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ABSTRACT 

This thesis covers two technologies that can be applied to the human body for real-time 

applicable usages: biosensors and energy harvesters. The first part of the thesis describes 

optical biosensing techniques based on surface-enhanced Raman spectroscopy (SERS). 

Our large-scale spatially uniform Raman enhancing substrates allow low-level bio 

molecule detection due to their strong plasmonic enhancement of the 3D Au-NP clusters. 

This method also enables low-level insulin sensing as well as insulin concentration analysis 

in islet secretion. These results can lead to developing simple and easy biosensing methods 

allowing real-time biosensing applications including convenient monitoring of health, 

early disease detection, and diabetes-related clinical measurements. 

The second part of the thesis suggests an energy harvesting method using vocal vibrations. 

The vocal folds produce mechanical vibrations that can serve as an energy source with 

consistent amplitude and frequency. The vibration hotspots exist at various locations on 

the human upper body. The energy harvesting system consisting of piezoelectric devices 

and energy harvesting circuits generates 3.99 mW of electrical power. The amount of 

energy generated from vocal vibrations is sufficient to charge a Li-Po battery which can 

drive an LCD display or charge Bluetooth headphones. This method demonstrating a 

relatively high power generation and convenience of practical use can provide a real-time 

complementary charging technique for wearable electronics like wireless headphones and 

smart glasses as well as medical implantable devices such as deep brain stimulators, 

cochlear implants and pacemakers. 
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C h a p t e r  1  

THESIS OVERVIEW 

1.1. Introduction 

Smart wearable electronics such as smart watches and smart glasses have been commercially 

released and received huge public attention. Also, implantable healthcare devices including 

deep brain stimulation, cochlear implants, and pacemakers have been used to relieve pains 

or disorders for patients. Recently, more wearable electronics and implantable devices are 

being introduced to the public. This thesis deals with two kinds of technologies related to the 

actions of human body: surface-enhanced Raman spectroscopy (SERS)-based biosensing 

and vocal vibrations-based energy harvesting. These two techniques can lead to real-time 

biomonitoring system and complementary energy source for wearables or implants. 

SERS-based biosensors use Raman-enhancing substrates consisting of 3D stacked gold-

nanoparticles. The label-free biomolecule sensing method demonstrates quantitative 

measurements as a function of concentration of benzenethiol, adenine, and insulin. 

Vocal vibrations-driven energy harvesters utilize vocal vibrations produced from vocal folds 

in the larynx. This method can provide reliable energy sources for wearable electronics or 

medical electronic implants on the human upper body. 

1.2. Surface-Enhanced Raman Spectroscopy-Based Label-Free Biosensors 

The growing prevalence of diabetes in the global population has made detection of insulin in 

vitro and in vivo an extremely important problem in diabetes therapy and research. A label-

free sensing platform that could provide a fast, easy, and quantitative way to quantify insulin 

can be applied to treat diabetic patients, prevent life-threatening hypoglycemic episodes, save 

unnecessary lab expenses, and accelerate diabetes research and drug discovery (Figure 1.1).  
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Figure 1.1: Various applications of fast, easy, and quantitative insulin sensing techniques 

including inexpensive lab research, real-time monitoring with implants or wearable devices, 

and islet cell transplantation. Photos of Diabetes Daily, LifeMed Media, and Johns Hopkins 

Medicine. 

Spatially Uniform Raman-Enhancing Substrate with Enhancement Saturation 

As a potential way to address this need, we have utilized a gold nanoparticle (Au-NP)-coated 

zinc oxide (ZnO) nanowire substrate and quantified insulin directly adsorbed to the surface 

using surface-enhanced Raman spectroscopy (SERS).  

In Chapter 2, the fabrication process to make Raman-enhancing substrates with 3D-stacked 

Au-NP is described. The structure of this substrate is analyzed to explain how the Raman-

enhancing substrate works, then we applied this substrate to SERS measurements of 

benzenethiol (BT). For quantitative measurements of biomolecule, adenine with various 

concentrations (10 nM to 10 µM) was used to obtain the relationship between concentration 

and Raman intensity. 
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Surface-Enhanced Raman Spectroscopy-Based Label-Free Insulin Detection  

Low-level insulin sensing and quantitative analyses of various concentrations of human 

insulin are shown in Chapter 3. Due to strong binding interaction between disulfide bonds in 

insulin molecule and the gold atoms on the substrate, strong plasmonic enhancement is 

achieved.  

Raman intensity from various concentration levels of insulin was measured, then linear 

relationship between Raman intensity and concentration of insulin was found. We also 

carried out Raman measurements using human pancreatic islet secretion and the Raman 

intensity at 1002 cm-2 was identifiable. The linear fit obtained from insulin levels based on 

SERS measurements of islet secretions shows the same slope as one from insulin quantitative 

measurements. 

1.3. Vocal Vibrations-Driven Energy Harvesters 

A variety of wearable electronics have been commercially released and different kinds of 

biomedical implants have been applied to treat certain diseases (insets of Figure 1.2). 

However, they typically require battery packs that need to be charged or replaced 

periodically. If there is a reliable energy source in the human body, it could broaden the 

flexibility in designs of wearable electronics and solve reliability issues regarding batteries 

in biomedical implants.  

We suggest vocal vibrations from human vocal folds as energy source to harvest energy for 

wearable or implantable devices around the human upper body. We characterize the vocal 

vibrations to generate consistent power, then demonstrate energy harvesting devices using 

vocal vibrations (Figure 1.2). 

Characterization of Vocal Vibrations as Power Sources 

In order to verify the vocal vibrations as promising energy sources, frequency analyses and 

vibration hotspots mapping are carried out through both simulation methods and 

experimental measurements (Chapter 4). 
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Figure 1.2: Vocal vibrations for harvesting energy for wearable electronics and biomedical 

implants. Vibration hotspots around the human upper body are noted (red area). 

Power Generation Using Vocal Vibrations 

Energy harvesting systems to collect electrical energy from vocal vibrations is described in 

Chapter 5. To utilize vocal vibrations efficiently, we developed an energy harvesting system 

consisting of piezoelectric energy harvesting devices, energy harvesting circuits, and battery. 

3.99 mW of electrical power can be achieved at the larynx using a 10-stacked energy 

harvesting array and LC resonant full-wave rectifier. Also, energy harvesting at various 

locations around the upper body were demonstrated. 

Practical Energy Harvesting from Human Vocal Folds 

For real-time energy harvesting for practical applications, the energy harvesting method 

needs to generate enough power using common phonation such as speaking or reading. The 

amplitudes are spread over a broadband according to the frequency responses from reading, 

which requires broadband applicable energy harvesting devices. Newly designed structures 
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such as serpentine beams and spiral beams are verified for efficient energy harvesting while 

reading a book. 

The top of the head is a vibration hotspot which is a relatively large area adjacent to the brain. 

Both areas on the scalp and on the skull can be applicable as vibration sources based on the 

acceleration measurements on the realistic human head model. These approaches to practical 

use of vocal vibrations as energy sources are discussed in Chapter 6. 
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C h a p t e r  2  

SPATIALLY UNIFORM RAMAN-ENHANCING SUBSTRATE WITH 
ENHANCEMENT SATURATION 

In this chapter, we describe the general concept of surface-enhanced Raman spectroscopy 

(SERS) and various structures for SERS that have been studied. Also, we investigate 

vertically perforated three-dimensional (3D) Au-nanoparticle stacks for surface-enhanced 

Raman spectroscopy (SERS).  The 3D stacked Au structure is demonstrated through two 

straightforward fabrication processes: hydrothermal synthesis of ZnO nanowires standing 

perpendicular to silicon wafers, and conformal liquid-phase deposition of Au nanoparticles 

optimally repeated on tops and sides of the nanowires. During nanoparticle deposition, 

nanowires gradually dissolve away, leaving only their hollow vestiges or perforations. The 

experimental measurements reveal that these nanoscale perforations serve as “plasmonic-

gap optimizers” that strongly enhance particle-to-particle interactions and as “light-

breathing holes” that allow the excitation light to reach deeper into the 3D stacks. This 

saturates the Raman enhancement everywhere at 1-pM sensitivity and substantially 

improves the wafer-scale uniformity by 100%, when compared with nanoparticle layers 

deposited without using nanowires.  Understanding and implementing the enhancing 

mechanisms of our approach will lead to significantly enhanced, practical SERS substrates 

with excellent spatial uniformity for quantitative chemical sensing. 

Part of the work that appears in this chapter was published and is included here with the 

permission of the publisher as shown below. 

"Reprinted (adapted) with permission from Daejong Yang, Hyunjun Cho, Sukmo Koo, 

Sagar R. Vaidyanathan, Kelly Woo, Youngzoon Yoon, and Hyuck Choo, ACS Applied 

Materials & Interfaces 2017 9 (22), 19092-19101. DOI: 10.1021/acsami.7b03239. 

Copyright 2017 American Chemical Society." 
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2.1. Sensing Technology for Biomedical Application of Hormone Detection 

Hormones are chemical messengers that control a wide variety of functions in the human 

body. Maintaining adequate hormone levels is extremely important for human health and 

disruption to these levels can result in life-debilitating conditions such as diabetes. Simple 

and easy measurements of hormonal secretions ex vivo or in vivo are essential for 

implementing next generation biosensors, allowing convenient monitoring of health and 

early disease detection.  

Various sensing methods have been previously explored for hormone detection including 

radioimmunoassays (Andersen et al., 1993), mass-spectrometry (Zhang et al., 2012), 

photoluminescence (Cha et al., 2011), electrochemical methods (Xu et al., 2013), 

electrophoresis-dependent immunoassays (Roper et al., 2003; Guillo and Roper, 2008), 

surface plasmon-resonance (SPR)-based competitive binding assays (Gobi et al., 2007), 

and fluorescence resonance energy transfer (FRET) (Want et al., 2014). The optical 

detection techniques such as SPR, photoluminescence, and FRET suffer from poor 

sensitivity and cannot detect insulin at physiologically observed picomolar concentrations 

(Cha et al., 2011; Gobi et al., 2007, Wang et al., 2014). Electrochemical impedance 

spectroscopy and immunoassays have reported more sensitive insulin-specific detection, 

however these methods have primarily relied on labels such as antibodies for detection 

(Andersen et al., 1993; Xu et al., 2013; Luo et al., 2013). These labels are not only 

expensive, but have also been shown to disrupt the natural behavior of live cells and are 

potentially toxic, making them incompatible with live cells (Schnell, 2012; Blasi et al., 

2016).  

For applications such as hormone sensing during pancreatic islet transplantation, the islet 

cells must remain as close to their natural state as possible during the pre-surgical screening 

process, therefore a label-free sensing method capable of performing ultrasensitive, 

molecule-specific detection of insulin is desired. Surface-enhanced Raman spectroscopy 

(SERS) is an ideal approach for optical label-free sensing because it identifies targeted 
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molecules based on their unique vibrational and rotational signatures (Fleischmann et al., 

1974; Albrecht et al., 1977; Nie et al., 1997; Kneipp et al., 1997; Bantz et al., 2011).  

2.2. Surface-Enhanced Raman Spectroscopy 

Surface-enhanced Raman spectroscopy (SERS) has a great potential for chemical and 

biological sensing due to its high sensitivity and selectivity obtained with relatively simple 

optical measurements (Nie et al., 1997). Because of these advantages, SERS has been 

widely researched since M. Fleischmann, et al. (1974) first observed the SERS effect, and 

researchers have continuously attempted to develop commercial products (White et al., 

2014).  

The mechanisms of SERS enhancement are still a subject under study, yet they are 

predicted to originate from electromagnetic enhancement generated by noble substrate 

metals and chemical effects between analytes and noble metal atoms (Campion et al., 1998; 

Kambhampati et al., 1998; Alonso-Gonzalez et al., 2012; Schlucker et al., 2014). The 

electromagnetic effect is believed to be dominant enhancement mechanism for SERS, and 

it is generated when the surface plasmons of noble metals are excited under laser irradiation 

(Alonso-Gonzalez et al., 2012; Tong et al., 2011). These excited plasmons greatly enhance 

the Raman scattering. Chemical enhancement, on the other hand, is attributed to 

electrochemical interactions between analyte molecules and the substrate-metal atoms 

(Kambhampati et al., 1998; Sun et al., 2008; Zayak et al., 2011).  

In order to make SERS more useful for practical applications, it is essential to develop 

better understanding of the enhancing mechanisms of the SERS structures and simpler 

substrate-fabrication process for commercialization. SERS structures had typically been 2 

dimensional (2D) structures made by either patterning metal films or coating the substrate 

with metal nanoparticles (NPs) (Braun et al., 2007; Fang et al., 2008). And, recently, more 

elaborate 3-diemesional (3D) structures have been actively researched (Wang et al., 2014; 

Chirumamilla et al., 2014). 3D substrates have advantages over traditional 2D substrates: 

larger effective hot-spot surface area and more adsorption of target molecules, both of 

which can dramatically enhance Raman signals (Tang et al., 2012; Liu et al., 2014; Dai et 
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al., 2014; Bai et al., 2015; Fu et al., 2014; Zhou et al., 2014). To make high performance 

3D SERS substrates, researchers have not only utilized various shapes of 3D nanostructures 

such as stacked nanoparticles, pyramid and vertically grown nanowires, but also applied 

well known 2D-techniques to control surface roughness and sizes of metal nanostructures 

(Zhang et al., 2007; Fraire et al., 2013). For commercial applications, patterned metal films 

or metal-NP-coated substrates are typically utilized.  

More recently, novel nanowire-based 3D substrates are becoming popular because of the 

development of simpler fabrication methods (Zhao et al., 2009; He et al., 2014). Various 

types of one-dimensional (1D) nanomaterials such as ZnO (Tang et al., 2012; Liu et al., 

2014), TiO2 (Dai et al., 2014), Si (Bai et al., 2015), Cu2O (Fu et al., 2014), and NiO (Zhou 

et al., 2014) have been demonstrated as base structures for SERS substrates that lead to 

allow flexibility regarding to nanoscale sizes and shapes of the 3D SERS substrates. 

Among these nanomaterials, ZnO can be synthesized using a simple and low-cost method 

such as vapor-solid growth or hydrothermal synthesis. Additionally, the shape and size of 

the nanowires can be adjusted to some degree (Jang et al., 2009; Willander et al., 2009; 

Guo et al., 2005; Li et al., 2009). 

2.3. Fabrication of Raman Enhancing Substrates 

Evaporation and sputtering are common techniques that are used to coat noble metals on 

the surface of nanostructures (Tang et al., 2012; Liu et al., 2014). However, these direct 

deposition methods have limitations, because it is difficult to control the final shape and 

the roughness of the metal. In addition, if these directional deposition methods are used, it 

is difficult to uniformly coat vertically standing nanostructures with the metal from the top 

to the bottom. 

There is another factor as important as SERS intensity which is spatial uniformity for 

practical applications. Even though fabrication of uniform substrate is essential for 

quantitative measurement, most of SERS researches have focused on high sensitivity. It is 

very hard to realize high sensitivity and high uniformity simultaneously due to difficulty 

in controlling position and shape of small nanostructures on the entire substrate. Some 
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researchers have fabricated uniform SERS substrates, however they could not overcome 

non-uniformity and inaccurate position of each nanostructures (Zhang et al., 2014; Tang et 

al., 2013; Pazos-Perez et al., 2010). 

 

Figure 2.1: A schematic of the sequential fabrication process for (a) Au NP film coated 

devices and (b) 3D stacked Au NP clusters supported by ZnO nanowire devices. 

 

 

Figure 2.2: Schematic of sequential hydrothermal synthesis for ZnO nanowires and liquid 

phase deposition (LPD) for Au nanoparticles. 

We fabricated SERS substrates which are ready to use for practical application. This means 

that we considered not only high sensitivity and high uniformity, but also an economical 

and simple fabrication process. The fabrication method consists of two successive wet 
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chemical reactions which are hydrothermal synthesis of ZnO nanowires (Law et al., 

2005) and liquid phase deposition (LPD) of Au NPs (Acosta et al., 2012). These methods 

were conducted in mild temperature and atmospheric pressure thus they do not require 

expansive setup. ZnO nanowires were perpendicularly synthesized and acted as framework 

for Au NP deposition. Au NPs were efficiently stacked during the LPD process and the 

nanowires were gradually dissolved away, leaving only their hollow vestiges. The well 

controlled Au NPs and ZnO vestiges led to high sensitivity, and the effectively stacked Au 

NPs contributed to high spatial uniformity.  

The fabrication process of both 2D Au NP film and 3D Au NP cluster structures are shown 

in Figure 2.1. For 2D Au NP structure, Au NP-coated Si substrates were fabricated using 

the LPD method. A bare Si substrate was immersed in 3-aminopropyltriethoxysilane 

(APTES, H2N(CH2)·3Si(OC2H5)3, Sigma Aldrich, ≥ 99 %) for 15 minutes to ensure the 

adhesion of the synthesized Au NPs to the Si substrate. APTES functionalized the Si 

surface with amine groups so that they are chemically bonded to citrates groups in the Au-

NP precursor solution (Castillo et al., 2011). This helps the gold NPs to remain adhered to 

the silicon surface. The substrate was then placed in the Au NP precursor solution for 1 

hour at 90 °C in a convection oven (Jeio Tech’s OF-01E-120). The precursor solution was 

prepared from 1 mM sodium tetrachloroaurate (III) dihydrate (NaAuCl4·2H2O, Sigma 

Aldrich, ≥ 99 %) and 200 µM sodium citrate dihydrate (HOC(COONa)(CH2COONa)2· 

2H2O, Sigma Aldrich, ≥ 99 %) in DI water. Then, 0.1 M sodium hydroxide (NaOH, Sigma 

Aldrich, ≥ 98 %) aqueous solution was added until the resulting pH of the solution was 9. 

This LPD process is repeated between 1 and 8 times for a thick Au NP film (NP-1, NP-2, 

…, and NP-8). The higher the number of repetitions, the thicker the Au NP film. The 

substrates are washed with DI water and ethanol (CH3CH2OH, Sigma Aldrich, 200 proof) 

so that excess salt and carbon compounds are washed away (Figure 2.1a).  

During the Au-NP synthesis process, Cl- ions are displaced from NaAuCl4 by hydrolysis, 

and replaced by the OH- ions. The sodium citrate then initiates the reduction of Au anions 

(Moreau et al., 2005; Lim et al., 2011; Haruta, 2004). Moreover, citrate anions prevent the 
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coagulation of Au anions, which can maintain the diameter of Au NPs around 10 to 20 

nm. Figure 2.3a shows an SEM image of the top view of the Au NP film coated devices. 

Au NPs with 10 to 20 nm diameter were intermittently synthesized during the first LPD 

process. As we increased the number of repetitions for the Au NP synthesis process, the 

number of particles also increased, and additionally, the particles also tended to 

agglomerate. Even through NPs agglomerated, the diameter of single NPs stayed between 

10 and 20 nm. The height of the NP film is approximately 0.5-1 µm, but some regions are 

still not covered with gold NPs. The EDS data of the devices in Figure 2.3b agree with 

what we observe in the SEM images. The percentage of Au atoms increased with the 

increasing number of synthesis repetitions, and the percentage of Si atoms appeared lower 

because Au NPs covered Si substrates and blocked the Si signal out (Figure 2.5a). 

To fabricate 3D Au NP clusters, nanowires were used as basic framework. The sequential 

fabrication process including hydrothermal synthesis for ZnO nanowires and liquid phase 

deposition (LPD) for Au nanoparticles is described in Figure 2.2. ZnO nanowires were 

synthesized using the hydrothermal method because it was a simple way to synthesize 

nano-sized vertical structures. ZnO seed solution consisting of 5 mM zinc acetate dihydrate 

(Zn(CH3COO)2·2H2O, Sigma Aldrich, ≥ 98 %) in ethanol was coated onto a bare Si 

substrate, and then annealed on a hot plate at 350 °C for 20 minutes to ensure the adhesion 

of the seed to the silicon (Greene et al., 2005). The substrate was then placed inside the 

ZnO precursor solution, which consists of 25 mM zinc nitrate hexahydrate 

(Zn(NO3)2·6H2O, Sigma Aldrich, 98 %), 25 mM HMTA (hexamethylenetetramine, 

C6H12N4, Sigma Aldrich,  ≥ 99 %) and 5 mM PEI (polyethyleneimine, (C2H5N)n, Sigma 

Aldrich, average Mw ~800) in DI water for 2.5 hours at 95 °C in a convection oven. The 

substrate was then taken out of the solution and rinsed with DI water, and annealed on a 

hot plate at 350 °C for 20 minutes. In order to synthesize the Au NP on the ZnO nanowires, 

the silicon substrates with the ZnO nanowires were placed into the Au NP precursor 

solution. The solution was heated for 1 hour at 90 °C and the process was repeated between 

1 and 8 times to create a dense Au NP film (NW-1, NW-2, … and NW-8). Then the 

substrates were washed with DI water and ethanol.  
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Figure 2.3: SEM and EDS data of Au NP film substrates. (a) SEM images of the top view 

of Au NP film coated devices by Au synthesis repetitions. (b) EDS data of Au NP substrate 

from each Au NP LPD repetition. 
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Figure 2.4: SEM and EDS data of 3D Au NP cluster substrates. (a) SEM images of the top 

view of Au NP clusters which were grown by repeating the Au synthesis process, supported 

by ZnO nanowire devices. (b) EDS data of 3D Au NP substrate from each Au NP LPD 

repetition. 
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Figure 2.5: Atomic % changes in Au, Si, and Zn based on EDS data from (a) 2D Au NP 

substrates and (b) 3D Au NP substrates as a function of Au NP LPD repetition. 

 

 

Figure 2.6: SEM images of cross-sectional view of (a) 2D Au NP substrate, (b) ZnO 

nanowire sythesized substrate, and (c) 3D Au NP substrate after Au NP LDP process. 
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Figure 2.7: SEM images of top views of (a) 2D Au NP structure and (b) 3D Au NP 

structure. 

As shown in the SEM images of cross-sectional view of ZnO nanowires in Figure 2.6b, the 

diameter and height of ZnO nanowires were approximately 50 nm and 1 µm, respectively. 

After the synthesis of ZnO nanowires, Au NPs were coated on the ZnO nanowires. Au NPs 

were synthesized using the same method that was used to fabricate the 2D Au NP film 

devices. Due to strong adsorption between metal oxide and citrate anions, Au NPs securely 

adhered to the surface of ZnO nanowires without the help of ATPES. Figure 2.4a shows 

an SEM image of top view of the Au NP coated ZnO nanowire devices. For devices that 

had 1 or 2 synthesis iterations (NW-1 and NW-2), the shape of the ZnO nanowires were 

observed and Au NPs were coated on the surface of ZnO nanowires. Because the synthesis 

reaction occurred in the liquid, the Au NPs were conformally coated on the top surface as 

well as the side walls of the nanowires. As the number of synthesis repetitions increased, 

we observed that the ZnO nanowires started to dissolve away and Au-NP clusters started 
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to increase in size. In order to avoid the etching of ZnO nanowires, we initially adjusted 

the initial pH level of the Au NP precursor solution to 9, which is near the isoelectric point 

of ZnO (Zang et al., 2007), yet the pH level dropped to around 5.5 after the synthesis 

process, and the ZnO nanowires had gradually been etched during the synthesis iterations. 

This result is supported by the EDS data in Figure 2.4b and Figure 2.5b. The proportion of 

Zn atoms to the Au atoms decreased as the number of repetitions increased. The proportion 

of Si atoms relatively increased from 1 to 4 repetitions of Au NP synthesis due to the 

erosion of the ZnO nanowires. However, the proportion of Si atoms started to decrease 

after the sixth synthesis process because Au NPs more densely covered the Si substrates. 

As shown in the high-resolution SEM images of the cross-sectional view (Figure 2.6c) and 

the top view (Figure 2.7b) of the NW-8 sample, the diameter of single NP was 10 to 20 

nm, which was similar to the size of the Au NPs on the 2D Au NP film devices (Figure 

2.7a). Even if the ZnO nanowires in NW-8 sample completely etched away, the height of 

Au NP films were thicker films in the NP-8 sample because the ZnO nanowires served as 

a skeletal frame for vertical deposition. 

2.4. Characterization of Raman Enhancing Substrates  

We verified the role of ZnO nanowires and Au NPs by the experimental method. To 

evaluate the SERS performance of the devices, SERS spectra of 1 mM benzenethiol (BT, 

C6H5SH, Sigma Aldrich, ≥ 98 %) solution was measured. All substrates (eight Au NP-

coated Si substrates and eight Au NP-coated on ZnO nanowire on Si substrates) were 

incubated in a 1 mM BT in ethanol solution for 5 hours. The samples are then taken out of 

the BT solution, and rinsed with ethanol and blow-dried using nitrogen gas. Measurements 

were taken using a Raman microscope (Renishaw’s inVia, United Kingdom) with 20× 

magnitude objective lens with 1.25-µm spot size and 0.07 mW of 785 nm infrared (IR) 

laser for 100 s (Figure 2.8). 
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Figure 2.8: Raman spectra measurement setup (Renishaw’s inVia). 785 nm IR laser is used 

for irradiation on the device. 

 

Figure 2.9: SERS spectra of 1 mM BT solution of (a) 2D Au NP substrate and (b) 3D Au 

NP substrate. Raman peaks at wavenumbers 999, 1022, 1072 and 1574 cm-1 detected by 

(c) 2D Au NP substrate and (d) 3D Au NP substrate. All measurements were done with 

various repetitions of the synthesis. 
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As shown in Figure 2.9a, the clear Raman peaks were observed at wavenumbers 999 (in-

plain ring-breathing mode), 1022 (in-plain C-H bending mode), 1072 (C-S stretching 

mode) and 1574 cm-1 (C-C stretching mode) (Joo et al., 1987). The Raman intensities 

increased as the number of synthesis repetitions increased (Figure 2.9c) due to increase in 

the NPs’ surface area and density as well as the geometrical interplay between NPs that 

increases electromagnetic enhancement. According to our study, SERS intensity continued 

to increase theoretically and experimentally up to the 8-synthesis iteration.  

Even though these Au NP film devices showed good SERS results, the enhancement level 

was not sufficient for accurate measurements of low concentration analytes. Moreover, 

eight or more repetitions of the Au NP synthesis process can be time-consuming and 

inefficient. It is well-known that nanoscale roughness strongly enhances the SERS signal 

due to a highly intensified electric field (Zhang et al., 2007). In addition, the surface 

roughness also increases the Raman signal due to large reaction areas between Au NPs and 

analyte molecules (Hong and Li, 2013).  

Figure 2.9b shows the SERS spectra of the Au NP-coated ZnO nanowire devices with a 1 

mM BT solution. Four clear peaks at the wavenumbers 999, 1022, 1072 and 1574 cm-1 

were also detected, and one can observe the systematic increase in Raman intensity with 

the number of Au NP synthesis repetitions. The Raman intensity of a flat-film device 

coated with Au NPs once (NW-1) shows a similar signal as a Si sample without nanowires 

coated 6 times with 2D Au NPs (NP-6). Due to the efficient vertical stacking of the Au-

NPs that results in the larger surface area and more particle-to-particle interactions, the 

Raman intensities continuously increased as the number of the NP-synthesis iterations 

increased. Additionally, the enhancement was saturated after five iterations as shown in 

Figure 2.9d.  

The enhancement factor (EF) of the device was calculated using the following relation:  

                                               EF =  
𝐼𝑆𝐸𝑅𝑆

𝐼𝑏𝑢𝑙𝑘
×

𝑁𝑏𝑢𝑙𝑘

𝑁𝑎𝑑𝑠
   (2.1) 
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where ISERS is the intensity of the SERS spectrum of benzenethiol (BT) obtained from 

Au NP cluster and IBulk is the intensity the Raman spectrum of BT solution measured in the 

cuvette. The intensities at 1072 cm-1 were used to calculate the EF value. Nbulk is the 

molecule number of the BT in the laser focal volume. The laser focal volume can be 

determined by the focal area and focal depth of the laser spot and is calculated to be 1314 

μm3. Thus, the Nbulk of 1 mM BT solution in the focal spot is calculated to be 7.91×108. 

Nads is the number of molecules adsorbed on the SERS substrate within the laser spot, 

defined as the following expression:  

                                                𝑁𝑎𝑑𝑠 = 𝑁𝑑 ∙ 𝐴𝑠𝑝𝑜𝑡 ∙ 𝛼   (2.2) 

where Nd is the packing density of BT (6.8×1014 cm-2), Aspot is the area of the focal spot of 

the laser (1.23 μm2), and α is the ratio between the surface of nanoparticle cluster and a flat 

surface of the same horizontal dimensions. The nanoparticle cluster height is approx. 1 μm 

and the diameter of the AuNPs are about 20 nm, so 50 layers of nanoparticles are 

theoretically stacked. Considering the spherical shape of nanoparticles, the connection area 

between nanoparticles, laser penetration depth and the porosity of the nanoparticle cluster, 

α is calculated. Therefore, Nads is calculated to be about 5.56×106. The intensity of the 

electric field was exponentially decreased as laser light traveling toward the bottom layer 

and this screening effect was considered for EF calculation. The EF values of the overall 

3D Au NP substrate can be estimated to be 8.73×108. The substrate is a composition of 

connected nanoparticles and properly separated nanoparticles. The high electromagnetic 

enhancement generates gaps between nanoparticles. The EF values at the gaps were 

calculated to be 9.31×109. 
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Figure 2.10: SERS measurements of benzenethiol solutions. (A) SERS spectra of 1 mM, 1 

μM, 1 nM, and 1 pM benzenethiol solution. (B) SERS peaks at 999, 1022, 1072, and 1574 

cm−1 with various concentrations of benzenethiol solution. 

To evaluate the sensitivity of the Au NP coated device with quantitative measurements, 3D 

stacked substrates coated with 5 repetitions of Au NPs were incubated in 1 µM, 1 nM and 

1 pM BT solutions for 5 hours. As shown in Figure 2.10a, four clear SERS peaks were 

observed from 1 µM, 1 nM, 1 pM, and 1 mM of BT solution. Intensities of the four Raman 

peaks decreased as the concentration of the BT solution was reduced (Figure 2.10b). The 

3D stacked Au NP substrates effectively absorb the excitation light and generate stronger 

Raman enhancement, which allows the detection of picomolar concentrated BT. 

The 3D stacked substrate showed excellent spatial uniformity as well. The use of a newly 

designed mechanical stirrer, which improved temperature and chemical concentration 

uniformity in the precursor solution, combined with repetitions of the Au synthesis resulted 

in a uniform AuNP layer over the entire substrate thick enough to saturate SERS emissions. 

As shown in Figure 2.11e, the substrate surface looks uniformly black. By conducting 

iterations of Au synthesis process, we were able to achieve saturated signal in entire 

substrate.  
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Figure 2.11: Spatial uniformity of Au NP substrates. (a) 2D Raman mapping and (b) 

statistical distribution of Raman intensity measured at 1072 cm-1 on a 10 × 10 µm2 2D NP-

8 substrate incubated in 1-mM benzenethiol solution; (c) 2D Raman mapping and (d) 

statistical distribution of Raman intensity measured on a 3D NP-8 substrate with same 

condition. (e) Photo of 3D-stacked Au NP synthesized on 4-inch wafer; (f) 2D mapping 

and (g) statistical distribution of 1 mM benzenethiol incubated 3D stacked Au NP 

synthesized on 4-inch wafer. 
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Figure 2.12: SERS spectra measurements by various incident angles of light. (a) 

Measurement set-up; (b) SEM images of tilted devices with 0 to 80 degrees; (c) SERS 

spectra of 1mM benzenethiol incubated 3D stacked Au NP substrate with various incidence 

angles and (d) relationship between SERS intensity and incidence angle. 
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The uniformity of the SERS intensity within an area of 10 × 10 µm2 from 3D Au NP 

substrate showed a RSD around 10% (Figure 2.11c, d), which is more than twice as good 

as the flat 2D Au NP substrates (RSD > 20%) (Figure 2.11a, b). The large-scale spatial 

uniformity of the SERS intensity across the 4-in. wafer was excellent and had a relative 

standard deviation (RSD) below 13% (Figure 2.11f, g). The wafer-scale uniformity and 

strong enhancement were achieved using precursor-based fabrication processes that can be 

easily applied to large scale productions without significant setup investment. These 

desirable properties can provide high usability for practical applications such as 

quantitative monitoring of biological molecules. 

We measured Raman intensities of BT as a function of incidence angles between 0 and 80 

degrees (Figure 2.12a). Figure 2.12b shows the SEM images of the substrate with various 

angles. The intensities remained almost the same within 30 degrees of the incidence angle.  

In addition, the peak was observed even at 80 degrees of incidence angle as shown in Figure 

2.12c, d. The rough surface reduces angle dependence of light reflection and the substrate 

provides thick layer regardless of the incident angle. This low angle dependence can also 

be very useful for practical applications that require quantitative measurements. 

2.5. Quantitative Bio Molecule Measurements Using 3D Au NP Substrates  

To demonstrate accurate quantitative bio molecule measurement, we measured Raman 

intensities of various concentrations (10 nM - 10 µM) of adenine solutions. Adenine is one 

of the nucleobases in the nucleic acid of DNA. The SERS substrate was diced into 2 × 2 

mm2 chips for testing, and the SERS spectra were measured using 20× magnitude objective 

lens with 1.25-μm spot size and 0.07 mW of 785 nm laser for 100 s. We used a new chip 

for every measurement. For calibration measurements, we incubated four chips in 10-nM, 

100-nM, 1-μM, and 10-μM adenine solutions for 5 h and measured the corresponding 

Raman spectra.  
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Figure 2.13: Quantitative SERS measurements using 3D Au NP substrates with adenine 

solutions. (a) Reference SERS spectra of 10 µM, 1 µM, 100 nM, and 10nM adenine 

solution using 3D Au NP-8 substrate; (b) the experimentally measured relationship 

between concentration of adenine solution and SERS intensity; (c) concentration readouts 

for adenine solutions using 3D Au NP-8 substrate. 
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As shown in Figure 2.13a, clear Raman peaks were observed at the wavenumber 735 

cm-1 and the peak intensities were proportional to the concentration of the adenine solution. 

The relationship between concentration and intensity was obtained as I = 2.45×106·C0.4302 

– 73.38, where I and C are the Raman intensity and the molar concentration of the solution, 

respectively (Figure 2.13b). In order to verify accuracy of our approach, we prepared 60-

nM, 200-nM and 4-µM adenine solutions separately and incubated another set of 2 × 2 

mm2 chips in three different adenine concentrations and measured their SERS spectra 

under the same measurement conditions. Our method produced the concentration of 63.1 

nM, 213.3 nM and 3.71 µM, respectively, matching well with the given concentration with 

10 % accuracy (Figure 2.13c). 

2.6. Conclusions 

Using the hydrothermal synthesis method and LPD method, we have fabricated 3D Au NP 

clusters on ZnO nanowires and demonstrated their use as high performance stacked 3D 

SERS substrates. The volume and surface area of Au NP clusters were controlled by 

increasing the number of repetitions of the Au NP synthesis process. Additionally, ZnO 

nanowires act as a template for efficient fabrication of 3D structures. Due to the nanowire 

generated light-passing perforations and 3D stacks made of properly sized nanoparticles 

and interparticle gaps, the Raman-enhancing performance of the substrate is highly 

independent of the final geometry of the nanoparticle clusters and shows high enhancement 

and uniformity across the wafer, which is confirmed by experimental measurements.  

The devices clearly detected SERS peaks in BT solution, and can measure as low as 1pM 

of BT concentration. The enhancement factor for this investigation was calculated to be 

approximately 9.31×109. Also, the 3D Au NP substrate measured the concentration of a 

60-nM adenine solution within 10%. This relatively simple approach can be widely adapted 

by most wet laboratories and is also suitable for large-scale productions, suggesting a 

promising way to implement commercial SERS substrates for biological and chemical 

sensing applications.  
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C h a p t e r  3  

SURFACE-ENHANCED RAMAN SPECTROSCOPY-BASED LABEL-FREE 
INSULIN DETECTION 

Label-free optical detection of insulin would allow in vitro assessment of pancreatic cell 

functions in their natural state and expedite diabetes-related clinical research, however no 

existing method has met these criteria at physiological concentrations. Herein, surface-

enhanced Raman sensing of insulin was demonstrated on a spatially uniform 3D gold 

nanoparticle sensors, without the use of labels such as antibodies or aptamers. Following a 

785 nm laser excitation, the sensor exhibited a dynamic range of 100 pM to 50 nM, 

covering the reported concentration range of insulin observed in pancreatic cell secretions. 

Plasmonic hotspots of the densely stacked, 3D gold nanoparticle pillars as well as strong 

interaction between sulphide linkages of the insulin molecules and the gold nanoparticles 

produced highly sensitive and reliable insulin measurements down to 100 pM, with an 

estimated detection limit of 35 pM. The sensitivity of this approach is approximately four 

orders of magnitude greater than previously reported results using label-free optical 

approaches and may open new opportunities for insulin sensing in research and clinical 

applications. 

Part of the work that appears in this chapter was published and is included here with the 

permission of the publisher as shown below. 

"Reprinted (adapted) with permission from Hyunjun Cho, Shailabh Kumar, Daejong Yang, 

Sagar Vaidyanathan, Kelly Woo, Ian Garcia, Hao J. Shue, Youngzoon Yoon, Kevin 

Ferreri, and Hyuck Choo, ACS Sensors 2018 3 (1), 65-71. DOI: 

10.1021/acssensors.7b00864. Copyright 2018 American Chemical Society." 
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3.1. SERS-Based Insulin Measurements  

One of the most prevalent diseases resulting from hormonal dysfunction is diabetes, which 

arises from a disruption in the release of insulin in the body (Seltzer et al., 1967; Weyer et 

al., 1999). Insulin is a peptide hormone secreted by beta cells in the pancreas and controls 

the blood-glucose level. The concentration of insulin secreted from beta cells in plasma has 

been reported to vary between 100 pM (fasting) and 2 nM (about 1 hour after glucose 

intake) in non-diabetic individuals (Yalow and Berson, 1960; Melmed et al., 2011). In 

diabetic individuals, functional damage to the beta cells reduces or inhibits their ability to 

release insulin. One of the leading methodologies for treatment of type-1 diabetes is 

pancreatic islet transplantation, where healthy islets harvested from deceased donors are 

transplanted into diabetic patients (Shapiro et al., 2000; Barton et al., 2012). Since the 

number of donors is limited, methodologies that can improve the efficiency and success of 

the transplantation process are urgently needed. Before transplantation, these islets are 

screened for their viability and functional response to changing glucose concentration in 

order to reduce the chances of transplant failure (Nano et al., 2005; Sweet et al., 2008; 

Papas et al., 2009). Sensors capable of detecting secretion of insulin from beta cells in a 

cost-effective, label-free manner with minimal stress to the cells can serve vital roles in 

clinical quality assessments of islets. External monitoring of insulin concentration can also 

help in disease diagnosis and management, as well as prevent potentially fatal insulin 

overdoses or hypoglycemia in diabetic patients (Mork et al., 2011). 

Even though Surface-enhanced Raman spectroscopy (SERS) among various sensing 

methods can be an ideal approach for optical label-free sensing for applications like 

pancreatic islet transplantation, using SERS for hormone detection appears relatively 

unexplored due to minimal experimental success: previously reported SERS-based 

quantitative insulin sensors were limited due to weakly-enhancing substrates made of 

randomly dispersed nanoparticles resulting in micromolar detection sensitivity, 

approximately 2 to 4 orders of magnitude larger than physiological insulin levels (Drachev 

et al., 2005; Keskin et al., 2011;  Matteini et al., 2015). In this study, we report rapid and 
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highly sensitive SERS-based insulin sensing at clinically relevant concentrations using 

a non-resonant SERS substrate with strong signal enhancement and wafer-scale 

uniformity. 

 

Figure 3.1: Raman peaks corresponding to the amino acids of insulin. (a) Amino acid 

composition of insulin (Hilderink et al., 2013). (b) Measured Raman spectra from human 

insulin and bovine insulin. 
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For the insulin measurements, purified human recombinant insulin was obtained from 

Sigma-Aldrich Corp. (St. Louis, MO, USA). Insulin from bovine pancreas (Sigma-

Aldrich) was also used. Prior to SERS measurements, Raman spectra from these types of 

insulin were analyzed. The powder form of insulin was placed on the microscope slide, 

then covered by a quartz cover slip (Esco Optics). Raman spectra of insulin were obtained 

using a Renishaw inVia Raman Microscope with 20× magnitude objective lens and 785 

nm infrared (IR) laser. The laser power was 0.93 mW at the sample and the integration 

time was 100 seconds. 

The measured spectra of human and bovine insulin are shown in Figure 3.1b. Amino acids 

and bonds, which contribute to making the Raman peaks such as phenylalanine, tyrosine, 

tryptophan, are noted with reference to the literature (Yu et al., 1972). The amino acid 

composition of insulin is shown in Figure 3.1a (Hilderink et al., 2013). Insulin is composed 

of two peptide chains: A chain and B chain. These two chains are linked together by two 

disulfide bonds. In human insulin, the A chain consists of 21 amino acids and the B chain 

of 30 amino acids. The strongest peak is found at 1002 cm-1 corresponding to the ring-

breathing mode of aromatic phenylalanine. 

The SERS sensors were batch-fabricated using a simple two-step process that produced 3-

dimensional (3D) gold-nanoparticle (Au NP) clusters packed densely in a vertical, pillar-

like arrangement as introduced in chapter 2 (Figure 2.1b; Figure 2.2). We fabricated 4-inch 

scale 3D-stacked gold-nanoparticle (Au NP) substrates with five iterations of NP synthesis 

on ZnO synthesized Si substrates (Au NW-5) which showed saturated a SERS spectrum 

with 1 mM BT solution (Figure 2.9d). 
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Figure 3.2: 5×5 mm2 SERS chip incubated inside the PDMS chamber with 200 µL of 

insulin solution. 

 

Figure 3.3: SEM images of 3D Au NP substrate coated with insulin. (a) Cross-sectional 

SEM image showing the vertical pillar-like 3D arrangement of the Au NP clusters on the 

ZnO synthesized substrate. SEM images (top view) of a substrate (b) before and (c) after 

insulin incubation. 

Insulin solution with 1 mM of human insulin was prepared in phosphate-buffered saline 

(PBS), pH 7.4. The silicon wafer with 3D Au-NP clusters was cleaved into 5×5 mm2 

sensing chips and placed inside polydimethylsiloxane (PDMS) chambers with an inner 

volume of 200 µL (Figure 3.2). The insulin was added to the chambers without stirring and 
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the PDMS chambers were covered with quartz cover slips. The samples were left 

undisturbed for 12 hours at room temperature for diffusion-dependent transport and 

binding of insulin to the highly dense 3D stacked Au NP pillars. Following this incubation, 

the samples were rinsed with DI water and dried using an air gun. 

The cross-sectional view of the 3D Au NP SERS substrate acquired using scanning electron 

microscopy (SEM, FEI Nova 200 NanoLab dualbeam system) is shown in Figure 3.3a. The 

SEM image reveals a dense, vertical arrangement of gold nanoparticle clusters that, based 

on experimental results, provide plasmonic hotspots necessary for ultrasensitive optical 

detection as described in Chapter 2. SEM images in Figure 3.3b and c show Au NP clusters 

before and after adsorption of 1 µM insulin, respectively.  

Raman spectrum obtained from powdered insulin (Figure 3.4a) was replotted in 600-1400 

cm-1 range of wavenumber as reference Raman signatures for insulin sensing. Also, SERS 

spectrum from 3D Au NP clusters incubated in 1 mM insulin was collected and show 

consistent peak intensities and locations (Figure 3.4b). The most intense peak at 1002 cm-

1 was used to monitor the change in Raman intensity as a function of insulin concentration 

(Hilderink et al., 2013; Ortiz et al., 2004).  

 

Figure 3.4: Raman spectra of (a) human insulin powder and (b) SERS substrate incubated 

in 1 mM insulin solution.  
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Insulin solutions at concentrations ranging from 100 pM to 1 mM were prepared in 

phosphate-buffered saline (PBS), pH 7.4. Measurements were performed at the center of 

each chip and at four additional points – top, bottom, left, and right, about 0.5 mm away 

from the center location – to characterize the Raman intensity and spatial uniformity.  

3.2. SERS-Based Quantitative Measurements for Low-Level Insulin Detection  

For quantitative SERS measurements for low-level insulin detection, insulin solutions at 

concentrations ranging from 100 pM to 1 mM were prepared in phosphate-buffered saline 

(PBS), pH 7.4. The 3D Au NP cluster chips were incubated in these insulin solutions for 

12 hours at room temperature. Following this incubation, the samples were rinsed with DI 

water and dried using an air gun. The measurement condition using Renishaw inVia was 

0.93 mW of laser power with 785 nm IR laser and 100 seconds of integration time. 

The change in SERS signal intensity as a function of insulin concentration between 100 

pM to 50 nM is shown in Figures 3.5a and b. The peak at 1002 cm-1 was identifiable at 100 

pM and a linear increase in the Raman intensity was observed as the insulin concentration 

increased from 100 pM to 10 nM. The inset of Figure 3.5b shows a linear relationship 

between the Raman intensity and concentration from 100 pM to 10 nM (slope = 0.341, y-

intercept = 12.6). The Raman intensity reached saturation at insulin concentrations greater 

than 50 nM, which indicates an almost complete monolayer coverage. Insulin can exist in 

solutions as a hexamer (~ 5 nm in diameter and 3.5 nm in height) in the presence of zinc 

ions at neutral pH, as a dimer ( ~ 4.5 nm diameter and ~ 2 nm in height) or as a monomer 

(~ 2 nm diameter and height ~ 2 nm) (Blundell et al., 1972). As no zinc ions were added to 

insulin containing buffers, the molecules are expected to be in a monomer-dimer 

equilibrium. Given the size of insulin molecules, even if there were a second layer sitting 

on top of the first layer, the second layer would be too far away from the surface to 

significantly benefit from the near-field enhancement on the surface, and the Raman-

emission contribution by the second and/or third layers would be minimal (Masango et al., 

2016). The signal-to-noise ratio (SNR) at 100 pM was calculated to be approximately 8.5, 
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and the theoretical detection limit was calculated to be 35 pM for a minimum acceptable 

SNR of 3. 

 

Figure 3.5: Quantitative measurements of insulin solutions. (a) SERS spectra of 100 pM, 

500 pM, 1 nM, 5 nM, 10 nM, 50 nM human insulin solutions highlighting the target peak 

at 1002 cm-1. (b) Experimentally measured relationship between the insulin concentration 

and SERS intensity; the inset shows a linear relationship between the Raman intensity and 

concentration from 100 pM to 10 nM. 
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Figure 3.6: Evaluation of insulin coated SERS substrates. (a) 2D Raman-intensity mapping 

of a SERS chip after incubating in a 10 nM insulin solution. The RSD of the Raman signal 

over the 1×1 mm2 area was found to be 4.3%, demonstrating excellent spatial uniformity. 

(b) Histogram showing the narrow distribution of Raman intensity over the mapped region. 

(c) Graph showing the mean and standard deviation of Raman signals collected from the 

sample as a function of the scan size used for areal averaging. (d) A SERS spectrum 

captured from a 3D Au NP SERS chip coated with a drop of 100-pM human insulin 

solution followed by rapid on-chip evaporation. 

For typical SERS substrates, even a small displacement of the incident laser could often 

lead to a huge change in Raman signal intensity due to non-uniformly distributed SERS 

hotspots. In order to improve the consistency of SERS measurements, recent focus has 

been placed on improving the chip-scale measurement uniformity either by implementing 

better substrates (Kanipe et al., 2016; Lin et al., 2017; Yang et al., 2017; Hoang et al., 
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2017), or employing better measurement strategies such as areal averaging (Lee et al., 

2011; Chang et al., 2016), which involves scanning a larger area on the substrate to collect 

and average more Raman-signal data points as opposed to making a single point 

measurement.  

The SERS insulin sensor using 3D-stacked Au NP substrates showed excellent spatial 

uniformity. Two-dimensional (2D) mapping of Raman spectra was performed over a 1×1 

mm2 area with a step size of 20 µm on a chip coated with a 10 nM insulin solution. For fast 

measurements, the measurement condition was changed to 12 mW laser power at the 

sample and 10 second integration time at each spot. The 2D mapping data is shown in 

Figure 3.6a. The relative standard deviation (RSD) of the signal fluctuation was 4.3%, 

indicating uniform enhancement of Raman signal over a large area of the sensor. A 

histogram of the Raman signals obtained over the mapped region also reveals a very narrow 

intensity distribution and indicates uniform enhancement (Figure 3.6b). Areal averaging 

was also explored to further improve the spatial uniformity of Raman measurements. 

Figure 3.6d shows the RSD as a function of the scan area used for averaging. The results 

show that increasing the averaging scan area improves the measurement uniformity. For 

example, increasing the average scan area from 50×50 µm2 to 400×400 µm2 reduces the 

RSD from 3.6% to 1.7%. However, it should be noted that the improvement in 

measurement uniformity from areal averaging is small, only about 1-3%, which is a 

testament to the excellent spatial uniformity of the 3D Au NP substrate. 

In order to demonstrate a practical, rapid detection of low-level insulin using the SERS 

substrate, a 200 µL drop of 100-pM insulin solution was applied to the surface of fresh 

SERS chips and dried by placing on a hotplate (without stirring) at 50˚C for 30 minutes. 

The locations and intensities of the Raman peaks measured from the evaporation-prepared 

samples (Figure 3.6d) matched the substrates incubated in insulin solutions for 12 hours. 

The droplet is typically 0.5 cm in diameter, and signal was collected from central regions 

of the placed droplet, where insulin transport should be governed by diffusion and any 

thermal gradient-derived convective currents, thus avoiding the edges where evaporation-



 

 

42 

driven concentrating ring effects are observed. As mentioned earlier, even if more than 

one layer of molecules were assembled on the surface, the second layer would be too far 

away from the surface to benefit from the near-field enhancement on the surface as the 

Raman-emission contribution by the second and/or third layers would be minimal 

(Masango et al., 2016). A <10% SNR reduction was observed in the faster evaporation-

detection technique and the minimum detectable concentration was calculated to be 

approximately 40 pM. 

From our measurements, the enhancement factor of the substrate for sensing insulin was 

calculated to be 3×107 (Drachev et al., 2005). This enhancement primarily originates from 

the exceptionally strong plasmonic (electromagnetic) enhancement of the 3D Au NP 

clusters. Capture of insulin on the gold substrate can be mediated through two possible 

interactions: a) hydrophobic regions of the insulin molecules can promote adsorption to the 

substrate, which exhibits extreme hydrophobicity with a measured water-substrate contact 

angle of 140 degrees and b) through strong binding interaction between the disulphide 

bonds of insulin molecules and the gold atoms of the SERS substrate (Keskin et al., 2011; 

Matteini et al., 2015; Kanipe et al., 31). The chemical interaction between sulphur and gold 

atoms is well known and has been extensively utilized by researchers in the form of thiol-

gold linkages (Lin et al., 2017; Yang et al., 2017). These interactions between the insulin 

molecules and gold substrate can further contribute towards the enhancement of the Raman 

signal through the mechanism know as chemical enhancement of SERS (Hoang et al., 

2017). 

3.3. SERS-Based Sensing of Human Pancreatic Islet Secretion 

We then utilized our label-free sensing method to assess the functionality of human 

pancreatic islets. Secretions from the islets were collected using a flow-culture system 

under low glucose (3 mM) and high glucose (17 mM) environments. Human islets were 

provided for research use by the Southern California Islet Cell Resources Center at the City 

of Hope (COH, Duarte, CA) with the approval of the COH Institutional Review Board and 

with written informed consent. Human islets were isolated by a modified Riccordi method 
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as described previously (Sweet et al., 2008). We established the insulin concentrations 

of the collected secretion samples by performing the ELISA on an aliquot extracted from 

each secretion sample. Briefly, 750 human islets were placed into a flow culture system 

and perfused at 37 °C in an air/5% CO2 incubator with low (3 mM) or high glucose (17 

mM) Krebs-Ringer-Bicarbonate buffer containing 1% human serum albumin. Samples 

(375 microliters) were collected at 5-minute intervals and kept at -80 °C until assessed for 

insulin concentration by ELISA (Human Insulin ELISA kit, Mercodia Inc., Winston Salem, 

NC, cat# 10-1113-01) or SERS.  

For preparation of SERS-based sensors, we applied the collected secretion samples to 3D 

Au NP cluster chips and measured SERS signals. 5×5 mm2 sensing chips were placed 

inside polydimethylsiloxane (PDMS) chambers, the islet secretions (200 µL) were added 

to the chambers without stirring and the PDMS chambers were covered with quartz cover 

slips. In the islet-secretion measurements, the Raman intensity of the insulin peak at 1002 

cm-1 consistently increased as a function of increasing glucose and insulin concentrations 

(Figure 3.7). Difference in the SERS intensity from low-glucose (Figure 3.7c) and high-

glucose (Figure 3.7d) secretions was clearly visible.  

The islet measurements also showed a highly linear relationship with the ELISA 

measurements as shown in Figure 3.8b, and this linear relationship was well described by 

a line whose slope is the same as that obtained in the calibration test. We compared the 

SERS signals of the islet secretions with those obtained previously in the calibration test 

performed on insulin in PBS buffer. A regression analysis was carried out on the islet-

secretion measurements by fitting a line with the slope obtained from the calibration test 

(Figure 3.8b). While the slopes are the same, the y-intercept of the line fitted to the islet-

secretion measurements (Figure 3b, y-intercept = 74.8) is approximately six times larger 

than that of the line fitted to the calibration-test results (inset of Figure 3.5b, y-intercept = 

12.6), indicating that the line was shifted upward for the islet case. This was due to the 

presence of other molecules (primarily HSA) in the islet-secretion buffer, leading to an 

increase in the background intensity bias that pushed up the overall spectral intensity. Other 
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than the difference in the background intensity bias, our islet-secretion measurements 

were highly consistent with the calibration measurements made using insulin in PBS. The 

coefficient of determination (R2) was 0.97, indicating an excellent linear fit (Figure 3b).  

The RSDs for the Raman signals from islet-secretion samples were calculated as 5 % and 

5.3 % for the low- and high-glucose samples, respectively, and showed a small increase as 

compared to 4.3 % obtained from calibration-test samples (Figure 3.6c). There was no 

significant change in the calculated detection limit for the islet secretions, which was 

estimated at approximately 36 pM using a SNR threshold of 3. Although the constant bias 

of the background signal (indicated by the elevated y-intercept in Figure 3b as compared 

to the y-intercept in Figure 3.5b (inset)) increased by a factor of six, the mean noise level 

(after subtracting the background bias) remained almost the same as in the islet-

measurement case.  As a result, the SNR remains almost constant from the insulin-in-PBS 

case to the islet case. Also, the slope of the Raman-intensity vs. insulin concentrations 

produced using our approach remained the same in both cases as shown in Fig. 3b even if 

the background bias increased in the islet case. The detection limit in this case signifies the 

minimum detectable change in insulin concentration in the target concentration range, 

which is important to characterize islet performance.   

The increase in the background noise (after subtracting the constant bias) in the islet case 

was minimal because the influence of other molecules on our measurements was very 

weak. As glucose has a weak Raman cross-section and poor adhesion to metals (McCreery, 

2000; Shafer-Peltier et al., 2003), change in glucose concentration has no influence on the 

obtained Raman signal. The influence on Raman signals from other hormones such as 

glucagon, amylin, somatostatin, and pancreatic polypeptide whose concentration could 

change in response to elevating glucose levels was considered as a potential source of error. 

However, the physiological concentration of glucagon released in islet secretions is less 

than 17 pM, which is lower than the detection limit of the sensor, and its influence was 

considered insignificant (Alford et al., 1977; Gardner et al., 2011). The concentration levels 

of amylin and somatostatin in the islet secretion are also very small, about 1/100 and 1/25 
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of the insulin concentration, respectively (Adeghate et al., 2011; Sorenson et al., 1980). 

Also, pancreatic polypeptide does not show the Raman peak at 1002 cm-1 from 

phenylalanine (Hilderink et al., 2013). Hence, when detecting insulin in islet secretions 

using the peak at 1002 cm-1, the influence of other hormones on our measurements can be 

ignored. 

 

 

Figure 3.7: Representational SERS spectra obtained from (a) Low glucose buffer (b) High 

glucose buffer (c) Islet secretions in low glucose buffer with ELISA measured insulin 

concentration of approximately 138 pM. (d) Islet secretions in high glucose buffer with 

ELISA measured insulin concentration of approximately 513 pM. 
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Figure 3.8: Label-free sensor to assess the functionality of human islet secretion. (a) 

Illustration of using a 3D Au NP SERS chip for analysis of pancreatic islet secretions. 

Secretions from islets were obtained under low and high glucose conditions. (b) SERS 

signal intensities measured on various islet secretions (the vertical axis) correlated with the 

concentrations of insulin in the samples obtained using the ELISA method (the horizontal 

axis).  
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3.4. Conclusion 

We have demonstrated the optical detection of insulin at physiological concentrations using 

a highly enhanced plasmonic platform without any external labels such as antibodies. The 

densely-packed and uniformly distributed hotspots on the 3D Au NP substrate effectively 

trapped insulin and generated strong Raman emissions. The limit of detection far exceeds 

previously reported label-free optical sensing-based results and may be further improved 

using on-chip molecule-concentrating techniques and post-measurement signal processing 

(Lee et al., 2011; Chang et al., 2016; Masango et al., 2016).  

These results have demonstrated the potential of using SERS-based label-free sensing for 

detecting insulin in various applications including daily monitoring of insulin at home as 

well as evaluating insulin secretion from pancreatic islets for research purposes in labs and 

for pre-islet-transplant screening in clinics. These SERS-based biosensors can lead to cost-

effective, easy-to-use, and sufficiently accurate insulin sensors, not yet commercially 

available, for measurements at home, laboratories, and clinics. 
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C h a p t e r  4  

CHARACTERIZATION OF VOCAL VIBRATIONS AS POWER SOURCES 

Wearable, portable and implantable electronic devices offer tremendous opportunities to 

advance various fields such as communication, robotics and health care. However, these 

devices are limited by energy deficiency in the form of poor battery capacities resulting in 

weak processing power, frequent recharging need and limited application. Alternative 

methods for harvesting energy leading to practical and efficient power generators can 

improve energy supply and enhance lifetime of wearables and implantable biomedical 

devices such as pacemakers and deep-brain stimulators. In this chapter, we propose and 

demonstrate that vocal fold vibrations can serve as efficient power sources for wearable 

electronic products. Our comprehensive numerical and experimental characterization of 

the vocal fold vibrations identify them as consistent and powerful energy sources.  

Part of the work that appears in this chapter was published and is included here with the 

permissions from the publishers as shown below. 

© 2016 IEEE. Reprinted, with permission, from Cho et al., Efficient power generation from 

vocal folds vibrations for medical electronic implants, 2016 IEEE 29th International 

Conference on Micro Electro Mechanical Systems (MEMS), 2016. 

© 2017 IEEE. Reprinted, with permission, from Cho et al., Powering portable electronics 

using vocal fold vibrations, 2017 IEEE 30th International Conference on Micro Electro 

Mechanical Systems (MEMS), 2017. 

4.1 Energy Harvesting for Wearable Electronics and Biomedical Implants 

Portable and wearable electronics have the potential to massively improve accessibility and 

provide real-time information in fields such as prosthetics, wearable sensors, implants, and 

robotics (Kim et al., 2011; Sun et al., 2012; Zeng et al., 2014). Wearable devices labeled 

as “smart electronics” have been introduced commercially as real-time personal health-
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monitors (Figure 4.1) (Düking et al., 2016; Haghi et al., 2017), however they typically 

require battery packs that need to be charged periodically. While the small form factor of 

batteries typically employed in wearable electronic devices is an advantage for minimizing 

device size, it results in significant reduction in battery capacity and limits the processing 

power of the device (Rawassizadeh et al., 2015; Ostfeld et al., 2012).   

In addition, there are a variety of different kinds of biomedical implants under development 

that require electricity (Figure 4.2). Neurostimulators (Levy et al., 2010; Shah et al., 2010) 

and cochlear implants are fast growing sectors in the medical industry (Krall and Sharma, 

2012; Sandmann et al., 2012). Moreover, implantable neural prostheses also present a great 

potential in improving the condition of those with physical disabilities (Stieglitz et al., 

2005; Gilja et al., 2011).  However, all these medical electronic implants must also use 

batteries, which require periodic replacement. As a result, batteries are often implanted in 

the chest area, requiring long-running electrical lines through the moving parts of the body 

such as the neck to power the stimulators in the head, and causing additional reliability 

issues (Fakhar et al., 2013). These issues in wearable electronics and electrical biomedical 

implants make energy harvesting from unconventional sources inside the human body an 

attractive choice that could improve the available power and usage time for such wearable 

electronic devices. 

Energy harvesting techniques derive energy from available sustainable resources such as 

light, wind or temperature difference to generate electrical energy (Priya et al., 2009; Beeby 

et al., 2006; Yildiz, 2009). Using an implantable power generator for medical electronics 

could provide an effective solution to the challenges harvestable energy sources are rare 

inside the human body. For example, there are no photons inside the body for photoelectric 

effect. Bodily thermal gradients are too small for practical power generation. A few 

thermoelectric generators (TEG) have been developed using the temperature difference 

between the skin and the ambient environment (Leonov, 2013; Kim et al., 2014; Bahk et 

al., 2015), however the reported power generation is still too low (< 60 μW/cm2) under 

ambient condition (Bahk et al., 2015). 
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Figure 4.1: Examples of publicly released wearable electronic devices. (a) Apple Watch. 

Courtesy of Apple Inc. (b) Google Glasses. Courtesy of Google Inc. These devices still 

have batteries inside the packages (insets). 

 

 

Figure 4.2: Various kinds of biomedical implants which require electricity including 

neurostimulators, cardiovascular implants, ophthalmic implants, orthopedic implants, and 

dental implants. 
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More recently, physiological movement in humans has been targeted as potential source 

for energy harvesting to charge wearable devices directly and continuously (Mitcheson et 

al., 2008; Dagdeviren et al., 2017). Physiological motion in humans exists at various scales 

including small motions such as blood vessel pulsing (Yang et al., 2015; Park et al., 2016), 

muscle stretching (Chung et al., 2012), skin deformations (Persano et al., 2013; Guido et 

al., 2016), and organ motions (Mercier et al., 2012; Dagdeviren et al., 2014), or large 

movements like elbow/knee bending(Lee et al., 2012; Hou et al., 2013; Lee et al., 2015; Yi 

et al., 2015; Jeong et al., 2015), footsteps (How et al., 2013; Niu et al., 2015; Kang et al., 

2015; Jung et al., 2015; Guo et al., 2016), jaw movements (Delnavaz et al., 2014), and hand 

palm tapping (Niu et al., 2015). Among these movements, the pulsing of vessels can be 

classified as a periodic deformation whereas the rest are non-periodic with no set 

frequencies.  

Harvesting of electrical energy from these physiological kinetic events has been 

accomplished using triboelectric (Lee et al., 2012; Hou et al., 21; Lee et al., 2015; Yi et al., 

2015) (transfer of charge), piezoelectric (Yang et al., 2015; Park et al., 2016; Chung et al., 

2012; Persano et al., 2013; Guido et al., 2016; Mercier et al., 2012; Dagdeviren et al., 2012) 

(transfer of vibrational energy), and electromagnetic (Starner and Paradiso, 2004; Saha et 

al., 2008) (transfer of motion to magnetic generators) transductions. Among these methods, 

piezoelectric transduction has shown promising results in the conversion of physiological 

movement of diverse scales to electricity. However, reported trials in this direction still 

suffer from two major shortcomings. Primarily, electrical energy generated from small 

human motions mentioned above (current < 1 µA, voltage < 10 V) has so far remained 

insufficient to charge commonly used battery packs since it is difficult to construct power 

management circuits that require power below 100 µW (Vullers et al., 2012). Secondly, 

while the large human motions mentioned above could provide strong mechanical 

vibrations or pressures to energy harvesting devices, the frequencies of these vibrations are 

either inconsistent (elbow/knee bending, jaw movements, hand palm tapping) or very low 

(≤5Hz). Such frequency unreliability causes difficulties in collecting power due to 



 

 

56 

inefficient AC/DC converting systems at very low (<100 Hz) or non-resonant frequency 

(Cheng et al., 2011). 

 

Figure 4.3: Vocal vibrations to harvest energy into wearable devices and biomedical 

implants. 

 

Figure 4.4: Structure of the larynx. (Anatomy of the Larynx, Elena Rizzo Riera, 2008, 

Trialsight Medical Media). (a) Interior view and (b) exterior view of the larynx. 
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In Chapters 5-7, vocal fold vibrations, which propagate from the larynx through the air 

cavities in the human head, are proposed and applied as power sources at various points 

around the head to drive portable and wearable electronics (Figure 4.2). Human vocal folds 

can serve as built-in frequency-tunable power sources and excite vibration-driven energy 

harvesters at their resonances, achieving a high mechanical vibration to electrical energy 

transduction efficiency. To demonstrate the vocal vibrations as promising power 

generation sources, we have characterized the energy distribution of vocal vibrations and 

identified the locations of vibration hotspots on the upper body including head, neck, and 

chest using multiple accelerometers in this chapter.  

4.2 Basic Characterization of Vocal Vibrations 

The vocal folds located within the larynx at the top of the trachea vibrate during phonation 

and modulate the air flow expelled from the lungs. They are composed of two mucous 

membranes stretched horizontally, from back to front, across the larynx. The way they 

vibrate is determined by the Bernoulli effect (Figure 4.4a). When the vocal folds are closed, 

positive air pressure from the lungs forces them open momentarily, but the high velocity 

air produces a lowered pressure by the Bernoulli effect which brings them back together.  

The structure and behavior of vocal folds, laryngeal ligaments and muscles at the larynx 

are well-studied by physicians and physiologists, and the oscillatory characteristics of 

vocal fold vibrations have been investigated in sound pathology and audiology (Hollien et 

al., 1971; Švec and Schutte, 1996; Wittenberg et al., 2000). The vocal folds resonate at a 

certain frequency which determines individual voice pitch. The muscles of the larynx 

change the elasticity and tension of the vocal folds to determine the pitch of the sound. 

Figure 4.4b illustrates how the cricothyroid muscles produce tension and elongation of the 

vocal folds by drawing up the cricoid cartilage, so that one can tune their voice. The typical 

frequency range is 80–700 Hz for males and 140-1100 Hz for females. In order to quantify 

the energy harvesting capability of vocal folds, it is important to analyze whether vocal 

cords can provide consistent vibrations with sufficient mechanical amplitudes and well-

defined frequencies. 
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Figure 4.5: Characterization of vocal fold vibrations. (a) Average frequency range of vocal 

fold vibrations from male and female participants when they make /a/ sounds and /m/ 

sounds. (b) Amplitudes measured from accelerometers as the target male and female 

participants changed their vibrations frequencies. 

We performed frequency analysis of these vocal vibrations, as well as verification of 

vibration hotspots around the head, neck, and chest from sample objects of 10 men and 10 

women. Analog Devices’ ADXL327 was used for the three-axis accelerometer. 

Accelerometers were attached to spots on the head each time for the frequency 

measurements at the various locations around the head (Figure 4.11a). In each set of 

measurements, ultrasonic gel was spread on the surface of the accelerometer to provide a 

better air-tissue interface and allow the vibrations to transfer better through the skin to the 

accelerometer. Medical tape was used to tape the accelerometers to the locations on the 

head. For locations that were covered with hair, the hair was parted such that enough skin 

was exposed to attach the accelerometer. In each new set of measurements, the 

accelerometers were removed, cleaned, and reattached to the next locations with a new 

layer of ultrasonic gel. To analyze the transient voltage signals, we connected 

accelerometers to a National Instruments’ Data Acquisition (DAQ) device, using 

LabVIEW to gather the appropriate data and convert it to the units we needed.  The signals 

were turned into Fast Fourier Transform in LabVIEW for the frequency analyses. 
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Participants generated continuous vowel sounds like /m/ sounds and /a/ sounds from 

their lowest to highest frequencies. The frequency of the vocal vibrations can be affected 

by the shape of vocal tracts required to emanate the sound (Mermelstein, 1966; Ishizaka 

and Flanagan, 1972). The path length of a nasal sound such as /m/ is longer than of a 

predominantly oral sound such as /a/, which results in the /m/ sound being of a lower 

frequency than the /a/ sound. While men and women typically use 125-175 Hz and 200-

250 Hz frequency ranges respectively during speaking (Titze, 1994), they can tune their 

voices to wider frequency ranges. Figure 4.5(a) shows the tunable frequency range of 

male’s and female’s vocal vibrations from our measurements on participants. The 

frequency range of males when they made the /a/ sound was at 95-555 Hz, while females 

could tune their voices from 164 Hz to 775 Hz.   

Such variation in frequencies can be correlated with variation in sound levels as well as 

mechanical amplitudes of vocal vibrations. Air cavities around the upper body, where the 

acoustic waves from the vocal folds propagate through, act like resonators. These air 

cavities in the upper body such as chest, mouth, nose, and head act like chambers in 

acoustic instruments, and each cavity is associated with resonating different tones (Titze, 

1994). For example, head resonance is used primarily for softer singing and chest 

resonance adds deeper tone coloring for a tenor (Henrich et al., 2011). To identify the 

efficient frequency range where large vibrations reside, we characterized relative 

amplitudes of vibrations from different body parts or frequencies. One individual male and 

female participant was selected for the rest of the tests. Figure 4.5(b) shows the normalized 

relationship between electrical amplitudes from the accelerometer and the frequency of the 

humming-based vocal vibrations of test participants. The strongest vibrations were at 271 

Hz and 285 Hz for the male and the female participants, respectively. We used these 

efficient frequency ranges to set the target frequency of the engineered energy harvesting 

devices in the next section. 
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Figure 4.6: Transient output of the acceleration from the accelerometer during humming 

(a) and reading (b). Normalized frequency responses of the accelerations (along z-axis to 

the skin) obtained above during humming (c) and reading (d). 
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Figure 4.7: Three-axis measurement results using MEMS accelerometers placed on the 

human larynx while a man was humming (a) and reading (b), and a woman was humming 

(c) and reading (d). The vibrations along the z-axis is obviously dominants one among 

three-axis measurement results. 

The frequency responses of vocal vibrations from target participants were then measured 

while humming or reading a simple sentence, with comfortable phonation without 

intending to change frequency or sound level. The accelerometer measured the amplitudes 

of vibrations for one second, followed by the fast Fourier transforms of the signal to 

identify the frequency components. Figure 4.6 shows the transient amplitude signals and 

corresponding frequency responses of vocal vibrations while humming or reading. With 

only a few insignificant higher-order harmonics, the acousto-mechanical vibration from 

humming shows a single dominant peak with 73 ± 4 % of the total energy (Figure 4.6c). 
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While reading required pronouncing complicated words, which may cause scattering of 

frequencies, still 63±8% of the vibration energy was still observed at the dominant 

frequencies (Figure 4.6d). From these measurements, it turns out that the energy source 

provides very focused vibration energy during phonation including humming and reading.  

Also, each mechanical vibration along the x-/y-/z-axe was measured (Figure 4.7). The 

normal direction to the skin is z-axis, while x-axis indicates the left-right direction and y-

axis points the up-down direction. The vibration along z-axis to the skin is dominant among 

three-axis components for both humming and reading. These characterizations prove that 

human vocal folds can provide significant unidirectional vibrational energy focused on 

dominant frequencies for energy harvesting applications. 

4.3 Vibration Hotspots Mapping Around Human Upper Body 

Next, we identified and mapped out the vibration hotspots around the head and neck area 

using finite element model simulations of the human head and verified them with 

mechanical and optical measurement techniques. In order to locate the true vibration 

hotspots, it is necessary to understand how the vibration propagates throughout the head. 

The head model simulation was performed to project the route of vibration propagation, 

followed by acceleration measurements on both human participants and a real head model 

to verify the principle. 

For the simulation of human head model, publicly available full-body CT-scanned images 

were obtained from the National Biomedical Imaging Archive. Scans with both mouths 

remained open and closed were obtained for male in order to render the effect of the 

mouth’s position in the propagation of vibration in the human head. These 3D images were 

imported into the 3D image processing software (ScanIP by Synopsys Inc.) and rendered 

in 3D (Figure 4.8). These 3D models, which consist of tissues including bone, fat, muscle, 

brain, and skin, were then segmented into grayscale value depending on tissue material 

properties. The generated 3D human head models were imported into a commercial finite 

element simulator (COMSOL Multiphysics®) for vibration simulations. Material 

properties such as the Young’s modulus and the Poisson’s ratio of the tissues of our interest 
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were obtained through literature (Table 4.1). The vibration from the vocal folds was 

incorporated into the models by prescribing a small displacement at the larynx to 

demonstrate the vibration of the vocal folds. The acoustic-structure interaction module was 

used to measure the Von Mises stress on each tissue level. A frequency domain study was 

performed with frequencies 100, 200 and 300 Hz. 

 

Figure 4.8: Building a 3D human head model for finite element simulation.  3D rendered 

image from CT scanned images with mouth closed (a) and open (b). Segmented and 

smoothed 3D head model with mouth closed (c) and open (d). 
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The mouth of the head model is closed, so the vibration analysis from this simulation 

reflected the case where a human hums or pronounces the /m/ sound, while the other head 

model with mouth open represents one who pronounces the /a/ sound. Stress mappings on 

the head models are shown in Figure 4.9. In case of the head model with the mouth open, 

an identifiable vibration hotspot does not exist except the location at the larynx. This is 

because most of the vibration energy reaching the oral cavity is released through the open 

mouth.  

However, the closed mouth model shows several hotspots on the skin and bone around the 

head, mouth and neck at 100, 200, and 300 Hz (Figure 4.9). The colormap indicates that 

the neck and jaw area provide stronger vibrations over other areas, which can be due to 

bone conduction of the vibrations from the larynx. Moreover, the vibration hotspot can also 

be found at the top of the head. The vibration energy at the oral cavity keep propagating 

through nasal the cavity and brain cavity, so that the vibration can even reach the top of the 

head. Thus, while bone conduction is one of the primary methods of vibration propagation, 

air cavities like nasal cavity and soft tissues such as the tongue and the brain can also be 

sources of vibration propagation when the mouth is closed, allowing these vibrations to 

reach the skull.  

We further identified these vibrations hotspots around the neck, jaw, and skull using two 

measurement methods: (a) measuring mechanical vibrations with accelerometers and (b) 

optical measurements using laser Doppler vibrometer (LDV). Commercially available 

accelerometers and LDV were used to measure the mechanical vibrations.  
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Table 4.1: The material properties used in the head model simulation. 

 Mass Density 

[kg/m3] 

Young’s 

Modulus [Pa] 

Poisson’s 

Ratio 

Speed of 

Sound [m/s] 

Reference 

Bone 1810 18E9 0.143 2814 Pal, 2014; 

Shahar et al., 

2010 

Brain 1046 9.21E3 0.458 1546 Soza et al., 

2005 

Fat 911 10.3E3 0.495 1440 Gefen and 

Haberman, 

2007 

Muscle 1090 11.5E3 0.3 1588 Collinsworth et 

al., 2002; 

Dobrin and 

Doyle, 1970 

Skin 1109 6.25E3 0.48 1624 Pailler-Mattei et 

al., 2008; 

Delalleau et al., 

2006 
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Figure 4.9: Colormaps of stress at frequencies of 100, 200 and 300 Hz on the head model 

with mouth open (above) and mouth closed (below). 
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Figure 4.10: Pictures of the vibration hotspots identification around the head. 

Accelerometer measurements (a) and laser Doppler vibrometer (LDV) measurement (b). 

 

 

Figure 4.11: Colormap of the vibration hotspots around the head and neck using 

accelerometers (a) and LDV measurements (b). 
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For real time comparison among the locations, five accelerometers were attached on five 

different locations on the upper body at the same time (Figure 4.10a). In order to maintain 

a consistent vibration amplitude from the vibration source between different 

measurements, one accelerometer was always kept on the larynx to serve as a reference 

point while 4 other points were measured simultaneously. The acceleration values from 

tested locations were calculated using 5-second humming sessions by the participants. The 

mapping results are shown in Figure 4.10a. 

LDV measurements were carried out with our collaborator in TU Clausthal, Germany 

(Mignanelli and Rembe, 2018). Polytec’s MPV-800 multipoint vibrometer was used as 

time synchronous optical vibrometer with 10 channels. The reflection tape was attached on 

each test location around the head to enhance the reflected signal from the surface and the 

10 cameras were aligned to the surface to get the highest signal. Polytec’s MPV software 

was also used to collect and analyze the signals from all 10 channels. To measure vibration 

amplitudes around the head using LDV, we used a multipoint vibrometer with 10 channels 

allowing 10 different locations to be measured simultaneously. We placed ten cameras 

aligned to different locations around the head (Figure 4.10b) and measured amplitudes of 

the surface displacements while the participants hummed.   

Colormap of the vibration amplitudes from 11 locations around the head can be seen in 

Figure 4.11. Understandably, the most efficient vibrations exist at the larynx (#1). As 

shown in the simulation results, the other locations around the neck (#2, #3) and jaw area 

are also good vibration sources (#5, #6). These other regions provide around 20-40% of 

the vibration amplitude as compared to the larynx and can serve as potential energy 

harvesting locations for hearing aids or cochlear implants. Additionally, measurement 

points at the nasal cavity, at the top of the head through the brain cavity, and at the chest 

area (#13) can also provide between 10-20% of vibrations as compared to the larynx, which 

is possible due to propagation of vibrations through the air cavities. The top of the head 

(#11) could be an appropriate location for the attachment of vocal fold vibration-driven 

energy harvesters and could deliver the power to implantable devices for deep brain 
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stimulations. Similarly, the chest area can be a good candidate for vocal fold vibration-

driven recharging of a pacemaker battery. 

Table 4.2: Power requirements to operate various biomedical electronic implants. 

Device Power Adjacent Vibration Source 

Biomonitoring System < 100 µW  

Pacemaker < 100 µW Chest (#13) 

Cochlear Processor 200 µW Jaw or sides of neck (#2, #3, #5, #6) 

Hearing Aid 100-2000 µW Jaw or sides of neck (#2, #3, #5, #6) 

Deep Brain Simulation 1-3 mW per electrode Top of the head 

 

Table 4.2 shows the list of possible biomedical electronic implants whose batteries could 

possibly be recharged by energy harvesting methods using vocal vibrations. The adjacent 

vibration hotspots are also mentioned such as chest, jaw, sides of neck, and the top of the 

head. The required powers were complied from the literature (Rasouli et al., 2010). 

4.4 Conclusion 

In this chapter, we have demonstrated an energy harvesting device which utilizes vocal 

fold vibrations generated during “humming” or “speaking” for powering wearable 

electronics. We identified frequency analyses of vocal vibrations with male and female 

participants and verified vocal vibration-based energy harvesting “hotspots” on the human 

upper body through simulations as well as experimental verification by measuring 

acceleration and displacement. 
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C h a p t e r  5  

POWER GENERATION USING VOCAL VIBRATIONS 

Based on the promising results obtained in chapter 5 of potential energy harvesting of vocal 

fold vibrations, in this chapter I will present the successful development of the vocal fold 

vibration harvesting device. Using this device, we were able to generate 3.99 mW of 

electrical power from the acousto-mechanical vibrations originating from the human vocal 

folds and successfully charged a 15-mAh lithium polymer battery. These results indicate 

that vocal fold vibrations can be an extremely efficient energy source for portable and 

wearable electronics leading to significant improvement in device performance. 

Part of this work that appears in this chapter was published and is included here with the 

permission from the publisher as shown below. 

© 2017 IEEE. Reprinted, with permission, from Cho et al., Powering portable electronics 

using vocal fold vibrations, 2017 IEEE 30th International Conference on Micro Electro 

Mechanical Systems (MEMS), 2017. 

 

5.1 Piezoelectric Energy Harvester and Energy Harvesting Array 

There are three basic energy conversion mechanisms that convert vibration into electric 

energy. These three methods are electromagnetic, electrostatic, and piezoelectric 

conversions (Williams and Yates, 1996; Erturk and Inman, 2011). Among these methods, 

piezoelectric transduction has shown promising results in conversion of physiological 

movement of diverse scales to electricity (Yang et al., 2015; Park et al., 2016; Chung et al., 

2012; Persano et al., 2013; Guido et al., 2016; Mercier et al., 2012; Dagdeviren et al., 2014). 

The main advantages in energy harvesting using piezoelectric devices are their large power 

densities of piezoelectric materials and ease of application (Erturk and Inman, 2011).  
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We have developed energy harvesting devices using a piezoelectric generator which is 

based on the piezoelectric effect. The piezoelectric energy harvesting method was chosen 

to take advantages of focused vibrational energy with one direction at dominant 

frequencies from vocal vibrations. For piezoelectric material, we chose lead zirconate 

titanate (PZT), the most popular piezoceramic material which has the strongest 

electromechanical coupling coefficient (Sodano et al., 2005). Particularly, PZT-5A was the 

material used which is the most widely implemented piezoceramic material (Sodano et al., 

2004). 

 

Figure 5.1: Schematic of piezoelectric cantilever beam. The beam length (L) and thickness 

(T) determine the resonance frequency of the beam. 

For the unit device structure, a bimorph cantilever beam (510 μm thick) was used (Figure 

5.1). The length of the cantilever beam was determined to achieve resonance conditions at 

the desired frequency. As discussed earlier (Figure 4.5b), the mechanical amplitudes of the 

vocal vibrations while humming was highest in the 260-285 Hz range for the target 

participants. Basically, natural frequency (fn) of the cantilever beam is determined by 

material properties and dimensional parameters. fn decreases with increasing the cantilever 

mass (m) using the spring-mass system equation: 

                                                 𝜔𝑛 = √
𝑘

𝑚
   (5.1) 
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where 𝜔𝑛 = 2𝜋𝑓 and k is the spring stiffness. This equation (6.1) can also be expressed as 

                                            𝜔𝑛 = 𝛼𝑛
2√

𝐸𝐼

𝑚𝐿4
                                                             (5.2) 

 

where E is the modulus of rigidity of the cantilever material, I is the moment of inertia of 

the cantilever cross-section, and αn can be solved as shown in the table below. 

Table 5.1: Solutions for αn in Equation 5.2. 

n 1 2 3 4 5 6 

αn 1.875 4.694 7.855 10.996 14.137 17.279 

 

Each vibrational mode shape of cantilever beam is shown in Figure 5.2. The mode shapes 

were achieved using finite element simulation with COMSOL Multiphysics. 

The piezoelectric material properties such as Young’s modulus, density and dimensional 

parameters including beam length and thickness determine the resonance frequencies of 

the cantilever beams. Our simulations were done using PZT-5A material to find the proper 

beam length. Figure 5.3a shows resonance frequencies obtained from simulations with 

varying both the lengths and the thicknesses of the beam. Through this result, the desired 

beam length for resonance in the target frequency range (260-285 Hz) is found to be 28 

mm (276 Hz of resonance frequency expected) when the thickness of the beam is 0.51 µm. 

Using these parameters, 1 V of electrical voltage is expected to be generated from the 

simulation (Figure 5.3b). 
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Figure 5.2: Mode shapes of cantilever beam when n = 1,2…6 in αn. 
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Figure 5.3: Expected resonance frequency and generated power of the beam using 

simulation method. (a) Resonance frequencies obtained from simulations with varying 

both lengths and thicknesses of the beam. The white line indicates the 260 Hz of resonance 

frequency. (b) Generated voltage and resonance frequency expectations as the beam length 

increases, when the thickness and the beam width were fixed. When the beam length is 28 

mm and the resonance frequency is 260 Hz, 1.0 V will be generated. 
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Figure 5.4: Fabricated energy harvesting cantilever beam (a) and its frequency analysis (b). 

Both simulation result and measurement data are shown in (b). 

 

PZT-5A sheets were purchased from Piezo System Inc. The metal shim was placed 

between two PZT-5A sheets to construct the bimorph structure. Laser micromachining 

process was applied to cut the beam. The fabricated cantilever beam is shown in Figure 

5.4a. For the frequency analysis, this beam was evaluated using a vibration generator. The 

vibration generator (3B Scientific’s U56001) was controlled by a function generator to vary 

the frequency. Figure 5.4b shows the relative output voltage amplitude normalized to its 

maximum from simulation and experimental results. The resonance frequency of the 

cantilever beam was 274 Hz, within the target frequency range.  

Then, the energy harvesting array was designed to collect energy from multiple 

piezoelectric energy harvesters using a 3D printed structure. As discussed earlier, the 

larynx serves as the most efficient vibration generating location, although it has a limited 

physiological surface area. For efficient utilization of this potential energy source 

(laryngeal vibrations), we stacked the cantilever devices using a 3D-printed package to 

create a parallelly-connected energy harvesting array. To transfer the vocal vibrations to 

piezoelectric devices efficiently, it was necessary to build an optimized packaging structure 
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that aids in the vibrational energy to be delivered through an array of piezoelectric 

cantilever beams with minimal loss of vibrational energy. Each piezoelectric cantilever 

was placed inside a casing (Figure 5.5a), and multiple casings were then stacked and rigidly 

clamped, forming a multi-stack array (Figure 5.5b). The clamping package was built using 

Ultimaker’s Ultimaker2 3D printer. Polylactic acid (PLA) was chosen for the 3D printing 

material due to its rigid and sophisticated printing properties. A 10-stacked energy 

harvesting array assembled in the clamping package is shown in Figure 5.5b. This package 

can tightly hold the energy harvesting array allowing to maximize the vibration transfer. 

The outer dimension of the package, which consists of 2×5 rigidly clamped cantilevers (10 

units in total) forming an energy harvesting array, was 30×35×22 mm3. The bottom part of 

the clamping mount included a curved surface with a 46 mm radius of curvature to fit the 

geometry of the neck (Figure 5.5c). 

Afterwards, phase synchronization effect was tested to ensure the minimal energy loss of 

the package (Figure 5.6a). Synchronization is the process where two or more systems 

interact with each other and start to actuate together.  A well-known experiment for 

describing the synchronization is the metronomes experiment (Pantaleone, 2002). The 

metronomes all move in a different manner at the beginning, but they become synchronized 

and move together after they are placed on rolling cans (Figure 5.6a). The small motion of 

the base couples each vibrating object causing synchronization. Similarly, our packaging 

structure with 10 cantilevers acts like a moving base with metronomes. In Figure 5.6b, the 

packaging structure acts like the board and the neck acts like a can, so that the small motion 

of the clamping package couples the cantilevers and makes them in-phase. 
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Figure 5.5: Structure of the energy harvesting package. (a) 3D-printed package for unit 

energy harvesting device. (b) Clamping packaging structure containing 10 energy 

harvesters. The 10-energy harvesting array consists of 10 energy harvesters packaged in a 

unit structure, then the whole structure is rigidly clamped in the 3D-printed clamping 

structure and screws. (c) Assembled 10-stacked energy harvesting array fixed on the 

larynx. The bottom surface of the clamping structure has a curvature, so that it can fit to 

the outer diameter of the neck. 
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Figure 5.6: Synchronization effect found in the clamping package structure. (a) Metronome 

experiment. (b) Cantilevers in the clamping package first move out of phase, and eventually 

couple in phase. 

 

We observe this synchronization effect by measuring transient AC signals from 4-stacked 

cantilevers in the clamping package. Right after the start of humming, a large phase 

difference is observed in the transient phase (Figure 5.7b-1). However, after 50 msec, the 

waves start synchronizing with minimal phase difference leading to the steady state 

condition. The phase difference among 4 cantilevers was less than 0.06 π. Such 

synchronized AC transient signals contribute significantly to the AC-DC converting step 

for higher converting efficiency.  
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Figure 5.7: Transient signals from four energy harvesters. When the humming started, the 

phase difference and amplitude difference were large (Phase b-1), but the waves started to 

synchronize together after 50 milliseconds (Phase b-2), then eventually settled in near 

complete synchronization (Phase b-3). 

 

5.2 Energy Harvesting Circuit and System 

To demonstrate the efficient energy harvesting capability of the PZT devices, we built an 

energy harvesting system including an array of piezoelectric devices, an AC/DC converter, 

a boost charger, and a battery together with our collaborator in Texas A&M University 

(TX, USA) (Figure 5.8a). Firstly, we designed a battery charging system using a passive 

LC resonant voltage double rectifier and a boost charger shown in Figure 5.8b. The 

presence of a large internal capacitance of the piezoelectric device, CPZT, significantly 
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decreases the energy harvesting efficiency because its charging and discharging 

operation at every cycle consumes a large portion of the sinusoidal output current of the 

PZT device. This reduces the output current to the load and consequently the output power. 

Therefore, it is critical to minimize the charging and discharging of the internal capacitance 

to accomplish a higher efficiency. To solve this issue, we used a passive LC resonant 

rectifier because the parallel LC resonance stops the output sinusoidal current from flowing 

into the internal capacitance. The schematic of energy harvesting array and LC resonance 

rectifier is shown in Figure 5.8b. Moreover, since the human vocal vibration frequency is 

stable around 260~280 Hz, the potential resonance frequency mismatch of the LC resonant 

rectifier can be overcome.  

Based on the modeling of a single unit device, the matching inductance was determined. 

Also, Schottky barrier diodes (Avago Technologies’ HSMS-2862) were employed in order 

to reduce the diode forward voltage drop. The boost charger Analog Devices ADP5090 

was used for the DC voltage step-up conversion. The ADP5090’s maximum power point 

tracking (MPPT) property helps to convert the rectified voltage to a higher voltage level 

suitable for LiPo battery charging. Circuit simulations by Linear Technologies LTSpice 

were also done to expect the amount of voltage generation (Figure 5.8c). In this simulation, 

the parallel-connected current source, resistor, and capacitor are equivalent to the 

piezoelectric device. For the data aquisition, we connected the energy harvesting devices 

to a National Instruments’ Data Acquisition (DAQ) device (USB X-Series). 
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Figure 5.8: Energy harvesting circuit in the energy harvesting system. (a) Energy 

harvesting system diagram. (b) Schematic of the energy harvesting system including the 4-

stacked energy harvesting array and the LC resonant double rectifier. (c) LTSpice 

schematic of the piezoelectric device and the LC resonant voltage double rectifier. 
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Figure 5.9: Comparison of the simply stacked package and the clamped package using 2- 

and 4- stacked arrays. (a) Photo images of the simply stacked package and clamped 

package using 4 devices. (b) Transient measurements using each package without AC/DC 

conversion. The simply stacked one shows larger phase and amplitude differences. (c) DC 

output voltage measurements using AC/DC converter. The clamped packaged devices 

generated about twice more output voltage than voltage that the simply stacked package 

generated. 
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Firstly, we measured the output voltage from the energy harvesting (EH) array with the 

clamping package. To measure the power generation efficiency of the clamping package, 

voltage generation from the EH array with the simply stacked package (Figure 5.9a) was 

also analyzed. We used a vibration generator (3B Scientific U56001) with a function 

generator to maintain the same amount of vibrations to the EH array. Figure 5.9b shows 

the AC transient measurements without the AC/DC converter. Both phase difference and 

amplitude difference were improved using the clamping package with the synchronization 

effect. With the AC/DC converter and a 10 kOhm output load, the 2- and 4-stacked 

clamping packages showed a 100% improvement in DC voltage generation as compared 

to a 4-stacked package only. 81 µW and 49 µW were generated from the 2- and 4- stacked 

EH clamping packages, respectively (Figure 5.9c). 

The AC/DC converter with LC resonant rectifier was then applied to the 10-stacked EH 

array. We varied the load resistance (RL) and measured the DC output voltage to find the 

optimum load for extracting the maximum power from the 10-stacked EH array. As shown 

in Figure 5.10a, we found the optimal load value to be 10 kOhm. Then, we characterized 

the output power from the EH arrays.  Figure 5.10b shows the simulated and measured 

output voltage from each structure. The circuit simulation was also performed using 

LTSpice. The electrical powers generated using single-, 4-, and 10-stacked EH arrays were 

37 µW (0.6 VDC), 0.49 mW (2.2 VDC), and 3.12 mW (5.5 VDC), respectively. Therefore, 

the generated voltage is proportional to the number of stacked devices. 
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Figure 5.10: DC voltage measurement using clamping packaged EH array and LC resonant 

rectifier. (a) Load optimization for 10-stacked EH array. (b) DC output voltage 

measurements and simulation results using different number of stacked piezoelectric 

devices. 
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Figure 5.11: Charging a Li-Po battery using the energy harvesting array. (a) DC voltage 

generation using a vibration generator with 10-stacked EH array to charge a Li-Po battery 

for a long time. (b) Charging voltage to charge 3.7 V-100 mAh LiPo battery for six hours. 

By adding a boost charger to the LC resonant rectifier, a 100 mAh LiPo battery was 

charged. To mimic a 75-dB humming for an extended time period, va ibration generator 

was utilized. The comparison of voltage generations from 75-dB humming and the 
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vibration generator is shown in Figure 5.11a. The 3.7 V - 100 mAh battery was charged 

up to 3.23 V after 6 hours of long-term charging. 

Next, active diodes were applied to a full wave rectifier for further boost in voltage 

generation from the EH array. AC to DC conversion was conducted by a full wave rectifier 

which consists of two active diodes, two passive diodes, and a switched inductor (Figure 

5.12a). The designed full wave rectifier is composed of two passive diodes (D1 and D4) and 

two active diodes (D2 and D3). An active diode is a combination of a comparator and a 

NMOS transistor. Since a large forward voltage drop across a diode deteriorates the power 

conversion efficiency of a rectifier significantly, it is important to have low a forward 

voltage drop. From this perspective, an active diode is preferred to a passive diode. 

However, active diode implementations of D1 and D4 require PMOS transistors which tend 

to increase the number of devices in low voltage operation due to small on-resistance. 

Therefore, Schottky barrier diodes were employed for D1 and D4.  

The SSHI technique (Guyomar et al., 2005) was also implemented by an inductor, a switch, 

sensing circuits (RSEN and CSEN), and pulse-based control circuits including hysteresis 

comparators and pulse generators. The principle behind the SSHI is flipping the voltage, 

VPZT, across CPZT instantly by using an inductor when the direction of the output AC current 

changes reducing the amount of charges that flow into the CPZT from the PZT device. 

Furthermore, a smaller inductance can be used in comparison with that of the resonance 

rectifier because high frequency resonance is desirable for quick voltage flipping. To detect 

the direction change of the output AC current, IPZT, a first order high pass filter was 

implemented by RSEN and CSEN. The hysteresis comparators and pulse generators are 

controlled when the inductor switch is turned on/off for voltage flipping. The pulse width 

generated by the pulse generators is adjustable to filter out glitch pulses at the inductor 

switch so that the undesirable inductor switching is prevented. Figure 5.12b shows the 

detailed schematic of the full wave rectifier with active diodes drawn by Altium’s Altium 

Designer. Toshiba Semiconductor’s SSM6N44FELMCT NMOS transistors were used for 

active diodes. For the two passive diodes in the full wave rectifier circuit, Schottky diodes 
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from Avago Technologies (HSMS-2862) were used. Analog Devices’ ADP5090 was 

applied as a boost charger following the full wave rectifier. 

 

Figure 5.12: Full wave rectifier as AC/DC converter in the energy harvesting system. (a) 

Schematic of the full wave rectifier as AC/DC converter which consists of two active 

diodes, two passive diodes, and a switched inductor; the left image is the corresponding 

circuit board. (b) Detailed schematic including the elements of full wave rectifier, 

connections between the elements, and the connectors. 
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5.3 Power Generation Results Using Vocal Vibrations 

Figure 5.13a shows the layout design of the printed circuit board (PCB) and the fabricated 

PCB where the proposed full wave rectifier with a switched inductor was implemented. 

The layout was drawn using Altium Designer and PCB was fabricated in Mir System Co. 

Ltd. A passive diode-only full wave rectifier was additionally implemented on this board 

for the purpose of comparison with the proposed full wave rectifier. The boost charger was 

connected to this board for DC voltage step-up conversion. The maximum power point 

tracking (MPPT) property of the boost charger helped to convert the rectified voltage to a 

higher voltage level suitable for battery charging. For power measurements, the 10-stacked 

energy harvesting array (Figure 5.5c) was excited using the vocal fold vibrations generated 

at the larynx of the test participants during humming.  

To find the optimum load for the maximum power extraction from the 10-stacked EH array 

using an active diodes-implemented full wave rectifier, we varied again the load resistance 

(RLOAD) and measured the DC output voltage.  The optimal load is found to be 4 kΩ as 

shown in Figure 5.13b.  Afterwards, we characterized the output power from the EH arrays 

shown in Figure 5.13c. The generated power using a passive diode-only full wave rectifier 

was 3.05 mW with 3.57 VDC which is very close to the previous output power using the 

LC resonant double rectifier (also a passive diode-only AC/DC converter). The EH array 

with a switched full wave rectifier generated 4.01 VDC and 3.99 mW, showing an increase 

of 30% compared to the output power using the passive diode-only full wave rectifier. 
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Figure 5.13: Power generation using the fabricated full wave rectifier. (a) Layout design of 

the printed circuit board (PCB) and the fabricated PCB where the proposed full wave 

rectifier with a switched inductor was implemented. (b) Load test with active full wave 

rectifier and passive full wave rectifier.  The black line and blue line with triangle symbols 

are voltage and power measurements from with the active full wave rectifier, and the other 

black line and blue line with triangle symbols are voltage and power measurements using 

the passive full wave rectifier. The maximum attained power was found to be at 4 kΩ load. 

(c) An array of 10 energy harvesting units generated 3.99 mW with a 4 kΩ load. 
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Figure 5.14: 15-mAh Li-Ion battery charging using a 10-stacked energy harvesting array. 

(a) The first three seconds of battery charging using vocal the vibrations and vibration 

generator. (b) Cumulative charging with the vibration generator. The voltage at the battery 

reached 3.76 V after 12 hours of charging. (c & d) The battery charged for 10 minutes with 

vocal vibrations was sufficient to operate the 10-LED array and the 2×16 LCD backlight 

unit. 

 

To demonstrate this battery charging capability, the boost charger was loaded with a 15-

mAh thin 3.7 V-LiPo battery (2×12×12 mm3) instead of a load resistor. Charging the 

battery in a deeply discharged state with 75-dB humming for 3 minutes increased the 
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battery output voltage from 2.65V to 3.01V, as shown in Figure 5.13a. The 75-dB 

humming was verified by a sound level meter (Extech Instruments’ 407730). The sound 

level meter was placed at a distance of 1 m from the sound source to keep producing the 

75-dB humming while measurements were taken. We used a vibration generator to mimic 

vocal fold vibration at 75 dB for longer time periods and were able to charge the battery 

completely using this method (Figure 5.14a). Charging the 15-mAh battery using vibration 

energy from the vibration generator is also shown in Figure 5.14a. The transient response 

of the battery output voltage charged by a vibration generator can be seen in Figure 5.14b. 

The battery output voltage reached up to 3.72 V after 12 hours.  

A battery charged for 3 minutes by 75-dB humming was sufficient to operate a 10-LED 

array (power consumption: 2.2 V, 10 mA) or a 2×16 LCD unit (power consumption: 2.8 

V, 10 mA) for about 30 seconds (Figure 5.14c-d). 

Using an array of piezoelectric energy harvesters, we generated electrical power from 

various locations around the head including jaw, chest, and neck. As discussed earlier, the 

jaw and chest areas can also be potential energy sources for implantable devices. Figure 

5.15a shows the additional hotspot verification at the chest area using 3-axis MEMS 

accelerometers. The jaw regions provide around 20-40% of the vibration amplitude as 

compared to the larynx. 14-18% of vibrational energy compared to the energy from the 

larynx can be provided at a large area on the chest (26×8 cm2). 

We experimentally verified jaw and chest locations as energy sources using wearable 

energy harvesting packages. (Figure 5.15b, c). We constructed appropriate packaging 

structures suited to each area and tested power generation from each area. Then, we were 

able to obtain output powers of 1.20 mW and 0.32 mW from the human jaw and chest area, 

respectively (Table 5.3).  
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Figure 5.15: Wearable energy harvesting device demonstration. (a) Vibration distribution 

measured by accelerometers in the upper body including the chest area. (b) Wearable 

energy harvesting from the jaw area. (c) Wearable energy harvesting package using the 

chest area. (d) Bow-tie shaped energy harvesting package using the neck area. 

 

As shown in Figure 4.11 and Figure 5.15a, the larynx serves as the most efficient vibration 

generating location. However, the farther away from the center of the neck, the weaker the 

vibration energy gets. For practical demonstration of energy harvesting at the larynx, we 

made a bow-tie shaped energy harvesting package consisting of 4 piezoelectric energy 

harvesters (Figure 5.16). To implement the energy harvesting system together with the 

energy harvester, a small sized AC/DC converter, voltage regulator and a 15-mAh Li-Po 
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battery were attached on the shirt collar. This bow tie energy harvesting device was able 

to produce an output of 0.62 mW (1.58 VDC), which was capable of charging Bluetooth 

headphones through a Li-Po battery (Figure 5.16). 

 

Figure 5.16: Bow tie shaped energy harvester using a 4-energy harvesting array. The 

battery and circuits were placed inside the shirt collar to charge the Bluetooth headphones. 

 

Table 5.2: Power generation using wearable energy harvesting devices. 

Device area Number of energy 

harvesters used 

Generated power 

(mW) (dc voltage, VDC)  

Power Density  

(µW/cm2) 

Jaw 10 (2×5 stacked) 1.2 (2.19) 35.7 

Chest 10 0.32 (1.14) 9.5 

Neck  

(bow tie shaped) 

4 0.98 (1.98) 72.1 
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According to Table 4.2, generated powers from the neck, jaw and chest areas were 

capable of driving biomonitoring systems, pacemakers, cochlear processors, and hearing 

aids. The deep brain stimulation can also provide pulses using this amount of power 

depending on the treatment method (Alexis et al., 2004). The power generation results from 

wearable energy harvesting devices are summarized in Table 5.2. Power density from each 

location is 35.7 µW/cm2 (jaw), 9.5 µW/cm2 (chest), and 72.1 µW/cm2 (neck). 

5.4 Conclusion 

The vocal fold vibration-based energy harvesting system developed in this study consisting 

of a 10-stacked array with switched full wave rectifier stably generated 3.99 mW from 

human humming at 75 dB. Additionally, we demonstrate a successful charging of a 15-

mAh thin LiPo battery, with full charge achieved after 12 hours of cumulative charging. 

Charging the battery for 10 minutes allowed us to turn on a 10-LED array (requiring 2.2 

V, 10 mA) or 2×16 LCD backlight unit (requiring 2.8 V, 10 mA) for about half a minute. 

Most of the existing biomechanical energy harvesters fall short of producing sufficient 

output current (<100 µA) and meeting the energy requirements of typical wearable 

electronics – especially medical devices. Our device can produce almost 1mA current with 

minimal physical effort as summarized in Figure 5.17.  

Higher frequencies of vocal fold vibrations (> 100 Hz) as compared to other biomechanical 

motions (≤ 5Hz) can assist in further developing efficient electronics to boost up the energy 

harvesting capabilities. Moreover, the vocal nature of this harvesting technique can be 

particularly helpful in cases where individual mobility is restricted. These results and 

features demonstrate that vocal fold vibration-energy harvesting can be a highly efficient 

and powerful tool for diverse energy applications including wearable communication 

devices, displays, as well as biomedical implants such as pacemakers, deep-brain 

stimulators, or cochlear implants.   
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Figure 5.17: Summary of the literature survey on biomechanical energy harvesting devices 

in terms of output power vs frequency. The results are divided in two colors: blue requiring 

negligible physical movements and green requiring intensive physical movements. Results 

acquired in this work are marked and compared with previous literatures. 
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C h a p t e r  6  

PRACTICAL ENERGY HARVESTING FROM HUMAN VOCAL FOLDS 

As shown in the previous chapter, vibrational energy from vocal folds can be a good 

candidate as an energy harvesting source for various kinds of wearable or implantable 

devices around the human head. For practical use of human vocal vibrations, we showed 

feasible power generation from the neck, jaw, and chest areas. In addition, the location at 

the top of the head was also studied as available energy source for deep brain stimulation. 

Speaking is more general phonation process than humming, but the frequency during 

talking/reading is more spread than that from humming (Figure 4.7). Even the dominant 

frequency keeps changing while talking/reading. Therefore, it is necessary to develop an 

energy harvesting device for pragmatic use of vocal vibrations that can be utilized at a 

broadband frequency. In this chapter, we will showcase the development of piezoelectric 

energy harvesting structures for low frequency broadband applications using serpentine 

and spiral shaped designs. For spiral shaped structures, the resonance frequencies of multi-

mode vibrations were controllable by changing the design parameters of the spiral beams. 

Our comprehensive comparative studies between the serpentine and spiral structure 

showed that the spiral structure is superior for the low frequency, broadband vibration 

driven energy harvesting method. In the process, dc voltage generation of 0.61 V is 

successfully achieved using the normal sound level of book reading. 

Additionally, the location at the top of the head is studied to project a relatively large area 

of vibration hotspot to harvest energy to the medical implant around the human brain. A 

realistic head model was used to verify the applicable area on the scalp and on the skull 

and a titanium packaged energy harvesting device was applied to test this top of the head 

location. 
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6.1 Energy Harvesting for Broadband Application 

As discussed in Chapter 4, the frequency range of vocal vibrations from reading or 

speaking is more spread out than that from humming. As shown in Figure 4.8, frequencies 

of males and females while humming range between 100-160 Hz and 180-220 Hz, 

respectively. Consequently, broad resonance frequency of energy harvesting devices can 

achieve more efficient power generation leading to practical and viable applications of 

vocal vibrations. 

Recently developed energy harvesting techniques from human body motions (vocal 

vibrations, footsteps, breathing motion) as described in Section 4.1, or the environment 

such as wind or tidal current (Lee et al., 2012; Wang, 2014; Li et al., 2014) function at a 

very low frequency (1-100 Hz). However, state-of-the-art efficient energy harvesters 

operate at frequencies above 1000 Hz. In this regard, developing energy harvesting 

methods efficient in low frequencies for broadband applications is an urgent issue in energy 

harvesting field. 

Unfortunately, energy harvesters with low resonant frequencies typically suffer from 

reduced electrical power generation. Harvesting low-frequency energy using an 

electromagnetic generator may be ineffective, since the output power decays greatly with 

the decrease of frequency (Kulah and Najafi, 2004) and the output voltage is rather low at 

low frequencies.  

In case of piezoelectric energy harvesting, the resonance frequency (fr) of the beam is 

dependent on the beam length, l, beam width, b, and beam thickness, d, as shown in 

Equation 6.1. For a general rectangular beam, d needs to be low because increasingly 

compliant springs are required to resonate at lower frequencies for a given area. This 

requires additional space to permit large mechanical displacements as well as mechanical 

stops to prevent breakage during accelerations. The extra space lowers the system’s power 

density and form factor. In addition, the reduced volume of the piezoelectric material due 

to thin thickness can decrease the total mechanical energy input, Wt, due to the relation 
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between Wt and the volume, vol, as described in Equation 6.2 where sD
33 is elastic 

compliance and T is stress on element. 

    

                                                                𝑓𝑟 ∝ √
𝑏𝑑3

𝑙4
  (6.1) 

                                                           𝑊𝑡 =
(𝑣𝑜𝑙)(𝑠33

𝐷 𝑇2)

2
  (6.2) 

To achieve low resonance frequency in a limited area, several types of structures have been 

reported such as S-shaped structures (Liu et al., 2012), cymbal structures (Kim et al., 2004), 

and 3D configurations (Hu et al., 2013; Tao et al., 2014).  However, they were still not 

appropriate for broadband applications since they only focused on the first mode vibration 

to lower the resonance frequency. We have designed serpentine and spiral shaped 

piezoelectric structures whose vibration modes are controllable with changing the design 

parameters to get broadband frequency response at target resonance frequency. Afterwards, 

we have fabricated and characterized the structures to confirm the design and simulation. 

Firstly, the serpentine structure and spiral structure were designed using FEM simulations 

(COMSOL Multiphysics) to determine the design parameters. Then, the designed beams 

were fabricated using laser cutting methods. Using these fabricated beams, the mode 

shapes were obtained from laser Doppler vibrometer (LDV) and frequency responses were 

measured by mechanical energy-to-electrical energy measurement setup. Lastly, the 

electrical powers from both types of beams were measured while humming and reading. 

Figure 6.1a shows the basic configuration of the serpentine beam and the spiral beam that 

we applied to the energy harvesting structure. Bents in the serpentine beam were at right 

angles to use as a large piezoelectric area as possible in a given space. The Archimedean 

spiral which has consistent beam width was chosen as a spiral structure. The length of the 

spiral beam, Lser can simply be expressed as Equation 6.3 where b is the outer width, g is 
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the gap between bents and nser is the number of bents. At a given outer dimension, g is 

determined by nser. The radius of the spiral beam can be described by the Equation 6.4 

where a is the initial radius, bg is the spiral radius growth rate, which is determined by the 

number of turns nspi, and r and θ are in polar coordinates. The effective length of the spiral 

beam, Lspi, can be obtained from Equation 6.5 where θ1 is the initial angle and θ2 is the 

final angle. Figure 6.5b shows the calculated spiral length by changing a and nspi at a given 

outer dimension (12×12 mm2). To get the target resonance frequency at a given outer 

dimension, every parameter in the serpentine beam is kept fixed, while two parameters 

including a and nspi are changed for the spiral beam. 

                                               𝐿𝑠𝑒𝑟 = (𝑛𝑠𝑒𝑟 + 1)𝑏 + 𝑛𝑠𝑒𝑟𝑔     (6.3) 

                                                           𝑟 = 𝑎 + 𝑏𝑔𝜃  (6.4) 

                                                𝐿𝑠𝑝𝑖 = ∫ √𝑟2 + (
𝑑𝑟

𝑑𝜃
)
2𝜃2

𝜃1
𝑑𝜃  (6.5) 

The modal analysis of the rectangular, serpentine, and spiral structures obtained from 

simulations are summarized in Table 6.2. The top left end of each beam is kept constant 

and the color map expresses the amount of displacement. The serpentine and spiral beams 

were designed to get the first mode resonance frequency at 200 Hz, and the rectangular 

beam has the same dimension as the other two. The nser of the serpentine beam was 6 turns, 

and a and nspi of the spiral beam were 1.5 mm and 5 turns, respectively. The first mode 

shape is bending towards the beam end, while the second mode is torsional bending. The 

third mode is second harmonic bending at the beam end. The frequency response using this 

serpentine beam is shown in Figure 6.6. Although 200 Hz of resonance frequency can be 

achieved in a given area (12×12 mm2), other resonance modes exist away from the 

frequency range of vocal vibrations. 

The spiral beam was further studied to examine the change of resonance frequencies with 

respect to the inner radius and number of turns. Further modal analyses of spiral beams 
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with a different initial radius with a fixed number of turns of 5 are shown in Table 6.3. 

While the effective beam length increases by increasing the initial radius, the resonance 

frequency at each mode decreases. 

The first to the sixth resonance frequencies were calculated using COMSOL Multiphysics 

at each initial radius (0.5 - 4.0 mm) and number of turns (2 - 8) as shown in Figure 6.3. The 

resonance frequencies are plotted with respect to the initial radius (nspi fixed) and number 

of turns (a fixed). In both cases, the resonance frequencies are inversely proportional to the 

initial radius and number of turns. Also, it should be noted that the resonance frequency 

decreases to a larger slope as the modal order increases, so the resonance frequency of each 

mode gets closer at a large initial radius or number of turns. 

 

Figure 6.1: Determining the parameters of the serpentine and spiral beams. (a) Basic 

configuration of serpentine beam and spiral beam used for the energy harvesting structure. 

(b) Calculated spiral length by changing initial radius and number of turns of the spiral at 

a given outer dimension (12×12 mm2). 
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Table 6.1: The 1st, 2nd and 3rd mode shapes of the rectangular, serpentine, and spiral 

beams. 

 

 

Figure 6.2: Frequency response of serpentine beam from simulation. This beam has 6 bents 

and the beam width is 1.5 mm. 
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Table 6.2: Mode shapes (modal order is 1 to 8) of spiral beams with a different initial 

radius of spiral when the number of turns is fixed at 5. 

 

 

 

Figure 6.3: Calculated resonance frequencies at 1st to 6th mode with (a) the initial radius 

changed (number of turns fixed) and (b) different numbers of turns (initial radius fixed). 
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6.2 Characterization of the Broadband Applicable Piezoelectric Beams 

Serpentine and spiral shaped structures were patterned by the laser cutting process. To 

minimize the crack issue at the cutting edge and the loss of area by the cutting process, the 

ultra-short pulse (8 psec) laser micromachining (Ekspla’s Nd:YAG) was chosen for 

minimal heat effect (Perry et al., 1999; Emmelmanna et al., 2011). The wavelength of the 

laser source was 355 nm, process power was 4 W, and the repetition rate was 400 kHz. The 

cutting setup (Figure 6.4a) also had suction tools to remove the debris duringthe  cutting 

process. The cutting edges of the PZT materials are shown in Figure 6.4b and c. The PZT 

edge cut by CO2 laser has a larger burning area and more debris than those caused by an 

ultra-short pulse laser. The width of area lost by cutting line was 100 µm (CO2 laser) and 

10 µm (ultra-short pulse laser). 

The processed serpentine and spiral piezoelectric beams are shown in Figure 6.5. To have 

the first resonance frequency to be at around 200 Hz, the serpentine beam has 6 number of 

bents and 1.5 mm of serpentine width, while the serpentine beams were fabricated in five 

different shapes by changing the initial radius and the number of turns of the spiral.  

 

 

Figure 6.4: Laser cutting process to pattern the serpentine and spiral beams. (a) laser cutting 

setup including laser head, stage, and suction tool. Laser cutting edge of the piezoelectric 

material using (a) CO2 laser and (b) ultra-short pulse laser. 
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Figure 6.5: Fabricated serpentine beam and spiral beams. Spiral beams were made in five 

different shapes by varying the inner radius and the number of turns. 

The modal analysis was done by a laser Doppler vibrometer (LDV) using the fabricated 

serpentine and spiral beams with our collaborator in TU Clausthal, Germany (Kowarsch et 

al., 2017). The LDV measurement setup is shown in Figure 6.6. Polytec OFV-2500-2 

decoder was used to measure out-of-plane vibrations on the beams. A dichroitic mirror 

(DM) superimposed the vibrometer beam with the microscope optics and the Köhler 

illumination was provided by a LED. 66 equidistant measurement points were chosen along 

the beams to enable the high resolution of the 1st to even higher deflection modes in x-

direction and y-direction. Additionally, for each measurement point, a complex averaging 

of 25 measurements was conducted to reduce noise. For the reconstruction of the deflection 

shapes, we synchronously display the sequential measurements in MATLAB. 
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Figure 6.6: Laser Doppler vibrometer setup for modal analysis of piezoelectric beams. (a) 

Schematic of the of scanning confocal vibrometer microscope. (b) Photo of the whole 

measurement setup. 

 

Figure 6.7: Modal analyses of the serpentine beam using simulation and LDV 

measurements. 
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Figure 6.8: Modal analyses of the spiral beam using simulation and LDV measurements. 

The summarized modal analyses using COMSOL simulations and LDV measurements are 

shown in Figure 6.7 and Figure 6.8. Among five different shapes, the spiral beam which 

has 5 turns and 1.5 mm of initial radius was used for the LDV measurement. Figure 6.7 

shows the mode shapes of the serpentine beams up to the third modal order from simulation 

and LDV measurements. The similar mode analyses of the spiral beam are also shown in 

Figure 6.8. From both cases of serpentine beam and spiral beam, the mode shapes of first, 

second, and third modal order are the same as expected from the FEM simulation.  
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Figure 6.9: Frequency analyses of spiral beams by changing the initial radius (a) and 

number of turns (b). The resonance frequencies at 1st - 3rd modal orders are summarized 

in (c) and (d). 

Frequency analysis is carried out by measuring generated voltage from the beams with a 

frequency modulated vibration. The subject beam was connected to a vibration generator 

(3B Scientific’s U56001) and the function generator (Agilent 33120A) that provide AC 

signals to vibration generator controlled by LabVIEW. The LabVIEW varied the frequency 

of the function generator and collected generated voltage data simultaneously. 

The frequency responses from spiral beams by varying the initial radius, a, and number of 

turns, n, are shown in Figure 6.13a, b. The summarized results of resonance frequencies 

are also shown in Figure 6.13c, d. The resonance frequencies of the first three modal orders 

are 2-29 % away from the simulation results. As expected, the resonance frequencies are 

inversely proportional to the initial radius and number of turns. As the frequency gap 
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between each mode got smaller, the amplitude obtained over the first three modes 

increased. When we calculated the sum of amplitudes at 100-600 Hz, the sum increased by 

39.5% and 52.5% respectively according to changes of a and n. This can be considered an 

advantage in utilizing spread vocal vibrations during reading or speaking. 

The frequency response of the serpentine beam was also analyzed as shown in Figure 6.10. 

The fundamental resonance frequency was at 216 Hz which was 8% away from the 

expected resonance frequency from simulation. The amplitude decreased rapidly after the 

second mode since the frequencies of the higher modal order are relatively far away 

compared to these from the spiral beams.  

To characterize the power generation from the serpentine and spiral beams, the AC output 

powers from the beams were measured as the load connected to the beam was swept from 

1 kΩ to 100 kΩ. Among five shapes of spiral beams, the spiral beam which had 6 turns and 

1.5 mm of initial radius was used for the power measurements from the load test (Figure 

6.11). The 10 kΩ of load resister allowed the maximum output power from both types of 

the beams. 

With this load found, then, the output signals from humming and reading were measured 

using both beams. Figure 6.12 shows time- and frequency-domain transient output signals 

from the spiral beam and the serpentine beam while humming and reading. Since voltage 

output from the serpentine beam at the first mode resonance was larger than that from 

serpentine beam, humming at 200 Hz which is near the first resonances of the beams 

enables larger voltage output from the serpentine beam. However, larger voltage outputs 

from reading came out from the spiral beam because close-gathered higher modes 

contributed to achieve higher voltage generation in a broadband region from reading.  
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Figure 6.10: Frequency analysis of serpentine beam. 

 

Figure 6.11: Optimum load test by measuring output power with each load from the spiral 

beam (a) and the serpentine beam (b). 

Then, 4-stacked spiral energy harvesters with an AC/DC converter consisting of a voltage 

double rectifier successfully produced 0.61 VDC with 70-dB of reading while EH packaging 

with 4-stacked serpentine beams only generated 0.23 VDC (Figure 6.13). Based on the 

results so far, the spiral beams can have advantages in broadband applications to achieve 

low fundamental resonance frequency at a limited area. 
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Figure 6.12: Time- and frequency-domain transient output signal from the spiral beam (n 

= 6, a = 1.5 mm) while humming and reading.  

 

Figure 6.13: DC output voltages from the 4-stacked spiral beams and serpentine beams 

when the participant read a book. The voltage double rectifier was used to convert AC to 

DC signal. 
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6.3 Energy Harvesting from the Top of the Human Head 

The top of the head serves up to 20% of energy compared to the 100% energy from the 

larynx. This area is a promising energy source for implantable devices near the brain or the 

parietal bone such as deep brain stimulation (Kuncel and Grill, 2004), bone-anchored 

hearing devices (Tjellström et al., 1995), and retinal implants (Zrenner, 2002). In case of 

deep brain stimulation, the battery is placed inside the chest to avoid the periodic open head 

surgery, but it still needs the additional surgery to replace the battery. In addition, the long 

electrical wiring from the battery to the electrode causes a reliability issue because it may 

break when people move. If the energy harvesting source can be implanted underneath the 

scalp, it could be a good option to enable self-powered implantable devices around the 

brain. 

A real head model was purchased from SynDaver Labs and used to compare the vibrations 

distribution on the scalp and underneath the scalp (Figure 6.3a). This human torso model 

includes a realistic oral cavity with a hard and soft palate, tongue, uvula, epiglottis and 

vocal cords. The acceleration on both human participant and real head model were 

measured first, then acceleration on the skull was also measured to compare the location 

on the scalp and underneath the scalp.  

The air tube was connected to the airway of the head model through the fast switching 

solenoid valve. The valve (Festo’s MHE4-MS1H-3/2G-1/4) was powered by a DC power 

supply (Mastech’s HY3005F-3) and controlled by a programmed microcontroller board 

(Arduino Uno) to allow the air flow to come out at a frequency of 100 Hz (Figure 6.3b). 

The frequency modulated air flow generated mechanical vibrations throughout the head by 

flowing through the artificial airway, vocal folds, oral cavity, and brain. 
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Figure 6.14: Human head model for measurement of artificial vocal vibrations. (a) The 

human head model includes vocal folds and airways to allow air flow throughout the head. 

(b) Frequency modulated air flow was produced using the fast switching solenoid valve 

and the controller board. 

The acceleration measurement results and their hotspots color mapping using 3D MEMS 

accelerometer are shown in Figure 6.4. The hotspots were mapped out three times on the 

human head, scalp and skull of the head model. The scalp of the head model was peeled 

off after the measurement on the scalp. Color mapping data was normalized to the strongest 

point of each measurement. From all three cases, vibration distribution seems similar. The 

location around the center of the head has the strongest vibration. The vibration becomes 

weaker as the point moves away from the center of the head.  
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Figure 6.15: Vibration mapping from real human head (a), scalp of the head model (b), and 

skull of the head model (c). 

At the center point, the acceleration from the skull (0.136 m/s2) was increased by 46% than 

that from the scalp (0.093 m/s2). The approximate calculation of the vibration hotspot area 

at the top of the head is shown in Table 6.1. The hotspot area on the skull which has more 

energy than 75% or 50% of vibration energy from the center point was more than twice the 

area on the scalp of the head model. 

 

Table 6.3: Area of vibration hotspot (> 75%, > 50% of the center point) at the location of 

the top of the head. 

Location Scalp Skull 

Subject Human Head Head Model Head Model 

> 75% 27 cm2 20 cm2 36 cm2 

> 50% 68 cm2 57 cm2 117 cm2 
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From these results from a realistic human model, it was shown that the top of the head 

location provides large a vibration hotspot area. In addition, existence of stronger and larger 

vibration hotspots underneath the scalp could provide a promising energy harvesting source 

for implantable devices around the brain such as deep brain stimulation. 

 

Figure 6.16: Titanium (Ti) casing to firmly stack two spiral beams. (a) Photo images of the 

stacked spiral beams and Ti casing. (b) Frequency analyses of the top and bottom device 

before and after packaging. 

To generate power at the top of the head using vocal vibrations, we made metal packaging 

for two spiral beams to be stacked inside. The two-stacked spiral beams and the metal 

casing to package the beams are shown in Figure 6.16a. Titanium (Ti) was chosen as metal 

casing material, since Ti is a biocompatible material and it is already used in neurosurgery. 

Ti sheet (thickness: 4.75 mm) was milled using milling machine (Bantam Tools’ Othermill) 

to make the Ti casing. The stacked beams were firmly attached to the bottom of the casing, 
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and the Al cover and the hole through which the electrical lines pass were sealed with 

epoxy. The frequency responses from the top and bottom devices were analyzed twice 

before and after the Ti casing (Figure 6.16b). The change in the first and higher modes is 

not significant. The reliability of this package was confirmed by measuring the weight for 

30 days. The package was kept in water for 30 days and only dried when weighed. The 

increase of the weight was only 1.1 mg for 30 days of test period (initial weight: 2.6410 g).  

 

Figure 6.17: Power generation at the top of the head using the two-stacked spiral beams. 

(a) Synchronization of two-stacked energy harvesters. Transient signals when humming 

starts (b) and 50 msec after humming starts (c). (d) AC transient output signal from 2-

stacked energy harvesting package using spiral beams. (e) AC transient output signal after 

LC resonant full wave rectifier. 

Synchronization between the two devices was observed in Figure 6.17a-c. When humming 

began, the time phase difference was large (Figure 6.17b), but the difference got smaller 

and the two beams vibrated in phase within 50 msec (Figure 6.17c). Then, the output power 

of this package was evaluated at the top of the head with 75-dB of humming. As shown in 
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Figure 6.17e, the DC voltage output was 0.37 VDC using AC/DC converter (LC resonant 

full wave rectifier) and 10 µF as a load. This amount of DC voltage is enough for the cold 

start of boost charger. 

6.4 Conclusion 

For real-time energy harvesting to utilize vocal vibrations not only from humming but also 

from reading and speaking, the broadband applicable energy harvesting using a spiral 

structure was designed and characterized. By changing the dimensional parameters of the 

spiral structure, the frequency gap between resonance modes was able to be closer. This 

closer resonance frequency gap led to higher voltage amplitudes generated over broadband. 

Using 4-stacked spiral beams and an AC/DC converter, 0.61 VDC was successfully 

obtained. 

In addition, the hotspot location at the top of the head was tested for practical applications 

near the brain such as deep brain stimulation. Using a realistic head model, the available 

areas for the energy harvester to generate power were expected (57-68 cm2 on scalp; ~117 

cm2 on skull). The conceptual flexible energy harvesting package as the example shown in 

Figure 6.18 can be implanted underneath the scalp (above the skull) to harvest energy for 

the brain implants in a close distance. 

 

Figure 6.18: Concept image of energy harvesting package to be implanted on the skull of 

human head. 
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