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Abstract

Fluid-induced rotordynamic forces in pumping machinery are well documented but
poorly understood. The present research focuses on the rotordynamics due to fluid
flow in annuli, in particular, the discharge-to-suction leakage flow in centrifugal
pumps. There are indications that the contribution of the front shroud leakage flow
can be of the same order of magnitude as contributions from the nonuniform pressure
acting on the impeller discharge. Previous investigations have established some of
the basic traits of these flows. This work further elaborates both the experimental
and computational approach to quantify and predict the shroud contribution to the
rotordynamic stability of pumping machinery.

Experimental results presented show the contributions of the curvature of the
leakage path to the rotordynamics both with and without inlet swirl. The effect of
different inlet swirl rates at constant flow rate is examined. Anti-swirl devices are
evaluated for their effectiveness in reducing instability. Geometrical changes to the
high-pressure and low-pressure seals for the leakage path are quantified. All results
are in good agreement with other reported measurements.

Childs” bulk flow model for leakage paths is carefully examined, and convective
relations for vorticity and total pressure are deduced. This analysis suggests a new
solution procedure of the bulk flow equations which does not resort to linearization

or assumed harmonic forms of the flow variables.
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Chapter 1 Introduction

1.1 Background

The presence of fluid-induced rotordynamic forces in turbomachinery has been well
documented, but is still poorly understood. Previous studies have been conducted
both experimentally and computationally, given the presence of such destabilizing
forces and the problems that have been incurred by high-speed machinery. Increasing
power requirements and size restrictions has meant a corresponding increase in the
rotational speed of modern turbomachinery, and the fluid forces typically scale with
the square of the rotational speed. Cases of fluid-induced forces altering the expected
dynamic behavior of undersea petroleum, boiler feed, and rocket engine pumping
applications have prompted investigations into the area of fluid /structure interactions
in an attempt to predict the magnitude and onset of destablizing forces during the
initial design of such machinery.

Fluid-induced rotordynamic forces can arise from many sources in rotating ma-
chinery. Seals and annuli formed by the both the front and rear shrouds of centrifugal
pumps can have important effects. The blade interaction with stationary parts of a
diffuser or volute and non-uniformities in the discharge can also give rise to rotor-
dynamic effects. Much work has been done in the area of turbulent annular seals.
Computations of the forces due to fluid flow in seals have proven to be fairly reliable.

The flow in the passage formed by the discharge-to-inlet leakage path of a shrouded
centrifugal pump has been studied experimentally, but is still poorly characterized by
models adapted from the analysis of turbulent annular seals. To now most attempts
to computationally determine the destabilizing forces have met with limited success.
In the design phase, the time and cost of full three-dimensional computational fluid
dynamic codes has resulted in the need for simpler tools to analyze the effects of

machine geometry on fluid-induced forces. The fluid processes in the annulus formed
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by the front shroud of a centrifugal pump are highly complex and may not read-
ily lend themselves to simple analysis. With this in mind, this thesis attempts to
organize some new and some existing experimental data on effects of flow passage
geometry, and documents some approaches to predicting the experimental data using

computational schemes.

1.2 Notation

The dynamical behavior of a mass and rotating shaft is often characterized by the
displacement of the mass from the axis of rotation as a function of the main shaft
speed. The main shaft speed at which large displacements from the axis of rotation
occur are termed critical speeds, and are similar to resonant frequencies of spring-
mass-damper systems. In the case where the mass is a pump impeller, the fluid-
induced forces can have significant effects on the dynamic behavior, changing the
critical speeds of the shaft system and causing unforseen limitations to the operating
range.

The hydrodynamic force acting on a rotor or impeller in a circular whirling orbit
can be expressed as the sum of steady time averaged forces in the stationary frame
and components due to instantaneous displacement of the rotor from the centerline.
Using assumptions about the displacements due to the circular whirl orbit, the normal
and tangential forces described below can be deduced. The details of this procedure
have been well documented (Jery, 1986; Franz, 1989).

Figure 1.1 shows a schematic of the hydrodynamic forces that act on a rotating
impeller whirling in a circular orbit. The unsteady fluid forces acting on the impeller
due to the imposed whirl motion (eccentricity e, whirl frequency 1) are decomposed
into a force normal to the direction of whirl motion, F,,, and a force in the direction of
forward whirl motion, F;. The normal and tangential forces are traditionally presented
in dimensionless form as functions of the whirl frequency ratio, Q/w. More specifically,
it is convenient for rotordynamicists to fit F,, to a quadratic function of the whirl

frequency ratio, 2/w, and to fit the dimensionless tangential force, Fy, to a linear
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function. The resulting expressions are given by:

Fn:M(9>2—c<9> ~K (1.1)

w w

F,=-C <9> +k (1.2)

w

where the dimensionless coefficients are the direct added mass (M), direct damping
(C), cross-coupled damping (c), direct stiffness (K), and the cross-coupled stiffness
(k). It should be noted that the fluid-induced forces may not always conform to these
simple functions of the whirl frequency ratio, however this assumption is common in
rotordynamics literature. All five of the force coefficients are directly evaluated from
curve fits of the graphs of F,, and F; against )/w.

For consideration of stability, a positive normal force F,, will cause the eccentricity
to increase and hence be destabilizing. From equation 1.1, a large negative direct
stiffness when no whirl motion is present (2/w = 0) would correspond to such a
case. When )/w is positive, a positive tangential force F}y would also be destabilizing
as this would drive the forward whirl motion. As can be seen from equation 1.2, a
positive cross-coupled stiffness would correspond to such a condition, and also be the
tangential force acting at zero whirl frequency ratio.

A convenient measure of the rotordynamic stability is the ratio of cross-coupled
stiffness to the direct damping (i.e. k/C) which is termed the whirl ratio. This
defines the range of positive whirl frequency ratios for which the tangential force is

destabilizing.

1.3 Literature Survey

Fluid-induced rotordynamic forces can arise from any number of sources in mod-
ern high-speed turbomachinery. For example, work in turbulent annular seals has
been carried out by many researchers (Childs, 1983a; Nordmann & Massmann, 1984;
San Andres, 1993). A number of computational tools have been developed for turbu-

lent annular seals which have proven reliable and useful. Perhaps the most simple of
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Figure 1.1: Schematic of the unsteady fluid-induced forces acting on an impeller
whirling in a circular orbit.

these is the bulk flow model first proposed by Hirs and elaborated by Childs. Some
significant results of this research were the experimental characterization of the rotor-
dynamics of seals (Nordmann & Massmann, 1984), identification of the inertial terms
as essential in modeling the forces (Childs, 1983a), and the sensitivity to inlet swirl
of the bulk flow model (Childs, 1983b).

Some success has been acheived using the same bulk flow analysis in predicting
the contributions of a centrifugal pump back shroud flow to forces and moments.
Flow along the back shroud of an impeller can be important in applications such as
multi-stage pumps where this type of leakage is possible. This flow and its resulting
fluid force contributions have been examined experimentally and using a bulk flow
analysis (Tsujimoto et al. , 1997). It was found that the unsteady wall shear stresses
had only small effects on the flow in the passage, and that the the inlet loss condition
played a significant role in the success of the bulk flow model.

On the opposite side of the back shroud, several investigations into the fluid-
induced rotordynamic forces generated by discharge-to-suction leakage flows have

been conducted. The contribution of the front shroud flow to the unsteady forces

was identified in early work done at Caltech (Adkins & Brennen, 1988). Jery (1986)
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used a dummy impeller with no vanes that matched the geometry of a normal test
impeller to again examine the contribution of the shroud.

Bolleter (1987,1989) measured and quantified some of the effects of the front
shroud geometry on the unsteady forces acting on a centrifugal pump using a rocking
arm mechanism to vertically translate a spinning impeller. The forces reported by
Bolleter were much larger than those reported by Adkins and Jery, and this was even-
tually attributed to the smaller clearances. The effect of a wear ring (radial clearance)
seal was also measured and its contribution to the impeller forces determined. It was
noted for the wear ring that a significant amount of the measured forces were due to
the seal rather than the shroud. Table 1.1 shows the rotordynamic force coeflicients
for this wear ring seal and impeller. It should be noted that the nondimensionaliza-
tion of these coeflicients used the impeller discharge width rather than the leakage
path axial length. For the normal force, a stabilizing effect on the direct stiffness,
K, is noted for the seal. Bolleter, for the same wear ring geometry, also reports
the effects of a swirl brake designed to reduce the inlet swirl into the seal, located
near the discharge of the leakage path just upstream of the seal. With the anti-swirl
brake, an increase in the direct stiffness and direct damping are noted. Decreases in
the cross-coupled damping, cross-coupled stiffness, and direct added mass were also

reported for this anti-swirl brake.

K k C |c M
Measured, total 1.5 | 123 | 8.8 8.5 |6.5
Measured, seal 3.7 146 |54 -1 -2
Difference, attributed | -2.2 | 7.7 | 3.4 | 8.6 | 6.7
to impeller

Table 1.1: Force coefficients for wear ring impeller, Bolleter (1989)

To further investigate the front shroud force problem, Guinzburg (1992, 1993,
1994) examined the effect of eccentricity, rotational speed, and shroud clearance on the
rotordynamic forces using a solid rotor to model the front shroud of an impeller. To
summarize, the functional dependence of the rotordynamic forces on whirl frequency

ratio was similar for the rotor and impellers. Including the eccentricity of the whirl
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orbit in the nondimensionalization of the forces demonstrated that the forces scaled
linearly. Shaft speeds from 500 to 2000 rpm were tested and the forces were shown to
be independent of the shaft speed. The effect of increasing the flow rate was to cause
the normal force to increase, while decreasing the region of foward whirl where the
tangential force was destabilizing. The rotordynamic forces were roughly inversely
porportional to the clearance, which explained the discrepancy between Bolleter’s
data and that from Caltech. Figure 1.2 shows the effect of clearance for selected tests
(Guinzburg, 1992). The occurence of resonance like phenomena in the predictions of
Childs’ bulk flow model also led Guinzburg to examine the effect of swirl in the flow
entering the leakage path. The effect of swirl was destabilizing on the rotordynamic
forces. The rotordynamic force coefficients of these tests appear in figure 1.3. No
resonances were observed in the experiments, leading to some controversy about the
limitations of Childs’ model.

To examine the possiblity of errors in the bulk flow approach, Sivo conducted
measurements of the flow field in the annulus of the same model leakage path using
laser doppler velocimetry (Sivo et al. , 1994b). Regions of flow recirculation and
reversal were noted, especially close to the impeller near the tip. The results agreed
qualitatively with other reported flow recirculation zones in the leakage passage of an
impeller (Guelich et al. , 1989). Given the destabilizing nature of fluid pre-rotation
into the leakage path, Sivo (1995) also investigated the effect of the anti-swirl devices
in the leakage path for reducing the unsteady forces. Some benefit of these devices in
reducing the unsteady forces was observed, mostly for very small flow rates. Figure
1.4 shows the rotordynamic force coefficients as functions of flow coefficient for a test
with and without anti-swirl devices. Chapter 3 compares the data of Guinzburg and
Sivo with results from the current research in more detail.

Other efforts have also concentrated on calculation of the leakage flow forces. A
model with deformable finite elements, more complex than the traditional bulk flow
analysis has proved capable of predicting the same flow reversal type phenomenon
(Baskharone & Hensel, 1993) in the leakage flow. Baskharone’s work points out some

of the deficiencies in Childs’ model in assuming a harmonic perturbation of the pres-
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sure, however the finite element model does not appear to predict the experimental
forces with better accuracy. More experimental results can be expected from test-rigs

using magnetic bearing technologies (Matros et al. , 1994).

1.4 Research Objective

The objective of this research is to further refine both the experimental and com-
putational methods of studying and quantifying rotordynamic forces in discharge-to-
suction leakage flows of centrifugal pump impellers.

Some new leakage path geometries more closely modeling those of typical cen-
trifugal pumps will be examined, with some differences being noted from previous
investigations. The bulk flow approach is examined in detail for insight into the
physical properties of rotordynamic flows. A new solution approach with fewer as-

sumptions about the functional form of the flow variables is proposed.
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Chapter 2 Leakage Flow Test Apparatus

2.1 Rotor Force Test Facility

The experiments described in this work were conducted in the Rotor Force Test
Facility at the California Institute of Technology. This apparatus has existed in one
form or another for over 20 years (Ng, 1976), and has been used for various tests of
turbomachinery and related components.

The present setup of the Rotor Force Test Facility (see figure 2.1) was first used by
Jery (1986) to measure both the steady and unsteady fluid-induced forces on whirling
centrifugal pump impellers. To measure the fluid forces on a rotating whirling pump
without actually approaching the critical speed of the shaft and mass system, an
eccentric drive was constructed to apply a whirl motion to the rotating main shaft.
Jery describes the construction, operation and calibration of a six force component
internal force balance, which was used to measure forces on rotating machinery (Jery,
1986).

The eccentric drive mechanism consists of a set of adjustable offset bearings and
is used to impose a whirling motion onto the main rotation of the impeller. The
radius of the whirl orbit (eccentricity) can be varied. Using a seperate belt drive
connected to a whirl motor, the speed of the whirl orbit is varied throughout a range
of subsynchronous whirl frequencies over the course of a typical test. The speeds of
both the main motor and the whirl motor are set by a frequency divider box which has
seperate outputs for two motor feedback controllers. The phase of the two motions is
aligned with the aid of a strobe. The frequency divider box output is also sent to the
data acquisition system, allowing the exact location of the impeller in both its main
rotation and whirl rotation to be known at any given time.

An auxilliary pump has also been added to the existing loop, to simulate a leak-

age flow through the passages formed by the solid rotor. This device contains a
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turbine flow meter and bypass loops which are adjusted manually by means of valves
to regulate the flow rate. A schematic diagram of this unit appears in Guinzburg

(Guinzburg, 1992). This device was used by both Guinzburg and Sivo.

SILENT THROTTLE TURBINE FLOW
VALVE METER

/ \

/ ! E“\' -

BUTTERFLY
VALVE
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PUMPING UNIT
RESERVOIR
HEAT EXCH. FLOW
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UPSTREAM
SLIP RING ECCENTRIC DRIVE SMOOTHING
ASSEMBLY MECHANISM SECTION

Figure 2.1: Schematic of the Rotor Force Test Facility.

Many components of the Rotor Force Test Facility were not used in the current
tests. In particular, the silent throttle valve and turbine flow meter in the main loop
were not employed as their functions were handled by the bypass valves and flow
meter of the auxilliary pumping unit. The air bladder and heat exchanger were also
not used for tests of the leakage flow.

The working fluid is water containing a solution of sodium chromate for corrosion
inhibition, and pH balanced using potassium hydroxide. The main components of
the test section apparatus consist of a solid or dummy impeller (rotor), a housing

(stator), the rotating dynamometer (or internal force balance), the eccentric whirl
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mechanism, and a leakage discharge seal. The full setup of the main test section
is shown schematically in Figure 2.2. The main shaft is driven by a 15 kW motor
through a reduction gear, offering speeds to around 3000 rpm. A slip ring assembly is
located near the gearbox and allows a rotating connection between individual strain
gauge bridges of the balance and the bridge amplifiers. The whirl motion is produced
independently by a 1.5 kW motor, and is driven by a toothed belt and sprocket drive.

/]

Whirl Shaft Force Balance

Lt

) @l

Main Shaft

Stator

Eccentric Drive

Test Housing

Figure 2.2: Experimental Setup, showing eccentric drive and contoured impeller.

In order to isolate the leakage flow forces in these experiments, a solid rotor was
employed. The force contributions due to blade interactions with the volute are
thereby negated. The dummy impeller, as closely as possible, attempts to model the
front shroud clearance of a typical centrifugal pump. For these tests, fluid is forced
through the housing “exit” and into the leakage path formed by the rotor and stator.
It then exits to the rest of the loop of the RFTF through the “inlet” of the main
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housing. Various ports on the main housing can be modified to allow manometer
tubes and other instrument wiring to enter.
A range of suitable leakage flow rates was determined by examining data provided

by Rocketdyne of typical pump operating parameters, and appears in Appendix A.

2.2 Leakage Paths

Experiments to compare different geometries of pump discharge-to-suction leakage
paths were conducted in the Rotor Force Test Facility (RFTF). One experimental
configuration, with the conical rotor and stator forming the leakage path, is shown
in the center of Figure 2.3. This conical shroud with the straight 45 degree leakage
path was extensively tested by Guinzburg and Sivo. The contoured rotor and stator
form the leakage path depicted on the right of Figure 2.3. The conical model was
constructed as a first approximation. The contoured rotor was made to match the
axial length and eye-to-tip ratio (the ratio of an impeller’s inlet diameter to the
discharge diameter) of the conic model, but have more typical geometry. A final
rotor and stator were made to model the leakage path of the Space Shuttle Main
Engine (SSME) High Pressure Oxidizer Turbopump (HPOTP) as closely as possible.
It was much shorter in axial length than the previous two impellers and has a much
larger eye radius. Sketches and a table comparing the three paths are included in
figure 2.3.

Both contoured rotors were designed using a 3rd order polynomial chosen such
that the contour was parallel to the centerline at the eye and perpendicular to the
centerline at the tip. A matching stator was constructed to maintain a constant
normal clearance H=0.30 cm. The rotors and stators were machined using CNC
controlled tooling. For ease of analysis, the tip radius (corresponding to the discharge

radius of a pump) of all of the dummy impellers is the same.
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Short Contoured Rotor | Conical Rotor Contoured Rotor
Path 3rd order polynomial 45 degree straight | 3rd order polynomial
Eye/tip .700 AT4 A74
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Axial length/ | .088 .268 .229
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Figure 2.3: Test matrix of rotor geometries

2.3 Seals

The low pressure side of the leakage path corresponds to the inlet or suction of
a normal centrifugal pump (eye), while the high pressure side corresponds to the
discharge of a typical pump (tip). Seals at both the low pressure and high pressure
side of the rotor were used and their effects on the rotordynamic forces examined in
the course of these investigations. A low pressure seal was always present, and this
usually was an axial clearance device that modeled a typical face seal on a centrifugal
pump. An axial clearance seal is typical of the low pressure seal found in many
industrial centrifugal pump applications. This is illustrated in the right half of figure
2.4. The distance from the outer radius of the impeller eye to the inner radius of the
axial clearance seal was 1.14 cm. The clearance was set to 0.05 cm for virtually all

tests, but could be varied if necessary.

Figure 2.4 also shows a low pressure seal with radial clearance. The low pressure
radial clearance seal models a turbulent annular seal. A radial clearance seal is

typical in rocket engine designs, where a frictional contact seal may not be possible,
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Figure 2.4: Experimental Configuration: Contoured rotor with radial clearance (left)
and axial clearance (right) low pressure seal.

and losses induced by labyrinth type structures attempt to minimize leakage. The
geometry was selected to match the leakage path volume (between the seal surface
and the impeller) of the axial clearance seal for a direct comparison. A sealing section
of axial length 0.51 cm was formed between the rotating member and the threads of
the axial clearance seal on the stator. An imposed radial clearance of 0.09 cm was
used to accomodate the eccentricity.

The high pressure seal tested took the form of an orifice formed by a stationary ring
mounted on the stator, and a ring mounted on the conical rotor. This is illustrated
in Figure 2.5. This high-pressure orifice has been considered on pump designs such
as the Space Shuttle Alternate Turbopump Design (ATD) for the purposes of thrust

balance, and was examined previously (Sivo et al. , 1994a).

A lucite ring which overlapped the base of the impeller (either by 1.02 c¢m or
1.08 cm) was used to form the rotating part of the orifice. The stationary housing
was fitted with an existing aluminum ring which formed the non-rotating part of the
orifice. The outer radius of the lucite rings and the inner radius of the aluminum ring
produced a radial clearance of .0508 cm. For these experiments, the leakage path

clearance was set to H =.254 cm.
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impeller Ring
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Figure 2.5: Experimental Configuration: Conic path with radial clearance high-
pressure orifice seal.

The effect of axial overlap was studied with the high pressure orifice. A non-
overlapping orifice with .0254 cm of axial clearance, an axially overlapping orifice of
.038 c¢m, and an orifice with no axial overlap but no axial clearance were tested, along
with the case in which no orifice was present, which was accomplished by removal of

the stationary aluminum ring.

2.4 Inlet Guide Vanes

The effect of inlet swirl was investigated by installing a swirl vane at the leakage inlet
to introduce pre-rotation in the direction of shaft rotation. In this study of leakage
paths, inlet refers to the beginning of the leakage annulus, which corresponds to the
discharge of a typical centrifugal pump and should not be confused with the pump
inlet at the suction side. Figure 2.6 shows a typical vane consisting of a logarithmic
spiral channel with a turning angle of 6 degrees, and its installation relative to the
rotor and stator. The inlet swirl ratio, A (the ratio of the leakage flow circumferential

velocity to the impeller tip velocity) is varied by changing the leakage flow rate and
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Figure 2.6: Inlet guide vane, 6 degree turning angle

the turning angle. The swirl ratio depends on the flow coefficient and turning angle

according to:

A H

E ~ Btana (2.1)

where B = 0.318 cm is the depth of the logarithmic spiral channel. A derivation of
equation 2.1 (which assumes all leakage flow is constrained along the vane) can be
found in Guinzburg (1993). For the present tests, two vanes with turning angles of
1°, and 6° were constructed to allow variation of a or ¢ while maintaining the same
A. An existing 2° swirl vane was also used. To investigate the effects of the added
structure around the impeller, a turning vane with radial channels was also made to
investigate the case of no swirl.

Typical values for A were taken from Rocketdyne data, which appears in Appendix
A.



19

Rib

Stator AR

N
N

S

Rib of Groove

/
Face Seal Force

Rotor Balance

Rib or Groove

Figure 2.7: Anti swirl rib/groove locations.

2.5 Swirl Reduction Devices

The use of swirl reduction techniques has also been examined. Previous investigations
(Sivo et al. , 1995) have demonstrated some benefit from fitting anti-swirl ribs to the
surface of the stator, as this reduced the destabilizing forces. The inner surface of the
conical stationary housing has been designed to accept meridional ribs or swirl brakes
along the length of the leakage annulus. Four equally spaced ribs, .5 cm wide and .16
cm high were installed for the purpose of these tests. Results from Sivo demonstrated
that more ribs did not produce significantly different results than tests with four ribs.
Also, the effectiveness of ribs which did not extend the entire length of the leakage
path were examined. For these tests, ribs along half the leakage path were mounted
towards the tip and the eye of the stator.

The effectiveness of grooves machined into the stator surface has also been studied.
For these tests, grooves which duplicated the height and width of the ribs were cut
into the surface of the conical stator.

A diagram showing the anti-swirl ribs is presented in figure 2.7.
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2.6 Experimental Method

The experiments were conducted with various main shaft speeds, although for any
given comparison of geometries, the main shaft speed was held constant. A series of
sub-synchronous whirl frequency tests were conducted. This involved changing the
output of the frequency divider box to give a whirl frequency ratio of -.7 to +.7. At
each whirl frequency, the phase of the main and whirl motors was checked using a
strobe lamp. Between each run, the whirl motor was shut down and started up again
to slowly reach the next whirl frequency ratio.

Data was obtained by using a data acquisition system connected to the strain
gauge conditioning amplifiers. A clock signal from the frequency divider box was
also sent to the data acquisition system ensuring accurate timing. The details of the
software and hardware can be found in Franz (1989). Samples of 128 points per strain
gage bridge per cycle were taken, and then averaged over 256 cycles, with each cycle
being an integral number of revolutions of the whirl motor and hence the whirl motion.
Data was then processed and reduced to a set of normalized normal and tangential
forces for each whirl frequency ratio, using a normalizing force based on tip speed
and axial length of the impeller, prw? R2 Le. The internal force balance was calibrated
using a system of pulleys, cables and weights which applied a static loads for any of
the six force components. The details of the calibration procedure can be found
elsewhere (Jery, 1986). The calibration is checked by running the dynamometer with
mounted rotor and observing the steady force component in the vertical direction,
which should equal the weight of the rotor.

Data were taken twice for each case, a “dry run” where the rotor was operated
in air, with a water bearing protecting the seals of the eccentric drive, and a “wet
run” in which the rotor was operated in a submerged state with the auxilliary pump
generating a flow through the leakage passage. Data collected during a “dry run”
was taken for each main shaft frequency at each whirl frequency for each of the rotors
and any variation, including the additional rotating members added during the radial

clearance low pressure seal and the high pressure orifice tests. This data, taken from
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the rotor motion in air, was then subtracted from the “wet run” data to ensure proper
isolation of the fluid forces. Buoyancy of the impeller was also calculated, using the
force balance to measure both a dry weight of the impeller and a submerged weight.
The vertically upward buoyancy force was then subtracted from the “wet run” data.

The leakage flow was provided by the auxilliary pumping unit, and throttled using
the valves on the bypass loops. The flowrate was monitored using a Great Plains
Industries digital flow meter mounted on the feed pipe of the auxilliary pumping
unit, and manually recorded. The turbine flow meter and silent throttle valve of
the main loop were not utilized. For tests with zero flow rate, the valves connecting
the main loop to the auxilliary loop were shut. The normal and tangential forces
resulting from a “wet run” are then fitted using a least squares curve fit to determine

the rotordynamic force coefficient (See figure 3.1).

2.6.1 Experimental Error

The possibility of error in the measurements of the unsteady rotordynamic forces
was considered carefully. Errors from hardware have been discussed previously (Jery,
1986) and the variance of force measurements with the current data acquisition system
also examined (Franz, 1989).

The non-dimensionalization of the forces uses the normalizing force pmw?RZLe.
The largest uncertainty in this factor during the data processing is the eccentricity e.
The eccentricity has been verified many times with dial indicators for various static
positions of the dummy impeller in both the rotational and whirl motions. However,
a check of the displacement of the test article during a typical submerged test was
considered advisable to verify the rotor motion. It was also used to confirm the
rotational and whirl frequencies.

Bently displacement transducers were provided by Rocketdyne to measure the mo-
tion of the contoured impeller during a typical submerged test. Figure 2.8 shows the
location of the transducers in the test section. A special rotating member was added

to the contoured impeller to increase the surface area for the transducer measurement.
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Figure 2.8: Bently displacement transducer locations.

The transducer output confirmed article out of roundness and eccentricity, and
both were found to be similar to static measurements with the dial gauge under all
flow conditions. Both the dial gauge and the displacement transducers confirmed a
deviation from the nominal value of the eccentricity (0.0254 cm) of 0.00127 cm, or
5%. The whirl frequency ratio was also verified from the plots of the displacement.

Figure 2.9 shows sample plots of the displacement versus time for the contoured
shroud at 1000 rpm with various whirl frequency ratios. The whirl motion can be
seen as the main component of the waveforms. However, a smaller component at the
main shaft frequency is also superposed, and is caused by the machining tolerances of
the test impeller. It was concluded that the potential error in the normalized forces
due to the uncertainty in the eccentricity is + 5%.

An examination of the potential errors in the force measurements rather than
the eccentricity was also conducted. Here it is postulated that the largest source of
uncertainty is probably from the bridge/amplifier electronics, with temperature drift

from the time of the last rebalancing of the strain gauge amplifier circuits being the
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greatest contributor.

A nominal set of tests with the zero swirl vane (straight guides) at 1000 rpm and
a .77 I/s flow rate (relatively high) was conducted, with no re-zeroing of the strain
gauge amplifiers during 3 hours of continuous operation. The set of whirl frequencies,
—0.7 < Q/w < 0.7 was swept three times during this period, and the forces and
the resulting force coefficients from the least squares fit were examined. Flow rate
uncertainty for this test is less than 1%.

The unsteady normal and tangential force for this set of experiments are presented
in figure 2.10. The “reported data” were taken on a seperate occasion. The other
tests are listed in order as they were taken during the 3 hour operation. Examining
the measurements for the normal force, reassuring repeatability and consistency is
observed. The “dip” in the normal force at Q/w = .2 is duplicated in every case.
There is slightly more scatter in the plot of the tangential force, but again, larger
deviations such as at /w = .1 are repeated in every case.

For each of the tests, to determine the uncertainty in the rotordynamic coefficients
(see section 1.2), a least squares fit of the data was performed. The coefficients were
then averaged to find a mean value, and a standard deviation from this mean value was
calculated for all the sets of data. This deviation as a percentage of the mean value is
used as a measure of uncertainty for each of the rotordynamic force coefficients. The

uncertainty associated with each rotordynamic coefficient was:

M =43%
c=13%
K =380%
C=54%
k=51%
kE/C =5.0%

The rotordynamic coefficients of the normal force seemed to have the largest and

smallest percentage error.
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Chapter 3 Experimental Results

3.1 Introduction

A number of the effects of leakage path geometry have been investigated previously.
The functional dependence of the rotordynamic forces on whirl frequency ratio was
similar for the dummy impeller and actual impellers. The effect of eccentricity was
insignificant when using the normalizing force, prw?R%Le, indicating that previous
tests lie within the linear response regime. Shaft speeds of 500 to 2000 rpm were
tested and the forces were shown to be independent of the shaft speed. With the
conical impeller, a region of forward whirl for which the tangential force is destabi-
lizing is found to decrease with increasing flow rate. Increasing the flow rate also
increased the magnitude of the normal force. The dimensionless rotordynamic forces
are roughly inversely proportional to the clearance. The effect of inlet swirl was to
increase the tangential force and hence be destablizing. The inlet swirl also caused a
decrease in the normal force at positive whirl ratios, leading to larger cross-coupled
damping. Anti-swirl devices in the leakage path were found to offer some decrease in
the whirl ratio of the tangential force for low flow coefficients. The reader is referred
to Guinzburg (1992-1994) and Sivo (1994-1995) for details of the described effects.
The following effects are detailed in Bolleter (1989). The effect of a wear ring seal
compared with a face seal for impellers was studied. The wear ring seal results in a
larger (in some cases positive) direct stiffness which corresponds to a stable normal
force. The cross-coupled stiffness and direct damping are also larger for the wear
ring compared with the face seal, while the direct damping is similar, resulting in
a much larger tangential force. When the contributions to the unsteady forces of
the seal were tested independently, it was found that these three rotordynamic force
coeflicients were dominated by the seal. The added mass and cross-coupled damping

were dominated by the impeller shroud.
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3.2 Forces and Curve Fitting

Rotordynamic force coefficients provide a convenient means of reducing force data for
ease of comparison. From the previous investigations discussed in the introduction,
fluid parameters such as the leakage flow rate and inlet swirl appear to have significant
effects on the forces, and so it seems appropriate to examine the force coefficients as
functions of these parameters. The validity of the second order curve fit for the normal
force and the first order curve fit for the tangential force is a subject of concern. Figure
3.1 shows a typical plot of the rotordynamic forces versus the whirl frequency ratio
for the conical leakage path. As can be seen from the curve fit, the quadratic fit to
the normal force is accurate for the experimental data presented, however, it seems
that the curvature and hence the coefficients M and ¢ may change depending on the
number of experimental data points taken beyond the whirl frequency ratio Q/w =
7. As all tests presented do not include data beyond this whirl frequency ratio, the
coefficients of the normal force should be consistent. The linear fit to the tangential
force also appears appropriate for the data collected, but there are points, particularly
the value of F; at §)/w = .1, that are not modeled well by this straight line.

Figure 3.2 shows the rotordynamic forces as functions of the whirl frequency ratio
for the tests with swirl vanes on the contoured leakage path. For the tests with inlet
swirl, A = .5, a quadratic curve fit appears appropriate with little loss in accuracy.
The tangential force for the case with swirl is more complex; however a linear fit
would seem to provide a reasonable approximation to the force. With no inlet swirl,
the high flow rate case, ¢ = .055 appears to be problematic. A “dip” in normal force
at /w = .2 would adversely affect a least squares curve fit. Similar phenomena in
the tangential force at Q/w = -4 and .1 would also lead to a poor curve fit. For a
majority of the data collected however, the phenomena seen in this particular case
are absent and the curve fitting seems to be a reasonable method of obtaining force
coefficients for comparison. It is interesting to note the trends of the forces with flow

rate in figure 3.2, which are similar to those in previous studies.
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Figure 3.1: Experimental rotordynamic forces plotted versus whirl frequency ratio
Q/w, including resulting curve fits.

3.3 Comparison of Leakage Path Geometries

Variations in leakage path geometry were examined using the various dummy im-
pellers and stators described in the previous chapter. The conical stator and rotor
with its 45 degree leakage path was tested and compared to the contoured rotor and
stator which matched in eye diameter, tip diameter, axial length, and leakage path
clearance. A rotor and stator with a large eye diameter and short axial length, which
modeled the geometry of the Space Shuttle Main Engine High Pressure Oxidizer
Turbopump (HPOTP), was also examined.

For this comparison, a constant main shaft speed, w, of 1000 rpm was used. The
range of flow coeflicients from 0 to .033 were studied using various flow rates. A con-
stant leakage path clearance of H = .30 ¢cm was also used. The rotordynamic force
coefficients were derived from a least squares quadratic and linear fit of the normal

and tangential forces respectively, F,, and F,, which were measured over the range of
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Figure 3.2: Experimental rotordynamic forces plotted versus whirl frequency ratio
Q/w, with inlet swirl, A = .5 (left) and without inlet swirl (right).

whirl frequency ratios, —0.7 < /w < 0.7. Figure 3.3 presents the dimensionless ro-
tordynamic force coefficients as functions of the leakage flow coefficient, and compares
the conical and contoured leakage path geometries.

Except for the cross-coupled stiffness, all of the rotordynamic force coefficients
match in both trend and magnitude for the contoured and conic dummy impellers,
showing that the effect of the geometry of the passage is relatively small provided that
parameters such as the eye/tip diameter and axial length are the same. The effect
of having a shorter path (which alters the non-dimensionalization due to the axial

length) with a larger eye/tip diameter ratio, is also fairly pronounced when comparing
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Figure 3.3: Experimental rotordynamic coefficients versus flow coefficient ¢ for the
conic (o), contoured (x), and short contoured (o) leakage paths.

all three geometries. The forces for this short rotor are much smaller in magnitude.
The coefficients K, ¢, M, are virtually identical for the conic and contoured geome-
tries, reflecting the fact that the path shape has little effect on the normal force, F,.
The short contoured geometry normal force coefficents follow the same trends as the
other two leakage paths, but are smaller in magnitude across the entire range of flow
coefficients.

The contoured rotor has a larger cross-coupled stiffness, k, than the conic rotor
over the entire whirl frequency range. The cross-coupled stiffness for the short dummy
impeller follows the same trend as the contoured impeller, but at a smaller magnitude.

The direct damping C, seems to be fairly uniform for all three rotors, with the short
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rotor showing a slightly smaller magnitude. The change in & produces a corresponding
change in the whirl ratio, k/C. Earlier, it was reported by Guinzburg (1992) and Sivo
(1995), that, with the conical geometry, the whirl ratio decreased with increasing
flow coeflicient, and this is confirmed with the present experiments with the conical
geometry. However, the contoured geometry produces a k/C which increases with
increasing flow coefficient. This trend may reverse at higher flow coefficients, as
suggested by the fact that the short geometry shows a decreasing trend for the whirl
ratio k/C. Indeed, in the tests with inlet swirl described later, the contoured path
was subjected to much larger flow rates and the whirl ratio decreased at larger values

of ¢ than are shown here.

3.4 Seals

A change in the low pressure seal of the leakage path constitutes a substantial change
in path geometry, and the effects of the different seal geometries are significant. This
is possibly due to the change in pressure gradient along the leakage path. Figure
3.4 presents the dimensionless rotordynamic force coefficients obtained from the low
pressure seal experiments as functions of the leakage flow coefficient.

The wear ring seal (radial clearance) has a larger magnitude tangential force over
the range of flow coefficients examined in comparison to the face seal (axial clearance)
geometry. For the radial clearance seal, the cross-coupled stiffness, k, and direct
damping, C, increase with increasing flow coefficient while for the axial clearance
seal, the coefficients of the tangential force remain relatively constant. Despite the
larger tangential forces in the radial clearance seal, the effect on the whirl ratio, k/C
is small since both k& and C seem to increase by equal amounts.

The direct added mass and cross-coupled damping are approximately the same for
both seals, but the direct stiffness K increases with increasing flow coefficient for the
radial clearance seal. This leads to a normal force which becomes more stabilizing
as the flow rate is increased, and this is quite different from all previous Caltech

investigations which used the axial clearance seal. The data does however appear
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Figure 3.4: Experimental rotordynamic coefficients plotted against flow coefficient ¢
for radial (o) clearance and axial (x) clearance low pressure seal.

similar to results reported by Bolleter for a wear ring seal and face seal comparison
(1989).

The results for the high pressure seal are shown in figure 3.5. It appears as
though the orifice seal geometry on the high pressure side, whether overlapped, non-
overlapped, or retracted, has no effect on the forces. However, all three configurations
of the high pressure orifice cause increases in both the tangential and normal forces
acting on the impeller when compared to the case in which no orifice is present.
The values of C' and k are increased in the presence of the orifice, leading to higher
magnitudes of the tangential force. The whirl ratio, k/C, is also increased due to

the orifice, and the decreasing trend with increasing flow coefficient is once again
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Figure 3.5: Experimental rotordynamic coefficients versus flow coefficient ¢ for the
high pressure orifice, conical geometry. Overlapping (o), neutral (¢), retracted (O),
and no (x) orifice seal.

observed.

The effect on the direct stiffness of the high pressure orifice is opposite of that
observed in the radial clearance seal. As the flow increases, the direct stiffness de-
creases leading to greater destabilizing effects in the normal force. Again, the seal
configuration does not appear to greatly affect the added mass and cross-coupled

damping.
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3.5 Effects of Inlet Swirl

Using relation 2.1, a set of experiments was designed to determine the effect of inlet
swirl on the unsteady rotordynamic forces in the contoured leakage path. The three
swirl vanes of different turning angles were employed to alter the inlet swirl ratio,
and a swirl vane with perpendicular channels was used to generate the data for zero
inlet swirl. Figure 3.6 shows plots of the dimensionless rotordynamic force coefficients
obtained from the swirl experiments as functions of the leakage flow coefficient. It
appears as though the amount of inlet swirl, A, has little effect on the forces for any
flow rate. However, the effect of swirl is destabilizing compared to the case with no
swirl, as previously observed by Guinzburg (1992).

The force coefficients for the tangential force are larger when swirl is present
compared to the case with no swirl. For the tests with swirl the cross-coupled stiffness
appears to remain at an almost constant level for various values of A, while the direct
damping shows a tendency to first increase and then decrease slightly with increasing
flow coefficient. This leads to a whirl ratio, k/C, that increases with increasing flow
coefficient and so the tangential force does not exhibit a substantial reduction as the
flow coefficient increases. In the case with no swirl, however, a reduction of the whirl
ratio is observed for the contoured dummy impeller at higher flow rates.

Upon examination of the coefficients which determine the normal force, the same
trends for M, ¢, and K observed for the conical rotor by Guinzburg and Sivo are also
seen in the present experiments. The added mass does not exhibit an appreciable
difference in the cases with and without swirl, but the direct stiffness is higher and
the cross-coupled damping is smaller with no inlet swirl. In summary, the fluid
circumferential velocity affects the rotordynamic behavior significantly if it is nonzero,
but the amount of pre-rotation has little influence on the rotordynamics.

The effect of swirl on the leakage path geometry was also considered. Some dif-
ferences are noted, which presumably arise from the difference in the contoured and
conic shape of the path. Figure 3.7 shows the rotordynamic force coefficients for both

leakage paths. The coefficients of the normal force appear to be similar, but there are
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Figure 3.6: Experimental rotordynamic coefficients plotted against flow coefficient ¢

for tests with inlet swirl, A = 0.0 (A), 0.4 (+), 0.5 (x), 0.6 (o), and 0.7 (%).

significant differences in the trend and magnitude of the cross-coupled stiffness and
direct damping, leading to a differences in the whirl ratio where the contoured rotor
shows an increasing trend with flow rate, while the conic rotor indicates a decreasing

trend.

3.6 Effects of Anti-Swirl Devices

Of course, fluid swirl is generated in the leakage passage and the question arises as

to whether modification of that motion would alter the destabilizing rotordynamic
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for tests with inlet swirl, for the contoured path (O, A = .6), and for the conical path

(%)

forces. Thus, the effect of anti-swirl ribs and grooves installed in the leakage path is
considered. Work by Sivo (1995) identified some benefit to having anti-swirl measures
in the leakage path, but only for very small flow coefficients.

Figure 3.8 shows plots of the dimensionless rotordynamic force coefficients ob-
tained from the anti-swirl rib experiments as functions of the leakage flow coefficient
for the conical path. These experiments are similar to those of Sivo (1995), who stud-
ied various numbers of anti-swirl ribs in the conical leakage path, and demonstrated
that the number of ribs did not contribute significantly to the rotordynamic forces

due to the leakage flow. The effect of positioning four anti-swirl ribs is shown, for
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ribs which run the entire length of the leakage path, and for ribs which run half the
length of the leakage path, positioned towards the tip of the impeller and the eye of

the dummy impeller.
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Figure 3.8: Rotordynamic coefficients plotted against the flow coefficient ¢ for the
experimental tests with no anti-swirl devices (x), 4 anti-swirl ribs full length (o),
half-length at the tip (4), and half-length at the eye (x).

The direct damping appears to be similar for the case with no ribs, full length
ribs, and half-length ribs at the tip. The direct damping is altered by the presence of
the half-length ribs at the eye. All ribs seem to affect the cross-coupled stiffness in a
similar manner, offering a slight reduction at small flow rates over the case with no
devices at all. This leads to a whirl ratio which reflects the same behavior observed

by Sivo, a slight benefit at small flow coefficients. The eye ribs have a smaller whirl
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ratio at higher flow rates compared to the full length and tip ribs.

The added mass and cross-coupled damping are not noticeably affected by the
devices, however an increase is observed in the direct stiffness for the ribs at the
tip and the full length ribs. The reduction of swirl velocity close to the inlet has a
beneficial effect on reducing the normal force.

Figure 3.9 shows the rotordynamic force coefficients as functions of flow coefficient
for the conic shroud, comparing grooves and ribs as anti-swirl measures. This time,
the tests are conducted with the 2° swirl vane, so that there is some inlet pre-rotation

of the fluid as it enters the leakage path.
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Figure 3.9: Rotordynamic coefficients plotted against the flow coefficient ¢ for the
experimental tests with inlet swirl. No anti-swirl devices (x), 4 full length anti-swirl
ribs (o), 4 full length anti-swirl grooves (+).
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The same clearance of H = .3048 cm is used through all the tests. The direct
stiffness K is smallest and the cross-coupled damping c largest for the cases with no
anti-swirl measures. These coefficients are improved for the case with grooves, and
experience the greatest benefit in stability for the anti-swirl ribs. The direct added
mass remains approximately the same for all three cases.

The direct damping of the tangential force shows roughly the same magnitude and
constant trend with increasing flow coeflicient for all three cases. This is different from
the case with swirl on the contoured leakage path reported in the previous section, and
may stem from the geometrical differences. The cross-coupled stiffness k, decreases
for no anti-swirl devices, and increases with increasing flow coeflicient for the case
with ribs. With grooves, the cross-coupled stiffness first increases and then decreases
with flow coefficient. This leads to a whirl ratio £/C which shows some improvement
for anti-swirl devices at very low flow rates, and then a detrimental effect as the
flow rates increase. The anti-swirl grooves decrease the whirl ratio at higher flow
coefficients, and it is not clear if this trend will mean an improvement over no devices
at flow rates higher than those tested. The whirl ratio, in the presence of swirl, shows
a decreasing trend for the conical impeller, which is similar to Guinzburg’s and Sivo’s
results but different for the contoured impeller discussed previously.

It seems that all the anti-swirl devices give some benefit in reducing the destabliz-
ing region of the tangential force, but only for small flow rates. Anti-swirl devices
have some effect on increasing the direct stiffness, aiding the stability of the normal

force.

3.7 Comparison of Experimental Data

The data of Guinzburg and Sivo are examined for consistency with some of the current
experimental results. These prior investigations used the conical geometry and a 2°
swirl vane for the cases with inlet swirl. While the clearances and eccentricities are
widely varied, trends in the rotordynamic forces seem repeatable and consistent.

Figure 3.10 shows the rotordynamic force coefficients as functions of flow coefficient
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Figure 3.10: Rotordynamic coefficients versus flow coefficient, ¢, for the case of a
conical impeller at 2000 rpm and ¢ = 0.025 cm, for H = 0.140 c¢m (x, Guinzburg
1992), and H = 0.305 cm (o, current).

obtained by Guinzburg (1992) with comparable data from the current tests. The
conical rotor at 2000 rpm was used, with the leakage path clearance H= 0.140 cm
in Guinzburg’s test, and H=0.305 cm in the current tests. The eccentricity is 0.025
cm in both cases. The trends in most of the force coefficients seem to match well,
however the magnitudes of the forces for Guinzburg’s tests are much larger with the
exception of the direct added mass M and cross-coupled damping ¢. The smaller
clearance is expected to cause such an increase in the measured forces, and so these
results seem reasonable.

Figure 3.11 shows the rotordynamic force coefficients as a function of the flow
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Figure 3.11: Rotordynamic coefficients plotted against the flow coefficient ¢ for the
conic geometry (Guinzburg 1993) at 1000 rpm, H = 0.140 c¢m, and ¢ = 0.118 c¢m with
(o), and without inlet swirl (x); For the contoured geometry (current) at 1000 rpm,
H = 0.305 cm, and ¢ = 0.025 cm with (O,A = 0.6) and without inlet swirl (A).

coefficient for Guinzburg’s (1993) and the current tests with and without inlet swirl.
Guinzburg’s data is for a conical shroud with a clearance of 0.140 cm, an eccentricity
of 0.118 cm, and for flow coefficients over a large range, at 1000 rpm. The current
data is for a contoured shroud with clearance of 0.305 cm, an eccentricity of 0.0254
cm, and for a much smaller range of flow coefficients at 1000 rpm. It should be noted
that the no inlet swirl case studied by Guinzburg is the only set of data which was
collected without using an inlet guide vane, as the current zero inlet swirl data were

taken using a set of radial vanes for consistency purposes.
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As can be seen in figure 3.11, good agreement is observed between the coefficients
of the normal force. The trends with increasing flow rate are matched well, and the
direct added mass and cross-coupled damping have similar magnitudes for both the
case with and without inlet swirl. For the cases with no inlet swirl, similar trends are
noted between this plot and figure 3.10, and therefore the path clearance appears to
be the explanation of the difference in the magnitudes of the direct stiffness, K.

The force coefficients of the tangential force differ in magnitude and trend, but
again the magnitude difference is best explained by a glance at figure 3.10 and noting
the leakage path clearances. The differences in trend of the direct damping and cross-
coupled stiffness with flow rate appear to be due to the curvature of the contoured
rotor compared with the conical rotor as compared in figure 3.7. In both sets of
reported data, the same relative difference between the tangential force coeffients
with swirl and without inlet swirl is observed. Seperate plots of Guinzburg’s data
and the current data can be seen in figures 1.3 and 3.6 for clarity.

Figure 3.12 reproduces the data from Sivo (1995) and from the current tests for
the conical impeller with and without anti-swirl ribs in the leakage path. The data
from Sivo is taken over a larger range of flow coefficients, and the eccentricity and
leakage path clearance are both larger in Sivo’s tests. The ratio of the eccentricity to
the clearance, e/H, is 0.0833 for the current tests and 0.278 for Sivo’s. It is possible
that non-linear affects may need to be accounted for with Sivo’s data.

The normal force coefficients show the same benefit of improved direct stiffness
with the addition of the anti-swirl ribs. The relative difference for cases with ribs and
without ribs in the cross-coupled damping and direct added mass is also similar.

The whirl ratio for both sets of data is also similar. The benefit of the ribs occurs
only at very small flow coefficients, and the reduction of the whirl ratio with increasing
flow rate is observed for the cases without ribs. This is interesting because it appears
that the trend of the direct damping is different between Sivo’s research and the
current work.

For the cases depicted in figure 3.12, the magnitudes of the rotordynamic coeffi-

cients can probably be attributed to the clearance, H. The trends with flow rate is
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Figure 3.12: Rotordynamic coefficients for the conical rotor with and without anti-
swirl ribs. Data at 1000 rpm, for H = 0.424 c¢m, ¢ = 0.118 cm with (*) and without
(+) ribs (Sivo 1995). And for H= 0.305 cm, ¢ = 0.025 cm with(o) and without (x)
ribs (current).

similar between both data sets, with the exception of the direct damping, C. It is
not clear why this occurs, but the large eccentricity to clearance ratio in Sivo’s tests
may partially explain the discrepancy.

Some of the differences observed between rotordynamic force measurements in
centrifugal pump leakage paths gathered by various researchers at the Rotor Force
Test Facility have been explored. Many similarities are observed in the data as well,
despite differences in rotor geometry and test hardware. Throughout the tests ex-
amined, the normal force measurements are the most consistent, while the tangential

force measurements are sensitive to changes in flow conditions and geometry.
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3.8 Discussion

The experimental data from the current research shows good agreement with previous
work in the area of fluid-induced rotordynamic forces in pump leakage paths. The
functional dependence of the forces on whirl frequency ratio was fairly consistent and
allowed use of the rotordynamic force coefficients for meaningful comparisons. The
reduction of the whirl ratio with increasing flow coeflicient was observed with the
conical geometry, and there are indications that this is also the case for contoured
rotors with more typical geometry, but this occurs at much higher flow rates than
those tested. The increase in the normal force as the flow rate increases is also
observed.

A short axial length decreases the magnitude of all the rotordynamic force coef-
ficients. As the forces are nondimensionalized by the axial length, this implies that
the forces are quite small for the shorter contoured impeller, and that the nondi-
mensionalization with the axial length will not reduce the forces on the rotors with
similar profiles to uniform values. The effect of the curvature in comparing impellers
of similar axial length appears only in the cross-coupled stiffness for the case with no
swirl, but is significant for both tangential force coefficients for the case with swirl.

The effect of the wear ring and face seal with the contoured leakage path seems to
match the effects observed for similar impellers tested by Bolleter. The low pressure
seal plays a large role in determining the behavior of the entire annulus, especially
in increasing the direct stiffness. This may be simply the Lomakin effect (Brennen,
1994) contribution from the radial clearance seal. Due to a reduced axial velocity,
the entrance losses to the seal are smaller, and hence the mean pressure is higher
on the side of the seal with smaller clearance. This higher pressure gives rise to a
restoring force on the side of the seal with smaller clearance, and therefore a positive

” “short seal” analytic solution

direct stiffness. However, a calculation using Childs
for just the seal of the impeller yielded a stiffness which, when added to the value
of the stiffness for the impeller alone, should cause an increase of about 10%. There

may be more than a Lomakin effect causing the increase in stiffness, or perhaps there
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are interactions between the seal and the shroud which invalidate the summation of
the coeflicients of the seperate devices. Table 1.1 seems to indicate that the seal is
responsible for a much larger contribution to the stiffness than this simple calculation
would indicate.

The high pressure seal has the opposite effect: the direct stiffness decreases when
compared to the case without the orifice. The tangential force with an orifice is also
much larger in magnitude. Again, the cross-coupled damping and direct added mass
are not affected as much as the other rotordynamic force coefficients.

The tests with inlet swirl indicate that fluid effects are similar to the geometrical
effects of the seals. The direct stiffness, direct damping, and cross-coupled stiffness
appear to show the greatest change between cases with and without inlet swirl. The
magnitude of the fluid pre-rotation into the path does not appear to be very great.
It is postulated that the effect of inlet swirl is felt only at the inlet of the leakage
path, and that the viscous effects dominate thereafter. Inlet swirl seems to have very
different effects on the tangential force for the conic and contoured geometries, and
appears to be more destabilizing with increasing flow rate for the case with curvature.

The experiments with anti-swirl ribs of different lengths in the leakage path seem
to corroborate this idea. Almost no change is noted for the direct added mass and
cross-coupled stiffness. Any anti-swirl structure at the inlet, either full length or tip
ribs, appears to offer an increase in the direct stiffness. The eye ribs offer increases in
the tangential force coefficients, indicating that disrupting the flow midway through
the leakage path has some beneficial effect on the rotordynamic stability by reducing
the whirl ratio compared with other rib configurations. This finding is consistent with
Bolleter’s swirl brake for the increased direct damping, and may be consistent with
the cross-coupled stiffness depending on the leakage flow rate.

From the experiments, it is clear that the inlet and discharge of the leakage path
will have very important effects on the rotordynamic behavior of shrouded centrifugal
pumps. Whether structural parameters like seal geometry and anti-swirl ribs, or fluid
parameters such as varying inlet swirl, the resulting changes in the direct stiffness,

cross-coupled stiffness, and direct damping will affect the rotordynamic stability and
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present challenging problems in defining the boundary conditions in any numerical

simulation.
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Chapter 4 Theoretical Model

4.1 Bulk Flow Model

The bulk-flow model of the discharge-to-inlet leakage flow developed by Childs (1989)
is particularly valuable for its simplicity and ease of computation. Based on Hirs
(1973) lubrication equations, the bulk flow model uses simple correlations for the shear
stresses based on the gap averaged flow velocities. This model, in its perturbation
solution form, is widely regarded as a useful rotordynamic analysis tool for problems
with relatively simple computational domains.

As presented by Childs, the bulk flow model assumes that the three-dimensional,
unsteady, turbulent flow in an annulus can be accurately approximated by reducing
the dimensions of the flow from three to two, by using a simple correlation between
the shear stresses and gap averaged velocities, and by treating the rotordynamic flow
as a linear perturbation on the mean flow. Each of these assumptions should be
carefully considered when using this approach to model the flow in a more complex
computational domain such as a centrifugal pump leakage annulus.

The assumption that the dimensions of the flow can be reduced from three to two is
common and leads to the Reynolds lubrication equations. It implies that the velocity
profiles within the annulus are self-similar and therefore, the equations of the flow can
be averaged over the gap without excessive error. This may have limitations under
certain conditions noted in experiments in which flow reversals and recirculation zones
occur in the leakage path (Sivo et al. , 1994b; Guelich et al. , 1989). These changes in
flow direction may lead to frictional stresses which are acting in a direction opposite
to those predicted by the gap averaged velocity. Certain 3-D computational analyses
have observed these flow reversals (Baskharone & Hensel, 1993). With regions of
recirculation occuring in different parts of the gap, and changing with different flow

rates and impeller speeds, a serious limitation may be noted with this assumption of
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a two-dimensional domain.
The Reynolds number of most leakage flows is very high. This means the bulk flow
model requires expressions which relate the turbulent shear stresses to the averaged
velocities in the gap. In the current form of the bulk flow model, the shear stresses on

the rotor and the stator are calculated using friction coefficients (Hirs, 1973). These

T =n(ﬁ@)m (4.1)

spu’ n

are defined by:

where u is the gap-averaged velocity relative to the surface under consideration, and
the m and n are denoted by mg and ng for the stator and mpg and ng for the rotor.
These expressions, which are a simple and heuristic extrapolation from the correla-
tions for turbulent flow in a pipe, are taken from the work of Hirs who does, however,
recommend that the coefficients m and n be “fitted to individual experiments.” The
frictional coefficients are dependent on six physical parameters, including the cur-
vature of the surface, inertial effects, and roughness. Other work suggests different
empirical coeflicients for the same smooth concentric seal studied by Hirs (Yamada,
1962). Thus, the coefficients may not fully account for the curvature of the rotor in a
particular leakage geometry or the inertial effects due to the curved path of the bulk
flow. Nor will the roughness parameters be easy to gauge. Given the ease with which
the frictional factors can be altered in the computational model, it is reasonable to
consider fitting them so as to match the experimental data base provided one could
have reasonable confidence that one was not sweeping other and different deficiences
under this rug. As stated previously any reversal in flow direction near the impeller
implies a serious error in the correlation of equation 4.1. The sign of the wall-shear
stress term for the rotor should change in a region of reverse flow. This could, in
part, be incorporated into the bulk flow analysis by using smaller values of ng.

In fact, the use of the above expressions for the turbulent shear stresses are sub-
ject to an even more general criticism. They are correlations for steady turbulent
flows based, primarily, on experimental observations of steady flows. In contrast, the

rotordynamic flows of concern here are fundamentally unsteady. The problem is that
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very little is known about turbulent flows which are unsteady in the sense that the
flow is being externally excited in an unsteady way. Therefore, correlations such as
that given above are useful as there are no alternatives, but it must be recognized
that the unsteady flows of the present context may lead to substantial deviations from
these correlations. At present, this issue can only be resolved by careful comparison
of the experimental and model results.

Finally, Childs treats the rotordynamic flow as a linear perturbation on the mean
flow in the annulus. While this may be an accurate assumption for very small ec-
centricities, there is currently no way to know at what eccentricity this linearization
begins to lose accuracy.

Even if the basic equations are accurate, there is more doubt about the boundary
conditions that Childs’ employs at the inlet to and discharge from the leakage flow.
For example, Childs’ deploys a constant pressure condition as well as a uniform swirl
velocity condition at inlet. Perhaps the first should be a constant total head condi-
tion instead. Moreover, it is assumed that the hydraulic loss through the orifices at
inlet and discharge are related only to the meridional velocity (or flow rate) and are
independent of the swirl velocity.

S0, while Childs’ model was certainly a major step forward, there remain many

questions which require resolution before a reliable predictive tool is available.

4.2 Description of Bulk Flow Model

Black and his co-workers (Black, 1969; Black & Jensen, 1970) were the first to attempt
to identify and model the rotordynamics of turbulent annular seals. Bulk flow models
(similar to those of Reynolds lubrication equations) were used. Several deficiencies in
this early work caused Childs (1983a, 1983b) to publish a revised version of the bulk
flow model for turbulent annular seals (Childs & Dressman, 1982; Childs & Dressman,
1985; Childs & Kim, 1985; Childs & Scharrer, 1986) and later to extend this model
(Childs, 1987; Childs, 1989) to examine the rotordynamic characteristics of discharge-

to-suction leakage flows around shrouded centrifugal pump impellers. The geometry
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is sketched in figure 4.1, and is described by coordinates of the meridian of the gap
as given by Z(s) and R(s), 0 < s < L, where the coordinate, s, is measured along
that meridian. The clearance is denoted by H(s, ©,t) where the mean, non-whirling
clearance is given by H(s).
The equations governing the bulk flow are averaged over the gap. This leads to a

continuity equation of the form:

0H 0
—t—-l- ‘(?—;(Hus)‘F‘é %(HU@)-F

1 0 Hu, dR
— = 4.2
R ds 0 (42)

where u, and ug are gap-averaged velocities in the s and © directions. The meridional

and circumferential momentum equations are:

1dp 755  Trs ub dR  Ous  ue Ou, Ou,

b -2 = — =4

p 0s pH pH R ds ot R 90 " as

(4.3)

1 8}7 . T8O TRO 816@ Ue 6u@ + U, 8u@ + UeUs Q_]j (44)
Js R 0s

R0 sH T oH ot TR 90

We note that the equations not only include the viscous terms commonly included
in lubrication analyses (for example, (Pinkus & Sternlicht, 1961) ) but also the in-
ertial terms (Fritz, 1970) which are necessary for the evaluation of the rotordynamic
coefficients.

To determine the turbulent shear stresses, Childs employed the approach used by
Hirs (1973). The turbulent shear stresses, s, and Tse, applied to the stator by the

fluid in the s and © directions are given by:

Tss  Tse NS o o175 m
T e =T 2 +ud) 7 (H/v)s (4.5)

and the stresses, 7r; and Tre, applied to the rotor by the fluid in the same directions:

TRs _ TR _ MR Cope] T ma
ou = olae — R = 2 (u? + (uo — QR)?| 7 (H/v) (4.6)

where the constants ng, ng, ms and mp are chosen to fit the available data on
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Figure 4.1: Sketch of fluid filled annulus between a rotor and a stator for turbulent
lubrication analysis.

turbulent shear stresses. Childs (1983a) uses typical values of these constants from

simple pipe flow correlations:

ng =ngr = 0.0664 ; mg=mpr=—0.25 (4.7)

The work of Yamada, (1962) used subsequently by Childs, reported values for these
constants to be:

nsg =ng=0.079 ; mgs=mp=-0.25 (4.8)

These wall shear stress terms are again a simple correlation of the Reynolds num-
ber (eqn. 4.1), using the magnitude of the two components of gap-averaged velocity.
No consideration is given to the unsteady nature of rotordynamic flows, and the val-
ues of the constants are not well established. More realistic values of the frictional
factors to account for surface roughness and laminar to turbulent transition have been
studied recently and may result in considerable improvement of the estimates of these

factors (Zirkelback & San Andres, 1996).
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Childs then proceeds to linearize the equations by dividing the clearance, pressure,
and velocities into mean components (subscript 0) that would pertain in the absence
of whirl, and small, linear perturbations (subscript 1) due to an eccentricity, ¢, rotat-
ing at the whirl frequency, Q. He develops differential equations for the coefficients
which are functions of r only, with the perturbation velocities restrained to harmonic
functions of §. These zero and first order equations can be solved analytically for

very simple geometries, such as straight seals.

4.2.1 Childs’ Perturbation Solution

Using Childs’ approach, the above set of equations, 4.2 to 4.4 can be numerically
integrated, particularly in the case of more complex geometries. The perturbation of
the mean (zero order) solution is used for deducing the rotordynamic behavior. A
detailed description of this method of solution can be found in (Guinzburg, 1992).

In summary, the annulus is assumed to be circumferentially symmetric in the
undisplaced position. The velocity and pressure components are then calculated as
a functions of coordinates and time. The governing equations are then solved using
a perturbation expansion of terms linear in the eccentricity, . Guinzburg used a
fourth order Runge-Kutta scheme to numerically integrate two ordinary differential
equations for p, and ug,, as functions of the path variable s, that result from manip-
ulation of the momentum equations 4.3 and 4.4. This requires two initial conditions
to solve for ug,(s) and p,(s), which lead to the constant swirl at the inlet for u; and
a constant pressure condition for the static pressure p.

This version of the bulk flow model predicted large unexplainable resonances in
the calculated forces for cases in which inlet swirl was present (the ug,(s) is nonzero
at s = 0). Sivo observed that these resonances could be substantially reduced if, in
the analysis (Childs, 1989), the 8, and 3, factors of the path velocity term Asg in the
first-order circumferential momentum equation were set to zero. This amounts to an
assumption that the product of the eccentricity and the first-order path velocity is

small compared to the zero-order path velocity in the wall shear terms. This is not ob-
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vious from the definitions given in Childs (1989) where the first-order circumferential

equation is given as:
— €5 = chiAig — cugr Azg — eus1 Asg — (Inertial terms) (4.9)
;T

the expansion of the Asp term is:

0-7' 8
Agg = ?(ueo-r)[mr—(1+m7“)/30(u90—T)/UsO]+%U60[m5‘(1_m3)/31“60/“80] (4.10)
and the § terms are:
Upog — T 1
= 4.11
Bo Duy, (14 [%{5{]2) ( )
Ugo 1
s (4.12)

" B (14 AT
In this formulation, b = V;/R,w, V; is the inlet path velocity, R; is the inlet radius,
r = R/R;, and L, is the total length of the leakage path. However, in the derivation
of the first-order circumferential equation, from the treatment of the flow variables
as the sum of zero and first order terms, an approximation for the average velocity is

reached in which, for example in the 7y term, the following expression results:
1 ugy

r Ust \qmrtl
14+ ——(1 — —)(1 -2
[1+ B2 Ug()( ’l,ng)( €u30 )2

(4.13)

The 3, term results from retaining the 2eu,;/ug in the expression for 75y and the
Bo term results from retaining an identical term in the equations for Trg. While this
approximation is arbitrary (but plausible), it is clear that it plays a very significant
role in the prediction of the forces. One practical advantage of this arbitrary omission
is that it allows comparison of the general trends predicted by the model without the
confusion the resonances introduce.

Figure 4.2 shows the rotordynamic forces plotted as functions of the whirl fre-
quency ratio {/w for the case of contoured impeller, with the # terms and without

the 3 terms, compared with experimental data for a flow coefficient ¢ = 0.009, and



54

an inlet swirl ratio A = 0.5. A marked reduction in “resonances” is observed for this

case, as well as closer agreement with the experimental data.

Figure 4.2: Experimental and computed rotordynamic forces plotted against whirl
frequency ratio /w for ¢ = 0.009 and A = 0.5. With 8 terms (left) and without 3

terms (right) included in the evaluation.

4.3 Stream Function and Vorticity Equations

The resonances predicted in Childs’ perturbation model caused much controversy,
and the work of Guinzburg eventually dismissed the possibility of these abrupt force
fluctuations. Childs’ perturbation solution of the bulk flow was developed when
computing capability was somewhat limited, and so this method of solution proved
expedient. By reducing the problem to where the flow variables are assumed to be
sinusoidal in the circumferential direction and harmonic in time, a solution could be
found with minimum computation. A new method of solving the bulk flow equations
without resorting to linearization in eccentricity or assuming harmonic forms for the
flow variables is proposed. In this new formulation, evolutionary equations for a
vorticity and total pressure will shed some insight into the physical properties of
these rotordynamic flows.

For a case with a steady whirl and constant eccentricity, ¢, rotating at the whirl



55
frequency, {1, which is superimposed on the shaft rotation with radian frequency, w,
a method of solving the bulk flow equations using a stream function and vorticity
is formulated. With this set of assumptions, the fluid flow in a frame of reference
rotating at {) is steady and it is appropriate to rewrite the equations and to solve
them in this rotating frame. Defining, therefore, a new angular variable, 6, and a new

angular velocity, ug, in this rotating frame such that
=00t 3 UQ—‘:’U;@*QR (414)
it follows that the continuity equation, Eqn. 4.2, can be written as
0 0
o {Huo} + - {RHu} =0 (4.15)

and this is most easily satisfied by defining a stream function, (s, 0) such that

_ Loy o 10
Y=FEae ¢ YT T o (1.16)

It follows that the total volume flow rate, Q, at any meridional location, s, is given
by
Q = ¥(s,2m) — (s,0) (4.17)

and this provides a periodic boundary condition on % in the # direction.
In the rotating frame of reference, the equations of motion are usefully written
using an appropriate total pressure, P, instead of the static pressure, p, where

u? +ui — R*0? 4.18)
s [

P
— =Ly
P

w3
(SRS

and the equations of motion, equations (4.3) and (4.4), then become

8 (P )
5; (;_9_) = —HUQF — us\gg —+ gR) (419)



56

1Lad (P
—— | —| = Hu,l — 0 R 4.2
Raﬁ(p) usl' — (ug + QLR)(gs + gr) + whRgr (4.20)
where the functions, gs and gg, are the shear stress terms for the stator and rotor

respectively. For want of a better shear stress model, we follow Childs in using Hir’s

(1973) correlations which, written in terms of the rotating frame, are given by:

B ng H mg ) ) mg-}-l
gs =12 <?> {u? + (ug+QR)?) (4.21)
__ nR HN\™# 2 2 ﬂ%ﬂ
gr =2 <’;‘) {4 + (ug + QR — wR)?) (4.22)
The important quantity, ', given by
PlrlaR OR? 131%1 4.23
=7 [—‘égg( ug + QR) + 5555 Us)J (4.23)

plays a crucial role both in understanding the fluid mechanics of these flows and
in the solution methodology. This quantity, I', can be termed an “effective vortic-
ity”, and the existence of such a quantity has led to the development of the current
methodology.

The vorticity, I', is a fundamental property of the flow; this can be discerned
by eliminating P from equations (4.19) and (4.20) to obtain the basic convection
equation for I':
us%‘g + W%% = Elﬁ [gg {R(us + QR)(gs + gr) — wRgr} — 5% {us(gs + QR)}]

(4.24)
which demonstrates that, in the absence of viscous effects (gs = gr = 0), the vorticity
is invariant along any streamline. Conversely, the shear stresses are alone responsi-
ble for any change in I' along a streamline. If £ is a coordinate measured along a
streamline, then equation (4.24) clearly implies that

or 1
96~ RH(u? + u2)

5 {0+ OR)s 4 0n) — oRign} — 2 fulas + o)
(4.25)
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The total pressure is obtained by integration similar to that for the vorticity, I. From

equations (4.19) and (4.20) it follows that

o (P 1 5
3% (_p.) =t |wRuogn — {u? + us(us + QR)} (gr + gs)] (4.26)
which demonstrates the the total pressure (or energy in the flow) is constant along a
streamline in the absence of viscous effects. Furthermore, when written in the above
manner, the governing equations, (4.25) and (4.26), indicate a physically reasonable

approach to their numerical solution by iterative means.

4.4 Stream Function and Vorticity (SV) Solution

It follows from the last section that one method for the solution of the equations for

a rotordynamic flow proceeds as follows:

(1) First, for given or guessed values of the vorticity, I'(s, #), we solve the Poisson-like

equation (4.23) for the stream function, (s, 9):

d [ R o, 10 J1oy)
EE{EBE_QR}+§55{§5H}"RHF (4.27)

and thereby obtain new values for v(s, ), us(s, ) and u4(s, §). For this purpose

we deploy boundary conditions on % as follows:

(i) Along s = 0, we specify an inlet swirl velocity, ug(0, ), which, in order to
satisfy conservation of angular momentum, should normally be put equal

to the swirl velocity in the reservoir upstream of the inlet.

(ii) An appropriate boundary condition at discharge, s = S, would be that the

pressure in the flow exiting the annulus should be uniform for all § or
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(iii) The periodic conditions on boundaries at = 0 and § = 27 such that
b(s, 2m) — ¥(s,0) = Q (4.29)

(2) Second, given the new values of (s, 8), u,(s,0) and ug(s,8), we can proceed
to integrate along streamlines or otherwise to find new values for I'(s, #) using
equation (4.25). For this purpose the shear stress functions, gr and gs must be
evaluated. As the relations for I' and P, the total pressure, are quite similar,

the total pressure can also be calculated during this integration using equation

(4.26).

These steps are then repeated until the solution converges.

Having obtained convergence, the total pressure, P, pressure, p, and the rotordy-
namic forces are evaluated as follows. Since the viscous terms were found to be small
in these calculations it is sensible to integrate equation (4.26) along a streamline in
parallel with the I' integration and so obtain the total pressure everywhere. If en-
trance losses are neglected between the upstream reservoir at the inlet plane (s = 0),
then this integration begins with a uniform value of P(0, §) equal to the total pressure
in the reservoir, P,.;, and this can conveniently be chosen to be zero without loss of
generality. On the other hand if entrance losses are to be included then P(0,6) can
be set to a value smaller than P,.; by an amount equal to the entrance loss at that
particular  position. Other complications which could be incorporated include a non-
uniform upstream reservoir (such as the volute of a pump operating off-design) which
would imply a circumferentially varying P(0,#). Having obtained P(s,#) throughout
the flow field, the pressure, p(s,#), follows simply from the definition (4.18).

With the pressure (and the viscous shear stresses) it only remains to integrate
these to obtain the normal and tangential forces acting on the rotor. With the sign

convention as defined in figure 1.1 it follows that:

Fo= R e 0 in0) R0 d
n ~/0 1- (—Jg) ]0 (pcos@ + Tresin@) R e (4.30)
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F=[ {1 dRQ%%'e 6) Rdo d 4.31
t-/o _('{z}) /0 (psin @ — TRy cos 6) s (4.31)

In most of the results presented the contributions from the 7y parts of these integrals

are very small and can be neglected.

4.5 Details of SV Method

This section explains the development of the Stream Function/Vorticity Method and
its application to test cases of interest. The details of the boundary conditions and
programming the convection relations are included. Uncertainties in each of the
described boundary conditions lead to differences in the rotordynamic forces and flow

variables.

4.5.1 Downstream Boundary Condition

There are two possible ways two formulate the downstream boundary that are consid-
ered. According to equation (4.28), a constant static pressure in the circumferential
direction is desired. It might also be possible to approximate this with a constant
tangential velocity at the discharge. Convergent results have been acheived using
both, but large differences in the calculated unsteady forces are observed.

The downstream boundary condition was first formulated as a constant static
pressure in the circumferential direction. Initially, the values for ug and u, at the
discharge are used to find an average static pressure at the discharge, given by the

definition of total pressure:

2p 11X, ,
— == (— —uy — R*Q? 4.32
P JT - ( P Uy Uy + ) ( )

Here P is the total pressure which results from the convection and dissipation
through the domain. Then, a uy, based on the new average static pressure, is cal-

culated at each circumferential point of the discharge, using the same relation as in

eqn. (4.32).



u? + R*Q? (4.33)

The value of uy is solved for in the above expression using a relaxation method,
and a value for the change in ¢, the stream function, at each JT' (theta) location is

determined using:

AY = Ys—1,0r) — Yustr,ary + 2% DS * H + (ug) (4.34)

The value of the stream function at the position, JS + 1, just downstream of the

discharge, is then recalculated at each angular location as:

VY(Is41,0T) = Ps1,01) + BRE * Avp (4.35)

where RF' is the relaxation factor of an iterative calculation. The values of the
stream function in the remainder of the domain are then solved using Successive
Over Relaxation (Press et al. , 1992) for the Poisson-like equation, (4.27), subject
to a combination of this downstream boundary condition, the upstream boundary
condition, and the volumetric flow condition in the circumferential direction.

This downstream boundary condition has some possible drawbacks. The average
pressure cannot be directly applied to the stream function values, resulting in the use
of equation (4.33) and the tangential velocity. Also, the total pressure P accounts for
losses in the path due to viscosity. If there are for example, exit losses to account for at
the discharge where the Bernoulli expression (4.18) is not true, then problems might
be expected. However, a constant static pressure seems to be a natural boundary
condition for this problem, and convergent results have been acheived.

A way to approximate the constant static pressure over the discharge without re-
lying on the Bernoulli equation of total pressure is to alternately represent the down-

stream boundary condition as a constant tangential velocity around the discharge.

Namely:
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This provides a second possible downstream boundary condition for the solution of
the bulk flow equations. At the exit, an average circumferential velocity around the

discharge is first calculated using the current values of the stream function,

— _1_§ Y(Is+1,0T) — V(I5-1,0T) (4.37)
PTUTE 2+ DS+ H '

This value of @g is then used to find a change in 1), the stream function at each JT

(theta) location:

A = ys-1,01) — bs+rar) + 2% DS * H * (Ug) (4.38)

From here, the determination of the new values of the stream function at the discharge
proceeds as described earlier in equation (4.35).

The differences in each of these boundary conditions, applied to the case of the
conical leakage path, at a flow coefficient of ¢ = .06, an inlet swirl of 0.5, and a whirl
frequency ratio Q/w = .3 can be seen in the plots of the flow variables, I', u,, us and
p (the static pressure) in figures 4.3 (constant p) and 4.4 (constant ug). Here JT in
the mesh location corresponds to the increments in the circumferential direction, and
JS corresponds to increments in the path direction. The velocities are nondimension-
alized by the tip speed and the pressure is also normalized by a dynamic pressure
based on the tip velocity.

The plots for this particular set of flow parameters and geometry are similar except
for the path velocity. While the steady increase in the path velocity is observed in both
cases, the profile in the 6 direction at the discharge is markedly different. The pressure
and circumferential velocity at the discharge in either case appear to be unchanging
in the f-direction. There are, however, very subtle differences in the pressure which
cause the normal and tangential force to be very inconsistent. Table 4.1 shows the
rotordynamic forces calculated for this test case for each of the downstream boundary
conditions.

It is clear that the rotordynamic forces are very sensitive to small changes in the

pressure. The pressure drop in this case is approximately 16.6 kPa while in a matching
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Downstream Bdry | F), F
Const p 0.3011 | 0.277
Const uy 0.9658 | 0.5341

Table 4.1: Forces for the conical leakage path, Q/w = .3, ¢ = .06 using indicated
downstream boundary conditions.

experiment the total pressure drop across the leakage path, including the low pressure
seal, was 84.5 kPa, a substantial discrepancy. As the constant pressure downstream
boundary condition seems to be most intuitive, the constant circumferential velocity
condition will be used only when needed. Unless otherwise noted in subsequent

results, the constant pressure downstream boundary is used.

4.5.2 Upstream Boundary Condition

The upstream boundary condition, given as a constant inlet swirl velocity ug(0,6)
= A, is an important parameter in the calculation. This is readily imposed as a
condition on the stream function ¢ using the derivation of ug in (4.16).

However, from the definition of vorticity (eqn. 4.24), the inlet swirl is only part of
the complete initial condition, as the gradients of u; in the # direction and R(ug+ R$)
in the s direction must be properly specified to determine I'. Through convection,
the vorticity values in the rest of the domain are dependent on the upstream value of
I

Without knowledge of the two gradients beforehand, only a rough estimate of
I' at the upstream boundary could be made. As the velocity profiles developed in
the course of the computation, the values of I' at the upstream boundary were then
adjusted so that the gradients of the path and tangential velocities could be included.
The vorticity in the domain was used to extrapolate the upstream values of T'. This
resulted in a calculated upstream vorticity which seemed to be independent of the

initial guess.
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4.5.3 Convection Calculation

The first version of the SV method involved projecting I', and hence the total pressure,
P, along a streamline. The bulk flow equations were solved at each node of the mesh
by finding the streamline which intersected it, estimating the values of I' and P at a
previous point on the same streamline, and then using the convective relations (4.25)
and (4.26) to solve for the two quantities. This worked with some parameter regimes
but not in others. When the rotational velocity was far greater than the main path
velocity or the clearance was very small, convergence problems were experienced.

To overcome this problem, the equations of I' and P convection were re-written
in terms of the coordinates, s and #. The equations of convection were then solved

using the derivative in the s direction in the following manner:

or 19T
usgs- + U@ﬁ‘gé‘ = f(gR,QS) (4-39)

where f(gr,gs) is a function containing the shear terms of the convective equation

4.24. This relation is simply rewritten:

BP Ug BI‘ 1

s - Ru. 0 + a;f(gR,QS) (4.40)
or
= — 4.
Fs—}-l Ps+ ast ( 41)

A similar relation can be derived for the total pressure P. This method worked
well in reproducing the data obtained in at least one early trial with streamline
convection. An inspection of equation (4.40) reveals a diffusion equation in the s
direction with a characteristic velocity given by ug/(Ru,). Convergence for this type
of formulation then depends upon a path step chosen so that the Courant condition

(Press et al. , 1992) is not violated. In this particular case:

Bu,

Ug

DS < DT  (—2) (4.42)

Using the input data for the conical shroud with inlet swirl = .5, ¢ = .06, and JT =
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10, this condition indicates that JS > 45.

Examining a sample calculation with this method, for the conical leakage path
with ¢ = 0.06 and inlet swirl = 0.5, figure 4.3 showed the flow parameters, I, us, ug
and p as functions of the mesh location for a 50x10 grid size. In this figure, the
whirl frequency ratio is 0.3. The static pressure decreases while the two velocity
components steadily increase in the path direction. The velocity increase is similar to
experimental observations (Sivo et al. , 1994b), while the static pressure drop has also
been measured (Guinzburg, 1992). The vorticity also increases in the path direction,
and a noticable region of high vorticity is seen in the plot.

A grid size check was also carried out to ensure that the program was attaining
good resolution and that the program was stable with respect to mesh sizing. Figure
4.5 shows the rotordynamic forces as functions of whirl frequency for the conic shroud.

From the figure, the grid size seems to have a significant effect on the forces. The
normal force predictions are similar for all grid sizes. A 30x5 grid appears to have
problems with the tangential force at negative whirl frequency ratios, but this is not
as important for the evaluation of stability. However, this will have a significant
effect on the calculated rotordynamic coefficients. Some resolution may be lost by
having only 5 increments in the @ direction. In this preliminary study, a grid size of
50x10 was selected for computational time and resolution considerations and is used
in most of the reported calculations. However, as there are only 10 increments in the
circumferential direction, the grid size should be expanded in the future to ensure
adequate resolution of the flow field. Due to the similarity in the 60x10 and 50x10
cases, it appears as though the Courant condition is maintained. The method had

convergence problems for whirl frequency ratios higher than /w = 4.

4.6 Discussion

In a detailed examination of the bulk flow model, evolutionary equations of the “ef-
fective” vorticity and total pressure can be derived. The relations seem to make

intuitive sense, in that the vorticity and total pressure are conserved along stream-
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Figure 4.5: Plot of rotordynamic forces versus whirl frequency ratio /w for the
conical leakage path. Results calculated using A = .5 and ¢ = .06. 30x5(0),50x10(x)
and 60 x 10(o).
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lines in the absence of any dissipative phenomena. In Hir’s and Childs’ formulation,
the only source of dissipation is wall friction. The evolutionary equations of vorticity
and total pressure led to the consideration of an alternate means of solution for the
bulk flow equations rather than Childs’ perturbation method.

There are currently many options for this new method of solution. Uncertainties
in the boundary conditions both at the inlet and discharge can play a major role in the
determination of the rotordynamic forces. The two downstream boundary conditions
appear to give very similar flow variables, but very different forces.

To satisfy the Courant condition, a large grid size is needed to acheive convergent
results with this method. However, the use of a 50x10 grid in the calculations ensures
that this condition is not violated at the most extreme case, where Q/w = -.7 (the
largest denominator of equation (4.42)). As the whirl frequency ratio increases, the
step size in the path direction becomes smaller than necessary, and at 2/w = .4, the
condition becomes that JS > 4. As JS = 50 exceeds this by an order of magnitude,
the calculations at forward whirl may be more reliable than at the negative whirl
frequencies where the grid size is very close to the Courant condition. The selected
grid size may also be more reliable as the flow coefficient increases. Despite these
concerns, some success in predicting the forces for the conical leakage path and the
straight seals, described in the next chapter, has been realized.

A very interesting feature of figure 4.3 is the plot of ', the effective vorticity.
There appears to be a region of relatively higher vorticity in the domain, that grows
as it proceeds downstream. Perhaps a more pronounced example can be seen in figure
4.6, for the same flow conditions but at a whirl frequency ratio Q/w = -.7.

From these calculations, areas of relatively high and low vorticity appear to form
in the leakage path, and move downstream to the discharge. There appears to be no
significant change in the velocities along the leakage path and it is not clear if this is
a numerical instability with the method or a physical trait of the flow.

If the vorticity fluctuations are not a numerical instability, then it may be useful
to consider the Taylor number. The Taylor number of this particular case, closely

related to the Reynolds number based on rotational speed, is Ta = 2.245x107 with
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Figure 4.6: Plot of normalized flow variables against mesh location for the conical
leakage path. Results using 50x10 grid size, a whirl ratio /w = -.7 and ¢ = .06.
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this number defined as:

Ta = RQ(H)?“"——2 (4.43)

12

The typical value given for the transition to turbulence in a Taylor Couette flow
is T'a ~ 160000, but some work examines the flow field at 17000 < Re, < 120000
and 8 x 107 < T'a < 4 x 10° (Townsend, 1984). Townsend noted the presence of large
toroidal eddies at Re, < 30000, and helical eddies for values of the of the Reynolds
number above that in the flow between concentric cylinders. The experiments used an
axial flow of about 1% of the rotational velocity. Considering the case of the leakage
path, a flow coefficient ¢ = .06 implies an axial flow of the same order of magnitude
as Townsend’s experiments, and Re,, = 27370. However, it seems highly unlikely that
a two-dimensional model can capture the complex flow patterns associated with this
experimental observation.

Another interesting result of considering the Taylor number of these flows is the
critical value of this number at T'a = 1700 (Bjorklund & Kays, 1959). This critical
Taylor number denotes the transition region from laminar flow to Taylor vortex flow,
and hence different mechanisms of momentum and heat transfer. Above the critical
Taylor number, the momentum transfer occurs in sublayers close to the surface, and
this may give some insight into the effect the wall friction has on the rotordynamic
forces, which will be quantified in section 5.3.2 of the next chapter. While some
experimental evidence from Sivo (1994) shows path velocity reversal that may indicate
this type of rotating vortex pattern in the leakage path, the reversal is usually isolated
near the inlet of the leakage path, and so it is not clear if this wavy vorticity pattern
is in error.

The pressure drop in this new calculation is also at substantial odds with exper-
imental observations. As the integration of the static pressure is used to deduce the
unsteady forces, any small error may lead to large deviations in the calculated forces.
The losses due to the low pressure seal and the inlet to the leakage path should be

accounted for if accurate force calculations are expected.
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Chapter 5 Numerical Results

5.1 Comparison of Bulk Flow Models

The two solutions of the bulk flow equations, Childs’ method and the current stream
function/vorticity solution, were examined for consistency.

Childs’ perturbation method has been programmed previously (Guinzburg, 1992)
and has been validated. With the 3 term modification in the circumferential mo-
mentum equation (see section 4.2.1), results which were well suited to polynomial fits
were obtained, and therefore the data from this code in this chapter is presented in
the compact form of the rotordynamic force coefficients.

Code validation for the new solution was not satisfactorily acheived. This is due to
the observation that certain geometries lent themselves to various means of solution,
as outlined for the different boundary conditions in the previous chapter. As a result,
only a collection of working cases can be presented rather than an established solu-
tion procedure for solving the bulk flow equations using the stream function/vorticity
formulation. For the complex geometry of the pump leakage path, results were ob-
tained from the SV method which qualitatively agree with experimental observations.
As no resonances were observed, these results are also presented in the form of the
rotordynamic force coefficients for ease of comparison.

The simple problem of the straight seal has proven to be difficult for the new
model, and convergence using the SV method has occured only for a few conditions.
It was felt that the simpler geometry would provide a much better means of validation
for this new code, given the amount of data in the literature. However, only partial

results are available.
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5.2 Comparison of Modified Childs’ Model to Ex-

periments

The experimental data presented in Chapter 3 are compared with the results using
Childs’ bulk-flow model, with appropriate modifications of the 3 terms for elimination
of the force “resonances”. This arbitrary modification serves as a reminder that there
are limitations to this perturbation model, which prevent it from being a reliable
tool in the intial design of pump leakage path annuli. In the data presented, ng =
.13 and np = .08 were used as they seemed to offer the best comparison between
the calculated forces and experimental data.. The values ms = -0.25 and mr = -
0.25 were retained as they correspond to a fully developed turbulent flow in the pipe

correlations.

5.2.1 Path Geometries

Figure 5.1 shows the rotordynamic force coeflicients versus flow coefficient generated
by Childs’ model for the conical, contoured and short contoured geometries. These
should be compared with the force coeflicients of Figure 3.3.

The direct stiffness, K, trend appears to be opposite from what was observed
experimentally. In the computations it increases with increasing flow coefficient for
all three cases. The cross-coupled stiffness, k, appears to follow the same trend as the
experiments, and matches closely in magnitude for the conical and contoured rotor.
The direct damping is also fairly close in magnitude to the experimental results for
two longer paths. Cross-coupled damping appears to differ slightly in magnitude for
all three cases. Direct added mass is underpredicted by the model. The whirl ratio
k/C is overpredicted for the contoured rotor, but not too badly estimated for the
conic path and the short contoured path. The model appears to greatly underpredict
the magnitude of the forces for the short contoured rotor. Thus, the predicted forces
of the short contoured path are smaller in magnitude than those of the other rotors,

but not all trends and magnitudes match the experimental data.
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Figure 5.1: Calculated rotordynamic force coefficients versus flow coefficient ¢ for the
conic (o), contoured (x), and short contoured (o) shrouds.

5.2.2 Seals

Figure 5.2 shows the rotordynamic force coefficients versus flow coeflicient for the
leakage path geometry which consists of a low pressure axial clearance and radial
clearance seal. A comparison with Figure 3.4 reveals some similarities. The increase in
the magnitude of the tangential force coefficients for the case with the radial clearance
seal is observed in the calculation, as well as the increase in the stiffness, but the
magnitudes are poorly predicted.

The direct stiffness in the experiments showed a “Lomakin” effect in which the
impeller with the radial clearance seal demonstrated a increasing direct stiffness with
flow coefficient. This also appears to be the case in the calculations, as the direct

stiffness increases as the flow coefficient is increased. However, this increase is much
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smaller in the model than that observed experimentally, and for the axial clearance
seal, the magnitude of K is too small and the trend with flow coefficient opposite to
that of the experiments.

The variations between the two leakage paths for the cross-coupled stiffness and
the direct damping are also similar in the computations. The magnitude of both
rotordynamic coefficients is much higher for the radial clearance case, and increase
relatively faster with increasing flow coefficient. The magnitudes of the calculated
cross-coupled stiffness and direct damping are slightly smaller than the measured
values.

The cross-coupled damping seems to match the experimental data well in both
trend and magnitude. The trend of the added mass with flow coefficient is also very
similar to the measured values, but smaller in magnitude. The whirl ratio appears
to be overpredicted in the case of the axial clearance seal, seemingly due to the
underpredicted magnitude of the direct damping for this case.

Figure 5.3 shows rotordynamic force coefficients versus flow coefficient for a conical
geometry with a high pressure orifice and without. This can be compared with figure
3.5. In the experimental case, the size of the radial gap formed by the high pressure
orifice was .0508 cm. A computational case proved unstable if this detailed geometry
of the inlet was used as an input. Therefore, the results for the case with an orifice were
calculated by increasing the inlet loss coefficient in the program until the magnitudes
of the forces matched closely. It is interesting to note the similarities between these
calculations and those for the low pressure seal. The same increase in the tangential
force coefficients is observed, but there is not much variation in the normal force
coefficients.

For the direct stiffness, the cross-coupled damping, and the direct added mass,
all the calculations show only small variations between the case with no orifice and
the case with a large inlet loss coefficient (simulated orifice). The cross-coupled and
direct added mass are underpredicted compared with the measured values, and the
direct stiffness is overpredicted.

The effect of increasing the inlet loss in the calculation is an increase in the
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Figure 5.2: Calculated rotordynamic force coefficients plotted against flow coefficient
¢ for radial (o) clearance and axial (x) clearance low pressure seal.

tangential force coefficients as the flow rate increases. These results are quite similar
to the effect observed in the axial and radial clearance low pressure seals. While
the relative behavior is similar to the experiments, the magnitudes of the computed
orifice are much smaller, and the trends of C and k for the case with no orifice are
opposite. This leads to a whirl ratio which shows opposite behavior from that seen

in meaurements for both high pressure seal geometries.

5.2.3 Inlet Swirl

Figure 5.4 shows the rotordynamic force coefficients versus the flow coefficient for var-

ious inlet swirl ratios, A, in the contoured leakage path. The figure can be compared
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Figure 5.3: Calculated rotordynamic force coefficients versus flow coefficient ¢ for the
high pressure orifice, conical geometry. Simulated (high inlet loss) (o) and no (x)
orifice.

to the experimentally determined force coefficients in figure 3.6. The experiments
showed that the variation of the forces with increasing flow coeflicient for different
values of inlet swirl was not significant. This also appears to be the case with the
computational results. However, some discrepancies with trend and magnitude exist,
and they are particularly noticable in the whirl ratio.

For the case with and without inlet swirl, the direct stiffness of the computations
appears to match both trend of the experimental results well, but seems to be off
by a factor of two in the magnitude. The cross-coupled damping for the calculations
appears to match the measured values well in trend and magnitude. As in previous

calculations with Childs’ model, the direct added mass is again underpredicted for all
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Figure 5.4: Calculated rotordynamic coefficients plotted against flow coefficient ¢ for
tests with inlet swirl, A = 0.4 (4), 0.5 (x), 0.6 (o), and 0.7 (*), and tests with no
swirl, A = 0 (A).

the swirl and no swirl cases.

For the force coefficients of the tangential force, the direct damping and cross-
coupled stiffness, a steady increase with increasing flow coefficient is calculated for the
cases with swirl. This is in contrast to the experiments in which an increase and then
decrease was observed. The same observation can be reached for the direct damping
of the case with no swirl, however, the model appears to predict the cross-coupled
stiffness satisfactorily. In computations with and without swirl, these discrepancies
in the tangential force coefficients lead to rather poor predictions of the experiments

and an overprediction of the whirl ratio.
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In summary, Childs’ model can duplicate some of the rotordynamic behavior ob-
served in experimental leakage path studies. Some of the incremental changes ob-
served in cases with and without inlet swirl, with an axial and radial clearance low
pressure seal, and even with the different leakage paths are similar to the incremental
changes observed in experimental measurements. However, magnitude discrepancies
and some incorrect trends seem to make this model less than reliable. Also, there
is no obvious way to account for the anti-swirl measures such as ribs and grooves,
given the assumption of a harmonic distribution of clearance in the circumferential

direction.

5.3 Comparison of SV Model to Experiments

Due to the discrepancies in Childs’ model, as seen in the comparison with the experi-
ments in the preceding section, the finite difference model was developed in the hopes
that some of the flow phenomenon such as reversals and seperation, documented ex-
perimentally by Sivo (1994) and computationally by Baskharone (1993), could be
accounted for and thus decrease some of the discrepancies encountered in the previ-
ous section. Also, a way to model the changes in the clearance in the circumferential
direction, such as anti-swirl ribs and grooves, would add to the capabilities of the
bulk flow approach.

To investigate the behavior of this new bulk flow solution, a number of basic
physical effects expected from experimental tests of the conical impeller were studied.
These included examining the effects of the flow coefficient, the viscous shear stresses
and the leakage path clearance. The results presented use a constant pressure down-
stream boundary condition. Only the simple geometry of the conical leakage path
has been considered. Also, rather than attempting to fit the data with the empirical
coefficients for the shear stresses, the coefficients ns and nr were held to the constant

values of 0.079 given by Yamada, to simplify the analysis.
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Figure 5.5: Calculated rotordynamic coefficients plotted against flow coefficient ¢ for
conical shroud. Childs’ perturbation model (dotted line), SV model (solid line).

5.3.1 Effect of Leakage Flow Coefficient

Increasing the leakage flow coeflicient in the experimental tests of conical shroud
geometry with a face seal has produced effects which have been well documented.
Perhaps the most obvious is the decrease in the direct stiffness. For the conical shroud,
an increase in leakage flow coefficient has also been accompanied by a decrease in the
whirl ratio, k/C.

Figure 5.5 shows the effect of changing the leakage flow coefficient over a range
from 0.06 to 0.12 for the conical rotor at 1000 rpm with a clearance of H/R, = .03.
Childs’ perturbation model results are plotted with the SV prediction for comparison.

Good agreement is observed between the two methods in the rotordynamic co-

efficients of the normal force for values of the leakage flow coefficient that are less
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than about .08. For values of flow rate higher than that, the two predictions of the

direct mass, cross-coupled damping and direct stiffness seem to differ in trend and
in magnitude. Child’s model actually shows an increasing direct stiffness, which is
at odds with experimental observations, while the SV model appears to predict a
relatively constant trend with flow rate. The trends of the cross-coupled damping
with increased flow coefficient appear to be opposite of each other, and the SV model
predicts a drop in the direct added mass.

The tangential force coefficients are also inconsistent between the two models. For
the cross-coupled stiffness, opposite trends with increasing flow rate are computed.
For the direct damping, a large magnitude difference is apparent between Childs’ and

the SV model, leading to a whirl ratio, k/C which is overpredicted for the SV model.

5.3.2 Effect of the Viscous Shear Stresses

The effect of the shear stress terms in the bulk flow model has been observed to be
fairly small for certain geometries (Tsujimoto et al. , 1997), and analysis of the Taylor
number in the previous chapter showed that the effects of the wall shear should be
isolated to sublayers very close to the wall.

The effect of wall shear on the forces for the conical leakage path with H/R, =
.03, ¢ = .06, and 1000 rpm are examined in figure 5.6. The shear factors, ng and ng,
are varied from 0.0 to 0.079. Experimental data is also plotted.

As can be seen in the figure, there is very little variation of the normal force predic-
tions with and without shear. The method seems to underestimate the experimental
values of the normal force at negative whirl frequencies. However, for rotordynamic
stability, only the forward whirl frequencies need to be considered, and the normal
force prediction appears to be of similar magnitude to the experiments but the di-
rect stiffness will be underestimated by the calculation. The tangential force shows
a greater variation with different shear factors. The higher shear factors show good
agreement with the experimental tangential force at negative whirl frequency ratios,

however, the forward whirl frequency ratios are of greater interest, and none of the
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Figure 5.6: Plot of rotordynamic forces as functions of the whirl frequency §2/w for
the conical leakage path, ¢ = .06. Results for 50x10 grid with indicated shear factors.
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Figure 5.7: Calculated rotordynamic force coefficients versus flow coefficient, ¢ for
the conical leakage path, with (x) and without (o) viscous shear.

shear factors correctly predicts the stability.

This insensitivity of the normal force and the variation of the tangential force to
the wall shear is manifested through the curve fitting. Figure 5.7 shows the force
coefficients as functions of the flow coefficient for the conical leakage path both with
and without shear (ng,ng = 0.079). Despite the variations noted in the test case,
figure 5.6, there is only a small effect on these force coeflicients due to the viscous
shears. There appears to be very little variation of the normal force coefficients with
the flow rate, as noted in the previously. The whirl ratio seems to be affected by the

differences in the direct damping.
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5.3.3 Effect of Inlet Swirl

The effect of inlet swirl has been documented in Chapter 3. The experiments showed
that the amount of inlet swirl did not affect the force coefficients.

The inlet swirl ratio A, has some effect on the calculated forces in the SV model,
in particular the magnitude of both unsteady forces is increased for the case of the
conical leakage path. It appears as though the minimum of the normal and tangential
force shift to larger values of positive whirl frequency, resulting in a much larger forces
at any given whirl frequency ratio of interest. Figure 5.8 shows the effect of inlet swirl
on the conical leakage path with a flow coefficient of ¢ = .06. In this case, the shear
stresses are zeroed, so the forces are for an inviscid case.

Experimental results discussed in Chapter 3 indicated no effects on the rotordy-
namics due to inlet swirl, but this is clearly not the case with this formulation of the
bulk flow model. A constant inlet swirl condition, A = .5, is used for most of the

results presented in this research.

9.3.4 Effect of Clearance

Using the SV model, the unsteady forces in the leakage path have been observed to
increase as the leakage path clearance decreased. This is in agreement with experi-
mental results (Guinzburg, 1992)(See figure 1.2). The amount of the increase appears
to scale as 1/H.

Figure 5.9 shows the rotordynamic force coefficients versus the flow coefficient for
different values of the leakage path clearance. The relative magnitude of the forces
is consistent with the experimental observations: as the clearance gets smaller the
forces are larger.

The same trends with flow rate as noted previously are again observed. The
tangential force coefficients increase as the flow rate increases, and the normal force
coeflicients appear to be constant functions of the flow rate. The magnitudes of the
force coefficients also increase with decreasing clearance, except for the direct stiffness

which decreases with decreasing clearance. The magnitude change appears to be
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porportional to 1/H which has been observed experimentally (Guinzburg, 1992).

5.3.5 Path Geometry

Finally, the effect of path geometry was examined for the new SV formulation. A
shorter length impeller was studied, however without the effects of curvature. Using
an eye to tip diameter ratio of .700 similar to the experimental short contoured
impeller, and using the same axial length to diameter ratio, .088, a conic leakage
path 73.6° to the axis of rotation is formed. Again, no curvature effects are included,
but as little variation between the contoured and conic leakage path was observed
experimentally, this model may be expected to produce similar results, and that is
the case.

Figure 5.10 shows SV calculated rotordynamic force coefficients as functions of
the flow coefficient for the short conical path and the normal conical path. Some of
the same general trends are observed for this comparison that are observed in Childs’
model of the paths and the experimental data.

Again, the force coeflicients of the normal force appear to be constant functions of
the flow rate. The normal force of the shorter length path is much smaller in magni-
tude than that of the regular length path, in good agreement with prior calculations
and experiments. The tangential force coefficients increase with increasing flow rate,
typical of SV calculations, and the shorter axial length yields a smaller magnitude
tangential force. The same problems of not being able to duplicate experimentally

determined trends and magnitudes is again a significant shortcoming of this solution.

5.4 Straight Seals

The case of straight smooth seals was considered as an ideal case to validate the
current solution methodology. Numerous experimental and computational results are
available in the literature for comparison. However, much difficulty was experienced
with the current set of downstream boundary conditions. In some very random cases,

convergence could be acheived using a constant pressure boundary condition, but
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these cases were almost always very unstable with respect to small changes in pa-
rameters like the frictional factors and relaxation factors. The Appendix B contains
details of a different approach to the downstream boundary condition that appears

to give fairly accurate results.

5.5 Discussion

Both Childs’ perturbation solution and the stream function/vorticity method have
difficulties in predicting the unsteady forces in discharge-to-suction leakage flows in
centrifugal pumps. With the added drawback of assumed harmonic forms for the
leakage path clearance in Childs’ model, the SV method was devised as a solution of
the bulk flow equations with fewer restrictions.

The SV method appears to predict some trends of rotordynamic flows. In par-
ticular, the effect of clearance and the effect of a shorter axial length path show the
same relative trends in computations and experiments. The near constant behavior
of the normal force with flow coefficient is a problem needing further examination.

Another area which should be investigated further is the effect of the Courant
condition on the convection calculations. In the case of the shorter axial length path,
figure 5.10, the decreased path length makes the 50x10 grid have at least twice the
required number of increments in the path direction. The force coefficients appear to
be smoother functions of the flow rate. Any such change for the normal length path
would result in considerably longer calculations, but may be beneficial for the force

predictions.
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Chapter 6 Conclusions

"The rotordynamic forces generated by fluid structure interaction in annuli have been
examined both experimentally and computationally. The current work further elab-
orates efforts by previous researchers to quantify and predict the contribution of
impeller shroud forces to the rotordynamic stability of pumping machinery.

Experimental data from the current research shows good agreement with the work
of previous researchers. More typical pump shroud geometries were examined and
the effect of curvature on the leakage path appears to be fairly small in the case with
no inlet swirl of the fluid. A shorter axial length and larger eye-to-tip ratio makes the
measured forces decrease. The effect of the low pressure and high pressure seals can
be very significant, and can be stabilizing or destabilizing depending on the design.
Inlet swirl was again found to increase the instability of the rotordynamic forces, but
the amount of non-zero pre-rotation did not seem to affect the measurements signifi-
cantly. The effect of curvature of the leakage path when inlet swirl was present had a
signficant effect on the force which drives the whirl motion. Efforts to reduce the swirl
velocity of the incoming fluid displayed some success at reducing the rotordynamic
forces. Disrupting the rotation of the fluid half-way along the passage seemed to offer
different benefits to anti-swirl measures at the tip or running the full length of the
path.

The bulk flow model was examined. Childs’ perturbation solution was modified to
reduce the abrupt force fluctuations which appeared in previous work. This modified
perturbation model is capable of predicting some of the observed experimental trends
of the rotordynamic forces. But some magnitude and trend discrepancies seem to
indicate that further modifications are necessary before the perturbation solution can
reliably predict the forces in the complex geometry of a pump leakage path.

The basic equations of the bulk flow model were recast into evolutionary equa-

tions for the vorticity and total pressure. A solution procedure was then developed
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which avoided both linearization with eccentricity and assumed harmonic forms of
the flow variables. Some convergent results have been obtained, and the results seem

qualitatively similar to experimental measurements.
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Appendix A

A.1 Rocketdyne Pump Operating Conditions

Pump H(cm) | w(rpm) | A ¢ Eye/Tip | Length/Diameter
HPOTP | .254 31000 | .524 | .0464 | .708 .088

HPFTP | .305 36353 | .736 | .007 | .53 A2

MAS5A-O | .635 6887 656 | .032 | .602 136

MASJA-F | .9525 | 6887 693 | .01 489 135

Table A.1: Typical pump operating conditions provided by Wei Chen. Space Shuttle
Main Engine (SSME) High Pressure Oxidizer Turbo Pump (HPOTP), High Pressure
Fuel Turbo Pump (HPFTP), and the Atlas MA-5A, oxidizer (-O) and fuel pump (-F).
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Appendix B

Straight Seals

The SV model experienced some difficulties using the boundary conditions and con-
vection calculation described in Chapter 4 applied to the case of turbulent annular
seals. For the simple geometry of a straight seal, the SV model does well when
comparing the resulting rotordynamic force coefficients to existing theoretical and
experimental results, under what appear to be more restrictive assumptions at the

downstream boundary.

B.1 Downstream Boundary Condition

The downstream boundary condition that was employed in this anaylsis used the first
Fourier component of the pressure added to an average tangential fluid velocity at the
discharge. So the constant ug boundary condition detailed in Chapter 4 is modified
with harmonic functions derived from the pressure. The process is very similar to the
constant tangential velocity approach. At the exit, an average circumferential velocity
at the discharge is first calculated using the current values of the stream function, %
using equation 4.37. The value of u; is then added to the first Fourier components
of the pressure, PZ, and PZ.. These Fourier components are evaluated using the
circumferential distribution of the discharge pressure, and might be considered a
simple way to introduce a static pressure contribution to the downstream boundary
condition. In practice, these terms almost always went to near-zero numbers during
the iterations of a computation, but during the initial part of the calculation, appeared
to provide a type of harmonic restriction on ug in the circumferential direction. The

change in %, the stream function at each JT (theta) location, was found using:
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Ay = lp(JS_l’JT) — @D(JS_H,JT) + 2% DS * H * (ﬂ‘g——l— PZSSZT&(Q) -+ PZCCOS(Q)) (Bl)

The calculation proceeds as described in equation 4.35.
This approach has the same advantages of averaging the tangential velocity but
now a harmonic restriction on the tangential velocity is introduced. The difference it

makes in the convergence of the code for straight seals is significant.

B.2 Comparisons

eometry of a smooth straight seal was used as an initial test of the

new SV model. Much work has been done in the area of turbulent annular seals,
and different numerical approaches for determining rotordynamic behavior exist, as
well as experimental data. Childs’ perturbation model was initially developed for
this very geometry. Three cases were considered: a seal reported by Nordmann and
Massman (1984), a seal and finite difference numerical solution reported by Dietzen
and Nordmann (1987), and a set of seal cases reported by Childs (1983a). The new
SV model works well in predicting the rotordynamic force coefficients, but only using
the Fourier component downstream boundary condition. Some comparisons using
the steady pressure downstream boundary condition are shown, however these tests
converged only very rarely and were not stable to small changes in parameters such
as the relaxation factors.

The first example is the smooth untapered seal tested by Nordmann and Mass-
mann (1984). This has an aspect ratio, S/R = 1.67, a clearance, H/R = 0.0167 and
was tested at a Reynolds number, Re = Q/2r Rv = 5265 (where Q is the volume flow
rate through the seal). In Figure B.1, the non-dimensional rotordynamic coefficients
from the experiments of Nordmann and Massmann are plotted against a flow coeffi-
cient, ¢ = Q/2m HR*Q. These are compared with three sets of calculated coefficients.
The dashed lines are from the analytical expressions obtained by Childs’ (1983a) as
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Figure B.1: Comparison of the rotordynamic coefficients from the experiments of
Nordmann and Massmann (1984) on a plain, untapered, smooth seal with various
calculated results as follows. Dashed line: Childs’ (1983a) analytical “short seal”
Dotted line: Childs’ (1983b, 1987, 1989) perturbation method. Solid line: present
bulk flow calculation (SV).

approximate “short seal” solutions to the bulk flow. Later Childs (1983b) published
a more accurate “finite length” seal solution which involved the numerical integration
of more accurate perturbation equations. The dotted lines represent the results of a
similar perturbation analysis applied to the Nordmann and Massmann seal using the
Caltech version of Childs’ model. The differences between the two Childs’ methods
are substantial but similar to the differences in the examples presented by Childs
(1983b). They are presumably caused by different treatments of the circumferential
velocity perturbations. Note that all three sets of calculated results use an inlet swirl

velocity equal to a half of the rotor tip speed.
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The solid lines represent results using the present numerical method. Apart from
the direct stiffness, /', they are similar to Childs’ (1983b) more accurate analysis.
For reasons which are presently unclear our calculations yield a K which is closer to
the short seal value and to the experimental data. Thus, the primary discrepancy
between the present results and the experimental data is in the added mass, M,
and cross-coupled damping, ¢. Nordmann and Massmann’s data appear questionable
according to personal communication with Childs, and more recently the difficulties of
accurately measuring these two coefficients have been addressed at Texas A&M, with
some newer experimental data pointing to a closer agreement with the predictions of
the “finite length”, and hence the SV, model (Marquette, 1995).

The calculation in this case utilized the constant uy condition with the Fourier
component of pressure, on a 40x35 size grid. The calculation also worked using the
constant pressure downstream boundary condition, however a grid size with 60 nodes
in the path direction and 10 nodes in the theta direction was required, and the code
converged only for the particular whirl frequency ratio 2/w = -.7. The differences
between the two downstream boundary conditions is shown in figures B.2 and B.3
in plots of the flow variables versus the mesh location. The profiles of the vorticity,
pressure and velocities appear indistinguishable.

Dietzen and Nordmann also carried out a finite difference calculation to determine
the rotordynamics of seals (Dietzen & Nordmann, 1987). However, rather than using
the bulk flow model and correlation for the turbulent shear stresses, the Navier-Stokes
equations with a k — ¢ model for the shear stresses was used. Again, a perturbation
using a linear expansion in the eccentricity was applied to the variables, and harmonic
functions in the circumferential coordinate 8 were assumed for the perturbation ve-
locities. The calculation was carried out on a grid which was placed in a r — s plane
section of the seal.

"The parameters of Dietzen’s smooth untapered seal are given as an aspect ratio,
S/R = 1.0, a clearance, H/R = 0.0085 and a Reynolds number, Re = Q/2rRv =
4702 (where @ is the volume flow rate through the seal). In figure B.4 the non-

dimensional rotordynamic force coefficients are plotted versus the flow coefficient for
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Figure B.2: Plot of flow variables against mesh location for the straight seal reported
by Nordmann and Massmann. Results calculated using 40x35 grid size for the Fourier
component boundary condition, whirl ratio Q/w = -.7 and ¢ = 1.834.
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Figure B.3: Plot of flow variables against mesh location for the straight seal reported
by Nordmann and Massmann. Results calculated using 60x10 grid size for the con-
stant pressure boundary condition, a whirl ratio Q/w = -.7 and ¢ = 1.834
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Figure B.4: Plot of rotordynamic force coefficients versus flow coefficient ¢, for the
seal reported by Dietzen and Nordmann (1987).

this seal. Again, Childs’ analytical “short seal” expressions appear as the dashed
line, the more accurate “finite length” seal solution is the dotted line, and the SV
calculation using the Fourier component of the pressure is the solid line. The results
from Deitzen’s finite difference k—e method are the dot-dashed line, with experimental
data also included on two of the plots.

As noted in the previous case, all the models seem to predict general trends of
the rotordynamic force coefficients fairly well. The present bulk flow model seems to
again more closely match the experimental and analytical data for the direct stiffness,
K, relative to the “finite length” solution. Differences in the magnitude are noted be-

tween all the numerical computations and the analytical solution for the direct added
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mass, M, also consistent with what was observed in the Nordmann and Massmann
data.
Finally, a sample calculation for the high pressure water seal from Childs’ (1983a,1983b)
papers was examined. This was also the case chosen by Guinzburg (1992) for valida-
tion of the Caltech version of Childs’ (1989) model to solve the bulk flow equations.

The seal data are as given in Table B.1.

L/D ratio |H/R | L(m) |¢ Re(u,) | w

0.2 0.0025 | 0.03048 | 1.536 | 12982 | 3600
0.5 0.0025 | 0.0762 | 1.009 | 8526 3600
1.0 0.0025 | 0.1524 | 0.679 | 5742 3600

Table B.1: Three test cases for high pressure water seal

In the literature, no data for the eccentricity, e, is provided, so a ratio of eccen-
tricity to rotor radius, ¢/ R = .0003 was assumed, it being approximately 1/10th of
the clearance to radius ratio. The profile of the flow variables in figure B.5 show the
same trends observed in the other test cases. The lowest value of the path velocity,
us occurs at the smallest clearance. This profile remains unchanged for values of the
eccentricity from 0.0001 < &/R < 0.0004. As this ratio is increased or decreased past
these limits, the computation becomes unstable.

The comparison of force coefficients are given in table B.2. As in the previous two
sample seals, good agreement is observed between the finite difference approach and
the other bulk flow solutions. The analytical solution and its assumptions about the
circumferential perturbation velocity appear to cause large differences in the calcu-
lated force coefficients as the path length increases.

This case was examined using the two different downstream boundary approaches,
the constant tangential velocity condition with Fourier components, and the constant
static pressure condition. Figure B.5 shows the flow parameters plotted versus the
mesh location for the seal with L/D = .2, using the Fourier component downstream
boundary. A mesh size of 20x15 is used, and the whirl frequency is Q/w = -.7. Figure
B.6 shows the flow parameters under the same conditions for the constant pressure

boundary. Again, with an appropriate adjustment to the mesh size, in this case,
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Childs’ finite | Guinzburg’s | SV code | Childs’ short seal
length 1983b | version 1992 | (current) | (analytical) 1983a
L/D =
0.2
K 235.6 237.83 229.95 248.84
k 53.28 70.64 48.32 64.53
C 106.6 143.82 96.93 129.06
c 5.75 2.39 6.54 10.93
M 5.75 2.43 5.63 10.93
L/D =
0.5
K 111.70 114.60 101.88 134.06
k 130.00 135.79 124.62 158.34
C 260.00 273.13 249.24 316.68
c 33.59 29.34 35.31 49.52
M 33.62 29.41 35.01 49.52
L/D =
1.0
K 24.7 29.07 13.62 39.71
k 238.0 234.00 241.51 363.21
C 477.4 470.50 483.03 729.6
c 102.5 96.89 124.61 165.38
M 102.6 96.86 125.01 165.47

Table B.2: Force coefficients for the high pressure water seal, (Guinzburg, 1992) and
current finite difference model.

60x10, similar profiles for the calculated variables are observed. Also, this is again
the only whirl frequency ratio at which the constant pressure boundary condition
converges, and so the Fourier component condition was used for the reported force
coeflicients.

For reasons which deserve further investigation, this downstream boundary condi-
tion seemed to give very good predictions of the rotordynamic forces in smooth seals.
There is some indication that the constant pressure condition may sometimes work

as well, but appears for the moment to be very unstable.
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Figure B.5: Plot of flow variables against mesh location for the straight seal reported
by Childs. Results calculated using 20x15 grid size for the Fourier component bound-
ary condition, a whirl ratio Q/w = -.7, and L/D = .2.



108

1004

20
JT 0o Js JT 00 Js

Figure B.6: Plot of flow variables against mesh location for the straight seal reported
by Childs. Results calculated using 60x10 grid size for the constant pressure boundary
condition, a whirl ratio Q/w = -.7 and L/D = .2.
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PROGRAM BFLFD.F - BULK FLOW MODEL

This is the program which uses a finite difference scheme
to solve the Stream Function Vorticity method of the bulk

flow equations.

INTEGER ITER, ITERB, JsQ, JST, JTQ, JTT, JS, JT, ITX, ITY, ITYT

REAL DZL, DRR, HAA, EP, OM, DET, DES, DSL, FI, UTO, RE, CAS, CAR
REAL ORF, DELPSI, ORFB, UTI
REAL RES, RESG, RESX, PSJ, FTN, FTT

DIMENSION R(400),RS(400),RSS(400) ,HA(400) ,HB(400,55),5(400),T(55)
DIMENSION US(400,55),UT(400,55),G3(400,55),GR(400,55)

DIMENSION TKA(400,55),TKB(400,55)

DIMENSION PSI(400,55),HE(400,55),PR(400,55),TKC(400,55)
DIMENSION RHS(400,55)

DIMENSION GAM(400,55),TTR(400,55)

DIMENSION DBS(400)

COMMON ITER, ITERB, JsQ, JST, JTQ, JTT, JS, JT, ITX, ITY, ITYT
COMMON DZL, DRR, HAA, EP, OM, DET, DES, DSL, FI, UTO, RE, CAS, CAR
COMMON ORF, DELPSI, ORFB, UTI, PSIDS, WF

COMMON RES, RESG, RESX, PSJ, RESM, RESMG, DPSI

COMMON R, RS, RSS, HA, HB, S, T, US, UT, GS, GR, DBS

COMMON TKA, TKB, PSI, HE, PR, TKC, RHS, GAM, TTR, FTN, FTT
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open(10,file=’psout.dat’,status=’0ld’)
open(11l,file=’"fcs.dat’,status=’0ld’)

open(12,file="delp.dat’, status=’o0ld’)

PRINT =*, ’BLKFL - BULK FLOW PROGRAM’

PRINT o, ?sskaksksksdoksoksokskokskokskokokokkokokkkokfok )
¢ -- GEOMETRY INPUT:
CALL INDATA

c -- FLOW DATA INPUT:
DO 104, k=1,13
OM = -.9+.1%k

1001 CALL INDATB

¢ -- Initial set up for stream function:

DA = DELPSI / (JTT - 3)
DO 11 JT

2, JIT + 1

DO 10 Js = 1, JST + 1
PSI(JS, JT) = DA * (JT - 3)
GAM(JS,JT) = 0.0
RHS(JS, JT) = 0.0

10  CONTINUE

11 CONTINUE

c Set iterations in main calculation and in Solveb.
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ITER = 50
ITERB = 20

c These numbers are for convergence of the forces and

c control over calculation

ITYT =0
FTN

0.01

FIT = 0.01

c Solveb uses velocities to figure downstream boundary.

C First iteration through need to set the velocities

CALL VELOCI

b0 37 JT

1, JTT+2
DO 36 JS

1}

1, JST+1
UT(JS,JT) = UTO

36 CONTINUE

37 CONTINUE

c Main calculation loop

17 CONTINUE

ITYT

ITYT + 1
ODFN

FTN

ODFT = FTT
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1630 DO 18 ITX = 1, ITER

CALL SOLVEB
CALL VELOCI
CALL SOLVEA

18 CONTINUE

C

calculate percentage error in forces
Conditional to move to next whirl frequency when

forces are within 5%

DT

ABS((ODFT-FTT) /odft)

DN = ABS((ODFN-FTN)/odfn)

print *, ftn, ftt
IF(DN.GT.0.05.0r.DT.GT.0.05.0r . ITYT.LT.4) GOTO 17
print out US, UT, PR, GAM for check of exit condition
345 do 106 JS = 2,JST-1
do 105 JT = 3,JTT-1
write(10,*) PR(JS,JT), US(JS,JT), UT(JS,JT), GAM(JS,JT)
105 continue

106 continue

This section calculates the delta p pressure difference.

L}
(e
<

fsum

)
O
(e

rsum



113

do 107 JT = 3, JTT-1

fsum = PR(2,JT)+fsum
rsum = PR(JST-1,JT)+rsum
107 continue

presd = (fsum-rsum)/JTQ
write(12,*) presd
write(11,*) OM, FTN, FTIT

104 continue

1000 END

SUBROUTINE INDATA

COMMON ITER, ITERB, JsQ, JST, JTQ, JTT, JS, JT, ITX, ITY, ITYT
COMMON DZL, DRR, HAA, EP, OM, DET, DES, DSL, FI, UTO, RE, CAS, CAR
COMMON ORF, DELPSI, ORFB, UTI, PSIDS, WF

COMMON RES, RESG, RESX, PSJ, RESM, RESMG, DPSI

COMMON R(400),RS(400) ,RSS(400) ,HA(400) ,HB(400,55),5(400),T(55)
COMMON US(400,55) ,UT(400,55),GS(400,55),GR(400,55), DBS(400)
COMMON TKA(400,55), TKB(400,55)

COMMON PSI(400,55) ,HE(400,55),PR(400,55),TKC(400,55) ,RHS(400,55)
COMMON GAM(400,55), TTR(400,55), FTN, FTT

C -- SUBROUTINE TO INPUT GEOMETRIC AND OTHER DATA TO PROGRAM

DZL = 0.5
DRR = 0.5
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HAA = .03

EP = .003

Js@ = 50

JTQ = 10

GOTO 1600
c LENGTH/R_1 = DZL
C R_2/R_1 = DRR
c CLEARANCE/R_1 = HAA
c ECCENTRICITY/R_1 = EP
c WHIRL FREQUENCY RATIO = 0OM
c NUMBER OF S INCCENTS = JSQ
C NUMBER OF THETA INCCENTS = JTQ

-- The inlet boundary is at JS=2
-- The discharge boundary is at JS=JST

-- The Theta=0 line is at JT=3

D

Q QO O Q

-- The Theta=2%Pi line is at JT=JTT

O
1
i
i
)
i
-
=

NEED TO INPUT THE FUNCTIONS R(S) and HA(S)
C -- FOR THE MOMENT WE INPUT THE CONICAL GEOMETRY:

1600 JST = JIsSQ + 2
DSL = SQRT(DZL#DZL + (1.0 - DRR)*(1.0-DRR))
DES = DSL / JSQ
DO 30 JS =1, JST + 1
HA(JS) = HAA
R(JS)

1.0 - (JS -2) * (1.0 - DRR) / JSQ
S(Js)

(JS - 2) * DES
RS(JS) = -(1.0 - DRR) / DSL
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C__

31

C --

32
33
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RSS(JS) = 0.0
CONTINUE

NOW TO SET UP THE THETA GEOMETRY:
JTT

JTQ + 3

DET = 2.0 * 3.14159265/ JTQ
DO 31 JT = 1, JIT + 2

TQJT) = DET * (JT - 3)
CONTINUE

NOW TO SET UP CLEARANCE GEOMETRY:
DO 33 JS =1, JST + 1
DO 32 JT = 1, JTIT + 2
HB(JS, JT) = HA(JS)+EP * COS(T(JT)) * SQRT(1.0 - RS(JS)*RS(JS))
CONTINUE
CONTINUE

RETURN
END

SUBROUTINE INDATB

COMMON ITER, ITERB, Jsq, JST, JTQ, JTT, JS, JT, ITX, ITY, ITYT
COMMON DZL, DRR, HAA, EP, OM, DET, DES, DSL, FI, UTO, RE, CAS, CAR
COMMON ORF, DELPSI, ORFB, UTI, PSIDS, WF

COMMON RES, RESG, RESX, PSJ, RESM, RESMG, DPSI

COMMON R(400) ,RS(400) ,RSS(400) ,HA(400) ,HB(400,55),S(400),T(55)
COMMON Us(400,55) ,UT(400,55),G5(400,55) ,GR(400,55), DBS(400)
COMMON TKA(400,55), TKB(400,55)
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COMMON PSI(400,55) ,HE(400,55),PR(400,55),TKC(400,55) ,RHS(400,55)
COMMON GAM(400,55), TTR(400,55), FTIN, FTIT

C -- INPUT FLOW DATA:

FI = 0.06

UTI = 0.5
RE = 1026346.0

CAS = .079

CAR = .079

ORF = 1.5

ORFB = 1.2

PSIDS = 0.0

GOTO 1701
c FLOW COEFFICIENT = FI
c INLET SWIRL VELOCITY, U_theta = UTI
c REYNOLDS NUMBER, Omega*R1**2/NU = RE
c SHEAR COEFFICIENT, AS = CAS
c SHEAR COEFFICIENT, AR = CAR
c NUMBER OF ITERATIONS = ITER
c NUMBER OF ITERATIONS ON PSI = ITERB
c OVER-RELAXATION FACTOR FOR FIELD = ORF
c OVER-RELAXATION FACTOR FOR BOUNDARY = ORFB

1701 DELPSI = 2.0 % 3.1415 * FI * HAA
PSIDS = 0.0
UTO = UTI - OM
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RETURN
END

SUBROUTINE SHEARS

COMMON ITER, ITERB, JsQ, JST, JTQ, JIT, JS, JT, ITX, ITY, ITYT
COMMON DZL, DRR, HAA, EP, OM, DET, DES, DSL, FI, UTO, RE, CAS, CAR
COMMON ORF, DELPSI, ORFB, UTI, PSIDS, WF

COMMON RES, RESG, RESX, PSJ, RESM, RESMG, DPSI

COMMON R(400),RS(400),RSS(400) ,HA(400) ,HB(400,55),5(400),T(55)
COMMON US(400,55),UT(400,55) ,GS(400,55) ,GR(400,55), DBS(400)
COMMON TKA(400,55), TKB(400,55)

COMMON PSI(400,55),HE(400,55),PR(400,55) ,TKC(400,55) ,RHS(400,55)
COMMON GAM(400,55), TTR(400,55), FTN, FTIT

C -=- Calculates the viscous shear stress terms.

C Using same strategy as before, bulk flow model

DC = (RE * HB(JS, JT))**(-.25)

DAX = .5 % CAS * DC * ((US(JS, JT)=*US(JS,JT) + (UT(JS, JT)
1 + OM * R(JS))*(UT(JS, JT) + OM * R(JS)))*x*,375)

DBX = .5 *x CAR * DC * ((UsS(Js, JT)*US(JS,JT) + (UT(JS, JT) -
1 (1.0 - OM) * R(JS))*(UT(JIS, JT) - (1.0 - OM) * R(JS)))**.375)

GS(JS,JT)

[}

ABS(DAX) /HB(JS,JT)

GR(JS,JT) = ABS(DBX)/HB(JS,JT)
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RETURN

END

SUBROUTINE SOLVEA

COMMON ITER, ITERB, JSQ, JsT, JTQ, JTT, JS, JT, ITX, ITY, ITYT

COMMON DZL, DRR, HAA, EP, OM, DET, DES, DSL, FI, UTO, RE, CAS, CAR

COMMON ORF, DELPSI, ORFB, UTI, PSIDS, WF

COMMON RES, RESG, RESX, PSJ, RESM, RESMG, DPSI

COMMON R(400) ,RS(400) ,RSS(400) ,HA(400) ,HB(400,55),5(400),T(55)

COMMON US(400,55) ,UT(400,55) ,GS(400,55) ,GR(400,55), DBS(400)

COMMON TKA(400,55), TKB(400,55)

COMMON PSI(400,55),HE(400,55),PR(400,55),TKC(400,55) ,RHS(400,55)

COMMON GAM(400,55), TTR(400,55), FIN, FTT

C -- To
C -- To
40
C -- To

integrate to find Gamma:

set pressure at inlet:

DO 40 JT = 2, JIT + 1

DE = UT(2,JT)*UT(2,JT)+US(2,JT)*US(2,JT)-(0M*R(2))*(0OM*R(2))
PR(2, JT) = HE(2, JT) - .5 * DE

CONTINUE

calculate GS, GR, TKA, TKB for all points:
DO 42 IS

L}

2, JST
DO 41 JT

2, JIT + 1
CALL SHEARS
DA

it

GR(JS, JT) + Gs(Js, JT)
DB

UT(JS, JT) + OM * R(JS)



41
42

2
3

1
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DC = GR(JS, JT) * R(JS)
TKA(JS, JT) = R(JS) * (DA * DB - DC)
TKA(1,JT) = TKA(2,JT)
TKB(JS, JT) = US(JS, JT) * DA
TKC(JS, JT) = DC * UT(JS, JT) -
1 DA * (US(JS, JT)*US(JS,JT) + UT(JS, JT) * DB)

CONTINUE
CONTINUE

Convection calculation. Use relaxation of the diffusion

equation.

DO 92 I = 1, ITERB

DO 46 JS = 3, JST
DO 43 JT = 3, JIT-1

RHSE = ((TKA(JS,JT)-TKA(JS-2,JT))/(24DES)-
(TKB(JS-1,JT+1)-TKB(JS-1,JT-1))/

(2%DET) )/ (R(JS-1)*HB(JS-1,JT))

DGAM = (RHSE-UT(JS-1,JT)/R(JS-1)*(GAM(JS-1,JT+1)-GAM(JS-1,
JT-1))/(2%DET) ) /US(JS-1,JT)

GAM(JS,JT) = GAM(JS-1,JT)+1.1*DGAM*DES

Now project head forward using same technique

HHSE = -1.0*UT(JS~-1,JT)*TKA(JS-1,JT)/R(JS)
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2 -TKB(JS-1,JT)*(R(JS-1)*US(JS-1,JT))

DHE = (HHSE-UT(JS-1,JT)*(HE(JS-1,JT+1)-HE(JS-1,
1 JT-1))/(2*DET))/(US(JS-1,JT)*R(JS-1))

HE(JS,JT) = HE(JS-1,JT)+1.1*DHE*DES

15 DE = UT(JS,JT)*UT(JS,JT)+US(JS,JT)*US(JS, JT)
4 -(OM * R(JS))*(OM*R(JS))
PR(JS, JT) = HE(JS, JT) - .5 * DE

43  CONTINUE

C -- Set boundary values under Theta=0 boundary:
DO 44 JT =1, 2
GAM(JS, JT) = GAM(JS, JT + JIT - 3)
HE(JS, JT)

HE(JS, JT + JIT - 3)

PR(JS, JT) = PR(JS, JT + JTT - 3)

44  CONTINUE

C -- Set boundary values above Theta=2*Pi boundary:
DO 45 JT = JTT, JIT + 2
GAM(JS, JT) = GAM(JS, JT - JTT + 3)
HE(JS, JT)

[}

HE(JS, JT - JIT + 3)

PR(JS, JT) = PR(JS, JT - JIT + 3)

45 CONTINUE

46  CONTINUE

92 CONTINUE
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CONTINUE

This is the extrapolation of upstream gamma
so that the initial gamma effect will be wiped

out.

DO 23 JT =1, JIT + 2
GAM(1,JT) = (3%GAM(3,JT)-2%GAM(4,JT))
GAM(2,JT) = (2*GAM(3,JT)-GAM(4,JT))

continue

C -- To calculate right hand side:

1631

47
48

DO 48 JS =1, JST + 1

DO 47 JT = 1, JTT + 2

RHS(JS, JT) = (R(JS)*R(JS)) * HB(JS, JT) * GAM(JS, JT)
CONTINUE

CONTINUE

C -- To calculate rotordynamic forces, FN and FT:

FIN = 0
FIT = 0
FTNV

[}
o

FTTV

]
(=]

DO 50 JS = 2, JST
DFN = 0
DFT = 0
DFNV = 0
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DFTV = 0

DO 49 JT = 4, JIT

DFN = DFN + .5%R(JS)*DET * (COS(DET * (JT - 4)) * PR(JS, JT - 1)
1+ COS(DET * (JT - 3)) * PR(JS, JT))

DFT = DFT + .5*R(JS)*DET * (SIN(DET * (JT - 4)) * PR(JS, JT - 1)
2 + SIN(DET * (JT - 3)) * PR(JS, JT))

DFNV = DFNV + .5 x DET * (SIN(DET * (JT - 4)) * TTR(JS, JT - 1)

¥*

3 + SIN(DET * (JT - 3)) * TTR(JS, JT))

DFTV = DFTV .5 * DET * (COS(DET * (JT - 4)) * TTR(JS, JT - 1)

4 + COS(DET * (JT - 3)) * TTR(JS, JT))

49  CONTINUE

DFN

DFN * SQRT(1.0

RS(JS)*RS(JS))
DFT

DFT * SQRT(1.0

RS(JS)*RS(JS))

DFNV = DFNV * SQRT(1.0 - RS(JS)*RS(JS))

DFTV = DFTV * SQRT(1.0 - RS(JS)*RS(JS))

IF (JS.EQ.2) GOTO 1640

FTN = FTN + .5 *= (DFN + DFNP) * DES

FIT = FIT + .5 = (DFT + DFTP) * DES

FTNV = FTNV + .5 = (DFNV + DFNPV) * DES

FTTV = FTTV + .5 * (DFTV + DFTPV) * DES
1640 DFNP = DFN

DFTP = DFT

DFNPV = DFNV
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DFTPV = DFTV

CONTINUE
NORM is a factor which makes this calculation’s
non-dimensionalization match that of the experiments
and that of Adiel’s thesis, and of course, the

full numerical integration code. NORM is NOT a normal force.

NORM = 1.0/(3.14159+DZL*EP)

FTN = (FTN+FTNV)*NORM
FTT = (FTT+FTTV)*NORM
RETURN
END

SUBROUTINE SOLVEB

DIMENSICON DBSI(400)

COMMON ITER, ITERB, JsQ, JsT, JTQ, JTT, JS, JT, ITX, ITY, ITYT
COMMON DZL, DRR, HAA, EP, OM, DET, DES, DSL, FI, UTO, RE, CAS, CAR
COMMON ORF, DELPSI, ORFB, UTI, PSIDS, WF

COMMON RES, RESG, RESX, PSJ, RESM, RESMG, DPSI

COMMON R(400) ,RS(400) ,RSS(400) ,HA(400) ,HB(400,55),5(400),T(55)
COMMON US(400,55) ,UT(400,55),GS(400,55) ,GR(400,55), DBS(400)
COMMON TKA(400,55), TKB(400,55)

COMMON PSI(400,55) ,HE(400,55),PR(400,55),TKC(400,55) ,RHS(400,55)
COMMON GAM(400,55), TTR(400,55), FTN, FTT
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C -- Solves the stream function equation given current Gamma values.

C -- Stream Function iteration loop:

3520 DO 80 IT = 1, ITERB

¢ -- Set boundary values upstream of inlet:
DO 51 JT = 3, JIT - 1
UT(2, JT) = UTO
PSI(1, JT) = PSI(3, JT) + 2 * DES * HB(2, JT) * UTO
51 CONTINUE

c Downstream boundary condition, written with Ut, Us

c constant pressure in this case

3543 DD =0
BD = 0
DO 53 JT = 3, JIT - 1

DE = US(JST,JT)
DF = UT(JST,JT)
DD = DD + 2.0+HE(JST, JT)-DE*DE-DF*DF+0M*R (JST)*0M*R(JST)

53 CONTINUE

PPSIDS = DD / (JIT - 3)

DO 54 JT = 3, JIT - 1
DE

US(JST,JT)
DF

UT(JST,JT)
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DO S5 I =1, 25

IF(DF.EQ.0.0) GOTO 3540

RESB = DF*DF+PPSIDS-2.0*HE(JST, JT)+DE*DE-OM*R(JST)*0M*R (JST)

DRESB = 2*DF
DF = DF - 1.0%RESB/DRESB

55 CONTINUE
3540 DC = DF
3541 DP = PSI(JST -~ 1, JT) - 2 * DES *
HB(JST, JT) = DC - PSI(JST + 1, JT)
PSI(JST + 1, JT) = PSI(JST + 1, JT) + ORFB * DP
54 CONTINUE
C -- Set boundary values under Theta=0 boundary:
3542 DO 62 JT = 1, 2
DO 61 JS =1, JST + 1
PSI(Js, JT) = PSI(JS, JT + JIT - 3) - DELPSI
61  CONTINUE
62  CONTINUE
C -- Set boundary values above Theta=2*Pi boundary:
DO 64 JT = JTT, JIT + 2
DO 63 JS =1, JST + 1
PSI(Js, JT) = PSI(JS, JT - JIT + 3) + DELPSI
63  CONTINUE



126

64  CONTINUE

C == Rezero all psi:

DA = PSI(2,3)

DO 66 JT
DO 65 J3

i

1, JIT + 2

1, J5T + 1

PSI(JS,JT) = PSI(JS,JT)-DA

65  CONTINUE

66  CONTINUE

C -~ Relaxation of general points:
DO 69 JT = 3, JIT - 1
DO 68 JS = 2, JST
DA = .5 * (R(JS + 1) + R(JS))
DB = 2.0 * DA / (HB(JS + 1, JT) + HB(JS, JT))
DC = (PSI(JS + 1, JT) - PSI(JS, JTI)) / DES
DD = DB * DC - OM * DA*DA
DE = .5 * (R(JS) + R(JS - 1))
DF = 2.0 * DE / (HB(JS, JT) + HB(JS - 1, JT))
DG = (PSI(JS, JT) - PSI(JS - 1, JT)) / DES
DH = DF * DG - OM * DE*DE
DJ = 2.0 / (HB(JS, JT + 1) + HB(JS, JT))
DK = DJ * (PSI(JS, JT + 1) - PSI(JS, JT)) / DET
DL = 2.0 / (HB(JS, JT) + HB(JS, JT - 1))
DM = DL * (PSI(JS, JT) - PSI(JS, JT - 1)) / DET
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RES = R(JS) * (DD - DH) / DES + (DK - DM) / DET - RHS(JS, JT)

RESG

= -R(JS) * (DB + DF) / (DES*DES) - (DJ + DL) / (DET*DET)

C -- Relaxation:

PSI(JS, JT) = PSI(JS, JT) - ORF * RES / RESG

68  CONTINUE

69  CONTINUE

80 CONTINUE

RETURN
END

SUBROUTINE VELOCI

COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON

ITER, ITERB, JSQ, JST, JTQ, JTIT, JS, JT, ITX, ITY, ITYT
DZL, DRR, HAA, EP, OM, DET, DES, DSL, FI, UTO, RE, CAS, CAR
ORF, DELPSI, ORFB, UTI, PSIDS, WF

RES, RESG, RESX, PSJ, RESM, RESMG, DPSI

R(400) ,RS(400) ,RSS(400) ,HA(400) ,HB(400,55) ,5(400),T(55)
Us(400,55) ,UT(400,55) ,GS(400,55) ,GR(400,55), DBS(400)
TKA(400,55), TKB(400,55)
PSI(400,55),HE(400,55),PR(400,55) ,TKC(400,55) ,RHS(400,55)
GAM(400,55), TTR(400,55), FIN, FTIT

C -- Evaluate all velocities Us and Ut:

DO 211 JQT
DO 210 JQs

1, JIT + 1

1, JST + 1
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DA = 2.0 * DET * R(JQS) * HB(JQS, JQT)

DB = 2.0 * DES * HB(JQS, JQT)

IF (JQT.EQ.1.0R.JQT.EQ.JTT + 1) GOTO 207

Us(JQs, JQT) = (PSI(JQS, JQT + 1) - PSI(JQS, JQT - 1)) / DA
207 IF (JQS.EQ.1.0R.JQS.EQ.JST + 1) GOTO 210

UT(JQs, JQT) = -(PSI(JQS + 1, JQT) - PSI(JQS - 1, JQT)) / DB

210 CONTINUE
211 CONTINUE
RETURN

END



