
Imprints of Massive Scalars on Primordial
Non-Gaussianities

Thesis by
Alexander Karas Ridgway

In Partial Fulfillment of the Requirements for the
Degree of

Doctor of Philosophy

CALIFORNIA INSTITUTE OF TECHNOLOGY
Pasadena, California

2019
Defended May 24, 2019



ii

© 2019

Alexander Karas Ridgway
ORCID: 0000-0002-2592-1848

All rights reserved



iii

ACKNOWLEDGEMENTS

I thank my friends, my family, my academic brother Michael McAneny, my advisor
Mark Wise, my fiancé Erin Uhlfelder, and my dog Eddie. This work was supported
by the DOE Grant DE-SC0011632



iv

ABSTRACT

In this thesis, we modify the standard single-field inflation scenario by adding
additional massive scalars to the inflationary field content. Due to the breaking of
time translational invariance by the inflaton background, the inflaton can interact
with these extra scalars through a kinetic mixing term. If these scalars have self-
interactions, then their kinetic mixings with the inflaton induce potentially large
primordial non-gaussianities in the scalar curvature fluctuations, which could be
observed in the cosmic microwave background (CMB) and large-scale structure
(LSS). We derive expressions for these non-Gaussianities in the limits the scalar
masses are much larger than or much smaller than the Hubble constant during
inflation and compute their contributions to dark matter halo correlation functions.
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C h a p t e r 1

INTRODUCTION

The Big Bang cosmology has been a remarkably successful theory. It has provided
theoretical explanations for the light element abundances, the Hubble expansion of
distant galaxies and the cosmic microwave background (CMB) which have been
confirmed experimentally to good accuracy and precision (see, for example, [1]).
Despite this success, several puzzles still reminain. In particular, the facts that the
CMB is nearly isotropic and that the universe is nearly flat can only be explained
by fine tunings of initial conditions in this paradigm. While it is indeed possible
that the initial conditions are fine tuned, the degree of the fine tuning needed to
explain the homogeneity and flatness of the observable universe would have to be
very high. It is well known that one can avoid these fine tunings by postulating a
period of inflation, i.e. exponential growth of the scale factor in the FRW metric
that occurs shortly after the big bang [2–7]. Such an era would imply that patches
of the universe that are causally disconnected today were in causal contact earlier
on in the history of the universe, thereby expalining why the universe looks almost
the same in every direction. Inflation would also drive the curvature of the universe
to a very low value. Inflation then provides dynamical explanations for what appear
to be fine tunings in a standard Big Bang cosmology.

To achieve a period of exponential growth, the universe has to be dominated by
vacuum energy density which has an equation of state w = −1. Single field slow
roll inflation provides a simple mechanism to generate such a vacuum energy density
(see [8] for a good review). In this model, a scalar field, known as the inflation, is
displaced from the minima of its potential (known as the slow roll potential). The
potential is assumed to be flat enough early on in the inflatons trajectory such that
it’s kinetic energy is much smaller than its potential energy. This potential energy
fills all space and sources the vacuum energy that drives the universes exponential
growth. As time progresses, the inflaton background gains speed as it rolls down
its potential. After around 60 efolds, the inflaton’s kinetic energy will become
comparable to its potential energy and the pressure will no longer be negative.
Inflation will then end and be followed by a period of reheating, after which the
radiation dominated era of the standard Big Bang cosmology begins.
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Aside from providing an elegant solution to the Big Bang puzzles, inflation gives
a quantum mechanical origin to the inhomogeneities we observe in the CMB and
large-scale structure (LSS) [9–13]. The inflaton is a quantummechanical fieldwhich
fluctuates around its background trajectory at every point in space. Depending on
which way the inflaton fluctuates at each location, different patches of the universe
expand different amounts, thereby generating inhomogeneities in the scalar pertur-
bations of the metric which propagate into the CMB and LSS. In the simplest single
field inflation theories, the inflaton and the scalar perturbations it sources are nearly
Gaussian.

All cosmological observations to date are consistent with the inflaton being a Gaus-
sian field that generates a nearly scale invariant Harrison-Zeldovich power spectrum
for the initial scalar curvature perturbations [14]. This power spectrum is character-
ized by two numbers, its magnitude and tilt. There are many inflationary models,
each with different degrees of freedom and interactions, that can explain these two
numbers. Of course, only one model can be correct, so it is necessary to test other
features of these models. To this end, there has been a lot of interest in primordial
non-Gaussianities. If they were observed, in say the CMB or LSS, they could be
used to constrain the inflationary field content and interactions.

A simple way to generate potentially observable non-Gaussianities is to add extra
fields, such as self-interacting massive scalars, to the inflationary field content. A
well-studied class of suchmodels is quasi-single field inflation (qsfi), which includes
a massive scalar called the isocurvaton [15]. In these models, the isocurvaton never
fulfills the role of the inflaton, i.e. the isocurvaton’s vacuum expectation value (vev)
never drives the exponential growth of the universe. Rather, its purpose is to interact
directly with the inflaton fluctuations to generate primordial non-Gaussianities. The
non-Gaussianities in quasi-single field inflation leave distinctive imprints on the
primordial non-Gaussianities, which could be tested against experiment and used to
constrain the parameters of the theory.

In this thesis, I study the primordial non-Gaussianities in quasi-single field inflation
in a few different regions of parameter space. First, I study the theory in the
regime where the isocurvaton mass is much larger than the Hubble constant during
inflation. In this case, the scalar curvature 3-point function in the squeezed limit
displays logarithmic oscillations in the ratio of the squeezed wavevector magnitude
ks and the long wave vector magnitude kl , and grows as k−3/2

s as ks → 0 in this
limit. Next, I study quasi-single field inflation in the limit where the isocurvaton
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mass is much lighter than the Hubble constant during inflation. In this regime, the
squeezed bispectrum does not display logarithmic oscillations, however it grows
almost as k−3

s as ks → 0 in the squeezed limit, which is much stronger growth than
in the large mass regime. Due to this strong power law growth of the squeezed three
point, we will find that the Fourier transforms of the galaxy two point function Ph(q)
and three point function B(k1, k2) can exhibit potentially observable deviations from
what they would have been if there were no primordial non-Gaussianities.

In the following chapter, we will study the four point function of curvature pertur-
bations induced by a quantum mechanical loop. We will see that in the “collapsed”
limit, this loop will behave almost as 1/k3

s , where ks is the collapsed momentum.
Due to the strong power law growth of this contribution as ks → 0, Phh(q) can
develop a large stochastic contribution which could be observed. Finally, we will
generalize the quasi-single field paradigm to include an additional isocurvaton field.
With the addition of an extra isocurvaton field, one can have additional kinetic mix-
ings among the isocurvatons. These mixings generate late time oscillations in the
inflaton and isocurvaton mode functions, which impact the primordial three point
function of scalar curvature perturbations. For certain choices of parameters, the
three point function will behave as k−3

s cos Logks/kl in the squeezed limit, i.e. the
squeezed three point in a multi-isocurvaton theory can display oscillatory features
and strong power law growth as ks → 0. This is very different from quasi-single
field inflation models which only contain one isocurvaton. In these models one can
only have nearly cubic power law growth and oscillatory behavior in different limits
of parameter space.
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C h a p t e r 2

QUASI-SINGLE FIELD INFLATION IN THE
NON-PERTURBATIVE REGIME

In quasi-single field inflation there are massive fields that interact with the inflaton
field. If these other fields are not much heavier than the Hubble constant during
inflation (H) these interactions can lead to important consequences for the cosmo-
logical energy density perturbations. The simplest model of this type has a real
scalar inflaton field that interacts with another real scalar S (with mass m). In this
model there is a mixing term of the form µ ÛπS, where π is the Goldstone fluctua-
tion that is associated with the breaking of time translation invariance by the time
evolution of the inflaton field during the inflationary era. In this chapter we study
this model in the region (µ/H)2 + (m/H)2 > 9/4 and m/H ∼ O(1) or less. For a
large part of the parameter space in this region standard perturbative methods are
not applicable. Using numerical and analytic methods we study how large µ/H has
to be for the large µ/H effective field theory approach to be applicable.

2.1 Introduction
There is very strong evidence that the universe was once in a radiation dominated
era followed by a matter dominated era. Today the universe is dominated by vacuum
energy density and we are entering an inflationary era where the scale factor a(t) ∝
eH0t , with H0 near the Hubble constant today. It is widely believed that at very early
times there was another inflationary era where the energy density was dominated
by false vacuum energy giving rise to a Robertson Walker scale factor with time
dependence a(t) ∝ eHt , where H is the Hubble constant during that inflationary
era [2–7]. After more than about 60 e-folds, this inflationary era ends and the
universe reheats to a radiation dominated (Robertson Walker) Universe. If this is
the case then the horizon and flatness problems can be solved and in addition there
is an attractive mechanism based on quantum fluctuations for generating density
perturbations with wavelengths that were once outside the horizon [9–13] (see
Ref. [8] for a review of inflation). It has been argued that it requires tuning to enter
the inflationary era [16, 17] (see however [18]) and furthermore that there are issues
with its predictability [19–21] (see also [22] for a recent discussion of these issues).
Nevertheless, because of the simplicity of the dynamics of the inflationary universe
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paradigm and the ability within it to do explicit calculations of the properties of
the cosmological energy density perturbations [9–13] and primordial gravitational
waves [2, 23–26], it seems worth studying particular inflationary models in some
detail.

The simplest inflationary model is standard slow roll inflation with only a single
real scalar field, the inflaton φ(x). It is conventional to work in a gauge where
fluctuations in the inflaton field about the classical slow roll solution φ0(t) vanish.
Then using the StÜuckelberg trick the curvature fluctuations that are constant outside
the horizon and become the density perturbations when they reenter the horizon
(in the radiation and matter dominated eras) arise from quantum correlations in the
Goldstone mode π(x) calculated during the de-Sitter inflationary era1. In this model
non gaussianities in cosmological density correlations arise because of connected
higher point correlations of π, but they are very small [28].

Larger non-gaussianities can be achieved if there are other fields with masses around
or less than the inflationary Hubble constant2, that couple to π (see Ref. [31] for a
review). In quasi-single field inflation these extra fields do not directly influence
the classical evolution of the inflaton field but impact the cosmological density
perturbations since they couple to the inflaton as “virtual particles” and hence affect
the the correlations of π [15]. To simplify matters we will assume an approximate
shift symmetry on the inflaton field, φ(x) → φ(x) + c (where c is a constant) that
is only broken by the potential, Vφ, for φ. Furthermore, we assume an unbroken
discrete symmetry, φ(x) → −φ(x). The simplest quasi-single fieldmodel introduced
by Chen and Wang [31] has a single additional (beyond the inflaton) real scalar field
S. The Lagrange density in this model contains an unusual kinetic mixing of the
form µ ÛπS .

This model has been extensively studied in the perturbative region3 where µ/H �
1 [15, 32–40]. In the non-perturbative region where µ/H � 1, an elegant effective
field theory formulation has been derived byBaumann andGreen [37], and byGwyn,
Palma, Sakellariadou, and Sypsas [41]. The curvature perturbation power spectrum
and a contribution to its bispectrum have been calculated using this formulation. It
has been studied numericaly in [42] for other regions of the parameter space.

1The effective field theory formulation for inflation [27] provides an elegant method to compute
correlations of π in a model independent fashion.

2There are other ways to have large non-gaussianities. For example, DBI inflation [29]. For an
early example of another type, see [30].

3By perturbation theory we mean a series expansion in µ/H.
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Throughout this chapter we treat µ as a constant independent of time. There has
been a study of the case where µ changes suddenly with time, becoming large
momentarily [43].

In this chapter we focus on the region of parameter space where (µ/H)2+ (m/H)2 >
9/4 and m/H ∼ O(1) or less (recall m is the mass term for S). In this region,
non-gaussianities have an interesting oscillatory behavior [35]. We use numerical
non-perturbative methods similar to those developed in [42] and the effective field
theory for large µ/H to study the model in this region of parameter space. We study
how large µ/H must be for the effective field theory method to be quantitatively
correct. In addition we derive the nS, r plot for the model with inflaton potential
Vφ = m2

φφ
2/2 and derive the limit on µ/H and the S potential parameter V ′′′S from

Planck limits on non-gaussianity.

In section 2.2 we discuss the Lagrange density of the model we use in detail. Section
2.3 reviews quantization of the free part of the Lagrange density in flat space-time.
Even this theory is non-trivial because of the unusual Lorentz non-invariant kinetic
mixing between the Goldstone field π and the excitations of the massive scalar S.
The massless mode has an unusual energy momentum relation that, for momentum
in the range m � q � µ, has a non-relativistic flavor, Eq = q2/µ [37]. The other
mode is heavy with a mass

√
µ2 + m2. The fact that this mode’s mass does not go

to zero as m→ 0 is what regularizes the divergences that occur at m = 0 when one
treats µ perturbatively.

Quantization of the free field theory in de-Sitter space-time is discussed in section
2.4. In de-Sitter space-time a mode’s physical momentum q evolves with time. At
early times modes have wavelengths much less than the horizon 1/H but at later
times the wavelengths get red-shifted outside the horizon. The mode functions are
calculated non-perturbatively by numerically solving the differential equations they
satisfy in the region of parameter space, (µ/H)2 + (m/H)2 > 9/4 and m/H ∼ O(1)
or less. Quantum fluctuations in the field S fall off rapidly for wavelengths outside
the horizon and it is the quantum fluctuations in the field π that determine the
curvature and density fluctuations just as in standard slow roll single field inflation.
Nevertheless, these quantum fluctuations are influenced by π’s couplings to S.

In section 2.4 we analyze (in the non-perturbative regime) the curvature perturbation
power spectrum in this model focusing on the transition between the perturbative
regime and the regime where the effective theory applies.
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Section 2.5 derives the nS, r plot in this theory for the simple inflaton potential
Vφ = m2

φφ
2/2.

Non-gaussianities are discussed in Sec 2.6. We calculate the bispectrum in the the
equilateral and squeezed configurations in the non-perturbative region numerically.
In the large µ/H region we show that the numerical results agree with the results
from the effective theory. We derive the constraints on µ/H and the S potential
parameter V ′′′S from Planck limits on non-gaussianity.

In section 2.7 we review the derivation of the effective field theory for large µ/H
and the derivation of the power spectrum using it. We then compute the bispectrum
in this effective field theory including a contribution from the potential for S that
was not previously presented in the literature.

Our conclusions are summarized in Sec. 2.8.

2.2 The Model
The simplest quasi-single field inflation model has a real scalar inflaton field φ that
interacts with another real scalar field S. We impose a φ → −φ symmetry and an
approximate shift symmetry φ→ φ + c, where c is a constant. The shift symmetry
is only broken by the inflaton potential Vφ(φ). The Lagrangian we use has the form

L = Lφ + LS + Lint (2.1)

where
Lφ =

1
2
gµν∂µφ∂νφ − Vφ(φ), LS =

1
2
gµν∂µS∂νS − VS(S) (2.2)

Interactions between the inflaton φ and the massive field S first occur at dimen-
sion 5 and if we neglect operators with dimension higher than this the interaction
Lagrangian is

Lint =
1
Λ
gµν∂µφ∂νφS. (2.3)

One natural choice for the mass scaleΛ is the Planck mass. This higher dimensional
operator would then arise from the transition from the theory of quantum gravity to
a quantum field theory. In this case the non-gaussianities are very small. However,
another possibility is that there is physics at a scale Λ that is large compared to the
Hubble constant during inflation but well below the Planck scale. Integrating out
this physics can give rise to such an operator.

We work in a gauge where the inflaton field is only a function of time, φ(x) = φ0(t)
and take the background metric to have the form, ds2 = dt2 − a(t)2dx2, with the
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scale factor a(t) = eHt . The Goldstone boson associated with the time translation
invariance breaking by the classical evolution φ0(t) is denoted by π(x). The curvature
perturbation is proportional to this field, ζ = −Hπ. We expand S about a background
classical value S(x) = S0 + s(x) and assume that the background solution S0 is
independent of time. This assumption is consistent with the dynamical equations of
evolution for the fields provided we neglect second time derivatives of φ0(t). With
those assumptions φ0(t) and S0 satisfy,(

1 +
2S0
Λ

)
3H Ûφ0 +

dVφ(φ0)
dφ0

= 0, (2.4)

and
Ûφ2
0
Λ
− dVS(S0)

dS0
= 0. (2.5)

The dynamics for the fluctuations π(x) and s(x) are controlled by the Lagrange
density,

L = L0 + Lint (2.6)

where the free part of the Lagrange density for the fields π and s is,

L0 =
1
2
Ûφ2
0

(
1 +

2S0
Λ

) (
Ûπ2 − 1

a2∇π · ∇π
)
+

1
2

(
Ûs2 − 1

a2∇s · ∇s − m2s2
)
+

2
Λ
Ûφ2
0 Ûπs

(2.7)
where m2 = V ′′(S0). Throughout this chapter we assume that the mass parameter m

for the additional scalar s is of order the Hubble constant during inflation or smaller.

The interaction part of the Lagrange density is

Lint =
Ûφ2
0
Λ

(
Ûπ2 − 1

a2∇π · ∇π
)

s +
(
Ûπ + Ûπ

2

2

)
Ûs2 − 1

3!
V ′′′S (S0)s3 − 1

4!
V ′′′′S (S0)s4 + . . .

(2.8)
It is convenient to introduce a rescaled π that has a properly normalized kinetic term,

π̃ =
√
Ûφ2
0(1 + 2S0/Λ)π = | Û̃φ0 |π (2.9)

where,
φ̃0 =

√
(1 + 2S0/Λ)φ0. (2.10)

In terms of these rescaled fields the gravitational curvature perturbation becomes,

ζ = −(H/| Û̃φ0 |)π̃. (2.11)
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The free and interacting Lagrange densities, after introducing a redefined scale
Λ̃ = (1 + 2S0/Λ)Λ, are

L0 =
1
2

(
Û̃π2 − 1

a2∇π̃ · ∇π̃
)
+

1
2

(
Ûs2 − 1

a2∇s · ∇s − m2s2
)
+ µ Û̃πs (2.12)

and
Lint =

1
Λ̃

(
Û̃π2 − 1

a2∇π̃ · ∇π̃
)

s − 1
3!

V ′′′S (S0)s3 + . . . . (2.13)

In eq. (2.12) we have introduced

µ = 2 Û̃φ0/Λ̃. (2.14)

and in eq. (2.13) only explicitly kept those terms that play a role in the calculations
performed in this chapter. In the following sections we will drop the tilde on the
Goldstone field π̃ to simplify the notation. Moreover, we adopt sign conventions for
φ and S so that Ûφ0 and µ are positive.

As mentioned in the introduction the purpose of this chapter is to study this model
in the region of parameter space where (µ2 + m2)1/2/H > 3/2 and m ∼ O(H) or
smaller. Some of this region, i.e. where µ/H is small or very large have been
previously studied. We will compare with those results to find out how small and
how large µ/H has to be for the approximate methods used in those regions to be
accurate.

First let’s imagine that S0 = 0. This can always be arranged by tuning the linear term
in the potential VS(S) to cancel the linear term in S from the 1/Λ interaction term.
Then µ/H = (2 Ûφ0/H2)(H/Λ). The measured power spectrum for the curvature
perturbations implies that Ûφ0/H2 is very large so even for small H/Λ one can
achieve large values for µ/H.

Next we allow a non zero S0 but simplify the potential so it contains no terms with
more than two powers of S, explicitly VS = V ′SS + m2S2/2. In this case µ/H can be
written as,

µ

H
=

2 Ûφ0/ΛH[
1 + 2 (

Ûφ0/ΛH)2−V ′
S
/H2Λ

m2/H2

]1/2 . (2.15)

Therefore, without tuning the tadpole in VS to cancel Ûφ2
0S/Λ, it is not possible to

have the mass parameter m of order the Hubble constant (or smaller) and µ/H large.
Nonetheless it seems worth studying this region of parameter space since there are
some novel features that arise there.
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Naive dimensional analysis suggests that higher dimension operators that couple
derivatives of φ to a single S are smaller than the dimension 5 operator we kept
provided Ûφ0/Λ2 = (µ/H)2(H2/ Ûφ0) < 1. The higher powers of S will be small if
in addition S0/Λ < 1. Since the measured amplitude of the density perturbations
implies that H2/ Ûφ0 is quite small the ratio µ/H can be large in the region of
parameter space where the operator expansion in powers of 1/Λ is justified. Indeed,
comparing the calculated power spectrum at large µ/H given in (2.37) with it’s
measured value, the upper limit for µ/H for power counting in the 1/Λ expansion
to be valid is µ/H . 300. Of course, this is just a naturalness constraint and can be
violated without the model being inconsistent.

2.3 Free Field Theory in Flat Space-time
In this section we review, for pedagogical reasons, quantization in flat space-time of
the free field theory with Lagrange density in eq. (2.12). The results presented here
have, by in large, been noted previously in [37, 41].

Dropping the tildes and setting a(t) = 1 the Lagrange density in eq. (2.12) becomes,

L0 =
1
2

(
Ûπ2 − ∇π · ∇π

)
+

1
2

(
Ûs2 − ∇s · ∇s − m2s2

)
+ µ Ûπs. (2.16)

This corresponds to normal kinetic terms for two real scalar fields but with an
unusual Lorentz non-invariant kinetic mixing. The Lagrange density has the shift
symmetry π → π + c for the Goldstone field π.

The classical equations of motion for the fields π and s are,

Üπ − ∇2π + µÛs = 0 (2.17)

and
Üs − ∇2s + m2s − µ Ûπ = 0 (2.18)

Quantization proceeds by expanding the fields in modes,

π(x, t) =
∫

d3q
(2π)3

(
a(1)(q)π(1)q (t)eiq·x + a(2)(q)π(2)q (t)eiq·x + h.c.

)
(2.19)

and

s(x, t) =
∫

d3q
(2π)3

(
a(1)(q)s(1)q (t)eiq·x + a(2)(q)s(2)q (t)eiq·x + h.c.

)
(2.20)

The annihilation operators a(1,2)(q) and creation operators a(1,2)(q)† satisfy the usual
commutation relations4. The time dependence of the mode functions π(1,2)q (t) and

4More explicitly the non-zero commutators are: [a(1)(q), a(1)(q′)†] = (2π)3δ3(q − q′) and
[a(2)(q), a(2)(q′)†] = (2π)3δ3(q − q′)
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s(1,2)q (t) are determined by solving the classical equations of motion and their nor-
malization is fixed by the canonical commutation relations of the fields with their
canonical momenta. A difference from the usual case where there is no Lorentz
non-invariant mixing is that the canonical momentum for the field π is not Ûπ
but rather Ûπ + µs. So Ûπ and Ûs don’t commute at equal time but rather satisfy
[ Ûπ(x, t), Ûs(x′, t)] = −iµδ3(x − x′).

The time dependence of the modes has the usual exponential form π
(1,2)
q (t) ∝

exp(−iE (1,2)q t), s(1,2)q (t) ∝ exp(−iE (1,2)q t) . The dispersion relations for the energies is
determined by solving the classical equations of motion. This yields,

E (1,2)q =

[
q2 +

m2 + µ2

2
± 1

2

(
(m2 + µ2)2 + 4q2µ2

)1/2
]1/2

, (2.21)

which is a massless mode that we label by (1) corresponding to the minus sign and
a massive mode that we label by (2) corresponding to the plus sign. The mass of
mode (2) is

√
m2 + µ2. Because this mode remains massive even when m = 0 there

will be no divergences in our calculations in de-Sitter space.

We now focus on the large mixing region of parameter space, µ � q,m. As
discussed in the literature [37] the dispersion relations of the two modes can be
written as

E (1)q '
q
√

q2 + m2

µ
, E (2)q ' µ. (2.22)

The (1)mode is massless but for q much larger than m the energy grows not linearly
with q but rather quadratically (like a non relativistic particle). The other mode is
massive with mass µ. For very small momentum, q � m, the massive scalar s only
contains the massive (2) mode, i.e., |s(1)q (t)/s(2)q (t)| → 0 as q → 0. On the other
hand the Goldstone field π contains equal amounts of the (1) and (2) modes.

The infrared, q→ 0, behavior of the mode function s(1,2)q changes in the special case
that m = 0. Then integrating-by-parts, the kinetic mixing term in Eq. (2.16) can be
recast as −µπ Ûs, and so it is clear that there is also a shift symmetry in s. For m = 0
the scalar field s also contains equal amounts of the two modes.

Since for large µ the second mode is heavy it is appropriate for the physics at low
momentum q � µ to integrate it out from the theory and write an effective Lagrange
density in terms of a single massless field. For the light mode a time derivative
gives factors of 1/µ and (for m , 0) at very large µ the s field contains only a small
amount of that massless mode. Hence (2.18) implies that,

s '
( µ

m2 − ∇2

)
Ûπ (2.23)
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Putting this into the Lagrange density in eq. (2.16) and dropping terms suppressed
by powers of 1/µ (recall a time derivative on π is suppressed by 1/µ) yields the
effective Lagrange density for the massless mode,

Le f f =
1
2

(
µ2

m2 − ∇2

)
Ûπ2 − 1

2
∇π · ∇π (2.24)

which yields the dispersion relation for the massless mode given in eq. (2.22).

In the next section we perform the quantization in curved de-Sitter space-time (with
Hubble constant H). Then the physics of the massless (1) mode should be similar
to that in flat space-time when the momentum and energy for that mode are large
compared to H i.e., q > H and E (1)q > H. In the flat space-time large µ discussion
we assumed q < µ. The energy condition E (1)q > H implies q must also satisfy
q >
√
µH in order for our de-Sitter space-time computations to resemble the flat

space-time large µ case discussed in this subsection.

2.4 Free Field Theory in de-Sitter Space time
Introducing conformal time, τ = −e−Ht/H, and including the measure factor √−g
in the Lagrange density so that the action is equal to

∫
d3xdτL we have

L0 =
1

2H2τ2

(
(∂τπ)2 − ∇π · ∇π + (∂τs)2 − m2

H2τ2 s2 − ∇s · ∇s − 2µ
Hτ

s∂τπ
)
.

(2.25)
As in flat space we expand the quantum fields in terms of creation and annihilation
operators. Introducing η = kτ we write,

π(x, τ) =
∫

d3k
(2π)3

(
a(1)(k)π(1)k (η)e

ik·x + a(2)(k)π(2)k (η)e
ik·x + h.c.

)
(2.26)

and

s(x, τ) =
∫

d3k
(2π)3

(
a(1)(k)s(1)k (η)e

ik·x + a(2)(k)s(2)k (η)e
ik·x + h.c.

)
(2.27)

The mode functions obey the classical equations of motion,

π′′k −
2π′k
η
+ πk −

µ

H

( s′k
η
− 3sk

η2

)
= 0 (2.28)

and
s′′k −

2s′k
η
+

(
1 +

m2

H2η2

)
sk +

µ

H

π′k
η
= 0 , (2.29)

where a “ ′ ” represents an η derivative.
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Numerical results
In the mode expansion for for the fields s and π, k is the magnitude of the comoving
wavevector. The physical wavevector has magnitude q = k/a = −Hη. Hence the
condition that a mode have wavelength well within the de-Sitter horizon 1/H is
q/H � 1 which is equivalent to −η � 1. At fixed k as time evolves a mode goes
from physical wavelength well within the horizon to outside the horizon.

In the region well within the horizon, −η � µ/H and −η � 1, the differential
equations (2.28) and (2.29) simplify to

π′′k + πk = 0 ,

s′′k + sk = 0 .

(2.30)

Herewe suppressed the superscripts (1, 2) that labelmode type. The leading behavior
of the mode functions is

πk ∼ sk ∼ e−iη (2.31)

and so it is convenient to represent the general solution in the region deeply inside
the horizon as

πk = Ak e−iη , sk = Bk e−iη . (2.32)

A and B are functions of η with |A′/A|, |B′/B | � 1. Substituting πk and sk back
into (2.28) and (2.29) and keeping only the leading order terms in η−1 we find

2A′k −
2A
η
− µ

Hη
Bk = 0

2B′k −
2B
η
+

µ

Hη
Ak = 0 (2.33)

which gives
Ak ∝ (−η)1±

iµ
2H , Bk = ±iAk . (2.34)

Therefore, in this region the canonically normalized form of πk and sk can be written
as

π
(1,2)
k =

H
√

4k3
e−iη(−η)1±

iµ
2H , s(1,2)k = ±iπ(1,2)k , (2.35)

where the factor H/
√

4k3 is determined by the canonical commutation relations.

Eq. (2.35) is used to determine the initial conditions π(1,2)k (η0) , s(1,2)k (η0) and
π
′(1,2)
k (η0), s′(1,2)k (η0) at a value of η0 that is large in magnitude. The differential
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Figure 2.1: The correction of the power spectrum of curvature perturbation ∆Pζ
in units of (H4/ Ûφ2

0)(1/2k3) due to the mixing with the new field s. The red, blue,
green, orange and magenta curves are for m = 0, 0.5H,H, 1.5H and 2H. The black
dashed curve shows the result from the effective theory and the colored dashed lines
are perturbation theory.

equations in (2.28) and (2.29) can then be solved numerically and used to determine
the power spectrum for the curvature perturbation in this model.

The correction to the power spectrum ∆Pζ is defined by, ∆Pζ = Pζ − P(0)ζ , where

P(0)ζ (k) =
H4

Ûφ2
0

1
2k3 , (2.36)

is the power spectrum of the curvature perturbation in usual slow roll single field
inflation. ∆Pζ is shown in Fig. 2.1. In the region of µ � H ∆Pζ goes like µ2 which
agrees with the perturbative calculation [15]. In the region where µ is larger than
about 10H the power spectrum Pζ grows as µ1/2 and can be approximated by,

Pζ (k) = C
( µ

H

)1/2
P(0)ζ (k) , (2.37)

where
C = 16π

Γ2(−1/4)
' 2.09. (2.38)

Corrections to eqs. (2.37) and (2.38) become negligible as µ → ∞. The power
spectrum in the large µ/H limit was calculated using the large µ/H effective field
theory in [41]. For completeness we briefly review that calculation in Sec. 2.7.

As shown in Ref. [15], the perturbative result diverges in the limit of m→ 0. From
the red curve shown in Fig. 2.1 we can see that the curvature perturbation is well
defined at m = 0. Perturbation theory can be very misleading at modest values of
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Figure 2.2: Power spectrum of the π and s fields in the unit of H2/2k3. The
solid, dotted, and dashed curves are for (µ/H,m/H) = (10, 2), (1, 2) and (1.2, 0.9),
respectively.

m/H and values of µ/H not very much larger than unity. For example for m = 0.5H

and µ = 1.5H it gives a value for ∆Pζ (in the units used for Fig. 2.1) equal to 310
while our numerical result is 6.2.

For the curvature perturbations one calculates the power spectrum of the π field as
−η → 0. However the power spectra for the fields can be calculated at any η. For
µ/H > 1 the power spectrum for the s field Ps(k) falls off rapidly as −η falls below
unity. The numerical results of the power spectrum of the s field Ps(k) in units of
H2/2k3 as a function of η for a few values of µ and m are shown in Fig. 2.2. One
can see that all the curves decrease with −η and become small as −η falls below
unity.

In the usual single field inflation model Pπ goes to unity in units of H2/2k3 as
−η → 0. In this model of quasi-single field inflation, as shown in Fig. 2.2 for the
µ = 10H, m = 2H case the asymptotic value of Pπ is much larger than unity. This
is due to the change in the dispersion relation of the π field and can be understood
using the large µ/H effective theory. From Fig. 2.2 we see that the asymptotic value
of Pπ for the case µ = 1.2H,m = 0.9H is also much larger than 1.
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Qualitative analysis
We can understand qualitatively the shape of the mode functions analytically. In the
region well outside the horizon, −η � 1, eqs. (2.28) and (2.29) can be simplified to

−π′′k +
2π′k
η
− µ

H

(
3sk

η2 −
s′k
η

)
= 0

−s′′k +
2s′k
η
− m2sk

H2η2 −
µ

H

π′k
η
= 0 (2.39)

which is invariant under the transformation

πk → λ2πk , sk → λ2sk , η→ λη . (2.40)

Therefore, the general form of the solution can be written as

πk = Qk(−η)α , sk = Rk(−η)α . (2.41)

Putting this back into the differential equations gives equations for the power α and
the coefficients Qk and Rk

(α2 − 3α)Qk +
µ

H
(3 − α)Rk = 0 ,

µ

H
αQk +

(
α2 − 3α +

m2

H2

)
Rk = 0 . (2.42)

To have nontrivial solutions for Qk and Rk requires

α(α − 3)
[
α2 − 3α +

m2 + µ2

H2

]
= 0 . (2.43)

There are four solutions to this equation

α1 = 0 , α2 = 3 , α± =
3
2
±

(
9
4
− m2 + µ2

H2

)1/2
. (2.44)

For the region of parameter space we focus on, α± are complex, which can have
observational consequences for the non-gaussianities [35].

For large values of µ/H the infrared behavior of the mode functions π(1,2)k and
s(1,2)k match directly onto the solutions in eq. (2.44). This is shown in Fig. 2.3
using m = 2H and µ = 10H. The α1 = 0 mode is constant outside the horizon.
The α2 = 3 behavior vanishes outside the horizon and can be thought of as a
subdominant contribution to the massless mode. The α± solutions correspond to
the mode functions for a free scalar field with mass equal to (m2 + µ2)1/2. They play
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Figure 2.3: Left: Absolute values of the field values with m = 2H and µ = 10H.
The solid black and the dashed red curves are for the π and s mode with the index
α = 0. The dot-dashed blue curve illustrates the π and s modes whose dominant
small −η behavior comes from the index α = 3/2± (9/4− (m2+ µ2)/H2)1/2. Right:
Showing the absolute value of the real parts of each mode corresponding to the ones
in the left panel.

an important role in the calculation of non-gaussianities. For m = 2H and µ = 10H

the behavior of this mode is shown by the blue dot-dashed curves in Fig. 2.3. One
can see that it oscillates logarithmically with frequency (m2 + µ2)1/2, and decreases
with a power of 3/2 for small −η. To get the curves shown in Fig. 2.3 we solve the
differential equations (2.28) and (2.29) with the initial conditions (2.35). The π(2)

mode shown in the left panel of Fig. 2.3 eventually goes to a constant as −η gets
smaller. Similarly, the absolute value of the s(1) mode eventually goes like (−η)3/2

for very small −η.

In this paragraph we focus on the α1 = 0 solution. Putting α1 = 0 back Eq. (2.42)
we find that Rk = 0. Since there is no shift symmetry in the s field it should not
contain the massless mode in the far infrared. We can get the leading behavior of
the sk mode function outside the horizon by putting πk = Qk back into the exact
differential equation (2.28). This gives the first order inhomogeneous differential
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Figure 2.4: Numerical result of Pπ(k) as a function of η in the unit of H2/(2k3)
for m = 0 and µ = 100H. For comparison in blue we show the result for standard
single field inflation.

equation

−Qk =
µ

H

(
3sk

η2 −
s′k
η

)
(2.45)

with general solution

sk = −
Qk Hη2

µ
. (2.46)

This behavior is shown by the red dashed curves in Fig. 2.3.

The large µ/H region
In this subsectionwe focus on some properties of the solutions for themode functions
that only apply for very large µ/H. We find that the curvature perturbation goes
to a constant when −η < (µ/H)1/2 instead of the usual condition that it be outside
the horizon, i.e., −η < 1. This is illustrated in Fig. 2.4 which shows the numerical
results for the power spectrum of Pπ as a function of η.

Examining eq. (2.29), in the region −η < (µ/H)1/2 it is clear that the last term on
the left hand side is the largest. Neglecting the other terms the solution in this region
satisfies

π′ = 0 , (2.47)

which implies that πk is constant and sk is proportional to η2, as in eq. (2.46).

In the region (µ/H)1/2 < −η < µ/H one can show that the differential equations for
the mode functions are solved approximately by

πk ∝ (−η)3/2 exp
[
iHη2

2µ

]
, sk ∝ (−η)3/2 exp

[
iHη2

2µ

]
. (2.48)
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The physical wavevector of a mode with comoving wavevector k is

q = ka−1 = −kHτ . (2.49)

Therefore the change of the phase of these solutions within a small time period ∆η
can be written as

∆phase =
η0∆ηH
µ

= −q2

µ
∆t , (2.50)

where ∆t = a∆τ has been used. This agrees with the dispersion relation in flat space
given in eq. (2.22) for the massless mode. From Fig. 2.4, one can see that it is in this
region the solution for µ � H starts to deviate from the standard slow roll solution,
which corresponds to µ = 0 in the model we are studying. This is because in this
region the solutions in de-Sitter space should resemble those in flat space and the
light mode has a flat space dispersion relation Eq = q2/µ which is quite different
from a single massless field with dispersion relation Eq = q.

Putting the solution we have found back into the differential equations (2.28) and
(2.29), one can see that the terms

−π′′k +
2π′k
η

and − s′′k +
2s′k
η

(2.51)

are suppressed, which means that the terms

(∂τπ)2 and (∂τs)2 (2.52)

in the Lagrange density (2.25) can be neglected. After neglecting these two terms,
there are no terms in (2.25) that contain time derivatives of s. This indicates that
s has become a Lagrange multiplier and can be replaced in the Lagrange density
using its classical equation of motion to express it in terms of π. This amounts to
summing the tree graphs that contain virtual s propogators and is the origin of the
effective theory approach developed in Refs. [37] and [41] for the behavior of π in
this region. We will briefly review the basic setup for this effective field theory and
use it to calculate the two- and three-point functions of the curvature perturbation
in the large µ/H limit in Sec. 2.7.

2.5 Impact on observables
The dimensionless power spectrum is defined as [44]

∆
2
ζ (k) =

k3

2π2Pζ (k) =
H4

(2π)2 Ûφ2
0

f (µ/H,m/H) = 2.12 × 10−9 , (2.53)
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where f is a function of the µ and m. f − 1 is shown in Fig. 2.1 as a function of
µ/H for fixed values of m. The above power spectrum relies on the assumption that
the tadpole cancellation in (2.5) is possible at all times. However, S will develop
a time-dependent vaccuum expectation value due to the evolution of φ0. We will
show later in this section that this remains negligible in m2

φφ
2 inflation, which we

consider here.

In terms of the slow roll parameter

ε0 =
Ûφ2
0

2H2M2
pl

(2.54)

∆2
ζ (k) can be written as

∆
2
ζ (k) =

H2

8π2ε0M2
pl

f

(√
8ε0Mpl

Λ
,

m
H

)
. (2.55)

The tilt of the power spectrum is defined as

nS − 1 ≡
d log∆2

ζ

d log k
, (2.56)

and can be written as

nS − 1 =
d log∆2

ζ

d log k
=

d log∆2
ζ

dN
× dN

d log k
, (2.57)

where N is the number of e-folds between when the modes of interest exit the
horizon and inflation ends. From Eq. (2.53) we have

d log∆2
ζ

dN
= 2

d log H
dN

− d log ε0
dN

+

(
∂ log f
∂ log µ̂

d log µ̂
d log ε0

d log ε0
dN

+
∂ log f
∂ log m̂

d log m̂
d log H

d log H
dN

)
= −4ε0 + 2η0 + (ε0 − η0)

∂ log f
∂ log µ̂

+ ε0
∂ log f
∂ log m̂

(2.58)

where the standard results of slow roll inflation have been used [8], and η0 is the
other slow roll parameter defined as − Üφ0/(H Ûφ0). µ̂ and m̂ are defined as

µ̂ ≡ µ

H
, m̂ ≡ m

H
. (2.59)

Up to leading order in the slow roll parameters we have that,

d log k
dN

= 1 (2.60)
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Figure 2.5: Impact on the scalar spectrum index nS and the tensor-to-scalar ratio
r for the φ2 inflation model with µ from 0 to 100H and m from 0 to 6H, and
(µ2+m2)1/2 > 3H/2. The blue and red regions are for Ncmb = 50 and 60 respectively.
The dotted, dashed and solid curves are form fixed to be 0, 3H/2 and 6H respectively.
The gray regions are the one-sigma and two-sigma constraints from the combination
of the Planck data and the BICEP2/Keck data [45].

Therefore at leading order in slow roll parameters

nS − 1 = −4ε0 + 2η0 + (ε0 − η0)
∂ log f
∂ log µ̂

+ ε0
∂ log f
∂ log m̂

. (2.61)

Another important observable is the tensor-scalar ratio. Since the gravitational wave
production is only related to the structure of the de-Sitter metric, the dimensionless
tensor spectrum can still be written as

∆
2
t =

2
π2

H2

M2
pl

. (2.62)

Then the tensor-scalar ratio can be written

r =
∆2

t (k)
∆2
ζ (k)

= 16ε0 × f −1(µ̂, m̂) . (2.63)

m2
φφ

2 inflation
Here we use the model where the inflaton potential Vφ = m2

φφ
2/2 as an example to

discuss the effect of large µ/H on the observables. In this simple model, we have

φcmb = 2
√

NcmbMpl ' 15Mpl . (2.64)

and

ε0 ' 2
(

Mpl

φcmb

)2
' 1

2Ncmb
, η0 ' O

(
N−2

cmb

)
, (2.65)
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Figure 2.6: Constraints on the m − µ parameter space from the combination of the
Planck data and the BICEP/Keck data [45], where the blue curves are for NCMB = 50
and the red curves NCMB = 60. The regions above the curves are allowed.

where Ncmb is the number of e-folds between when CMB scale leaves the horizon
and when slow roll inflation ends.

The nS, r plot for this model is shown in Fig. 2.5. The dotted regions are for µ from
0 to 100H and m from 0 to 6H with (µ/H)2 + (m/H)2 > 9/4. On these curves as µ
increases r decreases, so the uppermost point of the curves corresponds to standard
slow roll inflation. The constraints on the m − µ parameter space for NCMB = 50
and 60 are also shown in Fig. 2.6 where the regions below the curves are excluded.
Clearly larger values of µ improve the agreement of the model’s predictions with
the measured value of nS and the bound on r .

Time-Dependent S Background
We now justify that the time-dependent vaccuum expectation value of S/Λ remains
small and evolves slowly enough in m2

φφ
2 inflation that it can be ignored in the above

computation of the tilt and tensor-scalar ratio.

Denote the background vevs of the inflaton and isocurvaton fields as φ = φ0(t) and
S = S0(t). The Lagrangian describing the vevs is

L = 1
2
Ûφ2
0

(
1 +

2S0
Λ

)
+

1
2
ÛS2
0 +

1
2

m2
φφ

2
0 +

1
2

m2S2
0 + V ′SS0 (2.66)

From this Lagrangian, it is straightforward to compute the coupled equations of
motion for φ0 and S0, as well as the Friedmann equation. From these equations, one
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can determine the slow roll parameters:

ε ≡ −
ÛH

H2 =
1

2H2M2
pl

(
Ûφ2
0

(
1 +

2S0
Λ

)
+ ÛS2

0

)
(2.67)

η ≡ ε − 1
2

d log ε
dN

= −
Üφ0

H Ûφ0
− 1

2
∂N

(
1 +

2S0
Λ
+
ÛS2
0
Ûφ2
0

)
(2.68)

Moreover, from the equation of motion for S0, we find up to slow roll suppressed
corrections

ÛS0
ΛH
' −1

2

(
2 Ûφ0
Λm

)2 (
−
Üφ0

H Ûφ0

)
(2.69)

Note that the first term in parentheses is essentially (µ/m)2, and the second term is
η0. Then to estimate the size of ÛS0/ΛH, it will be necessary to determine the size
of η0 in this theory. From (2.68) and (2.69), we can express:

η ' η0

(
1 +

1
2

( µ
m

)2
)

(2.70)

In terms of the slow roll parameters, the Friedmann equation can be written:

(3 − ε)H2M2
pl =

1
2

m2
φφ

2
0 (2.71)

where we have assumed that φ drives inflation, i.e. the potential for φ0 dominates
over the potential for S0. Taking derivatives of the above equation, we find the
following two expressions:

−
Ûφ0

Hφ0
= ε

(
1 − η/3
1 − ε/3

)
(2.72)

2η − η0 =
ε

3

(
ε − η

1 − ε/3

)
+

d log(1 − η/3)
dN

(2.73)

This second equation can be written using (2.70):

η

(
1 +

( µ
m

)2

1
2 +

( µ
m

)2

)
' ε

3

(
ε − η

1 − ε/3

)
+

d log(1 − η/3)
dN

(2.74)

From (2.72), one can show that to leading order, we still have ε ' (2Ncmb)−1. On
the other hand, by solving (2.74) perturbatively in ε and η, one can show that the
leading contribution to η goes like N−2

cmb [46]:

η ' 1
12N2

cmb

(
1
2 +

( µ
m

)2

1 +
( µ

m

)2

)
(2.75)
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We can determine η0 using (2.70) and (2.75). Then (2.69) becomes

ÛS0
ΛH
' − 1

24N2
cmb

µ2

m2 + µ2 (2.76)

Since ÛS0/ΛH � ε , the evolution of S0 will not significantly affect the tilt. Moreover,
as long as S0 = 0 at some point early on in inflation, S0/Λ will still be very small
during CMB mode crossings. Accordingly, S0/Λ will not significantly affect the
tensor-scalar ratio.

It is worth noting that η = O(N−2
cmb) is specific to m2

φφ
2 inflation, and not general.

In general, η goes like N−1
cmb, and the time-dependence of S0 becomes equally

important as the ε terms in computing the tilt. In computing these effects, it is
important to recognize that for nonzero S0, the power spectrum gets normalized
slightly differently:

Pζ (k) =
H4

2 Ûφ2
0(1 + 2S0/Λ)k3

f (µ/H,m/H) (2.77)

and µ is defined as

µ =
2 Ûφ0

Λ (1 + 2S0/Λ)1/2
(2.78)

Using these facts, it is straightforward to compute the tilt once ÛS0/ΛH is computed
from the equations of motion.

2.6 Non-Gaussianities
In this section we calculate the dependence of the inflaton three-point function as a
function of µ and m. The small µ/H behavior of the bispectrum was first studied in
[15]. The effective field theory for large µ/H was used to compute the contribution
from the ∂π∂πs interaction to the bispectrum [37, 41]. Here we use the numerical
mode functions to extend the analysis to other values of µ.

The curvature perturbation bispectrum Bζ (k1, k2, k3) is defined by

〈ζ(x1, 0)ζ(x2, 0)ζ(x3, 0)〉 =
∫

d3k1

(2π)3
d3k2

(2π)3
d3k3

(2π)3
ei(k1·x1+k2·x2+k3·x3)Bζ (k1, k2, k3)

× (2π)3δ3(k1 + k2 + k3)

(2.79)

and we can define Bπ(k1, k2, k3) analogously. They can be computed using the in-in
formalism [47] using the interaction Lagrangian in eq. (2.13).
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In this section we focus mostly on the O(V ′′′S ) term (where V ′′′S ≡ V ′′′S (S0)) which, for
V ′′′S ∼ O(H), typically dominates over the contribution from the ∂π∂πs term. We
express the O(V ′′′S ) contribution to the bispectrum in terms of the mode functions
discussed earlier. Evaluating the correlator in the far future τ = 0, we find

Bπ(k1, k2, k3) = −2V ′′′S H−4Im

[∫ 0

−∞

dτ
τ4

3∏
i=1

(
π
(1)∗
ki
(0)s(1)ki

(kiτ) + π(2)∗ki
(0)s(2)ki

(kiτ)
)]
.

(2.80)

Equation (2.80) is true for all values of ki, however we are mostly interested in its
behavior in the so-called equilateral and squeezed limits. In the equilateral limit,
the external momenta all have equal magnitude ki ≡ k. In this case, the integral’s
dependence on k can be factored out of the integral by rescaling the integration
variable from τ to η = kτ:5

Bequil
π (k) = −2V ′′′S H−4k3Im

[∫ 0

−∞

dη
η4

(
π
(1)∗
k (0)s

(1)
k (η) + π

(2)∗
k (0)s

(2)
k (η)

)3
]

(2.81)

We can compute this integral numerically using the numeric mode functions, but
there are a couple of subtleties in its evaluation that need to be addressed. The
integrand in (2.81) is highly oscillatory at large τ. For m/H and µ/H values of
order one or larger, the magnitude of these oscillations does not decay quickly and
it becomes difficult to perform the numerical integrations by brute force. We can
alleviate this problem by Wick rotating the integral, thereby transforming the rapid
oscillations into exponential decay.

Before Wick rotating it is convenient to factor out the oscillatory behavior from the
mode functions. The large τ limit given in eq. (2.32) suggests that we should extract
the oscillatory behavior by factorizing the mode functions as π(i)k (η) = A(i)k (η)e

−iη

and s(i)k (η) = B(i)k (η)e
−iη. Plugging this factorization into Bequil

π (k) gives

Bequil
π (k) = −2V ′′′S H−4k3Im

[∫ 0

−∞

dη
η4 e−3iη

(
π
(1)∗
k (0)B

(1)
k (η) + π

(2)∗
k (0)B

(2)
k (η)

)3
]

= −2V ′′′S H−4k3Re
[∫ 0

−∞

dx
x4 e3x

(
π
(1)∗
k (0)B

(1)
k (ix) + π

(2)∗
k (0)B

(2)
k (ix)

)3
]
.

(2.82)

In the second line we used Cauchy’s theorem to rotate the region of integration
from the real to the imaginary axis and changed the integration variable from η to
x = −iη.

5By, Bequil
π (k), wemean Bπ evaluated in the equilateral configurationwhere the threewavevectors

have the same magnitude k.
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The numerical solutions found previously for A(i)k (η) and B(i)k (η) are functions of the
real variable η and cannot be integrated along the imaginary axis. However, we can
analytically continue them to the imaginary axis by Wick rotating the original mode
equations (2.28) and (2.29) (see [42]). After factoring out the oscillatory behavior
and changing variables to x = −iη, we find that the analytically continued functions
A(i)k and B(i)k obey

x2 A′′k (ix) + (2x2 − 2x)A′k(ix) − 2xAk(ix) −
µ

H
xB′k(ix) + (3 − x) µ

H
Bk(ix) = 0

(2.83)

x2B′′k (ix) + (2x2 − 2x)B′k(ix) +
(

m2

H2 − 2x
)

Bk(ix) +
µ

H
xA′k(ix) +

µ

H
xAk(ix) = 0

(2.84)

where a prime denotes a derivative with respect to x and we have dropped the
superscripts for simplicity. The solutions should asymptote at large −x to6

A(1)k (ix) =
H

2k3/2 (−ix)1+iµ/2H A(2)k (ix) =
H

2k3/2 (−ix)1−iµ/2H

B(1)k (ix) =
iH

2k3/2 (−ix)1+iµ/2H B(2)k (ix) =
−iH
2k3/2 (−ix)1−iµ/2H . (2.85)

These solutions and their derivatives with respect to x give the initial conditions
for numerical integration of the differential equations for Ak and Bk . Note that A(i)k

and B(i)k contain an overall factor of k−3/2. Moreover, π(i)k and s(i)k have the same
k-dependent normalization. This implies that Bequil

ζ (k)/Pequil
ζ (k)2 is k-independent.

In figures 2.7 and 2.8, we plot the contributions to the scaled equilateral three-point
functions Bequil

ζ (k)/(Pζ (k))2 due to the ∂π∂πs and s3 interaction terms respectively7.
Moreover, we have superimposed a dotted line which corresponds to the prediction
of the effective field theory appropriate for large µ/H (which will be discussed in
detail in section 2.7). Of course, the numerical results converge to the effective field
theory results in the large µ/H limit. However, the effective field theory is only a
good approximation of these non-gaussianities for µ & 10H. This further suggests
that there is a substantial portion of the parameter space in µ that is described
neither by the large µ/H effective theory description nor the small µ/H perturbative
description.

6If we hadn’t first extracted the oscillatory factor, an exponentially suppressed factor would
have appeared in (2.85) that would have made the boundary conditions too small to solve (2.83)
numerically.

7For brevity we have not described in any detail the calculation of the contribution due to the
s∂π∂π term in this section.
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Figure 2.7: The scaled equilateral three-point function due to the s∂π∂π interaction,
Bequil
ζ (k)/Pζ (k)2 as a function of µ/H. Several values of m are plotted: m = 0,

0.5H, H, 1.5H, and 2H, and there is also a black dashed line representing the result
computed in the large µ/H effective theory.

Figure 2.8: The scaled equilateral three-point function due to the s3 interaction,
Bequil
ζ (k)/Pζ (k)2 as a function of µ/H. Several values of m are plotted: m = 0,

0.5H, H, 1.5H, and 2H, and there is also a black dashed line representing the result
computed in the large µ/H effective theory.
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Figure 2.9: Upper bounds on |V ′′′S | as a function of µ/H. These bounds are imposed
by experimental bounds on f equilNL . Bounds are plotted for m = 0, 0.5H, H, 1.5H,
and 2H. There is also a bound computed from the large µ/H effective theory, shown
in the figure as a black dashed line.

The Planck collaboration has derived constraints on themagnitude of the bispectrum
of the curvature perturbations using various models/templates for its dependence on
the wavevectors [14]. These are usually expressed in terms of the quantity fNL. Al-
though the model we are discussing is different from the equilateral model/template
used to derive the constraint f equilNL = 4±43 by the Planck collaboration in Ref. [14],
we use this constraint to estimate a bound on V ′′′S . Furthermore we estimate f equil

NL

using just the equilateral configuration where the three wavevectors have the same
magnitude taking,

f equil
NL ' 5

18
×

Bequil
ζ (k)
(Pζ (k))2

. (2.86)

To determine upper bounds for V ′′′S we assume that each interaction s3 and s∂π∂π is
separately constrained by f equilNL and thus ignore any possible tuning between the two
terms that may make these bounds weaker. Figure 2.9 shows the 2σ upper bounds
for a variety of s masses, as well as the upper bound predicted in the large µ/H
effective theory.

The squeezed limit of (2.80) occurs when k1 ≈ k2 ≡ k � k3. In this limit, define
the ratio c ≡ k3/k, where c � 1, and introduce the notation Bsq

π (k, c) for Bπ. We
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Figure 2.10: The coefficients of the cosine term in equation (2.90) for m = 0, 0.5H,
H, and 1.5H.

Figure 2.11: In the squeezed limit, the three-point function logarithmically oscillates
as a function of c. This behavior is illustrated for µ = 2H and m = 0, 0.5H, H,
1.5H, and 2H. The solid lines show the exact behavior as a function of c (i.e.
using equation (2.87)) whereas the dotted lines show the approximate behavior to
quadratic order in c (i.e. using equation (2.88)).
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again rescale the integration variable to η = kτ to find

Bsq
π (k, c) = −2V ′′′S H−4k3Im

[ ∫ 0

−∞

dη
η4

(
π
(1)∗
k (0)s

(1)
k (η) + π

(2)∗
k (0)s

(2)
k (η)

)2

×
(
π
(1)∗
ck (0)s

(1)
ck (cη) + π

(2)∗
ck (0)s

(2)
ck (cη)

) ]

= −2V ′′′S H−4k3c−3Im
[ ∫ 0

−∞

dη
η4

(
π
(1)∗
k (0)s

(1)
k (η) + π

(2)∗
k (0)s

(2)
k (η)

)2

×
(
π
(1)∗
k (0)s

(1)
k (cη) + π

(2)∗
k (0)s

(2)
k (cη)

) ]
(2.87)

We can analyze the leading behavior of (2.87) in c by replacing s(i)k (cη)with the first
few terms of its power series expansion (see section 2.4) b(i)− (−cη)α− + b(i)+ (−cη)α+ +
b(i)2 (−cη)2:

Bsq
π (k, c) = −2V ′′′S H−4k3c−3Im

[ ∫ 0

−∞

dη
η4

(
π
(1)∗
k (0)s

(1)
k (η) + π

(2)∗
k (0)s

(2)
k (η)

)2

×
(
β−(−cη)α− + β+(−cη)α+ + β2(−cη)2 + . . .

) ]
= V ′′′S H−4k3c−3Im

[
cα−λ−(µ,m) + cα+λ+(µ,m) + c2λ2(µ,m)

]
(2.88)

where β− = π(1)∗k (0)b
(1)
− +π

(2)∗
k (0)b

(2)
− , β+ = π(1)∗k (0)b

(1)
+ +π

(2)∗
k (0)b

(2)
+ , β2 = π

(1)∗
k (0)b

(1)
2 +

π
(2)∗
k (0)b

(2)
2 and

λ−(µ,m) = −2β−
∫ 0

−∞

dη
η4

(
π
(1)∗
k (0)s

(1)
k (η) + π

(2)∗
k (0)s

(2)
k (η)

)2
(−η)α−

λ+(µ,m) = −2β+
∫ 0

−∞

dη
η4

(
π
(1)∗
k (0)s

(1)
k (η) + π

(2)∗
k (0)s

(2)
k (η)

)2
(−η)α+

λ2(µ,m) = −2β2

∫ 0

−∞

dη
η4

(
π
(1)∗
k (0)s

(1)
k (η) + π

(2)∗
k (0)s

(2)
k (η)

)2
(−η)2. (2.89)

We can compute β−, β+, and β2 by fitting the numerical mode functions s(i)k (η) to
their power series expansions at small −η and extracting b(i)± , b(i)2 from the fits. The
integrals in (2.89) can be computed using the same Wick rotation technique used to
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compute Bequil
π . Then, rearranging (2.88) gives

Bsq
π = V ′′′S H−4k3c−3/2 (2.90)

× (Im [λ+ + λ−] cos (log(c)Im [α+])

+Re [λ+ − λ−] sin (log(c)Im [α+]) + c1/2Im [λ2]
)

We plot Im [λ+ + λ−] in figure 2.10. The sine term is usually smaller and so
we have not displayed it in a figure. Equation (2.90) shows that the squeezed
limit of the three-point function oscillates logarithmically as a function of c. This
behavior is illustrated in figure 2.11. Note that that the dependence of Im [α+] =√

m2/H2 + µ2/H2 − 9/4 on µ has an important effect on the oscillations. This
impacts the two point function of biased objects, see for example [48].

The oscillatory terms in eq. (2.90) are enhanced by a factor of c−1/2, but are
suppressed in the large µ/H limit.

2.7 Calculating non-gaussianity in the effective theory
Brief review of the effective theory for large µ/H
In this subsection we begin with a brief review the effective theory approach to the
case when µ/H is large. In terms of π and s the Lagrange density is

L =
1

2H2τ2

[
(∂τπ)2 − (∇π)2 + (∂τs)2 − (∇s)2 − m2

H2
s2

τ2 −
2µ
Hτ

s∂τπ
]

+
1

H2τ2
s
Λ

[
(∂τπ)2 − (∇π)2

]
− 1

H4τ4

V ′′′S s3

3!
(2.91)

As discussed in Sec. 2.3, in flat space-time with large mixing µ there is a very
massive mode and a massless mode. When µ � H and k/a < µ, one may integrate
out the heavy mode to get an effective theory just involving π which can be used
to calculate curvature perturbations. As discussed in Sec. 2.4, for that purpose the
(∂τs)2 and (∂τπ)2 terms in eq. (2.91) can be neglected. Since we assume m ∼ O(H)
or smaller m can also be neglected in eq. (2.91). With these approximations the
equation of motion for s becomes

0 =
δL
δs
=

1
H2τ2

[
∇2s − µ∂τπ

Hτ
− 1
Λ
(∇π)2 −

V ′′′S s2

2H2τ2

]
. (2.92)

Up the second order in π, the solution for s is

s =
µ

Hτ
1
∇2 ∂τπ +

1
Λ

1
∇2 (∇π)

2 +
V ′′′S

2H2τ2
µ2

H2τ2
1
∇2

[
1
∇2 ∂τπ

]2
(2.93)
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Putting this solution back into eq. (2.91), the quadratic and cubic terms of the
effective Lagrangian of π can be written as

L(2)e f f = −
1

2H2τ2

[
(∇π)2 + µ2

H2τ2 (∂τπ)∇
−2∂τπ

]
(2.94)

and

L(3)e f f = −
µ

Λ

1
H3τ3

[
∇−2∂τπ

] [
(∇π)2

]
− µ3

H7τ7

V ′′′S

3!
[
∇−2∂τπ

]3
. (2.95)

Quantizing the free field part of this effective theory we write for the field operator,

π(x, τ) =
∫

d3k
(2π)3

(
a(k)πk(η)eik·x + a†(k)πk(η)∗e−ik·x

)
. (2.96)

The mode function πk(η) satisfies the classical equation of motion,

µ2

H2
d

dη

(
1
η4

dπk

dη

)
+
πk

η2 = 0 . (2.97)

which can be solved analytically for the mode function πk(η). The normalization of
πk(η) is determined by the canonical commutation relations. This yields,

πk(η) =
(
2π2µ

H

)1/4 H
(2k3)1/2

(
η2H
2µ

)5/4
H(1)5/4

(
η2H
2µ

)
. (2.98)

The power spectrum of the curvature perturbation is

Pζ =
H2

Ûφ2
0
|πk(η)|2|η |�√µ/H =

H4

Ûφ2
0

(
1

2k3

) [
16π

Γ2(−1/4)

( µ
H

)1/2
]
. (2.99)

This result was originally derived in Ref. [37, 41].

The plot of Pζ as a function of µ/H was shown in Fig. 2.1. The result from the
effective theory is shown by the black dashed line. One can see that for µ > 10H

the result from the effective theory agrees with the numerical result.

Non-Gaussianity of equilateral configuration
The three-point function Bζ (k1, k2, k3) of the curvature perturbation is defined in
(2.79). Following standard steps and using the explicit expression of πk in (2.98)
for the equilateral configuration (|k1 | = |k2 | = |k3 | = k), we have

Bequil
ζ (k) = −6µ

Λ

H6

Ûφ3
0k6

25/4π3

Γ3(−1/4)
B1 −

V ′′′S

H
H6

Ûφ3
0k6

29/4π3

Γ3(−1/4)
B2 , (2.100)
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where

B1 = Re
∫ ∞

0
dxx5/4

[
H(1)5/4(x)

]3
' −0.94

B2 = Re
∫ ∞

0
dxx−5/2

[
d
dx

(
x5/4H(1)5/4(x)

)]3
' −0.09. (2.101)

As previously discussed we take

f equil
NL ' 5

18
×

Bequil
ζ (k)
(Pζ (k))2

= −5
3
× 2−23/4πΓ(−1/4)

[
B1

µ

H
+

2
3
B2

V ′′′S

µ

Ûφ0

H2

]
' −0.45 × µ

H
− 0.03 ×

V ′′′S

µ

Ûφ0

H2 . (2.102)

The factor Ûφ0/H can be calculated in terms of the density perturbation and µ/H
using (2.53). Using the measured value of ∆ζ we have that

f equil
NL ' −0.45 × µ

H
− 140 ×

V ′′′S

H

(
H
µ

)3/4
. (2.103)

In addition, using the Planck data, the 2σ constraint on µ is estimated to be8

µ/H < 200 . (2.104)

Non-gaussianity of squeezed configuration
For the squeezed configuration we consider k = k1 ' k2 � k3 = ck. Taking the
contribution from the 1/Λ term in the interaction Lagrange density we have

Bsq
ζ (k, c) = −

4H6

Ûφ3
0

µ

Λ

1
c3k6

π329/4

Γ3(−1/4)
(B3 + B4) , (2.105)

where

B3 = Re
∫ ∞

0
dx x[H(1)5/4(x)]

2 d
dy

[
y5/4H(1)5/4(y)

] ����
y→c2x

(2.106)

B4 = Re
∫ ∞

0
dx xH(1)1/4(x)H

(1)
5/4(x)

[
c2y5/4H(1)5/4(y)

] ���
y→c2x

. (2.107)

Note that H(1)5/4(x) and H(1)1/4(x) oscillate rapidly when x > 1. Therefore, the integral
is mainly supported in the region x < 1, which means c2x � 1. Around y = 0 we
have

y5/4H(1)5/4(y) = −
25/4i
π
Γ(5/4) − 25/4i

π
Γ(5/4)y2 + higher orders , (2.108)

8Here we have neglected theV ′′′S term. It is of course possible that there are cancelations between
the contribution proportional to µ and that proportional to V ′′′ which would relax the bound on µ.
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which implies that

d
dy

[
y5/4H(1)5/4(y)

] ����
y→c2x

= −29/4ic2

π
Γ(5/4)x + higher orders . (2.109)

For c � 1, B3 and B4 go like c2 and we have that in the squeezed limit Bsq
ζ ∼

c−1. Even though this contribution is enhanced by a power of 1/c, it is still
suppressed compared towhat local non-gaussianitywould givewhich is proportional
to Pζ (k1)Pζ (k2) + Pζ (k2)Pζ (k3) + Pζ (k3)Pζ (k1) ∼ c−3. This c−1 behavior in the
squeezed limit is also seen in equilateral non-Gaussianity.

For the contribution proportional to V ′′′S we find

Bsq
ζ (k, c) = −

V ′′′S

H
H6

Ûφ3
0

1
c3k6

π329/4

Γ3(−1/4)
B5 , (2.110)

where in this case

B5 = Re
∫ ∞

0
dx

[
H(1)1/4(x)

]2

d(y5/4H(1)5/4(y))

dy


������
y→c2x

(2.111)

Therefore, the V ′′′S interaction also gives a c−1 contribution to Bsq
ζ .

2.8 Concluding Remarks
We studied a simple quasi-single field inflation model where the inflaton couples
to another scalar field S. The model contains an unusual mixing term between the
inflaton and the new scalar characterized by a dimensionful parameter µ. It has been
extensively studied in the literature using perturbation theory in the region where the
parameter µ/H is small and using an effective field theory approach in the region
of large µ/H. It has also been studied using numerical methods in other regions of
parameter space. When the mass parameter m of the additional scalar field is zero
perturbation theory diverges.

We numerically calculated the power spectrum and the bispectrum of the curvature
perturbationswhen µ and themassm satisfy (µ/H)2+(m/H)2 > 9/4withm ∼ O(H)
or smaller. In much of this region, perturbation theory and the effective field theory
approach are not applicable. We found that typically the effective field theory
approach is valid for µ/H > 10. The numerical approach is non-perturbative in
µ/H and there are no divergences at m = 0. This occurs because the heavy mode
has mass

√
m2 + µ2 which does not vanish as m→ 0.
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In the case where the inflaton potential is m2
φφ

2/2, we derived constraints on the
parameters m and µ from nS and r for Ncmb = 50 and Ncmb = 60. Larger values of
µ make this inflaton potential more compatible with the data.

We computed the contributions from the ∂π∂πs and the s3 interactions to the
equilateral limit of the bispectrum of the curvature perturbations numerically and
compared it with the results from the effective theory. Using these results and the
Planck bounds on fN L we derived upper bounds on V ′′′S and µ.

We also analyzed the squeezed limit of the bispectrum, showing that in this model
it is much smaller than for local non-gaussianity. The contribution to the squeezed
bispectrum proportional toV ′′′S exhibits interesting oscillatory behavior as a function
of the ratio of the small momenta to the larger one.9 We noted that the oscillation
wavelength has µ dependence that is not evident in perturbation theory. This
behavior could potentially be observed in future experiments.

For small µ and m, there are potentially interesting observational consequences of
the behavior of the four point function on the wavevectors that characterize its shape.
We will present results on this in a further publication.

9This oscillatory behavior was previously noted using perturbation theory for the contribution
of the ∂π∂πs interaction to the bispectrum and trispectrum [35].
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C h a p t e r 3

NON-GAUSSIAN ENHANCEMENTS OF GALACTIC HALO
CORRELATIONS IN QUASI-SINGLE FIELD INFLATION

We consider a quasi-single field inflation model in which the inflaton interacts with a
massive scalar field called the isocurvaton. Due to the breaking of time translational
invariance by the inflaton background, these interactions induce kinetic mixing
between the inflaton and isocurvaton, which is parameterized by a constant µ. We
derive analytic formulae for the curvature perturbation two-, three-, four-, five-, and
six-point functions explicitly in terms of the external wave-vectors in the limit where
µ and the mass of the isocurvaton m are both much smaller than H. In previous
work, it has been noted that when m/H and µ/H are small, the non-Gaussianities
predicted by quasi-single field inflation give rise to long wavelength enhancements
of the power spectrum for biased objects (e.g., galactic halos). We review this
calculation, and calculate the analogous enhanced contribution to the bispectrum of
biased objects. We determine the scale at which these enhanced terms are larger
than the Gaussian piece. We also identify the scaling of these enhanced parts to the
n-point function of biased objects.

3.1 Introduction
The inflationary paradigm [2, 4–7] proposes an era in the very early universe during
which the energy density is dominated by vacuum energy. It explains why the
universe is close to flat and the near isotropy of the cosmic microwave background
radiation. In addition, it has a simple quantummechanical mechanism for generating
energy density perturbations with wavelengths that are well outside the horizon in
the early universe. The energy density perturbations resulting from inflation have an
almost scale invariant Harrison-Zeldovich power spectrum. The simplest inflation
models consist of a single scalar field φ called the inflaton. The quantum fluctuations
in the Goldstone mode π associated with the breaking of time translation invariance
by the inflaton [27] source the energy density fluctuations. In the simplest of
these single field inflationary models, the density perturbations are approximately
Gaussian [28].

Quasi-single field inflation [15] is a simple generalization of single field inflation that
consists of a massive scalar field, the isocurvaton field s, that couples to the inflaton.
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This coupling can give rise to significant non-Gaussianities in the correlators of π.
The Lagrange density in this model contains an unusual kinetic mixing of the form
µ Ûπs that gives rise to a wealth of interesting phenomena.

In this chapter, we study the effects of primordial non-Gaussianities on large scale
structure. One complication that is not present for the microwave background
radiation is that galaxies are biased objects. They do not trace the mass distribution
but rather arise at special points, for example where the fluctuations in the mass
density exceed some threshold. It was realized in [30] and [49] that the power
spectrum for biased objects can deviate significantly from Harrison-Zeldovich on
large scales if the primordial mass density perturbations are non-Gaussian. These
effects have become known as scale-dependent bias and stochastic bias. In [50]
these enhancements for the power spectrum of biased objects were systematically
explored within the context of quasi-single field inflation.1 Quantitative predictions
for the power spectrum of galactic halos in quasi-single field inflation (and other
models for non-Gaussian primordial fluctuations) were recently made in [48]. Very
recently the scale-dependent bias introduced by higher spin fields [35] coupled to
the inflaton has been explored [51].

In this chapter we continue and extend the work of [50] and compute the galactic
halo power spectrum and bispectrum in quasi-single field inflation. The bispectrum
for galaxies was computed for local non-Gaussianity in [52] and for equilateral
non-Gaussianity [53]. We make explicit numerical predictions by adopting the
very simple model in which galaxies arise at points where the underlying energy
density fluctuations (averaged over a volume) are above a threshold [54].2 Also, we
identify the scaling of the n-point function of the halo overdensity in quasi-single
field inflation within this threshold model.

The impact of the non-Gaussianities in quasi-single field inflation is largest when
the kinetic mixing µ and the isocurvaton mass m are small compared to the Hubble
constant during inflation H. We derive new analytic methods to calculate the
correlations of π in this region of parameter space. These are applied to derive
analytic expressions for the two-, three-, four-, five-, and six-point functions of π.
We apply these results to derive explicit expressions for the galactic halo power
spectrum and bispectrum. The effects in the power spectrum and the bispectrum of

1We refer to these effects as enhancements even though for some range ofwave-vectors andmodel
parameters they can interfere destructively with the usual part arising from Gaussian primordial
density fluctuations.

2Kaiser applied this model to explain the biasing of rich clusters of galaxies [55].
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galaxies due to primordial non-Gaussianities can become pronounced at the scale
q ' 1/(200h−1Mpc). In this work we neglect the time evolution of the galaxy
distribution after galaxies form. Even though this is not a small effect, we do not
expect that neglecting it will qualitatively impact our conclusions. Furthermore, the
computations we perform of the higher correlations of π will be useful for a more
complete computation of the galaxy bispectrum.

In section 3.2 we outline the quasi-single field inflation model. We discuss the
power series expansion of the mode functions of the quantum fields π and s at small
|τ |, where τ is conformal time. For small µ/H and m/H, a method is developed to
determine the power series coefficients needed to compute the two-, three-, four-,
five- and six-point correlations of the curvature perturbation ζ .3 In section 3.3 we
compute the three-, four-, five- and six-point correlations of ζ . The three- and four-
point functions are computed for general wave-vectors, but the five- and six-point
functions are only computed for the configurations of wave-vectors that are relevant
to the long wavelength enhancements to the galactic halo bispectrum. Section 3.4
introduces the bias expansion and the points above threshold model for the galactic
halo overdensity. The results from Section 3.3 are used to compute the halo power
spectrum and bispectrum. We also present the scaling of the n-point function of
the halo overdensity in quasi-single field inflation. Concluding remarks are given in
section V.

3.2 The model and the mode functions
We consider a quasi-single field inflation theory in which inflation is driven by
a single scalar inflaton field φ and the inflaton is coupled to a single massive
scalar isocurvaton field s. The classical background field of the inflaton, φ0(t), is
time-dependent but we will impose conditions so that to leading order in slow-roll
parameters, the background value of s is zero. We also impose a shift symmetry
φ → φ + c and a Z2 symmetry φ → −φ on the inflaton that is only broken by
its potential. This implies that the isocurvaton field s couples to derivatives of the
inflaton. The lowest dimension operator coupling the inflaton to the isocurvaton is
the dimension five operator,

Ldim 5 =
1
Λ
gµν∂µφ∂νφs. (3.1)

We choose the gauge in which the inflaton is only a function of time, φ(x) = φ0(t).
We expand the potential for s in a power series about s = 0, V(s) = V ′s +V ′′s2/2 +

3π and ζ are linearly related.
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V ′′′s3/3!+... and assume the tadpole in s cancels, ( Ûφ0)2/Λ−V ′ = 0. Sincewework to
leading order in slow-roll parameters, we can neglect Üφ0, making this cancellation
possible. To obtain long wavelength enhancements to the correlations of biased
objects, we need m, the mass of s (m2 = V ′′), to be less than the Hubble constant
during inflation, H. We assume there is some inflaton potential (likely non-analytic
in φ) that gives values of the power spectrum tilt nS and the tensor to scalar ratio r

consistent with observations.

The Goldstone field π(x), associated with time translational invariance breaking by
the time dependence of φ0, gives rise to the curvature fluctuations. In a de-Sitter
background, the Lagrangian describing π(x) and s(x) is

L = L0 + Lint (3.2)

where

L0 =
1

2(Hτ)2

(
(∂τπ)2 − ∇π · ∇π + (∂τs)2 − m2

(Hτ)2
s2 − ∇s · ∇s − 2µ

Hτ
s∂τπ

)
(3.3)

and

Lint =
1
(Hτ)4

(
(Hτ)2
Λ

(
(∂τπ)2 − ∇π · ∇π

)
s − V ′′′

3!
s3 − V (4)

4!
s4 . . .

)
. (3.4)

In eq. (3.3) we have introduced

µ = 2 Ûφ0/Λ (3.5)

and conformal time τ = −e−Ht/H. We have rescaled π by Ûφ0 (we take Ûφ0 > 0) to
obtain a more standard normalization for the π kinetic term. We have also included
the measure factor √−g in the Lagrangian so that the action is equal to

∫
d3xdτL.

Note the unusual kinetic mixing term in (3.3) which is a result of the background
inflaton field breaking Lorentz invariance.

To compute correlation functions involving π and s, we expand the quantum fields
in terms of creation and annihilation operators. Since the fields π and s have kinetic
mixing, they share a pair of creation and annihilation operators. Introducing η = kτ

we write,

π(x, τ) =
∫

d3k
(2π)3

(
a(1)(k)π(1)k (η)e

ik·x + a(2)(k)π(2)k (η)e
ik·x + h.c.

)
(3.6)

and

s(x, τ) =
∫

d3k
(2π)3

(
a(1)(k)s(1)k (η)e

ik·x + a(2)(k)s(2)k (η)e
ik·x + h.c.

)
(3.7)
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By varying (3.3) we can obtain the equations of motion for the mode functions
π
(i)
k (η) and s(i)k (η). These are

π
(i)′′
k −

2π(i)′k

η
+ π
(i)
k −

µ

H

(
s(i)′k

η
−

3s(i)k

η2

)
= 0 (3.8)

and

s(i)′′k −
2s(i)′k

η
+

(
1 +

m2

H2η2

)
s(i)k +

µ

H

π
(i)′
k

η
= 0 , (3.9)

where a “ ′ ” indicates an η derivative.

Power Series Solution
As mentioned in the introduction it is difficult to solve equations (3.8) and (3.9)
analytically for general m and µ. Fortunately, in the small m/H and µ/H regime
we do not need the mode functions’ full time-dependence to determine the leading
behavior of the correlation functions of π. Rather, we only need their small −η
behavior.4 To determine this, we obtain a power series solution to (3.8) and (3.9).
To begin, we rescale the mode functions

π
(i)
k (η) = (H/k

3/2)π(i)(η) s(i)k (η) = (H/k
3/2)s(i)(η) (3.10)

and then expand π(i)(η) and s(i)(η) as a power series in −η

πi(η) =
∞∑

n=0
a(i)r,n(−η)n+r s(i)(η) =

∞∑
n=0

b(i)r,n(−η)n+r . (3.11)

By plugging (3.11) into (3.8) and (3.9), we derive relations among the coefficients
a(i)r,n and b(i)r,n[

a(i)r,0r − µ

H
b(i)r,0

]
(r − 3)(−η)r−2 +

[
a(i)r,1(r + 1) − µ

H
b(i)r,1

]
(r − 2)(−η)r−1

+

∞∑
n=0

[ [
a(i)r,n+2(n + r + 2) − µ

H
b(i)r,n+2

]
(n + r − 1) + a(i)r,n

]
(−η)n+r = 0[ [

b(i)r,0(r − 3) + µ

H
a(i)r,0

]
r + b(i)r,0

m2

H2

]
(−η)r−2

+

[ [
b(i)r,1(r − 2) + µ

H
a(i)r,1

]
(r + 1) + b(i)r,1

m2

H2

]
(−η)r−1

+

∞∑
n=0

[ [
b(i)r,n+2(n + r − 1) + µ

H
a(i)r,n+2

]
(n + r + 2) + b(i)r,n+2

m2

H2 + b(i)r,n

]
(−η)n+r = 0.

(3.12)

4Conformal time η satisfies −∞ < η < 0 with inflation ending at η = 0.
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Since (3.12) is true for all η < 0, the coefficient multiplying each power of −η van-
ishes. The constraints due to the coefficients multiplying (−η)n+r provide recursion
relations relating the n + 2 coefficients to the n ones. The constraints due to the
coefficients multiplying (−η)r−2 are

(a(i)r,0r − µ

H
b(i)r,0)(r − 3) = 0,

[
b(i)r,0(r − 3) + µ

H
a(i)r,0

]
r + b(i)r,0

m2

H2 = 0. (3.13)

Equation (3.13) implies the only possible values of r are

r = 0, 3, α−, α+ (3.14)

where

α± = 3/2 ±
√

9/4 − (µ/H)2 − (m/H)2. (3.15)

Note α− and α+ approach 0 and 3 when m and µ approach zero. Then small µ/H
and m/H imply small α−. Considering odd n instead of even n results in the same
exact solution, so we take a(i)r,1 = b(i)r,1 = 0 to eliminate this redundant solution.

There are then four branches of the series solution (3.11). The leading power of
each branch is (−η)r and the successive terms go like (−η)r+2k where k is a positive
integer. The series solutions (3.11) are a linear combination of each branch. The
small −η behavior of π(i) and s(i) is then

π(i)(η) = a(i)0 + a(i)− (−η)α− + a(i)0,2(−η)
2 + a(i)−,2(−η)

α−+2 + a(i)+ (−η)α+ + a(i)3 (−η)
3 + . . .

s(i)(η) = b(i)− (−η)α− + b(i)0,2(−η)
2 + b(i)− (−η)α−+2 + b(i)+ (−η)α+ + b(i)3 (−η)

3 + . . .

(3.16)

Note that we have used the notation a(i)±,n ≡ a(i)α±,n and b(i)±,n ≡ b(i)α±,n, and we have also
written the n = 0 coefficients as a(i)r . Moreover, b(i)0 = 0 due to (3.13).

As−η→ 0, s(i)(η) → 0 while π(i)(η) → a(i)0 . However, for α− << 1 the (−η)α− term
will remain significant even for −η << 1 which means π can undergo superhorizon
evolution. We can estimate the value of η at which π stops evolving using α− '(
µ2 + m2) /(3H2)which is valid for small µ and m. The π modes then stop evolving
at −η ∼ e−3H2/(µ2+m2). In this chapter we only consider values of m and µ such
that the modes of interest stop evolving before the end of inflation. Then one does
not need to consider the details of reheating to make predictions for the curvature
perturbations.
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Equation (3.13) can also be used to relate the a(i) and b(i) coefficients multiplying
the leading (−η)r term of each branch

b(i)0 = 0, b(i)− =
Ha(i)− α−

µ
, b(i)+ =

Ha(i)+ α+
µ

, b(i)3 =
−3Hµ

m2 a(i)3 . (3.17)

A full solution to the mode equations is unnecessary. We only need certain com-
binations of the power series coefficients to derive the leading (for small m and µ)
behavior of the correlation functions of π and s. For example, the combinations∑
i
|a(i)0 |

2,
∑
i

a(i)0 b(i)∗− and
∑
i
|b(i)− |2 determine the two point functions 〈ππ〉, 〈πs〉 and

〈ss〉 at late times.

Power Series Coefficients
In this section, we outline the derivation of the combinations of power series coef-
ficients that are needed to compute the correlation functions of π when m/H and
µ/H are small. We begin with the combination

∑
i
|b(i)− |2, which can be obtained by

matching to an effective field theory that reproduces the correct two point function
of s in the small η limit. It turns out that once we know

∑
i
|b(i)− |2 we can determine∑

i
|a(i)0 |

2 and
∑
i

a(i)0 b(i)∗− from the full theory.

In the small −η limit we can neglect the second term appearing in (3.3). Then:

LEFT
0 =

1
2(Hτ)2

(
(∂τπ)2 + (∂τs)2 − m2

(Hτ)2
s2 − ∇s · ∇s − 2µ

Hτ
s∂τπ

)
(3.18)

The π equation of motion gives

∂τπ =
µ

H
s(τ)
τ

(3.19)

where we have dropped a term proportional to τ2 in (3.19). The solution of eq. (3.19)
is

π(τ) = c1 +

τ∫
−∞

µ

H
s(τ′)
τ′

dτ′ (3.20)

where c1 is a constant operator. As mentioned earlier, since (for small η) s(i)k (η) '
b(i)− (−η)α− and α− is small, the mode functions s(i)k remain nonzero even after the
mode wave-vector has exited the horizon (i.e., when |η | < 1). Due to the factor
of 1/τ in the integral in (3.20), the π mode functions will undergo superhorizon
growth and can become quite large if m/H and µ/H are small.
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We use eq. (3.20) to express the field π in terms of s. Integrating out π using its
equation of motion yields an effective Lagrangian for s:

LEFT
0 =

1
2(Hτ)2

(
(∂τs)2 − m2 + µ2

(Hτ)2
s2 − ∇s · ∇s

)
. (3.21)

Since in this effective theory there is only one field s, it can be written in terms of a
single mode function sk that satisfies the differential equation,

s′′k (η) −
2
η

s′k(η) + sk(η) +
(
µ2

H2 +
m2

H2

)
sk(η)
η2 = 0. (3.22)

The solution to (3.22) that satisfies the asymptotic Bunch-Davies vacuum condition
and is consistent with the canonical commutation relations is

sk(η) = H
√

π

4k3 (−η)
3/2H(1)ν (η) (3.23)

where ν =
√

9/4 − (µ/H)2 − (m/H)2 and H(1)ν is a Hankel function of the first kind.
The small −η limit of (3.23) is

sk(η) = H(−η)α− i
k3/2

1
√

2
. (3.24)

Using (3.24), we can determine the small −η limit of the two-point function of the
Fourier transform of s. Denoting this Fourier transform by sk, we obtain

〈sksk′〉 (τ′) = (2π)3δ3 (k + k′) H2

2k3 (−η)
2α− . (3.25)

By matching the full theory prediction for 〈ss〉 to (3.25) we find∑
i

���b(i)− ���2 = 1
2
. (3.26)

Equation (3.20) can be used to determine the leading small −η behavior of the π
mode functions in the full theory. It gives

π(i)(0) = c(i)1 +

0∫
−∞

µ

H
s(i)(η′)
η′

dη′. (3.27)

From equation (3.16) we see that the integrand in (3.27) goes like (−η)−1+α− in
the IR region of the integral, i.e. −η < 1. For small m/H and µ/H, α− is very
small and the integral will receive a large contribution from the IR. On the other
hand, the contribution from the UV is small because the mode functions become
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oscillatory with smaller amplitude when −η > 1. This means the integral is fixed
by the integrand’s IR behavior so that5

π(i)(0) ' c(i)1 −
µb(i)−
H

0∫
−1

(−η)−1+α−dη = c(i)1 −
µb(i)−
H

1
α−
= c(i)1 −

3µHb(i)−
µ2 + m2 . (3.28)

In (3.28) we have used α−1
− ' 3H2/

(
µ2 + m2) . The corrections to (3.28) are

suppressed by powers of α− and are unimportant when m/H and µ/H are small.
The integral is insensitive to the exact value of the UV cutoff because α− is small.

We can now compute the two-point function of the Fourier transform of π, which
can be written as

〈πk(0)πk′(0)〉 ' (2π)3δ (k + k′) H2

k3 C2(µ,m). (3.29)

We determine C2(µ,m) by taking the magnitude squared of (3.28):

C2(µ,m) '
∑

i

[���c(i)1

���2 + 9µ2H2(
µ2 + m2) ���b(i)− ���2 − 6µH

µ2 + m2 Re
(
c(i)1 b(i)∗−

)]
. (3.30)

In writing (3.30), we have only kept the terms that are most important for m/H and
µ/H small. Now 〈ππ〉 is invariant under s→ −s.6 This implies the last term in the
brackets of (3.30) has to vanish. We can determine the first term by noting that the
constant c(i)1 is µ independent. This can be seen from the fact that it is a boundary
condition fixed by the UV, thereby independent of the mixing factor µ. We can then
fix the first term in (3.30) by demanding that C2(0,m) = 1/2. Finally, using (3.26)
we find that

C2(µ,m) '
1
2
+

9µ2H2

2
(
µ2 + m2)2 . (3.31)

Equation (3.31) gives the leading behavior of C2(µ,m) in the limit of small m/H
and µ/H. We can determine the accuracy of (3.31) by extending the numerical
techniques developed in [42] and chapter two to the region of small m/H and µ/H
and computing the power spectrum numerically. This is done in appendix 3.A.

We now compute the leading m and µ dependence of the curvature perturbation
two-point function. The curvature perturbation is related to the Goldstone field by

ζk = −
H
Ûφ0
πk. (3.32)

5Wewill use these same argumentswhenwe evaluate the time integrals involved in the calculation
of higher point correlators.

6If we treat µ as a perturbation then all of the corrections to 〈ππ〉 involve even powers of the s
field.
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The curvature perturbation two-point is then〈
ζk1ζk2

〉
=

(
H
Ûφ0

)2 〈
πk1πk2

〉
= (2π)3δ(k1 + k2)Pζ (k)

= (2π)3δ(k1 + k2)
(

H2

Ûφ0

)2 1
k3 C2(µ,m). (3.33)

Using (3.33) we can express Ûφ0 in terms of µ, m, and the measured value of the
dimensionless power spectrum ∆ζ [44]:

∆
2
ζ = 2.12 × 10−9 =

k3

2π2Pζ (k) =
(

H2

Ûφ0

)2 1
2π2 C2(µ,m). (3.34)

This implies

Ûφ0

H2 =

√
C2(µ,m)
2π2∆2

ζ

. (3.35)

We can determine the combination
∑
i

a(i)0 b(i)∗− by multiplying both sides of (3.28) by

b(i)∗− and summing over i. This gives∑
i

a(i)0 b(i)∗− =
∑

i

c(i)1 b(i)∗− −
3µH

2
(
µ2 + m2) . (3.36)

We have already shown that
∑
i

Re
(
c(i)1 b(i)∗−

)
= 0, which implies

∑
i

Re
(
a(i)0 b(i)∗−

)
= − 3µH

2
(
µ2 + m2) . (3.37)

The remaining combinations of power series coefficients needed to compute the
higher order correlation functions of π are fixed using the canonical commutation
relations of s and π. Consider the equal time relation [s(x, τ), π(y, τ)] = 0. By
inserting (3.6) and (3.7) into this relation, we find

[π(x, τ), s(y, τ)] =
∫

d3k
(2π)3

eik·(x−y)
∑

i

[
π
(i)
k (η)s

(i)∗
k (η) − c.c.

]
= 0. (3.38)

The mode functions must then satisfy∑
i

Im
[
π
(i)
k (η)s

(i)∗
k (η)

]
= 0 (3.39)
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for all η. Plugging the leading IR behavior of the mode functions (3.16) into (3.39)
and demanding it holds at orders (−η)α− , (−η)α+ , (−η)2, and (−η)3 respectively
yields the following constraints∑

i

Im
[
a(i)0 b(i)∗−

]
=

∑
i

Im
[
a(i)0 b(i)∗+

]
=

∑
i

Im
[
a(i)0 b(i)∗0,2

]
=

∑
i

Im
[
a(i)0 b(i)∗3 + a(i)+ b(i)∗− + a(i)− b(i)∗+

]
= 0. (3.40)

Given the fact that the recursion relations (3.12) and eq. (3.17) are real, eqs. (3.40)
and (3.17) further imply that:∑

i

Im
[
a(i)0 b(i)∗−,2

]
=

∑
i

Im
[
b(i)− b(i)∗0,2

]
= 0 (3.41)

Moreover, the recursion relations (3.12) being real alongwith the fact that
∑

i Im
[
|b(i)− |2

]
=

0 imply that ∑
i

Im
[
b(i)− b(i)∗−,2

]
= 0 (3.42)

Furthermore, using the commutation relation [π(x, τ),Ππ(y, τ)] = iδ3(x − y) gives:∑
i

Im
[
3a(i)0 a(i)∗3 + α+a(i)− a(i)∗+ + α−a(i)+ a(i)∗−

]
= −1

2∑
i

Im
[
a(i)− a(i)∗3

]
= 0 (3.43)

Again using the fact that relations (3.17) are real, we can convert the second equation
in (3.43) to: ∑

i

Im
[
b(i)− b(i)∗3

]
= 0 (3.44)

Using (3.17), we can combine the final equation of (3.40) with the first equation of
(3.43) to find ∑

i

Im
[
a(i)0 b(i)∗3

]
=

µH
2
(
µ2 + m2)∑

i

Im
[
b(i)− b(i)∗+

]
=

−1
2 (α+ − α−)

' −1
6
. (3.45)

The equalities in eq. (3.45) hold for all m and µ such that m2 + µ2 ≤ 9H2/4, i.e. for
α− and α+ real.
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Equations (3.26), (3.31), (3.37), (3.41), (3.42), (3.44), and (3.45) comprise the full
set of relations among power series coefficients we need to compute the leading m

and µ dependence of the correlation functions of π. We will also need the fact that
n > 0 coefficients a(i)r,n and b(i)r,n are not enhanced by powers of α−1

− compared to a(i)r

and b(i)r coefficients for small α−, a fact which is simple to see from the recursion
relations (3.12).

3.3 Primordial Non-Gaussianities
In this section we compute the leading m and µ behavior of the connected three-
and four-point functions of the curvature perturbation ζ for arbitrary external wave-
vectors. We also compute the connected five-and six-point functions in certain
kinematic limits. We will use these results to calculate the two- and three-point
functions of biased objects.

We perform the computation of these correlation functions using the in-in formalism
[47]. We will mostly use the commutator form of the in-in correlator of an operator
O(0):

〈O(0)〉 =
∞∑

N=0
iN

∫ 0

−∞
dτN

∫ τN

−∞
dτN−1· · ·

∫ τ2

−∞
dτ1

× 〈[H I
int(τ1), [H I

int(τ2), . . . [H I
int(τN ),O I(0)] . . . ]〉I (3.46)

where I denotes a state or operator evolving in the interaction picture and Hint

denotes the interaction Hamiltonian7

Hint(τ) =
1
(Hτ)4

∫
d3x

[
1
Λ

s(x)gµν∂µπ(x)∂νπ(x) +
V ′′′

3!
s(x)3 + V (4)

4!
s(x)4

]
.

(3.47)

For simplicity, we assume V (4) is much smaller than (V ′′′/H)2 and can be neglected.
We have also explored the importance of the s∂π∂π interaction in comparison
with the s3 interaction for the primordial curvature bispectrum. For the range of
parameters that we are using in this chapter, we find numerically that the ratio of
these contributions is O(10−3)/ fN L . We suspect that this interaction is subdominant
for the other primordial correlation functions as well, and neglect this interaction
henceforth. All relevant interactions are then mediated by the V ′′′ term. We assume
|V ′′′|/H < 1 so that perturbation theory is valid.

7We restrict our attention to renormalizable terms in the potential for s.
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Three-Point Function
The three-point function of ζ can be written〈

ζk1ζk2ζk3

〉
≡ Bζ (k1, k2, k3)(2π)3δ3 (k1 + k2 + k3) . (3.48)

The leading contribution to the bispectrum Bζ (k1, k2, k3) is obtained by inserting a
single factor of the V ′′′ interaction into (3.46). This yields

Bζ (k1, k2, k3) = −2V ′′′
(

H
Ûφ0

)3
Im

0∫
−∞

dτ
(Hτ)4

3∏
l=1

[
π
(1)
kl
(0)s(1)∗kl

(klτ) + π(2)kl
(0)s(2)∗kl

(klτ)
]
.

(3.49)

Equation (3.49), written in terms of the rescaled mode functions (3.10), becomes

Bζ (k1, k2, k3) = −2
(

H2

Ûφ0

)3 (
V ′′′

H

) ( 3∏
i

1
k3

i

)
Im

0∫
−∞

dτ
τ4

3∏
l=1

∑
i

π(i)(0)s(i)∗(klτ).

(3.50)

Let us now focus on the evaluation of the integral in (3.50), which can be written:

k3
UV Im

0∫
−∞

dη
η4

3∏
l=1

∑
i

π(i)(0)s(i)∗
(

kl

kUV
η

)
(3.51)

where we define kUV = max(kl) and η = kUVτ. In the small µ and m regime, (3.51)
receives most of its support from the IR region of the integral (when the arguments
of the mode functions are less than 1 in magnitude) due to the superhorizon growth
mentioned in the discussion following (3.20). The contribution from the UV region
is subdominant. Our choice of kUV implies the leading m and µ contribution to the
integral comes from the region −1 ≤ η ≤ 0, and (3.51) becomes:

k3
UV Im

0∫
−1

dη
η4

3∏
l=1

∑
i

[(
a(i)0 b(i)∗−

) (
− kl

kUV
η

)α−
+

(
a(i)0 b(i)∗0,2

) (
− kl

kUV
η

)2

+
(
a(i)0 b(i)∗−,2

) (
− kl

kUV
η

)α−+2
+

(
a(i)0 b(i)∗+

) (
− kl

kUV
η

)α+
+

(
a(i)0 b(i)∗3

) (
− kl

kUV
η

)3
+O(η4)

]
.

(3.52)

Note the integral is potentially IR divergent because of the factor of 1/η4. However,
eqs. (3.40) and (3.41) imply the coefficients multiplying the IR divergent terms are
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zero, and that the leading µ and m behavior of (3.52) is(∑
i

Re
[
a(i)0 b(i)∗−

] )2 (∑
i

Im
[
a(i)0 b(i)∗3

] ) [
k3

1

(
k2k3

k2
UV

)α−
+ cyc. perm

]
×

0∫
−1

dη(−η)−1+2α−

=
27
16

µ3H5(
µ2 + m2)4

[
k3

1

(
k2k3

k2
UV

)α−
+ cyc. perm

]
. (3.53)

As long as α− is small, the answer does not depend on the precise choice of kUV , we
only have to choose it to be of the same order as the hardest wave-vector entering
the vertex.8 Equivalently, the answer is insensitive to the precise choice of the lower
bound of the η integral. Plugging (3.53) into (3.50), we find that the leading m and
µ behavior of the O(V ′′′) contribution to the bispectrum is

Bζ (k1, k2, k3) = −
(

H2

Ûφ0

)3 (
V ′′′

H

)
1

k3
1 k3

2 k3
3

(3µ/2)3 H5(
µ2 + m2)4

×
[
k3

1

(
k2k3

k2
UV

)α−
+ k3

2

(
k1k3

k2
UV

)α−
+ k3

3

(
k1k2

k2
UV

)α−]
(3.54)

where kUV = max(ki). Equation (3.54) was computed numerically in [15] and is
valid for any external wave-vector configuration. Note that when the wave-vectors
k1, k2 and k3 are the same order of magnitude, the terms raised to the power α− can
be set to unity. Then the bispectrum has the same form as local non-Gaussianity,
i.e., Bζ (k1, k2, k3) ∝

[
Pζ (k1)Pζ (k2) + Pζ (k1)Pζ (k3) + Pζ (k2)Pζ (k3)

]
.

We now study (3.54) in a couple interesting kinematic limits. First, consider (3.54)
in the equilateral limit ki ≡ k

Bequil
ζ (k) = −

(
H2

Ûφ0

)3 (
V ′′′

H

)
1
k6

3 (3µ/2)3 H5(
µ2 + m2)4 . (3.55)

We can use (3.55) to relate V ′′′ to the model’s prediction for fN L . We estimate fN L

using

fN L =
5
18
×

Bequil
ζ (k)
Pζ (k)2

. (3.56)

8The ratios of external wave-vectors to kUV raised to the power α− in equation (3.53) can be
interpreted as the re-summation of leading logs in the α− expansion.
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Figure 3.1: Diagrams that contribute to three- and four-point correlations of ζ in
the squeezed and collapsed limits respectively. These diagrams contribute to the
galactic halo power spectrum. Dashed lines represent π, while solid lines represent
s.

Substituting (3.33), (3.35) and (3.55) into (3.56) gives

V ′′′

H
= −6

5
fN L

√
2π2∆2

ζC2(µ,m)
3
2
(µ2 + m2)4
(3µ/2)3H5 . (3.57)

The current Planck 95%C.L. constraint for local non-Gaussianity is fN L = 2.7±11.6.
For fN L = 10 and µ/H = m/H = 0.3, we find that |V ′′′|/H ' 10−3.

The two kinematic configurations we will be most interested in when we compute
galactic halo correlators are when all three external wave-vectors are soft (Fig.
3.2c), and when one leg is soft while the other two are hard - the so-called squeezed
limit (Fig. 3.1a). In what follows, we will denote hard wave-vectors by k and soft
wave-vectors by q. First we consider the squeezed limit. We choose k2 = −k1 − q
and k1 = k2 ≡ k >> k3 ≡ q. The full O(V ′′′) contribution (3.50) to the bispectrum
in this limit can be written

Bsq
ζ (k, q) = −

(
H2

Ûφ0

)3 (
V ′′′

H

)
2 (3µ/2)3 H5(
µ2 + m2)4

1
k3+α−q3−α−

. (3.58)

The wave-vector dependence of equation (3.58) was first determined in [15, 56].
Finally, the bispectrum in the limit where all three external wave-vectors are soft
can be obtained simply by making the replacement ki → qi in (3.54).

Four-Point Function
The four-point function of ζ can be written〈

ζk1ζk2ζk3ζk4

〉
≡ N (4)ζ (k1, k2, k3, k4)(2π)3δ3

( 4∑
i

ki

)
. (3.59)
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We can derive the leading contribution to N (4)ζ by inserting two factors of the V ′′′

interaction into (3.46). It is convenient to define

A(x) ≡
∑

i

π(i)(0)s(i)∗(x) B(x) ≡
∑

i

b(i)− s(i)∗(x). (3.60)

By expanding the commutators and performing all possible contractions, we find:

N (4)ζ (k1, k2, k3, k4) = 4
(

H2

Ûφ0

)4 (
V ′′′

H

)2
( 4∏

i

1
k3

i

)
1

k3
12

0∫
−∞

dτ
τ4

τ∫
−∞

dτ′

τ′4

× Im [A(k1τ)A(k2τ)] Im
[
A(k3τ

′)A(k4τ
′)

∑
i

s(i)(k12τ)s(i)∗(k12τ
′)
]

+ (k1 ↔ k3, k2 ↔ k4) + cyc. perms(k2, k3, k4) (3.61)

where k12 = |k1 + k2 |.

Unlike the calculation of the three-point function, the four-point one involves nested
time integrals. Again, the four-point integral is dominated by the IR for α− << 1
and the integrand reduces to polynomials in τ and τ′. Like before, we make the
change of variable η ≡ kUV12τ and η′ ≡ kUV34τ

′, where kUVi j ≡ max{ki, k j, |ki +k j |}
and cut off the integrals at ηUV = −1 and η′UV = −1 (recall that the result is not
sensitive to this cutoff value as long as α− is small). The relationships among the
power series coefficients deduced in section 3.2 imply the integral converges in the
IR.

Without loss of generality, assume that k1 is the largest external wave-vector (this
implies that kUV12 ≥ kUV34). Using the identities relating the power series coefficients
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derived in section 3.2, the time integral in (3.61) becomes:
0∫

−∞

dτ
τ4

τ∫
−∞

dτ′

τ′4
Im [A(k1τ)A(k2τ)] Im

[
A(k3τ

′)A(k4τ
′)

∑
i

s(i)(k12τ)s(i)∗(k12τ
′)
]
+ (k1 ↔ k3, k2 ↔ k4)

=
9
32

µ4H4(
µ2 + m2)4

[(
k2

I

k2
UV12

k2
UV34

)α− [
k3

1 kα−2 + k3
2 kα−1

] [
k3

3 kα−4 + k3
4 kα−3

]

×


0∫

−1

dη(−η)−1+2α−

kUV34
kUV12

η∫
−1

dη′(−η′)−1+2α− +

0∫
−

kUV34
kUV12

dη(−η)−1+2α−

kUV12
kUV34

η∫
−1

dη′(−η′)−1+2α−


+

(
k3

I

kUV12
2α−kUV34

α−

) [
k3

1 kα−2 + k3
2 kα−1

] [
kα−3 kα−4

] 0∫
−1

dη(−η)−1+2α−

kUV34
kUV12

η∫
−1

dη′(−η′)−1+α−

+

(
k3

I

kUV12
α−kUV34

2α−

) [
kα−1 kα−2

] [
k3

3 kα−4 + kα−3 k3
4
] 0∫
−

kUV34
kUV12

dη(−η)−1+2α−

kUV12
kUV34

η∫
−1

dη′(−η′)−1+α−


.

(3.62)

Notice not all of the lower bounds of the η integrals equal -1, some are cutoff by
− kUV34

kUV12
. This is to ensure that the upper bound of the η′ integral is greater than -1.

Evaluating the time integrals, we find the four-point function for general external
wave-vectors is

N (4)ζ (k1, k2, k3, k4) =
(

H2

Ûφ0

)4 (
V ′′′

H

)2
( 4∏

i=1

1
k3

i

)
1

k3
12

(3µ/2)4H8

2(µ2 + m2)6

×
[(

k3
1 kα−2 + kα−1 k3

2

) (
k3

3 kα−4 + kα−3 k3
4

) (
k12

kUV12 kUV34

)2α−

+ 2
(
1 − 2

3

(
kUV34

kUV12

)α−)
(k3

1 kα−2 + kα−1 k3
2)(k3k4)α−

k3
12

k2α−
UV12

kα−UV34

+
2
3
(k1k2)α−

(
k3

3 kα−4 + kα−3 k3
4

) k3
12

k3α−
UV12

]
+ cyc. perm(k2, k3, k4)

(3.63)

We now focus on kinematic limits of (3.63) that are most important in the calculation
of the two- and three-point functions of galactic dark matter halos. The enhance-
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Figure 3.2: Diagrams that contribute to the three-, four-, five-, and six-point cor-
relations of ζ in the kinematic regimes that contribute to the enhanced part of the
galactic halo bispectrum. Dashed lines represent π, while solid lines represent s.

ments discovered in [30] and [49] respectively occur when the magnitude of a sum
of wave-vectors in the correlation function of ζ is small or when the magnitude of
an external wave-vector is small. For the four-point correlation, the first of these is
referred to as the collapsed limit. Suppose that q denotes small wave-vectors, and
k denotes large wave-vectors. In these computations (as well as in later computa-
tions of the five- and six-point functions of ζ), we assume that (ki/k j)α− ' 1 and
(qi/q j)α− ' 1. This approximation is justified in our application to galactic halos
since we will want to consider k’s roughly on the order of the inverse of the galactic
halo radius, and since the q’s will be taken to be within an order of magnitude from
each other (i.e. between about (50 Mpc/h)−1 and (1000 Mpc/h)−1). However, we
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do not take (q/k)α− to be approximately 1 since q and k may differ by several orders
of magnitude. We first specialize to the collapsed limit of (3.63) which occurs when
two pairs of legs have nearly equal and opposite wave-vectors. Let k2 = −k1 + q
and k4 = −k3 − q where q << k1, k3. Then the most important permutation of
(3.63) in this collapsed limit is when k1 and k2 are attached to one vertex, and k3

and k4 are attached to the other. The wave-vector of the internal line becomes very
small (Fig. 3.1b) and eq. (3.63) becomes

N (4), collζ (k1,−k1 + q, k3,−k3 − q) =
(

H2

Ûφ0

)4 (
V ′′′

H

)2 1
q3−2α−

1
(k1k3)3+α−

2(3µ/2)4H8

(µ2 + m2)6
.

(3.64)

The four-point in the collapsed limit was previously computed in [33].

The other interesting kinematic limit of (3.63) is when one pair of legs have nearly
equal and opposite wave-vectors and the wave-vectors of the other two legs are soft.
We find for the sum of Figs. 3.2d and 3.2e:

N (4)ζ (k1,−k1 + q1, q2, q3) =
(

H2

Ûφ0

)4 (
V ′′′

H

)2 (3µ/2)4H8(
µ2 + m2)6

1
k3

1

(
q
k1

)α−
×

[
1

q3
1q3

2
+

1
q3

1q3
3
+ 2

(
1 +

1
2

(
q
k1

)α−) 1
q3

2q3
3

]
. (3.65)

Five- and Six-Point Functions
Given the techniques we have developed so far, it is possible to compute the five- and
six-point functions of ζ for general external wave-vectors. However, our primary
purpose in studying these objects is to compute their most important contributions
to the three-point function of galactic dark matter halos in the limit of large halo
separation. We then only focus on the kinematic limits of the five- and six-points
giving rise to the largest long wavelength enhanced terms. Even in these limits,
the calculation is too long to present here. In this section we just quote results and
relegate an outline of the derivation to Appendix 3.B.

The strongest long wavelength enhanced behavior of the five-point function is
achieved when one leg is soft and the other four come in pairs of nearly equal
and opposite wave-vectors. Panels f and g of Fig. 3.2 illustrate this kinematic
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setup. The contribution of these graphs to the five-point function is:

N (5)ζ (k1, q1 − k1, k2, q2 − k2, q3) = −
(

H2

Ûφ0

)5 (
V ′′′

H

)3 (3µ/2)5H11

(µ2 + m2)8
1

k3
1 k3

2
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×
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1q3

2
+
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2 − 1

6
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q
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)α−) 1
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2q3
3
+

(
2 − 1

6

(
q
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)α−) 1
q3

1q3
3

]
(3.66)

where we have defined q = max{qi}.

The most important long wavelength contributions to the six-point function occur
when all six legs come in pairs of nearly equal and opposite wave-vectors. The most
important diagrams are displayed in panels h and i of Fig. 3.2 and the sum of their
contributions is

N (6)ζ (k1, q1 − k1, k2, q2 − k2, k3, q3 − k3) =
(

H2

Ûφ0

)6 (
V ′′′

H

)4 1
k3

1 k3
2 k3

3

2(3µ/2)6H14

(µ2 + m2)10

×
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1 +

1
2
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k1k2k3

)α−/3) (
q1q2q3
k1k2k3

)α− [
1

q3
2q3

3
+

1
q3

1q3
3
+

1
q3

1q3
2

]
(3.67)

3.4 Correlation Functions of Biased Objects
In this section we review the computation of the galactic halo power spectrum,
and compute the bispectrum in the limit of large halo separation. At large enough
separation, the primordial non-Gaussian contributions to the power spectrum and
bispectrum are larger than the Gaussian ones. This leads to interesting observ-
able long wavelength effects. The long wavelength scaling of the power spectrum
was already discussed in [50]. Here we compute the long wavelength enhanced
contributions and present results for the bispectrum as well.

We start by assuming halos form instantaneously, at the same time tcoll , and at points
where the matter overdensity δ(x) averaged over a spherical region with comoving
radius R exceeds a threshold δc. We choose the smoothing radius R to be of order
the characteristic length scale of the region of space that collapses to form a halo.9
The smoothed matter overdensity is related to the matter overdensity by

δR(x, a) =
∫

d3y WR(|x − y|)δ(y, a). (3.68)

9We set R = 1.9h−1Mpc.
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Here WR(|x − y|) = ΘH(R − |x − y|) is the top hat window function.10 The Fourier
transform of the window function is:

WR(k) =
3 (sinkR − kRcoskR)

(kR)3
. (3.69)

Assuming δ(x, a) undergoes linear growth before the collapse time, we can express
the density perturbations at the time of collapse in terms of the linearly evolved
density perturbations today, δR(x, acoll) = δR(x)D(acoll) where today a = 1 and the
growth factor D(1) = 1.

We will ignore the evolution of halos after collapse, and so the number density of
halos today, up to an irrelevant dimensionful normalization constant, is given by:

nh(x) = ΘH(δR(x, acoll) − δc(acoll)) = ΘH(δR(x) − δc) (3.70)

where δc ≡ δc(acoll)/D(acoll). We use δc = 4.215, which assumes that δc(acoll) =
1.686 with zcoll = 1.5 [54]. The halo overdensity δh(x) at a point x today is defined
by

δh(x) =
nh(x) − 〈nh〉
〈nh〉

. (3.71)

where 〈nh〉 is the average halo density.

We are interested in the two- and three-point functions of δh(x). These can be
computed using (3.70) and the path integral techniques discussed in [57]. A more
general approach that we adopt here is to write δh as11,12

δh(x) = b1δR(x) + b2(δ2
R(x) − 〈δ2

R〉) + . . . (3.72)

The constants b1 and b2 are bias coefficients. They can be computed using a specific
model of halo formation such as (3.70) that expresses the halo overdensity in terms
of δR or determined from data. The two-point function of the halo overdensity is
then:

〈δh(x)δh(y)〉 = b2
1 〈δR(x)δR(y)〉 (3.73)

+b1b2
〈
(δ2

R(x) −
〈
δ2

R

〉
)δR(y)

〉
+

〈
δR(x)(δ2

R(y) −
〈
δ2

R

〉
)
〉

+b2
2
〈
(δ2

R(x) −
〈
δ2

R

〉
)(δ2

R(y) −
〈
δ2

R

〉
)
〉
+ . . . .

10ΘH is the Heaviside step function.
11The ellipses denote higher order terms in the bias expansion. They are not needed to the order

we work in (qR) and (V ′′′/H). However it is important to remember that they are defined with
subtractions. For example, the next order term is b3(δ3

R(x) − 3〈δ2
R〉δR(x)).

12A completely general approach is possible; for a review, see [58].
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Note 〈
δ2

R(x)δ2
R(y)

〉
=

〈
δ2

R

〉2
+ 〈δR(x)δR(y)〉2 +

〈
δ2

R(x)δ2
R(y)

〉
c . (3.74)

We can neglect the second term because it is very small at large halo separations
compared to the b2

1 term in (3.73). All factors of
〈
δ2

R

〉
cancel and we find

〈δh(x)δh(y)〉 ' b2
1 〈δR(x)δR(y)〉 + b1b2(

〈
δ2

R(x)δR(y)
〉
+

〈
δR(x)δ2

R(y)
〉
) + b2

2
〈
δ2

R(x)δ2
R(y)

〉
c

+ . . . .

(3.75)

The term proportional to b2
1 comes from the Gaussian two-point function of ζ and

the remaining terms arise from the connected three- and four-point functions of ζ
that we computed earlier.

Similarly, we can express the three-point function of δh as:

〈δh(x)δh(y)δh(z)〉 = b3
1 〈δR(x)δR(y)δR(z)〉c + b3

2
〈
δ(x)2δ(y)2δ(z)2

〉
c

+
[
2b2

1b2 〈δR(x)δR(y)〉 〈δR(x)δR(z)〉 + b2
1b2

〈
δ2

R(x)δR(y)δR(z)
〉

c

+b1b2
2
〈
δ2

R(x)δ2
R(y)δR(z)

〉
c + cyc. perm(x, y, z)

]
+ . . . (3.76)

The first term proportional to b2
1b2 is the three-point halo correlation when the

underlying curvature perturbations are Gaussian, which was first calculated in [57].
The remaining terms arise from the non-Gaussian correlations of the primordial
fluctuations. In the next section we present a power counting argument showing that
for widely separated points |x − y| >> R and |V ′′′|/H < 1, the higher order terms
in the bias expansion are negligible in the threshold model. Only b1 and b2 are
needed to compute the halo overdensity power spectrum and bispectrum evaluated
at wave-vectors q << 1/R.

Using, for example, path integral methods, it is straightforward to derive expressions
for 〈nh〉 and the bias coefficients b1 and b2 in the threshold model mentioned above.
They can be expressed in terms of δc and

σ2
R = 〈δR(x)δR(x)〉 (3.77)

as
〈nh〉 =

1
2

er f c
(

δc√
2σR

)
(3.78)

and

b1 =
e−δ

2
c/(2σ2

R)
√

2πσR 〈nh〉
b2 =

e−δ
2
c/(2σ2

R)δc

2
√

2πσ3
R 〈nh〉

. (3.79)
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The Fourier transformed smoothed matter overdensity δR(k) is related to the curva-
ture perturbation through

δR(k) =
2k2

5ΩmH2
0

T(k)WR(k)ζk (3.80)

whereT(k) is the transfer function,Ωm is the ratio of the matter density to the critical
density today, and H0 is the Hubble constant evaluated today [1]. When performing
integrals against T(k) we use the BBKS approximation to the transfer function [59]:

T
(
k =

(
Ωmh2Mpc−1

)
u
)
=

ln [1 + 2.34u]
(2.34u)

[
1 + 3.89u + (16.2u)2

+(5.47u)3 + (6.71u)4
]−1/4 (3.81)

We can then write σ2
R as

σ2
R =

(
H2

Ûφ0

2
5

1
ΩmH2

0 R2

)2

C2(µ,m)J (3.82)

where

J = 1
2π2

∞∫
0

dxx3T(x/R)2W(x)2 (3.83)

and W(x) ≡ WR(x/R) is independent of R.

The Fourier transform of the halo two-point gives the halo power spectrum

Phh(q) =
∫

d3x 〈δh(x)δh(0)〉 e−iq·x. (3.84)

Fourier transforming (3.75) and plugging in (3.80) to express the correlation func-
tions of δR(k) in terms of those of ζk, we find for q << 1/R:

Phh(q) = b2
1αR(q)2Pζ (q) + 2b1b2αR(q)

∫
d3k
(2π)3

αR(k)2Bζ (q, k,−k − q)

+ b2
2

∫
d3k1

(2π)3
d3k2

(2π)3
αR(k1)2αR(k2)2N (4)ζ (k1, q − k1, k2,−k2 − q).

(3.85)

To condense the expression we have defined

αR(k) =
2k2

5ΩmH2
0

T(k)WR(k). (3.86)
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Figure 3.3: A diagrammatic representation of terms contributing to the galactic halo
power spectrum. Cf. Fig. 3.1.

The wave-vectors integrated over in the integrals of (3.85) are of order 1/R. Since
we are interested in q << 1/R the curvature bispectrum and trispectrum appearing
in (3.85) are in their squeezed and collapsed configurations. Equations (3.58) and
(3.64) imply the strongest small q scaling of the primordial squeezed bispectrum
and collapsed trispectrum are 1/q3−α− and 1/q3−2α− . Note that the bispectrum’s
contribution to the halo power spectrum is suppressed by a factor of αR(q) ∝ q2, so
that term goes like 1/q1−α− .

An intuitive picture of the non-Gaussian contributions to (3.85) is given by Fig. 3.3.
The shaded circles represent the halo overdensity, while the lines they are attached
to are ζ legs. In these graphs, the external ζ legs are each multiplied by αR. If one
ζ leg is attached to a shaded circle it carries a soft wave-vector and a factor of b1. If
two legs are attached to a shaded circle, they carry equal and opposite wave-vectors
with magnitude approximately 1/R. In this case, the shaded circle also contains a
factor of b2 and a wave-vector integral.

The halo power spectrum is then13

Phh(q) = PG
hh(q)

[
1 + γ(µ,m)

(
2

β(µ,m)
(qR)2−α−T(q)

+
β(µ,m)2

(qR)4−2α−T(q)2

)]
(3.87)

13In writing (3.87) we have used
∞∫
0

dxx3−nα−T(x/R)2W(x)2 '
∞∫
0

dxx3T(x/R)2W(x)2, where n is

an O(1) integer.
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Figure 3.4: A diagrammatic representation of terms contributing to the galactic halo
bispectrum. Cf. Fig. 3.2.

where

PG
hh(q) = b2

1Pmm(q)

Pmm(q) = R3C2(µ,m)
(

H2

Ûφ0

)2 (
2

5ΩmH2
0 R2

)2

(qR)T(q)2

γ(µ,m) = 9µ2H2

(µ2 + m2)2 + 9µ2H2

β(µ,m) = 6
5

b2
b1

H2

Ûφ0

2
5ΩmH2

0 R2
J fN L

√
2π2∆2

ζC2(µ,m)
3
2
(µ2 + m2)2
(3µ/2)2H2 . (3.88)

Pmm denotes the “matter-matter” power spectrum, i.e., the Fourier transform of
〈δR(x)δR(y)〉.
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Since 0 < γ(µ,m) < 1, it is simple to show that Phh(q) is positive definite, as it must
be. Note that for fN L < 0, this would not be true at very small wave-vectors without
the contribution due to the four-point function of ζ . The scale non-Gaussianities
begin to dominate is (qR)2 ∼ β(µ,m) ∝ fN L (up to (qR)α− terms). Current mea-
surements of the galactic power spectrum have not seen significant deviations from
Gaussian initial conditions at wave-vectors around q ∼ h/(100 Mpc) [60].

In the threshold model, we find that β ∝ R2, indicating that the scale at which
non-Gaussianities begin to dominate is independent of model parameter R.

On the other hand, we can also compute the matter-halo cross correlation power
spectrum Phm(q), which corresponds to the two-point function 〈δh(x)δR(y)〉. The
“h" in Phm stands for halo, and the “m" for matter. The result is

Phm(q) = b(q)Pmm(q) (3.89)

where

b(q) ≡ b1 + b1γ(µ,m)β(µ,m)
1

(qR)2−α−T(q)
. (3.90)

This implies a scale-dependent bias:14

∆b(q) = b1γ(µ,m)β(µ,m)
1

(qR)2−α−T(q)
. (3.91)

In local non-Gaussianity, ∆b(q) ∝ q−2. Then QSFI predicts a different shape for the
scale-dependent bias, which is distinguishable from local non-Gaussianity if α− is
large enough.

Note that Phh can be written in this notation as:

Phh(q) =
(
b(q)2 + b2

1β(µ,m)
2γ(µ,m) (1 − γ(µ,m)) 1

(qR)4−2α−T(q)2

)
Pmm(q).

(3.92)

In this form, the second term in the brackets is due to stochastic bias. Note that this
term is proportional to 1 − γ(µ,m), which approaches 0 in the limit that µ & m as
µ/H and m/H go to zero. This suppression is evident in Fig. 3.5. If the stochastic
bias were zero, then the purple curves’ minimum value would be 0. Since they all
reach a minimum value less than around 0.1, this indicates that the stochastic bias

14Recall that we have neglected the time evolution of the distribution of galaxies after they have
formed.
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Figure 3.5: We plot the ratio of the galactic halo power spectrum in quasi-single
field inflation to the halo power spectrum in which there are no primordial non-
Gaussianities for a range of α−: α− = 0.025 (lightest), 0.050, 0.075, 0.100, 0.125,
0.150 (darkest). We plot for µ = m and fN L = 10 (green) and fN L = −10 (purple).

is small in the µ ∼ m regime. However, for µ << m the stochastic bias can become
large, see Fig. 3.6. For local non-Gaussianity, stochastic bias is absent. As we
will show toward the end of this section, for µ several orders of magnitude smaller
than m, other contributions to the power spectrum that we have neglected become
important.

In figures 3.5 and 3.6, we plot the ratio of the galactic halo power spectrum in quasi-
single field inflation divided by the Gaussian contribution PG

hh. Notice that for rea-
sonable model parameters, Phh(q) begins to differ from PG

hh(q) at q ∼ 0.005h/Mpc.
The difference becomes very large for values of q significantly less than this. Figures
3.5 and 3.6 use fN L = ±10, and various values for α− and µ.

Let us now study the halo three-point function given in equation (3.76). The non-
Gaussian contributions are depicted in Figure 3.4. Fourier transforming equation
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Figure 3.6: We plot the ratio of the galactic halo power spectrum in quasi-single
field inflation to the halo power spectrum in which there are no primordial non-
Gaussianities for a range of µ. We plot for ln(µ/H) = −1 (darkest), −2, −3, −4
(lightest), with α− = 0.05 and fN L = 10 (pink) and fN L = −10 (blue).

(3.76), we find that the bispectrum of the halo overdensity is

Bhhh(q1, q2, q3) = b3
1αR(q)3Bζ (q1, q2, q3)

+
[
2b2

1b2αR(q2)2αR(q3)2Pζ (q2)Pζ (q3)

+b2
1b2αR(q2)αR(q3)

∫
d3k
(2π)3

αR(k)2N (4)ζ (k, q1 − k, q2, q3)

+b1b2
2αR(q3)

∫
d3k1

(2π)3
d3k2

(2π)3
αR(k1)2αR(k2)2N (5)ζ (k1, q1 − k1, k2, q2 − k2, q3)

+cyc. perm(q1, q2, q3)]

+ b3
2

∫
d3k1

(2π)3
d3k2

(2π)3
d3k3

(2π)3
αR(k1)2αR(k2)2αR(k3)2

× N (6)ζ (k1, q1 − k1, k2, q2 − k2, k3, q3 − k3).

(3.93)

Similar to the calculation of the two-point, we can simplify the wave-vector integrals
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to express the bispectrum as

Bhhh(q1, q2, q3) = 2b2
1b2R6
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+ cyc. perm(q1, q2, q3).

(3.94)

where q ≡ max(qi), and

ω(µ,m) =
b2

1

4b2
2

1
JC2

( Ûφ0

H2

)2
(
5ΩmH2

0 R2

2

)2

γ(µ,m). (3.95)

Again, the scale at which the non-Gaussian contributions begin to dominate is
(qR)2 ∼ β(µ,m), which means the galactic power spectrum and bispectrum both
begin to deviate from their Gaussian contributions at roughly the same scale. Since
it is easier to measure the halo two-point function than the halo three-point function,
it is more likely that we will see these non-Gaussian effects in the halo two-point
before we see them in the three-point.

The equilateral configuration of the galactic halo bispectrum is plotted in Figs. 3.7
and 3.8 for various values of α− and µ. Note that we have scaled the bispectrum by
its value when V ′′′ = 0,

BG
hhh(q1, q2, q3) = 2b2

1b2R6
(

H2

Ûφ0

)4 (
2

5ΩmH2
0 R2

)4

C2
2T(q1)2T(q2)2q1q2R2

+ cyc. perm(q1, q2, q3). (3.96)

In the equilateral configuration with fN L < 0, this scaled bispectrum never falls
significantly below unity. Note also that it rises more rapidly than the scaled power
spectrum shown in Figs. 3.5 and 3.6 as q becomes small.
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Figure 3.7: We plot the ratio of the galactic halo bispectrum in quasi-single field
inflation to the galactic halo bispectrumwith no primordial non-Gaussianities (BG

hhh)
in the equilateral configuration for a range of α−: α− = 0.025 (lightest), 0.050,
0.075, 0.100, 0.125, 0.150 (darkest). We plot for µ = m and fN L = 10 (green) and
fN L = −10 (purple).

Equation (3.94) expresses the bispectrum in terms of the magnitude of the wave-
vectors q1, q2 and q3. It could also be expressed in terms of q1 and q2 and the
angle between them. This angular dependence is usually displayed as a multipole
expansion.

Currently, there are measurements of the galaxy bispectrum at wave-vectors as small
as about h/(20 Mpc) [61]. There is no evidence in this data for the type of effects
we have found.

We have ignored the evolution of the galactic halo distribution after their collapse.
These effects are O(1). However, we do not expect that including them greatly shifts
at what scale non-Gaussianities or their rapid growth become important. One can
include these effects either by numerical simulation or analytic methods [62–64].
Evolution during this period is expected to decrease the influence of bias, drawing
the galactic distribution closer to the dark matter distribution. Some of these effects
cancel out in the ratios we have plotted.

We have chosen to plot the power spectrum and bispectrum scaled by PG
hh and BG

hhh

since these ratios are less sensitive to the value of R than the power spectrum and
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Figure 3.8: We plot the ratio of the galactic halo bispectrum in quasi-single field
inflation to the galactic halo bispectrumwith no primordial non-Gaussianities (BG

hhh)
in the equilateral configuration for a range of µ: ln(µ/H) = −1 (darkest), −2, −3,
−4 (lightest). We plot for α− = 0.05 and fN L = 10 (pink) and fN L = −10 (blue).

Figure 3.9: The above diagram can contribute significantly to the galactic halo
power-spectrum if |V ′′′|/H is not very small. However, it can be ignored as long as
|V ′′′|/H << 1. In the context of eq. (3.97), this is a p = 1, j = 0 term.

bispectrum alone.

It is possible to use the methods developed here to consider even higher correlations
of the halo overdensity. The dependence of galactic halo n-point correlations on the
parameters V ′′′, q, and R in quasi-single field inflation with the halo number density
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modeled by eq. (3.70) is given by

〈δn
h〉 ∼ R3(n−1)(qR)n−1

1 +
2n−2∑
i=n−2

(
V ′′′

H(qR)2

) i n−1∑
j=0

∞∑
p=0
(qR)3 j

(
V ′′′

H

) p (3.97)

where for simplicity, factors of (qR)α− have been set to unity. In our analysis of
the power spectrum (n = 2) and the bispectrum (n = 3), we have included only the
j = p = 0 terms in the sums.

Recall, the validity of our calculations relies on the several assumptions. First of
all we have assumed that α− = (µ2 + m2)/3H2 << 1. However, we must also
have α− & 1/60 or else superhorizon evolution would have persisted to the end of
inflation. Finally, we assumed qR << 1 and |V ′′′|/H << 1. Note that for fixed
| fN L | = 10 and α− = 0.05, then |V ′′′|/H > 1 for µ < 0.005. Therefore, our results
do not apply at very small µ/m. For |V ′′′|/H not small, we would need to include
additional contributions, e.g., the diagram shown in Fig. 3.9.

3.5 Conclusions
The 1/q3 dependence of the de-Sitter propagator for massless scalar fields implies
that if the primordial curvature fluctuations are non-Gaussian, they have the potential
to give rise to enhancements in the correlations of biased objects at small wave-
vectors [30, 49]. This effect cannot be produced by nonlinear gravitational evolution
without primordial non-Gaussianities. The main goal of this chapter was to explore
these enhancements within quasi-single field inflation.

We developed a method to analytically compute the correlation functions of the
curvature perturbation ζ in quasi-single field inflation in the limit of small m/H and
µ/H. We computed the three- and four-point functions of ζ for arbitrary external
wave-vectors and computed the five- and six-point functions in the kinematic limits
that give the strongest long wavelength enhanced contributions to the three-point
function of the galactic halo overdensity δh.

We applied these results to the computation of the two- and three-point correlations
of δh (i.e., the power spectrum and bispectrum). For model parameters consistent
with the constraints on fN L , we found that non-Gaussian contributions to these
correlation functions are larger than theGaussian ones at scales around h/(200Mpc).
Even larger scales will be probed in upcoming large scale surveys such as SPHEREx.
Prospects for future improvements in measurements of the galactic power spectrum
and bispectrum are reviewed in [65].
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After making a number of approximations, we obtained analytic expressions for the
power spectrum and bispectrum15 of δh that are valid at small wave-vectors. We
studied the dependence of the stochastic bias on the parameters µ and m, and found
that it could be small or significant depending on the values of µ and m.

The departure from the predictions of Gaussian primordial perturbations in both the
equilateral configuration of the bispectrum and the power spectrum begin at wave-
vectors around h/(200Mpc) (when | fN L | is near its upper bound). However, for the
bispectrum the deviation grows much more rapidly as the wave-vectors decrease
than in the power spectrum. Unfortunately, it is more difficult to measure the three-
point correlation than the two-point correlation of δh. If these enhancements exist,
it is more likely we will first see them in the power spectrum than in the bispectrum.
Finally, we identified the scaling of the n-point function of δh.

The calculations (at small wave-vectors) of the galactic power spectrum and bispec-
trum presented in this chapter can be improved and made more model independent.
We hope to address this in future work.

3.A Numerical Checks
In this appendix we check that the analytical results we derived for the two- and
three-point functions of ζ agree with the numerical evaluation of these quantities.
First, consider the two-point function. In equation (3.29), we absorbed all of the µ
and m dependence of the curvature perturbation power spectrum into the constant
C2(µ,m). We can express this quantity in terms of the exact mode functions of π as

C2(µ,m) =
∑

i

|π(i)(0)|2. (3.98)

We found in equation (3.31) that the leading behavior was

C2(µ,m) '
1
2
+

9µ2H2

2(µ2 + m2)2
. (3.99)

up to terms suppressed by α−. By extending the numerical techniques developed
in [42] and [66] to the region of small µ/H and m/H we can compute (3.98)
numerically. In Fig. 3.10 we compare (3.99) to the numerical evaluation of (3.98).
The fit is good even for modest values of µ/H as long as m/H is small.

To determine the accuracy of our formula for the bispectrum of ζ (3.54), we compare
it with the numerical evaluation of the exact result (3.50) in a couple of kinematic

15Since galactic halos are biased objects, even if the primordial fluctuations are Gaussian a halo
bispectrum is not zero.
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Figure 3.10: We compare the power spectrum (3.33) (red) computed with the
numeric mode functions against the leading µ and m expression (3.31) (black) for
m = 0.2H (top) and m = 0.3H (bottom).

limits. Let’s first consider the equilateral configuration. We define Cequil
3 (µ,m) to

be the integral in eq. (3.50) in the equilateral configuration:

Cequil
3 (µ,m) ≡

0∫
−∞

dη
η4 Im

[(
π(1)(0)s(1)∗(η) + π(2)(0)s(2)∗(η)

)3
]
. (3.100)

Equation (3.55) gives the leading behavior of this integral for small α−, which we
reproduce here for convenience

Cequil
3 (µ,m) = 3(3µ/2)3H5

2
(
µ2 + m2)4 . (3.101)

Again, we can use the same numerical techniques to compute (3.100). However,
there is a subtlety in its evaluation that needs to be addressed.
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Figure 3.11: We plot the numerical evaluation of (3.100) (red) with the leading µ
and m expression (3.101) (black) for m = 0.2H (top) and m = 0.3H (bottom).

As mentioned in section 3.3, the integral is naively IR divergent because of the
factor of 1/η4. However, through the commutation relations, we proved the leading
IR behavior is (−η)−1+2α− in the IR, and that the integral is IR finite. However,
numerical error prevents the coefficients in front of the potentially IR divergent
terms from canceling exactly, giving rise to spurious infinities. The way around this
is to define the integrand piecewise about some point ηIR. For η < ηIR we use the
numerical mode functions in the integrand, and for η > ηIR we set the integrand
equal to a(−η)−1+2α− , where a is some proportionality constant that can be obtained
by fitting the integrand to the correct power law.

In Fig. 3.11 we compare (3.101) to the numerical evaluation of (3.100). As expected
the fit is better for smaller values ofm, however it is still accurate to around 25 percent
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Figure 3.12: We plot the numerical evaluation of (3.51) (red) taking µ = 0.3H,
m = 0.2H against (3.104) (black).

even for µ = 0.5H and m = 0.3H.

The previous tests have confirmed the µ and m dependence of our analytic expres-
sions. To test the dependence on the external wave-vectors, we consider the isosceles
configuration in which k1 = k2 ≡ k and 0 ≤ k3 ≤ 2k. In this limit, equation (3.54)
becomes

Bisos
ζ (k, k3) = −

(
H2

Ûφ0

)3 (
V ′′′

H

)
1

k3k3
3

Cisos
3 (3.102)

where we have defined

Cisos
3 ≡ 2 Im

0∫
−∞

dη
η4

(∑
i

π(i)(0)s(i)∗(η)
)2 (∑

i

π(i)(0)s(i)∗
(

k3
k
η

))
. (3.103)

Equation (3.53) approximates Cisos
3 as

Cisos
3 (µ,m, k, k3) '

(3µ/2)3(
µ2 + m2)4

[
2
(

k3
k

)α−
+

k3
3

k3

]
. (3.104)

In Fig. 3.12 we plot (3.104) against the numerical evaluation of (3.103). The
errors are around 10 percent for each data point, suggesting the error is not in
the wave-vector dependence of the formula, but rather in its µ and m dependent
normalization.

3.B Outline of Five- and Six-Point Calculations
In order to compute the three-point correlation of biased objects, it is necessary to
compute five- and six-point correlation functions in certain kinematic regimes. The
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contribution due to the diagram in panel f of Fig. 3.2, N (5)
ζ, f , can be computed using

the commutator form of the in-in formalism:

N (5)
ζ, f (k1, q1 − k1, k2, q2 − k2, q3) = −

(
H2

Ûφ0

)2 (
V ′′′

H

)3 8
k6

1 k6
2q3

1q3
2q3

3
(q1q2)α−∫ 0

−∞

dτ
τ4

∫ τ

−∞

dτ′

τ′4

∫ τ′

−∞

dτ′′

τ′′4

×
(
Im

{
A(k1τ)2

}
Im

{
A(k2τ

′)2
}
Im {A(q3τ

′′)B(q1τ
′′)B(q2τ

′′)} (−τ)α−(−τ′)α−

+ Im
{

A(k1τ)2
}
Im {A(q3τ

′)B(q1τ
′)} Im

{
A(k2τ

′′)2B∗(q2τ
′)
}
(−τ)α−(−τ′′)α−

+ Im {A(q3τ)} Im
{

A(k1τ
′)2B∗(q1τ)

}
Im

{
A(k2τ

′′)2B∗(q2τ)
}
(−τ′)α−(−τ′′)α−

+ 1←→ 2
)
. (3.105)

where N (5)ζ is defined in an analogous way to N (4)ζ , and

A(x) ≡
∑

i

π(i)(0)s(i)∗(x) B(x) ≡
∑

i

b(i)− s(i)∗(x). (3.106)

We also compute the contribution due to the diagram in panel g of Fig. 3.2, N (5)ζ,g:

N (5)ζ,g(k1, q1 − k1, k2, q2 − k2, q3) = −
(

H2

Ûφ0

)2 (
V ′′′

H

)3 16
∑

i, j a(i)0 b(i)∗− |b( j)− |2

k9
1 k6

2q3
2q3

3
(q1q2

2)
α−∫ 0

−∞

dτ
τ4

∫ 0

−∞

dτ′

τ′4

∫ τ′

−∞

dτ′′

τ′′4
(−ττ′τ′′)α−(

Im
{
(A(k1τ)2

}
Im {(A(k2τ

′)} Im
{
(A(k1τ

′′)
∑

i

s(i)(k1τ
′)s(i)∗(k1τ

′′)
}

+ 1←→ 2

)
.

(3.107)

Two diagrams also contribute to the six-point function. These diagrams are shown
in panels h and i of Fig. 3.2. For panel h, we find

N (6)
ζ,h(k1, q1 − k1, k2, q2 − k2, k3, q3 − k3) =

(
H2

Ûφ0

)6 (
V ′′′

H

)4 64(|b(i)− |2)2q3(q2
1q2

2)
α−

k6
1 k6

2 k6
3q3

1q3
2q3

3∫ 0

−∞

dτ
τ4

∫ 0

−∞

dτ′

τ′4

∫ 0

−∞

dτ′′

τ′′4

∫ τ′′

−∞

dτ′′′

τ′′′4
(ττ′τ′′τ′′′)α−(

Im
{

A(k1τ)2
}
Im

{
A(k2τ

′)2
}
Im {A(k3τ

′′)} Im
{

A(k3τ
′′′)s(i)(k3τ

′′)s(i)∗(k3τ
′′′)

}
+ cyc. perm(1, 2, 3)

)
.

(3.108)
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For panel i, on the other hand,

N (6)ζi (k1, q1 − k1, k2, q2 − k2, k3, q3 − k3) =
(

H2

Ûφ0

)6 (
V ′′′

H

)4 16q3(q1q2q3)α−
k6

1 k6
2 k6

3q3
1q3

2q3
3∫ 0

−∞

dτ
τ4

∫ τ

−∞

dτ′

τ′4

∫ τ′

−∞

dτ′′

τ′′4

∫ τ′′

−∞

dτ′′′

τ′′′4(
Im

{
A(k1τ)2

}
Im

{
A(k2τ

′)2
}
Im

{
A(k3τ

′′)2
}
Im {B(q1τ

′′′)B(q2τ
′′′)B(q3τ

′′′)} (−ττ′τ′′)α−

+ Im
{

A(k1τ)2
}
Im

{
A(k2τ

′)2
}
Im {B(q1τ

′′)B(q2τ
′′)} Im

{
A(k3τ

′′′)2B∗(q3τ
′′)

}
(−ττ′τ′′′)α−

+ Im
{

A(k1τ)2
}
Im {B(q1τ

′′)} Im
{

A(k2τ
′′)2B∗(q2τ

′)
}
Im

{
A(k3τ

′′′)2B∗(q3τ
′)
}
(−ττ′τ′′′)α−

+ all perm(1, 2, 3)
)
.

(3.109)

As with the four-point function of ζ , our task of evaluating these integrals is sim-
plified by the fact that these integrals are IR dominated. We keep terms leading in
α− and q/k. As mentioned in section 3.3, we take (ki/k j)α− ' 1 and (qi/q j)α− ' 1,
but not (qi/k j)α− . With this assumption, we can integrate the above expressions in
a way similar to our integration of the four-point function’s nested integrals.
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C h a p t e r 4

STOCHASTIC BIAS FROM LOOPS OF MASSIVE PARTICLES
DURING INFLATION

Primordial non-Gaussianities enhanced at small wavevectors can induce a power
spectrum of the galaxy overdensity that differs greatly from that of the matter
overdensity at large length scales. In previous work, it was shown that “squeezed"
three-point and “collapsed" four-point functions of the curvature perturbation ζ can
generate these non-Gaussianities and give rise to so-called scale-dependent and
stochastic bias in the galaxy overdensity power spectrum. We explore a third way to
generate non-Gaussianities enhanced at small wavevectors: the infrared behavior of
quantum loop contributions to the four-point correlations of ζ . We show that these
loop effects can give the largest contributions to the four-point function of ζ in the
collapsed limit and be observable in the context of quasi-single field inflation.

4.1 Introduction
The inflationary paradigm [2, 4–7] proposes an era in the very early universe
during which the energy density is dominated by vacuum energy and the universe
undergoes exponential expansion. Such a period elegantly explains why the universe
is close to flat and the near isotropy of the cosmic microwave background (CMB).
It also provides a simple quantum mechanical mechanism for generating energy
density perturbations which have an almost scale-invariant Harrison-Zel’dovich
power spectrum.

The simplest inflation models consist of a single scalar field φ, called the infla-
ton, whose time-dependent vacuum expectation value drives the expansion of the
universe. The quantum fluctuations in the Goldstone mode π associated with the
breaking of time translation invariance by the inflaton [27] source the energy density
fluctuations. In the simplest of these single field models, the density perturbations
are very nearly Gaussian [28]. One way to generate measurable non-Gaussianities
is to introduce a second field s that interacts with the inflaton field during the in-
flationary era. A simple realization of such a model is quasi-single field inflation
(QSFI) [15].

These non-Gaussianities affect the correlation functions of biased tracers of the un-
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derlying matter distribution such as galaxies. It was first pointed out in [30] and [49]
that the power spectrum of the galaxy overdensity can become greatly enhanced
relative to the Harrison-Zel’dovich spectrum on large scales if the primordial mass
density perturbations are non-Gaussian.1 These enhancements are known as scale-
dependent bias and stochastic bias and were systematically explored in the context
of QSFI in [50] and chapter 3.2

The enhancements studied in [30] and [49] result from tree-level contributions to
the three- and four-point functions of π that are in their “squeezed" and “collapsed"
limits. In this paper, we consider quantum loop contributions to the correlation
functions of π which (in the same kinematic limits) can also give rise to these long-
distance effects. These loops arise from virtual excitations of massive scalar fields
that existed during inflation.3 We find that the infrared region of loop integrals
can induce sizable stochastic bias on large scales without introducing any scale-
dependent bias. In section 4.2 we illustrate this loop effect using a higher dimension
operator that would appear in a generic effective theory of multi-field inflation. In
section 4.3 we show that the loop effect can be observable in the context of QSFI
and estimate the distance scale at which the loop contribution to the galaxy power
spectrum could exceed the usual Harrison-Zel’dovich one.

4.2 Loop-Induced Stochastic Bias
Consider a theory of inflation that consists of two fields, the inflaton φ and a massive
scalar s. Working in the gauge where φ(x) = φ0(t), the Lagrangian describing the
Goldstone mode π due to the breaking of time translational invariance and s can be
written as

L = 1
2
gµν∂µπ∂νπ +

1
2
gµν∂µs∂νs − m2

2
s2 +

1
Λ2g

µν∂µπ∂νπs2 + . . . , (4.1)

where the action is S =
∫

d4x
√−gL. The dimension six operator in (4.1) induces

the one-loop contribution to the four-point function of π depicted in Fig. 4.1. The
complete theory includes additional interactions denoted by the ellipsis above [68,
69]4, which will give rise to other one-loop contributions that are comparable to

1We refer to these effects as “enhancements" even though for certain model parameters they can
interfere destructively with the usual Gaussian primordial density fluctuations.

2By stochastic bias, we mean the difference between the collapsed trispectrum and the squeezed
bispectrum squared; see for example Eq. (2.7) of [50]. This stochastic bias can depend on the scale.

3These quantum loop contributions are distinct from loop contributions coming from, for exam-
ple, higher-order terms in a bias expansion (see [67]).

4For example, the interaction 2 Ûφ0∂τπs2/Λ2 will also appear.
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Figure 4.1: One-loop contribution to the collapsed trispectrum of the primordial
curvature perturbation. Dashed lines represent π, and solid lines represent s.

or may even dominate this diagram. The goal of this section is to illustrate the
infrared behavior of loop contributions to the correlation functions of π, which have
interesting implications for the correlation functions of galaxies. For simplicity,
we only consider the interaction given in (4.1) and leave a more complete study to
future work.

We focus on the “collapsed” limit of the diagram, which occurs when the external
wavevectors come in pairs that are nearly equal and opposite, as shown in Fig. 4.1
with q � ki. This contribution to the four-point function has previously been
computed in [35], where the role of conformal symmetry was emphasized. In this
section, we review this calculation and describe its effect on the power spectrum of
galaxy overdensities.

To begin, we express the quantum fields π and s in terms of creation and annihilation
operators

π(x, τ) =
∫

d3k
(2π)3

a(k)πk(η)eik·x + h.c. , s(x, τ) =
∫

d3k
(2π)3

b(k)sk(η)eik·x + h.c. ,

(4.2)

where k = |k|, and η = kτ for conformal time τ < 0. The mode functions satisfy
the equations of motion of the free theory with appropriate boundary conditions and
are

πk(η) =
H

k3/2 π(η) , π(η) = 1
√

2
(1 + iη)e−iη , (4.3)

sk(η) =
H

k3/2 s(η) , s(η) = −iei(2−ν) π2
√
π

2
(−η)3/2H(1)3

2−ν
(−η) , (4.4)

where ν = 3/2 −
√

9/4 − m2/H2 and H(1)z is the Hankel function of the first kind.
We assume that the mass m of the field s is much less than the Hubble constant
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H during inflation, or equivalently ν � 1.5 We are interested in this region of
parameter space because it leads to the largest infrared enhanced contributions to
the four-point function.

Let us now compute the contribution in Fig. 4.1 to the collapsed trispectrum of
the primordial curvature perturbation ζ = −(H/ Ûφ0)π. The primordial curvature
trispectrum Tζ is defined by

〈ζk1ζk2ζk3ζk4〉c = Tζ (k1, k2, k3, k4)(2π)3δ3(k1 + k2 + k3 + k4) (4.5)

where the subscript c denotes the connected part of the four-point function. In
Fig. 4.1 k3 = −k1 + q and k4 = −k2 − q. The collapsed configuration Tcoll

ζ occurs
when q � ki.

Using the in-in formalism [47] and introducing the variables η = k1τ and η′ = k2τ
′

we find

T coll
ζ = 32

(
H
Λ

)4 (
H2

Ûφ0

)4 1
k3

1 k3
2

∫
d3p
(2π)3

1
|p + q|3p3

∫ 0

−∞

dη
η2

∫ k1
k2
η

−∞

dη′

η′2
eε(η+η

′)Im [F(η)]

× Im
[
F(η′)s

(
|p + q|

k1
η

)
s∗

(
|p + q|

k2
η′

)
s
(

p
k1
η

)
s∗

(
p
k2
η′

)]
+

(
k1 ↔ k2

)
(4.6)

where
F(η) = π(0)2

(
[∂ηπ∗(η)]2 − [π∗(η)]2

)
. (4.7)

In Eq. (4.6), ε is an infinitesimal positive quantity that regulates the time integrations
in the distant past and we have expanded in q � ki.

The dominant contribution of the loop integral in (4.6) comes from p ∼ q. Moreover,
the time integrals are dominated at late times η , η′ ∼ −1. We can thus use the small
η expansion of the s mode function

s(η)
η→0
' b1(−η)ν , |b1 |2 = 21−2ν

Γ(3/2 − ν)2/π ν→0' 1/2 (4.8)

to find

T coll
ζ ' 8

(
H
Λ

)4 (
H2

Ûφ0

)4 1
(k1k2)3+2ν I2ν(q)J2 (4.9)

5In (4.1), the mass m includes contributions from terms such as ( Ûφ2
0/Λ

2)s2. Tuning is required
for m � H.
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where

I2ν(q) =
∫

d3p
(2π)3

1
|p + q|3−2νp3−2ν

ν→0' 1
2π2

1
ν

q−3+4ν , (4.10)

J =
∫ 0

−∞

dη
η2 eεη(−η)2νIm [F(η)] = 2−2−2ν Γ(2 + 2ν)

1 − 2ν
ν→0' 1

4
. (4.11)

In (4.10) we have kept only the term singular in ν as it goes to zero. Note that our
result is finite because we focused on the relevant region p ∼ q � ki and neglected
the region of large loop momenta which is not as important in the limit q→ 0. The
UV divergence due to the region of large loop momentum would be rendered finite
by a counterterm.

Our final result for the four-point function of the curvature perturbation for m � H

and q � ki is

T coll
ζ ' 1

4π2
1
ν

(
H
Λ

)4 (
H2

Ûφ0

)4 1
k3

1 k3
2q3

(
q2

k1k2

)2ν

. (4.12)

The factors of wavevector magnitudes in (4.12) essentially follow from the form
of s(η) expanded for small η in the limit m � H, and from dimensional analysis.
For m � H the four-point function is enhanced by 1/ν ' 3H2/m2. This arises
because for small m/H the the mode function s(η) falls off slowly as the mode k

redshifts outside the de-Sitter horizon. Note also that there is no IR divergence in
the loop integration since the s field is massive. Three- and four-point curvature
fluctuations generated by loop effects have been considered in Refs. [70–73] using
the δN formalism. It would be interesting to see if this method can reproduce (4.12).

For small q the dependence of Tζ on q in eq. (4.12) is almost the same as would
result from a tree graph that contributes to it, say from iterating twice the interaction
vertex that arises from Lint = gµν∂µπ∂νπs/Λ′ in the Lagrange density. That is
because for small m, the s propagator in de-Sitter space goes roughly as 1/q3. This
is very different from flat space. To illustrate this, consider the flat space equal time
expectation value 〈πk1πk2πk3πk4〉 in the kinematic limit,6 k j � q � m. At small q,
the loop contribution is q-independent while the tree diagram goes as 1/q.

We now qualitatively discuss the effects of (4.12) on the galaxy power spectrum.
To begin, the matter overdensity δR averaged over a spherical volume of radius R is

6Because of time translation invariance in flat space this expectation value is independent of the
time the fields π are evaluated at.
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related to the primordial curvature fluctuation via

δR(k) =
2k2

5ΩmH2
0

T(k)WR(k)ζk (4.13)

where WR(k) is the window function, T(k) is the transfer function, Ωm is the ratio
of the matter density to the critical density today, and H0 is the Hubble constant
evaluated today.

We consider an expansion for the galaxy overdensity δh in terms of δR of the
following form

δh(x) = b1δR(x) + b2(δ2
R(x) − σ2

R) + b3(δ3
R(x) − 3δR(x)σ2

R) + . . . , (4.14)

where σ2
R = 〈δR(x)δR(x)〉 and the constants b1, b2, and b3 are bias coefficients (for

a more complete treatment, see [58]). The bias coefficients can be determined from
data or computed using a specific model of galaxy halo formation that expresses the
galaxy overdensity in terms of δR. The two-point function of the galaxy overdensity
is then:

〈δh(x)δh(y)〉 = b2
1 〈δR(x)δR(y)〉 + b1b2

( 〈
(δ2

R(x) − σ2
R)δR(y)

〉
+

〈
δR(x)(δ2

R(y) − σ2
R)

〉 )
+ b2

2
〈
(δ2

R(x) − σ2
R)(δ2

R(y) − σ2
R)

〉
+ . . . (4.15)

A similar expression could be derived for the galaxy-matter cross-correlation 〈δh(x)δR(y)〉.

Ignoring other contributions to the non-Gaussianities of ζ besides the one given
in (4.12), the term proportional to b2

2 in (4.15) yields a contribution to the galaxy
power spectrum of the form Phh(q) ∼ 1/q3−4ν, but not to the galaxy-matter cross-
correlation Phm(q). Hence this loop contributes to stochastic bias, but not to scale-
dependent bias. Note that in the absence of primordial non-Gaussianity, Phh(q) ∼
q, so the trispectrum contribution is enhanced by a relative factor of q−4+4ν and
dominates as q→ 0.

It is worth emphasizing that we have only considered one particular interaction in
this theory, and have ignored other interactions which may give evenmore important
contributions to stochastic and scale-dependent bias. We now turn to a model within
QSFI in order to make a full prediction in a consistent theory.

4.3 Loop-Induced Stochastic Bias in Quasi-Single Field Inflation
In this section, we show that loop-induced non-Gaussianities in QSFI [15] can give
rise to stochastic bias that is potentially observable given the stringent constraints
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fromCMBdata on non-Gaussianities. Themodel we consider consists of an inflaton
φ and a massive scalar s with the symmetries φ → φ + c, φ → −φ, and s → −s.
These symmetries are broken by the potential of φ as well as by the lowest dimension
operator that couples φ and s, gµν∂µφ∂νφs/Λ. The Lagrangian written in terms of
the Goldstone mode π is

L = 1
2
gµν∂µπ∂νπ

(
1 +

2
Λ

s
)
+

1
2
gµν∂µs∂νs − µHτs∂τπ −

m2

2
s2 − V (4)

4!
s4 (4.16)

where the kinetic mixing term is parameterized by the coupling µ = 2 Ûφ0/Λ and
we have ignored higher order terms in the potential for s. Similar to the previous
section, we focus here on the region where m � H and µ � H, which gives the
most significant long wavelength enhancement to the galaxy power spectrum.

Due to the kinetic mixing, π and s share a set of creation and annihilation operators:

π(x, τ) =
∫

d3k
(2π)3

(
a(1)(k)π(1)k (η)e

ik·x + a(2)(k)π(2)k (η)e
ik·x + h.c.

)
(4.17)

s(x, τ) =
∫

d3k
(2π)3

(
a(1)(k)s(1)k (η)e

ik·x + a(2)(k)s(2)k (η)e
ik·x + h.c.

)
. (4.18)

The mode functions π(i)k = (H/k
3/2)π(i) and s(i)k = (H/k

3/2)s(i) are difficult to solve
for exactly. However, analytic progress can be made by considering series solutions.
It can easily be checked that the most general series solutions to the mode equations
derived from (4.16) are

π(i)(η) =
∞∑

n=0

[
a(i)0,2n(−η)

2n + a(i)−,2n(−η)
2n+α− + a(i)

+,2n(−η)
2n+α+ + a(i)3,2n(−η)

2n+3
]

(4.19)

s(i)(η) =
∞∑

n=0

[
b(i)0,2n(−η)

2n + b(i)−,2n(−η)
2n+α− + b(i)

+,2n(−η)
2n+α+ + b(i)3,2n(−η)

2n+3
]

(4.20)

where α± = 3/2 ±
√

9/4 − µ2/H2 − m2/H2 and b(i)0,0 = 0. For ease of notation
we denote a(i)r,0 and b(i)r,0 as a(i)r and b(i)r . In chapter 3, it was shown that the non-
Gaussianities can be well approximated by a finite set of combinations of the power
series coefficients when µ,m � H. The combinations of power series coefficients
needed to compute the loop in Fig. 4.2 are

Re
[
a(i)0 b∗(i)−

]
' −3µH

2(µ2 + m2)
, Im

[
a(i)0 b∗(i)3

]
=

µH
2(µ2 + m2)

,
��b(i)− ��2 ' 1

2
, (4.21)

Im
[
a(i)0 b∗(i)−

]
= Im

[
a(i)0 b∗(i)0,2

]
= Im

[
a(i)0 b∗(i)−,2

]
= Im

[
a(i)0 b∗(i)+

]
= 0 , (4.22)
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Figure 4.2: One-loop contribution to the collapsed trispectrum of the primordial
curvature perturbation in QSFI. Dashed lines represent π, and solid lines represent
s.

which were determined in chapter 3. The repeated superscripts (i) are summed over
i = 1, 2. The above expressions are valid for µ/H, m/H � 1.

We can now compute the loop contribution to the collapsed limit of the curvature
perturbation trispectrum shown in Fig. 4.2. Again, using the in-in formalism and
the variables η = k1τ and η′ = k2τ

′, we find

Tcoll
ζ = 2V (4)

2
(

H2

Ûφ0

)4 1
k3

1 k3
2

∫
d3p
(2π)3

1
|p + q|3p3

∫ 0

−∞

dη
η4

∫ k1
k2
η

−∞

dη′

η′4
Im

[
(π(i)(0)s∗(i)(η))2

]
× Im

[
[π( j)(0)s∗( j)(η′)]2s(k)

(
|p + q|

k1
η

)
s∗(k)

(
|p + q|

k2
η′

)
s(l)

(
p
k1
η

)
s∗(l)

(
p
k2
η′

)]
+

(
k1 ↔ k2

)
. (4.23)

Similar to before, the dominant contribution to the loop integral occurs for loop
momenta p ∼ q � ki and the time integrals are dominated by late times. We can
immediately expand the s mode functions to find

Tcoll
ζ ' 1

2
V (4)

2
(

H2

Ûφ0

)4 1
(k1k2)3+2α−

I2α−(q)K(µ,m)2 , (4.24)

where Iν(q) is given in (4.10) and

K(µ,m) =
∫ 0

−∞
dη(−η)−4+2α−Im

[
(π(i1)(0)s∗(i1)(η))2

]
. (4.25)

It was shown in chapter 3 that the most important contribution to (4.25) is obtained
by cutting off the lower bound of the integral at η0 which is around horizon crossing.
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Inserting the power series expansions of the mode functions in (4.19) and (4.20),
we find

K(µ,m) ' 2 Im
[
a(i)0 b∗(i)3

]
Re

[
a( j)0 b∗( j)−

] ∫ 0

η0

dη(−η)−1+3α− ' −2
3
(3µ/2)2H4

(µ2 + m2)3
,

(4.26)
wherewe have neglected contributions fromhigher powers of ηwhich are suppressed
in the limit α− � 1. Note that this piece most singular in α− is insensitive to the
choice of η0. Our final result for the four-point function of the curvature perturbation
for m , µ � H and q � ki is then

Tcoll
ζ ' 1

3π2V (4)
2
(

H2

Ûφ0

)4 1
k3

1 k3
2q3

(
q2

k1k2

)2α− (3µ/2)4H10

(µ2 + m2)7
. (4.27)

In (4.27), the factors of wavevector magnitudes and α−1
− from the integral I2α− are

the same as those in (4.12) from the integral I2ν. These features are characteristic
of quantum mechanical effects from the exchange of a massive particle [35, 74].
In principle higher loop contributions have q scaling similar to (4.27), but are
suppressed because they also have additional factors of the small coupling constant
V (4).

We now consider the long wavelength enhancement to the galaxy power spectrum
resulting from this collapsed primordial trispectrum. In our numerical evaluation,
we make the simplifying assumption that galaxies form at points in space at which
the smoothed matter overdensity is greater than a threshold density at the time
of collapse δc(acoll), i.e. nh(x) ∝ ΘH (δR(x, acoll) − δc(acoll)) = ΘH (δR(x) − δc),
where δc ≡ δc(acoll)/D(acoll).7 We further assume that δc(acoll) = 1.686 [75], all
halos collapse instantaneously at redshift z = 1.5, and their number density does
not evolve in time after collapse. This corresponds to a value of δc = 4.215. The
galaxy overdensity is defined by δh(x) = (nh(x) − 〈nh〉)/〈nh〉. With this threshold
collapse model, the bias coefficients are given by (see e.g. [76])

b1 =
e
− δ2

c

2σ2
R

√
2πσR〈nh〉

, b2 =
δc

σR

e
− δ2

c

2σ2
R

2!
√

2πσ2
R〈nh〉

, b3 =

(
δ2

c

σ2
R

− 1

)
e
− δ2

c

2σ2
R

3!
√

2πσ3
R〈nh〉
(4.28)

where 〈nh〉 = er f c
(
δc/(
√

2σR)
)
/2. We use the BBKS approximation to the

transfer function [59] and the top-hat window function WR(k) = 3(sin(kR) −
7δR(x) is the linearly evolved matter overdensity today.
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Figure 4.3: These two tree-level diagrams involving the V (4) interaction can also
contribute to scale-dependent and stochastic bias. However, these contributions are
small compared to the loop contribution in Fig. (4.2) due a suppression arising from
the integration over additional hard external wavevectors.

kR cos(kR))/(kR)3. Moreover, we take R = 1.9 Mpc/h as the smoothing scale, and
numerically we find σR = 3.62.

The Fourier transform of 〈δR(x)δR(y)〉 gives the matter power spectrum Pmm(q):

Pmm(q) =
(

2
5ΩmH2

0

)2 (
H2

Ûφ0

)2

C2(µ,m)T(q)2q , (4.29)

where C2(µ,m) = 1/2 + 2(3µ/2)2H2/(µ2 + m2)2. It then follows from (4.15) that
the ratio of the galaxy power spectrum to the matter power spectrum normalized by
b2

1 is

Phh(q)
b2

1Pmm(q)
= 1 +

b2
2

b2
1

(
2

5ΩmH2
0 R2

)2 (
H2

Ûφ0

)2 V (4)
2J2

3π2
(qR)−4+4α−

T(q)2
(3µ/2)4H10

(µ2 + m2)7C2(µ,m)
(4.30)

where

J = 1
2π2

∫ ∞

0
du T (u/R)2 WR (u/R)2 u3. (4.31)

The V (4) interaction in (4.16) also gives rise to the tree-level diagrams shown in
Fig. 4.3 which contribute to the long wavelength enhancement of the galaxy power
spectrum. However, these terms contain integrals with three transfer functions rather
than two like in (4.31). This integral then gives ∼ J3/2 rather than J. Numerically
we find J ≈ 3.1 × 10−5 so the contributions from these tree-level diagrams are
suppressed, as can be seen in Fig. 4.4.

One could also consider the contribution of the (∂π)2s/Λ interaction in (4.16) to
Phh(q). However, estimating fN L = 5Bζ (k, k, k)/18Pζ (k)2 from this interaction
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Figure 4.4: The ratio Phh(q)/b2
1Pmm(q) is plotted for τ2σ

N L = 2800 (Planck 2013)
in black, and τ2σ

N L/2 = 1400 in red. In blue, we plot the power spectrum ignoring
the loop contribution and considering only the tree diagrams in Fig. 4.3, using the
τ2σ

N L bound. Note that the enhanced behavior begins around (200 Mpc/h)−1 for the
black curve, and around (300 Mpc/h)−1 for the red curve. Moreover, note that the
tree contributions in blue are very small compared to the loop contribution in black.
We plot for µ/H = m/H = 0.274, corresponding to α− = 0.05. Moreover we take
R = 1.9 Mpc/h and δc = 4.215.

numerically, we find that fN L . 10−2 for µ/H, m/H . 0.4. This small fN L

has a negligible contribution to Phh(q) compared to the loop contribution we have
considered.

We can constrain V (4) using the bounds on τN L and gN L from Planck 2013 and
2015 [44, 77]. The bound due to τN L is estimated using (4.27), with factors
of (q/k)α− set to 1 in order to match the τN L shape. The bound due to gN L is
estimated using the tree-level four-point diagram with a single V (4) vertex, with
factors of (ki/k j)α− set to 1 to match the gN L shape. We take τ2σ

N L = 2.8 × 103

and g2σ
N L = −2.44 × 105 as the maximum allowed values of τN L and gN L at a 2σ

confidence level. We find that for most of the (µ,m) parameter space τ2σ
N L gives the

stronger constraints on V (4). For µ/H = m/H = 0.274 (so that α− = 0.05), we find
that the τ2σ

N L constraint yields V (4) ≤ 0.014.

In Fig. 4.4, we plot the ratio Phh(q)/b2
1Pmm(q). The enhanced behavior begins at

around q ∼ (200 Mpc/h)−1 and q ∼ (300 Mpc/h)−1 for the values of V (4) that
saturate the τ2σ

N L (black curve) and τ2σ
N L/2 (red curve) bounds. Moreover, the blue

curve is the contribution due solely to the tree-level diagrams in Fig. (4.3) using the
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τ2σ
N L bound, and is significantly smaller than the loop contribution shown in black.

Finally we briefly comment on how our results depend on the parameters R and δc.
The loop contribution to Phh(q)/b2

1Pmm(q) is insensitive to the choice of smoothing
radius R. The tree-level contributions in Fig. 4.3 increase as R increases, yet even
for R = 2.7 Mpc/h, we find that the loop contribution remains an order of magnitude
larger than the tree-level contributions. Furthermore, since b2/b1 ∼ δc, the second
term in (4.30) goes like δ2

c/q4−4α− . This implies that the characteristic scale q0 at
which the long-wavelength enhancements become significant depends on δc like
q0 ∼ δ1/2

c .

4.4 Concluding Remarks
Using a particular QSFI model, we have shown that one loop contributions to the
four-point function of the curvature perturbation ζ in the collapsed limit can be
even larger than the tree-level ones. In such cases the dominant contribution to
stochastic bias at long wavelengths comes from primordial quantum loops. In this
model, the one-loop contribution to the four-point function of primordial curvature
perturbations induces a non-Gaussian contribution to the galaxy power spectrum
Phh(q) that is five times larger than the Gaussian one at q ∼ h/(500 Mpc) for values
of τN L and gN L at only half their current 2σ bounds. These non-Gaussianities could
be observed in upcoming large-scale surveys [78–80].

It would be interesting to study the effects of these loop contributions to the bias
within the framework of the effective field theory of inflation. At a minimum, this
would require the computation of the one-loop diagram presented in section II and
the ones due to the interaction LI ∼ Ûπs2.
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C h a p t e r 5

NEW SHAPES OF PRIMORDIAL NON-GAUSSIANITY FROM
QUASI-SINGLE FIELD INFLATION WITH MULTIPLE

ISOCURVATONS

We study a simple extension of quasi-single field inflation in which the inflaton
interacts with multiple extra massive scalars known as isocurvatons. Due to the
breaking of time translational invariance by the inflaton background, the theory
includes kinetic mixings among the inflaton and isocurvatons. These mixings give
rise to novel new features in the primordial non-Gaussianities of the scalar curvature
perturbation. A noteworthy feature is the amplitude of the squeezed bispectrum can
grow nearly as (ks/kl)−3 while oscillating as cos γ log(ks/kl), where ks/kl is the ratio
of the lengths of the short and long wavevectors. Observation of such a shape would
provide evidence for the existence of multiple isocurvatons during inflation. In
addition, we consider the effects of these non-Gaussianities on large-scale structure.

5.1 Introduction
The inflationary paradigm [2, 4–7] posits a period of time shortly after the big
bang during which the universe’s energy density was dominated by vacuum energy
and the size of the universe grew exponentially. Such an era would explain the
near isotropy of the CMB and the near flatness of the universe. At the same time,
inflation provides a quantum mechanical origin for the energy density perturbations
which have an almost scale-invariant Harrison-Zel’dovich power spectrum [9–13]
(see [8] for a review).

The simplest inflationary theories are known as single-field inflation models and
involve a single scalar field called the “inflaton." In slow-roll models, the inflaton
vacuum expectation value φ0 is initially displaced from the minima of the inflaton
potential Vsr(φ). The potential is chosen such that there is a period of time (the
inflationary era) duringwhich φ0’s potential energy dominates over its kinetic energy
and drives the exponential expansion of the universe. After more than 50−60 e-folds
of expansion, φ0’s kinetic energy becomes large and inflation ends.

Since Ûφ0 , 0, time-translational invariance is spontaneously broken. This gives
rise to a Goldstone boson π that sources scalar curvature perturbations [27]. In the
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simplest single-fieldmodels, the curvature perturbations are approximatelyGaussian
[28]. To produce large primordial non-Gaussianities (PNG), one can add extra
fields to the inflationary field content and include interactions between π and the
new fields1. This leads to interesting new shapes and features of primordial non-
Gaussianity that could be observed in the CMB and large-scale structure (LSS) and
used to constrain the inflationary theory.

Quasi-single field inflation (QSFI) is awell-studied extension of single-field inflation
models [15] that could potentially give rise to significant PNG. In QSFI, one adds a
single extra scalar fieldσ ofmassm, known as the isocurvaton, and includes a kinetic
mixing between σ and π of the form2 µ Ûπσ and a potential for the isocurvatonV(σ).
In QSFI the isocurvaton never fulfills the roll of the inflaton, rather, its purpose is
to generate PNG through its interactions with π.

The connected three- (bispectrum) and four- (trispectrum) point functions of π in
QSFI have been studied extensively in chapters 2 and 3 and [15, 31–34, 37]. The
squeezed limit of the bispectrum, which occurs when the lengths of two of the
three wavevectors are roughly equal and much larger than the length of the third
wavevector, has been shown to exhibit particularly interesting behavior. Let kl

denote the length of the larger wavevectors and ks the length of the shorter one. It
has been shown that if m and µ are both much smaller than the Hubble constant
during inflation H, then the magnitude of the squeezed bispectrum in QSFI grows
approximately as (ks/kl)−3. In the opposite limit, m, µ � H, the magnitude of the
squeezed bispectrum was found to oscillate logarithmically in ks/kl but grow only
as (ks/kl)−3/2 as seen in chapter 2 and [15].

Since single-isocurvaton QSFI gives rise to distinct PNG, it is worthwhile to study
theories that include multiple isocurvatons σI (we will call these theories multi-
isocurvaton QSFI). It turns out that interactions such as ρ( Ûσ1σ2 − Ûσ2σ1) and µ1 Ûπσ1

give rise to novel features in the PNG. Specifically, for certain choices of ρ and
µ1, the squeezed bispectrum undergoes logarithmic oscillations in ks/kl and grows
approximately as (ks/kl)−3. This is very different from the behavior of the squeezed
bispectrum in single-isocurvaton QSFI, which can only exhibit oscillations or nearly
cubic power law growth in different limits of µ and m.

1Large non-Gaussianities can also be achieved in more complicated single field models, see for
example [29, 81].

2Kinetic mixing terms such as µ Ûπσ can appear in the Lagrangian because the inflaton vev
spontaneously breaks Lorentz invariance
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Several previously studied inflationary models predict log-oscillating or oscillating
shapes for the bispectrum [31, 35, 81–93]. Using shape templates, the Planck col-
laboration has begun constraining these oscillating/log-oscillating bispectra [14].
However, none of these shapes simultaneously exhibit log-oscillations and nearly
cubic power law growth in the squeezed limit. In this chapter, we provide a bis-
pectrum shape template for multi-isocurvaton QSFI that could be searched for
experimentally.

Previous work has demonstrated that non-Gaussianities that grow like (ks/kl)−3 in
the squeezed limit can have significant effects on large-scale structure [30, 48–50].
For example, in single-isocurvaton QSFI models with m, µ � H, non-Gaussian
contributions to the dark matter halo-halo power spectrum Phh(ks) become much
larger than the Gaussian contribution as ks → 0. The halo-halo power spectrum
Phh(q) will also be sensitive to the extra fields and interactions present in multi-
isocurvaton QSFI. We will show that for certain choices of the parameters ρ and
µ1, the bispectrum and trispectrum contributions to Phh(ks) will dominate over the
Gaussian contribution while oscillating logarithmically as ks → 0.

The purpose of this work is to determine the shapes of the bispectrum and trispec-
trum in multi-isocurvaton QSFI and explore their effects on LSS. In section 5.2
we write down a general quadratic Lagrangian for multi-isocurvaton QSFI and de-
termine the mode functions of the π and σI fields. In section 5.3 we compute the
primordial bispectrum and trispectrum due to a cubic interaction of the formσ3

1 , and
provide a template for the bispectrum shape. Finally, in section 5.4 we calculate the
contribution of the PNG to the halo-halo power spectrum Phh(ks) and halo-matter
power spectrum Phm(ks).

5.2 The Model and Mode Functions
We consider multi-isocurvaton QSFI, which include an inflaton field and N ex-
tra scalar fields known as “isocurvatons." The inflaton develops a time-dependent
vacuum expectation value φ0 that sources a background de-Sitter metric

ds2 =
1
(Hτ)2

(
dτ2 − (dxi)2

)
(5.1)

where H is the Hubble parameter during inflation and τ is proper time. We assume
that φ0 exhibits a slow-roll trajectory, which means Üφ0 ' 0 and H is approximately
constant throughout the inflationary era (see [8] for a review of slow-roll inflation).
The quantum fluctuations of the inflaton and isocurvaton fields perturb the metric
about (5.1) and source scalar and tensor curvature fluctuations, ζ(τ, ®x) and γi j(τ, ®x).
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To describe the field fluctuations, we use the effective field theory of inflation
formalism [27]. Following [27], we choose uniform inflaton gauge in which the
inflaton fluctuations are set to zero. We then observe that the time-dependent inflaton
vev spontaneously breaks time diffeomorphism invariance, giving rise to aGoldstone
boson π that transforms as π(x) → π(x) − ξ(x) under time-diffeomorphisms t →
t+ξ(x). The degrees of freedom in the effective theory are π, the metric fluctuations,
and the fluctuations of the N isocurvaton fields σI . To construct the effective
theory, one writes all possible terms invariant under the full set of space-time
diffeomorphisms involving these fields (see [34] for a complete derivation in the
context of single-isocurvaton QSFI).

We will be interested in computing the momentum space correlation functions of
π at the time when the modes exit the horizon. This implies we can work in the
“decoupling limit" of the effective theory [27] and set the metric perturbations to
zero. Correlation functions of ζ in the gauge where π is zero can be related to
correlation functions of π in the decoupling limit by [27]

ζ = −(H/ Ûφ)π. (5.2)

The leading quadratic Lagrangian simplifies to any term quadratic in π and σI that
is consistent with a shift symmetry in π and a background de-Sitter space-time:

L2 =
1

2(Hτ)2
(
(∂τπ)2 − c̃2

π (∂iπ)2 + Z̃I J∂τσI∂τσJ − c̃2
σI J∂iσI∂iσJ + 2β̃I∂τπ∂τσI + δ̃I∂iπ∂iσI

− (Hτ)−2 m̃2
I JσIσJ − 2 (Hτ)−1 ρ̃I JσI∂τσJ − 2 (Hτ)−1 µ̃IσI∂τπ

)
.

(5.3)

Note, repeated indices are summed over and we have included the √−g factor from
the action in the Lagrangian. We have dropped terms quadratic in the fields that
have more than two derivatives because they are suppressed by powers of the cutoff
Λ of the effective theory.

Several terms in (5.3) can be eliminated by field redefinitions. For example, the
δ̃I∂iπ∂iσI interaction can be absorbed into other couplings by performing the time
diffeomorphism that induces the shift π → π+ δ̃IσI/(2c2

π). Moreover, we can rotate
and re-scale σI to diagonalize c̃2

σI J and set Z̃I J = 1. Equation (5.3) then simplifies



90

to

L2 =
1

2(Hτ)2
(
(∂τπ)2 − c2

π (∂iπ)2 + (∂τσI)2 − c2
σI (∂iσI)2 + 2βI∂τπ∂τσI

− (Hτ)−2 m2
I JσIσJ − 2 (Hτ)−1 ρI JσI∂τσJ − 2 (Hτ)−1 µIσI∂τπ

)
.

(5.4)

The matrix m2
I J is symmetric while ρI J is anti-symmetric3. The interactions

µI ÛπσI and ρI JσI ÛσJ could result from a UV theory containing terms such as
(σI/Λ)gµν∂µφ∂νφ and (σI/Λ)gµν∂µσJ∂νφ. The kinetic mixings in (5.4) arise be-
cause the inflaton vev spontaneously breaks Lorentz invariance. If Ûφ0 = 0, Lorentz
invariance is unbroken and the kinetic mixings must vanish. By dimensional anal-
ysis, this means µI and ρI J are proportional to Ûφ0/Λ. Using (H2/ Ûφ0)2 ∼ 2π2∆2

ζ ,
where

∆
2
ζ =

k3

2π2 Pζ (k) ' 2.11 × 10−9 (5.5)

is the dimensionless power spectrum [94], the cutoff can be expressed in terms of
|µI | as

Λ

H
∼ H
|µI |
× 104. (5.6)

For µI ∼ O(H), this implies thatΛ � H and higher derivative terms are suppressed.

We can recover previously studied single-isocurvaton QSFI models by taking limits
of (5.4). If we take N = 1, β1 = 0 and c2

π = c2
σ1 = 1, we recover the quadratic part of

the QSFI Lagrangian originally considered by Chen and Wang [15]. The resulting
Lagrangian only has two parameters, µ1 and m11. Single-isocurvaton QSFI with
generic speeds of sound and nonzero β1 was studied in [34]. The presence of a
nontrivial ρI J matrix is the main new aspect of theories with N > 1 isocurvatons.

One way to treat the kinetic mixings parameterized by µI , βI and ρI J is to write the
Fourier transforms of the π and σI fields in terms of a common set of raising and
lowering operators

π̂(τ, x) =
∫

d3k
(2π)3

H
k3/2

N+1∑
i=1

(
â(i)k π

(i)(η)e−ik·x + c.c
)

σ̂I(τ, x) =
∫

d3k
(2π)3

H
k3/2

N+1∑
i=1

(
â(i)k σ

(i)
I (η)e

−ik·x + c.c
)

(5.7)

3Any symmetric part of ρIJ can be absorbed into m2
IJ through an integration by parts.
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where η = kτ. The mode functions π(i)(η) and σ(i)(η) obey the Euler-Lagrange
equations obtained from (5.4),

σ
(i)
I

′′
− 2
η
σ
(i)
I

′
+ c2

σIσ
(i)
I +

m2
I J

η2 σ
(i)
J +

µI

η
π(i)
′
+ βI

(
π(i)
′′ − 2

η
π(i)
′
)
+
ρI J

η

(
2σ(i)J

′
− 3
η
σ
(i)
J

)
= 0

π(i)
′′ − 2

η
π(i)
′
+ c2

ππ
(i) − µI

η

(
σ
(i)
I

′
− 3
η
σ
(i)
I

)
+ βI

(
σ
(i)
I

′′
− 2
η
σ
(i)
I

′
)
= 0

(5.8)

where primes denote derivatives with respect to η. The mode functions asymptoti-
cally obey the Bunch-Davies vacuum condition. Since equations (5.8) are coupled,
they are difficult to solve analytically for general parameters4. Instead, we use the
numerical solutions of (5.8) to perform most of the calculations in our analysis.
However, one can derive the small η behavior of the mode functions analytically,
which turns out to fix the wavevector dependence of the squeezed and collapsed
limits of the bispectrum and trispectrum.

In the limit5 −η << 1, we can neglect the terms in (5.8) proportional to the speeds
of sound. The leading late time behavior for the mode functions can be written as

π(i)(η) = a(i)s (−η)s σ
(i)
I (η) = b(i)I,s(−η)

s . (5.9)

For example, specializing to N = 2 and inserting (5.9) into (5.8) yields the following
equation for s,�������

(s − 3)s (s − 3)(sβ1 − µ1) (s − 3)(sβ2 − µ2)
s((s − 3)β1 + µ1) m2

11 + (s − 3)s m2
12 + (3 − 2s)ρ

s((s − 3)β2 + µ2) m2
12 + (2s − 3)ρ m2

22 + (s − 3)s

������� = 0, (5.10)

which can be solved for six different roots:

s = 0, s−, s∗−, 3 − s−, 3 − s∗−, 3. (5.11)

In general, s− is a complex number satisfying6 0 < Re[s−] ≤ 3/2. The s = 0
solution arises from the shift symmetry in π and can only exist in the π mode
functions. The leading η behavior of the mode functions is

π(i)(η) = a(i)0 + a(i)s− (−η)
s− + a(i)s∗−

(−η)s∗− + . . .

σ
(i)
I (η) = b(i)I,s−

(−η)s− + b(i)I,s∗−
(−η)s∗− + . . . . (5.12)

4Analytic progress can be made in the context of single-isocurvaton QSFI in the regimes where
µ1, m11 � H as explained in chapter 3, or µ1, m11 � H as explained in chapter 2 and [37, 41, 42].

5We have chosen the convention in which inflation occurs between −∞ < τ ≤ 0
6For general model parameters Re[s−] can be less than 0, however the modes would then be

tachyonic and grow rather than decay as η→ 0.
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Equations (5.12) imply that as η → 0, π(i) approaches a constant while σ(i)I decays
to 0.

The late time behavior of σI in multi-isocurvaton QSFI can be very different from
its late time behavior in single-isocurvaton QSFI [15]. If we write s− ≡ α + iγ,
equation (5.12) becomes

σ
(i)
I (η) = b(i)I,s−

(−η)αeiγlog(−η) + b(i)I,s∗−
(−η)αe−iγlog(−η). (5.13)

Observe that the modes oscillate logarithmically in η with frequency γ. Moreover,
α dictates how quickly the modes decay at late times. In the original Chen and
Wang theory [15] γ can only be nonzero when α = 3/2 (see e.g. chapter 2). This
means that while the isocurvaton’s mode functions exhibit oscillatory behavior at
late times, they decay quickly as η → 0. On the other hand, in a multi-isocurvaton
QSFI theory with ρI J , 0, one can obtain γ , 0 with α < 3/2, which means that
σ
(i)
I can oscillate while decaying slowly.

To illustrate this, we specialize to the case of two isocurvatons and focus on two sets
of parameters which will serve as our benchmark models. The first set is

µ1 = m12 = m21 = βI = 0, cπ = cσ1 = cσ2 = 1,

µ2 = 0.6H, m2
11 = m2

22 = −ρ
2
12 = −(5H)2 (5.14)

which yields s− ' 0.06 − 5.00i, while the second is

µ1 = m12 = m21 = βI = 0, cπ = cσ1 = cσ2 = 1,

µ2 = 0.4H, m11 = m22 = 0.3H, ρ12 = H (5.15)

which yields s− ' 0.46 − 1.00i. Notice, the masses squared in (5.15) are negative,
which is usually a signal of tachyonic modes whose mode functions diverge as
η → 0. However, due to the kinetic mixing, the mass squared parameters that
appear in the Lagrangian do not equal the physical masses squared. Indeed, α > 0
for this set of parameters, which implies σI → 0 as η→ 0.

For α < 3/2 and γ , 0, α and γ are typically the same order of magnitude. Some
tuning is required in order to produce α � 1 with γ ∼ O(1). This means, rapid
oscillations that decay slowly cannot be produced without some degree of tuning
between model parameters7.

7For example, in eq. (5.15), we tuned m2
ii = −ρ2.



93

5.3 Primordial Non-Gaussianity
In the previous section, we showed that theories with multiple-isocurvaton have a
kinetic mixing term parameterized by the matrix ρI J that cannot exist in single-
isocurvaton models. If this term is present, the mode functions of π and σI can
exhibit oscillatory behavior that decays slowly at late times. We now study the effects
of this behavior on the non-Gaussianities of the scalar curvature perturbations of the
metric, ζ .

We are interested in computing the “in-in" correlation functions of ζ at τ = 0, which
are related to those of π through (5.2). The in-in correlator of an operator O can be
expressed in the so-called “commutator form" (see for example [47]) as

〈O(0)〉 =
∞∑

N=0
iN

∫ 0

−∞
dτN

∫ τN

−∞
dτN−1· · ·

∫ τ2

−∞
dτ1〈[Hint(τ1), [Hint(τ2), . . . [Hint(τN ),O(0)] . . . ]]〉I

(5.16)
where the fields on the right hand side of (5.16) evolve according to (5.7) and (5.8).
In general, the interaction Hamiltonian consists of an isocurvaton potential V(σI) as
well as interactions involving combinations of π and σI . For simplicity, we assume
the potential consists of a cubic interaction involving only the σ1 field and that the
interaction Hamiltonian is dominated by this interaction8:

Hint(τ) =
1
(Hτ)4

∫
d3x

V ′′′

3!
σ1(x)3 + . . . . (5.17)

In the next two subsections, we compute the bispectrum and trispectrum of ζ due to
this interaction.

Bispectrum
We first consider the three-point function of ζ . Let ζk denote the Fourier transform
of ζ(x, 0). The bispectrum Bζ is defined as

〈ζk1ζk2ζk3〉 = Bζ (k1, k2, k3)(2π)3δ3(k1 + k2 + k3). (5.18)
8The potentialV(σI ) is not related to the other operators in the effective theory by any symmetry

and can, in principle, be the largest term in the interaction Hamiltonian.
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Figure 5.1: A diagramatic representation of the leading contribution to the bispec-
trum. Dashed lines represent π, while solid lines represent σ1.

Using equations (5.2), (5.7), (5.16) and (5.17), it is straightforward to show that to
leading order in V ′′′

Bζ (k1, k2, k3) = −2
(

H2

Ûφ0

)3 V ′′′

H
1

k3
1 k3

2 k3
3

×
∫ 0

−∞

dτ
τ4 Im

(
π(i)(0)σ(i)∗1 (k1τ)π( j)(0)σ( j)∗1 (k2τ)π(k)(0)σ(k)∗1 (k3τ)

)
(5.19)

where repeated mode labels are summed. Note, the sum π(i)(0)σ(i)∗1 (kiτ) is nonzero
because of the kinetic mixings.

The τ integral in (5.19) is potentially IR divergent due to the factor of 1/τ4 in the
integrand. Even though we do not have explicit expressions for the mode functions,
it can be shown using the canonical commutation relations (see Appendix 5.A) that
the integral is indeed finite in the IR. One can then evaluate the bispectrum using
the numerical solutions of (5.8).

Consider the squeezed limit of (5.19), which occurs when kl ≡ k1 ∼ k2 and
ks ≡ k3 � kl , i.e. there are two long sides and one short side of the triangle traced
out by the ki. We can factor out the momentum dependence from the time integral
by changing integration variables to η = klτ and expanding to leading order in ks/kl

using (5.12). We find

Bsq
ζ (kl, ks) = −4

(
H2

Ûφ0

)3 (
V ′′′

H

)
1
k6

l

(
ks

kl

)−3+α

(
cos (γ log ks/kl)Re

[
a(i)0 b(i)∗1,s− y

∗(α, γ)
]

+ sin (γ log ks/kl) Im
[
a(i)0 b(i)∗1,s− y

∗(α, γ)
] )

(5.20)
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Figure 5.2: Plots of the shape functions S(k1, k2, k3) in the range k1 > k2 > k3 for
multi-isocurvaton oscillatory shape (red) and local shape (transparent gray). In the
left and right panels we plot parameters (5.14) and (5.15) respectively.

where

y(α, γ) =
∫ 0

−∞

dη
(−η)4−α−iγ Im

[(
π(i)(0)σ(i)∗1 (η)

)2
]
. (5.21)

The squeezed bispectrum oscillates logarithmically in ks/kl with angular fre-
quency γ and the amplitude grows as (ks/kl)−3+α. As mentioned earlier, in single-
isocurvaton QSFI, γ can only be nonzero when α = 3/2, which means the amplitude
of an oscillating squeezed bispectrum can only grow as (ks/kl)−3/2 in these models.
This is not the case for the multi-isocurvaton models given by (5.14) or (5.15),
whose oscillating bispectrum grow approximately as (ks/kl)−2.94 and (ks/kl)−2.54

respectively.

To illustrate the momentum dependence of the full bispectrum, it is useful to define
the shape function

S(k1, k2, k3) = κ(k1k2k3)2Bζ (k1, k2, k3). (5.22)

The normalization factor κ is chosen so that S(k, k, k) = 1.

In Fig. 5.2, we plot the shape function of multi-isocurvaton QSFI for the model
parameters (5.14) and (5.15). For comparison, we also include the shape function
of local non-Gaussianity

Sloc(k1, k2, k3) =
1
3
(k1k2k3)2

[
1

(k1k2)3
+

1
(k2k3)3

+
1

(k3k1)3

]
(5.23)

which is close to the shape function of the single-isocurvaton QSFI originally
considered by Chen and Wang in the limit µ1,m11 � H, see chapter 3 and [15].
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Figure 5.3: We plot shape functions S(k1, k2, k3) of the multi-isocurvaton oscillatory
shape in the range k1 > k2 > k3. We plot the shape computed numerically in red
and plot the approximate shape defined in eq. (5.25) in blue. The top-left plot has
parameters (α, γ, φ) = (0.06,−5.00,−1.55), top-right (0.23,−2.50,−1.58), bottom-
left (0.46,−1.00, 3.08), and bottom-right (0.14,−0.50,−2.78).

Fig. 5.2 is consistent with the analytic results for the squeezed bispectrum of multi-
isocurvaton QSFI. In the limit k3/k1 → 0, the shape function oscillates logarith-
mically in k3/k1 and its amplitude has power law growth. On the other hand, in
single-isocurvaton QSFI, the shape function for an oscillating bispectrum decays to
0 as k3/k1 → 0. Note, to get very rapid oscillations and nearly local power law
growth for the multi-isocurvaton shape, one needs to tune parameters as in (5.14).
However, even the shape for the untuned parameters (5.15) displays a visible turn
due to nonzero γ.

For single-isocurvaton QSFI with γ = 0, the shape function has been approximated
as [15]:

SQSFI
α (k1, k2, k3) = 33α−2

(
k2

1 + k2
2 + k2

3

)
(k1 + k2 + k3)1−3α

(k1k2k3)1−α
(5.24)
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A good phenomenological fit to the multi-isocurvaton QSFI shape is

SOQSFI
α,γ,φ (k1, k2, k3) = C

(
cos

(
γ log

(
k2k3

k1 (k1 + k2 + k3)

)
+ φ

)
+ 2 perms.

)
SQSFI
α (k1, k2, k3)

(5.25)
where the normalization C = (3 cos (γ log (1/3) + φ))−1 enforces SOQSFI = 1 in the
equilateral limit. Note that the shape function is parameterized by three numbers α,
γ, and a phase φ. In Fig. 5.3, we plot the shape functions evaluated numerically
against the shape functions computed with (5.25).

We can also define the parameter f OQSFI
NL , corresponding to the magnitude of this

shape. In keeping with convention9, we define:

Bζ (k1, k2, k3) =
18
5
(k3Pζ (k))2 f OQSFI

NL
1

k2
1 k2

2 k2
3

SOQSFI
α,γ,φ (k1, k2, k3). (5.26)

By matching the squeezed limit of (5.26) onto (5.20), we can obtain V ′′′/H as a
function of f OQSFI

NL :

V ′′′

H
= − 9

10
(|a(i)0 |

2)3/2
√

2π2∆2
ζ f OQSFI

NL
C√

Im
[
a(i)0 b(i)∗1,s− y

∗(α, γ)
]2
+ 1

9Re
[
a(i)0 b(i)∗1,s− y

∗(α, γ)
]2
.

(5.27)

Even for γ ∼ O(0.1), the oscillating QSFI bispectrum shape still displays quali-
tatively distinct features. Specifically, the shape can get large and negative in the
squeezed limit. This is different frommany other bispectrum shapes that grow in the
squeezed limit because they typically remain positive rather than become negative
(see [14]).

Collapsed Trispectrum
We now consider the four-point function of ζ , which is defined as

〈ζk1ζk2ζk3ζk4〉 = Tζ (k1, k2, k3, k4)(2π)3δ3(k1 + k2 + k3 + k4). (5.28)

We focus on the collapsed limit, which occurs when kl1 ≡ k1 ∼ k2, kl2 ≡ k3 ∼ k4,
and ks ≡ |k1 + k2 | = |k3 + k4 | � kli. The integrand will be symmetric in kl1 and
kl2, which means we can untangle the limits of the time integrals. The collapsed

9Conventionally, fNL is defined via BΦ(k1, k2, k3) = 6A2 fNL
1

k2
1k

2
2k

2
3

S(k1, k2, k3) where A is given

by the power spectrum’s normalization PΦ(k) = A/k3 (see, e.g. [44]).
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Figure 5.4: A diagramatic representation of the collapsed trispectrum. Dashed lines
represent π, while solid lines represent σ1.

four-point then simplifies to

Tζ coll(kl1, kl2, ks) = 4
(

H2

Ûφ0

)4 (
V ′′′

H

)2 1
k9/2

l1 k9/2
l2

(
k2

s

kl1kl2

)−3/2+α

[
cos

(
γ log

kl2
kl1

) (
|b(i)1,s− |

2 + |b(i)1,s∗−
|2
)
|y(α, γ)|2

+2 cos
(
γ log

k2
s

kl1kl2

)
Re

[
b(i)1,s−b(i)∗1,s∗−

y(α, γ)2
]

−2 sin
(
γ log

k2
s

kl1kl2

)
Im

[
b(i)1,s−b(i)∗1,s∗−

y(α, γ)2
] ]
. (5.29)

Note, not every term oscillates logarithmically in ks/kl . Instead, there are two terms
which oscillate with angular frequency 2γ as well as one that does not oscillate at
all in ks/kl .

It turns out that a loop contribution to the trispectrum can produce terms that oscillate
with frequency 4γ. We explore this in Appendix 5.B.

5.4 Large-Scale Structure
In this section, we determine the effects of PNG on large-scale structure, specifically
the halo-halo power spectrum Phh and the matter-halo power spectrum Phm. It is
well known that in certain inflationary theories, such as single-isocurvaton QSFI,
the contributions of PNG to Phh and Phm can become much larger than the Gaussian
contributions at wavevectors of order (102 Mpc/h)−1 as illustrated in chapters 3 and
4 and [95]. We now consider this in multi-isocurvaton QSFI.

The primordial curvature perturbations are related to the linearly evolved smoothed
matter density perturbations today, δR(k), by [1]

δR(k) =
2k2

5ΩmH2
0

T(k)WR(k)ζk (5.30)
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where Ωm is the ratio of the matter density and the critical density today, H0 is
the Hubble constant today, T(k) is the BBKS transfer function [59] and WR(k) is a
window function smoothing over radius R. We use the top-hat window function

WR(k) =
3 (sinkR − kRcoskR)

(kR)3
. (5.31)

.

Since we are interested in scales of order 102 Mpc/h, δh can be related to δR through
a bias expansion. For simplicity, we use a local-in-matter-density bias expansion
(for a more comprehensive treatment, see [58])

δh(x) = b1δR(x) + b2

(
δR(x)2 − 〈δR(x)2〉

)
+ . . . (5.32)

The bias coefficients can be approximated using the threshold model introduced in
[55]. We assume that halos form instantaneously at some redshift zcoll , and that
halos only form at points where the overdensity exceeds some critical threshold
δc(zcoll). We also neglect the evolution of halos after collapse. In this model, the
bias coefficients b1 and b2 are then

b1 = 2
e−δ

2
c/(2σ2

R)
√

2πσR er f c(δc/(
√

2σR))
b2 =

e−δ
2
c/(2σ2

R)δc√
2πσ3

R er f c(δc/(
√

2σR))
(5.33)

where σ2
R = 〈δR(x)2〉. In deriving our numerical results, we use δc = 4.215, which

corresponds to δc(zcoll) = 1.686 at zcoll = 1.5 [54], and R = 3 Mpc/h. While a
more sophisticated treatment of halo dynamics will change our precise numerical
results, we do not expect them to impact our conclusions qualitatively.

We will be interested in computing the halo-halo power spectrum Phh,

〈δh(k1)δh(k2)〉 = Phh(k1)(2π)3δ3(k1 + k2) (5.34)

as well as the halo-matter power spectrum Phm,

〈δh(k1)δR(k2)〉 = Phm(k1)(2π)3δ3(k1 + k2). (5.35)

The Gaussian contributions to Phh and Phm are found to be

Phh(ks)
���
G
= b2

1

(
H2

Ûφ0

)2 (
2

5ΩmH2
0 R2

)2

ksR4 |a(i)0 |
2

Phm(ks)
���
G
= b1

(
H2

Ûφ0

)2 (
2

5ΩmH2
0 R2

)2

ksR4 |a(i)0 |
2. (5.36)
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At wavevectors of order (102 Mpc/h)−1 � R−1, the most significant non-Gaussian
contributions to Phh are due to the squeezed and collapsed limits of the bispectrum
(5.20) and trispectrum (5.29). Then, plugging (5.30) and (5.32) into (5.34) and
using (5.20) and (5.29) gives

Phh(ks)
Phh(ks)

��
G

= 1 − 8
(

b2
b1

) (
H2

Ûφ0

) (
2

5ΩmH2
0 R2

) (
V ′′′

H

)
1

(ksR)2−α
1
|a(i)0 |2(

cos (γ log ksR)Re
[
J∗(α, γ)y∗(α, γ)a(i)0 b(i)∗1,s−

]
+ sin (γ log ksR) Im

[
J∗(α, γ)y∗(α, γ)a(i)0 b(i)∗1,s−

] )
+ 8

(
b2
b1

)2 (
H2

Ûφ0

)2 (
2

5ΩmH2
0 R2

)2 (
V ′′′

H

)2 1
(ksR)4−2α

1
|a(i)0 |2(

|J(α, γ)|2 |y(α, γ)|2 |b(i)1,s− |
2

+ cos (2γ log ksR)Re
[
J(α, γ)2y(α, γ)2b(i)1,s−b(i)∗1,s∗−

]
− sin (2γ log ksR) Im

[
J(α, γ)2y(α, γ)2b(i)1,s−b(i)∗1,s∗−

] )
. (5.37)

where, to compactify notation, we have defined

J(α, γ) = 1
2π2

∫ ∞

0
dx x3−α−iγT(x/R)2W(x/R)2 (5.38)

The most significant non-Gaussian contribution to Phm comes from the squeezed
bispectrum:

Phm(ks)
Phm(ks)

��
G

= 1 − 4
(

b2
b1

) (
H2

Ûφ0

) (
2

5ΩmH2
0 R2

) (
V ′′′

H

)
1

(ksR)2−α
1
|a(i)0 |2(

cos (γ log ksR)Re
[
J∗(α, γ)y∗(α, γ)a(i)0 b(i)∗1,s−

]
+ sin (γ log ksR) Im

[
J∗(α, γ)y∗(α, γ)a(i)0 b(i)∗1,s−

] )
. (5.39)

In Figure 5.5 we plot (5.37) for the model parameters (5.14) and (5.15) and
| f OQSFI
NL | = 10. Note that at around (102 Mpc/h)−1, Phh begins to deviate from

Phh |G. The oscillations evident in Fig. 5.5 are a consequence of the oscillatory
squeezed bispectrum and collapsed trispectrum.
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Figure 5.5: We plot the halo-halo power spectrum scaled by the Gaussian halo-halo
power spectrum (i.e. the power spectrum for V ′′′ = 0). In the left panel, we plot the
parameters from eq. (5.14) with f OQSFI

NL = 10, and in the right panel, we plot the
parameters from eq. (5.15) with f OQSFI

NL = −10.

However, for | f OQSFI
NL | ∼ 10, the amplitude of the oscillations is quite small. More-

over, the non-Gaussian contributions to Phh only begin to dominate over the Gaus-
sian contribution at a scale of order (103 Mpc/h)−1, which is unlikely to be detected
experimentally in the near future.

This scale is smaller than the scale at which the non-Gaussian contributions to Phh

begin to dominate in single-isocurvaton QSFI theories with fN L ∼ 10 and α small
as seen in chapter 3. The reason is the integrals involving the transfer functions,
J(α, γ), are oscillatory in multi-isocurvaton QSFI when γ , 0, which washes them
out. This makes the coefficients of the non-Gaussian contributions smaller in multi-
isocurvaton QSFI than in single-isocurvaton QSFI.

5.5 Conclusion
In this chapter, we studied quasi-single field inflation with multiple isocurvatons.
Multi-isocurvaton QSFI includes the interaction ρI J ÛσIσJ which can give rise to
novel inflationary dynamics. In particular, the mode functions of π and σI can
exhibit late time log oscillations that decay slowly as η→ 0. Due to these late time
oscillations, the primordial non-Gaussianities of ζ exhibit log-oscillatory behavior
in ratios of wavevector magnitudes.

For example, the bispectrum is proportional to (ks/kl)−3+α cos(γ log ks/kl) in the
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squeezed limit, which means for small α it experiences nearly cubic growth while
oscillating. This behavior cannot be achieved in single-isocurvaton QSFI. Further-
more, the collapsed trispectrum goes as (ks/kl)−3+2α(a + b cos(2γ log ks/kl)), i.e.
there is a term that does not oscillate in ks/kl as well as one that does with frequency
2γ.

In models where α . 0.5, the contributions of the squeezed bispectrum and col-
lapsed trispectrum to the halo-halo power spectrum Phh(ks) and the halo-matter
power spectrum Phm(ks) can dominate over the Gaussian contributions at ks ∼
(103 Mpc/h)−1. When γ , 0, Phh and Phm oscillate logarithmically in ksR.

5.A Commutator Constraints
The η integrals of (5.21) are potentially IR divergent because of the factors of 1/η4

in the integrands. It can be shown that all potentially IR divergent terms are zero.
Eq. (5.8) implies that the σ mode functions can be written in series form as

σ
(i)
I (η) = b(i)I,s−

(−η)s− + b(i)I,s∗−
(−η)s∗− + b(i)I,2(−η)

2 + b(i)I,2+s−
(−η)2+s− + b(i)I,2+s∗−

(−η)2+s∗−

+ b(i)I,3−s−
(−η)3−s− + b(i)I,3−s∗−

(−η)3−s∗− + b(i)I,3(−η)
3 + . . .

(5.40)

The equal time commutation relation [π, σI] = 0 holds order by order in powers of
η and implies the following relations among the power series coefficients

π(i)(0)b(i)∗I,s−
=

(
π(i)(0)b(i)∗I,s∗−

)∗
, π(i)(0)b(i)∗I,s−

=
(
π(i)(0)b(i)∗I,s∗−

)∗
π(i)(0)b(i)∗I,3−s−

=
(
π(i)(0)b(i)∗I,3−s∗−

)∗
, Im

(
π(i)(0)b(i)∗I,2

)
= 0 (5.41)

where the sum over mode label i is implicit. Furthermore, the mode equations (5.8)
imply

b(i)I,2+s−
= cb(i)I,s−

b(i)I,2+s∗−
= c∗b(i)I,s∗−

. (5.42)

Combining the first relation in (5.41) with (5.42) yields

π(i)(0)b(i)∗I,2+s−
=

(
π(i)(0)b(i)∗I,2+s∗−

)∗
(5.43)

The leading infrared behavior of (5.21) is then

y(α, γ) = 2 Im
[
π(i)(0)b(i)∗1,3

] ∫ 0

−∞

dη
(−η)1−α−iγRe

[
π( j)(0)σ( j)∗1 (η)

]
. (5.44)

It is straightforward to fit the σ(i)1 mode functions to (5.40) and determine the
numerical coefficient in (5.44). The method to evaluate y(α, γ) is to choose an
−ηIR < 1 and numerically integrate from −∞ < η < ηIR using (5.21) and then
integrate from ηIR ≤ η < 0 using (5.44).
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Figure 5.6: A diagramatic representation of the loop contribution to the collapsed
trispectrum. Dashed lines represent π, while solid lines represent σ1.

5.B Loop Contribution to the Collapsed Trispectrum
Recall that the tree-level collapsed trispectrum, which has one internal line, has
terms that oscillate with frequency 2γ. We now show that a loop contribution to the
collapsed trispectrum, which has two internal lines, can contain terms that oscillate
with frequency 4γ. The loop contribution to the collapsed trispectrum then induces
terms in the halo-halo power spectrum that oscillate as cos(4γlogksR).10

Consider a theory in which the interaction Hamiltonian is composed of a single σ4
1

interaction:
Hint(τ) =

1
(Hτ)4

∫
d3x

V ′′′′

4!
σ1(x)4. (5.45)

Inserting two factors of (5.45) into (5.16) yields the 1-loop contribution to the
trispectrum:

Tcoll
ζ (kl1,kl2, ks) = 4

(
H2

Ûφ0

)4

V ′′′′2
1

k3
l1k3

l2

∫ 0

−∞

dη
η4

∫ kl2
kl1
η

−∞

dη′

η′4

∫
d3p
(2π)3

1
p3 |p + ks |3

× Im
[(
π(i)(0)σ(i)∗1 (η)

)2
]
Im

[(
π( j)(0)σ( j)∗1 (η

′)
)2

(
σ
(l)
1

(
p

kl1
η

)
σ
(l)∗
1

(
p

kl2
η′

))
×

(
σ
(m)
1

(
|p + ks |

kl1
η

)
σ
(m)∗
1

(
|p + ks |

kl2
η′

))]
(5.46)

As described in chapter 4 and [35, 95], for ks � kl , the loop diagram can give a
large contribution to the collapsed trispectrum. In this limit, the loop integral is
dominated by the region in which p ∼ ks, which means the mode functions on the
bottom line of (5.46) can be expanded in p/kli. Defining the integral

Z(ε1, ε2) ≡
∫

d3u
(2π)3

u−3+2ε1 |u + x̂|−3+2ε2, (5.47)

10Contributions to the halo-halo power spectrum due to primordial non-Gaussianities sourced by
quantum loops in the context of single-isocurvaton QSFI were considered in chapter 4 and [95].
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where x̂ is an arbitrary unit vector, the loop contribution can be written:

Tζ coll(kl1, kl2, ks) = 2
(

H2

Ûφ0

)4

V ′′′′2
1

k9/2
l1 k9/2

l2

(
k2

s

kl1kl2

)−3/2+2α

[
Re[c1] + Re[c2] cos

(
2γ log

kl2
kl1

)
+ Re[c3] cos

(
2γ log

ks

kl1

)
+ Re[c3] cos

(
2γ log

ks

kl2

)
− Im[c3] sin

(
2γ log

ks

kl1

)
− Im[c3] sin

(
2γ log

ks

kl2

)
+ Re[c4] cos

(
2γ log

k2
s

kl1kl2

)
− Im[c4] sin

(
2γ log

k2
s

kl1kl2

) ]
(5.48)

where

c1 = 2y(2α, 0)2
(
|b(i)1,s− |

2 |b( j)1,s∗−
|2Z(α, α) + |b(i)1,s−b(i)∗1,s∗−

|2Z(α + iγ, α − iγ)
)

c2 = |y(2α, 2γ)|2
((
|b(i)1,s− |

2
)2
+

(
|b(i)1,s∗−

|2
)2

)
Z(α, α)

c3 = 4y(2α, 0)y(2α, 2γ)b(i)1,s−b(i)∗1,s∗−

(
|b( j)1,s− |

2 + |b( j)1,s∗−
|2
)

Z(α, α + iγ)

c4 = 2 |y(2α, 2γ)|2
(
b(i)1,s−b(i)∗1,s∗−

)2
Z(α + iγ, α + iγ). (5.49)

Note that the loop contribution to the trispectrum has terms that do not oscillate
with log ks/kli, terms that oscillate with frequency 2γ, and terms that oscillate with
frequency 4γ.

The loop contribution to Phh due to the quartic σ4
1 interaction can also be computed:

Phh(ks)
��
loop

Phh(ks)
��
G

= 2
(

b2
b1

)2 (
H2

Ûφ0

)2 (
2

5ΩmH2
0 R2

)2

V ′′′′2
1

(ksR)4−2α
1
|a(i)0 |2(

Re
[
c1J(2α, 0)2 + c2 |J(2α, 2γ)|2

]
+ 2 cos (2γ log ksR)Re [c3J(2α, 0)J(2α, 2γ)]
− 2 sin (2γ log ksR) Im [c3J(2α, 0)J(2α, 2γ)]
+ cos (4γ log ksR)Re

[
c4J(2α, 2γ)2

]
− sin (4γ log ksR) Im

[
c4J(2α, 2γ)2

] )
(5.50)

While it appears that the terms oscillating with frequency 4γ in (5.50) could induce
unique observable features in Phh(ks), it turns out their coefficients are suppressed
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relative to those of the non-oscillating terms since |J(2α, 2γ)| � J(2α, 0). This can
be understood by noting that while themagnitudes of the integrands of J(2α, 2γ) and
J(2α, 0) are the same, the integrand of J(2α, 2γ) is oscillatory and washes J(2α, 2γ)
out.
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