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ABSTRACT 

Spaceborne L-band radars have the ability to penetrate vegetation canopies over forested 

areas, suggesting a potential for regular and frequent global monitoring of both the vegetation 

state and the subcanopy soil moisture. However, L-band radar’s sensitivity to both vegetation 

and ground also complicates the relationship between the radar observations and the 

ecological and geophysical parameters. Accurate yet parsimonious forward models of the 

radar backscatter are valuable to building an understanding of these relationships. In the first 

part of this thesis, a model of L-band multi-polarization radar backscatter from forests, 

intended for use at regional to global spatial scales, is presented. Novel developments in the 

model include the consideration of multiple scattering within the dense vegetation canopy, 

and the application of a general model of plant allometry to mitigate the need for much 

intensive field data for training or over-tuning towards specific sites and tree species. 

Aided by our model, in the remainder and majority of the thesis, a detailed analysis and 

interpretation of L-band backscatter over global forests is performed, using data from the 

Aquarius and SMAP missions. Quantitative differences in backscatter predicted by our 

model due to freeze/thaw states, branch orientation, and flooding are partially verified against 

the data, and fitted values of aboveground-biomass and microwave vegetation optical depths 

are comparable to independent estimates in the literature. Polarization information is used to 

help distinguish vegetation and ground effects on spatial and temporal variations. We show 

that neither vegetation nor ground effects alone can explain spatial variations within the same 

land cover class. For temporal variations during unfrozen periods, soil moisture is found to 

often be an important factor at timescales of a week to several months, although vegetation 

changes remain a non-negligible factor. We report the observation of significant differences 

in backscatter depending on beam azimuthal angle, possibly due to plant phototropism. 

We also investigated diurnal variations, which have the potential to reveal signals related to 

plant transpiration. SMAP data from May-July 2015 showed that globally, co-polarized 

backscatter was generally higher at 6PM compared to 6AM over boreal forests, which is not 

what one might expect based on previous studies. Based on our modelling, increased canopy 

extinction at 6AM is a possible cause, but this is unproven and its true underlying physical 

cause undetermined. 



 v 

Finally, by making simplifying approximations on our forward model, we propose and 

explore algorithms for soil moisture retrieval under forest canopies using L-band 

scatterometry, with preliminary evaluations suggesting improved performance over existing 

algorithms. 
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1 
C h a p t e r  1  

INTRODUCTION 

1.1 Background and overview 

The ability to model and predict feedbacks in a changing climate requires many inputs, 

including knowledge of where, when, and how much carbon, water, and energy are stored 

and exchanged between the land surface and the atmosphere. Many of these interactions take 

place in forests, which are major carbon sinks, and contain a majority of global plant biomass 

[1]. However, there is significant uncertainty in the knowledge of some of these variables 

and their fluxes. Importantly, soil moisture, a key element in evapotranspiration, climate 

state, weather and landslide prediction, and flood and drought monitoring [2], is poorly 

measured in forests [3, 4]. There is also significant uncertainty in the total biomass carbon 

stock of forests, the rate at which it is changing due to deforestation and regrowth, and their 

associated spatial distributions [5, 6, 7]. 

Spaceborne remote sensing offers a good platform to study such key elements pertinent to 

the understanding of our climate and environment on a global scale. In particular, microwave 

remote sensing enables timely monitoring without interruption by cloud cover and can 

measure geophysical parameters that are complementary to the visible-infrared part of the 

electromagnetic spectrum. Over forested land areas, long wavelength microwaves, e.g. at L-

band, can penetrate the vegetation canopy and offer sensitivity to both the vegetation as well 

as to moisture in the ground under the canopy [8, 9], holding promise as a tool for learning 

about changes in their state and related processes if multiple and frequent observations over 

time are available. 

To date, both active and passive L-band instruments have been operated by spaceborne Earth 

observatories. While active radars and passive radiometers each have their own uses, one 

difference between them is in spatial resolution. Practical constraints on antenna size place a 

limit on the spatial resolution obtainable by passive radiometers, whereas radars using 
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synthetic aperture techniques allow finer spatial resolutions to be tailored according to 

specific application requirements. 

Amongst the spaceborne L-band radar missions that have flown, two stand out in terms of 

temporal coverage and polarization information: Aquarius and SMAP (Soil Moisture Active 

Passive). Aquarius has a 7-day repeat orbit, while SMAP has global coverage every 2-3 days. 

They also offer the advantage of full multi-polarization measurements, sending and receiving 

in both horizontal and vertical polarizations. Polarization information has long been 

recognized to be useful in helping to distinguish different scattering mechanisms involving 

the vegetation and ground [10, 11, 12, 13]. This is important because the sensitivity of L-

band radar to both vegetation and ground is a double-edged sword that complicates the 

retrieval of their ecological and geophysical parameters from the radar observations. 

Having motivated the study of forested areas and identified the opportunity provided by the 

L-band multi-polarization radars of Aquarius and SMAP, in this thesis we study L-band radar 

backscatter from forests to better understand its spatial and temporal relationships and 

sensitivities to the underlying physical conditions, with the aid of polarization information. 

It is worthwhile to mention that Aquarius was not a mission that was originally intended for 

observations over land, but instead for the measurement of ocean salinity. SMAP, though 

focused on soil moisture, was not primarily targeted at forested areas, due in part to 

limitations in understanding the relationships between the L-band measurements and 

subcanopy soil moisture in the presence of significant intervening vegetation. On the other 

hand, there have been previous studies dedicated to studying L-band radar backscatter from 

forests, but these have been over specific, localized forest stands in the context of airborne 

synthetic aperture radar (SAR) experiments [9, 14, 15, 16]. There is thus significant potential 

in exploiting the Aquarius and SMAP radar measurements over forests for analysis and 

interpretations at the regional to global scale. 

One approach towards performing such an analysis and deepening our understanding is to 

model the radar backscatter, and there has been much work in the literature on developing 

such models [14, 17, 16, 18, 19, 20, 21]. Many of the previous models were applied and 

evaluated on specific forest stands where detailed measurements of the tree architecture, 
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dielectric constants, and ground conditions were made concurrently with airborne SAR 

measurements. These efforts helped to validate many of the concepts and approaches used 

in the models. Extending the modelling effort to a global scale, Kim et al. [22] have 

developed physical models of L-band radar backscatter for application to soil moisture 

retrieval. In particular, their model for forests was based on work by Tabatabaeenejad et al. 

[9] and Burgin et al. [21], which required a detailed and complete characterization of the 

geometry of vegetation structures as input. To reduce the number of free input parameters 

required, each forest land cover class was modelled with representative species, and species-

specific allometric relations were applied to relate all vegetation parameter to a single free 

input parameter – vegetation water content (VWC). In-situ samples from field measurements 

were also used as training data to tune some geometric parameters within the model. Two 

other input parameters, soil surface root mean square (RMS) height and soil dielectric 

constant, describe the ground. Such parsimony was essential for model inversion and 

parameter estimation from limited data – only three measurement channels (HH, HV, VV 

polarization) from the radar of the Soil Moisture Active Passive (SMAP) mission. 

In this thesis, we shall present in Chapter 2 an L-band forward model of multi-polarization 

radar backscatter from forests that is intended for application at regional to global spatial 

scales. The term “scatterometry” in the title was chosen to suggest the greater emphasis on 

accurate backscatter cross-section values, as opposed to the regime of imaging SARs with 

very high resolution at the scale of metres, but poorer radiometric accuracy. Our modelling 

approach builds upon many of these earlier ideas and foundations, and is similar to that by 

Kim et al. [22], Burgin et al. [21] and Durden et al. [14] in many respects, but we made 

significant novel developments. Identifying the distribution of the size of tree trunks and 

branches as key contributors to L-band scattering, we extend the afore-mentioned allometry 

strategy for model parsimony by applying a general model of plant allometry to obtain this 

distribution, mitigating the need for much intensive field data for training and/or over-tuning 

towards specific sites and tree species. Unlike some previous models, our model also takes 

into account the significant multiple-scattering within dense forest canopies by introducing 

a correction factor computed using radiative transfer. This correction factor is important in 
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providing accurate agreement between the model and data, especially when the dynamic 

range in the radar backscatter from forests is only several decibels. Further modelling details 

are described in Chapter 2. 

Equipped with our forward model which relates radar backscatter to input parameters from 

the forest and ground, in Chapter 3 we apply it to the analysis of global forest L-band multi-

polarization backscatter data from the Aquarius scatterometer. We show that our model 

appears to be consistent with the data overall, and interpret spatial and temporal variations in 

the radar backscatter in terms of ground and vegetation factors. Neither ground nor 

vegetation factors alone suffices to explain the spatial variance within the same land cover 

class. For temporal variations during unfrozen periods, soil moisture may be a primary factor 

at timescales of one week to several months. Vegetation changes remain a non-negligible 

factor, and for larger incidence angles over deciduous needleleaf forests may even become 

the primary factor at longer timescales (months).  Differences in L-band radar due to 

freeze/thaw states, branch orientation, and flooding were also partially verified quantitatively 

with our model.   

In Chapter 4, we analyze diurnal variations in L-band multi-polarization backscatter from 

forests using SMAP data. Transpiration and related plant processes follow a diurnal cycle 

and there is potential for monitoring vegetation water status using radar [23, 24, 25, 26, 27]. 

We find that the co-polarized L-band radar backscatter observed in late spring-summer over 

the northern boreal forests is higher at 6PM than 6AM, which is not what one might expect 

based on previous studies. Based on our modelling, increased canopy extinction at 6AM is a 

possible cause, but this is unproven and its true underlying physical cause is undetermined. 

Aside from the diurnal variations, we also report the observation of significant differences in 

backscatter due to beam azimuthal angle, possibly associated with plant phototropism. 

As recognized in attempts by Kim et al. [22] and Tabatabaeenejad et al. [9], soil moisture 

remote sensing from under dense vegetation remains a challenge. Existing radar-based and 

radiometer-based algorithms by the SMAP mission primarily focus on areas with 

VWC<5kg/m2, which excludes most forests. In Chapter 5, we make simplifying 

approximations of our forward model to obtain a linear relationship between HH-polarized 
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radar backscatter and subcanopy soil moisture, under certain conditions. Based on this 

linear relationship, we propose some algorithms for soil moisture retrieval from forests using 

L-band radar. Preliminary evaluations suggest improved performance over existing 

algorithms. 

The subsequent sections in this chapter will briefly review some preliminary foundations that 

are essential for subsequent chapters. The content can be found in most radar textbooks, 

though notations and conventions vary; here we largely follow the notations and conventions 

adopted by Ulaby and Long [28].  In Section 1.2, we establish the scattering geometry and 

coordinate system, and define the 2x2 scattering matrix. Section 1.3 reviews the radar cross-

section for a point target and a distributed target. Section 1.4 covers the scatterer covariance 

matrix, and Section 1.5 the optical theorem. We shall not derive these concepts from first 

principles; rather, we merely provide the definitions to set the stage for their use in the rest 

of the thesis. 

1.2 Radar scattering geometry and scattering matrix 

Here we establish the notations, geometries, and coordinate systems to be used. Consider a 

single point scatterer, or target, located at the origin with the scattering geometry as in Figure 

1.1. The incident direction is 𝐤̂𝑖, the scattered direction is 𝐤̂𝑠, with 

𝐤̂𝑖 = sin 𝜃𝑖 cos 𝜙𝑖 𝐱̂ + sin 𝜃𝑖 sin 𝜙𝑖 𝐲̂ − cos 𝜃𝑖 𝐳̂ (1. 1) 

𝐤̂𝑠 = sin 𝜃𝑠 cos 𝜙𝑠 𝐱̂ + sin 𝜃𝑠 sin𝜙𝑠 𝐲̂ + cos 𝜃𝑠 𝐳̂ (1. 2) 

𝐡̂𝑖 =
𝐳̂ × 𝐤̂𝑖

|𝐳̂ × 𝐤̂𝑖|
 , 𝐯̂𝑖 = 𝐡̂𝑖 × 𝐤̂𝑖 , 𝐡̂𝑠 =

𝐳̂ × 𝐤̂𝑠

|𝒛̂ × 𝐤̂𝑠|
 , 𝐯̂𝑠 = 𝐡̂𝑠 × 𝐤̂𝑠 . (1. 3) 

This definition of coordinates is known as the “FSA (forward-scattering alignment) 

convention”, or so-called wave coordinates [28]. 
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Figure 1.1. Geometry for the FSA (forward-scattering alignment) convention. 

Let 

𝐄𝑖 = (𝐸ℎ
𝑖 𝐡̂𝑖 + 𝐸𝑣

𝑖 𝐯̂𝑖) exp[𝑖𝑘𝐤̂𝑖 ∙ 𝐫 − 𝜔𝑡] (1. 4) 

be an incident plane wave propagating in the 𝐤̂𝑖 direction, where 𝑘 = 2𝜋/𝜆 is the 

wavenumber, and 𝜔 = 2𝜋𝑓 is the angular frequency. 𝐡̂𝒊 and 𝐯̂𝒊 are mutually orthogonal unit 

vectors also orthogonal to 𝐤̂𝑖, as defined in (1.3) and Figure 1.1. Likewise, let 

𝐄𝑠 = (𝐸ℎ
𝑠𝐡̂𝑠 + 𝐸𝑣

𝑠𝐯̂𝑠) exp[𝑖𝑘𝐤̂𝑠 ∙ 𝐫 − 𝜔𝑡] (1. 5) 

be the scattered field (in the far-field) in the 𝐤̂𝑠 direction, with 𝐡̂𝑠 and 𝐯̂𝑠  mutually orthogonal 

unit vectors also orthogonal to the scattered direction 𝐤̂𝑠. The terms “h-polarized” and “v-

𝐡̂𝑖 

𝐯̂𝑖 

𝐡̂𝑠 

𝐯̂𝑠 

𝐤̂𝑠 

𝐤̂𝑖 

𝜃𝑖 
𝜃𝑠 

𝜙𝑖 

𝜙𝑠 

𝐳̂ 

𝐱̂ 

𝐲̂ 

transmitter receiver 



 

 

7 

polarized” will be used frequently with regards to the incident or scattered fields. The 

relation between the scattered and incident fields can be conveniently written in matrix form 

[
𝐸ℎ

𝑠

𝐸𝑣
𝑠] =

1

𝑘𝑟
[
𝑆ℎℎ 𝑆ℎ𝑣

𝑆𝑣ℎ 𝑆𝑣𝑣
] [

𝐸ℎ
𝑖

𝐸𝑣
𝑖
] (1. 6) 

where 

[𝐒] = [
𝑆ℎℎ 𝑆ℎ𝑣

𝑆𝑣ℎ 𝑆𝑣𝑣
] (1. 7) 

is the (dimensionless) scattering matrix for the single point scatterer (some other authors in 

the literature prefer to put the factor of 1/𝑘 within the matrix rather than outside, such that 

the scattering matrix has dimensions of length). The four entries of this 2x2 matrix are the 

scattering amplitudes for the respective polarizations. Note that the scattering matrix is 

dependent on the choice of polarization basis vectors 𝐡̂𝑖 , 𝐯̂𝑖 , 𝐡̂𝑠, 𝐯̂𝑠. These equations are 

written for linearly-polarized incident waves, but arbitrary elliptical polarizations can be 

readily accommodated with suitable complex phases. 

Figure 1.1, and equations (1.1) to (1.3) represent a common choice of coordinate basis, the 

FSA convention. Another choice of coordinate basis is the “BSA (backscatter alignment) 

convention”, or so-called antenna coordinates [28]:  

𝐤̂𝑖 = sin 𝜃𝑖 cos 𝜙𝑖 𝐱̂ + sin 𝜃𝑖 sin𝜙𝑖 𝐲̂ − cos 𝜃𝑖 𝐳̂ (1. 8) 

𝐤̂𝑠 = −sin 𝜃𝑠 cos 𝜙𝑠 𝐱̂ − sin 𝜃𝑠 sin𝜙𝑠 𝐲̂ − cos 𝜃𝑠 𝐳̂ (1. 9) 

𝐡̂𝑖 =
𝐳̂ × 𝐤̂𝑖

|𝐳̂ × 𝐤̂𝑖|
 , 𝐯̂𝑖 = 𝐡̂𝑖 × 𝐤̂𝑖 , 𝐡̂𝑠 =

𝐳̂ × 𝐤̂𝑠

|𝒛̂ × 𝐤̂𝑠|
 , 𝐯̂𝑠 = 𝐡̂𝑠 × 𝐤̂𝑠 . (1. 10) 

The BSA geometry is shown in Figure 1.2. 
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Figure 1.2. Geometry for the BSA (backscatter alignment) convention. 

Throughout this thesis, both conventions are used. The BSA convention is more convenient 

when in the backscatter (monostatic) case, because then 𝐤̂𝑖 = 𝐤̂𝑠, while FSA is more 

convenient in the bistatic case when the incident and scattered directions are arbitrary. The 

scattering matrices in either convention can be converted to the other convention simply: 

[𝐒(𝜃𝑖, 𝜙𝑖 , 𝜃𝑠 , 𝜙𝑠)]𝐵𝑆𝐴 = [
−1 0
0 1

] [𝐒(𝜃𝑖, 𝜙𝑖 , 𝜃𝑠 , 𝜙𝑠)]𝐹𝑆𝐴 . (1. 11) 

Whenever the scattering matrix is used, the convention used (BSA or FSA) will not be 

labelled as a subscript, but will instead be clarified in the text. Note that the quantities |𝑆ℎℎ|2, 

 |𝑆ℎ𝑣|
2, |𝑆𝑣ℎ|2, |𝑆𝑣𝑣|

2 are the same in either convention. 
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1.3 Radar cross-sections and distributed targets 

Suppose the incident radar is h-polarized and illuminates the point target with a power 

density of 𝒮ℎ
𝑖 , with units of W/m2 (power per unit area, where the area is normal to the 

propagation direction). The power 𝑑𝑃𝑣
𝑠 scattered into the far-field into an infinitesimal solid 

angle 𝑑Ω in the direction 𝐤̂𝑠, in the v-polarization, is then 

𝑑𝑃𝑣
𝑠 =

|𝑆𝑣ℎ|
2

𝑘2
𝒮ℎ

𝑖𝑑Ω . (1. 12) 

Analogous equations hold for other combinations of incident and scattered polarizations. The 

radar scattering cross-section, 𝜎𝑣ℎ, also called the radar cross-section or RCS, is by 

convention [29, 30] 4𝜋 of the scattered power per unit solid angle per unit illumination 

intensity 

𝜎𝑣ℎ = 4𝜋
|𝑆𝑣ℎ|

2

𝑘2
(1. 13) 

and has dimensions of area. Again, analogous equations hold for other combinations of 

incident and scattered polarizations. 

So far all discussion has been concerning a single point target. In cases of a distributed target 

or collection of scatterers extending over an area, such as the ground, the normalized radar 

cross-section, 𝜎𝑣ℎ
0 ,  (NRCS, also referred to as differential scattering coefficient) is defined 

as the radar cross-section per unit horizontal ground area [28]  

𝜎𝑣ℎ
0 =

〈𝜎𝑣ℎ〉

𝐴
(1. 14) 

where A is a unit horizontal ground area, and 〈𝜎𝑣ℎ〉 is the average value of 𝜎𝑣ℎ over that 

area. 𝜎𝑣ℎ
0  is dimensionless and as usual, analogous equations hold for other combinations of 

incident and scattered polarizations. For a thin horizontal layer of randomly distributed 

identical small scatterers, with an average scatterer number density of 𝑛 (i.e. 𝑛 has units of 

m-3) and layer thickness of Δ𝑧,  

𝜎𝑣ℎ
0 =

4𝜋𝑛Δ𝑧

𝑘2
〈|𝑆𝑣ℎ|2〉 . (1. 15) 
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If the scatterers are not identical, equation (1.15) still holds with the angular brackets being 

interpreted as also averaging over the distribution of scatterers. 

As a shorthand notation, instead of 𝜎ℎℎ
0 , 𝜎𝑣ℎ

0 , 𝜎ℎ𝑣
0 , 𝜎𝑣𝑣

0 , often HH, VH, HV, VV are used 

instead for the normalized radar cross-sections: 

HH is shorthand for 𝜎ℎℎ
0 (1. 16a) 

HV is shorthand for 𝜎ℎ𝑣
0 (1.16b) 

VH is shorthand for 𝜎𝑣ℎ
0 (1.16c) 

VV is shorthand for 𝜎𝑣𝑣
0 (1.16d) 

Due to the large dynamic range of possible normalized radar cross-sections and abundance 

of factors that combine multiplicatively, decibels (dB) are often used instead of linear units. 

They can be readily converted via 

(𝑞𝑢𝑎𝑛𝑡𝑖𝑡𝑦 𝑖𝑛 𝑑𝑒𝑐𝑖𝑏𝑒𝑙𝑠)dB = 10 log10(𝑞𝑢𝑎𝑛𝑡𝑖𝑡𝑦 𝑖𝑛 𝑙𝑖𝑛𝑒𝑎𝑟 𝑢𝑛𝑖𝑡𝑠) . (1. 17) 

1.4 Scatterer covariance matrix 

As equation (1.12) suggests, to relate incident and scattered powers or intensities, second-

order terms e.g. 𝑆ℎℎ𝑆ℎℎ
∗ , 𝑆ℎ𝑣𝑆ℎ𝑣

∗ , etc. are required. By re-arranging the scattering amplitudes 

from a matrix into a vector, these second-order terms can be collected into a 4x4 scatterer 

covariance matrix 

[𝐂] = [

𝑆ℎℎ

𝑆ℎ𝑣

𝑆𝑣ℎ

𝑆𝑣𝑣

] [

𝑆ℎℎ

𝑆ℎ𝑣

𝑆𝑣ℎ

𝑆𝑣𝑣

]

†

=

[
 
 
 
𝑆ℎℎ𝑆ℎℎ

∗ 𝑆ℎℎ𝑆ℎ𝑣
∗

𝑆ℎ𝑣𝑆ℎℎ
∗ 𝑆ℎ𝑣𝑆ℎ𝑣

∗

𝑆ℎℎ𝑆𝑣ℎ
∗ 𝑆ℎℎ𝑆𝑣𝑣

∗

𝑆ℎ𝑣𝑆𝑣ℎ
∗ 𝑆ℎ𝑣𝑆𝑣𝑣

∗

𝑆𝑣ℎ𝑆ℎℎ
∗ 𝑆𝑣ℎ𝑆ℎ𝑣

∗

𝑆𝑣𝑣𝑆ℎℎ
∗ 𝑆𝑣𝑣𝑆ℎ𝑣

∗

𝑆𝑣ℎ𝑆𝑣ℎ
∗ 𝑆𝑣ℎ𝑆𝑣𝑣

∗

𝑆𝑣𝑣𝑆𝑣ℎ
∗ 𝑆𝑣𝑣𝑆𝑣𝑣

∗ ]
 
 
 

(1. 18) 

where the † symbol stands for conjugate transpose. For the case of backscatter (i.e. 𝜃𝑠 =

𝜃𝑖 , 𝜙𝑠 = 𝜙𝑖 + 𝜋 ), reciprocity dictates that 𝑆ℎ𝑣 = −𝑆𝑣ℎ in FSA and 𝑆ℎ𝑣 = 𝑆𝑣ℎ in BSA [31].  

Hence for backscatter in BSA, often the 3x3 scatterer covariance matrix is used instead: 
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[𝐂] = [

𝑆ℎℎ

√2𝑆ℎ𝑣

𝑆𝑣𝑣

] [

𝑆ℎℎ

√2𝑆ℎ𝑣

𝑆𝑣𝑣

]

†

= [√2

𝑆ℎℎ𝑆ℎℎ
∗ √2 𝑆ℎℎ𝑆ℎ𝑣

∗ 𝑆ℎℎ𝑆𝑣𝑣
∗

 𝑆ℎ𝑣𝑆ℎℎ
∗ 2 𝑆ℎ𝑣𝑆ℎ𝑣

∗ √2 𝑆ℎ𝑣𝑆𝑣𝑣
∗

𝑆𝑣𝑣𝑆ℎℎ
∗ √2 𝑆𝑣𝑣𝑆ℎ𝑣

∗ 𝑆𝑣𝑣𝑆𝑣𝑣
∗

] . (1. 19) 

The diagonal entries of the covariance matrix are proportional to the respective normalized 

radar cross-sections, but the covariance matrix contains additional information about the 

relative phase between different polarizations in the off-diagonal entries. 

1.5 Optical theorem 

The optical theorem (see e.g. [32], [30], [33]), also known as the forward scattering theorem, 

relates the extinction to the forward scattering amplitude rather generally for scattering 

phenomena. Newton [34] traces its more-than-a-century old history. To state it for our case, 

the extinction cross-section for a single scatterer is, for h-polarized and v-polarized incident 

radar beams respectively, 

𝜎𝑒𝑥𝑡,ℎ(𝜃𝑖, 𝜙𝑖) =
4𝜋

𝑘2
Imag[𝑆ℎℎ(𝜃𝑖, 𝜙𝑖 , 𝜃𝑠 = 𝜋 − 𝜃𝑖, 𝜙𝑠 = 𝜙𝑖)] (1. 20a) 

𝜎𝑒𝑥𝑡,𝑣(𝜃𝑖 , 𝜙𝑖) =
4𝜋

𝑘2
Imag[𝑆𝑣𝑣(𝜃𝑖, 𝜙𝑖, 𝜃𝑠 = 𝜋 − 𝜃𝑖 , 𝜙𝑠 = 𝜙𝑖)] (1.20b) 

where the forward scattering amplitudes are in FSA. 

For instance, the intensity or power of a h-polarized incident beam propagating in the 𝐱̂ 

direction through a cloud of identical scatterers with number density 𝑛 (𝑛 has units of m−3), 

decays as 

𝐼ℎ(𝑥) = 𝐼ℎ(𝑥 = 0) exp [−𝑛𝜎𝑒𝑥𝑡,ℎ (𝜃𝑖 =
𝜋

2
,𝜙𝑖 = 0) 𝑥] (1. 21) 

and likewise for v-polarization. If the scatterers are not identical, we can assign an average 

cross-section over the distribution of scatterers such that we retain the expression  

𝐼ℎ(𝑥) = 𝐼ℎ(𝑥 = 0) exp [−𝑛 〈𝜎𝑒𝑥𝑡,ℎ (𝜃𝑖 =
𝜋

2
, 𝜙𝑖 = 0)〉 𝑥] (1. 22) 

where the angular brackets denote averaging over the distribution of scatterers. 
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The electric field amplitude is proportional to the square root of the intensity; for ease of 

future notation, we introduce the corresponding average-per-scatterer extinction cross-

section for the field 

〈𝜅ℎ(𝜃𝑖, 𝜙𝑖)〉 =
1

2
〈𝜎𝑒𝑥𝑡,ℎ(𝜃𝑖, 𝜙𝑖)〉 =

2𝜋

𝑘2
〈Imag[𝑆ℎℎ(𝜃𝑖, 𝜙𝑖 , 𝜃𝑠 = 𝜋 − 𝜃𝑖, 𝜙𝑠 = 𝜙𝑖)]〉 (1. 23) 

and likewise for v-polarization. 
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C h a p t e r  2  

 MODELLING OF L-BAND RADAR BACKSCATTER FROM FORESTS 

2.1 Overview of modelling approach 

In this chapter, a model to simulate the L-band radar backscatter from forests will be 

presented. As mentioned in the introduction, this model is intended primarily for regional to 

global spatial scales. Globally, there is a wide variation in the density and types of vegetation 

cover over land. We shall use the land cover classification adopted by the International 

Geosphere-Biosphere Program (IGBP) [35]. (A map of global land cover in the IGBP 

classification scheme can be found in Figure 3.5.) Classes 1-5 correspond to forests classes. 

Numerous different species of trees and inhomogeneous distributions are expected within 

the radar footprint. Instead of attempting to describe them all in detail, broad simplifications 

are made here. The forest is modelled as a homogenous layer of randomly oriented dielectric 

cylinders corresponding to crown canopy branches (leaves and structures of other 

morphologies are neglected), and a lower homogeneous layer of preferentially vertically 

oriented dielectric cylinders corresponding to tree trunks. Four separate terms contributing 

to the radar backscatter, corresponding to different scattering mechanisms, are considered. 

They are: 1. Backscatter from the crown canopy layer only; 2. direct backscatter from the 

ground; 3. double-reflections off the ground and canopy layer; 4. double-reflections off the 

ground and tree trunks. This is depicted schematically in Figure 2.1. These terms are then 

added incoherently together to give the total backscatter. For each polarization, the radar 

cross section per unit ground area is represented as: 

𝜎0 = 𝜎𝑐𝑛
0 + 𝜎𝑔𝑛𝑑,𝑑𝑖𝑟𝑒𝑐𝑡

0 + 𝜎𝑐𝑛−𝑔𝑛𝑑,𝑑𝑏
0 + 𝜎𝑡𝑟𝑘−𝑔𝑛𝑑,𝑑𝑏

0  . (2. 1) 

Direct backscatter from the trunk layer is negligible because of the preferential vertical 

orientation of the trunks. 
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Figure 2.1. Model of L-band radar backscatter from natural vegetation, as the incoherent sum of 

four separate terms corresponding to different scattering mechanisms. 

The modelling approach adopted here largely follows that taken by Durden et al. [14] and 

Burgin et al. [21], with some important novel developments. This approach required a 

detailed specification of the sizes and geometries of all the cylinders involved, which 

typically involved intensive measurements of several sample trees at specific field study 

sites. In those experiments, such a complete characterization was ideal for direct validation 

of the modelling approach against concurrent SAR measurements. However, because we 

intend to apply our model to many different parts of the globe, usually without detailed 

knowledge of the required physical and geometric parameters, we try to keep the model with 

as few free input parameters as possible. The importance of this parsimony was also 

emphasized by Tabatabaeenejad et al. [9] and Kim et al. [22], bearing in mind that in 

application, model inversion and parameter estimation are expected to be performed from 

limited measurement channels – just the three polarization channels HH, HV, VV in the case 

of the Aquarius and SMAP radars. A novel development in our approach is to go beyond the 
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species-specific allometry in Tabatabaeenejad et al. [9] and Kim et al. [22], and apply a 

general plant allometry model, which thus also mitigates the need for much intensive field 

data for training and/or over-tuning towards specific sites and samples; in both a literal and 

figurative sense, to not lose the forest for the trees. This will be further explained and 

elaborated upon in Section 2.7 and Section 2.8. 

The retained free input parameters to our model are: the total canopy branch volume per unit 

ground area, 𝑉𝑏,𝑡𝑜𝑡, in units of m3/m2; the relative permittivity of the vegetation, 𝜀𝑣; the 

relative permittivity of the ground, 𝜀𝑔; and the RMS height of the roughness of the ground 

surface, ℎ, in units of m. There are additional parameters pertaining to the orientation 

distribution of the cylinders that can be chosen, but these will not be freely varying. 

Another important novel departure we make from Durden et al. [14]  and Burgin et al. [21] 

is that, for the backscatter term from the canopy layer only, while we still employ a single-

scattering approximation for computational simplicity, we make a correction for multiple 

scattering effects within the canopy; this correction is particularly significant for forests. 

Details for computing each of the four modelled terms are elaborated in the sections below.  

2.2 Backscatter from crown canopy layer only 

This section describes the computation of the first term contributing to the overall radar 

backscatter, 𝜎𝑐𝑛,𝑝𝑜𝑙
0   for 𝑝𝑜𝑙 = ℎℎ, 𝑣𝑣, ℎ𝑣, or in shorthand, HH𝑐𝑛, HV𝑐𝑛, VV𝑐𝑛. The canopy 

layer is modelled as a homogeneous layer of randomly oriented dielectric cylinders with 

some specified size distribution and orientation distribution. The cylinder scatterers are 

considered as “point particles” and the effect of their size appears only through their 

scattering matrix.  The relatively small volume of cylinders (compared to air around it) allows 

the approach known in the literature as the distorted Born approximation [36, 37]. In this 

approximation, the scatterers are embedded in an equivalent medium with a complex relative 

permittivity 𝜀eff that gives agreement with the approximate mean field. Using Foldy’s 

approximation, and taking air to have a refractive index of 1 and all magnetic relative 

permeabilities to be 1, the effective refractive index of the equivalent medium is related to 

the forward scattering amplitude of the scatterers [36, 37, 38], and is polarization dependent:  
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√𝜀eff,ℎ−𝑝𝑜𝑙 = 1 +
2𝜋

𝑘3
𝑛𝑐𝑛〈𝑆ℎℎ(𝜃𝑖, 𝜙𝑖 , 𝜃𝑠 = 𝜋 − 𝜃𝑖, 𝜙𝑠 = 𝜙𝑖)〉 (2. 2a) 

√𝜀eff,𝑣−𝑝𝑜𝑙 = 1 +
2𝜋

𝑘3
𝑛𝑐𝑛〈𝑆𝑣𝑣(𝜃𝑖, 𝜙𝑖 , 𝜃𝑠 = 𝜋 − 𝜃𝑖 , 𝜙𝑠 = 𝜙𝑖)〉 (2.2b) 

where 𝑛𝑐𝑛 has units of inverse volume and is the number density of scatterers (i.e. cylinders) 

in the canopy layer, and 𝑘 = 2𝜋/𝜆  is the wavenumber in air. Here the forward scattering 

amplitudes are in the FSA convention (see Section 0), and angular brackets denote averaging 

over the cylinder distribution. The cylinders “see” the incident radar wave modified 

correspondingly by an extinction and phase delay, and make a single scattering back to the 

radar receiver. (Multiple-scatterings are accounted for by a correction later.) Cylinders 

deeper in the layer make less contribution to the total backscatter due to extinction from 

higher parts. The electric field decays exponentially with depth with an extinction coefficient 

(for h- and v-polarizations respectively) related to the imaginary part of the forward 

scattering amplitude for the cylinders 

𝑛𝑐𝑛〈𝜅ℎ,𝑐𝑛(𝜃𝑖, 𝜙𝑖)〉 = 𝑛𝑐𝑛

2𝜋

𝑘2
〈Imag[𝑆ℎℎ(𝜃𝑖, 𝜙𝑖 , 𝜃𝑠 = 𝜋 − 𝜃𝑖 , 𝜙𝑠 = 𝜙𝑖)]〉 (2. 3a) 

𝑛𝑐𝑛〈𝜅𝑣,𝑐𝑛(𝜃𝑖, 𝜙𝑖)〉 = 𝑛𝑐𝑛

2𝜋

𝑘2
〈Imag[𝑆𝑣𝑣(𝜃𝑖 , 𝜙𝑖 , 𝜃𝑠 = 𝜋 − 𝜃𝑖, 𝜙𝑠 = 𝜙𝑖)]〉 (2.3b) 

consistent with the optical theorem (Section 2.4); the extinction coefficient for the intensity 

is twice that for the field. The phase delay can be found from the real part of the forward 

scattering amplitude, and needs to be considered if it is polarization-dependent and phase 

differences between polarizations are required. Otherwise if only normalized radar cross-

sections are required, this phase can be ignored. 

Scattering matrices for both the forward and backward scattering from the cylinders are 

required. For a single cylinder with relative permittivity 𝜀𝑣, radius 𝑟, length 𝐿, and orientated 

with cylinder axis direction (𝜃𝑐, 𝜙𝑐), the 2x2 dimensionless bistatic scattering matrix 

[𝐒(𝜃𝑖, 𝜙𝑖 , 𝜃𝑠, 𝜙𝑠, 𝜃𝑐, 𝜙𝑐, 𝑟, 𝐿)] for incidence from direction (𝜃𝑖, 𝜙𝑖) and scattering into 

direction (𝜃𝑠, 𝜙𝑠) is provided in Appendix A (equation (A.2)), which follows closely the 

expressions given by van Zyl and Kim [11] and Bohren and Huffman [30]. The incidence 
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and scattering angles (𝜃𝑖 , 𝜙𝑖) and (𝜃𝑠, 𝜙𝑠) may follow either the FSA or BSA conventions 

(see Section 1.2); recall that the 2x2 scattering matrix in the BSA and FSA conventions only 

differ by a change of sign in 𝑆ℎℎ and 𝑆ℎ𝑣 (see equation (1.11)). The relative permittivity 

within each cylinder is assumed to be homogeneous, and all cylinders in the vegetation layer 

are assumed to have the same relative permittivity, so we do not display the dependence of 

[𝐒] on 𝜀𝑣. 

We can now discuss in further detail the averaging operations over cylinder distribution that 

have been referred to with angular brackets. Let  𝑝(𝜃𝑐, 𝜙𝑐, 𝑟, 𝐿) be the density function of the 

cylinder size and orientation distribution, satisfying the normalization 

∫ ∫ 𝑝(𝜃𝑐, 𝜙𝑐, 𝑟, 𝐿) sin 𝜃𝑐 𝑑𝜃𝑐𝑑𝜙𝑐𝑑𝑟𝑑𝐿

𝜃𝑐,𝜙𝑐𝑟,𝐿

= 1 . (2. 4) 

Averaging over the cylinder distribution thus means, for instance, 

〈[𝐒(𝜃𝑖, 𝜙𝑖 , 𝜃𝑠, 𝜙𝑠)]〉 = ∫ ∫ [𝐒(𝜃𝑖, 𝜙𝑖 , 𝜃𝑠, 𝜙𝑠, 𝜃𝑐, 𝜙𝑐, 𝑟, 𝐿)]𝑝(𝜃𝑐 , 𝜙𝑐, 𝑟, 𝐿)

𝜃𝑐,𝜙𝑐𝑟,𝐿

 

                                                       sin 𝜃𝑐 𝑑𝜃𝑐𝑑𝜙𝑐𝑑𝑟𝑑𝐿 . (2. 5) 

For simplicity, the size and orientation of the cylinders are modelled as being independent, 

i.e. 𝑝(𝜃𝑐, 𝜙𝑐, 𝑟, 𝐿) can be factorized accordingly. Integrals over the cylinder orientations 

(𝜃𝑐, 𝜙𝑐) are performed first, and then over the cylinder sizes (𝑟, 𝐿). The specific choice of 

cylinder size distribution will be elaborated upon in Section 2.7. The orientation distribution 

for the upper crown canopy layer is chosen to be uniform in 𝜙𝑐, and from the family 

parameterized by a reference angle 𝜃0 and an exponent 𝑚 [39] 

𝑝(𝜃𝑐, 𝜙𝑐) =
|cos2(𝜃𝑐 − 𝜃0)|

𝑚

2𝜋 ∫ sin 𝜃𝑐 |cos2(𝜃𝑐 − 𝜃0)|𝑚𝑑𝜃𝑐
𝜃𝑐=𝜋

𝜃𝑐=0

 . (2. 6) 

For values of 𝑚 not too large, the distribution is quite broad and smooth over 𝜃𝑐 and 𝜙𝑐. The 

4𝜋 sphere is discretized into a uniform angular grid over 𝜃𝑐 and 𝜙𝑐 for numerical 

computation, and the integrals computed by approximating them as simple Riemann sums. 

For extinction calculations, a 5 angular discretization suffices. For backscatter and bistatic 
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scattering calculations, an angular discretization of 0.35𝜆/𝜋𝐿 was used. This angular 

discretization is chosen in view of the width of the sinc function in equation (A. 1) in 

Appendix A. If 0.35𝜆/𝜋𝐿 is greater than 5, the angular discretization is set at 5 instead. 

When 𝜆/𝐿 is small, [𝐒] is small everywhere apart from the vicinity of the forward scattering 

cone (see Appendix A). Thus when 𝜆/𝐿 is small, backscatter is dominated by cylinders 

oriented perpendicular to the incident direction, and computation can be accelerated by 

neglecting cylinders that are not within an angle of 2𝜆/𝐿 from a perpendicular orientation. 

In view of the cylinder orientation distribution being uniform in azimuth angle 𝜙𝑐, we can 

arbitrarily pick 𝜙𝑖 = 0. For backscatter, 𝜙𝑠 = 𝜙𝑖 + 𝜋 and 𝜃𝑠 = 𝜃𝑖. The direct single-

scattering backscatter from the whole canopy layer is found by summing the contributions 

of all the single-cylinder radar backscattering cross-section values over the distribution of 

cylinder sizes and orientations, and considering the two-way extinction as a function of 

depth. The normalized backscatter radar cross-sections for single-scattering from the canopy 

layer are 

HH𝑐𝑛,𝑠𝑠 =
4𝜋𝑛𝑐𝑛

𝑘2
∫ exp (−

4𝑛𝑐𝑛〈𝜅ℎ,𝑐𝑛(𝜃𝑖)〉(𝑍2 − 𝑧)

cos 𝜃𝑖
) 〈|𝑆ℎℎ(𝜃𝑖)|

2〉𝑑𝑧

𝑧=𝑍2

𝑧=𝑍1

(2. 7a) 

VV𝑐𝑛,𝑠𝑠 =
4𝜋𝑛𝑐𝑛

𝑘2
∫ exp (−

4𝑛𝑐𝑛〈𝜅𝑣,𝑐𝑛(𝜃𝑖)〉(𝑍2 − 𝑧)

cos 𝜃𝑖
) 〈|𝑆𝑣𝑣(𝜃𝑖)|

2〉𝑑𝑧

𝑧=𝑍2

𝑧=𝑍1

(2.7b)  

HV𝑐𝑛,𝑠𝑠 =
4𝜋𝑛𝑐𝑛

𝑘2
∫ exp (−

2𝑛𝑐𝑛〈𝜅ℎ,𝑐𝑛(𝜃𝑖) + 𝜅𝑣,𝑐𝑛(𝜃𝑖)〉(𝑍2 − 𝑧)

cos 𝜃𝑖
) 〈|𝑆ℎ𝑣(𝜃𝑖)|

2〉𝑑𝑧

𝑧=𝑍2

𝑧=𝑍1

 

                                                                                               (2.7c) 

where 𝑍2 − 𝑍1 is the total height of the upper vegetation layer. The dependencies on 𝜙𝑖,  𝜃𝑠, 

and 𝜙𝑠 are no longer shown because 𝜙𝑖 = 0, 𝜙𝑠 = 𝜙𝑖 + 𝜋 = 𝜋, and 𝜃𝑠 = 𝜃𝑖.  Recall that  

〈𝜅ℎ,𝑐𝑛(𝜃𝑖)〉 and 〈𝜅𝑣,𝑐𝑛(𝜃𝑖)〉 have units of area and are per-cylinder extinction cross-sections 

of the canopy layer for the h-polarized and v-polarized electric fields, respectively. Also note 

that 𝑛𝑐𝑛 and (𝑍2 − 𝑍1) always occur together in the combination 𝑛𝑐𝑛(𝑍2 − 𝑍1) for the 

expressions for the normalized radar backscattering cross-section values, i.e. in this 
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calculation, the relevant parameter is instead the average number of cylinders per unit 

ground area, not 𝑛𝑐𝑛 and (𝑍2 − 𝑍1) separately.  

Thus far, the validity of the single-scattering approximation has been implicitly relied upon. 

HH𝑐𝑛,𝑠𝑠, VV𝑐𝑛,𝑠𝑠  and HV𝑐𝑛,𝑠𝑠 shall be referred to as the “single-scattering solutions” for the 

backscatter from the canopy layer. When the vegetation gets thick, multiple scattering paths 

may become important. We attempt to take this into account by applying a polarization-

dependent multiple scattering correction factor, denoted ℱ, such that our full solution for the 

backscatter from the canopy layer that includes multiple scattering effects is 

HH𝑐𝑛 = ℱHH(𝜏𝑐𝑛(𝜃𝑖), 𝜃𝑖 , 𝜀𝑣)HH𝑐𝑛,𝑠𝑠 (2. 8a) 

VV𝑐𝑛 = ℱVV(𝜏𝑐𝑛(𝜃𝑖), 𝜃𝑖 , 𝜀𝑣)VV𝑐𝑛,𝑠𝑠 (2.8b) 

HV𝑐𝑛 = ℱHV(𝜏𝑐𝑛(𝜃𝑖), 𝜃𝑖, 𝜀𝑣)HV𝑐𝑛,𝑠𝑠 . (2.8c) 

The multiple scattering correction factor ℱ depends on the incident angle 𝜃𝑖, the cylinder 

relative permittivity 𝜀𝑣, and the simplified average optical thickness of the canopy layer, 

𝜏𝑐𝑛(𝜃𝑖), where 

𝜏𝑐𝑛(𝜃𝑖) =
𝑛𝑐𝑛(〈𝜅ℎ,𝑐𝑛(𝜃𝑖)〉 + 〈𝜅𝑣,𝑐𝑛(𝜃𝑖)〉)(𝑍2 − 𝑍1)

cos 𝜃𝑖
 . (2. 9) 

For compactness, 𝜏𝑐𝑛 instead of 𝜏𝑐𝑛(𝜃𝑖) may be written subsequently, with implied 

dependence on the incidence angle 𝜃𝑖.  

To estimate ℱHH and ℱVV, the method of radiative transfer [40] was used to calculate the 

backscatter without making the single-scattering assumption. The radiative transfer 

calculation was performed for several values of 𝜏𝑐𝑛, 𝜃𝑖, and 𝜀𝑣, with a uniformly random 

cylinder orientation distribution for (𝜃𝑐 , 𝜙𝑐), and a specific distribution over cylinder radii 𝑟 

and lengths 𝐿; details of this radiative transfer calculation are provided in Appendix B. A 

further correction is made to account for coherent backscatter enhancement not modelled by 

the radiative transfer equations. Interpolation is used to find ℱ for intermediate values of 

𝜏𝑣𝑜𝑙, 𝜃𝑖, 𝜀𝑣. ℱHV is estimated using Monte-Carlo estimates of the ratio between cross-
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polarization and co-polarization returns for double scattering from the same cylinder 

distribution. More details are provided in Appendix B. Note that we only compute these 

multiple-scattering correction factors once for a fixed cylinder distribution, and apply these 

correction factors even for other cylinder distributions.  The reason for this is that the multiple 

scattering computations are far more demanding than the single-scattering calculation. The 

multiple scattering correction factor was checked at a few values of 𝜏𝑐𝑛, 𝜃𝑖, 𝜀𝑣 to be similar 

to if a cosine-squared cylinder orientation distribution was used instead of a uniformly 

random orientation distribution, partially justifying this simplification. 

The multiple scattering correction factor ℱ(𝜏𝑐𝑛, 𝜃𝑖, 𝜀𝑣) is plotted below in Figure 2.2 to 

Figure 2.4 as a function of the optical thickness  𝜏𝑐𝑛(𝜃𝑖) for several computed values of 𝜃𝑖 

and 𝜀𝑣. (These values of 𝜃𝑖 correspond to the beam incidence angles of the Aquarius radar, 

to which the model will be applied in Chapter 3.) Note that this multiple-scattering being 

considered is within the branches of the canopy layer only. Multiple scattering pathways that 

simultaneously involve scattering off the ground and also off the branches or trunk more than 

once, have been neglected. This assumption is reasonable because when the optical thickness 

is large, such pathways incur a large extinction, whereas when the optical thickness is small, 

multiple scattering is weak. A less valid assumption is the neglect of multiple scattering 

pathways that simultaneously involve scattering off the canopy and the trunk have also been 

neglected; this assumption is made purely for simplicity. Finally, as a reminder, double-

reflections involving the branches and the ground are being considered as a separate terms 

in equation (2.1). 
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Figure 2.2. Estimated multiple-scattering correction factor ℱHH(𝜏𝑐𝑛(𝜃𝑖), 𝜃𝑖, 𝜀𝑣) as a function of 

optical thickness 𝜏𝑐𝑛(𝜃𝑖),  for several values of 𝜃𝑖 and 𝜀𝑣 . 

 

Figure 2.3. Estimated multiple-scattering correction factor ℱVV(𝜏𝑐𝑛(𝜃𝑖), 𝜃𝑖 , 𝜀𝑣) as a function of 

optical thickness 𝜏𝑐𝑛(𝜃𝑖),  for several values of 𝜃𝑖 and 𝜀𝑣 . 
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Figure 2.4. Estimated multiple-scattering correction factor ℱHV(𝜏𝑐𝑛(𝜃𝑖), 𝜃𝑖 , 𝜀𝑣) as a function of 

optical thickness 𝜏𝑐𝑛(𝜃𝑖),  for several values of 𝜃𝑖 and 𝜀𝑣 . 

2.3 Direct backscatter from the ground 

This section describes the computation of the second term contributing to the overall radar 

backscatter, 〈𝜎𝑝𝑜𝑙
0 〉𝑔𝑛𝑑,𝑑𝑖𝑟𝑒𝑐𝑡  for 𝑝𝑜𝑙 = ℎℎ, 𝑣𝑣, ℎ𝑣. For direct backscatter from the ground, 

we use the simplified IEM model by Fung and Chen [41]. The ground is modelled as a flat, 

horizontal, slightly rough surface with dielectric constant 𝜀𝑔. The roughness is assumed to 

be a Gaussian process with RMS height ℎ and exponential correlation with correlation length 

𝜁.  𝜃𝑖 is the radar incidence angle and 𝑘 = 2𝜋/𝜆  is the wavenumber as usual. The normalized 

backscatter radar cross-section is then given in terms of these parameters by [41]: 

HH𝑔𝑛𝑑,𝑑𝑖𝑟𝑒𝑐𝑡 =
𝑘2

2
exp[−2𝑘2ℎ2cos2𝜃𝑖] ∑|𝐼ℎℎ

𝑛 |2
𝑊(𝑛)(2𝑘 sin 𝜃𝑖 , 0)

𝑛!

∞

𝑛=1

(2. 10a) 

VV𝑔𝑛𝑑,𝑑𝑖𝑟𝑒𝑐𝑡 =
𝑘2

2
exp[−2𝑘2ℎ2cos2𝜃𝑖] ∑|𝐼𝑣𝑣

𝑛 |2
𝑊(𝑛)(2𝑘 sin 𝜃𝑖 , 0)

𝑛!

∞

𝑛=1

(2.10b) 
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where 

𝐼ℎℎ
𝑛 = (2𝑛 exp[−𝑘2ℎ2cos2𝜃𝑖] 𝑓ℎℎ + 𝒢ℎℎ)(𝑘ℎ cos 𝜃𝑖)

𝑛 (2. 11a) 

𝐼𝑣𝑣
𝑛 = (2𝑛 exp[−𝑘2ℎ2cos2𝜃𝑖] 𝑓𝑣𝑣 + 𝒢𝑣𝑣)(𝑘ℎ cos 𝜃𝑖)

𝑛 (2.11b) 

For an isotropic correlation function, the dependence is only on the magnitude of the distance 

between two points. The surface spectrum (by the Wiener-Khinchin theorem) of an 

exponential correlation raised to the n-th power is, in polar coordinates, 

𝑊(𝑛)(2𝑘 sin 𝜃𝑖 , 0) =
𝜁2

𝑛2
(1 + (

𝑘𝜁

𝑛
)
2

)

−
3
2

(2. 12) 

where 𝜁 is the correlation length. 𝒢ℎℎ , 𝒢𝑣𝑣 , 𝑓ℎℎ , 𝑓𝑣𝑣  are given through the following 

computations: 

𝑅𝑣 =
𝜀𝑔 cos 𝜃𝑖 − √𝜀𝑔 − sin2𝜃𝑖

𝜀𝑔 cos 𝜃𝑖 + √𝜀𝑔 − sin2𝜃𝑖

 , 𝑅ℎ =
cos 𝜃𝑖 − √𝜀𝑔 − sin2𝜃𝑖

cos 𝜃𝑖 + √𝜀𝑔 − sin2𝜃𝑖

  

𝑇𝑣 = 1 + 𝑅𝑣 , 𝑇ℎ = 1 + 𝑅ℎ  

𝑇𝑣𝑚 = 1 − 𝑅𝑣 , 𝑇ℎ𝑚 = 1 − 𝑅ℎ   

𝒢𝑣𝑣 = (sin 𝜃𝑖 tan 𝜃𝑖 −
1

𝜀𝑔
√𝜀𝑔 − sin2𝜃𝑖)𝑇𝑣

2 − 2sin2𝜃𝑖 (sec 𝜃𝑖 +
1

√𝜀𝑔 − sin2𝜃𝑖

)𝑇𝑣𝑇𝑣𝑚

+ (sin 𝜃𝑖 tan 𝜃𝑖 + 𝜀𝑔(1 + sin2𝜃𝑖)/√𝜀𝑔 − sin2𝜃𝑖)𝑇𝑣𝑚
2  

𝒢ℎℎ = −(sin𝜃𝑖 tan 𝜃𝑖 − √𝜀𝑔 − sin2𝜃𝑖) 𝑇ℎ
2 + 2sin2𝜃𝑖 (sec 𝜃𝑖 +

1

√𝜀𝑔 − sin2𝜃𝑖

)𝑇ℎ𝑇ℎ𝑚

− (sin 𝜃𝑖 tan 𝜃𝑖 + (1 + sin2𝜃𝑖)/√𝜀𝑔 − sin2𝜃𝑖) 𝑇ℎ𝑚
2  

𝑅𝑣0 =
√𝜀𝑔 − 1

√𝜀𝑔 + 1
 , 𝑅ℎ0 = −𝑅𝑣0 
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𝐹𝑡 =
8𝑅𝑣0

2 sin2𝜃𝑖(cos 𝜃𝑖 + √𝜀𝑔 − sin2𝜃𝑖)

 cos 𝜃𝑖 √𝜀𝑔 − sin2𝜃𝑖

 

𝑆𝑡

𝑆𝑡0
=

∑
(𝑘ℎ cos 𝜃𝑖)

2𝑛

𝑛!
𝑊(𝑛)(2𝑘 sin 𝜃𝑖 , 0) |𝐹𝑡 +

8𝑅𝑣0

 cos 𝜃𝑖
|
2

∞
𝑛=1

∑
(𝑘ℎ cos 𝜃𝑖)2𝑛

𝑛! 𝑊(𝑛)(2𝑘 sin 𝜃𝑖 , 0) |𝐹𝑡 +
2𝑛+2𝑅𝑣0

 exp [(𝑘ℎ cos 𝜃𝑖)2]cos 𝜃𝑖
|
2

∞
𝑛=1

 

𝑅𝑡𝑣 =
𝑆𝑡

𝑆𝑡0
𝑅𝑣 + (1 −

𝑆𝑡

𝑆𝑡0
)𝑅𝑣0 , 𝑅𝑡ℎ =

𝑆𝑡

𝑆𝑡0
𝑅ℎ + (1 −

𝑆𝑡

𝑆𝑡0
) 𝑅ℎ0 

𝑓𝑣𝑣 =
2𝑅𝑡𝑣

cos 𝜃𝑖
 , 𝑓ℎℎ = −

2𝑅𝑡ℎ

cos 𝜃𝑖
 . 

In our numerical computation, we use only the first twenty terms of the infinite series, as a 

trade-off between computational accuracy and speed. 

Fung and Chen [41] also provide expressions for the cross-polarized backscatter. This cross-

polarized backscatter term from the ground is neglected here because it is small compared to 

the cross-polarized backscatter from the vegetation layer, i.e. let 

HV𝑔𝑛𝑑,𝑑𝑖𝑟𝑒𝑐𝑡 = 0. (2. 13) 

Strictly speaking, this approximation is only valid when the ground surface is reasonably flat, 

but because forested areas have strong cross-polarized backscatter from the vegetation, this 

approximation is good except in very extreme cases e.g. mountainous areas. When applying 

our model in subsequent chapters, we shall exclude areas with high terrain slope. 

To simplify and reduce the total number of parameters in the overall model, we make the 

assumption that the correlation length and the RMS height are related [22, 42] via 𝜁 = 10ℎ. 

This reduces the number of parameters for the ground to two, namely, the roughness RMS 

height ℎ and the relative permittivity 𝜀𝑔. The ground dielectric relative permittivity, 𝜀𝑔, is 

closely related to the soil moisture; fluctuations in 𝜀𝑔 are almost synonymous with 

fluctuations in soil moisture, because the relative permittivity of liquid water at L-band is 

much higher than the relative permittivity of most rocks. A model by Mironov et al. [43] for 



 

 

25 

the relationship between soil moisture and 𝜀𝑔 is provided in Appendix C. We shall not 

need to explicitly use this relationship until Chapter 5, where it will be discussed further; 

until then, it suffices for us to work in terms of 𝜀𝑔. 

2.4 Double-reflections off the ground and crown canopy layer 

This section describes the computation of the third term contributing to the overall radar 

backscatter, 〈𝜎𝑝𝑜𝑙
0 〉𝑣𝑛−𝑔𝑛𝑑,𝑑𝑏 for = ℎℎ, 𝑣𝑣, ℎ𝑣. Figure 2.5 is a schematic of the double-

reflection off the ground and a cylinder in the upper crown canopy layer. The cylinder is at 

a height 𝑧 above the ground, 𝑍1 ≤ 𝑧 ≤ 𝑍2. 𝑍1 is the total height of the lower trunk layer, and 

𝑍2 − 𝑍1 is the total height of the upper crown canopy layer. Note that there are two exactly 

opposite pathways that add coherently. Let path 3a be the path that scatters off the cylinder 

first, and then the ground, before returning to the radar antenna. Let path 3b be the opposite 

path that scatters off the ground first, and then the cylinder, before returning to the radar 

antenna. To find the double-bounce backscatter, the bistatic scattering off the cylinder, 

bistatic scattering off the ground, extinction through the upper crown canopy layer, and 

extinction through the lower trunk layer are required. 

 

Figure 2.5. Double reflections off the ground and a cylinder in the upper vegetation volume layer 

are a coherent sum of two opposite pathways, labelled 3a and 3b. 

𝜃𝑖 

𝜃𝑖 𝜃𝑖 

path 3b 

path 3a 

path 3b 

path 3a 

cylinder 

ground 

𝑍1 

𝑧 − 𝑍1 

𝑍2 − 𝑧 
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Let 

[𝐒𝑐𝑦𝑙,3𝑎] = [
𝑆ℎℎ 𝑆ℎ𝑣

𝑆𝑣ℎ 𝑆𝑣𝑣
]
𝑐𝑦𝑙,3𝑎

(2. 14) 

 be the 2x2 dimensionless bistatic scattering matrix off the cylinder for incidence from 

direction (𝜃𝑖 , 𝜙𝑖) and scattering into direction (𝜃𝑠 = 𝜋 − 𝜃𝑖 , 𝜙𝑠 = 𝜙𝑖 + 𝜋), and [𝐆] be the 

2x2 dimensionless bistatic scattering matrix off the ground for incidence from direction 

(𝜃𝑖, 𝜙𝑖) and scattering into direction (𝜃𝑠 = 𝜃𝑖, 𝜙𝑠 = 𝜙𝑖), both written in their local BSA 

coordinates. As before, [𝐒𝑐𝑦𝑙,3𝑎] is provided by the expressions in Appendix A. For [𝐆] , the 

Fresnel reflection coefficients are used, with a correction for surface roughness found from 

a physical optics approximation (also often called the Kirchhoff approximation) [44, 14] 

[𝐆] = [
𝐺ℎℎ 0
0 𝐺𝑣𝑣

] = exp(−2𝑘2ℎ2cos2𝜃𝑖) [
𝑅ℎ 0
0 𝑅𝑣

] (2. 15) 

where 𝑅ℎ and 𝑅𝑣 are the Fresnel reflection coefficients 

𝑅ℎ =
cos 𝜃𝑖 − √𝜀𝑔 − sin2𝜃𝑖

cos 𝜃𝑖 + √𝜀𝑔 − sin2𝜃𝑖

(2. 16a) 

𝑅𝑣 =
𝜀𝑔 cos 𝜃𝑖 − √𝜀𝑔 − sin2𝜃𝑖

𝜀𝑔 cos 𝜃𝑖 + √𝜀𝑔 − sin2𝜃𝑖

(2.16b) 

and exp(−2𝑘2ℎ2cos2𝜃𝑖) is the roughness correction factor. 

The extinction cross-sections (normalized to one cylinder) through the upper crown canopy 

layer were 〈𝜅ℎ,𝑐𝑛〉 and 〈𝜅𝑣,𝑐𝑛〉 for h-polarized and v-polarized electric field respectively. 

Likewise, let 〈𝜅ℎ,𝑡𝑟𝑘〉 and 〈𝜅𝑣,𝑡𝑟𝑘〉 be the extinction cross-sections (normalized to one 

cylinder) through the lower trunk layer for h-polarized and v-polarized electric field, with 

units of area, and 𝑛𝑡𝑟𝑘 be the average number density of cylinders in the trunk layer, with 

units of inverse volume. 

The total one-way extinction of the electric field through the lower trunk layer is then, for 

the two polarizations, 
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𝛼ℎ,𝑡𝑟𝑘(𝑍1) = exp [−
𝑛𝑡𝑟𝑘〈𝜅ℎ,𝑡𝑟𝑘〉𝑍1

cos 𝜃𝑖
] (2. 17a) 

𝛼𝑣,𝑡𝑟𝑘(𝑍1) = exp [−
𝑛𝑡𝑟𝑘〈𝜅𝑣,𝑡𝑟𝑘〉𝑍1

cos 𝜃𝑖
] (2.17b) 

For convenience in multiplication with 2x2 scattering matrices, let 

[𝛂𝑡𝑟𝑘(𝑍1)] = [
𝛼ℎ,𝑡𝑟𝑘(𝑍1) 0

0 𝛼𝑣,𝑡𝑟𝑘(𝑍1)
] . (2. 18) 

Likewise, for the upper crown canopy layer, the one-way extinction of the electric field 

through the part of the upper crown canopy layer above the cylinder, written as a 2x2 matrix, 

is 

[𝛂𝑐𝑛(𝑍2 − 𝑧)] =

[
 
 
 
 exp [−

𝑛𝑐𝑛〈𝜅ℎ,𝑐𝑛〉(𝑍2 − 𝑧)

cos 𝜃𝑖
] 0

0 exp [−
𝑛𝑐𝑛〈𝜅𝑣,𝑐𝑛〉(𝑍2 − 𝑧)

cos 𝜃𝑖
]
]
 
 
 
 

 . (2. 19) 

Similarly, the one-way extinction of the electric field through the part of the upper crown 

canopy layer below the cylinder is [𝛂𝑐𝑛(𝑧 − 𝑍1)], and the total one-way extinction of the 

electric field through the upper crown canopy layer is [𝛂𝑐𝑛(𝑍2 − 𝑍1)]. 

We can now write the overall 2x2 scattering matrix for path 3a as 

[
𝑆ℎℎ 𝑆ℎ𝑣

𝑆𝑣ℎ 𝑆𝑣𝑣
]
3𝑎

= [𝛂𝑐𝑛(𝑍2 − 𝑍1)][𝛂𝑡𝑟𝑘(𝑍1)][𝐆] [
−1 0
0 1

] 

× [𝛂𝑡𝑟𝑘(𝑍1)][𝛂𝑐𝑛(𝑧 − 𝑍1)][𝐒𝑐𝑦𝑙,3𝑎] [𝛂𝑐𝑛(𝑍2 − 𝑧)] (2. 20) 

where the factor of [
−1 0
0 1

] accounts for the direction of the axes in the BSA convention. 

Similarly, the overall 2x2 scattering matrix for path 3b is 
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[
𝑆ℎℎ 𝑆ℎ𝑣

𝑆𝑣ℎ 𝑆𝑣𝑣
]
3𝑏

= [
𝑆ℎℎ 𝑆ℎ𝑣

𝑆𝑣ℎ 𝑆𝑣𝑣
]
3𝑎

𝑇

= [𝛂𝑐𝑛(𝑍2 − 𝑧)][𝐒𝑐𝑦𝑙,3𝑎]
𝑇
[𝛂𝑐𝑛(𝑧 − 𝑍1)][𝛂𝑡𝑟𝑘(𝑍1)] [

−1 0
0 1

] [𝐆] 

× [𝛂𝑡𝑟𝑘(𝑍1)][𝛂𝑐𝑛(𝑍2 − 𝑍1)] . (2. 21) 

Paths 3a and 3b combine coherently to give the symmetric 2x2 scattering matrix  

[
𝑆ℎℎ 𝑆ℎ𝑣

𝑆𝑣ℎ 𝑆𝑣𝑣
]
𝑐𝑦𝑙,𝑑𝑏

= [
𝑆ℎℎ 𝑆ℎ𝑣

𝑆𝑣ℎ 𝑆𝑣𝑣
]
3𝑎

+ [
𝑆ℎℎ 𝑆ℎ𝑣

𝑆𝑣ℎ 𝑆𝑣𝑣
]
3𝑏

= [𝛂𝑐𝑛(𝑍2 − 𝑧)] ([𝐒𝑐𝑦𝑙,3𝑎]
𝑇
[
𝑄ℎℎ 0
0 𝑄𝑣𝑣

] + [
𝑄ℎℎ 0
0 𝑄𝑣𝑣

]
𝑇

[𝐒𝑐𝑦𝑙,3𝑎]) [𝛂𝑐𝑛(𝑍2 − 𝑧)](2. 22)

 

where 

[
𝑄ℎℎ 0
0 𝑄𝑣𝑣

] = [𝛂𝑐𝑛(𝑧 − 𝑍1)][𝛂𝑡𝑟𝑘(𝑍1)] [
−1 0
0 1

] [𝐆][𝛂𝑡𝑟𝑘(𝑍1)][𝛂𝑐𝑛(𝑧 − 𝑍1)] . (2. 23) 

Rearranging, 

[

𝑆ℎℎ

√2𝑆ℎ𝑣

𝑆𝑣𝑣

]

𝑐𝑦𝑙,𝑑𝑏

= [𝕬][𝟐][𝐐] [

𝑆ℎℎ

𝑆ℎ𝑣

𝑆𝑣ℎ

𝑆𝑣𝑣

]

𝑐𝑦𝑙,3𝑎

(2. 24) 

where 

[𝕬]

= [

exp[−2𝑛𝑐𝑛〈𝜅ℎ,𝑐𝑛〉(𝑍2 − 𝑧)/ cos 𝜃𝑖]    0                                        0                         

                         0   exp[−𝑛𝑐𝑛〈𝜅ℎ,𝑐𝑛 + 𝜅𝑣,𝑐𝑛〉(𝑍2 − 𝑧)/ cos 𝜃𝑖]    0                         

                          0                                         0   exp[−2𝑛𝑐𝑛〈𝜅ℎ,𝑐𝑛〉(𝑍2 − 𝑧)/ cos 𝜃𝑖]

] 

[𝟐] = [
2 0 0

0 √2 0
0 0 2

] 

[𝐐] = [
𝑄ℎℎ 0
0 𝑄ℎℎ

0 0

0 0
𝑄𝑣𝑣 0
0 𝑄𝑣𝑣

] . 

Next the 3x3 scatterer covariance matrix for the single cylinder can be constructed: 
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[√2

𝑆ℎℎ𝑆ℎℎ
∗ √2 𝑆ℎℎ𝑆ℎ𝑣

∗ 𝑆ℎℎ𝑆𝑣𝑣
∗

 𝑆ℎ𝑣𝑆ℎℎ
∗ 2 𝑆ℎ𝑣𝑆ℎ𝑣

∗ √2 𝑆ℎ𝑣𝑆𝑣𝑣
∗

𝑆𝑣𝑣𝑆ℎℎ
∗ √2 𝑆𝑣𝑣𝑆ℎ𝑣

∗ 𝑆𝑣𝑣𝑆𝑣𝑣
∗

]

𝑐𝑦𝑙,𝑑𝑏

= [𝕬][𝟐][𝐐] [

𝑆ℎℎ

𝑆ℎ𝑣

𝑆𝑣ℎ

𝑆𝑣𝑣

]

𝑐𝑦𝑙,3𝑎

[

𝑆ℎℎ

𝑆ℎ𝑣

𝑆𝑣ℎ

𝑆𝑣𝑣

]

𝑐𝑦𝑙,3𝑎

†

[𝐐]†[𝟐][𝕬]† . (2. 25)

 

By averaging over the cylinder distribution and integrating over the layer, the normalized 

radar cross-sections can then be found using the diagonal entries of the averaged 3x3 

covariance matrix  

[

〈𝜎ℎℎ
0 〉 ∗ ∗

∗ 2〈𝜎ℎ𝑣
0 〉 ∗

∗ ∗ 〈𝜎𝑣𝑣
0 〉

]

𝑐𝑛−𝑔𝑛𝑑,𝑑𝑏

=
4𝜋𝑛𝑐𝑛

𝑘2
×

∫ [𝕬][𝟐][𝐐] 〈

[
 
 
 
𝑆ℎℎ𝑆ℎℎ

∗ 𝑆ℎℎ𝑆ℎ𝑣
∗

𝑆ℎ𝑣𝑆ℎℎ
∗ 𝑆ℎ𝑣𝑆ℎ𝑣

∗

𝑆ℎℎ𝑆𝑣ℎ
∗ 𝑆ℎℎ𝑆𝑣𝑣

∗

𝑆ℎ𝑣𝑆𝑣ℎ
∗ 𝑆ℎ𝑣𝑆𝑣𝑣

∗

𝑆𝑣ℎ𝑆ℎℎ
∗ 𝑆𝑣ℎ𝑆ℎ𝑣

∗

𝑆𝑣𝑣𝑆ℎℎ
∗ 𝑆𝑣𝑣𝑆ℎ𝑣

∗

𝑆𝑣ℎ𝑆𝑣ℎ
∗ 𝑆𝑣ℎ𝑆𝑣𝑣

∗

𝑆𝑣𝑣𝑆𝑣ℎ
∗ 𝑆𝑣𝑣𝑆𝑣𝑣

∗ ]
 
 
 

𝑐𝑦𝑙,3𝑎

〉 [𝐐]†[𝟐][𝕬]†𝑑𝑧

𝑧=𝑍2

𝑧=𝑍1

(2. 26)

 

where the off-diagonal entries on the left-hand side have simply not been displayed, and the 

angular brackets on the right-hand side denote averaging cylinders over 𝑝(𝜃𝑐, 𝜙𝑐, 𝑟, 𝐿) as 

described earlier in the Section 2.2 on backscatter from the upper crown canopy layer only. 

2.5  Trunk-ground double reflections 

This section describes the computation of the fourth term contributing to the overall radar 

backscatter, 〈𝜎𝑝𝑜𝑙
0 〉𝑡𝑟𝑘−𝑔𝑛𝑑,𝑑𝑏  for = ℎℎ, 𝑣𝑣, ℎ𝑣. Like the upper crown canopy layer, tree 

trunks are modelled as cylinders at a height 𝑧 above the ground,  0 ≤ 𝑧 ≤ 𝑍1, but are handled 

separately because trunks tend to have a vertical orientation. Because of the predominant 

vertical orientation, some simplifications can be made. The first simplification was the 

neglect of direct backscatter from the tree trunks, leaving trunks to contribute only via this 

trunk-ground double reflection term. Another simplification is the neglect of 𝑆ℎ𝑣,𝑡𝑟𝑘,3𝑎 and  

𝑆𝑣ℎ,𝑡𝑟𝑘,3𝑎 for predominantly vertically oriented cylinders, where 
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[𝐒𝑡𝑟𝑘,3𝑎] = [
𝑆ℎℎ 𝑆ℎ𝑣

𝑆𝑣ℎ 𝑆𝑣𝑣
]
𝑡𝑟𝑘,3𝑎

(2. 27) 

is the 2x2 dimensionless bistatic scattering matrix off a trunk for incidence from direction 

(𝜃𝑖, 𝜙𝑖) and scattering into direction (𝜃𝑠 = 𝜋 − 𝜃𝑖, 𝜙𝑠 = 𝜙𝑖 + 𝜋), completely analogous to 

equation (2.14).  

Consequently, 

HV𝑡𝑟𝑘−𝑔𝑛𝑑,𝑑𝑏 = 0 (2. 28a) 

HH𝑡𝑟𝑘−𝑔𝑛𝑑,𝑑𝑏 =
4𝜋𝑛𝑡𝑟𝑘𝑍1

𝑘2
4 exp [−4

𝑛𝑐𝑛〈𝜅ℎ,𝑐𝑛〉(𝑍2 − 𝑍1) + 𝑛𝑡𝑟𝑘〈𝜅ℎ,𝑡𝑟𝑘〉𝑍1

cos 𝜃𝑖
]  

                                                                                         × |𝐺ℎℎ|
2〈|𝑆ℎℎ|𝑡𝑟𝑘,3𝑎

2 〉 (2.28b) 

VV𝑡𝑟𝑘−𝑔𝑛𝑑,𝑑𝑏 =
4𝜋𝑛𝑡𝑟𝑘𝑍1

𝑘2
4 exp [−4

𝑛𝑐𝑛〈𝜅𝑣,𝑐𝑛〉(𝑍2 − 𝑍1) + 𝑛𝑡𝑟𝑘〈𝜅𝑣,𝑡𝑟𝑘〉𝑍1

cos 𝜃𝑖
]  

                                                                                         × |𝐺𝑣𝑣|
2〈|𝑆𝑣𝑣|𝑡𝑟𝑘,3𝑎

2 〉 . (2.28c) 

Typically, 〈|𝑆ℎℎ|𝑡𝑟𝑘,3𝑎
2 〉 > 〈|𝑆𝑣𝑣|𝑡𝑟𝑘,3𝑎

2 〉 and 〈𝜅𝑣,𝑡𝑟𝑘〉 > 〈𝜅ℎ,𝑡𝑟𝑘〉 because of the vertical 

orientation of the trunks, and |𝐺ℎℎ|
2 > |𝐺𝑣𝑣|

2 because of the Fresnel reflection coefficients, 

so HH𝑡𝑟𝑘−𝑔𝑛𝑑,𝑑𝑏 dominates VV𝑡𝑟𝑘−𝑔𝑛𝑑,𝑑𝑏. 

The trunk cylinders are modelled with an orientation distribution that is uniform in 𝜙𝑐 and 

Gaussian distributed about the vertical direction [14], with a small RMS tilt 𝜎𝑐    

𝑝(𝜃𝑐 , 𝜙𝑐) =

exp [−
1
2 (

𝜃𝑐

𝜎𝑐
)
2

]

2𝜋 ∫ sin 𝜃𝑐 exp [−
1
2 (

𝜃𝑐

𝜎𝑐
)
2

] 𝑑𝜃𝑐
𝜃𝑐=𝜋

𝜃𝑐=0

 . (2. 29) 

For computation, the integrals required for averaging over the trunk distribution are 

approximated numerically as sums. The integral over (𝜃𝑐, 𝜙𝑐) is performed first. In view of 

the narrow distribution about the vertical, an angular grid is set up only up to 𝜃𝑐 = 4𝜎𝑐 from 

the vertical. For extinction calculations, the angular spacing was set to 𝜎𝑐/5 in 𝜃𝑐, and 10 
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in 𝜙𝑐. For bistatic scattering calculations, an angular spacing of 0.35𝜆/𝜋𝐿 was used in 

both 𝜃𝑐 and 𝜙𝑐. This angular spacing is chosen in view of the width of the sinc function in 

equation (A.1) in Appendix A. If 0.35𝜆/𝜋𝐿 is greater than 𝜎𝑐/5, the angular spacing is set 

at 𝜎𝑐/5 instead. Because the bistatic scattering is dominated by cylinders oriented 

approximately perpendicular to the direction 𝐤𝑖 + 𝐤𝑠 (where 𝐤𝑖, 𝐤𝑠 are in the BSA 

convention), for accelerated computation, only cylinders that are within an angle of 2𝜆/𝐿 

from an orientation perpendicular to 𝐤𝑖 + 𝐤𝑠 are included. The specific choice of distribution 

over trunk cylinder radii and lengths (𝑟, 𝐿) will be elaborated upon in Section 2.8.  

2.6 Cylinder relative permittivity 𝜺𝒗 

For the cylinder relative permittivity, the model of Ulaby and El-Rayes [45] is used. 

Following the model, the relative pemittivity of vegetation material is related to the 

volumetric moisture content of vegetation, 𝑀𝑣, and the microwave frequency 𝑓 in GHz, via 

𝜀𝑣 = 𝑣𝑓𝑤𝜀𝑓 + 𝑣𝑏𝜀𝑏 + 𝜀𝑟 . (2. 30) 

In the first term, 𝑣𝑓𝑤 is the volume fraction of free water and 𝜀𝑓 is its relative permittivity: 

𝑣𝑓𝑤 = 𝑀𝑣(0.82𝑀𝑣 + 0.166) (2. 31) 

𝜀𝑓 = 4.9 +
75

1 −
𝑖𝑓
18

+ 18
𝛾𝑠𝑎𝑙

𝑓
𝑖 (2. 32) 

𝛾𝑠𝑎𝑙 = 0.16𝑆 − 0.0013𝑆2 (2. 33) 

where 𝛾𝑠𝑎𝑙 is the ionic conductivity, and 𝑆 the water salinity in parts per thousand on a weight 

basis. 

In the second term, 𝑣𝑏 is the volume fraction of the bulk vegetation-bound water mixture and 

𝜀𝑏 is its dielectric constant: 

𝑣𝑏 =
31.4𝑀𝑣

2

1 + 59.5𝑀𝑣
2

(2. 34) 
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𝜀𝑏 = 2.9 +
55

1 − 𝑖√
𝑖𝑓

0.18

 . (2. 35)
 

The third term 𝜀𝑟 is a nondispersive residual component  

𝜀𝑟 = 1.7 + 3.2𝑀𝑣 + 6.5𝑀𝑣
2. (2. 36) 

In all these expressions, 𝑖 = √−1 is the imaginary number and the opposite sign convention 

was taken from Ulaby and El-Rayes to keep consistent with the expressions in Appendix A 

(i.e. electric field oscillates as exp(−2𝜋𝑖𝑓𝑡) ). Unless otherwise stated, we typically choose 

𝑀𝑣 to be 0.5 and set 𝑆 to 8.5. This gives a value of 𝜀𝑣 = 35.94 + 11.09i , which is in 

reasonable agreement with measurements taken by Chauhan and Lang [15] at a walnut 

orchard and Durden et al. [46] at a coniferous forest near Mount Shasta. This value of 𝜀𝑣 is 

taken as the default value for subsequent modelling, unless variations in 𝜀𝑣 are explicitly 

considered in context. 

2.7 Distribution of cylinder radius and length in the crown canopy layer 

This section describes and explains the choice of cylinder size distribution (over cylinder 

radius 𝑟  and cylinder length 𝐿) for the upper crown canopy layer. A cylinder size distribution 

constrained to have as few free parameters as possible is desired. As mentioned in the 

overview, the reason is that in application to Aquarius and SMAP data, there are only 3 

output radar observables to compare against or perform model inversion with: the normalized 

radar backscattering cross-sections HH, VV, and HV. In principle, the forward model can 

also compute the full covariance matrix containing the relative phases between the 

polarizations, by computing integrals containing 𝑆ℎℎ𝑆𝑣𝑣
∗ , 𝑆𝑣𝑣𝑆ℎ𝑣

∗ , etc. in equations analogous 

to (2.7a-c)  for the cylinders. 

Before presenting the specific choice of cylinder size distribution, a preliminary analysis of 

the dependence of the forward model on the radius, 𝑟, is performed. This will shed some 

useful insights with regards to how the cylinder size distribution affects the radar backscatter. 

This preliminary analysis is performed for an upper crown canopy layer of uniformly 

randomly oriented cylinders, i.e. in the cosine-squared distribution for (𝜃𝑐, 𝜙𝑐), the exponent 
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parameter was set to 𝑚 = 0, no multiple scattering correction, no lower trunk layer, and 

neglecting the ground and any interactions with it, i.e. only the single-scattering solutions 

HH𝑐𝑛,𝑠𝑠 , HV𝑐𝑛,𝑠𝑠, VV𝑐𝑛,𝑠𝑠 from equations (2.7a-c).  All the cylinders in the layer have 

identical sizes. The length was pegged to radius via 𝐿 = (𝑟 1cm⁄ )2/3 m (the reason for this 

choice will be explained in Section 2.7), and the cylinder number density 𝑛𝑐𝑛 was chosen in 

such a way as to keep the total volume of cylinders per unit ground area 𝑛𝑐𝑛(𝑍2 − 𝑍1)𝜋𝑟2𝐿 

fixed at 10−3m3/m2. Note that for uniformly randomly oriented cylinders, by symmetry we 

expect 〈𝜅ℎ,𝑐𝑛〉 = 〈𝜅𝑣,𝑐𝑛〉 , HH𝑐𝑛,𝑠𝑠 = VV𝑐𝑛,𝑠𝑠.  Figure 2.6 to Figure 2.8 show the results of 

this preliminary analysis. The one-way extinction (for power or intensity), exp(−𝜏𝑐𝑛), 

through the layer, and radar backscatter  HH𝑐𝑛,𝑠𝑠 , HV𝑐𝑛,𝑠𝑠, are plotted against cylinder radius 

𝑟. The radar wavelength was set to 24cm, and the incidence angle 40 from the vertical. 

 

Figure 2.6. L-band (=24cm) one-way extinction at incidence angle of 40 for a layer of uniformly 

randomly oriented identical cylinders, as a function of cylinder radius 𝑟 for several values of 

dielectric relative permittivity (blue curve: 𝜀𝑣 = 4.5 + 1.1i; red curve: 𝜀𝑣 = 17.1 + 5.8i; yellow 

curve 𝜀𝑣 = 35.9 + 11.1i; 𝜀𝑣 = 62.7 + 18.2i). Total volume of cylinders per unit ground area is 

fixed at 10−3m3/m2. 
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Figure 2.7.  Normalized radar backscattering cross-section HH𝑐𝑛,𝑠𝑠 from equation (2.7a) at 

incidence angle of 40  for a layer of uniformly randomly oriented identical cylinders, as a function 

of cylinder radius 𝑟 for several values of dielectric relative permittivity (blue curve: 𝜀𝑣 = 4.5 +
1.1i; red curve: 𝜀𝑣 = 17.1 + 5.8i; yellow curve 𝜀𝑣 = 35.9 + 11.1i; 𝜀𝑣 = 62.7 + 18.2i). Total 

volume of cylinders per unit ground area is fixed at 10−3m3/m2, and cylinder 𝐿 = (𝑟 1cm⁄ )2/3 m. 

 

Figure 2.8. Normalized radar backscattering cross-section HV𝑐𝑛,𝑠𝑠 from equation (2.7c) at incidence 

angle of 40  for a layer of uniformly randomly oriented identical cylinders, as a function of cylinder 

radius 𝑟 for several values of dielectric relative permittivity (blue curve: 𝜀𝑣 = 4.5 + 1.1i; red curve: 

𝜀𝑣 = 17.1 + 5.8i; yellow curve 𝜀𝑣 = 35.9 + 11.1i; 𝜀𝑣 = 62.7 + 18.2i). Total volume of cylinders 

per unit ground area is fixed at 10−3m3/m2, and cylinder 𝐿 = (𝑟 1cm⁄ )2/3 m. 
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Even though here the cylinder length 𝐿 was fixed in relation to 𝑟 and the results for 

different choices for 𝐿 are not displayed, the extinction is actually independent of 𝐿, if the 

total volume is fixed. The reason is that cylinders with longer length have a proportionately 

longer extinction contribution, but the total number of cylinders is also proportionately fewer. 

The backscatter contribution from the canopy is also only weakly dependent on cylinder 

length, if the total volume is fixed. Given a fixed total volume 𝑛𝑐𝑛(𝑍2 − 𝑍1)𝜋𝑟2𝐿, if 𝐿 is 

increased, each cylinder has a larger backscatter scaling as the square of 𝐿, but the total 

number of cylinders 𝑛𝑐𝑛 is inversely proportional to 𝐿, and further there are also fewer 

cylinders close to perpendicular to the incident direction that contribute significantly to the 

backscatter (within an angle proportional to 𝜆/𝐿). 

The most obvious trend in Figure 2.6 to Figure 2.8 is that the interaction of the radar, when 

considered per unit volume of cylinder, is strongest at the resonance size (≈ 2𝜋𝑟√𝜀𝑣/𝜆) . 

The other important point is that the vegetation dielectric constant affects the backscatter 

both through changing the resonance size of cylinders as well as the strength of the 

interaction. For 𝜀𝑣 ≈ 36 + 11i, the resonance size is about 0.5-1 cm radius, or 1-2 cm 

diameter. Very small branches (<1 mm radius) approach the Rayleigh regime and have 

negligible backscatter. Branches much larger than the resonance size also have less 

interaction with the radar per unit volume, but their total volume may be significant. This 

issue extends to tree trunks (whose total volume dominates the branches, but whose 

contribution to the radar backscatter is primarily only in the horizontal polarization through 

the trunk-ground double-bounce mechanism HHtrk−gnd,db) and is evidently a primary source 

of the well-known difficulty of estimating above-ground biomass for dense vegetation if only 

L-band normalized radar backscatter cross-sections are available. As such, for biomass 

retrieval, either radar normalized backscatter cross-sections at P-band due to the longer 

wavelength is preferred [47], or if a shorter wavelength is to be used, additional information 

from interferometry to measure tree heights [48] and/or phase information to isolate the 

double-bounce mechanism using the phase difference between horizontal and vertical 

polarization [12, 13] should be used. 
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From a modelling perspective, for vegetated areas, in particular forests and dense natural 

vegetation, the single most important parameter for the canopy volume is the total volume 

(per unit ground area) of resonance-sized branches. Ideally, full knowledge of the distribution 

of that volume as a function of cylinder radius is needed. Fractal tree models [49] and 

“computer-grown” trees based on architectural plant models have been used [50] for radar 

backscatter simulations, but these do not explicitly specify the distribution as a function of 

cylinder radius. Reviewing some of the radar modelling literature [9, 46, 51, 16, 15, 52], 

attempts have been made at measuring the distribution of branches, but a clear, simple 

functional form with widespread applicability for global-scale modelling has not been 

proposed. For that, we turn to a general model proposed by West et al. [53]  in the ecology 

literature. While their theory is much more general, parts of which remain controversial, we 

only seek the distribution of branches as a function of radius, not the validity of their entire 

theory. Their model [53] views a plant as a “branching hierarchical network running from 

the trunk (level k=0) to the petioles (level k=K>0)”, with the number of branches of a given 

size inversely proportional to the square of the branch radius 

𝑁𝑘 ∝ 𝑟𝑘
−2 (2. 37) 

reminiscent of an observation by Leonardo da Vinci [54]: cross-sectional area is preserved 

whenever a tree branches. This area-preserving branching condition was la also associated 

with the pipe model by Shinozaki et al. [55] [56]. The branch radii at each level are related 

by   

𝑟𝑘+1

𝑟𝑘
= constant. (2. 38) 

Extending the discrete hierarchical levels to a continuous distribution, the discrete levels can 

be viewed as occupying evenly spaced bins of width ∆ ln 𝑟 on a log-scale of branch radius: 

𝑁𝑘 ∝ 𝐴 𝑛𝑐𝑛𝑝(𝑟) ∆ ln 𝑟 ∝ 𝑟−2 (2. 39) 

where A is the ground area, and 𝑛𝑣𝑜𝑙𝑝(𝑟) is the number of branches per unit radius per unit 

ground area. The distribution for the number of branches per unit radius per unit ground area 

is thus inverse cubed: 
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𝑛𝑐𝑛𝑝(𝑟)  ∝ 𝑟−3. (2. 40) 

What is the range of branch radii for which this distribution is valid? There must certainly be 

some minimum (since the smallest branches terminate as leaves) and maximum (since there 

is a maximum size to branches) branch radii beyond which these relationships fail. From 

Shinozaki et al. [55, 56], this minimum value occurs around 1-2mm, while the maximum 

value depends on the tree species, since different tree species have different maximum branch 

sizes. Fortunately, the approximate range of validity includes the range of resonance cylinder 

radii (at 𝜆 = 0.24 m and 𝜀𝑣 ≈ 36 + 11i ), from 1 mm to 3 cm.  Our approach for forests is 

thus to model the branches only up to an arbitrary cutoff maximum radius of 3 cm and down 

to a minimum radius of 1 mm. As mentioned earlier, the Rayleigh regime smaller than 1 mm 

is not expected to contribute significantly to the radar backscatter. However, for the 

maximum cutoff, further simulations show that the forward model does have some sensitivity 

to the choice of cutoff in a way that also depends on other input parameters. Hence, failure 

to model branches larger than 3 cm may have some detrimental impact on the accuracy of 

the forward model, since the true maximum branch radius may be larger than that, especially 

in the tropical jungles. The benefit of this simplification is the avoidance of having to handle 

the maximum branch size as an additional species-dependent unknown variable, which 

would be tricky to implement on a global scale. Additionally, 3 cm does correspond 

approximately to the maximum branch radius from various field measurements in boreal 

forests [57, 46, 52]. 

With the radius distribution specified, the cylinder lengths remain. Mechanical 

considerations and botanical data of trees are consistent with a relationship between length 

and radius of the form given by McMahon and Kronauer [58] : 

𝐿𝑡𝑜𝑡(𝑟) ∝ 𝑟
2
3 (2. 41) 

Where 𝐿𝑡𝑜𝑡(𝑟) is the average total “path length” from the point a branch has radius 𝑟 to a 

virtual twig with radius 0. For the sake of analysis, constants 𝐿𝑡𝑜𝑡,𝑏 and 𝑟𝑏 are temporarily 

introduced such that   
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𝐿𝑡𝑜𝑡(𝑟) = 𝐿𝑡𝑜𝑡,𝑏 (
𝑟

𝑟𝑏
)

2
3
. (2. 42) 

Then the length of a branch segment between radius 𝑐𝑟 and 𝑐−1𝑟 is (𝑐2/3 −

𝑐−2/3)𝐿𝑡𝑜𝑡,𝑏(𝑟 𝑟𝑏⁄ )2/3. The  choice of 𝑐 may be related to the branching ratio. For instance, 

if the typical ratio of the radius between a parent and daughter branch is 2,  𝑐 may be taken 

to be 2. 𝐿𝑡𝑜𝑡,𝑏 is potentially measurable. However our aim is to reduce the number of 

parameters as much as possible and it is not immediately clear what an appropriate choice of 

𝐿𝑡𝑜𝑡,𝑏 and 𝑐 are, nor if they even are constants across different species of trees. The 𝑟2/3 

relationship suffices for us to construct the volume distribution without requiring knowledge 

of 𝐿𝑡𝑜𝑡,𝑏  and c. 

To recapitulate, the cylinder size distribution required for the forest canopy layer is as 

follows. The reference cylinder radius 𝑟𝑏 is arbitrarily fixed to be 𝑟𝑏 = 1 cm. The cylinder 

length 𝐿𝑏 (corresponding to reference radius 𝑟𝑏) is fixed to be 𝐿𝑏 = 1 m. The lower bound 

of the distribution is fixed at 𝑟𝑚𝑖𝑛,𝑏 = 1 mm. The upper bound of the distribution is chosen 

to be 𝑟𝑚𝑎𝑥,𝑏 = 3 cm. 

The number of canopy layer cylinders per unit radius per unit ground area is of the form 

𝑛𝑐𝑛𝑝(𝑟) = 𝑁𝑏 (
𝑟

𝑟𝑏
)

−3

(2. 43) 

where the scaling parameter 𝑁𝑏, with units of m−1m−2, can be thought of as describing the 

“density” of resonance-sized branches. Associated with each branch of radius 𝑟 is a length 

𝐿(𝑟) = 𝐿𝑏 (
𝑟

𝑟𝑏
)

2
3

(2. 44) 

where 𝐿𝑏 is the branch length associated with radius 𝑟 = 𝑟𝑏. Note that 𝐿(𝑟) may not actually 

be the true branch length, but rather the cylinder length chosen for our electromagnetic 

modelling, and thus 𝑁𝑏 and 𝐿𝑏 may not individually be quantities with true physical meaning, 
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nor directly measureable. What is physically meaningful, and measurable (though perhaps 

with tedious effort), is the volume distribution  

𝑉𝑏(𝑟) = 𝑛𝑐𝑛𝑝(𝑟)𝜋𝑟2𝐿(𝑟) = 𝑁𝑏𝐿𝑏𝜋𝑟𝑏
2 (

𝑟

𝑟𝑏
)
−

1
3
. (2. 45) 

 𝑉𝑏(𝑟)𝑑𝑟 is to be interpreted as the total volume, per unit ground area, of branches with radius 

between 𝑟 and 𝑟 + 𝑑𝑟. Also measurable would be the total volume 𝑉𝑏,𝑡𝑜𝑡 per unit ground 

area, in branches with radius between 𝑟𝑚𝑖𝑛,𝑏 and 𝑟𝑚𝑎𝑥,𝑏, expressed as 

𝑉𝑏,𝑡𝑜𝑡 = ∫ 𝑉𝑏(𝑟)𝑑𝑟

𝑟𝑚𝑎𝑥,𝑏

𝑟𝑚𝑖𝑛,𝑏

= 𝑁𝑏𝐿𝑏𝜋𝑟𝑏
2 ∫ (

𝑟

𝑟𝑏
)
−

1
3
𝑑𝑟

𝑟𝑚𝑎𝑥,𝑏

𝑟𝑚𝑖𝑛,𝑏

. (2. 46) 

𝑉𝑏,𝑡𝑜𝑡 has dimensions of m3/m2. All other parameters are fixed and if 𝑟𝑚𝑎𝑥,𝑏 is also fixed, 

then 𝑉𝑏,𝑡𝑜𝑡 and  𝑁𝑏 are proportional, and we then use  𝑉𝑏,𝑡𝑜𝑡 as the single, primary parameter 

in our model controlling “amount of vegetation”.  

Note that this formulation can alternatively be derived from the assumptions of area-

preserving branching and the 𝐿𝑡𝑜𝑡(𝑟) ∝ 𝑟2/3  relationship in the following way: Let the total 

branch cross-sectional area (per unit ground area) in the area-preserving assumption be 𝐴. 

Then by considering a volume element, 

𝑉𝑏(𝑟)𝑑𝑟 = 𝐴𝑑𝐿𝑡𝑜𝑡 (2. 47) 

we retrieve the 𝑟−1/3 dependence of 𝑉𝑏(𝑟): 

𝑉𝑏(𝑟) = 𝐴
𝑑𝐿𝑡𝑜𝑡

𝑑𝑟
= 𝐴𝐿𝑡𝑜𝑡,𝑏𝑟𝑏

−1
2

3
(
𝑟

𝑟𝑏
)
−

1
3

(2. 48) 

and by comparison with earlier expression for 𝑉𝑏(𝑟), we can identify 

𝑁𝑏 =
2𝐿𝑡𝑜𝑡,𝑏

3𝐿𝑏𝜋𝑟𝑏
3 𝐴 (2. 49) 
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which reveals that 𝑁𝑏 may also be interpreted as being proportional to the stand basal area, 

or more accurately, the cross-sectional area at base of live crown, per unit ground area. This 

proportionality and interpretation, however, assumes 𝐿𝑡𝑜𝑡,𝑏 to be a known universal constant, 

which may not be true.  

These general relationships allow us to drastically reduce the number of free parameters in 

the forward model, and also frees us from depending on local plot-specific empirical 

distributions of branch cylinder sizes. For numerical computation of the integrals (2.5) and 

(2.26), the cylinder radius distribution is represented using 40 log-uniform radius bins 

between 𝑟𝑚𝑖𝑛,𝑏 and 𝑟𝑚𝑎𝑥,𝑏, and sums performed accordingly. 

2.8 Distribution of cylinders in the trunk layer 

The final distribution needed is the trunk cylinder size distribution. As before, a preliminary 

analysis of the dependence of the forward model on the trunk cylinder radius 𝑟 is performed. 

This preliminary analysis is performed for a trunk layer of cylinders with their orientations 

following a Gaussian distribution about the vertical, as described in Section 2.5, with RMS 

tilt 𝜎𝑐 = 1° or 𝜎𝑐 = 5°. There is no canopy layer for this preliminary trunk layer analysis (set 

𝑍2 = 𝑍1). All the cylinders in the layer have identical sizes. The length, L, is chosen such 

that the length-to-radius ratio 𝐿 𝑟⁄  is some fixed value. The cylinder number density 𝑛𝑡𝑟𝑘 is 

chosen in such a way as to keep the total volume of cylinders per unit ground area 

𝑛𝑡𝑟𝑘𝑍1𝜋𝑟2𝐿  fixed at 10−3m3/m2. Figure 2.9 to Figure 2.11 show the results of this 

preliminary analysis. The one-way extinction (for power or intensity) through the layer for 

h- and v- polarizations, exp[−2𝑛𝑡𝑟𝑘〈𝜅ℎ,𝑡𝑟𝑘〉𝑍1/ cos 𝜃𝑖] and exp[−2𝑛𝑡𝑟𝑘〈𝜅𝑣,𝑡𝑟𝑘〉𝑍1/ cos 𝜃𝑖], 

and normalized radar cross-sections for the trunk-ground double-bounce HH𝑡𝑟𝑘−𝑔𝑛𝑑,𝑑𝑏, are 

plotted against cylinder radius. Also plotted is the ratio HH𝑡𝑟𝑘−𝑔𝑛𝑑,𝑑𝑏/VV𝑡𝑟𝑘−𝑔𝑛𝑑,𝑑𝑏. 

However for the trunk-ground double-bounce normalized radar cross-sections plotted here, 

no extinction was applied (pretend 〈𝜅ℎ,𝑡𝑟𝑘〉 = 〈𝜅𝑣,𝑡𝑟𝑘〉 = 0), and the ground was set to be 

perfectly reflecting (set 𝐺ℎℎ = 𝐺𝑣𝑣 = 1).  The radar wavelength was set to 24 cm, and the 

incidence angle to 38.49, which is the incidence angle for one of the Aquarius radar beams, 

and also close to the incidence angle for SMAP. 
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Figure 2.9. One-way extinction at incidence angle of 38.49 for the trunk layer comprising identical 

cylinders, as a function of trunk cylinder radius 𝑟, for trunk RMS tilt angles of 1 (blue curves) and 

5 (red curves), and for h-polarization (open circles) and v-polarization (triangles). The total 

volume of cylinders per unit ground area 𝑛𝑡𝑟𝑘𝑍1𝜋𝑟2𝐿 is kept fixed at 10−3m3/m2. 

 

Figure 2.10. Normalized radar backscattering cross-section for the trunk-ground double-bounce 

HH𝑡𝑟𝑘−𝑔𝑛𝑑,𝑑𝑏 at incidence angle of 38.49 as a function of trunk cylinder radius, for various trunk 

RMS tilt angles and cylinder length-to-radius ratios (see legend). No extinction was applied 

(pretend 〈𝜅ℎ,𝑡𝑟𝑘〉 = 〈𝜅𝑣,𝑡𝑟𝑘〉 = 0), and the ground was perfectly reflecting (set 𝐺ℎℎ = 𝐺𝑣𝑣 = 1).  

The total volume of cylinders per unit ground area 𝑛𝑡𝑟𝑘𝑍1𝜋𝑟2𝐿 is kept fixed at 10−3m3/m2. 
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Figure 2.11. Same as Figure 2.10, but for the trunk-ground double-bounce HH𝑡𝑟𝑘−𝑔𝑛𝑑,𝑑𝑏/

VV𝑡𝑟𝑘−𝑔𝑛𝑑,𝑑𝑏 ratio. 

Several important observations can be made about Figure 2.9 to Figure 2.11. Firstly, as 

expected from the vertical orientations, the extinction is greater at v-polarization ( 〈𝜅𝑣,𝑡𝑟𝑘〉 >

〈𝜅ℎ,𝑡𝑟𝑘〉 ), and is not strongly dependent on the trunk RMS tilt 𝜎𝑐. (Also, as mentioned in 

Section 3.7, if the total cylinder volume is fixed, the extinction is not dependent on the 

cylinder length.) Secondly, the ratio HH𝑡𝑟𝑘−𝑔𝑛𝑑,𝑑𝑏/VV𝑡𝑟𝑘−𝑔𝑛𝑑,𝑑𝑏 tends towards a fixed value 

at large cylinder radii and is also not strongly dependent on the trunk RMS tilt 𝜎𝑐. Finally, 

most of the interesting dependencies are in the graph for  HH𝑡𝑟𝑘−𝑔𝑛𝑑,𝑑𝑏. As can be seen, at 

large cylinder radii, the trunk RMS tilt is the more important parameter, while at small 

cylinder radii, the cylinder length 𝐿 is the more important parameter. The underlying reason 

is that, as mentioned before, only cylinders sufficiently close (within an angle proportional 

to 𝜆/𝐿) to perpendicular to the direction 𝐤𝑖 + 𝐤𝑠 contribute significantly to the backscatter). 

Given a fixed total volume 𝑛𝑡𝑟𝑘𝑍1𝜋𝑟2𝐿, if the cylinder length 𝐿 is increased, each cylinder 

has a larger bistatic scattering contribution scaling as the square 𝐿, but the total number of 

cylinders 𝑛𝑡𝑟𝑘 is inversely proportional to 𝐿. If the cylinder length and trunk RMS tilt are 

small enough such that the 𝜎𝑐 ≪ 𝜆/𝐿, all the trunk cylinders contribute significantly (each 
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with approximately the same contribution). So in this regime, the total HH𝑡𝑟𝑘−𝑔𝑛𝑑,𝑑𝑏 

should increase with increasing cylinder length 𝐿 but have little dependence on the trunk 

RMS tilt 𝜎𝑐. On the other hand, if 𝐿 is large enough and 𝜎𝑐 is also large enough such that 

𝜎𝑐 ≫ 𝜆/𝐿, not all the cylinders have a significant contribution; the fraction of cylinders 

having a significant contribution is inversely proportional to both 𝜎𝑐 and 𝐿. The dependence 

on 𝐿 thus cancels out, similar to the situation for the upper canopy layer, and the total 

HH𝑡𝑟𝑘−𝑔𝑛𝑑,𝑑𝑏 is inversely proportional to the trunk RMS tilt 𝜎𝑐 in this regime.  

As before for the canopy layer, the volume distribution as a function of radius is key. Even 

though there are fewer larger trees than smaller trees, more of the total volume in tree trunks 

is in the larger trees. Following West et al. [59] and Enquist et al. [60], we use an inverse 

square distribution for the trunk cylinder radii 

𝑛𝑡𝑟𝑘𝑝𝑡𝑟𝑘(𝑟)  ∝ 𝑟−2 (2. 50) 

which gives a volume distribution 

𝑉𝑡𝑟𝑘(𝑟) = 𝑛𝑡𝑟𝑘𝑝𝑡𝑟𝑘(𝑟)𝜋𝑟2𝐿(𝑟). (2. 51) 

For the cylinder lengths, we again apply the relation (2.44) 

𝐿(𝑟) = 𝐿𝑏(𝑟 𝑟𝑏⁄ )
2
3 (2. 52) 

to the trunks as well. The range of validity of the inverse square distribution for the trunk 

cylinder radii, in particular the maximum valid trunk radius, is likely to be species dependent. 

In the upper canopy layer, 𝑟𝑚𝑎𝑥,𝑏 = 3 cm was chosen for the branches, so for consistency  

𝑟𝑚𝑖𝑛,𝑡𝑟𝑘 = 3 cm is chosen for the lower trunk layer. For the maximum trunk radius 𝑟𝑚𝑎𝑥,𝑡𝑟𝑘, 

it is chosen such that  

(
3𝑐𝑚

𝑟𝑚𝑎𝑥,𝑡𝑟𝑘
)

2
3

=
𝑉𝑏,𝑡𝑜𝑡

𝑉𝑏,𝑡𝑜𝑡 + 𝑉𝑡𝑟𝑘,𝑡𝑜𝑡

(2. 53) 

where 𝑉𝑡𝑟𝑘,𝑡𝑜𝑡 = ∫ 𝑉𝑡𝑟𝑘(𝑟)𝑑𝑟
𝑟𝑚𝑎𝑥,𝑡𝑟𝑘

𝑟𝑚𝑖𝑛,𝑡𝑟𝑘
 is the total volume in trunks. The rationale for the 

choice in (2.53) is to be consistent with having branches with 𝑟 ≤ 3 cm take up some chosen 
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volume fraction of the total volume, and also to be consistent with the approximate 

proportionality  𝑉𝑏,𝑡𝑜𝑡 ∝ 𝑟𝑚𝑎𝑥,𝑏
2/3

− 𝑟𝑚𝑖𝑛,𝑏
2/3

≈ 𝑟𝑚𝑎𝑥,𝑏
2/3

 (equation 2.46 for 𝑟𝑚𝑎𝑥,𝑏 ≫ 𝑟𝑚𝑖𝑛,𝑏 ) if it 

had been extended beyond its supposed range of validity from the branches to the whole tree. 

Choosing the volume fraction in branches with 𝑟 ≤ 3cm  to be 𝑉𝑏,𝑡𝑜𝑡/(𝑉𝑏,𝑡𝑜𝑡 + 𝑉𝑡𝑟𝑘,𝑡𝑜𝑡) =

0.2  and solving yields a value of 𝑟𝑚𝑎𝑥,𝑡𝑟𝑘 = 33.5 cm that we use as the maximum trunk 

radius in our model. Since the trunk extinctions and bistatic cross-sections are slowly varying 

when cylinder radius is large, of importance here is not so much whether 𝑟𝑚𝑎𝑥,𝑡𝑟𝑘 = 33.5 cm 

is an accurate guess, but that we have fixed 𝑉𝑏,𝑡𝑜𝑡 to be 20% of the total volume. This 20% 

value is an estimate that seems consistent with that by Beaudoin et al. [51]. The other key 

parameter is the trunk RMS tilt 𝜎𝑐.  For a reasonable guess, from Chauhan et al. [16], we 

expect that 𝜎𝑐 < 10°. Here we use the 𝜎𝑐 = 5° guess made by Durden et al. [14], also 

consistent with Beaudoin et al. [51], though all these studies were only on coniferous forests.     

Under these assumptions, we compute and tabulate in Table 2.1 to Table 2.5 below some 

quantities relevant to computing equations (2.28b-c) for the trunk-ground double reflections. 

exp[−2𝑛𝑡𝑟𝑘𝑍1〈𝜅ℎ,𝑡𝑟𝑘〉/ cos 𝜃𝑖] 

 𝜀𝑣 = 5.15 + 1.41𝑖 𝜀𝑣 = 17.1 + 5.8𝑖 𝜀𝑣 = 35.9 + 11.1𝑖 𝜀𝑣 = 62.8 + 18.2𝑖 

𝜃𝑖 = 29.36° -0.042282dB -0.031799dB -0.029454dB -0.026318dB 

𝜃𝑖 = 38.49° -0.053868dB -0.041922dB -0.038671dB -0.035311dB 

𝜃𝑖 = 46.29° -0.066636dB -0.053518dB -0.049232dB -0.045651dB 

Table 2.1. One-way h-polarization extinction exp[−2𝑛𝑡𝑟𝑘𝑍1〈𝜅ℎ,𝑡𝑟𝑘〉/ cos 𝜃𝑖]  for a 𝑉𝑡𝑟𝑘,𝑡𝑜𝑡 =

10−3m3m−2 trunk layer, for several values of incidence angle 𝜃𝑖 and trunk cylinder relative 

permittivity 𝜀𝑣 . 

exp[−2𝑛𝑡𝑟𝑘𝑍1〈𝜅𝑣,𝑡𝑟𝑘〉/ cos 𝜃𝑖] 

 𝜀𝑣 = 5.15 + 1.41𝑖 𝜀𝑣 = 17.1 + 5.8𝑖 𝜀𝑣 = 35.9 + 11.1𝑖 𝜀𝑣 = 62.8 + 18.2𝑖 

𝜃𝑖 = 29.36° -0.054415dB -0.044106dB -0.046044dB -0.044469dB 

𝜃𝑖 = 38.49° -0.070223dB -0.058606dB -0.060656dB -0.059221dB 

𝜃𝑖 = 46.29° -0.087169dB -0.074483dB -0.076645dB -0.075310dB 

Table 2.2. Same as Table 2.1, but for v-polarization. 
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16𝜋𝑛𝑡𝑟𝑘𝑍1〈|𝑆ℎℎ|𝑡𝑟𝑘,3𝑎
2 〉/𝑘2 

 𝜀𝑣 = 5.15 + 1.41𝑖 𝜀𝑣 = 17.1 + 5.8𝑖 𝜀𝑣 = 35.9 + 11.1𝑖 𝜀𝑣 = 62.8 + 18.2𝑖 

𝜃𝑖 = 29.36° -10.9376dB -10.7324dB -10.1299dB -9.9533dB 

𝜃𝑖 = 38.49° -12.5545dB -10.8279dB -10.0889dB -9.7269dB 

𝜃𝑖 = 46.29° -13.5699dB -10.9303dB -10.1317dB -9.6721dB 

Table 2.3. Hypothetical normalized radar cross-section at h-polarization 16𝜋𝑛𝑡𝑟𝑘𝑍1〈|𝑆ℎℎ|𝑡𝑟𝑘,3𝑎
2 〉/

𝑘2  for a 𝑉𝑡𝑟𝑘,𝑡𝑜𝑡 = 10−3m3m−2 trunk layer with perfectly reflecting ground and without extinction 

considerations, for several values of incidence angle 𝜃𝑖 and trunk cylinder relative permittivity 𝜀𝑣. 

16𝜋𝑛𝑡𝑟𝑘𝑍1〈|𝑆𝑣𝑣|𝑡𝑟𝑘,3𝑎
2 〉/𝑘2 

 𝜀𝑣 = 5.15 + 1.41𝑖 𝜀𝑣 = 17.1 + 5.8𝑖 𝜀𝑣 = 35.9 + 11.1𝑖 𝜀𝑣 = 62.8 + 18.2𝑖 

𝜃𝑖 = 29.36° -23.0373dB -17.1299dB -13.7693dB -12.2022dB 

𝜃𝑖 = 38.49° -20.3795dB -14.5201dB -12.2302dB -11.0765dB 

𝜃𝑖 = 46.29° -18.1205dB -13.3495dB -11.5116dB -10.5306dB 

Table 2.4. Same as Table 2.3, but for v-polarization 16𝜋𝑛𝑡𝑟𝑘𝑍1〈|𝑆𝑣𝑣|𝑡𝑟𝑘,3𝑎
2 〉/𝑘2. 

〈|𝑆ℎℎ|𝑡𝑟𝑘,3𝑎
2 〉/〈|𝑆𝑣𝑣|𝑡𝑟𝑘,3𝑎

2 〉 

 𝜀𝑣 = 5.15 + 1.41𝑖 𝜀𝑣 = 17.1 + 5.8𝑖 𝜀𝑣 = 35.9 + 11.1𝑖 𝜀𝑣 = 62.8 + 18.2𝑖 

𝜃𝑖 = 29.36° 12.0996dB 6.3975dB 3.6395dB 2.2489dB 

𝜃𝑖 = 38.49° 7.8249dB 3.6923dB 2.1413dB 1.3496dB 

𝜃𝑖 = 46.29° 4.5506dB 2.4192dB 1.3800dB 0.8585dB 

Table 2.5. Same as Table 2.3, but for the ratio 〈|𝑆ℎℎ|𝑡𝑟𝑘,3𝑎
2 〉/〈|𝑆𝑣𝑣|𝑡𝑟𝑘,3𝑎

2 〉.  

To summarize this section, using many assumptions, we have constrained the trunk cylinder 

distribution to have no free parameters. The orientation distribution is uniform in 𝜙𝑐 and 

Gaussian distributed about the vertical with RMS tilt 𝜎𝑐 = 5°, the cylinder lengths are 

pegged to the radii by a 2/3 power law, the radius distribution is inverse square between 3 

cm and 33.5 cm, and the total volume in trunk layer cylinders is fixed to be 4 times the total 

volume in the upper vegetation volume layer. Like before, numerical computation and 

integrals are carried out using a grid of log-uniform radius bins. 
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C h a p t e r  3  

APPLICATION OF L-BAND RADAR BACKSCATTER MODEL TO 

AQUARIUS DATA OVER GLOBAL FORESTS 

3.1 Chapter overview 

In this chapter, our L-band radar backscatter model shall be compared with the data from the 

spaceborne L-band scatterometer of Aquarius. The Aquarius mission is unique for having 

had both significantly long temporal coverage (slightly more than 3 years), frequent (weekly) 

repeat global coverage, and a L-band scatterometer with high accuracy and stability (<0.2dB) 

at all polarization channels [61, 62, 63]. Frequent repeats are important for studying changes 

in ground moisture, which may rise rapidly with precipitation in a matter of hours, and then 

dry down on a time scale of days. 

In subsequent sections (Sections 3.3-3.7) of this chapter, the comparison between our L-band 

radar backscatter model and the data from the Aquarius scatterometer will be performed 

class-by-class for the five forest classes, with reference to the global land cover classes of the 

International Geosphere-Biosphere Programme (IGBP) [35], bearing in mind the coarse 

100km spatial resolution and 7-day temporal resolution. Physically reasonable 

representative values for the input parameters for the forward model shall be chosen for each 

class by fitting to the data and/or consulting values from the literature. Following Kim et al. 

[22], the real part of the ground relative permittivity 𝜀𝑔 is typically not expected to fall outside 

the range 2.7-40, and the ground surface roughness RMS height ℎ is typically expected 

within the 0.5-5cm range. Fitted branch volume values 𝑉𝑏,𝑡𝑜𝑡 shall be compared to 

independent aboveground biomass estimates. It shall be shown that our relatively 

parsimonious forward model is in overall reasonable quantitative agreement with the data at 

these global spatial scales, particularly for needleleaf forests, but slightly worse for broadleaf 

forests; the neglect of modelling leaves in the dense jungles are likely to have caused some 

inaccuracies. Sensitivity of L-band multi-polarization radar to vegetation structure [64, 65]  

was also verified at our global spatial scales: a preferentially horizontal orientation 



 

 

47 

distribution for the canopy cylinders was more suited for needleleaf forests, a uniformly 

random orientation distribution was more suited for broadleaf forests, and mixed forests 

somewhere in between. Sensitivity to sub-canopy flooding and differences between 

frozen/unfrozen states was expected [66, 67] and our model provides partial quantitative 

agreement by modelling them in terms of changes in ground surface roughness, ground 

dielectric relative permittivity, and vegetation dielectric relative permittivity; the 

frozen/unfrozen comparison will be in Section 3.8. Microwave vegetation optical depth 

values will be reported in Section 3.9.  

3.2 Input datasets 

The Aquarius/SAC-D mission was launched in 2011 with the primary goal of measuring sea 

surface salinity from space. Here we use the portion of data that was taken over land. The 

instrument carried 3 radiometers operating at 1.41GHz, with beams at incidence angles of 

about 29, 38, and 46. It also carried a scatterometer at 1.26GHz that shares the feed horns 

with the radiometers. The scatterometer measured, for each incidence angle, normalized 

radar backscattering cross-sections HH, HV, VH, and VV, with footprints 100km. Further 

instrument details can be found in Le Vine et al. [61], Fore et al. [62], and Yueh et al. [68]; 

in particular, Fig. 3 from the paper by Le Vine et al shows a schematic of the radiometer and 

scatterometer footprints of the 3 beams, reproduced here in Figure 3.1. 

The spacecraft orbit is sun-synchronous at about 657km altitude with a 7-day repeat period. 

With the exception of cross-over points and high-latitude regions, a point on the ground is 

typically visited only once every 7-days by one of the three beams (thus only one of the local 

incidence angles 29, 38, or 46) on either the ascending (local time 6PM) or descending 

pass (local time 6AM) of the spacecraft. The full data record ran from August 25, 2011 

through June 7, 2015. We used the Level 2 scatterometer data from the Aquarius dataset 

version 4.0 release; the data was obtained from the NASA EOSDIS Physical Oceanography 

Distributed Active Archive Center (PO.DAAC) at the Jet Propulsion Laboratory, Pasadena, 

CA [69, 70]. The global Aquarius scatterometer dataset was then regridded into a 36km 

EASE-Grid 2.0 [71], i.e. the globe was gridded into 406x964 equal-area pixels (henceforth 
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referred to as EASE2 grid pixels). This regridding reassigns data based on which EASE2 

grid pixel the centre of each radar footprint was nearest to. Note that the footprint size is 

significantly larger than the pixel size. 

 

Figure 3.1. Aquarius 3-dB footprints and swath of the three beams for radiometer (solid lines) and 

scatterometer (dashed lines), as shown in Fig. 3. of Le Vine et al. [61] © IEEE 2007 

Some data filtering was performed before comparison with the model. Provided together 

with the Level 2 scatterometer data in the Aquarius dataset were data quality flags for non-

nominal data conditions. There were many possible factors and conditions that triggered 

flagging. One primary contributor was radio-frequency interference (RFI) corruption. Figure 

3.2 displays the fraction of overall “good quality” time series data (25Aug2011 to 

07Jun2015) over land from the Aquarius Level 2 scatterometer dataset. (The overall quality 

flags must be met for all polarizations.) Note from Figure 3.2  the significant impact of RFI 

from heavily populated and developed parts of the world. Note also the exclusion of pixels 

that have a non-negligible amount of surface water bodies within the scatterometer footprint. 
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Some swath and regridding artefacts are visible in Figure 3.2, but these artefacts should 

have little impact on the comparison with the model and the inferences drawn. 

 

Figure 3.2. Global map (on EASE2 grid) of fraction of “good quality” time series data (25-Aug-

2011 to 07-Jun-2015) over land from the Aquarius Level 2 scatterometer dataset. The grayscale 

runs from black (fraction=0) to white (fraction=1). Some swath and regridding artefacts are present. 

Additional filtering was also performed to select only data from areas where the terrain slope 

was not too steep. This is because our L-band radar backscatter model as described in Chapter 

3 implicitly assumed that the ground under the forest was flat. For this filtering, we obtained 

global digital elevation data from the Harmonized World Soil Database v1.2  [72]. For lands 

below 60 latitude, we obtained from the database distributions of absolute slopes, binned 

into eight slope classes (0-0.5%, 0.5-2%, 2-5%, 5-10%, 10-15%, 15-30%, 30-45%, >45%), 

on a global 5arc-minute latitude-longitude grid. The original data for these distributions were 

3arcsecond NASA Shuttle Radar Topographic Mission (SRTM) data. We regridded the 5arc-

minute grid into the 36km EASE2 grid and computed the median slope class for each pixel. 

SRTM did not cover areas beyond 60 latitude. The primary landmass south of 60 latitude 

is Antarctica, which is excluded from this study. For land north of 60 latitude, we obtained 

from the database digital elevation data on a 30arc-second latitude-longitude grid (the 
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original source for the database was 30 arcsecond elevation data from USGS GTOPO30). 

From this 30arc-second data we computed median absolute slopes within each 36km-

EASE2grid pixel. 

One can expect median slopes calculated from initially 30arc-second data to be less steep 

than if calculated from initially 3arc-second data. This is indeed true, as displayed in Figure 

3.3, which shows a comparison between them for pixels in between 40N and 60N latitude.  

 

Figure 3.3. Box plots comparing median slopes within 36-km EASE2 grid pixels, calculated from 

initially 30arc-second data, vs. calculated from initially 3arc-second data. Compared pixels are 

between 40N and 60N latitude. 

Our choice of cutoff for terrain slope is thus as follows. For 36-km EASE2 grid pixels below 

60N latitude (i.e. initial data was 3arcsecond SRTM data), we flag pixels with >15% median 

slope as “high terrain slope”. For 36-km EASE2 grid pixels above 60N latitude (i.e. initial 

data was 30 arcsecond USGS GTOPO30 data), we flag pixels with >7% median slope as 

“high terrain slope”. These pixels are displayed in black in Figure 3.4. Data from these pixels 

will be excluded from comparison with the radar backscatter forward model. 
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Figure 3.4. 36km EASE2grid pixels flagged for high terrain slope are displayed in black. See main 

text for details. 

Radar backscatter is very different between frozen and unfrozen conditions, as is well known 

[73, 74]. The comparison and analysis of radar backscatter between frozen and unfrozen 

conditions will be in Section 4.7. For the analysis in Sections 4.2-4.6, a further data filtering 

was performed, retaining only data for unfrozen conditions; if otherwise unfiltered, the large 

change between frozen and unfrozen conditions would have dominated and swamped other 

effects. Specifically, this filter retained only data with corresponding temperature >5C 

during a time period from two weeks before to two weeks after, and only EASE grid pixels 

with at least 20 weeks of such data. The temperature value used is the temperature of the 0-

10cm subsurface layer, as provided by the ancillary NCEP GFS GDAS model product 

provided along with the Aquarius dataset. (Abbreviations: NCEP: National Centers for 

Environmental Prediction; GFS: Global Forecast System; GDAS: Global Data Assimilation 

System.)  
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Each EASE2 grid pixel on the globe was labelled with a land cover class, with reference 

to the global land cover classes of the International Geosphere-Biosphere Programme 

(IGBP). To obtain class labels for each pixel, the MODIS Land Cover Type Product 

(MCD12Q1) was used. The MODIS Land Cover Type Product (MCD12Q1) in the IGBP 

Land Cover Type Classification was obtained from the Global Land Cover Facility at a 5-

minute (in both latitude and longitude) resolution for the year 2012 [75, 76]. Briefly, this 

land cover map is the product of a classification algorithm that uses the Moderate-Resolution 

Imaging Spectroradiometer (MODIS) visible/near-infrared data as primary input. This was 

then regridded into the 36-km EASE2 grid by taking the mode of the finer 5-minute 

resolution pixels within each EASE2 grid pixel. The regridded land cover map is shown in 

Figure 3.5. 

 

Figure 3.5. MODIS Land Cover map, IGBP (International Geosphere-Biosphere Programme) 

classification, 2012 data. 
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3.3 Evergreen needleleaf forests (IGBP class 1) 

Using the MODIS land cover map, the geographic distribution of the evergreen needleleaf 

forests (IGBP class 1) is shown in Figure 3.5 and  Figure 3.6 for emphasis. From the filtered 

data for unfrozen conditions, a random 20% selection (to avoid clutter on subsequent 

scatterplots) of the EASE2 grid pixels is displayed in Figure 3.6. 

 

Figure 3.6. Geographic distribution of evergreen needleleaf forests (IGBP class 1) and randomly 

selected 20% of filtered Aquarius data EASE2 grid pixels, marked by open triangle symbols. 

The scatterometer data for these pixels is displayed in Figure 3.7, which depicts two 

scatterplots: one of VV/HH[dB] vs HH[dB], and another of HV/HH[dB] vs HH[dB]. In 

Figure 4.2-2, the three different beam incidence angles are represented by color: blue (29), 

red (38), and green (46), and data for descending-pass (local time 6AM) and ascending-

pass (local time 6PM) are represented by upward-pointing and downward-pointing triangles, 

respectively. The symbol descriptions are in the figure caption. Each open triangle represents 

the mean value (of the plotted quantities) of data taken over unfrozen periods from Sep2011-

Apr2015 from its corresponding pixel shown in Figure 3.6. As noted earlier, only a small 

minority of pixels may have data for more than one incidence angle or for both ascending 

and descending passes, and even then the actual footprints may not be the same. Thus 

comparisons between incidence angles or 6AM/6PM may only be made assuming similarity 

between pixels. Furthermore, the azimuth angles for the same beam are different on 

ascending and descending pass, and not by a simple 180 because of the footprint positions 
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depicted in Figure 3.1 as well as the inclination of the sun-synchronous orbit. In view of 

these confounding factors, we avoid jumping to any conclusions based only on comparisons 

between 6AM and 6PM Aquarius data unless the differences are very obvious. 

The filled triangles in Figure 3.7 are the median (marginal medians, i.e. the component-wise 

median) value of the open triangles, but with median taken over all data pixels of this class 

instead of only the 20% displayed. Filled circles show the results from the forest forward 

model of Chapter 2. The parameters 𝑚 = 1 and 𝜃0 = 𝜋/2 (cosine-squared orientation 

distribution about the horizontal) in equation (2.6) were used, and the vegetation cylinder 

relative permittivity chosen as  𝜀𝑣 = 29.9 + 9.5𝑖 . These orientation parameters, which will 

also be applied to IGBP class 3 (deciduous needleleaf forests), were chosen because many 

coniferous trees have branches with a preferential horizontal orientation; our distribution is 

similar to various results from direct measurements made by Saleh et al. for Maritime pine 

trees [77], Chauhan et al. for hemlock trees [16], and Jiang et al. for Dahurian larches [57]. 

Other model input parameters are: total volume in branches 𝑉𝑏,𝑡𝑜𝑡 = 3.1 × 10−3m3/m2 , 

ground relative permittivity 𝜀𝑔 = 8.8 , ground roughness RMS height ℎ = 2.6cm . These 

latter three parameters ( 𝑉𝑏,𝑡𝑜𝑡 , 𝜀𝑔 , ℎ ) were chosen by fitting to the pooled (ascending and 

descending) data. The fitting procedure minimized the sum of component-wise absolute 

distances between the model and the data, i.e. 

minimize
𝑉𝑏,𝑡𝑜𝑡 , 𝜀𝑔, ℎ

   ∑ ∑ |𝑥𝑖
(𝑑𝑎𝑡𝑎 𝑝𝑖𝑥)

− 𝑥𝑖
(𝑚𝑜𝑑𝑒𝑙)(𝑉𝑏,𝑡𝑜𝑡 , 𝜀𝑔, ℎ)|

3

𝑖=1𝑑𝑎𝑡𝑎 𝑝𝑖𝑥

(3. 1) 

𝑥1 = HH[dB] , 𝑥2 = VV/HH[dB] , 𝑥3 = HV/HH[dB] .  

To clarify, 𝑥𝑖
(𝑑𝑎𝑡𝑎 𝑝𝑖𝑥)

 is the mean value of radar feature 𝑖 (𝑖 = 1,2,3) for the EASE2 pixel 

indexed by “𝑑𝑎𝑡𝑎 𝑝𝑖𝑥” , over unfrozen periods from Sep2011-Apr2015 for data. 

Strictly speaking, 𝜀𝑔 is complex and should have an imaginary component, which we have 

neglected. From Wang and Schmugge [78] and Hallikainen et al. [79], we know that this 

imaginary part depends both on the soil moisture as well as the soil type; it is typically at 

least several times smaller than the real part. Because the soil affects the radar backscatter 
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only through backscatter and reflection, not involving transmission through the soil, the 

modelling error incurred by neglecting the imaginary part is thus small; Oh et al. [80] also 

recognized that neglecting the imaginary part of  𝜀𝑔 is a valid approximation for the Fresnel 

reflectivity term off the soil surface.   

Several remarks can be made regarding Figure 3.7. Firstly, the radar backscatter at all 

polarizations generally decrease with increasing incidence angle from 29 to 46, as expected 

from even the simplest volume scattering models [29]. Secondly, the forward model seems 

to provide a reasonable agreement to the data, albeit using fitted parameters. The fitted 

ground parameters fall within their expected ranges. Let us compare the fitted branch volume 

with aboveground biomass estimates from the literature. We assume a value of wood density 

(or specific gravity; this is the ratio of “oven-dry weight” to “green volume”) of =0.45g/cm3 

based on Nelson et al. [81] and Zanne et al. [82] for IGBP classes 1, 3, and 5, and retain our 

earlier assumption from chapter 3 of 𝑉𝑡𝑟𝑘,𝑡𝑜𝑡 = 4𝑉𝑏,𝑡𝑜𝑡. Taking aboveground biomass  

𝑀𝑡𝑜𝑡 = 𝜌(𝑉𝑏,𝑡𝑜𝑡 + 𝑉𝑡𝑟𝑘,𝑡𝑜𝑡), we find that 𝑉𝑏,𝑡𝑜𝑡 = 3.1 litres/m2 corresponds to 69.8tons/ha 

of aboveground biomass. Looking at the literature, we find aboveground biomass estimates 

of 30-100 tons/ha by Margolis et al. [83] for boreal forests in North America based on LiDAR 

techniques; estimates of 40-120 tons/ha by Shepashenko et al. [84] for Siberian forest 

phytomass (including roots) using Russian state forest inventories and regression analysis; 

estimates of 30-150 tons/ha depending on stand age by Beaudoin et al. [51] for maritime pine 

at the Landes forest in France. Thirdly, there might be an overall trend of L-band radar 

backscatter being slightly higher from ascending-pass (local time 6PM) data compared to 

descending-pass (local time 6AM) data, but this difference, when considered in an average 

sense over time and multiple pixels, is small (compared to the spatial variation between pixels 

and longer period temporal  variations to be discussed later). Friesen et al. found evening 

(ascending track; 9:30PM-12AM) radar backscatter values higher than morning (descending 

9:30AM-12PM) at C-band VV by about 1dB over Russia/Canada, using ESCAT data [85]. 

We bear this in mind, but proceed to pool the 6AM and 6PM data for several of the 

subsequent analyses.  



 

 

56 

 

Figure 3.7. Aquarius L-band scatterometer data for EASE2 grid pixels classified as evergreen 

needleleaf forests (IGBP class 1). The three different beam incidence angles are represented by 

color: blue (29), red (38), and green (46). Upward-pointing triangles are for descending-pass 

(local time 6AM) and downward-pointing triangles are for ascending-pass data (local time 6PM). 

Each open triangle represents data from one of the pixels shown in Figure 3.6, taking the mean over 

unfrozen periods from Sep2011-Apr2015 for each pixel. Filled triangles are the median over open 

triangles, but with median taken over all data pixels of this class instead of only the 20% displayed. 

Filled circles show the forest forward model from Chapter 2, with input parameters 𝑚 = 1 and 

𝜃0 = 𝜋/2 (preferential horizontal orientation) in equation (2.6), total volume in branches 𝑉𝑏,𝑡𝑜𝑡 =

3.1 × 10−3m3/m2 ,  vegetation cylinder relative permittivity  𝜀𝑣 = 29.9 + 9.5𝑖 , ground relative 

permittivity 𝜀𝑔 = 8.8 , ground roughness RMS height ℎ = 2.6cm .  
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Figure 3.8. Same as Figure 3.7, but with no distinction made between descending- and ascending-

pass data; all are marked with open circles. Filled circles show the forward model with input 

parameters as before in Figure 3.7 (𝑚 = 1 and 𝜃0 = 𝜋/2  in equation (2.6),  𝑉𝑏,𝑡𝑜𝑡 = 3.1 ×

10−3m3/m2, 𝜀𝑣 = 29.9 + 9.5𝑖 , 𝜀𝑔 = 8.8 , ℎ = 2.6cm). Other filled symbols explore the nearby 

model parameter space if one parameter is perturbed. Larger and smaller five-pointed stars 

represent a change in 𝑉𝑏,𝑡𝑜𝑡 by +25% and -25% respectively. Larger six-pointed stars represent an 

increase in 𝜀𝑣 to 𝜀𝑣 = 45.6 + 13.7𝑖, while smaller six-pointed stars represent a decrease to 𝜀𝑣 =
17.1 + 5.8𝑖. Larger and smaller squares represent a change 𝜀𝑔 by +50% and -50% respectively. 

Larger and smaller diamonds represent a change in ℎ by +0.5cm and -0.5cm respectively. 

The model is then used to analyze the spatial variation in the radar backscatter data across 

different pixels. Figure 3.8 displays the same data as Figure 3.7, now with the descending-

pass (local time 6AM) and ascending-pass (local time 6PM) data pooled and all marked with 

open circles instead of triangles. The three different beam incidence angles are again 
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represented with blue, red, and green colors (29, 38, 46 respectively). Overlaid on the 

data are filled symbols showing the results from the forward model. The filled circles show 

the forward model with parameters as before. Other filled symbols explore the nearby model 

parameter space if one parameter is perturbed. Larger five-pointed stars represent an increase 

in 𝑉𝑏,𝑡𝑜𝑡 by 25%, while smaller five-pointed stars represent a decrease in in 𝑉𝑏,𝑡𝑜𝑡 by 25%. 

Larger six-pointed stars represent an increase in 𝜀𝑣 to 𝜀𝑣 = 45.6 + 13.7𝑖, while smaller six-

pointed stars represent a decrease to 𝜀𝑣 = 17.1 + 5.8𝑖. Larger squares represent an increase 

in 𝜀𝑔 by 25%, while smaller squares represent a decrease in 𝜀𝑔 by 25%. Larger diamonds 

represent an increase in ℎ by 0.5cm, while smaller diamonds represent a decrease in ℎ by 

0.5cm. From the scatterplots, it seems that effects of the two vegetation parameters are 

difficult to distinguish from each other. In view of the scatterplot of VV/HH[dB] vs HH[dB], 

it appears that the ground roughness RMS height ℎ is one of the physical parameters involved 

in the spatial variations. However, when both scatterplots are considered together, no one 

single physical parameter appears sufficient to explain all or most of the spatial variation 

across different pixels. 

It is interesting to note that when the scatterplot of HV/HH[dB] vs HH[dB] is considered, 

ground parameters (𝜀𝑔 and ℎ) vary the radar backscatter in an approximately orthogonal 

direction on the plot as compared to varying vegetation parameters (𝑉𝑏,𝑡𝑜𝑡 and 𝜀𝑣 ), so it is 

easier to distinguish ground effects vs. vegetation effects on this scatterplot, as compared to 

the scatterplot of VV/HH[dB] vs HH[dB], where there is greater degeneracy between the 

effects of perturbing different physical parameters. This can be physically understood as 

follows. In our forward model, the primary scattering mechanism contributing to HV[dB] is 

backscatter from the forest canopy layer. The ground parameters have little direct effect on 

HV[dB], so when HH[dB] changes due to ground parameters, HV/HH[dB] changes in an 

anti-correlated way. In this part of the parameter space, vegetation backscatter is not yet 

saturated, so vegetation parameters affect backscatter at all polarizations in a correlated 

manner, but change HV[dB] slightly more than HH[dB] (because of the backscatter from the 

canopy, as well “dilution” of HH[dB] by the other scattering mechanisms). Thus 

HV/HH[dB] and HH[dB] are also correlated in changes due to vegetation parameters. Note 
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however that this is not necessarily true everywhere in the parameter space, e.g. in the 

saturation regime. 

Next, temporal variations in the radar backscatter are considered. We summarize some of the 

temporal information for each pixel in the following way. The sample covariance of the radar 

data (arranged as a vector of three features HH[dB], VV/HH[dB] , HV/HH[dB], with mean 

subtracted) over the weekly time-series is computed as a 3x3 matrix. (Recall that frozen 

weeks were excluded.) Let 1 , 2 , 3 be the 3 real nonnegative eigenvalues, in descending 

order, in the orthogonal eigendecomposition of this covariance matrix. It turns out from the 

data that typically this 3x3 covariance matrix may be acceptably approximated by its rank-1 

approximation. This is shown in  Figure 3.9, which plots histograms of pixel counts binned 

by the fraction 1 / ( 1 + 2 + 3 ) . Note that all eligible pixels of IGBP class 1 (evergreen 

needleleaf), not just the 20% random subsample, were counted in these histograms. The 

fraction 1 / ( 1 + 2 + 3 ) represents the fraction of the total covariance in the 3x3 matrix 

that is retained by its rank-1 approximation, and as can be seen from Figure 3.9, this fraction 

is typically greater than 0.7 or 0.8 for most pixels at all three incidence angles. We also note 

from Figure 3.9 that this fraction shows no big differences between the ascending-pass (local 

6PM) and descending-pass (local 6AM). Having verified the validity of the rank-1 

approximation, the dominant eigenvalue 1 and its corresponding dominant eigenvector are 

then used for comparison with the forward model in Figure 3.10. Figure 3.10 is essentially 

the same as Figure 3.8, but also showing temporal variations in the data. As before, each 

open circle in Figure 3.10 corresponds to one of the pixels shown in Figure 3.6 and represents 

the mean taken over unfrozen periods from Sep2011-Apr2015; but now each open circle also 

comes with a line through it that visually summarizes the temporal variation. Specifically, 

the direction of this line displays the dominant eigenvector of the 3x3 covariance matrix for 

that pixel as discussed earlier, and the half-length of the displayed line is √𝜆1 .  

From Figure 3.10, it appears from the eigenvectors that for most of the pixels, HH[dB] is 

changing over time, VV/HH[dB] is not changing much over time, and HV/HH[dB] is 

changing slightly over time, and in a manner that is anti-correlated with the change in 

HH[dB]. Comparing with the model, it can be seen that if we had to choose only one physical 
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factor to explain the temporal variations in the weekly data (over unfrozen periods), it 

would be the ground relative permittivity 𝜀𝑔, i.e. changes in soil moisture. It is the only 

physical parameter out of the four considered here that, when perturbed, gives variation in 

the radar data-space that is roughly, but not exactly, in alignment with the observed directions 

of those dominant eigenvectors, in both scatterplots (VV/HH[dB] vs HH[dB], and 

HV/HH[dB] vs. HH[dB]). Furthermore, the lengths of the lines correspond to a reasonable 

amount of change in 𝜀𝑔. Recall that the half-length of the displayed line is √𝜆1 ; in our rank-

1 approximation, the half-line can be thought of as displaying a standard deviation of 

variation. In the median case, the values of ground relative permittivity corresponding to 1 

standard deviation of variation in HH[dB] are approximately 𝜀𝑔 = 5.8  and  𝜀𝑔 = 14.1. 

Though details vary slightly depending on soil type, these are reasonable values for dry and 

moist soils respectively. 

 

 

Figure 3.9. Histograms of pixel counts binned by the dominant eigenvalue as a fraction of the trace 

of the temporal covariance matrices, verifying that the dominant eigenvalue/eigenvector indeed 

capture most of the temporal variation, and that again there are no obvious differences between the 

ascending-pass (local 6PM) and descending-pass (local 6AM) data. 
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Figure 3.10. Same as Figure 3.8, but also showing temporal variations in the data. Each open circle, 

corresponding to one of the pixels shown in Figure 3.6 and representing the mean taken over 

unfrozen periods from Sep2011-Apr2015, now also comes with a line through it that visually 

summarizes the temporal variation. Specifically, the direction of this line is the dominant 

eigenvector of the covariance of the data (HH[dB], VV/HH[dB], HV/HH[dB]) for that pixel over 

the unfrozen period, and the half-length of the line is the square-root of the dominant eigenvalue.  

We can take the temporal analysis a step further to see if there is any difference in the patterns 

of variation for shorter vs longer time scales. For longer time scales, we take the median of 

the data over two-month periods January-February, March-April, May-June, July-August, 

September-October, November-December. Data from different years are pooled and 

included together so long as they fall within the same two months. Variations between 

different two-month periods would reveal “low-frequency” fluctuations. For shorter time 
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scales, we implement a simple high-pass filter for the data time-series using a kernel [-

0.25, 0.5, -0.25], i.e. if 𝑢[𝑡] is the time-series, the filtered time-series is  

𝑣[𝑡] = −0.25𝑢[𝑡 − 1] + 0.5𝑢[𝑡] − 0.25𝑢[𝑡 + 1] (3. 2) 

where the time-step of our data is 1 week, and 𝑢[𝑡] represent time-series for our radar features 

HH[dB], VV/HH[dB], HV/HH[dB] for each pixel. We then take the sample covariance of 

the filtered high-frequency time-series (arranged as a vector of three features HH[dB], 

VV/HH[dB], HV/HH[dB], with mean subtracted) computed as a 3x3 matrix (recall that 

frozen weeks were excluded), and perform eigendecomposition similar to when analyzing 

the full temporal covariance. The validity of a rank-1 approximation to this “high-frequency” 

covariance is then checked in Figure 3.11, which reveals, unsurprisingly, that the high-

frequency covariance is “noisier” and the rank-1 approximation is poorer than for the full 

temporal covariance (Figure 3.9), in particular for 6PM data. Nevertheless, we shall still 

employ the rank-1 approximation in Figure 3.12. 

 

 

Figure 3.11. Histograms of pixel counts binned by the dominant eigenvalue as a fraction of the 

trace of the “high-frequency” temporal covariance matrices. The rank-1 approximation is poorer 

for the “high-frequency” covariance than for the total temporal covariance matrices. 
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Figure 3.12. Further analysis of temporal variations in radar backscatter. The three beam incidence 

angles are now plotted in different rows (top: 29, middle: 38, bottom: 46). The left column plots 

are HV/HH[dB] vs HH[dB], while the right column plots are VV/HH[dB] vs HH[dB]. Filled 

triangles are the median over all pixels in IGBP class 1, data taken from time periods indicated by 

color: green (May-Jun), cyan (Jul-Aug), blue (Sep-Oct). Thus these colored triangles display “low-

frequency” temporal variations. Upward-pointing triangles are for descending-pass (local time 

6AM) and downward-pointing triangles are for ascending-pass data (local time 6PM). Solid gray 

lines visually summarize the “high-frequency” temporal variations of each selected pixel in Figure 

3.6. Specifically, the direction of this line is the dominant eigenvector of the covariance of the data 

(HH[dB], VV/HH[dB], HV/HH[dB]) for that pixel over the unfrozen period and after a high-

frequency filter, and the half-length of the line is the square-root of the dominant eigenvalue. Filled 

circles show the forward model with input parameters as before in Figure 3.7. Other open symbols 

explore the nearby model parameter space if one parameter is perturbed. Larger and smaller five-
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pointed stars represent a change in 𝑉𝑏,𝑡𝑜𝑡 by +25% and -25% respectively. Larger six-pointed 

stars represent an increase in 𝜀𝑣 to 𝜀𝑣 = 45.6 + 13.7𝑖, while smaller six-pointed stars represent a 

decrease to 𝜀𝑣 = 17.1 + 5.8𝑖. Larger and smaller squares represent a change 𝜀𝑔 by +50% and -50% 

respectively. Larger and smaller diamonds represent a change in ℎ by +0.5cm and -0.5cm 

respectively. Dotted lines merely serve to connect these open symbols with the filled circle. 

Figure 3.12 displays these “low-frequency” and “high-frequency” temporal fluctuations. 

There are six subplots, organized into three rows and two columns. The three beam incidence 

angles are plotted in different rows (top: 29, middle: 38, bottom: 46). The left column 

plots are HV/HH[dB] vs HH[dB], while the right column plots are VV/HH[dB] vs HH[dB]. 

Filled colored triangles display the two-month median data values; these are the “low-

frequency” fluctuations. Only May-Jun, Jul-Aug, and Sep-Oct are displayed because most 

of the November-April period corresponds to frozen conditions. The solid gray lines are 

similar to the colored lines in Figure 3.10, except that they are for the high-frequency 

temporal covariance. Specifically, the direction of each gray line displays the dominant 

eigenvector of the 3x3 “high-frequency” covariance matrix for that pixel, and the half-length 

of the displayed line is √𝜆1 . 

From Figure 3.12, we see that both “low-frequency” and “high-frequency” temporal 

fluctuations seem to be essentially similar in direction on the scatterplot as for the total 

temporal covariance (Figure 3.10). These suggest that our earlier inference, that temporal 

fluctuations in radar backscatter might primarily be due to changes in soil moisture, applies 

across temporal time-scales from 1-2 weeks to several months. Note however that our weekly 

data time-series is temporal subsampled because soil moisture changes often occur on time-

scales shorter than a week or so; effects from aliasing may have impacted our inferences. 

As an additional check on our interpretation of the spatial and temporal factors, consider 

Figure 3.13 and Figure 3.14, which plot the (total) temporal standard deviation of the HH-

polarization radar backscatter, against fitted parameters (total volume in branches 𝑉𝑏,𝑡𝑜𝑡 for 

Figure 3.13 and ground roughness RMS height h for Figure 3.14). The temporal standard 

deviations were computed over unfrozen periods from Sep2011-Apr2015 per EASE2 grid 

pixel for all valid data pixels of IGBP class 1 (evergreen needleaf forests). The fitted values 
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were found for each of these pixels as follows. For Figure 3.13, a value of 𝑉𝑏,𝑡𝑜𝑡 was fitted 

to each EASE2 grid pixel by minimizing the sum of component-wise absolute distances 

between the data and model with all other model parameters as found earlier, i.e. 

minimize
𝑉𝑏,𝑡𝑜𝑡

∑ |𝑥𝑖
(𝑑𝑎𝑡𝑎 𝑝𝑖𝑥)

− 𝑥𝑖
(𝑚𝑜𝑑𝑒𝑙)(𝑉𝑏,𝑡𝑜𝑡 , 𝜀𝑔 = 8.8, ℎ = 2.6cm)|

3

𝑖=1

(3. 3) 

𝑥1 = HH[dB] , 𝑥2 = VV/HH[dB] , 𝑥3 = HV/HH[dB] . 

To clarify, 𝑥𝑖
(𝑑𝑎𝑡𝑎 𝑝𝑖𝑥)

 is the mean value of radar feature 𝑖 (𝑖 = 1,2,3) for that EASE2 pixel 

over unfrozen periods from Sep2011-Apr2015 for data. Likewise, for Figure 3.14, a value of 

ground roughness RMS ℎ was fitted to each EASE2 grid pixel by minimizing the sum of 

component-wise absolute distances between the data and model with all other model 

parameters as found earlier, i.e. 

minimize
ℎ

∑|𝑥𝑖
(𝑑𝑎𝑡𝑎 𝑝𝑖𝑥)

− 𝑥𝑖
(𝑚𝑜𝑑𝑒𝑙)(𝑉𝑏,𝑡𝑜𝑡 = 3.1 × 10−3m3/m2, 𝜀𝑔 = 8.8, ℎ)|

3

𝑖=1

. (3. 4) 

In our actual implementation, the minimization was performed by computing the 

minimization objective function over a grid of parameter values, and choosing from amongst 

them the value that gives the smallest objective value. This grid is visible in Figure 3.13 and 

Figure 3.14.  

Figure 3.13 shows an inverse relationship between the fitted values of the total volume in 

branches 𝑉𝑏,𝑡𝑜𝑡 and the HH temporal standard deviation. This is consistent with fluctuation 

in ground relative permittivity 𝜀𝑔 (i.e. soil moisture) being an important cause of HH 

temporal variations. For forests, vegetation is significantly thick, larger 𝑉𝑏,𝑡𝑜𝑡 corresponds to 

greater canopy optical thickness 𝜏𝑐𝑛(𝜃𝑖), and thus less sensitivity to the ground. (On the other 

hand, in the sparse vegetation regime where optical thickness is small, larger 𝑉𝑏,𝑡𝑜𝑡 

strengthens the double-bounce scattering mechanisms and could enhance radar sensitivity to 

the ground.) The dependence on incidence angle is less intuitive because it is a subtle 

parameter-dependent interplay between the extinction, the direct backscatter from the 
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ground, the Fresnel reflection coefficients, and the angle-dependence of bistatic scattering 

coefficients off the cylinders. For these parameters here, the forward model predicts a slight 

decrease in HH temporal standard deviation with incidence angle increasing from 29 to 46; 

there is but a tenuous suggestion of such a trend in the scatterplot.  

 

Figure 3.13. Temporal standard deviation over unfrozen periods from Sep2011-Apr2015 of 

Aquarius L-band HH[dB] data, vs. fitted values of 𝑉𝑏,𝑡𝑜𝑡. Each open triangle represents one EASE2 

grid pixel of IGBP class 1 (evergreen needleleaf forests). While keeping other forward model 

parameters as before in Figure 3.8 (𝑚 = 1 and 𝜃0 = 𝜋/2  in equation (2.6), vegetation cylinder 

relative permittivity  𝜀𝑣 = 29.9 + 9.5𝑖, ground relative permittivity 𝜀𝑔 = 8.8, ground roughness 

RMS height ℎ = 2.6cm), the total volume in branches 𝑉𝑏,𝑡𝑜𝑡 was now allowed to vary and fitted 

for each pixel; these are the values on the horizontal axis. Blue, red, and green triangles representing 

the three different beam incidence angles (29, 38, 46 respectively) as usual. Upward-pointing 

triangles are for descending-pass data (local time 6AM) and downward-pointing triangles are for 

ascending-pass data (local time 6PM). 
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Figure 3.14. Temporal standard deviation over unfrozen periods from Sep2011-Apr2015 of 

Aquarius L-band HH[dB] data, vs. fitted values of ground surface roughness RMS height ℎ. Each 

open triangle represents one EASE2 grid pixel of IGBP class 1 (evergreen needleleaf forests). 

While keeping other forward model parameters as before in Figure 3.8 ( 𝑚 = 1 and 𝜃0 = 𝜋/2  in 

equation (2.6), vegetation cylinder relative permittivity  𝜀𝑣 = 29.9 + 9.5𝑖, total volume in branches 

𝑉𝑏,𝑡𝑜𝑡 = 3.1 × 10−3m3/m2, ground relative permittivity 𝜀𝑔 = 8.8), the ground surface roughness 

RMS height ℎ was now allowed to vary and fitted for each pixel; these are the values on the 

horizontal axis. Blue, red, and green triangles representing the three different beam incidence 

angles (29, 38, 46 respectively) as usual. Upward-pointing triangles are for descending-pass data 

(local time 6AM) and downward-pointing triangles are for ascending-pass data (local time 6PM).  

Figure 3.14 also suggests an inverse relationship between the fitted ground roughness 

parameter ℎ and the HH temporal standard deviation, despite significant scatter. This is also 

consistent with soil moisture being a driver of HH temporal variations, and further that this 

effect is seen by the radar primarily through double-reflection mechanisms. Coherent 

reflection off a rougher ground surface is weaker (equation 2.15), so the impact by variations 

in ground relative permittivity 𝜀𝑔 on ground-trunk and ground-canopy double-reflection 

scattering mechanisms is also weaker for rougher ground surfaces. However, if the impact 

of 𝜀𝑔 fluctuations is primarily through direct backscatter from the ground instead (e.g. in the 

regime when the incidence angle is small, ground roughness ℎ is high, and the vegetation is 
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thin), then rougher ground surfaces instead strengthen the direct backscatter from the 

ground, and we should see a positive relationship between ℎ and HH temporal standard 

deviation.  

Observe from both Figure 3.13 and Figure 3.14 that there is also a slight correlation of the 

fitted parameters with incidence angle. This correlation should not exist, and is probably an 

artefact of model deficiencies and overfitting (because for each pixel, one parameter is being 

fit to only three data numbers). 

Let us also look in detail at the time series data from an example pixel. We shall use Aquarius 

backscatter data corresponding to EASE2 grid row 66, column 155; the IGBP land cover 

classification for this pixel is class 1 (evergreen needleleaf forests). Within this pixel is 

SNOTEL site #344 (Billie Creek Divide, 42.4N, 122.27W, elevation 1609m), where soil 

moisture and precipitation were measured. We obtained the data from the National Resources 

Conservation Service [86] of the US Department of Agriculture and the International Soil 

Moisture Network [87, 88]. Data from October 2011-Dec2014 are plotted in Figure 3.15. As 

can be seen from Figure 3.15, there is some correlation between HH radar backscatter and 

soil moisture – we see decreases in HH backscatter accompanying drying-downs in the soil 

moisture, and spikes in HH backscatter accompanying spikes in soil moisture brought by 

precipitation. There is generally an annual pattern of soil moisture starting high in the spring 

and decreasing into the summer, likely associated with snowmelt, observed not only at this 

ground station but at many other sites as well (not displayed); this is likely a widespread 

phenomenon in the boreal/hemiboreal/temperate forests in the Northern hemisphere as seen 

from the Aquarius data.   

However, we can also see from Figure 3.15 that the correlations between radar backscatter 

and soil moisture is not always consistent, and there are some fluctuations in HH backscatter 

that do not accompany variations in soil moisture, and vice-versa. Further, according to our 

model, HV/HH should be negatively correlated with HH and soil moisture if all other factors 

are held constant; from the data, we certainly see that not all fluctuations in HV/HH are 

negatively correlated with HH. These remind us that though soil moisture is important, other 

factors affecting backscatter variations cannot be neglected. 
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Figure 3.15. Aquarius backscatter data and ground measurements at SNOTEL site #344. HH 

backscatter is plotted with red triangles, HV/HH backscatter is plotted with green circles, both are 

displayed in dB units and share the axis scale on the left. Precipitation in mm/day is plotted with a 

solid blue line, volumetric soil moisture in percentage (cm3/cm3) is plotted with a solid black line, 

and both share the axis scale on the right. 

Let us summarize the comparison in this section between model and data for IGBP class 1 

(evergreen needleleaf forests) areas, taken at a coarse global spatial scale. Spatial variations 

in the L-band radar backscatter are likely due to a combination of variations in both 

vegetation and ground factors, in particular ground surface roughness. Changes in ground 
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dielectric relative permittivity, which is directly related to changes in soil moisture, are an 

important driver of temporal variations (as observed from the weekly samples during 

unfrozen periods) in the L-band radar backscatter, though again not the sole cause. Diurnal 

differences, though possibly present, are not conclusive from the Aquarius dataset alone. 

These findings and interpretations were based on analysis of the Aquarius multi-polarization 

scatterometer data, and using the forward model of Chapter 2. 

3.4 Evergreen broadleaf forests (IGBP class 2) 

Using the MODIS land cover map, the geographic distribution of the evergreen broadleaf 

forests (IGBP class 2) is shown in Figure 3.5 and Figure 3.16 for emphasis. Most of these 

pixels come from the Amazon basin and the Congo basin. A random 10% selection of the 

EASE2 grid pixels is displayed in Figure 3.16. Land area for evergreen broadleaf forests 

from Southeast Asia are slightly underrepresented compared to the Amazon or Congo areas 

for several reasons: greater amounts of RFI corruption, mountainous areas with high terrain 

slope, and coastal areas with the presence of water within the large radar footprints. 

 
Figure 3.16. Geographic distribution of evergreen broadleaf forests (IGBP class 2) and randomly 

selected 10% of filtered Aquarius data EASE2 grid pixels, marked by open triangle symbols. 
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Figure 3.17. Aquarius L-band scatterometer data for EASE2 grid pixels classified as evergreen 

broadleaf forests (IGBP class 2). The three different beam incidence angles are represented by 

color: blue (29), red (38), and green (46). Upward-pointing triangles are for descending-pass 

data (local time 6AM) and downward-pointing triangles are for ascending-pass data (local time 

6PM). Each open triangle represents data from one of the pixels shown in Figure 3.16, taking the 

mean over Sep2011-Apr2015 for each pixel. Filled triangles are the median over open triangles, 

but with median taken over all data pixels of this class instead of only the 10% displayed. Filled 

circles show the forest forward model from Chapter 2, with parameters 𝑚 = 0 (uniformly random 

cylinder orientation distribution) in equation (2.6), total volume in branches 𝑉𝑏,𝑡𝑜𝑡 = 9.7 ×

10−3m3/m2, vegetation cylinder relative permittivity  𝜀𝑣 = 29.9 + 9.5𝑖, ground relative 

permittivity 𝜀𝑔 = 20.1, ground roughness RMS height ℎ = 2.2cm. 

The scatterometer data for the selected pixels is displayed in Figure 3.17, which depicts two 

scatterplots: one of VV/HH[dB] vs HH[dB], and another of HV/HH[dB] vs HH[dB], similar 

to Figure 3.7 except for a change in IGBP class. The symbol descriptions are in the figure 
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caption. Each open triangle represents the mean value (of the plotted quantities) of data 

from Sep2011-Apr2015 from its corresponding pixel shown in Figure 3.16. Filled circles 

show the results from the forest forward model from Chapter 2. The parameter 𝑚 = 0 (i.e. 

uniformly random orientation distribution of cylinders ; 𝜃0 does not matter in this case) in 

equation (2.6) was used, and the vegetation cylinder relative permittivity chosen as  𝜀𝑣 =

29.9 + 9.5𝑖 as usual. Other model input parameters are: total volume in branches 𝑉𝑏,𝑡𝑜𝑡, 

ground relative permittivity 𝜀𝑔, and ground roughness RMS height ℎ. From Saatchi et al. [7], 

the above-ground biomass for evergreen broadleaf forests is about 𝑀𝑡𝑜𝑡 = 300 tons/ha. 

Based on work by Segura and Kanninen [89], Brown and Lugo [90], and Nogueira et al. 

[91], a value of =0.62g/cm3 was used as the value for the wood specific gravity (ratio of 

“oven-dry weight” to “green volume”). Combined with our earlier estimate of 0.2 for the 

fraction 𝑉𝑏,𝑡𝑜𝑡/(𝑉𝑏,𝑡𝑜𝑡 + 𝑉𝑡𝑟𝑘,𝑡𝑜𝑡)  and taking  𝑀𝑡𝑜𝑡 = 𝜌(𝑉𝑏,𝑡𝑜𝑡 + 𝑉𝑡𝑟𝑘,𝑡𝑜𝑡), these give an 

estimated  𝑉𝑏,𝑡𝑜𝑡 = 9.7 × 10−3m3/m2.  For the ground relative permittivity, we choose 

𝜀𝑔 = 20.1, with reference to work by Wang et al. [92]. The only input parameter chosen 

using the Aquarius data was the ground RMS height ℎ = 2.2cm, chosen to give a reasonable 

fit to the pooled (ascending and descending) data. The fitting procedure minimized a function 

similar to (3.1) and (3.4) : 

minimize
ℎ

∑ ∑|𝑥𝑖
(𝑑𝑎𝑡𝑎 𝑝𝑖𝑥)

− 𝑥𝑖
(𝑚𝑜𝑑𝑒𝑙)(𝑉𝑏,𝑡𝑜𝑡 = 9.7 × 10−3m3/m2, 𝜀𝑔 = 20.1, ℎ)|

3

𝑖=1𝑑𝑎𝑡𝑎 𝑝𝑖𝑥

 

𝑥1 = HH[dB] , 𝑥2 = VV/HH[dB] , 𝑥3 = HV/HH[dB] . 

From Figure 3.17, it can be seen that the forward model somewhat agrees with the data, but 

not as well as for IGBP class 1 (evergreen needleleaf forests). Part of this may be due to the 

fact that only one parameter was fitted here, while three parameters were fitted for evergreen 

needleleaf forests, but a more likely explanation is that the model is simply less appropriate 

in this case. Recall that in keeping the overall number of parameters small, only cylinders 

(corresponding to branches) in the canopy were modelled, and there was no consideration of 

leaves. This is likely to be less valid in evergreen broadleaf forests. 
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From Figure 3.17, there might be a tiny (0.1dB) difference overall between the ascending-

pass (local time 6PM) data and descending-pass (local time 6AM) data. Various authors [93, 

94, 95] have reported diurnal differences (higher at sunrise) in radar backscatter from the 

Amazon using shorter wavelength (Ku band) scatterometers; van Emmerik et al. [93] 

provided evidence that this is driven by vegetation water stress. As noted earlier in Section 

3.3, due to other possible confounding factors such as differences in footprints and azimuth 

angles, it is thus difficult to be conclusive based on this 0.1dB median difference. 

We then attempt to use the forward model to analyze the spatial and temporal variations in 

the radar backscatter data for IGBP class 2 (evergreen broadleaf forests). Displayed in Figure 

3.18 are the same data points as Figure 3.17, now with the descending-pass (local time 6AM) 

and ascending-pass (local time 6PM) data pooled and all marked with open circles instead 

of triangles. Overlaid on the data are filled symbols showing the results from the forward 

model. The filled circles show the forward model with parameters as before. Other filled 

symbols explore the nearby model parameter space if one parameter is perturbed. The 

symbols are explained in the caption, and are similar to those used in Figure 3.10. Each line 

through each open circle represents the dominant eigenvector of the covariance of the data 

(HH[dB], VV/HH[dB], HV/HH[dB]) for that pixel, and the half-length of each line is the 

square-root of the dominant eigenvalue. These lines visually summarize the temporal 

variations (sampled weekly over Sep2011-Apr2015). Figure 3.19 plots histograms of pixel 

counts binned by the fraction 1 / ( 1 + 2 + 3 ) ; like in Figure 3.9, it serves to verify the 

dominance of the first eigenvalue/eigenvector and the validity of the rank-1 approximation. 

Unlike in Figure 3.9, however, here there is some hint of  differences between the ascending-

pass (local 6PM) and descending-pass (local 6AM) at larger incidence angles. For the 

ascending-pass (local 6PM) data, there is slightly more temporal variation not captured by 

the dominant eigenvalue/eigenvector. 
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Figure 3.18. Same as Figure 3.17, but with no distinction made between descending- and 

ascending-pass data; all open triangles are replaced with open circles. Each open circle now also 

comes with a line through it that visually summarizes the temporal variation. The direction of this 

line is the dominant eigenvector of the covariance of the data (HH[dB], VV/HH[dB], HV/HH[dB]) 

for that pixel, and the half-length of the line is the square-root of the dominant eigenvalue. Filled 

circles show the forward model with parameters as before in Figure 3.17. Other filled symbols 

explore the nearby model parameter space if one parameter is perturbed. Larger and smaller five-

pointed stars represent a change in 𝑉𝑏,𝑡𝑜𝑡 by +25% and -25%, respectively. Larger and smaller six-

pointed stars represent a change in 𝜀𝑣 to 𝜀𝑣 = 45.6 + 13.7𝑖 and 𝜀𝑣 = 17.1 + 5.8𝑖, respectively. 

Larger and smaller squares represent a change 𝜀𝑔 by +50% and -50%, respectively. Larger and 

smaller diamonds represent a change in ℎ by +0.5cm and -0.5cm, respectively. 
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Figure 3.19. Histograms of pixel counts binned by the dominant eigenvalue as a fraction of the 

trace of the temporal covariance matrices, verifying that the dominant eigenvalue/eigenvector 

indeed capture most of the temporal variation. All eligible pixels of IGBP class 2 (evergreen 

broadleaf), not just the 10% random subsample, were included. 

We see from Figure 3.18 that the spatial and temporal variations are not readily interpretable 

using the model. The first issue is that in this saturation regime of parameter space, some 

effects of changing ground vs. vegetation parameters are confounded and not easily 

separable. Only changes in the relative permittivity of the cylinders give changes that are 

somewhat in a different direction on the scatterplots, while changes in the other parameters 

are difficult to distinguish from one another. There does not appear to be a single physical 

factor that provides close agreement with either the spatial variations (visualized by the 

distribution of open circles) or the temporal variations (visualized by the lines through the 

open circles). This may be in part due to the afore-mentioned deficiencies in the model, or 

may indeed be a reflection of the lack of dominance of a single physical factor responsible 

for the changes in radar backscatter. 

Our model is not entirely without merit, being able to explain the variations in polarimatric 

signature due to flooded/nonflooded conditions underneath the canopy in parts of the 

Amazon basin.  It is known that some low-lying parts of the Amazon basin experience 

seasonal flooding due to the rainy season. This flooding is observable by radar [67] and 

measurable by interferometry [66]. Figure 3.20 shows the topography of the Amazon basin. 

The white box marks the region bounded by latitudes 2.5S to 4.8S and longitudes 57.9W 

to 64.2W. We compare Aquarius L-band scatterometer observations within this box with 

predictions of our forward model in Figure 3.21. Figure 3.21 plots scatterplots (left: 
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HV/HH[dB] vs HH[dB], right: VV/HH[dB] vs HH[dB]) similar to Figure 3.17, except 

that only the median values of pixels within the white box of Figure 3.20 are displayed, 

instead of the individual pixels. The three beam incidence angles are plotted separately (top: 

29, middle: 38, bottom: 46) and colors are now used to represent the month of year, as in 

the figure legend. Black filled circles show the forward model with parameters as before in 

Figure 3.17 and Figure 3.18, while open circles depict a simultaneous change in both ground 

parameters to  𝜀𝑔 = 80 and ℎ = 0cm, representing a smooth flooded surface. While the 

forward model (black filled circles) is not entirely accurate as discussed earlier, the variations 

in polarimatric signature predicted, i.e. direction of change on the scatterplot, are in good 

agreement with the data, with both HV/HH[dB] and VV/HH[dB] changing inversely with 

HH[dB]. This is considering that in reality, the vegetation may also contribute a secondary 

component to the seasonal changes in backscatter. The magnitudes of change of radar 

backscatter observed, i.e. around 0.6dB for HH at 46 incidence angle and 1.2dB for HH at 

29 incidence angle, are expectedly no greater than the model predictions (0.6dB at 46 

incidence angle, 1.6dB at 29 incidence angle); parts of the radar footprints may not be within 

the inundation zones. The essence of our results are similar to modeling efforts by Wang et 

al. [92].  

 
Figure 3.20. Topography of the Amazon Basin. The white box marks the region bounded by 

latitudes 2.5S to 4.8S, longitudes 57.9W to 64.2W. Many parts of this region are susceptible to 

seasonal flooding. Temporal variations in the data from this region are analyzed in Figure 3.21. 
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Figure 3.21. Temporal variations in the data from the region bounded by the white box in Figure 

3.20, many parts of which are susceptible to seasonal flooding. Colored triangles are median values 

from the pixels within the box, for some part of each year (red: Jan-Feb; yellow: Mar-Apr; green: 

May-Jun; cyan: Jul-Aug; blue: Sep-Oct; magenta: Nov-Dec). Upward-pointing and downward-

pointing triangles are for descending-pass (local time 6AM) and ascending-pass data (local time 

6PM), respectively. Black filled circles show the forward model with parameters as before in Figure 

3.17 and Figure 3.18. Black open symbols explore the nearby model parameter space if one 

parameter is perturbed. Larger and smaller five-pointed stars represent a change in total branch 

volume 𝑉𝑏,𝑡𝑜𝑡 by +25% and -25%, respectively. Larger and smaller six-pointed stars represent a 

change in vegetation cylinder relative permittivity  𝜀𝑣 to  𝜀𝑣 = 45.6 + 13.7𝑖 and 𝜀𝑣 = 17.1 + 5.8𝑖, 
respectively. Open squares depict ground relative permittivity 𝜀𝑔 = 80 (relative permittivity of 

water). Open diamonds depict ground roughness RMS height ℎ = 0cm (perfectly smooth surface). 

Open circles depict a simultaneous change in both ground parameters to  𝜀𝑔 = 80 and ℎ = 0cm, 

representing a smooth flooded surface. 
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In summary, the agreement between the model and data for IGBP class 2 (evergreen 

broadleaf forests) areas is significantly poorer than for IGBP class 1, but still not too far off 

quantitatively (within about 1dB). Spatial and temporal variations in the L-band radar 

backscatter were not readily interpretable using the model. However for the case of 

subcanopy flooding, the model did quantitatively predict changes in multi-polarization 

backscatter that were in agreement with the data observations. 

3.5 Deciduous needleleaf forests (IGBP class 3) 

Using the MODIS land cover map, the geographic distribution of the deciduous needleleaf 

forests (IGBP class 3) is shown in Figure 3.22. Much of this is the Eastern Siberian taiga: 

forests of primarily Dahurian and Siberian larches, with smaller areas of pines and other 

species. Figure 3.22 displays a random 20% selection of the EASE2 grid pixels.  

 
Figure 3.22. Geographic distribution of deciduous needleleaf forests (IGBP class 3) and randomly 

selected 20% of filtered Aquarius data EASE2 grid pixels, marked by open triangle symbols. 

The scatterometer data for the selected pixels is displayed in Figure 3.23, which depicts two 

scatterplots: one of VV/HH[dB] vs HH[dB], and another of HV/HH[dB] vs HH[dB], similar 

to Figure 3.17 except for a change in IGBP class. The symbol descriptions are in the figure 

caption. Filled circles show the results from the forest forward model from Chapter 2. The 

parameters 𝑚 = 1 and 𝜃0 = 𝜋/2 (cosine-squared orientation distribution about the 

horizontal) in equation (2.6) were used, and the vegetation cylinder relative permittivity 

chosen as  𝜀𝑣 = 29.9 + 9.5𝑖 as usual. Other model input parameters are: total volume in 
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branches 𝑉𝑏,𝑡𝑜𝑡 = 2.8 × 10−3m3/m2, ground relative permittivity 𝜀𝑔 = 6.2, ground 

roughness RMS height ℎ = 2.1cm. These latter three parameters (𝑉𝑏,𝑡𝑜𝑡, 𝜀𝑔, ℎ) were chosen 

by fitting to the pooled (ascending and descending) data, in the same way as in equation 

(3.1). 

From Figure 3.23, it can be seen that the forward model gives reasonable overall agreement 

to the data, similar to the case for IGBP class 1 (evergreen needleleaf forests), albeit using 

fitted parameters. The fitted ground parameters fall within their expected ranges. The ground 

relative permittivity is lower than for IGBP class 1, which is in reasonable expectation 

considering the drier climate of Eastern Siberia. Following the same estimation procedure as 

for IGBP class 1 earlier, 𝑉𝑏,𝑡𝑜𝑡 = 2.8 litres/m2 corresponds to 63tons/ha of aboveground 

biomass. Referring to the study by Shepashenko et al. [84] for Siberian forest phytomass 

using Russian state forest inventories and regression analysis, Fig. 1 in that paper displays 

an estimate of around 3-4kgC/m2 carbon for much of the corresponding region in Eastern 

Siberia. Using their conversion factor of 0.5 for phytomass to carbon content, this translates 

to 60-80 tons/ha. Bearing in mind that roots were including in their estimate, the agreement 

is close. 

With regards to the variation between the descending-pass (local time 6AM) and ascending-

pass (local time 6PM) data, there may be a slight difference, but it is small (compared to the 

spatial variation between pixels, and longer period temporal variations to be discussed later) 

when considered in an average sense over time and multiple pixels. Thus we consider it 

inconclusive and again pool the 6AM and 6PM data for now. 
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Figure 3.23. Aquarius L-band scatterometer data for EASE2 grid pixels classified as deciduous 

needleleaf forests (IGBP class 3). The three different beam incidence angles are represented by 

color: blue (29), red (38), and green (46). Upward-pointing triangles are for descending-pass 

data (local time 6AM) and downward-pointing triangles are for ascending-pass data (local time 

6PM). Each open triangle represents data from one of the pixels shown in Figure 3.22, taking the 

mean over unfrozen periods from Sep2011-Apr2015 for each pixel. Filled triangles are the median 

over open triangles, but with median taken over all data pixels of this class instead of only the 20% 

displayed. Filled circles show the forest forward model from Chapter 2, with parameters 𝑚 = 1 

and 𝜃0 = 𝜋/2 (preferential horizontal orientation) in equation (2.6), total volume in branches 

𝑉𝑏,𝑡𝑜𝑡 = 2.8 × 10−3m3/m2,  vegetation cylinder relative permittivity  𝜀𝑣 = 29.9 + 9.5𝑖, ground 

relative permittivity 𝜀𝑔 = 6.2, ground roughness RMS height ℎ = 2.1cm . 
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Figure 3.24. Same as Figure 3.23, but with no distinction made between descending- and 

ascending-pass data; all are marked with open circles. Filled circles show the forward model with 

parameters as before in Figure 3.23 (preferential horizontal orientation distribution of cylinders 

with 𝑚 = 1 and 𝜃0 = 𝜋/2  in equation (2.6), total volume in branches 𝑉𝑏,𝑡𝑜𝑡 = 2.8 × 10−3m3/m2,  

vegetation cylinder relative permittivity  𝜀𝑣 = 29.9 + 9.5𝑖, ground relative permittivity 𝜀𝑔 = 6.2, 

ground roughness RMS height ℎ = 2.1cm). Other filled symbols explore the nearby model 

parameter space if one parameter is perturbed. Larger and smaller five-pointed stars represent a 

change in 𝑉𝑏,𝑡𝑜𝑡 by +25% and -25%, respectively. Larger six-pointed stars represent an increase in 

𝜀𝑣 to 𝜀𝑣 = 45.6 + 13.7𝑖, while smaller six-pointed stars represent a decrease to 𝜀𝑣 = 17.1 + 5.8𝑖. 
Larger and smaller squares represent a change 𝜀𝑔 by +50% and -50%, respectively. Larger and 

smaller diamonds represent a change in ℎ by +0.5cm and -0.5cm, respectively. 

The model is then used to analyze the spatial variation in the radar backscatter data across 

different pixels. Figure 3.24 displays the same data as Figure 3.23, now with the descending-

pass (local time 6AM) and ascending-pass (local time 6PM) data pooled and all marked with 
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open circles instead of triangles. The three different beam incidence angles are again 

represented with blue, red, and green colors (29, 38, 46, respectively). Overlaid on the 

data are filled symbols showing the results from the forward model. The filled circles show 

the forward model with parameters as before. Other filled symbols explore the nearby model 

parameter space if one parameter is perturbed, as described in the caption. From Figure 3.24, 

we see that, unlike the case for evergreen needleleaf forests (IGBP class 1), it may be possible 

to attribute a greater role for vegetation parameters as a source of spatial variation than 

ground parameters. The decreased role of ground parameters for spatial variation within 

IGBP class 3 (deciduous needleleaf forests) may perhaps be due to drier soils and lower 

values of 𝜀𝑔 (thus weaker double-reflections), as well as the geographic distribution being 

localized primarily to Eastern Siberia only (thus perhaps less variance in ground roughness 

ℎ). These guesses require more evidence to verify, however; ground parameters may still 

have a significant involvement in the spatial variations in the radar backscatter. 

Next, temporal variations in the radar backscatter are considered. If we consider the total 

temporal covariance like in Figure 3.9 and Figure 3.10, we would find that the rank-1 

approximation is also good for IGBP class 3 and that the primary physical parameter 

associated with the temporal variation during unfrozen periods (sampled weekly over 

Sep2011-Apr2015) is most probably the ground relative permittivity 𝜀𝑔 , i.e. changes in soil 

moisture. Furthermore, changes in vegetation parameters ( 𝑉𝑏,𝑡𝑜𝑡 or 𝜀𝑣 )  positively correlated 

with the change in 𝜀𝑔 , i.e. vegetation growth or increased vegetation water content correlated 

with increase in soil moisture, would appear to be a secondary but non-negligible contributor 

to changes in L-band radar backscatter. Here we do not plot figures analogous to Figure 3.9 

and Figure 3.10, but directly move on to analyzing the temporal variations in terms of longer 

and shorter time-scale changes, analogous to Figure 3.11 and Figure 3.12. Again, we use 

two-month medians for “low-frequency” and the high-pass filter of equation (3.2) for “high-

frequency” analysis. 

Like in Figure 3.11, Figure 3.25 plots histograms of pixel counts binned by the fraction 1 / 

( 1 + 2 + 3 ) in the eigendecomposition of the “high-frequency” temporal covariance 
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matrix. Again the rank-1 approximation is poorer than for the total temporal covariance, 

but may still be used.  The scatterplots of Figure 3.26 are the same as Figure 3.12 except for 

a change in IGBP class. The three beam incidence angles are plotted in different rows (top: 

29, middle: 38, bottom: 46). The left column plots are HV/HH[dB] vs HH[dB], while the 

right column plots are VV/HH[dB] vs HH[dB]. Filled colored triangles display the two-

month median data values; these are the “slow” or “low-frequency” fluctuations. Only May-

Jun, Jul-Aug, and Sep-Oct are displayed because most of the November-April period 

corresponds to frozen conditions. “Fast” fluctuations are depicted by the solid gray lines. 

Their directions display the dominant eigenvector of the 3x3 “high-frequency” covariance 

matrix for that pixel, and the half-length of the displayed line is √𝜆1 , the square root of the 

corresponding dominant eigenvalue. 

 

 
Figure 3.25. Histograms of pixel counts binned by the dominant eigenvalue as a fraction of the 

trace of the “high-frequency” temporal covariance matrices, for IGBP class 3 (deciduous 

needleleaf). The rank-1 approximation is poorer for the “high-frequency” covariance than for the 

total temporal covariance matrices. 
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Figure 3.26. Same as Figure 3.12, showing “slow” and “fast” temporal variations in radar 

backscatter, but for IGBP class 3. The three rows correspond to the three beam incidence angles 

(top: 29, middle: 38, bottom: 46). The left column plots are HV/HH[dB] vs HH[dB], while the 

right column plots are VV/HH[dB] vs HH[dB]. Filled triangles are the median over all pixels in 

IGBP class 3, data taken from time periods indicated by color: green (May-Jun), cyan (Jul-Aug), 

blue (Sep-Oct), thus displaying “low-frequency” temporal variations. Solid gray lines visually 

summarize the “high-frequency” temporal variations of each selected pixel in Figure 3.22. 

Specifically, the direction of this line is the dominant eigenvector of the covariance of the data 

(HH[dB], VV/HH[dB], HV/HH[dB]) for that pixel over the unfrozen period and after a high-

frequency filter, and the half-length of the line is the square-root of the dominant eigenvalue. Filled 

circles show the forward model with input parameters as before in Figure 3.24. Other open symbols 

explore the nearby model parameter space if one parameter is perturbed. Larger and smaller five-

pointed stars represent a change in 𝑉𝑏,𝑡𝑜𝑡 by +25% and -25%, respectively. Larger six-pointed stars 

represent an increase in 𝜀𝑣 to 𝜀𝑣 = 45.6 + 13.7𝑖, while smaller six-pointed stars represent a 
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decrease to 𝜀𝑣 = 17.1 + 5.8𝑖. Larger and smaller squares represent a change 𝜀𝑔 by +50% and -

50%, respectively. Larger and smaller diamonds represent a change in ℎ by +0.5cm and -0.5cm, 

respectively. Dotted lines merely serve to connect these open symbols with the filled circle. 

From Figure 3.26, we see that the “fast” temporal changes are also probably due to changes 

in ground relative permittivity 𝜀𝑔 (i.e. soil moisture) with positively correlated changes in 

vegetation parameters ( 𝑉𝑏,𝑡𝑜𝑡 or 𝜀𝑣 , i.e. vegetation growth or increased vegetation water 

content) as a secondary contribution. The “slow” temporal changes in radar backscatter are 

a little more ambiguous and interesting to interpret. It seems that at incidence angle of 29, 

soil moisture changes dominate the slow changes, but at incidence angle of 46, vegetation 

changes may become more important, consistent with a reduced sensitivity to ground 

parameters at larger incidence angles.  

Let us summarize the comparison between model and data for IGBP class 3 (deciduous 

needleleaf forests) areas, taken at a coarse regional spatial scale. Overall the model and data 

show reasonable agreement. Spatial variations in the L-band radar backscatter are due to a 

combination of variations in both ground and vegetation factors. Temporal variations 

(sampled weekly during unfrozen periods) in the L-band radar backscatter are primarily due 

to changes in soil moisture, and secondarily due to changes in vegetation (either vegetation 

growth or increased vegetation water content, or both), and the changes in soil moisture and 

vegetation are positively correlated with each other. For temporal variations at slower time-

scales of months, vegetation changes may become more dominant at higher incidence angles.  

3.6 Deciduous broadleaf forests (IGBP class 4) 

The geographic distribution of this class is in the eastern United States, parts of Europe, and 

northeast Asia, and the Chaco plain of South America. However due to human development, 

the only significant contiguous region in this class with data not excessively RFI polluted 

lies in the tropical dry forest of the Chaco plain of South America. As this land area is 

relatively small compared to some of the other IGBP land cover classes, a random 50% 

selection of the available filtered EASE2 grid are displayed. Using the MODIS land cover 

map, the geographic distribution of the deciduous broadleaf forests (IGBP class 4) is shown 
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in Figure 3.5 and Figure 3.27 for emphasis. The data pixels are marked by open triangle 

symbols on Figure 3.27, with upward-pointing triangles for descending-pass data (local time 

6AM) and downward-pointing triangles for ascending-pass data (local time 6PM), while the 

three different beam incidence angles are represented by color: blue (29), red (38), and 

green (46), like in the previous figures. Note that the radar footprints and swath widths are 

now no longer small compared to the land region being considered: it is apparent from Figure 

3.27 that only about two full swath widths suffice to cover the entire longitude span of this 

region. As such, when we analyze the data from this IGBP class as whole, there is potentially 

a strong correlation between incidence angle and ascending/descending pass with other 

environmental factors that are changing from East to West across the region [96]. 

 
Figure 3.27. Geographic distribution of contiguous deciduous broadleaf forests (IGBP class 4) with 

sufficient good quality Aquarius scatterometer data is concentrated in the Chaco Plain region of 

South America. A random 50% selection of filtered Aquarius data EASE2 grid pixels are displayed, 

marked by open triangle symbols. The three different beam incidence angles are represented by 

color: blue (29), red (38), and green (46). Upward-pointing triangles are for descending-pass 

data (local time 6AM) and downward-pointing triangles are for ascending-pass data (local time 

6PM). 
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We attempt to proceed with the analysis as for the other IGBP classes. The scatterometer 

data is displayed in Figure 3.28, which depicts two scatterplots: one of VV/HH[dB] vs 

HH[dB], and another of HV/HH[dB] vs HH[dB], similar to Figure 3.7 except for a change 

in IGBP class. The symbol descriptions are in the figure caption. Filled circles show the 

results from the forest forward model from Chapter 2. The parameters 𝑚 = 0 (uniformly 

random orientation distribution) in equation (2.6) were used, and the vegetation cylinder 

relative permittivity chosen as  𝜀𝑣 = 29.9 + 9.5𝑖 as usual. Other model input parameters are: 

total volume in branches 𝑉𝑏,𝑡𝑜𝑡 = 3.0 × 10−3m3/m2, ground relative permittivity 𝜀𝑔 = 4.3, 

ground roughness RMS height ℎ = 2.5cm. These latter three parameters (𝑉𝑏,𝑡𝑜𝑡, 𝜀𝑔, ℎ) were 

chosen by fitting to the pooled (ascending and descending) data, in the same way as in 

equation (3.1). The fitted parameters are somewhat similar to the other forest classes. The 

fitted ground relative permittivity 𝜀𝑔 = 4.3 seems unusually low. However it is also true that 

there is a long half-year dry season (winter-spring) with negligible rainfall in some areas 

[96], so a low value of 𝜀𝑔 might not be implausible.  

From Figure 3.28, we can see that, as previously mentioned, the correlation between 

incidence angle and ascending/descending pass with other geographical factors is indeed a 

confounding issue. In particular, from the scatterplot of VV/HH[dB] vs HH[dB], the data for 

beam 2 shows two distinct clusters, one with VV/HH[dB] closer to about -0.3dB, and the 

other with VV/HH[dB] of about -1dB. The cluster with VV/HH[dB] around -0.3dB 

corresponds to the strip of western pixels (mostly of beam 2, descending pass 6AM data) in 

Figure 3.27. Geographically these are at a higher elevation and run up towards the Andean 

cordillera, and despite the terrain slope filter that had been applied, many of these pixels are 

border cases and some high-terrain slope lands of the Subandean Sierras are likely included 

in part of the radar footprints (which, at 100km, are significantly larger than the pixel size 

of 36km). This “contamination” is consistent with the data observations, as high-terrain 

slope areas have expected VV/HH ratio close to unity (i.e. or 0dB). Likewise, other 

confounding geographical factors may be responsible for the apparent disparity in median 

values between ascending/descending pass data. As such, we do not attempt to use the model 

to analyze the spatial variation in the radar backscatter data across different pixels. 
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Figure 3.28. Aquarius L-band scatterometer data for EASE2 grid pixels classified as deciduous 

broadleaf forests (IGBP class 4) displayed in Figure 3.27. The three different beam incidence angles 

are represented by color: blue (29), red (38), and green (46). Upward-pointing triangles are for 

descending-pass data (local time 6AM) and downward-pointing triangles are for ascending-pass 

data (local time 6PM). Each open triangle represents data from one of the pixels shown in Figure 

3.27, taking the mean over Sep2011-Apr2015 for each pixel. Filled triangles are the median over 

open triangles, but with median taken over all data pixels of this class instead of only the 50% 

displayed. Filled circles show the forest forward model from Chapter 2, with parameters 𝑚 = 0 

(uniformly random orientation distribution) in equation (2.6), total volume in branches 𝑉𝑏,𝑡𝑜𝑡 =

3.0 × 10−3m3/m2,  vegetation cylinder relative permittivity  𝜀𝑣 = 29.9 + 9.5𝑖 , ground relative 

permittivity 𝜀𝑔 = 4.3 , and ground roughness RMS height ℎ = 2.5cm 
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However, the temporal analysis shows clear results. We plot in Figure 3.30 the usual 

scatterplots with the two-month medians and “fast/high-frequency” dominant 

eigenvalue/eigenvector lines. In fact for this IGBP class, the first eigenvalue/eigenvector 

appear to be exceptionally dominant, as shown by Figure 3.29.  From Figure 3.30, especially 

the scatterplots of VV/HH[dB] vs. HH[dB], we see that the primary physical parameter 

associated with both “fast” and “slow” temporal variations are most probably the ground 

relative permittivity 𝜀𝑔 , i.e. changes in soil moisture. The modelled direction of variation on 

the HV/HH[dB] vs. HH[dB] scatterplot variation for changes in 𝜀𝑔 is not exactly aligned 

with the temporal data, suggesting changes in vegetation parameters too as a secondary but 

non-negligible contributor to changes in L-band radar backscatter, in particular to HV. 

Furthermore, these changes in vegetation parameters (𝑉𝑏,𝑡𝑜𝑡 or 𝜀𝑣) are positively correlated 

with the change in 𝜀𝑔, i.e. vegetation growth (or increased vegetation water content) 

correlated with increase in soil moisture. 

 

 
Figure 3.29. Histograms of pixel counts binned by the dominant eigenvalue as a fraction of the 

trace of the “high-frequency” temporal covariance matrices, verifying that the dominant 

eigenvalue/eigenvector indeed capture most of the temporal variation. All eligible pixels of IGBP 

class 4 (deciduous broadleaf), not just the 50% random subsample, were counted here. The rank-1 

approximation is even better for the total temporal covariance matrices (not shown). 
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Figure 3.30. Same as Figure 3.12, showing “slow” and “fast” temporal variations in radar 

backscatter, but for IGBP class 4. The three rows correspond to the three beam incidence angles 

(top: 29, middle: 38, bottom: 46). The left column plots are HV/HH[dB] vs HH[dB], while the 

right column plots are VV/HH[dB] vs HH[dB]. Filled triangles are the median over all pixels in 

IGBP class 4, data taken from time periods indicated by color: red (Jan-Feb), yellow (Mar-Apr), 

green (May-Jun), cyan (Jul-Aug), blue (Sep-Oct), magenta (Nov-Dec), thus displaying “low-

frequency” temporal variations. Solid gray lines visually summarize the “high-frequency" temporal 

variations of each selected pixel in Figure 3.27. Specifically, the direction of this line is the 

dominant eigenvector of the covariance of the data (HH[dB], VV/HH[dB], HV/HH[dB]) for that 

pixel over the unfrozen period and after a high-frequency filter, and the half-length of the line is 

the square-root of the dominant eigenvalue. Filled circles show the forward model with input 

parameters as before in Figure 3.28. Other open symbols explore the nearby model parameter space 

if one parameter is perturbed. Larger and smaller five-pointed stars represent a change in 𝑉𝑏,𝑡𝑜𝑡 by 

+25% and -25%, respectively. Larger six-pointed stars represent an increase in 𝜀𝑣 to 𝜀𝑣 = 45.6 +
13.7𝑖, while smaller six-pointed stars represent a decrease to 𝜀𝑣 = 17.1 + 5.8𝑖. Larger and smaller 
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squares represent a change 𝜀𝑔 by +50% and -50%, respectively. Larger and smaller diamonds 

represent a change in ℎ by +0.5cm and -0.5cm, respectively. Dotted lines merely serve to connect 

these open symbols with the filled circle. 

3.7 Mixed forests (IGBP class 5) 

The “mixed forests” class in the IGBP classification comprises lands dominated by trees but 

with interspersed mixtures or mosaics of the other four forests types, with none of the specific 

forest types exceeding 60% of the landscape. Using the MODIS land cover map, the 

geographic distribution of IGBP class 5 is shown in Figure 3.5 and Figure 3.31 emphasis. A 

random 20% selection of the EASE2 grid pixels is displayed in Figure 3.31. As can be seen, 

much of the land falling into this class is still in or near the boreal/hemiboreal zone. Indeed, 

it shall turn out that despite the greater heterogeneity of species, the radar backscatter 

characteristics from this class still bear similarity to IGBP class 1 (evergreen needleleaf 

forests) and IGBP class 3 (deciduous needleleaf forests). Data from non-coniferous 

temperate forests are underrepresented because these tend to be encroached significantly by 

areas of human settlement, greatly increasing the chance of being excluded by RFI flags. 

 
Figure 3.31. Geographic distribution of mixed forests (IGBP class 5) and randomly selected 20% 

of filtered Aquarius data EASE2 grid pixels, marked by open triangle symbols. 

The scatterometer data for the selected pixels is displayed in Figure 3.32, which depicts two 

scatterplots: one of VV/HH[dB] vs HH[dB], and another of HV/HH[dB] vs HH[dB], similar 

to Figure 3.7 except for a change in IGBP class. The symbol descriptions are in the figure 

caption. Filled circles show the results from the forest forward model from Chapter 2. The 
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parameters 𝑚 = 1 and 𝜃0 = 𝜋/2 (cosine-squared orientation distribution about the 

horizontal) in equation (2.6) were used, and the vegetation cylinder relative permittivity 

chosen as  𝜀𝑣 = 29.9 + 9.5𝑖 as usual. Other model input parameters are: total branch volume 

𝑉𝑏,𝑡𝑜𝑡 = 3.5 × 10−3m3/m2, ground relative permittivity 𝜀𝑔 = 8.8, ground roughness RMS 

height ℎ = 2.5cm. These latter three parameters (𝑉𝑏,𝑡𝑜𝑡, 𝜀𝑔, ℎ) were chosen by fitting to the 

pooled (ascending and descending) data, in the same way as in equation (3.1).  

From Figure 3.32, it can be seen that the forward model gives reasonable overall agreement 

to the data, albeit using fitted parameters. The fitted parameters are very similar to those for 

IGBP class 1 (evergreen needleleaf forests). This suggests that, in terms of the underlying 

physical factors affecting L-band radar backscatter, IGBP classes 1 and 5 (and class 3 as 

well) are rather similar, despite the heterogeneity of forest types by definition of IGBP class 

5. In view of the proximity and overlap of the geographic regions for IGBP classes 1 and 5 

(Figure 3.31), it is to be expected that signification components of “mixed forests” are still 

coniferous forests. In fact even the MODIS land cover map, which is taken as ground truth 

here, is likely to have some amount of confusion between the two classes [75].  

With regards to the variation between the descending-pass (local time 6AM) and ascending-

pass (local time 6PM) data, again similar to IGBP class 1, there might be an overall trend of 

L-band radar backscatter being slightly higher from ascending-pass (local time 6PM) data 

compared to descending-pass (local time 6AM) data; but this difference, when considered in 

an average sense over time and multiple pixels, is small (compared to the spatial variation 

between pixels and longer period temporal  variations to be discussed later), so we proceed 

to pool the 6AM and 6PM data as usual. 

The model is then used to analyze the spatial variation in the radar backscatter data across 

different pixels. Figure 3.33 displays the same data as Figure 3.32, now with the descending-

pass (local time 6AM) and ascending-pass (local time 6PM) data pooled and all marked with 

open circles instead of triangles. Overlaid on the data are filled symbols showing the results 

from the forward model with parameters as before. Other filled symbols explore the nearby 

model parameter space if one parameter is perturbed, as described in the caption. From 
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Figure 3.33, we see that the ground roughness RMS height ℎ is required to explain spatial 

variations in the VV/HH ratio, while vegetation parameters are require to explain spatial 

variations in HV. Thus both vegetation and ground parameters are involved in the spatial 

variations in the radar backscatter. 

 
Figure 3.32. Aquarius L-band scatterometer data for EASE2 grid pixels classified as mixed forest 

(IGBP class 5). The three different beam incidence angles are represented by color: blue (29), red 

(38), and green (46). Upward-pointing triangles are for descending-pass data (local time 6AM) 

and downward-pointing triangles are for ascending-pass data (local time 6PM). Each open triangle 

represents data from one of the pixels shown in Figure 3.31, taking the mean over unfrozen periods 

from Sep2011-Apr2015 for each pixel. Filled triangles are the median over open triangles, but with 

median taken over all data pixels of this class instead of only the 20% displayed. Filled circles show 

the forest forward model from Chapter 2, with parameters 𝑚 = 1 and 𝜃0 = 𝜋/2 (preferential 

horizontal orientation) in equation (2.6), total volume in branches 𝑉𝑏,𝑡𝑜𝑡 = 3.5 × 10−3m3/m2,  

vegetation cylinder relative permittivity  𝜀𝑣 = 29.9 + 9.5𝑖, ground relative permittivity 𝜀𝑔 = 8.8, 

ground roughness RMS height ℎ = 2.5cm.   



 

 

94 

 

 
Figure 3.33. Same as Figure 3.32, but with no distinction made between descending- and 

ascending-pass data; all are marked with open circles. Filled circles show the forward model with 

parameters as before in Figure 3.32. Other filled symbols explore the nearby model parameter space 

if one parameter is perturbed. Larger and smaller five-pointed stars represent a change in 𝑉𝑏,𝑡𝑜𝑡 by 

+25% and -25%, respectively. Larger six-pointed stars represent an increase in 𝜀𝑣 to 𝜀𝑣 = 45.6 +
13.7𝑖, while smaller six-pointed stars represent a decrease to 𝜀𝑣 = 17.1 + 5.8𝑖. Larger and smaller 

squares represent a change 𝜀𝑔 by +50% and -50%, respectively. Larger and smaller diamonds 

represent a change in ℎ by +0.5cm and -0.5cm, respectively. 
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Figure 3.34. Same as Figure 3.33, but also showing temporal variations in the data. Each open 

circle, corresponding to one of the pixels shown in Figure 3.31 and representing the mean taken 

over unfrozen periods from Sep2011-Apr2015, now also comes with a line through it that visually 

summarizes the temporal variation. Specifically, the direction of this line is the dominant 

eigenvector of the covariance of the data (HH[dB], VV/HH[dB], HV/HH[dB]) for that pixel over 

the unfrozen period, and the half-length of the line is the square-root of the dominant eigenvalue. 

Next, temporal variations in the radar backscatter are considered in Figure 3.34, which 

contains the usual scatterplots with the dominant eigenvalue/eigenvector lines for the total 

temporal covariance, similar to Figure 3.10. The validity of the rank-1 approximation to the 

3x3 total temporal covariance is checked in Figure 3.35. Figures are not shown for further 

analysis into “fast/high-frequency” and “slow/low-frequency” temporal variations for IGBP 

class 5, in part because the rank-1 approximation turns out to be poor for the “fast/high-

frequency” covariance and the results are less conclusive.  From Figure 3.34, we see that the 
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primary physical parameter associated with the temporal variation is again most probably 

the ground relative permittivity 𝜀𝑔, i.e. changes in soil moisture. In the median case, the 

values of ground relative permittivity corresponding to 1 standard deviation of variation in 

HH[dB] are approximately 𝜀𝑔 = 5.4  and  𝜀𝑔 = 15.2. Though details vary depending on soil 

type, these are reasonable values for drier and wetter soils. Additionally, there is greater 

spatial heterogeneity in the temporal variation trends compared to the other classes. This may 

speculatively be attributable to IGBP class 5 covering a greater spread of geographic and 

ecological zones, and being intrinsically an “umbrella” class. 

 

 
Figure 3.35. Histograms of pixel counts binned by the dominant eigenvalue as a fraction of the 

trace of the temporal covariance matrices, verifying that the dominant eigenvalue/eigenvector 

indeed capture most of the temporal variation. Note that all eligible pixels of IGBP class 5 (mixed 

forest), not just the 20% random subsample, were counted in these histograms. 

To address the question of whether or not an orientation distribution of cylinders that is 

uniformly random might instead be a better fit to the data, we plot Figure 3.36. Figure 3.36 

is the same as Figure 3.33 except that a uniformly random orientation distribution of 

cylinders (𝑚 = 0  in equation (2.6)) was used in the forward model, and equation (3.1) 

refitted to the data to give 𝑉𝑏,𝑡𝑜𝑡 = 4.2 × 10−3m3/m2, 𝜀𝑔 = 8.8, and ℎ = 2.25 cm. 

Following the same estimation procedure as for IGBP class 1, here  𝑉𝑏,𝑡𝑜𝑡 = 4.2 litres/m2 

corresponds to 94.5tons/ha of total aboveground biomass instead of 78.8tons/ha for  𝑉𝑏,𝑡𝑜𝑡 =

3.5 × 10−3m3/m2.  

An argument can be made from Figure 3.36 that the uniformly randomly oriented distribution 

may also be a reasonable fit to the data. Both biomass values seem to be reasonable estimates; 
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as mentioned in the previous chapter, we cannot expect very accurate estimates for total 

above-ground biomass for dense vegetation using only L-band normalized radar backscatter 

cross-sections, hence we had parameterized using 𝑉𝑏,𝑡𝑜𝑡 instead. The main differences 

between the two orientation distributions lie in the way in which backscatter at all 

polarizations depend on incidence angle. For  𝑚 = 1 (cosine-squared distribution about the 

horizontal), the ratio HH/VV increases (i.e. VV/HH decreases) with increasing incidence 

angle. For 𝑚 = 0 (uniformly randomly oriented cylinders) however, the direct canopy 

backscatter has no preferential polarization for either VV or HH, so the total VV/HH ratio is 

only weakly dependent on incidence angle, primarily through the scattering terms involving 

the ground. HV is more strongly dependent on incidence angle for 𝑚 = 1 than for 𝑚 = 0 

due to the change in projected distribution perpendicular to the beam direction. Other than 

incidence angle, there are also some slight differences between the 𝑚 = 1 and 𝑚 = 0 models 

in terms of the directions of variation on the scatterplots associated with the vegetation 

parameters. The reality might be closer to some mixture between the 𝑚 = 1 and 𝑚 = 0 

models. 

To further illustrate that there is indeed sensitivity to orientation distributions from the radar 

data, Figure 3.37 plots the best fit parameters from equation (3.1) if the forward model used 

a uniformly random orientation distribution of cylinders (𝑚 = 0  in equation (2.6)) for IGBP 

class 3 instead. Evidently, a uniformly random orientation distribution provides a poorer fit 

than cosine-squared orientation distribution about the horizontal for IGBP class 3.  Though 

the disparity is not as large as for IGBP class 3, IGBP class 1 is also a better fit by the 

preferentially horizontal orientation distribution compared to the uniformly random 

distribution (figures not displayed). On the other hand, a uniformly random orientation 

distribution was more appropriate for IGBP classes 2 and 4 as compared to a preferential 

orientation distribution (figures not displayed). 
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Figure 3.36. Same as Figure 3.33, except with a uniformly random orientation distribution of 

cylinders ( 𝑚 = 0  in equation (2.6) ) for the forward model, and equation (3.1) refitted to find best 

fit parameters as shown: total volume in branches 𝑉𝑏,𝑡𝑜𝑡 = 4.2 × 10−3m3/m2,  ground relative 

permittivity 𝜀𝑔 = 8.8, ground roughness RMS height ℎ = 2.3cm.  
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Figure 3.37. Same as Figure 3.24, except with a uniformly random orientation distribution of 

cylinders ( 𝑚 = 0  in equation (2.6) ) for the forward model, and equation (3.1) refitted to find best 

fit parameters as shown: total volume in branches 𝑉𝑏,𝑡𝑜𝑡 = 3.3 × 10−3m3/m2,  ground relative 

permittivity 𝜀𝑔 = 6.2, ground roughness RMS height ℎ = 2.0cm. Comparing with Figure 3.24, it 

is evident that a uniformly random orientation distribution of cylinders is less appropriate in this 

case. 

In summary, the L-band radar multi-polarization backscatter characteristics for IGBP class 

5 (mixed forests) areas, taken at a coarse global spatial scale, are broadly similar to those for 

IGBP class 1 (evergreen needleleaf). The orientation distribution parameters 𝑚 = 1, 𝜃0 =

𝜋/2 (preferentially horizontal orientation distribution) and 𝑚 = 0 (uniformly random 

orientation distribution) both fit the data comparably, in reasonable expectation with the 

heterogeneity of forests within this class. 
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3.8 Frozen vs. unfrozen conditions 

In Sections 3.3 to 3.7, the Aquarius L-band radar data had been filtered for frozen conditions 

and only data corresponding to unfrozen conditions were analyzed for spatial and temporal 

patterns. This was because, if otherwise unfiltered, the large change between frozen and 

unfrozen conditions would have dominated and swamped other effects. In this section, the 

L-band radar multi-polarization backscatter would be compared between frozen and 

unfrozen conditions. The primary IGBP forest classes involved are class 1 (evergreen 

needleleaf), class 3 (deciduous needleleaf), and class 5 (mixed forest), as these cover the 

boreal/hemiboreal/temperate zones. 

For this frozen/unfrozen comparison, data with corresponding temperature <0C during a 

time period from two weeks before to two weeks after were flagged as “frozen”, while data 

with corresponding temperature >5C during a time period from two weeks before to two 

weeks after were flagged as “unfrozen”. As before, the temperature value used was the 

temperature of the 0-10cm subsurface layer as provided by the NCEP GFS GDAS model 

product provided along with the Aquarius dataset. Only EASE grid pixels with at least 10 

weeks of such “frozen” and 10 weeks of such “unfrozen” data over the Sep2011-Apr2015 

period were included for consideration in the analysis. Data from a random 10% selection of 

these EASE2 grid pixels are displayed in Figure 3.38, Figure 3.39, and Figure 3.40 for IGBP 

classes 1,3, and 5 respectively. In each of these three figures, the three different beam 

incidence angles are again represented by color: blue (29), red (38), and green (46), and 

data for descending-pass (local time 6AM) and ascending-pass (local time 6PM) are 

represented by upward-pointing and downward-pointing triangles, respectively. Each pair of 

open/filled triangles linked by a dotted line summarize data from an EASE2 grid pixel, with 

the open triangle representing the mean over unfrozen periods, while the filled triangle is the 

mean over frozen periods, from Sep2011-Apr2015. Filled circles show the forward model 

with parameters as before in Figure 3.8, Figure 3.24, and Figure 3.33. Filled squares show 

the forward model but with the vegetation cylinder relative permittivity changed to  𝜀𝑣 =

4.5 + 1.1𝑖 and ground relative permittivity changed to 𝜀𝑔 = 4.0 instead. These parameters 

attempt to represent the relative permittivities for frozen branches and frozen soil, 
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respectively, following experimental results from El-rayes and Ulaby [97]; for soil we 

have neglected the imaginary part of the relative permittivity as before.  

The comparison is similar for all three figures so we shall discuss them all together. In 

agreement with the data, the model predicts a decrease in HH of about 3-5dB from frozen to 

unfrozen conditions, and a smaller effect at smaller incidence angle of 29. The model 

predicts a slight decrease in the VV/HH ratio, especially at the larger incidence angle of 46, 

while the data shows either negligible change in the VV/HH ratio or a very small decrease. 

Finally the model predicts a large decrease in the HV/HH ratio, by about 6dB, while the data 

only shows a decrease in HV/HH by about 3dB; though the model prediction that this 

decrease is greater at 29 incidence angle is in qualitative agreement with the data. A possible 

explanation accounting for all these observations is that overall the model has, with simply a 

naïve change in dielectric relative permittivities, essentially managed to capture the 

important physical differences, but there are additional important details to the 

frozen/unfrozen transition. Consider that in winter, not only are the tree branches frozen, they 

are often also “coated” with some amount of ice, effectively increasing cylinder radii. 

Hanging icicles also change the effective cylinder size and orientation distributions. These 

may explain slightly higher VV values and much higher HV values than expected from 

simply changing the dielectric relative permittivities values.  
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Figure 3.38, Aquarius L-band scatterometer data for a 10% random selection of EASE2 grid pixels 

classified as evergreen needleleaf (IGBP class 1) and satisfying various filter conditions as 

described in the text. The three different beam incidence angles are represented by color: blue (29), 

red (38), and green (46). Upward- and downward-pointing triangles are for descending-pass data 

(local time 6AM) and ascending-pass data (local time 6PM) respectively. Open triangles represent 

the mean over unfrozen periods, while filled triangles are the mean over frozen periods, from 

Sep2011-Apr2015. Each pair of open and filled triangles linked by a dotted line summarize data 

from an EASE2 grid pixel. Filled circles show the forward model with parameters as before in 

Figure 3.8 (horizontal cosine-squared orientation distribution of cylinders, total volume in branches 

𝑉𝑏,𝑡𝑜𝑡 = 3.1 × 10−3m3/m2,  vegetation cylinder relative permittivity  𝜀𝑣 = 29.9 + 9.5𝑖, ground 

relative permittivity 𝜀𝑔 = 8.8, ground roughness RMS height ℎ = 2.6cm). Filled squares show the 

same forward model but with parameters 𝜀𝑣 = 4.5 + 1.1𝑖 and 𝜀𝑔 = 4.0 instead. 
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Figure 3.39. Same as Figure 3.38, but for IGBP class 3 (deciduous needleleaf forests). 
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Figure 3.40. Same as Figure 3.38, but for IGBP class 5 (mixed forests). 

3.9 Microwave vegetation optical depth 

The microwave vegetation optical depth (VOD) is often a parameter of interest for both 

active and passive microwave studies of vegetated land areas, in applications where the 

vegetation state or underlying soil moisture are of interest. In this section, we report the VOD 

values from our forward model using the input parameters as described in Sections 3.3-3.7. 

Equation (2.9) from Chapter 2 introduced the simplified average one-way optical thickness 

of the canopy layer as  

𝜏𝑐𝑛(𝜃𝑖) =
𝑛𝑐𝑛(〈𝜅ℎ,𝑐𝑛(𝜃𝑖)〉 + 〈𝜅𝑣,𝑐𝑛(𝜃𝑖)〉)(𝑍2 − 𝑍1)

cos 𝜃𝑖
. (3. 5) 
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Strictly speaking, the one-way optical thickness of the canopy layer is polarization 

dependent if the orientation distribution of the cylinders is not uniform: 

𝜏ℎ,𝑐𝑛(𝜃𝑖) =
2𝑛𝑐𝑛〈𝜅ℎ,𝑐𝑛(𝜃𝑖)〉(𝑍2 − 𝑍1)

cos 𝜃𝑖

(3. 6a) 

𝜏𝑣,𝑐𝑛(𝜃𝑖) =
2𝑛𝑐𝑛〈𝜅𝑣,𝑐𝑛(𝜃𝑖)〉(𝑍2 − 𝑍1)

cos 𝜃𝑖

(3.6b) 

and likewise for the trunk layer: 

𝜏ℎ,𝑡𝑟𝑘(𝜃𝑖) =
2𝑛𝑡𝑟𝑘〈𝜅ℎ,𝑡𝑟𝑘(𝜃𝑖)〉𝑍1

cos 𝜃𝑖

(3. 7a) 

𝜏𝑣,𝑡𝑟𝑘(𝜃𝑖) =
2𝑛𝑡𝑟𝑘〈𝜅𝑣,𝑡𝑟𝑘(𝜃𝑖)〉𝑍1

cos 𝜃𝑖
. (3.7b) 

A more common convention in the literature has the definition of optical depth corrected by 

the factor of cos 𝜃𝑖. In this convention, the total microwave vegetation optical depth 

(summing contributions from canopy and trunk layers) from our model is 

𝑉𝑂𝐷ℎ,𝑡𝑜𝑡(𝜃𝑖) = (𝜏ℎ,𝑐𝑛(𝜃𝑖) + 𝜏ℎ,𝑡𝑟𝑘(𝜃𝑖)) cos 𝜃𝑖 (3. 8a) 

𝑉𝑂𝐷𝑣,𝑡𝑜𝑡(𝜃𝑖) = (𝜏𝑣,𝑐𝑛(𝜃𝑖) + 𝜏𝑣,𝑡𝑟𝑘(𝜃𝑖)) cos 𝜃𝑖 . (3.8b) 

These values are tabulated in Table 3.1 for our forward model using the input parameters as 

described in Sections 3.3-3.7 for each of the IGBP classes 1-5. 
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IGBP 

class 
𝜃𝑖 𝜏ℎ,𝑐𝑛 𝜏𝑣,𝑐𝑛 𝜏ℎ,𝑡𝑟𝑘 𝜏𝑣,𝑡𝑟𝑘 𝑉𝑂𝐷ℎ,𝑡𝑜𝑡 𝑉𝑂𝐷𝑣,𝑡𝑜𝑡 

1 

28 0.561 0.503 0.086 0.130 0.564 0.552 

39 0.628 0.524 0.112 0.171 0.579 0.544 

49 0.714 0.556 0.143 0.216 0.592 0.533 

2 

28 1.535 1.535 0.269 0.408 1.572 1.694 

39 1.710 1.710 0.352 0.538 1.614 1.759 

46 1.936 1.936 0.447 0.679 1.647 1.807 

3 

28 0.500 0.449 0.076 0.116 0.502 0.492 

39 0.560 0.467 0.100 0.153 0.516 0.485 

46 0.637 0.496 0.127 0.193 0.528 0.476 

4 

28 0.478 0.478 0.084 0.127 0.490 0.527 

39 0.532 0.532 0.110 0.167 0.502 0.548 

46 0.603 0.603 0.139 0.212 0.513 0.563 

5 

28 0.630 0.565 0.096 0.146 0.632 0.619 

39 0.705 0.588 0.126 0.192 0.650 0.611 

46 0.802 0.624 0.160 0.243 0.665 0.599 

Table 3.1. 𝜃𝑖-uncorrected optical thicknesses and 𝜃𝑖-corrected Vegetation Optical Depths (VOD) 

from L-band radar backscatter model for IGBP classes 1-5. 

From Table 3.1, our model assigns total microwave VOD values of about 0.5-0.6 for IGBP 

forest classes 1,3,4,5 at both h-pol and v-pol; most of the VOD is contributed by the canopy 

layer. The exception is IGBP class 2, evergreen broadleaf forests, which are much thicker, at 

VOD values of about 1.6-1.7. Konings et al. [98] used Aquarius radiometer data to estimate 

global VOD values, obtaining values of about 1.1-1.3 for tropical jungles and between 0.5-

0.9 for other corresponding forest areas, with some variance depending on algorithm used. 

Rötzer et al. [99] extended work by Konings et al. [98] by regressing Aquarius scatterometer 

HV against the radiometer-derived VOD to estimate VOD from scatterometer HV, obtaining 

similar values, but slightly lower by about 0.1-0.2. VOD values derived from the L-band 

radiometer of the Soil Moisture and Ocean Salinity (SMOS) satellite with the aid of Leaf 

Area Index (LAI) auxiliary inputs by Kerr et al. [100] and Rahmoune et al. [101] are about 

1.0-1.2 for Amazon jungles and between 0.7-0.9 for summertime boreal forests. 

Shortcomings in our model for IGBP class 2 may be part of the reason for our significantly 

higher VOD values in comparison to these other estimates. 
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C h a p t e r  4  

DIURNAL EFFECTS ON L-BAND RADAR BACKSCATTER OVER 

GLOBAL FORESTS USING SMAP 

4.1 Chapter introduction and overview 

Given the sensitivity of microwaves to vegetation water content via the dielectric permittivity 

of vegetation, and the diurnal cycle of transpiration and related processes, the potential of 

radar remote sensing as a tool for monitoring vegetation water status has long been 

recognized and studied since Ulaby and Batlivala [23], Brisco et al. [24], Way et al. [25], 

Weber and Ustin [26]; see also Steele-Dunne et al. [27] for a more comprehensive review of 

the literature. Indeed, diurnal fluctuations in radar backscatter from vegetation have been 

observed in various reported experiments, with varying degrees of evidence for association 

with vegetation water status and the specific mechanisms driving the radar observations – 

these shall be discussed in greater detail in Section 4.4. However our understanding of the 

relationship between vegetation water status and radar backscatter, in particular with regards 

to the diurnal fluctuations (since many variables change on a diurnal basis), is far from 

complete. 

One might expect L-band radar, with a wavelength close to being on resonance with tree 

branches, to contribute valuable information towards this understanding. In Chapter 3, we 

had analyzed L-band multi-polarization radar backscatter over global forests, using data from 

the spaceborne Aquarius scatterometer and our forward model from Chapter 2. One issue 

that surfaced in Chapter 3 was that though local time 6AM and 6PM data were available 

from Aquarius descending and ascending passes, they were seldom over the same footprints, 

and were at different azimuth angles. If there are differences in radar backscatter due to beam 

azimuth angle, this might confound possible inferences from Aquarius about diurnal effects. 

Another L-band spaceborne mission, SMAP (Soil Moisture Active Passive), has a conically 

scanning antenna, allowing us to separate these effects. SMAP would have continued the 
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global L-band radar coverage after Aquarius, but unfortunately the radar was lost after a 

few months of operation. Nevertheless, we shall use whatever available data exists. 

The sections in this chapter will be organized as follows. Section 4.2 will introduce the 

SMAP dataset to be used for our analysis. Section 4.3 will show that there are indeed 

significant differences due to the beam azimuthal angle, possibly associated with the 

orientation of vegetation due to plant phototropism. Section 4.4, before presenting results 

concerning diurnal fluctuations observed by SMAP, would also review in greater detail some 

of the relevant results from the literature. One of the results in this chapter is that the co-pol 

L-band radar backscatter observed in late spring-summer over the northern boreal forests 

was higher at 6PM than 6AM, which is not what one might expect based on previous studies. 

Based on our modelling, increased canopy extinction at 6AM was a possibility, but this is 

unproven and its true underlying physical cause undetermined. 

4.2 SMAP dataset 

The SMAP mission [102] was launched in 2015 with the primary goal of measuring soil 

moisture from space. The spacecraft orbit is sun-synchronous (local 6AM descending node 

equator crossing) at about 685km altitude, with global coverage in 2-3 days on an 8-day 

repeat orbit. The instrument carried an L-band radiometer operating at 1.41GHz and an L-

band radar at 1.22-1.3GHz, both sharing a rotating reflector antenna in a conically scanning 

configuration; the local incidence angle on the ground is about 40. The radar measured 

normalized radar backscattering cross-sections HH, HV, VH, and VV, with real-aperture 

footprints of 30-40km (the so-called “low-res” mode). SMAP had a high-resolution SAR 

mode that had a variable azimuth resolution due to the rotating antenna, but in this study we 

shall only use the real-aperture (“low-res”) radar data. Further instrument details can be 

found in the SMAP handbook [4] and references therein; in particular, Figure 19 from the 

SMAP handbook shows a schematic of the conically scanning configuration, reproduced 

here in Figure 4.1.  
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Figure 4.1. The conically scanning configuration of SMAP, as shown in Figure 19 of the SMAP 

Handbook [4]. Credit: NASA 2014. 

We used the SMAP Level 1B Radar data product version 3, obtained from NASA EOSDIS 

Alaska Satellite Facility (ASF) [103, 104, 105]. The data record ended on July 7, 2015 due 

to an unexpected failure of the SMAP radar. Using the 36km EASE-Grid 2.0 [71], the data 

was regridded according to whichever EASE2 grid pixel the centre of its radar footprint was 

nearest to. The data was also sorted by beam azimuth angle into 8 bins each 45 wide, centred 

on the directions north, northeast, east, southeast, south, southwest, west, and northwest. 

Wherever there was more than one data value corresponding to a pixel or azimuth bin, data 

was summarized by taking the median value. Data was then sorted by local time instead of 

UTC; by design of the sun-synchronous orbit, the local time was either approximately 6AM 

(descending pass) or 6PM (ascending pass). These rearrangements yielded 406x964x8x87 

arrays of backscatter values for 6AM and 6PM data at each polarization HH,HV,VH,VV, for 
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87 days of data from April 12, 2015 to July 7, 2015; not all values in these arrays are 

filled because not every point on the globe was revisited every day. The cross-polarized 

backscatter values are further summarized by taking the average of HV and VH values, 

henceforth simply referred to as HV.  

As we already know that changes in freeze-thaw state give a large contrast in radar 

backscatter, while we are now instead interested in studying the smaller variations during 

unfrozen periods, it is thus necessary to exclude data taken under frozen conditions from our 

analysis. The SMAP Level 3 Freeze-Thaw Passive Product was used for this purpose [106]. 

This product uses the passive radiometer measurements from SMAP to flag the freeze/thaw 

status of each EASE2 grid pixel. To be conservative, we masked out data from any pixel on 

a given date as long as it had a “frozen” flag within two weeks of that date, and also 

(arbitrarily) restrict most of our analysis of the dataset to begin from May 17, 2015 to 

minimize risk of data contamination from frozen conditions in the Northern hemisphere. 

Using the SMAP dataset and with the afore-mentioned processing steps, a global false color 

map of the radar backscatter over land is displayed in Figure 4.2, by taking pixel-wise median 

values over the entire time period and all beam azimuth angle bins. As described in the figure 

caption, information from the polarization ratios VV/HH and HV/HH are mapped to a color 

wheel (lower left corner of Figure 4.2) while the HH[dB] normalized backscatter cross-

sections are mapped to brightness values. Figure 4.2 can be compared with the MODIS land 

cover classification map (IGBP) of Figure 3.5. As expected, deserts and sparsely vegetated 

areas have low backscatter and thus appear dark, or dark blue/purple due to low HV/HH 

ratios and the stronger VV than HH of surface backscatter. On the other hand, thickly 

vegetated areas appear bright. The different polarization signatures from the different forest 

classes reveal themselves clearly, e.g. the tropical jungles in the saturation limit have the 

highest HV/HH ratio and are colored bright green. Coniferous forests with significant 

preferential horizontal orientations of branches and double-bounce scattering contributions 

have lower VV/HH ratios, thus appearing red; other forest or savanna regions where 

backscatter is not saturated by the canopy layer would also appear red due to the stronger 
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HH than VV from double-bounce scattering contributions. Mountainous areas have HH 

and VV backscatter approximately equal and thus appear as a pale color or some shade of 

gray. 

 
Figure 4.2. False-color map of the world (land only) on an EASE2 projection grid using L-band 

radar backscatter from SMAP data. For each pixel, median values were computed for HH[dB], 

VV/HH[dB], HV/HH[dB] from May 17, 2015 to July 7, 2015 and over the 8 beam azimuth 

direction bins, with frozen conditions excluded as described in the text. These median HV/HH[dB] 

values and VV/HH[dB] values are mapped via a polar coordinate transformation to the color wheel 

depicted the lower left corner. The color wheel saturates to red at VV/HH values of -1.5dB, cyan 

at VV/HH values of +1.5dB, light green at HV/HH values of -5dB, and purple at HV/HH values of 

-11dB. The origin of the color wheel (gray colors) is at HH=VV and HV/HH=-8dB. Median 

HH[dB] values are mapped to brightness values, with maximum brightness at values of HH>=-

5dB, and minimum brightness (i.e. black) at values of HH<=-30dB. Pixels with no unmasked data 

(due to frozen conditions, data quality, etc.) are colored gray (e.g. Himalayas).  

4.3 Beam azimuth effects 

Using the SMAP data binned by azimuth angle as described earlier, we can make 

comparisons about the radar backscatter taken from the same location at almost the same 

time. Due to the 98 inclination (i.e. the flight path is almost north-south when far away from 

the poles) of the sun-synchronous orbit and the conically scanning configuration, there are 

many more opportunities for near-coincident (both spatially and temporally) comparisons of 

north-pointing vs south-pointing beams than other pairings. For pairings that are not opposite 

in direction, the alignment direction of mountain ranges tend to provide obvious differences, 
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due to foreshortening, shadowing, layover, etc. Comparing opposite direction pairings 

help to cancel these effects. 

Figure 4.3 and Figure 4.4 display the ratio of radar backscatter between the north- and south-

pointing beam, for HV polarization. Specifically, the median (over the time period May 17, 

2015 to July 7, 2015) of data (in dB) from the south-pointing beam azimuth bin is subtracted 

from the median for north-pointing beam data (in dB). Figure 4.3 is for descending pass data 

only (local time 6AM), while Figure 4.4 is for ascending pass data only (local time 6PM). 

Red areas show higher radar backscatter from the north-pointing beam, while blue areas 

show higher radar backscatter from the south-pointing beam.  

 

 
Figure 4.3. Differences in SMAP L-band radar backscatter due to beam azimuth angle. The median 

value of data (in dB) from the south-pointing beam azimuth bin is subtracted from the median value 

of data (in dB) from the north-pointing beam azimuth bin, for HV polarization, descending passes 

(local time 6AM). Red areas show higher radar backscatter from the north-pointing beam, while 

blue areas show higher radar backscatter from the south-pointing beam; note the color scale on the 

right in dB.  
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Figure 4.4. Same as Figure 4.3, but for ascending passes (local time 6PM). 

A glance at Figure 4.3 and Figure 4.4 reveals that there can be significant differences in radar 

backscatter due simply to the azimuth angle of the radar beam. The differences in azimuth 

angle are generally more pronounced at local time 6PM than 6AM, and these differences are 

roughly in the same direction (i.e. similar color at 6PM and 6AM), with some exceptions. 

The largest fractional differences (i.e. largest absolute differences in dB) are over the Sahara 

and the deserts and steppes of Asia, but note that in some desert regions the HV backscatter 

values can be so low (<-30dB or even -40dB) that great caution is required for interpretations 

(ionosphere Faraday rotation and/or its correction artifacts may become more visible in the 

afternoons). Stephen [107] and  Stephen and Long [108] showed that in broad sand dune 

fields called ergs, which are formed and constantly reshaped by prevailing winds, the 

geometry and alignment of their large- and small-scale surface features (dunes and ripples) 

may be responsible for azimuthal differences. For most of the vegetated areas, we see a broad 

distinction between the Northern hemisphere and the Southern hemisphere. In the Northern 

hemisphere, there is higher radar backscatter when the radar beam points south than when 

the radar beam points north, with the converse for the Southern hemisphere (there are some 

exceptions e.g. in parts of India and southern China). The differences in dB are larger over 



 

 

114 

the grasslands, steppes, and agricultural areas, than for the forests. There are also 

azimuthal differences for HH and VV polarization (not displayed), but the differences are 

smaller and the patterns less obvious. 

For the global SMAP observations, a possible explanation we propose to explain many of 

the broad patterns is vegetation alignment due to the sun, i.e. phototropism. A preferential 

orientation of cylindrical vegetation structures towards the direction of the sun – southwards 

in the Northern hemisphere, and northwards in the Southern hemisphere – could present 

greater radar cross-sections in a direction perpendicular to the preferential alignment. With 

SMAP radar incidence angles of about 40 from the vertical, in the Northern hemisphere, a 

northward-pointing beam would be “more parallel” to the vegetation cylinders while a 

southward-pointing beam would be “more perpendicular”; and conversely for the Southern 

hemisphere. 

Bartalis et al. [109] had also studied azimuthal differences, using the 13.4GHz scatterometer 

on QuikSCAT, focusing on strong local azimuthal anisotropies, identifying local topography 

and other human development features as some of the causes. As beam azimuthal effects are 

not the primary focus of this study, a deeper investigation of the causes of azimuthal 

anisotropy in the global L-band radar backscatter is not pursued at this moment and left as 

the subject of future work. The primary purpose here is to illustrate these azimuthal effects 

as a confounding factor if we had used Aquarius data alone for diurnal investigations. For 

the purposes of the diurnal analysis in the next section, the radar backscatter values used shall 

be the median values taken over the eight azimuthal angle bins. 

4.4 Diurnal effects 

This section studies the diurnal variation in L-band radar backscatter as seen by SMAP. 

Though we expect this diurnal signal to be related to vegetation water status, there is not 

currently a very clear picture in understanding the full relationship, as seen from a review of 

some previous experiments reported in the literature, summarized below. 

Brisco et al. [24] in experiments on a wheat field observed higher radar backscatters at night 

and peaking at dawn, with lows in the afternoons, for C and L bands at HH, VV, and HV 
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polarizations, but whether these were more correlated with soil or vegetation moisture 

depended on the age of the plants. 

Sparks et al. [110] found that for lodgepole pines, volumetric water content in the sapwood 

during April-October were in the range 0.45-0.55m3/m3, higher in early April following 

snowmelt, and then relatively constant from June-October, with little relationship to wood 

temperature. Diurnal variations (peaking at night) were approximately 0.02m3/m3 during 

periods of active transpiration, and significant precipitation could lead to an increase by 0.05-

0.06m3/m3 for 2-3 days.  

Experiments on walnut trees over 2-3 days in August 1987 [25, 26, 111] measured a large 

diurnal fluctuation in the L-band dielectric constant, peaking in the early morning at around 

6AM and reaching a minimum around noon and through the afternoon; these times and 

dielectric values had dependence upon the depth of the measurement probe into the tree. L-

band radar backscatter at 55 incidence showed response to both the walnut trees and the soil 

moisture, with HH and HV appearing more sensitive to the soil moisture, while HV and VV 

seemed more sensitive to the vegetation; dips of between 0.5-1.5dB were observed each 

afternoon (but there was also daily irrigation, which confounded the diurnal signal 

somewhat). C-band HV and VV backscatter however dipped in the morning and peaked in 

the afternoon, while C-band HH peaked in the morning and dipped in the afternoon.  

McDonald et al. [112] conducted experiments on two Norway spruce trees, measuring 

dielectric constants of the xylem. Note that the xylem layer, though deeper, could be 

significantly thicker than the outer thinner phloem and cambium layers where the tree bole 

dielectric constants peaked. Temporal variations in the xylem dielectric constant at P-band 

was typically inversely correlated with vapor pressure deficit (VPD, the partial water vapor 

pressure difference between free water in the plant leaf tissue and the atmosphere, a quantity 

closely related to evapotranspiration), but when VPD was low e.g. after rain or during cloudy 

days, the correlation with dielectric constant was lost. There was significant variation 

between different trees in the same microclimate and different parts of the same tree. Also, 

there could be as much as a few hours lag in the real and imaginary parts of the dielectric 
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constant, relative to each other, as well as relative to the VPD. The dielectric constant 

fluctuations were smaller than for the walnut trees. 

Monteith and Ulander [113], in an experiment at a stand of mature Norway spruce showed 

that wind could be a factor in diurnal variations in boreal forests; high winds may bend the 

vertical stems of trees and increase HV backscatter. Rainfall sometimes caused increase in 

HH at L-band, but little change at P-band. VPD and L-band radar backscatter were positively 

correlated. 

On a global scale, Friesen et al. [85] found using ERS-1/2 scatterometers (5.3GHz VV 

polarization) on a sun-synchronous orbit that 10:30AM passes had significantly higher 

backscatter than 10:30PM passes by 1-2dB particularly in vegetation-covered areas. In some 

regions, the seasonality of these diurnal differences do not follow the annual soil moisture 

cycle, but instead is strongest during the transition period between wet and dry seasons; 

Friesen identified this as due to a shift in the diurnal cycle of vegetation water content in 

response to water stress [27].  Paget et al. [114] analyzed QuickSCAT and RapidScat data 

(13.4GHz co-pol scatterometers) and found a median diurnal backscatter variation of 1.05dB 

globally, with details depending on region; in particular, the Amazon and Congo had 

variations of 0.5-0.8dB with a maximum at 6AM and minimum at 6PM, while the Upper 

Danube region had 1.2dB variations with a maximum at midnight and minimum at noon, 

observed by RapidScat only, but not QuikSCAT. The Amazon diurnal variations were also 

observed by Satake and Hanado [94] using TRMM (Ku-band, HH polarization) radar data; 

they proposed morning dew as a possible cause. 

From the literature review, a full consensus does not readily emerge, but we might broadly 

expect that: transpiration can deplete water stored in plants through the day, reducing 

vegetation water content and dielectric constant, which are then replenished over the night 

through root water uptake. Thus L-band backscatter values over vegetated areas in general 

might be expected to be higher at 6AM than 6PM, in particular for HV polarization. Let us 

now check these expectations against the SMAP data.  
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Global maps of the ratio in radar backscatter (i.e. difference in dB) between the ascending 

(local time 6PM) and descending (local time 6AM) passes are displayed in Figure 4.5 (HH), 

Figure 4.6 (VV), and Figure 4.7 (HV). Specifically, for each polarization, the median over 

the time period (17May2015-07Jul2015) and 8 azimuth angle bins was computed for 

ascending and descending pass data separately to yield two global radar backscatter maps in 

dB, and then the descending pass map (local time 6AM) subtracted from the ascending pass 

map (local time 6PM). Higher backscatter in the evening is shown in red, while lower 

backscatter in the evening is in blue (refer to figures for color scale of the dB difference 

values).   

Several initial remarks can be made regarding the global diurnal maps. Regarding the large 

fractional differences (i.e. large absolute differences in dB) in HV over the Sahara, the very 

low absolute levels of backscatter (less than -30dB, or even on the order of -40dB) should be 

borne in mind; many other sources of noise may be coming into play. Also, examination of 

the data over the oceans reveals that some ionosphere Faraday rotation and/or its correction 

artifacts may still be visible. For the vegetated areas, as seen in all three polarization maps 

Figure 4.5 to Figure 4.7, the intuition built from the literature that transpiration-induced 

reductions in daytime vegetation water content cause lower backscatter values at 6PM than 

6AM seems to indeed be roughly verified over many areas – the thinner vegetation 

grasslands, steppes, and croplands of North America and Asia, the savannas of Africa and 

South America, and dense jungles of the Amazon. That HV changes more than the co-

polarized returns is also consistent with these diurnal changes being vegetation-driven. Even 

though we have not presented a quantitative forward model for non-forested areas in Chapter 

2 and Chapter 3, we carry the qualitatively intuition from our forest model that, where there 

is sufficient vegetation cover (yet not too much as to be in the saturation limit) for double-

bounce mechanisms to be important, positive correlation between HV/HH fluctuations and 

HH fluctuations are suggestive of vegetation changes, while negative correlation between 

HV/HH fluctuations and HH fluctuations are suggestive of ground factors. 

However the majority of the boreal forests of the Northern hemisphere show a surprising 

result, with higher backscatter at 6PM than 6AM, particularly at HH and VV polarization, 
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less so at HV. This seems to contradict what we would have expected from transpiration-

induced water stresses in the afternoon. It is in concordance only with some of the 

measurements by Monteith and Ulander [113] that also showed higher instead of lower 

backscatter in the afternoon. Looking back at the Aquarius data (e.g. Figure 3.12, Figure 3.26 

and similar figure for IGBP class 5 not shown), though possibly confounded by azimuthal 

effects, we see a similar result. The geographic specificity also suggests that this is not merely 

an artifact or instrument bias. 

 
Figure 4.5. SMAP global map of ratio (difference in dB) in L-band radar backscatter between 

evening (local time 6PM) vs. morning (local time 6AM), at HH-polarization, taking median value 

over azimuth angles and the time period 17May2015-07Jul2015. Higher backscatter in the evening 

is shown in red, while lower backscatter in the evening is in blue. On the right is the color scale for 

the dB difference values. Note the broad zone of red in the northern boreal forests. 
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Figure 4.6. Same as Figure 4.5, but for VV polarization. 

 
Figure 4.7. Same as Figure 4.5, but for HV polarization. 

This surprising observation, over a majority of the area in the Northern hemisphere boreal 

zone, motivated further analysis. In an attempt to gain further insight, we take a look at the 
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time-series for the SMAP L-band radar backscatter for several example pixels. 5 pixels 

were chosen, labelled A, B, C, D, E, with their geographic locations displayed in Figure 4.8. 

Figures 4.9a to 4.9e display the respective SMAP radar time series for these five pixels, 

alongside precipitation information. The NASA Global Precipitation Measurements (GPM) 

was used for the precipitation information; specifically, the half-hourly Integrated Multi-

satellitE Retrievals for GPM (IMERG) data product version 05B [115] was used, and further 

binned into hourly precipitation rates. In Figures 4.9a to 4.94.9e, all the time series share the 

same horizontal axes, which is in local time. 6AM backscatter data is plotted as blue upright 

triangles, while 6PM backscatter data is plotted as red inverted triangles. Data before May 

17, 2015 (that we had somewhat arbitrarily chosen as our cutoff date) is colored black. 

Though only for five pixels, a number of observations from these examples are noteworthy. 

Firstly, from the data before May 17, where the scene is frozen at 6AM but thawed at 6PM, 

as discussed in Section 3.8, the backscatter is very low and the diurnal contrast very large, to 

be distinguished from the smaller signal displayed in Figure 4.5 to Figure 4.7, which had 

been masked for frozen conditions. The surge in backscatter due to spring melt is also 

evident, decaying long after May 17 into the summer. From May 17-July 7, the intriguingly 

higher 6PM vs. 6AM co-pol backscatter being investigated truly seems to be a diurnal affair, 

instead of being an artifact of a few strong but sporadic differences. This diurnal signal itself 

also seems to decay along with the decay of the spring melt surge; unfortunately the dataset 

ended prematurely, preventing observation of whether the diurnal differences last throughout 

the rest of the summer. For pixel B, there is no discernable diurnal signal from mid-May 

onwards. Though Chapter 3 identified soil moisture changes as a primary factor for temporal 

changes in L-band radar backscatter, note the inconsistency of response of radar backscatter 

to precipitation, across time and across the five pixels; the only consistency is the spring melt 

decay. 
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Figure 4.8. World map from latitude 30N to 84N on EASE2 grid, showing locations of pixels A, 

B, C, D, E chosen for display of SMAP L-band radar backscatter time-series in Figures 4.9a to 

4.9e. 

 
Figure 4.9a. SMAP L-band radar backscatter time-series for pixel A. Upright triangles in blue are 

6AM data, inverted triangles in red are 6PM data. Data before May 17 are colored black. 

Precipitation time-series is hourly, from GPM IMERG data. 
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Figure 4.9b. Same as Figure 4.9a, but for pixel B. 

Figure 4.9c. Same as Figure 4.9a, but for pixel C. 
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Figure 4.9d. Same as Figure 4.9a, but for pixel D. 

 
Figure 4.9e. Same as Figure 4.9e, but for pixel E. 
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Figure 4.10. SMAP L-band radar data for some EASE2 grid pixels from IGBP classes 1, 3, 4, and 

5;  25 pixels from each class, north of 30N and not of high terrain slope, were chosen randomly 

for this display. Upright triangles: 6AM data; inverted triangles: 6PM data. Colors blue, magenta, 

green, and orange represent IGBP classes 1, 3, 4, 5; see figure legend. Each pair of upright and 

inverted triangles linked by a solid line summarize data from the same EASE2 pixel; median values 

were taken over the 8 azimuthal angle bins, and over the time period 17May2015-07Jul2015. Filled 

black circles show the forward model with the input parameters of Section 3.3 (i.e. fitted to the 

Aquarius data for IGBP class 1). Other filled symbols explore the nearby model parameter space if 

one parameter is perturbed, as in Section 3.3. The open circle represents the artificial addition of 

0.2dB of one-way extinction (0.4dB two-ways) to the canopy layer. 

Next, we apply the multi-polarization methods of Chapter 3 to further analyze these diurnal 

changes; see Figure 4.10. The format of Figure 4.10 is similar to some of the figures in 

Chapter 3, but for diurnal changes instead of longer-term temporal changes, and combined 

for IGBP classes 1, 3, 4, and 5. 25 pixels from each class, north of 30N and not of high 
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terrain slope, were chosen randomly for this display. At first glance, the diurnal changes 

resemble the directions of ground moisture changes on the multi-polarization scatterplots as 

in Chapter 3. However, it seems surprising for soil moisture to consistently be higher at 6PM 

than 6AM over such a vast geographic region. Bear in mind that frozen conditions had 

already been excluded from the data being analyzed. Inspection of several examples of in-

situ soil moisture time-series did not reveal any consistent significant differences between 

6AM and 6PM.  

One alternative possibility to consider is the effect of temperature on the dielectric 

permittivity of soil. Wagner et al. [116] measured the temperature dependence of soil 

dielectric constant and noted an approximately 5% increase in dielectric constant at 1GHz 

from 10C and 20C for a silty clay loam with 17.4% volumetric water content. This amount 

of change in 𝜀𝑔 however seems insufficient to explain all the diurnal variations.  

Another alternative is that, despite all attempts to exclude frozen conditions from the data 

being analyzed, within the large radar footprints there remain small isolated pockets of frozen 

ground that partially thaw out every afternoon and refreeze every night. However, this seems 

unlikely to be the explanation, because if so, we would expect the total radar backscatter to 

increase corresponding to the diminishing area of these pockets as the summer progresses. 

A third alternative to consider is not changes in the ground, but instead an increase in the 

extinction of the vegetation canopy. The modelled effect of an increase by 0.2dB of one-

way-extinction (0.4dB two-ways) to the canopy layer, in both horizontal and vertical 

polarizations, is represented by the open circle in Figure 5.4-6. We see that the effect on the 

HH, HV, and VV backscatter due to this additional extinction bears similarity to that from a 

decrease in 𝜀𝑔, because the backscatter contributions from scattering pathways involving the 

ground are reduced more than for direct backscatter contributions from the vegetation. We 

have yet to attribute this modelled extinction to an exact physical cause. If it is due to 

scatterers, they should have low albedo such that they do not contribute significantly as 

additional scattering. Small scatterers might foot the bill, e.g. an increase in water content 

and dielectric permittivity of needle-like leaves, or dew/guttation drops on them, at 6AM 
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compared to 6PM. If it is due to water condensed from the atmosphere, the droplet sizes 

have to be large enough to significantly increase the extinction efficiency (relative to water 

vapor). As yet, we do not have sufficient evidence to prove any of these cases, though the 

impact of leaf moisture primarily through its transmissivity rather than scattering had also 

been suggested before [27]. There are probably further possibilities that we have failed to 

consider here. At the moment, there is insufficient conclusive evidence for what the true 

cause of this curious diurnal signal is. 

In this chapter we noted many complications from the picture presented in Chapter 3, which 

had identified soil moisture as a primary factor for temporal changes in L-band radar 

backscatter over forests at the timescale of weeks-months. The response of L-band radar 

backscatter to precipitation (at the shorter timescale of days) was inconsistent across time 

and across several different forested areas; only the response to the longer-timescale dry-

down from the snow melt peak was consistent. Differences in backscatter depending on 

azimuthal angle have been noted, likely due to plant phototropism. Diurnal variations due to 

plant transpiration were expected to show higher backscatter at 6PM than 6AM over 

vegetated areas, which was true in many regions, but co-pol backscatter observed in late 

spring-summer over the northern boreal forests was higher at 6PM than 6AM; increased 

canopy extinction at 6AM was a possibility, but this was unproven and its true underlying 

physical cause undetermined.  

A full comprehension of the temporal response of L-band radar backscatter over forested 

areas, on a global scale and at various timescales – from diurnal to seasonal – likely involves 

complications beyond our forward model. It is also likely that just L-band radar backscatter 

cross-sections HH, HV, VV may be insufficient to fully comprehend the geophysical 

changes in forested areas on some timescales. 
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C h a p t e r  5  

ALGORITHMS FOR SOIL MOISTURE RETRIEVAL FROM FORESTS 

USING L-BAND SCATTEROMETRY 

5.1 Chapter overview 

As mentioned in Section 4.2, the primary goal of the SMAP mission was to measure global 

soil moisture using spaceborne L-band radar and radiometer remote sensing. However, it 

was acknowledged that this would be a difficulty in areas covered by dense vegetation; as 

such the 0.04cm3/cm3 RMSE (root-mean-squared error) validated performance of the SMAP 

soil moisture product is only applicable to regions having vegetation water contents below 

5kgm-2 [4] . This excludes much of the forested areas of IGBP classes 1-5, which remain a 

challenge. In a study by Rahmoune et al. [117], using a soil moisture retrieval algorithm for 

the SMOS L-band radiometer data and evaluated over 14 nodes of the SCAN/SNOTEL soil 

moisture network in the United States, 0.07-0.12cm3/cm3 RMSE was obtained. In Chapter 3, 

we had attributed some of the temporal changes in L-band radar backscatter over forested 

areas to changes in the ground dielectric permittivity, i.e. soil moisture. In principle we 

should thus be able to use L-band radar scatterometry for soil moisture retrieval under forest 

canopies, despite the thick vegetation.  

In this chapter, we shall explore soil moisture estimation under forests using the SMAP L-

band radar. Section 5.2 presents our proposed soil moisture retrieval algorithms, which 

include purely empirical approaches (e.g. linear regression), and a semi-empirical approach 

that incorporates our forward model. Section 5.3 compares the results from our soil moisture 

retrieval algorithm against ground measurements at a number of stations from the SCAN, 

SNOTEL, USCRN, and COSMOS soil moisture networks in the United States.  

5.2 Proposed soil moisture retrieval algorithms 

At sufficiently high incidence angles 𝜃𝑖, e.g. about 40 or more, and when the vegetation is 

dense but the radar backscatter is not yet completely saturated, the direct backscatter from 

the ground is very small and the sensitivity to soil moisture is primarily through the double-
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reflection mechanism, in particular for the HH backscatter. Recall equation (2.1) of our 

forward model of the radar backscatter as the sum of various components, from Chapter 2: 

𝜎0 = 𝜎𝑐𝑛
0 + 𝜎𝑔𝑛𝑑,𝑑𝑖𝑟𝑒𝑐𝑡

0 + 𝜎𝑐𝑛−𝑔𝑛𝑑,𝑑𝑏
0 + 𝜎𝑡𝑟𝑘−𝑔𝑛𝑑,𝑑𝑏

0 . (5. 1) 

If we can neglect the direct ground backscatter in our forward model, the dielectric relative 

permittivity of the ground 𝜀𝑔 enters the equation only through the Fresnel reflectivity factor 

within the double-bounce terms. In the h-polarization, we can thus write the backscatter as  

𝜎ℎℎ
0 = 𝜎𝑐𝑛

0 (𝑉𝑏,𝑡𝑜𝑡 , 𝜀𝑣 , 𝜃𝑖) + 𝐴(𝑉𝑏,𝑡𝑜𝑡 , 𝜀𝑣 , 𝜃𝑖) exp(−4𝑘2ℎ2cos2𝜃𝑖) |𝑅ℎ(𝜀𝑔, 𝜃𝑖)|
2

(5. 2) 

where   

|𝑅ℎ(𝜀𝑔, 𝜃𝑖)|
2

= |
cos 𝜃𝑖 − √𝜀𝑔 − sin2𝜃𝑖

cos 𝜃𝑖 + √𝜀𝑔 − sin2𝜃𝑖

|

2

(5. 3) 

is the Fresnel reflectivity at h-polarization with ground dielectric relative permittivity 𝜀𝑔 and 

an incidence angle 𝜃𝑖 from the normal. The direct backscatter from the canopy 

𝜎𝑐𝑛
0 (𝑉𝑏,𝑡𝑜𝑡 , 𝜃𝑖, 𝜀𝑣) is independent of the soil moisture, and likewise for the factor 

(𝑉𝑏,𝑡𝑜𝑡 , 𝜀𝑣 , 𝜃𝑖), which wraps up the dependences of the double-bounce terms on the 

vegetation; the ground roughness also enters only through the factor of 

exp(−4𝑘2ℎ2cos2𝜃𝑖). If we further make the assumption that the vegetation parameters stay 

constant, then the temporal variations in co-polarized backscatter are linearly dependent on 

the Fresnel reflectance: 

HH = 𝜎𝑐𝑛
0 + 𝐴 exp(−4𝑘2ℎ2cos2𝜃𝑖) |𝑅ℎ(𝜀𝑔, 𝜃𝑖)|

2
. (5. 4) 

Next, we consider the relationship between the Fresnel reflectance and the soil moisture. 

Mironov et al. [43] provide formulae (see Appendix C) to relate the volumetric soil moisture 

and ground dielectric relative permittivity at L-band, using only the soil temperature and clay 

fraction as additional inputs. The dependence on temperature is quite weak over most of the 

range of interest, so for convenience and ease of inversion we shall simply fix the temperature 

to be T=15C for computations. Using Mironov’s model and the Fresnel equations, the h-
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polarization Fresnel reflectance as a function of volumetric soil moisture is displayed in 

Figure 5.1.  

 

Figure 5.1. Graph of h-polarization Fresnel reflectance |𝑅ℎ|2 vs. volumetric soil moisture W at 

incidence angle 𝜃𝑖 = 40°, for different soil clay fractions C and at temperature T=15C, using the 

Mironov model [43] (details in Appendix C) to relate soil moisture and ground dielectric relative 

permittivity. 

As can be seen from Figure 5.1, the Fresnel reflectance is a non-linear function of the soil 

moisture, however since the rate of change of slope is gradual, it is reasonable to approximate 

the slope of the graph as a constant value of 1 for volumetric soil moisture values W between 

0-0.5cm3/cm3, for all clay fractions between 0-70%. The purpose of this approximation is to 

yield a simple linear relation between the radar backscatter and the volumetric soil moisture. 

We can write this linear relation in the form 

HH − HH𝑟𝑒𝑓 =
𝑑HH(𝑉𝑏,𝑡𝑜𝑡 , 𝜃𝑖 , 𝜀𝑣 , ℎ)

𝑑W
(W − W𝑟𝑒𝑓) (5. 5) 
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where HH𝑟𝑒𝑓 and W𝑟𝑒𝑓 are some corresponding reference values for the radar backscatter 

and volumetric soil moisture, and the slope in the linear relationship is a function of the 

various parameters but independent of soil moisture. Any dependence on clay fraction is 

subsumed into HH𝑟𝑒𝑓 and W𝑟𝑒𝑓. We keep in mind the assumption that the vegetation and 

other input parameters are assumed constant, and soil moisture is the driver of changes in 

radar backscatter. 

Soil moisture W can thus be retrieved from L-band radar backscatter HH by inverting the 

linear equation (5.5). Linear regression is a straightforward empirical method to minimize 

the root-mean-squared error between the retrieved soil moisture and the ground truth values. 

Ideally what is required would be a representative training set of corresponding L-band radar 

backscatter HH and in-situ ground-truth soil moisture values for each pixel; “representative” 

in the sense that the training set should be from the same distribution as the evaluation set on 

which the soil moisture retrieval is to be performed. Using linear regression, the parameters 

𝑎 and 𝑏 in the equation 

W = 𝑎 + 𝑏HH (5. 6) 

would be fitted and used subsequently for retrieval. The slope 𝑏 and intercept 𝑎 of the line 

would need to be found separately for each pixel, or group of pixels believed to share the 

same values. This linear regression approach is similar to that by Burgin et al. [118], Burgin 

and van Zyl [119] and Kim and van Zyl [120], except that here we use the radar backscatter 

in linear units instead of decibels. If the vegetation or parameters other than soil moisture 

change, then 𝑎 and 𝑏 would need to change too. Here, we assume they are static and 

unchanged across all the training and evaluation time periods. 

Equation (5.6) requires a suitable amount of “training” data for the linear regression fit to 

find the slope 𝑏 and intercept 𝑎. This may not always be available. In the absence of training 

values for the soil moisture W, but with a sufficient history of HH measurements, we can 

adopt the approach suggested by Wagner et al. [121] and Kim and van Zyl [120] and set  
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W = W𝑑𝑟𝑦 + 
(W𝑤𝑒𝑡 − W𝑑𝑟𝑦)

(HH𝑤𝑒𝑡 − HH𝑑𝑟𝑦)
(HH − HH𝑑𝑟𝑦) (5. 7) 

where W𝑤𝑒𝑡 and  W𝑑𝑟𝑦 are some specific a-priori known soil moisture values corresponding 

to anticipated maximum conditions for wetness and dryness, e.g. let W𝑤𝑒𝑡 be the field 

capacity or total water capacity, and W𝑑𝑟𝑦 be the wilting point.  HH𝑤𝑒𝑡 and HH𝑑𝑟𝑦 are the 

corresponding values of the radar backscatter; with a sufficient history of HH measurements, 

Wagner et al. [121] suggested, using 6 years of ERS scatterometer data (C-band VV) over 

Ukraine, that it may be reasonable to assume that the highest observed value of HH 

corresponds to HH𝑤𝑒𝑡, and the lowest observed value of HH corresponds to  HH𝑑𝑟𝑦. We 

shall refer to equation (5.7) as Wagner’s approach. In our implementation, we shall let W𝑤𝑒𝑡 

be the field capacity and W𝑑𝑟𝑦 be the wilting point, and HH𝑑𝑟𝑦 and  HH𝑤𝑒𝑡 be the 10th and 

90th percentiles of the observed HH values in the training set. This necessary hinges on the 

debatable assumption that the full range of wetness/dryness conditions are explored in the 

training set. Values for the field capacity and wilting point are obtained from a global 1km-

resolution map of soil hydraulic properties produced by Zhang et al. [122]. 

If neither training values for the soil moisture W nor a long history of HH measurements are 

available, we offer a third alternative, which is to write  

W = W𝑎𝑣𝑔 + 𝐵(HH − HH𝑎𝑣𝑔) (5. 8) 

where W𝑎𝑣𝑔 is the mean soil moisture, and HH𝑎𝑣𝑔 is the mean backscatter value. HH𝑎𝑣𝑔 may 

be estimated from a smaller set of training HH measurements that may not encompass the 

full range of wetness/dryness conditions; for robustness, we estimate it using the empirical 

median instead of the mean. In the absence of ground truth training data for W𝑎𝑣𝑔, we 

propose to estimate it by setting the ground permittivity to be the value in Chapter 3 from 

fitting our forward model to the Aquarius data for that particular IGBP land cover class, and 

converting it to a soil moisture value using the Mironov soil dielectric model. Soil texture 

information, in particular the clay content required for the Mironov model, were obtained at 

3km resolution from the SMAP ancillary data [123] [124]. For IGBP class 4, most of the 
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Aquarius data analyzed in Section 3.6 were from the Chaco dry forest in South America 

and thus we do not consider it representative of the deciduous broadleaf forests in USA, so 

instead we also use the values for IGBP class 5 for them.  

In equation (5.8), the slope 𝐵 can also be estimated from our forward model by  

B = 𝜌2 [
𝑑HH

𝑑W
]
−1

= 𝜌2 [
𝑑HH

𝑑(|𝑅ℎ|2)
]
−1

(5. 9) 

where we have used our approximation from Figure 5.1 that 
𝑑(|𝑅ℎ|2)

𝑑W
= 1. We then obtain 

from our forward model (using Aquarius-fitted parameters from Chapter 3) values of 
𝑑HH

𝑑(|𝑅ℎ|2)
. 

Again, for IGBP class 4 (deciduous broadleaf forests) in the United States, we use the values 

from IGBP class 5 instead (with the choice of the uniformly randomly oriented cylinders 

instead of horizontal cosine-squared orientation for the canopy layer). The values we use are 

tabulated in Table 5.1. 

IGBP Class 
𝑑HH

𝑑(|𝑅ℎ|2)
 [

𝑑HH

𝑑(|𝑅ℎ|2)
]
−1

 

1 (Evergreen Needleleaf) 0.1502 6.658 

4 (Deciduous Broadleaf) 0.1928 5.187 

5 (Mixed forest) 0.1928 5.187 

Table 5.1. Values of 
𝑑HH

𝑑(|𝑅ℎ|2)
 and its inverse, using our forward model and Aquarius-fitted 

parameters from Chapter 4, to be applied to equation (5.9). 

In equation (5.9), 𝜌 is the Pearson correlation coefficient between the soil moisture W and 

the radar backscatter HH. It appears that 𝜌 still needs to be estimated empirically so we have 

not saved ourselves the need for a suitably-sized training dataset, but we might potentially 

workaround this by plugging in some prior or pooled estimate. Due to the input from the 

forward model, the approach of equation (5.8)-(5.9) is semi-empirical in contrast to linear 

regression and Wagner’s approach which are both fully-empirical. 
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The three algorithms – linear regression, Wagner’s approach, and semi-empirical 

approach – shall be evaluated using in-situ soil moisture measurements and Aquarius and 

SMAP radar backscatter data in the next section. Note that these algorithms do not guarantee 

that the retrieved soil moisture values would be physically reasonable. Thus we take the 

additional step of truncating the range of retrieved soil moisture values W to between the 

values for the saturated and residual water contents. These values are also obtained from the 

global soil hydraulic properties map by Zhang et al. [122]. Amongst the three algorithms, 

linear regression makes the most use of (and is most reliant upon) training information, while 

the semi-empirical approach uses the least training information. 

5.3 Comparison and evaluation with in-situ soil moisture measurements 

For the evaluation of our soil moisture retrieval algorithms and comparison with in-situ 

ground measurements, we use data from the SCAN [125], SNOTEL [86], USCRN [126], 

and COSMOS [127] [128] soil moisture networks in the United States, obtained through the 

International Soil Moisture Network (ISMN) database [87, 88]. There shall be two parts to 

the evaluation. The first part shall be on Aquarius data from 2011-2014 (HH-pol backscatter, 

with median taken over azimuth angle). 2 stations from SCAN, 2 stations from SNOTEL, 

and 3 stations from USCRN were identified and selected to fulfil the following criteria: lie 

in EASE2 grid pixels classified within IGBP forest classes 1, 4, and 5; not flagged for high 

terrain slope (see Section 3.2); have a fair amount of available and soil moisture data and 

corresponding Aquarius radar backscatter data values for unfrozen conditions. This last 

criterion was rather limiting and was the primary factor for only using 7 stations: limited 

Aquarius data have beam 2 overpasses coinciding with the station locations, and also having 

sufficient number data points not corrupted by RFI; in fact simply applying the overall 

quality flag provided with the data product would have been too stringent. Therefore, here 

we do not apply that overall quality flag and perform outlier detection manually by eye. 

Ascending pass Aquarius data (local 6PM) was also included for consideration. For the 

second part of the evaluation on SMAP data, 11 stations from SCAN, 10 stations from 

SNOTEL, 12 stations from USCRN, and 5 stations from COSMOS were used; their locations 

are marked on Figure 5.2, and they include the 7 stations used for the evaluation on Aquarius 
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data. These stations have been selected to lie in EASE2 grid pixels classified within IGBP 

forest classes 1,4, and 5, that are not flagged for high terrain slope (see Section 3.2), and also 

having a fair amount of available and valid soil moisture data and corresponding radar 

backscatter data values. The soil moisture measurements were made at a depth of 5cm, with 

the exception of COSMOS, which is sensitive to soil moisture from the surface down to some 

effective depth on the order of tens of centimeters depending on the soil moisture. For the 

SMAP comparison, soil moisture data from each station, from 13 April 2015 to 7 July 2015 

at 6AM local time each day, was used. 

 

Figure 5.2. IGBP land cover classification map with triangles showing locations of selected ground 

stations from various soil moisture networks in the United States used for comparison with our soil 

moisture retrieval algorithm. Open triangles are for evaluations based on SMAP data, while filled 

black triangles are for evaluations based on both Aquarius and SMAP data.  

The results for the Aquarius comparison against the 7 ground stations are shown in Table 5.2 

and Figure 5.3-Figure 5.4, with each column of Table 5.2 corresponding to one ground 

station. For each station (and corresponding Aquarius HH backscatter), the data time series 

is divided into an earlier part for training and a later part for testing/evaluation, with 
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approximately equal number of points in each half. The training and testing time periods 

are shown in Table 5.2, and the data points themselves are plotted in the scatterplots of Figure 

5.3 for each of the 7 stations. Training sets spanned a period of at least a year, though the 

available data may not always be uniformly/densely distributed over time. The Aquarius-

derived soil moisture values on the test set are scattered against the in-situ values in Figure 

5.4. The root-mean-squared differences (RMSD) between the in-situ soil moisture values 

and those derived from the Aquarius HH radar backscatter (using the three algorithms 

described previously in Section 5.2) are also tabulated in Table 5.2. Note that for the semi-

empirical method, the correlation coefficient  in equation (5.9) was found from the training 

set. 

On the training set, the root-mean-squared differences (RMSD) are approximately in the 

range 0.05-0.10cm3/cm3 for the linear regression algorithm, 0.05-0.13 cm3/cm3 for the 

Wagner approach, and 0.05-0.14 cm3/cm3 for the semi-empirical approach. On the test set, 

the RMSD values are approximately in the range 0.07-0.11 cm3/cm3 for the linear regression 

algorithm, 0.06-0.18 cm3/cm3 for the Wagner approach, and 0.06-0.14 cm3/cm3 for the semi-

empirical approach. Overall amongst the three algorithms, linear regression gave the lowest 

RMSD values on the test set, while the Wagner and semi-empirical algorithms were 

comparable in RMSD. This is no surprise since if the assumptions of linear regression are 

valid, e.g. if the training and test set are indeed from the same distribution, linear regression 

theoretically minimizes the expected RMSD. From Table 5.2 and Figure 5.3, we see that 

though there is correlation in between the Aquarius L-band radar backscatter and the in-situ 

soil moisture, it is not very tight. When the correlation is poor, the linear regression and semi-

empirical algorithms rely less on the radar measurement and guess the soil moisture based 

on the prior, yielding scatterplots in Figure 5.4 that look almost a horizontal line. The Wagner 

approach of equation (5.7) implicitly assumes a good correlation and might yield wild 

guesses and a higher RMSD than the other two algorithms in such cases. 
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 Station 

ID# 
344 1000 1012 1347 1346 2088 2114 

 IGBP 

class 
1 1 5 5 4 4 5 

T
ra

in
in

g
 

period 
Aug’11-

Aug’13 

Aug’11-

Jun’13 

Apr’12-

May’13 

Apr’13-

Apr’14 

Apr’12-

Jun’13 

Apr’13-

Apr’14 

Apr’12-

Apr’13 

data #pts 41 21 17 14 15 7 10 

Corr. 

Coeff.  
0.65 0.86 0.36 0.51 0.55 0.19 0.27 

Lin. reg. 

RMSD 
0.1024 0.0622  0.0688  0.0483  0.0751 0.0702 0.0490  

Wagner 

RMSD 
0.1194 0.1061 0.1003 0.0543 0.1016 0.1286 0.0747 

Semi-

empiric. 

RMSD 

0.1034 0.1193 0.0755 0.0561 0.0770 0.1358 0.0522 

T
es

ti
n
g
 

Period 
Aug’13-

Dec’14 

Jun’13-

Nov’14 

May’13

-Jul’14 

Apr’14-

Jul’14 

Jun’13-

Jun’14 

Apr’14-

Jun’14 

Apr’13-

Jun’14 

data #pts 42 22 17 15 16 8 11 

Lin. reg. 

RMSD 
0.0997  0.0787  0.0925  0.0736 0.0882 0.1058  0.1110 

Wagner 

RMSD 
0.1126 0.1416 0.0935 0.0671 0.1007 0.0638 0.1767 

Semi-

empiric. 

RMSD 

0.0986 0.1363 0.0869 0.0644 0.1013 0.0942 0.1131 

T
o
ta

l 

Period 
Aug’11-

Dec’14 

Aug’11-

Nov’14 

Apr’12-

Jul’14 

Apr’13-

Jul’14 

Apr’12-

Jun’14 

Apr’13-

Jun’14 

Apr’12-

Jun’14 

data #pts 83 43 34 29 31 15 21 

Corr. 

Coeff.  
0.66 0.75 0.40 0.65 0.60 0.59 0.10 

Table 5.2. Summary of results comparing soil moisture retrieved from Aquarius HH backscatter 

vs. in-situ measurements at 7 selected ground stations. See main text for discussion. 
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Figure 5.3. Scatterplots of 2011-2014 Aquarius beam 2 HH-pol radar backscatter (vertical axes, in 

linear units) data against corresponding in-situ volumetric soil moisture values (horizontal axes) at 

7 selected ground stations. The data are divided into training (blue pts) and testing (red pts) sets; 

the training and testing time-periods are shown in Table 5.2. See main text for discussion. 
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Figure 5.4. Scatterplots of retrieved volumetric soil moisture values (vertical axes) against 

corresponding in-situ values (horizontal axes) on the test set, for each of the 7 selected ground 

stations, and each of the three algorithms described in Section 5.2. Blue squares are the results from 

linear regression (equation 5.6), red triangles from Wagner’s approach, and green circles from the 

semi-empirical method. See main text for discussion. 
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Next, we evaluate the algorithms on the SMAP data. We now pool the training and test 

sets from Aquarius together, and use that as a training set. The correlation coefficients from 

this larger training set are shown in the last row of Table 5.2. The algorithms are then applied 

to the SMAP HH backscatter data, and these retrieved soil moisture results (paired with 

corresponding in-situ values at the seven ground stations) form the test set. The SMAP test 

set comprises data from April 13, 2015 to July 7, 2015. Only 6AM (local time) data was 

used, for consistency comparing with the SMAP soil moisture products. The results of the 

evaluation of the three algorithms described in Section 5.2 (linear regression, Wagner, semi-

empirical) and trained on Aquarius data, against the in-situ volumetric soil moisture values 

at the seven stations, are tabulated in Table 5.3, with each column corresponding to one 

station. The correlation coefficients in the third row are merely a re-display from the last row 

of Table 5.2. The correlation coefficients in the fourth row are the correlation coefficients 

between the SMAP HH backscatter and the in-situ soil moisture values. The RMSD between 

the in-situ values and the outputs from each of the algorithms are in the subsequent rows. 

Also in Table 5.3 are RMSD values between the in-situ soil moisture values and the outputs 

from the existing soil moisture products provided by SMAP. “SMA” is the soil moisture 

product using the SMAP radar data and the baseline algorithm by Kim et al. [129]. “SMP” 

is the soil moisture product using the SMAP radiometer data and the algorithm by O’Neill et 

al. [130].  We used Level-3, version 3 products, obtained from the NASA National Snow 

and Ice Data Center Distributed Active Archive Center (NSIDC) [130, 131]. Note that these 

algorithms and products are not validated nor expected to be accurate for areas with 

vegetation water content >5kg/m2 which includes the forested areas being studied here. 𝜌W 

is the correlation coefficient between the in-situ values and the values from the soil 

moisture product. Complementing Table 5.3 is Figure 5.5, which (analogous to Figure 5.4) 

displays scatterplots of the retrieved soil moisture values vs. corresponding in-situ values on 

the SMAP test set, for each of the 7 selected ground stations, and each of the three algorithms 

described in Section 5.2, as well as the SMAP products. 
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Station ID# 344 1000 1012 1347 1346 2088 2114 

IGBP class 1 1 5 5 4 4 5 

Aquarius 

correlation 

coeff.  

0.66 0.75 0.40 0.65 0.60 0.59 0.10 

SMAP 

correlation 

coeff.  

0.77 0.89 0.42 0.72 0.68 0.79 0.15 

Data #pts 37 41 36 40 37 40 16 

Linear  

regression 

RMSD 

0.0704  0.0413 0.1450   0.0735 0.0882 0.0713 0.1820  

Wagner 

RMSD 
0.0730 0.1149 0.0777 0.0737 0.1051  0.0995 0.1811 

Semi-

empirical 

RMSD 

0.0677 0.0815 0.1399 0.0664 0.1277 0.1126 0.1553 

S
M

A
 

SMA L3 

RMSD 
0.2624 0.2476 0.0950 - 0.0899 0.0715 0.1277 

data #pts 39 39 29 0 34 32 12 

Corr. 

𝜌W  
0.15 0.47 -0.04 - -0.02 0.37 0.30 

S
M

P
 

SMP L3 

RMSD 
0.3363 0.1579 0.1519 0.1101 0.0618 0.0445 0.0745 

data #pts 43 42 37 41 38 41 17 

Corr. 

𝜌W 
0.79 0.85 - 0.81 0.70 0.80 -0.05 

Table 5.3. Summary of results comparing soil moisture retrieved from SMAP HH backscatter vs. 

in-situ measurements at 7 selected ground stations. The SMAP L3 version 3 active soil moisture 

product (radar-only) and passive soil moisture product (radiometer-only) are also included for 

comparison. See main text for discussion. 
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Figure 5.5. Scatterplots of retrieved volumetric soil moisture values derived from SMAP HH 

backscatter (vertical axes) against corresponding in-situ values (horizontal axes), for each of the 7 

selected ground stations, and for each of the three algorithms described in Section 5.2, as well as 

the SMAP products. Blue squares are the results from linear regression, red upright triangles from 

Wagner’s approach, green circles from the semi-empirical method, yellow inverted triangles from 

SMAP’s passive soil moisture product (radiometer-only), and purple diamonds from SMAP’s 

active soil moisture product (radar only). See main text for discussion. 
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Overall amongst the three algorithms, again linear regression gave the lowest RMSD 

values on the SMAP test set, while the Wagner and semi-empirical algorithms were 

comparable in RMSD. RMSD was unsurprisingly high at stations #1012 and #2114 where 

correlation is poor on both training and test sets. SMA and SMP had exceptionally high 

RMSD values on station #344, but had lower RMSDs on some of the other stations. 

Inspection of Figure 5.5 shows that there was correlation between SMP and the in-situ values, 

however SMP sometimes suffered from a large offset bias from the in-situ values. There 

were several instances of horizontal/near-horizontal-line retrievals in Figure 5.5 for some of 

the algorithms; these were either due to floor or ceiling values, or low values of correlation 

coefficient  from Aquarius causing near-zero slopes in the retrieval equation.  

With just seven stations, it is difficult and unwise to read too much into the evaluations. We 

next perform evaluation over all 38 stations shown in Figure 5.2, but this time using a subset 

of the SMAP data for training our three algorithms (linear regression, Wagner, semi-

empirical), since we lack training data from Aquarius for most of these stations. At each 

station, 5 pairs of data points (pairs of in-situ soil moisture values and corresponding SMAP 

HH backscatter values) were chosen at random for training, out of all the data from April 13, 

2015 to July 7, 2015. The remainder (about 20-40 data points) of the data points forms our 

test set. For linear regression, these 5 points were used to find the line of best fit and 

estimation of slope and intercept. For the semi-empirical method, here we take the correlation 

coefficient to be =0.60 for all 38 stations, which is the median value of the Aquarius-

computed correlation coefficients at the seven stations (last row of Table 5.2, or third row of 

Table 5.3). For Wagner’s approach, the minimum and maximum observed HH values, out 

of those 5, were used as the 10th and 90th percentiles of the observed HH values in the 

algorithm. Here, Wagner’s approach is expected to fail disastrously since the maximum and 

minimum of only 5 data points from April-July are unlikely to correspond to the field 

capacity W𝑤𝑒𝑡 and wilting point W𝑑𝑟𝑦 . The results of the evaluation are displayed in the 

boxplots of Figure 5.6 and Figure 5.7. 
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Figure 5.6. Boxplots of the root-mean-squared-difference (RMSD) between the in-situ soil 

moisture and the retrieved values output from the various algorithms, showing the distribution over 

all 38 stations. The RMSD from each of the 38 stations is scattered (marked with crosses), the 

boxes show the inter-quartile range, the horizontal blue lines the median, the whiskers the 10th and 

90th percentiles. The red circles show the overall RMSD computed by pooling all data points from 

all stations. 
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Figure 5.7. Boxplots of the Pearson correlation coefficient between the in-situ soil moisture and the 

retrieved soil moisture values in the SMP and SMA products, showing the distribution over the 38 

ground stations. The correlation coefficient between the in-situ values and the SMAP HH 

backscatter is also plotted. The respective correlation coefficients from each of the 38 stations is 

scattered (marked with crosses), the boxes show the inter-quartile range, the horizontal blue lines 

the median, the whiskers the 10th and 90th percentiles. 

Figure 5.6 contains boxplots of the root-mean-squared-difference (RMSD) between the in-

situ volumetric soil moisture measured at the ground stations and the retrieved values output 

from the various algorithms, showing the distribution over all 38 stations. Figure 5.7 contains 

boxplots of the Pearson correlation coefficient between the in-situ soil moisture and the 

retrieved soil moisture values in the SMP and SMA products, as well as the correlation 

coefficient between the in-situ values and the SMAP HH backscatter. From Figure 5.6, we 

see that, in terms of this RMSD metric, linear regression gives the lowest RMSD, followed 

by the semi-empirical algorithm, followed by SMA, Wagner’s approach, and SMP has the 

highest RMSD. The failure of Wagner’s algorithm was expected due to the small training 

size. For the small training size, linear regression gave a surprisingly low RMSD, while the 

semi-empirical algorithm was by design robust against a small training size. It is noteworthy 
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that our rudimentary semi-empirical algorithm, which does not use any in-situ soil 

moisture values for training, slightly outperformed the baseline SMA product in RMSD. This 

is not to say that the semi-empirical algorithm in this form has a good RMSD performance; 

rather, all the algorithms, with the exception of linear regression, have median RMSDs 

≥10%, which should be considered a poor performance. 

On the other hand, caution must be taken in interpreting these SMAP and Aquarius 

evaluations to mean that linear regression is overwhelmingly the most superior algorithm. 

Note that the in-situ measurements are at a single point on the ground, which may not 

necessarily be representative of the entire 30-40km SMAP radar footprint (approximately 

the size of a 36km EASE2 grid pixel); there may be significant variation in the soil moisture 

at different points within the same footprint. COSMOS offered a much larger ground area 

(at the scale of hundreds of metres [127]) than a point measurement, but still significantly 

smaller than the SMAP footprint. Famiglietti et al. [133] analyzed the spatial variability of 

soil moisture using data from various field experiments in Oklahoma and Iowa to be about 

0.07cm3/cm3 standard deviation at the 50km scale, but this standard deviation itself had 

scatter and variability; the coefficient of variation (ratio of standard deviation to mean) was 

a decreasing function of soil moisture. An analysis of the in-situ soil moisture data from 

SMAP core-validation sites [134] verifies the findings by Famiglietti et al. [133]. One of the 

purposes of the SMAP core-validation sites is to have accurate and validated soil moisture 

ground-truth measurements made over multiple sites within a 30-40km footprint so as to 

mitigate this variability. However, the SMAP product was not expected to be valid in areas 

of dense vegetation, thus these sites are mostly over cropland or grassland areas with none 

in the forest land cover classes. As such, we have to rely mostly on the available point-

measurement data. There may also be significant land cover heterogeneity within each 30-

40km footprint. Since our linear regression algorithm made use of in-situ soil moisture data 

for training and evaluation was performed on the same station, the linear regression results 

may thus be “over-trained” on just the immediate vicinity of the stations themselves instead 

of the soil moisture over the entire footprint. It might be better to think of the RMSD of the 

linear regression results as a “best case” scenario, or performance upper limit, in the absence 
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of spatial heterogeneity within a footprint, or if that could somehow be taken care of. 

Indeed, as a rough estimate, if we suppose that spatial heterogeneity contributes 0.07cm3/cm3 

of variation, adding this to the linear regression RMSD values yields a median of about 

0.09cm3/cm3, which is now a much smaller advantage over the semi-empirical algorithm, an 

advantage that we might presume related to the utilization of some soil moisture training 

information vs. no soil moisture training information for the semi-empirical algorithm. 

Further remarks can be made concerning Figure 5.7. Empirically, we observe that there is 

some correlation, though not a tight one, between in-situ soil moisture and the L-band HH 

backscatter. In fact the passive soil moisture product SMP exhibited a slightly better 

correlation with the in-situ values, implying that the radiometer data contains useful 

information for soil moisture retrieval. The poor RMSD of SMP in Figure 5.6 suggests that 

instead it is merely the algorithm for the passive soil moisture product (which was not 

designed for areas with vegetation water content >5kg/m2) that is not suitable over forested 

areas and led to significant errors. Likewise, the much poorer correlation of SMA with in-

situ soil moisture despite correlation between HH and the in-situ values suggests that the 

algorithm for the baseline SMA active soil moisture product had not managed to properly 

exploit the radar data in areas of high vegetation, where it was not designed for. Evidently 

different algorithms should be used for soil moisture retrieval under forests; perhaps some of 

our approaches introduced in this chapter might have better exploited the radar data.  

Separately, based on the correlation coefficients we could make the interpretation that the 

square of the correlation coefficient is the fraction of the variance in HH backscatter 

explained by soil moisture variation. A significant fraction (very roughly half) of variance in 

HH backscatter is thus not due to soil moisture. Compare this to the model-based analysis of 

Chapter 3 where it seemed that, though secondary factors were important and far from 

negligible, the primary source of temporal variation was thought to be likely due to soil 

moisture. Indeed, based on the model-based approaches of Chapter 2 and Chapter 3, one 

might raise the very compelling suggestion that simply using the HH radar backscatter in our 

proposed algorithms does not make full use of the polarization information; the HH radar 

backscatter is “contaminated” by changes due to other factors e.g. changes in vegetation. 
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Based on the model, one might attempt to “cancel out” the vegetation changes by using 

corrections of the form HH − 𝛾HV, or similar forms in logarithmic (dB) scale. Figure 5.8 

does a quick exploration of this idea on the data, as a function of . However as can be seen 

from the figure, such an approach might be marginally beneficial at best. Using logarithmic-

transformed variables yields a similar conclusion (not displayed). It is unclear if this is due 

to inadequacies in our modelling, the limited ability of one station to represent the soil 

moisture of the entire radar footprint, or other unaccounted-for factors driving HH 

backscatter changes. 

 
Figure 5.8. Boxplots of the Pearson correlation coefficient between the in-situ soil moisture and the 

quantity HH − 𝛾HV computed from the SMAP radar data over the 38 ground stations, for various 

values of . 

5.4 Conclusion 

We proposed and evaluated several soil-moisture retrieval algorithms for forested areas using 

Aquarius and SMAP L-band radar backscatter and in-situ volumetric soil moisture 



 

 

148 

measurements at 38 ground stations in the United States. In terms of the RMSD between 

the ground measurements and the retrieval algorithm outputs, our linear regression algorithm 

(overall RMSD 6.5%) and semi-empirical algorithm (overall RMSD 11.5%) performed 

better than baseline algorithms from SMAP that used either passive radiometer (overall 

RMSD 18%) or active radar (overall RMSD 13%) measurements only, though these SMAP 

soil moisture products were not intended to be valid in forested areas. Our semi-empirical 

algorithm, which is based on our forward model from earlier chapters, did not make use of 

any in-situ soil moisture values for training. The linear regression algorithm relied on in-situ 

soil moisture values for training and may represent an estimate of the expected limit of soil 

moisture retrieval RMSD performance over forested areas using just L-band multi-

polarization scatterometry with no additional phase information. Correlations between the 

radar backscatter and the in-situ soil moisture were positive but not tight, showing a 

significant fraction of the temporal variance in radar backscatter not directly due to soil 

moisture changes; despite suggestions by our forward model in earlier chapters, it remained 

difficult to properly separate these different factors using L-band multi-polarization 

scatterometry alone. 
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A p p e n d i x  A  

BISTATIC SCATTERING FROM A DIELECTRIC CYLINDER 

The expression for the far-field bistatic scattering from a dielectric cylinder is given in this 

section (backscatter being a special case of bistatic scattering). There is a known exact 

analytical solution only for infinitely long cylinders, first derived by Wait [135]; here we 

follow more closely the notation and expressions by Bohren and Huffman [30] for the case 

of a vertically oriented, infinitely long dielectric cylinder in vacuum. For long (compared to 

the wavelength) but finite cylinders, we apply the approximation made by Ruck and Barrick 

[136] and van Zyl and Kim [11], by multiplying by a sinc function to the solution for infinite 

cylinders. 

 Let 𝑘 = 2𝜋/𝜆 be the wavenumber, 𝜀 the dielectric constant of the cylinder, 𝑟 the radius of 

the cylinder, and 𝐿 the cylinder length. Let 𝜃𝑖 be the angle of the incident wave from the 

vertical, and 𝜙𝑖 and 𝜙𝑠 the incident and scattered azimuth angles, following the FSA/BSA 

conventions as in Chapter 2. Note that for infinitely long cylinders, scattering only takes 

place on a forward scattering cone making the same angle with the vertical cylinder axis, i.e. 

𝜃𝑠 = 𝜋 − 𝜃𝑖 . Also, by the azimuthal symmetry, the dependence on 𝜙𝑖 and 𝜙𝑠 occurs only 

through the relative angle 𝜙𝑠 − 𝜙𝑖  between them. 

Let 

𝜉 = 𝑘𝑟 sin 𝜃𝑖 

𝜂 = 𝑘𝑟√𝜀 − cos2𝜃𝑖 

𝐴𝑛 = 𝑖𝜉[𝜉𝐽𝑛
′ (𝜂)𝐽𝑛(𝜉) − 𝜂𝐽𝑛(𝜂)𝐽𝑛

′ (𝜉)] 

𝐵𝑛 = 𝜉[𝜀𝜉𝐽𝑛
′ (𝜂)𝐽𝑛(𝜉) − 𝜂𝐽𝑛(𝜂)𝐽𝑛

′ (𝜉)] 

𝐶𝑛 = 𝑛𝜂 cos 𝜃𝑖 𝐽𝑛(𝜂)𝐽𝑛(𝜉)[(𝜉 𝜂⁄ )2 − 1] 

𝐷𝑛 = 𝑛𝜂 cos 𝜃𝑖 𝐽𝑛(𝜂)𝐻𝑛
(1)(𝜉)[(𝜉 𝜂⁄ )2 − 1] 

𝑉𝑛 = 𝜉 [𝜀𝜉𝐽𝑛
′ (𝜂)𝐻𝑛

(1)(𝜉) − 𝜂𝐽𝑛(𝜂)𝐻𝑛
(1)′(𝜉)] 
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𝑊𝑛 = 𝑖𝜉 [𝜂𝐽𝑛(𝜂)𝐻𝑛
(1)′(𝜉) − 𝜉𝐽𝑛

′ (𝜂)𝐻𝑛
(1)(𝜉)]  

where 𝐽𝑛 is the Bessel function of the first kind, order  , 𝐽𝑛
′  is its derivative, 𝐻𝑛

(1)
 is the Hankel 

function, and 𝐻𝑛
(1)′

 its derivative. Further compute 

𝑎𝑛I =
𝐶𝑛𝑉𝑛 − 𝐵𝑛𝐷𝑛

𝑊𝑛𝑉𝑛 + 𝑖𝐷𝑛
2

 , 𝑏𝑛I =
𝑊𝑛𝐵𝑛 + 𝑖𝐷𝑛𝐶𝑛

𝑊𝑛𝑉𝑛 + 𝑖𝐷𝑛
2

 

𝑎𝑛II = −
𝐴𝑛𝑉𝑛 − 𝑖𝐶𝑛𝐷𝑛

𝑊𝑛𝑉𝑛 + 𝑖𝐷𝑛
2

 , 𝑏𝑛II = −𝑖
𝐶𝑛𝑊𝑛 + 𝐴𝑛𝐷𝑛

𝑊𝑛𝑉𝑛 + 𝑖𝐷𝑛
2

= −𝑎𝑛I 

𝑇1 = 𝑏0I + 2 ∑(−1)𝑛 cos(𝑛[𝜙𝑠 − 𝜙𝑖 − 𝜋]) 𝑏𝑛I

∞

𝑛=1

 

𝑇1 = 𝑎0II + 2 ∑(−1)𝑛 cos(𝑛[𝜙𝑠 − 𝜙𝑖 − 𝜋]) 𝑎𝑛𝐼I

∞

𝑛=1

 

𝑇3 = 2𝑖 ∑(−1)𝑛 sin(𝑛[𝜙𝑠 − 𝜙𝑖 − 𝜋])𝑎𝑛I

∞

𝑛=1

 

𝑇4 = −𝑇3 

We keep only the first 20 terms in the infinite series for computation, as a reasonable trade-

off between computational accuracy and speed. 

The expression for our approximation for the (dimensionless) scattering matrix of a finite 

cylinder is then 

[𝑆] = [
𝑆ℎℎ 𝑆ℎ𝑣

𝑆𝑣ℎ 𝑆𝑣𝑣
] =

𝑖𝑘𝐿

𝜋

sin 𝜃𝑠

sin 𝜃𝑖
sinc (

𝑘𝐿

2
(cos 𝜃𝑖 + cos 𝜃𝑠)) [

−𝑇2 𝑇3

−𝑇4 𝑇1
] (A. 1) 

with 

sinc(𝑥) =
sin 𝑥

𝑥
 . 

Here equation (A. 1) is written for the BSA convention. For the FSA convention, the signs 

of 𝑆ℎℎ and 𝑆ℎ𝑣 should be flipped (see Section 0). For finite cylinders, we need not impose 



 

 

164 

𝜃𝑠 = 𝜋 − 𝜃𝑖, but the sinc function keeps the scattering small if 𝜃𝑠 departs from this 

significantly and the cylinder length is large compared to the wavelength. The approximation 

is not expected to be good if the incident direction is close to the cylinder axis. In our 

computer implementation, we set the scattering matrix to zero if we are within 5 degrees of 

the cylinder axis. There are a few further caveats to the approximation of equation (A. 1). 

Realize that in this approximation, there is apparently no reflection of the induced current 

from the ends of the cylinder and thus no resonance length.  Also note that reciprocity may 

not be respected exactly by equation (A. 1) when 𝜃𝑖 ≠ 𝜋/2 ≠ 𝜃𝑠, in the sense that 

𝑆ℎ𝑣(𝜃𝑖 , 𝜙𝑖 , 𝜃𝑠, 𝜙𝑠) ≠ 𝑆𝑣ℎ(𝜃𝑠, 𝜙𝑠 + 𝜋, 𝜃𝑖, 𝜙𝑖 + 𝜋). The physical optics approximation of 

multiplying by the sinc function has only been rigorously shown for the case 𝜃𝑖 = 𝜋/2  [30] 

[137]. We still use approximation (A. 1) in spite of these issues because of the following 

reasons. Firstly, because we intend to use finite cylinders to model conceptual sections of 

branches and other similar linear structures in vegetation, the neglect of the end reflections 

may be reasonable. Secondly, because the majority of direct single-scattering backscatter 

from vegetation will come from cylinders oriented near 𝜃𝑖 = 𝜋/2 , the approximation is valid 

where it matters most. Any potential issues with using approximation (A. 1) are thus more 

likely to come from using it for calculations involving multiple scattering, where all 

permutations of bistatic angles may be involved. 

The above expression was for a vertically oriented cylinder. For a cylinder with axis 

arbitrarily oriented in the direction (𝜃𝑐, 𝜙𝑐), first consider the local rotated frame in which 

the cylinder is vertically oriented, and let (𝜃𝑖𝑐, 𝜙𝑖𝑐) and (𝜃𝑠𝑐, 𝜙𝑠𝑐)  be the local incident and 

scattered directions as in the BSA convention of Figure 1.2.  Using the scattering matrix 

[𝑆(𝜃𝑖𝑐, 𝜙𝑖𝑐, 𝜃𝑠𝑐 , 𝜙𝑠𝑐)]  in this local rotated frame, we will then apply coordinate rotations to 

obtain the scattering matrix in the global frame [11]. 

Let 

𝐜̂ = sin 𝜃𝑐 cos 𝜙𝑐 𝐱̂ + sin 𝜃𝑐 sin𝜙𝑐 𝐲̂ + cos 𝜃𝑐 𝐳̂ 

𝐡̂𝑖𝑐 =
𝐜̂ × 𝐤̂𝑖

|𝐜̂ × 𝐤̂𝑖|
 , 𝐯̂𝑖𝑐 = 𝐡̂𝑖𝑐 × 𝐤̂𝑖 , 𝐡̂𝑠𝑐 =

𝐜̂ × 𝐤̂𝑠

|𝐜̂ × 𝐤̂𝑠|
 , 𝐯̂𝑠𝑐 = 𝐡̂𝑠𝑐 × 𝐤̂𝑖 .  
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The bistatic scattering matrix (in the global frame) from a dielectric cylinder is then 

[𝐒(𝜃𝑖, 𝜙𝑖 , 𝜃𝑠, 𝜙𝑠, 𝜃𝑐, 𝜙𝑐)] = 

[
𝐡̂𝑠 ∙ 𝐡̂𝑠𝑐 𝐡̂𝑠 ∙ 𝐯̂𝑠𝑐

𝐯̂𝑠 ∙ 𝐡̂𝑠𝑐 𝐯̂𝑠 ∙ 𝐯̂𝑠𝑐

] [𝐒(𝜃𝑖𝑐, 𝜙𝑖𝑐, 𝜃𝑠𝑐, 𝜙𝑠𝑐)] [
𝐡̂𝑖𝑐 ∙ 𝐡̂𝑖 𝐡̂𝑖𝑐 ∙ 𝐯̂𝑖

𝐯̂𝑖𝑐 ∙ 𝐡̂𝑖 𝐯̂𝑖𝑐 ∙ 𝐯̂𝑖

] . (A. 2) 

Note that (𝜃𝑖𝑐, 𝜙𝑖𝑐)  can easily be found from 𝜃𝑐, 𝜙𝑐 , 𝜃𝑖, 𝜙𝑖 using  

𝐤̂𝑖 = [
sin 𝜃𝑖 cos 𝜙𝑖

sin 𝜃𝑖 sin𝜙𝑖

−cos 𝜃𝑖

]  

   [
sin 𝜃𝑖𝑐 cos 𝜙𝑖𝑐

sin 𝜃𝑖𝑐 sin𝜙𝑖𝑐

−cos 𝜃𝑖𝑐

] = [
cos 𝜃𝑐 cos 𝜙𝑐 cos 𝜃𝑐 sin𝜙𝑐 −sin 𝜃𝑐

−sin𝜙𝑐 cos 𝜙𝑐 0
sin 𝜃𝑐 cos 𝜙𝑐 sin 𝜃𝑐 sin𝜙𝑐 cos 𝜃𝑐

 ] 𝐤̂𝑖. 
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A p p e n d i x  B  

MULTIPLE SCATTERING CORRECTION FACTOR 

In this Appendix, the estimation of the multiple-scattering correction factors 

ℱHH(𝜏𝑐𝑛(𝜃𝑖0), 𝜃𝑖0, 𝜀𝑣), ℱVV(𝜏𝑐𝑛(𝜃𝑖0), 𝜃𝑖0, 𝜀𝑣) and ℱHV(𝜏𝑐𝑛(𝜃𝑖0), 𝜃𝑖0, 𝜀𝑣) to the canopy 

vegetation backscatter term (Section 2.2) is described. Within this Appendix, the subscript 𝑖 

for the incidence angle 𝜃𝑖 is temporarily changed to 𝑖0 to avoid notational confusion (for 

reasons that would become apparent). The overall approach is as follows. For the co-

polarized corrections ℱHH and ℱVV , the method of radiative transfer is used to estimate the 

backscatter without making the single-scattering assumption. A further correction is made to 

account for coherent backscatter enhancement not modelled by the radiative transfer 

equations. The cross-polarization correction ℱHV is estimated from the co-polarization 

corrections via Monte-Carlo estimates of the ratio between cross-polarization and co-

polarization returns for double scattering. 

The radiative transfer equation for our scattering problem can be written as [40]  

𝑑𝐈

𝑑𝑠
= −[𝐊]𝐈 + ∫〈𝐌〉𝐈 𝑑Ω

4𝜋

. (B. 1) 

Here 𝑠 is the distance along the propagation direction being considered, and [𝐊] is the 

extinction coefficient matrix, often denoted 𝜿𝑒 in the literature, but here we change the 

notation slightly to avoid excessive subscripts and confusion with the field extinction.  𝐈 is 

the modified Stokes vector satisfying 

𝐈 𝑑Ω = [

𝐼𝑣
𝐼ℎ
𝑈
𝑉

]𝑑Ω =
1

𝜂

[
 
 
 

〈|𝐸𝑣|
2〉

〈|𝐸ℎ|2〉

2Re〈𝐸𝑣𝐸ℎ
∗〉

2Im〈𝐸𝑣𝐸ℎ
∗〉]

 
 
 

(B. 2) 

with units of power per unit solid angle per unit area (area perpendicular to the propagation 

direction), where 𝜂 is the charateristic impedance of the medium (377 for free space). 〈𝐌〉 
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is the average Stokes matrix density, with dimensions of area per unit volume; the entries 

of 〈𝐌〉 for the form of the radiative transfer equation that shall be used here will be written 

out explicitly later. 

For our horizontal slab geometry, with 𝜃 the angle from the vertical, let 𝐆 be the power per 

solid angle per unit horizontal area, instead of power per unit perpendicular area. Then 𝐆 =

𝐈|cos 𝜃|, and the radiative transfer equation becomes  

𝑑𝐆

𝑑𝑧
= −

1

|cos 𝜃|
[𝐊]𝐆 + ∫〈𝐌〉𝐆

1

|cos 𝜃|
 𝑑Ω

4𝜋

. (B. 3) 

There are various ways to solve the radiative transfer equation [40, 138-141]. A numerical 

approach to solving the radiative transfer equation may be to solve a linear system as 

described below. Discretize the 4𝜋 sphere into 2𝐽 directions, 𝐽 upwards and 𝐽 downwards, 

and use subscripts 𝑢 or 𝑑 for “upwards” or “downwards” respectively. (In the computer 

implementation,  𝐽 = 162 was used, with angular intervals of 10 in elevation and 20 in 

azimuth). Subscripts 𝑠, 𝑖, or 𝑗 , each running from 1 to 𝐽, will be reserved as indices for these 

directions, with subscript 𝑖 typically used for an “incident” direction, and subscript 𝑠 

typically used for a “scattered” direction; when there is a need to subscript both “scattered” 

and “incident” simultaneously, a semicolon will be used to separate them, e.g. (𝑠; 𝑖)  or 

(𝑢𝑠; 𝑑𝑖) .  Associate solid angle ΔΩ𝑢𝑗 or solid angle ΔΩ𝑑𝑗 with each direction, such that  

2𝜋 = ∑ΔΩ𝑢𝑗

𝐽

𝑗=1

   , 2𝜋 = ∑ΔΩ𝑑𝑗

𝐽

𝑗=1

(B. 4) 

 Let 𝑧(𝑙) = (𝑙 −
1

2
)Δ𝑧 , Δ𝑧 = (𝑍2 − 𝑍1)/𝑙𝑚𝑎𝑥  where (𝑍2 − 𝑍1) is the total height of the 

vegetation layer, and 𝑙𝑚𝑎𝑥 is the total number of thin sublayers that whole layer is being 

divided into for computation. 𝑙 is an integer indexing the sublayers and Δ𝑧 is the thickness 

of each sublayer. The highest sublayer is thus associated with index 𝑙 = 𝑙𝑚𝑎𝑥, and the lowest 

sublayer with index 𝑙 = 1. Our discretized radiative transfer equation then reads, for each 

𝑠 = 1, … , 𝐽 and for each 𝑙 (except for the upper and lower boundaries) 
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𝑑

𝑑𝑧+
𝐆𝑢𝑠

(𝑙) = −
1

|cos 𝜃𝑢𝑠|
[𝐊]𝑢𝑠𝐆𝑢𝑠

(𝑙) + ∑(〈𝐌𝑢𝑠;𝑢𝑖〉
𝐆𝑢𝑖

(𝑙)

|cos 𝜃𝑢𝑖|
+ 〈𝐌𝑢𝑠;𝑑𝑖〉

𝐆𝑑𝑖
(𝑙)

|cos 𝜃𝑑𝑖|
)

𝐽

𝑖=1

(B. 5a) 

𝑑

𝑑𝑧−
𝐆𝑑𝑠

(𝑙) = −
1

|cos 𝜃𝑑𝑠|
[𝐊]𝑑𝑠𝐆𝑢𝑠

(𝑙) + ∑(〈𝐌𝑑𝑠;𝑢𝑖〉
𝐆𝑢𝑖

(𝑙)

|cos 𝜃𝑢𝑖|
+ 〈𝐌𝑑𝑠;𝑑𝑖〉

𝐆𝑑𝑖
(𝑙)

|cos 𝜃𝑑𝑖|
)

𝐽

𝑖=1

(B. 5b) 

In these equations, 𝐆𝑢𝑗
(𝑙)

 is a 4x1 vector of Stokes parameters to be interpreted as the power 

(in watts) through a unit horizontal plane area (1m2) through solid angle ΔΩ𝑢𝑗 ≈

sin 𝜃𝑢𝑗 Δ𝜃Δ𝜙 centred at the direction (𝜃𝑢𝑗, 𝜙𝑢𝑗), at position 𝑧 = (𝑙 −
1

2
)Δ𝑧 (the 𝑙 -th 

sublayer), and likewise for 𝐆𝑑𝑗
(𝑙)

 and ΔΩ𝑢𝑗 (replace subscript 𝑢 for “upwards” by 𝑑 for 

“downwards”). The extinction coefficient matrix in the direction (𝜃𝑢𝑠, 𝜙𝑢𝑠) is  

[𝐊]𝑢𝑠 = 𝑛𝑐𝑛

[
 
 
 
 
2〈𝜅𝑣,𝑐𝑛(𝜃𝑢𝑠)〉  0               0                       0           
     0  2〈𝜅ℎ,𝑐𝑛(𝜃𝑢𝑠)〉        0                       0         

      0          0 〈𝜅𝑣,𝑐𝑛(𝜃𝑢𝑠) + 𝜅ℎ,𝑐𝑛(𝜃𝑢𝑠)〉  0          

      0          0           0 〈𝜅𝑣,𝑐𝑛(𝜃𝑢𝑠) + 𝜅ℎ,𝑐𝑛(𝜃𝑢𝑠)〉 ]
 
 
 
 

𝑢𝑠

(B. 6) 

and likewise for [𝐊]𝑑𝑠 (replace 𝑢 by 𝑑). Azimuthal symmetry in the cylinder orientation 

distribution is assumed, removing the dependence of [𝐊]𝑢𝑠 on 𝜙𝑢𝑠 and [𝐊]𝑑𝑠 on 𝜙𝑑𝑠 . Recall 

that 𝑛𝑐𝑛 is the number density of cylinders in the canopy layer, while〈𝜅ℎ,𝑐𝑛〉 and 〈𝜅𝑣,𝑐𝑛〉 are 

per-cylinder extinction cross-sections for the field, to be distinguished from the extinction 

coefficient matrices [𝐊] for the power or intensity. 〈𝜅𝑣,𝑐𝑛(𝜃𝑢𝑠)〉 and 〈𝜅ℎ,𝑐𝑛(𝜃𝑢𝑠)〉 are found 

from the optical theorem (equation 1.23); the angular brackets denote averaging over the 

orientation and size distribution of the scatterers (i.e. cylinders). 

〈𝐌𝑢𝑠;𝑑𝑖〉 =
𝑛𝑐𝑛

𝑘2
ΔΩ𝑢𝑠     ×  

                                                                                                                                      

〈

[
 
 
 

𝑆𝑣𝑣𝑆𝑣𝑣
∗       𝑆𝑣ℎ𝑆𝑣ℎ

∗

𝑆ℎ𝑣𝑆ℎ𝑣
∗       𝑆ℎℎ𝑆ℎℎ

∗
Re(𝑆𝑣𝑣𝑆𝑣ℎ

∗ )      −Im(𝑆𝑣𝑣𝑆𝑣ℎ
∗ )

Re(𝑆ℎ𝑣𝑆ℎℎ
∗ )      −Im(𝑆ℎ𝑣𝑆ℎℎ

∗ )

2Re(𝑆𝑣𝑣𝑆ℎ𝑣
∗ ) 2Re(𝑆𝑣ℎ𝑆ℎℎ

∗ )

2Im(𝑆𝑣𝑣𝑆ℎ𝑣
∗ ) 2Im(𝑆𝑣ℎ𝑆ℎℎ

∗ )
Re(𝑆𝑣𝑣𝑆ℎℎ

∗ + 𝑆𝑣ℎ𝑆ℎ𝑣
∗ ) −Im(𝑆𝑣𝑣𝑆ℎℎ

∗ − 𝑆𝑣ℎ𝑆ℎ𝑣
∗ )

Im(𝑆𝑣𝑣𝑆ℎℎ
∗ + 𝑆𝑣ℎ𝑆ℎ𝑣

∗ ) Re(𝑆𝑣𝑣𝑆ℎℎ
∗ − 𝑆𝑣ℎ𝑆ℎ𝑣

∗ ) ]
 
 
 

〉 (B. 7) 
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is the average Stokes matrix density (entries listed in [40]) for incident direction 

(𝜃𝑑𝑖 , 𝜙𝑑𝑖) to scattered direction (𝜃𝑢𝑠, 𝜙𝑢𝑠), and 〈𝐌𝑑𝑠;𝑢𝑖〉 is for incident direction (𝜃𝑢𝑖, 𝜙𝑢𝑖) 

to scattered direction (𝜃𝑑𝑠, 𝜙𝑑𝑠), and likewise for 〈𝐌𝑑𝑠;𝑑𝑖〉 and 〈𝐌𝑢𝑠;𝑢𝑖〉. 𝑘 = 2𝜋/𝜆 is the 

wavenumber. The angular brackets for the Stokes matrix denote averaging over orientation 

of the cylinder orientation and size distribution, normalized to one cylinder. To clarify, we 

thus need to compute the dimensionless bistatic scattering matrix (Appendix A), in FSA 

coordinates, 

[
𝑆ℎℎ 𝑆ℎ𝑣

𝑆𝑣ℎ 𝑆𝑣𝑣
] 

 between incident direction (𝜃𝑑𝑖 , 𝜙𝑑𝑖) and scattered direction (𝜃𝑢𝑠, 𝜙𝑢𝑠) for a single cylinder, 

and average the second order quantities 𝑆𝑣𝑣𝑆𝑣𝑣
∗  , 𝑆𝑣ℎ𝑆𝑣ℎ

∗ , etc. over the cylinder size and 

orientation distribution, to get the matrix elements 〈𝑆𝑣𝑣𝑆𝑣𝑣
∗ 〉, 〈𝑆𝑣ℎ𝑆𝑣ℎ

∗ 〉, etc. (Care must be 

taken that in the FSA coordinate definition, 𝜃𝑖 is the supplement of what one might expect.) 

The following distribution (Table B.1) of cylinder sizes was used: 

Radius 

[cm] 
0.10 0.14 0.20 0.29 0.42 0.59 0.85 1.21 1.72 2.46 3.51 

Length 

[cm] 
21.5 27.3 34.6 43.9 55.6 70.6 89.4 113.4 143.7 182.2 231.0 

number 

dist. (%) 
50.9 25.0 12.3 6.02 2.96 1.45 0.712 0.349 0.172 0.084 0.041 

volume 

dist. (%) 
2.13 2.70 3.42 4.33 5.49 6.96 8.83 11.19 14.18 17.98 22.80 

 
Table B.1. Distribution of cylinder sizes for radiative transfer computation. 

The cylinder lengths were chosen to follow the 𝐿(𝑟) ∝ 𝑟2/3 relationship (equation 2.44). 

The cylinder number distribution was chosen to satisfy the 𝑛𝑐𝑛𝑝(𝑟) ∆ ln 𝑟 ∝ 𝑟−2 

relationship discussed in equation (2.39) of Section 2.7 (since log-uniform bins are used for 

the radius distribution). 𝑛𝑐𝑛 was varied to give the desired optical thickness 𝜏𝑐𝑛. The radius 

distribution was chosen for approximate consistency with the 1mm-3cm distribution 

discussed in Section 2.7. Strictly speaking, a distribution up to slightly larger radii might 

have been more appropriate. The reason is because while 1mm-3cm covered the main 
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resonance region with the strongest extinction and single-scattering backscatter per unit 

volume, for multiple-scattering, the single-scattering albedo (which considers the whole 4π 

sphere instead of just the backscatter direction) is small towards the Rayleigh regime, but 

continues to be significantly large at radii larger than the resonance size. However, it 

becomes unclear how far beyond 3cm radius the number density distribution will be valid; 

e.g. in the boreal forests, 3cm radius already approaches the typical maximum size of tree 

branches. 

The orientation distribution was chosen to be uniform over the 4𝜋 sphere. (The multiple-

scattering correction factors would turn out to be quite similar if we had chosen a cosine-

squared distribution instead, so for simplicity we used a uniform distribution to compute the 

correction factors, and apply them even for non-uniform orientation distributions.) Note also 

that the number density 𝑛𝑐𝑛 and total layer height (𝑍2 − 𝑍1) always occur together so only 

their product 𝑛𝑐𝑛 (𝑍2 − 𝑍1) (number of cylinders per unit ground area) matters in this 

computation. Also for our case of a uniformly random cylinder orientation distribution, by 

symmetry 〈𝜅ℎ,𝑐𝑛(𝜃)〉 = 〈𝜅𝑣,𝑐𝑛(𝜃)〉 = 〈𝜅𝑐𝑛〉 is independent of 𝜃.  

Directly computing and averaging the bistatic scattering matrices for each 〈𝐌𝑢𝑠;𝑑𝑖〉 is 

computationally intensive. For randomly oriented cylinders, the average Stokes matrix 

should be a function only of the angle in between the incident and scattered directions, up to 

a coordinate transformation. This symmetry can be used to speed up computations. Recall 

that in FSA coordinates, 

𝐤̂𝑖 = sin 𝜃𝑖 cos 𝜙𝑖 𝐱̂ + sin 𝜃𝑖 sin𝜙𝑖 𝐲̂ − cos 𝜃𝑖 𝐳̂ 

𝐤̂𝑠 = sin 𝜃𝑠 cos 𝜙𝑠 𝐱̂ + sin 𝜃𝑠 sin𝜙𝑠 𝐲̂ + cos 𝜃𝑠 𝐳̂ 

𝐡̂𝑖 =
𝐳̂ × 𝐤̂𝑖

|𝐳̂ × 𝐤̂𝑖|
 , 𝐯̂𝑖 = 𝐡̂𝑖 × 𝐤̂𝑖 , 𝐡̂𝑠 =

𝐳̂ × 𝐤̂𝑠

|𝒛̂ × 𝐤̂𝑠|
 , 𝐯̂𝑠 = 𝐡̂𝑠 × 𝐤̂𝑖   

Let the direction vector perpendicular to the scattering plane be 

𝒘̂ =
𝐤̂𝑖 × 𝐤̂𝑠

|𝐤̂𝑖 × 𝐤̂𝑠|
(B. 8) 
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and define 

𝐡̂𝑖𝑤 = 𝒘̂ × 𝐤̂𝑖 , 𝐯̂𝑖𝑤 = 𝐡̂𝑖𝑤 × 𝐤̂𝑖 = − 𝒘̂, (B. 9a) 

𝐡̂𝑠𝑤 = 𝒘̂ × 𝐤̂𝑠 , 𝐯̂𝑠𝑤 = 𝐡̂𝑠𝑤 × 𝐤̂𝑠 = − 𝒘̂. (B. 9b) 

Let  

[𝐒]𝑤 = [
𝑆ℎℎ 𝑆ℎ𝑣

𝑆𝑣ℎ 𝑆𝑣𝑣
]
𝑤

(B. 10) 

be the scattering matrix in the rotated frame where 𝒘̂ is vertical. The incident and scattered 

directions lie in the horizontal plane in this frame, and the 2x2 scattering matrix [𝐒]𝑤 =

[𝐒(∆𝜙)]𝑤 depends only on the angle between them, 

∆𝜙 = acos(𝐤̂𝑖 ∙ 𝐤̂𝑠) . (B. 11) 

For the cases of forward scattering ∆𝜙 = 0 or back scattering ∆𝜙 = 𝜋 (or approximate 

cases), pick  𝒘̂ = −𝐯̂𝑖 . The 2x2 scattering matrix in the original global frame is then given 

by the coordinate transformation 

[𝐒(𝜃𝑖, 𝜙𝑖 , 𝜃𝑠, 𝜙𝑠)] = [𝐔]𝑠𝑤[𝐒(∆𝜙)]𝑤[𝐔]𝑤𝑖 (B. 12) 

where the rotation matrices 

[𝐔]𝑠𝑤 = [
𝐡̂𝑠 ∙ 𝐡̂𝑠𝑤 𝐡̂𝑠 ∙ 𝐯̂𝑠𝑤

𝐯̂𝑠 ∙ 𝐡̂𝑠𝑤 𝐯̂𝑠 ∙ 𝐯̂𝑠𝑤

] , [𝐔]𝑤𝑖 = [
𝐡̂𝑖𝑤 ∙ 𝐡̂𝑖 𝐡̂𝑖𝑤 ∙ 𝐯̂𝑖

𝐯̂𝑖𝑤 ∙ 𝐡̂𝑖 𝐯̂𝑖𝑤 ∙ 𝐯̂𝑖

] . (B. 13) 

Writing out the 2x2 scattering matrix as a vector, equation (B.13) becomes 

[

𝑆ℎℎ

𝑆ℎ𝑣

𝑆𝑣ℎ

𝑆𝑣𝑣

] = [𝐔]𝑠𝑤⨂[𝐔]𝑤𝑖
𝑇 [

𝑆ℎℎ

𝑆ℎ𝑣

𝑆𝑣ℎ

𝑆𝑣𝑣

]

𝑤

(B. 14) 
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where 

[𝐔]𝑠𝑤⨂[𝐔]𝑤𝑖
𝑇 =

[
 
 
 
 𝐡̂𝑠 ∙ 𝐡̂𝑠𝑤 [

𝐡̂𝑖𝑤 ∙ 𝐡̂𝑖 𝐯̂𝑖𝑤 ∙ 𝐡̂𝑖

𝐡̂𝑖𝑤 ∙ 𝐯̂𝑖 𝐯̂𝑖𝑤 ∙ 𝐯̂𝑖

] 𝐡̂𝑠 ∙ 𝐯̂𝑠𝑤 [
𝐡̂𝑖𝑤 ∙ 𝐡̂𝑖 𝐯̂𝑖𝑤 ∙ 𝐡̂𝑖

𝐡̂𝑖𝑤 ∙ 𝐯̂𝑖 𝐯̂𝑖𝑤 ∙ 𝐯̂𝑖

]

𝐯̂𝑠 ∙ 𝐡̂𝑠𝑤 [
𝐡̂𝑖𝑤 ∙ 𝐡̂𝑖 𝐯̂𝑖𝑤 ∙ 𝐡̂𝑖

𝐡̂𝑖𝑤 ∙ 𝐯̂𝑖 𝐯̂𝑖𝑤 ∙ 𝐯̂𝑖

] 𝐯̂𝑠 ∙ 𝐯̂𝑠𝑤 [
𝐡̂𝑖𝑤 ∙ 𝐡̂𝑖 𝐯̂𝑖𝑤 ∙ 𝐡̂𝑖

𝐡̂𝑖𝑤 ∙ 𝐯̂𝑖 𝐯̂𝑖𝑤 ∙ 𝐯̂𝑖

]
]
 
 
 
 

. (B. 15) 

The 4x4 scatterer covariance matrices in the global frame and the rotated frame are thus 

related by 

[𝐂(𝜃𝑖 , 𝜙𝑖 , 𝜃𝑠, 𝜙𝑠)] = ([𝐔]𝑠𝑤⨂[𝐔]𝑤𝑖
𝑇 )[𝐂(∆𝜙)]𝑤([𝐔]𝑠𝑤⨂[𝐔]𝑤𝑖

𝑇 )† (B. 16) 

where 

[𝐂] =

[
 
 
 
𝑆ℎℎ𝑆ℎℎ

∗ 𝑆ℎℎ𝑆ℎ𝑣
∗

𝑆ℎ𝑣𝑆ℎℎ
∗ 𝑆ℎ𝑣𝑆ℎ𝑣

∗
𝑆ℎℎ𝑆𝑣ℎ

∗ 𝑆ℎℎ𝑆𝑣𝑣
∗

𝑆ℎ𝑣𝑆𝑣ℎ
∗ 𝑆ℎ𝑣𝑆𝑣𝑣

∗

𝑆𝑣ℎ𝑆ℎℎ
∗ 𝑆𝑣ℎ𝑆ℎ𝑣

∗

𝑆𝑣𝑣𝑆ℎℎ
∗ 𝑆𝑣𝑣𝑆ℎ𝑣

∗
𝑆𝑣ℎ𝑆𝑣ℎ

∗ 𝑆𝑣ℎ𝑆𝑣𝑣
∗

𝑆𝑣𝑣𝑆𝑣ℎ
∗ 𝑆𝑣𝑣𝑆𝑣𝑣

∗ ]
 
 
 

 

is the 4x4 scatterer covariance matrix and the dagger symbol † denotes matrix transpose 

conjugation (to be distinguished from the superscript  𝑇denoting matrix transpose). In this 

way, we can precompute 〈[𝐂(∆𝜙)]𝑤〉 over a grid of ∆𝜙 values (a 2 grid spacing was used), 

and obtain 〈[𝐂(𝜃𝑖, 𝜙𝑖, 𝜃𝑠, 𝜙𝑠)]〉 for any incident and scattered direction pair by applying the 

transformation. The angular brackets denote averaging over the cylinder orientation and size 

distribution. Finally, the elements of the average Stokes matrix  

〈

[
 
 
 

𝑆𝑣𝑣𝑆𝑣𝑣
∗       𝑆𝑣ℎ𝑆𝑣ℎ

∗

𝑆ℎ𝑣𝑆ℎ𝑣
∗       𝑆ℎℎ𝑆ℎℎ

∗

Re(𝑆𝑣𝑣𝑆𝑣ℎ
∗ )      −Im(𝑆𝑣𝑣𝑆𝑣ℎ

∗ )

Re(𝑆ℎ𝑣𝑆ℎℎ
∗ )      −Im(𝑆ℎ𝑣𝑆ℎℎ

∗ )

2Re(𝑆𝑣𝑣𝑆ℎ𝑣
∗ ) 2Re(𝑆𝑣ℎ𝑆ℎℎ

∗ )

2Im(𝑆𝑣𝑣𝑆ℎ𝑣
∗ ) 2Im(𝑆𝑣ℎ𝑆ℎℎ

∗ )
Re(𝑆𝑣𝑣𝑆ℎℎ

∗ + 𝑆𝑣ℎ𝑆ℎ𝑣
∗ ) −Im(𝑆𝑣𝑣𝑆ℎℎ

∗ − 𝑆𝑣ℎ𝑆ℎ𝑣
∗ )

Im(𝑆𝑣𝑣𝑆ℎℎ
∗ + 𝑆𝑣ℎ𝑆ℎ𝑣

∗ ) Re(𝑆𝑣𝑣𝑆ℎℎ
∗ − 𝑆𝑣ℎ𝑆ℎ𝑣

∗ ) ]
 
 
 

〉 

can be obtained from the elements of the average covariance matrix. 

Having computed the Stokes matrices 〈𝐌𝑢𝑠;𝑑𝑖〉, 〈𝐌𝑑𝑠;𝑢𝑖〉, etc., returning to the radiative 

transfer equation, the differential equations (B.5a) and (B.5b) can be solved numerically by 

the (backward) Euler method: 
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𝐆𝑢𝑗
(𝑙) = 𝐆𝑢𝑗

(𝑙−1)
+ ∆𝑧

𝑑

𝑑𝑧+
𝐆𝑢𝑗

(𝑙)    , ∀𝑙 = 2,… , 𝑙𝑚𝑎𝑥 , 𝑗 = 1, … , 𝐽 (B. 17a) 

𝐆𝑑𝑗
(𝑙) = 𝐆𝑑𝑗

(𝑙+1)
+ ∆𝑧

𝑑

𝑑𝑧−
𝐆𝑑𝑗

(𝑙)   , ∀𝑙 = 1, … , 𝑙𝑚𝑎𝑥 − 1 , 𝑗 = 1, … , 𝐽. (B. 17b) 

With appropriate boundary conditions on the top and bottom sublayers, these equations can 

be collected into a linear system whose solution would be our desired solution to the radiative 

transfer equation. In computations, 𝑙𝑚𝑎𝑥 ≈ 100𝜏𝑐𝑛(𝜃𝑖0) cos 𝜃𝑖0  was used (with 𝑙𝑚𝑎𝑥 = 20 

if 𝜏𝑐𝑛(𝜃𝑖0) cos 𝜃𝑖0 < 0.2 ), such that each sublayer is indeed thin.  

For our radar scattering calculations, there are two additional special directions to be taken 

care of. Firstly, the incident radar beam is treated as a plane wave, i.e. its beamwidth is a 

delta function in angular space, so it has to be taken into account separately. The subscript 

𝑖0 shall be used to denote quantities associated with this incident beam, e.g. the incident 

direction is (𝜃𝑖0, 𝜙𝑖0) , with 𝜙𝑖0 set to 0 for convenience. (Again, care must be taken that in 

the FSA coordinate definition, 𝜃𝑖 is the supplement of what one might expect.)  Let 𝐆𝑖0
(𝑙)

 be 

a 4x1 vector of Stokes parameters to be interpreted as the power (in watts), in this direction, 

through a unit horizontal plane area (1m2) at the 𝑙 -th sublayer. 

 Secondly, the final output direction of interest (i.e. the backscatter direction) may not be 

coincident with the centre of one the discretized directions, so it is best to also handle it 

separately. The subscript  𝑠0 shall be used to denote terms associated with final scattering 

direction of interest for evaluation, i.e. the direction  (𝜃𝑠0, 𝜙𝑠0). For the particular case of 

backscatter, (𝜃𝑠0, 𝜙𝑠0) = (𝜃𝑖0, 𝜋 − 𝜙𝑖0). Let 𝐆𝑠0
(𝑙)

 be a 4x1 vector of Stokes parameters to be 

interpreted as the power (in watts) through a unit horizontal plane area (1m2) through a unit 

solid angle ΔΩ𝑠0 = 1 steradian  centred at the direction (𝜃𝑠0, 𝜙𝑠0), at the 𝑙 -th sublayer. 

Thus the linear system we actually solve is of the form 

𝐱 = [𝐁]𝐱 + 𝐛 (B. 18) 
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𝐱 =

[
 
 
 
 

𝐱(1)

⋮
𝐱(𝑙)

⋮
𝐱(𝑙𝑚𝑎𝑥)]

 
 
 
 

 , [𝐁] = [
𝐁(1,1) ⋯ 𝐁(1,𝑙𝑚𝑎𝑥)

⋮ ⋱ ⋮
𝐁(𝑙𝑚𝑎𝑥,1) ⋯ 𝐁(𝑙𝑚𝑎𝑥,𝑙𝑚𝑎𝑥)

] , 𝐛 =

[
 
 
 
 

𝐛(1)

⋮
𝐛(𝑙)

⋮
𝐛(𝑙𝑚𝑎𝑥)]

 
 
 
 

  

where 𝐱 is a concatenation of 𝑙𝑚𝑎𝑥  𝐱(𝑙) vectors, each of which is 8𝐽 + 8 long:  

𝐱(𝑙) =

[
 
 
 
 
 
 
 
 
 𝐆𝑠0

(𝑙)

𝐆𝑢1
(𝑙)

⋮

𝐆𝑢𝐽
(𝑙)

𝐆𝑑1
(𝑙)

⋮

𝐆𝑑𝐽
(𝑙)

𝐆𝑖0
(𝑙)

]
 
 
 
 
 
 
 
 
 

(B. 19) 

  
and [𝐁] has 𝑙𝑚𝑎𝑥 × 𝑙𝑚𝑎𝑥 blocks, each block a (8𝐽 + 8) × (8𝐽 + 8) matrix. Using 

[𝟎](8𝐽+8)×(8𝐽+8) to denote the (8𝐽 + 8) × (8𝐽 + 8) zero matrix, [𝟎](4𝐽+4)×(4𝐽+4)  to denote 

(4𝐽 + 4) × (4𝐽 + 4) zero matrix, [𝐈](4𝐽+4)×(4𝐽+4)  to denote the (4𝐽 + 4) × (4𝐽 + 4) 

identity matrix, the (l,m)-th block of [𝐁] is  

𝐁(𝑙,𝑚) = Δ𝑧[𝐀] , ∀𝑙 = 𝑚, 𝑙 = 1,… 𝑙𝑚𝑎𝑥 (B. 20) 

𝐁(𝑙,𝑚) = [
[𝐈](4𝐽+4)×(4𝐽+4) [𝟎](4𝐽+4)×(4𝐽+4)

[𝟎](4𝐽+4)×(4𝐽+4) [𝟎](4𝐽+4)×(4𝐽+4)
] , ∀𝑙 = 𝑚 + 1, 𝑙 = 2,… 𝑙𝑚𝑎𝑥  

𝐁(𝑙,𝑚) = [
[𝟎](4𝐽+4)×(4𝐽+4) [𝟎](4𝐽+4)×(4𝐽+4)

[𝟎](4𝐽+4)×(4𝐽+4) [𝐈](4𝐽+4)×(4𝐽+4)
] , ∀𝑙 = 𝑚 − 1, 𝑚 = 2, … 𝑙𝑚𝑎𝑥  

𝐁(𝑙,𝑚) = [𝟎](8𝐽+8)×(8𝐽+8) , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  

where [𝐀]  is the following (8𝐽 + 8) × (8𝐽 + 8) matrix: 
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[𝐀] =

[
 
 
 
 
[𝐀𝑠0;𝑠0] [𝐀𝑠0;𝑢]

[𝐀𝑢;𝑠0] [𝐀𝑢;𝑢]

[𝐀𝑠0;𝑑] [𝐀𝑠0;𝑖0]

[𝐀𝑢;𝑑] [𝐀𝑢;𝑖0]

[𝐀𝑑;𝑠0] [𝐀𝑑;𝑢]

[𝐀𝑖0;𝑠0] [𝐀𝑖0;𝑢]

[𝐀𝑑;𝑑] [𝐀𝑑;𝑖0]

[𝐀𝑖0;𝑑] [𝐀𝑖0;𝑖0]]
 
 
 
 

. (B. 21) 

The matrices within [𝐀]  are defined as follows: 

[𝐀𝑠0;𝑠0] =
1

|cos 𝜃𝑠0|
(〈𝐌𝑠0;𝑠0〉 − [𝐊]𝑠0) , a 4 × 4 matrix 

[𝐀𝑠0;𝑖0] =
1

|cos 𝜃𝑖0|
〈𝐌𝑠0;𝑖0〉 , a 4 × 4 matrix 

[𝐀𝑖0;𝑖0] = −
1

|cos 𝜃𝑖0|
[𝐊]𝑖0 , a 4 × 4 matrix 

[𝐀𝑖0;𝑠0] =  [𝟎]4×4 , a 4 × 4 zero matrix 

[𝐀𝑠0;𝑢] = [[𝐀𝑠0;𝑢1][𝐀𝑠0;𝑢2]… [𝐀𝑠0;𝑢𝐽]] , a 4 × 4𝐽 matrix which is a row 

 concantenation of 𝐽  4x4 submatrices,with [𝐀𝑠0;𝑢𝑖] =
1

|cos 𝜃𝑢𝑖|
〈𝐌𝑠0;𝑢𝑖〉   ∀𝑖 = 1, … , 𝐽 

[𝐀𝑠0,𝑑] = [[𝐀𝑠0;𝑑1][𝐀𝑠0;𝑑2]… [𝐀𝑠0;𝑑𝐽]] , a 4 × 4𝐽 matrix which is a row 

concantenation of 𝐽  4 × 4 submatrices,with [𝐀𝑠0;𝑑𝑖] =
1

|cos 𝜃𝑑𝑖|
〈𝐌𝑠0;𝑑𝑖〉   ∀𝑖 = 1, … , 𝐽 

[𝐀𝑢;𝑖0] = [
[𝐀𝑢1;𝑖0]

⋮
[𝐀𝑢𝐽;𝑖0]

]  , a 4J × 4 matrix which is a column concantenation  

of 𝐽  4 × 4  submatrices, with [𝐀𝑢𝑠;𝑖0] =
1

|cos 𝜃𝑖0|
〈𝐌𝑢𝑠;𝑖0〉   ∀𝑠 = 1, … , 𝐽 

[𝐀𝑑;𝑖0] = [

[𝐀𝑑1;𝑖0]

⋮
[𝐀𝑑𝐽;𝑖0]

] , a 4J × 4 matrix which is a column concantenation  

 of 𝐽  4 × 4  submatrices, with [𝐀𝑑𝑠;𝑖0] =
1

|cos 𝜃𝑖0|
〈𝐌𝑑𝑠;𝑖0〉   ∀𝑠 = 1, … , 𝐽 

[𝐀𝑢;𝑠0] = [𝟎]4𝐽×4 , a 4J × 4 zero matrix  

[𝐀𝑑;𝑠0] = [𝟎]4𝐽×4 , a 4J × 4 zero matrix  
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[𝐀𝑖0;𝑢] = [𝟎]4×4𝐽 , a 4 × 4J zero matrix  

[𝐀𝑖0;𝑑] = [𝟎]4×4𝐽 , a 4 × 4J zero matrix  

[𝐀𝑢;𝑑] = [
[𝐀𝑢1;𝑑1] ⋯ [𝐀𝑢1;𝑑𝐽]

⋮ ⋱ ⋮
[𝐀𝑢𝐽;𝑑1] ⋯ [𝐀𝑢𝐽;𝑑𝐽]

] , comprising 𝐽 × 𝐽 blocks of 4 × 4 matrices,with 

 [𝐀𝑢𝑠;𝑑𝑖] =
1

|cos 𝜃𝑑𝑖|
〈𝐌𝑢𝑠;𝑑𝑖〉   ∀𝑠, 𝑖 = 1,… , 𝐽  

[𝐀𝑑;𝑢] = [

[𝐀𝑑1;𝑢1] ⋯ [𝐀𝑑1;𝑢𝐽]

⋮ ⋱ ⋮
[𝐀𝑑𝐽;𝑢1] ⋯ [𝐀𝑑𝐽;𝑢𝐽]

] , comprising 𝐽 × 𝐽 blocks of 4 × 4 matrices,with 

 [𝐀𝑑𝑠;𝑢𝑖] =
1

|cos 𝜃𝑢𝑖|
〈𝐌𝑑𝑠;𝑢𝑖〉   ∀𝑠, 𝑖 = 1,… , 𝐽  

[𝐀𝑢;𝑢] = [
[𝐀𝑢1;𝑢1] ⋯ [𝐀𝑢1;𝑢𝐽]

⋮ ⋱ ⋮
[𝐀𝑢𝐽;𝑢1] ⋯ [𝐀𝑢𝐽;𝑢𝐽]

] , comprising 𝐽 × 𝐽 blocks of 4 × 4 matrices, with 

 [𝐀𝑢𝑠;𝑢𝑖] =
1

|cos 𝜃𝑢𝑖|
〈𝐌𝑢𝑠;𝑢𝑖〉   ∀𝑠, 𝑖 = 1, … , 𝐽 , 𝑠 ≠ 𝑖 

[𝐀𝑢𝑠;𝑢𝑖] =
1

|cos 𝜃𝑢𝑖|
(〈𝐌𝑢𝑠;𝑢𝑖〉 − [𝐊]𝑢𝑠)   ∀𝑠, 𝑖 = 1, … , 𝐽 , 𝑠 = 𝑖 

[𝐀𝑑;𝑑] = [

[𝐀𝑑1;𝑑1] ⋯ [𝐀𝑑1;𝑑𝐽]

⋮ ⋱ ⋮
[𝐀𝑑𝐽;𝑑1] ⋯ [𝐀𝑑𝐽;𝑑𝐽]

] , comprising 𝐽 × 𝐽 blocks of 4 × 4 matrices,with 

 [𝐀𝑑𝑠;𝑑𝑖] =
1

|cos 𝜃𝑑𝑖|
〈𝐌𝑑𝑠;𝑑𝑖〉   ∀𝑠, 𝑖 = 1,… , 𝐽 , 𝑠 ≠ 𝑖 

[𝐀𝑑𝑠;𝑑𝑖] =
1

|cos 𝜃𝑑𝑖|
(〈𝐌𝑑𝑠;𝑑𝑖〉 − [𝐊]𝑑𝑠)   ∀𝑠, 𝑖 = 1, … , 𝐽 , 𝑠 = 𝑖. 

 

It remains to specify b, the column concatenation of 𝑙𝑚𝑎𝑥  𝐛(𝑙) vectors, each of which is 8𝐽 +

8 long. Most entries are zero: 

𝐛(𝑙) = [𝟎](8𝐽+8)×1 , a (8J + 8) × 1 zero vector , ∀𝑙 = 2,… , 𝑙𝑚𝑎𝑥 − 1 (B. 22a) 
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while  𝐛(1) and 𝐛(𝑙𝑚𝑎𝑥) specify the boundary conditions at the bottom and top 

respectively. At the top, we neglect internal reflection, but provide a 1W/m2 incident plane 

wave from direction (𝜃𝑖0, 𝜙𝑖0)   

𝐆𝑖0
(𝑙𝑚𝑎𝑥+1)

= [

0
|cos 𝜃𝑖0|

0
0

]  for h − polarization, 

  𝐆𝑖0
(𝑙𝑚𝑎𝑥+1)

= [

|cos 𝜃𝑖0|

0
0
0

]   for v − polarization  

so we set the boundary condition at the top to be 

𝐛(𝑙𝑚𝑎𝑥) = [
[𝟎](8𝐽+4)×1

𝐆𝑖0
(𝑙𝑚𝑎𝑥+1) ] (B22. b)  

and at the bottom boundary, set to be 

𝐛(𝟏) = [𝟎](8𝐽+8)×1  ,   a (8J + 8) × 1 zero vector. (B22. c) 

This simplified boundary condition corresponds to no reflections off the ground nor incident 

radiation upwelling from the ground. This may seem unphysical, but remember that the 

purpose of this radiative transfer calculation is just to compute the multiple-scattering 

correction to the canopy backscattering term only. Reflections involving the ground had been 

taken into account as a separate term. If we chose to include reflections off the ground within 

the radiative transfer computation as is often done in the literature, some rearrangement of 

terms and entries of [𝐁] would need to be modified correspondingly. Ground physical 

parameters would enter and we would need to solve the radiative transfer equation for each 

set of ground parameters, increasing the complexity and computational effort required to 

explore the full parameter space, and yet still not having taken into account coherent effects 

that would require further correction. The simplification adopted here requires only 

vegetation parameters for the radiative transfer calculation and isolates contributions from 

different scattering components to the total radar backscatter. 
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With the linear system fully specified, solving equation (B.18) for x , and recalling that 

𝐱(𝑙𝑚𝑎𝑥) =

[
 
 
 
 
 
 
 
 
 
 𝐆𝑠0

(𝑙𝑚𝑎𝑥)

𝐆𝑢1
(𝑙𝑚𝑎𝑥)

⋮

𝐆𝑢𝐽
(𝑙𝑚𝑎𝑥)

𝐆𝑑1
(𝑙𝑚𝑎𝑥)

⋮

𝐆𝑑𝐽
(𝑙𝑚𝑎𝑥)

𝐆𝑖0
(𝑙𝑚𝑎𝑥)

]
 
 
 
 
 
 
 
 
 
 

  

our desired radar backscatter is contained within the solution 𝐆𝑠0
(𝑙𝑚𝑎𝑥)

 , which is a 4x1 vector 

of Stokes parameters to be interpreted as the power (in watts) through a unit horizontal plane 

area (1m2) through a unit solid angle ΔΩ𝑠0 = 1 steradian centred in the backscatter direction 

(𝜃𝑠0, 𝜙𝑠0), that was due to a 1W/m2 incident plane wave. From Section 1.3, the normalized 

radar cross-section is 4𝜋 of the scattered power per steradian per unit ground area per unit 

illumination intensity 

𝜎𝑣ℎ
0 = 4𝜋

1

A
 
𝑑𝑃𝑣

𝑠

𝑑Ω

1

𝒮ℎ
𝑖

(B. 23) 

here written for the example of incident h-polarization and scattered v-polarization. Thus we 

have, for the case of incident h-polarization (setting 𝐆𝑖0
(𝑙𝑚𝑎𝑥+1)

= [0 |cos 𝜃𝑖0| 0 0]𝑇 ), 

normalized backscatter radar cross-sections  

VH𝑐𝑛,𝑟𝑡 = 4𝜋 [1 0 0 0] ∙  𝐆𝑠0
(𝑙𝑚𝑎𝑥)

(B. 24a) 

HH𝑐𝑛,𝑟𝑡 = 4𝜋 [0 1 0 0] ∙  𝐆𝑠0
(𝑙𝑚𝑎𝑥)

(B. 24b) 

and for the case of incident v-polarization (setting 𝐆𝑖0
(𝑙𝑚𝑎𝑥+1)

= [|cos 𝜃𝑖0| 0 0 0]𝑇 ), 

normalized backscatter radar cross-sections  

VV𝑐𝑛,𝑟𝑡 = 4𝜋 [1 0 0 0] ∙  𝐆𝑠0
(𝑙𝑚𝑎𝑥)

(B. 24c) 

HV𝑐𝑛,𝑟𝑡 = 4𝜋 [0 1 0 0] ∙  𝐆𝑠0
(𝑙𝑚𝑎𝑥)

(B. 24d) 



 

 

179 

We expect HV and VH to be the same and indeed the computed values are in close 

agreement (this is an important check because the approximation (A.1) that we used for 

bistatic scattering from cylinders did not necessarily respect reciprocity for all cases); thus 

the HV𝑐𝑛,𝑟𝑡 and VH𝑐𝑛,𝑟𝑡 results are averaged and treated together as a single cross-polarized 

case. HH𝑐𝑛,𝑟𝑡 and VV𝑐𝑛,𝑟𝑡 are almost the same, with a very slight excess in VV𝑐𝑛,𝑟𝑡 compared 

to HH𝑐𝑛,𝑟𝑡  at larger optical thickness. An explanation of this difference is provided by van 

de Hulst [142]: it is due to double-scatterings involving pairs of scatterers near the surface 

such that the direction vector between them is parallel to ±𝐡̂𝑖 . These pathways provide the 

greater backscatter return for VV compared to HH; this difference is more pronounced at 

large incidence angles. For our case, it is typically no more than 0.2dB.  

The results from this radiative transfer computation are compared in Figure B.1 to the results 

from the single-scattering calculation of equations (2.7a-c), at radar wavelength = 0.24m, 

incidence angle 𝜃𝑖 = 38.49°, and cylinder relative permittivity 𝜀𝑣 = 35.94 + 11.09𝑖 .   

 
Figure B.2. Normalized backscatter radar cross-sections VV𝑐𝑛,𝑟𝑡 (≈ HH𝑐𝑛,𝑟𝑡), VV𝑐𝑛,𝑠𝑠  (= HH𝑐𝑛,𝑠𝑠),  

HV𝑐𝑛,𝑟𝑡 (= VH𝑐𝑛,𝑟𝑡),  HV𝑐𝑛,𝑠𝑠  (= VH𝑐𝑛,𝑠𝑠), as a function of the optical thickness 𝜏𝑐𝑛(𝜃𝑖0) =

2𝑛𝑐𝑛〈𝜅𝑐𝑛〉(𝑍2 − 𝑍1)/ cos 𝜃𝑖0, for the radiative transfer and single-scattering methods.   
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This radiative transfer solution however is not the final result. In the backscatter direction, 

there is an enhancement of co-polarized backscatter due to coherent effects [142, 143, 138]. 

The backscatter enhancement is essentially due to the constructive interference of reciprocal 

(for the co-polarized case) counter-propagating paths with exactly equal path length. This 

radiative transfer solution does not contain such a coherent effect. To account for this 

backscatter enhancement, the estimated additional co-polarized backscatter due to multiple-

scattering (i.e. the difference between the radiative transfer solution and the single-scattering 

solution) is multiplied by 2. For the cross-polarized backscatter, however, the counter-

propagating paths are not reciprocal. Thus the backscatter enhancement factor may not be 2 

for cross-polarization; in fact, de-enhancement may even occur [144]. In view of this issue, 

we do not use the HV𝑐𝑛,𝑟𝑡  solution from radiative transfer, but instead independently estimate 

the ratio of the cross-polarized to co-polarized multiple-scattering contribution, so as to 

leverage on the greater confidence in the co-polarized quantities. A separate set of Monte-

Carlo simulations (with the afore-mentioned distribution) was performed to estimate this 

cross-to-co-polarization ratio, denoted by 𝜚, for double-scattering. This value should be fairly 

independent of incident angle due to the uniformly random orientation distribution of 

cylinders, however it would vary with cylinder relative permittivity 𝜀𝑣. Higher-order 

scatterings were not computed owing to the significantly greater effort; from Liao et al.  

[139], we expect most of the multiple scattering contributions to be from double-scattering. 

Such an approach is not expected to be valid when the single-scattering albedo (ratio of total 

scattering to extinction, of individual particles) is very high, but in our case we estimate 

single-scattering albedos not to exceed 0.75. 

The results from the Monte-Carlo simulations for several values of cylinder relative 

permittivity 𝜀𝑣 are tabulated in Table B.2.  

Cylinder relative 

permittivity 𝜀𝑣 
5.15 + 1.41𝑖 17.10 + 5.83𝑖 35.94 + 11.09𝑖 62.75 + 18.22𝑖 

Estimated double-

scattering cross-to-

co-pol ratio, 𝜚(𝜀𝑣)  

0.27 0.38 0.42 0.43 

 
Table B.2. Monte-Carlo estimate of cross-pol to co-pol ratio for double-scattering. 
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The final estimated multiple-scattering correction factors are then: 

HH𝑐𝑛,𝑠𝑠ℱHH = HH𝑐𝑛,𝑠𝑠 + 2(HH𝑐𝑛,𝑟𝑡 − HH𝑐𝑛,𝑠𝑠) 

ℱHH(𝜏𝑐𝑛(𝜃𝑖0), 𝜃𝑖, 𝜀𝑣) = 1 + 2(
HH𝑐𝑛,𝑟𝑡(𝜏𝑐𝑛, 𝜃𝑖0, 𝜀𝑣)

HH𝑐𝑛,𝑠𝑠(𝜏𝑐𝑛, 𝜃𝑖0, 𝜀𝑣)
− 1) (B. 25) 

VV𝑐𝑛,𝑠𝑠ℱVV = VV𝑐𝑛,𝑠𝑠 + 2(VV𝑐𝑛,𝑟𝑡 − VV𝑐𝑛,𝑠𝑠) 

ℱVV(𝜏𝑐𝑛(𝜃𝑖0), 𝜃𝑖, 𝜀𝑣) = 1 + 2 (
VV𝑐𝑛,𝑟𝑡(𝜏𝑐𝑛, 𝜃𝑖0, 𝜀𝑣)

VV𝑐𝑛,𝑠𝑠(𝜏𝑐𝑛, 𝜃𝑖0, 𝜀𝑣)
− 1) (B. 26) 

HV𝑐𝑛,𝑠𝑠ℱHV = HV𝑐𝑛,𝑠𝑠 + 2𝜚 (
HH𝑐𝑛,𝑟𝑡 + VV𝑐𝑛,𝑟𝑡

2
− VV𝑐𝑛,𝑠𝑠) 

ℱHV(𝜏𝑐𝑛(𝜃𝑖0), 𝜃𝑖0, 𝜀𝑣) = 1 + 𝜚(𝜀𝑣) × 

(
HH𝑐𝑛,𝑟𝑡(𝜏𝑐𝑛, 𝜃𝑖0, 𝜀𝑣) + VV𝑐𝑛,𝑟𝑡(𝜏𝑐𝑛, 𝜃𝑖0, 𝜀𝑣) − 2VV𝑐𝑛,𝑠𝑠(𝜏𝑐𝑛, 𝜃𝑖0, 𝜀𝑣)

HV𝑐𝑛,𝑠𝑠(𝜏𝑐𝑛, 𝜃𝑖0, 𝜀𝑣)
) . (B. 27) 

 

These estimated multiple-scattering correction factors ℱHH(𝜏𝑐𝑛(𝜃𝑖0), 𝜃𝑖0, 𝜀𝑣),  

ℱVV(𝜏𝑐𝑛(𝜃𝑖0), 𝜃𝑖0, 𝜀𝑣) and ℱHV(𝜏𝑐𝑛(𝜃𝑖0), 𝜃𝑖0, 𝜀𝑣) are plotted in Figure 2.2, Figure 2.3, and 

Figure 2.4 as a function of optical thickness 𝜏𝑐𝑛(𝜃𝑖0) = 𝑛𝑐𝑛(〈𝜅ℎ,𝑐𝑛(𝜃𝑖0)〉 +

〈𝜅𝑣,𝑐𝑛(𝜃𝑖0)〉)(𝑍2 − 𝑍1)/ cos 𝜃𝑖0 = 2𝑛𝑐𝑛〈𝜅𝑐𝑛〉(𝑍2 − 𝑍1)/ cos 𝜃𝑖0 for several values of 𝜃𝑖0 

and 𝜀𝑣. Linear interpolation is used to obtain values of ℱHH, ℱHV, ℱVV at intermediate values 

of 𝜏𝑐𝑛(𝜃𝑖0), 𝜃𝑖0 and  𝜀𝑣. Note that in Figure 2.2, Figure 2.3, and Figure 2.4, the notation for 

the radar incidence angle is reverted to 𝜃𝑖 instead of 𝜃𝑖0. 
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A p p e n d i x  C  

MIRONOV DIELECTRIC MODEL OF MOIST SOILS 

Dielectric models are necessary to relate the relative permittivity of moist soils to other 

physical properties including the water content. There are several popular models used for 

microwave remote sensing; see Wigneron et al. [145] for a review. Here we adopt the model 

by Mironov et al. [43] tailored for practical use at 1.4GHz, with validated formulae for the 

soil relative permittivity as a function of soil volumetric moisture, soil temperature, and clay 

fraction. In this model, the real and imaginary parts of the dielectric relative permittivity 𝜀𝑔 

of a moist soil are given by 

Real(𝜀𝑔) = 𝑛𝑠
2 − 𝜅𝑠

2 , Imag(𝜀𝑔) = 2𝑛𝑠𝜅𝑠 

𝑛𝑠 = {
𝑛𝑑 + (𝑛𝑏 − 1)𝑊,                                                  𝑊 ≤ 𝑊𝑡

𝑛𝑑 + (𝑛𝑏 − 1)𝑊𝑡 + (𝑛𝑢 − 1)(𝑊 − 𝑊𝑡), 𝑊 ≥ 𝑊𝑡  
 

𝜅𝑠 = {
𝜅𝑑 + 𝜅𝑏𝑊,                                                  𝑊 ≤ 𝑊𝑡

𝜅𝑑 + 𝜅𝑏𝑊𝑡 + (𝜅𝑢 − 1)(𝑊 − 𝑊𝑡), 𝑊 ≥ 𝑊𝑡 
 

where, in this Appendix only, 𝑛 and 𝜅 are the real and imaginary parts of the complex 

refractive index, not to be confused with notations elsewhere in this thesis. The subscripts 

𝑠, 𝑑, 𝑏, 𝑢  are for moist soil, dry soil, bound soil water, and free soil water, respectively. 𝑊 is 

the volumetric moisture content of the soil in cm3/cm3, and 𝑊𝑡 is the maximum bound water 

fraction (for a given type of soil). Expressions for these parameters at 1.4GHz were provided 

by Mironov et al. [43] as fitted polynomial functions of clay content 𝐶 in percent (valid in 

the range 0-70), and temperature 𝑇 in degrees Celsius (valid in the range 10-40): 

𝑊𝑡 = 0.0286 + 0.00307𝐶 

𝑛𝑑 = 1.634 − 0.00539𝐶 + 2.75 × 10−5𝐶2 

𝜅𝑑 = 0.0395 − 4.038 × 10−4𝐶 
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𝑛𝑏 = (8.86 + 0.00321𝑇) + (−0.0644 + 7.96 × 10−4𝑇)𝐶

+ (2.97 × 10−4 − 9.6 × 10−6𝑇)𝐶2 

𝜅𝑏 = (0.738 − 0.000903𝑇 + 8.57 × 10−5𝑇2) + (−0.00215 + 1.47 × 10−4𝑇)𝐶

+ (7.36 × 10−5 − 1.03 × 10−6𝑇 + 1.05 × 10−8𝑇2)𝐶2 

𝑛𝑢 = (10.3 − 0.0173𝑇) + (6.5 × 10−4 + 8.82 × 10−5𝑇)𝐶

+ (−6.34 × 10−6 − 6.32 × 10−7𝑇)𝐶2 

𝜅𝑢 = (0.738 − 0.017𝑇) + (1.78 × 10−4𝑇2) + (0.0161 + 7.25 × 10−4𝑇)𝐶

+ (−1.46 × 10−4 − 6.03 × 10−6𝑇 − 7.87 × 10−9𝑇2)𝐶2 

This model allows us to compute the soil relative permittivity 𝜀𝑔 given the soil volumetric 

moisture content 𝑊, temperature 𝑇 and clay content 𝐶. To retrieve the soil moisture 𝑊, we 

also need the inverse relationship. Since the dependence on temperature is quite weak over 

most of the range of interest, for convenience and ease of inversion, we shall use only 𝑇 =

15°𝐶. We shall also neglect the imaginary part of 𝜀𝑔 as before (see Section 3.3). We then 

compute 𝜀𝑔 over a grid of values of 𝑊 and 𝐶, and use this as a look-up table for the inverse 

relationship to obtain 𝑊 from 𝜀𝑔 and 𝐶 . 

 


