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ABSTRACT 

Plasmonic structures permit the focusing of light into volumes far below the diffraction 

limit. In particular Metal-Insulator-Metal (MIM) gap plasmonic structures can reach 

nanoscale energy confinement if the gap is sufficiently miniaturized. Under classical 

models, gap plasmonics can achieve indefinite confinement, down to the single atom level. 

However, these classical models fail to consider quantum effects that occur as the 

confinement approaches the single nanometer level. Recently, it has been demonstrated that 

Landau Damping, the absorption of highly confined plasmonic energy, is the dominant 

effect in highly confined MIM devices until the tunneling regime is reached. However, the 

effects of Landau Damping on MIM gap devices are poorly understood. In this work, we 

analyze the effects of Landau Damping on MIM gap devices, specifically MIM 

waveguides and cavities. It is found that in waveguides, Landau Damping does not limit 

the confinement but does limit the maximum propagation length achievable. Moreover, in 

cavity structures, Landau Damping causes the Quality Factor to drop significantly as the 

gap is further miniaturized. In terms of quantum optics applications, this causes the 

radiative spontaneous emission enhancement to actually decrease as the gap is miniaturized 

sufficiently and a saturation of the coupling-loss ratio limiting the achievement of strong 

coupling . These effects will limit the possibilities for high performance nanogap plasmonic 

devices.  
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NOMENCLATURE 

Plasmonics: The study of the interaction of metals with light, and more specifically the 

coupling of light to the electrons in the metal. The field both explains the optical properties 

of metals helps to enable novel devices.  

Surface Plasmon Polariton (SPP): An electromagnetic mode that exists at the interface 

between metals and dielectrics due to the coupling of incident photons and electrons in the 

metal. Unlike the electromagnetic modes of dielectric materials whose confinement is limited 

by the diffraction limit, SPPs can achieve energy confinement far below the free space 

wavelength of light. The confinement in an individual SPP mode is dependent on the 

materials and the incident free space wavelength.  

SPP Gap Mode: A special type of SPP mode formed when two metals are separated by a 

dielectric gap. The individual SPPs on both interfaces interfere, forming a joint gap mode. 

Due to the interference, the confinement of the energy is localized to the gap and thus is 

dependent on the size of the gap.  

Metal-Insulator-Metal (MIM): Specific type of gap mode formed through having two 

metals separated by an inner dielectric layer. The inner dielectric layer is referred to as the 

gap. This arrangement allows the increase of confinement through miniaturizing the gap. 

Under classical models, the confinement can be increased arbitrarily through further 

miniaturizing the gap. The primary goal of this work is to look at the practical limits to this 

confinement due to the onset of Landau Damping 
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Local / Classical Model: Refers to the use of classical electromagnetic expressions to 

describe plasmonic structures. Landau Damping is not taken into account in this model. 

Landau Damping: Refers to in general the absorption of high wavevector waves in a 

plasma. In the context of plasmonic, refers to the absorption of highly confined 

electromagnetic energy in SPP modes due to the high wavevector enabling electronic 

transitions that were previously forbidden due to a momentum mismatch.  

Intrinsic Damping: The damping in a material due to the material properties and in absence 

of Landau Damping. 

Landau Damping Induced Damping: The damping induced by the onset of Landau 

Damping at high energy confinements. This summed with the intrinsic damping gives the 

total damping under the Landau Damping model.  

Optical Waveguide: Structure that guides electromagnetic waves, restricting the expansion 

of the mode and thus the loss. They are integral to routing electromagnetic energy in highly 

compact settings, such as in integrated optical interconnects in integrated circuits. 

Waveguide Mode: A solution to the electromagnetic differential equation describing a 

waveguide. It describes the distribution of the electromagnetic fields that will propagate in 

the waveguide.  In this work, the mode always refers to the fundamental mode of the 

waveguide, meaning the one with no variation parallel to the metal-gap interface.  

Wavenumber: The propagation constant of a waveguiding mode. The real part corresponds 

with the spatial frequency and the imaginary part with the losses.  

Mode Length: A figure of merit for the confinement in a waveguide. It can be interpreted 

as the average length which the energy is spread over in a waveguide. It is calculated through 

dividing the total energy transferred in the waveguide by the energy at the center point.  
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Propagation Length: The length in the propagation direction over which the energy in the 

waveguide drops to 1/e of its initial value.  

Optical Cavity: An electromagnetic resonator which stores optical energy through the 

interference of multiple reflection forming standing waves. Through placing matter in the 

cavity, the interaction between light and matter can be altered which has important 

applications in future quantum technology. The strength of the light and matter interaction 

in the cavity can be calculated through the cavity’s mode volume and quality factor.  

Cavity Mode: A solution to the electromagnetic differential equations governing the 

behavior of the cavity. It represents a distribution of the electromagnetic field which 

oscillates in time but whose distribution remains constant.  

Constant-Gap MIM Cavity: The MIM cavity structure considered in this work consisting 

of two rectangular cuboid metals sandwiching an inner dielectric layer. The gap between the 

metals is constant throughout the structure.  

Mode Volume: Parameter of a cavity mode which describes the confinement of energy in 

the cavity. It represents the average volume which the energy of the cavity is spread over for 

a given mode.  

Quality Factor: Parameter of a cavity mode which describes the energy loss in the system. 

It is proportional to the number of oscillation cycles that the cavity can undergo before all 

energy in the system is lost. 

Purcell Factor: Figure of merit indicating the strength of the light-matter interaction for an 

emitter placed in the cavity. It corresponds with the increase in the spontaneous emission rate 

of an emitter placed in the cavity due to the Purcell effect. 
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Purcell Effect: The enhancement of an emitter’s spontaneous emission rate through 

changing its optical environment. In the context of this work, the rate is changed through 

putting the emitter in an MIM optical cavity. 

Single Photon Source: Device which deterministically emits a single photon on demand. It 

is a crucial building block for quantum telecommunication technology. 

Radiative Spontaneous Emission Enhancement: The increase in the Spontaneous 

Emission of an emitter radiated from the cavity. It differs from the Purcell Factor because it 

refers to only the increase in photons radiated from the cavity, ignoring photons absorbed by 

the cavity. It is important for creating bright single-photon sources. 

Strong Coupling: Regime in which the emitter and its cavity are significantly coupled such 

that their modes are perturbed, forming hybrid modes. Qualitatively, this occurs when a 

photon emitted by the emitter in the cavity is more likely to be reabsorbed by the emitter than 

emitted from the cavity. Strongly coupled cavity-emitter systems have important applications 

in quantum information processing as well as creating novel light-matter devices. 

Coupling-Loss Ratio: Parameter quantifying the ratio between the coupling rate between a 

cavity and emitter, and the total loss in the system. Increasing this parameter sufficiently 

allows the system to enter the strong coupling regime.  
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ABBREVIATIONS 

MIM – Metal Insulator Metal 

t – Gap thickness in MIM structure 

𝐿𝑝𝑟𝑜𝑝- Propagation length of a waveguide mode 

M – Mode length of a waveguide mode 

L – Length of the cavity  

Q – Quality factor of a mode of a cavity 

V – Mode Volume of a mode of the cavity  

F – Purcell factor of a mode of the cavity 

rSE – Radiative Spontaneous Emission Enhancement  
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C h a p t e r  1  

INTRODUCTION TO PLASMONICS AND LANDAU DAMPING 

 Using fabricated nanostructures to control light on the nanoscale has opened 

entirely new possibilities in a variety of fields including on-chip electro-optic integration 

and optical interconnects for computation [1-3], single molecule biosensing for 

integrated medical implant technology [4-7], and empowering future quantum 

information technology [8-10]. This combination of nanotechnology with photonics, 

called nanophotonics, utilizes the ability to confine light to the nanoscale to achieve these 

exotic phenomena.  The achievable confinement with traditional dielectric nanophotonic 

technology, however, is limited to the micron or hundreds of nanometer scale due to the 

diffraction of electromagnetic waves. Nevertheless, this limitation can be overcome with 

plasmonic structures.  

 Plasmonics, a cornerstone of nanophotonics, combine metals with traditional 

dielectrics to bypass the diffraction limit [11]. Specifically, a novel surface 

electromagnetic mode called a Surface Plasmon Polariton (SPP) is created at the interface 

of the metal and dielectric due to the coupling of photons and collective oscillation of 

electrons in the metal [11]. This mode is localized to the interface, permitting 

confinement far below the dielectric diffraction limit at the expense of large losses due 

to the optical ohmic losses in metals. 

 Individual SPP modes have confinements dependent on a variety of design 

parameters such as the metal and dielectric used, and the freespace wavelength. However, 
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by combining two SPPs in proximity in a gap configuration, the two modes will interfere 

allowing much smaller confinements to be achieved [11]. In particular Metal-Insulator-

Metal (MIM) structures, consisting of two metals separated by an inner dielectric layer, 

can achieve extremely high energy confinements with a large portion of the energy 

localized to the insulator layer [12, 13]. Moreover, the confinement is geometrically 

dependent on the insulator gap size, allowing the gap to be shrunk for further 

confinement.  

  Due to the confinement achievable with plasmonics, a variety of  novel 

applications have been developed including devices for confined on-chip computation 

[14-16], single molecule sensing with Surface Enhanced Raman Scattering (SERS) [17-

19], planar optical metasurfaces [20-22], and single-photon sources [23-25] to name a 

few. In particular, integrated MIM waveguides and utilizing MIM cavities to increase 

light-matter coupling for quantum information applications have a large potential. They 

will now be discussed in detail to provide context for our work.  

Applications of MIM Waveguides: 

 Electromagnetic waveguides guide the transmission of light from one point to 

another in a confined area. These devices have many uses, but one particularly impactful 

one is their integration into on-chip communications technology. Recently, dielectric 

waveguides have been integrated into electrical chips to provide intrachip and chip to 

chip communication at potentially faster rates while utilizing less energy than electrical 

interconnects [26]. However, when using dielectric materials, the size of the waveguide 

is limited by the diffraction limit. This limit, on the order of hundreds of nanometers, is 

far larger than the tens of nanometer size of modern-day transistors. There is a clear size 
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mismatch between the two that limits both the maximum density of optical interconnect 

technology and the ability to replace electrical interconnects. However, this limit can be 

overcome using plasmonic technology. The MIM mode can be used to construct 

waveguides unaffected by the diffraction limit. These MIM waveguides can be 

miniaturized far below the diffraction limit, and thus can be used to make compact on 

chip waveguides to potentially replace nanoscale electrical interconnects. 

 Beyond applications in on chip interconnects, the high confinement achievable 

with MIM waveguides permit new possibilities previously unreachable with dielectric 

material. For example, the confinement allows MIM waveguides to focus light and probe 

individual molecules. Already MIM waveguide structures have been integrated into 

scanning probes to permit single molecule spectroscopy [27, 28] and these devices can 

potentially be fabricated on chip to enhance single molecule detection for medical 

technology [14].  

Applications of MIM Cavities for Quantum Plasmonics 

 Efficiently coupling of photons and atomic quantum emitter is a cornerstone for 

the realization of quantum information technology [24, 29]. Due to the comparatively 

small size of an atom as compared to the wavelength of light, the interaction between 

light and atomic emitters is normally weak. However, by integrating these emitters into 

electromagnetic cavities, which store electromagnetic energy within their confined 

volume, the light-matter interaction can be increased, and unique behavior can be 

attained. MIM cavities, formed by the truncation of an MIM waveguide, allow the 

confinement of energy far below that of dielectric cavities. Thus they can achieve large 
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cavity-emitter couplings [29]. Due to this, researchers have begun investigating these 

MIM cavities for quantum applications, forming the field of quantum plasmonics.  

 Two different regimes emerge depending on the strength of the cavity-emitter 

coupling. The first is the weak coupling regime. In this regime the spontaneous emission 

rate of the quantum emitter is increased through the Purcell Effect where the magnitude 

of the enhancement is dependent on the confinement of the cavity and its losses [29, 30]. 

This is particularly interesting for the creation of ultrabright single photon sources. Single 

photon sources, which deterministically emit a single photon a time, are a key building 

block of future quantum telecommunications technology [8]. However, the emission rate 

of quantum emitters, which act as single photon sources, is far too low to achieve 

practical communications technology. By coupling it to a cavity, this rate can be 

increased through the Purcell Effect. Plasmonic cavities are well suited for this, as 

theoretical work has shown they can achieve a two order of magnitude improvement over 

dielectric cavities due to their confinement [31]. Already there have been impressive 

experimental demonstrations of large rate enhancements, although larger enhancements 

are still desired [23, 25]. This is currently one of the primary objectives in quantum 

plasmonics [32].  

  If the cavity-emitter coupling is increased sufficiently, then the strong coupling 

regime is entered. In this regime, the coupling is sufficiently large such that the modes of 

the cavity and the emitter combine, permitting the control of matter using light for 

quantum information applications [33]. It has been difficult to achieve strong coupling 

with plasmonic nanocavities due to the large losses offsetting the high confinement [29]. 

Despite this, there has recently been demonstrations of single molecule strong coupling 
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at room temperature using an MIM cavity platform [34-37]. This platform can be further 

developed for both room-temperature quantum information applications as well as 

empowering novel light-matter interaction-based devices. 

 

 Quantum Mechanical Effects in Extreme Confinement Plasmonics 

 As seen above, there is a plethora of opportunities for MIM plasmonic devices 

all of which are enhanced by the extreme confinement achievable with the platform. 

Moreover, the performance of these devices is linked to the achievable confinement. 

However, the limits of confinement in these structures are poorly understood. Under the 

classical model, the energy of an MIM structure can be confined indefinitely through 

further miniaturization of the gap, allowing energy to be confined to atomic and 

subatomic volumes. However, this model fails to consider quantum mechanical effects 

that occur once the confinement approaches the nanometer level that may potentially 

limit performance [38]. These effects will be briefly reviewed here. 

 There are two effects that occur in highly confined nanogap MIM structures, 

plasmonic tunneling and Landau Damping. Tunneling occurs when the gap is sufficiently 

small so that charge can tunnel from one metal to another, creating another loss pathway 

that effectively eliminates the gap mode [39]. A combination of theoretical modeling and 

experimental work has demonstrated that tunneling begins to occur at optical frequencies 

in gaps of around 0.5nm [39-42]. Thus, it only occurs at extreme, potentially subatomic 

levels of confinement. Since a monolayer of many of the interatomic spacers that could 

be used for the fabrication of MIM structures is larger than this, tunneling is not 

necessarily technologically limiting. 
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 At intermediate gap sizes between 0.5nm to around 10nm, Landau Damping 

occurs. In plasmonic dimers, researchers observed a shift and broadening of the 

resonances as compared to the classical models when gaps were in the above range. 

These were phenomenologically modeled as nonlocal effects. A variety of nonlocal 

phenomenologically models with increasing levels of sophistication have been proposed 

and matched to experimental results [43-45]. More recently, it was proposed that all these 

nonlocal effects can be attributed to Landau Damping [46].  In a plasmonic context, 

Landau Damping refers to the absorption of high wavevectors of plasmonic energy. 

When the spatial confinement of energy in a plasmonic structure is sufficiently high, the 

momentum of the SPP is large enough to drive previously momentum forbidden 

electronic transitions. This opens a new absorption pathway. Previous theoretical work 

demonstrated that the anomalous shift in nanosphere dimer systems could be explained 

by Landau Damping [47]. These effects occur at comparatively much larger gap sizes 

than tunneling, thus making it more significant to practical MIM technology. However, 

the effects of Landau Damping and the limits on performance it induces are poorly 

understood in many MIM systems.   

 

Our Work 

 From the above discussion, MIM devices have very useful applications due to 

their confinement. Despite this, the limits on the performance of many fundamental MIM 

gap devices due to the introduction of quantum effects is poorly understood.  

 In this work, analytical and numerical techniques are used to study the effects of 

Landau Damping in MIM waveguides and constant-gap MIM cavities with single-
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nanometer gaps. Moreover, we study how the magnitude of these effects can be changed 

through tuning of the wavelength and the dielectric constant of the inner dielectric. 

Finally, Landau Damping’s impact on the suitability of waveguides and cavities for 

different applications is considered. 

 We determine that Landau Damping can be extremely harmful to the 

performance of nanogap plasmonic devices, limiting potential applications. Specifically, 

it is discovered that in MIM waveguides, Landau Damping does not limit the 

confinement but it both decreases and limits the maximum propagation length due to the 

introduction of the addition loss mechanism. In MIM cavities, this manifests as a 

significant drop in the quality factor as the gap is decreased. This causes the radiated 

Spontaneous Emission enhancement to decrease as the gap is miniaturized and the 

coupling-loss ratio for strong coupling to stagnate. In both platforms, it was found that 

using larger wavelengths and lower dielectric constants for the inner dielectric spacer 

minimized the effects of Landau Damping. This will be vital for the design and 

applications of future integrated plasmonic waveguides and nanocavities. 

 

The thesis is organized as follows: 

Chapter 2: The background of Landau Damping and studying the performance of MIM 

waveguides is discussed. 

Chapter 3: An analysis of the effects of Landau Damping on MIM waveguides is 

presented 

Chapter 4; The background for using Landau Damping to analyze MIM cavities is 

discussed. 
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Chapter 5: The effects of Landau Damping on MIM cavities is discussed 

Chapter 6: Conclusion 
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C h a p t e r  2  

CALCULATING LANDAU DAMPING IN MIM WAVEGUIDES 

Introduction 

In this work analytical and numerical FEM simulations are used to determine the 

effects of Landau Damping in MIM plasmonic devices. Both are utilized since the 

analytical analysis provides an understanding of the reasoning behind the observed 

effects, but simulations allow for more robust results. This section discusses the 

background and methodology for integrating Landau Damping into traditional 

electromagnetic models for both the analytical and numerical calculations of the 

properties of MIM waveguides.  

The device structure considered is shown in Fig 2a. It consists of an MIM 

waveguide with two metals sandwiching an inner dielectric layer of thickness t, and 

infinite in both the propagation direction and parallel direction. Beyond allowing us to 

study MIM waveguides, the behavior of MIM cavities is also calculated from the 

parameters of this model MIM waveguides as opposed to a direct calculation (see 

Chapter 4). 

The relative permittivity of the metal was described by the Drude model [11]: 

𝜀(𝜔) =  1 −  
𝜔𝑝

2

𝜔2 + 𝑖𝛾𝑖𝑛𝑡𝑟𝜔
 (2 − 1) 

 

where 𝜔 is the incident frequency, and 𝜔𝑝 and 𝛾 are material properties referring to the 

plasma frequency and damping of the metal respectively. 
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Two metals were considered, Ag, whose parameters were taken from the 

literature [48], and an ideal metal where the intrinsic damping was set to 0. The gap, 

incident freespace wavelength, and permittivity of the inner dielectric were all varied. 

Only the fundamental mode of the waveguide is considered in this work. 

There are three main parameters for a waveguide to understand its performance. 

First there is the wavenumber, k of the waveguide which is the propagation constant of 

the mode and gives a sense of the confinement in the propagation direction. Second there 

is the propagation length 𝐿𝑝𝑟𝑜𝑝, which is defined as the length over which the plasmonic 

mode losses 1/e of its energy and corresponds with the loss of the waveguide. Finally, 

there is the mode length, M, of the mode which is the average length in the transverse 

direction which the energy is distributed over. It provides the best estimation of the 

transverse confinement of the waveguide. The exact expressions for these parameters are 

discussed below. 

Classical Local Simulations 

  To solve for the waveguiding modes, a quasi 1D cross section of the waveguide 

was taken and the mode was solved for either using analytical or FEM simulations 

(COMSOL) [49]. Since a quasi 1D cross section was used, only the fundamental mode 

of the waveguide was solved for and all the calculations are based on the fundamental 

model. Fig 2b shows an example of a calculated electric field cross-section for an MIM 

waveguide 
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  The simulation software solves the complex wavenumber 𝑘𝑚𝑜𝑑𝑒 of the 

waveguiding mode in addition to the E-field distribution. Then the different parameters 

of the mode can be calculated. The propagation length is given by [11]: 

𝐿𝑝𝑟𝑜𝑝 = (2𝐼𝑚[𝑘𝑚𝑜𝑑𝑒])−1 (2 − 2) 

  The mode length is calculated from the distribution of fields of the mode along 

the 1D cross-section using the following equation [11]. 

𝑀 =
∫ 𝑢𝑒(𝑥)𝑑𝑧

𝑢𝑒(𝑥0)
(2 − 3) 

where 𝑢𝑒(𝑥) is the energy density of the electric field at a position x and x0 is the center 

of the waveguide. The energy density of the electric field at a position x for a Drude 

model metal is given by [50]: 

𝑢𝑒(𝑥) =
𝜀0

2
(𝑛2 +

2𝜔𝑛𝜅

𝛾
) |𝑬(𝑥)|2 (2 − 4) 

where 𝑬(𝑥) is the electric field at a position x, and 𝑛, 𝜅 are the real and imaginary parts 

respectively of the index of refraction of the material at a position x. Note that although 

the above equation applies for Drude-model metals, it also applies to lossless dielectrics 

where 𝜅 = 0. Thus, in the context of the simulations in this work, it can be applied to the 

entire MIM structure. 

 Note that in this work, “local” and “classical” both refer to this model. 

Landau Damping Model 

  To account for Landau Damping, the local model needs to be extended. This can 

be done by adapting the dielectric constant of the metal from the Drude model to consider 
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the increased absorption pathways induced by Landau damping. Note that the following 

derivation in this section was adapted from ref [46] and is not unique to this work. 

  A more complete expression for the dielectric constant of a metal is given by the 

Lindhard model: 

𝜀(𝜔, 𝑘) =  𝜀𝑏 +
3𝜔𝑝

2

𝑘2𝑣𝐹
2 (1 −

𝜔

2𝑘𝑣𝐹
𝑙𝑛

𝜔 + 𝑘𝑣𝐹

𝑤 − 𝑘𝑣𝐹
) (2 − 5) 

  Let 𝑞 =
𝑘

𝑘𝐿𝐷
 where 𝑘𝐿𝐷 =  𝑣𝐹/𝑤 and corresponds with the offset vector for 

Landau Damping. Now notice that as q > 1, the imaginary part of the dielectric constant 

begins to increase leading to losses in the material and is given by: 

𝜀𝑖(𝜔, 𝑞) =  
3

2
𝜋

𝜔𝑝
2

𝜔2𝑞3
(2 − 6) 

  This increase in the losses of the material is due to Landau damping. Thus, we 

have an expression for the imaginary part of the dielectric constant due to Landau 

damping at a given wavevector. Given a distribution of the electric field, E(r), the 

longitudinal Fourier transform can be taken to determine the power density for a given 

wavevector using the following equation: 

|𝐹||(𝑘)|
2

=
|𝑭(𝑘) ∙ 𝑘|2

𝑘2
(2 − 7) 

  Where 𝑭(𝑘)is the Fourier transform of E(r). Then, by computing the overlap of 

this power density with the expression for the induced losses at a given k, the total 

imaginary part 𝜀𝑖 induced by Landau Damping of can be expressed as:  

𝜀𝑖 =  
3𝜋𝜔𝑝

2

2𝜔2
∫

𝑞−3|𝐹||(𝑞)|
2

𝑑𝑞

∫ |𝑭(𝑞)|2𝑑𝑞
∞

0

∞

1

 (2 − 8) 
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  This loss can be incorporated into the Drude model through adding an additional 

damping term 𝛾𝐿𝐷 so that the modified Drude model is given by: 

𝜀(𝜔) =  1 −  
𝜔𝑝

2

𝜔2 + 𝑖(𝛾𝑖𝑛𝑡𝑟 + 𝛾𝐿𝐷)𝜔
 (2 − 9) 

 

Since in the Drude model, 𝜀𝑖 =
𝜔𝑝

2

𝜔3  𝛾𝐿𝐷, 𝛾𝐿𝐷 can be related to the E(r)  and computed 

through the following formula: 

𝛾𝐿𝐷 =  
3𝜋𝜔

2
∫

𝑞−3|𝐹||(𝑞)|
2

𝑑𝑞

∫ |𝑭(𝑞)|2𝑑𝑞
∞

0

∞

1

(2 − 10) 

  The above analysis demonstrates two points. First, the effects of Landau 

Damping can be fully accounted for using classical electromagnetic calculations based 

on the Drude model through adding an additional damping term to the models. Second, 

the additional damping term can be calculated from the electric field distribution of a 

mode using the formulas given above. This provides both the initial expressions from 

which the analytical expressions can be derived and a numerical method that can be 

implemented using FEM simulations.  

 

Landau Damping Simulation Methodology 

  To implement the above formulas into FEM software, an iterative approach was 

used in ref [47] (Fig 2c). Initially the modes of the waveguide were calculated using just 

the intrinsic damping and not considering the Landau Damping induced damping rate. 

After this, the field profile of this mode was taken and from it the Landau Damping 
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induced damping rate, 𝛾𝐿𝐷,  was calculated using (2-10). This Landau Damping induced 

damping rate was then combined with the intrinsic damping to calculate the new 

permittivity of the metals, and the simulation was repeated. This whole cycle was 

repeated until the value for 𝛾𝐿𝐷 converged. 
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Figure 1: Diagram of Methodology. a. Diagram of the model Metal-Insulator-Metal 

waveguide considered in this work consisting of two metals sandwiching an inner 

dielectric layer with variable gap thickness. Note that the waveguide is infinite in all 

directions but the transverse (gap) direction. b. A plot of the electric field intensity 

distribution for an example fundamental mode of the MIM waveguide, showing most of 

the electric field is concentrated in the dielectric gap with no variations parallel to the 

metal-air interface. c. The methodology for simulating the behavior of the waveguide 

when considering the Landau Damping induced losses. An iterative approach is used, 

where the waveguide mode is first solved under the local model, the induced Landau 
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damping rate due to the E-field distribution is calculated, and then this additional 

damping term is incorporated back into the metal’s optical parameters and the simulation 

is repeated. This is repeated until the damping term converges. 
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C h a p t e r  3  

EFFECTS OF LANDAU DAMPING IN MIM WAVEGUIDES 

  The MIM waveguide is the most fundamental gap plasmonic device. It has 

important applications and can be used to describe more sophisticated MIM plasmonic 

devices [15, 51]. The high confinement is key to the performance of these waveguides, and 

thus it is important to understand both how Landau Damping introduced at these high 

confinements limits the performance and how the waveguides can be engineered to 

overcome these limitations. 

Analytic Description of Damping in MIM Waveguides 

  First we derive an analytical expression for the damping rate induced by Landau 

Damping in MIM waveguides at high confinements Since Landau damping does not change 

the wavenumber of the waveguiding mode (see simulations below), the relation between the 

wavenumber of the mode and the induced damping rate can be combined with the dispersion 

relation of MIM waveguides to provide an accurate analytical solution. This allows a more 

concrete understanding of the trends of Landau damping in waveguides than could be 

provided by simulation results alone. 

  It will be assumed that 𝑘𝑚𝑜𝑑𝑒 ≪   𝑘𝐿𝐷 where 𝑘𝐿𝐷 is the offset vector for Landau 

Damping as given by 𝑘𝐿𝐷 =  𝑣𝐹/𝑤. This assumption is valid because 𝑘𝐿𝐷 corresponds with 

spatial frequencies of ~0.5nm, which is well below most waveguides considered in this work.  

  The magnitude of the electric field perpendicular to the propagation direction within 

the metal can be written as [11]: 
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𝐸𝑝𝑒𝑟𝑝 = 𝐶𝑘𝑚𝑜𝑑𝑒𝑒−𝑘𝑝𝑒𝑟𝑝𝑥 (3 − 1) 

Where C is a proportionality constant, 𝑘𝑝𝑒𝑟𝑝 is the decay rate of the field in the metal, and x 

is the position in the metal where 0 is defined at the metal-dielectric interface.  

Similarly, the electric field in the direction of propagation is given by [11]: 

𝐸𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 = −𝑖𝐶𝑘𝑝𝑒𝑟𝑝𝑒−𝑘𝑝𝑒𝑟𝑝𝑥 (3 − 2) 

  The perpendicular wave vector can be related to the wavenumber of the mode 

through the wave equation [11]:  

𝑘𝑝𝑒𝑟𝑝
2 = 𝑘𝑚𝑜𝑑𝑒

2 − (
2𝜋

𝜆
)

2

𝜀𝑚 (3 − 3) 

  If we assume high confinement, then 𝑘𝑚𝑜𝑑𝑒 ≫  (
2𝜋

𝜆
)

2
𝜀𝑚 so 𝑘𝑝𝑒𝑟𝑝 ≈ 𝑘𝑚𝑜𝑑𝑒 and 

thus |𝐸𝑝𝑒𝑟𝑝| = |𝐸𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙|, simplifying the calculation  

  Next the spatial power density for either the parallel or perpendicular direction is 

calculated by taking the Fourier transform of the electric field distribution: 

𝐹(𝑘) =
𝐶𝑘𝑚𝑜𝑑𝑒

𝑘𝑚𝑜𝑑𝑒 + 𝑖𝑘
=

𝐶

1 + 𝑖
𝑘

𝑘𝑚𝑜𝑑𝑒

(3 − 4)
 

  Where k is the spatial wavevector perpendicular to the metal-dielectric interface. 

The longitudinal Fourier transform is given by (2-7): 

|𝐹||(𝑘)|
2

=
|𝑭(𝑘) ∙ 𝒌|2

𝑘2
=

|𝐹𝑝𝑒𝑟𝑝(𝑘) ∙ 𝑘|
2

+ |𝐹𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙(𝑘) ∙ 𝑘𝑚𝑜𝑑𝑒|
2

𝑘2
(3 − 5) 

  However, note our earlier assumption that 𝑘𝑚𝑜𝑑𝑒 ≪   𝑘𝐿𝐷. This ensures that when 

the integral of the longitudinal transform is taken, 𝑘𝑚𝑜𝑑𝑒 ≪   𝑘 and thus the parallel field 

contribution to the Landau Damping can be neglected to obtain: 
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|𝐹||(𝑘)|
2

= |𝐹𝑝𝑒𝑟𝑝(𝑘)|
2

(3 − 6) 

  The final step is to evaluate the two integrals in the equation for the Landau Damping 

induced damping (2-10). We assumed that 𝑘𝑚𝑜𝑑𝑒
′ ≫ 𝑘𝑚𝑜𝑑𝑒

′′   to simplify the calculation. 

These integrals will be evaluated individually: 

1

𝑘𝐿𝐷
∫ |𝑭(𝑘)|2𝑑𝑘

∞

0

=
1

𝑘𝐿𝐷
∫ (|𝐹𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙(𝑘)|

2
+ |𝐹𝑝𝑒𝑟𝑝(𝑘)|

2
) 𝑑𝑘 =

∞

0

𝐶2

𝑘𝐿𝐷
∙ 𝜋𝑘𝑚𝑜𝑑𝑒

′  

1

𝑘𝐿𝐷
∫ (

𝑘

𝑘𝐿𝐷
)

−3

|𝐹||(𝑘)|
2

𝑑𝑘
∞

𝑘𝐿𝐷

= 𝑘𝐿𝐷
2 ∫ 𝑘−3

𝐶2

1 + (
𝑘

𝑘𝑚𝑜𝑑𝑒
′ )

2 𝑑𝑘
∞

𝑘𝐿𝐷

≈ 𝑘𝐿𝐷
2 𝐶2 ∫ 𝑘−3

1

(
𝑘

𝑘𝑚𝑜𝑑𝑒
′ )

2 𝑑𝑘
∞

𝑘𝐿𝐷

= 𝑘𝐿𝐷
2 𝐶2𝑘𝑚𝑜𝑑𝑒

2 ∫ 𝑘−5𝑑𝑘
∞

𝑘𝐿𝐷

=
𝐶2(𝑘𝑚𝑜𝑑𝑒

′ )2

4𝑘𝐿𝐷
2  (3 − 7) 

  The simplification in the second integral is due to the earlier assumption that 

𝑘𝑚𝑜𝑑𝑒 ≪   𝑘𝐿𝐷. Finally, evaluating the induced damping: 

𝛾𝐿𝐷 =  
3𝜋𝜔

2
∫

𝑞−3|𝐹||(𝑞)|
2

𝑑𝑞

∫ |𝑭(𝑞)|2𝑑𝑞
∞

0

∞

1

=
3

8
𝑣𝑓𝑘𝑚𝑜𝑑𝑒

′ (3 − 8) 

 

  Thus at large confinements, the induced damping in MIM waveguides is 

proportional to the real part of the wavenumber of the mode. The wavevector for an MIM 

mode is given by [52]: 

𝑘𝑚𝑜𝑑𝑒 =
2𝜋

𝜆
√𝜀𝑔 + 2𝜁[1 + √1 +

𝜀𝑔 − 𝜀𝑚

𝜁
(3 − 9) 
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  Where 𝜀𝑔 is the dielectric permittivity of the gap, 𝜀𝑚 is the permittivity of the 

metal, and  

𝜁 = (
2𝜋𝜀𝑚

𝜆𝜀𝑔
𝑡)

−2

(3 − 10) 

  Thus, by iteratively solving both equations, 𝛾𝐿𝐷 can be numerically estimated. 

However, since additional damping does not significantly change the real wavenumber of an 

MIM mode, 𝑘𝑚𝑜𝑑𝑒 can be computed using the intrinsic damping constants and then used to 

calculate 𝛾𝐿𝐷 without significantly sacrificing accuracy, permitting the above to give an 

accurate analytical solution. 

 

Performance of MIM Waveguides with Decreasing Gap Sizes 

  Having now an expression for the induced damping, FEM simulations under the 

classical and LD models (see section 2), were performed to numerically verify the analytical 

expression and understand its ramifications. The fundamental mode of an infinite Ag-air-Ag 

waveguide at an incident free space wavelength of 850nm was considered while the thickness 

of the gap, t, was varied.  

  Both the simulated induced damping rate due to Landau damping as well as the 

value calculated using the analytical equations are displayed in Fig 1a.  The analytical 

expression shows excellent agreement with the FEM simulations, particularly at small gaps 

where the high confinement assumption is most valid.  

We observe that the surface damping increases as the gap is miniaturized, due to the 

increased energy confinement. At a gap of 1nm, the LD induced damping rate has exceeded 

the intrinsic damping of Ag of ~3·1013 , becoming the dominant loss mechanism.  
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Empirically, the Landau damping rate is roughly proportional to the inverse of the 

gap length. As an MIM waveguide is further miniaturized, the analytical expression for its 

wavenumber given by 3-9 approaches a simpler form [51]: 

𝑘𝑚𝑜𝑑𝑒 ≈  −
2𝜀𝑔

𝜀𝑚𝑡
(3 − 11) 

  Since the induced damping is proportional to the real part of the wavenumber, we 

observe that  

𝛾𝐿𝐷 ≈  𝑅𝑒 (−
3

4

𝑣𝑓𝜀𝑔

𝜀𝑚𝑡
) ≈ −

3

4

𝑣𝑓𝜀𝑔

𝜀𝑚
′ 𝑡

∝
1

𝑡
(3 − 12) 

Thus explaining the empirically observed ∝
1

𝑡
 dependence of the damping rate at small gap 

sizes.  

Having verified the accuracy of the analytical expression and FEM simulations, the 

simulations were used to understand the effects Landau Damping caused through computing 

the different properties of the waveguide mode. The dispersion relationship of the mode 

shows no change due to the inclusion of Landau Damping as opposed to the local model (Fig 

1b). Mathematically, this is since the additional damping term primarily causes a change in 

the imaginary part of the dielectric constant. Thus, the real part of the mode, the wavevector, 

is left unchanged. Therefore the analytical expression for the Landau Damping model need 

not be solved iteratively to obtain to high accuracy. 

The propagation length in the Landau Damping model, on the other hand, is 

considerably smaller than under the classical models particularly at small gaps (Fig 1c). At 

1nm, the propagation length is half of what is predicted by the classical model. To understand 

the ramifications of this, an MIM waveguide with an ideal metal with no intrinsic loss was 
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considered. Under classical models this lossless waveguide would have an infinite 

propagation length, providing a solution for plasmonics’ biggest issue. Under the Landau 

Damping model, however, loss is introduced due to Landau Damping and the propagation 

length is below a micron at a gap size of 1nm. The fact that an ideal, lossless model still has 

such a low propagation length due to Landau Damping indicates that Landau Damping caps 

the maximum achievable propagation length. Moreover, at small gap sizes, the maximum 

achievable performance is not significantly better than can what be currently achieved with 

Ag. 

Finally, the effect Landau Damping has on energy confinement was considered 

through calculation of the mode length of the waveguide (Fig 1d). No change is seen between 

the mode length calculated for both the classical models and Landau Damping models. Thus, 

in these MIM waveguides, Landau Damping does not limit the maximum achievable 

confinement. This fact had previously been proposed in ref [47], where it was expressed that 

due to the boundary conditions of an MIM waveguide, the mode would be unable to spread 

out unlike what was seen in other systems. This also can be explained by the lack of change 

in the wavevector. At high confinements, (see Analytical sections), 𝑘𝑝𝑒𝑟𝑝 ≈ 𝑘𝑚𝑜𝑑𝑒 

where 𝑘𝑝𝑒𝑟𝑝 is the rate of exponential decay of the electric field. A lack of change in the 

wavevector between the two models indicates no significant change in 𝑘𝑝𝑒𝑟𝑝, corresponding 

with a lack of change in the achieved confinement. Thus, Landau Damping does not limit 

the confinement and the only limit to the confinement achievable with MIM waveguides is 

due to the onset of tunneling at ~0.5nm (see Appendix).  

 



 

 

23 

Performance of MIM Waveguides with Different Wavelengths 

  Beyond understanding how Landau Damping affects the performance of MIM 

waveguides, it is crucial to understand how the magnitude of these effects can be altered 

through playing with different parameters of the waveguide, specifically the incident 

wavelength and the inner dielectric used. 

   The magnitude of Landau Damping versus changes in the incident freespace 

wavelength was simulated where the gap was fixed to 1nm (Figure 2). We observe that the 

induced damping rate is increased as the wavelength is decreased and again showing good 

agreement between the FEM simulated damping rates and the analytical expressions (Figure 

2a). In the expression for 𝛾𝐿𝐷, the only wavelength dependent term is 𝑘𝑚𝑜𝑑𝑒. It was also 

observed that the wavenumber does increase with smaller wavelength (Figure 2b).  Thus, the 

increase in 𝑘𝑚𝑜𝑑𝑒 as the wavelength increases leads to additional confinement within the 

metal and that is fully responsible for the higher damping.  

  The propagation length versus wavelength was calculated (Figure 2c). The 

propagation length is significantly longer for larger wavelengths due to the much smaller 

induced damping rate. For example, at a gap of 1nm and wavelength of 1550nm, the 

propagation length was 2 microns for the ideal case, four times the propagation length at a 

wavelength of 850nm. This provides one avenue for minimizing the impact of Landau 

Damping, as at longer wavelengths even at a gap of 1nm, the propagation length is still 

comparatively large. 

  The wavenumber and mode length were calculated, and no significant change is 

seen through the introduction of Landau Damping as before (Figure 2b/d). The mode length 
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shows a slight increase at smaller wavelengths as has been observed in the literature, but 

the magnitude of the change is comparatively small. 

 

Performance of MIM waveguides with Varying Inner Dielectric Constant 

  The effect of the dielectric constant of the inner dielectric on the performance of 

MIM waveguides was examined. The value of the dielectric constant was varied with the 

gap fixed at 1nm and the wavelength fixed at 850nm (Figure 3).  

  The LD induced damping rate is shown in Figure 3a. An increase in the dielectric 

constant leads to a significantly larger damping rate. The increase in the dielectric constant 

leads to a larger wavevector of the mode which causes higher confinement of the electric 

field within the metal and thus a higher induced damping rate (Figure 2b). Looking at the 

analytical expressions, the wavevector of the waveguide mode at high confinements 

𝑘𝑚𝑜𝑑𝑒 ∝ 𝜀𝑔 (3-11), and thus  𝛾𝐿𝐷 ∝ 𝜀𝑔, explaining the quasi-linear relationship with the 

inner dielectric constant observed in both the wavenumber and induced damping rate. Note 

that at high values of the dielectric constant, the analytical induced damping term and the 

simulated damping diverge due to the extremely high wavenumber of the mode challenging 

the 𝑘𝑚𝑜𝑑𝑒 ≪   𝑘𝐿𝐷 assumption made in the analytic derivation. 

The magnitude of this change in the damping rate is quite large as the inner dielectric 

increases due to this linear relationship. For example, at a gap of 1nm, the induced damping 

rate is an order of magnitude higher for an inner dielectric constant of 12 then it is for an 1nm 

gap with an inner dielectric constant of 1. These dielectric constants roughly corresponds to 

the constants of a high-index semiconductor such as GaAs and air, respectively. 
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  We examined the effect of this increased Landau Damping on the propagation 

length (Figure 3b). The increased Landau Damping at larger dielectric constants leads to a 

significant drop in the propagation length. At a gap of 1nm and an inner dielectric constant 

of 16, the propagation length is around 2nm, a tiny amount over an order of magnitude lower 

than what the classical model predicts and two orders of magnitude lower than what is 

achieved at a dielectric constant of 1. This demonstrates how detrimental Landau Damping 

can be to the operation of waveguides, particularly high index waveguides. 

 

Discussion 

 From the above results, Landau Damping’s biggest effect is that it severely limits the 

maximum achievable propagation length. Moreover, for small gap sizes this maximum 

propagation length is not much better than what can be achieved using low loss bulk metals 

such as Ag, indicating no potential significant improvement from a materials perspective 

 This point is particularly impactful for using MIM waveguides in integrated photonic 

applications to compactly send information at high densities. For intrachip and inter-chip 

communication, the information must be sent over a non-negligible distance larger than the 

1 micron achievable at a gap of 1nm. This provides a practical cap on the minimum usable 

gap size that is dependent on the minimum propagation length required. 

 However, the results also demonstrate that through choose the design wavelength as 

well as inner dielectric intelligently, the effects of Landau Damping can be minimized, 

maximizing the optimal propagation length. For example, the simulations assumed a 

wavelength in the 850nm fiber optic band, but if larger wavelengths are used such as the C-
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band (1550nm) the optimal propagation length can be increased by almost an order of 

magnitude (see Appendix for additional simulations at 1550nm). Moreover, the inner 

dielectric should be kept as low as possible to minimize the induced damping rate. Through 

engineering of these properties, plasmonic MIM waveguides can find a use for compact, 

short distance information transfer and then potentially integrated with dielectric waveguides 

for longer distance information transfer. Finally, 2D materials do not display this same out 

of plane Landau Damping and thus could be investigated as a possible avenue for 

overcoming this limit [53]. 

 The onset of Landau Damping does not provide a limit on the achievable 

confinement, however. Thus, the gap can be miniaturized down to 0.5nm, at which the loss 

due to tunneling becomes dominantly lossy (see Appendix). This ensures bulk metal MIM 

waveguides can focus light down to the single atomic layer, the ultimate limits of 

confinement. Not only does this permit high-density integrated waveguides as discussed 

above, it also permits the focusing of light to probe individual molecules for sensing 

applications or fundamental study. Thus, the fundamental benefit of plasmonics, the extreme 

confinement achievable, is not limited by Landau Damping. 
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Figure 1. Properties of the MIM waveguide versus gap thickness. a. The induced Landau 

damping rate simulated for an Ag and an ideal metal waveguide as a function of gap thickness 

(curves are overlapped) as well as calculated using the analytic formula. The damping rate 

significantly increases as the gap is miniaturized and exceeds the intrinsic damping of Ag at 

1nm. There is good agreement between the analytic and simulated values, particularly at 

small gap values. b. The wavenumber of the mode versus gap thickness for Ag under the 

classical local model and the Landau Damping model, showing no significant difference. c. 

Propagation length versus gap size for Ag under the classical and Landau Damping models, 

as well as an ideal metal with no intrinsic damping under the Landau damping model. Landau 

Damping causes a significant decrease in the propagation length of the waveguide, and 
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severely limits the maximum achievable propagation length as seen from the ideal metal’s 

propagation length. (d) The mode length of the waveguide, showing no change between the 

Landau Damping and classical models. This indicates that Landau Damping does not limit 

the achievable confinement in the waveguide.  
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Figure 2: Properties of the MIM waveguide versus incident wavelength. a. The Landau 

Damping induced damping rate versus wavelength, showing an increased damping rate as 

the wavelength is shortened. b. Wavenumber versus wavelength, again showing no change 

between the classical and Landau Damping models and following the same trend at small 

wavelengths as seen in the induced damping rate. c. The propagation length versus 

wavelength, showing a considerable improvement at longer wavelengths due to lower 

induced Landau Damping rate. This provides one possible avenue to limit the effects of 

Landau Damping. d. The mode length versus wavelength, again showing no change between 

the classical and Landau Damping models and showing a comparatively small dependence 

on the wavelength. 
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Figure 3: Properties of the MIM waveguide versus inner dielectric constant. a. The 

Landau Damping induced damping rate versus inner dielectric constant, showing a large, 

quasi-linear increase as the dielectric constant increases. The analytical and simulation values 

diverge at large dielectric constant values due to the violation of the assumptions the 

analytical solution was based on. b. Wavevector versus inner dielectric constant, showing a 

linear increase which explains the large increase in the induced damping rate. c. The 

propagation length versus inner dielectric constant, showing a significant decrease and a sub-

10nm propagation length at high dielectric constants. d. The mode length of the simulated 

waveguides, showing only slight changes as the dielectric constant is varied. 
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C h a p t e r  4  

BACKGROUND ON METAL-INSULATOR-METAL CAVITIES 

 When a waveguide is truncated, the light is reflected at the truncated end, causing 

light to be trapped in the device and thus forming a cavity. This localizes the energy to the 

center of the structure, enhancing the interaction between light and matter and enabling many 

quantum optics applications [29]. Plasmonics, due to their high confinement, are particularly 

suitable for this application.  

 In this section, the background methodology for analyzing constant-gap MIM 

plasmonic cavities is discussed. The two key cavity parameters, the quality factor and mode 

volume will be calculated. Moreover, these cavities’ suitability for two potential quantum 

optics applications: single photon sources and achieving strong coupling between light and 

matter, will be analyzed. Due to the large number of variables and assumptions in this 

section, analytical expressions will not be rigorously derived and instead will just be used to 

explain trends through proportionality arguments. In addition, the focus will be on trends as 

opposed to absolute values to ensure the generality of the results. This chapter goes over the 

methodology and the actual results are in the next chapter. 

 Rectangular cuboid constant-gap MIM cavities were considered (Fig 1). They consist 

of two finite length metals sandwiching an inner dielectric gap layer, which is just the 

waveguide considered previously but now truncated in the two infinite dimensions. The gap 

is constant across the cavity, allowing it to easily be described by the underlying waveguiding 

mode. The width was fixed to 350nm, a varying gap was used, and finally the length was set 
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such that the first order resonance in the length direction occurred at the chosen 

wavelength. This was done by setting the length to:  

 

𝐿 =  
𝜋

𝑅𝑒(𝑘(𝑡))
(4 − 1) 

Where L is the length of the cavity, and k is the wavenumber of the MIM mode with gap size 

t . This is done so that the first resonance will still occur at the design wavelength regardless 

of the gap size or other parameters used. Thus, only the first resonance is ever considered in 

this work. In addition, it should be noted that the only modes of concern are those that are 

confined in the small gap layer which vary only along the length direction.  

 There are two primary parameters for cavities, the mode volume (V) and the 

quality factor (Q). V, similar to the mode length for waveguides, is the average volume 

which the energy is spread out over, quantifying the confinement. A smaller V indicates 

smaller confinement, and thus better coupling to emitters for quantum optics 

applications. Q quantifies the loss of the cavity, specifically referring to the ratio between 

the power stored in the resonator and the power lost per oscillation.  A higher Q indicates 

the energy is stored in the cavity longer, allowing for better coupling to an embedded 

emitter and thus superior for quantum optics applications.  A dimensionless figure of 

merit, the Purcell factor can be defined that is proportional to the Q/V of the cavity. The 

Purcell Factor refers to the proportion of spontaneous emission increase for an emitter 

placed within the cavity due to the Purcell Effect. 
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 Q and V were calculated based on the mode parameters of their waveguiding cross 

section. This is done by considering the cavity as a traditional Fabry Perot cavity whose 

propagation characteristics are defined by the modes of the underlying waveguide. This 

allows us to apply the intuition built up in the previous chapter to this new domain. 

 The Q of the primary resonance of an MIM cavity can be related to its cross-sectional 

waveguiding parameters through the following equation [51]: 

 

𝑄 =
2𝜋𝑛𝑔𝐿

𝜆 (1 − √𝑅𝑒
−

𝐿
2𝐿𝑝)

 (4 − 2)
 

 

Where 𝑛𝑔 is the group velocity and is given by 𝑛𝑔 =  
2𝜋

𝜆∙𝑘(𝐺)
−  𝜆

𝜕

𝜕𝜆
(

2𝜋

𝜆∙𝑘(𝐺)
),  𝜆  is the free 

space wavelength, 𝐿𝑝 is the propagation length, and R is the reflectivity at the air-MIM 

interface. The value of R was computed using FDTD simulations (see Appendix). The phase 

change of this reflection was assumed to be negligible. To evaluate the derivative for the 

group velocity, the analytical expression for the wavevector modes of the MIM cavity was 

used (see eq 3-9). For the dielectric of the metal, the Drude model was used as before with 

the damping of the metal set to its intrinsic value under the classical model and set to the sum 

of the intrinsic and the Landau Damping induced damping rate calculated in the previous 

section under the Landau Damping model.  

 The mode volume was estimated geometrically. It was assumed that the mode will 

exist only in the gap between the two metals and will be negligible on the other surfaces and 

in free space. This assumption is valid due to the high confinement in the plasmonic 
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structures as well as the loss being dominated by materials losses as opposed to radiative 

losses. Within the gap, the field was assumed to be approximately uniform in the width 

direction. This is valid since the comparatively large width of the structure will prevent 

significant variations in that direction. Along its length the field was assumed to vary as ∝

 sin(
𝜋

𝐿
𝑧), due to the fact we are analyzing the primary mode of the cavity. In the transverse 

height direction, the energy is assumed to be spread out over the mode length previously 

calculated for the MIM waveguide. These assumptions result in the following expression for 

the mode volume that can be computed just using the geometry and the mode length: 

𝑉 =
∫ 𝑢𝑒(𝑟)

𝑉
𝑑𝑟

𝑢𝑒(𝑟𝑐)
=

∫ ∫ ∫ 𝑢1𝐷,𝑒(𝑦)  sin2 (
𝜋
𝐿

𝑧) 𝑑𝑧𝑑𝑥𝑑𝑦
𝑊

0

𝐿

0

𝑢1𝐷,𝑒(𝑦0)

= ∫  sin2 (
𝜋

𝐿
𝑧) 𝑑𝑧 ∫ 𝑑𝑥 ∫

𝑢1𝐷,𝑒(𝑦)

𝑢1𝐷,𝑒(𝑦0)

𝑊

0

𝐿

0

𝑑𝑦 =
𝐿

2
· 𝑊 · 𝑀(𝐺)  

(4 − 3) 

Where L and W are the length and the width of the cavity, and M is the mode length for the 

waveguide mode for the given gap thickness as calculated in the previous section. 

 From Q and V, the Purcell factor for the MIM cavities was computed using the 

following formula to provide a figure of merit for the cavity[29]: 

𝐹 =
3

4𝜋2
(

𝜆

√𝜀𝑔

)

3
𝑄

𝑉
 (4 − 4) 

 Finally, two possible uses for these MIM cavity were evaluated: enhancing the 

radiative spontaneous emission rates and achieving strong coupling between light and matter. 

The former is important for the realization of high rate single photon sources, one of the 
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biggest opportunities for quantum plasmonics [24]. The second is vital for a variety of 

quantum optics applications.  

 To understand the rate enhancement, the radiative spontaneous emission rate was 

considered. This differs from the Purcell Factor given above because the Purcell factor gives 

the total spontaneous emission (SE) rate and does not consider the proportion of the photons 

radiated out of the cavity versus absorbed by the metal. This radiated SE rate enhancement 

is given by the following equation 

[31]

𝛾𝑆𝐸

𝛾0
= 𝐹

𝛾𝑟𝑎𝑑

𝛾𝑡𝑜𝑡𝑎𝑙
 (4 − 5) 

where 
𝛾𝑆𝐸

𝛾0
 is the radiated SE enhancement, 𝛾𝑟𝑎𝑑 is the radiation rate, and 𝛾𝑡𝑜𝑡𝑎𝑙 is the total 

decay rate. The radiative rate can be written as [31] 

𝛾𝑟𝑎𝑑 ∝ 𝜔
𝑉

𝜆
 (4 − 6) 

Thus, the resulting expression for the emission enhancement is: 

𝛾𝑆𝐸

𝛾0
∝ 𝐹

𝑉

𝜆

𝜔

𝛾𝑡𝑜𝑡𝑎𝑙
= 𝐹

𝑉

𝜆
𝑄 ∝ 𝑄2 (4 − 7) 

 The other possible application for plasmonic MIM nanocavities is to enter the strong 

coupling regime for light-matter interactions. This occurs when a photon is in the cavity long 

enough it is most likely to be reabsorbed, which can be written as [29]: 

2𝑔

𝜅
= 𝑄√𝑓

𝜆3

𝑉
√

𝑟𝑒

2𝜋𝜆
> 1 (4 − 8) 
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Where f is the oscillator strength and re is the classical radius of the electron, and 
2𝑔

𝜅
 is 

proportional to the coupling of the cavity-emitter system divided by the optical losses in the 

cavity. In this work, in order to avoid any assumptions about the emitter, the terms related to 

the emitter were neglected and only the following expression was considered: 

𝐶

𝐿
=

𝑄𝜆

√𝑉
(4 − 9) 

 

Which we will call the coupling-loss ratio If the cavity parameters increase this expression, 

the cavity will be closer to entering the strong coupling regime regardless of what emitter is 

placed within it. It provides a tool to analyze how different parameters of cavity bring the 

cavity closer to entering the strong coupling regime both under classical models, and when 

Landau Damping is considered. 
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Figure 1: Diagram of constant-gap MIM Cavity. Diagram of the MIM cavity 

considered in this work consisting of two finite pieces of metal with length L and width 

of 350nm sandwiching an inner dielectric gap with constant thickness t. L was set such 

that the primary resonance occurred at the given gap size and design wavelength. Note 

that only the primary resonance in the gap along L was considered.  
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C h a p t e r  5  

EFFECTS OF LANDAU DAMPING IN MIM CAVITIES 

 In this section, the properties of the constant-gap MIM cavities formed through the 

truncation of an MIM waveguide are analyzed. Through use of both the Landau Damping 

and classical models, the effects of Landau Damping on performance under extreme 

confinement is analyzed.  

 It is found that Landau Damping does not affect the mode volume of these structures, 

but it does significant decrease the quality factor as the gap is shrunk. This large effect on Q 

leads to a variety of consequences for quantum optics applications through both decreasing 

the achievable radiated spontaneous emission rate and limiting the achievability of the strong 

coupling regime. 

 

Performance of MIM Cavities with Decreasing Gap Sizes:  

 To get a sense of how Landau Damping impacts the performance of these MIM 

cavities, the cavity parameters for an MIM cavity consisting of an ideal metal under the 

Landau Damping model and Ag under both the classical and Landau models, were calculated 

using FEM simulations with an inner dielectric constant of 8 and a varying gap thickness t.  

(Figure 2). The varying gap size is particularly important for plasmonic cavity applications 

as decreasing the gap significantly increases the confinement. Under the classical model this 

would improve the performance and thus the gap could be decreased indefinitely until the 

desired performance is achieved. 
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 The calculated quality factors show markedly different behavior between the 

classical and Landau Damping models (Figure 2a). Beyond the significant drop in Q when 

Landau Damping is taken into account, Q also continues to drop at small gaps unlike the 

constant Q seen in the classical simulations. Under the classical model, Q only changes 

slightly as it asymptomatically approaches its minimum value. This behavior was previously 

reported for similar MIM cavities in Ref [51] and is due to the cancelling out of the additional 

loss due to increased confinement and  slower group velocity leading to the asymptotic quasi 

static limit. Moreover, this limit can be computed entirely from the material parameters 

through the following equation: 

𝑄𝑄𝑢𝑎𝑠𝑖−𝑆𝑡𝑎𝑡𝑖𝑐 = 𝜔

𝜕𝜀𝑚
′

𝜕𝜔
2𝜀𝑚

′′
(5 − 1) 

Where 𝜔 is the frequency of the mode, and 𝜀𝑚
′  and 𝜀𝑚

′′  are the real and imaginary parts 

respectively of the dielectric constant of the metal at the given wavelength. For the material 

parameters used in this work, the quasi-static Q is computed to be 74, which matches the 

classical simulations extremely well.  

 However, in the Landau Damping model, the Q decreases as the gap is further 

miniaturized far below the quasi-static limit, showing no asymptotic behavior. Due to Landau 

Damping, the loss in the material is a function of the confinement. Thus, as the gap is 

miniaturized, the confinement increases, and the loss increases with it. This leads to an 

increasing value for 𝜀𝑚
′′  as the Landau Damping damping rate increases, causing the value 

for 𝑄𝑄𝑢𝑎𝑠𝑖−𝑆𝑡𝑎𝑡𝑖𝑐 to drop as the gap decreases as opposed to remaining constant.  

 To quantify this, under the Drude model we can write that: 
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𝜀𝑚
′′ =  

𝜔𝑝
2

𝜔3
𝛾𝐿𝐷 (5 − 2)  

Where we assumed an ideal metal so that the only contribution to damping is the Landau 

Damping term. Then combining this with the expression for the Landau damping induced 

damping rate at high confinements and the expression for the quasi static quality factor (see 

eq 3-12 and 5-2) 

𝑄𝑄𝑢𝑎𝑠𝑖−𝑆𝑡𝑎𝑡𝑖𝑐,𝐿𝐷 =
2𝜔4

3𝜔𝑝
2

(
𝜕𝜀𝑚

′

𝜕𝜔
) ∙

𝜀𝑚
′ 𝑡

𝑣𝑓𝜀𝑔
∝ 𝑡 (5 − 3) 

 Thus, at high confinements we conclude that Landau Damping causes the quality 

factor of plasmonic cavities to linearly decrease as the gap is decreased. This is not due the 

fact that the quasi-static limit is being violated. Instead since the material parameters are gap 

dependent the quasi-static limit becomes gap dependent as well, causing 𝑄 ∝ 𝑡. This 

significant drop in Q will have important ramifications for the possible quantum optics 

applications of these devices. Note that at larger gap sizes, the Q deviates from linearity due 

to the non-unity reflection at the MIM-air interface. 

 The mode volume was calculated (Fig 1b). No significant change is seen between the 

classical and Landau Damping models. This is since Landau Damping does not affect the 

mode length, as seen in the previous section. However, V drops nonlinearly as the gap is 

decreased. To quantitatively understand the nonlinear drop in V versus gap, note that using 

equation 3-11, at small gaps the length of the cavity is given by: 

𝐿 =  
𝜋

𝑅𝑒(𝑘(𝐺))
= −

𝜋𝑡𝜀𝑚
′

2𝜀𝑔
∝ 𝑡 (5 − 4) 
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 Empirically, M ∝ 𝑡 as seen in the previous chapter. Thus, since W is constant, we 

conclude that V= 𝑀 ∙ 𝐿 =∝ 𝑡2, so there is a quadratic drop in V as t decreases. This will 

have important ramifications for the behavior of the cavity for quantum optics applications.  

 The Purcell Factor was computed, giving an overall figure of merit for the cavity (Fig 

1c). The ideal and Ag cavities under the LD model show an order of magnitude drop in the 

Purcell Factor as compared to the classical models, due to the Landau Damping induced 

losses. However, the Purcell Factor still increases as the gap is decreased. This is since V ∝

𝑡2 but Q ∝ 𝑡, so F∝
𝑄

𝑉
∝

1

𝑡
, so the nonlinear improvement in the mode volume outweighs the 

linear decrease in the quality factor.  Thus, the main effect of Landau Damping on the Purcell 

Factor is a non-negligible drop, but the Purcell Factor will still increase as the gap is 

miniaturized up until tunneling sets in. 

 Very interesting behavior is seen for the two MIM cavity applications examined. First 

we study the possible spontaneous emission rate (rSE) enhancement in the MIM cavity (Fig 

1d). The enhancement under the Landau Damping model is significantly lower than the 

enhancement under the classical model for Ag. This is naturally expected due to the higher 

losses introduced by Landau Damping. Moreover, whereas under the classical model, the 

achievable rate plateaus as the gap is miniaturized, the introduction of Landau Damping 

causes a significant decrease in rSE  as the gap is further miniaturized even for non-ideal 

metals.  

 To explain this, notice that at high confinements, decreasing V no longer increases 

rSE due to the increase in Purcell Factor being cancelled out by a corresponding decrease in 

the rate of radiation. Thus, rSE fully depends on Q. Under the classical models, Q 
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asymptotically approaches the quasi-static limit, leading to little change and thus the rSE 

rate remains constant as the gap is miniaturized. However, with Landau Damping, the 

increasing damping with increased confinement causes Q to significantly decrease as the gap 

is miniaturized, leading to a decreased rSE rate. More quantitatively, it is known that for an 

ideal metal when Landau Damping is considered, Q ∝ 𝑡, and  
𝛾𝑆𝐸

𝛾0
∝ 𝑄2 ∝ 𝑡2, explaining the 

large decrease in rSE as the gap decreases. Previously researchers proposed to shrink the gap 

of plasmonic cavities to maximize the SE rate enhancement, but the analysis given here 

demonstrates that this will actually decrease performance below a certain gap size. Moreover, 

this further limits the maximum SE enhancement below previously computed limits. 

 The behavior of the coupling-loss ratio as the gap was miniaturized was then 

examined (Fig 1e). Beyond the drop in ratio between the classical and Landau Damping 

models expected due to the extra loss involved which on its own makes strong coupling more 

difficult to achieve, extremely different trends are observed. Traditionally, it has been 

thought that further miniaturization of plasmonic cavities would lead to higher confinements, 

eventually allowing the entering of the strong coupling regime. This interpretation is 

supported by the results under the classical model, which shows an extremely large increase 

in the coupling-loss ratio as the gap is miniaturized of over an order of magnitude. Under the 

Landau Damping model however, the ideal metal does not show a significant improvement 

as the gap is miniaturized below 10nm. The Ag cavity under the Landau Damping model 

does show some improvement, but much smaller than what is achieved under the classical 

model. This is an extreme consequence of Landau Damping. 
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 Under the classical model, V decreases but Q remains constant as t is decreased, 

leading to an increase in the cavity-loss ratio that is seen in the calculations. When Landau 

Damping is taken into account, however, 𝑄 ∝ 𝑡 and 𝑉 ∝ 𝑡2, so both decrease. However, the 

strong coupling coefficient ∝  
𝑄

√𝑉
 ∝ 1. Thus the increased losses as the gap is miniaturized 

cancels out the increased confinement under the Landau Damping model, explaining why 

very little increase is seen. Note that at extremely small gaps some improvement is seen due 

to the breakdown of the assumptions used to derive the analytic expressions, but even these 

changes are quite modest. Therefore, we see that in rectangular MIM cavities, decreasing the 

gap size below 10nm does not improve the emitter coupling to loss ratio due to Landau 

Damping. Moreover, through the ideal metal, Landau Damping sets an upper bound on the 

maximum achievable ratio. To achieve strong coupling in MIM rectangular waveguides, the 

other design properties of the waveguide must be changed, such as the dielectric, wavelength, 

and emitter used, as opposed to the gap size or the material.  

  

Effect of Wavelength on MIM Cavity Performance 

 The behavior of the cavity under different wavelengths was analyzed while the gap 

was fixed at 1nm (Fig 2). The Q factor shows a large qualitative change, as under the classical 

model it increases as the wavelength is shortened but under the Landau Damping model it 

slightly decreases as the wavelength is shortened (Fig 2a). Intuitively, this is since Landau 

Damping causes increased damping as the wavelength is shortened (see chapter 3) and that 

outweighs the classical increase in the quality factor leading to a net decrease. 

Mathematically, from eq 5-3, under the Landau Damping model at high confinements 𝑄 ∝
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𝜔4 (
𝜕𝜀𝑚

′

𝜕𝜔
) ∙ 𝜀𝑚

′  . From the Drude model, if the damping constant is small relative to the 

frequency then 𝜀𝑚
′  ∝ 𝜔−2 and (

𝜕𝜀𝑚
′

𝜕𝜔
) ∝ 𝜔−3 so therefore 𝑄 ∝ 𝜔4 (

𝜕𝜀𝑚
′

𝜕𝜔
) ∙ 𝜀𝑚

′ ∝ 𝜔−1, 

explaining the decrease at smaller wavelengths.  

 The mode volume, V, was calculated as before (Fig 2b). It decreases significantly as 

the wavelength is shortened due to the smaller wavelength leading to a shorter length 

necessary for the first resonance. At high confinements, 𝐿 ∝ 𝜀𝑚
′ ∝ 𝜔−2 (see equation 5-4). 

Although the mode length is also wavelength dependent, this dependence is small compared 

to the change in L and thus can be ignored, so we get that 𝑉 ∝ 𝐿 ∝ 𝜔−2. Just as before, no 

significant change is seen for V between the Landau Damping and classical models due to 

no significant change to the mode length. 

 The Purcell factor was calculated (Fig 2c). As in the gap sweep calculations, its 

behavior is dominated by the change in behavior in Q between the classical and Landau 

Damping models. First the Purcell factor is significantly lower under the Landau Damping 

model, due to the significant drop in Q from the additional damping Moreover, it is observed 

that the Purcell Factor significantly drops as the wavelength is shortened under the Landau 

Damping model, whereas it remains constant under the local models. This is due to the 

increase in induced Landau damping at smaller wavelengths, causing a drop in Q, and thus 

a lower Purcell Factor 

 Finally, the effects of this on the two possible applications were calculated. The 

radiated emission enhancement was calculated (Fig 3d). Unlike the classical model, which 

shows a constant enhancement versus wavelength, there is a significant drop in the emission 

rate as the wavelength is decreased. This is explained rSE’s dependence on Q, and thus the 
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drop in Q due to Landau Damping causes a significant drop in performance when the 

wavelength is decreased just like when the gap was decreased. Thus, like waveguides, 

decreasing the wavelength can help mitigate the effects of Landau Damping. 

 The calculated coupling-loss ratios (Fig 3e), show a small increase at larger 

wavelengths due to the decrease of the induced damping., To explain this, we note that the 

coupling-loss ratio ∝  𝜆
𝑄

√𝑉
 ∝  𝜆.. Thus using larger wavelengths is one method for achieving 

strong coupling with an MIM cavity. 

 

Effect of Inner Dielectric on MIM Cavity Performance 

 Finally, the value of the dielectric index was varied as the gap was set to 1nm to 

understand how it impacted performance. Q decreases significantly as the inner dielectric 

constant is increased (Fig 4a).  This is due to the increased damping at higher inner dielectric 

constants due to increased confinement, as described by equation 5-4 with  

𝑄𝑄𝑢𝑎𝑠𝑖−𝑆𝑡𝑎𝑡𝑖𝑐,𝐿𝐷 ∝ 𝜀𝑔
−1. 

 V also decreases sharply as the inner dielectric constant is increased (Fig 4b). This is 

since the higher index mode has a larger wavenumber, and thus a smaller length is required 

for a first order resonance. This is seen in eq 4-3 where 𝑉 ∝ 𝐿 ∝ 𝜀𝑔
−1  

 The effects of the inner dielectric on the Purcell Factor are analyzed. It is seen that 

like under classical models, the MIM cavities’ Purcell Factors decrease as the inner dielectric 

constant is increased (Fig 4c), albeit more sharply due to the increased damping at higher 

inner dielectrics effect on Q as discussed above.  
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 The radiated spontaneous emission enhancement was considered (Fig 4d). rSE 

decreases much faster under the Landau Damping model than the classical model as the 

dielectric constant increases. Since the rate  ∝ 𝑄−2 ∝ 𝜀𝑔
−2, explaining the large drop. Thus, 

the radiated spontaneous emission rate can be greatly enhanced through using a low inner 

dielectric constant  

 Finally, the coupling-loss ratio was considered (Fig 4e). Under the classical model, 

increasing the inner dielectric of the cavity allows the cavity to be further miniaturized, 

significantly improving the emitter-cavity coupling. However, under the Landau Damping 

model, it is seen that the coupling slightly decreases as the inner dielectric constant increases. 

This is due to the additional damping at higher dielectric values outweighing the gain in 

miniaturization. Mathematically, the coupling ∝  
𝑄

√𝑉
∝ 𝜀𝑔

−1/2
 under the Landau Damping 

model, showing why there is a decrease albeit a slow one. Thus, changing the inner dielectric 

of a cavity does not significantly improve the ability to achieve strong coupling. 

 Thus, except for strong coupling, the properties of MIM cavities can be improved 

through decreasing the inner dielectric constant. 

 

Discussion: 

 The introduction of Landau Damping leads to much more serious consequences for 

MIM cavities than for MIM waveguides. The additional damping significantly impacts Q, 

with detrimental ramifications. Three important aspects emerge. 1. Landau Damping 

causes a significant drop in Q as compared to the classical model, leading to orders of 

magnitude drops in the radiated spontaneous emission rates and cavity-emitter coupling 
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coefficients. 2. Like in the waveguide case, Landau Damping introduces damping into an 

ideal metal, which thus sets a maximum achievable Q, and therefore a maximum 

achievable radiated spontaneous emission enhancement and coupling-loss ratio for a given 

cavity geometry. 3. The increase of Landau Damping with decreasing gap size completely 

changes the trends of radiated spontaneous emission enhancement and coupling-loss ratio 

as the gap decreases. In both cases it prevents increasing performance through further 

miniaturization of the gap. The impact of these three points will now be discussed with 

regards to the two quantum optics applications considered.  

 Using plasmonic cavities to enhance the radiated spontaneous emission rate of 

single photon sources in one area where plasmonics is expected to excel. Plasmonic losses 

are not detrimental for this application, and it has been theoretically shown that plasmonics 

can achieve much larger rate enhancements than is possible with purely dielectric structures 

[31]. However, the above analysis demonstrates that Landau Damping severely limits this 

possibility. First the additional damping severely decreases the emission enhancement 

limiting the performance. More interestingly, Landau Damping causes the radiated 

spontaneous emission rate to actually drop as the gap is further miniaturized. This has two 

important ramifications. First, it was previously thought that miniaturizing the gap further 

should always increase the emission rate, but this analysis shows that not to be the case. 

Thus blindly fabricating smaller and smaller gaps to increase the rate enhancement will not 

work as previously thought, and these devices will require more careful engineering. 

Second it causes the maximum emission rate to be achieved at a relatively large gap size 

(above 10nm for the cavity considered in this work) with a comparatively lower 
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spontaneous emission rate, limiting the maximum achievable emission rate to below 

what was previously thought.  

 The effects of Landau Damping on achieving strong coupling with MIM cavity 

structures are equally severe. Below certain gap sizes, decreasing the gap further does not 

bring the system significantly closer to the strong coupling regime under the Landau 

Damping model. This effectively places a restriction on the minimum gap that can be used, 

below which no benefit will be gained. It also limits which systems strong coupling is 

theoretically achievable with a given emitter/plasmonic cavity combo, as unlike under 

classical models where the gap could be shrunk almost indefinitely until strong coupling is 

achieved, under the Landau Damping model no benefit is gained. Moreover, the 

introduction of losses into the ideal metal means that even improving the material will lead 

to only a marginal improvement over Ag. This decreases the possibility of many plasmonic 

systems achieving strong coupling.  

 Like in the waveguide case, the effects of Landau Damping can be minimized 

through using larger wavelengths and lower index materials for the inner dielectric. However 

as in many quantum optics applications these are not variables that are easily controlled, this 

is not as practical.  

 Finally, the limitations of the analysis performed in this section needs to be discussed. 

First it should be noted again that the simulations performed at this section and the associated 

analytical analysis assumed small gap sizes. At larger gap sizes, there is increased 

transmission at the MIM-air end interface of the cavity and that will likely overshadow the 

effects of Landau Damping. In addition, for a non-ideal metal with an intrinsic damping rate, 

at larger gap sizes when the induced damping rate is significantly smaller than the intrinsic 
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rate the cavity will behave as it would under classical models. Thus, the above analysis 

only applies to highly confined MIM cavities, with gaps less than 10nm. 

 Second, we only considered the first order resonance of a constant-gap rectangular 

cuboid cavity. Although this closely resembles a cubic cavity with the same side lengths 

formed by cubic nanoparticles, it differs in its length, as the cavities considered here had its 

length set such that the first order resonance occurred at the design wavelength. In addition, 

higher order resonances were never considered, and their behavior may differ as well. Thus, 

other cavities with similar shapes may behave slightly differently, although the general trends 

are expected to be similar.  

 Finally, completely different nanoplasmonic cavity geometries were not considered 

also are not expected to follow the same trends as the cavities in this work. In particular, the 

nanosphere on mirror cavity has been used to demonstrate strong coupling in a plasmonic 

platform and has been argued to be superior for these sorts of applications [35, 54]. However, 

early work has shown that Landau Damping causes an increase in its mode volume which is 

very different from the cavity considered in this work [47]. Thus, the results in this work 

cannot be extended to that platform and additional work is required to understand the effects 

of Landau Damping in that, as well as other, plasmonic platforms. 
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Figure 1: Parameters of MIM Cavity versus Gap. a. The Q versus the gap size, 

showing a linear decrease and a significant drop under the Landau Damping model as 

opposed to the classical model which shows minimal change. b. The mode volume versus 

gap size, showing a nonlinear decrease as the gap size is decreased and no change 

between the different models. c. The Purcell Factor versus gap size, showing an order of 
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magnitude drop between the classical and Landau Damping models, but a similar trend 

of increasing as the gap is smaller. d. The radiated spontaneous emission enhancement 

versus gap size, showing a significant drop as the gap size is decreased under the Landau 

Damping model, which is impactful for single photon sources. e. The coupling-loss ratio 

for strong coupling versus gap size, showing only a slight increase with decreasing gap 

size under the Landau Damping model, as opposed to a significant increase under 

classical models.  
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Figure 2: Parameters of MIM Cavity versus Wavelength. a. The Q versus the 

wavelength, showing an improvement as the wavelength increases under the Landau 

Damping model but the opposite under the classical model. b The mode volume versus 

wavelength, showing an increase versus wavelength but no significant difference 
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between the two models. c. The Purcell Factor versus wavelength showing an 

improvement as the wavelength increases. d. The radiated spontaneous emission rate 

enhancement versus wavelength, showing a noticeable improvement as the wavelength 

is increased under the Landau Damping model but not under the classical model. e. The 

coupling-loss ratio versus wavelength, showing a slight improvement with increasing the 

wavelength under the Landau Damping model.  
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Figure 3: Parameters of MIM Cavity versus Inner Dielectric Constant . a. The Q 

versus the inner dielectric, showing a significant decrease under the Landau Damping 

model due to the increasing induced loss.  b. The mode volume versus inner dielectric 



 

 

55 

showing no change between the Landau and classical models and showing a decrease 

with increasing dielectric constants. c. The Purcell Factor versus inner dielectric, 

showing a decrease with increasing dielectric constant that is increased due to Landau 

Damping. d. The radiated spontaneous emission enhancement versus inner dielectric, 

showing that Landau Damping causes a much larger drop in the enhancement as the inner 

dielectric constant is increased due to increased damping. e. The coupling-loss ratio 

versus inner dielectric, showing that Landau Damping causes a slight decrease in the 

coupling as the inner dielectric is increased which is not expected under the classical 

model. 
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C h a p t e r  6  

CONCLUSION 

 In this work we analyze the effects of Landau Damping in plasmonic MIM 

waveguides and cavities. In waveguides, it is found that the introduction of damping does 

not significantly affect the mode length, ensuring that it does not limit the achievable 

confinement which is thus limited by tunneling (See Appendix B). However, Landau 

Damping does significantly decrease the propagation length and limits the maximum 

achievable propagation length in a bulk metal. These results limit the potential for highly 

compact integrated MIM waveguides, but nanofocusing for molecular probing is mostly 

unaffected. 

 In MIM cavities with a constant gap thickness, the mode volume is unaffected 

whereas the quality factor is decreased due to the introduction of Landau Damping, 

Moreover, the quality factor continues to decrease as the gap is miniaturized. This causes 

the radiated spontaneous emission rate to actually decrease as the gap is decreased past a 

certain point. This limits the emission rate enhancement achievable for single photon 

sources. Moreover, the coupling-loss ratio in the cavity does not significantly increase as 

the gap is decreased anymore, limiting the achievability of strong coupling for certain 

emitter-cavity pairs. In both cases, it was found that through using a larger wavelength 

and a lower inner dielectric constant, these effects could be minimized 

 Thus, the work fully explores the effects of Landau Damping in MIM platforms. 

In terms of future work, the next important step is to experimentally verify the above 
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predictions. We have designed an experiment using self-assembled nanocube cavities 

that would provide conclusive evidence for the existence of effects discussed in this 

thesis (see Appendix A).  

 Beyond that, additional theoretical points of Landau Damping need to be 

investigated. First the above analysis should be extended to other cavity geometries, such 

the commonly used Nanoparticle on Mirror geometry which will likely have a different 

response to the introduced damping. Second, the effects of plasmonic Landau Damping 

in 2D materials still needs to be theoretically and experimentally explored to see if it 

provides an avenue for low-loss gap plasmonics. 

 Finally, device design and experimental work needs to be undertaken to engineer 

around the limitations of Landau Damping. As discovered in this work, Landau Damping 

is extremely harmful to the future of integrated plasmonic waveguides and cavity 

systems. However, through a combination of using a larger wavelength and low inner 

dielectric and clever engineering through combining plasmonic systems with dielectric 

or active systems, it can be possible to mitigate the effects of Landau Damping. This 

clever engineering combined with the knowledge developed in this thesis will be vital in 

the realization of practical nanogap plasmonic systems.   
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A p p e n d i x  A  

PROPOSED EXPERIMENTAL VERIFICATION 

 Having determined the effects of Landau Damping on MIM plasmonic devices, the 

next step is to provide experimental verification that these effects do in fact occur. Landau 

Damping has previously been fit to experimental results for other plasmonic platforms, such 

as dimer platforms, explaining the peak broadening. However, it has yet to be directly 

observed in MIM cubic structures. 

 We propose to fabricate and measure MIM cubic cavities such as those discussed in 

the last chapter. The quality factor of the resonances can be measured, and through seeing if 

the trend in quality factor better matches that of the classical model or Landau model, 

experimental evidence will be provided for Landau Damping in this platform. In addition, 

since the limiting effects on the performance on the plasmonic cavities for quantum optics 

applications as determined in the previous section are due to the trends in the quality factor 

as the cavities are miniaturized, this will provide evidence for the detrimental effects of 

Landau Damping. 

 

Experimental Design 

 We propose to use self-assembled nanocubes to form MIM cavities. To isolate the 

MIM gap modes, the transmission of the cavity will be measured either in free space or using 

an NSOM probe. Through this, the Qs of the different modes at different wavelengths and 
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different gap sizes can be analyzed to show the trends in Q due to Landau Damping. Each 

aspect will now be discussed in detail. 

 A pre-synthesized solution of Au nanocubes will be taken and dried on a glass slide. 

The drying will cause the nanocubes to agglomerate due to Van der Walls interactions. The 

density of the solution will be controlled so that large monolayers of cube aggregates will be 

formed. 

 To control the gap size of these monolayers, the surface coating of the Au nanocubes 

will be changed to change the gap size (Fig SA1a). Due to the Van der Walls interactions 

drawing the cubes together, the surface coating is what determines the gap size. Thus by 

changing the surface coating, different gaps can be fabricated. These nanocube arrays will 

be illuminated from the top. Due to their finite thickness, they act as MIM cavities similar to 

the ones considered in the previous chapter and thus showing similar trends in Q which can 

be observed. It should be noted that the proposed cavities have one major difference in that 

the cavities in the previous section had a thickness set such that the primary resonance 

occurred at the design wavelength whereas these nanocube cavities have a set thickness 

already that cannot be tuned. Thus, instead of just measuring the primary resonance, higher 

order resonances will be measured to observe the effects of Landau Damping. A picture of a 

monolayer of nanocubes formed using the above method is shown in Fig SA1b 

 To measure the Q of the modes of the cavities, a transmission measurement will be 

performed. The peaks in the transmission spectrum will correspond with different modes and 

the quality factor can then be extracted from the linewidth. To measure the transmission, 

either the freespace setup shown in Fig SA1c or an NSOM near field measurement shown in 

Fig 1d can be utilized. The advantage of the free space setup is that it is much simpler, 
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potentially possible in a standard microscope, at the cost of selectivity and signal. The 

NSOM setup is much more complex, but can gather a larger signal, and has the added 

advantage that it can measure individual dimers whereas the freespace setup can only 

measure diffraction limited spots. Thus, depending on whether the formed monolayers are at 

least as large as a diffraction limited spot will determine whether an NSOM measurement is 

necessary or if a freespace measurement will suffice. Once the transmission spectrum is 

measured, curves can be fit to it to extract the peak width and from that calculate the quality 

factors.  

 

Simulations: 

 The transmission spectrum of the MIM cavities were simulated with FDTD software 

under the classical model and Landau Damping model. This was done for two reasons: to 

see if the differences in the Q factor predicted between the classical and Landau Damping 

model are big enough to measure and to see what exactly those differences are. The second 

point in particular is important, because the cavities fabricated experimentally are different 

than those considered theoretically in the previous chapter, so it has to be verified the same 

trends exist.  

 The transmission spectrums are shown in Figure SA2a/b considering a gap size of 

2nm and a gap size of 5nm.Qualitatively, it is observed that the Landau damping curves are 

a bit broader, especially with the 2nm gap at small wavelengths.  

 To quantify this, the quality factors were calculated from the transmission spectrum 

through curve fitting (Figure SAs2c/d). From this, it is observed that there is a big 

discrepancy at 2nm at low wavelengths between the local and Landau models. At 2nm, it is 
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clearly observed that under the Landau Damping model, the quality factor decreases as the 

wavelength is decreased whereas the opposite behavior is observed under the classical 

model. Not only does this provide an experimentally observable measurement, it also is the 

same trend observed in the previous chapter verifying that many trends cross over to other 

types of cavities. Notice that under the Landau model the quality factor also drops at low 

wavelengths between a gap of 5nm and 2nm, whereas under the classical model it stays more 

or less the same, providing another observable. In addition, if Ag is used instead of Au these 

effects will be even more pronounced due to the lower intrinsic damping of Ag. 

 Thus, through measuring Au nanocube cavities with two gaps of 2nm and 5nm, the 

accuracy of the Landau Damping model and its predictions can be verified.  

  



 

 

67 

 

Figure SA1: Experimental Design . a. The fabrication of MIM cavity structures with 

variable gaps. The cavities are created through self-assembled nanocubes brought 

together through Van der Walls interactions. The gap is defined by the functionalization 

of the cube’s surface, which can be altered to achieve different gap sizes. b. A TEM 

image of Au nanocubes that can be used for this purpose. c. Diagram of a freespace 

measurement setup to measure the transmission of the MIM cavity modes. The cavity is 

illuminated by a broadband source (top) and the light is collected by a lens on the other 

side which is then fed into a spectrometer. d. Diagram of a near field transmission 
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measurement setup, which is the same as the previous one except the lens is replaced by 

a metal coated fiber for NSOM transmission measurements.  
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Figure SA2: Experimental Simulations a/b. The transmission spectrum of the MIM 

cubic cavities with gaps of 5nm (a) and 2nm (b) under the classical and Landau Damping 

models. The introduction of Landau Damping is seen to broaden the resonances shown 

by the transmission peaks. c/d. The quality factors extracted from the transmission 

spectrums at 5nm (c) and 2nm (d). It is seen that under the Landau Damping model, at 

5nm the quality factor increases with decreasing wavelength whereas at 1nm the quality 

factor decreases with decreasing wavelength due to the introduction of larger damping. 

This provides an experimentally measurable outcome that can be used to further test the 

validity of the Landau Damping theory and provide evidence for the theoretical results 

determined in this work.  
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A p p e n d i x  B  

PERFORMANCE OF MIM WAVEGUIDES IN C-BAND 

 In the results from the MIM waveguide presented in chapter 3, the wavelength was 

set to 850nm except for the wavelength sweep, corresponding with the 850-band fiber band 

for integrated photonics applications. However, it is also possible for MIM waveguides to be 

used in the C-band (1550nm). Beyond the advantage of being able to use the fiber optic 

technology developed for the C-band, it has the added advantage that the Landau Damping 

induced damping rate is smaller at 1550nm as opposed to 850nm. Thus, better optimal 

performance can be expected, and it is important to provide numerical simulation results for 

MIM waveguides in the C-Band. 

 The properties of the MIM waveguide for an incident freespace wavelength of 

1550nm was simulated as done in Chapter 3 (Fig SB1). Although qualitatively the same 

behavior is observed as with the incidence wavelength at 850nm, the induced damping rate 

was three times lower than earlier (Fig SB1a). This results in a significantly improved 

propagation length, even still being around 1 micron at a gap of 1nm in the ideal case. The 

difference in the propagation length s quite large, with the ideal metal having a propagation 

length of almost 3 microns (Fig SB1c). Thus, by operating the waveguides in the C-band, 

the effects of Landau Damping can be significantly decreasing, improving performance, and 

the data provided in this section can be used to more precisely consider possible C-band MIM 

systems. 
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Figure SB1. Properties of the MIM waveguide versus gap thickness in the C-band. a. 

The induced Landau damping rate simulated for an Ag and an ideal metal waveguide as a 

function of gap thickness (curves are overlapped) as well as calculated. The damping rate 

significantly increases as the gap is miniaturized, but the rate is significantly lower than with 

an incident wavelength of 850nm. b. The wavenumber of the mode versus gap thickness for 

Ag under the classical local model and the Landau Damping model, showing no significant 

difference. c. Propagation length versus gap size for Ag under the classical and Landau 

Damping models, as well as an ideal metal with no intrinsic damping under the Landau 

damping model. Landau Damping causes a significant decrease in the propagation length of 

the waveguide, limiting the maximum achievable propagation length albeit less than when 
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the wavelength is 850nm. (d) The mode length of the waveguide, showing no change 

between the Landau Damping and classical models. This indicates that Landau Damping 

does not limit the achievable confinement in the waveguide.  
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A p p e n d i x  C  

TUNNELING IN MIM WAVEGUIDES 

 In Chapter 3, it was found that the onset of Landau Damping did not affect the 

mode length at all, thus not having any effect on the coupling. This ensures that tunneling 

(see Introduction), is the limit for confinement in MIM waveguides. 

 To quantify this limit, the Quantum Corrected Model (QCM) was implemented 

[39]. This model takes into the account the effects of quantum tunneling through describing 

the inner dielectric material with the Drude model with plasma frequency equal to that of 

the metal and a gap dependent damping rate given by:  

𝛾 = 𝛾𝑀𝑒2𝑞𝑡 (𝐶 − 1) 

where 𝛾𝑀 is the damping rate of the metal, 𝑡 is the thickness of the gap, and 𝑞 is a fitting 

parameter where in this work 𝑞 = 1.12 ∙ 1010/𝑚. 

 The parameters of the waveguide were simulated (Fig SC1). No significant change 

is seen in the wavenumber between the two models until the gap is equal to 0.5nm (Fig 

SC1a). The propagation length also shows no significant change until a gap of 0.5nm (Fig 

SC1b). At that point, there is a significant drop in the propagation length which due to the 

exponential dependence of the damping causes the propagation length to quickly drop 

down to 1nm. Thus, it is clear that at 0.5nm, the onset of tunneling causes the creation of a 

significant alternate loss pathway that decreases the propagation to the point the waveguide 

is no longer useful. We conclude that tunneling is the absolute limit on the confinement in 

MIM waveguides, and it limits the minimum gap size to ~0.5nm. 
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Figure SC1. Effects of tunneling on MIM waveguides. a. The wavenumber of the mode 

under the classical and QCM (tunneling) models. No significant change is seen until a gap 

of 0.5nm. b. The propagation length versus gap under the two models. At 0.5nm, tunneling 

causes the propagation length to significantly decrease, ruining the propagation of the mode 

and eliminating the operation of the waveguide. Thus a minimum gap of 0.5nm due to 

tunneling is found. 
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A p p e n d i x  D  

SIMULATION OF MIM-AIR REFLECTIVITY 

 In order to calculate the quality factor (Q) of the MIM cavities formed through 

truncation of an MIM waveguide using the Fabry Perot model, the reflectivity at the MIM-

air interface must be known (see eq 4-2). At higher confinements, there is a larger 

reflectivity at the interface leading to more energy stored in the MIM structure and 

therefore a higher quality factor. Thus, to accurately calculate the quality factors, it is 

necessary to calculate the reflectivity (R).  

 It is difficult to calculate R analytically, so instead an FDTD simulation was used. 

The gap was varied while the inner dielectric value was set to 8 and R was simulated (Fig 

SD1a). It is seen that although R is always close to 1, it gets larger and closer to 1 as the 

gap is decreased. This is due to the increased confinement leading to a larger mode 

mismatch with air, and thus an increased reflectivity. The inner dielectric was also swept 

while the gap was fixed to 1nm, showing a smaller R at lower dielectric for the same reason 

(Fig SD1b). These values were integrated into eq 4-2 to compute the Qs seen in chapter 4.  
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Figure SD1. Reflectivity of air-MIM interface. a. The reflectivity of the interface with a 

fixed inner dielectric constant of 8 and a varying gap size, showing an increase at smaller 

gap sizes. b. The reflectivity versus the inner dielectric constant with the gap fixed at 1nm, 

showing an increase as the dielectric constant increases.  


