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ABSTRACT

Classical, semiclassical and quantum theories of
outer-sphere electron-transfer reactions in polar media
are discussed. For each, the Franck-Condon overlap
factors for the hexaamminecobalt, hexaaquoiron and
hexaammineruthenium self-exchange rates and for the
cross-reaction of hexaaquoiron(II) with
tris(?2,2'-bipyridine)ruthenium(III) are evaluated and
compared. The guantum effect on the rates is small
in the region of moderate driving force; the "normal"
AG° region. Direct-sum and saddle-point evaluations
of the quantum Franck-Condon factors are made and com-
pared. The saddle-point approximation is shown to be
an excellent approximation in the cases considered.

Quantum effects in homogeneous outer-sphere electron-
transfer reactions in the region of large negative AG®
(the "inverted" region) are considered. The results
of quantum, semiclassical and classical calculations
on model systems are presented. A sequence of highly
exothermic photoinduced reactions of tris(2,2'-bipyridyl)
complexes is discussed with regard to the possible
importance of quantum effects and of alternate reaction
pathways in understanding the failure of the sequence

of reactions to exhibit pronounced "inverted" behavior.
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A mechanism leading to electronically excited products
provides a possible explanation for the large discrepancy.

The theory of highly exothermic homogeneous outer-
sphere electron-transfer reactions is discussed for
transfers occurring over a range of distances., A [inite
rate of diffusion of reactants and their long-range
force are treated by solving the reaction-diffusion
equation numerically for the reactant pair distribu-
tion function. Steady-state solutions are compared
with experimental data. On the basis of short-time
solutions it is proposed that experiments which measure
electron-transfer rates at short times following the
onset of reaction improve the possibility of observing
the inverted effect in bimolecular systems.

The effect of the reactants' relative orientation
on the electron-transfer rate is considered. Reactants
are modeled as oblate-spheroidal potential wells of
constant, finite depth. Energy levels and wavefunctions
are obtained for an electron localized in such a well.
The electronic matrix elements that govern electron
transfer within a nonadiabatic quantum theory are eval-
vated. Significant orientational preferences are pre-
dicted for electron transfer between nonspherical donor

and acceptor sites.
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INTRODUCTION

This thesis is concerned with the rate of electron-
transfer reactions such as reaction 1 occurring in
a polarizable medium. The reactants are supposed to
be sufficiently dilute that they interact pairwise
only. Simultaneous interactions of more than two
reactants (electron sites) will not be treated. The
medium may be a polar solvent such as water, or some
more highly organized structure such as a membrane
or protein. The reactants A and B may be metal com-
g

{ or Ru(2,2'-bipyridine)32+

molecular ions or neutrals (e.g.,porphyrin, anthracene,

plexes (e.g.,Fe(HZO ) or
quinone). Thus reactions described by equation 1 in-
clude the hexaaquoiron self-exchange reaction in water
and the reduction of pheophytin by chlorophyll in photo-
synthetic reaction centers. The reactants A and B may
even be distinct chromophores in the same molecule;

two sites which are to a significant extent electronic-
ally isolated from one another. In such a case the
electron transfer of reaction 1 is an intramolecular

electron transfer.

A'+B—i->A+B' (1)



Reaction 1 is said to be "homogeneous" if it occurs
in a single phase. Electron transfers between solvated
ions are clearly homogeneous. Oxidation-reduction
reactions at electrodes, for example, are "heterogen-
eous" reactions and so are not in the domain of the
present discussion.

Reaction 1 is said to be an '"outer-sphere" reac-
tion if the chemical identities (apart from charge-
types, of course) of species A and B are preserved
throughout the reaction. "Inner-sphere" electron trans-
fers, which involve concerted bond-breaking and/or
bond-forming, will not be considered.

The object of theories of electron transfer is to
predict the electron-transfer rate. It is the forward
rate that will be dealt with throughout this thesis.
The reverse rate can be obtained of course from the
forward rate and the equilibrium constant. The rate
of a reaction such as reaction 1 is to be calculated
within an idealized model of the electron-transfer
system. The system, which consists of an A-B pair and
the surrounding medium, is described by a conceptually
simple model in order that a theoretical treatment be
feasible. A discussion of the features of a theoretical

model of the electron-transfer system follows.



The reaction involves an electron moving from a
solvated donor site to a solvated acceptor. Even if
the reactants are neutral, the products will be charged,

or vice versa. Thus at some time in the course of the

reaction the electrostatic interaction between the
medium and at least one charge must be considered.

As the electrostatic fields change about the reactants
the polarization field must change in response. Con-
versely, a fluctuation in the polarization state of
the medium can induce a change in the source. That is,
a polarization fluctuation in the solvent medium can
prepare the reactants in a configuration favorable for
electron transfer. The treatment of the role of the
polar medium is one of the most important aspects of
an electron-transfer theory.

The first successful treatment of the role of the
polar medium in electron transfer is due to Marcus (1).
In this theory the solvent is treated as a classical
dielectric continuum. In case a reactant is an unlig-
ated ion, e.g.,Fe2+, the continuum approximation is
applied only outside the first coordination shell.

The polarization P of the solvent is conceived of as
the sum of two components, Eop and gir. The electronic
polarization Eop arises from electronic motions in

components of the medium. Eop is assumed to respond



instantaneously to electrical perturbations and so

is always in equilibrium with the local electric field.
The second component, Eir’ arises from collective 1li-
brations and vibrations of the components of the medium.
This component of the polarization responds relatively
slowly (with characteristic times on the order of

10—11

sec (2) ) to electric fields and so need not

be in equilibrium with the charge distribution on the
reactants. Fluctuations of P, from equilibrium can
bring the system to the transition state. These fluc-
tuations and their implications for the rate constant
were analyzed by Marcus (1,2,3).

The medium polarization has also been treated quantum-
mechanically (4,5). (See especially chapter 2 of refer-
ence 6 for a discussion of the quantum treatment of the
medium polarization.) In the quantum-mechanical treat-
ment of the medium, the state of polarization 1s repre-
sented as a set of harmonic oscillators corresponding
to the Fourier components of Eir' This treatment does
not assume that the solvent molecules move harmonically.
Rather it corresponds to an expansion of the polarization
in a harmonic basis. (Section 7 of reference 7 contains
a discussion of the implications of the quantum-mechanical

treatment of the medium.)



The nuclear degrees of freedom internal to species
A and B (or describing the first coordination sphere
in the case when A or B is an atomic ion) have been
treated both classically by Marcus (8,9) and quantum-
mechanically by Levich and Dogonadze (4,10) and others
(11,12). 1In the quantum theory there is no formal
distinction between such "inner-sphere" modes and medium
(”outer-sphere”) modes. The term "inner-sphere" is
used here (and subsequently in this thesis) to classify
nuclear degrees of freedom. This use is distinct from
its use to indicate an electron-transfer mechanism
which involves making or breaking bonds. "Nuclear
coordinates,"in the context of this thesis, refers
either to the positional coordinates of nuclei, or to
the coordinates describing solvent polarization, but
not to other degrees of freedom such as nuclear spins
or the motion of subatomic particles within nuclei.

In principle it is possible to treat all of the
inner-sphere nuclear vibrational modes. In practice
of course only a few may be considered. The equilibrium
values of the nuclear coordinates of some inner-sphere
vibrational modes may shift upon electron transfer.
It is important to consider such modes having large
coordinate changes since a coordinate shift may, de-

pending upon the vibration frequency, contribute a



significant energy barrier to the electron transfer.
The importance of inner-sphere vibrations and the nature
of the energy barrier are discussed in more detail in

Chapter 1.

Common to all of the discussion and calculations
in this thesis is the assumption that immediately prior
to electron transfer the nuclear modes are relaxed.
That is, it is assumed that vibrational states of the
reactants are thermally populated, or in the classical
picture, that the nuclear-phase-space distribution is
at thermal equilibrium. Electron transfer from non-
equilibrium initial-state distributions has been con-
sidered theoretically (13) but experimental evidence
for such behavior is still lacking.

The motion of reactants A and B along the coordinate
r which describes the location of B relative to the
center of A (rzzlzl::distance between the centers of
A and B), and the rotations of A and B which determine
their relative orientations {2, are considered separately
from the inner-sphere and medium-polarization nuclear
coordinates. This separation is based on time scales.
The characteristic times for reactants' tumbling and
diffusion in a condensed medium are expected to be
much greater than the periods of polarization fluctua-

tions and inner-sphere vibrations. The rate constant



calculated first is thus a unimolecular rate constant
for a "super-molecule" consisting of the medium and
reactants A and B at fixed (r,2). The observable rate
constant, which is a weighted average of k(r,2) with
respect to r and {2, can be either obtained through
thermodynamic arguments (1,13) or calculated using

a reactant-pair distribution function (14,15,16,17).

A particular form of the latter approach, one which

is appropriate to reactions in homogeneous fluids,

is discussed and employed in Chapters 3 and 4 of this

thesis.

The type of averaging that is appropriate depends
on the nature of the reacting system and whether it
is a steady-state rate constant or a time-dependent
rate constant (as in certain fluorescence-quenching
studies) that is observed. For reactions in fluids
diffusion may occur relatively freely so that r and
? sample a large domain. In intramolecular electron
transfers and in biological electron-transfer systems
the reactant sites may have only limited freedom of
orientation and separation. Electron transfers between
sites in glassy matrices involve reactants whose motion
is even more severely inhibited. The analysis in this
last case is complicated by the time-dependent nature

of the observed rate.



Thus far this introduction has dealt with the role
of nuclear degrees of freedom in the electron-transfer
rate. Chapters 1 through 4 of this thesis focus on
that role. However, electronic degrees of freedom
are also important in the electron-transfer step.

The discussion now turns to that aspect of electron-

transfer theory.

A pair of Born-Oppenheimer potential curves is
depicted schematically in Figure 1. The full potential
surfaces are multidimensional, defined in principle
over the space of all nuclear coordinates of both the
inner-spheres of A and B and of the medium (but not
(r,2), as discussed above). Figure 1 represents a
cut through the potential surfaces along some hypothet-
ical nuclear coordinate R. Two electronic states are
considered; one in which the t'transferable' electron
is localized on A (the "reactant" state corresponding
to AT +B), and one in which the electron is localized
on site B (the "product" state corresponding to A+ B7).
If the two electronic states could be prevented fronm
interacting, for instance by separating the reactants
to r =, then the product and reactant states would
be degenerate at R==Ro. But in general the two states

do interact and are split in energy by ~2V at R:=RO.

AB
Vyg is the matrix element |<B|V|A>| of the perturbing



Energy

A+B~ AT+B

¥ipgure 1.

10)]

Profile of potential energy surface

vyersus a generalized nuclear coordinate,

The dashed lines indicate the potential
energies in the limit VAB: 4R
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potential V between the localized states |B> (which
corresponds to products, A+B”) and [A> (which
corresponds to reactants, AT +B). An explicit example

of V is given in Chapter 5 for a particular model

AB
of an electron-transfer systen.

The terms "adiabatic" and "nonadiabatic" as they
apply to electron transfers may be discussed in terms
of Figure 1. A reaction for which the electronic inter-

action V is large is said to be adiabatic. In this

AB
limit the upper surface is irrelevant and the reacting
system moves solely on the lower potential surface.

If on the other hand VAB is very small, then the reac-
tion is said to be nonadiabatic. Classically, as
VAB-+O it becomes possible for the reactant system

to move from R <RO to R:>Ro with a significant
probability of remaining on the reactant (A +B) poten-
tial surface. Thus the frequency factors (in an
Arrhenius rate constant) for nonadiabatic reactions
are likely to be smaller than those for adiabatic
reactions. A more quantitative distinction between
adiabatic and nonadiabatic reactions is drawn in ref-
erence 18. According to a criterion given there, a
room-temperature reaction in a polar fluid will be

adiabatic for V >0.01 eV and nonadiabatic for

AB

V,p£0.01eV.



17

References 7 and 19 contain general discussions
of the meaning for electron-transfer reactions of the
terms "adiabatic" and "nonadiabatic," A distinction
between adiabatic and nonadiabatic reactions is not

easily drawn in practice. A single electron-transfer

system may even exhibit both types of benavior, since
VAB may differ along various reaction paths through
the coordinate space.

The classical theory of Marcus was derived for
adiabatic reactions, although a "nonadiabaticity factor"
K was incorporated into the pre-exponential factor of
the rate constant. For an adiabatic reaction k=1.

For nonadiabatic reactions « is less than unity and
has been evaluated using the Landau-Zener theory of
curve crossing. (See (8) or pages 68-72 of reference 7.)

The quantum-mechanical theory of electron-transfer
due to Levich and Dogonadze was derived using time-
dependent perturbation theory and is valid when VAB
is small. The quantum-mechanical theory is thus a
nonadiabatic theory. The interaction VAB must diminish
as the reactants are drawn apart, so all reactions
become nonadiabatic at sufficiently large separation r.
Thus the nonadiabatic quantum theory is suitable for

the study of distance effects in electron transfers
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and is used to that end in Chapters 3 and 4 and especially
in Chapter 5 of this thesis.

The specific problems addressed in each of Chapters
1 through 5 are described in the remainder of this

introduction.

Inner-Sphere Quantum Effects

As discussed earlier in this introduction, an outer-
sphere electron-transfer reaction in a polar solvent is
characterized by changes in the force constants and
bond lengths and bond angles of the reactants and by
fluctuations in the surrounding solvent. In many systems
the inner-sphere changes are very small, so that the
reaction is controlled by fluctuations in the solvent

polarization (e.g.,Ru(NH3)2+/2+ {20} and Cr(2,2'-bi-
3+/2+

pyridyl)3 (21)). On the other hand, some redox
systems involve substantial internal reorganization
(e.g., Fe(H20)63+/2+ (20) and Co(NH3)63+/2+ (22) ).

In such Systems inner-sphere effects are important.

In Chapter 1 classical, semiclassical and quantum
theories of electron transfer are discussed. It has
been suggested that reactions in which inner-sphere
reorganization is important are not adquately described

by classical theory but require a quantum-mechanical
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treatment (11,12,23). The nature and magnitude of
quantum effects in the particular cases of the very
slow hexaamminecobalt self-exchange reaction, the

hexaaquoiron self-exchange reaction, the hexaammine

ruthenium self-exchange reaction, and the Fe2+ -
Ru(2,2'-bipyridine);+ cross-reaction are discussed

in Chapter 1.

One of the differences between the classical and
the quantum theories of electron transfer is that the
1atteritheory allows for tunneling in the nuclear-
coordinate space of the reacting system. The meaning
of nuclear tunneling is conveniently discussed in terms
of Figure 1, where R is now taken to be the reaction
coordinate. Classically, the reacting system begins
in the left-hand potential well. Reaction occurs when
the system passes over the energy barrier at R:=RO.
But the quantum-mechanical theory allows the reacting
system to pass through (as well as over) the barrier.
Tunneling appears in the quantum theory's rate expres-
sion in the form of Franck-Condon overlaps of reactant
and product vibrational wavefunctions that lie below

the barrier maximum at R = RO.
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It is expected that if nuclear tunneling is to
be important, it will be so for systems in which a
high-frequency mode undergoes a significant displace-
ment. For example, in the hexaamminecobalt self-exchange
reaction the equilibrium position of the symmetric
stretching mode, hv = 431cm-1 is displaced by 0.18 &
(see Chapter 1), and in electron-transfer reactions
in which an electronically excited bipyridyl complex
is quenched, a ring mode, hv = 1300 cm_t undergoes
a substantial equilibrium displacement.

In Chapter 1 it is found that a reasonable order-
of-magnitude estimate for the contribution of config-
urational changes of high-frequency quantum modes in
the first coordination layer, for typical metal-ligand
frequencies, to the reaction rate constant can be

provided by a classical expression.
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Quantum Effects in the Inverted Region

It has been predicted that the rate constant of
a sequence of homogeneous electron-transfer reactions
in which the reactants A and B are varied (but with
A and B chosen so that the nature of medium-polarization
and inner-sphere vibration effects is constant) should
first increase with increasingly negative standard free
energy of reaction AG°  at small AG®. It should
then achieve a maximum at some value of AG® and
thereafter decline as AG° continues to become still
more negative. The region of decline was termed the
"inverted" region (8). The existence of an inverted
region was first predicted on the basis of a classical
theory (8,24). The guantum-mechanical theory predicts
a smaller but nevertheless nonzero inversion (12,25).
The experimental evidence of an inverted region
is sparse. Some evidence for the effect is available
for the reactions of electrons with different solutes,
where the AG° for a given solute was varied by varying
the hydrocarbon solvent and, thereby, the electron-
solvent binding energy (26). Supporting data appear
in the reactions of micelle-trapped pyrene with various
anion radicals and in reactions of hydrated electrons

with organic molecules trapped in micelles (pages 163-4
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of reference 6), and (a small decrease) in the reduc-
tion of electronically excited bipyridyl complexes of
Ru(II) by various metal-bipyridyl complexes (21). In
the two micellar examples, the AG%'s are uncertain,
however. Evidence has also been offered in studies
(27) of the rate of fluorescence quenching of trapped
electrons in a glass at 77K by various aromatic accep-
tors.

On the other hand, many studies of highly exothermic
reactions have found a diffusion-limited rate constant
which extends to quite negative AG®'s, rather than the
predicted declining rate constant (e.g. @8)). These
studies frequently involve measuring the rate of quench-
ing of fluorescence by a series of reactants, where
quenching was presumed or demonstrated to proceed by
electron transfer. 1In most cases, the reason for the
absence of decrease in the rate is unknown. Several
possible explanations are offered in Chapters 3 and 4.

The prediction of classical theory for the inverted
region, and the quantum-mechanical corrections thereto,
are examined in Chapter 2, first for a model system
and then for an actual system using realistic vibra-
tion frequencies and bond-length changes for the data
of Creutz and Sutin (21). The discrepancy between

the experimental results and the theoretical predic-
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tion is found to be very large, some quantum effects
notwithstanding. An alternate pathway of forming an
electronically excited product is explored in Chapter 2.
It reduces the discrepancy considerably.

In Chapter 3 the relationship of the unimolecular
rate constant to an 'observable' bimolecular rate con-
stant for a reaction in a polarizable fluid medium is
discussed. A reactant-pair distribution function g(r),
where r is the distance between reactants A and B,
is obtained as a solution to a reaction-diffusion
equation. The bimolecular rate constant calculated
in this way explicitly contains contributions from
electron transfer over large separations. The inclusion
of reaction-at-a-distance has special implications for
the inverted region. Those implications are also
discussed in Chapter 3. Chapter 4 constitutes an

elaboration of the material in Chapter 3.

Orientation Effects

The relative orientation (specified earlier by )
of the donor A~ and the acceptor B may affect the electron-
transfer rate, inasmuch as VAB may depend on Q. For

example, the photoinduced electron transfer in photo-
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synthetic reaction centers may be influenced by the
orientation of the reactants. In plant photosystem II
the acceptor is probably a pheophytin (29,30) and the
donor may be a substituted chlorophyll a (30,31).
Both of those molecules are large and asymmetric which
suggests that there may be one or more preferred orien-
tations for electron transfer. For another electron
transfer, that between hemes in cytochromes, there
is evidence that the rate constant depends strongly
on the mutual orientation of the hemes' porphyrin
rings (32}

A model theoretical electron-transfer system is
presented and discussed in Chapter 5. This system
is designed for studying the effects of orientation
and distance on electron-transfer rates. The donor
and acceptor in the model are three-dimensional oblate-
spheroidal square-well potentials. They are inherently
orientable because of their nonspherical shape. Matrix
elements VAB are presented in Chapter 5 for a few cases.

Significant orientation effects are found.
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CHAPTER 1

QUANTUM EFFECTS IN ELECTRON-TRANSFER REACTIONS
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Introduction
[AVAVAVAVAVAVAVAVAVAVAVAW

An outer-sphere electron transfer reaction in a polar solvent is
characterized by changes in the force constants and bond lengths and
bond angles of the reactants and by fluctuations in the surrounding
solvent. In many systems the inner-sphere changes are very small, so

that the reaction is controlled by fluctuations in the solvent polari-

)3+/2+ 1,2 B+ f24 3)
376 3 ’

other hand, some redox systems involve substantial internal reorganiza-

g*/2+ 2 and CO(NH3)2+/2+ 4). In such systems

inner-sphere effects are important.

zation (e.g., Ru(NH and Cr(2,2'-bipyridyl) On the

tion (e.g.,Fe(HZO)

In this paper we briefly describe classical, semiclassical and
quantun theories of electron transfer. It has been suggested that
reactions in which inner-sphere reorganization is important are not
adequately described by classical theory, but require a quantum mech-

5,6

anical treatment. A quantum mechanical treatment is available for

nonadiabatic electron transfers, and was developed at first for the
solvent modes7 and later for the bond vibrations.6’8’9

We discuss the nature and magnitude of quantum effects in the
particular cases of the very slow hexaamminecobalt self-exchange
reaction, the hexaaquoiron self-exchange reaction, the hexaammine |
ruthenium self-exchange reaction, and the Fe2+-Ru(bpy)§+ Cross
Teaction.

It is expected that if nuclear tunneling is to be important, it

will be so for systems in which a high-frequency mode undergoes a
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significant displacement. For example, in the hexaamminecobalt self-
exchange reaction the equilibrium position of the symmetric stretching
mode, Kw ~ 431 cm'l, is displaced by 0.18 A (cf. Table 1), and in
electron transfer reactions in which an electronically excited bipyri-
dyl complex is quenched, a ring mode, Hw ~ 1300 cm'l, undergoes a
substantial equilibrium displacement.

Nuclear tunneling will, other things being equal, be more
important for high, rather than for low-frequency modes as one can see
from the nature of harmonic oscillator eigenstates., We consider for
illustration purposes the one-dimensional model surface sketched in Fig.
1. Nuclear tunneling depends on the overlap of reactant and product
wave functions in the classically nonallowed region, and therefore is
directly related to the amplitude of the reactants' wave function in
the region q > b. This wave function extends further into the
classically forbidden region, for any given energy, the higher the
vibration frequency. It follows that tunneling from a state of given
energy is more probable for a high-frequency mode than for a low-
frequency mode, at a given energy.

In the present paper it is found that for the reaction rate con-
stant a reasonable order of magnitude estimate for the contribution of
configurational changes of high-frequency quantum modes in the first
coordination layer, for typical metal-ligand frequencies, can be provided

by a classical expression.9
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Model harmonic potentials for electron transfer versus

a generalized configuration coordinate q. (Ref. 9.)
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Quantun Treatment
ANNNNNNVNNV VNV

EKERE%&ERRQRRmE%&&8{’ An approximate quantum-mechanical rate
expression based on the golden-rule transition probability has been

derived for electron transfer systems in the nonadlabatic limit.b's’10
Within the Condon approximation the transition probability in this expres-

sion involves the product of the square of an electron exchange integral,

and a thermally-weighted sum, G of vibrational Franck-Condon factors:

1 Ey P/ 2
G = Q%%e I{n |m )] S(E -E.) (1)

where Q is the reactants' (vibrational) partition function, and

n and m designate initial and final vibronic states, respective-
Ly En and Em are initial- and final-state energies. EVib is the
initial-state vibrational energy; |n) and |m) are treated as harmonic

oscillator eigenfunctions, equal to a product over the system's

degrees of freedom of single-mode harmonic oscillator functions.,

The single-mode harmonic oscillator overlap integrals required
for evaluating G directly by the sum of eq 1 have been known for many
years.ll.15 The expressions used in this work for these integrals are
presented in the Appendix (eqs Al-A2) in terms of f = w'/w,0' and w
being the frequencies associated with |m) and |n), respectively,
and in terms of the dimensionless change yX in equilibrium coordinate
value from |m) to |n). For a normal mode X = F(AQ)z/Zhw, where aQ is the

change in the nommal coordinate, w/2n is the vibration frequency, and

F is the force constant for the mode. (wz = F).
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In the case of X # 0 but w' = w, one obtains the well-known

limiting form'?

1
¢y = x O/ @ N2 @)

where L is an associated Laguerre polynomial.

An approximate simple formula for the multimode case has also

been derived elsewhere, together with limitations on its validity.l6

This relation was applied there to the hexaaquoiron self-exchange

reaction and to the Fe2+ - Ru(bpy)g+ cross-reaction and shown to

’ 26
give good agreement with the exact quantum values.

Quantun Treatment of the Solvent. The interaction of the solvent
AVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAV)

with the reactant ions is implicitly included in eq 1 as a set of

one or more harmonic modes. Usually only a single frequency,

6a,8e,17

hw, =1 cm'l, is used in calculations. However, in view of

the significant decrease in the real part of the dielectric constant

of water at 170 cm ! (and the corresponding peak in the imaginary

18,19

part) we have chosen to use a two-frequency quantum description

of the solvent interaction: ﬁwl =1en? and ﬁwz = 170 e,

A
dielectric dispersion in the solvent was first treated for electron
transfer by Ovchinnikov and Ovchinnikova.20

As a first approximation for this two-frequency description we
divide the outer-sphere reorganization energy into two parts, writing
21

Aout? which is four times the solvent reorganization energy, = as
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A = A, + A (3)

where

(4)
1 1 1 1
Xs =2 —_— - =}/ [ _.____)
2 out ( Byp Eop ) (es Eop
€ = 5.019 = real part of the dielectric constant on
the 'plateau’ between 1 en! and 170 em’L.

E. = 78.319 = static dielectric constant

_ 22 _ 2
Eop =1.78 = np

Thus, the quantum treatment of the solvent interaction (the solvent
is taken to be aqueous in this paper) involves two harmonic modes included
in the degrees of freedom of the system. In performing the quantum
mechanical calculation for the solvent eq 2 was again used but X was
obtained in the following manner. It is first recalled that for an internal
normal mode-i of the reactants Xi, which equals Fi(AQi)Z/Zhwi, can be
rewritten as Ai/hmi, since9 A = Fi(AQi)Z/Z. By analogy, we use for X
for the solvent xl/hwl and Az/hwz where A, and A, have been defined in

1 2

eqs 3 and 4. The mumerical values employed for Ay o are given later in
»

the paper, while hwl , are given above.
’
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Saddle-point Method. For a system having several vibrational normal
VAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAY)

modes of different frequencies, the direct evaluation of eq 1 can
require considerable computing time. However, G can easily be
evaluated approximately by replacing the delta function in eq 1 by its

Fourier integral representation, and then using the saddle-point method.

After some manipulation523’24 one obtains

G = (2nQ)71 f=gllEt + £(1),,

-0

(5)

and, after using the saddle-point method to approximate the integral,

1 -
= _1 ~1AEt,. + f(t
G n lZﬂf"(tO)l 2—Q 1e 0 (0) 5 (6)

where AE is the energy (endoergicity) of the transition; t, is
the stationary phase value of t in the integrand in eq 5; f, f'' and
t, are given in the Appendix.

In the case of a self-exchange reaction, product modes in the
oxidized species are equivalent to reactant modes in the reduced
species so that the formulae simplify considerably.5 In a thermo-
neutral self-exchange reaction, ty = -i/2kT. For other cases eq A6

of the Appendix may be solved numerically, e.g., by iterating from

the approximate root.

ty v -i(AE + A\)/2KT A (7
N
= 3 1 2 :
where A = A., and each A, = 2-F.(AQ.) . Eq 7 gives the exact
j=1 J J J )

saddle point in the high temperature 1imit, when frequency changes

are neglected, and provides a reasonable starting point for iteration

in other cases.
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Classical Treatment
LAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAV)

When all the degrees of freedom of the system are treated in the
classical limit, Aw/2KkT = 0, and when frequency changes are neglected,

eq 5 reduces to

1
G = (4nkTA) 2 expl-@E + 3)2/4KTA] (8)

This equation 1s similar in form to the classical expression for

G,2’4 but contains energies rather than free energies. This differ-

ence arises because eq 5 tacitly assumes zero entropy of reaction,

and indeed the initial equation, (eq 1), with its assumption of

harmonic oscillators, does not contain any important AS° term,25

25

whereas the actual AS°® can be quite large. The

classically derived expression is more general in this respect,

since it doesn't assume harmonic oscillations for all motions.26 As
N
) " 1 2
f 1 A. = F {AQ. d » = A It
defined earlier, 5 57 f QJ) an 2 3

27

J=1 ; .
has been shown"' that frequency changes may be included in an approxi-

mate manner by using an average force constant to calculate A.

J 9
rather than using the initial force constant. Fj above is an averaged
force constant.

= ' + ] 9
Fo = 2FF/(F + F') (9)

where F and F' are the force constants in the reactant and product states,
respectively. The classical value of the Franck-Condon sum (eq 8) is
computed using A's calculated with average force constants given by

eq 9.
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'Semiclassical' Treatment 28
[aVaAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAV]

Consider first a one-dimensional case with a coordinate Q.
The §(E -E ) of eq 1 can be introduced into I<Tl|nf>|2. When
the commutator of the initial and final Hamiltonians, Hn and Hm’
is neglected, 6(En-Em) in the integral becomes G(Hn-Hm), which
in turn is 6(Vn-Vm) since the kinetic energy terms in Hn and Hm
cancel; Vn and Vm are the potential energies of the reactants and
products, respectively. By using the identity 2|nf>‘<m | =1, the
thermally- weighted double sum of squared overlag integrals in eq 1
may be reduced to a single sum over n of<n ]5(\"n-vm)|n S(e.g., see
analogous procedure for other problems in refs, 29). These
integrals are readily evaluated, yielding a sum of factors propor-

tional to |Xn(Q)|2, where Q is that value of the coordinate for
which the reactant and product potential energies are equal, and
s is the wavefunction of the reactants. The remaining sum over n
in eq 1 is then readily evaluated to yield29

1
G = (2naKecoth v) 2 exp[ -(AE + A)Z/(thucoth vy)] (10)

where y = Nw/2kT, and E and A are defined as in eq 7, but A is for
the single mode being considered. Equation 10 is the same as that
obtained in ref. 28 by a different procedure. A detailed derivation
of eq 10 is given in the appendix.

For systems having two or more frequencies, one obtains a con-
volution of Gaussians of the form of eq 10. The convolution is itself

of the form of eq 10, but AMw coth y must be replaced with
26,29

Z . ) . A Z
= th coth YJ’ and X by “ 2y

J J
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This method of obtaining G's,which originated in the theory of
optical spectra of solids,29 is sometimes termed 'semiclassical’
because of neglect of commutators of Hn and Hm , although the term
'semiclassical' has a variety of other meanings (corresponding to

other approximations) in the literature.

Calculations and Discussion
VAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAY)

We now proceed to consider quantum effects in four particular

cases of chemical interest: the hexaamminecobalt and hexaammine-

ruthenium self-exchange reactions, the Fe2+/3+

2+

(aq) self-exchange

reaction, and the Fe™ - Ru(bpy)§+ Cross reaction.

Hexaamminecobalt Self-exchange Reaction. The large difference
[AVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAV]

between the rates of self-exchange reactions 11 and 12 has long

been a matter of interest in the theory of electron transfer rates.

k
2+ ‘ 3+ 71 3+ 2+
CO(NHS)é + Co(NHS)6 -+ CO(NH3)6 + CO(NHS)é

k, < 10712 w1s7 a¢ 2508 (11)

k
3 "2 3+ 2+
Ru(u1) 2 + Ru(uip 2 F RuCp) " ¢ RuCNIgg

30,31
k, = 103 M 1 a¢ 250 ’ (12)

e
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In the quantum theory described earlier, the rate constant
involves the product of the square of an electronic exchange integral
and a sum of Franck-Condon factors. It has been suggested that the
electronic factor for reaction 11 may be small because of spin multi-
plicity restrictions.l’s Further, the Franck-Condon term is much smaller
for the Co reaction than for the Ru reaction because of the larger
D¢ (cf. Table 1.

Buhks, et al.S evaluated the Franck-Condon sums, G, for reactions

change in geometry from Co(NH3)62* to Co(NH

11 and 12, using the saddle-point method described earlier. They

18 10 cm so that the

found G(Co) ~ 7 x 107" cm and G(Ru) = 1.5 x 10~
ratio of Franck-Condon sums contributes a factor of E§_10_8 to the
ratio kl/k2' But they also found that the classical value of

G(Co) /G(Ru) was ~ 10_5. The gross discrepancy between the classical
and quantum values, a factor of 1000, led them to suggest that G(Co)
is heavily dependent on quantum effects. There is clearly some error
in either the classical or the quantum Franck-Condon factors of

ref. 5 since tunneling effects should cause G(Co)/G(Ru) to be

larger in the quantum case than in the classical one, yet a

smaller value was found for the quantum case in ref. 5.

Actually, we have found that the large classical value of ref. S
for G(Co)/G(Ru) is the result of using the inaccurate estimate
(28.5 kJ/mol) of Stynes and Ibers1 for the hexaamminecobalt internal
reorganization energy. The latter seem to have treated the bond

length reorganization energy in the hexaamminecobalt ions as containing
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TABLE I: Structural and Spectroscopic Data &

2+ I+ 2+ 3+
CO(N}13)6 Co(‘\H:’;)() RU(NH3)6 Ru(NHS)f)

M-N bond length, A 2.114 1.936 2.144 2.104
Ro (Ay), em ! 357 494 350 500
Ru (E) 255 442
Fo (F) 325 475
o (F) 192 331
Ko (F) 187 322
Ko (F) 143 246
Mouter (KJ/mol) 117 113

3Ref. 5. Symmetries are for an effective octahedral geometry.
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6
. 15 2 . :
only diagonal terms > fr(Aqi) , where Aqi is the displacement
i=1
in the ith Co-N bond length, and fr is the Co-N bond force constant.
But the reaction coordinate is actually the symmetric stretching
normal mode, and when expressed in terms of bond modes cross-terms are
obtained. The totally symmetric F-matrix force constant Fp_ is given

in terms of generalized-valence-force field (GVFF) constants f by 34

Fa = fr * 4frr' + frr (13)

where fr is the diagonal force constant, and frr and frr' are off-

diagonal force constants., frr' denotes interaction between displacements
perpendicular to each other. frr denotes interaction between displace-
ments on the same line. The symmetric stretching normal mode force constant
F, involves both the F- and G-matrix elements and equals FAl /mL,Szwhere mp

g
is the mass of one ligand. The bond length reorganization energy 1533

% Fl(AQl)2 where AQl, the normal-mode displacement, is /Eﬁz Aqi32 (all six
Aqi's are equal). Thus, this reorganization energy equals %—(fr * 4frr' +
frr) 6(Aqi)2. It thereby involves both diagonal (fr) and off-diagonal

(frr and frr') GVFF force constants, and the latter are almost as important
as the former.34 Accordingly, we have made a comparison of the more correct
classical value with the quantum sum, as well as with the semiclassical

sum for G.

In the high-temperature (classical) limit, the Franck-Condon factors
usually depend mainly on modes in which the product potential is displaced
in coordinate space relative to the reactant potential (i.e., A # 0). In the
Co- and Ru-hexaammine self-exchange reactions only the solvent modes and the

totally symmetric A18 internal modes have nonzero A's. Changes of frequency

in the other modes would also make some contribution to G, of course, and as
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an example we include the modes of Eg and F symmetry later in quantum cal-
culations of G. The approximate classical expression for G (eq 8) cannot
treat modes for which A = 0,

Using the known Alg stretching frequencies (cf. Table I) for

Co(I1I1/111) - hexaammine, the Alg symmetry force constants F and F

€ 11
(i.e., the FAlg for oxidation states III and II) are calculated to be
245 % 103 N/m and 1.28 x 103 N/m, respectively. Using the

average force constant of eq 9 and the Co-N bond lengths in Table I,

the internal reorganization energy is found to be about 48 kJ/mol35

(instead of the 28.5 kJ/mol calculated in ref. 1). By analogous calculation,
the Ru(II/111) hexaammine internal reorganization energy is found to be
2.5 kJ/mol. The total outer-sphere A's for the cobalt and ruthenium reactions
have recently been estimated as 117 kJ/mol and 113 kJ/mol, respectively.5
Using these energy parameters, eq 8 yields as a classical result
G(Co)/G(Ru) ~ 5 x 10.9 which is in reasonable agreement with the quantum
result, both as given by Buhks, et al., and as calculated below.
In order to assess the accuracy of the saddle-point method for the
hexaamminecobalt system, the values of G obtained by direct sum are
compared with those obtained by saddle-point integration. For simplified

models consisting of only the A, internal mode, or of both the A1g and

1g
one of the two degenerate Eg internal modes, both the direct and saddle-
point calculations have been performed. (For the Eg modes AQi is zero,
if in the transition state each reactant has octahedral symmetry, but
Bwy is nonzero.) The results are given in Table II. At least for

the models in this Table the saddle-point evaluation is a very good

approximation.

For the complete hexaamminecobalt system consisting of all the
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TABLE I1: Franck-Condon Sums, G

Systema Direct Sum Saddle-Point
Ru(N;)  Z*/3" (A1l values for G have been multiplied by 10° am™>.)
quantum solvent, quantum internal 1.04 1.08
classical solvent, quantum internal 0.93 0.97

effective force constantb
classical solvent, quantum internal 1.02 1,02
classical solvent, classical internalC 0.82
Co(}\'Hs)()Z*/3+ (A11 values for G have been multiplied by 1018 Cm-l.)
A1 internal modes
g
quantum solvent, quantum internal 20.0 20.0
classical solvent, quantum internal 178 17,8

effective force constant?
classical solvent, quantum internal 19.1 19.1
effective force constantb;
classical solvent, classical
internal® 4.4
A and E_ internal modes
1g g
classical solvent, quantum internal 15.6 15.6

All internal modes

classical solvent, quantum internal ..

"internal" refers to intramolecular degrees of freedom of reactants.
aFrequencies and displacements from Table I.

bEffective internal frequency used (see eq 9). The saddle-point
approximation is exact in this case.

°Eq 8.
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frequencies listed in Table I (AQi = 0 for the Eg and F modes), the
direct sum was found to require excessive computation time, so only
the saddle-point value of the Franck-Condon sum was calculated.

Assuming that it is reliable, we find (cf. Table I1) G(Co)/G(Ru) ~ 10'8
’

in agreement With the saddle-point-method-value in ref. §

Also listed in Table II are values of G calculated using the
two-frequency quantum solvent model described earlier and analogous
values calculated assuming wholly classical solvent interaction.

As expected, the classical solvent model yields a slightly smaller
value of G (less nuclear tunneling). The effect is small, about
10% in the systems considered.

Hexaaquoiron (II/III) Self-exchange Reaction. Like the hexa-

(AVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAY
amminecobalt self-exchange reaction, the hexaaquoiron self-exchange
reaction proceeds with a large internal reorganization energy in-
volving the metal-ligand internal modes. Using metal-oxygen
symmetric stretching frequencies in the ferric and ferrous ions of

roughly 490 cm™ 1

and 389 am ! respectively,2 and a change in
equilibrium bond length of 0.14 3,36 the internal reorganization
energy is calculated to be 35 kJ/mol, when an effective single
frequency of 431 cm'l, based on eq 9, is used. The outer-sphere
reorganization energy has been estimated as 27 kJ/mol.2
It has been suggested that in a system like this one, in which
a high-frequency mode undergoes a significant bond length change,
quantum effects should be large. But calculation of the sum over

Franck-Condon factors yields a quantum value of about 3.5 times

the classical value (cf. Table III). Thus, as in the hexaammine-
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TABLE 1II1: Franck-Condon Sums For Hexaaquoiron and Tris-bipyridyl-

ruthenium Sclf-Exchange and Cross-Reactions

Reaction Quantum Classical Semiclassical
Fe?* - Fe 8.52 2.42 145.2
Ru(bpy) 2" - Ru(bpy)3’ 1.4° 1.4 1.67
Fe’* - Ru(bpy)3’ g 2, &F 1.5 3.8¢
klz/(kllkzlezflz)ﬂd] 0.94 1.00 0.40

3 Multiplied by 10%° anl.

b Multiplied by 10 em’l.

7 1

€ Multiplied by 10’ cm™-.

d
cf. eq 17. Rate constants are from Table IV. kll’ k22’ and klZ

are the rate constants for the preceding three reactions, in

the order listed.
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cobalt self-exchange reaction, no very large quantum cffect on the Franck-
Condon sum is observed. Indeed, the discrepancy is smaller than the other
uncertainties in the overall calculation of the reaction rates, and the
quantum expression 1s more complex (cf. the cancellation of terms in the
classical expression, leading to the simple cross-relation expression21
given below).

The 'semiclassical' result in Table II1 is seen to be in large error.
It was shown in ref. 26 that the semiclassical method corresponds, tacitly,
to assuming that the nuclear tunneling distance along the abscissa is ac
in Fig. 2, whereas it is actually ab. This assumption is valid only when
the products' curve at the intersection is very steep, for then point
b = point ¢, and so is valid when AE is quite negative. Identical
remarks apply to the reverse reaction when -AE is quite negative and
hence, by microscopic reversibility, to the forward reaction when AE
for the forward reaction is quite positive. For AE = 0 one concludes,
since ac < ab, that the "semiclassical" tunneling rate will exceed the

quantun one,26 a result confirmed in Table ITI (Fe2+ - Fe3+

). Related
remarks apply to use of the semiclassical result in the so-called inverted
region (|aE| > 1), only now the semiclassical answer is too low, for now
it was shown,26 the actual nuclear tunneling distance is less than the

tacitly assumed one.26

Cross Reactions.  Quantum effects on the classical cross-
relation37 are found below to be relatively small, in the 'normal'

aG° regime. In this relation, the rate constant k12 of
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Al(ox) + Az(red) -+ Al(red) + Az(ox) (14)

is related to those (kll, kzz) of the self-exchange reactions

Al(ox) + Al(red) > Al(red) + Al(ox) (15)
Az(ox) + Az(red) -+ Az(red) * Az(ox) (16)
.21
when the work terms are either small or nearly cancel, via
1
% . 2
kj; = (kppkpp Kpof)) (17

where K., is the equilibrium constant of reaction 14 and f12 is

1e

given by

in £, = (in xlz)z/[a nn(knkzz/zz)] (18)

where Z is the collision frequency in solution. Expressed in terms of

of the classical G's, this expression can be rewritten as

)}

= 2
G, = (G Gy Ky Epp) (19)
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where
i T, = (k)14 (G G,,)) (20)
]
and Cij = (4ﬂkijkT)7 Gij (21)

The classical results in Tables III and IV are those for a

classical adiabatic result,

where Z is defined above (and is taken to be 10'! M ls1 21’27). Eq 22
is valid when work terms for formation of the precursor and successor
complexes are neglected and when nonadiabaticity is negligible. To
assess a quantum correction, the ''quantum results" in Tables III and

IV were obtained using eqs 21-22 but with the Gij in eq 21 replaced by
its quantum value. The 'semiclassical' values in Table III were calcu-

lated by introducing the semiclassical value of Gij into eqs 21-22,

From the results of Table III for the cross-reaction

Ru(bpy)g+ * Be> « Ru(bpy)§+ (23)
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one can see that the quantum effect on the calculated cross-reaction
rate (eq 17) is only a factor of 2for reaction 23. The quantum effect
on the cross-relation, i.e., on the ratio of the left to the right

hand side in eq 17,is calculated to be a factor of 0.94.

In obtaining these results, the inner-and outer-sphere reor-
2+/3+

ganization energies for the Ru(bpy)3 self-exchange reaction

. : " n 1 n, !

were taken from ref. 2: Ainner ~ 0 and Z'Aout ~ 13.4 kJ/mol. The
2+/3+

reorganization energies for the Fe self-exchange are given

above. The inner- and outer-sphere reorganization energies for

27 to be

reaction 23 were then estimated from the additivity rule
17.6 kJ/mol and 20.1 kJ/mol, respectively. To allow direct com-
parison between the quantum and classical results, the effective

frequency 431 cm-1 was employed for the Fe2+/3+

symmetric stretch,
according to the rule for effective force constants given by eq 9.
The free energy of reaction for reaction 23 is readily calculated
to be -47.3 kJ/mol from the reduction potentials of Ru(bpy)§+
(1.26 ev>27%0) and Fe(aq)®* (0.770 ev??).

The calculated self-exchange rate constants in Table IV agree
reasonably well with the measured rate constants. However, the
calculated values of the rate constant for the cross reaction differ
from the experimental value by two to three orders of magnitude.
Several explanations for the apparent failure of the theory to
predict this particular cross reaction rate, when it predicts many

2,44,45

others so well, have been offered: (1) large differences in
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Figure 2 Curve similar to Figure 1, but for a nearly thermoneutral

reaction (AE~ 0). Points a and b here are classical
"turning points' of motion on the reactants' and products’
potential energy curves, for the given energy E. Point c
is at the intersection of the two potential energy surfaces.

The actual nuclear tunneling distance is ab. Cf. Ref. 26.
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TABLE IV: Rate Constants For Hexaaquoiron and Tris-bipyridyl-

ruthenium Self-Exchange and Cross-Reactions 2

Reaction k (quantum) kcalc(c1a551cal) L.

calc
Fe’" - Fe”' 6.3 1.7 4.2M
Ru(bpy);°* - Ru(bpy);>" 4.9x10° 2.6x10° 1.2x10° 2
Fe’’ - Ru(bpy);”” 1.4x10° 8.4x10’ 71t 459

8 Units are misl,
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the stability of the precursor and successor complexes, (2) non-
adiabaticity, and (3) nuclecar tunncling. Since the quantum and
classical calculated rate constants are in good agreement, the third
suggestion, nuclear tunncling, can now be eliminuated, so that thc

discrepancy is probably due to (1) or (2).

Conclusion
AVAVAVAVAVAVAVAVAVAY

We have shown that the Franck-Condon contributions to the rates
of the hexaamminecobalt, hexaarmineruthenium, and hexaaquoiron self-
exchange reactions at 300 K can be reasonably well approximated by
the classical expression (factors of 4.3, 1.2 and 3.5, respectively).
These corrections are relatively minor, in view of the uncertainties
in the various quantities involved in the rate expression. A non-
adiabatic model was assumed, but analogous results would be expected
for an adiabatic model.

Also for these systems, we have seen by direct comparison with
the exactly evaluated quantum sum of Franck-Condon terms that the
saddle-point approximation is a very good approximation to the exact
sum. The 'semiclassical' approximation (eq 10) is a poor one for self-
exchange reactions such as Fez+ - Fe3+.

The quantum effect on the cross-reaction relation (eq 17) for
hexaaquoiron(I1) with tris-bipyridylruthenium(III) is negligible
(a factor of 0.94), since some cancellation of quantum effects occurs

in the calculation of cross-reaction rates.
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We conclude that a reasonable order of magnitude estimate for
the contribution of configurational changes of high frequency quantum
modes in the first coordination layer, for typical metal-ligand fre-
quencies, to the rate constant can be provided by a classical expres-
sion. Pre-exponential factors and activation energies are expected to
be more sensitive to use of the classical approximation (they are to

other approximations also), and will be discussed in a subsequent paper,

Appendix
ANV

Harmonic-oscillator overlap integrals., The overlap integral
ANNNNNNN VYV VYV Y VNV YNV

(n|m) is given by

1

1
Gl = (D™P/T/a01A @™ Myt e M/

X1a-5/sp)mm/2 y I WE/a-nt @)
2=0 2! (m-2)!(n-2)!
2X 2Xf
><Fn-2{f i Hm-ﬁ{ 1-f7 )

where f and X are described in the text. Hn is the Hemmite
polynomial of order n, and F (x) = ian (ix). (Eq Al is given, for

example, in refs. 14 and 15 although with a few misprints.)
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For the case X = 0 and f # 1, eq Al reduces to:l3

1y 1
<on|amd = { af }4 2n! 2mt) Z_;in (f_.l_\mm
(1+£)? (22n+2m (-1) f+1)

X; 13" [ 16£ J‘L

220 200 (n-2) ! (m-2)! | (£-1)2 )
1
c F + 4 [£_q10*M
Conel|2me1> = | _4F } (2n+1)! (2m+1) ! ] g £
(1+f) L 2¢n+am (-1) f+1}

X ; -1 [ 16f J“

220 (22+1)!(n-2)!(m-2)! L(f-1)?

(nl2md = <2n+1|2my

The sums in eq Al and A2 are only formally infinite; they
are actually terminated by the factorials in the denominators of

the terms of the suns when 2 exceeds geither m or n.

Generating function for thc saddleepoint approximation., f(t)
NNNNNANAANANNANANNNN AN NV VNNV NN NNV NN N NN
(eqs 5 and 6) is found (using methods in refs., 23 and 24) to be given by

N
£(t) = -] {7 in[sinh 28, sinh 20 (o tanh B, *+w! tanha.)
j=1 ] ivi i o] j
X(wj coth 85 + w! coth a;)/ (w;u})] (A3)

* A6}/ (wy)/(wy coth a; + wl coth sj)}
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The second derivative of f(t) is

N
£''(t) = - 1 g ) {w.? csch? 28. + w.'?’csch? 2a,
27 5=l d i j

. wj'asech3cxj sinh oy + mj3 sech? sj sinh Bj

Z(wj tanh Bj * w; tanh aj)

. (Qi? sech? Bj - u>j'25ech2 qj)z ) (u?i'zcsch2 oy - wjz csch? 81.)2

4(w. tanh R. + w.'tanh a.)? . h B. + w.' h o.)?
(wJ t BJ wJ aJ) 4(mJ cot BJ mJ cot aJ)

'3 3 3 3
) ch ’ ha. + w. H* B h B.
) w. ~CS aJ cos é) wJ csc 3 cos BJ (A%)

2 (w. hBg. + w.' .
(wJ cot BJ wJ coth aJ)

) ij ub'%wj' csch? o cosh o + w; csch? ?j cosh si)

hw. . . )2
(wJ coth aJ + w5 coth BJ)

] 2)\). wj'awj (csch? oy - csch? Ej)z
h(w. . o 39
(wJ coth aJ + wJ coth BJ)

where N is the number of harmonic modes in the system,

D U S U 3 e g

and Wy wj' and AQj are defined in the text. t, is the saddle-

point value of t, i.e. t such that
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N
0 = f'(t) = %-iﬁ jzl w5 coth ZBj - wj' coth Zaj
w:? sech? B. - w.? sech? a.
CO ) J J (A6)
2(w. tanh B. . ! )
(wJ t BJ + wJ tanh aJ)

. wj'zcschz o5 - ij csch? Bj ZAj sz (csch? @ - csch? Bj)

2(w. coth B. + w.'coth a. h(w. coth a. + w.' )2
(wJ co BJ wJ co aJ) (mJ cot aJ + wJ coth BJ)

'Semiclassical' Franck-Condon sum, The 'semiclassical' Franck-
Condo;A2:;CAggmggéAgg;Agzmg::;::zw¥:g; eq 1, the Golden-Rule expres-
sion for the Franck-Condon sum, using techniques originally applied
to other problems.29 Consider first the case in which a single

normal vibrational mode, of frequency w, normal mode force constant

k = w?, and nomal coordinate q, characterizes both the reactants and

the products. The reactant Hamiltonian is

H = p?/2 + ka'/2 (A7)

The products' Hamiltonian, in which the equilibrium value of q is

displaced by an amount a, is
H = p?/2 + 3 k(a-a)? + AF (A8)

where AE is the reaction endoergicity. Eq 1 gives

1 © .
G=(hQ! %;e- (n+7)'hw/kT s 1}%1 (njm) (m|n) el (Ep-Ep) t/‘hdt (A9)
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where the Fourier-integral representation of the delta function has
been introduced. Inserting the exponential in the coordinate integral
and noting that the wavefunctions corresponding to |n) and |m),

- and Xy are eigenfunctions of Hr and Hp, respectively, one obtains

] - . .
6= Qi 1e (n+2)Hw/KT z (nm) (m| It A TH A g 4t (a10)

- 00

If all commutators of Hr and Hp are neglected, which is the semi-

classical approximation in this approach, thenZga

eint/ﬂ e-iHrt/‘h . eit(Hp-Hr)t/‘}‘i (A11)

From eqs A7 and A8 it is found that Hp—Hr = —ka(q-%—a-AE/ka), o)
eq Al0 becomes

1 © . 1
G = (hQ)"! ze-(n+7)ﬁw/kT r (r1|e'1tka(q'7'a'AE/ka)|n ) dt (A12)
n

* Q00

where use has been made of the identity I Im) (ml = 1. Eq A12

may be rewritten as

1
6 = (katQ ! g ™PKT (116(q-1 a-aE/ka) |n) (A13)

or simply

1
G = (katiQ)~? g (W PRAT |y (g*))2 (A14)
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a2 %va + AE/ka is the value of q for which the reactant and

where q
product potential energies are equal, According to Mehler's
formula,23 the sum in eq Al4 may be reduced to the single temm

1
G = (2mxhwcothy)™Z exp{- (AE+A)?/2xhwcothy] (A15)

where v = fw/2KT, A = 3 ka?, and we have used Q = [2 sinhfiw/2kT) 1.4

Consider now a system having N normal vibrational modes, each

characterized by a frequency wj and normal mode force constant k. = wjz
Let aj be the difference between the equilibrium values of the jth
normal coordinate in the product and reactant. Define Aj = %-kja§ and
¥ ='ﬁbj/2kT. Gj(AE) is given by eq Al5 for each mode individually.
G(AE) for the N-mode system, where AE is again the reaction endo-

ergicity, is a convolution of the Gj's G=1, 2,..., N). That is

= 2 N-1
G(AE) = [ f-w Gy(yp - -+ Gyq(Yn-1) GNlAE - El y) dyy - dyy

-

(A16)

Since each G;(E) is a gaussian distribution in E, G(4F) is a
convolution of the gaussians G;. Therefore G(AE) is itself a

gaussian distribution, and has a mean equal to the sum of the means

of the Gj’ and variance equal to the sum of the variances of the Gj’47
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Thus G(AE) for an N-mode system is given by eq Al5, but with

N N
A= I ). and Xwcothy = L AAu.cothy.. Explicitly,

j=117 j=1 J ) J

N -3 N
G = (2n ]} A.Hw. coth v.) exp[-(AE + } X.)?/
£ 05 j Ly 3
J J
N
(2 '2 kj ﬁwj coth Yj)] (A17)

j=1
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CHAPTER 2

QUANTUM EFFECTS FOR ELECTRON-TRANSFER

REACTIONS IN THE "INVERTED REGION"
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Introduction
[AVAVAVAVAVAVAVAVAVAVAVAW

In the usual range of standard free energies of reaction
AG®, outer-sphere homogeneous electron transfer reactions have
rates which increase with increasingly negative AG®. However,
when -AG® is very large both classicall’2 and quantums’4 theories
predict that the electron transfer rate will ultimately decrease
with increasingly negative AG® (inverted region), namely when
-8G® is greater than A, four times the total reorganization energy
of the reaction. Experimental studies have shown little or no

decrease of the rate constant in this 'inverted' region.s'8

There have been suggestions that quantum effects are responsible, Byy8-12
suggestions that electronically-excited products may be responsible5
(they correspond to reactions with a smaller -AG®°), and suggestions
that where the rate of electron transfer is inferred from and, in fact,
equated to the rate of fluorescence quenching, the fluorescence quenching
in the inverted region may be due instead to a faster alternate non-
electron transfer initial step, exciplex fonnation.13

In the present paper we consider the importance of nuclear
tunneling first for a model system and then for an actual system using
realistic vibration frequencies and bond length changes for the data of
Creutz and Sutin.6 The discrepancy is found to remain very large, some
quantum effects notwithstanding. An alternate pathway of forming
an electronically-excited product is explored; it reduces the dis-
crepancy considerably. Another possible alternate pathway is an
atom transfer. Still another possibility (longer range electron transfer)

is also considered.
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Theory

NNV

gg%gagmm1{22£mg2£. An approximate quantum-mechanical rate ex-
pression based on the golden-rule transition probability is appli-
cable to electron transfer systems in the nonadiabatic limit.14
Within the Condon approximation the transition probability involves the

product of the square of an electron exchange integral and a ther-

mally weighted sum, G, over Franck-Condon factors:

N vib 2
6= & rzeln Mo >l R (1)
nnm

where Q is the reactants' vibrational partition function, and n
and m designate initial and final vibronic states, respectively.
E, and E_are initial- and final-state energies. Exib is the
initial-state vibrational energy, and |x> is treated as a
harmonic oscillator eigenfunction assumed equal to a product over
the system's degrees of freedom of single-mode haromonic oscillator
functions.

The overlap integrals required for evaluating G directly by
the sum of eq 1 are well known (Ref. 15, for example). The sol-
vent interaction is included in eq 1 via two harmonic modes that

1

have frequencies Kw; = 1 an ° and Rw, = 170 cm™'. Details are

given in Ref. 15.
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Classical Treatment. When all the degrees of freedom of the
AN NN VNN
system are treated in the classical limit, hw/2kT + 0, and when

frequency changes are neglected, eq 1 reduces to

1
G = (dﬂkTA)7 exp[- (AE + A)2/4kTA] (2)
N
where A equals § Aj, AE is the energy of reaction, and Aj is four
J=l
times the reorganization energy for the jth mode. For a vibrational

normal coordinate, Aj = %}:j (AQS)Z, where Fj is the force constant

and ACS is the equilibrium displacement from reactant state to product
state, of the jth normal coordinate. Eq 2 is similar in form to a
classical expressionl’z which allowed for large entropies of reaction
when they occurred. However unlike this classical expression it

contains energies rather than free energies, since eq 1 does not include

any large entropy terms.15 The other classical expressionl‘2 is more

general in this respect.16

It has been shown17 that frequency changes may be included in
an approximate manner by using average force constants to calculate
X, rather than using the actual force constants. The average force

constant 1is

B = 2FF' /(F+ F) (3)
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where F and F' are the force constants in the reactant and product
states, respectively. We use Fav when evaluating the classical
value of the Franck-Condon sum (eq 2). Arguments were given in

Appendix IV of ref. 17 based on a perturbation expansion suggesting

that the approximation in eq 3 is adequate.

Semiclassical Treatment. A 'semiclassical' treatment of elec-
LAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAYAVAW)
15,16

.18 N . .
tron transfer has been given  and discussed in detail elsewhere,

The semiclassical expression for the thermally weighted Franck-Condon

sum is
21
G = (2n\w coth v) 2 exp[-(AE + A)?/(2)w coth y)] €3]

The variables of eq 4 are defined as for eq 2 and Aw coth y is an
N

abbreviation for § A, Hw. coth y., where Y. is Ku./2KT.

'Semiclassical' has come to denote a variety of different methods

in the dynamics literature, one of which yields eq 4.

Comparison of the Three Treatments
U AYAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAV)

Fig. 1 is a plot of G, the Franck-Condon sum, calculated classi-
cally and quantum mechanically, versus AG°, the standard free energy

of reaction for a model system. AG° is the same as AE in eqs 1 and

2, since eq 1 tacitly assumes zero for aS° when Fy = Fi'. The model

system represents metal-bipyridyl systems (e.g., Ru(bpy)%+ + Os(bpy)3+).
The internal reorganization in such systems is negligible (Ainner = 0)
and the outer-sphere reorganization energy %’xout is = 13.4 kJ/mol.19

The ordinate is a plot of log;, (GeAG /ZkT) vs AG°. As shown in a
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24 1 1 1

1 1

+|.5 +,.0 +0.5 0.0 -0.5 -1.0 -1.5
AGP (eV)

I+ /24

Figure 1. Model M(bpy),

—— (Classical Franck-Condon Sum.

-- Quantum Franck-Condon Sum.

Aot = 54 KJ/mol. A = 0. Temp

inner

= 300 K.
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recent paper,16

both the classical and quantun values of the ordinate
are symmetric in AG®, when plotted in this manner.

Fig. 2 is a plot similar to Fig. 1. The XA's and frequencies
used are for the hypothetical system described in Table I. This
system differs from that of Fig. 1 by including two high-frequency
internal modes and having both a larger inner-sphere and a larger
outer-sphere reorganization energy. (The frequencies of the inter-
nal modes are comparable to those in the cobalt hexaammine system.)
In Fig. 2 the ordinate is a log plot of the Franck-Condon sum, G,
versus AG°, and so Fig. 2,unlike Fig. 1,is not symmetrical about
AG® = 0.

The two plots are qualitatively alike. The classical value for
the ordinates in each plot is generally less than the quantum value,
as expected since the classical theory does not include vibrational
tunneling. In the normal region (i.e., -AG® < 1) the classical and
quantum values agree very well. But as the free energy decreases
into the inverted region, the quantum value decays less rapdily than
the classical. Because of the high-frequency internal modes included
in the second system, the discrepancy between the classical and quantum
values only becomes appreciable in Fig. 2. Similar results were
observed earlier by Jortner et al. using other model systems.4

The 'semiclassical' values are compared with the quantum for
selected values of AG® in Table II. They are smaller when the system
is in the inverted region and high otherwise. This effect is due to

an approximation to vibrational tunneling inherent in the 'semiclassical’
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Figure 2. Hypothetical Systems (A's and frequencies in Table I).
— (lassical Franck-Condon Sum, assuming also eq. 3.

-- Quantum Franck-Condon Sum.
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Table I: Hypothetical System (Temp. = 300 K)

react.(cm-l) ﬁ‘*’pmd'(cm.l) A(kJ/mol)

internal modes 494 357 35
357 494 18
solvent modes 170 170 48
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Table II: Comparison of Quantum and Semiclassical Franck-Condon

Sums, g . log,o G.

System AG® (eV) Quantum Semiclassical

Model ° M(bpy)2*/** 0.5 12.2 9.4
0.0 6.3 5.7
-0.5 3.8 3.9
3D 3.0 4.0
-1.5 5.6 6.1
-2.0 8.0 10.1

Hypothetical © 0.5 13.9 12.7
0.0 8.8 8.3
-0.5 5.5 5.4
-1.0 4.0 3.9
-1.5 3.9 3.9
7.0 4.9 5.4

a s .
G is in cm.

b

1

)‘inner 0. )‘out = 35.3 kJ/mol at hw; = 170 cm

at hw, = 1 cm '. Temp. = 300 K.

, and 18.2 kJ/mol

€ A's and w's used are those in Table I.
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method which, as discussed in recent papers,ls’16

is valid only
when the slope of the products' potential energy curve is extremely
steep near its intersection with the reactants' potential energy
curve. (Only then is the semiclassical nuclear tunneling distance ac
in Figs. 3 and 4 of ref. 16 or Fig. 2 of ref. 15 equal to the effective
nuclear tunneling distance ab there.)

The quantum values plotted in Figs. 1 and 2 were calculated both
by the direct evaluation of eq 1 and by the saddle-point method

described elsewhere.ls’20

The results of the two computations were
found to be superimposable, so that the saddle-point approximation

is a very good approximation in these common electron-transfer
systems. Another approximation - an equivalent single mode approxi-
mation - is also available (eq 19 of ref. 16) and has yielded excellent

agreement with the quantum results when used within its region of validity

(given in eq 21 of ref. 16).

Reactions Having Large Negative Free Energies
ANNN

Both the classical and the quantum theories described earlier
predict that the electron transfer rate will ultimately decrease when
AG® becomes increasingly negative, i.e., when -AG® exceeds the total
A for the system. The classical theory predicts quadratic dependence
in the very negative AG® region (cf. Refs. 3 and 4, and also as seen in
Figs. 2 and 3). But experimental studies of highly exothermic reactions
have shown little or no decrease of the rate constant in the inverted
region,'s'8 due to a variety of possible reasons discussed earlier.

We first explore the kinetic effect of formation of products in

their lowest electronic state, for reactions of excited Ru(bpy)i+
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with tris-bipyridyl Ru, Os and Cr quenchers, studied experimentally

by Creutz and Sutin.6

The reactions are listed in Table II1. Given
there are the standard free energies of reaction calculated from
the known reduction potentials in Table IV. The reactions consist
of electron-transfer quenching of the lowest luminescent excited
state of Ru(bpy)§+ or Ru(Mebpy)§+, where bpy = 2,2'-bipyridyl , and
Mebpy = 4,4' -dimethyl-2,2'-bipyridyl.

The nature of the ruthenium (II) complex excitation - metal
to ligand charge transfer?’»28 - contributes a significant internal
reorganization energy to the electron transfer reaction. From vibra-
tional progressions in the low-temperature luminescence and absorp-
tion spectra of Ru(bpy)§+, it appears that a high-frequency mode,
Fu = 1300 cm ', is excited in the luminescing state. 22230 We have

found the associated A grmay O be 1300 + 100 Cm-l(15.5 + 1 kJ/mol)

by fitting the following line-shape function to the emission spectrum:

n

e X
Intensity « e X =i (5)

where n is the vibrational quantum number in the ground electronic

state, and x = A /Hw; hw is the frequency of the vibrational

mode (Ao = 1300 am = in the present case). Eq 5 gives the square-
overlap of the lowest single-mode harmonic oscillator state of the
electronically excited state with the nth vibrational state of the

lowest electronic state of the ruthenium (II) complex, when both states



71

Table III: Creutz and Sutin Reactions6

k

dpalet + WL % i Pt 4 pp ™
b
Reaction® M L 1! AG® (eV) AG®* (eV)
1 Cr bpy bpy -0.57 1.19
2 Cr Mebpy bpy =0, 83 0.93
3 Os bpy bpy -1.66 0.1
4 Os Mebpy  bpy -1.78 -0.02
5 Ru bpy Mebpy «1,96 -0.20
6 Ru Mebpy  Mebpy -2.07 -0.31
7 Ru bpy bpy -2.09 -0.33

2 The nurbers correspond to the mumbered points in Fig. 3

b £G°* is the AG°® to form the electronically excited state of the

Rl **,
3
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Table IV: Reduction Potentials

Reduction Potential (el) Ref.
Cr(bpy) ** -0.26 21,22
05(bpy)33+ 0.82 8
Ru(Mebpy)33+ 1.10 23

Ru(bpy)33+ 1.26 24,25,26
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have the same frequency but the equilibrium position of the nth

state is displaced relative to that of the zeroth state.31 Because the
vibrational quantum is so large relative to kT (kT = 208.5 em ! = 2,494
kJ/mol at 300 K) transitions from vibrational states higher than the
zeroth need not be considered in the emission equation, eq 5.

In the appendix it is shown that when the emission and absorption
line shapes are due to a high-frequency vibration (Kw > kT) the Stokes
shift is approximately twice Ainner for the transition from electronic
ground state to electronic excited state. Using the average of the
singlet-triplet absorption maxima at 77 K reported in refs. 27, 28, 30
and 32 (18,300 cm'1 with some uncertainty) and the average of the
emission maxima at 298 K reported in refs. 7, 23 and 27 (16,200 an”?

1

with some uncertainty) one obtains A, = % (18,300 - 16,200) cm = =

inner

1050 em™? = 12.5 kJ/mol for the ruthenium charge transfer transition.

This estimate for LT is in fair agreement with the value

Ainner 15.5 kJ/mol obtained above by fitting eq 5 to emission spectra.

15.5 kJ/mol will be assumed for the contribution of the *Ru(bpy)g+

*inner
Ru(bpy)g+ subsystem to the electron transfer reactions in Table III.
The reactant Ru(bpy)%+ may be in one of three triplet states,
but the splitting of these states is small and may be neglected. (In
the ruthenium and osmium complexes the lowest excited states are formed
to ligand Spt excitations.) The triplet states have a total

1g
splitting of 0.73 kJ/mol in Ru(bpy)2*, and 0.77 kJ/mol in Ru(Mebpy)3*.>>

by metal A

Both of these splittings are small relative to the aG°'s of the electron
transfer reactions being considered, so that each triplet state may

be regarded as essentially a single triply degenerate state. The
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splitting of the Os(bpy)z+ excited state (needed later) is not known,

but will be assumed to be negligible when calculating electron transfer

rates to form excited products. It has been postulated to be similar

to the splitting in Ru(bpy)z+ excited state,>

Except for the high-frequency mode discussed above, the

bipyridyl systems undergo negligible internal reorganization during

19,22,35

electron transfer. The outer-sphere reorganization energy

is roughly constant throughout the series of reactions. A has

out
19,35

been estimated as Aou = 54 kJ/mol.

t
The spacing of the lines in the low-temperature (77 K)

emission and absorption spectra of Rn(Mebpy)i+ as indicates that
a mode for which Kw = 1300 cm™' is excited in the luminescing

state. Fitting the emission intensities to eq 5 yields A, .. =

15.5 kJ/mol for this ruthenium charge transfer transition.

Using A.

ey 15.5 kJ/mol, Aou

o = 54 kJ/mol, and the AG°'s
in Table I1I, we calculated rate constants for the reactions to
form ground-state products. In the adiabatic limit the classical
rate constant is given by17 eq 6 when work terms are negligible,

1
- —— |
ket = Z2(4tKkT \)° G, (6)
where G is the classical Franck-Condon sum given by eq 2, with AE
replaced by AG®, and A ==§; Aj is the sum over inner- and outer-sphere
-1 2,17,36

A's. Z is the collision frequency in solution: ~10'! M 's

For simplicity, the quantum rate constant was assumed to be given by
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the same expression (eq 6) but with the quantum Franck-Condon sum
(eq 1) used for G. In this way, the quantum expression reduces to
the classical in the limit K + 0. Strictly speaking eqs 1 and 2
for the G's (classical and quantum) were derived for nonadiabatic
electron transfers.

The classical and quantum rates and the observed rates are
plotted in Fig. 3 (solid line for classical, dashed line for quantun),
The plotted values are not the electron-transfer rate constants them-

selves, but rather the rate constants corrected for diffusion36 kobs’

-1
) (7)

+

S

1
k = (¢
obs I;;

where k; is the diffusion limit: ~ 3.5x10° M-1g-1,6

The difference between the quantum and the classical calcula-
tions in the very negative AG° region is again not negligible, because
of the high-frequency internal mode involved in the present reactions,
Aw = 1300 cm !, and the fact that its contribution to Ainner is
not negligible. Still, the classical and quantum calculations are
in qualitative agreement and neither explains the observed rates
in the inverted region, as Fig. 3 demonstrates. The dis-
crepancy would be even greater if a nonadiabaticity factor2 K
were introduced,

In order to assess the possibility of the electron transfer
products being formed in excited electronic states we have calculated

quantum mechanically the rates of electron transfer to excited

product states. The calculation requires a A,

for formation
inner
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'Og'ok

B ] 1 JI 1 1

0.0 -0.5 -1.0 -1.5 -2.0
AGO (eV)

Figure 3. k (calculated and experimental) for bipyridyl systems.
k = (ket‘1 + kd")'l with kd“-'3.5x109 M 1s71,
AG® is for formation of ground-state products.
— C(lassical to ground-state products.
-- Quantum to ground-state products.
-.- Calculated classical rate to *Ru(III) products.
® Calculated quantum rate to *Ru(III) products.
(® Experimental rate constant.
The numbers correspond to the numbers in Table III. Primes
indicate calculated rates to excited-state products. A =

out

54 kJ/mol. A = 15.5 kJ/mol. Temp. = 300 K. Ru(III)

inner
excitation energy = 1.76 eV,
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of these products. The emission and absorption spectra of Os(bpy%;’ 3
indicate that a 1300 cm™! mode is involved in the transition to

its luminescing state, with X.

imer - 2+0 kJ/mol (Fw was obtained

from the spacing of the lines in the emission spectrum, xinner was
obtained by fitting the intensities to eq 5). Quantum mechanical
calculations for the reactions involving quenching by Os(bpy)§+
indicate that formation of electronically-excited Os (bpy)3*

product is less favorable than formation of excited ruthenium (III)
products, so formation of: electronically-excited Os(bpy)%+ is not
considered further. The effect on Ainner of forming electronically-

excited rutheinium (III) in the reactions of Table III is not

known, so A.

T for reactions to form excited-state ruthenium (III)

products is taken to be the same as the A.
inne

s = 15.5 ki/mol.

- for formation of
electronic-ground-state products; Ainn
The excitation energies in Table V were used, together with
the reduction potentials of Table IV, to yield the AG°'s (Table III)

for formation of electronically-excited ruthenium (III) products.
The three reactions involving quenching of excited ruthenium (II)
by ruthenium (III) appear to proceed more favorably to an

excited ruthenium (III) product than to the ground-state. The
quantum mechanically calculated rates to excited ruthenium (III)
are indicated by solid circles in Fig. 3, and are in good agreement

with experiment (open circles) for the three reactions involving

ruthenium (III) quenchers (points labelled 5, 6, 7 and 5, 6', 7).
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Table V: Excitation Energies

Ey . o (V) Ref.
Cr(bpy)": 1.05 + 0.12 38,39
OS(bpy)i* 1.78 + 0.01 27,32,37
Ru (bpy)3* 2.12 * 0.02 22,23,27,29,30,32,40
Ru(!*iebpy)§+ 2.06 + 0.02 23,29
Ru(bpy) ** 1.76 + 0.07° 6
Ru(Mebpy) ;* 1.76"

4The large uncertainty is due to estimating Eo*o from the
absorption spectrum alone.

bThe large uncertainty is due to estimating Eo+o from the
absorption spectrum alone (maximum at 1.83 eV6), assuming a

-1
Stokes shift < 2300 cm = 0.07 eV.

CEstimated from Eo«o for Ru(bpy)g+.



79

In the case of quenching of excited ruthenium (I1I) by the
chromium (III) complex there is good agreement between the quantum
mechanically calculated values and the experimental values if the
electronic ground state of the ruthenium (II1I) complex is the product
(points 1 and 2 in Fig. 3). Thus, the alternate pathway of forming an
electronically-excited ruthenium (III) complex would not be expected to
be important and indeed is calculated to be slower than formation of
ground-state ruthenium (III) by 22 and 16 orders of magnitude for
reactions 1 and 2, respectively.

In the case of the two reactions involving quenching by the osmium
(III) complex, the quantum mechanically calculated rate for formation
of excited ruthenium (III) products was found to be little or no faster
than for the formation of ground-state products (cf. points 3’ and 4’
in Fig. 3 with the dashed line). The calculated (quantum) rate constants
for formation of ground-state products are two and three orders of
magnitude below the observed rate constants. In view of the approximations
in the theory, this discrepancy may not be a conclusive one.

Alternatively, unless some not yet known low-lying electronically-
excited product state exists, quenching by the osmium complex may
proceed via another mechanism. For example, H-atom transfer followed by
proton exchange with the solvent is a possibility. A third possibility
is described later in this section.

To allow comparison, we have also calculated classically the
rate constants for electron transfer to form electronically-excited
ruthenium (II11) products. The same A's and AG°'s were used as for

the quantum calculations discussed above. The classical
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rates to excited products are shown in Fig. 3 by the 'dash-dot' line
and agree well with the quantum (solid circles) values. We note that
excited-state formation corresponds to the normal free energy region,
while ground-state product formation lies in the inverted region.

There is a third possible explanation for the large rate constants
observed for reactions 3 and 4 in Fig. 3 (reaction of two electronically-
excited ruthenium (II) complexes with the osmium (II1I) complex). The
distance between the centers of the reactants in the activated complex,
r, may, in this case of an electronically-excited reactant, be greater
than the distance of closest approach. The distance of closest
approach equals a; + a, where a; and a, are the radii of the two reactants.
The value of the outer-sphere reorganization energy used in the rate-
constant calculations above (%Xout = 13.4 kJ/mol) was calculated using

the classical expression1 for A (eq 8) and assuming r = a; + ap.

out

1. 1

_ 2 1 1, !
Aout = (ae) (;—' = Es) ('z—é-l— Za, T ) (8)

op
In eq 8, Ae is the change in charge of a reactant, Eop is the optical
dielectric constant, and € is the static dielectric constant of the
solvent, If r were greater than a, + a,, then the outer-sphere reorgani-
zation energy would be calculated to be greater than 13.4 kJ/mol, as may
be seen from eq 8: The reactions in which Os(bpy)g+ quenches electron-
ically excited ruthenium (II) complexes to form ground-electronic-state
ruthenium (1I1) (reactions 3 and 4 of Table III) have large negative free
energies, and they lie in the 'inverted region'. In this case increasing

r and hence increasing Aout has, as is seen from eq 2, the effect of
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increasing the calculated electron transfer rate. At least, it has
this effect of rate enhancement if the reactions do not become
too nonadiahatic at the larger r,

Indeed, if r = 1.3(a; + a,) and a;~ a,, then the quantum-
mechanically calculated rate constants (corrected for diffusion
according to eq 7) for the electron-transfer reaction between

2 2 3
*Ru(bp}')3+ and *Ru(Mebpy)3+ and Os(bpy)3+ (reactions 3 and 4 of
-1

8 -1 .1 8 -1
Table I1II), are k3 =8 x10 M s andk,=3x10 M s

respectively. These values are within an order of magnitude of the

9 .
experimental values obtained by Creutz and Sutin;6 k3~ 3.2 x 10 M 1s

and k, = 2.6 x 109 M-ls-l. If r = 2(a; + ay) and a; = a,, the
quantum-mechanically calculated values of the rate contants are
ks = 2 x 102 M 's™? and ky =1 x 100 M st essentially in agree-
ment with the experimental values. These calculations were
performed using the same numerical values for the quantities other
than Aout as were used in the calculations described above that
yielded the (dashed line) quantum values in Fig. 3. However,
electron transfer at too large an r makes the reaction increasingly
nonadiabatic and then reduces the reaction rate. The appropriate r
is the one which achieves a maximum rate,

At least in the Creutz and Sutin systems, it appears that the
lack of significant inverted behavior is indicative either
(a) of the third possibility above or (b) of alternate reaction

pathways becoming competitive at large negative AG°'s, rather than

(c) of nuclear tunneling. MNuclear tunneling due to the very high-

1
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frequency modes involved in transitions from the electronically
excited reactants is a significant effect at very large negative

AG°'s, but does not explain the lack of inverted behavior, as one

sees from the dashed line in Fig. 3.

RREARARR

Rate calculations for a hypothetical system and for the bipyridyl
systems studied by Creutz and Sutin suggest that quantum effects are
expected to be small in the normal region (i.e., for small to moderate
8G°'s) even for systems having fairly large internal frequencies. At
large negative AG°'s, quantum effects may frequently be significant.
For most of the reactions considered in the 'inverted' region, the
calculated and experimental results agree within an order of magnitude,
provided that electronically-excited products are formed. An
alternate atom transfer pathway may occur in reactions where the
calculated rate constant for an electron transfer is appreciably less
than the experimental one in this 'inverted' region. A third possibility

of electron transfer at a larger distance is also considered.

Appendix. Relation between A and the Stokes shift.
LV W W W W VL VY W W W W W W ¥ VL W Ve W W W W Ve W WL W Ve Ve W W W Vi VW VL Vg VL Ve Vi Vi Vi Vi Vi Vg Vg VA VAV

We consider the case where excitation of a single harmonic
vibrational mode is responsible for the emission and absorption line-
shapes, We define X = A/hy, where 4\ is the inner-sphere reorganization

energy tor the transition from the electronic ground-state to the
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luminescing state, and v is the frequency of the mode. (v is assumed
to be the same in both electronic states.)

We assume for brevity that hv > kT, and then luminescence
will occur from essentially only the lowest vibrational level
in the electronically-excited state. Eq 5 gives the emission
line-shape as

I (1) = e Xx%/a (A1)

where 2 is the quantum number of the vibrational level in the

ground electronic state to which luminescence occurs. The energy

of the corresponding quantum emitted is Eo*o - thv,

where E°+o is the electronic-excitation-energy of the luminescing
state relative to the ground state. The energy Ee of this quantum

at the emission maximum is

E =E - 2*hy (A2)

e 0+0
where 2* is the value of & which maximizes (A1), &* = X.

Similarly, since hv >> kT, absorption occurs essentially
only from the lowest vibrational level in the electronic ground

state, so the absorption intensity is

I,(m) = e'xx’“/m: (A3)
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where m is the vibrational quantum number of an electronically-
excited vibronic level to which absorption occurs. Ia(m) is
maximized with respect to m, and the energy Ea

of the absorption maximum is

E,L = E + m*hv (Ad)

a 0<0
where m* is found by maximization of (A3) to equal X.

The Stokes shift is Es = Ea - Ee.41 From eqs A2 and A4 we have

ES = (m* + 2*¥)hv = 2Xhv (AS)
But X = A/hv, so

E =2\ (A6)

Eq A6 is a well-known approximate formula (e.g., ref. 4b). A
simple classical derivation is given in ref. 42. Eq A6 can also
be obtained from the quantum mechanical theory of optical spectra

in solids given in ref. 43,
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CHAPTER 3

FURTHER DEVELOPMENTS IN ELECTRON TRANSFER
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Some time ago it was predicted (1, 2) that, in a series of
weak-overlap electron transfer reactions, the rate would first

increase when AG® was made more negative, and then, when AG° be-
féme very negative, eventually decrease. Evidence for such an
inverted effect' has been given in a number of papers (3-11),
but in many other studies the reaction rate reaches a limiting

value, rather than a decreasing value, when -AG° becomes large
(e.g., (12-18)). Possible explanations for the latter result
have been suggested: (a) alternate pathways for the reaction

when AG® is very negative [such as H-atom transfer (19, 20),
electronically-excited product states (11, 20), or, when the
reaction was observed via quenching of-?ﬁuo;gscense, exciplex
formation (21, 22)], (b) quantum mechanical nuclear tunneling
(20, 23-27), (c) masking by diffusion, and (d) reduction of the
inverted effect [by electron transfer over a distance (19)].

Quantum mechanical tunneling reduces the magnitude of the
predicted effect but does not eliminate it in weak-overlap sys-
tems, as one sees, for example, in some recent calculations for
an actual experimental system (20). Moreover, there is a 1:1
correspondence between the quantum mechanically calculated
charge transfer spectrum (emission or absorption vs hv) for a
weak overlap redox system and the plot (eq 8 and 9 given later)
of kact versus the energy of reaction, AE (25), and hence in a

g ; : o o
series of reactions of given AS", versus -AG . Here,

kact is the activation-controlled quantum mechanically calcu-

lated rate constant. Thus, the well-known existence of a maxi-
mum in the charge transfer vs wavelength spectrum implies that

there will be a maximum in the 1n kact vs -8G° plot when the

electron transfer is a weak-overlap reaction. This correspond-
ence removes any question that nuclear tunneling would eliminate
the inversion, since that tunneling occurs to the same exteng
in both the charge transfer spectrum and the kact vs -AG

plots, and the former has a well-known maximum. It also re-
moves any argument that large anharmonicities in practice
eliminate the effect: the correspondence applies regard-
less of whether the vibrations are harmonic or anharmonic,
as long as the electron transfer is a weak-overlap ome. (The
effects of having a very strong-overlap electron transfer re-
main to be investigated.)

In a recent paper, an approximate calculation was made of
effects (b) to (d) above (19), using an approximate analytical
solution for the diffusion problem, for the case where the re-
action occurs readily over a short range of separation distances
of the reactants. In the present report, we summarize the re-
sults of our recent calculations on a numerical solution of the
same problem. A more complete description is given elsewhere
(28). One additional modification made here to (19) is to en-

sure that the current available rate constant data at AGO =0
(Appendix) are satisfied.
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Theory

The diffusion-reaction equation for the pair distribution
function g(r,t) of the reactants, which react with a rate con-
stant which at any r is k(r), is given by (29-32)

2
3(r°J)
ag(r,t) _ 12 — L - k(r)g(r,t) i)
at r dr

where Jr is the inward radial flux density (per unit concentra-

tion) due to diffusion and to any forced motion arising from an
interaction potential energy, U(r), assumed to depend only on

the separation distance r. The magnitude of Jr is given by

3 =08 4 Dg
r or kBT

“UfkeT U/kpT
5= (ge )

0-,0.
il

= De (2)

where D is the sum of the diffusion constants of the two re-
actants.
The observed rate constant, k

, at time t is then given
by (31, 33)

obs

Koo = f: k(r)g(r,t)lmr2 dr (3)

The steady-state solution to eq 1 satisfies Jg/dt = 0, i.e., it
satisfies

(1/:%)d(%3 ) /dr = k(x)g(x) O]

For the experimental conditions investigated thus far, the
steady-state solution is an excellent approximation to the solu-
tion of eq 1 and we consider this case. However, in proposing
some experiments in the picosecond regime to enhance the chance
of observing the inverted effect, we consider the time-dependent
equation 1.

The rate constant k(r) is typically assumed to depend expo-
nentially on r, varying as exp(-ar). Theoretical estimates have

been made for a of 1.44 g-l when there is intervening material

between the reactants (34), and 2.6 R-l when there is not (35).
A recent calculation for the hexaaquoiron self-exchange reaction

yielded a = 1.8 R'l (§§). Experimentally, the value inferred
indirectly for an electron transfer between aromatic systems in

rigid media is about 1.1 8‘1 37.

These values of o are sufficiently large that k(r) falls
off rapidly with r. When this 'reaction distance" is small
relative to the distance over which the function h(r) = g exp
(U/kBT) changes significantly, i.e., over which (h(r) - h(0))/

(h(®) - h(o)) becomes appreciable, one can introduce an approxi-
mate analytic solution to eq 4 (28, 38, 39):

K K 'k (%)
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where, in the present case, we have (from eq 3 with g(r) = 0 for
r < g)

=U/k,T
= B 2
kact = fz k(r)e 4nr” dr (6)
and where (40)
U/k,.T
_ e B
— Ann/f; > dr €2

Equation 5 was actually derived for the case where reaction
occurs at some contact distance r = 0. A derivation of eq 5 for
the present case of a volume distributed rate constant k(r) is
approximate and is given elsewhere (28).

For k(r) we shall assume at first, as in (19), that the re-
action is adiabatic at the distance of closest approach, r = 0O,
and that it is joined there to the nonadiabatic solution which
varies as exp(-or). The adiabatic and nonadiabatic solutions
can be joined smoothly. For example, one could try to gener-
alize to the present multi-dimensional potential energy sur-

faces, a Landau-Zener type treatment (41). For simplicity,
however, we will join the adiabatic and nonadiabatic expressions
at r = 0. We subsequently consider another approximation in

which the reaction is treated as being nonadiabatic even at r =
g.

The well-known perturbation theory expression for the
non-adiabatic rate constant is given by (25, 42-45)

2n 2
k(r) = . |[V(r)|® (F.C.) (8)
where (F.C.) is the Franck-Condon factor and V(r) is the elec-
tronic matrix element for the electron transfer. (F.C.) is
given by
-E./k,T
. i’ B : 2 .
(F.C.) = 3 zi,f e [<i]£>] ‘S(Ef Ei + AE) (9)

where i and f denote initial and final (reactants' and pro-
ducts') nuclear configuration states, including those of the
solvent; AE is the energy of reaction; and Q is Ziexp(-Ei/kBT).

The solvent will be treated classically (1) to avoid the quantum
harmonic oscillator treatment of the polar solvent which is

sometimes used. (The latter yields a large error for AS° when

As® is large (46)). The contribution of the polar solvent to
the Franck-Condon factor is (42, cf. 1)

1 1"
- -% _ o 2
(F.C.)Solvent = (AnAouthT) exp[-(AG™ + Aout) /AAouthT] (10)
o" o v v . "
where AG = AG™ + Ef - Ei and the superscript v denotes (inner

shell) vibrational energy.
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The matching of the adiabatic and nonadiabatic expressions
for k(r) at r = 0 yields a value for V(g) given by (28)
%5 1V(0) 12 (4rhie,T) 72 ~ 1012 57! (11)
and, for a reorganization parameter A of about 70 kJ/mol, yields
|[V(o)| ~ 0.023 eV. This value and

v(r) 1% = V(o) |%expl-a(r - 0)] (12)

were introduced into eq 8 as our first approximation to V(r).
The series of electron transfer reactions (14) for which we
calculated rate constants involve quenching of the lowest ex-

cited electronic state of Ru(bpy)§+. This *Ru(II) state is a

metal-to-ligand charge-transfer state (47, 48) in which an ex-
cess electron appears to be localized on one of the bipyridyl
ligands (49), and this electron may be transferred to a metal-
centered orbital on the oxidant, at least when an unexcited oxi-
dant is formed. A calculation of the distance dependence of
V(r) for this particular transfer would be desirable, but lack-
ing that the simple exponential form indicated in eq 12 has been
used instead.

The actual numerical integration of eqs 2 and 4 was per-
formed by converting eq 4 to a pair of ordinary differential
equations, then using a standard integration routine (50) for
integrating the latter, integrating outward from r = 0 to large
r until g(r) had its correct functional value at large r, g(r) ~
1 - c/r where ¢ is a constant. (This functional form is the
solution of eqs 2 and 4 at r large enough that k(r) = U(r) =0
and for U vanishing more rapidly than 1/r.) Because g(o) was
unknown to a multiplicative constant initially, we actually
performed the integration for a function G(r) = g(r)cl, with S

unknown and with a preassigned value for G(r) at r = 0. The
terms Y and c¢ could be determined from the numerical values of

G at large r, and then g(r) = G(r)/cl. The value of kobs was
calculated from the total flux at r = o:
k = 4nD lim (r2 gg) = 4niDc (13)
obs dr
r->™
Results

Calculations were performed for the system studied by
Creutz and Sutin (9)

*Ru(I1)bpy, + M(III)bpy, > Ru(III)bpy; + M(II)bpy, (14)

where the bpy's are various bipyridyls, M is one of several
metals, and the asterisk denotes an electronically-excited mole-
cule. The question we address is how, for a model which has the
8 M-ls-l)

(Appendix) and the observed diffusion-limited rate constant
9 -1
(kdiff 3.5x 10" M -

at quite negative 8G°%'s compare with those calculated from eq 5
and with the experimental results? Is the effect of electron
transfer over a range of distances sufficiently large to explain
the observed results (i.e., very little fall-off of rate con-
stant with increasing -AGO'S)?

'experimental’ rate constant at ac° =0 (kobs ~4 x 10

s-l) (9), do the values predicted for ko
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We use a Ain of 15.5 kJ/mol associated with a frequency of
1300 cm.1 (20), and Aout of 54 kJ/mol at r = o (51). All cal-
culations were performed with T = 298K. The dependence of Aout
on r (2) is incorporated in the calculation. An equilibrium
Debye-Huckel expression for the ion-atmosphere-shielded Coulom-
bic repulsion of the reactants is assumed (52, 53), given by

Ulr) = -Kr (15)

for the case where the two reactants have the same radius. Here,
K is the reciprocal of the Debye-Hiickel screening length, € is
the static dielectric constant, the zieovalues are the ionic

charges of the reactants, and a is the distance of closest
approach of the ions in the ion atmosphere to a reactant ion.
The distance a is r, tr, where r, is the radius of a reactant

ion and r, is the radius of the principal ion of opposite sign
in the ionic atmosphere. When r, 2 £, 2 lies between Zri and
r., being 2r, when r. = r_and being r. when r_ = 0. Using the
i i i a i a

current approximate radii we shall, for concreteness, take a =
30/4. (In eq 15 the reactants are assumed to have the same
radius. A more general expression than eq 15 is cited in
ref. 28). At the prevailing ionic strength of about 0.52 M,

K ! is about 4.2 R. Because of this large ionic strength, U(r)
is quite small, even at r = O.

Using a = 1.5 3_1 and, at first, V(g) = 0.023 eV, kac at

t
AG° = 0 is found to be 1.2 x 10 M1s™! which is substantially

higher than the current experimental value (Appendix) of ca 4 x
8 -1 -1 : . gy
100 M "s *. Assuming the validity of the latter, either V(o) is

less than 0.023 eV, i.e., the reaction is not adiabatic at the
contact distance r = 0, or A is higher than estimated, or eq 15
underestimates U(r). We consider first using a different V(0),
namely, 0.0045 eV, which yields the current "experimental" rate

constant at AG® = 0. (The same final results for the 1ln ko vs

bs
AG° plot would be obtained, essentially, if one used instead a

different U(0), as long as there is agreement of kact at AG° =
0.)

The numerical solution of eq 4 and the rate constant data
of Figure 1 agree at the data's maximum (~3.5 x 109 M_ls-l) when
one chooses 3.0 x 10-6 cmzs-1 for the sum of the D's of the two
reactants. This D is somewhat near those estimated rather in-
directly (electrochemically) for the individual D's of ferric

and ferrous phenanthroline complexes (~1.9 x 10-6 and 3.7 x 10”6

cmzs 1, respectively) (54).
Since reaction may also yield electronically-excited pro-

ducts when AG® is sufficiently negative, we include this re-
action, as we did in (20). The mean excitation energy used for
the formation of the electronically-excited Ru(III) product is
1.76 eV (20). As has been explained elsewhere (20, 28), the
formation of the other possible electronically excfzéd-g}oducts
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is, in most cases at least, less probable. The same V(r) was
used for formation of electronically excited Ru(bpy)§+ as for

formation of other products because the detailed information
necessary to make a distinct estimate for V(r) was lacking.

We first compare the present numerical results for the
solution of the steady-state eqs 3 and 4 with the approximate
solution given by eqs 5, 6 and the experimental value for kdiff'

The results agreed to about three percent when AG° was varied
from +0.6 to -3.0 eV. The experimental value for k.. and eq 7

-6 2 -1 diff
imply a value of D = 3.5 x 10 cm”s =, compared with the 3.0 x
10-6 cmzs-1 found when eqs 3 and 4 were solved. Had the same D

been used for both the exact (eqs 3, 4) and the approximate (eq
5) solutions, their agreement for the rate constants would have
been about 10% instead of 3%, which is still very close.

The results of solving eqs 3 and 4 are next compared with
the experimental data in Figure 1 (9), using V(o) = 0.0045 eV.
The solid line refers to the formation of ground state products,
and the dotted line to the formation of an electronically-
excited Ru(III) product. For further comparison with the solid
line, a calculation was made with Aout held fixed (54 kJ/ mol,

the value at r = 0) and is given by the dash-dot line. In order
to obtain agreement with the solid line at ac° = 0, V(o) was
reduced to 0.0039 eV in calculating the dash-dot line. The
dashed line is the result of a calculation (20) in which re-
action was treated as occurring adiabatically, but only at some
contact distance 0, and in which eq 5 was used, together with
the experimental value for k The Aou value used for this

diff’ t
last curve was again 54 kJ/mol, the present )\out(o).
10 T T T T T .
__ %0 o
u 7° AN i
/i \\_ :.'
I \\.\'
/ Y
8- /! A .
2 / A,
o ! \\_
< \\ _
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S A\
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~ ef \\ 4
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1 \ e
\
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| [ 1 | ] 1
b 0 =i -2
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Figure 1. Calculated and experimental rate constants for Reaction 14 vs. AG°.
Key: , r-dependent Ayu1; — + —, fixed A,y — ——, from Ref. 1 in which reaction
occurred only at t = o, and - -+ -, current result (r-dependent A,..) for formation

of an electronically excited product.
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In Figure 2 we give a comparison of the solid line of
Figure 1 with that obtained using V(o) = 0.023 eV and a larger A

(Aout(o) = 83 kJ/mol). A slightly smaller D (2.7 x 10.6

was required to make the latter calculation yield the experi-
9

cmzs-l)

mental value of the maximum observed rate constant, 3.5 x 10
=1 =1
M s .

Both curves have the same kobs at AGo = 0.

4 1 1 | 1 1 | L..X
0 -l =2 =3
A£GO(ev)

Figure 2. Calculated rate constants for Reaction 14 vs. AG°. Key: , taken
from solid line in Figure 1, V(o) = 0.0045 eV, Xou(o) = 54 kJ/mol; and — ——,
V(o) = 0.023 eV and A,.u(o) = 83 kl/mol.

Discussion

The results comparing the exact eqs 3 and 4 with the ap-
proximate eqs 5 and 6 show that the latter provide a good ap-
proximation for the present conditions, at least. The results
in Figure 1 show that, to account for the experimental results
at very negative AG°'s using the present wvalue of A

out
(54 kJ/mol), it 1is necessary to postulate the formation of
electronically-excited products. This was also the case in an
earlier result (20). The sum of the two rate constants in

Figure 1 yields agreement with the data in Figure 1 to a factor
of about 2. If, as for the dashed line in Figure 2, the value
of A were actually appreciably larger, the formation of ground
state products alone would suffice to obtain agreement. (Clas-
sically, the maximum in the kact versus AG® curve occurs at
AG° = -A and so is shifted to more negative AG°'s when Aout is
increased.)

Returning to Figure 1, one sees that holding Aout fixed at

its value at r = g (dash-dot line) does not cause a large devia-
tion from the more correct result (r-dependent Aout’ solid line)

in the inverted region. A similar approximation was used, of
course, for the dashed line, where a k(0) was used instead of a
k(r).
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We also have explored the solution of the time-dependent
eq 1 to study the plot corresponding to Figure 1 when the obser-
vation of fluorescence quenching in reaction 14 is made at short
times. In these short-time calculations we have assumed, for
simplicity, that reaction occurs only at r = g. (Calculations
are planned for the case in which electron transfer occurs over
a range of distance.) Results for kobs(t) are given for several

times in Figure 3, and curves are also given for the formation
of electronically-excited products. The value of k bs(t.) is

+ -
obtained as the slope at time t of a plot of [M(III)bpy3 2] L
ln["-‘Ru(II)bpy3] vs t. The results show the enhancement of the

predicted inversion effect at small times, and an experimental
study of this or related systems at such times would be de-
sirable, and may, in fact, distinguish between the possibilities
cited earlier that V(o) < 0.023 eV or that A > (15.5 + 54)
kJ/mol; at short times there would be a double maximum in the

total rate constant versus AG® plot in the first case and a
single maximum in the second.

The details of these short-time calculations, made for the
case that U(r) = 0, are given elsewhere (28). Searching for the
inverted effect in unimolecular systems (reactants linked to
each other) would also be very desirable since their rates would
not be diffusion limited.

AG® (eV)

Figure 3. Time-dependent calculations of kaa(t) vs. AG® for various observation
times. Key: —- -, I ps;—- = 5 ps;and - - -, Kan(t) for formation of an excited-
state Ru(lll).
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CHAPTER 4

THEORY OF HIGHLY EXOTHERMIC ELECTRON-TRANSFER REACTIONS
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Introduction
It has been predicted that the rate constant of a series of homo-

geneous electron transfer reactions,
ox, + red, — red, + ox, |, (1)

in which ox, or red, is varied (at constant intrinsic reorganization energy
A) should first increase with increasingly negative standard free energy
of reaction AG® at small AG’. It should then achieve a maximum at some

value of AG® and thereafter decline as AG® continues to become still more

1

negative. The region of decline was termed the 'inverted' region. © The

existence of an inverted region was first predicted on the basis of a

1,2

classical theory. The quantum-mechanical correction given by

quantum-mechanical perturbation theories predicts a smaller but never-

3-7

theless finite inversion. “~ ' The difference arises from nuclear tunneling.

The experimental evidence for the existence of an inverted region
is sparse: Some evidence for the effect is available for the
reactions of electrons with different solutes, where the AG’ for a given

solute was varied by varying the hydrocarbon solvent and, thereby, the

electron- solvent binding energy. 810 Supporting data appears in the

reactions of micelle-trapped pyrene with various anion radicals, 11,12

in reactions of hydrated electrons with organic molecules trapped in

12,13

micelles and (a small decrease) in the reduction of electronically-

excited bipyridyl complexes of Ru(Il) by various metal bipyridyl

complexes. 14,15 In the two micellar examples, the AG™'s are uncertain,

16

however. Evidence has also been offered in studies™ - of the rate of

fluorescence quenching of trapped electrons in a glass at 77K by

various aromatic acceptors. (To see the effect, it has been suggested, 17
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it is necessary to divide the acceptors studied in ref. 16 into subgroups.)

Again, according to the theoretical expressions there is a 1:1
correspondence4 between the optical lineshape and the activation rate
constant kact vs the energy of reaction AE plot (for a weak overlap
system). Thus, for a given ASO, there should be a correspondence with
a kact versus AG’ plot for an electron transfer reaction. We then con-
clude that the existence of a well-known maximum in a charge transfer
absorption versus wavelength plot implies that there should be a maximum
in the In kact vs AG® plot, a point discussed in greater detail in a
concluding section.

On the other hand, many studies of highly exothermic reactions have
found a diffusion-limited rate constant which extends to quite negative
AG”'s, rather than the predicted declining rate constant, e.g. ,18' 24.
(Many other studies that are sometimes cited have not been studied at
sufficiently negative AG® to draw any conclusions.) These studies fre-
quently involve measuring the rate of quenching of fluorescence by a
series of reactants, where quenching was presumed or demonstrated to
proceed by electron transfer. In most cases, the reason for the
absence of decrease in the rate is unknown, although several possibilities
have been suggested. They include (i) competing mechanisms at large

-AG’, such as H-atom transfer, %y 25

7,16

formation of products in excited

electronic states, or, when reaction is observed by quenching of

26, 27 3-7, 28-31

fluorescence, exciplex formation, (ii) quantum effects

(nuclear tunneling), (iii) the modifying effect of electron transfer

25 and (iv) the increase of the

occurring over a range of distances r,
reorganization parameter A with r in (iii), thereby reducing the extent

of inversion.
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In the present paper we report calculations which incorporate effects
(ii) to (iv) and, in bart, (i), and compare with the experimental results of
Creutz and Sutin and with a simple approximation?‘5 to the problem. It
is also proposed that experiments conducted at very short times following
the onset of reaction will enhance the chances of observing inverted
behavior that, in bimolecular systems, is masked by diffusion in conven-
tional steady-state rate measurements. Unimolecular systems, in
which the reactants are linked to each other should be even better in
this respect, since they are unaffected by diffusion. A brief summary of

the present study has been given elsewhere. 32

Theory
AnAAAAA

Diffusion. In extracting the "activation rate constant' from an
observed rate constant that is near the diffusion limit, it can be shown
that the observed rate equals the harmonic mean of the activated rate and

the diffusion-limited rate, when reaction occurs at some specified

encounter distance o, 33,34
1 1
k =1/ + ¢
ol (Eact Kaits )
where the diffusion rate constant k ;- is given by33-35
& -2
Kgipp = 4711)/f(7 exp(U/kgT) r™"dr . (3)

In eq 3 D is the sum of the reactants' diffusion coefficients, U(r) is the

intermolecular potential of the reactants, and kB is Boltzmann's constant.
Electron transfers can occur over a range of reactant separation

distances, rather than only at a specified distance. In such cases the

observed bimolecular rate constant kobs is related to the unimolecular
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rate constant k(r), the rate of reaction of pairs of reactants having fixed
internuclear, center-to- center, separation distance r, via a pair distribution

function g(r):

a0
Kope = 49 _g g(Ok(r)r’ dr (4)
(cf use of eq 4 for related processesse’ 37). In eq 4 we have assumed that

k and g are radially symmetric. When the system has a k(r) instead of

onlyak atr=o0, k is defined by using eq 4 with g(r) replaced by its

act
equilibrium value, exp[—U(r)/kBT], for r > o and,in the present model, by
zero for r < o, since kact would be the observed rate constant if dif-

fusion were infinitely fast. Thus,

Kyet =47 f: k(r)r’ exp(-U/kBT) dr - (5)

We shall wish to compare eq 4 with the use of eqs 2, 3 and 5, for reactions
occurring over a range of separation distances. To this end we

solve eq 6 below.

In the present case the reactants are substantially larger than the
solvent molecules and so we shall assume that short-range intermolecular
contributions to g(r) can be neglected. Then g(r) in eq 4 may be obtained

37-39

as the solution to a diffusion equation, which is given by eq 6 for the

case of radial symmetry.

0 _ D 3 (208 D ) 2 dU
g(r,t) = (r ) + £ (r g ) - g k(r) 6
at r? or \ %) "y 12 9T dr (6)

The first term on the right arises from the diffusive flux, the
second term from the conductive flux due to the long-range inter-
molecular potential U(r) between the reactants, and the third term from
the loss of reactants due to reaction. A discussion of shortcomings of

eq 6 at higher concentrations of reactants is given in refs. 34 and 36.
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For two reactants having charges z,e and z,e, e being the electronic
charge, U in the Debye-Hiickel approximation is given by eq 7, 35, 40-43

where a is the distance of closest approach and r is the separation distance of
the two centers. ,
Z,2,6 exp Ka, exp Ka,
U(r) = e I3 s * T ] exp(-«kr) . (7

In eq 7, € is the static dielectric constant of the solvent, and « is the
inverse of the Debye-Hickel screening length, and a; is the radius of

ion i, r, plus that of the principal ions of opposite sign in the ion

a

atmosphere, ri.

a; = T+ T (8)

We comment briefly in Appendix A on some assumptions underlying

eq 7. Examples of eq 7 in the literature are many and include the

case?! where r,=r,=r%=1r2, the case3>%22 (tacitly) where

ria = 0, and the case where z, = + z, and higher order corrections to (7) are

included??P The related case of colloid particles, also including additional

terms, has been treated by Levine and Dube. 43

In the present paper the
two reacting ions are of the same size and are both positively charged,
and soq, = a,=aq, i.e.,

2
z,2,e

U(r) = T %EH(‘% exp(-kr) (9

and ¢ is the distance of closest approach between a reacting ion and the
principal ion of opposite sign in the ion atmosphere.

At iarge internuclear separations, the concentration of reactants
must equal the bulk (no reaction) concentration. Thus,one of the
boundary conditions on eq 6 is lim g(r,t) = 1 as r — =. When a volume

distributed rate constant k(r) is used instead of the usual surface one k(0),
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the boundary condition at the distance of closest approach r = ¢ is
obtained by requiring total flux (diffusive plus conductive) across r = ¢
to be zero. This inward-directed flux (per unit concentration) is given

by 471r°D times the lelf-hand side of

Zgr, 0+ g /D = Oatr=0 (120, (10)

QO

and so eq 10 provides the second boundary condition.
A derivation of eqs 2, 3 and 5, as an approximate solution to eqs 6 and
10 at steady-state is given in Appendix B.

Unimolecular Rate. The electron transfer reaction may be

adiabatic, nonadiabatic or somewhere in between.M'46 A first-order
quantum perturbation treatment of nonadiabatic electron transfer

reactions yields the familiar result®™247-49

k() = 2% [V [ (F.C.) . (11)

In eq 11 V(r) is the matrix element between the reactant and product
electronic states of the perturbation that gives rise to electron transfer.
The quantity (F. C.) is a thermally weighted sum of Franck-Condon

factors given by (12), and has dimensions of (energy) .
-E./k,T
F.C-gXe © BN s(E- E +ap) (12)
i, f i

In (12) i and f designate initial and final (reactants' and products') nuclear
configuration states. The reactant state includes the pair of reactant
molecules and the solvent surrounding them. Q is the nuclear partition

function of the initial state. The functions |i) and |f) will be treated,
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for simplicity, in the harmonic oscillator approximation in the case of
the intramolecular vibrations.

In the classical limit hw/kBT — 0, and when frequency changes in
individual vibrational modes are neglected, the F. C. given in (12)

reduces to the expression in (13).4’ 9,48

F.C. = (4nAkBT)’Vz exp[-(AE+)«)2/(4AkBT)] (13)

As has been discussed elsewhere, e.g., ref. 50, the quantum

nonadiabatic result (11)-(12) plus a dynamical (harmonic oscillator)“’ =

assumption for the motion of the solvent does not allow for any large
entropies of reaction.52 To avoid this difficulty one can use, instead,

a more correct treatment of the polar solvent, one which is classical but
in which no harmonic oscillations for the solvent are assumed.44 In

this case the Franck-Condon factor for the solvent is (c¢f ref. 5)

*/ax,

= - :
(4mr kpT) % expl-(aG° + Ef - E[V + outtgT]  (19)

(F.C.) out' B i Xout)

solv ~

where the v superscripts denote vibrational energy. Equation 14 may be
compared with the quantum results we obtained in ref. 50, where a quantum
treatment of the solvent water, was used, described by two modes which
have frequencies of 1 cm™" and 170 em™'. The latter correspond to sig-
nificant declines in the real part of the dielectric constant of water at

53,54 The 1 ecm™' mode was treated classically and the

50

those frequencies.

170 cm™ quantum mechanically. The quantum (F. C.) at room

solv

temperature was only 20% different from the classical value given by eq 14,

and so in the present paper we shall use eq 14 for the solvent contribution.
We turn next to the estimate of V(r). An adiabatic model corresponding

to the nonadiabatic model of (13) yields



108

kg = vexp [-(AE+A)2/(4>«kBT)] (15).

(cf ref. 44 with AG® replaced by AE). In (15) v is a typical frequency for

|

nuclear rearrangement, p ~ 10° s If one assumes at first that at

some distance, e.g., at van der Waals' contact (r = 0), the reaction is

25 one can then

adiabatic and that it becomes nonadiabatic for larger r's,
evaluate the pre-exponential factor in (11)-(13) approximately by matching
(11)-(13) with (15) at r = 0. Thereby (16) is obtained when this joining is
made at r = 0.

1
/2~113 -1

2 2 "
T”IV(O)| (47 Ak T) 0 s (16)

For a reaction for which the nuclear reorganization energy term a is
70 kJ/mol, the V(o) calculated from (16) is about 0. 023 eV. If instead of
(16) the reaction is nonadiabatic at r = o, the actual value of V(o) is less
than this. (In a more elaborate calculation a Landau-Zener type theory for the
adiabatic-nonadiabatic aspect could be adopted, but this elaboration
is hardly warranted in view of the approximate value of the function V(r)).
For an exponential dependence of the matrix element on r, V(r) is
given by
l2

|vin)|* = | V()| exp[- a(r-0) ] (17)

where r-o is on the average (and, for spherically symmetric reactants,

exactly) the edge-to-edge distance between the reactants. The theoretically

55, 56

estimated or experimentally inferreds'7 values of @ range from 2. 6 to

1.1 A”'. The value of 2.6 refers to a theoretical calculation where the
electron tunnels from one reactant to the other via a v:a.cuum.55 When
medium is present a value of 1.44 A" was roughly estimated, 56 using a

calculation based on an electron tunueling through a square barrier of about
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2 eV.°8 More recent but ab initio calculations have been given for the hexa-

aquairon (II/1II) self-exchange reaction (a ~ 1.8 }3\").59 [See also ref. 60. ]
The 1.1 A”' was estimated indirectly from experiments on electron

transfer between aromatic anions and aromatic molecules in frozen media.57
(For a quite different system, reactions of solvated electrons in frozen
media, values of @ have also been estimated indirectly in the same manner.ls’ 61)
We shall use a value of 1.5 A”. The results given later in Figures 1 and 2

are not very sensitive to the value of @. All calculations were performed

with T = 298 K.

Method of calculation. The equilibrium (no-reaction) steady-state

solution to (6) is g(r) = exp(-U(r)/kBT), when the two boundary conditions
(i) lim g(r) = 1 as r - « and (ii) eq 10 at r = 0 are employed. Reaction will
cause deviation from this solution. If we rewrite the diffusion equation in
terms of h(r) = g(r) exp(U/kBT) then, at steady state (ag/st=0), eq 6

becomes

—UA{BT dh

d . o -U/kBT
(I‘ € H‘f) e 5, k(r)h(r) e =

=0 . (18)

The asymptotic solution to (18) at large r is obtained (for the case that U
and k decrease more rapidly than 1/r at large r) by setting U and k
equal to their values at large r, namely, zero, and then solving (18).
This asymptotic solution is

hir) ~ 1-¢c,/r , (19)

I'—

where c, is a constant and where we have satisfied the boundary condition
that h(r) — 1 as r — =, We wish to construct the exact solution for h(r)
by numerical integration from r = o outward. Since h(o) is not known

a priori, we first solve numerically for a function related to h(r) by an
unknown multiplicative constant ¢,, H(r) = c,h(r), and choose H(o)

arbitrarily. (H(c) = 0. 01 was found to be convenient.) Equation 18 is
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first rewritten, in terms of H(r), as an equivalent pair of coupled first-
order differential equations 20 to facilitate the numerical integration by

a standard routine.

46 _ r? -U/kgT
= k
F-pkine H (20
Uk,T
%Hr— -r%e By :
where 6 is defined by (21) and is 1/44D times the flux at r.
6 = r’ exp(-U/kgT) (dH/dr) . (21)

The boundary conditions at r = ¢ are H(0) = 0. 01 and, from egs 10 and 21,
6(0) = 0. The numerical integration was begun at r = 0, and a standard
program 62 for integration of a system of ordinary differential equations
was used. H(r) was calculated at successively larger values of r, using
k(r) as described in the preceding section, until it was found that H(r) dis-
played its asymptotic behavior, that is, until H(r) behaved as c,(1 - ¢,/r)
to within a small tolerance (constancy of ¢, and c, to 10™°). At that point
the calculation was stopped. The values of ¢, and c, were obtained from

these parameters in H(r) at large r, and g(r) was computed using

g(r) = H(r) exp(-U(r) kgT)/c, . (22)

Finally, kobs was calculated from the net flux at large r

Kops = 47D lim (r* 3) = 47Dc, (23)

r—co

(An alternative way of calculating k is by integration of eq 4 using the

obs
numerically-calculated g(r), but this second method required smaller

step-sizes and tolerances to obtain convergence.)
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Had U(r) decreased as 1/r at large r, as for example for an
unshielded Coulombic interaction potential, a related functional form
for the asymptotic solution (19) and for the flux in eq 23 would have been

used, g(r) ~ c[exp(-U(r) kgT) - 1]+ 1.

Steady-State Results

With k(r) determined as described previously we are in a position to
examine numerically the effect on kobs of a reaction rate constant con-
tributed from a range of internuclear separation distances. The steady-
state (long-time) solutions of (4) and (6) will be examined first, since
thev are more easily found and correspond to existing experimental
measurements.

The detailed calculations presented in this section are for the
quenching of bipyridyl complexes of Ru(Il) by various metal (III) bipyridyl
complexes, studied experimentally by Creutz and Sutin. 14 The inner-
sphere X is estimated to be 15. 5 kJ/mol, and is associated with a frequency of

1300 cm“.7 63

The outer-sphere x has been estimated to be 54 kJ/mol.
If we calculate k(r) as described in the preceding section (with
a=1.5A"" and V(o) = 0.023 eV) we find that the kact calculated from (5)

at AG’ = 0is 1.2 x 10'° M™'s™’, much higher than the currently estimated
experimental value, ~ 4 x 10° M™'s™, for ks (Appendix C). To obtain

a kobs at AG’ = 0 in agreement with this value one requires either a smaller
V(o), a larger X, or a less shielded repulsive potential U(r). Use of

V(o) ~ 0.0045 eV gives a kObscalc ~4x 10° M 's™ at AG® = 0 and we report
calculations with this V(o). Use, instead, of a larger U(o) but a V(o) =

0. 023 eV would have given similar results. For comparison we also report

results obtained using a larger A and V(o) = 0. 023 eV.
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The encounter distance, o, has been estimated to be 14 i\, and

1

the experimental diffusion-limited rate constant is 3.5 x 10° M's™ at

298 K. 14 The quenching experiments were performed in 0. 5 M sulfuric

acid. Using the acid dissociation constant of 0.012 M for HSO, %4

the
ionic strength is estimated to be 0. 52 M. This large ionic strength implies
a short Debye length, 4.2 A, which in view of the large size of the
reactants is expected to make the effect of Coulombic repulsion between
the reactants small.

Numerical solution of eq 6 and comparison of these calculated kobs
with the maximum experimental value for kobs for the present system shows

1

that witha = 1.5 A™" and V(o) = 0.0045 eV, D=3.0x 10°° cm’s™". For ferric
and ferrous tris-phenanthroline complexes indirect approximate experi-
mental (electrochemical) diffusion coefficients have been reported as

1.9and 3.7x10"° cm® s",65 respectively, and so the value of D used

in this paper (the sum of D's of the two tris-bipyridyl complexes) is

more or less consistent with these.

Calculations were made for the formation of ground state products
and of an electronically-excited Ru(Ill)bpy, product, using the excitation
energy, 1.76 eV, employed in ref. 7.66 The formation of alternative excited
products is discussed in Appendix D. We have neglected any possible spin-
restriction effects.

With the parameters discussed above and the k(r) discussed in
the preceding section, we have calculated the reactant pair distribution
function g(r) and the observed rate constant kobs as a function of AG’.

We first test the approximate eqs 2 and 5, using for kdiff the maximum

value observed for kobs (which we will call the "experimental” kdiff’
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since kactmax > kdi.ff)’ In Table I the results from eqs 2 and 5 are com-
pared with those using the numerical steady-state solution of eqs 4 and 6. The
agreement is about 5% over the entire range of AG's studied, +0. 6 to

. m
-3.0eV. The D inferred from kobs

aX (x kdiﬁ) when eq 3 is used

was 3.5 x 10°° ecm®s™, which is close to the value (3. 0 x 107°) inferred
by using, instead, eqs 4 and 6. Had the latter value been used instead
of 3.5 x 10”°, the agreement in Table I would have been about 10%
instead of 5%.

The results for kobs versus AG’ are plotted in Figure 1, where the
experimental points are indicated by circles. The solid line in this
figure is the result of the present calculation using eqs 4 and 6, and
the dotted curve is for formation of an electronically excited Ru(III)
product. For the dash-dot line the solvent reorganization energy was held
constant at the value it has when r = 0, rather than being allowed to vary
.with r as it should. The dashed line in Figure 1 is a result taken from
ref. 7, based on eq 2, and assumes that reaction occurs at the contact

distance only. There, Aput Was taken to be xout(a) = 54 kJ/mol, and the

ut
experimental value of deff was introduced into eq 2.

The closeness of the solid and dash-dot curves in Figure 1 shows that
the effect of having an r-dependent N ik instead of a Aout fixedatr=o01is
small. The approximation used in ref. 1 of treating the reaction as
occurring at r = ¢ and as being adiabatic there, agrees well with the present
results (cf solid and dash-dot curves in Figure 1), because of compensation.
(The nonadiabaticity for the solid curve decreases the rate but the reaction-
over-a distance causes an enhanced rate, compared with the rate for the
dash-dot curve.)

To be consistent with the experimental data in Figure 1, if one

uses the above A's, it is necessary to introduce the formation of an

electronically-excited Ru(Ill) product, namely the dotted curve there.
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Table I. Comparison of the Approximate and the More Rigorous

Treatments of Diffusion.

-1 =1
kobs M s™)

0 a i b
AG (eV) Exact Approximate
0.0 4.1 x 10° 4.1x10°
-0.5 3.3 x 10° 3.4 x10°
1.0 3.4 x 10° 3.4x10°
-1.5 1.9x 10° 1.9 x 10°
-3, 0 2.1 x 10 2.1x10

@Calculated using eqs 4 and 6 with k(r) the same as that for the solid
line in Figure 1.

Pralculated using eqs 2 and 5 with k 4;¢c = 3.5 x 10°M™'s™, and k(r)

d
the same as that for the solid line in Figure 1.
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Figure 1. Calculated and experimental rates of electron-transfer quenching

of Ru(Il) bipyridyls vs AG’. The experimental points (circles) are

due to Creutz and Sutin.M’ L The solid line and dotted curves
are for formation of ground state products and an electronically-
excited product, respectively, using an r-dependent A out’ with
)\out(o) = 54 kJ/mol and V(o) = 0. 0045 eV. The dash-dot curve

is for formation of ground state products with A t fixed at

The dashed curve is the calculation reported in ref. 7

Kout(o)
in which reaction occurred only at r = 0.
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The calculated total kobs’ which is the sum of the calculated rate constants
for forming ground- and excited-state products, then agrees with the
experimental points to a factor of about four.

If a larger value of Agut ©OF of xin were used this remaining discrepancy
could be reduced signiﬁcantly.lsFor example, with A= Aout + )\m increased by
only 5%, to 73 kJ/mol, (and V(o) accordingly increased to 0. 0054 eV to
maintain agreement with the '"experimental'" rate constant at
AG' = 0) we find that the calculated total kobs agrees with the experimental
points to within a factor of about two.

In Figure 2 calculations having a larger but still r-dependent
Aout [Aout(J) = 83 kJ/mol, V(o) = 0.023 eV] are given (dashed line) and compared
with the solid line [xout(o) = 54 kJ/mol, V(o) = 0.0045 eV] of Figure 2. A
slightly smaller D(2. 6 x 10"° cm?s™!) was required to make the larger Agut
calculation yield the experimental value of the maximum k , ., 3.5 x 10° M s

The position of the dashed curve in Figure 2 in the inverted region
relative to the other curve reflects the large value for Aout in that case
(> 83 kJ/mol). The value of Aoyt for the solid curve was > 54 kJ/mol. As is
evident from the approximate eq 14, the greater Aotk the less the tendency to
inversion, other things being equal. Indeed, one sees from Figure 2 that if
xout(o) equalled 83 kJ/mol, it would not be necessary to invoke the excited

electronic state of Ru(III).

Short-Time E&zeriments

Reactions that are fast relative to diffusion are controlled by the rate
of diffusion rather than by their 'activated' rates, and so diffusion can mask
interesting rate behavior. In the case of reactions that can be induced in a
very short time, for example, by a pulse of light, such as reaction (24),

followed by reaction (25), this masking effect may be reduced.

red, + hv — red, (24)

ox, + red, — red, + 0X, (25)
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Figure 2. Calculated and experimental rates of electron-transfer quenching
of Ru(Il) bipyridyls vs AG’. The solid curve is taken from

Figure 1. The dashed-curve is with an r-dependent )‘out’

Jtout(o) = 83 kJ/mol and V(v) = 0. 023 eV. The experimental

points (circles) are those of Creutz and Sutin. 14,15



In a fast bimolecular reaction (25) in which the reactants ox, and red,
are initially randomly distributed, reaction causes the reactant pair
distribution function, g(r,t), to depart from its equilibrium value. Since
the reactants closest together tend to react first, g(r,t) becomes
increasingly depleted near r = o as time increases. At long time g(r, t)
approaches the steady-state distribution function discussed previously.
However, at small t, the distribution of reactants is closer to the
equilibrium one, even for quite fast reactions, and the observed rate
constant is then nearer the value it would have in the limit of infinitely
rapid diffusion. That is, ast— 0 kobs approaches the activated rate
constant kact given by (5). Thus, if the rates of fast reactions such as
(25) can be measured at sufficiently short times, the masking effect of
diffusion can be circumvented.

For simplicity of presentation, we shall consider first the time-
dependent problem for the case that U= 0, a realistic case at the present high
ionic strength. The following time-dependent solution to (4) and (6)
with U = 0 is well-known, and will suffice to provide order-of-magnitude
estimates for the rate enhancement to be expected at short times. When
reaction occurs only at a fixed internuclear separation o, with

bimolecular rate constant k and in the absence of long-range forces

act’
between the reactants, kobs is given by34’ e
1 k 2
kobs(t) = [1 + kaf:t e* erfc(x)] ’ (26)
1/kz«).ct + 1/kdiff diff

where erfc(x) is the well-known complementary error function
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o 2
erfe(x) = 2 ~u 4 , 7
- j’; e u (27
x = VDt (1 + kact/kdiﬁ)/o ; (28)

and kact is for reaction occurring at r = g, but we shall use (cf Appendix

B for the steady-state case)

Ky of = 47 f k(r)r’ dr . (29)
o

D is again the sum of the reactants' diffusion coefficients. kdiﬁ is the diffusion-

limited rate constant, and is the same as in eq 3, but with U= 0, i.e.,

Kgief = 47Do . (30)

In obtaining (26) the usual boundary condition,ﬁ'7 eq 31, on the flux at r = o,

was satisfied.

471Do i%—ga—) = kact g(o) (31)

At large t the second term in the brackets in (26) vanishes, so that
(26) reduces to the steady-state expression, (2). Ast— 0, on the other
hand, kobs as given by (26) approaches kact' The rate behavior for
large values of kact at sufficiently short times is, thus, not masked by
diffusion.

Figure 3 shows the behavior of kobs predicted by (26) at various
times fromt=0to t =1 us. The time t= 1 us is sufficiently long that
a steady-state has been reached. In making the calculation for Figure

3, k_ . was calculated with (29), using k(r) as described in the preceding

act
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Figure 3. Observed rate constant at various times following the onset of

reaction. The values of kobs are calculated from eq 26. The

observation time for —- — was 1 ps and for

—.. —was 5 ps. The

kobs(t) for formation of an excited-state Ru(IIl) is depicted by

the dotted lines.
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section. The experimental value of k 4;¢r, 3.5 x 10°M™'s™!, was used. At
observation times on the order of 0. 5 ps, which may be accessible using
present subpicosecond techniques, the rate constants are greatly enhanced,
and there is a pronounced double maximum in the plot in Figure 3, and also,
indeed, for the 5 and 50 ps curves. An experimental study at small times
would be desirable, and may in fact distinguish the behavior in Figure 2
from that in Figure 3. Calculations using the time-dependent counter-
part of the present treatment would be somewhat more accurate than the
results given in Figure 3.

A solution analogous to (26) but which allows for a general nonzero

68

U(r) is also available. With U(r) as described in a preceding section,

1

k_ ., as defined in (5), and Kgigp = 3-5 10° M7's™}, the rate constants

act
were calculated using the equation given in ref. 68. As expected at the
present high ionic strength, the recalculated values differ little from those
presented in Figure 3.

It may, of course, be equally useful or more useful to look experi-
mentally for inverted behavior in electron transfer reactions between
redox centers that are linked chemically (cf 695. Having the reactants linked
together would entirely circumvent the problem of slow diffusion. Also,
if the chemical link were rigid, the reaction would be forced to occur

at a single, well-defined reactant separation distance.

We consider the first-order reaction shown in (32) and (33)

0X, ~~~~Ted, + hy — 0X, red, (32

OX, ~~~~Ted, — red, ~~~~0x, (33)
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Reaction (33) would be followed by the reverse electron transfer to

reform ox, and red,. In (32) and (33) the oxidized and reduced species

outl® =
54 kJ/mol, i.e., for two reactants virtually in contact, the results for

have been linked by some bridging group(s). For the case of a

the rate constant k are given by the t = 0 plot in Figure 3, apart from
absolute scale.

Finally, it remains to consider the relationship mentioned earlier
between the charge transfer absorption spectrum versus frequency plot

and the Ink_ ., vs AG’ plot. We do so in the next section.

act

Analogy Between Charge-Transfer Spectrum and Plot of kact vs. AG.

The probability of the optical dipole-induced transition from the i'th
vibrational level of electronic state ]a) to the f'th vibrational level of

electronic state 'b) is given by4

-E./k.T
TAE,: hy) = C Z)f e ' B [ilpl6[Es-E; + (AE,x b)) (34)
i,

using the Golden Rule and the Condon approximations. In (34), Cisa

proportionality constant [27 Ka|u |b) |2/Qh ], AE, is the difference in energy

of the zero point vibrational levels of electronic states |b) and !a) for a

particular system, and hy is the energy of the radiation emitted (+) or absorbed

(-). E;and E; are the vibrational energies associated with ID and [i).
Comparing eq 34 with eqs 11-12 we see that I'/C is the same function

of AE, + hw thatk, ,/C’ is of AE, where C' = 27 | V(r) lz/Qb. Thus, since

T, and hence I'/C, has a maximum as a function of AE, + hy (where this

argument is varied by varying hy) in the absorption plot, kact must have
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a maximum as a function of AE. In the Kot VS AE plot, AE is varied by
studying a series of reactants, by varying one of the reactants, in

which (ideally) the vibration frequencies and bond lengths of this series
of reactants are fixed, as are those of the corresponding products, and
so the ¢.1's, ¢f's, Ei's and Ef's are the same for each member of the
series. AE is the only variable in this series. Because of the constancy
of the z,b.l's, ete. the AS® is also a constant, and so a plot of kact vs AE

is merely a displacement of the plot of kact vs AG”. In summary, the
maximum in the absorption coefficient vs absorption frequency plot,
well-known in charge transfer (and other) absorption spectra, implies

a maximum in the plot of kact vs AG’. The condition on the argument is
that eq 34 provide a suitable description of the former and that eqs 11-12

adequately describe the latter.
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Conclusion

We have seen that the r-dependence of the solvent reorganization
energy increases the predicted rate constant in the inverted region, as
expected. For the particular system for which calculations were performed
the increase was relatively small.

In the calculation of steady-state rate constants we found it
adequate to use a simple analytical approximation to the problem, eq 2, in
which one calculates an activated rate constant and then obtains the
observed rate constant as the harmonic mean of the activated and
diffusion-limited rate constants.

It is suggested that experiments measuring the rate of electron
transfer at very short times following the onset of reaction can improve
the chances of observing inverted behavior that may be masked by the
slowness of diffusion in typical steady-state measurements. It may also
be fruitful to seek inverted behavior in electron transfer reactions

between chemically linked redox centers.
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Aggendix A. Comment on Eguation 7

The approximations contained in eq 7 include the following:
(1) replacing the discrete molecular environment of the ion, namely the
solvent and the counter ions, by a dielectric continuum and a continuous
charge distribution, (2) use of the linearized form of this continuum
(Poisson-Boltzmann) equation, eq Al below, (3) treating the
reactants as spherical even in cases where they are not, and (4) neglecting
dielectric image effects arising from the presence of a low dielectric
constant sphere (the second ion) in the presence of the first, e.g., by

using as a solution eq A2 below.
The linearized Poisson-Boltzmann equation for the electrostatic
potential ¢ is
v = kY. (A1)

When there are two central ions of charges yz,e and yz,e (y is a charging

parameter which will later be increased from 0 to 1), eq Al has the

approximate solution at any point in the medium

-KkR a, .-kR,

yzee¥d e™* N 4z eef P2 e
Y= 1= Ka)ER, (1 Kaj€R,

(A2)

where a; is given by (8) and R.1 is the distance from the point to the center
of ion i. Equation A2is the sum of potentials that one would have if

only one of the two central ions were present, individual solutions which
are well-known 422 Equation A2 ignores the fact that when one brings

ion 2 up toion 1 one is changing the boundary in the vicinity of ion 1

(a new boundary is introduced). Accordingly, the first term, which
formerly was an exact solution to eq Al, is now only approximate;

analogous remarks apply to the second term.
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The potential energy of interaction of the two central ions, U(r) in
eq 7, is obtained by multiplying the second term in (A2) by the infinitesimal
element of charge z,edy, replacing R, by its average value r at the center
of ion 1, (an approximation which we shall eliminate in a later paper) and
multiplying the first term in (A2) by z,edr, replacing R, by its average
value r at the center of ion 2, and integrating y from 0 to 1. The missing
terms, e.g., the first term in eq A2 times z,edy, contribute to the inter-
action of ion 1 with its environment and so are present at r = «». Therefore,
they do not contribute to the mutual interaction energy of ions 1 and 2. The
integration yields eq 7.

Another expression for U(r) which has sometimes been used, for

the case of a large ion (ion 1) interacting with a small one, is.7Oa (cf 7Ob)

U(r) = y(r, ion 1 only present)z,e . (A3)

(For the case of a spherical charge distribution on ion 1 this U(r) is
z,z,e° exp[k(a, - r)])/€r(l + ka,).) This expression and eq 7 yield the
same answer in several limiting cases: (a) @, = 0, a,= 0, (b) a, = a,,
and (c) k = 0. Equation A3 is commonly also tacitly used for the inter-
action of an ion (ion 2) with an electrode (ion 1 is allowed to become
extremely large, and hence ultimately a plane). In the present case, the
two radii a, and a, are equal, and so eqs 7 and A3 both yield the same

result, namely eq 9.
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Appendix B. Derivation of Equation 2 for Reactions Over a Range of r's
We obtain eq 5 first: If diffusion is sufficiently fast the steady-state

solution to (6) is given by the equilibrium expression,

g(r) = exp(-U(r)/kgT)  (fast diffusion) (B1)

forr = o, and g(r < 0) = 0. The activated bimolecular rate constant may be
obtained by substituting this equilibrium g into eq 4, yielding eq 5.
To obtain an approximate steady-state solution25 of eq 6 under

other conditions the equation is first rewritten as

~UAk,T Uk,T
22 iI:e B" 2 d (g e P )} = k(r)g(r) . (B2)
2 dr dr
Integration yields
R
-Uk,T Uk,T R
De B rzadF (ge B ) = f k(Dg(r)rdr . (B3)
X ‘o
r=0

The flux is given by 471r°D times the L h.s. of eq 10, and so the L h. s.

of (B3) is 174y times the flux at r = R minus that at r = 0. The condition
of zero net flux across the r = o0 boundary (eq 10) implies that in

the 1. h.s. of eq B3 the term at the lower limit r = 0 vanishes.

The unimolecular rate constant k(r) is, as discussed in the text, a

rapidly decreasing function of r. For r greater than some distance o',
where (¢’ - 0) is a small quantity, k(r) is essentially zero. Therefore
for R > o' the r. h. 5. of eq B3 may be approximately replaced by its

limit at R — =, and because of the vanishing of the 1. h.s. of eq B3

at its lower limit, we then have (writing r instead of R)

-UAkRT Uk,T o
De = rzg; (ge B ) = f k(r)g(r)r’dr (r>0) . (B9
o
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Substituting eq 4 for the integral over r into (B4) allows one to rewrite

the latter as

-UkLT Uk,T
De B rzgx—, (ge B ): kobs/‘“ (r>d") . (BS)

Rearranging eq B5 and integrating from ¢’ to = yields

k o Uk,T Uk,.T
b B  d B
?Ts fo’ e _25 = (g(r)e ) ' (B6)

r=0

The potential U(r) vanishes, by definition, as r — =, and we require

lim g(r) =1 as r — «. Thus, we obtain

kobs/kéiiﬁ = 1-glo") exp(U(o')/kBT) , (BT

where

o Uk,T
=410/ [ e B r7°
g

K yisf dr : (B8)

We now proceed to evaluate the second term in the r.h.s. of
eq B7 in terms of the activation controlled rate constant kact‘ If the
product exp(U(r)/kBT)g(r) varies only slowly for 0 < r < ¢’, then kobs
is given (using eq 4) approximately by eq B9.

U(o')/kBT 0 . e—U(r)/kBT

g

k > 4q7g(d’) e dr (B9)

obs

which, using eq 5, becomes
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glo’) exp(U(a’)/kgT) = kp /k v . (B10)

If we substitute eq B10 into eq B7 we obtain

kobs/kdiff =1- kobs/kact é (B11)

Because (o’ - 0) is a small quantity, k:ﬁﬁ is approximately equal

to kdi.ff’ where kdifi is defined as in eq B8, but with ¢ in place of ¢’.

Substituting kdiif for kdi.f.f in eq B1l1 and rearranging yields eq 2.
Finally, in Figure 4, to illustrate how much or little g(r) exp(U(r)/kgT)
varies in the interval ¢’ - ¢ we plot k(r), g(r) and exp(U(r)/kBT)

versus r, for AG’ = -1.3 eV. The quantity o’ is indicated approximately,

chosen so that k(o) = k(0)/3. The unimolecular rate constant k(r) was

calculated in the same way as for the solid line in Figure 1. From the

results in Figure 4, the product g(r) exp[-U(r)/kBT] varies by ~ 20%

over the interval ¢ < r < ¢’. A similarly small change is observed with

other values of AG’. This observation suggests that it is adequate to

treat g(r) exp(U(r)/kBT) as constant for o < r< o’.
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Figure 4. Behavior of k(r), g(r) and exp[U(r)/kBT] as a function of r.

The calculations are given for the conditions given by the solid
line in Figure 1 at AG’ = -1.3 eV. g(r) rises to 0.5 at

r = 26 A and eventually approaches unity.
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Appendix C. 'Experimental' Rate Constant of the Reaction of Ru(H)(bpy);

iy NP e R O e SR e S
with M(III) (bpy),

The 'experimental' rate constant given in the text for reaction (C3) at

AG’=0is~ 4x 10°M™'s™". To obtain this value we make use of the

self-exchange rate constant (~10° M™'s™") estimated'71 for reaction (C1)

Ru(IDbpy, + Ru(ll)bpy, — Ru(ll)bpy, + Ru(I)bpy," (C1)

and that estimated for reaction (C2), 1.2 x10° M™'s™". % The latter
was kobs for the oxidation of Ru bpya2+ by Ru phen33+, for which

AG’ = 0.01 eV.
Ru(IDbpy, + Ru(IlDbpy, — Ru(II)bpy, + Ru(Il)bpy, (c2)

Corrected for diffusion using eq 2, the activation rate constant kact for
(C2) is about 2 x 10° M™'s™%.
The geometric mean of these activation rate constants is 4.5 x 10°

M™'s™', and will be used for k, .t for the reaction

Ru(IDbpy, + M(II)bpy, — Ru(Il)bpy, + M(I)bpy, (C3)

1,2

at AG’ = 0. We use the cross-relation to estimate the rate constant

for reaction (C3) at AG® = 0 as the geometric mean of the rate constants

13 that the cross-relation should be

for (C1) and (C2). Sutin has argued

applicable even for nonadiabatic reactions if the electronic matrix element

V(r) for reaction (C3) is equal to the geometric mean of the matrix elements

for (C1) and (C2). Assuming that that condition is approximately satisfied,
-1 =1

we find k, ., = 4.5 x 10° M"'s™" for (C3) at AG’ = 0. Corrected for diffusion

using eq 2 this k_ ., vields a k , . for reaction (C3) of ~ 4 x 10° M™'s™".
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Incidentally, the reaction

Cr(III)mebpy; + Ru(ll)bpy, — Cr(II)mebpy, + Ru(1ll)bpy, (Cq)
15

in 1 M H,SO, has a AG" very close to zero and has a Kops Of ~ 2 x 10° M7's™'.
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ABEendL\' D. Formation of Other Electronicallx-Excited States

The possibility of forming other electronically-excited products
was also considered. Formation of an electronically excited Ru(II)

4,75 oo

product is thermodynamically less favorable by 0.3 eV
formation of an excited Ru(Ill), so Ru(Il) products were assumed to be
formed in their ground electronic states. The excitation energy for
formation of Os(bpy)* is' & 1! 1.78 eV (similar to that for Ru(bpy) 2",
1.76 eV), and associated with the excitation is an inner-sphere
reorganization energy of about 2 kJ/mol (1,/8 of the Stokes shift) "8 at a
frequency of ~ 1300 em”' (the vibrational spacing observed in the

75, 78). The formation of an

low temperature emission spectrum
electronically-excited Os(Il) product may be less favorable (or at least

no more favorable) than formation of an excited Ru(IIl) product, depending
on the assumptions. 79 Finally, although the excitation energy of Cr(bpy)j’
is only aboutBO’ 81 1. 05 eV, which is lower than the Ru(IIl) excitation
energy, the reactions to form the electronic ground state of the Cr(II)

product already lie in the "'normal” (i. e., not inverted) region, and so it

would be less favorable to form an electronically-excited Cr(II) product.
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CHAPTER 5

A MODEL FOR ORIENTATION EFFECTS IN ELECTRON TRANSFER

AVIAVIAVia Vi VIA Via VA VIA VIA VA VIA VA VIA Via Vig VA ViA VI VIA Via Vi VIaVIAVIA VA VA VA VIAVIAVIA VIAViA VA VA VIAVIA VIA VA VIA Vg VA VIAVIA VA VA ViAVIa VIAVIAVIAVIA V!

Introduction

The relative orientation of the donor and acceptor
in an electron-transfer reaction may have observable
effects on the electron-transfer rate in some systems.
For example, the primary photoinduced electron transfer
in photosynthetic reaction centers may be influenced
by the orientation of the reactants. In plant photo-
system II the acceptor is probably a pheophytin (1,2)
and the donor may be a substituted chlorophyll g
monomer (2,3). Both of those molecules are large
and noticeably nonspherical, suggesting that there
may be one or more preferred orientations for electron
transfer. There is evidence that another biologically
important electron transfer, that between hemes in
cytochromes, also shows a large dependence on the
mutual orientation of the hemes' porphyrin rings (4).

Synthetic systems may also show significant orien-
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tation effects. For example, electron transfer between
cofacial porphyrins has been observed to be very rapid
(5,6). Systems involving porphyrins held in other
orientations are under study (7). 1In these systems
the electron transfer is between sites that are chem-
ically linked. But to the extent that the pi orbitals
involved at the donor and acceptor sites are electron-
ically isolated, the electron transfers may be treated
using the usual outer-sphere formalism.

It is with systems such as these in mind that
we have set out to develop a model theoretical system
within which to learn about the nature and magnitude
of orientation effects on electron-transfer rates.

The rate constant for electron transfer between
reactants A and B at fixed separation and relative
orientation can be described by the Golden-Rule rate

constant.

_ 21 2
k = = |VAB| x (Franck-Condon sum)

The Franck-Condon sum has been discussed in detail

in preceding chapters of this thesis. This chapter
will focus on the dependence, within the theoretical
model to be described below, of VAB on the separation

and relative orientation of A and B.



143

The treatment of an isolated site A or B (at infinite
separation, say) will be described first at some length.
Then the matrix element VAB for electron transfer
between a weakly interacting A-B pair will be described

and the results of some calculations will be presented.

Single-Site Wave Functions

The Model

Before describing the interaction of sites (e.g.
molecules or electronically isolated chromophores)
A and B I will describe the wave functions associlated
with an isolated site. The wavefunctions to be de-
scribed are one-electron wavefunctions. That 1is,
only the transferable electron is considered explic-
itly. The potential in which this electron moves
is modelled as an oblate-spheroidal square well.
A cross-section of the potential is sketched in Figure
1. The potential is symmetric in ¢, the angle of
rotation about the Z axis. The cross-section 1is
an ellipse having semimajor axis a, semiminor axis b,
and eccentricity e=v/a2-b2 /a. The potential V is
zero outside the well and has a constant negative

value inside the well.
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Figure 1. Potential well for a single site.
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It is convenient to use oblate spheroidal coor-

dinates as defined in equation 2.

3 1
X = %<i(1+g2)9 (1 =n%)® cosd

- Sa(1+e2)? (1-n7)? o )
¥ 5 -n sind (2
zZ = %cign

The scale factor d can be chosen so that the surface
of the potential well is described by the single

radial coordinate &. With d=2vV a?-b?2 we have

I

2b/d

Contours of the coordinate system are presented in
Figure 2. The angular coordinate ¢é has its usual
definition as in spherical coordinates. The surface
£=0 1is a disc of diameter d. The surface n=0 is
the x-y plane with a circular aperture.

Spherical coordinates r and 6 are given in terms

of oblate-spheroidal coordinates in equation 4.

= d 2 2 %
r =3 (1 4+ B = 5} n
g 4
cos® = £n (1 +¢? —nz)—é
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Figure 2. Oblate-spheroidal coordinate system,

Contours of & are indicated by solid lines.
The dashed lines are contours of n. The
contours are invariant with respect to
rotation by any angle ¢ about the z axis.
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It is clear from equation 4 that the oblate-spheroidal
coordinates become asymptotically spherical at a
large distance from the origin in the sense that

£+2r/d and n->cosf as r > o,

Oblate-Spheroidal Wave Functions

The single-site electronic wavefunctions sought
are bound-state solutions to Schrodinger's equation
with the potential specified in equation 3. Schrodinger's
equation may be written as a pair of Helmholtz's
equations, one to be satisfied inside the well and

one outside the well.

(V2 +k2)¥ = 0 with (5)
2m .
, F(E+VO)’ iéio
k2 =
2
7 E P E2E-

In equation 5, m is the mass of the electron.

(om/B% = 0.2634665 oV 'B°2,)
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A solution ¥™® is valid inside the well and a
aelubion UOUP 4s yalid outetds the well., Then She

wavefunction will be

The function ¥'™ can be separated as

vi% (e, n,0) = RI(E) s1P(n) o(0); £<E . (7)

O

Helmholtz's equation separates accordingly.

d2o

&f +mfe-0  (8)
in 2 : :
SO -0 Hin2kz -2 Bl gt 20 (o)

in 2 . 3
r(1+e2)88 ) 4 (g2x2 40 ARy R

dg ag in ' 1467 ~ 'm g (10)

Any choice of k;n (that is, of energy) yields
a sequence of discrete eigenvalues X;E. The sub-
script n serves to order these eigenvalues. It is
convenient to choose n = m, m+l, ... beeause in
the 1imit b-+a (i.e., the 1limit in which the oblate-
spheroidal well becomes spherical) Aig-*n(n+1).

Thus in the spherical 1limit n is the gquantum number

of the total angular momentum.
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Equations 8 through 10 for a particular k;n yield

a set of solutions

in _ ing. . cos(md) .
{ v = R Mg kin) Smn(n’ - ) sin(me) $B >0 >0F . {11)

The inner radial functions R (E k2 ) can be evaluated
through their expansions in spherical Bessel functions
jn/(%d.kin £). The angular functions S (n k2 ) can be
evaluated through their expansions in associated
Legendre functions Pgl(n).
The function yout can similarly be separated as

v e,n,0) = RO () sMP(n) e(e) sEve . (12)

The separated equations are identical to equations 8 - 10

with the label "in" replaced by "out." The following

set of solutions i1s obtained:

out _ out out cos(md)
L ¥ - m (€5 kout) Smn (n; 1out) sin(mo)’ n>m>0}. (13)
The outer radial functions Rogt(g,kéut) can be eval-

uated through their expansions in modified spherical

Bessel functions kn'(%dlkoutk)' The outer angular
§ out 1,2

functions S_- (n’kout)

: : : . m
expansions in associated Legendre functions Pn,(n).

can be evaluated through their

The radial and angular functions R and S__, their
mn mn
expansion coefficients, and the eigenvalues Amn are
discussed by Flammer (8) and by Hodge (9). Flammer's

book contains detailed discussion and numerous tables
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of eigenvalues and expansion coefficients. Hodge's
article contains an algorithm for obtaining the expan-
sion coefficients and eigenvalues. Hodge's algorithm
is easily programmed and worked well in the calcula-

tions described later in this chapter.

Quantization in the limit VO->w

In the limiting case VO-*00 quantization is easy.

In this case the wavefunction must vanish for & > &

o
Hence the wavefunction is simply
vl oo ¢ g
yooo= - © (14)
0 s e 2 e .
Allowed energy levels Emn are those for which
k2 (E ) is such that
in "mn
R-(€ 5 k2 ) = 0. (15)

mn 0] in

Energy levels Emn for which m >0 are doubly degenerate.
In the spherical limit b >a the allowed energy
levels are simply those energies Emn for which (—bkin)
is a zero of the nth spherical Bessel function. Energy
levels for several m and n are plotted in Figure 3

as functions of the well's eccentricity e=/a?-b? /a.
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Energy above well bottom (eV)

0 T SN
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(disc) Fccentricity (SPhere)

O+ COnsfonT vo| ume

Figure 3. Energies versus eccentricity in the limit V, + =,

The well has a constant volume of 251.25 &2
Energy levels E , <10eV above the well
bottom are labeled with n along the right-
hand side and with m above individual curves.
The energy level labeled n=0" has a 'radial'
(E-type) nodal surface. The asterisk is to
indicate the presence of a nodal surface of
that type.
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In Figure 3 the volume of the well is held
constant as e changes. The volume of an oblate spheroid
is V = %7T(a2b)1/3. Thus as the eccentricity e
increases from O to 1 the semiminor axis b decreases
to approach zero and the semimajor axis a approaches
infinity. The effective radius R = (azb)1/3 for which
Figure 3 was plotted is R =3.9145 8.

An oblate-spheroidal square well has been proposed
as a model for the potential in which a nucleon moves
in the nucleus (10). In this context energy levels

have been calculated previously in the limit VO-*w(TT).

Quantization for Finite Vg

Wave functions for which VO is finite have spa-
tial extent beyond the boundary of the well. Such
spatial extent is essential if two wells are to trans-
fer an electron due to long-range electronic inter-
action. Quantization of the energy in the case of
finite VO can be accomplished by requiring continuity
of the wave function and its gradient at the boundary,
1lnCuy 8t & :Eo' It is however not possible to achieve
continuity using the separated wave functions given
in equations 11 and 13. Rather the wave function
can be expanded using the sets of functions in equa-

tions 11 and 13 as basis functions.
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. _ w-1 [ cosmd
\ymn(iyﬂ,d),E) - Nmn(sinmd))
athigl in ) in i1 2 .
X
2 out jout L1.2 eut 12 .
i§6ﬁ‘ Rm,m+r(€’kout)Sm,m+r(n’kout) & >€o
In equation 16 = 2i+s where s=0 for wave func-

tions even with respect to n and s=1 for wave func-
tions odd with respect to n. The index n has the
same parity as m+r and serves to index the wave func-
tions Wmn’ It is convenient to again choose

A = Mg DFls s since in the spherical 1limit (see
equation 17) n recovers its spherical meaning as

the quantum number of the total angular momentum.

: . o cos md m
é-imawmn(gyn’(b’}g) (sinmd)) Pn (T])
Itk r) k (ki la) 5 r<a

Jn(kina) kn(lkout|r) s T >»a

The factor Nmn in equation 16 is a normalization
factor which is computed numerically using Gauss-

Legendre and Gauss-Laguerre quadratures.
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The allowed energies for given m and n and b<a
can be obtained by requiring that the wave function
and its gradient be continuous at the boundary.
Because the boundary surface is a function of only
one variable &, continuity of VY at &O requires only
continuity of ¥ and continuity of 3¥/3& at £,+ Equa-
tions 18 and 19 express the continuity (quantization)

conditian.

1im ¥ (E,n,05ks ) = 1im, ¥ (E,n.dzk> ) (18)
E*E; mn in g+g; mn out
. 3 .0
lim ==Y _(&,n,¢5k2 ) = 1lim, ==Y _(&,n,03k? ) (19)
g+g; 90& mn in €+£;8£ mn out

Thus quantization of the energy involves matching
the two expansions given in equation 16, and their
partial derivatives with respect to &, at & =€O.

We have adopted the following method for determining

the energies Emn for which equations 18 and 19 are

out(ppz )

satisfied. Each outer angular function S
mn out

is expanded in the complete set of inner angular

functions Sln(ﬂ;k? J. At this point ¥ is represented
mn in mn

as an expansion in S;E(n;k;n) both for £ <&  and

for & 2&0. Equating the two expansions term-by-term

at &zzio yields equation 20.

Cln - M Cout (20)
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In equation 20 the vector gln::(cin, ?n’ p—_—
and the vector EOUt==(CEUt, CTUt, e...) where cin and
Cgut are defined in equation 16. Both vectors are

of infinite dimension but are in practice truncated,
of course. The elements of the matrix ﬂE , Where
the subscript E indicates the matrix's dependence

on the energy, are given in equation 21.

£gORT | g, pOUTEe o w2 j

e R O o (21)
(Mplij = «sin gty RIM (¢ ;2 )
mq mq mq o in
where p =m + 2j + s; j>0, and
g=m+ 21 + s; 13>0.
Similarly requiring continuity of the gradient
yields the matrix equation
Eil’l _ ﬁé _C_out (22)
where
g d out 2
<s0ut | gin,  FE Rmp (85 k2.¢)
(M2),, = —32—— 24 x O (23)
=E'ij <gin [Sln> d gin (E ¢ &2 )
mq mq dio mq o’ Tin
and again p=m+2j+ s; j>20, and
g=m+ 2i + s; 120
Equations 20 and 22 together yield equation 24.
out _ -1 ’ out
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o
E E)

having unit eigenvalue. 1In practice energy levels

Thus Eout is an eigenvector of the matrix (ﬂ

M
and expansion coefficients are found by iterating
on equation 24 to obtain an eigenvector associated

with an eigenvalue of 1. This eigenvector is ¢ OUt.
The inner expansion coefficients gin are then obtained
using equation 20.

Several energy levels are shown in Figure 4 as
functions of eccentricity at constant volume. The
levels were calculated for a well depth VO: 10 eV
and an effective radius R = (azb)1/3= 3.9145 % .

Figure 4 is thus directly comparable to Figure 3
for which Vozw.

The energy levels are shown as functions of VO
in Figure 5. For these calculations, a = 4.85 ® ana
b= 2.552 , which implies e =0.8506. The value of
a was chosen as an estimate of the in-plane radius
of porphine, and is the same as the a used by Platt (12)
to treat porphine as a 2ax2a square. The value
b=2.55%was chosen to give a reasonable height to
the spheroidal well. The average height of a spheroid
is h==%13. The interplane spacing in graphite,
which may be used to estimate the 'thickness' of
a pi orbital, is = 3.4 . The value of b chosen is

2
such that h=3p =%(3.4§i).
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0 I I | ]
10 08 06 04 02 0.0
(disc) (sphere)

Eccentricity

at constant volume

Energies versus eccentricity for Vo, =10eV.

The well has a constant volume of 251.25 qs,
Energy levels Ej, are labeled with n along
the right-hand side. An asterisk indi-
cates a state having a £-type ('radial')
nodal surface. The value of m is indicated
for each curve.
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Figure 5. Energies versus well depth.

a=4.858. b=2.558. Contour plots of
the wavefunctions corresponding to these
energy levels at V,=10eVare shown in the
following figures.
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Several plots of contours of wave functions are
shown in Figures 6 through 10. These are plots of
wave functions for which energies at well-depth Vo=10 eV
are shown in Figure 4. Each wavefunction corresponds
to a different (m,n) pair and is the lowest-energy
function for that pair. Although the nodal structure
of these wavefunctions 1s roughly the same as that
obtained using spherically symmetric potentials, the

wavefunctions are noticeably nonspherical.

Large-r Behavior of the Wavefunctions

At a large radial distance each of the outer
radial functions has the asymptotic form given in

equation 25.

out 2 2 =ar/2 -
Rmn (E"out) Y oar Ba T = (25)
where o = 2]k | = 2(‘2"1;|E])~é
- out el

Hence the wavefunction Wmn at a fixed large r and

fixed ¢ is

out sout
(6]
0 it m,m+tr

(g k2 _.J . (26)

mn out

-
R
o™ 8

We can examine the angular dependence of Wmn at

large r by projecting Yon In equation 26 on the associ-
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Figure 6. Contours of ¥, for m=0, n=0.

V,=10eV. E=-7.98eV. a=4.85R8. b=2.55&.

The heavy dashed line is the well boundary.
The contours are labeled with logio|V¥oo
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Contours of V¥ for m=1, n=1.
mn

V. =10eV. E=-6.55eV. a=14.858.b=2.553%.

The heavy dashed line is the well boundary.
The contours are labeled with loglo]W11|.
Dashed contours indicate ¥;; < 0. Solid
contour lines are for ¥;; > 0.
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Contours of V¢ for m=0, n=1.
mn

i

V,=10eV. E=-4.70eV. a=4.85%. b=2.5518.

The heavy dashed line is the well boundary.
The contours are labeled with log10|?01|.
Dashed contours indicate ¥Y4; <0. Solid
contours are for Yo, > 0.
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Figure 9. Contours of an for m=0, n=2.

V =10eV. E=-4.4beV. a= 4.85 R. b=2.551%.

The heavy dashed line is the well boundary.
The contours are labeled with logiol¥o2l-
Dashed contours indicate ¥4, < 0. Solid
contours are for VYo, > 0.
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Figure 10. Contours of Wmn for m=2, h=2.

V,=10eV. E=-4.82eV. a=4.858. b=2.558,

The heavy dashed line is the well boundary.
The contours are labeled with 10g10|w22|.
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ated Legendre polynomials Pg%(n); n’>m. Recall
(equation 4) that for large r n v cos 6. If the
large-r angular probability distribution were insen-
sitive to the non-zero eccentricity of the spheroidal
well, then we would find |<an’”’mn>'2 =8 , , but that
is not found. Even at asymptotically large distances
the electron 'sees' the nonsphericity of the potential
well. Calculated projections squared are presented

in Figure 11 for the case m=0, n=2 and VO=:1O eV.
These projections are plotted for wells of three
eccentricities, all with effective radius R=3.9145%.
The quantity plotted is the square of a normalized
projection, as defined in equation 27, at asymptotically

large radial distance.

m

<Yy P, > Y|P >
¥ ,s 22 & g - Sl (27)
- <Pm/|Pm/ > i <P_m IPm>
n n 1 i

Electron Transfer Between Sites

The electronic states of an electron in the po-
tential of a single molecule (electron site) can be
described using the spheroidal-well model discussed

in the preceding section of this chapter. A system
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Figure 11. Normalized projections |[<¥o,|P 2 >|2in 1im r + «.
24 n

The quantity B ., is defined in equation 27.

e 1s the eccen%ricity of the well, at a cons-
tant volume of 251.25 A3. For these calcula-
tions V5 =10 eV. The symbols correspond to
the following eccentricities e:

4 e = 0.1, E = -4.0086 eV
(8] e 0.5, E = -3,922 e¥
(%) e 0.9, E = -4L.565 eV

1]
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consisting of two such wells (site A and site B)

and one electron (the 'transferable' electron) can
be used to model electron transfer between a pair of
molecules A and B. The rate constant for electron

transfer (reaction 28)

A" + B—X5 4 4+ BT

is given in equation 1, within the Golden-Rule and
Condon approximations. That rate constant is for
transfer between sites having specific and fixed
orientations and relative separation. In order to use
equation 1, nuclear coordinates and an associated set
of vibrational states has been assumed to be present
in the wells and the intervening medium, but will

not be dealt with explicitly in what follows. It is
the dependence of the rate constant, and in partic-

ular of the electronic matrix element V on the

AB?
separation and orientation of the reactants that will
be examined in the remainder of this chapter.

The matrix element VAB is to be calculated within
the model system consisting of two oblate-spheroidal

square wells (labeled A and B) and one transferable

electron.

(28)
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The zeroth-order problem is that in which the
two wells do not interact (e.g., the infinite-separa-
tion limit). Only the following two zeroth-order
electronic states will be considered:

(i) The electronic state for the electron on site
A, uninfluenced by site B. The wavefunction for this
state is denoted Wﬁn. The subscripts m and n index
angular momentum in the sense described previously
in this chapter. The wavefunction is given in equa-
tion 16, with the origin of coordinates at the center
of well A, and with £, defining the boundary of well A.
The value of V_ (as in equation 3) appropriate to
site A is denoted Vﬁ.

(ii) The electronic state for the electron on
site B, uninfluenced by site A. The wavefunction
associated with this state is denoted Wi'n" The
subscripts m” and n” index the angular momentum.

The primes are only to distinguish these numbers from
the m and n that characterize the wavefunction on
site A. The function \Pﬁ'n' is given in equation

16, with m” and n’ replaced by m and n there, with
the origin of coordinates located at the center of
well B, and with &O defining the boundary of well B.

The value of VO appropriate to site B is denoted Vg.
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The electronic matrix element VAB appropriate
to the present model is given in equation A.34 of the
appendix. It is presented in a more explicit form

in equation 29.

Vyp = (Hyp - Spplyy) /(1 = 8,5°)
Hyp = -Vo wellfB 2, L ovh avg
g = -1 R (¥2 )2 avy
S, g a{l o, . ﬁn dv

space

Calculated Results

The results of several calculations of VAB are
discussed below. In all calculations that follow

AoyBoy
(©) 0]

the two wells (A and B) are identical, i.e. V o

and for both wells a::A.85§i and b:=2.558 . Further-

more the same wavefunction is used in each well.

That is, WA and VY ? » can be superimposed by trans-
mn m'n

lating and rotating Wﬁn. (This of course implies

“=m and n’=n.)
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The energy with which a state is bound is important
in determining the rate at which its wavefunction
decays outside the well (i.e.,in the tunneling region).
The radial dependence of each wavefunction W;Z and
WJZ is asymptotic at large radial distance r to
2xexp(-ar/2)/(ar) , where o = 2/-2n% /& . (This asymptotic
dependence follows from equations 16 and 25.) Thus
VAB will decay radially as Pxexp(-or/2), where Pis
some funetion of r—1, at large separation r of A and
B. (In the spherical limit b+a P is a polynomial.)
Finally then the rate constant k (see equation 1) 4is
expected to be asymptotically proportional to
P?xexp(-ar) at large r. Frequently the factor P2
is neglected and a simple exponential decay,
kN exp{-ar), is assumed.

The value of o has been inferred from experimental
measurements of the electron- (14,15) or hole-(16)
transfer rate between aromatic molecules and ions in
low-temperature glass matrices. The values found
range from about 1.0 to 1.5 X—j. In the calculations
below VO is treated as a parameter and is adjusted
so that the energy E of the zeroth-order states

¥ . and Y g yields a specific desired value of
mn mn

a=2/-2mE / #
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Orientation Effect at Contact

The present model can be used to predict the
orientation dependence of electron transfer between
two molecules in contact. Such a configuration is
sketched in Figure 12. The orientation angle 6 de-
scribes the available configurations for which the
major axes and the minor axes of the two spheroidal
wells are parallel. These configurations may span
part of the range of relative orientations available
to chlorophyll and pheophytin in a photosynthetic
reaction center, although the correspondence of that
system with the present model is rough at best.

The matrix element VAB is plotted versus 6 in
Figure 13. The results of two calculations are shown.
For the solid line, the lowest-energy pi states (m=0,
n=1) were used in each well. The well depth VO=5.65AO eV
was chosen so that Eo1=-1.15 eV, which yields a=1.1 2 -1.
For the dashed line the ground state (m=n=0) was used
in each well, and V _=2.5937 eV was chosen so that
again EOO=—1.15 eV. The dashed line is included in
Figure 13 to indicate the importance of the wells'
nonspherical shape. Were the wells spherical, VAB

would be independent of 6 for the m=n=0 state.
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(6]

+
<

5 5 X (A

Figure 12. Orientation at contact.

The major and minor axes of both ellipses
lie in the plane of the figure. The major
axes of wells A and B are parallel, and the
minor axes of wells A and B are parallel.
The angle 6 is the angle plotted on the
abscissae of Figures 13 and 14.
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0.0 —

Orientation effect at contact for E=-1.15eV.

VAB is the matrix element defined in equa-
tion 29. The angle 6 is defined in Figure
12. For the solid line m=0, n=1 and

Vo =5.6540 eV in both wells. For the dashed
line m=0, n=0, and V =2.5937 eV in both wells.
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Figure 14 is analogous to Figure 13, but for
-1
Figure 14 a =1.458 (E=-2.00 eV). This energy cor-
responds to V_ =6.7789 eV for the pi state and

VO:=3.6O12 eV for the sigma state.

Orientation Effect at a Distance

Figures 15 and 16 present Hy g (defined in equa-
tion 29) as a function of orientation angle 6 for
wells separated by 19.85 R center-to-center. At this
large separation HAB and VAB are nearly identical
because the 'correction' factors SABHAA and SAB2
(see equation 29) are very small. Both Figure 15
and Figure 16 were plotted using the lowest-energy
pi state (m=0,n=1) in each well, and with a=4.852,
b=2.558. For Figure 15 V.= 5.654eV, E=-1.156V
and o =1.18 7', For Figure 16 V_=6.7789 eV,
E=-2.00eVand a=1.458 ",

Three different sets of orientations are considered.
These orientations are illustrated at the top of the
figures, with the lines indicating the major axes
of the spheroidal wells. The wells' minor axes are

perpendicular to the lines and lie in the plane of

the figures.
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0.6

R
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V., (eV)

0.0

=, 2

Figure 14. Orientation effect at contact for E=-2.00eV.

v is the matrix element defined in equa-
tion 29. The angle 6 is defined in Figure
12. For the solid line m=0, n=1 and

Vo =6.7789 eV in both wells. For the dashed
line m=0, n=0 and L =3.6012 eV in both wells.
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A fixed B fixed

H,g (107eV)

o (')

Figure 15. Orientation effect at a distance; E=-1.15¢€V.

In both the A and the B well
V,=5.6540eV. Hyp is defined
The sketches at the top of
the meaning 6 has for each of
of configurations. The major
of both well A and well B 1lie
of the sketches.

m=0, n=1, and
in equation 29.
the figure show
the three sets
and minor axes
in the plane
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A fixed B fixed All B

| v o 5B

{154 415 A k- A——

H,, (10 eV)

Figure 16.

Orientation effect at a distance; E=-2.00¢eV.

In both the A and the B well m=0, n=1, and

V., =6.7789 eV. Hyp is defined in equation 29.
The sketches at the top of the figure
show the meaning 6 has for each of the three
sets of configurations. The major and minor

axes of both wells lie in the plane of the
sketches.



178

Conclusion

A model electron-transfer system involving non-
spherical (specifically oblate-spheroidal) donor and
acceptor sites and a transferable electron has been
presented. The wavefunctions for the isolated donor
and acceptor have been discussed at length. The
electronic matrix slement for electren transfer has
been described and the results of several calcula-
tions pressnted.

Possible orientation effects in the context of
the tunneling of trapped electrons in glassy matrices
have been considered previously (19,18,19). Thesge
theoretical studies considered tunneling between
spherically symmetric potential wells. The present
chapter considers sites which are inherently orient-
able (because of their nonspherical symmetry) and so
presumably better represent the aromatic systems
toward which this study is aimed.

Thus a machinery has been developed for the cal-
culation of orientation effects, especially for elec-
tron transfer between large aromatic molecules.
Perhaps the model can be applied to synthetic electron-
transfer systems, or to certain eleectron transfers

of biological interest, where the relative orienta-
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tion and separation are subject to some control.
Specific applications of the model may be the sub-

ject of future work.
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APPENDIX A

GOLDEN-RULE RATE CONSTANT

JAVIAVIA VI Via Vig VA ViAVia VA ViA ViA Via VIAVIAVIAVIA VI VIA VI VIAVIAVIA VI VIA V)

Consider a system consisting of an electron and
a pair of sites, site A and site B. These sites are
electronic potential wells. The coordinates of the
electron are denoted gq. Some nuclear (e.g., vibra-
tional) coordinates Q are associated with each well
and with the medium in which site A and site B reside.
If the electron initially resides on site A, then
the electron may hop to site B due to interaction
between the electron wavefunctions localized on site
A and on site B.

An approximate rate constant kB+A for the elec-
tron transfer from A to B is derived in this appendix.
The derivation follows closely Kestner, Logan and
Jortner's slightly more general treatment given in
Appendix A of reference 20. A derivation is presented

here in the interest of clarity and because the treat-

ment in reference 20 is flawed by several minor errors.
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The total Hamiltonian is given in equation A.1.
Ho= T (q) + T(Q) +V_,(a5Q) + V_g(a;2) + V(@)  (A.1)

where —VO 5 in well A
v = (A.2)
eh
0O 3 q elsewhere

Q

and -V~ 5 q in well B

= 0 3 g elsewhere

The potentials VeA and VeB are the potentials for
the electron interacting with site A and with site B,
respectively. For the purposes of this chapter VeA
and VeB have the simple form indicated in equations
A.2 and A.3. More general potentials would not appre-
ciably complicate the derivation that follows. V(Q)
is a strictly internuclear potential. Te and Tn are
the electronic and nuclear kinetic-energy operators.

Two zeroth-order electronic Hamiltonians HeA
and HeB can be defined. These describe the system
with the electron localized on site A or on site B,

respectively.
Hop = Tola) +V ,(q;5Q) + Vv (Q) (A.4)

Hop = T (a) + V g(a;Q) + v(Q) (A.5)
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The total Hamiltonian can be written as in equation

A.6. The potential of site B can be viewed as a pertur-

H=1H_,(0,Q) +V_5(a;Q) (A.6)

bation that will induce electron transfer from the
zeroth-order states localized on site A. Similarly
the potential of site A could be treated as perturb-
ing the states localized on site B.

Two sets of Born-Oppenheimer electronic wavefunc-
tions, {WAi} and {WBj}, can be defined as in equations

A.7 and A.8. The wavefunctions WAi (indexed by i)

Hop ¥p5(a3Q) = E,5(Q) ¥y, (a3Q) (A.7)

Hop WBj(q;Q) = EBj(Q) WBj(q:Q) (A.8)

form a complete set of electronic wavefunctions local-
ized on site A. Similarly {WBj} is a complete set of
B-localized electronic states.

The wavefunction ¥, which is a solution of
Schrodinger's equation for the total Hamiltonian H,
can be expanded in the union {WAi, ij} of sets of

localized electronic states. Such an expansion is

given in equation A.9, where the subscript a spans

¥(g,Q,t) =2 x,(Q,t) ¥, (q,Q) (4.9)
o
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both Ai and Bj. In equation A.10 Y has been substi-

tuted into Schrodinger's equation.

- TP
iRir¥ = HY (A.10)

The expansion A.9 can be substituted into equation
A.170. Equation A.711 is then obtained by left-multiply-
ing by W; (where B € {A1,Bj}) and integrating over the
electronic coordinates g (typically a 3-vector) through

their domain v.

iﬁiwg<%iixawa) dq =.JWZQE{A1} JH ¥ dg
+'Jw;ae{§j}XaHeBwa 9
+_JWB . S N dq
*‘JWZ 2T x, ¥, dg
where Ueu = zeB iii:ii%i and
eh ’ J

: & _
1ﬁ§<8’a>§€xa = (%EOLXOL<B|0¢> + gxu<B|Uea|a>

+ §<B|Tnxa|a> (A.171)
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The so-called 'Born-Oppenheimer breakdown operator'

L is defined in equation A.12. For a nucleus of mass

[Tn,xa] vo= (LY) X, (A.12)

1, the position of which is described by a single car-
tesian coordinate Q, for example,

BZWQ oY

h o 0
507 + 28Q 30 } (A.13)

LY, = - oyl

2
2M
The operator L defined in equation A.12 can be

used in equation A.711 to yield equation A.14.
. O _
I Sg, (T, +E,(Q) -inz} x (1) =

- - )
§<B[Uea|a>xu §<B|L|a>xa (A.14)

where SBa = <Bla>

The elements S&é of the inverse of the overlap

matrix are defined by equation A.15.

5 87

A SBY - daY (A.15)

Left-multiplying equation A.714 by S;é and summing

over B yields equation A.16.
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. 9 _ -1
{T, +E -mﬁ}xy— _iéSYB { <B|Uea|oc> + <B|L]a>} Xy (A.16)

Regrouping terms in equation A.16 yields equation A.17.

3

1 .
{Tn+EY+ZS B<B|UeY+L|y>-1hat} ey

g Y

<]
= - I TS ,<R|U__+L]a> x (A.17)
oEv B Y8 eq a

In order to simplify the treatment, the problem
is restricted to only two electronic states, |A> and
|B>. In this approximation, and neglecting matrix
elements of L, equation A.17 simplifies to equation
A.18 for the case y=A. The choice y=B leads to an
equation identical to A.18 but with labels A and B

interchanged; namely equation A.19.

A

= -1
{T +E, +8S A<A|VeB[A>+S

1 3
nt Byt Sy g<BIV glA> - ifi 55 3x,

-1

- 18,5

-1
<B[VeA|B>+SAA<A|VeAIB>}XB (A.18)

b —1 ""1 N 3
{T +Eg+ SBB<B|VeA|B> 4 SBA<A|VeA|B> - ifi %) xp

-

- {85,

-1
Q
<A |V A>+SBB<B|VeB|A>}XA (A.19)

eB’
A set of zeroth-order nuclear wave functions

. O
(x0,(Q) e 1PERV/E, voo,1, Ll (A.20)
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corresponds to equation A.18, satisfying equation A.21.

The index v is a vibrational quantum number.

- -1 -1 o) o _
{Tn4-mA4-SAA<A|VeBIA>4—SAB<B]VeBIA>-EAV} Xpy = 8 (A.21)

There is an analogous set of zeroth-order nuclear
wavefunctions
5 -itEp /%
{ wa(Q) e 3 w=0,1,.... 1} (A.22)
corresponding to equation A.19 and satisfying equation

Bel3s

{T +E_+8S_
n

1 -1 o} o _
B BB<B]VeAIB>-+SBA<A|VeA|B>-EBw}XBw-O (A.23)

The nuclear wavefunctions Xa and Xg can be expanded
in the zero-order basis of equations A.20 and A.22,

as in equations A.24 and A.25.

. —itEZv/ﬁ
V
-itES /%
xg(Qt) = £ 0y (8) xS (@) e PV (A.25)
w

Equations A.24 and A.25, when substituted into equations

A.18 and A.19, yield equations A.26 and A.27,
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d

: _ =
Heely, = E cBw(t){<AvlsAB <B|V_,IB> -
: o) o) ‘
-i{E. ~E; Jt/%
=3 i Bw Av
+ S <A|VeA|B> |Bw>}e
%0 Cp = 2 C, (t)(<Bw|SZ! <alv . |A>
9t "Bw |, TAv BA eB
: A, gem D
+ Sgp <BIVeBIA> |Av>Ye

From this point the derivation follows a standard
route to a Golden-Rule rate expression. Consider tran-
sitions from an initial state |Av> to a final state |Bw>,
assuming that C, .= 6v,v’ and that CHJ
With VAB defined as in equation A.28, this assumption

t=0)=0 for all w.

applied to equation A.27 yields equation A.29.

= =] =
Vg = SAB<A]VeB|A> + SBB<B|VeB|A> (A.28)
a (6] O
e-l(EAv-EBw)t/ﬁ o
et W AR
>“AvT TBw
C., = <Bw|V,|Av> x EC - ED
Bw AB Av T “Bw (4.29)
: =0 =0
=1 4/% sE,,=Ep,

If the rate constant for transitions Av~>Bw 1is de-
fined as in equation A.30, then equation A.29 yields

the state-to-state rate constant given in equation A.37.
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= s _1_ 2
ka<—A\) - ]t-,iz { £ lCBwl } (A.BO)
- 2 2 O (e}
kpyeny = F | <BulVyplav>|® 8(E - Eg ) (A.31)

It is the matrix element in equation A.28 that is given,
with a few errors, in equation I.5 of reference 20.

The total rate constant for transitions from site
B to site A can be constructed as the Boltzmann-
weighted sum over the state-to-state rate constants

ka+Av'

0
-EAv/kBT

k = Z e |<Bw|V,glAv>]2 §(EC -E2 ) (A.32)
w

2T 5 _

B<A ﬁQA N Av Bw

In equation A.32 QA is a nuclear partition func-
tion for the case when the electron is localized on
site A. Equation A.32 may be simplified by applying
the Condon approximation, in which the electronic
matrix element VAB is removed from the integral over
nuclear coordinates, yielding equation A.33.

o

2 _EAv/kBT o

2 o)
Efie | <Bw | Av>| 6(EAv -EBw) (A.33)
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Equation A.28 for VAB may be transformed to the
more familiar form of equation A.34 (reference 21, for
example, uses VAB in the form of equation A.34) by
noting that, within the present treatment in which

only two electronic states are considered,

= & -4 _ 2
Sga = - Spp/(1-8,5%) and Sgp=1/(1 - S,5"), where
S <A|B>, and it is assumed that <A|A>=<B|B>=1.
B 2
Vpg = | <B]VeA]A>-SAB<A|VeB|A> }/ (1 - S,5 )

(A3 )
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