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ABSTRACT

Particulate matter (PM) is an important component of outdoor and indoor air pollu-
tion that can cause significant harm to human health. The present work, organized
into two parts, introduces strategies for optimizing the collection and analysis of
airborne particle measurements to inform PM health-effect research.

Part I focuses on the fundamental aerosol data analysis task of interpreting indirect
measurements of particle size to reveal the distribution of sizes of particles in a
sampled aerosol. An approach to this aerosol data inversion problem is developed
that shows improved particle size distribution recovery compared to other common
approaches described in the literature. This inverse solution method incorporates
cubic spline interpolation to represent the particle size distribution within a discrete
linear model of the inverse problem while placing no constraints on the number
or spacing of solution points. The inverse problem setup can then interface with
three established numerical methods for solution computation. The accuracy of this
procedure is demonstrated through analysis of test-case data for differential mobility
analyzer systems. Source code and supporting documentation are also provided to
encourage researchers to use and adapt this inversion algorithm for analyzing data
collected from existing as well as potential future measurement systems.

Part II of this work focuses on the retrieval of health-relevant information from
aerosol particle measurement data. The inversion analysis introduced in Part I is
incorporated into an extended analysis procedure for evaluating the metrics of PM
exposure and respiratory dose that can be obtained from different measurement
systems. Applying this evaluation procedure to a range of existing and potential
future measurement techniques reveals that full characterization of particle size
distributions need not be time and resource intensive and should be pursued for the
great benefits this information would provide to health studies. Not only can size
distribution information permit lung tissue dose estimates through a set of relatively
simple calculations, but a single set of size distribution data can be analyzed and
reanalyzed to provide dose estimates for human populations of interest by applying
the appropriate respiratory tract deposition profiles. The measurement evaluation
procedure developed here reveals target criteria for the particle characterization
necessary to provide sufficient exposure and dose information for health studies.
The intent is not to eliminate the current measurements and standards, but to help
direct future developments in health-related aerosol particle measurement design.
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C h a p t e r 1

INTRODUCTION

Particulate matter (PM) consists of microscopic pieces of condensed phase matter
that can be emitted by a source or formed from vapor-phase precursors in the
atmosphere. As a complex, air-suspended mixture of particles with varying physical
and chemical properties, PM can enter the human airways during breathing and may
deposit within the respiratory tract to elicit varying types and degrees of health
effects. Epidemiological evidence from around the world links human exposure
to PM with diseases and causes of death ranging from asthma and lung cancer to
heart attack and stroke, even diabetes, neurological disorders, and adverse birth and
pregnancy outcomes.

Controlled exposure studies and in vitro mechanistic work suggest that observed PM
health impacts stem from the body’s biological response to the dose of depositing
particles delivered to different anatomical regions of the respiratory tract, from the
head and neck airways through to the deepest regions of the lungs. Ideally then,
efforts to understand and mitigate PM health impacts would have access to measures
of both external PM exposure and internal, biologically effective, regional particle
dose for the human population or subpopulations of interest.

Actually obtaining such a comprehensive data set, however, seems to be more of
the exception than the rule in PM health-effect research today. Not all aerosol
particle measurement schemes are optimized to provide sufficient exposure and
dose information to facilitate rigorous assessments of PM health effects. Moreover,
researchersmay fail to recognize when the availablemeasurement data is incomplete
and how its limitations or biases will constrain the scope and impact of PM health-
effect studies. The present work discusses these challenges in depth and introduces
strategies for optimizing the collection and analysis of aerosol particlemeasurements
for health effects research.

These discussions and strategic contributions are presented in two parts. Part I
focuses on the fundamental aerosol data analysis task of interpreting indirect mea-
surements of particle size to reveal the distribution of sizes of particles in a sampled
aerosol. An approach to this aerosol data inversion problem is developed that shows
improved particle size distribution recovery compared to other common approaches
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described in the literature. This inversion procedure provides a contribution to
aerosol research in general, but it also serves to optimize the exploration of lung
tissue dose that becomes possible with access to aerosol particle size measurements.
This retrieval of health-relevant information from aerosol particle measurement data
is discussed in greater depth in Part II of this work. Quantitative analyses reveal
criteria for the particle characterization necessary to provide sufficient exposure and
dose information for health studies.

1.1 Data Inversion for Aerosol Spectrometers
Inverse problems arise across a broad range of disciplines, from themost abstract and
pure mathematics to almost all fields of physical science and practical engineering.
In a general, qualitative sense, any attempt to use a set of observations to discern the
causal factors that produced them can be classified as an inverse problem. In a more
rigorous, mathematical sense, an inverse problem is a mathematical framework used
to obtain information about a physical object or system fromobservedmeasurements.

Since the scientists and mathematicians that study these problems can have diverse
backgrounds and goals, it can seem as though each discipline has developed its
own unique approach and underlying theory for finding inverse solutions. In reality,
though, inverse problems encountered across disciplines possess strong and funda-
mental similarities. A coherent big picture understanding of inverse problems is
presented in Chapter 2, meant as an accessible discussion for engineers and scien-
tists looking for a clear description of what inverse problems are, what makes them
difficult, and what specialized tools are used to solve them.

The focus of Chapter 2 then narrows to the interpretation of indirect sensingmeasure-
ments in atmospheric science, specifically the inversion of measurements obtained
from particle sizing instruments to characterize the distribution of sizes of parti-
cles in a sampled aerosol. An important component of any given approach to this
aerosol spectrometer inversion problem is the mathematical representation of the
particle size distribution for numerical evaluations. Much of what determines both
the complexity and the effectiveness of a given approach lies in these mathematical
details.

Size distribution representations commonly used in inversionmethods includemulti-
modal lognormal representations, nodal representations in which the size distribu-
tion is represented as a collection of delta functions at different sizes, and histogram
or linear spline representations. The inverse solution method developed here incor-
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porates cubic spline interpolation to represent the particle size distribution within
a discrete linear model of the inverse problem while placing no constraints on the
number or spacing of solution points to recover. The inverse problem setup can
then interface with three established numerical methods for solution computation.
The accuracy of this procedure is demonstrated through analysis of test-case data
for differential mobility analyzer (DMA) systems, and the solutions obtained with
the cubic spline technique are shown to be superior to those obtained with other
common approaches to this inversion problem.

Supporting documentation for this aerosol inversion routine is provided in Chapter
3 to encourage its use and adaptation for analyzing data collected from existing as
well as potential future measurement systems. Source code is included in Appendix
E. Data analysis for aerosol size distribution measurements will continue to benefit
from advancements in mathematical techniques only as long as these advancements
are documented coherently enough to enable practical implementation. When an
inversion algorithm comes across as poorly documented or incomprehensibly com-
plex, it is likely to be treated as a black box tool. This is not ideal because the
algorithm is then at risk for being inappropriately applied, if it is used at all. To
avoid having the inversion routine developed here turn into a black box tool, Chapters
2 and 3 balance practical performance demonstrations with accessible descriptions
of the functional details of the solution method.

1.2 Particle Measurements and Health Metrics
Determining themost appropriate approach tomeasuring exposure to airborne PM is
a daunting task. Typical data collection rarely possesses the resolution to efficiently
explore the entire array of PM characteristics are possibly significant to the human
health response. Measurements that do possess this level of resolution are generally
too expensive and too operationally complex to encourage widespread use. The
result is that, too often, the metric most relevant to a given case remains uncertain.

A procedure for evaluating the metrics of PM exposure and respiratory dose that
can be obtained from present measurement techniques as well as potential future
ones is introduced is Chapter 4. This procedure incorporates the aerosol inversion
routine from Part I for analyzing any measurement techniques that provide particle
size information. The overall measurement evaluation methodology provides a
straightforward yet powerful tool for recognizing limits or biases in measurement
data that will constrain the scope and impact of PM health-effect studies.
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This measurement evaluation procedure is demonstrated in Chapter 4 on two well-
known measurement systems: the regulatory metric of PM2.5 and the more involved
measurements provided byDMAsystems. The operational theories behind these two
measurement systems are well-established, and they happen to represent the extreme
ends of the spectrum in terms of operational complexity and data resolution. The
intent is not to dwell on the strengths and weaknesses of these two measurement
systems, but simply to use them as examples to demonstrate the important role that
particle measurements play in assessing health effects. Other measurement options
are available, with more middle-ground capabilities.

A more complete, representative sample of measurement systems is investigated in
Chapter 5 to evaluate the range in utility of present measurement techniques as well
as potential future ones. This analysis reveals what information existing technology
can provide and what information future technology should target. Overviews of
PM measurements have been done before, but not in a quantitative manner and not
by addressing various metrics of human health effects.

The in silico analyses presented here illustrate how measurement systems that use
a single metric to characterize an aerosol, be it mass, surface area, or number, may
provide data that correlate well with deposited dose of the targeted physical metric,
but the data will fail to reflect other measures of dose. This will similarly limit
the perceived links between particle measurements and health impacts. Instead,
researchers should seek measurements that characterize an aerosol with enough
size-resolved detail to estimate various physical metrics of exposure and dose with
appropriate assumptions about particle shape and density. Measurement systems
based on DMA technology have great potential for this approach.

While state-of-the-art DMA systems, typical of present-day, high-resolution opera-
tion, can readily capture the different exposure or dose measures, such instruments
are generally too expensive and too operationally complex to encourage widespread
use. Fortunately, the present simulations reveal that much simpler, lower resolution
mobility analyzers can provide data with sufficient resolution to serve the needs of
PM health-effect researchers. Relaxing the requirements on measurement system
performance would enable design of simpler systems still capable of recovering
sufficient size information to infer lung dose by number, surface area, or mass
metrics.

Air pollution regulation and mitigation efforts need access to PM measurements
more informative than a single metric concentration, yet simple enough to be re-
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covered from instruments that can populate a dense, even personal, monitoring
network. The strategies for data collection and analysis presented here promote
this perspective of striking the right compromise between operational complex-
ity and information resolution. This approach will lead to future developments in
health-related aerosol particlemeasurement design that emphasize exploring various
physical metrics of particle dose delivered to the human lungs.



Part I

Data Inversion for Aerosol
Spectrometers

7
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C h a p t e r 2

INVERSION OF AEROSOL SIZE DISTRIBUTION DATA USING
CUBIC SPLINE QUADRATURE

Inverse problems are widely encountered in the field of atmospheric remote sensing,
as well as many other spheres of interest. We take a broad view of existing inversion
techniques and applications to revisit the problem of recovering aerosol particle
size distribution information. A common feature for particle size distribution mea-
surement systems is that the relation between collected observations and the size
distribution function can be expressed as a Fredholm integral equation of the first
kind. Previous inversions have represented the particle size distribution within this
response equation as (i) delta-function nodes, (ii) histogram distributions, or (iii)
linear splines. We describe an approach to the aerosol inversion problem that incor-
porates cubic spline interpolation to represent the particle size distribution within
a discrete linear model of the inverse problem while placing no constraints on the
number or spacing of solution points to recover. We then interface this model with
three established numerical methods for solution computation. We demonstrate the
accuracy of this procedure through analysis of test-case data for differential mobility
analyzer (DMA) systems, and show that the solutions obtained with the cubic spline
representation are superior to those obtained by other common approaches to this
inversion problem.

2.1 Introduction
Inverse problems are everywhere. They are at the heart of scientific inquiry and
technological development in many fields. Any time we hope to use a set of
observations or measurements to calculate information about the physical object or
system that produced them, we are attempting to solve an inverse problem. Inverse
solutions tell us about parameters or properties that we cannot quantify directly.
This makes inverse problems some of the most important mathematical problems
encountered in many areas of science and technology.

Early publications on inverse problems related to physics, geophysics, astronomy,
and other areas of science date back to the first half of the 20th century. Since
then, the topic has been revisited repeatedly in the literature. New approaches and
concepts are constantly emerging for how to solve inverse problems in particular
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fields of application.

In the present study, we draw inspiration from the work presented in diverse fields
to revisit the inversion problem as it relates to interpreting indirect sensing mea-
surements in atmospheric science. We focus specifically on the inversion of mea-
surements obtained from particle sizing instruments to characterize the distribution
of sizes of particles in a sampled aerosol. This is just one example of the many
inverse problems encountered in atmospheric remote sensing, but it is a key element
with respect to understanding and managing aerosol effects on health, visibility, and
climate. Thus, determining the particle size distribution function is a basic task in
aerosol research. One goal of this study is to improve the recovery of the particle
size distribution from aerosol measurements via data inversion; our approach is to
take a broad view of inverse problems and incorporate mathematical and analytical
techniques from other fields of practical application.

Another goal of this study is to provide a clear description and thorough docu-
mentation for our inversion approach. Data analysis for aerosol size distribution
measurements will continue to benefit from advancements in mathematical tech-
niques, but only as long as these advancements are documented coherently enough
to enable practical implementation. It is an unfortunate observation that many of
the inversion routines presented in the literature seem to have not been extensively
implemented in practice. In some cases, these algorithms have been perceived as
too mathematically complex to allow straightforward interpretation of the results or
adaptation of the code to specific applications. Another unfortunate observation is
that many of the inversion algorithms that are actually used much for practical data
analysis seem to be documented only poorly. Surprisingly few publications are avail-
able that specify their algorithm in detail, particularly regarding the implementation
of numerical approximations.

When an inversion algorithm comes across as poorly documented or incomprehen-
sibly complex, it is likely to be treated as a black box tool. This is not ideal because
the algorithm is then at risk for being inappropriately applied, if it is used at all.
Here, we discuss the inversion problem in a manner that aims to shed some light
on this black box nature of inverse solution methods. We describe the development
and implementation of a new inversion algorithm while balancing demonstration of
its practical performance with clarity in its functional details. In doing so, we fully
acknowledge the fundamental mathematical basis of inverse problems, however, our
discussion is not designed to satisfy mathematicians. This presentation is meant to
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be more accessible for engineers and scientists looking for a transparent discussion
of application-oriented inverse problems and their solution methods.

We begin with a discussion of the general characteristics of inverse problems,
followed by a review of the methods typically employed to tackle the inversion
of particle size distribution measurements. Then we describe our own inversion
algorithm, which incorporates cubic spline quadrature with no assumptions about
knot spacing and interfaces with three established numerical methods for solution.
Finally, we demonstrate the performance of our method and make quantitative
comparisons to other methods currently in use.

2.2 Overview of Inverse Problems
The core of any inverse problem is the mathematical model of the corresponding
forward problem. Informally, forward problems consist of finding an effect from
a cause, and inverse problems consist of recovering a cause when given the effect.
Most often, inverse problems arise from the need to extract information about a
desired unknown function from indirect and incomplete physical measurements
taken from an instrument.

We construct a general mathematical model of indirect linear measurements as
follows. We are interested in a continuous function f but cannot measure its
values directly. However, f is connected to another physical quantity g, which is
available formeasurement. If we adequately understand the governing physics of our
measurement system, we can specify a linear operator A to model the connection
between f and g such that

g = A f + e (2.1)

where f is the desired unknown function and g ∈ Rm is a vector of m numbers
given by a measurement device. The vector e ∈ Rm models errors coming from
measurement noise, which is inevitable in practical situations. The error can be
modeled as a random variable with certain statistics, or it can be considered as a
deterministic but unknown error found by calibration of the measurement device.

The linear operator A can take on many forms. In the most general context, A
describes the forward map, or the transformation of f into g, andmust be established
using parameters and physical laws that characterize the measurement system under
study.

Wewill call Eq. (2.1) the continuummodel. The notation of this expression suggests
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the function f may contain functions of a continuous variable, such as time or space,
and so may have infinitely many degrees of freedom. This describes many inverse
problems that we encounter which attempt to map a finite number of data onto an
infinite dimensional model.

For practical extraction of information from indirect linear measurements using
computational models, we need to introduce a finite dimensional approximation
f ∈ Rn to the function f and to build a matrix model A for the linear operator A.
This constructs a discrete linear inverse problem expressed as

g = Af + e (2.2)

where g ∈ Rm and f ∈ Rn. Moreover, A is a matrix of size m × n (m rows
and n columns). Discretizing a continuous inverse problem is most appropriate
when the continuous functions under consideration are smooth enough compared
to the sampling length, or if the functions can conveniently be described by their
development on a truncated basis.

The advantage of a discretized point of view for problems involving functions of a
continuous variable is that the mathematics is easier. As suggested by Eq. (2.2),
the calculations for a discrete inverse problem describing a linear system rely on
the theory of vectors and matrices rather than on the somewhat more complicated
theory of continuous functions and operators.

The disadvantage of approximating continuous inverse problems by their discretized
versions is that there is a certain arbitrariness in the discretization process. Making
a finite dimensional approximation to a continuous function is always both approx-
imate and, to some degree, arbitrary. In discretizing the continuum model of Eq.
(2.1) to give the discrete model of Eq. (2.2), we must choose the dimension n of
the discrete vector approximation f, and we must also establish the mathematical
methods used to build the matrix model A. Different approaches will correspond
to different model vectors and different matrices relating the data g to the model
f. The current literature does not sufficiently demonstrate how these differences
propagate through to the final inverse solution. This is a major motivator for our
study. Here we quantitatively compare the solutions calculated for continuous linear
inverse problems when using different common discretization techniques.
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Once the computational model of Eq. (2.2) is constructed, it is tempting to try to
solve the inverse problem by the naive reconstruction

f̂ ≈ A−1g (2.3)

However, in most relevant applications, this approach will fail. Problems stem from
evaluation of the inverse of thematrixmodelA. For amatrix to be invertible, its rows
must be linearly independent of each other, i.e., no row can be expressed as a linear
combination of the other rows. Otherwise, the matrix is said to be noninvertible
or singular. For many indirect measurements modeled by Eq. (2.2), the rows
of the matrix model A are “quasi-dependent” on each other, so that the matrix is
“nearly” singular and A−1 becomes very large. The quasi-dependency arises due
to overlap within the measurement model, which reflects the fact that there is not
a strict one-to-one correspondence between individual measurement values of g
and certain sub-ranges of the unknown function f . So, while discretization allows
an approximate inverse of A to be obtained, the large values of A−1 will make the
solution very sensitive to anymeasurement errors. To understand this, we reconsider
the naive reconstruction attempt:

f̂ ≈ A−1g ≈ A−1 (Af + e) = f + A−1 (e) (2.4)

If there were no measurement error, the naive reconstruction f̂ would be mathemat-
ically equivalent to the true solution f. However, the presence of measurement error
will translate into uncertainty in the solution and will be amplified by large values
of A−1. This makes the solution unstable in that a small error in measurement can
lead to very large error in solution.

Solution instability is a fundamental characteristic of “ill-posed” problems. A
problem is called ill-posed if any one of the following conditions is violated: (i)
existence of a solution, (ii) uniqueness of the solution, and (iii) continuity of the
solution on the input data. The first two conditions seem rather straightforward,
and the third condition can be understood as a question of stability, requiring that
small changes to the input (e.g., due to noise or error) do not produce arbitrarily
large changes to the output. Inverse problems generally fail to fulfill at least one,
and often all three, of these conditions. We must often draw on methods from
mathematical optimization to find successful and noise-robust solutions to inverse
problems.
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From our overview so far, we identify threemajor components to tackling commonly
encountered continuous linear inverse problems: (i) establish a mathematical model
of the forward problem using parameters and physical laws that characterize the
system under study; (ii) discretize the continuummodel to construct a discrete linear
inverse problem suitable for numerical evaluation; and (iii) solve the mathematical
inverse problem by applying an appropriate computational technique.

Forward modeling tasks associated with component (i) are not the primary focus
of this study. Given a particular application, it is not necessarily straightforward to
define the mathematical model of indirect measurements described by Eq. (2.1).
Constructing the forward map A must be considered as a nontrivial mathematical
modeling task in itself. The forward model must capture the physical processes that
govern the measurement theory, as well as technical properties of the measurement
device and possible limitations in the data sets. We will address how these critical
elements are modeled when we describe specific example applications of our devel-
oped inversion algorithm, but we do not claim to have developed novel measurement
theory. We will reference application-specific studies for established measurement
models based on appropriate theory or calibration data.

Computational solution techniques associated with component (iii) are also not
the primary focus of this study. An array of techniques have been developed
by other researchers to solve the mathematical inverse problem (Kandlikar and
Ramachandran 1999). We did not develop a novel optimization routine to tackle this
problem for this study. Rather, we examine how our inversion algorithm interfaces
with three established numerical methods to evaluate the final solution of given
inverse problems.

Our focus here will be on (i) converting the continuum measurement model of Eq.
(2.1) to a form suitable for numerical evaluation, and (ii) applying an appropriate
numerical method to handle the solution computation. In the next section, we
narrow our focus onto the inversion of measurements obtained from particle sizing
instruments to characterize the particle size distribution in a sampled aerosol. We
concentrate especially on some of the mathematical methods commonly used to
approximate the unknown function f as a discrete vector f for solution. This will
set the stage for a comparison to the methods used in our own inversion algorithm.
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2.3 Review of Inversion Methods for Aerosol Spectrometers
The distribution of particle sizes is a fundamental property of any aerosol. An
array of instruments, which we will refer to collectively as “aerosol spectrometers,”
have been developed for determining aerosol particle size distributions. Aerosol
spectrometers classify an ensemble of particles into a number of channels based on
variousmeasures of particle size. Thesemeasures include the aerodynamic diameter
(impactors), optical-equivalent diameter (multi-angle or multi-spectral nephelome-
ters and so-called optical particle counters), diffusion-equivalent diameter (diffusion
batteries), electrical mobility-equivalent diameter (electrostatic classifiers), or any
other size parameter derived from the behavior of the individual particles or the
aerosol in an energy or force field.

A common feature for particle size distribution measurement systems is that the
relationship between the discrete collected observations and the unknown size dis-
tribution function (i.e., the relationship that must be modeled by the linear operator
A discussed above) can be mathematically expressed by means of an integral equa-
tion (Nguyen and Cox 1989; Voutilainenand and Kaipio 2000; Wang 2007; Wang
and Yang 2008; and Wang 2008). This is formulated as

gi =

b∫
a

Ki (x) f (x) dx + ei, i = 1,2, . . . ,m (2.5)

where f (x) now represents the particle size distribution we wish to determine,
which is a function of the particle size parameter x, and gi represents the ith
measurement out of m total recorded observations. The variable i may label the
ith stage in the series of a cascade impactor, or the ith channel of a differential
electrical mobility classifier, etc. The function Ki (x) then describes the response of
the ith measurement stage/channel/etc. to a particle of size x, which is determined
from calibration data or theoretical models and can have the character of a deposition
function, a spectral function, an angular scattering pattern, a transmission efficiency,
etc. The integration limits [a, b] define the finite x region wherein the integrand is
nonzero. Note also that the data gi are contaminated with errors ei.

We call the function Ki (x) in Eq. (2.5) the kernel function. There are different
mathematical meanings for the term kernel; we use it to mean the representation
of a linear operator. Here, the kernel function Ki (x) plays the same role as the
continuous linear operator A from the continuum model of Eq. (2.1). That is,
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Ki (x) represents a collection of the governing equations related to a particular
measuring instrument to ultimately describe the transformation of f (x) into gi.

The formulation in Eq. (2.5) results in a set of m so-called Fredholm integral
equations of the first kind. Given a discrete set of measurements {gi}

m
i=1, each

with a corresponding kernel function Ki (x) and measurement error ei, the inversion
problem for aerosol spectrometers amounts to solving this set of equations for the
unknown particle size distribution function f (x). As discussed above for inversion
problems in general, a common strategy for extracting this information involves
making discrete approximations to the continuous functions of the measurement
model. Numerical discretization describes this process of transferring continuous
functions, models, and equations into discrete counterparts suitable for numerical
evaluation. For the set of integral equations defined by Eq. (2.5), this process
involves numerical quadrature, which refers to any method used to numerically
approximate the value of a definite integral.

Generally, the continuum model of Eq. (2.5) is discretized by approximating the
integral as a sum such that

gi ≈

n∑
j=1

Ki j f j + ei, i = 1, . . . ,m (2.6)

where n is the number of discrete points at which the particle size distribution
function f (x) is to be obtained. This constructs a system of m linear equations in n

unknowns, the unknowns being the discrete values f j to comprise the particle size
distribution solution. Defining the n×1 vector f =

(
f j
)
, along with the m×1 vectors

g = (gi) and e = (ei), and the m × n matrix A =
(
Ki j

)
constructs the single matrix

equation model we’re after: g = Af + e.

This discrete model is a defining element of any approach to the aerosol spectrom-
eter inversion problem. Much of what determines both the complexity and the
effectiveness of a given approach lies in the mathematical methods used to construct
the discrete model. Details behind these methods define the intermediate steps
leading from the continuum model of Eq. (2.1) to the discrete model of Eq. (2.6).
These details dictate how to evaluate the entries Ki j of the matrix model A, and they
establish how to interpret the solution values f j .

To understand this, let’s discuss these discretization details more explicitly using
mathematical expressions. For the moment, as we focus on the mathematical
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methods typically employed to approximate the integral operator in Eq. (2.5), we
will ignore the measurement error term. Consider the following summary of steps:

gi =

b∫
a

Ki (x) f (x) dx =
n∑

j=1

x
j+ 1

2∫
x
j− 1

2

Ki (x) f (x) dx (2.7)

=

n∑
j=1

f
(
x j

) x
j+ 1

2∫
x
j− 1

2

Ki (x) dx (2.8)

=

n∑
j=1

Ki j f j (2.9)

Each of these tidy summary steps involves certain underlying details. We review
these details here to set the stage for comparing the mathematical methods most
commonly employed in tackling the aerosol spectrometer inversion problem to
those we use in our own inversion algorithm.

Selection of Solution Points
In the first step of the discretization process, as summarized by Eq. (2.7), we break
the integral over [a, b] into n subintervals and define the limits of integration for these
subintervals with a set of n + 1 points we will call the primary integration points.
These n + 1 points establish size bin boundaries around the n discrete output nodes(
x j

)n
j=1 at which the particle size distribution function f (x) is to be obtained. We

define these size bin boundaries to be the geometric mean values between successive
output nodes, i.e., x j± 1

2
=
√x j x j±1. At the endpoints, we use x0 = 2x1 − x2 and

xn+1 = 2xn − xn−1 to evaluate x− 1
2
and xn+ 1

2
.

The discrete output nodes
(
x j

)n
j=1 partition the size interval [a, b] such that a ≤

x1 < . . . < xn ≤ b. To completely characterize this sequence of points, we must
specify (i) the targeted upper and lower size bounds [x1, xn] for our inverse solution,
(ii) the number n of output nodes to use, and (iii) the spacing

(
x j+1 − x j

)
between

successive output nodes. These specifications are a few examples of the important
details within the model discretization process that will affect the complexity and
the effectiveness of the inversion approach.
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For example, with respect to node spacing, the output nodes
(
x j

)n
j=1 are most often

defined to be evenly spaced such that

x j = x1 + ∆ · ( j − 1) , j = 1, . . . ,n (2.10)

where
∆ = (xn − x1) /(n − 1) (2.11)

This uniform approach can make subsequent calculations for setting up the dis-
crete model slightly more mathematically convenient. However, this even-spacing
constraint is not always necessary, and we do not impose it within our inversion algo-
rithm. We remove any point-spacing restrictions from our discrete model setup, and
the resulting data analysis is more flexible and adaptable to any given application.

As for the targeted lower and upper size bounds [x1, xn] and the number n of output
nodes to use for the inverse solution, these details are largely application specific.
Since the number of output nodes sets the column dimension of the m × n matrix
model A, it has an important connection to not only the amount of information
provided by the m measured data points, but also the level of detail available for
evaluating the kernel function within the matrix model A. In constructing the
system of linear equations with m measured data points and the m× n matrix model
A, the number of unknowns n need not necessarily coincide with the number of
equations m. The only requirement is that n be large enough to approximate all size
distributions of interest as closely as needed and to capture the linear independence
of the kernel functions.

It is difficult to justify choosing n < m such that fewer points are recovered for the
size distribution as there are raw data points. This would be eliminating information
and restricting the solution set. We will not explore this option further.

Often, n = m, giving an equal number of discrete values in the computed size
distribution as in the raw measured data. If the size intervals corresponding to
these points exactly overlap (i.e., the upper and lower size bounds [x1, xn] and all
of the included size points at which the particle size distribution function is to
be recovered coincide exactly with the centroid size-equivalent parameters of the
measurement channels), this approach utilizes the actual information content of the
measured data without additional assumptions. This is the approach of many early
inversion algorithms for differential mobility analyzer (DMA) systems (Knutson
1976; Hoppel 1978; Hagen and Alofs 1983).
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In some cases, end effects may arise in the inversion solution if the discretization
of the kernel integral is restricted to the measurement range. For such situations,
it is advantageous for the targeted lower and/or upper size bounds [x1, xn] to ex-
tend beyond the minimum and/or maximum measured size parameter. The typical
approach here is to let n > m, such that the size channels of the computed size
distribution exactly overlap those of the raw measured data within the measurement
range, but the kernel discretization is also extrapolated beyond the endpoints of the
measurement range. There are then two options for the overall setup of the discrete
model before solving the inversion problem: (i) leave the matrix model A with
dimensions m × n where n > m (underdetermined, with more columns than rows)
and solve for the n vector f, given the m vector g; or (ii) extrapolate both the raw
measured data and the response matrix so that the response matrixA has dimensions
mextrap × n where n = mextrap > m (square matrix, with equal number of columns
and rows) and solve for the n vector f, given the extrapolated mextrap vector g; the
extrapolated bins can be discarded after the inversion.

These different options for defining the size bounds [x1, xn] and node number n

can have unique impacts on size distribution recovery. Our inversion algorithm can
handle any definition of the solution points. Wewill compare and contrast the options
outlined here in greater depth in Chapter 3. For all of the inversion demonstrations
included in the present study, we will use one-to-one correspondence between the
size channels of the computed size distribution and those of the raw measured data,
with extrapolation so that n = mextrap > m.

Representation of the Size Distribution Function
Once the dimension n and the corresponding integration points have been defined,
the next step in developing the discretemodel, as summarized byEq. (2.8), addresses
the representation of the size distribution function within each of the subinterval
integrals. The most common approach is to represent the size distribution function
as a histogram so that we may place a discrete value of f (x) outside of the integral.
This is the approach represented in Eq. (2.8) as

x
j+ 1

2∫
x
j− 1

2

Ki (x) f (x) dx = f
(
x j

) x
j+ 1

2∫
x
j− 1

2

Ki (x) dx

The discrete value f
(
x j

)
becomes the unknown represented by f j to be recovered

from the inversion analysis. If x j corresponds to the point c j in
(
x j− 1

2
, x j+ 1

2

)
where
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f (x) achieves its mean value for that subinterval (i.e., f
(
x j

)
= f

(
c j

)
), then this is a

simple application of the first mean value theorem for definite integrals.1 However,
the location of this c j cannot be precisely known a priori, so it is often taken to
represent some midpoint value for the jth subinterval. Here, we simply use the
discrete output nodes

(
x j

)n
j=1 around which we have defined our size bin intervals.

Relying on a single value for the size distribution function f (x) over the size bin
interval corresponding to x j can be a major source of error in inverse calculations.
This histogrammethod provides no indication of the shape of the distribution within
channel boundaries. Figure 2.1(a) illustrates this lack of detail, with a histogram
representation overlaying a simulated particle number size distribution.

More generally, the size distribution function f (x) in the response integral can be
approximated as a higher order piecewise polynomial, or spline function. A spline
function consists of polynomial pieces on subintervals joined together with certain
continuity conditions. The polynomial pieces interpolate between control points
that correspond to locations called knots, and the continuity conditions depend on
the degree of the polynomial pieces. Splines tend to be more stable than fitting
a polynomial through all control points, with less possibility of wild oscillations
between points. Mathematical details behind spline interpolation are presented in
Appendix C.

After the histogram method, the next-higher order approximation for any given
continuous function involves linear interpolation. This defines a linear, or first-

1The first mean value theorem for definite integrals states that for a continuous function f in
[a, b], there exists c in (a, b) such that

b∫
a

f (x) dx = f (c) (b − a)

and since the mean value of f on [a, b] is defined as

1
b − a

b∫
a

f (x) dx

we can interpret the conclusion as f achieves its mean value at some point c in (a, b). In general, for
a continuous function f and a nonnegative integrable function g that does not change sign on [a, b],
there exists a c in (a, b) such that

b∫
a

f (x) g (x) dx = f (c)

b∫
a

g (x) dx
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degree, spline function. Figure 2.1(b) illustrates the improvement in capturing
details of the simulated particle number size distribution that comes with using a
linear spline representation.

Second-degree, or quadratic, splines are generally not used in applications. An even
smoother, and often more realistic, approximation for a given particle size distri-
bution can be achieved with cubic, or third-degree, spline interpolation. The goal
of cubic spline interpolation is to get an interpolation formula that is continuous in
both the first and second derivatives, both within the intervals and at the interpolat-
ing nodes. In general, if the function to be approximated is smooth, cubic splines
will do better than piecewise linear interpolation. Figure 2.1(c) illustrates how
closely a cubic spline representation approximates the simulated particle number
size distribution.

Throughout the different fields concerned with inversion of aerosol spectrometer
data, we most frequently encounter the histogram method for approximating the
particle size distribution function within calculations. There is more limited use of
linear spline interpolation. A notable example is the numerical approach described
byWolfenbarger and Seinfeld (1990) for representing the size distribution as a linear
spline with equally spaced knots.

Higher order spline approximations are least commonly encountered in the literature.
Studies that do apply higher order quadrature are mostly concentrated in optical
fields. These applications will usually represent the size distribution function as a
cubic spline, with the constraint of defining equally spaced knots.

As we will describe in more detail in the next section, the inversion algorithm
we developed for this study is capable of performing numerical calculations with
the size distribution function represented as a cubic spline with no constraints on
knot spacing. We will demonstrate the improvement in size distribution recovery
provided by this approach over approximating the size distribution function with
either histogram or linear spline interpolation.

Evaluation of Kernel Matrix Elements
The final step in the overall discretization process, as summarized Eq. (2.9) evaluates
the integral of the kernel function over the jth subinterval to define the entries Ki j
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Figure 2.1: Histogram, linear spline, and cubic spline representations of a bimodal
test-case aerosol previously presented in Russell et al. (1995) and Collins et al.
(2002). Each interpolation method was applied to 20 known distribution function
values indicated as the ’Interpolation Nodes.’ Also shown are values of percent
relative error quantified as e j =

(
f interpj − f truej

)
/ f truej × 100 for individual

interpolation points over the entire particle size range.
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of the matrix model A,

Ki j =

x
j+ 1

2∫
x
j− 1

2

Ki (x) dx, i = 1, . . . ,m,j = 1, . . . ,n (2.12)

The simplest approximation to this integration is to represent Ki (x) by only a single
value evaluated at the point x j within the jth subinterval such that

x
j+ 1

2∫
x
j− 1

2

Ki (x) dx = Ki
(
x j

)
∆x j (2.13)

where ∆x j = x j+ 1
2
− x j− 1

2
. Ideally, Ki

(
x j

)
represents the true bin-average value

for the given subinterval so that this is another application of the first mean value
theorem for definite integrals (i.e., K

(
x j

)
= K

(
c j

)
) . However, Ki (x) is often

simply evaluated at the same midpoint value x j chosen for the interval as defined
above.

Just as for the size distribution function f (x), relying on a single value for the kernel
function Ki (x) over the size bin interval corresponding to x j can be a source of error
in inverse calculations. It is important to take full advantage of the detail available
for the kernel function definition. If the kernel function can be defined with finer
resolution than the width of the size bin intervals, then we should be using this
resolution to evaluate the integral of the kernel function over the size bin interval.
This requires a much different quadrature rule than the simple approximation of Eq.
(2.13), but it effectively improves the recovery of the size distribution information
without increasing the number of overall size bins. This is the approach we take in
our inversion algorithm, which we describe in detail in the next section.

2.4 Present Approach
Our success in converting raw measurements into true particle number size distri-
butions depends largely on how accurately we are able to represent the continuum
measurement model of Eq. (2.5) within our analytical inverse calculations. In gen-
eral, we must implement a number of numerical approximations to transfer a given
measurement model, including properties of the sampled aerosol, to a form suitable
for numerical evaluation within our inversion algorithm. In this section, we describe
the functional details of our approach to (i) discreteizing the continuum response
integral and (ii) incorporating our quadrature method into our kernel matrix setup.
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Our success with a given inverse problem further depends, at least to some extent, on
the computational technique used to evaluate the final inverse solution. To address
this, we also describe in this section our approach to (iii) applying an appropriate
mathematical optimization method to handle the final inverse solution computation.

Numerical Discretization
Any quadrature method relies on evaluating a given integrand on a finite set of
points (called the abscissas or quadrature points), then processing these evaluations
somehow to produce an approximation to the value of the integral. The goal is to
determine which points to evaluate and how to process the integrand around the
evaluated points so as to maximize performance over a broad class of integrands.

The integrand of the continuum model of Eq. (2.5) consists of the product of two
functions: the kernel functionKi (x), and the particle size distribution function f (x).
The accuracy of the discrete model relies on the resolution with which these two
functions are represented within the chosen quadrature method. The kernel function
Ki (x) is ideally known with fine enough resolution from detailed calibration or
theoretical data that it can be evaluated within the size bin intervals defined for the
discrete model. The particle size distribution function f (x), on the other hand,
is unknown, and we are hoping to solve for just a finite number of representative
values (i.e., one for each of the defined size bin intervals). To represent f (x) with
finer resolution in the discrete model calculations then, we define expressions to
interpolate between the individual solution values. Our strategy is to approximate
the particle size distribution function f (x) as a cubic spline function.

The histogram representation of the particle size distribution described above can
be thought of as a spline function of degree zero, consisting of piecewise constant
functions. Linear interpolation involves polynomial pieces of degree one, or first-
degree. These zero- and first-degree splines are not so useful for actual applications
because their low-order derivatives are discontinuous. For first-degree splines, the
slope of the splinemay change abruptly at the knots. Zero-degree splines are entirely
discontinuous.

Higher-degree splines are useful whenevermore smoothness is needed in the approx-
imating function. Cubic splines are the most popular. They produce an interpolated
function that is continuous through to the second derivative. We represent the con-
tinuous particle size distribution function as a piecewise cubic spline function within
our discrete inverse calculations. This cubic spline representation is a distinguish-
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ing feature of our inversion algorithm. Nevertheless, we will keep the mathematical
expressions we introduce here general for spline functions of degree d.

By definition, a spline function of degree d with knot sequence t, which we denote
as Sd

t (x), is a linear combination of special spline functions called B-splines, or
basis functions, such that

Sd
t (x) =

∑
j

c j B j,d (x) (2.14)

where the B j,d represent the constituent B-splines of degree d, and the c j are real
numbers called the spline coefficients. An in-depth discussion of B-splines and
spline function approximations is included in Appendix C, but we summarize a
few key properties here to aid the immediate discussion. These properties will
prove essential to understanding the mathematical setup of our discrete inverse
calculations, in which we represent the continuous particle size distribution function
as a piecewise spline function.

1. Knot points. A spline function is defined with respect to a certain set of points,
called the control points, that correspond to locations

(
t j
)
called knots.

2. Local knots.

a) The jth B-spline B j,d depends only on the d + 2 knots t j, t j+1, . . . , t j+d+1.

b) If x lies in the interval
[
t j, t j+1

)
then only the d+1B-splines B j−d,d, . . . ,B j,d

are nonzero.

3. Local support. If x is outside the interval
[
t j, t j+d+1

)
then B j,d (x) = 0.

4. Positivity. If x ∈
(
t j, t j+d+1

)
then B j,d (x) > 0.

To construct a spline function representation of our discretized size distribution,
working with n output nodes

(
x j

)n
j=1, we must then also include the endpoints

x0 = 2x1 − x2 and xn+1 = 2xn − xn−1. We will need these points to provide full
support to our first and last subinterval integrals in our inverse calculations. We then
need n+2d+2 spline function knot points t =

(
t j
)n+d+1

j=−d to correspond exactly to the
n output nodes

(
x j

)n
j=1 of our discretized size distribution, with some extrapolation

beyond the upper and lower bounds (i.e.,
(
t j
)n

j=1 =
(
x j

)n
j=1). On this knot vector,

we define n + d + 1 B-splines
{
B j,d

}n
j=−d of degree d, and each B-spline will have a

corresponding coefficient value c =
(
c j

)n
j=−d .
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From property 2(b), we can express any interpolant piece Sd
j (x) |x∈[xj,xj+1] of the

spline function (i.e., any of the piecewise polynomials between adjacent knot points[
t j, t j+1

)
≡

[
x j, x j+1

)
) as a linear combination of d+1B-splines and their coefficients,

such that

Sd
j (x) =

j∑
k= j−d

ck Bk,d (x) (2.15)

For example, for cubic splines where d = 3, this gives

S3
j (x) =

j∑
k= j−3

ck Bk,3 (x)

=c j−3B j−3,3 (x) + c j−2B j−2,3 (x) + c j−1B j−1,3 (x) + c j B j,3 (x) (2.16)

This is the expression we use to represent the size distribution function f (x) within
our inversion calculations. Inserting the B-spline representation of Eq. (2.15)
into the continuum measurement model of Eq. (2.5) changes the summary of our
discretization process as follows

gi =

b∫
a

Ki (x) f (x) dx =
n∑

j=1

x
j+ 1

2∫
x
j− 1

2

Ki (x) f (x) dx

=

n∑
j=1


xj∫

x
j− 1

2

Ki (x) Sd
j−1 (x) dx +

x
j+ 1

2∫
xj

Ki (x) Sd
j (x) dx


=

n∑
j=1


xj∫

x
j− 1

2

Ki (x)


j−1∑
k= j−1−d

ck Bk,d (x)


+

x
j+ 1

2∫
xj

Ki (x)


j∑
k= j−d

ck Bk,d (x)
 dx

 (2.17)

where now we plan to represent the both the size distribution function and the
kernel function with much finer resolution within the size bin intervals. This final
expression can still be simplified, however, with some algebraic rearrangement to
collect like terms for our kernel matrix setup.
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Kernel Matrix Setup
When we expand all sums in Eq. (2.17), paying close attention to indexing, and we
collect terms involving common spline coefficients c j , we find

gi =

b∫
a

Ki (x) f (x) dx =
n∑

j=1


xj∫

x
j− 1

2

Ki (x)


j−1∑
k= j−1−d

ck Bk,d (x)


+

x
j+ 1

2∫
xj

Ki (x)


j∑
k= j−d

ck Bk,d (x)
 dx


=

n∑
j=−d

c j

xj+d+1∫
xj

Ki (x) B j,d (x) dx

=

n∑
j=−d

Ki j c j (2.18)

We have not made explicit here the details of the necessary algebraic steps, but
they can be found in Appendix D. The takeaway from Eq. (2.18) is that we
now designate the set of spline coefficients c =

(
c j

)n
j=−d as the discrete unknown

values to be recovered from the inversion analysis. For zero- and first-degree spline
functions, these unknown coefficients are uniquely defined by the interpolation
conditions, and so their values correspond to the magnitude of the interpolated
function. For the higher degree cubic splines, there is some arbitrariness in choosing
the coefficient values. In fact, none of the coefficients is uniquely determined by
the interpolation conditions. Once we solve for the set of spline coefficients with
our chosen mathematical optimization method, we must use these coefficients with
our constituent B-splines in Eq. (2.14) to construct our final cubic spline function
solution.

To accompany our (n + d + 1) × 1 solution vector c =
(
c j

)n
j=−d , we must complete

the setup of our m × (n + d + 1) kernel matrix model A =
(
Ki j

)
. We express the

response matrix elements generally as

Ki j =

∫
I

Ki (x) B j,d (x) dx (2.19)

where I is the interval where the product Ki (x) B j,d (x) is nonzero. Recall from
above that the support of the jth B-spline the interval

[
t j, t j+d+1

)
; outside of this
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interval B j,d (x) = 0. We evaluate this integral using the trapezoidal rule over each
size bin interval:

xj+1∫
xj

Ki (x) B j,d (x) dx =
nsum∑
p=0

βpKi
(
x j,p

)
B j,d

(
x j,p

)
∆x j,p (2.20)

where nsub is the number of subintervals to use in evaluating the integral over the
jth size bin, x j,p represents the secondary integration point at which to evaluate
the kernel function within the jth bin, ∆x j,p is the width of the nsub subinterval
bins, and βp = 1/2 at the endpoints of the summation and 1 elsewhere. The set of
nsub+1 points

(
x j,p

)nsub
p=0 that define the secondary integration points (i.e., subinterval

boundaries) are evaluated as

x j,p = x j + ∆x j,p · p, p = 0, . . . ,nsub (2.21)

with
∆x j,p =

∆x j

nsub
(2.22)

∆x j = x j+1 − x j (2.23)

This leads to the matrix representation of the response equation and system kernel
where



g1

g2
.
.
.

gm


=



∫
I

K1 (x)B−d ,d (x) dx · · ·
∫
I

K1 (x)B0,d (x) dx · · ·
∫
I

K1 (x)Bn ,d (x) dx∫
I

K2 (x)B−d ,d (x) dx · · ·
∫
I

K2 (x)B0,d (x) dx · · ·
∫
I

K2 (x)Bn ,d (x) dx

.

.

.
.
.
.

.

.

.
. . .

.

.

.∫
I

Km (x)B−d ,d (x) dx · · ·
∫
I

Km (x)B0,d (x) dx · · ·
∫
I

Km (x)Bn ,d (x) dx





c−d
.
.
.

c0
.
.
.

cn


(2.24)

The advantage of the approach described here (i.e., discretizing the continuum
response integral by approximating the size distribution function as a piecewise
spline function and then incorporating this quadrature method into our kernel matrix
setup) is that we need only compute the response matrix elements Ki j once for a
given set of measurement conditions. We can then use this kernel matrix to analyze
multiple sets of measured data g = (gi) collected under equivalent conditions. We
simply solve our linear system to yield unique sets of coefficients c =

(
c j

)n
j=−d

with which the cubic spline function approximation of the size distribution can be
evaluated at any desired values of x.
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Numerical Solution Methods
Finally, solving an inverse problem involves implementing a computational algo-
rithm that recovers useful information from measured data. The word “useful” can
best be understood in the context of a particular application. The aerosol size distri-
bution inversion problem is an example of an ill-posed problemwhich is notoriously
difficult to solve (Wolfenbarger and Seinfeld 1990). The solution technique must
be capable of handing ill-posed problems and difficulties with conditioning of the
kernel matrix (overlap of kernel functions, failure of inverse to exist) and should
employ reasonable constraints (not seemingly arbitrary). An array of techniques
have been developed to tackle this problem. Kandlikar and Ramachandran (1999)
compiled a critical review on inverse methods.

No single solution technique can be considered universally superior to the others and
hence prescribed as the magic bullet for all types of aerosols and for all measurement
devices. Algorithm comparisons should be done with the task and context in mind.
“The particular form of inversion selected is not important provided that reasonable
solutions can be found through its application. Alternative solutions found using
other techniques to analyze the same data merely serve to illustrate the lack of
uniqueness in this problem.” (Steele 1997) The focus of this study is not on the
performance of specific mathematical optimization algorithms, except to show that
the ones employed here are sufficient.

Our kernel matrix setup can interface with three numerical solution methods: (i)
the non-negative least squares (NNLS) method of Lawson and Hanson (1987); (ii)
an interior-point gradient method for large-scale totally non-negative least squares
problems (TNNLS) from the work of Merritt and Zhang (2005); and (iii) a regular-
ization method (Ilavsky and Jemian 2009).

The non-negative least squares algorithms (NNLS and TNNLS) are constrained
least squares methods that require every component of the particle size distribution
function, being a concentration value, to be non-negative. NNLS is an active-
set method that requires matrix factorization and updates and can become overly
expensive for very large-scale problems. TNNLS is a gradient-type method that
requires only matrix-vector multiplications.

TNNLS can have very slow convergence, but is the method of choice for very large-
scale applications when high-accuracy solutions are not necessary. Interior-point
algorithms havemany good characteristics, such as lowmemory usage and the ability
to solve large problems quickly. However, solutions can be slightly less accurate
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than those from other algorithms. The reason for this potential inaccuracy is that the
(internally calculated) barrier function keeps iterates away from inequality constraint
boundaries. For most practical purposes, this inaccuracy is usually quite small.
There are a couple approaches to reduce the inaccuracy: use smaller tolerances;
or run a different algorithm, starting from the interior-point solution. The TNNLS
algorithm also incorporates measurement uncertainties into the inversion solution.
This is important because when the accuracy of the data is overestimated then too
much confidence has been placed in the data’s ability to determine a highly structured
solution and features may be smoothed out. When the accuracy is underestimated
then confidence is lost that the structure observed in the solution really exits.

Regularization methods overcome ill-posedness by replacing the problem with a
nearby well-posed problem (e.g., Wolfenbarger and Seinfeld 1990). They involve
smoothness criteria and a regularization parameter which controls the degree of
smoothing applied. These algorithms allow a free form for the instrument response
matrix, but require a careful choice of constraining parameters andweights of penalty
functions. Literature examples include generalized cross-validation for selecting the
regularization parameter (Crump and Seinfeld 1982); the L-curve method; and the
discrepancy principle.

We include a zeroth-order regularization approach (i.e., discrepancy principle) as
a numerical solution method. This approach provides a solution that matches the
measurements to just within expected experimental error. It has the advantage
of being computationally simple and very time-efficient. However, this approach
imposes a high standard for the reported errors, and it can tend to oversmooth the
solution, corresponding to a very large value of the regularization parameter.

For simplicity and consistency, all of the inversion demonstrations included here
use the TNNLS algorithm for final solution computations.

2.5 Methods
We use synthetic data to demonstrate and quantitatively evaluate our inversion
analysis. For a specific example application, we investigate the inversion problem
encountered with data collected using a long column differential mobility analyzer
(DMA), the most commonly used instrument system for recovering aerosol particle
size distributions. For our purposes, the principal advantages of using synthetic data
over experimentally measured data are that (i) the true size distribution is known,
so that the retrieved size distribution can be checked against it, and (ii) there are
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no measuring errors in the data so that errors can be simulated as desired. We
calculated measured response values for various test size distributions, then used
these “artificial measurements” as input for the inversion algorithm, and finally
compared the inversion result with the initial test particle size distribution. The
following general procedure describes our numerical evaluations:

1. A particle number size distribution function is defined over a particle size
range of interest.

2. All nonzero response values are calculated for a model instrument system.

3. The simulated measurement data is processed and analyzed with our inversion
algorithm to retrieve a size distribution solution.

4. The reconstructed distribution is compared to the true size distribution using
suitable error parameters.

We describe our approach in more detail here.

Generation of Noisy Measurements
With direct analogy to Eq. (2.5), we now adopt nomenclature more specific to
aerosol remote sensing to define the following relationship between measured re-
sponses Ri (analogous to gi) and the aerosol size spectrum nN

(
ln Dp

)
(analogous to

f (x))

Ri =

∞∫
0

nN
(
ln Dp

)
Ψ

(
i,Dp

)
d ln Dp, i = 1,2, . . . , I (2.25)

Here, the particle number size distribution nN
(
ln Dp

)
=

dN
d ln Dp

[
particles/cm3] is

expressed in terms of the logarithm of diameter, ln Dp, to facilitate the recovery
of distributions that span several decades in particle size. The kernel Ψ

(
i,Dp

)
(analogous to Ki (x)) relates the sampled size distribution to the measured response
values. Details on the DMA kernel function and overall system setup for simulation
are included in Appendix A.

To simulate measured response values, we express the integral in Eq. (2.25) as a
discrete sum, covering a finite region from ln Dp1 to ln DpJ , in which the integrand
is nonzero, subdivided into J − 1 intervals. Using the extended trapezoidal rule
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(Abramowitz and Stegun 1972) gives

Ri �
J∑

j=1
β jnN

(
ln Dpj

)
Ψ

(
i,Dpj

)
∆ ln Dpj (2.26)

where J is the number of quadrature points, Dpj is the particle diameter correspond-
ing to the jth bin, ∆ ln Dpj is the width of the jth bin, and β j = 1/2 at the endpoints
of the summation and 1 elsewhere.

Unless otherwise noted, the input particle number size distributions nN analyzed
here are created as superpositions of p normal and p′ lognormal distributions, as
defined by

nN
(
ln Dp

)
=

p∑
i=1

Ni

(2π)1/2 lnσi
exp

(
−

(
ln Dp − ln D̄pi

)2

2 ln2 σi

)

+

p′∑
i=1

DpN′i
(2π)1/2 σ′i

exp
©«−

(
Dp − D̄′pi

)2

2
(
σ′i

)2

ª®®¬ (2.27)

where Ni, D̄pi , σi and N′i , D̄′pi, σ
′
i are the number concentration, median diameter,

and standard deviation of the ith lognormal and normal distributions, respectively.

A dangerous pitfall in algorithm development and testing is the act of committing
an inverse crime. This occurs when we obtain a great reconstruction because the
simulated data resonates in some helpful way with the reconstruction algorithm.
For example, using the same computational grids for data simulations and inversion
analyses sometimes results in perfect reconstruction from noise-free data. To avoid
committing an inverse crime, we define a set of

(
Dpj

) J
j=1 to use in Eq. (2.26) that

is much more finely resolved than the set of particle diameters that correspond to
the solution nodes for a reconstructed particle size distribution. While the inverse
solution nodes are defined within our inversion algorithm based on user input, we
can define any other size grid by subdividing a target size range

[
Dp1,DpJ

]
into J

points spaced equally on a logarithmic scale using the expression

Dpj = Dp1e( j−1)∆, j = 1,2, . . . , J (2.28)

where

∆ =
(
ln DpJ − ln Dp1

)
/(J − 1) = ∆ ln Dp (2.29)
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We calculate response values from Eq. (2.26) using J = 2001 discrete size points
from Dp1 = 0.1 nm to DpJ = 10 µm.

Analyzing noise-free data is also not realistic. We can obtain excellent inversion
results this way, but these are not representative of any realistic inversion problem,
since noise is present in any experimental setting. Actual measurements are subject
to a varying degree of uncertainty. For measurements based on the counting of
events, the uncertainty is governed by a Poisson distribution. Therefore, we impose
Poisson counting statistics on the simulated instrument particle counts and estimate
the uncertainties in inverted size distribution results by applying a Monte Carlo
method. For this, we draw sets of instrument responses as random samples from
the calculated instrument responses, assuming a Poisson distribution, and use these
as input for the inversion algorithm. We repeat this procedure two hundred times,
storing each inversion result, and then statistically evaluate the stored inversion
results to obtain a mean result and its uncertainty. We then compare this result to
the original size distribution using suitable error parameters.

Evaluation Metrics
It is important to have a quantitative measure available for the closeness of an
inversion reconstruction to the actual measured object. Of course, such a measure
makes sense only with simulated data, when the original object is known. In this
way, we can isolate and quantify the error caused by assumptions and approximations
made in the inversion setup that do not represent the instrument or measurement
process accurately.

A number of statistical metrics can be used as this quantitative measure of perfor-
mance. The best statistical metrics should not only provide a performance measure,
but also produce a representation of the error distribution. Sometimes multiple
metrics are required for completeness. Statistical measures, by definition, condense
a large number of data into a single value, removing a lot of information. Any single
metric provides only one projection of the model errors and, therefore, only empha-
sizes a certain aspect of the error characteristics. Thus, a combination of metrics is
often required to provide a complete picture of error distribution. We momentarily
return to a more general mathematical nomenclature to define the following two
evaluation metrics.

For a sense of the relative error distribution over the size range of interest of x, we
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evaluate a simple, discrete measure of relative error defined by

e j =
f R
j − f t

j

f t
j

(2.30)

where the f t
j are discrete values from the true size distribution and the f R

j are discrete
values from the reconstructed size distribution. Thus, e j provides a measure of
relative error for each of the discrete values f R

j = f R (
x j

)
evaluated for the set of

size parameters
(
x j

) J
j=1.

For an assessment of the overall size distribution recovery from our inversion anal-
ysis, we use the parameter defined by Ramachandran and Leith (1992) as a relative
error in reconstruction:

eR =

√√√√∫ b
a

[
f t (x) − f R (x)

]2 dx∫ b
a [ f

t (x)]2 dx
(2.31)

where f t (x) is the true size distribution function and f R (x) is the reconstructed
size distribution function. This provides a single quantitative measure of agreement
between these two functions.

2.6 Results and Discussion
In the demonstrations that follow, we evaluate the relative error metrics introduced

above, setting f t (x) =
(

dN
d ln Dp

)
true

to describe the size distribution simulated as

input to a DMA system and f R (x) =
(

dN
d ln Dp

)
inv

to describe the size distribution

recovered from our inversion analysis. We compare the two functions by evaluating
each at the same J = 301 discrete size points spaced equally on a logarithmic scale

from Dp1 = 1 nm to DpJ = 1 µm. For
(

dN
d ln Dp

)
true

, this simply involves evaluating

Eq. (2.27) for the corresponding set of size parameters
(
Dpj

) J
j=1 defined by Eq.

(2.28). For
(

dN
d ln Dp

)
inv

, this requires interpolation between the inverse solution

nodes. This is straightforward with our cubic spline approach, since the inverse
solution is a set of coefficients c =

(
c j

)n
j=−d that can be used with the constituent

cubic B-splines in Eq. (2.14) to construct a final cubic spline function solution
at any desired values of x = ln Dp. For the other methods that use delta-function
node, histogram, or linear spline approximations within the inversion analysis, the
discrete inverse solution values correspond to the magnitude of the approximated
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size distribution function so that we must choose how to interpolate between these
values.

As we will discuss next, using cubic B-splines for simple interpolation has great
advantages. So that these advantages do not overshadow the benefits of incorporating
cubic B-splines within our inverse solution method, we choose to apply cubic spline
interpolation to the solution nodes retrieved with any of the inversion methods
considered here.

Advantage of Cubic Spline Interpolation
We have already briefly discussed one of the major advantages of using higher
order piecewise spline functions when approximating a continuous aerosol particle
number size distribution: the higher the degree of the spline function, the smoother
the approximating function. We included the discrete evaluation metric of Eq.
(2.30) in the plots of Figure 2.1 to aid our visual comparison of the histogram, linear
spline, and cubic spline interpolation methods. Of these three methods, cubic spline
interpolation provides the smoothest and most accurate representation of the given
size distribution function, across the entire size range of interest.

A further advantage of using higher order spline functions in interpolation applica-
tions is that, in general, the higher the degree of the spline used for interpolation,
the fewer the number of knots needed to attain a given level of precision. We can
demonstrate this for the simulated particle number size distribution shown in Figure
2.1. When we vary the number of knots (i.e., interpolation nodes) used to perform
the histogram, linear spline, and cubic spline interpolation calculations and then
evaluate the overall measure of relative error defined by Eq. (2.31) for each case, we
trace the trend shown in Figure 2.2. Cubic spline interpolation consistently provides
the most accurate representation of the true size distribution, and it even performs
as well with only 10 knots as linear spline interpolation performs with 20 knots.

The advantages afforded by using higher order spline functions (i.e., smoother, more
accurate approximations needing fewer knot points) extend to applications beyond
simple interpolation. Next, we use our inversion algorithm to demonstrate that this
trend also applies to size distributions recovered from inverse calculations.

Size Distribution Recovery: Kernel Matrix Setup
We compare various approaches to the mathematical setup of the kernel matrix for
discrete inverse calculations with respect to the impact on size distribution recovery.
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Figure 2.2: Relative error in reconstruction, eR, shown as a function of the number
of knots used for the interpolation of the bimodal test-case aerosol presented in
Russell et al. (1995) and Collins et al. (2002).

Specifically, we consider each of the following:

1. Assuming constant kernel function elements and size distribution over the
discretized size bins provides the simplest approximation which we will call
“simple quadrature.”

2. Employing a histogram representation of the size distribution with subdivi-
sions for evaluating kernel elements provides a slightly improved approxi-
mation which we will call “histogram quadrature” since the size distribution
function is still represented as a histogram.

3. Employing a linear spline representation of the size distribution with sub-
divisions for evaluating kernel elements provides an even more improved
approximation which we will call “linear spline quadrature.”

4. Employing a cubic spline representation of the size distribution with subdivi-
sions for evaluating kernel elements provides the most improved approxima-
tion which we will call “cubic spline quadrature.”

Mathematical details for these different quadrature methods are described in Ap-
pendix D. To investigate the impact on size distribution recovery, we perform
inversion analyses on the same bimodal test-case aerosol used for the interpolation
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investigations above. This test distribution was introduced by Russell et al. (1995)
for inversion analyses, and it was replicated for comparison analyses by Collins
et al. (2002). The bimodal number distribution is composed of two lognormal
distributions with peaks of N1 = 50 cm−3 at D̄p1 = 40 nm and N2 = 60 cm−3 at
D̄p2 = 150 nm, both with standard deviations of σ1 = σ2 = 1.5.

Inversion results obtained with the different quadrature methods under noise-free
conditions are illustrated in Figure 2.3. The discrete measure of relative error, e j , is
also shown with each solution. The particle size distribution recovered using cubic
spline quadrature within our inversion analysis is shown in Figure 2.3(d) to have
overall improved accuracy compared to the solutions recovered using the delta-
function node, histogram, or linear spline approximations. The size distribution
recoveries shown correspond to moderate resolution DMA operating conditions,
which we will define here by the ratio of the particle-free sheath flow rate to that of
the incoming aerosol sample, i.e., Rideal =

Qsh

Qa
. See Appendix A for further details

on the DMA measurement simulations.

The measurement range of the DMA under given operating conditions is indicated
in Figure 2.3 with an increased thickness of the relative error line to highlight the
targeted particle size range. Each of the inverse solution methods underestimates the
test-case distribution quite abruptly as the particle size approaches the lower limit
of detection. The raw particle counts measured here are low or zero due to poor
measurement system efficiency and low sampled aerosol concentration in this size
range. Throughout the rest of the measured size range, and even slightly beyond,
the inverse solution obtained with the cubic spline technique remains well within
±10 % relative error. The other solution methods show larger deviations again as
the particle size approaches the upper limit of detection.

Another advantage of the cubic spline technique, as seen above for simple inter-
polation, is that a given quality of reconstruction can be obtained with fewer data
points. We demonstrate this in Figure 2.4, which shows the measure of overall
agreement between true and reconstructed size distributions, eR, as a function of
DMA resolution. In our simulated DMA measurements, the system operating res-
olution dictates the setting of measurement channels, which then correspond to the
discrete size distribution solution nodes within our inversion routine. That is, fewer
solution points are recovered to reconstruct a given particle size distribution under
lower DMA operating resolutions. The cubic spline technique outperforms the other
methods under all operating conditions considered, only converging to comparable
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Figure 2.3: Inversion results obtained using the simple, histogram, linear spline,
and cubic spline quadrature methods to recover the bimodal test-case aerosol pre-
sented in Russell et al. (1995) and Collins et al. (2002). All inversion analyses
were performed on noise-free measurements simulating moderate resolution DMA
operating conditions (R =

Qsh

Qa
= 5).

inverse solution quality at the lowest of DMA resolutions.

Definition of Integration Points
We also used our inversion algorithm to consider how the number of secondary
integration points defined per subinterval, nsub, affects the recovered size distribution
and optimize this number to balance performance and complexity of the cubic
spline calculations. Notice how each quadrature method simplifies to the histogram
method when finer kernel function resolution is not used in the calculations, i.e.,
when nsub = 1. For our remaining analyses, we set nsub = 10.

Additional Test Case Aerosols
We challenge our inversion algorithm with various test case distributions while
imposing Poisson counting statistics on the simulated instrument particle counts.
We estimate the uncertainties in the inverted size distribution results as described
above. In the plots of size distribution recovery shown in Figures 2.6 through 2.9,
the thick dashed black line represents the true size distribution. The cloud of dots
represents the range of distributions recovered from the Monte Carlo solutions.
The gray band around the size distribution shows ±1 standard deviation around the
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Figure 2.4: Relative error in reconstruction, eR, for inversion analyses of the bimodal
test-case aerosol presented in Russell et al. (1995) and Collins et al. (2002), shown
as a function of the DMA operating resolution.

Figure 2.5: Relative error in reconstruction, eR, for inversion analyses of the bimodal
test-case aerosol presented in Russell et al. (1995) and Collins et al. (2002), shown
as a function of nsub, the number of secondary integration points used per interval
of integration in the kernel matrix setup. All inversion analyses were performed
on noise-free measurements simulating high resolution DMA operating conditions
(R =

Qsh

Qa
= 10).
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average recovered distribution, which is shown as the solid red line. The discrete
measure of relative error e j is also included for the average solution over the full
size range, plotted against the right axis along with a surrounding gray band to
again highlight the DMAmeasurement size range and to show the spread in relative
error for the ±1 standard deviation solutions. The size distribution recoveries shown
correspond to high resolution DMA operating conditions (

Qsh

Qa
= 10), while a

summary of performance over a range of DMA operating resolutions is also shown
in Figure 2.6.

2.7 Conclusions
Many DMA inversion algorithms have been proposed in the literature, each valid for
a certain experimental setup (e.g., Alofs and Balakumar 1982; Collins et al. 2002;
Stratmann et al. 1997). This reflects not only the common desire to develop and
continually refine inversion algorithms to be somehow simultaneously robust and
easy to use, it also demonstrates the many difficulties encountered in doing so.

The inversion analysis presented here performswell in analyzing uni- ormulti-modal
size distributions, with narrow or wide peaks, whether the sampled distribution is
contained within or extends beyond the measurement size range. In this chapter
and the next, we balance these performance demonstrations with clarity in the
functional details of this inversion routine so that it may be used and adapted in
the future. This inversion analysis can in principle be applied to other particle
sizing instruments, such as cascade impactors, optical counters, new developments
in mobility analysis technology, etc., provided the performance characteristics of
the measurement devices are well understood.
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Figure 2.6: Recovery of the bimodal test-case aerosol presented in Russell et al.
(1995) and Collins et al. (2002) from noisymeasurements simulating high resolution
DMA operating conditions (R =

Qsh

Qa
= 10) (top); and relative error in reconstruc-

tion, eR, for inversion analyses of the same test-case particle size distribution, shown
as a function of the DMA operating resolution (bottom).
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Figure 2.7: Recovery of a pathological multimodal test-case aerosol presented in
Talukdar and Swihart (2003) from noisy measurements simulating high resolution
DMA operating conditions (R =

Qsh

Qa
= 10).

Figure 2.8: Recovery of an atmospheric test-case aerosol size distribution from
noisy measurements simulating high resolution DMA operating conditions (R =
Qsh

Qa
= 10).
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Figure 2.9: Recovery of unimodal test-case aerosol size distributions with dpg =

0.1µm and varying σg: σg = 1.1 (top), σg = 1.5 (middle), and σg = 2.0 (bottom).
All inversion analyses were performed on noisy measurements simulating high
resolution DMA operating conditions (R =

Qsh

Qa
= 10).
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C h a p t e r 3

ANALYSIS SOFTWARE FOR DIFFERENTIAL ELECTRICAL
MOBILITY CLASSIFIERS

A measurement strategy can be described as a framework for defining the assort-
ment of parameters relevant to a given measurement campaign. The parameters in
question here are not limited to details of data collection (e.g., what substance will be
measured, at which location, when, for how long, and by what methods). Aspects of
data processing and analysis are also integral to the overall measurement campaign.
Since the objectives of particular measurement campaigns can vary broadly, the
foundational measurement strategy for any given campaign should be designed to
be consistent with its study objectives. We focus here on the familiar objective of
recovering particle number size distribution information using differential mobility
analyzer (DMA) systems. Data analysis considerations for DMA measurements
revolve around the setup and solution of this inversion problem. We address various
aspects of raw data processing and analysis that impact recovered size distributions,
in an attempt to harmonize DMA measurement strategy as much as possible.

3.1 Introduction
Gathering useful information about airborne particulate matter involves extensive
data collection and analysis (Knutson 1976; Hoppel 1978). The number concen-
tration and size distribution of atmospheric particles are of particular importance
in understanding and managing aerosol impacts on health, visibility, and climate.
Aerosol particle size distribution data is often collected remotely, using deployable
instruments. Collected data then need to be processed in a structured way. “The
reliability of the information obtained depends not only on the quality of the mea-
surements but also on the method of data processing.” (Bashurova et al. 1991) We
focus here on the many aspects of raw data processing and analysis that impact
recovered size distributions.

Sincemeasurement systems rarely provide directmeasures of the quantity of interest,
characterizing the distribution of sizes of particles in a sampled aerosol usually
implies an inversion of particle size data. Thorough consideration of the equations
which will finally be inverted is an important step in any planned measurement
campaign. The particle size distribution retrieval algorithm needs to be considered
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as integral to the overall sampling system; the measuring system consists of the
analysis algorithm, as well as the instruments.

Data analysis for any given measurement system must consider: (i) how to handle
measurement errors, (ii) how to accurately capture system operation in equations
(as reflected in the measurement kernels), (iii) the nature of the inversion algorithm
applied, and (iv) the computational effort involved to implement algorithms. We
address these data analysis considerations here, to the task of determining aerosol
particle size distributions from differential mobility analyzer (DMA)measurements.

Differential mobility analysis is a powerful method for determining particle size
distributions. A number of instrument systems apply the theory of differential elec-
trical mobility classification to study atmospheric particles (Knutson and Whitby
1975; Kousaka et al. 1986; McMurry 2000). As this technology has gained broader
use, it becomes necessary to detail technical standards and guidelines with respect
to measurement collection and data analysis in order to enhance the mutual com-
parability of worldwide atmospheric aerosol measurements. Wiedensohler et al.
(2012) detailed many such recommendations for mobility particle size spectrome-
ters to ensure high data accuracy, comparability, transparency, and traceability of
the measured particle number size distributions. They addressed the harmonization
of data analysis with an intercomparison of various commercial and custom-made
multiple-charge inversion routines. Deviations revealed with respect to the resulting
particle number concentrations were attributed to different physical constants and
charging probabilities used, different solutions to the matrix inversion problem, and
different approaches of how to discretize, pre-process, and post-process the data.
Limited descriptions of the analyzed inversion routines are provided, but these do
not include full details on the potentially influential differences. In fact, surprisingly
few publications are available that specify their algorithm in detail or the occupation
of the matrix (Pfeifer 2014). We seek to do just that here.

Many DMA inversion algorithms have been proposed in the literature, each valid for
a certain experimental setup (e.g., Alofs and Balakumar 1982; Collins et al. 2002;
Stratmann et al. 1997). Kandlikar and Ramachandran (1999) reviewed numerous
approaches that have been proposed to solve this problem. These algorithms seem to
have not been sufficiently implemented in practice, perhaps because they have been
perceived as too complex (hindering practical implementation) and/or numerically
demanding. Most of the algorithms described contain elements of arbitrariness, such
as how to smooth data and/or penalize deviations from prescribed size distribution
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shapes.

The inversion code historically used for much of the data collected in the Flagan and
Seinfeld research groups has been edited and amended by several researchers, but to
other users, it is much like a black box. The code itself contains some minor errors,
and one of its biggest draw-backs is the use of nonlinear iterative methods (e.g.,
Twomey iterations) for the inversion solution. Solutions from this method depend
on the initial guess, which is not ideal behavior. Crump and Seinfeld (1982) discuss
this solution method and challenge its use for solving the aerosol data inversion
problem, stating, “the Twomey nonlinear algorithm does not confront the main
problem associated with inversion of aerosol size distribution data, which is the
ill-posed nature of the linear inverse problem.”

Ideally, inversion routines should produce positive and realistically smooth results
that are easily understood and interpreted, and they should accurately reconstruct
the true distribution. In addition, these routines should be easily adapted to a given
situation. Currently, the better routines available which do not assume a functional
form have a number of limitations. The routines are too often mathematically
complex so that interpretation of the results or modification of the code may not be
simple. It is an unfortunate observation that the majority of inversion algorithms
that are actually used much in practice seem to be documented only poorly.

For specific demonstrations here, we investigate the data collected using a long
column DMA, the most commonly used instrument system for recovering aerosol
particle size distributions. We use synthetic data so that (i) the true size distribution
is known, so that the retrieved size distribution can be checked against it, and (ii)
there are no measuring errors in the data so that errors can be simulated as desired.
We calculated measured responses, essentially “artificial measurements”, and used
these as input for our data analysis. We compare the analyzed particle number size
distributions to those taken as ideally known from the generated input distributions.

3.2 Inversion Code
Code for analyzing data collected from existing measurement systems, specifically
the common cylindrical differential mobility analyzer (DMA), was prepared using
the Igor Pro commercial scientific analysis application, version 6.37 (Wavemetrics,
2015). Final versions of full scripts are available in a repository with this thesis, and
Appendix E archives printouts of the critical components of the cubic spline inverse
solution method.



46

The following provides further information and context about the separately sub-
mitted Igor files necessary for others to continue to apply these prepared inversion
packages. Contained here is an example application of the DMA data inversion
routine, along with descriptions for all of the critical functions involved. These
functions are shown in Appendix E as coded.

Recommended Mobility Particle Size Spectrometer Setup
The included analyses are set up to evaluate measurement systems which satisfy the
recommendedmobility particle size spectrometer setups described byWiedensohler
et al. (2012).

The quality of the measurements of mobility particle size spectrometers depends
essentially on the stability of the aerosol and sheath flow rates as well as the perfor-
mance of the detector. Correct determination of instrument air flow is important.
Sheath air flow should be circulated in a closed loop, with dryers included to reduce
RH in the sample and sheath air flows. Temperature and absolute pressure in the
instrument should also be monitored.

We use equivalent pipe length to describe particle losses, e.g., inside of pipes,
the DMA, aerosol dryer and bipolar charger. Equivalent pipe lengths of different
device and plumbing elements aligned in sequence can be simply added if they are
traversed by the same rate of aerosol flow. We describe particle losses by diffusion
on a straight pipe by analytical formulas derived for the laminar flow regime (Hinds
1999).

The size-dependent counting efficiency of an individual condensation particle counter
(CPC) used as the measurement system’s particle detector may depend on geometry
or actually supersaturation profile inside the condenser. Use experimental data or
apply manufacturer’s calibration curve with caution. Calibrate CPCs individually
against a reference instrument. Particle losses inside CPCs are implicitly included in
the measured counting efficiency; they can be estimated using diffusional deposition
models (Stolzenburg and McMurry 1991).

Data Input and Parameter Specification
Defining various inputs is the first step in our DMA data analysis task. These inputs
include the measured size data, along with the measurement conditions and system
setup parameters, and the user’s selection of parameters to define the response
matrix calculations. All of these inputs are contained within waves in Igor that can
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be viewed and edited within tables that appear as those of Tables 3.1 through 3.4.

Measured Data

Data recorded from a given measurement campaign must be organized into a format
the inversion routine can read. This is illustrated in Table 3.1, where there is one
column for each of the following:

1. Scan index; If analyzing multiple scans of data, the scan index will group data
for an individual scan together for analysis.

2. Aerosol sample inlet flow rate, Qa, in units of lpm.

3. Classified aerosol outlet flow rate, Qm, in units of lpm.

4. Clean sheath air inlet flow rate, Qsh, in units of lpm.

5. Excess air outlet flow rate, Qex , in units of lpm.

6. DMA voltage sequence; Instruments generally have equally spaced size chan-
nels (on a log scale).

7. Raw count data, expressed particle number count.

8. Sample time, in seconds; longer times will result in more accurate measure-
ments, due to particle statistics, but the data will then take longer to collect.

9. Ambient temperature, in K.

10. Ambient pressure, in Pa.

11. Temperature difference between saturator and condenser in CPC detector, in
degrees Celsius.

12. Detector flow rate, Qdet , in units of lpm.

The setup of this table is generated, with column labels, by executing the function
makedatamatrix(). This function takes no inputs and makes a 2D matrix to hold
recorded measurement data. It can hold as many rows as needed, to analyze multiple
sets of measured size data. Each set should be grouped by its scan index, in the
iScan column. The indices should count up in increments of 1, but can begin with
any integer (i.e., 0 or 1 or 19...).
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Table 3.1: Example of the measured data provided as input to the inversion analysis routine in the “datamatrix” wave.

iScan Qa_lpm Qm_lpm Qsh_lpm Qex_lpm HVset_V Counts tsample_s Tamb_K Pamb_Pa dTdet_C Qdet_lpm
0 1.003 1.003 5.000 4.996 10 0.0955959 1 298 101325 26.7 0.999
0 1.002 1.005 4.996 4.995 15.0131 0.654082 1 298 101325 26.7 0.989
0 0.996 0.994 5.005 4.992 22.5393 3.44535 1 298 101325 26.7 0.994
0 0.994 1.000 5.007 4.998 33.8386 13.7772 1 298 101325 26.7 0.993
0 0.999 1.008 4.999 4.992 50.8022 41.4001 1 298 101325 26.6 1.000
0 1.005 0.995 5.006 5.001 76.2699 92.7005 1 298 101325 26.6 1.002
0 1.005 1.006 5.004 4.991 114.505 153.95 1 298 101325 26.6 1.008
0 1.010 1.010 5.008 4.994 171.907 191.091 1 298 101325 26.6 1.006
0 1.009 1.003 5.006 4.996 258.086 189.434 1 298 101325 26.5 0.998
0 0.997 1.007 4.999 5.000 387.467 191.828 1 298 101325 26.5 0.994
0 1.002 1.008 5.002 5.000 581.709 260.246 1 298 101325 26.5 0.990
0 0.996 1.004 5.002 4.999 873.326 378.678 1 298 101325 26.5 1.001
0 1.001 1.006 4.996 4.996 1311.13 438.209 1 298 101325 26.6 1.003
0 0.998 1.003 5.006 4.996 1968.42 364.253 1 298 101325 26.6 1.016
0 1.004 1.001 5.003 4.995 2955.21 208.265 1 298 101325 26.6 1.007
0 1.009 1.002 4.997 4.984 4436.69 76.596 1 298 101325 26.6 1.002
0 1.005 1.005 4.998 5.001 6660.85 16.3451 1 298 101325 26.7 1.005
0 1.011 1.014 5.000 5.000 10000 1.78967 1 298 101325 26.7 1.003
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DMA system

Parameters describing theDMAsystem setup are to be input to the “DMAparams2specify”
and “diffLossMatrix” data waves illustrated in Table 3.2. The values specified here
will either be read and passed directly, or read and used in calculations, to assign
the values in the “DMAmeasParams” and “DMAgeomParams” waves illustrated in
Table 3.3. Subsequent calculations call from these waves to use these parameters,
using the dimension labels.

ThemakeWvDMAparams2specify() function takes no input and makes a 1D input
wave to specify parameters for DMA operation.

ThemakeDiffLossMatrix() function also takes no input, and it makes a 2D matrix
to hold equivalent pipe lengths and flow parameters for system components where
flow rate my differ from DMA flow rate (i.e., sample line splitting to different
instruments. Losses through the DMA inlet/outlet, and other components with the
same DMA flow rate, should be accounted for in the “DMAparams2specify” input
wave. See Wiedensohler et al. (2012) for a discussion of using equivalent pipe
lengths for DMA systems.

Response Matrix

Parameters defining the response matrix calculations are to be input to the “calcre-
sponsematrixParams” data wave and the “CalcTFformula” and “InvMethod” text
waves illustrated in Table 3.4. Executing the function makeWvcalcresponsema-
trixParams() again with no input makes these three input waves. Subsequent
calculations call from these waves to use these parameters, using the dimension
labels.

makeWvcalcresponsematrixParams ()

Input to “calcresponsematrixParams” data wave:

ndias2nchanRatio usually 1, for one-to-one correspondence between
diameter bins of inverse solution and those ofmeasurement channels

ZfactorLower factor to extend lower limit of kernel integration diam-
eter range; 1.5 is good, extends to size with 50% greater mobility
than that of the smallest measured size
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Table 3.2: Input parameters to describe DMA system setup.

DMAparams2specify
Label Input

R1dma_m 0.00937
R2dma_m 0.01958
Ldma_m 0.4444

Leq_DMA_m 7.1
Leq_other_m 6

particleDensity_kgm3 1400

diffLossMatrix
Component Leq_m Q_lpm

Table 3.3: Parameter values to be referenced in inversion calculations.

DMAmeasParams
Label Value
Qa_lpm 1.003
Qsh_lpm 4.999
betaDMA 0.201
deltaDMA -0.001
tsample_s 1
dTdet_C 27
Qdet_lpm 1.000
Tamb_K 298
Pamb_Pa 101325

particleDensity_kdm3 1400

DMAgeomParams
Label Value

R1dma_m 0.00937
R2dma_m 0.01958
Ldma_m 0.4444
f_dma 0.707
G_dma 2.42

Leq_DMA_m 7.1
Leq_other_m 6

Table 3.4: Input parameters to define reponse matrix calculations.

calcresponsematrixParams
Label Input

ndias2nchanRatio 1
ZfactorLower 1.5
ZfactorUpper 3
nSub4Kernel 6

chargemax4Kernel 3
extrapMeasChan 1

CalcTFformula
Text Input

stolz

InvMethod
Text Input
TNNLS
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ZfactorUpper factor to extend upper limit of kernel integration diam-
eter range; 3 is good, extends to size whose mobility with 3 charges
equals that of the largest measured size with 1 charge

nSub4Kernel number of subdivisions for evaluating integral over size
bin intervals

chargemax4Kernel maximum number of charges to account for in ker-
nel function

extrapMeasChan option to extrapolate raw counts and kernel matrix
before performing inversion; enter 1 for yes; 0 for no

Input to “CalcTFformula” text wave:

reference to chosen form of transfer function (i.e., stolz, nd, or diff)

Input to “InvMethod” text wave:

reference to chosen solution computation algorithm (i.e., NNLS,TNNLS,
or reg)

Inversion Procedure
After executing each of the above setup functions and filling in the necessary data
and parameter values, the single single function to call to convert the raw count
data of Figure 3.1 to the size distribution solution of Figure 3.2 is DMAinversion().
Thus, the function lineup for inversion analyses is as follows:

makedatamatrix ()

Fill with measured data.

makeWvDMAparams2specify ()

Specify DMA operating parameters.

makeDiffLossMatrix ()

Account for additional diffusion losses through system components.

makeWvcalcresponsematrixParams ()

Specify parameters for response matrix setup.

DMAinversion (datamatrix, diffLossMatrix, DMAparams2specify, calcresponse-
matrixParams, CalcTFformula, InvMethod, Kernel_precalc)

This function can analyze a single scan, or multiple scans, of DMA data.
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Input:

datamatrix data recorded from measurement campaign

diffLossMatrix equivalent pipe lengths and flow parameters for system
components

DMAparams2specify instrument geometry and Leq; particle density

calcresponsematrixParams options for kernel matrix setup

CalcTFformula text wave to call form of transfer function

InvMethod text wave to call solution computation algorithm

Kernel_precalc can input a previously calculated kernel matrix to save
computation time; otherwise input empty set {0}

Functions Called:

DMAanalysis (...)

Output:

invsolnMeas [m x nScans] dN/d ln Dp
[
cm−3] evaluated over measure-

ment range

dp_meas [m x nScans] Dp [m] corresponding to measurement range

invsolnCoeffs [ncoeff x nScans] inverse solution coefficients for entire
scan
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Figure 3.1: Raw count data, shown as particle number versus voltage setting, to be
analyzed to recover the particle number size distribution.

Figure 3.2: Particle number size distribution recovered from inversion analysis.
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Supporting Code
The supporting code critical to the DMAinversion(...) function is organized here
within descriptive subsections. These subsections group supporting functions to-
gether by their contributions to different key aspects of the inversion routine.

DMA Data Analysis

The following functions are called directly by the DMAinversion(...) function and
deal with higher level data processing and analysis.

DMAanalysis (datamatrix, diffLossMatrix, DMAparams2specify, calcresponse-
matrixParams, CalcTFformula, InvMethod, Kernel_precalc)

Analyzes a single scan of DMA data.

Input:

datamatrix data recorded from measurement campaign

diffLossMatrix equivalent pipe lengths and flow parameters for system
components

DMAparams2specify instrument geometry and Leq; particle density

calcresponsematrixParams options for kernel matrix setup

CalcTFformula text wave to call form of transfer function

InvMethod text wave to call solution computation algorithm

Kernel_precalc can input a previously calculated kernel matrix to save
computation time; otherwise input empty set {0}

Functions Called:

DMAparamSet (...)

calcresponsematrix (...)

extrapolateCounts_exp (...)

invsoln_Bspline (...)

Output:

dN/d ln Dp
[
cm−3] size distribution inverse solution(s) in “invsoln_xxx”

waves

Dp [m] corresponding particle diameters in “dpwave_xxx” waves
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DMAparamSet (datamatrix, DMAparams2specify)

Reads input datamatrix for a single scan of DMA data and sets measurement
and instrument parameters for subsequent calculations.

Input:

datamatrix data recorded from measurement campaign

DMAparams2specify instrument geometry and Leq; particle density

Functions Called:

makeWvDMAmeasParams ()

makeWvDMAgeomParams ()

Output:

DMAmeasParams

DMAgeomParams

makeWvDMAmeasParams ()

Makes a 1D wave to hold parameters describing operating conditions for a
given measurement campaign. Subsequent calculations call from this wave
to use these parameters, using dimension labels.

makeWvDMAgeomParams ()

Makes a 1D wave to hold parameters describing instrument setup for a given
measurement campaign. Subsequent calculations call from this wave to use
these parameters, using dimension labels.

extrapolateCounts_exp (ChanCounts, ChanMobility, ExtrMobility, numFitPts)

Extrapolates raw count data. See Hagen and Alofs (1983), Eqs. (6) and (7).

Input:

ChanCounts raw measured count data

ChanMobility measurement channel targeted mobility values corre-
sponding to raw count data; input as inverse mobility

ExtrMobility mobility values for extrapolated range; input as inverse
mobility

numFitPts number of endpoints to use in establishing extrapolation
function
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Output:

ExtrCounts

invsoln_fineEval (SplineCoeffMatrix, SplineControlptKnots, SplineKnotWave, diam0_m,
diamN_m, numdps)

Evaluates inverse solution(s) over size range of interest.

Input:

SplineCoeffMatrix [ncoeff x nSolns] coefficients of cubic spline size
distribution solution

SplineControlptKnots [nDias x nSolns] binning for control points of
size distribution solution

SplineKnotWave [(ncoeff+d+1) x nSolns] wave of knot values that
define the cubic B-splines

diam0_m set lower bound for size distribution solution

diamN_m set upper bound for size distribution solution

numdps set number of points to evaluate for size distribution solution;
can be very fine

Function Called:

cubicBspline (...)

Output:

invsolnFinal [numdps x nSolns] dN/d ln Dp
[
cm−3] evaluated over size

range of interest

dp_final [numdps x nSolns] Dp [m] corresponding to final solution size
range

Kernel Matrix Calculations

The following functions together create the inversion kernel matrix, incorporating
cubic spline quadrature.

calcresponsematrix (precalcMatrix, numdias2numchan_ratio, Zfactor_lower, Zfac-
tor_upper, nSub4CalcKernel, chargemax, extrapYorN, TFformula)

Calculates the kernel matrix.
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Input:

precalcMatrix can input a previously calculated kernel matrix to save
computation time; otherwise input empty set {0}

numdias2numchan_ratio usually 1, for one-to-one correspondence
between diameter bins of inverse solution and those of measure-
ment channels

Zfactor_lower factor to extend lower limit of kernel integration diam-
eter range; 1.5 is good, extends to size with 50% greater mobility
than that of the smallest measured size

Zfactor_upper factor to extend upper limit of kernel integration diam-
eter range; 3 is good, extends to size whose mobility with 3 charges
equals that of the largest measured size with 1 charge

nSub4CalcKernel number of subdivisions for evaluating integral over
size bin intervals

chargemax maximum number of charges accounted for in kernel func-
tion

extrapYorN option to extrapolate raw counts and kernel matrix before
performing inversion; enter 1 for yes; 0 for no

TFformula string to call form of transfer function

Functions Called:

CalcKernel_cubicBspline (...)

Output:

response matrix “Kernel_inv” and Bspline knot waves

CalcKernel_cubicBspline (ChanZ, ChanV, Dpbin, nSub, bbeta, delta, chargemax,
TFformula)

Input:

ChanZ [m] vector of mobility values corresponding to channel mea-

surements; Z
[

m2

V · s

]
ChanV [m] vector of voltage values corresponding to channel measure-

ments; V
Dpbin [nDias] vector of diameter values to define “model” size dis-

tribution solution nodes; should be input as ln
(
Dp

)
for log-linear

channel spacing; Dp in m
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nSub number of subdivisions for evaluating integral over size bin inter-
vals

bbeta flow ratio

delta flow balance

chargemax maximum number of charges accounted for in kernel func-
tion

TFformula string to call form of transfer function

Functions Called:

define_binning (...)

MakeBsplineKnotWave (...)

KernelFcn_DMA (...)

BsplineC1 (...)

BsplineC2 (...)

BsplineC3 (...)

BsplineC4 (...)

Output:

KernelS3 [m x ncoeff] kernel matrix

BsplineKnotWave [nDias+2d+2]

BsplineCoeffKnots [ncoeff=nDias+d+1]

BsplineControlptKnots [n=nDias+2]

B-spline functional forms

BsplineC1 (xi, xk, xk1, xk2, xk3, xk4)

BsplineC2 (xi, xk, xk1, xk2, xk3, xk4)

BsplineC3 (xi, xk, xk1, xk2, xk3, xk4)

BsplineC4 (xi, xk, xk1, xk2, xk3, xk4)

MakeBsplineKnotWave (ControlptBin, degree)

Makes the wave of knot values needed to calculate B-splines of given degree.

Input:

ControlptBin [n]
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degree for cubic splines, degree = 3

Output:

BsplineControlptKnots [n=nDias+2] binning for control points of size
distribution solution; duplicate of input wave “ControlptBin”

BsplineKnotWave [n+2d] wave of knot values needed to calculate B-
splines

BsplineCoeffKnots [ncoeff=n+d-1] binning for coefficients of size dis-
tribution solution

BsplineCoeffKnots_j [ncoeff=n+d-1] binning for coefficients of size
distribution solution, corresponding to j index

define_binning (wavetobin)

Defines spline control points and bounds for integrations.

Input:

wavetobin [nDias] any vector of diameter values to define size dis-
tribution nodes; should be input as ln

(
Dp

)
for log-linear channel

spacing; Dp in m

Output:

deltavals_geom [nDias] to set width of diameter bins

binvals_geom [nDias+1] to set bounds of size bin intervals

binvals_plusuplodiff [nDias+2=n] to set control points

Cubic Spline Inversion

The following functions together evaluate the inverse solution.

invsoln_Bspline (Kernelmatrix,ModelDataBinning,MeasDataBinning, SplineCo-
effKnots, SplineControlptKnots, SplineKnotWave, precalcBdata, Buncertain-
ties, InvSolnMethod)

Solves inverse solution with cubic B-spline setup.

Input:

Kernelmatrix [m x ncoeff] kernel matrix, describingmeasurement col-
lection



60

ModelDataBinning [nDias] binning for size distribution solution, model

MeasDataBinning [m_raw] binning for measured signals (raw data)

SplineCoeffKnots [ncoeff=n+d-1] binning for coefficients of size dis-
tribution solution

SplineControlptKnots [n=nDias+2] binning for control points of size
distribution solution

SplineKnotWave [n+2d] wave of knot values needed to calculate B-
splines

precalcBdata [m] vector of [extrapolated] measured signals (raw data)

Buncertainties [m] vector of uncertainty/error values associated with
[extrapolated] measured signals (raw data)

InvSolnMethod string to call solution computation algorithm

Functions Called:

cSplineInv (...)

cubicBspline (...)

Output:

dN/d ln Dp
[
cm−3] size distribution inverse solution(s) in “invsoln_xxx”

waves

Dp [m] corresponding particle diameters in “dpwave_xxx” waves

cSplineInv (AmatrixInput, SplineCoeffKnots, SplineControlptKnots, SplineKnot-
Wave,ModelWaveOutput,ModelDataBinning, BvectorInput, Bvector_uncertainties,
SolnMethod)

Solves the inverse problem with cubic B-spline setup.

Input:

AmatrixInput [m x ncoeff] kernel matrix, describing measurement
collection

SplineCoeffKnots [ncoeff=n+d-1] binning for coefficients of size dis-
tribution solution; number of points must match y-dimension of
Kmatrix

SplineControlptKnots [n] binning for control points of size distribu-
tion solution
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SplineKnotWave [n+2d] wave of knot values needed to calculate B-
splines

ModelWaveOutput [any] wave to hold size distribution solution; any
number/spacing

ModelDataBinning [any] binning for size distribution solution; num-
ber of points must match ModelWaveOutput

BvectorInput [m] vector of measured signals (raw data)

Bvector_uncertainties [m] vector of uncertainty/error values associ-
ated with measured signals (raw data)

SolnMethod string to call solution computation algorithm

Functions Called:

NNLS (...)

IPG_TNNLS (...)

Regularization (...)

cubicBspline (...)

Output:

solution in “ModelWaveOutput”

cubicBspline (SplineCoeffWave, SplineControlptKnots, SplineKnotWave, Spline-
OutputBin, cSplineOutputWv)

Evaluates cubic spline interpolation, given coefficient values from an inverse
solution.

Input:

SplineCoeffWave [ncoeff=n+d-1] coefficients of cubic spline size dis-
tribution solution

SplineControlptKnots [n] binning for control points of size distribu-
tion solution

SplineKnotWave [n+2d] wave of knot values that define the cubic B-
splines

SplineOutputBin [any] binning for size distribution solution; number
of points must match cSplineOutputWv

cSplineOutputWv [any] wave to hold size distribution solution; any
number/spacing
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Functions Called:

FindKnotPt (...)

BsplineC1 (...)

BsplineC2 (...)

BsplineC3 (...)

BsplineC4 (...)

dBsplineC1 (...)

dBsplineC2 (...)

dBsplineC3 (...)

dBsplineC4 (...)

Output:

solution in “cSplineOutputWv”

FindKnotPt (KnotPtWave, ControlPtWave, InterpFinePtWave)

Finds primary knot point to correspond to secondary (fine) knot point.

Input:

KnotPtWave [n+2d] wave of knot values that define the cubic B-splines

ControlPtWave [n] binning for control points of size distribution solu-
tion

InterpFinePtWave [any] binning for size distribution solution

Output:

KnotPt

KnotPt_indx

B-spline functional forms; first derivatives

dBsplineC1(xi, xk, xk1, xk2, xk3, xk4)

dBsplineC2(xi, xk, xk1, xk2, xk3, xk4)

dBsplineC3(xi, xk, xk1, xk2, xk3, xk4)

dBsplineC4(xi, xk, xk1, xk2, xk3, xk4)
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DMA Transfer Function

The following functions together define the transfer function for the DMAmeasure-
ment system.

KernelFcn_DMA ()

Evaluates the transmission probability through the DMA.

Input:

Dpart some measure of particle diameter

ChanZ measurement channel targeted mobility

ChanV measurement channel voltage setting

bbeta flow ratio

delta flow balance

chargemax maximum number of charges accounted for in kernel func-
tion

TFformula string to call form of transfer function

Functions Called:

ZpCalc_DpDMA (...)

chargeprob (...)

TransferFcn_DMA (...)

diffLossMatrix [][]

eta_pen (...)

counteff_CPC3025 (...)

Output: omega value

TransferFcn_DMA (Zp, ncharges, ChanZ, ChanV, bbeta, delta, TFformula)

Calculates value of transfer function for particle with mobility Zp when DMA
is set to voltage ChanV, with associated targeted mobility ChanZ.

Input:

Zp particle mobility, with single charge

ncharges number of charges on particle

ChanZ measurement channel targeted mobility

ChanV measurement channel voltage setting



64

bbeta flow ratio

delta flow balance

chargemax maximum number of charges accounted for in kernel func-
tion

TFformula string to call form of transfer function

Functions Called:

omegaDMAcalc (...)

Output: omega value

omegaDMAcalc (sigmap, zzz, bbeta, delta, TFformula)

Calls one of the “omegaDMA_xxx” functions to calculate omega values.

Input:

sigmap dimensionless diffusion parameter

zzz dimensionless mobility parameter

bbeta flow ratio

delta flow balance

TFformula string to call form of transfer function

Functions Called:

omegaDMA_xxx (...)

Output: omega value

omegaDMA_stolz (sigmap, zzz, bbeta, delta)

Calculates the DMA diffusive transfer function, as developed by Stolzenburg.

Input:

sigmap dimensionless diffusion parameter

zzz dimensionless mobility parameter

bbeta flow ratio

delta flow balance

Output: omega value

omegaDMA_nd (zzz, bbeta, delta)

Calculates the DMA ideal, non-diffusing transfer function.
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Input:

zzz dimensionless mobility parameter

bbeta flow ratio

delta flow balance

Output: omega value

omegaDMA_diff (sigmap, zzz, bbeta, delta)

Calculates a Gaussian approximation to the DMA diffusive transfer function.

Input:

sigmap dimensionless diffusion parameter

zzz dimensionless mobility parameter

bbeta flow ratio

delta flow balance

Output: omega value

chargeprob (dp_m, echarges)

XcodeS3

counteff_CPC3025 (dp_m)

eta_pen (dp_m, Leff, Q)

Functions Called:

diffusion_coeff (...)

diffusion_coeff (dp)

Functions Called:

mobility (...)

mobility (dp, q)

Interconversions betweenparticle diameter, particlemobility, andDMAvoltage
setting

Functions to call parameters and constants
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Solution Computation Algorithms
Non-Negative Least-Squares Method

An active-set method can be employed as described by Lawson and Hanson (1987).
Least-squares methods overdetermine the problem by making the number of un-
knowns less than the number of measurements, e.g., by representing the unknown
distribution parametrically, or by using more measurements than the number of
sizes at which the size distribution is determined. This can lead to false ease of
convergence to a solution.

NNLS (AmatrixInput, BvectorInput, ModelWaveOutput)

Input:

AmatrixInput [m x n] kernel matrix, describing measurement collec-
tion

BvectorInput [m] vector of measured signals (raw data)
ModelWaveOutput [n] wave to hold size distribution solution; number

of points must match y-dimension of AmatrixInput

Output solution in “ModelWaveOutput”

Interior-Point Gradient Method

The interior-point gradient method for large-scale totally non-negative least squares
problems implements the work of Merritt and Zhang (2005). Uncertainties are
used in this method to identify a sufficiently good solution, i.e., to calculate χ2.
Whereas the non-negative least-squares method requires matrix factorizations and
updates, gradient-type methods only require matrix-vector multiplications. This
makes gradient-type methods the method of choice for very large-scale applications
when high-accuracy solutions are not necessary. Potential inaccuracies with the
interior-point algorithm are due to the internally calculated barrier function keeping
iterates away from inequality constraint boundaries.

IPG_TNNLS (AmatrixInput,ModelWaveOutput, BvectorInput, Bvector_uncertainties,
ApproachParameter, MaxNumIterations)

Input:

AmatrixInput [m x n] kernel matrix, describing measurement collec-
tion
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ModelWaveOutput [n] wave to hold size distribution solution; number
of points must match y-dimension of AmatrixInput

BvectorInput [m] vector of measured signals (raw data)

Bvector_uncertainties [m] vector of uncertainty/error values associ-
ated with measured signals (raw data)

ApproachParameter “step” - needs to be smaller than 1, usually 0.6 is
good; reasonable range seems to be 0.3-0.99

MaxNumIterations limit to sensible number; depends on complexity
of problem

Output solution in “ModelWaveOutput”

Regularization

Another class of algorithm uses constrained regularization of the inverse problem
(e.g., Wolfenbarger and Seinfeld 1990). Regularization selects the smoothest solu-
tion subject to fitting the measured data. The goodness of fit criteria χ2 (sum of
squared standardized residuals) must be close to the number of measured data points
used in the analysis, subject to an additional constraint of maximizing the entropy or
smoothness of the solution. This imposes a high standard for the reported errors on
the measured data. If errors are not correct, it is likely that artifacts in the derived
size distribution will result.

Regularization algorithms allow a free form for the instrument response matrix, but
require a careful choice of constraining parameters and weights of penalty func-
tions. Literature examples include generalized cross-validation for selecting the
regularization parameter (Crump and Seinfeld 1982); the L-curve method; and the
discrepancy principle (which provides a solution that matches the measurements to
just within expected experimental error and is computationally simple, with the ad-
vantage of being very time-efficient; its disadvantage is over smoothing the solution,
corresponding to a very large value of the regularization parameter, lambda).

Regularization (AmatrixInput,ModelWaveOutput, BvectorInput, Bvector_uncertainties)

Input:

AmatrixInput [m x n] kernel matrix, describing measurement collec-
tion
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ModelWaveOutput [n] wave to hold size distribution solution; number
of points must match y-dimension of AmatrixInput

BvectorInput [m] vector of measured signals (raw data)
Bvector_uncertainties [m] vector of uncertainty/error values associ-

ated with measured signals (raw data)

Internal Calculations

MakeHmatrix ()
H_matrix [n x n] constraint matrix; here done for second derivative

CalculateBVector ()
B_vector [n] calculated from Kmatrix, Bvector, and errors

CalculateDMatrix ()
D_matrix [n x n] calculated from Kmatrix and errors

CalculateAmatrix(aValue)
A_matrix [n x n] = D[n x n] + a*H[n x n]

FindOptimumAvalue (Evalue)
for the fitting itself; Evalue is internal precision parameter; a lower
value requires χ2 to be closer to target

CalculateChisquared ()
chi squared sum of the difference value between the fit andmeasured
data

RegularizationMinRatio = 1e-4
Regularization is forced to have at least this x max of SD in each
bin to avoid negative values

Output solution in “ModelWaveOutput”

3.3 Discussion
Data Analysis Recommendations
In general, multiply charged particles will be sampled by the DMA that would have
an electrical mobility less than the minimum mobility of singly charged particles
that are classified by the DMA. For aerosols with small dg and or small σg, the
response of the DMA at this maximum mobility (higher voltage settings) goes to
zero. If the response is not zero for such multiply charged, large particles, more
information is needed before the inversion can proceed. A lack of super-micrometer
size distribution information could lead to a drastic overestimation of the particle
number size distribution in the upper size range of the mobility spectrometer.
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Disturbances could only be completely avoided if a mobility spectrometer were
able to measure the PNSD across the entire range until the concentration reaches
zero at the upper end. Due to technical reasons, however, the range of a mobility
particle size spectrometer cannot be extended far beyond 1-2µm. One approach
has been to extrapolate the measured electrical particle mobility distribution into
larger diameters. This might be appropriate in the case of a continuously decreasing
number concentration towards larger particles, but usually not when a significant
coarse particle mode is present.

One possibility is to use another instrument to determine concentrations at these
upper sizes (Collins et al. 2002). A second possibility is to install a device upstream
of the DMA to remove all particles larger than that associated with the minimum
classified mobility. This is often accomplished by using an impactor at the DMA
inlet to exclude particles that are too large to be classified in their singly charged
state. Just assuming the size distribution goes to zero at these upper sizes leads to
truncation errors.

The smaller the maximum number of charges accounted for in the inversion analysis,
the lesser the computational burden, but this can then lead to errors in the recon-
structed particle size distribution. In searching for a point of compromise, Figure 3.3
reveals that limiting the number of charge states to 6 for a given inversion analysis
has barely any effect on solution quality, but limiting to 3 causes noticeable errors
in the size distribution solution. This analysis can, however, depend on the sampled
particle size range, as larger particles can acquire considerably more charges.

Another important element of DMAdata analysis is accurately quantifying the diffu-
sion losses through a measurement system (as through inlet/outlets and connecting
tubing). Figure 3.4 shows how over- or under-estimating the effective length values
used to capture diffusion losses within kernel function calculations can quickly lead
to errors in reconstructed particle size distributions.

Data Collection Considerations
System operating conditions affect collected and recovered data. For example, flow
rates and resolution affect the measurement range. The size range of interest needs
to be identified in order to design data collection using the correct instrument or
combination of instruments. Operational parameters also influence the number and
location of measured data points, as would be determined by stepping or scanning
through the measurement range. The impact of these parameters should be explored
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Figure 3.3: Relative error in reconstruction, eR, for inversion analyses of the bimodal
test-case aerosol presented in Russell et al. (1995) and Collins et al. (2002), shown as
a function of the number of charges accounted for in the multiple charge correction
of the kernel function. All inversion analyses were performed on noise-free mea-
surements simulating high resolution DMA operating conditions (R =

Qsh

Qa
= 10).

Figure 3.4: Relative error in reconstruction, eR, for inversion analyses of the bimodal
test-case aerosol presented in Russell et al. (1995) and Collins et al. (2002), shown
as a function of the ratio of the equivalent length value used for signal simulation
to that used in calculating the inversion kernel matrix. All inversion analyses were
performed on noise-free measurements simulating high resolution DMA operating
conditions (R =

Qsh

Qa
= 10).
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as data collection design considerations.

For operation under given conditions, the accuracy of particle number size distribu-
tion recovery improves with increasing number of sample channels, until a number
of channels is reached such that the diameter range of interest is covered by some
nonzero values of the transfer function. This is reached with fewer channels for
lower resolution. Very high resolution transfer functions leave gaps in the collected
measurements if too few channels are employed. Changing system flow rates affects
the resolution of particle classification, which in turn affects the coverage of the
instrument transfer functions for a given number and spacing of sampling channels.
Thus, the number and spacing of sample channels, and the system flow rates which
determine sampling resolution, will affect the quality of the collected data.

Optimization of sample channel number and spacing is quantitatively explored in
Figure 3.5, where a parameter referred to as the theta value has been defined. This
parameter describes the amount of overlap in sampled particle mobilities from one
measurement channel to the next. The theta value, θ, sets the ratio of width to
spacing for measurement channels based on the ideal non-diffusing DMA transfer
function (see Appendix A).

θ =
nonzero width of Ωnd

space between Z∗p,i
(3.1)

For a given θ, the number of voltage steps to use for a given DMA simulation is then
determined by modifying Eq. A.3 to the following

nchannels =



[[
ln

(
Zmin(1−β)
Zmax (1+β)

)
ln

(
1−β
1+β

) ]
× θ − (θ − 1)

]
if θ ≥ 1[ [

ln
(
Zmin(1−β)
Zmax (1+β)

)
ln

(
1−β
1+β

) ]
× θ

]
if θ < 1

(3.2)

where now the bracketed quantities are to be rounded to the nearest integer. Figure
3.5 suggests that setting sample channels with at least a bit of overlap (i.e., θ ≈ 1.5)
may be more effective than either over- or under-sampling.

Computational Solution Method Comparisons
The final inverse solution depends on themathematical optimization algorithm used.
When counts are not extrapolated (underdetermined kernel matrix), the upper tail
of distribution is more accurate when using NNLS than other solution methods
because particles beyond upper measurement range are set to zero.
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Figure 3.5: Relative error in reconstruction, eR, for inversion analyses of the bimodal
test-case aerosol presented in Russell et al. (1995) and Collins et al. (2002), shown as
a function of the theta value, θ, used to define measurement channels. All inversion
analyses were performed on noise-free measurements simulating high resolution
DMA operating conditions (R =

Qsh

Qa
= 10).

The zeroth-order regularization approach (i.e., discrepancy principle) tends to over-
smooth the solution, corresponding to a very large value of the regularization pa-
rameter. This means it doesn’t perform as well as the others if no measures of
uncertainty are provided, because the solution is held to lower standards in terms of
acceptable error.

The convergence behavior of these three numerical solution methods is explored in
Figures 3.6 and 3.7.

3.4 Conclusions
Data analysis involves numerous decisions surrounding how to represent an instru-
ment or measurement process accurately. The particle size distribution retrieval
algorithm needs to be considered as integral to the overall sampling system. When
evaluating analysis procedures, the computational effort also involves the amount of
effort to implement the algorithm.
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Figure 3.6: Convergence behavior for the NNLS, TNNLS, and Regularization
optimization programs to recover the bimodal test-case aerosol presented in Russell
et al. (1995) and Collins et al. (2002) from noise-free measurements simulating high
resolution DMA operating conditions (R =

Qsh

Qa
= 10).

Figure 3.7: Convergence behavior for the NNLS, TNNLS, and Regularization
optimization programs to recover the bimodal test-case aerosol presented in Russell
et al. (1995) and Collins et al. (2002) from noisy measurements simulating high
resolution DMA operating conditions (R =

Qsh

Qa
= 10).



Part II
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C h a p t e r 4

PARTICLE MEASUREMENTS RELEVANT TO AEROSOL
HEALTH STUDIES I: EVALUATION METHODOLOGY

Epidemiological evidence associates human exposure to airborne particulate matter
(PM) with a variety of adverse health outcomes, influenced by the deposition of
inhaled particles within different compartments of the human respiratory tract. A
critical component of epidemiological studies is the quantitative determination of
exposure and dose information, provided by relevant particle measurements. Yet
not all particle measurements are optimized to inform rigorous assessments of
PM health effects, and health studies may neglect to question the relevance of
the characterization provided. The purpose of the present study is (i) to motivate
researchers to evaluate health-related aerosol particle measurements in terms of
estimation of regional lung dose metrics, and (ii) to demonstrate a procedure for
such evaluation. We use synthetic data to demonstrate our methodology on two
common sources of particle measurement data: PM2.5 samplers, and differential
mobility analyzer (DMA) systems. Simulated measurements are generated for
model aerosol exposure scenarios to provide input to a lung deposition model.
We calculate total and regional deposited dose based on particle number, mass,
and surface area concentration metrics. Dose values estimated based on simulated
measurements are compared to assumed dose values calculated directly from the
fully characterized input particle size distributions. The evaluation methodology
presented here can be used to assess the performance of any existing, or proposed,
measurement system in providing health-relevant metrics of human exposure and
lung deposited dose.

4.1 Introduction
Particulate matter (PM) is an important component of air pollution and workplace
exposures that has been associated with substantial health impacts. Numerous
studies have established links between PM and such adverse health endpoints as car-
diopulmonary morbidity and mortality, as well as reproductive and developmental
effects. Links between PM and various adverse health endpoints are established pri-
marily through epidemiological analyses that draw on available observational data
to correlate health outcomes with PM exposure measures. Too often, the available
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dose or exposure measures are limited in depth of characterization, or quantity, or
both, and the incomplete data constrain the scope and impact of PM health-effect
studies.

For example, compliance measurements are often referenced in epidemiological
studies since they are designed to probe measures previously found to impact human
health and welfare. Yet these measures must also be sufficiently robust for routine
use, and they must be within the budget and operation capabilities of personnel
employed by regulatory agencies. As such, these compliance measurements may
confirm and elaborate upon associations thatwere expected, or perhaps even detected
in earlier studies, but they are unlikely to extend understanding of the biological
mechanisms underlying these associations. In contrast, research-grade instruments
enable detailed resolution of aerosol particle characteristics, but the collection of
such measurements is generally much more complex and expensive and requires
unique skill sets for successful operation and analysis of data.

A general framework for the interplay of particulate matter research along the con-
tinuum from emission of a contaminant to a health effect is illustrated schematically
in Figure 4.1. The outer circle represents the chain of events that serves as the
conceptual basis for understanding and evaluating environmental and occupational
health. The dotted-line connections shown within this circle hint at pathways for the
flow of information provided by particle measurements. Limited particle charac-
terization, as is widely provided by many regulatory metrics, is often used to draw
direct connections to human health response, short-circuiting the Source-to-Health
Effects paradigm. Meanwhile, the less accessible, more detailed resolution of parti-
cle characteristics, as provided by the complex instruments discussed above, would
allow estimation of personal exposure and subsequent lung dose.

The Source-to-Health Effects paradigm of Figure 4.1 highlights the importance of
accurately quantifying human PM exposure and dose within the context of creating
a stable cycle of information to direct policy makers on specific sources of PM
to target to effectively mitigate health effects. This applies to both occupational
health and air pollution control efforts. The integrity of this cycle of information
relies on the overlapping focus areas of exposure assessment and effects assessment.
Exposure assessment involves investigating the emissions of particles from sources
and examining the pathways by which particles approach and enter the body. Effects
assessment then attempts to correlate an observed adverse health effect with dose or
exposure measures. Thus, accurate health effects assessments require appropriate
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Figure 4.1: Source-to-Health Effects paradigm for investigating the health effects
associated with airborne particulate matter. Research activities can be broadly
categorized as exposure assessment (color-coded here in blue) or effects assessment
(color-coded here in red). The overlap in these focus areas (color-coded here
in purple) reflects the importance of exposure and dose information to both sets
of activities. Adapted from Lioy (1990), Sexton et al. (1992), and the National
Research Council (2004, p. 26).

exposure assessments. The overlap between exposure and effects assessment, shown
in Figure 4.1, reflects the importance of exposure and dose information to both focus
areas.

Aerosol particles present potential health impacts through ingestion, inhalation, or
dermal contact, though it is the inhalation route that is of prime importance when
considering aerosol measurement for exposure and dose information. Exposure
measures are generally related to the probability of penetration of particles to the
respiratory tract. A number of studies have recognized that measurements of expo-
sure alone are imprecise for probing the mechanisms that underlie observed adverse
health outcomes and measures of dose to different regions of the respiratory tract
would be more effective (Esmen et al. 2002). This is because PM health effects are
associated with the human body’s biological response to particles deposited in the
respiratory tract during breathing, and not all inhaled particles deposit within the
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respiratory tract. Many inhaled particles remain suspended in the air to be exhaled
without depositing. Those that are retained deposit in different regions of the air-
ways depending upon their size. Exposure is only relevant if deposition is known;
dose is more important, i.e., what quantity of particulate matter deposits within the
respiratory tract, and where it deposits.

In practice, regionally deposited dose is very difficult to evaluate experimentally.
Respiratory dose depends on two factors: (i) the properties of the atmospheric or
workplace aerosol; and (ii) the way those properties determine where and with what
efficiency particles deposit in the respiratory tract. Real-life analyses rely on mea-
surements to infer the characteristics of airborne particles that influence lung dose
and subsequent health risks. This information is used to estimate dose values using
mathematical models based on present understanding of regional deposition patterns
(ICRP 1994; Vincent 2005). In this way, particle measurements introduce a major
complexity in linking PM to health (Russell and Brunekreef 2009). Limitations or
biases in these measurements will affect the conclusions drawn in PM health effect
studies; insufficient information may conceal major effects.

As mentioned above, much of the data cited for PM exposure assessments in air
pollution epidemiology studies are regulatory measures, such as PM2.5 and PM10,
the mass concentrations of particles with a fifty percent cutoff diameter at 2.5 µm
and 10 µm, respectively (Brunekreef and Forsberg 2005; Pope and Dockery 2006;
Vedal 1997). These measures were developed as compliance metrics in response to
concerns about particles in the ambient atmospheric environment associated with
adverse health outcomes in the general population (Vincent 2005). PM2.5 and
PM10 data are widely measured to document compliance with the National Ambient
Air Quality Standards (NAAQS), making these measures of exposure available for
epidemiological studies. However, these single cut, mass-based metrics provide
limited particle characterization and do little to help guide efforts to understand the
deposition, fate, and effects of inhaled particles.

At the other end of the measurement spectrum, in terms of operational complex-
ity and data resolution, are state-of-the-art aerosol mobility analyzers capable of
recovering sufficient information to calculate good estimates of various physical
metrics of deposition dose (Oberdörster et al. 2005). A number of researchers have
demonstrated the value of the information provided by these instruments to health
effects research in occupational settings (Elihn et al. 2011) as well as in in hot
spots of atmospheric exposure (e.g., near roads with busy traffic) (Kozawa et al.
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2009; Zhu et al. 2002, 2004, among others). Because ultrafine particles deposit
primarily by Brownian diffusion (Rissler et al. 2012), and the electrical mobility of
an aerosol particle is proportional to its diffusivity, mobility analysis measures the
property that determines where and at what rate particles will deposit in the airways.
However, few health effects studies can employ such large, expensive, and complex
instruments. This begs the question: How good must a measurement be to represent
an adequate exposure assessment for health studies?

Whether the concern is environmental or occupational, there is an unmet need for
health effects researchers to answer this question in a quantitative way. A number of
researchers have assembled qualitative reviews of the various measurement strate-
gies employed for occupational and environmental aerosol exposure assessments
(Vincent 2005; Maynard and Pui 2007; Brouwer et al. 2009; Vincent, 2012). These
reviews commentate on the exposure metrics and instrumentation currently avail-
able, and some even explore future requirements for technology yet to be developed.
These reviews do not, however, evaluate existing or proposed aerosol exposure
measurement approaches in a quantitative manner. The present study outlines a
procedure for carrying out such quantitative evaluations.

Our evaluation method involves a series of calculations that can be applied to
any given measurement method to assess its suitability for health effects research.
These calculations ultimately quantify how the particle characterization provided
by a measurement affects the conclusions drawn about particulate dose delivered
to the human respiratory tract. This is rooted in the concept that, as noted above,
exposure is only relevant if deposition is known; dose is more important.

Previous investigators have employed numerical models of lung deposition to calcu-
late values of respiratory dose from experimental descriptions of aerosol properties
(Alföldy et al. 2009; Elihn et al. 2011; Kristensson et al. 2013). We augment this
approach by comparing the dose estimates based upon experimental measurements
with those that would actually occur, given knowledge of the ambient aerosol that
is not biased by limitations of the measurement methods. This comparison to a
“true dose” creates the opportunity for quantitative assessments. To ensure fair
assessments and inter-comparisons of measurement strategies with potentially very
different operating principles, we employ ideal models of the methods under con-
sideration to simulate experimental measurements. By relying upon synthetic data
in this way, we can control for any uncertainties associated with the measurement
method under consideration.
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We describe two example applications of our evaluation procedure to demonstrate
the performance of the most common measurement techniques and begin to set
the stage for the future of health-relevant particle measurements. We evaluate the
regulatory metric of PM2.5 as well as the more involved measurements provided by
differential mobility analyzer (DMA) systems. The operational theories between
these two measurement systems are well-known, and they happen to represent the
extreme ends of the spectrum in terms of operational complexity and data resolution.
Our intent is not to dwell on the strengths and weaknesses of these two measurement
systems, but simply use them as examples to demonstrate the important role that
particle measurements play in assessing health effects. Other measurement options
are available, with more middle-ground capabilities; the evaluation methodology
described herein can and should be applied to them.

4.2 Methods
Our measurement evaluation strategy is illustrated in Figure 4.2. From an unbiased
description of input aerosol, we employ an accepted model of lung deposition
to calculate the regional particle deposition and call this the “true dose.” At the
same time, a chosen measurement technology is modeled, including measurement
uncertainties and statistics, to produce raw signals comparable to those obtained
in actual measurements. The resulting synthetic data are analyzed using the same
methods commonly applied in air quality studies or aerosol exposure measurements
to infer the nature of the aerosol. The same model of lung deposition is then applied
to the analyzed synthetic data to estimate the regional dose. The comparison between
this estimate and that which we calculated as the “true dose” reveals the efficacy
and biases of the measurement technology. We consider each component of this
analysis separately in the discussion that follows.

Particle Deposition in the Respiratory Tract
The human body responds to particles deposited in the respiratory tract during
breathing. Various health outcomes (e.g., sinusitis versus bronchitis versus pneu-
monia), and their underlying biological mechanisms, are influenced by particle
deposition within different compartments of the human respiratory tract. Knowl-
edge of this regional deposition would allow health effect studies to explore the
pathways by which PM exposures cause disease.

Lung deposition is governed by a complex set of parameters, including breathing
pattern, particle characteristics, flow dynamics, and morphological structure of the
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Figure 4.2: Procedural flow illustration for evaluating measurement performance.
Define an input particle distribution, simulate a given measurement scheme, and
process the recovered particle characterization to estimate dose to the respiratory
tract. From the completely defined input, an ideal estimate of dose can also be
calculated. By comparing the information provided by simulated measurements to
the ideal estimates of dose, this evaluation procedure can reveal limits or biases
in measurement data that may constrain the scope and impact of PM health-effect
studies.

lung. Experimental challenges make studies of regional deposition in actual human
subjects difficult and prone to a lack of coherence in reported data. Experimental
studies are often complemented by mathematical and numerical modeling to create
accessible tools for predicting particle deposition in the respiratory tract. The In-
ternational Commission on Radiological Protection (ICRP) developed an empirical
model to predict size-dependent particle penetration and deposition within different
anatomical regions of the human lungs (ICRP 1994). The ICRP reviewed experi-
mental data from many laboratories in several countries to create a well-established
framework for deposition calculations. We employ the ICRP model for our analysis
here.

The ICRP model evaluates the fraction of inhaled particles of a given diameter
(1 nm < Dp < 100 µm) that deposit in different regions of the respiratory tract,
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accounting for effects of gender, age, and breathing characteristics. For its cal-
culations, the model considers the respiratory tract as four anatomical regions as
illustrated in Figure 4.3: (1) the extrathoracic region (ET), comprising the anterior
nose (ET1) and the posterior nasal passages, larynx, pharynx, and mouth (ET2);
(2) the bronchial region (BB), comprising the trachea through the bronchi; (3) the
bronchiolar region (bb), comprising the bronchioles and terminal bronchioles; and
(4) the alveolar/interstitial region (AI), comprising the respiratory bronchioles, the
alveolar ducts and sacs with their alveoli, and the interstitial connective tissue.

The deposition efficiency curves for these regions, shown in Figure 4.3, reveal dis-
tinctmodes of particle depositionwithin the various regions of the human respiratory
tract. Large particles, Dp > 1m, deposit most efficiently in the extrathoracic regions
due to their inertia, though a small fraction of supermicron particles, Dp < 5 µm,
penetrate into the alveolar region where they deposit by gravitational sedimentation.
Smaller particles penetrate through the head airways and deposit in the bronchial,
bronchiolar, and alveolar-interstitial regions, primarily by Brownian diffusion. For
the smallest particles, Dp < 10 nm, diffusional deposition even occurs within the
head and neck airways. This filtering prevents these smallest particles from pene-
trating to the deepest regions of the lung and leads to a distinct peak in the alveolar
deposition efficiency at Dp ∼ 10−10 nm. Less than 20% of particles 150−500 nm in
size are retained for deposition anywhere within the respiratory system. Particle size
and the complex mechanisms of aerosol deposition control the deposition location
of particles within the respiratory tract, which in turn determines their health im-
pacts. Understanding the regional deposition of inhaled particles would aid further
investigations into the underlying biological mechanisms of different size fractions
of PM exposure. We do not address specific health impacts or their underlying
biological mechanisms here, but rather focus on our ability to assess dose to the
different regions in order to inform health effect studies.

For each respiratory tract region considered here, we estimate particle deposition
in terms of number, mass, and surface area concentrations. Since the most effec-
tive measure of dose for evaluating a particular adverse health outcome remains
unclear, we incorporate calculations for all three of these physical metrics into our
measurement evaluations for a broad performance assessment.

Mathematically, the deposited dose of a certain particle size-fraction (Dp1 − Dp2)
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Figure 4.3: Anatomical regions of the human respiratory tract, shown schematically
along with deposition efficiency curves describing the fraction of inhaled particles
of a given diameter that deposit in the different lung regions (ICRP 1994).
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can be described as

Doseν =
∫ t2

t1

∫ Dp2

Dp1

VE · ηdep · nN · ν · dlnDp · dt (4.1)

where VE
[
m3
/hr

]
is the ventilation rate, or the volume of air inhaled, ηdep [−−] is

the deposition fraction of aerosol particles in the respiratory system, and nN =

dN/d ln
(
Dp

) [
particles/m3] is the particle number size distribution. Both ηdep and

nN are functions of ln
(
Dp

)
where Dp is the particle diameter. Also a function of

particle diameter, ν describes which dose metric is being evaluated, i.e., number
(N; ν = 1), surface area

(
S; ν = πD2

p

)
, or mass

(
M; ν = π

6 D3
pρp

)
. For present

purposes, particles are assumed to be spherical and to have specific gravity of 1.4,
which is typical of secondary organic aerosols that comprisemuch of the atmospheric
aerosol (Ahlm et al. 2012).

Equation (4.1) reveals the pieces of information needed for our analysis. We first
define a “reference worker” to receive our calculated dose values, using param-
eters matching those established by Phalen (1999). These parameters are listed
in Appendix B. We use the ICRP model with these parameters to evaluate the
deposition fraction of aerosol particles in the respiratory system, ηdep [−−]. We
evaluate the dose from Eq. (4.1) using the ventilation rate of VE = 1.5 m3

/hr over
different exposure time periods ∆t = t2 − t1. Daily, or 24-hour, average exposure
is commonly examined in epidemiological studies (Vedal 1997). Studies have also
shown important health impacts associated with shorter averaging periods, e.g., 10
minutes and one hour (Peters et al. 2015). Most previous studies have assumed the
input particle number size distribution, nN , to be lognormal, or consist of multiple
lognormal modes. We will take a more general approach as described below.

Representative Input Particle Distributions
A number of studies have focused on exposures to specific particle populations of
interest, such as diesel exhaust aerosols (Alföldy et al. 2009; Rissler et al. 2012), or
airborne particles found in particular workplace environments (Elihn et al. 2011).
These studies reveal isolated PMeffects by excludingmany other possible exposures.
We seek to analyze a broad range of particle populations in order to resolve source-
and time-related variations in PM exposure and dose. Other studies have approached
this aim by employing size distribution data collected as continuously monitored
field measurements to evaluate regional lung deposition of ambient aerosols (Hus-
sein et al. 2013; Kristensson et al. 2013). While this approach provides the natural
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range of time-evolving particle populations we seek to consider, particle measure-
ments from the field are subject to truncation and counting efficiency biases. Thus,
measured size distributions are limited by the incomplete coverage of instruments.

We seek unbiased exposure scenarios as input to our evaluation methodology and
thus define synthetic sets of test particle size distributions. We generate two cat-
egories of test aerosol particle size distributions for input in order to approximate
both atmospheric particle populations and occupational aerosol types.

Atmospheric Particle Populations

A wide range of particle populations exist in the atmosphere that may be inhaled
and deposited in the lungs. Relevant particles span orders of magnitude in size,
from “inhalable coarse particles” 2.5 − 10 µm in diameter, to “ultrafine” particles
< 0.1 µm in diameter. Within a given air basin, exposure varies dramatically
with time and location due to local and intermittent sources as well as transients
associated with the diurnal air quality cycle. We are interested here in demonstrating
appropriate particulate matter exposure and dose analyses for a representative range
of atmospheric particle populations.

Atmospheric nucleation bursts are common, well studied, and include a spectrum
of fine particles that extends to sizes below those that can routinely be probed. For
our analysis, we simulate the time evolution of an aerosol particle population during
such a new particle formation event. The nucleation event chosen for our analysis
is typical of many that occurred in the highly polluted atmosphere of New Delhi
during October and November 2002 (Mönkkönen et al. 2005). We use the Ion-
UHMA model (University of Helsinki Multicomponent Aerosol model for neutral
and charged particles; Leppä et al. 2009) with input parameters from air quality
data to reproduce the observed aerosol evolution of the particle populations for a 24
hour period with 10 minute time resolution, as is shown in Figure 4.4. The original
simulation covers a diameter range of 1.6nm < Dp < 1 µm using 240 size sections
spaced equally on logarithmic scale. For a fair challenge of PM2.5 measurements, in
the present study we extend this size range to cover particle diameters up to 10 µm
with an additional 85 size sections of the same spacing. We use linear extrapolation
on a log-log scale to extrapolate the tails of the simulated distributions.

For the time-series simulation, the particle number size distribution is initiated
as forming a background aerosol and then updated every ten minutes within the
24-hour period. Beginning at midnight, particle concentrations gradually diminish
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Figure 4.4: Particle number size distributions simulated using the Ion-UHMAmodel
(Leppä et al. 2009) to reproduce an atmospheric nucleation burst typical of many
that occurred in the highly polluted atmosphere of New Delhi during October and
November 2002 (Mönkkönen et al. 2005).

between 07:00 and 11:00, due to the increase in the boundary layer height. By 09:00,
the particle concentration, and concomitant scavenging of vapors has diminished
to the point that homogeneous nucleation begins; new particles continue to form
until about 15:00. This episode was selected as representative of recent extreme
events that have occurred in a number of megacities because it includes exposures
to both aged secondary organic aerosols and freshly nucleated particles. This single
simulation day captures the natural evolution of ambient aerosols and resultant
transient exposures in an extreme urban environment, and spans the entire fine and
ultrafine particle size range. This allows us to evaluate biases in dose estimates
evaluated for different exposure time periods.

Occupational Aerosol

We also analyze a myriad of aerosol size distributions representing particle size
ranges reported in the literature for various occupational aerosol types. We generate
a map of lognormal size distributions with mass median diameters (MMDs) ranging
from 0.005−10 µm and geometric standard deviations (GSDs) ranging from 1.1−4.
Total number concentration is held constant at 1000 cm−3, and the distributions are
evaluated over the diameter range 1.6 nm < Dp < 10 µm using 325 size sections
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Figure 4.5: Map of the mass median diameter and geometric standard deviation
parameter space for the lognormal size distributions simulated to represent occu-
pational aerosol populations. Ovals represent particle size ranges reported in the
literature for several occupational aerosol types.

spaced equally on logarithmic scale. This size range is defined to be consistent with
that of the nucleation event simulation. From this map of input size distributions,
we can create a map of corresponding dose bias values that could be used to predict
a measurement system’s performance for a given application. Figure 4.5 shows the
MMD vs. GSD parameter space for the lognormal distributions analyzed in this
study. Overlaid on the figure are shaded regions that represent common aerosol size
distributions reported in the literature.

Particle Measurement Simulations
We focus on the performance of two, quite different, measures to demonstrate our
measurement analysis strategy: the regulatory PM2.5 metric and particle size dis-
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tribution information recovered from a differential electrical mobility classification
system. In this way, we explore the left- and right-hand sides of Figure 4.2, as we
consider an example of a measurement that provides a single piece of information
integrated over size and time and progress from there to a measurement that provides
more detailed resolution with respect to size and time. These measurement schemes
are sufficiently well understood for the in silico experiments to be applied.

PM2.5 Sampler

To evaluate PM2.5 measurements, we model a sampler that follows the particle
size-selective criterion described by Vincent (2005) for PM2.5 in which

ηPM2.5
= 1 − F (x) (4.2)

where F (x) is the cumulative probability function of a standard normal variable (x)
given by

x =
ln

(
dae
Γx

)
ln (Σx)

(4.3)

in which Γx = 2.5 µm and Σx = 1.50. The result is that the function reaches 0.5
at dae = 2.5 µm. This criterion for PM2.5 is shown in Figure 4.6, together with
two particle mass size distributions representative of the challenge aerosols in our
analyses.

To simulate the measured response of a PM2.5 sampler, then, we calculate the
integral

RPM2.5 =

∫ ∞

0
ηPM2.5

· nM · d ln Dp (4.4)

where nM = dM/d ln
(
Dp

)
[µg/m3] is the particle mass size distribution, calculated

from an input number size distribution, nN , as nM =
π
6 D3

pρpnN . We include an
estimate of systematic uncertainty for our simulated PM2.5 measurements, calculated
as ±10 % of the measured concentration. This is based upon what is stated by the
EPA in Section 2.3.1.1 of Appendix A to Part 58 for PM2.5 methods: “The goal for
acceptable measurement uncertainty is defined as 10 percent coefficient of variation
(CV) for total precision and plus or minus 10 percent for total bias.”

DMA System

Differential mobility analysis is a powerful method for determining particle size
distribution.
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Figure 4.6: Particle size selective criterion for a PM2.5 sampler, shown with two
example particle mass size distributions. Essentially the entire mass of the size
distribution from the nucleation simulation will be captured, while some of the
lognormal distribution will be lost.

A DMA system operates by charging particles in an aerosol sample, typically by
passing them through a charge conditioner that generates a bipolar ion cloud using
a radioactive source. The sample then passes through a well-defined electrostatic
field. Charged particles in that sample are induced to migrate across a parallel flow
of particle-free air by an applied electrical field. Particles with a specific electrical
mobility are sampled from the exit of the electrodes, and counted. By scanning
or stepping the voltage between the electrodes, particles with electrical mobilities
corresponding to a range of particle diameters can be counted sequentially (typically
using a condensation particle counter, or CPC), allowing the aerosol size distribution
to be determined.

To evaluate DMAmeasurements in our study, we model the performance of the long
column DMA (e.g., TSI Model 3081, TSI Inc., USA), which is widely used in the
form of the so-called scanning mobility particle sizer (SMPS). We do not simulate
scanning operation, however, as a number of additional challenges are introduced to
the analysis of scanning DMA data by the slow response time of many commonly
used CPCs. Without an accurate description of the nonunique relationship between
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the time a particle exits a scanning-mode DMA and the time it is ultimately detected,
inverted distributions will be distorted. The simulations presented here consider
stepping the DMA voltage instead, which avoids the additional distortions. Some
CPCs do indeed have fast enough response times that SMPS measurements closely
approximate stepping-mode DMA operation.

Our model system is considered to consist of a sequential setup of a bipolar diffusion
charge conditioner, a long column DMA (L = 444 mm, inner radius R1 = 9.38 mm,
outer radius R2 = 19.58 mm), and a CPC. To approximate the present state-of-the-art
operation of the DMA, typical of present-day, high-resolution measurements with
this technique, all flows are considered balanced and strictly laminar, with constant
aerosol inlet and sample outlet flow rates of Qa = Qs = 1 lpm, constant particle-free
sheath and particle-laden excess flow rates of Qsh = Qex = 10 lpm, and a detector
flow of Qdet = 0.03 lpm through a TSI Model 3025A Ultrafine CPC.

Measurements are simulated according to the principles described byWiedensohler
et al. (2012). The relationship between the measured responses and the sampled
aerosol size spectrum is given by

Ri =

∞∫
0

nN
(
ln Dp

)
Ψ

(
i,Dp

)
d ln Dp, i = 1,2, . . . , I (4.5)

where Ri is the response for a given mobility-determining voltage setting of the
DMA, I is the total number of measurements made, nN

(
ln Dp

)
d ln Dp is the number

concentration
[
cm−3] of aerosol particles in the diameter range ln Dp to ln Dp +

d ln Dp, and Ψ
(
i,Dp

)
is the response of the ith measurement channel to a particle

of diameter Dp.

The response of the DMA system is described by a semi-analytical transfer function
that was derived by Stolzenburg (1988) (see also Flagan 1999), along with the
charging probability from the bipolar diffusion charger (Fuchs 1963; Hoppel and
Frick 1986; López-Yglesias and Flagan 2013; Wiedensohler 1988) and empirical,
instrument specific transmission and counting efficiency curves. Incorporating these
functions into a definition for Ψ

(
i,Dp

)
gives

Ψ
(
i,Dp

)
= Qa

∞∑
ν=1

Wνη
(
Dp

)
φν

(
Dp

)
Ω

(
ν, i,Dp

)
(4.6)

where Qa denotes the aerosol volume flow rate, ν denotes the number of electric
charges on the aerosol particle, Wν denotes the factor relating the sensor response
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to the flux [particles/sec] of particles carrying ν charges, η
(
Dp

)
denotes the collec-

tion of empirical, instrument specific transmission and counting efficiency terms,
φν

(
Dp

)
denotes the fraction of particles of diameter Dp carrying ν charges, and

Ω
(
ν, i,Dp

)
denotes the transfer function of the DMA, i.e., the probability that a

particle of size Dp carrying ν charges will pass through the DMA when it is set at
voltage Vi.

For our simulated DMA, we calculate responses at 36 voltage steps from 10 V to
10 kV, equally spaced on a logarithmic scale. This range of voltages extends from
the minimum setting necessary for a DMA to provide reasonable resolution in size
classification, up to the maximum setting before electrostatic breakdown occurs.
We define the number and spacing of sample channels within this range such that
the channels are equally spaced on a logarithmic scale for particle mobility, with
overlap in the ideal triangular transfer functions to sample all mobilities within the
measurement range. Figure 4.7 shows a graph of the response function Ψ

(
i,Dp

)
for our simulated DMA. The regions where Ψ

(
i,Dp

)
is nonzero indicate the range

of aerosol sizes that contribute to the measured response Ri. The distinct waves of
peaks demonstrate the effect of multiple charging on the response function. Multiple
charging is not significant at the smaller sizes, but does become important at the
larger sizes.

Extracting information from DMA-CPC measurements is one important example
of the many inverse problems encountered in atmospheric remote sensing. The
relationship between measured responses and the aerosol size spectrum, as defined
in Eq. (4.5), results in a set of Fredholm integral equations of the first kind. With the
response values Ri and response function Ψ

(
i,Dp

)
known, the inversion problem

amounts to solving this set of equations for the unknown sampled size distribution
n
(
ln Dp

)
. The governing equations and methods of inversion related to DMA

measurements have been explored in detail in Chapter 2. We employ the routine
developed and described there to solve any inverse problems here in this study.

We impose Poisson counting statistics on the simulated instrument particle counts
to produce signals representative of what would be obtained using real instruments.
To estimate the uncertainties in inverted size distribution results, we apply a Monte
Carlo method. For this, we draw sets of instrument responses as random samples
from the calculated instrument responses, assuming a Poisson distribution, and use
these as input for the inversion algorithm. We repeat this procedure two hundred
times, storing each inversion result, and then statistically evaluate the stored inversion
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Figure 4.7: Normalized response functions for a stepping-mode DMA system,
simulated to approximate typical high resolution operating conditions (R =

Qsh

Qa
=

10). The model system is set to operate with 36 voltage steps from 10 V to 10 kV,
equally spaced on a logarithmic scale.

results to obtain a mean result and its uncertainty.

Quantitative Comparisons
Ourmeasurement analysis strategy examines the utility of PMmeasurement schemes
by comparing the information recovered from simulated measurements to the in-
formation calculated as “true dose.” As demonstrated in Figure 4.2, appropriate
comparisons should be made with respect to the level of characterization provided
by the measurement.

For measurements providing limited particle characterization (e.g., PM2.5) it is ap-
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propriate to compare measured responses (e.g., values calculated from 4.4) directly
to the “true dose” to uncover any possible correlation relationships. Though these
measurements alone cannot offer insight into howdifferent size particlesmay deposit
in different anatomical regions of the respiratory tract, the information recovered
may still correlate well with calculations of true deposited dose. It is possible to
reveal that a measurement can be used as proxy for the deposited dose.

At the other end of the spectrum, for measurements providing detailed particle char-
acterization, it is appropriate to apply lung deposition calculations to the full extent
possible with the information recovered. With the size distribution information
recovered from the DMA measurement simulations, we calculate total and regional
deposited dose estimates based on particle mass, surface area, and number metrics,
using the ICRP lung deposition model and Eq. (4.1). Then, for each combination of
physical metric and lung region (i.e., mass dose to the alveolar region), we calculate
the bias in the estimated dose value as the percent difference from the “true dose”
value.

% Bias =
estimated dose − "true dose"

"truedose"
× 100 (4.7)

4.3 Results and Discussion
We calculate ideal estimates of hourly average particle dose to the extrathoracic,
bronchial, bronchiolar, and alveolar/interstitial regions based on number, surface
area, and mass metrics for the 24 hour exposure scenario shown in Figure 4.4,
as well as for the map of lognormal distributions covering the parameter space of
Figure 4.5. We compare these ideal dose estimates to the information recovered
from the simulated measurements of PM2.5 and DMA systems. Figures 4.8 and 4.9
compare the hourly average mass, surface area, and number of particles deposited
in the alveolar region with hourly average PM2.5 mass concentration exposures for
the nucleation simulation and the lognormal distributions, respectively. The plots
illustrate the regression relationships between the sets of data, with the correlation
coefficient (i.e., r and not r2) provided for each case. A 1:1 line is also included
to quickly assess if data points are above, below, or straddling the 1:1 line. Ideal
values are presented on the Y-axis, while the measured values are presented on the
X-axis. Similar comparisons for other regions of the respiratory tract are shown in
the supplementary information.

The true mass dose correlates well with the PM2.5 mass exposure (linear correlation
coefficients, r = 0.99 and r = 0.94 for the time-series and lognormal distributions,
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respectively). Small deviations from the perfect correlation occur for the time-series
measurements when the atmospheric aerosol under consideration is in either the very
early or very late hours of the simulation day. During both periods, the aerosol is
an aged one, concentrated in the 50 nm < Dp < 500 nm size regime where many
of the inhaled particles are exhaled rather than deposited. During the nucleation
burst, from about 10:00 through 15:00, the mass deposited in the alveolar region is
reasonably well correlated with PM2.5.

Deviations occur in the positive direction for measurements of the lognormal distri-
butions when the MMD of the sampled distribution falls in that same 50 nm < Dp <

500 nm size regime where many of the inhaled particles are exhaled rather than
deposited. Deviations occur in the negative direction when the sampled distribution
has a large enoughMMD that the entire mass is not collected by the PM2.5 sampling
criterion.

The correlation of deposited surface area with PM2.5 is slightly weaker for the time-
series measurements (linear correlation coefficient, r = 0.93). Over the first eight
hours of the simulation day, particles grow, but the number concentration and total
surface area decrease due to coagulation, leading to trends in number and surface
area dose that are orthogonal to that of PM2.5. As the inversion layer lifts between
07:00 and 11:00, the mass and number concentrations diminish, as does the surface
area. When nucleation commences, the surface area increases more rapidly than
does PM2.5. Thus, mass and surface area data follow a rough general trend, but they
show systematic differences. For measurements of the lognormal distributions, on
the other hand, the correlation of deposited surface area with PM2.5 is quite strong
(linear correlation coefficient, r = 0.99). The surface area median diameter seems
to shift in just the right ways.

In contrast, the number dose is uncorrelated with PM2.5 (linear correlation coeffi-
cients, r = −0.56 and r = −0.54 for the time-series and lognormal distributions,
respectively). PM2.5 mass measurements do not represent number concentrations
well when the particles sampled are very small in size. This occurs in the nucleation
time-series simulation during the nucleation burst, and it is the case for many of the
lognormal distributions considered. Table 4.1 summarizes the correlation coeffi-
cients for PM2.5 with various metrics of deposition within in different regions of the
lungs. The PM2.5 measure of ambient exposure fails to correlate with measures of
dose outside the targeted mass metric. This may limit the perceived links between
PM exposure and health impacts. A more detailed characterization of the sampled
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Table 4.1: Correlation coefficients (Pearson’s r) for PM2.5 measurements with
the values calculated as “true” mass, surface area, and number dose to the alveo-
lar/interstitial, tracheobronchial, head airways, and total combined regions of the
lungs for the nucleation simulation time-series of size distributions.

AI TB Head Total

Mass Dose 0.997 0.996 0.999 0.999

Surface Area Dose 0.936 0.933 0.998 0.966

Number Dose -0.567 -0.582 -0.581 -0.589

aerosol, such as that provided by a DMA system, may avoid such limitations.

We obtain the measured dose estimates shown in Figure 4.10 by simulating the
measurements of a TSI long column DMA, inverting the data as discussed in detail
in Chapter 2, and applying Eq. (4.1) to the recovered particle number size distribu-
tions. Error bars are derived from repeating the data simulation and inversion several
hundred times while including simulated statistical noise in themeasurements due to
small count number. When all instrument efficiencies are appropriately accounted
for, the number of particles transmitted through the DMA in any given measure-
ment channel may be small, giving rise to large relative uncertainties in measured
counts. We quantify these measurement uncertainties so that we can consider them
separately from the systematic errors arising from the overall measurement process
as dictated by instrument performance.

Figure 4.10 shows that the DMA can capture the different measures of dose quite
accurately for the nucleation simulation distributions. The measurement range
of the DMA simulated covers the size range of these distributions where particle
concentrations are high. Many of the lognormal distributions considered, however,
are concentrated at sizes beyond the measurement range of the DMA. This results in
large negative biases for DMA estimates of dose values, as demonstrated in Figure
4.11 for MMDs greater than 1 µm.

Table 4.2 summarizes the correlation coefficients for estimates of dose from DMA
measurements with calculated true values of dose within in the lungs. That DMA
measurements accurately capture dose estimates to all regions in all metrics is not
surprising since particle size distribution recovery from DMA measurements is
highly accurate under the operating conditions considered here.
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Figure 4.8: Correlation of PM2.5 measurements to values calculated as “true” mass,
surface area, and number dose to the alveolar/interstitial region for the nucleation
simulation time-series of size distributions.
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Figure 4.9: Correlation of PM2.5 measurements to values calculated as “true” mass,
surface area, and number dose to the alveolar/interstitial region for the map of
lognormal distributions.
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Figure 4.10: Correlation of dose values estimated from high resolution DMA mea-
surements (R =

Qsh

Qa
= 10) to those calculated as “true” mass, surface area, and

number dose delivered to the alveolar/interstitial region for the nucleation simulation
time-series of size distributions.
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Figure 4.11: Percent bias in dose values estimated from high resolution DMA
measurements (R =

Qsh

Qa
= 10) compared to those calculated as “true” mass,

surface area, and number dose delivered to the alveolar/interstitial region for the
map of lognormal distributions.
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Table 4.2: Correlation coefficients (Pearson’s r) for estimates of dose from high
resolution DMAmeasurements (R =

Qsh

Qa
= 10) with the values calculated as “true”

mass, surface area, and number dose to the alveolar/interstitial, tracheobronchial,
head airways, and total combined regions of the lungs for the nucleation simulation
time-series of size distributions.

AI TB Head Total

Mass Dose 0.995 0.997 0.997 0.994

Surface Area Dose 0.997 0.998 0.989 0.992

Number Dose 0.999 0.999 0.999 0.999

4.4 Conclusions
The present study has outlined an approach to assessing the suitability of different
measurement methods for health effects research, considering two select examples.
We employed a well-studied type of air pollution event, as well as a myriad of
lognormal distributions, to consider a wide range of exposures in probing the uncer-
tainties introduced by different measurement scenarios. Indeed, any representative
challenge aerosol can be used as input to this evaluation methodology; one need
only be able to describe an ideal representation of the size distribution of interest.

This flexibility extends to the measurement systems that can be evaluated with this
procedure. Any measurement system of interest can be simulated for evaluation;
one need only be able to describe the operating principles, and data analysis if
necessary. Provided the performance characteristics of the measurement devices are
well understood, this scenario enables quantitative estimations of the measurement
errors and uncertainties.

We have employed the ICRP model of lung deposition here to examine total and
regional deposited dose in terms of mass, surface area, and number of particles.
This is yet another flexible element of our evaluation procedure. Lung deposition
can be modeled using the state-of-the-art model of choice. This is important for
inevitable improvements in present models.

This evaluation methodology is straightforward but powerful and should be em-
ployed for planning measurement strategies for aerosol health studies. Many other
measurement options are available; this evaluation can and should be applied to
them. We encourage aerosol health researchers to question and evaluate the particle
data available to them and, whenever possible, seek particle measurements that fo-
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Figure 4.12: Correlation of PM2.5 measurements to values calculated as “true”
mass, surface area, and number dose to the alveolar/interstitial, tracheobronchial,
head airways, and total combined regions of the lungs for the nucleation simulation
time-series of size distributions.

cus on exploring particulate dose delivered to the human lungs. The methodology
described here can be applied to the development of such strategy for any particular
measurement campaign.

4.5 Additional Measurement Evaluation Results
The respiratory tract is often considered to consist of three anatomically and func-
tionally distinct units: (a) the head/throat region, from the mouth and nose to the
larynx; (b) the tracheobronchial region from the larynx through the conducting
airways; and (c) the pulmonary/alveolar region, or the gas exchange zone. Lung
regions defined in this way (combining the bronchial and bronchiolar regions of the
original ICRP model into one tracheobronchial region) are used for the ICRP grand
average deposition model based on Hinds’ (1999) parameterization, on which the
regional deposition sampler (RDS) is based. Additional dose comparisons for these
regions of the respiratory tract are shown in Figures 4.12 through 4.15.
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Figure 4.13: Correlation of PM2.5 measurements to values calculated as “true”
mass, surface area, and number dose to the alveolar/interstitial, tracheobronchial,
head airways, and total combined regions of the lungs for the map of lognormal
distributions.
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Figure 4.14: Correlation of dose values estimated from high resolution DMA mea-
surements (R =

Qsh

Qa
= 10) to those calculated as “true” mass, surface area, and

number dose to the alveolar/interstitial, tracheobronchial, head airways, and total
combined regions of the lungs for the nucleation simulation time-series of size
distributions.
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Figure 4.15: Percent bias in dose values estimated from high resolution DMA
measurements (R =

Qsh

Qa
= 10) compared to those calculated as “true” mass, surface

area, and number dose to the alveolar/interstitial, tracheobronchial, head airways,
and total combined regions of the lungs for the map of lognormal distributions.
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C h a p t e r 5

PARTICLE MEASUREMENTS RELEVANT TO AEROSOL
HEALTH STUDIES II: CURRENT ABILITIES AND FUTURE

REQUIREMENTS

A variety of adverse health effects have come to be associated with human exposure
to airborne particulate matter. Previous studies have suggested that various met-
rics for this exposure and for the subsequent lung-deposited particle dose may be
relevant to observed health outcomes. The metric most relevant to any given case
remains uncertain, and typical data collection rarely possesses the resolution needed
to efficiently explore the different options. The purpose of this study is to assess
the nature of the health-related information that existing technology can provide
and demonstrate the performance criteria that future technology should target. We
do this by employing the methodology described in a previous study to evaluate
the performance of a range of measurement schemes in estimating particle dose
delivered to the human lungs. Our analysis demonstrates the need for, and validity
of, a new paradigm for health-related aerosol particle measurements that prioritizes
estimation of regional lung dose metrics. It is important to collect enough informa-
tion from airborne particle measurements that various physical metrics of particle
dose to the human lungs can be inferred. However, the measurement approach
must also be accessible enough to encourage widespread use. We explore how the
technology of differential electrical mobility classification has great potential for
application in a measurement system capable of collecting data more informative
than a single metric concentration, yet still simple enough to be used in developing
a dense monitoring network.

5.1 Introduction
Health-related aerosol exposuremeasurements have long been characterized in terms
of the mass of material per unit volume of air (CEN 1993; ISO 1995). Early epi-
demiological studies showed a good correlation between particulate matter (PM)
mass concentration and adverse health effects in exposed human populations (Cham-
berlain et al. 1970). The mass concentration of particles is the mass of particles
of different and unknown sizes per unit of air and is a relatively easy quantity to
measure accurately. This led to the paradigm that potential health impacts can be



106

associated with the mass composition of inhaled material (Maynard and Jensen
2001). That paradigm now dominates health-related aerosol sampling.

In many ways, the mass paradigm can be seen as a pragmatic solution, combining
effectiveness in curbing the impact of what were at one point dominant occupational
aerosols, with the simplicity and cost-effectiveness afforded by filter samples. Yet
recent research has begun to challenge this paradigm, suggesting that the potential
for some classes of materials to cause harm might not be well represented by mass
concentration measurements alone (Dockery et al. 1993; Oberdörster 1995; Peters
et al. 1997; Pope and Dockery 2006).

In particular, there is a considerable knowledge gap about the effect of particles
with an aerodynamic diameter of less than 100 nm on human health (Brouwer et al.
2009; Maynard and Aitken 2009). Currently, these particles are classified into two
major categories based on their sources. Ultrafine particles (UFPs) refer to the
particles that are incidentally generated in the environment, whereas nanoparticles
are manufactured through controlled engineering processes (ASTM International
2006). Although there are many differences in the physicochemical composition of
UFPs and nanoparticles, one common feature is their extremely small size and the
corresponding “weightless” nature of these particles. The mass concentration of
UFPs and nanoparticles is usually small and difficult to measure directly. There is
considerable uncertainty over how exposure to these materials should be measured
(Oberdörster et al. 2005).

Some studies have suggested that health effects of airborne nanoparticles may be
more sensitive to number concentration than to mass (Oberdörster 1995). Studies
also suggest that the health impacts of nontoxic engineered nanoparticles may be
strongly associated with the surface area deposited within the respiratory tract
(Oberdörster et al. 2007). These effects relate to mechanisms of action in the
body, with hypotheses ranging from “particle overloading” of macrophage clearance
mechanisms, to surface reactions for adsorption of blood proteins after they deposit
in the respiratory tract. A number of studies have recognized that the most effective
method for probing the mechanisms that underlie observed adverse health outcomes
is to quantify the particle dose delivered to different regions of the respiratory tract
(Esmen et al. 2002).

Total deposited dose can be measured experimentally by using human subjects to
monitor inhaled and exhaled particle concentrations (Rissler et al. 2012). However,
there can be considerable variability between individual subjects, and it is very
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difficult to address experimentally how the measured total dose may be regionally
distributed within the respiratory tract. Thus, dose values are typically estimated
using mathematical models based on present understanding of regional deposition
patterns (ICRP 1994; Vincent 2005). Even if quantitative dosimetry were possible,
the question of what metric for dose should be measured remains open (Oberdörster
et al. 2005). The range of possibly significant particle characteristics to consider,
combined with the uncertainty about the most relevant metric of exposure and lung
dose, makes exposure measurement a complex issue within the scope of current
knowledge.

Though atmospheric exposure measurements are dominated by regulatory PMmass
concentrations, many additional techniques and devices have been developed for
measuring both atmospheric and occupational exposures and drawing relations to
lung deposited dose values (Maynard and Aitken 2009). These devices can be
classified according to the principles on which they are based, such as inertial or
diffusional deposition, light scattering, and so on. Categories can also be defined for
the different approaches based on their targeted metrics and information resolution.
One purpose of the present study is to present an alternative method of classifica-
tion for aerosol measurements, according to the type and quantity of information
provided about potential particle dose delivered to the human lungs. The physical
principles on which the detectors are based are of secondary importance in this
classification scheme. Of primary importance is the consistent evaluation of any
given measurement technique or available data when strategizing for health studies.

In Chapter 4 we discussed in depth this need for health effects researchers to scru-
tinize the available particle measurement data. We then outlined an approach for
quantitatively evaluating different measurement methods with respect to estimat-
ing particulate exposure and lung dose. This approach compares the information
provided by experimental measurements to predicted regional dose values that can
be determined given knowledge of the aerosol population that is not biased by
limitations of the measurement methods.

Our dose comparison strategy is illustrated in Figure 5.1. We define an unbiased
description of input aerosol and calculate an ideal estimate of regional particle dose
by employing an accepted mathematical model of lung deposition. We call this
the “true dose.” At the same time, a chosen measurement technology is modeled,
including measurement uncertainties and statistics, to produce data comparable to
that obtained in actual measurements. As we will discuss below, different categories
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of measurements provide different levels of information. For measurements of size-
distributed information, the same model of lung deposition can be applied to the
synthetic data to estimate regional dose, which can be compared to that which we
calculated as the “true dose” to reveal the efficacy and biases of the measurement
technology with respect to estimating particulate exposure and lung dose. For
measurements of size-integrated information, the collected data can be directly
compared to the “true dose” to evaluate whether the measurement can serve as
proxy for the deposited dose.

In the present study, we use our evaluation methodology to investigate the perfor-
mance of a range of existing PM measurement approaches. In our review of current
techniques, we reveal the need for new expectations for health-related aerosol par-
ticle measurements that prioritize regional lung dose estimation, and we discuss
an approach to developing new exposure monitoring instruments that address the
challenges being presented today. Our intent is not to eliminate the current mea-
surements and standards, but to promote support of a novel perspective for future
developments in health-related measurement design: one that would lead to more
sharply defined research focused on exploring particulate dose delivered to the
human lungs.

5.2 Classification of Measurement Systems
Some of the more widely used techniques for studying aerosols and their health
effects are listed in Tables 5.1(a) and (b), where they are classified in terms of their
performance characteristics. The second column of the table shows whether the
instrument classifies particles according to size and also how fine the resolution.
The third column shows the time response behavior of the system, that is, whether
the instrument responds to single particles or to short- or long-term averages. The
fourth column shows the resolution of regional lung deposition estimates possible
from collected data. Also indicated are the physical metrics that can be either
directly quantified or inferred from the collected measurements.

The first device listed, the “universal aerosol monitor,” is an idealized instrument
capable of sizing and analyzing individual particles to provide number, surface area,
and mass metrics for any sampled aerosol. Since the monitor responds to individual
particles, the time resolution is also perfect. Its perfect size classification and time
resolution are represented by the solid coverage of the size distribution curve and
the timeline graphics shown in the size and time columns, respectively. From the
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Figure 5.1: Procedural flow illustration for the quantitative evaluation of health-
relevant information provided by any given measurement strategy. Simulated exper-
imental information is evaluated by drawing comparisons to estimates of respiratory
dose that would actually occur, given knowledge of the ambient aerosol that is not
biased by limitations of the measurement methods. This comparison to a “true
dose” creates the opportunity for quantitative assessments. Relying upon synthetic
data and ideal models of the measurement methods under consideration enables
control over any uncertainties associated with the different methods and ensures fair
assessments and inter-comparisons of measurement strategies with potentially very
different operating principles.

detailed information collected, regional lung deposition can be estimated with the
fullest resolution currently available. And, of course, this instrument is small and
cheap enough for widespread personal monitoring.

The next several devices listed in Tables 5.1(a) and (b) are real, existing instruments
employing measurement schemes that range in operational complexity and infor-
mation resolution. We analyze this sample of techniques here, progressing from
measures of integrated exposure, to proposed samplers that reveal integrated re-
gional lung dose, and finally to particle size distribution measurements from which
regional deposition can be calculated. These measurements are sufficiently well
understood for our in silico experiments; the size and time resolution of the tech-
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niques considered, along with the physical metrics characterized, are defined from
operational theories. It is the classification with respect to regional lung deposition
estimates that calls upon our measurement evaluation methodology, illustrated in
Figure 5.1.

Applying our measurement evaluation procedure to this range of existing measure-
ment techniquesmakes it possible to see how far health-related particlemeasurement
technology has developed and also indicates where further developments should be
directed in the future. We have considered possible future developments and in-
cluded as the final entry in Table 5.1(b) a proposed, more realistic, approximation
of the ideal universal aerosol monitor. The design of this system would involve
compromises in the operational complexity and information resolution exhibited by
the other measurement techniques analyzed.

In the following sections, we describe the operational theories and applications of
these various measurement techniques in greater depth.

Integral Measures of Particle Exposure
Several devices listed in Table 5.1(a) measure integral functions of certain dis-
tributed properties of aerosol particles. These devices lump together all particle
size classes in a certain range. Since all particles in the given size range contribute
to the measured metric without distinguishing among them, there is no resolution
with respect to size as indicated by the lack of particle size distribution information
in the size resolution column. Instead of revealing the form of the particle size dis-
tribution, these instruments provide integral measures of given physical properties,
with efficiencies determined by the instrument transfer functions. Sketches of these
transfer functions are shown in the size resolution column.

The PM2.5 sampler, listed below the universal aerosol monitor, is the primary
method used for assessing integrated ambient fine particle exposure today. This
sampler measures the mass concentration of particles with diameters smaller than
2.5 µm. PM2.5 data are widely measured to document compliance with the National
Ambient Air Quality Standards (NAAQS), making these measures of exposure
widely available for epidemiological studies (Brunekreef and Forsberg 2005; Pope
and Dockery 2006; Vedal 1997).

As a regulatory metric, the PM2.5 criterion was born of the desire to target a fine
particle fraction derived in large measure from combustion processes. It does
not relate to the particle size dependency of how particles are deposited within
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Table 5.1: Performance characteristics for various approaches to measuring particle
exposure and regional lung dose.
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Table 5.1: Continued summary of performance characteristics for various ap-
proaches to measuring particle exposure and regional lung dose.

the respiratory tract, but rather to the source-related properties of atmospheric
aerosol. These measurements are generally collected from stationary community air
monitoring sites and can thus fail to describe the variability of individual exposures.

To better quantify the mass concentration of individual exposures, size-selective
personal samplers are often used in workplaces. Particle size fraction definitions for
health-related sampling follow definitions proposed by the American Conference of
Governmental Industrial Hygienists (ACGIH 1985) and are accepted internationally
by such organizations as the European Standards Organization (CEN 1993) and
the International Organization for Standardization (ISO 1995). Standards exist
for penetration-based criteria for the inhalable, thoracic, and respirable aerosol
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fractions, as shown in Figure 5.2. The mathematical expressions used to reproduce
these criteria are included in Appendix A.

The particle size-selective criterion for PM2.5 samplers is also shown in Figure 5.2.
For this present study, we focus our measurement evaluation on the PM2.5 criterion
over the respirable fraction criterion since the shapes of these curves are very similar
and provide nearly identical measured data for our challenge aerosol populations.
A number of samplers have been developed to measure the respirable fraction,
including cyclone-separator-based instruments (Gorner et al. 2001); these samplers
can be considered to provide the same quality of data as PM2.5 measurements, but
with the advantage of quantifying exposure at the human receptor.

Whether considering measurements from a PM2.5 sampler or a respirable personal
sampler, the data provided is averaged over the sampling volume or time of operation
with resolution typically on the order of hours, as indicated by the divisions on in
the timeline graphic in Table 5.1. These measurements thus fail to describe the
variability of an individual’s exposure over time. This is problematic for studying
atmospheric new particle formation events that lead to exposures to ultrafine parti-
cles. Such events may occur over large areas, but due to rapid growth and losses of
ultrafine particles, are often brief, so the concentrations vary rapidly with time and
with distance from sources such as highways.

The Tapered Element Oscillating Microbalance (TEOM, e.g., Series 1400a, Rup-
precht & Patashnick Co. Inc., USA) provides integrated mass concentration mea-
surements with faster time response. The short-term or real-time response is illus-
trated as finer divisions on the timeline graphic. The TEOM is a static device with
a high flow rate primarily used to measure the aerosol component of atmospheric
pollution. The instrument provides true time-differentiated mass measurements by
detecting the change in oscillating frequency of a collection substrate as it becomes
loaded with particles. With a suitable size selective inlet, the TEOM can be config-
ured to measure a range of particle sizes. We explore the theoretical performance
of this technology with a size-selective inlet capable of excluding particles larger
than approximately 100 nm in diameter. Such a setup would allow real-time mass
concentration measurements of nanoparticles. Although there are no commercial
devices of this type currently available, there is no reason in principle why they
could not be developed in the future. Particle size-selective inlets based on diffusion
would make appropriate pre-selectors for such devices. For our model instrument,
we use the 100 nm cut-point curve shown in Figure 5.2.
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Figure 5.2: Summary of currently accepted particle size-selective criteria for aerosol
sampling of inhalable, thoracic, respirable, and PM2.5 fractions (Vincent 2005). A
collection efficiency curve is also shown for a theoretical 100 nm cut-point.

For real-time measurement of particle number concentration, condensation particle
counters (CPCs) are the most widely used type of instrument. CPCs measure the
total aerosol number concentration larger than some minimum detectable size. In
all particle number concentration measurements, the integration limits over which
a particular instrument operates are critical in understanding the reported results.
CPCs become increasingly insensitive to particles smaller than 10−20 nm. Concen-
trations measured with instruments with different sensitivities may therefore differ
substantially, particularly if the particle count median diameter is close to or within
this range. For the present study, we model an ultrafine CPC (UCPC, e.g., TSI
Model 3025A, TSI Inc., USA) with the counting efficiency curve shown in Figure
5.3.

To simulate the integral measurements described here, we calculate the integral

Rdevice =

∫ ∞

0
ηdevice · nN · ν · d ln Dp (5.1)

where Rdevice is the measured response of the modeled device, ηdevice [−−] is the
collection efficiency of the device, nN = dN/d ln

(
Dp

) [
particles/m3] is the par-



115

Figure 5.3: Counting efficiency curve for the TSI Model 3025A UCPC, determined
from exponential fit of experimental data presented by Wiedensohler et al. (1997).

ticle number size distribution, and ν describes which metric is being evaluated,
i.e., number (N; ν = 1), surface area

(
S; ν = πD2

p

)
, or mass

(
M; ν = π

6 D3
pρp

)
. For

present purposes, particles are assumed to be spherical and to have specific grav-
ity of 1.4, which is typical of secondary organic aerosols that comprise much of
the atmospheric aerosol (Ahlm et al. 2012). We include estimates of systematic
uncertainty for our simulated measurements, calculated as ±10 % of the measured
concentrations.

Whether time-averaged or real-time, each of the above integral measures of mass (or
number) concentration may provide information on total inhaled mass (or number)
of particles, but offers no insight into how different size particles may deposit
in different anatomical regions of the respiratory tract. This is illustrated with
the uniform, unresolved gray coloring of the lung graphics in the lung resolution
column of Table 5.1(a). These measures provide little, if any, resolution of particle
size. Lacking knowledge of the particle size distribution, the internal, or absorbed,
particulate matter dose cannot be estimated. This does little to help guide efforts to
understand the deposition, fate, and effects of inhaled particles. Indeed, mass-based
standards for particle concentrations in air implicitly assume the same risk to health
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from all particles of a given size (Council 2004). This assumption fails in many
respects. Not all inhaled particles deposit within the respiratory tract; many particles
are exhaled without depositing. Those that are retained deposit in different regions
of the airways depending upon their size.

Lung Deposition-Based Samplers
The criterion for the respirable aerosol fraction discussed earlier is based on the
penetration of particles to the alveolar region. It does not refer to what is actually
deposited, and so does not strictly relate to the health-related dose. This criterion
has the advantage that it is simple in form, and so suggests relatively easy options for
sampling instrumentation. However, many exposure assessment situations would
benefit from exposure information more closely associated with dose. The ISO
(2012) has released recommendations for sampling conventions based on particle
deposition (rather than exposure) in adult males and females engaged in activities
of sitting, light exercise, and heavy exercise. The ISO estimates of deposition were
determined using the International Commission of Radiological Protection (ICRP
1994) human respiratory tract model.

Thus, one approach to improving estimates of personal lung deposition dose is to
design samplers with particle size-selective criteria that closely match respiratory
tract deposition curves. We consider here two examples of such respiratory dose
measuring devices that have been developed based upon different physical principles
and targeting different metrics of dose.

Fissan et al. (2006) provide a measure of “lung deposited nanoparticle surface
area.” They employ a unipolar (single polarity) charger to bring sampled aerosol
to a charged state where the electrical current carried by the charged particles is
proportional to the cumulative surface area of spherical particles that deposit within
the alveolar region of the respiratory tract. They note that, even for the agglomerate
particles produced in many high temperature processes, the charging probability
scales with particle surface area. An ion trap tunes the signal to match the size
dependent lung deposition profile. Commercial instruments have been developed
using this approach for inhaled surface area dose measurements. For our analysis
here, we simulate operation of the TSI Nanoparticle Surface Area Monitor (NSAM,
Model 3550, TSI Inc., USA).

The TSI NSAM indicates the surface area of the fraction of particles that deposit
in either the tracheobronchial or alveolar regions of the respiratory tract. The target
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Figure 5.4: Model deposition fractions representing the information captured by
the TSI NSAM sampler as a function of particle diameter for the tracheobronchial
and alveolar regions of the human respiratory tract. Deposition fractions were
determined using the ICRP (1994) model for a reference worker.

performance of an idealNSAM is tomatch the criteria for lung deposition of particles
predicted by the ICRP model for a reference worker. These curves are shown in
Figure 5.4 as a function of particle diameter. While the Model 3550’s performance
is well characterized up to 400 nm, the instrument’s response for larger particles is
not as clearly understood.

Kuo et al. (2005) developed an inlet that reproduced a portion of the ICRP (1994)
lung deposition pattern, allowing downstream instruments to collect samples repre-
sentative of the aerosol that penetrates to the lower airways. Koehler and Volckens
(2013) adapted this approach to develop a sampler, the regional deposition sampler
(RDS), for determination of the lung particle mass dose at a personal level. The RDS
was designed to assess particle deposition in the head airways, tracheobronchial,
and alveolar regions using mass-based sampling. The target performance of an ideal
RDS is to match the criteria for lung deposition of particles predicted by Hinds’
(1999) parameterization for the average of adult males and females at three levels
of exercise (i.e., sitting, light exercise, and heavy exercise). These curves are shown
in Figure 5.5 as a function of particle diameter.
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Figure 5.5: Model deposition fractions for the RDS sampler developed by Koehler
and Volckens (2013), shown as a function of particle diameter for each of three
regions in the human respiratory tract, as well as total deposition. Deposition
fractions were determined using Hinds’ (1999) parameterization for the average
of adult males and females under conditions of sitting, light exercise, and heavy
exercise.

The resolution of regional deposition capable with the RDS and the NSAM is
illustrated in Table 5.1(a) with lung graphics containing moderate detail. The infor-
mation captured by these samplers can be most ideally represented by applying the
respective modeled deposition fractions directly to the simulated aerosol exposure
size distribution to calculate the human lung-deposited surface area of particles as

Doseν =
∫ t2

t1

∫ Dp2

Dp1

VE · ηdep · nN · ν · dlnDp · dt (5.2)

where VE
[
m3
/hr

]
is the ventilation rate, or the volume of air inhaled (we used

VE = 1.5 m3
/hr), ηdep [−−] is the deposition fraction of aerosol particles in the res-

piratory system (as determined from the ICRP model or Hinds’ parameterization
for the region of interest), nN = dN/d ln

(
Dp

) [
particles/m3] is the particle num-

ber size distribution, and ν describes the dose metric being evaluated, i.e., number
(N; ν = 1), surface area

(
S; ν = πD2

p

)
, or mass

(
M; ν = π

6 D3
pρp

)
. Additional pa-

rameters and details for the models used are provided in Appendices A and B.
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For our purposes here in demonstrating the performance of lung deposition-based
sampling, we focus our analysis on the theoretical ideal operation of the RDS.
The modeled and experimental results presented by Koehler and Volckens (2013)
show decent agreement with the simplified deposition models described by Hinds
(1999), so that assuming perfect recreation of Hinds’ parameterization for the RDS
collection efficiency allows us to evaluate the most optimistic view of any potential
application of this device. We carry our optimism one step further and also consider
the theoretical application of the RDS to providing measures of all three of the
physical metrics of dose listed above. We again include estimates of systematic
uncertainty for the simulated measurements calculated as ±10 % of the measured
concentrations.

When one uses a singlemetric, be itmass, surface area, or number, to characterize the
aerosol, even the deposited dose of aerosol, one presumes that the measured quantity
bears the strongest association with the health effects under study. Narrowing the
accessible information in this way may conceal major effects. Bartley and Vincent
(2011) suggests designing arrays of samplers or sampler stages to estimate the
different metrics of deposition in the different regions of the respiratory tract in
order to avoid perceived difficulties in characterizing the full aerosol particle size
distribution. We investigate instruments capable of such characterization here to
demonstrate that full characterization of particle size distributions need not be time
and resource intensive, and should be pursued for the great benefits this information
would provide to health studies. Together with records of individual breathing
profiles, size distribution information would permit accurate estimation of tissue
doses through a set of relatively simple calculations, and would allow a single data
set to be applied to different populations by applying the appropriate respiratory
tract deposition profiles.

Measures of Distributed Properties
Finally, we consider the approach of measuring the distribution of particle properties
with respect to size. Instruments capable of size-discretized measurements are
identified in Table 5.1(b) by drawing interval divisions within the size distributions
in the size resolution column.

A number of instruments enable aerosol mass concentration to be measured as a
function of particle size, down to nanometer diameters. For time-integrated, off-line
analysis of mass concentration as a function of particle size, the most prominently
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used instrument is the Nano MOUDI (Micro Orifice Uniform Deposit Impactor,
Applied Physics Co., USA). It is a cascade impactor consisting of thirteen stages
collecting progressively smaller particles. The stages have cut-off diameters between
10 nm and 10 µm, making this one of the few instruments that spans the respirable
particle size range.

For direct, on-line measurements, the Electrical Low Pressure Impactor (ELPI,
Dekati Ltd., Finland) is a static aerosol sampler capable of measuring particle
size distribution and mass concentration in the size range 7 nm to 10 µm, again
spanning the respirable range. Particles sampled into the ELPI are charged and then
passed into a low-pressure cascade impactor with a series of electrically isolated
collection stages. Each stage collects progressively smaller particles, enabling the
size distribution of the aerosol to be estimated. The electrical current carried by the
charged particles onto each impactor stage is measured in real-time by a sensitive
multichannel electrometer. Collected particles can be removed from the impactor
stages for off-line analysis. Figure 5.6 shows the transfer functions for a 15-stage
ELPI.

The Aerodynamic Particle Sizer (APS, e.g., TSI Model 3321) uses time-of-flight
aerodynamic sizing to simultaneously count and size particles. The APS character-
izes airborne particles in the (aerodynamic) size range from 0.5 − 15 µm and so is
frequently used to measure larger particle size distributions.

Differential mobility analyzers (DMAs), operated in either constant voltage (DMPS,
differential mobility particle sizer) or scanned voltage (SMPS, scanning mobility
particle sizer) mode, are themost commonly used instruments for measuring particle
number size distributions. Devices of this type are capable of measuring aerosol
size distributions from approximately 3 − 800 nm, although not over the complete
range in a single instrument. Larger particles acquire multiple charges, degrading
measurement resolution. The size distribution is expressed in terms of particle
mobility diameter.

A DMA system operates by charging particles in an aerosol sample, typically by
passing them through a charge conditioner that generates a bipolar ion cloud using
a radioactive source. The sample then passes through a well-defined electrostatic
field. Charged particles in that sample are induced to migrate across a parallel flow
of particle-free air by an applied electrical field. Particles with a specific electrical
mobility are sampled from the exit of the electrodes, and counted. By scanning
or stepping the voltage between the electrodes, particles with electrical mobilities
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Figure 5.6: Transfer functions for a 15-stage ELPI, with cut-points ranging from
6 nm to 10 µm. The individual peaks cover the range in particle diameter sizes
collected on a given stage.

corresponding to a range of particle diameters can be counted sequentially (typically
using a CPC), allowing the aerosol size distribution to be determined. Figure 5.7
shows transfer functions for a simulated stepping-mode DMA system.

For the size-discretized measurements considered here, the relationship between the
measured responses and the sampled aerosol size spectrum is given by

Ri =

∞∫
0

nN
(
ln Dp

)
Ψ

(
i,Dp

)
d ln Dp, i = 1,2, . . . , I (5.3)

where Ri is the ith datum collected, I is the total number of measurements made,
nN = dN/d ln

(
Dp

) [
particles/m3] is the particle number size distribution, and

Ψ
(
i,Dp

)
is the response of the ith measurement channel to a particle of diameter

Dp for the device under consideration (i.e., the transfer functions illustrated in Figs.
5.6 and 5.7).

The relationship between measured responses and the aerosol size spectrum, as
defined in Eq. (5.3), results in a set of Fredholm integral equations of the first
kind. With the response values Ri and response function Ψ

(
i,Dp

)
known, solving
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Figure 5.7: Transfer functions for a simulated DMPS system operating with 36
measurement channels. Peaks indicate the range of aerosol sizes that contribute to
themeasured responses for a given channel. The distinct waves of peaks demonstrate
the effect of multiple charging on the response function. Multiple charging is not
significant at the smaller sizes, but does become important at the larger sizes.

this set of equations for the unknown sampled size distribution nN is one important
example of the many inverse problems encountered in atmospheric remote sensing.
The governing equations and methods of inversion related to DMA measurements
have been explored in detail in Chapter 2. We employ the routine developed and
described there to solve any inverse problems here in this study.

To addressmeasurement uncertainty for this class of instruments, we impose Poisson
counting statistics on the simulated instrument particle counts to produce signals
representative of what would be obtained using real instruments. To estimate the
uncertainties in inverted size distribution results, we apply a Monte Carlo method.
For this, we draw sets of instrument responses as random samples from the calculated
instrument responses, assuming a Poisson distribution, and use these as input for
the inversion algorithm. We repeat this procedure two hundred times, storing each
inversion result, and then statistically evaluate the stored inversion results to obtain
a mean result and its uncertainty.

These instruments that provide information on both particle size and concentration
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with respect to a given metric are, not surprisingly, larger, more complex, and
more expensive than those measuring concentrations alone. The size distribution
information can be invaluable, however, in permitting estimation of tissue dose
through a set of relatively simple calculations, using Eq. (5.2). By combining size
distribution information with state-of-the-art lung deposition models, the data can
be analyzed and reanalyzed with parameters tailored to the population of interest to
provide the most helpful estimates of lung dose for particle health studies. Mobility
analyzers in particular are capable of recovering sufficient information to calculate
good estimates of multiple physical metrics of deposition dose, i.e., mass, surface
area or number (Oberdörster et al. 2005).

In the present study, we evaluate measurements provided by typical application of
mobility analysis technology, and we also explore potential future applications for
developing the realistic approximation of the ideal universal aerosol monitor. We
provide more details on differential mobility analysis from the context of achieving
ideal requirements for health measurements in the next section.

Ideal Measurement Requirements
Ideally, measurements intended to assess human exposures to, and deposited dose
of, potentially hazardous airborne particles should be obtained using accurate and
precise methods throughout the periods of exposure. Two approaches might be
taken: (i) the use of a personal monitor for each subject being studied, or (ii) the
creation of a dense network of sensors that maps the concentrations and properties
of the aerosol throughout the community with sufficient spatial and temporal reso-
lution to enable dose response profiles to be probed. The former approach requires
instruments that are small, lightweight, quiet, and unobtrusive, but that provide suf-
ficiently detailed data that quantitative dose estimates can be made. Present personal
monitors for exposure to particulate matter provide too limited information for such
assessments, as discussed above. Instruments are available for the latter, commu-
nity monitoring approach, but they are far too expensive and complex to produce
sustainable, wide-reaching networks. To develop the comprehensive exposure/dose
data that are needed, these limitations to data collection and trade-offs between
spatiotemporal coverage of exposures and the accuracy and resolution with which
they can be characterized must be overcome.

The transformation of high resolution measurement techniques into ones that are
suitable for personal monitoring or the creation of dense and extensive networks
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of sensors involves compromises in instrument design. In this study, we propose
that full characterization of particle size distributions need not be time and resource
intensive, and should be pursued for the great benefits this informationwould provide
to health studies.

We focus on the technology employed by DMA systems for our discussion of how to
develop approaches suitable for personalmonitoring or dense networks. Anumber of
researchers have demonstrated the value of the information on ultrafine particles that
is provided to health effects research by state-of-the-art aerosol mobility analyzers
(Kozawa et al. 2009; Zhu et al. 2002, 2004, among others). Because ultrafine
particles deposit primarily by Brownian diffusion (Rissler et al. 2012), and the
electrical mobility of an aerosol particle, Zp, with charge q is proportional to its
diffusivity, D, i.e., Zp = qD/kT , where k and T are the Boltzmann constant and
temperature, respectively, mobility analysis measures the property that determines
where and atwhat rate particleswill deposit in the airways. Anumber of investigators
have, therefore, proposed and developed variants of these instruments that show
promise for making the data they can provide more accessible to the health effects
research community (Flagan 2004; Mui et al. 2013; Qi et al. 2008; Qi and Kulkarni
2012; Ranjan and Dhaniyala 2008).

The question remains, however: How good must the measurement be to adequately
characterize deposited dose? We propose relaxing the requirements on instrument
performance to enable design of simpler instruments still capable of recovering
sufficient size information to infer lung dose by number, surface area, or mass
metrics at the ‘human receptor’ (Nazaroff 2008). To demonstrate the validity of
this approach, we define a model instrument and quantitatively evaluate how the
information recovered from this system is influenced by relaxing design constraints
on its operating performance.

Our simulated measurements are based on the theory of mobility analysis, and
we relax the key parameter that characterizes a differential mobility analyzer, its
resolution, R. The value of R describes the sizing ability of the instrument and is
the ratio of the mobility of the particle that is transmitted through the classification
region with the highest efficiency to the range of mobilities that is transmitted with

half that peak efficiency, i.e., R =
Z∗p

∆Zfwhm
. For an ideal DMA, the resolution is

determined by the ratio of the sheath flow rate to that of the incoming aerosol sample,
i.e., Rideal =

Qsh

Qa
. This is achieved for large particles for which the classification
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voltage is high. For small, highly mobile particles, Brownian diffusion degrades
the resolution of the DMA. This variation of the response is described by a semi-
analytical transfer function that was derived by Stolzenburg (1988) (see also Flagan
1999), along with the charging probability (Fuchs 1963; Hoppel and Frick 1986;
López-Yglesias and Flagan 2013; Wiedensohler 1988) and empirical, instrument
specific transmission and counting efficiency curves.

Usingwell-establishedmodels of the instrument performance, we simulatemeasure-
ments using the DMA system according to the principles described byWiedensohler
et al. (2012). Geometry parameters for our modeled instrument are defined accord-
ing to established instrument design principles (Flagan 1999), and the sampled
aerosol flow rate is fixed as required by commonly used CPC detectors, but we
allow the number and spacing of sample channels to vary with an assigned flow rate
ratio, which also defines the operating resolution. For this, we define the number
and spacing of sample channels such that the channels are equally spaced on a
logarithmic scale for particle mobility, with overlap in the ideal triangular transfer
functions to sample all mobilities within the measurement range. We express this
as

nchannels =


ln

(
Zmin

Zmax

)
ln

(
1−β
1+β

)  + 1 (5.4)

where Zmin and Zmax are the minimum and maximum particle mobilities sampled,
respectively, and β =

1
Rideal

=
Qa

Qsh
. The mobility centroid, Z∗p,i, of the ith channel

for a cylindrical DMA column is related to other instrument parameters by (Knutson
and Whitby 1975)

Z∗p,i =
Qsh +Qe

4πLVi
ln

(
R2
R1

)
(5.5)

where Qsh is the volumetric sheath flow, Qe is the volumetric excess flow, L is
the length of the DMA column, Vi is the negative potential applied to the inner
cylinder, and R1 and R2 are the radial location of the aerosol exit and entrance,
respectively. The maximum mobility (smallest size) that can be classified with
reasonable resolution is that transmitted at a classification voltage of about 10 V.
The minimum mobility (largest size) is that transmitted at a classification voltage
of about 10 kV, before electrostatic breakdown. Thus, by defining the operating
voltages Vi to range from 10 V to 10 kV and setting the instrument geometry but
allowing the ratio of the flow rates to vary, the targeted mobilities Z∗p,i will vary, and
the number of sample channels will be adjusted accordingly.
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The instrument simulated is the long column DMA (e.g., TSI Model 3081, TSI Inc.,
USA), which is widely used in the form of the so-called scanning mobility particle
sizer (SMPS). We do not simulate scanning operation, however, as a number of ad-
ditional challenges are introduced to the analysis of scanning DMA data by the slow
response time of many commonly used CPCs. Without an accurate description of
the nonunique relationship between the time a particle exits a scanning-mode DMA
and the time it is ultimately detected, inverted distributions will be distorted. The
simulations presented here consider stepping theDMAvoltage instead, which avoids
the additional distortions. Some CPCs do indeed have fast enough response times
that SMPS measurements closely approximate stepping-mode DMA operation.

We examine both existing and proposed applications of particle size distribution
measurements from which regional deposition can be calculated. We begin by
considering the present state-of-the-art inwhich theDMA is operatedwith resolution
Rideal = 10, typical of present-day ambient measurements with this technique. We
perform additional simulations with 1.1 < Rideal < 10, to span a broad range of
reduced sizing resolution. We address the measurement uncertainties and inversion
analysis as described above for the measures of distributed properties. Additional
details on the instrument simulation are presented in Appendix A.

5.3 Evaluation of Measurement Systems
The evaluation methodology illustrated in Figure 5.1 was introduced in Chapter 4.
So far in the present study, we have addressed the measurement simulation portion
of this procedure in depth. Now, we briefly reintroduce the portions dedicated to
defining input size distributions and making the final quantitative comparisons.

For the unbiased descriptions of input aerosol, we use the simulated time evolution
of an aerosol particle population during a new particle formation event that was
introduced in Chapter 4 (see Figure 4.4). This provides a realistic, transient expo-
sure scenario that includes particles in the low nanometer size regime and extends
throughout the submicron size regime.

From our unbiased descriptions of input aerosol, we employ the ICRP model of
lung deposition to calculate total and regional deposited dose, in terms of mass,
surface area, and number of particles. These values are the “true dose.” Details on
the parameters used in the ICRP model are provided in Appendix B.

For the measurements providing integral measures of particle exposure (e.g., PM2.5)
we compare measured responses (e.g., values calculated from 5.1) directly to the
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“true dose” to uncover any possible correlation relationships. It is possible to reveal
that a measurement can be used as proxy for the deposited dose.

For measurements providing direct estimates of dose (e.g., RDS), as well as for
measurements providing size-distributed information from which dose estimates
can be calculated using Eq. (5.2), we calculate the bias in the estimated dose values
as the percent difference from the “true dose” value.

% Bias =
estimated dose − "true dose"

"truedose"
× 100 (5.6)

5.4 Results and Discussion
We calculate ideal estimates of ten-minute- and hourly-average doses to the extratho-
racic, bronchial, bronchiolar, and alveolar/interstitial regions based on number, sur-
face area, and mass metrics for the 24 hour exposure scenario shown in Figure 4.4.
We compare these ideal dose estimates with simulated measurements made by dif-
ferent techniques. Figure 5.8 compares various integral measures to ideal estimates
of mass, surface area, and number of particles deposited in the alveolar region. The
first column shows correlation plots for hourly average PM2.5 mass concentration
exposures. The second and third columns show ten-minute-average concentrations
of number and surface area concentrations, respectively. These represent measure-
ments that would be collected using a CPC, or using a sampler capable of measuring
total particle surface area. Similar comparisons for other regions of the respiratory
tract are collected in an additional results section at the end of this chapter.

The true mass dose correlates well with the PM2.5 mass exposure (linear correlation
coefficient, r = 0.99). Small deviations from the perfect correlation occur when
the atmospheric aerosol under consideration is in either the very early or very late
hours of the simulation day. During both periods, the aerosol is an aged one,
concentrated in the 50 nm < Dp < 500 nm size regime where many of the inhaled
particles are exhaled rather than deposited. During the nucleation burst, from about
10:00 through 15:00, the mass deposited in the alveolar region is reasonably well
correlated with PM2.5.

The correlation of deposited surface area with PM2.5 is slightly weaker (linear
correlation coefficient, r = 0.94). Over the first eight hours of the simulation
day, particles grow, but the number concentration and total surface area decrease
due to coagulation, leading to trends in number and surface area dose that are
orthogonal to that of PM2.5. As the inversion layer lifts between 07:00 and 11:00,
the mass and number concentrations diminish, as does the surface area. When
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Figure 5.8: Correlation of PM2.5, CPC, and (theoretical) total surface area mea-
surements to values calculated as “true” mass, surface area, and number dose to the
alveolar/interstitial region for the nucleation simulation time-series of size distribu-
tions.

nucleation commences, the surface area increases more rapidly than does PM2.5.
Thus, mass and surface area data follow a rough general trend, but they show
systematic differences.

In contrast, the number dose is uncorrelated with PM2.5 (linear correlation coef-
ficient, r = −0.57). The aged aerosol has a relatively low number concentration
though themass concentration is high. The deposited number increases dramatically
during the nucleation burst.

Table 5.2 summarizes the correlation coefficients for PM2.5 and other integral mea-
sures of ambient exposure with various metrics of deposition within in the lungs.
As with the PM2.5 sampler, integral measures of number or surface area metrics
alone fail to correlate with measures of dose outside their targetedmetric, potentially
overlooking important links to specific outcomes.

Figure 5.10 compares the hourly average mass, surface area, and number of particles
deposited in the alveolar region with hourly dose measurements from the regional
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Table 5.2: Correlation coefficients (Pearson’s r) for PM2.5 and other integral mea-
sures of ambient exposure with values calculated as “true” mass, surface area, and
number dose to the alveolar/interstitial, tracheobronchial, head airways, and total
combined regions of the lungs for the nucleation simulation time-series of size
distributions.

PM2.5 CPC PSAtotal
Mass Dose to AI 0.997 0.768 0.997

Surface Area Dose to AI 0.937 0.878 0.974

Number Dose to AI -0.561 -0.596 -0.529

Mass Dose to TB 0.996 0.770 0.998

Surface Area Dose to TB 0.933 0.868 0.972

Number Dose to TB -0.576 -0.682 -0.568

Mass Dose to Head 0.998 0.699 0.983

Surface Area Dose to Head 0.998 0.765 0.994

Number Dose to Head -0.575 -0.689 -0.570

Mass Dose Total 0.999 0.735 0.992

Surface Area Dose Total 0.967 0.847 0.991

Number Dose Total -0.583 -0.679 -0.571

deposition sampler (RDS). Similar comparisons for other regions of the respiratory
tract are shown in the additional results section. The RDS provides mass measure-
ments that are almost perfectly correlated with the true alveolar mass dose. This
is not surprising given that the RDS sampler has been designed to reproduce the
alveolar mass deposition efficiency. However, like the PM2.5 sampler, the RDS
mass dose is poorly correlated with the alveolar dose of surface area or number of
particles. As suggested by Bartley and Vincent (2011), additional dose estimates
could be obtained from such a sampler if surface area or particle count were also
measured from the collected aerosol, but then multiple measurements would be
required to capture the different metrics of interest.

Table 5.4 summarizes the correlation coefficients for three different theoretical sam-
plers created from the ideal application of the RDS sampling efficiency combined
with detection of the various particle metrics. Each of these three ideal regional
lung deposition samplers recovers its intended metric well, but cannot reveal other
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Figure 5.9: Correlation of (theoretical) PM100 nm, PN100 nm, and PSA100 nm mea-
surements to values calculated as “true” mass, surface area, and number dose to the
alveolar/interstitial region for the nucleation simulation time-series of size distribu-
tions.

metrics of dose.

Our results so far show that single-metric samplers can accurately reflect the dose of
the targeted quantity, but fail to reflect other measures of dose. Efforts to establish
statistical links between measures of airborne particulate matter and health impacts
may suffer similar deviations if the wrong metric is targeted. An alternate approach
is to use a measurement method that characterizes the aerosol in greater detail.
The differential mobility analyzer can provide such data. We first consider the
information that can be recovered from a DMA operated with Rideal = 10, typical of
present-day applications of this technique. We obtain the measured dose estimates
shown in Figure 5.11 by simulating the measurements of a TSI long column DMA,
inverting the data as discussed in detail in Chapter 2, and applying Eq. (5.2) to the
recovered particle number size distributions. Error bars are derived from repeating
the data simulation and inversion several hundred times while including simulated
statistical noise in themeasurements due to small count number. When all instrument
efficiencies are appropriately accounted for, the number of particles transmitted
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Table 5.3: Correlation coefficients (Pearson’s r) for theoretical integral measures of
ambient exposure with values calculated as “true” mass, surface area, and number
dose to the alveolar/interstitial, tracheobronchial, head airways, and total combined
regions of the lungs for the nucleation simulation time-series of size distributions.

PM100 nm PN100 nm PSA100 nm

Mass Dose to AI 0.538 0.954 0.803

Surface Area Dose to AI 0.357 0.841 0.716

Number Dose to AI -0.554 -0.480 -0.433

Mass Dose to TB 0.539 0.952 0.802

Surface Area Dose to TB 0.297 0.903 0.677

Number Dose to TB -0.607 -0.603 -0.602

Mass Dose to Head 0.545 0.951 0.803

Surface Area Dose to Head 0.284 0.795 0.664

Number Dose to Head -0.612 -0.615 -0.623

Mass Dose Total 0.539 0.953 0.803

Surface Area Dose Total 0.331 0.830 0.704

Number Dose Total -0.609 -0.591 -0.583

through the DMA in any given measurement channel may be small, giving rise to
large relative uncertainties in measured counts. We quantify these measurement
uncertainties so that we can consider them separately from the systematic errors
arising from the overallmeasurement process as dictated by instrument performance.

Figure 5.11 shows that the DMA can capture the different measures of dose accu-
rately when operated under the high resolution of Rideal = 10. Table 5.5 summarizes
the correlation coefficients for estimates of dose from DMAmeasurements with cal-
culated true values of dose within in the lungs. That high resolution (Rideal = 10)
DMA measurements accurately capture dose estimates to all regions in all metrics
is not surprising since particle size distribution recovery from DMA measurements
at this resolution is highly accurate. Yet the design and fabrication of mobility
analyzers can be made much simpler and less costly if Rideal is reduced.
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Figure 5.10: Correlation of dose values collected with regional deposition samplers
(RDS, ideal sampling efficiency and detection of specific particle metrics) to values
calculated as “true” mass, surface area, and number dose to the alveolar/interstitial
region for the nucleation simulation time-series of size distributions.

Relaxing DMA Resolution
Figure 5.12 maps the deviations in hourly average dose estimates as a function
of Rideal throughout the same New Delhi exposure scenario. For resolving power
below 2, the deviations can be substantial, particularly during the nucleation burst.
Moreover, deviations may be either positive or negative, depending upon which
portion of the size range dominates the size distribution. Once the limiting resolution
exceeds 3, deviations are appreciable only at the peak of the nucleation burst, around
noon when there is a pronounced peak in the number concentration of ultrafine
particles.

Figure 5.13 presents the 24-hour average deviation, collapsing the three-dimensional
bias map onto two dimensions to reveal a clear overarching trend for DMA mea-
surements gathered under the range of conditions considered here. The deviations
increase as resolving power decreases, but the error builds slowly for a resolution
greater than about three. As shown in Figure 5.14, the estimates of mass, surface
area, and number dose obtained from a mobility analyzer operated at Rideal = 3 are
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Figure 5.11: Correlation of dose values estimated from high resolution DMA mea-
surements (R =

Qsh

Qa
= 10) to those calculated as “true” mass, surface area, and

number dose delivered to the alveolar/interstitial region for the nucleation simulation
time-series of size distributions.
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Table 5.4: Correlation coefficients (Pearson’s r) for dose measures from regional
deposition samplers (RDS, ideal sampling efficiency and detection of specific parti-
cle metrics) with values calculated as “true” mass, surface area, and number dose to
the alveolar/interstitial, tracheobronchial, head airways, and total combined regions
of the lungs for the nucleation simulation time-series of size distributions.

RDSM RDSSA RDSN
Mass Dose to AI 0.999 0.974 -0.582

Surface Area Dose to AI 0.957 0.997 -0.590

Number Dose to AI -0.573 -0.503 0.937

Mass Dose to TB 0.998 0.976 -0.573

Surface Area Dose to TB 0.969 0.996 -0.553

Number Dose to TB -0.558 -0.591 0.997

Mass Dose to Head 0.999 0.945 -0.560

Surface Area Dose to Head 0.992 0.972 -0.593

Number Dose to Head -0.540 -0.599 0.991

Mass Dose Total 0.999 0.961 -0.571

Surface Area Dose Total 0.973 0.999 -0.593

Number Dose Total -0.562 -0.586 0.999

highly correlated with true dose (linear correlation coefficient, r = 0.99).

5.5 Conclusions
While numerous studies suggest that airborne particulate matter is responsible for a
range of adverse health effects, the question of what measure of exposure or dose is
most closely associatedwith different outcomes remains open. The present, in silico,
study of a range of measurement methods reveals that single-metric instruments
cannot provide the data to answer the question of which parameter to use. Moreover,
different measures may be appropriate to different aerosol exposure scenarios. The
PM2.5 metric was developed to satisfy a regulatory need, but it misrepresents dose
for ultrafine particles. Instruments that mimic the PM2.5 sampler by light scattering
measures may perform comparably to mass measurements for aged aerosols, but
exacerbate the deficiencies of this metric when ultrafine particles are abundant since
such particles scatter disproportionately little light.
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Table 5.5: Correlation coefficients (Pearson’s r) for estimates of dose from DMA
measurements with the values calculated as “true” mass, surface area, and number
dose to the alveolar/interstitial, tracheobronchial, head airways, and total combined
regions of the lungs for the nucleation simulation time-series of size distributions.

DMA, R = 10 DMA, R = 3

Mass Dose to AI 0.995 0.999

Surface Area Dose to AI 0.997 0.999

Number Dose to AI 0.999 0.999

Mass Dose to TB 0.997 0.999

Surface Area Dose to TB 0.998 0.999

Number Dose to TB 0.999 0.993

Mass Dose to Head 0.997 0.992

Surface Area Dose to Head 0.989 0.997

Number Dose to Head 0.999 0.991

Mass Dose Total 0.994 0.996

Surface Area Dose Total 0.992 0.998

Number Dose Total 0.999 0.989

To fully resolve the role of ultrafine particles in the adverse health impacts of partic-
ulate air pollution in the community at large and in the vicinity of localized sources,
workplace exposures to engineered nanoparticles, and in other situations, a new
paradigm for aerosol measurement is needed. The aerosol research community has
made substantial advances in particle measurements, with much of the effort being
focused on improving the ability to resolve fine detail about the nature of the parti-
cles in the air. These developments have enabled major progress in understanding
the fundamental chemistry and physics of the atmospheric aerosol, but the resulting
instruments are too large, complex, and expensive to meet the needs of the health
research community.

Instead, small, simple, and low-cost instruments that provide data on dose of par-
ticulate matter to different regions of the respiratory tract are needed. This paper
has compared and contrasted a number of steps in that direction. Though single-
metric samplers cannot address the appropriateness of different measures, a suite of
samplers or instruments, each designed to probe a single metric can, provided the
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Figure 5.12: Percent bias in dose values estimated from DMA measurements col-
lected under a range of operating conditions compared to those calculated as “true”
hourly deposited number dose delivered to the alveolar/interstitial region for the
nucleation simulation time-series of size distributions.

sampler is designed to measure dose rather than exposure. An alternate approach to
capturing various measures of dose is to measure the full particle size distribution.
Measurements made with current DMAs operating as usually used today can readily
capture the different exposure or dose measures. However, instruments operating at
that resolution fall under the category of being too big, complex, and costly for use
as personal monitors, or for dense networks. Fortunately, the present simulations
demonstrate that much simpler, lower resolution mobility analyzers can provide data
with sufficient resolution to serve the needs of health effects researchers.

Small, simplified versions of the DMA have been built (Zhang andWexler 2006), as
have a number of simpler mobility analyzers that do not fully separate particles into
differential fractions of particles within a narrow range of mobilities (Chua et al.
2009; Li et al. 2009). The opposed migration aerosol classifier (OMAC; Downard
et al. 2011; Flagan 2004; Mui et al. 2013) affords the same functionality of the DMA
with a design that is better suited to simplification and miniaturization.

The present study has assessed the suitability of a number of different measurement
methods for health effects research. We employed awell-studied type of air pollution
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Figure 5.13: Percent bias in dose values estimated from DMA measurements col-
lected under a range of operating conditions compared to those calculated as “true”
24-hour deposited number dose delivered to the alveolar/interstitial region for the
nucleation simulation time-series of size distributions.

event that spans a wide range of exposures to probe the uncertainties introduced by
different measurement scenarios. Provided the performance characteristics of the
measurement devices are well understood, this scenario enables quantitative estima-
tions of the measurement errors or uncertainties, as well as subsequent estimation
of lung deposited dose values.

Aerosol deposition is highly dependent on the individual (Lippmann 1977) and not
trivial to replicate in a sampling device. While a suite of specially designed, single-
metric samplers could provide good dose estimates for a specific subpopulation,
e.g., healthy young men, measurements that enable dose estimation according to
different respiratory tract deposition profiles broaden the applicability of the data
to represent different sensitive groups, such as children, the elderly, or those with
compromised health. Estimations of dose can also vary with assumptions about
activity level throughout the exposure period. Ameasurement approach that collects
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Figure 5.14: Correlation of dose values estimated from low resolution DMA mea-
surements (R =

Qsh

Qa
= 3) to those calculated as “true” mass, surface area, and

number dose delivered to the alveolar/interstitial region for the nucleation simula-
tion time-series of size distributions.
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the appropriate quality of information, as described in this study, such that the data
can be analyzed and reanalyzed with tailored parameters would provide the most
helpful estimates of lung dose for particle health studies.

Any limitations or biases in these measurements will affect the conclusions drawn
in PM health effect studies. Various metrics of PM exposure and dose (i.e. number,
mass, or surface area concentrations) have potential importance for health effects.
Thus, health studies should seek PM measurements that provide enough detail on
particle characteristics to investigate different physical metrics of total and regional
particle deposition in the human lungs.

In this study, we propose that full characterization of particle size distributions need
not be time and resource intensive, and should be pursued for the great benefits this
information would provide to health studies. Our analysis contrasts the nature of the
health-related information that existing technology can providewith the performance
criteria that future technology should target. This demonstration reveals the need
for measurement systems with “middle ground” capabilities. We propose relaxing
the requirements on DMA instrument performance to enable design of simpler
instruments still capable of recovering sufficient size information to infer lung dose.
Together with records of individual breathing profiles, size distribution information
would permit accurate estimation of tissue doses through a set of relatively simple
calculations, and would allow a single data set to be applied to different populations
by applying the appropriate respiratory tract deposition profiles.

5.6 Additional Measurement Evaluation Results
The respiratory tract is often considered to consist of three anatomically and func-
tionally distinct units: (a) the head/throat region, from the mouth and nose to the
larynx; (b) the tracheobronchial region from the larynx through the conducting
airways; and (c) the pulmonary/alveolar region, or the gas exchange zone. Lung
regions defined in this way (combining the bronchial and bronchiolar regions of the
original ICRP model into one tracheobronchial region) are used for the ICRP grand
average deposition model based on Hinds’ (1999) parameterization, on which the
regional deposition sampler (RDS) is based. Additional dose comparisons for these
regions of the respiratory tract are shown in Figures 5.15 through 5.22.
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Figure 5.15: Correlation of PNtotal measurements to values calculated as “true”
mass, surface area, and number dose to the alveolar/interstitial, tracheobronchial,
head airways, and total combined regions of the lungs for the nucleation simulation
time-series of size distributions.

Figure 5.16: Correlation of PSAtotal measurements to values calculated as “true”
mass, surface area, and number dose to the alveolar/interstitial, tracheobronchial,
head airways, and total combined regions of the lungs for the nucleation simulation
time-series of size distributions.
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Figure 5.17: Correlation of PN100 nm measurements to values calculated as “true”
mass, surface area, and number dose to the alveolar/interstitial, tracheobronchial,
head airways, and total combined regions of the lungs for the nucleation simulation
time-series of size distributions.

Figure 5.18: Correlation of PSA100 nm measurements to values calculated as “true”
mass, surface area, and number dose to the alveolar/interstitial, tracheobronchial,
head airways, and total combined regions of the lungs for the nucleation simulation
time-series of size distributions.
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Figure 5.19: Correlation ofmass dose collectedwith the regional deposition sampler
(RDS) to values calculated as “true dose” for the nucleation simulation time-series
of size distributions.

Figure 5.20: Correlation of number dose collected with a theoretical RDS to values
calculated as “true” mass, surface area, and number dose to the alveolar/interstitial,
tracheobronchial, head airways, and total combined regions of the lungs for the
nucleation simulation time-series of size distributions.
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Figure 5.21: Correlation of surface area dose collected with a theoretical RDS
to values calculated as “true” mass, surface area, and number dose to the alveo-
lar/interstitial, tracheobronchial, head airways, and total combined regions of the
lungs for the nucleation simulation time-series of size distributions.
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Figure 5.22: Correlation of dose values estimated from low resolution DMA mea-
surements (R =

Qsh

Qa
= 3) to those calculated as “true” mass, surface area, and

number dose to the alveolar/interstitial, tracheobronchial, head airways, and total
combined regions of the lungs for the nucleation simulation time-series of size
distributions.
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C h a p t e r 6

CONCLUSION

6.1 Summary
This thesis work, in the broadest sense, contributes to advancing our knowledge
surrounding aerosol particle measurements. More specifically, the investigations
presented here are geared towards optimizing the collection and analysis of these
measurements for health effects research. Firstly, readers will have found an acces-
sible discussion of the aerosol data inversion problem, which is an important data
analysis task in almost any aerosol measurement campaign. Secondly, readers will
have found a fresh perspective on defining the measurement system performance
necessary to collect health-relevant information.

The aerosol data inversion solution method developed and discussed in Part I of this
work is different from other approaches in a number of key ways: it incorporates
B-splines to represent the size distribution function as a cubic spline within a
discrete linear model of the inverse problem; it performs fine integration for kernel
matrix elements; it is able to handle any prescription of number, spacing, and range
of discrete solution nodes; and it can interface with three established numerical
methods for inverse solution computation (NNLS, TNNLS, regularization). This
approach shows improved particle size distribution recovery compared to other
common approaches described in the literature.

The treatment and discussion in this work of all things inversion is meant to provide
some clarity to what is an important, yet often incomprehensible, aspect of any
measurement campaign. Beyond this contribution to aerosol research in general,
the inversion routine developed here also serves to lay the groundwork for the
exploration of lung tissue dose that becomes possible with access to aerosol particle
size measurements.

As discussed in depth in Part II of thiswork, particle size distribution information can
inform accurate estimation of lung tissue doses through a set of relatively simple
calculations. The work presented there also reveals that full characterization of
particle size distributions need not be time and resource intensive, and so should be
pursued for the great benefits this information would provide to PM health-effect
studies. Quantitative analyses reveal criteria for the resolution in size information
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necessary to infer various metrics of respiratory dose. This is the target criteria for
future developments in health-related particle measurement design.

6.2 Future Work
While the measurement evaluation procedure of Chapters 4 and 5 provides direction
for the design of future health-related aerosol particlemeasurement systems, actually
creating these samplers is the next step. Air pollution regulation and mitigation
efforts need access to small, simple, and low-cost instruments that provide data on
dose of particulate matter to different regions of the respiratory tract. Perhaps this
can be achieved with a measurement system based on differential electrical mobility
classification technology. For such a system, the size resolution requirements can
be relaxed enough to simplify the system design and operation, while sufficient size
information is still recovered to infer lung dose by number, surface area, or mass
metrics.

Design details for this futuremeasurement system can be guided by themeasurement
evaluation methodology presented in this work. As an important component of this
evaluation procedure, the cubic spline inverse solution method developed here also
has potential for future applications.

The inversion analysis discussed in Chapters 2 and 3 can in principle be applied
to other particle sizing instruments, such as cascade impactors, optical counters,
new developments in mobility analysis technology, etc., provided the performance
characteristics of the measurement devices are well understood. In addition, the
treatment of B-splines, and technique of integrating these basis functions into the
aerosol data inversion problem may translate to other data analysis applications
that deal with size distribution representations, like following particle growth and
coagulation.
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A p p e n d i x A

MEASUREMENT SIMULATIONS

DMA
The differential mobility analyzer (DMA) classifies particles according to their
electrical mobility. The history of mobility analyzers can be traced back to mea-
surements of atmospheric ions in the early 20th century (Flagan 2008). Since the
mid 1970s, DMAs have been used routinely to produce aerosol standards of known
size, concentration, and composition, to measure aerosol size distributions, and to
measure aerosol properties with tandem measurement instruments systems (Park et
al. 2008).

System Setup and Operating Parameters
Measurements from a DMA systemwere modeled according to principles described
by Wiedensohler et al. (2012). The system was considered to consist of a sequential
setup of a bipolar diffusion charge conditioner, a long column DMA (L = 444 mm,
inner radius R1 = 9.38 mm, outer radius R2 = 19.58 mm), and a condensation
particle counter (CPC). All flows were considered balanced and strictly laminar.

Within the DMA classification region, charged particles in a sample are introduced
near one electrode and induced to migrate across a parallel flow of particle-free
air by an applied electrical field. Those that cross from that portion of the flow
near the entrance electrode that corresponds to the incoming sample flwo to the
counter electrode as they are carried to a downstream classified sample outlet port
are counted. The DMA selects particles that migrate within a narrow range of
velocities within an applied electric field. The voltage is scanned or stepped to
sweep through size space to determine the size distribution.

While scanning-mode DMA operation is more common today, the simulations
presented here consider the stepping-mode operation for which a semi-analytical
instrument response function exists. No such closed-formmodel for scanning-mode
operation is currently available. Without an accurate description of the nonunique
relationship between the time a particle exits a scanning-mode DMA and the time it
is ultimately detected, inverted distributions will be distorted. To avoid introducing
these additional distortions to the analyses of the present work, DMA simulations
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here consider the voltage to be changed in discrete steps and held at constant voltage
long enough to attain a steady state signal (with noise). This models the differential
mobility particle sizer (DMPS).

The maximum mobility (smallest size) that can be classified with reasonable res-
olution is that transmitted at a classification voltage of about 10 V. The minimum
mobility (largest size) is that transmitted at a classification voltage of about 10 kV,
before electrostatic breakdown. Geometry of the DMA column and flow rates within
the system determine what range of particle mobilities can be classified with given
voltage settings. The mobility centroid, Z∗p,i, of the ith channel for a cylindrical
DMA column is (Knutson and Whitby 1975)

Z∗p,i =
Qsh +Qe

4πLVi
ln

(
R2
R1

)
(A.1)

where Qsh is the volumetric sheath flow, Qe is the volumetric excess flow, L is the
length of the DMA column, Vi is the negative potential applied to the inner cylinder,
and R1 and R2 are the radial location of the aerosol exit and entrance, respectively.
For the particles to be classified, particle mobility, Zp, is then related to particle
diameter, Dp, via

Zp =
νeCc

(
Dp

)
3πµDp

(A.2)

where e is the elementary charge, ν is the number of elementary charges on the
particle, Cc is the Cunningham slip correction factor, and µ is the dynamic viscosity
of air. Thus, defining the operating voltagesVi, flow ratesQsh andQex , and geometry
parameters defines the targeted mobilities Z∗p,i and corresponding measurement size
range.

If diffusion is unimportant, particles included in the classified aerosol flow will span
a range of mobilities of Z∗p − ∆Z ≤ Zp ≤ Z∗p + ∆Z , where ∆Z = Z∗pβ and β is a
dimensionless flow parameter, relating the aerosol inlet Qa and sample outlet Qs

flows to the particle-free sheath Qsh and particle-laden excess Qe flows through
β =

Qa +Qc

Qsh +Qe
. This describes the non-diffusing transfer function illustrated in

Figure A.1. In the present work, the non-diffusing transfer function is used to define
DMA resolution values as the ratio of the sheath flow rate to that of the incoming
aerosol sample for an ideal system with balanced flows, i.e., Rideal =

1
β
=

Qsh

Qa
.

The non-diffusing transfer function is also used to define the number and spacing of
sample channels in DMA simulations as follows. First, the minimum and maximum



158

Figure A.1: Non-diffusing transfer function, Ωnd , showing the probability of tran-
siting the DMA for a particle with electrical mobility Zp = Z̃p · Z∗p where Z∗p is the
centroid of the transfer function.
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voltage settings are defined to be Vmin = 10 V and Vmax = 10 kV, respectively,
from which the corresponding maximum and minimum sampled particle mobilites,
Zmax and Zmin are calculated using Eq. (A.1). The number of voltage steps is
then determined such that the channels are equally spaced on a logarithmic scale
(for particle mobility and corresponding voltage), and the ideal triangular transfer
functions sample all mobilities within themeasurement range. This can be expressed
as

nchannels =


ln

(
Zmin

Zmax

)
ln

(
1−β
1+β

)  + 1 (A.3)

With this analysis, for a flow ratio of β = 0.1, the model system will step through
36 voltage settings equally spaced on a logarithmic scale between 10 V and 10 kV,
covering a measured particle size range of approximately 7 nm < Dp < 330 nm.

Kernel Function Definition
For the DMA-CPC system, the kernel function Ψ

(
i,Dp

)
relating a sampled size

distribution to the measured response values is given by

Ψ
(
i,Dp

)
= Qa

∞∑
ν=1

Wνη
(
Dp

)
φν

(
Dp

)
Ω

(
ν, i,Dp

)
(A.4)

where Qa denotes the aerosol volume flow rate, ν denotes the number of electric
charges on the aerosol particle, Wν denotes the factor relating the sensor response
to the flux [particles/sec] of particles carrying ν charges, η

(
Dp

)
denotes the collec-

tion of empirical, instrument specific transmission and counting efficiency terms,
φν

(
Dp

)
denotes the fraction of particles of diameter Dp carrying ν charges, and

Ω
(
ν, i,Dp

)
denotes the transfer function of the DMA, i.e., the probability that a

particle of size Dp carrying ν charges will pass through the DMA when it is set at
voltage Vi. The measured response from a DMA system is then defined as

Ri = Qa

∞∑
ν=1

Wν

∞∫
0

nN
(
ln Dp

)
η

(
Dp

)
φν

(
Dp

)
Ω

(
ν, i,Dp

)
d ln Dp (A.5)

Functional forms for these parameters are key to describing measurement theory
for data analysis. Figure A.2 illustrates typical shapes of these individual functions,
and the next few sections describe them in more detail.
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Figure A.2: Typical shapes of the functions contributing to the definition of the
integration kernel Ψi for measurement channel i of a DMA.

Transfer Function

When planning how to collect information on the particle size distribution with
measured data, the relevant property describing the instrument is its transfer func-
tion. The DMA transfer function, Ω, is defined as the probability that a particle of
a given size, starting at the aerosol entrance of the classification zone, will reach
the aerosol exit. Losses in the inlet and outlet zones outside the classification zone
are not included in Ω. The DMA transfer function depends on the sampled particle
mobility, Zp, the rod voltage,V , geometry of the DMA column, and flow rates within
the system. Particle mobility, Zp, is related to particle diameter, Dp, via Eq. (A.2),
and the mobility centroid, Z∗p,i, of the ith channel for a cylindrical DMA column is
described by Eq. (A.1).

The transfer function may be assumed to be as simple as the ideal triangular form
derived by Knutson and Whitby (1975), or slightly more complex as given by the
semi-analytical expression for the diffusive transfer function derived by Stolzenburg
(1988), or as complex as the real scanning mobility particle sizer (SMPS) obtained
from numerical simulations or empirical data-fitting (Mui et al., 2018ab).

The non-dimensional formof the ideal, non-diffusing transfer function can bewritten
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as (Stolzenburg and McMurry 2008)

Ωnd
(
Z̃p, β, δ

)
=

1
2β (1 − δ)

[��Z̃p − (1 + β)
�� + ��Z̃p − (1 − β)

��
−

��Z̃p − (1 + βδ)
�� − ��Z̃p − (1 − βδ)

��] (A.6)

where the dimensionless mobility is defined as

Z̃p =
Zp

Z∗p
(A.7)

along with dimensionless flow parameters

β =
Qa +Qs

Qsh +Qex
(A.8)

δ =
Qa −Qs

Qa +Qs
(A.9)

At the centroid mobility of this triangular transfer function, Ω
(
Z̃p

)
= 1 and at the

full-width-half-max, Ω
(
Z̃p − 0.5∆Zp

)
= Ω

(
Z̃p + 0.5∆Zp

)
= 0.5. No transmission

occurs beyond the boundaries of Z∗p ±∆Zp, i.e., Ω
(
Z̃p − ∆Zp

)
= Ω

(
Z̃p + ∆Zp

)
= 0.

The base half width of the ideal, non-broadened triangular transfer function is

∆Zp =
Qa +Qs

Qsh +Qex
Z∗p = β · Z

∗
p (A.10)

Recall that this relationship is used to determine the number of measurement chan-
nels in the present DMA simulations through Eq. (A.3).

Deviations from the triangular transfer function may occur due to well-known
sources of broadening such as particle diffusion, nonuniform distribution of par-
ticles in the inlet, imperfections in the electrode geometry or imperfections of the
flow field (Flagan 1999). Other functional forms for Ω

(
Z∗p

)
can be substituted for

this ideal form.

To a good approximation, diffusing particles spread in an ever-expanding Gaus-
sian cross-stream profile about the corresponding non-diffusing particle streamline
(Stolzenburg 1988). At the aerosol exit the final standard deviation, σ, of this profile
in non-dimensional form is

σ2 =
G

Pemig

Zp

Z∗p
(A.11)
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where the Peclet number for particle migration across the gap between the electrodes
is

Pemig =
qV
kT

f (geometry) (A.12)

and G is a parameter that depends weakly on the DMA geometry and the flow rate
ratio β. In this definition, q is the particle charge, k is the Boltzmann constant,
and T is the temperature. The factor f (geometry) accounts for nonuniformities
in the electric field along the migration path. For the cylindrical DMA, fCDM A =

(R2 − R1) /(R2 ln R2/R1). The dimensionless DMA geometry and flow factor, G, is
defined as derived by Flagan (1999).

The diffusing transfer function can be approximated as

Ωd,approx =
β (1 + δ)
σ
√

2π
exp

(
−

(
Z̃p − 1

)2

2σ2

)
(A.13)

Stolzenburg (1988) derived a more rigorous empirical diffusing transfer function as

Ωd
(
Z̃p, β, δ,σ

)
=

σ
√

2β (1 − δ)

[
ε

(
Z̃p − (1 + β)
√

2σ

)
+ ε

(
Z̃p − (1 − β)
√

2σ

)
−ε

(
Z̃p − (1 + βδ)
√

2σ

)
− ε

(
Z̃p − (1 − βδ)
√

2σ

)]
(A.14)

where ε (x) = x · erf (x)+ 1
π e−x2 and erf (x) is the error function. As σ goes to zero,

this reduces to Ωnd
(
Z̃p, β, δ

)
.

Figure A.3 demonstrates the different forms of the non-diffusing and diffusing
transfer functions. The non-diffusing transfer function is the simplest to employ
for data analysis calculations, but errors arise when it is used outside the range of
appropriate conditions (i.e., when it is used to describe conditions where diffusion
is important).

Charging Probability

The bipolar diffusion charge conditioner brings the aerosol particles to a bipolar
charge equilibrium before entering the DMA. The bipolar charge equilibrium can
be theoretically described by the work of Fuchs (1963), Hoppel and Frick (1986),
Wiedensohler (1988), and López-Yglesias and Flagan (2013).
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Figure A.3: Transfer functions, Ω, as a function of dimensionless particle mobility,
Z̃p, for a flow ratio of β =

1
10
(δ = 0) at DMA centroid diameter D∗p = 10 nm.

In the present work, the fraction of particles carrying ν charges at charge equlibrium,
φν

(
Dp

)
, is calculated according to the model of López-Yglesias and Flagan (2013)

φν
(
Dp

)
= 10

∑11
i=0 Bi(ν)(log10(Dp/2))

i

(A.15)

where Bi (ν) are fit coefficients determined by a least square regression analysis,
and the particle diameter Dp has units of meters. The fit coefficients used here are
summarized in Table A.1. Equation (A.15) defines the charging probability φν used
to simulate DMA response values from Eq. (A.5) and also to define the integration
kernel Ψi of Eq. (A.4) for inversion analysis.

Other Efficiency Terms

Other important elements of themeasurement kernel include the response and count-
ing efficiency of the measurement system’s particle detector, as well as descriptions
of particle losses throughout the system, e.g., inside of pipes, the DMA, aerosol
dryer and bipolar charge conditioner.

The performance of a condensation particle counter (CPC) was modeled for the
simulated DMA system’s particle detector. The response of a CPC has units of
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number concentration
[
cm−3] of particles. For an ideal CPC, the response to a single

particle is independent of the number of charges on it. In the basic equation for
response, Eq. (A.5), the factor relating detector response to the flux [particles/sec]
of particles for the CPC is

Wν =
1

Qs
(A.16)

Expressions relating detector efficiencies to particle diameter are available inWieden-
sohler et al. (1997) for a number of different types of CPCs. However, the size-
dependent counting efficiency of an individual CPC may depend on geometry or
actual supersaturation profile inside the condenser. Since correct measurement of
the particle number size distribution for the smallest particle sizes depends critically
on the size dependent particle detection efficiency of the CPC, for the greatest accu-
racy, the CPC used for a given application should be calibrated individually against
a reference instrument. Present simulations model a TSI Model 3025A UCPC with
the counting efficiency curve shown in Figure A.4.

Particle losses inside CPCs are implicitly included in the measured counting ef-
ficiency. Diffusion losses also occur throughout the rest of the system, including
inside the bipolar diffusion charge conditioner, in the inlet and outlet regions of the
DMA, and through various plumbing elements. These losses can be described using
equivalent pipe length and analytical formulas derived for the laminar flow regime
(Hinds 1999). Equivalent pipe lengths of different device and plumbing elements
aligned in sequence can be simply added if they are traversed by the same rate of
aerosol flow. The present work uses equivalent lengths reported by Wiedensohler
et al. (2012).

The collective efficiency term η
(
Dp

)
in Eq. (A.4) is the product of the above terms:

the penetration efficiency through the tubing, ηtube
(
Dp

)
, the penetration efficiency

through the entrance and exit regions of the DMA, ηDM A
(
Dp

)
, and the counting

efficiency of the detector, ηdet
(
Dp

)
. Assumptions in describing efficiency terms

(e.g., DMA effective length) will influence effective measurement range.
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Table A.1: Steady State distribution for “air” ions and conductive particles at 101325 Pa and 298.15 K. Fit
coefficients are shown for charge states of negatively charged particles with ν = 1 to 6 charges.

Charge State
Bi (ν) -1 -2 -3 -4 -5 -6

B0 -16256.24303 -1672.867775 -16600.32586 3938.729459 13244.15207 10835.81051
B1 -18104.59519 -1583.306766 -16059.17399 4356.029288 13692.18289 11262.95006
B2 -8385.187516 -582.3720642 -5899.297477 1812.628532 5334.877346 4389.080116
B3 -2013.540813 -91.97359113 -889.3720619 311.5988457 837.6431824 677.6320994
B4 -238.212957 -1.568748488 -0.351154004 2.606077463 -6.497776109 -10.76878649
B5 -4.221364439 1.164629175 13.07820351 -5.25627902 -14.86280614 -12.82753139
B6 2.134763808 0.037886603 0.149462281 -0.11155572 -0.046687802 0.073479529
B7 0.153529237 -0.01768478 -0.216553824 0.101397126 0.290738425 0.263044642
B8 -0.016478637 -0.000577868 -0.002794923 0.002203121 0.001663194 -0.000645683
B9 -0.003055501 0.000299085 0.004054957 -0.002185346 -0.006490684 -0.006218968
B10 -0.000175132 3.33234E-05 0.000420076 -0.000252875 -0.000702372 -0.000661849
B11 -3.64394E-06 1.06988E-06 1.31482E-05 -8.69076E-06 -2.33259E-05 -2.19138E-05

Dp,min 0.4 nm 10.6 nm 31.6 nm 68.0 nm 105.3 nm 163.1 nm
Dp,max 20 µm 20 µm 20 µm 20 µm 20 µm 20 µm
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Figure A.4: Counting efficiency curve for the TSI Model 3025A UCPC, determined
from exponential fit of experimental data presented by Wiedensohler et al. (1997).

Lung Deposition-Based Samplers
To model the RDS collection of regional deposition fractions, the following expres-
sions are used. These simplified equations were defined by Hinds (1999) to ap-
proximate the ICRP model for monodisperse spheres of standard density at standard
conditions, averaged for males and females at three exercise levels. The deposition
fraction for the head airways DFH A is

DFH A =IF
(

1
1 + exp

(
6.84 + 1.183 ln dp

)
+

1
1 + exp

(
0.924 − 1.885 ln dp

) ) (A.17)

where IF is the inhalable fraction as used by the ICRP, which is given by

IF = 1 − 0.5

(
1 −

1
1 + 0.00076d2.8

p

)
(A.18)



167

The deposition fraction for the tracheobronchial region DFT B is

DFT B =

(
0.00352

dp

) [
exp

(
−0.234

(
ln dp + 3.40

)2
)

+63.9 exp
(
−0.819

(
ln dp − 1.61

)2
)]

(A.19)

The deposition fraction for the alveolar region DFAL is

DFAL =

(
0.0155

dp

) [
exp

(
−0.416

(
ln dp + 2.84

)2
)

+19.11 exp
(
−0.482

(
ln dp − 13.62

)2
)]

(A.20)

The total deposition DF is the sum of the regional depositions, or

DF =IF
(
0.0587 +

0.911
1 + exp

(
4.77 + 1.485 ln dp

)
+

0.943
1 + exp

(
0.508 − 2.58 ln dp

) ) (A.21)

Integral Measures of Particle Exposure
To evaluate PM2.5 measurements, a sampler is modeled that follows the particle
size-selective criterion described by Vincent (2005) for PM2.5 in which

ηPM2.5
= 1 − F (x) (A.22)

where F (x) is the cumulative probability function of a standard normal variable (x)
given by

x =
ln

(
dae
Γx

)
ln (Σx)

(A.23)

in which Γx = 2.5µm and Σx = 1.50. The result is that the function reaches 0.5 at
dae = 2.5µm.

To evaluate respirable sampler measurements, first an empirical function is defined
for the inhalability, which is equivalent to the aspiration efficiency of the human
head. This is given by

I (dae) = 0.5 {1 + exp (−0.06dae)} + f (dae,U) (A.24)

where f (dae,U) is a term that takes account of the observed effects at higher wind
speeds. This is another empirical function, expressed as

f (dae,U) ≡ pUq (exp (rdae)) (A.25)



168

in which dae is in µm and the wind speed U is in ms−1, with p = 10−5, q = 2.75,
and r = 0.055 for the range 1 ≤ U ≤ 9 ms−1.

The respirable fraction, R (dae) is then defined by a curve that follows

R (dae) = I (dae) [1 − F (x)] (A.26)

where F (x) is again the cumulative probability function of a standardized normal
variable x but now with Γx = 4.25 µm and Σx = 1.50. The net result is that R (dae)

reaches 0.5 at dae = 4.0 µm.
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A p p e n d i x B

LUNG DEPOSITION MODEL

The “reference worker” defined to receive calculated dose values in the present work
is described by the parameters shown in Table B.1. These parameters match those
established by Phalen (1999). The ICRP model is then used with these parameters
to evaluate the deposition fraction of aerosol particles in the respiratory system,
ηdep [−−].

Table B.1: Parameters defining the reference worker used for lung deposition cal-
culations.

Physiological Parameters
Subject Adult male
Functional Residual Capacity 2200 cc
Extrathoracic Dead Space 50 cc
Bronchial Dead Space 49 cc
Bronchiolar Dead Space 47 cc
Height 175 cm
Tracheal Diameter 1.65 cm
First Bronchial Diameter 0.165 cm
Activity Related Parameters
Activity level Light exercise
Activity Type Nose breathing only
Ventilation Rate 1.5 m3

/hr
Respiratory Frequency 20 breaths/minute
Tidal Volume 1250 cc
Volumetric Flow Rate 725 cc/sec
Fraction Breathed through Nose 1.0
Aerosol Parameters
Density 1.4 g/cc
Shape Factor 1.0



170

A p p e n d i x C

SPLINE INTERPOLATION

Here we examine the mathematical details behind spline interpolation. Our concern
here is obtaining the correct mathematical expressions for interpolating between
discrete values of a continuousmodel such that we represent the continuousmodel as
a piecewise polynomial, or spline function. This sets the foundation for subsequent
discrete calculations involving the continuous model, such as those as we carry
out in our aerosol inversion algorithm. Our discussion here will prove essential to
understanding the setup of our discrete inverse calculations, in which we represent
the continuous particle size distribution function as a piecewise spline function.

A spline function consists of polynomial pieces joined together at a certain set of
points, called the control points, that correspond to locations t j called knots. We
define a knot vector t =

(
t j
)
to contain these knot points, and we specify simply that

this vector describe a nondecreasing sequence of real numbers with no duplicate
values. For now, while we examine the mathematics of spline interpolation in
general, we leave the precise number and spacing of the vector elements open.
We will address these specifications later, when we describe how we use spline
interpolation to approximate a continuous particle size distribution function. For
now, we assume that we have a bi-infinite set of distinct knot points to work with,
prescribed such that 

. . . < t−2 < t−1 < t0 < t1 < t2 < . . .

lim j→∞ t j = ∞ = − lim j→∞ t− j

(C.1)

Let Sd
t (x) represent a spline function of degree d with knots defined in the vector t.

We define this spline function piece by piece over a closed interval of knot points
[t1, tn] such that

Sd
t (x) =



Sd
1 (x) x ∈ [t1, t2]

Sd
2 (x) x ∈ [t2, t3]
...

Sd
n−1 (x) x ∈ [tn−1, tn]

(C.2)
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where each interpolant piece Sd
j (x) |x∈[tj,tj+1] is a polynomial of degree d, and the

points
(
t j
)n

j=1 = (t1, t2, . . . , tn) are the knots at which these piecewise polynomials
join together with certain continuity conditions. The continuity conditions depend
on the degree d of the polynomial pieces. For example, the spline function of degree
d = 1 (i.e., linear spline) is continuous in value but discontinuous in first derivative
at the knot points (i.e., its slope may change abruptly at the boundary between two
adjacent intervals). In contrast, the spline function of degree d = 3 (i.e., cubic
spline) is continuous through to the second derivative. It is the application of these
two cases (i.e., linear and cubic spline functions) that we discuss in depth here.

To help us derive the mathematical expressions we will use to incorporate linear and
cubic spline interpolations within our inversion analyses, we first introduce special
spline functions called B-splines. B-splines are so named because they are the
basis functions from which an overall spline function approximation is constructed.
By definition, a spline function of degree d with knot sequence t, such as Sd

t (x)

introduced above, is a linear combination of the B-splines associated with that knot
sequence. This is expressed as

Sd
t (x) =

∑
j

c j B j,d (x) (C.3)

where the B j,d represent the constituent B-splines, and the c j are real numbers called
the spline coefficients. We will return to this definition later, within the context of
defining our spline function representation of a continuous particle size distribution
function. At that point, we will specify the upper and lower bounds on j and discuss
the nature of the spline coefficients c j . Next, we derive the functional forms for
linear and cubic B-splines.

B-Splines (Basis Functions)
B-splines are special spline functions that have minimal support with respect to a
given knot vector. For our discussion here, we will continue to work with the bi-
infinite set of distinct knot points t =

(
t j
)
described above. Having minimal support

means that a given B-spline is nonzero only within a predefined, finite interval of the
knot sequence. In fact, B-splines of a given degree d are defined to depend only on
the d + 2 knots

(
t j, t j+1, . . . , t j+d+1

)
so that the finite interval

[
t j, t j+d+1

)
constitutes

the support of the jth B-spline B j,d .

We use the j index to reference a specific B-spline because usually we form a set
of B-splines

{
B j,d

}
of degree d associated with a knot vector t =

(
t j
)
. We can
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construct a unique B-spline for each distinct subset of d + 2 knots (tk)
j+d+1
k= j in a

given knot vector. This means that if we specify the bounds on the knot vector such
that t =

(
t j
)n+d+1

j=1 for some positive integer n, we can form n B-splines
{
B j,d

}n
j=1 of

degree d associated with this knot vector.

We derive the functional form for B-splines of degree d using the Cox-de Boor
recursion formula

B j,d (x) =
x − t j

t j+d − t j
B j,d−1 (x) +

t j+d+1 − x
t j+d+1 − t j+1

B j+1,d−1 (x) (C.4)

with

B j,0 (x) =


1 if t j ≤ x < t j+1

0 otherwise
(C.5)

From this, we see that the jth B-spline of degree 0, B j,0 (x), is piecewise constant
one or zero indicating which knot span x is in. This is illustrated in Figure C.1(a).
The support of B j,0 (x) is the half-open interval

[
t j, t j+1

)
.

One application of the recurrence relation describes B-splines of degree 1 (i.e.,
linear B-splines) and gives

B j,1 (x) =
x − t j

t j+1 − t j
B j,0 (x) +

t j+2 − x
t j+2 − t j+1

B j+1,0 (x) (C.6)

so that

B j,1 (x) =


x−tj

tj+1−tj
if t j ≤ x < t j+1

tj+2−x
tj+2−tj+1

if t j+1 ≤ x < t j+2

0 otherwise

(C.7)

That is, the jth B-spline of degree 1, B j,1 (x), is piecewise linear with support over
the interval

[
t j, t j+2

)
. Plotting this linear B-spline reveals a triangular function that

is zero below x = t j , ramps to one at x = t j+1 and back to zero at and beyond
x = t j+2, as illustrated in Figure C.1(b). Note that we can define multiple linear
B-splines over an extended knot sequence, and that we use the j index to associate a
given B-spline with the first knot point of its individual range of support. Note also
how each linear B-spline is continuous in value but discontinuous in first derivative
at its knot points.

A second application of the recurrence relation describes B-splines of degree 2
(i.e., quadratic splines). We do not explore the use of quadratic splines within our
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Figure C.1: Basis functions (B-splines) B j,d of degree d = 0 (top), d = 1 (middle),
d = 3 (bottom).
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inversion algorithm, and in general, quadratic splines are not used in applications as
often as cubic or even linear splines. Nevertheless, we include the derivation of their
functional form for continuity and clarity in applying the Cox-de Boor recursion
formula. We obtain the following explicit expression for a generic quadratic B-spline

B j,2 (x) =
x − t j

t j+2 − t j
B j,1 (x) +

t j+3 − x
t j+3 − t j+1

B j+1,1 (x) (C.8)

=
x − t j

t j+2 − t j

[
x − t j

t j+1 − t j
B j,0 (x) +

t j+2 − x
t j+2 − t j+1

B j+1,0 (x)
]

+
t j+3 − x

t j+3 − t j+1

[
x − t j+1

t j+2 − t j+1
B j+1,0 (x) +

t j+3 − x
t j+3 − t j+2

B j+2,0 (x)
]

and collecting like terms gives

B j,2 (x) =
(

x − t j

t j+2 − t j

) (
x − t j

t j+1 − t j

)
B j,0 (x) (C.9)

+

[(
x − t j

t j+2 − t j

) (
t j+2 − x

t j+2 − t j+1

)
+

(
t j+3 − x

t j+3 − t j+1

) (
x − t j+1

t j+2 − t j+1

)]
B j+1,0 (x)

+

(
t j+3 − x

t j+3 − t j+1

) (
t j+3 − x

t j+3 − t j+2

)
B j+2,0 (x)

so that

B j,2 (x) =



(
x−tj

tj+2−tj

) (
x−tj

tj+1−tj

)
if t j ≤ x < t j+1(

x−tj
tj+2−tj

) (
tj+2−x

tj+2−tj+1

)
+

(
tj+3−x

tj+3−tj+1

) (
x−tj+1

tj+2−tj+1

)
if t j+1 ≤ x < t j+2(

tj+3−x
tj+3−tj+1

) (
tj+3−x

tj+3−tj+2

)
if t j+2 ≤ x < t j+3

0 otherwise

(C.10)

Moving onwith a third application of the recurrence relation, we obtain the following
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explicit expression for B-splines of degree 3 (i.e., cubic splines)

B j,3 (x) =
x − t j

t j+3 − t j
B j,2 (x) +

t j+4 − x
t j+4 − t j+1

B j+1,2 (x) (C.11)

=
x − t j

t j+3 − t j

{(
x − t j

t j+2 − t j

) (
x − t j

t j+1 − t j

)
B j,0 (x)

+

[(
x − t j

t j+2 − t j

) (
t j+2 − x

t j+2 − t j+1

)
+

(
t j+3 − x

t j+3 − t j+1

) (
x − t j+1

t j+2 − t j+1

)]
B j+1,0 (x)

+

(
t j+3 − x

t j+3 − t j+1

) (
t j+3 − x

t j+3 − t j+2

)
B j+2,0 (x)

}
+

t j+4 − x
t j+4 − t j+1

{(
x − t j+1

t j+3 − t j+1

) (
x − t j+1

t j+2 − t j+1

)
B j+1,0 (x)

+

[(
x − t j+1

t j+3 − t j+1

) (
t j+3 − x

t j+3 − t j+2

)
+

(
t j+4 − x

t j+4 − t j+2

) (
x − t j+2

t j+3 − t j+2

)]
B j+2,0 (x)

+

(
t j+4 − x

t j+4 − t j+2

) (
t j+4 − x

t j+4 − t j+3

)
B j+3,0 (x)

}
and collecting like terms gives

B j,3 (x) =
(

x − t j

t j+3 − t j

) (
x − t j

t j+2 − t j

) (
x − t j

t j+1 − t j

)
B j,0 (x) (C.12)

+

[(
x − t j

t j+3 − t j

) (
x − t j

t j+2 − t j

) (
t j+2 − x

t j+2 − t j+1

)
+

(
x − t j

t j+3 − t j

) (
t j+3 − x

t j+3 − t j+1

) (
x − t j+1

t j+2 − t j+1

)
+

(
t j+4 − x

t j+4 − t j+1

) (
x − t j+1

t j+3 − t j+1

) (
x − t j+1

t j+2 − t j+1

)]
B j+1,0 (x)

+

[(
x − t j

t j+3 − t j

) (
t j+3 − x

t j+3 − t j+1

) (
t j+3 − x

t j+3 − t j+2

)
+

(
t j+4 − x

t j+4 − t j+1

) (
x − t j+1

t j+3 − t j+1

) (
t j+3 − x

t j+3 − t j+2

)
+

(
t j+4 − x

t j+4 − t j+1

) (
t j+4 − x

t j+4 − t j+2

) (
x − t j+2

t j+3 − t j+2

)]
B j+2,0 (x)

+

(
t j+4 − x

t j+4 − t j+1

) (
t j+4 − x

t j+4 − t j+2

) (
t j+4 − x

t j+4 − t j+3

)
B j+3,0 (x)
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so that

B j,3 (x) =



(
x−tj

tj+3−tj

) (
x−tj

tj+2−tj

) (
x−tj

tj+1−tj

)
if t j ≤ x < t j+1(

x−tj
tj+3−tj

) (
x−tj

tj+2−tj

) (
tj+2−x

tj+2−tj+1

)
+

(
x−tj

tj+3−tj

) (
tj+3−x

tj+3−tj+1

) (
x−tj+1

tj+2−tj+1

)
if t j+1 ≤ x < t j+2

+
(

tj+4−x
tj+4−tj+1

) (
x−tj+1

tj+3−tj+1

) (
x−tj+1

tj+2−tj+1

)(
x−tj

tj+3−tj

) (
tj+3−x

tj+3−tj+1

) (
tj+3−x

tj+3−tj+2

)
+

(
tj+4−x

tj+4−tj+1

) (
x−tj+1

tj+3−tj+1

) (
tj+3−x

tj+3−tj+2

)
if t j+2 ≤ x < t j+3

+
(

tj+4−x
tj+4−tj+1

) (
tj+4−x

tj+4−tj+2

) (
x−tj+2

tj+3−tj+2

)(
tj+4−x

tj+4−tj+1

) (
tj+4−x

tj+4−tj+2

) (
tj+4−x

tj+4−tj+3

)
if t j+3 ≤ x < t j+4

0 otherwise

(C.13)

From this, the jth B-spline of degree 3, B j,3 (x), is piecewise cubic with support
over the interval

[
t j, t j+4

)
. Plotting this cubic B-spline reveals a smooth function

that is continuous through to second derivative for all real numbers x, including the
knot points. We illustrate a series of these cubic B-splines in Figure C.1(c).

Our discussion here reveals some characteristic features of individual B-splines that
we summarize as follows:

1. Local knots. The jthB-spline B j,d depends only on the d+2 knots t j, t j+1, . . . , t j+d+1.

2. Local support. If x is outside the interval
[
t j, t j+d+1

)
then B j,d (x) = 0.

3. Positivity. If x ∈
(
t j, t j+d+1

)
then B j,d (x) > 0.

4. Continuity Conditions. A B-spline B j,d is a continuous function at its defin-
ing knots t j, t j+1, . . . , t j+d+1. When all knots belonging to B j,d are distinct,
derivatives of the B-spline are also continuous up to the derivative of order
d − 1.

5. Smoothness. The smoothness of B j,d increases with the degree d.

6. Local support. If x lies in the interval
[
t j, t j+1

)
then only the d + 1 B-splines

B j−d,d, . . . ,B j,d are nonzero.

7. Unity partition. The sumof all B-splines of degree d is unity, i.e.,
∑

j

B j,d (x) =

1, for all x.
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Properties 1 through 4 follow by induction from the Cox-deBoor recurrence relation.
With respect to property 4, we note that the continuity of derivative order is reduced
by one for each coincident (nondistinct) knot point. We do not consider this situation
further, but continue to assume all values within our knot vector t =

(
t j
)
are distinct.

Properties 5 and 6 are additional properties observed when considering not just
one B-spline but the linear span of all B-splines of a given degree d for a given
knot sequence t.We will draw upon all of these properties, along with the B-spline
functional forms derived above, to describe the specific details of defining spline
function representations of our continuous particle size distribution function.

Spline Function Approximations
In general, any continuous model can be approximated as a spline function of
degree d with a given set of control points. Here, finally, we consider the details of
our specific example: We want to represent a continuous particle size distribution
function as a piecewise spline function by defining spline interpolants to connect a
set of discrete control points.

As introduced above, the control points of a spline function must correspond to knot
points contained within a knot vector t =

(
t j
)
. So far, we have been working with

a bi-infinite set of distinct, nondecreasing knot points, with no constraints on the
precise number and spacing of the vector elements. We will continue to assume that
we have a sequence of distinct, nondecreasing knot points for our size distribution
application, but we will address the specifications on number and spacing now.

A spline associated with knots that are equidistant from each other is called a car-
dinal spline. Because of the uniformity of such a knot sequence, the mathematical
formulas involving cardinal B-splines are much simpler than the formulas corre-
sponding to general B-splines, such as those we derived above. Nevertheless, we
will continue to leave the spacing of our knot points unconstrained, as this provides
flexibility within our inversion algorithm.

With respect to the length of our knot sequence, t is necessarily a finite sequence in
any practical situation. It is also necessary to have a minimum number n ≥ d + 1 of
control points to construct a degree d spline curve Sd

t (x). Thus, we set our n control
points to correspond to the n knot points

(
t j
)n

j=1 which define the locations at which
our piecewise polynomials join together with certain continuity conditions.

At this point, we also need to distinguish between internal knots and end points.
Internal knots cover the x-domain we are interested in, i.e., the closed interval [t1, tn].
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Yet we will ultimately be expressing our spline function as a linear combination of
B-splines, and we have shown that a single B-spline extends over d + 2 knots. It
follows then that the internal knots need to be extended with d end points on each
side, to give full support to the first and last B-spline which affect the internal knot
intervals.

We can now completely specify the knot vector we will need to obtain all of our
spline interpolants. For n control points s j = Sd

t
(
t j
)
, j = 1, . . . ,n we need n + 2d

knot points t =
(
t j
)n+d

j=1−d to define n + d − 1 B-splines
{
B j,d

}n−1
j=1−d of degree d, and

each B-spline will have a corresponding coefficient value c =
(
c j

)n−1
j=1−d . With this,

we can now also specify the upper and lower bounds on the j index in our overall
spline function definition:

Sd
t (x) =

n−1∑
j=1−d

c j B j,d (x) (C.14)

In the linear case, the unknown spline coefficients c j are uniquely defined by the
interpolation conditions, and so their values correspond to the magnitude of the
interpolated function. For the higher degree cubic splines, there is some arbitrariness
in choosing the coefficient values. We will expand on this when we discuss our
inversion kernel matrix setup.

We can simplify the spline function definition above. We have seen that on any
nontrivial interval

[
t j, t j+1

)
between adjacent knot points, at most d + 1 of the B j,d

are nonzero, viz. B j−d,d, . . . ,B j,d . This means that any piece Sd
j (x) |x∈[tj,tj+1] of the

spline function Sd
t (x) introduced above is a linear combination of d + 1 B-splines.

This is expressed as

Sd
j (x) =

j∑
k= j−d

ck Bk,d (x) (C.15)

This linear combination of B-splines satisfies the continuity conditions at the bound-
aries between adjacent intervals of the spline function Sd

t (x). We will use this
expression to define our linear and cubic spline function approximations piece by
piece.
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Linear Spline
We use the definition above for first degree, or linear, B-splines with shorthand
notation to emphasize the dependence of a B-spline on particular individual knots.

B1 (
x |t j, t j+1, t j+2

)
=


B11 (

x |t j, t j+1, t j+2
)

if t j ≤ x < t j+1

B21 (
x |t j, t j+1, t j+2

)
if t j+1 ≤ x < t j+2

0 otherwise

(C.16)

We then describe any segment S1
j (x) |x∈[tj,tj+1] of our size distribution function by

S1
j (x) =

j∑
k= j−1

ck Bk,1 (x) (C.17)

=c j−1B j−1,1 (x) + c j B j,1 (x)

=c j−1B21 (
x |t j−1, t j, t j+1

)
+ c j B11 (

x |t j, t j+1, t j+2
)

This should produce the familiar linear interpolation formula

S1
j (x) = c j−1

(
t j+1 − x
t j+1 − t j

)
+ c j

(
x − t j

t j+1 − t j

)
(C.18)

Cubic Spline
We use the definition above for third degree, or cubic, B-splines with shorthand
notation to emphasize the dependence of a B-spline on particular individual knots.

B3 (
x |t j, t j+1, t j+2, t j+3, t j+4

)
=



B13 (
x |t j, t j+1, t j+2, t j+3, t j+4

)
if t j ≤ x < t j+1

B23 (
x |t j, t j+1, t j+2, t j+3, t j+4

)
if t j+1 ≤ x < t j+2

B33 (
x |t j, t j+1, t j+2, t j+3, t j+4

)
if t j+2 ≤ x < t j+3

B43 (
x |t j, t j+1, t j+2, t j+3, t j+4

)
if t j+3 ≤ x < t j+4

0 otherwise
(C.19)

We then describe any segment S3
j (x) |x∈[tj,tj+1] of our size distribution function by

S3
j (x) =

j∑
k= j−3

ck Bk,3 (x) (C.20)

=c j−3B j−3,3 (x) + c j−2B j−2,3 (x) + c j−1B j−1,3 (x) + c j B j,3 (x)

=c j−3B43 (
x |t j−3, t j−2, t j−1, t j, t j+1

)
+ c j−2B33 (

x |t j−2, t j−1, t j, t j+1, t j+2
)

+ c j−1B23 (
x |t j−1, t j, t j+1, t j+2, t j+3

)
+ c j B13 (

x |t j, t j+1, t j+2, t j+3, t j+4
)
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A p p e n d i x D

KERNEL MATRIX SETUP

The indices used here to discuss and demonstrate the setup of inversion kernel
matrices can be understood as follows:

1. i = 1 . . .m indexes the observed instrument channel, here specifically the raw
voltage bins and instrument responses Ri

2. j = 1 . . . n indexes the physical size bins

3. j = −d . . . n indexes the coefficient values for a spline of degree d

4. j = −d . . . (n + d + 1) indexes the knot points needed to construct the spline
curve

5. p = 0 . . . nsub indexes the secondary integration points, or subdivision points,
used to evaluate the subinterval integrals for kernel matrix elements

Signals in each of m channels may be written

gi =

b∫
a

Ki (x) f (x) dx + ei, i = 1, . . . ,m (D.1)

We break the integral over [a, b] into n subintervals centered around n output nodes(
x j

)n
j=1 so that the n+1 “primary integration points” are defined to be the geometric

mean values between successive output nodes,

x j± 1
2
=
√

x j x j±1 (D.2)

At the endpoints, we use x0 = 2x1 − x2 and xn+1 = 2xn − xn−1 to evaluate x− 1
2
and

xn+ 1
2
. This gives

gi =

n∑
j=1

x
j+ 1

2∫
x
j− 1

2

Ki (x) f (x) dx (D.3)
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If we represent the size distribution function as a histogram, we then place a discrete
value of f (x) outside of the integral such that

gi =

n∑
j=1

f
(
x j

) x
j+ 1

2∫
x
j− 1

2

Ki (x) dx (D.4)

The discrete value f
(
x j

)
becomes the unknown that is to be recovered from the

inversion analysis. If x j corresponds to the point in
(
x j− 1

2
, x j+ 1

2

)
where f (x) achieves

its mean value for that subinterval (i.e., f
(
x j

)
= f

(
c j

)
), then this is a simple

application of the first mean value theorem for definite integrals. However, the
location of this c j cannot be precisely known a priori, so it is often taken to represent
some midpoint value for the jth subinterval. Here, we simply use the discrete output
nodes

(
x j

)n
j=1 around which we have defined our size bin intervals.

If the kernel function Ki (x) is also represented by only a single value evaluated at
the point x j within the jth subinterval, then

x
j+ 1

2∫
x
j− 1

2

Ki (x) dx = Ki
(
x j

)
∆x j (D.5)

where ∆x j = x j+ 1
2
− x j− 1

2
. Ideally, Ki

(
x j

)
represents the true bin-average value

for the given subinterval so that this is another application of the first mean value
theorem for definite integrals (i.e., K

(
x j

)
= K

(
c′j

)
) . However, Ki (x) is often

simply evaluated at the same midpoint value x j chosen for the interval as defined
above. This provides the simplest approximation which we call “simple quadrature.”

gi =

n∑
j=1

f
(
x j

)
Ki

(
x j

)
∆x j (D.6)

gi =

n∑
j=1

Ki j f j (D.7)

Ki j = Ki
(
x j

)
∆x j (D.8)

f j = f
(
x j

)
(D.9)

However, if the kernel function can be defined with finer resolution than the width
of the size bin intervals, then we can evaluate the integral of the kernel function over
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the size bin interval using the trapezoidal rule

x
j+ 1

2∫
x
j− 1

2

Ki (x) dx =
nsub∑
p=0

βpKi
(
x j,p

)
∆x j,p (D.10)

where nsub is the number of subintervals to use in evaluating the integral over the
jth size bin, x j,p represents the secondary integration point at which to evaluate
the kernel function within the jth bin, ∆x j,p is the width of the nsub subinterval
bins, and βp = 1/2 at the endpoints of the summation and 1 elsewhere. The set of
nsub+1 points

(
x j,p

)nsub
p=0 that define the secondary integration points (i.e., subinterval

boundaries) are evaluated as

x j,p = x j− 1
2
+ ∆x j,p · p, p = 0, . . . ,nsub (D.11)

with
∆x j,p =

∆x j

nsub
(D.12)

∆x j = x j+ 1
2
− x j− 1

2
(D.13)

This provides a slightly improved approximation which we call “histogram quadra-
ture” since the size distribution function is still represented as a histogram.

gi =

n∑
j=1

f
(
x j

) 
nsub∑
p=0

βpKi
(
x j,p

)
∆x j,p

 (D.14)

gi =

n∑
j=1

Ki j f j (D.15)

Ki j =

nsub∑
p=0

βpKi
(
x j,p

)
∆x j,p (D.16)

f j = f
(
x j

)
(D.17)

Relying on a single value for the size distribution function f (x) or for the kernel
function Ki (x) over the size bin interval corresponding to x j can be a major source
of error in inverse calculations. More generally, the size distribution function f (x)

in the response integral can be approximated as a spline of degree d with knots at a
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certain set of quadrature points. Then

gi =

n∑
j=1

x
j+ 1

2∫
x
j− 1

2

Ki (x) f (x) dx

=

n∑
j=1


xj∫

x
j− 1

2

Ki (x) Sd
j−1 (x) dx +

x
j+ 1

2∫
xj

Ki (x) Sd
j (x) dx

 (D.18)

We have defined a nondecreasing sequence of real numbers called the knot vector,
given by t =

(
t j
)n+d+1

j=−d such that the knots exactly correspond to the n output nodes
of the size distribution, with some extrapolation beyond the upper and lower bounds
(i.e.,

(
t j
)n

j=1 =
(
x j

)n
j=1).

Linear Spline Quadrature
With the definition above for describing any segment S1

j (x) of our size distribution
function using first degree, or linear, B-splines:

S1
j (x) =c j−1B21 (

x |t j−1, t j, t j+1
)
+ c j B11 (

x |t j, t j+1, t j+2
)

we express our response integral as

gi =

n∑
j=1


xj∫

x
j− 1

2

Ki (x)
[
c j−2B21 (

x | t j−2, t j−1, t j
)
+ c j−1B11 (

x | t j−1, t j, t j+1
) ]

dx

+

x
j+ 1

2∫
xj

Ki (x)
[
c j−1B21 (

x | t j−1, t j, t j+1
)
+ c j B11 (

x | t j, t j+1, t j+2
) ]

dx


(D.19)
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and collecting like terms gives

gi =

n∑
j=1

c j−2

xj∫
x
j− 1

2

Ki (x) B21 (
x | t j−2, t j−1, t j

)
dx

+ c j−1


xj∫

x
j− 1

2

Ki (x) B11 (
x | t j−1, t j, t j+1

)
dx +

x
j+ 1

2∫
xj

Ki (x) B21 (
x | t j−1, t j, t j+1

)
dx


+c j

x
j+ 1

2∫
xj

Ki (x) B11 (
x | t j, t j+1, t j+2

)
dx

 (D.20)

We evaluate this expression for a simple three knot function, to demonstrate endpoint
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behavior. Expanding the sum for n = 3 gives

gi =c−1

x1∫
x 1

2

Ki (x) B21 (x | t−1, t0, t1) dx (D.21)

+ c0


x1∫

x 1
2

Ki (x) B11 (x | t0, t1, t2) dx +

x 3
2∫

x1

Ki (x) B21 (x | t0, t1, t2) dx


+ c1

x 3
2∫

x1

Ki (x) B11 (x | t1, t2, t3) dx

+ c0

x2∫
x 3

2

Ki (x) B21 (x | t0, t1, t2) dx

+ c1


x2∫

x 3
2

Ki (x) B11 (x | t1, t2, t3) dx +

x 5
2∫

x2

Ki (x) B21 (x | t1, t2, t3) dx


+ c2

x 5
2∫

x2

Ki (x) B11 (x | t2, t3, t4) dx

+ c1

x3∫
x 5

2

Ki (x) B21 (x | t1, t2, t3) dx

+ c2


x3∫

x 5
2

Ki (x) B11 (x | t2, t3, t4) dx +

x 7
2∫

x3

Ki (x) B21 (x | t2, t3, t4) dx


+ c3

x 7
2∫

x3

Ki (x) B11 (x | t3, t4, t5) dx
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and collecting like terms gives

gi =c−1

x1∫
x 1

2

Ki (x) B21 (x | t−1, t0, t1) dx (D.22)

+ c0


x1∫

x 1
2

Ki (x) B11 (x | t0, t1, t2) dx +

x2∫
x1

Ki (x) B21 (x | t0, t1, t2) dx


+ c1


x2∫

x1

Ki (x) B11 (x | t1, t2, t3) dx +

x3∫
x2

Ki (x) B21 (x | t1, t2, t3) dx


+ c2


x3∫

x2

Ki (x) B11 (x | t2, t3, t4) dx +

x 7
2∫

x3

Ki (x) B21 (x | t2, t3, t4) dx


+ c3

x 7
2∫

x3

Ki (x) B11 (x | t3, t4, t5) dx

Written in matrix form

gi =



∫ x1
x 1

2

Ki (x) B21 (x | t−1, t0, t1) dx[∫ x1
x 1

2

Ki (x) B11 (x | t0, t1, t2) dx +
∫ x2

x1
Ki (x) B21 (x | t0, t1, t2) dx

]
[∫ x2

x1
Ki (x) B11 (x | t1, t2, t3) dx +

∫ x3
x2

Ki (x) B21 (x | t1, t2, t3) dx
][∫ x3

x2
Ki (x) B11 (x | t2, t3, t4) dx +

∫ x 7
2

x3 Ki (x) B21 (x | t2, t3, t4) dx
]

∫ x 7
2

x3 Ki (x) B11 (x | t3, t4, t5) dx



T

×



c−1

c0

c1

c2

c3


(D.23)

Cubic Spline Quadrature
With the definition above for describing any segment S3

j (x) of our size distribution
function using third degree, or cubic, B-splines:

S3
j (x) =c j−3B43 (

x |t j−3, t j−2, t j−1, t j, t j+1
)
+ c j−2B33 (

x |t j−2, t j−1, t j, t j+1, t j+2
)

= + c j−1B23 (
x |t j−1, t j, t j+1, t j+2, t j+3

)
+ c j B13 (

x |t j, t j+1, t j+2, t j+3, t j+4
)
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we express our response integral as

gi =

n∑
j=1


x j∫

x
j− 1

2

Ki (x)
[
cj−4B43 (

x | tj−4, tj−3, tj−2, tj−1, tj
)
+ cj−3B33 (

x | tj−3, tj−2, tj−1, tj, tj+1
)

+cj−2B23 (
x | tj−2, tj−1, tj, tj+1, tj+2

)
+ cj−1B13 (

x | tj−1, tj, tj+1, tj+2, tj+3
) ]

dx

+

x
j+ 1

2∫
x j

Ki (x)
[
cj−3B43 (

x | tj−3, tj−2, tj−1, tj, tj+1
)
+ cj−2B33 (

x | tj−2, tj−1, tj, tj+1, tj+2
)

+cj−1B23 (
x | tj−1, tj, tj+1, tj+2, tj+3

)
+ cjB13 (

x | tj, tj+1, tj+2, tj+3, tj+4
) ]

dx
}

(D.24)

and collecting like terms gives

gi =

n∑
j=1

cj−4

x j∫
x
j− 1

2

Ki (x) B43 (
x | tj−4, tj−3, tj−2, tj−1, tj

)
dx

+ cj−3


x j∫

x
j− 1

2

Ki (x) B33 (
x | tj−3, tj−2, tj−1, tj, tj+1

)
dx +

x
j+ 1

2∫
x j

Ki (x) B43 (
x | tj−3, tj−2, tj−1, tj, tj+1

)
dx


+ cj−2


x j∫

x
j− 1

2

Ki (x) B23 (
x | tj−2, tj−1, tj, tj+1, tj+2

)
dx +

x
j+ 1

2∫
x j

Ki (x) B33 (
x | tj−2, tj−1, tj, tj+1, tj+2

)
dx


+ cj−1


x j∫

x
j− 1

2

Ki (x) B13 (
x | tj−1, tj, tj+1, tj+2, tj+3

)
dx +

x
j+ 1

2∫
x j

Ki (x) B23 (
x | tj−1, tj, tj+1, tj+2, tj+3

)
dx


+cj

x
j+ 1

2∫
x j

Ki (x) B13 (
x | tj, tj+1, tj+2, tj+3, tj+4

)
dx

 (D.25)

We evaluate this expression for a simple five knot function, to demonstrate endpoint
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behavior. Expanding the sum for n = 5 gives

gi =c−3

x1∫
x 1

2

Ki (x) B43 (x | t−3, t−2, t−1, t0, t1) dx (D.26)

+ c−2


x1∫

x 1
2

Ki (x) B33 (x | t−2, t−1, t0, t1, t2) dx +

x 3
2∫

x1

Ki (x) B43 (x | t−2, t−1, t0, t1, t2) dx


+ c−1


x1∫

x 1
2

Ki (x) B23 (x | t−1, t0, t1, t2, t3) dx +

x 3
2∫

x1

Ki (x) B33 (x | t−1, t0, t1, t2, t3) dx


+ c0


x1∫

x 1
2

Ki (x) B13 (x | t0, t1, t2, t3, t4) dx +

x 3
2∫

x1

Ki (x) B23 (x | t0, t1, t2, t3, t4) dx


+ c1

x 3
2∫

x1

Ki (x) B13 (x | t1, t2, t3, t4, t5) dx

+ c−2

x2∫
x 3

2

Ki (x) B43 (x | t−2, t−1, t0, t1, t2) dx

+ c−1


x2∫

x 3
2

Ki (x) B33 (x | t−1, t0, t1, t2, t3) dx +

x 5
2∫

x2

Ki (x) B43 (x | t−1, t0, t1, t2, t3) dx


+ c0


x2∫

x 3
2

Ki (x) B23 (x | t0, t1, t2, t3, t4) dx +

x 5
2∫

x2

Ki (x) B33 (x | t0, t1, t2, t3, t4) dx


+ c1


x2∫

x 3
2

Ki (x) B13 (x | t1, t2, t3, t4, t5) dx +

x 5
2∫

x2

Ki (x) B23 (x | t1, t2, t3, t4, t5) dx


+ c2

x 5
2∫

x2

Ki (x) B13 (x | t2, t3, t4, t5, t6) dx
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cont’d:

gi = + c−1

x3∫
x 5

2

Ki (x) B43 (x | t−1, t0, t1, t2, t3) dx

+ c0


x3∫

x 5
2

Ki (x) B33 (x | t0, t1, t2, t3, t4) dx +

x 7
2∫

x3

Ki (x) B43 (x | t0, t1, t2, t3, t4) dx


+ c1


x3∫

x 5
2

Ki (x) B23 (x | t1, t2, t3, t4, t5) dx +

x 7
2∫

x3

Ki (x) B33 (x | t1, t2, t3, t4, t5) dx


+ c2


x3∫

x 5
2

Ki (x) B13 (x | t2, t3, t4, t5, t6) dx +

x 7
2∫

x3

Ki (x) B23 (x | t2, t3, t4, t5, t6) dx


+ c3

x 7
2∫

x3

Ki (x) B13 (x | t3, t4, t5, t6, t7) dx

+ c0

x4∫
x 7

2

Ki (x) B43 (x | t0, t1, t2, t3, t4) dx

+ c1


x4∫

x 7
2

Ki (x) B33 (x | t1, t2, t3, t4, t5) dx +

x 9
2∫

x4

Ki (x) B43 (x | t1, t2, t3, t4, t5) dx


+ c2


x4∫

x 7
2

Ki (x) B23 (x | t2, t3, t4, t5, t6) dx +

x 9
2∫

x4

Ki (x) B33 (x | t2, t3, t4, t5, t6) dx


+ c3


x4∫

x 7
2

Ki (x) B13 (x | t3, t4, t5, t6, t7) dx +

x 9
2∫

x4

Ki (x) B23 (x | t3, t4, t5, t6, t7) dx


+ c4

x 9
2∫

x4

Ki (x) B13 (x | t4, t5, t6, t7, t8) dx
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cont’d:

gi = + c1

x5∫
x 9

2

Ki (x) B43 (x | t1, t2, t3, t4, t5) dx

+ c2


x5∫

x 9
2

Ki (x) B33 (x | t2, t3, t4, t5, t6) dx +

x 11
2∫

x5

Ki (x) B43 (x | t2, t3, t4, t5, t6) dx


+ c3


x5∫

x 9
2

Ki (x) B23 (x | t3, t4, t5, t6, t7) dx +

x 11
2∫

x5

Ki (x) B33 (x | t3, t4, t5, t6, t7) dx


+ c4


x5∫

x 9
2

Ki (x) B13 (x | t4, t5, t6, t7, t8) dx +

x 11
2∫

x5

Ki (x) B23 (x | t4, t5, t6, t7, t8) dx


+ c5

x 11
2∫

x5

Ki (x) B13 (x | t5, t6, t7, t8, t9) dx
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and collecting like terms gives

gi =c−3

x1∫
x 1

2

Ki (x) B43 (x | t−3, t−2, t−1, t0, t1) dx (D.27)

+ c−2


x1∫

x 1
2

Ki (x) B33 (x | t−2, t−1, t0, t1, t2) dx +

x2∫
x1

Ki (x) B43 (x | t−2, t−1, t0, t1, t2) dx


+ c−1


x1∫

x 1
2

Ki (x) B23 (x | t−1, t0, t1, t2, t3) dx +

x2∫
x1

Ki (x) B33 (x | t−1, t0, t1, t2, t3) dx

+

x3∫
x2

Ki (x) B43 (x | t−1, t0, t1, t2, t3) dx


+ c0


x1∫

x 1
2

Ki (x) B13 (x | t0, t1, t2, t3, t4) dx +

x2∫
x1

Ki (x) B23 (x | t0, t1, t2, t3, t4) dx

+

x3∫
x2

Ki (x) B33 (x | t0, t1, t2, t3, t4) dx +

x4∫
x3

Ki (x) B43 (x | t0, t1, t2, t3, t4) dx


+ c1


x2∫

x1

Ki (x) B13 (x | t1, t2, t3, t4, t5) dx +

x3∫
x2

Ki (x) B23 (x | t1, t2, t3, t4, t5) dx

+

x4∫
x3

Ki (x) B33 (x | t1, t2, t3, t4, t5) dx +

x5∫
x4

Ki (x) B43 (x | t1, t2, t3, t4, t5) dx


+ c2


x3∫

x2

Ki (x) B13 (x | t2, t3, t4, t5, t6) dx +

x4∫
x3

Ki (x) B23 (x | t2, t3, t4, t5, t6) dx

+

x5∫
x4

Ki (x) B33 (x | t2, t3, t4, t5, t6) dx +

x 11
2∫

x5

Ki (x) B43 (x | t2, t3, t4, t5, t6) dx


+ c3


x4∫

x3

Ki (x) B13 (x | t3, t4, t5, t6, t7) dx +

x5∫
x4

Ki (x) B23 (x | t3, t4, t5, t6, t7) dx

+

x 11
2∫

x5

Ki (x) B33 (x | t3, t4, t5, t6, t7) dx


+ c4


x5∫

x4

Ki (x) B13 (x | t4, t5, t6, t7, t8) dx +

x 11
2∫

x5

Ki (x) B23 (x | t4, t5, t6, t7, t8) dx


+ c5

x 11
2∫

x5

Ki (x) B13 (x | t5, t6, t7, t8, t9) dx
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Written in matrix form

gi =



∫ x1
x 1

2

Ki (x) B43 (x | t−3, t−2, t−1, t0, t1) dx[∫ x1
x 1

2

Ki (x) B33 (x | t−2, t−1, t0, t1, t2) dx +
∫ x2
x1

Ki (x) B43 (x | t−2, t−1, t0, t1, t2) dx

]
[∫ x1

x 1
2

Ki (x) B23 (x | t−1, t0, t1, t2, t3) dx +
∫ x2
x1

Ki (x) B33 (x | t−1, t0, t1, t2, t3) dx +
∫ x3
x2

Ki (x) B43 (x | t−1, t0, t1, t2, t3) dx

]
[∫ x1

x 1
2

Ki (x) B13 (x | t0, t1, t2, t3, t4) dx +
∫ x2
x1

Ki (x) B23 (x | t0, t1, t2, t3, t4) dx +
∫ x3
x2

Ki (x) B33 (x | t0, t1, t2, t3, t4) dx +
∫ x4
x3

Ki (x) B43 (x | t0, t1, t2, t3, t4) dx

]
[∫ x2
x1

Ki (x) B13 (x | t1, t2, t3, t4, t5) dx +
∫ x3
x2

Ki (x) B23 (x | t1, t2, t3, t4, t5) dx +
∫ x4
x3

Ki (x) B33 (x | t1, t2, t3, t4, t5) dx +
∫ x5
x4

Ki (x) B43 (x | t1, t2, t3, t4, t5) dx
][∫ x3

x2
Ki (x) B13 (x | t2, t3, t4, t5, t6) dx +

∫ x4
x3

Ki (x) B23 (x | t2, t3, t4, t5, t6) dx +
∫ x5
x4

Ki (x) B33 (x | t2, t3, t4, t5, t6) dx +
∫ x 11

2
x5 Ki (x) B43 (x | t2, t3, t4, t5, t6) dx

]
[∫ x4
x3

Ki (x) B13 (x | t3, t4, t5, t6, t7) dx +
∫ x5
x4

Ki (x) B23 (x | t3, t4, t5, t6, t7) dx +
∫ x 11

2
x5 Ki (x) B33 (x | t3, t4, t5, t6, t7) dx

]
[∫ x5
x4

Ki (x) B13 (x | t4, t5, t6, t7, t8) dx +
∫ x 11

2
x5 Ki (x) B23 (x | t4, t5, t6, t7, t8) dx

]
∫ x 11

2
x5 Ki (x) B13 (x | t5, t6, t7, t8, t9) dx



T

×



c−3
c−2
c−1
c0
c1
c2
c3
c4
c5



(D.28)
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This illustrates the general strategy: successively apply the functional form of the
spline function and rearrange terms until we have an expression where the control
points (i.e., B-spline coefficients) appear explicitly.
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A p p e n d i x E

INVERSION CODE

This appendix serves to archive the critical components of the cubic spline inverse
solution method discussed in Chapters 2 and 3. All of the following code was
written for the Igor Pro commercial scientific analysis application, version 6.37
(Wavemetrics, 2015).

Printed here are all functions related to analyzing experimental measurements from
a long column DMA system. This includes the calculations involved in evaluating
the following:

• All components of the DMA kernel function

Ψ
(
i,Dp

)
= Qa

∞∑
ν=1

Wνη
(
Dp

)
φν

(
Dp

)
Ω

(
ν, i,Dp

)
• Inversion kernel matrix elements with B-spline quadrature

Ki j =

∫
I

Ki (x) B j,d (x) dx

• Inverse solution to recover the particle number size distribution

nN
(
ln Dp

)
=

dN
d ln Dp

[
cm−3]

• Each of the computational solution methods available within this inversion
routine

– NNLS: the non-negative least squares method of Lawson and Hanson
(1987);

– TNNLS: an interior-point gradient method for large-scale totally non-
negative least squares problems from the work of Merritt and Zhang
(2005);

– Regularization: a regularization method (Ilavsky and Jemian 2009).
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// Make matrix to hold recorded data from a given measurement campaign
// values will be read from input data to populate the "DMAmeasParams" wave
function makedatamatrix()

make/o/n=(1,12) datamatrix
setdimlabel 1,0,iScan, datamatrix
setdimlabel 1,1,Qa_lpm, datamatrix
setdimlabel 1,2,Qm_lpm, datamatrix
setdimlabel 1,3,Qsh_lpm, datamatrix
setdimlabel 1,4,Qex_lpm, datamatrix
setdimlabel 1,5,HVset_V, datamatrix
setdimlabel 1,6,Counts, datamatrix
setdimlabel 1,7,tsample_s, datamatrix
setdimlabel 1,8,Tamb_K, datamatrix
setdimlabel 1,9,Pamb_Pa, datamatrix
setdimlabel 1,10,dTdet_C, datamatrix
setdimlabel 1,11,Qdet_lpm, datamatrix

end

// Make input wave to specify parameters for DMA operation
// input values will be read to the "DMAgeomParams" wave; called by dimension labels
function makeWvDMAparams2specify()

make/o/n=6 DMAparams2specify
setdimlabel 0,0,R1dma_m, DMAparams2specify
setdimlabel 0,1,R2dma_m, DMAparams2specify
setdimlabel 0,2,Ldma_m, DMAparams2specify
setdimlabel 0,3,Leq_DMA_m, DMAparams2specify
setdimlabel 0,4,Leq_other_m, DMAparams2specify
setdimlabel 0,5,particleDensity_kgm3, DMAparams2specify

end

// Make input wave to specify parameters for kernel matrix calculations
// parameters called from this wave by dimension labels
function makeWvcalcresponsematrixParams()

make/o/n=6 calcresponsematrixParams
setdimlabel 0,0,ndias2nchanRatio, calcresponsematrixParams
setdimlabel 0,1,ZfactorLower, calcresponsematrixParams
setdimlabel 0,2,ZfactorUpper, calcresponsematrixParams
setdimlabel 0,3,nSub4Kernel, calcresponsematrixParams
setdimlabel 0,4,chargemax4Kernel, calcresponsematrixParams
setdimlabel 0,5,extrapMeasChan, calcresponsematrixParams // enter 1 for yes; 0 for no

make/o/t/n=1 CalcTFformula // text wave to call form of transfer function
make/o/t/n=1 InvMethod // text wave to call solution computation algorithm

end
//======================================================================
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// Make matrix to hold equivalent pipe lengths and flow parameters to account for losses in
// system components/tubing where flow rate may differ from DMA flow rate
// (i.e., sample line splitting to different instruments)
// **Account for losses thru DMA inlet/outlet, and other components with same DMA flow rate,
// in "DMAparams2specify" input wave
// See Wiedensohler 2012 for discussion of method of equivalent pipe length for DMA systems
//
// diffLossMatrix columns:
// 0: effective length of device/component of system where diffusional losses occur [m]
// 1: corresponding flow rate of aerosol through device/component/tubing [lpm]
// Create as many rows as needed
function makeDiffLossMatrix()

make/o/n=(1,2) diffLossMatrix
setdimlabel 0,-1,Component, diffLossMatrix
setdimlabel 1,0,Leq_m, diffLossMatrix
setdimlabel 1,1,Q_lpm, diffLossMatrix

end

// Make waves to hold parameters from given measurement campaign
// calculations call from these waves to use these parameters; called by dimension labels
function makeWvDMAmeasParams()

make/o/n=10 DMAmeasParams
setdimlabel 0,0,Qa_lpm, DMAmeasParams
setdimlabel 0,1,Qsh_lpm, DMAmeasParams
setdimlabel 0,2,betaDMA, DMAmeasParams
setdimlabel 0,3,deltaDMA, DMAmeasParams
setdimlabel 0,4,tsample_s, DMAmeasParams
setdimlabel 0,5,dTdet_C, DMAmeasParams
setdimlabel 0,6,Qdet_lpm, DMAmeasParams
setdimlabel 0,7,Tamb_K, DMAmeasParams
setdimlabel 0,8,Pamb_Pa, DMAmeasParams
setdimlabel 0,9,particleDensity_kgm3, DMAmeasParams

end
function makeWvDMAgeomParams()

make/o/n=7 DMAgeomParams
setdimlabel 0,0,R1dma_m, DMAgeomParams
setdimlabel 0,1,R2dma_m, DMAgeomParams
setdimlabel 0,2,Ldma_m, DMAgeomParams
setdimlabel 0,3,f_dma, DMAgeomParams
setdimlabel 0,4,G_dma, DMAgeomParams
setdimlabel 0,5,Leq_DMA_m, DMAgeomParams
setdimlabel 0,6,Leq_other_m, DMAgeomParams

end
//======================================================================
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// Analyze multiple scans of DMA data
// Input options and waves:
// datamatrix - data recorded from measurement campaign
// diffLossMatrix - equivalent pipe lengths and flow parameters for system components
// DMAparams2specify - instrument geometry and Leq; particle density
// calcresponsematrixParams - options for kernel matrix setup
// CalcTFformula - text wave to call form of transfer function
// InvMethod - text wave to call solution computation algorithm
// Kernel_precalc - can input a previously calculated kernel matrix to save computation time;
// otherwise, input empty set {0}
// Output:
// invsolnMeas [m x nScans] dN/dlnDp [cm-3] evaluated over measurement range
// dp_meas [m x nScans] Dp [m] corresponding to measurement range
// invsolnCoeffs [ncoeff x nScans] inverse solution coefficients; use to evaluate
// cubic spline solution over size range of interest
function DMAinversion(datamatrix,diffLossMatrix,DMAparams2specify,calcresponsematrixParams,C

wave datamatrix,diffLossMatrix,DMAparams2specify
wave calcresponsematrixParams
wave/t CalcTFformula,InvMethod
wave Kernel_precalc

matrixop/o scanindxWv = col(datamatrix,0)
variable nScans = scanindxWv[numpnts(scanindxWv)-1]-scanindxWv[0]+1
variable ndatapnts = numpnts(scanindxWv)/(nScans)

variable i=0
variable scanindx = scanindxWv[0]+i
extract/indx/o scanindxWv, indexforscan, scanindxWv==scanindx
duplicate/o/r=[indexforscan[0],indexforscan[numpnts(indexforscan)-1]] datamatrix, scandata

DMAanalysis(scandata,diffLossMatrix,DMAparams2specify,calcresponsematrixParams,CalcTFf
wave CountData_inv,CountBin_inv,Sigma_countdata_inv
wave invsoln_meas,dpwave_measdistbin
wave invsoln_coeffs,lnDpbin_inv,BsplineKnotWave_inv
wave Kernel_inv
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duplicate/o CountData_inv, rawdata_inv; redimension/n=(-1,nScans) rawdata_inv
duplicate/o CountBin_inv, dpmeas_inv; redimension/n=(-1,nScans) dpmeas_inv
duplicate/o Sigma_countdata_inv, sigmadata_inv; redimension/n=(-1,nScans) sigmadata_inv
duplicate/o invsoln_meas, invsolnMeas; redimension/n=(-1,nScans) invsolnMeas
duplicate/o dpwave_measdistbin, dp_meas; redimension/n=(-1,nScans) dp_meas
duplicate/o invsoln_coeffs, invsolnCoeffs; redimension/n=(-1,nScans) invsolnCoeffs
duplicate/o lnDpbin_inv, invsolnSplineModelpts
duplicate/o BsplineKnotWave_inv, invsolnSplineKnots

for(i=1;i<nScans;i+=1)
scanindx = scanindxWv[0]+i
extract/indx/o scanindxWv, indexforscan, scanindxWv==scanindx
duplicate/o/r=[indexforscan[0],indexforscan[numpnts(indexforscan)-1]] datamatrix, scandata

DMAanalysis(scandata,diffLossMatrix,DMAparams2specify,calcresponsematrixParams,Calc
wave CountData_inv,CountBin_inv,Sigma_countdata_inv
wave invsoln_meas,dpwave_measdistbin
wave invsoln_coeffs

rawdata_inv[][i] = CountData_inv[p]
dpmeas_inv[][i] = CountBin_inv[p]
sigmadata_inv[][i] = Sigma_countdata_inv[p]
invsolnMeas[][i] = invsoln_meas[p]
dp_meas[][i] = dpwave_measdistbin[p]
invsolnCoeffs[][i] = invsoln_coeffs[p]

endfor
end
//======================================================================
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// Analyze a single scan of DMA data
// Input options and waves:
// datamatrix - data recorded from measurement campaign
// diffLossMatrix - equivalent pipe lengths and flow parameters for system components
// DMAparams2specify - instrument geometry and Leq; particle density
// calcresponsematrixParams - options for kernel matrix setup
// CalcTFformula - text wave to call form of transfer function
// InvMethod - text wave to call solution computation algorithm
// Kernel_precalc - can input a previously calculated kernel matrix to save computation time;
// otherwise, input empty set {0}
// Output:
// dN/dlnDp [cm-3] size distribution inverse solution(s) in "invsoln_xxx" waves
// Dp [m] corresponding particle diameters in "dpwave_xxx" waves
function DMAanalysis(datamatrix,diffLossMatrix,DMAparams2specify,calcresponsematrixParams,C

wave datamatrix,diffLossMatrix,DMAparams2specify
wave calcresponsematrixParams
wave/t CalcTFformula,InvMethod
wave Kernel_precalc

string TFformula,InvSolnMethod
TFformula=CalcTFformula[0]
InvSolnMethod=InvMethod[0]

// Set measurement/instrument parameters
DMAparamSet(datamatrix,DMAparams2specify)
wave DMAmeasParams, DMAgeomParams
nvar Qae,Qmono,Qsheath,Qex,tsample,Qdet

// Generate channel parameters
variable/g numchan=DimSize(datamatrix,0) // number of measured points in scan
variable/g bbeta=betDMA()
variable/g ddelta=deltaDMA()

make/o/n=(numchan) ZstarChan, VstarChan, DstarChan
VstarChan=datamatrix[p][5] // read channel voltages from datamatrix;
ZstarChan=ZpCalc_Vdma(VstarChan) // convert to mobility and...
DstarChan=DpCalc_Vdma(VstarChan) //...diameter targeted by instrument
variable/g ZmaxDMA=ZstarChan[0]
variable/g ZminDMA=ZstarChan[numchan-1]
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// Set up wave of raw count data
matrixop/o Counts=col(datamatrix,6) // read counts from datamatrix; raw signal [#]
// extrapolate for inversion if input "extrapYorN" set to 1
duplicate/o ZstarChan, invZstarChan; invZstarChan=1/ZstarChan
duplicate/o ChanZ_inv, invChanZ_inv; invChanZ_inv=1/ChanZ_inv
extrapolateCounts_exp(Counts,invZstarChan,invChanZ_inv,2)
wave ExtrCounts
duplicate/o ExtrCounts, Counts_inv, Sigma_counts_inv
duplicate/o ChanDp_inv, CountBin_inv
// estimate uncertainty using Poisson statistics
Counts_inv = Counts_inv < 1 ? 0 : Counts_inv // if raw count [#] shows <1 particle, set to zero
Sigma_counts_inv=1.96*sqrt(Counts_inv)

// Account for flow rates and sample time in kernel matrix;
// calculate sampled volume for each data point
variable/g sampleQt_m3=Qae*tsample/60000 // should depend on aerosol sample inlet flow
if (Qdet<Qmono) //...unless low detector flow requires diverting part of classified outlet flow

sampleQt_m3*=Qdet/Qmono //...then account for sampling fraction of particle flux
endif
matrixop/o Kernel_invQt_cc=Kernel_inv*sampleQt_m3*1e6 // [cm3]

// Cubic spline inversion
make/o/n=(mKern) CountData_inv; CountData_inv=Counts_inv
make/o/n=(mKern) Sigma_countdata_inv; Sigma_countdata_inv=Sigma_counts_inv
make/o/n=(mKern,nKern) KernelMatrix_inv; KernelMatrix_inv=Kernel_invQt_cc
invsoln_Bspline(KernelMatrix_inv,lnDpbin_inv,lnDpbin_invmeas,BsplineCoeffKnots_inv,BsplineC
wave invsoln_coeffs // inverse solution: coefficient values to use to evaluate size distribution...
wave invsoln_controlpts,dpwave_controlptdistbin //...at spline control points
wave invsoln_model,dpwave_modeldistbin //...at model knot points
wave invsoln_meas,dpwave_measdistbin //...at target Dp of measurement channels

//...or any other Dp set; see function invsoln_fineEval(...)
variable/g n_invModel=numpnts(lnDpbin_inv)
variable/g mKernel_inv=dimsize(Kernel_inv,0)
variable/g nKernel_inv=dimsize(Kernel_inv,1)

end
//======================================================================
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// Read datamatrix for single scan of DMA data to set measurement/instrument parameters
function DMAparamSet(datamatrix,DMAparams2specify)

wave datamatrix,DMAparams2specify
//-------------------------------------------------------------------
// datamatrix columns:
// 0: scan index
// 1: Qaerosol [lpm]
// 2: Qmono [lpm]
// 3: Qsheath [lpm]
// 4: Qexcess [lpm]
// 5: HVset [volts]
// 6: raw count data [#]
// 7: tsample [s]
// 8: Tambient [K]
// 9: Pambient [Pa]
// 10:deltaT_detector [degC]
// 11:Qdetector [lpm]
//-------------------------------------------------------------------
//-------------------------------------------------------------------
// DMAparams2specify columns:
// 0: inner radius, R1 [m]
// 1: outer radius, R2 [m]
// 2: column length, L [m]
// 3: equivalent pipe length, DMA inlet/outlet [m]
// 4: equivalent pipe length, sum of devices/components with DMA sample flow [m]
// 5: particle density [kg/m3]
//-------------------------------------------------------------------

// Create global variables from input datamatrix
variable/g Qae,Qmono,Qsheath,Qex,tsample,Tamb,Pamb,deltaTdet,Qdet
Qae=datamatrix[0][1]
Qmono=datamatrix[0][2]
Qsheath=datamatrix[0][3]
Qex=datamatrix[0][4]
tsample=datamatrix[0][7]
Tamb=datamatrix[0][8]
Pamb=datamatrix[0][9]
deltaTdet=datamatrix[0][10]
Qdet=datamatrix[0][11]
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// Load parameters/conditions into wave "DMAmeasParams"
// calculations call from this wave to use these parameters; all in SI units
makeWvDMAmeasParams()
wave DMAmeasParams
DMAmeasParams[%Qa_lpm]=(Qae+Qmono)/2 // lpm
DMAmeasParams[%Qsh_lpm]=(Qsheath+Qex)/2 // lpm
DMAmeasParams[%betaDMA]=QaDMA()/QshDMA()
DMAmeasParams[%deltaDMA]=(Qae-Qmono)/(Qae+Qmono)
DMAmeasParams[%tsample_s]=tsample // s
DMAmeasParams[%dTdet_C]=deltaTdet // degC
DMAmeasParams[%Qdet_lpm]=Qdet // lpm
DMAmeasParams[%Tamb_K]=Tamb // K
DMAmeasParams[%Pamb_Pa]=Pamb // Pa
DMAmeasParams[%particleDensity_kgm3]=DMAparams2specify[%particleDensity_kgm3]

// Load instrument geometry parameters into wave "DMAgeomParams"
// calculations call from this wave to use these parameters; all in SI units
makeWvDMAgeomParams()
wave DMAgeomParams
DMAgeomParams[%R1dma_m]=DMAparams2specify[%R1dma_m]
DMAgeomParams[%R2dma_m]=DMAparams2specify[%R2dma_m]
DMAgeomParams[%Ldma_m]=DMAparams2specify[%Ldma_m]
DMAgeomParams[%f_dma]=fDMA()
DMAgeomParams[%G_dma]=Gdma()
DMAgeomParams[%Leq_DMA_m]=DMAparams2specify[%Leq_DMA_m]
DMAgeomParams[%Leq_other_m]=DMAparams2specify[%Leq_other_m]

end
//======================================================================
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// Extrapolate measured counts using exponential function; see Hagen 1983 
function extrapolateCounts_exp(ChanCounts,ChanMobility,ExtrMobility,numFitPts)

wave ChanCounts,ChanMobility,ExtrMobility
variable numFitPts

variable nChanCounts=numpnts(ChanCounts)
duplicate/o ChanMobility, Zk
duplicate/o ChanCounts, Yk
Zk=ChanMobility
Yk=ChanCounts==0 ? 0 : ln(ChanCounts)
matrixop/o ZkYk=Zk*Yk
matrixop/o Zksq=Zk*Zk
variable gamma_lo,kstart,kend
kstart=0
kend=numFitPts-1
gamma_lo=(numFitPts*sum(ZkYk,kstart,kend)-sum(Zk,kstart,kend)*sum(Yk,kstart,kend))
gamma_lo*=((sum(Zk,kstart,kend))^2-numFitPts*(sum(Zksq,kstart,kend)))^(-1)
variable gamma_hi
kstart=nChanCounts-numFitPts
kend=nChanCounts-1
gamma_hi=(numFitPts*sum(ZkYk,kstart,kend)-sum(Zk,kstart,kend)*sum(Yk,kstart,kend))
gamma_hi*=((sum(Zk,kstart,kend))^2-numFitPts*(sum(Zksq,kstart,kend)))^(-1)

duplicate/o ChanCounts, ExtrCounts
extract/o ExtrMobility, ExtrMobility_hi, ExtrMobility/ChanMobility[nChanCounts-1]>1.01
duplicate/o ExtrMobility_hi, ExtrCounts_hi; ExtrCounts_hi=0
variable nExtr_hi=numpnts(ExtrCounts_hi)
if(nExtr_hi>0)

ExtrCounts_hi=ChanCounts[nChanCounts-1]
ExtrCounts_hi*=exp(-gamma_hi*(ExtrMobility_hi(p)-ChanMobility[nChanCounts-1]))
insertpoints nChanCounts,nExtr_hi,ExtrCounts
ExtrCounts[nChanCounts,(nChanCounts+nExtr_hi-1)]=ExtrCounts_hi(p-nChanCounts)

endif
extract/o ExtrMobility, ExtrMobility_lo, ExtrMobility/ChanMobility[0]<0.99
duplicate/o ExtrMobility_lo, ExtrCounts_lo; ExtrCounts_lo=0
variable/g nExtr_lo=numpnts(ExtrCounts_lo)
if(nExtr_lo>0)

ExtrCounts_lo=ChanCounts[0]*exp(-gamma_lo*(ExtrMobility_lo(p)-ChanMobility[0]))
insertpoints 0,nExtr_lo,ExtrCounts
ExtrCounts[0,(nExtr_lo-1)]=ExtrCounts_lo(p)

endif
end
//======================================================================
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// Evaluate inverse solution(s) over size range of interest
// Input waves and variables:
// SplineCoeffMatrix [ncoeff x nSolns] (i.e., "invsolnCoeffs")
// SplineControlptKnots [nDias x nSolns] (i.e., "invsolnSplineModelpts")
// SplineKnotWave [(ncoeff+d+1) x nSolns] (i.e., "invsolnSplineKnots")
// diam0_m, diamN_m, numdps - size range and number of points to evaluate
// for final solution representation
// Output:
// invsolnFinal [numdps x nSolns] dN/dlnDp [cm-3] evaluated over size range of interest
// dp_final [numdps x nSolns] Dp [m] corresponding to final solution range
function invsoln_fineEval(SplineCoeffMatrix,SplineControlptKnots,SplineKnotWave,diam0_m,diamN_m,numdps)

wave SplineCoeffMatrix,SplineControlptKnots,SplineKnotWave
variable diam0_m,diamN_m,numdps

variable lndiam0=ln(diam0_m)
variable lndiamN=ln(diamN_m)
variable dlnDpWvSet=(lndiamN-lndiam0)/(numdps-1)
make/o/n=(numdps) finalDistBinning, dpwave_finaldistbin
finalDistBinning=lndiam0+dlnDpWvSet*x
dpwave_finaldistbin=exp(finalDistBinning)

variable i=0
variable nSolns=dimsize(SplineCoeffMatrix,1)
variable ncoeffs=dimsize(SplineCoeffMatrix,0)
variable nptsfinaldist=numpnts(finalDistBinning)
make/o/n=(ncoeffs) SplineCoeffWave_i
make/o/n=(nptsfinaldist) invsoln_final_i
duplicate/o invsoln_final_i, invsolnFinal; redimension/n=(-1,nSolns) invsolnFinal
duplicate/o dpwave_finaldistbin, dp_final; redimension/n=(-1,nSolns) dp_final
dp_final[p][]=dpwave_finaldistbin[p]

for(i=0;i<nSolns;i+=1)
SplineCoeffWave_i[]=SplineCoeffMatrix[p][i]
invsoln_final_i=0
cubicBspline(SplineCoeffWave_i,SplineControlptKnots,SplineKnotWave,finalDistBinning,invsoln_final_i)
wave invsoln_final_i
invsolnFinal[][i]=invsoln_final_i[p]

endfor
end
//======================================================================
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// Calculate kernel matrix
// Input options and waves:
// calcresponsematrixParams - options for kernel matrix setup
// TFformula - string to call form of transfer function
//
// Output is kernel matrix "Kernel_inv" and Bspline knot waves
function calcresponsematrix(calcresponsematrixParams,TFformula)

wave calcresponsematrixParams
string TFformula

// [Read channel settings from DMA setup function]
wave ZstarChan, DstarChan, VstarChan
nvar numchan
nvar ZmaxDMA,ZminDMA
duplicate/o VstarChan, VchanSet

duplicate/o ZstarChan, lnZstarChan // log-linear channel spacing
lnZstarChan=ln(ZstarChan)
duplicate/o DstarChan, lnDstarChan
lnDstarChan=ln(DstarChan)

// Define mobility grid for kernel integration
// read input parameters defining kernel setup
variable numdias2numchan_ratio,Zfactor_lower,Zfactor_upper
variable nSub4CalcKernel,chargemax4calcKernel,extrapYorN
numdias2numchan_ratio=calcresponsematrixParams[%ndias2nchanRatio]
Zfactor_lower=calcresponsematrixParams[%ZfactorLower]
Zfactor_upper=calcresponsematrixParams[%ZfactorUpper]
nSub4CalcKernel=calcresponsematrixParams[%nSub4Kernel]
chargemax4calcKernel=calcresponsematrixParams[%chargemax4Kernel]
extrapYorN=calcresponsematrixParams[%extrapMeasChan]

// find upper and lower mobility beyond measurement range
variable/g numdias=ceil(numchan*numdias2numchan_ratio)
variable/d/g dlnZstarChan,ZstarL,nZextrL,ZstarU,nZextrU
dlnZstarChan = abs(lnZstarChan[0]-lnZstarChan[numchan-1])/(numdias-1)
ZstarL = ZmaxDMA*Zfactor_lower
nZextrL = Zfactor_lower==1 ? 0 : ceil((ln(ZstarL)-lnZstarChan[0])/dlnZstarChan)
make/o/n=(nZextrL) lnZstarChanLwv; lnZstarChanLwv=lnZstarChan[0]+dlnZstarChan*(x+1)
ZstarU = ZminDMA/Zfactor_upper
nZextrU = Zfactor_upper==1 ? 0 : ceil((lnZstarChan[numchan-1]-ln(ZstarU))/dlnZstarChan)
make/o/n=(nZextrU) lnZstarChanUwv
lnZstarChanUwv=lnZstarChan[numchan-1]-dlnZstarChan*(x+1)
concatenate/np/o {lnZstarChan,lnZstarChanLwv,lnZstarChanUwv}, lnZstarChanExtr
sort/r lnZstarChanExtr, lnZstarChanExtr
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duplicate/o lnZstarChanExtr, ZstarChanExtr
ZstarChanExtr=exp(lnZstarChanExtr)

duplicate/o ZstarChanExtr, VstarChanExtr, DstarChanExtr, lnDstarChanExtr
VstarChanExtr=VCalc_Zdma(ZstarChanExtr)
DstarChanExtr=DpCalc_Zdma(ZstarChanExtr)
lnDstarChanExtr=ln(DstarChanExtr)

variable/g nChan,nDias
nChan = numchan
nDias = numdias+nZextrL+nZextrU

// Set up kernel matrix for inversion:
// define grids for discretizing kernel matrix and evaluating inversion solution
duplicate/o lnDstarChanExtr, lnDpbin_inv
duplicate/o lnDstarChan, lnDpbin_invmeas
if (extrapYorN) // extrapolate channel dimension if input "extrapYorN" set to 1

duplicate/o ZstarChanExtr, ChanZ_inv
duplicate/o VstarChanExtr, ChanV_inv
duplicate/o DstarChanExtr, ChanDp_inv

else
duplicate/o ZstarChan, ChanZ_inv
duplicate/o VstarChan, ChanV_inv
duplicate/o DstarChan, ChanDp_inv

endif

variable/g mKern=numpnts(ChanZ_inv), nKern=0
variable nSub=nSub4CalcKernel
nvar bbeta,ddelta

CalcKernel_cubicBspline(ChanZ_inv,ChanV_inv,lnDpbin_inv,nSub,bbeta,ddelta,chargemax4calcKernel,TFformula)
wave KernelS3
wave BsplineKnotWave, BsplineCoeffKnots_j, BsplineCoeffKnots, BsplineControlptKnots
duplicate/o KernelS3, Kernel_inv

nKern=dimsize(Kernel_inv,1)
duplicate/o BsplineKnotWave, BsplineKnotWave_inv
duplicate/o BsplineCoeffKnots_j, BsplineCoeffKnots_j_inv
duplicate/o BsplineCoeffKnots, BsplineCoeffKnots_inv
duplicate/o BsplineControlptKnots, BsplineControlptKnots_inv

end
//======================================================================
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// Calculate the inversion matrix using cubic B-splines for numerical quadrature of kernel integral
// no assumptions about knot spacing; no added conditions ["natural cubic"]
//
// Input variables and waves [dimensions in brackets]:
// ChanZ [m] vector of mobility values for measurement channels; Z [m2/V/s]
// ChanV [m] vector of voltage values for measurement channels
// Dpbin [nDias] vector of diameter values to define boundaries of size distribution intervals;
// should be input as ln(Dp) for log-linear channel spacing (Dp in meters)
// nSub - number of subdivisions for evaluating integral over size bin intervals
// bbeta, delta - flow parameters
// chargemax - max charges in kernel function
// TFformula - string to call form of transfer function
//
// Output is kernel matrix "KernelS3" and Bspline knot waves
function CalcKernel_cubicBspline(ChanZ,ChanV,Dpbin,nSub,bbeta,delta,chargemax,TFformula)

wave ChanZ,ChanV,Dpbin
variable nSub,bbeta,delta,chargemax
string TFformula

// Define spline control points and bounds for integrations
define_binning(Dpbin)
wave binvals_geom,binvals_plusuplodiff
duplicate/o binvals_geom, Dpbinbound
duplicate/o binvals_plusuplodiff, ControlptBinning
variable/g Dpbinbound_lo=Dpbinbound[0]
variable/g Dpbinbound_hi=Dpbinbound[(numpnts(Dpbinbound)-1)]
variable/g Dpbin_lo=Dpbin[0]
variable/g Dpbin_hi=Dpbin[(numpnts(Dpbin)-1)]

// Make the wave of knot values needed to calculate Bsplines
variable degree=3 // degree of spline interpolation; cubic, d=3
MakeBsplineKnotWave(ControlptBinning,degree)
wave BsplineKnotWave, BsplineCoeffKnots_j, BsplineCoeffKnots, BsplineControlptKnots
duplicate/o BsplineKnotWave, Dpbin_knots

variable m = numpnts(ChanZ)
variable n  = numpnts(Dpbin)
variable ncoeffs = numpnts(BsplineCoeffKnots)
variable dDpInt
if (nSub>1) // work with even number of subintervals to capture middle Dp of bin

variable nSub_even = mod(nSub,2)==0 ? nSub : (nSub+1)
nSub=nSub_even

endif
make/o/n= (nSub+1) DpInt // vector of diameter values for integral over size bins
make/o/n=(m,ncoeffs) KernelS3=0 // initialize kernel matrix
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variable xk,xk1,xk2,xk3,xk4
variable h
variable i,j,k,knotindx
for(i=0; i<m;i+=1)

for(k=0;k<ncoeffs;k+=1)
knotindx=k
xk=Dpbin_knots[knotindx]
xk1=Dpbin_knots[knotindx+1]
xk2=Dpbin_knots[knotindx+2]
xk3=Dpbin_knots[knotindx+3]
xk4=Dpbin_knots[knotindx+4]
// Bpline1
h=(xk1-xk)
dDpInt=h/nSub
DpInt=xk+dDpInt*x
duplicate/d/o DpInt, ChiSub1
duplicate/d/o ChiSub1, fSub1; fSub1=BsplineC1(ChiSub1,xk,xk1,xk2,xk3,xk4)
duplicate/d/o ChiSub1, Ksub1
Ksub1=KernelFcn_DMA(ChiSub1,ChanZ[i],ChanV[i],bbeta,delta,chargemax,TFformula)
Ksub1*=fsub1
// Bpline2
h=(xk2-xk1)
dDpInt=h/nSub
DpInt=xk1+dDpInt*x
duplicate/d/o DpInt, ChiSub2
duplicate/d/o ChiSub2, fSub2; fSub2=BsplineC2(ChiSub2,xk,xk1,xk2,xk3,xk4)
duplicate/d/o ChiSub2, Ksub2
Ksub2=KernelFcn_DMA(ChiSub2,ChanZ[i],ChanV[i],bbeta,delta,chargemax,TFformula)
Ksub2*=fsub2
// Bpline3
h=(xk3-xk2)
dDpInt=h/nSub
DpInt=xk2+dDpInt*x
duplicate/d/o DpInt, ChiSub3
duplicate/d/o ChiSub3, fSub3; fSub3=BsplineC3(ChiSub3,xk,xk1,xk2,xk3,xk4)
duplicate/d/o ChiSub3, Ksub3
Ksub3=KernelFcn_DMA(ChiSub3,ChanZ[i],ChanV[i],bbeta,delta,chargemax,TFformula)
Ksub3*=fsub3
// Bpline4
h=(xk4-xk3)
dDpInt=h/nSub
DpInt=xk3+dDpInt*x
duplicate/d/o DpInt, ChiSub4
duplicate/d/o ChiSub4, fSub4; fSub4=BsplineC4(ChiSub4,xk,xk1,xk2,xk3,xk4)
duplicate/d/o ChiSub4, Ksub4
Ksub4=KernelFcn_DMA(ChiSub4,ChanZ[i],ChanV[i],bbeta,delta,chargemax,TFformula)
Ksub4*=fsub4
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if (k>3 && k<(ncoeffs-4))
KernelS3[i][k]=AreaXY(ChiSub1,Ksub1)
KernelS3[i][k]+=AreaXY(ChiSub2,Ksub2)
KernelS3[i][k]+=AreaXY(ChiSub3,Ksub3)
KernelS3[i][k]+=AreaXY(ChiSub4,Ksub4)

endif
if (k==0)

KernelS3[i][k]=AreaXY(ChiSub4,Ksub4,Dpbinbound_lo,Dpbin_lo)
endif
if (k==1)

KernelS3[i][k]=AreaXY(ChiSub3,Ksub3,Dpbinbound_lo,Dpbin_lo)
KernelS3[i][k]+=AreaXY(ChiSub4,Ksub4)

endif
if (k==2)

KernelS3[i][k]=AreaXY(ChiSub2,Ksub2,Dpbinbound_lo,Dpbin_lo)
KernelS3[i][k]+=AreaXY(ChiSub3,Ksub3)
KernelS3[i][k]+=AreaXY(ChiSub4,Ksub4)

endif
if (k==3)

KernelS3[i][k]=AreaXY(ChiSub1,Ksub1,Dpbinbound_lo,Dpbin_lo)
KernelS3[i][k]+=AreaXY(ChiSub2,Ksub2)
KernelS3[i][k]+=AreaXY(ChiSub3,Ksub3)
KernelS3[i][k]+=AreaXY(ChiSub4,Ksub4)

endif
if (k==ncoeffs-4)

KernelS3[i][k]=AreaXY(ChiSub1,Ksub1)
KernelS3[i][k]+=AreaXY(ChiSub2,Ksub2)
KernelS3[i][k]+=AreaXY(ChiSub3,Ksub3)
KernelS3[i][k]+=AreaXY(ChiSub4,Ksub4,Dpbin_hi,Dpbinbound_hi)

endif
if (k==ncoeffs-3)

KernelS3[i][k]=AreaXY(ChiSub1,Ksub1)
KernelS3[i][k]+=AreaXY(ChiSub2,Ksub2)
KernelS3[i][k]+=AreaXY(ChiSub3,Ksub3,Dpbin_hi,Dpbinbound_hi)

endif
if (k==ncoeffs-2)

KernelS3[i][k]=AreaXY(ChiSub1,Ksub1)
KernelS3[i][k]+=AreaXY(ChiSub2,Ksub2,Dpbin_hi,Dpbinbound_hi)

endif
if (k==ncoeffs-1)

KernelS3[i][k]=AreaXY(ChiSub1,Ksub1,Dpbin_hi,Dpbinbound_hi)
endif

endfor
endfor

end
//======================================================================
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// B-spline functional forms
function BsplineC1(xi,xk,xk1,xk2,xk3,xk4)

variable xi,xk,xk1,xk2,xk3,xk4

variable B1=((xi-xk)^3)/((xk3-xk)*(xk2-xk)*(xk1-xk))
return B1

end

function BsplineC2(xi,xk,xk1,xk2,xk3,xk4)
variable xi,xk,xk1,xk2,xk3,xk4

variable B2=(xi-xk)/(xk3-xk)*(xi-xk)/(xk2-xk)*(xk2-xi)/(xk2-xk1)
B2+=(xi-xk)/(xk3-xk)*(xk3-xi)/(xk3-xk1)*(xi-xk1)/(xk2-xk1)
B2+=(xk4-xi)/(xk4-xk1)*(xi-xk1)/(xk3-xk1)*(xi-xk1)/(xk2-xk1)
return B2

end

function BsplineC3(xi,xk,xk1,xk2,xk3,xk4)
variable xi,xk,xk1,xk2,xk3,xk4

variable B3=(xi-xk)/(xk3-xk)*(xk3-xi)/(xk3-xk1)*(xk3-xi)/(xk3-xk2)
B3+=(xk4-xi)/(xk4-xk1)*(xi-xk1)/(xk3-xk1)*(xk3-xi)/(xk3-xk2)
B3+=(xk4-xi)/(xk4-xk1)*(xk4-xi)/(xk4-xk2)*(xi-xk2)/(xk3-xk2)
return B3

end

function BsplineC4(xi,xk,xk1,xk2,xk3,xk4)
variable xi,xk,xk1,xk2,xk3,xk4

variable B4=((xk4-xi)^3)/((xk4-xk1)*(xk4-xk2)*(xk4-xk3))
return B4

end
//======================================================================
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// Make the wave of knot values needed to calculate B-splines; specify degree
function MakeBsplineKnotWave(ControlptBin,degree)

wave ControlptBin
variable degree

variable deg=degree
variable nControlpts=numpnts(ControlptBin)
variable ntotalKnots=nControlpts+2*deg
variable nBsplCoeffs=nControlpts+deg-1

duplicate/o ControlptBin, BsplineControlptKnots, BsplineKnotWave
variable hEven=(ControlptBin[nControlpts-1]-ControlptBin[0])/(nControlpts-1)
variable nEndKnots=deg // knot points needed at upper and lower bounds of ControlptBin
variable i,insertindx
for(i=1;i<=nEndKnots;i+=1) // add knot points to upper bound

insertindx=(nControlpts-1)+i
insertpoints (insertindx),1,BsplineKnotWave
BsplineKnotWave[insertindx]=ControlptBin[nControlpts-1]+hEven*i

endfor
for(i=1;i<=nEndKnots;i+=1) // add knot points to lower bound

insertpoints 0,1,BsplineKnotWave
BsplineKnotWave[0]=ControlptBin[0]-hEven*i

endfor

duplicate/o/r=(0,(nBsplCoeffs-1)) BsplineKnotWave, BsplineCoeffKnots_j
duplicate/o/r=(((deg+1)/2),((nBsplCoeffs-1)+(deg+1)/2)) BsplineKnotWave, BsplineCoeffKnots

end
//======================================================================
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// Define spline control points and bounds for integrations
function define_binning(wavetobin)

wave wavetobin

variable numwvpts=numpnts(wavetobin)
duplicate/o wavetobin, binvals_updiff, binvals_lodiff
make/o/n=(numwvpts+1) binvals_geom
make/o/n=(numwvpts) deltavals_updiff, deltavals_lodiff, deltavals_geom

variable/g deltaval_even=(wavetobin[numwvpts-1]-wavetobin[0])/(numwvpts-1)
insertpoints numwvpts,1,binvals_updiff
binvals_updiff[numwvpts]=wavetobin[numwvpts-1]+deltaval_even
insertpoints 0,1,binvals_lodiff
binvals_lodiff[0]=wavetobin[0]-deltaval_even

duplicate/o binvals_updiff, binvals_plusuplodiff
insertpoints 0,1,binvals_plusuplodiff; binvals_plusuplodiff[0]=binvals_lodiff[0]

binvals_geom[1,(numwvpts-1)]=sqrt(wavetobin(p-1)*wavetobin(p))*sign(wavetobin(p))
binvals_geom[0]=sqrt(binvals_lodiff[0]*wavetobin[0])*sign(wavetobin[0])
binvals_geom[numwvpts]=sqrt(wavetobin[numwvpts-1]*binvals_updiff[numwvpts])
binvals_geom[numwvpts]*=sign(wavetobin[numwvpts-1])

deltavals_updiff=binvals_updiff(p+1)-binvals_updiff(p)
deltavals_lodiff=binvals_lodiff(p+1)-binvals_lodiff(p)
deltavals_geom=binvals_geom(p+1)-binvals_geom(p)

make/o/n=(2*numwvpts+1) binmidandgeom
concatenate/np/o {wavetobin,binvals_geom}, binmidandgeom
sort binmidandgeom, binmidandgeom

end
//======================================================================
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// Solve inverse problem with cubic B-spline setup
// Input options and waves [dimensions in brackets]:
// KernelMatrix [m x ncoeff] kernel matrix, describing measurement collection
// ModelDataBinning [nDias] binning for size distribution solution, model
// MeasDataBinning [m_raw] binning for measured signals (raw data)
// SplineCoeffKnots [ncoeff=n+d-1] binning for coefficients of size distribution solution
// SplineControlptKnots [n=nDias+2] binning for control points of size distribution solution
// SplineKnotWave [n+2d] wave of knot values needed to calulate Bsplines
// precalcBdata [m] vector of [extrapolated] measured signals (raw data)
// Buncertainties [m] vector of uncertainty/error values associated with
// [extrapolated] measured signals (raw data)
// InvSolnMethod - string to call solution computation algorithm
//
// Output:
// dN/dlnDp [cm-3] size distribution inverse solution(s) in "invsoln_xxx" waves
// Dp [m] corresponding particle diameters in "dpwave_xxx" waves
function invsoln_Bspline(Kernelmatrix,ModelDataBinning,MeasDataBinning,SplineCoeffKnots,Splin

wave Kernelmatrix,ModelDataBinning,MeasDataBinning
wave SplineCoeffKnots,SplineControlptKnots,SplineKnotWave
wave precalcBdata,Buncertainties
string InvSolnMethod

variable ncoeffs=dimsize(Kernelmatrix,1)
variable nptsControl=numpnts(SplineControlptKnots)
variable nptsModel=numpnts(ModelDataBinning)
variable nptsmeasrange=numpnts(MeasDataBinning)
make/o/n=(ncoeffs) invsoln_coeffs
make/o/n=(nptsControl) invsoln_controlpts
make/o/n=(nptsModel) invsoln_model
make/o/n=(nptsmeasrange) invsoln_meas

cSplineInv(Kernelmatrix,SplineCoeffKnots,SplineControlptKnots,SplineKnotWave,invsoln_contr
wave invsoln_controlpts
wave M_x=root:Packages:cSplineInv:M_x
duplicate/o M_x, invsoln_coeffs
cubicBspline(M_x,SplineControlptKnots,SplineKnotWave,ModelDataBinning,invsoln_model)
wave invsoln_model
cubicBspline(M_x,SplineControlptKnots,SplineKnotWave,MeasDataBinning,invsoln_meas)
wave invsoln_meas

duplicate/o SplineControlptKnots, dpwave_controlptdistbin
dpwave_controlptdistbin=exp(SplineControlptKnots)
duplicate/o ModelDataBinning, dpwave_modeldistbin
dpwave_modeldistbin=exp(ModelDataBinning)
duplicate/o MeasDataBinning, dpwave_measdistbin
dpwave_measdistbin=exp(MeasDataBinning)

end
//======================================================================
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// Solve inverse problem with cubic B-spline setup
// Input options and waves [dimensions in brackets]:
// AmatrixInput [m x ncoeff] kernel matrix, describing measurement collection
// SplineCoeffKnots [ncoeff=n+d-1] binning for coefficients of size distribution solution;
// number of points must match y-dimension of Kmatrix
// SplineControlptKnots [n] binning for control points of size distribution solution
// SplineKnotWave [n+2d] wave of knot values needed to calculate Bsplines
// ModelWaveOutput [any] wave to hold size distribution solution; any number/spacing
// ModelDataBinning [any] binning for size distribution solution;
// number of points must match ModelWaveOutput
// Bvector [m] vector of measured signals (raw data)
// Bvector_uncertainties [m] vector of uncertainty/error values associated with
// measured signals (raw data)
// SolnMethod - string to call solution computation algorithm
//
// Output is solution in "ModelWaveOutput"
function cSplineInv(AmatrixInput,SplineCoeffKnots,SplineControlptKnots,SplineKnotWave,ModelW

wave AmatrixInput,SplineCoeffKnots,SplineControlptKnots,SplineKnotWave
wave ModelWaveOutput,ModelDataBinning,BvectorInput,Bvector_uncertainties
string SolnMethod

// create working space
string OldDf=GetDataFolder(1)
NewDataFolder/O/S root:Packages
NewDataFolder/O/S root:Packages:cSplineInv
// create local copies of input waves
duplicate/o AmatrixInput, Kmatrix
duplicate/o SplineCoeffKnots, SplineCoeffBin
duplicate/o SplineControlptKnots, SplineControlptBin
duplicate/o SplineKnotWave, SplineKnotBin
duplicate/o ModelDataBinning, ModelDataBin
duplicate/o BvectorInput, Bvector
duplicate/o Bvector_uncertainties, Uncertainties
redimension/d Kmatrix,SplineCoeffKnots,SplineControlptKnots,SplineKnotWave
redimension/d ModelDataBin,Bvector,Uncertainties
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variable n = dimsize(Kmatrix,1)
make/o/n=(n) M_x; M_x=0

strswitch(SolnMethod)
case "NNLS":

NNLS(Kmatrix,Bvector,M_x)
wave M_x
break

case "TNNLS":
IPG_TNNLS(Kmatrix,M_x,Bvector,Uncertainties,0.6,100)
wave M_x
break

case "reg":
Regularization(Kmatrix,M_x,Bvector,Uncertainties)
wave M_x
break

endswitch

cubicBspline(M_x,SplineControlptBin,SplineKnotBin,ModelDataBin,ModelWaveOutput)
wave ModelWaveOutput
SetDataFolder OldDf

end
//======================================================================
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// Evaluate cubic spline interpolation, given coefficient values from inverse solution
// Input waves [dimensions in brackets]:
// SplineCoeffWave [ncoeff] inverse solution coefficients
// SplineControlptKnots [nDias] binning for control points of size distribution solution
// SplineKnotWave [(ncoeff+d+1)] wave of knot values needed to calculate Bsplines
// SplineOutputBin [any] binning for final size distribution solution; can be very fine
// cSplineOutputWv [any] wave to hold size distribution solution;
// number of points must match SplineOutputBin
// Output is solution in "cSplineOutputWv"
function cubicBspline(SplineCoeffWave,SplineControlptKnots,SplineKnotWave,SplineOutputBin,cSplineOutputWv)

wave SplineCoeffWave,SplineControlptKnots,SplineKnotWave
wave SplineOutputBin,cSplineOutputWv

FindKnotPt(SplineKnotWave,SplineControlptKnots,SplineOutputBin)
wave KnotPt, KnotPt_indx

variable fpnts=numpnts(SplineOutputBin)
variable controlpnts=numpnts(SplineControlptKnots)
variable x0=SplineControlptKnots[0], xN=SplineControlptKnots[controlpnts-1]

variable xi, xk,xk1,xk2,xk3,xk4
variable xk_3,xk_2, xk_1
variable cj_3,cj_2,cj_1,cj
variable Bj_3,Bj_2,Bj_1,Bj
variable dBj_3,dBj_2,dBj_1,dBj
variable x0N,Cspline0N,dCspline0N
variable Cspline_i
variable knotindx
variable i
for(i=0;i<fpnts;i+=1)

xi=SplineOutputBin[i]
knotindx=KnotPt_indx[i]

cj_3=SplineCoeffWave[knotindx-3]
cj_2=SplineCoeffWave[knotindx-2]
cj_1=SplineCoeffWave[knotindx-1]
cj=SplineCoeffWave[knotindx]

xk_3=SplineKnotWave[knotindx-3]
xk_2=SplineKnotWave[knotindx-2]
xk_1=SplineKnotWave[knotindx-1]
xk=SplineKnotWave[knotindx]
xk1=SplineKnotWave[knotindx+1]
xk2=SplineKnotWave[knotindx+2]
xk3=SplineKnotWave[knotindx+3]
xk4=SplineKnotWave[knotindx+4]
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if (xi<x0 || xi>=xN)
if (xi<x0)

x0N=x0
elseif (xi>=xN)

x0N=xN
endif

Bj_3=BsplineC4(x0N,xk_3,xk_2,xk_1,xk,xk1)
Bj_2=BsplineC3(x0N,xk_2,xk_1,xk,xk1,xk2)
Bj_1=BsplineC2(x0N,xk_1,xk,xk1,xk2,xk3)
Bj=BsplineC1(x0N,xk,xk1,xk2,xk3,xk4)
Cspline0N=cj_3*Bj_3+cj_2*Bj_2+cj_1*Bj_1+cj*Bj

dBj_3=dBsplineC4(x0N,xk_3,xk_2,xk_1,xk,xk1)
dBj_2=dBsplineC3(x0N,xk_2,xk_1,xk,xk1,xk2)
dBj_1=dBsplineC2(x0N,xk_1,xk,xk1,xk2,xk3)
dBj=dBsplineC1(x0N,xk,xk1,xk2,xk3,xk4)
dCspline0N=cj_3*dBj_3+cj_2*dBj_2+cj_1*dBj_1+cj*dBj

Cspline_i=max((Cspline0N+dCspline0N*(xi-x0N)),0)
else

Bj_3=BsplineC4(xi,xk_3,xk_2,xk_1,xk,xk1)
Bj_2=BsplineC3(xi,xk_2,xk_1,xk,xk1,xk2)
Bj_1=BsplineC2(xi,xk_1,xk,xk1,xk2,xk3)
Bj=BsplineC1(xi,xk,xk1,xk2,xk3,xk4)
Cspline_i=cj_3*Bj_3+cj_2*Bj_2+cj_1*Bj_1+cj*Bj

endif

cSplineOutputWv[i]=max(Cspline_i,0)
Cspline_i=0

endfor
end
//======================================================================
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// Find primary knot point to correspond to secondary (fine) knot point
function FindKnotPt(KnotPtWave,ControlPtWave,InterpFinePtWave)

wave KnotPtWave,ControlPtWave,InterpFinePtWave

duplicate/o InterpFinePtWave, KnotPt, KnotPt_indx
variable p=numpnts(InterpFinePtWave)
variable k=numpnts(KnotPtWave)

variable c0knot=ControlPtWave[0]
variable cNknot=ControlPtWave[numpnts(ControlPtWave)-1]
findvalue/v=(c0knot) KnotPtWave
variable c0knotindx=V_value
findvalue/v=(cNknot) KnotPtWave
variable cNknotindx=V_value

variable j,i
for(i=c0knotindx;i<cNknotindx;i+=1)

for(j=0;j<p;j+=1)
if (InterpFinePtWave[j]<KnotPtWave[c0knotindx])

KnotPt[j]=KnotPtWave[c0knotindx]
KnotPt_indx[j]=c0knotindx

elseif (InterpFinePtWave[j]>=KnotPtWave[cNknotindx-1])
KnotPt[j]=KnotPtWave[cNknotindx-1]
KnotPt_indx[j]=cNknotindx-1

elseif (InterpFinePtWave[j]>=KnotPtWave[i] && InterpFinePtWave[j]<KnotPtWave[i+1])
KnotPt[j]=KnotPtWave[i]
KnotPt_indx[j]=i

endif
endfor

endfor
end
//======================================================================
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// B-spline functional forms; first derivatives
function dBsplineC1(xi,xk,xk1,xk2,xk3,xk4)

variable xi,xk,xk1,xk2,xk3,xk4

variable dB1=(3*(xi-xk)^2)/((xk3-xk)*(xk2-xk)*(xk1-xk))
return dB1

end

function dBsplineC2(xi,xk,xk1,xk2,xk3,xk4)
variable xi,xk,xk1,xk2,xk3,xk4

variable dB2=(-xk^2-2*xk*xk2+4*xk*xi+2*xk2*xi-3*xi^2)/((xk3-xk)*(xk2-xk)*(xk2-xk1))
dB2+=(-xk*xk1-(xk+xk1)*xk3+2*(xk+xk1)*xi+2*xk3*xi-3*xi^2)/((xk3-xk)*(xk3-xk1)*(xk2-xk1))
dB2+=(-xk1^2-2*xk1*xk4+4*xk1*xi+2*xk4*xi-3*xi^2)/((xk4-xk1)*(xk3-xk1)*(xk2-xk1))
return dB2

end

function dBsplineC3(xi,xk,xk1,xk2,xk3,xk4)
variable xi,xk,xk1,xk2,xk3,xk4

variable dB3=(xk3^2+2*xk3*xk-4*xk3*xi-2*xk*xi+3*xi^2)/((xk3-xk)*(xk3-xk1)*(xk3-xk2))
dB3+=(xk3*xk4+(xk3+xk4)*xk1-2*(xk3+xk4)*xi-2*xk1*xi+3*xi^2)/((xk4-xk1)*(xk3-xk1)*(xk3-xk2))
dB3+=(xk4^2+2*xk2*xk4-4*xk4*xi-2*xk2*xi+3*xi^2)/((xk4-xk1)*(xk4-xk2)*(xk3-xk2))
return dB3

end

function dBsplineC4(xi,xk,xk1,xk2,xk3,xk4)
variable xi,xk,xk1,xk2,xk3,xk4

variable dB4=(3*(xk4-xi)^2)/((xk4-xk1)*(xk4-xk2)*(xk4-xk3))
return dB4

end
//======================================================================
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// Evaluate transmission probability for particle through DMA
function KernelFcn_DMA(Dpart,ChanZ,ChanV,bbeta,delta,chargemax,TFformula)

variable Dpart,ChanZ,ChanV,bbeta,delta,chargemax
string TFformula
// Dpart is some measure of the particle diameter; need to make sure it is expressed as Dp [m]
// before passing to other functions (in case input is ln(Dp))
// ChanZ is the channel-targeted mobility of the instrument; Z [m2/V/s] 
variable Dp
if(Dpart<0)

Dp=exp(Dpart)
else

Dp=Dpart
endif

variable Zp=ZpCalc_DpDMA(Dp)
variable Zp_i=Zp
variable phi=0 // charging probability
variable psi=0 // transfer function
variable Gphipsi=0 // overall kernel value
variable i=0
variable echarges=0
for (i=1;i<=chargemax;i+=1) // set max number of charges to consider

Zp_i=abs(Zp*i)
echarges=-i
phi=chargeprob(Dp,echarges)
psi=TransferFcn_DMA(Zp_i,i,ChanZ,ChanV,bbeta,delta,TFformula)
Gphipsi+=phi*psi

endfor

wave diffLossMatrix
variable Leff,Q,eta; eta=1
for (i=0;i<dimsize(diffLossMatrix,0);i+=1)

Leff=diffLossMatrix[i][0]
Q=diffLossMatrix[i][1]/60000
eta*=eta_pen(Dp,Leff,Q)

endfor
eta*=eta_pen(Dp,Leff_total(),QaDMA())
eta*=counteff_CPC3025(Dp)
variable F=1*eta // factor for penetration and other efficiencies

variable kernel=Gphipsi*F // *efficiencies
if (kernel<1e-9) // limit for kernel matrix; lessens burden on inversion algorithm

kernel=0
endif

return kernel
end
//======================================================================
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// Calculate value of transfer function for particle mobility Zp
// DMA set to voltage ChanV, with associated mobility ChanZ
function TransferFcn_DMA(Zp,ncharges,ChanZ,ChanV,bbeta,delta,TFformula)

variable Zp,ncharges,ChanZ,ChanV,bbeta,delta
string TFformula

variable Ztil,Pe,sigmaStolz
Ztil=Zp/ChanZ // dimensionless mobility
Pe=ncharges*echg()*ChanV*fDMA()/(kB()*TK()) // Peclet number for particle migration...
sigmaStolz=sqrt((Gdma()*Ztil)/Pe) // diffusion parameter //...across electrode gap

variable omega=omegaDMAcalc(sigmaStolz,Ztil,bbeta,delta,TFformula)
if (omega<1e-5) // limit for computational efficiency

omega = 0
endif

return omega
end

// Call one of the "omegaDMA_xxx" functions to calculate omega value
function omegaDMAcalc(sigmap,zzz,bbeta,delta,TFformula)

variable sigmap,zzz,bbeta,delta
string TFformula

variable om
strswitch(TFformula)

case "stolz":
om=omegaDMA_stolz(sigmap,zzz,bbeta,delta)
break

case "nd":
om=omegaDMA_nd(zzz,bbeta,delta)
break

case "diff":
om=omegaDMA_diff(sigmap,zzz,bbeta,delta)
break

endswitch

return om
end
//======================================================================
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// DMA diffusive transfer function developed by Stolzenburg
// (1988 thesis, Eq 2.69; see also Stolzenburg and McMurry 2008, AST, Eq [13])
function omegaDMA_stolz(sigmap,zzz,bbeta,delta)

variable sigmap,zzz,bbeta,delta

variable e1,e2,e3,e4,dummy,om
dummy=(zzz-(1-bbeta))/(2^0.5*sigmap)
e1=dummy*erf(dummy)+exp(-dummy^2)/pi^0.5
dummy=(zzz-(1+bbeta))/(2^0.5*sigmap)
e2=dummy*erf(dummy)+exp(-dummy^2)/pi^0.5
dummy=(zzz-(1-delta*bbeta))/(2^0.5*sigmap)
e3=dummy*erf(dummy)+exp(-dummy^2)/pi^0.5
dummy=(zzz-(1+delta*bbeta))/(2^0.5*sigmap)
e4=dummy*erf(dummy)+exp(-dummy^2)/pi^0.5
om=sigmap/(2^0.5*bbeta*(1-delta))*(e1+e2-e3-e4)

return om
end

// Non-diffusive transfer function; Stolzenburg and McMurry 2008
function omegaDMA_nd(zzz,bbeta,delta)

variable zzz,bbeta,delta

variable om=(abs(zzz-(1+bbeta))+abs(zzz-(1-bbeta)))
om+=(-abs(zzz-(1+bbeta*delta))-abs(zzz-(1-bbeta*delta)))
om*=1/(2*bbeta*(1-delta))

return om
end

// Diffusive transfer function; Gaussian approximation
// (with mean zzz=1 and standard deviation = sigmap)
function omegaDMA_diff(sigmap,zzz,bbeta,delta)

variable sigmap,zzz,bbeta,delta

variable om=bbeta*(1+delta)/sigmap/sqrt(2*pi)*exp(-((zzz-1)^2)/(2*sigmap^2))

return om
end
//======================================================================
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// Probability of particle diameter dp [m] carrying n charges
// using Xcode fit coefficients for ss charge distribution for air ions and conductive particles at STP
function chargeprob(dp_m,echarges)

variable dp_m, echarges

wave XcodeS3
variable ap = dp_m/2 // radius
variable b0,b1,b2,b3,b4,b5,b6,b7,b8,b9,b10,b11,apmin,apmax,phi_charge

matrixop/o echargesWv=col(XcodeS3,0)
extract/indx/o echargesWv, echargesIndx, echargesWv==echarges
variable i=echargesIndx[0]
b0=XcodeS3[i][1]
b1=XcodeS3[i][2]
b2=XcodeS3[i][3]
b3=XcodeS3[i][4]
b4=XcodeS3[i][5]
b5=XcodeS3[i][6]
b6=XcodeS3[i][7]
b7=XcodeS3[i][8]
b8=XcodeS3[i][9]
b9=XcodeS3[i][10]
b10=XcodeS3[i][11]
b11=XcodeS3[i][12]
apmin=XcodeS3[i][15]
apmax=XcodeS3[i][16]

variable sumFitCoeffs=0
if (ap<apmin || ap>apmax)

phi_charge=0
else

sumFitCoeffs=(b0*(log(ap))^0+b1*(log(ap))^1+b2*(log(ap))^2+b3*(log(ap))^3)
sumFitCoeffs+=(b4*(log(ap))^4+b5*(log(ap))^5+b6*(log(ap))^6+b7*(log(ap))^7)
sumFitCoeffs+=(b8*(log(ap))^8+b9*(log(ap))^9+b10*(log(ap))^10+b11*(log(ap))^11)
phi_charge=10^(sumFitCoeffs)

endif

return max(phi_charge,0)
end
//======================================================================



224

// Diffusional losses through DMA inlet/outlet; inside pipes/tubes, bipolar charger, dryer
// use equivalent pipe length in diffusional deposition formula for laminar flow (Baron and Willeke)
function eta_pen(dp_m,Leff,Q)

variable dp_m,Leff,Q // [m], [m], [m3/s]

variable eta_pen,mu
mu=pi*diffusion_coeff(dp_m)*Leff/Q
mu=numtype(mu)==0 ? mu : 0
if (mu>0.02)

eta_pen=0.81905*exp(-3.6568*mu)+0.09753*exp(-22.305*mu)
eta_pen+=0.0325*exp(-56.961*mu)+0.01544*exp(-107.62*mu)

else
eta_pen=1.0-2.5638*mu^(2/3)+1.2*mu+0.1767*mu^(4/3)

endif

return max(0,eta_pen)
end
function diffusion_coeff(dp)

variable dp

variable D // diffusion coefficient
if (dp > 0.3e-9) // mobility diameter of a particle cannot be below 0.3 nm;

// ...mass diameter would then be negative
// based on mobility from Stokes-Millikan equation:
variable Z = mobility(dp,1) // mobility [m2/V/s]; assumed singly-charged
D = Z*kB()*TK()/echg()

else
// free molecular regime: // Li 2003, and Flagan note on nRDMA data analysis
// D=kT/f: f=(2/3) rho dp^2 sqrt(2 pi kB TK / m) ( 1 + pi alpha / 8)
variable alpha = 0.9
variable f = (2/3)*rhogas()*dp^2*sqrt(2*pi*Rgas()*TK()/MW())*(1+pi*alpha/8)
D = kB()*TK()/f

endif

return D
end

// Mobility calculation, according to Stokes-Millikan equation (Ehn et al. 2011, AST)
function mobility(dp,q)

variable dp,q // mobility diameter [m], number of charges in particle
variable Kn = 2*lambda()/dp // Knudsen number
variable mass = pi/6*(dp-0.3e-9)^3*rhop() // particle mass [kg]
variable m_g = MW()*1.660538921e-27*1e3 // mass of gas molecule [kg]
variable mobil = q*echg()/(3*pi*etagas())*(1+Kn*(1.257+0.4*exp(-1.1/Kn)))/dp
mobil *= (1+m_g/mass)^(-1/2) // mass correction term
return mobil // particle mobility [m2/V/s]

end
//======================================================================



225

// Conversions between mobility and diameter
function ZpCalc_DpDMA(dp)

variable dp

// Stokes regime:
// D=kTB: B=Cc / 3 pi eta dp
// Zp = n e Cc / (3 pi eta dp)
variable gam1 = 2.492/2
variable gam2 = 0.84/2
variable gam3 = 0.43*2
variable Kn = 2*lambda()/dp
variable Cc = 1+ Kn*(gam1+gam2*exp(-gam3/Kn))
variable Zp = echg()*Cc/(3*pi*etagas()*dp)

return Zp // mobility [m2/V/s]; assumed singly-charged
end
function DpCalc_Zdma(Zp)

variable Zp

// Stokes regime:
// D=kTB: B=Cc / 3 pi eta dp
// Zp = n e Cc / (3 pi eta dp)
variable gam1 = 2.492/2
variable gam2 = 0.84/2
variable gam3 = 0.43*2
variable Kn, Cc, Dslip, comparison
variable PAR = echg()/(3*pi*etagas()*Zp)
variable Dinitial = (PAR+sqrt(PAR*(PAR+(8*lambda()*gam1))))/2
do

Kn = 2*lambda()/Dinitial
Cc = 1+ Kn*(gam1+gam2*exp(-gam3/Kn))
Dslip = Cc*PAR
comparison = abs((Dinitial-Dslip)/Dslip)

if (comparison>1e-14)
Dinitial = (Dinitial+Dslip)/2

endif
while(comparison>1e-14)
variable Dp = Dinitial

return Dp
end
//======================================================================
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// Interconversions between diameter, mobility, and voltage
function DpCalc_Vdma(V)

variable V

variable Zp = ZpCalc_Vdma(V)

return DpCalc_Zdma(Zp)
end
function VCalc_DpDMA(dp)

variable dp

variable Zp = ZpCalc_DpDMA(dp)

return VCalc_Zdma(Zp)
end
function VCalc_Zdma(Zp)

variable Zp

return QshDMA()*ln(R2dma()/R1dma())/(2*pi*Ldma()*Zp)
end
function ZpCalc_Vdma(V)

variable V

return QshDMA()*ln(R2dma()/R1dma())/(2*pi*V*Ldma())
end
//======================================================================

// CPC counting efficiencies; from Wiedensohler 1997 exponential fit of counting efficiency curves
function counteff_CPC3025(dp_m)

variable dp_m

variable Dp_nm=dp_m*1e9
variable Dp0_nm=2.22 // 0% activation efficiency
variable Dp50_nm=2.42 // 50% activation efficiency
variable Dp2_nm=0.28 // slope

variable cpceff=1
if (Dp_nm<=Dp0_nm)

cpceff=0
else

cpceff=1-exp((Dp0_nm-Dp_nm)/(Dp2_nm))
endif

return cpceff
end
//======================================================================
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// Functions to call parameters and constants
//
// Flow rates
function QaDMA()

wave DMAmeasParams
return DMAmeasParams[%Qa_lpm]/60000 // m^3/s

end
function QshDMA()

wave DMAmeasParams
return DMAmeasParams[%Qsh_lpm]/60000 // m^3/s

end
function betDMA()

variable bet=QaDMA()/QshDMA() // flow ratio
wave DMAmeasParams; DMAmeasParams[%betaDMA]=bet
return bet

end
function deltaDMA()

wave DMAmeasParams
return DMAmeasParams[%deltaDMA] // flow balance

end
//
// Instrument geometry
function R1dma()

wave DMAgeomParams
return DMAgeomParams[%R1dma_m] // m

end
function R2dma()

wave DMAgeomParams
return DMAgeomParams[%R2dma_m] // m

end
function Ldma()

wave DMAgeomParams
return DMAgeomParams[%Ldma_m] // m

end
//
// Geometry parameters
function fDMA()

variable r1=R1dma(), r2=R2dma()
variable f=(r2-r1)/(r2*ln(r2/r1))
wave DMAgeomParams; DMAgeomParams[%f_dma]=f
return f

end
function Gdma()

variable r1=R1dma(), r2=R2dma(), L=Ldma(), bet=betDMA(), delt=deltaDMA()
variable G=Gc(r1,r2,L,bet,delt)
wave DMAgeomParams; DMAgeomParams[%G_dma]=G
return G

end
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// Equivalent length values for calculating diffusional losses
function LeffDMA()

wave DMAgeomParams
return DMAgeomParams[%Leq_DMA_m] // m

end
function Leff_other()

wave DMAgeomParams
return DMAgeomParams[%Leq_other_m] // m

end
function Leff_total()

variable Leff_tot=LeffDMA()+Leff_other()
return Leff_tot // m

end
//
// Sampling parameters
function tmeasDMA()

wave DMAmeasParams
return DMAmeasParams[%tsample_s] // s

end
function dTdetDMA()

wave DMAmeasParams
return DMAmeasParams[%dTdet_C] // degC

end
function QdetDMA()

wave DMAmeasParams
return DMAmeasParams[%Qdet_lpm]/60000 // m^3/s

end
//
// Ambient temperature and pressure conditions
function TK()

wave DMAmeasParams
return DMAmeasParams[%Tamb_K] // K

end
function PPa()

wave DMAmeasParams
return DMAmeasParams[%Pamb_Pa] // Pa

end
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// Particle density
function rhop()

wave DMAmeasParams
return DMAmeasParams[%particleDensity_kgm3] // kg/m^3

end
//
// Air properties and other constants
function MW() // molecular weight of air 

return 0.028 // kg/mol
end
function lambda() // air mean free path; Seinfeld & Pandis p.399

return 2*etagas()/(PPa()*(8*MW()*1.660538921e-27*1e3/(pi*TK()*kB()))^.5) // m
end
function etagas()

variable visc = 18.27e-6 // viscosity of air in reference temperature, t0v, [kg/m/s]
variable suthc = 120 // Sutherland constant, value 120 for air (111 for N2 & 127 for O2)
variable t0v = 291.5 // reference temperature for viscosity [K]
visc = visc*(t0v+suthc)/(TK()+suthc)*(TK()/t0v)^1.5
return visc // viscosity of air [kg/m/s]

end
function rhogas()

return PPa()/(TK()*287.058) // density of air [kg/m3]
end
function nugas()

return etagas()/rhogas() // kinematic viscosity of air [m2/s]
end
function Rgas()

return 8.3144621 // gas constant [J/mol/K]
end
function kB()

return 1.3806488e-23 // Boltzmann constant [J/K]
end
function echg()

return 1.602176565e-19 // elementary charge [C]
end
function ep0()

return 8.854e-12 // dielectric constant [C^2/(N m^2)]
end
//======================================================================
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// Functions to find G parameter; assuming laminar flow
function Gc(r1,r2,L,beta,delta)

variable r1,r2,L,beta,delta

variable gamma=(r1/r2)^2
variable kappa=(L*r2)/(r2^2-r1^2)
variable fcin=(beta*(1-delta))/(2*(1+beta))
variable fcout=(2+beta-beta*delta)/(2*(1+beta))
variable win=wfracc(fcin,gamma) // find w values corresponding to...
variable wout=wfracc(fcout,gamma) // ...characteristic streamline at inlet & outlet

variable Gc=4*(1+beta)^2*(1-gamma^0.5)/((1-gamma)^2)
Gc*=(Ic(wout,gamma)-Ic(win,gamma)+(win-wout)/kappa^2)
return Gc

end
function fracc(coefs,w)

wave coefs
variable w

variable FCfd=(w*ln(w)+(1-w)+(1/2)*(1-w)^2*ln(coefs[1])/(1-coefs[1]))
FCfd*=((1/2)*(1+coefs[1])*ln(coefs[1])+(1-coefs[1]))^(-1)
return coefs[0]-FCfd

end
function wfracc(fc,gam)

variable fc,gam

make/d/o coefs={fc,gam}
FindRoots/L=(gam)/H=1/q fracc, coefs
return V_Root

end
function Ic(w,gam)

variable w,gam

variable A=(-(1/2)*(1+gam)*ln(gam)-(1-gam))^(-1)
variable ICfd=(-(1/2)*w^2*((1-gam)*ln(w)-(1-w)*ln(gam))^2)
ICfd+=((1/2)*w^2*(1-gam)+(1/3)*w^3*ln(gam))*((1-gam)*ln(w)-(1-w)*(ln(gam)))
ICfd+=(1/4)*(1-w^2)*(1-gam)^2+(5/18)*(1-w^3)*(1-gam)*ln(gam)+(1/12)*(1-w^4)*(ln(gam))^2
ICfd*=(A)^2
return ICfd

end
//======================================================================
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// Non-negative least squares method to solve problems described as:
// B = A x Model, where B is measured data, A is m x n matrix, and Model is solution in question
// input: matrixA (mxn), vectorb (mx1), as well as wave to hold solution vectorx (nx1)
// output: vectorx>0 such that vectorx = arg min ||Ax - b||^2
// index sets P & R defined and modified in execution of algorithm
// initial solution vector x set to (nx1) zero vector
// n-vectors w & s provide working space
//
// Input waves [dimensions in brackets]:
// AmatrixInput [m x n] kernel matrix, describing measurement collection
// BvectorInput [m] vector of measured signals (raw data)
// ModelWaveOutput [n] wave to hold size distribution solution;
// number of points must match y-dimension of AmatrixInput
// Output is solution in "ModelWaveOutput"
function NNLS(AmatrixInput,BvectorInput,ModelWaveOutput)

wave AmatrixInput,BvectorInput,ModelWaveOutput

// create working space
string OldDf=GetDataFolder(1)
NewDataFolder/O/S root:Packages
NewDataFolder/O/S root:Packages:NNLS
// create local copies of input waves
duplicate/o AmatrixInput, matrixA
duplicate/o BvectorInput, vectorb
redimension/d matrixA, vectorb

variable/g m,n
m = dimsize(matrixA,0)
n = dimsize(matrixA,1)

// Initialization: P = null, R = {1, 2,..., n}, x = 0, w = A^T (b - Ax)
make/o/n=(n) setP; setP = 0
make/o/n=(n) setR; setR = p+1
make/d/o/n=(n) vectorx; vectorx = 0
matrixop/o vectorw = matrixA^t x (vectorb - matrixA x vectorx)
duplicate/o vectorx, ModelWaveOutputIter

variable/g tolerance = 1e-10
variable/g i_outer = 0 // initialize count of iteration number
do

duplicate/o vectorw, vectorwR
variable R_index
for(R_index=0;(R_index+1)<=n;R_index+=1)

if (setR[R_index]==0)
vectorwR[R_index] = -inf

endif
endfor
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matrixop/o wRvtols = sum(greater(tolerance,vectorwR)-1)
matrixop/o anyRs = sum(equal(setR,0)-1)
variable wRvtol = wRvtols[0]
variable anyR = anyRs[0]
if (wRvtol==0 || anyR==0) // proceed if R not empty and [max(wi) > tolerance]

break
endif
i_outer+=1
if (i_outer>=(3*n))

break
endif

make/d/o/n=(n) vector_s; vector_s = 0
wavestats/q vectorwR
variable t_index = V_maxloc // t = arg max(wi)
setP[t_index] = setR[t_index] // include the index t in P and remove it from R
setR[t_index] = 0

// Make matrixAp associated with only the variables currently in the passive set P
make/d/o/n=(m,n) matrixAp; matrixAp=0
variable jj = 0
variable j
for(j=0;(j+1)<=n;j+=1)

if (setP[j]>0)
matrixAp[][jj] = matrixA[p][j]
jj+=1

endif
endfor
redimension/n=(m,jj) matrixAp
matrixSVD/b matrixAp
wave M_U,W_W,M_V
duplicate/o W_W, W_Winv; W_Winv = 1/W_W
W_Winv = numtype(W_Winv)==1 ? 0 : W_Winv
matrixop/o W_WinvMatrix = DiagRC(W_Winv,jj,jj)
matrixop/o M_x = M_V x W_WinvMatrix x M_U^t x vectorb
make/d/o/n=(jj) vector_sP; vector_sP = M_x[p]
make/d/o/n=(jj) vectorxP
variable kk = 0
variable k
for(k=0;(k+1)<=n;k+=1)

if (setP[k]==0)
vector_s[k] = 0

else
vector_s[k] = vector_sP[kk]
vectorxP[kk] = vectorx[k]
kk+=1

endif
endfor
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variable/g i_inner = 0
do // sP = [(Ap)^T x Ap]^-1 x (Ap)^T x b

matrixop/o sPvtols = sum(greater(vector_sP,tolerance)-1)
variable sPvtol = sPvtols[0]
if (sPvtol==0) // proceed if min(sP) <= 0

break
endif

i_inner+=1
if (i_inner>=3*n)

break
endif

make/d/o/n=(jj) alphawave
variable sPpnts = numpnts(vector_sP)
variable qq = 0
variable q
for(q=0;(q+1)<=sPpnts;q+=1)

if (vector_sP[q]<=tolerance)
alphawave[qq] = vectorxP(q)/(vectorxP(q)-vector_sP(q))
qq+=1

endif
endfor
variable qpnts = qq
redimension/n=(qpnts) alphawave
wavestats/q alphawave
variable/g alpha = V_min // alpha = -min[xi/(xi - si)]
matrixop/o vectorx = vectorx+alpha*(vector_s-vectorx) // x := x + alpha(s - x)

// Update R and P: move from setP to setR all indices j in P for which xj = 0
variable j_index
for(j_index=0;(j_index+1)<=n;j_index+=1)

if (setP[j_index]>0 && abs(vectorx[j_index])<tolerance)
setR[j_index] = setP[j_index]
setP[j_index] = 0

endif
endfor

// sP = [(Ap)^T x Ap]^-1 x (Ap)^T x b
// sR = 0
make/d/o/n=(n) vector_s; vector_s = 0
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// Make matrixAp associated with only the variables currently in the passive set P
make/d/o/n=(m,n) matrixAp; matrixAp=0
variable jj_inner = 0
Variable j_inner
for(j_inner=0;(j_inner+1)<=n;j_inner+=1)

if (setP[j_inner]>0)
matrixAp[][jj_inner] = matrixA[p][j_inner]
jj_inner+=1

endif
endfor
redimension/n=(m,jj_inner) matrixAp
matrixSVD/b matrixAp
wave M_U,W_W,M_V
duplicate/o W_W, W_Winv; W_Winv = 1/W_W
W_Winv = numtype(W_Winv)==1 ? 0 : W_Winv
matrixop/o W_WinvMatrix = DiagRC(W_Winv,jj_inner,jj_inner)
matrixop/o M_x = M_V x W_WinvMatrix x M_U^t x vectorb
make/d/o/n=(jj_inner) vector_sP; vector_sP = M_x[p]
make/d/o/n=(jj_inner) vectorxP
variable kk_inner = 0
variable k_inner
for(k_inner=0;(k_inner+1)<=n;k_inner+=1)

if (setP[k_inner]==0)
vector_s[k_inner] = 0

else
vector_s[k_inner] = vector_sP[kk_inner]
vectorxP[kk_inner] = vectorx[k_inner]
kk_inner+=1

endif
endfor

while (1)
vectorx = vector_s(p) // x = s
matrixop/o vectorw = matrixA^t x (vectorb - matrixA x vectorx) // w = A^T x (b - Ax)

redimension/n=(-1,(1+i_outer)) ModelWaveOutputIter
ModelWaveOutputIter[][i_outer]=vectorx[p]

while(1)

ModelWaveOutput = vectorx
SetDataFolder OldDf

end
//======================================================================
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// Totally non-negative least squares method to solve problems which can be described as:
// B = A x Model, where B is measured data, A is m x n matrix, and Model is solution in question
// reference: Michael Merritt and Yin Zhang, J Optim Theory Appl 126,1 (2005), pp. 191-202
//
// Input variables and waves [dimensions in brackets]:
// AmatrixInput [m x n] kernel matrix, describing measurement collection
// ModelWaveOutput [n] wave to hold size distribution solution;
// number of points must match y-dimension of AmatrixInput
// BvectorInput [m] vector of measured signals (raw data)
// Bvector_uncertainties [m] vector of uncertainty/error values associated with
// measured signals (raw data)
// ApproachParameter - "step" - needs to be smaller than 1, usually 0.6 is good;
// reasonable range seems to be 0.3 - 0.99
// MaxNumIterations - limit to sensible number...depends on complexity of problem...
//
// Output is solution in "ModelWaveOutput"
function IPG_TNNLS(AmatrixInput,ModelWaveOutput,BvectorInput,Bvector_uncertainties,Approac

wave AmatrixInput,ModelWaveOutput,BvectorInput,Bvector_uncertainties
variable ApproachParameter,MaxNumIterations

// create working space
string OldDf=GetDataFolder(1)
NewDataFolder/O/S root:Packages
NewDataFolder/O/S root:Packages:TNNLS
// create local copies of input waves

 duplicate/o AmatrixInput, AmatrixInputE, AmatrixOrig
duplicate/o BvectorInput, BvectorInputE, BvectorOrig
duplicate/o Bvector_uncertainties, Uncertainties
Uncertainties = Bvector_uncertainties==0 ? 1 : Bvector_uncertainties
// note this code defaults to use uncertainties;
// if uncertainties not available, set following parameter to 0 and modify the code
variable useUncertaintiesInput=1
if (useUncertaintiesInput)

AmatrixInputE = AmatrixOrig[p][q] / Uncertainties[p]
matrixop/o BvectorInputE = BvectorOrig / Uncertainties

endif
// create local meaningful waves to work with which account for the errors used
duplicate/o AmatrixInputE, Amatrix
duplicate/o ModelWaveOutput, ModelWave
duplicate/o BvectorInputE, Bvector
redimension/d Amatrix, ModelWave, Bvector, Uncertainties
// create some parameters for use after run to find out what happened
variable/g NumberIterations, Chisquare
// first we will need some variables and waves, etc. to work with
variable i,j
matrixop/o AmatrixT=Amatrix^t
// start with reliably small positive number; assume 1e-32 is such, but may fail in some cases...
ModelWave = 1e-32



236

// working waves & variables
variable numIter=0
variable err=0
variable alphaStar, temp1, temp2
// here the iterations start...
make/o/n=1 IterCount,errorVals
duplicate/o ModelWave, ModelWaveIter
matrixop/o CurrentResultB = AmatrixOrig x ModelWave // calculated data from our model
duplicate/o BvectorOrig, tempWv, NormalizedResidual
tempWv = (BvectorOrig - CurrentResultB) / Uncertainties
NormalizedResidual = tempWv
tempWv = tempWv^2
Chisquare = sum(tempWv)
err=Chisquare/numpnts(BvectorOrig)
errorVals[0]=err
do
// start of NNLS interior point gradient method itself; step designations relate to original paper

// step 1
matrixop/o Qk = AmatrixT x Amatrix x ModelWave - AmatrixT x Bvector
matrixop/o Dk = ModelWave / (AmatrixT x Amatrix x ModelWave)
matrixop/o Pk = - Dk * Qk
for(j=0;j<numpnts(Pk);j+=1)

if (Qk[j]==0)
Pk[j] = 0

endif
endfor
// step 2
matrixop/o AkSTAR= (Pk^t x AmatrixT x Amatrix x Pk)
temp1 = AkSTAR[0]
matrixop/o AkSTAR= - (Pk^t x Qk) 
temp2 = AkSTAR[0]
alphaStar = temp2 / temp1
redimension/n=(numpnts(ModelWave)) AkSTAR
AkSTAR = numtype(alphaStar)==0 ? alphaStar : 0
// above is ideal step to make; below is limiting the step so we do not get negative values...
matrixop/o AlphaWv =  - ModelWave/Pk // max alpha, which we can make, if Pk is neg
AlphaWv = numtype(AlphaWv)==0 ? AlphaWv : 0
for(i=0;i<numpnts(Pk);i+=1)

if (Pk[i]<0) // if Pk negative, may have to limit the step to smaller of the two values
AkSTAR[i]=min(ApproachParameter*AlphaWv[i],AkSTAR[i])

endif
endfor
// step 3; new model
matrixop/o ModelWave = ModelWave + (AkSTAR * Pk) // loop back after calcs below

// end of NNLS interior point gradient method itself
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// figure out Chisquare so we know if we should bail out...
matrixop/o CurrentResultB = AmatrixOrig x ModelWave // calculated data from our model
duplicate/o BvectorOrig, tempWv, NormalizedResidual
tempWv = (BvectorOrig - CurrentResultB) / Uncertainties
NormalizedResidual = tempWv
tempWv = tempWv^2
Chisquare = sum(tempWv)
err=Chisquare/numpnts(BvectorOrig)
numIter+=1
NumberIterations=numIter

insertpoints numIter,1, IterCount,errorVals
IterCount[numIter]=numIter
errorVals[numIter]=err
redimension/n=(-1,(1+numIter)) ModelWaveIter
ModelWaveIter[][numIter]=ModelWave[p]

if (numIter<10)
continue

endif
while((err>1 && numIter<MaxNumIterations))
// this bails out from TNNLS if:

//1. Chisquare/number of points is less than 1 (fit within uncertainties)
//2. Number of iterations is above user input value

ModelWaveOutput = ModelWave<=1e-10 ? 0 : ModelWave
SetDataFolder OldDf

end
//======================================================================



238

// Regularization method to solve problems which can be described as:
// B = A x Model, where B is measured data, A is m x n matrix, and Model is solution in question
// reference: Ilavsky and Jemian, J Appl Chryst Appl 42,2 (2009), pp. 347-353
//
// Input waves [dimensions in brackets]:
// AmatrixInput [m x n] kernel matrix, describing measurement collection
// ModelWaveOutput [n] wave to hold size distribution solution;
// number of points must match y-dimension of AmatrixInput
// BvectorInput [m] vector of measured signals (raw data)
// Bvector_uncertainties [m] vector of uncertainty/error values associated with
// measured signals (raw data)
//
// Internally calculated variables and waves [dimensions in brackets]:
// H_matrix [n x n] constraint matrix; here done for second derivative: MakeHmatrix()
// B_vector [n] calculated from Kmatrix, Bvector and errors: CalculateBVector()
// D_matrix [n x n] calculated from Kmatrix and errors:CalculateDMatrix()
// A_matrix [n x n] calculated from A[][] = D[][] + a * H[][] CalculateAmatrix()
// Avalue - for the fitting itself; call with precision (e~0.1 or so): FindOptimumAvalue(Evalue)
// Evalue - internal precision parameter, for now hardwired to 0.1; range 0 to 0.5
// lower value requires resulting chi^2 to be closer to target
// Chisquared - chi squared sum of the difference value between the fit and measured data
//
// Output is solution in "ModelWaveOutput"
//
// Internal parameter of Regularization:
// Regularization is forced to have at least this * max of SD in each bin to avoid negative values 
constant RegularizationMinRatio = 1e-4

function Regularization(AmatrixInput,ModelWaveOutput,BvectorInput,Bvector_uncertainties)
wave AmatrixInput,ModelWaveOutput,BvectorInput,Bvector_uncertainties

// create working space
string OldDf=GetDataFolder(1)
NewDataFolder/O/S root:Packages
NewDataFolder/O/S root:Packages:Regularization
// create local copies of input waves
duplicate/o AmatrixInput, Kmatrix
duplicate/o BvectorInput, Bvector
duplicate/o Bvector_uncertainties, Uncertainties
Uncertainties = Bvector_uncertainties==0 ? 1 : Bvector_uncertainties
redimension/d Kmatrix, Bvector, Uncertainties
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MakeHmatrix() // create H matrix
CalculateBVector() // create B vector
CalculateDMatrix() // create D matrix

variable/g Evalue=0.1 // may not be needed in the future
variable/g NumberIterations
NumberIterations=FindOptimumAvalue(Evalue) // do the fitting for given e value

wave CurrentResultSizeDistribution=root:Packages:Regularization:CurrentResultSizeDistribution
wave NormalizedResidual=root:Packages:Regularization:NormalizedResidual
nvar Chisquare=root:Packages:Regularization:Chisquare

if ((numtype(NumberIterations)!=0)||(numberIterations>100)) // no solution found
CurrentResultSizeDistribution = 0
NormalizedResidual = 0
Chisquare = 0 // new Chisquared

endif

ModelWaveOutput=CurrentResultSizeDistribution
SetDataFolder OldDf

end
//======================================================================
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// Make the H_matrix
function MakeHmatrix()

string OldDf
OldDf=GetDataFolder(1)
SetDataFolder root:Packages:Regularization

wave Kmatrix=root:Packages:Regularization:Kmatrix
variable numOfPoints=dimsize(Kmatrix,1), i=0, j=0

make/d/o/n=(numOfPoints,numOfPoints) H_matrix; H_matrix=0 // make and zero the matrix
for(i=2;i<numOfPoints-2;i+=1) // fill most of matrix with 1 -4 6 -4 1

for(j=0;j<numOfPoints;j+=1)
if (j==i-2)

H_matrix[i][j]=1
endif
if (j==i-1)

H_matrix[i][j]=-4
endif
if (j==i)

H_matrix[i][j]=6
endif
if (j==i+1)

H_matrix[i][j]=-4
endif
if (j==i+2)

H_matrix[i][j]=1
endif

endfor
endfor
H_matrix[0][0]=1 // fill in beginning of the H_matrix
H_matrix[0][1]=-2
H_matrix[0][2]=1
H_matrix[1][0]=-2
H_matrix[1][1]=5
H_matrix[1][2]=-4
H_matrix[1][3]=1
H_matrix[numOfPoints-2][numOfPoints-4]=1 // fill in end of the H_matrix
H_matrix[numOfPoints-2][numOfPoints-3]=-4
H_matrix[numOfPoints-2][numOfPoints-2]=5
H_matrix[numOfPoints-2][numOfPoints-1]=-2
H_matrix[numOfPoints-1][numOfPoints-3]=1
H_matrix[numOfPoints-1][numOfPoints-2]=-2
H_matrix[numOfPoints-1][numOfPoints-1]=1

SetDataFolder OldDf
end
//======================================================================
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// Make new B_vector, calculated from Kmatrix, Bvector and Uncertainties
function CalculateBVector()

string OldDf
OldDf=GetDataFolder(1)
SetDataFolder root:Packages:Regularization

wave Kmatrix =root:Packages:Regularization:Kmatrix
wave Bvector =root:Packages:Regularization:Bvector
wave Uncertainties=root:Packages:Regularization:Uncertainties

variable M=dimsize(Kmatrix,0) // rows, i.e, measured points number
variable N=dimsize(Kmatrix,1) // columns, i.e., bins in distribution
variable i=0, j=0
make/d/o/n=(N) B_vector // points = bins in size dist.
B_vector=0
for(i=0;i<N;i+=1)

for(j=0;j<M;j+=1)
B_vector[i]+=((Kmatrix[j][i]*Bvector[j])/(Uncertainties[j]*Uncertainties[j]))

endfor
endfor

SetDataFolder OldDf
end
//======================================================================
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// Make new D_matrix, calculated from Kmatrix and Uncertainties
function CalculateDMatrix()

string OldDf
OldDf=GetDataFolder(1)
SetDataFolder root:Packages:Regularization

wave Kmatrix=root:Packages:Regularization:Kmatrix
wave Uncertainties=root:Packages:Regularization:Uncertainties

variable M=dimsize(Kmatrix,0) // rows, i.e, measured points number
variable N=dimsize(Kmatrix,1) // columns, i.e., bins in distribution
variable i=0, j=0, k=0
make/d/o/n=(N,N) D_matrix; D_matrix=0
duplicate/o Uncertainties, Uncertainties2
Uncertainties2=Uncertainties^2

duplicate/o Kmatrix, Kmatrix_ErrScaled
for(i=0;i<N;i+=1)

for(j=0;j<M;j+=1)
Kmatrix_ErrScaled[j][i]=Kmatrix[j][i]/(Uncertainties2[j])

endfor
endfor
matrixop/o testM =  Kmatrix_ErrScaled^t x Kmatrix
D_matrix = testM

SetDataFolder OldDf
end
//======================================================================

// Generate A_matrix
function CalculateAmatrix(aValue)

variable aValue

string OldDf
OldDf=GetDataFolder(1)
SetDataFolder root:Packages:Regularization

wave D_matrix=root:Packages:Regularization:D_matrix
wave H_matrix=root:Packages:Regularization:H_matrix

duplicate/o D_matrix, A_matrix; A_matrix=0
A_matrix=D_matrix[p][q]+aValue*H_matrix[p][q]

SetDataFolder OldDf
end
//======================================================================
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// Do the fitting itself, call with precision (e~0.1 or so)
function FindOptimumAvalue(Evalue)

variable Evalue

string OldDf
OldDf=GetDataFolder(1)
SetDataFolder root:Packages:Regularization

wave Kmatrix=root:Packages:Regularization:Kmatrix
wave Bvector=root:Packages:Regularization:Bvector
wave Uncertainties=root:Packages:Regularization:Uncertainties
variable numOfPoints=dimsize(Kmatrix,1)

variable ChisquareVal,err
make/o/n=1 IterCount,errorVals,ChiSqVals, Avals
make/o/n=(numOfPoints) ModelWaveOutIter; ModelWaveOutIter=0
MatrixOp/O CurrentResultB = Kmatrix x ModelWaveOutIter // calculated data from our model
duplicate/o Bvector, tempWv, NormalizedResidual
tempWv = (Bvector - CurrentResultB) / Uncertainties
NormalizedResidual = tempWv
tempWv = tempWv^2
ChisquareVal = sum(tempWv)
err=ChisquareVal/numpnts(Bvector)
errorVals[0]=err
ChiSqVals[0]=ChisquareVal
Avals[0]=1

variable LogAmax=100, LogAmin=-100, M=numpnts(Bvector)
variable Chisquared, MidPoint, Avalue, i=0, logAval, LogChisquarerdDivN, Smoothness
do

MidPoint=(LogAmax+LogAmin)/2
Avalue=10^MidPoint // calculate a
CalculateAmatrix(Avalue)
wave A_matrix
variable n = dimsize(A_matrix,1)
make/o/n=(n) M_x; M_x=0
wave B_vector
NNLS(A_matrix,B_vector,M_x)
wave M_x
duplicate/o M_x, CurrentResultSizeDistribution // put the data into the wave 

Chisquared=CalculateChisquared() // calculate C C=|| I - G M_x ||
i+=1
if (i>100) // no solution found

print i
return NaN

endif
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// calculate data from model and track results through iterations
matrixop/o CurrentResultB = Kmatrix x CurrentResultSizeDistribution
duplicate/o Bvector, tempWv, NormalizedResidual
tempWv = (Bvector - CurrentResultB) / Uncertainties
NormalizedResidual = tempWv
tempWv = tempWv^2
ChisquareVal = sum(tempWv)
err=ChisquareVal/numpnts(Bvector)
insertpoints i,1, IterCount,errorVals,ChiSqVals,Avals
IterCount[i]=i
errorVals[i]=err
ChiSqVals[i]=Chisquared
Avals[i]=Avalue
redimension/n=(-1,(1+i)) ModelWaveOutIter
ModelWaveOutIter[][i]=CurrentResultSizeDistribution[p]

variable tolerance=1e-10
if (sum(Uncertainties)==M)

if (Chisquared>(M/10))
LogAMax=MidPoint

else
LogAmin=MidPoint

endif
else

if (Chisquared>(M/100))
LogAMax=MidPoint

else
LogAmin=MidPoint

endif
endif

if(i<50)
continue

endif
while((err>1 && i<101))

variable/g Chisquare=Chisquared
return i

SetDataFolder OldDf
end
//======================================================================
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// Calculate Chisquared difference between data in Bvector and result calculated from x_vector
function CalculateChisquared()

string OldDf
OldDf=GetDataFolder(1)
SetDataFolder root:Packages:Regularization

wave Kmatrix=root:Packages:Regularization:Kmatrix
wave Bvector=root:Packages:Regularization:Bvector
wave Uncertainties=root:Packages:Regularization:Uncertainties
wave M_x=root:Packages:Regularization:M_x

duplicate/o Bvector, NormalizedResidual, ChisquaredWave // waves for data

MatrixMultiply  Kmatrix, M_x // generate data from current result
wave M_product
redimension/d/n=(-1,0) M_product

NormalizedResidual=(Bvector-M_product)/Uncertainties
ChisquaredWave=NormalizedResidual^2 // wave with Chisquared
return (sum(ChisquaredWave,-inf,inf)) // return sum of Chisquared

SetDataFolder OldDf
end
//======================================================================


