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ABSTRACT 

This thesis investigates the significance of in-plane floor flexi

bility on the dynamics of buildings. and develops analytical models for 

structures that have flexible floor diaphragms. Experience with past 

earthquakes demonstrates that this feature is particularly important for 

long. narrow buildings and buildings with stiff end walls. In the 

method developed in this study. the equations of motion and appropriate 

boundary conditions for various elements of the structure are written in 

a single coordinate system and then are solved exactly. 

One- and two-story buildings with end walls are analyzed by treat

ing their floors and walls as bending and shear beams. respectively. 

The resulting equations of motion and the boundary conditions are solved 

to obtain the dynamic properties of the structure. The expected low 

torsional stiffness of the end walls or frames is confirmed by analysis 

of a single-story example structure. Study of a similar two-story 

building showed that the first two modes. dominated by the floor and the 

roof vibrations. make the largest contributions to the total base shear 

in the structure. 

Floors of multistory buildings with end walls (or frames) are 

idealized as equivalent. distributed beams while the walls or frames are 

treated as bending or shear beams. Analysis of a nine-story building 

showed that the structure possesses several lower modes in which floors 

vibrate essentially as pinned-pinned beams. 
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Buildings with large numbers of uniform stories and frames (or 

walls) are treated as vertically-oriented anisotropic plates. It is 

concluded that the floors in such buildings can be assumed rigid for 

seismic analysis, since the modes involving floor deformations are not 

excited by uniform ground motion. 

The approach can be generalized further to study more complex 

structures. An example is the Imperial County Services Building, which 

has two end walls in the upper stories and several walls in the ground 

story. The analytical model of this building predicts several important 

features of the complex dynamic behavior of the structure. 
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1.1 SCOPE 
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CHAPTER I 

INTRODUCTION 

It is important in seismically active areas to provide safe and 

economical protection for life and limb by making adequate provisions 

for earthquake resistance in buildings. For most ordinary buildings, it 

is sufficient to provide earthquake resistance in the buildings by means 

of a suitable building code. This usually involves static analysis of 

the building for prescribed lateral forces, which take into account in 

an approximate manner the effects of building characteristics, soil 

characteristics, seismic risk in the area, importance of the building, 

etc. However, there are buildings that have some special characteris-

tics which make it difficult to model their dynamic behavior 

satisfactorily by a code-type, static analysis. Such buildings warrant 

detailed dynamic analyses for satisfactory answers to questions con

cerning their behavior during earthquakes. Included in this category 

are high-rise buildings, buildings with extreme plan dimensions (e.g., 

long and narrow buildings), buildings with eccentric centers of mass or 

stiffness (this leads to coupled torsional and translational motion), 

buildings with vertical set-backs, soft first-story buildings or 

buildings with other unusual characteristics (Arnold, 1980b; Arnold and 

El s e s se r, 19 80) • 
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Several computer codes are commercially available for dynamic 

analysis of buildings. These codes treat a building as a reduced 

system, with finite number of degrees of freedom, while the actual 

building is a continuum with an infinite number of degrees of freedom. 

To keep the computer costs down, it is important to reduce the number of 

degrees of freedom involved in the calculations to a relatively small 

number, and to achieve this, assumptions have to be made about the 

behavior of the building. One such assumption, that is included as a 

requirement in almost all of the popular computer programs available for 

the dynamic analysis of buildings, is that the floors are rigid in their 

own planes. This implies rigid body motion in these planes, and thus 

the degrees of freedom for lateral earthquake analysis reduce to three 

per story: two translational and one rotational degree of freedom for 

every floor. The most common alternative to the assumption of rigid 

floors would be to use finite element methods to model the girders, 

beams, etc., of the floor system. This approach allows for flexibility 

of the floors, but involves many more degrees of freedom. 

The rigid floor assumption is a valid assumption for many 

buildings. However, there are situations where the floor diaphragms 

cannot be considered as rigid. In fact, there are buildings which have 

exhibited significant in-plane floor flexibility during earthquakes; 

some of these buildings are described in Chapter II. 
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The flexibility of floor diaphragms can alter the dynamic behavior 

of a building, from that obtained assuming rigid diaphragms, in many 

ways. For instance, in analysis of rigid diaphragms, the various 

lateral load resisting elements, e.g., walls or frames, are assumed to 

share the total lateral load in proportion to their stiffnesses. This 

is due to the condition that at each floor level the lateral displace

ments in all the frames or walls have to be the same (for buildings with 

no torsional coupling). However, a flexible floor diaphragm may 

distribute the loads in a different manner. This may result in certain 

frames receiving much higher lateral loads than expected from an 

analysis using the rigid-floor assumption. As another example, the 

deformation in the diaphragm may induce torsional moments in frames or 

walls in addition to the expected shear. Thus, if the joints of the 

structure are not adequately designed for these moments, or if the frame 

(or wall) is not ductile enough, torsional damage may occur during 

earthquakes. 

This study treats buildings for which floor diaphragms should be 

considered as flexible. The emphasis of the work is upon developing and 

presenting continuum models for some important classes of buildings with 

flexible floor diaphragms. From these results, it is possible to make 

some general conclusions regarding the nature and importance of the 

effects of in-plane floor flexibility on the earthquake response of the 

structures. 
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1.2 PAST WORK AND CURRENT STATUS 

Blume, Sharpe and Elsesser (1961) seem to have been the first to 

report "long natural periods of roof or floor diaphragms" in some one-, 

two- and three-story buildings. Blume (1962) calculates the "diaphragm 

period" by considering the roof diaphragm as beams with simply supported 

or fixed-fixed boundary conditions. Nielsen (1964, 1966) reported one 

"free-free beam mode" with a frequency of 4.9 Hz in his dynamic tests on 

a 9-story steel frame building at the Jet Propulsion Laboratory, in 

Pasadena. Udwadia and Trifunac (1974) give mode shapes, some of them 

involving significant floor-diaphragm deformations, obtained from 

ambient vibration tests carried out on the same building. 

To obtain the natural periods and mode shapes of multistory 

buildings with flexible floors, Goldberg and Herness (1965), and 

Goldberg (1966) have suggested use of the slope-deflection equations, 

while lumping the mass at the intersections of floors and frames (or 

walls). In an another study, Maybee, Goldberg and Herness (1966) 

developed a "separable model" for buildings with identical floors and 

identical frames. They showed that for such buildings one could obtain 

the frequencies and the mode shapes for the entire building by solving 

one typical floor problem and one frame problem. Recently, it was shown 

by the writer (1983) that for such "separable buildings" the modal 

participation factors for uniform earthquake ground motion are zero for 

modes involving floor diaphragm deformations. 
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Two "typical" two-story buildings were studied using lumped-mass 

model by Shepherd and Donald (1967), and they have concluded that 

neglecting the floor flexibility "does not significantly change the 

dynamic properties" of buildings. However, in a study on a single-story 

building by lumped-mass approach, Blume and Jhaveri (1969) have shown 

that the floor flexibility could indeed be very significant, especially 

for the type of buildings they have analyzed. 

Other analytical studies on such buildings include one by Ostrom 

(1974) where he has modelled the floors by beams and columns or walls by 

springs. Irwin (1975) has presented a "stiffness matrix method" to 

analyze such "multistory shear wall buildings." Karadogan (1980) has 

suggested a "simplified force method" for the analysis of "slab type" 

structures. A method for one type of structures has been presented by 

Rutenberg (1980) which allows examination of the flexibility of floor 

slabs using plane frame procedures. Unemory (1978), and Unemory, 

Roesset and Becker (1980) have carried out a parametric study on 

crosswall building systems including floor flexibility using finite ele

ment models. 

Karadogan, ~ al. (1980) and Nakashima, Huang and Lu (1981) have 

reported the results of in-plane shear tests on reinforced concrete flat 

plates; and Kolston and Buchanan (1980) have discussed the design 

requirements for reinforced concrete diaphragms. 
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1 • 3 OUTLINE OF PRESENT· WORK 

This study develops some continuum techniques for the analyses of 

buildings which have the possibility of significant in-plane floor 

flexibility. For simple single- or two- story buildings, the floors and 

the walls (or columns) have been treated as beams, and the resulting 

beam equations and boundary conditions have been combined to obtain the 

characteristic equation of the combined system. This equation can 

easily be solved on a small computer or programmable calculator to 

obtain the natural periods. Thus, the dynamic properties of the 

building can be obtained in an "exact" manner. In addition, to simplify 

the numerical work even further in some instances, perturbation 

techniques have been used to obtain the first order correction terms, to 

be added to the results of simple standard cases, for example, a pinned

pinned beam. 

Multistory buildings with lateral load resistance systems con

sisting of only two end walls or frames are treated next. For such 

buildings, the floors are approximated by a continuous distribution of 

thin floors along the height of the building. These thin, distributed 

floors have no contact with the adjacent floors, and have been treated 

as beams. The end walls (or frames) are treated as uniform beams (bend

ing or shear). The resulting system has been solved exactly to obtain 

the characteristic equation. From the roots of this equation, it is 

possible to obtain the natural frequencies, mode shapes and the partici

pation factors for the entire building. 
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Multistory buildings that have uniformly distributed frames or 

walls are treated as vertically-oriented plates. It has been a common 

practice in earthquake engineering to model some features of multistory 

buildings by shear beams (e.g., Jennings, 1969; Hoerner, 1971). This 

plate concept, introduced in Chapter VI, is a generalization of that 

concept, and should give results that are comparable in applicability to 

those of the shear beam. This plate model allows one to obtain closed 

form solutions for frequencies, mode shapes and participation factors. 

These results, though approximate, are sufficiently accurate to allow 

various qualitative conclusions about the behavior of such buildings. 

The above concepts have been generalized further to study buildings 

with some unusual features, such as a soft first story. By adding extra 

elements, such as beams, a distributed column system, etc., it is possi

ble to include the influence of end walls, or a different story height 

in the first or the top story in an otherwise uniform building. The 

Imperial County Services Building, a six-story building with a soft 

first story, that sustained severe damage during the October 15, 1979 

earthquake is studied using the concepts developed in this part of the 

study. 

1.4 ORGANIZATION 

This thesis has been divided into eight (8) chapters. Chapter I is 

an introduction, while Chapter II describes the evidence of significant 

floor flexibility as seen in past earthquakes. Chapters III and IV 
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present treatments on single- and two-story buildings, respectively. 

Chapter V treats multistory buildings with lateral load resistance 

system (walls or frames) only at the two ends. Chapter VI describes the 

"plate concept" developed for multistory buildings with uniformly 

distributed frames. Multistory buildings that could be a combination of 

the earlier types, are addressed in Chapter VII, and Chapter VIII 

presents a summary and conclusions. 

Chapter III also contains summaries of beam theories and relevant 

boundary conditions, a discussion of the distributed floor concept, and 

a note on matching the boundary conditions at junctions of 

elements. The concepts are extensively used in subsequent chapters. 

Thus, after reading this background material in Chapter III, it should 

be possible to read the following chapters independently of each other. 

Mathematical notations have been defined where they first appear, 

and are also listed in the "Notation" section. 
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CHAPTER II 

EVIDENCE OF FLOOR FLEXIBILITY IN PAST EARTHQUAKES 

2 .1 INTRODUCTION 

Past earthquakes have been a great source of information for 

structural engineers about the dynamic behavior of structures. During 

an earthquake, when a structure sustains damage of any kind, it tells 

something about the structure. An investigation of the extent and 

pattern of the damage may uncover the weaknesses that led to the damage, 

thereby enabling one to avoid the same mistakes in new buildings. In 

fact, the situation can be compared to an actual full-scale destructive 

test of a structure, under field conditions. Hence, it is important to 

analyze past failures carefully, and to learn relevant lessons from 

them. 

In recent years, because of increased interest in the earthquake 

safety of structures, there has been an increased number of installa

tions of instruments in buildings in order to measure the motion of 

various parts of the structure during an earthquake. This provides data 

which can be used to interpret the cause of damage in the building, 

should a building suffer damage. Also, even if the building is 

undamaged after the earthquake, these records provide valuable insight 

into structural modelling and data about the dynamic properties of 

buildings, for example, the amount of equivalent damping. 
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In this chapter. five buildings are described which have exhibited 

significant floor-diaphragm deformations during past earthquakes. The 

first four sustained severe damage due to strong shaking. while the 

fifth one was undamaged after the earthquake. The later two buildings 

were instrumented. and the records obtained from them indicate the 

significance of in-plane floor flexibility in the dynamics of actual 

buildings. The five buildings represent a wide variety of building 

types; this indicates that in-plane floor flexibility may be more 

significant than it has been acknowledged to be in the past. 

2.2 ARVIN HIGH SCHOOL BUILDING 

In 1952. Arvin High School consisted of a large group of buildings. 

constructed during 1949-51. Because they were new. they met the 

requirements of California's Field Act. During the magnitude 7.7 Kern 

County (southern California) earthquake of July 21. 1952. most of these 

buildings performed extremely well. The only exception was the two-

story Administrative Building. This long. narrow building had a roof 

197 ft long and 46 ft wide. In the transverse direction. the lateral 

load resistance was provided by the end walls while the more flexible 

intermediate columns took only vertical loads. The building was a 

"reinforced concrete building with brick veneer on walls except that the 

second story wall at the west end was 8-1/2 inches thick reinforced 

grouted brick masonry without openings" (Steinbrugge and Moran. 1954). 

Figure (2.1) gives some details of the building. 
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The second story wall at the west end was extensively damaged as a 

result of the main shock. The effect of the earthquake upon this wall 

has been described by Steinbrugge (1970): 

The damage to this second-story wall consisted of x-cracks 
from diagonal tension forces, plus separation at the building 
corners due to diaphragm deflections causing torsional 
stresses in the damaged wall. 

Figure (2.2) shows some of the details of damage to the building. 

Besides the flexible diaphragm causing damage by forcing the wall to 

twist, poor workmanship in the wall was noted. One- and two-story 

models of this building, studied in subsequent chapters of this thesis, 

reveal that in the fundamental mode of vibration the flexibility of the 

diaphragm was much more significant than the flexibility of the end 

walls. 

2.3 WEST ANCHORAGE HIGH SCHOOL 

During the Alaskan earthquake (magnitude 8.4) of March 27, 1964, 

the classroom wing of the West Anchorage High School suffered severe 

damage. The building was built in 1952-53, with flat-slab construction 

of reinforced, cast-in-place concrete. The building was designed for 

zone 2 requirements of 1949 Uniform Building Code. The framing plans of 

this two-story building are shown in Figure (2.3). Such buildings, 

consisting of two wings joined at an angle (e.g., L- or V-shape plans) 

are very susceptible to damage induced by floor flexibility, because the 
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(a) 

.-- I 

... 
Jl~ - ~-- 2...-..:::: ~-.... -. 
:: ~~~:.- .- _ 

.. ~ ......... _ . 

( c ) 

( e ) 

Figure 2.2. DETAILS OF DAMAGE TO ARVIN HIGH SCHOOL, ADMINISTRATIVE 
BUILDING (from Steinbrugge and Moran, 1954). (a) GENERAL 
VIEW. (b) SECOND STORY BRICK WALL. (c) CLOSE-UP OF THE 
BRICK WALL. (d) CRACK AT MITERED CORNER. (e) INTERIOR OF 
THE WALL SHOWN IN LAST THREE FIGURES. 
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(a) 

( b) 

Figure 2.3. FRAMING PLANS OF WEST ANCIIORAGE HIGH SCHOOL BUILDING (from 
George, ll _g., 1973). (a) FIRST FLOOR PLAN. (b) SECOND 
FLOOR PLAN. 
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fan-like deformations in the two wings of diaphragm lead to a stress-

singularity at the junction of the two wings. This building provides a 

spectacular example of such damage. 

Figure (2.4) shows the damage in the building. The damage below 

the second floor was less than that above; this was attributed to "a 

different arrangement of shear walls and the fact that the floor 

diaphragm had a large stair opening at the intersection of the two 

wings". and "it is believed that this floor opening permitted a partial 

hinge to form in the remaining portion of the floor" (Meehan, 1967). 

The cause and sequence of the damage in the building has been 

described by Meehan (1967) as follows: 

One cannot be certain of the sequence or path of distress; 
however, it is believed that the initial damage occurred in 
the roof diaphragm at the vertex of the angle formed by the 
two portions of the classroom wing due to torsional moment 
developed in this diaphragm. It is also believed that, after 
the roof diaphragm separated at this point, each portion of 
the classroom wing essentially formed individual buildings, 
thus necessitating a redistribution of load in the shear 
walls. The shear walls were not capable of resisting this 
redistribution of load and were apparently damaged next. The 
exterior second-floor columns were then unable to resist the 
total load alone, and damage developed in these. 

The above clearly indicates the importance of in-plane flexibility 

of floors in this type of building. 
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( a ) ( b ) 

( c ) ( d ) 

Figure 2 . 4. DETAILS OF DAMAGE TO WEST ANCHORAGE HIGH SCHOOL BUILDING 
(from Meehan, 1967). (a) ROOF DIAPHRAGM DAMAGE. 
(b) CLOSE-UP OF DAb~GE TO ROOF DIAPHRAGM. (c) WEST SIDE OF 
NORTHWEST WING. (d) DAMAGE IN THE SHEAR WALL AT INTERSEC
TION OF WINGS. 



- 17 -

2.4 FIFTH AVENUE CHRYSLER CENTER 

The Fifth Avenue Chrysler Center in Anchorage (Alaska) was a one

story rectangular building (about 157 ft long and 70ft wide), that 

suffered extensively in the Alaska earthquake of March 27, 1964 

(Steinbrugge, et al., 1967; Berg, 1973). This building provides 

another good example of significant in-plane floor flexibility in 

buildings. The front end of the building, facing south, was a showroom. 

The lateral load resistance in the longitudinal (north-south) direction 

was provided by two 8 inch concrete block walls at the sides along the 

length of the building, except in the showroom portion. In the 

transverse direction (east-west), there were 8 inch concrete block 

walls, one at the north end of the building, another wall at the center 

of the building and two stub walls extending from the sides just to the 

rear of the showroom. The roof of the building consisted of 20 

prestressed precast reinforced concrete tees, 8 ft wide, that were 

placed side by side, spanning the whole width of the building. Sixteen 

of these were supported by the side walls, while 4 tees in the showroom 

portion were supported by 12" X 24" concrete block columns 

(Figure 2.5a). The flanges of the adjacent tees were connected , together 

by welding the bar anchors which were embedded in the flanges. 

Figure (2.6) gives the first floor and roof plans of the building. 

As a result of the earthquake, the showroom part of the building 

was extensively damaged, and the roof tees in this portion fell to the 

south of the building (Figure 2.5b). There was also significant damage 
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(a ) 

( b) 

Figure 2.5. FIFTH AVENUE CHRYSLER CENTER (from Steinbrugge, ~ Al·• 
1967). (a) PRE-EARTHQUAKE VIEW. (b) COLLAPSE AT THE SHOW
ROOM END. 
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in the roof between the showroom and the central wall. The top half of 

the west stub wall collapsed (Figure 2.5b) while the east stub wall had 

damage at the base (Figure 2.7a). There was also some damage at the 

north ends of the side walls (Figure 2.7b). 

The cause of damage in the building has been attributed to vibra-

tions in transverse direction. A possible explanation for the damage 

has been provided by Berg (1973) as follows: 

If we consider the roof as a beam lying on its side and 
oscillating in the lateral direction, it would act -- in its 
gross behavior -- as a beam on three resilient supports, and 
its fundamental mode of oscillation would be approximately as 
shown in Figure (2.8). The left support (the stub walls) is 
less rigid than the other two supports (the full transverse 
walls). At the left support, both shear and bending moment in 
the beam would be high. Shear would tend to shear the connec
tions between adjacent tee flanges, and bending moment would 
tend to pull apart the same connections. At the right support 
(rear walls) the shear would also be high, tending to shear 
the connections between the flange of the end roof tee and the 
rear wall, the tee flange connections did indeed fail at these 
points. Once the connections between the fourth and fifth 
roof tees failed, there would be only nominal resistance to 
the southward collapse of the front part of the building. 
Because the left support was more flexible than the other two 
supports, the distortion in the left part of the beam would be 
greater than in the right part. The corresponding behavior in 
the building is greater lateral movement to the south of the 
middle wall than north of the middle wall, and it was the part 
south of the middle wall that collapsed. 

A simple calculation will indicate that an assumption of a rigid 

floor diaphragm (i.e., a rigid beam on three similar springs in 

Figure 2.8) will lead to high shear and bending moments in the beam at 

the central support rather than at the left support. Had this been 

true, one would have observed more damage in the connections of roof 
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( a ) ( b) 

Figure 2. 7. DAMAGE IN THE FIFTH AVENUE CHRYSLER CENTER (from 
Steinbrugge, et ~ •• 1967). (a) DAMAGE AT BASE OF THE EAST 
FIN. (b) NORTH END OF THE WEST ELEVATION. 



- 22 -

DISPLACEMENT 

r-----------------, 
I I 

SHEAR 

BENDING MOMENT 

Figure 2.8. FUNDAMENTAL MODE OF ROOF DIAPHRAGM, FIFTH AVENUE CHRYSLER 
CENTER (from Berg, 1973). 
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tees near the central wall. Hence, it is evident that roof-diaphragm 

flexibility contributed to the damage in this building. 

2.5 IMPERIAL COUNTY SERVICES BUILDING 

During the Imperial County earthquake (magnitude 6.6) of 

October 15, 1979, the Imperial County Services Building, a six-story 

reinforced concrete structure, was the only modern building to have 

sustained severe damage (Jain and Housner, 1983a). The building was 

extensively instrumented under the program of the California State 

Office of Strong Motion Studies to record the motion at various loca-

tions should a large earthquake occur in the area. In the Imperial 

Valley earthquake, these instruments provided records which are very 

valuable to structural engineering, as they give information concerning 

the possible causes of the damage (e.g., Jennings, 1983; Pauschke, 

ll al., 1981.). 

Figure (2.9) shows a schematic plan of the building. Note that in 

the upper stories of the building, the lateral load resistance was pro-

vided only by the end walls. Even though the aspect ratio of the 

building is not large (length = 136 '-10", width = 85 '-4"), a, study of 

the records obtained from the roof, by Pauschke, et al., (1981) reveals 

that there was significant floor-diaphragm deformation (Figure 2.10). 

This in-plane floor flexibility is not considered to have been responsi

ble for the initiation of the damage in the building. However, the fact 
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that it was significant, even in a building with a low aspect ratio. 

points out the importance of floor flexibility. 

Figure (2.10) shows the displacements at the roof and the second 

floor in the transverse direction. recorded by instruments at the two 

ends and at mid-span. In this figure. the roof and floor dimensions 

have been "disproportionately reduced in order to magnify the relative 

displacements." It is clear that the roof and the second floor indeed 

had significant in-plane deformations. Also. one notices that the two 

floors show opposite curvatures. A model of this building studied in a 

later chapter also reveals this feature. 

2.6 MAMMOTH HIGH- SCHOOL GYMNASIUM 

Strong motion accelerograms obtained from the single-story Mammoth 

High School Gymnasium building. during the May. 1980, earthquakes 

provide another good example of significant floor flexibility in low 

aspect-ratio buildings. This building. 144 ft long and 110 ft wide, has 

reinforced concrete exterior walls. The roof is supported by slightly 

inclined Warren trusses. spanning the width of the building. These 

trusses are braced vertically to prevent excessive lateral def.1ections. 

Also. horizontal steel bracing has been provided in the plane of the 

lower chord of the roof trusses. 

Again under the State of California's program. the building was 

instrumented with 10 accelerometers located at various locations in the 

structure (Figure 2.11). During the earthquake swarm of May. 1980, they 
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Figure 2 .11. STRONG MOTION INSTRUMENTATION SCHEME, MAMMOTH HIGH SCHOOL 
GYMNASIUM (from Turpen, 1980). 
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provided very useful sets of records. Three of these sets are shown in 

Figures (2.12) through (2.14). Of particular interest to this study are 

the records obtained from the roof of the building. 

In each figure, a comparison of traces (5), (6) and (8), which 

recorded the motion of the roof in the transverse direction, indicates 

that the motion of the center of the roof was much more vigorous than 

that at the two ends of the roof span. This clearly indicates that the 

flexibility of the roof diaphragm cannot be neglected for this building 

in the transverse direction. 

In the longitudinal direction, the motion of roof was recorded by 

instruments (7), (9) and (10). Despite the fact that the aspect ratio 

for this direction is less than one, one notices the same phenomenon, 

i.e., the instrument at mid-span registered a much larger response than 

registered by the instruments at the two ends. The high frequency 

content in trace (9) is due to the lateral vibrations of the lower chord 

segment of the roof truss, at whose mid-span this instrument was 

located. However, one can still see, in this trace, a significant 

motion at a lower frequency of about 4.5 Hz. This is thought to be the 

fundamental natural frequency of the roof and wall system along the 

longitudinal direction. 

The above observations, which are applicable to the three different 

sets of records, prove that the floor flexibility in this building is 

not negligible in either direction despite the low aspect ratios. 
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2.7 DISCUSSION 

The five buildings discussed in this chapter provide ample evidence 

to indicate that in-plane floor flexibility can be very important in the 

earthquake response of some buildings. Three of the examples were 

school buildings, which suggests that the architectural layout of school 

buildings may make them more susceptible than other structures to 

problems caused by flexible floor diaphragms. 

Also, three of these buildings had lateral load resistance systems 

consisting of only end walls. One of these three had a span to width 

ratio of only 0.76, but still exhibited significant diaphragm flexibi-

lity. The reason for this is the relative flexibility of the diaphragm 

with respect to the end walls. Even though floors with low aspect ratio 

may not seem very flexible in their plane, their flexibility may still 

be quite significant and may indeed dominate the dynamic response, when 

compared to the flexibility of very rigid walls. 

The classroom wing of the West Anchorage High School had a plan 

consisting of two wings joined at an angle, thus forming a 'V'. 

Buildings such as this, forming an L, V, T, H, etc., warrant special 

considerations. The San Marcos Building, a four-story, reinforced 

concrete L-shape building is another example in this category (Dewell 

and Willis, 1925). This building was extensively damaged while the 

corner section was "totally destroyed," during the 1925 Santa Barbara 

earthquake. Its damage has been attributed to the shape of the ground 
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Plan, in addition to poor workmanship in the concrete. The Mene Grande 

Building, a sixteen-story H-shaped reinforced concrete structure, was 

heavily damaged during the Venezuela earthquake of 1967 (Hanson and 

Degenkolb, 1969; Sozen, et al., 1968). Besides other damage, this 

building experienced some floor-cracks "especially where the wings 

connected with the core" (Hanson and Degenkolb, 1969). Again this 

observation indicates a stress concentration at the corner. 

This brief summary of cases of earthquake damage in buildings that 

can be attributed to the response of the floors as flexible diaphragms 

shows the importance of this phenomenon in the earthquake response of 

structures. The strong motion records obtained from the two buildings 

mentioned in this chapter , and some others (Porcella, ~ Al·• 1979), 

also lead to similar observations. Hence, the experience in past 

earthquakes indicates clearly that floor flexibility can be a potential 

problem unless considered in the design. 
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CHAPTER III 

SINGLE-STORY BUILDINGS WITH FLEXIBLE FLOORS 

3.1 INTRODUCTION 

There has been considerable interest in the past in the dynamic 

analyses of long, narrow one-story buildings because this type of 

building is commonly adopted for schools, hospitals and offices (Blume, 

~ ~ •• 1961, Blume and Jhaveri, 1969). Many such buildings have only 

two end walls in the transverse direction to provide lateral support, 

while any intermediate columns share only the vertical loads. This is 

largely due to the needs of functional flexibility, which requires 

movable partition walls. Hence, one has a roof mounted on two end walls 

that acts like a beam in the transverse direction due to its large span 

to width ratio. In such a situation, it is important to consider the 

flexibility of the roof diaphragm in the dynamic analysis of the 

building. 

Moreover, there are other situations where even though the aspect 

ratio (length to width ratio) of the building is not large, the floor 

flexibility cannot be neglected. Mammoth High School Gymnasium, 

discussed in the previous chapter is one such example. In this type of 

building the roof flexibility, though small in absolute terms, is 

significant when compared to that of the stiff end walls. 
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It is shown in this chapter that such buildings can easily be 

treated analytically. Furthermore, the technique is general enough to 

allow the solutions of more complicated structures, e.g., buildings with 

different end walls. The method described in the following sections 

consists of treating the roof as a bending beam and the end walls as 

shear beams. The dynamic equations of motion for the roof and the walls 

can be written, and these equations can be solved for appropriate 

boundary conditions. This gives a transcendental characteristic equa-

tion, the solution of which provides the natural frequencies of the 

system. With these frequencies known, the mode shapes and the partici-

pation factors for earthquake excitation can be obtained, thus enabling 

one to calculate the dynamic response of the building. 

The method described herein can also be extended to take into 

account the flexibility of the foundation. For example, one could model 

the effects of the supporting soil by Winkler's representation, thereby 

replacing the foundation by appropriate springs. This only affects the 

boundary condition to be satisfied at the bottom ends of the vertical 

beams representing the walls. 

In the following parts of this chapter, bending and shear beam 

theories are discussed first. Next, the concept of "laminae" or 

"equivalent distributed beams" is presented. A note on how to match the 

boundary conditions between members meeting at a point is also included. 

A simple case of a one-story building with two, identical end walls is 

then solved. A section has been included on the use of perturbation 
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theory to obtain an approximate value of the fundamental natural 

frequency of the structure. Also, solutions are given for some 

interesting but more complex structures. The chapter ends with a 

numerical example derived from the top story of the two-story 

Administrative Building at Arvin High School. 

3.2 BEAM THEORIES 

In this and subsequent chapters, extensive use will be made of the 

equations and properties of both Euler-Bernaulli and shear beams. For 

convenience, this section presents the well known theories for these two 

types of beams. Also, the concept of "laminae" or "equivalent-

distributed beams" as applied to the present problem is introduced. 

This concept proves to be useful in modelling the floors of multistory 

buildings. 

3.2.1 Bending Beam (Euler-Bernaulli) 

For beams whose length to depth ratio is large, the bending defor

mations are large compared to those caused by shear, and, therefore, it 

is a common practice to neglect the shearing deformations for static 

analysis and for the analysis of the lower modes of vibration. Also, 

for the lower modes of vibration, the effect of rotatory inertia is 

small for such beams, and can be neglected. The resulting mathematical 

model for a beam is termed a bending beam or Euler-Bernaulli beam. 
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Consider the free vibrations of a bending beam. Let vb(x,t) be the 

lateral displacement at time t of a point at a distance x from the 

origin (Figure 3.1a). From the free body diagram of an element of width 

dx, one obtains 

dQ 

2 a vb 
pA -

2
-dx 

at 

dM = -Qdx 

Hence, the equation governing the free vibrations of the beam may be 

written as 

0 (3.1a) 

For beams with uniform cross-section, this becomes 

= 0 (3.1b) 

For beams vibrating due to uniform earthquake excitation, u (t) in the 
g 

plane of the beam (Figure 3.1b), the equation of motion is 

~ 2 ~ 2 a vb(x,t) 
~ EI(x) 

2 
+ pA(x) 

ax ax 

If the cross-section is uniform, this reduces to 

-pA(x)u (t) 
g 

( 3 .2a) 
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Figure 3 .1. VIBRATION OF A BENDING BEAM. (a) FREE VIBRATION. 
(b) EARTHQUAKE MOTION. 
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-pAu (t) 
g 

(3.2b) 

In addition to the governing differential equation, the specifica-

tion of boundary conditions is required to solve the vibration problems 

of beams. Table (3.1) gives some of the common boundary conditions for 

a bending beam. 

TABLE 3 .1. VARIOUS BOUNDARY CONDITIONS FOR A BENDING BEAM 

Type of Sketch of 
Boundary Conditions Boundary Boundarr 

Free End [EI (x)v'' ] = 0 (moment=O) 

l I b end , 
[(EI(x)v' 'b) ] = 0 (shear=O) end 

Fixed End q [vb]end = 0 (displacement=O) 

[v' b] end = 0 (slope=O) 

Pinned End [vb]end = 0 (displacement=O) c=rq [ EI ( x) v, , b] end = 0 (moment=O) 

Spring [EI(x)v' 'blend = 0 (moment=O) 
Supported 91 End [ ( EI (X) v, , ) , ] = K1[vb] (for right end) b 

[(EI(x)v'' )'] = -K [v ] (for left end) b 1 b 

Pinned End [vb]end = 0 (displacement=O) 
with Torsional 

~ Spring [EI (x)v' 'b] = -K [v' ] (for right end) 2 b 

[ EI ( x) v' 'b] = K [v' ] (for left end) 
2 2 b 
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3.2.2 Shear Beam 

This beam theory is applicable for beams that exhibit bending 

deformations that are small compared to shear deformations. In the 

theory, the bending deformations are neglected reducing the governing 

equation to one of second order. Experience has shown that this beam 

models some important features of the dynamic behavior of buildings of 

moderate height (e.g., Jennings, 1969; Hoerner, 1971). 

Consider the free vibrations of a shear beam as shown in 

Figure (3.2a). Let A(x) be the cross-sectional area at x, p be the den-

sity of beam material, and k(x) [=k'A(x)G] be the shear rigidity of the 

beam. Let v (x,t) be the lateral displacement of a point at a distance 
s 

x from the origin, at time t. From the free body diagram of an element 

dx, one obtains 

dQ = 

Thus, the equation of motion for the free vibrations of a shear beam may 

be written as: 

a ( av (x,t>\ 
ax k(x) sax ~- pA(x) 

2 a v (x,t) 
s 0 (3.3a) 

For a beam with uniform cross-section, the shear rigidity k(x) is not a 

function of x, and the equation of motion becomes 
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Figure 3.2. VIBRATION OF A SHEAR BEAM. (a) FREE VIBRATION. 
(b) EARTHQUAKE MOTION. 
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a2v (x,t) a 2v (x,t) 
k--~s_____ - pA--~s ____ _ 

ax2 at2 
= 0 (3.3b) 

For beams vibrating under ground excitation (Figure 3.2b), these equa-

tions become 

2 
a ( av (x,t)) a vs(x,t) 

ax k(x) sax - pA(x) at2 = pA(x)ug(t) 

and, 

a2
v 

s k -
2
-(x, t) 

ax 
= pAu (t) 

g 

for beams with variable and uniform cross-sections, respectively. 

( 3 .4a) 

(3.4b) 

Some of the common boundary conditions for a shear beam are 

tabulated in Table (3.2). 

3.2.3 Equivalent Distributed Beam System (Laminae) 

In the present work, floors in buildings have been treated as bend-

ing beams in order to include the effects of in-plane floor flexibility. 

For buildings with a large number of stories and uniform floor 

properties along the height of the building, it is sometimes convenient 

to replace the floor-beams by an "equivalent distributed beam system." 

This beam system consists of a continuum of independently-acting beams 

with infinitesimal thicknesses. The independent action of the 

infinitesimally thin beams means that an individual beam does not have 

any contact with adjacent beams. The stiffness and mass distributions 
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TABLE 3.2. VARIOUS BOUNDARY CONDITIONS FOR A SHEAR BEAM 

Type of Sketch of 
Boundary Conditions Bounda_rr Boundary 

Free End [k(x)v' ] d (shear=O) ~ I = 0 s en 

Fixed End q [v ] = 0 (displacement=O) s end 

End Supported 91 [k(x)v' ] = -K1 [v ] s s (for 
on a Spring 

Note: 

[k(x)v' ] 
s =K1[vs] (for 

For a shear beam, there is no counterpart to 
supported on a torsional spring, since 
perpendicular to the axis before deformation 
rotate as the beam-axis deforms. 

right end) 

left end) 

an end 
sections 
do not 

of the system are obtained from the stiffnesses and masses of the actual 

floors by distributing the total stiffness and the total mass of all the 

floors evenly along the height of the building. These equivalent beams 

or laminae have been used in other problems in structural mechanics. 

First developed to analyze the deformations of aircraft wheels, this 

concept has been used extensively in civil engineering in the study of 

coupled shear walls (e.g., Chitty, 1947; Beck, 1962). 

The equivalent system can be defined with the help of Figure (3.3). 

Let E be the modulus of elasticity of the floor material. Let I* be the 

moment of inertia per unit height of the equivalent, distributed floor 

system, and m* be the mass per unit length and per unit height of the 

system. Let Ay be width (along the height of building) of a thin beam, 

where Ay is very small. With this notation, the equation of motion for 
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free vibrations of the system may be written as 

= 0 (3.5a) 

or, 

0 (3.5b) 

Here u(x,y,t) is the displacement at point x, at time t in an 

infinitesimal thin beam located at height y. The common boundary condi-

tions for this system are the same as those of bending beams 

(Table 3 .1). 

3.3 NOTE ON MATCHING BOUNDARY CONDITIONS 

In the rest of this report, extensive use will be made of matching 

the boundary conditions at the junctions of two or more perpendicularly-

intersecting beams. Hence, this section reviews some of the concepts 

involved. In general, the following situations will be encountered in 

this study: two beams joined at a right angle at their ends; three beams 

joined at their ends (arising from one beam joining the interior of 

another beam at a right angle); and an equivalent distributed beam 

system joining an ordinary bending or shear beam. 
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3.3.1 Two Beams Joined Perpendicularly at Their Ends 

Consider two beams that are joined together at their ends such that 

they are perpendicular. Figure (3.4) shows the coordinate system 

(x,y,z), that is common for both beams. Let the two beams be joined at 

the point x = L andy= h, and let u(x,t) and v(y,t) be the displace-

ments in the z-direction, in beams (1) and (2), respectively. The 

following boundary conditions apply at the corner: 

(i) The displacements in the two beams are the same at the junction, 

i.e. , 

u(L, t) = v(h, t) (3.6) 

(ii) The end shears in the two beams are equal in magnitude and 

opposite in direction. 

(a) Both beams are bending beams 

[ ( 2)] [ . 2)] a E I a u a (E I a v = 
ax 1 1 ax2 x=L + ay 2 2 al y=h 

0 (3.7a) 

where E1 I 1 and E2 I 2 are the flexural stiffnesses of beams 

(1) and (2), respectively. 

(b) Beam (1) is bending beam and beam (2) is shear beam: 

_j_ E I a u k av 
[ ( 2 ) l ax 1 1 ax2 x=L - [ 2 ay]y=h 

0 ( 3. 7b) 
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BEAM (I ) --- x= L 
y=h 

BEAM ( 2) 
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X 

Figure 3.4. 'IWO BEAMS JOINED AT THEIR ENDS. 
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where E1 I 1 and k2 are the flexural stiffness for beam (1) 

and the shear stiffness for beam (2), respectively. 

(c) Both beams are shear beams: 

[ k au] 
1 ax x=L + [k av] 

2 ay y=h 
= 0 (3.7c) 

where k1 and k2 are the shear stiffnesses for beams (1) and 

(2), respectively. 

The algebraic signs in these equations will be 

different when beam (2) is joined at the left end of beam 

(1), rather than the right end, as considered here. 

(iii) The end moment in beam (1) is equal in magnitude and opposite in 

direction to the torsional moment (torque) in beam (2). Assuming 

that the other end of beam (2) allows no rigid-body rotation of 

beam (2), this condition will be 

C f.Qu] 
- 2 Lax x=L (3.8) 

where c2 is the torsional stiffness of beam (2), given by the 

torque at y = h required to produce a unit rotation at that 

point. [ au] is the end rotation (slope) in beam (1), which is ax x=L 

equal to the torsional rotation in beam (2). 

For most applications, the walls can be treated as thin 

rectangular sections to obtain their torsional stiffness. For 

such sections, the torsional stiffness c2 is given by (e.g., 
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Timoshenko and Goodier, 1969) 

(3.9) 

where 

b = Length of wall. 

c = Thickness of wall. 

h Height of wall. 

G = Shear modulus. 

(iv) The end moment in beam (2) is equal in magnitude and opposite in 

direction to the torsional moment at the end of beam (1). This 

case is similar to case (iii) above. 

3.3.2 Three beams Joined at Their Ends 

Consider three beams meeting at a point as shown in Figure (3.5). 

The coordinate system (x,y,z) is common for all three beams, and each 

beam of the system is vibrating in the z-direction. Let u(x,t), v(y,t) 

and w(y,t) be the displacements in the z-direction, in beams (1), (2) 

and (3), respectively. At the point x = L, y = 0, the following 

boundary conditions must be satisfied: 

(i) The end displacements in the three beams are the same: 

u(x = L,t) v(y = O,t) = w(y O,t) (3.10) 

(ii) The resultant of the end-shears in the three beams is zero: 



- 50 -

w(y,t) 
BEAM ( 3) 

y 
BEAM (I ) 

r-------------------~1-----

BEAM (2) 

Figure 3.5. THREE BEAMS JOINED AT THEIR ENDS. 
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their flexural stiffnesses, respectively. The condition can 

be written as: 

o Eiou a Eiov [ ( 2)] [ ( 2)] 
ox 1 1 ox2 x=L + oy 2 2 al y=O 

....2.... E I o w 
[ ( 2 ) l 
ay 3 3 al y=O 

0 ( 3 .lla) 

(b) Beam (1) is a bending beam with E1 I 1 as its flexural stiff-

ness. Beams (2) and (3) are shear beams, and their shear 

stiffness are given by k2 and k3 , respectively. The condi-

tion is 

....2.... E I a u 
[ ( 2 ) l 
ox 1 1 ox2 x=L 

[k av ] + [k ow ] = 0 2 ay y=o 3 ay y=o (3.11b) 

(iii) The resultant of end moment in beam (1), torsional moment in beam 

(2) and torsional moment in beam (3) is zero at the junction 

point. 

Define positive torsional moment for beams (2) and (3) as 

one that produces clockwise torsional rotation in the beam with 

respect to the bottom end of the beam. Let T
2 

(y O,t) and T
3 

(y = O,t) be the twisting moments in beams (2) and (3), 

respectively, at the junction. The boundary condition can be 

written as 



where 
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( 3 .12) 

~(x=L,t) = End moment in beam ( 1) 

a2u 
E1I1 -

2 
(x=L. t) 

ax 

T2 (y=O. t) = c2 £ e2 < y=O. t > - 92(y= -hl.t)] 

T3 (y=O. t) c
3
[e

3
(y=h

2
,t) - a

3
(y=O,t)] 

c2 .c3 =Torsional stiffnesses of beams (2) and (3), 

respectively. 

h1 .h2 =Height of beams (2) and (3) • respectively. 

a2 .a3 = Torsional rotation in beams (2) 

and (3), respectively. 

However, a2 (y=O,t) and e3 (y=O,t) are each equal to the end 

rotation in beam (1) [= ~~ (x=L. t)]. 

It will be shown in a subsequent section that for the 

purposes of the present work, one can neglect the torsional 

stiffnesses of beams (2) and (3). This results in the much 

simplified boundary condition that there is zero bending moment 

in beam (1) at x = L, i.e •• 

(3.13) 

(iv) The torsional moment in beam (1) at x = L, and the bending 

moments in beams (2) and (3) at y = 0 have a zero resultant. 
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Neglecting the torsional stiffness of beam (1) and assuming 

beams (2) and (3) as bending beams, this condition is 

(3.14) 

3.3.3 An Equivalent Distributed Beam System Joined to a Perpendicular 
Beam 

Consider a distribution of laminae that is joined at one end to a 

perpendicular beam (Figure 3.6). The coordinate system is shown in the 

figure. Let u(x,y,t) and v(y,t) be the displacements in the z-direction 

in the distributed beam system and the perpendicular beam (beam 2), 

respectively. In this situation, the shears in the distributed beams 

are applying a distributed force on the perpendicular beam, and the 

equation of motion for the beam (2) is modified accordingly. 

Let E1 be the modulus of elasticity, r•1 be the moment of inertia 

per unit height and m* 1 be the mass per unit length per unit height of 

the distributed beam system. The equation of motion for free vibrations 

of the distributed beams has been given in subsection (3.2.3). The 

equation of motion for beam (2) is as follows: 

(a) For the case when beam (2) is a bending beam with E2r2 its 

flexural stiffness and m2 its mass per unit height, the equa-

tion of motion for free vibration is: 



y 

X 

z 
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EQUIVALENT 
DISTRIBUTED 
BEAMS 

BEAM (2) 

Figure 3.6. EQUIVALENT DISTRIBUTED BEAMS JOINED TO A PERPENDICULAR 
BEAM. 
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(b) When beam (2) is a shear beam with stiffness k2 and mass m2 per 

unit height, the equation of motion for beam (2) is 

(3.15b) 

The algebraic sign of the last term in the above two equa-

tions will be different if beam (2) is joined at the left end 

of the distributed beam system. 

The following boundary conditions must be satisfied for the system 

at the junction of the laminae and beam (2): 

(i) The end displacements in the distributed beams are the same as the 

displacements in beam (2), i.e., 

u(x=L,y,t) = v(y,t) (3.16) 

(ii) The bending moments in the distributed beams at their ends must be 

in equilibrium with the torsional moment in the perpendicular 

beam. 

This condition can be derived by taking the angle of twist in 

beam (2) equal to the end rotation in a distributed beam, and 

applying equilibrium. In mathematical form, the condition is 
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3 
__ be G2 ~ [a ] 

aux (x=L,y,t) 
3 al 

(3.17) 

where b, c, and G2 are the length, thickness and shear modulus, 

respectively, for beam (2). 

It will be acceptable for many applications to neglect the 

torsional rigidity of beam (2). This leads to a simpler condi-

tion, i.e., 

a2
u 

E
1

I
1 

(x=L,y,t) 
ax2 

0 ( 3 .18) 

3.4 ONE-STORY BUILDING WITH TWO IDENTICAL END WALLS 

In this section, the solution for free vibrations of a one-story 

building with two end walls is presented. The walls are assumed to be 

identical. As mentioned earlier, this is a frequently used structural 

system for schools, hospitals, offices, etc. Typically, in these situa-

tions the end walls are quite short and wide, and can be treated as 

shear walls. The roof, usually being long and narrow, is modelled as a 

bending beam. 

Consider a one-story building with two identical end walls (shear 

beams) of height h, and a long, narrow roof (bending beam) of length 2L 

(Figure 3.7). The building is being analyzed for motion in the z'-

direction. Let the following be the roof and wall properties, assumed 

to be uniform: 
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Figure 3. 7. MODEL OF A ONE-STORY BUILDING WITH 'IWO END WALLS. 

---- - -----
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El = Young's modulus for the roof. 

11 = Moment of inertia about the center-line (parallel to the y'-

axis) of roof cross-section. 

k2 Shear rigidity of wall cross-section (k2 k' ~G2 ). 

k' = Shape factor. 

A2 = Area of cross-section of wall. 

G2 = Shear modulus of wall. 

ml = Mass per unit length of roof. 

m2 Mass per unit height of wall. 

Let u(x',t) be the displacement in the z'-direction at time t of 

point x' of the roof. Similarly, let v1 (y',t) and v2 (y',t) be the dis-

placements in the z'-direction at time t of points y' in the right and 

left end walls, respectively. The equations of motion for free vibra-

tions for the system consisting of roof and end walls can be written as: 

= ( 3 .19a) 

(3.19b) 

( 3 .19c) 

It will be useful to carry out the further development in terms of 

nondimensional coordinates. Letting 



x' 
X= L 
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y L. 
h 

and substituting these into the equations of motion gives 

4 a u(x,t) 
= 

ax 4 

2 a vl (y,t) 

ai 
and 

(3.20) 

(3.21a) 

(3.21b) 

(3.21c) 

Separation of variables is used to solve the problem of free vibra-

tions of the system. Let 

u(x,t) U(x)e iwt ( 3 .22a) 

v1 (y,t) V1 (y)e iwt (3.22b) = 

v2 (y,t) V2 (y)e iwt (3.22c) 

where w is the natural frequency of the motion. Substitution into equa-

tions (3.21a, b, c) gives 

0 (3.23a) 
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d
2

V 
+ ~2v __ 1 

0 (3.23b) 
dy2 1 

d
2

V 
+ ~2v 

__ 2 
= 0 (3.23c) 

dy2 2 

where 

4 2 
4 

m1L 
2 ~2 

m2 h 
2 

(3.24) a = (I) = --w 
E

1
I

1 k2 

The solutions for the above equations can be written as 

U(x) = A1 sin ax + ~ cos ax + A3 sinh ax + A4 cosh ax (3.25a) 

(3.25b) 

= B' 1 sin ~y + B'
2 

cos ~y (3.25c) 

where the A's and B's are constants to be determined by the governing 

boundary conditions. 

Since the structure is symmetric about the y'-axis, it possesses 

symmetric and antisymmetric modes of vibrations. It is convenient to 

solve for the two types of modes separately, by making use of symmetry 

and by analyzing only the right half of the structure. 
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{a) Symmetric Modes 

For the symmetric modes (or translational modes), there will be 

zero slope and zero shear at mid-span of the roof. The following are 

the boundary conditions for the right half of the structure: 

( i) Slope at mid-span of roof is zero: 

dU (x=O) = 0 
dx 

( ii) Shear at mid-span of roof is zero: 

d3U (x=O) = 0 
dx 

3 

(Hi) Displacement at the bottom end of wall is zero: 

V1 (y=O) = 0 

(iv) Displacements at the corner match: 

U(x=l) 

(v) The shears at the junction balance 

d3U (x=l) ql 
dV1 (y=l) 

dx3 dy 

k L3 

where, 
2 

ql = E1 I 1h 
(3.26) 

(vi) The moments at the junction balance: 
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d2U (x=l) = -q2 
dU (x=l) 

dx2 dx 

where, q2 = 
c2L 

Elll 
(3.27) 

and, c2 is the torsional rigidity of the end walls. 

The boundary conditions (i) and (ii) require, 

= = 0 

Similarly from boundary condition (iii) 

From (iv), (v) and (vi), one obtains, 

A2 cos a + A4 cosh a (3.28a) 

= (3.28b) 

and 

The determinant of these three equations can be solved to obtain 

the following characteristic equation for the natural frequencies, and 
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and the equations can then be solved for the mode shapes: 

(a cosh a+ q2 sinh a)(a3 sin a sin~- q1~ cos a cos~) + 

+ (a cos a+~ sin a)(a
3 

sinh a sin~- q1~ cosh a cos~) = 0 (3.29) 

U(x) = A[<a cosh a+ q2 sinh a)cos ax + (a cos a+ q2 sin a) cosh ax] 

and 

A~o• a(a cosh a+q2 sinh a) + cosh a(a cos a+q2 
sin ~ 

where A is an arbitrary constant. 

(3.30a) 

sin a)] 
sin ~Y 

(3.30b) 

The mode shapes for the left half of the structure can be obtained 

by symmetry. Hence, for the whole building, the mode shapes are 

U(x) A[<a cosh a+ q
2 

sinh a) cos ax + (a cos a+ q2 sin a) cosh ax] 

(3.31a) 

= A[cos a(a cosh a+ q2 sinh a) +cosh a(a cos a+ q2 sin a)]· 
Vl(y) sin~ 

sin ~Y (3.31b) 

and 
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Aro· a.(a. cosh a. + q2 sinh a.) + cosh a.(a. cos a. + q2 sin Ql v2 (y) = 
sin 13 

sin 13Y Oiyil (3.31c) 

For a given structure, equations (3 .24) provide a. and 13 as func-

tions of the frequency w. Thus, one can solve the characteristic equa-

tion (3.29) and obtain natural frequencies of the system. For known 

frequencies, the corresponding mode shapes are given by equations 

(3.31a, band c). 

(b) Antisymmetric Modes 

For antisymmetric modes (or torsional modes), there will be zero 

displacement and zero moment at the mid-span of the roof. Thus, the 

boundary conditions are 

( i) U(x=O) 0 

( ii) 0 

(iii) V
1

(y=O) 0 

( iv) U(x=l) v
1 

(y=l) 

( v) 
d 3U dV1 

(y=l) -(x=l) = ql 
dx

3 dy 

k L
3 

where, 
2 

ql E
1 

I
1

h 

(vi) 
d

2
U 

(x=l) 
dU 

(x=l) = -~ dx 
dx

2 

where, q2 = 
c

2
L 

El Il 
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These boundary conditions can be applied to equations (3.25a) and 

(3.25b) to obtain the following characteristic equation and mode shapes: 

(a sin a-~ cos a)(a3 cosh a sin~- q1 ~sinh a cos~)-

3 -(a sinh a+~ cosh a)(a cos a sin~+ q1~ sin a cos~) = 0 (3.32) 

U(x) A[<a sinh a + q2 cosh a) sin ax + (a sin a - q2 cos a) sinh ax] 

(3.33a) 

a)sin a+ (a sina 

sin ~ 

sin f3y (3.33b) 

where A is an arbitrary constant. 

The mode shapes for the whole building can be obtained from the 

antisymmetry condition, as: 

U(x) = A[<a sinh a + q2 cosh a) sin ax + (a sin a - q2 cos a) sinh ax] 

-l.S.x.S.l ( 3 .34a) 

Ar· 
sinh a + q2 cosh a) sin a + (a sin a - q2 cos a) sinh a] 

vl {y) 
. 

sin ~ 

sin ~y OS,yS,l ( 3.3 4b) 
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-A[(a sinh a + q2 cosh a) sin a + (a sin a - q2 cos a) sinh a] • 

sin tl J 

sin tlY ( 3 .34c) 

Here again, equation (3.32) can be solved to obtain natural 

frequencies, and equations (3.34) give corresponding mode shapes. It is 

important to note here that the way this problem has been formulated, 

the contributions of any longitudinal walls to the torsional stiffness 

of the system are neglected. Also, the polar moment of inertia of the 

roof is underestimated. The two effects are small for long and narrow 

buildings, and they have opposite influences on the values of the tor-

sional frequencies. Typically, the first effect is more important. 

There are instances where these factors are important enough to be 

included in the analysis for torsional modes. To do so within the 

present framework, one can simply increase the wall stiffness and the 

floor mass used in the calculation to the values that are appropriate 

for the actual building. The new stiffness and mass can then be used 

for the analysis of the antisymmetric modes. 

Limiting Case 

In most applications, it is thought acceptable to neglect the tor-

sional rigidity (C2 ) of the end walls. The resulting, simpler solutions 

(characteristic equations and mode shapes) can be obtained by taking the 

limit, as q2 approaches zero, in the expressions derived above. Hence, 

for symmetric modes, the characteristic equation and the mode shapes 
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reduce to: 

3 
a (tan a + tanh a) - 2q1~ cot ~ = 0 (3.35) 

and 

U(x) = A[cosh a cos ax + cos a cosh ax] ( 3 .36a) 

2A cos a cosh a cosec ~ sin py (3.36b) 

and 

2A cos a cosh a cosec ~ sin ~y (3.36c) 

Similarly, for antisymmetric modes, the characteristic equation and 

the mode shapes are: 

a3 (coth a - cot a) - 2q1~ cot ~ 0 (3.37) 

U(x) A(sinh a sin ax + sin a sinh ax) (3.38a) 

V1 (y) = 2A sin a sinh a cosec~ sin ~y (3.38b) 

-2A sin a sinh a cosec ~ sin ~y ( 3. 3 8c) 

Orthogonality of Modes 

The following analysis demonstrates the orthogonality of the modes 

of vibration. Let wi and Ui(x), v1 i(y), v2 i(y) be the natural frequency 

and mode shape for the ith mode. 

th correspond to the k mode. Substitution into equations (3.23a, 



b and c) gives: 
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4 
m1L 2 

- -E I w.U.(x) 
1 1 1 1 

2 2 

0 

d v2i (y) m2h 2 

2 
+ -k- w. v

2
. (y) = o 

dy 2 1 1 

and, 

0 

0 

0 

From these equations, one obtains 

4 
m1L 2 

E I 
(w. 

1 1 
1 

1 

2 f wk) 
-1 

1[ 2 2 l 2 d v1i d v1k m2h r --2- v1k - 2 v1 i dy+ -k-n dy dy 2 

(3.39a) 

(3.39b) 

( 3. 3 9c) 

( 3 .40a) 

(3.40b) 

(3.40c) 

= 0 ( 3 .41a) 

(3.41b) 
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0 (3.41c) 

Next, integrate the first integrals in these equations by parts, and 

apply the appropriate boundary conditions, to obtain 

[

d3Ui d3Uk lx=1 

3 uk - 3 uil -
dx dx 1 x=-

( 3 .42a) 

0 (3.42b) 

2 
m2h 2 2 

+ E (w. - wk) f 
212 1 'b 

1 

0 (3.42c) 

However, 

U(x=1) = V
1 

(y=1) 

U(x= -1) V
2

(y=1) 

E1I1 d3U 
(x=1) = 

k2 dV1 (y=1) 
L3 dx 3 h dy 

E1I1 d 3U 
(x= -1) = 

k2 dV2 (y=1) 
L3 dx 3 h dy 

---·- --------------
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Hence, equations (3.42a,b,c) can be combined to obtain 

1 

uiukdx + ~h J v1 iv1kdy (3.43) 

1 1 1 

m1L 11 UiUkdx + ~h J V1iV1kdy + ~h J V2iV2kdy 0 (3.44) 

Thus, the modes are orthogonal, with the orthogonality condition 

given by equation (3.44). 

Participation Factors for Earthquake Ground Motion 

The equations of motion, including earthquake ground motion, for 

the roof and the walls can be written as: 

4 4 2 4 
a u(x, t) m1L a u(x, t) m1 L •• 

(3.45a) + E! u <t> 
ax 4 E1I1 at2 1 1 g 

2 2 2 2 
a v1(y,t) m2h a v1(y,t) m2h 

( t) (3.45b) 
al k2 at 2 k2 

u 
g 

and, 

2 2 2 2 
a v2(y,t) m2h a v2 (y, t) m2h •• 

(3.45c) 
ay2 k2 at 2 

-k- u (t) 
2 g 
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where u (t) is the earthquake ground acceleration in the z'-direction. 
g 

Expanding the response in terms of the normal modes of the system 

CD 

u(x,t) 
J;l 

U.(x)T.(t) 1 1 (3.46a) 

CD 

v1 (y,t) = 
J;l 

vli(y)Ti<t> (3.46b) 

and 

CD 

v2 (y,t) = 
J;l 

v2 .<y>T.<t> 1 1 (3.46c) 

Substituting these into equations (3.45a,b,c) yields 

d4U. 4 4 

[ 1 m1L 
[ U.T. 

m1 L •• 
-4- T. + 'E"I u (t) 
dx 

1 E1I1 1 1 1 1 g 1 1 
(3.47a) 

2 2 2 

[ 
d vli m2h 

[ v1 .T. 
m2h •• 

dy2 Ti 
= -k- u (t) 

k2 1 1 
1 1 2 g 

(3.47b) 

and, 

2 2 2 d v2 . m2h m2h •• 
[ __ 1T. [ v2 .T. = -k- u (t) 

dy2 1 k2 1 1 
1 1 2 g 

(3.47c) 

Substitution from equations (3.39a,b,c) gives 

[[ui(x)~·i(t) + w:U.(x)T.(t)] = -u (t) 1 1 1 g 1 
(3.48a) 



and 
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[ [ V 1 . ( y) ~·. ( t) + w :v 
1 

. ( y) T. ( t)] = -u ( t) 
i 1 1 11 1 g 

-u (t) 
g 

(3.48b) 

(3.48c) 

Next, multiply equation (3.48a) by ~L Uk(x), equations (3.48b,c) by 

m2hV1k(y) and m2hV2k(y) respectively, integrate and add together to get 

~ [ ("1LJ
1 

U;(x)Uk(x)dx + "'2h [vli(y)V1k(y)dy + "'2h [v2 ;(y)V2k(y)d~ • 

• ( Ti (t) + w~ Ti(t))] 

(3.49) 

Finally, one applies the orthogonality condition to obtain 

• ( T 2T k + 00k k) 

(3.50) 

or 
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(3.51) 

where Pk is the participation factor corresponding to the kth mode, 

given by 

1 1 1 

1 1 1 
(3.52) 

+ m2hJ<v1k(y))2dy + m2hJ (V2k (y)) 2dy 

Mode shapes from equations (3.31a,b,c) and (3.34a,b,c) can be 

substituted to obtain modal participation factors corresponding to a 

particular mode. For antisymmetric modes, substitution from equations 

(3.34a,b,c) into equation (3.52) gives zero modal participation factors. 

Hence, as could be anticipated, the assumed uniform ground motion does 

not excite antisymmetric modes in this symmetric structure. 

3 • 5 PERTURBATION METHOD FOR FUNDAMENTAL NATURAL FREQUENCY 

In the previous section, the characteristic equations obtained for 

the natural frequencies of the building are transcendental in nature, 

and have to be solved numerically. Although it is not difficult to 

solve these equations on a programmable calculator, it is of interest to 

have a simpler way of solving them, even if the solution is approximate. 

In this section, it is shown that one can use perturbation theory to 

obtain the fundamental natural frequency of the system without having to 

solve the equation numerically. In many applications, the fundamental 
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frequency may be the only frequency of real concern, as most one-story 

structures are rather stiff and have high frequencies of vibration. 

For a long, narrow one-story building with only two end walls in 

the transverse direction, the fundamental natural frequency of the 

building is close to the fundamental natural frequency of the roof when 

treated as a pinned-pinned beam. Thus, one can take the simple solution 

for the simply-supported beam as the unperturbed solution for such 

buildings, and seek the first order correction term in order to obtain 

an approximate solution for the first natural frequency of the whole 

system. 

Let w
0 

be the fundamental natural frequency of the roof when 

treated as a pinned-pinned beam (e.g., Meirovitch, 1975). Thus, 

= 

which gives, 

= ~ 
2 

Let the correct solution for equation (3.29) be a. Then, 

(3.53) 
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a ( 3 .54) 

where a1 is the first order correction term and is small compared to a. 

The analysis then proceeds on the basis that terms containing higher 

powers of a1 can be neglected. From equation (3.24) 

= 

or, 

2 2 
f3 = p(ao + al) p(lL + nal) 4 (3.55) 

where, 

2) (~El Il: p 
m1t 2L 

(3.56) 

Since al is small, 

sin a sin(~ + al) = cos a1 
~ 1 

7t 
al) cos a cos (2 + = -sin a1 

~ - al 

sinh a sinh (!!. + 
2 al) 

sinh !!. cosh a1 + cosh !!. sinh a1 2 2 

<!:1 2.3013 + 2.5092a1 

and, 

cosh a = cosh (~ + al) 

<!:1 2.5092 + 2.3013a1 
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Substitution of these into equation (3.29) gives a linear equation in 

= 

2 
(15.28 + 17.84q2) sin (~ p) + 6.19pq1q2 cos 

(3.57) 

[(29.18 + 36.48q2 - 19.45p
2

q1q2 ) sin 

+ (47.99- 19.45q1 + 56.04q2 + 7.88q1q2)p cos (~ p)l 

Here p,q1 ,q2 are functions of the structural properties and have been 

defined earlier. Substitution of these into this equation gives the 

correction to be applied to ao, i.e., 

a = 

The frequency of the first mode of vibration is found from a via equa-

t ion ( 3. 2 4) • 

Neglecting the torsional rigidity of end walls (q2 -7 0), the equa

tion (3.57) can be simplified further to 

15.28 sin 
( 3. 58) = 2 2 

29.18 sin (~ p) + (47.99- 19.45q1)p cos (~ p) 

Similar expressions can be obtained for antisymmetric modes of 

vibration. For this, the unperturbed solution (a0) can be obtained from 

the natural frequency for the first antisymmetric mode of the roof when 

treated as a pinned-pinned beam. 
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3.6 OTHER CASES OF SINGLE-STORY BUILDINGS 

A particularly simple structure was chosen in section (3.4) to 

demonstrate the method. However, the technique is more general and can 

be applied to other single-story buildings. This section explains how 

some of the more general problems can be formulated and solved. 

3.6.1. Symmetric Buildings with End Shear Walls and Distributed 
Columns 

In the previous section, any columns between the end walls were 

assumed to take only vertical loads. However, one can easily include 

the lateral stiffness of these columns in the analysis. In this case, 

the roof and the end walls can be treated as bending and shear beams, 

respectively, as was done in section (3.4). The columns between the end 

walls can be modelled by uniformly distributed, thin columns with only 

bending flexibility, provided the spacing between adjacent columns along 

the x'-axis is not large. This leads to boundary conditions at the top 

end of the columns similar to those discussed in section (3.3.3). 

Consider one such building (Figure 3.8). Let w(x',y',t) be the 

displacement at timet, in the z'-direction, of a point (x',y') in the 

continuum modelling the columns. Let E3 be the modulus of elasticity, 

I• 3 be the moment of inertia per unit width and m• 3 be the mass per unit 

area (in elevation) of the column continuum. Properties for the walls 

and the roof are the same as defined in section (3.4). The governing 

equations for free vibrations in the nondimensional coordinates are: 
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Figure 3.8. (a) ONE-STORY BUILDING WITH END SHEAR WALLS AND DISTRIBUTED 
COLUMNS. (b) DISTRIBUTED IDEALIZATION. 
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a 4u(x, t) 
4 2 * 4 3 m1L a u(x,t) E3r3L a w(x.y=l.t) 

+ 
ax 4 Elll at2 3 

al E1I 1h 
(3.59a) 

2 2 2 
a vl(y,t) m2h a v1 (y,t) 

0 = 
ay2 k2 at2 (3.59b) 

2 2 2 
a v2(y,t) m2h a v2(y,t) 

0 = 
ai k2 at 2 ( 3. 5 9c) 

and 

* 4 2 4 m3h a w(x,y, t) 
+ 

a w(x,y.t) 
= 0 

ay4 * at 2 
E3I3 

( 3 .s 9d) 

Considering only the right half of the structure, the following are 

the boundary conditions: 

( i) v1 ( y=O, t) 0 

( ii) w(x,y=O,t) 0 

(iii) aw 0 ay (x,y=O,t) = 

(iv) 
a2w 

0 2(x,y=l,t) = 
ay 

( v) u(x=l, t) v
1 

(y=l, t) 

(vi) u''(x=l,t) 0 

(vii) U 1 1 1 (X =1 1 t) 

(viii) u(x,t) = w(x,y=l,t) 

( ix) u'(x=O,t) 0 (for symmetric modes) 

u(x=O,t) 0 (for antisymmetric mode) 

(x) u'''(x=O,t) 0 (for symmetric modes) 
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u''(x=O,t) 0 (for antisymmetric modes) 

Here condition (iv) is valid if the columns are free to rotate at their 

top ends. However, when there are rigid beams connecting the columns 

along the z'-axis, this cannot be applied; such a case is discussed in 

the next sub-section. Condition (vi) corresponds to zero torsional 

stiffness of the end walls. 

The above differential equations and the boundary conditions can be 

combined together and solved. The resulting characteristic equations 

and mode shapes are given below: 

(a) Symmetric Modes 

The characteristic equation is given by 

(i) For a4 > 0: 

3 a (tan a + tanh a) - 2q1 ~ cot ~ = 0 

(H) For a4 < 0 

where 

4 
a 

~2 

4~3 (cosec 2C + cosech 2C) 
~ (tan ~ tanh ~ + cot ~ coth ~) + ql~ cot P 

E I* L4 3 3 3 x (1 + cos x cosh x> 
3 (sin y cosh y - sinh y cos y) 

E1I 1h 

( 3 .60a) 

0 ( 3. 60b) 

(3.61a) 

( 3. 61b) 
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• 4 
4 

m
3

h 
2 

'Y :: ~(I) 
3 3 

~4 
4 

:: SL 
4 

The mode shapes are 

U(x) = A[cos ax + cosh ax] 
cos a cosh a 

4 for a >O 

U(x) A[sin ~x sinh ~x + cot ~ coth ~ cos ~x cosh ~x] 

W(x, y) 

2A cosec ~ sin ~y 
4 for a >O 

A cosec ~ cos ~ cosh ~ (tan ~ tanh ~ 

+ cot ~ coth ~) sin py 4 for a <O 

C(x)[si~ XY- sinh XY _cos XY- cosh ;v] 
s1n r + sinh r cos r + cosh 

C(x) U(x) (sin X+ sinh x)(cos x +cosh x> 
2(sin r cosh r - cos r sinh y) 

and A is an arbitrary constant. 

(b) Antisymmetric Modes 

(3.61c) 

(3.61d) 

(3.62a) 

(3.62b) 

(3.62c) 

(3.62d) 

(3.62e) 

(3.63) 

For the antisymmetric modes, the characteristic equation is given 

by 

(i) For a4 > 0: 
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3 
a (coth a - cot a) - 2q1~ cot ~ = 0 

(H) For a 4 < 0 : 

3 (cosec 2C - cosech 2C) + 
4~ (tan ~ coth ~ + cot ~ tanh ~) ql~ cot ~ 

where a,~ and~ are given by equations (3.61a,b,c,d). 

The mode shapes are given as follows: 

U(x) A[si_n ax + sinh ax] 
s1n a sinh a 

4 
for a >O 

0 

U(x) A[sin ~x cosh ~x + cot ~ tanh ~ cos ~x sinh ~x) 

4 for a <O 

2A cosec ~ sin ~y 
4 for a >O 

V1 (y) = -V2 (y) =A cosec~ cos~ sinh~ (tan~ coth ~ 

W(x,y) 

where, 

+ cot ~ tanh ~) sin ~y 

= C(x)[si~ XV- sinh XV 
S1n y + sinh y 

cos xv - cosh 
cos y + cosh ~] 

C(x) = U(x) (sin Y +sinh y)(cos y +cosh y) 
2(sin y cosh y - cos y sinh y) 

and A is an arbitrary constant. 

( 3 .64a) 

( 3. 64b) 

(3.65a) 

(3.65b) 

(3.65c) 

(3.65d) 

(3.65e) 

(3.66) 

The orthogonality condition and the modal participation factors can 

be obtained following a procedure similar to the one used in section 
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(3.4). Again it will be found that all antisymmetric modes have zero 

participation factors for uniform ground motion. 

3.6.2 Symmetric Buildings with End Shear Walls and Distributed 
Portal Frames 

This situation is similar to the previous case, except that now 

there are transverse beams (along the z'-direction) that connect the 

columns at the roof level. Thus, the columns aligned with the z'-axis, 

along with the corresponding beam on top, act as a portal frame and the 

top end of the column is not free to rotate. Therefore, the boundary 

condition (iv) of section (3.6.1) is no longer applicable. Instead, 

another boundary condition can be found from the analysis of portal 

frames that gives a relation between the moment and the angle of rota-

tion in the column at y = 1. For instance, if the beam is much more 

rigid than the columns, no end rotation will be allowed at the top end. 

In that case, condition (iv) in the previous section will be replaced by 

aw (x,y=l,t) 0 ay 

The rest of the boundary conditions of the previous case are the same, 

and hence, the problem can be solved following a similar procedure. 

However, in this type of building, another complication may arise 

if there are longitudinal roof beams as well, and the junctions between 

the longitudinal and transverse beams are designed to resist moment. In 

that case, the beam grid at the roof level acts as a shear beam, and 

hence, it becomes necessary to treat the roof as a bending-shear beam. 



- 84 -

On the other hand, such a beam grid tends to make the roof diaphragm 

quite stiff, and it may be possible to treat the roof as a rigid 

diaphragm. This makes the problem considerably simpler. 

3.6.3 Buildings with Two Similar End Walls and One Wall in the Center 

One-story buildings with only end walls may have very large lateral 

displacements at the mid-span of the roof during an earthquake. One 

effective and convenient way to control this is to add another wall in 

the center. Consider one such structure (Figure 3.9). Let k 3 (=k'A G ) 3 3 

and m3 be the shear rigidity and the mass per unit height, of the wall 

in the center. The properties for the roof and the end walls are the 

same as in section (3.4). The dynamic equations of motion for the free 

vibrations, in terms of dimensionless coordinates x andy, are: 

and 

4 a u(x, t) 

ax 4 

2 
a vl(y,t) 

al 

2 
a v2(y,t) 

ay2 

a2w(y,t) 

ay2 

+ 

4 
ml L a 2u(x, t) 

= 0 
Elll at2 

2 2 m2h a v
1 

(y,t) 
0 = 

k2 at2 

~h2 2 
a v2(y,t) 

0 = 
k2 at2 

= 0 

(3.67a) 

(3.67b) 

(3.67c) 

(3.67d) 
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Figure 3.9. MODEL OF A ONE-STORY BUILDING WITH TWO END WALLS AND ONE 
WALL IN CENTER. 
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where w(y,t) is the displacement in the center wall. 

Since the structure is symmetric, the symmetric and antisymmetric 

modes can be analyzed separately, and only the right half of structure 

need be considered. Following are the boundary conditions applicable to 

the right half of the structure: 

( i) 

( ii) 

(iii) 

( iv) 

( v) 

(vi) 

(vii) 

(viii) 

v1 (y=O,t) = 

w(y=O,t) = 

u 1 (x=O,t) = 

u(x=O,t) = 

U 11 '(x=O,t) 

u 11 (x=O,t) 

where, q
3 

= 

0 

0 

0 (for symmetric modes) 

0 (for antisymmetric modes) 

= ~ q3w1 (y=l,t) (for symmetric modes) 

= ~ q4u 1 (x=O,t) (for antisymmetric modes) 

k L
3 

3 

and, c3 is the torsional rigidity of the center wall. 

u(x=O,t) = 

u(x=l, t) = 

U I 
1 1 (X =1 1 t) 

U I I (x=l, t) 

w(y=l,t) 

v1 ( y=l, t) 

= ql VI ( y=l, t) 

-~u 1 (x=l,t) 

Equations (3.67) and the boundary conditions, as above, can be 

combined and solved to obtain the governing characteristic equations for 

the symmetric and antisymmetric modes as was done in section (3.4). 

However, this involves a considerable amount of algebra. 
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The method developed in this chapter can be applied to even more 

complex structures than those analyzed herein. The principal limitation 

is that as the structures get more complex, the algebra gets consider

ably more involved; and as a result the method loses the advantage of 

being simple. Even under these circumstances, there may be instances 

when the method is preferable to the finite element or lumped-mass 

methods. 

3.7 NUMERICAL EXAMPLE 

In order to illustrate the method described in this chapter, a 

single-story building with two identical end walls has been analyzed 

numerically to determine natural frequencies and mode shapes. The solu

tion also allows comparison of natural periods obtained using several 

assumptions, e.g., neglecting the torsional stiffness of the end walls, 

etc. 

For convenience, the properties for the example structure have been 

derived from the top story of the two-story Administrative Building at 

Arvin High School, discussed in the previous chapter. The appropriate 

data have been obtained from Steinbrugge and Moran (1954), Blume, et Al· 

(1961), and Blume and Jhaveri (1969). The following are the building 

properties taken for the analysis: 

Roof: span (2L) 

weight (m1g) 

modulus of elasticity (E1 ) 

= 

= 

197 .o ft 

3770 lbs per ft 

2.0 X 106 
psi 
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moment of inertia (11) = 66.2 X 10
6 (in) 4 

End Wall: height (h) 14'-11" 

weight (m2g) = 3300 lbs per ft 

shear modulus (G2) 0.855 X 10
6 

psi 

area of cross section (A2) = 3160 sq in 

shape factor (k,) = 0.833 

width of wall (b) = 352 in 

thickness of wall (c) = 9.0 in 

The characteristic equations (3.29) and (3.32) for symmetric and 

antisymmetric modes, respectively, were solved for these properties. 

The roots give the natural frequencies for the example structure. In 

addition, characteristic equations (3.35) and (3.37), which correspond 

to zero torsional stiffness of the end walls, have been solved. 

Finally, equation (3.57) was used to approximate the fundamental 

frequency using the perturbation method. The natural periods obtained 

as indicated above and from modelling the roof by a pinned-pinned beam 

are given in Table (3.3). A comparison of these periods indicates that 

neglecting the torsional stiffness of the end walls does not introduce 

any significant error in the calculation of the lower frequencies. 

Also, in this example the perturbation method gives a very good estimate 

for the fundamental period, while avoiding the need to solve the 

transcendental characteristic equation. 
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TABLE 3 .1. NATURAL PERIODS FOR THE SINGLE-STORY BUILDING 

!Torsional I Roof IPerturba-
I Stiffness I Modelled I tion 
I of Wall as Pinned- I Method Included Pinned Beam 

(Sec) I (Sec) (Sec) 

I First symmetric mode 0.283 0.283 I 0.279 0.280 
I 

First antisymmetric mode 0.0743 0.0744 I 0.0697 

Second symmetric mode 0.0367 0.0367 I 0.0310 

I I 
Second anti symmetric mode 0.0246 0.0246 I 0.0174 

I I 
I Third symmetric mode 0.0185 0.0185 I 0.0111 
I I 
I Third antisymmetric mode 0.0135 0.0135 0.0077 

The mode shapes have been obtained using equations (3.31) and 

(3.34) and the first six are given in Table (3.4), while the first four 

are plotted in Figure (3.10). It is obvious from these mode shapes that 

the floor flexibility dominates the dynamic response of this example. 

For instance, in the fundamental mode, the center of the roof moves 45 

times as much as the ends of the roof. 

The modal participation factors for the symmetric modes were 

obtained from equation (3.52), and are given in Table (3.4). They are 

normalized by the displacement of the top of the end walls. The low 

numerical value for the participation factor for the first mode does not 

imply a relatively small contribution from that mode, because the 

participation factors depend on the way the mode shapes are normalized. 
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FIRST TRANSLATI~NAL M~OE (T= 0.283 SECJ 
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FIRST T~RSI~NAL M~OE (T= 0. 074 SECJ 
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SECOND TORS IONAL M~DE iT= 0. 025 SECJ 

Figure 3.10. MODE SHAPES FOR THE SINGLE-STORY BUILDING. 
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TABLE 3.4. MODE SHAPES AND PARTICIPATION FACTORS FOR THE ONE-STORY 
BUILDING 

I First I First I Second I Second I Third I Third 
!Symmetric trorsional !symmetric trorsional !symmetric trorsional 
I Mode I Mode I Mode I Mode I Mode I Mode 

I U(x=O) 
I U(x=0.1) 
I U(x=0.2) 
I U(x=0.3) 
I U(x=0.4) 
I U(x=O .5) 
I U(x=0.6) 
I U(x=0.7) 
I U(x=0.8) 

1

1 

45.36 
44.81 

I 43.19 
1

1 

4o .53 

I 
36.89 
32.37 

I 21.os 
I 21.15 
I 14. n 

U(x=0.9) 
U(x=1.0) 
v_1 < y=l.O > 
v:- ( y=O. 9) 5 (y=O .8) 
5(y=O. 7) 
v:- ( y=O • 6 ) I 

I 5 (y=O .5) 

1 I 

I v:- ( y=O • 4 ) I 
I \ri<y=o.3> I 
I v:- ( y=O • 2 ) I 
I 5<y=0.1) I 
I v:- ( y=O) I 

Partie-
ipation 
Factor 

7.94 
1.00 
1.00 
0.90 
0.80 
0.70 
0.60 
0.50 
0.40 
0.30 
0.20 
0.10 
o.oo 

0.0283 

0.00 
1.51 
2.88 
3.99 
4.76 
5.09 
4.98 
4.43 
3.52 
2.33 
1.00 
1.00 
0.90 
0.80 
0.70 
0.60 
0.50 
0.40 
0.30 
0.20 
0.10 
0.00 

o.oo 

-1.32 
-1.20 
-0.85 
-0.33 

0.25 
0.80 
1.23 
1.47 
1.48 
1.30 
1.00 
1.00 
0.91 
0.81 
o. 72 
0.62 
0.52 
0.42 
0.31 
0.21 
0.11 
o.oo 

0.412 

I 

0.00 
-0.30 
-0.51 
-0.58 
-0.49 
-0.25 

0.08 
0.42 
0.70 
0.89 
1.00 
1.00 
0.91 
0.83 
0. 74 
0.64 
0.54 
0.44 
0.33 
0.22 
0.11 
o.oo 

o.oo 

I 

0.51 
0.42 
0.18 

-0.12 
-0.37 
-0.48 
-0.40 
-0.14 

0.23 
0.63 
1.00 
1.00 
0.94 
0.86 
0.78 
0.68 
0.58 
0.47 
0.36 
0.24 
0.12 
o.oo 

0.650 

I 

o.oo 
0.44 
0.66 
0.56 
0.20 

-0.26 
-0.58 
-0.58 
-0.24 

0.34 
1.00 
1.00 
0.98 
0.93 
0.86 
0.78 
0.68 
0.56 
0.43 
0.29 
0.15 
0.00 

0.00 

The antisymmetric modes, as expected, have zero modal participation fac-

tors for uniform ground motion. 
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CHAPTER IV 

TW<r-STORY BUILDINGS WITH FLEXIBLE FLOORS 

4.1 INTRODUCTION 

The dynamic behavior of two-story, long, narrow buildings, like 

similar single-story buildings, is of significant interest to structural 

engineers due to their frequent use as office, school or hospital 

buildings. One such two-story school building was damaged during the 

1952 Kern County earthquake, and has been discussed in Chapter II. The 

discussion in Chapter III about the dynamic behavior of single-story 

buildings is also valid for similar two-, three-, or more-story 

buildings and is not repeated here. 

It will be shown in this chapter that the techniques developed for 

the single-story buildings can be applied to these buildings as well. 

The problem that arises in treating the multistory structures with the 

previously discussed methods is that the algebra tends to get very 

complicated with the increased number of stories. Hence, beyond a cer

tain number of stories, this method loses the advantage of simplicity. 

For such situations, less accurate but simple and economic, methods are 

presented in the following chapters. 

A two-story building, with identical end walls and no other lateral 

load resistance element, is the structure treated in this chapter. A 

characteristic equation for the natural frequencies, and expressions for 

the mode shapes and the participation factors are given in general form. 
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A numerical example, based on the Arvin High School Building, described 

in Chapter II, is used to illustrate the use of the method. 

4.2 TWQ-STORY BUILDINGS WITH TWO IDENTICAL END WALLS 

Consider a two-story building that is long, narrow and has two 

identical end walls (Figure 4.1). Intermediate columns, if any, are 

assumed to take only vertical loads and provide no lateral resistance. 

The roof and the floor, having large span to width ratios, are treated 

as bending beams. The end walls are presumed to have small height to 

width ratios and are modelled as shear beams. 

Although it is possible to consider different story heights and 

different wall properties in the first and the second story, for 

simplicity of analysis it has been assumed that the two story heights 

are the same, and that the walls are uniform throughout the building 

height. Let 2L be length of the roof and the floor, and h be the story 

height. Let the following be the roof, floor and wall properties, 

assumed to be uniform. 

E1 ,E
2 

=Young's modulus for the floor and the roof, respectively. 

I
1
,I2 =Moment of inertia of floor and roof cross sections, 

respectively. 

k
3 

= k'A3G
3 

= Shear rigidity of wall cross-section. 

k' = Shape factor 

A
3 

= Area of cross-section of the wall. 

G
3 

= Shear modulus of the wall. 
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2L 

T 
h 

I w2 (y',t) y 

xl 

h 
I 

1 z 

Figure 4 .1. MODEL OF A '!W(}-STORY BUILDING WITH 'IWO END WALLS. 
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m1 ,m2 ,m3 = Mass per unit length of floor, roof and wall, 

respectively. 

Since the structure is symmetric about the y'-axis, it is possible 

to separate the vibrational modes into symmetric and antisymmetric 

modes. It is convenient to consider only the right half of the 

structure, and to treat the symmetric and antisymmetric modes 

separately. Let u(x',t), v(x',t), w
1
(y',t) and w2(y',t) be the dis-

placements in the z'-direction in the floor, roof, and the first and the 

second story of the right end wall, respectively. The equations of 

motion for free vibrations of the right half of the structure are: 

4 2 
Elil 

a u(x' ,t) = -ml 
a u(x',t) 

ax'4 
at2 

( 4.1a) 

4 2 
E2I2 

a v(x'.t) = -m2 
a v(x',t) 

ax'4 at2 
(4.1b) 

k3 

a 2
w

1 
(y' 1 t) a 2

w
1 

(y' 1 t) 

ay'2 
m3 

at2 
(4.1c) 

and 

= ( 4.1d) 

It is useful to perform the further analysis in terms of dimensionless 

coordinates, x and y, defined as 
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= L. 
L 

y L 
h (4.2) 

Using these coordinates, the equations of motion can be rewritten as 

4 4 
a u(x, t) 

= 
mlL a 2u(x, t) 

ax 4 Elil at
2 (4.3a) 

4 4 
a v(x,t) m2 L a 2 v ( X , t ) 

= 
ax 4 E2I2 at2 (4.3b) 

2 2 2 
a wl (y,t) m3 h a w 1 ( y, t) 

= 
ay 2 k3 at2 (4.3c) 

and, 

2 2 2 
a w2(y,t) m3h a w2(y,t) 

(4.3d) 
al k3 at2 

The analysis uses the method of separation of variables to solve 

the problem of free vibrations of the system. Let 

u(x,t) U(x) iwt 
(4.4a) = e 

v(x,t) V(x) iwt 
(4.4b) e 

w1 (y,t) wl (y) 
iwt (4.4c) = e 

w2 (y,t) w2 (y) 
iwt (4.4d) = e 

where w is the natural frequency of the motion. Substitution into equa-

tions (4.3a,b,c,d) gives 
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d4U a 4U 0 (4.5a) 
dx4 

d4V f}4V 0 (4.5b) 
dx

4 

d2W 
2 __ 1 + 

0 (4.5c) 
dy2 

r wl 

d2W 
2 __ 2 + 

0 (4.5d) 
dy2 

r w2 

where, 

4 4 2 
4 

m1L 
2 f}4 

m2L 
2 and 2 

m3h 2 
a = w = w 'Y = --w 

El Il E2I2 k3 
(4.6) 

The solutions for the above equations are: 

U(x) = Al sin ax+ ~ cos ax + A3 sinh ax + A4 cosh ax (4. 7a) 

V(x) Bl sin f}x + B2 cos f}x + B3 sinh f}x + B4 cosh f}x (4.7b) 

wl (y) = cl sin yy+ c2 cos yy (4.7c) 

w2 (y) = Dl sin 'YY + D2 cos yy (4.7d) 

Here, the A's, B's, C's and D's are constants to be determined from the 

boundary conditions of the problem. The appropriate boundary conditions 

and solutions for the symmetric and the antisymmetric modes of the 

structure are listed below. 
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(a) Symmetric Modes 

For the symmetric (i.e., translational) modes, the boundary condi-

tions are: 

( i) 
dU (x=O) = 0 dx 

(H) 
d3U (x=O) = 0 
dx3 

(iii) f (x=O) = 0 

(iv) 
d3V (x=O) 0 
dx3 

(v) W1 (y=-1) 0 

(vi) W1 (y=O) U(x=l) 

(vii) W2 (y=O) = U(x=l) 

(viii) W2 (y=l) = V(x=l) 

(ix) 
3 dW2 (y=O) dW1 (y=O) d U(x=l) 

+ ql - ql = 0 
dx3 dy dy 

where, 

( 4. 8) 

(x) 

where, 
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k L3 

q2 
_3_ 

(4.9) E2I 2h 

(xi) d2
U (x=1) = 0 

dx2 

d2V (x=1) = 0 
dx2 

(xii) 

The last two conditions correspond to zero torsional stiffness of the 

end walls. One can write the boundary conditions for finite torsional 

stiffness of the end walls, as shown in section (3.3.2), but the example 

problem in the previous chapter suggests that this complexity is not 

required. 

The boundary conditions (i) and ( ii) require: 

A1 = A3 = 0 (4.10) 

Similarly, from (iii) and ( iv), 

B1 B3 0 (4.11) 

From (xi) and (xii), respectively, 

A2 cos a A4 cosh a (4.12) 

and, 

B2 cos ~ = B4 cosh ~ (4.13) 

Thus, 
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U(x) 

V(x) B ( Ax + cos 6 cosh Ax) = 2 cos P cosh j3 P 

From (vi) and (vii), respectively 

2A
2 

cos a 

and, 

= 2A
2 

cos a 

From (v) and (viii), respectively 

-c1 sin r + c2 cos r = o 

and, 

Conditions (ix) and (x) give, 

and, 

A
2

a 3 [sin a + cos a "nh ] + D C coshas 1 a qlyl-q1y1 

B
2

J3 3 [sin j3 + cos ~ sinh j3] 
cosh 

= 

These equations can be combined to obtain 

characteristic equation: 

(4.14) 

(4.15) 

(4.16) 

(4.17) 

(4.18) 

( 4 .19) 

0 (4.20) 

(4.21) 

the following 
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_a:_ [2 - ~ (tan a+ tanh a)tan r]<tan ~ + tanh ~)sin r 
2q2y 2q1y 

3 
+_a __ (tan a + tanh a)sin r + tan r sin r - cos r = 0 

2q1y 

Here, a, ~andy are known functions of w (equations 4.6), 

(4.22) 

and 

and q2 are known parameters for a given structure (equations 4.7, 4.8). 

Thus, equation (4.22) can be solved to obtain the natural frequencies of 

the symmetric modes of vibration of the structure. The mode shapes are 

given by 

U(x) = ~(cos ax+ CQS g cosh ax) O~x~1 cosh a (4.23a) 

V{x) = B2 (cos ~X + 
cos H cosh ~x) O~x~1 cosh !3 (4.23b) 

w1 (y) = c1 sin yy+ c2 cos yy -1~y~O (4.23c) 

w2 (y) = D1 sin yy + D2 cos yy O~y~1 (4.23d) 

where, 

~ = ~2 c1 sec a tan r (4.24a) 

3 1 
_g__ (tan a+ tanh a)tanrlc

1 2q1y J ( 4.24b) 

(4.24c) 

( 4 .24d) 
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D2 = c1 tan y (4.24e) 

The mode shapes for the left half of the structure can be obtained 

from the conditions of symmetry. 

U(x) = ~(cos ax+ 
cos a cosh ax) -1~x~1 (4.2Sa) cosh a 

V(x) B2 (cos ~X + 
cos ~ cosh j3x) -1~x~1 ( 4 .2Sb) cosh 13 

w1 (y) W3(y) = c1 sin yy+ c2 cos yy -1~y~O (4.2Sc) 

w2 (y) = W4(y) = D 1 sin yy + D2 cos yy O~y~1 ( 4.2Sd) 

where w3 (y) and W4 (y) correspond to the displacements in the left end 

wall in the first and the second story, respectively. 

Thus, for a given natural frequency (obtained from equation 4.22), 

the symmetric mode shapes can be obtained from equations (4.24) and 

(4.25). 

(b) Antisymmetric Modes 

For antisymmetric (i.e •• torsional) modes of vibration, the 

boundary conditions are: 

( i) U(x=O) 0 

( ii) 

(iii) V(x=O) = 0 
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(iv) 0 

( v) w (y=-1) 1 0 

(vi) W1 (y=O) = U(x=1) 

(vii) W2 (y=O) = U(x=1) 

(viii) W2 (y=1) = V(x=1) 

(ix) 
3 dW2 (y=O) dW1 (y=O) d U(x=1) 

+ q1 - q1 = 0 
d.x 3 dy dy 

(x) 

(xi) 
2 d U(x=1) 

dx2 
0 

(xii) = 0 

where q1 and q2 are given by equations (4.8) and (4.9), respectively. 

The last two conditions correspond to zero torsional rigidity of the end 

walls. 

These boundary conditions can be applied to the solutions of the 

differential equations (equations 4.7), to obtain the following 
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characteristic equation and mode shapes: 

L 
[2 -

3 
(-cot a+ coth a)tan rl(-cot 

_g__ 13 + coth 13) sin r 2q2r 2q1y 

3 
+_a_ (-cot a + coth a)sin r + tan r sin 1 - cos 1 = 0 

2q1y 
(4.26) 

U(x) = A1 (sin ax + sin a sinh ax) -1~x~1 sinh a (4.27a) 

V(x) B1 (sin jlx + sin ~ sinh l3x) -1~x~1 sinh 13 (4.27b) 

w1 (y) = c1 sin yy + c2 cos 1Y -Hy~O (4.27c) 

w2 (y) D1 sin yy + D2 cos 1Y O~y~1 (4.27d) 

w3 (y) = -c sin yy- c2 cos 1Y -1~y~O 1 
(4.27e) 

W4(y) = -D sin yy - D2 cos yy O~y~1 1 
(4.27f) 

where, 

~ c1 cosec a tan r (4.28a) 

+- 3 1 
B1 = 3h, cosec 13 sin 

_a_ 
(-cot a + coth a)tan r~ c1 2q1y 

( 4.2 8b) 

c2 = c1 tan r (4.28c) 

[1 -
3 

(-cot a + coth a) tan rlc1 Dl = 
_A_ 

2qly 
( 4.2 8d) 
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(4.28e) 

The roots of equation (4.26) produce the natural frequencies for 

the antisymmetric modes of the structure. For a particular natural 

frequency, equations (4.27) and (4.28) give the corresponding mode shape 

of the structure. 

Orthogonality of Modes 

The following analysis demonstrates the expected orthogonality of 

the modes of vibration. 

w3 i(y), w4 i(y) be the frequency and the mode shape for the ith mode. 

Simi! arly, 

correspond to the kth mode. Substitution into equations (4.5) gives, 

4 4 d U.(x) m1L 2 1 
0 - ·'E'"I W • U . (X) = 

dx4 1 1 1 1 
(4.29a) 

4 4 d V. {x) m2L 2 1 - 'E'"! w.V.{x) = 0 
dx4 2 2 1 1 

(4.29b) 

2 2 
d w1i (y) m3h 2 

0 +-k-w.W1.{y) = 
dy2 3 1 1 

(4.29c) 

2 2 
d w2i(y) m3h 2 

0 +-k-w.W2.(y) = 
dy2 3 1 1 

( 4.29d) 

2 2 
d w3i(y) m3h 2 

0 +-k-w.W3.(y) = 
dy2 3 1 1 

(4.29e) 
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2 
m3h 2 

+ -k- w.W4.(y) 
3 1 1 

= 0 

Similar equations can be written for vibrations in the 

two sets of equations can be combined to obtain 

f d w~i 0 [ 2 

-1 dy 

and, 

(4.29f) 

th 
k mode. The 

(4.30a) 

( 4 .30b) 

0 ( 4. 3 Oc) 

0 ( 4.30d) 

0 (4.30e) 

0 (4.30f) 

Integrate the first integrals of these equations by parts, and 

apply the appropriate boundary conditions. This gives, 
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x=1 4 1 m
1

L 
2 2 [hi d

3
Uk ] 

11 3 uk - 3 ui E1I1 
(wi-wk) 

dx dx 
1 x=-

x=1 4 1 m2L 2 2 [d3Vi d3Vk ] 
11 3 vk - 3 vi E2I2 

(wi-wk) 
dx dx 

1 x=-

dW1k l 
dy (y=O)W1i(y=O) 

0 

y=1 2 1 

UiUkdx 0 (4.31a) 

ViVkdx 0 (4.31b) 

(4.31c) 

-- W - -- W + -- (w w ) W W d = 0 
[

dW 2 i dW 2 k ] m3 h 2 2 ! 
dy 2k dy 2i y=O k

3 
i- k 2i 2k y (4.31d) 

[dW4i 
dy w4k 

However, from 

dW3k l 
dy (y=O)W3i(y=O) 

0 

dW r=l 2 1 

- _ft w 
m

3
h 

2 2 ! w4iw4kdy +-- (wi-wk) 
dy 4i y=O k3 

the boundary conditions, 

W1 (y=O) = U(x=1), 

W2 (y=O) = U(x=1), 

(4.31e) 

0 (4.31f) 
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W2 (y=1) = V(x=1), W4 (y=1) V(x=-1) 

d3U 
3 3 

(x=1) 
k3L dW2 (y=O) -

y_ dW1 (y=O) 0 +--- = 
dx3 E1 I 1h dy E1 I 1h dy 

d3V 
3 

(x=1) 
k3L dW2 (y=1) 

dx3 E
2

I
2

h dy 

d3U 
3 3 

(x=-1) 
~dW4 (y=O) 

+ y_ dW3 (y=O) = 0 
dx3 E1 I 1h dy E1 11 h dy 

and, 

Equations (4.31) can be combined such that the boundary terms 

cancel, and the following is obtained, 

1 0 

UiUkdx + m2L f ViVkdx + m3h f WliW1kdy 
-1 -1 

(4.32) 
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for i~k, WiFwk. From equation (4.32), it follows that 

1 1 0 

m1L J 
-1 

UiUkdx + m2L J 
-1 

V iVkdx + m3h }
1 

w1iw1kdy 

1 0 1 

+ m3h J w2iw2kdy + m3h J w3iw3kdy + m3h J w4iw4kdy = 0 
-1 

(4.33) 

Hence, the modes of vibration are orthogonal and equation (4.33) 

gives the orthogonality condition. 

Participation Factors for Earthquake Ground Motion 

The equations of motion due to uniform, transverse earthquake exci-

tation can be written as: 

4 
4 4 

m1 L a 2 u (X , t ) m1 L •• a u(x, t) 
+ = E! u <t> 

ax4 E1I1 at2 1 1 g 
(4.34a) 

4 
4 2 4 m2L m2L •• a v(x,t) 

+ 
a v(x, t) = E! u <t> 

ax4 E2I2 at
2 2 2 g 

( 4.3 4b) 

2 2 2 2 
a w1(y,t) m

3
h a W1 ( y 1 t) m3h 

(t) 
ai k3 at2 k3 

u 
g 

( 4 .34c) 

2 2 2 2 
a w2(y,t) m3h a w2(y,t) m3h 

u (t) = 
ai k3 at2 k3 g 

( 4.3 4d) 

2 2 2 2 
a w3(y,t) m

3
h a w3(y,t) m3h 

(t) = u 
ai k3 at2 k3 g (4.34e) 

and 
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2 
m

3
h •• 

-k- u (t) 
3 g 

(4.34f) 

where u
8
(t) is the earthquake acceleration in the z'-direction, w

3
(y,t) 

and w4 (y,t) are the displacements in the first and the second story of 

the left end wall. All other terms have been defined earlier. 

First, expand the response in terms of the normal modes of the 

system. Let 

u(x,t) = (4.35a) 

Q) 

v(x,t) ~1 V.(x)T.(t) 1 1 (4.35b) 

Q) 

w1 (y,t) ~1 w1i(y)Ti<t> (4.35c) 

Q) 

w2 (y,t) ~1 w2 .<y>T.<t> 1 1 ( 4.3 Sd) 

Q) 

w3 (y,t) [ w3 .(y)T.<t> (4.35e) 
1=1 1 1 

Q) 

w4 (y,t) = 
61 

w4 .<y>T.<t> ( 4.3 Sf) 1 1 

Next, substitute these and equations (4.29) into equations (4.34) to 

obtain 
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[ [U.(x)T.(t) 2 
-u (t) + w.U.(x)T . (t)] = 

1 1 1 1 1 g 
1 

(4.36a) 

[ [V.(x)T.(t) 2 
-u (t) + w.V.(x)T.(t)] = 

1 1 1 1 1 g 
1 

( 4.36b) 

[ [W
1

. (y)T. (t) 2 (t) + w.W1 .(y)T.(t)] = -u 
1 1 1 1 1 g 

1 

(4.36c) 

[ [W
2

.(y)T.(t) 2 
(t) + w.W

2
.(y)T.(t)] = -u 

1 1 1 1 1 g 
1 

(4.36d) 

[ [W3 . (y)T. (t) 2 
(t) + w.W3 .(y)T.(t)] -u 

1 1 1 1 1 g 
1 

(4.36e) 

[ [W4 . (y)T. (t) 2 
(t) + w.W4 .(y)T.(t)] = -u 

1 1 1 1 1 g 
1 

(4.36f) 

These equations can be combined to yield 

1 0 

+ m2L J
1 

ViVkdx + m3h J
1 

W1 iw1kdy 

1 0 1 

Ukdx + ~L J
1 

Vkdx + m3h J
1 

w1kdy + m3h J w2kdy 

(4.37) 

Finally, apply orthogonality condition (equation 4.33) to obtain 



- 112 -

= 

th 
where Pk, the participation factor for the k mode, is given by 

p = 
k 

(4.38) 

(4.39) 

For a particular mode, substitution of the expressions for the mode 

shape into equation (4.39) gives the corresponding modal participation 

factor. When antisymmetric mode shapes (equations 4.27) are used in 

this expression, they yield zero modal participation factors. Hence, as 

anticipated in this symmetric structure, a uniform ground motion does 

not excite torsional modes. 

4 • 3 NIDIERI CAL EXAMPLE 

As an illustration of the method described in this chapter, the 

Administrative Building of the Arvin High School has been modelled and 

analyzed in this section. The results of this approximate analysis 

include the natural frequencies, the mode shapes and the modal partici-

pation factors for uniform ground motion. 
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The properties for the structure have been obtained from 

Steinbrugge and Moran (1954), Blume, ~ Al· (1961), and Blume and 

Jhaveri (1969). The shear wall near the center in the first story has 

been neglected because of its small size and the complexities it causes 

in the analysis. The properties of the end walls in the first and the 

second story have been assumed to be the same, and the right and the 

left end walls are taken to be identical. The story height for the 

first and second story has been taken to be the same. 

The building properties used for this example problem are as 

follows: 

Floor: span (2L) = 197 .o ft 

weight (m1g) = 7330.0 lb per ft 

modulus of elasticity (E1) = 2.0 X 10
6 psi 

moment of inertia (Il) = 41.0 X 106 (in) 4 

Roof: weight (m2g) = 3770.0 lb per ft 

modulus of elasticity (E2) 2.0 X 106 psi 

moment of inertia (I2) 66.2 X 106 (in) 4 

Walls: story height (h) = 14.0 ft 

weight (m3g) = 3710.0 lb per ft 

shape factor ( k,) = 0.833 

shear modulus (G3) = 0.855 X 106 psi 

area of cross-section (A3) = 3560.0 sq in 
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The characteristic equations (4.22) and (4.26) for the symmetric 

and the antisymmetric modes, respectively, were solved to obtain the 

natural frequencies of the structure. For these frequencies, the mode 

shapes were obtained using equations (4.23, 4.24) and (4.27, 4.28), and 

equation (4.39) gave the corresponding modal participation factors for 

uniform earthquake ground motion. These results are tabulated in Table 

(4.1), and the first four mode shapes are plotted in Figure (4.2). 

A comparison of the natural frequencies indicates that the first 

natural frequency is close to the fundamental frequency of the second 

floor vibrating as a pinned-pinned beam. Similarly, the second natural 

frequency is approximately equal to the fundamental frequency of the 

roof when treated as a pinned-pinned beam. This second mode period 

(0.29 sec) is in good agreement with the 0.25 sec "horizontal roof

diaphragm period" reported by Blume, tl al. ( 1961) during their forced

vibration tests on the same building. The third symmetric mode period 

for the structure is 0.061 sec and probably corresponds to the mode 

reported by Blume, et al. (1961) as "fundamental translation mode" with 

a measured period of 0.10 sec. 

Table (4.2) gives the base shear in the structure in various modes 

of vibration under earthquake motion characterized by a constant 

acceleration spectrum value of 0.20g. As expected, the antisymmetric 

modes do not get excited by this type of ground motion and thus 

contribute nothing towards the base shear. It is obvious from Table 

(4.2) that the first two modes, dominated by floor or roof vibrations, 
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FIRST TRRNSLRTIONRL MODE (T = 0. 498 SECl 

___ / __ _ ---- ------ --- -

SECOND TRRNS LR TIONRL MCJOE tT = 0. 286 SEC l 

FIRST TORSIONAL MOGE il= C. 128 SECl 

------ ---

SECOND T09SIONRL MOuE (T= 0. 078 SECl 

Figure 4.2. .MODE SHAPES FOR TilE TWo-STORY BUILDING. 

~~--~~----~- --~-~ --- --- -~ ---~--- -~ ------- - ---- - ---
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TABLE 4 .1. PERIODS, MODE SHAPES AND PARTICIPATION FACTORS FOR 1HE 
1W~STORY BUILDING 

First Second First Second Third Third 
Trans!. Trans!. Tors. Tors. Trans!. Tors. 

Mode Mode Mode Mode Mode Mode 
Period 0.498 0.286 0.128 0.078 0.061 0.040 

sec sec sec sec sec sec 
U(x=O.O) 76.17 -0.46 o.oo 0.00 -1.68 o.oo 
U(x=0.2) 72.49 -0.41 4. 7 5 -0.25 -1.05 -0.54 
U(x=O .4) 61.81 -0.27 7.77 -0.33 0.3 9 -0.47 
U(x=0.6) 45.18 -0.06 7.98 -0.20 1.58 0.15 
U(x=O .8) 24.22 0.21 5.34 0.12 1.71 o. 72 
U(x=l.O) 0.98 0.50 0.92 0.52 0.83 0.82 
V(x=O.O) 1.58 24.93 o.oo 0.00 -0.48 o.oo 
V(x=O .2) 1.55 23.76 0.35 1.63 -0.36 -0.42 
V(x=O .4) 1.47 20.37 0.65 2.73 -0.05 -0.54 
V(x=0.6) 1.34 15.08 0.86 2.95 0.35 -0.26 
V(x=0.8) 1.18 8.40 0.96 2.26 0.71 0.33 
V(x=1.0) 1.00 1.00 1.00 1.00 1.00 1.00 

w (y=-1.0) 0.00 o.oo o.oo 0.00 o.oo 0.00 
~(y=-0.8) 0.20 0.10 0.19 0.10 0.17 0.17 

(y=-0.6) 0.3 9 0.20 0.37 0.21 0.34 0.34 
~ (y=-0 .4) 0.59 0.30 0.56 0.31 0.51 0.50 
1(y=-0.2) 0.79 0.40 0.74 0.41 0.67 0.66 

W1 (y=O) 0.98 0.50 0.92 0.52 0.83 0.82 
::(y=0.2) 0.99 0.60 0.94 0.62 0.87 0.87 

(y=0.4) 0.99 0.70 0.96 0.71 0.91 0.92 
~(y=0.6) 0.99 0.80 0.97 0.81 0.94 0.95 

(y=O. 8) 1.00 0.90 0.99 0.91 0.97 0.98 
~(y=l.O) 1.00 1.00 1.00 1.00 1.00 1.00 

Partici-
pation 0.0178 0.0518 0.00 o.oo 0.474 o.oo 
Factor 

make the largest contributions to the total base shear for the 

structure. The third symmetric mode, with less pronounced floor and 

roof motions, gives a base shear only about 1/3 that of the second mode. 

The numerical results suggest another interesting feature that may 

occur in multistory buildings that are relatively uniform and have 

flexible floors. In the example, the first two natural frequencies are 
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TABLE 4 .2. MAXIMUM BASE SHEARS FROM SYMMETRIC MODES IN THE TWo-STORY 
BUILDING (SA= 0.20g) 

Base Shear 
Symmetric Period Base Shear* (percentage 

Mode (sec) (lb) of total 
weight) 

1 0.50 13.6 X 104 6% 

2 0.29 24.3 X 104 11% 

3 0.061 7.0 X 104 3% 

4 0.042 6.4 X 104 3% 

*The total weight of the structure is 230 X 104 lb. 

close to the natural frequencies of the floor and the roof when treated 

as independent, pinned-pinned beams. Therefore, for multistory 

buildings that have nearly identical floors and stiff end walls, some of 

the lower frequencies may correspond to floor motions. It can be 

expected that such frequencies may be very nearly equal, leading to 

additional complications in the analysis and response of the buildings. 
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CHAPTER V 

MULTISTORY BUILDINGS WITH END WALLS 

5.1 INTRODUCTION 

This chapter deals with multistory buildings whose lateral load 

resistance system consists only of two walls or frames at the two ends 

of the building. The one- and two-story counterparts of such buildings 

have been studied in Chapters III and IV, respectively. It was noted in 

Chapter IV that the approach developed in Chapter III could be applied 

to buildings with more stories but that the algebra was increasingly 

complex as more stories are considered. Although the approach allows 

one to analyze the system "exactly," it loses its simplicity for multi

story buildings. In this chapter, a simpler approach has been developed 

that allows the analysis of such multistory buildings. However, the 

approach requires some additional assumptions about the building. 

In this new approach, the end walls or frames are represented by an 

appropriate beam (bending beam or shear beam). The floors, treated as 

separate beams in the previous chapter, are now modelled as an 

equivalent distributed beam system, discussed in section (3.2.3). The 

distributed system is attached uniformly along the height of the verti

cal end beams. Thus, the floors are no longer assumed to be attached to 

the end walls (or frames) at discrete points, and a single differential 

equation applies to the whole wall. Similarly, only one differential 

equation is needed to represent the floors. However, for practical 
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purposes, one has to assume the distribution of mass and stiffness in 

the floors and in the end walls to be uniform (or some simple variation) 

along the height of the building. 

5.2 BUILDINGS WITH END WALLS MODELLED AS BENDING BEAMS 

As the height to width ratio of an end wall increases, the wall 

tends to behave more like a bending beam and less like a shear beam. In 

this section, it has been assumed that the building has two identical 

end walls, that have a height to width ratio large enough that the bend

ing flexibility is much larger than the shear flexibility. Consider one 

such building as shown in Figure (5.1). The building height ish and 

the length of the floors is 2L. The following list gives the properties 

of the end walls and the distributed floor system. They are assumed to 

be uniform along the height of the building. In addition, the floor

system properties are uniform along the length of the building. 

E1 ,E2 =Young's modulus of elasticity for the floor system and the 

wall, respectively. 

I•1 = Moment of inertia of floor-system cross-section per unit 

height. 

I 2 = Moment of inertia of the end wall cross-section. 

m* 1 = Mass per unit area (in x'-y' plane) of the distributed floor 

system. 

m2 Mass per unit height of the end wall. 



h 
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Figure 5 .1. MODEL OF A MULTISTORY BUILDING WITH END WALLS OR FRMffiS. 
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Let u(x',y' ,t) be the displacement in the z'-direction, at point 

(x',y') of the floor system at an instant t. Similarly, v1 (y',t) and 

v2 (y' ,t) are the displacements in the z'-direction, in the right and the 

left end walls. 

The equations of motion for free vibrations of the system can be 

written as, 

= -m* 
1 

2 a u(x',y',t) 

at2 

E2I2 
a

4
vl(y',t) a 2v

1
(y',t) 

+ [El r•l a
3 
u(x. ·r. t)] = -m2 

ay'4 at2 ax' x'=L 

and, 

E2I2 

a 4v
2

(y' ,t) a
2
v2(y' ,t) 

[E I* a
3
u(x' ,y', t)] 

ay'4 

Let x and y be the 

= -m2 
at2 

nondimensional 

X 
.L 
L 

-
1 1 3 ax' x'=-L 

coordinates 

y 

defined 

L. 
h 

by: 

Equations (5.1) can be written in the new coordinate system as 

4 a u(x,y, t) * L4 
~ 2 a u(x,y, t) 

ax4 E1r•1 at2 

= 
3 a u(x=l,y, t) 

ax 3 

(5.1a) 

(5.1b) 

(5.1c) 

(5.2) 

(5.3a) 

(5.3b) 
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= 
3 a u(x=-l,y, t) 

ax 3 
(5.3c) 

Separation of variables is used to analyze the free vibration 

problem of the system. Let, 

u(x,y,t) U(x,y)e iwt 
( 5 .4a) = 

v1 (y,t) v1 (y) e 
iwt (5.4b) 

v2 (y,t) V2 (y)e iwt (5.4c) 

where w is the natural frequency of the motion. Substitution into equa-

tions (5.3) produces 

4 a U(x, y) 

ax 4 

* L4 m 1 2 
- ~ w U(x,y) 

1 1 
= 0 (5.5a) 

4 4 E I* h4 
a 3u d v1 (y) m2h 

2 
v1 (y) 

1 1 ( x=l, y) 
dy4 E2I2 

w 
3 ax3 E2I 2L 

(5.5b) 

4 4 E I* h4 
a 3u d v2 (y) m2h 2 1 1 (x=-1,y) 

dy4 
EI w V2(y) 3 ax3 2 2 E2I 2L 

(5.5c) 

Because of the symmetry in the structure about the y'-axis, it is 

convenient to treat the symmetric and the antisymmetric modes of vibra-

tion of the structure separately. 
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Symmetric Modes 

The following are the boundary conditions applicable to the 

symmetric modes of vibration: 

( i) 
au (x=O,y) 0 
ax 

( ii) 
a

3
u (x=O ,y) 0 

ax3 

(iii) 
a 2u (x=1,y) 0 
ax 2 

( iv) V
1

(y=O) 0 

( v) 
dV1 

(y=O) = 0 
dy 

(vi) 
d

2
V __ 1 

(y=1) 0 
dy2 

(vii) 0 

(viii) U(x=1,y) = 

Here, (iii) assumes that the end walls have zero torsional stiffness. 

The solution of equation (S.Sa) can be written as: 
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U(x,y) = ~(y) sin ax+ ~{y) cos ax+ A3 {y) sinh ax 

+ A
4

(y) cosh ax 

where, 

4 a 
* L4 m 1 2 

'EI* (I) 

1 1 

and A1 (y), ~(y), A3 (y) and A
4

(y) are some functions of y. 

From boundary conditions (i) and (ii), 

Boundary condition (iii) gives: 

Thus, 

cos a A ( ) 
cosh a 2 Y 

U(x, y) [ 
cos a ] = A

2
(y) cos ax + cosh ax cosh a 

From boundary condition (viii) 

v1 {y) 

2 cos a 

Next, substitute (5.10) and (5.11) into equation (5.5b) to obtain 

where, 

(5.6) 

(5.7) 

(5.8) 

( 5. 9) 

(5.10) 

(5.11) 

(5.12) 
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E I* h
4 

1 1 
3 E2 I 2L 

3 
~ (tan a + tanh a) 

The solution for equation (5.12) is 

= B1 sin ~y + B2 cos ~Y + B3 sinh ~y + B4 cosh ~y 

(5.13) 

(5.14) 

where the B's are constants to be determined from the boundary condi-

tions of the system. From (iv) and (v), 

Therefore, 

-B 2 

B1 (sin ~y- sinh ~y) + B2 (cos ~y- cosh ~y) 

From (vi) and (vii), 

(-sin ~ - sinh ~)B1 + (-cos ~ - cosh ~)B2 0 

and, 

(-cos ~ - cosh ~)B1 + (sin ~ - sinh ~)B2 0 

(5.15) 

(5.16) 

(5.17) 

(5.18) 

From these equations, the condition for a nontrivial solution is 

obtained as 

cos j3 cosh ~ + 1 0 ( 5 .19) 

and, for each ~ satisfying equation (5.19) 
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sin B + sinh B 
cos ~ + cosh ~ B1 (5.20) 

Hence, equation (5.19) is the characteristic equation for the problem,* 

where ~ is related to the natural frequency w through equations (5.7) 

and ( 5.13). These equations can be solved to obtain the natural 

frequencies of the symmetric modes of the structure. 

The translational mode shapes for the building are given by, 

B[si~ By - sinh By _ cos By - cosh :Y] 
s1n ~ + sinh ~ cos ~ + cosh ( 5 .21a) 

and 

U(x,y) = H [cos ax+ cosh ax]· 
2 cos a cosh a 

·[sin By- sinh By_ cos By- cosh ~Y] 
sin ~ + sinh ~ cos ~ + cosh 

(5.21b) 

Here B is an arbitrary constant. 

Antisymmetric Modes 

The following boundary conditions apply to the antisymmetric modes 

of vibrations: 

( i) U(x=O,y) 0 

( ii) 

• This is the same characteristic equation with different definition 
of ~ that governs the vibrations of a cantilever bending beam. 
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(iii) a
2u 

(x=1.y) = 0 
ax 2 

(iv) v1 <r-o> 0 

( v) 
dV1 

(y=O) = 0 
dy 

d
2

V 
(vi) 

__ 1 
(y=1) 0 

dy2 

d
3

V 
(vii) 

__ 1 
(y=1) = 0 

dy3 

(viii) U(x=1,y) v1 (y) 

Equations (5.5) can be solved for these boundary conditions in a 

manner similar to that for the symmetric modes. The characteristic 

equation for these modes is again 

cos ~ cosh ~ + 1 = 0 

with ~ now defined by 

4 
a 

3 
g_ (-cot a + coth a) 
2 

* L4 m 1 2 
~(1) 

1 1 

(5.22a) 

(5.22b) 

(5.22c) 
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Equations (5.22) can be solved to obtain the natural frequencies for the 

antisymmetric (torsional) modes. The mode shapes are given by 

( ) = = s[si~ By - sinh By 
vl y -V2(y) S1n ~ + sinh~ 

and, 

U(x,y) = l![sin ax + sinh ax]. 
2 sin a sinh a 

cos By - cosh By] Oiyil 
cos ~ + cosh ~ 

·[sin By- sinh By_ cos By- cosh ~Y] 
sin ~ + sinh ~ cos ~ + cosh 

where B is an arbitrary constant. 

Orthogonality of Modes 

(5.23a) 

(5.23b) 

Beginning with the differential equations of the two walls and the 

distributed beam system modelling the floors, integration by parts and 

use of the boundary conditions produce the expected orthogonality condi-

tion. For w. F w., where i and j denote two modes of vibration, the 
1 J 

condition is 

1 1 1 

m* L 1 J 11 
Ui(x,y)Uk(x,y)dxdy + m2 J v1i(y)V1k(y)dy 

1 

+ m2 J v2i(y)V2k(y)dy 0 ( 5 .24) 
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Participation Factors for Earthquake Ground Motion 

The equations of motion due to uniform ground motion may be written 

as: 

4 * L4 2 a u(x, y, t) ~ a u(x, y, t) 
+ 

ax 4 E1 I*1 at2 

4 4 2 
a v1(y,t) m2h a v1 (y, t) 

+ 
ay 4 E2I2 at2 

and, 

* L4 m 1 •. 
'E'I* u (t) 

1 1 g 

E I* h4 
1 1 3 a u(x=1 ,y, t) 

E2I 2L 3 ax 3 

3 a u(x=-l,y, t) 

ax3 

= 

( 5 .25a) 

4 
m2 h •• 
~ u (t) (5.25b) 

2 2 g 

4 
m2 h •• 

= - ~ u (t)(5.25c) 
2 2 g 

Here u (t) is the earthquake acceleration in the z'-direction. 
g 

The normal modes of vibration are used to expand the response of 

the structure. Let 

CX) 

u(x,y,t) = 
b1 

U.(x,y)T . (t) 
1 1 

(5.26a) 

CX) 

v1 (y,t) 
b1 

v1i(y)Ti<t> (5.26b) 

CX) 

v2 (y,t) = ~1 v2 .(y)T.<t> 
1 1 

(5.26c) 

Next, substitute equations (5.26) into equations (5.25) to obtain 
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[ [u.(x,y)T •. (t) + w:U.(x,y)T.(t)] = -u (t) 
1 1 1 1 1 g 

1 

(5.27a) 

[ [v1i (y)T.i <t> + w:v1 .(y)T.(t>] -u ( t) 
1 1 1 g 

1 

( 5 .27b) 

[ [v2i (y)T.i <t> + w:v2 .(y)T.(t)] = -u ( t) 
1 1 1 g 

1 

(5.27c) 

These equations can be combined to yield, 

1 

+ "2 [ v2iv2kdy) • 

"(T. + w.T.) • • 2 J 
1 1 1 = -[m•1L lJt Ukdxdy + m2 l V1kdy 

(5.28) 

Applying the orthogonality condition (equation 5.24), equation (5.28) 

becomes 

(5.29) 

th where Pk, the participation factor for the k mode, is given by 

1 1 1 1 

m*1L! 11 Ukdxdy + m2 
! 

v1kdy + m2 
! 

v2kdy 

pk 1 1 1 1 
( 5 .30) 

m*1L! 11 
2 

(Uk) dxdy + m2 ! 
2 

(V1k) dy + m2 ! 2 
(V2k) dy 
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Thus, the mode shapes obtained earlier can be substituted into 

equation (5.30) to obtain the corresponding modal participation factors. 

As expected, the participation factors are zero for the antisymmetric 

modes of vibration. 

5.3 BUILDINGS WITH END WALLS (OR FRAMES) MODELLED AS SHEAR BEAMS 

Walls with low height to width ratios and moment-resisting frames 

of low to moderate height, can be modelled as shear beams. Hence, 

buildings whose lateral load resistance system consists of only two such 

end walls or end frames can be treated in a manner similar to the pre-

vious section. The only difference is that the walls (or frames) now 

have to be modelled as shear beams rather than as bending beams. As 

shown in Figure (5.1), let the building height be hand the plan length 

be 2L. 

The two end walls are assumed to be identical and uniform 

throughout the height of the building. The floors are taken as uniform 

along the length and are identical along the height of the building. 

Let the following be the mass and the stiffness properties of the 

structure: 

E =Young's modulus of elasticity for the floor system. 
1 

I•1 = Moment of inertia of the floor system cross-section per unit 

height. 
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k2 = k'~G2 = Shear rigidity of the shear beam that models the end 

frame or wall. 

k' Shape factor 

A2 = Area of cross-section of the end wall. 

G2 = Shear modulus of elasticity for the end wall. 

m• 1 = Mass per unit area (in x'-y' plane) of the distributed floor 

system. 

m = Mass per unit height of the end beam. 2 

Let u(x',y',t) be the displacement in the z'-direction, at point 

(x',y') of the floor system at an instant t. Similarly, v
1
(y',t) and 

v2 (y' ,t) are the displacements in the z'-direction, in the right and the 

left end beams. Let x and y be the nondimensional coordinates defined 

as: 

X 
L 
L 

y = :L.. 
L 

( 5 .31) 

The equations of motion for free vibrations of the structure can be 

written in terms of these nondimensional coordinates as 

4 a u(x, y, t) 

ax 4 
= 

2 a u(x,y,t) 

at2 
( 5 .32a) 

= 
a3

u 
( x=1 ,y, t) 

a.x3 
( 5 .32b) 

and, 



- 133 -

a3
u (x=-1,y,t) 

ax3 
(5.32c) 

As in the previous case, let 

u(x,y,t) = U(x,y)e iwt (5.33a) 

v1 (y,t) V1 (y)e iwt = (5.33b) 

v2 (y,t) v2 (y) e 
iwt = (5.33c) 

where w is the natural frequency of the motion. Equations (5.33) can be 

substituted into equations (5,32) to obtain 

4 * L4 
a U(x, y) m 1 2 

0 - E!'* w U(x,y) = 
ax 4 1 1 

( 5 .34a) 

2 2 E I* h2 
a 3u d v1 (y) m2h 2 1 1 (x=1, y) + -k- w v1 (y) = 

dy2 2 k L3 ax3 
2 

( 5.3 4b) 

2 2 
E I* h

2 
a 3u d v2 (y) m2h 2 1 1 (x=-1,y) 

dy2 
+ -k- w V2(y) 

k L3 ax3 2 2 

( 5. 3 4c) 

These equations can be solved separately for the symmetric (transla-

tional) and the antisymmetric (torsional) modes of vibration by consid-

ering only the right half of the structure. 
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Symmetric Modes 

The boundary conditions applicable to the symmetric modes of vibra-

tion are as follows: 

( i) 
au (x=O,y) 0 ox 

( ii) 
a3u (x=O,y) 0 
c3x3 

(iii) 
a2u (x=1 ,y) = 0 
c3x2 

( iv) v1 (y=O) = 0 

( v) 
dV1 (y=1) = 0 dy 

(vi) U(x=l,y) V(y) 

As in the previous section, (iii) assumes zero torsional stiffness of 

the end walls. Equations (5.34) can be solved for these boundary condi-

tions, in a manner similar to the previous section. This enables one to 

obtain the following characteristic equation: 

2 E I* h2 
3 m2h 

2 + 1 1 L (tan a + tanh a) f32 --w = 
k2 k L3 2 

2 

(5.35a) 

where 
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* L4 m 1 2 
= Er.(l) 

1 1 

(2i-l)n 
2 

(5.35b) 

i=1. 2. 3 •••• (5.35c) 

From these equations, the natural frequency w. for the ith mode can be 
1 

obtained. The corresponding mode shape is given by, 

U(x,y) H[cos ax + cosh ax]sin ~ 
2 cos a cosh a Y 

and, 

where B is an arbitrary constant. 

Antisymmetric Modes 

-1.S.x.S.1 

O.S.y.S.1 

The boundary conditions for these modes are: 

( i) U(x=O,y) 0 

( ii) 
a2u (x=O,y) = 0 
ax2 

(iii) 
a2u (x=1, y) = 0 
ax2 

(iv) vl (y=O) 0 

( v) 
dV1 (y=1) = 0 dy 

( 5 .36a) 

( 5 .36b) 
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(vi) U(x=l,y) = V(y) 

These boundary conditions and the equations (5.34) can be combined to 

obtain the following characteristic equation for antisymmetric modes of 

vibration: 

where 

and, 

4 
a 

= 

3 
~ (-cot a + coth a) 

(2i-1)7t 
2 

i=l, 2. 3 •••• 

The corresponding mode shapes are: 

U(x,y) = ~[sin ax+ sinh ax]sin Ay 
2 sin a sinh a " 

B sin J3y 

where B is an arbitrary constant. 

= 132 (5.37a) 

(5.37b) 

(5.37c) 

(5.38a) 

( 5.3 8b) 

( 5. 3 8c) 
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Orthogonality Condition 

As in the previous case, the following orthogonality condition can 

be obtained: 

1 1 1 

m1L J! Ui(x,y)Uk(x,y)dxdy + ~ J V1 i(y)V1k(y)dy 

1 

+ m2 J V2i(y)V2k(y)dy 0 for i#k (5.39) 

Participation Factors for Ground Motion 

Similarly, it can be shown that the modal participation factor for 

th the k mode for earthquake ground motion is given by, 

1 1 1 1 

m1L! J1 Ukdxdy + ~ ! 
v1kdy +~ 

! 
v2kdy 

pk 1 1 1 1 
(5.40) 

m1L J J1 
2 

(Uk) dxdy + m2 J 
2 

(V1k) dy + m2 J 
2 

(V2k) dy 

5.4 NUMERICAL EXAMPLE 

In this section, a multistory building with two end walls (modelled 

as bending beams) has been analyzed. Using the method described earlier 

in this chapter, the natural periods, the mode shapes and the modal 

participation factors have been obtained. 
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The example structure has been derived from Building 180 at the Jet 

Propulsion Laboratory in Pasadena. This long and narrow building (220' 

X 40' in plan) has 12 uniformly distributed moment-resisting frames to 

resist the lateral loads in the transverse direction. However, in the 

example structure, the frames are assumed to be capable of providing 

only the vertical support, while two 12" thick reinforced concrete walls 

have been added at the two ends of the building to provide all the 

lateral load resistance in the transverse direction. 

The actual building is ten stories high with basement walls. The 

story heights are 14 ft except in the top story and in the basement and 

first stories where they are 16 ft. The lumped weight of the roof is 

1517 kips while that of the typical floor is 1270 kips (Wood, 1972). In 

the example structure, the building is assumed to be rigidly held at 

ground level, thus neglecting the basement story. The nonuniformities 

in the story height and in the lumped masses have been neglected, and an 

average story height and average lumped weights have been taken. The 

floors are 5 in thick and made of light-weight concrete. Since the end 

walls are 40 ft wide and 130 ft high, it is reasonable to neglect their 

shear flexibility and treat them as bending beams. Similarly, the 

floors, which are 220 ft long and 40 ft wide, behave like bending beams 

and were treated as such. The following building properties were used 

for the analysis of the example structure: 
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Uniformly distributed floor system: 

Walls: 

weight (m*1g) 

moment of inertia (1*1> 

modulus of elasticity (E1 ) 

length of the floors (2L) 

weight (m2g) 

moment of inertia (12) 

modulus of elasticity (E2) 

building height (h) 

409 lbs/ft2 

154 ( ft) 4; ft height 

= 2.0 X 106 psi 

= 220 ft 

= 6000 lbs/ft 

= 5330 (ft) 4 

= 2.9 X 106 psi 

= 130 ft 

As noted, an examination of equation (5.19) reveals that it is the 

same as the characteristic equation for the free vibration of a canti

lever bending beam. The roots of this equation (i.e., values of~) are 

1.875, 4.694, 7.855, 10.996, 14.137, 17.279, etc. (e.g., Timoshenko, ~ 

al., 1974). Here, ~ equal to 1.875 corresponds to the end wall 

deforming as the first mode of a cantilever beam. Similarly, the higher 

values of ~ correspond to the end wall deforming in higher cantilever 

modes. 

For various values of ~. equations (5.7 and 5.13) were solved to 

obtain the natural frequency (w) for the symmetric modes of vibration. 

Also, equations (5.22b,c) were solved to obtain the frequencies for the 

antisymmetric modes. 
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For the appropriate natural frequencies, equations (5.21) and 

(5.23) gave the symmetric and the antisymmetric mode shapes. A few of 

the more important mode shapes are plotted in Figure (5.2). Equation 

(5.30) was used to calculate the modal participation factors for the 

various modes of vibration. The maximum base shear in various modes due 

to an earthquake motion assumed to have a constant acceleration spectrum 

value of 0.20g, was then calculated using these participation factors. 

Table (5.1) gives natural periods and maximum base shear for some of the 

lower modes. 

TABLE 5 .1. PERIODS AND MAXIMUM BASE SHEARS FOR SYMMETRIC MODES OF THE 
EXAMPLE STRUCI'URE 

Period 
J3 

Maximum Base 
(sec) Shear (Kips) 

0.929 1.875 1590 
0.533 4.694 369 
0.523 7.855 126 
0.522 10.996 14 
0.522 14.137 0.03 
0.243 1.875 38.5 
0.078 4.694 112 
0.060 7.855 20 
0.058 10.996 1.7 
0.049 1.875 0.03 
0.043 4.694 18.0 

As expected, the antisymmetric modes have zero modal participation 

factors and do not contribute to the base shear. The natural periods 

for the lowest few antisymmetric modes of vibration were obtained as 

0.524 sec (j3 = 1.875), 0.144 sec (j3 = 4.694), 0.132 sec (j3 = 7.855), 

0.131 sec (j3 = 10.996), ••• , 0.097 sec (j3 = 1.875), 0.059 sec (j3 

4.694), and 0.035 sec (j3 = 7.855). 
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If one treats the floors as rigid and the end walls as bending 

beams, the fundamental period is obtained as 0.806 sec, while that for 

the model with floor flexibility is 0.929 sec. Thus, the floor flexi

bility makes the structure more flexible and increases its fundamental 

natural period. The fundamental period of the floors when treated as 

pinned-pinned beams is 0.522 sec. It is interesting to note that the 

use of Dunkerley's equation (Dunkerly, 1895; Thomson, 1965) gives a 

period of the combined system as 0.960 sec (~ ~ 0.806 2 + 0.5222 ) which 

is a reasonably good estimate of the actual period. 

One notices from Table (5.1) that there are several modes with 

periods nearly equal to 0.522 sec, but with various values of ~. Also, 

as noted above, the fundamental period of the floors when treated as 

pinned-pinned beams is 0.522 sec. Since the method of this chapter 

treats the floors as an infinite number of independently acting beams of 

infinitesimal thickness, it is reasonable to see many modes with periods 

close to 0.522 sec, for different values of ~. Fortunately, one has to 

consider only the first few of these 0.522 sec modes since, as the value 

of ~ increases, the modes contribute less and less to the base shear. 

The mode with period 0.243 sec is one in which the end walls deform 

in the first cantilever mode (since~= 1.875), while the floors deform 

in the second symmetric mode of a pinned-pinned beam. Some of the other 

periods can be interpreted in a similar manner. 
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CHAPTER YI 

MULTISTORY BUILDINGS WITH UNIFORMLY DISTRIBUTED FRAMES OR WALLS 

6.1 INTRODUCTION 

Some of the earliest forced vibration tests on multistory buildings 

that indicated floor deformation modes were performed on Building 180 at 

the Jet Propulsion Laboratory in Pasadena (Nielsen, 1964,1966). The 

lateral load resistance in transverse direction in this long and narrow 

building (220' X 40' in plan) is provided by 12 moment-resisting frames 

that are uniformly placed along the length of the building. Thus, even 

though the span to width ratio of the floors is not large, the overall 

floor length to width ratio is quite large and, it is of interest to see 

how such floors affect the dynamic behavior of the structure. This 

chapter presents treatment on such buildings, i.e., multistory buildings 

with a la~ge number of transverse frames or walls that are placed at 

equal intervals along the length of the building. 

The floors, due to their large aspect ratio, can be treated as 

bending beams. The moment resisting frames are modelled as shear beams, 

due to the similarities in the mode shapes and in the spacing of 

frequencies. Thus, for transverse vibrations the building can be 

idealized as a grid consisting of vertical shear beams and horizontal 

bending beams. Similarly, a building that has a uniform distribution of 

walls with a large height to width ratio can be modelled as a grid 

consisting of bending beams in both directions. The vibration problem 
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of such grids can be solved by the finite element model or by the finite 

difference method, using slope deflection equations (e.g •• Wah, 1963; 

Goldberg and Herness, 1965; Goldberg, 1966). 

Moreover, grids that have a large number of uniform, identical 

beams in both the vertical and the horizontal directions can also be 

modelled as vertically-oriented anisotropic plates by averaging the mass 

and the stiffness properties of the beams over the entire length and 

height of the grid (e.g •• Timoshenko and Woinowsky-Krieger, 1959). It 

is proposed in this chapter to analyze buildings whose floors and frames 

are sufficiently uniform and numerous as vertically-oriented plates. 

For buildings with moment-resisting frames, the plate is such that a 

thin vertical strip cut from the plate has only shear flexibility, and 

thus behaves like a shear beam, while a thin horizontal strip cut from 

the plate behaves like a bending beam. Such plates will be referred to 

as "bending-shear" plates. Similarly. buildings with walls that behave 

like bending beams are treated as anisotropic plates, with only the 

bending deformations important along the two coordinate directions; such 

plates are referred to as "bending-bendingN plates. 

In the following parts of this chapter, equations of motion for 

these plates are discussed. Then, expressions for the natural 

frequencies, the mode shapes and the modal participation factors are 

obtained for buildings with moment-resisting frames. Buildings with 
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slender walls. idealized as bending-bending plates. have similar solu-

tions. Some conclusions based on these results are presented at the end 

of the chapter. 

6.2 PLATE EQUATIONS 

This section describes the equations of motion for the '~ending-

bendingn and the nbending-shearn plates. 

6.2.1 Bending-Bending Plate 

The equation, for static loads. describing a plate that models a 

grid consisting of bending beams can be found in Timoshenko and 

Woinowsky-Krieger (1959): 

f(x.y) (6.1) 

where. 

E111 Flexural rigidity of horizontal beams. 

E
2
r2 Flexural rigidity of vertical beams. 

c1 Torsional rigidity of horizontal beams. 

c2 Torsional rigidity of vertical beams. 

a 1 Distance between two consecutive horizontal beams. 

a2 Distance between two consecutive vertical beams. 
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f(x,y) = Load at (x,y) acting perpendicular to the plane of the 

grid. 

w(x,y) = Displacement at (x,y) in z-direction. 

The coordinate system (x,y,z) is shown in Figure (6.1). As discussed 

earlier, the torsional stiffness of the floors and the walls can be 

neglected in the present application. Thus, replacing f(x,y) by the 

inertial force term and neglecting the torsional stiffness terms, the 

equation of motion for free vibrations of a "bending-bending" plate may 

be written as 

where 

= 
2 a w(x,y,t) 

-m 
at2 (6.2) 

D
1 

Flexural stiffness of a horizontal strip of the plate, of unit 

width [ • E::ll , 

n
2 

Flexural stiffness of a vertical strip of the plate, of unit 

r E2I2] 
width l = -;;- • 

m = Mass per unit area (in x-y plane) of the plate. 

Equation (6.2) can easily be solved using the method of separation of 

variables. 
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Figure 6 .1. CONTINUOUS MODEL FOR BUILDINGS WITH UNIFORMLY DISTRIBUTED 
FRAMES OR WALLS. 



- 148 -

6.2.2 Bending-Shear Plate 

The equation of motion for free vibrations of a plate, modelling a 

grid that consists of bending beams in the x-direction and shear beams 

in the y-direction, can be derived from energy principles or obtained in 

analogy to equation (6.2) as 

4 2 a w(x,y,t) _ K a w(x,y,t) 
D1 ~x4 2 2 

u ay 

2 a w(x,y,t) 
-m 

at2 
(6.3) 

where K2 is the shear stiffness of a vertical strip of the plate of unit 

width. All other terms have been defined earlier. Equation (6.3) can 

also be solved by the method of separation of variables. 

6.3 MULTISTORY BUILDINGS WITH UNIFORMLY DISTRIBUTED FRAMES 

Consider a multistory building with uniform and identical moment-

resisting frames and uniform and identical floors. The spacing of the 

frames is uniform and all the story heights are the same. Such a 

structure can be modelled as a vertically-oriented "bending-shear" 

plate. Let 1 be the length and h be the height of the building. The 

coordinate system (x,y,z) is shown in Figure (6.1). 

The equation of motion for free vibrations of the structure is 

given by equation (6.3). The assumed form of the solution is 

w(x,y,t) iwt = W(x,y)e = X(x)Y(y)eiwt (6.4) 
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where w is the natural frequency of the system. Substitution of equa-

tion (6.4) into equation (6.3) yields 

d
4

X{x} 4 0 
dx

4 
- a X(x) (6.5a) 

d 2Y(y} + j32Y(y) 0 = 
dy2 

(6.5b) 

where a and j3 are constants to be determined from the boundary condi-

tions of the problem, they satisfy the condition 

D 4 + -K A2 
la 2.-

2 mw 

Solutions of equations (6.5) can be written as 

X(x) ~ sin ax + ~ cos ax + A3 sinh ax + A4 cosh ax 

Y(y) 

(6.6) 

(6.7a) 

( 6. 7b) 

where the A's and B's are constants to be determined from the boundary 

conditions. 

The boundary conditions for the plate in this case are fixed at 

(y=O) and free at the other three sides. In mathematical form, these 

can be expressed as 

( i ) Y ( y=O ) = 0 

( ii) 
dY(y=h} 

dy 
0 
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(iii) d2X{x=O} 0 
dx2 

( iv) d3X{x=O) 
0 = 

dx3 

2 
( v) d X{x=l) = 0 

dx2 

3 
(vi) d X{x=l} 0 

dx 3 

Boundary conditions (i) and (ii) give 

and, 

Thus, for a nontrivial solution 

= 
(2i-1)1t 

2h 
j=1,2,3, ••• 

From boundary conditions (iii) and (iv), one obtains 

and, boundary conditions (v) and (vi) yield 

A1 (-sin al +sinh al) + A2 (-cos al +cosh al) = 0 

(6.8) 

(6.9) 

( 6 .10) 

(6.11) 

( 6 .12) 
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~(-cos al +cosh al) +~(sinal+ sinh al) 

This gives the condition for nontrivial solution as 

and 

cos al cosh al - 1 0 

sin al sinh al 
cos al - cosh al A1 

0 (6.13) 

( 6 .14) 

(6.15) 

The first few roots of equation (6.14) are given as (e.g., Timoshenko, 

.tl .!!! e I 191 4) 

or, 

a. 
1 

a. 
1 

0 

0 0 4.730 7.853 10.996 14.137 17.279 

i=1,2 (6.16a) 

i=3 I 4 I 5 I • e o (6.16b) 

The natural frequencies of the system can now be obtained using 

equations (6.6), (6.10) and (6.16) as 

(2j-l)n ~ i=1,2 
w .. 2h m j=1,2,3, ••• 1J 

(6.17a) 

[( i r _ I)4 4i) ( 2j-1) 
2
,?i2 i=3 I 4 I 5 I o • o 2 7T 1 

w .. !!!!! + 
1J ml

4 4mh2 j=1,2,3, ••• 
(6.17b) 
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For i = 1 and 2, a vanishes and equation (6.5a) and the appropriate 

boundary conditions give 

X(x) = (6.18) 

where A1 and A2 are arbitrary constants. This represents a rigid body 

translation and a rigid body rotation of floors. Thus, the mode shapes 

for i=1,2 are 

w1j(x.y) A sin (2j-1}7t j=1.2.3 •••• (6.19a) = 2h y 

w2j (x. y) A(x -t) sin (2j-1}7t 
j=1.2.3 •••• (6.19b) 2h 

y 

where A is an arbitrary constant. The modes represented by equation 

(6.19a) are translational modes that involve no floor deformations, with 

frequencies given by equation (6.17a). Similarly. equation (6.19b) 

gives the torsional mode shapes of the structure. again with no floor 

deformations. These mode shapes and the corresponding frequencies are 

the same as obtained from an analysis based on the assumption that the 

floors are rigid in their own plane. 

The mode shapes that correspond to the higher values of a are 

W .. (x,y) 
1J 

·sin (2j-1)7ty 
2h 

cos a.x + cosh a.xJ 
1 1 • 

cos a.l + cosh a.l 
1 1 

i=3. 4. 5 • ••• 

j=1.2.3 •••• (6.20) 

where A is an arbitrary constant. The modes represented by equation 
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(6.20) involve floor deformations. These mode shapes are simply the 

superposition of mode shapes of the floors when treated as free-free 

beams and those of the frames. Also. the corresponding frequencies, 

given by equation (6.17b), are the square root of the sum of the squares 

of the floor frequencies when treated as free-free beams and the frame 

frequencies. Thus, the dynamic analysis of such buildings can be 

carried out by separately analyzing a typical frame and a typical floor 

with free-free end conditions. This result supports similar observa-

tions made earlier by Maybee, et ~. (1966), who treated the building as 

a discrete system, lumping the mass at the intersections of the floors 

and the frames. 

Orthogonality of Modes 

It can be shown that the modes of vibration of the structure are 

orthogonal and, that the orthogonality condition is given by 

h 1 

J J W . . (x, y) W (x. y) dxdy 
1J rs 

0 (6.21a) 

or 

h 1 

X.(x)X (x)Y.(y)Y (y)dxdy 
1 r J s 

= 0 (6.21b) 

where i#r. and/or j#s. 
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Modal Participation Factors for Earthquake Ground Motion 

The equation of motion for the bending-shear plate under uniform 

earthquake excitation can be written as 

4 2 2 

D1 
a w(x,y,t) 

K2 
a w(x,y,t) 

= -m a w(x, y, t) 
- mu (t) (6.22) 

4 2 at2 ax ay 

where u (t) is the ground acceleration in the z-direction. 
g 

g 

To solve, expand w(x,y,t) in terms of the normal modes of the 

system. Let 

w(x,y,t) = X.(x)Y . (y)T . . (t) 
1 J 1J 

and substitute this into equation (6.22) to obtain 

[ [ D1 
1 J 

This gives 

Next, multiply 

d4X. d2Y. 
1 [ [ X. ---1 

dx 4 yj Tij K2 1 dy2 Tij 1 J 

2 
d T .. 

+ m [ [ X.Y. 11 
= -mu 

1 J 
1 J dt 2 

[[ 2 (X.Y .T . . + w . . X. Y.T . . ) 
1 J 1J 1J 1 J 1J 

-u (t) 
g 

1 J 

equation (6.25) by X y I 
r s integrate 

orthogonality relationship (equation 6.21) to obtain 

(6.23) 

(t) ( 6 .24) 
g 

(6.25) 

and apply the 
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T + w2 T 
rs rs rs -P u (t) 

rs g 

th 
where Prs' the participation factor for the rs mode, is given by 

h 1 

! l X Y dxdy 
r s 

p 
rs h 1 

!! X X Y Y dxdy 
r r s s 

(6.26) 

(6.27) 

For i=l, X. (x) =A (rigid body translation) and the orthogonality 
1 

condition yields 

0 for rFl (6.28) 

Therefore, the numerator in equation (6.27) vanishes for all rFl, and 

the participation factors are zero for all the modes that involve floor 

deformations. This is a very useful result and shows that uniform 

ground motion excites only those translational modes that do not involve 

floor deformations. However, as noted earlier, such modes are the same 

as obtained by an analysis based on the rigid floor-diaphragm assump-

tion. Therefore, in the dynamic analysis of such buildings for uniform 

earthquake ground motion, one need not take into account the in-plane 

flexibility of the floors. 

However, this conclusion is valid only for the uniform ground 

motion and cannot be applied to other types of loading, e.g., spatially 

-------- -- --- ---
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varying ground shaking. Also modes involving floor diaphragm deforma

tions can be excited by forced vibration tests, as was done on Building 

6.4 BUILDINGS WITH UNIFORMLY DISTRIBUTED WALLS 

Multistory buildings that have a uniform distribution of identical 

walls with large height to width ratio, and satisfy other uniformity 

conditions discussed earlier in the chapter, can be modelled as 

"bending-bending" plates. The equation of motion for free vibrations of 

such structures is given by equation (6.2). This equation can be solved 

by the method of separation of variables in a manner similar to that 

followed in the preceding section. All the discussion in the previous 

section about the nature of the frequencies, the mode shapes and the 

modal participation factors is also valid for these buildings and is not 

repeated here. 

6.5 DISCUSSION AND CONCLUSIONS 

It has been shown that long and narrow 

distribution of identical frames (or 

buildings 

walls) can 

with a uniform 

be analyzed as 

vertically-oriented plates. This model is a two-dimensional analog of 

shear beam models for multistory buildings that have been extensively 

used in the past (e.g., Jennings, 1969; Hoerner, 1971). Based on this 

plate idealization, it has been shown that such buildings possess all 

the modes of vibration that one obtains by analysis based on the assump

tion of rigid floor diaphragms, plus additional modes that involve floor 
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deformations similar to those of free-free beams. The mode shapes and 

the natural frequencies of the structure can be obtained by analyzing a 

typical floor and a typical frame. However, in doing so, care must be 

taken to include the floor masses in the frame analysis and vice-versa. 

Also, it is seen that none of the modes that involve floor deforma

tions are excited by uniform ground motion. Thus, there is no need to 

treat the floors of such buildings as flexible, when analyzing them for 

uniform seismic forces. This result has also been shown using discrete, 

lumped-mass models for such buildings (Jain, 1983). In addition, in a 

parametric study on a building with five cross walls, Unemori, et al. 

(1980) have found using finite element approach that the modes with 

floor deformations have very small modal participation factors. 

It was assumed in this chapter that the number of frames (or walls) 

and the number of stories in the building are large. When this condi

tion is not met, the proposed model may not be a good idealization of 

the structure. From a practical viewpoint, it seems that the building 

should have five or more floors and frames for the method to give reli

able results. 
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CHAPTER VII 

MULTISTORY BUILDINGS WITH MORE GENERAL FEATURES 

7.1 INTRODUCTION 

Using the tools developed in the previous chapters, it is possible 

to analyze multistory buildings with some nonuniformities as well. For 

instance, a multistory building that has a uniform distribution of 

frames along with two rather stiff end walls can be modelled as a plate 

with two end beams. The differential equations of motion for the plate 

and the end beams can be written and the system can be solved for the 

appropriate boundary conditions. Similarly, the problem of an otherwise 

uniform building with a more flexible, wsoft " first story can be 

analyzed using these modelling techniques. For this situation, the 

columns or the walls in the first story can be modelled as a uniform 

distribution of infinitesimally thin vertical bending or shear beams, 

with the plate modelling the rest of the building joined to the top of 

these beams. Again the equations of motion and the boundary conditions 

can be solved to obtain a characteristic equation for the frequencies 

and expressions for the mode shapes. 

In this chapter, an analysis is given for a multistory building 

that has two end walls in the upper stories to provide lateral 

resistance to the structure while in the first story the lateral support 

is provided by several uniformly distributed walls. Finally, the 

Imperial County Services Building which can be modelled approximately by 
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this type of approach for transverse response is analyzed as an 

illustrative example. 

7.2 MULTISTORY BUILDINGS WITH TWO END WALLS IN THE UPPER STORIES 
AND SEVERAL WALLS IN THE GROUND STORY 

Consider a long and narrow multistory building whose lateral loads 

in the transverse direction are resisted by two end walls in the upper 

stories and by several uniformly placed walls in the first story. Thus, 

the upper floors transfer all the lateral loads to the end walls, which 

in turn transfer this load to the ground story walls through the second 

floor slab. It is of interest to see how this rather complex structural 

system can be analyzed by the methods developed in the previous 

chapters, while treating the floors as flexible. 

A structure of this type can be modelled as shown in Figure 

(7.1), It is assumed that the floors, with their large aspect ratio, 

behave like bending beams. Hence, the floors above the second floor can 

be modelled as a uniformly distributed bending beam system, while the 

second floor is treated as a separate bending beam, due to its important 

role in transferring the loads from the end walls to the walls below. 

The upper story walls are assumed to have small height to width ratios 

and to behave as shear beams. The walls in the first story also have 

small height to width ratios and have been treated as a vertically-

oriented uniform distribution of shear beams. 
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Let the following be the mass and the stiffness properties of the 

various elements in the structure, assumed to be uniform: 

E1 =Young's modulus for the distributed floor system. 

E3 Young's modulus for the second floor. 

1•1 = Moment of inertia of the floor system cross-section per unit 

height. 

13 = Moment of inertia of the second floor. 

k* 2 = Shear stiffness of the first-story wall system per unit 

length. 

k4 = Shear stiffness of the end walls. 

m* 1 =Mass per unit area {in x-y plane) of the distributed floor 

system. 

m* 2 = Mass per unit area {in x-y plane) of the ground wall system. 

m3 Mass per unit length of the second floor. 

m4 Mass per unit height of the end wall. 

Let 2L be the length of the building, h1 be the height of the 

building from the second floor level and h2 be the story height of the 

first story. The coordinate system {x,y,z) is shown in Figure {7.1). 

Let u{x,y,t), v{x,t), w1 {y,t), w2 {x,y,t) and w3{y,t) be the displace

ments in the z-direction in the distributed floor system, the second 

floor, the right end wall, the ground story wall system and the left end 

wall, respectively. The equations of motion for free vibrations can be 

written for each element in the structure as: 



and 

4 
E 1 • :.:..a _u=.(:to..::x::..~,c.zY....r.•~t..~...) + m* 

1 1 ax4 1 

k* 2 
- m* 

2 
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2 a u(x,y, t) 
= 0 

= 0 

= -k• 
2 

a w 2 < x I y=O I t > 

ay 

= -E r• 
1 1 

3 a u(x=L,y, t) 

ax3 

( 7 .1a) 

(7.1b) 

(7.1c) 

(7.1d) 

(7.1e) 

These equations can be solved using the method of separation of vari-

abies. Let 

u(x~y~t) U(x~y)e 
iwt = (7 .2a) 

v(x~t) V(x)e iwt = (7.2b) 

w1 (y~t) W1 (y)e iwt = (7.2c) 

w2 (x~y~t) w2 <x~y)e 
iwt 

(7.2d) 

and 

w3 (y~t) w3 (y)e iwt 
(7.2e) 
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where w is the natural frequency of the motion. Substitution into equa-

tions (7.1) gives 

4 m* a U(x,y) 1 2 
0 w U(x, y) = 

ax4 E1I*1 
(7.3a) 

2 
m*2 2 a W2 (x,y) 

0 + k* w w2 (x,y) = 
ay2 2 

(7.3b) 

d4V(x) m3 2 k* aw2 (x,y=O) 
EI w V(x) = 

_2_ 

dx4 3 3 E3I3 ay (7.3c) 

2 E I* 3 d W
1

(y) ~ 2 _L_1. a U(x=L,y) 
+ k w w1 (y) = 

dy2 4 k4 ax 3 
(7.3d) 

and, 

(7.3e) 

Since the structure is symmetric, only the right half of it needs 

to be considered. The following are the boundary conditions that apply 

for the translational modes of the structure. 

( i) 

( ii) 

(iii) 

au(x=O ,y) 
ax 

3 a U(x=O ,y) 

ax 3 

2 a U(x=L,y) 

ax 2 

0 

= 0 

= 0 
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( iv) dY{x=O~ = 0 dx 

( v) 
d3V(x=O) 

0 = 
dx3 

2 
(vi) 

d V(x=L) 
= 0 

dx2 

(vii) 
dW1 (y=h1 ) 

0 = dy 

(viii) w2 (x,y=-h2) = 0 

(ix) U(x=L, y) = wl (y) 

(x) V(x=L) = W1 (y=O) 

{xi) w2 (x, y=O) V(x) 

3 dW1 {y=O) 
(xii) E3I3 

d V{x=L) 
+ k4 0 

dx3 dy 

The solution of equation (7.3a) that satisfies the boundary condi-

tions ( i, ii, iii and ix) is: 

U(x,y) 

where, 

= Wl(y) [cos ax+ cosh~] 
2 cos aL cosh 

4 
a 

(7.4) 

(7.5) 
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Equation (7.3b) when solved for the boundary conditions (viii and 

xi) yields 

W2 (x,y) = V(x)(cot ~h2 sin ~y +cos ~y) (7.6) 

where, 

(7.7) 

Substitution of equation (7.6) into equation (7.3c) gives 

0 (7.8) 

The solution for this equation satisfying boundary conditions (iv, v and 

vi) is 

V(x) = c[cos yx + cosh yx] 
cos yL cosh yL 

4 for positive values of y where, 

4 
y 

k* 
2 EI ~ cot J3h2 

3 3 

4 For negative values of y , equation (7.9) is replaced by 

(7.9) 

(7 .10) 

V(x) C[sin ~x sinh ~x +cot ~L coth ~L cos ~x cosh ~x] (7.11) 

where, 
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and C is an arbitrary constant. 

4 
L 
4 

Substitution of equation (7.4) into equation (7.3d) yields 

0 

This equation can be solved for boundary condition (vii) as 

= D(sin AY + cot Ah1 cos Ay) 

for positive values of A2 , where A2 is given by 

(7.12) 

(7.13) 

(7.14) 

( 7 .15) 

2 For negative values of A , the following equation replaces equation 

(7 .14) 

= D(sinh ~Y - coth ~h1 cosh ~y) 

where D is an arbitrary constant and ~ is given by 

2 
~ = 

(7.16) 

(7.17) 

Boundary conditions (x) and (xii) can now be used to obtain the 

condition for a nontrivial solution, i.e., a characteristic equation for 

the natural frequencies given by 
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( i) For y 4 > 2 
0, "' > 0: 

3 

E3I3 
L (tan yL + tanh yL) + k4/,. tan A.h1 2 0 (7 .18a) 

(ii) For y 4 < 0, /,.2 > 0: 

4E 1 ):3 (cosec 2CL+cosech 2EL) 
3 3~ (tan ~L tanh ~L+cot ~L coth ~L) - k4A. tan A.h1 0 (7.18b) 

(iii) For r 4 > 0, A. 2 < 0: 

3 
E3I 3 ~ (tan yL + tanh yL) - k4~ tan ~h1 0 (7 .18c) 

(iv) For y4 < 0, A. 2 < 0: 

2 (cosec 2CL+cosech 2~L) + ~h = ( ) 
4E3I3~ (tan ~L tanh ~L+cot ~L coth ~L) k4~ tanh 1 ° 7 •18d 

An approach like Holzer's method (Thomson, 1965) is used to obtain 

the natural frequencies of the translational modes of the system. That 

is, one chooses an initial value of w and substitutes it into equations 

(7.5), (7.7), (7.10) and (7.15) to obtain a,p,y 4 and A.2 • Next, one 

substitutes these into one of the equations (7.18), depending upon the 

f 
4 d ~ 2 1· f h · · · f. d signs o y an A , to see t e equat1on 1s sat1s 1e • If that is the 

case, that value of w is the natural frequency of the structure. How-

ever, if it does not satisfy the equation, another value of w is chosen 

and the process is repeated. This search for the roots can, of course, 

by systematized. 
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The mode shapes of the structure are given by: 

w (y) 
U(x,y) _1 __ [cos ax + cosh :J 

2 cos aL cosh 

V(x) 

= V(x)(cot Ph2 sin ~y +cos ~y) 

c[cos yx + cosh yx] 
cos yL cosh yL 

V(x) C(sin ~x sinh ~x + cot ~L coth ~L cos ~x cosh ~x) 

= = c[sin
2 CL sinh

2 £L + cos
2 CL cosh

2 £L]· 
W1 W3 (y) sin ~L sinh ~L 

"(tan Ah
1 

sin AY + cos Ay) 

(7 .19) 

(7.20) 

(7 .21a) 

(7.21b) 

(7.22a) 

(7.22b) 

-2C(tanh ~h1 sinh ~y- cosh ~y) for r 4>o, A
2 <o (7.22c) 

•(tanh ~h1 sinh ~y- cosh ~y) (7.22d) 

Similar expressions can also be obtained for the antisymmetric 

modes of vibration. It can be shown that all the modes satisfy the 

following orthogonality condition: 
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h1 L 0 

m* ! JL u i uk dxdy + m* 2 _[ j:L W21w2kdxdy + m3 Jl ViVkdx + 1 
2 

h1 h1 

+ m4 ! w1iw1kdy + m4 ! w3iw3kdy 0 for if=k (7.23) 

Also, the following expression can be obtained for the modal 

participation factors for uniform ground motion: 

L 

7.3 NUMERICAL EXAMPLE 

m* 2 

( 7 .24) 
L 

i 2 
Vkdx 

-L 

The Imperial County Services Building, also discussed in Chapter 

II, was a six-story reinforced concrete structure. During the Imperial 

Valley earthquake of October 15, 1979, it was severely damaged and was 

eventually taken down. Some of the structural features and the lateral 
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load transfer scheme of this building closely resemble those of the 

structure analyzed in the previous section. Hence, to illustrate the 

method developed in that section, this building has been modelled and 

solved for its dynamic properties. 

Figure {2.9) shows the structural plan of the building. In the 

upper stories the lateral loads in the transverse direction were 

resisted by two end walls. However, the west wall was different from 

the east end wall since it had "smoke tower" openings in all the 

stories. At the second-floor level, the lateral shear was transferred 

to the four shear walls in the ground story through the second-floor 

slab, while the overturning moment was transferred to the four columns 

located just inside the end walls. The ground shear walls were not 

symmetrically placed. In order to use the model developed in the pre

vious section, the "smoke tower" openings in the west end wall were 

neglected. Also, the asymmetry in the ground story walls was neglected; 

they were idealized as a uniformly distributed, equivalent shear beam 

system. 

The aspect ratio of the floors was about 1.8 and, therefore, shear 

deformations in the floors cannot be neglected in comparison to bending 

deformations. To approximate the effects of the shear deformations and 

the rotatory inertia, the moment of inertia of the floors was multiplied 

by a factor of 0.47. This factor introduces enough bending in the 

floors to give the same fundamental period that would occur in the floor 

if the effects of shear deformation and the rotatory inertia were 



- 171 -

included (Timoshenko, et al •• 1974). The adjusted stiffness of the roof 

and the upper floors, and the lumped mass at these levels, were 

uniformly distributed between the roof and the second floor level to 

represent the floors as equivalent, distributed bending beams. The 

following properties of the various elements were used in the analysis: 

Equivalent 
distributed 
floor system: 

weight (m*1g) 1020 lbs/ft2 

moment of inertia (1*1) = 1890 (ft) 4/ft height 

modulus of elasticity (E1) 3.60 X 106 psi 

length of the floors (2L) = 136'-3" 

Equivalent 
distributed 
shear wall 
system: 

weight (m*2g) = 137 lb/ft2 

shear stiffness (k* ) = 1.69 X 108 lb/ft 2 

height (h2) = 16 '-8" 

Second floor: 

weight (m3g) 14100 lbs/ft 

moment of inertia (13) 33000 (ft) 4 

modulus of elasticity (E3) = 3.60 X 106 psi 

Upper story 
end walls: 

weight (m4g) = 8600 lb/ft 



- 172-

shear stiffness (k
4

) 1.00 X 10
10 

lb 

height (h1 ) = 67'-2" 

The appropriate equations given in the previous section were solved 

to find the translational frequencies of the building. The corres

ponding mode shapes were obtained from equations (7.19) through (7.22); 

the first four are plotted in Figure (7.2). 

The natural periods for the four lowest modes were found to be 

0.23 sec, 0.11 sec, 0.10 sec and 0.099 sec. The first mode period is 

higher than that obtained by treating the floors as rigid, while model

ling the walls as shear beams, which is 0.17 sec. Thus, the floor

flexibility does have a significant effect on the dynamic properties of 

the building. However, the 0.23 sec period is not in close agreement 

with the 0.38 sec period found from the strong-motion records obtained 

from the building during a small earthquake on March 28, 1978 (Jain and 

Housner, 1983b) or the 0.45 sec period observed during the ambient 

vibration tests performed on the building (Pardoen, ~ ~., 1981). 

Foundation flexibility is thought to have contributed significantly to 

this discrepancy (Jain, et ~., 1983). This effect can be included by 

representing the foundation by translational and rotational springs. 

Also, in the model the end walls transfer the overturning moment to the 

ground story walls, which are assumed to have negligible bending flexi

bility, while in the actual structure the overturning moment is 

transferred to the columns below. This makes the actual system more 

flexible than the model by allowing rotation of end walls as rigid 
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bodies. The proposed model needs to be improved for application to this 

structure in order to incorporate this flexibility. In addition, the 

end walls could be treated as Timoshenko beams to include the bending 

flexibility, neglected in the analysis. Hence, in order to model this 

building more accurately, the above factors should be included in the 

model. 

thesis. 

However, this was considered to be beyond the scope of this 

The fundamental mode shape, plotted in Figure (7.2), shows an 

interesting feature. It can be seen in the figure that the second floor 

bends in the opposite direction from the other floors. This is due to 

the role the second floor plays in transferring the loads. The lateral 

forces of all the upper floors are transferred to the second floor at 

its two ends through the upper story end walls. The floor, in turn, 

transfers them to the uniformly-distributed shear walls in the ground 

story. Thus, the second floor acts like a free-free beam on an elastic 

foundation, with two concentrated end loads. For such a system, the 

beam curvature will be as observed for the second floor. A beam loaded 

this way can actually experience uplift near the center (e.g., Hetenyi, 

1946). This explains why in the fundamental mode, a portion of the 

second floor near the center is displaced in the opposite direction from 

the rest of the structure. This behavior is rather unusual. For most 

buildings, the fundamental mode has the property that the whole 

structure is displaced in the same direction. 
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The opposite curvatures of the second floor and the upper floors 

are also confirmed from the strong-motion records obtained from the 

building. The relative displacement plots of the second floor and the 

roof, given by Pauschke, ~ ~. (1981) and reproduced in Figure (2.10) 

of this thesis, clearly indicate this trend, although it is not clear in 

this figure as to whether or not the second floor actually has a 

negative displacement near the center. Gonzalez, et al. (1980) have 

subjected a finite element model of the building to the code-prescribed 

static lateral forces in the transverse direction. Their plots of the 

deformed shapes of the fourth floor and the second floor also show 

opposite curvature. 

The second, third and fourth mode periods are nearly equal to the 

fundamental mode period (0.098 sec) of the upper floors when these are 

treated as pinned-pinned beams. This is similar to what has been 

observed in the example structure of Chapter V. 
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CHAPTER VIII 

SUMMARY AND CONCLUSIONS 

This study investigates the significance of in-plane floor flexibi

lity on the dynamic behavior of buildings and develops new analytical 

methods to analyze buildings with flexible floor diaphragms. A study of 

the literature on past earthquakes revealed that there have been several 

buildings that were damaged during strong ground shaking due to 

significant in-plane floor deformations. Also. strong-motion records 

obtained from some undamaged buildings have shown that floors can indeed 

be quite flexible in their plane. Some of the evidence that indicates 

the important role floors play in the dynamics of buildings is presented 

in Chapter II. It is observed there that long. narrow buildings are 

particularly susceptible to this phenomenon. although it can happen also 

in buildings with small aspect ratios. if stiff end walls are present. 

Buildings that consist of two or more wings joined at an angle (e.g •• L

or V-shape plans) also warrant special attention to floor flexibility 

and the resulting stress concentration at the corners where the two 

wings meet. Three of the example structures discussed were school 

buildings. which suggests that the architectural layout of school 

buildings may make them more susceptible than other structures to 

problems caused by flexible floor diaphragms. 

As preliminary information for later work. the mechanics of bending 

and shear beams are reviewed in Chapter III. In addition. the concept 
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of equivalent, distributed beam systems, such as are used in the 

analysis of coupled shear walls, is presented. Also, a note is included 

on matching the boundary conditions at junctions of various elements. 

The first building studied is a one-story building whose lateral load 

resistance in the transverse direction is provided by two end walls. 

The structure is analyzed by treating the roof as a bending beam and the 

walls as shear beams. The equations of motion for these elements and 

the boundary conditions are combined to obtain the characteristic 

frequency equation, roots of which give the natural frequencies of the 

system. Also, expressions are obtained in general form for the mode 

shapes and the participation factors. Once the natural frequencies and 

the mode shapes are known for the structure, the complete dynamic 

response can be calculated. However, the characteristic equation is 

transcendental in nature, and must be solved numerically. For con

venience, a perturbation technique is applied to obtain the fundamental 

natural frequency in an approximate but much simpler manner. Solutions 

are also discussed for some more complex single-story buildings. 

As an illustration of the technique described in Chapter III, the 

top story of the Administrative Building in Arvin High School is 

modelled and its dynamic properties obtained. In this example, the 

perturbation method gives a very good estimate of the fundamental 

natural frequency. The low torsional stiffness expected for walls and 

frames was confirmed in this example and in all subsequent chapters the 

torsional stiffness of the walls or the frames is neglected. 
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The method developed in Chapter III is applied to two-story 

buildings with identical end walls in the subsequent chapter. Results 

include the characteristic frequency equation and expressions for the 

mode shapes and the participation factors. As an example application, 

the two-story Administrative Building at the Arvin High School has been 

modelled with this method and its dynamic properties are obtained for 

the first few modes. It is noted that the first two translational 

frequencies of the structure are close to the fundamental frequencies of 

the second floor and the roof, when treated as pinned-pinned beams. It 

is seen in this example that these first two modes, dominated by floor 

or roof vibrations, make the largest contributions to the total base 

shear for earthquake response of the structure. The third symmetrical 

mode, with less pronounced floor and roof motions, gives a base shear 

only about 1/3 that of the second mode. 

The study of the two-story buildings also showed another 

interesting phenomenon. It was seen that some of the lower frequencies 

of multistory buildings that have nearly identical floors and stiff end 

walls may be very nearly equal. Besides finding the properties of such 

closely spaced modes, this technique can also be used to coalesce such 

modes into a single mode such that all the floors vibrate in phase. 

Multistory buildings with two end walls or frames are treated in 

Chapter V by modelling the floors as an equivalent, distributed system 

of bending beams and the end walls or frames as bending or shear beams. 

As an illustration of the analysis, a long, narrow 9-story building with 
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two slender end walls has been analyzed. As anticipated, the fundamen

tal frequency of the structure was lower than that based on the assump

tion of stiff floors. It was noted that the fundamental period could be 

approximated closely by the use of Dunkerley's equation. The second 

mode frequency was found to be close to the fundamental frequency of a 

floor when treated as a pinned-pinned beam. Also, there were several 

other modes with nearly the same frequency, in which the floors essen

tially vibrate like the first mode of pinned-pinned beams. This is 

partly a consequence of the use of the equivalent, distributed system, 

which allows an infinite number of such modes, and the fact that at 

least n such modes are significant for the dynamics of an n-story 

building with flexible floors. 

Chapter VI treats multistory buildings with uniformly spaced 

moment-resisting frames or walls. If the numbers of frames and stories 

are sufficiently large, such structures can be idealized as vertically

oriented anisotropic plates. A study of this type of model leads to the 

conclusion that the dynamic properties of such buildings can be obtained 

by separately analyzing one typical frame and one typical floor. The 

frequencies of the whole structure are simply the square root of the sum 

of the squares of the floor frequencies, when treated as free-free 

beams, and of the frame frequencies. Also, the mode shapes can be 

obtained by superposition of the floor modes and the frame modes. It is 

shown that such buildings possess all the modes of vibration that one 

obtains by an analysis based on the assumption of rigid floor diaphragm, 
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plus extra modes that involve floor deformations similar to those of 

free-free beams. However, the modes that involve floor deformations 

have zero modal participation factors for uniform ground motion. Hence, 

it is concluded that the floors in such buildings can be treated as 

rigid in their own plane in earthquake analysis without introducing an 

additional approximation. 

It is shown in Chapter VII that the concepts presented in the 

earlier chapters can be applied to study even more complex structures. 

As a specific case, the characteristic frequency equation and expres

sions for the mode shapes and the participation factors are obtained for 

a long, narrow building that has two end walls in the upper stories and 

several uniformly placed walls in the ground story. Thus, the lateral 

loads are resisted by the end walls in the upper stories, but are 

transferred to the ground story walls through the second-floor slab. 

The Imperial County Services Building, which has a similar structural 

system, is then analyzed using this model to obtain the first few 

frequencies and mode shapes. The fundamental mode shape displays some 

interesting features. First, the second floor deforms with opposite 

curvature from that of the upper floors. Also, a portion of the second 

floor near mid-span is displaced in the opposite direction from the rest 

of the structure. This is unusual, but is consistent with the mechanism 

of shear transfer from the upper walls to the ground shear walls. 
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All of the work has been carried out on symmetrical structures, 

although structures with asymmetry can also be analyzed using these 

methods. Even though the antisymmetric (torsional) modes of the 

symmetrical structures are not excited by uniform ground motion, results 

for these modes are presented. However, caution is needed in using 

these results, since the contribution of longitudinal frames or walls to 

the torsional stiffness of the structure is neglected in the way the 

problem has been formulated. Also, the polar moment of inertia of the 

floors is underestimated in this approach because the floors have been 

modelled as beams. The two effects are small in long, narrow buildings 

and have opposite, compensating effects on the dynamic properties of the 

structure. However, there may be situations where they cannot be 

neglected. To include these effects one can increase the end wall 

stiffness and the floor mass so as to obtain the same torsional stiff

ness and rotational inertia of the floor, that would actually occur in 

the building. 

From this thesis, it is seen that the problem of significant in

plane floor deformations, important in the earthquake response of cer-

tain types of buildings, is amenable to analysis in many cases. It is 

hoped that the results of this study lead to better understanding of 

this phenomenon, and that the analytical methods presented will prove 

useful in the dynamic analyses of buildings. 
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As further areas of research. the present work can easily be 

extended to include both bending and shear deformations of the floors 

(or walls}. The approach may also have application to buildings that 

consist of more than one wing joining at an angle (e.g •• L-. V-. T

shape plans}. Such structures need to be studied to learn the effects 

of floor-diaphragm deformations. Also. the method has potential for use 

in the study of buildings with vertical offsets. 
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NOTATION 

Mathematical symbols have been defined where they first appear. 

They are summarized here in alphabetical order. Some symbols are given 

more than one meaning, when there is no question of confusion. 

A 

A 

c 

D 

D 

E 

f 

G 

g 

h 

• 

hl 

h2 

I 

= area of cross-section; constant of integration; 

arbitrary constant 

area of cross-section per unit width 

= spacing of floors 

spacing of frames 

constant of integration 

width of a wall 

= torsional stiffness; constant of integration; 

arbitrary constant 

thickness of a wall 

constant of integration 

flexural rigidity of plate strip of unit width . 

Young's modulus 

= intensity of a continuously distributed static load 

shear modulus 

acceleration of gravity 

height of building; story height 

height of roof from second floor 

= first-story height 

= moment of inertia 



I 

K 

K 

k 

• 

k' 

L 

1 

M 

m 

• m 

p 

p 

Q 

q 

SA 

T 

T(t) 

u 

u 

u 

v 

v 

w 

w 

X 

- 190 -

= moment of inertia per unit width or height 

spring constant 

shear stiffness of plate strip of unit width 

shear stiffness 

shape factor 

= half length of building 

= length of building 

bending moment 

mass per unit length 

mass per unit area 

= modal participation factor 

coefficient (dimensionless) 

shear force 

coefficient (dimensionless) 

acceleration spectrum value 

= twisting moment; period 

function of time 

= function of x; function of x and y 

= displacement 

= ground acceleration 

= function of x; function of y 

= displacement 

= function of y; function of x and y 

displacement 

= function of x 



y 

x',y',z' 

x,y,z 

a 

fl 

y 

e 

A. 

~ 

~ 

p 

w 

Subscripts 

b 

i,j,k,r 

s 
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function of y 

= cartesian coordinates 

dimensionless cartesian 

coefficient (function 

coefficient (function 

coefficient (function 

angle of twist 

= coefficient (function 

coefficient (function 

coefficient (function 

= density 

frequency 

bending 

= integers 

shear; integer 

of 

of 

of 

of 

of 

of 

coordinates; 

frequency) 

frequency) 

frequency) 

frequency) 

frequency) 

frequency) 

cartesian coordinates 


