 minutes) biomass-burning samples collected on 22 March from fire #8. (a) TEM
image of the younger aerosol particles. The thin black linear features are the lacy-carbon substrate on
which the samples were collected. The white arrows plus chemical symbols indicate particles that are
rich in Ca, Al, or K+S. (b) Energy-dispersive X-ray spectrometer (EDS) spectra of typical particles
in image (a). (c) TEM image of the older aerosol particles. The white arrows plus chemical symbols
indicate particles that are rich in S, Si+S, or Al. T indicates tar ball particles. (d) EDS spectra of
typical particles in image (c). We used an electron beam ∼0.2 µm in diameter and 30 second counting
times for the EDS analyses. The spectra were averaged across the particles indicated by arrows in the
images. Almost all particles included strong C and O signals from organic material and the lacey-carbon
filter. N-bearing species such as nitrates and ammonium were not well measured using EDS because
N signals are generally weak plus these species decompose rapidly in the TEM beam. The Cu peak
is marked with an asterisk because it is from the TEM grid. Sample collection times were less than a
minute for both samples. Scale bars in both images indicate 1 µm. Org indicates organic material.
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the aging of the Fire #3 plume to gain some additional insight into the likely nature of smoke aging.

The general observation is that these layers tend to have normalized excess mixing ratios similar to

those in the aged Fire #3 plume or exhibit a continuation of the aging trends noted in the plume

downwind of Fire #3. But some caveats are noted.

The ∆O3/∆CO ratio in these layers increases with altitude from ∼0.02 to ∼0.05 to 0.17 (Table

5.3) suggesting that the highest layer is the oldest and ∼1.5 hours old. On the other hand the

∆OA∆CO (∼0.17) and ∆sulfate/∆CO (∼0.02) ratios in the highest layer are about twice the value

in the Fire 3 plume at ∼1.4 h. This would suggest an age of about 3 hours if a linear aging rate

and similar initial emissions are assumed. The largest gas-phase H2O2 mixing ratios occurred just

above the highest smoke layer. Thus the aqueous H2O2 in clouds is likely also largest for the highest

smoke layer, which may contribute to the high degree of sulfate formation and the low ∆SO2/∆CO

ratio of this layer. On the other hand, the ∆NOy/∆CO ratio varies greatly between the three

high smoke layers and it is much larger in the highest layer, which strongly suggests that the initial

emissions are not identical for each layer. This complicates the comparison of layers. Also illustrating

variability, the ∆HCN/∆CO average over all three layers (0.0022) is closer to the Twin Otter average

(0.0032±0.0014) than the C-130 average (0.0108±0.008).

In the smoke layers at the top of the BL ∆NOx/∆NOy ranged from 0.21 to 0.37, which are

all values lower than the average (0.46) in the Fire #3 plume at ∼1.4 h. This suggests that the

smoke had aged for more than ∼2 hours. However, the lowest value (indicating the oldest layer)

was in the middle layer rather than the top layer, which ∆O3/∆CO indicated was the oldest.

∆
∑

PANs/∆NOy was the highest in the bottom layer (∼0.3) and < 0.15 in the other layers. This

would imply that the bottom layer is the oldest. Thus, several normalized excess mixing ratios that

can be used as “photochemical clocks” do not all indicate the same average age or relative ages –

possibly due to varying initial emissions, mixing of different aged plumes, and different processing

environments. An important point of this discussion is that given fire to fire variability (Figure 5.3)

and the high uncertainty in mean EF (Table 5.2) it could be misleading to compare aged and fresh

smoke from different fires even when they occur or originate in the same region (Capes et al., 2008).

Conversely, a non-representative characterization of the average initial BB emissions from a region,

even if coupled with adequate knowledge of the post-emission transformations (which is unlikely),

could cause erroneous calculations of the speciation of the BB emissions exported from a region.

We discuss the representativeness of our initial emissions measurements and the topic of scaling to

regional emissions next.
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5.5 Implications and impact on the regional environment

5.5.1 Fire characteristics and estimates of regional emissions

It is important to characterize the fires we sampled, consider how well they represented the regional

biomass burning, and help guide reasonable estimates of regional emissions from our spot measure-

ments. In this effort, we rely on notes and photographs from the sampling aircraft, the literature,

and remote-sensing data. Based on visual observations from the Twin Otter, nearly all the fires

fit into a simple classification scheme: (1) Deforestation fires (DF) – enclaves in the forest where

heavy slash was burning to initiate or expand agricultural areas. (2) Burning of crop residue (CR)

or “agricultural waste” in fields. (3) DF or CR fires which had “escaped” into nearby unslashed

forest where they consumed mostly understory fuels. If the unintended burned area was < ∼10%

of the planned burn, the fire was classified as DF or CR in Tables 5.1 and 5.2. If the planned and

unplanned areas were comparable the fire was classified as “mixed.” Surface windspeeds were high

throughout southern Mexico in March of 2006 and at least one-third of the fires we observed from

the Twin Otter had escaped their apparent intended boundaries. The fact that much of the Yucatan

forest canopy is leafless in the dry season also promotes large amounts of unintended burning; in

contrast to evergreen forests where the intact canopy maintains a moist micro-climate during the

shorter “dry”/fire season.

During our flights a total of 6 DF, 6 CR, 5 mixed, and three fires of unknown type were observed.

This suggested that the clearing of new areas and the disposal of crop waste were responsible for a

roughly equal number of fires. In addition, we estimated the area burned and fuel consumption for

the whole Yucatan region using a model developed at NCAR by Wiedinmyer et al. (2006). Briefly,

MODIS thermal anomalies were used to identify the daily time and location of fires. The area

burned at each fire was assumed to be 1 km2 (100 ha), scaled to the amount of vegetated area at

the same location (determined by the MODIS Vegetation Continuous Fields product, Hansen et al.,

2003). The fuel loading at each site was dependent on the ecosystem at each fire location (based

on the GLC200 dataset; Latifovic et al., 2003). Finally, the fuel consumption was assumed to be a

function of both the fuel loading and the vegetation coverage at each site. On average the model fuel

consumption per unit area for the two main fires types was 4.5 Mg/ha (CR) and 52 Mg/ha (DF).

The average modeled fuel consumption values are in reasonable agreement with field measure-

ments of fuel consumption in tropical dry forest and crop waste fires. Kauffman et al. (2003)

measured late dry season fuel consumption on five fires in slashed dry forest in western Mexico and
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northeastern Brazil ranging from 57-108 Mg/ha. Fuel consumption values near 10 Mg/ha were mea-

sured when only understory fuels were burning in tropical dry forests in Brazil and Africa (Ward

et al., 1992; Shea et al., 1996; Hoffa et al., 1999). For crop waste fires total biomass and the per-

centage that constitutes residue varies considerably by crop. Further, the percentage of residue that

decomposes before burning varies with climate and drying time and use of residue as fertilizer, ani-

mal feed, or household fuel also varies (Yevich and Logan, 2003). We could not identify the plant

material that was burned in this study. However, cereals are the most common crop worldwide

and data from de Zarate et al. (2005) suggests a range of fuel consumption of 0.36–4.2 Mg/ha for

cereal crop residue burning. Higher values have been measured for other crops that are important

in Mexico with the largest values typically being reported for sugar cane (20 Mg/ha, Lara et al.,

2005). Thus, the NCAR model averages lie well within the rather large range of values that occur

for these fire types.

The uncertainty in the MODIS-based area burned has two chief components: detection efficiency

and the estimation of burned area from counts of fire pixels. The MODIS hotspots show daily trends

in fire frequency and the spatial distribution of biomass burning, but not all fires are detected. The

timing of the Terra and Aqua MODIS overpasses (at 20°N) results in close spacing (∼100 minutes)

of the midday observations and leads to omission errors for short-lived fires or fire activity initiated

following the last daytime pass. There are also times when clouds preclude fire detection or overpasses

do not cover an area of interest. Additionally, the detection rate decreases with burn size, Hawbaker

et al. (2008) found the MODIS detection rate crossed the 50% mark at a fire size of ∼100 ha. In fact,

only a small fraction (4/20) of the fires we sampled were detected by MODIS (Table 5.1). Most of the

“missed fires” were sampled after the last MODIS overpass and all of the fires we photographed were

< 100 ha. Missing fires would cause the model to underestimate burned area. On the other hand, all

the fires that we could roughly size were significantly smaller than the ∼100 ha size assumed in the

model. In addition, Giglio et al. (2006) estimated that, on average, a MODIS fire pixel represented

∼0.4 km2 (40 ha) of burned area in southern Mexico and Central America. Thus, it’s likely that

the area burned is overestimated for some of the individual Yucatan fires. The two main sources

of error in area burned tend to offset. In light of the above-discussed challenges, the overall model

uncertainty in the total amount of emissions is estimated at a factor of 2 (Wiedinmyer et al., 2006).

The results of applying the NCAR model to the Yucatan peninsula (∼18–22N by 87–91W) for

March through May of 2006 are shown in Table 5.6. The ratio of area burned in forest to croplands

is about 6:1 for March 2006 and 7.5:1 for the entire March–May 2006 biomass burning season. This
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contrasts with our airborne observation that the two fire types occurred in roughly equal numbers.

Because of the higher fuel consumption per unit area for forest burning, forest fires account for nearly

all the modeled fuel consumption on a mass basis. We compared the NCAR model result for March

2006 with a separate analysis using a different vegetation map (CONABIO, 1999) and the ratio of

MODIS active fire detections in forested areas to agricultural areas was in rough agreement at 4:1.

The predominance of fire in forested areas in the MODIS based analyses compared to the airborne

sampling may reflect several factors. 1) The airborne sampling was concentrated nearer the coast

(Figure 5.2) while the fraction of forested area (and probably the relative amount of deforestation)

increases inland (CONABIO, 1999). 2) The vegetation maps (1 km2 resolution) may classify smaller

fields surrounded by forest, which appeared common in the Twin Otter photographs, as forest and

neither vegetation map accounts for the deforestation since 2001. 3) The heavier fuel loads of

deforestation fires support longer duration fires compared to croplands – increasing the likelihood

of detection as a thermal anomaly by one of the four daily MODIS overpasses. 4) If DF fires tended

to be initiated earlier in the day this would favor their detection by MODIS and enhance the forest

to crop fire ratio relative to the airborne observations due to the different sampling periods (1300–

1600 LT for airborne sampling vs. 1000–1330 LT for MODIS overpasses). Giglio (2007) observed

that Brazilian fire activity associated with deforestation occurred earlier in the day compared with

cropland burning, while Smith et al. (2007) attributed the low MODIS detection rate (13%) for crop

residue fires in Australia to the tendency of farmers to burn later in the day after MODIS overpasses.

In reality a 1:1 burned area ratio for DF/CR may be an upper limit as it represents approximately

doubling the area under agriculture annually. This upper limit would imply an approximately 11:1

ratio in fuel consumption, which suggests our simple average of all ER presented in Table 5.4 might

ultimately be improved upon.

5.5.2 Regional transport and estimated total production of emissions

As discussed above, the fuels and the mix of flaming and smoldering impact the initial emissions

from fires, which can then evolve rapidly. The post-emission transport dictates what areas of the

atmosphere are impacted by the emissions and the photochemical processing environment. Figure

5.12 shows 5-day HYSPLIT forward trajectories from three starting altitudes from each fire we

sampled (Draxler and Rolph, 2003). Similar forward trajectories were confirmed for multiple days in

April and May of 2006, which are the peak biomass burning months. About one-half of the emissions

tend to disperse northwesterly and remain at altitudes that are likely within the boundary layer.



128

Table 5.6 – Estimation of area burned and biomass burned in the Yucatan in 2006 and comparison
with MCMAEIa.

Area Burned (ha) Biomass Burned (Metric Tons) March-May Area March-May Mass Percent of March-May Mass

Land cover March April May March April May Ha Tg

Forest 53395 401073 383286 2587590 20652195 20133816 837755 43 98.8

Grasslands 100 1180 1200 992 15288 11746 2480 0.03 0.1

Croplands 8599 57197 45298 38513 255178 202126 111094 0.5 1.1

sum 62094 459450 429784 2627096 20922660 20347688 951329 44 100

2006 Speciated Emissions (Metric Tons)

Fire EF Yucatan March MCMA March Yucatan April Yucatan May Yucatan annualc MCMA Yucatan/MCMA Yucatan/MCMA

Speciesb g/kg annual annual Mar-06

PM10 7.42 19489 1724 155213 150947 339021 20686 16.4 11.3

PM2.5 6.18 16241 552 129344 125789 282517 6622 42.7 29.4

CO 80.47 211402 149340 1683646 1637378 3677479 1792081 2.1 1.4

VOC 22.08 58006 44347 461972 449277 1009056 532168 1.9 1.3

CH4 5.08 13343 19589 106266 103346 232110 235065 1 0.7

SO2 3.18 8344 554 66450 64624 145143 6646 21.8 15.1

NOx 3.68 9673 15000 77037 74920 168267 179996 0.9 0.6

NH3 1.02 2677 1460 21320 20734 46568 17514 2.7 1.8

a MCMAEI = Mexico City metropolitan area emissions inventory (2004), March 2006 estimated as annual/12.
b Primary PM only, fire PM10 approximated as 1.2×PM2.5, fire EF from Table 5.4 this work, VOC are identified VOC only.
c Yucatan speciated emissions for 2006 based on 45.7 Tg biomass burned in 2006.

These trajectories tend to cross under NE trending trajectories from MC over the Gulf of Mexico.

There is potential for the Yucatan and MC plumes to eventually mix (after some evolution of each

plume) over the US. Forward trajectories that start in the early evening (not shown) can disperse

directly to the west towards Mexico City. Much of that transport will happen at night. In any case,

it is possible for Yucatan emissions to reach Mexico City, other areas in Mexico, or a large area

of the Midwestern and eastern US as has been documented in detail elsewhere (Lyons et al., 1998;

Kreidenweis et al., 2001; Rogers and Bowman, 2001; Bravo et al., 2002; Lee et al., 2006; Massie et al.,

2006). Because a large area is impacted by Yucatan BB emissions we next discuss the amount of these

emissions as calculated by the NCAR model described above (Table 5.6). To help place the estimated

amount of Yucatan emissions in perspective we compare to the emissions from the Mexico City

Metropolitan Area (MCMA). Specifically, we start by comparing the annual and March 2006 Yucatan

BB emissions directly to speciated data from the 2004 MCMA Emissions Inventory (EI) in the

bottom half of Table 5.6 (http://www.sma.df.gob.mx/sma/index.php?opcion=26&id=392). Based on

this simple first step, the Yucatan fires appear to emit 20–40 times more SO2 and primary PM2.5 on

an annual basis than the MCMA. Since biomass burning peaks in April–May, our initial comparison

for the March 2006 MILAGRO performance period indicates that the Yucatan fires emitted 15–30

times more SO2 and primary PM2.5 and about equal amounts of other trace gases as the MCMA.

However, the PM2.5 in the MCMAEI could be more than a factor of 2 low (calculated from Salcedo
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Figure 5.12 – Three 5-day forward trajectories starting from each fire sampled (red dots with black
border). The starting time is the sampling time shown in Table 5.1. The starting altitudes above
ground level are blue (250 m), green (1000 m), and red (2500 m). The projected altitudes stay mainly
within the boundary layer. The hotspots (red dots, no border) due to biomass burning throughout
Mexico are shown for the dates sampling was conducted in this work.

et al., 2006). In addition, the simple comparison in Table 5.6 does not include secondary aerosol

formation, which could increase the amount of PM2.5 10-fold in the MCMA emissions (Kleinman

et al., 2008) and a factor of 2 or more in the BB emissions (Section 5.4.4). Adjusting for the above

factors implies that the Yucatan SO2 and PM2.5 sources are likely about 2 and 4 times larger,

respectively, than MCMA on an annual basis. Additional important pollution sources are located in

the region including fires in other parts of Mexico and Central America and large SO2 emissions from

the Popocatépetl volcano (894000 t yr−1, Grutter et al., 2008), the Tula refinery (158000 t yr−1,

de Foy et al., 2007), and other volcanoes and refinery complexes. Notably, both the Popocatépetl

and Tula SO2 sources are estimated to be larger than the Yucatan BB or MCMA SO2 source. Clearly

though, our BB estimates for the Yucatan establish it as one of the major regional sources of trace

gases and particles.
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5.5.3 Distribution of biomass burning in the global northern hemisphere

Inspection of the TOMS ozone monitoring instrument global aerosol index (AI) images for March-

May 2006 is instructive (http://jwocky.gsfc.nasa.gov/aerosols/aerosols_v8.html). Even though

we know significant biomass burning is occurring in the Yucatan during this time, no enhancements

of the AI are depicted in the global images. However, other areas of the NH tropics show frequent,

very strong AI enhancements during the same time period. This suggests that these other areas

(Indochina, India, Sahel, etc.) experience a much larger amount of biomass burning. Most of these

areas are also heavily populated and suffer from severe air quality problems (Ramanathan et al.,

2001).

5.6 Conclusions

This study increased both the total number of fires sampled (from 2 to 22) and the total number

of plume species quantified (from 4 to 51) for biomass burning (BB) in the Yucatan. These are

the first detailed measurements of NH tropical BB and they include some species measured for the

first time in young plumes (OH, peroxyacetic acid, propanoic acid, hydrogen peroxide, etc). The

OH measurement in an aging BB plume confirmed the possibility of very high early OH (1.14±107

molecules cm−3) likely caused in part by high initial HONO (∼10% of NOy). Rapid net production of

O3 was observed with ∆O3/∆CO reaching 15% in about one hour of aging in one plume. Significant

post-emission increases in HCHO, H2O2, HC(O)OH, PANs, and other gases were also observed.

The most detailed observations to date of secondary aerosol formation in a BB plume showed that

the ∆PM2.5/∆CO can more than double in less than several hours. Growth in nitrate, ammonium,

sulfate and organic mass accounted for nearly all of the secondary formation. Currently unidentified

high molecular weight NMOC may contribute significantly to the above observed changes. It was

shown that comparing aged and fresh smoke from different fires can be misleading due to high fire-

fire variability. The two main types of BB were deforestation and crop residue fires, but determining

the regional average mix of these types is difficult. BB in the Yucatan is a major source of trace

gases and particles in the region.
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Chapter 6

Isoprene photooxidation: new insights
into the production of acids and
organic nitrates∗

∗Reproduced with permission from “Isoprene photooxidation: new insights into the production of acids and organic
nitrates” by F. Paulot, J. D. Crounse, H. G. Kjaergaard, J. H. Kroll, J. H. Seinfeld, and P. O. Wennberg, Atmospheric
Chemistry and Physics, 9, 1479–1501, 2009. Copyright © 2009 by the authors. This work is licensed under a Creative
Commons License.



144

6.1 Abstract

We describe a nearly explicit chemical mechanism for isoprene photooxidation guided by chamber

studies that include time-resolved observation of an extensive suite of volatile compounds. We

provide new constraints on the chemistry of the poorly-understood isoprene δ-hydroxy channels,

which account for more than one third of the total isoprene carbon flux and a larger fraction of

the nitrate yields. We show that the cis branch dominates the chemistry of the δ-hydroxy channel

with less than 5% of the carbon following the trans branch. The modelled yield of isoprene nitrates

is 12 ± 3% with a large difference between the δ and β branches. The oxidation of these nitrates

releases about 50% of the NOx. Methacrolein nitrates (modelled yield '15±3% from methacrolein)

and methylvinylketone nitrates (modelled yield '11±3% yield from methylvinylketone) are also

observed. Propanone nitrate, produced with a yield of 1% from isoprene, appears to be the longest-

lived nitrate formed in the total oxidation of isoprene. We find a large molar yield of formic acid

and suggest a novel mechanism leading to its formation from the organic nitrates. Finally, the most

important features of this mechanism are summarized in a condensed scheme appropriate for use in

global chemical transport models.

6.2 Introduction

Isoprene (2-methyl-1,3-butadiene, C5H8) is a short-lived compound (τ1/2 = 1–2 hours) emitted

by many deciduous trees during daylight hours. Between 0.5% and 2% of the carbon fixed by

isoprene emitting plants is released to the atmosphere as isoprene (Harley et al., 1999), a flux

accounting for about one third of the total anthropogenic and natural volatile organic compounds

(VOC) emissions (Guenther et al., 2006). Isoprene plays a crucial role in determining the oxidative

chemistry of the troposphere. Ozone levels in urban as well as in rural sites are impacted by

the sequestration and transport of NOx via formation of isoprene nitrates (Horowitz et al., 1998)

and various isoprene-derived peroxyacylnitrates. Moreover, field (Claeys et al., 2004) and chamber

studies (Kroll et al., 2006; Surratt et al., 2006) have recently shown that compounds formed in

isoprene photooxidation, such as methylglyceric acid or methylerythritol, are ubiquitous in aerosol

particles and may contribute significantly to the aerosol global burden (Henze and Seinfeld, 2006;

van Donkelaar et al., 2007). In the light of the potential for significant change in isoprene emissions

due to climate and land use changes (Shallcross and Monks, 2000), studies have been made to

predict the impact of altered isoprene emissions on tropospheric ozone (Sanderson et al., 2003;
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Wiedinmyer et al., 2006). von Kuhlmann et al. (2004) and Fiore et al. (2005) note, however, that

quantifying this impact is difficult due to uncertainties regarding: 1) the dependence of isoprene

emissions on temperature (Harley et al., 2004) and CO2 concentration (Rosenstiel et al., 2003); and

2) the isoprene photooxidation scheme, especially the yields and fates of isoprene nitrates. In this

study, we use anion chemical ionization mass spectrometry (CIMS) to monitor the photooxidation of

isoprene. This technique greatly expands the range of compounds that can be observed during the

photooxidation of isoprene and other hydrocarbons (Ng et al., 2008). Quantitative interpretation is

challenging, however, because 1) calibration standards are not available for many of the compounds

identified and 2) mass analogs (compounds having the same mass) are not differentiated. Therefore

the iterative development of a detailed mechanism is used to analyze the different signals and derive

branching ratios and yields for the compounds identified. First, we briefly describe the experiment

emphasizing the calibration of CIMS measurements. Next, we report and identify the largest signals

monitored by CIMS. We then discuss how these signals help constrain the development of the model

emphasizing the δ-hydroxy channels, the organic nitrate yield and fate, as well as some routes to

organic acids. Finally we discuss the potential implications of our findings for tropospheric chemistry

and present a reduced mechanism suitable for inclusion in chemical transport model.

6.3 Experiment

6.3.1 Experimental setting

The data of the present study were collected in the 28 m 3 Caltech atmospheric chamber, in an

experiment similar to those described by Kroll et al. (2006). Initial concentrations of isoprene, NO,

and H2O2 were 94 ppbv, 500 ppbv and 2.1 ppmv. The photolysis of H2O2 constitutes the primary

OH source in the experiment. NO was added prior to isoprene so that the chamber was initially

ozone free. The initial relative humidity was less than 6% and is assumed to be constant in this

study. The temperature increased by about 5 degrees in the first 100 minutes and remained constant

thereafter at 296.5 K. To simplify modelling, we consider this temperature to hold during the whole

experiment. Isoprene decay was monitored using GC-FID. Ozone was measured by UV absorption

(Horiba) and NO and NO2 (after conversion to NO) by chemiluminescence. The size distribution

and the volume concentration of secondary organic aerosol (SOA) were measured using a differential

mobility analyzer (DMA, TSI 3760). Further details are available in Kroll et al. (2006).
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6.3.2 CIMS

Gas-phase products were monitored using a novel CIMS technique (Crounse et al., 2006) with

CF3O
– as the reagent anion. Non-reactive with ozone, carbon dioxide and dioxygen (Huey et al.,

1996), CF3O
– is a versatile reagent ion suitable for the study of many oxygenated compounds. In

general, two primary ionization pathways are observed:

VOC + CF3O− → VOC−−H·HF + CF2O (R6.1)

VOC + CF3O− � VOC·CF3O− (R6.2)

A minor ionization pathway is observed for certain compounds:

CF3O− + HOOX(O)R→ HF + CF2O·OOX(O)R− (R6.3)

In Reaction R6.3, CF2O is incorporated into the original neutral molecule. Reaction R6.3 has been

observed for peroxynitric acid (PNA) and for peroxy acetic acid (PAA). While Reaction R6.3 is not

the major ionization pathway, in several cases it is useful for distinguishing certain mass analogs.

The dominant ionization pathway for an analyte depends mostly on the acidity (or fluoride affinity)

of the neutral species (Amelynck et al., 2000b; Crounse et al., 2006). Highly acidic compounds, such

as nitric acid, only form the transfer product ion through Reaction R6.1 while hydrogen peroxide and

methylhydrogen peroxide (MHP) form only the cluster product ions through Reaction R6.2. Species

with intermediate acidity (e.g., formic and acetic acids) form both the transfer and cluster products.

Most of the VOC measured in this study follow Reaction R6.2. In this study, air was drawn from

the chamber through a perfluoroalkoxy Teflon line of 1.2 m length and 0.635 cm outer diameter

(OD), at a rate of 10 standard liters per minute (slm), and then sub-sampled into the CIMS flow

tube using a critical orifice made of glass. The orifice constrained the flow from the chamber into

the CIMS to be 145 standard cubic centimeters per minute (sccm). Upon introduction to the CIMS

flow tube, the chamber gas was diluted with 1760 sccm of UHP N2 (99.999%) to a total pressure of

35 hPa, primarily to reduce the concentration of H2O2 to manageable levels. The gas is expanded in

a flow tube ( 17.8 cm, 2.54 cm OD Pyrex glass coated with a thin layer of Teflon (Fluoropel 801A,

from Cytonix Corp.)) before reacted with a transverse ion beam of the reagent anion (Crounse et al.

2006, Fig. 1). Mass scans were conducted using a quadrupole mass spectrometer from m/z = 18 to

m/z = 275 dwelling on each mass for 1 s (giving a scan cycle of about 4
1
2 min). The mass scans were
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repeated throughout the duration of the experiment (17 h). Zero scans were conducted periodically

throughout the experiment by overfilling the critical orifice on the high pressure (chamber) side with

UHP N2. In addition to providing instrumental backgrounds, the temporal response of the zero scans

give insight into the strength of the interaction of the measured compounds with the equipment walls.

The instrumental background signals for most of the large molecular weight products produced in

isoprene oxidation are very small (after the instrument has been sampling clean zero air for an

extended period of time), which suggests that variations in instrumental background over the course

of the experiment are not important for these signals. Compounds with a smaller molecular weight

(e.g., formic and acetic acids) do have instrumental backgrounds, but the level of the instrumental

background is small relative to the signal generated in the isoprene oxidation experiment (more than

10 times smaller), so ignoring instrumental background changes over the course of the experiment

for these species does not introduce a substantial error.

6.3.3 Calibration

The concentration of a compound X, whose product ion is detected at m/z = p, is calculated through:

[X]ppbv =
̂Signal(m/z=p)
cX

(6.1)

where Signal(m/z = p) is the normalized signal associated with X (cf. Appendix 6.7.2.1) and

cX is the calibration constant for the compound X in ppbv – 1. In many cases, no standard is

readily available and no experimental determination of cX can be made. In such cases, we assume

that cX is related to the thermal capture rate (kX) and the binding energy of the cluster. kX

is estimated from the Langevin-Gioumousis-Stevenson-based collision rate. We use the empirical

approach developed by Su and Chesnavich (1982) to calculate kX from the dipole moment (µX) and

the polarizability (αX) of X. In the absence of experimental determinations of µX and αX, we use

quantum chemical calculations to estimate them. The lowest energy conformers of the molecules are

found with the conformer searches method within the Spartan06 quantum package (Wavefunction,

2006) at the B3LYP/6-31G(d) level of theory. The dipole moments and static polarizabilities are

then calculated for the optimized geometries at the same level of theory. When a molecule has several

low energy conformers, a thermally-weighted average of their reaction rate coefficients is used for

kX (cf. Appendix 6.7.2.2 for details). The sensitivity of the instrument to X also depends on the

binding energy between X and the reagent anion as well as the nature of the reagent anion. In the
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presence of abundant ligands (L) such as water or hydrogen peroxide, the sensitivity of the CIMS to

some VOC is modified through two different processes: 1) CF3O
– ·L may react faster with X than

the bare CF3O
– anion because ligand exchange reactions can stabilize the product ion to a greater

extent; 2) the cluster CF3O
– ·L may be sufficiently stable leading to a lower sensitivity at higher L

mixing ratio due to ligand exchange:

VOC·CF3O− + L � VOC + CF3O−·L, (R6.4)

L = H2O,H2O2.

For example, Crounse et al. (2006) reported that the sensitivity to methylhydroperoxide (MHP)

decreases with the water vapor mixing ratio due to Reaction R6.4. In general large molecules featur-

ing several functional groups (peroxide, nitrooxy, alcohol, carbonyl) exhibit only a weak dependence

on the amount of water. Therefore, we neglect the binding energy effect in this study and take:

cX =
kX

kHNO3

cHNO3
(6.3)

where kHNO3
= 1.93×10−9 cm3 molecule−1 s−1 is calculated using the experimental dipole and po-

larizability of nitric acid and cHNO3
is the sensitivity to nitric acid for typical conditions where the

flow tube was operated (water vapor mixing ratio=150 ppmv). HNO3 is used as the calibration

reference because of the weak dependence of the sensitivity with water and its thorough laboratory

study (Huey et al., 1996; Amelynck et al., 2000b; Crounse et al., 2006). When several compounds are

observed at the same m/z, we report the signal calibrated with a reference calibration cref and the

modeled concentrations of each compound Xi multiplied by sXi
= cXi

/cref, so that one can compare

measured signal with the prediction of the mechanism. The predicted concentration of a specific

compound is therefore [Xi]calibrated model/sXi
. Finally, molecules such as isoprene, methacrolein

(MACR), methylvinylketone (MVK) or peroxyacylnitrate (PAN) are not observed with our mea-

surement technique despite their relatively large dipole moment. More generally, the method is not

sensitive to simple aldehydes, alcohols, and ketones, presumably due to the low binding energy of

these compounds with CF3O
– .
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6.4 Results

After the photolysis lights are turned on, isoprene decays with a half life of 20 min (Fig. 6.3). Several

inorganic markers of the chemical evolution of the system can be monitored by CIMS (Table 6.1

and Fig. 6.19). Nitrous acid (transfer at m/z = 66, cluster at m/z = 132, Fig. 6.19), peaks after 50

min and has mostly disappeared after 150 min. HONO is associated with a very large concentration

of NO that defines our first chemical regime (0≤t≤150 min). Given the high concentration of NO,

little ozone is formed and isoprene photooxidation proceeds almost entirely through OH addition.

Pernitric acid (PNA, transfer at m/z = 98, cluster at m/z = 164, Fig. 6.19) grows steadily peaking

at 600 min. Given the sensitivity of PNA to the ratio HO2:NO2, the time when PNA reaches its

maximum indicates the transition from a NOx (Regime 2: 150≤t≤600 min) to a HOx-dominated

chemistry (Regime 3: t≥600 min). In this study, we focus on the NOx-dominated chemistry, limiting

our discussion to the first and second regimes. Studies of low NOx chemistry will follow in a separate

manuscript. Nitric acid (transfer at m/z = 82) grows steadily during the experiment to reach 430

ppb at the end of the experiment. We estimate dinitrogen pentoxide profile by removing the nitric

acid contribution to the NO –
3 (m/z = 62) temporal signal (Huey et al., 1996). The corrected signal

exhibits a shape similar to PNA, peaking after 500 min at 3 ppb. In Table 6.1 and Figs. 6.1 to 6.15,

we report the main signals measured by CIMS, the chemical formula of the associated compounds

as well as their most likely identification using mechanistic considerations. To our knowledge, this is

the first time that the temporal evolutions of isoprene nitrates (cluster at m/z = 232, Fig. 6.9) and

methacrolein/methylvinylketone nitrates (cluster at m/z = 234, Fig. 6.13) have been monitored.

We also observe the formation of small carboxilic acids such as formic and acetic acid, which can

be clearly identified given that they undergo both Reactions R6.1 and R6.2. This specificity helps

identify larger acidic compounds such as (Z)-2/3-methyl-4-oxobut-2-enoic acid (MOBA): the signal

recorded at m/z = 199 (cluster) correlates with the associated transfer at m/z = 133 (ρ = 0.93 for

the first 400 min). This also allows differentiation of certain mass analogs, e.g., the contribution

of acetic acid cluster to m/z = 145 can be removed using its experimental ratio between transfer

and cluster. The residual is the cluster of glycolaldehyde (m/z = 145). Unfortunately most mass

analogs, such as isoprene nitrates (m/z = 232) are positional isomers, and thus cannot be specifically

identified using this approach, thus precluding the derivation of their concentrations. To overcome

this difficulty, a detailed mechanism has been developed iteratively using the constraints of organic

and inorganic signals in association with previously identified mechanisms (Appendix 6.7.1).
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Table 6.1 – Signals monitored by Chemical Ionization Mass Spectrometry. C denotes a cluster (Re-
action R6.1) and T a transfer (Reaction R6.2). Uncertain identifications (cf. text) are highlighted by
a *.

m/z Nature Attribution Formula CAS

Organic

65 T Formic Acid CH2O2 64-18-6

79 T Acetic Acid C2H4O2 64-19-7

107 T Pyruvic Acid* C3H4O3 127-17-3

131 C Formic Acid CH2O2 64-18-6

133 C MHP CH4O2 3031-73-0

133 T MOBA Z(1,4) C5H6O3 63170-47-8

133 T MOBA Z(4,1) C5H6O3 70143-04-3

145 C Acetic Acid C2H4O2 64-19-7

145 C GLYC C2H6O2 141-46-8

159 C HACET C3H6O2 116-09-6

161 C PAA C2H4O3 116-09-6

169 C HMHP CH4O3 15932-89-5

173 C HOPL* C3H4O3 997-10-4

173 C Pyruvic Acid* C3H4O3 127-17-3

175 C DHPN C3H6O3 96-26-4

185 C HC5 E(4,1) C5H8O2

185 C HC5 Z(1,4) C5H8O2 519148-47-1

185 C HC5 Z(4,1) C5H8O2 519148-44-8

189 C DHB C4H8O3 57011-15-1

190 C ETHLN C2H3NO4 72673-15-5

199 C MOBA Z(1,4) C5H6O3 63170-47-8

199 C MOBA Z(4,1) C5H6O3 70143-04-3

201 C MHBL* C5H8O3

204 C PROPNN C3H5NO4 6745-71-7

217 C DHMOB(1,4) C5H8O4

217 C DHMOB(4,1) C5H8O4

232 C ISOPN(1,2) C5H9NO4 227607-01-4

232 C ISOPN(1,4) Z C5H9NO4 227606-97-5

232 C ISOPN(1,4) E C5H9NO4 227606-98-6

232 C ISOPN(2,1) C5H9NO4 227607-02-5

232 C ISOPN (3,4) C5H9NO4 601487-80-3

232 C ISOPN(4,1) Z C5H9NO4 227606-99-7

232 C ISOPN(4,1) E C5H9NO4 227607-00-3

232 C ISOPN(4,3) C5H9NO4 227606-96-4

234 C MACRN C4H7NO5

234 C MACRN(m) C4H7NO5

234 C MVKN C4H7NO5

234 C MVKN(m) C4H7NO5

Inorganic

62 NO –
3 (proxy for N2O5) 14797-55-8

66 T HONO 7782-77-6

82 T HNO3 7697-37-2

98 T HO2NO2 26404-66-0

119 C H2O2 7722-84-1

132 C HONO 7782-77-6

148 C HNO3 7697-37-2

164 C HO2NO2 26404-66-0
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6.5 Discussion

6.5.1 δ-hydroxy channels

Under chamber experimental conditions, isoprene photooxidation proceeds primarily through the

addition of OH to the two double bonds (position 1, 2, 3, and 4, in Fig. 6.1). In the following

we will denote the different channels by the couple (i, j), where i and j refer, respectively, to the

carbon on which the OH and O2 addition occurs. Besides β-hydroxy peroxy radicals (1,2) and (4,3),

additions to positions 1 and 4 can lead, after addition of O2, to four δ-hydroxy peroxy radicals

(Sprengnether et al., 2002), referred to as Z1,4, E1,4, Z4,1, E4,1. The branching ratio between these

different channels remain uncertain (cf. Sect. 6.7.3.1). Here we use a combination of theoretical (Lei

et al., 2000) and experimental results (Sprengnether et al. (2002) and this study) as constraints:

Y1,2'41%, Y1,4'15%, Y2,1'2%, Y4,3'23%, Y4,1'14%, Y3,4'5%. As most studies of isoprene

photooxidation have focused on the main decomposition channels (1,2 and 4,3) yielding MACR and

MVK (Paulson et al., 1992; Sprengnether et al., 2002; Karl et al., 2006), the δ-hydroxy channels,

which account for about 30% of the carbon and a large fraction of the organic nitrates, remain poorly

constrained. A large number of products originating from the δ-hydroxy channels can be monitored

by CIMS which motivates our emphasis on their chemistry.

6.5.1.1 Chemistry of the δ-hydroxy channels

Z1,4. The reaction of the peroxy radical with NO yields an alkoxy radical which undergoes a δ51

isomerization (Atkinson, 1997; Park et al., 2004). The resulting β-hydroxy allyl radical can then react

with O2 and form a 1,4-hydroxycarbonyl, (2Z)-4-hydroxy-2-methylbut-2-enal (HC5 Z(1,4)) detected

as a cluster at m/z = 185 (Fig. 6.2). The detection of its 13C isotope at m/z = 186 supports

the attribution of the signal to HC5. Formation of glycolaldehyde (GLYC cluster at m/z = 145,

Fig. 6.3) and methylglyoxal (MGLYX) at this stage of the photooxidation have also been described

by (Dibble, 2004a,b). This reaction is based on the stabilization of the alkoxy radical, reproduced

below, through a double hydrogen bond, which prevents its decomposition while enhancing a double

hydrogen shift involving the hydrogen of the alcohol groups.
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OH can add to the HC5 Z(1, 4) double bond (channels 2 and 3 in Fig. 6.1), abstract the alde-

hydic hydrogen (channel 4 ) or the hydrogen to the alcohol (channel 1 ). Addition on position

2 is expected to yield GLYC and MGLYX. The signal detected at m/z = 217 (Fig. 6.4) suggests

the existence of channel 3 . In this pathway the alkoxy radical formed after addition of OH on

position 3 is stabilized enough by a double hydrogen bond, so that reaction of O2 becomes competi-

tive with unimolecular decomposition. This mechanism yields 2,4-dihydroxy-2-methyl-3-oxobutanal

(DHMOB (1, 4)).

The signal recorded at m/z = 199 correlates well (ρ = 0.93 for the first 400 min) with the one

at m/z = 133. This correlation between a cluster and a transfer is usually associated with an acid

functional group (cf. Sect. 6.3.2), which supports the formation of (Z)-2-methyl-4-oxobut-2-enoic

acid (MOBA Z(1, 4)), a five carbon acid, from HC5 through channel 4 (Fig. 6.5).

E1,4. The isomerization of the initial alkoxy radical can yield 2-(hydroxymethyl)prop-2-enal

(HMPL) after reaction with O2. A second isomerization would yield 4-hydroxy-3-oxobutanal (HOBL)

or 4-hydroxy-3-(hydroxymethyl)but-2-enal (MHBL). The further photooxidation of HMPL and MHBL

is expected to yield mainly dihydroxypropanone (DHPN), whose CF3O
– cluster is observed at

m/z = 175 (Fig. 6.6), and hydroxyoxopropanal (HOPL, cluster at m/z = 173 with pyruvic acid).

The reaction of OH with HOPL is expected to yield an acylperoxy radical which can further

react with NO2 yielding a PAN-like compound, 3-hydroxy-oxo-peroxyacylnitrate (PAN 250). This

compound may be associated with the signal monitored at m/z = 250, although the identification

is not certain.

Signals originating from the E branch are much smaller than those originating from its Z coun-

terpart. This suggests a large asymmetry between the E and Z δ-hydroxy channels.

Due to the similarity between the (4,1) and (1,4) branch, we only address the major differences.

Z4,1. Hydroxyacetone (HACET, cluster at m/z = 159, Fig. 6.7) and glyoxal (GLYX) can be

formed from the decomposition of HC5 Z(4,1) and HC5 E(4,1). Similar to the formation mechanism

of DHMOB(1,4), the addition of OH to the less preferred position of HC5 Z(4,1) (and E(4,1)) is

expected to yield 3,4-dihydroxy-3-methyl-2-oxobutanal referred to as DHMOB(4,1) (Fig. 6.4).
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Fig. 2. Signal recorded atm/z=185 (black circles) and modeled
HC5=HC5 Z(1,4)+HC5 Z(4,1) + HC5 E(4,1) (monitored as a clus-
ter).
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Fig. 3. Signal recorded atm/z=145 (black circles) compared with
modeled GLYC profile. The contribution of acetic acid cluster has
been removed using acetic acid transfer atm/z=79. Colored bars
indicate the instantaneous modeled contributions of the different
sources of GLYC.

or 4-hydroxy-3-(hydroxymethyl)but-2-enal (MHBL). The further
photooxidation of HMPL and MHBL is expected to yield mainly
dihydroxypropanone (DHPN), whose CF3O− cluster is observed
at m/z=175 (Fig.6), and hydroxyoxopropanal (HOPL, cluster at
m/z=173 with pyruvic acid).

The reaction of OH with HOPL is expected to yield an acylperoxy
radical which can further react with NO2 yielding a PAN-like com-
pound, 3-hydroxy-oxo-peroxyacylnitrate (PAN 250). This com-
pound may be associated with the signal monitored atm/z=250,
although the identification is not certain.
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Fig. 4. Signal recorded atm/z=217 (black circles) and modeled
DHMOB=DHMOB(1, 4) + DHMOB(4, 1) (monitored as a clus-
ter).
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Fig. 5. Sum of the signals recorded atm/z=133 andm/z=199
(black circles) compared with MOBA=MOBA Z(1,4)+MOBA
Z(4,1) (m/z=133 (transfer)+199 (cluster)) and MHP (cluster at
m/z=133).

Signals originating from the E branch are much smaller than those
originating from its Z counterpart. This suggests a large asymmetry
between the E and Zδ-hydroxy channels.

Due to the similarity between the (4, 1) and (1, 4) branch,
we only address the major differences.

Z4,1. Hydroxyacetone (HACET, cluster atm/z=159, Fig.7) and
glyoxal (GLYX) can be formed from the decomposition of HC5
Z(4, 1) and HC5 E(4, 1). Similar to the formation mechanism of
DHMOB(1, 4), the addition of OH to the less preferred position
of HC5 Z(4, 1) (and E(4, 1)) is expected to yield 3,4-dihydroxy-3-
methyl-2-oxobutanal referred to as DHMOB(4, 1) (Fig. 4).
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Figure 6.2 – Signal recorded at m/z=185 (black circles) and modeled HC5=HC5 Z(1,4) + HC5 Z(4,1)
+ HC5 E(4,1) (monitored as a cluster).
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Fig. 2. Signal recorded atm/z=185 (black circles) and modeled
HC5=HC5 Z(1,4)+HC5 Z(4,1) + HC5 E(4,1) (monitored as a clus-
ter).
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Fig. 3. Signal recorded atm/z=145 (black circles) compared with
modeled GLYC profile. The contribution of acetic acid cluster has
been removed using acetic acid transfer atm/z=79. Colored bars
indicate the instantaneous modeled contributions of the different
sources of GLYC.

or 4-hydroxy-3-(hydroxymethyl)but-2-enal (MHBL). The further
photooxidation of HMPL and MHBL is expected to yield mainly
dihydroxypropanone (DHPN), whose CF3O− cluster is observed
at m/z=175 (Fig.6), and hydroxyoxopropanal (HOPL, cluster at
m/z=173 with pyruvic acid).

The reaction of OH with HOPL is expected to yield an acylperoxy
radical which can further react with NO2 yielding a PAN-like com-
pound, 3-hydroxy-oxo-peroxyacylnitrate (PAN 250). This com-
pound may be associated with the signal monitored atm/z=250,
although the identification is not certain.
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Fig. 4. Signal recorded atm/z=217 (black circles) and modeled
DHMOB=DHMOB(1, 4) + DHMOB(4, 1) (monitored as a clus-
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Fig. 5. Sum of the signals recorded atm/z=133 andm/z=199
(black circles) compared with MOBA=MOBA Z(1,4)+MOBA
Z(4,1) (m/z=133 (transfer)+199 (cluster)) and MHP (cluster at
m/z=133).

Signals originating from the E branch are much smaller than those
originating from its Z counterpart. This suggests a large asymmetry
between the E and Zδ-hydroxy channels.

Due to the similarity between the (4, 1) and (1, 4) branch,
we only address the major differences.

Z4,1. Hydroxyacetone (HACET, cluster atm/z=159, Fig.7) and
glyoxal (GLYX) can be formed from the decomposition of HC5
Z(4, 1) and HC5 E(4, 1). Similar to the formation mechanism of
DHMOB(1, 4), the addition of OH to the less preferred position
of HC5 Z(4, 1) (and E(4, 1)) is expected to yield 3,4-dihydroxy-3-
methyl-2-oxobutanal referred to as DHMOB(4, 1) (Fig. 4).

Atmos. Chem. Phys., 9, 1479–1501, 2009 www.atmos-chem-phys.net/9/1479/2009/

Figure 6.3 – Signal recorded at m/z=145 (black circles) compared with modeled GLYC profile. The
contribution of acetic acid cluster has been removed using acetic acid transfer at m/z=79. Colored bars
indicate the instantaneous modeled contributions of the different sources of GLYC.
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Fig. 2. Signal recorded atm/z=185 (black circles) and modeled
HC5=HC5 Z(1,4)+HC5 Z(4,1) + HC5 E(4,1) (monitored as a clus-
ter).

Time (min)

pp
b

 

 

10
1

10
2

0

2

4

6

8

10

12

14

16
ISOPN (1,2)
MVK
ISOPN (4,3)
ISOPN (1,2)
HC5 E(4,1)
HC5 Z(1,4)
HC5 E(4,1)
Dibble Z(1,4)
Other sources

 

 

0 200 400 600
0

5

10

15

20

Fig. 3. Signal recorded atm/z=145 (black circles) compared with
modeled GLYC profile. The contribution of acetic acid cluster has
been removed using acetic acid transfer atm/z=79. Colored bars
indicate the instantaneous modeled contributions of the different
sources of GLYC.

or 4-hydroxy-3-(hydroxymethyl)but-2-enal (MHBL). The further
photooxidation of HMPL and MHBL is expected to yield mainly
dihydroxypropanone (DHPN), whose CF3O− cluster is observed
at m/z=175 (Fig.6), and hydroxyoxopropanal (HOPL, cluster at
m/z=173 with pyruvic acid).

The reaction of OH with HOPL is expected to yield an acylperoxy
radical which can further react with NO2 yielding a PAN-like com-
pound, 3-hydroxy-oxo-peroxyacylnitrate (PAN 250). This com-
pound may be associated with the signal monitored atm/z=250,
although the identification is not certain.
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Fig. 4. Signal recorded atm/z=217 (black circles) and modeled
DHMOB=DHMOB(1, 4) + DHMOB(4, 1) (monitored as a clus-
ter).
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Fig. 5. Sum of the signals recorded atm/z=133 andm/z=199
(black circles) compared with MOBA=MOBA Z(1,4)+MOBA
Z(4,1) (m/z=133 (transfer)+199 (cluster)) and MHP (cluster at
m/z=133).

Signals originating from the E branch are much smaller than those
originating from its Z counterpart. This suggests a large asymmetry
between the E and Zδ-hydroxy channels.

Due to the similarity between the (4, 1) and (1, 4) branch,
we only address the major differences.

Z4,1. Hydroxyacetone (HACET, cluster atm/z=159, Fig.7) and
glyoxal (GLYX) can be formed from the decomposition of HC5
Z(4, 1) and HC5 E(4, 1). Similar to the formation mechanism of
DHMOB(1, 4), the addition of OH to the less preferred position
of HC5 Z(4, 1) (and E(4, 1)) is expected to yield 3,4-dihydroxy-3-
methyl-2-oxobutanal referred to as DHMOB(4, 1) (Fig. 4).
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Figure 6.4 – Signal recorded at m/z=217 (black circles) and modeled DHMOB = DHMOB(1,4) +
DHMOB(4,1) (monitored as a cluster).
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Fig. 2. Signal recorded atm/z=185 (black circles) and modeled
HC5=HC5 Z(1,4)+HC5 Z(4,1) + HC5 E(4,1) (monitored as a clus-
ter).
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Fig. 3. Signal recorded atm/z=145 (black circles) compared with
modeled GLYC profile. The contribution of acetic acid cluster has
been removed using acetic acid transfer atm/z=79. Colored bars
indicate the instantaneous modeled contributions of the different
sources of GLYC.

or 4-hydroxy-3-(hydroxymethyl)but-2-enal (MHBL). The further
photooxidation of HMPL and MHBL is expected to yield mainly
dihydroxypropanone (DHPN), whose CF3O− cluster is observed
at m/z=175 (Fig.6), and hydroxyoxopropanal (HOPL, cluster at
m/z=173 with pyruvic acid).

The reaction of OH with HOPL is expected to yield an acylperoxy
radical which can further react with NO2 yielding a PAN-like com-
pound, 3-hydroxy-oxo-peroxyacylnitrate (PAN 250). This com-
pound may be associated with the signal monitored atm/z=250,
although the identification is not certain.
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Fig. 4. Signal recorded atm/z=217 (black circles) and modeled
DHMOB=DHMOB(1, 4) + DHMOB(4, 1) (monitored as a clus-
ter).
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Fig. 5. Sum of the signals recorded atm/z=133 andm/z=199
(black circles) compared with MOBA=MOBA Z(1,4)+MOBA
Z(4,1) (m/z=133 (transfer)+199 (cluster)) and MHP (cluster at
m/z=133).

Signals originating from the E branch are much smaller than those
originating from its Z counterpart. This suggests a large asymmetry
between the E and Zδ-hydroxy channels.

Due to the similarity between the (4, 1) and (1, 4) branch,
we only address the major differences.

Z4,1. Hydroxyacetone (HACET, cluster atm/z=159, Fig.7) and
glyoxal (GLYX) can be formed from the decomposition of HC5
Z(4, 1) and HC5 E(4, 1). Similar to the formation mechanism of
DHMOB(1, 4), the addition of OH to the less preferred position
of HC5 Z(4, 1) (and E(4, 1)) is expected to yield 3,4-dihydroxy-3-
methyl-2-oxobutanal referred to as DHMOB(4, 1) (Fig. 4).
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Figure 6.5 – Sum of the signals recorded at m/z=133 and m/z=199 (black circles) compared with
MOBA = MOBA Z(1,4) + MOBA Z(4,1) (m/z=133 (transfer) + 199 (cluster)) and MHP (cluster at
m/z=133).
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modeled DHPN (measured as a cluster).

E4,1. The alkoxy radical configuration preventsδ5
1 isomerization

(ReactionR16) and slows down its decomposition (ReactionR14).
Therefore it is expected to react entirely with O2 (ReactionR15) to
yield a HC5 isomer (HC5 E(4, 1)).

4.1.2 Consequences

The observations of numerous compounds formed at differ-
ent stages ofδ-hydroxy pathways lead to several inferences
about the general mechanism:

Channel asymmetry.If an equal partitioning of the carbon is as-
sumed betweenE1,4 andZ1,4 as suggested by the theoretical work
of Dibble (2002), the concentrations of both HOPL and DHPN are
greatly overestimated while the concentrations of HC5=HC5 Z(1,
4)+HC5 E(4, 1)+HC5 Z(4, 1) and its products (DHMOB, MOBA)
are underestimated. Good agreement with the observations is ob-
tained when,

YE1,4

YZ1,4

=
15

85
(3)

An additional piece of evidence suggesting that little flux
of carbon occurs throughE1,4 is the low signal recorded at
m/z=201, which should include 3-methylhydroxy-4-hydroxy-
butenal (MHBL) based on its structural similarity with
HC5. We use kOH=6.13×10−12cm3 molecule−1 s−1 for
DHPN (25% more than the SAR estimate) and
kOH=2.23×10−11cm3 molecule−1 s−1 for HOPL in order to
properly capture their measured temporal profiles (Fig.6).

The asymmetry between Z/E isomers contradicts the conclusions
drawn from quantum mechanical calculations (Dibble, 2002) as
well as the assumption made by most kinetic models of isoprene
photooxidation (Paulson and Seinfeld, 1992; Fan and Zhang, 2004).
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The discrepancy with quantum mechanical calculations may be re-
lated to a difference in the reaction of thecis/transradical with O2.
The radicals are formed with approximately 40 kcal/mol excess en-
ergy. The minimum isomerization barrier is estimated to be about
15 kcal/mol (Dibble, 2002). Therefore, assuming a collision sta-
bilization of 100 cm−1collision−1, the radicals undergo nearly 100
collisions (20 with O2) before they are cooled below the isomer-
ization barrier. If, based on reported rate coefficients forR•

+O2
(Atkinson et al., 2006), one reaction among ten is assumed to be re-
active, peroxyradicals are likely to be formed before the isomers are
cooled below the isomerization barrier. Therefore, the equilibrium
may be shifted if the reaction of thetrans radical with O2 is faster
than the reaction of thecis radical. Measurements made with re-
duced partial pressure of O2 could test this hypothesis. Thecis and
trans forms can also be interconverted latter in the photooxidation
by theδ5

1 isomerization. Therefore the observed discrepancy may
also be attributed to the additional stability of thecisβ-hydroxy al-
lyl radical provided by the interaction between the alcohol groups.

Evidence for Dibble’s mechanism.Both HACET (Fig. 7) and
GLYC (Fig. 3) exhibit a very prompt source. To our knowl-
edge, the mechanism proposed byDibble (2004a,b) and re-
produced in Sect.4.1.1 is the only mechanism able to yield
both compounds after a single OH reaction. For GLYC, we
set the branching ratio quenching:thermalization to 7:3 in good
agreement with the theoretical estimate (Dibble, 2004b). The
same branching ratio was applied to capture the prompt for-
mation of HACET from theZ4,1 branch. Theoretical con-
siderations do not support such a large hydroxyacetone forma-
tion (Dibble, 2004b). The hydroxyacetone rate constant with
OH is set tokOH=5.98×10−12cm3 molecule−1 s−1 (Dillon et al.,
2006) and the rate constant of glycolaldehyde with OH is set to
kOH=8×10−12cm3 molecule−1 s−1 (Karunanandan et al., 2007).
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Figure 6.6 – Signal recorded at m/z=175 (black circles) compared to modeled DHPN (measured as a
cluster).

E4,1. The alkoxy radical configuration prevents δ51 isomerization (Reaction R6.16) and slows down

its decomposition (Reaction R6.14). Therefore it is expected to react entirely with O2 (Reaction

R6.15) to yield a HC5 isomer (HC5 E(4,1)).

6.5.1.2 Consequences

The observations of numerous compounds formed at different stages of δ-hydroxy pathways lead to

several inferences about the general mechanism:

Channel asymmetry. If an equal partitioning of the carbon is assumed between E1,4 and Z1,4 as

suggested by the theoretical work of Dibble (2002), the concentrations of both HOPL and DHPN are

greatly overestimated while the concentrations of HC5 = HC5 Z(1,4) + HC5 E(4,1) + HC5 Z(4,1)

and its products (DHMOB, MOBA) are underestimated. Good agreement with the observations is

obtained when
YE1,4

YZ1,4

=
15

85
(6.4)

An additional piece of evidence suggesting that little flux of carbon occurs through E1,4 is the low

signal recorded at m/z = 201, which should include 3-methylhydroxy-4-hydroxybutenal (MHBL)

based on its structural similarity with HC5. We use kOH = 6.13×10−12 cm3 molecule−1 s−1 for
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Fig. 6. Signal recorded atm/z=175 (black circles) compared to
modeled DHPN (measured as a cluster).

E4,1. The alkoxy radical configuration preventsδ5
1 isomerization

(ReactionR16) and slows down its decomposition (ReactionR14).
Therefore it is expected to react entirely with O2 (ReactionR15) to
yield a HC5 isomer (HC5 E(4, 1)).

4.1.2 Consequences

The observations of numerous compounds formed at differ-
ent stages ofδ-hydroxy pathways lead to several inferences
about the general mechanism:

Channel asymmetry.If an equal partitioning of the carbon is as-
sumed betweenE1,4 andZ1,4 as suggested by the theoretical work
of Dibble (2002), the concentrations of both HOPL and DHPN are
greatly overestimated while the concentrations of HC5=HC5 Z(1,
4)+HC5 E(4, 1)+HC5 Z(4, 1) and its products (DHMOB, MOBA)
are underestimated. Good agreement with the observations is ob-
tained when,

YE1,4

YZ1,4

=
15

85
(3)

An additional piece of evidence suggesting that little flux
of carbon occurs throughE1,4 is the low signal recorded at
m/z=201, which should include 3-methylhydroxy-4-hydroxy-
butenal (MHBL) based on its structural similarity with
HC5. We use kOH=6.13×10−12cm3 molecule−1 s−1 for
DHPN (25% more than the SAR estimate) and
kOH=2.23×10−11cm3 molecule−1 s−1 for HOPL in order to
properly capture their measured temporal profiles (Fig.6).

The asymmetry between Z/E isomers contradicts the conclusions
drawn from quantum mechanical calculations (Dibble, 2002) as
well as the assumption made by most kinetic models of isoprene
photooxidation (Paulson and Seinfeld, 1992; Fan and Zhang, 2004).
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Fig. 7. Signal recorded atm/z=159 (black circles) compared with
modeled HACET profile. Colored bars indicate the instantaneous
modeled contributions of the different sources of HACET. MPAN
source has been described byOrlando et al.(2002).

The discrepancy with quantum mechanical calculations may be re-
lated to a difference in the reaction of thecis/transradical with O2.
The radicals are formed with approximately 40 kcal/mol excess en-
ergy. The minimum isomerization barrier is estimated to be about
15 kcal/mol (Dibble, 2002). Therefore, assuming a collision sta-
bilization of 100 cm−1collision−1, the radicals undergo nearly 100
collisions (20 with O2) before they are cooled below the isomer-
ization barrier. If, based on reported rate coefficients forR•

+O2
(Atkinson et al., 2006), one reaction among ten is assumed to be re-
active, peroxyradicals are likely to be formed before the isomers are
cooled below the isomerization barrier. Therefore, the equilibrium
may be shifted if the reaction of thetrans radical with O2 is faster
than the reaction of thecis radical. Measurements made with re-
duced partial pressure of O2 could test this hypothesis. Thecis and
trans forms can also be interconverted latter in the photooxidation
by theδ5

1 isomerization. Therefore the observed discrepancy may
also be attributed to the additional stability of thecisβ-hydroxy al-
lyl radical provided by the interaction between the alcohol groups.

Evidence for Dibble’s mechanism.Both HACET (Fig. 7) and
GLYC (Fig. 3) exhibit a very prompt source. To our knowl-
edge, the mechanism proposed byDibble (2004a,b) and re-
produced in Sect.4.1.1 is the only mechanism able to yield
both compounds after a single OH reaction. For GLYC, we
set the branching ratio quenching:thermalization to 7:3 in good
agreement with the theoretical estimate (Dibble, 2004b). The
same branching ratio was applied to capture the prompt for-
mation of HACET from theZ4,1 branch. Theoretical con-
siderations do not support such a large hydroxyacetone forma-
tion (Dibble, 2004b). The hydroxyacetone rate constant with
OH is set tokOH=5.98×10−12cm3 molecule−1 s−1 (Dillon et al.,
2006) and the rate constant of glycolaldehyde with OH is set to
kOH=8×10−12cm3 molecule−1 s−1 (Karunanandan et al., 2007).
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Figure 6.7 – Signal recorded at m/z=159 (black circles) compared with modeled HACET profile.
Colored bars indicate the instantaneous modeled contributions of the different sources of HACET.
MPAN source has been described by Orlando et al. (2002).

DHPN (25% more than the SAR estimate) and kOH = 2.23×10−11 cm3 molecule−1 s−1 for HOPL

in order to properly capture their measured temporal profiles (Fig. 6.6). The asymmetry between

Z/E isomers contradicts the conclusions drawn from quantum mechanical calculations (Dibble, 2002)

as well as the assumption made by most kinetic models of isoprene photooxidation (Paulson and

Seinfeld, 1992; Fan and Zhang, 2004).

The discrepancy with quantum mechanical calculations may be related to a difference in the

reaction of the cis/trans radical with O2. The radicals are formed with approximately 40 kcal/mol

excess energy. The minimum isomerization barrier is estimated to be about 15 kcal/mol (Dibble,

2002). Therefore, assuming a collision stabilization of 100 cm−1 collision−1, the radicals undergo

nearly 100 collisions (20 with O2) before they are cooled below the isomerization barrier. If, based on

reported rate coefficients for R·+O2 (Atkinson et al., 2006), one reaction among ten is assumed to be

reactive, peroxyradicals are likely to be formed before the isomers are cooled below the isomerization

barrier. Therefore, the equilibrium may be shifted if the reaction of the trans radical with O2 is

faster than the reaction of the cis radical. Measurements made with reduced partial pressure of

O2 could test this hypothesis. The cis and trans forms can also be interconverted later in the

photooxidation by the δ51 isomerization. Therefore the observed discrepancy may also be attributed
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to the additional stability of the cis-hydroxy allyl radical provided by the interaction between the

alcohol groups.

Evidence for Dibble’s mechanism. Both HACET (Fig. 6.7) and GLYC (Fig. 6.3) exhibit a very

prompt source. To our knowledge, the mechanism proposed by Dibble (2004a,b) and reproduced

in Sect. 6.5.1.1 is the only mechanism able to yield both compounds after a single OH reaction.

For GLYC, we set the branching ratio quenching:thermalization to 7:3 in good agreement with the

theoretical estimate (Dibble, 2004b). The same branching ratio was applied to capture the prompt

formation of HACET from the Z4,1 branch. Theoretical considerations do not support such a large

hydroxyacetone formation (Dibble, 2004b). The hydroxyacetone rate constant with OH is set to

kOH = 5.98×10−12 cm3 molecule−1 s−1 (Dillon et al., 2006) and the rate constant of glycolaldehyde

with OH is set to kOH = 8×10−12 cm3 molecule−1 s−1 (Karunanandan et al., 2007).

HC5 chemistry. HC5 (Fig. 6.2) exhibits a very fast decay consistent with a reaction rate coeffi-

cient with OH similar to isoprene (1.0–1.2×10−10 cm3 molecule−1 s−1). This estimate is consistent

with the fastest rate recently derived by Baker et al. (2005) and 80% greater than the SAR estimate

(kSAROH = 6.82×10−11 cm3 molecule−1 s−1 or 7.9×10−11 cm3 molecule−1 s−1 with the correction from

Bethel et al. (2001); Papagni et al. (2001)). This discrepancy can be partly explained by the effect

of the alcohol group of the double bond, which enhances the addition of OH (Papagni et al., 2001).

The large measured yield of MOBA=MOBA Z(1,4)+MOBA Z(4,1) (Fig. 6.5) also suggests that the

abstraction of the aldehydic hydrogen (channel 4 ) is faster than predicted, possibly related to a

long distance interaction between the alcohol group and the carbonyl group (Neeb, 2000).

Experimental evidence for the formation of 3-methylfuran (3-MF) from the Z1,4 and Z4,1 branches

have been reported (Tuazon and Atkinson, 1990). However the mechanism remains unclear with

evidence for both heterogeneous formation (Baker et al., 2005; Dibble, 2007; Atkinson et al., 2008)

from HC5 and homogeneous formation from its parent alkoxy (Francisco-Marquez et al., 2005).

In our model, 3-MF yield is set to 4.5% based on experimental results (Atkinson et al., 1989;

Paulson et al., 1992) and formed from the parent alkoxy of HC5. As a result, 37% of the alkoxyradical

formed in the Z1,4 and Z4,1 branches must decompose to 3-MF in order to match the experimental

yield. We cannot rule out 3-MF heterogeneous formation. We note, however, that if heterogeneous

processes yield 3-MF, the calculated HC5 yield would be 20% higher. Moreover, the decay rate

required to match HC5 profile would likely be faster than observed. 3-MF formation mechanism

has little impact on the conclusions of this paper but has significant consequences for atmospheric

chemistry. Indeed if formed through heterogeneous processes, 3-MF yield is likely to be smaller than
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Fig. 8. Decomposition pathway of the different isoprene nitrates after their reaction with OH. Reaction of ISOPN with OH, O2, and NO,
also yields dihydroxy-dinitrates through Reaction (R7). Color code is identical to Fig.1.

HC5 chemistry.HC5 (Fig. 2) exhibits a very fast decay con-
sistent with a reaction rate coefficient with OH similar
to isoprene (1.0−1.2×10−10cm3 molecule−1 s−1 ). This
estimate is consistent with the fastest rate recently de-
rived by Baker et al. (2005) and ∼80% greater than the
SAR estimate (kSAR

OH =6.82×10−11cm3 molecule−1 s−1 or

7.9×10−11cm3 molecule−1 s−1 with the correction fromBethel
et al., 2001; Papagni et al., 2001) . This discrepancy can be partly
explained by the effect of the alcohol groupα of the double bond
which enhances the addition of OH (Papagni et al., 2001). The
large measured yield of MOBA=MOBA Z(1, 4)+MOBA Z(4,1)
(Fig. 5) also suggests that the abstraction of the aldehydic hydrogen
(channel 4©) is faster than predicted, possibly related to a long
distance interaction between the alcohol group and the carbonyl
group (Neeb, 2000).

Experimental evidence for the formation of 3-methylfuran (3-MF)
from theZ1,4 andZ4,1 branches have been reported (Tuazon and
Atkinson, 1990). However the mechanism remains unclear with ev-
idence for both heterogeneous formation (Baker et al., 2005; Dib-
ble, 2007; Atkinson et al., 2008) from HC5 and homogeneous for-
mation from its parent alkoxy (Francisco-Marquez et al., 2005).

In our model, 3-MF yield is set to 4.5% based on experimental re-
sults (Atkinson et al., 1989; Paulson et al., 1992) and formed from
the parent alkoxy of HC5. As a result, 37% of the alkoxyradical
formed in theZ1, 4 andZ4, 1 branches must decompose to 3-MF in
order to match the experimental yield. We can not rule out 3-MF
heterogeneous formation. We note, however, that if heterogeneous
processes yield 3-MF, the calculated HC5 yield would be∼20%
higher. Moreover, the decay rate required to match HC5 profile
would likely be faster than observed. 3-MF formation mechanism
has little impact on the conclusions of this paper but has significant
consequences for atmospheric chemistry. Indeed if formed through
heterogeneous processes, 3-MF yield is likely to be smaller than

determined in atmospheric chambers. Further work is clearly re-
quired to quantify this issue and determine the products of 3-MF
photooxidation.

We note, finally, that the observation of large yields for HC5 and
3-MF are consistent with an asymmetry between the E and Z
branches. If the branching ratio E:Z were close to 1:1, the fraction
of peroxy radicalZ1, 4 andZ4, 1 required to decompose to 3-MF
would be 62% and the yield of HC5 only 6.1% This is inconsistent
with the yields previously reported (Baker et al., 2005).

4.2 Organic nitrates

The observation of the organic nitrates of isoprene and
MVK/MACR as well as some of the products of their pho-
tooxidation (Figs.8 to 13), provides constraints on the iso-
prene nitrate yields, their lifetimes and the amount of NOx re-
cycled through the first stage of their photooxidation as well
as their lifetimes.

4.2.1 δ-hydroxy isoprene nitrates

The fate of theδ-hydroxy isoprene nitrates (1, 4) and (4, 1),
respectively ISOPN (1, 4) and ISOPN (4, 1), can be followed
through their degradation products (Fig.8): ethanal nitrate
(ETHLN) monitored atm/z=190 (Fig. 10) and propanone
nitrate (PROPNN) atm/z=204 (Fig.11).

PROPNN features a very prompt source, which requires
a fast reaction rate coefficient of ISOPN(4, 1) with OH:
k

ISOPN(4,1)
OH =9.5×10−11 cm3 molecule−1 s−1. This is∼45%

faster than SAR and suggests an inadequate parameterization
of the effects of nitroxy groups on the reactivity of the dou-
ble bond (Neeb, 2000). No significant signal is observed at

Atmos. Chem. Phys., 9, 1479–1501, 2009 www.atmos-chem-phys.net/9/1479/2009/

Figure 6.8 – Decomposition pathway of the different isoprene nitrates after their reaction with OH.
Reaction of ISOPN with OH, O2, and NO, also yields dihydroxy-dinitrates through Reaction R6.7.
Color code is identical to Fig. 6.1.

determined in atmospheric chambers. Further work is clearly required to quantify this issue and

determine the products of 3-MF photooxidation.

We note, finally, that the observation of large yields for HC5 and 3-MF are consistent with an

asymmetry between the E and Z branches. If the branching ratio E:Z were close to 1:1, the fraction

of peroxy radical Z1,4 and Z4,1 required to decompose to 3-MF would be 62% and the yield of HC5

only 6.1% This is inconsistent with the yields previously reported (Baker et al., 2005).

6.5.2 Organic nitrates

The observation of the organic nitrates of isoprene and MVK/MACR as well as some of the products

of their photooxidation (Figs. 6.8 to 6.13), provides constraints on the isoprene nitrate yields, their

lifetimes and the amount of NOx recycled through the first stage of their photooxidation as well as

their lifetimes.

6.5.2.1 δ-hydroxy isoprene nitrates

The fate of the δ-hydroxy isoprene nitrates (1,4) and (4,1), respectively ISOPN (1,4) and ISOPN

(4,1), can be followed through their degradation products (Fig. 6.8): ethanal nitrate (ETHLN)

monitored at m/z = 190 (Fig. 6.10) and propanone nitrate (PROPNN) at m/z = 204 (Fig. 6.11).
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Fig. 9. Signal recorded atm/z=232 (black circles) compared to
modeled isoprene nitrates (ISOPN (1, 2), (1, 4)E/Z, (2, 1), (4, 3),
(3, 4), (4, 1)E/Z (measured as clusters)) corrected for calibration
changes.
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Fig. 10. Signal recorded atm/z=190 (black circles) compared to
modeled ETHLN (measured as a cluster).

m/z=230, confirming that the abstraction of the hydrogen in
α of the alcohol of ISOPN is negligible compared to addition
on the double bond.

SAR suggests that ISOPN(1, 4) and ISOPN(4, 1) are
similarly short-lived with respect to OH. This is consis-
tent with the prompt source of ETHLN (Fig.10), a prod-
uct of the oxidation of ISOPN (1, 4) (Fig.8). The use
of the primary nitrate photolysis rate (cf.A3) and SAR
rate estimate for the reaction ETHLN+ OH underpredicts
its decay. To match the measured profile (Fig.10), we
takekOH=1×10−11 cm3 molecule−1 s−1 , three times faster
than the SAR estimate. If the ETHNL photolysis rate is
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Fig. 11. Signal recorded atm/z=204 (black circles) compared to
modeled PROPNN (measured as a cluster). Colored bars indicate
the instantaneous modeled contributions of the different sources of
PROPNN.
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Fig. 12. Signal recorded atm/z=189 (black circles) compared to
modeled DHB (measured as a cluster). Colored bars indicate the in-
stantaneous modeled contributions of the different sources of DHB.

larger than estimated (J∼4×10−7 s−1 using 1−C4H9ONO2),
ETHLN reaction rate coefficient with OH would be commen-
surately slower.

NOx recycling from the (4, 1) branch is∼70%
based on the measured ratio PROPNN: dihydroxybu-
tanone (DHB, cluster atm/z=189). The reaction
rate coefficient of DHB with OH is estimated to be
1.3×10−11 cm3 molecule−1 s−1 or 60% of SAR (Fig.12).

The yield of ETHLN is substantially overestimated if the
yield of the reaction RC·OH + O2 → RCO+ HO2 is 100%.
As will be discussed further in Sect.4.3, we suggest that
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Figure 6.9 – Signal recorded at m/z=232 (black circles) compared to modeled isoprene nitrates
(ISOPN(1,2), (1,4)E/Z, (2,1), (4,3), (3 4), (4,1)E/Z (measured as clusters)) corrected for calibration
changes.

PROPNN features a very prompt source, which requires a fast reaction rate coefficient of

ISOPN(4,1) with OH: kISOPN(4,1)
OH = 9.5×10−11 cm3 molecule−1 s−1. This is 45% faster than SAR

and suggests an inadequate parameterization of the effects of nitroxy groups on the reactivity of

the double bond (Neeb, 2000). No significant signal is observed at m/z = 230, confirming that the

abstraction of the hydrogen in of the alcohol of ISOPN is negligible compared to addition on the

double bond.

SAR suggests that ISOPN(1,4) and ISOPN(4,1) are similarly short-lived with respect to OH.

This is consistent with the prompt source of ETHLN (Fig. 6.10), a product of the oxidation of

ISOPN (1,4) (Fig. 6.8). The use of the primary nitrate photolysis rate (cf. 6.7.1.3) and SAR rate

estimate for the reaction ETHLN + OH underpredicts its decay. To match the measured profile

(Fig. 6.10), we take kOH = 1×10−11 cm3 molecule−1 s−1, three times faster than the SAR estimate.

If the ETHNL photolysis rate is larger than estimated (J∼4×10−7s−1 using 1–C4H9ONO2, ETHLN

reaction rate coefficient with OH would be commensurately slower.

NOx recycling from the (4,1) branch is 70% based on the measured ratio PROPNN: dihydrox-

ybutanone (DHB, cluster at m/z = 189). The reaction rate coefficient of DHB with OH is estimated

to be 1.3×10−11 cm3 molecule−1 s−1 or 60% of SAR (Fig. 6.12).
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Fig. 9. Signal recorded atm/z=232 (black circles) compared to
modeled isoprene nitrates (ISOPN (1, 2), (1, 4)E/Z, (2, 1), (4, 3),
(3, 4), (4, 1)E/Z (measured as clusters)) corrected for calibration
changes.
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Fig. 10. Signal recorded atm/z=190 (black circles) compared to
modeled ETHLN (measured as a cluster).

m/z=230, confirming that the abstraction of the hydrogen in
α of the alcohol of ISOPN is negligible compared to addition
on the double bond.

SAR suggests that ISOPN(1, 4) and ISOPN(4, 1) are
similarly short-lived with respect to OH. This is consis-
tent with the prompt source of ETHLN (Fig.10), a prod-
uct of the oxidation of ISOPN (1, 4) (Fig.8). The use
of the primary nitrate photolysis rate (cf.A3) and SAR
rate estimate for the reaction ETHLN+ OH underpredicts
its decay. To match the measured profile (Fig.10), we
takekOH=1×10−11 cm3 molecule−1 s−1 , three times faster
than the SAR estimate. If the ETHNL photolysis rate is
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Fig. 11. Signal recorded atm/z=204 (black circles) compared to
modeled PROPNN (measured as a cluster). Colored bars indicate
the instantaneous modeled contributions of the different sources of
PROPNN.
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Fig. 12. Signal recorded atm/z=189 (black circles) compared to
modeled DHB (measured as a cluster). Colored bars indicate the in-
stantaneous modeled contributions of the different sources of DHB.

larger than estimated (J∼4×10−7 s−1 using 1−C4H9ONO2),
ETHLN reaction rate coefficient with OH would be commen-
surately slower.

NOx recycling from the (4, 1) branch is∼70%
based on the measured ratio PROPNN: dihydroxybu-
tanone (DHB, cluster atm/z=189). The reaction
rate coefficient of DHB with OH is estimated to be
1.3×10−11 cm3 molecule−1 s−1 or 60% of SAR (Fig.12).

The yield of ETHLN is substantially overestimated if the
yield of the reaction RC·OH + O2 → RCO+ HO2 is 100%.
As will be discussed further in Sect.4.3, we suggest that

www.atmos-chem-phys.net/9/1479/2009/ Atmos. Chem. Phys., 9, 1479–1501, 2009

Figure 6.10 – Signal recorded at m/z=190 (black circles) compared to modeled ETHLN (measured
as a cluster).

The yield of ETHLN is substantially overestimated if the yield of the reaction RC ·OH + O2 →

RC(O) + HO2 is 100%. As will be discussed further in Sect. 6.5.3, we suggest that unimolecular

decomposition of the δ-hydroxyperoxy radical from ISOPN(1,4) yields formic acid, resolving this

discrepancy.

6.5.2.2 β-hydroxy isoprene nitrates

To capture the decay of the m/z = 232 signal requires that β-hydroxy isoprene nitrates (ISOPN

(1,2), (2,1), (4,3) and (3,4)) be much longer-lived than δ-hydroxy isoprene nitrates (ISOPN (1,4) and

(4,1)). Unfortunately, the products of their photooxidation have multiple other sources, precluding a

direct derivation of their lifetime. For instance methylvinylketone nitrate (MVKN) and methacrolein

nitrate (MACRN) are also formed from MVK and MACR with similar rates. The evolution of the

m/z = 232 signal can be captured when the SAR chemical rates for these nitrates are reduced by

20%.

The reaction of the isoprene nitrate with ozone is included for ISOPN (1,2) and ISOPN (4,3),

because their long lifetimes allow them to encounter high concentrations of ozone in the chamber

(Fig. 6.17). We do not observe the formation of 3-hydroxy-2-nitrooxy-2-methyl propanoic acid

(no correlation between m/z = 184 and m/z = 250). Therefore, we use a simplified version of



162
F. Paulot et al.: Isoprene photooxidation: new insights into the production of acids and organic nitrates 1487

Time (min)

S
ig

na
l/c

re
f

 

 

10
1

10
2

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
ISOPN (1,2) s: 0.84
ISOPN (2,1) s: 0.85
ISOPN (3,4) s: 0.83
ISOPN (4,3) s: 0.84
ISOPN (1,4)Z s: 1
ISOPN (1,4)E s: 1
ISOPN (4,1)Z s: 0.97
ISOPN (4,1)E s: 0.95

0 0.5 1
0

2

4

6

8

10

12

Fraction of isoprene
consumed

A
pp

ar
en

t α
 (

%
)

Fig. 9. Signal recorded atm/z=232 (black circles) compared to
modeled isoprene nitrates (ISOPN (1, 2), (1, 4)E/Z, (2, 1), (4, 3),
(3, 4), (4, 1)E/Z (measured as clusters)) corrected for calibration
changes.

Time (min)

pp
b

 

 

10
1

10
2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Model
Data
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m/z=230, confirming that the abstraction of the hydrogen in
α of the alcohol of ISOPN is negligible compared to addition
on the double bond.

SAR suggests that ISOPN(1, 4) and ISOPN(4, 1) are
similarly short-lived with respect to OH. This is consis-
tent with the prompt source of ETHLN (Fig.10), a prod-
uct of the oxidation of ISOPN (1, 4) (Fig.8). The use
of the primary nitrate photolysis rate (cf.A3) and SAR
rate estimate for the reaction ETHLN+ OH underpredicts
its decay. To match the measured profile (Fig.10), we
takekOH=1×10−11 cm3 molecule−1 s−1 , three times faster
than the SAR estimate. If the ETHNL photolysis rate is

Time (min)

pp
b

 

 

10
1

10
2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
ISOPN (4,1)
ISOPN (2,1)
Other sources
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modeled PROPNN (measured as a cluster). Colored bars indicate
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larger than estimated (J∼4×10−7 s−1 using 1−C4H9ONO2),
ETHLN reaction rate coefficient with OH would be commen-
surately slower.

NOx recycling from the (4, 1) branch is∼70%
based on the measured ratio PROPNN: dihydroxybu-
tanone (DHB, cluster atm/z=189). The reaction
rate coefficient of DHB with OH is estimated to be
1.3×10−11 cm3 molecule−1 s−1 or 60% of SAR (Fig.12).

The yield of ETHLN is substantially overestimated if the
yield of the reaction RC·OH + O2 → RCO+ HO2 is 100%.
As will be discussed further in Sect.4.3, we suggest that
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Figure 6.11 – Signal recorded at m/z=204 (black circles) compared to modeled PROPNN (measured
as a cluster). Colored bars indicate the instantaneous modeled contributions of the different sources of
PROPNN.
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m/z=230, confirming that the abstraction of the hydrogen in
α of the alcohol of ISOPN is negligible compared to addition
on the double bond.

SAR suggests that ISOPN(1, 4) and ISOPN(4, 1) are
similarly short-lived with respect to OH. This is consis-
tent with the prompt source of ETHLN (Fig.10), a prod-
uct of the oxidation of ISOPN (1, 4) (Fig.8). The use
of the primary nitrate photolysis rate (cf.A3) and SAR
rate estimate for the reaction ETHLN+ OH underpredicts
its decay. To match the measured profile (Fig.10), we
takekOH=1×10−11 cm3 molecule−1 s−1 , three times faster
than the SAR estimate. If the ETHNL photolysis rate is
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larger than estimated (J∼4×10−7 s−1 using 1−C4H9ONO2),
ETHLN reaction rate coefficient with OH would be commen-
surately slower.

NOx recycling from the (4, 1) branch is∼70%
based on the measured ratio PROPNN: dihydroxybu-
tanone (DHB, cluster atm/z=189). The reaction
rate coefficient of DHB with OH is estimated to be
1.3×10−11 cm3 molecule−1 s−1 or 60% of SAR (Fig.12).

The yield of ETHLN is substantially overestimated if the
yield of the reaction RC·OH + O2 → RCO+ HO2 is 100%.
As will be discussed further in Sect.4.3, we suggest that
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Figure 6.12 – Signal recorded at m/z=189 (black circles) compared to modeled DHB (measured as
a cluster). Colored bars indicate the instantaneous modeled contributions of the different sources of
DHB.
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unimolecular decomposition of theα-hydroxyperoxy radical
from ISOPN(1, 4) yields formic acid, resolving this discrep-
ancy.

4.2.2 β-hydroxy isoprene nitrates

To capture the decay of them/z=232 signal requires thatβ-
hydroxy isoprene nitrates (ISOPN (1, 2), (2, 1), (4, 3) and
(3, 4)) be much longer-lived thanδ-hydroxy isoprene ni-
trates (ISOPN (1, 4) and (4, 1)). Unfortunately, the prod-
ucts of their photooxidation have multiple other sources, pre-
cluding a direct derivation of their lifetime. For instance
methylvinylketone nitrate (MVKN) and methacrolein nitrate
(MACRN) are also formed from MVK and MACR with sim-
ilar rates. The evolution of them/z=232 signal can be cap-
tured when the SAR chemical rates for these nitrates are re-
duced by 20%.

The reaction of the isoprene nitrate with ozone is included
for ISOPN (1, 2) and ISOPN (4, 3), because their long life-
times allow them to encounter high concentrations of ozone
in the chamber (Fig.A2). We do not observe the formation
of 3 hydroxy-2-nitrooxy-2-methyl propanoic acid (no corre-
lation betweenm/z=184 andm/z=250). Therefore, we use
a simplified version of the ozonolysis products proposed by
Giacopelli et al.(2005) assuming that this reaction yields
only MACRN and MVKN. These reactions contribute sig-
nificantly to the total yield of MVKN and MACRN in this
experiment.

4.2.3 Methacrolein and methylvinylketone hydroxynitrates

MVKN and MACRN are monitored through their clusters
with CF3O− atm/z=234 (Fig.13).

MACRN features an aldehyde group which suggests
a much faster decomposition than MVKN. This is con-
firmed by the profile of hydroxyacetone which does not
exhibit any significant late source. As a result, the third
regime of the experiment is dominated by MVKN and
its reaction rate coefficient with OH can be estimated:
kMVKN

OH =2.8×10−12 cm3 molecule−1 s−1 . The yield of
MVKN can be constrained using GLYC profile since MVK
is its major source:αMVK =(11±3)%. Applying the same
approach to MACR/MACRN/HACET is more complicated
since hydroxyacetone has many more sources than glyco-
laldehyde (Fig. 7). We find that a yield of MACRN of
(15±3)% and a reaction rate coefficient with OH of 5×10−11

cm3 molecule−1 s−1 best match the peak time ofm/z=234.
These values are consistent with the study ofChuong and
Stevens(2004).

The abstraction of the hydrogenα to the alcohol in
MACRN, MVKN and MVKN (m) is expected to yield di-
carbonyl nitrates. We expect CIMS to be sensitive to this
class of compounds since we are able to measure com-
pounds featuring a carbonyl inβ of the nitrate group, such
as PROPNN or ETHLN. Sincem/z=232 only features early
stages compounds, isoprene nitrates, there is no evidence
for the formation of dicarbonyl nitrates. Recent theoretical
studies (Peeters et al., 2001; Hermans et al., 2005) show
that primaryα-hydroxy-alkylperoxy radicals can be suffi-
ciently stabilized to undergo reactions with NO and yield
formic acid. Nevertheless the photooxidation of MVKN oc-
curs in a mostly low-NOx environment which suggests that
α-hydroxy-alkylperoxy radicals may undergo an intramolec-
ular decomposition to yield a carboxilic acid and the nitrate
radical. Such a reaction may involve a four or six-e− mecha-
nism.

Finally, m/z=234 signal features a prompt source which
can not be accounted for by MVK or MACR nor by theβ-
hydroxy isoprene nitrates, which have a similar lifetime with
respect to OH. Conversely ISOPN (1, 4) is very short-lived
and a MVKN (m) yield of 10–15% enables to capture this
feature (Fig.13).

4.3 Acids

4.3.1 Formic acid

Formic acid is detected as a cluster (m/z=131) and a transfer
(m/z=65) with about equal sensitivity. At the NOx titration
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Figure 6.13 – Signal recorded at m/z=234 (black circles) compared to the modeled profile of MVKN
+ MVKN(m) + MACRN + MACRN(m) (measured as clusters) corrected for changing calibrations.

the ozonolysis products proposed by Giacopelli et al. (2005) assuming that this reaction yields

only MACRN and MVKN. These reactions contribute significantly to the total yield of MVKN and

MACRN in this experiment.

6.5.2.3 Methacrolein and methylvinylketone hydroxynitrates

MVKN and MACRN are monitored through their clusters with CF3O
– at m/z = 234 (Fig. 6.13).

MACRN features an aldehyde group, which suggests a much faster decomposition than MVKN. This

is confirmed by the profile of hydroxyacetone which does not exhibit any significant late source. As

a result, the third regime of the experiment is dominated by MVKN and its reaction rate coefficient

with OH can be estimated: kMVKN
OH = 2.8×10−12 cm3 molecule−1 s−1. The yield of MVKN can be

constrained using GLYC profile since MVK is its major source: αMVK = (11±3)%. Applying the

same approach to MACR/MACRN/HACET is more complicated since hydroxyacetone has many

more sources than glycolaldehyde (Fig. 6.7). We find that a yield of MACRN of (15±3)% and

a reaction rate coefficient with OH of 5×10−11 cm3 molecule−1 s−1 best match the peak time of

m/z = 234. These values are consistent with the study of Chuong and Stevens (2004).

The abstraction of the hydrogen to the alcohol in MACRN, MVKN and MVKN(m) is expected to

yield dicarbonyl nitrates. We expect CIMS to be sensitive to this class of compounds since we are able
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to measure compounds featuring a carbonyl in of the nitrate group, such as PROPNN or ETHLN.

Since m/z = 232 only features early stages compounds, isoprene nitrates, there is no evidence for

the formation of dicarbonyl nitrates. Recent theoretical studies (Peeters et al., 2001; Hermans et al.,

2005) show that primary α-hydroxy-alkylperoxy radicals can be sufficiently stabilized to undergo

reactions with NO and yield formic acid. Nevertheless the photooxidation of MVKN occurs in a

mostly low-NOx environment, which suggests that α-hydroxy-alkylperoxy radicals may undergo an

intramolecular decomposition to yield a carboxilic acid and the nitrate radical. Such a reaction may

involve a four or six-e− mechanism.

Finally, m/z = 234 signal features a prompt source which can not be accounted for by MVK or

MACR nor by the β-hydroxy isoprene nitrates, which have a similar lifetime with respect to OH.

Conversely ISOPN(1,4) is very short-lived and a MVKN(m) yield of 10–15% enables to capture this

feature (Fig. 6.13).

6.5.3 Acids

6.5.3.1 Formic acid

Formic acid is detected as a cluster (m/z = 131) and a transfer (m/z = 65) with about equal

sensitivity. At the NOx titration (600 min), a molar yield of about (10±3)% is obtained (Fig. 6.14).

The measured profile of formic acid (Fig. 6.14) features the three characteristic chemical regimes of

this experiment as described (cf. Sect. 6.4).

First regime. A very early source of formic acid is noticeable (Fig. 6.14). Several observations

suggest that formic acid may be formed from an intramolecular decomposition of ISOPN(1,4) similar

to the one described for MVKN earlier: 1) This source is absent from the experiments performed in

the absence of NOx 2) the early formic acid profile correlates very well with the propanone nitrate,

which originates from ISOPN(4,1) decomposition 3) ETHNL would be largely overevaluated in the

absence of other decomposition channel for ISOPN(1,4). Matching the ETHLN profile (Fig. 6.10)

results in a branching ratio for formic acid to ETHLN of 3:1. ISOPN(2,1) may yield acetic acid, but
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is not included since its contribution would be negligible.

Bierback et al. (1995) report 4-oxo-pentenal as the major product of the photooxidation of 2-

methylfuran in the absence of NOx, while formic acid accounts for about 6%. We are unaware of

any study of the photooxidation of 3-MF in the presence of NOx. Since the reaction rate coefficient

of methylfuran with OH is similar to that derived for ISOPN(1,4) and (4,1), its photooxidation may

contribute to the early sources of formic acid:

Second regime. Butkovskaya et al. (2006a,b) report a formic acid yield from the photooxidation

of GLYC (HAC) of 18% (respectively 7%). The formation of formic acid from the decomposition of

MVKN described in Sect. 6.5.2.3 also plays a minor role in this regime.

Third regime (not shown). As NOx becomes limiting, hydroxymethyl hydroperoxide (HMHP)

formation from the reaction of CH2OO with water is enhanced. HMHP can account for most of the

late formation of formic acid through its reaction with OH and its photolysis. A large additional

source is missing, however, in the mechanism. Heterogeneous decomposition of HMHP (Neeb et al.,

1997) and aerosol processes (Walser et al., 2007) are likely to account for this missing source. An

upper limit for the strength of the aerosol source can be estimated from the decrease of the aerosol

volume –2.5 µm3/cm3 which would represent a release of 2.6 ppbv C=O in the chamber assuming

a density of 1.25 g/cm3 (Kroll et al., 2006). Since the same phenomenon is observed for acetic acid

(Fig. 6.15), most likely both HOx-dominated VOC oxidation as well as organic aerosol oxidation

are needed to explain the observed increase in formic and acetic acid in the third regime.

6.5.3.2 Acetic acid

The production of acetic acid (Fig. 6.15) occurs primarily through the oxidation of hydroxyacetone

as described by (Butkovskaya et al., 2006a). Additional routes include direct formation from

CH3CHO + OH (Cameron et al., 2002) as well as CH3C(O)OO + HO2 following Reaction R6.11.

Two additional minor routes are hypothesized: 1) decomposition of MACRN(m), 2) decompo-

sition of DHMOB(1,4) (m/z = 217), inspired by the mechanism proposed by Butkovskaya et al.

(2006b). Following their analysis, we assume a 37% acetic molar yield, the remaining falling apart

as CO2 and hydroxybutane-2,3-dione (m/z = 187).
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Fig. 14. Signal recorded atm/z=65 (black circles) compared to
modeled formic acid. Colored bars indicate the instantaneous mod-
eled contributions of the different sources of formic acid.

(∼600 min), a molar yield of about (10±3)% is obtained
(Fig. 14).

The measured profile of formic acid (Fig.14) features the
three characteristic chemical regimes of this experiment as
described (cf. Sect.3).

First regime. A very early source of formic acid is noticeable (Fig.
14). Several observations suggest that formic acid may be formed
from an intramolecular decomposition of ISOPN (1, 4) similar to
the one described for MVKN earlier: 1) This source is absent
from the experiments performed in the absence of NOx 2) the early
formic acid profile correlates very well with the propanone nitrate
which originates from ISOPN (4, 1) decomposition 3) ETHNL
would be largely overevaluated in the absence of other decompo-
sition channel for ISOPN (1, 4). Matching the ETHLN profile (Fig.
10) results in a branching ratio for formic acid to ETHLN of 3:1.
ISOPN(2, 1) may yield acetic acid, but is not included since its con-
tribution would be negligible.

Bierbach et al.(1995) report 4-oxo-pentenal as the major product of
the photooxidation of 2-methylfuran in the absence of NOx, while
formic acid accounts for about 6%. We are unaware of any study
of the photooxidation of 3-MF in the presence of NOx. Since the
reaction rate coefficient of methylfuran with OH is similar to that
derived for ISOPN (1, 4) and (4, 1), its photooxidation may con-
tribute to the early sources of formic acid:

Second regime.Butkovskaya et al.(2006a,b) report a formic acid
yield from the photooxidation of GLYC (HAC) of 18% (respec-
tively 7%). The formation of formic acid from the decomposition
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Fig. 15. Signal recorded atm/z=79 (black circles) compared to
modeled acetic acid (observed as a transfer at this mass). Colored
bars indicate the instantaneous modeled contributions of the differ-
ent sources of acetic acid.

of MVKN described in Sect.4.2.3also plays a minor role in this
regime.

Third regime (not shown).As NOx becomes limiting, hydrox-
ymethyl hydroperoxide (HMHP) formation from the reaction of
CH2OO with water is enhanced. HMHP can account for most of
the late formation of formic acid through its reaction with OH and
its photolysis. A large additional source is missing, however, in the
mechanism. Heterogeneous decomposition of HMHP (Neeb et al.,
1997) and aerosol processes (Walser et al., 2007) are likely to ac-
count for this missing source. An upper limit for the strength of
the aerosol source can be estimated from the decrease of the aerosol
volume−2.5 µm3/cm3 which would represent a release of 2.6 ppbv
C=O in the chamber assuming a density of 1.25 g/cm3 (Kroll et al.,
2006). Since the same phenomenon is observed for acetic acid (Fig.
15), most likely both HOx-dominated VOC oxidation as well as or-
ganic aerosol oxidation are needed to explain the observed increase
in formic and acetic acid in the third regime.

4.3.2 Acetic acid

The production of acetic acid (Fig.15) occurs primarily
through the oxidation of hydroxyacetone as described by
Butkovskaya et al.(2006b). Additional routes include di-
rect formation from CH3CHO+ OH (Cameron et al., 2002)
as well as CH3C(O)OO+ HO2 following Reaction (R11).

Two additional minor routes are hypothesized: 1) de-
composition of MACRN(m), 2) decomposition of DHMOB
(1, 4) (m/z=217), inspired by the mechanism proposed by
Butkovskaya et al.(2006a). Following their analysis, we as-
sume a 37% acetic molar yield, the remaining falling apart
as CO2 and hydroxybutane-2,3-dione (m/z=187).
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Figure 6.14 – Signal recorded at m/z=65 (black circles) compared to modeled formic acid. Colored
bars indicate the instantaneous modeled contributions of the different sources of formic acid.

6.5.3.3 MOBA

MOBA, the class of five-carbon acids identified at m/z = 133 and 199 in Sect 6.5.1 can react with OH

and ozone under the chamber conditions. The slow decay of the signal suggests that its reactivity

is dominated by ozone in the chamber and that the acid group significantly hinders the addition of

OH onto the double bond. A good match is obtained by setting kOH = 3×10−12 cm3 molecule−1 s−1

(FC(O)OH=0.1 in terms of SAR) and kO3
= 2×10−17 cm3 molecule−1 s−1.

Little signal is observed at m/z = 93, which suggests no or minor formation of oxoacetic acid.

This suggests that the reaction with OH does not conserve the acid group, which is likely lost as

CO2. Pyruvic acid can be expected to be a major product of MOBA ozonolysis.
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Fig. 14. Signal recorded atm/z=65 (black circles) compared to
modeled formic acid. Colored bars indicate the instantaneous mod-
eled contributions of the different sources of formic acid.

(∼600 min), a molar yield of about (10±3)% is obtained
(Fig. 14).

The measured profile of formic acid (Fig.14) features the
three characteristic chemical regimes of this experiment as
described (cf. Sect.3).

First regime. A very early source of formic acid is noticeable (Fig.
14). Several observations suggest that formic acid may be formed
from an intramolecular decomposition of ISOPN (1, 4) similar to
the one described for MVKN earlier: 1) This source is absent
from the experiments performed in the absence of NOx 2) the early
formic acid profile correlates very well with the propanone nitrate
which originates from ISOPN (4, 1) decomposition 3) ETHNL
would be largely overevaluated in the absence of other decompo-
sition channel for ISOPN (1, 4). Matching the ETHLN profile (Fig.
10) results in a branching ratio for formic acid to ETHLN of 3:1.
ISOPN(2, 1) may yield acetic acid, but is not included since its con-
tribution would be negligible.

Bierbach et al.(1995) report 4-oxo-pentenal as the major product of
the photooxidation of 2-methylfuran in the absence of NOx, while
formic acid accounts for about 6%. We are unaware of any study
of the photooxidation of 3-MF in the presence of NOx. Since the
reaction rate coefficient of methylfuran with OH is similar to that
derived for ISOPN (1, 4) and (4, 1), its photooxidation may con-
tribute to the early sources of formic acid:

Second regime.Butkovskaya et al.(2006a,b) report a formic acid
yield from the photooxidation of GLYC (HAC) of 18% (respec-
tively 7%). The formation of formic acid from the decomposition
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Fig. 15. Signal recorded atm/z=79 (black circles) compared to
modeled acetic acid (observed as a transfer at this mass). Colored
bars indicate the instantaneous modeled contributions of the differ-
ent sources of acetic acid.

of MVKN described in Sect.4.2.3also plays a minor role in this
regime.

Third regime (not shown).As NOx becomes limiting, hydrox-
ymethyl hydroperoxide (HMHP) formation from the reaction of
CH2OO with water is enhanced. HMHP can account for most of
the late formation of formic acid through its reaction with OH and
its photolysis. A large additional source is missing, however, in the
mechanism. Heterogeneous decomposition of HMHP (Neeb et al.,
1997) and aerosol processes (Walser et al., 2007) are likely to ac-
count for this missing source. An upper limit for the strength of
the aerosol source can be estimated from the decrease of the aerosol
volume−2.5 µm3/cm3 which would represent a release of 2.6 ppbv
C=O in the chamber assuming a density of 1.25 g/cm3 (Kroll et al.,
2006). Since the same phenomenon is observed for acetic acid (Fig.
15), most likely both HOx-dominated VOC oxidation as well as or-
ganic aerosol oxidation are needed to explain the observed increase
in formic and acetic acid in the third regime.

4.3.2 Acetic acid

The production of acetic acid (Fig.15) occurs primarily
through the oxidation of hydroxyacetone as described by
Butkovskaya et al.(2006b). Additional routes include di-
rect formation from CH3CHO+ OH (Cameron et al., 2002)
as well as CH3C(O)OO+ HO2 following Reaction (R11).

Two additional minor routes are hypothesized: 1) de-
composition of MACRN(m), 2) decomposition of DHMOB
(1, 4) (m/z=217), inspired by the mechanism proposed by
Butkovskaya et al.(2006a). Following their analysis, we as-
sume a 37% acetic molar yield, the remaining falling apart
as CO2 and hydroxybutane-2,3-dione (m/z=187).
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Figure 6.15 – Signal recorded at m/z=79 (black circles) compared to modeled acetic acid (observed as
a transfer at this mass). Colored bars indicate the instantaneous modeled contributions of the different
sources of acetic acid.

6.5.3.4 Pyruvic acid

Pyruvic acid is a precursor for glyoxylic and oxalic acids, two carboxylic acids detected in the aerosol

phase (Carlton et al., 2006). It is observed as a cluster at m/z = 173 in association with HOPL, a

product of DHPL photooxidation. Due to its stickiness to the walls of the flow tube, the theoretical

calibration is expected to largely overestimate our sensitivity to this compound. The yield of pyruvic

acid after 600 min is 2±1%.

Qualitatively, the major sources of pyruvic acid are expected to include (heterogeneous) hydrol-

ysis of the Criegee intermediate produced in the ozonolysis of MVK and MOBA as well as the

decomposition of MVKN(m) following the scheme presented in Sect. 6.5.2.3.

6.5.4 Atmospheric relevance

6.5.4.1 Fate of organic nitrogen

The formation of organic nitrates, and more specifically isoprene nitrates, plays an important role

in determining the amount of NOx and thus ozone production in many environments.

The observation of isoprene nitrate clusters with CF3O
– as well as some of the products of their
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photooxidation, provides constraints on the isoprene nitrate yields, the amount of NOx recycled

through the first stage of their photooxidation, and their lifetimes (Table 6.2). These three pa-

rameters are necessary to accurately assess the influence of isoprene photooxidation on atmospheric

chemistry.

Yield. Previous estimates for the isoprene nitrate yield span a very large range. Chen et al.

(1998) reported an overall yield of 4.4%; Chuong and Stevens (2002), 15% using an indirect method;

Sprengnether et al. (2002), 12%; Patchen et al. (2007), 7% at 130 hPa. Using experimental yields

collected for compounds similar to isoprene, Giacopelli et al. (2005) estimated the nitrate yield

of the β and δ-hydroxy isoprene nitrates to be respectively 5.5% for the former and 15% for the

latter, for an overall yield of 8.6%. Since organic nitrates sequester NOx, such a large variation in

the estimated yields has profound implications for the assessment of ozone production caused by

isoprene photooxidation (von Kuhlmann et al., 2004; Fiore et al., 2005; Horowitz et al., 2007).

We report a yield of (11.7±3)% with a large discrepancy between the yields of the nitrates

originating from δ('24%) and β-hydroxy channels ('6.7%). We emphasize, however, that we derived

a total yield rather than specific branching ratios so that the specific organic nitrate yields are

affected by the choice of the initial β:δ-hydroxy channel ratio (cf. Sect. 6.7.3.1). Nevertheless,

the discrepancy between δ-hydroxy channels and β-hydroxy channels is a reliable feature, with the

δ-hydroxy isoprene nitrates accounting for about 60% of the total isoprene nitrate yield. Giacopelli

et al. (2005) suggested this behavior previously using measurement collected for similar compounds.

Lifetime. The efficiency of both NOx transport and removal through organic nitrates is related

to their lifetimes. The transport of isoprene-nitrates and their alkylnitrate degradation products is

of special importance since it is thought to be a major source of NOx in rural areas (Horowitz et al.,

1998). In this NOx-limited environment, the release of NOx through their decomposition would

greatly influence O3 production. In the absence of experimental data, Giacopelli et al. (2005)

estimated using Kwok’s SAR that the δ-hydroxy isoprene nitrates should be significantly shorter-

lived than the β-hydroxy isoprene nitrates. With the help of the propanone nitrate profile, we can

experimentally confirm this discrepancy (Table 6.2). With [OH] = 106 molecule−1 cm−3, the photo-

chemical lifetime with OH of the δ-hydroxy isoprene nitrates (respectively the β-hydroxy isoprene

nitrate) is τ δOH = 3 h (τβOH = 18 h). Horowitz et al. (2007) show that the deposition of isoprene

nitrates is likely to be dominated by dry processes and that τHNO3

d '7h≤τ ISOPN
d ≤τPANd '100h. As

a result, the fate of the δ-hydroxy isoprene nitrates is likely to be dominated by their reactivity

with OH and possibly O3 similar to isoprene while other processes such as dry deposition and reac-
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Table 6.2 – Isoprene nitrate kinetic data. The uncertainty is smaller than 30%.

Molar yield α kOH kO3
Recycling

(%) (%) (×10−11) (×10−17) (cf. text)

ISOPN(1,2) 2.7 6.7 1 1 45

ISOPN(1,4) Z 3.1 24 9.5 52

ISOPN(1,4) E 0.54 24 9.5 52

ISOPN(2,1) 0.13 6.7 3.4 -10

ISOPN(3,4) 0.33 6.7 6.6 52

ISOPN(4,3) 1.5 6.7 1.9 1 56

ISOPN(4,1) Z 2.9 24 9.5 68

ISOPN(4,1) E 0.51 24 9.5 68

Weighted Average 11.7 55

tion with NO3 must be taken into account for proper modeling of the β-hydroxy isoprene nitrates.

Therefore, the latter are likely to have greater influence on tropospheric chemistry.

The large difference in the lifetime of the organic nitrates formed in the δ-hydroxy and β-hydroxy

channels may explain some of the spread in the reported yields and NOx recyclings. Studies focusing

on the very first step of isoprene photooxidation (e.g., Sprengnether et al. 2002) tend to report the

highest nitrate yield, suggesting that the short-lived δ-hydroxy isoprene nitrates may have been

underestimated in some previous experiments (see inset of Fig. 6.9). The same argument may also

explain the observations of a greater variety of isoprene nitrates in laboratory experiments than in

the field (Giacopelli et al., 2005).

Recycling. The efficiency of the NOx sequestration depends on the fate of the isoprene nitrates

and more specifically on how much NOx is released in their subsequent photooxidation. NOx-

recycling is defined as the difference between the NOx released by the reaction and the NO consumed.

As a result, since ISOPN(2,1) oxidation does not yield any NO2, its recycling is negative due to the

formation of dinitrates (Fig. 6.8 and Table 6.2), which we have observed at m/z = 311 in another

experiment. Horowitz et al. (2007) obtain the best agreement with the boundary layer data when

40% of the NOx is recycled with a low nitrate yield (4%). We find a NOx recycling of (55±10)%

by the isoprene peroxy radicals consistent with Horowitz et al. (2007) conclusion despite our very

different yields. As highlighted in the inset of (Fig. 6.9), this may be related to the wrong estimation

of isoprene nitrate yield due to the short lifetime of the δ-hydroxy channels.

The photooxidation of isoprene leads to the formation of other significant organic nitrates MVKN,

MACRN, PROPNN ('1%) and ETHLN ('1%). All these compounds are substantially longer-
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lived than isoprene nitrates and therefore are more likely to influence the NOx-balance on a larger

scale (assuming a similar deposition velocity). The formation of PROPNN and MVKN appear

especially important as their photochemical sinks are very slow: τMVKN
OH '100h and τPROPNN

OH >200h.

Therefore, they may constitute important pathways for NOx transport as well as significant NOx

sinks through deposition. They also can contribute to the growing source of atmospheric nitrogen

to the open ocean (Duce et al., 2008).

In contrast to ISOPN, MACRN and MVKN release most of their NOx in the course of their

decomposition, possibly through the formation of formic and pyruvic acids. These organic nitrate

channels may contribute significantly to the missing source of small carboxylic acid in the free

troposphere.

6.5.4.2 Acids

Small carboxylic acids are ubiquitous in the atmosphere both in the gas-phase and in the aqueous

phase, playing an important role in rain acidity and cloud reactions (Chebbi and Carlier, 1996).

The photooxidation of isoprene under high NOx produces substantial amounts of formic (yield

'(10±3)% after 600 min) and acetic acids (yield '(3±1)% after 600 min). Acetic and formic acids

are highly correlated after the first 150 minutes (ρ = 0.988), since their main source, hydroxyacetone

for acetic acid and glycolaldehyde for formic acid, share a similar origin and lifetimes (Figs. 6.14

and 6.15). We find [Acetic Acid] = 0.46±0.02×[Formic Acid]− (0.02±0.01)×[Isoprene]0.

A strong correlation between formic and acetic acids has been observed previously over Amazo-

nia (Andreae et al., 1988) and Virginia (Talbot et al., 1995). In most large scale chemical models,

these compounds originate primarily from biomass burning and to a lesser extent from ozonoly-

sis of alkenes. Since the main source of both acids in the chamber is unlikely to result from the

ozonolysis of the alkenes, our study shows that additional channels for their formation should be

included. The main identified sources (hydroxyacetone, glycolaldehyde, organic nitrates) are much

longer-lived than the ones currently included in global model which may help resolve part of the

discrepancy between models (Jacob and Wofsy, 1988) and atmospheric observations (Andreae et al.,

1988; Talbot et al., 1990).

Finally the identification of MOBA, a five-carbon acid, could be important for aerosols as its

vapor pressure and the vapor pressures of the products of its photooxidation are expected to be low.
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6.5.4.3 Development of a reduced mechanism

The new constraints derived in this study primarly originate from our observation of the chemistry

of the δ-hydroxy channels. In particular, we have shown that these channels account for a large

fraction of the isoprene nitrates and small carboxylic acids, whose role is important on a global

scale. Most of the reduced isoprene photooxidation mechanism implemented in chemical transport

models, e.g., MOZART (Pfister et al., 2008), do not adequately account for the chemistry of the

δ-hydroxy channels, thus impeding proper modeling of the consequences of isoprene photooxidation

on troposheric chemistry.

The detailed chemical mechanism described in this study is too complex to be included in large-

scale atmospheric chemistry simulations. To aid in such investigations, we propose that a few modi-

fications of these simplified mechanisms be implemented (Table 6.3). While adding little complexity

and maintaining carbon balance, these few changes describe more accurately the formation and fate

of nitrates as well as the yield of carboxylic acid. In particular, the long lifetime of PROPNN and

MVKN enables transport of organic nitrates over long distances.

In our reduced mechanism, we neglect the E δ-hydroxy channel branch ('5% of the carbon)

as well as the non-Dibble branch yielding MPDL and OBL (Fig. 6.1). We have only included

the formation of organic nitrates which were directly constrained in this study (ISOPN, PROPNN,

ETHNL). The yield of minor organic nitrates can be derived using the number of carbons of the

parent peroxy radical, a common approach in most chemical transport models. We introduce a

generic four-carbon hydrocarbon, HC4, to account for the decomposition of MOBA. This study

does not constrain the fate of 3-methylfuran and the reaction of isoprene nitrates with ozone; more

theoretical and experimental work is required.

6.6 Conclusions

A substantial fraction of the terrestrial Northern Hemisphere is characterized by conditions in which

the fate of isoprene peroxy radicals is dominated by reactions with NO. Chameides et al. (1988)

demonstrated that they play a major role in the formation of ozone in urban areas. This study

complements previous investigations of isoprene photooxidation mechanism by focusing on the δ-

hydroxy channels, whose chemistry is not adequately represented in chemical transport models. We

focus on the large yields of small carboxylic acids and propose new constraints for the yield and the

fate of organic nitrates. Both constitute outstanding uncertainties in the photooxidation of isoprene,
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Table 6.3 – Suggested modifications of isoprene condensed photooxidation mechanism under high
NOx conditions. (2,1), (3,4), E(1,4) and E(4,1) branches are not treated. Formation of organic nitrates
is limited to isoprene, MVK, and MACR peroxy radicals. The reaction of the isoprene nitrates with
respect to O3 as well as the fate of 3-MF are not tackled by this mechanism (cf. text). MGLYX denotes
methylglyoxal and HC4, a generic four-carbon VOC.

Reaction k(T = 298)

10−11 cm3 molecule−1 s−1

ISOP + OH → ISOPO2 10

ISOPO2 + NO → 0.40 MVK + 0.26 MACR + 0.883 NO2 + 0.07 ISOPNδ + 0.047 ISOPNβ + 0.66 HCHO 0.81

+ 0.10 HC5 + 0.043 (3−MF) + 0.08 DIBOO + 0.803 HO2

HC5 + OH → HC5OO 11

HC5OO + NO → NO2 + 0.234 (GLYC + MGLYX) + 0.216 (GLYX + HACET) + 0.29 DHMOB 0.81

+ 0.17 MOBA + 0.09 HC4 + 0.09 CO + HO2

ISOPNδ + OH → ISOPNOOδ 9.5

ISOPNOOδ + NO → 0.34 DHBN + 0.15 PROPNN + 0.44 HACET + 0.07 MVKN + 0.13 ETHLN + 0.31 HC(O)OH + 0.31 NO3 0.81

+ 0.72 HCHO + 0.15 GLYC + 1.34 NO2 + 0.35 HO2

ISOPNβ + OH → ISOPNOOδ 1.3

ISOPNOOβ + NO → 0.6 (GLYC + HACET) + 0.4 (HCHO + HO2) + 0.26 MACRN + 0.14 MVKN + 1.6 NO2 0.81

DIBOO + NO → NO2 + HO2 + 0.52 (GLYC + MGLYX) + 0.48 (GLYX + HACET) 0.81

MVK + OH → MVKOO 1.75

MVKOO + NO → 0.625 (GLYC + CH3C(O)OO) + 0.265 (MGLYX + HCHO + HO2) + 0.11 MVKN 0.81

+ 0.89 NO2 0.81

MVKN + OH → 0.65 (HC(O)OH + MGLYX) + 0.35 (HCHO + CH3C(O)C(O)OH) + NO3 0.56

MACR + OH → 0.47 MACROO + 0.53 MCO3 2.95

MACROO + NO → 0.85 (NO2 + HO2) + 0.425 (HACET + CO) + 0.425 (HCHO + MGLYX) + 0.15 MACRN 0.81

MACRN + OH → 0.08 (CH3C(O)OH + HCHO + NO3) + 0.07 (HC(O)OH + NO3 + MGLYX) 5

+ 0.85 (HACET + NO2) + 0.93 CO2

MC(O)OO + NO → NO2 + CO + CO2 + HCHO + CH3OO 2.1

GLYC + OH → 0.75 HO2 + 0.25 OH + 0.13 GLYX + 0.52 CO + 0.35 CO2 + 0.16 HC(O)OH + 0.71 HCHO 0.8

HACET + OH → 0.75 MGLYX + 0.825 HO2 + 0.125 HC(O)OH + 0.1 OH + 0.125 CH3OO + 0.20 CO2 0.6

+ 0.05 CO + 0.125 CH3C(O)OH

ETHLN + OH → HCHO + CO2 + NO2 1

DHMOB + OH → 1.5 CO + 0.5 HO2 + 0.5 HACET + 0.5 HC4 1

MOBA + HO → MOBAOO 0.3

MOBAOO + NO → HC4 + CO2 + HO2 + NO2 0.8
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impeding proper modeling of tropospheric chemistry on a global scale. To aid in the development

of improved simulations of this chemistry, we propose simple modifications of current condensed

mechanism, which maintains carbon balance and accounts for the new constraints and mechanisms

identified in this study (Table 6.3).

6.7 Appendices

6.7.1 Appendix A: Photooxidation mechanism

6.7.1.1 VOC chemistry

Except as noted below, we use the known rate coefficients of bimolecular and termolecular reactions

as tabulated in IUPAC (Atkinson et al., 2004, 2006) and JPL (Sander, 2006) reports.

OH. Reactions of OH with VOC are limited to its addition on a double bond and the abstraction

of the aldehydic hydrogen and the hydrogen α to an alcohol, i.e., the abstraction of hydrogens from

alcohols is neglected. For the addition of OH onto double bonds, in the absence of data or previous

information enabling differentiation between the two carbons, we assume that the reaction occurs

only on the most favorable location based on steric considerations. A structure-activity relationship

(SAR) method is used to determine unknown reaction rate coefficients (Kwok and Atkinson, 1995).

Following the studies of Orlando and Tyndall (2001) and Mereau et al. (2001), acylradicals are

assumed to decompose promptly when the alkyl group features a carbonyl or an alcohol (with R

secondary or tertiary) in β to the carbonyl:

R1R2R3CCHO + OH→ R1R2R3CCO + H2O (R6.5)

R1R2R3CCO→ R1R2R3C + CO (R6.6)

We also assume that acylradicals featuring a nitrooxy group in β to the carbonyl undergo unimolec-

ular decomposition. In all other cases, the acyl radical is assumed to add O2 to yield the associated

peroxy radical. In case of resonance, the branching between the addition of O2 on the carbon in α

of alcohol (denoted a in Fig. 6.1) or in γ ( b ) is unknown. Addition on a features a more stable

double bond as well as a kinetically favored radical. In the mechanism, we set the branching a : b

to 65%:35%. Furthermore we note that HOPL does not exhibit any early source, suggesting that the

yield of HMPL is negligible. Indeed, its formation appears unfavorable on both a thermodynamic

(the double bond is less substituted) and a kinetic (formation of a secondary radical) basis. Thus,
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the branching ratio is set to YE1,4
a = 95% and YE1,4

b = 5%.

Ozone. Ozone reacts with alkenes via the formation of a molozonide, quickly followed by its

decomposition into a carbonyl and a Criegee intermediate. Assuming a generic rate constant for

the reaction of alkenes with ozone, 10−17 cm3 molecule−1 s−1, the reaction of an alkene with ozone

is included if τOH >
τO3

10 , where τOH and τO3
are the lifetimes of the alkenes with respect to OH and

O3, respectively. Ozone reactions are included for isoprene, MACR, and MVK, following IUPAC

recommendations.

NO3. Reactions of NO3 with alkenes and aldehydes have been neglected, since
k
NO3
alkenes/aldehydes[NO3]
kOH
alkenes/aldehydes[OH] �1 throughout the experiment.

6.7.1.2 Peroxyradical chemistry

NO. NO reacts with peroxy radicals with a rate coefficient of 2.43×10−12 exp(360/T) cm3

molecule−1

s−1 (Atkinson et al., 2006) through

RO2 + NO→ (1− α)(RO + NO2) + αRONO2 (R6.7)

The reaction rate coefficient of acyl peroxy radical with NO is set to 6.7×10−12 exp(340/T) cm3

molecule−1 s−1 based on CH3CH2C(O)OO. Carter’s parameterization is used to compute the alkyl

nitrate yield (Carter and Atkinson, 1989; Arey et al., 2001):

α

1− α =
Y298

0 [M](T/298)−m0

1 + Θ
×F z×m (6.5)

with z = (1+[log(
Y298

0 [M](T/298)−m0

Y298
∞ [M](T/298)−m∞ )]2)−1, F = 0.41,m0 = 0,m∞ = 8.0, β=1, Θ =

Y298
0 [M](T/298)−m0

Y298
∞ (T/298)−m∞ ,

γ = 2×10−22 cm3 molecule−1, Y298
∞ = 0.43, Y298

0 = γeβn, where n is the number of carbons in the

molecule. The parameter m is set to 0.4, 1.0 and 0.3 for primary, secondary, and tertiary nitrates,

respectively (Arey et al., 2001).

For β-hydroxy peroxy radicals, α is divided by two to account for the effect of the hydroxy group

as highlighted by O’Brien et al. (1998). For acylnitrates, the yield is set to the alkyl tertiary nitrate

yield, providing it does not exceed 4%.

NO2. NO2 reacts with peroxy acyl radicals to yield peroxyacylnitrate-like compounds, which
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decompose thermally or photolytically:

RC(O)OO + NO2 � RC(O)OONO2 (R6.8)

The rates of formation and decomposition of methacryloyl peroxy nitrate (MPAN) are used for all

PAN-like compounds except PAN itself. Most PAN-like compounds except PAN itself have other

reactive groups (aldehyde, primary or a secondary alcohol, double bond) causing their major sink

to be reaction with OH.

NO3. NO3 reacts with peroxy radicals through

NO3 + RO2 → NO2 + RO + O2 (R6.9)

The rate coefficient is set to 2.3×10−12 cm3 molecule−1 s−1 independent of both the temperature and

the peroxyradical.

HO2 and peroxy radicals. HO2 reacts with peroxy radicals through four different channels:

HO2 + RO2 → ROOH + O2 (R6.10)

HO2 + RO2 → ROH + O3 (R6.11)

HO2 + RO2 → RO + O2 + OH (R6.12)

HO2 + RO2 → R−H(O) + H2O + O2 (R6.13)

Reaction R6.13 has only been observed for compounds such as RCH2OCH2OO and is not con-

sidered in this study. Acyl peroxides are assumed to react through Reaction R6.10, Reaction R6.11,

and Reaction R6.12 with a branching ratio 0.4:0.2:0.4 (Hasson et al., 2004; Jenkin et al., 2007).

Acetonylperoxy radicals have also been shown to react through channels Reaction R6.10 and Re-

action R6.12with a branching ratio 1:2 (Hasson et al., 2004). The other alkylperoxy are assumed

to react through Reaction R6.10 only. The reaction rate coefficient for the reaction of alkylperoxy

with HO2 is set to 2.91×10−13 exp(1300/T)×(1 − exp(−0.245nc)) cm3 molecule−1 s−1 where nc is

the number of carbon atoms (Saunders et al., 2003). For the acyl peroxy radicals, the reaction rate

coefficient is set to 5.2×10−13 exp(983/T) cm3 molecule−1 s−1 based on the reaction of the methyla-

cylperoxy radical.

RO2 + RO2 reactions are neglected in this study. In the early stages of isoprene photooxidation
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the chemistry of peroxyradicals is entirely dominated by NO. At the end of the experiment, peroxy

radical chemistry is dominated by HO2, which concentration is high enough so that RO2 + RO2

reactions can be safely neglected.

6.7.1.3 Photolysis

The photolysis rate of a compound i is computed via:

Ji =

∫ λ2

λ1

Ie(λ)σi(λ)φi(λ) dλ (6.6)

The effective light flux Ie is computed using an experimental determination of JHONO and a spectrum

of the lamp output made every nanometer (LI-COR LI1800 λ1 = 300 nm, λ2 = 600 nm). HONO

is scaled using the oscillator strength recently reported by Wall et al. (2006). This gives JHOOH =

3.1×10−6 s−1. The photolysis of compounds with unknown absorption cross sections is estimated

from the known photolysis rate constants of similar compounds. The photolysis of organic nitrates

is assumed to yield only RO + NO2. For primary organic nitrate, the photolysis rate is taken from

1–C4H9ONO2, for secondary organic nitrates from 2–C4H9ONO2 and for tertiary nitrates from

tertbutylnitrate (Roberts and Fajer, 1989; Atkinson et al., 2006).

6.7.1.4 Fate of the alkoxy radicals

Alkoxy radicals can react following three different pathways:

R1R2R3CO· → R1R2CO + R3· (R6.14)

R1R2R3CO·+ O2 → R1R2CO + HO2, if R3 = H (R6.15)

R1R2R3CO· → R1R2COHCCCC ·R3′ , with R3 = CCCCR3′ (R6.16)

Since the isomerization reaction, Reaction R6.16, requires at least four carbons (Atkinson, 1997),

it occurs only in the first stages of isoprene photooxidation, when major products retain five carbons.

In the case of isoprene, isomerization (Reaction R6.16) is faster than decomposition (Reaction R6.14)

and reaction with O2 (Reaction R6.15). Alkoxy radicals which cannot undergo Reaction R6.16 are

assumed to decompose through Reaction R6.14, i.e., their reaction with O2 (Reaction R6.15) is

generally neglected except for a few cases detailed in the discussion section.

Generally the decomposition of an alkoxy radical can occur through different channels, whose
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branching ratios (Yi) are estimated using their respective activation energies, Ebi.

R1R2R3CO· → R2R3CO + R1· Y1 (R6.17)

R1R2R3CO· → R1R3CO + R2· Y2 (R6.18)

R1R2R3CO· → R1R2CO + R3· Y3 (R6.19)

with

∀i ∈ (1, 2, 3),Yi = exp(
Eb1 + Eb1 + Eb1 − Ebi

RT
) (6.7)

Eb is calculated using the generalized structure-activity relationship developed by Peeters et al.

(2004).

6.7.1.5 Skill of the model

The evolution of the modelled chemical system can be examined through its instantaneous speciation

(Fig. 6.16). Furthermore, given that the oxidation of CO by OH is negligible in the time scale of

experiment, we define the chemical speed of the system, V , as d[CO+CO2]
dt (Fig. 6.17). Both proxies

indicate that the system undergoes three different regimes:

First regime (0<t<150 min). This regime is characterized by a large supply of NO, as well as

very reactive compounds featuring a double bond. V reaches a maximum after a few minutes at 0.7

ppbv(C)/min. O3 and PNA are very low in this regime, underlying a chemistry dominated by NO.

The organic nitrate concentration reaches its maximum at the end of this regime. The reduction in

[OH] corresponds to an increase of [NO2] leading to the formation of nitric acid.

Second regime (150<t<550 min). This regime is characterized by a very stable V (0.5 ppbv(C)/min)

with a chemistry dominated by aldehydes. OH recycling though HO2 + NO is less efficient than in

the first regime due to the abundance of O3, which favors the formation of PAN. Nevertheless, the

reduction in the chemical speed due to the transition from “double-bond-dominated” to “aldehyde-

dominated” reduces OH sinks which ultimately leads to a slow increase in OH, leveling off when

PNA peaks, i.e., when the NOx is titrated.

Third regime (550<t<1000 min). After the PNA peak, the chemistry is dominated by HO2, as

evidenced by the formation of peracetic acid (PAA cluster at m/z = 161) and methylhydroperoxide

(MHP cluster m/z = 133). Low-reactivity compounds such as ketones or long-lived nitrates dominate

the chamber composition. Despite the almost constant OH, the chemical speed drops significantly
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Fig. A1. Evolution of the speciation during isoprene photooxida-
tion. The abundance of a functional group5 is defined as the sum
of the carbons bearing5 normalized by the total amount of carbon
in the chamber, i.e. five times the initial amount of isoprene.

Reaction (R13) has only been observed for compounds
such as RCH2OCH2OO and is not considered in this study.
Acyl peroxides are assumed to react through Reaction (R10),
Reaction (R11) and Reaction (R12) with a branching ra-
tio 0.4:0.2:0.4 (Hasson et al., 2004; Jenkin et al., 2007).
Acetonylperoxy radicals have also been shown to react
through channels Reaction (R10) and Reaction (R12) with a
branching ratio 1:2 (Hasson et al., 2004). The other alkylper-
oxy are assumed to react through Reaction (R10) only.

The reaction rate coefficient for the reaction of alkylper-
oxy with HO2 is set to 2.91×10−13 exp(1300/T ) ×

(1− exp(−0.245nc)) cm3 molecule−1 s−1 where nc is the
number of carbon atoms (Saunders et al., 2003). For the
acyl peroxy radicals, the reaction rate coefficient is set
to 5.2×10−13 exp(983/T ) cm3 molecule−1 s−1 based on the
reaction of the methylacylperoxy radical.

RO2+RO2 reactions are neglected in this study. In the
early stages of isoprene photooxidation the chemistry of per-
oxyradicals is entirely dominated by NO. At the end of the
experiment, peroxy radical chemistry is dominated by HO2,
which concentration is high enough so that RO2 + RO2 reac-
tions can be safely neglected.

A3 Photolysis

The photolysis rate of a compound i is computed via:

Ji =

∫ λ2

λ1

Ie(λ)σi (λ) φi (λ) dλ (A2)

The effective light fluxIe is computed using an experimen-
tal determination ofJHONO and a spectrum of the lamp out-
put made every nanometer (LI-COR LI1800λ1=300 nm,

λ2=600 nm). σHONO is scaled using the oscillator strength
recently reported byWall et al.(2006). This givesJHOOH =

3.1×10−6 s−1.
The photolysis of compounds with unknown absorp-

tion cross sections is estimated from the known photoly-
sis rate constants of similar compounds. The photolysis
of organic nitrates is assumed to yield only RO+ NO2.
For primary organic nitrate, the photolysis rate is taken
from 1−C4H9ONO2, for secondary organic nitrates from
2−C4H9ONO2 and for tertiary nitrates from tertbutylnitrate
(Roberts and Fajer, 1989; Atkinson et al., 2006).

A4 Fate of the alkoxy radicals

Alkoxy radicals can react following three different pathways:

R1R2R3CO·
→ R1R2CO+ R3

· (R14)

+O2 → R1R2CO+ HO2 if R3 = H (R15)

→ R1R2COHCCCC·R′

3 (R16)

with R3 = CCCCR′

3

Since the isomerization reaction, Reaction (R16), requires
at least four carbons (Atkinson, 1997), it occurs only in the
first stages of isoprene photooxidation, when major prod-
ucts retain five carbons. In the case of isoprene, isomer-
ization (Reaction (R16)) is faster than decomposition (Reac-
tion (R14)) and reaction with O2 (Reaction (R15)). Alkoxy
radicals which cannot undergo Reaction (R16) are assumed
to decompose through Reaction (R14), i.e. their reaction with
O2 (Reaction (R15)) is generally neglected except for a few
cases detailed in the discussion section.

Generally the decomposition of an alkoxy radical can oc-
cur through different channels, whose branching ratios (Yi)
are estimated using their respective activation energies,Ebi .

R1R2R3CO·
→ R2R3CO+ R1

· Y1 (R17)

R1R2R3CO·
→ R1R3CO+ R2

· Y2 (R18)

R1R2R3CO·
→ R1R2CO+ R3

· Y3 (R19)

with

∀i ∈ (1, 2, 3) Yi = exp

(
Eb1 + Eb2 + Eb3 − Ebi

RT

)
(A3)

Eb is calculated using the generalized structure-activity rela-
tionship developed byPeeters et al.(2004).

A5 Skill of the model

The evolution of the modelled chemical system can be ex-
amined through its instantaneous speciation (Figs.A1). Fur-
thermore, given that the oxidation of CO by HO is negligible
in the time scale of experiment, we define the chemical speed
of the system,V, as d[CO+CO2]

dt
(Figs.A2). Both proxies in-

dicate that the system undergoes three different regimes:

Atmos. Chem. Phys., 9, 1479–1501, 2009 www.atmos-chem-phys.net/9/1479/2009/

Figure 6.16 – Evolution of the speciation during isoprene photooxidation. The abundance of a func-
tional group Π is defined as the sum of the carbons bearing Π normalized by the total amount of carbon
in the chamber, i.e., 5 times the initial amount of isoprene.
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Fig. A2. Different stages of the reaction. Regime I: alkenes
chemistry, NOx-dominated. Regime II: aldehydes chemistry, NOx-
dominated. Regime III: ketones and peroxides chemistry, HOx-
dominated.

.

First regime (0<t<150 min). This regime is characterized by a
large supply of NO, as well as very reactive compounds featur-
ing a double bond.V reaches a maximum after a few minutes at
0.7 ppv(C)/min. O3 and PNA are very low in this regime, underly-
ing a chemistry dominated by NO. The organic nitrate concentra-
tion reaches its maximum at the end of this regime. The reduction in
[HO] corresponds to an increase of[NO2] leading to the formation
of nitric acid.

Second regime 150<t<550 min. This regime is characterized by a
very stableV (0.5 ppbv(C)/min) with a chemistry dominated by
aldehydes. HO recycling though HO2 + NO is less efficient than
in the first regime due to the abundance of O3 which favors the for-
mation of PAN. Nevertheless, the reduction in the chemical speed
due to the transition from “double bond dominated” to “aldehyde
dominated” reduces HO sinks which ultimately leads to a slow in-
crease in HO, leveling off when PNA peaks, i.e. when the NOx is
titrated.

Third regime 550<t<1000 min. After the PNA peak, the chem-
istry is dominated by HO2, as evidenced by the formation of per-
acetic acid (PAA cluster atm/z=161) and methylhydroperoxide
(MHP clusterm/z=133). Low-reactivity compounds such as ke-
tones or long-lived nitrates dominate the chamber composition. De-
spite the almost constant HO, the chemical speed drops significantly
to 0.1 ppbv(C)/min.

These three distinct chemical regimes are consistent with
the ones derived using the experimental profiles of HONO
and PNA, i.e. the mechanism accurately represents the av-
erage evolution of the chemical system (Figs.A1 andA2).

The skill of the mechanism can be evaluated in greater de-
tails by comparing the times when various species peak as
well as their maxima between mechanism and experiment
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Fig. A3. Isoprene profile monitored by GC FID compared to mod-
eled isoprene.

Table A1. Skill of the model. 1t=tmodel
max /tdata

max − 1 and
1c=cmodel

max /cdata
max− 1.

HACET GLYC ISOPN MVKN HC5
+ MACRN

1t(%) 4.8 -1.4 < 1 < 1 < 1
1cmax (%) 3.6 −4.4 2.4 −3.1 38

ETHN DHB DHPN HONO PNA

1t(%) < 1 < 1 2.1 16 -11
1cmax (%) -11 3.5 22 2.2 -37

(Table A1). The mechanism generally captures correctly
the peak times indicating that the chemical speed is prop-
erly modeled in the first and second regime. The error re-
garding the maximum intensity falls within the uncertainty
of this study (±20−30%). The sensitivity of the CIMS to
PNA is probably overevaluated due to ligand exchange with
H2O2. Satisfactory representation for the background chem-
istry species is also reached (Figs.A3 andA4). In particular,
HO2NO2, a very sensitive marker for the ratio of NOx and
HOx, is well captured during the first and second regimes.

Appendix B

Calibration

B1 Definitions

We define the normalized signal, ̂Signal(m/z) as the abso-
lute number of counts recorded atm/z divided by the number

www.atmos-chem-phys.net/9/1479/2009/ Atmos. Chem. Phys., 9, 1479–1501, 2009

Figure 6.17 – Different stages of the reaction. Regime I: alkene chemistry, NOx-dominated. Regime
II: aldehyde chemistry, NOx-dominated. Regime III: ketone and peroxide chemistry, HOx-dominated.
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Fig. A2. Different stages of the reaction. Regime I: alkenes
chemistry, NOx-dominated. Regime II: aldehydes chemistry, NOx-
dominated. Regime III: ketones and peroxides chemistry, HOx-
dominated.

.

First regime (0<t<150 min). This regime is characterized by a
large supply of NO, as well as very reactive compounds featur-
ing a double bond.V reaches a maximum after a few minutes at
0.7 ppv(C)/min. O3 and PNA are very low in this regime, underly-
ing a chemistry dominated by NO. The organic nitrate concentra-
tion reaches its maximum at the end of this regime. The reduction in
[HO] corresponds to an increase of[NO2] leading to the formation
of nitric acid.

Second regime 150<t<550 min. This regime is characterized by a
very stableV (0.5 ppbv(C)/min) with a chemistry dominated by
aldehydes. HO recycling though HO2 + NO is less efficient than
in the first regime due to the abundance of O3 which favors the for-
mation of PAN. Nevertheless, the reduction in the chemical speed
due to the transition from “double bond dominated” to “aldehyde
dominated” reduces HO sinks which ultimately leads to a slow in-
crease in HO, leveling off when PNA peaks, i.e. when the NOx is
titrated.

Third regime 550<t<1000 min. After the PNA peak, the chem-
istry is dominated by HO2, as evidenced by the formation of per-
acetic acid (PAA cluster atm/z=161) and methylhydroperoxide
(MHP clusterm/z=133). Low-reactivity compounds such as ke-
tones or long-lived nitrates dominate the chamber composition. De-
spite the almost constant HO, the chemical speed drops significantly
to 0.1 ppbv(C)/min.

These three distinct chemical regimes are consistent with
the ones derived using the experimental profiles of HONO
and PNA, i.e. the mechanism accurately represents the av-
erage evolution of the chemical system (Figs.A1 andA2).

The skill of the mechanism can be evaluated in greater de-
tails by comparing the times when various species peak as
well as their maxima between mechanism and experiment
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Fig. A3. Isoprene profile monitored by GC FID compared to mod-
eled isoprene.

Table A1. Skill of the model. 1t=tmodel
max /tdata

max − 1 and
1c=cmodel

max /cdata
max− 1.

HACET GLYC ISOPN MVKN HC5
+ MACRN

1t(%) 4.8 -1.4 < 1 < 1 < 1
1cmax (%) 3.6 −4.4 2.4 −3.1 38

ETHN DHB DHPN HONO PNA

1t(%) < 1 < 1 2.1 16 -11
1cmax (%) -11 3.5 22 2.2 -37

(Table A1). The mechanism generally captures correctly
the peak times indicating that the chemical speed is prop-
erly modeled in the first and second regime. The error re-
garding the maximum intensity falls within the uncertainty
of this study (±20−30%). The sensitivity of the CIMS to
PNA is probably overevaluated due to ligand exchange with
H2O2. Satisfactory representation for the background chem-
istry species is also reached (Figs.A3 andA4). In particular,
HO2NO2, a very sensitive marker for the ratio of NOx and
HOx, is well captured during the first and second regimes.

Appendix B

Calibration

B1 Definitions

We define the normalized signal, ̂Signal(m/z) as the abso-
lute number of counts recorded atm/z divided by the number

www.atmos-chem-phys.net/9/1479/2009/ Atmos. Chem. Phys., 9, 1479–1501, 2009

Figure 6.18 – Isoprene profile monitored by GC-FID compared to modeled isoprene.

to 0.1 ppbv(C)/min.

These three distinct chemical regimes are consistent with the ones derived using the experimental

profiles of HONO and PNA, i.e., the mechanism accurately represents the average evolution of the

chemical system (Figs. 6.16 and 6.17). The skill of the mechanism can be evaluated in greater details

by comparing the times when various species peak as well as their maxima between mechanism and

experiment (Table 6.4). The mechanism generally captures correctly the peak times indicating

that the chemical speed is properly modeled in the first and second regime. The error regarding the

maximum intensity falls within the uncertainty of this study (±20–30%). The sensitivity of the CIMS

to PNA is probably overevaluated due to ligand exchange with H2O2. Satisfactory representation

for the background chemistry species is also reached (Figs. 6.18 and 6.19). In particular, HO2NO2,

a very sensitive marker for the ratio of NOx and HOx, is well captured during the first and second

regimes.
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Fig. A4. Comparison of CIMS measurements of inorganic species
with their modeled concentrations using experimental calibrations.
Calibrations for HO2NO2 and N2O5 are uncertain.

of counts associated with the reagent anion, CF3O−:

̂Signal(m/z) =
Signal(m/z)

Signal(CF3O−)
(B1)

For the chamber experimental conditions, the reagent
ion was found in several forms: CF3O−, CF3O·H2O and
CF3O−·H2O2. Due to the high count rates for the primary
isotopes of the reagent ions (sum∼ 14 MHz), the13C iso-
topes were monitored instead:

Signal(CF3O−)=
∑

m/z=86,104,120

Signal(m/z) (B2)

As stated in Sect.2.3, in order to get the concentration
for an analyte,X, detected as a product ion withm/z=p, we
divide the normalized signal form/z by the sensitivity (cX)
for that analyte under chamber conditions Eq. (1).

The above method fails when mass analog ions, i.e. dif-
ferent ions with the same mass-to-charge ratio, exist at the
m/z of interest. The mass analog ions correspond to differ-
ent analytes in the chamber, which have different reaction
rate coefficients with the reagent ion. While the CIMS in-
strument can not separate mass analogs, the explicit model
can. To compare the model results with a measured signal
composed of mass analogs, we use the following:

[
Xmeasuredm/z=a

]
ppbv

=

̂Signal(m/z)

cref

(B3)[
Xmodelm/z=a

]
ppbv

=

∑
i∈A

[Xi ]
cXi

cref

(B4)

wherea is a m/z featuring mass analog ions,A the sub-
set of compounds yielding product ions withm/z=a and

cref=3.85×10−4 pptv−1 is taken as an approximate gen-
eral calibration. Nominally, Signal(CF3O−)=120 kcounts/s,
this gives cref=46 counts.s−1.pptv−1, in the CIMS flow
tube. Including the dilution factor (13.2), the sensitivity is
3.5 counts.s−1.pptv−1 in the chamber air.

B2 Dipoles and polarizabilities computed by quantum me-
chanics

The dipole moment and polarizability of a molecule depend
on its charge distribution. Thus, different conformers of a
molecule can have very different dipole moments. The polar-
izability is essentially determined by the number of electrons
and so is not significantly altered by conformers.

We have calculated the dipole moment and polarizability
using density functional theory. Many of the molecules of
interest have a large number of structural conformers and we
have calculated a conformer distribution for all molecules.
To generate the initial set of conformers, we have allowed 3
fold rotation about all CC, CO, CN single bonds. This leads
to, for example 34 guess structures in the case of ISOPN
Z(1, 4). For each guess conformer, geometry optimization
is conducted at the B3LYP/6-31G(d) level. The optimized
conformers are ranked by energy and relative population for
a temperature of 298 K is determined. We have only cal-
culated the polarizability of the lowest energy structure for
each of the molecules as we found this to be relatively in-
sensitive to structure. All calculations were performed with
Spartan’06, with the default convergence criteria (Wavefunc-
tion Inc., 2006). Test calculations on a few small molecules
for which the dipole moment has been measured show that
the B3LYP/6-31G(d) calculated dipole moments are in good
agreement with experiment (TableB1).

Appendix C

Uncertainty

C1 Initial branching ratio uncertainty

The addition of HO onto isoprene yields eight different per-
oxyradicals (Fig.1). The reported branching ratios vary sig-
nificantly (Lei et al., 2001; Greenwald et al., 2007).

MACR and MVK are only produced through the reaction
of theβ-hydroxy alkoxy radicals with NO and by ozonolysis
of isoprene (Fig.1). Since the latter accounts for less than
0.5% of the total isoprene consumption in the chamber, we
can use the direct determination of the yield of these products
(Sprengnether et al., 2002) as a constraint.

(1 − αβ)(Y1,2 + Y2,1) = 0.44±0.06 (C1)

(1 − αβ)(Y4,3 + Y3,4) = 0.28±0.04 (C2)

We consider that allβ-hydroxy peroxy radical have the same
nitrate branching ratio,αβ , as suggested byGiacopelli et al.

Atmos. Chem. Phys., 9, 1479–1501, 2009 www.atmos-chem-phys.net/9/1479/2009/

Figure 6.19 – Comparison of CIMS measurements of inorganic species with their modeled concentra-
tions using experimental calibrations. Calibrations for HO2NO2 and N2O5 are uncertain.

Table 6.4 – Skill of the model. ∆t = tmodel
max /tdatamax − 1 and ∆c = cmodel

max /cdatamax − 1.

HACET GLYC ISOPN MVKN HC5

+MACRN

∆t(%) 4.8 -1.4 <1 <1 <1

∆cmax(%) 3.6 -4.4 2.4 -3.1 38

ETHN DHB DHPN HONO PNA

∆t(%) <1 <1 2.1 16 -11

∆cmax(%) -11 3.5 22 2.2 -37
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6.7.2 Appendix B: Calibration

6.7.2.1 Definitions

We define the normalized signal, ̂Signal(m/z), as the absolute number of counts recorded at m/z

divided by the number of counts associated with the reagent anion, CF3O
– :

̂Signal(m/z) =
Signal(m/z)

Signal(CF3O−)
(6.8)

For the chamber experimental conditions, the reagent ion was found in several forms: CF3O
– ,

CF3O
– ·H2O and CF3O

– ·H2O2. Due to the high count rates for the primary isotopes of the reagent

ions (sum ∼ 14 MHz), the 13C isotopes were monitored instead:

̂Signal(CF3O−) =
∑

m/z=86,104,120

Signal(m/z) (6.9)

As stated in Sect. 6.3.3, in order to get the concentration for an analyte, X, detected as a product

ion with m/z = p, we divide the normalized signal for m/z by the sensitivity (cX) for that analyte

under chamber conditions Eq. 6.1. The above method fails when mass analog ions, i.e., different ions

with the same mass-to-charge ratio, exist at the m/z of interest. The mass analog ions correspond

to different analytes in the chamber, which have different reaction rate coefficients with the reagent

ion. While the CIMS instrument cannot separate mass analogs, the explicit model can. To compare

the model results with a measured signal composed of mass analogs, we use the following:

[
Xmeasuredm/z=a

]
ppbv =

̂Signal(m/z)
cref

(6.10)

[
Xmodelm/z=a

]
ppbv =

∑
i∈A

[Xi]
cXi

cref
(6.11)

where a is a m/z featuring mass analog ions, A the subset of compounds yielding product ions with

m/z = a and cref = 3.85×10−4 pptv−1 is taken as an approximate general calibration. Nominally,

̂Signal(CF3O−) = 120 kcounts s−1, this gives cref = 46 counts s−1 pptv−1, in the CIMS flow tube.

Including the dilution factor (13.2), the sensitivity is 3.5 counts s−1 pptv−1 in the chamber air.

6.7.2.2 Dipoles and polarizabilities computed by quantum mechanics

The dipole moment and polarizability of a molecule depend on its charge distribution. Thus, differ-

ent conformers of a molecule can have very different dipole moments. The polarizability is essentially
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determined by the number of electrons and so is not significantly altered by conformers. We have cal-

culated the dipole moment and polarizability using density functional theory. Many of the molecules

of interest have a large number of structural conformers and we have calculated a conformer distribu-

tion for all molecules. To generate the initial set of conformers, we have allowed 3-fold rotation about

all CC, CO, CN single bonds. This leads to, for example, 34 guess structures in the case of ISOPN

Z(1,4). For each guess conformer, geometry optimization is conducted at the B3LYP/6-31G(d) level.

The optimized conformers are ranked by energy and relative population for a temperature of 298

K is determined. We have only calculated the polarizability of the lowest energy structure for each

of the molecules as we found this to be relatively insensitive to structure. All calculations were

performed with Spartan’06, with the default convergence criteria (Wavefunction Inc., 2006). Test

calculations on a few small molecules for which the dipole moment has been measured show that the

B3LYP/6-31G(d) calculated dipole moments are in good agreement with experiment (Table 6.5).

6.7.3 Appendix C: Uncertainty

6.7.3.1 Initial branching ratio uncertainty

The addition of OH onto isoprene yields eight different peroxyradicals (Fig. 6.1). The reported

branching ratios vary significantly (Lei et al., 2001; Greenwald et al., 2007).

MACR and MVK are only produced through the reaction of the β-hydroxy alkoxy radicals with

NO and by ozonolysis of isoprene (Fig. 6.1). Since the latter accounts for less than 0.5% of the

total isoprene consumption in the chamber, we can use the direct determination of the yield of these

products (Sprengnether et al., 2002) as a constraint.

(1− αβ)(Y1,2 + Y2,1) = 0.44±0.06 (6.12)

(1− αβ)(Y4,3 + Y3,4) = 0.28±0.04 (6.13)

We consider that all β-hydroxy peroxy radical have the same nitrate branching ratio, as suggested

by Giacopelli et al. (2005). In this study, we assume that channels (2,1) (respectively (3,4)) yield

MVK and MACR. Park et al. (2003) proposed that the radicals formed in these channels undergo

a cyclization, thus reducing the yield of MVK and MACR. The yield of the nitrates that should

originate from the hydrocarbons proposed by Park et al. (2003) is too small to provide conclusive

experimental evidence in favor or against this mechanism. Given the small combined yield of these

channels, this uncertainty remains small compared to the ones affecting the major channels.
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Table 6.5 – Weighted average dipoles (µ̄) and polarizabilities (α). Experimental determinations are
indicated in parenthesis when available. kX, is the weighted average of the collision rates calculated
for conformers with an abundance greater than 5%. kHNO3

= 1.92×10−9 cm3 molecule−1 s−1. σ is the
weighted standard deviation of the distribution of thermal collision rate constants, i.e., it indicates the
sensitivity of the calibration to the calculated distribution of conformers.

Molecule (X) µ̄(D) α(text) kX/kHNO3
σ

Acetic Acid 1.6 (1.7�) 3.9 (5.1?) 0.80 (0.84) ∅

DHB 2.3 7.5 1.0 0.027

DHMOB(1,4) 1.5 9.3 0.79 0.26

DHMOB(4,1) 1.1 9.1 0.66 0.12

DHPN 1.5 6.0 0.74 ∅

ETHLN 2.7 6.2 1.1 0.4

Formic Acid 1.4 (1.4�) 2.4 (3.3�) 0.76 (0.78) ∅

GLYC 2.3 (2.34§) 4.5 1.1 (1.1) ∅

HACET 3.1 (3.1†) 5.5 1.4 (1.4) 0.72×10−3

HC5 E(4,1) 2.8 8.9 1.2 0.22

HC5 Z(1,4) 3.5 8.7 1.5 0.14

HC5 Z(4,1) 3.7 8.9 1.5 ∅

HOPL 1.2 5.7 0.65 1.6×10−3

ISOPN(1,2) 2.5 11 1.0 0.032

ISOPN(2,1) 2.5 11 1.0 0.17

ISOPN(3,4) 2.4 11 1.0 0.11

ISOPN(4,3) 2.5 11 1.0 0.068

ISOPN(1,4)E 3.2 11 1.3 0.17

ISOPN(4,1)E 2.9 12 1.2 0.085

ISOPN(1,4)Z 3.2 11 1.3 0.028

ISOPN(4,1)Z 3.0 11 1.2 0.041

MACRN(m) 2.4 9.9 1.0 0.38

MACRN 2.0 9.8 0.87 0.045

MNBL Z(1,4) 3.6 11 1.4 0.089

MNBL Z(4,1) 3.9 12 1.5 0.12

MNBOL Z(1,4) 4.3 12 1.6 0.073

MNBOL Z(4,1) 4.2 12 1.6 0.083

MOBA Z(1,4) 4.6 9.1 1.8 0.22

MOBA Z(4,1) 3.2 9.2 1.3 ∅

MVKN(m) 2.2 9.7 0.95 0.39

MVKN 2.3 9.9 0.95 0.078

PROPNN 3.0 7.7 1.3 0.46

Propanoic Acid 1.5 5.4 0.76 0.034

Pyruvic Acid 2.4 5.5 1.0 ∅
�: Johnson III (2006), †: Apponi et al. (2006), ?: Cox et al. (1971)

?: Maryott and Buckley (1953), §: Marstokk and Mollendal (1973)
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Theoretical determinations of the branching ratio have also been made (Lei et al., 2000; Green-

wald et al., 2007):

Y1,2 + Y1,4 = 0.56; 0.67 (6.14)

Y4,3 + Y4,1 = 0.29; 0.37 (6.15)

Y2,1 = 0.02 (6.16)

Y3,4 = 0.02; 0.05 (6.17)

The product of the decomposition of the isoprene nitrates formed in the (4,1) branch, dihy-

droxybutanone (DHB) and propanone nitrate (PROPNN), provide an additional constraint (Fig.

6.8):

0.01±0.002 < (1− αdn2,1) γ αβ Y2,1 + (1− αdn4,1)αδ Y4,1 < 0.034±0.007 (6.18)

where αδ is the nitrate yield from the δ-hydroxy peroxy radicals, γ is the branching ratio of the

pathway yielding propanone nitrate from ISOPN(2,1), computed using Eq. 6.7, αdn2,1 and αdn4,1, the

respective organic dinitrate branching ratios from ISOPN(2,1) and ISOPN(4,1).

The upper and lower bounds reflect the uncertainty on the identification of the m/z=189 signal.

The upper bound is derived assuming all m/z=189 signal originates from the DHB yielded by

ISOPN(4,1). The lower limit assumes that no DHB is formed from ISOPN but rather that the

signal measured at m/z=189 results from the photooxidation of HC5 Z(1,4) (negligible based on

Peeters’ SAR) and ISOPN (1,4) (formation of dihydroxymethylpropanal (DHMPL) from addition

of OH on the less sterically favored carbon).

In the mechanism, we use the constraints implied by the study of Lei et al. (2000), YMACR = 0.26

and YMVK = 0.40 and the upper bound of Eq. 6.18. Since the use of the non-linear system formed

by Eqs. 6.12 to 6.18 in order to solve for αβ , αγ and Yi,j does not yield a single solution, we use the

branching ratios derived by Lei et al. (2001) to initialize the numerical solution of this non-linear

system and obtain: Y1,2'41%, Y1,4'15%, Y2,1'2%, Y4,3'23%, Y4,1'14%, Y3,4'5%, αδ'24%,

αβ'6.7% This set of parameters yields a self-consistent mechanism that captures correctly most of

our observations.

The constraints implied by the theoretical study of Greenwald et al. (2007) and the experimental

work of Sprengnether et al. (2002) cannot be reconciled with our observations in a consistent fashion.

Consider the extreme case where YMACR = 24%, Y4,3 + Y4,1 = 29% and Y2,1 = 2% and assume

a nitrate yield of 10% for the β-hydroxy channels gives Y4,1'4.7%. A direct consequence of the
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small branching ratio for (4,1) branch is to preclude DHBN from being an important product of

ISOPN(4,1). The signal measured at m/z=189 would therefore mostly correspond to DHMPL

formed from the photooxidation of ISOPN(1,4). There are two major inconsistencies with this

hypothesis. First, due to the small carbon flux through the (4,1) branch, we are not able to capture

the prompt source of hydroxyacetone attributed to Dibble mechanism. Second, DHMPL features an

aldehydic group so that its lifetime with respect of OH is expected to be much shorter than DHB,

which is inconsistent with the signal recorded at m/z=189 (Fig. 6.12).

While the derivation of the specific branching ratio is affected by this major uncertainty, the

determination of the overall yield of the different products identified is, on the other hand, strongly

constrained by observations and thus relatively insensitive to our choice. The asymmetry of the

nitrate yields between the β and δ-hydroxy channels is therefore a reliable feature. Indeed this

conclusion bears a striking similarity with the estimate derived by Giacopelli et al. (2005) using a

corrected Carter’s parameterization. It is also consistent with the suggestion of O’Brien et al. (1998)

that hydrogen bonding in β-hydroxy-substituted ROONO intermediate weakens the RO−ONO bond,

enhancing RO + NO2 production.

6.7.3.2 Quantum mechanics

In this study, we have assumed that ligand exchange has a negligible impact on CIMS sensitivity.

Therefore to assess the accuracy of our calibration, we compare the calculated collision rate with

the fastest experimental collision rate:

krX =
ceX

cHNO3

krHNO3 (6.19)

where krHNO3 = 2.2×10−9 cm3 molecule−1 s−1 (Huey et al., 1996; Amelynck et al., 2000b) and ceX is

the maximum sensitivity of this technique determined experimentally by changing the water vapor

mixing ratio (often found at zero water vapor mixing ratio). The sensitivity of the CIMS to strong

acids (nitric acid (r =
kX.k

r
HNO3

kHNO3
krX

= 0.9)) or representative VOC (glycolaldehyde, r=0.85) appears to

be correctly captured using the thermal collision rate. Furthermore in a recent study, Ng et al. (2008)

monitored the oxidation of isoprene by NO3 using CIMS. Using the dipoles and the polarizabilities of

MNBOL(1,4)/(4,1) ((2Z)-2/3-methyl-4-(nitrooxy)but-2-ene-1-peroxol) and MNBL(1,4)/(4,1) ((2Z)-

3/2-methyl-4-(nitrooxy)but-2-enal) and ISOPN(4,1) (Table 6.5), we infer that they account for 100%

of the carbon flux, consistent with previous determination. Conversely, the sensitivity to smaller

molecules such as formic (r=1.5) or acetic acid (r=2) is largely overpredicted. If the experimental
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rates of Amelynck et al. (2000b) are used, the agreement is much better with r=1.0 for formic acid

and r=1.1 for acetic acid. The discrepancy may be explained by the smaller collisional energy used

in the Amelynck et al. (2000b)’s experiment, which would result in fewer A – ·HF complexes being

broken during the expansion into the high vacuum.

6.7.3.3 Inorganic chemistry uncertainties

In addition to uncertainties associated with the VOC chemistry, proper modeling of the background

chemistry must be achieved to derive conclusions regarding the VOC chemistry. The model is

especially sensitive to the following parameters:

Nitric acid. The rate of OH + NO2 + M→HNO3 + M is an important uncertainty regarding the

background chemistry. We use the recently reported rate coefficient of 9.16×10−12 cm3 molecule−1 s−1

(Okumura and Sander, 2005), which tends to reduce the rate of formation of nitric acid and con-

versely increases the formation rate of ozone in comparison with the previous estimates (Atkinson

et al., 2006).

Dinitrogen Pentoxide. N2O5 is known to react with water on surfaces (aerosol, walls) to yield

nitric acid:

N2O5 + H2O
S−→ 2HNO3 (R6.20)

The DMA measurements can be used to obtain the aerosol surface area S and the collision rate,

kcoll = 1
4

√
8RT
πM S = 2×10−3 cm3 molecule−1 s−1. The accommodation coefficient is set to 0.05.

Initial concentration of H2O2. Due to the technique used in this experiment to introduce H2O2

into the chamber, its concentration is not known accurately. No calibration is available at such a

high hydrogen peroxide level, so that its estimate based on CIMS measurement is uncertain: 1.9–2.3

ppmv. A new injection method has been developed to reduce this uncertainty in future studies.
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Chapter 7

Unexpected epoxide formation in the
gas-phase photooxidation of isoprene∗

∗Reproduced from “Unexpected Epoxide Formation in the Gas-Phase Photooxidation of Isoprene” by F. Paulot, J.
D. Crounse, H. G. Kjaergaard, Andreas Kürten, Jason M. St. Clair, J. H. Seinfeld, and P. O. Wennberg, Science, 325,
730–733, 2009, http://www.sciencemag.org/cgi/content/full/sci;325/5941/730. Copyright © 2009 by the authors.
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7.1 Abstract

Emissions of non-methane hydrocarbon compounds to the atmosphere from the biosphere exceed

those from anthropogenic activity. Isoprene, a five-carbon diene, contributes more than 40% of these

emissions. Once emitted to the atmosphere, isoprene is rapidly oxidized by the hydroxyl radical OH.

We report here that under pristine conditions isoprene is oxidized primarily to hydroxyhydroper-

oxides. Further oxidation of these hydroxyhydroperoxides by OH leads efficiently to the formation

of dihydroxyepoxides and OH reformation. Global simulations show an enormous flux – nearly 100

teragrams of carbon per year – of these epoxides to the atmosphere. The discovery of these highly

soluble epoxides provides a missing link tying the gas-phase degradation of isoprene to the observed

formation of organic aerosols.

7.2 Introduction

Isoprene is the largest source of non-methane hydrocarbons to the atmosphere (∼500 Tg C/year)

(Guenther et al., 2006). It is produced by deciduous plants (Harley et al., 1999) and plays a critical

role in tropospheric chemistry over large regions of the globe (Fuentes et al., 2000). In many forested

regions, isoprene oxidation by OH occurs far from combustion of biomass and fossil fuel, so nitric

oxide (NO) concentrations are very low. Many of the details of the chemical oxidation mechanism

under these conditions remain to be elucidated, hindering assessment of the consequences of changes

in isoprene emissions from land use and climate variation (Guenther et al., 2006; Rosenstiel et al.,

2003; Wiedinmyer et al., 2006; von Kuhlmann et al., 2004) or changes in NO emissions. In addition

to the uncertainty in the gas-phase chemistry, there is no agreement on the mechanism involved in

the formation of secondary organic aerosol (SOA) from isoprene oxidation (Claeys et al., 2004).

Where NO is low, isoprene photooxidation is expected to yield the hydroxyhydroperoxides,

ISOPOOH = β-ISOPOOH + δ-ISOPOOH (Scheme 7.1, A and B) (Crutzen et al., 2000; Reeves

and Penkett, 2003). These series of reactions are expected to strongly depress the concentrations

of OH and HO2 (together known as HOx) in regions with high isoprene emissions. Observed HOx

levels remain, however, almost unchanged over a wide range of isoprene concentrations, inconsistent

with the simulated influence of Scheme 7.1, A and B (Thornton et al., 2002; Lelieveld et al., 2008;

Ren et al., 2008). Simulations and measurements of HOx have been partly reconciled with substitu-

tion of the speculative Scheme 7.1C, where formation of methacrolein (MACR) and formaldehyde is

accompanied by OH formation, thus reducing the impact of isoprene on HOx levels (Lelieveld et al.,
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Scheme 7.1 First step in isoprene + OH under low NOx conditions.

A

B

C

MACR

δ4-ISOPOOH

β4-ISOPOOH

2008).

Analogous to Scheme 7.1, A to C, addition of OH on the other double bond yields similar hydrox-

yhydroperoxides (β1- and δ1-ISOPOOH) and methylvinylketone (MVK) (see Supporting Material).

Both unimolecular decomposition of the peroxy radical (Peeters et al., 2009) and reaction with

HO2 (Dillon and Crowley, 2008) have been proposed in Scheme 7.1C. Although OH reformation

(15 to 65%) has been measured for the reactions of HO2 with acylperoxy and β-carbonyl peroxy

radicals, low OH yields (< 6%) have been reported from the reactions of HO2 with β-hydroxy peroxy

radicals, structurally more similar to isoprene peroxy radicals (Dillon and Crowley, 2008).

We show here that ISOPOOH is formed in large yields (> 70%) via the channels shown in

Scheme 7.1, A and B, with concomitant formation of MVK and MACR in much smaller yields

(< 30%) via the channel shown in Scheme 7.1C. The branching through Scheme 7.1C yields OH,

although substantially less than required to close the HOx budget (Lelieveld et al., 2008).

We show below that the oxidation of ISOPOOH by OH produces dihydroxyepoxides (IEPOX

= β-IEPOX + δ-IEPOX). This HOx neutral mechanism produces IEPOX with yields exceeding

75% (Scheme 7.2, A and B). This mechanism is likely specific to isoprene and other polyalkenes.

Analogous to liquid phase processes (Bell et al., 1950), it profoundly differs from gas-phase oxidation
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Scheme 7.2 Isoprene hydroxyhydroperoxide (ISOPOOH) + OH.
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of simple alkenes by OH (e.g., Scheme 7.2, A and B), which would result in the formation of the

dihydroxydihydroperoxides. Formation of these compounds is not observed in these experiments.

The gas-phase formation of IEPOX in high yields provides a suitable gas-phase precursor for

Secondary Organic Aerosol from isoprene oxidation (iSOA) under low NOx conditions (Wang et al.,

2005; Surratt et al., 2006; Minerath and Elrod, 2009) and may help resolve an outstanding puzzle

in atmospheric aerosol chemistry. Although epoxides have previously been speculated as a possible

precursor for iSOA (Wang et al., 2005), no mechanism was known to produce them in either the gas

or aerosol phase. Consistent with expectation that IEPOX can serve as a precursor to iSOA, we

observe rapid and quantitative uptake of 1,4-dihydroxy-2,3-epoxybutane (BEPOX) – a compound

structurally similar to IEPOX – on acidic aerosol.

7.3 Experiment and results

We monitor isoprene photooxidation products in the Caltech environmental chamber by chemical

ionization mass spectrometry (CIMS) (Crounse et al., 2006), employing a triple-quadrupole mass fil-

ter that provides tandem mass spectra (MSMS) (Supporting Material). The reagent anion, CF3O
– ,

provides sensitive detection of organic hydroperoxides by formation of ionmolecule clusters (Crounse

et al., 2006). Detection of BEPOX by CIMS confirms its sensitivity to dihydroxyepoxides (Support-

ing Material). In the absence of native standards for many of the compounds described here, the

calibration of the instrument was inferred from molecular properties of the analyte (Supporting

Material; Paulot et al., 2009b).
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Isoprene is oxidized by OH generated through the photolysis of hydrogen peroxide (H2O2) in a

Teflon bag filled with 800 standard liters of ultrazero air. Known amounts of isoprene and H2O2

are introduced into the chamber before ultraviolet (UV) lights are energized. Isoprene is quantified

using gas chromatography with flame ionization detection (GC-FID) (Supporting Material).

The products formed through Scheme 7.1, A and B, and Scheme 7.2, A and B–ISOPOOH and

IEPOX–are isobaric and measured together by CIMS as the cluster of CF3O
– with these compounds

at the mass to charge ratio (m/z ) 203 (Fig. 7.1, red curve). However, distinct daughter ions

produced through collision-induced dissociation (CID) of these cluster ions allow for quantification

of each compound (McLafferty, 1981). Clusters of CF3O
– with hydroxyhydroperoxides, produced

from the oxidation of simple alkenes, fragment to m/z = 63, whereas those with BEPOX exhibit loss

of hydrofluoric acid (HF). The daughter m/z = 63 of 203 (Fig. 7.1, green curve), associated with the

fragmentation of the ISOPOOH cluster clearly precedes the daughter m/z = 183 of 203 (Fig. 7.1,

blue curve), associated with IEPOX, consistent with the proposed mechanism. Clusters of CF3O
–

with other plausible isomers of IEPOX are not known to exhibit efficient loss of HF (Supporting

Material). The sum of the m/z = 63 and m/z = 183 daughters (Fig. 7.1, black dashed line) properly

captures the shape of the parent signal (Fig. 7.1, red curve).

Experiments performed with 18OH produced from the photolysis of H 18O 18OH provide addi-

tional evidence for the conversion of ISOPOOH to IEPOX. With 18OH as the primary oxidant,

ISOPOOH and IEPOX are no longer isobaric: The ISOPOOH ion cluster is primarily monitored

at m/z = 205 (Fig. 7.2, magenta circles) corresponding to the addition of one 18OH on isoprene

(Scheme 7.1, A and B), whereas IEPOX is detected at m/z = 207 (Fig. 7.2, blue squares) because

its formation requires addition of a second 18OH and simultaneous loss of 16OH (Scheme 7.2, A and

B) (Fig. 7.2). The coincidence between m/z = 207 and IEPOX fingerprint (daughter m/z = 187)

suggests that m/z = 207 is derived almost entirely from the dilabeled IEPOX, consistent with the

proposed mechanism.

7.4 Discussion

Quantum chemical calculations confirm that, after the addition of OH, ISOPOOH is connected to

IEPOX by energetically favorable adiabatic pathways (Fig. 7.3 and Tables 7.4 and 7.5). β- and

δ-IEPOX lie ∼50 kcal/mol below their ISOPOOH parent with the transition state connecting the

alkyl radical and IEPOX ∼20 kcal/mol below the ISOPOOH reactant. The relative energies and

structures of the stationary points along the surface are shown in Fig. 7.3 for the β4-ISOPOOH to β-
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Figure 7.1 – Consecutive formation of ISOPOOH and IEPOX in the photooxidation of isoprene.
Following the time when the photolysis of H2O2 [initially 1.66 parts per million by volume (ppmv)]
begins (t = 0), isoprene (black dotted line) decays quickly. ISOPOOH and then IEPOX are detected as
major products of the oxidation of isoprene [because they are isobaric, they both are detected at m/z
= 203 (red), the cluster of these compounds with CF3O

– ]. Tandem mass spectroscopy provides for
separation of the m/z = 203 signal: ISOPOOH (green) is observed as the m/z = 63 daughter, whereas
IEPOX (blue) is observed as the m/z = 183 daughter. The sum of IEPOX and ISOPOOH is indicated
by the dashed black line.
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Figure 7.2 – Formation of light and heavy ISOPOOH and IEPOX in the oxidation of isoprene using
H 18O 18OH as the OH source. Formation of ISOPOOH is monitored via the daughter m/z = 63
(circles) of m/z = 203 (red) and m/z = 205 (magenta). Formation of IEPOX is monitored via the loss
of HF (squares) from m/z = 203, m/z = 205, and m/z = 207 (blue). Formation of isotopically light
ISOPOOH and IEPOX reflects OH reformation. Solid lines represent the modeled mixing ratios for
the different isomers. Isoprene initial concentration was 23.5 parts per billion by volume (ppbv), and
18OH was generated from the photolysis of H 18O 18OH (1.75 ppmv initial concentration, UV lights on
at t = 0).
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Figure 7.3 – Relative energies for the formation of β-IEPOX from β4-ISOPOOH (Scheme 7.2A). The
alkylradical resulting from the addition of OH onto β4-ISOPOOH double bond is formed with enough
excess energy (∼30 kcal/mol) that it quickly decomposes to the β-IEPOX + OH via the β4- transition
state. Energies are calculated with the CCSD(T)-F12/VDZ-F12 explicitly correlated method at the
B3LYP/cc-pVTZ optimized structures (Supporting Material).

IEPOX reaction (Scheme 7.2A). The reaction paths and energetics for the analogous β1-ISOPOOH

to β-IEPOX reaction and for the δ4-ISOPOOH to δ4-IEPOX reaction (Scheme7.2B) are similar

(Figs. 7.7 and 7.8 and Tables 7.6 and 7.7).

The formation of isotopically-light ISOPOOH (m/z = 203) (Fig. 7.2, red circles) and IEPOX

(m/z = 203 and 205) (Fig. 7.2, red and magenta squares) in the 18OH-labeled experiment pro-

vides additional evidence for Scheme 7.2, A and B, because 16OH is released through formation of

IEPOX (Scheme 7.2, A and B). The 16OH quickly reacts with isoprene and ISOPOOH, forming

the observed isotopically-light compounds. The formation of light ISOPOOH (m/z = 203) in the

first hour of the experiment cannot, however, be accounted for by Scheme 7.2, A and B, alone, sug-

gesting a small but rapid 16OH formation from Scheme 7.1C. This is consistent with the coincident

production of MVK and MACR, measured together by proton transfer mass spectrometry at m/z

= 89. Very little methyl-butenediol (<2%) is observed, which suggests that cross-peroxy radical

reactions (Ruppert and Becker, 2000) are unlikely to account for the formation of MVK and MACR.

A prompt signal at m/z = 201 appears consistent with the recently hypothesized formation of (2Z)-

hydroperoxymethylbutenol by a 1,6-H-shift. However, its yield (<10% of ISOPOOH) is much less

than predicted theoretically (Peeters et al., 2009).

Using a kinetic model constrained by the observed yields of MVK/MACR and the ratios between

light and heavy isotopes of ISOPOOH, we estimate that 12±12% of the isoprene peroxy radicals

react with HO2 to recycle OH by Scheme 7.1C. This estimate accounts for a small initial amount
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of NOx present initially in the chamber (Supporting Material). The balance of the isoprene peroxy

radicals reacts with HO2 to form ISOPOOH.

The lifetime of ISOPOOH with respect to OH (3 to 5 hours) is considerably shorter than IEPOX

(18 to 22 hours) (calculated for [OH] = 106 radicals cm−3). The formation of unlabeled hydroxyace-

tone as well as singly-labeled hydroxyacetone and glycolaldehyde in the photooxidation of isoprene

by 18OH suggests that the degradation of IEPOX by OH occurs primarily through hydrogen ab-

straction a to the alcohol (Supporting information).

In addition to the gas-phase oxidation, dihydroxyepoxides are lost to aerosol surfaces through

reactive uptake. We monitor by CID-CIMS rapid and nearly quantitative uptake of BEPOX onto

acidic aerosol seeds (MgSO4/H2SO4). The resulting SOA composition can be readily related to

the one identified for iSOA in pristine environments. In particular, analogs of dihydroxyenols,

2-methyltetrols, alkene-triols, and associated sulfate esters are detected (Supporting information),

which suggests that IEPOX may explain their formation in both field (Claeys et al., 2004; Surratt

et al., 2008) and chamber studies (Wang et al., 2005; Surratt et al., 2006). Epoxides are also known

to polymerize easily, an essential process for SOA growth (Gao et al., 2004).

The atmospheric yield of IEPOX is directly related to the relative importance of the reactions of

isoprene peroxy radicals with HO2 and NO. Using the chemical transport model GEOS-CHEM (Bey

et al., 2001) with an updated chemical mechanism (Table 7.9) (Paulot et al., 2009b), we find that

globally about one-third of isoprene peroxy radicals undergo reaction with HO2, with the remaining

fraction reacting with NO. Over the Amazon, this ratio is almost inverted (Fig. 7.11). Including

uncertainties in isoprene emissions, we estimate that 95±45 Tg C/year of IEPOX, a previously

unknown class of compounds, are formed each year in the atmosphere. The largest concentrations

of IEPOX are localized over the southern tropics, with substantial levels predicted over Canada and

the Southeast United States during Northern Hemisphere summer (Fig. 7.4). The presence of high

concentrations of ISOPOOH and IEPOX in the atmosphere are consistent with recent aircraft-borne

observations of isoprene oxidation products (m/z = 203) over southeast Columbia [NASA Tropical

Composition, Cloud, and Climate Coupling (TC4) campaign] and (m/z = 203 and its daughters) over

Alberta and California [NASA Artic Research of the Composition of the Troposphere from Aircraft

and Satellites (ARCTAS) campaign]. Preliminary study of the data collected in the boundary layer

is consistent with the concentrations of these compounds calculated with GEOSCHEM (Fig. 7.12).

The variability in the yield and fate of IEPOX is expected to translate into highly variable iSOA

yields. In particular, anthropogenic activities depress for IEPOX formation as IEPOX yield drops
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Figure 7.4 – Simulated daily distribution of IEPOX in the planetary boundary layer during the
Northern Hemisphere summer (A) and winter (B). IEPOX seasonal cycle mirrors the isoprene emissions.
The mixing ratio of IEPOX is higher in the tropics than in other isoprene production regions in the
northern mid-latitudes (e.g., the southeast United States). This reflects the reduction in the yield of
IEPOX from isoprene due to anthropogenic emissions of NO.
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rapidly with increasing NO. Anthropogenic emissions, however, may enhance the iSOA yield from

IEPOX because its uptake on surfaces is likely dependent on the aerosol pH and sulfur content (Min-

erath and Elrod, 2009; Surratt et al., 2007). This may explain part of the variability of the reported

SOA biogenic yields, ranging from negligible (de Gouw et al., 2005) to potentially dramatic (Tunved

et al., 2006). Given the enormous flux of IEPOX, the chemistry presented here may also resolve

part of the intriguing discrepancy between bottom-up (10 to 70 Tg/year) and top-down (140 to 910

Tg/year) estimates of global SOA production (Goldstein and Galbally, 2007). Nevertheless, IEPOX

is expected to undergo hundreds of collisions with aerosol surfaces before reacting with OH, and its

detection in the atmosphere (Fig. 7.8) suggests that a complex suite of conditions likely controls its

uptake to aerosols (e.g., the pH and chemical composition of aerosol). Furthermore, iSOA formation

may depend on the unquantified differences in the yields and uptake characteristics of the β- and

δ-IEPOX. Quantitative understanding of these complex interactions is required to assess the effect

of this chemistry on the overall SOA abundance and its associated impacts [e.g., cloud condensation

nuclei (Kerminen et al., 2005)].

7.5 Conclusions

The efficient formation of dihydroxyepoxides, a previously unknown class of gas-phase compounds,

addresses many of the issues currently being debated about isoprene chemistry. Because their forma-

tion is accompanied by the reformation of OH, this chemistry contributes to the remarkable stability

of HOx in remote regions of the troposphere subjected to high isoprene emissions. The formation

of IEPOX also provides a gas-phase precursor for the iSOA formation. Further investigation of the

multiphase chemistry of IEPOX is needed to elucidate the complex interaction between emissions

from the biosphere and atmospheric composition (Went, 1960; Andreae and Crutzen, 1997). In

particular, the development of a proper chemical description of these interactions is essential for

assessing the sensitivity of this chemistry to changes in isoprene emissions caused by environmental

changes (e.g., climate change and deforestation) and to the further development of anthropogenic

activities and the accompanying NOx emissions in these regions.
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7.6 Supporting information

7.6.1 Chemical ionization mass spectrometer (CIMS)

7.6.1.1 Overview

The Caltech Chemical Ionization Mass Spectrometer (CIMS) was originally designed for aircraft mis-

sions as a robust and lightweight instrument capable of detecting trace amounts of atmospherically-

relevant substances with high selectivity and sensitivity. The reagent ion used in negative ion mode,

CF3O
– , reacts with a suite of peroxides and various other compounds, e.g., SO2, HNO3 and organic

acids (Huey et al., 1996; Amelynck et al., 2000a; Crounse et al., 2006; Amelynck et al., 2000b).

There exist two versions of the flight instrument: 1) The original version that utilizes a single

quadrupole mass filter as a mass spectrometerCrounse et al. (2006) and 2) a more recently de-

veloped instrument with the same ionization scheme but utilizing a commercial triple quadrupole

mass spectrometer, thereby allowing for the differentiation of certain mass analogues using tandem

MSMS. This latter instrument has been largely replicated for laboratory experiments at the Cal-

tech environmental chamber. Additionally, this new instrument can be operated in positive ion

mode similar to a classical proton transfer mass spectrometry (PTR-MS) instrument (Hansel et al.,

1995). The instrument configuration allows for rapid switching between negative and positive ion

chemistry. A brief general description of the CIMS follows here with a focus on the MSMS and PTR-

MS capabilities, which are key features for the identification of IEPOX formation during isoprene

photooxidation, and which have not been described in detail before.

The Caltech CIMS consists of a commercial triple quadrupole mass spectrometer (Varian 300-MS

GC/MS, Varian, Inc.) and a custom ion source with a specially designed sample gas inlet system

(Fig. 7.5). During an experiment the sample air is pulled (1 slm) from the chamber through a Teflon

line to the instrument. Twenty percent of this sample flow is transferred to the CIMS instrument.

The flow rate is controlled by a critical orifice made of glass that connects the sampling line with a

2.54 cm outer diameter glass flow tube coated with a thin layer of Teflon (Fluoropel 801A, Cytonix

Corp.). The flow tube is operated at a constant pressure of 35 hPa. The sample flow entering the

flow tube is diluted with nitrogen (ultra-high purity, 99.999 %) at a mixing ratio of 1:8.2. The exact

value of the dilution flow is adjusted such that the pressure inside the flow tube is held constant at

35 hPa. With the exception of the sample flow, all gas flows are controlled by metal sealed mass

flow controllers (SEC-4400, Horiba Stec) to minimize contamination.

The main modification to the Varian triple quadrupole mass spectrometer consists of the removal
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Figure 7.5 – Schematic diagram of the Caltech Chemical Ionization Mass Spectrometer (CIMS).
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of the originally installed electron impact ionization source thereby making room for a conically-

shaped hexapole ion guide that efficiently transfers ions from the flow tube to the first quadrupole

(Q1). The section where the hexapole is mounted is differentially pumped and only connected to

the flow tube and the high-vacuum chamber by small openings.

The three linear quadrupole mass filters (Q1, Q2, and Q3) can be used in different configurations

allowing either the acquisition of single mass spectra (MS) or tandem mass spectra (MSMS). In

the MSMS mode, a buffer gas, nitrogen, is added to the second quadrupole (Q2), which is partially

enclosed. In Q2, the presence of several Pa of N2 results in collision induced dissociation (CID) of

the ions selected in Q1. The fragments (or daughter ions) produced in Q2 are filtered by m/z in

Q3 before being detected with an electron multiplier operated simultaneously in both analog and

ion-counting mode. For the experiments shown here, the following modes were used: (a) Single MS

(SMS) – Operating Q1 as a mass filter to select a single m/z value at a time while operating Q2

(evacuated) and Q3 in RF-only mode such that virtually all ions selected by Q1 reach the detector.

In this manner, a mass spectrum can be obtained if all m/z values of interest are scanned (b) MSMS

– Operate Q1 as a mass filter to select a single m/z value for the parent ion. The pressure in the

region of Q2 is increased to several Pa inducing the fragmentation of the selected ion. Fragment

ions are then selected by Q3 and reach the detector. Mode (a) was conducted for both anions and

cations, while mode (b) was conducted for anions only. For the experiments reported in this study,

the following sequence was repeated throughout the experiments 1) negative ion SMS, 2) positive

ion SMS, and 3) negative ion MSMS, with the total cycle duration being approximately 10 minutes.

7.6.1.2 Negative ion mode

In negative ion mode, 400 sccm of 10 ppmv CF3OOCF3 in N2 passes through the ion source,

which contains a radioactive material (210Po foil, NRD, Inc.). The foil containing the 210Po is

housed in a stainless steel holder and emits α-particles that by ionizing nitrogen molecules lead to

the release of electrons. The electrons are captured by CF3OOCF3, generating the reagent anion,

CF3O
– . Potentials of −240 V and −220 V (relative to the pinhole and the instrument housing,

which are held at ground potential) are applied to the stainless steel 210Po holder and −220 V to the

lens, respectively, such that only negative ions are transmitted across the flow tube in a transverse

direction to the diluted sample flow. Product ions are formed through reactions of neutral analyte

molecules with reagent ions as they move across the flow tube. The anions (reagent and product

ions) are then pushed towards the pinhole and enter the chamber containing the conical hexapole.
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The ion-molecule reactions (with a trace compound R) that can occur are: proton transfer (R7.1),

fluoride transfer (R7.2) or clustering with a CF3O
– ion (R7.3) (Crounse et al., 2006; Paulot et al.,

2009b).

R + CF3O− → R− + CF3OH (R7.1)

R + CF3O− → R−·HF + CF2O (R7.2)

R + CF3O− → R·CF3O− + CF2O (R7.3)

When operating the instrument in negative SMS mode, anions were scanned sequentially for 0.5

seconds from m/z=50 to m/z=275. The acquisition of a full mass spectrum thus requires ∼2 min.

The m/z of the reagent anion and its major clusters with water and hydrogen peroxide (m/z=85

(CF3O
– ), m/z=103 (CF3O

– ·H2O) and m/z=119 (CF3O
– ·H2O2)) are omitted from the scans due

to their high intensities; these anions are quantified at m/z +1 – mostly from the 13C isotopologues.

7.6.1.3 Positive ion mode

In positive ion mode, 400 sccm of N2 (without CF3OOCF3) is passed through the ion source.

Residual H2O in the gas stream reacts with N+
2 ions (generated from the collisions of the α particles

with the bath gas) to form H+·(H2O)n reagent ions in the ion source. The positively charged ions

are directed out of the source and across the flow tube by inverting the polarity of the potentials

on the ion source and the lens from those used in negative ion mode. The most abundant positive

ions detected by the spectrometer correspond to n = 3, 4. The pressure (∼3×10−3 hPa) inside the

conical hexapole limits the transmission of ions with m/z < 50, so that the n = 1 and 2 water

clusters cannot be detected.

The ion-molecule reactions that occur in positive ion mode are:

R + H+·(H2O)n → R·H+(H2O)x + (n−x)H2O (R7.4)

where, x≤n, and generally equals 0, 1, or 2.

When operating the instrument in positive SMS mode, ions are scanned sequentially for 0.5

seconds from m/z=30 to m/z=235. The full mass spectrum requires approximately 1 min and 40 s.

Ions with m/z=55 (H+·(H2O)3), m/z=73 (H+·(H2O)4) are omitted due to their high intensities.
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7.6.1.4 Negative ion MSMS mode

The ion generation for the negative ion MSMS mode is identical to the negative ion SMS mode.

The main difference of MSMS mode as compared to the SMS mode is the addition of a small flow of

N2 into the Q2 quadrupole such that the pressure inside Q2 reaches approximately 2.5×10−3 hPa.

To increase the signal to noise ratio in MSMS mode, the resolution of Q3 is set to a full-width-half-

maximum of approximately 1.5 amu. While this does give fairly broad peaks, the chance of distinct

fragment ions (excluding isotopic pairs, e.g. 12C and 13C) occurring at adjacent masses (and thus

being indistinguishable at this resolution) is small.

In many cases, the formation of the daughter ions induced by collisions of the parent ion (e.g.,

R·CF3O
– ) with the bath gas (M) can be explained through the following CID channels:

R·CF3O
– parent ions:

R·CF3O− + M→ CF3O− + R + M (R7.5)

R·CF3O− + M→ HF·R− + CF2O + M (R7.6)

R·CF3O− + M→ R−−H + CF2O + HF + M (R7.7)

R·CF3O− + M→ [CF2O·R]− + HF + M (R7.8)

R·CF3O− + M→ HF·F− + HF + CO + R−2H + M (R7.9)

R·CF3O− + M→ (HF)2·F− + CO + R−2H + M (R7.10)

R·CF3O− + M→ FCO−2 + 2HF + R−2H−O + M (R7.11)

R –
-H·HF parent ions:

R−−H·HF + M→ R−−H + HF + M (R7.12)

The distribution across the possible CID channels (R7.5–R7.11) for a given parent ion, R·CF3O
– ,

vary greatly depending upon the nature of R (acidity, fluoride affinity, dipole moment, etc). This

distribution can also be modified by changing the average collision energy in Q2, i.e., changing the

kinetic energy (velocity) of the ion upon entering Q2. In this work, the ion energies (velocities) are

tuned to be quite low (slow) to prevent CID from occurring in the conical hexapole. As a result,

it is not possible to alter the collision energies in Q2 significantly without scattering most of the

ions onto undetectable trajectories. For a given parent ion m/z, the collisional energy in Q2 was

the same across all experiments, and was adjusted as a function of the parent ion mass in order to
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place the parent ion (and latter the fragment ions) on detectable trajectories, namely those moving

through Q2.

The MSMS spectrum of a parent ion is useful for determining the nature of the analyte R as

well as distinguishing isobaric compounds, which are detected at the same parent m/z. For instance,

compounds containing a hydroperoxy group (ROOH) often have a significant yield of the daughter ion

at m/z=63 (R7.11), which seems to be a fragment specific to ROOH compounds, probably FCO –
2 .

Fingerprints can also be used to distinguish glycolaldehyde from acetic acid. Both compounds are

detected at m/z=145 in SMS. In MSMS mode, parent ions arising from acetic acid give daughter

ions as m/z=79 (R7.6) with reasonable yield, while parent ions arising from glycolaldehyde do not

give any daughter ions at m/z=79. Given calibrated MSMS fragment spectra for acetic acid and

glycolaldehyde, one can quantify each compound separately in an unknown mixture.

7.6.2 Experiment

7.6.2.1 Reagents

All chemicals were purchased from Sigma Aldrich. Atmospheric chamber experiments were carried

out in an 800 L FEP Teflon bag filled with ultrazero air (Air Liquide). H 18O 18OH was purchased

from ISOTECH as a 2–3% (by mass) solution in H2O, and a stated purity of 90% 18O by atom

for the H2O2. The unlabeled H2O2 was prepared as a 3% solution (by mass) using 30% H2O2

(Fischer) and deionised water (MilliQue). The concentration of the unlabeled 3% H2O2 solution

was measured by UV-VIS absorption in the liquid phase after standard dilution using published

absorbance cross-sections at 240 nm (Sander, 2006). The concentration and purity of the labeled

H2O2 was determined to be 2.2% H 18O 18OH (by mass), and 97.2% 18O (by atom) using the CIMS

instrument.

7.6.2.2 H2O2 introduction

A known mass of H2O2 (an aliquot of the ∼3% solutions in H2O) was evaporated into a 15 SLM

stream of ultrazero air (controlled by a mass flow controller) as it filled the 800 L bag. For typical

concentrations (1–2 ppmv H2O2), the evaporation was complete in 15–20 minutes.

7.6.2.3 Isoprene introduction

A known mass of isoprene was evaporated into 100 standard liters of N2 by flowing N2 over the

isoprene and collecting in a 100 L Teflon bag. An aliquot (typically 120 mL) from the 100 L
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Table 7.1 – Initial conditions (in ppb).

Experiment Isoprene H 18O 18OH H 18O 18OH H 16O 16OH NOx

Exp 1 70 1700 57.2 3.5 1.3

Exp 2 23.5 1750 58 3.76 .77

Exp 3 20.9 2860 94 5.9 .1

isoprene/N2 mixture was taken using a gas-tight syringe for injection into the 800 L experiment bag.

Final isoprene concentration was calculated from the initial mass, and the serial dilution, correcting

for the temperature and pressure of the injected aliquot. This procedure was followed prior to each

experiment.

7.6.2.4 Bag flushing

Between experiments, the 800 standard liter experiment bag was flushed with dry N2 (taken from liq-

uid N2 boil off). Flushing typically consisted of 4–6 fill and evacuation cycles. After 4 fill/evacuation

cycles, all detected compounds are less than 5% of their value at the end of the previous experiment.

7.6.2.5 Photolysis

The 800 L bag was placed on the floor of the Caltech environmental chamber (Cocker et al., 2001)

between the existing 28 m3 bags. All experiments were conducted using 50% of the UV lights

corresponding to JH2O2
= 2.15×10−6 s−1. The ambient temperature was between 290 and 295 K.

7.6.2.6 Initial conditions

Three different experiments were carried out with labeled hydrogen (Table 7.1). The initial concen-

tration of NOx was determined using the isoprene nitrate cluster signal at m/z=234 and the yields

as determined in our earlier work (Paulot et al., 2009b).

7.6.2.7 Sythesis of BEPOX

cis-2,3-epoxy-1,4-butanediol (BEPOX) was synthesized by mixing cis-butene-1,4-diol and hydrogen

peroxide under basic conditions and in the presence of tungstinic acid in a 50 ◦C water bath (Skinner

et al., 1958). The final product was purified by recrystallization from hexanes.
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7.6.2.8 Reactive uptake of BEPOX: Characterization of particle-phase reaction prod-

ucts and their implications for isoprene SOA

Chamber experiments were conducted in order to evaluate the SOA formation potential resulting

from the reactive uptake of BEPOX in the presence of acidified sulfate aerosol.

Reactive uptake of BEPOX was monitored via CIMS at m/z=189. Gas-phase BEPOX is largely

consumed following addition of the acidic aerosol (MgSO4) to the chamber. The resulting SOA

produced from this reaction were collected onto Teflon filters (PALL Life Sciences, 47 mm diameter,

1.0 µm pore size, teflo membrane) for off-line detailed chemical characterization efforts. Tetrols (i.e.,

erythritol and threitol) were characterized by GC/MS with prior trimethylsilylation (Surratt et al.,

2006). Additionally, organosulfates (e.g., C4-trihydroxy sulfates) of BEPOX were characterized by

ultra performance liquid chromatography (UPLC) interfaced to an electrospray ionization (ESI)

time-of-flight mass spectrometer (TOFMS) operated in the negative ion mode. Details of the Teflon

filter extractions and subsequent UPLC/ESI-TOFMS analysis can be found elsewhere (Surratt et al.,

2008).

The tetrols and organosulfates produced from the reactive uptake of BEPOX are analogues of the

previously characterized 2-methyltetrols and organosulfates of isoprene, consistent with the hypoth-

esis that the reactive uptake of IEPOX is likely responsible for some of the observed enhancements

of isoprene SOA under low-NOx and acidic conditions (Surratt et al., 2007).

BEPOX is stable in the Teflon bag suggesting that under the experimental conditions described

here, wall losses are negligible. Nevertheless, experiments carried out under humid conditions or

with acidified walls show immediate uptake of IEPOX to the walls. This may explain why this

compound has been difficult to detect.

7.6.2.9 Calibrations

As detailed in a recent study, the calibration of the CIMS instrument for a specific compound can be

estimated from the collision rate constant of the reagent ion (in this case CF3O
– ) with the analyte

species (Paulot et al., 2009b). The thermal collision rate constant can be estimated from the dipole

and polarizability of the analyte species using the parameterization of Su and Chesnavich (1982).

The average dipole moment and polarizability were calculated with the B3LYP/6-31G(d) density

functional method for the compounds of interest (Table 7.2) (Wavefunction, 2006; Garden et al.,

2009). Theoretical calibrations show good agreement between the ratio of the calibration obtained

for BEPOX, glycolaldehyde and hydroxyacetone (Table 7.3).
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Table 7.2 – Theoretical weighted average dipole moments (µ) and polarizabilites (α) for conformers
with abundance greater than 1%. Cis and trans refer to the position of the CH2OH group with respect
to the plane of the oxirane.

Compound µ (D) α(Å3
)

β-IEPOX (cis) 2.47 8.98

β-IEPOX (trans) 1.00 9.01

δ1-IEPOX 2.39 9.98

δ4-IEPOX 2.30 8.93

β1-ISOPOOH 2.19 9.44

β4-ISOPOOH 2.20 9.44

δ1-ISOPOOH 2.85 9.63

δ4-ISOPOOH 3.34 9.66

BEPOX (cis) 2.71 7.52

BEPOX (trans) 0.55 7.47

(2Z)-but-2-ene-1,4-diol 2.93 7.28

but-3-ene-1,2-diol 2.29 7.21

2-methylbut-3-ene-1,2-diol 2.01 8.79

3-methylbut-3-ene-1,2-diol 2.30 8.76

(2Z)-2-methylbut-2-ene-1,4-diol 2.98 8.98
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Table 7.3 – Comparison of the experimental and theoretical calibration for three representative com-
pounds.

Compound Theoretical calibration Experimental calibration

(normalized counts/pptv) (normalized counts/pptv)

BEPOX (cis) 2.0×10−4 2.0×10−4

Hydroxyacetone 2.7×10−4 2.6×10−4

Glycolaldehyde 2.2×10−4 2.3×10−4

Cis and trans conformers of β-IEPOX exhibit very different dipole moments. The CIMS is

predicted to be ∼37% more sensitive to the cis than to the trans conformer. The conformation

of IEPOX depends on the both the conformation of the ISOPOOH peroxy radical before OH adds

and on the rotation about the carbon bond prior to the oxirane formation. Theoretical calculations

show that the cis conformation of the carbon radical is largely favored over the trans conformation.

Nevertheless, given the excess energy of the carbon radical, it is unclear that the radical will be

sufficiently long-lived to reach an equilibrium structure before it decomposes to IEPOX. In other

words the relative rate of formation of the conformers depends on the formation timescale of IEPOX

versus the time scale of bond rotation. These experiments provide some constraints. It is non-

physical for all the IEPOX to be trans as it would result in a yield exceeding 100%. In this study,

we assume that IEPOX was entirely in its cis conformation. A racemic mixture would increase the

yield by about 20%, well within the calibration uncertainty.

Experiments using isotopically-labeled OH are used to derive a calibration for the CID fragments

of IEPOX and ISOPOOH. In particular the signal at m/z=207 can be associated with the dilabeled

epoxide. We derive a ratio for the daughter m/z=187 to parent m/z=207 of 11.3. Using this ratio,

the contribution of the epoxide from the parent m/z=205 signal can be removed. The resulting

signal corresponds to the peroxide contribution:

m/z(205)CORRECTED = m/z(205) − 11.3×m/z(205→185). The ratio of m/z (205)CORRECTED

to m/z (205→63), the characteristic daughter of the peroxide, is then found to be 6.9. With these

derived relationships between the characteristic daughters and the parent signals, the calibration for

the parent signals previously derived from the dipole moments and polarizabilities can be used to

infer the calibration factors for the characteristic daughter ion signals.

MVK and MACR are monitored together in positive ion mode at m/z=89 (via R7.4 with n=1).

We calibrate for both compounds using native standards (Sigma Aldrich).
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7.6.3 CID-Signature of the IEPOX and ISOPOOH

7.6.3.1 Negative mode

The combined use of CIMS and CID is new and therefore no published database is available against

which the observed fragments can be compared. Instead, we build such a database using synthesis

of these or related compounds. Although there are many daughters of m/z=203, the signal at all

daughters can be described as a linear combination of two daughters nearly unique to the first and

second generation products – m/z=63 and m/z=183 respectively. ISOPOOH makes only a minor

contribution to m/z=183: m/z (183)ISOPOOH∼5% of m/z=63.

The identification of ISOPOOH is supported by the daughter m/z=63. Using photooxidation

of 3-methylbutene and 2-methylbutene in a fashion similar to that described in the isoprene study,

we “synthesized” in the gas phase related β-hydroxyhydroperoxides. Each gives rise to a m/z=63

daughter analogous to ISOPOOH. This daughter is not seen in either hydroxyaldehydes or polyols.

As illustrated in Fig. 7.2 and similar to isoprene, the photooxidation of butadiene gives rise to

the successive formation of hydroperoxides (loss of negative fragment 63 amu through R7.11) similar

to ISOPOOH and epoxides similar to BEPOX (loss of neutral fragment 20 amu R7.6), consistent

with our approach.

7.6.3.2 Positive mode

While the CF3O
– based CIMS technique remains rare (Huey et al., 1996; Amelynck et al., 2000a;

Crounse et al., 2006; Amelynck et al., 2000b), PTR-MS instruments are commonly used in chamber

and field experiments, motivating the search for a potential fingerprint of IEPOX and ISOPOOH in

positive mode.

As previously suggested (Crutzen et al., 2000; Williams et al., 2001; Warneke et al., 2001),

ISOPOOH is detectable at m/z=101 (addition of H+ followed by loss of water). Nevertheless, we find

significant contamination of IEPOX at this mass, which may have affected previous measurements.

Conversely, m/z=119 appears to be mostly representative of IEPOX. Concomitant measurements

of both m/z=119 and m/z=101 should provide another proxy to measure the partitioning between

IEPOX and ISOPOOH in field missions. We note, however, that this separation may not be possible

with PTR-MS systems, which utilize an energetic ion de-clustering stage, as this may push product

ions from both compounds to m/z=101. In any case, PTR-MS does not enable differentiation

between IEPOX and ISOPOOH as clearly as negative ion CID MSMS.
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Figure 7.6 – Following the time when the photolysis of H2O2 (initially 1 ppmv) begins (t = 0), we
observe the formation of BUTOOH and then BEPOX together detected at m/z=189 (black). Tandem
mass spectroscopy provides for separation of the m/z=189 signal: BUTOOH (green) is observed as
the m/z=63 daughter while BEPOX (blue) is observed as the m/z=169 daughter. The sum of the
measurable daughters of m/z=189 (red) correctly captures the profile of the parent signal.



220

7.6.4 Theoretical method: Formation of β and δ-IEPOX

All stationary points in Scheme 7.2A and B and the analog β1-ISOPOOH reaction have been op-

timized with the B3LYP/6-31G(d) method. The transition state (TS) between the alkyl radical

and the epoxide has a single imaginary frequency at 729 cm – 1, 689 cm – 1 and 676 cm – 1 for the

β1-TS, β4-TS, and δ4-TS, respectively (Wavefunction, 2008). As expected, the imaginary mode is a

vibration along the O-O bond. Intrinsic Reaction Coordinate (IRC) calculations were done in both

the forward and backward direction (Frisch et al., 2004). We let the IRC calculation run 20 steps

(each 0.01 a.u. along the reaction path) in each direction, which was sufficient to connect the TS

to the optimized structures. For example, for the β1-channel, the 20 steps in backward reaction led

to a structure very close to the optimized alkyl radical. The O-O distance in the final IRC step is

only 0.02 Å longer than the O-O distance in the optimized structure. The final structure in the

forward direction has the OH group loosely attached and the oxirane is not completely formed. The

COC angle is 58◦ in the last step and is 62◦ in the optimized β-IEPOX. The CO distance is 1.62 Å

whereas it is 1.44 Å in β-IEPOX. We also located a product complex with the OH radical hydrogen

bound to the epoxide oxygen atom. With the amount of excess energy available this complex is

unlikely to form and is of little importance for the reaction. Similar results are obtained for the β4-

and δ4- channels.

We have calculated B3LYP single point energies with the correlation consistent polarized triple

zeta (cc-pVTZ) basis set on the B3LYP/6-31G(d) optimized structures and have also optimized

each structure with the B3LYP/cc-pVTZ method. The B3LYP/cc-pVTZ and B3LYP/6-31G(d)

structures are similar. The B3LYP/cc-pVTZ optimized geometries of the TS has a single imaginary

frequency at slightly lower frequency of 704 cm – 1, 658 cm – 1 and 651 cm – 1 for the β1-TS, β4-TS,

and δ4-TS, respectively, in good agreement with the B3LYP/6-31G(d) results. The B3LYP/cc-pVTZ

optimized geometries are shown in Figs. 7.3, 7.7, and 7.8 and the B3LYP relative energies are given

in Tables 7.4, 7.6, and 7.7. For all three reactions, the B3LYP/cc-pVTZ optimized relatives energies

are very close to the B3LYP/cc-pVTZ single point relative energies on the 6-31G(d) structure and

within 2 kcal/mol of the B3LYP/6-31G(d) energies.

To corroborate the B3LYP results we have, for the four B3LYP/cc-pVTZ optimized stationary

points on the β4-ISOPOOH to β-IEPOX reaction, calculated single point energies with second order

perturbation Møller-Plesset (MP2) and the recently developed explicitly correlated coupled cluster

(CCSD(T)-F12) methods, as implemented in MOLPRO 2008.1 (Werner et al., 2008; Tew et al., 2007).

We have used the VDZ-F12 orbital basis sets of Peterson et al. (2008) that have been specifically
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Figure 7.7 – Relative energies of the B3LYP/cc-pVTZ optimized geometries for the formation of
δ4-IEPOX from δ4-ISOPOOH.

Table 7.4 – Calculated relative energies (kcal/mol) of the stationary points in the β4-ISOPOOH to
β-IEPOX reaction (Scheme 7.2A and Fig. 7.3).

Species B3LYP/6-31G(d) B3LYP/cc-pVTZ// B3LYP/cc-pVTZ

B3LYP/6-31G(d)

β4-ISOPOOH 0 0 0

Alkyl radical -32.9 -30.4 -30.6

β4-TS -21.1 -19.7 -20.0

β-IEPOX -47.8 -47.4 -47.4

Table 7.5 – Calculated relative energies (kcal/mol) of the stationary points in the β4-ISOPOOH to
β-IEPOX reaction (Scheme 7.2A and Fig. 7.3). All single point energies on the B3LYP/cc-pVTZ
optimized geometries.

Species RMP2/ RMP2/ MP2-F12b/ CCSD(T)-F12b/

cc-pVTZ aug-cc-pVTZ VDZ-F12 VDZ-F12

β4-ISOPOOH 0 0 0 0

Alkyl radical -33.6 -34.1 -34.8 -30.9

β4-TS -28.7 -31.3 -31.8 -18.2

β-IEPOX -54.1 -54.6 -55.5 -50.9
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Figure 7.8 – Relative energies of the B3LYP/cc-pVTZ optimized geometries for the formation of
β-IEPOX from β1-ISOPOOH.

Table 7.6 – Calculated relative energies (kcal/mol) of the stationary points in the δ4-ISOPOOH to
δ4-IEPOX reaction (Scheme 7.2B and Fig. 7.7).

Species B3LYP/6-31G(d) B3LYP/cc-pVTZ// B3LYP/cc-pVTZ

B3LYP/6-31G(d)

δ4-ISOPOOH 0 0 0

Alkyl radical -37.4 -33.9 -33.8

δ4-TS -25.9 -23.7 -23.7

δ4-IEPOX -48.1 -46.5 -46.4

optimized for use with explicitly correlated F12 methods (Peterson et al., 2008). The VDZ-F12 basis

sets is of similar size to the aug-cc-pVDZ basis set. Density fitting approximations (Manby, 2003;

Werner et al., 2007) were used in all explicitly correlated calculations using the VDZ/JKFIT and the

AVDZ/MP2FIT auxiliary basis sets of Weigend et al. (Weigend et al., 2002; Weigend, 2002). We

have used the resolution of the identity (RI) auxiliary basis sets of Yousaf and Peterson (2008) for

all RI approximations. In the MP2 calculations we have used used the cc-pVTZ and aug-cc-pVTZ

basis sets. We found that the unrestricted MP2 (UMP2) calculation on β4-TS, led to a large spin

contamination (S2 = 1.27 with UMP2/aug-cc-pVTZ), which is unreasonable, and hence the UMP2

results are not included. Instead we have used the restricted open (ROMP2) for the two radicals

and RMP2 for the β4-ISOPOOH to β-IEPOX structures.

The calculated relative MP2 and CCSD(T) energies are given in Table 7.5. These higher level

correlated results for the β4-ISOPOOH reaction corroborate the B3LYP results. The noticeable
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Table 7.7 – Calculated relative energies (kcal/mol) of the stationary points in the β1-ISOPOOH to
β-IEPOX reaction (Scheme 7.2A analog and Fig. 7.8).

Species B3LYP/6-31G(d) B3LYP/cc-pVTZ// B3LYP/cc-pVTZ

B3LYP/6-31G(d)

β1-ISOPOOH 0 0 0

Alkyl radical -31.8 -29.1 -29.1

β1-TS -20.6 -19.0 -19.1

β-IEPOX -48.8 -48.2 -48.1

difference between the B3LYP and correlated results is in the barrier between the alkyl radical and

the TS, which is about 10 kcal/mol with B3LYP and CCSD(T)-F12 and about 3–5 kcal/mol with

the RMP2 method. The explicitly correlated F12 method with the VDZ-F12 basis set is known to

give near basis set limit CCSD(T) results (Tew et al., 2007) and are as such considered to approach

chemical accuracy (Lane and Kjaergaard, 2007; Voehringer-Martinez et al., 2007). These higher level

calculations corroborate the B3LYP result, that the reaction to form the epoxide is energetically

favorable and proceeds through a small barrier.

7.6.5 Possible interferences from isomers of IEPOX

We have shown in the previous section that the identification of ISOPOOH and IEPOX was sup-

ported by CIMS-CID, via their unique fragmentation pattern. Other observations confirm our

attribution.

From the ratio of m/z=204 to m/z=203 (largely a measure of the 13C content of the ion), we

find that both the first and second generation MW=118 compounds have five carbons, consistent

with IEPOX formation.

Because of the high yield, the candidate isomers need to be formed from ISOPOOH via a mecha-

nism that incorporates one 18OH while releasing one 16OH. The reaction of OH with ISOPOOH will

proceed almost exclusively by addition of OH to the remaining double bond. The measured lifetime

of ISOPOOH is completely consistent with this understanding. In a previous section, we showed

using quantum mechanical calculations that following the addition of the OH, the energetic barrier

to formation of IEPOX lies significantly below the OH + ISOPOOH entrance channel energy. This

implies that the lifetime of the highly excited alkylradical HO·ISOPOOH will be very short before

fragmentation to the epoxide and OH. To form a peroxy radical (RO2), many nanoseconds will be
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Figure 7.9 – Same as Fig. 2 for Exp 1.

Figure 7.10 – Same as Fig. 2 for Exp 3.
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Table 7.8 – Isomers of IEPOX previously observed in the aerosol phase.

Possible isomer Example Incompatibility with measurements

alkene triols

HO       

OH 

OH 

Alkene triol formation has been reported in the aerosol

phase (Wang et al., 2005). Proposed formation schemes involve

enol/ketone equilibrium with dihydroxycarbonyl (Surratt et al.,

2006) or acid catalyzed rearrangement of dihydroxyepoxide (Wang

et al., 2005). In both mechanisms, formation of alkene triols

requires a solvent. The proposed mechanisms cannot take place in

the gas-phase. Furthermore, such a compound features a double

bond and thus is not consistent with the observed lifetime of the

second generation product.

dihydroxycarbonyls

O       

OH 

OH 

Formation of isobaric dihydroxycarbonyl has previously been

proposed through a keto/enol mechanism with the previous

isomer (Surratt et al., 2006). CIMS has been shown to be

sensitive to this class of compounds (Paulot et al., 2009b). CID of

hydroxyacetone and glycolaldehyde standards show a daughter of

m/z=85 of (CF3O
– ) exclusively with no measurable loss of HF

(20 amu) or FCO –
2 (fragment at m/z=63). Therefore they cannot

account for the formation of daughter m/z=183 which is specific

to IEPOX.

required as only one in five collisions will be with O2 and few of these will be reactive. Consistent

with the lack of formation of the RO2 following the OH addition to ISOPOOH, we do not observe

any dihydroxydihydroperoxide. The 18OH experiments further confirms that the second generation

product results from the addition of a second OH radical and, by mass balance, loss of OH. This

can be seen in Fig. 7.2 where the 205 signal (one 18O) is converted mostly to a second generation

product with two 18OH (m/z=207). Again, these observations are consistent with the formation of

IEPOX.

The isomers of IEPOX which have been previously proposed based on iSOA speciation (Surratt

et al., 2006; Wang et al., 2005) cannot explain our observations (Table 7.8). However, they may

have resulted from IEPOX heterogeneous chemistry (Wang et al., 2005).

7.6.6 Additional mechanisms

7.6.6.1 Addition of OH on isoprene second double bond

In the main body of the manuscript, we have described the addition of OH onto the double bond

which does not carry the methyl group. Addition also occurs on the other double bond as described
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Scheme 7.3 Additional isoprene + OH oxidation pathway under low NOx conditions.

A

B

C

below.

Given the yield of IEPOX, δ1-ISOPOOH produced by Scheme 7.10B is likely to lead, at least

partly, to δ1-IEPOX. This would suggest that OH can add substantially on the side of the double

bond bearing the methyl group (∼50%).

Addition of OH on carbons 2 and 3 (cf. Scheme 7.3A) is less than 10% and was not considered

in this study (Fan and Zhang, 2004).

7.6.6.2 Fate of IEPOX

We investigated this reaction using synthesized BEPOX reacting with labeled 18OH. It appears that

the reaction of IEPOX with OH occurs mostly by abstraction of the H–α to the alcohol followed by

the opening of the oxirane C-O bond. Five different channels were considered:

� Abstraction of the epoxidic H (Scheme 7.4A).

� Abstraction of the H–α to the alcohol followed by reaction with O2 (Scheme 7.4B).

� Abstraction of the H–α of the alcohol followed by opening of C-O bond of the oxirane (Scheme

7.4C). DM refers to the mechanism first suggested by Dibble (Dibble, 2004a,b).

� Abstraction of the H–α of the alcohol followed by opening of C-C bond of the oxirane (Scheme

7.4D).



227

Scheme 7.4 Potential epoxide + OH oxidation pathways.

A

B

C

D

E
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� Addition of OH to the oxirane (Scheme 7.4E).

The only mechanism yielding singly labeled glycolaldehyde is Scheme 7.4E. Very little signal

is recorded at this mass suggesting that OH is not incorporated into the oxirane. This is also

consistent with the absence of dilabeled hydroxyacetone and glycolaldehyde in the isoprene + 18OH

experiments.

The signal recorded at m/ z=187 corresponding to the product of Scheme 7.4B also represents

a minor contribution to the total signal. This is consistent with the unlabeled isoprene experiment

where little signal is recorded at m/z=201, the analog of m/z=187 in the isoprene system.

Scheme 7.4A (Meleshevich, 1970), Scheme 7.4C and Scheme 7.4D all yield non-labeled glyco-

laldehyde and are difficult to distinguish directly because of the BEPOX symmetry. However, data

from 18OH + isoprene suggest high yields of both singly-labeled hydroxyacetone and glycolaldehyde

from IEPOX photoxidation. This suggests that the analogue of Scheme 7.4A for isoprene is not the

main oxidation channel, as no glycolaldehyde can result from this channel. Furthermore if Scheme

7.4A is an important decomposition pathway, dilabeled glycolaldehyde from δ4-IEPOX would be

formed. However, dilabeled glycolaldehyde is not observed.

Scheme 7.4, C and D are mostly indistinguishable and further studies are required to investigate

these mechanisms in more detail. It is suggested here that the reaction of IEPOX with OH occurs

mostly by abstraction of the H α to the alcohol followed by the opening of the oxirane C-O bond

(Scheme 7.4D). The signal recorded at m/z=91 in PTR-MS mode may be associated with the

formation of the enol (3-hydroxy-2-propenal). Furthermore the analogue of Scheme 7.4C applied to

the IEPOX seems thermodynamically unfavorable as it requires a rearrangement which involves the

formation of a primary radical from a secondary radical.

δ1-IEPOX cannot undergo Scheme 7.4D and its fate remains uncertain. For simplicity we have

assumed in our kinetic model and in the proposed GEOS-CHEM mechanism that δ1-IEPOX shares

the fate of δ4 - IEPOX, yielding hydroxyacetone.

7.6.7 Kinetic mechanism

In our simulations of the laboratory experiments, we used a simplified chemical scheme focusing on

the first few hours. The different isotopes for each species are explicitly treated but we neglect any

kinetic isotope effect on the reaction rate constants or the yields of the reactions. Cross-reactions of

peroxy radicals are treated using a class approach (Madronich and Calvert, 1990; Jenkin et al., 1997;

Saunders et al., 2003). This approach was modified to account for the possibility of homomolecular
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biradical cross-reactions. The reaction of a peroxy radical (RO2) with a class of peroxy radical CLO2

is defined as:
d[RO2]

dt
= −kRO2

CLO2
[RO2][CLO2](1 +

[RO2]

[CLO2]
δ(RO2,CLO2)) (7.1)

where δ(x, y) is the Dirac function. A simplified scheme is used to treat the products of the RO2

+ RO2 channel. This approximation is justified as the experiment was designed to limit the role of

these reactions.

Peroxy radicals formed by the reaction of OH with isoprene were divided into two classes: β

(70%) and δ peroxy radicals (30%). Addition of OH on the internal carbons are neglected as they

account for less than 10% of the carbon (Paulot et al., 2009b).

The expected product of Scheme 7.1C for the δ channels (isomer of 1-hydroxy-4-oxo-2-methylbut-

2-ene) is not observed in large yields. Therefore we assume that Scheme 7.1C is only occurring for

the β peroxy radicals, consistent with the formation of MVK and MACR. The fraction of β peroxy

radicals undergoing analog of Scheme 7.1C is ∼17%. The ratio between the yields of MVK and

MACR is assumed to be equal to the one derived under high NOx conditions.

In addition to the 16OH regenerated from the VOC photooxidation, an additional conversion of

18OH to 16OH of ∼7 s−1 takes place in our experiments. A minor fraction of this conversion can be

attributed to the reaction of OH with water (13%) (Dubey et al., 1997). Experiments at reduced

oxygen concentration suggest that the reaction of OH with O2 could account for the bulk of this

conversion (k∼1.3×10−18 cm3 molecule−1 s−1) (Greenblatt and Howard, 1989). For the conditions of

this experiment, the production of 18OH from hydrogen peroxide photolysis, ∼2.2×108 s−1 ([H2O2] =

2 ppmv) largely exceeds the conversion of 18OH to 16OH.

Uncertainties regarding the fate of IEPOX as described in the previous section have little effect

on our conclusions since Scheme 7.4A and B reactions pathways share the same products.

Comparison between modeled and measured ISOPOOH and IEPOX are shown in Figs. 7.9

(Experiment 1, cf. Table 7.1) and 7.10 (Experiment 3). For Experiment 2, modeled 16OH is about

4.5×105molec cm−3, 18OH ∼ 1.8×106 molec cm−3, H 16O 16O ∼ 2.0×109 molec cm−3, H 16O 18O ∼

1.1×108 molec cm−3, and H 18O 18O ∼ 2.8×109 molec cm−3.

7.6.8 GEOS-CHEM

GEOS-CHEM v8.01.04 (http://www-as.harvard.edu/chemistry/trop/geos/) driven by assimilated

meteorological observations from the Goddard Earth Observing System (GEOS-4) of the NASA

Global Modeling and Assimilation Office (GMAO) (Bey et al., 2001) is used to assess the global
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Table 7.9 – Low NOx mechanism for the photooxidation of isoprene.

A×1011 −Ea/R

(cm3 molec−1 s−1) (K)

ISOP + OH → ISOPOO 2.7 390

ISOPOO + HO2 → 0.88 0ISOPOOH + 0.120 OH + 0.047 MACR 0.074 700

+ 0.073 MVK + 0.120 HO2 + 0.120 HCHO

ISOPOOH + OH → IEPOX + OH 1.9 390

ISOPOOH + OH → 0.70 ISOPOO + 0.300 HC5 + 0.300 OH 0.38 200

IEPOX + OH → IEPOXOO 5.78 -400

IEPOXOO + HO2 → 0.725 HAC + 0.275 GLYC + 0.275 GLYX 0.074 700

+ 0.275 MGLY + 1.125 OH + 0.825 HO2

+ 0.200 CO2 + 0.375 HCHO + 0.074 HC(O)OH

+ 0.251 CO

impact of the isoprene chemistry described herein. The model is run with a spatial resolution of 4◦

latitude and 5◦ longitude and 30 vertical levels (22 in the troposphere).

Isoprene emissions are taken from the Global Emission Inventory Activity (GEIA) inventory (Guen-

ther et al., 1995). The default chemical mechanism is updated to incorporate recently proposed

modification to the high NOx chemistry (Paulot et al., 2009b) as well as the low NOx regime derived

in this study (Table 7.9). Dry deposition for IEPOX and ISOPOOH is modeled using H2O2, while

hydroxymethylhydroperoxide (HMHP) parameters are used to model their wet deposition.

A model spin-up of 15 months is done before the results are retained. The results presented in

this study are for northern hemisphere summer 2002 and northern hemisphere winter 2001. Isoprene

emissions from GEIA are scaled in GEOS-CHEM so that the flux of isoprene to the atmosphere is

∼342 TgC/yr. This yields a yearly IEPOX formation of∼65 TgC/yr. Estimates of isoprene emissions

range from 250 – 750 TgC/yr. Assuming that IEPOX formation scales with isoprene emissions, this

leads to our global estimate of yearly production of IEPOX: 95±45 TgC/yr (167 Tg/yr).

The formation of IEPOX from isoprene is predicted to be asymmetric with a larger yield in the

southern hemisphere (Fig. 7.11). More than 60% of IEPOX is formed in the tropics (−15◦ to +15◦)

reflecting the influence of anthropogenic activities on the chemistry of isoprene.
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Figure 7.11 – Modeled yield of IEPOX from the reaction of isoprene + OH in the planetary boundary
layer. Grid cells where isoprene mixing ratio is lower than 50 pptv are not shown.

7.6.9 Field measurements

7.6.9.1 TC4

The NASA Tropical Composition, Cloud and Climate Coupling (TC4) mission was designed to

investigate the atmospheric structure, properties, and processes in the tropical troposphere. This

mission, based out of San Jose, Costa Rica, was conducted during July and August 2007 and

consisted of coordinated flights between several NASA aircraft including the DC-8, ER-2, and WB-

57. Two Caltech CIMS instruments (single quadrupole instrument and the Varian tandem-MS

instrument) were deployed on the DC-8.

Low-level legs were flown over the Columbian jungle during several flights. During these legs

large signals at m/z=203 were observed with the single quadrupole instrument. Quantification of

ISOPOOH and IEPOX is not possible due to uncertainties regarding the ion transmission efficiency

for the quadrupole at these high masses as well as the inability of the single quadrupole to separate

these mass analogues. The tandem-MS did not monitor m/z=203 during this experiment.
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7.6.9.2 ARCTAS

The primary scientific focus of the 2008 summer NASA Arctic Research of the Composition of

the Troposphere from Aircraft and Satellites (ARCTAS) mission was to study boreal forest fire

emissions. ARCTAS was a NASA contribution within the greater Third International Polar Year

effort (POLARCAT). The NASA DC-8 aircraft was based in Cold Lake, Alberta, during the summer

phase of ARCTAS, with nine total flights: two transit flights between Cold Lake and Southern

California, four local flights from Cold Lake, two flights between Cold Lake and Thule, Greenland,

and one local flight from Thule. More information about the ARCTAS mission, including details

of the DC-8 instrument payload and an overview of the mission scientific objectives, is available at

http://www.espo.nasa.gov/arctas/.

Two Caltech-CIMS instruments were flown aboard the DC-8 during ARCTAS: the single quadru

pole (Crounse et al., 2006) and the triple quadrupole (identical to the instrument in the chamber).

The triple quadrupole was operated exclusively in CID-MSMS mode while in flight. Both flight

instruments monitored m/z=203, though the tandem MS did so for only five of the nine flights.

A subset of the m/z=203 daughters (m/z=63, m/z=85, m/z=137, m/z=203) were measured by

the tandem MS for the last five flights of summer ARCTAS. By assuming that the only source of

m/z=203 is ISOPOOH and IEPOX, we can infer ISOPOOH and IEPOX respective signals from the

flight data. As discussed in the text, ISOPOOH·CF3Owas determined to be the source of m/z=63

daughter ion in the chamber experiments. The m/z=183 daughter ion, used in the chamber study as

the fingerprint for IEPOX, was not measured during flight. Signal potentially attributable to IEPOX

was determined for the flight data by removing the ISOPOOH contribution to the m/z=137 daughter

ion signal, using the relationship between the m/z=203 daughters derived from an OH + isoprene

chamber experiment where the aircraft tandem MS instrument monitored all relevant m/z=203

daughter masses: (m/z = 203→137) = (1.49±0.03)×(m/z = 203→63) + (1.43±0.03)×(m/z =

203→183) where the coefficients and 2σ uncertainties (of the fit) are obtained from a multivariate

linear regression.

Both tandemMS instruments sampled from the same chamber during this calibration experiment.

By determining the IEPOX contribution to the m/z = 203→137 ion signal in terms of the m/z =

203→183 ion signal and also determining the scaling factor between the m/z = 203→183 ion signals

of the two instruments, the IEPOX sensitivity used for the chamber experiments can be applied

to the ARCTAS data to obtain in situ IEPOX mixing ratios. Determination of in situ ISOPOOH

mixing ratios required only obtaining the scaling factor between the m/z = 203→63 ion signals of
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the two instruments before applying the ISOPOOH sensitivity used for the chamber experiments.

The possibility of mass interferences at m/z=203 in situ precludes the definitive attribution of the

m/z=203 signal, in its entirety, to ISOPOOH and IEPOX. One known interferent at m/z=203 was

identified from data not yet published from a chamber study of the OH oxidation of 2-methyl-3-buten-

2-ol (MBO). The MBO oxidation product at m/z=203 yields no daughter ion at m/z=63 but does

yield a daughter ion mass at m/z=137. Consequently, the presence of MBO oxidation products may

influence the calculated ARCTAS IEPOX mixing ratios, but not the ARCTAS ISOPOOH mixing

ratios. We currently know of no mass interferences for the m/z=63 daughter ion of m/z=203. In

recognition of the potential for interferences, however, the ARCTAS data for ISOPOOH and IEPOX

will be hereafter referred to as ISOPOOH_flt and IEPOX_flt, respectively, to distinguish the in

situ data from the chamber data.

Both ISOPOOH_flt and IEPOX_flt were observed during four of the last five ARCTAS flights,

as shown in Fig. 7.12. All of the ISOPOOH_flt and most of the IEPOX_flt were detected be-

low 1.5 km above ground level (Fig. 7.9). The highest mixing ratios of both ISOPOOH_flt and

IEPOX_flt during the mission, 1.2 ppbv and 3.4 ppbv respectively, were encountered while flying 0.7

km above ground level at 40.7319◦N, 122.0492◦W. Signal for ISOPOOH_flt was always accompa-

nied by IEPOX_flt signal, but IEPOX_flt was observed without concurrent ISOPOOH_flt signal,

consistent with IEPOX having a significantly longer lifetime than ISOPOOH.
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Figure 7.13 – Flight tracks for 2008 summer ARCTAS flights on July 5, 8, 10, and 12 with color
indicating the altitude of the DC-8 aircraft.
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Chapter 8

Peroxy radical isomerization in the
oxidation of isoprene∗

∗Submitted for publication in the Journal of Physical Chemistry and Chemical Physics as “Peroxy radical iso-
merization in the oxidation of isoprene” by John D. Crounse, Fabien Paulot, Henrik G. Kjaergaard, and Paul O.
Wennberg. Copyright 2011 by the authors.
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8.1 Abstract

We report experimental evidence for the formation of C5-hydroperoxy-

aldehydes (HPALDs) from 1,6-H-shift isomerizations in peroxy radicals formed from the hydroxyl

radical (OH) oxidation of 2-methyl-1,3-butadiene (isoprene). At 295 K, the isomerization rate

of isoprene peroxy radicals (ISO •2 ) relative to the rate of reaction of ISO •2+HO2 is k295isom
k295
ISO
•
2 +HO2

=

(1.2±0.6)×108 molec. cm−3, or k295isom'0.002 s−1. The temperature dependence of this rate was deter-

mined through experiments conducted at 295, 310 and 318 K and is well described by kisom(T )
k
ISO
•
2 +HO2

(T ) =

2.0×1021exp(−9000/T )molec. cm−3. The overall uncertainty in the isomerization rate (relative to

kISO •2 +HO2
) is estimated to be 50%. Peroxy radicals from the oxidation of the fully deuterated

isoprene analog isomerize at a rate ∼15 times slower than non-deuterated isoprene. The fraction

of isoprene peroxy radicals reacting by 1,6-H-shift isomerization is estimated to be 8-11% globally,

with values up to 20% in tropical regions.

8.2 Introduction

Approximately 500 Tg of isoprene (C5H8) originating primarily from plants is realeased to Earth’s

atmosphere each year (Guenther et al., 2006). The oxidation of isoprene in the atmosphere is

largely initiated by reaction with hydroxyl radicals (OH). The bulk of this reaction proceeds through

addition of the OH to one of the two external olefinic carbon atoms. In the presence of oxygen, 6

different peroxy radicals (collectively ISO •2 ) are formed from reaction with O2 (R8.1).

isoprene + OH
O2−−→ ISO •2 R8.1

In nearly all chemical mechanisms used to describe atmospheric photochemistry, the subsequent

fate of ISO •2 is determined by reaction with either NO (R8.2a and R8.2b) or HO2 (R8.3).

ISO •2 + NO
k
ISO
•
2 +NO

×(1− NY)

−−−−−−−−−−−−−→ ISO • + NO2 R8.2a

ISO •2 + NO
k
ISO
•
2 +NO

×NY
−−−−−−−−−−→ ISONO2, R8.2b
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where, NY = nitrate yield.

ISO •2 + HO2

k
ISO
•
2 +HO2−−−−−−−→ ISOPOOH + O2 R8.3

This representation is consistent with a wealth of laboratory studies of the reactivity of peroxy

radicals. Such studies have typically been performed with sufficient concentrations of NO or HO2

that the lifetimes of the peroxy radicals are very short – often less than 0.1 sec. For vast regions of

the atmosphere (including most of the tropics), however, the peroxy radicals are estimated to live

for 10’s of seconds before finding a reactive partner in either NO or HO2 (e.g., for observed NO

and HO2 levels over Amazonia (Lelieveld et al., 2008), ISO •2 lifetime with respect to R8.2a-R8.3 is

calculated to be 30-60 s).

A number of recent analyses have cast doubt on the traditional representation of peroxy radical

chemistry (R8.2a-R8.3). In particular, motivated by the inability to explain measured concentrations

of OH in regions with elevated levels of biogenically-derived hydrocarbons (Tan et al., 2001; Thornton

et al., 2002; Ren et al., 2008; Lelieveld et al., 2008; Hofzumahaus et al., 2009), investigators have

hypothesized that the peroxy radicals of the dominant VOC, isoprene, may not follow the traditional

reactive pathways R8.2a-R8.3. Most recently, Peeters et al. (2009) and da Silva et al. (2010) have

estimated from quantum mechanical calculations that intramolecular hydrogen transfer reactions

of the isoprene peroxy radicals (R8.4) substantially alter the trajectory of the isoprene chemistry,

significantly diminishing the impact of isoprene oxidation on HOx concentrations.

ISO •2
kisom−−−→ HOx + carbonyl(s) R8.4

Here, we report product yields in the oxidation of isoprene and its fully deuterated analog by OH

in the presence of NO and HO2 concentrations similar to those encountered in the environment. We

report temperature dependent formation rates for unsaturated C5-hydroperoxyaldehydes (HPALDs)

(Peeters et al., 2009) generated through 1,6-H-shift isomerization of two of the six peroxy radical

isomers, Z-1-OH-4-OO (R8.5) and Z-4-OH-1-OO (R8.6). We assess the extent to which these in-

tramolecular hydrogen transfer reactions occur in the atmosphere using the GEOS-Chem chemical
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transport model.

HO OO
Z-1-OH-4-OO

−−⇀↽−−HO

O
O

H

TS

1) isom.−−−−−→
2) + O2

O OOH
HPALD1

+ HO2 R8.5

OHOO
Z-4-OH-1-OO

−−⇀↽−− OH

O
O

H

TS

1) isom.−−−−−→
2) + O2

OHOO
HPALD2

+ HO2 R8.6

8.3 Experiment

Experiments were conducted within a∼ 1 m3 bag composed of fluorinated ethylene propylene copoly-

mer (Teflon-FEP, DuPont). The bag was enclosed in a chamber that is painted black on the inside

and equipped with ultra-violet (UV) lights (Sylvania F40/350BL) mounted to one wall. Photolysis

of CH3ONO provided the primary HOx source as described in R8.7-R8.8 (Cox et al., 1980). In

order to achieve the slow chemistry required to study the RO2 isomerization reactions, only a single

UV bulb was used. In addition, the direct emission from this UV-bulb was blocked, such that only

photons reflected from the fixture back-reflector contributed to the light flux. The photon intensity

as a function of wavelength (300-850 nm) was measured using a Licor (LI-1800) spectroradiometer.

Using published CH3ONO cross-sections (Taylor et al., 1980), and assuming a quantum yield of 1

for all wavelengths, we calculate JCH3ONO = 0.9×10−5 s−1 (JNO2
= 2.8×10−5 s−1) for the measured

light intensity.

CH3ONO + hv
O2−−→ HO2 + NO + HCHO R8.7

HO2 + NO −−→ OH + NO2 R8.8
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High purity isoprene-H8 (C5H8) and methacrolein were purchased from Sigma-Aldrich and used

without further purification. Fully deuterated isoprene (isoprene-D8, C5D8,
D

D+H > 0.98, Polymer

Source, Inc.) was used without purification. Gas-phase standards of ∼ 200 ppmv of each compound

were created by evaporating a known mass of liquid material into a known volume of N2. The

concentration of this mixture was verified for isoprene-H8 by FTIR spectroscopy using tabulated

cross-sections (Sharpe et al., 2004). The concentration determined from the mass and volume

measurements and the IR measurements agree to within 5%. Generally, 100 cm 3 of the 200 ppmv

VOC mixture was transferred to the 1 m 3 experiment bag using a gas-tight ground-glass syringe.

Methylnitrite (CH3ONO) was synthesized by slowly adding concentrated sulphuric acid to a

solution of sodium nitrite in methanol and water with vigorous stirring. A stream of dry N2 carried

vapors above the reaction mixture through a saturated sodium hydroxide solution, and then through

a trap containing Dryrite before entering a cold trap at -60◦ C where the CH3ONO was condensed.

CH3ONO was purified first by pumping on the trap at -60◦ C, and then through several thaw-freeze-

pump cycles. After purification the trap containing the CH3ONO was stored in liquid nitrogen. For

use in experiments, the CH3ONO trap was removed from the liquid nitrogen and allowed to warm,

releasing ∼5 hPa CH3ONO vapor into an evacuated 500 cm3 bulb. The contents of the bulb were

discarded. After a second fill, the bulb pressure was reduced to ∼0.1 hPa, and then its contents

were transferred to the experiment bag.

For experiments with initial NO, a 500 cm3 bulb was filled with ∼15 hPa of gas from a primary

standard tank containing 1993±20 ppmv NO in N2 (Matheson). The contents of the bulb are then

transferred to the experiment bag.

Clean, dry air was generated from compressed house air using a FT-IR purge gas generator

(Perkin, Model 75-52). A known amount (∼980L) of zero air was added to the bag using a mass

flow meter (MKS).

Upon illumination, very slow photochemistry is initiated. After ∼4 hours of slow photochemistry,

six additional unblocked UV bulbs were energized, increasing the photon flux by a factor of ∼30.

This rapidly completed the isoprene oxidation and allowed for mass balance to be evaluated.

Reaction products are monitored using chemical ionization mass spectrometry (CIMS) (Crounse

et al., 2006; Paulot et al., 2009b) triple quadrupole instrument (Paulot et al., 2009b; St Clair et al.,

2010). The CF3O
– ion chemistry and instrumentation has been described in detail previously

(Crounse et al., 2006; Paulot et al., 2009a,b; St Clair et al., 2010), and will only briefly be described

here. Air is drawn from the experiment bag at a rate of ∼1.8 standard liters per minute (slpm)
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through ∼1 m of 6.35 mm O.D. Teflon (PFA) tubing, where 260 standard cubic centimeters (sccm)

of gas sub-sampled into the CIMS flowtube. The remainder of flow is routed to commercial ozone

and NOx monitors. Within the CIMS flowtube, air from the experiment bag is diluted with 1540

sccm of dry N2 (from liquid nitrogen boiloff).

Neutral analytes react with CF3O
– ions primarily through CF3O

– clustering and/or fluoride

transfer reactions to form product ions observed at m/z = massneutral + 85 amu, and m/z =

massneutral+19 amu, respectively. For certain isobaric analytes, CF3O
– tandemMS analysis provides

separate quantification. Several analytes which are undetectable using CF3O
– ion chemistry were

monitored using positive mode via H+·(H2O)n ion chemistry.

H2O2 was monitored using the CF3O
– cluster ion at m/z = 119 and quantified using calibration

factors obtained from gas phase standard addition (Crounse et al., 2006). Hydroperoxides, hydrox-

ycarbonyls, and hydroxynitrates were monitored using the sum of cluster and transfer product ions,

and were quantified using calculated relative ion-molecule collision rates (Section 8.6.1). HNO3,

HONO, and HO2NO2 were monitored at transfer product ions and quantified using calibration fac-

tors obtained from standard additions. H2O concentrations were monitored using the 13CF3O
– ·H2O

ion cluster observed at m/z = 104, and quantified using calibration factors from standard additions

of H2O. Water vapor mixing ratios generally increased from 100 to 1000 ppmv over the course of the

experiment from diffusion and/or leaks into the teflon bag. The sum of methylvinylketone (MVK)

and methacrolein (MACR) are monitored using the positive mode product ion observed at m/z = 71

and quantified using calibration factors from standard additions of MACR.

Experiments were performed at three different temperatures. Using a resistive heater, steady-

state temperatures of 295, 310, 318 K were maintained. A box fan was used to circulate air within

the chamber. The temperature uniformity and stability was ±2 K.

8.4 Results and discussion

8.4.1 Determination of isomerization rates

The observations of H2O2, ISOPOOH, and HPALD over the first 2 hours of slow oxidation along

with recommended rate constant for HO2 + HO2 are used to evaluate the isomerization rate for

isoprene peroxy radicals relative to their reaction with HO2. In the absence of secondary chemistry,

the observed time-rate-of-change for each product is equal to the production rate, defined in eqns
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Table 8.1 – Summary of experiments. All experiments were conducted at atmospheric pressure (993±7
hPa). Product growth rates are given in units of pptv min−1. The 1σ precision from the linear fits are
listed for product growth rates and propagated through eqn (8.5) to determine the kisom

kISO2+HO2

precision.

Exp.-VOC T [VOC]0 [NO]0
d[H2O2]

dt
d[ISOPOOH]

dt
a d[HPALD]

dt
b d[ISONO2]

dt
c d[MVK+MACR]

dt
d kisom

kISO2+HO2

f

(K) (ppbv) (ppbv) (108 molec. cm−3)

1-isop-H8 295.2±1.4 21.1 0 2.33±0.10 4.27±0.62 1.02±0.03 0.53±0.02 7.53±0.33 1.18±0.18

2-isop-H8 310.2±1.4 22.6 0 3.61±0.13 3.78±0.53 2.78±0.08 0.36±0.02 5.31±0.28 4.81±0.69

3-isop-H8 318.2±1.4 21.2 0 5.21±0.22 3.10±0.31 4.06±0.07 0.16±0.07 4.76±0.23 10.7±1.1

4-isop-H8 295.1±1.4 19.0 19 0.01±0.05 0.01±0.01 0.35±0.12 6.71±0.13 50.9±0.63 -

5-isop-D8 295.3±1.4 21.4 0 1.65±0.10 3.81±0.41 0.073±0.012 0.72±0.02 6.19±0.26 0.08±0.02

6-isop-D8 310.2±1.4 21.3 0 2.00±0.10 3.26±0.41 0.24±0.09 0.51±0.03 5.87±0.27 0.36±0.06

7-isop-D8 316.8±1.4 19.1 0 2.10±0.14 4.04±0.75 0.57±0.06 0.46±0.05 4.89±0.18 0.71±0.16

8-isop-D8 294.9±1.4 21.3 20 0.04±0.08 0.02±0.03 0.06±0.02 5.35±0.13 28.3±0.68 -

a C5-hydroxyhydroperoxide isomers observed at CF3O
– -cluster mass of m/z = 203 for isoprene-H8 and m/z = 211 for isoprene-D8

b C5-hydroperoxyaldehyde isomers (HPALD) attributed to form from isomerization reactions and observed at CF3O
– -cluster mass of

m/z = 201 for isoprene-H8 and m/z = 208 for isoprene-D8.
c C5-hydroxynitrate isomers observed at CF3O

– -cluster mass of m/z = 232 for isoprene-H8 and m/z = 240 for isoprene-D8.
d Sum of MVK and MACR carbonyls observed at H+-cluster mass of m/z = 71 for isoprene-H8 and m/z = 77 for isoprene-D8 (MVK-
D6+MACR-D6).

f Bulk isomerization rate for sum of ISO •2 isomers, including ISO •2 interconversion processes.

(8.1-8.3).

PH2O2
= kHO2+HO2

[HO2]2 (8.1)

PISOPOOH = YISOPOOH kISO •2 +HO2
[HO2][ISO •2 ] (8.2)

PHPALD = kisom[ISO •2 ] (8.3)

Here we assume YISOPOOH = 0.88±0.12 (Paulot et al., 2009b) and use the recommended expression

(Atkinson et al., 2004) for the rate of HO2 self-reaction shown in eqn (8.4).

kHO2+HO2
= {2.2× 10−13exp(600/T) (8.4)

+ 2.8× 10−33[M]exp(980/T)}

× {1 + 1.4× 10−21[H2O]exp(2200/T)}
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Combining eqns (8.1-8.3),

kisom
kISO •2 +HO2

=
YISOPOOH PHPALD{

kHO2+HO2

PH2O2

}1/2

PISOPOOH

(8.5)

The determination of kisom relative to kISO •2 +HO2
relies only on experimental observations and the

well-known kHO2+HO2
. As illustrated below, knowledge of the ratio of these rates is largely sufficient

to describe the importance of this reaction in the atmosphere, as the regions where isomerization

reactions become important (long ISO •2 lifetimes) are dominated by HO2 chemistry. Nevertheless,

using the kISO •2 +HO2
recommendation from Saunders et al. (2003) (eqn (8.6)), kisom can be esti-

mated. We note that at 298 K, this recommendation (Saunders et al., 2003) agrees well with the

only experimental determination of this rate (Boyd et al., 2003a).

kISO •2 +HO2
= 2.06× 10−13exp(1300/T) (8.6)

OH and NO levels are estimated using an explicit photochemical model (Paulot et al., 2009a).

Observations of NO using the commercial NOx monitor are precluded by interferences from CH3ONO,

and HONO. The perfomance of the model is evaluated through comparison with a number of ob-

served species including H2O2, ISOPOOH, MVK+MACR, ISONO2, HONO, HO2NO2, and HNO3.

8.4.2 Slow chemistry.

The very slow chemistry ([OH]∼1-2×105 molec. cm−3, for experiments with no initial NO) estab-

lished in these experiments enables long ISO •2 lifetimes, similar to those in the pristine atmosphere

(Lelieveld et al., 2008). HO2 concentrations range from 20-40 pptv. NO levels range from 30-60

pptv. The combined low HO2 and NO concentrations produces ISO •2 lifetimes up to ∼50 s. A

summary of the experiments is given in Table 8.1.

Fig. 8.1 shows time traces of H2O2, ISOPOOH, and HPALD (sum of HPALD1 and HPALD2) are

shown for isoprene oxidation experiments conducted at two temperatures. The sum of ISOPOOH

isomers were monitored using the CF3O
– cluster ion observed at m/z = 203 (isoprene-H8) and

m/z = 211 (isoprene-D8), and distinguished from the later generation isobaric epoxide using tandem

MS mode (m/z = 203 → m/z = 63 or m/z = 211 → m/z = 63) (Paulot et al., 2009b). The sum

of HPALD isomers were monitored at m/z = 201 (isoprene-H8) and m/z = 208 (isoprene-D8).
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Figure 8.1 – Observations of H2O2 (top), ISOPOOH (middle), and HPALD (bottom) species during
oxidation of normal isoprene (C5H8). Results from experiments #1 (black circles, T=295.2 K) and #3
(red diamonds, T=318.2 K) are shown. Lines represent the best fit parameters from linear ordinary
least-squares regression.

Although HPALD compounds formed from isoprene-D8 initially contain a deuterated hydroperoxide

group (-OOD) (m/z = 209), we observe the product at m/z = 208. This is due to fast D-H exchange

of the hydroperoxide hydrogen atom with hydrogen atoms in the background H2O on the walls of the

bag and the gas sampling system. We have observed such rapid exchange in previous experiments for

both hydroxy and hydroperoxy hydrogen atoms. Tandem MS investigation of both m/z = 201 and

208 product ions gave a significant yield of the daughter ion with m/z = 63, similar to the tandem

MS of the ISOPOOH product ions, supporting the attribution of these signals to a hydroperoxide

species (Paulot et al., 2009b).

The isoprene oxidation rate is quite similar for both experiments shown in Fig. 8.1. The growth

rate for H2O2 is substantially greater for the warmer experiment, however, indicating higher HO2

levels. This is consistent with enhanced HO2 production from the isomerization processes, reduced
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HO2 loss from ISO •2 + HO2, and lower NO concentrations (due to the higher HO2).

The observed product growth rates listed in Table 8.1 are obtained from the slope of the ordinary

least-squares fit to the CIMS observations over the first 2 hrs of photooxidation for experiments

with no initial NO (0.7 hrs for NO expts.), along with the standard 1σ uncertainty to the fit. In

experiments with no initial NO, ∼8% of the initial isoprene is oxidized over this period. No correction

is made for the oxidation of the product species. Neglecting this loss for a product which reacts

with OH at the same rate as isoprene produces an error of < 10% using the method of Atkinson

et al. (1982). For these experimental conditions, photolysis of HPALD is also negligible. Using

the photolysis cross-section of MACR with a quantum yield = 1 (recommended by Peeters et al.

(2009)), we estimate JHPALD = 2×10−6 s−1. An explicit photochemical model of this system shows

that the error in equating the observed linear increase to the average rate of production for these

products over this time-frame is small (<5%) due to the slow chemistry. No correction is made for

heterogeneous loss of the product species. In general, however, unaccounted product loss rates only

impact our derivation of kisom by the relative difference in the loss rates of ISOPOOH and HPALD.

As ISOPOOH and HPALD species are structurally similar, the heterogeneous loss processes are also

likely similar.

HPALD products are preferentially formed at warmer temperature, consistent with the proposed

origin involving a primary H-shift over or through a significant barrier (Fig. 8.1 and Table 8.1). In

addition, HPALD formation for isoprene-D8 is observed to be slower than for isoprene-H8 by factors

of 15.4 and 13.0 at T =295 and 318 K, respectively.

Fig. 8.2 shows the isoprene peroxy radical isomerization data listed in Table 8.1 on an Arrhenius

plot. Also shown are the best-fit equations to the data which are derived using a York-type fit

(York et al., 2004), accounting for uncertainties (Table 8.1) in both coordinates. While the observed

isomerization rates are well-represented by the functional parameters shown in Fig. 8.2 (reproduce

observations to within 5%), these parameters are only valid for 295-318 K temperature range. Large

uncertainties in these parameters limit their interpretation in the traditional context of entropic and

enthalpic constraints.

8.4.3 Overall uncertainty in 1,6-H-shift isomerization rate

The uncertainty values for kisom
k
ISO
•
2 +HO2

listed in Table 8.1 reflect only the propagated 1σ standard pre-

cision from the ordinary least-square fits to the production rates of H2O2, ISOPOOH, and HPALD.

Using the standard precision listed in Table 8.1 and 0.15, 0.14, 0.2, and 0.4 for uncertainties in
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kHO2+HO2
, YISOPOOH, PH2O2

, and in the relative calibration between ISOPOOH and HPALD, re-

spectively, we estimate the overall uncertainty in kisom
k
ISO
•
2 +HO2

to be ∼50%.

8.4.4 Comparison with theory

The isomerization rate for 1,6-H-shift for the δ-isoprene peroxy radicals is substantially slower than

predicted in the theoretical calculations of Peeters et al. (2009) and later refined in subsequent works

(Stavrakou et al., 2010; Peeters and Muller, 2010; Nguyen et al., 2010). A direct comparison to the

theoretical rate is not, however, straightforward as we only observe the end product of two important

processes, namely: a) interconversion between the β-OH-OO, Z-δ-OH-OO, and E-δ-OH-OO peroxy

radicals (shown for 1-OH isomers in R8.9); and b) the 1,6-H-shift isomerization reactions from the

two Z-δ-OH-OO peroxy radicals (R8.5 and R8.6):

HO OO
Z-1-OH-4-OO

−−⇀↽−−

HO

OO

1-OH-2-OO

−−⇀↽−−

HO

OO

E-1-OH-4-OO

R8.9

Using Peeters et al. (2009) estimates of ISO •2 interconversion rates and the refined isomerization
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rate for the Z-δ-OH-OO from Peeters and Muller (2010), we calculate a bulk isomerization rate ∼50

times faster than measured. The theoretical ratio kisom-H
kisom-D

from Nguyen et al. (2010) is a factor of

2.3 (295 K) and 1.3 (318 K) higher than experimentally observed here.

8.4.5 Subsequent fate of HPALD unknown

The maximum HPALD concentrations achieved during these experiments did not exceed 1 ppbv.

The total yield was limited by the slow chemistry required for observation of the peroxy radical

isomerization reactions and by the volume of the bag. Due to the low HPALD concentrations,

products from its subsequent photooxidation could not be clearly identified. We intend to undertake

future experiments to probe this chemistry.

8.4.6 1,5-H-shift (from alcohol)

Peeters et al. (2009) and da Silva et al. (2010) also calculated rates for 1,5-H-shift isomeriza-

tion/decomposition reactions, where an alkoxy radical is formed as the alcohol hydrogen is abstracted

by the peroxy group in the dominant β-hydroxyperoxy radicals formed from isoprene oxidation by

OH (1-OH-2-OO and 4-OH-3-OO). The alkoxy radicals are expected to rapidly decompose, forming

OH+HCHO+C4-carbonyl (MVK or MACR). Both calculations predict the same products, though

with significantly different rates (Peeters et al. (2009) is ∼ 8× faster at T=298K). Based on the

assumption that the observed yield of MVK+MACR reported by Paulot et al. (2009b) came from

this process, the rate of Peeters et al. (2009) was adjusted upwards by a factor of 5 in the more

recent study of Peeters and Muller (2010). Paulot et al. (2009b), however, attributed the observed

MVK+MACR yield ([12±12]%) a radical channel in the ISO •2+HO2 reaction. In addition, uncer-

tainties in the ISO •2+ISO •2 reaction rates as well as in the determination of the fraction of ISO •2

radicals reacting with NO could very well account for all the observed MVK+MACR reported in

the Paulot et al. (2009b) study.

We are unable to experimentally estimate the rate of the 1,5-H-shift in this study primarily due to

large uncertainties in the ISO •2+ISO •2 reaction rate constants and product branching ratios, as well as

uncertainties in the ISO •2 -isomer specific nitrate yields from ISO •2 + NO, and unknown temperature

dependencies for all these parameters. Using the ISO •2+ISO •2 parameters recommended by Jenkin

et al. (1998), and the nitrate yields of Paulot et al. (2009a) coupled with the temperature dependence

recommended by Carter and Atkinson (1989), the observed isoprene-nitrate/(MVK+MACR) ratio

is not, however, compatible with 1,5-H-shift rate recommended by Peeters and Muller (2010). The
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rate calculated by da Silva et al. (2010) (∼ factor of 40 slower) is consistent with our observations,

but also not well-constrained (Fig. 8.4). In any case, this isomerization channel is likely only of

minor importance in the atmosphere.

8.4.7 Nitrate yields and ISO2 interconversion

Isoprene nitrate yields are observed to decrease relative to MVK+MACR with increasing temper-

ature. This is consistent with previous studies of the temperature dependence of organic nitrate

formation (e.g., Carter and Atkinson (1989)) and is attributed to a longer lifetime of the excited

ROONO* (and/or RONO2*) complex at cooler temperatures allowing for increased collisional deac-

tivation (Barker et al., 2003). Similarly, we attribute the much higher isoprene-D8 hydroxy nitrate

yields relative to those from isoprene-H8 (a factor of 1.7 and 1.4 for low and high NO conditions,

expts. 1,5 and 4,8; Table 8.1) to increased stabilization of the ROONO* (and/or RONO2*) complex

from nearby deuterium atoms as compared with hydrogen atoms.

There is a significant difference in the ratio of ISONO2/(MVK+MACR) between the high and

low NO experiments at 295 K. While this difference could result from more heterogeneous nitrate

loss in the slow experiment, it may reflect differences in the peroxy radical distribution between

these two experiments as the high NO experiment would be closer to the initial kinetic distribution

of ISO •2 (higher fraction in δ) and the slow experiment closer to the thermodynamic equilibrium

for ISO •2 (lower fraction in δ) (Peeters et al., 2009). Giacopelli et al. (2005) and Paulot et al.

(2009a) estimate significantly higher nitrate yields from the δ-hydroxy peroxy radicals as compared

to the β-hydroxy peroxy radicals. The large (up to ∼30%), and continued increase in HPALD yields

with temperature provide evidence that the isoprene peroxy radicals do indeed interconvert on the

timescale of the estimated lifetime of the peroxy radicals in these experiments (∼50 s).

8.5 Atmospheric implications

The fraction of isoprene peroxy radicals undergoing isomerization in Earth’s atmosphere was esti-

mated using the GEOS-Chem (v8.3.2) 3-D global model (Bey et al., 2001) with a modified chemical

mechanism including updated isoprene chemistry as described previously (Paulot et al., 2009a,b,

2011). Simulations were conducted with and without the isoprene peroxy radical isomerization for

the June 2006 - May 2007 time period with a 1.5 year model spin-up. We implemented the isomer-

ization process through the addition of R8.10. Due to uncertainties regarding the fate of HPALD
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we did not consider the further oxidation chemistry of this compound. This is equivalent to con-

sidering the subsequent chemistry as HOx-neutral. In addition, the sensitivity of the model to the

rate coefficient for the reaction of isoprene peroxy radicals with HO2 was investigated. In the stan-

dard GEOS-Chem mechanism, the rate of ISO •2 + HO2 is kISO •2 +HO2
= 7.40×10−13exp(700/T ). At

T = 298K, this rate is ∼ 1
2 that calculated from eqn (8.6). While this does not change the ratio

of kisom relative to kISO •2 +HO2
(as we determined only the relative value), it does reduce both rates

relative to kISO •2 +NO.

ISO •2
kisom−−−→ HO2 R8.10

Isoprene peroxy radicals are predicted to react 44.1% with NO, 42.6% with HO2, with 7.4%

isomerizating to form HPALD using the slow ISO •2 + HO2 rate. Simulations using the faster ISO •2

+ HO2 rate (eqn (8.6)) result in the following isoprene ISO •2 loss distribution: 33.5% reaction

with NO, 53.5% reaction with HO2, and 9.6% isomerization. As expected, the ratio between the

HO2/isomerization loss processes remains about the same in these two simulations. The spatial

distribution of the fraction of isoprene peroxy radicals predicted to undergo isomerization reaction

is shown in Fig. 8.3. While not the dominant process suggested previously (Peeters et al., 2009;

Stavrakou et al., 2010; Archibald et al., 2010; Peeters and Muller, 2010), peroxy radical isomerization

is an important process for isoprene oxidation in the atmosphere even with the slow isomerization

rate reported here. Goals for future studies include the elucidation of the oxidation mechanisms and

products for HPALD compounds, as well as better constraints for the relative rates of reaction of

isoprene peroxy radicals with NO and HO2.

In a series of manuscripts (Jorand et al., 1996; Perrin et al., 1998b,a; Blin-Simiand et al., 1998;

Jorand et al., 2000; Blin-Simiand et al., 2001), Jorand, Perrin, Blin-Simiand and co-workers have

reported peroxy radical isomerizations in several systems at elevated temperatures. They have

suggested that such isomerization reactions may be important for atmospheric chemistry. Until

now, however, such mechanisms have not been studied under conditions relevant for atmospheric

chemistry, nor have they been incorporated into the mechanisms of atmospheric chemistry models. In

this work, we provide experimental evidence for the importance of such peroxy radical isomerization

reactions under atmospherically relevant conditions. From the isomerization rates determined here,

isoprene peroxy radical isomerization reactions are unlikely to reconcile the differences in HOx levels

between observations and model simulations (Archibald et al., 2010). It is possible, however, that
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Figure 8.3 – Annual boundary layer (P > 800 hPa) percentage of isoprene peroxy radicals under-
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given in Fig. 8.2 and kISO2+HO2
from Saunders et al.

(2003) (eqn (8.6)).

other similar isomerization reactions contribute to HOx reformation. For example, similar studies

on the oxidation of MACR performed in our laboratory (Crounse, et al., in preparation) provide

evidence for a fast 1,4-H-shift isomerization from the peroxy radical formed after OH addition to

the external olefinic carbon, yielding OH and hydroxyacetone. It is likely that similar processes

occur in the gas phase oxidation of other organic compounds for conditions where RO2 lifetimes

become sufficiently long. The methods described in this work should be generally useful for the

future investigation of RO2 isomerization reactions under such atmospherically relevant conditions.

8.6 Supporting information

8.6.1 CIMS sensitivity.

We estimate the CIMS sensitivity for the hydroxyhydroperoxides (ISOPOOH) and hydroperoxyalde-

hydes (HPALD) from the ion-molecule collision rate, calculated using the parameterization of Su

and Chesnavich (1982). This requires knowledge of the average dipole moment and polarizibility of

the neutral species. We obtain these parameters for the species of interest from ab initio calulations.

For accurate results, all conformers with significant populations at the temperature of interest must

be considered. We calculate conformer-specific dipoles for all conformers with a relative popula-

tion of >1% at T=298K, as estimated from a Boltzman weighting to the conformer energies. The

conformer-specific dipoles, weighted by their relative population, are averaged to yield the overall

dipole moment for the species of interest. This methodology has been described in more detail by
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Garden et al. (2009).

Table 8.2 lists the isomer-specific average dipole moments and polarizibilities for the four im-

portant ISOPOOH isomers and both HPALD isomers. In this work we use values calculated at the

B3LYP/cc-pVTZ level. The same values calculated at the lower B3LYP/6-31G(d) level, used in the

study of Paulot et al. (2009b), are listed for comparison.

The CIMS instrument measures the sum of isomers appearing at a specific mass. Thus to

calculate the average CIMS sensitivity, we weight the four major ISOPOOH isomers according to

the relative initial ISO2 distribution (at 303 K) as calculated by Peeters et al. (2009) (1-OH-2-OO:

0.45, Z-1-OH-4-OO: 0.21, 4-OH-3-OO: 0.23, 4-OH-1-OO: 0.11). We give the HPALD isomers equal

weight. Weighting the ISOPOOH sensitivity by the near-equilibrium ISO2 distribution predicted

for our experimental conditions at 295 K (1-OH-2-OO: 0.67, Z-1-OH-4-OO: 0.04, 4-OH-3-OO: 0.27,

4-OH-1-OO: 0.02) (Peeters et al., 2009) changes the inferred sensitivity by only ∼3%. As both

HPALD isomers have similar dipole moments, our determinations are insensitive to this weighting

scheme.

Absolute sensitivities for both ISOPOOH and HPALD are determined from the calculated ion-

molecule collision rates using the average between the ratios of the experimentally determined sen-

sitivities for glycolaldehyde and hydroxyacetone to their respective calculated-collision rate:

RGH =

SGLYC
expt

kGLYC
coll

+
SHAC
expt

kHAC
coll

2

SXcalc = kXcoll ×RGH

The sensitivity for the isoprene hydroxynitrates is determined relative to nitric acid following

Paulot et al. (2009a).

8.6.2 Rate of 1,5-H-shift (from alcohol).

Fig. 8.4 shows CIMS observations of MVK+MACR and isoprene nitrates as a function of time

for experiment #3 (main paper, Table 1, T=318 K). Also shown are results from a kinetic model

simulation for this isoprene oxidation experiment for MVK+MACR and isoprene nitrates using

several values for the 1,5-H-shift isomerization rate (k1,5-isom) within the model. Simulations were

run using the rate for the 1,6-H-shift determined in this study, isomer-dependant nitrate yields from

Paulot et al. (2009a), the temperature dependance for nitrate yields from Carter and Atkinson

(1989), with several theoretical values for the 1,5-H-shift isomerization rates reported by Peeters
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Table 8.2 – Average dipole moments and polarizibilities for ISOPOOH and HPALD isoprene oxidation
products, for T = 298K. Collision rates have units of 10−9 cm3 molec.−1 s−1.

B3LYP/6-31G(d) B3LYP/cc-pVTZ

Dipole Polarizability kxcoll Dipole Polarizability kxcoll

Molecule Structure (D) (Å3) (D) (Å3)

β1-ISOPOOH

OH
OOH

2.19 9.44 1.85 2.32 10.8 1.96

β4-ISOPOOH

OH

OOH

2.20 9.44 1.85 2.29 11.0 1.95

δ1-ISOPOOH
HO OOH

2.85 9.63 2.23 2.54 11.0 2.09

δ4-ISOPOOH
OHHOO

3.34 9.66 2.49 3.22 11.06 2.47

HPALD1
O OOH

2.51 9.5 2.03 2.54 10.9 2.10

HPALD2
OHOO

1.90 9.6 1.70 2.36 10.9 2.00

Glycolaldehyde

O

OH

2.3 4.5 2.0 2.33 4.64 2.06

Hydroxyacetone

O

OH

3.1 5.5 2.5 3.08 6.40 2.49

et al. (2009); da Silva et al. (2010); Peeters and Muller (2010). The rate calculated by Peeters et al.

(2009)(k3181,5-isom = 0.026 s−1) and increased by 5× in Peeters and Muller (2010) (k3181,5-isom = 0.13 s−1)

predicts that the isoprene chemistry at the long ISO2
• lifetimes and elevated temperature in this

experiment should be dominated by this mechanism. This however, is not consistent with the CIMS

observations. The geometric average of the rates for the two 1,5-H-shift isomerization channels

calculated by da Silva et al. (2010) (k3181,5-isom = 0.005 s−1) is consistent with our results, but also is

not well constrained, as errors in the assumed ISO2 distribution, ISO2 + ISO2 reaction rates, and

isomer-specific nitrate yields, all can impact the modeled MVK+MACR and ISONO2.
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Chapter 9

Conclusions and outlook

This thesis describes methods for the fast, sensitive, specific, and direct detection of functionalized

organic and inorganic reactive trace gases in the atmosphere. This technology is demonstrated

from aircraft and ground platforms for making robust observations that have been used successfully

for partitioning atmospheric pollution into specific source categories. When applied to chamber

studies, the CIMS instrumentation has proven to be a powerful tool for the detection of the gas-

phase oxidation products of volatile organic compounds. The specific detection and quantification of

intermediate oxidation products provide valuable information for elucidating oxidation mechanisms,

and organic aerosol formation pathways.

It is likely that continued use of CF3O
– -CIMS will provide fruitful results from application

to both in situ atmospheric studies and environmental chamber studies. Important uncertainties

remain in the gas-phase oxidation of– and organic aerosol formation from– many volatile organic

compounds. A mechanistic understanding of these processes will enable their proper simulation

in atmospheric models across the wide range of conditions that are present in the atmosphere. In

conjunction with a number of other emerging advanced analytical techniques, CF3O
– -CIMS, will

help to reduce these uncertainties and increase our understanding of atmospheric composition and

chemistry. Several potential ideas for future research and instrumental development are mentioned

below.

The high sensitivity of CF3O
– -CIMS lends itself to laboratory experiments conducted at chem-

ical concentrations that approach those encountered in the Earth’s atmosphere. The importance

of conducting experiments at or near atmospheric conditions has been recognized for sometime,

however, instrumental detection limits often prevent experiments from being conducted under these

conditions. It has recently been postulated that certain RO2 radicals, particularly those formed

from the reaction of OH and O2 with isoprene, can undergo H-shift isomerization reactions that
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are calculated to occur at rates fast enough to be important under pristine atmospheric conditions

(low HO2 and NO mixing ratios). To measure such rates in the laboratory, experiments must be

designed that have low HO2 and NO mixing ratios, and, to minimize RO2 self-reaction, low RO2

mixing ratios. Achieving such conditions requires slow chemistry, and thus sensitive instrumentation.

Chapter 8 discusses initial experiments probing this chemistry using the CIMS methods described

in this thesis.

CF3O
– -MSMS-CIMS is a promising analytical method that almost certainly has many more

applications than those described in this thesis. Currently, only a small range of collision energies

and CID-pressures for only a few parent ions have been investigated. It is possible that more

structural information pertaining to the parent analyte can be gleaned by utilizing higher collision

energies. PTR-MSMS has not been investigated with these instruments; however, initial results

from other groups show this technique can likewise provide useful structural information (e.g., the

separate quantification of a mixture of the isobaric methylvinylketone and methacrolein compounds).

A current limitation of the CIMS instrumentation is that product ions are detected serially (one

at a time) by changing the electric fields applied to the quadrupole mass filters. After changing the

electric fields, a period of time is required to permit the new electric fields to stabilize. During this

time, no data can be collected. This dead-time limits the rate at which masses can be switched with

the quadrupole mass filter. An alternative approach that would circumvent this issue is the use of a

time-of-flight (TOF) mass analyzer in place of the quadrupole mass filter. In a TOF mass analyzer,

a packet of ions is accelerated into a field free drift tube before reaching the detector. Ions with

different masses are accelerated to different velocities and thus reach the detector at different times,

allowing for mass separation. State-of-the-art TOF analyzers allow for fast duty cycles (10,000’s

of ion packets per second), and out-perform quadrupole mass filters when many masses are to be

monitored. An important benefit provided by a TOF mass analyzer is that quasi-continuous data is

collected over the full mass range. A CF3O
– -TOF-CIMS would be especially useful for observations

made from aircraft platforms, where the concentrations of ambient species can change rapidly.

It is feasible that CIMS instruments, similar to those described here, can be fabricated thath

will fit onto unmanned aircraft (such as NASA’s Global Hawk aircraft). Unmanned aircraft are just

beginning to be utilized extensively for in situ atmospheric observations, and show great promise for

future research opportunities. Benefits of such aircraft include autonomous operation, long duration

(over 30 h flight duration) and extensive horizontal (20,000 km) and vertical (0–18.3 km) range.

The payload of these aircraft is somewhat reduced as compared with the larger aircraft traditionally
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used for atmospheric research, but is still capable of carrying the instrumentation required for in

situ atmospheric studies. However, given the reduced payload, instruments like the CIMS, which

can measure a number of interesting species from a single package, will likely be a desirable addition

for studies of atmospheric chemistry from these unmanned platforms.

In conclusion, the outlook for this technology seems very bright – the possibilities for new scientific

insights that can be gained through its application are numerous, especially considering the potential

for instrumental improvements.


